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 Correspondence table 
 CHAPTER 2  6th edition       Sonntag/Borgnakke/Wylen 
 
 The correspondence between the problem set in this sixth edition versus the 

problem set in the 5'th edition text. Problems that are new are marked new and 
those that are only slightly altered are marked as modified (mod). 

 
 Study guide problems 2.1-2.22 and 2.23-2.26 are all new problems. 
 

New 5th Ed. New 5th Ed. New 5th Ed. 
27 1 47 new 67 24 
28 new 48 16 68 new 
29 2 49 17 69 new 
30 new 50 new 70 23 
31 3 51 new 71 new 
32 new 52 19 72 30 
33 5 53 new 73 32 
34 6 54 34 74 33 
35 7 55 29 75 new 
36 9 56 new 76 37 
37 10 57 28 mod 77 27 
38 12 58 new 78 new 
39 new 59 20 79 38 
40 new 60 26 80 new 
41 new 61 new 81 31 
42 11 62 21 82 new 
43 13 63 new 83 22 
44 new 64 new 84 35 
45 18 65 15 85 36 
46 14 66 new 86 new 

 
 English Unit Problems 

New 5th Ed. SI New 5th Ed. SI 
87 new - 97 43E 43 
88 new 11 98 new 50 
89 new 12 99 new 53 
90 new 19 100 45E 70 
91 new 20 101 46E 45 
92 new 24 102 new 82 
93 39E 33 103 48E 55 
94 40E - 104 new 80 
95 new 47 105 47E 77 
96 42E 42    

 Design and Open ended problems 106-116   are from 5th edition problems 2.50-
2.60 
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Concept-Study Guide Problems 
 
2.1 
  Make a control volume around the turbine in the steam power plant in Fig. 1.1 and 

list the flows of mass and energy that are there. 
 
 Solution: 

We see hot high pressure steam flowing in 
at state 1 from the steam drum through a 
flow control (not shown). The steam leaves 
at a lower pressure to the condenser (heat 
exchanger) at state 2. A rotating shaft gives 
a rate of energy (power) to the electric 
generator set. 

 

WT

1

2  
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2.2 
  Make a control volume around the whole power plant in Figure 1.2 and with the help 

of Fig. 1.1 list what flows of mass and energy are in or out and any storage of 
energy. Make sure you know what is inside and what is outside your chosen C.V. 

 
 Solution: 

 Smoke
stack

Boiler
building

Coal conveyor system

Dock
Turbine house

Storage
gypsum

Coal
storage

flue
gas

cb

 

 

 
  

 
Underground

power cable
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Hot water

District heating

m

Coal
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m
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Storage for later

Gypsum, fly ash, slag
transport out:

Cold return m

m

Combustion air
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2.3 
  Make a control volume that includes the steam flow around in the main turbine loop 

in the nuclear propulsion system in Fig.1.3. Identify mass flows (hot or cold) and 
energy transfers that enter or leave the C.V.  

 
 Solution: 

 

Welectrical

1

2

WT

1

3

Electric
power gen.

5 4

6 7
Cooling by seawater

Condensate
to steam gen.

cold

Hot steam from generator

cb

 

 
The electrical power 
also leaves the C.V. 
to be used for lights, 
instruments and to 
charge the batteries. 
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2.4 
  Take a control volume around your kitchen refrigerator and indicate where the 

components shown in Figure 1.6 are located and show all flows of energy transfer. 
 
 Solution: 
 

 
The valve and the 
cold line, the 
evaporator, is 
inside close to the 
inside wall and 
usually a small 
blower distributes 
cold air from the 
freezer box to the 
refrigerator room. 

cb

W
.

Q
.

Q leak

 

 
The black grille in 
the back or at the 
bottom is the 
condenser that 
gives heat to the 
room air. 
 
The compressor 
sits at the bottom.  
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2.5 
  An electric dip heater is put into a cup of water and heats it from 20oC to 80oC. 

Show the energy flow(s) and storage and explain what changes. 
 
 Solution: 
 

Electric power is converted in the heater 
element (an electric resistor) so it becomes 
hot and gives energy by heat transfer to 
the water. The water heats up and thus 
stores energy and as it is warmer than the 
cup material it heats the cup which also 
stores some energy. The cup being 
warmer than the air gives a smaller 
amount of energy (a rate) to the air as a 
heat loss. 

 Welectric

Q loss

C B
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2.6 
  Separate the list P, F, V, v, ρ, T, a, m, L, t and V into intensive, extensive and non-

properties. 
 

 Solution: 
 
 Intensive properties are independent upon mass:  P, v, ρ, T  
 Extensive properties scales with mass:            V, m  
 Non-properties:             F, a, L, t, V 
  
 Comment:   You could claim that acceleration a and velocity V  are physical 

properties for the dynamic motion of the mass, but not thermal properties. 
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2.7 
  An escalator brings four people of total 300 kg, 25 m up in a building. Explain what 

happens with respect to energy transfer and stored energy. 
 

 Solution: 
 
 

 
 
The four people (300 kg) have their 
potential energy raised, which is how 
the energy is stored. The energy is 
supplied as electrical power to the 
motor that pulls the escalator with a 
cable.  

  

 
 

 



   Sonntag, Borgnakke and van Wylen  

 
2.8 
  Water in nature exist in different phases like solid, liquid and vapor (gas). Indicate 

the relative magnitude of density and specific volume for the three phases. 
 

 Solution: 
 
 Values are indicated in Figure 2.7 as density for common substances. More 

accurate values are found in Tables A.3, A.4 and A.5 
 
 Water as solid (ice) has density of around 900 kg/m3 
 Water as liquid has density of around 1000 kg/m3 
 Water as vapor has density of around 1 kg/m3    (sensitive to P and T) 
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2.9 
  Is density a unique measure of mass distribution in a volume? Does it vary? If so, on 

what kind of scale (distance)? 
 

 Solution: 
 
 Density is an average of mass per unit volume and we sense if it is not evenly 

distributed by holding a mass that is more heavy in one side than the other. 
Through the volume of the same substance (say air in a room) density varies only 
little from one location to another on scales of meter, cm or mm. If the volume 
you look at has different substances (air and the furniture in the room) then it can 
change abruptly as you look at a small volume of  air next to a volume of 
hardwood. 

 
 Finally if we look at very small scales on the order of the size of atoms the density 

can vary infinitely, since the mass (electrons, neutrons and positrons) occupy very 
little volume relative to all the empty space between them. 
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2.10 
  Density of fibers, rock wool insulation, foams and cotton is fairly low. Why is that? 
 

 Solution: 
 
 All these materials consists of some solid substance and mainly air or other gas. 

The  volume of fibers (clothes) and rockwool that is solid substance is low 
relative to the total volume that includes air. The overall density is 

     ρ = 
m
V = 

msolid + mair 
Vsolid + Vair

  

 where most of the mass is the solid and most of the volume is air. If you talk 
about the density of the solid only, it is high. 
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2.11 
  How much mass is there approximately in 1 L of mercury (Hg)?  Atmospheric air? 
 

 Solution: 
 

 A volume of 1 L equals 0.001 m3, see Table A.1. From Figure 2.7 the density is 
in the range of 10 000 kg/m3 so we get 

 
    m = ρV = 10 000 kg/m3 × 0.001 m3 = 10 kg 
 A more accurate value from Table A.4 is  ρ = 13 580 kg/m3. 
 
 For the air we see in Figure 2.7 that density is about 1 kg/m3 so we get 
 
    m = ρV = 1 kg/m3 × 0.001 m3 = 0.001 kg 
 
  A more accurate value from Table A.5 is  ρ = 1.17 kg/m3 at 100 kPa, 25oC. 
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2.12 
  Can you carry 1 m3 of liquid water? 
 
 Solution: 
 
 The density of liquid water is about 1000 kg/m3 from Figure 2.7, see also Table 

A.3. Therefore the mass in one cubic meter is 

    m = ρV = 1000 kg/m3 × 1 m3 = 1000 kg  
 
 and we can not carry that in the standard gravitational field. 
 
 
2.13 
 A manometer shows a pressure difference of 1 m of liquid mercury. Find ∆P in kPa. 
 
 Solution: 
 

           Hg :  L  = 1 m;     ρ = 13 580 kg/m3 from Table A.4  (or read Fig 2.7) 
The pressure difference ∆P balances the column of height L so from Eq.2.2 

 ∆P = ρ g L  = 13 580 kg/m3 × 9.80665 m/s2 × 1.0 m × 10-3 kPa/Pa 
       = 133.2 kPa 
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2.14 
  You dive 5 m down in the ocean. What is the absolute pressure there? 
 
 Solution: 
           
 The pressure difference for a column is from Eq.2.2 and the density of water is 

from Table A.4. 
 

 ∆P = ρgH 
      = 997  kg/m3 × 9.81 m/s2 × 5 m 
      = 48 903 Pa = 48.903 kPa 
Pocean= P0 + ∆P  

           = 101.325 + 48.903 
           = 150 kPa 
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2.15 
  What pressure difference does a 10 m column of atmospheric air show? 
 
 Solution: 
 The pressure difference for a column is from Eq.2.2 

           ∆P = ρgH 

So we need density of air from Fig.2.7,  ρ = 1.2 kg/m3 

   ∆P = 1.2 kg/m3 × 9.81 ms-2 × 10 m = 117.7 Pa = 0.12 kPa 
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2.16 
 The pressure at the bottom of a swimming pool is evenly distributed. Suppose we 

look at a cast iron plate of 7272 kg lying on the ground with an area of 100 m2. What 
is the average pressure below that? Is it just as evenly distributed? 

 
 Solution: 
 The pressure is force per unit area from page 25: 
         P = F/A = mg/A = 7272 kg × (9.81 m/s2) / 100 m2 =  713.4 Pa          
 
 The iron plate being cast can be reasonable plane and flat, but it is stiff and rigid. 

However, the ground is usually uneven so the contact between the plate and the 
ground is made over an area much smaller than the 100 m2. Thus the local 
pressure at the contact locations is much larger than the quoted value above. 

 
 The pressure at the bottom of the swimming pool is very even due to the ability of 

the fluid (water) to have full contact with the bottom by deforming itself. This is 
the main difference between a fluid behavior and a solid behavior.  

 
 
         Iron plate 
           Ground 
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2.17 
 A laboratory room keeps a vacuum of 0.1 kPa. What net force does that put on the 

door of size 2 m by 1 m? 
 
 Solution: 
 
 The net force on the door is the difference between the forces on the two sides as 

the pressure times the area 
   
  F = Poutside A – Pinside A = ∆P A = 0.1 kPa × 2 m × 1 m = 200 N 
  

  Remember that kPa is kN/m2. 
 

 
Pabs = Po - ∆P 
∆P = 0.1 kPa 
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2.18 
  A tornado rips off a 100 m2 roof with a mass of 1000 kg. What is the minimum 

vacuum pressure needed to do that if we neglect the anchoring forces? 
 
 Solution: 
  
 The net force on the roof is the difference between the forces on the two sides as 

the pressure times the area 
   
  F = Pinside A – PoutsideA = ∆P A  
 That force must overcome the gravitation mg, so the balance is 
  ∆P A = mg 
 
  ∆P = mg/A = (1000 kg × 9.807 m/s2 )/100 m2 = 98 Pa = 0.098 kPa 
  
 Remember that kPa is kN/m2. 
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2.19 
 What is a temperature of –5oC in degrees Kelvin? 
 
 Solution: 

 
 
The offset from Celsius to Kelvin is 273.15 K, 
so we get 
 
 TK = TC + 273.15 = -5 + 273.15  
                  = 268.15 K 
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2.20 
 What is the smallest temperature in degrees Celsuis you can have? Kelvin? 
 
 Solution: 
  
 The lowest temperature is absolute zero which is 

at zero degrees Kelvin at which point the 
temperature in Celsius is negative 
 
           TK = 0 K = −273.15 oC 
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2.21 
 Density of liquid water is  ρ = 1008 – T/2  [kg/m3] with T in oC. If the temperature 

increases 10oC how much deeper does a 1 m layer of water become? 
 
 Solution: 
 
  The density change for a change in temperature of 10oC becomes  
 
   ∆ρ =  – ∆T/2 = –5 kg/m3  
  from an ambient density of  
   ρ = 1008 – T/2 = 1008 – 25/2 = 995.5 kg/m3  
 
      Assume the area is the same and the mass is the same    m = ρV = ρAH,  then we 

have  
   ∆m = 0 = V∆ρ + ρ∆V    ⇒   ∆V = - V∆ρ/ρ 
 
  

and the change in the height is 
  

∆H = 
∆V
A  = 

H∆V
V  = 

-H∆ρ
ρ  = 

-1 × (-5)
995.5  = 0.005 m 

 
barely measurable. 
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2.22 
  Convert the formula for water density in problem 21 to be for T in degrees Kelvin. 
  
 Solution:  
    ρ = 1008 – TC/2     [kg/m3]  
 
 We need to express degrees Celsius in degrees Kelvin 

  TC = TK – 273.15 
 and substitute into formula 

  ρ = 1008 – TC/2 = 1008 – (TK – 273.15)/2 = 1144.6 – TK/2 
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Properties and units 
 
2.23 
   A steel cylinder of mass 2 kg contains 4 L of liquid water at 25oC at 200 kPa. 

Find the total mass and volume of the system. List two extensive and three 
intensive properties of the water 

 
 Solution: 
 

 Density of steel in Table A.3:    ρ = 7820 kg/m3 

 Volume of steel:     V = m/ρ = 
2 kg

7820 kg/m3 = 0.000 256 m3 

 Density of water in Table A.4:   ρ = 997 kg/m3 

 Mass of water:      m = ρV = 997 kg/m3 ×0.004 m3 = 3.988 kg 
 
 Total mass:           m = msteel + mwater = 2 + 3.988 = 5.988 kg 

 Total volume:      V = Vsteel + Vwater = 0.000 256 + 0.004 

            = 0.004 256  m3 = 4.26 L 
 



   Sonntag, Borgnakke and van Wylen  

 
2.24 
 An apple “weighs” 80 g and has a volume of 100 cm3 in a refrigerator at 8oC. 

What is the apple density? List three intensive and two extensive properties of the 
apple. 

 
 Solution: 
 

ρ = 
m
V = 

0.08
0.0001  

kg
 m3 = 800 

kg
 m3 

 
 Intensive 

ρ = 800 
kg
 m3 ;    v = 

1
 ρ = 0.001 25 

m3

kg   

T =  8°C;  P = 101 kPa 
 
 Extensive 

m = 80 g = 0.08 kg 

V =100 cm3 = 0.1 L = 0.0001 m3 
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2.25 
  One kilopond (1 kp) is the weight of 1 kg in the standard gravitational field. How 

many Newtons (N) is that? 
  

 
F = ma = mg 
 
1 kp = 1 kg × 9.807 m/s2 = 9.807 N 
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2.26 
  A pressurized steel bottle is charged with 5 kg of oxygen gas and 7 kg of nitrogen 

gas. How many kmoles are in the bottle? 
 
 

Table A2 :   MO2 = 31.999  ;   MN2  = 28.013 
 

 nO2 = mO2 / MO2 = 
5

31.999 = 0.15625 kmol 

nO2 = mN2 / MN2 = 
7

28.013 = 0.24988 kmol 

 
ntot = nO2 + nN2  = 0.15625 + 0.24988 = 0.406 kmol 
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Force and Energy 
 
 
2.27 
 The “standard” acceleration (at sea level and 45° latitude) due to gravity is 

9.80665 m/s2. What is the force needed to hold a mass of 2 kg at rest in this 
gravitational field ? How much mass can a force of 1 N support ? 

 
 Solution: 

  
 ma = 0 = ∑ F = F - mg 

F  = mg = 2 × 9.80665 = 19.613 N 
F = mg   =>     
m = F/g = 1 / 9.80665 = 0.102 kg m 

 

F 
 

g 
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2.28 
 A force of 125 N is applied to a mass of 12 kg in addition to the standard 

gravitation. If the direction of the force is vertical up find the acceleration of the 
mass. 

 
Solution: 
 
   Fup  = ma = F – mg 

   a = 
F – mg

m   = 
F
m – g  = 

125
12   – 9.807 

      = 0.61 ms-2  

 

F 
 

g 
 

x 
 

m 
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2.29 
 A model car rolls down an incline with a slope so the gravitational “pull” in the 

direction of motion is one third of the standard gravitational force (see Problem 
2.1). If the car has a mass of  0.45 kg find the acceleration. 

 
 Solution: 
 

  
 
ma =  ∑ F = mg / 3 
   a = mg / 3m = g/3 
      = 9.80665 / 3 = 3.27 m/s2 

 

g 
 

 
  This acceleration does not depend on the mass of the model car. 
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2.30 
 When you move up from the surface of the earth the gravitation is reduced as g = 

9.807 − 3.32  × 10-6 z, with z as the elevation in meters. How many percent is the 
weight of an airplane reduced when it cruises at 11 000 m? 

 
 Solution: 
 

go= 9.807 ms-2 

gH = 9.807 – 3.32 × 10-6 × 11 000 = 9.7705 ms-2 

Wo =  m go   ;   WH =  m gH    
 

WH/Wo  =  gH/go =  
9.7705
9.807  = 0.9963 

 
Reduction = 1 – 0.9963 = 0.0037        or  0.37% 
 
i.e. we can neglect that for most application 
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2.31 
 A car drives at 60 km/h and is brought to a full stop with constant deceleration in 

5 seconds. If the total car and driver mass is 1075 kg find the necessary force. 
 
 Solution: 
 

 Acceleration is the time rate of change of velocity. 

  a = 
dV
dt   = 

60 × 1000
3600 × 5   = 3.333 m/s2 

 ma = ∑ F ;  
 Fnet = ma = 1075 kg × 3.333 m/s2 = 3583 N 
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2.32 
 A car of mass 1775 kg travels with a velocity of 100 km/h. Find the kinetic 

energy. How high should it be lifted in the standard gravitational field to have a 
potential energy that equals the kinetic energy? 
  
Solution: 
 Standard kinetic energy of the mass is 

  KIN = ½ m V2 = ½ ×  1775 kg × 



100 × 1000

3600
2
 m2/s2 

   = ½ × 1775 × 27.778  Nm = 684 800 J 
   = 684.8 kJ 
 Standard potential energy is  
  POT = mgh 

  h = ½ m V2 / mg  = 
684 800

1775 × 9.807 = 39.3 m 
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2.33 
 A 1200-kg car moving at 20 km/h is accelerated at a constant rate of  4 m/s2 up to 

a speed of 75 km/h. What are the force and total time required? 
 
 Solution: 
 

  a = 
dV
dt  =  

∆V
∆t    =>   ∆t =  

∆V
a   =  

(75 − 20) 1000
3600 × 5   =  3.82 sec  

   
  F = ma = 1200 kg × 4 m/s2 = 4800 N 
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2.34 
 A steel plate of 950 kg accelerates from rest with 3 m/s2 for a period of 10s. What 

force is needed and what is the final velocity? 
 
 Solution: 
 
  Constant acceleration can be integrated to get velocity. 

 a = 
dV
dt    =>  ∫ dV = ∫ a dt    =>    ∆V = a ∆t  

    ∆V = a ∆t = 3 m/s2 × 10 s = 30 m/s   
   =>    V = 30 m/s  

 

    F = ma = 950 kg × 3 m/s2 = 2850 N 

F 
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2.35 
 A 15 kg steel container has 1.75 kilomoles of liquid propane inside. A force of 2 

kN now accelerates this system. What is the acceleration? 
 
 Solution: 
 
 The molecular weight for propane is  M = 44.094  from Table A.2. The force 

must accelerate both the container mass and the propane mass. 
 
 

 m = msteel + mpropane = 15 + (1.75 × 44.094) = 92.165 kg 
 
 ma = ∑ F     ⇒    a = ∑ F / m  

a = 
2000 N

92.165 kg = 21.7 m/s2 
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2.36 
 A bucket of concrete of total mass 200 kg is raised by a crane with an acceleration 

of 2 m/s2 relative to the ground at a location where the local gravitational 
acceleration is 9.5 m/s2. Find the required force. 

 
 

Solution: 
 

F = ma = Fup − mg 
 

Fup = ma + mg = 200 ( 2 + 9.5 ) = 2300 N 
 

 

g 
 

F 
 

up 
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2.37 
 On the moon the gravitational acceleration is approximately one-sixth that on the 

surface of the earth. A 5-kg mass is “weighed” with a beam balance on the 
surface on the moon. What is the expected reading? If this mass is weighed with a 
spring scale that reads correctly for standard gravity on earth (see Problem 2.1), 
what is the reading? 

 
  Solution: 
   Moon gravitation is:  g = gearth/6 
 
 

mm

�
�
�
�
�
�

m

 

 
 

 
 Beam Balance Reading is 5 kg Spring Balance Reading is in kg units 
 This is mass comparison  Force comparison length ∝ F ∝ g 

         Reading will be 
5
6 kg 
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Specific Volume 
 
 
2.38 
 A 5 m3 container is filled with 900 kg of granite (density 2400 kg/m3 ) and the 

rest of the volume is air with density 1.15 kg/m3. Find the mass of air and the 
overall (average) specific volume. 

 
 Solution: 

  mair = ρ V = ρair ( Vtot − 
mgranite

ρ  ) 

         = 1.15 [ 5 - 
900
2400 ] = 1.15  × 4.625 = 5.32 kg 

  v = 
V
m = 

5
900 + 5.32 = 0.005 52 m3/kg 

 
 Comment:  Because the air and the granite are not mixed or evenly distributed in 

the container the overall specific volume or density does not have much meaning. 
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2.39 
 A tank has two rooms separated by a membrane. Room A has 1 kg air and volume 

0.5 m3, room B has 0.75 m3 air with density 0.8 kg/m3. The membrane is broken 
and the air comes to a uniform state. Find the final density of the air. 

 
 Solution: 

 Density is mass per unit volume 
 m = mA + mB = mA + ρBVB = 1 + 0.8 × 0.75 = 1.6 kg 

 
 V = VA + VB = 0.5 + 0.75 = 1.25 m3 

ρ = 
m
V = 

1.6
1.25 = 1.28 kg/m3 

 

A B

cb  
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2.40 
 A 1 m3 container is filled with 400 kg of granite stone, 200 kg dry sand and 0.2 

m3 of liquid 25°C water. Use properties from tables A.3 and A.4. Find the 
average specific volume and density of the masses when you exclude air mass and 
volume. 

 
 Solution: 
 
 Specific volume and density are ratios of total mass and total volume. 

 mliq = Vliq/vliq = Vliq ρliq = 0.2 × 997 = 199.4 kg  

 mTOT  = mstone + msand + mliq = 400 + 200 + 199.4  = 799.4 kg 

  Vstone = mv = m/ρ = 400/ 2750 = 0.1455 m3 
 Vsand = mv = m/ρ = 200/ 1500 = 0.1333 m3 

VTOT = Vstone + Vsand + Vliq  

          = 0.1455 + 0.1333 + 0.2 = 0.4788 m3 
 

��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������

 
 

  v = VTOT / mTOT = 0.4788/799.4 = 0.000599 m3/kg 

  ρ = 1/v = mTOT/VTOT = 799.4/0.4788 = 1669.6 kg/m3 
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2.41 
 A 1 m3 container is filled with 400 kg of granite stone, 200 kg dry sand and 0.2 

m3 of liquid 25°C water. Use properties from tables A.3 and A.4 and use air 
density of 1.1 kg/m3. Find the average specific volume and density of the 1 m3 
volume. 

 
 Solution: 
  Specific volume and density are ratios of total mass and total volume. 
   

 Vstone = mv = m/ρ = 400/ 2750 = 0.1455 m3 

Vsand = mv = m/ρ = 200/ 1500 = 0.1333 m3 
Vair = VTOT − Vstone − Vsand − Vliq  

       = 1− 0.1455 − 0.1333 − 0.2 = 0.5212 m3 
 

��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������

 
    
   mair = Vair/vair = Vair ρair = 0.5212 × 1.1 = 0.573 kg 
   mliq = Vliq/vliq = Vliq ρliq = 0.2 × 997 = 199.4 kg  
   mTOT  = mstone + msand + mliq + mair  
    = 400 + 200 + 199.4 + 0.573 ≈ 800 kg 
 
   v = VTOT / mTOT = 1/800 = 0.00125 m3/kg 

   ρ = 1/v = mTOT/VTOT = 800/1 = 800 kg/m3 
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2.42 
 One kilogram of diatomic oxygen (O2 molecular weight 32) is contained in a 500-

L tank. Find the specific volume on both a mass and mole basis (v and v ). 
 
 Solution: 
   From the definition of the specific volume 

   v = 
V
m = 

0.5
1  = 0.5 m3/kg 

   v  = 
V
n = 

V
m/M = M v = 32 × 0.5 = 16 m3/kmol  
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2.43 
 A 15-kg steel gas tank holds 300 L of liquid gasoline, having a density of 800 

kg/m3. If the system is decelerated with 6 m/s2 what is the needed force? 
  
 
 Solution: 

 
     m = mtank + mgasoline  

        = 15 kg + 0.3 m3 × 800 kg/m3  
        = 255 kg 

     F = ma = 255 kg × 6 m/s2  
        = 1530 N 
 

cb
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Pressure 
 
 
2.44 
 A hydraulic lift has a maximum fluid pressure of 500 kPa. What should the 

piston-cylinder diameter be so it can lift a mass of 850 kg? 
 
 Solution: 
 
 With the piston at rest the static force balance is 
 
   F↑ = P A = F↓ = mg 
    A = π r2 = π D2/4 

   PA = P π D2/4 = mg    ⇒ D2 = 
4mg
P π   

 

   D = 2
mg
Pπ  = 2

850 × 9.807
500 π × 1000 = 0.146 m 
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2.45 
 A piston/cylinder with cross sectional area of 0.01 m2 has a piston mass of 100 kg 

resting on the stops, as shown in Fig. P2.45. With an outside atmospheric pressure 
of 100 kPa, what should the water pressure be to lift the piston? 

 
 Solution: 
  The force acting down on the piston comes from gravitation and the 

outside atmospheric pressure acting over the top surface. 
 

 Force balance:  F↑ =  F↓ = PA = mpg + P0A 

 Now solve for P (divide by 1000 to convert to kPa for 2nd term) 
 
 

P =  P0 + 
mpg
A   = 100 kPa + 

100 × 9.80665
0.01 × 1000  

   = 100 kPa + 98.07 kPa = 198 kPa 
 Water

cb
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2.46 
 A vertical hydraulic cylinder has a 125-mm diameter piston with hydraulic fluid 

inside the cylinder and an ambient pressure of 1 bar. Assuming standard gravity, 
find the piston mass that will create a pressure inside of 1500 kPa. 

 
 Solution: 
 
 Force balance:    

           F↑ = PA = F↓ = P0A + mpg; 

P0 = 1 bar = 100 kPa 

  A = (π/4) D2 = (π/4)  × 0.1252 = 0.01227 m2 

cb

g
Po

 
  

 mp = (P − P0) 
A
g = ( 1500 − 100 ) × 1000 × 

0.01227
9.80665 = 1752 kg 
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2.47 
    A valve in a cylinder has a cross sectional area of 11 cm2 with a pressure of 735 

kPa inside the cylinder and 99 kPa outside. How large a force is needed to open 
the valve? 

 
 Fnet =  PinA – PoutA 

       = (735 – 99) kPa × 11 cm2 

       = 6996 kPa cm2 

       = 6996 × 
kN
 m2  × 10-4 m2 

       = 700 N 

cb

Pcyl
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2.48 
 A cannon-ball of 5 kg acts as a piston in a cylinder of 0.15 m diameter. As the 

gun-powder is burned a pressure of 7 MPa is created in the gas behind the ball. 
What is the acceleration of the ball if the cylinder (cannon) is pointing 
horizontally? 

 
 Solution: 
 
  The cannon ball has 101 kPa on the side facing the atmosphere. 

 ma = F = P1 × A − P0 × A = (P1 − P0 ) × A  
      = (7000 – 101) kPa ×  π ( 0.152 /4 ) m2 = 121.9 kN 
  
  
 

a =  
F
m  =  

121.9 kN
5 kg   = 24 380 m/s2 
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2.49 
 Repeat the previous problem for a cylinder (cannon) pointing 40 degrees up 

relative to the horizontal direction. 
 
 Solution: 
 

 ma = F = ( P1 - P0 ) A - mg sin 400   

 ma = (7000 - 101 ) kPa × π × ( 0.152 / 4 ) m2 - 5 × 9.807 × 0.6428 N 
       = 121.9 kN - 31.52 N = 121.87 kN 
  
 

a =  
F
m  =  

121.87 kN
5 kg   = 24 374 m/s2  
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2.50 
 A large exhaust fan in a laboratory room keeps the pressure inside at 10 cm water 

relative vacuum to the hallway. What is the net force on the door measuring 1.9 m 
by 1.1 m? 

 
 Solution: 
 
 The net force on the door is the difference between the forces on the two sides as 

the pressure times the area 
   
           F = Poutside A – Pinside A = ∆P × A  
   = 10 cm H2O × 1.9 m × 1.1 m  
   =  0.10 × 9.80638 kPa × 2.09 m2  
   =  2049 N 
  
 Table A.1: 1 m H2O is 9.80638 kPa and kPa is kN/m2. 
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2.51 
 What is the pressure at the bottom of a 5 m tall column of fluid with atmospheric 

pressure 101 kPa on the top surface if the fluid is 
  a) water at 20°C b) glycerine 25°C or c) light oil 
 
 Solution: 
 
 Table A.4: ρH2O = 997 kg/m3; ρGlyc = 1260 kg/m3; ρOil = 910  kg/m3 
 
   ∆P = ρgh   P = Ptop + ∆P 
 
 

 a)    ∆P = ρgh = 997× 9.807× 5 = 48887.9 Pa 
         P = 101 + 48.99 = 149.9 kPa 
 
b)    ∆P = ρgh = 1260× 9.807× 5 = 61784 Pa 
          P = 101 + 61.8 = 162.8 kPa 

 
c)    ∆P = ρgh = 910× 9.807× 5 = 44622 Pa 
          P = 101 + 44.6 = 145.6 kPa 
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2.52 
 The hydraulic lift in an auto-repair shop has a cylinder diameter of 0.2 m. To what 

pressure should the hydraulic fluid be pumped to lift 40 kg of piston/arms and 700 
kg of a car? 

 
 Solution: 
 Force acting on the mass by the gravitational field 

   F↓ = ma = mg = 740 × 9.80665 = 7256.9 N 
Force balance:  F↑ = ( P - P0 ) A = F↓  =>   P = P0 + F↓ / A 

   A = π D2 (1 / 4) = 0.031416 m2 
   P = 101 + 7256.9 / (0.031416 × 1000) = 332 kPa 
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2.53 
   A 2.5 m tall steel cylinder has a cross sectional area of 1.5 m2. At the bottom with 

a height of 0.5 m is liquid water on top of which is a 1 m high layer of gasoline. 
The gasoline surface is exposed to atmospheric air at 101 kPa. What is the highest 
pressure in the water?  

 
 Solution: 
 
 The pressure in the fluid goes up with the 

depth as 
P = Ptop + ∆P = Ptop + ρgh 

and since we have two fluid layers we get 
     P = Ptop + [(ρh)gasoline + (ρh)water]g 

The densities from Table A.4 are: 

Air

Water

1 m

0.5 m

Gasoline

 
  ρgasoline = 750 kg/m3;    ρwater = 997 kg/m3 

 

   P = 101 + [750 × 1 + 997 × 0.5] 
9.807
1000  = 113.2 kPa 
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2.54 
   At the beach, atmospheric pressure is 1025 mbar. You dive 15 m down in the 

ocean and you later climb a hill up to 250 m elevation. Assume the density of 
water is about 1000 kg/m3 and the density of air is 1.18 kg/m3. What pressure do 
you feel at each place? 

 
 Solution: 

  ∆P = ρgh 
           Pocean= P0 + ∆P = 1025 × 100 + 1000 × 9.81 × 15 

            = 2.4965 × 105 Pa = 250 kPa 
           Phill   = P0 - ∆P = 1025 × 100 - 1.18 × 9.81 × 250 

            = 0.99606 × 105 Pa = 99.61 kPa 
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2.55 
 A piston, mp= 5 kg, is fitted in a cylinder, A = 15 cm2, that contains a gas. The 

setup is in a centrifuge that creates an acceleration of 25 m/s2 in the direction of 
piston motion towards the gas. Assuming standard atmospheric pressure outside 
the cylinder, find the gas pressure. 

 
 Solution: 
 
 Force balance:         F↑ = F↓ = P0A + mpg = PA 

 

P =  P0 + 
mpg
A    

   = 101.325 + 
5 × 25

1000 × 0.0015  
kPa kg m/s2

Pa m2  

   = 184.7 kPa 
 

gasg

Po
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2.56 
 A steel tank of cross sectional area 3 m2 and 16 m tall weighs 10 000 kg and it is 

open at the top. We want to float it in the ocean so it sticks 10 m straight down by 
pouring concrete into the bottom of it. How much concrete should I put in?     

 
 Solution: 
 
 The force up on the tank is from the water 

pressure at the bottom times its area. The 
force down is the gravitation times mass and 
the atmospheric pressure.  
 
      F↑ =  PA = (ρoceangh + P0)A 

      F↓ = (mtank + mconcrete)g + P0A 
 
The force balance becomes 

Air
Ocean

Concrete

10 m

 

   
  F↑ = F↓ = (ρoceangh + P0)A = (mtank + mconcrete)g + P0A 
 
         Solve for the mass of concrete 
 
  mconcrete = (ρoceanhA - mtank) = 997 × 10 × 3 – 10 000 = 19 910 kg 
 
         Notice: The first term is the mass of the displaced ocean water. The net force 
           up is the weight (mg) of this mass called bouyancy, P0 cancel. 
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2.57 
 Liquid water with density ρ is filled on top of a thin piston in a cylinder with 

cross-sectional area A and total height H. Air is let in under the piston so it pushes 
up, spilling the water over the edge. Deduce the formula for the air pressure as a 
function of the piston elevation from the bottom, h. 

 
 Solution: 
     Force balance  
  

H  
h  

P  0  

 

Piston: F↑ = F↓ 
 
PA = P0A + mH2Og  

P = P0 + mH2Og/A 

 
 P  = P0 + (H − h)ρg 
 

 

h, V air  

P  

P  0  
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Manometers and Barometers 
 
 
2.58 
 The density of atmospheric air is about 1.15 kg/m3, which we assume is constant. 

How large an absolute pressure will a pilot see when flying 1500 m above ground 
level where the pressure is 101 kPa. 

 
 Solution: 
 

 Assume g and ρ are constant then the pressure difference to carry a 
column of height 1500 m is from Fig.2.10 
 

  ∆P = ρgh = 1.15 kg/m3 × 9.807 ms-2 × 1500 m  
        = 16 917 Pa = 16.9 kPa 
The pressure on top of the column of air is then 

  P = P0 – ∆P = 101 – 16.9 = 84.1 kPa 
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2.59 
 A differential pressure gauge mounted on a vessel shows 1.25 MPa and a local 

barometer gives atmospheric pressure as 0.96 bar. Find the absolute pressure 
inside the vessel. 

 
 Solution: 
  

 Convert all pressures to units of kPa. 
Pgauge = 1.25 MPa = 1250 kPa;    

P0 = 0.96 bar = 96 kPa 
 P = Pgauge + P0 = 1250 + 96 = 1346 kPa  
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2.60 
 Two vertical cylindrical storage tanks are full of liquid water, density 1000 

kg/m3, the top open to the atmoshere. One is 10 m tall, 2 m diameter, the other is 
2.5 m tall with diameter 4 m. What is the total force from the bottom of each tank 
to the water and what is the pressure at the bottom of each tank? 

 
 
 Solution:  

 VA = H × πD2 × (1 / 4) = 10 × π × 22 × ( 1 / 4) = 31.416 m3    

 VB = H × πD2 × (1 / 4) = 2.5 × π × 42 × ( 1 / 4) = 31.416 m3 
Tanks have the same volume, so same mass of water gives gravitational force 
 F = mg = ρ V g = 1000 × 31.416 × 9.80665 = 308 086 N 
this is the force the legs have to supply (assuming Po below the bottom). Tanks 
have total force up from bottom as  
 Ftot A = F + PoA = 308 086 + 101325 × 3.1416 = 626 408 N 

 Ftot B = F + PoA = 308 086 + 101325 × 12.5664 = 1 581 374 N 

 Pbot = Po + ρ H g  

 Pbot A = 101 + (1000 × 10 × 9.80665 / 1000) = 199 kPa 

 Pbot B = 101 + (1000 × 2.5 × 9.80665 / 1000) = 125.5 kPa 
 

 Po

Po

g
m

m

cb

A

B
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2.61 
 Blue manometer fluid of density 925 kg/m3 shows a column height difference of 

6 cm vacuum with one end attached to a pipe and the other open to P0 = 101 kPa. 
What is the absolute pressure in the pipe? 

 
 Solution: 

 
Since the manometer shows a vacuum we have 

PPIPE = P0 - ∆P  

∆P  = ρgh = 925 × 9.807 × 0.06  
       = 544.3 Pa = 0.544 kPa 
PPIPE = 101 – 0.544 = 100.46 kPa 

 
 cb

Po

Pipe
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2.62 
 The absolute pressure in a tank is 85 kPa and the local ambient absolute pressure 

is 97 kPa. If a U-tube with mercury, density 13550 kg/m3, is attached to the tank 
to measure the vacuum, what column height difference would it show? 

 
 Solution: 
 

 ∆P = P0 - Ptank = ρg H 

 H = ( P0 - Ptank ) / ρg = [(97 - 85 ) × 1000 ] / (13550 × 9.80665) 

     = 0.090 m = 90 mm 
 
  

H
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2.63 
   The pressure gauge on an air tank shows 75 kPa when the diver is 10 m down in 

the ocean. At what depth will the gauge pressure be zero? What does that mean? 
 
 

Ocean H20 pressure at 10 m depth is 
 

P H20 = Po  + ρLg = 101.3 + 
997 × 10 × 9.80665  

 1000  = 199 kPa 

 
Air Pressure (absolute) in tank  
 
Ptank = 199 + 75 = 274 kPa 
 
Tank Pressure (gauge) reads zero at H20 local pressure 
 

   
 

        274 = 101.3 +  
997 × 9.80665  

 1000  L 

 
L = 17.66 m 

 
At this depth you will have to suck the 
air in, it can no longer push itself 
through a valve. 
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2.64 
 A submarine maintains 101 kPa inside it and it dives 240 m down in the ocean 

having an average density of 1030 kg/m3. What is the pressure difference 
between the inside and the outside of the submarine hull? 

 
 Solution: 
 
  Assume the atmosphere over the ocean is at 101 kPa, then ∆P is from the 

240 m column water. 

 ∆P = ρLg = (1030 kg/m3 ×  240 m ×  9.807 m/s2) / 1000 = 2424 kPa 
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2.65 
 A barometer to measure absolute pressure shows a mercury column height of 725 

mm. The temperature is such that the density of the mercury is 13 550 kg/m3. 
Find the ambient pressure. 

 
 Solution: 
 

           Hg :  L  = 725 mm = 0.725 m;         ρ = 13 550 kg/m3 
           The external pressure P balances the column of height L so from Fig.2.10 

 P = ρ L g  = 13 550 kg/m3 × 9.80665 m/s2 × 0.725 m × 10-3 kPa/Pa 
    = 96.34 kPa 
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2.66 
 An absolute pressure gauge attached to a steel cylinder shows 135 kPa. We want 

to attach a manometer using liquid water a day that Patm = 101 kPa. How high a 
fluid level difference must we plan for? 

 
 Solution: 
 

 Since the manometer shows a pressure difference we have 
  ∆P = PCYL - Patm =  ρ L g 

  L  = ∆P / ρg = 
(135 – 101) kPa

997 kg m-3 × 10 × 9.807 m/s2 
1000 Pa

 kPa   

      = 3.467 m 
 

 

 

 
 

H 
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2.67 
 The difference in height between the columns of a manometer is 200 mm with a 

fluid of density 900 kg/m3. What is the pressure difference? What is the height 
difference if the same pressure difference is measured using mercury, density 
13600 kg/ m3, as manometer fluid? 

 
 Solution: 
 

 ∆P = ρ1gh1 = 900 kg/m3 × 9.807 m/s2 × 0.2 m = 1765.26 Pa = 1.77 kPa 

 hHg = ∆P/ (ρhg g) = (ρ1 gh1) / (ρhg g) = 
900

13600 × 0.2 = 0.0132 m= 13.2 mm 
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2.68 
 An exploration submarine should be able to go 4000 m down in the ocean. If the 

ocean density is 1020 kg/m3 what is the maximum pressure on the submarine 
hull? 

 
 Solution: 
   
  ∆P = ρLg = (1020 kg/m3 × 4000 m × 9.807 m/s2) / 1000  
        = 40 012 kPa ≈ 40 MPa 
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2.69 
 Assume we use a pressure gauge to measure the air pressure at street level and at 

the roof of a tall building. If the pressure difference can be determined with an 
accuracy of 1 mbar (0.001 bar) what uncertainty in the height estimate does that 
corresponds to? 

 
 Solution: 
 

 ρair = 1.169 kg/m3   from Table A.5 

 
∆P = 0.001 bar = 100 Pa 
 

L = 
∆P
ρg = 

100
1.169 × 9.807 = 8.72 m 
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2.70 
 A U-tube manometer filled with water, density 1000 kg/m3, shows a height 

difference of 25 cm. What is the gauge pressure? If the right branch is tilted to 
make an angle of 30° with the horizontal, as shown in Fig. P2.70, what should the 
length of the column in the tilted tube be relative to the U-tube? 

 
 Solution: 
 
  Same height in the two sides in the direction of g. 
 

  
 
 
 
 
 
 
 
                                              

∆P = F/A = mg/A = Vρg/A = hρg 
      = 0.25 × 1000 × 9.807 = 2452.5 Pa 
      = 2.45 kPa 
 
   h = H × sin 30° 
        ⇒ H = h/sin 30° = 2h = 50 cm 30o 

H 
h 
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2.71 
 A barometer measures 760 mmHg at street level and 735 mmHg on top of a 

building. How tall is the building if we assume air density of 1.15 kg/m3? 
  
 Solution: 
 
  ∆P = ρgH    

 

 H = ∆P/ρg = 
760 – 735

1.15 × 9.807 
mmHg

kg/m2s2 
133.32 Pa

mmHg  = 295 m 
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2.72 
 A piece of experimental apparatus is located where g = 9.5 m/s2 and the 

temperature is 5°C. An air flow inside the apparatus is determined by measuring 
the pressure drop across an orifice with a mercury manometer (see Problem 2.77 
for density) showing a height difference of 200 mm. What is the pressure drop in 
kPa? 

 
 Solution: 

  ∆P = ρgh ;         ρHg = 13600  kg/m3 

  ∆P = 13 600 kg/m3 × 9.5 m/s2 × 0.2 m = 25840 Pa = 25.84 kPa 
 

 

g

Air

 

 

 
 



   Sonntag, Borgnakke and van Wylen  

 
2.73 
 Two piston/cylinder arrangements, A and B, have their gas chambers connected 

by a pipe. Cross-sectional areas are AA = 75 cm2 and AB = 25 cm2 with the piston 
mass in A being mA = 25 kg. Outside pressure is 100 kPa and standard 
gravitation. Find the mass mB so that none of the pistons have to rest on the 
bottom. 

 
 Solution:  
 
 

P
Po

o

cb

 

Force balance for both pistons:       F↑ = F↓  
     A:     mPAg + P0AA = PAA 
     B:     mPBg + P0AB = PAB 
 
Same P in A and B gives no flow between them. 

              
mPAg
AA 

 + P0 = 
mPBg

AB
 + P0  

  
          => mPB = mPA AA/ AB  = 25 × 25/75 = 8.33 kg 
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2.74 
 Two hydraulic piston/cylinders are of same size and setup as in Problem 2.73, but 

with negligible piston masses. A single point force of 250 N presses down on 
piston A. Find the needed extra force on piston B so that none of the pistons have 
to move. 

 
Solution: 

 AA = 75 cm2 ;    

 AB = 25 cm2 

No motion in connecting pipe: PA = PB 

 

Forces on pistons balance 

Po

Po

cb

A B

FBFA

 

 
  PA = P0 +  FA / AA = PB = P0 + FB / AB  

  FB = FA × 
AB
AA

 = 250 × 
25
75 = 83.33 N 
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2.75 
 A pipe flowing light oil has a manometer attached as shown in Fig. P2.75. What 

is the absolute pressure in the pipe flow? 
 
 Solution: 

Table A.3:       ρoil  = 910  kg/m3;      ρwater  = 997 kg/m3 
 

PBOT = P0 + ρwater g Htot = P0 + 997 × 9.807 × 0.8 

           = Po + 7822 Pa                                                                     

  

PPIPE = PBOT – ρwater g H1 –  ρoil g H2 

                   = PBOT – 997 × 9.807 × 0.1 –  910 × 9.807 × 0.2 

                    = PBOT – 977.7 Pa  – 1784.9 Pa 

 

PPIPE  =  Po + (7822 – 977.7 – 1784.9) Pa 
           = Po + 5059.4 Pa = 101.325 + 5.06 = 106.4 kPa 
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2.76 
 Two cylinders are filled with liquid water, ρ = 1000 kg/m3, and connected by a 

line with a closed valve. A has 100 kg and B has 500 kg of water, their cross-
sectional areas are AA = 0.1 m2 and AB = 0.25 m2 and the height h is 1 m. Find 
the pressure on each side of the valve. The valve is opened and water flows to an 
equilibrium. Find the final pressure at the valve location. 

 
 Solution: 
   VA = vH2OmA = mA/ρ = 0.1 = AAhA      =>    hA = 1 m 

   VB = vH2OmB = mB/ρ = 0.5 = ABhB       =>    hB = 2 m 

  PVB = P0 + ρg(hB+H) = 101325 + 1000 × 9.81 × 3 = 130 755 Pa 

  PVA = P0 + ρghA = 101325 + 1000 × 9.81 × 1 = 111 135 Pa 
  Equilibrium: same height over valve in both 

  Vtot = VA + VB = h2AA + (h2 - H)AB ⇒ h2 = 
hAAA + (hB+H)AB

AA + AB
 = 2.43 m 

  PV2 = P0 + ρgh2 = 101.325 + (1000 × 9.81 × 2.43)/1000 = 125.2 kPa 
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Temperature 
 
 
2.77 
 The density of mercury changes approximately linearly with temperature as  

   ρHg = 13595 − 2.5 T  kg/ m3     T   in Celsius 
 so the same pressure difference will result in a manometer reading that is 

influenced by temperature. If a pressure difference of 100 kPa is measured in the 
summer at 35°C and in the winter at −15°C, what is the difference in column 
height between the two measurements? 

 
 Solution: 
 The manometer reading h relates to the pressure difference as 

    ∆P = ρ L g     ⇒      L = 
∆P
ρg  

  
 The manometer fluid density from the given formula gives 
   ρsu = 13595 − 2.5 × 35 = 13507.5 kg/m3   

   ρw = 13595 − 2.5 × (−15) = 13632.5  kg/m3 
 The two different heights that we will measure become 

  Lsu = 
100 × 103

13507.5 × 9.807 
kPa (Pa/kPa)
 (kg/m3) m/s2  = 0.7549 m 

  Lw = 
100 × 103

13632.5 × 9.807 
kPa (Pa/kPa)
 (kg/m3) m/s2 = 0.7480 m 

 
  ∆L = Lsu - Lw = 0.0069 m = 6.9 mm 
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2.78 
 A mercury thermometer measures temperature by measuring the volume 

expansion of a fixed mass of liquid Hg due to a change in the density, see 
problem 2.35.  Find the relative change (%) in volume for a change in 
temperature from 10°C to 20°C. 

 
 Solution: 
 

 From 10°C to 20°C 
 At 10°C : ρHg  = 13595 – 2.5 × 10 = 13570  kg/m3 
 At 20°C : ρHg  = 13595 – 2.5 × 20 = 13545  kg/m3 
 
The volume from the mass and density is: V = m/ρ 
  

 Relative Change = 
V20– V10

V10
  =  

(m/ρ20) - (m/ρ10)
m/ρ10

   

      = 
ρ10
ρ20

 – 1 = 
13570
13545 – 1 = 0.0018 (0.18%) 
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2.79 
 Using the freezing and boiling point temperatures for water in both Celsius and 

Fahrenheit scales, develop a conversion formula between the scales. Find the 
conversion formula between Kelvin and Rankine temperature scales. 

 
 Solution: 

  TFreezing = 0 oC = 32 F;        TBoiling = 100 oC = 212 F 

 ∆T = 100 oC = 180 F   ⇒  ToC = (TF - 32)/1.8   or    TF = 1.8 ToC + 32 

 For the absolute K & R scales both are zero at absolute zero. 
    TR = 1.8 × TK 
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2.80 
  The atmosphere becomes colder at higher elevation. As an average the standard 

atmospheric absolute temperature can be expressed as Tatm = 288 - 6.5 × 10−3 z, 
where z is the elevation in meters. How cold is it outside an airplane cruising at 
12 000 m expressed in Kelvin and in Celsius? 

 
 Solution: 
 
 For an elevation of  z = 12 000 m we get 
 
   Tatm = 288 - 6.5 × 10−3 z = 210 K 
 
 To express that in degrees Celsius we get 
   TC = T – 273.15 = −63.15oC 
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Review Problems 
 
 
2.81 
 Repeat problem 2.72 if the flow inside the apparatus is liquid water, ρ ≅ 1000 

kg/m3, instead of air. Find the pressure difference between the two holes flush 
with the bottom of the channel. You cannot neglect the two unequal water 
columns. 

 
 Solution:       Balance forces in the manometer: 
 
  P  P  1  . 2 

·  
h 

h  1 
2 

H 

 

(H - h2) - (H - h1) = ∆hHg = h1 - h2 
 
  P1A + ρH2Oh1gA + ρHg(H - h1)gA 

     = P2A + ρH2Oh2gA + ρHg(H - h2)gA 

    ⇒ P1 - P2 = ρH2O(h2 - h1)g + ρHg(h1 - h2)g 

      P1 - P2 = ρHg∆hHgg - ρH2O∆hHgg  = 13600 × 0.2 × 9.5 - 1000 × 0.2 × 9.5  

        = 25840 - 1900 = 23940 Pa = 23.94 kPa 
 



   Sonntag, Borgnakke and van Wylen  

 
2.82 
 The main waterline into a tall building has a pressure of 600 kPa at 5 m elevation 

below ground level. How much extra pressure does a pump need to add to ensure 
a water line pressure of 200 kPa at the top floor 150 m above ground? 

 
 Solution: 
  

 The pump exit pressure must balance the top pressure plus the column
 ∆P. The pump inlet pressure provides part of the absolute pressure. 
 Pafter pump = Ptop +  ∆P 

 ∆P = ρgh = 997 kg/m3 × 9.807 m/s2 × (150 + 5) m  
       = 1 515 525 Pa = 1516 kPa 
 Pafter pump = 200 + 1516 = 1716 kPa 

 ∆Ppump = 1716 – 600 = 1116 kPa 
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2.83 
 A 5-kg piston in a cylinder with diameter of 100 mm is loaded with a linear 

spring and the outside atmospheric pressure of 100 kPa. The spring exerts no 
force on the piston when it is at the bottom of the cylinder and for the state 
shown, the pressure is 400 kPa with volume 0.4 L. The valve is opened to let 
some air in, causing the piston to rise 2 cm. Find the new pressure. 

 
 Solution: 
 
  A linear spring has a force linear proportional to displacement. F = k x, so 

the equilibrium pressure then varies linearly with volume:  P = a + bV, with an 
intersect a and a slope b = dP/dV. Look at the balancing pressure at zero volume 
(V -> 0) when there is no spring force  F = PA = PoA + mpg  and the initial state. 
These two points determine the straight line shown in the P-V diagram. 

  Piston area = AP = (π/4) × 0.12 = 0.00785 m2 
 
 

400 

106.2 

2 

1 

0 0.4 

P 

V 

0.557 

2 P 

 

a = P0 + 
mpg
Ap

 = 100 kPa + 
5 × 9.80665

0.00785  Pa 

   = 106.2 kPa    intersect for zero volume. 
 
V2 = 0.4 + 0.00785 × 20 = 0.557 L 

P2 = P1 + 
dP
dV ∆V 

     = 400 + 
(400-106.2)

0.4 - 0  (0.557 - 0.4) 

     = 515.3 kPa 
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2.84 
 In the city water tower, water is pumped up to a level 25 m above ground in a 

pressurized tank with air at 125 kPa over the water surface. This is illustrated in 
Fig. P2.84. Assuming the water density is 1000 kg/m3 and standard gravity, find 
the pressure required to pump more water in at ground level. 

 
 Solution: 
   

∆P = ρ L g 

      = 1000 kg/m3 × 25 m × 9.807 m/s2 

      = 245 175 Pa = 245.2 kPa 
Pbottom = Ptop + ∆P 

              = 125 + 245.2 
              = 370 kPa 

       

cb
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2.85 
 Two cylinders are connected by a piston as shown in Fig. P2.85. Cylinder A is 

used as a hydraulic lift and pumped up to 500 kPa. The piston mass is 25 kg and 
there is standard gravity. What is the gas pressure in cylinder B? 

 
 Solution:   
  Force balance for the piston:      PBAB + mpg + P0(AA - AB) = PAAA 

  AA = (π/4)0.12 = 0.00785 m2;        AB = (π/4)0.0252 = 0.000 491 m2 

 PBAB = PAAA - mpg - P0(AA - AB) = 500× 0.00785 - (25 × 9.807/1000) 

              - 100 (0.00785 - 0.000 491) = 2.944 kN 
  PB = 2.944/0.000 491 = 5996 kPa = 6.0 MPa 

 
 

P

B

GAS

A Oil

Po

cb
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2.86 
 A dam retains a lake 6 m deep. To construct a gate in the dam we need to know 

the net horizontal force on a 5 m wide and 6 m tall port section that then replaces 
a 5 m section of the dam. Find the net horizontal force from the water on one side 
and air on the other side of the port.     

 
 Solution: 
  

 Pbot = P0 + ∆P 
 ∆P = ρgh = 997× 9.807× 6 = 58 665 Pa = 58.66 kPa 
  
 Neglect ∆P in air 
 Fnet = Fright – Fleft = Pavg A - P0A 
 Pavg = P0 + 0.5 ∆P Since a linear pressure variation with depth. 
 Fnet = (P0 + 0.5 ∆P)A - P0A = 0.5 ∆P A = 0.5 × 58.66 × 5 × 6 = 880 kN 

  
 

 

F  F left  righ t 
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Concept Problems 
 
2.87E 
 A mass of 2 lbm has acceleration of 5 ft/s2, what is the needed force in lbf? 
 
 Solution: 
 
   Newtons 2nd law:  F = ma 
 
   F = ma = 2 lbm × 5 ft/s2 = 10 lbm ft/s2  

      = 
10

32.174 lbf = 0.31 lbf 

  
 
2.88E 
 How much mass is in 0.25 gallon of liquid mercury (Hg)?  Atmospheric air? 
 

 Solution: 
 

 A volume of 1 gal equals 231 in3, see Table A.1. From Figure 2.7 the density is in 
the range of 10 000 kg/m3 = 624.28 lbm/ft3, so we get 

 
   m = ρV = 624.3 lbm/ft3 × 0.25 × (231/123 ) ft3 = 20.86 lbm 
 A more accurate value from Table F.3 is  ρ = 848 lbm/ft3. 
 
 For the air we see in Figure 2.7 that density is about 1 kg/m3 = 0.06243 lbm/ft3 so 

we get 
 
   m = ρV = 0.06243 lbm/ft3 × 0.25 × (231/123 ) ft3 = 0.00209 lbm 
 A more accurate value from Table F.4 is  ρ = 0.073 lbm/ft3 at 77 F, 1 atm. 
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2.89E 
 Can you easily carry a one gallon bar of solid gold? 
 
 Solution: 
 
 The density of solid gold is about 1205 lbm/ft3 from Table F.2, we could also 

have read Figure 2.7 and converted the units.  
   V = 1 gal = 231 in3 = 231 × 12-3 ft3 = 0.13368 ft3 
 Therefore the mass in one gallon is 

   m = ρV = 1205 lbm/ft3 × 0.13368 ft3  
        = 161 lbm 
 
 and some people can just about carry that in the standard gravitational field. 
 
 
2.90E 
 What is the temperature of –5F in degrees Rankine? 
   

Solution: 
 
The offset from Fahrenheit to Rankine is 
459.67 R, so we get 
 
 TR = TF + 459.67 = -5 + 459.67  
                  = 454.7 R 

 

 
 
 
 
2.91E 
 What is the smallest temperature in degrees Fahrenheit you can have? Rankine? 
   
 Solution: 

 
The lowest temperature is absolute zero which is 
at zero degrees Rankine at which point the 
temperature in Fahrenheit is negative 
 
           TR = 0 R = −459.67 F 
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Properties and Units 
 
 
2.92E 
   An apple weighs 0.2 lbm and has a volume of 6 in3 in a refrigerator at 38 F. What 

is the apple density? List three intensive and two extensive properties for the 
apple. 

 
 
 Solution: 
 

ρ = 
m
V = 

0.2
6   

lbm
 in3 = 0.0333 

lbm
 in3 = 57.6 

lbm
 ft3

 

 
 Intensive 

ρ = 57.6 
lbm
 ft3

 ;    v = 
1
 ρ = 0.0174 

ft3
lbm   

T =  38 F;  P = 14.696 lbf/in2 
 
 Extensive 

m = 0.2 lbm  

V = 6 in3 = 0.026 gal = 0.00347 ft3 
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Force, Energy, Density 
 
2.93E 
 A 2500-lbm car moving at 15 mi/h is accelerated at a constant rate of 15 ft/s2 up 

to a speed of 50 mi/h. What are the force and total time required? 
 
 Solution: 
 

  a = 
dV
dt  =  

∆V
∆t    ⇒   ∆t =  

∆V
a    

  ∆t = 
(50 − 15) mi/h × 1609.34 m/mi × 3.28084 ft/m

3600 s/h × 15 ft/s2  = 3.42 sec 

  F = ma = (2500 × 15 / 32.174) lbf = 1165 lbf 
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2.94E 
 Two pound moles of diatomic oxygen gas are enclosed in a 20-lbm steel 

container. A force of 2000 lbf now accelerates this system. What is the 
acceleration? 

 
 Solution: 
  The molecular weight for oxygen is M = 31.999 from Table F.1. The force 

must accelerate both the container and the oxygen mass. 
 

  mO2
 = nO2

MO2
 = 2 × 31.999 = 64 lbm 

  mtot = mO2
 + msteel = 64 + 20 = 84 lbm 

  a = 
F

mtot
 = 

2000 lbf
84 lbm  × 32.174 

lbm ft s-2

lbf  = 766 ft/s2 
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2.95E 
 A valve in a cylinder has a cross sectional area of  2 in2 with a pressure of  100 

psia inside the cylinder and 14.7 psia outside. How large a force is needed to open 
the valve? 

 
 Solution: 
 Fnet =  PinA – PoutA 

       = (100 – 14.7) psia × 2 in2 

       = 170.6 (lbf/in2) × in2 
       = 170.6 lbf cb

Pcyl
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2.96E 
 One pound-mass of diatomic oxygen (O2 molecular weight 32) is contained in a 

100-gal tank. Find the specific volume on both a mass and mole basis (v and v ). 
 
 
 Solution: 
  V = 231 in3 = (231 / 123)  ft3 = 0.1337 ft3     conversion seen in Table A.1 
  
 This is based on the definition of the specific volume 

  v = V/m = 0.1337 ft3/1 lbm = 0.1337 ft3/lbm 

  v̄ = V/n = 
V

m/M = Mv = 32 × 0.1337 = 4.278 ft3/lbmol 
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Pressure 
 
2.97E 
  A 30-lbm steel gas tank holds 10 ft3 of liquid gasoline, having a density of 50 

lbm/ft3. What force is needed to accelerate this combined system at a rate of 15 
ft/s2? 

 
 Solution: 
 
  

     m = mtank + mgasoline  

        = 30 lbm + 10 ft3 × 50 lbm/ft3  
        = 530 lbm 
    
 

cb

 
   
  F = ma = (530 lbm × 15 ft/s2) / (32.174 lbm ft/s2 lbf) = 247.1 lbf 
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2.98E 
 A laboratory room keeps a vacuum of 4 in. of water due to the exhaust fan. What 

is the net force on a door of size 6 ft by 3 ft? 
 
 Solution: 
 
 The net force on the door is the difference between the forces on the two sides as 

the pressure times the area 
   
           F = Poutside A – Pinside A = ∆P × A  
   = 4 in H2O × 6 ft × 3 ft  
   =  4 × 0.036126 lbf/in2 × 18 ft2 × 144 in2/ft2 
   =  374.6 lbf 
  
 Table A.1: 1 in H2O is 0.036 126 lbf/in2, unit also often listed as psi. 
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2.99E 
 A 7 ft m tall steel cylinder has a cross sectional area of 15 ft2. At the bottom with 

a height of 2 ft m is liquid water on top of which is a 4 ft high layer of gasoline. 
The gasoline surface is exposed to atmospheric air at 14.7 psia. What is the 
highest pressure in the water? 

 
 Solution: 
 
 The pressure in the fluid goes up with the 

depth as 
P = Ptop + ∆P = Ptop + ρgh 

and since we have two fluid layers we get 
     P = Ptop + [(ρh)gasoline + (ρh)water]g 

The densities from Table F.4 are: 

Air

Water

4 ft

2 ft

Gasoline

 
  ρgasoline = 46.8 lbm/ft3;    ρwater = 62.2 lbm/ft3 

 

   P = 14.7 + [46.8 × 4 + 62.2 × 2] 
32.174

144 × 32.174 = 16.86 lbf/in2 
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2.100E 
 A U-tube manometer filled with water, density 62.3 lbm/ft3, shows a height 

difference of 10 in. What is the gauge pressure? If the right branch is tilted to 
make an angle of 30° with the horizontal, as shown in Fig. P2.72, what should the 
length of the column in the tilted tube be relative to the U-tube? 

 
 Solution:   
 
 

h 

H 

30°  

 ∆P = F/A = mg/A = hρg 

       = 
(10/12)× 62.3 × 32.174

32.174 ×144  

       = Pgauge = 0.36 lbf/in2 
 
    h = H × sin 30°  
  ⇒  H = h/sin 30°  = 2h = 20 in = 0.833 ft 
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2.101E 
 A piston/cylinder with cross-sectional area of 0.1 ft2 has a piston mass of 200 lbm 

resting on the stops, as shown in Fig. P2.45. With an outside atmospheric pressure 
of 1 atm, what should the water pressure be to lift the piston? 

 
 Solution: 
  The force acting down on the piston comes from gravitation and the 

outside atmospheric pressure acting over the top surface. 
 

 Force balance:  F↑ =  F↓ = PA = mpg + P0A 

 Now solve for P (multiply by 144 to convert from ft2 to in2) 
 
 

P =  P0 + 
mpg
A   = 14.696 + 

200 × 32.174
0.1 × 144 × 32.174 

   = 14.696 psia + 13.88 psia = 28.58 lbf/in2 
 Water

cb
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2.102E 
 The main waterline into a tall building has a pressure of 90 psia at 16 ft elevation 

below ground level. How much extra pressure does a pump need to add to ensure 
a waterline pressure of 30 psia at the top floor 450 ft above ground?    

 
 Solution: 
  

 The pump exit pressure must balance the top pressure plus the column
 ∆P. The pump inlet pressure provides part of the absolute pressure. 
 Pafter pump = Ptop +  ∆P 

 ∆P = ρgh = 62.2 lbm/ft3 × 32.174 ft/s2 × (450 + 16) ft × 
1 lbf s2

32.174 lbm ft 

      = 28 985 lbf/ft2 = 201.3 lbf/in2 
 Pafter pump = 30 + 201.3 = 231.3 psia 

 ∆Ppump = 231.3 – 90 = 141.3 psi 
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2.103E 
 A piston, mp = 10 lbm, is fitted in a cylinder, A = 2.5 in.2, that contains a gas. The 

setup is in a centrifuge that creates an acceleration of 75 ft/s2. Assuming standard 
atmospheric pressure outside the cylinder, find the gas pressure. 

 
 Solution: 
 
 Force balance:         F↑ = F↓ = P0A + mpg = PA 

 

P =  P0 + 
mpg
A    

   = 14.696 + 
10 × 75

2.5 × 32.174   
lbm  ft/s2

in2   
lbf-s2

lbm-ft 

   = 14.696 + 9.324 = 24.02 lbf/in2 

gasg

Po
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Temperature 
 
2.104E 
 The atmosphere becomes colder at higher elevation. As an average the standard 

atmospheric absolute temperature can be expressed as Tatm = 518 - 3.84 × 10−3 z, 
where z is the elevation in feet. How cold is it outside an airplane cruising at 32 
000 ft expressed in Rankine and in Fahrenheit? 

 
 
 Solution: 
 
 For an elevation of  z = 32 000 ft we get 
 
   Tatm = 518 – 3.84 × 10−3 z = 395.1 R 
 
 To express that in degrees Fahrenheit we get 
   TF = T – 459.67 = −64.55 F 
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2.105E 
 The density of mercury changes approximately linearly with temperature as 
             ρHg = 851.5 - 0.086 T  lbm/ft3      T   in degrees Fahrenheit 
 so the same pressure difference will result in a manometer reading that is 

influenced by temperature. If a pressure difference of 14.7 lbf/in.2 is measured in 
the summer at 95 F and in the winter at 5 F, what is the difference in column 
height between the two measurements? 

 
 Solution: 
   ∆P = ρgh   ⇒    h = ∆P/ρg 

   ρsu = 843.33 lbm/ft3;  ρw = 851.07 lbm/ft3 

   hsu = 
14.7 × 144 × 32.174

843.33 × 32.174  = 2.51 ft = 30.12 in 

   hw = 
14.7 × 144 × 32.174

851.07 × 32.174 = 2.487 ft = 29.84 in 

   ∆h = hsu - hw = 0.023 ft = 0.28 in 
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Correspondence Table 
CHAPTER 3  6th edition   Sonntag/Borgnakke/Wylen 

 The set of problems have a correspondence to the 5th edition Fundamentals of 
Thermodynamics as: 

 
 Problems 3.1 through 3.20 are all new 
 
 New 5th New 5th New 5th 
 21 new 57 46 93 30 mod 
 22 2 58 48 94 31 mod 
 23 1 59 39 mod 95 32 
 24  60 57 96 new 
 25 3 61 51 97 60 
 26 new 62 new 98 55 
 27 4 63 new 99 new 
 28 28 mod 64 5 100 59 
 29 new 65 new 101 53 
 30 23 66 22 102 54 
 31 28 mod 67 6 103 50 
 32 24 68 new 104 49 
 33 new 69 8 105 45 
 34 new 70 new 106 56 
 35 new 71 10 107 9 
 36 29 72 13 108 52 
 37 new 73 new 109 7 
 38 new 74 25 110 47 
 39 27 mod 75 new 111 11 
 40 new 76 new 112 12 
 41 37 77 new 113 16 
 42 41 78 17 114 38 
 43 new 79 14 115 34 
 44 new 80 19 116 new 
 45 new 81 33 117 new 
 46 new 82 new 118 new 
 47 36 83 new 119 new 
 48 new 84 new 120 new 
 49 58 85 new 121 new 
 50 35 86 20 122 new 
 51 42 87 new 123 new 
 52 new 88 21 124 new 
 53 43 89 18 125 new 
 54 new 90 26 mod 126 86 
 55 40 91 16 mod 127 87 
 56 44 92 30 mod   
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The English unit  problem correspondence is 
 

New 5th Ed. SI New 5th Ed. SI 
128 new 5 143 77E 53 
129 new 7 144 new 62 
130 new 9 145 79E 58 
131 new 11 146 62E 69 
132 new 17 147 new 65 
133 new 23 148 69E c+d 70E d - 
134 61E 27 149 72E 81 
135 68E a-c 30 150 64E 113 
136 68E d-f 30 151 new 74 
137 new 40 152 81E 49 
138 70E 36 153 new 99 
139 73E 47 154 71E 95 
140 74E 41 155 80E 61 
141 new 44 156 83E 106 
142 76E 51 157 65E 89 
   158 66E - 

 
 
The Computer, design and open-ended problem correspondence is 
 
 New 5th New 5th New 5th 
 159 new 163 90 167 94 
 160 new 164 91 168 95 
 161 88 165 92   
 162 89 166 93   
 
 
 mod indicates a modification from the previous problem that changes the solution 

but otherwise is the same type problem. 
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Concept-Study Guide Problems 
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3.1 
  What is the lowest temperature (approximately) at which water can be liquid? 
 
  

 Look at the phase diagram in Fig. 3.7. At the 
border between ice I, ice III and the liquid region 
is a triple point which is the lowest T where you 
can have liquid. From the figure it is estimated to 
be about 255 K i.e. at  -18oC. 
  
     T ≈ 255 K ≈ - 18°C 

ln P

T

V

L

S
CR.P.

lowest T liquid

 
  
 
3.2 
 What is the percent change in volume as liquid water freezes? Mention some effects 

in nature and for our households the volume change can have. 
 
  The density of water in the different phases can be found in Tables A.3 and A.4 

and in Table B.1. 
   From Table B.1.1     vf = 0.00100 m3/kg 

   From Table B.1.5     vi = 0.0010908 m3/kg 
 

  Percent change:   100 
vi – vf

vf
  = 100 × 

0.0010908 – 0.001
0.001   =  9.1 % increase 

 
  Liquid water that seeps into cracks or other confined spaces and then freezes 
 will expand and widen the cracks. This is what destroys any pourous material 

exposed to the weather on buildings, roads and mountains. 
 
 
3.3 
 When you skate on ice a thin liquid film forms under the skate; how can that be? 
 
  The ice is at some temperature below the freezing temperature for the 

atmospheric pressure of 100 kPa  = 0.1 MPa and thus to the left of the fusion line in 
the solid ice I region of Fig. 3.7. As the skate comes over the ice the pressure is 
increased dramatically right under the blade so it brings the state straight up in the 
diagram crossing the fusion line and brings it into a liquid state at same temperature. 

 
 The very thin liquid film under the skate changes the friction to be viscous rather 

than a solid to solid contact friction. Friction is thus significantly reduced. 
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3.4 
 An external water tap has the valve activated by a long spindle so the closing 

mechanism is located well inside the wall. Why is that? 
  
 Solution:   
 By having the spindle inside the wall the coldest location with water when the valve 

is closed is kept at a temperature above the freezing point. If the valve spindle was 
outside there would be some amount of water that could freeze while it is trapped 
inside the pipe section potentially rupturing the pipe. 

 
3.5 
 Some tools should be cleaned in water at a least 150oC. How high a P is needed? 
  
 Solution:   
 If I need liquid water at 150oC I must have a pressure that is at least the saturation 

pressure for this temperature.    
   Table B.1.1:  150oC     Psat = 475.9 kPa. 
 

   
 
3.6 
 Are the pressures in the tables absolute or gauge pressures? 
  
 Solution:  
 The behavior of a pure substance depends on the absolute pressure, so P in the tables 

is absolute. 
  
3.7 
 If I have 1 L ammonia at room pressure and temperature (100 kPa, 20oC) how much 

mass is that? 
 
  Ammonia Tables B.2:        
   B.2.1  Psat = 857.5 kPa at 20oC  so superheated vapor. 
   B.2.2  v = 1.4153 m3/kg       under subheading 100 kPa 

    m = 
V
v =  

0.001 m3

1.4153 m3/kg
 = 0.000 706 kg = 0.706 g 
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3.8 
 How much is the change in liquid specific volume for water at 20oC as you move up 

from state i towards state j in figure 3.12 reaching 15 000 kPa? 
 
  State “i”, here “a”, is saturated liquid and up is then compressed liquid states 
      a Table B.1.1:     vf = 0.001 002 m3/kg   at        2.34 kPa 
   b Table B.1.4:     vf = 0.001 002 m3/kg   at       500 kPa 
   c Table B.1.4:     vf = 0.001 001 m3/kg   at     2000 kPa 
   d Table B.1.4:     vf = 0.001 000 m3/kg   at     5000 kPa 
   e Table B.1.4:     vf = 0.000 995 m3/kg   at  15 000 kPa 
   f Table B.1.4:     vf = 0.000 980 m3/kg   at  50 000 kPa 
 
  Notice how small the changes in v are for very large changes in P. 
 
 

v

T

v

P

a
b
c

T = 20 Co

d

e

f

f-a

 
 

 

 
 P

T

v

V

L

S

C.P.

a

f
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3.9 
 For water at 100 kPa with a quality of 10% find the volume fraction of vapor. 
 
  This is a two-phase state at a given pressure: 
   Table B.1.2:   vf = 0.001 043 m3/kg,   vg = 1.6940 m3/kg 
  From the definition of quality we get the masses from total mass, m, as 
    mf = (1 – x) m,   mg = x m 
  The volumes are 
    Vf = mf vf = (1 – x) m vf,      Vg = mg vg = x m vg 
  So the volume fraction of vapor is 

   Fraction = 
Vg
V  = 

Vg
Vg + Vf

 = 
x m vg

x m vg + (1 – x)m vf
  

      = 
0.1 × 1.694

0.1 × 1.694 + 0.9 × 0.001043 = 
0.1694
0.17034 = 0.9945 

 
  Notice that the liquid volume is only about 0.5% of the total. We could also have 

found the overall v = vf + xvfg  and then V = m v. 
 



   Sonntag, Borgnakke and van Wylen   

 
3.10 
 Sketch two constant-pressure curves (500 kPa and 30 000 kPa) in a T-v diagram and 

indicate on the curves where in the water tables you see the properties. 
 
 

 P

0.5

MPa

30
C.P.

v

T

v

500 kPa

30 MPa

B
1
4

B.1.3
B
1
4 B.1.3

B.1.3

B.1.2
B.1.1

B.1.5
B.1.5

B.1.3

 
 

 

 
 
  The 30 MPa line in Table B.1.4 starts at 0oC and table ends at 380oC, the line is 

continued in Table B.1.3 starting at 375oC and table ends at 1300oC. 
  The 500 kPa line in Table B.1.4 starts at 0.01oC and table ends at the saturated 

liquid state (151.86oC). The line is continued in Table B.1.3 starting at the saturated 
vapor state (151.86oC) continuing up to 1300oC. 
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3.11 
 Locate the state of ammonia at 200 kPa, -10oC. Indicate in both the P-v and the T-v 

diagrams the location of the nearest states listed in the printed table B.2 
 
 

 
 
 

T
C.P.

v

200 kPa

P C.P.

v

T
200

290.9
-18.9

-10
0

-18.9 C

-10 C 150

kPa

 
 
 
3.12 
 Why are most of the compressed liquid or solid regions not included in the printed 

tables? 
 
  For the compressed liquid and the solid phases the specific volume and thus 

density is nearly constant. These surfaces are very steep nearly constant v and there 
is then no reason to fill up a table with the same value of v for different P and T. 
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3.13 
 Water at 120oC with a quality of 25% has its temperature raised 20oC in a constant 

volume process. What is the new quality and pressure? 
 
  Solution: 
 
  State 1 from Table B.1.1 at 120oC 

    v = vf  + x vfg  = 0.001060 + 0.25 × 0.8908 = 0.22376 m3/kg 

  State 2 has same v at 140oC also from Table B.1.1 

   x = 
v - vf
vfg

  = 
0.22376 - 0.00108

0.50777   = 0.4385 

 
   P = Psat = 361.3 kPa 
 

 
 
 

T C.P.

v

P C.P.

v

T
198.5
361.3

120
140

120 C

140 C
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3.14 
 Water at 200 kPa with a quality of 25% has its temperature raised 20oC in a constant 

pressure process. What is the new quality and volume? 
 
  Solution: 
 
  State 1 from Table B.1.2 at 200 kPa 

    v = vf  + x vfg  = 0.001061 + 0.25 × 0.88467 = 0.22223 m3/kg 

  State 2 has same P from Table B.1.2 at 200 kPa 
   T2 = Tsat + 20 = 120.23 + 20 = 140.23oC    
  so state is superheated vapor 
    
   x = undefined 

   v = 0.88573 + (0.95964 – 0.88573)
20

150 - 120.23 = 0.9354 m3/kg 

 
 

 
 
 

T C.P.

v

200 kPa

P C.P.

v

T
200

120
140

120.2 C

140 C

 
 
 
 
3.15 
  Why is it not typical to find tables for Ar, He, Ne or air like an Appendix B table? 
 
  The temperature at which these substances are close to the two-phase 

region is very low. For technical applications with temperatures around 
atmospheric or higher they are ideal gases. Look in Table A.2 and we can see the 
critical temperatures as 

   Ar :  150.8 K  He:  5.19 K  Ne:   44.4 K 
 
  It requires a special refrigerator in a laboratory to bring a substance down 

to these cryogenic temperatures. 
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3.16 
 What is the relative (%) change in P if we double the absolute temperature of an 

ideal gas keeping mass and volume constant? Repeat if we double V having m, T 
constant. 

 
  Ideal gas law:  PV = mRT 
   
  State 2:  P2V = mRT2 = mR2T1 = 2P1V    ⇒   P2 = 2P1 
     Relative change = ∆P/P1 = P1/P1 = 1 = 100% 
   
  State 3:  P3V3 = mRT1 = P1V1    ⇒   P3 = P1V1/V3 = P1/2 
     Relative change = ∆P/P1 = -P1/2P1 = -0.5 = -50% 
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V

T
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2

V

2

1 3
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3.17 
 Calculate the ideal gas constant for argon and hydrogen based on table A.2 and 

verify the value with Table A.5 
 
 The gas constant for a substance can be found from the universal gas constant from 

the front inside cover and the molecular weight from Table A.2 
 

   Argon:  R = 
R
_

M  = 
8.3145
39.948 = 0.2081 kJ/kg K 

 

   Hydrogen: R = 
R
_

M  = 
8.3145
2.016  = 4.1243 kJ/kg K 
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3.18 
 How close to ideal gas behavior (find Z) is ammonia at saturated vapor, 100 kPa? 

How about saturated vapor at 2000 kPa? 
 
  Table B.2.2:  v1 = 1.1381 m3/kg, T1 = -33.6oC,     P1 = 100 kPa 
     v2 = 0.06444 m3/kg, T2 = 49.37oC,    P2 = 2000 kPa 
  Table A.5:  R = 0.4882 kJ/kg K 
 
  Extended gas law: Pv = ZRT      so we can calculate Z from this 
 

     Z1 = 
P1v1
RT1

 = 
100 × 1.1381

0.4882  × (273.15 - 33.6) = 0.973 

     Z2 = 
P2v2
RT2

 = 
2000 × 0.06444

0.4882  × (273.15 + 49.37) = 0.8185 

   
  So state 1 is close to ideal gas and state 2 is not so close. 
 

 

ln Pr

Z
T = 2.0r

T  = 0.7r

T  = 0.7r

0.1 1

T  = 1.2r

1 2
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3.19 
  Find the volume of 2 kg of ethylene at 270 K, 2500 kPa using Z from Fig. D.1 
 
   Ethylene Table A.2:     Tc = 282.4 K,    Pc = 5.04 MPa 
        Table A.5:     R = 0.2964 kJ/kg K 
 
   The reduced temperature and pressure are: 
 

    Tr = 
T
Tc

 = 
270

282.4 = 0.956,    Pr = 
P
Pc

 = 
2.5
5.04 = 0.496 

 
   Enter the chart with these coordinates and read:      Z = 0.76 
 

    V = 
mZRT

P  = 
2 × 0.76 × 0.2964 × 270

2500  = 0.0487 m3 

 
 

ln Pr

Z
T = 2.0r

T  = 0.7r

T  = 0.7r

0.1 1

T  = 1.2r
T  = 0.96r

0.5  
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3.20 
   With Tr = 0.85 and a quality of 0.6 find the compressibility factor using Fig. D.1 
 
  For the saturated states we will use Table D.4 instead of the figure. There 

we can see at Tr = 0.85 
    Zf = 0.062, Zg = 0.747 
 
   Z = (1 – x) Zf  + xZg = (1 – 0.6) 0.062 + 0.6 × 0.747 = 0.473 
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Phase Diagrams, Triple and Critical Points 
 
3.21 
 Modern extraction techniques can be based on dissolving material in supercritical 

fluids such as carbon dioxide. How high are pressure and density of carbon 
dioxide when the pressure and temperature are around the critical point. Repeat 
for ethyl alcohol.  

 

 Solution: 

  CO2 :     

   Table A.2:   Pc = 7.38 MPa,  Tc = 304 K,  vc = 0.00212 m3/kg 

            ρc = 1/vc = 1/0.00212 = 472 kg/m3 

  C2H5OH:     

   Table A.2:   Pc = 6.14 MPa,  Tc = 514 K,  vc = 0.00363 m3/kg 

           ρc = 1/vc = 1/0.00363 = 275 kg/m3 
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3.22 
 Find the lowest temperature at which it is possible to have water in the liquid 

phase. At what pressure must the liquid exist? 
 
 Solution:  
  
  

 There is no liquid at lower temperatures 
than on the fusion line, see Fig. 3.6, 
saturated ice III to liquid phase boundary is 
at 
 
     T ≈ 263K ≈ - 10°C  and    
     P ≈ 2100 MPa 

ln P

T

V

L

S
CR.P.

lowest T liquid
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3.23 
 Water at 27°C can exist in different phases dependent upon the pressure. Give the 

approximate pressure range in kPa for water being in each one of the three phases 
vapor, liquid or solid. 

 
 Solution:   
 
  

The phases can be seen in Fig. 3.6, a sketch 
of which is shown to the right. 
   T = 27 °C = 300 Κ 
From Fig. 3.6:    

              PVL ≈ 4 × 10−3  MPa = 4 kPa, 
              PLS = 103 MPa 

ln P

T

V

L

S
CR.P.

S

 
           

 
     0 < P <       4 kPa        VAPOR 

  0.004 MPa < P < 1000 MPa       LIQUID 
             P > 1000 MPa       SOLID(ICE) 
 



   Sonntag, Borgnakke and van Wylen   

 

3.24 
   What is the lowest temperature in Kelvins for which you can see metal as a liquid 

if the metal is a. silver   b. copper 
 

 Solution:   
 

Assume the two substances have a phase diagram similar to Fig. 3.6, then 
we can see the triple point data in Table 3.2 
 

Ta  = 961oC = 1234 K 
 

Tb  = 1083oC = 1356 K 
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3.25 
 If density of ice is 920 kg/m3, find the pressure at the bottom of a 1000 m thick 

ice cap on the north pole. What is the melting temperature at that pressure? 
 

 Solution: 
   ρICE = 920 kg/m3 

  ∆P = ρgH = 920 kg/m3 × 9.80665 m/s2 × 1000 = 9022 118 Pa 
  P = Po + ∆P = 101.325 + 9022 = 9123 kPa 
  See figure 3.6 liquid solid interphase  => TLS = −1°C 
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3.26 
 Dry ice is the name of solid carbon dioxide. How cold must it be at atmospheric 

(100 kPa) pressure? If it is heated at 100 kPa what eventually happens? 
 
 Solution: 
 

The phase boundaries are shown in Figure 3.6 
At 100 kPa the carbon dioxide is solid if   T < 190 K 
It goes directly to a vapor state without becoming a liquid hence its name. 

 
  

 
The 100 kPa is below  
the triple point. 
 
 

ln P

T

V

LS

100
kPa
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3.27 
 A substance is at 2 MPa, 17°C in a rigid tank. Using only the critical properties 

can the phase of the mass be determined if the substance is nitrogen, water or 
propane ? 

 
 Solution: 
     Find state relative to critical point properties which are from Table A.2: 

 a)   Nitrogen  N2  :  3.39 MPa  126.2 K 
 b)   Water H2O :  22.12 MPa  647.3 K 
 c)   Propane C3H8 :  4.25 MPa  369.8 K 

  
 State is at 17 °C = 290 K and   2 MPa < Pc  

for all cases:   
 
N2  :   T   >> Tc      Superheated vapor P < Pc 
H2O  :   T  << Tc ;    P  <<  Pc  
                          you cannot say. 
C3H8  :   T  <  Tc ;   P   <    Pc    you cannot say 
 

ln P

T

Vapor

Liquid Cr.P.

a
c

b
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3.28 
 Give the phase for the following states. 
 
 Solution: 

a. CO2 T = 267°C P = 0.5 MPa  Table A.2 

  superheated vapor  assume ideal gas Table A.5 

b. Air  T = 20°C P = 200 kPa  Table A.2 
  superheated vapor  assume ideal gas Table A.5 

c. NH3 T = 170°C P = 600 kPa Table B.2.2   or  A.2 

  T > Tc => superheated vapor 
 

 
  
 
    
 

P C.P.

v

T

v

T

a,b,c
a, b, c

P = const.
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3.29 
 Determine the phase of the substance at the given state using Appendix B tables 
  a) Water   100°C, 500 kPa 
  b) Ammonia -10°C, 150 kPa 
  c) R-12  0°C, 350 kPa 
 
 Solution: 

a)  From Table B.1.1      Psat(100°C) = 101.3 kPa   
500 kPa > Psat  then it is  compressed liquid 

      OR from Table B.1.2     Tsat(500 kPa) = 152°C 

  100°C  < Tsat  then it is subcooled liquid = compressed liquid 
b)  Ammonia NH3  :    

  Table B.2.1:  P < Psat(-10 °C) = 291 kPa   
  Superheated vapor  
c)  R-12 

  Table B.3.1:  P > Psat(0 °C) = 309 kPa   
  Compressed liquid. 
 

  
 
The S-L fusion line goes slightly to the  
left for water. It tilts slightly to the right 
for most other substances. 
 

ln P

T

Vapor

L Cr.P.
a, c

bS
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3.30 
 Determine whether water at each of the following states is a compressed liquid, a 

superheated vapor, or a mixture of saturated liquid and vapor. 
  a. P = 10 MPa, v = 0.003 m3/kg   b. 1 MPa, 190°C    
  c. 200°C, 0.1 m3/kg   d. 10 kPa, 10°C  
 

Solution:  
For all states start search in table B.1.1 (if T given)  or B.1.2 (if P given) 
 

a. P = 10 MPa, v = 0.003 m3/kg     so look in B.1.2 at 10 MPa 

  vf = 0.001452;   vg = 0.01803 m3/kg,   
  =>    vf  < v < vg      =>       so mixture of liquid and vapor. 

b. 1 MPa, 190°C  : Only one of the two look-ups is needed 
  B.1.1: P < Psat = 1254.4 kPa  so it is superheated vapor 

  B.1.2: T > Tsat = 179.91°C  so it is superheated vapor 

c. 200°C, 0.1 m3/kg: look in B.1.1 

  vf  = 0.001156 m3/kg  ;  vg = 0.12736 m3/kg,  
  =>    vf  < v < vg      =>       so mixture of liquid and vapor. 

d. 10 kPa, 10°C :  Only one of the two look-ups is needed 
  From B.1.1:     P > Pg = 1.2276 kPa  so compressed liquid 

  From B.1.2:    T < Tsat = 45.8 °C  so compressed liquid 
 

 
 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 
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3.31 
 Give the phase for the following states. 
 
 Solution: 

a. H2O T = 275°C P = 5 MPa  Table B.1.1 or B.1.2 

  B.1.1   Psat = 5.94 MPa    =>   superheated vapor 

  B.1.2   Tsat = 264°C  =>   superheated vapor 

b. H2O T = −2°C P = 100 kPa Table B.1.1     T < Ttriple point 

  Table B.1.5 at −2°C   Psat = 0.518 kPa 
  since P > Psat     => compressed solid   
 

 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 

 
   Note state b in P-v, see in 
   3-D figure, is up on the  
   solid face. 
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3.32 
 Determine whether refrigerant R-22 in each of the following states is a 

compressed liquid, a superheated vapor, or a mixture of saturated liquid and 
vapor. 

 
 Solution: 

 All cases are seen in Table B.4.1 

a. 50°C, 0.05 m3/kg From table B.4.1 at 50°C    vg = 0.01167 m3/kg 

    since v > vg  we have superheated vapor 

b. 1.0 MPa, 20°C  From table B.4.1 at 20°C    Pg = 909.9 kPa 

    since  P > Pg we have compressed liquid 

c. 0.1 MPa, 0.1 m3/kg From table B.4.1 at 0.1 MPa (use 101 kPa) 
    vf  = 0.0007    and   vg = 0.2126 m3/kg 

 as vf < v < vg  we have a mixture of liquid & 
vapor 

d −20°C, 200 kPa  superheated vapor, P < Pg = 244.8 kPa  at -20°C 
 

 
 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 
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General Tables 
 
3.33 
 Fill out the following table for substance water: 
 Solution:               

  P [kPa]  T [ oC]    v [m3/kg] x 
 a) 500  20  0.001002 Undefined 
 b) 500  151.86  0.20  0.532 
 c) 1400  200  0.14302 Undefined 
 d) 8581  300  0.01762 0.8 

 
a) Table B.1.1   P > Psat so it is compressed liquid  => Table B.1.4 
 
b) Table B.1.2   vf < v < vg    so two phase   L + V 

           x = 
v - vf
vfg

 = (0.2 – 0.001093) / 0.3738 = 0.532 

            T = Tsat = 151.86oC 
 
c) Only one of the two look-up is needed 
 Table B.1.1    200oC     P < Psat =     => superheated vapor 
 Table B.1.2    1400 kPa     T > Tsat = 195oC 
 Table B.1.3    subtable for 1400 kPa  gives the state properties 
 
d) Table B.1.1    since quality is given it is two-phase 

  v = vf + x × vfg = 0.001404 + 0.8 × 0.02027 = 0.01762 m3/kg 
 
3.34 
 Place the four states a-d listed in Problem 3.33 as labeled dots in a sketch of the 

P-v and T-v diagrams. 
 
 Solution: 

 
 
 

T C.P.
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3.35 
 Determine the phase and the specific volume for ammonia at these states using 

the Appendix B table. 
  a.  –10oC, 150 kPa       
  b.    20oC, 100 kPa 
  c.  60oC, quality 25% 
 
 Solution: 
  Ammonia, NH3, properties from Table B.2 

a)      

  Table B.2.1:  P < Psat(-10 °C) = 291 kPa   

  Superheated vapor  B.2.2  v = 0.8336 m3/kg 
 
  b) 

  Table B.2.1  at given T: Psat = 847.5 kPa       so   P < Psat 

  Superheated vapor  B.2.2          v = 1.4153 m3/kg 
 

 c) 
 Table B.2.1  enter with T (this is two-phase L + V) 

  v = vf  + x vfg = 0.001834 + x × 0.04697 = 0.01358 m3/kg 
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3.36 
 Give the phase and the specific volume. 
 
 Solution: 

a. R-22 T = −25°C P = 100 kPa  
 Table B.4.1  at given T: Psat = 201 kPa         so    P < Psat      =>  

 sup. vap.  B.4.2        v ≅ (0.22675 + 0.23706)/2 = 0.2319 m3/kg 

b. R-22 T = −25°C P = 300 kPa  
 Table B.4.1  at given T: Psat = 201 kPa         so  

 compr. liq. as P > Psat        v ≅ vf = 0.000733 m3/kg 

c. R-12 T = 5°C    P = 200 kPa  
 Table B.3.1  at given T: Psat = 362.6 kPa       so   P < Psat 

 sup. vap.  B.3.2          v ≅ (0.08861 + 0.09255)/2 = 0.09058 m3/kg 
 

 
 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 
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3.37 
 Fill out the following table for substance ammonia: 
 Solution:               

  P [kPa]  T [ oC]    v [m3/kg] x 
 a) 1200  50  0.1185  Undefined 
 b) 2033  50  0.0326  0.5 

 
  a)  B.2.1   v > vg   =>   superheated vapor   Look in B.2.2 
  b) B.2.1   P = Psat = 2033 kPa 
    v = vf  + x vfg = 0.001777 + 0.5 × 0.06159 = 0.0326 m3/kg 
 
 
3.38 
 Place the two states a-b listed in Problem 3.37 as labeled dots in a sketch of the P-

v and T-v diagrams. 
 Solution:               
 

 
 
 

T C.P.

v

ab

P = const.

P C.P.

v

T

ab2033

50
1200

 
 



   Sonntag, Borgnakke and van Wylen   

 
3.39 
 Calculate the following specific volumes 

a. R-134a:  50°C, 80% quality 
b. Water   4 MPa, 90% quality 
c. Nitrogen  120 K, 60% quality 

 
 Solution: 
 
  All states are two-phase with quality given. The overall specific 
  volume is given by Eq.3.1 or 3.2 
 
    v = vf + x vfg = (1-x)vf + x vg 
 

a. R-134a:  50°C, 80% quality  in Table B.5.1 

  v = 0.000908 + x × 0.01422 = 0.01228 m3/kg 
b. Water   4 MPa, 90% quality in Table B.1.2 

  v = 0.001252(1-x) + x × 0.04978 = 0.04493 m3/kg 
c. Nitrogen  120 K, 60% quality in Table B.6.1 

  v = 0.001915 + x × 0.00608 = 0.005563 m3/kg 
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3.40 
 Give the phase and the missing property of  P, T, v and x. 
 a. R-134a    T = -20oC,  P = 150 kPa 
 b. R-134a     P = 300 kPa,  v = 0.072 m3/kg 
 c. CH4     T = 155 K,  v = 0.04 m3/kg 

 d. CH4     T = 350 K,  v = 0.25 m3/kg 
 
 Solution: 

a) B.5.1 P > Psat   = 133.7 kPa  ⇒    compressed liquid 
  v ~ vf = 0.000738 m3/kg 
  x = undefined 
 
b) B.5.2 v > vg at 300 kPa  ⇒ superheated  vapor 

  T = 10 + (20-10)  ( 
0.072 - 0.07111

0.07441 - 0.07111) = 12.7°C 

  x = undefined 
 
c) B.7.1  v > vg = 0.04892 m3/kg   2-phase 

  x = 
v - vf
 vfg

  = 
0.04-0.002877

0.04605  = 0.806 

  P = Psat = 1295.6 kPa 
 
d) B.7.1  T > Tc   and    v >> vc   ⇒  superheated vapor  B.7.2 
      located between 600 & 800 kPa 

    P = 600 + 200 
0.25-0.30067

0.2251-0.30067  = 734 kPa 
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3.41 
 A sealed rigid vessel has volume of 1 m3 and contains 2 kg of water at 100°C. 

The vessel is now heated. If a safety pressure valve is installed, at what pressure 
should the valve be set to have a maximum temperature of 200°C? 

 
 Solution: 

Process:  v = V/m = constant 
 

 State 1:     v1 = 1/2 = 0.5 m3/kg   

                 from Table B.1.1  
                 it is  2-phase 
 
State 2:  200°C, 0.5 m3/kg 
             Table B.1.3 between 400 
             and 500 kPa so interpolate 

C.P.T

v

100 C

500 kPa

400 kPa

 
 

  P ≅ 400 +  
0.5-0.53422

 0.42492-0.53422 × (500-400)  = 431.3 kPa 

 



   Sonntag, Borgnakke and van Wylen   

 
3.42 
 Saturated liquid water at 60°C is put under pressure to decrease the volume by 1% 

keeping the temperature constant. To what pressure should it be compressed? 
 
 Solution:  

State 1:     T = 60°C ,  x = 0.0;    Table B.1.1:   v = 0.001017 m3/kg 
Process:    T = constant = 60°C 

State 2:   T, v = 0.99 × vf (60°C) = 0.99×0.001017 = 0.0010068 m3/kg 

 Between 20 & 30 MPa in Table B.1.4,      P ≅ 23.8 MPa 
 
 P
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v
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3.43 
 Saturated water vapor at 200 kPa is in a constant pressure piston cylinder. At this 

state the piston is 0.1 m from the cylinder bottom. How much is this distance if 
the temperature is changed to   a) 200 oC    and     b) 100 oC. 

 
 Solution: 
 
  State 1:   (200 kPa, x = 1) in B.1.2: v1 = vg (200 kPa) = 0.8857 m3/kg 

  State a:   (200 kPa, 200 oC)  B.1.3: va = 1.083 m3/kg 

  State b:   (200 kPa, 100 oC)  B.1.1: vb = 0.001044 m3/kg 
 As the piston height is proportional to the volume we get 
 
   ha = h1 (va /v1) = 0.1 × (1.0803 / 0.8857) = 0.12 m 
   hb = h1 (vb / v1) = 0.1 × (0.001044 / 0.8857) = 0.00011 m 
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3.44 
 You want a pot of water to boil at 105oC. How heavy a lid should you put on the 

15 cm diameter pot when Patm = 101 kPa? 
 
 Solution: 
 

Table B.1.1 at 105oC :  Psat = 120.8 kPa 
 

A = 
π
4 D2 = 

π
4 0.152 = 0.01767 m2 

 
Fnet = (Psat –Patm) A = (120.8 - 101) kPa × 0.01767 m2  
       = 0.3498 kN = 350 N 
 
Fnet = mlid g 
 

mlid = Fnet/g =  
350

9.807 = 35.7 kg 

 
 

 
Some lids are 
clamped on, the 
problem deals with 
one that stays on due 
to its weight. 
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3.45 
 In your refrigerator the working substance evaporates from liquid to vapor at -20 

oC inside a pipe around the cold section. Outside (on the back or below) is a black 
grille inside which the working substance condenses from vapor to liquid at +40 
oC. For each location find the pressure and the change in specific volume (v) if 

  a) the substance is R-12 
  b) the substance is ammonia 
 
 Solution:               
 The properties come from the saturated tables where each phase change takes 

place at constant pressure and constant temperature. 
 
 

 Substance TABLE T Psat , kPa ∆v = vfg 
 R-12 B.3.1 40 oC 961 0.017 
 R-12 B.3.1 -20 oC 151 0.108 
 Ammonia B.2.1 40 oC 1555 0.0814 
 Ammonia B.2.1 -20 oC 190 0.622 

 
 

 
 
 

T C.P.

v
1 2

P C.P.

v

T

2
-20

1

40
40C 34

34
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3.46 
 In your refrigerator the working substance evaporates from liquid to vapor at -20 

oC inside a pipe around the cold section. Outside (on the back or below) is a black 
grille inside which the working substance condenses from vapor to liquid at +40 
oC. For each location find the pressure and the change in specific volume (v) if: 

  a) the substance is R-134a  b) the substance is R-22 
 
 Solution:               
 The properties come from the saturated tables where each phase change takes 

place at constant pressure and constant temperature. 
  
 

 Substance TABLE T Psat , kPa ∆v = vfg 
 R-134a B.5.1 40 oC 1017 0.019 
 R-134a B.5.1 -20 oC 134 0.146 
 R-22 B.4.1 40 oC 1534 0.0143 
 R-22 B.4.1 -20 oC 245 0.092 

 
 

 
 
 

T C.P.

v
1 2

P C.P.

v

T

2
-20

1

40
40C 34

34
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3.47 
 A water storage tank contains liquid and vapor in equilibrium at 110°C. The distance 

from the bottom of the tank to the liquid level is 8 m. What is the absolute pressure 
at the bottom of the tank? 

  
Solution: 

Saturated conditions from Table B.1.1:   Psat = 143.3 kPa 

 vf = 0.001052 m3/kg ;   

∆P = 
gh
vf

 = 
9.807 × 8
0.001052 = 74 578 Pa = 74.578 kPa 

 Pbottom = Ptop + ∆P = 143.3 + 74.578 = 217.88 kPa 
 
 
 

H
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3.48 
 Saturated water vapor at 200 kPa is in a constant pressure piston cylinder. At this 

state the piston is 0.1 m from the cylinder bottom. How much is this distance and 
the temperature if the water is cooled to occupy half the original volume? 

  
Solution:               

State 1: B 1.2  v1 = vg (200 kPa) = 0.8857  m3/kg,     T1 = 120.2°C     
Process:  P = constant = 200 kPa 

State 2:  P, v2 = v1/2 = 0.44285  m3/kg 

  Table B.1.2    v2 < vg  so two phase  T2 = Tsat = 120.2°C 
Height is proportional to volume 
  h2 = h1 ×  v2/v1 = 0.1 × 0.5 = 0.05m 

 
 

 
 
 

T C.P.

v
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P = 200 kPa

P C.P.

v

T

2
200
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1
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3.49 
 Two tanks are connected as shown in Fig. P3.49, both containing water. Tank A is at 

200 kPa, v = 0.5 m3/kg, VA = 1 m3 and tank B contains 3.5 kg at 0.5 MPa, 400°C. 
The valve is now opened and the two come to a uniform state. Find the final specific 
volume. 

 
 Solution: 

Control volume: both tanks. Constant total volume and mass process. 
 

 

A B
sup. vapor

 
 

 

 
State A1:  (P, v)  mA = VA/vA = 1/0.5 = 2 kg 

State B1:  (P, T) Table B.1.3 vB =  0.6173 m3/kg 

    ⇒  VB = mBvB = 3.5 × 0.6173 = 2.1606 m3 

Final state:  mtot = mA + mB = 5.5 kg 

  Vtot = VA + VB = 3.1606 m3 

  v2 = Vtot/mtot = 0.5746 m3/kg 
 



   Sonntag, Borgnakke and van Wylen   

 
3.50 
 Determine the mass of methane gas stored in a 2 m3 tank at −30°C, 3 MPa. Estimate 

the percent error in the mass determination if the ideal gas model is used. 
 Solution: 

  
Methane Table B.7.1 at  −30°C = 243.15 K >  Tc = 190.6 K,   so superheated 
vapor in Table B.7.2.  Linear interpolation between 225 and 250 K. 

 ⇒   v ≅ 0.03333 + 
243.15-225

250-225  ×(0.03896 - 0.03333) = 0.03742 m3/kg 

  m = V/v = 2/0.03742 = 53.45 kg 
 Ideal gas assumption 

  v = RT/P = 0.51835 × 243.15/3000 = 0.042  m3/kg 
  m = V/v = 2/0.042 = 47.62 kg 
  Error: 5.83 kg   10.9% too small 
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3.51 
 Saturated water vapor at 60°C has its pressure decreased to increase the volume 

by 10% keeping the temperature constant. To what pressure should it be 
expanded? 

  
Solution: 

Initial state: v = 7.6707 m3/kg   from table B.1.1 

Final state:      v = 1.10 × vg = 1.1 × 7.6707 = 8.4378 m3/kg 
Interpolate at 60°C between saturated (P = 19.94 kPa) and superheated vapor 
P = 10 kPa in Tables B.1.1 and B.1.3 

  P ≅ 19.941 + (10 − 19.941) 
8.4378 − 7.6707
15.3345 − 7.6707 = 18.9 kPa 

 
 P C.P.

v

T C.P.

v

T

P = 10 kPa
60 Co

10 kPa

 
 

 

 
Comment:   T,v  ⇒  P = 18 kPa  (software) v is not linear in P, more like 1/P, 
so the linear interpolation in P is not very accurate. 
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3.52 
 Saturated water vapor at 200 kPa is in a constant pressure piston cylinder. At this 

state the piston is 0.1 m from the cylinder bottom. How much is this distance and 
the temperature if the water is heated to occupy twice the original volume? 

  
 Solution: 

 

From  B.1.2,  v1 = 0.8857 m3/kg 

2:  From B.1.3.,   P2 = P1,  v2 = 2v1 = 2 × 0.8857 = 1.7714 m3/kg 
Since the cross sectional area is constant the height is proportional to volume 
  h2 = h1 v2/v1 = 2h1 = 0.2 m 
Interpolate for the temperature 

  T2 = 400 + 100 
1.7714 – 1.5493
1.78139 – 1.5493 ≈ 496°C 
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3.53 
 A boiler feed pump delivers 0.05 m3/s of water at 240°C, 20 MPa. What is the mass 

flowrate (kg/s)?  What would be the percent error if the properties of saturated liquid 
at 240°C were used in the calculation?  What if the properties of saturated liquid at 
20 MPa were used? 

  
Solution: 

State 1:   (T, P) compressed liquid seen in B.1.4:       v = 0.001205 m3/kg  
 m.  = V

.
/v = 0.05/0.001205 = 41.5 kg/s 

 vf (240°C) = 0.001229 m3/kg ⇒  m.  = 40.68 kg/s  error 2% 

 vf (20 MPa) = 0.002036 m3/kg ⇒  m.  = 24.56 kg/s  error 41% 
 

 P C.P.

v

T C.P.

v

P = 20 MPa

240 Co
20 MPa

240

 

 

 
The constant T line is nearly vertical for the liquid phase in the P-v diagram. 
The state is at so high P, T that the saturated liquid line is not extremely steep. 
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3.54 
 Saturated vapor R-134a at 50oC changes volume at constant temperature. Find the 

new pressure, and quality if saturated, if the volume doubles. Repeat the question 
for the case the volume is reduced to half the original volume. 

 
 Solution:               
 
 1: (T, x)  B.4.1:    v1 = vg = 0.01512  m3/kg,  P1 = Psat = 1318 Kpa 
  
 2: v2 = 2v1 = 0.03024 m3/kg  superheated vapor  

Interpolate between 600 kPa and 800 kPa 

  P2 = 600 + 200 × 
0.03024 – 0.03974
0.02861 – 0.03974 = 771 kPa 

 
3: v3 = v1/2 = 0.00756 m3/kg < vg : two phase 

  x3 = 
v3 - vf

vfg
 = 

0.00756 – 0.000908
0.01422  = 0.4678 

  P3 = Psat = 1318 kPa 
 

 
 
 

T C.P.

v

1 2

P = 1318 kPa

P C.P.

v

T
2

1318
50

13
3
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3.55 
 A storage tank holds methane at 120 K, with a quality of 25 %, and it warms up 

by 5°C per hour due to a failure in the refrigeration system. How long time will it 
take before the methane becomes single phase and what is the pressure then? 

 
 Solution:   Use Table B.7.1 

Assume rigid tank  v = constant = v1  

 v1 = 0.002439 + 0.25×0.30367 = 0.078366  m3/kg 

We then also see that    v1  >  vc = 0.00615  m3/kg 

All single phase when v = vg  =>  T  ≅  145 K 

∆t = ∆T/(5°C/h)  ≅  (145 – 120 ) / 5  = 5 hours P = Psat= 824 kPa 
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3.56 
 A glass jar is filled with saturated water at 500 kPa, quality 25%, and a tight lid is 

put on. Now it is cooled to −10°C. What is the mass fraction of solid at this 
temperature? 

  
Solution: 

Constant volume and mass  ⇒  v1 = v2 = V/m 

From Table B.1.2:  v1 = 0.001093 + 0.25 × 0.3738 = 0.094543 

From Table B.1.5:  v2 = 0.0010891 + x2 × 446.756 = v1 = 0.094543 

    ⇒  x2 = 0.0002  mass fraction vapor 

xsolid =1 - x2 = 0.9998      or           99.98 % 
 

 P C.P.

v

T C.P.

v

T
1

2

1

2  

 

 
 P

T

v

V

L

S

C.P.

1

2
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3.57 
 Saturated (liquid + vapor) ammonia at 60°C is contained in a rigid steel tank. It is 

used in an experiment, where it should pass through the critical point when the 
system is heated. What should the initial mass fraction of liquid be? 

 
 Solution: 

Process:  Constant mass and volume,    v = C 
From table B.2.1: 

v2 = vc = 0.004255 m3/kg  

v1 = 0.001834 + x1 × 0.04697 = 0.004255 

   =>  x1 = 0.01515 

   liquid mass fraction = 1 - x1 = 0.948  

T

v

60 C

Crit. point

1
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3.58 
 A steel tank contains 6 kg of propane (liquid + vapor) at 20°C with a volume of 

0.015 m3. The tank is now slowly heated. Will the liquid level inside eventually rise 
to the top or drop to the bottom of the tank?  What if the initial mass is 1 kg instead 
of 6 kg? 

 
 Solution:    

Constant volume and mass        v2 = v1 = 
V
m = 

0.015 m3

6 kg  = 0.0025 m3/kg 

 
 

v 

T 

20°C

C.P.

v c 

a b

VaporLiq.

 

A.2:   vc = 0.00454 m3/kg > v1 
  eventually reaches sat. liquid. 
    ⇒  level rises to top 
 
If m = 1 kg  ⇒  v1 = 0.015 m3/kg > vc 
  then it will reach saturated vapor. 
    ⇒  level falls 
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3.59 
 A 400-m3 storage tank is being constructed to hold LNG, liquified natural gas, 

which may be assumed to be essentially pure methane. If the tank is to contain 
90% liquid and 10% vapor, by volume, at 100 kPa, what mass of LNG (kg) will 
the tank hold?  What is the quality in the tank? 

 
 Solution: 

CH4 is in the section B tables.  

From Table B.7.1:  vf ≅ 0.002366 m3/kg,    (interpolated) 

From Table B.7.2:  vg ≅ 0.55665 m3/kg   (first entry 100 kPa) 
 

mliq = 
Vliq
vf

 = 
0.9 × 400
0.002366 = 152 155.5 kg; mvap = 

Vvap
vg

 = 
0.1 × 400
0.55665  = 71.86 kg 

 mtot = 152 227 kg,     x = mvap / mtot = 4.72 × 10-4 
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3.60 
 A sealed rigid vessel of 2 m3 contains a saturated mixture of liquid and vapor R-

134a at 10°C. If it is heated to 50°C, the liquid phase disappears. Find the 
pressure at 50°C and the initial mass of the liquid. 

 
 Solution: 

            Process: constant volume and constant mass. 
 

 P

v

2

1
 

State 2 is saturated vapor, from table B.5.1 
        P2 = Psat(50°C) = 1.318 MPa 
State 1: same specific volume as state 2 
v1 = v2 = 0.015124 m3/kg  
v1 = 0.000794 + x1 × 0.048658  
           ⇒  x1 = 0.2945 
 

 
     m = V/v1 = 2/0.015124 = 132.24 kg;         mliq = (1 - x1)m = 93.295 kg 
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3.61 
 A pressure cooker (closed tank) contains water at 100°C with the liquid volume 

being 1/10 of the vapor volume. It is heated until the pressure reaches 2.0 MPa. 
Find the final temperature. Has the final state more or less vapor than the initial 
state? 

 Solution: 
State 1:  Vf = mf vf = Vg/10 = mgvg/10  ;  

  Table B.1.1:    vf = 0.001044 m3/kg,  vg = 1.6729 m3/kg 

x1 = 
mg

mg + mf
 = 

10 mfvf / vg
mf + 10 mfvf / vg

 = 
10 vf

10 vf + vg
  = 

0.01044
0.01044 + 1.6729 = 0.0062 

v1 = 0.001044 + 0.0062×1.67185 = 0.01141 m3/kg  

State 2:   v2 = v1 = 0.01141  m3/kg  < vg(2MPa)  from B.1.2  so two-phase 
 
 P

v

2

1
 

  At state 2:      v2 = vf + x2 vfg 
     0.01141 = 0.001177 + x2 × 0.09845 
          =>    x2 = 0.104    
         More vapor at final state 
         T2 = Tsat(2MPa) = 212.4°C 
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3.62 
 A pressure cooker has the lid screwed on tight. A small opening with A = 5 mm2 

is covered with a petcock that can be lifted to let steam escape. How much mass 
should the petcock have to allow boiling at 120oC with an outside atmosphere at 
101.3 kPa? 

 
 
 

Table B.1.1.:     Psat = 198.5 kPa 
 
F = mg = ∆P × A 
m = ∆P × A/g  

    = 
(198.5-101.3)×1000×5×10-6

9.807  

    = 0.0496 kg = 50 g 
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3.63 
 Ammonia at 10 oC and mass 0.1 kg is in a piston cylinder with an initial volume of 1 

m3. The piston initially resting on the stops has a mass such that a pressure of 900 
kPa will float it. Now the ammonia is slowly heated to 50oC. Find the final pressure 
and volume. 

 
Solution: 

C.V. Ammonia, constant mass. 
Process:      V = constant  unless  P = Pfloat 
 

  

State 1:  T = 10 oC,   v1 = 
V
m = 

1
10 = 0.1 m3/kg 

 
From Table B.2.1    vf  < v < vg 
        

x1 = 
v - vf
vfg

 = 
0.1 - 0.0016

0.20381  = 0.4828 

 

V

P

2

1

1a

P

P

1

2

 
 

State 1a:  P = 900 kPa,  v = v1 = 0.1 m3/kg  < vg   at 900 kPa 
     This state is two-phase  T1a = 21.52oC 
    Since T2  >  T1a   then   v2  >  v1a 
 
State 2:  50oC and on line(s) means   
  P2 = 900 kPa  which is superheated vapor. 

  Table B.2.2 :  v2 = 0.16263 m3/kg 

  V2 = mv2 = 1.6263 m3 
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Ideal Gas Law 
 
 
3.64 
 A cylinder fitted with a frictionless piston contains butane at 25°C, 500 kPa. Can 

the butane reasonably be assumed to behave as an ideal gas at this state ? 
  
 Solution  

Butane 25°C, 500 kPa,   Table A.2:    Tc = 425 K;  Pc = 3.8 MPa   

   Tr = 
25 + 273

425   = 0.701;        Pr = 
0.5
3.8 = 0.13 

  Look at generalized chart in Figure D.1 
   Actual  Pr > Pr, sat = 0.1 => liquid!! not a gas 

 
   The pressure should be less than 380 kPa to have a gas at that T. 
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3.65 
 A spherical helium balloon of 10 m in diameter is at ambient T and P, 15oC and 

100 kPa. How much helium does it contain? It can lift a total mass that equals the 
mass of displaced atmospheric air. How much mass of the balloon fabric and cage 
can then be lifted? 

 
 

 V = 
π
6 D3 =  

π
6 103 = 523.6 m3   

mHe = ρV = 
V
v =  

PV
RT  

        = 
100 × 523.6
2.0771 × 288 = 87.5 kg 

 

mair = 
PV
RT = 

100 × 523.6
0.287 × 288 = 633 kg 

 
mlift = mair – mHe = 633-87.5 = 545.5 kg  
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3.66 
 Is it reasonable to assume that at the given states the substance behaves as an 

ideal gas? 
 Solution: 

a) Oxygen, O2      at    30°C, 3 MPa     Ideal Gas ( T » Tc = 155 K from A.2) 

b) Methane, CH4  at    30°C, 3 MPa     Ideal Gas ( T » Tc = 190 K from A.2) 

c) Water, H2O      at    30°C, 3 MPa     NO compressed liquid   P > Psat (B.1.1) 

d) R-134a  at    30°C, 3 MPa     NO compressed liquid   P > Psat (B.5.1) 
e) R-134a  at    30°C, 100 kPa   Ideal Gas   P is low < Psat   (B.5.1) 

 
  ln P

T

Vapor

Liq.
Cr.P.

a, b

c, d

e
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3.67 
 A 1-m3 tank is filled with a gas at room temperature 20°C and pressure 100 kPa. 

How much mass is there if the gas is  a) air,  b) neon or  c) propane ? 
  

 Solution:    
 
Use Table A.2 to compare T and P to the critical T and P  with   
 T = 20°C = 293.15 K ;     P = 100 kPa << Pc        for all  
Air :  T >> TC,N2;  TC,O2 = 154.6 K so ideal gas; R= 0.287 kJ/kg K 
Neon:   T >> Tc = 44.4 K  so ideal gas; R = 0.41195 kJ/kg K 
Propane:  T  <  Tc = 370 K,  but P << Pc = 4.25 MPa 

 so gas  R = 0.18855 kJ/kg K 
 
All states are ideal gas states so the ideal gas law applies 
    PV = mRT 
 

 a)   m = 
PV
RT = 

100 × 1
0.287 × 293.15 = 1.189 kg 

 b)   m = 
100 × 1

0.41195 × 293.15 = 0.828 kg 

 c)   m =  
100 × 1

0.18855 × 293.15 = 1.809 kg 
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3.68 
 A rigid tank of 1 m3 contains nitrogen gas at 600 kPa, 400 K. By mistake 

someone lets 0.5 kg flow out. If the final temperature is 375 K what is then the 
final pressure?  

 
 Solution: 
 

m = 
PV
RT = 

600 × 1
0.2968 × 400 = 5.054 kg 

 
m2 = m - 0.5 = 4.554 kg 

P2 = 
m2RT2

V  = 
4.554 × 0.2968 × 375

1   = 506.9 kPa 
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3.69 
 A cylindrical gas tank 1 m long, inside diameter of 20 cm, is evacuated and then 

filled with carbon dioxide gas at 25°C. To what pressure should it be charged if there 
should  be 1.2 kg of carbon dioxide? 
Solution: 

 Assume CO2 is an ideal gas, table A.5:  R = 0.1889 kJ/kg K 

 Vcyl = A × L = 
π
4(0.2)2 × 1 = 0.031416 m3 

 P V = mRT           =>     P = 
mRT

V  

 ⇒ P = 
1.2 kg × 0.1889 kJ/kg Κ × (273.15 + 25) K

0.031416 m3  = 2152 kPa 
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3.70 
 A glass is cleaned in 45oC hot water and placed on the table bottom up. The room 

air at 20oC that was trapped in the glass gets heated up to 40oC and some of it 
leaks out so the net resulting pressure inside is 2 kPa above ambient pressure of 
101 kPa. Now the glass and the air inside cools down to room temperature. What 
is the pressure inside the glass? 
 
Solution:               
 

  
1 air:   40oC,   103 kPa 
2 air:   20oC,    ? 
 
Constant Volume: V1 = V2,  

AIR
Slight amount
of liquid water
seals to table top

 
 

Constant Mass m1 = m2 
Ideal Gas  P1V1 = m1RT1    and    P2V2 = m1RT2 
Take Ratio 

  P2 = P1 
T1
T2

 = 103 × 
20 + 273
40 + 273 = 96.4 kPa 
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3.71 
 A hollow metal sphere of 150-mm inside diameter is weighed on a precision 

beam balance when evacuated and again after being filled to 875 kPa with an 
unknown gas. The difference in mass is 0.0025 kg, and the temperature is 25°C. 
What is the gas, assuming it is a pure substance listed in Table A.5 ? 

  
 Solution: 

  Assume an ideal gas with total volume:  V = 
π
6(0.15)3 = 0.001767 m3  

  M = 
mR

_
T

PV  = 
0.0025 × 8.3145 × 298.2

875 × 0.001767  = 4.009  ≈  MHe 

   =>    Helium Gas 
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3.72 
 A vacuum pump is used to evacuate a chamber where some specimens are dried at 

50°C. The pump rate of volume displacement is 0.5 m3/s with an inlet pressure of 
0.1 kPa and temperature 50°C. How much water vapor has been removed over a 30-
min period?  

 
 Solution: 

Use ideal gas since     P << lowest P  in steam tables.  
 From table A.5 we get    R = 0.46152 kJ/kg K 
 m = m

.
 ∆t    with mass flow rate as:     m

.
= V

.
/v = PV

.
/RT       (ideal gas) 

 ⇒   m = PV
.
∆t/RT = 

0.1 × 0.5 × 30×60
(0.46152 × 323.15) = 0.603 kg 
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3.73 
 A 1 m3 rigid tank has propane at 100 kPa, 300 K and connected by a valve to 

another tank of 0.5 m3 with propane at 250 kPa, 400 K. The valve is opened and 
the two tanks come to a uniform state at 325 K. What is the final pressure? 

 
 Solution: 
  Propane is an ideal gas (P << Pc)  with R = 0.1886 kJ/kgK from Tbl. A.5 
 

mA = 
PAVA

 RTA
 = 

100 × 1
0.1886 × 300 = 1.7674 kg 

 

m = 
PBVB

 RTB
 = 

250 × 0.5
0.1886 × 400 = 1.6564 kg 

 
V2 = VA + VB = 1.5 m3 
 
m2 = mA + mB = 3.4243 kg 

P2 =  
m2RT2

V2
 = 

3.4243 × 0.1886 × 325
1.5  = 139.9 kPa 
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3.74 
 Verify the accuracy of the ideal gas model when it is used to calculate specific 

volume for saturated water vapor as shown in Fig. 3.9. Do the calculation for 10 
kPa and 1 MPa. 

 
 Solution: 

Look at the two states assuming ideal gas and then the steam tables. 
Ideal gas: 
 v = RT/P  => v1 = 0.46152 × (45.81 + 273.15)/10 = 14.72 m3/kg 
   v2 = 0.46152 × (179.91 + 273.15)/1000 = 0.209 m3/kg 
Real gas: 
 Table B.1.2: v1 = 14.647 m3/kg  so error = 0.3 % 
   v2 = 0.19444 m3/kg  so error = 7.49 % 
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3.75 
 Assume we have 3 states of saturated vapor R-134a at +40 oC, 0 oC and -40 oC. 

Calculate the specific volume at the set of temperatures and corresponding saturated 
pressure assuming ideal gas behavior. Find the percent relative error = 100(v - vg)/vg  
with vg from the saturated R-134a table. 

 
 Solution: 

R-134a. Table values from Table B.5.1     Psat, vg(T) 
  Ideal gas constant from Table A.5:   RR-134a = 0.08149 kJ/kg K 
 

 T Psat , kPa vg vID.G. = RT / Psat error  % 

 -40 oC 51.8 0.35696 0.36678 2.75 
 0 oC 294 0.06919 0.07571 9.4 
 40 oC 1017 0.02002 0.02509 25.3 
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3.76 
 Do Problem 3.75, but for the substance R-12. 
 
 Solution: 

R-12. Table values from Table B.3.1     Psat, vg(T) 
  Ideal gas constant from Table A.5:   RR-12 = 0.08149 kJ/kg K 
 

 T Psat , kPa vg vID.G. = RT / Psat error  % 

 -40 oC 64.2 0.24191 0.2497 3.2 
 0 oC 308.6 0.05539 0.06086 9.9 
 40 oC 960.7 0.01817 0.02241 23.4 
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3.77 
 Do Problem 3.75, but for the substance ammonia. 
 
 Solution: 

NH3. Table values from Table B.2.1     Psat, vg(T) 
  Ideal gas constant from Table A.5:   Rammonia = 0.4882 kJ/kg K 
 

 T Psat , kPa vg vID.G. = RT / Psat error  % 

 -40 oC 71.7 1.5526 1.5875 2.25 
 0 oC 429.6 0.28929 0.3104 7.3 
 40 oC 1555 0.08313 0.09832 18.3 
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3.78 
 Air in an automobile tire is initially at −10°C and 190 kPa. After the automobile is 

driven awhile, the temperature gets up to 10°C. Find the new pressure. You must 
make one assumption on your own. 

 
  Solution: 

   
 

Assume constant volume and that air is an ideal 
gas 
 
 P2 = P1 × T2/T1  

                 = 190 × 
283.15
263.15 = 204.4 kPa 
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3.79 
 An initially deflated and flat balloon is connected by a valve to a 12 m3 storage 

tank containing helium gas at 2 MPa and ambient temperature, 20°C. The valve is 
opened and the balloon is inflated at constant pressure, Po = 100 kPa, equal to 
ambient pressure, until it becomes spherical at D1 = 1 m. If the balloon is larger 
than this, the balloon material is stretched giving a pressure inside as 

P = P0 + C 







1 − 
D1
D  

D1
D   

 The balloon is inflated to a final diameter of 4 m, at which point the pressure 
inside is 400 kPa. The temperature remains constant at 20°C. What is the 
maximum pressure inside the balloon at any time during this inflation process?  
What is the pressure inside the helium storage tank at this time? 

 
 Solution: 
 At the end of the process we have D = 4 m  so we can get the constant C as 

P = 400 = P0 + C ( 1 – 
1
4 ) 

1
4  = 100 + C × 3/16      =>  C = 1600 

The pressure is:    P = 100 + 1600 ( 1 – X –1) X –1; X = D / D1 

Differentiate to find max:        
dP
dD = C ( - X –2   + 2 X –3   ) / D1 = 0 

          =>   - X –2  + 2 X –3  = 0   =>  X = 2 

at max P =>  D = 2D1 = 2 m;   V =  
π
6 D3 = 4.18 m3  

  Pmax = 100 + 1600 ( 1 - 
1
2 ) 

1
2 = 500 kPa 

Helium is ideal gas A.5: m = 
PV
RT =  

500 × 4.189
2.0771 × 293.15 = 3.44 kg 

mTANK, 1 = 
PV
RT = 

2000 × 12
2.0771 × 293.15 = 39.416 kg 

mTANK, 2 = 39.416 – 3.44 = 35.976 kg 
PT2 = mTANK, 2 RT/V = ( mTANK, 1 /   mTANK, 2 ) × P1  = 1825.5 kPa 
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Compressibility Factor 
 
 
3.80 
 Argon is kept in a rigid 5 m3 tank at −30°C, 3 MPa. Determine the mass using the 

compressibility factor. What is the error (%) if the ideal gas model is used? 
 

 Solution: 
 No Argon table, so we use generalized chart Fig. D.1 
 Tr = 243.15/150.8 = 1.612,   Pr = 3000/4870 = 0.616    =>    Z ≅ 0.96 

  m = 
PV

ZRT = 
3000 × 5

0.96 × 0.2081 × 243.2 = 308.75 kg 

 Ideal gas  Z = 1 

  m = 
PV
RT = 296.4 kg       4% error 
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3.81 
 What is the percent error in specific volume if the ideal gas model is used to 

represent the behavior of superheated ammonia at 40°C, 500 kPa?  What if the 
generalized compressibility chart, Fig. D.1, is used instead? 

 
 Solution: 

NH3   T = 40°C = 313.15 K,  Tc = 405.5 K,  Pc = 11.35 MPa from Table A.1 

Table B.2.2:  v = 0.2923 m3/kg 

Ideal gas: v = 
RT
P  = 

0.48819 × 313
500  = 0.3056 m3/kg    ⇒  4.5% error 

Figure D.1:   Tr = 
313.15
405.5  = 0.772,     Pr = 

0.5
11.35 = 0.044     ⇒  Z = 0.97 

  v = 
ZRT

P  = 0.2964 m3/kg    ⇒  1.4% error 
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3.82 
 A new refrigerant R-125 is stored as a liquid at -20 oC with a small amount of vapor. 

For a total of 1.5 kg R-125 find the pressure and the volume. 
 
 Solution: 

As there is no section B table use compressibility chart. 
Table A.2:   R-125 Tc = 339.2 K  Pc = 3.62 MPa 
  Tr = T / Tc = 253.15 / 339.2 = 0.746 
  
We can read from Figure D.1  or a little more accurately interpolate from table 
D.4 entries: 
  Pr sat = 0.16 ; Zg = 0.86 ; Zf = 0.029 
   
 P = Pr sat Pc = 0.16 × 3620 = 579 kPa 

 PVliq = Zf mliq RT = 0.029 × 1.5 × 0.06927 × 253.15 / 579 = 0.0013 m3 
 

 

ln Pr

Z
T = 2.0r

T  = 0.7r
T  = 0.7r

0.1 1

sat vapor

sat liq.
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3.83 
 Many substances that normally do not mix well do so easily under supercritical 

pressures. A mass of 125 kg ethylene at 7.5 MPa, 296.5 K is stored for such a 
process. How much volume does it occupy? 

  
Solution: 

 
There is no section B table for ethylene so use compressibility chart. 
Table A.2:   Ethylene Tc = 282.4 K  Pc = 5.04 MPa 
 Tr = T/Tc = 296.5 / 282.4 = 1.05 ;      Pr = P/Pc = 7.5 / 5.04 = 1.49 
 Z = 0.32 from Figure D.1 

 V = mZRT / P = 125 × 0.32 × 0.2964 × 296.5 / 7500 = 0.469 m3 
 
 

 

ln Pr

Z
T = 2.0r

T  = 0.7r

T  = 0.7r

0.1 1

T  = 1.05r
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3.84 
 Carbon dioxide at 330 K is pumped at a very high pressure, 10 MPa, into an oil-

well. As it penetrates the rock/oil the oil viscosity is lowered so it flows out 
easily. For this process we need to know the density of the carbon dioxide being 
pumped. 

  
Solution: 

 
There is not a B section table so use compressibility chart 
Table A.2    CO2:  Tc = 304.1 K    Pc = 7.38 MPa 
 Tr = T/Tc = 330/304.1 = 1.085 
 Pr = P/Pc = 10/7.38 = 1.355 

 From Figure D.1:  Z ≈ 0.45 
 ρ = 1/v = P / ZRT = 10000/(0.45 × 0.1889 × 330) = 356 kg/m3 

 
 

 

ln Pr

Z
T = 2.0r

T  = 0.7r

T  = 0.7r

0.1 1

T  = 1.1r
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3.85 
 To plan a commercial refrigeration system using R-123 we would like to know how 

much more volume saturated vapor R-123 occupies per kg at -30 oC compared to the 
saturated liquid state. 
Solution: 
For R-123 there is no section B table printed. We will use compressibility chart. 

From Table A.2     Tc = 456.9 K ;     Pc = 3.66 MPa ;      M = 152.93 
 Tr = T/Tc = 243/456.9 = 0.53 
 R = R

_
/M = 8.31451 / 152.93 = 0.0544 

The value of Tr is below the range in Fig. D.1 so use the table D.4 
 Table D.4,  Zg = 0.979 Zf = 0.00222 

   Zfg  = 0.979 − 0.0022 = 0.9768;    Pr = Pr sat = 0.0116 

 P = Pr × Pc = 42.5 

 vfg = Zfg RT/P = 0.9768 × 0.0544 × 243 / 42.5 = 0.304 m3/kg 
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3.86 
 A bottle with a volume of 0.1 m3 contains butane with a quality of 75% and a 

temperature of 300 K. Estimate the total butane mass in the bottle using the 
generalized compressibility chart. 

 Solution: 
We need to find the property v  the mass is:     m = V/v 
so find v given T1  and  x   as :    v = vf + x vfg 

Table A.2:   Butane     Tc = 425.2 K        Pc = 3.8 MPa = 3800 kPa 
Tr  = 300/425.2 = 0.705  =>   

From Fig. D.1  or table D.4: Zf ≈ 0.02; Zg ≈ 0.9; Pr sat = 0.1 
 
 
 

ln Pr

Z
T = 2.0r

f

T  = 0.7r
T  = 0.7r

0.1 1

g

 

 

 
P  = Psat = Pr sat × Pc = 0.1× 3.80 ×1000 = 380 kPa 

vf = ZfRT/P = 0.02 × 0.14304 × 300/380  =  0.00226 m3/kg 

vg = ZgRT/P = 0.9 × 0.14304 × 300/380  =  0.1016 m3/kg 

v = 0.00226 + 0.75 × (0.1016 – 0.00226) = 0.076765 m3/kg 

m  = 
V
v = 

0.1
0.076765 = 1.303 kg 
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3.87 
 Refrigerant R-32 is at -10 oC with a quality of 15%. Find the pressure and specific 

volume. 
 
 Solution:               
 

For R-32 there is no section B table printed. We will use compressibility chart. 
From Table A.2:     Tc = 351.3 K ;     Pc = 5.78 MPa ;   
From Table A.5:    R = 0.1598 kJ/kg K 
 Tr = T/Tc = 263/351.3 = 0.749 

From Table D.4 or Figure D.1,     Zf  ≈ 0.029 ;    Zg ≈ 0.86 ;    Pr sat ≈ 0.16 

 P = Pr sat Pc = 0.16 × 5780 = 925 kPa 

 v = vf + x vfg  = (Zf  + x × Zfg) RT/P 

    = [0.029 + 0.15 × (0.86 – 0.029)] × 0.1598 × 263 / 925  
    = 0.007 m3/kg 

 
 

ln Pr

Z
T = 2.0r

T  = 0.7r
T  = 0.7r

0.1 1  
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3.88 
 A mass of 2 kg of acetylene is in a 0.045 m3 rigid container at a pressure of 4.3 

MPa. Use the generalized charts to estimate the temperature. (This becomes trial 
and error). 
 
Solution: 

Table A.2, A.5:      Pr = 4.3/6.14 = 0.70;   Tc = 308.3 K;    R = 0.3193 kJ/kg K 
  v = V/m = 0.045/2 = 0.0225 m3/kg 

State given by (P, v)  v = 
ZRT

P  

Since Z is a function of the state Fig. D.1 and thus T, we have trial and error. 
 
Try sat. vapor at   Pr  = 0.7    => Fig. D.1:     Zg  = 0.59;     Tr = 0.94 

 vg = 0.59 × 0.3193 × 0.94 × 308.3/4300  =  0.0127 m3/kg   too small 
 

Tr = 1   =>  Z = 0.7  =>  v = 
0.7 × 0.3193 × 1 × 308.3

4300   = 0.016 m3/kg 

Tr = 1.2  =>  Z = 0.86  =>  v =  
0.86 × 0.3193 × 1.2 × 308.3

4300   = 0.0236 m3/kg 

  Interpolate to get: Tr  ≈ 1.17  T ≈ 361 K 
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3.89 
 A substance is at 2 MPa, 17°C in a 0.25-m3 rigid tank. Estimate the mass from the 

compressibility factor if the substance is a) air, b) butane or c) propane. 
 
 Solution:    

Figure D.1 for compressibility Z and table A.2 for critical properties. 
  Pr = P/Pc     and   Tr = T/Tc 
 
Air is a mixture so we will estimate from the major component. 
Nitrogen Pr = 2/3.39 = 0.59; Tr = 290/126.2 = 2.3;   Z ≈ 0.98 

  m = PV/ZRT = 2000 × 0.25/(0.98 × 0.2968 × 290) = 5.928 kg 
 
Butane Pr = 2/3.80 = 0.526; Tr = 290/425.2 = 0.682;   Z ≈ 0.085 

  m = PV/ZRT = 2000 × 0.25/(0.085 × 0.14304 × 290) = 141.8 kg 
 
Propane Pr = 2/4.25 = 0.47; Tr = 290/369.8 = 0.784;   Z ≈ 0.08 

  m = PV/ZRT = 2000 × 0.25/(0.08 × 0.18855 × 290) = 114.3 kg 
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Z
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Review Problems 
 
3.90 
 Determine the quality (if saturated) or temperature (if superheated) of the 

following substances at the given two states: 
 Solution: 

a) Water, H2O,  use Table B.1.1 or B.1.2 

 1) 120°C, 1 m3/kg       v > vg   superheated vapor,  T = 120 °C  

 2) 10 MPa, 0.01 m3/kg      =>  two-phase  v < vg 

  x = ( 0.01 – 0.001452 ) / 0.01657 = 0.516  
 
b) Nitrogen, N2, table B.6 

 1) 1 MPa, 0.03 m3/kg  =>   superheated vapor  since v > vg 
  Interpolate between sat. vapor and superheated vapor B.6.2: 

  T ≅ 103.73 + (120-103.73) × 
0.03−0.02416

0.03117−0.02416 = 117 K 

 2) 100 K, 0.03 m3/kg  =>   sat. liquid + vapor as two-phase  v < vg 

   v = 0.03 = 0.001452 + x × 0.029764  ⇒  x = 0.959 
 
 

 
 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 
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3.91 
 Fill out the following table for substance ammonia: 
 Solution:               

  P [kPa]  T [ oC]    v [m3/kg] x 
 a) 400  -10  0.001534 Undefined 
 b) 855  20  0.15  1.0 

 
  a) B.2.1 P > Psat(-10oC) = 291 kPa   =>  compressed liquid 
    v ≅ vf = 0.001534 m3/kg 
  b) B.2.1 search along the vg values 
 

 
 
 

T C.P.

v

a

b
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P C.P.

v
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3.92 
 Find the phase, quality x if applicable and the missing property P or T. 
 
 Solution: 
 

a. H2O T = 120°C v = 0.5 m3/kg    
  Table B.1.1 at given T:      v  <  vg = 0.89186 

  sat. liq. + vap.       P = Psat = 198.5 kPa,   
  x = (v - vf)/vfg = (0.5 - 0.00106)/0.8908 = 0.56 
b. H2O P = 100 kPa v = 1.8 m3/kg   
  Table B.1.2   at given P:       v  >  vg = 1.694 

  sup. vap., interpolate in Table B.1.3 

   T = 
1.8 − 1.694

1.93636 − 1.694 (150 – 99.62) + 99.62 = 121.65 °C 

c. H2O T = 263 K v = 0.2 m3/kg   

  Table B.1.5   at given T = -10 °C:      v  <  vg = 466.757 

  sat. solid + vap.,           P = Psat =  0.26 kPa,   
  x = (v - vi)/vig = (200 - 0.001)/466.756 = 0.4285 
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3.93 
 Find the phase, quality x if applicable and the missing property P or T. 
 
 Solution: 
 

a. NH3 P = 800 kPa v = 0.2 m3/kg; 
  Superheated Vapor (v > vg at 800 kPa)   

Table B 2.2  interpolate between 70°C and 80°C 

T = 71.4°C 

b. NH3 T = 20°C v = 0.1 m3/kg   
  Table B.2.1  at given T:        v  <  vg = 0.14922 

  sat. liq. + vap. ,  P = Psat = 857.5 kPa,   
   x = (v - vf)/vfg = (0.1 - 0.00164)/0.14758 = 0.666 
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3.94 
 Give the phase and the missing properties of P, T, v and x. 
 
 Solution: 

a. R-22 T = 10°C v = 0.01 m3/kg  

  Table B.4.1       v < vg = 0.03471 m3/kg 

   sat. liq. + vap. P = Psat = 680.7 kPa,   
  x = (v - vf)/vfg = (0.01 - 0.0008)/0.03391 = 0.2713 

b. H2O T = 350°C v = 0.2 m3/kg   
  Table B.1.1 at given T:     v > vg = 0.00881 

  sup. vap. P ≅ 1.40 MPa,  x = undefined 

c. R-12 T = - 5 °C  P = 200 kPa 

  sup. vap.  (P < Pg at -5°C)  
  Table B 3.2: 

  v = 0.08354 m3/kg  at  –12.5°C 

  v = 0.08861 m3/kg at  0°C 

   => v = 0.08658 m3/kg at  -5°C 

d. R-134a P = 294 kPa,   v = 0.05 m3/kg 

  Table B.5.1:   v < vg = 0.06919 m3/kg 

  two-phase      T = Tsat =  0°C  
  x = (v - vf)/vfg = (0.05 - 0.000773)/0.06842 = 0.7195 
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3.95 
 Give the phase and the missing properties of P, T, v and x. These may be a little 

more difficult if the appendix tables are used instead of the software. 
 
 Solution: 
 

a) R-22 at T = 10°C,  v = 0.036 m3/kg:      Table B.4.1      v > vg at 10°C  

 =>  sup. vap.  Table B.4.2 interpolate between sat. and sup. both at 10°C 

 P = 680.7 + (600 - 680.7) 
0.036-0.03471

0.04018-0.03471 = 661.7 kPa 

b) H2O v = 0.2 m3/kg ,  x = 0.5:   Table B.1.1 

 sat. liq. + vap.      v = (1-x) vf + x vg   =>  vf + vg = 0.4 m3/kg 
 since vf is so small we find it approximately where vg = 0.4 m3/kg. 

 vf + vg = 0.39387  at 150°C,      vf + vg  = 0.4474  at 145°C. 

 An interpolation gives   T ≅ 149.4°C,     P ≅ 468.2 kPa 
c) H2O T = 60°C,  v = 0.001016 m3/kg:   Table B.1.1   v < vf = 0.001017  

   =>  compr. liq. see Table B.1.4 
 v = 0.001015 at 5 MPa so   P ≅ 0.5(5000 + 19.9) = 2.51 MPa 
d) NH3 T = 30°C,  P = 60 kPa :   Table B.2.1     P < Psat  

   =>   sup. vapor interpolate in Table B.2.2 

     v = 2.94578 + (1.95906 - 2.94578) 
60 - 50
75 - 50 = 2.551 m3/kg 

 v is not linearly proportional to P (more like 1/P) so the computer table  
 gives a more accurate value of  2.45 m3/kg 
e) R-134a v = 0.005 m3/kg ,  x = 0.5: sat. liq. + vap.    Table B.5.1 
 v = (1-x) vf + x vg   =>     vf + vg = 0.01 m3/kg  

 vf + vg = 0.010946 at 65°C,          vf + vg = 0.009665 at 70°C.  

 An interpolation gives:    T ≅ 68.7°C, P = 2.06 MPa 
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3.96 
 A 5 m long vertical tube of cross sectional area 200 cm2 is placed in a water 

fountain. It is filled with 15oC water, the bottom closed and the top open to the 
100 kPa atmosphere. 

  a) How much water is in the tube? 
  b) What is the pressure at the bottom of the tube 
 
 Solution: 
 
  State 1:  slightly compressed liquid from Table B.1.1 
  Mass:     m = ρ V = V/v = AH/v = 200 × 10−4 × 5/0.001001 = 99.9 kg 
 
   ∆P = ρ gH = gH/v = 9.80665 × 5/0.001001  

      = 48 984 Pa = 48.98 kPa 
   Ptot = Ptop + ∆P = 149 kPa 
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3.97 
 Consider two tanks, A and B, connected by a valve, as shown in Fig. P3.97. Each 

has a volume of 200 L and tank A has R-12 at 25°C, 10% liquid and 90% vapor 
by volume, while tank B is evacuated. The valve is now opened and saturated 
vapor flows from A to B until the pressure in B has reached that in A, at which 
point the valve is closed. This process occurs slowly such that all temperatures 
stay at 25°C throughout the process. How much has the quality changed in tank A 
during the process? 

  
Solution:               
 

A B
vacuum

 
 

 

 

State A1:   Table B.3.1        vf = 0.000763 m3/kg,   vg = 0.026854 m3/kg 

  mA1 = 
Vliq1
vf 25°C

 + 
Vvap1
vg 25°C

 = 
0.1 × 0.2
0.000763 + 

0.9 × 0.2
0.026854   

          = 26.212 + 6.703 = 32.915 kg 

  xA1 = 
6.703
32.915 = 0.2036 ;    

State B2:   Assume A still two-phase so saturated P for given T 

  mB2 = 
VB

vg 25°C
 = 

0.2
0.26854 = 7.448 kg 

State A2: mass left is  mA2 = 32.915 - 7.448 = 25.467 kg 

  vA2 = 
0.2

25.467 = 0.007853 = 0.000763 + xA2 × 0.026091 

  xA2 = 0.2718      ∆x = 6.82% 
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3.98 
 A spring-loaded piston/cylinder contains water at 500°C, 3 MPa. The setup is 

such that pressure is proportional to volume, P = CV. It is now cooled until the 
water becomes saturated vapor. Sketch the P-v diagram and find the final 
pressure. 
Solution: 

 State 1:   Table B.1.3:    v1 = 0.11619 m3/kg 

 Process:   m is constant and    P = C0V = C0m v = C v 

 P = Cv  ⇒  C = P1/v1 = 3000/0.11619 = 25820 kPa kg/m3 

State 2:  x2 = 1  &  P2 = Cv2   (on process line) 

 
  

P

v

1

2

 

 
Trial & error on T2sat or P2sat: 
Here from B.1.2: 
at 2 MPa    vg = 0.09963  ⇒  C = 20074  (low) 

 2.5 MPa    vg = 0.07998  ⇒  C = 31258  (high) 

 2.25 MPa   vg = 0.08875  ⇒  C = 25352  (low) 
 

 
  Interpolate to get the right C      ⇒   P2 = 2270 kPa 
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3.99 
    A 1 m3 rigid tank has air at 1500 kPa and ambient 300 K connected by a valve to 

a piston cylinder. The piston of area 0.1 m2 requires 250 kPa below it to float. 
The valve is opened and the piston moves slowly 2 m up and the valve is closed. 
During the process air temperature remains at 300 K. What is the final pressure in 
the tank? 

 
 

mA = 
PAVA
 RTA

  = 
1500×1

0.287×300 = 17.422 kg 

 

mB2 - mB1 = 
∆VA
 vB

 =  
∆VBPB

RT  = 
0.1×2×250
0.287×300 = 0.581 kg 

 
mA2 =  mA – (mB2 - mB1) = 17.422 – 0.581 = 16.841 kg 
 

PA2 = 
mA2RT

VA
 = 

16.841×0.287×300
1  = 1450 kPa 
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3.100 
 A tank contains 2 kg of nitrogen at 100 K with a quality of 50%. Through a volume 

flowmeter and valve, 0.5 kg is now removed while the temperature remains constant. 
Find the final state inside the tank and the volume of nitrogen removed if the 
valve/meter is located at 
a. The top of the tank  
 b. The bottom of the tank 
 
Solution 

     Table B.6.1: 
 
 

���

 

v1 = 0.001452 + x1 × 0.029764 = 0.016334 m3/kg 
Vtank = m1v1 = 0.0327 m3 
m2 = m1 - 0.5 = 1.5 kg 
v2 = Vtank/m2 = 0.0218  <  vg(T) 

x2 = 
0.0218-0.001452

0.031216-0.001452 =  0.6836 

 
 

Top: flow out is sat. vap.   vg = 0.031216  m3/kg,   Vout = moutvg = 0.0156 m3 

Bottom: flow out is sat. liq.   vf = 0.001452        Vout = moutvf = 0.000726 m3 
 



   Sonntag, Borgnakke and van Wylen   

 
3.101 
 A piston/cylinder arrangement is loaded with a linear spring and the outside 

atmosphere. It contains water at 5 MPa, 400°C with the volume being 0.1 m3. If the 
piston is at the bottom, the spring exerts a force such that Plift = 200 kPa. The system 
now cools until the pressure reaches 1200 kPa. Find the mass of water, the final state 
(T2, v2) and plot the P–v diagram for the process. 

 
 Solution: 
 P 

v 

5000

1200

200 

1 

2 

a 

? 0.05781 0  

1: Table B.1.3      ⇒    v1= 0.05781 m3/kg 
       m = V/v1 = 0.1/0.05781 = 1.73 kg 

Straight line:     P = Pa + C × v 

       v2 = v1 
P2 - Pa
P1 - Pa

 = 0.01204 m3/kg 

 

 
v2 < vg(1200 kPa) so two-phase  T2 = 188°C 

 ⇒  x2 = (v2 - 0.001139)/0.1622 = 0.0672 
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3.102 
 Water in a piston/cylinder is at 90°C, 100 kPa, and the piston loading is such that 

pressure is proportional to volume, P = CV. Heat is now added until the temperature 
reaches 200°C. Find the final pressure and also the quality if in the two-phase 
region. 

 Solution: 
      Final state: 200°C , on process line P = CV  

 

��������
��������
��������
��������1

2

v

P

 

 
State 1:     Table B.1.1:   v1 = 0.001036 m3/kg 
       P2 = P1v2/v1    from process equation  
Check state 2 in Table B.1.1 
 
    vg(T2) = 0.12736;     Pg(T2) = 1.5538 MPa 
 

 
If v2 = vg(T2)    ⇒   P2 = 12.3 MPa > Pg  not OK 

If sat. P2 = Pg(T2) = 1553.8 kPa   ⇒    v2 = 0.0161 m3kg  <  vg    sat. OK, 

P2 = 1553.8 kPa,             x2 = (0.0161 - 0.001156) / 0.1262 = 0.118 
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3.103 
 A container with liquid nitrogen at 100 K has a cross sectional area of 0.5 m2. 

Due to heat transfer, some of the liquid evaporates and in one hour the liquid level 
drops 30 mm. The vapor leaving the container passes through a valve and a heater 
and exits at 500 kPa, 260 K. Calculate the volume rate of flow of nitrogen gas 
exiting the heater. 

 Solution: 
Properties from table B.6.1 for volume change, exit flow from table B.6.2: 

    ∆V =  A × ∆h = 0.5 × 0.03 = 0.015 m3 
   ∆mliq = -∆V/vf = -0.015/0.001452 = -10.3306 kg 

   ∆mvap =  ∆V/vg = 0.015/0.0312 = 0.4808 kg 

   mout = 10.3306 - 0.4808 = 9.85 kg 

   vexit = 0.15385 m3/kg 

  V
.
 = m

.
vexit =  (9.85 / 1 h)× 0.15385 m3/kg  

= 1.5015 m3/h = 0.02526 m3/min 
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3.104 
 A cylinder containing ammonia is fitted with a piston restrained by an external force 

that is proportional to cylinder volume squared. Initial conditions are 10°C, 90% 
quality and a volume of 5 L. A valve on the cylinder is opened and additional 
ammonia flows into the cylinder until the mass inside has doubled. If at this point 
the pressure is 1.2 MPa, what is the final temperature? 

 
 Solution: 

State 1 Table B.2.1: v1 = 0.0016 + 0.9(0.205525 - 0.0016) = 0.18513 m3/kg 

  P1 = 615 kPa;    V1 = 5 L = 0.005 m3  

  m1 = V/v = 0.005/0.18513 = 0.027 kg 

State 2: P2 = 1.2 MPa,   Flow in so:   m2 = 2 m1 = 0.054 kg  

Process:   Piston Fext = KV2 = PA    =>    P = CV2   => P2 = P1 (V2/V1)2 

From the process equation we then get: 

 V2 = V1 (P2/P1)
1/2

 = 0.005 (
1200
615 )

1/2
 = 0.006984 m3 

 v2 = V/m = 
0.006984

0.054  = 0.12934 m3/kg 

 At P2, v2:     T2 = 70.9°C 
 



   Sonntag, Borgnakke and van Wylen   

 
3.105 
 A cylinder/piston arrangement contains water at 105°C, 85% quality with a 

volume of 1 L. The system is heated, causing the piston to rise and encounter a 
linear spring as shown in Fig. P3.105. At this point the volume is 1.5 L, piston 
diameter is 150 mm, and the spring constant is 100 N/mm. The heating continues, 
so the piston compresses the spring. What is the cylinder temperature when the 
pressure reaches 200 kPa? 

 Solution: 
 P1 = 120.8 kPa,  v1 = vf + x vfg = 0.001047 + 0.85*1.41831 = 1.20661 

 
m = V1/ v1 = 

0.001
1.20661 = 8.288×10-4 kg 

v2 = v1 (V2 / V1) =  1.20661× 1.5 = 1.8099 

& P = P1 = 120.8 kPa   ( T2 = 203.5°C ) 

P3 = P2 + (ks/Ap
2) m(v3-v2)   linear spring 

P

v
1 2 3200

1 1.5 liters  

 Ap = (π/4) × 0.152 = 0.01767 m2 ;   ks = 100 kN/m (matches P in kPa) 

 200 = 120.8 + (100/0.01767 2 ) × 8.288×10-4(v3-1.8099)  
 200 = 120.8 + 265.446  (v3 – 1.8099) => v3 = 2.1083 m3/kg 

T3 ≅ 600  + 100  × (2.1083 – 2.01297)/(2.2443-2.01297) ≅ 641°C 
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3.106 
 Refrigerant-12 in a piston/cylinder arrangement is initially at 50°C, x = 1. It is then 

expanded in a process so that P = Cv−1 to a pressure of 100 kPa. Find the final 
temperature and specific volume. 

 Solution: 

State 1: 50°C, x = 1   Table B.3.1:      P1 = 1219.3 kPa, v1 = 0.01417 m3/kg 

Process: Pv = C = P1v1; => P2 = C/v2= P1v1/v2 

State 2: 100 kPa and  v2 = v1P1/P2 = 0.1728 m3/kg 

  T2 ≅ -13.2°C  from Table B.3.2        Notice T not constant 
 

 

v

P

v

T

1
2

1

2
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3.107 
 A 1-m3 rigid tank with air at 1 MPa, 400 K is connected to an air line as shown in 

Fig. P3.107. The valve is opened and air flows into the tank until the pressure 
reaches 5 MPa, at which point the valve is closed and the temperature inside is 
450K. 

a. What is the mass of air in the tank before and after the process? 
b. The tank eventually cools to room temperature, 300 K. What is the pressure 
inside the tank then? 

 
 Solution: 

 P, T known at both states and assume the air behaves as an ideal gas. 

   mair1 = 
P1V
RT1

 = 
1000 × 1

0.287 × 400 = 8.711 kg 

   mair2 = 
P2V
RT2

 = 
5000 × 1

0.287 × 450 = 38.715 kg 

 Process 2 → 3 is constant V, constant mass cooling to T3 

  P3 = P2 × (T3/T2) = 5000 × (300/450) = 3.33 MPa 
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3.108 
 Ammonia in a piston/cylinder arrangement is at 700 kPa, 80°C. It is now cooled at 

constant pressure to saturated vapor (state 2) at which point the piston is locked with 
a pin. The cooling continues to −10°C (state 3). Show the processes 1 to 2 and 2 to 3 
on both a P–v and T–v diagram. 

 Solution: 
  State 1:  T, P   from table B.2.2   this is superheated vapor. 
  State 2:  T, x   from table B.2.1 
  State 3:  T, v   two-phase 
 

 

700 

290 

P 

v 

2 

3 

1 

v 

T 

2 

3 

1 80

14

-10 

 
 



   Sonntag, Borgnakke and van Wylen   

 
3.109 
 A cylinder has a thick piston initially held by a pin as shown in Fig. P3.109. The 

cylinder contains carbon dioxide at 200 kPa and ambient temperature of 290 K. 
The metal piston has a density of 8000 kg/m3 and the atmospheric pressure is 101 
kPa. The pin is now removed, allowing the piston to move and after a while the 
gas returns to ambient temperature. Is the piston against the stops? 
 

 Solution:   
Force balance on piston determines equilibrium float pressure. 
Piston mp = Ap × l × ρ   ρpiston = 8000 kg/m3 

Pext on CO2
 = P0 + 

mpg
Ap

 = 101 + 
Ap × 0.1 × 9.807 × 8000

Ap × 1000   = 108.8 kPa  

Pin released, as P1 > Pext piston moves up, T2 = To & if piston at stops, 

 then   V2 = V1 × Η2/Η1 = V1 × 150 / 100 

Ideal gas with T2 = T1  then gives 

 ⇒   P2 = P1 × V1 / V2 = 200 × 
100
150 = 133 kPa  >  Pext 

 ⇒   piston is at stops, and P2 = 133 kPa 
 
 



   Sonntag, Borgnakke and van Wylen   

 
3.110 
 For a certain experiment, R-22 vapor is contained in a sealed glass tube at 20°C. It is 

desired to know the pressure at this condition, but there is no means of measuring it, 
since the tube is sealed. However, if the tube is cooled to −20°C small droplets of 
liquid are observed on the glass walls. What is the initial pressure? 

 
 Solution:    

Control volume:  R-22 fixed volume (V) & mass (m) at 20°C   
Process:  cool to -20°C at constant v, so we assume saturated  vapor 

State 2:  v2 = vg at -20°C = 0.092843 m3/kg 

State 1:  20°C,  v1 = v2 = 0.092843 m3/kg 
 interpolate between 250 and 300 kPa in Table B.4.2 
     =>      P1 = 291 kPa 
 

 

v

P

v

T
1

300 kPa

250 kPa

P

-20 C

20 C

-20 C
20 C

300 kPa
250 kPa

1

2 2
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3.111 
 A piston/cylinder arrangement, shown in Fig. P3.111, contains air at 250 kPa, 

300°C. The 50-kg piston has a diameter of 0.1 m and initially pushes against the  
stops. The atmosphere is at 100 kPa and 20°C. The cylinder now cools as heat is 
transferred to the ambient. 
a. At what temperature does the piston begin to move down? 

  b. How far has the piston dropped when the temperature reaches ambient? 
 
 Solution: 
 
 

Piston    Ap = 
π
4 × 0.12 = 0.00785 m2 

Balance forces when piston floats: 

Pfloat = Po + 
mpg
Ap

 = 100 + 
50 × 9.807

0.00785 × 1000  

          = 162.5 kPa = P2 = P3  
To find temperature at 2 assume ideal gas: 

2

1

P

V
P 2

Vstop

3

 
 

  T2 = T1 × 
P2
P1

 = 573.15 ×  
162.5
250  = 372.5 K 

b) Process 2 -> 3 is constant pressure as piston floats to T3 = To  = 293.15 K 

 V2 = V1 = Ap × H = 0.00785 × 0.25 = 0.00196 m3 = 1.96 L 

 Ideal gas and P2 = P3   =>        V3 = V2 × 
T3
T2

 = 1.96 × 
293.15
372.5  = 1.54 L 

  ∆H = (V2 -V3)/A = (1.96-1.54) × 0.001/0.00785 = 0.053 m = 5.3 cm 
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3.112 
 Air in a tank is at 1 MPa and room temperature of 20°C. It is used to fill an 

initially empty balloon to a pressure of 200 kPa, at which point the radius is 2 m 
and the temperature is 20°C. Assume the pressure in the balloon is linearly 
proportional to its radius and that the air in the tank also remains at 20°C 
throughout the process. Find the mass of air in the balloon and the minimum 
required volume of the tank. 

 
 Solution:  Assume air is an ideal gas. 

Balloon final state: V2 = (4/3) π r3   = (4/3) π 23 = 33.51 m3 

    m2bal = 
P2V2
RT2

  = 
200× 33.51

0.287 × 293.15 = 79.66 kg 

Tank must have  P2  ≥  200 kPa   =>   m2 tank ≥  P2 VTANK /RT2 

Initial mass must be enough: m1 = m2bal + m2 tank =  P1V1 / R T1  

 P1VTANK / R T1  = m2bal + P2VTANK  / RT2 => 

 VTANK = 
RTm2bal
P1 - P2

 = 
0.287 × 293.15 × 79.66

1000 – 200   = 8.377 m3 
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3.113 
 A cylinder is fitted with a 10-cm-diameter piston that is restrained by a linear spring 

(force proportional to distance) as shown in Fig. P3.113. The spring force constant 
is 80 kN/m and the piston initially rests on the stops, with a cylinder volume of 1 L. 
The valve to the air line is opened and the piston begins to rise when the cylinder 
pressure is 150 kPa. When the valve is closed, the cylinder volume is 1.5 L and the 
temperature is 80°C. What mass of air is inside the cylinder? 
Solution: 

Fs = ks∆x = ks ∆V/Ap ;    V1 = 1 L = 0.001 m3,   Ap = 
π
4 0.12 = 0.007854 m2 

State 2: V3 = 1.5 L = 0.0015 m3;     T3 = 80°C = 353.15 K 

The pressure varies linearly with volume seen from a force balance as: 
  PAp = P0 Ap + mp g + ks(V - V0)/Ap  

 
    Between the states 1 and 2 only volume varies so: 

     P3 = P2 + 
ks(V3-V2)

Ap
2  = 150 + 

80×103(0.0015 - 0.001)
0.0078542 × 1000

 

          = 798.5 kPa 

      m = 
P3V3
RT3

 = 
798.5 × 0.0015
0.287 × 353.15 = 0.012 kg 

P 

v 

2 

3 

1 
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3.114 
 A 500-L tank stores 100 kg of nitrogen gas at 150 K. To design the tank the 

pressure must be estimated and three different methods are suggested. Which is 
the most accurate, and how different in percent are the other two? 

 a. Nitrogen tables, Table B.6 
b. Ideal gas 
c. Generalized compressibility chart, Fig. D.1 

 
 Solution: 

 State 1:  150 K, v = V/m = 0.5/100 = 0.005 m3/kg 
a) Table B.6, interpolate between 3 & 6 MPa with both at 150 K: 

  3 MPa :  v = 0.01194 m3/kg, 6 MPa :  v = 0.0042485 m3/kg 
  P= 3 + (0.005-0.01194)×(6-3)/(0.0042485-0.01194) = 5.707 MPa 

b) Ideal gas table A.5: P = 
RT
v  = 

0.2968 × 150
0.005  = 8.904 MPa 

c) Table A.2   Tc = 126.2 K,  Pc = 3.39 MPa  so      Tr = 150/126.2 = 1.189  
    Z is a function of P so it becomes trial and error. Start with P = 5.7 MPa 

  Pr ≅ 1.68   ⇒   Z = 0.60   ⇒   P = 
ZRT

v  = 5342 kPa 

     Now repeat finding the proper Z value. 
  ⇒   Pr = 1.58   ⇒   Z = 0.62   ⇒   P = 5520 kPa  OK 
 
 

ln Pr

Z
T = 2.0r

T  = 0.7r

T  = 0.7r

0.1 1

T  = 1.2r

 

 

 
ANSWER: a) is the most accurate with others off by    b) 60%   c) 1% 

 



   Sonntag, Borgnakke and van Wylen   

 
3.115 
 What is the percent error in pressure if the ideal gas model is used to represent the 

behavior of superheated vapor R-22 at 50°C, 0.03082 m3/kg?  What if the 
generalized compressibility chart, Fig. D.1, is used instead (iterations needed)? 

 
 Solution:    

Real gas behavior:    P = 900 kPa from Table B.4.2 
Ideal gas constant:  R = R

_
/M = 8.31451/86.47 = 0.096155 kJ/kg K 

 P = RT/v = 0.096155 × (273.15 + 50) / 0.03082 
   = 1008 kPa  which is 12% too high 
Generalized chart Fig D.1 and critical properties from A.2: 
  Tr = 323.2/363.3 = 0.875;     Pc = 4970 kPa 

Assume P = 900 kPa     =>      Pr = 0.181     =>  Z ≅ 0.905 

 v = ZRT/P = 0.905 × 0.096155 × 323.15 / 900  =  0.03125 too high 
Assume P = 950 kPa     =>    Pr = 0.191  =>  Z ≅ 0.9 

 v = ZRT/P = 0.9 × 0.096155 × 323.15 / 950  =  0.029473 too low 

P  ≅  900 + ( 950 − 900 ) × 
0.03082 − 0.029437
0.03125 − 0.029437 = 938 kPa 4.2 % high 
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Linear Interpolation 
 
3.116 
 Find the pressure and temperature for saturated vapor R-12 with v = 0.1 m3/kg 
  
 Solution:               

Table B.3.1  Look at the saturated vapor column vg and it is found between −20°

C and −15°C. We must then do a linear interpolation between these values. 
 

  T = −20 + [ –15 – (–20)] 
0.1 − 0.10885

0.09101 − 0.10885  

     = −20 + 5 × 0.4961 = −17.5°C 
 
  P = 150.9 + (182.6 – 150.9) × 0.4961 = 166.6 kPa 

 
 

v

T

2

1-20

-15

0.09101 0.10885
0.1

v

P

2

1

0.09101 0.10885
0.1

150.9

182.6

 

 

 
 

To understand the interpolation equation look at the smaller and larger 
triangles formed in the figure. The ratio of the side of the small triangle in v as 
(0.10885 - 0.1) to the side of the large triangle (0.10885 - 0.09101) is equal to 
0.4961. This fraction of the total  ∆P = 182.6 - 150.9  or ∆T = -15 -(-20) is 
added to the lower value to get the desired interpolated result. 
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3.117 
 Use a linear interpolation to estimate properties of ammonia to fill out the table 

below 
  P [kPa]  T [ °C]    v [m3/kg] x 
 a) 550      0.75 
 b) 80  20 
 c)   10  0.4 

 
 Solution: 
 

 a) Find the pressures in Table B.2.1 that brackets the given pressure. 

  T = 5 + (10 – 5) 
550 − 515.9

615.2 − 515.9 = 5 + 5 × 0.341 = 6.7 °C 

  vf = 0.001583 + (0.0016 – 0.001583) 0.341 = 0.001589 m3/kg 

  vg = 0.24299 + (0.20541 – 0.24299) 0.341 = 0.230175 m3/kg 
  v = vf + xvfg = 0.001589 + 0.75(0.230175 – 0.001589) 

   = 0.1729 m3/kg 
 b) Interpolate between 50 and 100 kPa to get properties at 80 kPa 

   v = 2.8466 + (1.4153 – 2.8466) 
80 − 50
100 − 50  

      = 2.8466 + ( − 1.4313) × 0.6 = 1.9878 m3/kg 
   x: Undefined 
 c) Table B.2.1:    v > vg so the it is superheated vapor. 
  Table B.2.2  locate state between 300 and 400 kPa. 

   P = 300 + (400 – 300) 
0.4 - 0.44251

0.32701 − 0.44251 

      = 300 + 100 × 0.368 = 336.8 kPa 
   x: Undefined 
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3.118 
 Use a linear interpolation to estimate Tsat at 900 kPa for nitrogen. Sketch by hand 

the curve Psat(T) by using a few table entries around 900 kPa from table B.6.1. Is 
your linear interpolation over or below the actual curve? 
 
Solution:               

 
  The 900 kPa in Table B.6.1 is located between 100 and 105 K.  
 

   T = 100 + (105 – 100) 
900 − 779.2

1084.6 − 779.2  

      = 100 + 5 × 0.3955 = 102 K 
 
  The actual curve has a positive second derivative (it curves up) so T is 

slightly underestimated by use of the chord between the 100 K and the 105 K 
points, as the chord is above the curve. 

 
 
  P 

T

100 105 110
779.2

1084.6

1467.6

900
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3.119 
 Use a double linear interpolation to find the pressure for superheated R-134a at 

13°C with v = 0.3 m3/kg. 
 
 Solution:               
 
 Table B.5.2: Superheated vapor 

At 10°C, 0.3 m3/kg 

 P = 50 + (100 – 50) × 
0.3 - 0.45608

0.22527 - 0.45608 = 83.8 kPa 

At 20°C, 0.3 m3/kg  

 P = 50 + (100 – 50) × 
0.3 - 0.47287

0.23392 - 0.47287 = 86.2 kPa 

Interpolating at 13°C,  
 P = 83.8 + (3/10) × (86.2 − 83.8) = 84.5 kPa 

 
This could also be interpolated as following: 
 At 13°C, 50 kPa, v = 0.45608 + (3/10) × 0.0168 = 0.4611 m3/kg 
 At 13°C, 100 kPa, v = 0.22527 + (3/10) × 0.0087 = 0.2279 m3/kg 
Interpolating at 0.3 m3/kg. 

 P= 50 + (100 – 50) × 
0.1611
0.2332 = 84.5 kPa 
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3.120 
 Find the specific volume of ammonia at 140 kPa and 0°C. 
 
 Solution:               

The state is superheated vapor in Table B.2.2 between 100 and 150 kPa. 

  v = 1.3136 + (0.8689 – 1.3136) 
140 − 100
150 − 100 

     = 1.3136 + ( − 0.4447) × 0.8 = 0.9578 m3/kg 
 
 
3.121 
 Find the pressure of water at 200°C and specific volume of 1.5 m3/kg. 
  
 Solution:               

Table B.1.1:    v > vg  so that it is superheated vapor. 
Table B.1.3:    Between  100 kPa  and  200 kPa 

  P = 100 + (200 – 100) 
1.5 − 2.17226

1.08034 − 2.17226 = 161.6 kPa 
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Computer Tables 
 
3.122 
 Use the computer software to find the properties for water at the 4 states in 

Problem 3.33 
 
  Start the software, click the tab for water as the substance, and click the 

small calculator icon. Select the proper CASE for the given properties. 
 
   CASE  RESULT 
  a) 1 (T, P) Compressed liquid,  x = undefined,  v = 0.001002 
  b) 5 (P, v)  Two-phase, T = 151.9°C,  x = 0.5321 
  c) 1 (T, P) Sup. vapor, x = undefined,  v = 0.143 m3/kg 
  d) 4 (T, x) P = Psat = 8581 kPa, v = 0.01762 m3/kg 
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3.123 
 Use the computer software to find the properties for ammonia at the 2 states listed 

in Problem 3.37 
 
  Start the software, click the tab for cryogenic substances, and click the tab 

for the substance ammonia. Then click the small calculator icon and select the 
proper CASE for the given properties. 

 
  CASE  RESULT 
 a) 2 (T, v) Sup. vapor,  x = undefined,  P = 1200 kPa 
 b) 4 (T, x)  Two-phase, P = 2033 kPa,  v = 0.03257 m3/kg 
 c) 1 (T, P) Compressed liquid, x = undefined,  v = 0.001534 m3/kg 
 d) No (v, x) entry so use  4 (T, x)  OR  8 (P, x)   several times 
    T = 19.84°C,  P = 853.1 kPa 
    T = 19.83°C,  P = 852.9 kPa 
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3.124 
 Use the computer software to find the properties for ammonia at the 3 states listed 

in Problem 3.117 
 
  Start the software, click the tab for cryogenic substances, select ammonia 

and click the small calculator icon. Select the proper CASE for the given 
properties. 

 
   CASE  RESULT 
  a) 8 (P, x)  T = 6.795°C,  v = 0.1719 m3/kg 
  b) 1 (T, P) Sup. vapor, x = undefined,  v = 1.773 m3/kg 
  c) 2 (T, v) Sup. vapor, x = undefined,  P = 330.4 kPa 
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3.125 
 Find the value of the saturated temperature for nitrogen by linear interpolation in 

table B.6.1 for a pressure of 900 kPa. Compare this to the value given by the 
computer software. 

 
  The 900 kPa in Table B.6.1 is located between 100 and 105 K.  
 

   T = 100 + (105 – 100) 
900 − 779.2

1084.6 − 779.2  

      = 100 + 5 × 0.3955 = 101.98 K 
  The actual curve has a positive second derivative (it curves up) so T is 

slightly underestimated by use of the chord between the 100 K and the 105 K 
points, as the chord is above the curve. 

  From the computer software: 
   CASE:   8 (P,x) T = -171°C = 102.15 K 
  So we notice that the curvature has only a minor effect. 
 
  P 

T

100 105 110
779.2

1084.6

1467.6

900

 
 



   Sonntag, Borgnakke and van Wylen   

 
3.126 
 Write a computer program that lists the states P, T, and v along the process curve 

in Problem 3.111 
 
  State 1: 250 kPa, 300°C = 573 K 
  State 2: 162.5 kPa, 372.5 K 
  State 3: 162.5 kPa, 293 K 
 

Since we have an ideal gas the relations among the pressure, temperature and the 
volume are very simple. The process curves are shown in the figure 
below. 
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3.127 
 Use the computer software to sketch the variation of pressure with temperature in 

Problem 3.41. Extend the curve a little into the single-phase region. 
 

P was found for a number of temperatures. A small table of (P, T) values were 
entered into a spreadsheet and a graph made as shown below.  The 
superheated vapor region is reached at about 140°C and the graph shows a 
small kink at that point. 
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CHAPTER 3 
 
 
  SUBSECTION    PROB NO. 
 
  Concept-Study Guide Problems   128-132 
  Phase diagrams     133-134 
  General Tables     135-145 
  Ideal Gas       146-148 
  Compressibility Factor    149, 157, 158 
  Review Problems     150-156 
 
 Correspondence table 
 
 The correspondence between the problem set in this sixth edition versus the 

problem set in the 5'th edition text. Problems that are new are marked new and the 
SI number refers to the corresponding SI unit problem. 

 
New 5th Ed. SI New 5th Ed. SI 
128 new 5 143 77E 53 
129 new 7 144 new 62 
130 new 9 145 79E 58 
131 new 11 146 62E 69 
132 new 17 147 new 65 
133 new 23 148 69E c+d 70E d - 
134 61E 27 149 72E 81 
135 68E a-c 30 150 64E 113 
136 68E d-f 30 151 new 74 
137 new 40 152 81E 49 
138 70E 36 153 new 99 
139 73E 47 154 71E 95 
140 74E 41 155 80E 61 
141 new 44 156 83E 106 
142 76E 51 157 65E 89 
   158 66E - 
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Concept Problems 
 
3.128E 
 Cabbage needs to be cooked (boiled) at 250 F. What pressure should the pressure 

cooker be set for? 
 
  Solution:   
  If I need liquid water at 250 F I must have a pressure that is at least the saturation 

pressure for this temperature.    
   Table F.7.1:  250 F     Psat = 29.823 psia. 
 
 
3.129E 
 If I have 1 ft3 of ammonia at 15 psia, 60 F how much mass is that? 
 
  Ammonia Tables F.8:        
   F.8.1  Psat = 107.64 psia at 60 F  so superheated vapor. 

   F.8.2  v = 21.5641 ft3/lbm       under subheading 15 psia 

    m = 
V
v =  

1 ft3
21.5641 ft3/lbm = 0.0464 lbm 

 
 
3.130E 
 For water at 1 atm with a quality of 10% find the volume fraction of vapor. 
 
  This is a two-phase state at a given pressure: 
   Table F.7.2:   vf = 0.01 672 ft3/lbm,   vg = 26.8032 ft3/lbm 
  From the definition of quality we get the masses from total mass, m, as 
    mf = (1 – x) m,   mg = x m 
  The volumes are 
    Vf = mf vf = (1 – x) m vf,      Vg = mg vg = x m vg 
  So the volume fraction of vapor is 

   Fraction = 
Vg
V  = 

Vg
Vg + Vf

 = 
x m vg

x m vg + (1 – x)m vf
  

      = 
0.1 × 26.8032

0.1 × 26.8032 + 0.9 × 0.016 72 = 
2.68032
2.69537 = 0.9944 

 
  Notice that the liquid volume is only about 0.5% of the total. We could also have 

found the overall v = vf + xvfg  and then V = m v. 
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3.131E 
 Locate the state of R-134a at 30 psia, 20 F. Indicate in both the P-v and the T-v 

diagrams the location of the nearest states listed in the printed table F.10 
 

 
 
 

T
C.P.

v

30 psia

P C.P.

v

T
30

33.3
15.2
20
40

15.2 F

20 F 15
psia

33.3 psia
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3.132E 
 Calculate the ideal gas constant for argon and hydrogen based on Table F.1 and 

verify the value with Table F.4 
 
 The gas constant for a substance can be found from the universal gas constant 

from table A.1 and the molecular weight from Table F.1 
 

  Argon:  R = 
R
_

M  = 
1.98589
39.948  = 0.04971 

Btu
lbm R = 38.683 

lbf-ft
lbm R 

 

  Hydrogen: R = 
R
_

M  = 
1.98589
2.016  = 0.98506  

Btu
lbm R = 766.5 

lbf-ft
lbm R 

 
 Recall from Table A.1:   1 Btu = 778.1693 lbf-ft 
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Phase Diagrams 
 
 
3.133E 
 Water at 80 F can exist in different phases dependent on the pressure. Give the 

approximate pressure range in lbf/in2 for water being in each one of the three 
phases, vapor, liquid or solid. 

 
 Solution:   
  

The phases can be seen in Fig. 3.7, a sketch 
of which is shown to the right. 
   T = 80 F = 540 R = 300 K 
From Fig. 3.7:    

     PVL ≈ 4 × 10−3  MPa = 4 kPa = 0.58 psia, 
     PLS = 103 MPa = 145 038 psia 

ln P

T

V

L

S
CR.P.

S

 
           

 
     0 < P <      0.58 psia     VAPOR 

  0.58 psia   < P < 145 038 psia      LIQUID 
            P > 145 038 psia       SOLID(ICE) 
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3.134E 
 A substance is at 300 lbf/in.2, 65 F in a rigid tank. Using only the critical 

properties can the phase of the mass be determined if the substance is nitrogen, 
water or propane? 

  
 Solution:  Find state relative to the critical point properties, Table F.1 

a)          Nitrogen  492 lbf/in.2 227.2 R 
b)          Water   3208 lbf/in.2 1165.1 R 
c)          Propane  616 lbf/in.2 665.6 R 
 
          P < Pc       for all and         T = 65 F = 65 + 459.67 = 525 R 
a)          N2      T  >>  Tc  Yes gas and P < Pc 
b)          H2O   T  <<  Tc  P << Pc  so you cannot say 
c)          C3H8 T    <  Tc  P < Pc  you cannot say 
 

 ln P

T

Vapor

Liquid Cr.P.

a
c

b
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General Tables 
 
3.135E 
 Determine whether water at each of the following states is a compressed liquid, a 

superheated vapor, or a mixture of saturated liquid and vapor. 
 
 Solution: All cases can be seen from Table F.7.1 

a. 1800 lbf/in.2, 0.03 ft3/lbm 
  vg = 0.2183,  vf = 0.02472 ft3/lbm,  so liquid + vapor mixture 

b. 150 lbf/in.2, 320 F: compressed liquid    P > Psat(T) = 89.6 lbf/in2 

c. 380 F, 3 ft3/lbm: sup. vapor v > vg(T) = 2.339 ft3/lbm 
 

 
 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 

 

P C.P.

v

T C.P.

v

Ta
c

b

a
cb

P = const.
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3.136E 
 Determine whether water at each of the following states is a compressed liquid, a 

superheated vapor, or a mixture of saturated liquid and vapor. 
 
 Solution: All cases can be seen from Table F.7.1 
 

a. 2 lbf/in.2, 50 F: compressed liquid    P > Psat(T) = 0.178 

b. 270 F, 30 lbf/in.2: sup. vapor P < Psat(T) = 41.85 lbf/in2 

c. 160 F, 10 ft3/lbm 
  vg = 77.22,  vf = 0.0164 ft3/lbm,  so liquid + vapor mixture 

 
 
 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 

 

P C.P.

v

T C.P.

v

Ta
c b

a c
b

P = const.
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3.137E 
 Give the phase and the missing property of  P, T, v and x. 
 a. R-134a    T = -10 F,  P = 18 psia 
 b. R-134a     P = 50 psia,  v = 1.3 ft3/lbm 
 c. NH3     T = 120 F,  v = 0.9 ft3/lbm 
 d. NH3     T = 200 F,  v = 11 ft3/lbm 
 
 Solution: 
 a. Look in Table F.10.1 at –10 F:        P  >  Psat = 16.76 psia 
  This state is compressed liquid  so x is undefined and  

v = vf = 0.01173 ft3/lbm 
 b. Look in Table F.10.1 close to 50 psia  there we see  

v > vg = 0.95 ft3/lbm   so   superheated vapor 
    Look then in Table F.10.2 under 50 psia which is not printed so we must 
interpolate between the 40 and 60 psia sections. 
 (60 psia, 1.3 ft3/lbm) :   T = 300 F 
 (40 psia, 1.3 ft3/lbm) :   T = 66.6 F 
 Linear interpolation between these gives  T = 183 F for a better accuracy 
we must use the computer software. 

 
 c. Look in Table F.8.1 at 120 F:      v < vg = 1.0456 ft3/lbm  so two-phase 

   P = Psat = 286.5 psia 

   x = 
v - vf
vfg

 = 
0.9 - 0.02836

1.0172  = 0.8569 

 d. Look in Table F.8.1 at 200 F:      v > vg = 0.3388 ft3/lbm  so sup. vapor 
     Look in Table F.8.2  start anywhere say at  

15 psia, 200 F   there we see v = 27.6 ft3/lbm   so P larger 
We can bracket the state between 35 and 40 psia so we get 

  P = 35 + 5 
11 – 11.74

10.2562 – 11.74 = 37.494 psia 
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3.138E 
 Give the phase and the specific volume. 
  

Solution: 
a.   R-22 T = -10 F,   P = 30 lbf/in.2  Table C.10.1    P < Psat = 31.2 psia 

       ⇒ sup.vap.   v ≅ 1.7439 + 
-10+11.71

 11.71  (1.7997 – 1.7439) = 1.752 ft3/lbm 

b.   R-22 T = -10 F,   P = 40 lbf/in.2  Table C.10.1 Psat = 31.2 psia  

      P > Psat ⇒ compresssed Liquid     v ≅ vf = 0.01178 ft3/lbm 

c.   H2O T = 280 F,   P = 35 lbf/in.2  Table C.8.1    P < Psat = 49.2 psia  

       ⇒ sup.vap   v ≅ 21.734 + ( 10.711 – 21.734) ×(15/20) = 1.0669 ft3/lbm 
d.   NH3 T = 60 F,   P = 15 lbf/in.2 Table C.9.1 Psat = 107.6 psia  

      P < Psat ⇒ sup.vap     v ≅ 21.564 ft3/lbm 
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3.139E 
 A water storage tank contains liquid and vapor in equilibrium at 220 F. The 

distance from the bottom of the tank to the liquid level is 25 ft. What is the 
absolute pressure at the bottom of the tank? 

 
 Solution: 

  Table F.7.1:       vf = 0.01677 ft3/lbm 

  ∆P = 
g l
vf

 = 
32.174 × 25

32.174 × 0.01677 × 144 = 10.35 lbf/in2 

 
 Since we have a two-phase mixture the vapor pressure is the saturated Psat so 
 
   P = Psat + ∆P  = 17.189 + 10.35 = 27.54  lbf/in2 
 
 

H
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3.140E 
 A sealed rigid vessel has volume of 35 ft3 and contains 2 lbm of water at 200 F. 

The vessel is now heated. If a safety pressure valve is installed, at what pressure 
should the valve be set to have a maximum temperature of 400 F? 

 
 Solution: 

Process:  v = V/m = constant 
 State 1:     v1 = 35/2 = 17.5 ft3/lbm 

                 from Table F.7.1  
                 it is  2-phase 
State 2:  400°F, 17.5 ft3/lbm 
             Table F.7.2 between 20 

             and 40 lbf/in2 so interpolate 

C.P.T

v

200 F

40 lbf/in

20 lbf/in2

2

 
 

   P ≅ 32.4 lbf/in2  (28.97 by software) 
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3.141E 
 You want a pot of water to boil at 220 F. How heavy a lid should you put on the 6 

inch diameter pot when Patm = 14.7 psia? 
 
 Solution: 
 

Table F.7.1 at 220 F :  Psat = 17.189 psia 
 

A = 
π
4 D2 = 

π
4  62 = 28.274 in2 

 
Fnet = (Psat –Patm) A = (17.189 – 14.7) (lbf/ in2) × 28.274 in2  
       = 70.374 lbf 
 
Fnet = mlid g 
 

mlid = Fnet/g =  
70.374 lbf

32.174 ft/s2 = 
70.374 × 32.174 lbm ft/s2

32.174 ft/s2  = 70.374 lbm 

 
 

 
Some lids are 
clamped on, the 
problem deals with 
one that stays on due 
to its weight. 

 
 

 



   Sonntag, Borgnakke and Wylen 
 

 
3.142E 
 Saturated water vapor at 200 F has its pressure decreased to increase the volume by 

10%, keeping the temperature constant. To what pressure should it be expanded? 
 
 Solution: 

 v = 1.1 × vg = 1.1 × 33.63 = 36.993 ft3/lbm  

Interpolate between sat. at 200 F and sup. vapor in Table F.7.2  at  

200 F, 10 lbf/in2   P ≅ 10.54 lbf/in2 
 

 P C.P.

v

T C.P.

v

T

P = 10 lbf/in
200 Fo

10 lbf/in2

2

 
 

 

 



   Sonntag, Borgnakke and Wylen 
 

 
3.143E 
 A boiler feed pump delivers 100 ft3/min of water at 400 F, 3000 lbf/in.2. What is 

the mass flowrate (lbm/s)?  What would be the percent error if the properties of 
saturated liquid at 400 F were used in the calculation?  What if the properties of 
saturated liquid at 3000 lbf/in.2 were used? 

Solution: Table F.7.3:   v = 0.0183 ft3/lbm (interpolate 2000-8000 psia) 

 m
.

 = 
V
.

v = 
100

60 × 0.018334 = 91.07 lbm/s 

 vf (400 F) = 0.01864  ⇒   m
.

 = 89.41 lbm/s  error 1.8% 

 vf (3000 lbf/in2) = 0.03475  ft3/lbm   ⇒    m
.

 = 47.96 lbm/s  error 47% 

 
 P C.P.

v

T C.P.

v

P = 3000 psia

400 F
3000 

400
247

695

 

 

 



   Sonntag, Borgnakke and Wylen 
 

 
3.144E 
 A pressure cooker has the lid screwed on tight. A small opening with A = 0.0075 

in2 is covered with a petcock that can be lifted to let steam escape. How much 
mass should the petcock have to allow boiling at 250 F with an outside 
atmosphere at 15 psia? 

 
 
 Solution: 
 

Table F.7.1 at 250 F:    Psat = 29.823 psia 
 
Fnet = (Psat – Patm) A = (29.823 - 15) psia × 0.0075 in2  
       = 0.111 lbf 
 
Fnet = mpetcock g 
 

mpetcock = Fnet/g = 
0.111 lbf

32.174 ft/s2 = 
0.111 × 32.174 lbm ft/s2

32.174 ft/s2  = 0.111 lbm 

 
 
 

 
Some petcocks are 
held down by a 
spring, the problem 
deals with one that 
stays on due to its 
weight.  
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3.145E 
 A steel tank contains 14 lbm of propane (liquid + vapor) at 70 F with a volume of 

0.25 ft3. The tank is now slowly heated. Will the liquid level inside eventually 
rise to the top or drop to the bottom of the tank?  What if the initial mass is 2 lbm 
instead of 14 lbm? 

 Solution: 
 
 P 

v  

Constant volume and mass 
v2 = v1 = V/m = 0.25/14 = 0.01786 ft3/lbm 

vc = 3.2/44.097 = 0.07256 ft3/lbm 

v2 < vc so eventually sat. liquid 

   ⇒ level rises 
If       v2 = v1 = 0.25/2 = 0.125 > vc  
Now sat. vap. is reached so level drops  
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Ideal Gas 
 
3.146E 
 A cylindrical gas tank 3 ft long, inside diameter of 8 in., is evacuated and then 

filled with carbon dioxide gas at 77 F. To what pressure should it be charged if 
there should be 2.6 lbm of carbon dioxide? 

 
 Solution: 

 Assume CO2 is an ideal gas table F.4:  P = mRT/V 

 Vcyl = A × L = 
π
4 (8)2 × 3 × 12 = 1809.6 in3 

 P = 
2.6 × 35.1 × (77 + 459.67) × 12

1809.6  = 324.8 lbf/in2 
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3.147E 
 A spherical helium balloon of 30 ft in diameter is at ambient T and P, 60 F and 

14.69 psia. How much helium does it contain? It can lift a total mass that equals 
the mass of displaced atmospheric air. How much mass of the balloon fabric and 
cage can then be lifted? 

 
 

 V = 
π
6 D3 =  

π
6 303 = 14 137 ft3  

mHe = ρV = 
V
v =  

PV
RT  

        = 
14.69 × 14 137 × 144

386.0 × 520  = 148.99 lbm 

 

mair = 
PV
RT = 

14.69 × 14 137 × 144
53.34 × 520   

       = 1078 lbm 
 
mlift = mair – mHe = 1078 - 149 = 929 lbm  
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3.148E 
 Give the phase and the specific volume for each of the following. 
 Solution: 

a.   CO2 T = 510 F P = 75 lbf/in.2  Table F.4 

  superheated vapor  ideal gas   

       v = RT/P = 
35.1 × (510 + 459.7)

75 × 144  = 3.152 ft3/lbm 

b.   Air     T = 68 F P = 2 atm  Table F.4 
  superheated  vapor  ideal gas   

       v = RT/P = 
53.34 × (68 + 459.7)

2 × 14.6 × 144  = 6.6504 ft3/lbm 

 
c.   Ar T = 300 F,   P = 30 lbf/in.2  Table F.4 

      Ideal gas:     v = RT/P = 38.68 (300 + 459.7) / (30 × 144) = 6.802 ft3/lbm 
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Review Problems 
 
3.149E 
 What is the percent error in specific volume if the ideal gas model is used to 

represent the behavior of superheated ammonia at 100 F, 80 lbf/in.2?  What if the 
generalized compressibility chart, Fig. D.1, is used instead? 

 
 Solution: 

Ammonia Table F.8.2:    v = 4.186 ft3/lbm 

Ideal gas  v =  
RT
P  = 

90.72 × 559.7
80 × 144  = 4.4076 ft3/lbm     5.3% error 

Generalized compressibility chart and Table D.4 
Tr = 559.7/729.9 = 0.767,  Pr = 80/1646 = 0.0486   =>    Z ≅ 0.96 

  v = ZRT/P = 0.96 × 4.4076 = 4.231 ft3/lbm          1.0% error 
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3.150E 
 A cylinder is fitted with a 4-in.-diameter piston that is restrained by a linear 

spring (force proportional to distance) as shown in Fig. P3.16. The spring force 
constant is 400 lbf/in. and the piston initially rests on the stops, with a cylinder 
volume of 60 in.3. The valve to the air line is opened and the piston begins to rise 
when the cylinder pressure is 22 lbf/in.2. When the valve is closed, the cylinder 
volume is 90 in.3 and the temperature is 180 F. What mass of air is inside the 
cylinder? 

 Solution:   V1 = V2 = 60 in3;   Ap = 
π
4 × 42 = 12.566 in2 

 P2 = 22 lbf/in2 ;  V3 = 90 in3 ,   T3 = 180°F = 639.7 R 

Linear spring:   P3 = P2 + 
ks(V3-V2)

Ap
2  

                              = 22 + 
400

12.5662 (90-60) = 98 lbf/in2 

P 

v

2 

3 

1 

  

  m = 
P3V3
RT3

 = 
98 × 90

12 × 53.34 × 639.7 = 0.02154 lbm 
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3.151E 
 A 35 ft3 rigid tank has propane at 15 psia, 540 R and connected by a valve to 

another tank of 20 ft3 with propane at 40 psia, 720 R. The valve is opened and the 
two tanks come to a uniform state at 600 R. What is the final pressure? 

  
Solution: 

 Propane is an ideal gas (P << Pc)  with R = 35.04 ft-lbf/lbm R from Tbl. F.4 
 

mA = 
PAVA
 RTA

 = 
15 × 35 × 144
35.04 × 540  = 3.995 lbm 

 

m = 
PBVB
RTB

 = 
40 × 20 × 144
35.04 × 720  = 4.566 lbm 

 
V2 = VA + VB = 55 ft3 
 
m2 = mA + mB = 8.561 lbm 

P2 =  
m2RT2

V2
 = 

8.561 × 35.04 × 600
55 × 144  = 22.726 psia 
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3.152E 
 Two tanks are connected together as shown in Fig. P3.49, both containing water. 

Tank A is at 30 lbf/in.2, v = 8 ft3/lbm, V = 40 ft3 and tank B contains 8 lbm at 80 
lbf/in. 2, 750 F. The valve is now opened and the two come to a uniform state. 
Find the final specific volume. 

 
 Solution:  

Control volume both tanks. Constant total volume and mass process. 
 

 

A B
sup. vapor

 
 

 

 
State A1:  (P, v) two-phase, mA = VA/vA = 40/8 = 5 lbm 

State B1:  (P, T) Table F.7.2: vB = (8.561 + 9.322)/2 = 8.9415 

    ⇒  VB = mBvB = 8 × 8.9415 = 71.532 ft3 

Final state:   mtot = mA + mB = 5 + 8 = 13 lbm 

  Vtot = VA + VB = 111.532 ft3 

  v2 = Vtot/mtot = 111.532/13 = 8.579 ft3/lbm 
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3.153E 
 A 35 ft3 rigid tank has air at 225 psia and ambient 600 R connected by a valve to 

a piston cylinder. The piston of area 1 ft2 requires 40 psia below it to float, Fig. 
P3.99. The valve is opened and the piston moves slowly 7 ft up and the valve is 
closed. During the process air temperature remains at 600 R. What is the final 
pressure in the tank? 

 

mA = 
PAVA
 RTA

  = 
225 × 35 × 144

53.34 × 600  = 35.433 lbm 

 

mB2 - mB1 = 
∆VA
 vB

 =  
∆VBPB

RT  = 
1 × 7 × 40 × 144

53.34 × 600  = 1.26 lbm 

 
mA2 =   mA –  (mB2 - mB1) = 35.433 – 1.26 = 34.173 lbm 
 

PA2 = 
mA2RT

VA
 = 

34.173 × 53.34 × 600
35 × 144  = 217 psia 
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3.154E 
 Give the phase and the missing properties of P, T, v and x. These may be a little 

more difficult if the appendix tables are used instead of the software. 
 Solution: 

a.   R-22 at T = 50 F,  v = 0.6 ft3/lbm:  Table F.9.1  v > vg  

 sup. vap.  F.9.2 interpolate between sat. and sup. vap at 50 F. 

 P ≅ 98.73 + (0.6 - 0.5561)(80 -98.73)/(0.708 - 0.5561) =  93.3 lbf/in2 
b.   H2O  v = 2 ft3/lbm,  x = 0.5:  Table F.7.1 
 since vf is so small we find it approximately where vg = 4 ft3/lbm. 
 vf + vg = 4.3293  at 330 F,      vf + vg  = 3.80997  at 340 F. 

 linear interpolation      T ≅ 336 F,  P ≅ 113 lbf/in2 
c.   H2O T = 150 F,  v = 0.01632 ft3/lbm: Table F.7.1,   v < vf  

   compr. liquid  P ≅ 500 lbf/in2 

d.   NH3 T = 80 F,  P = 13 lbf/in.2  Table F.8.1 P < Psat 

 sup. vap.  interpolate between 10 and 15 psia:     v = 26.97 ft3/lbm  
 v is not linear in P (more like 1/P) so computer table is more accurate. 
e.   R-134a     v = 0.08 ft3/lbm,  x = 0.5: Table F.10.1 
 since vf is so small we find it approximately where vg = 0.16 ft3/lbm. 
 vf + vg = 0.1729  at 150 F,      vf + vg  = 0.1505  at 160 F. 

 linear interpolation         T ≅ 156 F, P ≅ 300 lbf/in2 
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3.155E 
 A pressure cooker (closed tank) contains water at 200 F with the liquid volume 

being 1/10 of the vapor volume. It is heated until the pressure reaches 300 lbf/in.2. 
Find the final temperature. Has the final state more or less vapor than the initial 
state? 

 
 Solution: 

Process:    Constant volume and mass. 
Vf = mf vf = Vg/10 = mgvg/10;    Table F.7.1:   vf = 0.01663,    vg = 33.631 

x1 = 
mg

mg + mf
 = 

10 mfvf / vg
mf + 10 mfvf / vg

 = 
10 vf

10 vf + vg
  = 

0.1663
0.1663 + 33.631 = 0.00492 

 v2 = v1 = 0.01663 + x1 × 33.615 = 0.1820 ft3/lbm 

 P2, v2  ⇒  T2 = Tsat = 417.43 F 

 0.1820 = 0.01890 + x2 × 1.5286 

  x2 = 0.107   more vapor than state 1. 
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3.156E 
 Refrigerant-22 in a piston/cylinder arrangement is initially at 120 F, x = 1. It is 

then expanded in a process so that P = Cv−1 to a pressure of 30 lbf/in.2. Find the 
final temperature and specific volume. 

 
 Solution: 

 State 1:  P1 = 274.6 lbf/in2   v1 = 0.1924 ft3/lbm 

 Process:  Pv = C = P1v1 = P2v2 

 State 2:  P2 = 30 lbf/in2 and on process line (equation). 

       v2 = 
v1P1
P2

 = 0.1924 × 274.6/30 = 1.761 ft3/lbm 

 Table F.9.2 between saturated at -11.71 F and 0 F:      T2 ≅ -8.1 F 

 
 

v

P

v

T

1
2

1

2
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Compressiblity Factor 
 
3.157E 
 A substance is at 70 F, 300 lbf/in.2 in a 10 ft3 tank. Estimate the mass from the 

compressibility chart if the substance is a) air, b) butane or c) propane. 
 Solution: 
 

Use Fig. D.1 for compressibility Z and table F.1 for critical properties 
 

m = 
PV

ZRT = 
300 ×144 ×10

530 ZR  =  
815.09

ZR  

 
Air use nitrogen    Pc = 492 lbf/in.2;  Tc = 227.2 R     

Pr = 0.61;    Tr = 2.33;     Z = 0.98 

m = 
PV

ZRT = 
815.09

ZR  = 
815.09

0.98× 55.15 = 15.08 lbm 

 
Butane Pc = 551 lbf/in.2;  Tc = 765.4 R     

Pr = 0.544;    Tr = 0.692;     Z = 0.09 

m = 
PV

ZRT = 
815.09

ZR  = 
815.09

0.09× 26.58 = 340.7 lbm 

 
Propane      Pc = 616 lbf/in.2;  Tc = 665.6 R     

Pr = 0.487;   Tr = 0.796;     Z = 0.08 

m = 
PV

ZRT = 
815.09

ZR  = 
815.09

0.08× 35.04 = 290.8 lbm 

 
 

ln Pr

Z
T = 2.0r

a

bc

T  = 0.7r
T  = 0.7r

0.1 1  
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3.158E 
 Determine the mass of an ethane gas stored in a 25 ft3 tank at 250 F, 440 lbf/in.2 

using the compressibility chart. Estimate the error (%) if the ideal gas model is used. 
 
 Solution 

Table F.1:    Tr = ( 250 + 460 ) / 549.7 = 1.29   and     Pr = 440/708 = 0.621 

Figure D.1  ⇒   Z = 0.9 
 m = PV/ZRT = 440 × 144 × 25 / (51.38 × 710 × 0.9) = 48.25 lbm 
Ideal gas Z = 1 ⇒ m = 43.21 lbm  10% error 
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 The English unit problem set is 
 

New 5th New 5th New 5th 
117 new 126 New 135 69 
118 new 127 new 136 73 
119 new 128 62 137 72 
120 new 129 67 138 76 
121 new 130 70 139 63 
122 new 131 new 140 new 
123 new 132 66 141 77 
124 68 133 65 142 78 
125 64 134 75 143 79 

 
 The computer, design and open-ended problem set is: 
 

New 5th New 5th New 5th 
144 80 148 84 152 88 
145 81 149 85 153 89 
146 82 150 86   
147 83 151 87   
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Concept-Study Guide Problems 
 
4.1 
  The electric company charges the customers per kW-hour. What is that in SI 

units? 
 Solution: 
  

 
 
The unit kW-hour is a rate 
multiplied with time. For the 
standard SI units the rate of 
energy is in W and the time is 
in seconds. The integration in 
Eq.4.21 becomes  

 

 
 

  1 kW- hour = 1000 W × 60 
min
hour hour × 60 

s
min = 3 600 000 Ws 

         = 3 600 000 J = 3.6 MJ 
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4.2 
 A car engine is rated at 160 hp. What is the power in SI units? 
 Solution: 
  

The horsepower is an older unit for power 
usually used for car engines. The 
conversion to standard SI units is given in 
Table A.1  
 
1 hp = 0.7355 kW = 735.5 W 
1 hp = 0.7457 kW for the UK horsepower 
 

 

 

  160 hp = 160 × 745.7 W = 119 312 W = 119.3 kW 
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4.3 
 A 1200 hp dragster engine has a drive shaft rotating at 2000 RPM. How much 

torque is on the shaft? 
 
  Power is force times rate of displacement as in Eq.4.2 
  Power, rate of work  W

.
    =  F V = P V

.
 = T ω          

  We need to convert the RPM to a value for angular velocity ω 

   ω = RPM × 
2π

60 s = 2000 × 
2π

60 s = 209.44 
rad
s  

  We need power in watts: 1 hp = 0.7355 kW = 735.5 W 

   T = W
.

 / ω = 
1200 hp × 735.5 W/hp

 209.44 rad/s  = 4214 Ws = 4214 Nm 
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4.4 
 A 1200 hp dragster engine drives the car with a speed of 100 km/h. How much 

force is between the tires and the road? 
 
  Power is force times rate of displacement as in Eq.4.2 
  Power, rate of work  W

.
    =  F V = P V

.
 = T ω          

  We need the velocity in m/s: V = 100 × 1000 / 3600 = 27.78 m/s 
  We need power in watts: 1 hp = 0.7355 kW = 735.5 W 
 

   F  = W
.

 / V = 
1200 × 735.5

27.78  
W
m/s = 31 771 

Nm/s
m/s   

    = 31 771 N = 31.8 kN 
 
 
4.5 
 Two hydraulic piston/cylinders are connected through a hydraulic line so they 

have roughly the same pressure. If they have diameters of D1 and D2 = 2D1 
respectively, what can you say about the piston forces F1 and F2? 

  

 For each cylinder we have the total force as:    F = PAcyl = P π D2/4 

  F1 = PAcyl 1 = P π D2
1/4 

  F2 = PAcyl 2 = P π D2
2/4 = P π 4 D2

1/4 = 4 F1 

 
  

cb
12

F
2F 1

 

   The forces are the total force 
acting up due to the cylinder 
pressure. There must be other 
forces on each piston to have a 
force balance so the pistons do 
not move. 

 



   Sonntag, Borgnakke and van Wylen  

 
4.6 
 Normally pistons have a flat head, but in diesel engines pistons can have bowls in 

them and protruding ridges. Does this geometry influence the work term? 
 
 The shape of the surface does not influence the displacement  
   dV = An dx 
 where An is the area projected to the plane normal to the direction of motion. 

   An = Acyl =  π D2/4 
 Work is 
   dW = F dx = P dV = P An dx = P Acyl dx 
 and thus unaffected by the surface shape. 
 

 
Semi-spherical 
head is made to 
make room for 
larger valves. 

Piston

Bowl
Ridge

x

 

 
 
 
normal plane 
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4.7 
 What is roughly the relative magnitude of the work in the process 1-2c versus the 

process 1-2a shown in figure 4.8? 
 
  By visual inspection the area below the curve 1-2c is roughly 50% of the 

rectangular area below the curve 1-2a. To see this better draw a straight line from 
state 1 to point f on the axis. This curve has exactly 50% of the area below it. 

 
4.8 

 A hydraulic cylinder of area 0.01 m2 must push a 1000 kg arm and shovel 0.5 m 
straight up. What pressure is needed and how much work is done? 

 

F = mg = 1000 kg × 9.81 m/s2  
   = 9810 N = PA 
 

P = F/A = 9810 N/ 0.01 m2 
   =  981 000 Pa = 981 kPa 
 

 

 
  W = ⌡⌠F dx = F ∆x = 9810 N × 0.5 m = 4905 J 
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4.9 
 A work of 2.5 kJ must be delivered on a rod from a pneumatic piston/cylinder 

where the air pressure is limited to 500 kPa. What diameter cylinder should I have 
to restrict the rod motion to maximum 0.5 m? 

  W = ⌡⌠F dx = ⌡⌠P dV = ⌡⌠PA dx = PA ∆x = P 
π
4 D2 ∆x 

  D = 
4W

πP∆x = 
4 × 2.5 kJ 

π × 500 kPa × 0.5 m = 0.113 m 

 
4.10 

 Helium gas expands from 125 kPa, 350 K and 0.25 m3 to 100 kPa in a polytropic 
process with n = 1.667. Is the work positive, negative or zero? 

 

 The boundary work is:  W =  ⌡⌠P dV    

 P drops but does V go up or down? 

 The process equation is:   PVn = C 
 
 so we can solve for P to show it in a P-V diagram 

   P = CV-n 
as n = 1.667 the curve drops as V goes up we see  
                V2 > V1     giving   dV > 0  
and the work is then positive. 

P

VW

1
2
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4.11 
 An ideal gas goes through an expansion process where the volume doubles. 

Which process will lead to the larger work output: an isothermal process or a 
polytropic process with n = 1.25? 

 

 The process equation is:   PVn = C 
The polytropic process with n = 1.25 drops the pressure faster than the isothermal 
process with n = 1 and the area below the curve is then smaller. 

 
 P

VW

1

2
n = 1

 

 

 
 
4.12 
 Show how the polytropic exponent n can be evaluated if you know the end state 

properties, (P1, V1) and (P2, V2). 
 

 Polytropic process:   PVn = C 

 Both states must be on the process line:   P2Vn
2 = C = P1Vn

1 

 Take the ratio to get:     
P1
P2

 = 






V2

V1

n

 

 and then take ln of the ratio 

   ln 






P1

P2
 = ln 







V2

V1

n

  =  n ln 






V2

V1
 

 now solve for the exponent n 

   n = ln 






P1

P2
 / ln 







V2

V1
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4.13 
 A drag force on an object moving through a medium (like a car through air or a 

submarine through water) is  Fd = 0.225 A ρV2. Verify the unit becomes Newton. 
   
 Solution: 

   Fd = 0.225 A ρV2 

Units =  m2  × ( kg/m3 ) × ( m2/ s2 ) = kg m / s2 = N 
 
 
4.14 
 A force of 1.2 kN moves a truck with 60 km/h up a hill. What is the power? 
     
 Solution: 

 
W
.

 = F V = 1.2 kN × 60 (km/h)  

    = 1.2 × 103 × 60 × 
103

3600  
Nm

s   
    = 20 000 W = 20 kW 
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4.15 
 Electric power is volts times ampere (P = V i). When a car battery at 12 V is 

charged with 6 amp for 3 hours how much energy is delivered? 
     
 Solution: 

 W =  ⌡⌠ W
.

 dt = W
.

 ∆t = V i ∆t  

    = 12 V × 6 Amp × 3 × 3600 s  
    = 777 600 J = 777.6 kJ 

 
 Remark:  Volt times ampere is also watts,  1 W = 1 V × 1 Amp. 
 
4.16 
 Torque and energy and work have the same units (N m). Explain the difference. 
     
 Solution: 
 
  Work = force  ×  displacement,  so units are N × m. Energy in transfer 
  Energy is stored, could be from work input     1 J = 1 N m 
  Torque = force  ×  arm     static, no displacement needed 
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4.17 
 Find the rate of conduction heat transfer through a 1.5 cm thick hardwood board, 

k = 0.16 W/m K, with a temperature difference between the two sides of 20oC. 
 
  One dimensional heat transfer by conduction, we do not know the area so 

we can find the flux (heat transfer per unit area  W/m2). 

   
.
q = 

.
Q/A = k  

∆T
∆x   = 0.16 

W
m K × 

20
0.015 

K
m  = 213 W/m2 

    
 
4.18 

 A 2 m2 window has a surface temperature of 15oC and the outside wind is 
blowing air at 2oC across it with a convection heat transfer coefficient of h = 125 
W/m2K. What is the total heat transfer loss? 

 
 Solution: 

   
.
Q = h A ∆T = 125 W/m2K × 2 m2 × (15 – 2) K = 3250 W 

  as a rate of heat transfer out.  
 

 

2  Co

15 Co
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4.19 
 A radiant heating lamp has a surface temperature of 1000 K with  ε = 0.8. How 

large a surface area is needed to provide 250 W of radiation heat transfer? 
 
  Radiation heat transfer. We do not know the ambient so let us find the area 

for an emitted radiation of 250 W from the surface 
     

 .
Q = εσ 4   AT

A = 
.
Q

εσT4 = 
250

0.8 × 5.67 × 10-8  × 10004 

   = 0.0055  m2 
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Force displacement work 
 
4.20 
 A piston of mass 2 kg is lowered 0.5 m in the standard gravitational field. Find 

the required force and work involved in the process. 
     
 Solution: 

   F = ma = 2 kg × 9.80665 m/s2 = 19.61 N 

W =  ∫ F dx  = F ∫ dx  = F ∆x = 19.61 N × 0.5 m = 9.805 J 
 
4.21 
 An escalator raises a 100 kg bucket of sand 10 m in 1 minute. Determine the total 

amount of work done during the process. 
 
 Solution: 

The work is a force with a displacement and force is constant:  F = mg 

W =  ∫ F dx  = F ∫ dx = F ∆x = 100 kg × 9.80665 m/s2 × 10 m = 9807 J 
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4.22 
   A bulldozer pushes 500 kg of dirt 100 m with a force of 1500 N. It then lifts the 

dirt 3 m up to put it in a dump truck. How much work did it do in each situation? 
 
 Solution: 

W = ∫ F dx = F ∆x 
     = 1500 N × 100 m 
     = 150 000 J = 150 kJ 
 
W = ∫ F dz = ∫ mg dz = mg ∆Z 

     = 500 kg ×  9.807 m/s2 × 3 m  
     = 14 710 J = 14.7 kJ 

 

 

 



   Sonntag, Borgnakke and van Wylen  

 
4.23 
 A hydraulic cylinder has a piston of cross sectional area 25 cm2 and a fluid 

pressure of 2 MPa. If the piston is moved 0.25 m how much work is done? 
 
 Solution: 

The work is a force with a displacement and force is constant:  F = PA 

W =  ∫ F dx  =  ∫ PA dx = PA ∆x  

     = 2000 kPa × 25 × 10-4 m2 × 0.25 m  = 1.25 kJ 

  Units:    kPa m2 m = kN m-2 m2 m = kN m = kJ 
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4.24 
   Two hydraulic cylinders maintain a pressure of 1200 kPa. One has a cross 

sectional area of  0.01 m2 the other 0.03 m2. To deliver a work of 1 kJ to the 
piston how large a displacement (V) and piston motion H is needed for each 
cylinder? Neglect Patm. 

 Solution: 
 

W = ∫ F dx = ∫ P dV  = ∫ PA dx  = PA* H = P∆V 

∆V = 
W
P  = 

1 kJ
1200 kPa = 0.000 833 m3 

Both cases the height is   H = ∆V/A 

H1 = 
0.000833

0.01  = 0.0833 m 

H2 = 
0.000833

0.03  = 0.0278 m 

 
  

cb
12

F
2F 1
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4.25 
 A linear spring, F = ks(x − x0), with spring constant ks = 500 N/m, is stretched 

until it is 100 mm longer. Find the required force and work input.  
 

 Solution: 
F = ks(x - x0) = 500 × 0.1 = 50 N 

  W = ∫ F dx = ⌡⌠ ks(x - x0)d(x - x0) = ks(x - x0)2/2 

          = 500 
N
m × (0.12/2) m2 = 2.5 J 

 
   

 



   Sonntag, Borgnakke and van Wylen  

 
4.26 
 A nonlinear spring has the force versus displacement relation of F = kns(x − x0)n. 

If the spring end is moved to x1 from the relaxed state, determine the formula for 
the required work. 

  
 Solution: 
  In this case we know F as a function of x and can integrate 

W = ⌡⌠Fdx = ⌡
⌠ kns(x - xo)n d(x - xo) = 

kns
n + 1 (x1 - xo)n+1 
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4.27 
   The rolling resistance of a car depends on its weight as:  F = 0.006 mg. How long 

will a car of 1400 kg drive for a work input of 25 kJ? 
  

 Solution: 
 Work is force times distance so assuming a constant force we get 

  W = ⌡⌠ F dx = F x = 0.006 mgx  

 Solve for x 

  x = 
W

0.006 mg  =  
25 kJ

0.006 × 1400 kg × 9.807 m/s2  =  303.5 m 
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4.28 
 A car drives for half an hour at constant speed and uses 30 MJ over a distance of 

40 km. What was the traction force to the road and its speed? 
 
 Solution: 
 We need to relate the work to the force and distance 
 

  W = ⌡⌠F dx = F x 

  F = 
W
x  = 

30 000 000 J
40 000 m  = 750 N 

  V = 
L
t  = 

 40 km
0.5 h  = 80 

km
h  = 80 

1000
3600 

m
s  = 22.2 ms−1 
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4.29 

 The air drag force on a car is 0.225 A ρV2. Assume air at 290 K, 100 kPa and a 
car frontal area of 4 m2 driving at 90 km/h. How much energy is used to 
overcome the air drag driving for 30 minutes?  

ρ = 
1
v = 

P
RT = 

100
0.287 ×290 = 1.2015 

kg
m3 

V = 90 
km
h  = 90 × 

1000
3600 

m
s  = 25 m/s 

∆x  = V ∆t  = 25 × 30 × 60 = 45 000 m 

F = 0.225 A ρV2 = 0.225 ×4 ×1.2015 ×252 

       = 675.8 m2 
kg
m3 × 

m2

s2  = 676 N 

W = F ∆x  = 676 N × 45 000 m = 30 420 000 J = 30.42 MJ 
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4.30 
 Two hydraulic piston/cylinders are connected with a line. The master cylinder has 

an area of 5 cm2 creating a pressure of 1000 kPa. The slave cylinder has an area 
of 3 cm2. If 25 J is the work input to the master cylinder what is the force and 
displacement of each piston and the work out put of the slave cylinder piston? 

 Solution: 
W = ∫ Fx dx = ∫ P dv = ∫ P A dx  = P A ∆x 

∆xmaster = 
W
PA = 

25
1000×5×10-4 = 0.05 m 

A∆x = ∆V = 5 ×10-4× 0.05 = 2.5 ×10-5 m = ∆Vslave  = A ∆x  

∆xslave = ∆V/A = 2.5 × 10-5 / 3 ×10-4 = 0.0083 33 m 
  

Fmaster = P A = 1000× 5 ×10-4 ×103 = 500 N 

Fslave = P A = 1000 ×103× 3 ×10-4 = 300 N 

Wslave = F ∆x = 300 × 0.08333 = 25 J 
 
 

 
    Master                          Slave  
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Boundary work simple 1 step process 
 
4.31 
 A constant pressure piston cylinder contains 0.2 kg water as saturated vapor at  

400 kPa. It is now cooled so the water occupies half the original volume. Find the 
work in the process. 

 
 Solution: 
  Table B.1.2     v1= 0.4625 m3/kg V1 = mv1 = 0.0925 m3 

v2 = v1/ 2 = 0.23125 m3/kg  V2 = V1 / 2 = 0.04625 m3 
Process:   P = C   so the work term integral is 

W = ∫ PdV = P(V2-V1) = 400 kPa × (0.04625 – 0.0925) m3 = -18.5 kJ 
 

 
 
 

T C.P.

v

12

P = 400 kPa

P C.P.

v

T
400

144

2 1

cb  
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4.32 
 A steam radiator in a room at 25°C has saturated water vapor at 110 kPa flowing 

through it, when the inlet and exit valves are closed. What is the pressure and the 
quality of the water, when it has cooled to 25oC? How much work is done? 

 
Solution:  Control volume radiator. 

After the valve is closed no more flow, constant volume and mass. 
  1: x1 = 1, P1 = 110 kPa  ⇒   v1 = vg = 1.566 m3/kg from Table B.1.2 

  2: T2 = 25oC,   ?  

   Process:           v2 = v1 = 1.566 m3/kg = [0.001003 + x2 × 43.359] m3/kg 

    x2  = 
1.566 – 0.001003

43.359  = 0.0361 

State 2 : T2 , x2    From Table B.1.1     P2 = Psat = 3.169 kPa  
  

      1W2 = ⌡⌠PdV = 0 
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4.33 

 A 400-L tank A, see figure P4.33, contains argon gas at 250 kPa, 30oC. Cylinder B, 
having a frictionless piston of such mass that a pressure of 150 kPa will float it, is 
initially empty. The valve is opened and argon flows into B and eventually reaches a 
uniform state of 150 kPa, 30oC throughout. What is the work done by the argon?   

 
 Solution: 
 Take C.V. as all the argon in both A and B. Boundary movement work done in 

cylinder B against constant external pressure of 150 kPa. Argon is an ideal gas, so 
write out that the mass and temperature at state 1 and 2 are the same 
 PA1VA = mARTA1 = mART2 = P2( VA + VB2)   

  =>   VB2 = 
250 × 0.4

150   - 0.4 = 0.2667 m3  

  1W2 = ⌡⌠
 1

 2
 PextdV = Pext(VB2 - VB1) = 150 kPa (0.2667 - 0) m3 = 40 kJ 
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4.34 
 A piston cylinder contains air at 600 kPa, 290 K and a volume of  0.01 m3. A 

constant pressure process gives 54 kJ of work out. Find the final volume and 
temperature of the air. 

 
 Solution: 

W = ∫ P  dV  =  P∆V 

∆V = W/P  = 
54
600 = 0.09 m3 

V2 = V1 + ∆V = 0.01 + 0.09 = 0.1 m3 
 Assuming ideal gas, PV = mRT,  then we have  

 

T2 = 
P2 V2
mR  = 

P2 V2
P1 V1

 T1= 
V2
 V1

 T1 =  
0.1
0.01 290 = 2900 K  
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4.35 
 Saturated water vapor at 200 kPa is in a constant pressure piston cylinder. At this 

state the piston is 0.1 m from the cylinder bottom and cylinder area is 0.25 m2. 
The temperature is then changed to 200oC. Find the work in the process. 

 Solution: 
State 1 from B.1.2  (P, x): v1 = vg = 0.8857 m3/kg    (also in B.1.3)  

State 2 from B.1.3 (P, T): v2 = 1.0803 m3/kg  
 Since the mass and the cross sectional area is the same we get 

 h2 = 
v2
v1

 × h1 = 
1.0803
0.8857 × 0.1 = 0.122 m 

Process:   P = C    so the work integral is 

   W = ∫ PdV = P(V2 - V1) = PA (h2 - h1) 

 W = 200 kPa × 0.25 m2 × (0.122 − 0.1) m = 1.1 kJ 
 

 
 

T C.P.

v

1

2

P = 200 kPa

P C.P.

v

T
200

120

20021

cb  
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4.36 
 A cylinder fitted with a frictionless piston contains 5 kg of superheated refrigerant 

R-134a vapor at 1000 kPa, 140°C. The setup is cooled at constant pressure until 
the R-134a reaches a quality of 25%. Calculate the work done in the process. 

 Solution: 
Constant pressure process boundary work. State properties from Table B.5.2 

  State 1:  v = 0.03150 m3/kg , 
  State 2:  v = 0.000871 + 0.25 × 0.01956 = 0.00576 m3/kg  
   Interpolated to be at 1000 kPa, numbers at 1017 kPa could have 
   been used in which case:      v = 0.00566 m3/kg 

   1W2 = ∫ P dV = P (V2-V1) = mP (v2-v1) 

                = 5 × 1000 (0.00576 - 0.03150) = -128.7 kJ 
 

 
 

T C.P.

v

1

2

P = 1000 kPa

P C.P.

v

T
1000

39

1402 1

cb  
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4.37 
 Find the specific work in Problem 3.54 for the case the volume is reduced. 

Saturated vapor R-134a at 50oC changes volume at constant temperature. Find the 
new pressure, and quality if saturated, if the volume doubles. Repeat the question 
for the case the volume is reduced to half the original volume. 

 
 Solution: 
  R-134a  50oC 
  Table B.4.1:    v1 = vg = 0.01512 m3/kg, v2 = v1 / 2 = 0.00756 m3/kg 

  1W2 = ∫ PdV = 1318.1 kPa (0.00756 – 0.01512) m3/kg = -9.96 kJ/kg 
   

 
 
 

T C.P.

v

12

P = 1318 kPa

P C.P.

v

T

2
1318

50
1

cb  
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4.38 

 A piston/cylinder has 5 m of liquid 20oC water on top of the piston (m = 0) with 
cross-sectional area of 0.1 m2, see Fig. P2.57. Air is let in under the piston that rises 
and pushes the water out over the top edge. Find the necessary work to push all the 
water out and plot the process in a P-V diagram. 

 
 Solution: 

P1 = Po + ρgH 

     = 101.32 + 997 × 9.807 × 5 / 1000  = 150.2 kPa 

∆V = H × A = 5 × 0.1 = 0.5 m3 

1W2 = AREA = ∫ P dV = ½ (P1 + Po )(Vmax -V1) 

        = ½ (150.2 + 101.32) kPa × 0.5 m3 
        = 62.88 kJ 

 
 

H2O

Po

Aircb

 

V

P

2

1

P

P1

0

V V1 max  
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4.39 
 Air in a spring loaded piston/cylinder has a pressure that is linear with volume, P 

= A + BV. With an initial state of P = 150 kPa, V = 1 L and a final state of 800 
kPa and volume 1.5 L it is similar to the setup in Problem 3.113. Find the work 
done by the air. 

  
Solution: 

Knowing the process equation:  P = A + BV   giving a linear variation of 
pressure versus volume the straight line in the P-V diagram is fixed by the two 
points as state 1 and state 2. The work as the integral of   PdV  equals the area 
under the process curve in the P-V diagram. 
 

 State 1:   P1 = 150 kPa     V1 = 1 L = 0.001 m3 
State 2:   P2 = 800 kPa   V2 = 1.5 L = 0.0015 m3 
Process:   P = A + BV       linear in V 

       ⇒    1W2 = ⌡⌠
 1

 2
 PdV  = (P1 + P2

2 )(V2 - V1) 

P

VW1

2

 

       = 
1
2 (150 + 800) kPa (1.5 - 1) × 0.001 m3 = 0.2375 kJ 
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4.40 
 Find the specific work in Problem 3.43. 

Saturated water vapor at 200 kPa is in a constant pressure piston cylinder. At this 
state the piston is 0.1 m from the cylinder bottom. How much is this distance if 
the temperature is changed to   a) 200 oC    and     b) 100 oC. 
Solution: 

Process:      P = C      ⇒     w = ∫ Pdv =  P1(v – v1) 

  State 1:   (200 kPa, x = 1) in B.1.2: v1 = vg (200 kPa) = 0.8857 m3/kg 

CASE a) 

  State a:   (200 kPa, 200oC)  B.1.3: va = 1.083 m3/kg 

  1wa = ∫ Pdv = 200(1.0803 – 0.8857) = 38.92 kJ/kg 
CASE b) 

  State b:   (200 kPa, 100oC)  B.1.1: vb ≈ vf = 0.001044 m3/kg 

  1Wb = ∫ PdV = 200(0.001044 – 0.8857) = -176.9 kJ/kg 

 
 
 
 

T C.P.

v

1

a

b

P = 200 kPa

P C.P.

v

T
b

200

100
120
200a1

W1b 1Wa
cb  
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4.41 

 A piston/cylinder contains 1 kg water at 20oC with volume 0.1 m3. By mistake 
someone locks the piston preventing it from moving while we heat the water to 
saturated vapor. Find the final temperature, volume and the process work. 

 
 Solution 

1:   v1 = V/m = 0.1 m3/1 kg = 0.1 m3/kg 
2:  Constant volume:    v2 = vg = v1   

V2 = V1 = 0.1 m3 

1W2 = ∫ P dV = 0 

T2 = Tsat = 210 + 5 
0.1 - 0.10324

0.09361 - 0.10324 = 211.7°C 
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4.42 
  A piston cylinder contains 1 kg of liquid water at 20oC and 300 kPa. There is a 

linear spring mounted on the piston such that when the water is heated the 
pressure reaches 3 MPa with a volume of 0.1 m3. 
 a) Find the final temperature 
 b) Plot the process in a P-v diagram. 
 c) Find the work in the process. 

  
 Solution: 
    Take CV as the water. This is a constant mass: 
     m2 = m1 = m ;       
 State 1: Compressed liquid, take saturated liquid at same temperature. 
   B.1.1:   v1 = vf(20) = 0.001002 m3/kg,  

 State 2:   v2 = V2/m = 0.1/1 = 0.1 m3/kg and P = 3000 kPa    from B.1.3 
      => Superheated vapor   close to T = 400oC 

  Interpolate: T2 = 404oC  
 Work is done while piston moves at linearly varying pressure, so we get: 

      1W2 = ∫ P dV = area = Pavg (V2 − V1) =  12 (P1 + P2)(V2 - V1)  

= 0.5 (300 + 3000)(0.1 − 0.001) = 163.35 kJ 
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v

2

1

300 kPa

P C.P.

v

T
300

20

2

1

 
 



   Sonntag, Borgnakke and van Wylen  

 
4.43 
 A piston cylinder contains 3 kg of air at 20oC and 300 kPa. It is now heated up in 

a constant pressure process to 600 K. 
 a) Find the final volume 
 b) Plot the process path in a P-v diagram 
 c) Find the work in the process. 
 
 Solution: 

Ideal gas  PV = mRT 
State 1: T1, P1      ideal  gas so     P1V1 = mRT1 

  V1 = mR T1 / P1 = 3 × 0.287 × 293.15/300 = 0.8413 m3 

State 2: T2, P2 = P1    and ideal gas so    P2V2 = mRT2 

  V2 = mR T2 / P2 = 3 × 0.287 × 600/300 = 1.722 m3 

 1W2  = ⌡⌠ PdV = P (V2 - V1) = 300 (1.722 – 0.8413) = 264.2 kJ 

 
 
 
 

T

v

2

1
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P

v
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4.44 
 A piston cylinder contains 0.5 kg air at 500 kPa, 500 K. The air expands in a 

process so P is linearly decreasing with volume to a final state of 100 kPa, 300 K. 
Find the work in the process. 

 
 Solution: 
 Process:     P  = A + BV     (linear in V, decreasing means B is negative) 

 From the process: 1W2 = ⌡⌠ PdV = AREA = 12 (P1 + P2)(V2 - V1) 

  V1 = mR T1/ P1 = 0.5 × 0.287 × (500/500) = 0.1435 m3  

V2 = mR T2/ P2 = 0.5 × 0.287 × (300/100) = 0.4305 m3   

  1W2 = 12 × (500 + 100) kPa × (0.4305 - 0.1435) m3 = 86.1 kJ 

 
 
 
 

T

v
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4.45 
 Consider the nonequilibrium process described in Problem 3.109. Determine the 

work done by the carbon dioxide in the cylinder during the process. 
A cylinder has a thick piston initially held by a pin as shown in Fig. P3.109. The 
cylinder contains carbon dioxide at 200 kPa and ambient temperature of 290 K. The 
metal piston has a density of 8000 kg/m3 and the atmospheric pressure is 101 kPa. 
The pin is now removed, allowing the piston to move and after a while the gas returns 
to ambient temperature. Is the piston against the stops? 
 
Solution: 

Knowing the process (P vs. V) and the states 1 and 2 we can find W. 
If piston floats or moves:  
   P = Plift = Po + ρHg = 101.3 + 8000 × 0.1 × 9.807 / 1000 = 108.8 kPa 

Assume the piston is at the stops (since P1  > Plift piston would move) 

V2 = V1 × 150 / 100 = (π/4) 0.12 × 0.1× 1.5 = 0.000785× 1.5 = 0.001 1775 m3 

For max volume we must have P > Plift  so check using ideal gas and constant 
T process:   P2 = P1 V1/ V2 =  200/1.5 = 133 kPa > Plift  and piston is at stops. 

 1W2 = ∫ Plift dV = Plift (V2 -V1) = 108.8 (0.0011775 - 0.000785) 

               = 0.0427 kJ 
  

Remark:  The work is determined by the equilibrium pressure, Plift, and not the 
instantaneous pressure that will accelerate the piston (give it kinetic energy). We 
need to consider the quasi-equilibrium process to get W. 
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4.46 
 Consider the problem of inflating the helium balloon, as described in problem 

3.79. For a control volume that consists of the helium inside the balloon 
determine the work done during the filling process when the diameter changes 
from 1 m to 4 m. 
 
Solution : 

Inflation at constant   P = P0 = 100 kPa  to  D1 = 1 m, then 

  P = P0 + C ( D* -1 - D* -2 ),         D* = D / D1, 

to D2 = 4 m, P2 = 400 kPa, from which we find the constant C as: 

  400 = 100 + C[ (1/4) - (1/4)2 ]     =>      C = 1600 kPa 

The volumes are:      V = 
π
6 D3    =>   V1 = 0.5236 m3;    V2 =  33.51 m3 

  WCV =  ⌡⌠
 1

 2
 PdV 

                =  P0(V2 - V1) + ⌡⌠
 1

 2

 C(D* -1 - D* -2)dV 

  V = 
π
6 D3,           dV = 

π
2 D2 dD   =   

π
2 D1

3 D* 2 dD* 

     ⇒ WCV = P0(V2 - V1) + 3CV1 ⌡⌠

      D1
*=1

     D2
*=4

     (D*-1)dD* 

 

                = P0(V2 - V1) + 3CV1[
D2

* 2 - D1
* 2

2  - (D*
2 - D*

1)]
4
 
1

 

              = 100 × (33.51 – 0.5236) + 3 × 1600 × 0.5236 [
16-1

2  – (4–1)] 

              = 14 608 kJ 
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Polytropic process 
 
4.47 
 Consider a mass going through a polytropic process where pressure is directly 

proportional to volume (n = − 1). The process start with P = 0, V = 0 and ends with P 
= 600 kPa, V = 0.01 m3. The physical setup could be as in Problem 2.22. Find the 
boundary work done by the mass. 
Solution: 

The setup has a pressure that varies linear with volume going through the 
initial and the final state points. The work is the area below the process curve. 

 
 

0.01

600

P

V
0

0

W

 

 
W  = ⌡⌠ PdV = AREA 

      = 12 (P1 + P2)(V2 - V1) 

      = 12 (P2 + 0)( V2 - 0) 

     = 12 P2 V2 = 12 × 600 × 0.01 = 3 kJ  
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4.48 
 The piston/cylinder shown in Fig. P4.48 contains carbon dioxide at 300 kPa, 

100°C with a volume of 0.2 m3. Mass is added at such a rate that the gas 
compresses according to the relation PV1.2 = constant to a final temperature of 
200°C. Determine the work done during the process. 

  
Solution: 

From Eq. 4.4 for the polytopic process  PVn = const ( n =/  1 )  

   1W2  = ⌡⌠
 1

 2
 PdV = 

P2V2 - P1V1
1 - n  

Assuming ideal gas, PV = mRT 

   1W2  = 
mR(T2 - T1)

1 - n  ,      

But      mR = 
P1V1

T1
 = 

300 × 0.2
373.15   

kPa m3

K  = 0.1608 kJ/K 

  1W2  = 
0.1608(473.2 - 373.2)

1 - 1.2  
kJ K

K  = -80.4 kJ 
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4.49 
 A gas initially at 1 MPa, 500°C is contained in a piston and cylinder arrangement 

with an initial volume of 0.1 m3. The gas is then slowly expanded according to the 
relation PV = constant until a final pressure of 100 kPa is reached. Determine the 
work for this process. 

  
Solution: 

By knowing the process and the states 1 and 2 we can find the relation 
between the pressure and the volume so the work integral can be performed. 
Process:    PV = C     ⇒    V2 = P1V1/P2 = 1000 × 0.1/100 = 1 m3 

For this process work is integrated to Eq.4.5 
 

 
1W2 = ∫ P dV = ⌡⌠ CV-1dV = C ln(V2/V1) 

1W2 = P1V1 ln 
V2
V1

 = 1000 × 0.1 ln (1/0.1) 

    = 230.3 kJ 

P

VW

1
2
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4.50 

 Helium gas expands from 125 kPa, 350 K and 0.25 m3 to 100 kPa in a polytropic 
process with n = 1.667. How much work does it give out? 

 
 Solution: 

 Process equation:       PVn = constant = P1Vn
1 = P2Vn

2 

 Solve for the volume at state 2 

V2 = V1 (P1/P2)1/n = 0.25 × 



125

100
0.6

   = 0.2852 m3 

 
 Work from Eq.4.4 

1W2 = 
P2V2- P1 V1

 1-n  = 
100× 0.2852 - 125× 0.25

1 - 1.667  kPa m3 = 4.09 kJ 
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4.51 
 Air goes through a polytropic process from 125 kPa, 325 K to 300 kPa and 500 K. 

Find the polytropic exponent n and the specific work in the process. 
 
 Solution: 

Process: Pvn = Const = P1vn
1 = P2 vn

2 

Ideal gas    Pv = RT    so 

   v1 = 
RT
P  = 

0.287 × 325
125  = 0.7462 m3/kg 

   v2 = 
RT
P  = 

0.287 × 500
300  = 0.47833 m3/kg 

From the process equation 

  (P2/ P1) = (v1/ v2)n    =>   ln(P2/ P1) = n ln(v1/ v2) 

  n = ln(P2/ P1) / ln(v1/ v2) = 
ln 2.4
ln 1.56 = 1.969 

The work is now from Eq.4.4 per unit mass 

  1w2 =  
P2v2-P1v1

1-n  = 
R(T2 - T1)

1-n  = 
0.287(500 - 325)

1-1.969  = -51.8 kJ/kg 

 



   Sonntag, Borgnakke and van Wylen  

 
4.52 

A piston cylinder contains 0.1 kg air at 100 kPa, 400 K which goes through a 
polytropic compression process with n = 1.3 to a pressure of 300 kPa. How much 
work has the air done in the process? 

 Solution: 
Process: Pvn = Const. 

 T2 = T1 ( P2 V2 / P1V1) = T1 ( P2 / P1)(P1 / P2 )1/n 

      = 400 × (300/100)(1 - 1/1.3) = 515.4 K 
Work term is already integrated giving Eq.4.4 

 1W2  = 
1

1 − n (P2 V2 -  P1V1) = 
mR

1 − n ( T2 - T1)     Since Ideal gas, 

  =  
0.2 × 0.287

1 − 1.3  × (515.4-400) = -477 kJ 

 
 P

VW
1

2

n = 1
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4.53 

 A balloon behaves so the pressure is  P = C2 V1/3,  C2 = 100 kPa/m. The balloon 
is blown up with air from a starting volume of 1 m3 to a volume of 3 m3. Find the 
final mass of air assuming it is at 25oC and the work done by the air.  

 Solution: 
    
              The process is polytropic with exponent  n = -1/3. 

                        P1 = C2 V1/3 = 100 × 11/3 = 100 kPa 

  P2 = C2 V1/3 = 100 × 31/3 = 144.22 kPa 

P

VW

1
2

 

 

 

 1W2 = ∫ P dV  = 
P2V2 - P1V1

1 - n   (Equation 4.4) 

          = 
144.22 × 3 - 100 × 1

1 - (-1/3)  = 249.5 kJ 

 m2 = 
P2V2
 RT2

 =  
144.22 × 3

 0.287 × 298 = 5.056 kg 
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4.54 
 A balloon behaves such that the pressure inside is proportional to the diameter 

squared. It contains 2 kg of ammonia at 0°C, 60% quality. The balloon and 
ammonia are now heated so that a final pressure of 600 kPa is reached. 
Considering the ammonia as a control mass, find the amount of work done in the 
process. 

  
Solution: 

Process :  P ∝ D2, with  V ∝ D3  this implies     P ∝ D2 ∝ V2/3   so 

PV -2/3 = constant,  which is a polytropic process,  n = −2/3 

From table B.2.1:  V1 = mv1 = 2(0.001566 + 0.6 × 0.28783) = 0.3485 m3 

 V2 = V1 






P2

P1

3/2
 = 0.3485 



600

429.3
3/2

 = 0.5758 m3 

 1W2 = ∫ P dV  = 
P2V2 - P1V1

1 - n   (Equation 4.4) 

          = 
600 × 0.5758 - 429.3 × 0.3485

1 - (-2/3)  = 117.5 kJ 

 
 P

VW

1
2
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4.55 
 Consider a piston cylinder with 0.5 kg of R-134a as saturated vapor at -10°C. It is 

now compressed to a pressure of 500 kPa in a polytropic process with n = 1.5. Find 
the final volume and temperature, and determine the work done during the process. 

 
Solution: 

Take CV as the R-134a which is a control mass.    m2 = m1 = m  

Process:    Pv1.5 = constant    until  P = 500 kPa 

1: (T, x)   v1 = 0.09921 m3/kg,    P = Psat = 201.7 kPa from Table B.5.1 

2: (P, process)   v2 = v1 (P1/P2) (1/1.5) = 0.09921× (201.7/500)2/3 = 0.05416 

Given (P, v) at state 2 from B.5.2 it is superheated vapor at T2 = 79°C  

Process gives P = C v -1.5 ,  which is integrated for the work term, Eq.(4.4)  
 

 1W2 = ∫ P dV = 
m

1 - 1.5 (P2v2 - P1v1) 

          = 
2

 - 0.5 × (500 × 0.05416 - 201.7 × 0.09921) = -7.07 kJ 
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4.56 
 Consider the process described in Problem 3.98. With 1 kg water as a control mass, 

determine the boundary work during the process.  
A spring-loaded piston/cylinder contains water at 500°C, 3 MPa. The setup is such 
that pressure is proportional to volume, P = CV. It is now cooled until the water 
becomes saturated vapor. Sketch the P-v diagram and find the final pressure. 

 
Solution : 

State 1:   Table B.1.3:    v1 = 0.11619 m3/kg 

Process:   m is constant and    P = C0V = C0m v = C v 

 P = Cv    ⇒    C = P1/v1 = 3000/0.11619 = 25820 kPa kg/m3 

State 2:  x2 = 1  &  P2 = Cv2   (on process line) 

 
 

2 

1 
P

vC
 

Trial & error on T2sat or P2sat: 

Here from B.1.2: 
at 2 MPa  vg = 0.09963 ⇒  C = P/vg = 20074 (low) 

 2.5 MPa  vg = 0.07998 ⇒  C = P/vg = 31258 (high) 

 2.25 MPa vg = 0.08875 ⇒  C = P/vg = 25352 (low) 

 
Now interpolate to match the right slope C: 
 P2 = 2270 kPa,    v2 = P2/C = 2270/25820 = 0.0879 m3/kg 
P is linear in V so the work becomes (area in P-v diagram) 

 1w2 = ∫ P dv =  
1
2(P1 + P2)(v2 - v1)   

  =  
1
2 (3000 + 2270)(0.0879 - 0.11619)  = - 74.5 kJ/kg 
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4.57 
 Find the work for Problem 3.106. 

Refrigerant-12 in a piston/cylinder arrangement is initially at 50°C, x = 1. It is then 
expanded in a process so that P = Cv−1 to a pressure of 100 kPa. Find the final 
temperature and specific volume. 

 Solution:  
Knowing the process (P versus V) and states 1 and 2 allows calculation of W. 

State 1: 50°C, x=1  Table B.3.1:  P1 = 1219.3 kPa, v1 = 0.01417 m3/kg 

Process: P = Cv-1   ⇒   1w2 = ∫ P dv = C ln 
v2
v1

  same as Eq.4.5 

State 2: 100 kPa and on process curve:        v2 = v1P1/P2 = 0.1728 m3/kg 

        From table B.3.2    T = - 13.2°C 
The constant C for the work term is P1v1 so per unit mass we get 

 1w2 = P1v1 ln 
v2
v1

 = 1219.3 × 0.01417 × ln 
0.1728
0.01417 = 43.2 kJ/kg 

 
 

v

P

v

T

1
2

1

2

 
 

 

 
   Notice T is not constant. It is not an ideal gas in this range. 
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4.58 
 A piston/cylinder contains water at 500°C, 3 MPa. It is cooled in a polytropic 

process to 200°C, 1 MPa. Find the polytropic exponent and the specific work in 
the process. 

 
 Solution: 

 Polytropic process:   Pvn = C 

 Both states must be on the process line:   P2vn
2 = C = P1vn

1 

 Take the ratio to get:     
P1
P2

 = 






v2

v1

n

 

 and then take ln of the ratio:  ln 






P1

P2
 = ln 







v2

v1

n

  =  n ln 






v2

v1
 

 now solve for the exponent n 

   n = ln 






P1

P2
 / ln 







v2

v1
 = 

1.0986
0.57246 = 1.919 

 1w2 = ∫ P dv  = 
P2v2 - P1v1

1 - n   (Equation 4.4) 

          = 
1000 × 0.20596 - 3000 × 0.11619

1 - 1.919  = 155.2 kJ 
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4.59 

 Consider a two-part process with an expansion from 0.1 to 0.2 m3 at a constant 
pressure of 150 kPa followed by an expansion from 0.2 to 0.4 m3 with a linearly 
rising pressure from 150 kPa ending at 300 kPa. Show the process in a P-V 
diagram and find the boundary work. 
Solution: 

By knowing the pressure versus volume variation the work is found. If we 
plot the pressure versus the volume we see the work as the area below the 
process curve. 

 
 

150

300

0.1 0.2 0.4

P

V

1 2

3

 

 

 

1W3 = 1W2 + 2W3  = ⌡⌠
 1

 2
 PdV + ⌡⌠

 2

 3
 PdV 

  = P1 (V2 – V1) + 
1
2 (P2 + P3)(V3-V2) 

  = 150 (0.2-1.0) + 
1
2 (150 + 300) (0.4 - 0.2)  = 15 + 45 = 60 kJ 
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4.60 
 A cylinder containing 1 kg of ammonia has an externally loaded piston. Initially the 

ammonia is at 2 MPa, 180°C and is now cooled to saturated vapor at 40°C, and then 
further cooled to 20°C, at which point the quality is 50%. Find the total work for the 
process, assuming a piecewise linear variation of P versus V. 

 
Solution: 
 

 

o C 

C 

C 2 

1 
P 

3 

180 

40

20
857 

1555

2000

v 

o 

o 

cb

 

 
State 1:  (T, P)    Table B.2.2 

      v1 = 0.10571  m3/kg 
State 2: (T, x)   Table B.2.1 sat. vap. 
     P2 = 1555 kPa,   

     v2 = 0.08313  m3/kg 

 

State 3: (T, x)   P3 = 857 kPa,   v3 = (0.001638 + 0.14922)/2 = 0.07543 m3/kg 
Sum the the work as two integrals each evaluated by the area in the P-v 
diagram. 

1W3 =  ⌡⌠
1

3
 PdV ≈ ( 

P1 + P2
2  ) m(v2 - v1) + ( 

P2 + P3
2  ) m(v3 - v2) 

        = 
2000 + 1555

2  1(0.08313 - 0.10571) + 
1555 + 857

2  1(0.07543 - 0.08313)  

        = -49.4 kJ 
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4.61 
 A piston/cylinder arrangement shown in Fig. P4.61 initially contains air at 150 kPa, 

400°C. The setup is allowed to cool to the ambient temperature of 20°C. 
a. Is the piston resting on the stops in the final state?  What is the final 

pressure in the cylinder? 
 b. What is the specific work done by the air during this process? 
 

Solution: 
State 1: P1 = 150 kPa,   T1 = 400°C = 673.2 K 
State 2: T2 = T0 = 20°C = 293.2 K 
For all states air behave as an ideal gas. 

a)   If piston at stops at 2, V2 =  V1/2 and pressure less than Plift = P1 

     ⇒ P2 = P1 × 
V1
V2

 × 
T2
T1

 = 150 × 2 × 
293.2
673.2 = 130.7 kPa  < P1 

     ⇒ Piston is resting on stops at state 2. 
         b) Work done while piston is moving at constant Pext = P1. 

     1W2 =  ∫ Pext dV = P1 (V2 - V1)  ;    V2 = 
1
2 V1 = 

1
2 m  RT1/P1 

1w2 = 1W2/m = RT1 (
1
2 - 1 ) = -

1
2 × 0.287 × 673.2 = -96.6 kJ/kg 

 
 

 
V

P

1

2

1a

P

P

2

1

V

T

1

2

1a

T

T

2

1a

T1
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4.62 
 A piston cylinder has 1.5 kg of air at 300 K and 150 kPa. It is now heated up in a 

two step process. First constant volume to 1000 K (state 2) then followed by a 
constant pressure process to 1500 K, state 3. Find the final volume and the work 
in the process. 

 Solution: 
 
  

The two processes are: 
1 -> 2:    Constant volume  V2 = V1 
2 -> 3:    Constant pressure  P3 = P2 

V

P
3

1

2

P

P

1

2

 
 

Use ideal gas approximation for air. 
State 1:   T, P   =>     V1 = mRT1/P1 = 1.5×0.287×300/150 = 0.861 m3  

State 2:   V2 = V1    =>   P2 = P1 (T2/T1) = 150×1000/300 = 500 kPa 

State 3:   P3 = P2    =>   V3 = V2 (T3/T2) = 0.861×1500/1000 = 1.2915 m3  
We find the work by summing along the process path.  
  1W3 = 1W2 + 2W3 = 2W3 = P3(V3 - V2)  
          = 500(1.2915 - 0.861) = 215.3 kJ 



   Sonntag, Borgnakke and van Wylen  

 
4.63 
 A piston/cylinder assembly (Fig. P4.63) has 1 kg of R-134a at state 1 with 110°C, 

600 kPa, and is then brought to saturated vapor, state 2, by cooling while the 
piston is locked with a pin. Now the piston is balanced with an additional constant 
force and the pin is removed. The cooling continues to a state 3 where the R-134a 
is saturated liquid. Show the processes in a P-V diagram and find the work in 
each of the two steps, 1 to 2 and 2 to 3.  

 
Solution : 

CV R-134a  This is a control mass. 
Properties from table B.5.1 and 5.2 
State 1: (T,P)  B.5.2    =>   v = 0.04943 m3/kg 
State 2:  given by fixed volume v2 = v1  and x2 = 1.0     so from B.5.1 

   v2 = v1 = vg = 0.04943 m3/kg    =>   T = 10°C 

State 3 reached at constant P (F = constant)      v3 = vf = 0.000794 m3/kg 
 

 P

V

1

23

cb

 

 

  
Since no volume change from 1 to 2   =>  1W2 = 0 
 2W3 = ∫P dV = P(V3 -V2) = mP(v3 -v2)        Constant pressure 

         = 415.8 (0.000794 - 0.04943) 1 = -20.22 kJ 
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4.64 
 The refrigerant R-22 is contained in a piston/cylinder as shown in Fig. P4.64, 

where the volume is 11 L when the piston hits the stops. The initial state is −30°C, 
150 kPa with a volume of 10 L. This system is brought indoors and warms up to 
15°C. 

  a. Is the piston at the stops in the final state? 
  b. Find the work done by the R-22 during this process. 

Solution: 
Initially piston floats, V < Vstop so the piston moves at constant  Pext = P1 until it 
reaches the stops or 15°C, whichever is first. 

a) From Table B.4.2:  v1 = 0.1487 m3/kg, 

         m = V/v = 
0.010
0.1487 = 0.06725 kg 

 
 

R-22

Po

mp

 

1a

2
1

P

V
P 1

Vstop  
 
     Check the temperature at state 1a:  P1a = 150 kPa,  v = Vstop/m.  

     v1a = V/m = 
0.011

0.06725 = 0.16357 m3/kg     =>    T1a = -9°C  & T2 = 15°C 

     Since T2 > T1a then it follows that   P2 > P1 and the piston is against stop. 
         b) Work done at constant Pext = P1. 

       1W2 = ∫ Pext dV = Pext(V2 - V1)  = 150(0.011 - 0.010) = 0.15 kJ 
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4.65 
 A piston/cylinder contains 50 kg of water at 200 kPa with a volume of 0.1 m3. 

Stops in the cylinder restricts the enclosed volume to 0.5 m3, similar to the setup 
in Problem 4.7. The water is now heated to 200°C. Find the final pressure, 
volume and the work done by the water. 

 
Solution: 
 

 Initially the piston floats so the equilibrium 
lift pressure is 200 kPa 
1:   200 kPa, v1= 0.1/50 = 0.002 m3/kg, 
2:   200°C, on line 
Check state 1a:    

            vstop  = 0.5/50 = 0.01 m3/kg    

=> 
Table B.1.2:  200 kPa , vf  < vstop  < vg  

1a

2
1

P

V
P 1

Vstop
 

State 1a is two phase at 200 kPa and  Tstop ≈ 120.2 °C   so as   T2 > Tstop  the 
state is higher up in the P-V diagram with   

v2 = vstop  < vg = 0.127  m3/kg  (at 200°C) 

State 2 two phase   =>    P2 = Psat(T2) = 1.554 MPa,  V2 = Vstop = 0.5 m3 

 1W2 = 1Wstop = 200 (0.5 – 0.1) = 80 kJ 
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4.66 
 Find the work for Problem 3.108. 
 Ammonia in a piston/cylinder arrangement is at 700 kPa, 80°C. It is now cooled at 

constant pressure to saturated vapor (state 2) at which point the piston is locked with 
a pin. The cooling continues to −10°C (state 3). Show the processes 1 to 2 and 2 to 3 
on both a P–v and T–v diagram. 

 
Solution : 
 

 

700 

290 

P 

v v 

T 

3 

80

14

-10 

1

2

3 

12

cb  

  1W3 = 1W2 + 2W3 = ⌡⌠
 1

 2
 PdV = P1(V2 - V1) = mP1(v2 - v1) 

  Since constant volume from 2 to 3, see P-v diagram. From table B.2 
  v1 = 0.2367  m3/kg,  P1 = 700 kPa,   v2 = vg = 0.1815 m3/kg 

  1w3 = P1(v2- v1) = 700 × (0.1815 - 0.2367) = -38.64 kJ/kg 
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4.67 
 A piston/cylinder contains 1 kg of liquid water at 20°C and 300 kPa. Initially the 

piston floats, similar to the setup in Problem 4.64, with a maximum enclosed 
volume of 0.002 m3 if the piston touches the stops. Now heat is added so a final 
pressure of 600 kPa is reached. Find the final volume and the work in the process. 
Solution: 
 
Take CV as the water which is a control mass:   m2 = m1 = m ; 

Table B.1.1:  20°C   =>  Psat = 2.34 kPa  

State 1: Compressed liquid                 v = vf(20) = 0.001002 m3/kg 

State 1a: vstop = 0.002 m3/kg , 300 kPa   

State 2: Since P2 = 600 kPa  > Plift  then piston is pressed against the stops 

v2 = vstop = 0.002  m3/kg  and  V = 0.002 m3 

For the given P :  vf < v < vg    so 2-phase    T = Tsat = 158.85 °C 

Work is done while piston moves at Plift = constant = 300 kPa so we get 

 1W2 = ∫ P dV = m Plift(v2 -v1) = 1 × 300(0.002 − 0.001002) = 0.30 kJ 

 
 

V

P

1
2

H O

Po

2

cb
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4.68 
 10 kg of water in a piston cylinder arrangement exists as saturated liquid/vapor at 

100 kPa, with a quality of 50%. It is now heated  so the volume triples. The mass 
of the piston is such that a cylinder pressure of 200 kPa will float it. 

 a) Find the final temperature and volume of the water. 
 b) Find the work given out by the water. 
 
 Solution: 

Take CV as the water  m2 = m1 = m; 
Process:  v = constant   until   P = Plift  then P is constant. 

State 1: v1 = vf + x vfg = 0.001043 + 0.5 × 1.69296 = 0.8475 m3/kg 

State 2: v2,  P2  ≤ Plift   =>     v2 = 3 × 0.8475 = 2.5425 m3/kg; 

  T2 = 829°C ; V2 = m v2 = 25.425 m3 

 1W2 = ∫ P dV = Plift × (V2 - V1)  

         = 200 kPa × 10 kg × (2.5425 – 0.8475) m3/kg = 3390 kJ 
 
 
 

H2O

Po

cb

 V

P

2

1P

P

1

2
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4.69 
 Find the work in Problem 3.43. 

Ammonia at 10oC with a mass of 10 kg is in a piston cylinder arrangement with 
an initial volume of 1 m3. The piston initially resting on the stops has a mass such 
that a pressure of 900 kPa will float it. The ammonia is now slowly heated to 
50oC. Find the work in the process. 

 C.V. Ammonia, constant mass. 
 Process:      V = constant  unless  P = Pfloat 
 
  

State 1:  T = 10oC,   v1 = 
V
m = 

1
10 = 0.1 m3/kg 

      From Table B.2.1    vf  < v < vg 
       x1 = (v - vf)/vfg = (0.1 - 0.0016)/0.20381  
          = 0.4828 
        

V

P

2

1

1a

P

P

1

2

cb

 
 
 State 1a:  P = 900 kPa,  v = v1 = 0.1 < vg   at 900 kPa 
      This state is two-phase  T1a = 21.52oC 
     Since T2  >  T1a   then   v2  >  v1a 
 
 State 2:  50oC and on line(s) means  900 kPa  which is superheated vapor. 
    From Table B.2.2 linear interpolation between 800 and 1000 kPa: 
   v2 = 0.1648 m3/kg,  V2 = mv2 = 1.648 m3 

  1W2 =  ∫ P dV = Pfloat (V2 - V1) = 900 (1.648 - 1.0) = 583.2 kJ 
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4.70 
  A piston cylinder setup similar to Problem 4.68 contains 0.1 kg saturated liquid and 

vapor water at 100 kPa with quality 25%. The mass of the piston is such that a 
pressure of 500 kPa will float it. The water is heated to 300°C. Find the final 
pressure, volume and the work, 1W2. 
Solution: 

 Take CV as the water:   m2 = m1 = m 
Process:    v = constant until P = Plift 
To locate state 1:  Table B.1.2 
v1 = 0.001043 + 0.25×1.69296 = 0.42428 m3/kg 
1a:   v1a = v1 = 0.42428 m3/kg  > vg at 500 kPa 

so state 1a is Sup.Vapor  T1a = 200°C  

P 1 

P lift

V

P

1

21a

cb  

   State 2 is 300°C  so heating continues after state 1a to 2 at constant P  => 
   2: T2,  P2 = Plift   =>  Tbl B.1.3   v2 =0.52256 m3/kg ;     

V2 = mv2 = 0.05226 m3 

  1W2 = Plift (V2 - V1) = 500(0.05226 - 0.04243) = 4.91 kJ 
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Other types of work and general concepts 
 
4.71 
 A 0.5-m-long steel rod with a 1-cm diameter is stretched in a tensile test. What is 

the required work to obtain a relative strain of 0.1%?  The modulus of elasticity of 
steel is 2 × 108 kPa. 

 
Solution : 

  −1W2 = 
AEL0

2  (e)2,     A = 
π
4 (0.01)2 = 78.54 × 10-6 m2 

  −1W2 = 
78.54×10-6 × 2×108 × 0.5

2  (10-3)2 = 3.93 J 
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4.72 
 A copper wire of diameter 2 mm is 10 m long and stretched out between two 

posts. The normal stress (pressure) σ = E(L – Lo)/Lo , depends on the length L 
versus the unstretched length Lo and Young’s modulus E = 1.1 × 106 kPa. The 
force is F = Aσ and measured to be 110 N. How much longer is the wire and how 
much work was put in? 

  Solution: 
F = As = A E ∆L/ Lo  and   ∆L = FLo /AE 
 

A = 
π
4D2 = 

π
4 × 0.0022  = 3.142 ×10-6 m2 

∆L = 
110 ×10

3.142×10-6  ×1.1 ×106 ×103 = 0.318 m 

 

1W2 =  ∫ F dx = ∫ A s dx = ∫ AE 
x

Lo
 dx 

    = 
AE
Lo

 ½ x2       where x = L - Lo 

   = 
3.142×10 -6 ×1.1 ×106 ×103

10  × ½ × 0.3182  = 17.47 J 
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4.73 
 A film of ethanol at 20°C has a surface tension of 22.3 mN/m and is maintained 

on a wire frame as shown in Fig. P4.73. Consider the film with two surfaces as a 
control mass and find the work done when the wire is moved 10 mm to make the 
film 20 × 40 mm.  
Solution : 

Assume a free surface on both sides of the frame, i.e., there are two surfaces 
20 × 30 mm 

  W = −⌡⌠ S dA = −22.3×10-3 × 2(800 − 600)×10-6 

            = −8.92×10-6 J = -8.92 µJ 
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4.74 
 Assume a balloon material with a constant surface tension of S = 2 N/m. What is 

the work required to stretch a spherical balloon up to a radius of  r = 0.5 m? 
Neglect any effect from atmospheric pressure. 

 
Assume the initial area is small, and that we have 2 surfaces inside and out 
 

W = -∫ S dA = -S (A2 − A1) 

      = - S(A2)  = -S( 2× π D2
2 )  

      = -2 × 2 × π × 1  = -12.57 J 
  Win = -W = 12.57 J 
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4.75 
 A soap bubble has a surface tension of S = 3 × 10-4 N/cm as it sits flat on a rigid 

ring of diameter 5 cm. You now blow on the film to create a half sphere surface of 
diameter 5 cm. How much work was done? 

 

1W2 = ∫ F  dx  = ∫ S  dA  = S ∆A     

= 2 × S × ( 
π
2 D2 - 

π
4 D 2) 

= 2 × 3 × 10-4 × 100 × 
π
2 0.052 ( 1- 0.5 )   

= 1.18 × 10-4  J 
 
Notice the bubble has 2 surfaces. 
   

             A1 = 
π
4 D 2 , 

            A2  = ½ π D2 
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4.76 
 Assume we fill a spherical balloon from a bottle of helium gas. The helium gas 

provides work  ∫ PdV that stretches the balloon material ∫ S dA and pushes back 
the atmosphere ∫ Po dV. Write the incremental balance for dWhelium = dWstretch + 
dWatm to establish the connection between the helium pressure , the surface 
tension S and Po as a function of radius. 

 
WHe =  ∫ P dV  =  ∫ S dA  + ∫ Po dV    

 
dWHe = P dV = S dA +  Po dV 

 

dV = d (  
π
6 D3 ) = 

π
6 × 3D2 dD 

dA = d ( 2 × π × D2) = 2π (2D) dD 
 

P 
π
2 D2 dD = S (4π)D dD + Po

π
2 D2 dD 

PHe = Po + 8 
S
D 
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4.77 
 A sheet of rubber is stretched out over a ring of radius 0.25 m. I pour liquid water 

at 20oC on it so the rubber forms a half sphere (cup). Neglect the rubber mass and 
find the surface tension near the ring? 

 
 Solution: 

F ↑ = F ↓   ;   F ↑ =  SL 
The length is the perimeter, 2πr, and there is two surfaces 

S × 2 × 2πr  = mH2o g = ρH2o Vg = ρH2o× 
1
12 π (2r) 3g = ρH2o× π 

2
3 r 3 

S = ρH2o 
1
6 r2 g = 997 × 

1
6 × 0.252 × 9.81 = 101.9 N/m 
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4.78 
 Consider a window-mounted air conditioning unit used in the summer to cool 

incoming air. Examine the system boundaries for rates of work and heat transfer, 
including signs. 
Solution :   
Air-conditioner unit, steady operation with no change of temperature of AC unit.  

 
  Cool side                         Hot side 

  Inside                              Outside 

 

15°C 

25°C C 30°C 

37°C 

 
- electrical work (power) input operates unit, 
+Q rate of heat transfer from the room, 
 a larger -Q rate of heat transfer (sum of the other two energy rates) out to 
the outside air. 
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4.79 
 Consider a hot-air heating system for a home. Examine the following systems for 

heat transfer. 
 a)  The combustion chamber and combustion gas side of the heat transfer area. 
 b)  The furnace as a whole, including the hot- and cold-air ducts and chimney. 
 
 Solution: 

a)   Fuel and air enter, warm products of the combustion exit, large -Q to the 
air in the duct system, small -Q loss directly to the room. 

 
b)   Fuel and air enter, warm products exit through the chimney, cool air into 

the cold air return duct, warm air exit hot-air duct to heat the house. Small 
heat transfer losses from furnace, chimney and ductwork to the house. 
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4.80 
 Consider a household refrigerator that has just been filled up with room-

temperature food. Define a control volume (mass) and examine its boundaries for 
rates of work and heat transfer, including sign. 

  a. Immediately after the food is placed in the refrigerator 
b. After a long period of time has elapsed and the food is cold 

 Solution: 
I. C.V. Food. 

  a) short term.:   -Q from warm food to cold refrigerator air. Food cools. 
b) Long term:   -Q goes to zero after food has reached refrigerator T. 

II. C.V. refrigerator space, not food, not refrigerator system 
a) short term:  +Q from the warm food, +Q from heat leak from room into  
    cold space.  -Q (sum of both) to refrigeration system. If not equal the 
    refrigerator space initially warms slightly and then cools down to preset T. 
b) long term:  small -Q heat leak balanced by -Q to refrigeration system. 
Note: For refrigeration system CV any Q in from refrigerator space plus 

electrical W input to operate system, sum of which is Q rejected to the room. 
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4.81 
 A room is heated with an electric space heater on a winter day. Examine the 

following control volumes, regarding heat transfer and work , including sign. 
 a)  The space heater.  
 b)  Room 

c)  The space heater and the room together 
Solution: 

 a)  The space heater.  
Electrical work (power) input, and equal (after system warm up) Q out to the 
room. 

 b)  Room 
Q input from the heater balances Q loss to the outside, for steady (no 
temperature change) operation. 

c)  The space heater and the room together 
Electrical work input balances Q loss to the outside, for steady operation. 
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Rates of work 
 
4.82 
 An escalator raises a 100 kg bucket of sand 10 m in 1 minute. Determine the rate  

of work done during the process. 
  
 Solution: 

The work is a force with a displacement and force is constant:  F = mg 

W =  ∫ F dx  = F ∫ dx = F ∆x = 100 kg × 9.80665 m/s2 × 10 m  = 9807 J 
  The rate of work is work per unit time 

     
.

W = 
W
∆t = 

9807 J
60 s  = 163 W 
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4.83 
 A car uses 25 hp to drive at a horizontal level at constant 100 km/h. What is the 

traction force between the tires and the road? 
  
 Solution: 
 We need to relate the rate of work to the force and velocity 

  dW = F dx =>   
dW
dt  = W

.
 = F 

dx
dt  = FV 

     F = W
.

 / V 
   W

.
 = 25 hp = 25 × 0.7355 kW = 18.39 kW 

   V = 100 × 
1000
3600 = 27.78 m/s 

   F = W
.

 / V = (18.39 / 27.78)  kN = 0.66 kN 
 

  Units:   kW / (ms−1) = kW s m−1 = kJ s−1s m−1 = kN m m−1 = kN 
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4.84 

 A piston/cylinder of cross sectional area 0.01 m2 maintains constant pressure. It 
contains 1 kg water with a quality of 5% at 150oC. If we heat so 1 g/s liquid turns 
into vapor what is the rate of work out? 

 
Vvapor  = mvapor vg ,  Vliq = mliq vf 

mtot  = constant = mvapor mliq 

Vtot  =  Vvapor  + Vliq 

m
.

tot   = 0 = m
.

vapor + m
.

liq     ⇒        m
.

liq =  -m
.

vapor 

 
V
.

tot  =  V
.

vapor + V
.

q = m
.

vaporvg + m
.

iqvf li l

             =  m
.

vapor  (vg- vf ) = m
.

vapor vfg 

 

W
.

 = PV
.
   = P m

.
vapor vfg 

          = 475.9 × 0.001 × 0.39169 = 0.1864 kW 
        = 186 W 
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4.85 
 A crane lifts a bucket of cement with a total mass of 450 kg vertically up with a 

constant velocity of 2 m/s. Find the rate of work needed to do that. 
  Solution: 

Rate of work is force times rate of displacement. The force is due to gravity (a 
= 0) alone. 

 
.

W = FV = mg × V = 450 kg × 9.807 ms−2 × 2 ms−1 = 8826 J/s 
 

.
W = 8.83 kW 
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4.86 
 Consider the car with the rolling resistance as in problem 4.27. How fast can it 

drive using 30 hp? 
 

F = 0.006 mg 
Power  = F × V  = 30 hp = W

.
 

V = W
.

 / F =  
W
.

0.006 mg = 
30 ×0.7457 ×1000
0.006 ×1200 ×9.81 = 271.5 m/s 

 
Comment : This is a very high velocity, the rolling resistance is low relative to the 

air resistance. 
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4.87 
 Consider the car with the air drag force as in problem 4.29. How fast can it drive 

using 30 hp? 

ρ = 
1
v = 

P
RT = 

100
0.287 ×290 = 1.2015 

kg
m3   and  A =  4 m2 

Drag force: Fdrag = 0.225 A ρ V2 

Power for drag force:    W
.

drag = 30 hp × 0.7457 = 22.371 kW 

W
.

drag  = Fdrag V = 0.225 × 4  × 1.2015 × V3 

V3 = W
.

drag /(0.225 × 4  × 1.2015) = 20 688 

V = 27.452 m/s = 27.452 × 
3600
 1000 = 98.8 km/h 
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4.88 
 Consider a 1400 kg car having the rolling resistance as in problem 4.27 and air 

resistance as in problem 4.29. How fast can it drive using 30 hp? 
 

Ftot  = Frolling   + Fair = 0.006 mg + 0.225 AρV2 

m = 1400 kg , A = 4 m2 

ρ = P/RT = 1.2015 kg/m3 

W
.

 = FV = 0.006 mgV + 0.225 ρAV3 
Nonlinear in V so solve by trial and error. 

W
.

 = 30 hp = 30 × 0.7355 kW = 22.06 kW 

               = 0.0006 × 1400 × 9.807 V + 0.225 × 1.2015 × 4 V3 

          = 82.379V + 1.08135 V3 
V = 25 m/s   ⇒   W

.
 = 18 956 W 

    V = 26 m/s     W
.

 = 21 148 W 
      V = 27 m/s          W

.
 =  23508 W 

 Linear interpolation 
V = 26.4 m/s = 95 km/h 
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4.89 
 A battery is well insulated while being charged by 12.3 V at a current of 6 A. 

Take the battery as a control mass and find the instantaneous rate of work and the 
total work done over 4 hours. 

 
Solution : 

Battery thermally insulated     ⇒    Q = 0 
  For constant voltage  E and current i,  
   Power = E i = 12.3 × 6 = 73.8 W  [Units V × A = W] 

   W = ∫ power dt = power ∆t  

        = 73.8 × 4 × 60 × 60 = 1 062 720 J = 1062.7 kJ 
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4.90 
 A current of 10 amp runs through a resistor with a resistance of  15 ohms. Find the 

rate of work that heats the resistor up.  
 Solution: 

  
.

W = power = E i = R i2 = 15 × 10 × 10 = 1500 W 
 

  

R 
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4.91 
 A pressure of 650 kPa pushes a piston of diameter 0.25 m with V = 5 m/s. What is 

the volume displacement rate, the force and the transmitted power? 
 

  A = 
π
4 D2 = 0.049087 m2   

  
.
V = AV = 0049087 m2 × 5 m/s = 0.2454 m3/s 

  
.

W = power = F V = P 
.
V = 650 kPa × 0.2454 m3/s = 159.5 kW 

 
 
 

P
V  
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4.92 
 Assume the process in Problem 4.37 takes place with a constant rate of change in 

volume over 2 minutes. Show the power (rate of work) as a function of time. 
 Solution: 

  W = ∫ P dV since 2 min  = 120 secs 
  

.
W = P (∆V / ∆t) 

  (∆V / ∆t) = 0.3 / 120 = 0.0025 m3/s 
 
 

150

300

0.1 0.2 0.4

P

V

1 2

3

0.1 0.2 0.4

W

V

1 2

3
kW

0.75

0.375
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4.93 
 Air at a constant pressure in a piston cylinder is at 300 kPa, 300 K and a volume 

of 0.1 m3. It is heated to 600 K over 30 seconds in a process with constant piston 
velocity. Find the power delivered to the piston. 

 Solution: 
  Process:    P = constant :  dW = P dV     =>    

.
W = P

.
V 

  V2 = V1× (T2/T1) = 0.1 × (600/300) = 0.2 

  
.

W = P (∆V / ∆t) = 300 ×  (0.2-0.1)/30 = 1 kW 
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4.94 
 A torque of 650 Nm rotates a shaft of diameter 0.25 m with ω = 50 rad/s. What 

are the shaft surface speed and the transmitted power? 
 Solution: 
  V = ωr = ωD/2 = 50 × 0.25 / 2 = 6.25 m/s 
  Power = Tω = 650 × 50 Nm/s = 32 500 W = 32.5 kW 
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Heat Transfer rates 
 
4.95 

 The sun shines on a 150 m2 road surface so it is at 45°C. Below the 5 cm thick 
asphalt, average conductivity of 0.06 W/m K, is a layer of compacted rubbles at a 
temperature of 15°C. Find the rate of heat transfer to the rubbles. 

 
Solution : 

This is steady one dimensional conduction through the asphalt layer. 
 

 .
Q = k  A  

∆T
∆x   

    =  0.06 × 150 ×  
45-15
0.05    

    =  5400 W 
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4.96 
 A pot of steel, conductivity 50 W/m K, with a 5 mm thick bottom is filled with 

15°C liquid water. The pot has a diameter of 20 cm and is now placed on an 
electric stove that delivers 250 W as heat transfer. Find the temperature on the 
outer pot bottom surface assuming the inner surface is at 15°C. 

 
Solution : 

Steady conduction through the bottom of the steel pot. Assume the inside 
surface is at the liquid water temperature. 
.
Q = k  A  

∆T
∆x   ⇒   ∆Τ = 

.
Q ∆x / kΑ  

∆T = 250 × 0.005/(50 × 
π
4 × 0.22) = 0.796  

T = 15 + 0.796 ≅ 15.8°C 
 
 

cb  
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4.97 
 A water-heater is covered up with insulation boards over a total surface area of 3 

m2. The inside board surface is at 75°C and the outside surface is at 20°C and the 
board material has a conductivity of 0.08 W/m K. How thick a board should it be 
to limit the heat transfer loss to 200 W ? 

 
Solution : 

  
 Steady state conduction through a single layer 

board. 
.
Q cond = k  A  

∆T
∆x      ⇒     ∆x = k Α ∆Τ/

.
Q 

∆x = 0.08 × 3 ×  
75 − 20

200  = 0.066 m 
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4.98 
 You drive a car on a winter day with the atmospheric air at −15°C and you keep 

the outside front windshield surface temperature at +2°C by blowing hot air on 
the inside surface. If the windshield is 0.5 m2 and the outside convection 
coefficient is 250 W/m2K find the rate of energy loos through the front 
windshield. For that heat transfer rate and a 5 mm thick glass with k = 1.25 W/m 
K what is then the inside windshield surface temperature? 

 
Solution : 

The heat transfer from the inside must match the loss on the outer surface 
to give a steady state (frost free) outside surface temperature. .

Q conv = h A ∆Τ = 250 × 0.5 × [2 − ( −15)] 
           = 250 × 0.5 × 17 = 2125 W 
  This is a substantial amount of power. 

.
Q cond = k  A  

∆T
∆x    ⇒   ∆Τ = 

.
Q
kA ∆x 

  ∆Τ = 
2125  W

1.25 W/mK × 0.5 m2 0.005 m = 17 K 

  Tin = Tout + ∆T = 2 + 17 = 19°C 
 

 
-15 Co

Windshield
2 Co

T = ?

Warm air  
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4.99 
 A large condenser (heat exchanger) in a power plant must transfer a total of 100 

MW from steam running in a pipe to sea water being pumped through the heat 
exchanger. Assume the wall separating the steam and seawater is 4 mm of steel, 
conductivity 15 W/m K and that a maximum of 5°C difference between the two 
fluids is allowed in the design. Find the required minimum area for the heat 
transfer neglecting any convective heat transfer in the flows. 

 
Solution : 

  Steady conduction through the 4 mm steel wall. 

 
.
Q = k  A  

∆T
∆x    ⇒    Α = 

.
Q ∆x / k∆Τ 

 A = 100 × 106 × 0.004 / (15 × 5) = 480 m2 

 
  

Condensing
water

Sea
water

cb  
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4.100 
 The black grille on the back of a refrigerator has a surface temperature of 35°C with a 

total surface area of 1 m2. Heat transfer to the room air at 20°C takes place with an 
average convective heat transfer coefficient of 15 W/m2 K. How much energy can be 
removed during 15 minutes of operation? 

 
Solution : 

 
.
Q = hA ∆T; Q = 

.
Q ∆t =  hA ∆T ∆t 

  Q = 15 × 1 × (35-20) × 15 × 60 = 202500 J = 202.5 kJ 
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4.101 
 Due to a faulty door contact the small light bulb (25 W) inside a refrigerator is 

kept on and limited insulation lets 50 W of energy from the outside seep into the 
refrigerated space. How much of a temperature difference to the ambient at 20°C 
must the refrigerator have in its heat exchanger with an area of 1 m2 and an 
average heat transfer coefficient of 15 W/m2 K to reject the leaks of energy. 

 
Solution : 

 
 

.
Q tot = 25 + 50 = 75 W to go out 

   
.
Q = hA∆T = 15 × 1 × ∆T = 75 

 ∆T = 
.
Q / hA = 75/(15×1) = 5 °C 

 OR   T must be at least 25 °C 
 



   Sonntag, Borgnakke and van Wylen  

 
4.102 
 The brake shoe and steel drum on a car continuously absorbs 25 W as the car 

slows down. Assume a total outside surface area of 0.1 m2 with a convective heat 
transfer coefficient of 10 W/m2 K to the air at 20°C. How hot does the outside 
brake and drum surface become when steady conditions are reached? 

 
Solution : 

  
 

.
Q = hA∆Τ    ⇒   ∆Τ = 

.
Q / hA  

  ∆T = ( ΤBRAKE − 20 ) = 25/(10 × 0.1) = 25 °C 
             TBRAKE  = 20 + 25 = 45°C 
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4.103 
 A wall surface on a house is at 30°C with an emissivity of ε = 0.7. The 

surrounding ambient to the house is at 15°C, average emissivity of 0.9. Find the 
rate of radiation energy from each of those surfaces per unit area. 

 
Solution : 

 
.
Q /A = εσAT4,     σ =5.67  × 10 –8 

a)   
.
Q/A = 0.7 × 5.67 × 10-8 × ( 273.15 + 30)4  = 335 W/m2 

b) 
.
Q/A = 0.9 × 5.67 × 10-8 × 288.154 = 352 W/m2 

 



   Sonntag, Borgnakke and van Wylen  

 
4.104 
 A log of burning wood in the fireplace has a surface temperature of 450°C. 

Assume the emissivity is 1 (perfect black body) and find the radiant emission of 
energy per unit surface area. 

 
Solution : 

  
 

.
Q /A = 1 × σ  T4    
         = 5.67  × 10 –8 × ( 273.15 + 450)4   
         = 15505 W/m2  
         = 15.5 kW/m2 
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4.105 
 A radiant heat lamp is a rod, 0.5 m long and 0.5 cm in diameter, through which 

400 W of electric energy is deposited. Assume the surface has an emissivity of 
0.9 and neglect incoming radiation. What will the rod surface temperature be ? 

 
Solution : 

For constant surface temperature outgoing power equals electric power. .
Qrad = εσAT4   = 

.
Qel   ⇒ 

  T4  = 
.
Qel / εσA = 400 / (0.9 × 5.67 ×10 –8  × 0.5 × π × 0.005) 

            = 9.9803 ×1011 K4     ⇒    T ≅ 1000 K   OR   725 °C 
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Review Problems 
4.106 
 A vertical cylinder (Fig. P4.106) has a 61.18-kg piston locked with a pin trapping 

10 L of R-22 at 10°C, 90% quality inside. Atmospheric pressure is 100 kPa, and 
the cylinder cross-sectional area is 0.006 m2. The pin is removed, allowing the 
piston to move and come to rest with a final temperature of 10°C for the R-22. 
Find the final pressure, final volume and the work done by the R-22. 

 
Solution:  

 

R-22

Po

mp

g

 

State 1: (T, x)  from table B.4.1   
             v1 = 0.0008 + 0.9 × 0.03391 = 0.03132 m3/kg 

             m = V1/v1 = 0.010/0.03132 = 0.319 kg  

Force balance on piston gives the equilibrium pressure 

P2 = P0 + mPg/ AP = 100 + 
61.18 × 9.807
0.006 × 1000  = 200 kPa  

 
 State 2: (T,P)  in Table B.4.2   v2 = 0.13129 m3/kg 

V2 = mv2 = 0.319 kg × 0.13129 m3/kg = 0.04188 m3 = 41.88 L 

  1W2 = ⌡⌠Pequil dV = P2(V2-V1) = 200 kPa (0.04188- 0.010) m3 = 6.38 kJ 
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4.107 
 A piston/cylinder contains butane, C4H10, at 300°C, 100 kPa with a volume of 

0.02 m3. The gas is now compressed slowly in an isothermal process to 300 kPa.  
 a.   Show that it is reasonable to assume that butane behaves as an ideal gas 

during this process. 
 b.   Determine the work done by the butane during the process. 
 
 Solution: 

a) Tr1 =  
T
Tc

 = 
573.15
425.2  = 1.35;  Pr1 = 

P
Pc

 = 
100
3800 = 0.026 

 From the generalized chart in figure D.1       Z1 = 0.99 

 Tr2 =  
T
Tc

 = 
573.15
425.2  = 1.35;  Pr2 = 

P
Pc

 = 
300
3800 = 0.079 

 From the generalized chart in figure D.1       Z2 = 0.98 
      Ideal gas model is adequate for both states. 
  b) Ideal gas   T = constant  ⇒   PV = mRT = constant 

       W = ⌡⌠P dV = P1V1 ln 
P1
P2

 = 100 × 0.02 × ln 
100
300  = -2.2 kJ 
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4.108 
 A cylinder fitted with a piston contains propane gas at 100 kPa, 300 K with a 

volume of 0.2 m3. The gas is now slowly compressed according to the relation 
PV1.1 = constant to a final temperature of 340 K. Justify the use of the ideal gas 
model. Find  the final pressure and the work done during the process. 
Solution: 

The process equation and T determines state 2. Use ideal gas law to say 

 P2 = P1 ( 
T2
T1

 )
n

n-1 = 100 ( 
340
300 )

1.1
0.1  = 396 kPa 

 V2 = V1 ( 
P1
P2

 )1/n
 = 0.2 ( 

100
396 )

1/1.1
 = 0.0572 m3 

For propane Table A.2:   Tc = 370 K,   Pc = 4260 kPa,  Figure D.1  gives Z. 
 Tr1 = 0.81,  Pr1 = 0.023   =>   Z1 = 0.98   
 Tr2 = 0.92,  Pr2 = 0.093   =>   Z2 = 0.95   

Ideal gas model OK for both states, minor corrections could be used. The 
work is integrated to give Eq.4.4 
 

1W2 = ∫ P dV  = 
P2V2-P1V1

1-n  = 
(396 × 0.0572) - (100 × 0.2)

1 - 1.1  = -26.7 kJ 
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4.109 
 The gas space above the water in a closed storage tank contains nitrogen at 25°C, 

100 kPa. Total tank volume is 4 m3,  and there is 500 kg of water at 25°C. An 
additional  500 kg water is now forced into the tank. Assuming constant 
temperature throughout, find the final pressure of the nitrogen and the work done 
on the nitrogen in this process. 

 Solution: 
The water is compressed liquid and in the process the pressure goes up 
so the water stays as liquid. Incompressible  so the specific volume does 
not change. The nitrogen is an ideal gas and thus highly compressible. 
State 1:  VH2O 1 = 500 × 0.001003    = 0.5015 m3    

   VN2 1  = 4.0 - 0.5015    = 3.4985 m3 

State 2:  VN2 2  = 4.0 - 2 × 0.5015 = 2.997  m3 

Process:  T = C  gives          P1V1 = mRT = P2V2 

   PN2 2 = 100 × 
3.4985
2.997  = 116.7 kPa 

Constant temperature gives  P = mRT/V    i.e. pressure inverse in V for which 
the work term is integrated to give Eq.4.5 

  Wby N2
 = ⌡⌠

 1

 2
   PN2

dVN2
 = P1V1 ln(V2/V1) 

                     = 100 × 3.4985 × ln 
2.997
3.4985 = -54.1 kJ 
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4.110 
 Two kilograms of water is contained in a piston/cylinder (Fig. P4.110) with a 

massless piston loaded with a linear spring and the outside atmosphere. Initially 
the spring force is zero and P1 = Po = 100 kPa with a volume of 0.2 m3. If the 
piston just hits the upper stops the volume is 0.8 m3 and T = 600°C. Heat is now 
added until the pressure reaches 1.2 MPa. Find the final temperature, show the P–
V diagram and find the work done during the process. 
Solution: 

 

V 

P 

2 

3 

1 

V 
1 

P 1 

V stop

3 , 
2 
, 

 

 State 1: v1 = V/m = 0.2 / 2 = 0.1 m3/kg 

 Process:   1 → 2 → 3   or   1 → 3’ 
 State at stops: 2 or 2’ 

 v2 = Vstop/m = 0.4 m3/kg  &  T2 = 600°C  

 Table B.1.3   ⇒   Pstop = 1 MPa < P3 

 since Pstop < P3  the process is as 1 → 2 → 3 

State 3: P3 = 1.2 MPa, v3 = v2 = 0.4 m3/kg    ⇒   T3 ≅ 770°C 

W13 = W12 + W23 = 
1
2(P1 + P2)(V2 - V1) + 0 = 

1
2(100 + 1000)(0.8 - 0.2)  

      = 330 kJ 
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4.111 
 A cylinder having an initial volume of 3 m3 contains 0.1 kg of water at 40°C. The 

water is then compressed in an isothermal quasi-equilibrium process until it has a 
quality of 50%. Calculate the work done in the process splitting it into two steps. 
Assume the water vapor is an ideal gas during the first step of the process. 
Solution:    C.V.  Water 

  State 2: (40°C, x = 1)  Tbl B.1.1  => PG  = 7.384 kPa,   vG = 19.52 

  State 1:      v1 = V1/m = 3 / 0.1 = 30 m3/kg     ( > vG  ) 

  so H2O ~ ideal gas from 1-2 so since constant T 

  P1 = PG  
vG
v1

 = 7.384 × 
19.52

30  = 4.8 kPa 

  V2 = mv2 = 0.1 × 19.52 = 1.952 m3 

 
 
 
 

T C.P.

v

12

P

P C.P.

v

T
3

7.38
40

2 1

3

sat
P1

 
 

Process   T = C:    and ideal gas gives work from Eq.4.5 

 1W2 =⌡⌠
1

  2
 PdV = P1V1ln 

V2
V1

 = 4.8 × 3.0 × ln 
1.952

3  = −6.19 kJ 

 v3 = 0.001008 + 0.5 × 19.519 = 9.7605   =>   V3 = mv3 = 0.976 m3  
P = C = Pg:    This gives a work term as 

 2W3 = ⌡⌠
2

  3
 PdV = Pg (V3−V2) = 7.384(0.976 - 1.952) = −7.21 kJ 

Total work:  
  1W3 = 1W2 + 2W3 = − 6.19 − 7.21 = -13.4 kJ 
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4.112 
 Air at 200 kPa, 30°C is contained in a cylinder/piston arrangement with initial 

volume 0.1 m3 . The inside pressure balances ambient pressure of 100 kPa plus an 
externally imposed force that is proportional to V0.5. Now heat is transferred to 
the system to a final pressure of 225 kPa. Find the final temperature and the work 
done in the process. 

 Solution: 
C.V. Air. This is a control mass. Use initial state and process to find T2 

 P1   = P0 + CV1/2; 200 = 100 + C(0.1)1/2,  C = 316.23 => 

 225 = 100 + CV2
1/2    ⇒   V2 = 0.156 m3 

 P2V2 = mRT2 = 
P1V1

T1
 T2    ⇒  

T2 = (P2V2 / P1V1) T1 = 225 × 0.156 ×303.15 / (200 ×0.1) = 532 K = 258.9°C 

W12 = ∫ P dV   =  ∫ (P0 + CV1/2) dV 

                   = P0 (V2 - V1) + C  × 23 × (V2
3/2 - V1

3/2)  

                   = 100 (0.156 – 0.1) + 316.23  × 23 × (0.1563/2 – 0.13/2)  

                   = 5.6 + 6.32  = 11.9 kJ 
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4.113 
 A spring-loaded piston/cylinder arrangement contains R-134a at 20°C, 24% quality 

with a volume 50 L. The setup is heated and thus expands, moving the piston. It is 
noted that when the last drop of liquid disappears the temperature is 40°C. The 
heating is stopped when T = 130°C. Verify the final pressure is about 1200 kPa by 
iteration and find the work done in the process. 

 
Solution: 

 C.V. R-134a. This is a control mass. 
 

 

v 

P 

P 1 

P 2 

P 3 

1 

2 

3 

 

State 1: Table B.5.1    => 
v1 = 0.000817 + 0.24*0.03524 = 0.009274 
P1 = 572.8 kPa,   
m = V/ v1 = 0.050 / 0.009274 = 5.391 kg 
Process: Linear Spring    
      P = A + Bv    

  State 2:  x2 = 1, T2     ⇒        P2 = 1.017 MPa,     v2 = 0.02002 m3/kg 
  Now we have fixed two points on the process line so for final state 3: 

  P3 = P1 + 
P2 - P1
v2 - v1

 (v3 - v1) = RHS         Relation between P3 and v3 

  State 3: T3 and on process line  ⇒   iterate on P3 given T3 
   at P3 = 1.2 MPa  =>  v3 = 0.02504    => P3 - RHS = -0.0247 
   at P3 = 1.4 MPa  =>  v3 = 0.02112    => P3 - RHS = 0.3376 
  Linear interpolation gives :   

  P3 ≅ 1200 + 
0.0247

0.3376 + 0.0247 (1400-1200) = 1214 kPa 

  v3 = 0.02504 + 
0.0247

0.3376 + 0.0247 (0.02112-0.02504) = 0.02478 m3/kg 

  W13 = ∫ P dV   = 12 (P1 + P3)(V3 - V1) = 12 (P1 + P3) m (v3 - v1) 

              = 12  5.391(572.8 + 1214)(0.02478 - 0.009274) = 74.7 kJ 
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4.114 
 A piston/cylinder (Fig. P4.114) contains 1 kg of water at 20°C with a volume of 

0.1 m3. Initially the piston rests on some stops with the top surface open to the 
atmosphere, Po and a mass so a water pressure of 400 kPa will lift it. To what 
temperature should the water be heated to lift the piston?  If it is heated to 
saturated vapor find the final temperature, volume and the work, 1W2. 

 
Solution: 

(a) State to reach lift pressure of  P = 400 kPa,    v = V/m = 0.1 m3/kg  
     Table B.1.2:     vf <  v < vg = 0.4625 m3/kg 
         =>     T = T sat  = 143.63°C  
(b) State 2 is saturated vapor at 400 kPa since state 1a is two-phase. 

 
 

 

V

P

1

2

H O

Po

2

1a

 
  

      v2 = vg = 0.4625 m3/kg ,  V2  =  m v2 = 0.4625 m3,  
Pressure is constant as volume increase beyond initial volume. 

1W2 = ∫ P dV = P (V2 - V1) = Plift (V2 – V1) = 400 (0.4625 – 0.1) = 145 kJ 
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4.115 
 Two springs with same spring constant are installed in a massless piston/cylinder 

with the outside air at 100 kPa. If the piston is at the bottom, both springs are 
relaxed and the second spring comes in contact with the piston at V = 2 m3. The 
cylinder (Fig. P4.115) contains ammonia initially at −2°C, x = 0.13, V = 1 m3, 
which is then heated until the pressure finally reaches 1200 kPa. At what pressure 
will the piston touch the second spring?  Find the final temperature and the total 
work done by the ammonia. 

 
Solution : 

 P 

P 0 W 2 1 
W 3 2 

0 2 3 

1 
2 

3 

0 

V 
V

1 
cb

 

State 1:  P = 399.7 kPa    Table B.2.1 
      v = 0.00156 + 0.13×0.3106 = 0.0419 

At bottom state 0:   0 m3, 100 kPa 

State 2: V = 2 m3 and on line   0-1-2 
Final state 3:  1200 kPa, on line segment 2. 
 

 

 Slope of line 0-1-2:  ∆P/ ∆V = (P1 - P0)/∆V = (399.7-100)/1 = 299.7  kPa/ m3 

  P2 = P1 + (V2 - V1)∆P/∆V = 399.7 + (2-1)×299.7 = 699.4 kPa 
 State 3: Last line segment has twice the slope. 
  P3 = P2 + (V3 - V2)2∆P/∆V    ⇒    V3 = V2+ (P3 - P2)/(2∆P/∆V) 

  V3 = 2 + (1200-699.4)/599.4 = 2.835 m3 

  v3 = v1V3/V1 = 0.0419×2.835/1 = 0.1188    ⇒    T = 51°C 

  1W3 = 1W2 + 2W3 = 
1
2 (P1 + P2)(V2 - V1) + 

1
2 (P3 + P2)(V3 - V2) 

           = 549.6 + 793.0 = 1342.6 kJ 
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4.116 
 Find the work for Problem 3.101. 
 A piston/cylinder arrangement is loaded with a linear spring and the outside 

atmosphere. It contains water at 5 MPa, 400°C with the volume being 0.1 m3. If the 
piston is at the bottom, the spring exerts a force such that Plift = 200 kPa. The 
system now cools until the pressure reaches 1200 kPa. Find the mass of water, the 
final state (T2, v2) and plot the P–v diagram for the process. 

  
Solution : 

 P 

v 

5000

1200

200 

1 

2 

a 

? 0.05781 0  

1: 5 MPa, 400°C ⇒ v1= 0.05781 m3/kg 

m = V/v1 = 0.1/0.05781 = 1.73 kg 
Straight line:   P = Pa + Cv 

v2 = v1 
P2 - Pa
P1 - Pa

 = 0.01204 m3/kg 

v2 < vg(1200 kPa) so two-phase T2 = 188°C 

⇒  x2 = 
v2 - 0.001139

0.1622  = 0.0672 

The P-V coordinates for the two states are then: 

P1 = 5 MPa,  V1 = 0.1 m3,  P2 = 1200 kPa,  V2 = mv2 = 0.02083 m3 

  P vs. V is linear so     1W2 = ⌡⌠PdV = 
1
2 (P1 + P2)(V2 - V1) 

        = 
1
2 (5000 + 1200)(0.02083 - 0.1) = -245.4 kJ 
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Concept Problems 
 
4.117E 
  The electric company charges the customers per kW-hour. What is that in english  

units? 
 
 
 
The unit kW-hour is a rate 
multiplied with time. For the 
standard English Eng. units the 
rate of energy is in Btu/h and 
the time is in seconds. The 
integration in Eq.4.21 becomes  

 

 
 
   1 kW-hour = 3412.14 Btu/h × 1 h = 3412.14 Btu 
 
  Conversions are found in Table A.1 
 
 
4.118E 
    Work as F ∆x has units of  lbf-ft, what is that in Btu? 
 
  Conversions are found in Table A.1 

   1 lbf-ft = 1.28507 × 10-3 Btu =  
1

778 Btu 

 
4.119E 
 A work of 2.5 Btu must be delivered on a rod from a pneumatic piston/cylinder 

where the air pressure is limited to 75 psia. What diameter cylinder should I have 
to restrict the rod motion to maximum 2 ft? 

 

  W = ⌡⌠F dx = ⌡⌠P dV = ⌡⌠PA dx = PA ∆x = P 
π
4 D2 ∆x 

  D = 
4W

πP∆x = 
4 × 2.5 Btu

π × 75 psia × 2 ft = 
4 × 2.5 × 778.17 lbf-ft

π × 75 × 144 (lbf/ft2) × 2 ft  

   = 0.339 ft 
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4.120E 
 A force of 300 lbf moves a truck with 40 mi/h up a hill. What is the power? 
     
 Solution: 

 
W
.

 = F V = 300 lbf × 40 (mi/h)  

    = 12 000 × 
1609.3 × 3.28084

3600   
lbf-ft

s  
 

= 17 600 
lbf-ft

s  = 22.62 Btu/s 
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4.121E 
 A 1200 hp dragster engine drives the car with a speed of 65 mi/h. How much 

force is between the tires and the road? 
 
  Power is force times rate of displacement as in Eq.4.2 
  Power, rate of work  W

.
    =  F V = P V

.
 = T ω          

  We need the velocity in ft/s: V = 
65 × 1609.3 × 3.28084

3600  = 95.33 ft/s 

  We need power in lbf-ft/s: 1 hp = 550 lbf-ft/s 
 

   F  = W
.

 / V = 
1200 × 550

95.33  
lbf-ft/s

ft/s  = 6923 lbf  
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4.122E 
 A 1200 hp dragster engine has a drive shaft rotating at 2000 RPM. How much 

torque is on the shaft? 
 
  Power is force times rate of displacement as in Eq.4.2 
  Power, rate of work  W

.
    =  F V = P V

.
 = T ω          

  We need to convert the RPM to a value for angular velocity ω 

   ω = RPM × 
2π

60 s = 2000 × 
2π

60 s = 209.44 
rad
s  

  We need power in lbf-ft/s: 1 hp = 550 lbf-ft/s 

   T = W
.

 / ω = 
1200 hp × 550 lbf-ft/s-hp

 209.44 rad/s  = 3151 lbf-ft 

 



   Sonntag, Borgnakke and Wylen 
 

 
Simple Processes 
 
4.123E 
 A bulldozer pushes 1000 lbm of dirt 300 ft with a force of 400 lbf. It then lifts the 

dirt 10 ft up to put it in a dump truck. How much work did it do in each situation? 
 
 Solution: 

 
W = ∫ F dx = F ∆x 
     = 400 lbf × 300 ft 
     = 120 000 lbf-ft = 154 Btu 
 

 

 
W = ∫ F dz = ∫ mg dz = mg ∆Z 
     = 1000 lbm × 32.174 ft/s2 × 10 ft / (32.174 lbm-ft / s2-lbf) 
     = 10 000 lbf-ft = 12.85 Btu 
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4.124E 
 A steam radiator in a room at 75 F has saturated water vapor at 16 lbf/in.2 flowing 

through it, when the inlet and exit valves are closed. What is the pressure and the 
quality of the water, when it has cooled to 75F? How much work is done? 

 
Solution: 

 After the valve is closed no flow, constant V and m. 
 
 

v 

T 

2 

1 

75°F

1 P 

 

1: x1 = 1,    P1 = 16 lbf/in2 
          ⇒ v1 = vg1

= 24.754 ft3/lbm 

2: T2 = 75 F,   v2 = v1 = 24.754 ft3/lbm 

   P2 = Pg 2 = 0.43 lbf/in2 

  
  v2 = 24.754 = 0.01606 + x2(739.584 - 0.01606) 
      x2 = 0.0334   

  1W2 = ⌡⌠PdV = 0 
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4.125E 
 A linear spring, F = ks(x − xo), with spring constant ks = 35 lbf/ft, is stretched 

until it is 2.5 in. longer. Find the required force and work input. 
 

Solution: 
 
  F = ks(x - x0) = 35 × 2.5/12 = 7.292 lbf 

  W = ⌡⌠Fdx = ⌡⌠ks(x - x0)d(x - x0) = 
1
2 ks(x - x0)2 

            = 
1
2 × 35 × (2.5/12)2 = 0.76 lbf•ft = 9.76×10-4 Btu  
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4.126E 
 Two hydraulic cylinders maintain a pressure of 175 psia. One has a cross 

sectional area of  0.1 ft2 the other 0.3 ft2. To deliver a work of 1 Btu to the piston 
how large a displacement (V) and piston motion H is needed for each cylinder? 
Neglect Patm 

 Solution: 
 

 W = ∫ F dx = ∫ P dV  = ∫ PA dx  = PA× H = P ∆V 
 W = 1 Btu = 778.17 lbf-ft 

 ∆V = 
W
P  = 

778.17 lbf-ft
175 × 144 lbf/ft2 = 0.030 873 ft3 

Both cases the height is   H = ∆V/A 

 H1 = 
0.030873

0.1  = 0.3087 ft 

 H2 = 
0.030873

0.3  = 0.1029 ft 

 
  

cb
12

F
2F 1
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4.127E 
 A piston/cylinder has 15 ft of liquid 70 F water on top of the piston (m = 0) with 

cross-sectional area of 1 ft2, see Fig. P2.57. Air is let in under the piston that rises 
and pushes the water out over the top edge. Find the necessary work to push all 
the water out and plot the process in a P-V diagram. 

 
 Solution: 

P1 = Po + ρgH 

     = 14.696 psia + 
62.2 × 32.174 × 15

32.174 × 144  
lbm/ft3 × ft/s2 × ft

(lbm-ft/s2-lbf) (in/ft)2 

     = 21.18 psia 
∆V = H × A = 15 × 1 = 15 ft3 
1W2 = AREA = ∫ P dV = ½ (P1 + Po )(Vmax -V1) 
        = ½ (21.18 + 14.696) psia × 15 ft3 × 144 (in/ft)2 
        = 38 746 lbf-ft = 49.8 Btu 

 
 

H2O

Po

Aircb

 

V

P

2

1

P

P1

0

V V1 max  
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4.128E 
 A cylinder fitted with a frictionless piston contains 10 lbm of superheated 

refrigerant R-134a vapor at 100 lbf/in.2, 300 F. The setup is cooled at constant 
pressure until the R-134a reaches a quality of 25%. Calculate the work done in 
the process. 

  
Solution: 

Constant pressure process boundary work. State properties from Table F.10 
State 1: Table F.10.2     v1 = 0.76629 ft3/lbm;   

State 2:  Table F.10.1    v2 = 0.013331 + 0.25 × 0.46652 = 0.12996  ft3/lbm 
   Interpolated to be at 100 psia, numbers at 101.5 psia could have 
   been used. 

  1W2 = ∫ P dV = P (V2-V1) = mP (v2-v1) 

          = 10 × 100 × 
144
778 × (0.12996 - 0.76629) = -117.78 Btu 

 
 
 
 

T C.P.

v

1

2

P = 100 psia

P C.P.

v

T
100

79

3002 1

cb  
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Review Problems 
 
4.129E 
 The gas space above the water in a closed storage tank contains nitrogen at 80 F, 

15 lbf/in.2. Total tank volume is 150 ft3 and there is 1000 lbm of water at 80 F. 
An additional 1000 lbm water is now forced into the tank. Assuming constant 
temperature throughout, find the final pressure of the nitrogen and the work done 
on the nitrogen in this process. 

  
Solution: 

Water is compressed liquid, so it is incompressible 
  VH2O 1 = mv1 = 1000 × 0.016073 = 16.073 ft3 

  VN2 1  = Vtank - VH2O 1 = 150 - 16.073 = 133.93 ft3 

  VN2 2  = Vtank - VH2O 2 = 150 - 32.146 = 117.85 ft3 

  N2 is an ideal gas so 

  PN2 2 = PN2 1 × VN2 1/VN2 2 = 15 × 
133.93
117.85 = 17.046 lbf/in2 

  W12 = ⌡⌠PdV = P1V1 ln 
V2
V1

 = 
15×144×133.93

778  ln 
117.85
133.93 = -47.5 Btu 
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4.130E 
 A cylinder having an initial volume of 100 ft3 contains 0.2 lbm of water at 100 F. 

The water is then compressed in an isothermal quasi-equilibrium process until it 
has a quality of 50%. Calculate the work done in the process assuming water 
vapor is an ideal gas. 

 
Solution: 
 

 State 1:   T1,   v1 = V/m = 
100
0.2  = 500 ft3/lbm   ( > vg ) 

 since Pg = 0.95 psia, very low so water is an ideal gas from 1 to 2. 

  P1 = Pg × 
vg
v1

 = 0.950 × 
350
500  = 0.6652 lbf/in2 

V2 = mv2 = 0.2*350 = 70 ft3 

v3 = 0.01613 + 0.5×(350 - 0.01613) = 175.0 ft3/lbm 

1W2 = ⌡⌠PdV = P1V1 ln 
V2
V1

 = 0.6652 × 
144
778 × 100 ln 

70
100 = -4.33 Btu 

2W3 = P2=3 × m(v3 - v2) = 0.95 × 0.2 ×(175 - 350) ×144 / 778 = -6.16 Btu 

1W3 = - 6.16 - 4.33 =  -10.49 Btu 
 

 
 
 

T C.P.

v

12

P

P C.P.

v

T
3

0.95
100

2 1

3

sat
P1
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Polytropic Processes 
 
4.131E 
 Helium gas expands from 20 psia, 600 R and 9 ft3 to 15 psia in a polytropic 

process with n = 1.667. How much work does it give out? 
 
 Solution: 

 Process equation:       PVn = constant = P1Vn
1 = P2Vn

2 
 Solve for the volume at state 2 

V2 = V1 (P1/P2)1/n = 9 × 



20

15
0.6

   = 10.696 ft3 

 
 Work from Eq.4.4 

1W2 = 
P2V2- P1 V1

 1-n  = 
15 × 10.696 - 20 × 9

1 - 1.667  × 144 lbf-ft  

= 4223 lbf-ft = 5.43 Btu 
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4.132E  
 Consider a mass going through a polytropic process where pressure is directly 

proportional to volume (n = − 1). The process start with P = 0, V = 0 and ends 
with P = 90 lbf/in.2, V = 0.4 ft3.The physical setup could be as in Problem 2.22. 
Find the boundary work done by the mass. 

 
Solution: 
 

 

0.4

90

P

V

0
0

W

 

W  = ⌡⌠ PdV = AREA 

      = 
2
1 (P1 + P2)(V2 - V1) 

      = 
2
1 (P2 + 0)( V2 - 0) 

     = 
2
1  P2 V2 = 

2
1  × 90 × 0.4 × 144  

     = 2592 ft lbf = 3.33 Btu 
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4.133E 
 The piston/cylinder shown in Fig. P4.48 contains carbon dioxide at 50 lbf/in.2, 

200 F with a volume of 5 ft3. Mass is added at such a rate that the gas compresses 
according to the relation PV1.2 = constant to a final temperature of 350 F. 
Determine the work done during the process. 

 
Solution: 

 

From Eq. 4.4 for PVn = const ( n =/  1 ) 

 1W2 = ⌡⌠
 1

 2
 PdV = 

P2V2 - P1V1
1 - n      Assuming ideal gas, PV = mRT 

 1W2 = 
mR(T2 - T1)

1 - n  ,  But mR = 
P1V1

T1
 = 

50 × 144 × 5
659.7 × 778  = 0.07014 Btu/R 

 1W2 = 
0.07014(809.7 - 659.7)

1 - 1.2  = -52.605 Btu 
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4.134E 
 Find the work for Problem 3.156E.  

 
Solution: 

State 1:  Table F.9         P1 = 274.6 lbf/in2,   v1 = 0.1924 ft3/lbm 

Process:  Pv = C = P1v1 = P2v2    ⇒    1w2 = ⌡⌠Pdv = C ∫ v-1 dv = C ln 
v2
v1

 

State 2:  P2 = 30 lbf/in2;   v2 = 
v1P1
P2

 = 0.1924 × 274.6 / 30 = 1.761 ft3/lbm 

 1w2 = P1v1 ln 
v2
v1

 = P1v1 ln 
P1
P2

 = 274.6 × 0.1924 × 144 ln 
274.6

30  

  = 16845 ft•lbf/lbm = 21.65 Btu/lbm 
 

 

v

P

v

T

1
2

1

2

 
 

 

 
   Notice T is not constant. It is not an ideal gas in this range. 
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Multi-step Processes, Other Types of Work 
 
4.135E 
 Consider a two-part process with an expansion from 3 to 6 ft3 at a constant 

pressure of 20 lbf/in.2 followed by an expansion from 6 to 12 ft3 with a linearly 
rising pressure from 20 lbf/in.2 ending at 40 lbf/in.2. Show the process in a P-V 
diagram and find the boundary work. 
Solution: 

 By knowing the pressure versus volume variation the work is found. 
 

 

3 6 12

V

P

20

40

2

3

1

 

1W3 = 1W2 + 2W3 

         = ⌡⌠
 1

 2
 PdV + ⌡⌠

 2

 3
 PdV 

         = P1 (V2 – V1)  

             + 
2
1  (P2 + P3)(V3-V2) 

  W = 20 × 144 × (6 - 3) +  
1
2 (20 + 40)(12 - 6) × 144  

       = 8640 + 25 920 = 34 560 ft lbf. 
       = (34 560 / 778) = 44.42 Btu 
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4.136E 
 A piston/cylinder has 2 lbm of R-134a at state 1 with 200 F, 90 lbf/in.2, and is 

then brought to saturated vapor, state 2, by cooling while the piston is locked with 
a pin. Now the piston is balanced with an additional constant force and the pin is 
removed. The cooling continues to a state 3 where the R-134a is saturated liquid. 
Show the processes in a P-V diagram and find the work in each of the two steps, 1 
to 2 and 2 to 3.  
Solution : 

C.V. R-134a    This is a control mass. 
Properties from table F.10.1 and 10.2 
State 1: (T,P)    =>   v = 0.7239 ft3/lbm 
State 2 given by fixed volume and x2 = 1.0 
State 2:  v2 = v1 = vg   =>   1W2 = 0 

  T2 = 50 + 10 × 
7921.06632.0
7921.07239.0

−
−  = 55.3 F 

  P2 = 60.311 + (72.271 - 60.311) × 0.5291 = 66.64 psia  
State 3 reached at constant P (F = constant) state 3:  P3 = P2 and   

  v3 = vf = 0.01271 + (0.01291 – 0.01271) × 0.5291 = 0.01282 ft3/lbm  
  1W3 = 1W2 + 2W3 = 0 + 2W3 =  ∫P dV =  P(V3 -V2) = mP(v3 -v2)  

              = 2× 66.64 (0.01282 - 0.7239) 
144
778 = -17.54 Btu 

 
 P

V

1

23

cb
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4.137E 
 A cylinder containing 2 lbm of ammonia has an externally loaded piston. Initially 

the ammonia is at 280 lbf/in.2, 360 F and is now cooled to saturated vapor at 105 
F, and then further cooled to 65 F, at which point the quality is 50%. Find the 
total work for the process, assuming a piecewise linear variation of P versus V. 

Solution: 
 

280 

229 

118 

360 F

105 F
65 F

v

P
1

2

3

 

State 1:  (T, P)    Table F.8.2 
      v1 = 1.7672 ft3/lbm  
State 2: (T, x)     Table F.8.1 sat. vap. 
     P2 = 229 psia,  v2 = 1.311 ft3/lbm  
State 3: (T, x)        P3 = 118 psia, 
v3 = (0.02614+2.52895)/2 = 1.2775 

W13 =  ⌡⌠
1

3
 PdV  ≈    (

P1 + P2
2 )m(v2 - v1) + (

P2 + P3
2 )m(v3 - v2) 

    = 2[(
280 + 229

2 )(1.311 - 1.7672) + (
229 + 118

2 )(1.2775 - 1.311)] 
144
778  

    = -45.1 Btu 
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4.138E 
 A 1-ft-long steel rod with a 0.5-in. diameter is stretched in a tensile test. What is 

the required work to obtain a relative strain of 0.1%?  The modulus of elasticity of 
steel is 30 × 106 lbf/in.2. 

 
Solution: 

  -1W2 = 
AEL0

2 (e)2,  A = 
π
4 (0.5)2 =  

π
16  in2 

  -1W2 = 
1
2 (

π
16) 30×106 × 1 × (10-3)2 = 2.94 ft•lbf 
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Rates of Work 
 
4.139E 
 An escalator raises a 200 lbm bucket of sand 30 ft in 1 minute. Determine the 

total amount of work done and the instantaneous rate of work during the process. 
 

Solution: 

  W = ⌡⌠Fdx = F⌡⌠dx = F ∆x  

      = 200 × 30 = 6000 ft lbf  = (6000/778) Btu = 7.71 Btu 
  

.
W = W / ∆t = 7.71 / 60 = 0.129 Btu/s 
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4.140E 
 A piston/cylinder of diameter 10 inches moves a piston with a velocity of 18 ft/s. 

The instantaneous pressure is 100 psia. What is the volume displacement rate, the 
force and the transmitted power? 

 
  Solution: 

Rate of work is force times rate of displacement. The force is pressure times 
area. 

 F = PA = P π D2/4 = 100 lbf/in2 × (π/4) 102 in2 = 7854 lbf 

 
.

W = FV = 7854 lbf × 18 ft s−1 = 141 372 lbf-ft/s = 181.7 Btu/s 
 
 

P
V  
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Heat Transfer Rates 
 
4.141E 
 The sun shines on a 1500 ft2 road surface so it is at 115 F. Below the 2 inch thick 

asphalt, average conductivity of 0.035 Btu/h ft F, is a layer of compacted rubbles 
at a temperature of 60 F. Find the rate of heat transfer to the rubbles.  

 
Solution: 

 
 .

Q = k  A  
∆T
∆x   

    =  0.035 × 1500 × 
115 − 60

2/12    

    = 17325 Βtu/h 
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4.142E 
 A water-heater is covered up with insulation boards over a total surface area of 30 

ft2. The inside board surface is at 175 F and the outside surface is at 70 F and the 
board material has a conductivity of 0.05 Btu/h ft F. How thick a board should it 
be to limit the heat transfer loss to 720 Btu/h ?  

 
Solution: 

 
 Steady state conduction through a single layer 

board. 
.
Q cond = k  A  

∆T
∆x      ⇒     ∆x = k Α ∆Τ/

.
Q 

 ∆x = 0.05 × 30 (175 -70) / 720  
     = 0.219 ft = 2.6 in 
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4.143E 
 The black grille on the back of a refrigerator has a surface temperature of 95 F 

with a total surface area of 10 ft2. Heat transfer to the room air at 70 F takes place 
with an average convective heat transfer coefficient of 3 Btu/h ft2 R. How much 
energy can be removed during 15 minutes of operation?  

 
Solution: 

 
 

.
Q = hΑ ∆T;      Q = 

.
Q ∆t =  hA ∆T ∆t 

 Q = 3 (Btu/h ft2 R) × 10  ft2 × (95 –70) F × (15/60) h =  187.5 Btu 
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CHAPTER 5 CORRESPONDENCE TABLE 
 
 The correspondence between this problem set and 5th edition chapter 5 problem set. 
 Study guide problems 5.1-5.19 are all new 
 

New 5th New 5th New 5th New 5th 
20 1 50 28 80 new 110 new 
21 4 51 new 81 new 111 84 
22 2mod 52 17 82 new 112 77 
23 3 53 new 83 new 113 30 
24 new 54 27 84 new 114 54 
25 5 55 51 85 67 mod 115 82 
26 new 56 53 86 new 116 new 
27 new 57 40 87 68 mod 117 89 
28 6 mod 58 37 88 62 118 87 
29 new 59 44 89 72 mod 119 new 
30 7 mod 60 42 90 63 120 90 
31 new 61 new 91 new 121 new 
32 8 mod 62 38 92 new 122 86 
33 9 mod 63 39 93 79 123 new 
34 new 64 20 94 new 124 new 
35 10 mod 65 23 mod 95 64 125 new 
36 new 66 43 96 new 126 22 
37 12 67 24 97 65 127 29 
38 14 68 45 98 new 128 57 
39 11 69 new 99 new 129 35 
40 new 70 new 100 new 130 31 
41 13 71 49 mod 101 69 131 32 
42 15 72 55 102 new 132 48 
43 21 73 36 103 new 133 56 
44 new 74 new 104 74 134 18 
45 new 75 58 105 76 135 new 
46 new 76 60 106 new 136 83 
47 26 77 new 107 66 137 new 
48 41 78 59 108 new 138 85 
49 new 79 61 109 46   
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 The english unit problem set corresponds to the 5th edition as 
 

New 5th New 5th New 5th New 5th 
139 new 151 107 163 124 175 127 
140 new 152 108 164 119 176 new 
141 new 153 106 165 new 177 131 
142 new 154 new 166 120 178 132 
143 new 155 112 167 new 179 135 
144 new 156 115 168 122 180 new 
145 new 157 111 169 121 181 136 
146 102 158 110 170 new 182 134 
147 103 159 109 171 125   
148 104 mod 160 113 172 130   
149 105 mod 161 114 173 129   
150 104 mod 162 118 174 123   
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Concept-Study Guide Problems 
 
5.1 
  What is 1 cal in SI units and what is the name given to 1 N-m? 
 
 
  Look in the conversion factor table A.1 under energy: 
 

   1 cal (Int.)  = 4.1868 J = 4.1868 Nm = 4.1868 kg m2/s2 
 
  This was historically defined as the heat transfer needed to bring 1 g of liquid water 

from 14.5oC to 15.5oC, notice the value of the heat capacity of water in Table A.4 
 
   1 N-m = 1 J  or      Force times displacement = energy = Joule  
  
 
5.2 
 In a complete cycle what is the net change in energy and in volume? 
 
  For a complete cycle the substance has no change in energy and therefore no storage, 
  so the net change in energy is zero. 

  For a complete cycle the substance returns to its beginning state, so it has no change in 
specific volume and therefore no change in total volume. 

 
 
5.3 
  Why do we write ∆E or E2 – E1 whereas we write 1Q2 and 1W2? 
 

∆E or E2 – E1  is the change from state 1 to state 2 and depends only on states 1 
and 2 not upon the process between 1 and 2. 

1Q2 and 1W2  are amounts of energy transferred during the process between 
1 and 2 and depend on the process path. 
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5.4 
 When you wind a spring up in a toy or stretch a rubber band what happens in terms of 

work, energy and heat transfer? Later when they are released, what happens then? 
 
  In both processes work is put into the device and the energy is stored as potential 

energy. If the spring or rubber is inelastic some of the work input goes into internal 
energy (it becomes warmer) and not its potential energy and being warmer than the 
ambient air it cools slowly to ambient temperature. 

 
  When the spring or rubber band is released the potential energy is transferred back 

into work given to the system connected to the end of the spring or rubber band. If 
nothing is connected the energy goes into kinetic energy and the motion is then 
dampened as the energy is transformed into internal energy. 

 
 
5.5 
 Explain in words what happens with the energy terms for the stone in Example 5.2. What 

would happen if it were a bouncing ball falling to a hard surface? 
 
  In the beginning all the energy is potential energy associated with the gravitational 

force. As the stone falls the potential energy is turned into kinetic energy and in the 
impact the kinetic energy is turned into internal energy of the stone and the water. Finally 
the higher temperature of the stone and water causes a heat transfer to the ambient until 
ambient temperature is reached. 

 
  With a hard ball instead of the stone the impact would be close to elastic transforming 

the kinetic energy into potential energy (the material acts as a spring) that is then turned 
into kinetic energy again as the ball bounces back up. Then the ball rises up transforming 
the kinetic energy into potential energy (mgZ) until zero velocity is reached and it starts 
to fall down again. The collision with the floor is not perfectly elastic so the ball does not 
rise exactly up to the original height loosing a little energy into internal energy (higher 
temperature due to internal friction) with every bounce and finally the motion will die 
out. All the energy eventually is lost by heat transfer to the ambient or sits in lasting 
deformation (internal energy) of the substance. 

 



   Sonntag, Borgnakke and van Wylen 

 
5.6 
 Make a list of at least 5 systems that store energy, explaining which form of energy. 
 

   A spring that is compressed. Potential energy   (1/2)kx2 
   A battery that is charged. Electrical potential energy.   V Amp h 
   A raised mass (could be water pumped up higher) Potential energy mgH 
   A cylinder with compressed air. Potential (internal) energy like a spring. 
   A tank with hot water. Internal energy  mu 

   A fly-wheel. Kinetic energy (rotation)    (1/2)Iω2 

   A mass in motion. Kinetic energy (1/2)mV2 
    
 
5.7 
 A 1200 kg car is accelerated from 30 to 50 km/h in 5 s. How much work is that? If you 

continue from 50 to 70 km/h in 5 s is that the same? 
 
  The work input is the increase in kinetic energy. 

   E2 – E1 = (1/2)m[V2
2 - V2

1] =  1W2  

     = 0.5 × 1200 kg [502 – 302] 



km

h
2
 

     = 600 [ 2500 – 900 ] kg 



1000 m

3600 s
2
 = 74 074 J = 74.1 kJ 

  The second set of conditions does not become the same 

   E2 – E1 = (1/2)m[V2
2 - V2

1] = 600 [ 702 – 502 ] kg 



1000 m

3600 s
2
 = 111 kJ 
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5.8 
 A crane use 2 kW to raise a 100 kg box 20 m. How much time does it take? 
   
 

  

Power = W
.

 = FV = mgV = mg
L
t  

 

t = 
mgL
W
.  = 

100 kg 9.807 m/s2 20 m 
2000 W  = 9.81 s 

 
 
 
5.9 

 Saturated water vapor has a maximum for u and h at around 235oC. Is it similar for other 
substances? 

 
  Look at the various substances listed in appendix B. Everyone has a maximum u and h 

somewhere along the saturated vapor line at different T for each substance. This means 
the constant u and h curves are different from the constant T curves and some of them 
cross over the saturated vapor line twice, see sketch below. 

 
 
 
Constant h lines are 
similar to the constant 
u line shown. 
 
 
 

P C.P.

v

T C.P.

v

T

P = C

u = C

u = C

 

 
 
  Notice the constant u(h) line becomes parallel to the constant T lines in the 

superheated vapor region for low P where it is an ideal gas. In the T-v diagram the 
constant u (h) line becomes horizontal. 
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5.10 
 A pot of water is boiling on a stove supplying 325 W to the water. What is the rate of 

mass (kg/s) vaporizing assuming a constant pressure process? 
 
  To answer this we must assume all the power goes into the water and that the 

process takes place at atmospheric pressure 101 kPa, so T = 100oC.  
     

 Energy equation 
 
dQ = dE + dW = dU + PdV  = dH = hfg dm 
 
 
dQ
dt  =  hfg 

dm
dt  

  

 
dm
dt  = 

.
Q
hfg

 = 
325 W

2257 kJ/kg = 0.144 g/s  

 
The volume rate of increase is 
dV
dt  = 

dm
dt  vfg = 0.144 g/s × 1.67185 m3/kg 

      = 0.24 × 10-3 m3/s = 0.24 L/s  
 
 
 
5.11 
 A constant mass goes through a process where 100 W of heat transfer comes in and 

100 W of work leaves. Does the mass change state? 
 
  Yes it does. 
  As work leaves a control mass its volume must go up, v increases 

 As heat transfer comes in at a rate equal to the work out means u is constant if 
there are no changes in kinetic or potential energy. 
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5.12 

 I have 2 kg of liquid water at 20oC, 100 kPa. I now add 20 kJ of energy at a constant 
pressure. How hot does it get if it is heated?  How fast does it move if it is pushed by a 
constant horizontal force? How high does it go if it is raised straight up? 

 
  a)   Heat at 100 kPa.      
        Energy equation:    
   E2 – E1 =  1Q2 – 1W2 = 1Q2 – P(V2 – V1) = H2 – H1= m(h2 – h1) 
           h2 = h1 + 1Q2/m = 83.94 + 20/2 = 94.04 kJ/kg 

   Back interpolate in Table B.1.1: T2 = 22.5oC 

         (We could also have used ∆T = 1Q2/mC = 20 / (2*4.18) = 2.4oC) 
  b)  Push at constant P. It gains kinetic energy. 
 

   0.5 m V2
2 = 1W2  

    V2 = 2 1W2/m = 2 × 20 × 1000 J/2 kg = 141.4 m/s 
  c)  Raised in gravitational field 
   m g Z2 = 1W2 

    Z2 = 1W2/m g = 
20 000 J

2 kg × 9.807 m/s2 = 1019 m 
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5.13 

 Water is heated from 100 kPa, 20oC to 1000 kPa, 200oC. In one case pressure is raised 
at T = C, then T is raised at P = C. In a second case the opposite order is done. Does 
that make a difference for  1Q2 and 1W2? 

 
  Yes it does. Both 1Q2 and 1W2 are process dependent. We can illustrate the 

work term in a P-v diagram. 
 
     P

T

VL
Cr.P.

S
1000 a

20 200

1
2

100

 

  

 
 

 
 
 

T C.P.

v

a

P

v

a

180 C

2 2

20 C 20

200

1100
1000 200 C 100

1553 kPa
1000

1
b

b

 
 
 
  In one case the process proceeds from 1 to state “a” along constant T then from 

“a” to state 2 along constant P. 
  The other case proceeds from 1 to state “b” along constant P and then from “b” 

to state 2 along constant T. 
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5.14 

  Two kg water at 120oC with a quality of 25% has its temperature raised 20oC in a 
constant volume process. What are the new quality and specific internal energy? 

 
  Solution: 
 

  State 1 from Table B.1.1 at 120oC 

    v = vf  + x vfg  = 0.001060 + 0.25 × 0.8908 = 0.22376 m3/kg 

  State 2 has same v at 140oC also from Table B.1.1 

   x = 
v - vf
vfg

  = 
0.22376 - 0.00108

0.50777   = 0.4385 

 
   u =  uf  + x ufg  = 588.72 + 0.4385 × 1961.3 = 1448.8 kJ/kg  
 

 
 
 

T C.P.

v

P C.P.

v

T
198.5
361.3

120
140

120 C

140 C
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5.15 

  Two kg water at 200 kPa with a quality of 25% has its temperature raised 20oC in a 
constant pressure process. What is the change in enthalpy? 

 
  Solution: 
 
  State 1 from Table B.1.2 at 200 kPa 

    h = hf  + x hfg  = 504.68 + 0.25 × 2201.96 = 1055.2 kJ/kg 

  State 2 has same P from Table B.1.2 at 200 kPa 

   T2 = Tsat + 20 = 120.23 + 20 = 140.23oC    
  so state 2 is superheated vapor (x = undefined) from Table B.1.3 

   h2 = 2706.63 + (2768.8 – 2706.63)
20

150 - 120.23 = 2748.4 kJ/kg 

 
   h2 – h1 = 2748.4 – 1055.2 = 1693.2 kJ/kg 
 

 
 
 

T C.P.

v

200 kPa

P C.P.

v

T
200

120
140

120.2 C

140 C

 
 
 
5.16 
 You heat a gas 10 K at P = C. Which one in table A.5 requires most energy? Why? 
 
  A constant pressure process in a control mass gives (recall Eq.5.29) 
    1q2 = u2 − u1 + 1w2 = h2 − h1 ≈ Cp ∆T 
 
  The one with the highest specific heat is hydrogen, H2. The hydrogen has the 

smallest mass but the same kinetic energy per mol as other molecules and thus the 
most energy per unit mass is needed to increase the temperature. 
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5.17 
 Air is heated from 300 to 350 K at V = C. Find 1q2?  What if from 1300 to 1350 K? 
 

Process:  V = C   1W2 = Ø 
 
Energy Eq.: u2 − u1 = 1q2 – 0  1q2 = u2 − u1  

 
 Read the u-values from Table A.7.1 

a) 1q2 = u2 − u1 = 250.32 – 214.36 = 36.0 kJ/kg 

b) 1q2 = u2 − u1 = 1067.94 – 1022.75 = 45.2 kJ/kg 
 

case a) Cv ≈ 36/50 = 0.72 kJ/kg K , see A.5 
 

case b) Cv ≈ 45.2/50 = 0.904 kJ/kg K (25 % higher) 
 
 
5.18 
 A mass of 3 kg nitrogen gas at 2000 K, V = C, cools with 500 W. What is dT/dt? 
 

Process:    V = C    1W2= 0  
 
dE
dt  = 

dU
dt  = m

dU
dt  = mCv 

dT
dt  = Q

.
 – W = Q

.
 = -500 W 

 

Cv 2000 = 
du
dT =  

∆u
∆T = 

u2100 - u1900
2100-1900  =  

1819.08 - 1621.66
200  = 0.987 kJ/kg K 

 

  
dT
dt  = 

Q
.

mCv
 = 

-500 W
3 × 0.987 kJ/K = -0.17 

K
s  

 
 Remark: Specific heat from Table A.5 has Cv 300 = 0.745 kJ/kg K which is nearly 

25% lower and thus would over-estimate the rate with 25%. 
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5.19 

 A drag force on a car, with frontal area A = 2 m2, driving at 80 km/h in air at 20oC is  
Fd = 0.225 A ρairV2. How much power is needed and what is the traction force?  

 
W
.

 = FV 
 

V = 80 
km
h  = 80 × 

1000
3600 ms-1 = 22.22 ms-1 

 ρAIR = 
P

RT = 
101

0.287 × 293 = 1.20 kg/m3 

 

F  = 0.225 AρV2 = 0.225 × 2 × 1.2 × 22.222 = 266.61 N d

W
.

 = FV = 266.61 N × 22.22 m/s = 5924 W = 5.92 kW 
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Kinetic and Potential Energy 
 
5.20 
 A hydraulic hoist raises a 1750 kg car 1.8 m in an auto repair shop. The hydraulic 

pump has a constant pressure of 800 kPa on its piston. What is the increase in 
potential energy of the car and how much volume should the pump displace to deliver 
that amount of work? 

Solution: C.V. Car.  
No change in kinetic or internal energy of the car, neglect hoist mass. 
 E2 – E1 = PE2 - PE1 = mg (Z2 – Z1)  

  = 1750 × 9.80665 × 1.8 = 30 891  J 
  

 The increase in potential energy is work into car 
from pump at constant P. 
 
W = E2 – E1 = ∫ P dV = P ∆V  ⇒ 
 

∆V = 
E2 – E1

P  = 
30891

800 × 1000 = 0.0386 m3  
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5.21 
 A piston motion moves a 25 kg hammerhead vertically down 1 m from rest to a 

velocity of 50 m/s in a stamping machine. What is the change in total energy of the 
hammerhead? 

Solution:  C.V.  Hammerhead 
The hammerhead does not change internal energy (i.e. same P, T), but it does have 
a change in kinetic and potential energy. 
 

E2 – E1 = m(u2 – u1) + m[(1/2)V2 
2 – 0] + mg (h2  - 0) 

 = 0 + 25 × (1/2) × 502 + 25 × 9.80665 × (-1) 
 = 31250 – 245.17 = 31005 J = 31 kJ 
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5.22 
 Airplane takeoff from an aircraft carrier is assisted by a steam driven piston/cylinder 

device with an average pressure of 1250 kPa. A 17500 kg airplane should be 
accelerated from zero to a speed of 30 m/s with 30% of the energy coming from the 
steam piston. Find the needed piston displacement volume. 

Solution:  C.V. Airplane. 
No change in internal or potential energy; only kinetic energy is changed. 

 E2 – E1 = m (1/2) (V2
2 - 0) = 17500 × (1/2) × 302 = 7875 000 J = 7875 kJ 

The work supplied by the piston is 30% of the energy increase. 
  

 
  

W = ∫ P dV = Pavg  ∆V = 0.30 (E2 – E1)  
     = 0.30 × 7875 = 2362.5 kJ 
 

∆V = 
W

Pavg
 = 

2362.5
1250  = 1.89 m3 
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5.23 
 Solve Problem 5.22, but assume the steam pressure in the cylinder starts at 1000 kPa, 

dropping linearly with volume to reach 100 kPa at the end of the process. 
Solution:  C.V.  Airplane. 
 

  
E2 – E1 = m (1/2) (V2

2  - 0)  

            = 3500 × (1/2) × 302  
            = 1575000 J = 1575 kJ 
W = 0.25(E2 – E1) = 0.25 × 1575 = 393.75 kJ 

W = ∫ P dV = (1/2)(Pbeg + Pend) ∆V 

P
1

2

V

W

1000

100

 
 

∆V = 
W

Pavg
 = 

2362.5
1/2(1000 + 100)  = 4.29 m3 
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5.24 
   A 1200 kg car accelerates from zero to 100 km/h over a distance of 400 m. The road at 

the end of the 400 m is at 10 m higher elevation. What is the total increase in the car 
kinetic and potential energy? 

 
 Solution: 
 

 

∆KE = ½ m (V2
2 - V2

1) 

V2 = 100 km/h = 
100 × 1000

3600  m/s  

      = 27.78 m/s 
 

 

 
 

∆KE = ½ ×1200 kg × (27.782 – 02) (m/s)2 = 463 037  J = 463 kJ 
 

∆PE = mg(Z2 – Z1) = 1200 kg × 9.807 m/s2 ( 10 - 0 ) m = 117684 J = 117.7 kJ 
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5.25 
 A 25 kg piston is above a gas in a long vertical cylinder. Now the piston is released 

from rest and accelerates up in the cylinder reaching the end 5 m higher at a velocity 
of 25 m/s. The gas pressure drops during the process so the average is 600 kPa with an 
outside atmosphere at 100 kPa. Neglect the change in gas kinetic and potential energy, 
and find the needed change in the gas volume. 
Solution:   

C.V. Piston 
(E2 – E1)PIST. = m(u2 – u1) + m[(1/2)V2 

2 – 0] + mg (h2  – 0) 

           = 0 + 25 × (1/2) × 252 + 25 × 9.80665 × 5 
           = 7812.5 + 1225.8 = 9038.3 J = 9.038 kJ 

Energy equation for the piston is:  
  E2 – E1  = Wgas - Watm = Pavg  ∆Vgas – Po  ∆Vgas 

(remark ∆Vatm = – ∆Vgas so the two work terms are of opposite sign) 
  ∆Vgas = 9.038/(600 – 100) = 0.018 m3 

 
 
 V

H
Po

g

 
 

 
 

P
1

2

V

Pavg
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5.26 
   The rolling resistance of a car depends on its weight as:  F = 0.006 mg. How far will a 

car of 1200 kg roll if the gear is put in neutral when it drives at 90 km/h on a level 
road without air resistance? 

 
 Solution: 

The car decreases its kinetic energy to zero due to the force (constant) acting over the 
distance. 
 

 m (1/2V2
2 –1/2V2

1) = -1W2 = -∫ F dx  = -FL 

V2 = 0,    V1 = 90 
km
h  = 

90 ×1000
3600  ms-1 = 25 ms-1 

 

-1/2 mV2
1 = -FL = - 0.006 mgL 

 

  L = 
0.5 V2

1 
0.0006g = 

0.5×252 
0.006×9.807  

m2/s2

m/s2  = 5311 m 

 
Remark:  Over 5 km!   The air resistance is much higher than the rolling resistance so 
this is not a realistic number by itself. 
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5.27 
   A mass of 5 kg is tied to an elastic cord, 5 m long, and dropped from a tall bridge. 

Assume the cord, once straight, acts as a spring with k = 100 N/m. Find the velocity of 
the mass when the cord is straight (5 m down). At what level does the mass come to 
rest after bouncing up and down? 

 
 Solution: 

Let us assume we can neglect the cord mass and motion. 
 

1: V1 = 0,     Z1= 0   2 : V2,  Z2= -5m 

3: V3 = 0,    Z3= -L , Fup = mg = ks  ∆L  
 

1  2 :   ½ mV2
1 + mg Z1 = ½ V2

2 + mgZ2 

 
Divide by mass and left hand side is zero so  

½ V2
2  + g Z2 = 0  

V2 = (-2g Z2)1/2 = ( -2 ×9.807 × (-5)) 1/2 = 9.9 m/s 
State 3:  m is at rest so Fup = Fdown 

 
  

            ks  ∆L  = mg  

∆L = 
mg
ks

 = 
5 ×9.807

100   
kg ms-2

Nm-1  = 0.49 m 

L = Lo + ∆L = 5 + 0.49 = 5.49 m 

So:   Z2 = -L = - 5.49 m 

 

�
�
�

m

V

BRIDGE
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Properties (u, h) from General Tables 
 
 
5.28 
 Find the missing properties. 
 a. H2O  T = 250°C, v = 0.02 m3/kg  P = ?  u = ? 

 b. N2  T = 120 K, P = 0.8 MPa  x = ?  h = ? 

 c.  H2O   T = −2°C, P = 100 kPa  u = ?  v = ? 

 d.  R-134a  P = 200 kPa, v = 0.12 m3/kg   u = ?  T = ? 
Solution: 
a) Table B.1.1  at  250°C:     vf < v < vg       ⇒     P = Psat = 3973 kPa 

 x = (v - vf)/ vfg = (0.02 – 0.001251)/0.04887 = 0.38365 

 u = uf + x ufg = 1080.37 + 0.38365 × 1522.0 = 1664.28 kJ/kg 

 
b)  Table B.6.1     P is lower than Psat so it is super heated vapor 

   =>  x = undefined    and we find the state in Table B.6.2  
 Table B.6.2:    h =  114.02 kJ/kg 
 
c) Table B.1.1 :  T < Ttriple point    =>  B.1.5:  P > Psat  so compressed solid 

  u ≅ ui = -337.62 kJ/kg    v ≅ vi = 1.09×10-3 m3/kg 

 approximate compressed solid with saturated solid properties at same T. 
 
d) Table B.5.1 v > vg   superheated vapor   =>  Table B.5.2. 
     T ~ 32.5°C = 30 + (40 – 30) × (0.12 – 0.11889)/(0.12335 - 0.11889) 
     u = 403.1 + (411.04 – 403.1) × 0.24888 = 405.07 kJ/kg 
 

P

T

v

V

L
S

C.P.

a
b

c d

 

P C.P.

v

T C.P.

v

Ta
d

c

b

d
a

c

b

P = C
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5.29 
 Find the missing properties of  T, P, v, u, h and x if applicable and plot the location of 

the three states as points in the T-v and the P-v diagrams 
  a. Water at 5000 kPa, u = 800 kJ/kg 
  b. Water at 5000 kPa, v = 0.06 m3/kg  

  c. R-134a at 35oC, v = 0.01 m3/kg 
 Solution: 
 a)     Look in Table B.1.2 at 5000 kPa 

   u < uf  = 1147.78      =>      compressed liquid 

  Table B.1.4:       between 180 oC  and  200 oC 

  T = 180 + (200 - 180) 
800 - 759.62

848.08 - 759.62 = 180 + 20*0.4567 = 189.1 C 

  v = 0.001124 + 0.4567 (0.001153 - 0.001124) = 0.001137 
 
 b)     Look in Table B.1.2 at 5000 kPa 
   v > vg = 0.03944      =>      superheated vapor 
  Table B.1.3:      between 400 oC  and  450 oC. 

  T = 400 + 50*(0.06 - 0.05781)/(0.0633 - 0.05781)  
     = 400 + 50*0.3989 = 419.95 oC 

  h = 3195.64 + 0.3989 *(3316.15 - 3195.64) = 3243.71 
 
 c)     B.5.1:     vf  < v < vg 

    =>    2-phase,     P = Psat =  887.6 kPa,  

  x = (v - vf ) / vfg  = (0.01 - 0.000857)/0.02224 = 0.4111 

  u = uf  + x ufg = 248.34 + 0.4111*148.68 = 309.46 kJ/kg 
 

 
 
States shown are placed 

relative to the 
two-phase 
region, not to 
each other. 

 

P C.P.

v

T C.P.

v

Ta b
ca

b
P = const.

c
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5.30 
 Find the missing properties and give the phase of the ammonia, NH3. 

  a.  T = 65oC, P = 600 kPa  u = ?   v = ? 

  b.  T = 20oC, P = 100 kPa  u = ?   v = ?   x = ? 

  c.  T = 50oC, v = 0.1185 m3/kg u = ?   P = ?   x = ? 
  
 Solution: 

a) Table B.2.1   P < Psat    =>  superheated vapor  Table B.2.2: 

     v = 0.5 × 0.25981 + 0.5 × 0.26888 = 0.2645 m3/kg 
     u = 0.5 × 1425.7 + 0.5 × 1444.3 = 1435 kJ/kg 
 
b) Table B.2.1: P < Psat  =>  x = undefined, superheated vapor, from B.2.2: 

   v = 1.4153 m3/kg ;    u = 1374.5 kJ/kg 
 

c)  Sup. vap. ( v > vg)  Table B.2.2.   P = 1200 kPa, x = undefined 

            u =  1383 kJ/kg 
 

 
 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 
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5.31 
  Find the phase and missing properties of P, T, v, u, and x. 
   a.  Water at 5000 kPa, u = 1000 kJ/kg (Table B.1 reference) 

   b.  R-134a  at  20oC, u = 300 kJ/kg 
   c.  Nitrogen at 250 K, 200 kPa 
 Show also the three states as labeled dots in a T-v diagram with correct position 

relative to the two-phase region. 
 
 Solution: 
 

a)     Compressed liquid:  B.1.4   interpolate between 220oC and 240oC. 

  T = 233.3oC,  v = 0.001213 m3/kg,   x = undefined 
 

b)      Table B.5.1:   u < ug   =>  two-phase liquid and vapor 

  x = (u - uf)/ufg = (300 - 227.03)/162.16 = 0.449988 = 0.45 

  v = 0.000817 + 0.45*0.03524 = 0.01667 m3/kg 
 

c)     Table B.6.1:  T > Tsat (200 kPa) so superheated vapor  in Table B.6.2 

   x = undefined 
   v = 0.5(0.35546 + 0.38535) = 0.3704 m3/kg,   
   u = 0.5(177.23 + 192.14) =  184.7 kJ/kg 
 

 
 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 
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5.32 
 Find the missing properties and give the phase of the substance 

 a. H2O T = 120°C, v = 0.5 m3/kg u = ?  P = ?  x = ? 

 b. H2O T = 100°C, P = 10 MPa u = ?  x = ?  v = ? 

 c. N2 T = 200 K, P = 200 kPa v = ?  u = ? 

 d. NH3 T = 100°C, v = 0.1 m3/kg P = ?  x = ? 

 e. N2 T = 100 K, x = 0.75  v = ?  u = ? 
  

Solution: 
 

a) Table B.1.1:   vf  < v < vg   =>   L+V mixture, P = 198.5 kPa, 

  x = (0.5 - 0.00106)/0.8908  = 0.56,  
  u = 503.48 + 0.56 × 2025.76 = 1637.9 kJ/kg 

 

b) Table B.1.4:  compressed liquid,  v = 0.001039 m3/kg,  u = 416.1 kJ/kg 
 
c) Table B.6.2:  200 K, 200 kPa 

v = 0.29551 m3/kg   ;    u = 147.37 kJ/kg 
 
d) Table B.2.1:   v > vg    =>   superheated vapor, x = undefined 

 B.2.2:   P = 1600 + 400 × 
0.1 - 0.10539

0.08248-0.10539 = 1694 kPa 

 
e) Table B.6.1:  100 K,  x = 0.75 

v = 0.001452 + 0.75 × 0.02975 = 0.023765 m3/kg 
u = -74.33 + 0.75 ×137.5 = 28.8 kJ/kg 

 
 
 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 
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5.33 
 Find the missing properties among (T, P, v, u, h and x if applicable) and give the 

phase of the substance and indicate the states relative to the two-phase region in both a 
T-v and a P-v diagram. 

  a.         R-12  P = 500 kPa, h = 230 kJ/kg 

  b. R-22  T = 10oC, u = 200 kJ/kg 

  c. R-134a  T = 40oC, h = 400 kJ/kg 
 
 Solution: 

a) Table B.3.2: h > hg  = >  superheated vapor, look in section 500 kPa and 
interpolate 

  T = 68.06°C,    v = 0.04387 m3/kg,    u = 208.07 kJ/kg 
 
b) Table B.4.1:  u < ug   =>  L+V mixture,   P = 680.7 kPa 

  x = 
u - uf
ufg

 = 
200 - 55.92

173.87  = 0.8287, 

  v = 0.0008 + 0.8287 × 0.03391 = 0.0289 m3/kg, 
  h = 56.46 + 0.8287 × 196.96 = 219.7 kJ/kg 
 
c) Table B.5.1:  h < hg   => two-phase L + V, look in B.5.1 at 40°C: 

  x = 
h - hf
hfg

 = 
400 - 256.5

163.3  = 0.87875 

P = Psat =  1017 kPa,  

v = 0.000 873 + 0.87875 × 0.01915 = 0.0177 m3/kg 
 u = 255.7 + 0.87875 × 143.8 = 382.1 kJ/kg 

 
 
 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 

 

P C.P.

v

T C.P.

v

Tb, c
a

P = C

b, c
a

 
 



   Sonntag, Borgnakke and van Wylen 

 

5.34 

 Saturated liquid water at 20oC is compressed to a higher pressure with constant 
temperature. Find the changes in u and h from the initial state when the final pressure 
is  a) 500 kPa, b) 2000 kPa, c) 20 000 kPa 

 
 Solution: 
 
 State 1 is located in Table B.1.1 and the states a-c are from Table B.1.4 

 
 State u [kJ/kg] h [kJ/kg] ∆u = u - u1 ∆h = h - h1 ∆(Pv)  

 1 83.94 83.94    
 a 83.91 84.41 -0.03 0.47 0.5 
 b 83.82 85.82 -0.12 1.88 2 
 c 82.75 102.61 -1.19 18.67 20 

 
For these states u stays nearly constant, dropping slightly as P goes up. 
h varies with Pv changes. 
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Energy Equation: Simple Process 
 
 
5.35 
 A 100-L rigid tank contains nitrogen (N2) at 900 K, 3 MPa. The tank is now cooled to 

100 K. What are the work and heat transfer for this process? 
Solution: 
C.V.: Nitrogen in tank.  m2 = m1 ;    

Energy Eq.5.11:       m(u2 - u1) = 1Q2 - 1W2 

Process: V = constant, v2 = v1 = V/m     =>     1W2 = 0/  

Table B.6.2:  State 1:  v1 = 0.0900 m3/kg  =>  m = V/v1 = 1.111 kg 

   u1 = 691.7 kJ/kg 

State 2:  100 K,   v2 = v1 = V/m,     look in Table B.6.2 at 100 K 

200 kPa:   v = 0.1425 m3/kg;   u = 71.7 kJ/kg 

400 kPa:   v = 0.0681 m3/kg;   u = 69.3 kJ/kg 
so a linear interpolation gives: 

P2 = 200 + 200 (0.09 – 0.1425)/(0.0681 – 0.1425) =  341 kPa 

    u2 = 71.7 + (69.3 – 71.7) 
0.09 – 0.1425

0.0681 – 0.1425 = 70.0 kJ/kg,  

1Q2 = m(u2 - u1) = 1.111 (70.0 – 691.7) = −690.7 kJ 
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5.36 

 A rigid container has 0.75 kg water at 300oC, 1200 kPa. The water is now cooled to a 
final pressure of 300 kPa. Find the final temperature, the work and the heat transfer in 
the process. 

 
 Solution: 
 C.V. Water.  Constant mass so this is a control mass 
 
 Energy Eq.:      U2 - U1 = 1Q2 - 1W2 

Process eq.:      V = constant. (rigid)  

   =>  1W2 =   ∫ P dV = 0 

State 1:   300oC, 1200 kPa   
   =>   superheated vapor Table  B.1.3 

   v = 0.21382 m3/kg,    u = 2789.22 kJ/kg 
 

P

v

1

2

1200

300

 

 
 State 2:   300 kPa and  v2 = v1     from Table B.1.2          v2 < vg      two-phase 

     T2 = Tsat = 133.55oC 

     x2 = 
v2 - vf

vfg
  = 

0.21382 - 0.001073
0.60475  = 0.35179 

     u2 = uf  + x2 ufg = 561.13 + x2 1982.43 = 1258.5 kJ/kg 

     1Q2  = m(u2 - u1) + 1W2  = m(u2 - u1) 

   = 0.75 (1258.5 - 2789.22) = -1148 kJ 
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5.37 
 A cylinder fitted with a frictionless piston contains 2 kg of superheated refrigerant R-

134a vapor at 350 kPa, 100oC. The cylinder is now cooled so the R-134a remains at 
constant pressure until it reaches a quality of 75%. Calculate the heat transfer in the 
process. 

 
 Solution: 

C.V.: R-134a       m2 = m1 = m;       

Energy Eq.5.11 m(u2 - u1) = 1Q2 - 1W2 

Process: P = const.  ⇒ 1W2 = ⌡⌠PdV = P∆V = P(V2 - V1) = Pm(v2 - v1) 

 
 

V

P

12

V

T

1

2

 

 

 
State 1:  Table B.5.2      h1 = (490.48 + 489.52)/2 = 490 kJ/kg 

State 2:  Table B.5.1      h2 = 206.75 + 0.75 ×194.57 = 352.7 kJ/kg  (350.9 kPa) 

 1Q2 = m(u2 - u1) + 1W2  = m(u2 - u1) + Pm(v2 - v1) = m(h2 - h1) 

  1Q2 = 2 × (352.7 - 490) = -274.6 kJ 
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5.38 
 Ammonia at 0°C, quality 60% is contained in a rigid 200-L tank. The tank and 

ammonia is now heated to a final pressure of 1 MPa. Determine the heat transfer for 
the process. 

 
 Solution: 

C.V.: NH3 

  

 
V

P

1

2

 
 
Continuity Eq.:           m2 = m1 = m ;    

Energy Eq.5.11:         m(u2 - u1) = 1Q2 - 1W2 

Process: Constant volume  ⇒              v2 = v1  &     1W2 = 0 

State 1:  Table B.2.1  two-phase state. 

v1 = 0.001566 + x1 × 0.28783 = 0.17426 m3/kg 

u1 = 179.69 + 0.6 × 1138.3 = 862.67 kJ/kg 

  m = V/v1 = 0.2/0.17426 = 1.148 kg 

State 2: P2 , v2 = v1   superheated vapor Table B.2.2 

    ⇒ T2 ≅ 100°C,   u2 ≅  1490.5 kJ/kg 

So solve for heat transfer in the energy equation 
 1Q2 = m(u2 - u1) = 1.148(1490.5 - 862.67) = 720.75 kJ 
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5.39 
 Water in a 150-L closed, rigid tank is at 100°C, 90% quality. The tank is then cooled 

to −10°C. Calculate the heat transfer during the process. 
 
 Solution: 

C.V.: Water in tank.  m2 = m1 ;    

Energy Eq.5.11:      m(u2 - u1) = 1Q2 - 1W2 

Process: V = constant,   v2 = v1,     1W2 = 0 

State 1:  Two-phase L + V look in Table B.1.1 

v1 = 0.001044 + 0.9 × 1.6719 = 1.5057 m3/kg 

  u1 = 418.94 + 0.9 × 2087.6 = 2297.8 kJ/kg 

State 2: T2, v2 = v1    ⇒   mix of saturated solid + vapor  Table B.1.5 

  v2 = 1.5057 = 0.0010891 + x2 × 466.7     =>    x2 = 0.003224 

  u2 = -354.09 + 0.003224 × 2715.5 = -345.34 kJ/kg 

  m = V/v1 = 0.15/1.5057 = 0.09962 kg 

 1Q2 = m(u2 - u1) = 0.09962(-345.34 - 2297.8) = -263.3 kJ 
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5.40 

 A piston/cylinder contains 1 kg water at 20oC with volume 0.1 m3. By mistake 
someone locks the piston preventing it from moving while we heat the water to 
saturated vapor. Find the final temperature and the amount of heat transfer in the 
process. 

 
 Solution: 

C.V. Water. This is a control mass 
Energy Eq.:  m (u2 − u1 ) = 1Q2 − 1W2 
Process :  V = constant     1W2 = 0 

State 1:  T, v1 = V1/m = 0.1 m3/kg > vf   so two-phase 
 

x1 = 
v1 - vf

vfg
  = 

0.1-0.001002
57.7887  = 0.0017131 

u1 = uf + x1 ufg = 83.94 + x1 × 2318.98 = 87.913 kJ/kg 
 
State 2:   v2 = v1 = 0.1 & x2  =1 

 found in Table B.1.1 between 210°C and 215° C 

T2 = 210 + 5 × 
0.1-0.10441

0.09479-0.10441 = 210 + 5 × 0.4584 = 212.3°C 

u2 = 2599.44 + 0.4584 (2601.06 – 2599.44) = 2600.2 kJ/kg 
From the energy equation  

1Q2 = m(u2 − u1) = 1( 2600.2 – 87.913) = 2512.3 kJ 
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5.41 
 A test cylinder with constant volume of 0.1 L contains water at the critical point. It 

now cools down to room temperature of 20°C. Calculate the heat transfer from the 
water. 

 Solution: 
C.V.: Water 
 m2 = m1 = m ;    

Energy Eq.5.11:     m(u2 - u1) = 1Q2 - 1W2 

Process: Constant volume  ⇒ v2 = v1   

Properties from Table B.1.1 

State 1: v1 = vc = 0.003155 m3/kg, 

             u1 = 2029.6 kJ/kg 

     m = V/v1 = 0.0317 kg 

v 

P 1 

2 

 

  State 2: T2, v2 = v1 = 0.001002 + x2 × 57.79 

      x2 = 3.7×10-5,   u2 = 83.95 + x2 × 2319 = 84.04 kJ/kg 

  Constant volume   =>     1W2 = 0/  

 1Q2 =  m(u2 - u1) = 0.0317(84.04 - 2029.6) = -61.7 kJ 
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5.42 
 A 10-L rigid tank contains R-22 at −10°C, 80% quality. A 10-A electric current (from 

a 6-V battery) is passed through a resistor inside the tank for 10 min, after which the 
R-22 temperature is 40°C. What was the heat transfer to or from the tank during this 
process? 

 Solution: 
 
C.V. R-22 in tank. Control mass at constant V. 
Continuity Eq.:       m2 = m1 = m ;   

Energy Eq.:      m(u2 - u1) = 1Q2 - 1W2 

Process:         Constant V  ⇒   v2 = v1   

=>   no boundary work, but electrical work 
 

V

P

1

2

 
State 1 from table B.4.1 

 v1 = 0.000759 + 0.8 × 0.06458 = 0.05242 m3/kg  

 u1 = 32.74 + 0.8 × 190.25 = 184.9 kJ/kg 

 m = V/v = 0.010/0.05242 = 0.1908 kg 

State 2: Table B.4.2   at 40°C and v2 = v1 = 0.05242 m3/kg 

     =>  sup.vapor, so use linear interpolation to get 
 P2 = 500 + 100 × (0.05242 – 0.05636)/(0.04628 – 0.05636) = 535 kPa, 

 u2 = 250.51 + 0.35× (249.48 – 250.51) = 250.2 kJ/kg 

 1W2  elec = –power × ∆t = –Amp × volts × ∆t = – 
10 × 6 × 10 × 60

1000  = –36 kJ 

 1Q2 = m(u2 – u1) + 1W2 = 0.1908 ( 250.2 – 184.9) – 36 = –23.5 kJ 

 



   Sonntag, Borgnakke and van Wylen 

 
5.43 
 A piston/cylinder contains 50 kg of water at 200 kPa with a volume of 0.1 m3. Stops 

in the cylinder are placed to restrict the enclosed volume to a maximum of 0.5 m3. The 
water is now heated until the piston reaches the stops. Find the necessary heat transfer. 

 Solution: 
C.V. H2O  m = constant  

Energy Eq.5.11: m(e2 – e1) = m(u2 – u1) = 1Q2 - 1W2 

Process : P = constant (forces on piston constant) 

     ⇒ 1W2 = ∫ P dV = P1 (V2 – V1)  

 
 

V

P

1 2

0.1 0.5  
 
Properties from Table B.1.1 

State 1 :   v1 = 0.1/50 = 0.002 m3/kg     =>    2-phase   as   v1 <  vg 

   x =   
v1 – vf

vfg
  =  

0.002 – 0.001061
0.88467  = 0.001061 

   h = 504.68 + 0.001061 × 2201.96 = 507.02 kJ/kg 

State 2 :   v2= 0.5/50 = 0.01 m3/kg   also 2-phase same P  

  x2  =  
v2 – vf

vfg
  =  

0.01 – 0.001061
0.88467  = 0.01010 

  h2  = 504.68 + 0.01010 × 2201.96 = 526.92 kJ/kg 

Find the heat transfer from the energy equation as 
  1Q2 = m(u2 – u1) + 1W2 = m(h2 – h1) 

  1Q2 = 50 kg × (526.92 – 507.02) kJ/kg = 995 kJ 

 [ Notice that     1W2 = P1 (V2 – V1) = 200 × (0.5 – 0.1) = 80 kJ ] 
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5.44 
 A constant pressure piston/cylinder assembly contains 0.2 kg water as saturated vapor 

at  400 kPa. It is now cooled so the water occupies half the original volume. Find the 
heat transfer in the process. 

 
 Solution: 

 C.V. Water. This is a control mass. 
 Energy Eq.5.11: m(u2 – u1) = 1Q2 – 1W2  

 Process:     P = constant     =>    1W2 = Pm(v2 – v1) 

 So solve for the heat transfer: 
  1Q2 = m(u2 - u1) + 1W2  = m(u2 - u1) + Pm(v2 - v1) = m(h2 - h1) 

 State 1:  Table B.1.2 v1 = 0.46246 m3/kg;  h1 = 2738.53 kJ/kg 

 State 2: v2 = v1 / 2 = 0.23123 = vf + x vfg     from Table B.1.2 

  x2 = (v2 – vf) / vfg = (0.23123 – 0.001084) / 0.46138 = 0.4988 

  h2 = hf + x2 hfg = 604.73 + 0.4988 × 2133.81 = 1669.07 kJ/kg 

  1Q2 = 0.2 (1669.07 – 2738.53) = –213.9 KJ 
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5.45 

 Two kg water at 120oC with a quality of 25% has its temperature raised 20oC in a 
constant volume process as in Fig. P5.45. What are the heat transfer and work in the 
process?            

 
 Solution: 

C.V. Water. This is a control mass 
Energy Eq.:  m (u2 − u1 ) = 1Q2 − 1W2 
Process :  V = constant  

                1W2 =  ∫ P dV = 0 
 
State 1:  T, x1  from Table B.1.1 

 

 

v1 = vf + x1 vfg = 0.00106 + 0.25 × 0.8908 = 0.22376 m3/kg 

u1 = uf + x1 ufg  = 503.48 + 0.25 × 2025.76 = 1009.92 kJ/kg 

State 2:   T2, v2 = v1< vg2 = 0.50885 m3/kg     so two-phase 

x2 = 
v2 - vf2

vfg2
 = 

0.22376 - 0.00108
0.50777  = 0.43855 

u2 = uf2 + x2 ufg2 = 588.72 + x2 ×1961.3 = 1448.84 kJ/kg 
From the energy equation  

1Q2 = m(u2 − u1) = 2 ( 1448.84 – 1009.92 ) = 877.8 kJ 
 

 
 
 

T C.P.

v

P C.P.

v

T
198.5
361.3

120
140

120 C

140 C

 
 



   Sonntag, Borgnakke and van Wylen 

  
5.46 
 A 25 kg mass moves with 25 m/s. Now a brake system brings the mass to a complete 

stop with a constant deceleration over a period of 5 seconds. The brake energy is 
absorbed by 0.5 kg water initially at 20oC, 100 kPa. Assume the mass is at constant P 
and T. Find the energy the brake removes from the mass and the temperature increase 
of the water, assuming P = C. 

 
Solution: 
C.V. The mass in motion. 

  E2 - E1= ∆E = 0.5 mV2 = 0.5 × 25 × 252/1000 = 7.8125 kJ 

C.V. The mass of water. 
 m(u2 - u1) H2O = ∆E = 7.8125 kJ  =>     u2 - u1 = 7.8125 / 0.5 = 15.63 

 u2 = u1 + 15.63 = 83.94 + 15.63 = 99.565 kJ/kg     

 Assume u2 = uf    then from Table B.1.1:     T2 ≅  23.7oC, ∆T = 3.7oC 

We could have used  u2 - u1 = C∆T  with C from Table A.4:  C = 4.18 kJ/kg K 

giving ∆T = 15.63/4.18 = 3.7oC. 
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5.47 
 An insulated cylinder fitted with a piston contains R-12 at 25°C with a quality of 90% 

and a volume of 45 L. The piston is allowed to move, and the R-12 expands until it 
exists as saturated vapor. During this process the R-12 does 7.0 kJ of work against the 
piston. Determine the final temperature, assuming the process is adiabatic. 

 Solution: 
Take CV as the R-12. 
Continuity Eq.:  m2 = m1 = m   ;     

Energy Eq.5.11:      m(u2 − u1) = 1Q2 - 1W2  

State 1: (T, x)    Tabel B.3.1      =>  

 v1 = 0.000763 + 0.9 × 0.02609 = 0.024244 m3/kg 

 m = V1/v1 = 0.045/0.024244 = 1.856 kg 

 u1 = 59.21 + 0.9 × 121.03 = 168.137 kJ/kg 

State 2:  (x = 1, ?)    We need one property information. 
Apply now the energy equation with known work and adiabatic so 
 1Q2 = 0/  = m(u2 - u1) + 1W2  =  1.856 × (u2 - 168.137) + 7.0 

  => u2 = 164.365 kJ/kg = ug at T2 

 Table B.3.1 gives ug at different temperatures:  T2 ≅ -15°C 
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5.48 
 A water-filled reactor with volume of 1 m3 is at 20 MPa, 360°C and placed inside a 

containment room as shown in Fig. P5.48. The room is well insulated and initially 
evacuated. Due to a failure, the reactor ruptures and the water fills the containment 
room. Find the minimum room volume so the final pressure does not exceed 200 kPa. 

 Solution: 
Solution: 
C.V.: Containment room and reactor. 
Mass: m2 = m1 = Vreactor/v1 = 1/0.001823 = 548.5 kg 

Energy: m(u2 - u1) = 1Q2 - 1W2 = 0 - 0 = 0 

State 1:   Table B.1.4    v1 = 0.001823 m3/kg,  u1 = 1702.8 kJ/kg 

Energy equation then gives       u2 = u1 = 1702.8 kJ/kg 

State 2:    P2 = 200 kPa,  u2 < ug      =>   Two-phase Table B.1.2 

 x2 = (u2 - uf)/ ufg = (1702.8 – 504.47)/2025.02 = 0.59176 

v2 = 0.001061 + 0.59176 × 0.88467 = 0.52457 m3/kg 

V2 = m2 v2 = 548.5 ×0.52457 = 287.7 m3 
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5.49 
 A piston/cylinder arrangement contains water of quality x = 0.7 in the initial volume 

of 0.1 m3, where the piston applies a constant pressure of 200 kPa. The system is now 
heated to a final temperature of 200°C. Determine the work and the heat transfer in the 
process.  

 
Take CV as the water. 
Continuity Eq.:  m2 = m1 = m   ;     

Energy Eq.5.11:      m(u2 − u1) = 1Q2 - 1W2  

Process: P = constant    ⇒    1W2 = ⌡⌠PdV = Pm(v2 - v1) 

State 1: Table B.1.2    
T1 = Tsat at 200 kPa = 120.23°C 

v1 = vf + xvfg = 0.001061 + 0.7 × 0.88467 = 0.62033 m3 

h1 = hf + xhfg = 504.68 + 0.7 × 2201.96 = 2046.05 kJ/kg  
Total mass can be determined from the initial condition, 

m = V1/v1 = 0.1/0.62033 = 0.1612 kg 

T2 = 200°C, P2 = 200 kPa (Table B.1.3) gives  v2 = 1.08034 m3/kg 
h2 = 2870.46 kJ/kg (Table B.1.3) 

V2 = mv2 = 0.1612 kg × 1.08034 m3/kg = 0.174 m3 

 
Substitute the work into the energy equation  

1Q2  = U2 − U1 + 1W2 = m ( u2 – u1 + Pv2 – Pv1) = m(h2 − h1) 
 

1Q2= 0.1612 kg × (2870.46−2046.05) kJ/kg = 132.9 kJ (heat added to system). 
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5.50 
 A piston/cylinder arrangement has the piston loaded with outside atmospheric 

pressure and the piston mass to a pressure of 150 kPa, shown in Fig. P5.50. It contains 
water at −2°C, which is then heated until the water becomes saturated vapor. Find the 
final temperature and specific work and heat transfer for the process. 

 Solution: 
C.V. Water in the piston cylinder. 
Continuity:  m2 = m1,        

Energy Eq. per unit mass:  u2 - u1 = 1q2 - 1w2 

Process: P = constant = P1,   =>     1w2 = ⌡⌠
 1

  2 
 P dv = P1(v2 - v1) 

State 1: T1 , P1  =>  Table B.1.5   compressed solid, take as saturated solid. 

   v1 = 1.09×10-3 m3/kg,     u1 = -337.62 kJ/kg 

State 2: x = 1,  P2 = P1 = 150 kPa  due to process  =>   Table B.1.2 

   v2 = vg(P2) = 1.1593 m3/kg,    T2 = 111.4°C ;      u2 = 2519.7 kJ/kg 

From the process equation 

    1w2 = P1(v2 -v1) = 150(1.1593 -1.09×10-3) = 173.7 kJ/kg 

From the energy equation 
    1q2 = u2 - u1 + 1w2 = 2519.7 - (-337.62) + 173.7 = 3031 kJ/kg 
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5.51 

 A piston/cylinder assembly contains 1 kg of liquid water at 20oC and 300 kPa. There is 
a linear spring mounted on the piston such that when the water is heated the pressure 
reaches 1 MPa with a volume of 0.1 m3. Find the final temperature and the heat transfer 
in the process. 

 
 Solution: 

Take CV as the water. 
  m2 = m1 = m   ;      m(u2 − u1) = 1Q2 - 1W2  

 State 1: Compressed liquid, take saturated liquid at same temperature. 
  v1 = vf(20) = 0.001002 m3/kg,   u1 = uf = 83.94 kJ/kg 

 State 2: v2 = V2/m = 0.1/1 = 0.1  m3/kg  and P = 1000 kPa 

     => Two phase as v2 < vg  so  T2 = Tsat = 179.9°C  

  x2 = (v2 - vf) /vfg = (0.1 - 0.001127)/0.19332 = 0.51145 

  u2 = uf  + x2 ufg = 780.08 + 0.51147 × 1806.32 = 1703.96 kJ/kg 

 Work is done while piston moves at linearly varying pressure, so we get 
      1W2 = ∫ P dV = area = Pavg (V2 − V1)  

= 0.5 × (300 + 1000)(0.1 − 0.001) = 64.35 kJ 
 Heat transfer is found from the energy equation 
 1Q2 = m(u2 − u1) + 1W2 = 1 × (1703.96 - 83.94) + 64.35 = 1684 kJ 
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5.52 
 A closed steel bottle contains ammonia at −20°C, x = 20% and the volume is 0.05  m3. 

It has a safety valve that opens at a pressure of 1.4 MPa. By accident, the bottle is 
heated until the safety valve opens. Find the temperature and heat transfer when the 
valve first opens. 

Solution: 
C.V.: NH3 :  m2 = m1 = m ;    

Energy Eq.5.11:          m(u2 - u1) = 1Q2 - 1W2 

Process: constant volume process  ⇒ 1W2 = 0  

State 1: (T, x)   Table B.2.1 

     v1 = 0.001504 + 0.2 × 0.62184 = 0.1259 m3/kg 

=>     m = V/v1 = 0.05/0.1259 = 0.397 kg 

     u1 = 88.76 + 0.2 × 1210.7 = 330.9 kJ/kg 

 

V

P

1

2

 

State 2: P2 , v2 = v1    =>  superheated vapor, interpolate in Table B.2.2: 

  T ≅ 110°C = 100 + 20(0.1259 – 0.12172)/(0.12986 – 0.12172),  
  u2 = 1481 + (1520.7 – 1481) × 0.51 = 1501.25 kJ/kg 

 1Q2 = m(u2 - u1) = 0.397(1501.25 – 330.9) = 464.6 kJ 
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5.53 

 Two kg water at 200 kPa with a quality of 25% has its temperature raised 20oC in a 
constant pressure process. What are the heat transfer and work in the process? 

 
 

C.V. Water. This is a control mass 
Energy Eq.:  m (u2 − u1 ) = 1Q2 − 1W2 

Process :  P = constant     1W2 =  ∫ P dV = mP (v2 − v1) 
 

State 1:  Two-phase given P,x  so use Table B.1.2 

v1 = 0.001061 + 0.25 × 0.88467 = 0.22223 m3/kg 

u1 = 504047 + 0.25 × 2025.02 = 1010.725 kJ/kg 
T  = T + 20 = 120.23 + 20 = 140.23 

State 2 is superheated vapor 

v2 = 0.88573 + 
20

150-120.23 × (0.95964 – 0.88573 ) = 0.9354 m3/kg 

u2 = 2529.49 + 
20

150-120.23 (2576.87- 2529.49) = 2561.32 kJ/kg 

From the process equation we get 

1W2 = mP (v2 − v1) = 2 × 200 ( 0.9354 - 0.22223) = 285.3 kJ 
 From the energy equation 

1Q2 = m (u2 − u1) + 1W2 

        = 2 ( 2561.32 – 1010.725 ) + 285.3 
        = 3101.2 + 285.27 = 3386.5 kJ 
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5.54 
 Two kilograms of nitrogen at 100 K, x = 0.5 is heated in a constant pressure process to 

300 K in a piston/cylinder arrangement. Find the initial and final volumes and the total 
heat transfer required. 

 Solution: 
Take CV as the nitrogen. 
Continuity Eq.:  m2 = m1 = m   ;     

Energy Eq.5.11:      m(u2 − u1) = 1Q2 - 1W2  

Process: P = constant    ⇒    1W2 = ⌡⌠PdV = Pm(v2 - v1) 

State 1: Table B.6.1    

 v1 = 0.001452 + 0.5 × 0.02975 = 0.01633 m3/kg,    V1 = 0.0327 m3 

  h1 = -73.20 + 0.5 × 160.68 = 7.14 kJ/kg 

State 2:  (P = 779.2 kPa , 300 K)  => sup. vapor interpolate in Table B.6.2  

 v2 = 0.14824 + (0.11115-0.14824)× 179.2/200 = 0.115 m3/kg,  V2 = 0.23 m3 

  h2 = 310.06 + (309.62-310.06) × 179.2/200 = 309.66 kJ/kg 

Now solve for the heat transfer from the energy equation 
 1Q2 = m(u2 - u1) + 1W2 = m(h2 - h1) = 2 × (309.66 - 7.14) = 605 kJ 
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5.55 
 A 1-L capsule of water at 700 kPa, 150°C is placed in a larger insulated and otherwise 

evacuated vessel. The capsule breaks and its contents fill the entire volume. If the final 
pressure should not exceed 125 kPa, what should the vessel volume be? 

Solution: 
C.V. Larger vessel. 
Continuity:    m2 = m1 = m = V/v1 = 0.916 kg 

Process: expansion with 1Q2 = 0/  ,   1W2 = 0/  

Energy:     m(u2 - u1) = 1Q2 - 1W2 = 0/   ⇒  u2 = u1 

State 1: v1 ≅ vf = 0.001091 m3/kg;    u1 ≅ uf = 631.66 kJ/kg 

State 2: P2 , u2     ⇒      x2 = 
631.66 – 444.16

2069.3  = 0.09061 

 v2 = 0.001048 + 0.09061 × 1.37385 = 0.1255 m3/kg 

 V2 = mv2 = 0.916 × 0.1255 = 0.115 m3 =  115 L 
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5.56 
 Superheated refrigerant R-134a at 20°C, 0.5 MPa is cooled in a piston/cylinder 

arrangement at constant temperature to a final two-phase state with quality of 50%. 
The refrigerant mass is 5 kg, and during this process 500 kJ of heat is removed. Find 
the initial and final volumes and the necessary work. 

Solution: 
C.V. R-134a, this is a control mass. 
Continuity:   m2 = m1 = m ;      

Energy Eq.5.11:       m(u2 -u1) = 1Q2 - 1W2 = -500 - 1W2 

State 1: T1 , P1   Table B.5.2,    v1 = 0.04226 m3/kg ;   u1 = 390.52 kJ/kg   

    =>   V1 = mv1 = 0.211 m3 

State 2: T2 , x2  ⇒   Table B.5.1 

 u2 = 227.03 + 0.5 × 162.16 = 308.11 kJ/kg,  

 v2 = 0.000817 + 0.5 × 0.03524 = 0.018437 m3/kg  =>  V2 = mv2 = 0.0922 m3 

 1W2 = -500 - m(u2 - u1) = -500 - 5 × (308.11 - 390.52) = -87.9 kJ 
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5.57 
 A cylinder having a piston restrained by a linear spring (of spring constant 15 kN/m) 

contains 0.5 kg of saturated vapor water at 120°C, as shown in Fig. P5.57. Heat is 
transferred to the water, causing the piston to rise. If the piston cross-sectional area is 
0.05 m2, and the pressure varies linearly with volume until a final pressure of 500 kPa 
is reached. Find the final temperature in the cylinder and the heat transfer for the 
process. 

Solution: 
C.V. Water in cylinder. 
Continuity:    m2 = m1 = m ;           

Energy Eq.5.11:      m(u2 - u1) = 1Q2 - 1W2  

State 1: (T, x)  Table B.1.1   =>    v1 = 0.89186 m3/kg,     u1 = 2529.2 kJ/kg  

Process:     P2 = P1 + 
ksm

Ap
2 (v2 - v1) = 198.5 + 

15 × 0.5
(0.05)2  (v2 - 0.89186) 

State 2:    P2 = 500 kPa   and on the process curve (see above equation). 

  =>     v2 =  0.89186 + (500 - 198.5) × (0.052/7.5) = 0.9924 m3/kg  

 (P, v)  Table B.1.3    =>    T2 = 803°C;      u2 = 3668 kJ/kg 

    W12 = ⌡⌠ PdV = 





P1 + P2

2  m(v2 - v1) 

         = 



198.5 + 500

2  × 0.5 × (0.9924 - 0.89186) = 17.56 kJ 

    1Q2 = m(u2 - u1) + 1W2 = 0.5 × (3668 - 2529.2) + 17.56 = 587 kJ 
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5.58 
 A rigid tank is divided into two rooms by a membrane, both containing water, shown 

in Fig. P5.58. Room A is at 200 kPa, v = 0.5 m3/kg, VA = 1 m3, and room B contains 
3.5 kg at 0.5 MPa, 400°C. The membrane now ruptures and heat transfer takes place 
so the water comes to a uniform state at 100°C. Find the heat transfer during the 
process. 
Solution: 

            
            C.V.: Both rooms A and B in tank. 

        

B A 

 
Continuity Eq.: m2 = mA1 + mB1 ;  

Energy Eq.:  m2u2 - mA1uA1 - mB1uB1 = 1Q2 - 1W2  

State 1A:  (P, v)   Table B.1.2,        mA1 = VA/vA1 = 1/0.5 = 2 kg 

  xA1 = 
v – vf

vfg
  =  

0.5 - 0.001061
0.88467   =  0.564 

  uA1 = uf + x ufg = 504.47 + 0.564 × 2025.02 = 1646.6 kJ/kg  

State 1B: Table B.1.3,   vB1 = 0.6173,  uB1 = 2963.2, VB = mB1vB1 = 2.16 m3 

Process constant total volume:     Vtot = VA + VB = 3.16 m3   and   1W2 = 0/  

 m2 = mA1 + mB1 = 5.5 kg    =>     v2 = Vtot/m2 = 0.5746 m3/kg 

State 2: T2 , v2  ⇒  Table B.1.1    two-phase as   v2 <  vg 

x2 =  
v2 – vf

vfg
  =  

0.5746 – 0.001044
1.67185   = 0.343 ,  

  u2 = uf + x ufg = 418.91 + 0.343 × 2087.58= 1134.95 kJ/kg 

 Heat transfer is from the energy equation 
 1Q2 = m2u2 - mA1uA1 - mB1uB1 = -7421 kJ 
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5.59 
 A 10-m high open cylinder, Acyl = 0.1 m2, contains 20°C water above and 2 kg of 

20°C water below a 198.5-kg thin insulated floating piston, shown in Fig. P5.59. 
Assume standard g, Po. Now heat is added to the water below the piston so that it 
expands, pushing the piston up, causing the water on top to spill over the edge. This 
process continues until the piston reaches the top of the cylinder. Find the final state of 
the water below the piston (T, P, v) and the heat added during the process. 

 
 Solution: 

C.V. Water below the piston. 
Piston force balance at initial state:  F↑ = F↓ = PAA = mpg + mBg + P0A 

State 1A,B:   Comp. Liq.  ⇒   v ≅ vf = 0.001002 m3/kg;     u1A = 83.95 kJ/kg 

 VA1 = mAvA1 = 0.002 m3; mtot = Vtot/v =  1/0.001002 = 998 kg 

 mass above the piston      mB1 = mtot - mA = 996 kg  

PA1 = P0 + (mp + mB)g/A = 101.325 + 
(198.5+996)*9.807

 0.1*1000  = 218.5 kPa 

State  2A:    PA2 = P0 + 
mpg
A  = 120.8 kPa  ;  vA2 =  Vtot/ mA= 0.5 m3/kg 

 xA2 = (0.5 - 0.001047)/1.4183 = 0.352 ;   T2 = 105°C 

 uA2 = 440.0 + 0.352 × 2072.34 = 1169.5 kJ/kg 

 
 Continuity eq. in A:    mA2 = mA1 

Energy:   mA(u2 - u1) = 1Q2 - 1W2 
Process:     P linear in V as mB is linear with V 

1W2 = ⌡⌠PdV = 
1
2(218.5 + 120.82)(1 - 0.002)  

        = 169.32 kJ 
 

P
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cb

 

 1Q2 = mA(u2 - u1) + 1W2 = 2170.1 + 169.3 = 2340.4 kJ 
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5.60 

 Assume the same setup as in Problem 5.48, but the room has a volume of 100 m3. 
Show that the final state is two-phase and find the final pressure by trial and error.   

 
C.V.: Containment room and reactor. 
Mass: m2 = m1 = Vreactor/v1 = 1/0.001823 = 548.5 kg 

Energy: m(u2 - u1) = 1Q2 - 1W2 = 0 - 0 = 0 ⇒   u2 = u1 = 1702.8 kJ/kg 

Total volume and mass  => v2 = Vroom/m2 = 0.1823 m3/kg 

State 2: u2 , v2  Table B.1.1  see Figure.   

Note that in the vicinity of  v = 0.1823 m3/kg crossing the saturated vapor line the 
internal energy is about 2585 kJ/kg. However, at the actual state 2, u = 1702.8 
kJ/kg. Therefore state 2 must be in the two-phase region. 
 

   
Trial & error    v = vf + xvfg ; u = uf + xufg 

⇒ u2 = 1702.8 = uf  + 
v2 - vf

vfg
 ufg 

Compute RHS for a guessed pressure P2: 

v

T

0.184

u=2585

1060 kPa

sat vap

1060 kPa

 
 

P2 = 600 kPa:  RHS = 669.88 + 
0.1823-0.001101

0.31457  × 1897.52 = 1762.9     too large 

P2 = 550 kPa:  RHS = 655.30 + 
0.1823-0.001097

0.34159  × 1909.17 = 1668.1     too small 

Linear interpolation to match u = 1702.8  gives        P2 ≅ 568.5 kPa 
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Energy Equation: Multistep Solution 
 
5.61 
 10 kg of water in a piston cylinder arrangement exists as saturated liquid/vapor at 100 

kPa, with a quality of 50%. It is now heated so the volume triples. The mass of the 
piston is such that a cylinder pressure of 200 kPa will float it, as in Fig. 4.68. Find the 
final temperature and the heat transfer in the process. 

 
 Solution: 

Take CV as the water. 
  m2 = m1 = m   ;      m(u2 − u1) = 1Q2 − 1W2  

 Process: v = constant until P = Plift , then P is constant. 
State 1: Two-phase so look in Table B.1.2 at 100 kPa 

u1 = 417.33 + 0.5 × 2088.72 = 1461.7 kJ/kg,   

        v1 = 0.001043 + 0.5 × 1.69296 = 0.8475 m3/kg 

State 2: v2, P2 ≤ Plift  =>  v2 = 3 × 0.8475 = 2.5425 m3/kg ; 

            Interpolate: T2 = 829°C, u2 = 3718.76 kJ/kg 

         =>   V2 = mv2 = 25.425 m3 

  1W2 = Plift(V2 −V1) = 200 × 10 (2.5425 − 0.8475) = 3390 kJ 

  1Q2 = m(u2 − u1) + 1W2 = 10×(3718.76 − 1461.7) + 3390 = 25 961 kJ 
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5.62 
 Two tanks are connected by a valve and line as shown in Fig. P5.62. The volumes are 

both 1 m3 with R-134a at 20°C, quality 15% in A and tank B is evacuated. The valve 
is opened and saturated vapor flows from A into B until the pressures become equal. 
The process occurs slowly enough that all temperatures stay at 20°C during the process. 
Find the total heat transfer to the R-134a during the process. 

Solution: 
C.V.: A + B 
State 1A:   vA1 = 0.000817 + 0.15 × 0.03524 = 0.006103 m3/kg 

      uA1 = 227.03 + 0.15 × 162.16 = 251.35 kJ/kg 

       mA1 = VA/vA1 = 163.854 kg 

Process: Constant temperature and constant total volume. 
 m2 = mA1 ; V2 = VA + VB = 2 m3 ; v2 = V2/m2 = 0.012206 m3/kg 

  1W2 = ∫ P dV = 0 

State 2: T2 , v2  ⇒  x2 = (0.012206 – 0.000817)/0.03524 = 0.3232 

         u2 = 227.03 + 0.3232 × 162.16 = 279.44 kJ/kg 

 1Q2 = m2u2 - mA1uA1 - mB1uB1 + 1W2 = m2(u2 - uA1) 

        = 163.854 × (279.44 - 251.35) = 4603 kJ 
 

 

A B
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5.63 
 Consider the same system as in the previous problem. Let the valve be opened and 

transfer enough heat to both tanks so all the liquid disappears. Find the necessary heat 
transfer. 

 Solution: 
C.V. A + B, so this is a control mass. 

State 1A:   vA1 = 0.000817 + 0.15 × 0.03524 = 0.006 103 m3/kg 

      uA1 = 227.03 + 0.15 × 162.16 = 251.35 kJ/kg 

       mA1 = VA/vA1 = 163.854 kg 

Process: Constant temperature and total volume. 

 m2 = mA1 ; V2 = VA + VB = 2 m3 ; v2 = V2/m2 = 0.012 206 m3/kg 

State 2: x2 = 100%, v2 = 0.012206 

⇒      T2 = 55 + 5 × (0.012206 – 0.01316)/(0.01146 – 0.01316) = 57.8°C  

  u2 = 406.01 + 0.56 × (407.85 – 406.01) = 407.04 kJ/kg 

 1Q2 = m2(u2 - uA1) = 163.854 × (407.04 - 251.35) = 25 510 kJ 
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5.64 
 A vertical cylinder fitted with a piston contains 5 kg of R-22 at 10°C, shown in Fig. 

P5.64. Heat is transferred to the system, causing the piston to rise until it reaches a set 
of stops at which point the volume has doubled. Additional heat is transferred until the 
temperature inside reaches 50°C, at which point the pressure inside the cylinder is 1.3 
MPa. 

 a. What is the quality at the initial state? 
 b. Calculate the heat transfer for the overall process. 
 Solution: 

C.V. R-22. Control mass goes through process:  1 -> 2 -> 3 
As piston floats pressure is constant (1 -> 2) and the volume is constant for the 
second part (2 -> 3).   So we have:    v3 = v2 = 2 × v1  

State 3: Table B.4.2  (P,T)    v3 = 0.02015  m3/kg,  u3 = 248.4 kJ/kg 
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So we can then determine state 1 and 2 Table B.4.1: 
  v1 = 0.010075 = 0.0008 + x1 × 0.03391   =>      x1 = 0.2735 

b)   u1 = 55.92 + 0.2735 × 173.87 = 103.5 kJ/kg 

 State 2: v2 = 0.02015  m3/kg,   P2 = P1 = 681 kPa     this is still 2-phase. 

 1W3 = 1W2 = ⌡⌠
  1

 2
 PdV = P1(V2 - V1)  = 681 × 5 (0.02 - 0.01) = 34.1 kJ 

 1Q3 = m(u3-u1) + 1W3 = 5(248.4 - 103.5) + 34.1 = 758.6 kJ 
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5.65 
 Find the heat transfer in Problem 4.67. 

A piston/cylinder contains 1 kg of liquid water at 20°C and 300 kPa. Initially the 
piston floats, similar to the setup in Problem 4.64, with a maximum enclosed volume 
of 0.002 m3 if the piston touches the stops. Now heat is added so a final pressure of 
600 kPa is reached. Find the final volume and the work in the process. 
Solution: 

Take CV as the water. Properties from table B.1 
  m2 = m1 = m ;     m(u2 - u1) = 1Q2 - 1W2 

State 1: Compressed liq.    v = vf (20) = 0.001002 m3/kg,  u = uf = 83.94 kJ/kg 

State 2: Since P > Plift then  v = vstop = 0.002   and P = 600 kPa 

For the given P :  vf < v < vg    so 2-phase    T = Tsat = 158.85 °C 

   v = 0.002 = 0.001101 + x × (0.3157-0.001101)  =>   x = 0.002858 
   u = 669.88 + 0.002858 ×1897.5 = 675.3 kJ/kg 
Work is done while piston moves at Plift= constant = 300 kPa so we get 

 1W2 = ∫ P dV = m Plift (v2 -v1) = 1×300(0.002 - 0.001002) = 0.299 kJ 

Heat transfer is found from energy equation 
 1Q2 = m(u2 - u1) +  1W2  = 1(675.3 - 83.94) + 0.299 = 591.66 kJ 
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5.66 
 Refrigerant-12 is contained in a piston/cylinder arrangement at 2 MPa, 150°C with a 

massless piston against the stops, at which point V = 0.5 m3. The side above the piston 
is connected by an open valve to an air line at 10°C, 450 kPa, shown in Fig. P5.66. 
The whole setup now cools to the surrounding temperature of 10°C. Find the heat 
transfer and show the process in a P–v diagram. 

 
 C.V.: R-12. Control mass. 
 
 

Continuity:   m = constant,  
Energy Eq.5.11:      m(u2 - u1) = 1Q2 - 1W2  

Process: F↓ = F↑ = P A = PairA + Fstop 

     if V < Vstop  ⇒  Fstop = 0/  

 This is illustrated in the P-v diagram shown below. 

R-22

Air line

 

State 1:    v1 = 0.01265 m3/kg,   u1 = 252.1 kJ/kg 

    ⇒    m = V/v = 39.523 kg 
State 2: T2 and on line ⇒ compressed liquid, see figure below. 

    v2 ≅ vf = 0.000733 m3/kg ⇒ V2 = 0.02897 m3; u2 = uf  = 45.06 kJ/kg 

 1W2 = ⌡⌠PdV = Plift(V2 - V1) = 450 (0.02897 - 0.5) = -212.0 kJ ; 

Energy eq.    ⇒     
   1Q2 = 39.526 (45.06 - 252.1) - 212 =  -8395 kJ 
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5.67 
 Find the heat transfer in Problem 4.114. 
 A piston/cylinder (Fig. P4.114) contains 1 kg of water at 20°C with a volume of 0.1 

m3. Initially the piston rests on some stops with the top surface open to the 
atmosphere, Po and a mass so a water pressure of 400 kPa will lift it. To what 
temperature should the water be heated to lift the piston?  If it is heated to saturated 
vapor find the final temperature, volume and the work, 1W2. 

Solution: 
 C.V. Water. This is a control mass. 

   m2 = m1 = m ;     m(u2 - u1) = 1Q2 - 1W2 

 
 

V

P

1

2

H O

Po

2

1a

 
 
State 1: 20 C,   v1 = V/m = 0.1/1 = 0.1 m3/kg 

        x = (0.1 - 0.001002)/57.789 = 0.001713 
   u1 = 83.94 + 0.001713 × 2318.98 = 87.92 kJ/kg 

To find state 2 check on state 1a: 
     P = 400 kPa,    v = v1 = 0.1 m3/kg  

     Table B.1.2:     vf <  v < vg = 0.4625 m3/kg 

State 2 is saturated vapor at 400 kPa since state 1a is two-phase. 

v2 = vg = 0.4625 m3/kg ,   V2  =  m v2 = 0.4625 m3,   u2 = ug= 2553.6 kJ/kg  

Pressure is constant as volume increase beyond initial volume. 

1W2 = ∫ P dV = P (V2 - V1) = Plift (V2 – V1) = 400 (0.4625 – 0.1) = 145 kJ 

1Q2 = m(u2 - u1) +  1W2  =  1 (2553.6 – 87.92) + 145 = 2610.7 kJ 
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5.68 

 A rigid container has two rooms filled with water, each 1 m3 separated by a wall. 
Room A has P = 200 kPa with a quality x = 0.80. Room B has P = 2 MPa and T = 
400°C. The partition wall is removed and the water comes to a uniform state, which 
after a while due to heat transfer has a temperature of 200°C. Find the final pressure 
and the heat transfer in the process. 

Solution: 
C.V. A + B.  Constant total mass and constant total volume.  

Continuity: m2 – mA1– mB1= 0 ;     V2= VA+ VB= 2 m3 

Energy Eq.5.11: U2 – U1 = m2u2 – mA1uA1 – mA1uA1 = 1Q2 – 1W2 = 1Q2 

Process: V = VA + VB = constant  =>     1W2  = 0 

State 1A: Table B.1.2  uA1= 504.47 + 0.8 × 2025.02 = 2124.47 kJ/kg, 

    vA1= 0.001061 + 0.8 × 0.88467 = 0.70877 m3/kg 

State 1B: Table B.1.3 u B1= 2945.2,     vB1= 0.1512  

  mA1= 1/vA1= 1.411 kg mB1= 1/vB1= 6.614 kg 

State 2:   T2, v2 = V2/m 2= 2/(1.411 + 6.614) = 0.24924 m3/kg 

  Table B.1.3 superheated vapor.  800 kPa < P2 < 1 MPa 

Interpolate to get the proper v2 

 P2  ≅ 800 + 
0.24924-0.2608
0.20596-0.2608 × 200 = 842 kPa       u2 ≅ 2628.8 kJ/kg 

From the energy equation 
 1Q2 = 8.025 × 2628.8 – 1.411 × 2124.47 – 6.614 × 2945.2  = - 1381 kJ 
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5.69 
 The cylinder volume below the constant loaded piston has two compartments A and B 

filled with water. A has 0.5 kg at 200 kPa, 150oC and B has 400 kPa with a quality of 
50% and a volume of 0.1 m3. The valve is opened and heat is transferred so the water 
comes to a uniform state with a total volume of 1.006 m3. 
 a) Find the total mass of water and the total initial volume. 
 b) Find the work in the process 
 c) Find the process heat transfer. 
Solution: 

 Take the water in A and B as CV. 
Continuity:   m2 - m1A - m1B = 0  

Energy:  m2u2 - m1Au1A - m1Bu1B = 1Q2 - 1W2  

Process:   P = constant = P1A  if piston  floats  
      (VA positive) i.e. if  V2 > VB = 0.1 m3 

State A1: Sup. vap. Table B.1.3 v = 0.95964 m3/kg,  u = 2576.9  kJ/kg 
       =>  V = mv = 0.5 × 0.95964 = 0.47982 
State B1: Table B.1.2  v = (1-x) × 0.001084 + x × 0.4625 = 0.2318 m3/kg 
     =>     m = V/v = 0.4314 kg 
      u = 604.29 + 0.5 × 1949.3 = 1578.9 kJ/kg 
State 2: 200 kPa, v2 = V2/m = 1.006/0.9314 = 1.0801 m3/kg   

Table B.1.3  =>  close to T2 = 200oC   and  u2 = 2654.4 kJ/kg 

So now  
  V1 = 0.47982 + 0.1 = 0.5798 m3,  m1 = 0.5 + 0.4314 = 0.9314 kg 

Since volume at state 2 is larger than initial volume piston goes up and the pressure 
then is constant (200 kPa which floats piston). 

 
  1W2 = ∫ P dV = Plift (V2 - V1) = 200 (1.006 - 0.57982) = 85.24 kJ 
 
  1Q2 = m2u2 - m1Au1A - m1Bu1B + 1W2  

                = 0.9314 × 2654.4 - 0.5 × 2576.9 - 0.4314 × 1578.9 + 85.24 = 588 kJ 
 



   Sonntag, Borgnakke and van Wylen 

 

5.70 

 A rigid tank A of volume 0.6 m3 contains 3 kg water at 120oC and the rigid tank B is 
0.4 m3 with water at 600 kPa, 200oC. They are connected to a piston cylinder initially 
empty with closed valves. The pressure in the cylinder should be 800 kPa to float the 
piston. Now the valves are slowly opened and heat is transferred so the water reaches 
a uniform state at 250oC with the valves open. Find the final volume and pressure and 
the work and heat transfer in the process. 

 
 C.V.:  A + B + C.  

Only work in C, total mass constant. 
 
      m2 - m1 = 0     =>     m2 = mA1 + mB1 
      U2 - U1 = 1Q2 - 1W2 ;     

      1W2 =  ∫ PdV  = Plift (V2 - V1) 

A B

C

 

 
1A:   v = 0.6/3 = 0.2 m3/kg   =>   xA1 = (0.2 - 0.00106)/0.8908 = 0.223327 

   u = 503.48 + 0.223327 × 2025.76 = 955.89 kJ/kg 
1B:   v = 0.35202  m3/kg    =>   mB1 = 0.4/0.35202 = 1.1363 kg  ;   u = 2638.91 kJ/kg 

  m2 = 3 + 1.1363 = 4.1363 kg     and     
 

 V2 = VA+ VB + VC = 1 + VC 

Locate state 2:   Must be on P-V lines shown 
State 1a:  800 kPa,  

         v1a = 
VA+VB

m  = 0.24176 m3/kg 

800 kPa,  v1a    =>    T = 173°C     too low. 
 

V

P

21a
P2

 

Assume 800 kPa:   250°C      =>              v = 0.29314 m3/kg   >  v1a  OK 
 

Final state is :  800 kPa;   250°C    =>   u2 = 2715.46 kJ/kg 
 W = 800(0.29314 - 0.24176) × 4.1363 = 800 × (1.2125 - 1) = 170 kJ 
 

 Q = m2u2 - m1u1 + 1W2 = m2u2 - mA1uA1 - mB1uB1 + 1W2  

     = 4.1363 × 2715.46 - 3 × 955.89 - 1.1363 × 2638.91 + 170 
     = 11 232 - 2867.7 - 2998.6 + 170  = 5536 kJ 
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5.71 
 Calculate the heat transfer for the process described in Problem 4.60. 
 A cylinder containing 1 kg of ammonia has an externally loaded piston. Initially the 

ammonia is at 2 MPa, 180°C and is now cooled to saturated vapor at 40°C, and then 
further cooled to 20°C, at which point the quality is 50%. Find the total work for the 
process, assuming a piecewise linear variation of P versus V. 

 
Solution: 

C.V. Ammonia going through process 1 - 2 - 3. Control mass. 
Continuity:   m = constant,  
Energy Eq.5.11:       m(u3 - u1) = 1Q3 - 1W3  

Process:   P is piecewise linear in V 
State 1:  (T, P)    Table B.2.2:      v1 = 0.10571 m3/kg,  u1 = 1630.7 kJ/kg  

State 2: (T, x)     Table B.2.1 sat. vap.     P2 = 1555 kPa,  v2 = 0.08313 m3/kg 
 

 

o 2 
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State 3: (T, x)        P3 = 857 kPa,  

v3 = (0.001638+0.14922)/2 = 0.07543 u3 = (272.89 + 1332.2)/2 = 802.7 kJ/kg 

Process: piecewise linear P versus V, see diagram. Work is area as: 

W13 =  ⌡⌠
1

3
 PdV  ≈  (

P1 + P2
2 ) m(v2 - v1)  +  (

P2 + P3
2 ) m(v3 - v2) 

        = 
2000 + 1555

2  1(0.08313 - 0.10571) + 
1555 + 857

2  1(0.07543 - 0.08313)  

        = -49.4 kJ 
From the energy equation, we get the heat transfer as: 

1Q3 = m(u3 - u1) + 1W3 = 1× (802.7 - 1630.7) - 49.4 = -877.4 kJ 
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5.72 
 Calculate the heat transfer for the process described in Problem 4.70. 
 A piston cylinder setup similar to Problem 4.24 contains 0.1 kg saturated liquid and vapor 

water at 100 kPa with quality 25%. The mass of the piston is such that a pressure of 500 
kPa will float it. The water is heated to 300°C. Find the final pressure, volume and the 
work, 1W2. 
Solution: 
 

 Take CV as the water:   m2 = m1 = m 

Energy Eq.5.11:     m(u2 - u1) = 1Q2 - 1W2  

Process:    v = constant until    P = Plift 
To locate state 1:  Table B.1.2 

v1 = 0.001043 + 0.25×1.69296 = 0.42428 m3/kg 

u1 = 417.33 + 0.25×2088.7 = 939.5 kJ/kg 

P 1 

P lift

V

P

1

21a

cb  

 
State 1a:  500 kPa, v1a = v1 = 0.42428  >  vg at 500 kPa, 

  so state 1a is superheated vapor  Table B.1.3      T1a = 200°C 

State 2 is 300°C  so heating continues after state 1a to 2 at constant P = 500 kPa.  
2: T2,  P2 = Plift   => Tbl B.1.3   v2 =0.52256 m3/kg;    u2 = 2802.9 kJ/kg 

From the process, see also area in P-V diagram 

 1W2 = Plift  m(v2 - v1) = 500 × 0.1 (0.5226 - 0.4243) = 4.91 kJ 

From the energy equation 
 1Q2 = m(u2 - u1) + 1W2 = 0.1(2802.9 - 939.5) + 4.91 = 191.25 kJ 
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5.73 
 A cylinder/piston arrangement contains 5 kg of water at 100°C with x = 20% and the 

piston, mP = 75 kg, resting on some stops, similar to Fig. P5.73. The outside pressure 
is 100 kPa, and the cylinder area is A = 24.5 cm2. Heat is now added until the water 
reaches a saturated vapor state. Find the initial volume, final pressure, work, and heat 
transfer terms and show the P–v diagram. 

Solution: 
C.V. The 5 kg water. 
Continuty:    m2 = m1 = m ;          Energy:      m(u2 - u1) = 1Q2 - 1W2  

Process:  V = constant if  P < Plift  otherwise  P = Plift  see P-v diagram. 

 P3 = P2 = Plift = P0  + mp g / Ap = 100 + 
75 × 9.807

0.00245 × 1000 = 400 kPa 

 
   

P
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2 3
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State 1:  (T,x)  Table B.1.1 

 v1 = 0.001044 + 0.2 × 1.6719,     V1 = mv1 = 5 × 0.3354 = 1.677 m3 

 u1 = 418.91 + 0.2 × 2087.58  = 836.4 kJ/kg 

State 3:  (P, x = 1)  Table B.1.2   =>   v3 = 0.4625 > v1,   u3 = 2553.6 kJ/kg 

Work is seen in the P-V diagram (if volume changes then P = Plift) 

 1W3 = 2W3 = Pextm(v3 - v2)  = 400 × 5(0.46246 - 0.3354) = 254.1 kJ 

Heat transfer is from the energy equation 
 1Q3 = 5 (2553.6 - 836.4) + 254.1 = 8840 kJ 
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Energy Equation: Solids and Liquids 
 
5.74 
 Because a hot water supply must also heat some pipe mass as it is turned on so it does 

not come out hot right away. Assume 80oC liquid water at 100 kPa is cooled to 45oC 
as it heats 15 kg of copper pipe from 20 to 45oC. How much mass (kg) of water is 
needed?  

 Solution: 
C.V. Water and copper pipe. No external heat transfer, no work. 
Energy Eq.5.11:      U2 – U1 = ∆Ucu + ∆UH2O = 0 – 0 

From Eq.5.18 and Table A.3:   

∆Ucu = mC ∆Τ = 15 kg × 0.42 
kJ

kg K × (45 – 20) K = 157.5 kJ 

From the energy equation 
  mH2O = - ∆Ucu / ∆uH2O 

  mH2O =  ∆Ucu / CH2O(- ∆ΤH2O) = 
157.5

4.18 × 35  = 1.076 kg 

 or using Table B.1.1 for water 

  mH2O =  ∆Ucu / ( u1- u2) = 
157.5

334.84 – 188.41 = 1.076 kg 

 
 

Water

Cu pipe

 

The real problem involves a 
flow and is not analyzed by this 
simple process. 
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5.75 
 A house is being designed to use a thick concrete floor mass as thermal storage 

material for solar energy heating. The concrete is 30 cm thick and the area exposed to 
the sun during the daytime is 4 m × 6 m. It is expected that this mass will undergo an 
average temperature rise of about 3°C during the day. How much energy will be 
available for heating during the nighttime hours? 

Solution: 
C.V. The mass of concrete. 
 Concrete is a solid with some properties listed in Table A.3 

 V = 4 × 6 × 0.3 = 7.2 m3 ;      

 m = ρV = 2200 kg/m3 × 7.2 m3 = 15 840 kg 
From Eq.5.18 and C from table A.3 

 ∆U = m C ∆T = 15840 kg × 0.88 
kJ

kg K × 3 K = 41818 kJ = 41.82 MJ 
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5.76 
 A copper block of volume 1 L is heat treated at 500°C and now cooled in a 200-L oil 

bath initially at 20°C, shown in Fig. P5.76. Assuming no heat transfer with the 
surroundings, what is the final temperature? 

 Solution: 
C.V. Copper block and the oil bath.  
Also assume no change in volume so the work will be zero. 
Energy Eq.:    U2 - U1 = mmet(u2 - u1)met + moil(u2 - u1)oil = 1Q2 - 1W2 = 0 

Properties from Table A.3 and A.4 

 mmet = Vρ = 0.001 m3 × 8300 kg/m3 = 8.3 kg,    

 moil = Vρ = 0.2 m3 × 910 kg/m3 = 182 kg 

Solid and liquid Eq.5.17:   ∆u ≅ Cv ∆T,    

Table A.3 and A.4:   Cv met = 0.42 
kJ

kg K,  Cv oil = 1.8 
kJ

kg K 

The energy equation for the C.V. becomes 
 mmetCv met(T2 − T1,met) + moilCv oil(T2 − T1,oil) = 0 

  8.3 × 0.42(T2 − 500) + 182 × 1.8 (T2 − 20) = 0 

   331.09 T2 – 1743 – 6552 = 0 

    ⇒  T2 = 25 °C 
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5.77 

 A 1 kg steel pot contains 1 kg liquid water both at 15oC. It is now put on the stove 
where it is heated to the boiling point of the water. Neglect any air being heated and 
find the total amount of energy needed.  

 
  Solution: 
  

Energy Eq.: U2 − U1= 1Q2 − 1W2 
 

  The steel does not change volume 
and the change for the liquid is 
minimal, so 1W2 ≅ 0. 

 

 

 

State 2:    T2 = Tsat (1atm) = 100oC 
Tbl B.1.1 : u1 = 62.98 kJ/kg,    u2 = 418.91 kJ/kg 
Tbl A.3 : Cst  = 0.46 kJ/kg K 

Solve for the heat transfer from the energy equation 

1Q2 = U2 − U1 = mst (u2 − u1)st + mH2O (u2 − u1)H2O 

        = mstCst  (T2 – T1) + mH2O (u2 − u1)H2O 
 

1Q2 = 1 kg × 0.46 
kJ

kg K ×(100 – 15) K + 1 kg ×(418.91 – 62.98) kJ/kg 

       = 39.1 + 355.93 = 395 kJ 
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5.78 
 A car with mass 1275 kg drives at 60 km/h when the brakes are applied quickly to 

decrease its speed to 20 km/h. Assume the brake pads are 0.5 kg mass with heat 
capacity of 1.1 kJ/kg K and the brake discs/drums are 4.0 kg steel. Further assume   
both masses are heated uniformly. Find the temperature increase in the brake 
assembly. 

Solution: 
C.V. Car. Car loses kinetic energy and brake system gains internal u. 
 No heat transfer (short time) and no work term.  
   m = constant;      

Energy Eq.5.11:        E2 - E1 = 0 - 0 =  mcar 
1
2(V2

2 − V2
1) + mbrake(u2 − u1) 

The brake system mass is two different kinds so split it, also use Cv from Table 
A.3 since we do not have a u table for steel or brake pad material. 
 

 msteel Cv ∆T  + mpad Cv ∆T  =   mcar 0.5 (602 − 202) 



1000

3600
2
 m2/s2 

 (4 × 0.46 + 0.5 × 1.1) 
kJ
K ∆T  = 1275 kg × 0.5 × (3200 × 0.077 16) m2/s2  

          = 157 406 J = 157.4 kJ 
    => ∆T  = 65.9 °C 
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5.79 
 Saturated, x=1%, water at 25°C is contained in a hollow spherical aluminum vessel 

with inside diameter of 0.5 m and a 1-cm thick wall. The vessel is heated until the 
water inside is saturated vapor. Considering the vessel and water together as a control 
mass, calculate the heat transfer for the process. 

Solution: 
C.V. Vessel and water. This is a control mass of constant volume. 

 Continuity Eq.:         m2 = m1  

Energy Eq.5.11:       U2 - U1 = 1Q2 - 1W2 = 1Q2  

Process:     V = constant  
                  =>     1W2 = 0    used above 

 
State 1: v1 = 0.001003 + 0.01 × 43.359 = 0.4346 m3/kg 

   u1 = 104.88 + 0.01 × 2304.9 = 127.9 kJ/kg 

State 2:   x2 = 1 and constant volume so    v2 = v1 = V/m 

  vg T2 = v1 = 0.4346  =>  T2 = 146.1°C;    u2 = uG2 = 2555.9 

 VINSIDE = 
π
6 (0.5)3 = 0.06545 m3 ;  mH2O = 

0.06545
0.4346  = 0.1506 kg 

 Valu = 
π
6( )(0.52)3 - (0.5)3  = 0.00817 m3 

 malu = ρaluValu = 2700 × 0.00817 = 22.065 kg 

From the energy equation 
 1Q2 = U2 - U1 = mH2O(u2 - u1)H2O + maluCv alu(T2 - T1) 

   = 0.1506(2555.9 - 127.9) + 22.065 × 0.9(146.1 - 25) 
   = 2770.6 kJ 
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5.80 
 A 25 kg steel tank initially at –10oC is filled up with 100 kg of milk (assume 

properties as water) at 30oC. The milk and the steel come to a uniform temperature of 
+5 oC in a storage room. How much heat transfer is needed for this process? 

 Solution: 
  

C.V.  Steel + Milk. This is a control mass.  
Energy Eq.5.11:   U2 − U1 = 1Q2 − 1W2 = 1Q2 

Process:    V = constant,  so there is no work 
               1W2 = 0. 

 
  Use Eq.5.18 and values from A.3 and A.4 to evaluate changes in u 

   

1Q2 = msteel (u2 - u1)steel + mmilk(u2 - u1)milk 

       = 25 kg × 0.466 
kJ

kg K × [5 − (−10)] Κ + 100 kg ×4.18 
kJ

kg K × (5 − 30) Κ 

       =  172.5 − 10450  = −10277 kJ    



   Sonntag, Borgnakke and van Wylen 

 
5.81 
 An engine consists of a 100 kg cast iron block with a 20 kg aluminum head, 20 kg 

steel parts, 5 kg engine oil and 6 kg glycerine (antifreeze). Everything begins at 5oC 
and as the engine starts we want to know how hot it becomes if it absorbs a net of 
7000 kJ before it reaches a steady uniform temperature.  

 
Energy Eq.: U2 − U1= 1Q2 − 1W2 
Process:  The steel does not change volume and the change for the liquid is 

minimal, so 1W2 ≅ 0. 
So sum over the various parts of the left hand side in the energy equation 

mFe (u2 − u1) + mAl (u2 − u1)Al + mst (u − u1)st 

+ moil (u2 − u1)oil + mgly (u2 − u1)gly = 1Q2 
 
Tbl A.3 :   CFe = 0.42 , CAl = 0.9, Cst  = 0.46   all units of  kJ/kg K 
Tbl A.4 :   Coil = 1.9 , Cgly = 2.42  all units of kJ/kg K 

So now we factor out  T2 –T1 as  u2 − u1 = C(T2 –T1) for each term 

        [ mFeCFe + mAlCAl + mstCst+ moilCoil + mglyCgly ] (T2 –T1) = 1Q2 

T2 –T1 = 1Q2 / Σmi Ci 

= 
7000

100× 0.42 + 20× 0.9 + 20× 0.46 + 5 ×1.9 + 6 ×2.42 

= 
7000
93.22 = 75 K 

T2 = T1 + 75 = 5 + 75 = 80oC 
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Properties (u, h, Cv and Cp),  Ideal Gas 
 
5.82 
 Use the ideal gas air table A.7 to evaluate the heat capacity Cp at 300 K as a slope of 

the curve h(T) by ∆h/∆T. How much larger is it at 1000 K and 1500 K. 
            Solution : 

 From Eq.5.24: 

                 Cp = 
dh
dT = 

∆h
∆T = 

h320 - h290
320 - 290   = 1.005 kJ/kg K 

   1000K    Cp = 
∆h
∆T = 

h1050 - h950
1050 - 950  = 

1103.48 - 989.44
100  = 1.140 kJ/kg K 

  1500K    Cp = 
∆h
∆T = 

h1550 - h1450
1550 - 1450  = 

1696.45 - 1575.4
100  = 1.21 kJ/kg K 

  
 Notice an increase of 14%, 21% respectively. 
 

 h

T
300 1000 1500

Cp 300

Cp 1500
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5.83 
 We want to find the change in u for carbon dioxide between 600 K and 1200 K.  

a) Find it from a constant Cvo from table A.5 
  b) Find it from a Cvo evaluated from equation in A.6 at the average T. 
  c) Find it from the values of u listed in table A.8 
 Solution : 

  a) ∆u ≅ Cvo ∆T = 0.653 × (1200 – 600) = 391.8 kJ/kg 

  b)  Tavg = 
1
2 (1200 + 600) = 900,      θ = 

T
1000 = 

900
1000 = 0.9 

Cpo = 0.45 + 1.67 × 0.9 - 1.27 × 0.92 + 0.39 × 0.93 = 1.2086 kJ/kg K 

Cvo = Cpo – R = 1.2086 – 0.1889 = 1.0197 kJ/kg K 

∆u = 1.0197 × (1200 – 600) = 611.8 kJ/kg 
 
 c)  ∆u = 996.64 – 392.72 = 603.92 kJ/kg 

 
 u

T

300 600 1200

u
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1200
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5.84 
 We want to find the change in u for oxygen gas between 600 K and 1200 K.  

a) Find it from a constant Cvo from table A.5 
  b) Find it from a Cvo evaluated from equation in A.6 at the average T. 
  c) Find it from the values of u listed in table A.8 
 Solution: 

  a)  ∆u ≅ Cvo ∆T = 0.662 × (1200 − 600) = 397.2 kJ/kg 

             b) Tavg = 
1
2 (1200 + 600) = 900 K,           θ = 

T
1000 = 

900
1000 = 0.9 

Cpo = 0.88 − 0.0001 × 0.9 + 0.54 × 0.92 − 0.33 × 0.93 = 1.0767 

Cvo = Cpo − R = 1.0767 − 0.2598 = 0.8169 kJ/kg K 

       ∆u = 0.8169 × (1200 − 600)= 490.1 kJ/kg 
  

c)  ∆u = 889.72 − 404.46 = 485.3 kJ/kg 
 
 
 u

T

300 600 1200

u

600u

1200

 

 

 



   Sonntag, Borgnakke and van Wylen 

 
5.85 
 Water at 20°C, 100 kPa, is brought to 200 kPa, 1500°C. Find the change in the 

specific internal energy, using the water table and the ideal gas water table in 
combination. 

 Solution: 
State 1:  Table B.1.1      u1 ≅ uf = 83.95 kJ/kg 

State 2:  Highest T in Table B.1.3 is 1300°C 
Using a ∆u from the ideal gas tables, A.8,  we get 
  u1500 = 3139 kJ/kg  u1300 = 2690.72 kJ/kg 

  u1500 - u1300 =  448.26 kJ/kg 

We now add the ideal gas change at low P to the steam tables, B.1.3,   ux = 
4683.23 kJ/kg as the reference. 
  u2 - u1 = (u2 - ux)ID.G. + (ux - u1) 

    = 448.28 + 4683.23 - 83.95 = 5048 kJ/kg   
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5.86 
 We want to find the increase in temperature of nitrogen gas at 1200 K when the 

specific internal energy is increased with  40 kJ/kg. 
  a) Find it from a constant Cvo from table A.5 
  b) Find it from a Cvo evaluated from equation in A.6 at 1200 K. 
  c) Find it from the values of u listed in table A.8 
  Solution : 

∆u = ∆uA.8  Cv avg ∆T  Cvo ∆T ≅ ≅

a) ∆T = ∆u / Cvo = 
40

0.745  = 53.69°C 

b) θ = 1200 / 1000 =1.2 

Cpo = 1.11 – 0.48 × 1.2 + 0.96 × 1.22 – 0.42  × 1.2 3 = 1.1906 kJ/kg K 

Cvo = Cpo – R = 1.1906 – 0.2968 = 0.8938 kJ/kg K 

∆T = ∆u / Cvo = 40 / 0.8938 = 44.75°C  

c) u = u1 + ∆u = 957 + 40 = 997 kJ/kg 

less than 1300 K so linear interpolation. 

∆T = 
1300 – 1200

1048.46 – 957  × 40 = 43.73°C 

Cvo  (1048.46 – 957) / 100 = 0.915 kJ/kg K ≅

So the formula in A.6 is accurate within 2.3%. 
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5.87 
 For an application the change in enthalpy of carbon dioxide from 30 to 1500°C at 100 

kPa is needed. Consider the following methods and indicate the most accurate one. 
 a.  Constant specific heat, value from Table A.5. 
 b.  Constant specific heat, value at average temperature from the equation in Table A.6. 
 c.  Variable specific heat, integrating the equation in Table A.6. 
 d.  Enthalpy from ideal gas tables in Table A.8. 

Solution: 
a) ∆h = Cpo∆T = 0.842 (1500 - 30) = 1237.7 kJ/kg 

b) Tave = 12 (30 + 1500) + 273.15 = 1038.15 K;    θ = T/1000 = 1.0382   

        Table A.6 ⇒    Cpo =1.2513 

 ∆h = Cpo,ave ∆T = 1.2513 × 1470 = 1839 kJ/kg 

 
 c) For the entry to Table A.6:     θ2 = 1.77315 ;   θ1 = 0.30315 

  ∆h = h2- h1 = ∫ Cpo dT 

   = [0.45 (θ2 - θ1) + 1.67 × 
1
2 (θ2

2 - θ1
2)  

   –1.27 × 
1
3 (θ2

3 - θ1
3) + 0.39× 

1
4 (θ2

4 - θ1
4)] = 1762.76 kJ/kg 

 d) ∆h = 1981.35 – 217.12 = 1764.2 kJ/kg 
 
The result in d) is best, very similar to c).  For large ∆T or small ∆T at high Tavg, a) is 
very poor. 
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5.88 
 An ideal gas is heated from 500 to 1500 K. Find the change in enthalpy using constant 

specific heat from Table A.5 (room temperature value) and discuss the accuracy of the 
result if the gas is 

a. Argon  b. Oxygen c. Carbon dioxide 
Solution: 
  T1 = 500 K, T2 = 1500 K,     ∆h = CP0(T2-T1) 

 a) Ar :  ∆h = 0.520(1500-500) = 520 kJ/kg 
  Monatomic inert gas very good approximation. 
 b) O2 :  ∆h = 0.922(1500-500) = 922 kJ/kg 

  Diatomic gas approximation is OK with some error. 
 c) CO2:  ∆h = 0.842(1500-500) = 842 kJ/kg 

  Polyatomic gas heat capacity changes, see figure 5.11 
  See also appendix C for more explanation. 
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Energy Equation: Ideal Gas 
 
5.89 
 A 250 L rigid tank contains methane at 500 K, 1500 kPa. It is now cooled down to 300 

K. Find the mass of methane and the heat transfer using a) ideal gas and b) the 
methane tables. 

 
 Solution: 

a) Assume ideal gas, P2 = P1 × (Τ2 / Τ1)  = 1500 × 300 / 500 = 900 kPa 

  m = P1V/RT1 = 
1500 × 0.25
0.5183 × 500 = 1.447 kg 

 Use specific heat from Table A.5  
  u2 - u1  = Cv (T2 – T1) = 1.736 (300 – 500) = –347.2 kJ/kg 

     1Q2 = m(u2 - u1) = 1.447(-347.2) = –502.4 kJ 

b) Using the methane Table B.7, 

  v1 = 0.17273 m3/kg,    u1 = 872.37 kJ/kg  

  m = V/v1 = 0.25/0.17273 = 1.4473 kg 

 State 2:  v2 = v1  and 300 K is found between 800 and 1000 kPa  

  u2 = 467.36 + (465.91 – 467.36) 
0.17273 – 0.19172
0.15285 – 0.19172 = 466.65 kJ/kg  

    1Q2 = 1.4473 (466.65 – 872.37) = –587.2 kJ 
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5.90 

 A rigid insulated tank is separated into two rooms by a stiff plate. Room A of 0.5 m3 
contains air at 250 kPa, 300 K and room B of 1 m3 has air at 150 kPa, 1000 K. The 
plate is removed and the air comes to a uniform state without any heat transfer. Find 
the final pressure and temperature. 

  
Solution: 
C.V. Total tank. Control mass of constant volume. 

Mass and volume:  m2  = mA + mB; V = VA + VB = 1.5 m3 

Energy Eq.: U2 – U1 = m2 u2  – mAuA1 – mBuB1 = Q – W = 0 

Process Eq.:   V = constant  ⇒  W = 0; Insulated  ⇒   Q = 0 
Ideal gas at 1:   mA = PA1VA/RTA1 = 250 × 0.5/(0.287 × 300) = 1.452 kg 

   u A1= 214.364 kJ/kg   from Table A.7 

Ideal gas at 2:   mB = PB1VB/RT B1= 150 × 1/(0.287 × 1000) = 0.523 kg 

   u B1= 759.189 kJ/kg   from Table A.7 

 m2  =  mA + mB = 1.975 kg  

 u2 = 
mAuA1 + mBuB1

m2
  = 

1.452 × 214.364 + 0.523 × 759.189
1.975  = 358.64 kJ/kg 

   =>  Table A.7.1:        T2  = 498.4 K 

  P2  = m2 RT2 /V = 1.975 × 0.287 × 498.4/1.5 = 188.3 kPa 
 
 
 

A B

cb  
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5.91 
 A rigid container has 2 kg of carbon dioxide gas at 100 kPa, 1200 K that is heated to 

1400 K. Solve for the heat transfer using a. the heat capacity from Table A.5 and b. 
properties from Table A.8 

  Solution: 
  C.V.  Carbon dioxide, which is a control mass. 
  Energy Eq.5.11: U2 – U1 = m (u2- u1) = 1Q2 − 1W2 

  Process: ∆V = 0   ⇒ 1W2 =  0 

  a)   For constant heat capacity we have:  u2- u1 = Cvo (T2- T1)  so 

   1Q2 ≅ mCvo (T2- T1) = 2 × 0.653 × (1400 –1200) = 261.2 kJ 

  b)  Taking the u values from Table A.8 we get 
   1Q2 = m (u2- u1) = 2 × (1218.38 – 996.64) = 443.5 kJ 
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5.92 
 Do the previous problem for nitrogen, N2, gas. 

A rigid container has 2 kg of carbon dioxide gas at 100 kPa, 1200 K that is heated to 
1400 K. Solve for the heat transfer using a. the heat capacity from Table A.5 and b. 
properties from Table A.8 
 Solution: 

  C.V.  Nitrogen gas, which is a control mass. 
  Energy Eq.5.11: U2 – U1 = m (u2- u1) = 1Q2 − 1W2 

  Process: ∆V = 0   ⇒ 1W2 =  0 

  a)  For constant heat capacity we have:  u2- u1 = Cvo (T2 - T1)  so 

   1Q2 ≅ mCvo (T2- T1) = 2 × 0.745 × (1400 – 1200) = 298 kJ 

  b)  Taking the u values from Table A.8, we get 
   1Q2 = m (u2- u1) = 2 × (1141.35 – 957) = 368.7 kJ 
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5.93 
 A 10-m high cylinder, cross-sectional area 0.1 m2, has a massless piston at the bottom 

with water at 20°C on top of it, shown in Fig. P5.93. Air at 300 K, volume 0.3 m3, under 
the piston is heated so that the piston moves up, spilling the water out over the side. 
Find the total heat transfer to the air when all the water has been pushed out. 

 Solution: 
 

H2O

Po

cb
air

 
V

P

2

1

P

P1

0

V V1 max  
The water on top is compressed liquid and has volume and mass 

 VH2O = Vtot - Vair = 10 × 0.1 - 0.3 = 0.7 m3 

 mH2O = VH2O/vf = 0.7 / 0.001002 = 698.6 kg 

The initial air pressure is then 

 P1 = P0 + mH2Og/A = 101.325 + 
698.6 × 9.807

0.1 × 1000  = 169.84 kPa 

and then mair = PV/RT = 
169.84 × 0.3
0.287 × 300  = 0.592 kg 

State 2:  No liquid water over the piston so 

   P2 = P0 + 0/  = 101.325 kPa,    V2 = 10×0.1 = 1 m3 

State 2: P2, V2     ⇒      T2 = 
T1P2V2

P1V1
 = 

300×101.325×1
169.84×0.3  = 596.59 K 

The process line shows the work as an area 

 1W2 = ⌡⌠PdV = 12 (P1 + P2)(V2 - V1) = 
1
2 (169.84 + 101.325)(1 - 0.3) = 94.91 kJ 

The energy equation solved for the heat transfer becomes 
 1Q2 = m(u2 - u1) + 1W2 ≅ mCv(T2 - T1) + 1W2 

         = 0.592 × 0.717 × (596.59 - 300) + 94.91 = 220.7 kJ 
 
Remark: we could have used u values from Table A.7:  
 u2 - u1 = 432.5 - 214.36 = 218.14 kJ/kg    versus 212.5 kJ/kg with Cv. 
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5.94 
 Find the heat transfer in Problem 4.43.  
 A piston cylinder contains 3 kg of air at 20oC and 300 kPa. It is now heated up in a 

constant pressure process to 600 K. 
 
 Solution: 
  Ideal gas  PV = mRT 
  State 1: T1, P1 

State 2: T2, P2 = P1 
  P2V2 = mRT2  V2 = mR T2 / P2 = 3×0.287×600 / 300 = 1.722 m3 

 Process:     P = constant,    

1W2  = ⌡⌠ PdV = P (V2 - V1) = 300 (1.722 – 0.8413) = 264.2 kJ 

 Energy equation becomes  
U2 - U1 = 1Q2 - 1W2 = m(u2 - u1) 

  1Q2 = U2 - U1 + 1W2 = 3(435.097 – 209.45) + 264.2 = 941 kJ 

 
 
 
 

T

v

2

1
300 kPa

P

v

T
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5.95 

 An insulated cylinder is divided into two parts of 1 m3 each by an initially locked 
piston, as shown in Fig. P5.95. Side A has air at 200 kPa, 300 K, and side B has air at 
1.0 MPa, 1000 K. The piston is now unlocked so it is free to move, and it conducts 
heat so the air comes to a uniform temperature TA = TB. Find the mass in both A and 
B, and the final T and P. 

C.V. A + B     Force balance on piston: PAA = PBA 

 So the final state in A and B is the same. 
State 1A:  Table A.7 uA1 = 214.364 kJ/kg, 

  mA = PA1VA1/RTA1 = 200 × 1/(0.287 × 300) = 2.323 kg 

State 1B:  Table A.7 uB1 = 759.189 kJ/kg, 

         mB = PB1VB1/RTB1 = 1000 × 1/(0.287 × 1000) = 3.484 kg 

For chosen C.V. 1Q2 = 0 , 1W2 = 0 so the energy equation becomes 

 mA(u2 - u1)A + mB(u2 - u1)B = 0 

 (mA + mB)u2 = mAuA1 + mBuB1 

              = 2.323 × 214.364 + 3.484 × 759.189 = 3143 kJ 
        u2 = 3143/(3.484 + 2.323) = 541.24 kJ/kg  

From interpolation in Table A.7:    ⇒    T2 =  736 K 

 P = (mA + mB)RT2/Vtot = 5.807 kg × 0.287 
kJ

kg K × 736 K/ 2 m3 = 613 kPa 
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5.96 
 A piston cylinder contains air at 600 kPa, 290 K and a volume of  0.01 m3. A constant 

pressure process gives 54 kJ of work out. Find the final temperature of the air and the 
heat transfer input. 

 
Solution: 

 
C.V AIR  control mass 
Continuity Eq.:     m2 – m1 = 0 

Energy Eq.:  m (u2 − u1) = 1Q2 - 1W2 
 
Process: P = C     so    1W2 = ∫ P dV = P(V2 – V1) 
1 : P1 , T1,V1         2 : P1 = P2 , ? 

m1 = P1V1/RT1 = 600 ×0.01 / 0.287 ×290 = 0.0721 kg 

1W2 = P(V2 – V1) = 54 kJ  

V2 – V1 = 1W2 / P = 54 kJ / 600 kPa = 0.09 m3 

V2 = V1 + 1W2 / P = 0.01 + 0.09 = 0.10 m3 
Ideal gas law : P2V2 = mRT2 

T2 = P2V2 / mR = 
P2V2
 P1V1

 T1 = 
0.10
0.01 × 290 = 2900 K 

Energy equation with u’s from table A.7.1 

1Q2 = m (u2 − u1 ) + 1W2 
            = 0.0721 ( 2563.8 – 207.2 ) + 54 
             = 223.9 kJ 
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5.97 
 A cylinder with a piston restrained by a linear spring contains 2 kg of carbon dioxide 

at 500 kPa, 400°C. It is cooled to 40°C, at which point the pressure is 300 kPa. 
Calculate the heat transfer for the process. 

  
Solution: 
C.V. The carbon dioxide, which is a control mass. 

Continuity Eq.:     m2 – m1 = 0 

Energy Eq.: m (u2 − u1) = 1Q2 - 1W2 

Process Eq.: P = A + BV    (linear spring) 

         1W2 = ⌡⌠PdV = 12(P1 + P2)(V2 - V1) 

Equation of state:   PV = mRT  (ideal gas) 

State 1:    V1 = mRT1/P1 = 2 × 0.18892 × 673.15 /500 = 0.5087 m3 

State 2:    V2 = mRT2/P2 = 2 × 0.18892 × 313.15 /300 = 0.3944 m3 

 1W2 = 12(500 + 300)(0.3944 - 0.5087) = -45.72 kJ 

To evaluate u2 - u1 we will use the specific heat at the average temperature. 

From Figure 5.11:  Cpo(Tavg) = 45/44 = 1.023  ⇒  Cvo = 0.83 = Cpo - R 

For comparison the value from Table A.5 at 300 K is  Cvo = 0.653 kJ/kg K 

         1Q2 = m(u2 - u1) + 1W2 = mCvo(T2 - T1) + 1W2 

        = 2 × 0.83(40 - 400) - 45.72 = -643.3 kJ 
 
 

 

CO2

 

 
 

P

v

2
1

 

 
 Remark:   We could also have used the ideal gas table in A.8 to get  u2 - u1. 
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5.98 
 Water at 100 kPa, 400 K is heated electrically adding 700 kJ/kg in a constant pressure 

process. Find the final temperature using 
  a) The water tables B.1 b) The ideal gas tables A.8 

     c) Constant specific heat from A.5  
Solution : 

Energy Eq.5.11:    u2 -  u1 = 1q2 - 1w2 

Process: P = constant     =>     1w2 = P ( v2 -  v1 )  

Substitute this into the energy equation to get 
  1q2 = h2 -  h1 

Table B.1: 

h1 ≅ 2675.46 +  
126.85 - 99.62

150 - 99.62  × (2776.38 –2675.46) = 2730.0 kJ/kg 

h2 = h1 + 1q2 = 2730 + 700 = 3430 kJ/kg 

T2 = 400 + ( 500 – 400 ) ×  3430 - 3278.11
3488.09 - 3278.11  = 472.3°C 

 
Table A.8: 

h2 = h1 + 1q2 = 742.4 + 700 = 1442.4 kJ/kg 

T2 = 700 + (750 – 700 ) × 1442.4 - 1338.56
1443.43 - 1338.56 = 749.5 K = 476.3°C 

Table A.5 
h2 -  h1 ≅ Cpo ( T2 - T1 ) 

T2 = T1 + 1q2 / Cpo = 400 + 700 / 1.872 = 773.9K = 500.8°C 
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5.99 
 A piston/cylinder has 0.5 kg air at 2000 kPa, 1000 K as shown. The cylinder has stops 

so Vmin = 0.03 m3. The air now cools to 400 K by heat transfer to the ambient. Find 
the final volume and pressure of the air (does it hit the stops?) and the work and heat 
transfer in the process. 
Solution: 

 We recognize this is a possible two-step process, one of constant P and one of 
constant V. This behavior is dictated by the construction of the device. 
Continuity Eq.: m2 – m1 = 0 

Energy Eq.5.11:    m(u2 -  u1) = 1Q2 - 1W2 

Process:   P = constant = F/A = P1       if    V >  Vmin 

  V = constant = V1a = Vmin      if    P < P1 

State 1: (P, T)     V1 = mRT1/P1 = 0.5 × 0.287 × 1000/2000 = 0.07175 m3 
 The only possible P-V  combinations for this system is shown in the diagram so both 

state 1 and 2 must be on the two lines. For state 2 we need to know if it is on the 
horizontal P line segment or the vertical V segment. Let us check state 1a: 

 State 1a:  P1a = P1, V1a = Vmin  

   Ideal gas so T1a = T1 
V1a
V1

 = 1000 × 
0.03

0.07175 = 418 K 

 We see that  T2 < T1a and state 2 must have V2 = V1a = Vmin = 0.03 m3.  

   P2 = P1× 
T2
T1

 × 
V1
V2

  = 2000 × 
400
1000 × 

0.07175
0.03   = 1913.3 kPa 

 The work is the area under the process curve in the P-V diagram 

  1W2 =   ⌡⌠1
 2 P dV  =  P1 (V1a – V1) = 2000 kPa (0.03 – 0.07175) m3 = – 83.5 kJ 

 Now the heat transfer is found from the energy equation, u’s from Table A.7.1, 

     1Q2  = m(u2 - u1) + 1W2  = 0.5 (286.49 - 759.19) – 83.5  = -319.85 kJ 
 
 

 V

P

1

2

1a

P

P

2

1

V

T

1

2

1a

T

T

2

1a

T1

 



   Sonntag, Borgnakke and van Wylen 

 
5.100 
 A spring loaded piston/cylinder contains 1.5 kg of air at 27C and 160 kPa. It is now 

heated to 900 K in a process where the pressure is linear in volume to a final volume 
of twice the initial volume. Plot the process in a P-v diagram and find the work and 
heat transfer. 

 
Take CV as the air. 

  m2 = m1 = m   ;      m(u2 -u1) = 1Q2 - 1W2  

Process:  P = A + BV   =>  1W2 = ∫ P dV = area = 0.5(P1 + P2)(V2 -V1) 

State 1: Ideal gas. V1 = mRT1/P1 = 1.5× 0.287 × 300/160 = 0.8072 m3 

  Table A.7 u1 = u(300) = 214.36 kJ/kg 

State 2: P2V2 = mRT2        so ratio it to the initial state properties 

    P2V2 /P1V1 = P22 /P1 = mRT2 /mRT1  = T2 /T1   =>    

   P2 = P1 (T2 /T1 )(1/2) = 160 × (900/300) × (1/2) = 240 kPa 
 
 Work is done while piston moves at linearly varying pressure, so we get 

1W2 = 0.5(P1 + P2)(V2 -V1) = 0.5×(160 + 240) kPa × 0.8072 m3 = 161.4 kJ 
 Heat transfer is found from energy equation 

 1Q2 = m(u2 - u1) + 1W2 = 1.5×(674.824 - 214.36) + 161.4 = 852.1 kJ 
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5.101 
 Air in a piston/cylinder at 200 kPa, 600 K, is expanded in a constant-pressure process 

to twice the initial volume (state 2), shown in Fig. P5.101. The piston is then locked 
with a pin and heat is transferred to a final temperature of 600 K. Find P, T, and h for 
states 2 and 3, and find the work and heat transfer in both processes. 

Solution: 
C.V. Air.  Control mass    m2 = m3 = m1 
Energy Eq.5.11:    u2 - u1 = 1q2 - 1w2 ;   

Process 1 to 2:       P = constant      =>       1w2 = ∫ P dv = P1(v2 -v1) = R(T2 -T1) 

Ideal gas  Pv = RT  ⇒  T2 = T1v2/v1 = 2T1 = 1200 K 

  P2 = P1 = 200 kPa,     1w2 = RT1 = 172.2 kJ/kg 

Table A.7  h2 = 1277.8 kJ/kg,  h3 = h1 = 607.3 kJ/kg 

  1q2 = u2 - u1 + 1w2 = h2 - h1 = 1277.8 - 607.3 = 670.5 kJ/kg 

Process 2→3: v3 = v2 = 2v1    ⇒    2w3 = 0,  

   P3 = P2T3/T2 = P1T1/2T1  = P1/2 = 100 kPa 

  2q3 = u3 - u2 = 435.1 - 933.4 = -498.3 kJ/kg 
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5.102 
 A vertical piston/cylinder has a linear spring mounted as shown so at zero cylinder 

volume a balancing pressure inside is zero. The cylinder contains 0.25 kg air at 500 
kPa, 27oC. Heat is now added so the volume doubles. 
 a) Show the process path in a P-V diagram 
 b) Find the final pressure and temperature. 

  c) Find the work and heat transfer.  
 
 Solution: 
 Take CV around the air. This is a control mass. 

 Continuity: m2 = m1 = m  ;       
Energy Eq.5.11: m(u2 -u1) = 1Q2 - 1W2  
Process:   P linear in V so,   P = A + BV,  
      since V = 0   =>   P = 0    =>    A = 0 
    now:    P = BV;      B = P1/V1 

State 1:  P, T       Ideal gas : 
 

 
             
 
 
            b) 
             

    V = 
mRT

P  = 
0.25 × 0.287 × 300

500                   a) 

       = 0.04305 m3 
State 2:  V2 = 2 V1 ;  ? 
must be on line in P-V diagram, this substitutes 
for the question mark only one state is on the 
line with that value of V2 

 
P 

0 
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1 

V 

P 1 

P2 
2 

V 2V1 1  
 

P2 = BV2 = (P1/V1)V2 = 2P1 = 1000 kPa. 

T2 = 
PV
mR = 

2P12V1
mR  = 

4P1V1
mR  = 4 T1 = 1200 K 

 c)     The work is boundary work and thus seen as area in the P-V diagram: 
 
      1W2 = ∫ P dV = 0.5(P1 + P2 )( 2V1 − V1) = 0.5(500 + 1000) 0.04305 = 32.3 kJ 

  1Q2 = m(u2 − u1) + 1W2 = 0.25(933.4 - 214.4) + 32.3 = 212 kJ 
  

Internal energy u was taken from air table A.7. If constant Cv were used then  
   (u2 − u1) = 0.717 (1200 - 300) = 645.3  kJ/kg (versus 719 above) 
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Energy Equation: Polytropic Process 
 
5.103 
 A piston cylinder contains 0.1 kg air at 300 K and 100 kPa. The air is now slowly 

compressed in an isothermal (T = C) process to a final pressure of 250 kPa. Show the 
process in a P-V diagram and find both the work and heat transfer in the process.  

 Solution :  
 
Process:     T = C & ideal gas    ⇒  PV = mRT = constant 

1W2  = ∫ PdV = 
⌡
⌠mRT

V  dV  = mRT ln 
V2
V1

  = mRT ln 
P1
P2

  

= 0.1 × 0.287 × 300 ln (100 / 250 ) = -7.89 kJ 
since T1 = T2  ⇒  u2 = u1 

The energy equation thus becomes 

1Q2 = m × (u2 - u1 ) + 1W2 = 1W2 = -7.89 kJ 

 
  P

v

2

1

T

v

2 1
T = C 

P = C v -1

 
 



   Sonntag, Borgnakke and van Wylen 

 
5.104 
 Oxygen at 300 kPa, 100°C is in a piston/cylinder arrangement with a volume of 0.1 

m3. It is now compressed in a polytropic process with exponent, n = 1.2, to a final 
temperature of 200°C. Calculate the heat transfer for the process. 

Solution: 
Continuty: m2 = m1   

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

State 1: T1 , P1 & ideal gas, small change in T, so use Table A.5 

      ⇒ m = 
P1V1
RT1

 = 
300 × 0.1 m3

0.25983 × 373.15 = 0.309 kg 

Process:  PVn = constant 

 1W2 = 
1

1-n (P2V2 - P1V1) = 
mR
1-n (T2 - T1)  = 

0.309 × 0.25983
1 - 1.2  (200 - 100) 

  = -40.2 kJ 
 1Q2 = m(u2 - u1) + 1W2  ≅  mCv(T2 - T1) + 1W2 

        = 0.3094 × 0.662 (200 - 100) - 40.2 = -19.7 kJ 
 
  P

v

2

1

T

v

2
1T

T

1

2

T = C v-0.2P = C v -1.2
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5.105 
 A piston/cylinder contains 0.001 m3 air at 300 K, 150 kPa. The air is now compressed 

in a process in which P V1.25 = C  to a final pressure of 600 kPa. Find the work 
performed by the air and the heat transfer. 

 Solution: 
C.V. Air. This is a control mass, values from Table A.5 are used. 
Continuty: m2 = m1   

Energy Eq.5.11:       m(u2 − u1) = 1Q2 − 1W2  

Process :       PV1.25  = const.  

State 2:   V2 = V1 ( P1/P2 )1.25= 0.00033 m3 

  T2 = T1 P2V2/(P1V1) = 300 
600 × 0.00033
150 × 0.001  =  395.85 K 

1W2 = 
1

n-1(P2 V2 – P1V1) = 
1

n-1 (600 × 0.00033 – 150 × 0.001) = - 0.192 kJ 

1Q2 = m(u2 – u1) + 1W2 = 
P1V1
RT1

 Cv (T2 – T1) + 1W2  

        = 0.001742 × 0.717× 95.85 – 0.192 = - 0.072 kJ 
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5.106 

 Helium gas expands from 125 kPa, 350 K and 0.25 m3 to 100 kPa in a polytropic 
process with n = 1.667. How much heat transfer is involved? 

 
 Solution: 
 C.V. Helium gas, this is a control mass. 
 Energy equation: m(u2 – u1) = 1Q2 – 1W2 

 Process equation:       PVn = constant = P1Vn
1 = P2Vn

2 

 Ideal gas (A.5): m = PV/RT = 
125 × 0.25

2.0771 × 350 = 0.043 kg 

 Solve for the volume at state 2 

V2 = V1 (P1/P2)1/n = 0.25 × 



125

100
0.6

   = 0.2852 m3 

  T2 = T1 P2V2/(P1V1) = 350 
100 × 0.2852
125 × 0.25  =  319.4 K 

 Work from Eq.4.4 
 

1W2 = 
P2V2- P1 V1

 1-n  = 
100× 0.2852 - 125× 0.25

1 - 1.667  kPa m3 = 4.09 kJ 

 
 Use specific heat from Table A.5 to evaluate u2 – u1, Cv = 3.116 kJ/kg K 

1Q2 = m(u2 – u1) + 1W2 = m Cv (T2 – T1) + 1W2  

        = 0.043 × 3.116 × (319.4 – 350) + 4.09 = -0.01 kJ 
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5.107 
 A piston/cylinder in a car contains 0.2 L of air at 90 kPa, 20°C, shown in Fig. P5.107. 

The air is compressed in a quasi-equilibrium polytropic process with polytropic 
exponent n = 1.25 to a final volume six times smaller. Determine the final pressure, 
temperature, and the heat transfer for the process. 

 Solution: 
C.V. Air. This is a control mass going through a polytropic process. 
Continuty: m2 = m1   

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Process:   Pvn = const. 

 P1v1
n = P2v2

n  ⇒  P2 = P1(v1/v2)n = 90 × 61.25 = 845.15 kPa 

Substance ideal gas:     Pv = RT 
 T2 = T1(P2v2/P1v1) = 293.15(845.15/90 × 6) = 458.8 K 

 
  P

v

2

1

P = C v
-1.25

T

v

2
1

T = C v-0.25

 
 

  m = 
PV
RT = 

90 × 0.2×10-3
0.287 × 293.15 = 2.14×10-4 kg 

The work is integrated as in Eq.4.4 

 1w2 = ⌡⌠Pdv = 
1

1 - n (P2v2 - P1v1) = 
R

1 - n (T2 - T1)  

        = 
0.287

1 - 1.25(458.8 - 293.15)  = -190.17 kJ/kg 

The energy equation with values of u from Table A.7 is 
 1q2 = u2 - u1 + 1w2 = 329.4 - 208.03 – 190.17 = -68.8 kJ/kg 

 1Q2 = m 1q2 = -0.0147 kJ   (i.e a heat loss) 
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5.108 
 A piston/cylinder has nitrogen gas at 750 K and 1500 kPa. Now it is expanded in a 

polytropic process with n = 1.2 to P = 750 kPa. Find the final temperature, the specific 
work and specific heat transfer in the process. 

 
C.V. Nitrogen. This is a control mass going through a polytropic process. 
Continuty: m2 = m1   

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Process:    Pvn = constant 
Substance ideal gas:      Pv = RT 

  T2 = T1 (P2/P1)
n-1
n  = 750 



750

1500

0.2
1.2 = 750 × 0.8909 = 668 K 

The work is integrated as in Eq.4.4 

 1w2 = ⌡⌠Pdv = 
1

1 - n (P2v2 - P1v1) = 
R

1 - n (T2 - T1)  

        = 
0.2968
1 - 1.2(668 - 750)  = 121.7 kJ/kg 

The energy equation with values of u from Table A.8 is 
 1q2 = u2 - u1 + 1w2 = 502.8 - 568.45 + 121.7 = 56.0 kJ/kg 

 
       If constant specific heat is used from Table A.5 

 1q2 = C(T2 - T1) + 1w2 = 0.745(668 – 750) + 121.7 = 60.6 kJ/kg 
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5.109 
 A piston/cylinder arrangement of initial volume 0.025 m3 contains saturated water 

vapor at 180°C. The steam now expands in a polytropic process with exponent n = 1 
to a final pressure of 200 kPa, while it does work against the piston. Determine the 
heat transfer in this process. 

 Solution: 
C.V. Water. This is a control mass. 

State 1:  Table B.1.1   P = 1002.2 kPa,   v1 = 0.19405 m3/kg,  u1 = 2583.7 kJ/kg , 

  m = V/v1 = 0.025/0.19405 = 0.129 kg  

Process:    Pv = const. = P1v1 = P2v2 ;   polytropic process   n = 1. 

    ⇒ v2 = v1P1/P2 = 0.19405 × 1002.1/200 = 0.9723 m3/kg 

State 2:      P2, v2    ⇒     Table B.1.3  T2 ≅ 155°C , u2 = 2585 kJ/kg 

 1W2 = ⌡⌠PdV = P1V1 ln 
v2
v1

 = 1002.2 × 0.025 ln 
0.9723
0.19405  = 40.37  kJ 

 1Q2 = m(u2 - u1) + 1W2 = 0.129(2585 - 2583.7) + 40.37 = 40.54 kJ 

 
  P

v

2

1
T

v

21
P = C v-1

T = C

Sat vapor line

 
  Notice T drops, it is not an ideal gas. 
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5.110 
 Air is expanded from 400 kPa, 600 K in a polytropic process to 150 kPa, 400 K in a 

piston cylinder arrangement. Find the polytropic exponent n and the work and heat 
transfer per kg air using constant heat capacity from A.5.  

 Solution:  

Process:     P1V1
n = P2V2

n         

Ideal gas:   PV = RT   ⇒    V = RΤ/ P  

ln  
P1
P2

 = ln (V2 / V1)n = n ln (V2 / V1) = n ln [ 
T2
P2

 × 
P1
T1

 ] 

n = ln 
P1
P2

 / ln [ P1
P2

 × 
T2
T1

 ] = ln 
400
150 / ln [ 

400
600 × 

400
150 ]  = 1.7047 

The work integral is from Eq.4.4 

1W2 = ⌡⌠PdV =  
R

1 − n (T2 – T1) = 
0.287

−0.7047 (400 – 600) = 81.45 kJ/kg 

Energy equation from Eq.5.11 
 

1q2 =  u2 - u1 +  1w2 = Cv(T2 - T1) + 1w2 = 0.717 (400-600) + 81.45  

 
      = -61.95 kJ/kg      
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5.111 
 A piston/cylinder has 1 kg propane gas at 700 kPa, 40°C. The piston cross-sectional 

area is 0.5 m2, and the total external force restraining the piston is directly 
proportional to the cylinder volume squared. Heat is transferred to the propane until its 
temperature reaches 700°C. Determine the final pressure inside the cylinder, the work 
done by the propane, and the heat transfer during the process. 

Solution: 
C.V. The 1 kg of propane. 
Energy Eq.5.11: m(u2 - u1)  = 1Q2 - 1W2 

Process: P = Pext = CV2  ⇒      PV-2 = constant,    polytropic   n = -2 

Ideal gas:   PV = mRT, and process yields 

 P2 = P1(T2/T1)
n

n-1 = 700 



700+273.15

40+273.15
2/3

 = 1490.7 kPa 

The work is integrated as Eq.4.4 

 1W2 = ⌡⌠
  1

  2
 PdV = 

P2V2 - P1V1
1 - n  = 

mR(T2 - T1)
1 - n  

         = 
1× 0.18855 ×  (700 – 40)

1– (–2)    = 41.48 kJ 

The energy equation with specific heat from Table A.5 becomes 
  1Q2 = m(u2 - u1) + 1W2 = mCv(T2 - T1) + 1W2 

         = 1 × 1.490 × (700 - 40) + 41.48 = 1024.9 kJ 
 

 P

V

2

1

P = C V2
T

V

2

1

T = C V3
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5.112 
 An air pistol contains compressed air in a small cylinder, shown in Fig. P5.112. 

Assume that the volume is 1 cm3, pressure is 1 MPa, and the temperature is 27°C 
when armed. A bullet, m = 15 g, acts as a piston initially held by a pin (trigger); when 
released, the air expands in an isothermal process (T = constant). If the air pressure is 
0.1 MPa in the cylinder as the bullet leaves the gun, find 

 a. The final volume and the mass of air. 
 b. The work done by the air and work done on the atmosphere. 
 c. The work to the bullet and the bullet exit velocity. 
 Solution: 

C.V. Air. 

Air ideal gas:   mair = P1V1/RT1 = 1000 × 10-6/(0.287 × 300) = 1.17×10-5 kg 

Process:  PV = const = P1V1 = P2V2  ⇒  V2 = V1P1/P2 = 10 cm3 

 1W2 = ⌡⌠PdV = 
⌡

⌠P1V1

V  dV = P1V1 ln (V2/V1) = 2.303 J 

 1W2,ATM = P0(V2 - V1) = 101 × (10 − 1) × 10-6 kJ = 0.909 J 

 Wbullet = 1W2 - 1W2,ATM = 1.394 J = 
1
2 mbullet(Vexit)

2 

 Vexit = (2Wbullet/mB)1/2 =  (2 × 1.394/0.015)1/2 = 13.63 m/s 
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5.113 
 A spherical balloon contains 2 kg of R-22 at 0°C, 30% quality. This system is heated 

until the pressure in the balloon reaches 600 kPa. For this process, it can be assumed that 
the pressure in the balloon is directly proportional to the balloon diameter. How does 
pressure vary with volume and what is the heat transfer for the process? 

 Solution:  
C.V. R-22 which is a control mass. 
  m2 = m1 = m ;      

Energy Eq.5.11:       m(u2 - u1) = 1Q2 - 1W2  

State 1: 0°C, x = 0.3.  Table B.4.1 gives P1 = 497.6 kPa  

 v1 = 0.000778 + 0.3 × 0.04636 = 0.014686 m3/kg 

 u1 = 44.2 + 0.3 × 182.3 = 98.9 kJ/kg 

Process:   P ∝ D,   V ∝ D3    =>    PV -1/3 = constant, polytropic     n = -1/3. 

           =>   V2 = mv2 = V1 ( P2 /P1 )3 = mv1 ( P2 /P1 )3 

  v2 = v1 ( P2 /P1 )3 = 0.014686 × (600 / 497.6)3 = 0.02575 m3/kg 

State 2:  P2 = 600 kPa, process :  v2 = 0.02575   →  Table B.4.1 

   x2 = 0.647,   u2 = 165.8 kJ/kg 

 1W2 = ∫ P dV = 
P2V2 - P1V1

1 - n  = 
600 × 0.05137 - 498 × 0.02937

1 - (-1/3)  = 12.1 kJ 

 1Q2 = m(u2- u1) + 1W2 = 2(165.8 - 98.9) + 12.1 = 145.9 kJ 
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5.114 
 Calculate the heat transfer for the process described in Problem 4.55. 
 Consider a piston cylinder with 0.5 kg of R-134a as saturated vapor at -10°C. It is now 

compressed to a pressure of 500 kPa in a polytropic process with n = 1.5. Find the 
final volume and temperature, and determine the work done during the process. 
 
Solution: 

Take CV as the R-134a which is a control mass  
Continuity:    m2 = m1 = m ;     Energy:     m(u2 -u1) = 1Q2 - 1W2 

Process:    Pv1.5 = constant.   Polytropic process with  n = 1.5 
1: (T, x)      P = Psat = 201.7 kPa   from Table B.5.1 

 v1 = 0.09921 m3/kg,    u1 = 372.27 kJ/kg 
2: (P, process)   v2 = v1 (P1/P2) (1/1.5) = 0.09921× (201.7/500)0.667 = 0.05416 

     =>  Table B.5.2   superheated  vapor, T2 = 79°C,  
  u2 = 440.9 kJ/kg 

Process gives P = C v (-1.5) ,  which is integrated for the work term, Eq.4.4 
 1W2 = ∫ P dV = m(P2v2 - P1v1)/(1-1.5) 

          = -2×0.5× (500×0.05416 - 201.7×0.09921) = -7.07 kJ 
 1Q2 = m(u2 -u1)  + 1W2 = 0.5(440.9 - 372.27) + (-7.07) = 27.25 kJ 
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5.115 
 A piston/cylinder setup contains argon gas at 140 kPa, 10°C, and the volume is 100 L. 

The gas is compressed in a polytropic process to 700 kPa, 280°C. Calculate the heat 
transfer during the process.  

Solution: 
Find the final volume, then knowing P1, V1, P2, V2 the polytropic exponent can 
be determined. Argon is an ideal monatomic gas (Cv is constant). 

 V2 = V1 × 
P1
P2

  
T2
T1

 = 0.1 × 
140
700  

553.15
283.15 = 0.0391 m3 

 P1V1
n = P2V2

n       ⇒        n = ln (
P2
P1

) / ln (
V1
V2

) = 
1.6094
0.939  = 1.714 

 1W2 = ⌡⌠PdV = 
P2V2 -P1V1

1 - n  = 
700×0.0391 - 140×0.1

1 - 1.714  = -18.73 kJ 

 m = P1V1/RT1 = 140 × 0.1/(0.20813 × 283.15) = 0.2376 kg 

 1Q2 = m(u2 - u1) + 1W2 = mCv(T2 - T1) + 1W2 

        = 0.2376 × 0.3122 (280 - 10) - 18.73 = 1.3 kJ 
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Energy Equation in Rate Form 
 
5.116 
 A crane lifts a load of 450 kg vertically up with a power input of 1 kW. How fast can 

the crane lift the load?  
  Solution :  

  
Power is force times rate of displacement 
 
W
.

 = F⋅V = mg⋅V 

V  = 
W
.

mg = 
1000

450 × 9.806 
W
N = 0.227 m/s 
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5.117 
 A computer in a closed room of volume 200 m3 dissipates energy at a rate of 10 kW. 

The room has 50 kg wood, 25 kg steel and air, with all material at 300 K, 100 kPa. 
Assuming all the mass heats up uniformly, how long will it take to increase the 
temperature 10°C? 

Solution: 
C.V. Air, wood and steel.    m2 = m1 ;  no work    

Energy Eq.5.11:       U2 - U1 = 1Q2 = Q
.
∆t   

The total volume is nearly all air, but we can find volume of the solids. 
Vwood = m/ρ = 50/510 = 0.098 m3 ; Vsteel = 25/7820 = 0.003 m3 

Vair = 200 - 0.098 - 0.003 = 199.899 m3  

    mair = PV/RT = 101.325 × 199.899/(0.287 × 300) = 235.25 kg 

We do not have a u table for steel or wood so use heat capacity from A.3. 
 ∆U = [mair Cv + mwood Cv + msteel Cv ]∆T 

   = (235.25 × 0.717 + 50 × 1.38 + 25 × 0.46) 10 
   = 1686.7 + 690 +115 = 2492 kJ = Q

.
 × ∆t = 10 kW × ∆t  

       =>      ∆t = 2492/10 = 249.2 sec = 4.2 minutes 
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5.118 
 The rate of heat transfer to the surroundings from a person at rest is about 400 kJ/h. 

Suppose that the ventilation system fails in an auditorium containing 100 people. 
Assume the energy goes into the air of volume 1500 m3 initially at 300 K and 101 
kPa. Find the rate (degrees per minute) of the air temperature change. 

Solution: 
  Q

.
 = n q

.
 =  100× 400 = 40000 kJ/h = 666.7 kJ/min  

  
dEair

dt   = Q
.
 = mairCv 

dTair
dt   

  mair = PV/RT = 101 × 1500 / 0.287 × 300 = 1759.6 kg 

  
dTair

dt  = Q
.
 /mCv = 666.7 / (1759.6 × 0.717) = 0.53°C/min 
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5.119 

 A piston/cylinder of cross sectional area 0.01 m2 maintains constant pressure. It 
contains 1 kg water with a quality of 5% at 150oC. If we heat so 1 g/s liquid turns into 
vapor what is the rate of heat transfer needed? 

 
 Solution: 
  Control volume the water. 

Continuity Eq.: mtot  = constant = mvapor + mliq 

         on a rate form: m
.

tot  = 0 = m
.

vapor + m
.

liq     ⇒        m
.

liq =  -m
.

vapor 
Vvapor  = mvapor vg ,  Vliq = mliq vf 

Vtot  =  Vvapor  + Vliq 
 
V
.

tot  =  V
.

vapor + V
.

q = m
.

vaporvg + m
.

iqvf li l

             =  m
.

vapor  (vg- vf ) = m
.

vapor vfg 

 
W
.

 = PV
.
   = P m

.
vapor vfg 

      = 475.9 × 0.001 × 0.39169 = 0.1864 kW = 186 W 
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5.120 
 The heaters in a spacecraft suddenly fail. Heat is lost by radiation at the rate of 100 

kJ/h, and the electric instruments generate 75 kJ/h. Initially, the air is at 100 kPa, 25°C 
with a volume of 10 m3. How long will it take to reach an air temperature of −20°C? 

 Solution: 
 
 

C.V.

C.M. Air

elQ 
. 

rad Q 
. 

 

Continuity Eq: 
dM
dt  = 0

Energy Eq: 
dE
dt  = Q

.
el - Q

.
rad

W
.

 = 0
KE

.
 = 0

PE
.

 = 0
 

  
 E

.
 = U

.
 = Q

.
el - Q

.
rad = Q

.
net  ⇒    U2 - U1 = m(u2 - u1) = Q

.
net(t2 - t1) 

 Ideal gas: m = 
P1V1
RT1

 = 
100 ×10

0.287 × 298.15 = 11.688 kg 

      u2 - u1 = Cv0(T2 - T1) = 0.717 (-20 - 25) = -32.26 kJ/kg 

 t2 - t1 = mCv0(T2-T1)/Q
.
net = 11.688 × (−32.26)/(-25) = 15.08 h 
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5.121 
 A steam generating unit heats saturated liquid water at constant pressure of 200 kPa in 

a piston cylinder. If 1.5 kW of power is added by heat transfer find the rate (kg/s) of 
saturated vapor that is made.  

 Solution:  
Energy equation on a rate form making saturated vapor from saturated liquid 

U
.
 = (mu)

.
 = m

.
∆u = Q

.
 - W

.
 = Q

.
 - P V = Q

.
 - Pm

.
∆v 

.

m
.

(∆u + ∆vP ) = Q
.
 = m

.
∆h = m

.
hfg 

m
.

 = Q
.
/ hfg = 1500 / 2201.96 = 0.681 kg/s 
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5.122 
 A small elevator is being designed for a construction site. It is expected to carry four 

75-kg workers to the top of a 100-m tall building in less than 2 min. The elevator cage 
will have a counterweight to balance its mass. What is the smallest size (power) 
electric motor that can drive this unit? 

 Solution:  
 m = 4 × 75 = 300 kg ;     ∆Z = 100 m ;     ∆t = 2 minutes 

 -W
.

 = ∆PE
.

 = mg 
∆Z
∆t  = 

300 × 9.807 × 100
1000 × 2 × 60  = 2.45 kW 
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5.123 
 As fresh poured concrete hardens, the chemical transformation releases energy at a 

rate of 2 W/kg. Assume the center of a poured layer does not have any heat loss and 
that it has an average heat capacity of 0.9 kJ/kg K. Find the temperature rise during 1 
hour of the hardening (curing) process. 

 Solution:  
 

  
U
.
 = (mu)

.
 = mCvT

.
 = Q

.
 = mq

.
 

T
.
 = q

.
/Cv = 2×10-3 / 0.9  

   = 2.222 × 10-3  °C/sec 

∆T = T
.
∆t = 2.222 × 10-3 × 3600 = 8 °C 
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5.124 

 A 100 Watt heater is used to melt 2 kg of solid ice at −10oC to liquid at +5oC at a 
constant pressure of 150 kPa. 
 a) Find the change in the total volume of the water. 
 b) Find the energy the heater must provide to the water. 
 c) Find the time the process will take assuming uniform T in the water. 

  
 Solution: 

 Take CV as the 2 kg of water.   m2 = m1 = m   ;      

 Energy Eq.5.11 m(u2 − u1) = 1Q2 − 1W2  
 State 1: Compressed solid, take sat. solid at same temperature. 
  v = vi(−10) = 0.0010891 m3/kg,  h = hi = −354.09 kJ/kg 
 State 2: Compressed liquid, take sat. liquid at same temperature 
  v = vf = 0.001,   h = hf = 20.98 kJ/kg 
 Change in volume:      

V2 − V1 = m(v2 − v1) = 2(0.001 − 0.0010891) = 0.000178 m3 

 Work is done while piston moves at constant pressure, so we get 

   1W2 = ∫ P dV = area = P(V2 − V1) = -150 × 0.000178 = −0.027 kJ = −27 J 

 Heat transfer is found from energy equation 

  1Q2 = m(u2 − u1) + 1W2 = m(h2 − h1) = 2 × [20.98 − (−354.09)] = 750 kJ 

 The elapsed time is found from the heat transfer and the rate of heat transfer 

   t = 1Q2/Q
.
 = (750/100) 1000 = 7500 s = 125 min = 2 h 5 min 
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5.125 
 Water is in a piston cylinder maintaining constant P at 700 kPa, quality 90% with a 

volume of 0.1 m3. A heater is turned on heating the water with 2.5 kW. What is the 
rate of mass (kg/s) vaporizing? 

 
 Solution: 
  Control volume water. 

Continuity Eq.: mtot  = constant = mvapor + mliq 

         on a rate form: m
.

tot  = 0 = m
.

vapor + m
.

liq     ⇒        m
.

liq =  -m
.

vapor 

  Energy equation: U
.
 = Q

.
 - W

.
 = m

.
vapor ufg = Q

.
 - P m

.
vapor vfg 

 
  Rearrange to solve for m

.
vapor 

    m
.

vapor (ufg + Pvfg) = m
.

vapor hfg = Q
.
 

 

    m
.

vapor = Q
.
/hfg = 

2.5
2066.3 

kW
kJ/kg = 0.0012 kg/s 
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Review Problems 
 
5.126 
 Ten kilograms of water in a piston/cylinder setup with constant pressure is at 450°C 

and a volume of 0.633 m3. It is now cooled to 20°C. Show the P–v diagram and find 
the work and heat transfer for the process. 

 Solution: 
C.V. The 10 kg water.  
Energy Eq.5.11: m(u2 - u1) = 1Q2 − 1W2 

Process: P = C   ⇒  1W2 = mP(v2 -v1) 

State 1:  (T, v1 = 0.633/10 = 0.0633 m3/kg)      Table B.1.3 

  P1 = 5 MPa,    h1 = 3316.2 kJ/kg 

State 2:   (P = P = 5 MPa, 20°C)    ⇒  Table B.1.4 

  v2 = 0.000  999 5 m3/kg ;        h2 = 88.65 kJ/kg 

 
 

v 

P 

12

 v 

T 
1

2

5 MPa

 
 

The work from the process equation is found as 
 1W2 = 10 × 5000 ×(0.0009995 - 0.0633) = -3115 kJ 

The heat transfer from the energy equation is 
 1Q2 = m(u2 - u1) + 1W2 = m(h2 - h1) 

 1Q2 = 10 ×(88.65 - 3316.2) = -32276 kJ 
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5.127 
 Consider the system shown in Fig. P5.127. Tank A has a volume of 100 L and contains 

saturated vapor R-134a at 30°C. When the valve is cracked open, R-134a flows slowly 
into cylinder B. The piston mass requires a pressure of 200 kPa in cylinder B to raise the 
piston. The process ends when the pressure in tank A has fallen to 200 kPa. During this 
process heat is exchanged with the surroundings such that the R-134a always remains at 
30°C. Calculate the heat transfer for the process. 

 Solution: 
C.V. The R-134a. This is a control mass. 
Continuity Eq.:  m2 = m1 = m   ;     

Energy Eq.5.11:      m(u2 − u1) = 1Q2 - 1W2  

Process in B:    If VB > 0   then     P = Pfloat  (piston must move) 

    ⇒    1W2 = ∫ Pfloat dV = Pfloatm(v2 - v1) 

Work done in B against constant external force (equilibrium P in cyl. B) 

State 1: 30°C, x = 1.   Table B.5.1:   v1 = 0.02671 m3/kg,  u1 = 394.48 kJ/kg 

  m = V/v1 = 0.1 / 0.02671 = 3.744 kg 

State 2: 30°C, 200 kPa   superheated vapor Table B.5.2 

   v2 = 0.11889 m3/kg,   u2 = 403.1 kJ/kg 

From the process equation 

1W2 = Pfloatm(v2 - v1) = 200×3.744×(0.11889 - 0.02671) = 69.02 kJ 

From the energy equation 

1Q2 = m(u2 - u1) + 1W2  = 3.744 ×(403.1 - 394.48) + 69.02 = 101.3 kJ 
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5.128 
 Ammonia, NH3, is contained in a sealed rigid tank at 0°C, x = 50% and is then heated 

to 100°C. Find the final state P2, u2 and the specific work and heat transfer. 
Solution: 
Continuity Eq.:        m2 = m1 ;        

Energy Eq.5.11:      E2 - E1 = 1Q2 ;     ( )1W2 = 0/  

Process: V2 = V1  ⇒    v2 = v1 = 0.001566 + 0.5 × 0.28783 = 0.14538 m3/kg 

Table B.2.2:      v2  &  T2  ⇒  between  1000 kPa  and 1200 kPa 

     P2 = 1000 + 200 
0.14538 – 0.17389
0.14347 – 0.17389 =  1187 kPa 

 
 

V

P

1

2

 

    
  u2 =  1490.5 + (1485.8 – 1490.5) × 0.935  
       = 1485.83 kJ/kg 
  u1 =  179.69 + 0.5 × 1138.3 = 748.84 kJ/kg 

 
Process equation gives no displacement: 1w2 = 0 ;       

The energy equation then gives the heat transfer as 
   1q2 = u2 - u1 = 1485.83 – 748.84  =  737 kJ/kg 
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5.129 
 A piston/cylinder contains 1 kg of ammonia at 20°C with a volume of 0.1 m3, shown 

in Fig. P5.129. Initially the piston rests on some stops with the top surface open to the 
atmosphere, Po, so a pressure of 1400 kPa is required to lift it. To what temperature 
should the ammonia be heated to lift the piston?  If it is heated to saturated vapor find 
the final temperature, volume, and the heat transfer. 

 Solution: 
C.V. Ammonia which is a control mass. 
  m2 = m1 = m ;      m(u2 -u1) = 1Q2 - 1W2  

State 1: 20°C;  v1 = 0.10 < vg   ⇒  x1 = (0.1 – 0.001638)/0.14758 = 0.6665 

  u1 = uf + x1 ufg  = 272.89 + 0.6665 ×1059.3 = 978.9 kJ/kg 

Process: Piston starts to lift at state 1a (Plift, v1) 

State 1a: 1400 kPa, v1   Table B.2.2 (superheated vapor) 

Ta = 50 + (60 – 50) 
0.1 – 0.09942

0.10423 – 0.09942 = 51.2 °C  

 
 

1400

1200

857

P

v1

2

1a

T

v1

2

1a

 
 

State 2: x = 1.0,  v2 = v1  =>  V2 = mv2 = 0.1 m3 

T2 = 30 + (0.1 – 0.11049) × 5/(0.09397 – 0.11049) = 33.2 °C 

u2 = 1338.7 kJ/kg;  1W2 = 0;  

1Q2 = m1q2 = m(u2  – u1) = 1 (1338.7 – 978.9) = 359.8 kJ/kg 
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5.130 
 A piston held by a pin in an insulated cylinder, shown in Fig. P5.130, contains 2 kg 

water at 100°C, quality 98%. The piston has a mass of 102 kg, with cross-sectional 
area of 100 cm2, and the ambient pressure is 100 kPa. The pin is released, which 
allows the piston to move. Determine the final state of the water, assuming the process 
to be adiabatic. 

 Solution: 
C.V. The water. This is a control mass. 
Continuity Eq.:  m2 = m1 = m   ;     

Energy Eq.5.11:      m(u2 − u1) = 1Q2 - 1W2  

Process in cylinder:  P = Pfloat  (if piston not supported by pin) 

 P2 = Pfloat = P0 + mpg/A = 100 + 
102 × 9.807

100×10-4 × 103 = 200 kPa 

We thus need one more property for state 2 and we have one equation namely the 
energy equation. From the equilibrium pressure the work becomes 

  1W2 = ∫ Pfloat dV = P2 m(v2 - v1) 

With this work the energy equation gives per unit mass 
  u2 − u1 = 1q2 - 1w2 = 0 - P2(v2 - v1) 

or with rearrangement to have the unknowns on the left hand side 
  u2 + P2v2 = h2 = u1 + P2v1 

 h2 = u1 + P2v1 = 2464.8 + 200 × 1.6395 = 2792.7 kJ/kg 

State 2:  (P2 , h2)        Table B.1.3   =>   T2 ≅ 161.75°C 
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5.131 
 A piston/cylinder arrangement has a linear spring and the outside atmosphere acting 

on the piston, shown in Fig. P5.131. It contains water at 3 MPa, 400°C with the 
volume being 0.1 m3. If the piston is at the bottom, the spring exerts a force such that 
a pressure of 200 kPa inside is required to balance the forces. The system now cools 
until the pressure reaches 1 MPa. Find the heat transfer for the process.  

 
 Solution: 

C.V. Water. 
Continuity Eq.:  m2 = m1 = m   ;     

Energy Eq.5.11:      m(u2 − u1) = 1Q2 - 1W2  

 
 

v 2 v 1 0 
200 kPa

3 MPa

1 MPa
2

1P

V, v

 

State 1: Table B.1.3 

  v1 = 0.09936 m3/kg,  u1 = 2932.8 kJ/kg 

   m = V/v1 = 0.1/0.09936 = 1.006 kg 

Process:  Linear spring so P linear in v. 

            P = P0 + (P1 - P0)v/v1 
 

    v2 = 
(P2 - P0)v1

P1 - P0
 = 

(1000 - 200)0.09936
3000 - 200  = 0.02839 m3/kg 

State 2:  P2 , v2  ⇒  x2 = (v2 - 0.001127)/0.19332 = 0.141,    T2 = 179.91°C,  

   u2 = 761.62 + x2 × 1821.97 = 1018.58 kJ/kg 

Process   =>   1W2 = ⌡⌠PdV = 12 m(P1 + P2)(v2 - v1) 

                = 12 1.006 (3000 + 1000)(0.02839 -0.09936) = -142.79 kJ 

Heat transfer from the energy equation 

1Q2 = m(u2 - u1) + 1W2 = 1.006(1018.58 - 2932.8) - 142.79 = -2068.5 kJ 
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5.132 
 Consider the piston/cylinder arrangement shown in Fig. P5.132. A frictionless piston 

is free to move between two sets of stops. When the piston rests on the lower stops, 
the enclosed volume is 400 L. When the piston reaches the upper stops, the volume is 
600 L. The cylinder initially contains water at 100 kPa, 20% quality. It is heated until 
the water eventually exists as saturated vapor. The mass of the piston requires 300 kPa 
pressure to move it against the outside ambient pressure. Determine the final pressure 
in the cylinder, the heat transfer and the work for the overall process. 

Solution: 
C.V. Water. Check to see if piston reaches upper stops. 
Energy Eq.5.11:       m(u4 - u1) =  1Q4 − 1W4 

Process: If   P < 300 kPa   then   V = 400 L,      line 2-1 and below 
  If   P > 300 kPa   then   V = 600 L,       line 3-4 and above 
  If   P = 300 kPa   then   400 L < V < 600 L  line  2-3 

These three lines are shown in the P-V diagram below and is dictated by the 
motion of the piston (force balance). 

State 1:  v1 = 0.001043 + 0.2×1.693 = 0.33964; m = V1/v1 = 
0.4

0.33964 = 1.178 kg  

      u1 = 417.36 + 0.2 × 2088.7 = 835.1 kJ/kg 

State 3:   v3 = 
0.6

1.178 = 0.5095 < vG = 0.6058  at P3 = 300 kPa 

  ⇒  Piston does reach upper stops to reach sat. vapor. 

State 4:    v4 = v3 = 0.5095 m3/kg = vG at P4    From Table B.1.2 

     =>    P4 = 361 kPa,      u4 = 2550.0 kJ/kg 

  1W4 = 1W2 + 2W3 + 3W4 = 0 + 2W3 + 0 

  1W4 = P2(V3 - V2) = 300 × (0.6 - 0.4)  = 60 kJ 

  1Q4 = m(u4 - u1) + 1W4 = 1.178(2550.0 - 835.1) + 60 = 2080 kJ  
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5.133 
 A piston/cylinder, shown in Fig. P5.133, contains R-12 at − 30°C, x = 20%. The 

volume is 0.2 m3. It is known that Vstop = 0.4 m3, and if the piston sits at the bottom, 
the spring force balances the other loads on the piston. It is now heated up to 20°C. 
Find the mass of the fluid and show the P–v diagram. Find the work and heat transfer. 

 Solution: 
C.V. R-12, this is a control mass. Properties in Table B.3 
Continuity Eq.:         m2 = m1  

Energy Eq.5.11:       E2 - E1 = m(u2 - u1) = 1Q2 - 1W2 

Process:     P = A + BV,     V < 0.4 m3,     A = 0  (at V = 0,  P = 0) 

State 1:   v1 = 0.000672 + 0.2 × 0.1587 = 0.0324 m3/kg 

               u1 = 8.79 + 0.2 × 149.4 = 38.67 kJ/kg 

  m = m1 = = V1/v1  = 6.17 kg 

 
  

System: on line   

      V ≤ Vstop;  

       Pstop = 2P1 =200 kPa 

State stop:  (P,v)  ⇒ Tstop ≅ -12°C 

        TWO-PHASE STATE 
 

P 

0 
0 0.2 0.4 

1 

≅ T -5°C 

V 

P 1 

2P1 Tstop≅ -12.5°C 

2 

 
 
 

 

Since T2 > Tstop   ⇒   v2 = vstop = 0.0648 m3/kg 

2: (T2 , v2)   Table B.3.2:     Interpolate between 200 and 400 kPa 

     P2 = 292.3 kPa ;    u2 =  181.9 kJ/kg 

From the process curve, see also area in P-V diagram, the work is 

 1W2 = ⌡⌠PdV = 12 (P1 + Pstop)(Vstop - V1) = 12 (100 + 200)0.2 = 30 kJ 

From the energy equation 
 1Q2 = m(u2 - u1) + 1W2 = 913.5 kJ 
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5.134 
 A piston/cylinder arrangement B is connected to a 1-m3 tank A by a line and valve, 

shown in Fig. P5.134. Initially both contain water, with A at 100 kPa, saturated vapor 
and B at 400°C, 300 kPa, 1 m3. The valve is now opened and, the water in both A and 
B comes to a uniform state. 

 a. Find the initial mass in A and B. 
 b. If the process results in T2 = 200°C, find the heat transfer and work. 
 Solution: 

C.V.: A + B. This is a control mass. 
 Continuity equation:        m2 - (mA1 + mB1) = 0 ;  

 Energy:      m2u2 - mA1uA1 - mB1uB1 = 1Q2 - 1W2 

 System: if   VB ≥ 0   piston floats   ⇒    PB = PB1 = const. 

 if  VB = 0   then  P2 < PB1 and   v = VA/mtot   see P-V diagram 

 1W2 = ⌡⌠PBdVB = PB1(V2 - V1)
B

 = PB1(V2 - V1)tot 

 State A1: Table B.1.1,  x = 1 
     vA1 = 1.694 m3/kg,  uA1 = 2506.1 kJ/kg 

     mA1 = VA/vA1 = 0.5903  kg 

State B1:  Table B.1.2 sup. vapor 
    vB1 = 1.0315 m3/kg,  uB1 = 2965.5 kJ/kg 

     mB1 = VB1/vB1 = 0.9695 kg 
V

P

2a
PB1

2
 

      m2 = mTOT = 1.56 kg 

*   At (T2 , PB1)        v2 = 0.7163  >  va = VA/mtot = 0.641   so VB2 > 0  

so now state 2:  P2 = PB1 = 300 kPa, T2 = 200 °C  

  =>  u2 = 2650.7 kJ/kg   and   V2 = m2 v2 =  1.56 × 0.7163 = 1.117 m3  

(we could also have checked Ta at:  300 kPa, 0.641 m3/kg   =>   T = 155 °C) 
 1W2 = PB1(V2 - V1) = -264.82 kJ  

 1Q2 = m2u2 - mA1uA1 - mB1uB1 + 1W2 = -484.7 kJ 
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5.135 

 A small flexible bag contains 0.1 kg ammonia at –10oC and 300 kPa. The bag material 
is such that the pressure inside varies linear with volume. The bag is left in the sun 
with with an incident radiation of 75 W, loosing energy with an average 25 W to the 
ambient ground and air. After a while the bag is heated to 30oC at which time the 
pressure is 1000 kPa. Find the work and heat transfer in the process and the elapsed 
time. 

 
 Solution: 

Take CV as the Ammonia, constant mass. 
Continuity Eq.:  m2 = m1 = m   ;     

Energy Eq.5.11:      m(u2 − u1) = 1Q2 – 1W2  

Process:     P = A + BV       (linear in V) 
State 1: Compressed liquid P > Psat, take saturated liquid at same temperature. 

  v1 = vf(20) = 0.001002 m3/kg,   u1 = uf = 133.96 kJ/kg 

State 2: Table B.2.1 at 30oC :    P < Psat    so superheated vapor 

v2 = 0.13206 m3/kg,  u2 = 1347.1 kJ/kg,    V2 = mv2 = 0.0132 m3 

Work is done while piston moves at increacing pressure, so we get 
 1W2 = ½(300 + 1000)*0.1(0.13206 – 0.001534) = 8.484 kJ 

Heat transfer is found from the energy equation 
 1Q2 = m(u2 – u1) + 1W2 = 0.1 (1347.1 – 133.96) + 8.484 

       = 121.314 + 8.484 = 129.8 kJ 
 

NH3

 

P C.P.

v

300

2

1
1000

T C.P.

v

2

1
-10

30

 
 
Q
.
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t = 1Q2 / Q
.
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129800
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5.136 
 Water at 150°C, quality 50% is contained in a cylinder/piston arrangement with initial 

volume 0.05 m3. The loading of the piston is such that the inside pressure is linear 
with the square root of volume as P = 100 + CV 0.5 kPa. Now heat is transferred to the 
cylinder to a final pressure of 600 kPa. Find the heat transfer in the process. 

Continuty: m2 = m1  Energy: m(u2 − u1) = 1Q2 − 1W2  

State 1: v1 = 0.1969,  u1 = 1595.6 kJ/kg     ⇒    m = V/v1 = 0.254 kg 

Process equation  ⇒  P1 - 100 = CV1
1/2  so 

 (V2/V1)1/2 = (P2 - 100)/(P1 - 100) 

 V2 = V1 × 






P2 - 100

P1 - 100
2
 = 0.05 × 



500

475.8 - 100
2
 = 0.0885 

 1W2 = ⌡⌠PdV = ⌡⌠(100 + CV1/2)dV = 100×(V2 - V1) + 
2
3 C(V2

1.5 - V1
1.5) 

    = 100(V2 - V1)(1 - 2/3) + (2/3)(P2V2 - P1V1) 

1W2 = 100 (0.0885-0.05)/3 + 2 (600 × 0.0885-475.8 × 0.05)/3 = 20.82 kJ 

 State 2: P2, v2 = V2/m = 0.3484    ⇒    u2 = 2631.9 kJ/kg,      T2 ≅ 196°C 

 1Q2 = 0.254 × (2631.9 - 1595.6) + 20.82 = 284 kJ 

 
 P

V

21

P = 100 + C V
1/2

100  
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5.137 

 A 1 m3 tank containing air at 25oC and 500 kPa is connected through a valve to 
another tank containing 4 kg of air at 60oC and 200 kPa. Now the valve is opened and 
the entire system reaches thermal equilibrium with the surroundings at 20oC. Assume 
constant specific heat at 25oC and determine the final pressure and the heat transfer. 

 
 Control volume all the air. Assume air is an ideal gas. 
  Continuity Eq.:  m2 – mA1 – mB1 = 0 

  Energy Eq.:  U2 − U1 = m2u2 – mA1uA1 – mB1uB1 = 1Q2 - 1W2 

  Process Eq.:  V = constant       ⇒       1W2 = 0 
  State 1: 

   mA1 = 
PA1VA1

RTA1
 = 

(500 kPa)(1m3)
(0.287 kJ/kgK)(298.2 K)  = 5.84 kg 

 

VB1 = 
mB1RTB1

PB1
 = 

(4 kg)(0.287 kJ/kgK)(333.2 K)
 (200 kN/m2)  = 1.91 m3

  

  State 2:  T2 = 20°C, v2 = V2/m2 

    m2 = mA1 + mB1 = 4 + 5.84 = 9.84 kg 
    V2 = VA1 + VB1 = 1 + 1.91 = 2.91 m3 

P2 = 
m2RT2

V2
 = 

(9.84 kg)(0.287 kJ/kgK)(293.2 K)
2.91 m3  = 284.5 kPa 

 
Energy Eq.5.5 or 5.11:      

1Q2 = U2 − U1 = m2u2 – mA1uA1 – mB1uB1  
              = mA1(u2 – uA1) + mB1(u2 – uB1)  

       = mA1Cv0(T2 – TA1) + mB1Cv0(T2 – TB1)  

= 5.84 × 0.717 (20 – 25) + 4 × 0.717 (20 – 60) =  −135.6 kJ  
The air gave energy out. 

 
 

A B
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5.138 
 A closed cylinder is divided into two rooms by a frictionless piston held in place by a 

pin, as shown in Fig. P5.138. Room A has 10 L air at 100 kPa, 30°C, and room B has 
300 L saturated water vapor at 30°C. The pin is pulled, releasing the piston, and both 
rooms come to equilibrium at 30°C and as the water is compressed it becomes two-
phase. Considering a control mass of the air and water, determine the work done by 
the system and the heat transfer to the cylinder. 

 
 Solution: 

C.V. A + B, control mass of constant total volume. 
Energy equation:    mA(u2 – u1)A + mB(uB2 – uB1) = 1Q2 – 1W2  

Process equation:   V = C    ⇒   1W2 = 0 

      T = C    ⇒   (u2 – u1)A = 0  (ideal gas) 

The pressure on both sides of the piston must be the same at state 2. 
Since two-phase:     P2 = Pg H2O at 30°C = PA2 = PB2 = 4.246 kPa 

 Air, I.G.:      PA1VA1 = mARAT = PA2VA2 = Pg H2O at 30°C VA2 

 → VA2 = 
100 × 0.01

4.246  m3 = 0.2355 m3 

Now the water volume is the rest of the total volume 

 VB2 = VA1 + VB1 - VA2 = 0.30 + 0.01 - 0.2355 = 0.0745 m3 

 mB = 
VB1
vB1

 = 
0.3

32.89 = 9.121×10-3  kg  =>    vB2 = 8.166 m3/kg 

 8.166 = 0.001004 + xB2 × (32.89 - 0.001)   ⇒   xB2 = 0.2483 

  uB2 = 125.78 + 0.2483 × 2290.8 = 694.5 kJ/kg,  uB1 = 2416.6 kJ/kg 

 1Q2 = mB(uB2 – uB1) = 9.121×10-3(694.5 - 2416.6) = -15.7 kJ 

 

 

A B
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CHAPTER 5  
 
  SUBSECTION    PROB NO. 
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144 new 17 159 109 64 174 123 107 
145 new 22 160 113 129 175 127 104 
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150 104 mod - 165 new 77 180 new 125 
151 107 37 166 120 76 181 136 117 
152 108 38 167 new 81 182 134 138 
153 106 39 168 122 97    
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Concept Problems 
 
5.139E 
 What is 1 cal in english units, what is 1 Btu in ft-lbf? 
 
  Look in Table A.1 for the conversion factors under energy 
 
  1 Btu = 778.1693 lbf-ft 
 

  1 cal = 4.1868 J = 
4.1868
1055  Btu = 0.00397 Btu = 3.088 lbf-ft 

 
5.140E 
  Work as F ∆x has units of  lbf-ft, what is that in Btu? 
 
  Look in Table A.1 for the conversion factors under energy 
 
  1 lbf-ft = 1.28507 × 10-3 Btu 
 
 
5.141E 
 A 2500 lbm car is accelerated from 25 mi/h to 40 mi/h. How much work is that? 
   
  The work input is the increase in kinetic energy. 

   E2 – E1 = (1/2)m[V2
2 - V2

1] =  1W2  

     = 0.5 × 2500 lbm [402 – 252] 



mi

h
2
 

     = 1250 [ 1600 – 625 ] lbm 



1609.3 × 3.28084 ft

3600 s
2
 

1 lbf
32.174 lbm ft/s2 

    = 2 621 523 lbf-ft = 3369 Btu 
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5.142E 
 A crane use 7000 Btu/h to raise a 200 lbm box 60 ft. How much time does it take? 
     
 

 
Power = W

.
 = FV = mgV = mg

L
t  

F = mg = 200 
32.174
32.174 lbf = 200 lbf 

 

t = 
FL
W
.  = 

200 lbf × 60 ft 
7000 Btu/h  = 

200 × 60 × 3600
7000 × 778.17  s  

  = 7.9 s 
 

    
       Recall Eq. on page 20:    1 lbf = 32.174 lbm ft/s2,   1 Btu = 778.17 lbf-ft  (A.1) 
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5.143E 
 I have 4 lbm of liquid water at 70 F, 15 psia. I now add 20 Btu of energy at a 

constant pressure. How hot does it get if it is heated?  How fast does it move if it 
is pushed by a constant horizontal force? How high does it go if it is raised 
straight up? 

 
  a)   Heat at 100 kPa.      
        Energy equation:    
   E2 – E1 =  1Q2 – 1W2 = 1Q2 – P(V2 – V1) = H2 – H1= m(h2 – h1) 
           h2 = h1 + 1Q2/m = 38.09 + 20/4 = 43.09 Btu/lbm 
   Back interpolate in Table F.7.1: T2 = 75 F 
         (We could also have used ∆T = 1Q2/mC = 20 / (4×1.00) = 5 F) 
  b)  Push at constant P. It gains kinetic energy. 
 

   0.5 m V2
2 = 1W2  

   V2 = 2 1W2/m = 2 × 20 × 778.17 lbf-ft/4 lbm   

         = 2 × 20 × 778.17 × 32.174 lbm-(ft/s)2 /4 lbm = 500 ft/s 
  c)  Raised in gravitational field 
   m g Z2 = 1W2 

   Z2 = 1W2/m g = 
20 × 778.17 lbf-ft

4 lbm × 32.174 ft/s2 × 32.174 
lbm-ft/s2

lbf  = 3891 ft 
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5.144E 
 Air is heated from 540 R to 640 R at V = C. Find 1q2?  What if from 2400 to  
 2500 R? 
 
 

Process:  V = C   1W2 = Ø 
 
Energy Eq.: u2 − u1 = 1q2 – 0        1q2 = u2 − u1  

 
 Read the u-values from Table F.5 

a) 1q2 = u2 − u1 = 109.34 – 92.16 = 17.18 Btu/lbm 
b) 1q2 = u2 − u1 = 474.33 – 452.64 = 21.7 Btu/lbm 

 
case a) Cv ≈ 17.18/100 = 0.172 Btu/lbm R, see F.4 

 
case b) Cv ≈ 21.7/100 = 0.217 Btu/lbm R (26 % higher) 
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Kinetic and Potential Energy 
 
5.145E 
   Airplane takeoff from an aircraft carrier is assisted by a steam driven 

piston/cylin-der  with an average pressure of 200 psia. A 38 500 lbm airplane 
should be accelerated from zero to a speed of  100 ft/s with 30% of the energy 
coming from the steam piston. Find the needed piston displacement volume. 

 
Solution:  C.V. Airplane. 
No change in internal or potential energy; only kinetic energy is changed. 

 E2 – E1 = m (1/2) (V2
2 - 0) = 38 500 lbm × (1/2) × 1002 (ft/s)2  

 = 192 500 000 lbm-(ft/s)2 = 5 983 092 lbf-ft 
The work supplied by the piston is 30% of the energy increase. 
  

 
  

W = ∫ P dV = Pavg  ∆V = 0.30 (E2 – E1)  
     = 0.30 × 5 983 092 lbf-ft = 1 794 928 lbf-ft 
 

∆V = 
W

Pavg
 = 

1 794 928
200  

lbf-ft
144 lbf/ft2

 = 62.3 ft3 
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5.146E 
 A hydraulic hoist raises a 3650 lbm car 6 ft in an auto repair shop. The hydraulic 

pump has a constant pressure of 100 lbf/in.2 on its piston. What is the increase in 
potential energy of the car and how much volume should the pump displace to 
deliver that amount of work? 
Solution: C.V. Car.  
No change in kinetic or internal energy of the car, neglect hoist mass. 

E2 – E1 = PE2 - PE1 = mg (Z2 – Z1) = 
174.32

6174.323650 ××  = 21 900 lbf-ft 

 
 The increase in potential energy is work into car 

from pump at constant P. 
 
W = E2 – E1 = ∫ P dV = P ∆V  ⇒ 
 

∆V = 
E2 – E1

P  = 
21 900

100 × 144 = 1.52 ft3 
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5.147E 
 A piston motion moves a 50 lbm hammerhead vertically down 3 ft from rest to a 

velocity of 150 ft/s in a stamping machine. What is the change in total energy of 
the hammerhead? 

Solution:  C.V.  Hammerhead 
The hammerhead does not change internal energy i.e. same P,T 

 E2 – E1 = m(u2 – u1) + m(
1
2V2

2
 - 0) + mg (h2  - 0) 

   = 0 + [ 50 × (1/2) ×1502  + 50 × 32.174 × (-3)] / 32.174 
   = [562500 – 4826]/32.174 = 17 333 lbf-ft  

   = (
17 333

778 ) Btu = 22.28 Btu  
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Properties General Tables 
 
5.148E 
  Find the missing properties and give the phase of the substance. 
 a. H2O u = 1000 Btu/lbm, T = 270 F h = ?  v = ?  x = ? 
 b. H2O u = 450 Btu/lbm, P = 1500 lbf/in.2 T = ?  x = ?  v = ? 
 c. R-22 T = 30 F, P = 75 lbf/in.2 h = ?  x = ? 
  

Solution: 
a)   Table F.7.1: uf < u < ug   =>  2-phase mixture of liquid and vapor 
 x = (u – uf)/ ufg = (1000 – 238.81)/854.14 = 0.8912 

 v = vf + x vfg = 0.01717 + 0.8912 × 10.0483 = 8.972 ft3/lbm 
 h = hf + x hfg = 238.95 + 0.8912 × 931.95 = 1069.5 Btu/lbm  
  ( = 1000 + 41.848 × 8.972 × 144/778)  
b) Table F.7.1:   u < uf   so compressed liquid  B.1.3,  x = undefined 

 T = 471.8 F,  v = 0.019689 ft3/lbm 
c) Table F.9.1:  P > Psat  =>   x = undef,    compr. liquid  
 Approximate as saturated liquid at same T,      h ≅ hf = 18.61 Btu/lbm 

 
 
 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 

 
 

P C.P.

v

T C.P.

v

T
a

c

b
a

c

b
P = const.
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5.149E 
 Find the missing properties among (P, T, v, u, h) together with x, if applicable, 

and give the phase of the substance. 
 a. R-22 T = 50 F, u = 85 Btu/lbm 
 b. H2O T = 600 F, h = 1322 Btu/lbm 
 c. R-22 P = 150 lbf/in.2, h = 115.5 Btu/lbm 
  
       Solution: 

a) Table F.9.1:   u < ug   =>  L+V mixture,     P = 98.727 lbf/in2 
  x = (85 - 24.04)/ 74.75 = 0.8155  

  v = 0.01282 + 0.8155×0.5432 = 0.4558 ft3/lbm  
  h = 24.27 + 0.8155×84.68 = 93.33 Btu/lbm 
b) Table F.7.1:  h > hg   =>   superheated vapor   follow 600 F in F.7.2 

  P ≅ 200 lbf/in2 ;      v = 3.058 ft3/lbm ;       u = 1208.9 Btu/lbm  
c) Table F.9.1:     h > hg   =>   superheated vapor  so in F.9.2 

  T ≅ 100 F ;    v = 0.3953 ft3/lbm  

  u = h - Pv = 115.5 – 150 × 0.3953 ×
778
144  = 104.5 Btu/lbm 

 
 
 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 

 

P C.P.

v

T C.P.

v

Ta
b, c b, c

a

P = const.
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5.150E 
  Find the missing properties and give the phase of the substance. 
  

a. R-134a  T = 140 F, h = 185 Btu/lbm v = ?  x = ? 
 b. NH3    T = 170 F, P = 60 lbf/in.2  u = ?  v = ?  x = ? 

c. R-134a  T = 100 F, u = 175 Btu/lbm 
 

Solution: 
 

a) Table F.10.1:  h > hg  =>  x = undef, superheated vapor F.10.2, 
 find it at given T between saturated 243.9 psi and 200 psi to match h:   

 v ≅ 0.1836 + (0.2459 - 0.1836)× 
185- 183.63

 186.82-183.63 = 0.2104 ft3/lbm 

 P ≅ 243.93 + (200 - 243.93)× 
185- 183.63

 186.82-183.63 = 225 lbf/in2 

b) Table F.8.1:  P < Psat    ⇒ x = undef.     superheated vapor F.8.2, 

 v = (6.3456 + 6.5694)/ 2 = 6.457 ft3/lbm 
 u = h-Pv = (1/2)(694.59 + 705.64) – 60 × 6.4575 × (144/778) 
                = 700.115 – 71.71 = 628.405 Btu/lbm 

 
c) Table F.10.1::  u > ug   => sup. vapor, calculate u at some P to end with  

  P ≈ 55 lbf/in2 ;    v ≈ 0.999 ft3/lbm;     h = 185.2 Btu/lbm 
  This is a double linear interpolation 
 

 
 
 States shown are 

placed relative to the 
two-phase region, not 
to each other. 

 

P C.P.

v

T C.P.

v

T

a
b

ba
P = const.

c
c
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Simple Processes 
 
5.151E 
 A cylinder fitted with a frictionless piston contains 4 lbm of superheated 

refrigerant R-134a vapor at 400 lbf/in.2, 200 F. The cylinder is now cooled so the 
R-134a remains at constant pressure until it reaches a quality of 75%. Calculate 
the heat transfer in the process. 

 Solution: 
C.V.: R-134a       m2 = m1 = m;       

Energy Eq.5.11 m(u2 - u1) = 1Q2 - 1W2 

Process: P = const.  ⇒ 1W2 = ⌡⌠PdV = P∆V = P(V2 - V1) = Pm(v2 - v1) 

 
 

V

P

12

V

T

1

2

 

 

 
 

 State 1: Table F.10.2    h1 = 192.92 Btu/lbm 

 State 2: Table F.10.1    h2 = 140.62 + 0.75 × 43.74 = 173.425 Btu/lbm 

 1Q2 = m(u2 - u1) + 1W2  = m(u2 - u1) + Pm(v2 - v1) = m(h2 - h1) 

  = 4 × (173.425 – 192.92) = -77.98 Btu 
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5.152E 
 Ammonia at 30 F, quality 60% is contained in a rigid 8-ft3 tank. The tank and 

ammonia are now heated to a final pressure of 150 lbf/in.2. Determine the heat 
transfer for the process. 

 Solution: 
C.V.: NH3 

  

 

V

P

1

2

 
 
Continuity Eq.:           m2 = m1 = m ;    

Energy Eq.5.11:         m(u2 - u1) = 1Q2 - 1W2 

Process: Constant volume  ⇒              v2 = v1  &     1W2 = 0 

State 1:  Table F.8.1  two-phase state. 
 v1 = 0.02502 + 0.6 × 4.7978 = 2.904 ft3/lbm 

u1 = 75.06 + 0.6 × 491.17 = 369.75 Btu/lbm 
m = V/v1 = 8/2.904 = 2.755 lbm 

 
State 2: P2, v2 = v1   ⇒   T2 ≅ 258 F 

 u2 = h2 - P2v2 = 742.03 - 150 × 2.904 × 144/778 = 661.42 Btu/lbm 

 1Q2 = 2.755 × (661.42 - 369.75) = 803.6 Btu 
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5.153E 
 Water in a 6-ft3 closed, rigid tank is at 200 F, 90% quality. The tank is then 

cooled to 20 F. Calculate the heat transfer during the process. 
 Solution: 

C.V.: Water in tank.  m2 = m1 ;    m(u2 - u1) = 1Q2 - 1W2 
Process: V = constant,   v2 = v1,     1W2 = 0 
State 1: v1 = 0.01663 + 0.9 × 33.6146 = 30.27 ft3/lbm  
   u1 = 168.03 + 0.9 × 906.15 = 983.6 Btu/lbm 
State 2: T2, v2 = v1    ⇒   mix of sat. solid + vap.   Table C.8.4 
  v2 = 30.27 = 0.01744 + x2 × 5655    =>     x2 = 0.00535 
  u2 = -149.31 + 0.00535 ×1166.5 = -143.07 Btu/lbm 

  m = V/v1 = 6 / 30.27 = 0.198 lbm 

1Q2 = m(u2 - u1) = 0.198 (-143.07 - 983.6) = -223 Btu 
 

 P C.P.

v

T C.P.

v

T
1 1

P = const.

2 2
 

 
 

P

T

v

S + V

L + V

V
L

S

C.P.
1

2
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5.154E 
 A constant pressure piston/cylinder has 2 lbm water at 1100 F and 2.26 ft3. It is 

now cooled to occupy 1/10 of the original volume. Find the heat transfer in the 
process. 

C.V.: Water       m2 = m1 = m;       

Energy Eq.5.11 m(u2 - u1) = 1Q2 - 1W2 

Process: P = const.  ⇒ 1W2 = ⌡⌠PdV = P∆V = P(V2 - V1) = Pm(v2 - v1) 

 
State 1:  Table F.7.2    (T, v1 = V/m = 2.26/2 = 1.13 ft3/lbm)     

P1 = 800 psia,     h1 = 1567.81 Btu/lbm 
State 2:  Table F.7.2    (P, v2 = v1/10 = 0.113 ft3/lbm)    two-phase state 
  x2 = (v2 – vf)/vfg = (0.113 – 0.02087)/0.5488 = 0.1679 
  h2 = hf + x2 hfg = 509.63 + x2 689.62 = 625.42 Btu/lbm 
 
   1Q2 = m(u2 - u1) + 1W2 = m(h2 - h1) 
           = 2 (625.42 – 1567.81) = -1884.8 Btu 

   
 
 

V

P

12

V

T

1

2
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5.155E A piston/cylinder arrangement has the piston loaded with outside atmospheric 

pressure and the piston mass to a pressure of 20 lbf/in.2, shown in Fig P5.50. It 
contains water at 25 F, which is then heated until the water becomes saturated 
vapor. Find the final temperature and specific work and heat transfer for the 
process. 

 Solution: 
C.V. Water in the piston cylinder. 
Continuity: m2 = m1,       Energy: u2 - u1 = 1q2 - 1w2 

Process: P = const. = P1,   =>     1w2 = ⌡⌠
 1

  2 
 P dv = P1(v2 - v1) 

State 1: T1 , P1  =>  Table F.7.4   compressed solid, take as saturated solid. 

   v1 = 0.01746 ft3/lbm,     u1 = -146.84 Btu/lbm  

State 2: x = 1,  P2 = P1 = 20 psia   due to process  =>   Table F.7.1 

   v2 = vg(P2) = 20.09 ft3/lbm,    T2 = 228 F ;      u2 = 1082 Btu/lbm 

    1w2 = P1(v2 -v1) = 20(20.09 - 0.01746) × 144/778 = 74.3 Btu/lbm 

    1q2 = u2 - u1 + 1w2 = 1082 - (-146.84) + 74.3 = 1303 Btu/lbm 
 

P

T

v

V

L

S

C.P.

21

S+V

L+V
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v
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v
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5.156E 
 A water-filled reactor with volume of 50 ft3 is at 2000 lbf/in.2, 560 F and placed 

inside a containment room, as shown in Fig. P5.48. The room is well insulated 
and initially evacuated. Due to a failure, the reactor ruptures and the water fills 
the containment room. Find the minimum room volume so the final pressure does 
not exceed 30 lbf/in.2. 
C.V.: Containment room and reactor. 
Mass: m2 = m1 = Vreactor/v1 = 50/0.02172 = 2295.7 lbm 

Energy m(u2 - u1) = 1Q2 - 1W2 = 0/    ⇒   u2 = u1 = 552.5 Btu/lbm 

State 2:  30 lbf/in.2,  u2 < ug   ⇒   2 phase  Table F.7.1 

  u = 552.5 = 218.48 + x2 869.41    ⇒     x2 = 0.3842   

 v2 = 0.017 + 0.3842 × 13.808 = 5.322 ft3/lbm 

 V2  = mv2  = 2295.7 × 5.322 = 12218 ft3 
 

 P

v

1

T

v

1

2
30 psia

30
2

u = const

2000

 
 
 P

T

v

L
C.P.1

2
200 kPa
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5.157E 
 A piston/cylinder contains 2 lbm of liquid water at 70 F, and 30 lbf/in.2. There is 

a linear spring mounted on the piston such that when the water is heated the 
pressure reaches 300 lbf/in.2 with a volume of  4 ft3. Find the final temperature 
and plot the P-v diagram for the process. Calculate the work and the heat transfer 
for the process. 

 Solution: 
Take CV as the water. 
  m2 = m1 = m ;      m(u2 − u1) = 1Q2 - 1W2  
 State 1: Compressed liquid, take saturated liquid at same temperature. 

  v1 = vf(20) = 0.01605 ft3/lbm,   u1 = uf = 38.09 Btu/lbm 

 State 2: v2 = V2/m = 4/2 = 2 ft3/lbm and P = 300 psia 

     => Superheated vapor   T2 = 600 F ;   u2 = 1203.2 Btu/lbm 
 Work is done while piston moves at linearly varying pressure, so we get 
      1W2 = ∫ P dV = area = Pavg (V2 − V1)  

= 0.5×(30+3000)(4 - 0.0321) 
778
144  = 121.18 Btu 

 Heat transfer is found from the energy equation 
 1Q2 = m(u2 − u1) + 1W2 = 2 × (1203.2 – 38.09) + 121.18 = 2451.4 Btu 

 
 

 

P

P

2

P

v1
1

2

cb
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Multistep and Review Problems 
 
5.158E 
 A twenty pound-mass of water in a piston/cylinder with constant pressure is at 

1100 F and a volume of 22.6 ft3. It is now cooled to 100 F. Show the P–v diagram 
and find the work and heat transfer for the process. 

  
Solution: 
C.V. Water 
Energy Eq.: 1Q2 = m(u2 – u1) +  1W2 = m(h2 - h1) 

Process Eq.: Constant pressure  ⇒   1W2 = mP(v2 - v1) 

Properties from Table F.7.2 and F.7.3 

State 1: T1,   v1 = 22.6/20 = 1.13 ft3/lbm,  P1 = 800 lbf/in2 ,   h1 = 1567.8 

State 2:   800 lbf/in2, 100 F 

        ⇒  v2 = 0.016092 ft3/lbm,  h2 = 70.15 Btu/lbm 

 
 

v 

P 

12

 v 

T 
1

2

800 psia

 
 
   1W2 = 20 × 800 ×(0.016092 - 1.13) × 144/778 = -3299 Btu 

  1Q2 = 20 ×(70.15 - 1567.8) = -29 953 Btu 
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5.159E 
 A vertical cylinder fitted with a piston contains 10 lbm of R-22 at 50 F, shown in 

Fig. P5.64. Heat is transferred to the system causing the piston to rise until it 
reaches a set of stops at which point the volume has doubled. Additional heat is 
transferred until the temperature inside reaches 120 F, at which point the pressure 
inside the cylinder is 200 lbf/in.2. 

 a. What is the quality at the initial state? 
 b. Calculate the heat transfer for the overall process. 
 Solution: 

C.V. R-22. Control mass goes through process:  1 -> 2 -> 3 
As piston floats pressure is constant (1 -> 2) and the volume is constant for 
the second part (2 -> 3).   So we have:    v3 = v2 = 2 × v1  

State 3: Table F.9.2  (P,T)    v3 = 0.2959 ft3/kg,   

u3 =  h - Pv = 117.0 - 200×0.2959×144/778 = 106.1 Btu/lbm 

 
 

V

P

1 2

3

R-22

Po

cb

 
 

So we can determine state 1 and 2 Table F.9.1: 
  v1 = 0.14795 = 0.01282 + x1(0.5432)   =>       x1 = 0.249 

 u1 = 24.04 + 0.249×74.75 = 42.6 Btu/lbm 

State 2: v2 = 0.2959 ft3/lbm,   P2 = P1 = 98.7 psia,    this is still 2-phase. 

 1W3 = 1W2 = ⌡⌠
  1

 2
 PdV = P1(V2 - V1) 

        = 98.7 × 10(0.295948 - 0.147974) × 144/778 = 27.0 Btu 
 1Q3 = m(u3 - u1) + 1W3 = 10(106.1 - 42.6) + 27.0 = 662 Btu 
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5.160E 
 A piston/cylinder contains 2 lbm of water at 70 F with a volume of 0.1 ft3, shown 

in Fig. P5.129. Initially the piston rests on some stops with the top surface open to 
the atmosphere, Po, so a pressure of 40 lbf/in.2 is required to lift it. To what 
temperature should the water be heated to lift the piston?  If it is heated to 
saturated vapor find the final temperature, volume, and the heat transfer. 
Solution: 
 C.V. Water. This is a control mass. 

   m2 = m1 = m ;     m(u2 - u1) = 1Q2 - 1W2 
 

 State 1: 20 C,   v1 = V/m = 0.1/2 = 0.05 ft3/lbm 

       x = (0.05 - 0.01605)/867.579 = 0.0003913 

u1 = 38.09 + 0.0003913×995.64 = 38.13 Btu/lbm 

To find state 2 check on state 1a: 

     P = 40 psia,    v = v1 = 0.05 ft3/lbm  

     Table F.7.1:     vf <  v < vg = 10.501 

V

P

2

1

1a

P

P

1

2

 

State 2 is saturated vapor at 40 psia as state 1a is two-phase. T2 = 267.3 F 

v2 = vg = 10.501 ft3/lbm ,   V2  = m v2 = 21.0 ft3,   u2 = ug= 1092.27 Btu/lbm 

Pressure is constant as volume increase beyond initial volume. 

1W2 = ∫ P dV = Plift (V2-V1) = 40 (21.0 – 0.1) × 144 / 778 = 154.75 Btu 

1Q2 = m(u2 - u1) +  1W2  =  2 (1092.27 – 38.13) + 154.75 = 2263 Btu 
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5.161E 
 Two tanks are connected by a valve and line as shown in Fig. P5.62. The volumes 

are both 35 ft3 with R-134a at 70 F, quality 25% in A and tank B is evacuated. 
The valve is opened and saturated vapor flows from A into B until the pressures 
become equal. The process occurs slowly enough that all temperatures stay at 70 
F during the process. Find the total heat transfer to the R-134a during the process. 
C.V.: A + B 
State 1A:   Table F.10.1,      uA1 = 98.27 + 0.25×69.31 = 115.6 Btu/lbm 

   vA1 = 0.01313 + 0.25×0.5451 = 0.1494 ft3/lbm  

   =>   mA1 = VA/vA1 = 234.3 lbm 

Process: Constant T and total volume.   m2 = mA1 ;   V2 = VA + VB = 70 ft3  

State 2: T2 ,  v2 = V2/m2 = 70/234.3 = 0.2988 ft3/lbm  =>  

  x2 = (0.2988 - 0.01313)/0.5451 = 0.524 ;    

  u2 = 98.27 + 0.524*69.31 = 134.6 Btu/lbm 

The energy equation gives the heat transfer 
 1Q2 = m2u2 - mA1uA1 - mB1uB1 + 1W2 = m2(u2 - uA1) 

        = 234.3 × (134.6 - 115.6) = 4452 Btu 
 

 

A B
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5.162E 
 Ammonia, NH3, is contained in a sealed rigid tank at 30 F, x = 50% and is then 

heated to 200 F. Find the final state P2, u2 and the specific work and heat transfer. 
Solution: 
Continuity Eq.:        m2 = m1 ;        

Energy Eq.5.11:      E2 - E1 = 1Q2 ;     ( )1W2 = 0/  

Process: V2 = V1  ⇒    v2 = v1 =  0.02502 + 0.5 × 4.7945 = 2.422 ft3/lbm 

State 1:  Table F.8.1,          u1 = 75.06 + 0.5 × 491.17 = 320.65 Btu/lbm  

Table F.8.2:      v2  &  T2  ⇒  between  150 psia  and 175 psia 
 

 

V

P

1

2

 

    

 P2 = 163 lbf/in2,   h2 = 706.6 Btu/lbm 

          linear interpolation 
u2 = h2-P2v2  = 706.6 – 163× 2.422×144/778  
     = 633.5 Btu/lbm 
  

 
Process equation gives no displacement: 1w2 = 0 ;       

The energy equation then gives the heat transfer as 
  1q2 = u2 - u1 = 633.5 - 320.65 = 312.85 Btu/lbm 
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5.163E 
 Water at 70 F, 15 lbf/in.2, is brought to 30 lbf/in.2, 2700 F. Find the change in the 

specific internal energy, using the water table and the ideal gas water table in 
combination. 
State 1:  Table F.7.1    u1 ≅ uf = 38.09 Btu/lbm 

State 2: Highest T in Table F.7.2 is 1400 F 
 Using a ∆u from the ideal gas table F.6, we get 
 -h2700 - -h2000 = 26002 - 11769 = 14233 Btu/lbmol= 790 Btu/lbm 

 u2700 - u1400 = ∆h- R(2700 - 1400) = 790 - 53.34 × 
1300
778  = 700.9 

Since ideal gas change is at low P we use 1400 F, lowest P available 1 lbf/in2 
from steam tables, F.7.2,    ux = 1543.1 Btu/lbm as the  reference. 

 u2 - u1 = (u2 - ux)ID.G. + (ux - u1) 
    = 700.9 + 1543.1 - 38.09 = 2206 Btu/lbm  
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Solids and Liquids 
 
5.164E 
  A car with mass 3250 lbm drives with 60 mi/h when the brakes are applied to 

quickly decrease its speed to 20 mi/h. Assume the brake pads are 1 lbm mass with 
heat capacity of 0.2 Btu/lbm R and the brake discs/drums are 8 lbm steel where 
both masses are heated uniformly. Find the temperature increase in the brake 
assembly. 
C.V. Car. Car looses kinetic energy and brake system gains internal u. 
 No heat transfer (short time) and no work term.  

   m = constant;       E2 - E1 = 0 - 0 =  mcar 
1
2(V2

2 − V2
1) + mbrake(u2 − u1) 

The brake system mass is two different kinds so split it, also use Cv since we do 
not have a u table for steel or brake pad material. 
 

 msteel Cv ∆T  + mpad Cv ∆T  = mcar 
1
2(V2

2 − V2
1)  

(8×0.11 + 1×0.2) ∆T = 3250 ×0.5×3200×1.466672 /(32.174×778) = 446.9 Btu 
   =>         ∆T = 414 F 
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5.165E 
 A 2 lbm steel pot contains 2 lbm liquid water at 60 F. It is now put on the stove 

where it is heated to the boiling point of the water. Neglect any air being heated 
and find the total amount of energy needed. 

 
 Solution: 
  

Energy Eq.: U2 − U1= 1Q2 − 1W2 
 

  The steel does not change volume and 
the change for the liquid is minimal, so 1
W2 ≅ 0. 

 

 

 
           State 2:    T2 = Tsat (1atm) = 212 F 

Tbl F.7.1 : u1 = 28.1 Btu/lbm,    u2 = 180.1 Btu/lbm 
Tbl F.2 : Cst  = 0.11 Btu/lbm R 

           Solve for the heat transfer from the energy equation 
1Q2 = U2 − U1 = mst (u2 − u1)st + mH2O (u2 − u1)H2O 
        = mstCst  (T2 – T1) + mH2O (u2 − u1)H2O 
 

1Q2 = 2 lbm × 0.11 
Btu

lbm R × (212 – 60) R + 2 lbm ×(180.1 – 28.1) 
Btu
lbm 

       = 33.4 + 304 = 337.4 Btu 
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5.166E 
 A copper block of volume 60 in.3 is heat treated at 900 F and now cooled in a 3-

ft3 oil bath initially at 70 F. Assuming no heat transfer with the surroundings, 
what is the final temperature? 
C.V. Copper block and the oil bath. 
 mmet(u2 - u1)met + moil(u2 - u1)oil = 1Q2 - 1W2 = 0/  

 solid and liquid    ∆u ≅ CV∆T 

 mmetCVmet(T2 - T1,met) + moilCVoil(T2 - T1,oil) = 0/  

 mmet = Vρ = 60×12-3 × 555 = 19.271 lbm 

 moil = Vρ = 3.5 × 57 = 199.5 lbm 

Energy equation becomes 
 19.271 × 0.092(T2 -900) + 199.5 × 0.43(T2 -70) = 0/  

   ⇒  T2 = 86.8 F 
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5.167E 
 An engine consists of a 200 lbm cast iron block with a 40 lbm aluminum head, 40 

lbm steel parts, 10 lbm engine oil and 12 lbm glycerine (antifreeze). Everything 
begins at 40 F and as the engine starts, it absorbs a net of 7000 Btu before it 
reaches a steady uniform temperature. We want to know how hot it becomes. 

 
Energy Eq.: U2 − U1= 1Q2 − 1W2 
Process:  The steel does not change volume and the change for the liquid is 

minimal, so 1W2 ≅ 0. 
So sum over the various parts of the left hand side in the energy equation 

mFe (u2 − u1) + mAl (u2 − u1)Al + mst (u − u1)st 
+ moil (u2 − u1)oil + mgly (u2 − u1)gly = 1Q2 

 
Tbl F.2 :   CFe = 0.1 , CAl = 0.215, Cst  = 0.11   all units of  Btu/lbm R 
Tbl F.3 :   Coil = 0.46 , Cgly = 0.58  all units of Btu/lbm R 
So now we factor out  T2 –T1 as  u2 − u1 = C(T2 –T1) for each term 

        [ mFeCFe + mAlCAl + mstCst+ moilCoil + mglyCgly ] (T2 –T1) = 1Q2 

T2 –T1 = 1Q2 / Σmi Ci 

= 
7000

200× 0.1 + 40× 0.215 + 40× 0.11 + 10 ×0.46 + 12 ×0.58 

= 
7000
44.56 = 157 R 

T2 = T1 + 157 = 40 + 157 = 197 F 
 

  

 Exhaust flow

Air intake filter

Coolant flow

Atm.
airShaft

Fan

power

Radiator

 
 



   Sonntag, Borgnakke and Wylen 
 

 
Ideal Gas 
 
5.168E 
 A cylinder with a piston restrained by a linear spring contains 4 lbm of carbon 

dioxide at 70 lbf/in.2, 750 F. It is cooled to 75 F, at which point the pressure is 45 
lbf/in.2. Calculate the heat transfer for the process. 

  
Solution: 
C.V. The carbon dioxide, which is a control mass. 
Continuity Eq.:     m2 – m1 = 0 

Energy Eq.: m (u2 − u1) = 1Q2 - 1W2 

Process Eq.: P = A + BV  (linear spring)  1W2 = ⌡⌠PdV = 12(P1 + P2)(V2 - V1) 

Equation of state:   PV = mRT  (ideal gas) 

State 1:    V1 = mRT1/P1 = 
4 × 35.1 × (750 + 460)

70 × 144  = 16.85 ft3 

State 2:    V2 = mRT2/P2 = 
4 × 35.1 × (75 + 460)

45 × 144  = 11.59 ft3 

 1W2 = 12(70 + 45)(11.59 – 16.85) ×144/778 = -55.98 Btu 

To evaluate u2 - u1 we will use the specific heat at the average temperature. 

From Table F.6:   

 Cpo(Tavg) = 
∆h
∆T = 

1
M 

6927-0
1200-537 = 

10.45
44.01 = 0.2347 Btu/lbm R 

   ⇒  CV = Cp – R = 0.2375 – 35.10/778 = 0.1924 Btu/lbm R 

For comparison the value from Table F.4 at 77 F is  Cvo = 0.156 Btu/lbm R 

         1Q2 = m(u2 - u1) + 1W2 = mCvo(T2 - T1) + 1W2 

        = 4× 0.1924(75 - 750) - 55.98  = -575.46 Btu 
 
 

 

CO2

 

 
 

P

v

2
1
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5.169E 
 An insulated cylinder is divided into two parts of 10 ft3 each by an initially locked 

piston. Side A has air at 2 atm, 600 R and side B has air at 10 atm, 2000 R as 
shown in Fig. P5.95. The piston is now unlocked so it is free to move, and it 
conducts heat so the air comes to a uniform temperature TA = TB. Find the mass 
in both A and B and also the final T and P. 

 
C.V. A + B .   Then  1Q2 = 0/  , 1W2 = 0/  . 

Force balance on piston: PAA = PBA ,     so final state in A and B is the same. 

State 1A: uA1 = 102.457 ;   mA = 
PV
RT = 

29.4×10×144
53.34×600  = 1.323 lbm 

 State 1B: uB1 = 367.642 ;    mB = 
PV
RT = 

20003. ×453
144×10×147  = 1.984 lbm 

 mA(u2 - u1)A + mB(u2 - u1)B = 0/  

 (mA + mB)u2 = mAuA1 + mBuB1 

    = 1.323 × 102.457 + 1.984 × 367.642 = 864.95 Btu 
 u2 = 864.95/3.307 = 261.55     ⇒      T2 = 1475 R 

 P = mtotRT2/Vtot= 
3.307 × 53.34 × 1475

 20 × 144  = 90.34 lbf/in2 
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5.170E 
 A 65 gallons rigid tank contains methane gas at 900 R, 200 psia. It is now cooled 

down to 540 R. Assume ideal gas and find the needed heat transfer. 
 
 Solution: 

Ideal gas and recall from Table A.1 that  1 gal = 231 in3,  

  m = P1V/RT1 = 
200 × 65 × 231

96.35 × 900 × 12 = 2.886 lbm 

Process:           V = constant = V1      =>     1W2 = 0 

Use specific heat from Table F.4  
  u2 - u1  = Cv (T2 – T1) = 0.415 (900 – 540) = –149.4 Btu/lbm 

Energy Equation 
     1Q2 = m(u2 - u1) = 2.886 (-149.4) = –431.2 Btu 

 



   Sonntag, Borgnakke and Wylen 
 

 
5.171E 
 Air in a piston/cylinder at 30 lbf/in.2, 1080 R, is shown in Fig. P5.69. It is 

expanded in a constant-pressure process to twice the initial volume (state 2). The 
piston is then locked with a pin, and heat is transferred to a final temperature of 
1080 R. Find P, T, and h for states 2 and 3, and find the work and heat transfer in 
both processes. 
C.V. Air.   Control mass  m2 = m3 = m1 

 1→2:  u2 -u1 = 1q2 -1w2 ;     1w2 = ⌡⌠Pdv = P1(v2 -v1) = R(T2 -T1) 

  Ideal gas  Pv = RT  ⇒  T2 = T1v2/v1 = 2T1 = 2160 R 

  P2 = P1 = 30 lbf/in2 ,  h2 = 549.357   1w2 = RT1 = 74.05 Btu/lbm 

Table F.5  h2 = 549.357 Btu/lbm,      h3 = h1 = 261.099 Btu/lbm 

  1q2 = u2 - u1 + 1w2 = h2 - h1 = 549.357 - 261.099 = 288.26 Btu/lbm 

2→3: v3 = v2 = 2v1  ⇒  2w3 = 0, 

  P3 = P2T3/T2 = P1/2 = 15 lbf/in2 

  2q3 = u3 - u2 = 187.058 - 401.276 = -214.2 Btu/lbm 
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5.172E 
 A 30-ft high cylinder, cross-sectional area 1 ft2, has a massless piston at the 

bottom with water at 70 F on top of it, as shown in Fig. P5.93. Air at 540 R, 
volume 10 ft3 under the piston is heated so that the piston moves up, spilling the 
water out over the side. Find the total heat transfer to the air when all the water 
has been pushed out. 

 Solution 
 

H2O

Po

cb
air

 
V

P

2

1

P

P1

0

V V1 max  
 
 The water on top is compressed liquid and has mass 
  VH2O = Vtot - Vair = 30 × 1 - 10 = 20 ft3 
  mH2O = VH2O/vf = 20/0.016051 = 1246 lbm 

 Initial air pressure is:   P1 = P0 + mH2Og/A = 14.7 + 
g

1 × 144 = 23.353 psia  

and then mair = 
PV
RT = 

23.353 × 10 × 144
53.34 × 540  = 1.1675 lbm 

 State 2:    P2 = P0 = 14.7 lbf/in2,      V2 = 30 × 1 = 30 ft3 

1W2 = ⌡⌠PdV = 12 (P1 + P2)(V2 - V1) 

        = 12 (23.353 + 14.7)(30 - 10)× 144 / 778 = 70.43 Btu   

 State 2:  P2, V2   ⇒   T2 = 
T1P2V2

P1V1
 = 

540×14.7×30
23.353×10  = 1019.7 R 

  1Q2 = m(u2 - u1) + 1W2 = 1.1675 × 0.171 (1019.7 - 540) + 70.43  
        = 166.2 Btu 
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Polytropic Process 
 
5.173E 
 An air pistol contains compressed air in a small cylinder, as shown in Fig. P5.112. 

Assume that the volume is 1 in.3, pressure is 10 atm, and the temperature is 80 F 
when armed. A bullet, m = 0.04 lbm, acts as a piston initially held by a pin 
(trigger); when released, the air expands in an isothermal process (T = constant). 
If the air pressure is 1 atm in the cylinder as the bullet leaves the gun, find 

 a. The final volume and the mass of air. 
 b. The work done by the air and work done on the atmosphere. 
 c. The work to the bullet and the bullet exit velocity. 

C.V. Air. Air ideal gas: 

 mair = P1V1/RT1 = 
10 × 14.7 × 1

53.34 × 539.67 × 12 = 4.26×10-5 lbm 

Process: PV = const = P1V1 = P2V2 ⇒ V2 = V1P1/P2 = 10 in3 

 1W2 = ⌡⌠PdV = P1V1 ⌡⌠ (1/V) dV = P1V1 ln( V2/V1) = 0.0362 Btu 

 1W2,ATM = P0(V2 - V1) = 0.0142 Btu 

 Wbullet = 1W2 - 1W2,ATM = 0.022 Btu = 12 mbullet(Vex)2 

 Vex =(2Wbullet/mB)1/2= (2×0.022×778×32.174 / 0.04)1/2= 165.9 ft/s 
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5.174E 
 A piston/cylinder in a car contains 12 in.3 of air at 13 lbf/in.2, 68 F, shown in Fig. 

P5.66. The air is compressed in a quasi-equilibrium polytropic process with 
polytropic exponent n = 1.25 to a final volume six times smaller. Determine the 
final pressure, temperature, and the heat transfer for the process. 
C.V. Air. This is a control mass going through a polytropic process. 
 Cont.: m2 = m1 ;  Energy: E2 - E1 = m(u2 - u1) = 1Q2 - 1W2  

 Process: Pvn = const. ;        Ideal gas: Pv = RT 

 P1v1
n = P2v2

n  ⇒  P2 = P1





v1

v2

n
 = 13 × (6)1.25 = 122.08 lbf/in2 

  T2 = T1(P2v2/P1v1) = 527.67(122.08/13 × 6) = 825.9 R 

 
  P

v

2

1

P = C v
-1.25

T

v

2
1

T = C v-0.25

 
 

 m = 
PV
RT = 

13 × 12 × 12-1

53.34 × 527.67 = 4.619×10-4 lbm 

 1w2 = ⌡⌠Pdv = 
1

1 - n(P2v2 - P1v1) = 
R

1 - n(T2 - T1)  

        = 53.34 




825.9 - 527.67

(1 - 1.25) × 778  = -81.79 Btu/lbm 

 1q2 = u2 - u1 + 1w2 = 141.64 - 90.05 - 81.79 = -30.2 Btu/lbm 

 1Q2 = m 1q2 = 4.619×10-4 × (-30.2)= -0.0139 Btu 
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5.175E 
 Oxygen at 50 lbf/in.2, 200 F is in a piston/cylinder arrangement with a volume of 

4 ft3. It is now compressed in a polytropic process with exponent, n = 1.2, to a 
final temperature of 400 F. Calculate the heat transfer for the process. 
Continuity: m2 = m1 ;  Energy:   E2 - E1 = m(u2 - u1) = 1Q2 - 1W2  

State 1: T, P and ideal gas, small change in T, so use Table C.4 

  ⇒        m = 
P1V1
RT1

 = 
50 × 4 × 144

48.28 × 659.67 = 0.9043 lbm 

Process: PVn = constant 

 1W2 = 
1

1-n (P2V2 - P1V1) = 
mR
1-n (T2 - T1) = 

0.9043 × 48.28
1 − 1.2  × 

400 − 200
778   

         = - 56.12 Btu 
 1Q2 = m(u2 - u1) + 1W2  ≅  mCv(T2 - T1) + 1W2 

        = 0.9043 × 0.158 (400 - 200) – 56.12 = - 27.54 Btu 
 

  P

v

2

1

T

v

2
1T

T
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2
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5.176E 
 Helium gas expands from 20 psia, 600 R and 9 ft3 to 15 psia in a polytropic 

process with n = 1.667. How much heat transfer is involved? 
 
 Solution: 
 C.V. Helium gas, this is a control mass. 
 Energy equation: m(u2 – u1) = 1Q2 – 1W2 

 Process equation:       PVn = constant = P1Vn
1 = P2Vn

2 

 Ideal gas (F.4): m = PV/RT = 
20 × 9 × 144

386 × 600  = 0.112 lbm 

 Solve for the volume at state 2 

V2 = V1 (P1/P2)1/n = 9 × 



20

15
0.6

   = 10.696 ft3 

  T2 = T1 P2V2/(P1V1) = 600 
15 × 10.696

20 × 9  =  534.8 R 

 
 Work from Eq.4.4 
 

1W2 = 
P2V2- P1 V1

 1-n  = 
15 × 10.696 - 20 × 9

1 - 1.667  psia ft3 = 29.33 psia ft3 

 = 4223 lbf-ft = 5.43 Btu 
 

 Use specific heat from Table F.4 to evaluate u2 – u1, Cv = 0.744 Btu/lbm R 

1Q2 = m(u2 – u1) + 1W2 = m Cv (T2 – T1) + 1W2  

        = 0.112 × 0.744 × (534.8 – 600) + 5.43 = -0.003 Btu 
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5.177E 
 A cylinder fitted with a frictionless piston contains R-134a at 100 F, 80% quality, 

at which point the volume is 3 Gal. The external force on the piston is now varied 
in such a manner that the R-134a slowly expands in a polytropic process to 50 
lbf/in.2, 80 F. Calculate the work and the heat transfer for this process. 

 Solution: 
C.V. The mass of R-134a.  Properties in Table F.10.1 

 v1 = vf + x1 vfg= 0.01387 + 0.8 × 0.3278 = 0.2761 ft3/lbm 

 u1 = 108.51 + 0.8 × 62.77 = 158.73 Btu/lbm;    P1 = 138.926 psia  

 m = V/v1 = 3 × 231 × 12-3 / 0.2761 = 0.401/ 0.2761 = 1.4525 lbm 

State 2:   v2 = 1.0563 ft3/lbm (sup.vap.);  

  u2 = 181.1 – 50 ×1.0563 ×144/778 = 171.32 Btu/lbm 

Process: n = ln 
P1
P2

 / ln 
V2
V1

   = ln 
138.926

50  / ln 
1.0563
9.2761 = 0.7616 

 1W2 = ∫ P dV  =  
P2 V2 - P1 V1

1- n   

         = 
50 × 1.0563 − 138.926 × 0.2761

1 − 0.7616  × 1.4525 × 
144
778  = 16.3 Btu 

 1Q2 = m(u2 – u1) + 1W2 = 1.4525 (171.32 – 158.73) + 16.3 = 34.6 Btu   
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5.178E 
 A piston cylinder contains argon at 20 lbf/in.2, 60 F, and the volume is 4 ft3. The 

gas is compressed in a polytropic process to 100 lbf/in.2, 550 F. Calculate the 
heat transfer during the process. 
Find the final volume, then knowing P1, V1, P2, V2 the polytropic exponent can 
be determined. Argon is an ideal monatomic gas (Cv is constant). 

 V2 = V1 = (P1/P2)/(T2/T1) = 4 × 
20
100 × 

1009.67
519.67  = 1.554 ft3 

Process:     PVn = const.  =>   n = ln 
P1
P2

 / ln 
V2
V1

  = ln 
100
20  / ln 

4
1.554 =1.702 

1W2 = 
1

1-n (P2V2 – P1V1) = 
100×1.554 - 20×4

1-1.702  × 
144
778 =  -19.9 Btu 

m = PV/RT = 20 × 4 × 144 / (38.68 × 519.67) = 0.5731 lbm 

1Q2 = m(u2 – u1) + 1W2 = m Cv (T2 – T1) +1W2  

        = 0.5731 × 0.0745×(550 –60) – 19.9 = 1.0 Btu 
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Rates of Energy 
 
5.179E 
 A small elevator is being designed for a construction site. It is expected to carry 

four 150 lbm workers to the top of a 300-ft-tall building in less than 2 min. The 
elevator cage will have a counterweight to balance its mass. What is the smallest 
size (power) electric motor that can drive this unit? 

 
 m = 4×150 = 600 lbm ;   ∆Z = 300 ft ;   ∆t = 2 minutes 

 -W
.

 = ∆PE
.

 = m 
g∆Z
∆t  = 

600 × 32.174 × 300
32.174 × 2 × 60  

1
550 = 2.73 hp 
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5.180E 
 Water is in a piston cylinder maintaining constant P at 330 F, quality 90% with a 

volume of 4 ft3. A heater is turned on heating the water with 10 000 Btu/h. What 
is the elapsed time to vaporize all the liquid? 

 
 Solution: 

Control volume water. 
Continuity Eq.: mtot  = constant = mvapor + mliq 

       on a rate form: m
.

tot  = 0 = m
.

vapor + m
.

liq     ⇒        m
.

liq =  -m
.

vapor 

Energy equation: U
.
 = Q

.
 - W

.
 = m

.
vapor ufg = Q

.
 - P m

.
vapor vfg 

 
Rearrange to solve for m

.
vapor 

   m
.

vapor (ufg + Pvfg) = m
.

vapor hfg = Q
.
 

From table F.7.1 

 hfg = 887.5 Bt/lbm,  v1 = 0.01776 + 0.9 4.2938 = 3.8822 ft3/lbm 

 m1 = V1/v1 = 4/3.8822 = 1.0303 lbm,  mliq = (1-x1)m1 = 0.10303 lbm 
 

  m
.

vapor = Q
.
/hfg = 

10 000
887.5  

Btu/h
Btu/lbm = 11.2676 lbm/h = 0.00313 lbm/s 

 
  ∆t =  mliq / m

.
vapor = 0.10303 / 0.00313 = 32.9 s 
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5.181E 
 A computer in a closed room of volume 5000 ft3 dissipates energy at a rate of 10 

hp. The room has 100 lbm of wood, 50 lbm of steel and air, with all material at 
540 R, 1 atm. Assuming all the mass heats up uniformly how long time will it 
take to increase the temperature 20 F? 
C.V. Air, wood and steel.    m2 = m1 ;     U2 - U1 = 1Q2 = Q

.
 ∆t   

The total volume is nearly all air, but we can find volume of the solids. 
Vwood = m/ρ = 100/44.9 = 2.23 ft3 ; Vsteel = 50/488 = 0.102 ft3 

Vair = 5000 - 2.23 - 0.102 = 4997.7 ft3  

    mair = PV/RT = 14.7×4997.7×144/(53.34×540) = 367.3 lbm 

We do not have a u table for steel or wood so use heat capacity. 
 
 ∆U = [mair Cv + mwood Cv + msteel Cv ] ∆T 

   = (367.3 × 0.171 + 100 × 0.3 + 50 × 0.11) 20 
   = 1256.2 + 600 +110 = 1966 Btu = Q

.
 × ∆t = 10 × (550/778) × ∆t  

       =>      ∆t = [1966/10] 
778
550 = 278 sec = 4.6 minutes 
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5.182E 
 A closed cylinder is divided into two rooms by a frictionless piston held in place 

by a pin, as shown in Fig. P5.138. Room A has 0.3 ft3 air at 14.7 lbf/in.2, 90 F, 
and room B has 10 ft3 saturated water vapor at 90 F. The pin is pulled, releasing 
the piston and both rooms come to equilibrium at 90 F. Considering a control 
mass of the air and water, determine the work done by the system and the heat 
transfer to the cylinder. 

 
 Solution: 

C.V. A + B, control mass of constant total volume. 
Energy equation:    mA(u2 – u1)A + mB(uB2 – uB1) = 1Q2 – 1W2  

Process equation:   V = C    ⇒   1W2 = 0 

      T = C    ⇒   (u2 – u1)A = 0  (ideal gas) 

The pressure on both sides of the piston must be the same at state 2. 
Since two-phase:     P2 = Pg H2O at 90 F = PA2 = PB2 = 4.246 kPa 

 Air, I.G.:      PA1VA1 = mARAT = PA2VA2 = Pg H2O at 90 F VA2 

 → VA2 = 
14.7 × 0.3

0.6988  = 6.31 ft3 

Now the water volume is the rest of the total volume 

 VB2 = VA1 + VB1 - VA2 = 0.30 + 10 - 6.31 = 3.99 ft3 

 mB = 
VB1
vB1

 = 
10

467.7 = 0.02138 lbm     →    vB2 = 186.6 ft3/lbm 

 186.6 = 0.016099 + xB2 × (467.7 - 0.016)   =>    xB2 = 0.39895 

  uB2 = 58.07 + 0.39895 × 982.2 = 449.9 Btu/lbm;   uB1 = 1040.2 

 1Q2 = mB(uB2 – uB1) = 0.02138 (449.9 - 1040.2) = -12.6 Btu 
 
 

 

A B
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CONCEPT-STUDY GUIDE PROBLEMS 
 
6.1 
 A mass flow rate into a control volume requires a normal velocity component. 

Why?  
 
  The tangential velocity component does not bring any substance across the 

control volume surface as it flows parallel to it, the normal component of velocity 
brings substance in or out of the control volume according to its sign. The normal 
component must be into the control volume to bring mass in, just like when you 
enter a bus (it does not help that you run parallel with the bus side). 

 
 

V

Vnormal

Vtangential

 

 

 
 
6.2 

 A temperature difference drives a heat transfer. Does a similar concept apply to m
.

? 
 
  Yes.   A pressure difference drives the flow. The fluid is accelerated in the 

direction of a lower pressure as it is being pushed harder behind it than in front of 
it. This also means a higher pressure in front can decelerate the flow to a lower 
velocity which happens at a stagnation on a wall. 

 
 F  = P  A1 1 F  = P  A2 2

 

 

 
 
6.3 
 Can a steady state device have boundary work? 
 
  No. Any change in size of the control volume would require either a 

change in mass inside or a change in state inside, neither of which is possible in a 
steady-state process. 
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6.4 

 Can you say something about changes in m
.

 and V
.
 through a steady flow device? 

 
  The continuity equation expresses the conservation of mass, so the total 

amount of m
.

 entering must be equal to the total amount leaving. For a single flow 
device the mass flow rate is constant through it, so you have the same mass flow 
rate across any total cross-section of the device from the inlet to the exit. 

 
  The volume flow rate is related to the mass flow rate as 

    V
.
 = v m

.
 

 so it can vary if the state changes (then v changes) for a constant mass flow rate. 

This also means that the velocity can change (influenced by the area as V
.
 = VA) 

and the flow can experience an acceleration (like in a nozzle) or a deceleration (as 
in a diffuser).  
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6.5 
 How does a nozzle or sprayhead generate kinetic energy? 
 

  
By accelerating the fluid from a high pressure 
towards the lower pressure, which is outside the 
nozzle. The higher pressure pushes harder than 
the lower pressure so there is a net force on any 
mass element to accelerate it. 

 
 
 
6.6 
 Liquid water at 15oC flows out of a nozzle straight up 15 m. What is nozzle Vexit? 
  

Energy Eq.6.13: hexit +  12 V2
exit + gHexit = h2 + 12 V2

2 + gH2 
 
 If the water can flow 15 m up it has specific potential energy of  gH2 which must 

equal the specific kinetic energy out of the nozzle V 2
exit/2. The water does not 

change P or T so h is the same. 
 

   V 2
exit/2 = g(H2 – Hexit) = gH    =>  

   Vexit = 2gH = 2 × 9.807 × 15 m2/s2 = 17.15 m/s 
 

   
 
 
6.7 
 What is the difference between a nozzle flow and a throttle process? 
 
  In both processes a flow moves from a higher to a lower pressure. In the 

nozzle the pressure drop generates kinetic energy, whereas that does not take 
place in the throttle process. The pressure drop in the throttle is due to a flow 
restriction and represents a loss. 
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6.8 
 If you throttle a saturated liquid what happens to the fluid state? If it is an ideal 

gas? 
 
  The throttle process is approximated as a constant enthalpy process. 

Changing the state from saturated liquid to a lower pressure with the same h gives 
a two-phase state so some of the liquid will vaporize and it becomes colder. 

 
 

���
1 2

 2

P

v

1

T

 
h = C

h = C

 
  If the same process happens in an ideal gas then same h gives the same 

temperature (h a function of T only) at the lower pressure. 
 
 
6.9 
 R-134a at 30oC, 800 kPa is throttled so it becomes cold at –10oC. What is exit P? 
 

 State 1 is slightly compressed liquid so  
   Table B.5.1:  h = hf = 241.79 kJ/kg 
 At the lower temperature it becomes two-phase since the throttle flow has 

constant h and at –10oC:  hg = 392.28 kJ/kg 
  
   P = Psat = 210.7 kPa 

 
6.10 
  Air at 500 K, 500 kPa is expanded to 100 kPa in two steady flow cases. Case one 

is a throttle and case two is a turbine. Which has the highest exit T? Why? 
 
  1. Throttle. 
  In the throttle flow no work is taken out, no kinetic energy is generated and we 

assume no heat transfer takes place and no potential energy change. The energy 
equation becomes constant h, which gives constant T since it is an ideal gas. 

 
  2. Turbine. 
  In the turbine work is taken out on a shaft so the fluid expands and P and T drops.  
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6.11 
  A turbine at the bottom of a dam has a flow of liquid water through it. How does 

that produce power? Which terms in the energy equation are important? 
 
 
   The water at the bottom of the dam in the turbine inlet is at a high 

pressure. It runs through a nozzle generating kinetic energy as the pressure drops. 
This high kinetic energy flow impacts a set of rotating blades or buckets which 
converts the kinetic energy to power on the shaft so the flow leaves at low 
pressure and low velocity. 

 

T

H
DAMLake
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6.12 
  A windmill takes a fraction of the wind kinetic energy out as power on a shaft. In 

what manner does the temperature and wind velocity influence the power? Hint: 
write the power as mass flow rate times specific work. 

 
  The work as a fraction f of the flow of kinetic energy becomes 

   W
.

 =  m
.

w = m
.

 f 12 V2
in = ρAVin f 12 V2

in  
 

so the power is proportional to the velocity cubed. The temperature enters through 
the density, so assuming air as ideal gas  

 
   ρ = 1/v = P/RT 
and the power is inversely proportional to temperature. 
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6.13 
  If you compress air the temperature goes up, why? When the hot air, high P flows 

in long pipes it eventually cools to ambient T. How does that change the flow? 
 

As the air is compressed, volume decreases so work is done on a mass 
element, its energy and hence temperature goes up. If it flows at nearly 
constant P and cools its density increases (v decreases) so it slows down 

for same mass flow rate ( m
.

 = ρAV ) and flow area. 
   
  
6.14 
  In a boiler you vaporize some liquid water at 100 kPa flowing at 1 m/s. What is 

the velocity of the saturated vapor at 100 kPa if the pipe size is the same? Can the 
flow then be constant P? 

 
  The continuity equation with average values is written 

   m
.

i = m
.

e = m
.

 = ρAV = AV/v = AVi/vi = AVe/ve 
 
  From Table B.1.2 at 100 kPa we get 
    vf = 0.001043  m3/kg;   vg = 1.694  m3/kg  
   

    Ve = Vi ve/vi = 1 
1.694

0.001043 = 1624 m/s 

 
   To accelerate the flow up to that speed you need a large force ( ∆PA ) so a 

large pressure drop is needed. 
 

 
 
 
                         Pi cb

 

Pe  <  Pi 
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6.15 
  A mixing chamber has all flows at the same P, neglecting losses. A heat 

exchanger has separate flows exchanging energy, but they do not mix. Why have 
both kinds? 

 
 You might allow mixing when you can use the resulting output mixture, 
say it is the same substance. You may also allow it if you definitely want the 
outgoing mixture, like water out of a faucet where you mix hot and cold water. 
Even if it is different substances it may be desirable, say you add water to dry air 
to make it more moist, typical for a winter time air-conditioning set-up. 

 
 
   In other cases it is different substances that flow at different pressures with 

one flow heating or cooling the other flow. This could be hot combustion gases 
heating a flow of water or a primary fluid flow around a nuclear reactor heating a 
transfer fluid flow. Here the fluid being heated should stay pure so it does not 
absorb gases or radioactive particles and becomes contaminated. Even when the 
two flows have the same substance there may be a reason to keep them at separate 
pressures. 

 
 

1

2
3MIXING

CHAMBER
cb  

1 2

3
cb

4
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6.16 
  In a co-flowing (same direction) heat exchanger 1 kg/s air at 500 K flows into one 

channel and 2 kg/s air flows into the neighboring channel at 300 K. If it is 
infinitely long what is the exit temperature? Sketch the variation of T in the two 
flows. 

C.V.  mixing section (no W
.

, Q
.
) 

 Continuity Eq.:  m. 1 = m. 3  and    m. 2 = m. 4  

 Energy Eq.6.10: m. 1h1 + m. 2h2 = m. 1h3 + m. 2h4 

 Same exit T:  h3 = h4 = [m. 1h1 + m. 2h2] / [m. 1 + m. 2] 

Using conctant specific heat 

  T3 = T4 = 
m. 1

m. 1 + m. 2
  T1 + 

m. 2

m. 1 + m. 2
 T2 = 13 × 500 + 23 × 300 = 367 K 

 
 
 

x

cb

3

4

1

2
 

T

x300

500
1T

2T
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6.17 
  Air at 600 K flows with 3 kg/s into a heat exchanger and out at 100oC. How much 

(kg/s) water coming in at 100 kPa, 20oC can the air heat to the boiling point?  
 
  C.V. Total heat exchanger. The flows are not mixed so the two flowrates are 

constant through the device. No external heat transfer and no work. 
  

Energy Eq.6.10: m. airhair in + m. waterhwater in = m. airhair out + m. waterhwater out 

 m. air[hair in - hair out] = m. water[hwater out – hwater in]  

Table B.1.2:   hwater out – hwater in = 2675.46 – 83.94 = 2591.5 kJ/kg 

Table A.7.1:   hair in - hair out = 607.32 – 374.14 = 233.18 kJ/kg 

Solve for the flow rate of water from the energy equation 

 m. water = m. air 
hair in - hair out

hwater out - hwater in
 = 3 × 

233.18
2591.5 = 0.27 kg/s 

 
 
 
 
                 Air 
                   in cb

 

Air 
out 
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6.18 
  Steam at 500 kPa, 300oC is used to heat cold water at 15oC to 75oC for domestic 

hot water supply. How much steam per kg liquid water is needed if the steam 
should not condense? 

 
  Solution: 
  C.V. Each line separately. No work but there is heat transfer out of the steam flow 

and into the liquid water flow. 

  Water line energy Eq.:     m
.

liqhi + Q
.
 = m

.
liqhe   ⇒  Q

.
 = m

.
liq(he – hi) 

  For the liquid water look in Table B.1.1 
    ∆hliq = he – hi = 313.91 – 62.98 = 250.93 kJ/kg 
          ( ≅ Cp ∆T = 4.18 (75 – 15) = 250.8 kJ/kg ) 
 
  Steam line energy has the same heat transfer but it goes out 

  Steam Energy Eq.:     m
.

steamhi = Q
.
 + m

.
steamhe    ⇒     Q

.
 = m

.
steam(hi – he) 

For the steam look in Table B.1.3 at 500 kPa 
    ∆hsteam = hi – he = 3064.2 – 2748.67 = 315.53 kJ/kg 
   
  Now the heat transfer for the steam is substituted into the energy equation for the 

water to give 

    m
.

steam / m
.

liq = ∆hliq / ∆hsteam = 
250.93
315.53 = 0.795 

 
 
 
 
 

cb

Steam
inSteam

out

Cold water in

Hot water out
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6.19 
  Air at 20 m/s, 260 K, 75 kPa with 5 kg/s flows into a jet engine and it flows out at 

500 m/s, 800 K, 75 kPa. What is the change (power) in flow of kinetic energy? 
 

   m
.

 ∆KE = m
.

 12 (V2
e – V2

i )  

               = 5 kg/s × 12 (5002 – 202) (m/s)2 
1

1000 (kW/W) = 624 kW 

 
  

cb  
 
 
 
6.20 
  An initially empty cylinder is filled with air from 20oC, 100 kPa until it is full. 

Assuming no heat transfer is the final temperature larger, equal to or smaller than 
20oC? Does the final T depend on the size of the cylinder? 

 
   This is a transient problem with no heat transfer and no work. The balance 

equations for the tank as C.V. become 
   Continuity Eq.: m2 – 0 = mi  
   Energy Eq.:  m2u2 – 0 = mihi + Q – W = mihi + 0 – 0 
 
   Final state:  u2 = hi & P2 = Pi 
    

 T2 > Ti   and it does not depend on V 
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6.21 
  A cylinder has 0.1 kg air at 25oC, 200 kPa with a 5 kg piston on top. A valve at 

the bottom is opened to let the air out and the piston drops 0.25 m towards the 
bottom. What is the work involved in this process? What happens to the energy? 

 
If we neglect acceleration of piston then P = C = Pequilibrium 

   W = P ∆V 
 
 To get the volume change from the height we need the cylinder area. The force 

balance on the piston gives 

 P = Po + 
mpg
A  ⇒ A = 

mpg
P - P o

 = 
5 × 9.807

100 × 1000 = 0.000 49 m2 

 

 ∆V = - AH = -0.000 49 × 0.25 = -0.000 1225 m3 
 W = P ∆V = 200 kPa × (-0.000 1225) m3 = -0.0245 kJ 
 
  

The air that remains inside has not changed 
state and therefore not energy. The work 
leaves as flow work Pv ∆m. 

Pcyl

AIR
e

cb

m
g
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Continuity equation and flow rates 
 
6.22 
 Air at 35°C, 105 kPa, flows in a 100 mm × 150 mm rectangular duct in a heating 

system. The volumetric flow rate is 0.015 m3/s. What is the velocity of the air 
flowing in the duct and what is the mass flow rate? 

 
Solution: 
Assume a constant velocity across the duct area with  

  A = 100 × 150 ×10-6  m2 = 0.015 m2 
and the volumetric flow rate from Eq.6.3, 

  V
.
 = m

.
v = AV   

  V = 
V
.

A = 
0.015 m3/s
0.015 m2  

 = 1.0 m/s 

Ideal gas so note:  

  v = 
RT
P  = 

0.287 × 308.2
105  = 0.8424 m3/kg 

  m
.

 = 
V
.

v = 
0.015
0.8424 = 0.0178 kg/s 
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6.23 
 A boiler receives a constant flow of 5000 kg/h liquid water at 5 MPa, 20°C and it 

heats the flow such that the exit state is 450°C with a pressure of 4.5 MPa. 
Determine the necessary minimum pipe flow area in both the inlet and exit pipe(s) 
if there should be no velocities larger than 20 m/s. 

 
Solution: 
Mass flow rate from Eq.6.3, both  V ≤ 20 m/s 

  m
.

i = m
.

e = (AV/v) i = (AV/v) e = 5000  
1

3600  kg/s 

Table B.1.4 vi = 0.001 m3/kg,    

Table B.1.3 ve = (0.08003 + 0.00633)/2 =  0.07166 m3/kg,  

 Ai ≥  vi m
.

/Vi = 0.001× 
5000
3600 / 20 = 6.94 × 10-5 m2 = 0.69 cm2 

 Ae ≥  ve m
.

/Ve = 0.07166 × 
5000
3600 / 20 = 4.98 × 10-3 m2 = 50 cm2 

 
 
 
                                  Inlet 
                                 liquid 

i e

Q
Q

boiler

Super
heatervapor

cb

 

Exit 
Superheated vapor 
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6.24 
 An empty bathtub has its drain closed and is being filled with water from the 

faucet at a rate of 10 kg/min. After 10 minutes the drain is opened and 4 kg/min 
flows out and at the same time the inlet flow is reduced to 2 kg/min. Plot the mass 
of the water in the bathtub versus time and determine the time from the very 
beginning when the tub will be empty. 

     Solution: 
During the first 10 minutes we have  

dmcv
dt  = m

.
i = 10 kg/min ,   ∆m = m

.
 ∆t1 = 10 × 10 = 100 kg 

So we end up with 100 kg after 10 min. For the remaining period we have 
 

dmcv
dt  = m

.
i - m

.
e= 2 – 4 = -2 kg/min 

∆m2 =  m
.

net ∆t2     ∆t2 = 
∆m

 m
.

net
 = -100/-2 = 50 min. 

So it will take an additional 50 min. to empty 
 
  ∆ttot = ∆t1 + ∆t2 = 10 + 50 = 60 min. 
 

 
 

1010 20
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m
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0
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6.25 
 Nitrogen gas flowing in a 50-mm diameter pipe at 15°C, 200 kPa, at the rate of  

0.05 kg/s, encounters a partially closed valve. If there is a pressure drop of 30 kPa 
across the valve and essentially no temperature change, what are the velocities 
upstream and downstream of the valve? 

Solution: 

Same inlet and exit area:  A = 
π
4 (0.050)2 = 0.001963 m2 

Ideal gas:   vi = 
RTi
Pi

 = 
0.2968 × 288.2

200  = 0.4277 m3/kg 

From Eq.6.3, 

Vi = 
m
.

vi
A  = 

0.05 × 0.4277
0.001963  = 10.9 m/s 

Ideal gas:   ve = 
RTe
Pe

 = 
0.2968 × 288.2

170  = 0.5032 m3/kg 

Ve = 
m
.

ve
A  = 

0.05 × 0.5032
0.001963  = 12.8 m/s 
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6.26 
 Saturated vapor R-134a leaves the evaporator in a heat pump system at 10°C, 

with a steady mass flow rate of 0.1 kg/s. What is the smallest diameter tubing that 
can be used at this location if the velocity of the refrigerant is not to exceed 7 
m/s? 

Solution: 

Mass flow rate Eq.6.3: m
.

 = V
.
/v = AV/v 

Exit state Table B.5.1:  (T = 10°C,  x =1)     =>    v = vg = 0.04945 m3/kg 

The minimum area is associated with the maximum velocity for given m
.

 

AMIN = 
m
.

vg
VMAX

  = 
0.1 kg/s × 0.04945 m3/kg

7 m/s  = 0.000706 m2 =  
π
4 D2

MIN 

DMIN = 0.03 m = 30 mm 
 
 
 

cb

 

Exit 

 



   Sonntag, Borgnakke and van Wylen 

 
6.27 
 A hot air home heating system takes 0.25 m3/s air at 100 kPa, 17oC into a furnace 

and heats it to 52oC and delivers the flow to a square duct 0.2 m by 0.2 m at 110 
kPa. What is the velocity in the duct? 

     Solution: 
 
 

The inflate flow is given by a m
.

i 

Continuity Eq.: m
.

i = V
.

i / vi = m
.

e = AeVe/ve 
 

Ideal gas: vi = 
RTi
Pi

 = 
0.287 × 290

100  = 0.8323 
m3

kg 

    ve = 
RTe
Pe

 = 
0.287 × (52 + 273)

110  

                     = 0.8479 m3/ kg     
           

 

 

   m
.

i = V
.

i/vi = 0.25/0.8323 = 0.30 kg/s 

        Ve = m
.

 ve/ Ae = 
0.3 × 0.8479

0.2 × 0.2   
m3/s
m2  = 6.36 m/s  
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6.28 
 Steam at 3 MPa, 400°C enters a turbine with a volume flow rate of 5 m3/s. An 

extraction of 15% of the inlet mass flow rate exits at 600 kPa, 200°C. The rest 
exits the turbine at 20 kPa with a quality of 90%, and a velocity of 20 m/s. 
Determine the volume flow rate of the extraction flow and the diameter of the 
final exit pipe. 

            Solution: 

Inlet flow :      m
.

i = V
.
/v = 5/0.09936 = 50.32 kg/ s        (Table B.1.3) 

Extraction flow :      m
.

e  = 0.15 m
.

i = 7.55 kg/ s;     v = 0.35202 m3/kg 

                  V
.

ex = m
.

ev = 7.55 × 0.35202 = 2.658 m3/ s 

Exit flow :   m
.

 = 0.85 m
.

i = 42.77 kg /s 

Table B.1.2 v = 0.001017 + 0.9 × 7.64835 = 6.8845 m3/kg 

 m
.

 = AV/v ⇒     A = (π/4) D2 = m
.

 v/V = 42.77 × 6.8845/20 = 14.723 m2 
            ⇒ D = 4.33 m  

 
 

WT

1 2

3
Exit flow

Extraction flowInlet
flow

HP
LP sectionsection  
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6.29 
 A household fan of diameter 0.75 m takes air in at 98 kPa, 22oC and delivers it at 

105 kPa, 23oC with a velocity of 1.5 m/s. What are the mass flow rate (kg/s), the 
inlet velocity and the outgoing volume flow rate in m3/s? 

 Solution: 
 
 

Continuity Eq.        m
.

i = m
.

e = AV/ v 
Ideal gas         v = RT/P 
 

Area :  A = 
π
4 D 2 = 

π
4× 0.752  = 0.442 m2 

V
.

e = AVe = 0.442 ×1.5 = 0.6627 m3/s 

ve = 
RTe
Pe

 = 
0.287 × (23 + 273)

105  = 0.8091 m3/kg 

m
.

i = V
.

e/ve = 0.6627/0.8091 = 0.819 kg/s 

AVi /vi =  m
.

i = AVe / ve 

 
 

        Vi = Ve × (vi / ve)  = Ve × 
RTi
Pive

 = 1.5 × 
0.287 × (22 + 273)

98 × 0.8091  = 1.6 m/s 
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Single flow single device processes 
 
Nozzles, diffusers 
 
6.30 
 Nitrogen gas flows into a convergent nozzle at 200 kPa, 400 K and very low 

velocity. It flows out of the nozzle at 100 kPa, 330 K. If the nozzle is insulated 
find the exit velocity. 

Solution: 
C.V. Nozzle steady state one inlet and exit flow, insulated so it is adiabatic. 

 
  

Inlet

Low V

Exit

Hi V

Hi P, A Low P, Acb  
 

Energy Eq.6.13:          h1 + ∅  = h2  + 12 V2
2 

 V2
2 = 2 ( h1 - h2 ) ≅ 2 CPN2  (T1 – T2 ) = 2 × 1.042 (400 – 330) 

  = 145.88 kJ/kg = 145 880 J/kg   
  ⇒    V2 = 381.9 m/s 
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6.31 
 A nozzle receives 0.1 kg/s steam at 1 MPa, 400oC with negligible kinetic energy. 

The exit is at 500 kPa, 350oC and the flow is adiabatic. Find the nozzle exit 
velocity and the exit area. 

Solution: 

Energy Eq.6.13: h1+  12 V2
1 + gZ1 = h2 + 12 V2

2 + gZ2 

Process: Z1 = Z2   

State 1: V1 = 0 ,   Table B.1.3      h1 = 3263.88 kJ/kg 

State 2: Table B.1.3     h2 = 3167.65 kJ/kg 

Then from the energy equation 

  1
2 V2

2 = h1 – h2 = 3263.88 – 3167.65 = 96.23 kJ/kg    

  V2 = 2(h1 - h2) = 2 × 96.23 × 1000 = 438.7 m/s 

The mass flow rate from Eq.6.3 

 m.  = ρAV  = AV/v 

 A = m. v/V = 0.1 × 0.57012 / 438.7 = 0.00013 m2 = 1.3 cm2 

 
  

Inlet

Low V

Exit

Hi V

Hi P, A Low P, Acb  
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6.32 
 Superheated vapor ammonia enters an insulated nozzle at 20°C, 800 kPa, shown 

in Fig. P6.32, with a low velocity and at the steady rate of 0.01 kg/s. The 
ammonia exits at 300 kPa with a velocity of 450 m/s. Determine the temperature 
(or quality, if saturated) and the exit area of the nozzle. 

Solution: 
C.V. Nozzle, steady state, 1 inlet and 1 exit flow, insulated so no heat transfer. 

Energy Eq.6.13: q + hi + V
2
i /2 = he + V

2
e/2,  

Process:  q = 0,    Vi = 0  

Table B.2.2: hi = 1464.9 = he + 4502/(2×1000)    ⇒      he = 1363.6 kJ/kg 

Table B.2.1: Pe = 300 kPa    Sat. state at −9.2°C :     

        he = 1363.6 = 138.0 + xe × 1293.8,  

 =>     xe = 0.947,          ve = 0.001536 + xe × 0.4064 = 0.3864 m3/kg 

  Ae = m. eve/Ve = 0.01 × 0.3864 / 450 = 8.56 × 10-6 m2 

 
  

Inlet

Low V

Exit

Hi V

Hi P, A Low P, Acb  
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6.33 
 In a jet engine a flow of air at 1000 K, 200 kPa and 30 m/s enters a nozzle, as 

shown in Fig. P6.33, where the air exits at 850 K, 90 kPa. What is the exit 
velocity assuming no heat loss?     

 Solution:    
C.V. nozzle. No work, no heat transfer 

Continuity   m. i = m. e = m.  

Energy : m.  (hi + ½Vi
2) = m. (he+ ½Ve

2) 
Due to high T take h from table A.7.1 

 
 ½Ve

2   = ½ Vi
2 + hi  - he 

 = 
1

2000 (30)2 + 1046.22 – 877.4 

 = 0.45 + 168.82 = 169.27 kJ/kg 
 
Ve = (2000 × 169.27)1/2  = 581.8 m/s  
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6.34 
 In a jet engine a flow of air at 1000 K, 200 kPa and 40 m/s enters a nozzle where 

the air exits at 500 m/s, 90 kPa. What is the exit temperature assuming no heat 
loss? 

  
 Solution: 

C.V. nozzle, no work, no heat transfer 

Continuity   m. i= m. e = m.  

Energy : m.  (hi + ½Vi
2) = m. (he+ ½Ve

2) 
 
Due to the high T we take the h value from Table A.7.1 
  he = hi + ½ Vi

2 - ½Ve
2 

       = 1046.22 + 0.5 × (402 – 5002) (1/1000) 
       =  1046.22 – 124.2 = 922.02 kJ/kg 
 
Interpolation in Table A.7.1 
 

Te = 850 + 50 
922.02 - 877.4
933.15 - 877.4 = 890 K 

 
 

 
 
                     40 m/s 
                   200 kPa 

 

 
 
500 m/s 
90 kPa 
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6.35 
 A sluice gate dams water up 5 m. There is a small hole at the bottom of the gate 

so liquid water at 20oC comes out of a 1 cm diameter hole. Neglect any changes 
in internal energy and find the exit velocity and mass flow rate. 

Solution: 

Energy Eq.6.13: h1+  12 V2
1 + gZ1 = h2 + 12 V2

2 + gZ2 
Process:  h1 = h2  both at P = 1 atm 

V1 = 0  Z1 = Z2 + 5 m    
     

 

     

 

Water 5 m 

 

      

       1
2 V2

2 = g (Z1 − Z2)    

    V2 = 2g(Z1 - Z2) = 2 × 9.806 × 5 = 9.902 m/s 

m.  = ρΑV = AV/v = 
π
4 D2 × (V2/v) 

         = 
π
4 × (0.01)2 × (9.902 / 0.001002) = 0.776 kg/s 
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6.36 
 A diffuser, shown in Fig. P6.36, has air entering at 100 kPa, 300 K, with a 

velocity of 200 m/s. The inlet cross-sectional area of the diffuser is 100 mm2. At 
the exit, the area is 860 mm2, and the exit velocity is 20 m/s. Determine the exit 
pressure and temperature of the air. 

Solution: 

Continuity Eq.6.3:  m
.

i = AiVi/vi = m
.

e = AeVe/ve,  

Energy Eq.(per unit mass flow)6.13: hi + 12Vi
2 = he + 12Ve

2 

 he - hi = 12 ×2002/1000 − 12 ×202/1000 = 19.8 kJ/kg 

 Te = Ti + (he - hi)/Cp = 300 + 19.8/1.004 = 319.72 K 

Now use the continuity equation and the ideal gas law 

 ve = vi 





AeVe

AiVi
 = (RTi/Pi) 






AeVe

AiVi
 = RTe/Pe 

 Pe = Pi  





Te

Ti
 






AiVi

AeVe
 = 100 



319.72

300  






100 × 200

860 × 20  = 123.92 kPa 

 
  

Inlet

Low V

Exit

Hi V

Hi P, ALow P, A
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6.37 
 A diffuser receives an ideal gas flow at 100 kPa, 300 K with a velocity of 250 m/s 

and the exit velocity is 25 m/s. Determine the exit temperature if the gas is argon, 
helium or nitrogen. 

Solution: 

C.V. Diffuser:   m
.

i = m
.

e   &  assume no heat transfer   ⇒ 

Energy Eq.6.13:   hi + 12 V2
i  = 12 V2

e
  + he   ⇒ he = hi + 12 V2

i
 - 12V2

e 

   he – hi  ≈ Cp ( Te – Ti ) = 12 ( V2
i  - V2

e
 ) =  12 ( 2502 – 252 ) 

     = 30937.5 J/kg = 30.938 kJ/kg 
Specific heats for ideal gases are from table A.5 

 Argon        Cp = 0.52 kJ/kg K;     ∆T = 
30.938
0.52  = 59.5     Te = 359.5 K 

 Helium       Cp = 5.913 kJ/kg K;   ∆T = 
30.938
5.193  = 5.96     Te = 306 K 

 Nitrogen     Cp = 1.042 kJ/kg K;   ∆T = 
30.938
1.042  = 29.7     Te = 330 K 

 
  Inlet

Low V

Exit

Hi V

Hi P, ALow P, A  
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6.38 
 Air flows into a diffuser at 300 m/s, 300 K and 100 kPa. At the exit the velocity is 

very small but the pressure is high. Find the exit temperature assuming zero heat 
transfer. 

Solution: 

Energy Eq.: h1 +  12 V2
1 + gZ1 = h2 + 12 V2

2 + gZ2 
Process:  Z1 = Z2  and  V2 = 0     

h2 = h1 +  12 V2
1  

T2 = T1  +  12 × (V2
1 / Cp)  

     = 300 + 12 × 3002 / (1.004 × 1000) = 344.8K 

 
  

Inlet

Low V

Exit

Hi V

Hi P, ALow P, A
 



   Sonntag, Borgnakke and van Wylen 

 
6.39 
 The front of a jet engine acts as a diffuser receiving air at 900 km/h, -5°C, 50 kPa, 

bringing it to 80 m/s relative to the engine before entering the compressor. If the 
flow area is reduced to 80% of the inlet area find the temperature and pressure in 
the compressor inlet. 

Solution: 
C.V. Diffuser, Steady state, 1 inlet, 1 exit flow, no q, no w. 

Continuity Eq.6.3:     m
.

i = m
.

e  = (AV/v) 

Energy Eq.6.12: m
.

 ( hi +  12 V2
i
 ) = m

.
 ( 12 V2

e + he )  

 he – hi = Cp ( Te – Ti ) = 12 V2
i
 - 12 V2

e = 12 (900 × 1000
3600 )2

 −  12 (80)2  

   = 28050 J/kg = 28.05 kJ/kg 
 ∆T = 28.05/1.004 = 27.9   ⇒    Te = −5 + 27.9 = 22.9°C 

Now use the continuity eq.: 

 AiVi /vi = AeVe /ve ⇒ ve = vi 





AeVe

AiVi
 

 ve = vi × 
0.8 × 80
1 × 250  = vi × 0.256 

Ideal gas:      Pv = RT     =>    ve = RTe/Pe = RT i × 0.256/Pi 

 Pe = Pi (Te/T i)/0.256 = 50 × 296/268 × 0.256 = 215.7 kPa 

 
 

Fan
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Throttle flow 
 
6.40 
 Helium is throttled from 1.2 MPa, 20°C, to a pressure of 100 kPa. The diameter of 

the exit pipe is so much larger than the inlet pipe that the inlet and exit velocities 
are equal. Find the exit temperature of the helium and the ratio of the pipe 
diameters. 

  Solution: 
C.V. Throttle. Steady state, 
Process with: q = w = 0;   and    Vi = Ve,   Zi = Ze 

Energy Eq.6.13:     hi = he,        Ideal gas   =>     Ti = Te = 20°C 

 m
.

 = 
AV

RT/P      But  m
.

, V, T are constant     =>     PiAi = PeAe 

   ⇒      
De
Di

 = 






Pi

Pe

1/2
 = 



1.2

0.1
1/2

 = 3.464 
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6.41 
 Saturated vapor R-134a at 500 kPa is throttled to 200 kPa in a steady flow 

through a valve. The kinetic energy in the inlet and exit flow is the same. What is 
the exit temperature? 

 
  Solution: 

Steady throttle flow 

Continuity  m
.

i = m
.

e = m
.

 

Energy Eq.6.13: h1 +  12 V2
1 + gZ1 = h2 + 12 V2

2 + gZ2 
Process:  Z1 = Z2  and  V2 = V1     

⇒    h2 = h1 = 407.45 kJ/kg   from Table B.5.2 
State 2:  P2 & h2      ⇒   superheated vapor 
Interpolate between 0oC and 10oC in table B.5.2 in the 200 kPa subtable 
 

T2 = 0 + 10 
407.45 – 400.91
409.5 – 400.91  = 7.6oC 

 
 

���i e

cb  
e

T

v

i

500 kPa

200

 

h = C
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6.42 
 Saturated liquid R-12 at 25oC is throttled to 150.9 kPa in your refrigerator. What 

is the exit temperature? Find the percent increase in the volume flow rate.  
  Solution: 

Steady throttle flow. Assume no heat transfer and no change in kinetic or 
potential energy. 
 

he = hi = hf 25oC = 59.70 kJ/kg = hf e + xe hfg e     at 150.70 kPa 
 
From table B.3.1 we get  Te = Tsat ( 150.9 kPa ) = -20oC 

xe = 
he – hf e

hfg e
  = 

59.7 – 17.82
160.92   = 0.26025 

ve = vf + xe vfg = 0.000685 + xe 0.10816 = 0.0288336 m3/kg 
 

vi = vf 25oC = 0.000763 m3/kg 

V
.
 = m

.
v so the ratio becomes 

V
.

e

V
.

i

  =  
m
.

ve

m
.

vi

 = 
ve
vi

  =  
0.0288336
0.000763  = 37.79 

So the increase is 36.79 times or 3679 % 
 
 ���i e

cb  
e

T

v

i

 
h = C
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6.43 
 Water flowing in a line at 400 kPa, saturated vapor, is taken out through a valve 

to 100 kPa. What is the temperature as it leaves the valve assuming no changes in 
kinetic energy and no heat transfer? 

 Solution: 
 C.V. Valve.  Steady state, single inlet and exit flow 

 Continuity Eq.:    m
.

1 = m
.

2  

 Energy Eq.6.12:      m
.

1h1 + Q
.
 = m

.
2h2 + W

.
 

 
  

���
���

1 2

 

      Process:  Throttling 

      Small surface area:  Q
.
 = 0;    

      No shaft:      W
.

 = 0   
  
  Table B.1.2:   h2 = h1 = 2738.6 kJ/kg   ⇒   T2 = 131.1°C 
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6.44 
 Liquid water at 180oC, 2000 kPa is throttled into a flash evaporator chamber 

having a pressure of 500 kPa. Neglect any change in the kinetic energy. What is 
the fraction of liquid and vapor in the chamber? 

  Solution: 

Energy Eq.6.13: h1 +  12 V2
1 + gZ1 = h2 + 12 V2

2 + gZ2 
Process:  Z1 = Z2  and  V2 = V1     

⇒    h2 = h1 = 763.71 kJ/kg   from Table B.1.4 
State 2:  P2 & h2      ⇒   2 – phase 

h2 = hf + x2 hfg 

x2 = (h2 - hf ) / hfg= 
763.71 – 640.21

2108.47   = 0.0586 

 
Fraction of  Vapor:  x2 = 0.0586   (5.86 %) 
   Liquid: 1 - x2 = 0.941  (94.1 %) 

 
 

 

      Two-phase out of the 
      valve. The liquid drops 
      to the bottom. 
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6.45 
 Water at 1.5 MPa, 150°C, is throttled adiabatically through a valve to 200 kPa. 

The inlet velocity is 5 m/s, and the inlet and exit pipe diameters are the same. 
Determine the state (neglecting kinetic energy in the energy equation) and the 
velocity of the water at the exit. 

 Solution: 
 

CV: valve.        m
.

 = const,     A = const   
                   ⇒  Ve = Vi(ve/vi) 

Energy Eq.6.13: 

 

  hi + 12 V2
i  = 12 V2

e
  + he     or      (he - hi) +   12 V2

i   














ve

vi

2
- 1  = 0 

Now neglect the kinetic energy terms (relatively small) from table B.1.1 we 
have the compressed liquid approximated with saturated liquid same T 

  he = hi = 632.18 kJ/kg  ;     vi = 0.001090  m3/kg 

Table B.1.2:    he = 504.68 + xe × 2201.96,   

Substituting and solving, xe = 0.0579 

  ve = 0.001061 + xe × 0.88467 = 0.052286 m3/kg 

 Ve = Vi(ve/vi) = 5 m/s (0.052286 / 0.00109) = 240 m/s 
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6.46 
 R-134a is throttled in a line flowing at 25oC, 750 kPa with negligible kinetic 

energy to a pressure of 165 kPa. Find the exit temperature and the ratio of exit 
pipe diameter to that of the inlet pipe (Dex/Din) so the velocity stays constant. 

 
Solution: 

Energy Eq.6.13: h1 +  12 V2
1 + gZ1 = h2 + 12 V2

2 + gZ2 
Process:  Z1 = Z2  and  V2 = V1   
State 1, Table B.5.1:   h1 = 234.59 kJ/kg,  v1 = vf  = 0.000829 m3/kg 
Use energy eq.: ⇒    h2 = h1 = 234.59 kJ/kg 
State 2: P2 & h2      ⇒      2 – phase    and    T2  = Tsat (165 kPa) = -15°C 

h2 = hf + x2 hfg = 234.59 kJ/kg 

x2 = (h2 - hf ) / hfg= (234.59 – 180.19) / 209 = 0.2603 

v2 = vf  + x2 × vfg = 0.000746 + 0.2603 × 0.11932 = 0.0318 m3/kg 
Now the continuity equation with V2 = V1  gives, from Eq.6.3, 

m
.

 = ρΑV = AV/v = A1V1/v1 = (A2 V1) / v2 
 

  (A2 / A1) = v2 / v1   = (D2 / D1)
2
 

  (D2/D1) = (v2 / v1)
0.5

= (0.0318 / 0.000829)
0.5

 = 6.19 
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6.47 
 Methane at 3 MPa, 300 K is throttled through a valve to 100 kPa. Calculate the 

exit temperature assuming no changes in the kinetic energy and ideal gas 
behavior. Repeat the answer for real-gas behavior.   

     
C.V. Throttle (valve, restriction), Steady flow, 1 inlet and exit,  no q, w  
Energy Eq.:    hi = he        =>     Ideal gas     Ti = Te = 300 K 

Real gas :     


hi = he = 598.71

Pe = 0.1 MPa  
 Table B.7
 Te = 13.85°C ( = 287 K)  
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Turbines, Expanders 
 
6.48 
 A steam turbine has an inlet of 2 kg/s water at 1000 kPa, 350oC and velocity of 

15 m/s. The exit is at 100 kPa, x = 1 and very low velocity. Find the specific work 
and the power produced. 

 
Solution: 

Energy Eq.6.13: h1 +  12 V2
1 + gZ1 = h2 + 12 V2

2 + gZ2 + wT 
Process:  Z1 = Z2  and  V2 = 0     

       Table B.1.3:     h1 = 3157.65 kJ/kg, h2 = 2675.46 kJ/kg 

wT = h1 +  12 V2
1 – h2 = 3157.65 + 15

2
 / 2000  – 2675.46 = 482.3 kJ/kg 

  
 

W
.

T = m
.

 × wT = 2 × 482.3 = 964.6 kW 

 WT

1

2
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6.49 
 A small, high-speed turbine operating on compressed air produces a power output 

of 100 W. The inlet state is 400 kPa, 50°C, and the exit state is 150 kPa, −30°C. 
Assuming the velocities to be low and the process to be adiabatic, find the 
required mass flow rate of air through the turbine. 

Solution: 
C.V. Turbine, no heat transfer, no ∆KE, no ∆PE 
Energy Eq.6.13:      hin = hex + wT   

Ideal gas so use constant specific heat from Table A.5 
  wT = hin - hex ≅ Cp(Tin - Tex) 

         = 1.004 (kJ/kg K) [50 - (-30)] K = 80.3 kJ/kg 

 W
.

 = m
.

wT      ⇒       m
.

 = W
.

/wT = 0.1/80.3 = 0.00125 kg/s 
 

  
The dentist’s drill has a 
small air flow and is not 
really adiabatic. 
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6.50 
 A liquid water turbine receives 2 kg/s water at 2000 kPa, 20oC and velocity of 15 

m/s. The exit is at 100 kPa, 20oC and very low velocity. Find the specific work 
and the power produced. 

 
Solution: 

Energy Eq.6.13: h1 +  12 V2
1 + gZ1 = h2 + 12 V2

2 + gZ2 + wT 

Process:  Z1 = Z2  and  V2 = 0     

State 1:  Table B.1.4 h1 = 85.82 kJ/kg 

State 2:  Table B.1.1     h2 = 83.94    (which is at 2.3 kPa so we  

   should add ∆Pv = 97.7 × 0.001 to this) 

wT = h1 + 12 V2
1 − h2 = 85.82 + 15

2
/2000 – 83.94 = 1.99 kJ/kg 

  W
.

T = m
.

 × wT = 2 × 1.9925 = 3.985 kW 
 
   Notice how insignificant the specific kinetic energy is. 
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6.51 
 Hoover Dam across the Colorado River dams up Lake Mead 200 m higher than 

the river downstream. The electric generators driven by water-powered turbines 
deliver 1300 MW of power. If the water is 17.5°C, find the minimum amount of 
water running through the turbines. 

Solution: 
C.V.: H2O pipe + turbines,  

  
 

T

H
DAMLake

Mead

 

 

 Continuity:     m
.

in = m
.

ex; 

 Energy Eq.6.13:      (h+ V2/2 + gz)in = (h+ V2/2 + gz)ex + wT 

Water states:    hin ≅ hex ;    vin ≅ vex    

Now the specific turbine work becomes 
    wT = gzin - gzex = 9.807 × 200/1000 = 1.961 kJ/kg 

   m
.

 = W
.

T/wT = 
1300×103 kW
1.961 kJ/kg  = 6.63 ×105 kg/s 

   V
.
 = m

.
v = 6.63 ×105 × 0.001001 = 664 m3/s 
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6.52 
 A windmill with rotor diameter of 30 m takes 40% of the kinetic energy out as 

shaft work on a day with 20oC and wind speed of 30 km/h. What power is 
produced? 

 
  Solution: 

Continuity Eq.  m
.

i = m
.

e = m
.

 
 

Energy  m
.

 (hi + ½Vi
2 + gZi) = m

.
(he+ ½Ve

2 + gZe) + W
.

 

Process information: W
.

  =  m
.

½Vi
2 × 0.4 

 
 

 m
.

 = ρAV =AVi /vi 

A = 
π
4 D 2 = 

π
4 302 = 706.85 m2 

vi = RTi/Pi =  
0.287 × 293

101.3  = 0.8301 m3/kg 

Vi = 30 km/h = 
30 × 1000

3600  = 8.3333 m/s 

 
 

  m
.

 = AVi /vi = 
706.85 × 8.3333

0.8301  = 7096 kg/s 

½ Vi
2 = ½  8.33332 m2/s2 = 34.722 J/kg 

 

W
.

 = 0.4 m
.

½ Vi
2 = 0.4 ×7096 × 34.722 = 98 555 W 

  = 98.56 kW 
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6.53 
 A small turbine, shown in Fig. P 6.53, is operated at part load by throttling a 0.25 

kg/s steam supply at 1.4 MPa, 250°C down to 1.1 MPa before it enters the turbine 
and the exhaust is at 10 kPa. If the turbine produces 110 kW, find the exhaust 
temperature (and quality if saturated). 

Solution: 
C.V. Throttle, Steady,  q = 0 and w = 0. No change in kinetic or potential 

energy. The energy equation then reduces to 
Energy Eq.6.13:  h1 = h2 = 2927.2  kJ/kg   from Table B.1.3 

C.V. Turbine, Steady, no heat transfer, specific work: w = 
110
0.25 = 440 kJ/kg 

 
 Energy Eq.: h1 = h2 = h3 + w = 2927.2 kJ/kg 

  ⇒     h3 = 2927.2 - 440 = 2487.2 kJ/kg 
 
State 3:  (P, h)     Table B.1.2        h < hg 
              2487.2 = 191.83 + x3 × 2392.8  

T

v

1

2

3
 

     ⇒      T = 45.8°C ,     x3 = 0.959 
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6.54 
 A small expander (a turbine with heat transfer) has 0.05 kg/s helium entering at 

1000 kPa, 550 K and it leaves at 250 kPa, 300 K. The power output on the shaft is 
measured to 55 kW. Find the rate of heat transfer neglecting kinetic energies. 

 Solution: 
 
 C.V. Expander. Steady operation 

 

Cont.   m
.

i= m
.

e = m
.

 

Energy  m
.

hi + Q
.
 = m

.
he + W

.
 

WT

i

e

Q
.

cb

 

Q
.
 = m

.
 (he-hi) + W

.
 

Use heat capacity from tbl A.5: Cp He = 5.193 kJ/kg K 

Q
.
 = m

.
Cp (Te-Ti) + W

.
 

      = 0.05× 5.193 (300 - 550) + 55 
      = - 64.91 + 55 = -9.9 kW 

 



   Sonntag, Borgnakke and van Wylen 

 
Compressors, fans 
 
6.55 
 A compressor in a commercial refrigerator receives R-22 at -25oC, x = 1. The exit 

is at 800 kPa, 40oC.  Neglect kinetic energies and find the specific work. 
 
 Solution: 
  

C.V. Compressor, steady state, single inlet and 
exit flow.  For this device we also assume no 
heat transfer and  Z1 = Z2 

        WC

i
e

cb

-
 

From Table B.4.1 : h1 = 239.92 kJ/kg 

From Table B.4.2 : h2 = 274.24 kJ/kg 

Energy Eq.6.13 reduces to 
  wc = h1 - h2 = (239.92 – 274.24) = -34.3 kJ/kg 
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6.56 
 The compressor of a large gas turbine receives air from the ambient at 95 kPa, 

20°C, with a low velocity. At the compressor discharge, air exits at 1.52 MPa,  
430°C, with velocity of 90 m/s. The power input to the compressor is 5000 kW. 
Determine the mass flow rate of air through the unit. 

Solution: 
C.V. Compressor, steady state, single inlet and exit flow.  

 Energy Eq.6.13: q + hi + Vi
2/2 = he + Ve

2/2 + w 

Here we assume  q ≅ 0  and  Vi ≅ 0   so using constant CPo from A.5 

 -w = CPo(Te - Ti) + Ve
2/2 = 1.004(430 - 20) +  

(90)2

2 × 1000 = 415.5 kJ/kg 

Notice the kinetic energy is 1% of the work and can be neglected in most 
cases. The mass flow rate is then from the power and the specific work 

    m
.

 =  
W
.

c
-w   =  

5000
415.5 = 12.0 kg/s 
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6.57 
 A compressor brings R-134a from 150 kPa, -10oC to 1200 kPa, 50oC. It is water 

cooled with a heat loss estimated as 40 kW and the shaft work input is measured 
to be 150 kW. How much is the mass flow rate through the compressor? 

  
 Solution: 
 C.V Compressor. Steady flow. 

Neglect kinetic and potential energies. 

Energy :   m
.

 hi + Q
.
 = m

.
he + W

.
 

 

                m
.

 = (Q
.
 - W

.
)/(he - hi) 

 

1
2

Qcool

Compressor

-Wc

 

Look in table B.5.2 
 

hi = 393.84 kJ/kg,       he = 426.84 kJ/kg 

m
.

 = 
-40 – (-150)

426.84 – 393.84 = 3.333 kg/s 
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6.58 
 An ordinary portable fan blows 0.2 kg/s room air with a velocity of 18 m/s. What 

is the minimum power electric motor that can drive it?   Hint: Are there any 
changes in P or T?  

Solution: 
C.V. Fan plus space out to near stagnant inlet room air. 

 Energy Eq.6.13: q + hi + Vi
2/2 = he + Ve

2/2 + w 

 Here  q ≅ 0,  Vi ≅ 0   and  hi = he    same P and T 

 −w = Ve
2/2 = 182/2000 = 0.162 kJ/kg 

  −W
.

 = −m
.

w = 0.2 kg/s × 0.162 kJ/kg = 0.032 kW 
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6.59 
 An air compressor takes in air at 100 kPa, 17°C and delivers it at 1 MPa, 600 K to 

a constant-pressure cooler, which it exits at 300 K. Find the specific compressor 
work and the specific heat transfer in the cooler. 

 
 Solution 

C.V. air compressor  q = 0 

Continuity Eq.:      m
.

2 = m
.

1 
Energy Eq.6.13: h1 + wc = h2 

    
 

1
32

Q cool

Compressor

-Wc  
 
           Compressor section           Cooler section 

 

 
Table A.7: 
   wc  in = h2 - h1 = 607.02 - 290.17 = 316.85 kJ/kg 

C.V. cooler  w = 0/           

Continuity Eq.:     m
.

3 = m
.

1           

Energy Eq.6.13:     h2 = qout + h3 

 qout = h2 - h3 = 607.02 - 300.19 = 306.83 kJ/kg 
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6.60 
 A 4 kg/s steady flow of ammonia runs through a device where it goes through a 

polytropic process. The inlet state is 150 kPa, -20oC and the exit state is 400 kPa, 
80oC, where all kinetic and potential energies can be neglected. The specific 
work input has been found to be given as [n/(n-1)] ∆(Pv).  

  a) Find the polytropic exponent n 
  b) Find the specific work and the specific heat transfer. 
 Solution: 
 
 C.V. Steady state device. Single inlet and single exit flows. 

Energy Eq.6.13: h1 +  12 V2
1 + gZ1 + q = h2 + 12 V2

2 + gZ2 + w 

Process:  Pvn = constant    and  Z1 = Z2 ,  V1 = V2 = 0     

State 1:  Table B.2.2 v1 = 0.79774, h1 = 1422.9 

State 2:  Table B.2.2     v2 = 0.4216, h2 = 1636.7   

From the polytropic process equation and the two states we can find the 
exponent n: 

   n = ln 
P2
P1

 / ln 
v1
v2

 = ln 
400
150 / ln 

0.79774
0.4216  = 1.538 

Before we can do the heat transfer we need the work term 

  w = −
n

n − 1 (P2v2 – P1v1) = -2.8587(400×0.4216 – 150×0.79774) 

       = −140.0 kJ/kg   
  q = h2 + w − h1 = 1636.7 – 140.0 – 1422.9 = 73.8 kJ/kg 
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6.61 
 An exhaust fan in a building should be able to move 2.5 kg/s air at 98 kPa, 20oC 

through a 0.4 m diameter vent hole. How high a velocity must it generate and how 
much power is required to do that? 

 Solution: 
C.V. Fan and vent hole. Steady state with uniform velocity out. 

Continuity Eq.: m
.

 = constant = ρΑV = AV / v =AVP/RT 

Ideal gas :     Pv = RT,    and area is  A = 
π
4 D2 

Now the velocity is found 

 V = m
.

 RT/(
π
4 D2P) = 2.5 × 0.287 × 293.15 / ( 

π
4 × 0.42 × 98) = 17.1 m/s 

The kinetic energy out is  

 1
2 V2

2 =  12 × 17.12 / 1000 = 0.146 kJ/kg 

which is provided by the work (only two terms in energy equation that does 
not cancel, we assume V1 = 0) 

  W
.

in = m
.

  12 V2
2
 = 2.5 × 0.146 = 0.366 kW 
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6.62 
  How much power is needed to run the fan in Problem 6.29? 

A household fan of diameter 0.75 m takes air in at 98 kPa, 22oC and delivers it at 
105 kPa, 23oC with a velocity of 1.5 m/s. What are the mass flow rate (kg/s), the 
inlet velocity and the outgoing volume flow rate in m3/s? 

 Solution:    
 

Continuity Eq.        m
.

i = m
.

e = AV/ v 
Ideal gas         v = RT/P 
 

Area :  A = 
π
4 D2 = 

π
4× 0.752  = 0.442 m2 

V
.

e = AVe = 0.442 ×1.5 = 0.6627 m3/s 

ve = 
RTe
Pe

 = 
0.287 ×  296

105  = 0.8091m3/kg 

m
.

i = V
.

e/ve = 0.6627/0.8091 = 0.819 kg/s 

AVi /vi =  m
.

i = AVe / ve 

 

 

  Vi = Ve × (vi / ve)  = Ve × (RTi)/(Pive) = 1.5 × 
0.287 × (22 + 273)

98 × 0.8091  = 1.6 m/s 

m
.

 (hi + ½Vi
2) = m

.
(he+ ½Ve

2) +W
.

 

W
.

 =  m
.

(hi + ½Vi
2 – he – ½Ve

2 ) =  m
.

 [Cp (Ti-Te) + ½ Vi
2 – ½Ve

2 ] 

    = 0.819 [ 1.004 (-1) + 
1.62 - 1.52

2000 ]   = 0.819 [ -1.004 + 0.000155] 

    = - 0.81 kW 
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Heaters/Coolers 
 
6.63 
 Carbon dioxide enters a steady-state, steady-flow heater at 300 kPa, 15oC, and 

exits at 275 kPa, 1200oC, as shown in Fig. P6.63. Changes in kinetic and 
potential energies are negligible. Calculate the required heat transfer per kilogram 
of carbon dioxide flowing through the heater. 

Solution: 
C.V. Heater Steady state single inlet and exit flow.    
Energy Eq.6.13:      q + hi = he 

 
 

Q

i
e

 

 

 
Table A.8:  q = he - hi = 1579.2 – 204.6 = 1374.6 kJ/kg 

(If we use Cp0 from A.5 then    q ≅ 0.842(1200 - 15) = 997.8 kJ/kg) 

 Too large ∆T, Tave to use Cp0 at room temperature. 
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6.64 
 A condenser (cooler) receives 0.05 kg/s R-22 at 800 kPa, 40oC and cools it to 15o

C. There is a small pressure drop so the exit state is saturated liquid. What cooling 
capacity (kW) must the condenser have? 

 Solution: 
C.V. R-22 condenser. Steady state single flow, heat transfer out and no work. 

Energy Eq.6.12:  m
.

 h1 = m
.

 h2 + Q
.
out  

Inlet state:   Table B.4.2      h1 = 274.24 kJ/kg,    

Exit state:   Table B.4.1       h2 = 62.52 kJ/kg 

Process: Neglect kinetic and potential energy changes. 
Cooling capacity is taken as the heat transfer out i.e. positive out so 

  Q
.
out = m

.
 ( h1- h2) = 0.05 kg/s (274.24 – 62.52) kJ/kg 

           = 10.586 kW = 10.6 kW 
 
 

1 2
Q cool
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6.65 
 A chiller cools liquid water for air-conditioning purposes. Assume 2.5 kg/s water 

at 20oC, 100 kPa is cooled to 5oC in a chiller. How much heat transfer (kW) is 
needed? 

 Solution: 
C.V. Chiller. Steady state single flow with heat transfer. Neglect changes in 
kinetic and potential energy and no work term. 
Energy Eq.6.13:        qout = hi – he 

Properties from Table B.1.1: 
  hi = 83.94 kJ/kg     and  he = 20.98 kJ/kg 

Now the energy equation gives 
  qout = 83.94 – 20.98 = 62.96 kJ/kg  

        Q
.
out = m

.
 qout = 2.5 × 62.96 = 157.4 kW 

Alternative property treatment since single phase and small  ∆T 
If we take constant heat capacity for the liquid from Table A.4 
  qout = hi – he  ≅ Cp (Ti - Te ) 

        = 4.18 (20 – 5) = 62.7 kJ/kg 

  Q
.
out = m

.
 qout = 2.5 × 62.7 = 156.75 kW 

 
 

1 2
Q cool
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6.66 
 Saturated liquid nitrogen at 500 kPa enters a boiler at a rate of 0.005 kg/s and 

exits as saturated vapor. It then flows into a super heater also at 500 kPa where it 
exits at 500 kPa, 275 K. Find the rate of heat transfer in the boiler and the super 
heater. 

Solution: 
C.V.: boiler steady single inlet and exit flow, neglect KE, PE energies in flow 

Continuity Eq.:     m
.

1 = m
.

2 = m
.

3  

 
 

1 2 3

Q
Q

boiler

Super
heatervapor

cb

 

500

P

1 2 3
v

T

1 2

3

v
 

 
Table B.6.1:   h1 = -87.095 kJ/kg,   h2 = 86.15 kJ/kg,  

Table B.6.2:   h3 = 284.06 kJ/kg 

Energy Eq.6.13: qboiler = h2 – h1 = 86.15 - (- 87.095) = 173.25 kJ/kg 

 Q
.

boiler = m
.

1qboiler = 0.005 × 173.25 = 0.866 kW 

C.V. Superheater (same approximations as for boiler) 
Energy Eq.6.13: qsup heater = h3 – h2 = 284.06 – 86.15 = 197.9 kJ/kg 

 Q
.

sup heater = m
.

2qsup heater = 0.005 × 197.9 = 0.99 kW 
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6.67 
 In a steam generator, compressed liquid water at 10 MPa, 30°C, enters a 30-mm 

diameter tube at the rate of 3 L/s. Steam at 9 MPa, 400°C exits the tube. Find the 
rate of heat transfer to the water. 

Solution: 
C.V. Steam generator. Steady state single inlet and exit flow. 

Constant diameter tube:       Ai = Ae = π4 (0.03)2 = 0.0007068 m2 

Table B.1.4       m
.

  = V
.

i/vi = 0.003/0.0010003 = 3.0 kg/s 

 Vi = V
.

i/Ai = 0.003/0.0007068 = 4.24 m/s 

Exit state properties from Table B.1.3 
      Ve = Vi × ve/vi = 4.24 × 0.02993/0.0010003 = 126.86 m/s 

The energy equation Eq.6.12 is solved for the heat transfer as 

      Q
.
 = m

.
  (he - hi) + ( )Ve

2 - Vi
2  /2  

          = 3.0 







3117.8 - 134.86 + 
126.862 - 4.242

2 × 1000  = 8973 kW 

 
 

 
 
 
 
Typically hot 
combustion 
gas in                 

                            Steam exit 

cb

 
      liquid water in 

 
gas 
out 
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6.68 
  The air conditioner in a house or a car has a cooler that brings atmospheric air 

from 30oC to 10oC both states at 101 kPa. If the flow rate is 0.5 kg/s find the rate 
of heat transfer.  

 
Solution: 
CV. Cooler. Steady state single flow with heat transfer.  
Neglect changes in kinetic and potential energy and no work term. 
 
Energy Eq.6.13:        qout = hi – he 

Use constant heat capacity from Table A.5  (T is around 300 K) 
qout = hi − he = Cp (Ti − Te) 

    = 1.004 
kJ

kg K × (30 – 10) K = 20.1 kJ/kg 

Q
.
out  = m

.
 qout = 0.5 × 20.1 = 10 kW 
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6.69 
 A flow of liquid glycerine flows around an engine, cooling it as it absorbs energy. 

The glycerine enters the engine at 60oC and receives 9 kW of heat transfer. What 
is the required mass flow rate if the glycerine should come out at maximum 95o

C? 
  
  Solution: 

C.V. Liquid flow (glycerine is the coolant), steady flow. no work. 

Energy Eq.: m
.

hi + Q
.
 = m

.
he 

m
.

 = Q
.
/( he - hi)  = 

Q
.

Cgly (Te - Ti) 
 

From table A.4      Cgly = 2.42 kJ/kg-K 

m
.

 = 
9

2.42 (95 – 60)  = 0.106 kg/s 

 
 

Exhaust flow

Air intake filter

Coolant flow

Atm.
airShaft

Fan

power

Radiator

cb
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6.70 
 A cryogenic fluid as liquid nitrogen at 90 K, 400 kPa flows into a probe used in 

cryogenic surgery. In the return line the nitrogen is then at 160 K, 400 kPa. Find 
the specific heat transfer to the nitrogen. If the return line has a cross sectional 
area 100 times larger than the inlet line what is the ratio of the return velocity to 
the inlet velocity? 

 
Solution: 
 C.V line with nitrogen. No kinetic or potential energy changes 

 Continuity Eq.: m
.

 = constant = m
.

e = m
.

i = AeVe/ve = AiVi/vi 

 Energy Eq.6.13:  q = he − hi 

 State i,  Table B.6.1:   hi = -95.58 kJ/kg,   vi = 0.001343 m3/kg 

 State e, Table B.6.2: he = 162.96 kJ/kg,  ve = 0.11647 m3/kg 

 From the energy equation  
   q = he − hi = 162.96 – (-95.58) = 258.5 kJ/kg 

 From the continuity equation 

  Ve/Vi = Ai/Ae (ve/vi) = 
1

100  
0.11647
0.001343  = 0.867 
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Pumps, pipe and channel flows 
 
6.71 
 A small stream with 20oC water runs out over a cliff creating a 100 m tall 

waterfall. Estimate the downstream temperature when you neglect the horizontal 
flow velocities upstream and downstream from the waterfall. How fast was the 
water dropping just before it splashed into the pool at the bottom of the waterfall? 

 
Solution: 

CV. Waterfall, steady state. Assume no Q
.
 nor W

.
 

Energy Eq.6.13: h + 
1
2V2 + gZ = const. 

State 1: At the top zero velocity  Z1 = 100 m 
State 2: At the bottom just before impact,   Z2 = 0 
State 3: At the bottom after impact in the pool. 

h1 + 0 + gZ1 = h2 + 
1
2 V

2
2 + 0 = h3 + 0 + 0  

Properties:  h1 ≅ h2    same T, P 

=> 
1
2 V

2
2 = gZ1 

 

  V2 = 2gZ1 = 2 × 9.806 × 100 = 44.3 m/s  

Energy equation from state 1 to state 3 
  h3 = h1 + gZ1 

use ∆h = Cp ∆T with value from Table A.4 (liquid water) 
 

T3 = T1 + gZ1 / Cp 
= 20 + 9.806 × 100 /4180 = 20.23 °C  

 



   Sonntag, Borgnakke and van Wylen 

 
6.72 
 A small water pump is used in an irrigation system. The pump takes water in from 

a river at 10oC, 100 kPa at a rate of 5 kg/s. The exit line enters a pipe that goes up 
to an elevation 20 m above the pump and river, where the water runs into an open 
channel. Assume the process is adiabatic and that the water stays at 10oC. Find 
the required pump work. 

Solution: 
C.V. pump + pipe. Steady state , 1 inlet, 1 exit flow. Assume same velocity in 

and out, no heat transfer. 

Continuity Eq.:    m
.

in = m
.

ex = m
.

 

 Energy Eq.6.12: 

    m
.

(hin + (1/2)Vin2 + gzin) =  

                       m
.

(hex + (1/2) Vex
2 + gzex) + W

.
 

States:  hin = hex  same  (T, P) 
i

e

H

cb

 
 

 W
.

 = m
.

 g(zin - zex) = 5 × 9.807 × (0 - 20)/1000 = −0.98 kW 

    I.E. 0.98 kW required input 
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6.73 

A steam pipe for a 300-m tall building receives superheated steam at 200 kPa at 
ground level. At the top floor the pressure is 125 kPa and the heat loss in the pipe 
is 110 kJ/kg. What should the inlet temperature be so that no water will condense 
inside the pipe? 

Solution: 
C.V. Pipe from 0 to 300 m, no ∆KE, steady state, single inlet and exit flow. 

Neglect any changes in kinetic energy. 
Energy Eq.6.13:        q + hi = he + gZe 

No condensation means:   Table B.1.2,    he = hg at 125 kPa = 2685.4 kJ/kg 

  hi = he + gZe - q = 2685.4 + 
9.807 × 300

1000  - (-110) = 2810.1 kJ/kg 

        At 200 kPa:  T ~ 170oC  Table B.1.3  
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6.74 
 The main waterline into a tall building has a pressure of 600 kPa at 5 m below 

ground level. A pump brings the pressure up so the water can be delivered at 200 
kPa at the top floor 150 m above ground level. Assume a flow rate of 10 kg/s 
liquid water at 10oC and neglect any difference in kinetic energy and internal 
energy u. Find the pump work. 

 
Solution: 
C.V. Pipe from inlet at -5 m up to exit at +150 m, 200 kPa. 

Energy Eq.6.13: hi + 
1
2Vi2 + gZi = he + 

1
2Ve2 + gZe + w 

With the same u the difference in h’s are the Pv terms 

          w = hi - he + 
1
2 (Vi2 - Ve2) + g (Zi- Ze) 

  = Pivi – Peve + g (Zi – Ze)  

  = 600 × 0.001 – 200 × 0.001 + 9.806 × (-5-150)/1000  
  = 0.4 – 1.52 = -1.12 kJ/kg 

  W
.

 = m
.

w = 10 × (-1.12) = -11.2 kW 
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6.75 
 Consider a water pump that receives liquid water at 15oC, 100 kPa and delivers it 

to a same diameter short pipe having a nozzle with exit diameter of 1 cm (0.01 m) 
to the atmosphere 100 kPa. Neglect the kinetic energy in the pipes and assume 
constant u for the water. Find the exit velocity and the mass flow rate if the pump 
draws a power of 1 kW. 

 
  Solution: 

  Continuity Eq.:   m
.

i = m
.

e = AV/v ; A = 
π
4 D

 2
e  = 

π
4 × 0.01 2 = 7.854× 10 −5 

  Energy Eq.6.13: hi + 
1
2V

 2
i  + gZi = he + 

1
2V

 2
e  + gZe + w 

  Properties: hi = ui + Pivi = he = ue  + Peve   ;  Pi = Pe ;   vi = ve 

w = − 
1
2 V

 2
e    ⇒ −W

.
 = m

.
 (

1
2 V

 2
e )  = A × 

1
2 V

 3
e /ve 

Ve  = ( 
−2 W

.
 ve

A  )1/3
  = ( 

2 × 1000 × 0.001001
7.854×10 −5  )1/3

 = 29.43 m/s 

 

  m
.

 = AVe/ve = 7.854× 10 −5 × 29.43 / 0.001001 = 2.31 kg/s 
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6.76 
 A cutting tool uses a nozzle that generates a high speed jet of liquid water. 

Assume an exit velocity of 1000 m/s of 20oC liquid water with a jet diameter of 2 
mm (0.002 m). How much mass flow rate is this? What size (power) pump is 
needed to generate this from a steady supply of 20oC liquid water at 200 kPa? 

 Solution: 
 C.V. Nozzle. Steady state, single flow. 
 
 Continuity equation with a uniform velocity across A  

  m
.

 = AV/v = 
π
4 D2 V / v = 

π
4 0.0022 × 1000 / 0.001002 = 3.135 kg/s 

Assume  Zi = Ze = Ø, ue = ui  and Vi = 0 Pe = 100 kPa (atmospheric) 

Energy Eq.6.13:       hi + Ø + Ø = he +  12V
2
e + Ø + w 

  w = hi − he − 12V
2
e = ui − ue + Pi vi − Pe ve − 12V

2
e 

      = (Pi  - Pe) vi − 12V
2
e  

      = 0.001002 × (200 – 100) – 0.5 × (10002 / 1000) 
      = 0.1002 – 500 ≅ −500 kJ/kg 

 W
.

 = m
.

w = 3.135 (-500) = −1567.5 kW 
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6.77 
 A pipe flows water at 15oC from one building to another. In the winter time the 

pipe loses an estimated 500 W of heat transfer. What is the minimum required 
mass flow rate that will ensure that the water does not freeze (i.e. reach 0oC)? 

    
  Solution: 

Energy Eq.: m
.

hi + Q
.
 = m

.
he 

Assume saturated liquid at given T from table B.1.1 

m
.

 = 
Q
.

he - hi
 = 

-500 × 10-3

0 - 62.98  = 
0.5

62.98 =  0.007 94 kg/s 

 
 
 

�����
1 2

����������

-Q
.
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Multiple flow single device processes 
 
Turbines, Compressors, Expanders 
 
6.78 
 A steam turbine receives water at 15 MPa, 600°C at a rate of 100 kg/s, shown in 

Fig. P6.78. In the middle section 20 kg/s is withdrawn at 2 MPa, 350°C, and the 
rest exits the turbine at 75 kPa, and 95% quality. Assuming no heat transfer and 
no changes in kinetic energy, find the total turbine power output. 

 Solution: 
C.V. Turbine   Steady state, 1 inlet and 2 exit flows. 

Continuity Eq.6.9:  m
.

1 = m
.

2 + m
.

3 ;  => m
.

3 = m
.

1 - m
.

2 = 80 kg/s  

Energy Eq.6.10:      m
.

1h1 = W
.

T + m
.

2h2 + m
.

3h3 
 
 Table B.1.3     h1 = 3582.3 kJ/kg,    

                        h2 = 3137 kJ/kg 

Table B.1.2 :   h3 = hf + x3hfg = 384.3 + 0.95×2278.6 

                            = 2549.1 kJ/kg 
 

WT

1
2

3
 

 
From the energy equation, Eq.6.10 

  => W
.

T = m
.

1h1 − m
.

2h2 − m
.

3h3 = 91.565 MW 
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6.79 
 A steam turbine receives steam from two boilers. One flow is 5 kg/s at 3 MPa, 

700°C and the other flow is 15 kg/s at 800 kPa, 500°C. The exit state is 10 kPa, 
with a quality of 96%. Find the total power out of the adiabatic turbine. 

Solution: 

C.V. whole turbine steady, 2 inlets, 1 exit, no heat transfer Q
.
 = 0 

Continuity Eq.6.9:    m. 1 + m. 2 = m.  3 = 5 + 15 = 20 kg/s 

Energy Eq.6.10:         m. 1h1 + m. 2h2 = m. 3h3 + W
.

T 

 
 Table B.1.3:   h1 = 3911.7 kJ/kg,   

                       h2 = 3480.6 kJ/kg 

Table B.1.2:   h3 = 191.8 + 0.96 × 2392.8  

                           = 2488.9 kJ/kg 
WT

1
2

3

 

 W
.

T = 5 × 3911.7 + 15 × 3480.6 – 20 × 2488.9  = 21990 kW = 22 MW 
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6.80 
 Two steady flows of air enters a control volume, shown in Fig. P6.80. One is 

0.025 kg/s flow at 350 kPa, 150°C, state 1, and the other enters at 450 kPa, 15°C, 
both flows with low velocity. A single flow of air exits at 100 kPa, −40°C, state 3. 
The control volume rejects 1 kW heat to the surroundings and produces 4 kW of 
power. Neglect kinetic energies and determine the mass flow rate at state 2. 

Solution: 
  

C.V. Steady device with two inlet and one 
exit flows, we neglect kinetic energies. Notice 
here the Q is rejected so it goes out. 

1

2

3Engine

Q
.

loss

W
.

 

Continuity Eq.6.9:    m
.

1 + m
.

2 = m
.

3 = 0.025 + m
.

2 

Energy Eq.6.10:       m
.

1h1 + m
.

2h2 = m
.

3h3 + W
.

CV + Q
.

loss 

Substitute the work and heat transfer into the energy equation and use 
constant heat capacity 

  0.025 × 1.004 × 423.2 + m
.

2 × 1.004 × 288.2 

      = (0.025 + m
.

2) 1.004 × 233.2  + 4.0 + 1.0 

Now solve for m
.

2.  

  m
.

2 = 
4.0 + 1.0 + 0.025 × 1.004 × (233.2 – 423.2)

1.004 (288.2 - 233.2)   

    Solving,   m
.

2 = 0.0042 kg/s 
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6.81 
 A large expansion engine has two low velocity flows of water entering.  High 

pressure steam enters at point 1 with 2.0 kg/s at 2 MPa, 500°C and 0.5 kg/s 
cooling water at 120 kPa, 30°C enters at point 2. A single flow exits at point 3 
with 150 kPa, 80% quality, through a 0.15 m diameter exhaust pipe. There is a 
heat loss of 300 kW. Find the exhaust velocity and the power output of the 
engine. 

 Solution: 
 
 C.V. : Engine (Steady state)  

Constant rates of flow, Q
.

loss and W
.

 

State 1:    Table B.1.3:   h1 = 3467.6 kJ/kg 

State 2:    Table B.1.1:   h2 = 125.77 kJ/kg 

h3 = 467.1 + 0.8 × 2226.5 = 2248.3 kJ/kg 

1

2

3Engine

Q
.

loss

W
.

 

 v3 = 0.00105 + 0.8 × 1.15825 = 0.92765 m3/kg 

Continuity Eq.6.9:   m
.

1+ m
.

2 = m
.

3 = 2 + 0.5= 2.5 kg/s = (AV/v) = (π/4)D2V/v 

Energy Eq.6.10:      m
.

1h1 + m
.

2h2 = m
.

3(h3 + 0.5 V2) + Q
.

loss + W
.

 

 V = m
.

3v3 / [
π
4 D2] = 2.5 × 0.92765 / (0.7854 × 0.152 ) = 131.2 m/s 

 0.5 V2 = 0.5 × 131.22 /1000 = 8.6 kJ/kg ( remember units factor 1000) 

 W
.

 = 2 ×3467.6 + 0.5 ×125.77 – 2.5 (2248.3 + 8.6) – 300 = 1056 kW 
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6.82 
 Cogeneration is often used where a steam supply is needed for industrial process 

energy. Assume a supply of 5 kg/s steam at 0.5 MPa is needed. Rather than 
generating this from a pump and boiler, the setup in Fig. P6.82 is used so the 
supply is extracted from the high-pressure turbine. Find the power the turbine 
now cogenerates in this process. 
Solution: 

C.V. Turbine, steady state, 1 inlet and 2 exit flows, assume adiabatic, Q
.

CV = 0 

Continuity Eq.6.9:   m
.

1 = m
.

2 + m
.

3  

Energy Eq.6.10:       Q
.

CV + m
.

1h1 = m
.

2h2 + m
.

3h3 + W
.

T ; 
 
 Supply state 1:   20 kg/s at 10 MPa, 500°C  

Process steam 2:   5 kg/s, 0.5 MPa, 155°C,    
Exit state 3:   20 kPa,   x = 0.9  
Table B.1.3:    h1 = 3373.7,    h2 = 2755.9 kJ/kg, 

Table B.1.2:    h3 = 251.4 + 0.9 × 2358.3  

                            = 2373.9  kJ/kg 

WT

1
2

3
 

        HP       LP 

 

 W
.

T = 20 × 3373.7 − 5 × 2755.9 − 15 × 2373.9 = 18.084 MW 
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6.83 
 A compressor receives 0.1 kg/s R-134a at 150 kPa, -10oC and delivers it at 1000 

kPa, 40oC. The power input is measured to be 3 kW. The compressor has heat 
transfer to air at 100 kPa coming in at 20oC and leaving at 25oC. How much is the 
mass flow rate of air? 

 Solution: 
  

C.V. Compressor, steady state, single inlet and 
exit flow.  For this device we also have an air 
flow outside the compressor housing no 
changes in kenetic or potential energy. 
        

WC

1
2

cb

-
3

4

Air

Air

 

Continuity Eq.: m
.

2 = m
.

1  

Energy Eq. 6.12:       m
.

1h1  + W
.

in + m
.

airh3 = m
.

2h2 + m
.

airh4  
Ideal gas for air  and constant heat capacity:    h4 - h3  ~ Cp air (T4 –T3) 
 

     m
.

air = [m
.

1 (h1 –h2) + W
.

in ] / Cp air (T4 –T3) 

 = 
0.1 ( 393.84 – 420.25) + 3

1.004 (25-20)  = 
0.359

5   

 = 0.0715 kg/s 
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Heat Exchangers 
 
6.84 
 A condenser (heat exchanger) brings 1 kg/s water flow at 10 kPa from 300°C to 

saturated liquid at 10 kPa, as shown in Fig. P6.84. The cooling is done by lake 
water at 20°C that returns to the lake at 30°C. For an insulated condenser, find the 
flow rate of cooling water. 

 
 Solution: 

C.V. Heat exchanger 

Energy Eq.6.10:  m
.

coolh20 + m
.

H2Oh300 =  m
.

coolh30 + m
.

H2Ohf, 10 kPa 

 
 300°C 

30°C 20°C
m 
. 

cool

1 kg/s
sat. liq.

 

 
 

 
Table B.1.1:     h20 = 83.96 kJ/kg ,     h30 = 125.79 kJ/kg  

Table B.1.3:     h300, 10kPa = 3076.5 kJ/kg,  B.1.2:    hf, 10 kPa = 191.83 kJ/kg 

         m
.

cool = m
.

H2O 
h300 - hf, 10kPa

h30 - h20
 = 1 × 

3076.5 - 191.83
125.79 - 83.96  = 69 kg/s 
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6.85 
 A cooler in an air conditioner brings 0.5 kg/s air at 35oC to 5oC, both at 101 kPa 

and it then mix the output with a flow of 0.25 kg/s air at 20oC, 101 kPa sending 
the combined flow into a duct. Find the total heat transfer in the cooler and the 
temperature in the duct flow. 

 
 Solution: 
 

1 2

3

4

Q cool

 
 
               Cooler section                         Mixing section 

 

C.V.  Cooler section (no W
.

) 

 Energy Eq.6.12: m
.

h1 = m
.

h2 + Q
.

cool 

 Q
.

cool = m
.

(h1 - h2) =  m
.

 Cp (T1 - T2) = 0.5 × 1.004 × (35-5) = 15.06 kW 

 

C.V.  mixing section (no W
.

, Q
.
) 

 Continuity Eq.: m
.

2 + m
.

3 = m
.

4  

 Energy Eq.6.10: m
.

2h2  + m
.

3h3 = m
.

4h4 

  m
.

4 = m
.

2 + m
.

3 = 0.5 + 0.25 = 0.75 kg/s 

  m
.

4h4 = (m
.

2 + m
.

3)h4 = m
.

2h2 + m
.

3h3 

  m
.

2 (h4 - h2) + m
.

3 (h4 - h3) = Ø 

  m
.

2 Cp (T4 - T2) + m
.

3 Cp (T4 - T3) = Ø 

 

 T4 = (m
.

2 / m
.

4) T2 + (m
.

3 / m
.

4) T3 = 5(0.5/0.75) + 20(0.25/0.75) = 10°C 
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6.86 
 A heat exchanger, shown in Fig. P6.86, is used to cool an air flow from 800 K to 

360 K, both states at 1 MPa. The coolant is a water flow at 15°C, 0.1 MPa. If the 

water leaves as saturated vapor, find the ratio of the flow rates  m
.

H2O/m
.

air 

Solution: 
  

C.V. Heat exchanger, steady flow 1 inlet 
and 1 exit for air and water each. The 
two flows exchange energy with no heat 
transfer to/from the outside. 
 

3 water1 air

4
2

 
 

Continuity Eqs.:     Each line has a constant flow rate through it. 

Energy Eq.6.10: m
.

airh1 + m
.

H2Oh3 = m
.

airh2 + m
.

H2Oh4 

Process: Each line has a constant pressure. 
Air states,  Table A.7.1:   h1 = 822.20 kJ/kg,   h2 = 360.86 kJ/kg 

Water states,  Table B.1.1:    h3 = 62.98 kJ/kg (at 15°C),      

       Table B.1.2:    h4 = 2675.5 kJ/kg (at 100 kPa) 

          m
.

H2O/m
.

air = 
h1 - h2
h 4 - h3

 = 
822.20 - 360.86
2675.5 - 62.99  = 0.1766 
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6.87 
 A superheater brings 2.5 kg/s saturated water vapor at 2 MPa to 450oC. The 

energy is provided by hot air at 1200 K flowing outside the steam tube in the 
opposite direction as the water, which is a counter flowing heat exchanger. Find 
the smallest possible mass flow rate of the air so the air exit temperature is 20oC 
larger than the incoming water temperature (so it can heat it). 

 Solution: 
 C.V. Superheater. Steady state with no 

external Q
.
 or any W

.
 the two flows 

exchanges energy inside the box. Neglect 
kinetic and potential energies at all 
states. 
 

3 water1 air

4
2

 

 

Energy Eq.6.10: m
.

H2O h3 + m
.

air h1 = m
.

H2O h4 + m
.

air h2 

Process:  Constant pressure in each line. 
State 1: Table B.1.2 T3 = 212.42°C,  h3 = 2799.51 kJ/kg 

State 2: Table B.1.3 h4 = 3357.48 kJ/kg 

State 3: Table A.7  h1 = 1277.81 kJ/kg 

State 4:   T2 = T3 + 20 = 232.42°C = 505.57 K 

  A.7 : h2 = 503.36 + 
5.57
20  (523.98 – 503.36) = 509.1 kJ/kg 

From the energy equation we get 

 m
.

air / m
.

H2O = (h4 - h3)/(h1 - h2)  

          = 2.5 (3357.48 – 2799.51) / (1277.81 – 509.1) = 1.815 kg/s 
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6.88 
 An automotive radiator has glycerine at 95oC enter and return at 55oC as shown 

in Fig.  P6.88. Air flows in at 20oC and leaves at 25oC. If the radiator should 
transfer 25 kW what is the mass flow rate of the glycerine and what is the volume 
flow rate of air in at 100 kPa? 

 Solution: 
If we take a control volume around the whole radiator then there is no external 
heat transfer - it is all between the glycerin and the air. So we take a control 
volume around each flow separately. 
 

Glycerine:  m
.

hi + (-Q
.
) = m

.
he 

Table A.4:    m
.

gly = 
-Q

.

he - hi
 = 

-Q
.

Cgly(Te-Ti)
 = 

-25
2.42(55 - 95) = 0.258 kg/s 

 

Air      m
.

hi+ Q
.
 = m

.
he 

Table A.5:   m
.

air = 
Q
.

he - hi
 = 

Q
.

Cair(Te-Ti)
 = 

25
 1.004(25 - 20) = 4.98 kg/s 

 

V
.
 = m

.
vi ;    vi = 

RTi
Pi

 =  
0.287 × 293

100   = 0.8409 m3/kg 

V
.

air = m
.

vi = 4.98 × 0.8409 = 4.19 m3/s 
 
 
 

Exhaust flow

Air intake filter

Coolant flow 55 C

Atm.
airShaft

power

95 C

o

o
cb
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6.89 
 A two fluid heat exchanger has 2 kg/s liquid ammonia at 20oC, 1003 kPa entering 

state 3 and exiting at state 4. It is heated by a flow of 1 kg/s nitrogen at 1500 K, 
state 1, leaving at 600 K, state 2 similar to Fig. P6.86. Find the total rate of heat 
transfer inside the heat exchanger. Sketch the temperature versus distance for the 
ammonia  and find state 4 (T, v) of the ammonia.  

 
 Solution: 

 CV: Nitrogen flow line, steady rates of flow, Q
.
 out and W

.
 = 0 

 Continiuty:    m
.

1 = m
.

2 = 1 kg/s ;  Energy Eq:     m
.

1h1  = m
.

2h2 + Q
.

out  
 
 Tbl. A.8:  h1 = 1680.7 kJ/kg;   h2 = 627.24 kJ/kg 

  Q
.

out  = m
.

1(h1 - h2) = 1 (1680.7 – 627.24)  = 1053.5 kW 
 If Tbl A.5 is used:   Cp = 1.042 kJ/kg K 

  Q
.

out  = m
.

1 Cp (T1 - T2) = 1×1.042 (1500 - 600) = 937.8 kW 
 

 CV The whole heat exchanger:  No external Q
.
, constant pressure in each line. 

 m
.

1h1 + m
.

3h3 = m
.

1h2 + m
.

3h4       =>      h4 = h3 + m
.

1(h1 - h2)/m
.

3  

 h4 = 274.3 + 1053.5 /2 = 801 kJ/kg   <   hg     =>    2-phase 

 x4 = (h4 - hf)/ hfg = (801 - 298.25) / 1165.2 = 0.43147 

 v4 = vf + x4 vfg = 0.001658 + 0.43147×0.12647 = 0.05623 m3/kg 

 T4 = T3a = 25oC   This is the boiling temperature for 1003 kPa. 

 
 T

x293

298

3

3a 4

 

3  NH1 N

4
2

3
2
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6.90 
 A copper wire has been heat treated to 1000 K and is now pulled into a cooling 

chamber that has 1.5 kg/s air coming in at 20oC; the air leaves the other end at 
60oC. If the wire moves 0.25 kg/s copper, how hot is the copper as it comes out? 

 
Solution: 
C.V. Total chamber, no external heat transfer  

Energy eq.: m
.

cu h icu + m
.

air hi air = m
.

cu he cu +  m
.

air he air 

m
.

cu ( he – hi )cu  =  m
.

air( hi – he )air  

m
.

cu Ccu ( Te – Ti )cu = m
.

air Cp air( Te – Ti )air 
 
Heat capacities from A.3 for copper and A.5 for air 

( Te – Ti )cu  = 
m
.

airCp air

m
.

cuCcu

 ( Te – Ti )air =  
1.5 ×1.004
0.25 × 0.42 (20 - 60) = - 573.7 K 

 
Te = Ti – 573.7 = 1000 - 573.7 = 426.3 K 

 
 

Air

Air
Cu
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Mixing processes 
 
6.91 
 An open feedwater heater in a powerplant heats 4 kg/s water at 45oC, 100 kPa by 

mixing it with steam from the turbine at 100 kPa, 250oC. Assume the exit flow is 
saturated liquid at the given pressure and find the mass flow rate from the turbine. 

 
 Solution: 

  
            C.V.  Feedwater heater.   

            No external Q
.
 or W

.
 

1

2
3MIXING

CHAMBER
cb  

 Continuity Eq.6.9: m
.

1 + m
.

2 = m
.

3  

Energy Eq.6.10: m
.

1h1 + m
.

2h2 = m
.

3h3 = (m
.

1+ m
.

2)h3 
 
  State 1: Table B.1.1 h = hf = 188.42 kJ/kg   at 45oC 

State 2: Table B.1.3 h2 = 2974.33 kJ/kg  
State 3: Table B.1.2 h3 = hf = 417.44 kJ/kg  at 100 kPa 

 

   m
.

2 = m
.

1× 
h1 - h3
h3 - h2

  = 4 × 
188.42 – 417.44
417.44 – 2974.33 = 0.358 kg/s 

 
 T

v1

23
100 kPa

 

2

P

v
31
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6.92 
 A desuperheater mixes superheated water vapor with liquid water in a ratio that 

produces saturated water vapor as output without any external heat transfer. A 
flow of 0.5 kg/s superheated vapor at 5 MPa, 400°C and a flow of liquid water at 
5 MPa, 40°C enter a desuperheater. If saturated water vapor at 4.5 MPa is 
produced, determine the flow rate of the liquid water. 

 
 Solution: 
 

��������
��������

���������
���������

1 

2 ��������
��������3 

CV
. 

Sat. vapor

Q = 0

LIQ

VAP
 

 

Continuity Eq.:      m
.

1 + m
.

2 = m
.

3 

Energy Eq.6.10: m
.

1h1 + m
.

2h2 = m
.

3h3 
Table B.1 

   0.5 × 3195.7 + m
.

2 × 171.97 = (0.5 + m
.

2) 2797.9 

      =>   m
.

2 = 0.0757 kg/s 
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6.93 
 Two air flows are combined to a single flow. Flow one is 1 m3/s at 20oC and the 

other is 2 m3/s at 200oC both at 100 kPa. They mix without any heat transfer to 
produce an exit flow at 100 kPa. Neglect kinetic energies and find the exit 
temperature and volume flow rate. 

Solution: 
 

Cont.  m
.

i = m
.

e = m
.

 

Energy      m
.

1h1 + m
.

2h2 = m
.

3h3  

                              = (m
.

1 + m
.

2)h3 

1

2

3

 
               Mixing section 

m
.

1 (h3 -h1) + m
.

2 (h3 -h2) = 0 

m
.

1Cp ( T3-T1) + m
.

2Cp( T3-T2) = 0 

T3 = (m
.

i/m
.

3)/T1 + (m
.

2/m
.

3)T2 
We need to find the mass flow rates 

v1 = RT1/P1 = (0.287 × 293)/100 = 0.8409 m3/kg 

v2 = RT2/P2 = (0.287 × 473)/100 = 1.3575 m3/kg 

m
.

1 = 
V
.

1
v1

 = 
1

0.8409 = 1.1892 
kg
s ,    m

.
2 = 

V
.

2
v2

 = 
2

1.3575 = 1.4733 
kg
s  

m
.

3 = m
.

1+ m
.

2 = 2.6625 kg/s 

T3 = 
1.1892
2.6625 × 20 + 

1.4733
2.6625  × 200 = 119.6o C 

v3 = 
RT3
P3

 = 
0.287 (119.6 + 273)

100  = 1.1268 m3/kg 

V
.

3 = m
.

3 v3 = 2.6625 × 1.1268 = 3.0 m3/s 
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6.94 
 A mixing chamber with heat transfer receives 2 kg/s of R-22 at 1 MPa, 40°C in one 

line and 1 kg/s of R-22 at 30°C, quality 50% in a line with a valve. The outgoing 
flow is at 1 MPa, 60°C. Find the rate of heat transfer to the mixing chamber. 

Solution: 
C.V. Mixing chamber. Steady with 2 flows in and 1 out, heat transfer in. 
 

 1

2

3
Heater
Mixer

Q
.

 

2

P

v

31

 
 

Continuity Eq.6.9:    m
.

1 + m
.

2 = m
.

3 ;        =>         m
.

3 = 2 + 1 = 3 kg/s 

Energy Eq.6.10:      m
.

1h1 + m
.

2h2 + Q
.
 = m

.
3h3 

Properties:  Table B.4.2:       h1 = 271.04 kJ/kg,     h3 = 286.97 kJ/kg 

   Table B.4.1:       h2 = 81.25 + 0.5 × 177.87 = 170.18 kJ/kg 

Energy equation then gives the heat transfer as 

    Q
.
 = 3 × 286.973 – 2 × 271.04 – 1 × 170.18 = 148.66 kW 
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6.95 
 Two flows are mixed to form a single flow. Flow at state 1 is 1.5 kg/s water at 

400 kPa, 200oC and flow at state 2 is 500 kPa, 100oC. Which mass flow rate at 
state 2 will produce an exit T3 = 150oC if the exit pressure is kept at 300 kPa? 

 
 Solution: 
 
 C.V. Mixing chamber and valves. Steady state no heat transfer or work terms. 

Continuity Eq.6.9:  m
.

1 + m
.

2 = m
.

3 

 Energy Eq.6.10:  m
.

1h1 + m
.

2h2 = m
.

3h3 = (m
.

1+ m
.

2)h3 
 
 
 

1

2
3MIXING

CHAMBER
 

2

P

v

3
1

 
 

Properties   Table B.1.3:       h1 = 2860.51 kJ/kg;     h3 = 2760.95 kJ/kg 

   Table B.1.4:       h2 = 419.32 kJ/kg 

 m
.

2 = m
.

1× 
h1 - h3
h3 - h2

  = 1.5 × 
2860.51 – 2760.95
2760.95 – 419.32  = 0.0638 kg/s 
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6.96 
 An insulated mixing chamber receives 2 kg/s R-134a at 1 MPa, 100°C  in a line 

with low velocity. Another line with R-134a as saturated liquid 60°C flows 
through a valve to the mixing chamber at 1 MPa after the valve. The exit flow is 
saturated vapor at 1 MPa flowing at 20 m/s. Find the flow rate for the second line. 

 
Solution: 
C.V. Mixing chamber. Steady state, 2 inlets and 1 exit flow. 
    Insulated  q = 0,   No shaft or boundary motion   w = 0. 

Continuity Eq.6.9:     m
.

1 + m
.

2 = m
.

3 ;     

Energy Eq.6.10:      m
.

1h1 + m
.

2h2  = m
.

3( h3 + 12 V2
3
  ) 

  m
.

2 (h2 – h3 – 12 V2
3
  ) = m

.
1 ( h3 + 12 V2

3
  – h1 ) 

1: Table B.5.2:   1 MPa, 100°C,    h1 = 483.36 kJ/kg 

2: Table B.5.1:    x = ∅, 60°C,     h2 = 287.79 kJ/kg 

3: Table B.5.1:    x = 1, 1 MPa, 20 m/s,     h3 = 419.54 kJ/kg 

Now solve the energy equation for m
.

2 

m
.

2 = 2 × [419.54 + 12 202 × 
1

1000 – 483.36] / [287.79 – 419.54 – 12 
202

1000] 

     = 2 × ( -63.82 + 0.2) / ( -131.75 - 0.2) = 0.964 kg/s  
Notice how kinetic energy was insignificant. 

 
 

1

2
3MIXING

CHAMBER
cb

 

2

P

v

3 1
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6.97 
 To keep a jet engine cool some intake air bypasses the combustion chamber. 

Assume 2 kg/s hot air at 2000 K, 500 kPa is mixed with 1.5 kg/s air 500 K, 500 
kPa without any external heat transfer. Find the exit temperature by using 
constant heat capacity from Table A.5. 

 
 Solution: 

C.V. Mixing Section 

Continuity Eq.6.9:  m
.

1 + m
.

2 = m
.

3   => m
.

3 = 2 + 1.5 = 3.5 kg/s 

Energy Eq.6.10:  m
.

1h1 + m
.

2h2 = m
.

3h3 

    h3 = (m
.

1h1 + m
.

2h2) / m
.

3 ;  

For a constant specific heat divide the equation for h3 with Cp to get  

  T3 = 
m
.

1

m
.

3

 T1 + 
m
.

2

m
.

3

 T2 = 
2

3.5 2000 + 
1.5
3.5 500 = 1357 K  

 
 

1

2

3

 
 
                 Mixing section 
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6.98 
 To keep a jet engine cool some intake air bypasses the combustion chamber. 

Assume 2 kg/s hot air at 2000 K, 500 kPa is mixed with 1.5 kg/s air 500 K, 500 
kPa without any external heat transfer. Find the exit temperature by using values 
from Table A.7. 

 
 Solution: 

C.V. Mixing Section 

Continuity Eq.6.9:  m
.

1 + m
.

2 = m
.

3   => m
.

3 = 2 + 1.5 = 3.5 kg/s 

Energy Eq.6.10:  m
.

1h1 + m
.

2h2 = m
.

3h3 

    h3 = (m
.

1h1 + m
.

2h2) / m
.

3 ;  

Using A.7 we look up the h at states 1 and 2 to calculate h3 

  h3 = 
m
.

1

m
.

3

 h1 + 
m
.

2

m
.

3

 h2 = 
2

3.5 2251.58 + 
1.5
3.5 503.36 = 1502 kJ/kg 

Now we can backinterpolate to find at what temperature do we have that h 

  T3 = 1350 + 50 
1502 – 1455.43

1515.27 – 1455.43 = 1389 K 

This procedure is the most accurate. 
 

 

1

2

3

 
 
                 Mixing section 
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Multiple Devices, Cycle Processes 
 
6.99 
 The following data are for a simple steam power plant as shown in Fig. P6.99. 
 State 1 2 3 4 5 6 7 
 P MPa 6.2 6.1 5.9 5.7 5.5 0.01 0.009 
 T °C  45 175 500 490  40 
 h kJ/kg - 194 744 3426 3404 - 168 

State 6 has x6 = 0.92, and velocity of 200 m/s. The rate of steam flow is 25 kg/s, 
with 300 kW power input to the pump. Piping diameters are 200 mm from steam 
generator to the turbine and 75 mm from the condenser to the steam generator. 
Determine the velocity at state 5 and the power output of the turbine. 

Solution: 

Turbine   A5 = (π/4)(0.2)2 = 0.031 42 m2 

 V5 = m
.

v5/A5 = 25 × 0.061 63 / 0.031 42 = 49 m/s 

 h6 = 191.83 + 0.92 × 2392.8 = 2393.2 kJ/kg 

 wT = h5 - h6 + 12 ( V2
5 - V2

6 )  

       = 3404 - 2393.2 + (492 - 2002 )/(2 × 1000) = 992 kJ/kg 

 W
.

T = m
.

wT = 25 × 992 = 24 800 kW 
 
 Remark: Notice the kinetic energy change is small relative to enthalpy change. 
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6.100 
 For the same steam power plant as shown in Fig. P6.99 and Problem 6.99, assume 

the cooling water comes from a lake at 15°C and is returned at 25°C. Determine 
the rate of heat transfer in the condenser and the mass flow rate of cooling water 
from the lake. 

 
 Solution: 

Condenser   A7 = (π/4)(0.075)2 = 0.004 418 m2,   v7 = 0.001 008 m3/kg 

 V7 = m
.

v7/A7 = 25 × 0.001 008 / 0.004 418 = 5.7 m/s 

 h6 = 191.83 + 0.92 × 2392.8 = 2393.2 kJ/kg 

 qCOND = h7 - h6 + 12 ( V2
7 - V2

6 )  

   = 168 − 2393.2 + (5.72 − 2002 )/(2×1000) = −2245.2 kJ/kg 

 Q
.

COND = 25 × (−2245.2) = −56 130 kW 

This rate of heat transfer is carried away by the cooling water so 

 −Q
.

COND = m
.

H2O(hout − hin)H2O = 56 130 kW 

 => m
.

H2O = 
56 130

104.9 - 63.0 = 1339.6 kg/s 
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6.101 
 For the same steam power plant as shown in Fig. P6.99 and Problem 6.99, 

determine the rate of heat transfer in the economizer, which is a low temperature 
heat exchanger. Find also the rate of heat transfer needed in the steam generator. 

Solution: 

Economizer     A7 = πD2
7/4 = 0.004 418 m2,   v7 = 0.001 008 m3/kg  

  V2 = V7 = m
.

v7/A7 = 25 × 0.001 008/0.004 418 = 5.7 m/s,  

  V3 = (v3/v2)V2 = (0.001 118 / 0.001 008) 5.7 = 6.3 m/s ≈ V2       

   so kinetic energy change unimportant 
 qECON = h3 - h2  = 744 - 194 = 550.0 kJ/kg 

 Q
.

ECON  = m
.

qECON = 25 (550.0) = 13 750 kW 

Generator     A4 = πD2
4/4 = 0.031 42 m2,   v4 = 0.060 23 m3/kg 

 V4 = m
.

v4/A4 = 25 × 0.060 23/0.031 42 = 47.9 m/s 

 qGEN = 3426 - 744 + (47.92 - 6.32)/(2×1000) = 2683 kJ/kg 

 Q
.

GEN = m
.

qGEN = 25 × (2683) = 67 075 kW 
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6.102 
 A somewhat simplified flow diagram for a nuclear power plant shown in Fig. 1.4 

is given in Fig. P6.102. Mass flow rates and the various states in the cycle are 
shown in the accompanying table. The cycle includes a number of heaters in 
which heat is transferred from steam, taken out of the turbine at some 
intermediate pressure, to liquid water pumped from the condenser on its way to 
the steam drum. The heat exchanger in the reactor supplies 157 MW, and it may 
be assumed that there is no heat transfer in the turbines. 

            a. Assume the moisture separator has no heat transfer between the 
               two turbinesections, determine the enthalpy and quality (h4, x4).  
            b. Determine the power output of the low-pressure turbine. 
            c. Determine the power output of the high-pressure turbine. 
            d. Find the ratio of the total power output of the two turbines to the total power     
                delivered by the reactor. 
            Solution: 

HPW

2 3

17 12

moisture
separator

WLP
9

4
5

8
 

 

 
a) Moisture Separator, steady state, no heat transfer, no work 

 Mass:   m
.

3 = m
.

4 + m
.

9,        Energy:      m
.

3h3 = m
.

4h4 + m
.

9h9  ;   

 62.874 × 2517 = 58.212 × h4 + 4.662 × 558       ⇒   h4 = 2673.9 kJ/kg 

 h4 = 2673.9 = 566.18 + x4 × 2160.6   =>   x4 = 0.9755 

b) Low Pressure Turbine, steady state no heat transfer 

  Energy Eq.: m
.

4h4 = m
.

5h5 + m
.

8h8+ W
.

CV(LP) 

 W
.

CV(LP) = m
.

4h4 - m
.

5h5 -  m
.

8h8  

     = 58.212 × 2673.9 - 55.44 × 2279 - 2.772 × 2459 
     = 22 489 kW = 22.489 MW 
c) High Pressure Turbine, steady state no heat transfer 

  Energy Eq.: m
.

2h2 = m
.

3h3 + m
.

12h12 + m
.

17h17 + W
.

CV(HP) 

  W
.

CV(HP) = m
.

2h2 - m
.

3h3 - m
.

12h12 - m
.

17h17 

      = 75.6 × 2765 - 62.874 × 2517 - 8.064 × 2517 - 4.662 × 2593 
      = 18 394 kW = 18.394 MW 

d)               η = (W
.

HP + W
.

LP)/Q
.

REACT = 40.883/157 = 0.26 
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6.103 
 Consider the powerplant as described in the previous problem. 
             a.Determine the quality of the steam leaving the reactor. 
             b.What is the power to the pump that feeds water to the reactor? 
 
       Solution: 
 

a) Reactor:  Cont.:    m
.

20 = m
.

21;  Q
.

CV = 157 MW 

    Energy Eq.6.12:   Q
.

CV + m
.

20h20 = m
.

21h21 

        157 000 + 1386 × 1221 = 1386 × h21 

        h21 = 1334.3 = 1282.4 + x21 × 1458.3   

                =>   x21 = 0.0349 

21

19

20

Q

 

 
b) C.V. Reactor feedwater pump  

 Cont.   m
.

19 = m
.

20  Energy Eq.6.12:       m
.

19h19 = m
.

19h20 + W
.

Cv,P 

 Table B.1:    h19 = h(277°C, 7240 kPa) = 1220 kJ/kg,    h20 = 1221 kJ/kg 

 W
.

Cv,P = m
.

19(h19 - h20) = 1386(1220 - 1221) = -1386 kW 
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6.104 
 A gas turbine setup to produce power during peak  demand is shown in Fig. 

P6.104. The turbine provides power to the air compressor and the electric 
generator. If the electric generator should provide 5 MW what is the needed air 
flow at state 1 and the combustion heat transfer between state 2 and 3? 

 Solution: 
  1:  90 kPa, 290 K ; 2:  900 kPa, 560 K ; 3:  900 kPa, 1400 K 
  4:  100 kPa, 850 K ;     
 

wc in = h2 – h1 = 565.47 – 290.43 = 275.04 kJ/kg 
wTout  = h3 - h4 = 1515.27 – 877.4 = 637.87 kJ/kg 
q H = h3 – h2 = 1515.27 – 565.47 = 949.8 kJ/kg 

W
.

el =  m
.

wT – m
.

wc  

m
.

 = W
.

el / ( wT - wc ) = 
5000

637.87 - 275.04 = 13.78 kg/s 

 Q
.

H = m
.

qH = 13.78 × 949.8  = 13 088 kW = 13.1 MW 
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6.105 
 A proposal is made to use a geothermal supply of hot water to operate a steam 

turbine, as shown in Fig. P6.105. The high-pressure water at 1.5 MPa, 180°C, is 
throttled into a flash evaporator chamber, which forms liquid and vapor at a lower 
pressure of 400 kPa. The liquid is discarded while the saturated vapor feeds the 
turbine and exits at 10 kPa, 90% quality. If the turbine should produce 1 MW, 
find the required mass flow rate of hot geothermal water in kilograms per hour. 

Solution: 
  

Separation of phases in flash-evaporator 
constant h in the valve flow so 
Table B.1.3:   h1 = 763.5 kJ/kg 

h1 = 763.5 = 604.74 + x × 2133.8  

      ⇒   x = 0.07439 = m
.

2/m
.

1 

Table B.1.2:     h2 = 2738.6 kJ/kg;     
 

FLASH 
EVAP. 

H O 2 

Sat. liq.  
out 

Sat. vap.  

W 
Turb

1

2

3

4

.

 h3 = 191.83 + 0.9 × 2392.8 = 2345.4 kJ/kg 

Energy Eq.6.12 for the turbine 

 W
.

 = m
.

2(h2 - h3)        =>       m
.

2 = 
1000

2738.6 - 2345.4 = 2.543 kg/s 

      ⇒    m
.

1 = m
.

2/x = 34.19 kg/s = 123 075 kg/h 
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6.106 
 A R-12 heat pump cycle shown in Fig. P6.71 has a R-12 flow rate of 0.05 kg/s 

with 4 kW into the compressor. The following data are given         
State 1 2 3 4 5 6 
P kPa 1250 1230 1200 320 300 290 
T °C 120 110 45  0 5 
h kJ/kg 260 253 79.7 - 188 191 

Calculate the heat transfer from the compressor, the heat transfer from the R-12 in 
the condenser and the heat transfer to the R-12 in the evaporator. 

  
Solution: 
CV: Compressor 

 Q
.

COMP = m
.

(h1 - he) + W
.

COMP 

   = 0.05 (260 - 191) - 4.0 = -0.55 kW 
CV: Condenser 

 Q
.

COND = m
.

 (h3-h2) = 0.05 (79.7 - 253) = -8.665 kW 

CV: Evaporator      h4 = h3 = 79.7 kJ/kg (from valve) 

 Q
.

EVAP = m
.

 (h5- h4) = 0.05 (188 - 79.7) = 5.42 kW  
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6.107 
 A modern jet engine has a temperature after combustion of about 1500 K at 3200 

kPa as it enters the turbine setion, see state 3 Fig. P.6.107. The compressor inlet is 
80 kPa, 260 K state 1 and outlet state 2 is 3300 kPa, 780 K; the turbine outlet state 
4 into the nozzle is 400 kPa, 900 K and nozzle exit  state 5 at 80 kPa, 640 K. 
Neglect any heat transfer and neglect kinetic energy except out of the nozzle. Find 
the compressor and turbine specific work terms and the nozzle exit velocity. 

 
Solution: 
The compressor, turbine and nozzle are all steady state single flow devices 
and they are adiabatic. 
 
We will use air properties from table A.7.1: 

h1 = 260.32,  h2 = 800.28,  h3 = 1635.80,  h4 = 933.15, h5 = 649.53 kJ/kg 
Energy  equation for the compressor gives 
  wc in = h2 – h1  = 800.28 – 260.32 = 539.36 kJ/kg 
Energy  equation for the turbine gives 
  wT = h3 – h4 = 1635.80 – 933.15 = 702.65 kJ/kg 
Energy  equation for the nozzle gives 

  h4 = h5 + ½ V2
5 

½ V2
5 = h4 - h5 = 933.15 – 649.53 = 283.62 kJ/kg 

V5 = [2( h4 – h5) ] 1/2 = ( 2× 283.62 ×1000 ) 1/2 = 753 m/s 
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Transient processes 
 
6.108 

 A 1-m3, 40-kg rigid steel tank contains air at 500 kPa, and both tank and air are at 
20°C. The tank is connected to a line flowing air at 2 MPa, 20°C. The valve is 
opened, allowing air to flow into the tank until the pressure reaches 1.5 MPa and 
is then closed. Assume the air and tank are always at the same temperature and 
the final temperature is 35°C.  Find the final air mass and the heat transfer. 

Solution: 
Control volume:  Air and the steel tank. 
Continuity Eq.6.15: m2 - m1 = mi  

Energy Eq.6.16:      (m2u2 - m1u1)AIR + mST(u2 - u1)ST = mihi + 1Q2 

          m1 AIR = 
P1V
RT1

 = 
500 × 1

0.287 × 293.2 = 5.94 kg 

          m2 AIR = 
P2V
RT2

 = 
1500 × 1

0.287 × 308.2 = 16.96 kg 

          mi = (m2 - m1)AIR = 16.96 - 5.94 = 11.02 kg  

The energy equation now gives 
 1Q2 = (m2u2 - m1u1)AIR + mST(u2 - u1)ST - mihi  

        = m1(u2 - u1) + mi(u2 - ui - RTi) + mSTCST(T2 – T1)  

        ≅ m1Cv(T2 – T1) + mi[Cv(T2 – Ti) - RTi] + mSTCST(T2 – T1) 

        = 5.94 × 0.717(35 – 20) + 11.02[0.717(35 – 20) – 0.287× 293.2]  
  + 40 × 0.46(35 – 20) 
        = 63.885 – 808.795 + 276 
        = – 468.9 kJ 
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6.109 
 An evacuated 150-L tank is connected to a line flowing air at room temperature, 

25°C, and 8 MPa pressure. The valve is opened allowing air to flow into the tank 
until the pressure inside is 6 MPa. At this point the valve is closed. This filling 
process occurs rapidly and is essentially adiabatic. The tank is then placed in 
storage where it eventually returns to room temperature. What is the final pressure? 

Solution: 
C.V. Tank:   
Continuity Eq.6.15:      mi = m2 

Energy Eq.6.16:    mihi = m2u2     => u2 = hi 

Use constant specific heat CPo from table A.5 then energy equation: 

  T2 = (CP/CV) Ti = kTi= 1.4 × 298.2 = 417.5 K 

Process:   constant volume cooling to T3: 

  P3 = P2 × T3/T2 = 6.0 × 298.15/ 417.5 = 4.29 MPa 
 
  

���
���

line
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6.110 
 An initially empty bottle is filled with water from a line at 0.8 MPa, 350oC. 

Assume no heat transfer and that the bottle is closed when the pressure reaches 
the line pressure. If the final mass is 0.75 kg find the final temperature and the 
volume of the bottle.  

Solution; 
C.V. Bottle, transient process with no heat transfer or work. 
Continuity Eq.6.15: m2 - m1 = min ;      

Energy Eq.6.16: m2u2 – m1u1 = - min hin 

State 1: m1 = 0    =>         m2 = min       and        u2 = hin  

Line state:   Table B.1.3:      hin = 3161.68 kJ/kg  

State 2:  P2 = Pline = 800 kPa,  u2 = 3161.68 kJ/kg     from Table B.1.3 

  T2 = 520oC  and   v2 = 0.4554 m3/kg 

  V2 = m2v2 = 0.75 × 0.4554 = 0.342 m3 
 
  

���line
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6.111 
 A 25-L tank, shown in Fig. P6.111, that is initially evacuated is connected by a 

valve to an air supply line flowing air at 20°C, 800 kPa. The valve is opened, and 
air flows into the tank until the pressure reaches 600 kPa.Determine the final 
temperature and mass inside the tank, assuming the process is adiabatic. Develop 
an expression for the relation between the line temperature and the final 
temperature using constant specific heats. 

Solution: 
 C.V. Tank:     

Continuity Eq.6.15:  m2 = mi  

 Energy Eq.6.16:       m2u2 = mihi   

 Table A.7:    u2 = hi = 293.64 kJ/kg  

               ⇒ T2 = 410.0 K 

TANK

 

  m2 = 
P2V
RT2

 = 
600 × 0.025
0.287 × 410 = 0.1275 kg 

Assuming constant specific heat, 
  hi = ui + RTi = u2 ,    RTi = u2 - ui = Cvo(T2 - Ti) 

 CvoT2 = ( Cvo + R )Ti = CPoTi  ,   T2 = 






CPo

Cvo
 Ti = kTi 

        For Ti = 293.2K & constant CPo,       T2 = 1.40×293.2 = 410.5 K 
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6.112 
 Helium in a steel tank is at 250 kPa, 300 K with a volume of 0.1 m3. It is used to 

fill a balloon. When the tank pressure drops to 150 kPa the flow of helium stops 
by itself. If  all the helium still is at 300 K how big a balloon did I get? Assume 
the pressure in the balloon varies linearly with volume from 100 kPa (V = 0) to 
the final 150 kPa. How much heat transfer did take place? 

  
Solution: 

 Take a C.V. of all the helium. 
This is a control mass, the tank mass 
changes density and pressure. 
 
Energy Eq.:   U2 – U1  = 1Q2 - 1W2 
Process Eq.:   P = 100 + CV 
State 1:   P1, T1, V1 
State 2:   P2, T2, V2 = ? 

Ideal gas: 
       P2 V2 = mRT2 = mRT1 = P1V1  

c
i
r
c
u
s

t
h
e
r
m
o

cb

 

V2 = V1(P1/P2) = 0.1× (250/150) = 0.16667 m3 
Vbal = V2 – V1 = 0.16667 – 0.1 = 0.06667 m3 
 
1W2 = ∫ P dV  = AREA = ½ ( P1 + P2 )( V2 –V1 )   
        =  ½( 250 + 150) × 0.06667  = 13.334 kJ 
U2 – U1  = 1Q2 - 1W2 = m (u2 – u1) = mCv ( T2 –T1 ) = 0 
  so    1Q2 = 1W2  = 13.334 kJ 

 
Remark: The process is transient, but you only see the flow mass if you 
select the tank or the balloon as a control volume. That analysis leads to 
more terms that must be elliminated between the tank control volume and 
the balloon control volume. 
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6.113 
 A rigid 100-L tank contains air at 1 MPa, 200°C. A valve on the tank is now 

opened and air flows out until the pressure drops to 100 kPa. During this process, 
heat is transferred from a heat source at 200°C, such that when the valve is 
closed, the temperature inside the tank is 50°C. What is the heat transfer? 

Solution: 
1 : 1 MPa, 200°C, m1 = P1V1/RT1 = 1000 × 0.1/(0.287 × 473.1) = 0.736 kg 

2 : 100 kPa, 50°C, m2 = P2V2/RT2 = 100 × 0.1/(0.287 × 323.1) = 0.1078 kg 

Continuity Eq.6.15: mex = m1 – m2 = 0.628 kg, 

Energy Eq.6.16:  m2u2 – m1u1 = - mex hex + 1Q2 

Table A.7:   u1 = 340.0 kJ/kg,   u2 = 231.0 kJ/kg,    

 he ave = (h1 + h2)/2 = (475.8 + 323.75)/2 = 399.8 kJ/kg 

 1Q2 = 0.1078 × 231.0 – 0.736 × 340.0 + 0.628 × 399.8 = +25.7 kJ   
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6.114 
 A 1-m3 tank contains ammonia at 150 kPa, 25°C. The tank is attached to a line 

flowing ammonia at 1200 kPa, 60°C. The valve is opened, and mass flows in until 
the tank is half full of liquid, by volume at 25°C. Calculate the heat transferred 
from the tank during this process. 

 Solution: 
C.V. Tank.   Transient process as flow comes in. 
State 1  Table B.2.2 interpolate between 20 °C and 30°C:     

 v1 = 0.9552 m3/kg;  u1 = 1380.6 kJ/kg 

 m1 = V/v1 = 1/0.9552 = 1.047 kg   

State 2:  0.5 m3 liquid and 0.5 m3 vapor from Table B.2.1 at 25°C 

 vf = 0.001658 m3/kg;  vg = 0.12813 m3/kg 

 mLIQ2 = 0.5/0.001658 = 301.57 kg,   mVAP2 = 0.5/0.12813 = 3.902 kg 

  m2 = 305.47 kg,   x2 = mVAP2/m2 = 0.01277,  

From continuity equation 
    mi = m2 - m1 = 304.42 kg 

Table B.2.1:    u2 = 296.6 + 0.01277 × 1038.4 = 309.9 kJ/kg 

State inlet:      Table B.2.2      hi = 1553.3 kJ/kg   

Energy Eq.6.16: 
 QCV + mihi = m2u2 - m1u1 

 QCV = 305.47 × 309.9 - 1.047 × 1380.6 - 304.42 × 1553.3 = -379 636 kJ 
  

���line

Q
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6.115 
 An empty cannister of volume 1 L is filled with R-134a from a line flowing 

saturated liquid R-134a at 0oC. The filling is done quickly so it is adiabatic. How 
much mass of R-134a is there after filling? The cannister is placed on a storage 
shelf where it slowly heats up to room temperature 20oC. What is the final 
pressure? 

 
 
 C.V. cannister, no work and no heat transfer. 

Continuity Eq.6.15:  m2 = mi  

Energy Eq.6.16:       m2u2 – 0 = mihi = mihline 

 Table B.5.1:    hline = 200.0 kJ/kg,  Pline = 294 kPa 

 From the energy equation we get 
  u2 = hline = 200 kJ/kg  > uf = 199.77 kJ/kg 

 State 2 is two-phase   P2 = Pline = 294 kPa and T2 = 0°C 

  x2 = 
u2 - uf

ufg
 = 

200 – 199.77
178.24  = 0.00129 

  v2 = 0.000773 + x2 0.06842 = 0.000861 m3/kg 

  m2 = V/v2 = 0.01/0.000861 = 11.61 kg 
 
  At 20°C:     vf = 0.000817  m3/kg < v2   so still two-phase 
          P = Psat = 572.8 kPa 
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6.116 
 A piston cylinder contains 1 kg water at 20oC with a constant load on the piston 

such that the pressure is 250 kPa. A nozzle in a line to the cylinder is opened to 
enable a flow to the outside atmosphere at 100 kPa. The process continues to half 
the mass has flowed out and there is no heat transfer. Assume constant water 
temperature and find the exit velocity and total work done in the process. 

 
 Solution: 
  C.V. The cylinder and the nozzle. 

Continuity Eq.6.15: m2 - m1 = − me 

Energy Eq.6.16:      m2u2 - m1u1 = - me(he + 12V2
e ) - 1W2 

Process:     P = C      =>      1W2 = ⌡⌠P dV = P(V2 - V1) 

State 1: Table B.1.1, 20oC  =>   v1 = 0.001002,  u1 = 83.94 kJ/kg 

State 2: Table B.1.1, 20oC  =>   v2 = v1,  u2 = u1;     

   m2 = m1/2 = 0.5 kg => V2 = V1/2  

 1W2 = P(V2 - V1) = 250 (0.5 - 1) 0.001002 = -0.125 kJ 

Exit state:  Table B.1.1,  20oC =>   he = 83.94 kJ/kg 

Solve for the kinetic energy in the energy equation 

  1
2V2

e = [m1u1 - m2u2 - mehe - 1W2]/me 

         = [1 × 83.94 - 0.5 × 83.94 - 0.5 × 83.94 + 0.125] / 0.5 
         = 0.125/0.5 = 0.25 kJ/kg 

  V = 2 × 0.25 × 1000 = 22.36 m/s 
 
 All the work ended up as kinetic energy in the exit flow. 
 
 

Pcyl

F

AIR
e

cb
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6.117 
 A 200 liter tank initially contains water at 100 kPa and a quality of 1%. Heat is 

transferred to the water thereby raising its pressure and temperature. At a pressure 
of 2 MPa a safety valve opens and saturated vapor at 2 MPa flows out. The 
process continues, maintaining 2 MPa inside until the quality in the tank is 90%, 
then stops. Determine the total mass of water that flowed out and the total heat 
transfer. 

 
Solution:  

 C.V. Tank, no work but heat transfer in and flow 
out. Denoting State 1: initial state, State 2: valve 
opens, State 3: final state. 
 
Continuity Eq.:     m3 − m1 = − me 
Energy Eq.:       m3u3 − m1u1 = − mehe + 1Q3 
 

e

Q

sat vap

cv
.

 
 

State 1 Table B.1.2:   v1 = vf + x1vfg = 0.001043 + 0.01×1.69296  
    = 0.01797 m3/kg  
u1 = uf + x1ufg = 417.33 + 0.01×2088.72 = 438.22 kJ/kg 
m1 = V/v1 = 0.2 m3/(0.01797 m3/kg) = 11.13 kg 

State 3 (2MPa): v3 = vf + x3vfg = 0.001177 + 0.9×0.09845 = 0.8978 m3/kg  
   u3 = uf + x3ufg = 906.42 + 0.9×1693.84 = 2430.88 kJ/kg 

m3 = V/v3 = 0.2 m3/(0.08978 m3/kg) = 2.23 kg 
 Exit state (2MPa): he = hg = 2799.51 kJ/kg 

 
Hence:   me  = m1 − m3 = 11.13 kg − 2.23 kg = 8.90 kg  

 
Applying the 1st law between state 1 and state 3 

1Q3 = m3u3 − m1u1 + mehe 
                 = 2.23 × 2430.88 − 11.13 × 438.22 + 8.90 × 2799.51  

       = 25 459 kJ = 25.46 MJ 
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6.118 
 A 100-L rigid tank contains carbon dioxide gas at 1 MPa, 300 K. A valve is 

cracked open, and carbon dioxide escapes slowly until the tank pressure has 
dropped to 500 kPa. At this point the valve is closed. The gas remaining inside the 
tank may be assumed to have undergone a polytropic expansion, with polytropic 
exponent n = 1.15. Find the final mass inside and the heat transferred to the tank 
during the process. 

Solution: 
  

Ideal gas law and value from table A.5 

      m1 = 
P1V
RT1

 = 
1000 × 0.1

0.18892 × 300 = 1.764 kg 

 
Polytropic process and ideal gas law gives 

cb

 
 

  T2 = T1 






P2

P1

(n-1)/n
 = 300 



500

1000
(0.15/1.15)

 = 274 K 

  m2 = 
P2V
RT2

 = 
500 × 0.1

0.18892 × 274 = 0.966 kg 

Energy Eq.6.16: 
 QCV = m2u2 - m1u1 + mehe avg 

           = m2CvoT2 - m1CvoT1 + (m1 - m2)CPo(T1 + T2)/2  

           = 0.966 × 0.6529 × 274 - 1.764 × 0.6529 × 300 
   + (1.764 - 0.966) × 0.8418 ×(300 + 274)/2 = +20.1 kJ 
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6.119 
 A nitrogen line, 300 K and 0.5 MPa, shown in Fig. P6.119, is connected to a 

turbine that exhausts to a closed initially empty tank of 50 m3. The turbine 
operates to a tank pressure of 0.5 MPa, at which point the temperature is 250 K. 
Assuming the entire process is adiabatic, determine the turbine work. 

Solution: 
C.V. turbine & tank  ⇒  Transient process 
 Conservation of mass Eq.6.15:   mi = m2  ⇒  m 

 Energy Eq.6.16:     mihi = m2u2 + WCV ;  WCV = m(hi - u2) 

Table B.6.2:    Pi = 0.5 MPa,   Ti = 300 K,   Nitrogen;  hi = 310.28 kJ/kg 

 2: P2 = 0.5 MPa,  T2 = 250 K,  u2 = 183.89 kJ/kg,   v2 =  0.154 m3/kg  

  m2 = V/v2 = 50/0.154 = 324.7 kg 

 WCV = 324.7 (310.28 - 183.89) = 41 039 kJ = 41.04 MJ 
 
  

 

W 
Turb

1

2 TANK 

.

 

 

 
  We could with good accuracy have solved using ideal gas and Table A.5 
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6.120 
  A 2 m tall cylinder has a small hole in the bottom. It is filled with liquid water 1 

m high, on top of which is 1 m high air column at atmospheric pressure of 100 
kPa.  As the liquid water near the hole has a higher P than 100 kPa it runs out. 
Assume a slow process with constant T. Will the flow ever stop?  When?             
New fig. 

 Solution: 
  Pbot = Pair + ρgLliq 
For the air PV = mRT 
Pair = mRT/Vair   ; Vair = A Lair  = A ( H-Lliq )  

Pbot = 
maRaTa

A(H-Lliq) + ρfg Lf  = 
Pa1Va1

A(H-Lliq) + ρliq gLf  = 
Pa1La1
H-Lf

 + ρliq gLf  ≥ 

Po 
 
Solve for Lliq    ;  ρliq=  1/(vf)  =  1/0.0021002 =  998 kg/m3 

Pa1 La1 + ρg Lf ( H – Lf ) ≥  P ( H – Lf )  
(ρgH + Po ) Lf – ρgL2

f = Po H + Pa1 La1 ≥ 0 
Put in numbers and solve quadratic eq. 
 

L2
f – ( H +(Po/ρg) ) Lf + 

PoH-Pa1La1
ρg  = ∅ 

 L2
f – 12.217 Lf + 10.217 = 0 

(Po/ρg) = 
100 kPa m3 s3

 998 ×9.807 kg m = 10.217 m 

 
PoH+Pa1La1

ρg  = 
100 (2-1)

998×9.807 = 10.217 m 

 

Air

Water

1 m

1 m

 

Lf = 
12.217

2  × [
12.2173

4  - 
12.217

4  ] 1/2 = 6.1085 × 5.2055 

=> 11.314    or     0.903 m 
 
Verify 

Pa2 = Pa1. 
La1

H-Lf
 = 100 

1
2 - 0.903 = 91.158 kPa 

ρgLf = 998 × 9.807 × 0.903 = 8838 Pa = 8.838 kPa 
Pbot = Pa2 + ρgLf = 91.158 + 8.838 = 99.996 kPa   OK 
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6.121 
 A 2-m3 insulated vessel, shown in Fig. P6.121, contains saturated vapor steam at 

4 MPa. A valve on the top of the tank is opened, and steam is allowed to escape. 
During the process any liquid formed collects at the bottom of the vessel, so that 
only saturated vapor exits. Calculate the total mass that has escaped when the 
pressure inside reaches 1 MPa. 

Solution: 
C.V. Vessel:   Mass flows out. 
Continuity Eq.6.15: me = m1 - m2 

Energy Eq.6.16:    m2u2 - m1u1 = - (m1-m2)he  or   m2(he-u2) = m1(he-u1) 

Average exit enthalpy    he ≈ (hG1+hG2)/2 = (2801.4+2778.1)/2 = 2789.8 

State 1:     m1 = V/v1 = 40.177 kg,   m2 = V/v2 

Energy equation    ⇒    
2
v2

(2789.8-u2) = 40.177(2789.8-2602.3) = 7533.19 

But  v2 = .001 127 + .193 313 x2   and       u2 = 761.7 + 1822 x2 

Substituting and solving,    x2 = 0.7936 

      ⇒ m2 = V/v2 = 12.94 kg, me =  27.24 kg 

 
  

Sat. vapor  
out 

Liquid 

Vapor 

cb  
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6.122 
 A 750-L rigid tank, shown in Fig. P6.122, initially contains water at 250°C, 50% 

liquid and 50% vapor, by volume. A valve at the bottom of the tank is opened, 
and liquid is slowly withdrawn. Heat transfer takes place such that the 
temperature remains constant. Find the amount of heat transfer required to the 
state where half the initial mass is withdrawn. 

  Solution: 
C.V. vessel 
Continuity Eq.6.15: m2 − m1 =  − me 

Energy Eq.6.16: m2u2 − m1u1 = QCV − mehe 

State 1: mLIQ1 = 
0.375

0.001251 = 299.76 kg;    mVAP1 = 
0.375

0.05013 = 7.48 kg 

        m1u1 = 299.76 × 1080.37 + 7.48 × 2602.4 = 343 318 kJ 

  m1 = 307.24 kg;     me = m2 = 153.62 kg 

State 2: v2 = 
0.75

153.62 = 0.004882 = 0.001251 + x2 × 0.04888 

       x2 = 0.07428 ;  u2 = 1080.37 + 0.07428 × 1522 = 1193.45 kJ/kg 

Exit state: he = hf = 1085.34 kJ/kg 

Energy equation now gives the heat transfer as 
 QCV = m2u2 - m1u1 + mehe 

         = 153.62 × 1193.45 – 343 318 + 153.62 × 1085.34  = 6750 kJ 
 
  

  Vapor 

Sat. liq.  
out 

Liquid 
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6.123 
 Consider the previous problem but let the line and valve be located in the top of 

the tank. Now saturated vapor is slowly withdrawn while heat transfer keeps the 
temperature inside constant. Find the heat transfer required to reach a state where 
half the original mass is withdrawn. 

 
    Solution: 

C.V. vessel 
Continuity Eq.6.15: m2 − m1 =  − me 

Energy Eq.6.16: m2u2 − m1u1 = QCV − mehe 

State 1: mLIQ1 = 
0.375

0.001251 = 299.76 kg;    mVAP1 = 
0.375

0.05013 = 7.48 kg 

        m1u1 = 299.76 × 1080.37 + 7.48 × 2602.4 = 343 318 kJ 

  m1 = 307.24 kg;     me = m2 = 153.62 kg 

State 2: v2 = 
0.75

153.62 = 0.004882 = 0.001251 + x2 × 0.04888 

       x2 = 0.07428 ;  u2 = 1080.37 + 0.07428 × 1522 = 1193.45 kJ/kg 

Exit state: he = hg = 2801.52 kJ/kg 

Energy equation now gives the heat transfer as 
 QCV = m2u2 - m1u1 + mehe 

         = 153.62 × 1193.45 – 343 318 + 153.62 × 2801.52  = 270 389 kJ 
 
  

 Sat. vapor  
out 

Liquid 

Vapor 
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Review Problems 
 
6.124 
 Two kg of water at 500 kPa, 20oC is heated in a constant pressure process to 

1700oC. Find the best estimate for the heat transfer. 
Solution: 
C.V. Heater; steady state 1 inlet and exit, no work term, no ∆KE, ∆PE . 

Continuity Eq.:   m
.

in = m
.

ex = m
.

,      

Energy Eq.6.13:     q + hin = hex   ⇒   q = hex - hin 

steam tables only go up to 1300oC so use an intermediate state at lowest 
pressure (closest to ideal gas)  hx(1300oC, 10 kPa) from Table B.1.3 and table 
A.8 for the high T change ∆h 
          hex - hin = (hex - hx) + (hx - hin) 

   = (71 423 – 51 629)/18.015 + 5409.7 - 83.96 = 6424.5 kJ/kg 
          Q = m(hex - hin) = 2 × 6424.5 = 12 849 kJ 
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6.125 
 In a glass factory a 2 m wide sheet of glass at 1500 K comes out of the final 

rollers that fix the thickness at 5 mm with a speed of 0.5 m/s. Cooling air in the 
amount of 20 kg/s comes in at 17oC from a slot 2 m wide and flows parallel with 
the glass. Suppose this setup is very long so the glass and air comes to nearly the 
same temperature (a co-flowing heat exchanger) what is the exit temperature? 

 
 Solution: 

Energy Eq.: m
.

glasshglass 1 + m
.

airhair 2 = m
.

glasshglass 3 + m
.

airhair 4 

m
.

glass = ρV
.
 = ρAV = 2500× 2 ×0.005× 0.5 = 12.5 kg/s 

m
.

glassCglass ( T3 – T1 ) + m
.

air CPa ( T4 – T2 ) = ∅ 
T4  = T3  , Cglass = 0.80 kJ/kg K,   CPa = 1.004 kJ/kg K 

T3 = 
m
.

glassCglass T1 + m
.

airCPa T2

 m
.

glassCglass + m
.

airCPa

 = 
12.5×0.80×1500 + 20×1.004×290

12.5×0.80 + 20×1.004  

          = 692.3 K 
 
We could use table A.7.1 for air, but then it will be trial and error 
 
 

1

2

3

4Air
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6.126 
 Assume a setup similar to the previous problem but the air flows in the opposite 

direction of the glass, it comes in where the glass goes out. How much air flow at 
17oC is required to cool the glass to 450 K assuming the air must be at least 120 
K cooler than the glass at any location? 

 Solution: 

Energy Eq.: m
.

1h1  + m
.

4h4  = m
.

3h3 + m
.

2h2 
T4  = 290 K   and   T3 = 450 K  

m
.

glass = ρV
.
 = ρAV = 2500× 2 ×0.005× 0.5 = 12.5 kg/s 

 
T2  ≤  T1 – 120 K = 1380 K 

m
.

 = m
.

4 = m
.

2 = m
.

1 
h1-h3
h2-h4   

Let us check the limit and since T is high use table A.7.1 for air. 
 
h4 = 290.43 kJ/kg,  h2 = 1491.33 kJ/kg 

m
.

 = m
.

4 = m
.

2 = m
.

1 
h1-h3
h2-h4   = m

.
1 

Cglass(T1-T3)
h2-h4   

m
.

 = 12.5 
0.8 (1500-450)

 1491.33 – 290.43 = 8.743 kg/s 

 
 

1

2

3

4Air
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6.127 
 Three air flows all at 200 kPa are connected to the same exit duct and mix without 

external heat transfer. Flow one has 1 kg/s at 400 K, flow two has 3 kg/s at 290 K 
and flow three has 2 kg/s at 700 K. Neglect kinetic energies and find the volume 
flow rate in the exit flow. 

 
 Solution: 

Continuity Eq.   m
.

1+ m
.

2 + m
.

3 = m
.

4h4 

Energy  Eq.:  m
.

1h1 + m
.

2h2 = m
.

3h3 + m
.

4h4 

V
.

4 = m
.

 v4 

h4 = 
m
.

1

 m
.

4

 h1 + 
m
.

2

 m
.

4

 h2+ 
m
.

3

 m
.

4

 h3 = 
1
6 × 401.3 + 

3
6 × 290.43 + 

2
6 × 713.56 

     = 449.95 kJ/kg 

T4  = 440 + 20 
449.95 - 441.93
 462.34 - 441.93 = 447.86 K 

v4 = RT4 /P4 = 0.287×447.86/200 = 0.643 m3/kg 

V
.

4 = m
.

4v4 = 6 × 0.643 = 3.858 m3/s 
 
 2

4
1

3  
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6.128 
 Consider the power plant as described in Problem 6.102. 
            a. Determine the temperature of the water leaving the intermediate pressure   
        heater, T

13
, assuming no heat transfer to the surroundings. 

            b. Determine the pump work, between states 13 and 16. 
 
Solution: 
a) Intermediate Pressure Heater 

 Energy Eq.6.10: m
.

11h11 + m
.

12h12 + m
.

15h15 = m
.

13h13 + m
.

14h14 

 75.6×284.6 + 8.064×2517 + 4.662×584 = 75.6×h13 + 12.726×349 

  h13 = 530.35 → T13 = 126.3°C 

b) The high pressure pump  

 Energy Eq.6.12:     m
.

13h13 = m
.

16h16 + W
.

Cv,P 

 W
.

Cv,P = m
.

13(h13 - h16) = 75.6(530.35 - 565) = -2620 kW 
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6.129 
 Consider the powerplant as described in Problem 6.102. 
             a. Find the power removed in the condenser by the cooling water (not shown). 
             b. Find the power to the condensate pump. 
        c. Do the energy terms balance for the low pressure heater or is there a  
                 heat transfer not shown? 

Solution: 
a) Condenser: 

Energy Eq.6.10:  Q
.

CV + m
.

5h5 + m
.

10h10 = m
.

6h6 

 Q
.

CV + 55.44 × 2279 + 20.16 × 142.51 = 75.6 × 138.3 

 Q
.

CV = -118 765 kW = -118.77 MW 

b) The condensate pump 

 W
.

Cv,P = m
.

6(h6 - h7) = 75.6(138.31 - 140) = -127.8 kW 

c) Low pressure heater     Assume no heat transfer 

 m
.

14h14 + m
.

8h8 + m
.

7h7 + m
.

9h9 = m
.

10h10 + m
.

11h11 

LHS = 12.726×349 + 2.772×2459 + 75.6×140 + 4.662×558 = 24 443 kW 
RHS = (12.726 + 2.772 + 4.662) × 142.51 + 75.6 × 284.87 = 24 409 kW 
          A slight imbalance, but OK. 
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6.130 
 A 500-L insulated tank contains air at 40°C, 2 MPa. A valve on the tank is 

opened, and air escapes until half the original mass is gone, at which point the 
valve is closed. What is the pressure inside then? 

 
Solution: 

State 1:   ideal gas       m1 = P1V/RT1 = 
2000 × 0.5

0.287 × 313.2 = 11.125 kg 

Continuity eq.6.15:    me = m1 - m2,  m2 = m1/2  ⇒  me = m2 = 5.5625 kg 

Energy Eq.6.16:         m2u2 - m1u1  = - mehe AV 

Substitute constant specific heat from table A.5 and evaluate the exit enthalpy 
as the average between the beginning and the end values 
 
 5.5625×0.717 T2 - 11.125×0.717×313.2 = - 5.5625×1.004 (313.2 + T2)/2 

Solving, T2 = 239.4 K 

  P2 = 
m2RT2

V  = 
5.5625 × 0.287 × 239.4

0.5  = 764 kPa 

 
 

cb
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6.131 
 A steam engine based on a turbine is shown in Fig. P6.131. The boiler tank has a 

volume of 100 L and initially contains saturated liquid with a very small  amount 
of  vapor at 100 kPa. Heat is now added by the burner, and the pressure regulator 
does not open before the boiler pressure reaches 700 kPa, which it keeps constant. 
The saturated vapor enters the turbine at 700 kPa and is discharged to the 
atmosphere as saturated vapor at 100 kPa. The burner is turned off when no more 
liquid is present in the as boiler. Find the total turbine work and the total heat 
transfer to the boiler for this process. 

 
 Solution: 

C.V. Boiler tank.   Heat transfer, no work and flow out. 
Continuity Eq.6.15: m2 - m1 = − me 

Energy Eq.6.16:      m2u2 - m1u1 = QCV - mehe 

State 1: Table B.1.1, 100 kPa  =>   v1 = 0.001 043,  u1 = 417.36 kJ/kg 

  => m1 = V/v1 = 0.1/0.001 043 = 95.877 kg 

State 2: Table B.1.1, 700 kPa  =>   v2 = vg = 0.2729,  u2 = 2572.5 kJ/kg 

  => m2 = V/vg = 0.1/0.2729 = 0.366 kg,  

Exit state:  Table B.1.1, 700 kPa  =>   he = 2763.5  kJ/kg 

From continuity eq.:   me = m1 - m2 = 95.511 kg 

 QCV = m2u2 - m1u1 + mehe 

  = 0.366 × 2572.5 - 95.877 × 417.36 + 95.511 × 2763.5 
          = 224 871 kJ = 224.9 MJ 
   
C.V. Turbine, steady state, inlet state is boiler tank exit state. 
Turbine exit state:  Table B.1.1, 100 kPa  =>   he = 2675.5  kJ/kg 

  Wturb = me (hin- hex) = 95.511 × (2763.5 - 2675.5) = 8405 kJ 
 
  

W

cb
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6.132 
 An insulated spring-loaded piston/cylinder, shown in Fig. P6.132, is connected to 

an air line flowing air at 600 kPa, 700 K by a valve. Initially the cylinder is empty 
and the spring force is zero. The valve is then opened until the cylinder pressure 
reaches 300 kPa. By noting that   u2 = uline + CV(T2 − Tline)  and  hline − uline = 
RTline  find an expression for T2 as a function of P2, Po, Tline. With P = 100 kPa, 
find T2. 

Solution: 
C.V. Air in cylinder, insulated so   1Q2 = 0 

Continuity Eq.6.15:   m2 - m1 = min  

Energy Eq.6.16:      m2u2 - m1u1 = minhline - 1W2 

 m1 = 0  ⇒  min = m2 ;  m2u2 = m2hline - 12 (P0 + P2)m2v2 

  ⇒ u2 + 12 (P0 + P2)v2 = hline 

Use constant specific heat in the energy equation 

 Cv(T2 - Tline) + uline + 12 (P0 + P2)RT2/P2 = hline 

   








Cv + 
1
2 

P0 + P2
P2

 R T2 = (R + Cv)Tline 

  with #'s: T2 = 
R + Cv

 
2
3 R + Cv

 Tline ;    Cv/R = 1/(k-1) ,    k = 1.4 

     T2 = 
k - 1 + 1

 
2
3 k - 

2
3 + 1

 Tline = 
3k

2k + 1 Tline = 1.105 Tline  = 773.7 K 
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6.133 
 A mass-loaded piston/cylinder, shown in Fig. P6.133, containing air is at 300 kPa, 

17°C with a volume of 0.25 m3, while at the stops V = 1 m3. An air line, 500 kPa, 
600 K, is connected by a valve that is then opened until a final inside pressure of 
400 kPa is reached, at which point T = 350 K. Find the air mass that enters, the 
work, and heat transfer. 

 Solution: 
C.V. Cylinder volume. 
Continuity Eq.6.15:   m2 - m1 = min  

Energy Eq.6.16:      m2u2 - m1u1 = minhline + QCV - 1W2 
Process: P1 is constant to stops, then constant V to state 2 at P2 

State 1:  P1, T1       m1 = 
P1V
RT1

 = 
300 × 0.25

0.287 × 290.2  = 0.90 kg 

  
 State 2: 

       Open to  P2 = 400 kPa, T2 = 350 K 
 

         m2 = 
400 × 1

0.287 × 350 = 3.982 kg 

         mi = 3.982 - 0.90 = 3.082 kg 

���
���

���
���

AIR

 
Only work while constant P 
  1W2 = P1(V2 - V1) = 300(1 - 0.25) = 225 kJ 

Energy Eq.: QCV + mihi = m2u2 - m1u1 + 1W2 

 QCV = 3.982 × 0.717 × 350 - 0.90 × 0.717 × 290.2 + 225 

  - 3.082 × 1.004 × 600 = -819.2 kJ 
 
  We could also have used the air tables A.7.1 for the u’s and hi. 
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6.134 
 A 2-m3 storage tank contains 95% liquid and 5% vapor by volume of liquified 

natural gas (LNG) at 160 K, as shown in Fig. P6.65. It may be assumed that LNG 
has the same properties as pure methane. Heat is transferred to the tank and 
saturated vapor at 160 K flows into the a steady flow heater which it leaves at 300 
K. The process continues until all the liquid in the storage tank is gone. Calculate 
the total amount of heat transfer to the tank and the total amount of heat 
transferred to the heater. 

 
 Solution: 
 CV: Tank, flow out, transient. 

Continuity Eq.:   m2 - m1 = -me 

Energy Eq.: 
       QTank = m2u2 - m1u1 + mehe 

 
At 160 K, from Table B.7: 

LIQUID Q tank

QheaterVAPOR

 
 

mf = Vf /vf   = 
0.95 × 2
0.00297 = 639.73 kg ,    mg = Vg/vg = 

0.05 × 2
0.03935 =   2.541 kg 

m1 = 642.271 kg,         m2 = V/vg2  = 2/0.03935 = 50.826 kg 

          m1u1 = 639.73(-106.35) + 2.541(207.7) = -67507 kJ   

          me = m1 - m2 = 591.445 kg 

          QTank = 50.826 × 207.7 - (-67 507) + 591.445 × 270.3 

              = +237 931 kJ  
CV: Heater,  steady flow,   P = PG 160 K = 1593 kPa 

          QHeater = me Tank(he - hi)Heater 

     = 591.445(612.9 - 270.3) = 202 629 kJ  
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Heat transfer problems 
 
6.135 
 Liquid water at 80oC flows with 0.2 kg/s inside a square duct, side 2 cm insulated 

with a 1 cm thick layer of  foam k = 0.1 W/m K. If the outside foam surface is at 
25oC how much has the water temperature dropped for 10 m length of duct? 
Neglect the duct material and any corner effects (A = 4sL).  

 Solution: 
Conduction heat transfer 

Q
.

out = kA 
dT
dx = k 4 sL 

∆T
 ∆x = 0.1× 4×0.02×10×(80-25)/0.01 = 440 W 

 

Energy equation:  m
.

1h1= m
.

he + Q
.

out 

he– hi = -Q
.
/m

.
 = - (440/0.2) = -2200 J/kg = - 2.2 kJ/kg 

he= hi -2.2 kJ/kg = 334.88 – 2.2 = 332.68 kJ/kg 

Te = 80 – 
2.2

334.88-313.91 5 = 79.48oC 

∆T = 0.52oC 
We could also have used he– hi = Cp∆T 

 
 

s

Lcb
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6.136 
 A counter-flowing heat exchanger conserves energy by heating cold outside fresh 

air at 10oC with the outgoing combustion gas (air) at 100oC. Assume both flows 
are 1 kg/s and the temperature difference between the flows at any point is 50oC. 
What is the incoming fresh air temperature after the heat exchanger? What is the 
equivalent (single) convective heat transfer coefficient between the flows if the 
interface area is 2 m2?  

 
 Solution: 
 
 The outside fresh air is heated up to T4 = 50oC  (100 – 50), the heat transfer 

needed is 

Q
.
 = m

.
∆h = m

.
Cp∆T  = 1 kg/s × 1.004 

kJ
kg K × (50 – 10) K = 40 kW 

 This heat transfer takes place with a temperature difference of 50oC throughout 
   

  Q
.
 = h A ∆T     ⇒ h = 

Q
.

A∆T = 
40 000
2 × 50 

W
m2 K = 400 

W
m2 K 

 
  

Often the flows may 
be concentric as a 
smaller pipe inside a 
larger pipe. 

         

Wall

1 2

34

Heat transfer
Hot gas

fresh air
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6.137 
 Saturated liquid water at 1000 kPa flows at 2 kg/s inside a 10 cm outer diameter 

steel pipe and outside of the pipe is a flow of hot gases at 1000 K with a 
convection coefficient of h = 150 W/m2 K. Neglect any ∆T in the steel and any 
inside convection h and find the length of pipe needed to bring the water to 
saturated  vapor. 

  
 Solution: 

  Energy Eq. water:  Q
.
 = m

.
 (he – hi) = m

.
 hfg 

  Table B.1.2: hfg = 2015.29 kJ/kg,  T = Tsat = 179.91oC = 453.1 K 
 
  The energy is transferred by heat transfer so 

    Q
.
 =  h A ∆T = h πD L ∆T 

 
  Equate the two expressions for the heat transfer and solve for the length L 
 

   L = 
Q
.

h πD ∆T = 
m
.

hfg
h πD ∆T = 

2 × 2015.29 × 1000
150 × π × 0.1 ×(1000 - 453.1)  

      = 156.4 m 
 

 L
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6.138 
 A flow of 1000 K, 100 kPa air with 0.5 kg/s in a furnace flows over a steel plate 

of surface temperature 400 K. The flow is such that the convective heat transfer 
coefficient is h = 125 W/m2 K. How much of a surface area does the air have to 
flow over to exit with a temperature of 800 K?  How about 600 K? 

 Solution: 
Convection heat transfer 

Q
.
 = hA ∆T 

Inlet: ∆Ti = 1000 - 400 = 600 K 
 
a)   

Exit: ∆Te = 800 - 400 = 400 K, 
      so we can use an average of ∆T = 500 K for heat transfer 

Q
.
 = m

.
a (hi – he) = 0.5(1046.22 – 822.2) =112 kW 

A = 
Q
.

h ∆T = 
112 × 1000
125 × 500  = 1.79 m2 

b)  

Q
.
 = m

.
a (hi – he) = 0.5 (1046.22 – 607.32) = 219.45 kW 

Exit: ∆Tout = 600 - 400 = 200 K,    
so we have an average of ∆T = 400 K for heat transfer 

A = 
Q
.

h∆T = 
219.45 × 1000

125 × 400  = 4.39 m2 

 
 

 

400 K

air1000 K Texit

Q from air to steel
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Concept-Study Guide Problems 
 
6.139E 
 Liquid water at 60 F flows out of a nozzle straight up 40 ft. What is nozzle  Vexit? 
  

Energy Eq.6.13: hexit +  12 V2
exit + gHexit = h2 + 12 V2

2 + gH2 
 
 If the water can flow 40 ft up it has specific potential energy of  gH2 which must 

equal the specific kinetic energy out of the nozzle V 2
exit/2. The water does not 

change P or T so h is the same. 
 

   V 2
exit/2 = g(H2 – Hexit) = gH    =>  

   Vexit = 2gH = 2 × 32.174 × 40 ft2/s2 = 50.7 ft/s 
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6.140E 
 R-134a at 90 F, 125 psia is throttled so it becomes cold at 10 F. What is exit P? 
 

 State 1 is slightly compressed liquid so  
   Table F.5.1:  h = hf = 105.34 Btu/lbm 
 At the lower temperature it becomes two-phase since the throttle flow has 

constant h and at 10 F:  hg = 168.06 Btu/lbm 
  
   P = Psat = 26.8 psia 

 
 ���

���
1 2

 2

P

v

1

T

 
h = C

h = C
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6.141E 
 In a boiler you vaporize some liquid water at 103 psia flowing at 3 ft/s. What is 

the velocity of the saturated vapor at 103 psia if the pipe size is the same? Can the 
flow then be constant P? 

 
 
  The continuity equation with average values is written 
    m

.
i = m

.
e = m

.
 = ρAV = AV/v = AVi/vi = AVe/ve 

 
  From Table F.7.2 at 103 psia we get 
    vf = 0.01776  ft3/kg;   vg = 4.3115  ft3/kg  
   

    Ve = Vi ve/vi = 3 
4.3115
0.01776 = 728 ft/s 

 
   To accelerate the flow up to that speed you need a large force ( ∆PA ) so a 

large pressure drop is needed. 
 

 
 
 
                         Pi cb

 

Pe  <  Pi 
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6.142E 
 Air at 60 ft/s, 480 R, 11 psia with 10 lbm/s flows into a jet engine and it flows out 

at 1500 ft/s, 1440 R, 11 psia. What is the change (power) in flow of kinetic 
energy? 

 
 

   m
.

 ∆KE = m
.

 12 (V2
e – V2

i )  

               = 10 lbm/s × 12 (15002 – 602) (ft/s)2 
1

32.174 (lbf/lbm-ft/s2)  

          = 349 102 lbf-ft/s = 448.6 Btu/s 
 

  

cb  
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6.143E 
 An initially empty cylinder is filled with air from 70 F, 15 psia until it is full. 

Assuming no heat transfer is the final temperature larger, equal to or smaller than 
70 F? Does the final T depends on the size of the cylinder? 

 
   This is a transient problem with no heat transfer and no work. The balance 

equations for the tank as C.V. become 
   Continuity Eq.: m2 – 0 = mi  
   Energy Eq.: m2u2 – 0 = mihi + Q – W = mihi + 0 – 0 
 
   Final state:  u2 = hi & P2 = Pi 
    

 T2 > Ti   and it does not depend on V 
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Continuity and Flow Rates 
 
6.144E 
  Air at 95 F, 16 lbf/in.2, flows in a 4 in. × 6 in. rectangular duct in a heating 

system. The volumetric flow rate is 30 cfm (ft3/min). What is the velocity of the 
air flowing in the duct? 
 
Solution: 
Assume a constant velocity across the duct area with  

  A = 4 × 6 × 
1

144 = 0.167 ft2 

and the volumetric flow rate from Eq.6.3, 
  V

.
 = m

.
v = AV   

  V = 
V
.

A = 
30

60 × 0.167 = 3.0 ft/s 

Ideal gas so note:  
 

   





 note ideal gas:    v = 

RT
P  = 

53.34 × 554.7
16 × 144  = 12.842 ft3/lbm

         m
.

 = 
V
.

v = 
30

60 × 12.842 = 0.0389 lbm/s 
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6.145E 
 A hot air home heating system takes 500 ft3/min (cfm) air at 14.7 psia, 65 F into a 

furnace and heats it to 130 F and delivers the flow to a square duct 0.5 ft by 0.5 ft 
at 15 psia. What is the velocity in the duct? 

  
     Solution: 
 
 The inflate flow is given by a m

.
i 

Continuity Eq.: m
.

i = V
.

i / vi = m
.

e = AeVe/ve 
 

Ideal gas: vi = 
RTi
Pi

 = 
53.34 × 525
14.7 × 144  = 13.23 

ft3
lbm 

    ve = 
RTe
Pe

 = 
53.34 × (130 + 460)

15 × 144  

                     = 14.57 ft3/ lbm                

 

 
   m

.
i = V

.
i/vi = 500/(60 × 13.23) = 0.63 lbm/s 

        Ve = m
.

 ve/ Ae = 
0.63 × 14.57

0.5 × 0.5   
ft3/s
ft2

 = 36.7 ft/s  
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6.146E 
  Saturated vapor R-134a leaves the evaporator in a heat pump at 50 F, with 

a steady mass flow rate of 0.2 lbm/s. What is the smallest diameter tubing that can 
be used at this location if the velocity of the refrigerant is not to exceed 20 ft/s? 
Solution: 
Mass flow rate Eq.6.3: m

.
 = V

.
/v = AV/v 

Exit state Table F.10.1:  (T = 50 F,  x =1)     =>    v = vg = 0.792 ft3/lbm 

The minimum area is associated with the maximum velocity for given m
.

 

AMIN = 
m
.

vg
VMAX

  = 
0.2 lbm/s × 0.792 ft3/lbm

20 ft/s  = 0.00792 ft2 =  
π
4 D2

MIN 

DMIN == 0.1004 ft  = 1.205 in 
 
 
 

cb

 

Exit 
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Single Flow Devices 
 
6.147E 
  A pump takes 40 F liquid water from a river at 14 lbf/in.2 and pumps it up 

to an irrigation canal 60 ft higher than the river surface. All pipes have diameter 
of 4 in. and the flow rate is 35 lbm/s. Assume the pump exit pressure is just 
enough to carry a water column of the 60 ft height with 15  lbf/in.2 at the top. 
Find the flow work into and out of the pump and the kinetic energy in the flow. 

Solution: 
 

 Flow work   m
.

Pv;  

Table F.7.1    vi = vf  = 0.01602 ft3/lbm 
Pe = Po + Hg/v  

     = [15 + 
60 × 32.174

32.174 × 0.01602 ×144 ] lbf/in2 

     = (15 + 26)  lbf/in2 = 41 lbf/in2 
 

i

e

H

cb

 

   
 W

.
flow, i = m

.
Pv = 35 × 14 × 0.01602 ×144/778 = 1.453 Btu/s  

 Vi = Ve = m
.

v/ ( 
π
4 D2 ) = 35 × 0.01602 × 144/( 

π
4 42) = 6.425 ft/s 

 KEi = 12 Vi2 = KEe= 12Ve2 = 12(6.425)2 ft2/s2 = 20.64 ft2/s2  

  = 20.64/(32.174×778)  =  0.000825 Btu/lbm 
 W

.
flow, e = m

.
Pe ve = 35 × 41 × 0.01602 × 144/778 = 4.255 Btu/s 
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6.148E 
  In a jet engine a flow of air at 1800 R, 30 psia and 90 ft/s enters a nozzle where 

the air exits at 1500 R, 13 psia, as shown in Fig. P.6.33. What is the exit velocity 
assuming no heat loss?     
 Solution:    

C.V. nozzle. No work, no heat transfer 
Continuity   m. i = m. e = m.  
Energy : m.  (hi + ½Vi

2) = m. (he+ ½Ve
2) 

Due to high T take h from table F.5 
 

 ½Ve
2 = ½ Vi

2 + hi  - he 

        = 
902

2 ×32.174 ×778 + 449.79 – 369.28 

        = 0.16 + 80.51 = 80.67 Btu/lbm 
 
Ve = (2 × 32.174 ×778 × 80.67)1/2   
     = 2010 ft/s 

 

 
 



   Sonntag, Borgnakke and Wylen 
 

 
6.149E 
  Nitrogen gas flows into a convergent nozzle at 30 lbf/in.2, 600 R and very 

low velocity. It flows out of the nozzle at 15 lbf/in.2, 500 R. If the nozzle is 
insulated find the exit velocity. 
Solution: 
C.V. Nozzle steady state one inlet and exit flow, insulated so it is adiabatic. 

 
  

Inlet

Low V

Exit

Hi V

Hi P, A Low P, Acb  
 

Energy Eq.6.13:          h1 + ∅  = h2  + 12 V2
2 

 V2
2 = 2 ( h1 - h2 ) ≅ 2 CPN2  (T1 – T2 ) = 2 × 0.249 × (600 – 500)  

       = 24.9 Btu/lbm 

  V2
2 = 2 × 24.9 × 778 ×32.174 ft2/s2 = 1 246 562 ft2 / s2 

   V2 = 1116 ft/s 
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6.150E 
  A diffuser shown in Fig. P6.36 has air entering at 14.7 lbf/in.2, 540 R, 

with a velocity of 600 ft/s. The inlet cross-sectional area of the diffuser is 0.2 in.2. 
At the exit, the area is 1.75 in.2, and the exit velocity is 60 ft/s. Determine the exit 
pressure and temperature of the air. 
Solution: 
Continuity Eq.6.3:  m

.
i = AiVi/vi = m

.
e = AeVe/ve,  

Energy Eq.(per unit mass flow)6.13: hi + 12Vi
2 = he + 12Ve

2 

he - hi = (1/2)×(6002 - 602)/(32.174×778) = 7.119 Btu/lbm 

 Te = Ti + (he - hi)/Cp = 540 + 7.119/0.24 = 569.7 R 

Now use the continuity equation and the ideal gas law 

 ve = vi 





AeVe

AiVi
 = (RTi/Pi) 






AeVe

AiVi
 = RTe/Pe 

 Pe = Pi  





Te

Ti
 






AiVi

AeVe
 = 14.7 



569.7

540  






0.2 × 600

1.75 × 60  = 17.72 lbf/in.2 

 
  

Inlet

Low V

Exit

Hi V

Hi P, ALow P, A
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6.151E 
  Helium is throttled from 175 lbf/in.2, 70 F, to a pressure of 15 lbf/in.2. The. 

diameter of the exit pipe is so much larger than the inlet pipe that the inlet and exit 
velocities are equal. Find the exit temperature of the helium and the ratio of the pipe 
diameters. 
C.V. Throttle. Steady state, 
Process with: q = w = 0;   and    Vi = Ve,   Zi = Ze 

Energy Eq.6.13:     hi = he,        Ideal gas   =>     Ti = Te = 75 F 

 m
.

 = 
AV

RT/P      But  m
.

, V, T are constant     =>     PiAi = PeAe 

   ⇒      
De
Di

 = 






Pi

Pe

1/2
 = 



175

15
1/2

 = 3.416 
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6.152E 
  Water flowing in a line at 60 lbf/in.2, saturated vapor, is taken out through 

a valve to 14.7 lbf/in.2. What is the temperature as it leaves the valve assuming no 
changes in kinetic energy and no heat transfer? 

 
 C.V. Valve.  Steady state, single inlet and exit flow 
 Continuity Eq.:    m

.
1 = m

.
2  

 Energy Eq.6.12:      m
.

1h1 + Q
.
 = m

.
2h2 + W

.
 

 
  

���
���

1 2

 

      Process:  Throttling 
      Small surface area:  Q

.
 = 0;    

      No shaft:      W
.

 = 0   

  
      Table F.7.1          h2 = h1 = 1178 btu/lbm    ⇒  T2 = 254.6 F 
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6.153E 
 A small, high-speed turbine operating on compressed air produces a power output 

of 0.1 hp. The inlet state is 60 lbf/in.2, 120 F, and the exit state is 14.7 lbf/in.2,  
−20 F. Assuming the velocities to be low and the process to be adiabatic, find the 
required mass flow rate of air through the turbine. 
Solution: 
C.V. Turbine, no heat transfer, no ∆KE, no ∆PE 
Energy Eq.6.13:      hin = hex + wT   

Ideal gas so use constant specific heat from Table A.5 
  wT = hin - hex ≅ Cp(Tin - Tex) 

         = 0.24(120 - (-20)) = 33.6 Btu/lbm 
 W

.
 = m

.
wT      ⇒    

      m
.

 = W
.

/wT = 
0.1 × 550
778 × 33.6 = 0.0021 lbm/s = 7.57 lbm/h 

 
  

The dentist’s drill has a small 
air flow and is not really 
adiabatic. 
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6.154E 
  Hoover Dam across the Colorado River dams up Lake Mead 600 ft higher 

than the river downstream, as shown in  Fig. P6.51. The electric generators driven 
by water-powered turbines deliver 1.2 × 106 Btu/s. If the water is 65 F, find the 
minimum amount of water running through the turbines. 
Solution: 
C.V.: H2O pipe + turbines,  

  
 

T

H
DAMLake

Mead

 

 
 Continuity:     m

.
in = m

.
ex; 

 Energy Eq.6.13:      (h+ V2/2 + gz)in = (h+ V2/2 + gz)ex + wT 

Water states:    hin ≅ hex ;    vin ≅ vex    

Now the specific turbine work becomes 
    wT = gzin - gzex =  (32.174/32.174) × 600/778 = 0.771 Btu/lbm 

 m
.

 = W
.

T/wT = 1.2×106/0.771 = 1.556×106 lbm/s 

   V
.
 = m

.
v = 1.556×106 × 0.016043 = 24 963 ft3/s 
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6.155E 
 A small expander (a turbine with heat transfer) has 0.1 lbm/s helium entering at 

160 psia, 1000 R and it leaves at 40 psia, 540 R. The power output on the shaft is 
measured to 55 Btu/s. Find the rate of heat transfer neglecting kinetic energies. 

 
 Solution: 
  

C.V. Expander. Steady operation 
 
Continuity Eq.: m

.
i= m

.
e = m

.
 

Energy Eq.: m
.

hi + Q
.
 = m

.
he + W

.
 

WT

i

e

Q
.

cb

 
  Q

.
 = m

.
 (he-hi) + W

.
 

  Use heat capacity from Table F.4:     Cp He = 1.24 Btu/lbm R 

  Q
.
 = m

.
Cp (Te-Ti) + W

.
 

      = 0.1 lbm/s × 1.24 Btu/lbm R (540 - 1000) R + 55 btu/s 
      = - 57.04 + 55 = -2.0 Btu/s 
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6.156E 
 An exhaust fan in a building should be able to move 5 lbm/s air at 14.4 psia, 68 F 

through a 1.25 ft diameter vent hole. How high a velocity must it generate and 
how much power is required to do that? 

 
 Solution: 

C.V. Fan and vent hole. Steady state with uniform velocity out. 
Continuity Eq.: m

.
 = constant = ρΑV = AV / v =AVP/RT 

Ideal gas :     Pv = RT,    and area is  A = 
π
4 D2 

Now the velocity is found 

 V = m
.

 RT/(
π
4 D2 P) = 

5 × 53.34 × (459.7 + 68)
π
4  × 1.252 × 14.4 × 144

 = 55.3 ft/s  

The kinetic energy out is  

 1
2 V2

2 =  12 × 55.32 / 32.174 = 47.52 lbf-ft/lbm 

which is provided by the work (only two terms in energy equation that does not 
cancel, we assume V1 = 0) 

  W
.

in = m
.

 12 V2
2
 = 5 × 47.52 = 237.6 lbf-ft/s = 0.305 Btu/s 
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6.157E 
 In a steam generator, compressed liquid water at 1500 lbf/in.2, 100 F, enters a 

1-in. diameter tube at the rate of 5 ft3/min. Steam at 1250 lbf/in.2, 750 F exits the 
tube. Find the rate of heat transfer to the water. 
Solution: 
C.V. Steam generator. Steady state single inlet and exit flow. 

Constant diameter tube:       Ai = Ae = 
π
4 



1

12
2
 = 0.00545 ft2 

Table B.1.4       m
.

  = V
.

i/vi = 5 × 60/0.016058 = 18 682 lbm/h 

 Vi = V
.

i/Ai = 5/(0.00545× 60) = 15.3 ft/s 

Exit state properties from Table B.1.3 
      Ve = Vi × ve/vi = 15.3× 0.503/0.016058 = 479.3 ft/s 

The energy equation Eq.6.12 is solved for the heat transfer as 

      Q
.
 = m

.
  (he - hi) + ( )Ve

2 - Vi
2  /2  

   = 18 682[1342.4 - 71.99 + 
479.32-15.32

2×32.174×778]  =   2.382×107 Btu/h 

 
 
 
 
 
Typically hot 
combustion 
gas in                 

                            Steam exit 

cb

 
      liquid water in 

 
gas 
out 
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6.158E 
 Carbon dioxide gas enters a steady-state, steady-flow heater at 45 lbf/in.2 60 F, 

and exits at 40 lbf/in.2, 1800 F. It is shown in Fig. P6.63 here changes in kinetic 
and potential energies are negligible. Calculate the required heat transfer per lbm 
of carbon dioxide flowing through the heater. 
Solution: 
C.V. Heater Steady state single inlet and exit flow.    
Energy Eq.6.13:      q + hi = he 

 
 

Q

i
e

 

 

 

Table  F.6         q = he - hi = 
20470.8 - (-143.4)

44.01  = 468.4 Btu/lbm 

 (Use CP0 then q ≅ 0.203(1800 - 60) = 353.2 Btu/lbm) 

 Too large ∆T, Tave to use Cp0 at room temperature. 
 



   Sonntag, Borgnakke and Wylen 
 

 
6.159E 
 A flow of liquid glycerine flows around an engine, cooling it as it absorbs energy. 

The glycerine enters the engine at 140 F and receives 13 hp of heat transfer. What 
is the required mass flow rate if the glycerine should come out at a maximum 200 
F?  
  Solution: 

C.V. Liquid flow (glycerine is the coolant), steady flow. no work. 
Energy Eq.: m

.
hi + Q

.
 = m

.
he 

m
.

 = Q
.
/( he - hi)  = 

Q
.

Cgly (Te - Ti) 
 

            From table F.3:      Cgly = 0.58 Btu/lbm R 

m
.

 = 
13 hp × (2544.4/3600) btu/s-hp
0.58 btu/lbm-R (200 – 140) R   = 0.264 lbm/s 

 
 

Exhaust flow

Air intake filter

Coolant flow

Atm.
airShaft

Fan

power

Radiator

cb
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6.160E 
  A small water pump is used in an irrigation system. The pump takes water 

in from a river at 50 F, 1 atm at a rate of 10 lbm/s. The exit line enters a pipe that 
goes up to an elevation 60 ft above the pump and river, where the water runs into 
an open channel. Assume the process is adiabatic and that the water stays at 50 F. 
Find the required pump work. 

Solution: 
C.V. pump + pipe. Steady state , 1 inlet, 1 exit flow. Assume same velocity in 

and out, no heat transfer. 
Continuity Eq.:    m

.
in = m

.
ex = m

.
 

 Energy Eq.6.12: 
    m

.
(hin + (1/2)Vin2 + gzin) =  

                       m
.

(hex + (1/2) Vex
2 + gzex) + W

.
 

States:  hin = hex  same  (T, P) 
i

e

H

cb

 
 

     W
.

 = m
.

g(zin - zex) = 10lbm/s × 
32.174 ft/s2

32.174 lbm ft/s2 /lbf × (- 60) ft  

      = -600 lbf-ft/s = -0.771 Btu/s 
         I.E.   0.771 Btu/s   required input 
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Multiple Flow Devices 
 
6.161E 
  A steam turbine receives water at 2000 lbf/in.2, 1200 F at a rate of 200 

lbm/s as shown in Fig. P6.78. In the middle section 40 lbm/s is withdrawn at 300 
lbf/in.2, 650 F and the rest exits the turbine at 10 lbf/in.2, 95% quality. Assuming 
no heat transfer and no changes in kinetic energy, find the total turbine work. 

 
C.V. Turbine   Steady state, 1 inlet and 2 exit flows. 
Continuity Eq.6.9:  m

.
1 = m

.
2 + m

.
3 ;  => m

.
3 = m

.
1 - m

.
2 = 160 lbm/s  

Energy Eq.6.10:      m
.

1h1 = W
.

T + m
.

2h2 + m
.

3h3 
 
 Table F.7.2     h1 = 1598.6 Btu/lbm,    

                       h2 = 1341.6 Btu/lbm 

Table F.7.1 :   h3 = hf + x3hfg = 161.2 + 0.95 × 982.1  

                            = 1094.2 Btu/lbm 
WT

1
2

3
 

 
From the energy equation, Eq.6.10 

 
 W

.
T = m

.
1h1 - m

.
2h2 - m

.
3h3 = 200 ×1598.6 – 40 ×1341.6 – 160 ×1094.2 

        = 9.1 × 104 Btu/s 
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6.162E 
  A condenser, as the heat exchanger shown in Fig. P6.84, brings 1 lbm/s 

water flow at 1 lbf/in.2 from 500 F to saturated liquid at 1 lbf/in.2. The cooling is 
done by lake water at 70 F that returns to the lake at 90 F. For an insulated 
condenser, find the flow rate of cooling water. 

 Solution: 
C.V. Heat exchanger 
Energy Eq.6.10:  m

.
coolh70 + m

.
H2Oh500 =  m

.
coolh90 + m

.
H2Ohf 1 

 
 

m 
. 
cool

1 lbm/s
sat. liq.500 F

90 F 70 F  

 

 
Table F.7.1:  h70 = 38.09 Btu/lbm,  h90 = 58.07 Btu/lbm,  hf,1 = 69.74 Btu/lbm 

Table F.7.2:   h500,1 = 1288.5 btu/lbm 

 m
.

cool = m
.

H2O 
h500 - hf, 1
h90 - h70

 = 1 × 
1288.5 - 69.74
58.07 - 38.09  = 61 lbm/s 
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6.163E 
  A heat exchanger is used to cool an air flow from 1400 to 680 R, both 

states at 150 lbf/in.2. The coolant is a water flow at 60 F, 15 lbf/in.2 and it is 
shown in Fig. P6.86. If the water leaves as saturated vapor, find the ratio of the 
flow rates   m

.
H2O/m

.
air. 

Solution: 
  

C.V. Heat exchanger, steady flow 1 inlet 
and 1 exit for air and water each. The 
two flows exchange energy with no heat 
transfer to/from the outside. 
 

3 water1 air

4
2

 
 

Continuity Eqs.:     Each line has a constant flow rate through it. 
Energy Eq.6.10: m

.
airh1 + m

.
H2Oh3 = m

.
airh2 + m

.
H2Oh4 

Process: Each line has a constant pressure. 
Table F.5:  h1 = 343.016 Btu/lbm,   h2 = 162.86 Btu/lbm 

Table F.7:  h3 = 28.08 Btu/lbm,   h4 = 1150.9  Btu/lbm  (at 15 psia) 

          m
.

H2O/m
.

air = 
h1 - h2
h4 - h3

 = 
343.016 - 162.86
1150.9 - 28.08  = 0.1604 
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6.164E 
 An automotive radiator has glycerine at 200 F enter and return at 130 F as shown 

in Fig.  P6.88. Air flows in at 68 F and leaves at 77 F. If the radiator should 
transfer 33 hp what is the mass flow rate of the glycerine and what is the volume 
flow rate of air in at 15 psia?  

 Solution: 
If we take a control volume around the whole radiator then there is no external 
heat transfer - it is all between the glycerin and the air. So we take a control 
volume around each flow separately. 
 
Heat transfer: Q

.
 = 33 hp = 33 × 2544.4 / 3600 = 23.324 Btu/s 

      Glycerine:  m
.

hi + (-Q
.
) = m

.
he  

Table F.3:    m
.

gly = 
-Q

.

he - hi
 = 

-23.324
0.58(130 - 200) = 0.574 lbm/s 

 
Air      m

.
hi + Q

.
 = m

.
he 

Table F.4:   m
.

air = 
Q
.

he - hi
 = 

Q
.

Cair(Te-Ti)
 = 

23.324
 0.24(77 - 68) = 8.835 lbm/s 

 

V
.
 = m

.
vi ;    vi = 

RTi
Pi

 =  
53.34 × 527.7

15 × 144   = 13.03 ft3/lbm 

V
.

air = m
.

vi = 8.835 × 13.03 = 115 ft3/s 
 
 
 

Exhaust flow

Air intake filter

Coolant flow 55 C

Atm.
airShaft

power

95 C

o

o
cb
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6.165E 
  An insulated mixing chamber receives 4 lbm/s R-134a at 150 lbf/in.2, 220 

F in a line with low velocity. Another line with R-134a as saturated liquid 130 F 
flows through a valve to the mixing chamber at 150 lbf/in.2 after the valve. The 
exit flow is saturated vapor at 150 lbf/in.2 flowing at 60 ft/s. Find the mass flow 
rate for the second line. 
Solution: 
C.V. Mixing chamber. Steady state, 2 inlets and 1 exit flow. 
    Insulated  q = 0,   No shaft or boundary motion   w = 0. 
Continuity Eq.6.9:     m

.
1 + m

.
2 = m

.
3 ;     

Energy Eq.6.10:      m
.

1h1 + m
.

2h2  = m
.

3( h3 + 12 V2
3
  ) 

  m
.

2 (h2 – h3 – 12 V2
3
  ) = m

.
1 ( h3 + 12 V2

3
  – h1 ) 

 
 State 1:  Table F.10.1:     150 psia, 220 F,   h1 = 209.63 Btu/lbm 
 State 2:  Table F.10.1:     x = 0, 130 F,        h2 = 119.88 Btu/lbm 

State 3:  Table F.10.2:     x = 1, 150 psia,    h3 = 180.61 Btu/lbm 

  1
2 V2

3
  =  12  × 602 /(32.174 × 778)  = 0.072 Btu/lbm 

  m
.

2 = m
.

1 (h3 + 12 V2
3 – h1)/ (h2 - h3 - 

1
2 V2

3 ) 

        = 4 (180.61 + 0.072 – 209.63)/ (119.88 – 180.61- 0.072) = 1.904 lbm/s 
 

Notice how kinetic energy was insignificant. 
 
 

1

2
3MIXING

CHAMBER
cb

 

2

P

v

3 1
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Multiple Devices, Cycle Processes 
 
6.166E 
  An air compressor takes in air at 14 lbf/in.2, 60 F and delivers it at 140 

lbf/in.2, 1080 R to a constant-pressure cooler, which it exits at 560 R. Find the 
specific compressor work and the specific heat transfer. 

 
 Solution 

C.V. air compressor  q = 0 
Continuity Eq.:      m

.
2 = m

.
1 

Energy Eq.6.13: h1 + wc = h2 

    
 

1
32

Q cool

Compressor

-Wc  
 
           Compressor section           Cooler section 

 

 
Table F.5: 
     wc  in = h2 - h1 = 261.1 - 124.3 = 136.8 Btu/lbm 

C.V. cooler  w = 0/           
Continuity Eq.:     m

.
3 = m

.
1           

Energy Eq.6.13:     h2 = qout + h3 

  qout = h2 - h3 = 261.1 - 133.98 = 127.12 Btu/lbm 
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6.167E 
 The following data are for a simple steam power plant as shown in Fig. P6.99. 
    

State 1 2 3 4 5 6 7 
P psia 900 890 860 830 800 1.5 1.4 
T F  115 350 920 900  110 
h Btu/lbm - 85.3 323 1468 1456 1029 78 

 
State 6 has x6 = 0.92, and velocity of 600 ft/s. The rate of steam flow is 200 000 
lbm/h, with 400 hp input to the pump. Piping diameters are 8 in. from steam 
generator to the turbine and 3 in. from the condenser to the steam generator. 
Determine the power output of the turbine and the heat transfer rate in the 
condenser. 

 Turbine:    A5 = πD2
5/4 = 0.349 ft2,   v5 = 0.964 ft3/lbm 

  V5  = m
.

v5/A5 == 
200 000 × 0.964

3600 × 0.349  = 153 ft/s 

  w = (h5 + 0.5V2
5) – (h6 + 0.5V2

6)  = 1456 - 1029 - 
6002 - 1532

2 × 25 037   

      = 420.2 Btu/lbm 

Recall the conversion 1 Btu/lbm = 25 037 ft2/s2, 1 hp = 2544 Btu/h 

  W
.

TURB = 
420.2 × 200 000

2544  = 33 000 hp 
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6.168E 
  For the same steam power plant as shown in Fig. P6.99 and Problem 

6.167E determine the rate of heat transfer in the economizer which is a low 
temperature heat exchanger and the steam generator. Determine also the flow rate 
of cooling water through the condenser, if the cooling water increases from 55 to 
75 F in the condenser. 

Condenser:  A7 = πD2
7/4 = 0.0491 ft2,   v7 = 0.01617 ft3/lbm 

    V7 =  m
.

v7/A7 = 
200000 × 0.01617

3600 × 0.0491  = 18 ft/s 

  q = 78.02 - 1028.7 + 
182 - 6002

2 × 25 037 = -957.9 Btu/lbm 

  Q
.

COND = 200 000 (-957.9) = -1.916×108 Btu/h 

 Economizer V3 ≈ V2   since liquid v is constant:   v3 ≈ v2 and A3 = A2,   

  q = h3 – h2 = 323.0 - 85.3 = 237.7 Btu/lbm 

  Q
.

ECON = 200 000 (237.7) = 4.75×107 Btu/h 

 Generator:   A4 = πD2
4/4 = 0.349 ft2,   v4 = 0.9595 ft3/lbm 

 V4 = m
.

v4/A4 =  
200 000 × 0.9505

3600 × 0.349  = 151 ft/s 

 A3 = πD2
3/4 = 0.349 ft2,   v3 = 0.0491 ft3/lbm 

  V3 =  m
.

v3/A3 =  
200 000 × 0.0179

3600 × 0.0491  = 20 ft/s ,   

  q = 1467.8 - 323.0 +  
1512 - 202

2 × 25 037 = 1145.2 Btu/lbm 

  Q
.

GEN = 200 000 × (1145.2) = 2.291×108 Btu/h 
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6.169E 
 A proposal is made to use a geothermal supply of hot water to operate a steam 

turbine, as shown in Fig. P6.105. The high pressure water at 200 lbf/in.2, 350 F, is 
throttled into a flash evaporator chamber, which forms liquid and vapor at a lower 
pressure of 60 lbf/in.2. The liquid is discarded while the saturated vapor feeds the 
turbine and exits at 1 lbf/in.2, 90% quality. If the turbine should produce 1000 hp, 
find the required mass flow rate of hot geothermal water in pound-mass per hour. 
Solution: 

  
Separation of phases in flash-evaporator 
constant h in the valve flow so 
Table F.7.3:   h1 = 321.8 Btu/lbm 

h1 = 321.8 = 262.25 + x × 915.8  

      ⇒   x = 0.06503 = m
.

2/m
.

1 

Table F.7.2:     h2 = 1178.0 Btu/lbm;     
 

FLASH 
EVAP. 

H O 2 

Sat. liq.  
out 

Sat. vap.  

W 
Turb

1

2

3

4

.

Table F.7.1:   h3 = 69.74 + 0.9 × 1036 = 1002.1 Btu/lbm 

 W
.

 = m
.

2(h2 - h3)     =>     m
.

2 = 
1000 × 2545

1178.0 - 1002.1 = 14 472 lbm/h 

 ⇒ m
.

1 = 222 539 lbm/h 
 
  Notice conversion   1 hp = 2445 Btu/h  from Table A.1 
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Transient Processes 
 
6.170E 
  A 1-ft3 tank, shown in Fig. P6.111, that is initially evacuated is connected 

by a valve to an air supply line flowing air at 70 F, 120 lbf/in.2. The valve is 
opened, and air flows into the tank until the pressure reaches 90 lbf/in.2. 
Determine the final temperature and mass inside the tank, assuming the process is 
adiabatic. Develop an expression for the relation between the line temperature and 
the final temperature using constant specific heats. 

 
Solution: 

 C.V. Tank:     
Continuity Eq.6.15:  m2 = mi  

 Energy Eq.6.16:       m2u2 = mihi   

 Table F.5:    u2 = hi = 126.78 Btu/lbm  

               ⇒ T2 = 740 R 

TANK

 

 

  m2 = 
P2V
RT2

 = 
90 × 144 × 1
53.34 × 740  = 0.3283 lbm 

 
Assuming constant specific heat, 
   hi = ui + RTi = u2 ,    RTi = u2 - ui = CVo(T2 - Ti) 

   CVoT2 = (CVo + R)Ti = CPoTi  ,  T2 =  (CPo/CVo)  Ti = kTi 

   For Ti = 529.7 R  & constant   CPo,    T2 = 1.40 × 529.7 = 741.6 R 
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6.171E 
 Helium in a steel tank is at 40 psia, 540 R with a volume of  4 ft3. It is used to fill 

a balloon. When the tank pressure drops to 24 psia the flow of helium stops by 
itself. If  all the helium still is at 540 R how big a balloon did I get? Assume the 
pressure in the balloon varies linearly with volume from 14.7 psia (V = 0) to the 
final 24 psia. How much heat transfer did take place? 

  
Solution: 

 Take a C.V. of all the helium. 
This is a control mass, the tank mass 

changes density and pressure. 
 
Energy Eq.:   U2 – U1  = 1Q2 - 1W2 
Process Eq.:   P = 14.7 + CV 
State 1:   P1, T1, V1 
State 2:   P2, T2, V2 = ? 

Ideal gas: 
       P2 V2 = mRT2 = mRT1 = P1V1  

c
i
r
c
u
s

t
h
e
r
m
o

cb

 

V2 = V1(P1/P2) = 4 × (40/24) = 6.6667 ft3 

Vbal = V2 – V1 = 6.6667 – 4 = 2.6667 ft3 

 

1W2 = ∫ P dV  = AREA = ½ ( P1 + P2 )( V2 –V1 )   

        =  ½( 40 + 24) × 2.6667 × 144  = 12 288 lbf-ft = 15.791 Btu 
U2 – U1  = 1Q2 - 1W2 = m (u2 – u1) = mCv ( T2 –T1 ) = 0 

  so    1Q2 = 1W2  = 15.79 Btu 

 
Remark: The process is transient, but you only see the flow mass if you 
select the tank or the balloon as a control volume. That analysis leads to 
more terms that must be elliminated between the tank control volume and 
the balloon control volume. 
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6.172E 
 A 20-ft3 tank contains ammonia at 20 lbf/in.2, 80 F. The tank is attached to a line 

flowing ammonia at 180 lbf/in.2, 140 F. The valve is opened, and mass flows in 
until the tank is half full of liquid, by volume at 80 F. Calculate the heat 
transferred from the tank during this process. 

 Solution: 
C.V. Tank.   Transient process as flow comes in. 

 
   m1 = V/v1 = 20/16.765  = 1.193 lbm 
   mf2 = Vf2/vf2 = 10/0.026677 = 374.855 lbm,    
   mg2 = Vg2/vg2 = 10/1.9531 = 5.120 lbm 
  m2 = mf2 + mg2 = 379.975 lbm      =>     x2 = mg2/ m2  = 0.013475  
  Table F.8.1,     u2 = 130.9 + 0.013475 × 443.4 = 136.9 Btu/lbm 
          u1 = 595.0 Btu/lbm,     hi = 667.0 Btu/lbm 
  Continuity Eq,: mi = m2 - m1 = 378.782 lbm ,     
  Energy eq.:  QCV + mihi = m2u2 - m1u1 
 
       QCV = 379.975 × 136.9 - 1.193 × 595.0 - 378.782 × 667.0  
    = -201 339 Btu 
 
  

���
���

line

Q
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6.173E 
  An initially empty bottle, V = 10 ft3, is filled with water from a line at 120 

lbf/in.2, 500 F. Assume no heat transfer and that the bottle is closed when the 
pressure reaches line pressure. Find the final temperature and mass in the bottle. 

Solution; 
C.V. Bottle, transient process with no heat transfer or work. 
Continuity Eq.6.15: m2 - m1 = min ;      
Energy Eq.6.16: m2u2 – m1u1 = - min hin 
State 1: m1 = 0    =>         m2 = min       and        u2 = hin  

State 2:  P2 = Pline ,  Table F.7          u2 = hin = 1277.1 Btu/lbm 

      ⇒ T2 ≅ 764 F,    v2 = 6.0105 ft3/lbm 

     m2 = V/v2 = 10/6.0105 = 1.664 lbm 

 
  

���
line
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6.174E 
  A nitrogen line, 540 R, and 75 lbf/in.2, is connected to a turbine that 

exhausts to a closed initially empty tank of 2000 ft3, as shown in Fig. P6.119. The 
turbine operates to a tank pressure of 75 lbf/in.2, at which point the temperature is 
450 R. Assuming the entire process is adiabatic, determine the turbine work. 
C.V. turbine & tank  ⇒  Transient problem 
 Conservation of mass:  mi = m2 = m 

 1st Law:  mihi = m2u2 + WCV ;  WCV = m(hi - u2) 

Inlet state:  Pi = 75 lbf/in2,  Ti = 540 R 

Final state 2:   P2 = 75 lbf/in2,  T2 = 450 R 

    v2 = RT2/P2 = 55.15 × 450/(75 × 144) = 2.298 ft3/lbm 

 m2 = V/v2 = 2000/2.298 = 870.32 lbm 

     hi - u2 = ui + RTi - u2 = RTi + Cv (Ti – T2) 

           = 
55.15
778.17 540 + 0.178 (540 – 450) = 38.27 + 16.02 = 54.29 

Btu
lbm 

 WCV = 870.32 × 54.29 = 47 250 Btu 
 
  

 

W 
Turb

1

2 TANK 

.

 

 

 



   Sonntag, Borgnakke and Wylen 
 

 
Review Problem 
 
6.175E 
 A mass-loaded piston/cylinder containing air is at 45 lbf/in.2, 60 F with a volume 

of 9 ft3, while at the stops V = 36 ft3. An air line, 75 lbf/in.2, 1100 R, is connected 
by a valve, as shown in Fig. P6.133. The valve is then opened until a final inside 
pressure of 60 lbf/in.2 is reached, at which point T=630 R. Find the air mass that 
enters, the work, and heat transfer.  

 Solution: 
C.V. Cylinder volume. 
Continuity Eq.6.15:   m2 - m1 = min  

Energy Eq.6.16:      m2u2 - m1u1 = minhline + 1Q2 - 1W2 
Process: P1 is constant to stops, then constant V to state 2 at P2 

State 1:  P1, T1       m1 = 
P1V
RT1

 = 
45 × 9 × 144
53.34 × 519.7  = 2.104 lbm 

 
  

Open to:   P2 = 60 lbf/in2 
 Table F.5:  
            hi = 266.13 btu/lbm 
            u1 = 88.68 Btu/lbm 
            u2 = 107.62 Btu/lbm 

= 45 lbf/in 
= 60°F  
= 9 ft  
  = 36 ft 

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���

× 

AIR 

P 
T 
V 
V 

A1

1 

1 

stop
3 

3 

2 ���

 
 

 P = P1 until V = Vstop then constant V 

 1W2 = ⌡⌠PdV = P1(Vstop - V1) = 45 × (36 - 9)
144
778 = 224.9 Btu 

 m2 = P2V2/RT2 = 60×36×144 /(53.34×630) = 9.256 lbm   

 1Q2 = m2u2 - m1u1 - mi hi + 1W2  

       = 9.256 × 107.62 - 2.104 × 88.68 -  7.152 × 266.13 + 224.9  
  = -868.9 Btu 
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  CHAPTER 7.  6th edition  Sonntag/Borgnakke/Wylen 
 
  This problem set compared to the fifth edition chapter 7 set. 
  Study guide problems 7.1-7.17  are all new 
 

New 5th New 5th New 5th 
18 new 43 new 68 40 
19 new 44 8 69 28 
20 1 45 21 70 new 
21 2 46 11 71 50 
22 new 47 12 72 29 
23 new 48 15 73 31 
24 new 49 13 74 19 
25 new 50 17 75 20 
26 9 mod 51 23 76 48 
27 16 mod 52 18 77 52 
28 new 53 44 78 new 
29 new 54 35 79 51 mod 
30 new 55 36 80 14 mod 
31 15 mod 56 25 81 30 
32 41 mod 57 32 82 new 
33 3 58 new 83 10 
34 4 59 24 84 33 
35 new 60 26 85 27 
36 5 61 22 86 34 
37 new 62 43 87 46 
38 new 63 45 88 47 
39 new 64 new 89 37 
40 new 65 38 90 42 
41 new 66 39 mod 91 49 
42 7 67 new   

 
 The English unit problem set compared to the fifth edition chapter 7 set and 
the current chapter 7 SI problem set. 
 

New 5th SI New 5th SI New 5th SI 
92 new 2 101 55 40 110 70 63 
93 new 3 102 56 44 111 59 80 
94 new 5 103 58 47 112 61 75 
95 new 7 104 60 48 113 66 73 
96 new 15 105 63 51 114 62 61 
97 54 20 106 64 60 115 67 84 
98 new 22 107 65 72 116 71 87 
99 new 30 108 68 - 117 72 91 
100 57 26 109 69 62 118 73 79mod 
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Concept-Study Guide Problems 
 
7.1 
   Electrical appliances (TV, stereo) use electric power as input. What happens to 

the power? Are those heat engines? What does the second law say about those 
devices?  

 
   Most electric appliances such as TV, VCR, stereo and clocks dissipate 

power in electrical circuits into internal energy (they get warm) some power goes 
into light and some power into mechanical energy. The light is absorbed by the 
room walls, furniture etc. and the mechanical energy is dissipated by friction so 
all the power eventually ends up as internal energy in the room mass of air and 
other substances. 

 
   These are not heat engines, just the opposite happens, namely electrical 

power is turned into internal energy and redistributed by heat transfer. These are 
irreversible processes.  

 
7.2 
  A gasoline engine produces 20 hp using 35 kW of heat transfer from burning fuel. 

What is its thermal efficiency and how much power is rejected to the ambient? 
 
   Conversion Table A.1:     20 hp = 20 × 0.7457 kW = 14.91 kW 

  Efficiency:               ηTH = W
.

out/Q
.

H = 
14.91

35  = 0.43 

 

   Energy equation:    Q
.

L = Q
.

H - W
.

out  = 35 – 14.91 = 20.1 kW 
 

                              Q
.

H 

                             ⇒ 
 

 

Q
.

L 

⇒ 
 
W
.

out 

⇒ 
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7.3 
  A refrigerator removes 1.5 kJ from the cold space using 1 kJ work input. How 

much energy goes into the kitchen and what is its coefficient of performance? 
 
   C.V. Refrigerator. The energy QH goes into the kitchen air. 
   Energy Eq.:  QH = W + QL = 1 + 1.5 = 2.5 kJ 

   COP:   β = 
QL
W  = 1.5 / 1 = 1.5 

 
The back side of 
the refrigerator 
has a black grille 
that heats the 
kitchen air. Other 
models have that 
at the bottom 
with a fan to 
drive the air over 
it. 

 

 

1

2

Air in, 3

Air out, 4

 

 
 
7.4 
  Assume we have a refrigerator operating at steady state using 500 W of electric 

power with a COP of 2.5. What is the net effect on the kitchen air? 
 
   Take a C.V. around the whole kitchen. The only energy term that crosses 

the control surface is the work input W
.

 apart from energy exchanged with the 

kitchen surroundings. That is the kitchen is being heated with a rate of W
.

. 
 

   Remark:  The two heat transfer rates are both internal to the kitchen. Q
.

H 

goes into the kitchen air and Q
.

L actually leaks from the kitchen into the 
refrigerated space, which is the reason we need to drive it out again. 

 



   Sonntag, Borgnakke and van Wylen 

 
7.5 
  A window air-conditioner unit is placed on a laboratory bench and tested in 

cooling mode using 750 W of electric power with a COP of 1.75. What is the 
cooling power capacity and what is the net effect on the laboratory? 

 

  Definition of COP: β = Q
.

L / W
.

 

  Cooling capacity: Q
.

L = β W
.

 = 1.75 × 750 = 1313 W 
 

  For steady state operation the Q
.

L comes from the laboratory and Q
.

H goes 

to the laboratory giving a net to the lab of  W
.

 = Q
.

H - Q
.

L = 750 W, that is 
heating it. 

 
   

 
 
 
7.6 
  Geothermal underground hot water or steam can be used to generate electric 

power. Does that violate the second law? 
 
  No. 
  Since the earth is not uniform we consider the hot water or steam supply 

as coming from one energy source (the high T) and we must reject heat to 
a low temperature reservoir as the ocean, a lake or the atmosphere which 
is another energy reservoir. 

 
  

Iceland uses a 
significant amount 
of steam to heat 
buildings and to 
generate 
electricity. 
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7.7 
  A car engine takes atmospheric air in at 20oC, no fuel, and exhausts the air at –

20oC producing work in the process. What do the first and the second laws say 
about that? 

  Energy Eq.:      W = QH − QL = change in energy of air.       OK 
  2nd law:            Exchange energy with only one reservoir.  NOT OK. 
  This is a violation of the statement of Kelvin-Planck. 
 
  Remark:  You cannot create and maintain your own energy reservoir. 
 
 
7.8 
  A windmill produces power on a shaft taking kinetic energy out of the wind. Is it 

a heat engine? Is it a perpetual machine? Explain. 
   

 
Since the wind is generated by a complex 
system driven by solar heat input and 
radiation out to space it is a kind of heat 
engine. 
 

 

 
 
   Within our lifetime it looks like it is perpetual. However with a different 

time scale the climate will change, the sun will grow to engulf the earth as it 
burns out of fuel. 

 
 
7.9 
  Ice cubes in a glass of liquid water will eventually melt and all the water approach 

room temperature. Is this a reversible process? Why? 
 
 

There is heat transfer from the warmer ambient 
to the water as long as there is a temperature 
difference. Eventually the temperatures 
approach each other and there is no more heat 
transfer. This is irreversible, as we cannot 
make ice-cubes out of the water unless we run 
a refrigerator and that requires a work from the 
surroundings, which does not leave the 
surroundings unchanged. 
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7.10 
  A room is heated with a 1500 W electric heater. How much power can be saved if 

a heat pump with a COP of 2.0 is used instead? 
 

   Assume the heat pump has to deliver 1500 W as the Q
.

H. 

   Heat pump:     β′ = Q
.

H/W
.

IN 

     W
.

IN = Q
.

H/β′ = 
1500

2  = 750 W 

   So the heat pump requires an input of 750 W thus saving the difference 

     W
.

saved = 1500 W – 750 W = 750 W 

 
 

H Q 

W 

L Q 
T L 

HP

Room

incb

 
 

 
 
7.11 
  If the efficiency of a power plant goes up as the low temperature drops why do 

they not just reject energy at say –40oC? 
 
  In order to reject heat the ambient must be at the low temperature. Only if 

we moved the plant to the North Pole would we see such a low T. 
 
   Remark:  You cannot create and maintain your own energy reservoir. 
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7.12 
  If the efficiency of a power plant goes up as the low temperature drops why not 

let the heat rejection go to a refrigerator at say –10oC instead of ambient 20oC? 
 
  The refrigerator must pump the heat up to 20oC to reject it to the ambient. 

The refrigerator must then have a work input that will exactly offset the 
increased work output of the power plant, if they are both ideal.  As we 
can not build ideal devices the actual refrigerator will require more work 
than the power plant will produce extra.  

 
 
 
7.13 
   A coal-fired power plant operates with a high T of 600oC whereas a jet engine has 

about 1400 K. Does that mean we should replace all power plants with jet 
engines? 

 
   The thermal efficiency is limited by the Carnot heat engine efficiency. 
 

  That is, the low temperature is also important. Here the power plant has a 
much lower T in the condenser than the jet engine has in the exhaust flow so the 
jet engine does not have a higher efficiency than the power plant. 

 
   Gas-turbines are used in power plants where they can cover peak power 

demands needed for shorter time periods and their high temperature exhaust can 
be used to boil additional water for the steam cycle. 

 

WT

QH

QL
.

WP, in

from coal

to ambient  
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7.14 

  A heat transfer requires a temperature difference, see chapter 4, to push the Q
.
. 

What implications do that have for a real heat engine?  A refrigerator? 
 
   This means that there are temperature differences between the source of 

energy and the working substance so TH is smaller than the source temperature. 
This lowers the maximum possible efficiency. As heat is rejected the working 

substance must have a higher temperature TL than the ambient receiving the Q
.

L, 
which lowers the efficiency further. 

 
   For a refrigerator the high temperature must be higher than the ambient to 

which the Q
.

H is moved. Likewise the low temperature must be lower than the 
cold space temperature in order to have heat transfer from the cold space to the 
cycle substance. So the net effect is the cycle temperature difference is larger than 
the reservoir temperature difference and thus the COP is lower than that estimated 
from the cold space and ambient temperatures. 
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7.15 
  A large stationary diesel engine produces 15 MW with a thermal efficiency of 

40%. The exhaust gas, which we assume is air, flows out at 800 K and the intake 

is 290 K. How large a mass flow rate is that if that accounts for half the Q
.

L?  Can 
the exhaust flow energy be used? 

 

  Heat engine: Q
.

H = W
.

out/ηTH = 
15
0.4 = 37.5 MW 

 

   Energy equation:    Q
.

L = Q
.

H - W
.

out  = 37.5 – 15 = 22.5 kW 
 

   Exhaust flow:        12Q
.

L = m
.

air(h800 - h290) 
 

     m
.

air = 12 
Q
.

L
h800 - h290

 = 12 
22.5 × 1000

822.2 - 290.43 = 21.16 kg/s 

 
   

 
 
7.16 
  Hot combustion gases (air) at 1500 K is used as heat source in a heat engine 

where the gas is cooled to 750 K and the ambient is at 300 K. This is not a 
constant T source. How does that affect the efficiency? 

  Solution: 
  

If the efficiency is written as 
 

ηTH = W
.

net / Q
.

H = 1 – 
TL
TH

 

 
then TH is somewhere between 1500 K 
and 750 K and it is not a linear average. 

H Q 

W 

L Q 

T L 

HE

1 2
cb

 
 

After studying chapter 8 and 9 we can solve this problem and find the 
proper average high temperature based on properties at states 1 and 2. 
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7.17 
  A remote location without electricity operates a refrigerator with a bottle of 

propane feeding a burner to create hot gases. Sketch the setup in terms of cyclic 

devices and give a relation for the ratio of Q
.

L in the refrigerator to Q
.

fuel in the 
burner in terms of the various reservoir temperatures. 

 
 The work of the heat engine 

assuming Carnot efficiency is 
 

 W
.

 = ηHE Q
.

fuel = 








1 − 
Tamb
Tfuel

Q
.

fuel 

 
The work required by the 
refrigerator assuming reversible 
COP is 

W 

L Q   

TH

H Q 

T L 

REF

FuelQ 

H.E.

L eng Q 

FUEL

 

  

  W
.

 = Q
.

L / βref = Q
.

L 
Tamb - TL

TL
 

 Set the two work terms equal and solve for Q
.

L.  

  Q
.

L = 
TL

Tamb - TL
 W

.
  =  

TL
Tamb - TL

 








1 − 
Tamb
Tfuel

 Q
.

fuel 

 
 Remark: This result is optimistic since we used Carnot cycle efficiency 

and coefficient of performance. Secondly the heat transfer requires a ∆T 
so the heat engine efficiency is lower and the COP is lower. 
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Heat Engines and Refrigerators 
 
7.18 
 Calculate the thermal efficiency of the steam power plant cycle described in 

Example 6.9. 
 Solution:  
 From solution to Example 6.9,    
 

 wnet = wt + wp = 640.7 – 4 

        =  636.7 kJ/kg 
qH = qb = 2831 kJ/kg 

ηTH = wnet/qH  = 
636.7
2831  = 0.225 

 

WT

QH

QL
.

WP, in

Q1 2

 
  

Notice we cannot write  wnet = qH − qL   as there is an extra heat transfer 1Q
.

2 
as a loss in the line. This needs to be accounted for in the overall energy 
equation. 
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7.19 
 Calculate the coefficient of performance of the R-134a refrigerator given in 

Example 6.10. 
 Solution: 

 
 From the definition 

β = Q
.

L/W
.

IN = 
14.54

5  = 2.91 

 

Notice we cannot write W
.

IN = Q
.

H - Q
.

L 

as there is a small Q
.
 in the compressor. 

This needs to be accounted for in the 
overall energy equation.      

QH

-WC

QL
.

cb

Evaporator

Condenser

Qloss
.
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7.20 
 Calculate the thermal efficiency of the steam power plant cycle described in 

Problem 6.99. 
 Solution:  
 From solution to Problem 6.99,  

Turbine   A5 = (π/4)(0.2)2 = 0.03142 m2 

 V5 = m
.

v5/A5 = 25 × 0.06163 / 0.03142 = 49 m/s 

 h6 = 191.83 + 0.92 × 2392.8 = 2393.2 kJ/kg 

 wT = 3404 - 2393.2 - (2002 - 492)/(2 × 1000) = 992 kJ/kg 

 W
.

T = m
.

wT = 25 × 992 = 24 800 kW 

     W
.

NET = 24800 - 300 = 24 500 kW 

 From the solution to Problem 6.101 

 Economizer     A7 = πD2
7/4 = 0.004 418 m2,   v7 = 0.001 008 m3/kg  

   V2 = V7 = m
.

v/A7 = 25 × 0.001008 / 0.004418 = 5.7 m/s,  

   V3 = (v3/v2)V2 = (0.001 118 / 0.001 008) 5.7 = 6.3 m/s ≈ V2       

 so kinetic energy change unimportant 
   qECON = h3 - h2  = 744 - 194 = 550.0 kJ/kg 

   Q
.

ECON  = m
.

qECON = 25 (550.0) = 13 750 kW 

 Generator     A4 = πD2
4/4 = 0.031 42 m2,   v4 = 0.060 23 m3/kg 

   V4 = m
.

v4/A4 = 25 × 0.060 23/0.031 42 = 47.9 m/s 

 qGEN = 3426 - 744 + (47.92 - 6.32)/(2×1000) = 2683 kJ/kg 

 Q
.

GEN = 25 × (2683) = 67 075 kW 

 The total added heat transfer is 

   Q
.

H = 13 758 + 67 075 = 80 833 kW 

    ⇒  ηTH = W
.

NET/Q
.

H = 
24500
80833 = 0.303 
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7.21 
 Calculate the coefficient of performance of the R-12 heat pump cycle described in 

Problem 6.106. 
 Solution: 

 
 From solution to Problem 6.106,  

CV: Condenser 

Q
.

COND = m
.

(h3 - h2)  

             = 0.05(79.7 - 253)  
             = -8.665 kW 
 

Then with the work as -W
.

IN = 4.0 kW we 
have  

QH

-WC

QL
.

cb
Evaporator

Condenser

3

4

56

1

2Q loss

 

   Heat pump:    β′ = Q
.

H/W
.

IN = 
8.665
4.0  = 2.166 
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7.22 
  A farmer runs a heat pump with a 2 kW motor. It should keep a chicken hatchery 

at 30oC, which loses energy at a rate of 10 kW to the colder ambient Tamb. What 
is the minimum coefficient of performance that will be acceptable for the heat 
pump?  

 Solution: 

Power input: W
.

 = 2 kW 

Energy Eq. for hatchery: Q
.

H = Q
.

Loss = 10 kW 

Definition of COP:  β = COP =  
Q
.

H

W
.  = 

10
2  = 5 

 
 

QleakQ QHL

W = 2  kW

HP
cb  
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7.23 
 A power plant generates 150 MW of electrical power. It uses a supply of 1000 

MW from a geothermal source and rejects energy to the atmosphere. Find the 
power to the air and how much air should be flowed to the cooling tower (kg/s) if 
its temperature cannot be increased more than 10oC. 
 Solution: 

  C.V. Total power plant. 
  Energy equation gives the amount of heat rejection to the atmosphere as 

     Q
.

L= Q
.

H - W
.

 = 1000 – 150 = 850 MW 

  The energy equation for the air flow that absorbs the energy is  

     Q
.

L = m
.

air ∆h = m
.

air Cp ∆T 

      m
.

air  = 
Q
.

L
Cp∆T  =  

850 × 1000
1.004 × 10   = 84 661 kg/s 

Probably too large to make, so some cooling by liquid water or evaporative 
cooling should be used.  

 
  

 

H Q 

W 

T L 

L Q 

HE

Air

cb
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7.24 
 A car engine delivers 25 hp to the driveshaft with a thermal efficiency of 30%. 

The fuel has a heating value of 40 000 kJ/kg. Find the rate of fuel consumption 
and the combined power rejected through the radiator and exhaust. 

Solution: 

 Heating value (HV):      Q
.

H = m
.

·HV 

 From the definition of the thermal efficiency 

W
.

 = η Q
.

H = η· m
.
·HV 

m
.

 = 
W
.

η·HV = 
25 × 0.7355
0.3 × 40 000  = 0.00153 kg/s = 1.53 g/s 

  Conversion of power from hp to kW in Table A.1. 

Q
.

L = Q
.

H - W
.

 = (W
.

/η −W
.

 )  = ( 
1
η  −1 )W

.
  

     = ( 
1

0.3 – 1) 25 × 0.7355 = 42.9 kW 

 
 

Exhaust flow

Air intake filter

Shaft
Fan

power

Fuel line

cb
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7.25 
 For each of the cases below determine if the heat engine satisfies the first law 

(energy equation) and if it violates the second law. 

  a.     Q
.

H = 6 kW, Q
.

L = 4 kW, W
.

 = 2 kW 

  b.     Q
.

H = 6 kW, Q
.

L = 0 kW, W
.

 = 6 kW 

  c.     Q
.

H = 6 kW, Q
.

L = 2 kW, W
.

 = 5 kW 

  d.     Q
.

H = 6 kW, Q
.

L = 6 kW, W
.

 = 0 kW 

 
Solution:  
 
               1st. law                    2nd law 
a              Yes                           Yes  (possible) 
b              Yes                           No, impossible Kelvin - Planck 
c               No                           Yes, but energy not conserved 

d           Yes                           Yes (Irreversible Q
.
 over ∆T) 

 
 
  

H Q 

W 

L Q 
T L 

TH

HE
cb
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7.26 
 In a steam power plant 1 MW is added in the boiler, 0.58 MW is taken out in the 

condenser and the pump work is 0.02 MW. Find the plant thermal efficiency. If 
everything could be reversed find the coefficient of performance as a refrigerator. 
 Solution: 
 

 

WT

QH

QL
.

WP, in

 

CV. Total plant:  
Energy Eq.: 

Q
.

H + W
.

P,in = W
.

T + Q
.

L 

 

W
.

T = 1 + 0.02 – 0.58 = 0.44 MW 

 

    ηTH =  
W
.

T – W
.

P,in

Q
.

H

  = 
440 – 20

1000  = 0.42 

   β =  
Q
.

L

W
.

T – W
.

P,in

  = 
580

440 – 20 = 1.38 
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7.27 
 Electric solar cells can produce power with 15% efficiency. Compare that to a 

heat engine driving an electric generator with 80% efficiency. What should the 
heat engine efficiency be to have the same overall efficiency as the solar cells? 
 
Solution: 

  W
.

el = Q
.

H ηcell = ηgen W
.

eng   = ηgen  ηeng Q
.

Heng   

       
 =>  ηcell = ηgen ηeng 

 

ηeng = 
ηcell
ηgen

  = 
0.15
0.8  = 0.1875   
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7.28 
 For each of the cases in problem 7.25 determine if a heat pump satisfies the first 

law (energy equation) and if it violates the second law. 

  a.     Q
.

H = 6 kW, Q
.

L = 4 kW, W
.

 = 2 kW 

  b.     Q
.

H = 6 kW, Q
.

L = 0 kW, W
.

 = 6 kW 

  c.     Q
.

H = 6 kW, Q
.

L = 2 kW, W
.

 = 5 kW 

  d.     Q
.

H = 6 kW, Q
.

L = 6 kW, W
.

 = 0 kW 

 
Solution:  

               1st. law                       2nd law 
a             Satisfied                    Does not violate 
b             Satisfied                    Does not violate 
c             Violated                    Does not violate, but 1st law 
d    Satisfied                    Does violate, Clausius 

 
 

H Q 

W 

L Q 
T L 

TH

HP
cb
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7.29 
 An air-conditioner discards 5.1 kW to the ambient with a power input of  1.5 kW. 

Find the rate of cooling and the coefficient of performance. 
Solution:  

In this case Q
.

H = 5.1 kW goes to the ambient so 

Energy Eq. : Q
.

L = Q
.

H – W
.

 = 5.1 – 1.5 = 3.6 kW 

βREFRIG =  
Q
.

L

W
.  =  

3.6
1.5 = 2.4 

 
 

H Q   = 5.1 kW 

W = 1.5 kW 
L Q 

T L 

Tamb

REF
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7.30 
  Calculate the amount of work input a refrigerator needs to make ice cubes out of a 

tray of  0.25 kg liquid water at 10oC. Assume the refrigerator has β = 3.5 and a 
motor-compressor of 750 W. How much time does it take if this is the only 
cooling load? 

 Solution: 
C.V. Water in tray. We neglect tray mass. 

  Energy Eq.:   m(u2 − u1) = 1Q2 − 1W2  
Process  :  P = constant = Po 

1W2 = ∫ P dV = Pom(v2 − v1) 

 1Q2 = m(u2 − u1) + 1W2  = m(h2 − h1) 
 
Tbl. B.1.1 : h1 = 41.99 kJ/kg,   Tbl. B.1.5 : h2 = - 333.6 kJ/kg 

1Q2 = 0.25(-333.4 – 41.99 ) = - 93.848 kJ 
 
Consider now refrigerator 

β = QL/W 
W = QL/β = - 1Q2/ β = 93.848/3.5 = 26.81 kJ 

 
For the motor to transfer that amount of energy the time is found as 
 

W = ∫ W
.

 dt = W
.

 ∆t 
   

∆t = W/W
.

 = (26.81 × 1000)/750 = 35.75 s 
 
Comment:  We neglected a baseload of the refrigerator so not all the 750 
W are available to make ice, also our coefficient of performance is very 
optimistic and finally the heat transfer is a transient process. All this 
means that it will take much more time to make ice-cubes.  
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7.31 
 A house should be heated by a heat pump, β′ = 2.2, and maintained at 20oC at all 

times. It is estimated that it looses 0.8 kW per degree the ambient is lower than 
the inside. Assume an outside temperature of –10oC and find the needed power to 
drive the heat pump? 

Solution :  Ambient TL = –10oC  

Heat pump :  β′ = Q
.

H/W
.

     

House :   Q
.

H = Q
.

leak  = 0.8 ( TH - TL)  

 

 W
.

 = Q
.

H/β′ = Q
.

leak / β′ = 0.8 ( TH - TL) / β′  

          = 0.8[20 – (−10)] /2.2 = 10.91 kW 
 
 
  

QleakQ QHL

W

HP
cb
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7.32 
 Refrigerant-12 at 95°C, x = 0.1 flowing at 2 kg/s is brought to saturated vapor in a 

constant-pressure heat exchanger. The energy is supplied by a heat pump with a 
coefficient of performance of β′ = 2.5. Find the required power to drive the heat 
pump. 
 Solution: 
 
 C.V. Heat exchanger 

     m
.

1 = m
.

2 ;       

     m
.

1h1 + Q
.

H = m
.

1h2 
 
Given coefficient of performance 

          β′  = 
Q
.

H

W
.  =  2.5 

H Q 

W 

L Q 

T L 

HP

1 2
cb

 

  Table B.3.1:    
        h1 = hf + x1hfg = 140.23 + 0.1 × 71.71 = 147.4 kJ/kg,  

       h2 = hg = 211.94 kJ/kg 

  Energy equation for line 1-2: Q
.

H = m
.

R-12(h2 - h1) = 129.1 kW 

     W
.

 =  
Q
.

H
β′   = 

129.1
2.5  = 51.6 kW 
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Second Law and Processes 
 
7.33 
 Prove that a cyclic device that violates the Kelvin–Planck statement of the second 

law also violates the Clausius statement of the second law. 
 
 Solution:  Proof very similar to the proof in section 7.2. 

 
 H.E. violating Kelvin receives QH from 

TH  and produces net W = QH.  

This W input to H.P. receiving QL from TL. 

H.P. discharges QH + QL to TH . Net Q to 
TH is :   -QH + QH + QL = QL. 

H.E. + H.P. together transfers QL from TL 
to TH with no W thus violates Clausius. 

Q

W
HE HP

H

QL

QH + QL

TH

TL

C.V. Total
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7.34 
 Discuss the factors that would make the power plant cycle described in Problem 

6.99 an irreversible cycle. 
 Solution:  
  General discussion, but here are a few of the most significant factors. 
   1. Combustion process that generates the hot source of energy. 
   2. Heat transfer over finite temperature difference in boiler. 
   3. Flow resistance and friction in turbine results in less work out. 
   4. Flow friction and heat loss to/from ambient in all pipings. 
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7.35 
 Assume a cyclic machine that exchanges 6 kW with a 250oC reservoir and has  

  a.   Q
.

L = 0 kW, W
.

 = 6 kW 

b. Q
.

L = 6 kW, W
.

 = 0 kW 

and  Q
.

L  is exchanged  with a 30oC ambient. What can you say about the 
processes in the two cases a and b if the machine is a heat engine? Repeat the 
question for the case of a heat pump. 
Solution: 

Heat engine 

a.  Since Q
.

L = 0    impossible Kelvin – Planck 

b.  Possible, irreversible, ηeng = 0 

Ηeat pump 
a. Possible, irreversible   (like an electric heater) 
b. Impossible,  β → ∞, Clausius 
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7.36 
 Discuss the factors that would make the heat pump described in Problem 6.106 an 

irreversible cycle. 
 Solution: 
 
  General discussion but here are a few of the most significant factors. 
   1. Unwanted heat transfer in the compressor. 
   2. Pressure loss (back flow leak) in compressor 
   3. Heat transfer and pressure drop in line 1 => 2. 
   4. Pressure drop in all lines. 
   5. Throttle process 3 => 4. 
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7.37 
 The water in a shallow pond heats up during the day and cools down during the 

night. Heat transfer by radiation, conduction and convection with the ambient 
thus cycles the water temperature. Is such a cyclic process reversible or 
irreversible? 
 
Solution: 

All the heat transfer takes place over a finite ∆T and thus all the heat 
transfer processes are irreversible. 
Conduction and convection have ∆T in the water, which is internally 
irreversible and ∆T outside the water which is externally irreversible.  The 
radiation is absorbed or given out at the water temperature thus internally 
(for absorption) and externally (for emission) irreversible. 
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7.38 
 Consider a heat engine and heat pump connected as shown in figure P.7.38. 

Assume TH1 = TH2 > Tamb and determine for each of the three cases if the setup 
satisfy the first law and/or violates the 2nd law. 

 
 

Q
.

H1 Q
.

L1 W
.

1 Q
.

H2 Q
.

L2 W
.

2 
a 6 4 2 3 2 1 
b 6 4 2 5 4 1 
c 3 2 1 4 3 1 

 
 Solution: 

                1st. law                   2nd law 
a               Yes                            Yes  (possible) 
b               Yes                            No, combine Kelvin - Planck 
c               Yes                              No, combination clausius 

 
   

 



   Sonntag, Borgnakke and van Wylen 

 
7.39 
 Consider the four cases of a heat engine in problem 7.25 and determine if any of 

those are perpetual machines of the first or second kind. 
 
 

a.     Q
.

H = 6 kW, Q
.

L = 4 kW, W
.

 = 2 kW 

b.     Q
.

H = 6 kW, Q
.

L = 0 kW, W
.

 = 6 kW 

c.     Q
.

H = 6 kW, Q
.

L = 2 kW, W
.

 = 5 kW 

d.     Q
.

H = 6 kW, Q
.

L = 6 kW, W
.

 = 0 kW 
 

H Q 

W 

L Q 
T L 

TH

HE
cb

 

Solution:  
                1st. law                    2nd law 

a              Yes                          Yes  (possible) 
b              Yes                          No, impossible Kelvin - Planck 

      Perpetual machine second kind 

      It violates the 2nd law converts all Q
.
 to W

.
 

  c               No                          Yes, but energy not conserved 
      Perpetual machine first kind 

    It generates energy inside 

d    Yes                           Yes (Irreversible Q
.
 over ∆T) 
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Carnot Cycles and Absolute Temperature 
 
7.40 
 Calculate the thermal efficiency of a Carnot cycle heat engine operating between 

reservoirs at 300oC and 45oC. Compare the result to that of Problem 7.18. 
 
  Solution: 

  ηTH = Wnet / QH = 1 – 
TL
TH

 = 1 – 
45 + 273
300 + 273 = 0.445 (Carnot) 

  η7.18 = 0.225 (efficiency about ½ of the Carnot) 
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7.41 
 At a few places where the air is very cold in the winter, like –30oC it is possible 

to find a temperature of 13oC down below ground. What efficiency will a heat 
engine have operating between these two thermal reservoirs? 

 Solution: 

ηTH = (1 – 
TL
TH

 ) 

 The ground becomes the hot source and 
the atmosphere becomes the cold side of 
the heat engine 
 

ηTH= 1 – 
273 – 30
273 + 13 = 1 – 

243
286 = 0.15 

 
This is low because the modest 
temperature difference. 
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7.42 
 Calculate the coefficient of performance of a Carnot-cycle heat pump operating 

between reservoirs at 0°C and 45°C. Compare the result with that of Problem 
7.21. 
 Solution: 
    TL = 0°C = 273.2 K;       TH = 45°C = 318.2 K 

  Carnot: β′ = 
TH

TH - TL
 = 

318.2
45  = 7.07    (7.21 has β′ = 2.17) 

 
 

 From solution to Problem 6.106,  
CV: Condenser 

Q
.

COND = m
.

(h3 - h2)  

             = 0.05(79.7 - 253)  
             = -8.665 kW 

Then with the work as -W
.

IN = 4.0 kW we 
have  

QH

-WC

QL
.

cb
Evaporator

Condenser

3

4

56

1

2Q loss

 

   Heat pump:    β′ = Q
.

H/W
.

IN = 
8.665
4.0  = 2.166 
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7.43 
 Find the power output and the low T heat rejection rate for a Carnot cycle heat 

engine that receives 6 kW at 250oC and rejects heat at 30oC as in Problem 7.35.  
 
  Solution: 
  From the definition of the absolute temperature Eq. 7.8 

ηcarnot = 1 –  
TL
TH

 = 1 – 
303
523 = 0.42 

  Definition of the heat engine efficiency gives the work as 

W
.

 = η Q
.

H = 0.42 × 6 = 2.52 kW 

  Apply the energy equation 

Q
.

L = Q
.

H - W
.

 = 6 – 2.52 = 3.48 kW 
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7.44 
 A car engine burns 5 kg fuel (equivalent to addition of QH) at 1500 K and rejects 

energy to the radiator and the exhaust at an average temperature of 750 K. If the 
fuel provides 40 000 kJ/kg what is the maximum amount of work the engine can 
provide? 
 Solution: 
  A heat engine  QH = m qfuel = 5 × 40000 = 200 000 kJ 

  Assume a Carnot efficiency (maximum theoretical work) 

    η  =  1 − 
TL
TH

 = 1 − 
750
1500 = 0.5 

    W = η QH = 100 000 kJ 

 
 

  

 Exhaust flow

Air intake filter

Coolant flow

Atm.
airShaft

Fan

power

Radiator
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7.45 
 Differences in surface water and deep water temperature can be utilized for power 

generation. It is proposed to construct a cyclic heat engine that will operate near 
Hawaii, where the ocean temperature is 20°C near the surface and 5°C at some 
depth. What is the possible thermal efficiency of such a heat engine? 
 
 Solution: 
  TH = 20°C = 293.2 K;        TL = 5°C = 278.2 K 

  ηTH MAX = 
TH - TL

TH
  =  

293.2 - 278.2
293.2  = 0.051 

 
 This is a very low efficiency so it has to be done on a very large scale to be 
economically feasible and then it will have some environmetal impact. 
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7.46 
 Find the maximum coefficient of performance for the refrigerator in your kitchen, 

assuming it runs in a Carnot cycle. 
 Solution: 
 
  The refrigerator coefficient of performance is 
   β = QL/W = QL/(QH - QL) = TL/(TH - TL) 

  Assuming     TL ~ 0°C,       TH ~ 35°C, 

   β  ≤  
273.15
35 - 0  = 7.8 

  Actual working fluid temperatures must be such that 
   TL  <  Trefrigerator    and    TH  >  Troom 

 
 

 

 
 
A refrigerator does not operate in a 
Carnot cycle. The actual vapor 
compression cycle is examined in 
Chapter 11. 
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7.47 
 An air-conditioner provides 1 kg/s of air at 15°C cooled from outside atmospheric 

air at 35°C. Estimate the amount of power needed to operate the air-conditioner. 
Clearly state all assumptions made. 
 Solution: 
 Consider the cooling of air which needs a heat transfer as 

  Q
.

air = m
.

 ∆h ≅ m
.

 Cp∆T = 1 kg/s × 1.004 kJ/kg K × 20 K = 20 kW 

 Assume Carnot cycle refrigerator 

   β = 
Q
.

L

W
.  = Q

.
L / (Q

.
H - Q

.
L ) ≅ 

TL
TH - TL

 = 
273 + 15
35 - 15  = 14.4 

   W
.

 = Q
.

L / β = 
20.0
14.4 = 1.39 kW 

 
  

This estimate is the theoretical maximum 
performance. To do the required heat 
transfer   TL  ≅ 5°C   and  TH = 45°C are 
more likely; secondly  
 β < βcarnot 

H Q 

W 

L Q 

REF

35 C 15 C
cb oo
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7.48 
 We propose to heat a house in the winter with a heat pump. The house is to be 

maintained at 20°C at all times. When the ambient temperature outside drops to  
−10°C, the rate at which heat is lost from the house is estimated to be 25 kW. 
What is the minimum electrical power required to drive the heat pump? 
 

 Solution: 
 
Minimum power if we  
assume a Carnot cycle 

Q
.

H = Q
.

leak  = 25 kW 

QleakQ QHL

W

HP

 

 

  β′ = 
Q
.

H

W
.

IN

 = 
TH

TH-TL
 = 

293.2
30  = 9.773   ⇒        W

.
IN = 

25
9.773 = 2.56 kW 
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7.49 
 A sales person selling refrigerators and deep freezers will guarantee a minimum 

coefficient of performance of 4.5 year round. How would you evaluate that? Are 
they all the same? 
 Solution: 
 Assume a high temperature of 35°C.  If a freezer compartment is included 
 TL ~ -20°C (deep freezer) and fluid temperature is then TL ~ -30°C 

  βdeep freezer ≤ TL/(TH - TL) = (273.15 - 30)/[35 - (-30)] = 3.74 

 A hot summer day may require a higher TH to push QH out into the room, so 
 even lower β. 
  Claim is possible for a refrigerator, but not for a deep freezer. 
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7.50 
 A cyclic machine, shown in Fig. P7.50, receives 325 kJ from a 1000 K energy 

reservoir. It rejects 125 kJ to a 400 K energy reservoir and the cycle produces 200 
kJ of work as output. Is this cycle reversible, irreversible, or impossible? 
 Solution: 

     
   ηCarnot = 1 − 

TL
TH

  = 1 −  
400
1000 = 0.6 

   ηeng = 
W
QH

 = 
200
325 =  0.615  >  ηCarnot 

   This is impossible. 
 

H Q  = 325 kJ

W = 200 kJ 
L Q  = 125 kJ

T  = 1000 KH

HE
cb

T  = 400 K L  
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7.51 
 An inventor has developed a refrigeration unit that maintains the cold space at 

−10°C, while operating in a 25°C room. A coefficient of performance of 8.5 is 
claimed. How do you evaluate this? 
 
 Solution: 
 

 
βCarnot = 

QL
Win

 = 
TL

TH - TL
 = 

263.15
25 - (-10) = 7.52 

   
8.5  >  βCarnot   ⇒   impossible claim 
 

H Q 

W 

L Q 
T  = -10C L 

T  = 25CH

REF
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7.52 
 A household freezer operates in a room at 20°C. Heat must be transferred from 

the cold space at a rate of 2 kW to maintain its temperature at −30°C. What is the 
theoretically smallest (power) motor required to operate this freezer? 
 Solution: 
 

 Assume a Carnot cycle between TL = -30°C and 
TH = 20°C:  

        β = 
Q
.
 L

W
.

in

 = 
TL

TH - TL
 = 

273.15 - 30
20 - (-30)  = 4.86 

       W
.

in = Q
.

L/β = 2/4.86 = 0.41 kW 

This is the theoretical minimum power input. 
Any actual machine requires a larger input. 

H Q 

W 

L Q 

T L 

Tamb

REF

2 kW
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7.53 
 In a cryogenic experiment you need to keep a container at −125°C although it 

gains 100 W due to heat transfer. What is the smallest motor you would need for a 
heat pump absorbing heat from the container and rejecting heat to the room at 
20°C? 
 
 Solution: 
 We do not know the actual device so find the work for a Carnot cycle 

   βREF = Q
.

L / W
.

 = 
TL

TH - TL
 = 

148.15
20 - (-125) = 1.022  

  =>         W
.

 = Q
.

L/ βREF = 100/1.022 = 97.8 W 
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7.54 
 A temperature of about 0.01 K can be achieved by magnetic cooling. In this 

process a strong magnetic field is imposed on a paramagnetic salt, maintained at 1 
K by transfer of energy to liquid helium boiling at low pressure. The salt is then 
thermally isolated from the helium, the magnetic field is removed, and the salt 
temperature drops. Assume that 1 mJ is removed at an average temperature of 0.1 
K to the helium by a Carnot-cycle heat pump. Find the work input to the heat 
pump and the coefficient of performance with an ambient at 300 K. 
 
 Solution: 
 

  β = Q
.

L/W
.

IN = 
TL

TH - TL
 = 

0.1
299.9 = 0.00033 

  W
.

IN = 
1×10-3
0.00033 = 3 J 

 Remark: This is an extremely large temperature difference for a heat pump. 
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7-55 
 The lowest temperature that has been achieved is about 1 × 10−6 K. To achieve 

this an additional stage of cooling is required beyond that described in the 
previous problem, namely nuclear cooling. This process is similar to magnetic 
cooling, but it involves the magnetic moment associated with the nucleus rather 
than that associated with certain ions in the paramagnetic salt. Suppose that  10 µJ 
is to be removed from a specimen at an average temperature of 10−5 K (ten 
microjoules is about the potential energy loss of a pin dropping 3 mm). Find the 
work input to a Carnot heat pump and its coefficient of performance to do this 
assuming the ambient is at 300 K. 
 
 Solution: 
 

  QL = 10 µJ = 10×10-6 J   at  TL = 10-5 K 

  ⇒ QH = QL × 
TH
TL

 = 10×10-6 × 
300
10-5 = 300 J 

  Win = QH - QL = 300 - 10×10-6 ≅ 300 J 

  β = 
QL
Win

 = 
10×10-6

300  = 3.33×10-8 
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7.56 
 A certain solar-energy collector produces a maximum temperature of 100°C. The 

energy is used in a cyclic heat engine that operates in a 10°C environment. What  
is the maximum thermal efficiency? What is it, if the collector is redesigned to 
focus the incoming light to produce a maximum temperature of 300°C? 
 
 Solution: 
   For TH = 100°C = 373.2 K   &   TL = 283.2 K 

   ηth max = 
TH - TL

TH
 = 

90
373.2 = 0.241 

   For TH = 300°C = 573.2 K   &   TL = 283.2 K 

   ηth max = 
TH - TL

TH
 = 

290
573.2 = 0.506 
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7.57 
 Helium has the lowest normal boiling point of any of the elements at 4.2 K. At 

this temperature the enthalpy of evaporation is 83.3 kJ/kmol. A Carnot 
refrigeration cycle is analyzed for the production of 1 kmol of liquid helium at 4.2 
K from saturated vapor at the same temperature. What is the work input to the 
refrigerator and the coefficient of performance for the cycle with an ambient at 
300 K? 
 
 Solution: 
 For the Carnot cycle the ratio of the heat transfers is the ratio of temperatures 

  QH = QL × 
TH
TL

 = 83.3 × 
300
4.2  = 5950 kJ 

  WIN = QH - QL = 5950 - 83.3 = 5886.7 kJ 

  β = 
QL

WIN
 = 

83.3
5886.7 = 0.0142       [  =  

TL
TH - TL

  ] 
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7.58 
 Calculate the amount of work input a refrigerator needs to make ice cubes out of a 

tray of  0.25 kg liquid water at 10oC. Assume the refrigerator works in a Carnot 
cycle between –8oC and 35oC with a motor-compressor of 750 W. How much 
time does it take if this is the only cooling load? 

 Solution: 
C.V. Water in tray. We neglect tray mass. 

  Energy Eq.:   m(u2 − u1) = 1Q2 − 1W2  
Process  :  P = constant + Po 

1W2 = ∫ P dV = Pom(v2 − v1) 

 1Q2 = m(u2 − u1) + 1W2  = m(h2 − h1) 
 
Tbl. B.1.1 : h1 = 41.99 kJ/kg,   Tbl. B.1.5 : h2 = - 333.6 kJ/kg 

1Q2 = 0.25(-333.4 – 41.99 ) = - 93.848 kJ 
 
Consider now refrigerator 

β = 
QL
W  = 

QL
QH - QL

 =  
TL

TH - TL
 = 

273 - 8
35 - (-8) = 6.16 

 

W = 
QL
β  = - 1

Q2
β   = 

93.848
6.16  = 15.24 kJ 

 
For the motor to transfer that amount of energy the time is found as 
 

W = ∫ W
.

 dt = W
.

 ∆t 
   

∆t = 
W

W
.  = 

15.24 ×1000
750  = 20.3 s 

 
Comment:  We neglected a baseload of the refrigerator so not all the 750 
W are available to make ice, also our coefficient of performance is very 
optimistic and finally the heat transfer is a transient process. All this 
means that it will take much more time to make ice-cubes.  

 



   Sonntag, Borgnakke and van Wylen 

 
7.59 
 A steel bottle V = 0.1 m3 contains R-134a at 20°C, 200 kPa. It is placed in a deep 

freezer where it is cooled to -20°C. The deep freezer sits in a room with ambient 
temperature of 20°C and has an inside temperature of -20°C. Find the amount of 
energy the freezer must remove from the R-134a and the extra amount of work 
input to the freezer to do the process. 
 
Solution: 
 
  C.V.  R-134a out to the -20 °C space. 
  Energy equation:     m(u2 − u1) = 1Q2 − 1W2 

  Process : V = Const         =>   v2 =  v1       =>   1W2 = 0 

  Table B.5.2:    v1 = 0.11436 m3/kg,       u1 = 395.27 kJ/kg 

    m = V/ v1 = 0.87443 kg 

  State 2:  v2 =  v1  < vg = 0.14649   Table B.5.1  =>  2 phase   

    => x2 = 
v - vf
vfg

 = 
0.11436 - 0.000738

0.14576  = 0.77957 

         u2 = 173.65 + 0.77957 × 192.85 = 323.99 kJ/kg 

   1Q2 = m(u2 − u1) =  - 62.334 kJ 

  Consider the freezer and assume Carnot cycle 

   β = 
QL
W  = 

QL
QH - QL

 =  
TL

TH - TL
 =  

273 - 20
20 - (-20)  = 6.33 

   Win = QL / β = 62.334 / 6.33 = 9.85 kJ 
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7.60 
 Liquid sodium leaves a nuclear reactor at 800°C and is used as the energy souce 

in a steam power plant. The condenser cooling water comes from a cooling tower 
at 15°C. Determine the maximum thermal efficiency of the power plant. Is it 
misleading to use the temperatures given to calculate this value? 
 
 Solution: 
 

LIQ Na

800 o C 

�������
�������REACTOR 

ENERGY
TO H O 2 

��������������
��������������
��������������
��������������
��������������

COND. 
COOLING 
TOWER 

ENERGY
FROM

STEAM 
POWER 
PLANT  

 
   TH = 800°C = 1073.2 K,   TL = 15°C = 288.2 K 

   ηTH MAX = 
TH - TL

TH
 = 

1073.2 - 288.2
1073.2  = 0.731 

It might be misleading to use 800°C as the value for TH, since there is not a 
supply of energy available at a constant temperature of 800°C (liquid Na is 
cooled to a lower temperature in the heat exchanger).    
  ⇒  The Na cannot be used to boil H2O at 800°C.  

Similarly, the H2O leaves the cooling tower and enters the condenser at 15°C, 
and leaves the condenser at some higher temperature. 
  ⇒  The water does not provide for condensing steam at a  
   constant temperature of 15°C. 
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7.61 
 A thermal storage is made with a rock (granite) bed of 2 m3 which is heated to 

400 K using solar energy. A heat engine receives a QH from the bed and rejects 
heat to the ambient at 290 K. The rock bed therefore cools down and as it reaches 
290 K the process stops. Find the energy the rock bed can give out. What is the 
heat engine efficiency at the beginning of the process and what is it at the end of 
the process? 
 
Solution: 
 
 Assume the whole setup is reversible and that the heat engine operates in a 
 Carnot cycle. The total change in the energy of the rock bed is  
  u2 - u1 = q = C ∆T = 0.89 (400 - 290) = 97.9 kJ/kg 

  m = ρV = 2750 × 2 = 5500 kg  ,    Q = mq = 5500 × 97.9 = 538 450 kJ 
 To get the efficiency use the CARNOT as 
  η = 1 - To/TH = 1 - 290/400 = 0.275 at the beginning of process 

  η = 1 - To/TH = 1 - 290/290 = 0.0 at the end of process 

 
 

W

Q Q
H L

HE
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7.62 
  A heat engine has a solar collector receiving 0.2 kW per square meter inside 

which a transfer media is heated to 450 K. The collected energy powers a heat 
engine which rejects heat at 40oC. If the heat engine should deliver 2.5 kW what 
is the minimum size (area) solar collector? 
 
 Solution: 

   TH = 450 K      TL = 40oC = 313.15 K 

  ηHE =  1 − 
TL
TH

 = 1 - 
313.15

450  = 0.304 

  W
.

 = η Q
.

H    =>     Q
.

H  = 
W
.

η   = 
2.5 

0.304  = 8.224 kW 

  Q
.

H  = 0.2 A   =>   A = 
Q
.

H
0.2 = 41 m2 
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7.63 
 Sixty kilograms per hour of water runs through a heat exchanger, entering as 

saturated liquid at 200 kPa and leaving as saturated vapor. The heat is supplied by 
a Carnot heat pump operating from a low-temperature reservoir at 16°C. Find the 
rate of work into the heat pump. 
 Solution: 
 
 C.V. Heat exchanger 

m
.

1 = m
.

2 ;           m
.

1h1 + Q
.

H = m
.

1h2 

Table B.1.2:   h1 = 504.7,     h2 = 2706.7 

TH = Tsat(P) = 120.93 +273.15 = 394.08 

Q
.

H = = 
1
60(2706.7 - 504.7) = 36.7 kW 

 
Assume a Carnot heat pump. 

H Q 

W 

L Q 

T L 

HP

1 2

 

 

  β′ = Q
.

H/W
.

 = TH / (TH − TL)  = 394.08 / 104.93  = 3.76 

  W
.

 = Q
.

H/β′ = 36.7/3.76 = 9.76 kW 
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7.64 
 A heat pump is driven by the work output of a heat engine as shown in figure 

P7.64. If we assume ideal devices find the ratio of the total power Q
.

L1 + Q
.

H2 that 

heats the house to the power from the hot energy source Q
.

H1 in terms of the 
temperatures. 

 

βHP = Q
.

H2/W
.

 = Q
.

H2/(Q
.

H2- Q
.

L2) = 
Troom

 Troom-Tamb
 

W
.

= ηHE . Q
.

H1  = (1- 
Troom
 TH

 ) Q
.

H1 

W
.

 = Q
.

H2/βHP = 
Troom

 Troom-Tamb
 Q
.

H2 

Q
.

L1= Q
.

H1- W
.

 = [1-1 + 
Troom
 TH

] Q
.

H1 

   
Q
.
 H2 + Q

.
L1

Q
.

H1

  = 1-1 + 
Troom
 TH

 + 
1-

Troom
 TH

 
Troom-Tamb

 Troom

 

=  
Troom
 TH

 + 
Troom- T2

room/TH
 Troom-Tamb

 

= Troom [
1

 TH
 + 

1 - 
Troom
 TH

 Troom - Tamb
 ] 

= 
Troom
 TH

 [1 + 
TH - Troom

 Troom - Tamb
 ] 

= 
Troom
 TH

 [
TH-Tamb

 Troom-Tamb
] 
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7.65 
  It is proposed to build a 1000-MW electric power plant with steam as the working 

fluid. The condensers are to be cooled with river water (see Fig. P7.65). The 
maximum steam temperature is 550°C, and the pressure in the condensers will be 
10 kPa. Estimate the temperature rise of the river downstream from the power 
plant. 
 Solution: 
 

 W
.

NET = 106 kW,   TH = 550°C = 823.3 K 

 PCOND = 10 kPa → TL = TG (P = 10 kPa) = 45.8°C = 319 K 

 ηTH CARNOT = 
TH - TL

TH
 = 

823.2 - 319
823.2  = 0.6125 

 ⇒ Q
.

L MIN= 106




1 - 0.6125

0.6125  = 0.6327 × 106 kW 

 But m
.

H2O = 
60 × 8 × 10/60

0.001  = 80 000 kg/s  having an energy flow of 

   Q
.

L MIN = m
.

H2O ∆h = m
.

H2O CP LIQ H2O ∆TH2O MIN 

  ⇒ ∆TH2O MIN = 
Q
.

L MIN

m
.

H2OCP LIQ H2O

 = 
0.6327×106

80000 × 4.184 = 1.9°C 
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7.66 
 Two different fuels can be used in a heat engine operating between the fuel 

burning temperature and a low temperature of 350 K. Fuel A burns at 2200 K 
delivering 30 000 kJ/kg and costs $1.50/kg. Fuel B burns at 1200 K, delivering   
40 000 kJ/kg and costs $1.30/kg. Which fuel will you buy and why? 
 
 Solution: 

 Fuel A:   ηTH,A =  1 − 
TL
TH

 = 1 - 
350
2200 = 0.84 

   WA = ηTH,A × QA = 0.84 × 30 000 = 25 200 kJ/kg 

   WA/$A = 25 200/1.5 = 16 800 kJ/$ 

 Fuel B:  ηTH,B =  1 − 
TL
TH

 = 1 - 
350
1200 = 0.708 

   WB = ηTH,B × QB = 0.708 × 40 000 = 28 320 kJ/kg 

   WB/$B = 28 320/1.3 = 21 785 kJ/$ 

Select fuel B for more work per dollar though it has a lower thermal efficiency. 
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Finite ∆T Heat Transfer  
 
7.67 
 A refrigerator keeping 5oC inside is located in a 30oC room. It must have a high 

temperature ∆T above room temperature and a low temperature ∆T below the 
refrigerated space in the cycle to actually transfer the heat. For a ∆T  of 0, 5 and 
10oC respectively calculate the COP assuming a Carnot cycle. 

 
 Solution: 
  From the definition of COP and assuming Carnot cycle 

   β = 
QL

WIN
 =  

TL
TH - TL

 when T’s are absolute temperatures 

 
  ∆T TH TH TL TL β 
   oC K oC K  
 a 0 30 303 5 278 11.1 
 b 5 35 308 0 273 7.8 
 c 10 40 313 -5 268 5.96 

 
  Notice how the COP drops significantly with the increase in ∆T. 
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7.68 
  A refrigerator uses a power input of 2.5 kW to cool a 5°C space with the high 

temperature in the cycle as 50°C. The QH is pushed to the ambient air at 35°C in a 
heat exchanger where the transfer coefficient is 50 W/m2K. Find the required 
minimum heat transfer area. 
 Solution: 

   W
.

 = 2.5 kW = Q
.

H / βHP 

   Q
.

H = W
.

 × βHP = 2.5 × [323 / (50 - 5)] = 17.95 kW = h A ∆T 

   A = 
Q
.

H
h ∆T  = 

17.95 × 103

50 × 15  = 23.9 m2 
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7.69 
 A house is heated by a heat pump driven by an electric motor using the outside as 

the low-temperature reservoir. The house loses energy directly proportional to the 

temperature difference as Q
.

loss = K(TH - TL). Determine the minimum electric 
power to drive the heat pump as a function of the two temperatures. 
 
Solution: 

  Heat pump COP: β′ = Q
.

H/W
.

in ≤ TH/(TH - TL) ;               

  Heat loss must be added:   Q
.

H= Q
.

loss = K(TH - TL) 

  Solve for required work and substitute in for β′ 

   W
.

in = Q
.

H/β′  ≥  K(TH - TL) × (TH - TL)/TH  

   W
.

in ≥ K(TH - TL)2/TH 
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7.70 
 A farmer runs a heat pump with a motor of 2 kW. It should keep a chicken 

hatchery at 30oC which loses energy at a rate of 0.5 kW per degree difference to 
the colder ambient. The heat pump has a coefficient of performance that is 50% of 
a Carnot heat pump. What is the minimum ambient temperature for which the 
heat pump is sufficient? 

 
 Solution: 
  C.V. Hatchery, steady state. 

To have steady state at 30oC for the hatchery 

Energy Eq.: Q
.

H= Q
.

Loss = β ACW
.

  

Process Eq.: Q
.

Loss= 0.5 (TH –Tamb); β AC = ½ βCARNOT 
  COP for the reference Carnot heat pump 

β CARNOT= 
Q
.

H

W
.  = 

Q
.

H

Q
.

H - Q
.

L

 = 
TH

TH - TL
 = 

TH
 TH - Tamb

 

Substitute the process equations and this β CARNOT into the energy Eq. 

0.5 (TH –Tamb) = ½ 
TH

 TH - Tamb
 W

.
 

 (TH –Tamb)2 = ½ THW
.

/0.5 = THW
.

 = (273 + 30) × 2 = 606 K2 

TH – Tamb= 24.62 K 

Tamb= 30 – 24.62 = 5.38oC 
 
Comment: That of course is not a very low temperature and the size of the system 
is not adequate for most locations. 

 
 

QleakQ QHL

W = 2  kW

HP
cb  
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7.71 
 Consider a Carnot cycle heat engine operating in outer space. Heat can be rejected 

from this engine only by thermal radiation, which is proportional to the radiator 
area and the fourth power of absolute temperature, Qrad ~ KAT4. Show that for a 
given engine work output and given TH, the radiator area will be minimum when 
the ratio TL/TH = 3/4. 
 Solution: 

 WNET = QH 






TH - TL

TH
 = QL 







TH - TL

TL
;   also    QL = KAT4

L  

 
WNET

KT4
H

 = 
AT4

L

T4
H 






TH

TL
 - 1  = A 













TL

TH

3
 - 







TL

TH

4
 = const 

Differentiating, 
 

 dA 












TL

TH

3
 - 







TL

TH

4
+ A 





3







TL

TH

2
 - 4







TL

TH

3
 d







TL

TH
 = 0 

 
dA

d(TL/TH) = - A 




3







TL

TH

2
 - 4







TL

TH

3
 / [







TL

TH

3
 - 







TL

TH

4] = 0 

 
  

TL
TH

 = 
3
4      for min. A 

 
Check that it is minimum and 
not maximum with the 2nd 
derivative > 0. 
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7.72 
 A house is heated by an electric heat pump using the outside as the low-

temperature reservoir. For several different winter outdoor temperatures, estimate 
the percent savings in electricity if the house is kept at 20°C instead of 24°C. 
Assume that the house is losing energy to the outside as in Eq. 7.17. 
 Solution: 

   Heat Pump   Q
.

loss  ∝  (TH - TL) 

  
Max
Perf.  

Q
.

H

W
.

IN

  =  
TH

TH - TL
  =  

K(TH - TL)

W
.

IN

,   W
.

IN  =  
K(TH - TL)2

TH
 

 
  A: THA

 = 24°C = 297.2 K B: THB = 20°C = 293.2 K 

          TL,°C      W
.

INA/K       W
.

INB/K      % saving 

          -20              6.514            5.457           16.2 % 
          -10              3.890            3.070           21.1 % 
             0                1.938           1.364            29.6 % 
           10               0.659            0.341           48.3 % 
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7.73 
 A house is cooled by an electric heat pump using the outside as the high-

temperature reservoir. For several different summer outdoor temperatures, 
estimate the percent savings in electricity if the house is kept at 25°C instead of 
20°C. Assume that the house is gaining energy from the outside directly 
proportional to the temperature difference as in Eq. 7.17. 
 
 Solution: 

  Air-conditioner (Refrigerator)   Q
.

LEAK ∝ (TH - TL) 

  
Max
Perf.  

Q
.

L

W
.

IN

 = 
TL

TH - TL
 = 

K(TH - TL)

W
.

IN

,   W
.

IN = 
K(TH - TL)2

TL
 

 
  A: TLA

 = 20°C = 293.2 K B: TLB = 25°C = 298.2 K 

   TH,°C        W
.

INA/K         W
.

INB/K        % saving 

   45               2.132             1.341          37.1 % 
   40               1.364             0.755          44.6 % 
   35               0.767             0.335          56.3 % 
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7.74 
 A heat pump has a coefficient of performance that is 50% of the theoretical 

maximum. It maintains a house at 20°C, which leaks energy of 0.6 kW per degree 
temperature difference to the ambient. For a maximum of 1.0 kW power input 
find the minimum outside temperature for which the heat pump is a sufficient heat 
source. 
 Solution: 

 

QleakQ QHL

W = 1 kW

HP
 

 

 

 C.V. House. For constant 20°C  the heat pump must provide Q
.

leak = 0.6 ∆T 

   Q
.

H = Q
.

leak  = 0.6 (TH - TL ) = β′ W
.

 

 C.V. Heat pump. Definition of the coefficient of performance and the fact that 
  the maximum is for a Carnot heat pump. 

  β′ = Q
.

H / W
.

 = Q
.

H / ( Q
.

H - Q
.

L ) = 0.5 β′Carnot  = 0.5 × TH / (TH - TL )  

 Substitute into the first equation to get 
  0.6 (TH - TL ) = [ 0.5 × TH / (TH - TL ) ] 1     => 

  (TH - TL )2 = (0.5 / 0.6) TH × 1 = 0.5 / 0.6 × 293.15 = 244.29 

  TH - TL = 15.63  => TL = 20 - 15.63 = 4.4 °C 
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7.75 
 An air conditioner cools a house at TL = 20°C with a maximum of 1.2 kW power 

input. The house gains 0.6 kW per degree temperature difference to the ambient 
and the refrigeration COP is β = 0.6 βCarnot. Find the maximum outside 
temperature, TH, for which the air conditioner provides sufficient cooling. 

 
Solution: 

 

QleakQ QH L

W = 1.2 kW

HP TL
 

Here: 
   TL = Thouse 

   TH = Tamb 

 
 
  In this setup the low temperature space is the house and the high 
 temperature space is the ambient. The heat pump must remove the gain or 
 leak heat transfer to keep it at a constant temperature. 

 Q
.

leak = 0.6 (Tamb - Thouse) = Q
.

L   which must be removed by the heat pump. 

  β = Q
.

L / W
.

 = 0.6 βcarnot = 0.6 Thouse / (Tamb - Thouse ) 

 Substitute in for Q
.

L and multiply with (Tamb - Thouse)W
.

: 

    0.6 (Tamb - Thouse )
2  = 0.6 Thouse W

.
    

 Since  Thouse = 293.15 K  and  W
.

 = 1.2 kW it follows 

   (Tamb - Thouse )
2  = Thouse W

.
 = 293.15 × 1.2 = 351.78 K2 

  
 Solving ⇒  (Tamb - Thouse ) = 18.76     ⇒     Tamb = 311.9 K = 38.8 °C  
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7.76 
  A Carnot heat engine, shown in Fig. P7.76, receives energy from a reservoir at 

Tres through a heat exchanger where the heat transferred is proportional to the 

temperature difference as Q
.

H = K(Tres - TH). It rejects heat at a given low 
temperature TL. To design the heat engine for maximum work output show that 
the high temperature, TH, in the cycle should be selected as TH  = TresTL 

 Solution: 

  W = ηTHQH = 
TH - TL

TH
 × K(Tres − TH) ;     maximize W(TH)  ⇒  

δW
δTH

 = 0 

    
δW
δTH

 = K(Tres − TH)TLTH
-2 − K(1 − TL/TH) = 0   

      ⇒  TH = TresTL 
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Ideal Gas Carnot Cycles 
 
7.77 
  Hydrogen gas is used in a Carnot cycle having an efficiency of 60% with a low 

temperature of 300 K. During the heat rejection the pressure changes from 90 kPa 
to 120 kPa. Find the high and low temperature heat transfer and the net cycle 
work per unit mass of hydrogen. 
 Solution: 
 As the efficiency is known, the high temperature is found as 

   η = 0.6 =  1 − 
TL
TH

       = > TH = TL /(1 - 0.6) = 750 K 

 Now the volume ratio needed for the heat transfer, T3 = T4 = TL, is 

  v3 / v4 = ( RT3 / P3 ) / ( RT4 / P4 ) = P4 / P3 = 120 / 90 = 1.333 

 so from Eq.7.9 we have with R = 4.1243 from Table A.5 
   qL = RTL ln (v3/v4 ) = 355.95 kJ/kg 

 Using the efficiency from Eq.7.4 then 
   qH = qL / (1 - 0.6) = 889.9 kJ/kg  

 The net work equals the net heat transfer 
   w = qH - qL = 533.9 kJ/kg 
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7.78 
  An ideal gas Carnot cycle with air in a piston cylinder has a high temperature of 

1200 K and a heat rejection at 400 K. During the heat addition the volume triples. 
Find the two specific heat transfers (q) in the cycle and the overall cycle 
efficiency. 

  Solution: 
 
 The P-v diagram of the cycle is 

shown to the right. 
From the integration along the 
process curves done in the main 
text we have Eq.7.7 
 
     qH = R TH ln(v2/v1) 

          = 0.287 × 1200 ln(3) 
          = 378.4 kJ/kg 

P

v

1

2

34

1200 K

400 K

 

  Since it is a Carnot cycle the knowledge of the temperatures gives the cycle  
  efficiency as 

    ηTH = ηTH =  1 − 
TL
TH

 = 1 - 
400
1200 = = 0.667 

  from which we can get the other heat transfer from Eq.7.4 
    qL = qH TL / TH = 378.4  400 / 1200 = 126.1 kJ/kg 
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7.79 
  Air in a piston/cylinder goes through a Carnot cycle with the P-v diagram shown 

in Fig. 7.24. The high and low temperatures are 600 K and 300 K respectively. 
The heat added at the high temperature is 250 kJ/kg and the lowest pressure in the 
cycle is 75 kPa. Find the specific volume and pressure after heat rejection and the 
net work per unit mass. 
 
 Solution: 
 
  qH = 250 kJ/kg ,   TH = 600 K,     TL = 300 K,      P3 = 75 kPa 

 The states as shown in figure 7.21  
  1: 600 K ,       2: 600 K,        3: 75 kPa, 300 K          4: 300 K 
 Since this is a Carnot cycle and we know the temperatures the efficiency is  
 

 
η = 1 − 

TL
TH

 = 1 - 
300
600 = 0.5 

and the net work becomes 
       wNET = ηqH = 0.5 × 250  

                 = 125 kJ/kg 
 
The heat rejected is 

P

v

1

2

34

600 K

300 K

 
   qL = qH – wNET = 125 kJ/kg 

 After heat rejection is state 4. From equation 7.9 
  3→4  Eq.7.9 :   qL = RTL ln (v3/v4)  

  v3 = RT3 / P3 = 0.287 × 300 / 75 = 1.148 m3/kg 

  v4 = v3 exp(-qL/RTL) = 1.148 exp(−125/0.287 × 300) = 0.2688 m3/kg 

  P4 = RT4 / v4 = 0.287 × 300 / 0.2688 = 320 kPa 
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Review Problems 
 
7.80 
 A car engine operates with a thermal efficiency of 35%. Assume the air-

conditioner has a coefficient of performance of  β = 3 working as a refrigerator 
cooling the inside using engine shaft work to drive it. How much fuel energy 
should be spend extra to remove 1 kJ from the inside? 
 Solution: 
   Car engine:  W = ηeng Qfuel  

   Air conditioner: β =  
QL
W  

   W = ηeng Qfuel =  
QL
β   

   Qfuel = QL / (ηeng β) = 
1

0.35 × 3 = 0.952 kJ 

 
 

W 

L Q   

TH

H Q 

T L 

REF

FuelQ 

H.E.

L eng Q 

FUEL
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7.81 
  An air-conditioner with a power input of 1.2 kW is working as a refrigerator (β = 

3) or as a heat pump (β′ = 4). It maintains an office at 20°C year round which 
exchanges 0.5 kW per degree temperature difference with the atmosphere. Find 
the maximum and minimum outside temperature for which this unit is sufficient. 
 
Solution: 
 Analyze the unit in heat pump mode 

  Replacement heat transfer equals the loss:   Q
.
 = 0.5 (TH - Tamb) 

   W
.

 = 
Q
.

H
β′   = 0.5 

TH - Tamb
4   

   TH - Tamb = 4 
W
.

0.5 = 9.6 K 

  Heat pump mode:   Minumum   Tamb = 20 - 9.6 = 10.4 °C 

 The unit as a refrigerator must cool with rate:    Q
.
 = 0.5 (Tamb - Thouse) 

   W
.

 = 
Q
.

L
β   = 0.5 (Tamb - Thouse) / 3 

   Tamb - Thouse  = 3  
W
.

0.5 = 7.2 K 

  Refrigerator mode:    Maximum   Tamb = 20 + 7.2 = 27.2 °C 
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7.82 
 A  rigid insulated container has two rooms separated by a membrane. Room A 

contains 1 kg air at 200oC and room B has 1.5 kg air at 20oC, both rooms at 100 
kPa. Consider two different cases  

1) Heat transfer between A and B creates a final uniform T. 
2) The membrane breaks and the air comes to a uniform state. 

 For both cases find the final temperature. Are the two processes reversible and 
different? Explain.  
Solution:  
C.V. Total A+B 
1) Energy Eq.: U2 - U1 = 1Q2 - 1W2 = 0 − 0 = 0 

      U2 - U1 = 0 = mA ( U2 - U1 )A  + mB ( U2 - U1 )B 

                   ≅ mA CV (Τ2 - TA1) + mB CV (Τ2 - TB1) 

 ⇒ Τ2 =  
mA

mA + mB
 TA1  + 

mB
mA + mB

 TB1 = 
1

2.5 × 200 + 
1.5
2.5 × 20 

            = 92oC 
 PA2 = PA1 × T2/ TA1 = 100 × (273 + 92) /473 = 77.2 kPa 

 PB2 = PB1 × T2/ TB1 = 100 × (273 + 92) /293 = 124.6 kPa 

2) Same energy eq.  Since ideal gas u(T) same T2 = 92oC, but now also same P2 

    P2 = mRT2 / V1;  V1  = VA + VB  

     V1 = mA1RTA1/ P1 + mB1RTB1/ P1 

 P2 = (m2RT2 / (mA1RTA1/ P1 + m B1RTB1/ P1))  

         = P1 (m2T2 / (mA1TA1 + mB1TB1)) = 100 
2.5 (273 + 92)

1 × 473 + 1.5 × 293 

     = 100 kPa 
Both cases irreversible  1) Q over a finite ∆T and in 2) mixing of 2 different states 
(internal u redistribution) 
(Case 2) is more irreversible as the final state in 1 could drive a turbine between 
the two different pressures until equal. 
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7.83 
 At certain locations geothermal energy in undergound water is available and used 

as the energy source for a power plant. Consider a supply of saturated liquid 
water at 150°C. What is the maximum possible thermal efficiency of a cyclic heat 
engine using this source of energy with the ambient at 20°C? Would it be better to 
locate a source of saturated vapor at 150°C than use the saturated liquid at 150°C? 
 
 Solution: 
 
  TMAX = 150°C = 423.2 K = TH ;    TMin = 20°C = 293.2 K = TL 

  ηTH MAX = 
TH - TL

TH
 = 

130
423.2 = 0.307 

 Yes.   Saturated vapor source at 150°C would remain at 150°C as it 
 condenses to liquid, providing a large energy supply at that temperature. 
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7.84 
 We wish to produce refrigeration at −30°C. A reservoir, shown in Fig. P7.84, is 

available at 200°C and the ambient temperature is 30°C. Thus, work can be done 
by a cyclic heat engine operating between the 200°C reservoir and the ambient. 
This work is used to drive the refrigerator. Determine the ratio of the heat 
transferred from the 200°C reservoir to the heat transferred from the −30°C 
reservoir, assuming all processes are reversible. 
 
 Solution: 
 Equate the work from the heat engine to the refrigerator. 
 

 

QH1

W

QL1

HE

QH2

QL2

REF

T  = 200 CH T  = 30 Co

T  = 30 Co T  =- 30 CL  

W = QH1 






TH - T0

TH
 

also 

W = QL2 






T0 - TL

TL
 

 

   
QH1
QL2

 = 






To - TL

TL
 






TH

TH - To
 = 



60

243.2  



473.2

170  = 0.687 
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7.85 
  A 4L jug of milk at 25°C is placed in your refrigerator where it is cooled down to 

5°C. The high temperature in the Carnot refrigeration cycle is 45°C and the 
properties of milk are the same as for liquid water. Find the amount of energy that 
must be removed from the milk and the additional work needed to drive the 
refrigerator. 
 

 Solution: 
 C.V milk + out to the 5 °C refrigerator space 
 Energy Eq.: m(u2 − u1) = 1Q2 − 1W2  

 Process : P = constant = 1 atm     =>    1W2 = Pm (v2 - v1) 

 State 1: Table B.1.1, v1 ≅ vf = 0.001003 m3/kg,     h1 ≅ hf = 104.87 kJ/kg 

   m2 = m1 = V1/v1  = 0.004 / 0.001003 = 3.988 kg 

 State 2: Table B.1.1,    h2 ≅ hf = 20.98 kJ/kg 

  1Q2 = m(u2 − u1) + 1W2 = m(u2 − u1) + Pm (v2 - v1) = m(h2 − h1)  

  1Q2 = 3.998 (20.98 - 104.87) = -3.988 × 83.89 = - 334.55 kJ 

 C.V. Refrigeration cycle  TL = 5 °C ; TH =  45 °C, assume Carnot  
  Ideal :   β = QL / W = QL / (QH - QL ) = TL/ (TH − TL) 

       = 278.15 / 40 = 6.954 
  W = QL / β = 334.55 / 6.954 = 48.1 kJ 

 
 

MILK
cb

5  C

AIR

o
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7.86 
  A combination of a heat engine driving a heat pump (see Fig. P7.86) takes waste 

energy at 50°C as a source Qw1 to the heat engine rejecting heat at 30°C. The 
remainder Qw2 goes into the heat pump that delivers a QH at 150°C. If the total 
waste energy is 5 MW find the rate of energy delivered at the high temperature. 
 Solution: 
 

 
Waste supply:     Q

.
w1 + Q

.
w2  = 5 MW 

Heat Engine: 

     W
.

 =  η Q
.

w1 = ( 1 - TL1 / TH1 ) Q
.

w1 

Heat pump: 

     W
.

 =  Q
.

H / βHP = Q
.

W2 / β′ 

          = Q
.

w2 / [TH1 / (TH  - TH1 )] 

 
Equate the two work terms: 

W

QL

Qw1

HE

Qw2

QH

HP

Waste
source

Ambient
30 C

Waste
source

HEAT
150 C

 

   ( 1 - TL1 / TH1 ) Q
.

w1  = Q
.

w2  × (TH  - TH1 ) / TH1  

 Substitute     Q
.

w1 = 5 MW - Q
.

w2   

   (1 - 303.15/323.15)(5 - Q
.

w2 ) = Q
.

w2 × (150 - 50) / 323.15 

  20 ( 5 - Q
.

w2 ) = Q
.

w2 × 100      =>     Q
.

w2  = 0.8333 MW 

  Q
.

w1 = 5 - 0.8333 = 4.1667 MW 

  W
.

 = η Q
.

w1 = 0.06189 × 4.1667 = 0.258 MW 

  Q
.

H = Q
.

w2 + W
.

 = 1.09 MW 

  (For the heat pump  β′ = 423.15 / 100 = 4.23) 
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7.87 
  Air in a rigid 1 m3 box is at 300 K, 200 kPa. It is heated to 600 K by heat transfer 

from a reversible heat pump that receives energy from the ambient at 300 K 
besides the work input. Use constant specific heat at 300 K. Since the coefficient 
of performance changes write dQ = mair Cv dT and find dW. Integrate dW with 
temperature to find the required heat pump work. 
 Solution: 
 

  COP:  β′ = 
QH
W  = 

QH
QH − QL

  ≅ 
TH

TH − TL
 

  mair = P1V1 / RT1 = 200 × 1 / 0.287 × 300 = 2.322 kg 

  dQH = mair Cv dTH = β′ dW  ≅  
TH

TH − TL
  dW 

   =>       dW = mair Cv [ 
TH

TH − TL
 ] dTH  

  1W2 = ∫ mair Cv ( 1 - 
TL
T  ) dT = mair Cv ∫ ( 1 - 

TL
T  ) dT  

          = mair Cv [T2 - T1 - TL ln 
T2
T1

 ] 

          = 2.322 × 0.717 [ 600 - 300 - 300 ln 
600
300 ] = 153.1 kJ 
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7.88 
  Consider the rock bed thermal storage in Problem 7.61. Use the specific heat so 

you can write dQH in terms of dTrock and find the expression for dW out of the 
heat engine. Integrate this expression over temperature and find the total heat 
engine work output. 
 Solution: 
 
 The rock provides the heat QH 

   dQH = −dUrock = −mC  dTrock 

   dW = ηdQH = −  ( 1 −  To / Trock) mC dTrock 

 
   m = ρV = 2750 × 2 = 5500 kg 

  1W2 = ∫ − ( 1 − To / Trock) mC dTrock = − mC [T2 − T1 − To ln 
T2
T1

 ] 

          = − 5500 × 0.89 [ 290 − 400 − 290 ln 
290
400 ]  = 81 945 kJ 
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7.89 
 A heat pump heats a house in the winter and then reverses to cool it in the 

summer. The interior temperature should be 20°C in the winter and 25°C in the 
summer. Heat transfer through the walls and ceilings is estimated to be 2400 kJ 
per hour per degree temperature difference between the inside and outside. 

 a. If the winter outside temperature is 0°C, what is the minimum power required 
to drive the heat pump? 

            b.For the same power as in part (a), what is the maximum outside summer tem-
perature for which the house can be maintained at 25°C? 

 
 Solution: 
  

a)  Winter: 
    House is TH and ambient  
    is at TL 

QleakQ QHL

W

HP
 

    TH = 20°C = 293.2 K ,  TL = 0°C = 273.2 K  and    Q
.

H = 2400(20 -0) kJ/h 

      β′ = Q
.

H/W
.

IN = 
2400(20 - 0)

W
.

IN

 = 
TH

TH - TL
 = 

293.2
20  

      ⇒ W
.

IN = 3275 kJ/h = 0.91 kW   (For Carnot cycle) 

 
                  b) 

QleakQ QH L

W

HP TL
 

Summer: 
   TL = Thouse 

   TH = Tamb 

 
 

   TL = 25°C = 298.2 K,   W
.

IN = 3275 kJ/h  and Q
.

L = 2400(TH - 298.2) kJ/h 

      β =  
Q
.

L

W
.

IN

 = 
2400(TH - 298.2)

3275  = 
TL

TH - TL
 = 

298.2
TH - 298.2 

      or,   (TH - 298.2)2 = 
298.2 × 3275

2400  = 406.92 

      TH = 318.4 K = 45.2°C 
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7.90 
 A furnace, shown in Fig. P7.90, can deliver heat, QH1 at TH1 and it is proposed to 

use this to drive a heat engine with a rejection at Tatm instead of direct room 
heating. The heat engine drives a heat pump that delivers QH2 at Troom using the 
atmosphere as the cold reservoir. Find the ratio QH2/QH1 as a function of the 
temperatures. Is this a better set-up than direct room heating from the furnace? 
 Solution: 

  C.V.: Heat Eng.:  W
.

HE = ηQ
.

H1     where η = 1 - Tatm/TH1 

  C.V.: Heat Pump:  W
.

HP = Q
.

H2/β′   where β′ = Trm/(Trm - Tatm) 

  Work from heat engine goes into heat pump so we have 

                  Q
.

H2 = β′ W
.

HP = β′ η Q
.

H1  

 and we may substitute T's for β′, η.  If furnace is used directly Q
.

H2 = Q
.

H1, 
 so if β′η > 1 this proposed setup is better. Is it?  For TH1 > Tatm formula shows 

that it is good for Carnot cycles.  In actual devices it depends wether β′η > 1 is 
obtained. 
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7.91 
 A 10-m3 tank of air at 500 kPa, 600 K acts as the high-temperature reservoir for a 

Carnot heat engine that rejects heat at 300 K. A temperature difference of 25°C 
between the air tank and the Carnot cycle high temperature is needed to transfer 
the heat. The heat engine runs until the air temperature has dropped to 400 K and 
then stops. Assume constant specific heat capacities for air and find how much 
work is given out by the heat engine. 
 
 Solution: 
 
 

QH
W

QL

HE

AIR

300 K  

TH = Tair - 25°C   TL = 300 K 

mair = 
P1V
RT1

 = 
500 × 10

0.287 × 600 = 29.04 kg 

dW = ηdQH = 








1 - 
TL

Tair - 25  dQH 

dQH = -mairdu = -mairCvdTair 

  W = ⌡⌠dW = -mairCv⌡

⌠









1 - 
TL

Ta-25 dTa = -mairCv







Ta2-Ta1-TL ln 
Ta2-25
Ta1-25  

 

         = -29.04 × 0.717 × 



400 - 600 - 300 ln 

375
575  = 1494.3 kJ 
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CHAPTER 7  
 
  SUBSECTION    PROB NO. 
 
  Concept-Study Guide Problems      92-96 
  Heat Engines and Refrigerators      97-100 
  Carnot Cycles and Absolute Temperature   101-110 
  Finite ∆T Heat Transfer     111-114 
  Review Problems      115-117 
  Ideal Gas Carnot Cycles        118 
 
 
  This problem set compared to the fifth edition chapter 7 set and the current 

chapter 7 SI problem set. 
 

New 5th SI New 5th SI New 5th SI 
92 new 2 101 55 40 110 70 63 
93 new 3 102 56 44 111 59 80 
94 new 5 103 58 47 112 61 75 
95 new 7 104 60 48 113 66 73 
96 new 15 105 63 51 114 62 61 
97 54 20 106 64 60 115 67 84 
98 new 22 107 65 72 116 71 87 
99 new 30 108 68 - 117 72 91 
100 57 26 109 69 62 118 73 79mod 
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Concept Problems 
 
 
7.92E 
 A gasoline engine produces 20 hp using 35 Btu/s of heat transfer from burning 

fuel. What is its thermal efficiency and how much power is rejected to the 
ambient? 

 
   Conversion Table A.1:   20 hp = 20 × 2544.4/3600 Btu/s = 14.14 Btu/s 
 

   Efficiency:               ηTH = W
.

out/Q
.

H = 
14.14

35  = 0.40 

 
   Energy equation:    Q

.
L = Q

.
H - W

.
out  = 35 – 14.14 = 20.9 Btu/s 

 
                              Q

.
H 

                             ⇒ 
 

 

Q
.

L 

⇒ 
 
W
.

out 

⇒ 
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7.93E 
 A refrigerator removes 1.5 Btu from the cold space using 1 Btu work input. How 

much energy goes into the kitchen and what is its coefficient of performance? 
 
   C.V. Refrigerator. The energy QH goes into the kitchen air. 
   Energy Eq.:  QH = W + QL = 1 + 1.5 = 2.5 btu 

   COP:   β = 
QL
W  = 1.5 / 1 = 1.5 

 
The back side of 
the refrigerator 
has a black grille 
that heats the 
kitchen air. Other 
models have that 
at the bottom 
with a fan to 
drive the air over 
it. 

 

 

1

2

Air in, 3

Air out, 4

 

 
 
7.94E 
 A window air-conditioner unit is placed on a laboratory bench and tested in 

cooling mode using 0.75 Btu/s of electric power with a COP of 1.75. What is the 
cooling power capacity and what is the net effect on the laboratory? 

 
  Definition of COP: β = Q

.
L / W

.
 

  Cooling capacity: Q
.

L = β W
.

 = 1.75 × 0.75 = 1.313 Btu/s 
 
  For steady state operation the Q

.
L comes from the laboratory and Q

.
H goes to the 

laboratory giving a net to the lab of  W
.

 = Q
.

H - Q
.

L = 0.75 Btu/s, that is heating it. 
 
 
7.95E 
 A car engine takes atmospheric air in at 70 F, no fuel, and exhausts the air at 0 F 

producing work in the process. What do the first and the second laws say about 
that? 

 
  Energy Eq.:      W = QH − QL = change in energy of air.       OK 
  2nd law:            Exchange energy with only one reservoir.  NOT OK. 
  This is a violation of the statement of Kelvin-Planck. 
 
  Remark:  You cannot create and maintain your own energy reservoir. 



   Sonntag, Borgnakke and Wylen 
 

 
 
7.96E 
 A large stationary diesel engine produces 20 000 hp with a thermal efficiency of 

40%. The exhaust gas, which we assume is air, flows out at 1400 R and the intake 
is 520 R. How large a mass flow rate is that if that accounts for half the Q

.
L?  Can 

the exhaust flow energy be used? 
 
   Power   20 000 hp = 20 000 × 2544.4 / 3600 = 14 136 Btu/s 

  Heat engine: Q
.

H = W
.

out/ηTH = 
14 136

0.4  = 35 339 Btu/s 

 
   Energy equation:    Q

.
L = Q

.
H - W

.
out  = 35 339 – 14 136 = 21 203 Btu/s 

 

   Exhaust flow:        12Q
.

L = m
.

air(h1400 - h520) 
 

     m
.

air = 12 
Q
.

L
h1400 - h520

 = 12 
21 203

343.02 - 124.38 = 48.49 lbm/s 
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Heat Engines and Refrigerators 
 
7.97E 
 Calculate the thermal efficiency of the steam power plant cycle described in 

Problem 6.167. 
 Solution: 
 
 From solution to problem 6.167, 168 

  W
.

NET = 33 000 - 400 = 32 600 hp = 8.3 ×107 Btu/h 

  Q
.
H,tot = Q

.
econ + Q

.
gen 

   = 4.75 ×107 + 2.291 ×108 = 2.766 ×108 Btu/h;    

   η = 
W
.

Q
.

H
 = 

8.3 ×107

2.766 ×108 = 0.30 
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7.98E 
  A farmer runs a heat pump with a 2 kW motor. It should keep a chicken hatchery 

at 90 F, which loses energy at a rate of 10 Btu/s to the colder ambient Tamb. What 
is the minimum coefficient of performance that will be acceptable for the heat 
pump?  

Power input:  W
.

 = 2 kW = 2 × 2544.4 / 3600 = 1.414 Btu/s  
Energy Eq. for hatchery: Q

.
H = Q

.
Loss = 10 Btu/s 

Definition of COP:  β = COP =  
Q
.

H
W
.  = 

10
1.414 = 7.07 

 
 

QleakQ QHL

W = 2  kW

HP
cb  
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7.99E 
  Calculate the amount of work input a refrigerator needs to make ice cubes out of a 

tray of  0.5 lbm liquid water at 50 F. Assume the refrigerator has β = 3.5 and a 
motor-compressor of 750 W. How much time does it take if this is the only 
cooling load? 

 Solution: 
C.V. Water in tray. We neglect tray mass. 

  Energy Eq.:   m(u2 − u1) = 1Q2 − 1W2  
Process  :  P = constant = Po 

1W2 = ∫ P dV = Pom(v2 − v1) 

 1Q2 = m(u2 − u1) + 1W2  = m(h2 − h1) 
 
Tbl. F.7.1 : h1 = 18.05 btu/lbm,   Tbl. F.7.4 : h2 = - 143.34 kJ/kg 

1Q2 = 0.5(-143.34 – 18.05 ) = - 80.695 Btu 
 
Consider now refrigerator 

β = QL/W 
W = QL/β = - 1Q2/ β = 80.695/3.5 = 23.06 Btu 

 
For the motor to transfer that amount of energy the time is found as 
 

W = ∫ W
.

 dt = W
.

 ∆t 
   

∆t = W/W
.

 = (23.06 × 1055)/750 = 32.4 s 
 

Comment:  We neglected a baseload of the refrigerator so not all the 750 W are available 
to make ice, also our coefficient of performance is very optimistic and finally the 
heat transfer is a transient process. All this means that it will take much more time 
to make ice-cubes.  
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7.100E 
 In a steam power plant 1000 Btu/s is added at 1200 F in the boiler, 580 Btu/s is 

taken out at 100 F in the condenser and the pump work is 20 Btu/s. Find the plant 
thermal efficiency. Assume the same pump work and heat transfer to the boiler as 
given, how much turbine power could be produced if the plant were running in a 
Carnot cycle? 
 
 Solution: 
 

 

WT

QH

QL
.

WP, in

 

CV. Total plant:  
Energy Eq.: 
           Q

.
H + W

.
P,in = W

.
T + Q

.
L 

 
 W

.
T = 1000 + 20 − 580 = 440 Btu/s 

    ηTH = 
W
.

T - W
.

P,in
Q
.

H
 = 

420
1000 = 0.42 

 

  ηcarnot = W
.

net/ Q
.

H = 1 − TL/TH = 1 − 
100 + 459.67
1200 + 459.67 = 0.663 

 W
.

T − W
.

P,in = ηcarnotQ
.

H = 663 Btu/s    =>      W
.

T = 683 
Btu

s  
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Carnot Cycles and Absolute T 
 
7.101E 
 Calculate the thermal efficiency of a Carnot-cycle heat engine operating between 

reservoirs at 920 F and 110 F. Compare the result with that of Problem 7.97. 
 
Solution: 
 

  TH = 920 F ,      TL = 110 F 

  ηCarnot = 1 − 
TL
TH

 = 1 - 
110 + 459.67
920 + 459.67 = 0.587    (about twice 7.97: 0.3) 
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7.102E 
 A car engine burns 10 lbm of fuel (equivalent to addition of QH) at 2600 R and 

rejects energy to the radiator and the exhaust at an average temperature of 1300 
R. If the fuel provides 17 200 Btu/lbm what is the maximum amount of work the 
engine can provide? 
Solution: 

  A heat engine  QH = m qfuel =  10 × 17200 = 170 200 Btu 

  Assume a Carnot efficiency (maximum theoretical work) 

    η  =  1 − 
TL
TH

 = 1 − 
1300
2600 = 0.5 

    W = η QH = 0.5 × 170 200  = 85 100 Btu 

 
 

  

 Exhaust flow

Air intake filter

Coolant flow

Atm.
airShaft

Fan

power

Radiator
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7.103E 
 An air-conditioner provides 1 lbm/s of air at 60 F cooled from outside 

atmospheric air at 95 F. Estimate the amount of power needed to operate the air-
conditioner. Clearly state all assumptions made. 
 
Solution: 
Consider the cooling of air which needs a heat transfer as 
 Q

.
air = m

.
 ∆h ≅ m

.
 Cp ∆T = 1 × 0.24 × (95 - 60) = 8.4 Btu/s 

Assume Carnot cycle refrigerator 

  β = 
Q
.

L
W
.  = Q

.
L / (Q

.
H - Q

.
L ) ≅ 

TL
TH - TL

 = 
60 + 459.67

95 - 60  = 14.8 

  W
.

  =  Q
.
L / β = 

8.4
14.8 = 0.57 Btu/s  

 
  

This estimate is the theoretical maximum 
performance. To do the required heat 
transfer   TL  ≅ 40 F   and  TH = 110 F are 
more likely; secondly  
 β < βcarnot 

H Q 

W 

L Q 

REF

95 F 60 F
cb
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7.104E 
 We propose to heat a house in the winter with a heat pump. The house is to be 

maintained at 68 F at all times. When the ambient temperature outside drops to 15 
F, the rate at which heat is lost from the house is estimated to be 80000 Btu/h. 
What is the minimum electrical power required to drive the heat pump? 
 

 Solution: 
 
Minimum power if we  
assum  a Carnot cycle e
Q
.

H = Q
.

leak  = 80 000 
Btu/h 

QleakQ QHL

W

HP

 

 

  β′ = 
Q
.

H
W
.

IN
 = 

TH
TH - TL

 = 
527.7

53  = 9.957 

  ⇒ W
.

IN = 80 000 / 9.957 = 8035 Btu/h = 2.355 kW 
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7.105E 
 An inventor has developed a refrigeration unit that maintains the cold space at 14 

F, while operating in a 77 F room. A coefficient of performance of 8.5 is claimed. 
How do you evaluate this? 
 
 Solution: 
 Assume Carnot cycle then 

  

βCarnot = 
QL
Win

 = 
TL

TH-TL
 = 

14 + 459.67
77 - 14  = 7.5 

   
8.5  >  βCarnot   ⇒   impossible claim 
 

H Q 

W 

L Q 
T  = 14 F L 

T  = 77 FH

REF
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7.106E 
 Liquid sodium leaves a nuclear reactor at 1500 F and is used as the energy source 

in a steam power plant. The condenser cooling water comes from a cooling tower 
at 60 F. Determine the maximum thermal efficiency of the power plant. Is it 
misleading to use the temperatures given to calculate this value? 
 
 Solution: 
 

LIQ Na

�������
�������REACTOR 

ENERGY
TO H O 2 

1500 F 
���������������
���������������
���������������
���������������

COND. 
COOLING 
TOWER 

ENERGY
FROM

STEAM 
POWER 
PLANT 

60 F 

LIQ H O 2  
  TH = 1500 F = 1960 R,   TL = 60 F = 520 R 

  ηTH MAX = 
TH - TL

TH
 = 

1960 - 520
19860  = 0.735 

 It might be misleading to use 1500 F as the value for TH, since there is not 
a supply of energy available at a constant temperature of 1500 F (liquid Na is 
cooled to a lower temperature in the heat exchanger). 
  ⇒ The Na cannot be used to boil H2O at 1500 F. 

 Similarly, the H2O leaves the cooling tower and enters the condenser at 
60 F, and leaves the condenser at some  higher temperature. 
⇒ The water does not provide for condensing steam at a constant temperature of 
60 F. 
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7.107E 
 A house is heated by an electric heat pump using the outside as the low-

temperature reservoir. For several different winter outdoor temperatures, estimate 
the percent savings in electricity if the house is kept at 68 F instead of 75 F. 
Assume that the house is losing energy to the outside directly proportional to the 
temperature difference as Q. loss = K(TH - TL). 
 
 Solution: 
   Heat Pump   Q

.
LOSS ∝ (TH - TL) 

  
Max
Perf.    

Q
.

H
W
.

in
 = 

TH
TH - TL

 = 
K(TH - TL)

W
.

in
,        W

.
in = 

K(TH - TL)2

TH
 

  A: THA
 = 75 F = 534.7 R    B: THB

 = 68 F = 527.7 R 

  TL, F      W
.

INA/K       W
.

INB/K       % saving 

            -10            13.512          11.529           14.7 % 
   10              7.902             6.375           19.3 % 
   30              3.787             2.736           27.8 % 
   50              1.169             0.614           47.5 % 
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7.108E 
 Refrigerant-22 at 180 F, x = 0.1 flowing at 4 lbm/s is brought to saturated vapor in 

a constant-pressure heat exchanger. The energy is supplied by a heat pump with a 
low temperature of 50 F. Find the required power input to the heat pump. 
 
 Solution: 
 C.V. Heat exchanger 

     m
.

1 = m
.

2 ;       

     m
.

1h1 + Q
.

H = m
.

1h2 

Assume a Carnot heat pump, TH = 640 R,  
TL = 510 R 

          β′  = 
Q
.

H

W
.  =  

TH
TH - TL

 = 4.923 

H Q 

W 

L Q 

T L 

HP

1 2
cb

 

  Table F.9.1:    
       h1 = hf + x1hfg = 68.5 + 0.1 × 41.57 = 72.66 Btu/lbm,  

      h2 = hg = 110.07 Btu/lbm 

  Energy equation for line 1-2:  
    Q

.
H  = m

.
R-12(h2 - h1)  = 4 (110.07 - 72.66) = 149.64 Btu/s 

     W
.

 =  
Q
.

H
β′   = 

149.64
4.923  = 30.4 Btu/s 

 



   Sonntag, Borgnakke and Wylen 
 

 
7.109E 
 A heat engine has a solar collector receiving 600 Btu/h per square foot inside 

which a transfer media is heated to 800 R. The collected energy powers a heat 
engine which rejects heat at 100 F. If the heat engine should deliver 8500 Btu/h 
what is the minimum size (area) solar collector? 
 
 Solution: 
  TH = 800 R   TL = 100 + 459.67 = 560 R 

  ηHE =  1 − 
TL
TH

 = 1 - 
560
800 = 0.30 

  W
.

 = η Q
.

H    =>     Q
.

H  = 
W
.

η   = 
8500
0.30   = 28 333 Btu/h 

  Q
.

H  = 600 A   =>   A = 
Q
.

H
600 = 47 ft2 
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7.110E 
 Six-hundred pound-mass per hour of water runs through a heat exchanger, 

entering as saturated liquid at 250 F and leaving as saturated vapor. The heat is 
supplied by a Carnot heat pump operating from a low-temperature reservoir at 60 
F. Find the rate of work into the heat pump. 
 
 Solution: 
 
 C.V. Heat exchanger 

m
.

1 = m
.

2 ;           m
.

1h1 + Q
.

H = m
.

1h2 

 
Table F.7.1:   h1 = 218.58 Btu/lbm      

                      h2 = 1164.19 Btu/lbm 

 

H Q 

W 

L Q 

T L 

HP

1 2

 

   Q
.

H = 
600
3600 (1164.19 - 218.58) = 157.6 Btu/s 

  Assume a Carnot heat pump, TH = 250 F = 710 R. 

  β = Q
.

H/W
.

 = 
TH

TH - TL
 = 

710
190 = 3.737 

  W
.

 = Q
.

H/β = 157.6/3.737 = 42.2 Btu/s 
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Finite ∆T Heat Transfer 
 
7.111E 
 A car engine operates with a thermal efficiency of 35%. Assume the air-

conditioner has a coefficient of performance that is one third of the theoretical 
maximum and it is mechanically pulled by the engine. How much fuel energy 
should you spend extra to remove 1 Btu at 60 F when the ambient is at 95 F? 
 Solution: 
 Air conditioner 

  β  =  
QL
W  = 

TL
TH - TL

 = 
60 + 459.67

95 - 60  = 14.8 

  βactual = β / 3 = 4.93 
  W = QL / β = 1 / 4.93 = 0.203 Btu  
Work from engine 
  W = ηeng Qfuel = 0.203 Btu 

    Qfuel = W / ηeng = 
0.203
0.35  = 0.58 Btu 

 
 

W 

L Q   

TH

H Q 

T L 

REF

FuelQ 

H.E.

L eng Q 

FUEL
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7.112E 
 A heat pump cools a house at 70 F with a maximum of 4000 Btu/h power input. 

The house gains 2000 Btu/h per degree temperature difference to the ambient and 
the heat pump coefficient of performance is 60% of the theoretical maximum. 
Find the maximum outside temperature for which the heat pump provides 
sufficient cooling. 
Solution: 
 

 

QleakQ QH L

W = 4000 Btu/h

HP TL
 

Here: 
   TL = Thouse 

   TH = Tamb 

 

 
  In this setup the low temperature space is the house and the high 
 temperature space is the ambient. The heat pump must remove the gain or 
 leak heat transfer to keep it at a constant temperature. 
   Q

.
leak = 2000 (Tamb - Thouse) = Q

.
L    

 which must be removed by the heat pump. 
 β’ = Q

.
H / W

.
 = 1 + Q

.
L / W

.
 = 0.6 β’carnot = 0.6 Tamb / (Tamb - Thouse ) 

 Substitute in for Q
.

L and multiply with (Tamb - Thouse): 

  (Tamb - Thouse ) + 2000 (Tamb - Thouse )
2 / W

.
 = 0.6 Tamb 

 Since  Thouse = 529.7 R  and  W
.

 = 4000 Btu/h it follows 

   T2
amb  - 1058.6 Tamb + 279522.7 = 0 

  Solving    =>      Tamb = 554.5 R = 94.8 F  
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7.113E 
 A house is cooled by an electric heat pump using the outside as the high-

temperature reservoir. For several different summer outdoor temperatures 
estimate the percent savings in electricity if the house is kept at 77 F instead of 68 
F. Assume that the house is gaining energy from the outside directly proportional 
to the temperature difference. 
 
 Solution: 
 
  Air-conditioner (Refrigerator)   Q

.
LEAK ∝ (TH - TL) 

  
Max
Perf.  

Q
.

L
W
.

in
 = 

TL
TH - TL

 = 
K(TH - TL)

W
.

in
,   W

.
in = 

K(TH - TL)2

TL
 

  A: TLA = 68 F = 527.7 R    B: TLB = 77 F = 536.7 R 

       TH, F      W
.

INA/K       W
.

INB/K       % saving 

       115             4.186              2.691           35.7 % 
       105             2.594              1.461           43.7 % 
          95              1.381              0.604           56.3 % 
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7.114E 
 A thermal storage is made with a rock (granite) bed of 70 ft3 which is heated to 

720 R using solar energy. A heat engine receives a QH from the bed and rejects 
heat to the ambient at 520 R. The rock bed therefore cools down and as it reaches 
520 R the process stops. Find the energy the rock bed can give out. What is the 
heat engine efficiency at the beginning of the process and what is it at the end of 
the process? 
 Solution: 
 Assume the whole setup is reversible and that the heat engine operates in a 
 Carnot cycle. The total change in the energy of the rock bed is  
  u2 − u1 = q = C ∆T = 0.21 (720 - 520) = 42 Btu/lbm 
  m = ρV = 172 × 70 = 12040 lbm;    Q = mq = 505 680 Btu 
 To get the efficiency assume a Carnot cycle device 
  η = 1 - To / TH = 1 - 520/720 = 0.28    at the beginning of process 
  η = 1 - To / TH = 1 - 520/520 = 0               at the end of process 
 

 
W

Q Q
H L

HE
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Review Problems 
 
7.115E 
 We wish to produce refrigeration at −20 F. A reservoir is available at 400 F and 

the ambient temperature is 80 F, as shown in Fig. P7.84. Thus, work can be done 
by a cyclic heat engine operating between the 400 F reservoir and the ambient. 
This work is used to drive the refrigerator. Determine the ratio of the heat 
transferred from the 400 F reservoir to the heat transferred from the −20 F 
reservoir, assuming all processes are reversible. 
 
 Solution: Equate the work from the heat engine to the refrigerator. 
 

 

W

QL1

QH1

HE

QL2

QH2

REF

T  = 860 RH T  = 540 Ro

T  = 540 Ro T  = 440 RL  

W = QH1 






TH - TO

TH
 

also 

W = QL2 






TO - TL

TL
 

 

    
QH
QL

 = 






TO - TL

TL
 






TH

TH - TO
 = 

100
440 × 

860
320 = 0.611 
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7.116E 
 Air in a rigid 40 ft3 box is at 540 R, 30 lbf/in.2. It is heated to 1100 R by heat 

transfer from a reversible heat pump that receives energy from the ambient at 540 
R besides the work input. Use constant specific heat at 540 R. Since the 
coefficient of performance changes write dQ = mair Cv dT and find dW. Integrate 
dW with temperature to find the required heat pump work. 
 
 Solution: 

  COP: β′ = 
QH
W  = 

QH
QH − QL

  ≅ 
TH

TH − TL
 

  mair = P1V1 / RT1 = (30 × 40 × 144) / (540 × 53.34) = 6.0 lbm 

  dQH = mair Cv dTH = β′ dW  ≅  
TH

TH − TL
  dW 

   =>       dW = mair Cv [ 
TH

TH − TL
 ] dTH  

  1W2 = ∫ mair Cv ( 1 - 
TL
T  ) dT = mair Cv ∫ ( 1 - 

TL
T  ) dT  

          = mair Cv [T2 - T1 - TL ln 
T2
T1

 ] 

          = 6.0 × 0.171 [1100 - 540 – 540 ln (
1100
540 )] = 180.4 Btu 
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7.117E 
   A 350-ft3 tank of air at 80 lbf/in.2, 1080 R acts as the high-temperature reservoir 

for a Carnot heat engine that rejects heat at 540 R. A temperature difference of 45 
F between the air tank and the Carnot cycle high temperature is needed to transfer 
the heat. The heat engine runs until the air temperature has dropped to 700 R and 
then stops. Assume constant specific heat capacities for air and find how much 
work is given out by the heat engine. 
 Solution: 
 

 

QH
W

QL

HE

AIR

540 R
 

TH = Tair - 45 ,     TL = 540 R 

mair = 
P1V
RT1

 = 
80 × 350 × 144
53.34 × 1080  = 69.991 

lbm 

dW = ηdQH = 








1 - 
TL

Tair - 45 dQH 

dQH = -mairdu = -mairCvdTair 

 

 W = ⌡⌠dW = -mairCv
⌡

⌠









1 - 
TL

Ta-45 dTa = -mairCv







Ta2-Ta1-TL ln 
Ta2-45
Ta1-45  

         = -69.991 × 0.171× 
700 - 1080 - 540 ln 

655
1035  = 1591 Btu 


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Ideal Gas Garnot Cycle 
 
7.118E 
 Air in a piston/cylinder goes through a Carnot cycle with the P-v diagram shown 

in Fig. 7.24. The high and low temperatures are 1200 R and 600 R respectively. 
The heat added at the high temperature is 100 Btu/lbm and the lowest pressure in 
the cycle is 10 lbf/in.2. Find the specific volume and pressure at all 4 states in the 
cycle assuming constant specific heats at 80 F. 
 
 Solution: 

   qH = 100 Btu/lbm          TH = 1200 R 
   TL = 600 R                P3 = 10 lbf/in.2 
   Cv = 0.171 Btu/lbm R  ;           R = 53.34 ft-lbf/lbm-R 

 The states as shown in figure 7.21  
  1: 1200 R ,       2: 1200 R,        3: 10 psi, 600 R          4: 600 R 
 
   v3 = RT3 / P3 = 53.34 × 600 /(10 × 144) = 22.225 ft3/lbm 
  2→3  Eq.7.11 & Cv = constant   
     = > Cv ln (TL / TH) + R ln (v3/v2) = 0 
   = > ln (v3/v2) = - (Cv / R) ln (TL / TH)  
             = - (0.171/53.34) ln (600/1200)  = 1.7288 
   = > v2 = v3 / exp (1.7288) = 22.225/5.6339 = 3.9449 ft3/lbm 
  1→2 qH = RTH ln (v2 / v1) 

      ln (v2 / v1) = qH /RTH = 100 × 778/(53.34 × 1200) = 1.21547 

   v1 = v2 / exp (1.21547) = 1.1699 ft3/lbm 

   v4 = v1 × v3 / v2 = 1.1699 × 22.225/3.9449 = 6.591 ft3/lbm 

   P1 = RT1 / v1 = 53.34 × 1200/(1.1699×144) = 379.9 psia 

   P2 = RT2 / v2 = 53.34 × 1200/(3.9449 × 144) = 112.7 psia 

   P4 = RT4 / v4 = 53.34 × 600/(6.591 × 144) = 33.7 psia 
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Correspondence table  

CHAPTER 8  6th edition  Sonntag/Borgnakke/Wylen 
 The correspondence between this problem set and the 5th edition chapter 8 

problem set. 
 
 The study guide problems 8.1-8.20 are all new 
 

New Old New Old New Old New Old 
21 new 51 22 mod 81 42 111 64 
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32 4mod 62 new 92 new 122 new 
33 5 63 29 93 49 123 new 
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Concept-Study Guide Problems 
 
8.1 
  Does Clausius say anything about the sign for ∫o dQ ? 
   No.  

 The total (net) heat transfer can be coming in like in a heat engine (Wout = QH 
– QL) in which case it is positive. It can also be net going out like in a 
refrigerator or heat pump (Win = QH – QL) in which case the sign is negative. 
Finally if you look at a transmission gearbox there could be no heat transfer 
(first approximation) in which case the integral is zero. 

    
8.2 
  When a substance has completed a cycle v, u, h and s are unchanged. Did 

anything happen? Explain. 
 
  Yes. 

 During various parts of the cycle work and heat transfer may be transferred. 
That happens at different P and T. The net work out equals the net heat 
transfer in (energy conservation) so dependent upon the sign it is a heat 
engine or a heat pump (refrigerator). The net effect is thus a conversion of 
energy from one storage location to another and it may also change nature 
(some Q got changed to W or the opposite) 

 
8.3 
  Assume a heat engine with a given QH. Can you say anything about QL if the 

engine is reversible? If it is irreversible? 
 

 For a reversible heat engine it must be that: 
 

       ∫o 
dQ
T   =  0  = 

QH
TH

 - 
QL
TL

       or integrals if T not constant 

 
 So as TL is lower than TH then QL must be correspondingly lower than QH to 

obtain the net zero integral. 
 
 For an irreversible heat engine we have  
 

       ∫o 
dQ
T   = 

QH
TH

 - 
QL
TL

   < 0  

 This means that QL is larger than before (given QH and the T’s). The 
irreversible heat engine rejects more energy and thus gives less out as work. 
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8.4 
  How can you change s of a substance going through a reversible process? 
 

 From the definition of entropy  

            ds = 
dq
T     

 for a reversible process. Thus only heat transfer gives a change in s, 
expansion/compression involving work does not give such a contribution. 

 
8.5 
  Does the statement of Clausius require a constant T for the heat transfer as in a 

Carnot cycle? 
 

 No. 
 The statement for a cycle involves an integral of dQ/T so T can vary, which it 

does during most processes in actual devices. This just means that you cannot 
that easily get a closed expression for the integral. 

 
8.6 
  A reversible process adds heat to a substance. If T is varying does that influence 

the change in s? 
 Yes. 

   Reversible: ds = 
dq
T  

 So if T goes up it means that s changes less per unit of dq, and the opposite if 
T decreases then s changes more per unit of dq. 

 
8.7 
  Water at 100 kPa, 150oC receives 75 kJ/kg in a reversible process by heat 

transfer. Which process changes s the most: constant  T, constant v or constant P? 
 

      ds = 
dq
T  

 Look at the constant property lines in a T-s diagram, Fig. 8.5.  The constant v 
line has a higher slope than the constant P line also at positive slope. Thus 
both the constant P and v processes have an increase in T. As T goes up the 
change in s is smaller. 

 
 The constant T (isothermal) process therefore changes s the most. 
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8.8 
  A substance has heat transfer out. Can you say anything about changes in s if the 

process is reversible? If it is irreversible? 
 

   Reversible:        ds = 
dq
T    < 0       since     dq < 0 

 

   Irreversible:       ds = 
dq
T  + dsgen = ?      dq < 0     but    dsgen > 0 

 
   You cannot say, ds depends on the magnitude of dq/T versus dsgen 
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8.9 
  A substance is compressed adiabaticly so P and T go up. Does that change s? 
 

   If the process is reversible then  s is constant,   ds = 
dq
T  = 0 

 

   If the process is irreversible then s goes up,    ds = 
dq
T  + dsgen = dsgen > 0 

 
8.10 
 Saturated water vapor at 200 kPa is compressed to 600 kPa in a reversible 

adiabatic process. Find the new v and T.  
 

   Process adiabatic:    dq = 0 

   Process reversible:   dsgen = 0 

   Change in s:    ds = dq/T + dsgen = 0 + 0 = 0   thus s is constant 

 

   Table B.1.3:   T1 = 120.23oC,  v1 = 0.88573 m3/kg,  s1 = 7.1271 kJ/kg K 

   Table B.1.3 at 600 kPa and  s = s1 = 7.1271 kJ/kg-K 

    T = 200 + 50 
7.1271 – 6.9665
7.1816 – 6.9665 = 200 + 50 × 0.74663  = 237.3oC 

    v = 0.35202 + (0.39383 – 0.35202) × 0.74663 = 0.38324 m3/kg 
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8.11 
  A computer chip dissipates 2 kJ of electric work over time and rejects that as heat 

transfer from its 50oC surface to 25oC air. How much entropy is generated in the 
chip? How much if any is generated outside the chip? 

   
  C.V.1 Chip with surface at 50oC, we assume chip state is constant. 
  Energy: U2 – U1 = 0 = 1Q2 – 1W2 = Welectrical in - Qout 1 

  Entropy: S2 – S1 = 0 = - 
Qout 1
Tsurf

 + 1S2 gen1 

    1S2 gen1 = 
Qout 1
Tsurf

 = 
Welectrical in

Tsurf
 = 

2 kJ
323.15 K = 6.19 J/K 

 
  C.V.2 From chip surface at 50oC to air at 25oC, assume constant state. 
  Energy: U2 – U1 = 0 = 1Q2 – 1W2 = Qout 1 - Qout 2 

  Entropy: S2 – S1 = 0 = 
Qout1
Tsurf

 - 
Qout2
Tair

 + 1S2 gen2 

   1S2 gen2 = 
Qout2
Tair

 - 
Qout1
Tsurf

 = 
2 kJ

298.15 K - 
2 kJ

323.15 K = 0.519 J/K 

 
 25 C airo

50 CoQ
air flow

cb
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8.12 
  A car uses an average power of 25 hp for a one hour round trip. With a thermal 

efficiency of 35% how much fuel energy was used? What happened to all the 
energy? What change in entropy took place if we assume ambient at 20oC?  

 
   Since it is a round trip, there are no changes in storage of energy for the 

car after it has cooled down again. All the energy is given out to the ambient in 
the form of exhaust flow (hot air) and heat transfer from the radiator and 
underhood air flow. 

 

   E = ⌡
⌠ W

.
 dt = 25 hp × 0.7457 (kW/hp) × 3600 s = 67 113 kJ = η Q 

   Q = E / η = 67 113 / 0.35 = 191 751 kJ 

   ∆S = Q / T = 191 751 / 293.15 = 654.1 kJ/K 
 
   All the energy ends up in the ambient at the ambient temperature. 
 
 
8.13 
  A liquid is compressed in a reversible adiabatic process. What is the change in T? 

   If the process is reversible then  s is constant,   ds = 
dq
T  = 0 

   Change in s for a liquid (an incompressible substance) is 
 

     Eq. 8.19 ds = 
C
T dT 

   From this it follows that if ds = 0 then  T is constant. 
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8.14 
   Two 5 kg blocks of steel, one at 250oC the other at 25oC, come in thermal 

contact. Find the final temperature and the total entropy generation in the 
process? 

 
  C.V. Both blocks, no external heat transfer, C from Table A.3. 
 

   Energy Eq.:  U2 – U1 = mA(u2 – u1)A  + mB(u2 – u1)B = 0 – 0  

      = mAC(T2 – TA1)  + mBC(T2 – TB1) 

 

     T2 = 
mATA1 + mBTB1

mA + mB
 =  

1
2 TA1  + 

1
2 TB1  = 137.5oC 

 

   Entropy Eq.: S2 – S1 = mA(s2 – s1)A  + mB(s2 – s1)B = 1S2 gen 

    1S2 gen = mAC ln 
T2

TA1
 + mBC ln 

T2
TB1

 

     = 5 × 0.46 ln 
137.5 + 273.15
250 + 273.15  + 5 × 0.46 ln 

137.5 + 273.15
298.15  

     = -0.5569 + 0.7363 = 0.1794 kJ/K 
 
 

A

B

 

 
Heat transfer over a finite 
temperature difference is an 
irreversible process  
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8.15 
  One kg of air at 300 K is mixed with one kg air at 400 K in a process at a constant 

100 kPa and Q = 0. Find the final T and the entropy generation in the process. 
 
 

 C.V. All the air. 
 
Energy Eq.:     U2 – U1 =  0 – W 
Entropy Eq.: S2 – S1 = 0 + 1S2 gen 
Process Eq.:  P = C;    W = P(V2 – V1) 
 
Substitute W into energy Eq.  

 
    U2 – U1 + W = U2 – U1 + P(V2 – V1) = H2 – H1 = 0 
 
         Due to the low T let us use constant specific heat 
 
    H2 – H1 = mA(h2 – h1)A  + mB(h2 – h1)B 
       = mACp(T2 – TA1)  + mBCp(T2 – TB1) = 0 
 

    T2 = 
mATA1 + mBTB1

mA + mB
 =  

1
2 TA1  + 

1
2 TB1  = 350 K  

       Entropy change is from Eq. 8.25 with no change in P 

   1S2 gen = S2 – S1 = mACp ln 
T2

TA1
 + mBCp ln 

T2
TB1

 

    = 1 × 1.004 ln 
350
300 + 1 × 1.004 ln 

350
400 

    = 0.15477 - 0.13407 = 0.0207 kJ/K 
 
  Remark:  If you check, the volume does not change and there is no work. 
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8.16 
   One kg of air at 100 kPa is mixed with one kg air at 200 kPa, both at 300 K, in a 

rigid insulated tank. Find the final state (P, T) and the entropy generation in the 
process. 

 
 C.V. All the air. 

Energy Eq.:     U2 – U1 =  0 – 0 

Entropy Eq.: S2 – S1 = 0 + 1S2 gen 

Process Eqs.:  V = C;    W = 0,  Q = 0 

States A1, B1:   uA1 = uB1 

VA = mART1/PA1;   VB = mBRT1/PB1 
cb

 

    U2 – U1 = m2u2 – mAuA1 – mBuB1 = 0   ⇒  u2 = (uA1 + uB1)/2 = uA1 

           State 2:    T2 = T1 = 300 K (from u2);     m2 = mA + mB = 2 kg;      

    V2 = m2RT1/P2 = VA + VB = mART1/PA1 + mBRT1/PB1 

         Divide with mART1 and get 

    2/P2 = 1/PA1 + 1/PB1 = 
1

100 + 
1

200 = 0.015 kPa-1    ⇒  P2 = 133.3 kPa 

        Entropy change from Eq. 8.25 with the same T, so only P changes 

    1S2 gen = S2 – S1 =  –mAR ln 
P2

PA1
 – mBR ln 

P2
PB1

 

     = – 1 × 0.287 [ ln 
133.3
100  + ln 

133.3
200  ] 

     = –0.287 (0.2874 – 0.4057) = 0.034 kJ/K  
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8.17 
  An ideal gas goes through a constant T reversible heat addition process. How do 

the properties (v, u, h, s, P) change (up, down or constant)? 
 
   Ideal gas:   u(T), h(T)    so they are both constant 
 

   Eq. 8.11 gives:      ds = dq/T + dsgen = dq/T + 0 > 0    so s goes up by q/T 

   Eq. 8.21 gives:      ds = (R/v) dv  so  v increases 

   Eq. 8.23 gives:      ds = -(R/P) dP  so P decreases 
 
  

21

P

v

T

s

1 2
T q
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8.18 
  Carbon dioxide is compressed to a smaller volume in a polytropic process with n 

= 1.2. How do the properties (u, h, s, P, T) change (up, down or constant)? 
 
   For carbon dioxide Table A.5     k = 1.4   so we have  n < k  and the 

process curve can be recognized in Figure 8.18. From this we see a smaller 
volume means moving to the left in the P-v diagram and thus also up. 

 
   P  up,  T up and s down.   As T is up so is h and u. 
 
  

2
1

P

v

T

s

1
2

T
qn = 1.2
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8.19 
  Hot combustion air at 1500 K expands in a polytropic process to a volume 6 times 

as large with n = 1.5. Find the specific boundary work and the specific heat 
transfer. 

 
  Energy Eq.: u2 – u1 = 1q2 - 1w2 

  Reversible work Eq. 8.38:   1w2 = 
1

1-n (P2v2 – P1v1) =  
R

1-n (T2 – T1) 

  Process Eq:    Pvn = C;       T2 = T1 (v1/v2)
n-1

 = 1500 



1

6
0.5

 = 612.4 K 

  Properties from Table A.7.1:  u1 = 444.6 kJ/kg,  u2 = 1205.25 kJ/kg 

     1w2 =  
0.287
1 - 1.5 (612.4 – 1500) = 509.5 kJ/kg 

     1q2 = u2 – u1 +  1w2 = 1205.25 – 444.6 + 509.5 = 1270 kJ/kg 
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8.20 
  A window receives 200 W of heat transfer at the inside surface of 20oC and 

transmits the 200 W from its outside surface at 2oC continuing to ambient air at –
5oC. Find the flux of entropy at all three surfaces and the window’s rate of 
entropy generation. 

 
    

 
Flux of entropy:      S

.
 = 

Q
.

T 

 

 S
.
inside = 

200
293.15 

W
K = 0.682 W/K 

 S
.
win = 

200
275.15 

W
K = 0.727 W/K 

 S
.
amb = 

200
268.15 

W
K = 0.746 W/K 

 

Window

Inside Outside

20 C 2 C -5 Co o o

 

 
 

  Window only:  S
.
gen win = S

.
win –  S

.
inside = 0.727 – 0.682 = 0.045 W/K 

 
  If you want to include the generation in the outside air boundary layer 

where T changes from 2oC to the ambient –5oC then it is 
 

 S
.
gen tot = S

.
amb –  S

.
inside = 0.746 – 0.682 = 0.064 W/K 
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Inequality of Clausius 
 
 
8.21 
 Consider the steam power plant in Example 6.9 and assume an average T in the 

line between 1 and 2. Show that this cycle satisfies the inequality of Clausius. 
Solution: 

  Show Clausius:  
⌡
⌠dQ

T   ≤  0  

 For this problem we have three heat transfer terms: 
  qb = 2831 kJ/kg,    qloss = 21 kJ/kg,     qc = 2173.3 kJ/kg 

  
⌡
⌠dq

T  = 
qb
Tb

  –  
qloss

Tavg 1-2
  –  

qc
Tc

  

   = 
2831
573  − 

21
568 − 

2173.3
318  

   = –1.93 kJ/kg K <  0 OK 
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8.22 
 Assume the heat engine in Problem 7.25 has a high temperature of  1200 K and a 

low temperature of 400 K. What does the inequality of Clausius say about each of 
the four cases? 

Solution: 

Cases  a) 
⌡
⌠

 
dQ

.

T  = 
6

1200 – 
4

400 = – 0.005 kW/K < 0 OK 

      b) 
⌡
⌠

 
dQ

.

T  = 
6

1200 – 
0

400 = 0.005 kW/K > 0 Impossible 

      c) 
⌡
⌠

 
dQ

.

T  = 
6

1200 – 
2

400 = 0 kW/K  Possible if reversible 

      d) 
⌡
⌠

 
dQ

.

T  = 
6

1200 – 
6

400 = – 0.001 kW/K < 0 OK 

 
  

H Q 

W 

L Q 

H

HE
cb

T  = 400 K L 

T  = 1200 K
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8.23 
 Let the steam power plant in Problem 7.26 have 700oC in the boiler and 40oC 

during the heat rejection in the condenser. Does that satisfy the inequality of 
Clausius?  Repeat the question for the cycle operated in reverse as a refrigerator.  

Solution: 

Q
.

H = 1 MW  Q
.

L = 0.58 MW 

⌡
⌠

 
dQ

.

T  = 
1000
973  – 

580
313 = –0.82 kW/K < 0 OK 

Refrigerator  

⌡
⌠

 
dQ

.

T  = 
580
313 – 

1000
973  = 0.82 > 0 Cannot be possible 

 
 

 

WT

QH

QL
.

WP, in
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8.24 
 A heat engine receives 6 kW from a 250oC source and rejects heat at 30oC. 

Examine each of three cases with respect to the inequality of Clausius. 

a. W
.

 = 6 kW  b.  W
.

 = 0 kW  c. Carnot cycle 
Solution: 
TH = 250 + 273 = 523 K ;  TL = 30 + 273 = 303 K 

Case  a) 
⌡
⌠

 
dQ

.

T  = 
6000
523  – 

0
303 = 11.47 kW/K > 0 Impossible 

     b) 
⌡
⌠

 
dQ

.

T  = 
6000
523  – 

6000
303  = –8.33 kW/K < 0    OK 

     c)  
⌡
⌠

 
dQ

.

T  = 0 = 
6000
523  – 

Q
.

L
303   ⇒ 

      Q
.

L = 
303
523 × 6 = 3.476 kW 

  W
.

 = Q
.

H – Q
.

L = 2.529 kW 
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8.25 
 Examine the heat engine given in Problem 7.50 to see if it satisfies the inequality 

of Clausius. 
Solution: 

 
   QH = 325 kJ    at   TH = 1000 K 

 QL = 125 kJ    at   TL =  400 K 
 

⌡
⌠ 

dQ
T  = 

325
1000 – 

125
400 = 0.0125 kJ/K > 0 Impossible 

 
  

H Q  = 325 kJ

W = 200 kJ 
L Q  = 125 kJ

T  = 1000 KH

HE
cb

T  = 400 K L  
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Entropy of a pure substance 
 
8.26 
 Find the entropy for the following water states and indicate each state on a T-s 

diagram relative to the two-phase region. 
a. 250oC, v = 0.02 m3/kg  
b. 250oC, 2000 kPa 
c. –2oC, 100 kPa 
d. 20oC, 100 kPa 
e. 20oC, 10 000 kPa 

Solution: 

a) Table B.1.1: x = 
0.02 - 0.001251

 0.04887  = 0.38365 

  s = sf + x sfg = 2.7927 + 0.38365 × 3.2802 =  4.05 kJ/kg K 

b)   Table B.1.3: s = 6.5452 kJ/kg K 
c)   Table B.1.5: s = –1.2369 kJ/kg K 
d)   Table B.1.1: s = 0.2966 kJ/kg K 
e)   Table B.1.4 s = 0.2945 kJ/kg K 

 
 

v

P

s

T

a b

c

a
b

c

d
e

d

e
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8.27 
 Find the missing properties and give the phase of the substance 
 a. H2O s = 7.70 kJ/kg K, P = 25 kPa h = ? T = ? x = ? 

b. H2O  u = 3400 kJ/kg, P = 10 MPa T = ? x = ? s = ? 
c. R-12 T = 0°C, P = 200 kPa  s = ? x = ? 
d. R-134a T = −10°C, x = 0.45  v = ? s = ? 
e. NH3 T = 20°C, s = 5.50 kJ/kg K u = ? x = ? 

Solution: 
a) Table B.1.1    T = Tsat(P) = 64.97°C 

   x = (s – sf)/sfg = 
7.70 - 0.893

 6.9383  = 0.981    

   h =  271.9 + 0.981 ×  2346.3 = 2573.8 kJ/kg 
b) Table B.1.2   u > ug   =>   Sup.vap Table B.1.3,    x = undefined  

    T ≅ 682°C ,  s ≅ 7.1223 kJ/kg K 
c) Table B.3.2, superheated vapor,     x = undefined,   s = 0.7325 kJ/kg K  

d) Table B.5.1     v = vf + xvfg = 0.000755 + 0.45 × 0.098454 = 0.04506 m3/kg 

             s = sf + xsfg =  0.9507 + 0.45 × 0.7812 = 1.3022 kJ/kg K 

e) Table B.2.1,    s > sg   =>  Sup.vap.  Table B.2.2,    x = undefined  

   u = h–Pv = 1492.8 – 439.18 × 0.3100 = 1356.7 kJ/kg 
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8.28 
 Saturated liquid water at 20oC is compressed to a higher pressure with constant 

temperature. Find the changes in u and s when the final pressure is 
a. 500 kPa b. 2000 kPa c. 20 000 kPa 

Solution: 
           kJ/kg                          kJ/kg K 
B.1.1: u1 = 83.94   s1 = 0.2966 

B.1.4: ua = 83.91  sa = 0.2965 ∆u = –0.03 ∆s = –0.0001 

B.1.4: ub = 83.82  sb = 0.2962 ∆u = –0.12 ∆s = –0.0004 

B.1.4: uc = 82.75  sc = 0.2922 ∆u = –1.19 ∆s = –0.0044 

  Nearly constant u and s, incompressible media 
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8.29 
 Saturated vapor water at 150oC is expanded to a lower pressure with constant 

temperature. Find the changes in u and s when the final pressure is 
a. 100 kPa b. 50 kPa c. 10 kPa 

Solution: 
Table B.1.1 for the first state then B.1.3 for the a, b and c states. 
          kJ/kg                   kJ/kg K 
u1= 2559.54 s1= 6.8378 

ua = 2582.75 sa = 7.6133 ∆u = 23.21 ∆s = 0.7755 

ub = 2585.61 sb = 7.94 ∆u = 26.07 ∆s = 1.1022 

uc = 2587.86 sc = 8.6881 ∆u = 28.32 ∆s = 1.8503 
 
 

v

P
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T
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8.30 
 Determine the missing property among  P, T, s, x for the following states: 

a. Ammonia  25oC, v = 0.10 m3/kg 
b. Ammonia  1000 kPa, s = 5.2 kJ/kg K 
c. R-134a   5oC, s = 1.7 kJ/kg K 
d. R-134a   50oC, s = 1.9 kJ/kg K 
e. R-22 100 kPa, v = 0.3 m3/kg 

Solution: 

  Table         P  kPa  T oC         s  kJ/kg K          x 
 a)        B2.1             1003  25        4.1601        0.7776 
 b) B2.2         1000           42.53             5.2          ----- 
 c) B5.1          350.9              5             1.7        0.96598 
 d) B5.2          232.3  50  1.9          ----- 
 e) B4.2           100            42.6        1.1975          ----- 
 

a) x = (0.1 – 0.001658)/0.12647 = 0.7776 
   s = sf + x sfg = 1.121 + x × 3.9083 = 4.1601 kJ/kg K 

 b) T = 40 + 10 × (5.2 – 5.1778)/(5.2654 – 5.1778) = 42.53oC 
   superheated vapor so x is undefined 
 c)  x = (1.7 – 1.0243)/0.6995 = 0.96598 
  P = Psat = 350.9 kPa 

d) superheated vapor between 200 and 300 kPa 
P = 200 + 100 × (1.9 – 1.9117)/(1.8755 – 1.9117) = 232.3 kPa 

e) T = 40 + 10 × (0.3 – 0.29739)/(0.30729 – 0.29739) = 42.636oC 
s = 1.1919 + 0.2636 × (1.2132 – 1.1919) =1.1975 kJ/kg K 
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Reversible processes 
 
8.31 
 Consider a Carnot-cycle heat engine with water as the working fluid. The heat 

transfer to the water occurs at 300°C, during which process the water changes 
from saturated liquid to saturated vapor. The heat is rejected from the water at 
40°C. Show the cycle on a T–s diagram and find the quality of the water at the 
beginning and end of the heat rejection process. Determine the net work output 
per kilogram of water and the cycle thermal efficiency. 

 
Solution: 
From the definition of the Carnot cycle, two constant s and two constant T 
processes. 
 

  

1 2

34
40

300

T

s  

From table B.1.1 
State 2 is saturated vapor so 
  s3 = s2 = 5.7044 kJ/kg K 
      = 0.5724 + x3(7.6845) 
  
         x3 = 0.6678 

State 1 is saturated liquid so 
  s4 = s1 = 3.2533 kJ/kg K = 0.5724 + x4(7.6845) 

            x4 = 0.3489 

    ηTH = 
wNET

qH
 =  

TH – TL
TH

 = 
260

573.2 = 0.4536 

    qH = TH(s2 – s1) = 573.2 K (5.7044 – 3.2533) kJ/kg K = 1405.0 kJ/kg 

    wNET = ηTH × qH = 637.3 kJ/kg 
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8.32 
 In a Carnot engine with ammonia as the working fluid, the high temperature is 

60°C and as QH is received, the ammonia changes from saturated liquid to 
saturated vapor. The ammonia pressure at the low temperature is 190 kPa. Find 
TL, the cycle thermal efficiency, the heat added per kilogram, and the entropy, s, 
at the beginning of the heat rejection process. 

 
 Solution: 
  

T

s

1 2

34  

Constant T  ⇒   constant P from 1 to 2, Table B.2.1 
        qH = ∫ Tds = T (s2 – s1) = T sfg 

             = h2 – h1 = hfg = 997.0 kJ/kg 

States 3 & 4 are two-phase, Table B.2.1 
       ⇒   TL = T3 = T4 = Tsat(P) = –20°C 

 

  ηcycle = 1 –  
TL
TH

  = 1 – 
253.2
333.2 = 0.24 

 Table B.2.1: s3 = s2 = sg(60°C) = 4.6577 kJ/kg K 
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8.33 
 Water is used as the working fluid in a Carnot cycle heat engine, where it changes 

from saturated liquid to saturated vapor at 200°C as heat is added. Heat is rejected 
in a constant pressure process (also constant T) at 20 kPa. The heat engine powers 
a Carnot cycle refrigerator that operates between –15°C and +20°C. Find the heat 
added to the water per kg water. How much heat should be added to the water in 
the heat engine so the refrigerator can remove 1 kJ from the cold space? 

Solution: 
Carnot cycle heat engine: 

  
T

s

1 2

34  

Constant T  ⇒   constant P from 1 to 2, Table B.2.1 
        qH = ∫ Tds = T (s2 – s1) = T sfg = hfg 

             = 473.15 (4.1014) = 1940 kJ/kg 
States 3 & 4 are two-phase, Table B.2.1 

       ⇒   TL = T3 = T4 = Tsat(P) = 60.06oC 

  
Carnot cycle refrigerator (TL and TH are different from above): 

βref  = 
QL
W =  

TL
TH – TL

 = 
273 – 15

20 – (–15)  = 
258
35  = 7.37 

W =  
QL
β   = 

1
7.37 = 0.136 kJ 

The needed work comes from the heat engine 

W = ηHE QH H2O  ;  ηHE = 1 –  
TL
TH

 = 1 – 
333
473 = 0.296 

QH H2O = 
W

ηHE
 = 

0.136
0.296 = 0.46 kJ 
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8.34 
 Consider a Carnot-cycle heat pump with R-22 as the working fluid. Heat is 

rejected from the R-22 at 40°C, during which process the R-22 changes from 
saturated vapor to saturated liquid. The heat is transferred to the R-22 at 0°C. 

 a.   Show the cycle on a T–s diagram. 
 b.   Find the quality of the R-22 at the beginning and end of the isothermal heat 

addition process at 0°C. 
 c.   Determine the coefficient of performance for the cycle. 
 
 Solution: 
 
 a) 

1

23

4

40

0

T

s  

b)  From Table B.4.1, state 3 is  
     saturated liquid 
 
    s4 = s3 = 0.3417 kJ/kg K  
                = 0.1751 + x4(0.7518) 
             =>        x4 = 0.2216 
  

 
  State 2 is saturated vapor so from Table B.4.1 

     s1 = s2 = 0.8746 kJ/kg K = 0.1751 + x1(0.7518) 

               =>          x1 = 0.9304 

c)   β′ = 
qH
wIN

 = 
TH

TH – TL
 = 

313.2
40  = 7.83 
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8.35 
 Do Problem 8.34 using refrigerant R-134a instead of R-22. 
 Consider a Carnot-cycle heat pump with R-22 as the working fluid. Heat is 

rejected from the R-22 at 40°C, during which process the R-22 changes from 
saturated vapor to saturated liquid. The heat is transferred to the R-22 at 0°C. 

 a.   Show the cycle on a T–s diagram. 
 b.   Find the quality of the R-22 at the beginning and end of the isothermal heat 

addition process at 0°C. 
 c.   Determine the coefficient of performance for the cycle. 
  
 Solution: 
 
 a) 

1

23

4

40

0

T

s  

b)  From Table B.5.1, state 3 is  
     saturated liquid 
 
    s4 = s3 = 1.1909 kJ/kg K  
                = 1.00 + x4(0.7262) 
 
             =>        x4 = 0.2629 
  

 
  State 2 is saturated vapor so from Table B.5.1 

     s1 = s2 = 1.7123 kJ/kg K = 1.00 + x1(0.7262) 

             =>         x1 = 0.9809 
 

c)    β′ =  
qH
wIN

 = 
TH

TH – TL
 = 

313.2
40   = 7.83 
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8.36 
 Water at 200 kPa, x = 1.0 is compressed in a piston/cylinder to 1 MPa, 250°C in a 

reversible process. Find the sign for the work and the sign for the heat transfer. 
Solution: 
State 1: Table B.1.1:    

v1 = 0.8857 m3/kg;   u1 = 2529.5 kJ/kg;    s1 = 7.1271 kJ/kg K 

State 2: Table B.1.3:    

v2 = 0.23268 m3/kg;   u2 = 2709.9 kJ/kg;   s2 = 6.9246 kJ/kg K 

  v2 < v1     =>     1w2 = ∫ P dv   < 0 

  s2 < s1     =>      1q2 = ∫ T ds   < 0 

 
 

2
1

P

v

T

s

1
2

 

 

 



   Sonntag, Borgnakke and van Wylen 

 
8.37 
 Water at 200 kPa, x = 1.0 is compressed in a piston/cylinder to 1 MPa, 350oC in a 

reversible process. Find the sign for the work and the sign for the heat transfer. 
Solution: 

1w2 = ∫ P dv      so sign  dv 

1q2 = ∫ T ds      so sign  ds 

B1.2 v1 = 0.88573 m3/kg  s1 = 7.1271 kJ/kg K 

B1.3 v2 = 0.28247 m3/kg  s2 = 7.301 kJ/kg K 

  dv < 0   =>  w is negative 
  ds > 0   =>  q is positive 
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8.38 
 Ammonia at 1 MPa, 50oC is expanded in a piston/cylinder to 500 kPa, 20oC in a 

reversible process. Find the sign for both the work and the heat transfer.  
Solution: 

1w2 = ∫ P dv      so sign  dv 

1q2 = ∫ T ds      so sign  ds 

B.2.2 v1 = 0.14499 m3/kg  s1 = 5.2654 kJ/kg K 

B.2.2 v2 = 0.26949 m3/kg  s2 = 5.4244 kJ/kg K 

  dv > 0   =>  w is positive 
  ds > 0   =>  q is positive 
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8.39 
 One kilogram of ammonia in a piston/cylinder at 50°C, 1000 kPa is expanded in a 

reversible isothermal process to 100 kPa. Find the work and heat transfer for this 
process. 

Solution: 
C.V.: NH3  This is a control mass m2 = m1 with a reversible process 

Energy Eq.5.11:  m(u2 – u1) = 1Q2 – 1W2 

Entropy Eq.8.3: m(s2 – s1) = ⌡⌠ (1/T)  dQ  = 1Q2/T ( = since reversible) 

 
 Rev.: 1W2 = ⌡⌠ PdV  

 1Q2 = ⌡⌠ Tmds = mT(s2 – s1) 

 
From Table B.2.2 

P

v

1 2
T

21
T

s  
 
State 1: u1 = 1391.3 kJ/kg;  s1 = 5.265 kJ/kg K 

State 2: u2 = 1424.7 kJ/kg;  s2 = 6.494 kJ/kg K;  v2 = 1.5658 m3/kg;   

             h2 = 1581.2 kJ/kg 

 1Q2 = 1 kg (273 + 50) K (6.494 – 5.265) kJ/kg K = 396.967 kJ 

 1W2 = 1Q2 – m(u2 – u1) = 363.75 kJ 
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8.40 
 One kilogram of ammonia in a piston/cylinder at 50°C, 1000 kPa is expanded in a 

reversible isobaric process to 140°C. Find the work and heat transfer for this 
process. 

  
 Solution: 
 Control mass.  

    m(u2 - u1) = 1Q2 - 1W2 

Process: P = constant   
     ⇒  1W2 = mP(v2 - v1) 

 

2
1

P

v

T

s

1 2

 
 

State 1: Table B.2.2   v1 = 0.145 m3/kg,   u1 = 1391.3 kJ/kg 

State 2: Table B.2.2   v2 = 0.1955 m3/kg,  u2 = 1566.7 kJ/kg 

 1W2 = 1 × 1000(0.1955 - 0.145) = 50.5 kJ 

 1Q2 = m(u2 - u1) + 1W2 = 1 × (1566.7 - 1391.3) + 50.5 = 225.9 kJ 
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8.41 
 One kilogram of ammonia in a piston/cylinder at 50°C, 1000 kPa is expanded in a 

reversible adiabatic process to 100 kPa. Find the work and heat transfer for this 
process. 

Solution: 
Control mass:      Energy Eq.5.11:      m(u2 - u1) = 1Q2 - 1W2 

Entropy Eq.8.3:       m(s2 - s1) = ∫ dQ/T          ( = since reversible) 

Process:  1Q2 = 0     ⇒   s2 = s1 

State 1: (P, T)  Table B.2.2,   u1 = 1391.3 kJ/kg,  s1 = 5.2654 kJ/kg K 

State 2: P2 , s2  ⇒  2 phase   Table B.2.1   

Interpolate:       sg2 = 5.8404 kJ/kg K,   sf = 0.1192 kJ/kg K 

  x2 = 
s - sf
sfg

 = 
5.2654 − 0.1192

5.7212  = 0.90,    

u2 = uf + x2 ufg = 27.66 + 0.9×1257.0 = 1158.9 kJ/kg 

  1W2 = 1 × (1391.3 - 1158.9) = 232.4 kJ 
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8.42 
 A cylinder fitted with a piston contains ammonia at 50°C, 20% quality with a 

volume of 1 L. The ammonia expands slowly, and during this process heat is 
transferred to maintain a constant temperature. The process continues until all the 
liquid is gone. Determine the work and heat transfer for this process. 

 
 Solution: 

C.V. Ammonia in the cylinder.  
 

 

1 2 

T 

s 
50 C

NH 3 

o

 

Table B.2.1:  T1 = 50°C,   x1 = 0.20,   V1 = 1 L 

v1 = 0.001777 + 0.2 ×0.06159 = 0.014095 m3/kg 

s1 = 1.5121 + 0.2 × 3.2493 = 2.1620 kJ/kg K 

m = V1/v1 = 0.001/0.014095 = 0.071 kg 

             v2 = vg = 0.06336 m3/kg,       

             s2 = sg = 4.7613 kJ/kg K 

 
Process: T = constant to x2 = 1.0,     P = constant = 2.033 MPa 

From the constant pressure process 

1W2 = ⌡⌠PdV = Pm(v2 - v1) = 2033 × 0.071 × (0.06336 - 0.014095) = 7.11 kJ 

From the second law Eq.8.3 with constant T 

1Q2 = ⌡⌠TdS = Tm(s2 - s1)  = 323.2 × 0.071(4.7613 - 2.1620) = 59.65 kJ 

or      1Q2 = m(u2 - u1) + 1W2 = m(h2 - h1) 

       h1 = 421.48 + 0.2 × 1050.01 = 631.48 kJ/kg,    h2 = 1471.49 kJ/kg 

  1Q2 = 0.071(1471.49 - 631.48) = 59.65 kJ 
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8.43 
 An insulated cylinder fitted with a piston contains 0.1 kg of water at 100°C, 90% 

quality. The piston is moved, compressing the water until it reaches a pressure of 
1.2 MPa. How much work is required in the process? 

Solution: 
C.V. Water in cylinder. 
Energy Eq.5.11: 1Q2 = 0 = m(u2 - u1) + 1W2 

Entropy Eq.8.3:     m(s2 − s1) = ∫ dQ/T  = 0    (assume reversible) 

 
  

State 1:  100°C, x1 = 0.90: 

Table B.1.1,    
s1 = 1.3068 + 0.90×6.048 

    = 6.7500 kJ/kg K 

P

v
1

2 2

1

T

s
 

 
u1 = 418.91 + 0.9 × 2087.58 = 2297.7 kJ/kg 

State 2:  Given by (P, s)   B.1.3 


s2 = s1 = 6.7500

P2 = 1.2 MPa     ⇒   


 T2 = 232.3°C
 u2 = 2672.9  

 1W2 = -m(u2 – u1) = -0.1(2672.9 - 2297.7) = -37.5 kJ 
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8.44 
 Compression and heat transfer brings R-134a in a piston/cylinder from 500 kPa, 

50oC to saturated vapor in an isothermal process. Find the specific heat transfer 
and the specific work.  

Solution: 
m = constant 
Energy Eq.5.11: u2 − u1 = 1q2 − 1w2  

Entropy Eq.8.3: s2 - s1= ∫ dq/T  = 1q2 /T 

Process:  T = C and assume reversible       ⇒     1q2 = T (s2 - s1) 

 
 State 1:    Table B.5.2: 

    u1 = 415.91 kJ/kg,   

     s1 = 1.827 kJ/kg K 

State 2:    Table B.5.1 
    u2 = 403.98 kJ/kg,   

    s2 = 1.7088 kJ/kg K 

P

v

1
2

T

2 1
T

s  

 

1q2 = (273 + 50) × (1.7088 – 1.827) = -38.18 kJ/kg 

1w2 = 1q2 + u1 - u2 = -38.18 + 415.91 – 403.98 

  = -26.25 kJ/kg 
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8.45 
 One kilogram of water at 300°C expands against a piston in a cylinder until it 

reaches ambient pressure, 100 kPa, at which point the water has a quality of 
90.2%. It may be assumed that the expansion is reversible and adiabatic. What 
was the initial pressure in the cylinder and how much work is done by the water? 

 
 Solution: 

C.V. Water.  Process:  Rev., Q = 0  
Energy Eq.5.11: m(u2 − u1) = 1Q2 − 1W2 = − 1W2 

Entropy Eq.8.3: m(s2 − s1) = ∫ dQ/T   

Process: Adiabatic  Q = 0 and reversible     =>       s2 = s1 

 State 2:   P2 = 100 kPa, x2 = 0.902   from Table B.1.2 

  s2 = 1.3026 + 0.902 × 6.0568 = 6.7658 kJ/kg K 

  u2 = 417.36 + 0.902 × 2088.7 = 2301.4 kJ/kg 

State 1     At T1 = 300°C,   s1 = 6.7658   Find it in Table B.1.3 

 ⇒    P1 = 2000 kPa,     u1 = 2772.6 kJ/kg 

From the energy equation 
     1W2 = m(u1 - u2) = 1(2772.6 – 2301.4) = 471.2 kJ 
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8.46 
 Water in a piston/cylinder at 400oC, 2000 kPa is expanded in a reversible 

adiabatic process. The specific work is measured to be 415.72 kJ/kg out. Find the 
final P and T and show the P-v and the T-s diagram for the process.  

Solution: 
C.V.  Water, which is a control mass.  Adiabatic so:   1q2 = 0 

Energy Eq.5.11: u2 − u1 = 1q2 − 1w2 = -1w2 

Entropy Eq.8.3: s2 - s1= ∫ dq/T  = 0        (= since reversible) 

State 1: Table B.1.3 u1 = 2945.21 kJ/kg;      s1 = 7.127 kJ/kg K 

State 2:  (s, u): u2 =  u1 - 1w2 = 2529.29 – 415.72 = 2529.49  kJ/kg 

   => sat. vapor 200 kPa,   T = 120.23°C 
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8.47 
 A piston/cylinder has 2 kg ammonia at 50°C, 100 kPa which is compressed to 

1000 kPa. The process happens so slowly that the temperature is constant. Find 
the heat transfer and work for the process assuming it to be reversible. 

 
 Solution: 

CV : NH3        Control Mass  

Energy Eq.5.11:   m(u2 − u1) = 1Q2 − 1W2  ;     

Entropy Eq.8.3:   m(s2 − s1) = ∫ dQ/T 

Process:  T = constant and assume reversible process 

1: (T,P),  Table B.2.2: v1 = 1.5658 m3/kg,   u1 = 1424.7 kJ/kg,    

s1 = 6.4943 kJ/kg K 

2: (T,P),  Table B.2.2: v2 = 0.1450 m3/kg,  u2 = 1391.3 kJ/kg,     

s2 = 5.2654 kJ/kg K 

 
  

21

P

v

T

s

1 2
T

 
 
From the entropy equation (2nd law) 
 1Q2 = mT(s2 − s1) = 2 × 323.15 (5.2654 - 6.4943) = -794.2 kJ 

From the energy equation  
 1W2 = 1Q2 - m(u2 - u1) = -794.24 - 2(1391.3 - 1424.62)  = -727.6 kJ 
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8.48 
 A piston cylinder has R-134a at –20oC, 100 kPa which is compressed to 500 kPa 

in a reversible adiabatic process. Find the final temperature and the specific work.  
Solution: 
C.V.  R-134a, Control mass of unknown size, adiabatic 1q2 = 0 

Energy Eq.5.11: u2 − u1 = 1q2 − 1w2  = - 1w2   

Entropy Eq.8.3: s2 − s1 = ∫ dq/T    

Process:     Adiabatic and reversible     =>    s2 = s1 

State 1:  (T, P)   B.5.2 u1 = 367.36 kJ/kg, s1 = 1.7665 kJ/kg K 

State 2:  (P, s)    B.5.2 P2 = 500 kPa,     s2 = s1 = 1.7665 kJ/kg K  
  

very close at 30oC u2 = 398.99 kJ/kg 
   1w2 = u2 - u1 = 367.36 – 398.99 = -31.63 kJ/kg 
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8.49 
 A closed tank, V = 10 L, containing 5 kg of water initially at 25°C, is heated to 

175°C by a heat pump that is receiving heat from the surroundings at 25°C. 
Assume that this process is reversible. Find the heat transfer to the water and the 
change in entropy. 

Solution: 
C.V.: Water from state 1 to state 2. 
Energy Eq.5.11: m(u2 − u1) = 1Q2 − 1W2   

Entropy Eq.8.3: m(s2 − s1) = ∫ dQ/T    

Process: constant volume (reversible isometric)   so    1W2  = 0 

State 1: v1 = V/m = 0.002    from Table B.1.1 

  x1 = (0.002 - 0.001003)/43.358 = 0.000023  

  u1 = 104.86 + 0.000023 × 2304.9 = 104.93 kJ/kg 

          s1 = 0.3673 + 0.000023 × 8.1905 = 0.36759 kJ/kg K 

Continuity eq. (same mass) and V = C fixes v2 

State 2:  T2, v2 = v1   so from Table B.1.1 

           x2 = (0.002 - 0.001121)/0.21568 = 0.004075           

  u2 = 740.16 + 0.004075 × 1840.03 = 747.67 kJ/kg  

           s2 = 2.0909 + 0.004075 × 4.5347 = 2.1094 kJ/kg K 

Energy eq. has W = 0, thus provides heat transfer as 
  1Q2 = m(u2 - u1) = 3213.7 kJ 

The entropy change becomes 
             m(s2 - s1) =  5(2.1094 – 0.36759) = 8.709 kJ/K 
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  Notice we do not perform the integration ∫ dQ/T  to find change in s as the 

equation for the dQ as a function of T is not known.  
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8.50 
 A cylinder containing R-134a at 10°C, 150 kPa, has an initial volume of 20 L. A 

piston compresses the R-134a in a reversible, isothermal process until it reaches 
the saturated vapor state. Calculate the required work and heat transfer to 
accomplish this process. 

Solution: 
C.V. R-134a.  
Cont.Eq.:    m2 = m1 = m ;      

Energy Eq.:5.11      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.3:     m(s2 − s1) = ∫ dQ/T 

Process:  T = constant,  reversible  
State 1: (T, P)  Table B.5.2   u1 = 388.36 kJ/kg,  s1 = 1.822 kJ/kg K 

 m = V/v1 = 0.02/0.148283 = 0.1349 kg 

 
 State 2: (10°C, sat. vapor)  

Table B.5.1  
   u2 = 383.67 kJ/kg,   

   s2 = 1.7218 kJ/kg K 
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As T is constant we can find Q by integration as 

1Q2 = ⌡⌠Tds = mT(s2 - s1) = 0.1349 × 283.15 × (1.7218 - 1.822) = -3.83 kJ 

The work is then from the energy equation 

1W2 = m(u1 - u2) + 1Q2 = 0.1349 × (388.36 - 383.67) - 3.83 = -3.197 kJ 
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8.51 
 A heavily-insulated cylinder fitted with a frictionless piston, as shown in Fig. 

P8.51 contains ammonia at 5°C, 92.9% quality, at which point the volume is 200 
L. The external force on the piston is now increased slowly, compressing the 
ammonia until its temperature reaches 50°C. How much work is done by the 
ammonia during this process?  

Solution: 
C.V. ammonia in cylinder, insulated so assume adiabatic   Q = 0. 
Cont.Eq.:    m2 = m1 = m ;      

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.3:     m(s2 − s1) = ∫ dQ/T 

State 1:  T1 = 5oC, x1 = 0.929, V1 = 200 L = 0.2 m3 

 Table B.2.1  saturated vapor,   P1 = Pg = 515.9 kPa 

 v1 = vf + x1vfg = 0.001583 + 0.929 × 0.2414 = 0.2258 m3/kg,  

 u1 = uf + x1ufg = 202.8 + 0.929 × 1119.2 = 1242.5 kJ/kg  

 s1 = sf + x1sfg = 0.7951 + 0.929 × 4.44715 = 4.9491 kJ/kg K,   

 m1 = V1/v1 = 0.2 / 0.2258 = 0.886 kg 

Process: 1 2 Adiabatic 1Q2 = 0  & Reversible  =>   s1 = s2 

State 2: T2 = 50oC,  s2 = s1 = 4.9491  kJ/kg K 

 superheated vapor, interpolate in Table B.2.2    =>     
 P2 = 1600 kPa,     u2 = 1364.9 kJ/kg 
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Energy equation gives the work as 
 1W2 = m(u1 - u2) = 0.886 ( 1242.5 – 1364.9) = −108.4 kJ 
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8.52 
 A piston/cylinder has 2 kg water at 1000 kPa, 250°C which is now cooled with a 

constant loading on the piston.  This isobaric process ends when the water has 
reached a state of saturated liquid.  Find the work and heat transfer and sketch the 
process in both a P-v and a T-s diagram. 

Solution: 
C.V.  H2O 

Energy Eq.5.11: m(u2 − u1) = 1Q2 − 1W2 

Entropy Eq.8.3: m(s2 − s1) = ∫ dQ/T  

Process:  P = C   =>   W = ∫ P dV  = P(V2 − V1) 

State 1: B.1.3     v1= 0.23268 m3/kg,  s1= 6.9246 kJ/kg K,  u1 = 2709.91 kJ/kg 

State 2: B.1.2    v2 = 0.001127 m3/kg,  s2 = 2.1386 kJ/kg K, u2 = 761.67 kJ/kg 

From the process equation 

1W2 = m P (v2 − v1) = 2 × 1000 (0.001127 – 0.23268) = -463.1 kJ 

From the energy equation we get 

1Q2 = m(u2 − u1) + 1W2 = 2 (761.67 – 2709.91) – 463.1 = -4359.6 kJ 
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8.53 
 Water at 1000 kPa, 250°C is brought to saturated vapor in a piston/cylinder with 

an isothermal process. Find the specific work and heat transfer.  Estimate the 
specific work from the area in the P-v diagram and compare it to the correct 
value. 

Solution: 
Continuity Eq.:    m2 = m1 = m ;      

Energy Eq.:5.11      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.3:     m(s2 − s1) = ∫ dQ/T 

Process:  T = constant,  reversible  
State 1:  Table  B.1.3: 

    v1 = 0.23268 m3/kg;    u1 = 2709.91 kJ/kg;  s1 = 6.9246 kJ/kg K 

State 2:  (T, x)   Table B.1.1    P2 = 3973 kPa 

  v2 = 0.05013 m3/kg,   u2 = 2602.37 kJ/kg,    s2 = 6.0729 kJ/kg K 
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From the entropy equation 

1q2 = ∫ T ds = T(s2 − s1) = (250 + 273) (6.0729 – 6.9246) = -445.6 kJ/kg 

From the energy equation 

1w2 = 1q2 + u1 − u2 = -445.6 + 2709.91 – 2602.37 = -338 kJ/kg 

Estimation of the work term from the area in the P-v diagram 

1w2 area ≅ 
1
2 (P1+P2)(v2 − v1) = 

1
2(1000 + 3973)(0.05013 – 0.23268)  

        = –454 kJ/kg 
Not extremely accurate estimate; P-v curve not linear more like Pv = constant 
as curve has positive curvature the linear variation over-estimates area. 
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8.54 
 Water at 1000 kPa, 250°C is brought to saturated vapor in a rigid container, 

shown in Fig. P8.54. Find the final T and the specific heat transfer in this 
isometric process. 

Solution: 
 Energy Eq.5.11: u2 − u1 = 1q2 - 1w2  

 Entropy Eq.8.3:  s2 − s1 =  ∫ dq/T 

 Process: v = constant  => 1w2 = 0 

 State 1: (T, P)  Table B.1.3 u1 = 2709.91 kJ/kg, v1 = 0.23268 m3/kg 

 State 2: x = 1 and  v2 = v1     so from Table B.1.1   we see   P2 ≅ 800 kPa 

T2 = 170 + 5 × (0.23268 – 0.24283)/(0.2168 – 0.24283) 

      = 170 + 5 × 0.38993 = 171.95°C 
u2 = 2576.46 + 0.38993 × (2580.19 – 2576.46) = 2577.9 kJ/kg 

From the energy equation 

1q2 = u2 − u1 = 2577.9 – 2709.91 = −132 kJ/kg 
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Notice to get  1q2 =  ∫ T ds  we must know the function T(s) which we do 
not readily have for this process. 
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8.55 
 Estimate the specific heat transfer from the area in the T-s diagram and compare it 

to the correct value for the states and process in Problem 8.54. 
Solution: 
 Energy Eq.5.11: u2 − u1 = 1q2 - 1w2  

 Entropy Eq.8.3:  s2 − s1 =  ∫ dq/T 

 Process: v = constant  => 1w2 = 0 

 State 1: (T, P)  Table B.1.3   u1 = 2709.91 kJ/kg,  v1 = 0.23268 m3/kg, 

     s1 = 6.9246 kJ/kg K 

 State 2: x = 1 and  v2 = v1     so from Table B.1.1   we see   P2 ≅ 800 kPa 

T2 = 170 + 5 × (0.23268 – 0.24283)/(0.2168 – 0.24283) 

      = 170 + 5 × 0.38993 = 171.95°C 
u2 = 2576.46 + 0.38993 × (2580.19 – 2576.46) = 2577.9 kJ/kg 

 s2 = 6.6663 + 0.38993 (6.6256 – 6.6663) = 6.6504 kJ/kg K 

From the energy equation 
 1q2 actual = u2 − u1 = 2577.9 – 2709.91 = −132 kJ/kg 

Assume a linear variation of T versus s. 

1q2 =  ∫ T ds = area ≅  12 (T1 + T2)(s2 − s1) 

       = 12 (171.95 + (2 × 273.15) + 250)(6.6504 – 6.9246) 

       = -132.74 kJ/kg 
very close  i.e. the v = C   curve is close to a straight line in the T-s diagram. 
Look at the constant v curves in Fig. E.1. In the two-phase region they curve 
slightly and more so in the region above the critical point. 
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8.56 
 Water at 1000 kPa, 250°C is brought to saturated vapor in a piston/cylinder with 

an isobaric process. Find the specific work and heat transfer. Estimate the specific 
heat transfer from the area in the T-s diagram and compare it to the correct value. 

Solution: 
C.V.  H2O 

Energy Eq.5.11: u2 − u1 = 1q2 − 1w2 

Entropy Eq.8.3: s2 − s1 = ∫ dq/T  

Process:  P = C    =>         w = ∫ P dv  = P(v2 − v1) 

1: B1.3 v1= 0.23268 m3/kg, s1= 6.9246 kJ/kgK,    u1 = 2709.91 kJ/kg 

2: B1.3 v2 = 0.19444 m3/kg, s2 = 6.5864 kJ/kg K,   u2 = 2583.64 kJ/kg,  
T2 = 179.91°C 

From the process equation 

1w2 = P (v2 − v1) = 1000 (0.1944 – 0.23268) = -38.28 kJ/kg 

From the energy equation 

1q2 = u2 − u1 + 1w2 = 2583.64 – 2709.91 – 38.28 = -164.55 kJ/kg 

Now estimate the heat transfer from the  T-s diagram. 

1q2 = ∫ T ds = AREA ≅ 12 (T1 + T2)(s2 − s1) 

= 12 (250 + 179.91 + 2 × 273.15)(6.5864 – 6.9246) 

= 488.105 × (-0.3382) = -165.1 kJ/kg 
very close approximation. The P = C curve in the T-s diagram is nearly a 
straight line. Look at the constant P curves on Fig.E.1. Up over the critical 
point they curve significantly. 
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8.57 
 A heavily insulated cylinder/piston contains ammonia at 1200 kPa, 60°C. The 

piston is moved, expanding the ammonia in a reversible process until the 
temperature is −20°C. During the process 600 kJ of work is given out by the 
ammonia. What was the initial volume of the cylinder? 

C.V. ammonia. Control mass with no heat transfer. 

State 1: Table B.2.2       v1 = 0.1238 m3/kg,   s1 = 5.2357 kJ/kg K 

   u1 = h - Pv = 1553.3 - 1200×0.1238 = 1404.9 kJ/kg 

Entropy Eq.:     m(s2 − s1) = ∫ dQ/T + 1S2 gen 

Process: reversible (1S2 gen = 0)  and adiabatic (dQ = 0)    =>     s2 = s1 
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State 2: T2, s2   ⇒   x2 = (5.2357 - 0.3657)/5.2498 = 0.928   

   u2 = 88.76 + 0.928×1210.7 = 1211.95 kJ/kg 

 1Q2 = 0 = m(u2 - u1) + 1W2 = m(1211.95 - 1404.9) + 600 

     ⇒   m = 3.110 kg 

 V1 = mv1 = 3.11 × 0.1238 = 0.385 m3 
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8.58 
 Water at 1000 kPa, 250°C is brought to saturated  vapor in a piston/cylinder with 

an adiabatic process. Find the final T and the specific work. Estimate the specific 
work from the area in the P-v diagram and compare it to the correct value. 

Solution: 
C.V. Water, which is a control mass with unknown size.  
Energy Eq.5.11: u2 – u1 = 0 – 1w2 

Entropy Eq.8.3: s2 – s1 =   ∫ dq/T  = 0 

Process:  Adiabatic    1q2 = 0  and    reversible  as used above 

State 1:  Table B.1.3     v1 = 0.23268 m3/kg,   u1 = 2709.91 kJ/kg, 

 s1 = 6.9246 kJ/kg K 

State 2:   Table B.1.1     x = 1   and  s2 = s1 = 6.9246 kJ/kg K 

     => T2 ≅ 140.56°C,   P2 ≅ 367.34 kPa,  v2 = 0.50187 m3/kg,  

u2 ≅ 2550.56 kJ/kg 

From the energy equation  

1w2 =  u1 – u2 = 2709.91 – 2550.56 = 159.35 kJ/kg 

Now estimate the work term from the area in the P-v diagram 

  1w2 ≅ 12 (P1 + P2)(v2 − v1)  

         = 12 (1000 + 367.34)(0.50187 – 0.23268)  

         = 184 kJ/kg 
The s = constant curve is not a straight line in the the P-v diagram, notice the 
straight line overestimates the area slightly. 
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8.59 
 A rigid, insulated vessel contains superheated vapor steam at 3 MPa, 400°C. A 

valve on the vessel is opened, allowing steam to escape. The overall process is 
irreversible, but the steam remaining inside the vessel goes through a reversible 
adiabatic expansion. Determine the fraction of steam that has escaped, when the 
final state inside is saturated vapor. 

C.V.: steam remaining inside tank.  Rev. & Adiabatic (inside only) 
Cont.Eq.:    m2 = m1 = m ;     Energy Eq.:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.:     m(s2 − s1) = ∫ dQ/T + 1S2 gen 
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C.V. m2  

 
 
Rev   ( 1S2 gen = 0)   Adiabatic ( Q = 0)  =>     s2 = s1 = 6.9212 = sG at T2 

 ⇒    T2 = 141°C,   v2 = vg at T2 = 0.4972 m3/kg 

 
me
m1

 = 
m1-m2

m1
 = 1 - 

m2
m1

 = 1 - 
v1
v2

 = 1 - 
0.09936
0.4972  = 0.80 
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8.60 
 A piston/cylinder contains 2 kg water at 200°C, 10 MPa. The piston is slowly 

moved to expand the water in an isothermal process to a pressure of 200 kPa. Any 
heat transfer takes place with an ambient at 200°C and the whole process may be 
assumed reversible. Sketch the process in a P-V diagram and calculate both the 
heat transfer and the total work. 

Solution: 
C.V. Water. 
Energy Eq.5.11:         m(u2 − u1) = 1Q2 − 1W2  
Entropy Eq.8.3:       m(s2 − s1)  =   ∫ dQ/T  = 1Q2 / T  
Process: T = C   and reversible  as used in entropy equation 
State 1:   Table B.1.4 :     v1 = 0.001148 m3/kg,   u1 = 844.49 kJ/kg, 

s1 = 2.3178 kJ/kg K, 
    V1 = mv1 =  0.0023 m3 

State 2:   Table B.1.3 :     v2 = 1.08034 m3/kg,    u2 = 2654.4 kJ/kg 

    s2 = 7.5066 kJ/kg K 

    V2 = mv2 = 2.1607 m3, 
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From the entropy equation and the process equation  
 1Q2 = mT(s2 − s1) = 2 × 473.15 (7.5066 - 2.3178) = 4910 kJ 

From the energy equation  
 1W2 = 1Q2 - m(u2 - u1) = 1290.3 kJ 
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Entropy generation 
 
8.61 
 One kg water at 500oC and 1 kg saturated water vapor  both at 200 kPa are mixed 

in a constant pressure and adiabatic process. Find the final temperature and the 
entropy generation for the process.  

Solution: 
Continuity Eq.: m2 − mA – mB = 0 

Energy Eq.5.11: m2u2 − mAuA – mBuB = –1W2 

Entropy Eq.8.14: m2s2 − mAsA – mBsB = ∫ dQ/T + 1S2 gen 

Process:  P = Constant => 1W2 = ∫ PdV = P(V2 - V1) 

   Q = 0 
Substitute the work term into the energy equation and rearrange to get 

m2u2 + P2V2  = m2h2 = mAuA + mBuB+ PV1 = mAhA + mBhB 

where the last rewrite used  PV1 = PVA + PVB. 

State A1: Table B.1.3 hA= 3487.03 kJ/kg, sA= 8.5132 kJ/kg K 

State B1: Table B.1.2 hB = 2706.63 kJ/kg, sB= 7.1271 kJ/kg K 

Energy equation gives: 

 h2 = 
mA
 m2

 hA + 
mB
 m2

 hB = 12 3487.03 + 12 2706.63 = 3096.83 

State 2: P2, h2 = 3096.83 kJ/kg   =>   s2 = 7.9328 kJ/kg K;    T2  = 312.2°C 

With the zero heat transfer we have  
 1S2 gen = m2s2 − mAsA – mBsB 

= 2 × 7.9328 – 1 × 8.5132 – 1 × 7.1271 = 0.225 kJ/K 
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8.62 
 The unrestrained expansion of the reactor water in Problem 5.48 has a final state 

in the two-phase region. Find the entropy generated in the process.  
 A water-filled reactor with volume of 1 m3 is at 20 MPa, 360°C and placed inside a 

containment room as shown in Fig. P5.48. The room is well insulated and initially 
evacuated. Due to a failure, the reactor ruptures and the water fills the containment 
room. Find the minimum room volume so the final pressure does not exceed 200 
kPa. 

 Solution: 
C.V.: Containment room and reactor. 
Mass: m2 = m1 = Vreactor/v1 = 1/0.001823 = 548.5 kg 

Energy Eq.5.11:        m(u2 - u1) = 1Q2 - 1W2 = 0 - 0 = 0     

Entropy Eq.8.14:    m(s2  – s1) = ∫ dQ/T + 1S2 gen 

State 1:  (T, P)   Table B.1.4   u1 = 1702.8 kJ/kg, s1 = 3.877 

Energy equation implies     u2 = u1 = 1702.8 kJ/kg 

State 2:    P2 = 200 kPa,  u2 < ug      =>   Two-phase Table B.1.2 

 x2 = (u2 - uf)/ ufg = (1702.8 – 504.47)/2025.02 = 0.59176 

v2 = 0.001061 + 0.59176 × 0.88467 = 0.52457 m3/kg 

 s2 = sf + x2sfg = 1.53 + 0.59176 × 5.597 = 4.8421 kJ/kg K 

V2 = m2 v2 = 548.5 ×0.52457 = 287.7 m3 

From the entropy equation the generation is 
 1S2 gen = m(s2  – s1) = 548.5 (4.8421 – 3.877) 

  = 529.4 kJ/K 
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  Entropy is generated due to the unrestrained expansion. No work was 

taken out as the volume goes up. 
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8.63 
 A mass and atmosphere loaded piston/cylinder contains 2 kg of water at 5 MPa, 

100°C. Heat is added from a reservoir at 700°C to the water until it reaches 
700°C. Find the work, heat transfer, and total entropy production for the system 
and surroundings. 

Solution: 
C.V. Water out to surroundings at 700°C. This is a control mass.  
Energy Eq.5.11: U2 - U1 = 1Q2 - 1W2    

Entropy Eq.8.14: m(s2 - s1) = ⌡⌠dQ/T + 1S2 gen = 1Q2/Tres + 1S2 gen 

Process:   P = constant  so   1W2 = P(V2 - V1) = mP(v2 - v1) 

State 1:  Table B.1.4:    h1 = 422.72 kJ/kg,   u1 = 417.52 kJ/kg,   

  s1 = 1.303 kJ/kg K,   v1 = 0.00104 m3/kg 

State 2:  Table B.1.3:    h2 = 3900.1 kJ/kg,   u2 = 3457.6 kJ/kg,   

  s2 = 7.5122 kJ/kg K,  v2 = 0.08849 m3/kg 
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Work is found from the process (area in P-V diagram) 
 1W2 = mP(v2 - v1) = 2 × 5000(0.08849 – 0.00104) = 874.6 kJ 

The heat transfer from the energy equation is  
 1Q2 = U2 - U1 +  1W2 = m(u2 - u1) +  mP(v2 - v1) = m(h2 - h1) 

 1Q2 = 2(3900.1 - 422.72) = 6954.76 kJ 

Entropy generation from entropy equation (or Eq.8.18)  
 1S2 gen = m(s2 - s1) - 1Q2/Tres = 2(7.5122 - 1.303) - 6954/973 = 5.27 kJ/K 
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8.64 
 Ammonia is contained in a rigid sealed tank unknown quality at 0oC. When 

heated in boiling water to 100oC its pressure reaches 1200 kPa. Find the initial 
quality, the heat transfer to the ammonia and the total entropy generation. 

Solution: 
C.V. Ammonia, which is a control mass of constant volume. 
Energy Eq.5.11:    u2 - u1 = 1q2 - 1w2  

Entropy Eq.8.14: s2 – s1 = ∫ dq/T + 1s2 gen 

State 2:  1200 kPa,  100oC     =>    Table B.2.2 

  s2 = 5.5325 kJ/kg K,    v2 = 0.14347 m3/kg, u2 = 1485.8 kJ/kg 

State 1: v1 = v2  => Table B.2.1 

x1 = (0.14347 – 0.001566)/0.28763 = 0.49336 

  u1 = 741.28 kJ/kg,   s1 = 0.7114 +  x1 × 4.6195 = 2.9905 kJ/kg K 

Process: V = constant    =>    1w2 = 0 

1q2 = (u2 - u1) = 1485.8 – 741.28 = 744.52 kJ/kg 

To get the total entropy generation take the C.V out to the water at 100oC. 

1s2 gen = s2 – s1 - 1q2/T = 5.5325 – 2.9905 – 744.52/373.15 

   = 0.547 kJ/kg K  
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8.65 
 An insulated cylinder/piston contains R-134a at 1 MPa, 50°C, with a volume of 

100 L. The R-134a expands, moving the piston until the pressure in the cylinder 
has dropped to 100 kPa. It is claimed that the R-134a does 190 kJ of work against 
the piston during the process. Is that possible? 

Solution: 
C.V. R-134a in cylinder. Insulated so assume Q = 0. 

State 1:  Table B.5.2,    v1 = 0.02185 m3/kg,   u1 = 409.39 kJ/kg, 

  s1 = 1.7494 kJ/kg K, m = V1/v1 = 0.1/0.02185 = 4.577 kg 

Energy Eq.5.11: m(u2 - u1) = 1Q2 - 1W2 = 0/  - 190  ⇒   

   u2 = u1 − 1W2/m = 367.89 kJ/kg 

State 2:  P2 , u2   ⇒  Table B.5.2:     T2 = -19.25°C  ; s2 = 1.7689 kJ/kg K 

Entropy Eq.8.14:  m(s2 - s1) = ⌡⌠dQ/T + 1S2,gen = 1S2,gen  

   1S2,gen = m(s2 - s1)  = 0.0893 kJ/K 

 
  This is possible since 1S2,gen > 0/  
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8.66 
 A piece of hot metal should be cooled rapidly (quenched) to 25°C, which requires 

removal of 1000 kJ from the metal. The cold space that absorbs the energy could 
be one of three possibilities: (1) Submerge the metal into a bath of liquid water 
and ice, thus melting the ice. (2) Let saturated liquid R-22 at −20°C absorb the 
energy so that it becomes saturated vapor. (3) Absorb the energy by vaporizing 
liquid nitrogen at 101.3 kPa pressure. 

 a. Calculate the change of entropy of the cooling media for each of the three cases. 
 b. Discuss the significance of the results. 

Solution: 
a) Melting or boiling at const P & T 
    1Q2 = m(u2 - u1) + Pm(v2 - v1) = m(h2 - h1) 

   1) Ice melting at 0°C , Table B.1.5:   m = 1Q2 /hig = 
1000

333.41 = 2.9993 kg 

       ∆SH2O = msig = 2.9993(1.221) = 3.662 kJ/K 

   2) R-22 boiling at -20°C, Table B.4.1:   m = 1Q2 /hfg = 
1000

220.327 = 4.539 kg 

       ∆SR-22 = msfg = 4.539(0.8703) = 3.950 kJ/K 

   3) N2 boiling at 101.3 kPa, Table B.6.1:  m = 1Q2 /hfg = 
1000

198.842 = 5.029 kg 

       ∆SN2 = msfg = 5.029(2.5708) = 12.929 kJ/K 

b) The larger the ∆(1/T) through which the Q is transferred, the larger the ∆S. 
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8.67 
 A piston cylinder has 2.5 kg ammonia at 50 kPa, -20oC. Now it is heated to 50oC 

at constant pressure through the bottom of the cylinder from external hot gas at 
200oC. Find the heat transfer to the ammonia and the total entropy generation. 

Solution: 
C.V. Ammonia plus space out to the hot gas. 
Energy Eq.5.11:  m(u2 - u1) = 1Q2 - 1W2  

Entropy Eq.8.14:  m(s2 - s1) = ⌡⌠dQ/T + 1S2,gen  =  1Q2/ Tgas + 1S2 gen 

Process:   P = C     =>    1W2 = Pm(v2 - v1)  

State 1: Table B.2.2 v1 = 2.4463 m3/kg,   h1 = 1434.6 kJ/kg,  

s1 = 6.3187 kJ/kg K 

State 2: Table B.2.2 v2 = 3.1435 m3/kg, h2 = 1583.5 kJ/kg, 

  s2 = 6.8379 kJ/kg K 

Substitute the work into the energy equation and solve for the heat transfer 
  1Q2 = m(h2 - h1) = 2.5 (1583.5 – 1434.6) = 372.25 kJ 

  1S2 gen = m(s2 – s1) - 1Q2/Tgas  

   = 2.5 (6.8379 – 6.3187) – 372.25/473.15 
  = 0.511 kJ/K 
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 Remark: This is an internally reversible- externally irreversible process. 

The s is generated in the space between the 200oC gas and the ammonia. 
If there are any ∆T in the ammonia then it is also internally irreversible.
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8.68 
 A cylinder fitted with a movable piston contains water at 3 MPa, 50% quality, at 

which point the volume is 20 L. The water now expands to 1.2 MPa as a result of 
receiving 600 kJ of heat from a large source at 300°C. It is claimed that the water 
does 124 kJ of work during this process. Is this possible? 

Solution: 
C.V.: H2O in Cylinder 

State 1:   3 MPa, x1 = 0.5,    Table B.1.2:    T1 = 233.9oC 

 v1 = vf + x1vfg = 0.001216 + 0.5×0.06546 = 0.033948 m3/kg 

 u1 = uf + x1ufg = 1804.5 kJ/kg,      s1 = sf + x1sfg = 4.4162 kJ/kg-K 

 m1 = V1/v1 = 0.02 / 0.033948 = 0.589 kg 

1st Law: 1 2,   m(u2 − u1)  = 1Q2 − 1W2 ;   

    1Q2 = 600 kJ,  1W2 = 124 kJ ? 

Now solve for u2 

  u2 = 1804.5 + (600 - 124)/0.589 = 2612.6 kJ/kg 

State 2:  P2 = 1.2 MPa :   u2 = 2612.6 kJ/kg      Table B.1.3 

  T2 ≅ 200oC,   s2 = 6.5898 kJ/kgK 

2nd Law Eq.8.18:     ∆Snet = m(s2 − s1) - 
Qcv
TH

 ;    TH = 300oC,   QCV = 1Q2 

∆Snet = 0.589 (6.5898 – 4.4162) – 
600

300 + 273 = 0.2335 kJ/K  >  0;   

Process is possible 
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8.69 
 A piston cylinder loaded so it gives constant pressure has 0.75 kg saturated vapor 

water at 200 kPa. It is now cooled so the volume becomes half the initial volume 
by heat transfer to the ambient at 20oC. Find the work, the heat transfer and the 
total entropy generation. 

Solution: 
Continuity Eq.: m2 − m1 = 0 

Energy Eq.5.11: m(u2 − u1) = 1Q2 − 1W2 

Entropy Eq.8.14: m(s2 − s1) = ∫ dQ/T + 1S2 gen 

Process:  P = C    => 1W2 = ∫ PdV = mP(v2 − v1) 

1Q2 = m(u2 − u1) + 1W2 = m(h2 − h1) 

State 1: v1 = 0.88573 m3/kg,   h1 = 2706.63 kJ/kg,   s1 = 7.1271 kJ/kg K 

State 2:  P2,  v2 = v1/2 = 0.444286 m3/kg   =>   Table B.1.2 

x2 = (0.444286 − 0.001061)/0.88467 = 0.501 

     h2 = 504.68 + x2× 2201.96 = 1607.86 kJ/kg 

      s2 = 1.53+ x2× 5.5970 = 4.3341 kJ/kg K 

1W2 = 0.75 × 200(0.444286 − 0.88573) = -66.22 kJ 

 1Q2 = 0.75(1607.86 − 2706.63) = -824.1 kJ 

 1S2 gen = m(s2 - s1) − 1Q2/T = 0.75(4.3341 – 7.1271) – (-824.1/293.15) 

  = -2.09475 + 2.81119 = 0.716 kJ/K 
 

  Notice: The process is externally irreversible (T receiving Q is not T1) 
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8.70 
 A piston/cylinder contains 1 kg water at 150 kPa, 20°C. The piston is loaded so 

pressure is linear in volume. Heat is added from a 600°C source until the water is 
at 1 MPa, 500°C. Find the heat transfer and the total change in entropy. 

Solution: 
 CV  H2O  out to the source,  both  1Q2  and  1W2  

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2    

Entropy Eq.8.14:      m(s2 - s1) = 1Q2 / TSOURCE + 1S2 gen 

Process:      P = A + BV    =>       1W2 = ∫ P dV = ½ (P1 + P2 ) (V2 - V1) 

State 1:   B.1.1 Compressed liquid use saturated liquid at same T:  

  v1 = 0.001002 m3/kg;    u1 = 83.94 kJ/kg;   s1 = 0.2966 kJ/kg K 

 
 State 2:  Table B.1.3 sup. vap. 

      v2 = 0.35411 m3/kg  

      u2 = 3124.3 kJ/kg;    

      s2 = 7.7621 kJ/kg K  

P

v
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1
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s
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P

2
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 1W2 = ½ (1000 + 150) 1 (0.35411 - 0.001002) = 203 kJ 

 1Q2 = 1(3124.3 - 83.94) + 203 = 3243.4 kJ 

 m(s2 - s1) = 1(7.7621 - 0.2968) = 7.4655 kJ/K 

 1Q2 / Tsource = 3.7146 kJ/K     (for source  Q = -1Q2  recall Eq.8.18) 

 1S2 gen = m(s2 - s1) − 1Q2 / TSOURCE = ∆Stotal 

   = ∆SH2O + ∆Ssource = 7.4655 - 3.7146 = 3.751 kJ/K 

Remark:  This is an external irreversible process (delta T to the source) 
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8.71 
 A piston/cylinder has ammonia at 2000 kPa, 80oC with a volume of 0.1 m3. The 

piston is loaded with a linear spring and outside ambient is at 20oC, shown in Fig. 
P8.71. The ammonia now cools down to 20oC at which point it has a quality of 
10%. Find the work, the heat transfer and the total entropy generation in the 
process.   

 
CV  Ammonia out to the ambient,  both  1Q2  and  1W2  

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2    

Entropy Eq.8.14:      m(s2 - s1) = 1Q2 / Tambient + 1S2 gen 

Process:      P = A + BV    =>       1W2 = ∫ P dV = ½ m(P1 + P2 ) (v2 - v1) 
 

State 1:  Table B.2.2    
v1 = 0.07595 m3/kg,  u1 = 1421.6 kJ/kg,   s1 = 5.0707 kJ/kg K 
      m = V1/v1 = 0.1/0.07595 = 1.31665 kg 

      State 2:  Table B.2.1 
v2= 0.001638 + 0.1×0.14758 = 0.016396 m3/kg 
u2 = 272.89 + 0.1×1059.3 =378.82 kJ/kg 
s2 = 1.0408 + 0.1×4.0452 = 1.44532 kJ/kg K 

1W2 = ½ m(P1 + P2 )( v2 - v1) 
= ½ ×1.31665 (2000 + 857.5)( 0.016396 – 0.07595) 
= - 112 kJ 

1Q2 = m(u2 − u1) + 1W2 = 1.31665 (378.82 – 1421.6) –112 
= - 1484.98 kJ 

1S2 gen = m(s2 − s1) – (1Q2/ Tamb) 

= 1.31665 (1.44532 – 5.0707) – 
–1484.98
293.15  

= – 4.77336 + 5.0656 = 0.292 kJ/k 
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8.72 
 A cylinder/piston contains water at 200 kPa, 200°C with a volume of 20 L. The 

piston is moved slowly, compressing the water to a pressure of 800 kPa. The 
loading on the piston is such that the product PV is a constant. Assuming that the 
room temperature is 20°C, show that this process does not violate the second law. 

Solution: 
C.V.: Water + cylinder out to room at 20°C 
Energy Eq.5.11:       m(u2 - u1) = 1Q2 − 1W2 

Entropy Eq.8.14:     m(s2 - s1) = 1Q2 / Troom + 1S2 gen 

Process: PV = constant = Pmv  ⇒  v2 = P1v1/P2 

  1w2 = ⌡⌠Pdv = P1v1 ln(v2/v1) 

State 1:  Table B.1.3,    v1 = 1.0803 m3/kg,   u1 = 2654.4 kJ/kg, 

  s1 = 7.5066 kJ/kg K 

State 2:  P2 , v2 = P1v1/P2 = 200 × 1.0803/800 = 0.2701 m3/kg 

  Table B.1.3:   u2 = 2655.0 kJ/kg ,   s2 = 6.8822 kJ/kg K 

 1w2 = 200 × 1.0803 ln



0.2701

1.0803  = -299.5 kJ/kg 

 1q2 = u2 - u1 + 1w2 = 2655.0 - 2654.4 - 299.5 = -298.9 kJ/kg 

 1s2,gen = s2 - s1 - 1q2
Troom

 = 6.8822 - 7.5066 + 
298.9
293.15 

   = 0.395 kJ/kg K  >  0    satisfy 2nd law. 
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8.73 
 One kilogram of ammonia (NH3) is contained in a spring-loaded piston/cylinder, 

Fig. P8.73, as saturated liquid at −20°C. Heat is added from a reservoir at 100°C 
until a final condition of 800 kPa, 70°C is reached. Find the work, heat transfer, 
and entropy generation, assuming the process is internally reversible. 

Solution: 
C.V. = NH3  out to the reservoir. 

Continuity Eq.:         m2 = m1 = m 

Energy Eq.5.11:        E2 - E1 = m(u2 - u1) = 1Q2 - 1W2 

Entropy Eq.8.14:        S2 - S1 = ⌡⌠dQ/T + 1S2,gen = 1Q2/Tres + 1S2,gen 

Process:  P = A + BV      linear in V      => 

  1W2 = ⌡⌠PdV = 12 (P1 + P2)(V2 - V1) = 12 (P1 + P2)m(v2 - v1) 

State 1:   Table B.2.1 
     P1 = 190.08 kPa,     

    v1 = 0.001504 m3/kg 

    u1 = 88.76 kJ/kg,    

    s1 = 0.3657 kJ/kg K 

State 2:  Table B.2.2 sup. vapor 
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    v2 = 0.199 m3/kg,  u2 = 1438.3 kJ/kg,    s2 = 5.5513 kJ/kg K 

 1W2 = 12(190.08 + 800)1(0.1990 - 0.001504) = 97.768 kJ 

 1Q2 = m(u2 - u1) + 1W2 = 1(1438.3 - 88.76) + 97.768  = 1447.3 kJ 

 1S2,gen = m(s2 - s1) - 1Q2/Tres = 1(5.5513 - 0.3657) - 
1447.3
373.15  = 1.307 kJ/K 
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8.74 
 A piston/cylinder device keeping a constant pressure has 1 kg water at 20oC and 1 

kg of water at 100oC both at 500 kPa separated by a thin membrane. The 
membrane is broken and the water comes to a uniform state with no external heat 
transfer. Find the final temperature and the entropy generation for the process.  

Solution: 
Continuity Eq.: m2 − mA – mB = 0 

Energy Eq.5.11: m2u2 − mAuA – mBuB = –1W2 

Entropy Eq.8.14: m2s2 − mAsA – mBsB = ∫ dQ/T + 1S2 gen 

Process:  P = Constant => 1W2 = ∫ PdV = P(V2 - V1) 

   Q = 0 
Substitute the work term into the energy equation and rearrange to get 

m2u2 + P2V2  = m2h2 = mAuA + mBuB+ PV1 = mAhA + mBhB 

where the last rewrite used  PV1 = PVA + PVB. 

State A1: Table B.1.4 hA= 84.41 kJ/kg sA= 0.2965 kJ/kg K 

State B1: Table B.1.4 hB = 419.32 kJ/kg sB= 1.3065 kJ/kg K 

Energy equation gives: 

 h2 = 
mA
 m2

 hA +  
mB
 m2

 hB = 12 84.41 + 12 419.32 = 251.865 kJ/kg 

State 2: h2 = 251.865 kJ/kg & P2  = 500 kPa  from Table B.1.4 

T2  = 60.085°C, s2  = 0.83184 kJ/kg K 

With the zero heat transfer we have  
 1S2 gen = m2s2 − mAsA – mBsB 

= 2 × 0.83184 – 1 × 0.2965 – 1 × 1.3065 = 0.0607 kJ/K 
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Entropy of a liquid or a solid 
 
8.75 
 A piston cylinder has constant pressure of 2000 kPa with water at 20oC. It is now 

heated up to 100oC. Find the heat transfer and the entropy change using the steam 
tables. Repeat the calculation using constant heat capacity and incompressibility. 

Solution: 
C.V. Water. Constant pressure heating. 
Energy Eq.5.11:      u2 - u1 = 1q2 − 1w2 

Entropy Eq.8.3:        s2 - s1 = 1q2 / TSOURCE + 1s2 gen 

Process:  P = P1   =>    1w2 = P(v2 - v1) 

The energy equation then gives the heat transfer as 
   1q2= u2 - u1 + 1w2 =  h2 - h1 

Steam Tables B.1.4:     h1 = 85.82 kJ/kg;   s1= 0.2962 kJ/kg K 

          h2 = 420.45 kJ/kg;   s2 = 1.3053 kJ/kg K 

1q2= h2 - h1= -85.82 + 420.45 = 334.63 kJ/kg 

s2 - s1= 1.3053 – 0.2962 = 1.0091 kJ/kg K 

Now using values from Table A.4:   Liquid water   Cp = 4.18 kJ/kg K 

h2 - h1 ≅ Cp(T2 – T1) = 4.18 × 80 = 334.4 kJ/kg 

  s2 - s1 ≅ Cp ln(T2/T1) = 4.18 ln 
373.15
293.15 = 1.0086 kJ/kg K 

Approximations are very good 
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8.76 
 A large slab of concrete, 5 × 8 × 0.3 m, is used as a thermal storage mass in a 

solar-heated house. If the slab cools overnight from 23°C to 18°C in an 18°C 
house, what is the net entropy change associated with this process? 

Solution: 
 C.V.: Control mass concrete.  

        V = 5 × 8 × 0.3 = 12 m3 
        m = ρV = 2200 × 12 = 26 400 kg 
 
Energy Eq.: m(u2 - u1) = 1Q2 - 1W2  

Entropy Eq.: m(s2 - s1) = 1
Q2
T0

 + 1S2 gen 

Process: V = constant   so        1W2  = 0  

Use heat capacity (Table A.3) for change in  u of the slab 
 1Q2 = mC∆T = 26400 × 0.88(-5) = -116 160 kJ 

Eq.8.18 provides the equivalent of total entropy generation: 

 ∆SSYST = m(s2 - s1) = mC ln 
T2
T1

 = 26400 × 0.88 ln 
291.2
296.2 = -395.5 kJ/K 

 ∆SSURR = 
-1Q2
T0

 = 
+116 160

291.2  = +398.9 kJ/K 

 ∆SNET = -395.5 + 398.9 = +3.4 kJ/K 

  = m(s2 - s1) − 1
Q2
T0

 = 1S2 gen 
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8.77 
 A 4 L jug of milk at 25°C is placed in your refrigerator where it is cooled down to 

the refrigerators inside constant temperature of 5°C. Assume the milk has the 
property of liquid water and find the entropy generated in the cooling process. 

Solution: 
C.V. Jug of milk. Control mass at constant pressure. 
Continuity Eq.:    m2 = m1 = m ;      

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.14:     m(s2 − s1) = ∫ dQ/T + 1S2 gen 

State 1: Table B.1.1:   v1 ≅ vf = 0.001003 m3/kg,   h = hf = 104.87 kJ/kg;  

sf = 0.3673 kJ/kg K  

State 2: Table B.1.1:   h = hf = 20.98 kJ/kg,  s = sf = 0.0761 kJ/kg K 

Process:  P = constant = 101 kPa    =>  1W2 = mP(v2 - v1) 

  m = V/v1 = 0.004 / 0.001003 = 3.988 kg 

Substitute the work into the energy equation and solve for the heat transfer 
 1Q2 = m(h2 − h1) = 3.988 (20.98 - 104.87) = -3.988 × 83.89 = -334.55 kJ 

The entropy equation gives the generation as 
 1S2 gen = m(s2 − s1) − 1Q2/Trefrig 

  = 3.988 (0.0761 − 0.3673) − (−334.55 / 278.15) 
   = − 1.1613 + 1.2028 = 0.0415 kJ/K 
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8.78 
 A foundry form box with 25 kg of 200°C hot sand is dumped into a bucket with 

50 L water at 15°C. Assuming no heat transfer with the surroundings and no 
boiling away of liquid water, calculate the net entropy change for the process. 

Solution: 
C.V. Sand and water, constant pressure process 
 msand(u2 - u1)sand + mH2O(u2 - u1)H2O = -P(V2 - V1) 

 ⇒  msand∆hsand + mH2O∆hH2O = 0 

For this problem we could also have said that the work is nearly zero as the 
solid sand and the liquid water will not change volume to any measurable 
extent. Now we get changes in u's instead of h's. For these phases  CV = CP = 
C which is a consequence of the incompressibility. Now the energy equation 
becomes 
  msandC∆Tsand + mH2OCH2O∆TH2O = 0 

 25 × 0.8×(T2 - 200) + (50×10-3/0.001001) × 4.184 × (T2 - 15) = 0 

  T2 = 31.2°C 

 ∆S = 25 × 0.8 ln



304.3

473.15  + 49.95 × 4.184 ln



304.3

288.15  = 2.57 kJ/K 

 
 Box holds the sand for 

form of the cast part
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8.79 
 A 5-kg steel container is cured at 500oC. An amount of liquid water at 15oC, 100 

kPa is added to the container so a final uniform temperature of the steel and the 
water becomes 75oC. Neglect any water that might evaporate during the process 
and any air in the container. How much water should be added and how much 
entropy was generated? 

 
Heat steel  

   m(u2 − u1) = 1Q2 = mC (T2 + T4 ) 
    1Q2 = 5(0.46)(500-20) = 1104 kJ 

    mH2O( u3-u2)H2O + mst( u3-u2) = 0 
mH2o( 313.87 – 62.98) + mstC ( T3-T2) = 0 
 
mH2O 250.89 + 5 × 0.46 × (75 - 500) = 0 
 
mH2O = 977.5/250.89 = 3.896 kg 

mH2O ( s3-s2) + mst( s3 - s2)  = ∅ + 2S3 gen 
 

3.986 (1.0154 – 0.2245) + 5 × 0.46 ln 
75+273

773  = 2S3 gen 

 
2S3 gen = 3.0813 – 1.8356 = 1.246 kJ/K  

 
 
 

cb
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8.80 
 A pan in an autoshop contains 5 L of engine oil at 20oC, 100 kPa. Now 2 L of hot 

100oC oil is mixed into the pan. Neglect any work term and find the final 
temperature and the entropy generation. 

Solution: 
Since we have no information about the oil density, we assume the same for 
both from Table A.4:      ρ = 885 kg/m3 
Energy Eq.:  m2u2 – mAuA – mBuB ≅ 0 – 0  

∆u ≅ Cv∆T   so same Cv = 1.9 kJ/kg K for all oil states. 

T2 = 
mA
 m2

 TA + 
mB
 m2

 TB = 
5
7 × 20 + 

2
7 × 100 = 42.868oC = 316.02 K 

      S2 - S1 = m2s2 − mAsA – mBsB = mA(s2 – sA) + mB(s2 – sB) 

 = 0.005 × 885 × 1.9 ln 
316.02
293.15  + 0.002 × 885 × 1.9 ln 

316.02
373.15 

 = 0.6316 – 0.5588 = + 0.0728 kJ/K 
 

 

 

Oils shown before 
mixed to final 
uniform state. 
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8.81 
 Find the total work the heat engine can give out as it receives energy from the 

rock bed as described in Problem 7.61 (see Fig.P 8.81). Hint: write the entropy 
balance equation for the control volume that is the combination of the rock bed 
and the heat engine. 

Solution: 

To get the work we must integrate over the process or do the 2nd law for a 
control volume around the whole setup out to T0 

C.V. Heat engine plus rock bed out to  T0. W and QL goes out. 

 
 

W

Q
H Q L

HE

C.V.

 

 

 
Energy Eq.5.11: (U2 − U1)rock = – QL – W  

Entropy Eq.8.3: (S2 − S1)rock = − 
QL
T0

 = mC  ln ( 
T2
T1

 ) 

          = 5500 × 0.89 ln 
290
400  = −1574.15 kJ/K 

  QL = −T0 (S2 − S1)rock = −290 (−1574.15) = 456 504 kJ 

The energy drop of the rock  −(U2 − U1)rock equals QH into heat engine 

 (U2−U1)rock = mC (T2−T1) = 5500 ×0.89 (290 − 400) = −538 450 kJ 

  W = −(U2 − U1)rock − QL = 538450 − 456504 = 81 946 kJ 
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8.82 
 Two kg of liquid lead initially at 500°C are poured into a form. It then cools at 

constant pressure down to room temperature of 20°C as heat is transferred to the 
room. The melting point of lead is 327°C and the enthalpy change between the 
phases, hif , is 24.6 kJ/kg. The specific heats are in Tables A.3 and A.4. Calculate 
the net entropy change for this process. 

Solution: 
C.V. Lead, constant pressure process 
 mPb(u2 - u1)Pb = 1Q2 - P(V2 - V1) 

We need to find changes in enthalpy (u + Pv) for each phase separately and 
then add the enthalpy change for the phase change. 
Consider the process in several steps: 
  Cooling liquid to the melting temperature 
  Solidification of the liquid to solid 
  Cooling of the solid to the final temperature 
 1Q2 = mPb(h2 - h1) = mPb(h2 - h327,sol - hif + h327,f - h500) 

     = 2 × (0.138 × (20 - 327) - 24.6 + 0.155 × (327 - 500)) 
     = -84.732 - 49.2 - 53.63 = -187.56 kJ 

∆SCV = mPb[Cp solln(T2/600) - (hif/600) + CP liqln(600/T1)] 

     = 2 × [0.138 ln 
293.15

600  - 
24.6
600  + 0.155 ln 

600
773.15 ] = -0.358 kJ/K 

 ∆SSUR = -1Q2/T0 = 187.56/293.15 = 0.64 kJ/K 

The net entropy change from Eq.8.18 is equivalent to total entropy generation 
 ∆Snet = ∆SCV + ∆SSUR = 0.282 kJ/K 
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8.83 
 A 12 kg steel container has 0.2 kg superheated water vapor at 1000 kPa, both at 

200oC. The total mass is now cooled to ambient temperature 30oC. How much 
heat transfer was taken out and what is the total entropy generation? 

Solution: 
C.V.:   Steel and the water, control mass of constant volume. 
Energty Eq.5.11:       U2 - U1 = 1Q2 - 1W2 

Process: V = constant      =>      1W2 = 0 

State 1: H20  Table B.1.3: u1 = 2621.9 kJ/kg,   v1 = 0.20596 m3/kg, 
     s1 = 6.6939 kJ/kg K 

State 2: H20: T2 , v2 = v1      =>   from Table B.1.1 

  x2 = 
v - vf
vfg

 = 
0.20596 – 0.001004

32.8922  = 0.006231 

u2 = 125.77 + x2 × 2290.81 = 140.04 kJ/kg 

s2 = 0.4369 + x2 × 8.0164 = 0.48685 kJ/kg K 

 1Q2 = m(u2 − u1) = msteelCsteel (T2 – T1 ) + mH2O (u2 - u1) H2O 

      = 12 × 0.42 (30 – 200) + 0.2 (140.04 –262.19) 
     = -1353.2 kJ 
Entropy generation from Eq.8.18 

 1S2 gen = m2 s2 - m1s1 − 1Q2
Tamb

 

  = msteelCsteel ln ( 
T2
T1

 ) + mH2O (s2- s1)H2O − 1Q2
Tamb

 

  =12 × 0.42 ln ( 
303.15
473.15 ) + 0.2(0.48685 – 6.6939) – ( 

−1353.2
303.15  ) 

  = -2.2437 – 1.2414 + 4.4638 
  = 0.9787 kJ/K 
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8.84 
 A 5 kg aluminum radiator holds 2 kg of liquid R-134a both at –10oC. The setup is 

brought indoors and heated with 220 kJ from a heat source at 100oC. Find the 
total entropy generation for the process assuming the R-134a remains a liquid. 

Solution: 
C.V. The aluminum radiator and the R-134a. 
Energy Eq.5.11: m2u2 – m1u1  = 1Q2 – 0 

Process:     No change in volume so no work as used above. 
The energy equation now becomes (summing over the mass) 
  mal (u2 - u1)al  + mR134a (u2 - u1)R134a  =  1Q2 

Use specific heat from Table A.3 and A.4 
  malCal (T2 - T1) + m R134aC R134a ln (T2 - T1) = 1Q2 

  T2 - T1 = 1Q2 / [malCal + m R134aC R134a ]  

   = 220 / [5 × 0.9 + 2 × 1.43] = 29.89oC  

  T2 = -10 + 29.89 = 19.89oC  

Entropy generation from Eq.8.18 

1S2 gen = m(s2 - s1)- 1Q2/T 

 = malCal ln (T2/T1) + m R134aC R134a ln (T2/T1)  − 1Q2
Tamb

 

 = (5 × 0.9 + 2 × 1.43) ln 
(19.89 + 273.15)

-10 + 273.15   –  
220

373.15 

 = 0.7918 – 0.5896 
 = 0.202 kJ/K 
 

  
���
���

100  Co
Q1 2
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8.85 
 A piston/cylinder of total 1 kg steel contains 0.5 kg ammonia at 1600 kPa both 

masses at 120oC. Some stops are placed so a minimum volume is 0.02 m3, shown 
in Fig. P8.85. Now the whole system is cooled down to 30oC by heat transfer to 
the ambient at 20oC, and during the process the steel keeps same temperature as 
the ammonia. Find the work, the heat transfer and the total entropy generation in 
the process. 

 
1 :  v1 = 0.11265 m3/kg,   u1 = 1516.6 kJ/kg,   s1 = 5.5018 kJ/kg K 

      V1 = mv1 = 0.05634 m3 
 
Stop 1a: vstop = V/m = 0.02/0.5 = 0.04 m3/kg 

Pstop = P1   ⇒   T ~ 42oC (saturated) 
 
2 :    30oC < Tstop  so    v2 = vstop = 0.04 m3/kg 

x2 = 






v2-vf

vfg
 = 

0.04 - 0.00168
0.10881  = 0.35217 

u2 = 320.46 + x2 ×1016.9 = 678.58 kJ/kg 
s2 = 1.2005 + x2 × 3.7734 = 2.5294 kJ/kg K 

 
1W2= ∫ P dV = P1m (v2-v1) = 1600 × 0.5 (0.004 – 0.11268) = - 58.14 kJ  
     1Q2 = m (u2 - u1) + mst(u2 - u1) + 1W2  

= 0.5( 678.58 – 1516.6 ) + 1×0.46(30 – 120) – 58.14 
= -419.01 – 41.4 – 58.14 = –518.55 kJ 

 
1S2 gen= m(s2 − s1) + mst (s2 − s1) – 1Q2/Tamb 

= 0.5 (2.5294 – 5.5018) + 1×0.46 ln 
273+30
273+120 – 

-518.5
293.15 

= - 1.4862 – 0.1196 + 1.6277 
= 0.02186 kJ/K 
 

 

2

1
P

v

T

s

1

2

1a
42
30
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NH
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8.86 
 A hollow steel sphere with a 0.5-m inside diameter and a 2-mm thick wall contains 

water at 2 MPa, 250°C. The system (steel plus water) cools to the ambient 
temperature, 30°C. Calculate the net entropy change of the system and 
surroundings for this process. 

 C.V.: Steel + water. This is a control mass. 
 Energy Eq.:    U2 – U1 = 1Q2 - 1W2 = mH2O(u2 – u1) + msteel(u2 – u1) 

 Process:   V = constant     =>   1W2 = 0 

 msteel = (ρV)steel = 8050 × (π/6)[(0.504)3 - (0.5)3] = 12.746 kg 

 VH2O = (π/6)(0.5)3,   mH2O = V/v = 6.545×10-2/0.11144 = 0.587 kg 

 v2 = v1 = 0.11144 = 0.001004 + x2 × 32.889  =>  x2 = 3.358×10-3 

 u2 = 125.78 + 3.358×10-3 × 2290.8 = 133.5 kJ/kg 

 s2 = 0.4639 + 3.358×10-3 × 8.0164 = 0.4638 kJ/kg K 

 1Q2 =  mH2O(u2 – u1) + msteel(u2 – u1)  

        =  0.587(133.5 - 2679.6) +  12.746 × 0.48(30 - 250) 
          =  -1494.6 + (-1346) = -2840.6 kJ 
 ∆STOT = ∆SSTEEL + ∆SH2O = 12.746 × 0.48 ln (303.15 / 523.15)   

   + 0.587(0.4638 - 6.545)   = -6.908 kJ/K 
 ∆SSURR = -1Q2/T0 = +2840.6/303.2 = +9.370 kJ/K 

 ∆SNET  = -6.908 + 9.370 = +2.462 kJ/K 

 
 

Water

Ambient

Steel
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Entropy of ideal gases 
 
8.87 
 A mass of 1 kg of air contained in a cylinder at 1.5 MPa, 1000 K, expands in a 

reversible isothermal process to a volume 10 times larger. Calculate the heat 
transfer during the process and the change of entropy of the air. 

Solution: 
C.V. Air, control mass. 
Energy Eq. 5.11: m(u2 - u1) = 1Q2 - 1W2 = 0       

Process:     T = constant  so with ideal gas       =>      u2 = u1  

 
 P

v

1
2

21
T

s

1P
P2

 

 

 
From the process equation and ideal gas law  
  PV = mRT = constant 
we can calculate the work term as in Eq.4.5 

 1Q2 = 1W2 = ⌡⌠PdV = P1V1 ln (V2/V1) = mRT1 ln (V2/V1) 

        = 1 × 0.287 × 1000 ln (10) = 660.84 kJ 
The change of entropy from Eq.8.3 is 
 ∆Sair = m(s2 - s1) = 1Q2/T = 660.84/1000 = 0.661 kJ/K 

 
If instead we use Eq.8.26 we would get 

 ∆Sair = m(s2 - s1) = m(Cvo ln 
T2
T1

 + R ln 
v2
v1

 ) 

  = 1 [ 0 + 0.287 ln(10) ] = 0.661 kJ/K 
consistent with the above result. 
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8.88 
 A piston/cylinder setup contains air at 100 kPa, 400 K which is compressed to a 

final pressure of 1000 kPa. Consider two different processes (i) a reversible 
adiabatic process and (ii) a reversible isothermal process. Show both processes in 
P-v and a T-s diagram. Find the final temperature and the specific work for both 
processes. 

 
 Solution: 
  C.V. Air, control mass of unknown size and mass. 
 
  Energy Eq.5.11: u2 – u1  = 1q2 – 1w2 

 Entropy Eq.8.14: s2 – s1  = ∫ dq/T + 1s2 gen 

 Process: Reversible      1s2 gen = 0 

   i) dq = 0   so    1q2 = 0 

   ii) T = C    so   ∫ dq/T = 1q2/T 

 i)  For this process the entropy equation reduces to: 
  s2 – s1  = 0 + 0     so we have constant s,  an isentropic process. 

     The relation for an ideal gas, constant s and k  becomes Eq.8.32 

  T2 = T1( P2 / P1)
k-1
k  = 400 



1000

100  
0.4
1.4 = 400 × 10

0.28575
  = 772 K 

      From the energy equation we get the work term 
   1w2 = u1 – u2 = Cv(T1 – T2) = 0.717(400 – 772) = -266.7 kJ/kg 
 
  ii) For this process T2 = T1  so since ideal gas we get 

 u2 = u1  also   s°
T2 = s°

T1    => Energy Eq.: 1w2 = 1q2 
       Now from the entropy equation we solve for 1q2  

   1w2 = 1q2 = T(s2 – s1) = T[s°
T2 – s°

T1 – R ln 
P2
P1

] = −RT ln 
P2
P1

 

         = − 0.287 × 400 ln 10 = −264 kJ/kg 
 
 P

v
1

2ii
2ii

1
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8.89 
 Consider a Carnot-cycle heat pump having 1 kg of nitrogen gas in a 

cylinder/piston arrangement. This heat pump operates between reservoirs at 300 
K and 400 K. At the beginning of the low-temperature heat addition, the pressure 
is 1 MPa. During this process the volume triples. Analyze each of the four 
processes in the cycle and determine 

 a. The pressure, volume, and temperature at each point 
 b. The work and heat transfer for each process 
 Solution: 
 
 T 

s 

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

1 

3 4 

2 

N 2 

 

 
T1 = T2 = 300 K,  T3 = T4 = 400 K, 
P1 = 1 MPa,   V2 = 3 × V1 
a)   P2V2 = P1V1  =>   P2 = P1/3 = 0.3333 MPa 

 V1 = 
mRT1

P1
 = 

1 × 0.2968 × 300
1000  = 0.08904 m3  

  V2 = 0.26712 m3 
 

    P3 = P2(T3/T2)
k

k-1 = 0.3333



400

300
3.5

 = 0.9123 MPa 

    V3 = V2 × 
P2
P3

 × 
T3
T2

 = 0.26712 × 
0.3333
0.9123 × 

400
300 = 0.1302 m3 

    P4 = P1(T3/T1)
k

k-1 = 1



400

300
3.5

 = 2.73707 MPa 

    V4 = V1 × 
P1
P4

 × 
T4
T1

 = 0.08904 × 
1

2.737 × 
400
300 = 0.04337 m3 

b)       1W2 = 1Q2 = mRT1 ln (P1/P2) 

  = 1 × 0.2968 × 300 ln(1/0.333) = 97.82 kJ 
     3W4 = 3Q4 = mRT3 ln(P3/P4) 

  = 1 × 0.2968 × 400 ln(0.9123/2.737) = -130.43 kJ 
    2W3 = -mCV0(T3 - T2) = -1 × 0.7448(400 - 300) = -74.48 kJ 

    4W1 = -mCV0(T1 - T4) = -1 × 0.7448(300 - 400) = +74.48 kJ 

    2Q3 = 0,   4Q1 = 0 
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8.90 
 Consider a small air pistol with a cylinder volume of 1 cm3 at 250 kPa, 27°C. The 

bullet acts as a piston initially held by a trigger. The bullet is released so the air 
expands in an adiabatic process. If the pressure should be 100 kPa as the bullet 
leaves the cylinder find the final volume and the work done by the air. 

Solution: 
C.V. Air.  Assume a reversible, adiabatic process. 
Energy Eq.5.11:      u2 - u1 = 0 − 1w2  ;  

Entropy Eq.8.14:      s2 - s1 = ∫ dq/T + 1s2 gen = 0/  

State 1: (T1,P1)  State 2:    (P2, ?) 

So we realize that one piece of information is needed to get state 2.  
Process:  Adiabatic    1q2 = 0 Reversible    1s2 gen = 0 

With these two terms zero we have a zero for the entropy change. So this is a 
constant s (isentropic) expansion process giving  s2 = s1. From Eq.8.32 

 T2 = T1( P2 / P1)
k-1
k  = 300 



100

250  
0.4
1.4 = 300 × 0.4

0.28575
  = 230.9 K 

The ideal gas law PV = mRT  at both states leads to 

 V2 = V1 P1 T2/P2 T1 = 1 × 250 × 230.9/100 × 300   = 1.92 cm3 

The work term is from Eq.8.38 or Eq.4.4  with polytropic exponent  n = k 

 1W2 = 
1

1 - k (P2V2 - P1V1) = 
1

1 - 1.4 (100 × 1.92 - 250 × 1) ×10-6  

         = 0.145 J 
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8.91 
 Oxygen gas in a piston cylinder at 300 K, 100 kPa with volume 0.1 m3 is 

compressed in a reversible adiabatic process to a final temperature of 700 K. Find 
the final pressure and volume using Table A.5. 

Solution: 
C.V. Air.  Assume a reversible, adiabatic process. 
Energy Eq.5.11:       u2 - u1 = 0 − 1w2  ;  

Entropy Eq.8.14:      s2 - s1 = ∫ dq/T + 1s2 gen = 0 

Process:  Adiabatic    1q2 = 0 Reversible    1s2 gen = 0 

Properties:  Table A.5: k = 1.393 
With these two terms zero we have a zero for the entropy change. So this is a 
constant s (isentropic) expansion process. From Eq.8.32 

 P2 = P1( T2 / T1)
k 

k-1 = 2015 kPa 

Using the ideal gas law to eliminate P from this equation leads to Eq.8.33 

  V2 = V1( T2 / T1)
1

1-k = 0.1 × 



700

300  
1

1−1.393 = 0.0116 m3 
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8.92 
 Oxygen gas in a piston cylinder at 300 K, 100 kPa with volume 0.1 m3 is 

compressed in a reversible adiabatic process to a final temperature of 700 K. Find 
the final pressure and volume using constant heat capacity from Table A.8. 

Solution: 
C.V. Air.  Assume a reversible, adiabatic process. 
Energy Eq.5.11:      u2 - u1 = 0 − 1w2  ;  

Entropy Eq.8.14:      s2 - s1 = ∫ dq/T + 1s2 gen = 0/  

Process:  Adiabatic    1q2 = 0 Reversible    1s2 gen = 0 

With these two terms zero we have a zero for the entropy change. So this is a 
constant s (isentropic) expansion process. From Eq.8.28 

so
T2 – so

T1 = R ln 
P2
P1

 

Properties:  Table A.8: so
T1 = 6.4168,     so

T2 = 7.2336 kJ/kg K 

P2
P1

 = exp [(so
T2 – so

T1)/R] = exp( 
7.2336 – 6.4168

0.2598  ) = 23.1955 

P2 = 100 × 23.1955 = 2320 kPa 

Ideal gas law: P1V1 = mRT1  and   P2V2 = mRT2 

Take the ratio of these so  mR  drops out to give 

V2 = V1 × (T2 / T1) × (P1 / P2) = 0.1 × (
700
300) × (

100
2320) = 0.01 m3 
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8.93 
 A handheld pump for a bicycle has a volume of 25 cm3 when fully extended. You 

now press the plunger (piston) in while holding your thumb over the exit hole so that 
an air pressure of 300 kPa is obtained. The outside atmosphere is at P0, T0. Consider 
two cases: (1) it is done quickly (∼1 s), and (2) it is done very slowly (∼1 h). 

 a. State assumptions about the process for each case. 
 b. Find the final volume and temperature for both cases. 

Solution: 
C.V. Air in pump.  Assume that both cases result in a reversible process. 
  State 1:  P0, T0  State 2:  300 kPa, ? 

  One piece of information must resolve the ? for a state 2 property. 
Case I) Quickly means no time for heat transfer 
     Q = 0, so a reversible adiabatic compression. 
         u2 - u1 = -1w2  ;   s2 - s1 = ∫ dq/T + 1s2 gen = 0/  

 With constant s and constant heat capacity we use Eq.8.32 

 T2 = T1( P2 / P1)
k-1
k  = 298 



300

101.325  
0.4
1.4 = 405.3 K 

 Use ideal gas law  PV = mRT  at both states so ratio gives 

     =>    V2 = P1V1T2/T1P2 = 11.48 cm3 

 
Case II)    Slowly, time for heat transfer so T = constant = T0. 

 The process is then a reversible isothermal compression. 

      T2 = T0 = 298 K       =>       V2 = V1P1/P2 = 8.44 cm3 
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8.94 
 An insulated cylinder/piston contains carbon dioxide gas at 120 kPa, 400 K. The 

gas is compressed to 2.5 MPa in a reversible adiabatic process. Calculate the final 
temperature and the work per unit mass, assuming 

 a. Variable specific heat, Table A.8 
 b. Constant specific heat, value from Table A.5 
 c. Constant specific heat, value at an intermediate temperature from Table A.6 

Solution: 
C.V. Air, a control mass undergoing a reversible, adiabatic process. 
Energy Eq.5.11:      u2 - u1 = 0 − 1w2  ;  

Entropy Eq.8.14:      s2 - s1 = ∫ dq/T + 1s2 gen = 0/  

Process:  Adiabatic    1q2 = 0 Reversible    1s2 gen = 0 

State 1:   (400 K, 120 kPa) State 2:   (2500 kPa, ?) 
With two terms zero in the entropy equation we have a zero for the entropy 
change. So this is a constant s (isentropic) expansion process, s2 = s1.  

 
 a) Table A.8 for CO2 and Eq.8.28 

    s2 - s1 = 0 =  s°
T2 – s°

T1 − R ln(P2/P1) 

    s°
T2 = s°

T1 +  R ln(P2/P1) = 5.1196 + 0.1889 ln(2500/120) = 5.6932 

    Now interpolate in A.8 to find T2 

        T2 = 650 + 50 (5.6932 – 5.6151)/(5.6976 – 5.6151) = 697.3 K 

     1w2 = -(u2 - u1) = –(481.5 – 228.19) = –253.3 kJ/kg 

 b)  Table A.5:     k = 1.289,  CVo = 0.653 kJ/kg K  and now Eq.8.32 

T2 = T1 






P2

P1
 
k-1
k  = 400 



2.5

0.12
 0.224

 = 789.7 K 

     1w2 = -CVo(T2-T1) = -0.653 (789.7 - 400) = -254.5 kJ/kg 

 c)  Find a heat capacity at an average temperature from Table A.6. 
Estimate  T2 ~ 700 K  giving   TAVE ~ 550 K    =>  θ = 0.55 

CPo =  0.45 + 1.67 ×0.55 – 1.27 ×0.552 + 0.39 ×0.553 = 1.049 kJ/kg K 

CVo = CPo – R = 1.049 – 0.1889 = 0.8601,   k = CPo/CVo = 1.2196 

   Eq.8.32:  T2 = T1 






P2

P1
 
k-1
k  = 400 



2.5

0.12
0.18006

 = 691 K 

  1w2 = –CVo(T2–T1) = –0.8601 (691 – 400) = –250.3 kJ/kg 
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8.95 
 A piston/cylinder, shown in Fig. P8.95, contains air at 1380 K, 15 MPa, with V1 = 

10 cm3, Acyl = 5 cm2. The piston is released, and just before the piston exits the 
end of the cylinder the pressure inside is 200 kPa. If the cylinder is insulated, 
what is its length? How much work is done by the air inside? 

Solution: 
C.V. Air, Cylinder is insulated so adiabatic, Q = 0. 
Continuity Eq.:       m2 = m1 = m,   

Energy Eq.5.11:      m(u2 - u1) = 1Q2 - 1W2 = - 1W2 

Entropy Eq.8.14:     m(s2 - s1) = ∫ dQ/T + 1S2 gen = 0 + 1S2 gen 

State 1: (T1, P1)      State 2:    (P2, ?) 

So one piece of information is needed for the ?,   assume reversible process. 
  1S2 gen = 0    =>   s2 - s1 = 0 

State 1: Table A.7:   u1 = 1095.2 kJ/kg,    so
T1 = 8.5115  kJ/kg K 

  m = P1V1/RT1 = 
15000 × 10×10-6

0.287 × 1380  = 0.000379 kg 

State 2:  P2 and from Entropy eq.:    s2 = s1    so from Eq.8.28 

s°
T2 = s°

T1 + R ln 
P2
P1

 = 8.5115 + 0.287 ln(
200

15000) = 7.2724 kJ/kg K 

Now interpolate in Table A.7 to get T2 

  T2 = 440 + 20 (7.2724 – 7.25607)/(7.30142 – 7.25607) = 447.2 K 

  u2 = 315.64 + (330.31 – 315.64) 0.36 = 320.92 kJ/kg 

  V2 = V1 
T2 P1
T1P2

 = 
10 × 447.2 × 15000

1380 × 200  =  243 cm3  

   ⇒   L2 = V2 /Acyl = 243/5 =  48.6 cm 

  1w2 = u1 - u2 = 774.3 kJ/kg,         1W2 =  m1w2 = 0.2935 kJ 
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8.96 
 Two rigid tanks, shown in Fig. P8.96, each contain 10 kg N2 gas at 1000 K, 500 

kPa. They are now thermally connected to a reversible heat pump, which heats 
one and cools the other with no heat transfer to the surroundings. When one tank 
is heated to 1500 K the process stops. Find the final (P, T ) in both tanks and the 
work input to the heat pump, assuming constant heat capacities. 

Solution: 
Control volume of hot tank B,  
Process = constant volume & mass    so no work 
Energy equation Eq.5.11 and specific heat in Eq.5.20 gives 
 U2 - U1 ≅ mCv(T2 - T1) = 1Q2 = 10 × 0.7448 × 500 = 3724 kJ  

  P2 = P1T2/T1 = 1.5(P1) = 750 kPa 

 
 

H.P.

WHE
1    3 Q

1    2 QA
1 -> 3

B
1 -> 2

 

State: 1 = initial, 
          2 = final hot 
          3 = final cold 
 

 
To fix temperature in cold tank, C.V.: total 
For this CV only WHP cross the control surface no heat transfer. The entropy 
equation Eq.8.14 for a reversible process becomes 
  (S2 - S1)tot = 0 = mhot(s2 - s1) + mcold(s3 - s1) 

Use specific heats to evaluate the changes in s from Eq.8.25 and division by m 

  Cp,hot ln(T2 / T1) − R ln(P2 / P1) + Cp,coldln(T3 / T1) − R ln(P3 / P1) = 0/  

  P3 = P1T3/T1   and   P2 = P1T2/T1 

 Now everything is in terms of T and Cp = Cv + R, so 

  Cv,hotln(T2/T1) + Cv,coldln(T3/T1) = 0 

 same Cv:    T3 = T1(T1/T2) = 667 K,   P3 = 333 kPa 

 Qcold = - 1Q3 = mCv(T3 - T1) = -2480 kJ,    

 WHP = 1Q2 + Qcold = 1Q2  - 1Q3 = 1244 kJ 
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8.97 
 A spring loaded piston cylinder contains 1.5 kg air at 27oC and 160 kPa. It is now 

heated in a process where pressure is linear in volume, P = A + BV, to twice the 
initial volume where it reaches 900 K. Find the work, the heat transfer and the 
total entropy generation assuming a source at 900 K. 

Solution: 
C.V. Air out to the 900 K source. Since air T is lower than the source  

  temperature we know that this is an irreversible process. 
Continuity Eq.:     m2 = m1 = m,   

Energy Eq.5.11:      m(u2 – u1) = 1Q2 – 1W2  

Entropy Eq.8.14:     m(s2 – s1) = ∫ dQ/T + 1S2 gen = 1Q2/TSOURCE + 1S2 gen 

Process:  P = A + BV 
State 1: (T1, P1)    Table A.7      u1 = 214.36 kJ/kg 

V1 = mRT1/ P1 = (1.5 × 0.287 ×300) / 160 = 0.8072 m3 

State 2: (T2, v2 = 2 v1)  Table A.7 u2 = 674.824 kJ/kg 

P2  = RT2/ v2 = RT2/2v1 = T2 P1/ 2T1= P1 T2/2 T1 

       = 160 × 900 / 2 × 300 = 240 kPa 
From the process equation we can express the work as 

 1W2 = ∫  PdV = 0.5 × (P1 + P2) (V2 - V1) = 0.5 × (P1 + P2) V1 

        = 0.5 × (160 + 240) 0.8072 = 161.4 kJ 

1Q2 = 1.5 × ( 674.824 – 214.36) + 161.4 = 852.1 kJ 

Change in s from Eq.8.28 and Table A.7 values 

1S2 gen = m(so
T2 – so

T1 – R ln 
P2
P1

 ) – 1Q2/TSOURCE 

= 1.5 × [8.0158 – 6.8693 – 0.287 ln ( 
240
160 )] – ( 

852.1
900  ) 

  = 1.545 – 0.947 = 0.598 kJ/K 
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8.98 
 A rigid storage tank of 1.5 m3 contains 1 kg argon at 30°C. Heat is then 

transferred to the argon from a furnace operating at 1300°C until the specific 
entropy of the argon has increased by 0.343 kJ/kg K. Find the total heat transfer 
and the entropy generated in the process. 

Solution: 
 C.V. Argon out to 1300°C.  Control mass.   ,    m = 1 kg 
          Argon is an ideal gas with constant heat capacity. 
 Energy Eq.5.11:      m (u2 - u1 ) = m Cv (T2 - T1) =  1Q2 - 1W2 

 Entropy Eq.8.14: m(s2 − s1) =  1Q2/Tres + 1S2 gen tot 

 Process:  V = constant     =>    v2 = v1    also   1W2 = 0 

 Properties:  Table A.5   R = 0.20813,   Cv = 0.312 kJ/kg K 

State 1:   (T1, v1= V/m )  P1 = mRT1/V = 42.063 kPa   

 State 2:    s2 =  s1  + 0.343,     and change in s from Eq.8.28 or Eq.8.26 

  s2 - s1 = Cp ln (T2 / T1 ) - R ln (T2 / T1 ) = Cv ln (T2 / T1 ) 

  T2 / T1 = exp[
s2 - s1

Cv
 ]  = exp[

0.343
0.312] = exp(1.09936) = 3.0 

 Pv = RT     =>  (P2 / P1) (v2 / v1) = T2 / T1 = P2 / P1  

  T2 = 3.0 × T1 = 909.45 K,   P2 = 3.0 × P1 = 126.189 kPa 

 
 P

v

1

2 2

1
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v = C

P1

 

 

 
Heat transfer from energy equation 
 1Q2 = 1 × 0.312 (909.45 − 303.15) = 189.2 kJ 

Entropy generation from entropy equation (2nd law) 
 1S2 gen tot = m(s2 − s1) −  1Q2/Tres 

    = 1 × 0.343 − 189.2 / (1300 + 273) = 0.223 kJ/K 
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8.99 
 A rigid tank contains 2 kg of air at 200 kPa and ambient temperature, 20°C. An 

electric current now passes through a resistor inside the tank. After a total of 100 
kJ of electrical work has crossed the boundary, the air temperature inside is 80°C.  
Is this possible? 

Solution: 
C.V.: Air in tank out to ambient;  
Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2 ,      1W2 = −100 kJ 

Entropy Eq.8.14, 8.18: m(s2 – s1) = ∫ dQ/T + 1S2 gen = 1Q2/Tamb + 1S2 gen 

Process: Constant volume and mass so   v2 = v1 

State 1: T1 = 20oC, P1 = 200 kPa,    m1 = 2 kg 

State 2: T2 = 80oC, v2 = v1 

Ideal gas,  Table A.5:    R = 0.287 kJ/kg-K,    Cv = 0.717 kJ/kg-K 

Assume constant specific heat then energy equation gives 
 1Q2 = mCv(T2 − T1) + 1W2 = 2 × 0.717(80 – 20) – 100 = −14.0 kJ 

Change in s from Eq.8.26 (since second term drops out) 

 s2 - s1 = Cv ln (T2/T1) + Rln 
v2
v1

  ;    v2 = v1,   ln 
v2
v1

  = 0 

 s2 - s1 = Cvln (T2/T1)  = 0.1336 kJ/kg-K  

Now Eq.8.18 or from Eq.8.14 

 1S2 gen = m(s2 – s1) – 1Q2/Tamb = 2 × 0.1336 + 
14
293 = 0.315 kJ/K  ≥ 0,  

Process is Possible 

Note:  P2 = P1 
T2
T1

   in Eq.8.28      s2 – s1 = Cp ln
T2
T1

  - R ln 
P2
P1

 ,  results in the 

same answer as Eq.8.26. 
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8.100 
 Argon in a light bulb is at 90 kPa and heated from 20oC to 60oC with electrical 

power. Do not consider any radiation, nor the glass mass. Find the total entropy 
generation per unit mass of argon. 

Solution: 
C.V. Argon gas. Neglect any heat transfer. 
Energy Eq.5.11: m(u2 - u1) = 1W2 electrical in  

Entropy Eq.8.14: s2 - s1 = ∫ dq/T + 1s2 gen =  1s2 gen 

Process:  v = constant and ideal gas   => P2/ P1 = T2/T1 

Evaluate changes in s from Eq.8.26 or 8.28 

1s2 gen  = s2 - s1 = Cp ln (T2/T1) – R ln (P2/ P1)   Eq.8.28 

= Cp ln (T2/T1) – R ln (T2/ T1) = Cv ln(T2/T1) Eq.8.26 

= 0.312 ln [ (60 + 273)/(20 + 273) ] = 0.04 kJ/kg K 
 

 

 

 

 
Since there was no heat transfer but work input all the change in s is 
generated by the process (irreversible conversion of W to internal energy) 
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8.101 
 We wish to obtain a supply of cold helium gas by applying the following 

technique. Helium contained in a cylinder at ambient conditions, 100 kPa, 20°C, 
is compressed in a reversible isothermal process to 600 kPa, after which the gas is 
expanded back to 100 kPa in a reversible adiabatic process. 

 a.   Show the process on a T–s diagram. 
 b.   Calculate the final temperature and the net work per kilogram of helium. 

 
 Solution: 
 

a) 

    

1 T 2 = 

P 
2 1 3 

1 
2 

3 

3 2 

T

s

s  = s

T 

P  = P

 

2 
P

v
1

600

100 3

 

 
b)    The adiabatic reversible expansion gives constant s from the entropy equation 

Eq.8.14. With ideal gas and constant specific heat this gives relation in 
Eq.8.32 

    T3 = T2(P3/P2)
k-1
k  = 293.15 (100/600)0.4 = 143.15 K 

The net work is summed up over the two processes. The isothermal process 
has work as Eq.8.41 
 1w2 = -RT1 ln(P2/P1) = -2.0771 × 293.15 × ln(600/100) = -1091.0 kJ/kg 

The adiabatic process has a work term from energy equation with no q 
    2w3 = CVo(T2-T3) = 3.116 (293.15 - 143.15) = +467.4 kJ/kg 

The net work is the sum 
    wNET = -1091.0 + 467.4 = -623.6 kJ/kg 
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8.102 
 A 1-m3 insulated, rigid tank contains air at 800 kPa, 25°C. A valve on the tank is 

opened, and the pressure inside quickly drops to 150 kPa, at which point the valve 
is closed. Assuming that the air remaining inside has undergone a reversible 
adiabatic expansion, calculate the mass withdrawn during the process. 

Solution: 
C.V.: Air remaining inside tank, m2. 

Cont.Eq.:    m2 = m ;      

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.14:     m(s2 − s1) = ∫ dQ/T + 1S2 gen  

Process:  adiabatic   1Q2 = 0  and reversible  1S2 gen = 0  

 
 P

v

1

2 2

1
T

s  

C.V. m2  

 
Entropy eq. then gives   s2 = s1  and ideal gas gives the relation in  Eq.8.32 

 T2 = T1(P2/P1)
k-1
k  = 298.2(150/800)0.286 = 184.8 K 

 m1 = P1V/RT1 = (800 × 1)/(0.287 × 298.2) = 9.35 kg 

 m2 = P2V/RT2 = (150 × 1)/(0.287 × 184.8) = 2.83 kg 

 me = m1 - m2 = 6.52 kg 
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8.103 
 Nitrogen at 200oC, 300 kPa is in a piston cylinder, volume 5 L, with the piston 

locked with a pin. The forces on the piston require a pressure inside of 200 kPa to 
balance it without the pin. The pin is removed and the piston quickly comes to its 
equilibrium position without any heat transfer. Find the final P, T and V and the 
entropy generation due to this partly unrestrained expansion. 

Solution: 
C.V. Nitrogen gas. 
Energy Eq.5.11:     m(u2 - u1) = 1Q2 - 1W2 = - ∫ Peq dV = -P2 (V2 - V1) 

Entropy Eq.8.14:     m(s2 - s1) = 0 + 1S2 gen 

Process: 1Q2 = 0 (already used),      P = Peq    after pin is out. 

State 1: 200 °C, 300 kPa  State 2:  P2 = Peq = 200 kPa  

m = P1V1/RT1 = 300 × 0.005 / 0.2968 × 473.15 = 0.01068 kg 

The energy equation becomes  
  mu2 + P2V2 = mu1 + P2V1 = mh2   => 

  h2 = u1 + P2V1/m = u1 + P2V1 RT1 /P1V1 = u1 + (P2/P1) RT1 

Solve using constant Cp, Cv 

Cp T2 = Cv T1 + (P2/P1) RT1 

T2 = T1 [Cv  + (P2/P1) R] / Cp 

   = 473.15 [0.745 + (200 / 300) × 0.2368] / 1.042 
   = 428.13 K 

V2 = V1( T2 / T1) × ( P1/P2 ) = 0.005 × 
428.13
473.15 × 

300
200 

 = 0.00679 m3 

1S2 gen= m(s2 - s1)  ≅  m[Cp ln (T2/T1) – R ln (P2/ P1)] 

  = P1V1 /RT1 [Cp ln (T2/T1) – R ln (P2/ P1)] 

  = 0.01068 [1.042 × ln (428.13/473.15) – 0.2968 × ln (200 / 300)] 
  = 0.000173 kJ/K 
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8.104 
 A rigid container with volume 200 L is divided into two equal volumes by a 

partition, shown in Fig. P8.104. Both sides contain nitrogen, one side is at 2 MPa, 
200°C, and the other at 200 kPa, 100°C. The partition ruptures, and the nitrogen 
comes to a uniform state at 70°C. Assume the temperature of the surroundings is 
20°C, determine the work done and the net entropy change for the process. 

Solution: 
 C.V. : A + B  no change in volume.     1W2 = 0 

 mA1 = PA1VA1/RTA1 = (2000 × 0.1)/(0.2968 × 473.2) = 1.424 kg 

 mB1 = PB1VB1/RTB1 = (200 × 0.1)/(0.2968 × 373.2) = 0.1806 kg 

 P2 = mTOTRT2/VTOT = (1.6046 × 0.2968 × 343.2)/0.2 = 817 kPa 

From Eq.8.25 

 ∆SSYST = 1.424[1.042 ln 
343.2
473.2 - 0.2968 ln 

817
2000] 

                   + 0.1806[1.042 ln 
343.2
373.2 - 0.2968 ln 

817
200]  = -0.1894 kJ/K 

 1Q2 = U2 - U1 = 1.424 × 0.745(70 - 200) + 0.1806 × 0.745(70 - 100) 

        = -141.95 kJ 
From Eq.8.18 
 ∆SSURR = - 1Q2/T0 = 141.95/293.2 = +0.4841 kJ/K 

 ∆SNET  = -0.1894 + 0.4841 = +0.2947 kJ/K 
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8.105 
 Nitrogen at 600 kPa, 127°C is in a 0.5 m3 insulated tank connected to a pipe with 

a valve to a second insulated initially empty tank of volume 0.5 m3, shown in Fig. 
P8.105. The valve is opened and the nitrogen fills both tanks at a uniform state. 
Find the final pressure and temperature and the entropy generation this process 
causes. Why is the process irreversible? 

 
Solution: 
CV  Both tanks + pipe + valve  Insulated : Q = 0   Rigid: W = 0 
Energy Eq.5.11:  m(u2 - u1) = 0 - 0 =>   u2 = u1 = ua1  

Entropy Eq.8.14:  m(s2 − s1) = ∫ dQ/T + 1S2 gen  = 1S2 gen       (dQ = 0) 

1: P1 , T1 ,  Va  =>     m = PV/RT = (600 × 0.5)/ (0.2968 × 400) = 2.527 

2: V2 = Va  + Vb  ;   uniform state  v2  = V2 / m   ;     u2  = ua1  

 
 P

v
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 Ideal gas  u (T)  =>  u2 = ua1      =>    T2 = Ta1  = 400 K 

 P2  = mR T2 / V2 = (V1 /  V2 )  P1 = ½  × 600 = 300 kPa 

From entropy equation and Eq.8.28 for entropy change 

 Sgen = m(s2 − s1) = m[sT2 − sT1 − R ln(P2 / P1)]  

  = m [0 -  R ln (P2 / P1 )] = -2.527 × 0.2968 ln ½ = 0.52 kJ/K 

Irreversible due to unrestrained expansion in valve  P ↓ but no work out.  
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Polytropic processes 
 
 
8.106 
 Neon at 400 kPa, 20°C is brought to 100°C in a polytropic process with n = 1.4. 

Give the sign for the heat transfer and work terms and explain. 
 
 Solution: 
 
 P 

v 

2 

1 
T = C 

T 

s 
1 

2 

 

Neon Table A.5 
k = γ = 1.667  so n < k 
   Cv = 0.618,     R = 0.412 

 
  From definition Eq.8.2 ds = dq/T      so      dq =  T ds 
  From work term            dw = P dv 

 From figures:  v  goes down so work in ( W < 0); 
        s  goes down so Q out  ( Q < 0) 
  

We can also calculate the actual specific work from Eq.8.38  and heat 
transfer from the energy equation as: 
  1w2 = [R/(1-n)](T2 - T1) = -82.39 kJ/kg 

  u2 - u1 = Cv(T2 - T1) = 49.432,     1q2 = ∆u + 1w2 = -32.958 

  1W2 Negative  and   1Q2 Negative  
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8.107 
 A mass of 1 kg of air contained in a cylinder at 1.5 MPa, 1000 K, expands in a 

reversible adiabatic process to 100 kPa. Calculate the final temperature and the 
work done during the process, using 

 a. Constant specific heat, value from Table A.5 
 b. The ideal gas tables, Table A.7 

Solution: 
C.V. Air.  
Continuity Eq.:    m2 = m1 = m ;      

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.14:     m(s2 − s1) = ∫ dQ/T + 1S2 gen  

Process:   1Q2 = 0,   1S2 gen = 0     =>    s2 = s1 

a) Using constant Cp from Table A.5 gives the power relation Eq.8.32. 

  T2 = T1(P2/P1)
k-1
k  = 1000



0.1

1.5
0.286

 = 460.9 K 

  1W2 = -(U2 - U1) = mCVo(T1 - T2) 

   = 1 × 0.717(1000 - 460.9) = 386.5 kJ 
 b) Use the standard entropy function that includes variable heat capacity  

     from A.7.1 and Eq.8.28 

   s2 – s1 = so
T2 – so

T1 – R ln 
P2
P1

 = 0    ⇒      so
T2 = so

T1 + R ln 
P2
P1

 

 so
T2 = 8.13493 + 0.287 ln(100/1500) = 7.35772    

Interpolation gives  T2 = 486 K  and  u2 = 349.5 kJ/kg 

     1W2 = m(u1 - u2) = 1(759.2 - 349.5) = 409.7 kJ 
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8.108 
 An ideal gas having a constant specific heat undergoes a reversible polytropic 

expansion with exponent, n = 1.4. If the gas is carbon dioxide will the heat 
transfer for this process be positive, negative, or zero? 

  
Solution: 

 
 T 

s 

n > k 

P = const 

n < k 

1 

2 

n = k 

 

 
CO2:  Table A.5       k = 1.289 < n      
          Since   n > k    and    P2 < P1  
          it follows that s2 < s1  and thus Q flows out. 
 

           1Q2 < 0/     
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8.109 
 A cylinder/piston contains 1 kg methane gas at 100 kPa, 20°C. The gas is 

compressed reversibly to a pressure of 800 kPa. Calculate the work required if the 
process is 

 a. Adiabatic     b. Isothermal 
 c. Polytropic, with exponent n = 1.15 
 
 Solution: 
  C.V. Methane gas of constant mass   m2 = m1 = m and reversible process. 

 Energy Eq.5.11: m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.14: m(s2 − s1) = ∫ dQ/T + 1S2 gen = ∫ dQ/T 

a)  
Process:   1Q2 = 0      =>    s2 = s1 

thus isentropic process s = const and ideal gas gives relation in Eq.8.32 

    T2 = T1 (P2/P1)
k-1
k  = 293.2 



800

100  
0.230

 = 473.0 K 

    1W2 = -mCV0(T2 - T1) = -1 × 1.7354 (473.0 - 293.2) = -312.0 kJ 

b)  

Process:     T = constant.   For ideal gas then  u2 = u1   and   s°
T2 = s°

T1 

Energy eq.  gives  1W2 = 1Q2   and     ∫ dQ/T = 1Q2/T     

with the entropy change found from Eq.8.28 
  =>     1W2 = 1Q2 = mT(s2 - s1) = -mRT ln(P2/P1) 

             = -0.51835× 293.2 ln(800/100) = -316.0 kJ 
c)  

Process: Pvn = constant   with   n = 1.15 ;  
The T-P relation is given in  Eq.8.37 

 T2 = T1 (P2/P1)
n-1
n  = 293.2 



800

100  
0.130

 = 384.2 K 

     and the work term is given by Eq.8.38 
    1W2 = ∫ mP dv  = m(P2v2 - P1v1)/(1 - n) = mR (T2 - T1)/(1 - n) 

   = 1× 
0.51835(384.2 - 293.2)

1 - 1.15  = -314.5 kJ 
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8.110 
 Helium in a piston/cylinder at 20°C, 100 kPa is brought to 400 K in a reversible 

polytropic process with exponent n = 1.25. You may assume helium is an ideal 
gas with constant specific heat. Find the final pressure and both the specific heat 
transfer and specific work. 

Solution: 
C.V. Helium 
Continuity Eq.:    m2 = m1 = m ;      

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Process: Pvn = C     &     Pv = RT        =>      Tvn-1 = C 
Table A.5:  Cv =  3.116 kJ/kg K,   R = 2.0771 kJ/kg K 

From the process equation and T1 = 293.15,  T2 = 400 K 

 T1 vn-1 = T2 vn-1         =>    v2 / v1 = (T1 / T2 )1/n-1 = 0.2885 

 P2 / P1 = (v1 / v2)n = 4.73       => P2 = 473 kPa 

The work is from Eq.8.38 per unit mass 

 1w2 = ∫ P dv = ∫ C v-n dv = [ C / (1-n) ] × ( v2
1-n  - v1

1-n )    

           = 
1

1-n (P2 v2 -  P1 v1) = 
R

1-n (T2 - T1) = -887.7 kJ/kg 

The heat transfer follows from the energy equation 
 1q2 = u2 - u1 + 1w2 = Cv (T2 - T1 ) + (- 887.7) = -554.8 kJ/kg 
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8.111 
 The power stroke in an internal combustion engine can be approximated with a 

polytropic expansion. Consider air in a cylinder volume of 0.2 L at 7 MPa, 1800 
K, shown in Fig. P8.111. It now expands in a reversible polytropic process with 
exponent, n = 1.5, through a volume ratio of 8:1. Show this process on P–v and T–
s diagrams, and calculate the work and heat transfer for the process. 

 
  Solution: 
  C.V. Air of constant mass   m2 = m1 = m. 

 Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.14:     m(s2 − s1) = ∫ dQ/T + 1S2 gen = ∫ dQ/T 

  Process: PV1.50 = constant, V2/V1 = 8 
  State 1: P1 = 7 MPa,  T1 = 1800 K,   V1 = 0.2 L 

   m1 = 
P1V1
RT1

 = 
7000 × 0.2 × 10-3

0.287 × 1800  = 2.71×10-3 kg 

State 2:            (v = V2/m, ?)    Must be on process curve so Eq.8.37 gives 

   T2 = T1 (V1/V2)n-1 = 1800 (1/8)0.5 = 636.4 K 
Table A.7: u1 = 1486.331 kJ/kg    and  interpolate   u2 = 463.05 kJ/kg 

 
 P 
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 Notice:    
  n = 1.5,  k = 1.4 
  
      n > k 

 
Work from the process expressed in Eq.8.38 

 1W2 = ⌡⌠ PdV = mR(T2 - T1)/(1 - n) 

         = 
2.71×10-3 × 0.287(636.4 - 1800)

1 - 1.5  = 1.81 kJ 

Heat transfer from the energy equation 

1Q2 = m(u2 - u1) + 1W2   

 = 2.71×10-3 × (463.05 - 1486.331) + 1.81 = -0.963 kJ 
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8.112 
 A piston/cylinder contains air at 300 K, 100 kPa. It is now compressed in a 

reversible adiabatic process to a volume 7 times as small. Use constant heat 
capacity and find the final pressure and temperature, the specific work and 
specific heat transfer for the process. 

 
 Solution: 

Expansion ratio: v2/ v1 = 1/7 
Process eq.: Rev. adiabatic and ideal gas gives    Pvn = C,  with n = k     

P2 /P1 = (v2/v1)-k = 71.4 = 15.245  

P2 = P1 (71.4)   = 100 × 15.245 = 1524.5 kPa 
T2 = T1 (v1/v2)k-1 = 300 × 70.4 = 653.4 K 

1q2 = 0 kJ/kg 
Polytropic process work term from Eq.8.38 

1w2 = 
R

1 - k (T2 –T1) = 
0.287
-0.4  (653.4 – 300) = -253.6 kJ/kg 

  
Notice:   Cv = R/(k-1) so the work term is also the change in u consistent with the 
energy equation. 
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8.113 
 A cylinder/piston contains carbon dioxide at 1 MPa, 300°C with a volume of 200 

L. The total external force acting on the piston is proportional to V3. This system 
is allowed to cool to room temperature, 20°C. What is the total entropy generation 
for the process? 

Solution: 
C.V. Carbon dioxide gas of constant mass   m2 = m1 = m  out to ambient. 

Energy Eq.5.11: m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.14,18: m(s2 − s1) = ∫ dQ/T + 1S2 gen = 1Q2/Tamb + 1S2 gen 

Process: P = CV 3 or   PV-3 = constant,  which is  polytropic with  n = -3 

State 1:  (T, P)  =>  m = P1V1/RT1 = 
1000 × 0.2

0.18892 × 573.2 = 1.847 kg 

State 2:   (T, ?)   state must be on process curve. This and ideal gas leads to 
Eq.8.37 

     ⇒    P2 = P1(T2/T1)
n

n-1 = 1000(293.2/573.2)3/4 = 604.8 kPa 

          V2 = V1(T1/T2)
1

n-1 = 0.16914 m3 

 1W2 =⌡⌠ PdV = (P2V2 - P1V1)/(1-n) 

        = [604.8 × 0.16914 - 1000 × 0.2] / [1 - (-3)] = -24.4 kJ 
 1Q2 = m(u2 − u1) + 1W2 

= 1.847 × 0.653 (20 - 300) - 24.4 = -362.1 kJ 
From Eq.8.25 

  m(s2 − s1) = 1.847[0.842 ln 
293.2
573.2 - 0.18892 ln 

604.8
1000] 

        = 1.847[-0.4694] = -0.87 kJ/K 
 ∆SSURR = − 1Q2/Tamb = +362.1 / 293.2 = +1.235 kJ/K 

From Eq.8.18 
 1S2 gen = m(s2 − s1) − 1Q2/Tamb = ∆SNET  = ∆SCO2 + ∆SSURR 

            = −0.87 + 1.235 = +0.365 kJ/K 
 
 P 

v 

1 

2 

T 

s 

1 

2 20

300

605

1000

 

 
 Notice:    
  n = -3,  k = 1.3 
  
      n < k 
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8.114 
 A device brings 2 kg of ammonia from 150 kPa, -20oC to 400 kPa, 80oC in a 

polytropic process. Find the polytropic exponent, n, the work and the heat 
transfer. Find the total entropy generated assuming a source at 100oC. 

Solution: 
C.V. Ammonia of constant mass   m2 = m1 = m out to source. 

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.14, 8.18:     m(s2 − s1) = ∫ dQ/T + 1S2 gen = 1Q2/T + 1S2 gen 

Process: P1v1
n = P2v2

n  Eq. (8.36)  

State 1: Table B.2.2 

 v1 = 0.79774 m3/kg, s1 = 5.7465 kJ/kg K, u1 = 1303.3 kJ/kg 

State 2: Table B.2.2 

 v2 = 0.4216 m3/kg,   s2 = 5.9907 kJ/kg K, u2 = 1468.0 kJ/kg 

ln (P2/P1) = ln (v2/v1)n = n × ln (v2/v1) 

ln ( 
480
150 ) = n × ln ( 

0.4216
0.79774 ) = 0.98083 = n × 0.63773 

⇒ n = 1.538 
The work term is integration of PdV  as done in text leading to Eq.8.38 

1W2 =  
m

1 − n ( P2v2 - P1v1) 

 =  
2

1 − 1.538 × ( 400 × 0.4216 – 150 × 0.79774) = –182.08 kJ 

Notice we did not use Pv = RT as we used the ammonia tables. 

1Q2 = m(u2 - u1) + 1W2 = 2 (1468 – 1303.3) – 182.08 

 = 147.3 kJ 
From Eq.8.18 

  1S2 gen = m(s2 – s1) - 1Q2/T = 2 (5.9907 – 5.7465 ) – 
147.3
373.15 

 = 0.0936 kJ/K 
 
 P 

v 
1 

2 
T 

s 1 

2 

-20

80

150

400

 

 
 Notice:    
  n = 1.54,  k = 1.3 
  
      n > k 
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8.115 
 A cylinder/piston contains 100 L of air at 110 kPa, 25°C. The air is compressed in 

a reversible polytropic process to a final state of 800 kPa, 200°C. Assume the heat 
transfer is with the ambient at 25°C and determine the polytropic exponent n and 
the final volume of the air. Find the work done by the air, the heat transfer and  
the total entropy generation for the process. 

Solution: 
C.V. Air of constant mass   m2 = m1 = m out to ambient. 

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.14,18:     m(s2 − s1) = ∫ dQ/T + 1S2 gen = 1Q2/T0 + 1S2 gen 

Process: Pv1
n = P2v2

n  Eq.8.36 

State 1:   (T1, P1)  State 2:  (T2, P2) 

Thus the unknown is the exponent   n. 
  m = P1V1 /(RT1) = 110 × 0.1/(0.287 × 298.15) = 0.1286 kg 

The relation from the process and ideal gas is in Eq.8.37 

 T2/T1 = (P2/P1)
n-1
n     =>   

473.15
298.15 = 



800

110

n-1
n    ⇒   

n-1
n  = 0.2328 

 n = 1.3034,   V2 = V1(P1/P2)
1
n = 0.1 



110

800  0.7672 = 0.02182 m3 

The work is from Eq.8.38 

 1W2 = ⌡⌠PdV = 
P2V2 - P1V1

1 - n  = 
800 × 0.02182 - 110 × 0.1

1 - 1.3034  = -21.28 kJ 

Heat transfer from the energy equation 
 1Q2 = mCv(T2 - T1) + 1W2 

        = 0.1286 × 0.717 × (200 - 25) - 21.28 = -5.144 kJ 
Entropy change from Eq.8.25 
 s2 - s1 = CP0ln(T2/T1) - R ln(P2/P1) 

     = 1.004 ln 



473.15

298.15  - 0.287 ln 



800

110  = -0.106 
kJ

kg K 

From the entropy equation (also Eq.8.18) 
 1S2,gen = m(s2 - s1) - 1Q2/T0 

   = 0.1286 × (-0.106) + (5.144/298.15) = 0.00362 kJ/K 
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8.116 
 A mass of 2 kg ethane gas at 500 kPa, 100°C, undergoes a reversible polytropic 

expansion with exponent, n = 1.3, to a final temperature of the ambient, 20°C. 
Calculate the total entropy generation for the process if the heat is exchanged with 
the ambient. 

Solution: 
C.V. Ethane gas of constant mass   m2 = m1 = m out to ambient. 

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.14,18:     m(s2 − s1) = ∫ dQ/T + 1S2 gen = 1Q2/Tamb + 1S2 gen 

Process: Pv1
n = P2v2

n  Eq.8.36 

State 1:   (T1, P1)  State 2:  (T2, ?)  on process curve 

P2 = P1 (T2/T1)
n

n-1 = 500 



293.2

373.2
4.333

 = 175.8 kPa 

Work is integrated in Eq.8.38 

1w2 = ⌡⌠
 1

2
 Pdv = 

P2v2-P1v1
1-n  = 

R(T2-T1)
1-n   = 

0.2765(293.2-373.2)
1-1.30  = +73.7 kJ/kg 

Heat transfer is from the energy equation 
 1q2 = CV0(T2 - T1) + 1w2 = 1.49(293.2 - 373.2) + 73.7  = −45.5 kJ/kg 

Entropy change from Eq.8.25 
 s2 - s1 = CP0 ln (T2/T1) - R ln(P2/P1) 

          = 1.766 ln 
293.2
373.2 − 0.2765 ln 

175.8
500   = −0.1371 kJ/kg K 

 m(s2 − s1) = ∆SSYST = 2(−0.1371) = −0.2742 kJ/K 

 ∆SSURR = −1Q2/T0 = + 2 × 45.5/293.2 = +0.3104 kJ/K 

Generation from entropy equation or Eq.8.18 
 1S2 gen = m(s2 − s1) − 1Q2/Tamb = ∆SNET = ∆SSYST + ∆SSURR 

= −0.2742 + 0.3104 = +0.0362 kJ/K 
 
 P 

v 

1 

2 

T 

s 

1 

2 20

100

176

500

 

 
 Notice:    
  n = 1.3,  k = 1.186 
  
      n > k 
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8.117 
 A piston/cylinder contains air at 300 K, 100 kPa. A reversible polytropic process 

with n = 1.3 brings the air to 500 K. Any heat transfer if it comes in is from a 
325oC reservoir and if it goes out it is to the ambient at 300 K. Sketch the process 
in a P-v and a T-s diagram. Find the specific work and specific heat transfer in the 
process. Find the specific entropy generation (external to the air) in the process. 

 
 Solution: 

Process : Pvn = C 

1w2 = ∫ P dv = 





P2v2-P1v1

1-n  = 
R

1 - n ( T2-T1) 

       = 
0.287
1 - 1.3 (500 - 300) = -191.3 kJ/kg 

 
Energy equation  

1q2 = u2 – u1 +1w2 = Cv ( T2 –T1 ) + 1w2 
      = 0.717 (500 - 300) – 191.3 = -47.93 kJ/kg 
 

The 1q2 is negative and thus goes out. Entropy is generated between the air and 
ambient. 

 
s2 - s1 = 1q2/Tamb+ 1s2 gen 
 
1s2 gen = s2 - s1 – 1q2/Tamb = Cp ln (T2/T1) – R ln (P2/P1) - 1q2/Tamb 
 

P2/P1 = (T2 /T1)
n/(n-1)

  = (500/300) 1.3/0.3 = 9.148 
 

1s2 gen = 1.004 ln (
500
300) – 0.287 ln 9.148 – ( 

– 47.93
300  ) 

= 0.51287 – 0.635285 + 0.15977 
= 0.03736 kJ/kg K 

 
 P 

v 

1 

2 
T 
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2 
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 Notice:    
  n = 1.3,  k = 1.4 
  
      n < k 
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8.118 
 A cylinder/piston contains saturated vapor R-22 at 10°C; the volume is 10 L. The 

R-22 is compressed to 2 MPa, 60°C in a reversible (internally) polytropic process. 
If all the heat transfer during the process is with the ambient at 10°C, calculate the 
net entropy change. 

Solution: 
C.V. R-22 of constant mass   m2 = m1 = m out to ambient. 

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.14,18:     m(s2 − s1) = ∫ dQ/T + 1S2 gen = 1Q2/Tamb + 1S2 gen 

Process: P1v1
n = P2v2

n  Eq.8.36 

State 1:   (T1, x1) Table B.4.1  P1 = 0.681 MPa, v1 = 0.03471 

    m = V1/v1 = 0.01/0.03471 = 0.288 kg 

State 2:  (T2, P2) Table B.4.2 v2 = 0.01214 m3/kg 

From process eq.    P2/P1 = 
2.0

0.681 = (0.03471
0.01214)

n
   =>   n = 1.0255 

The work is from Eq.8.38 

 1W2 = ⌡⌠ PdV = m 
P2v2 - P1v1

1-n  = 0.288 
2000 × 0.01214 - 681 × 0.03471

1 - 1.0255  

  = −7.26 kJ 
Heat transfer from energy equation 
 1Q2 = m(u2 − u1) + 1W2 = 0.288(247.3 − 229.8) − 7.26 = −2.22 kJ 

 ∆SSYST = m(s2 − s1) = 0.288(0.8873 − 0.9129) = −0.00737 kJ/K 

 ∆SSURR = − 1Q2/T0 = +2.22/283.2 = +0.00784 kJ/K 

Generation is from entropy equation or Eq.8.18 
 1S2 gen = m(s2 − s1) − 1Q2/Tamb = ∆SNET = ∆SSYST + ∆SSURR 

= −0.00737 + 0.00784 = +0.00047 kJ/K 
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 Notice:    
  n = 1.03,  k = 1.17 
  
      n < k 
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8.119 
 A cylinder/piston contains air at ambient conditions, 100 kPa and 20°C with a 

volume of 0.3 m3. The air is compressed to 800 kPa in a reversible polytropic 
process with exponent, n = 1.2, after which it is expanded back to 100 kPa in a 
reversible adiabatic process. 
 a. Show the two processes in P–v and T–s diagrams. 
 b. Determine the final temperature and the net work. 

 
 Solution: 
 
 a) P T

v s

1

2

3 1

2

3

P

P2

1

 

 
 m = P1V1/RT1 

     = 
100 × 0.3

0.287 × 293.2  

     = 0.3565 kg  
 

 
b) The process equation is expressed in Eq.8.37 

  T2 = T1(P2/P1)
n-1
n   = 293.2 



800

100
0.167

 = 414.9 K  

    The work is from Eq.8.38 

 1w2 = ⌡⌠
 1

2
 Pdv = 

P2v2-P1v1
1-n  = 

R(T2-T1)
1-n  = 

0.287(414.9-293.2)
1-1.20  = -174.6 kJ/kg 

    Isentropic relation is from Eq.8.32 

     T3 = T2 (P3/P2)
k-1
k  = 414.9 



100

800
0.286

 = 228.9 K 

    With zero heat transfer the energy equation gives the work 
     2w3 = CV0(T2 - T3) = 0.717(414.9 - 228.9) = +133.3 kJ/kg 

     wNET = 0.3565(-174.6 + 133.3) = -14.7 kJ 
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Rates or fluxes of entropy 
 
8.120 
  A reversible heat pump uses 1 kW of power input to heat a 25oC room, drawing 

energy from the outside at 15oC. Assuming every process is reversible, what are 
the total rates of entropy into the heat pump from the outside and from the heat 
pump to the room? 

 
 Solution: 

 
 C.V.TOT. 

Energy Eq.: Q
.

L+ W
.

 = Q
.

H 

Entropy Eq.: 
Q
.

L
TL

 -  
Q
.

H
TH

 = 0    ⇒    Q
.

L = Q
.

H 
TL
TH

 

H Q 
W 

L Q 

HP
15 Co 25 Co

 

 

Q
.

H 
TL
TH

 + W
.

 = Q
.

H      ⇒       Q
.

H = 
TH

TH - TL
 W

.
 

Q
.

H
TH

 = 
1

TH - TL
 W

.
 = 

1
25 - 15 (1) = 0.1 kW/K 

Q
.

L
TL

 =  
Q
.

H
TH

 = 0.1 kW/K 

 



   Sonntag, Borgnakke and van Wylen 

 
8.121 
 An amount of power, say 1000 kW, comes from a furnace at 800°C going into 

water vapor at 400°C. From the water the power goes to a solid metal at 200°C 
and then into some air at 70°C. For each location calculate the flux of s through a 

surface as (Q
.
/T). What makes the flux larger and larger? 

Solution: 
 

  
     T1     =>   T2   =>   T3  =>   T4  

furnace       vapor      metal       air  
FURNACE AIR FLOW

1
2

4

3

 
  

Flux of s:      Fs = Q
.
/T  with T as absolute temperature. 

 
Fs1 = 1000/1073.15 = 0.932 kW/K,       Fs2 = 1000/673.15 = 1.486 kW/K  

Fs3 = 1000/473.15 = 2.11 kW/K,           Fs4 = 1000/343.15 = 2.91 kW/K 

   

 T  800 400 200 70 ( °C) 
 T amb 1073 673 476 646 K 

 Q/T 0.932 1.486 2.114 2.915 kW/K 
 

1S2 gen for every change in T 

Q over ∆T is an irreversible process 
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8.122 
 Room air at 23oC is heated by a 2000 W space heater with a surface filament 

temperature of  700 K, shown in Fig. P8.122. The room at steady state looses the 
power to the outside which is at 7oC. Find the rate(s) of entropy generation and 
specify where it is made. 

Solution: 
For any C.V at steady state. 
The entropy equation as a rate form is Eq.8.43 

dSc.v.
dt  = 0 = ∫ dQ

.
/T + S

.
gen 

C.V. Heater Element 

 S
.
gen = –∫ dQ

.
/T = -(-2000/700) = 2.857 W/K 

C.V. Space between heater 700 K and room 23°C 

 S
.
gen = –∫ dQ

.
/T = (-2000 / 700) – [-2000 / (23+273)] = 3.9 W/K 

C.V. Wall between 23°C inside and 7°C outside 

 S
.
gen = –∫ dQ

.
/T  = [-2000 / (23+273)] – [2000 / (7 + 273)] = 0.389 W/K 

 

Notice biggest S
.
gen  is for the largest change in 1/T.  
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8.123 
 A small halogen light bulb receives an electrical power of 50 W. The small 

filament is at 1000 K and gives out 20% of the power as light and the rest as heat 
transfer to the gas, which is at 500 K; the glass is at 400 K. All the power is 
absorbed by the room walls at 25oC. Find the rate of generation of entropy in the 
filament, in the total bulb including glass and the total room including bulb. 

Solution: 
  

W
.

el = 50 W  

Q
.

RAD = 10 W 

Q
.

COND = 40 W 
glass

leads g
a
s

Radiation

Conduction

 
 
We will assume steady state and no storage in the bulb, air or room walls. 
C.V. Filament steady-state 

Energy Eq.5.31:  dEc.v./dt = 0 = W
.

el – Q
.

RAD – Q
.

COND 

Entropy Eq.8.43:  dSc.v./dt = 0 = – 
Q
.

RAD
TFILA

  –  
Q
.

COND
TFILA

 + S
.
gen 

S
.
gen = (Q

.
RAD + Q

.
COND)/TFILA = W

.
el/TFILA = 

50
1000 = 0.05 W/K 

 
C.V. Bulb including glass 

 Q
.

RAD leaves at 1000 K  Q
.

COND leaves at 400 K 

 S
.
gen = ∫ dQ

.
/T = -(-10/1000) – (-40/400) = 0.11 W/K 

 
C.V. Total room.  All energy leaves at 25°C 

 Eq.5.31: dEc.v./dt = 0 = W
.

el – Q
.

RAD – Q
.

COND 

 Eq.8.43: dSc.v./dt = 0 =  –  
Q
.

TOT
TWALL

 + S
.
gen 

  S
.
gen = 

Q
.

TOT
TWALL

 = 50/(25+273) = 0.168 W/K 
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8.124 
 A farmer runs a heat pump using 2 kW of power input. It keeps a chicken 

hatchery at a constant 30oC while the room loses 10 kW to the colder outside 
ambient at 10oC. What is the rate of entropy generated in the heat pump? What is 
the rate of entropy generated in the heat loss process? 

 
 Solution: 
  
 C.V. Hatchery, steady state. 

To have steady state at 30oC for the hatchery 

Energy Eq.: 0 = Q
.

H − Q
.

Loss   ⇒ Q
.

H= Q
.

Loss = 10 kW 
 C.V. Heat pump, steady state 

Energy eq.: 0 =  Q
.

L + W
.

 − Q
.

H ⇒ Q
.

L = Q
.

H − W
.

 = 8 kW 

  Entropy Eq.: 0 =  
Q
.

L
TL

 −  
Q
.

H
TH

 + S
.
gen HP 

   S
.
gen HP = 

Q
.

H
TH

 − 
Q
.

L
TL

 = 
10

273 + 30 − 
8

273 + 10 = 0.00473 kW/K 

 C.V. From hatchery at 30oC to the ambient 10oC. This is typically the walls and 

the outer thin boundary layer of air. Through this goes Q
.

Loss. 

  Entropy Eq.: 0 = 
Q
.

Loss
TH

 −  
Q
.

Loss
Tamb

 + S
.
gen walls 

   S
.
gen walls = 

Q
.

Loss
Tamb

 − 
Q
.

Loss
TH

 = 
10
283 − 

10
303 = 0.00233 kW/K 

 
 
 

QleakQ QHL

W = 2  kW

HP
cb  
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8.125 
 The automatic transmission in a car receives 25 kW shaft work and gives out 24 

kW to the drive shaft. The balance is dissipated in the hydraulic fluid and metal 
casing, all at 45oC, which in turn transmits it to the outer atmosphere at 20oC. 
What is the rate of entropy generation inside the transmission unit? What is it 
outside the unit? 

 
 Solution: 
 
 

 
C.V. Total unit. Steady state 
and surface at 45oC 
 
Energy Eq: 

   0 = W
.

in - W
.

out - Q
.

out 

25 kW

1 kW
24 kW

 

 Entropy Eq.: 0 = - 
Q
.

out
Toil

 + S
.
gen 

 From energy Eq.: Q
.

out = W
.

in - W
.

out = 25 – 24 = 1 kW 

 From entropy Eq.: S
.
gen = 

Q
.

out
Toil

 = 
1

273.15 + 45 
kW
K  = 3.1 W/K 

 C.V. From surface at 45oC to atm. at 20oC. 

 Entropy Eq.: 0 = 
Q
.

out
Toil

 -  
Q
.

out
Tamb

 + S
.
gen outside 

  S
.
gen outside = Q

.
out [

1
Tamb

 - 
1

Toil
] = 1 kW [

1
293 - 

1
318] = 0.268 W/K 
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Review problems 
 
 
8.126 
 An insulated cylinder/piston has an initial volume of 0.15 m3 and contains steam at 

400 kPa, 200oC. The steam is expanded adiabaticly, and the work output is 
measured very carefully to be 30 kJ. It is claimed that the final state of the water is 
in the two-phase (liquid and vapor) region. What is your evaluation of the claim? 

 
 Solution: 

C.V. Water.   
Energy Eq.5.11:         m(u2 − u1) = 1Q2 − 1W2  
Entropy Eq.8.3:       m(s2 − s1)  =   ∫ dQ/T   
Process: 1Q2  = 0   and reversible 
State 1:  (T, P)    Table B.1.3     
   v1 = 0.5342,  u1 = 2646.8,   s1 = 7.1706 kJ/kg K 
 

 
1 

T 

s 

P 1 

130 o C 

7.0259

u = 2540

 

          

         m = 
V1
v1

 = 
0.15

0.5342 = 0.2808 kg 

 

 
With the assumed reversible process we have  from entropy equation 
    s2 = s1 = 7.1706 kJ/kg K 
and from the energy equation 

  u2 = u1 − 1W2/m = 2646.8 - 
30

0.2808  = 2540.0 kJ/kg 

State 2 given by (u, s)   check Table B.1.1:  sG (at uG = 2540)  = 7.0259  < s1 

 ⇒     State 2 must be in superheated vapor region. 
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8.127 
 A closed tank, V = 10 L, containing 5 kg of water initially at 25°C, is heated to 

175°C by a heat pump that is receiving heat from the surroundings at 25°C. 
Assume that this process is reversible. Find the heat transfer to the water and the 
work input to the heat pump. 

C.V.: Water from state 1 to state 2. 
Process: constant volume (reversible isometric) 
 1: v1 = V/m = 0.002 ⇒  x1 = (0.002 - 0.001003)/43.358 = 0.000023  

          u1 = 104.86 + 0.000023×2304.9 = 104.93 kJ/kg 

         s1 = 0.3673 + 0.000023×8.1905 = 0.36759 kJ/kg K 

Continuity eq. (same mass) and V = C fixes v2 

2: T2, v2 = v1 ⇒   

          x2 = (0.002 - 0.001121)/0.21568 = 0.004075 

          u2 = 740.16 + 0.004075×1840.03 = 747.67 kJ/kg  

          s2 = 2.0909 + 0.004075×4.5347 = 2.1094 kJ/kg K 

Energy eq. has W = 0, thus provides heat transfer as 
 1Q2 = m(u2 - u1) = 3213.7 kJ �

�
�

P

v

1

2
T

2

1

T

s  
Entropy equation for the total (tank plus heat pump) control volume gives 
for a reversible process: 

                       m(s2 - s1) =  QL/T0                ⇒  QL = mT0(s2 - s1) = 2596.6 kJ 

and then the energy equation for the heat pump gives 
                   WHP = 1Q2 - QL = 617.1 kJ 

  
 Q 

W 
L Q 

T amb 

HP
1 2

HP 

Water
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8.128 
 Two tanks contain steam, and they are both connected to a piston/cylinder as 

shown in Fig. P8.128. Initially the piston is at the bottom and the mass of the 
piston is such that a pressure of 1.4 MPa below it will be able to lift it. Steam in A 
is 4 kg at 7 MPa, 700°C and B has 2 kg at 3 MPa, 350°C. The two valves are 
opened, and the water comes to a uniform state. Find the final temperature and the 
total entropy generation, assuming no heat transfer. 

Solution: 
Control mass: All water mA + mB. 

Continuity Eq.: m2 = mA + mB = 6 kg   

Energy Eq.5.11: m2u2 - mAuA1 - mBuB1 = 1Q2 - 1W2 = - 1W2  

Entropy Eq.8.14: m2s2 - mAsA1 - mBsB1 = 1S2 gen 

B.1.3:   vA1 = 0.06283,   uA1 = 3448.5,   sA1 = 7.3476 ,  VA = 0.2513 m3 

B.1.3:   vB1 = 0.09053,   uB1 = 2843.7,   sB1 = 6.7428,  VB = 0.1811 m3 
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The only possible P, V combinations for state 2 are on the two lines. 
 Assume V2  >  VA + VB    ⇒    P2 = Plift ,   1W2 = P2(V2 - VA - VB) 

Substitute into energy equation: 
 m2h2 = mAuA1 + mBuB1 + P2(VA + VB) 

      = 4 × 3448.5 + 2 × 2843.7 + 1400 × 0.4324 
State 2:  h2 = 3347.8 kJ/kg,   P2 = 1400 kPa,   v2 = 0.2323,   s2 = 7.433 

  T2 = 441.9 °C,  

Check assumption:     V2 = m2v2 = 1.394 m3  >  VA + VB       OK. 

 1S2 gen = 6 × 7.433 - 4 ×7.3476 - 2 × 6.7428 = 1.722 kJ/K 
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8.129 
 A piston/cylinder with constant loading of piston contains 1 L water at 400 kPa, 

quality 15%. It has some stops mounted so the maximum possible volume is 11 L. 
A reversible heat pump extracting heat from the ambient at 300 K, 100 kPa heats 
the water to 300°C. Find the total work and heat transfer for the water and the 
work input to the heat pump. 

Solution:   Take CV around the water and check possible P-V combinations. 

State 1:  v1 = 0.001084 + 0.15×0.46138 = 0.07029 m3/kg 

  u1 = 604.29 + 0.15 × 1949.26 = 896.68 kJ/kg 

  s1 = 1.7766 + 0.15 × 5.1193 = 2.5445 kJ/kg K 

  m1 = V1/v1 = 0.001/0.07029 = 0.0142 kg 
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State a:   v = 11 v1 = 0.77319 m3/kg,  

              400 kPa 

 =>    Sup. vapor    Ta = 400oC   > T2           

P

V

1 2
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s

a

a

v = C

 

State 2:  Since T2 < Ta then piston is not at stops but floating so P2 = 400 kPa. 

        (T, P)  =>  v2 = 0.65484 m3/kg   =>   V2 = (v2/v1) × V1 = 9.316 L 

 1W2 = ∫ P dV = P(V2 - V1) = 400 (9.316 - 1) × 0.001 = 3.33 kJ 

 1Q2 = m(u2 − u1) + 1W2 = 0.0142 (2804.8 - 896.68) + 3.33 = 30.43 kJ 

Take CV as water plus the heat pump out to the ambient. 
  m(s2 − s1) = QL/To   =>   
  QL = mTo (s2 − s1) = 300×0.0142 (7.5661 - 2.5445) = 21.39 kJ 
  WHP = 1Q2 - QL = 9.04 kJ 
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8.130 
 Water in a piston/cylinder is at 1 MPa, 500°C. There are two stops, a lower one at 

which Vmin = 1 m3 and an upper one at Vmax = 3 m3. The piston is loaded with a 
mass and outside atmosphere such that it floats when the pressure is 500 kPa. This 
setup is now cooled to 100°C by rejecting heat to the surroundings at 20°C. Find 
the total entropy generated in the process. 

 
C.V. Water. 

Initial state: Table B.1.3:     v1 = 0.35411 m3/kg,    u1 = 3124.3,   s1 = 7.7621 

   m =V/v1 = 3/0.35411 = 8.472 kg 
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Final state: 100°C and on line in P-V diagram. 
  Notice the following:    vg(500 kPa) = 0.3749 > v1,     v1 = vg(154°C) 

 Tsat(500 kPa) = 152°C  > T2 ,   so now piston hits bottom stops. 

State 2:  v2 = vbot = Vbot/m = 0.118 m3/kg,  

 x2 = (0.118 − 0.001044)/1.67185 = 0.0699, 

 u2 = 418.91 + 0.0699×2087.58 = 564.98 kJ/kg,  

 s2 = 1.3068 + 0.0699×6.048 = 1.73 kJ/kg K 

Now we can do the work and then the heat transfer from the energy equation 
 1W2 = ⌡⌠PdV = 500(V2 - V1) = -1000 kJ     (1w2 = -118 kJ/kg) 

 1Q2 = m(u2 - u1) + 1W2 = -22683.4 kJ   (1q2 = -2677.5 kJ/kg) 

Take C.V. total out to where we have 20°C: 
 m(s2 - s1) = 1Q2/T0 + Sgen  ⇒  

 Sgen = m(s2 - s1) − 1Q2/T0  = 8.472 (1.73 - 7.7621) + 22683 / 293.15 

         = 26.27 kJ/K    ( = ∆Swater + ∆Ssur ) 
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8.131 
 A cylinder fitted with a frictionless piston contains water. A constant hydraulic 

pressure on the back face of the piston maintains a cylinder pressure of 10 MPa.  
Initially, the water is at 700°C, and the volume is 100 L. The water is now cooled 
and condensed to saturated liquid. The heat released during this process is the Q 
supply to a cyclic heat engine that in turn rejects heat to the ambient at 30°C. If 
the overall process is reversible, what is the net work output of the heat engine? 

 
 C.V.:  H2O, 1 3,  this is a control mass:  

Continuity Eq.:      m1 = m3 = m 

Energy Eq.:           m(u3-u1) = 1Q3 − 1W3; 

Process:  P = C  =>  1W3 = ∫ P dV  = Pm(v3-v1) 

State 1: 700oC,   10 MPa, V1 = 100 L   Table B.1.4 

v1 = 0.04358 m3/kg   =>  m = m1 = V1/v1 = 2.295 kg 

 h1 = 3870.5 kJ/kg,     s1 = 7.1687 kJ/kg K 

State 3: P3 = P1 = 10 MPa, x3 = 0     Table B.1.2 

h3 =hf = 1407.5 kJ/Kg,   s3 = sf = 3.3595 kJ/Kg K 

P

v
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   1Q3 = m(u3-u1) + Pm(v3 - v1) = m(h3 - h1)  

         = -5652.6 kJ 
Heat transfer to the heat engine:     
   QH = -1Q3 = 5652.6 kJ 

Take control volume as total water and heat engine.  

Process: Rev.,     ∆Snet = 0 ;    TL = 30oC 

2nd Law:      ∆Snet = m(s3 - s1) -  Qcv/TL ;  

              Qcv = To m(s3 - s1) = -2650.6 kJ     

H.E.

Q

WHE
1    3- Q

L

Tamb
 

 =>    QL = -Qcv = 2650.6 kJ 

 Wnet = WHE = QH - QL = 3002 kJ 
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8.132 
 A cylinder/piston contains 3 kg of water at 500 kPa, 600°C. The piston has a 

cross-sectional area of 0.1 m2 and is restrained by a linear spring with spring 
constant 10 kN/m. The setup is allowed to cool down to room temperature due to 
heat transfer to the room at 20°C. Calculate the total (water and surroundings) 
change in entropy for the process. 

State 1:  Table B.1.3,   v1 = 0.8041,   u1 = 3299.6 ,   s1 = 7.3522 
 

 State 2:  T2 & on line in P-V diagram. 
          P = P1 + (ks/A

2
cyl)(V - V1) 

Assume state 2 is two-phase, P2 = Psat(T2) = 2.339 kPa
v2 = v1 + (P2 - P1)A2

cyl/mks 

P
1 

2 v
 

 v2 = 0.8041 + (2.339 - 500)0.01/(3 × 10)  = 0.6382 = vf + x2vfg 

 x2 = (0.6382 - 0.001002)/57.7887 = 0.011,   u2 = 109.46,   s2 = 0.3887 

 1W2 = 12 (P1 + P2)m × (v2 - v1) 

     = 12 (500 + 2.339) × 3 × (0.6382 - 0.8041) = -125 kJ 

 1Q2 = m(u2 - u1) + 1W2 = 3(109.46 - 3299.6) - 125 = -9695.4 kJ 

 ∆Stot = Sgen,tot = m(s2 - s1) - 1Q2/Troom 

      = 3(0.3887 - 7.3522) + 9695.4/293.15 = 12.18 kJ/K 
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8.133 
 An insulated cylinder fitted with a frictionless piston contains saturated vapor R-

12 at ambient temperature, 20°C.  The initial volume is 10 L.  The R-12 is now 
expanded to a temperature of -30°C.  The insulation is then removed from the 
cylinder, allowing it to warm at constant pressure to ambient temperature. 
Calculate the net work and the net entropy change for the overall process. 

C.V.: R-12 

State 1: T1 = 20oC,    V1 = 10 L = 0.01 m3,   Sat. Vapor  x1 = 1.0 

 P1 = Pg = 567 kPa,    v1 = vg = 0.03078 m3/kg,    m1 =V1/v1 = 0.325 kg 

 u1 = ug = 178.32 kJ/kg,    s1 = sg = 0.68841 kJ/kg-K  

State 2: T2 = -30oC 

Assume 1 2  Adiabatic & Reversible:    s2 = s1 = 0.68841 kJ/kg-K 

 s2 = sf + x2sfg;   =>   x2 = 0.95789,    P2 = Pg = 100.4 kPa 

 v2 = vf + x2vfg = 0.15269 m3/kg,   h2 = hf + x2hfg = 167.23 kJ/kg 

 u2 = h2 - P2v2 = 151.96 kJ/kg 

State 3: T3 = 20oC, P3 = P2 = 100.41 kPa 

 v3 = 0.19728 m3/kg,  h3 = 203.86 kJ/kg,  s3 = 0.82812 kJ/kg-K 

1st Law:  1 2,    1Q2 = m(u2 − u1) + 1W2 ;    1Q2 = 0 

 1W2 = m(u1 - u2) = 8.57 kJ 

2 3: Process:  P = constant   =>   2W3 = ∫ Pm dv = Pm(v3 - v2) = 1.45 kJ 

 WTOT = 1W2 + 2W3 = 8.57 + 1.45 = 10.02 kJ 

b)  1st Law: 2 3      2Q3 = m(u3 - u2) + 2W3;     2W3 = Pm(v3-v2) 

  2Q3 = m(u3 - u2) + Pm(v3 - v2) = m(h3 - h2) = 11.90 kJ 

2nd Law: 1 3:    To = 20oC,     QCV = 1Q2 + 2Q3;    1Q2 = 0 

  ∆Snet = m(s3 - s1) - QCV/To = 0.0048 kJ/K 

 
  P
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8.134 
 A piston/cylinder assembly contains 2 kg of liquid water at 20°C, 100 kPa and it 

is now heated to 300°C by a source at 500°C. A pressure of 1000 kPa will lift the 
piston off the lower stops. Find the final volume, work, heat transfer and  total 
entropy generation. 

 Solution: 
C.V. Water out to source at 500°C. This is a control mass. 
Energy Eq.5.11:       m(u2 - u1) = 1Q2 − 1W2 

Entropy Eq.8.14:     m(s2 - s1) = 1Q2 / TSOURCE + 1S2 gen 

Process:  V = V1  if  P < PLIFT   or   P = PLIFT  if  V > V1 

Any state of this system must be on the two lines shown in the P-v diagram. 
Initial state: Table B.1.1:     v1 = 0.001002,    u1 = 83.94, = 0.2966 

   V1 = mv1 = 2 × 0.001002 = 0.002 m3 

Final state: 300°C and on line in P-V diagram. Now check at state 1a. 
State 1a: v1a = v1, P = 1000 kPa   =>  compressed liquid  T1a < 180°C 

As final state is at 300°C higher than T1a we must be further out so 

State 2:  1000 kPa, 300°C   =>  Superheated vapor in Table B.1.3 
v2 = 0.25794,   u2 = 2793.2, s2 = 7.1228 

   V2 = mv2 = 2 × 0.25794 = 0.51588 m3 

 1W2 = ⌡⌠PdV = P2(V2 - V1) = 1000 (0.51588 – 0.002) = 513.9 kJ 

 1Q2 = m(u2 - u1) + 1W2 = 2(2793.2 – 83.94) + 513.9 = 5932 kJ 

 1S2 gen = m(s2 - s1) − 1Q2/TSOURCE  = 2 (7.1228 - 0.2966) − 
5932

773.15 

         = 13.652 – 7.673 =  5.98 kJ/K    ( = ∆Swater + ∆Ssur ) 
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8.135 
 An uninsulated cylinder fitted with a piston contains air at 500 kPa, 200°C, at 

which point the volume is 10 L.  The external force on the piston is now varied in 
such a manner that the air expands to 150 kPa, 25 L volume.  It is claimed that in 
this process the air produces 70% of the work that would have resulted from a 
reversible, adiabatic expansion from the same initial pressure and temperature to 
the same final pressure.  Room temperature is 20°C. 

 a)  What is the amount of work claimed? 
 b)  Is this claim possible? 

Solution: 
C.V.: Air; R = 0.287 kJ/kg-K, Cp = 1.004 kJ/kg K, Cv = 0.717 kJ/kg K 

State 1: T1 = 200oC, P1 = 500 kPa, V1 = 10 L = 0.01 m3;  

  m1 = V1/v1 = P1V1/RT1 = 0.0368 kg 

State 2: P2 = 150 kPa, V2 = 25 L = 0.025 m3 

ηs = 70%; Actual Work is 70% of Isentropic Work 

a)  Assume Reversible and Adiabatic Process; s1 = s2s 

 T2s = T1





P2

P1

k-1
k  = 473.15 (150 / 500)  = 335.4 K 

1st Law: 1Q2s = m(u2s - u1) + 1W2s;    1Q2s = 0 

 Assume constant specific heat 
 1W2 s = mCv(T1 - T2s) = 3.63 kJ 

 1W2 ac = 0.7×1W2 s = 2.54 kJ 

b)  Use Ideal Gas Law; T2 ac = T1P2V2 / P1V1 = 354.9 K 

1st Law:  1Q2 ac = mCv(T2 ac - T1) + 1W2 ac = -0.58 kJ 

2nd Law:  ∆Snet = m(s2 − s1) - 
Qcv
To

  ;    QCV = 1Q2 ac,  To = 20oC 

 s2 − s1 = Cp ln 
T2
T1

  - R ln 
P2
P1

 = 0.0569 kJ/kg-K 

 ∆Snet = 0.00406 kJ/K  >  0 ;    Process is Possible 
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8.136 
 A cylinder fitted with a piston contains 0.5 kg of R-134a at 60°C, with a quality 

of 50 percent. The R-134a now expands in an internally reversible polytropic 
process to ambient temperature, 20°C at which point the quality is 100 percent.  
Any heat transfer is with a constant-temperature source, which is at 60°C. Find 
the polytropic exponent n and show that this process satisfies the second law of 
thermodynamics. 

Solution: 

C.V.: R-134a,   Internally Reversible, Polytropic Expansion:   PVn = Const. 
Cont.Eq.:    m2 = m1 = m ;     Energy Eq.:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.:     m(s2 − s1) = ∫ dQ/T + 1S2 gen 

State 1: T1 = 60oC, x1 = 0.5,  Table B.5.1:    P1 = Pg = 1681.8 kPa,  

 v1 = vf + x1vfg = 0.000951 + 0.5×0.010511 = 0.006207 m3/kg 

 s1 = sf + x1sfg = 1.2857 + 0.5×0.4182 = 1.4948 kJ/kg K,  

 u1 = uf + x1ufg = 286.19 + 0.5×121.66 = 347.1 kJ/kg  

State 2: T2 = 20oC, x2 = 1.0,  P2 = Pg = 572.8 kPa, Table B.5.1 

 v2 = vg = 0.03606 m3/kg,  s2 = sg = 1.7183 kJ/kg-K 

 u2 = ug = 389.19 kJ/kg 

Process:    PVn = Const.   =>   
P1
P2

 = 






v2

v1

n
   =>    n = ln 

P1
P2

 / ln 
v2
v1

  = 0.6122 

 1W2 = ∫ PdV =  
P2V2 - P1V1

1-n   

  = 0.5(572.8 × 0.03606 - 1681.8 × 0.006207)/(1 - 0.6122) = 13.2 kJ 

2nd Law for C.V.:  R-134a plus wall out to source:  

 ∆Snet = m(s2 − s1) − 
QH
TH

 ;   Check  ∆Snet > 0 

 QH = 1Q2 =  m(u2 − u1) + 1W2 = 34.2 kJ 

 ∆Snet = 0.5(1.7183 - 1.4948) - 34.2/333.15 = 0.0092 kJ/K,  

  ∆Snet > 0  Process Satisfies 2nd Law 
 



   Sonntag, Borgnakke and van Wylen 

 
8.137 
 A cylinder with a linear spring-loaded piston contains carbon dioxide gas at 2 

MPa with a volume of 50 L. The device is of aluminum and has a mass of 4 kg. 
Everything (Al and gas) is initially at 200°C. By heat transfer the whole system 
cools to the ambient temperature of 25°C, at which point the gas pressure is 1.5 
MPa. Find the total entropy generation for the process. 

 
 CO2:   m = P1V1/RT1 = 2000 × 0.05/(0.18892 × 473.2) = 1.1186 kg 

 V2 = V1(P1/P2)(T2/T1) = 0.05(2/1.5)(298.2/473.2) = 0.042 m3 

1W2 CO2 =⌡⌠ PdV = 
P1+P2

2  (V2 - V1) = 
2000+1500

2  (0.042 - 0.050) = -14.0 kJ 

1Q2 CO2 = mCV0(T2-T1) + 1W2 = 1.1186×0.6529(25-200)-14.0  = -141.81 kJ 

 1Q2 Al  = mC(T2 - T1) = 4 × 0.90(25 - 200) = -630 kJ 

 System: CO2 + Al 

 1Q2 = -141.81 - 630 = -771.81 kJ 

 ∆SSYST = mCO2(s2 - s1)CO2 + mAL(s2 - s1)AL 

    = 1.1186[0.8418 ln 
298.2
473.2 - 0.18892 ln 

1.5
2.0]  + 4 × 0.9 ln(298.2/473.2)  

       = -0.37407 - 1.6623 = -2.0364 kJ/K 
 ∆SSURR = -(1Q2/T0) = + (771.81/298.15) = +2.5887 kJ/K 

 ∆SNET  = -2.0364 + 2.5887 = +0.552 kJ/K 
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8.138 
 A vertical cylinder/piston contains R–22 at −20°C, 70% quality, and the volume 

is 50 L, shown in Fig. P8.138. This cylinder is brought into a 20°C room, and an 
electric current of 10 A is passed through a resistor inside the cylinder. The 
voltage drop across the resistor is 12 V. It is claimed that after 30 min the 
temperature inside the cylinder is 40°C. Is this possible? 

  
 C.V. The R-22 out to the surroundings, i.e. include walls. 
 Energy Eq.5.11: m(u2 – u1)  = 1Q2 – 1W2 

Entropy Eq.8.14: m(s2 – s1)  = ∫ dQ/T + 1S2 gen =  1Q2/Tamb + 1S2 gen 

Process:  Constant pressure   P1 = P2 = 245 kPa 

State 1:  Table B.4.1    v1 = 0.06521 m3/kg,  h1 = 176 kJ/kg,  s1 = 0.6982 kJ/kg K 
       m = V1/v1 = 0.05/0.06521 = 0.767 kg 

 State 2:  Table B.4.2   Interpolate between 200 and 300 kPa  
h2 = 282.2 kJ/kg,  s2 = 1.1033 kJ/kg K                        

 Electrical work: WELEC = -Ei ∆t = -12 × 10 × 30 × 60/1000 = -216 kJ 
 Total work:  1W2 = Pm(v2 – v1) + WELEC 
 Now substitute into energy equation and solve for Q 

 1Q2 = m(u2 - u1) + Pm(v2 – v1) + WELEC = m(h2 - h1) + WELEC 

         = 0.767(282.2 - 176.0) - 216 = -134.5 kJ 
 Solve for the entropy generation from entropy equation 
    1S2 gen = m(s2 – s1) - 1Q2/Tamb 

   = 0.767 (1.1033 - 0.6982) + 
134.5
293.15  

   = 0.3093 + 0.4587 = +0.768 kJ/K    Claim is OK. 
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8.139 
 A gas in a rigid vessel is at ambient temperature and at a pressure, P1, slightly 

higher than ambient pressure, P0. A valve on the vessel is opened, so gas escapes 
and the pressure drops quickly to ambient pressure. The valve is closed and after a 
long time the remaining gas returns to ambient temperature at which point the 
pressure is P2. Develop an expression that allows a determination of the ratio of 
specific heats, k, in terms of the pressures. 

 
C.V.: air remaining in tank,  
First part of the process is an isentropic expansion   s = constant. 

        P1, T0 → P0, Tx            Tx/T0 =(P0/P1)
k-1
k  

Second part of the process is a const. vol. heat transfer.   P0, Tx → P2, T0 

    
P0
P2

 = 
Tx
T0

   ⇒   
P0
P2

 =






P0

P1

k-1
k    →   k = 

ln (P1/P0)
ln (P1/P2) 
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Solutions using the Pr and vr functions in Table A.7.2 
 
8.88 
 A piston/cylinder setup contains air at 100 kPa, 400 K which is compressed to a 

final pressure of 1000 kPa. Consider two different processes (i) a reversible 
adiabatic process and (ii) a reversible isothermal process. Show both processes in 
P-v and a T-s diagram. Find the final temperature and the specific work for both 
processes. 

 
 Solution: 
  C.V. Air, control mass of unknown size and mass. 
 
  Energy Eq.5.11: u2 – u1  = 1q2 – 1w2 

 Entropy Eq.8.14: s2 – s1  = ∫ dq/T + 1s2 gen 

 Process: Reversible      1s2 gen = 0 

   i) dq = 0   so    1q2 = 0 

   ii) T = C    so   ∫ dq/T = 1q2/T 

 i)  For this process the entropy equation reduces to: 
  s2 – s1  = 0 + 0     so we have constant s,  an isentropic process. 

     The relation for air from table A.7.2, constant s  becomes  
  Pr2 = Pr1( P2 / P1) =  3.06119 × 10 = 30.6119   

      From A.7.2      =>  T2 = 753.6 K and      u2 = 555.24 kJ/kg 
      From the energy equation we get the work term 
   1w2 = u1 – u2 = 286.5 - 555.2 = -268.7 kJ/kg 
 
  ii) For this process T2 = T1  so since ideal gas we get 

 u2 = u1  also   so
T2 = so

T1    => Energy Eq.: 1w2 = 1q2 
       Now from the entropy equation we solve for 1q2  

   1w2 = 1q2 = T(s2 – s1) = T[so
T2 – so

T1 – R ln 
P2
P1

] = −RT ln 
P2
P1

 

         = − 0.287 × 400 ln 10 = −264 kJ/kg 
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8.95 
 A piston/cylinder, shown in Fig. P8.95, contains air at 1380 K, 15 MPa, with V1 = 

10 cm3, Acyl = 5 cm2. The piston is released, and just before the piston exits the 
end of the cylinder the pressure inside is 200 kPa. If the cylinder is insulated, 
what is its length? How much work is done by the air inside? 

Solution: 
C.V. Air, Cylinder is insulated so adiabatic, Q = 0. 
Continuity Eq.:       m2 = m1 = m,   

Energy Eq.5.11:      m(u2 - u1) = 1Q2 - 1W2 = - 1W2 

Entropy Eq.8.14:     m(s2 - s1) = ∫ dQ/T + 1S2 gen = 0 + 1S2 gen 

State 1: (T1, P1)      State 2:    (P2, ?) 

So one piece of information is needed for the ?,   assume reversible process. 
  1S2 gen = 0    =>   s2 - s1 = 0 

 
State 1: Table A.7.1:       u1 = 1095.2 kJ/kg,    

  Table A.7.2:       Pr1 = 340.53 ,   vr1 = 2.7024  

 m = P1V1/RT1 = 
15000 × 10×10-6

0.287 × 1380  = 0.000379 kg 

State 2:  P2 and from Entropy eq.:    s2 = s1  

  =>   Pr2 = Pr1P2/P1 = 340.53×200/15000 = 4.5404   

   Interpolate in A.7.2 to match the Pr2 value 

T2 = 447 K,   u2 = 320.85 kJ/kg,    vr2 = 65.67 

 ⇒   V2 = V1vr2/vr1 = 10 × 65.67 / 2.7024 =  243 cm3  

   ⇒   L2 = V2 /Acyl = 243/5 =  48.6 cm 

 ⇒  1w2 = u1 - u2 = 774.4 kJ/kg,         1W2 =  m1w2 = 0.2935 kJ 

We could also have done   V2 = V1 (T2P1/T1P2)  from ideal gas law and thus 
did not need the vr function for this problem 
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8.107 
 A mass of 1 kg of air contained in a cylinder at 1.5 MPa, 1000 K, expands in a 

reversible adiabatic process to 100 kPa. Calculate the final temperature and the 
work done during the process, using 

 a. Constant specific heat, value from Table A.5 
 b. The ideal gas tables, Table A.7 

Solution: 
C.V. Air.  
Continuity Eq.:    m2 = m1 = m ;      

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.14:     m(s2 − s1) = ∫ dQ/T + 1S2 gen  

Process:   1Q2 = 0,   1S2 gen = 0     =>    s2 = s1 

a) Using constant Cp from Table A.5 gives the power relation Eq.8.32. 

  T2 = T1(P2/P1)
k-1
k  = 1000



0.1

1.5
0.286

 = 460.9 K 

  1W2 = -(U2 - U1) = mCVo(T1 - T2) 

   = 1 × 0.717(1000 - 460.9) = 386.5 kJ 
 

b) Use the tabulated reduced pressure function that 
     includes variable heat capacity from A.7.2 

  Pr2 = Pr1 × P2/P1 = 91.65 × 
0.1
1.5 = 6.11   

Interpolation gives  T2 = 486 K  and  u2 = 349.4 kJ/kg 

   1W2 = m(u1 - u2) = 1(759.2 - 349.4) = 409.8 kJ 
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8.112 
 A piston/cylinder contains air at 300 K, 100 kPa. It is now compressed in a 

reversible adiabatic process to a volume 7 times as small. Use constant heat 
capacity and find the final pressure and temperature, the specific work and 
specific heat transfer for the process. 

 
 Solution:   Here we use the vr function from Table A.7.2 

Expansion ratio: v2/ v1 = 1/7 
Process eq.: Rev. adiabatic and ideal gas gives    Pvn = C,  with n = k  
 vr1 =  179.49      =>   vr2 =  vr1 v2/ v1 = 179.49/7 = 25.641 
Table A.7.2:     Interpolate    T2 = 640.7 K 

P2 = P1× (T2 / T1) × (v1/v2) = 100 × (640.7/300) × 7 = 1495 kPa 
Adiabatic: 1q2 = 0 kJ/kg 
Polytropic process work term from Eq.8.38 
1w2 = -(u2 – u1) = -(466.37 – 214.36)  = -252.0 kJ/kg 

  
Notice:   Here the solution is done with variable heat capacity.. 
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  This problem set compared to the fifth edition chapter 8 set. 

 
New 5th SI New 5th SI New 5th SI 
140 new 7 154 90 42 168 new 92 
141 new 10 155 91 45 169 104 93 
142 new 11 156 92 49mod 170 105 95 
143 new 14 157 93 50 171 106 102 
144 new 15 158 94 59 172 107 104 
145 new 16 159 96 65 173 108 105 
146 new 20 160 97 63 174 110 110 
147 83 21 161 98 77 175 111 119 
148 84 27 162 100 72 176 109 113 
149 85 32 163 101 73 177 112 115 
150 86 34 164 102 78 178 new 120 
151 87 35 165 new 82 179 new 124 
152 88 36 166 103 86 180 95 132 
153 89 39 167 new 91 181 99 130 
      182 113 137 
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Concept Problems 
 
8.140E 
 Water at 20 psia, 240 F receives 40 Btu/lbm in a reversible process by heat 

transfer. Which process changes s the most: constant  T, constant v or constant P? 
 

      ds = 
dq
T  

 Look at the constant property lines in a T-s diagram, Fig. 8.5.  The constant v line 
has a higher slope than the constant P line also at positive slope. Thus both the 
constant P and v processes have an increase in T. As T goes up the change in s is 
smaller. 

 
 The constant T (isothermal) process therefore changes s the most. 

 
8.141E 
 Saturated water vapor at 20 psia is compressed to 60 psia in a reversible adiabatic 

process. Find the change in v and T.  
 
  Process adiabatic:    dq = 0 
  Process reversible:   dsgen = 0 
  Change in s:    ds = dq/T + dsgen = 0 + 0 = 0   thus s is constant 
 
  Table F.7.2:   T1 = 227.96 F,  v1 = 20.091 ft3/lbm,  s1 = 1.732 Btu/lbm R 
  Table F.7.2 at 60 psia and  s = s1 = 1.732 Btu/lbm R 

   T = 400 + 40 
1.732 – 1.7134
1.736 – 1.7134 = 400 + 40 × 0.823  = 432.9 F 

   v = 8.353 + (8.775 – 8.353) × 0823 = 8.700 ft3/lbm 
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8.142E 
 A computer chip dissipates 2 Btu of electric work over time and rejects that as 

heat transfer from its 125 F surface to 70 F air. How much entropy is generated in 
the chip? How much if any is generated outside the chip? 

   
  C.V.1 Chip with surface at 125 F, we assume chip state is constant. 
 Energy: U2 – U1 = 0 = 1Q2 – 1W2 = Welectrical in - Qout 1 

 Entropy: S2 – S1 = 0 = - 
Qout 1
Tsurf

 + 1S2 gen1 

            1S2 gen1 = 
Qout 1
Tsurf

 = 
Welectrical in

Tsurf
 = 

2 Btu
(125 + 459.7) R = 0.0034 Btu/R 

 
  C.V.2 From chip surface at 125 F to air at 70 F, assume constant state. 

Energy: U2 – U1 = 0 = 1Q2 – 1W2 = Qout 1 - Qout 2 

Entropy: S2 – S1 = 0 = 
Qout1
Tsurf

 - 
Qout2
Tair

 + 1S2 gen2 

  1S2 gen2 = 
Qout2
Tair

 - 
Qout1
Tsurf

 = 
2 Btu

529.7 R - 
2 Btu

584.7 R = 0.000 36 Btu/R 

 
 70 F air

125 FQ
air flow

cb
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8.143E 
 Two 10 lbm blocks of steel, one at 400 F the other at 70 F, come in thermal 

contact. Find the final temperature and the total entropy generation in the 
process? 

   
  C.V. Both blocks, no external heat transfer, C from table F.2. 
 
   Energy Eq.:  U2 – U1 = mA(u2 – u1)A  + mB(u2 – u1)B = 0 – 0  
      = mAC(T2 – TA1)  + mBC(T2 – TB1) 
 

     T2 = 
mATA1 + mBTB1

mA + mB
 =  

1
2 TA1  + 

1
2 TB1  = 235 F 

 
   Entropy Eq.: S2 – S1 = mA(s2 – s1)A  + mB(s2 – s1)B = 1S2 gen 

    1S2 gen = mAC ln 
T2

TA1
 + mBC ln 

T2
TB1

 

     = 10 × 0.11 ln 
235 + 459.7
400 + 459.7 + 10 × 0.11 ln 

235 + 459.7
529.7  

     = -0.2344 + 0.2983 = 0.0639 Btu/R 
 

 A

B  
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8.144E 
 One lbm of air at 540 R is mixed with one lbm air at 720 R in a process at a 

constant 15 psia and Q = 0. Find the final T and the entropy generation in the 
process. 

 
 C.V. All the air. 

 
Energy Eq.:  U2 – U1 =  0 – W 
Entropy Eq.: S2 – S1 = 0 + 1S2 gen 
Process Eq.:  P = C;    W = P(V2 – V1) 
 
Substitute W into energy Eq.  

 
    U2 – U1 + W = U2 – U1 + P(V2 – V1) = H2 – H1 = 0 
 
         Due to the low T let us use constant specific heat 
 
    H2 – H1 = mA(h2 – h1)A  + mB(h2 – h1)B 
       = mACp(T2 – TA1)  + mBCp(T2 – TB1) = 0 
 

    T2 = 
mATA1 + mBTB1

mA + mB
 =  

1
2 TA1  + 

1
2 TB1  = 630 R  

       Entropy change is from Eq. 8.25 with no change in P and Table F.4 for Cp 

   1S2 gen = S2 – S1 = mACp ln 
T2

TA1
 + mBCp ln 

T2
TB1

 

    = 1 × 0.24 ln 
630
540 + 1 × 0.24 ln 

630
720 

    = 0.037 - 0.032 = 0.005 Btu/R 
 
  Remark:  If you check the volume does not change and there is no work. 
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8.145E 
 One lbm of air at 15 psia is mixed with one lbm air at 30 psia, both at 540 R, in a 

rigid insulated tank. Find the final state (P, T) and the entropy generation in the 
process. 
 
 C.V. All the air. 

Energy Eq.:  U2 – U1 =  0 – 0 

Entropy Eq.: S2 – S1 = 0 + 1S2 gen 

Process Eqs.:  V = C;    W = 0,  Q = 0 
States A1, B1:   uA1 = uB1 

VA = mART1/PA1;   VB = mBRT1/PB1 
cb

 

  U2 – U1 = m2u2 – mAuA1 – mBuB1 = 0   ⇒  u2 = (uA1 + uB1)/2 = uA1 

  State 2:    T2 = T1 = 540 R (from u2);     m2 = mA + mB = 2 kg;      

   V2 = m2RT1/P2 = VA + VB = mART1/PA1 + mBRT1/PB1 

         Divide with mART1 and get 

   2/P2 = 1/PA1 + 1/PB1 = 
1
15 + 

1
30 = 0.1 psia-1    ⇒  P2 = 20 psia 

  Entropy change from Eq. 8.25 with the same T, so only P changes 

   1S2 gen = S2 – S1 =  –mAR ln 
P2

PA1
 – mBR ln 

P2
PB1

 

    = – 1 × 53.34 [ ln 
20
15 + ln 

20
30 ] 

    = –53.34 (0.2877 – 0.4055) = 6.283 lbf-ft/R = 0.0081 Btu/R  
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8.146E 
 A window receives 600 Btu/h of heat transfer at the inside surface of 70 F and 

transmits the 600 Btu/h from its outside surface at 36 F continuing to ambient air 
at 23 F. Find the flux of entropy at all three surfaces and the window’s rate of 
entropy generation. 

    
 

Flux of entropy:      S
.
 = 

Q
.

T 

 

 S
.
inside = 

600
529.7 

Btu
h-R = 1.133 Btu/h-R 

 S
.
win = 

600
495.7 

Btu
h-R = 1.210 Btu/h-R 

 S
.
amb = 

600
482.7 

Btu
h-R = 1.243 Btu/h-R 

 

Window

Inside Outside

70 F 36 F 23 F
 

 
 
  Window only:  S

.
gen win = S

.
win –  S

.
inside = 1.21 – 1.133 = 0.077 Btu/h-R 

 
If you want to include the generation in the outside air boundary layer where T 

changes from 36 F to the ambient 23 F then it is 
 

 S
.
gen tot = S

.
amb –  S

.
inside = 1.243 – 1.133 = 0.11 Btu/h-R 
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Entropy, Clausius 
 
8.147E 
 Consider the steam power plant in Problem 7.100E and show that this cycle 

satisfies the inequality of Clausius. 

  Solution: 

 Show Clausius:  
⌡
⌠dQ

T   ≤  0  

 For this problem we have two heat transfer terms: 
  Boiler:   1000 Btu/s  at 1200 F = 1660 R 
  Condenser:  580  Btu/s  at   100 F =  560 R 

   
⌡
⌠dQ

T  =  
QH
TH

 - 
QL
TL

 = 
1000
1660  - 

580
560 

    = 0.6024 - 1.0357 = -0.433 Btu/s R < 0 OK 
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8.148E 
 Find the missing properties and give the phase of the substance 
  a. H2O  s = 1.75 Btu/lbm R, P = 4 lbf/in.2  h = ? T = ? x = ?  
  b. H2O  u = 1350 Btu/lbm, P = 1500 lbf/in.2 T = ? x = ? s = ?  
  c. R-22  T = 30 F, P = 60 lbf/in.2 s = ? x = ?  
  d. R-134a T = 10 F, x = 0.45  v = ? s = ?  
  e. NH

3 
 T = 60 F, s = 1.35 Btu/lbm R u = ? x = ? 

 
a) Table F.7.1:   s < sg    so 2 phase      T = Tsat(P) = 152.93 F 
    x = (s - sf)/sfg = (1.75 - 0.2198)/1.6426 = 0.9316  

    h = 120.9 + 0.9316×1006.4 = 1058.5 Btu/lbm 
b) Table F.7.2,   x = undefined,  T = 1020 F,  s = 1.6083 Btu/lbm R 
c) Table F.9.1,  x = undefined, sg(P) = 0.2234 Btu/lbm R, Tsat = 22.03 F 
          s = 0.2234 + (30 - 22.03) (0.2295 - 0.2234) / (40 - 22.03) 
             = 0.2261 Btu/lbm R 

d) Table F.10.1   v = vf + xvfg = 0.01202 + 0.45×1.7162 = 0.7843 ft3/lbm, 

 s = sf + xsfg = 0.2244 + 0.45×0.1896 = 0.3097 Btu/lbm R 
e) Table F.8.1:    s > sg   so superheated vapor Table F.8.2:   x = undefined 

 P = 40 + (50-40)×(1.35-1.3665)/(1.3372-1.3665) = 45.6 psia   

 Interpolate to get    v = 6.995ft3/lbm,  h = 641.0 Btu/lbm 

    u = h - Pv = 641.0 - 45.6 × 6.995 × 
144
778  = 581.96 Btu/lbm 

 
 

b

c, e

P

v

T

s

b

ad
c, e

adT

P
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Reversible Processes 
 
8.149E 
 In a Carnot engine with water as the working fluid, the high temperature is 450 F 

and as QL is received, the water changes from saturated liquid to saturated vapor. 
The water pressure at the low temperature is 14.7 lbf/in.2. Find TL, cycle thermal 
efficiency, heat added per pound-mass, and entropy, s, at the beginning of the heat 
rejection process. 

 
 

������
������
������

T

s

1 2

34  

Constant T  ⇒   constant P from 1 to 2 Table F.8.1 
    qH = ∫ Tds = T (s2 – s1) = T sfg 

         = h2 - h1 = hfg = 775.4 Btu/lbm 
States 3 & 4 are two-phase Table F.8.1 

      ⇒ TL = T3 = T4 = 212 F 
 

   ηcycle = 1 - TL/TH = 1 - 
212 + 459.67
450 + 459.67 =  0.262 

 Table F.8.1:       s3 = s2 = sg(TH) = 1.4806 Btu/lbm R 
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8.150E 
 Consider a Carnot-cycle heat pump with R-22 as the working fluid. Heat is 

rejected from the R-22 at 100 F, during which process the R-22 changes from 
saturated vapor to saturated liquid. The heat is transferred to the R-22 at 30 F. 

 a. Show the cycle on a T–s diagram. 
 b. Find the quality of the R-22 at the beginning and end of the isothermal heat    

     addition process at 30 F. 
 c. Determine the coefficient of performance for the cycle. 
 
 a) 

1 

2 3 

4 

s 

100 

30

T

 

Table F.9.1 
b) State 3 is saturated liquid 
    s4 = s3 = 0.0794 Btu/lbm R 
        = 0.0407 + x4(0.1811) 
     x4 = 0.214 
    State 2 is saturated vapor 
    s1 = s2 = 0.2096 Btu/lbm R  
        = 0.0407 + x1(0.1811) 
     x1 = 0.9326 
 

 

c)    β′ =  
qH

wIN
 = 

TH
TH – TL

 = 
559.67

100 - 30 = 7.995 
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8.151E 
 Do Problem 8.150 using refrigerant R-134a instead of R-22. 
 
 a) 

1 

2 3 

4 

s 

100 

30

T

 

b) Table F.10.1 
     State 3 is saturated liquid 
      s4 = s3 = 0.2819 Btu/lbm R 
          = 0.2375 + x4(0.1749) 
      x4 = 0.254 
     State 2 is saturated vapor  
       s1 = s2 = 0.4091 Btu/lbm R 
           = 0.2375 + x1(0.1749) 
      x1 = 0.9811 
 

 

c)    β′ =  
qH
wIN

 = 
TH

TH – TL
 = 

559.67
100 - 30 = 7.995 
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8.152E 
 Water at 30 lbf/in.2, x = 1.0 is compressed in a piston/cylinder to 140 lbf/in.2, 600 

F in a reversible process. Find the sign for the work and the sign for the heat 
transfer. 

Solution: 

1w2 = ∫ P dv      so sign  dv 

1q2 = ∫ T ds      so sign  ds 

 Table F.7.1:   s1 = 1.70 Btu/lbm R v1 = 13.76 ft3/lbm 

 Table F.7.2:   s2 = 1.719 Btu/lbm R v2 = 4.41 ft3/lbm      =>   

 ds >0  :   dq = Tds   > 0    =>   q is positive 

 dv < 0 :  dw = Pdv  < 0   =>   w is negative 
 
 

2
1

P

v

T

s

1
2
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8.153E 
 Two pound-mass of ammonia in a piston/cylinder at 120 F, 150 lbf/in.2 is 

expanded in a reversible adiabatic process to 15 lbf/in.2. Find the work and heat 
transfer for this process. 

Control mass Energy Eq.5.11:   m(u2 - u1) = 1Q2 - 1W2 

Entropy Eq.8.3:  m(s2 - s1) = ⌡⌠ 1
 2 dQ/T + 1S2,gen 

Process:  1Q2 = 0/  ,    1S2,gen = 0/    ⇒    s2 = s1 
State 1: T, P Table F.8.2,   u1 = 596.6 Btu/lbm,   s1 = 1.2504 Btu/lbm R 

State 2: P2 , s2  ⇒  2 phase   Table F.8.1  (sat. vapor F.8.2 also) 
Interpolate:       sg2 = 1.3921 Btu/lbm R,   sf = 0.0315 Btu/lbm R 

 x2 = (1.2504-0.0315)/1.3606 = 0.896 ,   

 u2 = 13.36 + 0.896 × 539.35 = 496.6 Btu/lbm 

 1W2 = m (u1 – u2) = 2 × (596.6 - 496.6) = 100 Btu 
 
 

2

1

P

v

T

s

1

2
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8.154E 
 A cylinder fitted with a piston contains ammonia at 120 F, 20% quality with a 

volume of 60 in.3. The ammonia expands slowly, and during this process heat is 
transferred to maintain a constant temperature. The process continues until all the 
liquid is gone. Determine the work and heat transfer for this process. 
 

 

1 2 S 
120

3 NH

T

 

T1 = 120 F,  x1 = 0.20,   V1 = 60 in3 
T = const to x2 = 1,  Table F.8.1:     P = 286.5 lbf/in2 
v1 = 0.02836 + 0.2 × 1.0171 = 0.2318 ft3/lbm 

s1 = 0.3571 + 0.2 × 0.7829 = 0.5137 Btu/lbm R,    
 

     m = V/v = 
60

1728×0.2318 = 0.15 lbm 

State 2:  Saturated vapor,      v2 = 1.045 ft3/lbm,  s2 = 1.140 Btu/lbm R 
Process:  T = constant,  since two-phase then  P = constant 

1W2 = 
286.5×144

778  × 0.15 × (1.045 - 0.2318) = 6.47 Btu 

  1Q2 = 579.7 × 0.15(1.1400 - 0.5137) = 54.46 Btu 
 
- or -  h1 = 178.79 + 0.2 × 453.84 = 269.56 Btu/lbm;    h2 = 632.63 Btu/lbm 

  1Q2 = m(h2 - h1) = 0.15(632.63 - 269.56) = 54.46 Btu 
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8.155E 
 One pound-mass of water at 600 F expands against a piston in a cylinder until it 

reaches ambient pressure, 14.7 lbf/in.2, at which point the water has a quality of 
90%. It may be assumed that the expansion is reversible and adiabatic. 

  a. What was the initial pressure in the cylinder? 
  b. How much work is done by the water? 
 
 Solution: 

C.V. Water.  Process:  Rev., Q = 0  
Energy Eq.5.11: m(u2 − u1) = 1Q2 − 1W2 = − 1W2 

Entropy Eq.8.3: m(s2 − s1) = ∫ dQ/T   
Process: Adiabatic  Q = 0 and reversible     =>       s2 = s1 

 State 2:     P2 = 14.7 lbf/in2, x2 = 0.90   from Table F.7.1 

  s2 = 0.3121 + 0.9 × 1.4446 = 1.6123 Btu/lbm R 

  u2 = 180.1 + 0.9 × 897.5 = 987.9 Btu/lbm 
State 1     Table F.7.2:  at T1 = 600 F,   s1 = s2  

         ⇒ P1 = 335 lbf/in2    u1 = 1201.2 Btu/lbm 
From the energy equation 
     1W2 = m(u1 - u2) = 1(1201.2 – 987.9) = 213.3 Btu 

 
 

v

P

s

T

2

1
1

2

T1
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8.156E 
 A closed tank, V = 0.35 ft3, containing 10 lbm of water initially at 77 F is heated 

to 350 F by a heat pump that is receiving heat from the surroundings at 77 F. 
Assume that this process is reversible. Find the heat transfer to the water and the 
work input to the heat pump. 

C.V.: Water from state 1 to state 2. 
 Process: constant volume (reversible isometric) 

 1: v1 = V/m = 0.35/10 = 0.035 ft3/lbm   ⇒   x1 = 2.692×10-5  

    u1 = 45.11 Btu/lbm,   s1 = 0.08779 Btu/lbm R 
 Continuity eq. (same mass) and constant volume fixes v2 

State 2: T2, v2 = v1 ⇒  x2 = (0.035 - 0.01799) / 3.3279 = 0.00511  

 u2 = 321.35 + 0.00511×788.45 = 325.38 Btu/lbm 

 s2 = 0.5033 + 0.00511×1.076 = 0.5088 Btu/lbm R 
Energy eq. has zero work, thus provides heat transfer as 
  1Q2 = m(u2 - u1) = 10(325.38 - 45.11) = 2802.7 Btu 
 

 Entropy equation for the total control volume gives 
for a reversible process: 
                       m(s2 - s1) =  QL/T0   

   ⇒  QL = mT0(s2 - s1)  
              = 10(77 + 459.67)(0.5088 - 0.08779)  
              = 2259.4 Btu 
 
and the energy equation for the heat pump gives 

H.P.

Q

WHP
1    2Q

L

Tamb  
     WHP = 1Q2 - QL = 2802.7 - 2259.4 = 543.3 Btu 
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8.157E 
 A cylinder containing R-134a at 60 F, 30 lbf/in.2, has an initial volume of 1 ft3. A 

piston compresses the R-134a in a reversible, isothermal process until it reaches 
the saturated vapor state. Calculate the required work and heat transfer to 
accomplish this process. 

Solution: 
C.V. R-134a.  
Continuity Eq.:    m2 = m1 = m ;      

Energy Eq.:5.11      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.3:     m(s2 − s1) = ∫ dQ/T +  1S2 gen 
Process:  T = constant,  reversible so 1S2 gen = 0    
State 1: (T, P)  Table F.10.2   u1 = 168.41 Btu/lbm,  s1 = 0.4321 Btu/lbm R 
  m = V/v1 = 1/1.7367 = 0.5758 lbm 
 

 State 2: (60 F sat. vapor)  
Table F.10.1  
   u2 = 166.28 Btu/lbm,   
   s2 = 0.4108 Btu/lbm R 

P

v

1
2

T

2 1
T

s  
 
As T is constant we can find Q by integration as 

1Q2 = ⌡⌠Tds = mT(s2 - s1) = 0.5758 × 519.7 × (0.4108 - 0.4321) = -6.374 Btu 

The work is then from the energy equation 

1W2 = m(u1 - u2) + 1Q2 = 0.5758 × (168.41 – 166.28) - 6.374 = -5.15 Btu 
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8.158E 
 A rigid, insulated vessel contains superheated vapor steam at 450 lbf/in.2, 700 F. 

A valve on the vessel is opened, allowing steam to escape. It may be assumed that 
the steam remaining inside the vessel goes through a reversible adiabatic 
expansion. Determine the fraction of steam that has escaped, when the final state 
inside is saturated vapor. 

C.V.: steam remaining inside tank.  Rev. & Adiabatic (inside only) 
Cont.Eq.:    m2 = m1 = m ;     Energy Eq.:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.:     m(s2 − s1) = ∫ dQ/T + 1S2 gen = 0 + 0 
 

 P

v

1

2 2

1
T

s  

C.V. m2  

 

State 1:   Table F.7.2     v1 = 1.458 ft3/lbm,   s1 = 1.6248 Btu/lbm R 
State 2:   Table F.7.1     s2 = s1 = 1.6248 Btu/lbm R = sg at P2  

 ⇒ P2 = 76.67 lbf/in2,   v2 = vg = 5.703 ft3/lbm 

 
me
m1

 = 
m1 - m2

m1
 = 1 - 

m2
m1

 = 1 - 
v1
v2

 = 1 - 
1.458
5.703 = 0.744 
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Entropy Generation 
 
8.159E 
 An insulated cylinder/piston contains R-134a at 150 lbf/in.2, 120 F, with a volume 

of 3.5 ft3. The R-134a expands, moving the piston until the pressure in the 
cylinder has dropped to 15 lbf/in.2. It is claimed that the R-134a does 180 Btu of 
work against the piston during the process. Is that possible? 

Solution: 
C.V. R-134a in cylinder. Insulated so assume Q = 0. 

State 1:  Table F.10.2,    v1 = 0.3332 ft3/lbm,   u1 = 175.33 Btu/lbm, 
  s1 = 0.41586 Btu/lbm R,   m = V1/v1 = 3.5/0.3332 = 10.504 lbm 

Energy Eq.5.11: m(u2 - u1) = 1Q2 - 1W2 = 0/  - 180  ⇒   

   u2 = u1 − 1W2/m = 158.194 Btu/lbm 

State 2:  P2 , u2   ⇒  Table F.10.2:     T2 = -2 F  ; s2 = 0.422 Btu/lbm R 

Entropy Eq.8.14:  m(s2 - s1) = ⌡⌠dQ/T + 1S2,gen = 1S2,gen  

  1S2,gen = m(s2 - s1) = 10.504 (0.422 – 0.41586) = 0.0645 Btu/R 
 
  This is possible since 1S2 gen > 0/  
 

 

2
1

P

v

T

s

1

2

s = C
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8.160E 
 A mass and atmosphere loaded piston/cylinder contains 4 lbm of water at 500 

lbf/in.2, 200 F. Heat is added from a reservoir at 1200 F to the water until it 
reaches 1200 F. Find the work, heat transfer, and total entropy production for the 
system and surroundings. 

Solution: 
C.V. Water out to surroundings at 1200 F. This is a control mass.  
Energy Eq.5.11: U2 - U1 = 1Q2 - 1W2    

Entropy Eq.8.14: m(s2 - s1) = ⌡⌠dQ/T + 1S2 gen = 1Q2/Tres + 1S2 gen 

Process:   P = constant  so   1W2 = P(V2 - V1) = mP(v2 - v1) 

State 1:  Table F.7.3,   v1 = 0.01661 ft3/lbm 
       h1 = 169.18 Btu/lbm,  s1 = 0.2934 Btu/lbm R 

State 2:  Table F.7.2,       v2 = 1.9518 ft3/lbm,     h2 = 1629.8 Btu/lbm,  
s2 = 1.8071 Btu/lbm R 

 
 2

1

P

v

T

s

1 2

 

 

 
Work is found from the process (area in P-V diagram) 

 1W2 = mP(v2 - v1) = 4 × 500(1.9518 - 0.01661) 
144
778 = 716.37 Btu 

The heat transfer from the energy equation is  
 1Q2 = U2 - U1 +  1W2 = m(u2 - u1) +  mP(v2 - v1) = m(h2 - h1) 

 1Q2 = 4(1629.8 - 169.18) = 5842.48 Btu 
Entropy generation from entropy equation (or Eq.8.18)  

 1S2 gen = m(s2 - s1) - 1
Q2

Tres
 = 4(1.8071 - 0.2934) - 

5842.48
1659.67 = 2.535 Btu/R 
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8.161E 
 A 1 gallon jug of milk at 75 F is placed in your refrigerator where it is cooled 

down to the refrigerators inside temperature of 40 F. Assume the milk has the 
properties of liquid water and find the entropy generated in the cooling process. 

Solution: 
C.V. Jug of milk. Control mass at constant pressure. 
Continuity Eq.:    m2 = m1 = m ;      

Energy Eq.5.11:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.8.14:     m(s2 − s1) = ∫ dQ/T + 1S2 gen 

State 1: Table F.7.1:   v1 ≅ vf = 0.01606  ft3/lbm,   h1 = hf = 43.085 Btu/lbm;  
sf = 0.08395 Btu/lbm R  

State 2: Table F.7.1:   h2 = hf = 8.01 Btu/lbm,  s2 = sf = 0.0162 Btu/lbm R 
Process:  P = constant = 14.7 psia    =>  1W2 = mP(v2 - v1) 

         V1 = 1 Gal = 231 in3     =>     m = 231 / 0.01606 × 123 = 8.324 lbm 
Substitute the work into the energy equation and solve for the heat transfer 
 1Q2 = m(h2 − h1) = 8.324 (8.01 - 43.085) = -292 Btu 
The entropy equation gives the generation as 
 1S2 gen = m(s2 − s1) - 1Q2/Trefrig 

= 8.324 (0.0162 − 0.08395) − (−292 / 500) 
   = − 0.564 + 0.584 = 0.02 Btu/R 
 

 

MILK
cb

40 F

AIR
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8.162E 
 A cylinder/piston contains water at 30 lbf/in.2, 400 F with a volume of 1 ft3. The 

piston is moved slowly, compressing the water to a pressure of 120 lbf/in.2. The 
loading on the piston is such that the product PV is a constant. Assuming that the 
room temperature is 70 F, show that this process does not violate the second law. 

Solution: 
C.V.: Water + cylinder out to room at 70 F 
Energy Eq.5.11:       m(u2 - u1) = 1Q2 − 1W2 
Entropy Eq.8.14:     m(s2 - s1) = 1Q2 / Troom + 1S2 gen 

Process: PV = constant = Pmv  ⇒  v2 = P1v1/P2 

  1w2 = ⌡⌠Pdv = P1v1 ln(v2/v1) 

State 1:  Table B.1.3,    v1 = 16.891 ft3/lbm,   u1 = 1144 Btu/lbm, 
  s1 = 1.7936 Btu/lbm R 

State 2:  P2 , v2 = P1v1/P2 =  30 × 16.891/120 = 4.223 ft3/lbm 
Table F.7.3:   T2 = 425.4 F,   u2 = 1144.4 Btu/lbm,   s2 = 1.6445 Btu/lbmR 

  1w2 = 30 × 16.891 × 
144
778 ln (

4.223
16.891) = -130.0 Btu 

1q2 = u2 - u1 + 1w2 = 1144.4 - 1144 - 130 = -129.6 Btu/lbm 

 1s2,gen = s2 - s1 - 1q2
Troom

 = 1.6445 - 1.7936 + 
129.6
529.67 

            = 0.0956 Btu/lbm R > 0/        satisfy 2nd law. 
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8.163E 
 One pound mass of ammonia (NH3) is contained in a linear spring-loaded 

piston/cylinder as saturated liquid at 0 F. Heat is added from a reservoir at 225 F 
until a final condition of 125 lbf/in.2, 160 F is reached. Find the work, heat 
transfer, and entropy generation, assuming the process is internally reversible. 

Solution: 
C.V. = NH3  out to the reservoir. 
Continuity Eq.:         m2 = m1 = m 
Energy Eq.5.11:        E2 - E1 = m(u2 - u1) = 1Q2 - 1W2 

Entropy Eq.8.14:        S2 - S1 = ⌡⌠dQ/T + 1S2,gen = 1Q2/Tres + 1S2,gen 

Process:  P = A + BV      linear in V      => 

1W2 = ∫ P dV = 12 (P1 + P2)(V2 - V1) = 12 (P1 + P2)m(v2 - v1) 

State 1:   Table F.8.1 
     P1 = 30.4 psia,     

    v1 =  0.0242 ft3/lbm 

    u1 = 42.5 Btu/lbm,    

     s1 = 0.0967 Btu/lbm R 
State 2:  Table F.8.2 sup. vap. 
   

P

v

1

2 2

1

T

s

P2

 

  v2 = 2.9574 ft3/lbm,   u2 = 686.9 - 125×2.9574×144/778 = 618.5 Btu/lbm,  

       s2 = 1.3178 Btu/lbm R 

 1W2 = 12 (30.4 + 125)1(2.9574 - 0.0242)×144/778 = 42.2 Btu 

 1Q2 = m(u2 - u1) + 1W2 = 1(618.5 - 42.5) + 42.2  = 618.2 Btu 

 Sgen = m(s2 - s1) - 1Q2/Tres = 1(1.3178 - 0.0967) - 
618.2
684.7 = 0.318 Btu/R 
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Entropy of a Liquid or Solid 
 
8.164E 
 A foundry form box with 50 lbm of 400 F hot sand is dumped into a bucket with 2 

ft3 water at 60 F. Assuming no heat transfer with the surroundings and no boiling 
away of liquid water, calculate the net entropy change for the process. 

C.V. Sand and water, P = const. 
Energy Eq.: msand(u2 - u1)sand + mH2O(u2 - u1)H2O = -P(V2 - V1) 

 ⇒  msand∆hsand + mH2O∆hH2O = 0/ ,      mH2O = 
2

0.016035 = 124.73 lbm 

 50 × 0.19(T2 - 400) +  124.73 × 1.0(T2 - 60) = 0/ ,    T2 = 84 F 

 ∆S = 50 × 0.19 × ln



544

860  + 124.73 × 1.0 × ln



544

520   = 1.293 Btu/R 

 
 Box holds the sand for 

form of the cast part
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8.165E 
 Four pounds of liquid lead at 900 F are poured into a form. It then cools at 

constant pressure down to room temperature at 68 F as heat is transferred to the 
room. The melting point of lead is 620 F and the enthalpy change between the 
phases hif is 10.6 Btu/lbm. The specific heats are in Table F.2 and F.3. Calculate 
the net entropy change for this process. 

Solution: 
C.V. Lead, constant pressure process 
 mPb(u2 - u1)Pb = 1Q2 - P(V2 - V1) 
We need to find changes in enthalpy (u + Pv) for each phase separately and 
then add the enthalpy change for the phase change. 
  Cliq = 0.038 Btu/lbm R,   Csol = 0.031 Btu/lbm R 
Consider the process in several steps: 
  Cooling liquid to the melting temperature 
  Solidification of the liquid to solid 
  Cooling of the solid to the final temperature 
 1Q2 = mPb(h2 - h1) = mPb(h2 - h620,sol - hif + h620,f - h900) 

     = 4 × [0.031 × (68 - 620) - 10.6 + 0.038 × (620 - 900)] 
     = -68.45 - 42.4 - 42.56 = -153.4 Btu 
∆SCV = mPb[Cp solln(T2/1079.7) - (hif/1079.7) + CP liqln(1079.7/T1)] 

     = 4 × [0.031 ln 
527.7
1079.7 - 

10.6
1079.7 + 0.038 ln 

1079.6
1359.7 ] = -0.163 Btu/R 

 ∆SSUR = -1Q2/T0 = 153.4/527.6 = 0.2908 Btu/R 
The net entropy change from Eq.8.18 is equivalent to total entropy generation 
 ∆Snet = ∆SCV + ∆SSUR = 0.1277 Btu/R 
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8.166E 
 A hollow steel sphere with a 2-ft inside diameter and a 0.1-in. thick wall contains 

water at 300 lbf/in.2, 500 F. The system (steel plus water) cools to the ambient 
temperature, 90 F. Calculate the net entropy change of the system and 
surroundings for this process. 

 C.V.: Steel + water. This is a control mass. 
 Energy Eq.:    U2 – U1 = 1Q2 - 1W2 = mH2O(u2 – u1) + msteel(u2 – u1) 

 Process:   V = constant     =>   1W2 = 0 

  Vsteel = π6[2.00833 - 23] = 0.0526 ft3 

  msteel = (ρV)steel = 490 × 0.0526 = 25.763 lbm 

 VH2O = π/6 × 23 = 4.189 ft3,        mH2O = V/v = 2.372 lbm 

 v2 = v1 = 1.7662 = 0.016099 + x2 × 467.7    ⇒    x2 = 3.74×10-3 
 u2 = 61.745 Btu/lbm, s2 = 0.1187 Btu/lbm R 

 1Q2 = ∆Usteel+ ∆UH2O = (mC)steel(T2-T1) + mH2O(u2 – u1) 

        = 25.763 × 0.107(90-500) + 2.372(61.74 - 1159.5) 
= -1130 - 2603.9 = -3734 Btu 

 ∆SSYS = ∆SSTEEL + ∆SH2O = 25.763 × 0.107 × ln(550/960)  

          + 2.372(0.1187 - 1.5701) = -4.979 Btu/R 
 ∆SSUR = - Q12/TSUR = 3734/549.67 = 6.793 Btu/R 

 ∆SNET  = SGEN,TOT = ∆SSYS + ∆SSUR = 1.814 Btu/R 
 

 

Water

Ambient

Steel
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Entropy of Ideal Gases 
 
8.167E 
 Oxygen gas in a piston/cylinder at 500 R and 1 atm with a volume of 1 ft3 is 

compressed in a reversible adiabatic process to a final temperature of 1000 R. 
Find the final pressure and volume using constant heat capacity from Table F.4. 

Solution: 
C.V. Air.  Assume a reversible, adiabatic process. 
Energy Eq.5.11:       u2 - u1 = 0 − 1w2  ;  

Entropy Eq.8.14:      s2 - s1 = ∫ dq/T + 1s2 gen = 0 
Process:  Adiabatic    1q2 = 0 Reversible    1s2 gen = 0 
Properties:  Table F.4: k = 1.393 
With these two terms zero we have a zero for the entropy change. So this is a 
constant s (isentropic) expansion process. From Eq.8.32 

 P2 = P1( T2 / T1)
k 

k-1 = 14.7 (1000/500)3.5445 = 171.5 psia 
Using the ideal gas law to eliminate P from this equation leads to Eq.8.33 

  V2 = V1( T2 / T1)
1

1-k = 1 × 



1000

500  
1

1−1.393 = 0.171 ft3 

 
 P

v

1
1

T
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P
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8.168E 
 Oxygen gas in a piston/cylinder at 500 R and 1 atm with a volume of 1 ft3 is 

compressed in a reversible adiabatic process to a final temperature of 1000 R. 
Find the final pressure and volume using Table F.6. 

Solution: 
C.V. Air.  Assume a reversible, adiabatic process. 
Energy Eq.5.11:      u2 - u1 = 0 − 1w2  ;  

Entropy Eq.8.14:      s2 - s1 = ∫ dq/T + 1s2 gen = 0/  
Process:  Adiabatic    1q2 = 0 Reversible    1s2 gen = 0 
With these two terms zero we have a zero for the entropy change. So this is a 
constant s (isentropic) expansion process. From Eq.8.28 

s°
T2 – s°

T1 = R ln 
P2
P1

 

Properties:    Table F.6: s°
T1 = 48.4185/31.999 = 1.5131 Btu/lbm R,      

s°
T2 = 53.475/31.999 = 1.6711 Btu/lbm R 

P2
P1

 = exp [(s°
T2 – s°

T1)/R] = exp( 
1.6711 – 1.5131

48.28/778  ) = 12.757 

P2 = 14.7 × 12.757 = 187.5 psia 
Ideal gas law: P1V1 = mRT1  and   P2V2 = mRT2 
Take the ratio of these so  mR  drops out to give 

V2 = V1 × (T2 / T1) × (P1 / P2) = 1 × (
1000
500 ) × (

14.7
187.5) = 0.157 ft3 
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8.169E 
 A handheld pump for a bicycle has a volume of 2 in.3 when fully extended. You 

now press the plunger (piston) in while holding your thumb over the exit hole so 
an air pressure of 45 lbf/in.2 is obtained. The outside atmosphere is at Po, To. 
Consider two cases: (1) it is done quickly (~1 s), and (2) it is done slowly (~1 h). 

  a. State assumptions about the process for each case. 
  b. Find the final volume and temperature for both cases. 

Solution: 
C.V. Air in pump.  Assume that both cases result in a reversible process. 
  State 1:  P0, T0  State 2:  45 lbf/in.2, ? 
  One piece of information must resolve the ? for a state 2 property. 
Case I) Quickly means no time for heat transfer 
     Q = 0, so a reversible adiabatic compression. 
         u2 - u1 = -1w2  ;   s2 - s1 = ∫ dq/T + 1s2 gen = 0/  
 With constant s and constant heat capacity we use Eq.8.32 

 T2 = T1( P2 / P1)
k-1
k  = 536.7 



45

14.696  
0.4
1.4 = 738.9 R 

 Use ideal gas law  PV = mRT  at both states so ratio gives 

     =>    V2 = P1V1T2/T1P2 = 0.899 in3 
 
Case II)    Slowly, time for heat transfer so T = constant = T0. 
 The process is then a reversible isothermal compression. 

      T2 = T0 = 536.7 R       =>       V2 = V1P1/P2 =  0.653 in3 
 

 P
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8.170E 
 A piston/cylinder contains air at 2500 R, 2200 lbf/in.2, with V1 = 1 in.3, Acyl = 1 

in.2 as shown in Fig. P8.95. The piston is released and just before the piston exits 
the end of the cylinder the pressure inside is 30 lbf/in.2. If the cylinder is 
insulated, what is its length? How much work is done by the air inside? 

Solution: 
C.V. Air, Cylinder is insulated so adiabatic, Q = 0. 
Continuity Eq.:       m2 = m1 = m,   
Energy Eq.5.11:      m(u2 - u1) = 1Q2 - 1W2 = - 1W2 

Entropy Eq.8.14:     m(s2 - s1) = ∫ dQ/T + 1S2 gen = 0 + 1S2 gen 
State 1: (T1, P1)      State 2:    (P2, ?) 
So one piece of information is needed for the ?,   assume reversible process. 
  1S2 gen = 0    =>   s2 - s1 = 0 

State 1: Table F.5:   u1 = 474.33 Btu/lbm,    s°
T1 = 2.03391 Btu/lbm R 

  m = P1V1/RT1 = 
2200 × 1.0

53.34 × 2500 × 12 = 1.375 × 10-3 lbm 

State 2:  P2 and from Entropy eq.:    s2 = s1    so from Eq.8.28 

s°
T2 = s°

T1 + R ln 
P2
P1

 = 2.03391 + 
53.34
778  ln(

30
2200) = 1.73944 Btu/lbm R 

Now interpolate in Table F.5 to get T2 
  T2 = 840 + 40 (1.73944 – 1.73463)/(1.74653 – 1.73463) = 816.2 R 
  u2 = 137.099 + (144.114 – 137.099) 0.404 = 139.93 Btu/lbm 

  V2 = V1 
T2 P1
T1P2

 = 
1 × 816.2 × 2200

2500 × 30  =  23.94 in3  

   ⇒   L2 = V2 /Acyl = 23.94/1 =  23.94 in 

  1W2 = m(u1 - u2) = 1.375 × 10-3(474.33 – 139.93) = 0.46 Btu 
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8.171E 
 A 25-ft3 insulated, rigid tank contains air at 110 lbf/in.2, 75 F. A valve on the tank 

is opened, and the pressure inside quickly drops to 15 lbf/in.2, at which point the 
valve is closed. Assuming that the air remaining inside has undergone a reversible 
adiabatic expansion, calculate the mass withdrawn during the process. 

 
C.V.: Air remaining inside tank, m2. 

Cont.Eq.:    m2 = m ;     Energy Eq.:      m(u2 − u1) = 1Q2 − 1W2  

Entropy Eq.:     m(s2 − s1) = ∫ dQ/T + 1S2 gen = 0 + 0  
 

 P

v

1

2 2

1
T

s  

C.V. m2  

 

    s2 = s1 → T2 = T1(P2/P1)
k-1
k  = 535 (15/110)

0.286
 = 302.6 R 

     m1 = P1V/RT1 = 110 × 144 × 25 /(53.34 × 535)  = 13.88 lbm 

    m2 = P2V/RT2 =  15 × 144 × 25 /(53.34 × 302.6) = 3.35 lbm 

    me = m1 - m2 = 10.53 lbm 
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8.172E 
 A rigid container with volume 7 ft3 is divided into two equal volumes by a 

partition. Both sides contain nitrogen, one side is at 300 lbf/in.2, 400 F, and the 
other at 30 lbf/in.2, 200 F. The partition ruptures, and the nitrogen comes to a 
uniform state at 160 F. Assume the temperature of the surroundings is 68 F, 
determine the work done and the net entropy change for the process. 

Solution:   
C.V.: A + B  Control mass no change in volume   =>   1W2 = 0 

 mA1 = PA1VA1/RTA1 = 300×144× 3.5 /(55.15 × 859.7) = 3.189 lbm 

 mB1 = PB1VB1/RTB1 = 30×144× 3.5 / (55.15× 659.7) = 0.416 lbm 

 P2 = mTOTRT2/VTOT = 3.605 × 55.15 × 619.7/(144 × 7) = 122.2 lbf/in2 

 ∆SSYST = 3.189 [0.249 ln 
619.7
859.7 - 

55.15
778  ln 

122.2
300 ] 

   + 0.416 [0.249 ln 
619.7
659.7 - 

55.15
778  ln 

122.2
30 ]  

    = -0.0569 - 0.0479 = -0.1048 Btu/R 
 1Q2 = mA1(u2 − u1)  + mB1(u2 − u1)  

         = 3.189 × 0.178(160 - 400) + 0.416 × 0.178(160 - 200) = -139.2 Btu 
 ∆SSURR = - 1Q2/T0 = 139.2 / 527.7 = +0.2638 Btu/R 

 ∆SNET  = -0.1048 + 0.2638 = +0.159 Btu/R 
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8.173E 
 Nitrogen at 90 lbf/in.2, 260 F is in a 20 ft3 insulated tank connected to a pipe with 

a valve to a second insulated initially empty tank of volume 20 ft3. The valve is 
opened and the nitrogen fills both tanks. Find the final pressure and temperature 
and the entropy generation this process causes. Why is the process irreversible? 

C.V.  Both tanks + pipe + valve. Insulated : Q = 0,   Rigid:    W = 0 
  m(u2 − u1) =  0 - 0  =>   u2 = u1 = ua1  

Entropy Eq.:     m(s2 − s1) = ∫ dQ/T + 1S2 gen = 1S2 gen 
State 1:   P1 , T1 ,  Va  =>   Ideal gas         

 m = PV/RT = (90 × 20 × 144)/ (55.15 × 720) = 6.528 lbm 
 2: V2 = Va  + Vb  ;   uniform final state  v2  = V2 / m   ;     u2  = ua1  
 

 P

v

1
2

21
T

s

1P
P2

 

 

 
 Ideal gas  u (T)  =>   u2 = ua1   => T2 = Ta1  = 720 R 

 P2  = mR T2 / V2 = (V1 / V2 ) P1 = ½  × 90 = 45 lbf/in.2 
 Sgen = m(s2 - s1) = m (sT2o - sT1o - R ln (P2 / P1 ) 

         = m (0 -  R ln (P2 / P1 ) = -6.528 × 55.15 × (1/778)ln ½ = 0.32 Btu/R 

Irreversible due to unrestrained expansion in valve  P ↓ but no work out.  
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If not a uniform final state then flow until P2b = P2a  and valve is closed.  
Assume no Q between A and  B 
 ma2 + mb2 = ma1  ;       ma2 va2 + mb2 vb2 = ma1va1  
 ma2 sa2 + mb2 sb2 - ma1sa1 = 0 + 1S2 gen 
Now we must assume ma2 went through rev adiabatic expansion 
1) V2 = ma2 va2 + mb2 vb2 ;    2) Pb2 = Pa2  ;    3) sa2 = sa1  ;   4) Energy eqs. 
 4 Eqs         4 unknowns : P2 , Ta2 , Tb2 ,  x = ma2 / ma1   
 V2 / ma1 = x va2 + (1 - x) vb2 = x × (R Ta2 /P2)+ (1 - x) (R Tb2 / P2)  
  ma2 ( ua2 - ua1 ) + mb2 (ub2 -  ua1) = 0  
  x Cv ( Ta2 - Ta1 ) + (1 - x) (Tb2 -  Ta1) Cv  = 0 
  x Ta2  + (1 - x)Tb2 = Ta1    
  P2 V2 / ma1 R =  x  Ta2 + (1 - x) Tb2 =  Ta1) 
 P2 = ma1 R Ta1 / V2 = ma1 R Ta1 / 2Va1 = ½ Pa1  = 45 lbf/in.2 
sa2 = sa1   =>  Ta2 = Ta1 (P2 / Pa1)k-1 / k = 720 × (1/2)0.2857 = 590.6 R 
Now we have final state in A 
 va2 = R Ta2 / P2 = 5.0265      ;   ma2 = Va / va2 = 3.979 lbm 
 x = ma2 / ma1 = 0.6095   mb2 = ma1 -  ma2 = 2.549 lbm 
Substitute into energy equation 
 Tb2 = ( Ta1 - x  Ta2 ) / (1 - x) = 922 R 

1S2 gen =  mb2 ( sb2 - sa1) =  mb2 ( Cp ln (Tb2 / Ta1 ) - R ln (P2 /  Pa1 ) 
             = 2.549 [ 0.249 ln (922/720) - (55.15/778) ln (1/2) ] 
              =  0.2822 Btu/R 
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Polytropic Processes 
 
8.174E 
 Helium in a piston/cylinder at 20°C, 100 kPa is brought to 400 K in a reversible 

polytropic process with exponent n = 1.25. You may assume helium is an ideal 
gas with constant specific heat. Find the final pressure and both the specific heat 
transfer and specific work. 

Solution: 
C.V. Helium, control mass.   Cv =  0.744 Btu/lbm R, R = 386 ft lbf/ lbm R 
Process  Pvn = C     &     Pv = RT        => Tvn-1 = C 
 T1 = 70 + 460 = 530 R, T2 = 720 R 
 T1vn-1 = T2vn-1         =>  v2 / v1= (T1 / T2 )1/n-1 = 0.2936 
 P2 / P1= (v1 / v2)n = 4.63       => P2 = 69.4 lbf/in.2 

 1w2 = ∫ P dv = ∫ C v-n dv = 
1

1-n (P2 v2 -  P1 v1) = 
R

1-n  (T2 - T1)  

= 
386

778 × (-0.25) (720 – 530) = -377 Btu/lbm 

  1q2 = u2 - u1 + 1w2 = Cv (T2 - T1 ) + 1w2 
      = 0.744(720 – 530) + (-377) = -235.6 Btu/lbm 
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8.175E 
 A cylinder/piston contains air at ambient conditions, 14.7 lbf/in.2 and 70 F with a 

volume of 10 ft3. The air is compressed to 100 lbf/in.2 in a reversible polytropic 
process with exponent, n = 1.2, after which it is expanded back to 14.7 lbf/in.2 in 
a reversible adiabatic process. 

  a. Show the two processes in P–v and T–s diagrams. 
  b. Determine the final temperature and the net work. 
  c. What is the potential refrigeration capacity (in British thermal units) of  

      the air at the final state? 
 
 a) 

V 

1 

2 

1 

2 

s 

3 3 

P T

 

 

b)    m = P1V1/RT1 = 14.7 × 144 × 10/(53.34 × 529.7 ) = 0.7492 lbm 

    T2 = T1(P2/P1)
n-1
n  = 529.7



100

14.7
0.167

 = 729.6 R 

 1w2 = ⌡⌠
 1

2
 Pdv = 

P2v2 - P1v1
1 - n  = 

R(T2 - T1)
1 - n  = 

53.34(729.6 - 529.7)
778(1 - 1.20)  

         = -68.5 Btu/lbm 

    T3 = T2(P3/P2)
k-1
k  = 729.7 



14.7

100
0.286

 = 421.6 R 

    2w3 = CV0(T2 - T3) = 0.171(729.6 - 421.6) = +52.7 Btu/lbm 

    wNET = 0.7492(-68.5 + 52.7) = -11.8 Btu 
c) Refrigeration: warm to T0 at const P, 

 Q31 = mCP0(T1 - T3) = 0.7492 × 0.24(529.7 - 421.6) = 19.4 Btu 
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8.176E 
 A cylinder/piston contains carbon dioxide at 150 lbf/in.2, 600 F with a volume of 

7 ft3. The total external force acting on the piston is proportional to V3. This 
system is allowed to cool to room temperature, 70 F. What is the total entropy 
generation for the process? 

State 1: P1 = 150 lbf/in2,  T1 = 600 F = 1060 R,  V1 = 7 ft3  Ideal gas 

 m = 
P1V1
RT1

 = 
150 × 144 × 7
35.10 × 1060  = 4.064 lbm 

Process: P = CV3 or PV -3 = const.   polytropic with n = -3. 

 P2 = P1(T2/T1)
n

n-1 = 150 



530

1060
0.75 = 89.2 lbf/in2 

 & V2 = V1(T1/T2)
1

n-1 = V1 × 
P1
P2

 × 
T2
T1

 = 7 × 
150
89.2 × 

530
1060 = 5.886 

 1W2 = ⌡⌠ PdV = 
P2V2 - P1V1

1 - n  = 
(89.2 × 5.886 - 150 × 7)

1 + 3  × 
144
778 = -24.3 Btu 

 1Q2 = 4.064 × 0.158 × (530 - 1060) - 24.3 = -346.6 Btu 

 ∆SSYST = 4.064 × 



0.203 × ln



530

1060  - 
35.10
778  ln



89.2

150 = -0.4765 Btu/R 

 ∆SSURR = −1Q2/TSURR = 364.6 / 530 = +0.6879 Btu/R 

 ∆SNET  = +0.2114 Btu/R 
 
 P 

v 

1 

2 

T 

s 

1 

2 70

600

89

150

 

 
 Notice:    
  n = -3,  k = 1.3 
  
      n < k 
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8.177E 
 A cylinder/piston contains 4 ft3 of air at 16 lbf/in.2, 77 F. The air is compressed in 

a reversible polytropic process to a final state of 120 lbf/in.2, 400 F. Assume the 
heat transfer is with the ambient at 77 F and determine the polytropic exponent n 
and the final volume of the air. Find the work done by the air, the heat transfer 
and  the total entropy generation for the process. 

Solution: 
 m = (P1V1)/(RT1) = (16 ×  4 × 144)/(53.34 × 537) = 0.322 lbm 

T2/T1 = (P2/P1)
n-1
n      ⇒  

n-1
n  = ln(T2 / T1) / ln(P2 / P1) = 0.2337 

n = 1.305,   V2 = V1(P1/P2)1/n = 4 ×(16/20)1/1.305 =  0.854 ft3 

1W2 = ⌡⌠PdV = 
P2V2 - P1V1

1 - n   

         = [(120 × 0.854 - 16 × 4) (144 / 778) ] / (1 - 1.305) = -23.35 Btu / lbm 
 1Q2 = m(u2 − u1) + 1W2 = mCv(T2 - T1) + 1W2 

         = 0.322 × 0.171 × (400 - 77) - 23.35 = -5.56 Btu / lbm 
 s2 − s1 =  Cp ln(T2 / T1) − R ln(P2 / P1) 
            = 0.24 ln (860/537) - (53.34/778) ln (120/16) = -0.0251 Btu/lbm R 

1S2 gen = m(s2 − s1) - 1Q2/T0 

   = 0.322 × (-0.0251) + (5.56/537) = 0.00226 Btu/R 
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Rates or Fluxes of Entropy 
 
8.178E 
 A reversible heat pump uses 1 kW of power input to heat a 78 F room, drawing 

energy from the outside at 60 F. Assume every process is reversible what are the 
total rates of entropy into the heat pump from the outside and from the heat pump 
to the room? 

 
 Solution: 

 
 C.V.TOT. 

Energy Eq.: Q
.

L+ W
.

 = Q
.

H 

Entropy Eq.: 
Q
.

L
TL

 -  
Q
.

H
TH

 = 0    ⇒    Q
.

L = Q
.

H 
TL
TH

 
H Q 

W 
L Q 

HP
60 F 78 F

 
 

 Q
.

H 
TL
TH

 + W
.

 = Q
.

H      ⇒       Q
.

H = 
TH

TH - TL
 W

.
 

 S
.
to room = 

Q
.

H
TH

 = 
1

TH - TL
 W

.
 = 

1
78 - 60 (1) = 0.0555 

kW
R  = 0.053 

Btu
s R 

 S
.
from amb = 

Q
.

L
TL

 =  
Q
.

H
TH

 =  0.0555 
kW
R  = 0.053 

Btu
s R 

Since the process was assumed reversible the two fluxes are the same. 
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8.179E 
 A farmer runs a heat pump using 2.5 hp of power input. It keeps a chicken 

hatchery at a constant 86 F while the room loses 20 Btu/s to the colder outside 
ambient at 50 F. What is the rate of entropy generated in the heat pump? What is 
the rate of entropy generated in the heat loss process? 

 
 Solution: 
  

C.V. Hatchery, steady state. 
Power:         W

.
 = 2.5 hp = 2.5 2544.4 / 3600 = 1.767 Btu/s 

To have steady stat  at 30oC for the hatchery e
Energy Eq.: 0 = Q

.
H − Q

.
Loss   ⇒ Q

.
H= Q

.
Loss = 20 Btu/s 

C.V. Heat pump, steady state 
Energy eq.: 0 =  Q

.
L + W

.
 − Q

.
H ⇒ Q

.
L = Q

.
H − W

.
 = 18.233 Btu/s 

Entropy Eq.: 0 =  
Q
.

L
TL

 −  
Q
.

H
TH

 + S
.
gen HP 

  S
.
gen HP = 

Q
.

H
TH

 − 
Q
.

L
TL

 = 
20

545.7 − 
18.233
509.7  = 0.000 878 

Btu
s R  

C.V. From hatchery at 86 F to the ambient 50 F. This is typically the walls and 
the outer thin boundary layer of air. Through this goes Q

.
Loss. 

Entropy Eq.: 0 = 
Q
.

Loss
TH

 −  
Q
.

Loss
Tamb

 + S
.
gen walls 

  S
.
gen walls = 

Q
.

Loss
Tamb

 − 
Q
.

Loss
TH

 = 
20

509.7 − 
20

545.7 = 0.00259 
Btu
s R  

 
 

 

QleakQ QHL

W = 2.5 hp

HP
cb  
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Review Problems 
 
8.180E 
 A cylinder/piston contains 5 lbm of water at 80 lbf/in.2, 1000 F. The piston has 

cross-sectional area of 1 ft2 and is restrained by a linear spring with spring 
constant 60 lbf/in. The setup is allowed to cool down to room temperature due to 
heat transfer to the room at 70 F. Calculate the total (water and surroundings) 
change in entropy for the process. 

State 1:  Table F.7.2    v1 = 10.831 ft3/lbm,   u1 = 1372.3 btu/lbm,     
s1 = 1.9453 Btu/lbm R 

 
 State 2:  T2 & on line in P-v diagram. 

          P = P1 + (ks/A
2
cyl)(V - V1) 

Assume state 2 is two-phase,  
          => P2 = Psat(T2) = 0.3632 lbf/in2 

1 

2 

P 

v 

 v2 = v1 + (P2 - P1)A2
cyl/mks = 10.831 + (0.3632 - 80)1×12/5×60   

     = 7.6455 ft3/lbm = vf + x2vfg = 0.01605 + x2 867.579 

 x2 = 0.008793,  u2 = 38.1 + 0.008793×995.64 = 46.85 btu/lbm,   

 s2 = 0.0746 + 0.008793×1.9896 = 0.0921 Btu/lbm R 

 1W2 = 12 (P1 + P2)m(v2 - v1) 

     = 
5
2(80 + 0.3632)(7.6455 - 10.831)

144
778 = -118.46 Btu 

 1Q2 = m(u2 - u1) + 1W2 = 5(46.85 - 1372.3) - 118.46 = -6746 Btu 

 ∆Stot = Sgen tot = m(s2 - s1) - 1Q2/Troom 

  = 5(0.0921 - 1.9453) + 6746/529.67 = 3.47 Btu/R 
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8.181E 
 Water in a piston/cylinder is at 150 lbf/in.2, 900 F, as shown in Fig. P8.130. There 

are two stops, a lower one at which Vmin = 35 ft3 and an upper one at Vmax = 105 
ft3. The piston is loaded with a mass and outside atmosphere such that it floats 
when the pressure is 75 lbf/in.2. This setup is now cooled to 210 F by rejecting 
heat to the surroundings at 70 F. Find the total entropy generated in the process. 
 

C.V. Water. 

State 1:  Table F.7.2      v1 = 5.3529 ft3/lbm,   u1 = 1330.2 btu/lbm,    

s1 = 1.8381 Btu/lbm 
              m = V/v1 = 105/5.353  = 19.615 lbm 
 

  

 

P

v

1

2 2

1

T

s

v = C

500

1000

 

 
State 2: 210 F and on line in P-v diagram.  

Notice the following:  vg(Pfloat) = 5.818 ft3/lbm,     vbot = Vmin/m = 1.7843 

  Tsat(Pfloat) = 307.6 F,      T2 < Tsat(Pfloat)    ⇒   V2 = Vmin 

State 2:  210 F, v2 = vbot  ⇒  x2 = (1.7843 -0.0167)/27.796 = 0.06359 

 u2 = 178.1 + 0.06359×898.9 = 235.26 btu/lbm,    

 s2 = 0.3091 + 0.06359×1.4507 = 0.4014 btu/lbm R 

 1W2 = ⌡⌠PdV = Pfloat(V2 - V1) = 75(35 - 105) 
144
778 = -971.72 Btu 

 1Q2 = m(u2 - u1) + 1W2 = 19.615(235.26 - 1330.2) - 971.72 = -22449 Btu 
Take C.V. total out to where we have 70 F: 
 m(s2 - s1) = 1Q2/T0 + Sgen  ⇒  

 Sgen = m(s2 - s1) − 1Q2/T0  = 19.615(0.4014 - 1.8381) + 
22449
529.67 

         = 14.20 Btu/R   ( = ∆Swater + ∆Ssur ) 
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8.182E 
 A cylinder with a linear spring-loaded piston contains carbon dioxide gas at 300 

lbf/in.2 with a volume of 2 ft3. The device is of aluminum and has a mass of 8 
lbm. Everything (Al and gas) is initially at 400 F. By heat transfer the whole 
system cools to the ambient temperature of 77 F, at which point the gas pressure 
is 220 lbf/in.2. Find the total entropy generation for the process. 

Solution: 
CO2:      m = P1V1/RT1 = 300 × 2 × 144/(35.10 × 860) = 2.862 lbm 

 V2 = V1(P1/P2) (T2 / T1) = 2(300/220)(537/860) = 1.703 ft3 

1W2 CO2 =⌡⌠ PdV = 0.5(P1 + P2) (V2 - V1)  

        = [(300 +220)/2] (1.703 - 2) 
144
778 = -14.29 Btu 

1Q2 CO2 = mCV0(T2-T1) + 1W2 = 0.156× 2.862(77- 400)-14.29 = -158.5 Btu 

 1Q2 Al  = mC (T2-T1) = 8 × 0.21(77 - 400) = -542.6 Btu 
System: CO2 + Al 

 1Q2  = -542.6 - 158.5 = -701.14 Btu 

∆SSYST = mCO2(s2 - s1)CO2 + mAL(s2 - s1)AL 

         = 2.862[0.201 ln (537/860) - (35.10/778) ln (220/300)] 
            + 8 × 0.21 ln(537/860)  = -0.23086 - 0.79117 = -1.022 Btu/R 

 ∆SSURR = -(1Q2/T0) = + 
701.14

537  = 1.3057 Btu/R 

 ∆SNET  = 1.3057 - 1.022 = +0.2837 Btu/R 
 
 

 

Tamb

Q
CO2

Al
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Concept-Study Guide Problems 
 
9.1 
   In a steady state single flow s is either constant or it increases. Is that true? 
  Solution: 
 
   No. 

  Steady state single flow: se = si + 
⌡
⌠

i

e
 
dq
T   + sgen 

 Entropy can only go up or stay constant due to sgen, but it can go up or 
down due to the heat transfer which can be positive or negative. So if the 
heat transfer is large enough it can overpower any entropy generation and 
drive s up or down. 

 
9.2 
  Which process will make the previous statement true? 
  Solution: 
 
   If the process is said to be adiabatic then: 
  Steady state adiabatic single flow: se = si + sgen ≥  si 
 
 
9.3 
  A reversible adiabatic flow of liquid water in a pump has increasing P. How about 

T? 
  Solution: 

Steady state single flow: se = si + 
⌡
⌠

i

e
 
dq
T   + sgen = si + 0 + 0 

Adiabatic (dq = 0) means integral vanishes and reversible means sgen = 0, 
so s is constant. Properties for liquid (incompressible) gives Eq.8.19 

    ds = 
C
T dT 

then constant s gives constant T.  
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9.4 
  A reversible adiabatic flow of air in a compressor has increasing P. How about T? 
 
  Solution: 

  Steady state single flow: se = si + 
⌡
⌠

i

e
 
dq
T   + sgen = si + 0 + 0 

  so s is constant. Properties for an ideal gas gives Eq.8.23 and for constant  
  specific heat we get Eq.8.29. A higher P means a higher T, which is also  
  the case for a variable specific heat, recall Eq.8.28 for the standard 

entropy. 
  
 
9.5 
  An irreversible adiabatic flow of liquid water in a pump has higher P. How about  
  T? 
  Solution: 

  Steady state single flow: se = si + 
⌡
⌠

i

e
 
dq
T   + sgen = si + 0 + sgen 

  so s is increasing. Properties for liquid (incompressible) gives Eq.8.19 
where an increase in s gives an increasse in T.  

 
 
9.6 
  A compressor receives R-134a at –10oC, 200 kPa with an exit of 1200 kPa, 50oC. 

What can you say about the process? 
  Solution: 
 
   Properties for R-134a are found in Table B.5 
    Inlet state: si = 1.7328 kJ/kg K 
    Exit state: se = 1.7237 kJ/kg K 

  Steady state single flow: se = si + 
⌡
⌠

i

e
 
dq
T   + sgen  

  Since s decreases slightly and the generation term can only be positive, 
  it must be that the heat transfer is negative (out) so the integral gives a 

contribution that is smaller than -sgen. 
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9.7 
  An air compressor has a significant heat transfer out. See Example 9.4 for how 

high T becomes if no heat transfer. Is that good or should it be insulated? 
   
  Solution: 
 
   A lower T at a given pressure P means the specific volume is smaller, 
      Ideal gas:   Pv = RT ;       
      Shaft work:   w = -∫  v dP 
    This gives a smaller work input which is good. 
 
  
 
9.8 
  A large condenser in a steam power plant dumps 15 MW at 45oC with an ambient 

at 25oC. What is the entropy generation rate? 
  Solution: 
 
   This process transfers heat over a finite temperature difference between 

the water inside the condenser and the outside ambient (cooling water from the 
sea, lake or river or atmospheric air) 

    
 C.V. The wall that separates the inside 45oC 

water from the ambient at 25oC. 
 
Entropy Eq. 9.1 for steady state operation: 
 
 

Condensing
water

Sea
water

cb  
          45oC                 25oC 

   
dS
dt  = 0 = ∑ Q

.

T + S
.
gen = 

Q
.

T45
 − 

Q
.

T25
 + S

.
gen 

 

   S
.
gen = 

15
25 + 273 

MW
K  − 

15
45 + 273 

MW
K  = 3.17 

kW
K  
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9.9 
  Air at 1000 kPa, 300 K is throttled to 500 kPa. What is the specific entropy 

generation? 
   
  Solution: 

C.V. Throttle, single flow, steady state. We neglect kinetic and potential 
energies and there are no heat transfer and shaft work terms. 
Energy Eq. 6.13:       hi = he      ⇒ Ti = Te    (ideal gas) 

Entropy Eq. 9.9: se = si + 
⌡
⌠

i

e
 
dq
T   + sgen = si + sgen 

Change in s Eq.8.24: se − si = 
⌡
⌠

i

e
 Cp

dT
T  − R ln 

Pe
Pi

 = − R ln 
Pe
Pi

 

  sgen = se − si = − 0.287 ln 



500

1000  = 0.2 
kJ

kg K 

 
 
9.10 
 Friction in a pipe flow causes a slight pressure decrease and a slight temperature 

increase. How does that affect entropy? 
  Solution: 
   The friction converts flow work (P drops) into internal energy (T up if 

single phase). This is an irreversible process and s increases. 
 

If liquid:  Eq. 8.19: ds = 
C
T dT      so s follows T 

If ideal gas Eq. 8.23: ds = Cp
dT
T  − R 

dP
P      (both terms increase) 

 
 
9.11 
   A flow of water at some velocity out of a nozzle is used to wash a car. The water 

then falls to the ground. What happens to the water state in terms of V, T and s? 
 
   let us follow the water flow. It starts out with kinetic and potential energy 

of some magnitude at a compressed liquid state P, T. As the water splashes onto 
the car it looses its kinetic energy (it turns in to internal energy so T goes up by a 
very small amount). As it drops  to the ground it then looses all the potential 
energy which goes into internal energy.  Both of theses processes are irreversible 
so s goes up.   

   If the water has a temperature different from the ambient then there will 
also be some heat transfer to or from the water which will affect both T and s. 
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9.12 
  The shaft work in a pump to increase the pressure is small compared to the shaft 

work in an air compressor for the same pressure increase. Why? 
 
   The reversible work is given by Eq. 9.14 or 9.18 if no kinetic or potential 

energy changes 
      w = −∫  v dP 
   The liquid has a very small value for v compared to a large value for a gas. 
 
 
9.13 
  If the pressure in a flow is constant, can you have shaft work? 
 
   The reversible work is given by Eq.9.14 

      w = −∫  v dP + (V2
i  – V2

e) + g (Zi – Ze)  

For a constant pressure the first term drops out but the other two remains. 
Kinetic energy changes can give work out (windmill) and potential energy 
changes can give work out (a dam). 

 
 
9.14 
  A pump has a 2 kW motor. How much liquid water at 15oC can I pump to 250 

kPa from 100 kPa? 
 
  Incompressible flow (liquid water) and we assume reversible. Then the shaftwork 

is from Eq.9.18 
    w = −∫  v dP = −v ∆P = −0.001 m3/kg (250 – 100) kPa  
        = − 0.15 kJ/kg 

    m.  = 
W
.

-w = 
2

0.15 = 13.3 kg/s 
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9.15 
  Liquid water is sprayed into the hot gases before they enter the turbine section of 

a large gasturbine power plant. It is claimed that the larger mass flow rate 
produces more work. Is that the reason? 

 
   No.  More mass through the turbine does give more work, but the added 

mass is only a few percent. As the liquid vaporises the specific volume increases 
dramatically which gives a much larger volume flow throught the turbine and that 
gives more work output. 

    W
.

 = m. w = −m. ∫  v dP = −∫  m. v dP = −∫ V
.
 dP 

 
  This should be seen relative to the small work required to bring the liquid water 

up to the higher turbine inlet pressure from the source of water (presumably 
atmospheric pressure). 

 
 
 
9.16 
  A polytropic flow process with n = 0  might be which device? 
 
  As the polytropic process is Pvn = C, then n = 0 is a constant pressure process. 

This can be a pipe flow, a heat exchanger flow (heater or cooler) or a boiler.  
 
 
9.17 
  A steam turbine inlet is at 1200 kPa, 500oC. The exit is at 200 kPa. What is the 

lowest possible exit temperature? Which efficiency does that correspond to? 
 
   We would expect the lowest possible exit temperature when the maximum 

amount of work is taken out. This happens in a reversible process so if we assume 
it is adiabatic this becomes an isentropic process. 

 
   Exit:  200 kPa, s = sin = 7.6758 kJ/kg K   ⇒    T = 241.9oC  
 
   The efficiency from Eq.9.27 measures the turbine relative to an isentropic 

turbine, so the efficiency will be 100%. 
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9.18 
  A steam turbine inlet is at 1200 kPa, 500oC. The exit is at 200 kPa. What is the 

highest possible exit temperature? Which efficiency does that correspond to? 
 
   The highest possible exit temperature would be if we did not get any work 

out, i.e. the turbine broke down. Now we have a throttle process with constant h 
assuming we do not have a significant exit velocity. 

 
   Exit:  200 kPa, h = hin = 3476.28 kJ/kg   ⇒    T = 495oC  
 

   Efficiency: η = 
w
ws

 = 0 

 
 
 

v

P

s

T

h = Ci
e

i

e

 
 

 

 
 
  Remark:  Since process is irreversible there is no area under curve in T-s diagram 

that correspond to a q, nor is there any area in the P-v diagram corresponding to a 
shaft work. 
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9.19 
  A steam turbine inlet is at 1200 kPa, 500oC. The exit is at 200 kPa, 275oC. What 

is the isentropic efficiency? 
   Inlet: hin = 3476.28 kJ/kg,   sin = 7.6758 kJ/kg K 
   Exit:  hex = 3021.4 kJ/kg,   sex = 7.8006 kJ/kg K 
   Ideal Exit:  200 kPa, s = sin = 7.6758 kJ/kg K   ⇒    hs = 2954.7 kJ/kg  
 
    wac =  hin - hex = 3476.28 – 3021.4 = 454.9 kJ/kg 
    ws = hin - hs = 3476.28 – 2954.7 = 521.6 kJ/kg 

    η = 
wac
ws

 =  
454.9
521.6 = 0.872 

 
 
 

v

P

s

T

i

e ac
i

e ac
e s

e s

200 kPa
1200 kPa

 
 

 

 
 
 
 
 
9.20 
  The exit velocity of a nozzle is 500 m/s. If  ηnozzle = 0.88 what is the ideal exit 

velocity? 
 
  The nozzle efficiency is given by Eq. 9.30 and since we have the actual 

exit velocity we get 
     

   V2
e s = V2

ac/ηnozzle    ⇒  

Ve s = Vac/ ηnozzle = 500 / 0.88 = 533 m/s 
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Steady state reversible processes single flow 
 
9.21 
 A first stage in a turbine receives steam at  10 MPa, 800°C with an exit pressure 

of 800 kPa. Assume the stage is adiabatic and negelect kinetic energies. Find the 
exit temperature and the specific work. 
Solution: 

  
C.V. Stage 1 of turbine. 
The stage is adiabatic so  q = 0 and we will assume 
reversible so   sgen = 0 

 

WT

i e

 
Energy Eq.6.13: wT = hi - he 

Entropy Eq.9.8: se = si + ∫ dq/T + sgen  = si + 0 + 0 

Inlet state: B.1.3:  hi = 4114.9 kJ/kg, si = 7.4077 kJ/kg K 

Exit state: 800 kPa,  s = si    

  Table B.1.3   ⇒ T ≅ 349.7°C, he = 3161 kJ/kg 

wT = 4114.9 – 3161 = 953.9 kJ/kg 
 
 
 

v

P

s

T
i

i

e se s

800 kPa
10 MPa
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9.22 
 Steam enters a turbine at 3 MPa, 450°C, expands in a reversible adiabatic process 

and exhausts at 10 kPa. Changes in kinetic and potential energies between the 
inlet and the exit of the turbine are small. The power output of the turbine is 800 
kW. What is the mass flow rate of steam through the turbine? 

Solution: 

C.V. Turbine, Steady single inlet and exit flows.  Adiabatic:  Q
.
 = 0. 

Continuity Eq.6.11:    m. i = m. e = m. ,          

Energy  Eq.6.12:       m. hi = m. he + W
.

T,     

Entropy Eq.9.8:      m. si + 0/  = m. se       ( Reversible  S
.
gen = 0 ) 

 
  

Explanation for the 
work term is in Sect. 
9.3, Eq.9.18 2

1

P

v

T

s

1

2

 
 
Inlet state:  Table B.1.3    hi = 3344 kJ/kg,  si = 7.0833 kJ/kg K 

Exit state: Pe , se = si  ⇒   Table B.1.2  saturated  as  se  <  sg 

 xe = (7.0833 - 0.6492)/7.501 = 0.8578,  

 he = 191.81 + 0.8578 × 2392.82 = 2244.4 kJ/kg 

 m.  = W
.

T/wT = W
.

T/(hi - he) = 800/(3344 - 2244.4) = 0.728 kg/s 
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9.23 
 A reversible adiabatic compressor receives 0.05 kg/s saturated vapor R-22 at 200 

kPa and has an exit presure of 800 kPa. Neglect kinetic energies and find the exit 
temperature and the minimum power needed to drive the unit. 

Solution: 

C.V. Compressor, Steady single inlet and exit flows.  Adiabatic:  Q
.
 = 0. 

Continuity Eq.6.11:    m. i = m. e = m. ,          

Energy  Eq.6.12:       m
.

hi = m
.

he + W
.

C,     

Entropy Eq.9.8:      m
.

si + 0/  = m
.

se       ( Reversible  S
.
gen = 0 ) 

Inlet state: B 4.2.:    hi = 239.87 kJ/kg,  si = 0.9688 kJ/kg K 

Exit state: Pe , se = si   ⇒  Table B.4.2 he = 274.24 kJ/kg,  Te ≅ 40°C 

–wc = he - hi = 274.24 – 239.87 = 34.37 kJ/kg 

– W
.

c = Power In = –wcm
.

 = 34.37 × 0.05 = 1.72 kW 

 
  

Explanation for the 
work term is in Sect. 
9.3, Eq.9.18 

2

1

P

v

T

s

1

2
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9.24 
 In a heat pump that uses R-134a as the working fluid, the R-134a enters the 

compressor at 150 kPa, −10°C at a rate of 0.1 kg/s. In the compressor the R-134a 
is compressed in an adiabatic process to 1 MPa. Calculate the power input 
required to the compressor, assuming the process to be reversible. 

Solution: 

C.V. Compressor, Steady single inlet and exit flows.  Adiabatic:  Q
.
 = 0. 

Continuity Eq.6.11:    m. 1 = m. 2 = m. ,          

Energy  Eq.6.12:       m. h1 = m. h2 + W
.

C,     

Entropy Eq.9.8:      m. s1 + 0/  = m. s2       ( Reversible  S
.
gen = 0 ) 

Inlet state:  Table B.5.2     h1 = 393.84 kJ/kg,   s1 = 1.7606 kJ/kg K 

Exit state:  P2 = 1 MPa  &  s2 = s1      ⇒     h2 = 434.9 kJ/kg 

 W
.

c = m
.

wc = m
.

(h1 - h2) = 0.1 × (393.84 - 434.9) = -4.1 kW 

 
  

Explanation for the 
work term is in  
Sect. 9.3 
Eq.9.18 

2

1

P

v

T

s

1

2
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9.25 
 A boiler section boils 3 kg/s saturated liquid water at 2000 kPa to saturated vapor 

in a reversible constant pressure process. Assume you do not know that there is 
no work.  Prove that there is no shaftwork using the first and second laws of 
thermodynamics. 

 
Solution: 
C.V. Boiler. Steady, single inlet and single exit flows. 
Energy Eq.6.13: hi + q = w + he;  

Entropy Eq.9.8: si + q/T = se 

States:  Table B.1.2,   T = Tsat = 212.42°C = 485.57 K 

hi = hf = 908.77 kJ/kg, si = 2.4473 kJ/kg K 

he = hg = 2799.51 kJ/kg, se = 6.3408 kJ/kg K 

 q = T(se – si) = 485.57(6.3408 – 2.4473) = 1890.6 kJ/kg 

 w = hi + q – he = 908.77 + 1890.6 – 2799.51 = -0.1 kJ/kg 

It should be zero (non-zero due to round off in values of s, h and Tsat). 

 
 

cb

 

 
 
Often it is a long pipe 
and not a chamber 
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9.26 
 Consider the design of a nozzle in which nitrogen gas flowing in a pipe at 500 

kPa, 200°C, and at a velocity of 10 m/s, is to be expanded to produce a velocity of 
300 m/s. Determine the exit pressure and cross-sectional area of the nozzle if the 
mass flow rate is 0.15 kg/s, and the expansion is reversible and adiabatic. 

Solution: 
C.V. Nozzle. Steady flow, no work out and no heat transfer. 

Energy Eq.6.13: hi + V
2
i /2 = he + V

2
e/2  

Entropy Eq.9.8:   si + ⌡⌠ dq/T + sgen = si + 0 + 0 = se  

Properties Ideal gas Table A.5:    

   CPo = 1.042 
kJ

kg K,  R = 0.2968 
kJ

kg K,   k = 1.40 

 he - hi = CPo(Te - Ti) = 1.042(Te - 473.2) = (102 - 3002)/(2×1000) 

 Solving for exit T:     Te = 430 K,   

Process:   si = se     => For  ideal gas expressed in Eq.8.32 

 Pe = Pi(Te/Ti)
k

k-1 = 500



430

473.2
3.5

 = 357.6 kPa 

 ve = RTe/Pe = (0.2968 × 430)/357.6 = 0.35689 m3/kg 

 Ae = 
.

mve/Ve = 
0.15 × 0.35689

300  = 1.78 ×10-4 m2 

 
 
 

Inlet

V

Exit

V
cb

i e
 

i
P

v

T

s

e

i

e
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9.27 
 Atmospheric air at -45°C, 60 kPa enters the front diffuser of a jet engine with a 

velocity of 900 km/h and frontal area of 1 m2. After the adiabatic diffuser the 
velocity is 20 m/s. Find the diffuser exit temperature and the maximum pressure 
possible. 

Solution: 
C.V. Diffuser, Steady single inlet and exit flow, no work or heat transfer. 

Energy Eq.6.13:      hi + V
2
i /2 = he + V

2
e/2,       and      he −  hi  = Cp(Te − Ti) 

Entropy Eq.9.8:     si + ∫ dq/T + sgen = si + 0 + 0 = se   (Reversible, adiabatic) 

Heat capacity and ratio of specific heats from Table A.5:    CPo = 1.004 
kJ

kg K,   

k = 1.4,   the energy equation then gives: 

 1.004[ Te - (-45)] = 0.5[(900×1000/3600)2 - 202 ]/1000 = 31.05 kJ/kg 

  =>   Te  = −14.05 °C = 259.1 K 

Constant s for an ideal gas is expressed in Eq.8.32: 

       Pe = Pi (Te/Ti)
k

k-1  = 60 (259.1/228.1)3.5 = 93.6 kPa 
 
 

Fan

1
2

 

P

v

T

s

2

1
1

2
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9.28 
 A compressor receives air at 290 K, 100 kPa and a shaft work of 5.5 kW from a 

gasoline engine. It should deliver a mass flow rate of 0.01 kg/s air to a pipeline. 
Find the maximum possible exit pressure of the compressor. 

Solution: 

C.V. Compressor, Steady single inlet and exit flows.  Adiabatic:  Q
.
 = 0. 

Continuity Eq.6.11:    m
.

i = m
.

e = m
.

,          

Energy  Eq.6.12:       m
.

hi = m
.

he + W
.

C,     

Entropy Eq.9.8:      m
.

si + S
.
gen = m

.
se       ( Reversible  S

.
gen = 0 ) 

W
.

c = m
.

wc   =>   -wc = -W
.

/m
.

 = 5.5/0.01 = 550 kJ/kg 

Use constant specific heat from Table A.5,  CPo = 1.004,   k = 1.4     

he = hi + 550   =>   Te = Ti + 550/1.004 

Te = 290 + 550/1.004 = 837.81 K 

si = se     =>   Pe = Pi (Te/Ti)
k

k-1   Eq.8.32 

Pe = 100 × (837.81/290)3.5 = 4098 kPa 
 
 P

v

T

s

e

i
i

e
h = 550 kJ/kg∆

 
-WC

i

e
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9.29 
 A compressor is surrounded by cold R-134a so it works as an isothermal 

compressor. The inlet state is 0°C, 100 kPa and the exit state is saturated vapor. 
Find the specific heat transfer and specific work. 

Solution: 
C.V. Compressor. Steady, single inlet and single exit flows. 
Energy Eq.6.13: hi + q = w + he;  

Entropy Eq.9.8: si + q/T = se 

Inlet state:  Table B.5.2,    hi = 403.4 kJ/kg, si = 1.8281 kJ/kg K 

Exit state:  Table B.5.1,    he = 398.36 kJ/kg, se = 1.7262 kJ/kg K 

 q = T(se – si) = 273.15(1.7262 – 1.8281) = - 27.83 kJ/kg 

 w = 403.4 + (-27.83) – 398.36 = -22.8 kJ/kg 
 
  

Explanation for the 
work term is in Sect. 
9.3 
Eqs. 9.16 and 9.18 

P

v

e

i

e i

T

s  
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9.30 
 A diffuser is a steady-state device in which a fluid flowing at high velocity is 

decelerated such that the pressure increases in the process. Air at 120 kPa, 30°C 
enters a diffuser with velocity 200 m/s and exits with a velocity of 20 m/s. 
Assuming the process is reversible and adiabatic what are the exit pressure and 
temperature of the air? 

 
Solution: 
C.V. Diffuser, Steady single inlet and exit flow, no work or heat transfer. 

Energy Eq.6.13:      hi + V2
i /2 = he + V2

e/2,       =>      he - hi  = CPo(Te - Ti) 

Entropy Eq.9.8:     si + ∫ dq/T + sgen = si + 0 + 0 = se   (Reversible, adiabatic) 

Use constant specific heat from Table A.5,  CPo = 1.004 
kJ

kg K,   k = 1.4     

Energy equation then gives: 

CPo(Te - Ti) = 1.004(Te - 303.2) = (2002 - 202)/(2×1000)    =>    Te = 322.9 K 

The isentropic process (se = si) gives Eq.8.32 

  Pe = Pi(Te/Ti)
k

k-1 = 120(322.9/303.2)3.5 = 149.6 kPa 
 
 P

v

T

s

e

i
i

e

 

Inlet

Low V

Exit

Hi V
Hi P, ALow P, A
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9.31 
 The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with neglible 

kinetic energy. The exit pressure is 80 kPa and the process is reversible and 
adiabatic. Use constant heat capacity at 300 K to find the exit velocity. 

 
Solution: 
C.V. Nozzle, Steady single inlet and exit flow, no work or heat transfer. 

Energy Eq.6.13: hi = he + V2
e/2     ( Zi = Ze ) 

Entropy Eq.9.8: se = si + ∫ dq/T + sgen = si + 0 + 0 

Use constant specific heat from Table A.5,  CPo = 1.004 
kJ

kg K,   k = 1.4     

The isentropic process (se = si) gives Eq.8.32 

=> Te = Ti( Pe/Pi)
k-1
k  = 1200 (80/150) 0.2857  = 1002.7 K 

The energy equation becomes 

V2
e/2 = hi - he ≅ CP( Ti - Te) 

Ve = 2 CP( Ti - Te) = 2×1.004(1200-1002.7) × 1000 = 629.4 m/s 
 
 
 P

v

T

s

e
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9.32 
 Do the previous problem using the air tables in A.7 
 The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with neglible 

kinetic energy. The exit pressure is 80 kPa and the process is reversible and 
adiabatic. Use constant heat capacity at 300 K to find the exit velocity. 

 
Solution: 
C.V. Nozzle, Steady single inlet and exit flow, no work or heat transfer. 

Energy Eq.6.13: hi = he + V2
e/2     ( Zi = Ze ) 

Entropy Eq.9.8: se = si + ∫ dq/T + sgen = si + 0 + 0 

Process:      q = 0,    sgen = 0   as used above leads to   se = si  

Inlet state:  hi = 1277.8 kJ/kg, so
Ti = 8.3460 kJ/kg K 

The constant s is rewritten from Eq.8.28 as 

so
Te = so

Ti + R ln(Pe / Pi) = 8.3460 + 0.287 ln (80/150) = 8.1656 

Interpolate in A.7    =>   

 Te = 1000 + 50 
8.1656 – 8.1349
8.1908 – 8.1349 = 1027.46 K 

he = 1046.2 + (1103.5 – 1046.3) × 
8.1656 – 8.1349
8.1908 – 8.1349 = 1077.7 

From the energy equation we have V2
e/2 = hi - he ,  so then 

Ve = 2 (hi - he) = 2(1277.8 - 1077.7) × 1000 = 632.6 m/s 
 
 
 P
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9.33 
 An expander receives 0.5 kg/s air at 2000 kPa, 300 K with an exit state of 400 

kPa, 300 K. Assume the process is reversible and isothermal. Find the rates of 
heat transfer and work neglecting kinetic and potential energy changes. 

 
 Solution: 
 
 C.V. Expander, single steady flow. 

Energy Eq.:     m
.

hi + Q
.
 = m

.
he + W

.
 

Entropy Eq.: m
.

si + Q
.
/T + m

.
sgen = m

.
se           

Process:   T is constant  and  sgen = 0 
Ideal gas and isothermal gives a change in entropy by Eq. 8.24, so we can 
solve for the heat transfer 

   Q
.
 = Tm

.
(se – si) = –m

.
RT ln 

Pe
Pi

 

       = - 0.5 × 300 × 0.287 × ln 
400
2000 = 69.3 kW 

From the energy equation we get 

   W
.

 = m
.

(hi – he) + Q
.
 = Q

.
 = 69.3 kW 

 
 P

v

T

s

eii

e

 Wexp
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9.34 
 Air enters a turbine at 800 kPa, 1200 K, and expands in a reversible adiabatic 

process to 100 kPa. Calculate the exit temperature and the work output per 
kilogram of air, using 

 a. The ideal gas tables, Table A.7 
 b. Constant specific heat, value at 300 K from table A.5 
 
 Solution: 
 
 
 i 

e

Turbine

air

W
.

 

C.V. Air turbine.   
Adiabatic:  q = 0,   reversible:  sgen = 0 

    Energy Eq.6.13:     wT = hi − he ,     

    Entropy Eq.9.8:    se = si 
     

a) Table A.7:       hi = 1277.8 kJ/kg,   so
Ti  = 8.34596 kJ/kg K 

    The constant s process is written from Eq.8.28 as 

   ⇒ so
Te = so

Ti + R ln( 
Pe
Pi

 ) = 8.34596 + 0.287 ln



100

800   = 7.7492 kJ/kg K 

   Interpolate in A.7.1    ⇒  Te = 706 K,   he = 719.9 kJ/kg 

               w = hi - he = 557.9 kJ/kg 

 
b)   Table A.5:    CPo = 1.004 kJ/kg K,  R = 0.287 kJ/kg K,   k = 1.4,  then 

from Eq.8.32 

Te = Ti (Pe/Pi)
k-1
k  = 1200 



100

800
0.286

 = 662.1 K 

    w = CPo(Ti - Te) = 1.004(1200 - 662.1) = 539.8 kJ/kg 
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9.35 
 A flow of 2 kg/s saturated vapor R-22 at 500 kPa is heated at constant pressure to 

60oC. The heat is supplied by a heat pump that receives heat from the ambient at 
300 K and work input, shown in Fig. P9.35. Assume everything is reversible and 
find the rate of work input. 

 
 Solution: 
 C.V. Heat exchanger 

Continuity Eq.:    m
.

1 = m
.

2 ;           

Energy Eq.:      m
.

1h1 + Q
.

H = m
.

1h2 

Table B.4.2:    
   h1 = 250 kJ/kg,    s1 = 0.9267 kJ/kg K      

   h2 = 293.22 kJ/kg,   s2 = 1.0696 kJ/kg K 

H Q 

W 

L Q 

T L 

HP

1 2

 

       Notice we can find Q
.

H but the temperature TH is not constant making it 
difficult to evaluate the COP of the heat pump. 

 
       C.V. Total setup and assume everything is reversible and steady state. 

         Energy Eq.:      m
.

1h1 + Q
.

L + W
.

 = m
.

1h2 

       Entropy Eq.:  m
.

1s1 + Q
.

L/TL + 0 = m
.

1s2           (TL is constant, sgen = 0) 

   Q
.

L = m
.

1TL [s2 - s1] = 2 × 300 [1.0696 – 0.9267] = 85.74 kW 

   W
.

 = m
.

1[h2 - h1] - Q
.

L = 2 (293.22 – 250) – 85.74 = 0.7 kW 
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9.36 
 A reversible steady state device receives a flow of 1 kg/s air at 400 K, 450 kPa 

and the air leaves at 600 K, 100 kPa. Heat transfer of 800 kW is added from a 
1000 K reservoir, 100 kW rejected at 350 K and some heat transfer takes place at 
500 K. Find the heat transferred at 500 K and the rate of work produced. 

Solution: 
C.V. Device, single inlet and exit flows. 
 

 Energy equation, Eq.6.12: 

        m
.

h1 + Q
.

3 - Q
.

4 + Q
.

5 = m
.

h2 + W
.

 

Entropy equation with zero generation, 
Eq.9.8: 

      m
.

s1 + Q
.

3/T3 - Q
.

4/T4+ Q
.

5 /T5 = m
.

s2 

 

1 2

T T

500 K

3

3

4

4Q Q

W Q5

 
Solve for the unknown heat transfer using Table A.7.1 and Eq. 8.28 for 
change in s  

Q
.

5 = T5  [s2 - s1]m
.

 + 
T5
T4

 Q
.

4  -  
T5
T3

 Q
.

3 

      = 500 ×1 (7.5764 – 7.1593 – 0.287 ln 
100
450 ) + 

500
350 ×100 - 

500
1000 × 800 

      = 424.4 + 142.8 – 400 = 167.2 kW 
Now the work from the energy equation is 

 W
.

 = 1 × (401.3 – 607.3) + 800 – 100 + 167.2 = 661.2 kW 
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Steady state processes multiple devices and cycles 
 
9.37 
 Air at 100 kPa, 17°C is compressed to 400 kPa after which it is expanded through 

a nozzle back to the atmosphere. The compressor and the nozzle are both 
reversible and adiabatic and kinetic energy in and out of the compressor can be 
neglected. Find the compressor work and its exit temperature and find the nozzle 
exit velocity. 

  
 Solution: 
 
 

-W

1

2

1=3

 
T

s1

2

P

P

1

2

 

Separate control volumes around 
compressor and nozzle. For ideal 
compressor we have  
inlet : 1 and exit : 2 
 
   Adiabatic :  q = 0. 
   Reversible:   sgen = 0 
 

 
  Energy Eq.6.13: h1  + 0 = wC  + h2; 

 Entropy Eq.9.8: s1 + 0/T + 0 = s2 

   - wC = h2 - h1 ,    s2 = s1   

Properties Table A.5 air:   CPo = 1.004 kJ/kg K,  R = 0.287 kJ/kg K,   k = 1.4 

Process gives constant s (isentropic) which with constant CPo gives Eq.8.32 

 => T2 = T1( P2/P1)
k-1
k  = 290 (400/100) 0.2857 = 430.9 K 

   ⇒      −wC  = CPo(T2 – T1) = 1.004 (430.9 – 290) = 141.46 kJ/kg 

 
The ideal nozzle then expands back down to P1 (constant s) so state 3 equals 
state 1. The energy equation has no work but kinetic energy and gives: 

  1
2V2 = h2 - h1 = -wC = 141 460 J/kg    (remember conversion to J) 

   ⇒     V3 = 2×141460 =  531.9 m/s 



   Sonntag, Borgnakke and van Wylen 

 
9.38 
 A small turbine delivers 150 kW and is supplied with steam at 700°C, 2 MPa. The 

exhaust passes through a heat exchanger where the pressure is 10 kPa and exits as 
saturated liquid. The turbine is reversible and adiabatic. Find the specific turbine 
work, and the heat transfer in the heat exchanger. 

Solution: 
  

Continuity Eq.6.11:   Steady  

         m
.

1 = m
.

2 = m
.

3 = m
.

   

 WT

1 2
3

-Q

 
Turbine: Energy Eq.6.13:    wT = h1 − h2  

Entropy Eq.9.8:   s2 = s1 + sT gen 

Inlet state:  Table B.1.3       h1 = 3917.45 kJ/kg,    s1 = 7.9487 kJ/kg K 

Ideal turbine    sT gen = 0,   s2 = s1 = 7.9487 = sf2 + x sfg2 

State 3:  P = 10 kPa,  s2 < sg   =>  saturated 2-phase in Table B.1.2 

 ⇒  x2,s = (s1 - sf2)/sfg2 = (7.9487 - 0.6492)/7.501 = 0.9731 

 ⇒  h2,s = hf2 + x hfg2 = 191.8 + 0.9731× 2392.8 = 2520.35 kJ/kg 

    wT,s = h1 − h2,s = 1397.05 kJ/kg 

 m
.

 = W
.

 / wT,s = 150 / 1397 = 0.1074 kg/s 

Heat exchanger:  
  Energy Eq.6.13: q = h3 − h2 ,   

  Entropy Eq.9.8: s3 = s2 + ⌡⌠ dq/T  +  sHe gen 

 q = h3 − h2,s = 191.83 - 2520.35 = -2328.5 kJ/kg 

  Q
.
 = m

.
 q = 0.1074 × (-2328.5) = - 250 kW 

 
  

Explanation for the 
work term is in Sect. 
9.3, Eq.9.18 2

1

P

v

T

s

1

23 3

 



   Sonntag, Borgnakke and van Wylen 

 
9.39 
 One technique for operating a steam turbine in part-load power output is to 

throttle the steam to a lower pressure before it enters the turbine, as shown in Fig. 
P9.39. The steamline conditions are 2 MPa, 400°C, and the turbine exhaust 
pressure is fixed at 10 kPa. Assuming the expansion inside the turbine to be 
reversible and adiabatic, determine 

 a. The full-load specific work output of the turbine 
 b. The pressure the steam must be throttled to for 80% of full-load output 
 c. Show both processes in a T–s diagram. 
  
 Solution: 
 

a) C.V Turbine.  Full load reversible and adiabatic 
    Entropy Eq.9.8 reduces to constant s so from Table B.1.3 and B.1.2 
  s3 = s1 = 7.1271 = 0.6493 + x3a × 7.5009 

   =>     x3a = 0.8636 

  h3a = 191.83 + 0.8636 × 2392.8 = 2258.3 kJ/kg 

 Energy Eq.6.13 for turbine 
  1w3a = h1 - h3a = 3247.6 - 2258.3 = 989.3 kJ/kg 

 
b)  The energy equation for the part load operation and notice that we have 

constant h in the throttle process. 
    wT = 0.80 × 989.3 = 791.4 = 3247.6 - h3b 

    h3b = 2456.2 = 191.83 + x3b × 2392.8     =>     x3b = 0.9463 

    s3b = 0.6492 + 0.9463 × 7.501 = 7.7474 kJ/kg 

 

    


s2b = s3b = 7.7474

h2b = h1 = 3247.6   →   
P2b = 510 kPa
& T2b = 388.4°C 

c) 
 

2b
1= 2a

T

s

3a 3b

h = C

 

    

     
WT

1 2 3
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9.40 
 Two flows of air both at 200 kPa, one has 1 kg/s at 400 K and the other has 2 kg/s 

at 290 K. The two lines exchange energy through a number of ideal heat engines 
taking energy from the hot line and rejecting it to the colder line. The two flows 
then leave at the same temperature. Assume the whole setup is reversible and find 
the exit temperature and the total power out of the heat engines. 

Solution: 
 

HE

H Q 

W 

L Q 

1

2

3

4

HE

H Q 

W 

L Q 

HE

H Q 

W 

L Q 

 

 

C.V. Total setup 

Energy Eq.6.10: m. 1h1 + m. 2h2 = m. 1h3 + m. 2h4 + W
.

TOT 

Entropy Eq.9.7: m
.

1s1 + m
.

2s2 + S
.
gen + ∫ dQ

.
/T   = m. 1s3  + m. 2s4 

Process: Reversible S
.
gen = 0 Adiabatic Q

.
 = 0 

Assume the exit flow has the same pressure as the inlet flow then the pressure 
part of the entropy cancels out and we have 
Exit same T, P  =>    h3 = h4 = he;    s3 = s4 = se 

m
.

1h1 + m
.

2h2 = m
.

TOThe + W
.

TOT 

m
.

1s1 + m
.

2s2 = m
.

TOTse 

se = 
m· 1

m· TOT
 s1  +  

m· 2

m· TOT
 s2 = 

1
3 × 7.1593 + 

2
3 × 6.8352 = 6.9432 

 Table A.7:  => Te ≅ 323 K; he = 323.6 

W
.

TOT  = m
.

1(h1 -  he) + m
.

2 (h2 -  he)  

= 1(401.3 – 323.6) + 2(290.43 – 323.6) =11.36 kW 
 

Note:   The solution using constant heat capacity writes the entropy equation 
using Eq.8.25, the pressure terms cancel out so we get 

 1
3 Cp ln(Te/T1) + 23 Cp ln(Te/T2) = 0     =>  lnTe = (lnT1 + 2 lnT2)/3 



   Sonntag, Borgnakke and van Wylen 

 
9.41 
 A certain industrial process requires a steady supply of saturated vapor steam at 

200 kPa, at a rate of 0.5 kg/s. Also required is a steady supply of compressed air 
at 500 kPa, at a rate of 0.1 kg/s. Both are to be supplied by the process shown in 
Fig. P9.41. Steam is expanded in a turbine to supply the power needed to drive 
the air compressor, and the exhaust steam exits the turbine at the desired state. Air 
into the compressor is at the ambient conditions, 100 kPa, 20°C. Give the required 
steam inlet pressure and temperature, assuming that both the turbine and the 
compressor are reversible and adiabatic. 

Solution: 
 
C.V. Each device. Steady flow.  
Both adiabatic (q = 0) and  
reversible (sgen = 0). 

 

 3
1

4
2

 
  Steam turbine          Air compressor 

 

Compressor: s4 = s3    =>    T4 = T3(P4/P3)
k-1
k  = 293.2



500

100
0.286

 = 464.6 K 

 
.

WC = 
.

m3(h3 - h4) = 0.1 × 1.004(293.2 - 464.6) = -17.2 kW 

Turbine: Energy:   
.

WT = +17.2 kW = 
.

m1(h1 - h2); Entropy:   s2 = s1 

 Table B.1.2:  P2 = 200 kPa, x2 = 1   =>   h2 = 2706.6 kJ/kg,  s2 = 7.1271  

 h1 = 2706.6 + 17.2/0.5 = 2741.0 kJ/kg 

 s1 = s2 = 7.1271 kJ/kg K       At h1, s1 → 
P1 = 242 kPa
T1 = 138.3°C  
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9.42 
 Consider a steam turbine power plant operating near critical pressure, as shown in 

Fig. P9.42.  As a first approximation, it may be assumed that the turbine and the 
pump processes are reversible and adiabatic. Neglecting any changes in kinetic 
and potential energies, calculate 

 a. The specific turbine work output and the turbine exit state 
 b. The pump work input and enthalpy at the pump exit state 
 c. The thermal efficiency of the cycle 
 Solution: 
 

 

WT

QH

QL
.

WP, in

1

2

3

4

 

 
P1 = P4 = 20 MPa 
T1 = 700 °C 
P2 = P3 = 20 kPa 
T3 = 40 °C 
 
 

 
a)   State 1: (P, T)  Table B.1.3     h1 = 3809.1 kJ/kg,   s1 = 6.7993 kJ/kg K 

      C.V. Turbine. 
 Entropy Eq.9.8:       s2 = s1 = 6.7993 kJ/kg K 

 Table B.1.2     s2 = 0.8319 + x2 × 7.0766    =>    x2 = 0.8433 

            h2 = 251.4 + 0.8433× 2358.33 = 2240.1 

            Energy Eq.6.13: wT = h1 - h2 = 1569 kJ/kg 
b)  

State 3:  (P, T)  Compressed liquid, take sat. liq. Table B.1.1 

         h3 = 167.5 kJ/kg,   v3 =  0.001008 m3/kg 

Property relation in Eq.9.13 gives work from Eq.9.18 as 
wP = - v3( P4 - P3) = -0.001008(20000 – 20) = -20.1 kJ/kg 

h4 = h3 - wP = 167.5 + 20.1 = 187.6 kJ/kg 

c)  The heat transfer in the boiler is from energy Eq.6.13 
 qboiler = h1 - h4 = 3809.1 – 187.6 = 3621.5 kJ/kg 

 wnet = 1569 – 20.1 = 1548.9 kJ/kg 

 ηTH = wnet/qboiler = 
1548.9
3621.5 = 0.428 
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9.43 
 A turbo charger boosts the inlet air pressure to an automobile engine. It consists 

of an exhaust gas driven turbine directly connected to an air compressor, as 
shown in Fig. P9.43. For a certain engine load the conditions are given in the 
figure. Assume that both the turbine and the compressor are reversible and 
adiabatic having also the same mass flow rate. Calculate the turbine exit 
temperature and power output. Find also the compressor exit pressure and 
temperature. 

Solution: 
CV: Turbine, Steady single inlet and  exit flows,  
 
Process:    adiabatic: q = 0,      
                 reversible:  sgen = 0 

EnergyEq.6.13:    wT = h3 − h4 ,  

Entropy Eq.9.8:    s4 = s3 

 

 

3

1

4
2

Engine W

Compressor Turbine  
 
The property relation for ideal gas gives Eq.8.32, k from Table A.5    

 s4 = s3  →  T4 = T3(P4/P3)
k-1
k  = 923.2 



100

170
0.286

 = 793.2 K 

The energy equation is evaluated with specific heat from Table A.5  
   wT = h3 − h4 = CP0(T3 - T4) = 1.004(923.2 - 793.2) = 130.5 kJ/kg 

    
.

WT = 
.

mwT = 13.05 kW 

 
C.V. Compressor, steady 1 inlet and 1 exit, same flow rate as turbine.  
 Energy Eq.6.13:     -wC = h2 − h1 ,       

 Entropy Eq.9.8:    s2 = s1 

Express the energy equation for the shaft and compressor having the turbine 
power as input with the same mass flow rate so we get  
      -wC = wT = 130.5 = CP0(T2 - T1) = 1.004(T2 - 303.2) 
        T2 = 433.2 K 
The property relation for s2 = s1 is Eq.8.32 and inverted as  

  P2 = P1(T2/T1)
k

k-1  =  100



433.2

303.2
3.5

 = 348.7 kPa 
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9.44 
 A two-stage compressor having an interstage cooler takes in air, 300 K, 100 kPa, 

and compresses it to 2 MPa, as shown in Fig. P9.44. The cooler then cools the air 
to 340 K, after which it enters the second stage, which has an exit pressure of 
15.74 MPa. Both stages are adiabatic, and reversible. Find q in the cooler, total 
specific work, and compare this to the work required with no intercooler. 

 Solution: 
 

 

  
 
 

C1 C2

1 2 3 4

2-W
·

Q
·1-W

·
cooler
inter-

 

C.V.: Stage 1 air, Steady flow 
Process: adibatic: q = 0,   reversible:  sgen = 0 

Energy Eq.6.13:     -wC1 = h2 − h1 ,      Entropy Eq.9.8:    s2 = s1 

Assume constant CP0 = 1.004 from A.5  and isentropic leads to Eq.8.32 

T2 = T1(P2/P1)
k-1
k  = 300(2000/100) 

0.286
 = 706.7 K 

wC1 = h1 - h2 = CP0(T1 - T2) = 1.004(300 – 706.7) = -408.3 kJ/kg 

 
C.V. Intercooler, no work and no changes in kinetic or potential energy. 

q23 = h3 - h2 = CP0(T3 - T2) = 1.004(340 – 706.7) = -368.2 kJ/kg 

 
C.V. Stage 2. Analysis the same as stage 1. So from Eq.8.32 

T4 = T3(P4/P3)
k-1
k  = 340(15.74/2) 

0.286
 = 613.4 K 

wC2 = h3 - h4 = CP0(T3 - T4) = 1.004(340 – 613.4) = -274.5 kJ/kg 

Same flow rate through both stages so the total work is the sum of the two 
wcomp = wC1 + wC2 = –408.3 – 274.5 = –682.8 kJ/kg 

For no intercooler (P2 = 15.74 MPa) same analysis as stage 1. So Eq.8.32 

T2 = 300(15740/100) 
0.286

 = 1274.9 K 

wcomp = 1.004(300 – 1274.9) = –978.8 kJ/kg 
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9.45 
 A heat-powered portable air compressor consists of three components: (a) an 

adiabatic compressor; (b) a constant pressure heater (heat supplied from an outside 
source); and (c) an adiabatic turbine. Ambient air enters the compressor at 100 kPa, 
300 K, and is compressed to 600 kPa. All of the power from the turbine goes into 
the compressor, and the turbine exhaust is the supply of compressed air. If this 
pressure is required to be 200 kPa, what must the temperature be at the exit of the 
heater? 

 Solution: 
 
 

��������������������������
��������������������������
��������������������������Heater

C T 
q H 

1 

2 3

4 

 

 

P2 = 600 kPa,   P4 = 200 kPa    

Adiabatic and reversible compressor: 
Process:          q = 0   and  sgen = 0 

Energy Eq.6.13:      h − wc = h2  
Entropy Eq.9.8:      s2 = s1 

  
For constant specific heat the isentropic relation becomes Eq.8.32 

T2 = T1





P2

P1

k-1
k  = 300(6)0.2857 = 500.8 K 

−wc = CP0(T2 - T1) = 1.004(500.8 − 300) = 201.5 kJ/kg 

Adiabatic and reversible turbine:      q = 0   and  sgen = 0 

Energy Eq.6.13:      h3 = wT + h4 ; Entropy Eq.9.8:      s4 = s3 

For constant specific heat the isentropic relation becomes Eq.8.32 

  T4 = T3(P4/P3)
k-1
k  = T3(200/600)0.2857 = 0.7304 T3 

Energy Eq. for shaft: −wc = wT = CP0(T3 − T4)        

  201.5 = 1.004 T3(1 − 0.7304)   =>   T3 = 744.4 K 
 
  

2

1
v

T

s

1 300
100 kPa

3
P
2 3

4
200 kPa

600 kPa

4
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9.46 
 A certain industrial process requires a steady 0.5 kg/s supply of compressed air at 

500 kPa, at a maximum temperature of 30°C. This air is to be supplied by 
installing a compressor and aftercooler. Local ambient conditions are 100 kPa, 
20°C. Using an reversible compressor, determine the power required to drive the 
compressor and the rate of heat rejection in the aftercooler. 

 Solution: 
 

Air Table A.5:  R = 0.287 kJ/kg-K,   Cp = 1.004 kJ/kg K,   k = 1.4 

State 1:  T1 = To = 20oC,  P1 = Po = 100 kPa,  m
.

 = 0.5 kg/s 

State 2: P2 = P3 = 500 kPa 

State 3: T3 = 30oC, P3 = 500 kPa 

Compressor: Assume Isentropic (adiabatic  q = 0  and reversible  sgen = 0 ) 
From entropy equation Eq.9.8 this gives constant s which is expressed for an 
ideal gas in Eq.8.32 

  T2 = T1 (P2/P1)
k-1
k  = 293.15 (500/100)0.2857 = 464.6 K 

1st Law Eq.6.13:       qc + h1 = h2 + wc;         qc = 0,  

assume constant specific heat from Table A.5 
  wc = Cp(T1 - T2) = -172.0 kJ/kg 

  W
.

C  = m
.

wC = -86 kW 

Aftercooler Energy Eq.6.13:       q + h2 = h3 + w;    w = 0,  

assume constant specific heat 

  q = Cp(T3 - T2) = -205 kJ/kg,    Q
.
  = m

.
q = -102.5 kW 

 
 
 

1
32

Q cool

Compressor

-Wc  
 
           Compressor section           Aftercooler section 
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Steady state irreversible processes 
 
9.47 
 Analyze the steam turbine described in Problem 6.78. Is it possible? 

Solution: 
 C.V. Turbine. Steady flow and adiabatic. 

Continuity Eq.6.9:    m
.

1 = m
.

2 + m
.

3 ;        

Energy Eq.6.10:      m
.

1h1 = m
.

2h2 + m
.

3h3 + W
.

 

Entropy Eq.9.7:      m
.

1s1 + S
.
gen = m

.
2s2 + m

.
3s3 

 

WT

1
2

3
 

States from Table B.1.3:   s1 = 6.6775,  s2 = 6.9562,   s3 = 7.14413 kJ/kg K 

 S
.
gen = 20×6.9562 + 80×7.14413 - 100×6.6775 = 42.9 kW/K    > 0 

Since it is positive  =>  possible. 
Notice the entropy is increasing through turbine:   s1 < s2 < s3  
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9.48 
 Carbon dioxide at 300 K, 200 kPa is brought through a steady device where it is 

heated to 500 K by a 600 K reservoir in a constant pressure process. Find the 
specific work, specific heat transfer and specific entropy generation. 

 
 Solution: 

C.V. Heater and walls out to the source. Steady single inlet and exit flows. 
Since the pressure is constant and there are no changes in kinetic or potential 
energy between the inlet and exit flows the work is zero. w = 0 

Continuity Eq.6.11: m
.

i = m
.

e = m
.

 

Energy Eq.6.13:  hi + q = he 

Entropy Eq.9.8, 9.23: si + ∫ dq/T + sgen = se = si + q/Tsource + sgen 

Properties are from Table A.8 so the energy equation gives 
 q = he - hi = 401.52 – 214.38 = 187.1 kJ/kg 

From the entropy equation 
 sgen = se - si - q/Tsource = (5.3375 – 4.8631) - 187.1/600  

  = 0.4744 - 0.3118 = 0.1626 kJ/kg K 
 
  

1 2

Q
600 K

 

2
1

P

v

T

s

1 2

T
T
1

2
300

500
600
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9.49 
 Consider the steam turbine in Example 6.6. Is this a reversible process? 

Solution: 
At the given states 
 Table B.1.3: si = 6.9552 kJ/kg K; se = 7.3593 kJ/kg K 

Do the second law for the turbine, Eq.9.8 

m
.

ese = m
.

isi + ∫ dQ
.
/T + S

.
gen  

se = si + ∫ dq/T + sgen  

sgen = se - si - ∫ dq/T = 7.3593 – 6.9552 – (negative) > 0 

Entropy goes up even if q goes out. This is an irreversible process. 
 
 

v

P

s

T

i
i

e ac
e ac

100 kPa

2 MPa
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9.50 
 The throttle process described in Example 6.5 is an irreversible process. Find the 

entropy generation per kg ammonia in the throttling process. 
Solution: 

The process is adiabatic and irreversible. The consideration with the energy 
given in the example resulted in a constant h and two-phase exit flow. 

Table B.2.1: si = 1.2792 kJ/kg K  

Table B.2.1: se = sf + xe sfg = 0.5408 + 0.1638 × 4.9265  

    = 1.34776 kJ/kg K 
We assumed no heat transfer so the entropy equation Eq.9.8 gives 
sgen = se - si - ∫ dq/T = 1.34776 – 1.2792 – 0 = 0.0686 kJ/kg K 

 
  

���
���

1 2

 e

T

s

i
1.5 MPa

291 kPa

h = C
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9.51 
 A geothermal supply of hot water at 500 kPa, 150°C is fed to an insulated flash 

evaporator at the rate of 1.5 kg/s. A stream of saturated liquid at 200 kPa is 
drained from the bottom of the chamber and a stream of saturated vapor at 200 
kPa is drawn from the top and fed to a turbine. Find the rate of entropy generation 
in the flash evaporator. 

Solution: 

Continuity Eq.6.9:    m
.

1 = m
.

2 + m
.

3 

Energy Eq.6.10:  m
.

1h1 = m
.

2h2 + m
.

3h3 

Entropy Eq.9.7:  m
.

1s1 + S
.
gen + ∫ dQ

.
/T   = m

.
2s2 + m

.
3s3 

Process:   Q
.
 = 0,     irreversible (throttle) 

 

 1

2

3

 

      Two-phase out of the 
      valve. The liquid drops 
      to the bottom. 

 

B.1.1  h1 = 632.18 kJ/kg,   s1 = 1.8417 kJ/kg K 

B.1.2  h3 = 2706.63 kJ/kg, s3 = 7.1271 kJ/kg K,   

     h2 = 504.68 kJ/kg,   s2 = 1.53 kJ/kg K 

From the energy equation we solve for the flow rate 

  m
.

3 = m
.

1(h1 - h2)/(h3 - h2) = 1.5 × 0.0579 = 0.08685 kg/s 

Continuity equation gives 

  m
.

2 = m
.

1 - m
.

2 = 1.41315 kg/s 

Entropy equation now leads to 

  S
.
gen = m

.
2s2 + m

.
3s3 - m

.
1s1  

          = 1.41315 × 1.53 + 0.08685 × 7.127 – 1.5 × 1.8417 
          = 0.017 kW/K 

 
 

v

P

s

T

11
3

200 kPa

500 kPa

2
3

2
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9.52 
 Two flowstreams of water, one at 0.6 MPa, saturated vapor, and the other at 0.6 

MPa, 600°C, mix adiabatically in a steady flow process to produce a single flow 
out at 0.6 MPa, 400°C. Find the total entropy generation for this process. 

 Solution: 
 
  1: B.1.2        h1 = 2756.8 kJ/kg,   s1 = 6.760 kJ/kg K 

2: B.1.3        h2 = 3700.9 kJ/kg,   s2 = 8.2674 kJ/kg K 
3: B.1.3        h3 = 3270.3 kJ/kg,   s3 = 7.7078 kJ/kg K 

 

Continuity Eq.6.9:     m
.

3 = m
.

1 + m
.

2,       

Energy Eq.6.10:       m
.

3h3 = m
.

1h1 + m
.

2h2    

 =>   m
.

1/m
.

3 = (h3 – h2) / (h1 – h2) = 0.456 

Entropy Eq.9.7: m
.

3s3 = m
.

1s1 + m
.

2s2 + S
.

gen     =>   

 S
.

gen/m
.

3 = s3 – (m
.

1/m
.

3) s1 – (m
.

2/m
.

3) s2  

   = 7.7078 – 0.456×6.760 – 0.544×8.2674 =  0.128 kJ/kg K 
 
 
 

1

2 3
Mixing
chamber

 

2

T

s
31

600 kPa

 
 
 

The mixing process generates entropy. The two inlet flows could have 
exchanged energy (they have different T) through some heat engines and 
produced work, the process failed to do that, thus irreversible. 
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9.53 
 A condenser in a power plant  receives 5 kg/s steam at 15 kPa, quality 90% and 

rejects the heat to cooling water with an average temperature of 17°C. Find the 
power given to the cooling water in this constant pressure process and the total 
rate of enropy generation when condenser exit is saturated liquid. 

Solution: 
C.V. Condenser. Steady state with no shaft work term. 

Energy Eq.6.12:        m
.

 hi + Q
.
 = m

.
he  

Entropy Eq.9.8:      m
.

 si + Q
.
/T + S

.
gen = m

.
 se 

Properties are from Table B.1.2 
hi = 225.91 + 0.9 × 2373.14 = 2361.74 kJ/kg , he= 225.91 kJ/kg 

si = 0.7548 + 0.9 × 7.2536 = 7.283 kJ/kg K, se = 0.7548 kJ/kg K 

Q
.

out = –Q
.
 = m

.
 (hi – he) = 5(2361.74 – 225.91) = 10679 kW 

S
.

gen = m
.

 (se – si) + Q
.

out/T 

  = 5(0.7548 – 7.283) + 10679/(273 + 17) 
  = –32.641 + 36.824 = 4.183 kW/K 
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9.54 
 A mixing chamber receives 5 kg/min ammonia as saturated liquid at −20°C from 

one line and ammonia at 40°C, 250 kPa from another line through a valve. The 
chamber also receives 325 kJ/min energy as heat transferred from a 40°C 
reservoir. This should produce saturated ammonia vapor at −20°C in the exit line. 
What is the mass flow rate in the second line and what is the total entropy 
generation in the process? 

 
 Solution: 
 

CV: Mixing chamber out to reservoir 

Continuity Eq.6.9:    m
.

1 + m
.

2 = m
.

3 

Energy Eq.6.10:     m
.

1h1 + m
.

2h2 + Q
.
 = m

.
3h3 

Entropy Eq.9.7:  m
.

1s1 + m
.

2s2 + Q
.
/Tres + S

.
gen = m

.
3s3 

 
 

1

2

3

MIXING
CHAMBER Q

.

 

2

P

v31
 

 
From the energy equation: 

 m
.

2 = [(m
.

1(h1 - h3) + Q
. ]/(h3 - h2) 

    = [5 × (89.05 - 1418.05) + 325] / (1418.05 - 1551.7) 

    = 47.288 kg/min   ⇒   m
.

3 = 52.288 kg/min 

 S
.

gen = m
.

3s3 – m
.

1s1 – m
.

2s2 – Q
.
/Tres 

     = 52.288 × 5.6158 – 5 × 0.3657 − 47.288 × 5.9599 − 325/313.15 
       = 8.94 kJ/K min 
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9.55 
 A heat exchanger that follows a compressor receives 0.1 kg/s air at 1000 kPa, 500 

K and cools it in a constant pressure process to 320 K. The heat is absorbed by 
ambient ait at 300 K. Find the total rate of entropy generation. 

Solution: 
C.V. Heat exchanger to ambient, steady constant pressure so no work. 

Energy Eq.6.12:  m
.

hi = m
.

he + Q
.

out 

Entropy Eq.9.8, 9.23:     m
.

si + S
.

gen = m
.

se + Q
.

out/T 

Using Table A.5 and Eq.8.25 for change in s 

 Q
.

out = m
.

(hi – he) = m
.

CPo(Ti – Te) = 0.1 × 1.004(500 – 320) = 18.07 kW 

 S
.

gen = m
.

(se – si) + Q
.

out/T = m
.

CPo ln( Te/Ti ) +  Q
.

out/T 

  = 0.1 × 1.004 ln( 320/500) + 18.07/300 
  = 0.0154 kW/K 
 
Using Table A.7.1 and Eq. 8.28 for change in entropy 

h500 = 503.36 kJ/kg,    h320 = 320.58 kJ/kg;   

sT500 = 7.38692 kJ/kg K, sT320 = 6.93413 kJ/kg K 

 Q
.

out = m
.

(hi – he) = 0.1 (503.36 – 320.58) = 18.28 kW 

 S
.

gen = m
.

(se – si) + Q
.

out/T 

  = 0.1(6.93413 – 7.38692) + 18.28/300 
  = 0.0156 kW/K 
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9.56 
 Air at 327°C, 400 kPa with a volume flow 1 m3/s runs through an adiabatic 

turbine with exhaust pressure of 100 kPa. Neglect kinetic energies and use 
constant specific heats. Find the lowest and highest possible exit temperature. For 
each case find also the rate of work and the rate of entropy generation. 

Solution: 
C.V Turbine. Steady single inlet and exit flows, q = 0. 

Inlet state: (T, P)        vi= RTi/ Pi = 0.287 × 600/400 = 0.4305 m3/kg 

 m
.

 = V
.
/vi = 1/0.4305 = 2.323 kg/s 

The lowest exit T is for maximum work out  i.e. reversible case 
 Process:  Reversible and adiabatic     =>   constant s    from Eq.9.8 

Eq.8.32:        Te = Ti(Pe/Pi)
k-1
k  = 600 × (100/400) 0.2857 = 403.8 K 

 ⇒    w = hi - he = CPo(Ti - Te)  = 1.004 × ( 600 – 403.8) = 197 kJ/kg 

 W
.

T = m
.

w = 2.323 × 197 = 457.6 kW      and        S
.

gen = 0   

Highest exit T occurs when there is no work out, throttling 
 q = ∅;   w = ∅     ⇒   hi - he = 0    ⇒     Te = Ti  = 600 K 

S
.

gen = m
.

 (se - si) =  - m
.

R ln 
Pe
Pi

  = -2.323 × 0.287 ln 
100
400 = 0.924 kW/K 
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9.57 
 In a heat-driven refrigerator with ammonia as the working fluid, a turbine with 

inlet conditions of 2.0 MPa, 70°C is used to drive a compressor with inlet 
saturated vapor at −20°C. The exhausts, both at 1.2 MPa, are then mixed together. 
The ratio of the mass flow rate to the turbine to the total exit flow was measured 
to be 0.62. Can this be true? 

Solution: 
Assume the compressor and the turbine are both adiabatic. 
 

 C.V. Total:   

Continuity Eq.6.11:    m
.

5 = m
.

1 + m
.

3 

Energy Eq.6.10:     m
.

5h5 = m
.

1h1 + m
.

3h3  

Entropy:   m
.

5s5 = m
.

1s1 + m
.

3s3 + S
.

C.V.,gen 

         s5 = ys1 + (1-y)s3 + S
.

C.V.,gen/m
.

5 

Assume    y = m
.

1/m
.

5 = 0.62 

2

4

TurbineCompressor

5

1

3  

State 1:  Table B.2.2 h1 = 1542.7 kJ/kg,   s1 = 4.982 kJ/kg K, 

State 3:  Table B.2.1  h3 = 1418.1 kJ/kg,   s3 = 5.616 kJ/kg K 

Solve for exit state 5 in the energy equation 
 h5 = yh1 + (1-y)h3 = 0.62 × 1542.7 + (1 - 0.62)1418.1 = 1495.4 kJ/kg 

State 5:    h5 = 1495.4 kJ/kg,  P5 = 1200 kPa   ⇒    s5 = 5.056 kJ/kg K 

Now check the 2nd law, entropy generation 
 

 ⇒   S
.

C.V.,gen/m
.

5 = s5 - ys1 - (1-y)s3 = -0.1669 Impossible 
   

 The problem could also have been solved assuming a reversible process 
and then find the needed flow rate ratio y. Then y would have been found 
larger than 0.62 so the stated process can not be true. 
 



   Sonntag, Borgnakke and van Wylen 

 
9.58 
 Two flows of air both at 200 kPa; one has 1 kg/s at 400 K and the other has 2 kg/s 

at 290 K.  The two flows are mixed together in an insulated box to produce a 
single exit flow at 200 kPa. Find the exit temperature and the total rate of entropy 
generation. 

Solution: 
     Continuity Eq.6.9:  

     m
.

1 + m
.

2 = m
.

3 = 1 + 2 = 3 kg/s 

     Energy Eq.6.10: 

            m
.

1h1 + m
.

2h2 = m
.

3h3 

1

2

3

 

 

Entropy Eq.9.7: m
.

1s1 + m
.

2s2 + S
.
gen = m

.
3s3 

 
Using constant specific heats from A.5  and Eq.8.25 for s change. 

 Divide the energy equation with  m
.

3CPo  

 T3 = (m
.

1/m
.

3)T1 + (m
.

2/m
.

3)T2 = 
1
3 × 400 + 

2
3 × 290 = 326.67 K 

 S
.
gen = m

.
1(s3 - s1) + m

.
2(s3 - s2) 

  = 1 × 1.004 ln (326.67/400) + 2 × 1.004 ln (326.67/290) 
  = 0.0358 kW/K 
 
Using A.7.1 and Eq.8.28 for change in s. 

 h3 = (m
.

1/m
.

3)h1 + (m
.

2/m
.

3)h2 = 
1
3 × 401.3 +  

2
3 × 290.43 = 327.39 kJ/kg 

 From A.7.1:   T3 = 326.77 K  sT3
 = 6.9548 kJ/kg K 

 S
.
gen = 1(6.9548 – 7.15926) + 2(6.9548 – 6.83521) 

  = 0.0347 kW/K 
 
  The pressure correction part of the entropy terms cancel out as all three 

states have the same pressure. 
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9.59 
 One type of feedwater heater for preheating the water before entering a boiler 

operates on the principle of mixing the water with steam that has been bled from 
the turbine. For the states as shown in Fig. P9.59, calculate the rate of net entropy 
increase for the process, assuming the process to be steady flow and adiabatic. 

Solution: 
CV: Feedwater heater, Steady flow, no external heat transfer. 

Continuity Eq.6.9:    
.

m1 + 
.

m2 = 
.

m3 

Energy Eq.6.10:  
.

m1h1 + (
.

m3 - 
.

m1)h2 = 
.

m3h3 

Properties: All states are given by (P,T) table B.1.1 and B.1.3 
 h1 = 168.42,  h2 = 2828 ,   h3 = 675.8    all kJ/kg 

 s1 = 0.572,    s2 = 6.694 ,   s3 = 1.9422   all kJ/kg K 

 
 

1

2
3FEED WATER

HEATER
 

2

T

s

3

1

1 MPa

 
 
Solve for the flow rate from the energy equation 

   
.

m1 = 
.

m3(h3 - h2)
(h1 - h2)  = 

4(675.8 - 2828)
(168.42 - 2828) = 3.237 kg/s 

    ⇒     
.

m2 = 4 - 3.237 = 0.763 kg/s 

The second law for steady flow, S
.

CV = 0,  and no heat transfer, Eq.9.7: 

 S
.

C.V.,gen = S
.

SURR = 
.

m3s3 - 
.

m1s1 - 
.

m2s2 

         = 4(1.9422) - 3.237(0.572) - 0.763(6.694)  = 0.8097 kJ/K s 
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9.60 
 A supply of 5 kg/s ammonia at 500 kPa, 20°C is needed. Two sources are 

available one is saturated liquid at 20°C and the other is at 500 kPa and 140°C. 
Flows from the two sources are fed through valves to an insulated mixing 
chamber, which then produces the desired output state. Find the two source mass 
flow rates and the total rate of entropy generation by this setup. 

Solution: 
C.V. mixing chamber + valve. Steady, no heat transfer, no work. 

Continuity Eq.6.9:    m
.

1 + m
.

2 = m
.

3;         

Energy Eq.6.10:       m
.

1 h1 + m
.

2h2 = m
.

3h3 

Entropy Eq.9.7:    m
.

1 s1 + m
.

2s2 + S
.
gen = m

.
3s3 

 
 

1

2
3MIXING

CHAMBER
 

2

T

s

31

 
 
State 1: Table B.2.1      h1 = 273.4 kJ/kg,  s1= 1.0408 kJ/kg K 

State 2: Table B.2.2      h2 = 1773.8 kJ/kg, s2 = 6.2422 kJ/kg K 

State 3: Table B.2.2      h3= 1488.3 kJ/kg, s3= 5.4244 kJ/kg K 

As all states are known the energy equation establishes the ratio of mass flow 
rates and the entropy equation provides the entropy generation. 

m
.

1 h1 +( m
.

3 - m
.

2)h2 = m
.

3h3      =>      m
.

1 = m
.

3 
h3 - h2
h1 - h2

 = 0.952 kg/s 

m
.

2  = m
.

3 -  m
.

1 = 4.05 kg/s 

S
.
gen= 5 × 5.4244 – 0.95 ×1.0408 – 4.05 × 6.2422 = 0.852 kW/K 
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9.61 
 A counter flowing heat exchanger has one line with 2 kg/s at 125 kPa, 1000 K 

entering and the air is leaving at 100 kPa, 400 K. The other line has 0.5 kg/s water 
coming in at 200 kPa, 20°C and leaving at 200 kPa. What is the exit temperature 
of the water and the total rate of entropy generation? 

Solution: 
  

C.V. Heat exchanger, steady flow 1 inlet 
and 1 exit for air and water each. The 
two flows exchange energy with no heat 
transfer to/from the outside. 
 

3 water1 air

4
2

 

Energy Eq.6.10: m
.

AIR∆hAIR = m
.

H2O∆hH2O 

From A.7:  h1 - h2 = 1046.22 – 401.3 = 644.92 kJ/kg 

From B.1.2 h3 = 83.94 kJ/kg; s3 = 0.2966 kJ/kg K 

h4 - h3 = (m
.

AIR/m
.

H2O)(h1 - h2) = (2/0.5)644.92 = 2579.68 kJ/kg 

h4 = h3 + 2579.68 = 2663.62 kJ/kg  <  hg     at 200 kPa 

T4 = Tsat = 120.23°C,    

x4 = (2663.62 – 504.68)/2201.96 = 0.9805,  

s4 = 1.53 + x4 5.597 =  7.01786 kJ/kg K 

From entropy Eq.9.7 

S
.

gen = m
.

H2O (s4 - s3) + m
.

AIR(s2 - s1) 

        = 0.5(7.01786 – 0.2966) + 2(7.1593 – 8.1349 – 0.287 ln (100/125)) 
        = 3.3606 – 1.823 = 1.54 kW/K 
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9.62 
 A coflowing (same direction) heat exchanger has one line with 0.25 kg/s oxygen 

at 17°C, 200 kPa entering and the other line has 0.6 kg/s nitrogen at 150 kPa, 500 
K entering. The heat exchanger is very long so the two flows exit at the same 
temperature. Use constant heat capacities and find the exit temperature and the 
total rate of entropy generation. 

Solution: 
 
C.V. Heat exchanger, 
steady 2 flows in and 
two flows out. 

 

1

3

2

4

 

 

Energy Eq.6.10: m
.

O2h1 + m
.

N2h3 = m
.

O2h2 + m
.

N2h4 

Same exit temperature so  T4 = T2 with values from Table A.5 

 

  m
.

O2CP O2T1 + m
.

N2CP N2T3 = (m
.

O2CP O2 + m
.

N2CP N2)T2 

        T2 = 
0.25 × 0.922× 290 + 0.6 × 1.042 × 500

0.25 × 0.922 + 0.6 × 1.042  = 
379.45
0.8557 

  = 443.4 K 
Entropy Eq.9.7 gives for the generation 

S
.

gen = m
.

O2(s2 - s1)   + m
.

N2(s4 - s3) 

 = m
.

O2CP ln (T2/T1) + m
.

N2CP ln (T4/T3) 

 = 0.25 × 0.922 ln (443.4/290) + 0.6 × 1.042 ln (443.4/500) 
 = 0.0979 – 0.0751 = 0.0228 kW/K 
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Transient processes 
 
9.63 
 Calculate the specific entropy generated in the filling process given in Example 

6.11. 
Solution: 
C.V. Cannister filling process where:   1Q2 = 0 ;  1W2 = 0 ;  m1 = 0 

Continuity Eq.6.15:   m2 - 0 = min ;     

Energy Eq.6.16:   m2u2 - 0 = minhline + 0 + 0    ⇒    u2 = hline 

Entropy Eq.9.12:   m2s2 - 0 = minsline + 0 + 1S2 gen   

Inlet state : 1.4 MPa,  300°C,  hi = 3040.4 kJ/kg,  si = 6.9533 kJ/kg K 

final state: 1.4 MPa,  u2 = hi = 3040.4 kJ/kg 

  =>  T2 = 452°C,  s2 = 7.45896 kJ/kg K 

 1S2 gen = m2(s2 - si) 

 1s2 gen = s2 - si = 7.45896 – 6.9533 = 0.506 kJ/kg K 

 
  

          

2line

T

s
 

 



   Sonntag, Borgnakke and van Wylen 

 
9.64 
 Calculate the total entropy generated in the filling process given in Example 6.12. 

Solution: 
Since the solution to the problem is done in the example we will just add the 
second law analysis to that. 
 
Initial state:  Table B.1.2:    s1 = 6.9404 kJ/kg K 

Final state:  Table B.1.3: s2 = 6.9533 + 
42
50 × (7.1359 – 6.9533) = 7.1067 

kJ
kg K 

Inlet state:  Table B.1.3:     si = 6.9533 kJ/kg K 

Entropy Eq.9.12:  m2s2 − m1s1 = misi + 1S2 gen 

Now solve for the generation 

1S2 gen = m2s2 − m1s1 - misi 

 = 2.026 × 7.1067 – 0.763 × 6.9404 – 1.263 × 6.9533 
 = 0.32 kJ/K   > 0 
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9.65 
 An initially empty 0.1 m3 cannister is filled with R-12 from a line flowing 

saturated liquid at −5°C. This is done quickly such that the process is adiabatic. 
Find the final mass, liquid and vapor volumes, if any, in the cannister. Is the 
process reversible? 

Solution: 
C.V. Cannister filling process where:   1Q2 = 0/  ;  1W2 = 0/  ;  m1 = 0/  

Continuity Eq.6.15:   m2 - 0/  = min ;     

Energy Eq.6.16:   m2u2 - 0/  = minhline + 0/  + 0/     ⇒    u2 = hline 

 2: P2 = PL ;  u2 = hL ⇒   2 phase   u2 > uf ;    u2 = uf + x2ufg 

Table B.3.1:      uf = 31.26 ;  ufg = 137.16 ;  hf = 31.45    all kJ/kg 

 x2 = (31.45 -31.26)/137.16 = 0.001385  

  ⇒  v2 = vf + x2vfg = 0.000708 + 0.001385×0.06426 = 0.000797 m3/kg 

     ⇒ m2 = V/v2 = 125.47 kg ;   mf = 125.296 kg;  mg = 0.174 kg 

 Vf = mfvf = 0.0887 m3;     Vg = mgvg = 0.0113 m3 

 Process is irreversible (throttling)  s2 > sf 

 
 

���

line

 

 

2

line

T

s
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9.66 
 A 1-m3 rigid tank contains 100 kg R-22 at ambient temperature, 15°C. A valve on 

top of the tank is opened, and saturated vapor is throttled to ambient pressure, 100 
kPa, and flows to a collector system. During the process the temperature inside the 
tank remains at 15°C. The valve is closed when no more liquid remains inside. 
Calculate the heat transfer to the tank and total entropy generation in the process. 

Solution: 
C.V. Tank out to surroundings. Rigid tank so no work term. 
Continuity Eq.6.15:      m2 - m1 = − me ;   

Energy Eq.6.16:    m2u2 - m1u1 = QCV − mehe 

Entropy Eq.9.12:   m2s2 - m1s1 = QCV/TSUR − mese + Sgen 

State 1:  Table B.3.1,     v1 = V1/m1 = 1/100 = 0.000812 + x1 0.02918 
  x1 = 0.3149,      u1 = 61.88 + 0.3149 × 169.47 = 115.25 kJ/kg 

  s1 = 0.2382 + 0.3149 × 0.668 = 0.44855;       he = hg = 255.0 kJ/kg 

State 2:  v2 = vg = 0.02999,  u2 = ug = 231.35,   s2 = 0.9062 kJ/kg K 

Exit state:   he = 255.0, Pe = 100 kPa   →   Te = -4.7°C,   se = 1.0917 

  m2 = 1/0.02999 = 33.34 kg;     me = 100 - 33.34 = 66.66 kg 

 QCV = m2u2 - m1u1 + mehe 

        = 33.34×231.35 - 100×115.25 + 66.66×255 = 13 186 kJ 
 ∆SCV   = m2s2 - m1s1 = 33.34(0.9062) - 100(0.44855) = -14.642 

 ∆SSUR = − QCV/TSUR + mese = -13186/288.2 + 66.66(1.0917) = +27.012 

 Sgen = ∆SNET  = -14.642 + 27.012 = +12.37 kJ/K 
 
 

e

Q

sat vap

cv  

 

789

P

1 2
e

v

T

1 2
e

s

h = C P = C
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9.67 
 Air in a tank is at 300 kPa, 400 K with a volume of 2 m3. A valve on the tank is 

opened to let some air escape to the ambient to a final pressure inside of 200 kPa. 
Find the final temperature and mass assuming a reversible adiabatic process for 
the air remaining  inside the tank. 

Solution: 
C.V. Total tank. 
Continuity Eq.6.15: m2 – m1 = –mex 

Energy Eq.6.16:  m2u2 – m1u1 = –mexhex + 1Q2 - 1W2 

Entropy Eq.9.12:     m2s2 – m1s1 = –mexsex + ∫ dQ/T + 1S2 gen 

Process:  Adiabatic   1Q2 = 0; rigid tank    1W2 = 0 

  This has too many unknowns (we do not know state 2). 
C.V.  m2 the mass that remains in the tank. This is a control mass. 

Energy Eq.5.11:  m2(u2 – u1) = 1Q2 - 1W2 

Entropy Eq.8.14:  m2(s2 – s1) =  ∫ dQ/T + 1S2 gen 

Process:  Adiabatic   1Q2 = 0; Reversible   1S2 gen = 0 

   ⇒ s2 = s1 

Ideal gas and process  Eq.8.32 

 T2 = T1





P2

P1

k-1
k   = 400(200/300)0.2857 = 356.25 K 

   m2 = 
P2V
RT2

  = 
200 × 2

0.287 × 356.25  = 3.912 kg 

 
  

Notice that the 
work term is not 
zero for mass m2. 
The work goes 
into pushing the 
mass mex out. 

cb

m2
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9.68 
 An empty cannister of 0.002 m3 is filled with R-134a from a line flowing 

saturated liquid R-134a at 0°C.  The filling is done quickly so it is adiabatic.  Find 
the final mass in the cannister and the total entropy generation. 

Solution: 
C.V. Cannister filling process where:   1Q2 = 0/  ;  1W2 = 0/  ;  m1 = 0/  

Continuity Eq.6.15:   m2 - 0/  = min ;     

Energy Eq.6.16:   m2u2 - 0/  = minhline + 0/  + 0/     ⇒    u2 = hline 

Entropy Eq.9.12:   m2s2 - 0/  = minsline + 0/  + 1S2 gen   

Inlet state: Table B.5.1     hline = 200 kJ/kg,     sline = 1.0 kJ/kg K 

State 2: P2 = Pline    and    u2 = hline = 200 kJ/kg > uf 

  x2 = (200 – 199.77) / 178.24 = 0.00129 

  v2 = 0.000773 + x2 0.06842 = 0.000861 m3/kg 

  s2 = 1.0 + x2 0.7262 = 1.000937 kJ/kg K 
m2 = V / v2 = 0.002/0.000861 = 2.323 kg 

 1S2 gen = m2(s2 - sline) = 2.323 (1.00094 – 1) = 0.0109 kJ/K 
 
  

          
2

line

T

s
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9.69 
 An old abandoned saltmine, 100 000 m3 in volume, contains air at 290 K, 100 

kPa. The mine is used for energy storage so the local power plant pumps it up to 
2.1 MPa using outside air at 290 K, 100 kPa. Assume the pump is ideal and the 
process is adiabatic. Find the final mass and temperature of the air and the 
required pump work.  

Solution: 
C.V. The mine volume and the pump  
Continuity Eq.6.15:       m2 - m1 = min 

Energy Eq.6.16:   m2u2 - m1u1 = 1Q2 - 1W2 + minhin 

Entropy Eq.9.12:     m2s2 - m1s1 = ⌡⌠dQ/T + 1S2 gen + minsin 

Process:  Adiabatic    1Q2 = 0 , Process ideal      1S2 gen = 0 ,   s1 = sin 

 ⇒  m2s2 = m1s1 + minsin = (m1 + min)s1 = m2s1  ⇒  s2 = s1 

Constant  s  ⇒        Eq.8.28  so
T2 = so

Ti + R ln(P2 / Pin) 

so
T2 = 6.83521 + 0.287 ln( 21 ) = 7.7090 kJ/kg K 

  A.7    ⇒  T2 = 680 K ,  u2 = 496.94 kJ/kg 

 m1 = P1V1/RT1 = 100×105/(0.287 × 290) = 1.20149 × 105 kg 

 m2 = P2V2/RT2 = 100 × 21×105/(0.287 × 680) = 10.760 × 105 kg 

   ⇒  min = 9.5585×105 kg 

 1W2 = minhin + m1u1 - m2u2 

     = min(290.43) + m1(207.19) - m2(496.94) = -2.322 × 108 kJ 

 
  

2

1, i

P

v

T

s
1, i

2
T2

290
400

s = C

100 kPa
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9.70 
 Air in a tank is at 300 kPa, 400 K with a volume of 2 m3. A valve on the tank is 

opened to let some air escape to the ambient to a final pressure inside of 200 kPa. 
At the same time the tank is heated so the air remaining has a constant 
temperature. What is the mass average value of the s leaving assuming this is an 
internally reversible process? 

Solution: 
C.V. Tank, emptying process with heat transfer. 
Continuity Eq.6.15: m2 - m1 = -me 

Energy Eq.6.16:  m2u2 - m1u1 = -mehe + 1Q2 

Entropy Eq.9.12:     m2s2 - m1s1 = -mese + 1Q2/T + 0 

Process:  T2 = T1 =>  1Q2 in at 400 K 

   Reversible 1S2 gen = 0 

State 1: Ideal gas    m1 = P1V/RT1 = 300 × 2/0.287 × 400 = 5.2265 kg 

State 2:   200 kPa,  400 K 
m2 = P2V/RT2 = 200 × 2/0.287 × 400 = 3.4843 kg 

=> me = 1.7422 kg 

From the energy equation: 
  1Q2 = m2u2 - m1u1 +  mehe  

       = 3.4843 × 286.49 – 5.2265 × 286.49 + 1.7422 × 401.3 
      = 1.7422(401.3 – 286.49) = 200 kJ 

mese =  m1s1- m2s2 + 1Q2/T  

  = 5.2265[7.15926 – 0.287 ln (300/100)] – 3.4843[7.15926  
 – 0.287 ln (200/100)] + (200/400) 

mese = 35.770 – 24.252 + 0.5 = 12.018 kJ/K 

se = 12.018/1.7422 = 6.89817 = 6.8982 kJ/kg K 

Note that the exit state e in this process is for the air before it is throttled 
across the discharge valve. The throttling process from the tank pressure to 
ambient pressure is a highly irreversible process. 
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9.71 
 An insulated 2 m3 tank is to be charged with R-134a from a line flowing the 

refrigerant at 3 MPa. The tank is initially evacuated, and the valve is closed when 
the pressure inside the tank reaches 3 MPa. The line is supplied by an insulated 
compressor that takes in R-134a at 5°C, quality of 96.5 %, and compresses it to 3 
MPa in a reversible process. Calculate the total work input to the compressor to 
charge the tank. 

Solution: 
C.V.: Compressor, R-134a. Steady 1 inlet and 1 exit flow, no heat transfer. 

1st Law Eq.6.13:        qc + h1 = h1 = h2 + wc        

Entropy Eq.9.8:   s1 + ∫ dq/T + sgen =  s1 + 0 = s2 

inlet: T1 = 5oC, x1 = 0.965 use Table B.5.1 

 s1 = sf + x1sfg = 1.0243 + 0.965×0.6995 = 1.6993 kJ/kg K,   

  h1 = hf + x1hfg = 206.8 + 0.965×194.6 = 394.6 kJ/kg 

exit: P2 = 3 MPa 

From the entropy eq.:       s2 = s1 = 1.6993 kJ/kg K; 

    T2 = 90oC,    h2 = 436.2 kJ/kg 

    wc = h1 - h2 = -41.6 kJ/kg 

C.V.: Tank; VT = 2 m3, PT = 3 MPa 

1st Law Eq.6.16:          Q + mihi = m2u2 - m1u1 + mehe + W;  

Process and states have:  Q = 0,  W = 0,   me = 0,  m1 = 0,  m2 = mi 

   u2 = hi = 436.2 kJ/kg 

Final state:  PT = 3 MPa, u2 = 436.2 kJ/kg  

   TT = 101.9oC, vT = 0.006783 m3/kg 

  mT = VT/vT = 294.84 kg;         

The work term is from the specific compressor work and the total mass 
      -Wc = mT(-wc) = 12 295 kJ 
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9.72 
 An 0.2 m3 initially empty container is filled with water from a line at 500 kPa, 

200°C until there is no more flow. Assume the process is adiabatic and find the 
final mass, final temperature and the total entropy generation. 

Solution: 
C.V. The container volume and any valve out to line.  
Continuity Eq.6.15:       m2 - m1 = m2 = mi 

Energy Eq.6.16:     m2u2 - m1u1 = m2u2 = 1Q2 - 1W2 + mihi = mihi 

Entropy Eq.9.12:     m2s2 - m1s1 = m2s2 = ⌡⌠dQ/T + 1S2 gen + misi 

Process:  Adiabatic  1Q2 = 0 ,  Rigid    1W2 = 0    Flow stops  P2 = Pline 

State i: hi = 2855.37 kJ/kg;  si = 7.0592 kJ/kg K 

State 2: 500 kPa,   u2 = hi = 2855.37 kJ/kg     =>   Table B.1.3 

T2 ≅ 332.9°C ,     s2 = 7.5737 kJ/kg,      v2 = 0.55387 m3/kg     

m2 = V/v2 = 0.2/0.55387 = 0.361 kg 

From the entropy equation 
  1S2 gen = m2s2 - m2si 

   = 0.361(7.5737 – 7.0592) = 0.186 kJ/K 
 
  

        

2line

T
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9.73 
 Air from a line at 12 MPa, 15°C, flows into a 500-L rigid tank that initially 

contained air at ambient conditions, 100 kPa, 15°C. The process occurs rapidly 
and is essentially adiabatic. The valve is closed when the pressure inside reaches 
some value, P2. The tank eventually cools to room temperature, at which time the 
pressure inside is 5 MPa. What is the pressure P2? What is the net entropy change 
for the overall process? 

Solution: 
CV: Tank. Mass flows in, so this is transient. Find the mass first 

 
m1 = P1V/RT1 = 

100 × 0.5
0.287 × 288.2 = 0.604 kg 

Fill to P2, then cool to T3 = 15°C, P3 = 5 MPa 

      m3 = m2 = P3V/RT3  

           = 
5000 × 0.5

0.287 × 288.2 = 30.225 kg 

 
T

s
100 kPa5 MPa

v = C
2 112 MPa

3line

 
Mass: mi = m2 - m1 = 30.225 - 0.604 = 29.621 kg 

In the process 1-2 heat transfer = 0 
1st law Eq.6.16:      mihi = m2u2 - m1u1  ;      miCP0Ti = m2CV0T2 - m1CV0T1 

    T2 = 
(29.621×1.004 + 0.604×0.717)×288.2

30.225 × 0.717  = 401.2 K 

    P2 = m2RT2/V = (30.225 × 0.287 × 401.2)/0.5 = 6.960 MPa 

Consider now the total process from the start to the finish at state 3. 
 
Energy Eq.6.16: QCV + mihi = m2u3 - m1u1 = m2h3 - m1h1 - (P3 - P1)V 

 But, since Ti = T3 = T1,     mihi = m2h3 - m1h1 

 ⇒ QCV = -(P3 - P1)V = -(5000 - 100)0.5 = -2450 kJ 

From Eqs.9.24-9.26 
 ∆SNET = m3s3 - m1s1 - misi - QCV/T0 = m3(s3 - si) - m1(s1 - si) - QCV/T0 

       = 30.225[0-0.287 ln 
5
12]- 0.604[0-0.287 ln 

0.1
12] + (2450 / 288.2) 

       = 15.265 kJ/K 
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9.74 
 An initially empty canister of volume 0.2 m3 is filled with carbon dioxide from a 

line at 1000 kPa, 500 K. Assume the process is adiabatic and the flow continues  
until it stops by itself. Use constant heat capacity to solve for the final mass and 
temperature of the carbon dioxide in the canister and the total entropy generated 
by the process. 

Solution: 
C.V. Cannister + valve out to line. No boundary/shaft work, m1 = 0; Q = 0. 

Continuity Eq.6.15:     m2 − 0 = mi    

Energy Eq.6.16:      m2 u2 − 0 = mi hi 

Entropy Eq.9.12:  m2s2 − 0 = misi + 1S2 gen 

State 2:  P2 = Pi  and  u2 = hi = hline = h2 − RT2       (ideal gas) 

To reduce or eliminate guess use:     h2 − hline = CPo(T2 − Tline) 

Energy Eq. becomes:      CPo(T2 − Tline) − RT2 = 0     

  T2 = Tline CPo/(CPo − R) = Tline CPo/CVo = k Tline  

Use A.5:  CP  = 0.842 
kJ

kg K, k = 1.289  => T2 = 1.289×500 = 644.5 K  

 m2 = P2V/RT2 = 1000×0.2/(0.1889×644.5) = 1.643 kg 

 1S2 gen = m2 (s2 − si) = m2[ CP ln(T2 / Tline) − R ln(P2 / Pline)]  

  = 1.644[0.842×ln(1.289) - 0] = 0.351 kJ/K 
 

If we use A.8 at 550 K:  CP = 1.045 
kJ

kg K,   k = 1.22 

   => T2 = 610 K, m2 = 1.735 kg 
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9.75 
 A cook filled a pressure cooker with 3 kg water at 20°C and a small amount of air 

and forgot about it. The pressure cooker has a vent valve so if P > 200 kPa steam 
escapes to maintain a pressure of 200 kPa. How much entropy was generated in 
the throttling of the steam through the vent to 100 kPa when half the original mass 
has escaped? 

 
 Solution: 
 
 The pressure cooker goes through a transient process as it heats water up to the 

boiling temperature at 200 kPa then heats more as saturated vapor at 200 kPa 
escapes. The throttling process is steady state as it flows from saturated vapor at 
200 kPa to 100 kPa which we assume is a constant h process. 

 
 C.V. Pressure cooker, no work. 

Continuity Eq.6.15:     m2 − m1 = −me    

Energy Eq.6.16:      m2 u2 − m1u1 = −me he + 1Q2  

Entropy Eq.9.12:  m2s2 − m1s1 = −me se + ∫ dQ/T + 1S2 gen 
 

State 1:  v1 = vf = 0.001002 m3/kg     V = m1v1 = 0.003006 m3 

State 2:  m2 = m1/2 = 1.5 kg,  v2 = V/m2 = 2v1, P2 = 200 kPa 

Exit:       he = hg = 2706.63 kJ/kg,  se = sg = 7.1271 kJ/kg K 
 So we can find the needed heat transfer and entropy generation if we know the 

C.V. surface temperature T. If we assume T for water then 1S2 gen = 0, which is  
an internally reversible externally irreversible process, there is a ∆T between the 
water and the source. 

 
 C.V. Valve, steady flow from state e (200 kPa) to state 3 (at 100 kPa). 

Energy Eq.: h3 = he   

Entropy Eq.:     s3 = se + es3 gen       generation in valve (throttle) 

State 3:  100 kPa, h3 = 2706.63 kJ/kg    Table B.1.3  ⇒ 

 T3 = 99.62 + (150-99.62) 
2706.63 - 2675.46
2776.38 - 2675.46 = 115.2°C 

 s3 = 7.3593 + (7.6133 – 7.3593) 0.30886 = 7.4378 kJ/kg K 

 eS3 gen = me(s3 – se) = 1.5 (7.4378 – 7.1271) = 0.466 kJ/K 
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Reversible shaft work, Bernoulli equation 
 
 
9.76 
 A large storage tank contains saturated liquid nitrogen at ambient pressure, 100 

kPa; it is to be pumped to 500 kPa and fed to a pipeline at the rate of 0.5 kg/s. 
How much power input is required for the pump, assuming it to be reversible? 

Solution: 
C.V. Pump, liquid is assumed to be incompressible. 

 Table B.6.1 at Pi = 101.3 kPa ,   vFi = 0.00124 m3/kg 

 
 Eq.9.18 

wPUMP = - wcv = ⌡⌠vdP  ≈  vFi(Pe - Pi) 

   = 0.00124(500 - 101) = 0.494 kJ/kg 
 

i
e

liquid
nitrogen

 
 

   
.

WPUMP = 
.

mwPUMP = 0.5 kg/s (0.494 kJ/kg) = 0.247 kW 
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9.77 
 Liquid water at ambient conditions, 100 kPa, 25°C, enters a pump at the rate of 

0.5 kg/s. Power input to the pump is 3 kW. Assuming the pump process to be 
reversible, determine the pump exit pressure and temperature. 

 Solution: 
C.V. Pump. Steady single inlet and exit flow with no heat transfer. 

Energy Eq.6.13:    w = hi − he = 
.

W/
.

m = -3/0.5 = - 6.0 kJ/kg 

Using also incompressible media we can use Eq.9.18 

  w = − ⌡⌠vdP ≈ −vi(Pe − Pi) = −0.001003(Pe − 100) 

from which we can solve for the exit pressure 
  Pe = 100 + 6.0/0.001003 = 6082 kPa = 6.082 MPa 

 
 

-W
. 

e

i

Pump

 

 

     -
.

W = 3 kW,   Pi = 100 kPa 

      Ti = 25°C ,  
.

m = 0.5 kg/s 
       

 
Energy Eq.:  he = hi − w = 104.87 − (−6) = 110.87 kJ/kg 

Use Table B.1.4 at 5 MPa  =>     Te = 25.3°C 

 
Remark: 

If we use the software we get:     


si = 0.36736 = se

At se & Pe
 → Te = 25.1°C 
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9.78 
 A small dam has a pipe carrying liquid water at 150 kPa, 20°C with a flow rate of 

2000 kg/s in a 0.5 m diameter pipe. The pipe runs to the bottom of the dam 15 m 
lower into a turbine with pipe diameter 0.35 m. Assume no friction or heat 
transfer in the pipe and find the pressure of the turbine inlet. If the turbine 
exhausts to 100 kPa with negligible kinetic energy what is the rate of work? 

Solution: 
C.V. Pipe. Steady flow no work, no heat transfer. 
 

  

1

2 Turbine 3
DAM

 
 

States:  compressed liquid  B.1.1     v2 ≈ v1 ≈ vf  = 0.001002 m3/kg 

Continuity Eq.6.3:   m
.

 = ρ AV = AV/v  

 V1  =  m
.

v1 /A1  = 2000 × 0.001002 / ( π4 0.52 ) = 10.2 m s-1 

 V2  =  m
.

v2 /A2 = 2000 × 0.001002 / ( π4 0.352) = 20.83 m s-1 

From Bernoulli Eq.9.17 for the pipe (incompressible substance): 

 v(P2 − P1) + 12 (V2
2 − V2

1)  + g (Z2 – Z1  ) = ∅ ⇒ 

 P2 = P1 + [1
2 (V2

1 − V2
2) + g (Z1 – Z2)]/v  

      = 150 + [1
2×10.22 - 12× 20.832  + 9.80665 × 15]/(1000 × 0.001002) 

      = 150 – 17.8 = 132.2 kPa 
Note that the pressure at the bottom should be higher due to the elevation 
difference but lower due to the acceleration. 
Now apply the energy equation Eq.9.14 for the total control volume 

 w = – ∫ v dP + 12 (V2
1 − V2

3) + g(Z1 – Z3  )  

 = - 0.001002 (100 – 150) + [1
2×10.22 

+ 9.80665 × 15] /1000 = 0.25 kJ/kg 

  W
.

 =  m
.

w = 2000 ×0.25 = 500 kW 
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9.79 
 A firefighter on a ladder 25 m above ground should be able to spray water an 

additional 10 m up with the hose nozzle of exit diameter 2.5 cm. Assume a water 
pump on the ground and a reversible flow (hose, nozzle included) and find the 
minimum required power. 

Solution: 
C.V.: pump + hose + water column, total height difference 35 m.  Here V is 
velocity, not volume. 

Continuity Eq.6.3, 6.11:     m
.

in = m
.

ex = (ρAV)nozzle 

Energy Eq.6.12:        m
.

(-wp) + m
.

(h + V2/2 + gz)in = m
.

(h + V2/2 + gz)ex 

Process: hin ≅ hex ,   Vin ≅ Vex = 0 ,   zex - zin = 35 m ,   ρ = 1/v ≅ 1/vf 

 -wp = g(zex - zin) = 9.81×(35 - 0) = 343.2 J/kg 

The velocity in the exit nozzle is such that it can rise 10 m. Make that column 
a C.V. for which Bernoulli Eq.9.17 is: 
 

 
 gznoz + 

1
2V2

noz = gzex + 0 

           Vnoz = 2g(zex - znoz)  
                   = 2 × 9.81 × 10 = 14 m/s 
 

10 m

35 m

 
 

 m
.

 = 
π
vf

 
D

2
2
Vnoz = ( π/4) 0.0252 × 14 / 0.001 = 6.873 kg/s  

  -W
.

p = -m
.

wp = 6.873 kg/s × 343.2 J/kg = 2.36 kW 
 



   Sonntag, Borgnakke and van Wylen 

 
9.80 
 A small pump is driven by a 2 kW motor with liquid water at 150 kPa, 10°C 

entering. Find the maximum water flow rate you can get with an exit pressure of 1 
MPa and negligible kinetic energies. The exit flow goes through a small hole in a 
spray nozzle out to the atmosphere at 100 kPa. Find the spray velocity. 

Solution: 
C.V. Pump. Liquid water is incompressible so work from Eq.9.18 

  W
.

 =  m
.

w =  -m
.

v(Pe - Pi)  ⇒ 

  m
.

= W
.

/ [-v(Pe - Pi) ] = -2/[-0.001003 ( 1000 – 150) ] =  2.35 kg/s 

C.V Nozzle. No work, no heat transfer,   v ≈ constant   =>  Bernoulli Eq.9.17 

 
1
2V2

ex = v∆P  = 0.001 ( 1000 – 100) = 0.9 kJ/kg  = 900 J/kg 

   Vex  = 2 × 900 J/kg = 42.4 m s -1 
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9.81 
 A garden water hose has liquid water at 200 kPa, 15°C. How high a velocity can 

be generated in a small ideal nozzle? If you direct the water spray straight up how 
high will it go? 

Solution: 
Liquid water is incompressible and we will assume process is reversible. 

Bernoulli’s Eq. across the nozzle Eq.9.17: v∆P = ∆(
1
2 V2) 

V = 2v∆P = 2×0.001001 × (200-101) × 1000 = 14.08 m/s 

Bernoulli’s Eq.9.17 for the column:  ∆(
1
2 V2) = ∆gZ 

∆Z = ∆(
1
2 V2)/g = v∆P/g = 0.001001 × (200 – 101) × 1000/9.807 = 10.1 m 
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9.82 
 Saturated R-134a at -10°C is pumped/compressed to a pressure of 1.0 MPa at the 

rate of 0.5 kg/s in a reversible adiabatic process. Calculate the power required and 
the exit temperature for the two cases of inlet state of the R-134a: 

  a)  quality of 100 %. 
  b)  quality of 0 %. 

Solution: 

C.V.: Pump/Compressor,  m
.

 = 0.5 kg/s, R-134a 

a)  State 1: Table B.5.1,        T1 = -10oC,  x1 = 1.0   Saturated vapor  

 P1 = Pg = 202 kPa,  h1 = hg = 392.3 kJ/kg,  s1 = sg = 1.7319 kJ/kg K 

 Assume Compressor is isentropic, s2 = s1 = 1.7319 kJ/kg-K 

 h2 = 425.7 kJ/kg, T2 = 45oC 

 1st Law Eq.6.13:      qc + h1 = h2 + wc;    qc = 0 

 wcs = h1 - h2 = -33.4 kJ/kg;    =>     W
.

C  = m
.

wC = -16.7 kW 

b)    State 1: T1 = -10oC, x1 = 0    Saturated liquid. This is a pump. 

 P1 = 202 kPa, h1 = hf = 186.72 kJ/kg, v1 = vf = 0.000755 m3/kg 

 1st Law Eq.6.13:    qp + h1 = h2 + wp;   qp = 0 

 Assume Pump is isentropic and the liquid is incompressible, Eq.9.18: 
   wps = - ∫ v dP = -v1(P2 - P1) = -0.6 kJ/kg 

 h2 = h1 - wp = 186.72 - ( - 0.6) = 187.3 kJ/kg,      P2 = 1 MPa 

 Assume State 2 is approximately a saturated liquid   =>   T2 ≅ -9.6oC 

 W
.

P  = m
.

wP = -0.3 kW 

 
 

2a

1a

P

v

T

s

1a
2a

1b

2b

1b

2b
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9.83 
 A small water pump on ground level has an inlet pipe down into a well at a depth 

H with the water at 100 kPa, 15°C. The pump delivers water at 400 kPa to a 
building. The absolute pressure of the water must be at least twice the saturation 
pressure to avoid cavitation. What is the maximum depth this setup will allow? 

Solution: 
 

 C.V. Pipe in well, no work, no heat transfer 
From Table B.1.1 

      P inlet pump ≥ 2 Psat, 15C = 2×1.705 = 3.41 kPa 
Process: 
       Assume ∆ KE ≈ ∅ ,     v ≈ constant.  =>    
Bernoulli Eq.9.17: 
      v ∆P + g H = 0  =>   
 

i

e

H

 

     1000 × 0.001001 ( 3.41 – 100) + 9.80665 × H = 0  
  ⇒     H = 9.86 m 
 
Since flow has some kinetic energy and there are losses in the pipe the height 
is overestimated. Also the start transient would generate a very low inlet 
pressure (it moves flow by suction) 
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9.84 
 A small pump takes in water at 20°C, 100 kPa and pumps it to 2.5 MPa at a flow 

rate of 100 kg/min. Find the required pump power input. 
Solution: 
C.V. Pump.  Assume reversible pump and incompressible flow. 
This leads to the work in Eq.9.18 

 wp = -⌡⌠vdP = -vi(Pe - Pi) = -0.001002(2500 - 100) = -2.4 kJ/kg 

 W
.

p = m
.

wp = 
100
60  

kg/min
sec/min (-2.4 kJ/kg) = -4.0 kW 
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9.85 
 A pump/compressor pumps a substance from 100 kPa, 10°C to 1 MPa in a 

reversible adiabatic process. The exit pipe has a small crack, so that a small 
amount leaks to the atmosphere at 100 kPa. If the substance is (a) water, (b) R-12, 
find the temperature after compression and the temperature of the leak flow as it 
enters the atmosphere neglecting kinetic energies. 

 Solution: 
  

��
��

-W 
. 

c 

2 
3 

1

C

 

C.V.: Compressor, reversible adiabatic 
Eq.6.13:      h1 − wc = h2 ;   Eq.9.8:     s1 = s2 

State 2:   P2,   s2 = s1  

C.V.: Crack (Steady throttling process) 
Eq.6.13:    h3 = h2 ;   Eq.9.8:    s3 = s2 + sgen 

State 3:   P3,   h3 = h2 
 

a) Water  1:    compressed liquid, Table B.1.1 

    −wc = + ⌡⌠vdP = vf1(P2 − P1) = 0.001 × (1000 − 100) = 0.9 kJ/kg 

    h2 = h1 − wc = 41.99 + 0.9 = 42.89 kJ/kg  =>  T2 = 10.2°C 

    P3 ,  h3    ⇒   compressed liquid  at ~10.2°C 
 
 P

v

T

s
1

2
1, 3

2

3

 

States 1 and 3 are at 
the same 100 kPa, 
and same v. You 
cannot separate them 
in the P-v fig. 

 
b) R-12  1:    superheated vapor, Table B.3.2,       s1 = 0.8070 kJ/kg K 

    s2 = s1 &  P2   ⇒   T2 = 98.5°C ,   h2 = 246.51 kJ/kg 

 −wc = h2 − h1 = 246.51 - 197.77 = 48.74 kJ/kg 

    P3 , h3   ⇒   T3 = 86.8°C 
 
 

2

1

P

v

T

s

3 h = C

100 kPa

1

2

3
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9.86 
 Atmospheric air at 100 kPa, 17°C blows at 60 km/h towards the side of a 

building. Assume the air is nearly incompressible find the pressure and the 
temperature at the stagnation point (zero velocity) on the wall. 

Solution: 
C.V. A stream line of flow from the freestream to the wall. 
Eq.9.17: 

 
     v(Pe-Pi)  + 

1
2 (V2

e-V2
i ) + g(Ze - Zi)  = 0  

V

 
  

 Vi = 60 
km
h  × 1000 

m
km × 

1
3600 

h
s = 16.667 m/s 

 v = 
RTi
Pi

 = 
0.287 × 290.15

100  = 0.8323 
m3

kg 

∆P = 
1
2v V2

i  = 
16.6672

0.8323 × 2000  = 0.17 kPa 

 Pe = Pi + ∆ P = 100.17 kPa 

Then Eq.8.32 for an isentropic process: 

 Te = Ti (Pe/Pi)
0.286 = 290.15 × 1.0005 = 290.3 K 

Very small effect due to low velocity and air is light (large specific volume) 
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9.87 
 You drive on the highway with 120 km/h on a day with 17°C, 100 kPa 

atmosphere. When you put your hand out of the window flat against the wind you 
feel the force from the air stagnating, i.e. it comes to relative zero velocity on 
your skin. Assume the air is nearly incompressible and find the air temperature 
and pressure right on your hand. 

Solution: 

Energy Eq.6.13:  
1
2 V2 + ho = hst 

  Tst = To + 
1
2 V2/Cp = 17 +  

1
2 [(120×1000)/3600]2 × (1/1004) 

       = 17 + 555.5/1004 = 17.6°C 

  v = RTo/Po = 0.287 × 290/100 = 0.8323 m3/kg 

From Bernoulli Eq.9.17: 

    v∆P = 
1
2 V2 

 Pst = Po + 
1
2 V2/v = 100 + 555.5/(0.8323 × 1000) = 100.67 kPa 
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9.88 
 An air flow at 100 kPa, 290 K, 200 m/s is directed towards a wall. At the wall the 

flow stagnates (comes to zero velocity) without any heat transfer. Find the 
stagnation pressure a) assuming incompressible flow b) assume an adiabatic 
compression. Hint: T comes from the energy equation. 

Solution: 

Ideal gas:  v = RTo/Po = 0.287 × 290/100 = 0.8323 m3/kg 

Kinetic energy:  1
2 V2 = 

1
2 (2002/1000) = 20 kJ/kg 

a)  Reversible and incompressible gives Bernoulli Eq.9.17: 
 

       ∆P = 
1
2 V2/v = 20/0.8323 

             = 24 kPa 
        Pst = Po + ∆P = 124 kPa 

b)  adiabatic compression 

    Energy Eq.6.13:   12 V2 + ho = hst 

0
St

cb  

      hst - ho = 12 V2 = Cp∆T      

           ∆T = 12 V2/Cp = 20/1.004 = 19.92°C 

=>  Tst = 290 + 19.92 = 309.92 K 

 Entropy Eq.9.8 assume also reversible process: 

  so + sgen + ⌡⌠(1/T) dq = sst 

 as dq = 0  and  sgen = 0  then it follows that   s = constant 

 This relation gives Eq.8.32:      

  Pst = Po





Tst

To

k
k-1  = 100 × (309.92/290)3.5 = 126 kPa 
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9.89 
 Calculate the air temperature and pressure at the stagnation point right in front of 

a meteorite entering the atmosphere (-50 °C, 50 kPa) with a velocity of 2000 m/s. 
Do this assuming air is incompressible at the given state and repeat for air being a 
compressible substance going through an adiabatic compression. 

Solution: 

Kinetic energy: 
1
2 V2 = 

1
2 (2000)2/1000 = 2000 kJ/kg 

Ideal gas: vatm = RT/P = 0.287 × 223/50 =1.28 m3/kg 

a) incompressible 

Energy Eq.6.13:     ∆h = 
1
2 V2 = 2000 kJ/kg 

If A.5  ∆T = ∆h/Cp = 1992 K   unreasonable, too high for that Cp 

Use A.7: hst = ho + 
1
2 V2 = 223.22 + 2000 = 2223.3 kJ/kg 

  Tst = 1977 K 

Bernoulli (incompressible) Eq.9.17: 

 ∆P = Pst - Po = 
1
2 V2/v = 2000/1.28 = 1562.5 kPa 

  Pst = 1562.5 + 50 = 1612.5 kPa 

b) compressible 
 Tst = 1977 K  the same energy equation. 

From A.7.1: so
T st = 8.9517 kJ/kg K; so

T o = 6.5712 kJ/kg K 
 Eq.8.28: 

      Pst = Po × e(so
T st - s

o
T o)/R 

  = 50 × exp [ 
8.9517 - 6.5712

0.287  ] 

       = 200 075 kPa 
 

 
 

 

 
  Notice that this is highly compressible, v is not constant. 
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9.90 
 Helium gas enters a steady-flow expander at 800 kPa, 300°C, and exits at 120 

kPa. The mass flow rate is 0.2 kg/s, and the expansion process can be considered 
as a reversible polytropic process with exponent, n = 1.3. Calculate the power 
output of the expander. 

 
 Solution: 
 
 

Wexp

i eQ

 

CV: expander, reversible polytropic process. 
From Eq.8.37: 
 

     Te = Ti 





Pe

Pi
 
n-1
n  = 573.2 



120

800  
0.3
1.3 = 370 K 

 
 

Work evaluated from Eq.9.19 

  w = − vdP = − 
nR
n-1 (Te - Ti)  = 

-1.3 × 2.07703
0.3  (370 - 573.2)  ⌡⌠

     = 1828.9 kJ/kg 

     
.

W = 
.

mw = 0.2 × 1828.9 = 365.8 kW 
 
 P

v

T

s
e

i

n = 1

n = 1.3

i

e
n = 1

n = k = 1.667

n = 1.3
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9.91 
 Air at 100 kPa, 300 K, flows through a device at steady state with the exit at 1000 

K during which it went through a polytropic process with n = 1.3. Find the exit 
pressure, the specific work and heat transfer. 

Solution: 
C.V. Steady state device, single inlet and single exit flow. 
Energy Eq.6.13: h1 + q = h2 + w  Neglect kinetic, potential energies 

Entropy Eq.9.8: s1 + ∫ dq/T +  sgen =  s2 

Te = 1000 K; Ti = 300 K; Pi = 100 kPa 

Process Eq.8.37: Pe = Pi (Te/ Ti)
n

n-1 = 100 (1000/300) 
1.3
0.3 = 18 442 kPa 

and the process leads to Eq.9.19 for the work term 

  w = n
n-1 R (Te - Ti) = (1.3/-0.3) × 0.287 × (1000 - 300) 

     = – 849.3 kJ/kg 
  q = he - hi + w = 1046.2 – 300.5 – 849.3 

     = -103.6 kJ/kg 
 
 P

v

T

s

e

i

n = 1

n = 1.3 i

e
n = 1

n = k = 1.4

n = 1.3

 

Notice: 
dP > 0 
so dw <0 
 
ds < 0 
so  dq < 0 
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9.92 
 A flow of 4 kg/s ammonia goes through a device in a polytropic process with an 

inlet state of 150 kPa, -20°C and an exit state of 400 kPa, 80°C. Find the 
polytropic exponent n, the specific work and heat transfer. 

Solution: 
C.V. Steady state device, single inlet and single exit flow. 
Energy Eq.6.13: h1 + q = h2 + w  Neglect kinetic, potential energies 

Entropy Eq.9.8: s1 + ∫ dq/T +  sgen =  s2 

Process Eq.8.37:  P1v1
n = P2v2

n:  

State 1:   Table B.2.2    v1= 0.79774,  s1= 5.7465 kJ/kg K,  h1= 1422.9 kJ/kg 

State 2:   Table B.2.2    v2= 0.4216,  s2= 5.9907 kJ/kg K,  h2= 1636.7 kJ/kg 

        ln (P2/P1) = n ln (v1/ v2)      =>   0.98083 = n × 0.63772 

          n  = ln (P2/P1) / ln (v1/ v2) = 1.538 

From the process and the integration of   v dP  gives Eq.9.19. 

wshaft = – 
n

n–1 (P2v2 – P1v1) = -2.8587 (168.64 –119.66) = -140.0 kJ/kg 

q = h2+ w - h1 = 1636.7 – 1422.9 – 140 = 73.8 kJ/kg 
 
 P

v

T

s

2

1

n = 1

n = 1.54 1

2

n = 1

n = k = 1.3
n = 1.54

 

Notice: 
dP > 0 
so dw <0 
 
ds > 0 
so  dq > 0 
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9.93 
 Carbon dioxide flows through a device entering at 300 K, 200 kPa and leaving at 

500 K. The process is steady state polytropic with n = 3.8 and heat transfer comes 
from a 600 K source. Find the specific work, specific heat transfer and the 
specific entropy generation due to this process. 

Solution: 
C.V. Steady state device, single inlet and single exit flow. 
Energy Eq.6.13: hi + q = he + w  Neglect kinetic, potential energies 

Entropy Eq.9.8: si + ∫ dq/T +  sgen =  se 

Process Eq.8.37:   

  Pe = Pi (Te/ Ti)
n

n-1  = 200(500/300)
3.8
2.8  = 400 kPa 

and the process leads to Eq.9.19 for the work term 

  w = -
n

n-1 R (Te - Ti) = -
3.8
2.8 × 0.1889 × (500 - 300)  = -51.3 kJ/kg 

Energy equation gives 
  q = he - hi + w = 401.52 – 214.38 – 51.3 = 135.8 kJ/kg 

Entropy equation gives (CV out to source) 

  sgen = se – si – q/Tsource = so
Te − so

Ti − R ln(Pe / Pi) – q/Tsource 

         = 5.3375 – 4.8631 – 0.1889 ln (400/200) – (135.8/600) 
         = 0.117 kJ/kg K 

 
 P

v

T

s

e

i

n = 1

n = 3.8 i

e

n = 1

n = k = 1.29
n = 3.8

 

Notice: 
dP > 0 
so dw <0 
 
ds > 0 
so  dq > 0 

 
  Notice process is externally irreversible, ∆T between source and CO2 
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9.94 
 An expansion in a gas turbine can be approximated with a polytropic process with 

exponent n = 1.25. The inlet air is at 1200 K, 800 kPa and the exit pressure is 125 
kPa with a mass flow rate of 0.75 kg/s. Find the turbine heat transfer and power 
output. 

 
Solution: 
C.V. Steady state device, single inlet and single exit flow. 
Energy Eq.6.13: hi + q = he + w  Neglect kinetic, potential energies 

Entropy Eq.9.8: si + ∫ dq/T +  sgen =  se 

Process Eq.8.37:   

  Te = Ti (Pe/ Pi)
n-1
n   = 1200 (125/800)

0.25
1.25  = 827.84 K 

so the exit enthalpy is from Table A.7.1 

  he = 822.2 + 
27.84

50 (877.4 – 822.2) = 852.94 kJ/kg 

The process leads to Eq.9.19 for the work term 

  
.

W = 
.

mw = -
.

m
nR
n-1 (Te - Ti) = -0.75 

1.25 × 0.287
0.25  × (827.84 - 1200)  

    = 400.5 kW 
Energy equation gives 

  
.
Q = 

.
mq = 

.
m(he - hi) + 

.
W = 0.75(852.94 – 1277.81) + 400.5 

    = -318.65 + 400.5 = 81.9 kW 
 
 P

v

T

s

e

i
n = 1

n = 1.25

i

e
n = 1

n = k = 1.4

n = 1.25

 

Notice: 
dP < 0 
so dw > 0 
 
ds > 0 
so  dq > 0 

 
Notice this process has some heat transfer in during expansion which is 
unusual. The typical process would have n = 1.5 with a heat loss. 
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Device efficiency 
 
9.95 
 Find the isentropic efficiency of the R-134a compressor in Example 6.10 

Solution: 
State 1: Table B.5.2       h1 = 387.2 kJ/kg;   s1 = 1.7665 kJ/kg K 

State 2ac:  h2 = 435.1 kJ/kg 

State 2s:  s = 1.7665 kJ/kg K,   800 kPa    =>    h = 431.8 kJ/kg;  T = 46.8°C 
-wc s = h2s - h 1 = 431.8 – 387.2 = 44.6 kJ/kg 

-wac = 5/0.1 = 50 kJ/kg 

η = wc s/ wac = 44.6/50 = 0.89 
 
 

v

P

s

T

i

e ac
e s

e ace s
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9.96 
 A compressor is used to bring saturated water vapor at 1 MPa up to 17.5 MPa, 

where the actual exit temperature is 650°C. Find the isentropic compressor 
efficiency and the entropy generation. 

 
 Solution: 

C.V. Compressor. Assume adiabatic and neglect kinetic energies. 
Energy Eq.6.13:  w = h1  - h2  

Entropy Eq.9.8:   s2 = s1 + sgen 

We have two different cases, the ideal and the actual compressor. 
States: 1: B.1.2       h1 = 2778.1 kJ/kg,   s1 = 6.5865 kJ/kg K 

  2ac: B.1.3    h2,AC = 3693.9 kJ/kg,    s2,AC = 6.7357 kJ/kg K 

  2s:   B.1.3  (P, s = s1)     h2,s = 3560.1 kJ/kg 

 
 IDEAL: 

-wc,s = h2,s - h1 = 782 kJ/kg 
ACTUAL: 
-wC,AC = h2,AC - h1 = 915.8 kJ/kg 

 
Definition Eq.9.28:  ηc = wc,s/wc,AC = 0.8539 ~ 85% 

 
Entropy Eq.9.8: 
  sgen = s2 ac - s1 = 6.7357 - 6.5865 = 0.1492 kJ/kg K 
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9.97 
 Liquid water enters a pump at 15°C, 100 kPa, and exits at a pressure of 5 MPa. If 

the isentropic efficiency of the pump is 75%, determine the enthalpy (steam table 
reference) of the water at the pump exit. 

Solution: 

CV: pump   
.
QCV ≈ 0,   ∆KE ≈ 0,   ∆PE ≈ 0 

2nd law, reversible (ideal) process: ses = si  ⇒  

Eq.9.18 for work term. 

 ws = -⌡⌠
 i

 es
vdP ≈ -vi(Pe - Pi) = -0.001001(5000 - 100) = -4.905 kJ/kg 

Real process Eq.9.28:    w = ws/ηs = -4.905/0.75 = -6.54 kJ/kg 

Energy Eq.6.13:   he = hi - w = 62.99 + 6.54 = 69.53 kJ/kg 



   Sonntag, Borgnakke and van Wylen 

 
9.98 
 A centrifugal compressor takes in ambient air at 100 kPa, 15°C, and discharges it 

at 450 kPa. The compressor has an isentropic efficiency of 80%. What is your 
best estimate for the discharge temperature? 

Solution: 
C.V. Compressor.  Assume adiabatic, no kinetic energy is important. 
Energy Eq.6.13:  w = h1  - h2  

Entropy Eq.9.8:   s2 = s1 + sgen 

We have two different cases, the ideal and the actual compressor. 
We will solve using constant specific heat.  
State 2 for the ideal, sgen = 0   so   s2 = s1  and it becomes: 

Eq.8.32: T2s = T1 






P2

P1
 
k-1
k  = 288.15 (450 / 100)0.2857 = 442.83 K 

 ws = h1 - h2s = Cp (T1 - T2s) = 1.004 (288.15 - 442.83) = -155.299 

The actual work from definition Eq.9.28 and then energy equation: 
 wac = -155.299 / 0.8 = -194.12 kJ/kg = h1 - h2 = Cp(T1 - T2) 

    ⇒   T2 = T1 - wac / Cp 

     = 288.15 + 194.12/1.004 =  481.5 K 
 
------------------------------------------------------------------------------ 
Solving using Table A.7.1 instead will give 

 State 1:  Table  A.7.1:     so
T1 = 6.82869 kJ/kg K 

Now constant s for the ideal is done with Eq.8.28 

 so
T2s = so

T1 + R ln(
P2
P1

) = 6.82869 + 0.287 ln(
450
100) = 7.26036 kJ/kg K 

 From A.7.1:      T2s = 442.1 K   and   h2s =  443.86 kJ/kg 

 ws = h1 - h2s = 288.57 - 443.86 = -155.29 kJ/kg 

The actual work from definition Eq.9.28 and then energy equation: 
 wac = -155.29/0.8 = -194.11 kJ/kg 

   ⇒   h2 = 194.11 + 288.57 = 482.68,    Table A.7.1:    T2 = 480 K 
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9.99 
 An emergency drain pump should be able to pump 0.1 m3/s liquid water at 15°C,   

10 m vertically up delivering it with a velocity of 20 m/s.  It is estimated that the 
pump, pipe and nozzle have a combined isentropic efficiency expressed for the 
pump as 60%.  How much power is needed to drive the pump? 

Solution: 
C.V. Pump, pipe and nozzle together. Steady flow, no heat transfer. 
Consider the ideal case first (it is the reference for the efficiency). 

Energy Eq.6.12:     m
.

i(hi + V2
i/2 + gZi) + W

.
in = m

.
e(he + V2

e/2 + gZe)  

Solve for work and use reversible process Eq.9.13 

  W
.

ins = m
.

 [he - hi + (V2
e -V2

i)/2 + g(Ze - Zi)] 

   =  m
.

[( Pe -Pi)v + V2
e/2 + g∆Z] 

  m
.

 = V
.
/v = 0.1/0.001001 = 99.9 kg/s 

  W
.

ins = 99.9[0 + (202/2) × (1/1000) + 9.807 × (10/1000)] 

   = 99.9(0.2 + 0.09807) = 29.8 kW 
With the estimated efficiency the actual work, Eq.9.28 is 

  W
.

inactual = W
.

ins/η = 29.8/0.6 = 49.7 kW = 50 kW 
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9.100 
 A pump receives water at 100 kPa, 15°C and a power input of 1.5 kW. The pump 

has an isentropic efficiency of 75% and it should flow 1.2 kg/s delivered at 30 m/s 
exit velocity. How high an exit pressure can the pump produce? 

Solution: 
CV Pump. We will assume the ideal and actual pumps have same exit 
pressure, then we can analyse the ideal pump. 
 
Specific work:  wac = 1.5/1.2 = 1.25 kJ/kg 

Ideal work Eq.9.28: ws = η wac = 0.75 × 1.25 = 0.9375 kJ/kg 

As the water is incompressible (liquid) we get 
Energy Eq.9.14: 

  ws = (Pe - Pi)v + V2
e/2 = (Pe - Pi)0.001001 + (302/2)/1000 

       = (Pe - Pi)0.001001 + 0.45 

Solve for the pressure difference 
   Pe - Pi = (ws – 0.45)/0.001001 = 487 kPa 

   Pe = 587 kPa 
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9.101 
 A small air turbine with an isentropic efficiency of 80% should produce 270 kJ/kg 

of work. The inlet temperature is 1000 K and it exhausts to the atmosphere. Find 
the required inlet pressure and the exhaust temperature. 

Solution: 
C.V. Turbine actual energy Eq.6.13: 
      w = hi - he,ac = 270  kJ/kg 

Table A.7:   hi = 1046.22   ⇒   he,ac = 776.22 kJ/kg,    Te = 757.9 K 

C.V. Ideal turbine, Eq.9.27 and energy Eq.6.13: 
    ws = w/ηs = 270/0.8 = 337.5 = hi - he,s    ⇒    he,s = 708.72 kJ/kg 

From Table A.7:      Te,s = 695.5 K  

Entropy Eq.9.8:        si = se,s   adiabatic and reversible 

To relate the entropy to the pressure use Eq.8.28 inverted and standard 
entropy from Table A.7.1: 

   Pe/Pi = exp[ (so
Te − so

Ti ) / R ] = exp[(7.733 - 8.13493)/0.287] = 0.2465 

  Pi = Pe / 0.2465 = 101.3/0.2465 = 411 kPa 

 
 P

v

T

s

e, s

i

s  = C

i

e, s
e, ac e, ac

P

Pe

i

 

 

 
If constant heat capacity were used  
 Te = Ti - w/Cp = 1000 - 270/1.004 = 731 K 

C.V. Ideal turbine, Eq.9.27 and energy Eq.6.13: 
ws = w/ηs = 270/0.8 = 337.5 kJ/kg = hi - he,s = Cp(Ti - Te,s) 

Te,s = Ti - ws/Cp = 1000 - 337.5/1.004 = 663.8 K 

Eq.9.8 (adibatic and reversible) gives constant s and relation is Eq.8.32 

 Pe/Pi = (Te/Ti)
k/(k-1)   ⇒    Pi = 101.3 (1000/663.8)3.5 = 425 kPa  
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9.102 
 Repeat Problem 9.42 assuming the turbine and the pump each have an isentropic 

efficiency of 85%. 
 Solution: 
 

 

WT

QH

QL
.

WP, in

1

2

3

4

 

 
P1 = P4 = 20 MPa 
T1 = 700 °C 
P2 = P3 = 20 kPa 
T3 = 40 °C 
ηP = ηT = 85%  

 
 

a)   State 1: (P, T)  Table B.1.3     h1 = 3809.1 kJ/kg,   s1 = 6.7993 kJ/kg K 

      C.V. Turbine. First we do the ideal, then the actual. 
 Entropy Eq.9.8:       s2 = s1 = 6.7993 kJ/kg K 

 Table B.1.2     s2 = 0.8319 + x2 × 7.0766    =>    x2 = 0.8433 

            h2 s = 251.4 + 0.8433 × 2358.33 = 2240.1 kJ/kg 

            Energy Eq.6.13: wT s = h1 - h2 s = 1569 kJ/kg 

  wT AC = ηTwT s = 1333.65 = h1 - h2 AC 

  h2 AC=h1 - wT AC = 2475.45 kJ/kg; 

  x2,AC = (2475.45 - 251.4)/2358.3 = 0.943 ,       T2,AC=60.06°C 
b)  

State 3:  (P, T)  Compressed liquid, take sat. liq. Table B.1.1 

         h3 = 167.54 kJ/kg,   v3 =  0.001008 m3/kg 

wP s = - v3( P4 - P3) = -0.001008(20000 – 20) = -20.1 kJ/kg 

  -wP,AC = -wP,s/ηρ = 20.1/0.85 = 23.7 = h4,AC - h3 

   h4,AC = 191.2   T4,AC ≅ 45.7°C 

c)  The heat transfer in the boiler is from energy Eq.6.13 
 qboiler = h1 - h4 = 3809.1 – 191.2 = 3617.9 kJ/kg 

 wnet = 1333.65 – 23.7 = 1310 kJ/kg 

 ηTH = wnet/qboiler = 
1310

3617.9 = 0.362 
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9.103 
 Repeat Problem 9.41 assuming the steam turbine and the air compressor each 

have an isentropic efficiency of 80%. 
A certain industrial process requires a steady supply of saturated vapor steam at 
200 kPa, at a rate of 0.5 kg/s. Also required is a steady supply of compressed air 
at 500 kPa, at a rate of 0.1 kg/s. Both are to be supplied by the process shown in 
Fig. P9.41. Steam is expanded in a turbine to supply the power needed to drive 
the air compressor, and the exhaust steam exits the turbine at the desired state. Air 
into the compressor is at the ambient conditions, 100 kPa, 20°C. Give the required 
steam inlet pressure and temperature, assuming that both the turbine and the 
compressor are reversible and adiabatic. 

Solution: 
 
C.V. Each device. Steady flow.  
Both adiabatic (q = 0) and  actual 
devices (sgen > 0) given by  ηsT 
and ηsc. 

 

 3
1

4
2

 
  Steam turbine          Air compressor 

 

 Air Eq.8.32,   T4s = T3(P4/P3)
k-1
k  = 293.2



500

100
0.286

 = 464.6 K 

 
.

WCs =  
.

m3(h3 - h4s) = 0.1 × 1.004(293.2 - 464.6) = -17.21 kW 

 
.

WCs = 
.

m3(h3 - h4) = 
.

WCs /ηsc  = -17.2/0.80 = -21.5 kW 

Now the actual turbine must supply the actual compressor work. The 
actual state 2 is given so we must work backwards to state 1. 

  
.

WT = +21.5 kW = 
.

m1(h1 - h2) = 0.5(h1 - 2706.6)   

  ⇒    h1 = 2749.6 kJ/kg 

 Also,  ηsT = 0.80 = (h1 - h2)/(h1 - h2s) = 43/(2749.6 - h2s) 

  ⇒ h2s = 2695.8 kJ/kg 

 2695.8 = 504.7 + x2s(2706.6 - 504.7)     =>     x2s = 0.9951 

 s2s = 1.5301 + 0.9951(7.1271 - 1.5301) = 7.0996 kJ/kg K 

    (s1 = s2s, h1)  →  P1 = 269 kPa,   T1 = 143.5°C 
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9.104 
 Steam enters a turbine at 300°C, 600 kPa and exhausts as saturated vapor at 20 

kPa. What is the isentropic efficiency? 
 

Solution: 
C.V. Turbine. Steady single inlet and exit flow. 
To get the efficiency we must compare the actual turbine to the ideal one (the 
reference). 
Energy Eq.6.13: wT = h1 - h2 ;    

Entropy Eq.9.8:     s2s = s1 + sgen = s1 

Process:  Ideal  sgen = 0 

State 1:    Table B.1.3      h1 = 3061.63 kJ/kg,  s1 = 7.3723 kJ/kg K 

State 2s:   20 kPa, s2s = s1 = 7.3723 kJ/kg K < sg      so two-phase 

  x2s = 
s - sf
sfg

 = 
7.3723 - 0.8319

7.0766  = 0.92423 

  h2s = hf + x2s hfg = 251.38 + x2s × 2358.33 = 2431.0 kJ/kg 

  wTs = h1 - h2s = 3061.63 – 2431.0 = 630.61 kJ/kg 

State 2ac:   Table B.1.2       h2ac = 2609.7 kJ/kg,  s2ac = 7.9085 kJ/kg K 

Now we can consider the actual turbine from energy Eq.6.13: 

  wT
ac = h1 - h2ac =  3061.63 – 2609.7 = 451.93 

Then the efficiency from Eq. 9.27 

 ηT = wT
ac / wTs = 451.93/630.61 = 0.717  

 
 1

2s

P

P

T

s2

1

2ac
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9.105 
 A turbine receives air at 1500 K, 1000 kPa and expands it to 100 kPa. The turbine 

has an isentropic efficiency of 85%. Find the actual turbine exit air temperature 
and the specific entropy increase in the actual turbine. 

Solution: 
C.V. Turbine. steady single inlet and exit flow. 
To analyze the actual turbine we must first do the ideal one (the reference). 
Energy Eq.6.13: wT = h1 - h2 ;    

Entropy Eq.9.8:       s2 = s1 + sgen = s1 

Entropy change in Eq.8.28 and Table A.7.1:     

 so
T2 = so

T1 + R ln(P2/P1) = 8.61208 + 0.287 ln(100/1000) = 7.95124 

Interpolate in A.7     =>    T2s = 849.2,    h2s = 876.56  =>   

    wT = 1635.8 - 876.56 = 759.24 kJ/kg 

Now we can consider the actual turbine from Eq.9.27 and Eq.6.13: 

 wT
ac = ηT wT = 0.85 × 759.24 = 645.35 = h1 - h2ac  

 =>    h2ac = h1 - wT
ac = 990.45     =>      T2ac = 951 K 

The entropy balance equation is solved for the generation term 
 sgen = s2ac - s1 = 8.078 - 8.6121 - 0.287 ln(100/1000) = 0.1268 kJ/kg K 

 
 1

2s

P

P

T

s2

1

2ac
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9.106 
 The small turbine in Problem 9.38 was ideal. Assume instead the isentropic 

turbine efficiency is 88%. Find the actual specific turbine work and the entropy 
generated in the turbine. 

Solution: 
 

 Continuity Eq.6.11:   (Steady) 

         m
.

1 = m
.

2 = m
.

3 = m
.

   

Turbine: Energy Eq.6.13:    
          wT = h1 − h2  WT

1 2
3

Qout
 

 
Entropy Eq.9.8:   s2 = s1 + sT gen 

Inlet state:  Table B.1.3       h1 = 3917.45 kJ/kg,    s1 = 7.9487 kJ/kg K 

Ideal turbine    sT gen = 0,   s2 = s1 = 7.9487 = sf2 + x sfg2 

State 2:  P = 10 kPa,  s2 < sg   =>  saturated 2-phase in Table B.1.2 

 ⇒  x2,s = (s1 - sf2)/sfg2 = (7.9487 - 0.6492)/7.501 = 0.9731 

 ⇒  h2,s = hf2 + x×hfg2 = 191.8 + 0.9731×2392.8 = 2520.35 kJ/kg 

    wT,s = h1 − h2,s = 1397.05 kJ/kg 
 
  

Explanation for the 
reversible work term is 
in sect. 9.3 
Eq.9.18 2s

1
P

v

T

s

1

2s3 3
2ac2ac

 
 

    wT,AC = η × wT,s = 1229.9 kJ/kg 

     = h1 - h2,AC  ⇒  h2,AC = h1 - wT,AC = 2687.5 kJ/kg 

        ⇒  T2,AC = 100°C ,  s2,AC = 8.4479 kJ/kg-K 

 sT gen = s2,AC - s1 = 0.4992 kJ/kg K 
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9.107 
 Air enters an insulated turbine at 50°C, and exits the turbine at - 30°C, 100 kPa. 

The isentropic turbine efficiency is 70% and the inlet volumetric flow rate is 20 
L/s. What is the turbine inlet pressure and the turbine power output? 

Solution: 
C.V.: Turbine, ηs = 0.7, Insulated 

Air table A.5:    Cp = 1.004 kJ/kg K,   R = 0.287 kJ/kg K,   k = 1.4 

Inlet: Ti = 50oC, V
.

i = 20 L/s = 0.02 m3/s  ;  

  m
.

 = PV
.
/RT = 100 × 0.02/(0.287 × 323.15) = 0.099 kg/s  

Exit (actual): Te = -30oC, Pe = 100 kPa 

1st Law Steady state Eq.6.13:      qT + hi = he + wT;   qT = 0 

Assume Constant Specific Heat 
 wT = hi - he = Cp(Ti - Te) = 80.3 kJ/kg 

 wTs = w/η = 114.7 kJ/kg,    wTs = Cp(Ti - Tes) 

 Solve for Tes = 208.9 K 

Isentropic Process Eq.8.32:    Pe = Pi (Te / Ti)
k

k-1   =>    Pi = 461 kPa 

 W
.

T  = m
.

wT  = 0.099 × 80.3 = 7.98 kW 
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9.108 
 Carbon dioxide, CO2, enters an adiabatic compressor at 100 kPa, 300 K, and exits 

at 1000 kPa, 520 K. Find the compressor efficiency and the entropy generation for 
the process. 

Solution: 
C.V. Ideal compressor. We will assume constant heat capacity. 
Energy Eq.6.13: wc = h1 - h2,  

Entropy Eq.9.8, 8.32:  s2 = s1 :  T2s = T1





P2

P1

k-1
k  = 300



1000

100
0.2242

 = 502.7 K 

 wcs = Cp(T1 - T2s) = 0.842(300-502.7) = -170.67 kJ/kg 

C.V. Actual compressor 
 wcac = Cp(T1 - T2ac) = 0.842(300 - 520) = -185.2 kJ/kg 

 ηc = wcs/wcac = -170.67/(-185.2) = 0.92 

Use Eq.8.25 for the change in entropy 
 sgen = s2ac - s1 = Cp ln (T2ac/T1) - R ln (P2/P1) 

     = 0.842 ln(520 / 300) - 0.1889 ln(1000 / 100) = 0.028 kJ/kg K 
 
 P

v

T

s

e, s

i
s  = C i

e, s
e, ac e, ac

P

P

e

i

 

 

 
 Constant heat capacity is not the best approximation. It would be more 
accurate to use Table A.8. 
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9.109 
 Air enters an insulated compressor at ambient conditions, 100 kPa, 20°C, at the 

rate of 0.1 kg/s and exits at 200°C. The isentropic efficiency of the compressor is 
70%. What is the exit pressure? How much power is required to drive the 
compressor? Assume the ideal and actual compressor has the same exit pressure. 

Solution: 
C.V. Compressor: P1, T1, Te(real), ηs COMP known, assume constant CP0 

Energy Eq.6.13 for real:    -w = CP0(Te - Ti) = 1.004(200 - 20) = 180.72 

 Ideal   -ws = -w × ηs = 180.72 × 0.70 = 126.5 

Energy Eq.6.13 for ideal: 
 126.5 = CP0(Tes - Ti) = 1.004(Tes - 293.2),   Tes = 419.2 K 

Constant entropy for ideal as in Eq.8.32: 

 Pe = Pi(Tes/Ti)
k

k-1 = 100(419.2/293.20)3.5 = 349 kPa 

 -
.

WREAL = 
.

m(-w) = 0.1 × 180.72 = 18.07 kW 
 
 P

v

T

s

e, s

i
s  = C i

e, s
e, ac e, ac

P

P

e

i
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9.110 
 Assume an actual compressor has the same exit pressure and specific heat transfer 

as the ideal isothermal compressor in Problem 9.8 with an isothermal efficiency 
of 80%. Find the specific work and exit temperature for the actual compressor. 

Solution: 
C.V. Compressor. Steady, single inlet and single exit flows. 
Energy Eq.6.13: hi + q = w + he;  

Entropy Eq.9.8: si + q/T = se 

Inlet state:  Table B.5.2,    hi = 403.4 kJ/kg, si = 1.8281 kJ/kg K 

Exit state:  Table B.5.1,    he = 398.36 kJ/kg, se = 1.7262 kJ/kg K 

 q = T(se – si) = 273.15(1.7262 – 1.8281) = - 27.83 kJ/kg 

 w = 403.4 + (-27.83) – 398.36 = -22.8 kJ/kg 
From Eq.9.29 for a cooled compressor 
  wac = wT /η = - 22.8/0.8 = 28.5 kJ/kg 

Now the energy equation gives 
  he= hi  + q – wac = 403.4 + (-27.83) + 28.5= 404.07 

  Te ac ≈ 6°C   Pe = 294 kPa 
 
  

Explanation for the 
reversible work term is 
in Sect. 9.3 
Eqs. 9.16 and 9.18 

e,s i

P

v

T

s

e,s

i

e,ace,ac
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9.111 
 A water-cooled air compressor takes air in at 20°C, 90 kPa and compresses it to 

500 kPa. The isothermal efficiency is 80% and the actual compressor has the 
same heat transfer as the ideal one. Find the specific compressor work and the exit 
temperature. 

Solution: 
Ideal isothermal compressor exit 500 kPa, 20°C 
Reversible process:   dq = T ds    =>    q = T(se – si)  

 q = T(se – si) = T[so
Te − so

T1 − R ln(Pe / Pi)]  

    = - RT ln (Pe / Pi) = - 0.287 × 293.15 ln (500/90)  = - 144.3 kJ/kg 

As same temperature for the ideal  compressor     he = hi  ⇒  

  w = q = -144.3 kJ/kg    =>     wac = w /η = - 180.3 kJ/kg,    qac = q 

Now for the actual compressor energy equation becomes 
 qac + hi = he ac + wac ⇒ 

 he ac - hi = qac - wac = - 144.3 – (-180.3) = 36 kJ/kg  ≈ Cp (Te ac - Ti) 

  Te ac = Ti + 36/1.004 = 55.9°C  
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9.112 
 A nozzle in a high pressure liquid water sprayer has an area of 0.5 cm2. It receives 

water at 250 kPa, 20°C and the exit pressure is 100 kPa. Neglect the inlet kinetic 
energy and assume a nozzle isentropic efficiency of 85%. Find the ideal nozzle 
exit velocity and the actual nozzle mass flow rate. 

 
 Solution: 

C.V. Nozzle. Liquid water is incompressible v ≈ constant, no work, no heat 
transfer     =>  Bernoulli Eq.9.17 

 
1
2V2

ex – 0 = v(Pi - Pe)  = 0.001002 ( 250 – 100) = 0.1503 kJ/kg 

   Vex  = 2 × 0.1503 × 1000 J/kg = 17.34 m s -1 

This was the ideal nozzle now we can do the actual nozzle, Eq. 9.30 
1
2V2

ex ac = η 
1
2V2

ex = 0.85 × 0.1503 = 0.12776 kJ/kg 

   Vex ac  = 2 × 0.12776 × 1000 J/kg = 15.99 m s -1 

 

  m
.

= ρAVex ac = AVex ac/v = 0.5 × 10-4 × 15.99 / 0.001002 =  0.798 kg/s 
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9.113 
 A nozzle is required to produce a flow of air at 200 m/s at 20°C, 100 kPa. It is 

estimated that the nozzle has an isentropic efficiency of 92%. What nozzle inlet 
pressure and temperature is required assuming the inlet kinetic energy is 
negligible? 

Solution: 
C.V. Air nozzle: Pe, Te(real), Ve(real), ηs(real) 

 For the real process: hi = he + V2
e/2   or   

 Ti = Te + V2
e/2CP0 = 293.2 + 2002/2 × 1000 × 1.004 = 313.1 K 

 For the ideal process, from Eq.9.30: 

 V2
es/2 = V2

e/2ηs = 2002/2 × 1000 × 0.92   = 21.74 kJ/kg 

 and     hi = hes + (V2
es/2) 

 Tes = Ti - V
2
es/(2CP0) = 313.1 - 21.74/1.004 = 291.4 K 

The constant s relation in Eq.8.32 gives 

 ⇒     Pi = Pe (Ti/Tes)
k

k-1 = 100



313.1

291.4
3.50

 = 128.6 kPa 
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9.114 
 Redo Problem 9.79 if the water pump has an isentropic efficiency of 85% (hose, 

nozzle included). 
Solution: 
C.V.: pump + hose + water column, height difference 35 m. V is velocity. 

Continuity Eq.6.11:      m
.

in = m
.

ex = (ρAV)nozzle;     

Energy Eq.6.12:        m
.

(-wp) + m
.

(h + V2/2 + gz)in = m
.

(h + V2/2 + gz)ex 

 
  

Process: hin ≅ hex ,   Vin ≅ Vex = 0 ,  
                     zex - zin = 35 m ,   ρ = 1/v ≅ 1/vf 
 
-wp = g(zex - zin) = 9.80665(35 - 0) = 343.2 J/kg 

10 m

35 m

 
 
The velocity in nozzle is such that it can rise 10 m, so make that column C.V. 
 gznoz + 12V2

noz = gzex + 0 

   ⇒  Vnoz = 2g(zex - znoz) = 2 × 9.81 × 10 = 14 m/s 

 m
.

 = (π/vf) (D
2/4) Vnoz = ( π/4) 0.0252 × 14 / 0.001 = 6.873 kg/s ;  

 -W
.

p = m
.

(-wp)/η = 6.872 × 0.343/0.85 =  2.77 kW 
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9.115 
 Find the isentropic efficiency of the nozzle in example 6.4. 

Solution: 
C.V. adiabatic nozzle with known inlet state and velocity. 
 
Inlet state:  B.1.3      hi = 2850.1 kJ/kg;    si = 6.9665 kJ/kg K 

Process ideal:  adiabatic and reversible   Eq.9.8  gives constant s 
ideal exit,  (150 kPa,  s) ;  xes = (6.9665 – 1.4335)/5.7897 = 0.9557 

 hes = hf + xes hfg = 2594.9 kJ/kg 

 V2
es/2 = hi - hes + V2

i /2 = 2850.1 – 2594.9 + (502)/2000 = 256.45 kJ/kg 

 Ves = 716.2 m/s 

From Eq.9.30, 

  ηnoz.= (V2
e/2)/( V2

es/2) = 180/256.45 = 0.70 
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9.116 
 Air flows into an insulated nozzle at 1 MPa, 1200 K with 15 m/s and mass flow 

rate of 2 kg/s. It expands to 650 kPa and exit temperature is 1100 K. Find the exit 
velocity, and the nozzle efficiency. 

Solution: 
C.V. Nozzle. Steady 1 inlet and 1 exit flows, no heat transfer, no work. 

Energy Eq.6.13: hi + (1/2)V2
i  = he + (1/2)V2

e  

Entropy Eq.9.8:       si + sgen = se 

Ideal nozzle  sgen = 0  and assume same exit pressure as actual nozzle. Instead 
of using the standard entropy from Table A.7 and Eq.8.28 let us use a constant 
heat capacity at the average T and Eq.8.32. First from A.7.1 

 Cp 1150 = 
1277.81 - 1161.18

1200 - 1100  = 1.166 kJ/kg K;     

 Cv = Cp 1150 - R = 1.166 - 0.287 = 0.8793,     k = Cp 1150/Cv = 1.326 

Notice how they differ from Table A.5 values.  

  Te s = Ti (Pe/Pi)
k-1
k  = 1200 



650

1000
0.24585

  = 1079.4 K 

1
2 V2

e s = 12 V2
i  + C(Ti  - Te s) = 12 ×152 + 1.166(1200 – 1079.4) × 1000 

  = 112.5 + 140619.6 = 140732 J/kg     ⇒      Ve s = 530.5 m/s 

Actual nozzle with given exit temperature 

  
1
2V2

e ac = 12V2
i  + hi - he ac = 112.5 + 1.166(1200 – 1100) × 1000  

   = 116712.5 J/kg 
             ⇒    Ve ac = 483 m/s 

  η noz = (1
2V2

e ac - 12V2
i )/ (1

2V2
e s - 

1
2V2

i  ) = 

           = (hi  - he, AC)/(hi - he, s)  = 
116600

140619.6 = 0.829 
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Review Problems 
 
9.117 
 A coflowing heat exchanger has one line with 2 kg/s saturated water vapor at 100 

kPa entering. The other line is 1 kg/s air at 200 kPa, 1200 K. The heat exchanger 
is very long so the two flows exit at the same temperature. Find the exit 
temperature by trial and error. Calculate the rate of entropy generation. 

 Solution: 

 
C.V. Heat exchanger, 
steady 2 flows in and 
two flows out. 

                  No W, no external Q 

1

3

2

4

 

 

Flows:     m
.

1 = m
.

2 = m
.

H2O;      m
.

3 = m
.

4 = m
.

air 

Energy:    m
.

H2O (h2 - h1) = m
.

air (h3 - h4) 

State 1: Table B.1.2     h1 = 2675.5 kJ/kg   State 2: 100 kPa, T2 

State 3: Table A.7        h3 = 1277.8 kJ/kg,  State 4: 200 kPa, T2 

Only one unknown T2 and one equation the energy equation:  

 2( h2 - 2675.5) = 1(1277.8 - h4)     =>       2h2 + h4 = 6628.8 kW 

At 500 K:  h2 = 2902.0,  h4 = 503.36   =>   LHS = 6307    too small 

At 700 K:  h2 = 3334.8,  h4 = 713.56   =>   LHS = 7383    too large 

Linear interpolation T2 = 560 K, h2 = 3048.3,  h4 = 565.47  =>  LHS = 6662 

Final states are with  T2 = 554.4 K = 281 °C 

H2O:  Table B.1.3,    h2 = 3036.8 kJ/kg,   s2 = 8.1473,  s1 = 7.3593 kJ/kg K 

AIR:  Table A.7,        h4 = 559.65 kJ/kg,   sT4 = 7.4936,  sT3 = 8.3460 kJ/kg K 

The entropy balance equation, Eq.9.7, is solved for the generation term: 

 S
.
gen = m

.
H2O (s2 - s1) + m

.
air (s4- s3)  

  = 2(8.1473 - 7.3593) +1 (7.4936 - 8.3460) = 0.724 kW/K 
No pressure correction is needed as the air pressure for 4 and 3 is the same. 
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9.118 
 A vortex tube has an air inlet flow at 20°C, 200 kPa and two exit flows of 100 

kPa, one at 0°C and the other at 40°C. The tube has no external heat transfer and 
no work and all the flows are steady and have negligible kinetic energy. Find the 
fraction of the inlet flow that comes out at 0°C. Is this setup possible? 

 Solution: 
C.V. The vortex tube.   Steady, single inlet and two exit flows. No q or w. 

Continuity Eq.:     m
.

1 = m
.

2 + m
.

3 ;       Energy:      m
.

1h1 = m
.

2h2 + m
.

3h3 

Entropy:      m
.

1s1 + S
.
gen = m

.
2s2 + m

.
3s3 

States all given by temperature and pressure. Use constant heat capacity to 

evaluate changes in h and s. Solve for x = m
.

2/m
.

1 from the energy equation 

 m
.

3/m
.

1 = 1 - x;  h1 = x h2 + (1-x) h3    

    =>   x = (h1 - h3)/(h2 - h3) = (T1 - T3)/(T2 - T3)  = (20−40)/(0−40) = 0.5 

Evaluate the entropy generation 

S
.
gen/m

.
1 = x s2 + (1-x)s3 - s1 = 0.5(s2 - s1 ) + 0.5(s3 - s1 ) 

 = 0.5 [Cp ln(T2 / T1) − R ln(P2 / P1)] + 0.5[Cp ln(T3 / T1) − R ln(P3/ P1)] 

 = 0.5 [1.004 ln( 
273.15
293.15 ) - 0.287 ln( 

100
200 )]  

  + 0.5 [1.004 ln( 
313.15
293.15 ) - 0.287 ln( 

100
200 )] 

 = 0.1966 kJ/kg K    > 0          So this is possible. 
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9.119 
 An initially empty spring-loaded piston/cylinder requires 100 kPa to float the 

piston. A compressor with a line and valve now charges the cylinder with water to 
a final pressure of 1.4 MPa at which point the volume is 0.6 m3, state 2. The inlet 
condition to the reversible adiabatic compressor is saturated vapor at 100 kPa. 
After charging the valve is closed and the water eventually cools to room 
temperature, 20°C, state 3. Find the final mass of water, the piston work from 1 to 
2, the required compressor work, and the final pressure, P3. 

 Solution: 
 
 ����������������������������

����������������������������
����������������������������

��
× 

⇒ -Wc 

in

 

 

Process 1→2: transient, adiabatic. 
for C.V. compressor + cylinder 
Assume process is reversible 

Continuity:     m2 - 0 = min ,       Energy:      m2u2 - 0/  = (minhin) - Wc - 1W2 

Entropy Eq.: m2s2 - 0/  = minsin + 0    ⇒      s2 = sin  

Inlet state:  Table B.1.2,     hin = 2675.5 kJ/kg,   sin = 7.3594 kJ/kg K 

 1W2 = ⌡⌠PdV = 
1
2 (Pfloat+ P2)(V2 - 0/ ) = 

1
2 (100+1400)0.6 = 450 kJ 

State 2: P2 , s2 = sin  Table B.1.3   ⇒   v2 = 0.2243,  u2 = 2984.4 kJ/kg 

 m2 = V2/v2 = 0.6/0.2243 = 2.675 kg 

 Wc = minhin - m2u2 - 1W2 = 2.675 × (2675.5 - 2984.4) - 450  = -1276.3 kJ 

 
 

1400
P

V
100

2

3

0 0.6  

State 3 must be on line & 20°C 
Assume 2-phase ⇒  P3 = Psat(20°C) = 2.339 kPa 

less than Pfloat so compressed liquid 

Table B.1.1:   v3 ≅ vf(20°C) = 0.001002    ⇒    V3 = m3v3 = 0.00268 m3 

On line: P3 = 100 + (1400 - 100) × 0.00268/0.6 = 105.8 kPa 
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9.120 
 In a heat-powered refrigerator, a turbine is used to drive the compressor using the 

same working fluid. Consider the combination shown in Fig. P9.120 where the 
turbine produces just enough power to drive the compressor and the two exit 
flows are mixed together. List any assumptions made and find the ratio of mass 

flow rates 
.

m3/
.

m1 and T5 (x5 if in two-phase region) if the turbine and the 
compressor are reversible and adiabatic 

Solution: 
 CV: compressor 
        s2S = s1 = 0.7082 kJ/kg K  → T2S = 52.6°C 

        wSC = h1 - h2S = 178.61 - 212.164 = -33.554 kJ/kg 

 CV: turbine 
        s4S = s3 = 0.6444 = 0.2767 + x4S × 0.4049    =>     x4S = 0.9081 

        h4S = 76.155 + 0.9081 × 127.427 = 191.875 kJ/kg 

        wST = h3 - h4S = 209.843 - 191.875 = 17.968 kJ/kg 

    As  
.
wTURB = -

.
wCOMP ,   

.
m3/

.
m1 = - 

wSC
wST

 = 
33.554
17.968 = 1.867 

 CV: mixing portion 

        
.

m1h2S + 
.

m3h4S = (
.

m1 + 
.

m3)h5 

        1 × 212.164 + 1.867 × 191.875 = 2.867 h5 

          ⇒ h5 = 198.980 = 76.155 + x5 × 127.427      =>      x5 = 0.9639 
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9.121 
 A stream of ammonia enters a steady flow device at 100 kPa, 50°C, at the rate of 

1 kg/s. Two streams exit the device at equal mass flow rates; one is at 200 kPa, 
50°C, and the other as saturated liquid at 10°C. It is claimed that the device 
operates in a room at 25°C on an electrical power input of 250 kW. Is this 
possible? 

Solution: 
 Control volume: Steady device out 

to ambient 25°C. 
1 2

3
Wel
.Q

.

Steady
devicecb

 
 

Energy Eq.6.10:        m
.

1h1 + Q
.
 + W

.
el = m

.
2h2 + m

.
3h3 

Entropy Eq.9.7:        m
.

1s1 + Q
.
/Troom + S

.
gen = m

.
2s2 + m

.
3s3 

 State 1:   Table B.2.2,     h1 = 1581.2 kJ/kg,  s1 = 6.4943 kJ/kg K 

 State 2:   Table B.2.2      h2 = 1576.6 kJ/kg,  s2 = 6.1453 kJ/kg K 

 State 3:   Table B.2.1      h3 = 226.97 kJ/kg,  s3 = 0.8779 kJ/kg K 

From the energy equation 

 Q
.
 = 0.5 × 1576.6 + 0.5 × 226.97 - 1 × 1581.2 - 250 = -929.4 kW 

From the entropy equation 

 S
.
gen = 0.5×6.1453 + 0.5 × 0.8779 - 1 × 6.4943 - (-929.4)/298.15 

   = 0.1345 kW/K > 0/   

     since S
.
gen > 0/  this is possible 
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9.122 
 A frictionless piston/cylinder is loaded with a linear spring, spring constant 100 

kN/m and the piston cross-sectional area is 0.1 m2. The cylinder initial volume of 
20 L contains air at 200 kPa and ambient temperature, 10°C. The cylinder has a 
set of stops that prevent its volume from exceeding 50 L. A valve connects to a 
line flowing air at 800 kPa, 50°C. The valve is now opened, allowing air to flow 
in until the cylinder pressure reaches 800 kPa, at which point the temperature 
inside the cylinder is 80°C. The valve is then closed and the process ends. 

 a)  Is the piston at the stops at the final state? 
 b)  Taking the inside of the cylinder as a control volume, calculate the heat 

transfer during the process. 
 c)  Calculate the net entropy change for this process. 
 
 

x

P

V

800

5020

200
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To = 10oC = 283.15 K 

Ap = 0.1 m2,  Vstop = 50 L 

           Air from Table A.5: R = 0.287, Cp = 1.004,  Cv = 0.717 kJ/kg-K 

          State 1: T1 = 10oC, P1 = 200 kPa, V1 = 20 L = 0.02 m3,  

 m1 = P1V1/RT1 = 200×0.02/(0.287×283.15) = 0.0492 kg 

State 2: T2 = 80oC,   P2 = 800 kPa, Inlet: Ti = 50oC,   Pi = 800 kPa 

a)  Pstop = P1 + 
ks

A2
p
 (Vstop - V1) = 500 kPa, P2 > Pstop  Piston hits stops 

 V2 = Vstop = 50 L, m2 = PV/RT = 0.3946 kg 

b) 1st Law: 1Q2 + mihi = m2u2 - m1u1 + mehe + 1W2; me = 0, mi = m2 - m1 

 1W2 = ∫ P dV = (P1 + Pstop)(Vstop - V1)/2 = 10.5 kJ 

    Assume constant specific heat 
 1Q2   = m2CvT2 - m1CvT1 - (m2 - m1) CpTi + 1W2  = -11.6 kJ 

c)  2nd Law: ∆Snet = m2s2 - m1s1 - misi - 
Qcv
To

 

 ∆Snet = m2(s2 - si) - m1(s1 - si) - 
Qcv
To

 

 s2 - si = Cp ln(T2 / Ti) − R ln(P2 / Pi) = 0.08907 kJ/kg-K    (P2 = Pi) 

 s1 - si = Cp ln(T1 / Ti) − R ln(P1 / Pi )= 0.26529 kJ/kg-K 

 ∆Snet = 0.063 kJ/K 
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9.123 
 An insulated piston/cylinder contains R-22 at 20°C, 85% quality, at a cylinder 

volume of 50 L. A valve at the closed end of the cylinder is connected to a line 
flowing R-22 at 2 MPa, 60°C. The valve is now opened, allowing R-22 to flow in, 
and at the same time the external force on the piston is decreased, and the piston 
moves. When the valve is closed, the cylinder contents are at 800 kPa, 20°C, and 
a positive work of 50 kJ has been done against the external force. What is the 
final volume of the cylinder? Does this process violate the second law of 
thermodynamics? 

 Solution: 
  C.V. Cylinder volume. A transient problem. 
  Continuity Eq.: m2 - m1 = mi 
  Energy Eq.:  m2u2 - m1u1 = 1Q2  + mihi - 1W2 
  Entropy Eq.:  m2s2 - m1s1 = 1Q2/T + misi + 1S2 gen 
  Process:  1Q2 = 0,  1W2 = 50 kJ 

State 1: T1 = 20oC, x1 = 0.85, V1 = 50 L = 0.05 m3 

 P1 = Pg = 909.9 kPa,   u1 = uf + x1ufg = 208.1 kJ/kg 

 v1 = vf + x1vfg = 0.000824 + 0.85×0.02518 = 0.022226 m3/kg,  

 s1 = sf + x1sfg = 0.259 + 0.85×0.6407 = 0.8036 kJ/kg K 

  m1 = V1/v1 = 2.25 kg 

State 2: T2 = 20oC, P2 = 800 kPa, superheated,  v2 = 0.03037 m3/kg, 

  u2 = 234.44 kJ/kg,   s2 = 0.9179 kJ/kg K 

Inlet: Ti = 60oC, Pi = 2 MPa,    hi = 271.56 kJ/kg,  si = 0.8873 kJ/kg K 

Solve for the mass m2 from the energy equation (the only unknown) 

  m2 = [m1u1 - 1W2 - m1hi] / [u2 - hi]  

        = 
2.25 × 208.1 – 50 – 2.25 × 271.56

234.44 – 271.56  = 5.194 kg 

             V2 = m2v2 = 0.158 m3 

Now check the second law 
  1S2 gen = m2s2 - m1s1 - 1Q2/T - misi 

   = 5.194 ×0.9179 – 2.25 × 0.8036 – 0 – (5.194 – 2.25) 0.8873 

   = 0.347 kJ/K  >  0,      Satisfies 2nd Law 
 



   Sonntag, Borgnakke and van Wylen 

 
9.124 
 Air enters an insulated turbine at 50°C, and exits the turbine at - 30°C, 100 kPa. 

The isentropic turbine efficiency is 70% and the inlet volumetric flow rate is 20 
L/s. What is the turbine inlet pressure and the turbine power output? 

C.V.: Turbine, ηs = 0.7, Insulated 

 Air: Cp = 1.004 kJ/kg-K,  R = 0.287 kJ/kg-K,  k = 1.4 

Inlet: Ti = 50oC, V
.

i = 20 L/s = 0.02 m3/s 

Exit: Te = -30oC, Pe = 100 kPa 

a)  1st Law steady flow:  q + hi = he + wT;   q = 0 

Assume Constant Specific Heat 
 wT = hi - he = Cp(Ti - Te) = 80.3 kJ/kg 

 wTs = w/η = 114.7 kJ/kg,    wTs = Cp(Ti - Tes) 

 Solve for Tes = 208.9 K 

Isentropic Process: Pe = Pi (Te / Ti)
k

k-1   =>    Pi = 461 kPa 

b)  W
.

T  = m
.

wT;  m
.

 = PV
.
/RT = 0.099 kg/s     =>   W

.
T = 7.98 kW 
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9.125 
 A certain industrial process requires a steady 0.5 kg/s supply of compressed air at 

500 kPa, at a maximum temperature of 30°C. This air is to be supplied by 
installing a compressor and aftercooler, see Fig. P9.46. Local ambient conditions 
are 100 kPa, 20°C. Using an isentropic compressor efficiency of 80%, determine 
the power required to drive the compressor and the rate of heat rejection in the 
aftercooler. 

Air: R = 0.287 kJ/kg-K, Cp = 1.004 kJ/kg-K, k = 1.4 

State 1: T1 = To = 20oC, P1 = Po = 100 kPa, m
.

 = 0.5 kg/s 

State 2: P2 = P3 = 500 kPa 

State 3: T3 = 30oC, P3 = 500 kPa 

Assume ηs = 80 % (Any value between 70%-90% is OK) 

Compressor: Assume Isentropic 

 T2s = T1 (P2/P1)
k-1
k ,     T2s = 464.6 K 

1st Law: qc + h1 = h2 + wc; qc = 0, assume constant specific heat 

 wcs = Cp(T1 - T2s) = -172.0 kJ/kg 

 ηs = wcs/wc,   wc = wcs/ηs = -215,   W
.

C  = m
.

wC = -107.5 kW 

 wc = Cp(T1 - T2), solve for T2 = 507.5 K 

Aftercooler: 

1st Law:    q + h2 = h3 + w;    w = 0, assume constant specific heat 

 q = Cp(T3 - T2) = 205 kJ/kg,    Q
.
  = m

.
q = -102.5 kW 
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9.126 
 Consider the scheme shown in Fig. P9.126 for producing fresh water from salt 

water. The conditions are as shown in the figure. Assume that the properties of 
salt water are the same as for pure water, and that the pump is reversible and 
adiabatic. 

 a. Determine the ratio (
.

m7/
.

m1), the fraction of salt water purified. 
 b. Determine the input quantities, wP and  qH. 
 c. Make a second law analysis of the overall system. 

C.V. Flash evaporator:  Steady flow, no external q, no work. 

 Energy Eq.: 
.

m1h4 = (
.

m1 - 
.

m7)h5 + 
.

m7h6 

 Table B.1.1     or  632.4 = (1 - (
.

m7/
.

m1)) 417.46 + (
.

m7/
.

m1) 2675.5 

        ⇒ 
.

m7/
.

m1 = 0.0952 

C.V. Pump steady flow, incompressible liq.:    

  wP = -⌡⌠vdP ≈ -v1(P2 - P1)  = - 0.001001(700 - 100) = -0.6 kJ/kg 

    h2 = h1 - wP = 62.99 + 0.6 = 63.6 kJ/kg 

C.V. Heat exchanger:            h2 + (
.

m7/
.

m1)h6 = h3 + (
.

m7/
.

m1)h7 

    63.6 + 0.0952 × 2675.5 = h3 + 0.0952 × 146.68 =>  h3 = 304.3 kJ/kg 

C.V.  Heater:     qH = h4 - h3 = 632.4 - 304.3 = 328.1 kJ/kg 

CV: entire unit, entropy equation per unit mass flow rate at state 1 

   SC.V.,gen = - qH/TH + (1 - (
.

m7/
.

m1))s5 +(
.

m7/
.

m1)s7 - s1 

  = (-328.1/473.15) + 0.9048 × 1.3026 + 0.0952 × 0.5053 - 0.2245  
 = 0.3088 kJ/K kg m1 
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9.127 
 Supercharging of an engine is used to increase the inlet air density so that more 

fuel can be added, the result of which is an increased power output. Assume that 
ambient air, 100 kPa and 27°C, enters the supercharger at a rate of 250 L/s. The 
supercharger (compressor) has an isentropic efficiency of 75%, and uses 20 kW 
of power input. Assume that the ideal and actual compressor have the same exit 
pressure. Find the ideal specific work and verify that the exit pressure is 175 kPa. 
Find the percent increase in air density entering the engine due to the 
supercharger and the entropy generation. 

 
 

⇐ 
-W 
. 
c 

in

ex

 

   C.V.: Air in compressor  (steady flow) 

   Cont: m
.

in = m
.

ex = m
.

 = V
.
/vin = 0.29 kg/s 

   Energy: m
.

hin - W
.

 = m
.

hex    Assume: Q
.
 = 0 

   Entropy: m
.

sin + S
.

gen = m
.

sex 

   vin = 
RTin
Pin

 = 0.8614 m3/kg,  so
Ti = 6.86975 kJ/kg K,   hin = 300.62 kJ/kg 

ηc = wC s/wC ac =>   -
.

WS = -
.

WAC × ηc = 15 kW 

  -wC s = -
.

WS/m
.

 = 51.724 kJ/kg,     -wC ac = 68.966 kJ/kg 

 Table A.7:        hex s = hin - wC s = 300.62 + 51.724 = 352.3 kJ/kg 

    ⇒ Tex s = 351.5 K,   so
Te =  7.02830 kJ/kg K 

    Pex = Pin × e(so
T ex - so

T in)/R = 100 × exp [ 
7.0283 - 6.86975

0.287  ] 

= 173.75 kPa 
 The actual exit state is 
  hex ac = hin - wC ac = 369.6 kJ/kg ⇒  Tex ac = 368.6 K 

  vex = RTex/Pex = 0.6088 m3/kg,   so
Tex ac = 7.0764 

  ρex/ρin = vin/vex = 0.8614/0.6088 = 1.415  or  41.5% increase 

 sgen = sex - sin = 7.0764 - 6.86975 - 0.287 ln(
173.75

100 ) = 0.0481 kJ/kg K 
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9.128 
 A jet-ejector pump, shown schematically in Fig. P9.128, is a device in which a 

low-pressure (secondary) fluid is compressed by entrainment in a high-velocity 
(primary) fluid stream. The compression results from the deceleration in a 
diffuser. For purposes of analysis this can be considered as equivalent to the 
turbine-compressor unit shown in Fig. P9.120 with the states 1, 3, and 5 
corresponding to those in Fig. P9.128. Consider a steam jet-pump with state 1 as 
saturated vapor at 35 kPa; state 3 is 300 kPa, 150°C; and the discharge pressure, 
P5, is 100 kPa. 

 a. Calculate the ideal mass flow ratio, 
.

m1/
.

m3. 

 b. The efficiency of a jet pump is defined as  η = (
.

m1/
.

m3)actual / (
.

m1/
.

m3)ideal 
for the same inlet conditions and discharge pressure. Determine the discharge 
temperature of the jet pump if its efficiency is 10%. 

a) ideal processes (isen. comp. & exp.) 

    


expands 3-4s

comp    1-2s  then mix at const. P 

    s4s = s3 = 7.0778 = 1.3026 + x4s × 6.0568    =>    x4s = 0.9535 

    h4s = 417.46 + 0.9535 × 2258.0 = 2570.5 kJ/kg 

    s2s = s1 = 7.7193 →  T2s = 174°C   &  h2s = 2823.8 kJ/kg 

    
.

m1(h2s - h1) = 
.

m3(h3 - h4s) 

    ⇒ (
.

m1/
.

m3)IDEAL = 
2761.0 - 2570.5
2823.8 - 2631.1 = 0.9886 

b) real processes with jet pump eff. = 0.10 

    ⇒ (
.

m1/
.

m3)ACTUAL = 0.10 × 0.9886 = 0.09886 

   1st law   
.

m1h1 + 
.

m3h3 = (
.

m1 + 
.

m3)h5 

    0.09886 × 2631.1 + 1 × 2761.0 = 1.09896 h5 

State 5: h5 = 2749.3 kJ/kg, P5 = 100 kPa   =>    T5 = 136.5 oC 
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9.129 
 A rigid steel bottle, V = 0.25 m3, contains air at 100 kPa, 300 K. The bottle is 

now charged with air from a line at 260 K, 6 MPa to a bottle pressure of 5 MPa, 
state 2, and the valve is closed. Assume that the process is adiabatic, and the 
charge always is uniform. In storage, the bottle slowly returns to room 
temperature at 300 K, state 3. Find the final mass, the temperature T2, the final 
pressure P3, the heat transfer 1Q3 and the total entropy generation. 

C.V. Bottle. Flow in,  no work, no heat transfer. 
Continuity Eq.6.15:     m2 - m1 = min ;        

Energy Eq.6.16:       m2u2 - m1u1 = minhin 

State 1 and inlet:    Table A.7,  u1 = 214.36 kJ/kg,    hin = 260.32 kJ/kg 

  m1 = P1V/RT1 = (100 × 0.25)/(0.287 × 300) = 0.290 kg 

  m2 = P2V/RT2 = 5000 × 0.25/(0.287 × T2) = 4355.4/T2 

Substitute into energy equation 
   u2 + 0.00306 T2 = 260.32  

Now trial and error on T2 

 T2 = 360   =>   LHS = 258.63 (low);   T2 = 370   =>   LHS = 265.88 (high) 

 Interpolation  T2 = 362.3 K   (LHS = 260.3  OK) 

 m2 = 4355.4/362.3 = 12.022 kg ;  P3 = m2RT3/V = 4140 kPa 

Now use the energy equation from the beginning to the final state 
 1Q3 = m2u3 - m1u1 - minhin = (12.022 - 0.29) 214.36  - 11.732 × 260.32  

  = -539.2 kJ   
Entropy equation from state 1 to state 3 with change in s from Eq.8.28 
 Sgen = m2s3 - m1s1 - minsin - 1Q3/T = m2(s3 -sin) - m1(s1 - sin) - 1Q3/T  

     = 12.022[6.8693 - 6.7256 - R ln(4140/6000)] 
        - 0.29[6.8693 - 6.7256 - R ln(100/6000)] + 539.2/300 =  4.423 kJ/K 

 
  

2

1

v

T

s

1 260
300

v = C

100 kPa

5 MPa

3
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line

P

2
T2

3

line

 
 
  Problem could have been solved with constant specific heats from A.5 in 

which case we would get the energy explicit in T2 (no iterations). 
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9.130 
 A horizontal, insulated cylinder has a frictionless piston held against stops by an 

external force of 500 kN. The piston cross-sectional area is 0.5 m2, and the initial 
volume is 0.25 m3. Argon gas in the cylinder is at 200 kPa, 100°C. A valve is 
now opened to a line flowing argon at 1.2 MPa, 200°C, and gas flows in until the 
cylinder pressure just balances the external force, at which point the valve is 
closed. Use constant heat capacity to verify that the final temperature is 645 K 
and find the total entropy generation. 

Solution: 
The process has inlet flow, no work (volume constant) and no heat transfer. 
Continuity Eq.6.15:   m2 − m1 = mi   

Energy Eq.6.16:   m2 u2 − m1u1 = mi hi  

 m1= P1V1/RT1 = 200 ×0.25/(0.2081 ×373.15) = 0.644 kg 

Force balance:   P2A = F        ⇒       P2 = 
500
0.5  = 1000 kPa 

For argon use constant heat capacities so the energy equation is: 
   m2  CVo T2 – m1 CVo T1  = (m2  – m1 ) CPo T in 

We know P2 so only 1 unknown for state 2.  

Use ideal gas law to write   m2T2 = P2V1/R     and      m1 T1  = P1V1/R 

and divide the energy equation with CVo to solve for the change in mass 

 (P2 V1  – P1V1)/R  = (m2  – m1 ) (CPo/CVo ) T in  

 (m2  – m1 ) = (P2 – P1)V1/(R k T in )  

  = (1000 - 200)×0.25/(0.2081×1.667×473.15) = 1.219 kg 
    m2 = 1.219 + 0.644 = 1.863 kg. 

   T2 = P2V1/(m2R) = 1000×0.25/(1.863×0.2081) = 645 K OK 

Entropy Eq.9.12:        m2s2 - m1s1 = misi + 0 + 1S2 gen 

 1S2 gen  = m1(s2 - s1) + (m2 - m1)(s2 - si) 

   = m1[Cp ln
T2
T1

 - R ln 
P2
P1

 ] + (m2 - m1)[Cp ln
T2
Ti

 - R ln 
P2
Pi

 ] 

   = 0.644[ 0.52 ln 
645

373.15 - 0.2081 ln 
1000
200 ]  

   + 1.219[ 0.52 ln 
645

473.15 - 0.2081 ln 
1000
1200] 

  = - 0.03242 + 0.24265 = 0.21 kJ/K 
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9.131 
 A rigid 1.0 m3 tank contains water initially at 120°C, with 50 % liquid and 50% 

vapor, by volume. A pressure-relief valve on the top of the tank is set to 1.0 MPa 
(the tank pressure cannot exceed 1.0 MPa - water will be discharged instead). 
Heat is now transferred to the tank from a 200°C heat source until the tank 
contains saturated vapor at 1.0 MPa. Calculate the heat transfer to the tank and 
show that this process does not violate the second law. 

Solution: 
C.V. Tank and walls out to the source. Neglect storage in walls. There is flow 
out and no boundary or shaft work. 
Continuity Eq.6.15:   m2 − m1 = − me  

Energy Eq.6.16:    m2 u2 − m1u1 = - mehe + 1Q2  

Entropy Eq.9.12: m2s2 − m1s1 = − mese + ∫ dQ/T + 1S2 gen 

State 1: T1 = 120oC, Table B.1.1 

 vf = 0.00106 m3/kg,    mliq = 0.5V1/vf = 471.7 kg 

  vg = 0.8919 m3/kg,     mg = 0.5V1/vg  = 0.56 kg,  

 m1 = 472.26 kg,     x1 = mg/m1 = 0.001186 

 u1 = uf + x1ufg = 503.5 + 0.001186×2025.8 = 505.88 kJ/kg,   

 s1 = sf + x1sfg = 1.5275 + 0.001186×5.602 = 1.5341 kJ/kg-K 

State 2: P2 = 1.0 MPa, sat. vap. x2 = 1.0,   V2 = 1m3 

 v2 = vg = 0.19444 m3/kg,        m2 = V2/v2 = 5.14 kg 

 u2 = ug = 2583.6 kJ/kg,           s2 = sg = 6.5864 kJ/kg-K 

Exit: Pe = 1.0 MPa, sat. vap. xe = 1.0, he = hg = 2778.1 kJ/kg,  

 se = sg = 6.5864 kJ/kg,  me = m1 - m2 = 467.12 kg 

From the energy equation we get 
  1Q2 = m2 u2 − m1u1 + mehe = 1 072 080 kJ 

From the entropy Eq.9.24 (with 9.25 and 9.26) we get 

 1S2 gen = m2s2 − m1s1 + mese − 1
Q2
TH

 ;         TH = 200oC = 473 K 

  1S2 gen = ∆Snet = 120.4 kJ/K > 0    Process Satisfies 2nd Law 
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9.132 
 A certain industrial process requires a steady 0.5 kg/s of air at 200 m/s, at the 

condition of 150 kPa, 300 K. This air is to be the exhaust from a specially 
designed turbine whose inlet pressure is 400 kPa. The turbine process may be 
assumed to be reversible and polytropic, with polytropic exponent n = 1.20. 

 a)  What is the turbine inlet temperature? 
 b)  What are the power output and heat transfer rate for the turbine? 
 c)  Calculate the rate of net entropy increase, if the heat transfer comes from a 

source at a temperature 100°C higher than the turbine inlet temperature. 
Solution: 

C.V. Turbine, this has heat transfer,  PVn = Constant, n = 1.2 
Exit: Te = 300K,   Pe = 150 kPa,   Ve = 200 m/s 

a) Process polytropic Eq.8.37: Te / Ti = (Pe/Pi)
n-1
n     =>    Ti = 353.3 K 

b) 1st Law Eq.6.12:              m
.

i(h + V2/2)in + Q
.
 = m

.
ex(h + V2/2)ex + W

.
T 

 Reversible shaft work in a polytropic process, Eq.9.14 and Eq.9.19: 

 wT = −∫ v dP  + ( V2
i  − V2

e )/2  = − 
n

n-1(Peve - Pivi)  + ( V2
i  − V2

e )/2   

  = − 
n

n-1R(Te -Ti) − V2
e /2  =  71.8 kJ/kg 

 W
.

T = m
.

wT = 35.9 kW 

 Assume constant specific heat in the energy equation 

 Q
.
 = m

.
[CP (Te -Ti) + V2

e /2 ] + W
.

T = 19.2 kW 

c)  2nd Law Eq.9.7 or 9.23 with change in entropy from Eq.8.25:    

 dSnet/dt = S
.
gen = m

.
(se -si) - Q

.
H/TH,      TH = Ti + 100 = 453.3 K 

  se - si = Cpln(Te / Ti) - R ln(Pe / Pi) = 0.1174 kJ/kg K 

 dSnet/dt = 0.5×0.1174 - 19.2/453.3 = 0.0163 kW/K 
 
 P

v

T

s
e

i

n = 1

n = 1.2

i

e
n = 1

n = k = 1.4

n = 1.2
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9.133 
 Assume both the compressor and the nozzle in Problem 9.37 have an isentropic 

efficiency of 90% the rest being unchanged. Find the actual compressor work and 
its exit temperature and find the actual nozzle exit velocity. 

 
 

-W

1

3

5
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P  = P
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T
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C.V. Ideal compressor, inlet: 1 exit: 2
 
   Adiabatic :  q = 0. 
   Reversible:   sgen = 0 

  Energy Eq.6.13: h1  + 0 = wC  + h2; 

 Entropy Eq.9.8: s1 + 0/T + 0 = s2 

   - wCs = h2 - h1 ,    s2 = s1   

Properties use air Table A.5:     CPo = 1.004 
kJ

kg K,  R = 0.287 
kJ

kg K,   k = 1.4,  

Process gives constant s (isentropic) which with constant CPo gives Eq.8.32 

 => T2 = T1( P2/P1)
k-1
k  = 290 (400/100) 0.2857 = 430.9 K 

   ⇒      −wCs  = CPo(T2 – T1) = 1.004 (430.9 – 290) = 141.46 kJ/kg 

 
The ideal nozzle then expands back down to state 1 (constant s). The actual 
compressor discharges at state 3 however, so we have: 
  wC = wCs/ηC = -157.18    ⇒    T3 = T1 - wC/Cp = 446.6 K 

Nozzle receives air at 3 and exhausts at 5. We must do the ideal (exit at 4) 
first. 

 s4 = s3  ⇒  Eq.8.32:         T4 = T3 (P4/P3)
k-1
k  = 300.5 K  

 1
2 Vs

2 = Cp(T3 - T4) = 146.68  ⇒  12 Vac
2  = 132 kJ/kg  ⇒ Vac = 513.8 m/s 

If we need it, the actual nozzle exit (5) can be found: 

  T5 = T3 -  Vac
2 /2Cp =  315 K 
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Problems solved with Pr and vr functions 
 
9.28 
 A compressor receives air at 290 K, 100 kPa and a shaft work of 5.5 kW from a 

gasoline engine. It should deliver a mass flow rate of 0.01 kg/s air to a pipeline. 
Find the maximum possible exit pressure of the compressor. 

Solution: 

C.V. Compressor, Steady single inlet and exit flows.  Adiabatic:  Q
.
 = 0. 

Continuity Eq.6.11:    m
.

i = m
.

e = m
.

,          

Energy  Eq.6.12:       m
.

hi = m
.

he + W
.

C,     

Entropy Eq.9.8:      m
.

si + S
.
gen = m

.
se       ( Reversible  S

.
gen = 0 ) 

W
.

c = m
.

wc   =>   -wc = -W
.

/m
.

 = 5.5/0.01 = 550 kJ/kg 

Use Table A.7,    hi = 290.43 kJ/kg,  Pr i = 0.9899  

he = hi + (-wc) = 290.43 + 550 = 840.43 kJ/kg 

A.7   =>   Te = 816.5 K,  Pr e = 41.717 

Pe = Pi (Pr e/Pr i) = 100 × (41.717/0.9899) = 4214 kPa 
 
 P

v

T

s

e

i
i

e
h = 550 kJ/kg∆

 
-WC

i

e
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9.32 
 Do the previous problem using the air tables in A.7 
 The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with neglible 

kinetic energy. The exit pressure is 80 kPa and the process is reversible and 
adiabatic. Use constant heat capacity at 300 K to find the exit velocity. 

 
Solution: 
C.V. Nozzle, Steady single inlet and exit flow, no work or heat transfer. 

Energy Eq.6.13: hi = he + V2
e/2     ( Zi = Ze ) 

Entropy Eq.9.8: se = si + ∫ dq/T + sgen = si + 0 + 0 

Process:      q = 0,    sgen = 0   as used above leads to   se = si  

Inlet state:  hi = 1277.8 kJ/kg, Pr i = 191.17 

The constant s is done using the Pr function from A.7.2 

Pr e = Pr i (Pe / Pi) = 191.17 (80/150) = 101.957 

Interpolate in A.7    =>   

Te = 1000 + 50 
101.957 – 91.651
111.35 – 91.651  = 1026.16 K 

he = 1046.2 + 0.5232 × (1103.5 – 1046.2) = 1076.2 kJ/kg 

From the energy equation we have V2
e/2 = hi - he ,  so then 

Ve = 2 (hi - he) = 2(1277.8 - 1076.2) × 1000 = 635 m/s 
 
 
 P

v

T

s

e

ii

e

 
Low V

Hi P Low P

Hi V
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9.34 
 Air enters a turbine at 800 kPa, 1200 K, and expands in a reversible adiabatic 

process to 100 kPa. Calculate the exit temperature and the work output per 
kilogram of air, using 

 a. The ideal gas tables, Table A.7 
 b. Constant specific heat, value at 300 K from table A.5 
 
 Solution: 
 
 
 i 

e

Turbine

air

W
.

 

C.V. Air turbine.   
Adiabatic:  q = 0,   reversible:  sgen = 0 

    Energy Eq.6.13:     wT = hi − he ,     

    Entropy Eq.9.8:    se = si 
     

a) Table A.7:       hi = 1277.8 kJ/kg,   Pr i = 191.17 

    The constant s process is done using the Pr function from A.7.2 

     ⇒ Pr e = Pr i (Pe / Pi) = 191.17 



100

800   = 23.896  

   Interpolate in A.7.1   ⇒  Te = 705.7 K,   he = 719.7 kJ/kg 

               w = hi - he = 1277.8 – 719.7 = 558.1 kJ/kg 

 
b)   Table A.5:    CPo = 1.004 kJ/kg K,  R = 0.287 kJ/kg K,   k = 1.4,  then 

from Eq.8.32 

Te = Ti (Pe/Pi)
k-1
k  = 1200 



100

800
0.286

 = 662.1 K 

    w = CPo(Ti - Te) = 1.004(1200 - 662.1) = 539.8 kJ/kg 
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9.69 
 An old abandoned saltmine, 100 000 m3 in volume, contains air at 290 K, 100 

kPa. The mine is used for energy storage so the local power plant pumps it up to 
2.1 MPa using outside air at 290 K, 100 kPa. Assume the pump is ideal and the 
process is adiabatic. Find the final mass and temperature of the air and the 
required pump work.  

Solution: 
C.V. The mine volume and the pump  
Continuity Eq.6.15:       m2 - m1 = min 

Energy Eq.6.16:   m2u2 - m1u1 = 1Q2 - 1W2 + minhin 

Entropy Eq.9.12:     m2s2 - m1s1 = ⌡⌠dQ/T + 1S2 gen + minsin 

Process:  Adiabatic    1Q2 = 0 , Process ideal      1S2 gen = 0 ,   s1 = sin 

 ⇒  m2s2 = m1s1 + minsin = (m1 + min)s1 = m2s1  ⇒  s2 = s1 

Constant  s  ⇒          Pr2 = Pr i (P2 / Pi) = 0.9899 



2100

100   = 20.7879 

  A.7.2    ⇒  T2 = 680 K ,  u2 = 496.94 kJ/kg 

 m1 = P1V1/RT1 = 100×105/(0.287 × 290) = 1.20149 × 105 kg 

 m2 = P2V2/RT2 = 100 × 21×105/(0.287 × 680) = 10.760 × 105 kg 

   ⇒  min = 9.5585×105 kg 

 1W2 = minhin + m1u1 - m2u2 

     = min(290.43) + m1(207.19) - m2(496.94) = -2.322 × 108 kJ 

 
  

2

1, i

P

v

T

s
1, i

2
T2

290
400

s = C

100 kPa
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9.89 
 Calculate the air temperature and pressure at the stagnation point right in front of 

a meteorite entering the atmosphere (-50 °C, 50 kPa) with a velocity of 2000 m/s. 
Do this assuming air is incompressible at the given state and repeat for air being a 
compressible substance going through an adiabatic compression. 

Solution: 

Kinetic energy: 
1
2 V2 = 

1
2 (2000)2/1000 = 2000 kJ/kg 

Ideal gas:  vatm = RT/P = 0.287 × 223/50 =1.28 m3/kg 

a) incompressible 

Energy Eq.6.13:     ∆h = 
1
2 V2 = 2000 kJ/kg 

If A.5  ∆T = ∆h/Cp = 1992 K   unreasonable, too high for that Cp 

Use A.7: hst = ho + 
1
2 V2 = 223.22 + 2000 = 2223.3 kJ/kg 

   Tst = 1977 K 

Bernoulli (incompressible) Eq.9.17: 

 ∆P = Pst - Po = 
1
2 V2/v = 2000/1.28 = 1562.5 kPa 

  Pst = 1562.5 + 50 = 1612.5 kPa 

b) compressible 
  Tst = 1977 K  the same energy equation. 

From A.7.2: Stagnation point Pr st = 1580.3;   Free   Pr o = 0.39809 
  

      Pst = Po × 
Pr st
Pr o

 = 50 × 
1580.3
0.39809  

       = 198 485 kPa 
 

 
 

 
 
  Notice that this is highly compressible, v is not constant. 
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9.127 
 Supercharging of an engine is used to increase the inlet air density so that more 

fuel can be added, the result of which is an increased power output. Assume that 
ambient air, 100 kPa and 27°C, enters the supercharger at a rate of 250 L/s. The 
supercharger (compressor) has an isentropic efficiency of 75%, and uses 20 kW 
of power input. Assume that the ideal and actual compressor have the same exit 
pressure. Find the ideal specific work and verify that the exit pressure is 175 kPa. 
Find the percent increase in air density entering the engine due to the 
supercharger and the entropy generation. 

 
 

⇐ 
-W 
. 
c 

in

ex

 

   C.V.: Air in compressor  (steady flow) 

   Cont: m
.

in = m
.

ex = m
.

 = V
.
/vin = 0.29 kg/s 

   Energy: m
.

hin - W
.

 = m
.

hex    Assume: Q
.
 = 0 

   Entropy: m
.

sin + S
.

gen = m
.

sex 

 Inlet state: vin = RTin/Pin = 0.8614 m3/kg,  Pr in = 1.1167 

ηc = wC s/wC ac =>   -
.

WS = -
.

WAC × ηc = 15 kW 

  -wC s = -
.

WS/m
.

 = 51.724 kJ/kg,     -wC ac = 68.966 kJ/kg 

 Table A.7:        hex s = hin - wC s = 300.62 + 51.724 = 352.3 kJ/kg 

     ⇒ Tex s = 351.5 K,   Pr ex = 1.949 

   Pex =  Pin × Pr ex/Pr in = 100 × 1.949 / 1.1167 = 174.5 kPa 

 The actual exit state is 
  hex ac = hin - wC ac = 369.6 kJ/kg  ⇒  Tex ac = 368.6 K 

  vex = RTex/Pex = 0.606 m3/kg 

  ρex/ρin = vin/vex = 0.8614/0.606 = 1.42  or  42 % increase 

 sgen = sex - sin = 7.0767 - 6.8693 - 0.287 ln(174/100)] = 0.0484 kJ/kg K 
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Concept Problems 
 
9.134E 
 A compressor receives R-134a at 20 F, 30 psia with an exit of 200 psia, x = 1. 

What can you say about the process? 
  Solution: 
 
   Properties for R-134a are found in Table F.10 
    Inlet state: si = 0.4157 Btu/lbm R 
    Exit state: se = 0.4080 Btu/lbm R 

  Steady state single flow: se = si + 
⌡
⌠

i

e
 
dq
T   + sgen  

  Since s decreases slightly and the generation term can only be positive, 
  it must be that the heat transfer is negative (out) so the integral gives a 

contribution that is smaller than -sgen. 
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9.135E 
 A large condenser in a steam power plant dumps 15 000 Btu/s at 115 F with an 

ambient at 77 F. What is the entropy generation rate? 
  Solution: 
 
   This process transfers heat over a finite temperature difference between 

the water inside the condenser and the outside ambient (cooling water from the 
sea, lake or river or atmospheric air) 

    
 C.V. The wall that separates the inside 115 F 

water from the ambient at 77 F. 
 
Entropy Eq. 9.1 for steady state operation: 
 
 

Condensing
water

Sea
water

cb  
          115 F                 77 F 

   
dS
dt  = 0 = ∑ Q

.

T + S
.
gen = 

Q
.

T115
 − 

Q
.

T77
 + S

.
gen 

 

   S
.
gen = [ 

15 000
536.7   − 

15 000
115 + 459.7 ] 

Btu
s R = 1.85 

Btu
s R  
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9.136E 
 Air at 150 psia, 540 R is throttled to 75 psia. What is the specific entropy 

generation? 
   
  Solution: 

C.V. Throttle, single flow, steady state. We neglect kinetic and potential 
energies and there are no heat transfer and shaft work terms. 
Energy Eq. 6.13:       hi = he      ⇒ Ti = Te    (ideal gas) 

Entropy Eq. 9.9: se = si + 
⌡
⌠

i

e
 
dq
T   + sgen = si + sgen 

Change in s Eq.8.24: se − si = 
⌡
⌠

i

e
 Cp

dT
T  − R ln 

Pe
Pi

 = − R ln 
Pe
Pi

 

  sgen = se − si = − 
53.34
778  ln 



75

150  = 0.0475 
Btu

lbm R 
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9.137E 
 A pump has a 2 kW motor. How much liquid water at 60 F can I pump to 35 psia 

from 14.7 psia? 
 
  Incompressible flow (liquid water) and we assume reversible. Then the shaftwork 

is from Eq.9.18 

     w = −∫  v dP = −v ∆P = −0.016 ft3/lbm (35 – 14.7) psia  
   = − 46.77 lbf-ft/lbm = -0.06 Btu/lbm 
W
.

 = 2 kW = 1.896 Btu/s 

m.  = 
W
.

-w = 
1.896
0.06  = 31.6 lbm/s 
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9.138E 
 A steam turbine inlet is at 200 psia, 900 F. The exit is at 40 psia. What is the 

lowest possible exit temperature? Which efficiency does that correspond to? 
 
   We would expect the lowest possible exit temperature when the maximum 

amount of work is taken out. This happens in a reversible process so if we assume 
it is adiabatic this becomes an isentropic process. 

 
   Exit:  40 psia, s = sin = 1.8055 Btu/lbm R   ⇒    T = 483.7 F  
 
   The efficiency from Eq.9.27 measures the turbine relative to an isentropic 

turbine, so the efficiency will be 100%. 
 
 
9.139E 
 A steam turbine inlet is at 200 psia, 900 F. The exit is at 40 psia. What is the 

highest possible exit temperature? Which efficiency does that correspond to? 
 
   The highest possible exit temperature would be if we did not get any work 

out, i.e. the turbine broke down. Now we have a throttle process with constant h 
assuming we do not have a significant exit velocity. 

 
   Exit:  40 psia, h = hin = 1477.04 Btu/lbm   ⇒    T = 889 F  
 

   Efficiency: η = 
w
ws

 = 0 

 
 

v

P

s

T

h = Ci
e

i

e

 
 

 

 
 
  Remark:  Since process is irreversible there is no area under curve in T-s diagram 

that correspond to a q, nor is there any area in the P-v diagram corresponding to a 
shaft work. 
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9.140E 
 A steam turbine inlet is at 200 psia, 900 F. The exit is at 40 psia, 600 F. What is 

the isentropic efficiency? 
 
  from table F.7.2 
   Inlet: hin = 1477.04 Btu/lbm,   sin = 1.8055 Btu/lbm R 
   Exit:  hex = 1333.43 Btu/lbm,   sex = 1.8621 Btu/lbm R 
   Ideal Exit:  40 psia, s = sin = 1.8055 Btu/lbm R   ⇒   hs = 1277.0 Btu/lbm  
 
    wac =  hin - hex = 1477.04 – 1333.43 = 143.61 Btu/lbm 
    ws = hin - hs = 1477.04 – 1277.0 = 200 Btu/lbm 

    η = 
wac
ws

 =  
143.61

200  = 0.718 

 
 
 

v

P

s

T

i

e ac
i

e ac
e s

e s

40 psia
200 psia
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9.141E 
 The exit velocity of a nozzle is 1500 ft/s. If  ηnozzle = 0.88 what is the ideal exit 

velocity? 
 
  The nozzle efficiency is given by Eq. 9.30 and since we have the actual 

exit velocity we get 
     

   V2
e s = V2

ac/ηnozzle    ⇒  

Ve s = Vac/ ηnozzle = 1500 / 0.88 = 1599 ft/s 
 



   Sonntag, Borgnakke and Wylen 
 

 
Steady Single Flow Devices 
 
9.142E 
 Steam enters a turbine at 450 lbf/in.2, 900 F, expands in a reversible adiabatic 

process and exhausts at 130 F. Changes in kinetic and potential energies between 
the inlet and the exit of the turbine are small. The power output of the turbine is 
800 Btu/s. What is the mass flow rate of steam through the turbine? 

Solution: 
C.V. Turbine, Steady single inlet and exit flows.  Adiabatic:  Q

.
 = 0. 

Continuity Eq.6.11:    m. i = m. e = m. ,          

Energy  Eq.6.12:       m. hi = m. he + W
.

T,     

Entropy Eq.9.8:      m. si + 0/  = m. se       ( Reversible  S
.
gen = 0 ) 

 
  

Explanation for the 
work term is in Sect. 
9.3, Eq.9.18 2

1

P

v

T

s

1

2

 

Inlet state:  Table F.7.2     hi = 1468.3 btu/lbm,   si = 1.7113 btu/lbm R 

Exit state:   se = 1.7113 Btu/lbm R,  Te = 130 F ⇒  saturated  

         xe = (1.7113 – 0.1817)/1.7292 = 0.8846,   

 he = 97.97 + xe 1019.78 = 1000 Btu/lbm 

 w = hi - he = 1468.3 – 1000 = 468.31 Btu/lbm 

   
.

m = W
.

 / w = 800 / 468.3 = 1.708 lbm/s 
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9.143E 
 In a heat pump that uses R-134a as the working fluid, the R-134a enters the 

compressor at 30 lbf/in.2, 20 F at a rate of 0.1 lbm/s. In the compressor the R-
134a is compressed in an adiabatic process to 150 lbf/in.2. Calculate the power 
input required to the compressor, assuming the process to be reversible. 

Solution: 
C.V. Compressor, Steady single inlet and exit flows.  Adiabatic:  Q

.
 = 0. 

Continuity Eq.6.11:    m. 1 = m. 2 = m. ,          

Energy  Eq.6.12:       m. h1 = m. h2 + W
.

C,     

Entropy Eq.9.8:      m. s1 + 0/  = m. s2       ( Reversible  S
.
gen = 0 ) 

Inlet state:  Table F.10.2     h1 = 169.82 Btu/lbm,   s1 = 0.4157 Btu/lbm R 

Exit state:  P2 = 150 psia & s2   ⇒   h2 = 184.46 Btu/lbm 

 W
.

c = m
.

wc = m
.

(h1 - h2) = 0.1 × (169.82 - 184.46) = -1.46 btu/s 
 

  
Explanation for the 
work term is in  
Sect. 9.3 
Eq.9.18 

2

1

P

v

T

s

1

2
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9.144E 
 A diffuser is a steady-state, steady-flow device in which a fluid flowing at high 

velocity is decelerated such that the pressure increases in the process. Air at 18 
lbf/in.2, 90 F enters a diffuser with velocity 600 ft/s and exits with a velocity of 
60 ft/s. Assuming the process is reversible and adiabatic what are the exit pressure 
and temperature of the air? 

C.V. Diffuser, Steady single inlet and exit flow, no work or heat transfer. 

Energy Eq.:      hi + V2
i /2gc  = he + V2

e/2gc ,       =>      he - hi  = CPo(Te - Ti) 

Entropy Eq.:     si + ∫ dq/T + sgen = si + 0 + 0 = se   (Reversible, adiabatic) 

Energy equation then gives (conversion 1 Btu/lbm = 35 037 ft2/s2 from A.1): 

 CPo(Te -Ti) = 0.24(Te- 549.7) = 
6002 - 602

2 × 25 037 

    Te = 579.3 R 

 Pe = Pi(Te/Ti)
k

k-1 = 18



579.3

549.7
3.5

 = 21.6 lbf/in2 

 
 P

v

T

s

e

i
i

e

 

Inlet

Low V

Exit

Hi V
Hi P, ALow P, A

 
 



   Sonntag, Borgnakke and Wylen 
 

 
9.145E 
 The exit nozzle in a jet engine receives air at 2100 R, 20 psia with neglible kinetic 

energy. The exit pressure is 10 psia and the process is reversible and adiabatic. 
Use constant heat capacity at 77 F to find the exit velocity. 

 
Solution: 
C.V. Nozzle, Steady single inlet and exit flow, no work or heat transfer. 

Energy Eq.6.13: hi = he + V2
e/2     ( Zi = Ze ) 

Entropy Eq.9.8: se = si + ∫ dq/T + sgen = si + 0 + 0 

Use constant specific heat from Table F.4,  CPo = 0.24 
Btu

lbm R,   k = 1.4     

The isentropic process (se = si) gives Eq.8.32 

=> Te = Ti( Pe/Pi)
k-1
k  = 2100 (10/20) 0.2857  = 1722.7 R 

The energy equation becomes (conversion 1 Btu/lbm = 25 037 ft2/s2 in A.1) 

V2
e/2 = hi - he ≅ CP( Ti - Te) 

Ve = 2 CP( Ti - Te) = 2×0.24(2100-1722.7) × 25 037 = 2129 ft/s 
 
 
 P

v

T

s

e

ii

e
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Hi P Low P

Hi V
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9.146E 
 Air at 1 atm, 60 F is compressed to 4 atm, after which it is expanded through a 

nozzle back to the atmosphere. The compressor and the nozzle are both reversible 
and adiabatic and kinetic energy in/out of the compressor can be neglected. Find 
the compressor work and its exit temperature and find the nozzle exit velocity. 

 
 

-W

1

2

1
 

 
T

s1

2

P

P

1

2

 

Separate control volumes around 
compressor and nozzle. For ideal 
compressor we have  
inlet : 1 and exit : 2 
 
   Adiabatic :  q = 0. 
   Reversible:   sgen = 0 
 

 
  Energy Eq.6.13: h1  + 0 = wC  + h2; 

 Entropy Eq.9.8: s1 + 0/T + 0 = s2 
   - wC = h2 - h1 ,    s2 = s1   

 
The constant s from Eq. 8.25 gives 

  T2 = T1 (P2/P1)
k-1
k  = (459.7 + 60) × (4/1)0.2857 = 772 R 

   ⇒   -wC  = h2 - h1 = CP(T2 - T1) = 0.24 (772 – 519.7) = 60.55 Btu/lbm 
The ideal nozzle then expands back down to state 1 (constant s) so energy 
equation gives: 

 1
2V2 = h2 - h1 = -wC = 60.55 Btu/lbm      

    ⇒     V = 2 × 60.55 × 25 037  =  1741 ft/s 

Remember conversion   1 Btu/lbm = 25 037 ft2/s2 from Table A.1. 
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9.147E 
 An expander receives 1 lbm/s air at 300 psia, 540 R with an exit state of 60 psia, 

540 R. Assume the process is reversible and isothermal. Find the rates of heat 
transfer and work neglecting kinetic and potential energy changes. 

 
 Solution: 

 
C.V. Expander, single steady flow. 
Energy Eq.:     m

.
hi + Q

.
 = m

.
he + W

.
 

Entropy Eq.: m
.

si + Q
.
/T + m

.
sgen = m

.
se           

Process:   T is constant  and  sgen = 0 
Ideal gas and isothermal gives a change in entropy by Eq. 8.24, so we can 
solve for the heat transfer 

   Q
.
 = Tm

.
(se – si) = –m

.
RT ln 

Pe
Pi

 

       = - 1 × 540 × 
53.34
778  × ln 

60
300 = 59.6 Btu/s 

From the energy equation we get 
   W

.
 = m

.
(hi – he) + Q

.
 = Q

.
 = 59.6 Btu/s 

 
 P

v

T

s

eii

e

 Wexp

i eQ
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9.148E 
 A flow of 4 lbm/s saturated vapor R-22 at 100 psia is heated at constant pressure 

to 140 F. The heat is supplied by a heat pump that receives heat from the ambient 
at 540 R and work input, shown in Fig. P9.35. Assume everything is reversible 
and find the rate of work input. 

 
Solution: 

 C.V. Heat exchanger 
Continuity Eq.:    m

.
1 = m

.
2 ;           

Energy Eq.:      m
.

1h1 + Q
.

H = m
.

1h2 
Table F.9.2:    
   h1 = 109.01 Btu/lbm,    
   s1 = 0.2179 Btu/lbm R      
   h2 = 125.08 Btu/lbm,    
    s2 = 0.2469 Btu/lbm R 

H Q 

W 

L Q 

T L 

HP

1 2

 

Notice we can find Q
.

H but the temperature TH is not constant making it 
difficult to evaluate the COP of the heat pump. 
 
C.V. Total setup and assume everything is reversible and steady state. 
Energy Eq.:      m

.
1h  + Q

.
L + W

.
 = m

.
1h2 1

Entropy Eq.:  m
.

1s1 + Q
.

L/TL + 0 = m
.

1s2           (TL is constant, sgen = 0) 

  Q
.

L = m
.

1TL [s2 - s1] = 4 × 540 [0.2469 – 0.2179] = 62.64 Btu/s 

  W
.

 = m
.

1[h2 - h1] - Q
.

L = 4 (125.08 – 109.01) – 62.64 = 1.64 Btu/s 
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9.149E 
 One technique for operating a steam turbine in part-load power output is to 

throttle the steam to a lower pressure before it enters the turbine, as shown in Fig. 
P9.39. The steamline conditions are 200 lbf/in.2, 600 F, and the turbine exhaust 
pressure is fixed at 1 lbf/in.2. Assuming the expansion inside the turbine to be 
reversible and adiabatic, determine 

  a. The full-load specific work output of the turbine 
  b. The pressure the steam must be throttled to for 80% of full-load output 
  c. Show both processes in a T–s diagram. 

a) C.V. Turbine full-load, reversible. 
       s3a = s1 = 1.6767 Btu/lbm R = 0.132 66 + x3a × 1.8453 
         x3a = 0.8367 
     h3a = 69.74 + 0.8367 × 1036.0  = 936.6 Btu/lbm 
     w = h1 - h3a = 1322.1 - 936.6 = 385.5 Btu/lbm 

b)  w = 0.80 × 385.5 = 308.4 = 1322.1 - h3b ⇒ h3b = 1013.7 Btu/lbm 

    1013.7 = 69.74 + x3b × 1036.0   ⇒   x3b = 0.9112 

    s3b = 0.13266 + 0.9112 × 1.8453 = 1.8140 Btu/lbm R 

        


s2b = s3b = 1.8140

h2b = h1 = 1322.1  → 
P2 = 56.6 lbf/in2

T2 = 579 F  

 
 

2b
1= 2a

T

s

3a 3b

h = C

 

    

     
WT

1 2 3
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Steady Irreversible Processes 
 
9.150E 
 Analyse the steam turbine described in Problem 6.161. Is it possible? 
 
 C.V. Turbine. Steady flow and adiabatic. 

Continuity Eq.6.9:    m
.

1 = m
.

 + m
.

3 ;        2

Energy Eq.6.10:      m
.

1h1 = m
.

2h2 + m
.

3h3 + W
.

 

Entropy Eq.9.7:      m
.

1s1 + S
.
gen = m

.
2s2 + m

.
3s3 

 

WT

1
2

3
 

 
States from Table F.7.2:   s1 = 1.6398 Btu/lbm R,   s2 = 1.6516 Btu/lbm R,    

   s3 = sf + x sfg = 0.283 + 0.95 ×1.5089 = 1.71 Btu/lbm R  

S
.
gen = 40 × 1.6516 + 160 ×1.713 – 200 × 1.6398 = 12.2 Btu/s ⋅R 

Since it is positive  =>  possible. 
Notice the entropy is increasing through turbine:   s1 < s2 < s3  
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9.151E 
 Two flowstreams of water, one at 100 lbf/in.2, saturated vapor, and the other at 

100 lbf/in.2, 1000 F, mix adiabatically in a steady flow process to produce a 
single flow out at 100 lbf/in.2, 600 F. Find the total entropy generation for this 
process. 

 Solution: 
Continuity Eq.6.9:     m

.
3 = m

.
1 + m

.
2,       

Energy Eq.6.10:       m
.

3h3 = m
.

1h1 + m
.

2h2    
State properties from Table F.7.2             
       h1 = 1187.8 , h2 = 1532.1,  h3 = 1329.3 all in Btu/lbm 

s1 = 1.6034, s2 = 1.9204, s3 = 1.7582 all in Btu/lbm R 
 
 =>   m

.
1/m

.
3 = (h3 – h2) / (h1 – h2) = 0.589 

Entropy Eq.9.7: m
.

3s3 = m
.

1s1 + m
.

2s2 + S
.

gen     =>   

 S
.

gen/m
.

3 = s3 – (m
.

1/m
.

3) s1 – (m
.

2/m
.

3) s2  

        = 1.7582 - 0.589 × 1.6034 - 0.411 × 1.9204 = 0.0245 Btu
lbm R 

 
 
 

1

2 3
Mixing
chamber

 
2

T

s
31

100 psia
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9.152E 
 A mixing chamber receives 10 lbm/min ammonia as saturated liquid at 0 F from 

one line and ammonia at 100 F, 40 lbf/in.2 from another line through a valve. The 
chamber also receives 340 Btu/min energy as heat transferred from a 100-F 
reservoir. This should produce saturated ammonia vapor at 0 F in the exit line. 
What is the mass flow rate at state 2 and what is the total entropy generation in 
the process? 

 
 Solution: 
 

CV: Mixing chamber out to reservoir 
Continuity Eq.6.9:    m

.
1 + m

.
2 = m

.
3 

Energy Eq.6.10:     m
.

1h1 + m
.

2h2 + Q
.
 = m

.
3h  3

Entropy Eq.9.7:  m
.

1s1 + m
.

2s2 + Q
.
/Tres + S

.
gen = m

.
3s3 

 
 

1

2

3

MIXING
CHAMBER Q

.

 

2

P

v31
 

        
      From Table F.8.1:  h1 = 42.6 Btu/lbm,   s1 = 0.0967 Btu/lbm R 
      From Table F.8.2:  h2 = 664.33 Btu/lbm,   s2 = 1.4074 Btu/lbm R 
      From Table F.8.1:  h3 = 610.92 Btu/lbm,   s3 = 1.3331 Btu/lbm R 

From the energy equation: 
 

 m
.

2 = 
m
.

1(h1 - h3) + Q
.

h3 - h2
  = 

10(42.6 - 610.92) + 340
610.92 - 664.33  = 100.1 lbm/min   

 ⇒    m
.

 = 110.1 lbm/min 3

S
.

gen = m
.

3s3 - m
.

1s1 - m
.

2s2 - Q
.
/Tres 

   = 110.1×1.3331 - 10×0.0967 - 100.1×1.4074 - 
340

559.67 = 4.37 
Btu

R min 
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9.153E 
 A condenser in a power plant  receives 10 lbm/s steam at 130 F, quality 90% and 

rejects the heat to cooling water with an average temperature of 62 F. Find the 
power given to the cooling water in this constant pressure process and the total 
rate of enropy generation when condenser exit is saturated liquid. 

Solution: 
C.V. Condenser. Steady state with no shaft work term. 
Energy Eq.6.12:        m

.
 hi + Q

.
 = m

.
he  

Entropy Eq.9.8:      m
.

 si + Q
.
/T + S

.
gen = m

.
 se 

Properties are from Table F.7.1 
hi = 98.0 + 0.9 × 1019.8 = 1015.8 Btu/lbm, he= 98.0 Btu/lbm 

s  = 0.1817 + 0.9 × 1.7292 = 1.7380 Btu/lbm R,    se = 0.1817 Btu/lbm R i
Q
.

out = –Q
.
 = m

.
 (hi – he) = 10(1015.8 – 98.0) = 9178 btu/s 

S
.

gen = m
.

 (se – si) + Q
.

out/T 

  = 10(0.1817 – 1.738) + 9178/(459.7 + 62) 
  = –15.563 + 17.592 = 2.03 Btu/s-R 
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9.154E 
 Air at 540 F, 60 lbf/in.2 with a volume flow 40 ft3/s runs through an adiabatic 

turbine with exhaust pressure of 15 lbf/in.2. Neglect kinetic energies and use 
constant specific heats. Find the lowest and highest possible exit temperature. For 
each case find also the rate of work and the rate of entropy generation. 

 Ti = 540 F = 1000 R 

vi  = RTi /Pi  = 53.34 ×1000/(60 × 144) = 6.174 ft3 / lbm 

  m
.

 = V /v i  = 40/6.174 = 6.479 lbm/s 
•

a. lowest exit T, this must be reversible for maximum work out. 

 Te = Ti(Pe/Pi)
k-1
k  = 1000 (15/60)0.286 = 673 R 

 w = 0.24 (1000 – 673) = 78.48 Btu/lbm ; W
.

 = m
.

w = 508.5 Btu/s 
  S

.
gen = 0  

b. Highest exit T, for no work out.        Te = T i = 1000 R  
  

.
 = 0 W

S
.
gen = m

.
 (se– s i ) = - m

.
R ln (Pe / P i  )  

  = - 6.479 × 
53.34
778  ln (15/60) = 0.616 Btu/s⋅R 
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9.155E 
 A supply of 10 lbm/s ammonia at 80 lbf/in.2, 80 F is needed. Two sources are 

available one is saturated liquid at 80 F and the other is at 80 lbf/in.2, 260 F. 
Flows from the two sources are fed through valves to an insulated mixing 
chamber, which then produces the desired output state. Find the two source mass 
flow rates and the total rate of entropy generation by this setup. 

Solution: 
C.V. mixing chamber + valve. Steady, no heat transfer, no work. 
Continuity Eq.6.9:    m

.
1 + m

.
2 = m

.
3;         

Energy Eq.6.10:       m
.

1 h1 + m
.

2h2 = m
.

3h3 

Entropy Eq.9.7:    m
.

1 s1 + m
.

2s2 + S
.
gen = m

.
3s3 

 
 

1

2
3MIXING

CHAMBER
 

2

T

s

31

 
 
State 1: Table F.8.1      h1 = 131.68 Btu/lbm,  s1= 0.2741 Btu/lbm R 
State 2: Table F.8.2      h2 = 748.5 Btu/lbm,  s2 = 1.4604 Btu/lbm R 
State 3: Table F.8.2      h3= 645.63 Btu/lbm, s3= 1.2956 Btu/lbm R 
As all states are known the energy equation establishes the ratio of mass flow 
rates and the entropy equation provides the entropy generation. 

 

m
.

1h1 + (m
.

3 - m
.

1)h2 = m
.

3h3  =>  m
.

1 = m
.

3 
h3 - h2
h1 - h2

 = 10× 
-102.87
-616.82 = 1.668 lbm/s  

 ⇒ m
.

2 = m
.

3 - m
.

1 = 8.332 lbm/s 

S
.
gen =  m

.
3s3  -  m

.
1s1  - m

.
2s2   

  = 10 ×1.2956 – 1.668 × 0.2741 – 8.332 ×1.46 = 0.331 Btu/s⋅R 
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Transient Processes 
 
9.156E 
 An old abandoned saltmine, 3.5 × 106 ft3 in volume, contains air at 520 R, 14.7 

lbf/in.2. The mine is used for energy storage so the local power plant pumps it up 
to 310 lbf/in.2 using outside air at 520 R, 14.7 lbf/in.2. Assume the pump is ideal 
and the process is adiabatic. Find the final mass and temperature of the air and the 
required pump work. Overnight, the air in the mine cools down to 720 R. Find the 
final pressure and heat transfer. 

Solution: 
C.V. The mine volume and the pump  
Continuity Eq.6.15:       m2 - m1 = min 
Energy Eq.6.16:   m2u2 - m1u1 = 1Q2 - 1W2 + minhin 

Entropy Eq.9.12:     m2s2 - m1s1 = ⌡⌠dQ/T + 1S2 gen + minsin 

Process:  Adiabatic    1Q2 = 0 , Process ideal      1S2 gen = 0 ,   s1 = sin 

 ⇒  m2s2 = m1s1 + minsin = (m1 + min)s1 = m2s1  ⇒  s2 = s1 

Constant  s  ⇒        Eq.8.28  so
T2 = so

Ti + R ln(Pe / Pi) 

 Table F.4 ⇒ so
T2 = 1.63074 + 

53.34
778  ln (

310
14.7) = 1.83976 Btu/lbm R 

      ⇒ T2 = 1221 R ,  u2 = 213.13 Btu/lbm 
Now we have the states and can get the masses 

 m1 = P1V1/RT1 = 
14.7 × 3.5×106 × 144

53.34 × 520  = 2.671×105 lbm 

 m2 = P2V2/RT2 = 
310 × 3.5×106 × 144

53.34 × 1221  = 2.4×106 kg 

  ⇒  min = m2 - m1 = 2.1319×106 lbm 

 1W2 = minhin + m1u1 - m2u2 = 2.1319×106 × 124.38 + 2.671×105  

       × 88.73 - 2.4×106 × 213.13 = -2.226 × 108 Btu = -pump work  

   Wpump = 2.23 × 108 Btu 

 2W3 = 0/ ,   P3 = P2T3/T2 = 310×720/1221 = 182.8 lbf/in2 

 2Q3 = m2(u3 - u2) = 2.4×106(123.17 -213.13)= -2.16 × 108 Btu 
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9.157E 
 Air from a line at 1800 lbf/in.2, 60 F, flows into a 20-ft3 rigid tank that initially 

contained air at ambient conditions, 14.7 lbf/in.2, 60 F. The process occurs rapidly 
and is essentially adiabatic. The valve is closed when the pressure inside reaches 
some value, P2. The tank eventually cools to room temperature, at which time the 
pressure inside is 750 lbf/in.2. What is the pressure P2? What is the net entropy 
change for the overall process? 

 
CV: Tank. Mass flows in, so this is transient. Find the mass first 

 
m1 = P1V/RT1 = 

14.7 × 144 × 20
53.34 × 520  = 1.526 lbm 

Fill to P2, then cool to T3 = 60 F, P3 = 750 psia 
      m3 = m2 = P3V/RT3  

           = 
750 × 144 × 20

53.34 × 520  = 77.875 lbm 

 
T

s
14.7 psia750 psia

v = C
2 11800 psia

3line

 
Cont. Eq.:  mi = m2 - m1 = 77.875 - 1.526 = 76.349 lbm 
Consider the overall process from 1 to 3 
Energy Eq.:    QCV + mihi = m2u3 - m1u1 = m2h3 - m1h1 - (P3 - P1)V 
 But, since Ti = T3 = T1,    mihi = m2h3 - m1h1 

 ⇒ QCV = -(P3 -P1)V = -(750 -14.7)×20×144/778 = -2722 Btu 
 
 ∆SNET = m3s3 - m1s1 - misi - QCV/T0   = m3(s3 - si) - m1(s1 - si) - QCV/T0 

       = 77.875



0 - 

53.34
778  ln 



750

1800  - 1.526



0 - 

53.34
778  ln 



14.7

1800  
    + 2722/520 = 9.406 Btu/R 
The filling process from 1 to 2  ( T1 = Ti ) 
 1-2 heat transfer = 0   so  1st law:     mihi = m2u2 - m1u1 
      miCP0Ti = m2CV0T2 - m1CV0T1 

  T2 = 
76.349 ×0.24 + 1.526× 0.171

77.875 ×0.171  × 520  = 725.7 R 

    P2 = m2RT2/V = 77.875 × 53.34 × 725.7 / (144 × 20)   = 1047 lbf/in2 
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Reversible Shaft Work, Bernoulli 
 
9.158E 
 Liquid water at ambient conditions, 14.7 lbf/in.2, 75 F, enters a pump at the rate 

of 1 lbm/s. Power input to the pump is 3 Btu/s. Assuming the pump process to be 
reversible, determine the pump exit pressure and temperature. 

 
 Solution: 

C.V. Pump. Steady single inlet and exit flow with no heat transfer. 
Energy Eq.6.13:    w = hi − he = 

.
W/

.
m = -3/1 = - 3.0 btu/lbm 

Using also incompressible media we can use Eq.9.18 

  wP = − ⌡⌠vdP ≈ −vi(Pe − Pi) = −0.01606 ft/lbm(Pe − 14.7 psia) 

from which we can solve for the exit pressure 

  3 ≅ 0.01606(Pe - 14.7) × 
144
778   ⇒   Pe = 1023.9 lbf/in2 

 
 

-W
. 

e

i

Pump

 

 
    -

.
W = 3 Btu/s,    Pi = 14.7 psia 

      Ti =  75 F   
.

m = 1 lbm/s 
       

 
Energy Eq.:  he = hi − wP = 43.09 + 3 = 46.09 Btu/lbm   

Use Table F.7.3 at 1000 psia     =>     Te = 75.3 F 
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9.159E 
 A fireman on a ladder 80 ft above ground should be able to spray water an 

additional 30 ft up with the hose nozzle of exit diameter 1 in. Assume a water 
pump on the ground and a reversible flow (hose, nozzle included) and find the 
minimum required power. 

Solution: 
C.V.: pump + hose + water column, total height difference 35 m.  Here V is 
velocity, not volume. 
Continuity Eq.6.3, 6.11:     m

.
in = m

.
ex = (ρAV)nozzle 

Energy Eq.6.12:        m
.

(-wp) + m
.

(h + V2/2 + gz)in = m
.

(h + V2/2 + gz)ex 

Process: hin ≅ hex ,   Vin ≅ Vex = 0 ,   zex - zin = 110 ft,   ρ = 1/v ≅ 1/vf 

 -wp = g(zex - zin) = 32.174 × (110 - 0)/25 037 = 0.141 Btu/lbm 

Recall the conversion  1 Btu/lbm = 25 037 ft2/s2 from Table A.1. The velocity 
in the exit nozzle is such that it can rise 30 ft. Make that column a C.V. for 
which Bernoulli Eq.9.17 is: 
 

 
     gznoz + 

1
2V

2
noz = gzex + 0 

           Vnoz = 2g(zex - znoz)  
                   = 2 × 32.174 × 30 = 43.94 ft/s 
 

30 ft

110 ft

 
      Assume: v = vF,70F = 0.01605 ft3/lbm  

   m
.

 = 
π
vf

 
D

2
2
Vnoz = ( π/4) (12/144) × 43.94 / 0.01605 = 14.92 lbm/s  

  
.

Wpump = 
.

mwp = 14.92 × 0.141 × (3600/2544) = 3 hp 
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9.160E 
 Saturated R-134a at 10 F is pumped/compressed to a pressure of 150 lbf/in.2 at 

the rate of 1.0 lbm/s in a reversible adiabatic steady flow process. Calculate the 
power required and the exit temperature for the two cases of inlet state of the R-
134a: 

  a)  quality of 100 %. 
  b)  quality of 0 %. 

Solution: 
C.V.: Pump/Compressor,  m

.
 = 1 lbm/s, R-134a 

a)  State 1: Table F.10.1,  x1 = 1.0   Saturated vapor, P1 = Pg = 26.79 psia,  
   h1 = hg = 168.06 Btu/lbm,  s1 = sg = 0.414 Btu/lbm R 
 Assume Compressor is isentropic, s2 = s1 = 0.414 Btu/lbm R 

   h2 = 183.5 Btu/lbm, T2 = 116 F 
 1st Law Eq.6.13:      qc + h1 = h2 + wc;    qc = 0 
 wcs = h1 - h2 = 168.05 – 183.5 = - 15.5 Btu/lbm;  

   =>     W
.

C  = m
.

wC = -15.5 Btu/s = 21.9 hp 
b)    State 1: T1 = 10 F, x1 = 0    Saturated liquid. This is a pump. 
 P1 = 26.79 psia, h1 = hf = 79.02 Btu/lbm, v1 = vf = 0.01202 ft3/lbm 
 1st Law Eq.6.13:    qp + h1 = h2 + wp;   qp = 0 
 Assume Pump is isentropic and the liquid is incompressible, Eq.9.18: 
   wps = - ∫ v dP = -v1(P2 - P1) = -0.01202 (150 – 26.79) 144 

= -213.3 lbf-ft/lbm = - 0.274 Btu/lbm 
  h2 = h1 - wp = 79.02 - ( - 0.274) = 187.3 Btu/lbm,   

 Assume tate 2 is approximately a saturated liquid   =>   T2 ≅ 10.9 F S
  W

.
P  = m

.
wP = 1 (- 0.274) = -0.27 Btu/s = -0.39 hp 

 
 

2a

1a

P

v

T

s

1a
2a

1b

2b

1b

2b
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9.161E 
 A small pump takes in water at 70 F, 14.7 lbf/in.2 and pumps it to 250 lbf/in.2 at a 

flow rate of 200 lbm/min. Find the required pump power input. 
Solution: 
C.V. Pump.  Assume reversible pump and incompressible flow. 
This leads to the work in Eq.9.18 

 wp = -⌡⌠vdP = -vi(Pe - Pi) = -0.01605(250 - 14.7) × 
144
778 = -0.7 Btu/lbm 

 W
.

p in = m
.

(-wp) = 
200
60  (0.7) = 2.33 Btu/s = 3.3 hp 
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9.162E 
 An expansion in a gas turbine can be approximated with a polytropic process with 

exponent n = 1.25. The inlet air is at 2100 R, 120 psia and the exit pressure is 18 
psia with a mass flow rate of 2 lbm/s. Find the turbine heat transfer and power 
output. 

 
Solution: 
C.V. Steady state device, single inlet and single exit flow. 
Energy Eq.6.13: hi + q = he + w  Neglect kinetic, potential energies 

Entropy Eq.9.8: si + ∫ dq/T +  sgen =  se 
Process Eq.8.37:   

  Te = Ti (Pe/ Pi)
n-1
n   = 2100 (18/120)

0.25
1.25  = 1436.9 R 

so the exit enthalpy is from Table F.5, hi = 532.6 Btu/lbm 

  he = 343.0 + 
36.9
40 (353.5 – 343.0) = 352.7 Btu/lbm 

The process leads to Eq.9.19 for the work term 

  
.

W = 
.

mw = -
.

m
nR
n-1 (Te - Ti) = -2 

1.25 × 53.34
0.25 × 778  × (1436.9 - 2100)  

    = 454.6 Btu/s 
Energy equation gives  
  

.
Q = 

.
mq = 

.
m(he - hi) + 

.
W = 2(352.7 – 532.6) + 454.6 

    = -359.8 + 454.6 = 94.8 Btu/s 
 
 P

v

T

s

e

i
n = 1

n = 1.25

i

e
n = 1

n = k = 1.4

n = 1.25

 

Notice: 
dP < 0 
so dw > 0 
 
ds > 0 
so  dq > 0 

 
Notice this process has some heat transfer in during expansion which is 
unusual. The typical process would have n = 1.5 with a heat loss. 
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9.163E 
 Helium gas enters a steady-flow expander at 120 lbf/in.2, 500 F, and exits at 18 

lbf/in.2. The mass flow rate is 0.4 lbm/s, and the expansion process can be 
considered as a reversible polytropic process with exponent, n = 1.3. Calculate the 
power output of the expander. 

 
 Solution: 
 
 

Wexp

i eQ

 

CV: expander, reversible polytropic process. 
From Eq.8.37: 
 

     Te = Ti 





Pe

Pi
 
n-1
n  = 960 



18

120

0.3
1.3 = 619.6 R 

 
 Table F.4:   R = 386 lbf-ft/lbm-R 

 
Work evaluated from Eq.9.19 

w = - ⌡⌠vdP = - 
nR

n - 1 (Te - Ti) = - 
1.3 × 386
0.3 × 778 (619.6 - 960)  

     = +731.8 Btu/lbm 

 
.

W = 
.

mw = 0.4 × 731.8 × 
3600
2544 = 414 hp 

 
 P

v

T

s
e

i

n = 1

n = 1.3

i

e
n = 1

n = k = 1.667

n = 1.3
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Device Efficiency 
 
9.164E 
 A compressor is used to bring saturated water vapor at 103 lbf/in.2 up to 2000 

lbf/in.2, where the actual exit temperature is 1200 F. Find the isentropic 
compressor efficiency and the entropy generation. 

 
 Solution: 

C.V. Compressor. Assume adiabatic and neglect kinetic energies. 
Energy Eq.6.13:  w = h1  - h2  
Entropy Eq.9.8:   s2 = s1 + sgen 
We have two different cases, the ideal and the actual compressor. 
States: 1: F.7.1       h1 = 1188.36 Btu/lbm,   s1 = 1.601 Btu/lbm R 
  2ac: F.7.2    h2,AC = 1598.6 Btu/lbm,    s2,AC = 1.6398 Btu/lbm R 
  2s:   F.7.2  (P, s = s1)     h2,s = 1535.1 Btu/lbm 
 

 IDEAL: 
-wc,s = h2,s - h1 = 346.7 Btu/lbm 

ACTUAL: 
-wC,AC = h2,AC - h1 = 410.2 Btu/lbm 

 
Definition Eq.9.28:  ηc = wc,s/wc,AC =  0.845 ~ 85% 
 
Entropy Eq.9.8: 
  sgen = s2 ac - s1 = 1.6398 - 1.601 = 0.0388 Btu/lbm R 
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9.165E 
 A small air turbine with an isentropic efficiency of 80% should produce 120 

Btu/lbm of work. The inlet temperature is 1800 R and it exhausts to the 
atmosphere. Find the required inlet pressure and the exhaust temperature. 

Solution: 
C.V. Turbine actual energy Eq.6.13: 
      w = hi - he,ac = 120   
Table F.5:   hi = 449.794 Btu/lbm 

   ⇒   he,ac = hi – 120 = 329.794 Btu/lbm,    Te = 1349 R 
C.V. Ideal turbine, Eq.9.27 and energy Eq.6.13: 
    ws = w/ηs = 120/0.8 = 150 = hi - he,s    ⇒    he,s = 299.794 Btu/lbm 

From Table F.5:      Te,s = 1232.7 R ,   so
Te = 1.84217 Btu/lbm R 

Entropy Eq.9.8:        si = se,s   adiabatic and reversible 
To relate the entropy to the pressure use Eq.8.28 inverted and standard 
entropy from Table F.5: 

   Pe/Pi = exp[ (so
Te − so

Ti )/R ] = exp[(1.84217 - 1.94209)
778

53.34] = 0.2328 

  Pi = Pe / 0.2328 = 14.7/0.2328 = 63.14 psia 
 
If constant heat capacity was used  
 Te = Ti - w/Cp = 1800 - 120/0.24 = 1300 R 
 Te,s = Ti - ws/Cp = 1800 - 150/0.24 = 1175 R 
The constant s relation is Eq.8.32 
 Pe/Pi = (Te/Ti)

k/(k-1)   ⇒    Pi = 14.7 (1800/1175)3.5 = 65.4 psia  
 
 P

v

T

s

e, s

i

s  = C

i

e, s
e, ac e, ac

P

Pe

i
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9.166E 
 Air enters an insulated compressor at ambient conditions, 14.7 lbf/in.2, 70 F, at 

the rate of 0.1 lbm/s and exits at 400 F. The isentropic efficiency of the 
compressor is 70%. What is the exit pressure? How much power is required to 
drive the compressor? 

Solution: 
C.V. Compressor: P1, T1, Te(real), ηs COMP known, assume constant CP0 
Energy Eq.6.13 for real:    -w = CP0(Te - Ti) = 0.24(400 - 70) = 79.2 Btu/lbm 

 Ideal   -ws = -w × ηs = 79.2 × 0.7 = 55.4 Btu/lbm 
Energy Eq.6.13 for ideal: 
 55.4 = CP0(Tes - Ti) = 0.24(Tes - 530),   Tes = 761 R 
Constant entropy for ideal as in Eq.8.32: 

 Pe = Pi(Tes/Ti)
k

k-1 = 14.7(761/530)3.5 = 52.1 lbf/in2 

 -
.

WREAL = 
.

m(-w) = 0.1 × 79.2 × 3600/2544 = 11.2 hp 
 
 P

v

T

s

e, s

i
s  = C i

e, s
e, ac e, ac

P

P

e

i
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9.167E 
 A watercooled air compressor takes air in at 70 F, 14 lbf/in.2 and compresses it to 

80 lbf/in.2. The isothermal efficiency is 80% and the actual compressor has the 
same heat transfer as the ideal one. Find the specific compressor work and the exit 
temperature. 

Solution: 
Ideal isothermal compressor exit 80 psia, 70 F 
Reversible process:   dq = T ds    =>    q = T(se – si)  

 q = T(se – si) = T[so
Te − so

T1 − R ln(Pe / Pi)]  

    = - RT ln (Pe / Pi) = - (460 + 70) 
53.34
778  ln 

80
14 = - 63.3 Btu/lbm 

As same temperature for the ideal  compressor     he = hi  ⇒  

  w = q = -63.3 Btu/lbm   =>     wac = w /η = - 79.2 Btu/lbm,    qac = q 

Now for the actual compressor energy equation becomes 
 qac + hi = he ac + wac ⇒ 

 he ac - hi = qac - wac = - 63.3 – (-79.2) = 15.9 Btu/lbm  ≈ Cp (Te ac - Ti) 

  Te ac = Ti + 15.9/0.24 = 136 F  
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9.168E 
 A nozzle is required to produce a steady stream of R-134a at 790 ft/s at ambient 

conditions, 15 lbf/in.2, 70 F. The isentropic efficiency may be assumed to be 90%. 
What pressure and temperature are required in the line upstream of the nozzle? 

 
 C.V. Nozzle, steady flow and no heat transfer. 
 

Actual nozzle energy Eq.: h1 = h2 + V2
2/2 

State 2 actual:   Table F.10.2       h2 = 180.975 Btu/lbm 

  h1 = h2 + V2
2/2 = 180.975 + 

7902

2 × 25 037 = 193.44 Btu/lbm 

Recall  1 Btu/lbm = 25 037 ft2/s2 from Table A.1. 

Ideal nozzle exit:   h2s = h1 - KEs = 193.44 - 
7902

2 × 25 037 /0.9 = 179.59 Btu/lbm 

State 2s:  (P2, h2s)   ⇒  T2s = 63.16 F,     s2s = 0.4481 Btu/lbm R 
 
Entropy Eq. ideal nozzle:   s1 = s2s    

State 1:   (h1, s1 = s2s )     ⇒  Double interpolation  or use software. 
  For 40 psia:  given h1   then  s = 0.4544 Btu/lbm R,    T = 134.47 F 
  For 60 psia:  given h1   then  s = 0.4469 Btu/lbm R,    T = 138.13 F 
Now a linear interpolation to get P and T for proper s 

     P1 = 40 + 20 
0.4481 – 0.4544
0.4469 – 0.4544 = 56.8 psia 

  T1 = 134.47 + (138.13 – 134.47)
0.4481 – 0.4544
0.4469 – 0.4544 = 137.5 F  

 
 T 

s 

1 

2 
2s

s 1 

h1
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9.169E 
 Redo Problem 9.159 if the water pump has an isentropic efficiency of 85% (hose, 

nozzle included). 
Solution: 
C.V.: pump + hose + water column, total height difference 35 m.  Here V is 
velocity, not volume. 
Continuity Eq.6.3, 6.11:     m

.
in = m

.
ex = (ρAV)nozzle 

Energy Eq.6.12:        m
.

(-wp) + m
.

(h + V2/2 + gz)in = m
.

(h + V2/2 + gz)ex 

Process: hin ≅ hex ,   Vin ≅ Vex = 0 ,   zex - zin = 110 ft,   ρ = 1/v ≅ 1/vf 

 -wp = g(zex - zin) = 32.174 × (110 - 0)/25 037 = 0.141 Btu/lbm 

Recall the conversion  1 Btu/lbm = 25 037 ft2/s2 from Table A.1. The velocity 
in the exit nozzle is such that it can rise 30 ft. Make that column a C.V. for 
which Bernoulli Eq.9.17 is: 
 

 
     gznoz + 

1
2V

2
noz = gzex + 0 

           Vnoz = 2g(zex - znoz)  
                   = 2 × 32.174 × 30 = 43.94 ft/s 
 

30 ft

110 ft

 
      Assume: v = vF,70F = 0.01605 ft3/lbm  

   m
.

 = 
π
vf

 
D

2
2
Vnoz = ( π/4) (12/144) × 43.94 / 0.01605 = 14.92 lbm/s  

 
.

Wpump = 
.

mwp/η= 14.92 × 0.141 × (3600/2544)/0.85 = 3.5 hp 
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9.170E 
 Repeat Problem 9.160 for a pump/compressor isentropic efficiency of 70%. 

Solution: 
C.V.: Pump/Compressor,  m

.
 = 1 lbm/s, R-134a 

a)  State 1: Table F.10.1,  x1 = 1.0   Saturated vapor, P1 = Pg = 26.79 psia,  
   h1 = hg = 168.06 Btu/lbm,  s1 = sg = 0.414 Btu/lbm R 
 Assume Compressor is isentropic, s2 = s1 = 0.414 Btu/lbm R 
   h2 = 183.5 Btu/lbm, T2 = 116 F 
 1st Law Eq.6.13:      qc + h1 = h2 + wc;    qc = 0 
 wcs = h1 - h2 = 168.05 – 183.5 = - 15.5 Btu/lbm;  
 Now the actual compressor 
    wc, AC = wcs/η = - 22.1 = h1 – h2 AC  

  h2, AC = 168.06 + 22.1 = 190.2   ⇒  T2 = 141.9 F 

   =>     W
.

C in  = m
.

(-wC) = 22.1 Btu/s = 31.3 hp 
b)    State 1: T1 = 10 F, x1 = 0    Saturated liquid. This is a pump. 
 P1 = 26.79 psia, h1 = hf = 79.02 Btu/lbm, v1 = vf = 0.01202 ft3/lbm 
 1st Law Eq.6.13:    qp + h1 = h2 + wp;   qp = 0 
 Assume Pump is isentropic and the liquid is incompressible, Eq.9.18: 
   wps = - ∫ v dP = -v1(P2 - P1) = -0.01202 (150 – 26.79) 144 

= -213.3 lbf-ft/lbm = - 0.274 Btu/lbm 
 Now the actual pump 
    wc, AC = wcs/η = - 0.391 = h1 – h2 AC  
  h2 = h1 - wp = 79.02 - ( - 0.391) = 79.41 Btu/lbm,   

 Assume State 2 is approximately a saturated liquid   =>   T2 ≅ 11.2 F 

  W
.

P in  = m
.

(-wP) = 1 (0.391) = 0.39 Btu/s = 0.55 hp 
 

 
2a

1a

P

v

T

s

1a
2a

1b

2b

1b

2b
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Review Problems 
 
9.171E 
 A rigid 35 ft3 tank contains water initially at 250 F, with 50 % liquid and 50% 

vapor, by volume. A pressure-relief valve on the top of the tank is set to 150  
lbf/in.2 (the tank pressure cannot exceed 150 lbf/in.2 - water will be discharged 
instead). Heat is now transferred to the tank from a 400 F heat source until the 
tank contains saturated vapor at 150 lbf/in.2. Calculate the heat transfer to the tank 
and show that this process does not violate the second law. 

C.V. Tank.  vf1 = 0.017 vg1= 13.8247 
 m LIQ =V LIQ / vf1 = 0.5 × 35/0.017 = 1029.4 lbm 
 m VAP=V VAP / vg1 = 0.5 ×35/13.8247 = 1.266 lbm 
 m  = 1030. 67 lbm 
 x = m VAP / (m LIQ + m VAP) = 0.001228 
 u = uf + x  ufg = 218.48 + 0.001228 × 869.41 = 219.55 
 s  = sf + x  sfg = 0.3677 + 0.001228 × 1.3324 = 0.36934 
 state 2: v2  = vg= 3.2214  u2  = 1110.31 h2  = 1193.77 
   s2  = 1.576   m2  = V/v2  = 10.865 lbm 
 Q = m2 u2  - m 1u1 + meh e+ W  

   = 10.865 ×1110.31 – 1030.67×219.55 + 1019.8×1193.77 = 1003187 Btu  
S
.
gen = m2 s2  - m 1s1 - mese -  1Q2  / Tsource 

   = 10.865 × 1.576 – 1030.67 × 0.36934 + 1019.8 × 1.57 – 1003187/860  
 = 77.2 Btu/s ⋅ R 
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9.172E 
 Air at 1 atm, 60 F is compressed to 4 atm, after which it is expanded through a 

nozzle back to the atmosphere. The compressor and the nozzle both have 
efficiency of 90% and kinetic energy in/out of the compressor can be neglected. 
Find the actual compressor work and its exit temperature and find the actual 
nozzle exit velocity. 

 
 

-W

1

3

5
 

 

1 

2 3 

4 5 

T 

s 
 

Steady state separate control volumes 
around compressor and nozzle. For ideal 
compressor we have inlet : 1 and exit : 2 
   Adiabatic :  q = 0. 
   Reversible:   sgen = 0 
Energy Eq.: h1  + 0 = wC  + h2; 
Entropy Eq.: s1 + 0/T + 0 = s2 

Ideal compressor: wc = h1 - h2 ,     s2 = s1   
The constant s from Eq. 8.25 gives 

  T2 = T1 (P2/P1)
k-1
k  = (459.7 + 60) × (4/1)0.2857 = 772 R 

   ⇒   -wC  = h2 - h1 = CP(T2 - T1) = 0.24 (772 – 519.7) = 60.55 Btu/lbm 

Actual compressor:   wc,AC = wc,s/ηc = -67.3 Btu/lbm = h1 - h3  

  ⇒   T3 = T1 - wc,AC/CP = 519.7 + 67.3/0.24 = 800 R 
Ideal nozzle: s4 = s3        so use Eq.8.25 again 

⇒  T4 = T3 × (P4/P3)
k-1
k  = 800 (1/4)0.2857 = 538.4 R 

Vs
2/2 = h3 - h4 = CP(T3 - T4) = 0.24(800 - 538.4) = 62.78 Btu/lbm 

 VAC
2 /2 = Vs

2 × ηNOZ/2 = 62.78 × 0.9 = 56.5 Btu/lbm 

 VAC = 2 × 56.5 × 25 037 = 1682 ft/s 
 

Remember conversion   1 Btu/lbm = 25 037 ft2/s2 from Table A.1. 
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Correspondence List 
CHAPTER 10  6th edition                    Sonntag/Borgnakke/Wylen 
 
 The correspondence between the new problem set and the previous 5th edition 

chapter 10 problem set. 
 
 Study guide problems 10.1-10.20 are all new. 
 
 

New Old New Old New Old 
21 new 51 25 81 new 
22 23 52 30 82 new 
23 new 53 32 83 new 
24 3 54 new 84 new 
25 new 55 33 85 19 
26 4 56 new 86 new 
27 5 57 26 87 new 
28 new 58 18 88 new 
29 6 59 new 89 new 
30 9 60 31 90 new 
31 13 61 36 91 new 
32 15 62 20 92 new 
33 14 63 new 93 new 
34 57a 64 24 94 new 
35 new 65 27 95 new 
36 new 66 28 96 1 
37 new 67 29 97 46 
38 2 68 34 98 48 
39 7 69 37 99 49 
40 new 70 43 100 new 
41 8 71 new 101 52 
42 12 72 45 102 55 
43 21 73 38 103 58 
44 10 74 39 104 59 
45 16 75 40 105 new 
46 11 76 42 106 new 
47 17 77 new   
48 22 78 44   
49 35 79 47   
50 57b 80 50   
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 The English unit problems are: 
 
 The correspondence between the new English unit problem set and the previous 

5th edition chapter 10 problem set with the current set of SI problems. 
 
 

New 5th SI New 5th  SI New 5th  SI 
107 new 12 120 65 42 133 new 82 
108 new 14 121 68 43 134 new 71 
109 new 15 122 64 44 135 77mod 74 
110 new 16 123 67 45 136 78 76 
111 new 18 124 86b 50 137 79mod 78 
112 new 20 125 70 51 138 81 79 
113 69 22 126 73 52 139 new 87 
114 62 24 127 74 53 140 new 89 
115 new 23 128 76 61 141 61 96 
116 66 32 129 new 63 142 80 97 
117 86a 34 130 71 65 143 82 99 
118 new 37 131 72 67 144 new - 
119 63 39 132 75 68 145 87 104 
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Concept-Study Guide Problems 
 
10.1 
 Can I have any energy transfer as heat transfer that is 100% available? 
 
  By definition the possible amount of work that can be obtained equals the 

exergy (availability). The maximum is limited to that out of a reversible heat 
engine, if constant T then that is the Carnot heat engine 

 

   W = (1 − 
To
T  )Q  

 So we get a maximum for an infinite high temperature T, where we approach an 
efficiency of one. In practice you do not have such a source (the closest would be 
solar radiation) and secondly no material could contain matter at very high T so a 
cycle process can proceed (the closest would be a plasma suspended by a 
magnetic field as in a tokamak). 

 
10.2 
 Is energy transfer as work 100% available? 
 
  Yes. By definition work is 100% exergy or availability. 
 
10.3 
 We cannot create nor destroy energy, but how about available energy? 
 
  Yes. Every process that is irreversible to some degree destroys exergy. 

This destruction is directly proportional to the entropy generation. 
 
10.4 
 Energy can be stored as internal energy, potential energy or kinetic energy. Are 

those energy forms all 100% available? 
 
  The internal energy is only partly available, a process like an expansion 

can give out work or if it cools by heat transfer out it is a Q out that is only partly 
available as work. Potential energy like from gravitation, mgH, or  a compressed 
spring or a charged battery are forms that are close to 100% available with only 
small losses present. Kinetic energy like in a fly-wheel or motion of a mass can 
be transferred to work out with losses depending on the mechanical system. 
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10.5 
 All the energy in the ocean is that available? 
 
  No. Since the ocean is at the ambient T (it is the ambient) it is not possible 

to extract any work from it.  You can extract wave energy (wind generated kinetic 
energy) or run turbines from the tide flow of water (moon generated kinetic 
energy).  However, since the ocean temperature is not uniform there are a few 
locations where cold and warmer water flows close to each other like at different 
depths. In that case a heat engine can operate due to the temperature difference. 

 
 
10.6 
 Does a reversible process change the availability if there is no work involved? 
 
  Yes. There can be heat transfer involved and that has an availability 

associated with it, which then equals the change of availability of the substance. 
 
10.7 
 Is the reversible work between two states the same as ideal work for the device? 
 
  No. It depends on the definition of ideal work. The ideal device does not 

necessarily have the same exit state as the actual device. An ideal turbine is 
approximated as a reversible adiabatic device so the ideal work is the isentropic 
work. The reversible work is between the inlet state and the actual exit state that 
do not necessarily have the same entropy.  

 
10.8 
 When is the reversible work the same as the isentropic work? 
 
  That happens when the inlet and exit states (or beginning and end states) 

have the same entropy. 
 
10.9 
 If I heat some cold liquid water to To, do I increase its availability? 

 
  No. You decrease its availability by bringing it closer to To, where it has 

zero availability, if we neglect pressure effects. Any substance at a T different 
from ambient (higher or lower) has a positive availability since you can run a heat 
engine using the two temperatures as the hot and cold reservoir, respectively. For 
a T lower than the ambient it means that the ambient is the hot side of the heat 
engine. 
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10.10 
  Are reversible work and availability (exergy) connected? 
 
  Yes. They are very similar. Reversible work is usually defined as the 

reversible work that can be obtained between two states, inlet-exit or beginning to 
end. Availability is a property of a given state and defined as the reversible work 
that can be obtained by changing the state of the substance from the given state to 
the dead state (ambient). 

 
 
10.11 
  Consider availability (exergy) associated with a flow. The total exergy is based on 

the thermodynamic state, the kinetic and potential energies. Can they all be 
negative? 

 
  No.  By virtue of its definition kinetic energy can only be positive. The 

potential energy is measured from a reference elevation (standard sea level or a 
local elevation) so it can be negative. The thermodynamic state can only have a 
positive exergy the smallest it can be is zero if it is the ambient dead state. 
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10.12 
 A flow of air at 1000 kPa, 300 K is throttled to 500 kPa. What is the 

irreversibility? What is the drop in flow availability? 
 
  A throttle process is constant enthalpy if we neglect kinetic energies. 

 

 Process:     he = hi       so ideal gas    =>    Te = Ti 

 Entropy Eq.:  se - si = sgen = s
o
Te - s

o
Ti – R ln 

Pe
Pi

 = 0 – R ln 
Pe
Pi

 

      sgen = - 0.287 ln (500 / 1000) = 0.2 kJ/kg K 

 Eq.10.11: i = To sgen =  298 0.2 = 59.6 kJ/kg 

 

 The drop in availability is exergy destruction, which is the irreversibility 

    ∆ψ = i = 59.6 kJ/kg 
 

 

P Phigh low

i e
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10.13 

 A steam turbine inlet is at 1200 kPa, 500oC. The actual exit is at 300 kPa with an 
actual work of 407 kJ/kg. What is its second law efficiency? 

 
  The second law efficiency is the actual work out measured relative to the 

reversible work out, Eq. 10.29. 

Steam turbine  To = 25°C = 298.15 K 

Inlet state:  Table B.1.3    hi = 3476.28 kJ/kg;     si = 7.6758 kJ/kg K 

Actual turbine energy Eq.:    he = hi - wac = 3476.28 – 407 = 3069.28 kJ/kg   

Actual exit state:   Table B.1.3    Te = 300oC;     se = 7.7022 kJ/kg K 

From Eq.10.9, 

     wrev = (hi - Tosi) – (he - Tose) = (hi - he) + To(se - si) 

  = (3476.28 – 3069.28) + 298.15(7.7022 – 7.6758) 

  = 407 + 7.87 = 414.9 kJ/kg 
 

        ηII = wac/wrev = 407 / 414.9 = 0.98 
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10.14 
 A heat exchanger increases the availability of 3 kg/s water by 1650 kJ/kg using 10 

kg/s air coming in at 1400 K and leaving with 600 kJ/kg less availability. What 
are the irreversibility and the second law efficiency? 

 

  
C.V. Heat exchanger, steady flow 1 inlet 
and 1 exit for air and water each. The 
two flows exchange energy with no heat 
transfer to/from the outside. 
 

3 water
1 air

4
2

 
 
  The irreversibility is the destruction of exergy (availability) so 

  I
.
 = Φ

.
destruction = Φ

.
in - Φ

.
out = 10 × 600 – 3 × 1650 = 1050 kW  

 The second law efficiency, Eq.10.32 

   ηII = Φ
.

out / Φ
.

in = 
3 × 1650
10 × 600

 = 0.825 

 



   Sonntag, Borgnakke and van Wylen 

 
10.15 
 A heat engine receives 1 kW heat transfer at 1000 K and gives out 600 W as work 

with the rest as heat transfer to the ambient. What are the fluxes of exergy in and 
out? 

  Exergy flux in:  Φ
.

H =  








1 – 
To
TH

 Q
.

H =  



1 – 

298.15
1000  1 kW =  0.702 kW 

 

  Exergy flux out:   Φ
.

L = 








1 – 
To
TL

 Q
.

L = 0 ( TL = To ) 

  The other exergy flux out is the power  Φ
.

out = W
.

 = 0.6 kW 

 
 

H Q   = 1 kW 

W = 600 W 

L Q 

T 

1000 K

amb

HE
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10.16 
 A heat engine receives 1 kW heat transfer at 1000 K and gives out 600 W as work 

with the rest as heat transfer to the ambient. Find its first and second law 
efficiencies. 

 
 First law efficiency is based on the energies 

   ηI = W
.

/Q
.

H = 
0.6
1  = 0.6 

 The second law efficiency is based on work out versus availability in 

 Exergy flux in:  Φ
.

H =  








1 – 
To
TH

 Q
.

H =  



1 – 

298.15
1000  1 kW =  0.702 kW 

   ηII = 
W
.

Φ
.

H

 = 
0.6

0.702 = 0.855 

 Notice the exergy flux in is equal to the Carnot heat engine power output given 1 
kW at 1000 K and rejecting energy to the ambient. 

 
 

 

H Q   = 1 kW 

W = 600 W 

L Q 

T 

1000 K

amb

HE

 

 

 
 
10.17 

Is the exergy equation independent of the energy and entropy equations? 

 ns by 
defining the exergy from the state properties and the reference dead state. 

 

 
 

 No.  The exergy equation is derived from the other balance equatio
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10.18 
 A heat pump has a coefficient of performance of 2 using a power input of 2 kW. 

Its low temperature is To and the high temperature is 80oC, with an ambient at To. 

Find the fluxes of exergy associated with the energy fluxes in and out. 
 
  First let us do the energies in and out 

   COP = β = 
Q
.

H

W
.      =>       Q

.
H = β W

.
 = 2 × 2 kW = 4 kW 

 

  Energy Eq.: Q
.

L = Q
.

H – W
.

 = 4 – 2 = 2 kW 

 

  Exergy flux in:   Φ
.

L = 








1 – 
To
TL

 Q
.

L = 0 ( TL = To ) 

  Exergy flux in:   Φ
.

W = W
.

 = 2 kW 

  Exergy flux out:  Φ
.

H =  








1 – 
To
TH

 Q
.

H =  



1 – 

298.15
353.15  4 kW =  0.623 kW 

 
 Remark:  The process then destroys (2 – 0.623) kW of exergy. 
 

 

H Q 

W = 2 kW 

L Q 

T o 

80 C

HP

 

o  
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10.19 
 Use the exergy balance equation to find the efficiency of a steady state Carnot 

heat engine operating between two fixed temperature reservoirs? 
 
 The exergy balance equation, Eq.10.36, for this case looks like 
 

   0 = 








1 – 
To
TH

 Q
.

H - 








1 – 
To
TL

 Q
.

L - W
.

 + 0 + 0 – 0 – 0 

 
 Steady state (LHS = 0 and dV/dt = 0,  no mass flow terms, Carnot cycle so  

reversible and the destruction is then zero. From the energy equation we have 

   0 = Q
.

H - Q
.

L - W
.

  

 which we can subtract from the exergy balance equation to get 

   0 =  – 
To
TH

 Q
.

H + 
To
TL

 Q
.

L 

 Solve for one heat transfer in terms of the other 

   Q
.

L = 
TL
TH

 Q
.

H 

 The work from the energy equation is 

   W
.

 = Q
.

H - Q
.

L = Q
.

H [ 1 - 
TL
TH

 ] 

 from which we can read the Carnot cycle efficiency as we found in Chapter 7. 
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10.20 
 Find the second law efficiency of the heat pump in problem 10.18. 
 
  The second law efficiency is a ratio of exergies namely what we want out 

divided by what we have to put in. Exergy from first term on RHS Eq. 10.36 
 

   Φ
.

H =  








1 – 
To
TH

 Q
.

H;     Q
.

H = β W
.

 = 2 × 2 kW = 4 kW 

 

   ηII = 
Φ
.

H

W
.  = 









1 – 
To
TH

 
Q
.

H

W
.  = 



1 – 

298.15
353.15  

4
2 = 0.31 

 
 
 

 

H Q 

W = 2 kW 

L Q 

T o 

80 C

HP

 

o  
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Available Energy, Reversible work 
 
10.21 
 Find the availability of 100 kW delivered at 500 K when the ambient is 300 K. 

Solution: 

The availability of an amount of heat transfer equals the possible work that 
can be extracted. This is the work out of a Carnot heat engine with heat 
transfer to the ambient as the other reservoir. The result is from Chapter 7 as 
also shown in Eq. 10.1 and Eq. 10.36 

 Φ
.

 = W
.

rev HE = (1 – 
To
T  )Q

.
 = (1 – 

300
500 ) 100 kW = 40 kW 
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10.22 
 A control mass gives out 10 kJ of energy in the form of 
 a. Electrical work from a battery 
 b. Mechanical work from a spring 
 c. Heat transfer at 500°C 
 Find the change in availability of the control mass for each of the three cases. 

 

Solution: 

 a) Work is availability  ∆Φ = −Wel = -10 kJ 

 b) Work is availability ∆Φ = −Wspring = -10 kJ 

 c) Give the heat transfer to a Carnot heat engine and W is availability 

∆Φ = −[1 −  
T0

TH
 ] Qout = −



1 - 

298.15
773.15  10 = −6.14 kJ 
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10.23 
 A heat engine receives 5 kW at 800 K and 10 kW at 1000 K rejecting energy by 

heat transfer at 600 K. Assume it is reversible and find the power output. How 
much power could be produced if it could reject energy at To = 298 K? 

Solution: 

 C.V. The heat engine, this is in steady state. 

Energy Eq.: 0 = Q
.

1 + Q
.

2 – Q
.

L – W
.

 

Entropy Eq.: 0 = 
Q
.

1
T1

 + 
Q
.

2
T2

 – 
Q
.

L
TL

 + 0 

Q 

W 

L Q 

1

HE

Q 2

 

Now solve for Q
.

L from the entropy equation 

  Q
.

L = 
TL
T1

 Q
.

1 + 
TL
T2

 Q
.

2 = 
600
800 × 5 + 

600
1000 × 10 = 9.75 kW 

Substitue into the enrgy equation and solve for the work term 

  W
.

 = Q
.

1 + Q
.

2 – Q
.

L = 5 + 10 – 9.75 = 5.25 kW 

For a low temperature of 298 K we can get 

  Q
.

L2 = 
298
600 Q

.
L = 4.843 kW 

W
.

 = Q
.

1 + Q
.

2 – Q
.

L = 5 + 10 – 4.843 = 10.16 kW 

 

Remark: Notice the large increase in the power output. 
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10.24 
 The compressor in a refrigerator takes refrigerant R-134a in at 100 kPa, −20°C 

and compresses it to 1 MPa, 40°C. With the room at 20°C find the minimum 
compressor work. 

Solution: 

  

C.V. Compressor out to ambient. Minimum work in 
is the reversible work. 

Steady flow, 1 inlet and 2 exit  
-WC

1

2

 

Energy Eq.: wc = h1 - h2 + qrev 

Entropy Eq.:   s2 = s1 + ⌡⌠dq/T + sgen = s1 + qrev/To + 0  

  =>   qrev = To(s2 - s1)  

 wc min = h1 - h2 + To(s2 - s1)   

= 387.22 - 420.25 + 293.15 × (1.7148 - 1.7665)  
        = -48.19 kJ/kg 
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10.25 
 Find the specific reversible work for a steam turbine with inlet 4 MPa, 500°C and 

an actual exit state of 100 kPa, x = 1.0 with a 25°C ambient. 

Solution: 

Steam turbine  To = 25°C = 298.15 K 

Inlet state:  Table B.1.3    hi = 3445.2 kJ/kg;     si = 7.090 kJ/kg K 

Exit state:   Table B.1.2    he = 2675.5 kJ/kg;     se = 7.3593 kJ/kg K 

From Eq.9.39, 

     wrev = (hi - Tosi) – (he - Tose) = (hi - he) + To(se - si) 

  = (3445.2 – 2675.5) + 298.2(7.3593 – 7.0900) 

  = 769.7 + 80.3 = 850.0 kJ/kg 
 

 P

v

i i

T

s

e
e

 

 

 
WT

i
e
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10.26 
 Calculate the reversible work out of the two-stage turbine shown in Problem 6.82, 

assuming the ambient is at 25°C. Compare this to the actual work which was 
found to be 18.08 MW. 

C.V. Turbine.  Steady flow, 1 inlet and 2 exits. 

Use Eq. 10.12 for each flow stream with q = 0   for adiabatic turbine. 

 Supply state 1:   20 kg/s at 10 MPa, 500°C  

Process steam 2:   5 kg/s, 0.5 MPa, 155°C,    

Exit state 3:   20 kPa,   x = 0.9  

Table B.1.3:    h1 = 3373.7,    h2 = 2755.9 kJ/kg, 

                        s1 = 6.5966,    s2 = 6.8382 kJ/kg K 

WT

1
2

3
 

        HP       LP 

Table B.1.2:    h3 = 251.4 + 0.9 × 2358.3 = 2373.9  kJ/kg, 

        s3 = 0.8319 + 0.9 × 7.0766 = 7.2009 kJ/kg K 

W
. rev = (m

.
1h1 - m

.
2h2 - m

.
3h3) - T0(m

.
1s1 - m

.
2s2 - m

.
3s3)  

    =  20 × 3373.7 − 5 × 2755.9 − 15 × 2373.9  

− 298.15 (20 × 6.5966 - 5 × 6.8382  + 15 × 7.2009)  

    =  21.14 MW = W
. ac + Q

. rev = 18084 kW + 3062.7 kW 
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10.27 
 A household refrigerator has a freezer at TF and a cold space at TC from which 

energy is removed and rejected to the ambient at TA as shown in Fig. P10.27. 
Assume that the rate of heat transfer from the cold space, Q

.
C, is the same as from 

the freezer, Q
.

F, find an expression for the minimum power into the heat pump. 

Evaluate this power when TA = 20°C, TC = 5°C, TF = −10°C, and Q
.

F = 3 kW. 
 

Solution: 

 C.V. Refrigerator (heat pump), Steady, no 
external flows except heat transfer. 

Energy Eq.:     Q
.

F + Q
.

c + W
.

 = Q
.

A   

           (amount rejected to ambient) 

 

Q 

W 

A Q 

C

REF

Q F

 

 

Reversible gives minimum work in as from Eq. 10.1  or 10.9 on rate form. 

 W
.

 = Q
.

F 








1 − 
TA

TF
 + Q

.
c 








1 − 
TA

TC
  = 3 



1 − 

293.15
263.15   + 3 



1 − 

293.15
278.15  

      = -0.504 kW      (negative so work goes in) 
 



   Sonntag, Borgnakke and van Wylen 

 
10.28 
 Find the specific reversible work for a R-134a compressor with inlet state of 

–20°C, 100 kPa and an exit state of 600 kPa, 50°C. Use a 25°C ambient 
temperature. 

Solution: 

This is a steady state flow device for which the reversible work is given by 
Eq.10.9. The compressor is also assumed to be adiabatic so q = 0 

 

   wrev = To(se - si) - (he - hi) 

Table B.5.2: hi = 387.22 kJ/kg; si = 1.7665 kJ/kg K 

   he = 438.59 kJ/kg; se = 1.8084 kJ/kg K 

 wrev = 298.15 (1.8084 - 1.7665) - (438.59 - 387.22) = -38.878 kJ/kg 

 

 P

v

i
i

T

s

e
e

 

 

 
WC in

ie
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10.29 
 An air compressor takes air in at the state of the surroundings 100 kPa, 300 K. 

The air exits at 400 kPa, 200°C at the rate of 2 kg/s. Determine the minimum 
compressor work input. 

C.V. Compressor, Steady flow, minimum work in is reversible work. 

 ψ1 = 0 at ambient conditions 

 s0 - s2 = s °
T0

 - s °
T2

 - R ln(P0/P2) 

         = 6.86926 - 7.3303 - 0.287 ln(100/400) = -0.06317 kJ/kg K 

 ψ2 = h2 - h0 + T0(s0 - s2) = 475.79 - 300.473 + 300 (-0.06317) 

      = 156.365 kJ/kg 

     -W
. REV = m

.
(ψ2 - ψ1) = 312.73 kW = W

.
c  
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10.30 
 A steam turbine receives steam at 6 MPa, 800°C. It has a heat loss of 49.7 kJ/kg 

and an isentropic efficiency of 90%. For an exit pressure of 15 kPa and 
surroundings at 20°C, find the actual work and the reversible work between the 
inlet and the exit. 

C.V. Reversible adiabatic turbine (isentropic) 

 wT = hi - he,s  ;        se,s = si = 7.6566 kJ/kg K,     hi = 4132.7 kJ/kg 

 xe,s = (7.6566 - 0.7548)/7.2536 = 0.9515, 

 he,s = 225.91 + 0.9515×2373.14 = 2483.9 kJ/kg   

  wT,s = 4132.7 - 2483.9 = 1648.79 kJ/kg 

C.V. Actual turbine 

 wT,ac = ηwT,s = 1483.91 kJ/kg 

  = hi - he,ac - qloss  ⇒  

 he,ac = hi - qloss - wT,ac = 4132.7 - 49.7 - 1483.91 = 2599.1 kJ/kg 

 Actual exit state:  P,h    ⇒    sat. vap.,    se,ac = 8.0085 kJ/kg K 

C.V. Reversible process, work from Eq.10.12 

 qR = T0(se,ac - si) = 293.15 × (8.0085 - 7.6566) = 103.15 
kJ
kg 

  wR = hi - he,ac + qR = 4132.7 - 2599.1 + 103.16 = 1636.8 kJ/kg 
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10.31 
 An air compressor receives atmospheric air at T0 = 17°C, 100 kPa, and 

compresses it up to 1400 kPa. The compressor has an isentropic efficiency of 
88% and it loses energy by heat transfer to the atmosphere as 10% of the 
isentropic work. Find the actual exit temperature and the reversible work. 

 C.V. Compressor 

 Isentropic:  wc,in,s = he,s - hi  ;    se,s = si 

 From table A.7.1 and entropy equation we get 

  s
o
Te s = s

o
Ti + R ln (Pe/Pi) = 6.83521 + 0.287 ln(14) = 7.59262 

 Back interpolate in Table A.7:      ⇒  he,s = 617.23 kJ/kg 

  wc,in,s = 617.23 - 290.43 = 326.8 kJ/kg 

 Actual:  wc,in,ac = wc,in,s/ηc = 371.36  ;     qloss = 32.68 kJ/kg 

  wc,in,ac + hi = he,ac + qloss 

  =>  he,ac = 290.43 + 371.36 - 32.68 = 629.1 kJ/kg 

  =>  Te,ac = 621 K 

 Reversible:    wrev = hi - he,ac + T0(se,ac - si)   

        = 290.43 - 629.1 + 290.15 × (7.6120 - 6.8357)  

        = -338.67 + 225.38 = -113.3 kJ/kg 

Since qloss is also to the atmosphere it is the net q exchanged with the ambient 
that explains the change in s. 
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10.32 
 Air flows through a constant pressure heating device, shown in Fig. P10.32. It is 

heated up in a reversible process with a work input of 200 kJ/kg air flowing. The 
device exchanges heat with the ambient at 300 K. The air enters at 300 K, 400 
kPa. Assuming constant specific heat develop an expression for the exit 
temperature and solve for it by iterations. 

 C.V. Total out to T0  

Energy Eq.:      h1 + q0
rev - wrev = h2 

 Entropy Eq.:    s1 + q0
rev/T0 = s2    ⇒    q0

rev = T0(s2 - s1) 

  h2 - h1 = T0(s2 - s1) - wrev  (same as Eq. 10.12) 

 Constant Cp gives:   Cp(T2 - T1) = T0Cp ln (T2/T1) + 200 

 The energy equation becomes 

   T2 - T0 ln( 
T2

T1
 ) = T1 + 

200
Cp

 

 T1 = 300 K,   Cp = 1.004 kJ/kg K,   T0 = 300 K 

   T2 - 300 ln ( 
T2

300 ) = 300 + 
200

1.004 = 499.3 K 

 Now trial and error on T2 

At 600 K    LHS = 392 (too low)   

At 800 K     LHS = 505.75 
  Linear interpolation gives   T2 = 790 K    (LHS = 499.5  OK) 
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10.33 
 A piston/cylinder has forces on the piston so it keeps constant pressure. It 

contains 2 kg of ammonia at 1 MPa, 40°C and is now heated to 100°C by a 
reversible heat engine that receives heat from a 200°C source. Find the work out of 
the heat engine. 

 

C.V. Ammonia plus heat engine 

 Energy:   mam(u2 - u1) = 1Q2,200 - WH.E. - 1W2,pist 

Entropy:  mam(s2 - s1) = 1Q2/Tres  + 0   

                   =>   1Q2 = mam(s2 - s1)Tres 

Process:  P = const.  ⇒  1W2 = P(v2 - v1)mam 

Substitute the piston work term and heat transfer 
into the energy equation 

WH.E. = mam(s2 - s1)Tres - mam(h2 - h1) H 

Q 

W 

L 

Q 

HE

200 C
o

NH
3

cb

 
 

Table B.2.2:    h1 = 1508.5 kJ/kg,   s1 = 5.1778 kJ/kg K,    

h2 = 1664.3 kJ/kg,   s2 = 5.6342 kJ/kg K 

 WH.E. = 2 × [(5.6342 - 5.1778)473.15 - (1664.3 - 1508.5)] = 120.3 kJ 
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10.34 
 A rock bed consists of 6000 kg granite and is at 70°C. A small house with lumped 

mass of 12000 kg wood and 1000 kg iron is at 15°C. They are now brought to a 
uniform final temperature with no external heat transfer by connecting the house 
and rock bed through some heat engines. If the process is reversible, find the final 
temperature and the work done in the process. 

 Solution: 

Take C.V. Total (rockbed and heat engine) 

Energy Eq.: mrock(u2 - u1) + mwood(u2 - u1) + mFe(u2 - u1) = -1W2 

Entropy Eq.: mrock(s2 - s1) + mwood(s2 - s1) + mFe(s2 - s1) = 0/  

 (mC)rockln 
T2

T1
 + (mC)woodln 

T2

T1
 + (mC)Feln 

T2

T1
 = 0/  

   6000 × 0.89 ln (T2/343.15) + 12000 × 1.26 ln (T2/288.15) 

     + 1000 × 0.46 ln (T2/288.15) = 0/  

  =>     T2 = 301.3 K 

Now from the energy equation 

 -1W2 = 6000 × 0.89(301.3 - 343.15) 

      + (12000 × 1.26 + 460)(301.3 - 288.15) 

     ⇒  1W2 = 18 602 kJ 
 

 
W

Q Q
H

L

HE

H
O
U
S
Ecb
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10.35 
 An air flow of 5 kg/min at 1500 K, 125 kPa goes through a constant pressure heat 

exchanger, giving energy to a heat engine shown in Figure P10.35. The air exits 
at 500 K and the ambient is at 298 K, 100 kPa. Find the rate of heat transfer 
delivered to the engine and the power the engine can produce.    

 
Solution: 

C.V. Heat exchanger 

Continuity eq.:     m
.

1 = m
.

2 ;         

Energy Eq.6.12:   m
.

1h1 = m
.

1h2 + Q
.

H 

 

Table A.7.1:   h1 = 1635.8 kJ/kg,   

   h2 = 503.36 kJ/kg, s1 = 8.61209 kJ/kg K 

   s2 = 7.38692 kJ/kg K 

H Q 

W 

L Q 

Ambient 

HE

1 2

 

 Q
.

H = m
.

(h1 – h2) = 
5

60 
kg
s  (1635.8 – 503.36) 

kJ
kg = 94.37 kW 

C.V. Total system for which we will write the second law. 

Entropy Equation 9.8:   m
.

 s1  + S
.

gen = m
.

 s2 + Q
.

L/To 

Process: Assume reversible   S
.

gen = 0, and  P = C for air 

  Q
.

L = To m
.

 (s1 – s2) = 298 K 
5
60 

kg
s  (8.61209 – 7.38692) 

kJ
kg K 

        = 30.425 kW 

Energy equation for the heat engine gives the work as 

  W
.

 = Q
.

H - Q
.

L = 94.37 – 30.425 = 63.9 kW 
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Irreversibility 
 
10.36 
 Calculate the irreversibility for the condenser in Problem 9.53 assuming an 

ambient temperature at 17°C. 

Solution: 

C.V. Condenser. Steady state with no shaft work term. 

Energy Equation 6.12: m
.

 hi + Q
.
 = m

.
he  

Entropy Equation 9.8:   m
.

 si + Q
.
/T + S

.
gen = m

.
 se 

Properties are from Table B.1.2 

hi = 225.91 + 0.9 × 2373.14 = 2361.74 kJ/kg , he= 225.91 kJ/kg 

si = 0.7548 + 0.9 × 7.2536 = 7.283 kJ/kg K,      se = 0.7548 kJ/kg K 

From the energy equation 

Q
.

out = –Q
.
 = m

.
 (hi – he) = 5(2361.74 – 225.91) = 10679 kW 

From the entropy equation 

 S
.

gen = m
.

 (se – si) + Q
.

out/T = 5(0.7548 – 7.283) + 10679/(273 + 17) 

  = –35.376 + 36.824 = 1.448 kW/K 

From Eq.10.11 times m
.

, 

I
.
 = To S

.
gen = 290 × 1.448 = 419.9 kW 
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10.37 

 A constant pressure piston/cylinder contains 2 kg of water at 5 MPa and 100oC. 

Heat is added from a reservoir at 700oC to the water until it reaches 700oC. We 
want to find the total irreversibility in the process. 

 
 Solution: 
 C.V. Piston cylinder out to the reservoir (incl. the walls). 
  

Energy Eq.: m(u2 - u1) =  1Q2 - 1W2 

Entropy Eq.: m(s2 - s1) =  1Q2/Tres + 1S2 gen 

State 1:    h1 = 422.71 kJ/kg,  s1 = 1.303 kJ/kg K 

State 2:    h2 = 3900.13 kJ/kg,  s2 = 7.5122 kJ/kg K 

Process:   P = C     =>   1W2 = P(V2 – V1)  

 

700 C

H2O

 

From the energy equation we get 

  1Q2 = m(u2 - u1) + 1W2 =  m(h2 - h1) = 2(3900.13 – 422.71) = 6954.8 kJ 

From the entropy equation we get 

 1S2 gen = m(s2 - s1) – 
1Q2
Tres

 = 2(7.5122 – 1.303) - 
6954.8

273 + 700 = 5.2717 
kJ
K 

Now the irreversibility is from Eq. 10.19 

  1I2 = m 1i2 = To  1S2 gen = 298.15 K × 5.2717 
kJ
K = 1572 kJ 
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10.38 
 Calculate the reversible work and irreversibility for the process described in 

Problem 5.97, assuming that the heat transfer is with the surroundings at 20°C. 
 Solution: 
 
 P

v

2

1

 

Linear spring gives 

        1W2 = ⌡⌠PdV = 1
2
(P1 + P2)(V2 - V1) 

         1Q2 = m(u2 - u1) + 1W2 

Equation of state:  PV = mRT 

 State 1: V1 = mRT1/P1 = 2 × 0.1889 × 673.15 /500 = 0.5087 m3 

 State 2: V2 = mRT2/P2 = 2 × 0.1889 × 313.15 /300 = 0.3944 m3 

 1W2 = 1
2
(500 + 300)(0.3944 - 0.5087) = -45.72 kJ 

From Figure 5.11:  Cp(Tavg) = 5.25 R = 0.99  ⇒  Cv = 0.803 = Cp - R 

For comparison the value from Table A.5 at 300 K is  Cv = 0.653 kJ/kg K 

 1Q2 = mCv(T2 - T1) + 1W2 = 2 × 0.803(40 - 400) - 45.72 = -623.9 kJ 

1W
rev
2  = To(S2 - S1) - (U2 - U1) + 1Q2 (1 - To/TH) 

      = Tom(s2 - s1)+ 1W
ac
2  - 1Q2 To/To 

      = Tom[CP ln(T2 / T1) − R ln(P2 / P1)] + 1W
ac
2  - 1Q2 

      = 293.15 × 2 [ 0.99 ln(313/673) - 0.1889 ln(300/500)] - 45.72 + 623.9 

      = -387.8 - 45.72 + 623.9 = 190.4 kJ 

1I2 = 1W
rev
2  - 1W

ac
2  = 190.4 - (-45.72) = 236.1 kJ 
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10.39 
 A supply of steam at 100 kPa, 150°C is needed in a hospital for cleaning purposes 

at a rate of 15 kg/s. A supply of steam at 150 kPa, 250°C is available from a 
boiler and tap water at 100 kPa, 15°C is also available. The two sources are then 
mixed in a mixing chamber to generate the desired state as output. Determine the 
rate of irreversibility of the mixing process. 

 
C.V. Mixing chamber, Steady flow 

Continuity Eq.:        m
.

1 + m
.

2 = m
.

3 

Energy Eq.:     m
.

1h1 + m
.

2h2 = m
.

3h3 
Entropy Eq.:    m

.
1s1 + m

.
2s2 + S

.
gen = m

.
3s3 

Table properties                       
B.1.1:    h1 = 62.99 kJ/kg,   s1 = 0.2245 kJ/kg K 
B.1.3:    h2 = 2972.7 kJ/kg,   s2 = 7.8437 kJ/kg K 

B.1.3:    h3 = 2776.4 kJ/kg,   s3 = 7.6133 kJ/kg K 

From the energy equation we get 

 m
.

2/m
.

3 = (h3 - h1)/(h2 - h1) = 
2776.4 - 62.99
2972.7 - 62.99 = 0.9325 

  m
.

2 = 13.988 kg/s,      m
.

1 = 1.012 kg/s 

From the entropy equation we get 

 I
.
 = T0S

.
gen = T0(m

.
3s3 - m

.
1s1 - m

.
2s2) 

   = 298.15 × (15 × 7.6133 - 1.012 × 0.2245 - 13.988 × 7.8437) 

    = 1269 kW 
 

 

1

2
3MIXING

CHAMBER

cb

 

2
T

s

3
1
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10.40 
 The throttle process in Example 6.5 is an irreversible process.  Find the reversible 

work and irreversibility assuming an ambient temperature at 25°C. 

Solution: 

C.V. Throttle. Steady state, adiabatic q = 0 and no shaft work w = 0. 

Inlet state:    B.2.1    hi = 346.8 kJ/kg;     si = 1.2792 kJ/kg K 

Energy Eq.6.13:     he = hi  

Exit state:     B.2.1    P = 291 kPa,   he = hi     which is two-phase 

   se = sf + xsfg = 0.5408 + 0.1638 × 4.9265 = 1.3478 kJ/kg K 

The reversible work is the difference in availability also equal to the 
expression in Eq.10.9 or 10.36 and 10.37  

     wrev = ψi - ψe = (hi - Tosi) – (he - Tose) = (hi - he) + To(se - si) 

  = 0 + 298.15 (1.2792 - 1.3478) = 20.45 kJ/kg 

      i = wrev - w = 20.45 - 0 = 20.45 kJ/kg 
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10.41 
 Two flows of air both at 200 kPa of equal flow rates mix in an insulated mixing 

chamber. One flow is at 1500 K and the other is at 300 K. Find the irreversibility 
in the process per kilogram of air flowing out. 

 
C.V. Mixing chamber 

Continuity Eq..:        m
.

1 + m
.

2 = m
.

3 = 2 m
.

1 

Energy Eq.:     m
.

1h1 + m
.

1h2 = 2 m
.

1h3 

Entropy Eq.: m
.

1s1 + m
.

1s2 + S
.

gen = 2 m
.

1s3   

Properties from Table A.7 

 h3 = (h1 + h2)/2 = (300.473 + 1635.8)/2 = 968.14  kJ/kg 

                ⇒  s °
T3 = 8.0474 kJ/kg K 

From the entropy equation 

S
.

gen/2m
.

1 = s3 − (s1 + s2)/2 = 8.0474 - (6.86926 + 8.61208)/2  

     = 0.30673 kJ/kg K 

i = I
.
/2m

.
1 = T S

.
gen/2m

.
1 = 298.15 × 0.30673  = 91.45 kJ/kg 

 

 
1

2
3MIXING

CHAMBER
 

2

T

s

3
1

200 kPa
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10.42 
 Fresh water can be produced from saltwater by evaporation and subsequent 

condensation. An example is shown in Fig. P10.42, where 150-kg/s saltwater, 
state 1, comes from the condenser in a large power plant. The water is throttled to 
the saturated pressure in the flash evaporator and the vapor, state 2, is then 
condensed by cooling with sea water. As the evaporation takes place below 
atmospheric pressure, pumps must bring the liquid water flows back up to P0. 
Assume that the saltwater has the same properties as pure water, the ambient is at 
20°C and that there are no external heat transfers. With the states as shown in the 
table below find the irreversibility in the throttling valve and in the condenser. 

          

State 1 2 3 4 5 6 7 8 

T [°C] 30 25 25 -- 23 -- 17 20 

h [kJ/kg] 125.77 2547.2   96.5  71.37 83.96 

s [kJ/kg K] 0.4369 8.558   0.3392  0.2535 0.2966 

 

C.V. Valve.      P2 = Psat(T2 = T3) = 3.169 kPa 

Continuity Eq.: m
.

1 = mex = m
.

2 + m
.

3 

Energy Eq.:    h1 = he  ;      Entropy Eq.:     s1 + sgen = se 

 he = h1   ⇒    xe = (125.77 - 104.87)/2442.3 = 0.008558  

⇒ se = 0.3673 + 0.008558 × 8.1905 = 0.4374 kJ/kg K 

        m
.

2 = (1 - xe)m
.

1 = 148.716 kg/s 

  sgen = se - s1 = 0.4374 - 0.4369 = 0.000494 kJ/kg K 

  I
.
 = m

.
T0sgen = 150 × 293.15 × 0.000494 = 21.72 kW 

C.V. Condenser. 

Energy Eq.: m
.

2h2 + m
.

7h7 = m
.

2h5 + m
.

7h8   ⇒ 

 m
.

7 = m
.

2 × (h2 - h5)/(h8 - h7) = 148.716 × 
2547.2 - 96.5
83.96 - 71.37 = 28 948 

kg
s  

Entropy Eq.: m
.

2s2 + m
.

7s7 + S
.

gen = m
.

2s5 + m
.

7s8 

 I
.
 = T0S

.
gen = T0 [ ]m

.
2(s5 - s2) + m

.
7(s8 - s7)  

   = 293.15[148.716(0.3392 - 8.558) + 28948(0.2966 - 0.2535)] 

   = 293.15 × 25.392 = 7444 kW 
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10.43 
 Calculate the irreversibility for the process described in Problem 6.133, assuming 

that heat transfer is with the surroundings at 17°C. 
 Solution: 

C.V. Cylinder volume out to  To = 17 oC. 

Continuity Eq.6.15:   m2 - m1 = min  

Energy Eq.6.16:      m2u2 - m1u1 = minhline + 1Q2 - 1W2 

Entropy Eq.9.12:  m2 s2 - m1s1 =  misi + 1Q2 / To +  1S2 gen   

Process: P1 is constant to stops, then constant V to state 2 at P2 

State 1:  P1, T1       m1 = 
P1V

RT1
 = 

300 × 0.25
0.287 × 290.2  = 0.90 kg 

 
 State 2: 

       Open to  P2 = 400 kPa, T2 = 350 K 

 

         m2 = 
400 × 1

0.287 × 350 = 3.982 kg 

         mi = 3.982 - 0.90 = 3.082 kg 

��� ���

AIR

 
Only work while constant P 
  1W2 = P1(V2 - V1) = 300(1 - 0.25) = 225 kJ 

Energy eq.: 
 1Q2 = m2u2 - m1u1 + 1W2 - mihi 

        = 3.982 × 0.717 × 350 - 0.90 × 0.717 × 290.2 + 225 
  - 3.082 × 1.004 × 600 = -819.2 kJ 
Entropy eq. gives 

 To 1S2 gen = I = To [ m1 (s2 - s1) +  mi (s2 - si)] - 1Q2 

     = 290.15[0.9(Cp ln  
350
290 - R ln 

400
300 ) + 3.082(Cpln 

350
600 - R ln 

400
500 )] 

           - ( - 819.2 kJ) 

      = 290.15 (0.0956 - 1.4705) + 819.2 

      = 420.3 kJ 
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10.44 
 A 2-kg piece of iron is heated from room temperature 25°C to 400°C by a heat 

source at 600°C. What is the irreversibility in the process? 
 Solution: 

C.V. Iron out to 600°C source, which is a control mass. 

Energy Eq.: mFe(u2 - u1) = 1Q2 - 1W2   

Entropy Eq.:  mFe(s2 - s1) = 1Q2/Tres + 1S2 gen 

Process: Constant pressure     =>   1W2  = PmFe(v2 - v1) 

 ⇒  1Q2 = mFe(h2 - h1) = mFeC(T2 - T1) = 2 × 0.42 × (400 - 25) = 315 kJ 

 1S2 gen = mFe(s2 - s1) - 1Q2/Tres = mFeC ln (T2/T1) - 1Q2/Tres 

   = 2 × 0.42 × ln 
673.15
298.15 - 

315
873.15 = 0.3233 kJ/K 

 1I2 = To (1S2 gen ) = 298.15 × 0.3233 = 96.4 kJ 
 
  

Fe

 

 

A real flame may be more than 
600°C, but a little away from it where 
the gas has mixed with some air it 
may be 600°C. 
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10.45 
 Air enters the turbocharger compressor (see Fig. P10.45), of an automotive engine 

at 100 kPa, 30°C, and exits at 170 kPa. The air is cooled by 50°C in an intercooler 
before entering the engine. The isentropic efficiency of the compressor is 75%. 
Determine the temperature of the air entering the engine and the irreversibility of 
the compression-cooling process. 

 Solution: 

 a) Compressor. First ideal which is reversible adiabatic, constant s: 

     T2S = T1(
P2

P1
)

k-1
k  = 303.2(170

100)
0.286

 = 352.9 K 

     wS = CP0(T1 - T2S) = 1.004(303.2 - 352.9) = -49.9 kJ/kg 

    Now the actual compressor 

     w = wS/ηS = -49.9/0.75 = -66.5 kJ/kg = CP(T1 - T2) 

      ⇒ T2 = 369.5 K 

     T3(to engine) = T2 - ∆TINTERCOOLER = 369.5 - 50 

                = 319.5 K = 46.3°C 

b) Irreversibility from Eq.10.13 with rev. work from Eq.10.12, (q = 0 at TH) 

 s3 - s1 = 1.004 ln



319.4

303.2  - 0.287 ln



170

100  = -0.1001 
kJ

kg K 

    i = T(s3 - s1) - (h3 - h1) - w = T(s3 - s1) - CP(T3 - T1)  - CP(T1 - T2) 

       = 303.2(-0.1001) - 1.004(-50) = +19.8 kJ/kg 
 
 

 

3

1

Exhaust

2

Engine
-W

Compressor

Cooler

C

-Q C

cb
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10.46 
 A 2-kg/s flow of steam at 1 MPa, 700°C should be brought to 500°C by spraying 

in liquid water at 1 MPa, 20°C in an steady flow. Find the rate of irreversibility, 
assuming that surroundings are at 20°C. 

C.V. Mixing chamber, Steady flow. State 1 is superheated vapor in, state 2 is 
compressed liquid in, and state 3 is flow out. No work or heat transfer. 

 

 Continuity Eq.6.9:     m
•

3 = m
•

1 + m
•

2   

Energy Eq.6.10:     m
•

3h3 = m
•

1h1 + m
•

2h2 

Entropy Eq.9.7:       m
•

3s3 = m
•

1s1 + m
•

2s2 + S
•

gen 

1

2

3

 

 

Table B.1.3:    h1 = 3923.1 kJ/kg,   s1 = 8.2731 kJ/kg K,     

h3 = 3478.5 kJ/kg,   s3 = 7.7622 kJ/kg K, 

For state 2 interpolate between, saturated liquid 20°C table B.1.1 and, 
compressed liquid 5 MPa, 20°C from Table B.1.4:    h2 = 84.9,   s2 = 0.2964 

  x = m
•

2/m
•

1 = (h3 - h1)/(h2 - h3) = 0.13101 

 ⇒  m
•

2 = 2 × 0.131 = 0.262 kg/s ; m
•

3 = 2 + 0.262 = 2.262 kg/s 

  S
•

gen = m
•

3s3 - m
•

1s1 - m
•

2s2 = 0.9342 kW/K 

 I
.
 = W

. rev - W
. ac = W

. rev = ToS
•

gen = 293.15 × 0.9342 = 273.9 kW 
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10.47 
 A car air-conditioning unit has a 0.5-kg aluminum storage cylinder that is sealed 

with a valve and it contains 2 L of refrigerant R-134a at 500 kPa and both are at 
room temperature 20°C. It is now installed in a car sitting outside where the whole 
system cools down to ambient temperature at −10°C. What is the irreversibility of 
this process? 

C.V. Aluminum and R-134a 

Energy Eq.: mAl(u2 - u1)Al + mR(u2 - u1)R = 1Q2 - 1W2   (1W2 = 0) 

Entropy Eq.: mAL(s2 - s1)Al + mR(s2 - s1)R = 1Q2/T0 + 1S2 gen 

 (u2 - u1)Al = Cv,Al(T2 - T1) = 0.9(-10 - 20) = - 27 kJ/kg 

 (s2 - s1)Al = Cp,Al ln(T2/T1) = 0.9 ln(263.15/293.15) = -0.09716 kJ/kg K 

Table B.5.2:   v1 = 0.04226 m3/kg,  u1 = 390.5 kJ/kg, 

  s1 = 1.7342 kJ/kg K,   mR134a = V/v1 = 0.0473 kg 

 v2 = v1 = 0.04226 & T2    =>    x2 = (0.04226 - 0.000755)/0.09845 = 0.4216 

 u2 = 186.57 + 0.4216×185.7 = 264.9 kJ/kg,   

s2 = 0.9507 + 0.4216×0.7812 = 1.2801 kJ/kg K 

 1Q2 = 0.5 × (-27) + 0.0473(264.9 - 390.5) = - 19.44 kJ 

1S2 gen = 0.5 (-0.09716) + 0.0473(1.2801 - 1.7342) + 
19.44
263.15 = 0.003815 kJ/K 

 1I2 = T0 ( 1S2 gen ) = 263.15 × 0.003815 = 1.0 kJ 
 
  

���
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10.48 
 The high-temperature heat source for a cyclic heat engine is a steady flow heat 

exchanger where R-134a enters at 80°C, saturated vapor, and exits at 80°C, 
saturated liquid at a flow rate of 5 kg/s. Heat is rejected from the heat engine to a 
steady flow heat exchanger where air enters at 150 kPa and ambient temperature 
20°C, and exits at 125 kPa, 70°C. The rate of irreversibility for the overall process 
is 175 kW. Calculate the mass flow rate of the air and the thermal efficiency of 
the heat engine. 

 

C.V.   R-134a Heat Exchanger, 

 m
.

R134a  = 5 kg/s,  Table B.5.1 

Inlet:   T1 = 80oC,  sat. vapor   x1 = 1.0, 

  h1 = hg = 429.189 kJ/kg,    

   s1 = sg = 1.6862 kJ/kg-K 

Exit:   T2 = 80oC, sat. liquid   x2 = 0.0 

   h2 = hf = 322.794 kJ/kg, 

   s2 = sf = 1.3849 kJ/kg-K 

H Q 

W 

L Q 

HE

1 2

3 4  

C.V.  Air Heat Exchanger,   Cp = 1.004 kJ/kg-K,   R = 0.287 kJ/kg-K 

Inlet:   T3 = 20oC,   P3 = 150 kPa Exit:   T4 = 70oC,   P4 = 125 kPa 

 s4 - s3 = Cp ln ( 
T4
T3

 ) – R ln( 
P4
P3

 ) = 0.2103 kJ/kg-K 

2nd Law for the total system as control volume (since we know I
.
 ): 

  I
.
 = To S

.
net  = m

.
R134a (s2 - s1) + m

.
air(s4 - s3) 

  m
.

air = [I
.
 - m

.
R134a (s2 - s1)]/(s4 - s3) = 10.0 kg/s 

1st Law for each line:      Q
.
 + m

.
hin = m

.
hex + W

.
;    W

.
 = 0 

R-134a:   1Q
.

2 = -Q
.

H = m
.

R134a(h2 - h1) = -532 kW  

Air:   Q
.

L = 3Q
.

4 = m
.

air(h4 - h3) = m
.

air Cp(T4 - T3) = 501.8 kW 

Control volume heat engine 

  W
.

net = Q
.

H - Q
.

L = 532 – 501.8 = 30.2 kW;     

  ηth = W
.

net / Q
.

H = 0.057,      or  5.7% 
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10.49 
 A rigid container with volume 200 L is divided into two equal volumes by a 

partition. Both sides contains nitrogen, one side is at 2 MPa, 300°C, and the other 
at 1 MPa, 50°C. The partition ruptures, and the nitrogen comes to a uniform state 
at 100°C. Assuming the surroundings are at 25°C find the actual heat transfer and 
the irreversibility in the process. 

 Solution: 
  C.V. Total container 
  Continuity Eq.:    m2 – mA – mB  = 0 

 Energy Eq.:  mA(u2 - u1)A + mB(u2 - u1)B = 1Q2 - 1W2 

 Entropy Eq.:     mA(s2 - s1)A + mB(s2 - s1)B = 1Q2/Tsur + 1Ss gen 

 Process:   V = C    =>    1W2 = 0 

 From the initial state we get the mass as 

m2 = mA + mB = 
PA1VA

RTA1
 + 

PB1VB

RTB1
  

     = 
2000×0.1

0.2968×573.15
 + 

1000×0.1
0.2968×323.15

 = 1.176 + 1.043 = 2.219 kg 

  P2 = m2RT2/Vtot = 2.219 × 0.2968 × 373.15/0.2 = 1228.8 kPa 

 From the energy equation we get the heat transfer as the change in U 

  1Q2 = mACv(T2 - T1)A + mBCv(T2 - T1)B 

        = 1.176 × 0.745 × (100 - 300) + 1.043 × 0.745 × (100 - 50)  

       = -136.4 kJ 

 The entropy changes are found from Eq.8.25 

       (s2 - s1)A = 1.042 × ln
373.15
573.15 - 0.2968 × ln

1228.8
2000  = -0.09356 kJ/kg K 

       (s2 - s1)B = 1.042 × ln
373.15
323.15 - 0.2968 × ln

1228.8
1000  = 0.0887 kJ/kg K 

 The entropy generation follows from the entropy equation 

 1S2,gen = 1.176× (-0.09356) + 1.043× 0.0887 + 136.4/298.15 = 0.4396 kJ/K 

 Now the irreversibility comes from Eq. 10.19 

   1I2  = T0 × 1S2,gen = 131.08 kJ 
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10.50 
 A rock bed consists of 6000 kg granite and is at 70°C. A small house with lumped 

mass of 12000 kg wood and 1000 kg iron is at 15°C. They are now brought to a 
uniform final temperature by circulating water between the rock bed and the 
house. Find the final temperature and the irreversibility of the process, assuming 
an ambient at 15°C. 

  C.V. Total Rockbed and house. No work, no Q   irreversible process. 

 Energy Eq.: (mC)rock(T2 - 70) + (mCwood + mCFe)(T2 - 15) = 0/  

  T2 = 29.0°C = 302.2 K 

Entropy Eq.:   S2 – S1 = ∑mi(s2 - s1)i = 0 + Sgen 

 Sgen = ∑mi(s2 - s1)i = 5340 ln 
302.2
343.15 + 15580 ln 

302.2
288.15 = 63.13 kJ/K 

 1I2 = (T0)1S2,gen = 288.15 × 63.13 = 18191 kJ 

 

 

Q

H
O
U
S
Ecb
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Availability (exergy) 
 
 
10.51 
 A steady stream of R-22 at ambient temperature, 10°C, and at 750 kPa enters a 

solar collector. The stream exits at 80°C, 700 kPa. Calculate the change in 
availability of the R-22 between these two states. 

 Solution: 
 

inlet exitSOLAR COLLECTOR
 

 

 

Inlet (T,P)  Table B.4.1  (liquid):       hi = 56.46 kJ/kg,   si = 0.2173 kJ/kg K 

Exit (T,P)  Table B.4.2  (sup. vap.):   he = 305.91 kJ/kg, se = 1.0761 kJ/kg K 

From Eq.10.24 or 10.37 

  ∆ψie = ψe - ψi = (he - hi) - T0(se - si) = (305.912 - 56.463) 

        - 283.2(1.0761 - 0.2173) = 6.237 kJ/kg 
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10.52 
 Consider the springtime melting of ice in the mountains, which gives cold water 

running in a river at 2°C while the air temperature is 20°C. What is the 
availability of the water relative to the temperature of the ambient? 

  Solution: 

 ψ = h1 - h0 - T0(s1 - s0)     flow availability from Eq.10.24 

 Approximate both states as saturated liquid from Table B.1.1 

 ψ = 8.392 - 83.96 - 293.15(0.03044 - 0.2966) = 2.457 kJ/kg 

Why is it positive?  As the water is brought to 20°C it can be heated with qL 
from a heat engine using qH from atmosphere TH = T0 thus giving out work. 
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10.53 
 A geothermal source provides 10 kg/s of hot water at 500 kPa, 150°C flowing 

into a flash evaporator that separates vapor and liquid at 200 kPa. Find the three 
fluxes of availability (inlet and two outlets) and the irreversibility rate. 

C.V. Flash evaporator chamber. Steady flow with no work or heat transfer. 

 

 Cont. Eq.:         m
.

1 = m
.

2 + m
.

3 ; 

Energy Eq.:      m
.

1h1 = m
.

2h2 + m
.

3h3 

Entropy Eq.:     m
.

1s1 + S
.
gen = m

.
2s2 + m

.
3s3 

1 2

3

Vap.

Liq.

 
B.1.1: ho = 104.87, so = 0.3673, h1 = 632.18,   s1 = 1.8417 

B.1.2: h2 = 2706.63,  s2 = 7.1271, h3 = 504.68,   s3 = 1.530 

 h1 = xh2 + (1 - x) h3   =>  x = m
.

2/m
.

1 = 
h1 - h3
h2 - h3 

 = 0.0579 

  m
.

2 = xm
.

1 = 0.579 kg/s m
.

3 = (1-x)m
.

1 = 9.421 kg/s 

 S
.
gen = 0.579 × 7.1271 + 9.421 × 1.53 - 10 × 1.8417 = 0.124 kW/K 

Flow availability Eq.10.22:   ψ = (h - Tos) - (ho - Toso) = h - ho - To(s - so) 

 ψ1 = 632.18 - 104.87 - 298.15 (1.8417 - 0.3673) = 87.72 kJ/kg 

 ψ2 = 2706.63 - 104.87 - 298.15 (7.1271 - 0.3673) = 586.33 kJ/kg 

 ψ3 = 504.68 - 104.87 - 298.15 (1.53 - 0.3673) = 53.15 kJ/kg 

 m
.

1 ψ1 = 877.2 kW  m
.

2ψ2 = 339.5 kW  m
.

3ψ3 = 500.7 kW 

 I
.
 = m

.
1 ψ1 - m

.
2 ψ2 - m

.
3ψ3 = 37 kW 
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10.54 
 Find the availability at all 4 states in the power plant of Problem 9.42 with an 

ambient at 298 K. 

Solution: 

Flow availability from Eq.10.24  neglecting kinetic and potential energy is: 

   ψ = h - h0 - T0(s - s0)  

so we need (h,s) for all four states. 

 
 

WT

QH

WP, in

QL
.

3

2

1

4

 

P1 = P4 = 20 MPa, T1 = 700 °C 

      h1 = 3809.1 kJ/kg, 

      s1 = 6.7993 kJ/kg K 

P2 = P3 = 20 kPa, T3 = 40 °C 

State 3:  (P, T)  Comp. liquid, 
take sat. liquid Table B.1.1 
     h3 = 167.5 kJ/kg,    

     v3 =  0.001008 m3/kg 

 

C.V. Turbine. 

 Entropy Eq.9.8:       s2 = s1 = 6.7993 kJ/kg K 

 Table B.1.2     s2 = 0.8319 + x2 × 7.0766    =>    x2 = 0.8433 

            h2 = 251.4 + 0.8433× 2358.33 = 2240.1 kJ/kg 

 wT = h1 - h2 = 3809.1 - 2240.1 = 1569 kJ/kg 

CV. Pump, property relation in Eq.9.13 gives work from Eq.9.18 as 

wP = - v3( P4 - P3) = -0.001008(20000 – 20) = -20.1 kJ/kg 

h4 = h3 - wP = 167.5 + 20.1 = 187.6 kJ/kg 

Flow availability from Eq.10.24 and notice that since turbine work and pump 
work are reversible they represent also change in avalability. 

ψ1 = h1 - h0 - T0(s1 - s0) = 3809.1 – 104.87  -  298 (6.7993 – 0.3673)  

     = 1787.5 kJ/kg 

ψ2 = h2 - h0 - T0(s2 - s0) = ψ1 - wT = 1787.5 - 1569 = 218.5 kJ/kg 

ψ3 = h3 - h0 - T0(s3 - s0) = 167.5 - 104.87 - 298(0.5724 - 0.3673)  

      = 1.51 kJ/kg 

ψ4 = h4 - h0 - T0(s4 - s0) = ψ3 - wP = 1.51 + 20.1 = 21.61 kJ/kg 
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10.55 
 Air flows at 1500 K, 100 kPa through a constant pressure heat exchanger giving 

energy to a heat engine and comes out at 500 K. What is the constant temperature 
the same heat transfer should be delivered at to provide the same availability? 

 Solution: 

C.V. Heat exchanger 

Continuity eq.:     m
.

1 = m
.

2 ;         

Energy Eq.6.12:   m
.

1h1 = m
.

1h2 + Q
.

H 

 

Table A.7.1:   h1 = 1635.8 kJ/kg,   

   h2 = 503.36 kJ/kg, s1 = 8.61209 kJ/kg K 

   s2 = 7.38692 kJ/kg K 

H Q 

W 

L Q 

Ambient 

HE

1 2

 
qout = h1 - h2 = 1635.8 - 503.36 = 1132.4 kJ/kg 

Availability from heat transfer at T:         ∆ψ = (1 - 
To
TH

 ) qout = ψ1 - ψ2  

Eq.10.37:    ψ1 - ψ2 = h1 - h2 - To ( s1 - s2 )  

        = 1132.4 - 298.15 (8.6121 - 7.38692)   

    = 1132.4 - 356.3 = 767.1 kJ/kg 

  1 - 
To
TH

 =  (ψ1 - ψ2 ) / qout = 767.1 / 1132.4 = 0.6774 

  
To
TH

 = 0.3226  =>    TH = 924 K 
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10.56 
 Calculate the change in availability (kW) of the two flows in Problem 9.61. 

Solution: 

  
The two flows in the heat exchanger 
exchanges energy and thus also exergy 
(availability). Fist find state 4 
Air A.7:  h1 = 1046.22,  h2 = 401.3 kJ/kg, 

    s
o
T1 = 8.1349,  s

o
T2 = 7.1593 kJ/kg K 

3 water
1 air

4
2

 

Water B.1.1:     h3 = 83.94 kJ/kg,    s3 = 0.2966 kJ/kg K 

Energy Eq.6.10: m
.

AIR∆hAIR = m
.

H2O∆hH2O 

h4 - h3 = (m
.

AIR/m
.

H2O)(h1 - h2) = (2/0.5)644.92 = 2579.68 kJ/kg 

h4 = h3 + 2579.68 = 2663.62   <  hg     at 200 kPa 

T4 = Tsat = 120.23°C,    

x4 = (2663.62 – 504.68)/2201.96 = 0.9805,  

s4 = 1.53 + x4 5.597 =  7.01786 kJ/kg K 

We consider each flow separately and for each flow availability is Eq.10.24, 
include mass flow rate as in Eq.10.36, use To = 20 C 

For the air flow: 

 m
.

1(ψ1 - ψ2 ) = m
.

1 [ h1 - h2 - To ( s1 - s2 ) ] 

  = 2 [ 1046.22 - 401.3 - 293.2(8.1349 - 7.1593 - 0.287 ln
125
100)] 

  = 2 (644.92 - 267.22 ) = 755.4 kW 

For the water flow: 

 m
.

3(ψ4 - ψ3 ) = m
.

3 [ h4 - h3 - To ( s4 - s3 ) ] 

  = 0.5 [ 2663.62 - 83.94 - 293.2(7.01786 - 0.2966)] 

  = 0.5[ 2579.68 - 1970.7 ] = 304.7 kW 
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10.57 
 Nitrogen flows in a pipe with velocity 300 m/s at 500 kPa, 300°C. What is its 

availability with respect to an ambient at 100 kPa, 20°C? 
 
  Solution: 
  From the availability or exergy in Eq.10.24 

 ψ = h1 - h0 + (1/2)V
2
1 - T0(s1 - s0) 

     = Cp(T1 - T0) + (1/2)V
2
1 - T0[Cp ln(

T1

T0
) - R ln(

P1

P0
) ] 

     = 1.042(300 - 20) + 
3002

2000 - 293.15



1.042 ln



573.15

293.15  - 0.2968 ln



500

100   

    = 272 kJ/kg 
 
  Notice that the high velocity does give a significant contribution. 
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10.58 
 A steady combustion of natural gas yields 0.15 kg/s of products (having 

approximately the same properties as air) at 1100°C, 100 kPa. The products are 
passed through a heat exchanger and exit at 550°C. What is the maximum 
theoretical power output from a cyclic heat engine operating on the heat rejected 
from the combustion products, assuming that the ambient temperature is 20°C? 

  
Solution: 

C.V. Heat exchanger 

Continuity eq.:     m
.

i = m
.

e ;         

Energy Eq.6.12:   m
.

ihi = m
.

ihe + Q
.

H 
.
QH = 

.
miCP0(Ti - Te) = 0.15 × 1.004(1100 - 550) = 82.83 kW 

We do not know the H.E efficiency, high T not constant. 

C.V. Total heat exchanger plus heat engine, reversible process. 

Entropy Eq.:  m
.

isi + 0 = m
.

ise + Q
.

L/TL 

  
.
QL = TL  m

.
i (si – se) = TL 

.
miCP0 ln (

Ti

Te
) 

        = 293.15 ×  0.15 × 1.004  ln (
1373.15
823.15 ) = 22.57 kW 

her we used Eq.8.25 for the change in s of the air. 

Energy Eq. heat engine: 

 
.

WNET = 
.
QH - 

.
QL = 82.83 - 22.57 = 60.26 kW 

 

 

i

e

T

sTL

w qL

 

H Q 

W 

L Q 

Ambient 

HE

i e
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10.59 
 Find the change in availability from inlet to exit of the condenser in Problem 
9.42. 

Solution: 

Condenser of Prob. 9.42 has inlet equal to turbine exit. 

State 2:    P2 = 20 kPa; s2 = s1 = 6.7993 kJ/kg K 

         =>   x2 = (6.7993 – 0.8319)/7.0766 = 0.8433 

 h2 = 2240.1 kJ/kg 

State 3:    P2 = P3; T3 = 40°C;   Compressed liquid assume sat.liq. same T 

  Table B.1.1 h3 = 167.5 kJ/kg; s3 = 0.5724 kJ/kg K 

From Eq.10.24 or 10.37 

  ψ3 - ψ2 = (h3 - Tos3) – (h2 - Tos2) 

   = (h3 - h2) – To(s3 - s2) 

   = (167.5 – 2240.1) – 298.2(0.5724 − 6.7993 ) 

   = −2072.6 + 1856.9 = -215.7 kJ/kg 
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10.60 
 Refrigerant R-12 at 30°C, 0.75 MPa enters a steady flow device and exits at 30°C, 

100 kPa. Assume the process is isothermal and reversible. Find the change in 
availability of the refrigerant. 

  
Solution: 

Table B.3.1: hi = 64.59 kJ/kg,   si = 0.2399 kJ/kg K,   compr. liquid. 

Table B.3.2: he = 210.02 kJ/kg,   se = 0.8488 kJ/kg K,   sup. vapor 

From Eq. 10.24 or 10.37 

 ∆ψ = he - hi - T0(se - si) = 210.02 - 64.59 - 298.15(0.8488 - 0.2399)  

      = -36.1 kJ/kg 
 
 
 

s

T

v

P

750

100

i

e
30

i e

745 kPa

 
 

 

 
 Remark:  Why did the availability drop?  The exit state is much closer to the 

ambient dead state, so it lost its ability to expand and do work.
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10.61 
 An air compressor is used to charge an initially empty 200-L tank with air up to 5 

MPa. The air inlet to the compressor is at 100 kPa, 17°C and the compressor 
isentropic efficiency is 80%. Find the total compressor work and the change in 
availability of the air. 

C.V. Tank + compressor  Transient process with constant inlet conditions, no 
heat transfer. 

Continuity:    m2 - m1 = min    ( m1 = 0 )      Energy:      m2u2 = minhin - 1W2  

Entropy:     m2s2 = minsin + 1S2 gen 

Reversible compressor:    1S2 GEN = 0       ⇒  s2 = sin  

State 1:   v1 = RT1/P1 = 0.8323 m3/kg,     

State inlet,  Table A.7.1:   hin = 290.43 kJ/kg,    s
o
Tin = 6.83521 kJ/kg K 

Eq.8.28:    s
o
T2 = s

o
Tin +  R ln (

P2

Pin
) = 6.83521 + 0.287 ln (

5000
100 ) = 7.95796 

 Table A.7.1      ⇒        T2,s = 854.6 K,     u2,s = 637.25 kJ/kg  

 ⇒  1w2,s = hin - u2,s = 290.43 – 637.25 = -346.82 kJ/kg 

Actual compressor:  1w2,AC = 1w2,s/ηc = -433.53 kJ/kg 

 u2,AC = hin - 1w2,AC = 290.43 –(-433.53) = 723.96 kJ/kg  

 ⇒  T2,AC = 958.5 K,    s
o
T2 ac = 8.08655 kJ/kg K 

State 2 u, P     v2 = RT2/P2 = 0.05502 m3/kg  so   m2 = V2/v2 = 3.635 kg  

 ⇒  1W2 = m2 (1w2,AC) = -1575.9 kJ 

 m2(φ2 - φ1) = m2[u2 - u1 + P0(v2 - v1) - T0(s2 - s1)] 

  = 3.635 [723.96 - 207.19 + 100(0.05502 - 0.8323) - 290[8.08655 - 

     6.83521 - 0.287 ln(5000/100)] = 1460.4 kJ 
 
 
  

W

cb

1 2−
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10.62 
 Water as saturated liquid at 200 kPa goes through a constant pressure heat 

exchanger as shown in Fig. P10.62. The heat input is supplied from a reversible 
heat pump extracting heat from the surroundings at 17°C. The water flow rate is 2 
kg/min and the whole process is reversible, that is, there is no overall net entropy 
change. If the heat pump receives 40 kW of work find the water exit state and the 
increase in availability of the water. 

C.V. Heat exchanger + heat pump. 

m
.

1 = m
.

2 = 2 kg/min,     m
.

1h1 + Q
.

0 + W
.

in = m
.

1h2,     m
.

1s1 + Q
.

0/T0 = m
.

1s2 

 Substitute Q
.

0 into energy equation and divide by m
.

1 

   h1 - T0s1 + win = h2 - T0s2 

 LHS = 504.7 - 290.15 × 1.5301 + 40×60/2 = 1260.7 kJ/kg 

 State 2:  P2 ,   h2 - T0s2 = 1260.7 kJ/kg 

 At sat. vap.  hg - T0sg = 638.8  so state 2 is superheated vapor at 200 kPa. 
 

 At 600oC:    h2 - T0s2 = 3703.96 - 290.15 × 8.7769 = 1157.34 kJ/kg 

 At 700oC:    h2 - T0s2 = 3927.66 - 290.15 × 9.0194 = 1310.68 kJ/kg 

 Linear interpolation   ⇒   T2 = 667°C 

 ∆ψ = (h2 - T0s2) - (h1 - T0s1) = win = 1200 kJ/kg 

       = 1260.7 - 504.7 + 290.15 × 1.5301 ≈ 1200 kJ/kg 
 

  

2

1

T

sTo

w qo

 

1 Q 

W 

0 Q 

Ambient 

HP

1 2
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10.63 

 An electric stove has one heating element at 300oC getting 500 W of electric 

power. It transfers 90% of the power to 1 kg water in a kettle initially at 20oC, 
100 kPa, the rest 10% leaks to the room air. The water at a uniform T is brought 
to the boiling point. At the start of the process what is the rate of availability 
transfer by: a) electrical input    b) from heating element   and  c) into the water at 
Twater.  

 

a) Work is availability Φ
.

 = W
.

 = 500 W 

b)   Heat transfer at 300oC is only partly availability 

   Φ
.

 =  








1 – 
To
TH

 Q
.
 = 



1 – 

293.15
273.15 + 300  500 = 244 W 

c)   Water receives heat transfer at 20oC as 90% of 500 W 

 

   Φ
.

 =  








1 – 
To

Twater
 Q
.
 = 



1 – 

293.15
273.15 + 20  450 = 0 W 

 

 
 

 
       500 W  at  300oC 
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10.64 
 Calculate the availability of the water at the initial and final states of Problem 

8.70, and the irreversibility of the process. 
 
 State properties 

1: u1 = 83.94 kJ/kg,     s1 = 0.2966 kJ/kg K, ,  v1 = 0.001 m3/kg 

2: u2 = 3124.3 kJ/kg,   s2 = 7.7621 kJ/kg K, v2 = 0.354 m3/kg 

0: uo = 104.86 kJ/kg,    so = 0.3673 kJ/kg K,  vo = 0.001003 m3/kg   

Process transfers:   1W
ac
2  = 203 kJ,   1Q

ac
2  = 3243.4 kJ,    TH = 873.15 K 

φ = (u - Tos) - (uo - Toso) + Po( v - vo) 

φ1 = (83.94 - 298.15×0.2966) - (104.86 - 298.15×0.3673)  

  + 100 (0.001002 - 0.001003)  = 0.159 kJ/kg 

φ2 = (3124.3 - 298.15×7.7621) - (104.86 - 298.15×0.3673)  

   + 100 (0.35411 - 0.001003)  = 850 kJ/kg 

1I2 = m(φ1 - φ2) + [1 - (T0/TH)]1Q
ac
2  - 1W

ac
2  + Po( V2 - V1) 

  = -849.84 + (1 - 
298.15
873.15 ) 3243.4 - 203 + 100 (0.3541 - 0.001) 

  = -849.84 + 2135.9 - 203 + 35.31 = 1118. kJ 

 

 [(Sgen = 3.75 kJ/K             ToSgen = 1118 kJ    so OK] 

 



   Sonntag, Borgnakke and van Wylen 

 
10.65 
 A 10-kg iron disk brake on a car is initially at 10°C. Suddenly the brake pad 

hangs up, increasing the brake temperature by friction to 110°C while the car 
maintains constant speed. Find the change in availability of the disk and the 
energy depletion of the car’s gas tank due to this process alone. Assume that the 
engine has a thermal efficiency of 35%. 

 Solution: 

All the friction work is turned into internal energy of the disk brake. 

Energy eq.: m(u2 - u1) = 1Q2 - 1W2  ⇒  1Q2 = mFeCFe(T2 - T1) 

   1Q2 = 10 × 0.45 × (110 - 10) = 450 kJ 

Neglect the work to the surroundings at P0, so change in availability is from  
Eq.10.27 

 ∆φ = m(u2 - u1) - T0m(s2 - s1) 

Change in s for a solid, Eq.8.20 

 m(s2-s1) = mC ln(T2/T1) = 10 × 0.45 × ln 



383.15

283.15  = 1.361 kJ/K 

 ∆φ = 450 - 283.15 × 1.361 = 64.63 kJ 

 Wengine = ηthQgas = 1Q2 = Friction work 

 Qgas = 1Q2/ηth = 450/0.35 = 1285.7 kJ 
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10.66 
 A 1 kg block of copper at 350°C is quenched in a 10 kg oil bath initially at ambient 

temperature of 20°C. Calculate the final uniform temperature (no heat transfer 
to/from ambient) and the change of availability of the system (copper and oil). 

 Solution: 

C.V. Copper and oil. Cco = 0.42 kJ/kg K,      Coil = 1.8 kJ/kg K 

 m2u2 - m1u1 = 1Q2 - 1W2 = 0 = mcoCco(T2 - T1)co + (mC)oil(T2 - T1)oil 

 1 × 0.42 ( T2 - 350) + 10 × 1.8 (T2 - 20) = 0 

  18.42 T2 = 507 => T = 27.5°C = 300.65 K 

For each mass copper and oil, we neglect work term (v = C) so Eq.10.22 is 

 (φ2 - φ1) = u2 - u1 - To(s2 - s1) = mC [(T2 - T1) - Toln (T2 / T1) ] 

mcv(φ2 - φ1)cv + moil (φ2 - φ1)oil =  

 = 0.42 × [(-322.5) - 293.15 ln 
300.65
623.15 ] + 10 × 1.8 [7.5 - 293.15 ln 

300.65
293.15 ] 

 = - 45.713 + 1.698 = - 44.0 kJ 
 
 

 

Oil

Cu
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10.67 
 Calculate the availability of the system (aluminum plus gas) at the initial and final 

states of Problem 8.137, and also the process irreversibility. 

 State 1: T1 = 200 oC,    v1 = V1/ m = 0.05 / 1.1186 = 0.0447 m3/kg 

 State 2: v2 = v1 × (2 / 1.5) × (298.15 / 473.15) = 0.03756 m3/kg 

The metal does not change volume, so the combined is using Eq.10.22 as 

φ1 = mgasφgas + mAlφAl 

 = mgas[u1-uo-To(s1 - so)]cv + mgasPo(v1-vo) + mAl[u1-uo -To(s1-so)]Al 

  = mgasCv (T1 - To) -  mgasTo [Cp ln 
T1
To

 - R ln 
P1
Po

 ] + mgasPo (v1 - vo)  

   + mAl [C (T1 - To) - ToC ln (T1/To) ]Al  

φ1 = 1.1186 [ 0.653(200-25) - 298.15 (0.842 ln 
473.15
298.15 - 0.18892 ln 

2000
100  )  

       + 100 (0.0447 - 0.5633 ) ] + 4 × 0.90 [ 200 -25 - 298.15 ln 
473.15
298.15 ] 

  = 128.88 + 134.3 = 263.2 kJ 

φ2 = 1.1186 [ 0.653(25 - 25) - 298.15 (0.842 ln 
298.15
298.15 - 0.18892 ln 

1500
100  )   

  + 100 (0.03756 - 0.5633 ) ] + 4 × 0.9 [ 25 -25 - 298.15 ln 
298.15
298.15 ] 

  = 111.82 + 0 = 111.82 kJ 

The irreversibility is as in Eq.10.28 

1I2 = φ1 - φ2 + [1 - (T0/TH)] 1Q2 - 1W2AC + Pom( V2 - V1) 

  = 263.2 - 111.82 + 0 - (-14) + 100 × 1.1186 (0.03756 - 0.0447) = 164.58 kJ 

  [(Sgen = 0.552             ToSgen = 164.58    so OK ] 
 
 

 

Tamb

Q
CO2

Al
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10.68 
 A wooden bucket (2 kg) with 10 kg hot liquid water, both at 85°C, is lowered 400 

m down into a mineshaft. What is the availability of the bucket and water with 
respect to the surface ambient at 20°C? 

 
 C.V. Bucket and water.  Both thermal availability 

and potential energy terms. 

v1 ≈ v0 for both wood and water so work to atm. 
is zero.  

 

Use constant heat capacity table A.3 for wood 
and table B.1.1 (sat. liq.) for water.  
From Eq.10.27 

 
 

φ1 - φ0 = mwood[u1 - u0 - T0(s1- s0)] + mH2O[u1- u0- T0(s1- s0)] + mtotg(z1- z0) 

     = 2[1.26(85 - 20) - 293.15× 1.26 ln
273.15 + 85

293.15  ] + 10[ 355.82 - 83.94  

   - 293(1.1342 - 0.2966)] + 12 × 9.807 × (-400) /1000 

     = 15.85 + 263.38 - 47.07 = 232.2 kJ 
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Device Second-Law Efficiency 
 
 
10.69 
 Air enters a compressor at ambient conditions, 100 kPa, 300 K, and exits at 800 

kPa. If the isentropic compressor efficiency is 85%, what is the second-law 
efficiency of the compressor process? 

 Solution: 
 
 

s 

300 K 
1 

2s
2 100 kPa

800 kPaT

 

Ideal (isentropic, Eq.8.32) 

 T2s = 300(8)0.286 = 543.8 K 
 -ws = 1.004(543.8 - 300) = 244.6 kJ/kg 

 -w = 
-ws

 ηs 
 = 

244.6
0.85  = 287.8 kJ/kg K 

 T2 = T1 + 
-w
CP0

 = 300 + 
287.8
1.004 = 586.8 K 

 

Eq.8.25: s2 - s1 = 1.004 ln(586.8/300) - 0.287 ln 8 = 0.07645 

Availability, Eq.10.24 

 ψ2 - ψ1 = (h2 - h1) - T0(s2 - s1)  = 287.8 - 300(0.07645) = 264.9 kJ/kg 

2nd law efficiency, Eq.10.29 or 10.30 (but for a compressor): 

      η2nd Law = 
ψ2 - ψ1

-w  = 
264.9
287.8 = 0.92 
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10.70 
 A compressor takes in saturated vapor R-134a at −20°C and delivers it at 30°C, 

0.4 MPa. Assuming that the compression is adiabatic, find the isentropic 
efficiency and the second law efficiency. 

 

Solution: 

Table B.5   Inlet:    hi = 386.08 kJ/kg,   si = 1.7395 kJ/kg K,  

 Actual exit:       he,ac = 423.22 kJ/kg,   se,ac = 1.7895 kJ/kg K 

 Ideal exit: Pe,   se,s = si   ⇒   he,s = 408.51 kJ/kg 

 Isentropic compressor  wc,s = he,s - hi = 22.43 kJ/kg 

 Actual compressor  wc,ac = he,ac - hi = 37.14 kJ/kg 

Reversible between inlet and actual exit Eq.10.9 

 -wc,rev = hi - he,ac - T0(si - se,ac) = -37.14 - 298.15(1.7395 - 1.7895) = -22.23 

Eq.9.27:  ηs = (wc,s/wc,ac) = (22.43/37.14) = 0.604 

Second law efficiency for compressor, Eq.10.32 (modified) 

   ηII = (wc,rev/wc,ac) = (22.23/37.14) = 0.599 
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10.71 
 A steam turbine has inlet at 4 MPa, 500°C and actual exit of 100 kPa, x = 1.0. 

Find its first law (isentropic) and its second law efficiencies. 

Solution: 

C.V. Steam turbine 

Energy Eq.6.13:    w  = hi - he  

Entropy Eq.9.8:     se = si + sgen 

Inlet state:  Table B.1.3 hi = 3445.2 kJ/kg; si = 7.0900 kJ/kg K 

Exit (actual) state:   Table B.1.2 he = 2675.5; se = 7.3593 kJ/kg K 

Actual turbine energy equation 

   w = hi - he = 769.7 kJ/kg 

Ideal turbine reversible process so sgen = 0    giving 

  ses = si = 70900 = 1.3025 + xes × 6.0568 

  xes = 0.9555, hes = 417.4 + 0.9555 × 2258.0 = 2575.0 kJ/kg 

The energy equation for the ideal gives 

   ws = hi - hes = 870.2 kJ/kg 

The first law efficiency is the ratio of the two work terms 

   ηs = w/ws = 0.885 

The reversible work for the actual turbine states is, Eq.10.9 

   wrev = (hi - he) + To(se - si) 

           = 769.7 + 298.2(7.3593 – 7.0900) 

           = 769.7 + 80.3 = 850.0 kJ/kg 

Second law efficiency Eq.10.29 

   η2nd Law = w/wrev = 769.7/850.0 = 0.906 
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10.72 
 The condenser in a refrigerator receives R-134a at 700 kPa, 50°C and it exits as 

saturated liquid at 25°C. The flowrate is 0.1 kg/s and the condenser has air 
flowing in at ambient 15°C and leaving at 35°C. Find the minimum flow rate of 
air and the heat exchanger second-law efficiency. 

 
 

1 2 

3 4 
AIR 

R-134a
 

C.V. Total heat exchanger. 
Energy Eq.6.10 
 

m• 1h1 + m• ah3 = m• 1h2 + m• ah4  

 

 ⇒    m• a = m• 1 × 
h1 - h2

h4 - h3
 = 0.1 × 

436.89 - 234.59
1.004(35 - 15)  = 1.007 kg/s 

Availability from Eq.10.24 

 ψ1 - ψ2 = h1 - h2 - T0(s1 - s2) = 436.89 - 234.59 

     - 288.15(1.7919 - 1.1201) = 8.7208 kJ/kg 

 ψ4 - ψ3 = h4 - h3 - T0(s4 - s3) 

     = 1.004(35 - 15) - 288.15 × 1.004 × ln 
308.15
288.15 = +0.666 kJ/kg 

Efficiency from Eq.10.30 

 ηII = m• a(ψ4 - ψ3)/m• 1(ψ1 - ψ2) = 
1.007(0.666)
0.1(8.7208)  = 0.77 
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10.73 
 Steam enters a turbine at 25 MPa, 550°C and exits at 5 MPa, 325°C at a flow rate 

of 70 kg/s. Determine the total power output of the turbine, its isentropic 
efficiency and the second law efficiency. 

 Solution: 

 hi = 3335.6 kJ/kg,   si = 6.1765 kJ/kg K,    

he = 2996.5 kJ/kg,   se = 6.3289 kJ/kg K 

Actual turbine:  wT,ac = hi - he = 339.1 kJ/kg 

Isentropic turbine:  se,s = si   ⇒   he,s = 2906.6 kJ/kg 

  wT,s = hi - he,s = 429 kJ/kg 

Rev. turbine:   wrev = wT,ac + T0(se - si) = 339.1 + 45.44 = 384.54 kJ/kg  

Eq.9.27:  ηT = wT,ac/wT,s = 339.1/429 = 0.79 

Eq.10.29:  ηII = wT,ac/wrev = 339.1/384.54 = 0.88 
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10.74 
 A compressor is used to bring saturated water vapor at 1 MPa up to 17.5 MPa, 

where the actual exit temperature is 650°C. Find the irreversibility and the 
second-law efficiency. 

 Solution: 

Inlet state:  Table B.1.2     hi = 2778.1 kJ/kg,    si = 6.5864 kJ/kg K 

Actual compressor Table B.1.3:   he,ac = 3693.9 kJ/kg,   se,ac = 6.7356 kJ/kg K 

Energy Eq. Actual compressor:     -wc,ac = he,ac - hi = 915.8 kJ/kg 

From Eq.10.11:  i = T0(se,ac - si) = 298.15 (6.7356 - 6.5864) = 44.48 kJ/kg 

From Eq.10.10:    wrev = i + wc,ac = -915.8 + 44.48 = -871.32 kJ/kg 

  ηII = -wrev/wc,ac = 871.32/915.8 = 0.951 
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10.75 
 A flow of steam at 10 MPa, 550°C goes through a two-stage turbine. The pressure 

between the stages is 2 MPa and the second stage has an exit at 50 kPa. Assume 
both stages have an isentropic efficiency of 85%. Find the second law efficiencies 
for both stages of the turbine. 

 
 

T1 T2

2 1 3 

 

CV: T1,  h1 = 3500.9 kJ/kg,   s1 = 6.7561 kJ/kg K 

Isentropic     s2s = s1   ⇒     h2s = 3017.9 kJ/kg 
      wT1,s = h1 - h2s = 483 kJ/kg 

 Actual T1:    wT1,ac = ηT1 wT1,s = 410.55 = h1 - h2ac 

       h2ac = h1 - wT1,ac = 3090.35,    s2ac = 6.8782 

CV: T2,  s3s = s2ac = 6.8782 ⇒   x3s = (6.8782-1.091)/6.5029 = 0.8899,  

    h3s = 340.47 + 0.8899 × 2305.4 = 2392.2 kJ/kg 

 wT2,s = h2ac - h3s = 698.15  ⇒    wT2,ac = ηT2 wT2,s = 593.4 kJ/kg 

     ⇒ h3ac = 2496.9,   x3ac = (2496.9 - 340.47)/2305.4 =0.9354,  

    s3ac = 1.091 + 0.9354 × 6.5029 = 7.1736 kJ/kg K 

 Actual T1:    iT1,ac = T0(s2ac-s1) = 298.15(6.8782 - 6.7561) = 36.4 kJ/kg 

 ⇒ w
R
T1 = wT1,ac + i = 447 kJ/kg,    ηII = wT1,ac/w

R
T1 = 0.918 

 Actual T2:  iT2,ac = T0(s3ac-s2ac) = 298.15(7.1736 - 6.8782) = 88.07 kJ/kg 

     ⇒ w
R
T2 = wT2,ac + iT2,ac = 681.5,     ηII = wT2,ac/w

R
T2 = 0.871 
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10.76 
 The simple steam power plant shown in Problem 6.99 has a turbine with given 

inlet and exit states. Find the availability at the turbine exit, state 6. Find the 
second law efficiency for the turbine, neglecting kinetic energy at state 5. 

 
 Solution: 
   interpolation or software:   h5 = 3404.3 kJ/kg,   s5 = 6.8953 kJ/kg K 

 Table B.1.2:  x6 = 0.92  so    h6 = 2393.2 kJ/kg,   s6 = 7.5501 kJ/kg K  

Flow availability (exergy) from Eq.10.24 

 ψ6 = h6 - h0 - T0(s6 - s0) 

       = 2393.2 - 104.89 - 298.15(6.8953 - 0.3674) = 146.79 kJ/kg 

In the absence of heat transfer the work is form Eq.10.9 or 10.39 

 wrev = ψ5 - ψ6 = h5 - h6 - T0(s5 - s6) = 1206.3 kJ/kg 

 wac = h5 - h6 = 1011.1 kJ/kg;       ηII = wac/w
rev = 0.838 

 
 
 

v

P

s

T

5 5

66
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10.77 

 A steam turbine inlet is at 1200 kPa, 500oC. The actual exit is at 200 kPa, 300oC. 
What are the isentropic efficiency and its second law efficiency? 

 Solution: 
  C.V. Turbine actual, steady state and adiabatic. 
  Inlet state:  Table B.1.3:      hi = 3476.28 kJ/kg,    si = 7.6758 kJ/kg K 
  Exit state:   Table B.1.3:      he = 3071.79 kJ/kg,    se = 7.8926 kJ/kg K 

Energy Eq.:   wTac = hi - he = 3476.28 – 3071.79 = 404.49 kJ/kg 
  C.V. Turbine isentropic, steady state, reversible and adiabatic. 

Isentropic exit state:  200 kPa,  s = si    =>   hes = 2954.7 kJ/kg  

Energy eq.: wT s = hi - hes = 3476.28 – 2954.7 = 521.58 kJ/kg 

ηI = wTac/wT s = 
404.49
521.58 = 0.776 

 Reversible work for actual turbine is from Eq.10.9 or 10.39 

w
rev
T  = ψi - ψe = hi - he - T0(si - se) = wTac - T0(si - se)  

          = 404.49 – 298.15(7.6758 – 7.8926) = 469.13 kJ/kg 

 Then the second law efficiency is in Eq.10.29 

ηII = wTac/w
rev
T  = 

404.49
469.13 = 0.862 

 
 
 

v

P

s

T

i
i

e ac

e ac

e s
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10.78 
 Steam is supplied in a line at 3 MPa, 700°C. A turbine with an isentropic 

efficiency of 85% is connected to the line by a valve and it exhausts to the 
atmosphere at 100 kPa. If the steam is throttled down to 2 MPa before entering 
the turbine find the actual turbine specific work. Find the change in availability 
through the valve and the second law efficiency of the turbine. 

Take C.V. as valve and a C.V. as the turbine. 

Valve:    h2 = h1 = 3911.7 kJ/kg,    s2 > s1 = 7.7571 kJ/kg K,   

  h2, P2  ⇒   s2 = 7.9425 kJ/kg K 

 ψ1 - ψ2 = h1−h2 −T0(s1-s2) = 0 -298.15(7.7571-7.9425) = 55.3 kJ/kg 

So some potential work is lost in the throttling process. 

 Ideal turbine: s3 = s2  ⇒  h3s = 2929.13       wT,s = 982.57 kJ/kg 

  wT,ac = h2 - h3ac = ηwT,s = 835.2 kJ/kg 

      h3ac = 3911.7 - 835.2 = 3076.5    ⇒   s3ac = 8.219 kJ/kg K 

 wrev = h2 - h3ac - T0(s2 - s3ac) = 835.2 - 298.15(7.9425 - 8.219) 

        = 917.63 kJ/kg       ⇒       ηII = 835.2/917.63 = 0.91 
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10.79 
 Air flows into a heat engine at ambient conditions 100 kPa, 300 K, as shown in 

Fig. P10.79. Energy is supplied as 1200 kJ per kg air from a 1500 K source and in 
some part of the process a heat transfer loss of 300 kJ/kg air happens at 750 K. 
The air leaves the engine at 100 kPa, 800 K. Find the first and the second law 
efficiencies. 

 C.V. Engine out to reservoirs 

  hi + q1500 = q750 + he + w 

  wac = 300.47 + 1200 - 300 - 822.20 = 378.27 kJ/kg 

  ηTH = w/q1500 = 0.3152 

 For second law efficiency also a q to/from ambient 

  si + (q1500/TH) + (q0/T0) = (q750/Tm) + se 

  q0 = T0(se - si) + (T0/Tm)q750 - (T0/TH)q1500 

     = 300



7.88514 - 6.86925 - 0.287 ln

100
100  + 

300
750 300 

   -(300/1500) 1200 = 184.764 kJ/kg 

  wrev = hi - he + q1500 - q750 + q0 = wac + q0 = 563.03 kJ/kg 

   ηII = wac/wrev = 378.27/563.03 = 0.672  
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10.80 
 Air enters a steady-flow turbine at 1600 K and exhausts to the atmosphere at 1000 

K. The second law efficiency is 85%. What is the turbine inlet pressure? 

C.V.: Turbine, exits to atmosphere so assume Pe = 100 kPa  

Inlet: Ti = 1600 K, Table A.7:   hi = 1757.3 kJ/kg,   s
o
i   = 8.1349 kJ/kg K 

Exit: Te = 1000 K, he = 1046.2 kJ/kg, s
o
e  = 8.6905 kJ/kg K 

1st Law: q + hi = he + w; q = 0      =>     w = (hi - he) = 711.1 kJ/kg 

2nd Law:    ψi - ψe = w/η2ndLaw = 711.1/0.85 = 836.6 kJ/kg 

 ψi - ψe = (hi - he) - To(si - se) = 836.6 kJ/kg 

 hi - he = w = 711.1 kJ/kg, assume To = 25oC   si - se = 0.4209 kJ/kg-K 

 si - se = s
o
e - s

o
i  - R ln(Pi/Pe) = 0.4209 kJ/kg K    =>   Pe/Pi = 30.03;  

     Pi = 3003 kPa 
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10.81 
 Calculate the second law efficiency of the counter flowing heat exchanger in 

Problem 9.61 with an ambient at 20°C. 

Solution: 

  
C.V. Heat exchanger, steady flow 1 inlet 
and 1 exit for air and water each. The 
two flows exchange energy with no heat 
transfer to/from the outside. 
 

3 water
1 air

4
2

 

 

Heat exchanger Prob 9.61 with To = 20°C solve first for state 4. 

Energy Eq.6.10: m
.

AIR∆hAIR = m
.

H2O∆hH2O 

From A.7:  h1 - h2 = 1046.22 – 401.3 = 644.92 kJ/kg 

From B.1.2 h3 = 83.94 kJ/kg; s3 = 0.2966 kJ/kg K 

h4 - h3 = (m
.

AIR/m
.

H2O)(h1 - h2) = (2/0.5)644.92 = 2579.68 kJ/kg 

h4 = h3 + 2579.68 = 2663.62  <  hg     at 200 kPa 

T4 = Tsat = 120.23°C,    

x4 = (2663.62 – 504.68)/2201.96 = 0.9805,  

s4 = 1.53 + x4 5.597 =  7.01786 kJ/kg K 

We need the change in availability for each flow from Eq.10.24 

 (ψ1 - ψ2) = (h1 - h2) + To(s2 - s1) 

  = (1046.2 – 401.3) + 293.2(7.1593 – 8.1349 – 0.287 ln(100/125) 

  = 644.9 + 293.2(-0.91156) = 377.6 kJ/kg 

 (ψ4 - ψ3) = (h4 - h3) + To(s4 - s3) 

  = (2663.6 – 83.9) – 293.2(7.0179 – 0.2966) 

  = 2579.9 – 1970.7 = 609.0 

Efficiency from Eq.10.30 

  η2nd Law = [m
.

w(ψ4 - ψ3)]/[m
.

A(ψ1 - ψ2)] 

      = (0.5 × 609.0)/(2 × 377.6) = 0.403 
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10.82 
 Calculate the second law efficiency of the coflowing heat exchanger in Problem 

9.62 with an ambient at 17°C. 

Solution: 

 
 C.V. Heat exchanger, steady 
2 flows in and two flows out. 

1

3

2

4

 

 

First solve for the exit temperature in Problem 9.62 

C.V. Heat exchanger, steady 2 flows in and two flows out. 

Energy Eq.6.10: m
.

O2h1 + m
.

N2h3 = m
.

O2h2 + m
.

N2h4 

Same exit tempearture so  T4 = T2 with values from Table A.5 

  m
.

O2CP O2T1 + m
.

N2CP N2T3 = (m
.

O2CP O2 + m
.

N2CP N2)T2 

        T2 = 
0.25 × 0.922× 290 + 0.6 × 1.042 × 500

0.25 × 0.922 + 0.6 × 1.042
 = 

379.45
0.8557 

  = 443.4 K 
 

The second law efficiency for a heat exchanger is the ratio of the availability 
gain by one fluid divided by the availability drop in the other fluid. We thus 
have to find the change of availability in both flows. 

For each flow availability is Eq.10.24 include mass flow rate as in Eq.10.36 

For the oxygen flow: 

 m
.

O2(ψ2 - ψ1 ) = m
.

O2 [ h2 - h1 - To ( s2 - s1 ) ] 

  = m
.

O2 [ CP(T2 - T1) - To [ CP ln(T2 / T1) − R ln(P2 / P1) ] 

  = m
.

O2CP [ T2 - T1 - Toln(T2 / T1) ] 

  = 0.25 × 0.922 [ 443.4 - 290 - 290 ln(443.4/290) ] 

  = 6.977 kW 

For the nitrogen flow 

 m
.

N2(ψ3 - ψ4 ) = m
.

N2CP [ T3 - T4 - Toln(T3 / T4) ] 

  = 0.6 × 1.042 [ 500 - 443.4 - 290 ln(500/443.4) ] 

  = 13.6 kW 

From Eq.10.30 

  η2nd Law = 
m
.

O2(ψ1 - ψ2)

m
.

N2(ψ3 - ψ4)
 = 

6.977
13.6  = 0.513 
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10.83 

 A heat exchanger brings 10 kg/s water from 100oC to 500oC at 2000 kPa using 
air coming in at 1400 K and leaving at 460 K. What is the second law efficiency? 

 

Solution: 

 C.V. Heat exchanger, steady flow 1 inlet and 
1 exit for air and water each. The two flows 
exchange energy with no heat transfer 
to/from the outside. We need to find the air 
mass flow rate. 1 water

3 air

4
2

 

Energy Eq.: m
.

H2O(h2 - h1) = m
.

air(h3 - h4) 

  m
.

air = m
.

H2O 
h2 - h1
h3 - h4

 = 10 
3467.55 - 420.45
1515.27 - 462.34 = 28.939 kg/s 

Availability increase of the water flow 

 m
.

H2O(ψ2 - ψ1) = m
.

H2O[h2 - h1 - To(s2 - s1)] 

   = 10 [ 3467.55 – 420.45 – 298.15(7.4316 – 1.3053)] 

   = 10 [ 3047.1 – 1826.56 ] = 12 205 kW 

Availability decrease of the air flow 

m
.

air(ψ3 - ψ4) = m
.

air[h3 - h4 – To(s3 - s4)] 

           = 28.939 [1515.27 – 462.34 – 298.15(8.52891 – 7.30142)] 

           = 19 880 kW 

 η2nd Law = 
m
.

H2O(ψ2 - ψ1)

m
.

air(ψ3 - ψ4)
 = 

12 205
19 880 = 0.614 
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Exergy Balance Equation 
 
10.84 
 Find the specific flow exergy in and out of the steam turbine in Example 9.1 

assuming an ambient at 293 K. Use the exergy balance equation to find  the 
reversible specific work. Does this calculation of specific work depend on To? 

 Solution: 

 

The specific flow exergy is from Eq. 10.37 

 ψi = hi + 
1
2 V2

i  – Tosi – (ho – Toso)  

Reference state:   ho = 83.94 kJ/kg, so = 0.2966 kJ/kg K,  

ho – Toso = -2.9638 kJ/kg 

 The properties are listed in Example 9.1 so the specific flow exergies are 

 ψi = 3051.2 + 1.25 – 293 × 7.1228 – (-2.9638) = 968.43 kJ/kg 

 ψe = 2655.0 + 20 – 293 × 7.1228 – (-2.9638) = 590.98 kJ/kg 

The reversible work is from Eq.10.39, with q = 0 and sgen = 0, so 

 w = ψi – ψe = 968.43 – 590.98 = 377.45 kJ/kg 

 

 The offset To terms drop out as we take the difference and also (si = se) 

  ψi – ψe = hi – he  – To(si – se) = hi – he 

 Notice since the turbine is reversible we get the same as in Example 9.1 
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10.85 
 A counterflowing heat exchanger cools air at 600 K, 400 kPa to 320 K using a 

supply of water at 20°C, 200 kPa. The water flow rate is 0.1 kg/s and the air flow 
rate is 1 kg/s. Assume this can be done in a reversible process by the use of heat 
engines and neglect kinetic energy changes. Find the water exit temperature and 
the power out of the heat engine(s). 

 
 

HE

H Q 

W 

L Q 

1

3

2

4

HE

H Q 

W 

L Q 

HE

H Q 

W 

L Q 

water

air

 

 

 

C.V. Total 

Energy eq.: m• ah1 + m• H2Oh3 = m• ah2 + m• H2Oh4 + W
•

 

Entropy Eq,: m• as1 + m• H2Os3 = m• as2 + m• H2Os4       (sgen = 0) 

Table A.7:  h1 = 607.316 kJ/kg,    s°
T1 = 7.57638 kJ/kg K 

Table A.7:   h2 = 320.576 kJ/kg,   s°
T2 = 6.93413 kJ/kg K,     

Table  B.1.1:    h3 = 83.96 kJ/kg,   s3 = 0.2966 kJ/kg K 

From the entropy equation we first find state 4 

 s4 = (m• a/m
•

H2O)(s1 - s2) + s3 = (1/0.1)(7.57638 - 6.93413) + 0.2966 = 6.7191 

4: P4 = P3, s4   ⇒ Table B.1.2:      x4 = (6.7191-1.530)/5.597 = 0.9271, 

  h4 = 504.68 + 0.9271 × 2201.96 = 2546.1 kJ/kg,    T4 = 120.20°C 

From the energy equation 

 W
•

 = m• a(h1 - h2) + m• H2O(h3 - h4) 

      = 1(607.32 - 320.58) + 0.1(83.96 - 2546.1) = 40.53 kW 
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10.86 
 Evaluate the steady state exergy fluxes due to a heat transfer of 250 W through a 

wall with 600 K on one side and 400 K on the other side. What is the exergy 
destruction in the wall. 

 
 Solution: 

Exergy flux due to a Q
.
  term Eq.10.36: 

Φ
.

Q = (1 –  
To
T  ) Q

.
  

Φ
.

1 = (1 –  
To
T1

 ) Q
.
 = (1 – 

298
600) 250 = 125.8 W 

Φ
.

2 = (1 –  
To
T2

 ) Q
.
 = (1 – 

298
400) 250 = 63.8 W 

 

250 W

1    600 K 2

400 K

 

                  Steady state state so no storage and Eq.10.36 is 
    0 = Φ

.
1 - Φ

.
2 - Φ

.
destr. 

 
   Φ

.
destr. =  Φ

.
1 - Φ

.
2 = 125.8 – 63.8 = 62 W 
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10.87 
 A heat engine operating with an evironment at 298 K produces 5 kW of power 

output with a first law efficiency of 50%. It has a second law efficiency of 80% 
and TL = 310 K. Find all the energy and exergy transfers in and out. 

 Solution: 
 From the definition of the first law efficiency 

   Q
.

H = W
.

 / η = 
5

0.5 = 10 kW 

 Energy Eq.: Q
.

L = Q
.

H - W
.

 = 10 – 5 = 5 kW 

 
   Φ

.
W = W

.
 = 5 kW 

 From the definition of the second law efficiency  η = W
.

/Φ
.

H, this requires that we 

assume the availability delivered at 310 K is lost and not counted otherwise the 
efficiency should be η = W

.
/(Φ

.
H - Φ

.
L). 

   Φ
.

H = (1 –  
To
TH

) Q
.

H =  
5

0.8 = 6.25 kW 

   Φ
.

L = (1 –  
To
TL

) Q
.

L = (1 – 
298
310) 5 = 0.194 kW 

 Notice from the Φ
.

H form we could find the single characteristic TH as 

  (1 –  
To
TH

) = 6.25 kW / Q
.

H = 0.625     =>   TH = 795 K 
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10.88 
 Consider the condenser in Problem 9.42. Find the specific energy and exergy that 

are given out, assuming an ambient at 20oC. Find also the specific exergy 
destruction in the process. 

 
 Solution: 

 

WT

QH

QL
.

WP, in

1

2

3

4

 

Condenser from state 2 to state 3 
 
P2 = P3 = 20 kPa 

T3 = 40 °C 

State 1: (P, T)  Table B.1.3    
h1 = 3809.1 kJ/kg,   s1 = 6.7993 kJ/kg K 

 

 

C.V. Turbine. 

 Entropy Eq.9.8:       s2 = s1 = 6.7993 kJ/kg K 

 Table B.1.2     s2 = 0.8319 + x2 × 7.0766    =>    x2 = 0.8433 

            h2 = 251.4 + 0.8433× 2358.33 = 2240.1 kJ/kg 

State 3:  (P, T)  Compressed liquid, take sat. liq. Table B.1.1 

        h3 = 167.54 kJ/kg,   s3 = 0.5724 kJ/kg K 

      C.V. Condenser 

 Energy Eq.: qL = h2 – h3 = 2240.1 – 167.54 = 2072.56 kJ/kg 

      Exergy Eq.: ∆ψ = ψ2 – ψ3 = h2 – h3 –To(s2 – s3) 

         = 2072.56 – 293.15(6.7993 – 0.5724) 

         = 247.1 kJ/kg   going out 

 Since all the exergy that goes out ends up at the ambient where it has zero 
exergy, the destruction equals the outgoing exergy. 

   ψdestr = ∆ψ = 247.1 kJ/kg 
  Notice the condenser gives out a large amount of energy byt little exergy. 
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10.89 
 The condenser in a power plant cools 10 kg/s water at 10 kPa, quality 90% so it 

comes out as saturated liquid at 10 kPa. The cooling is done by ocean-water 

coming in at ambient 15oC and returned to the ocean at 20oC. Find the transfer 
out of the water and the transfer into the ocean-water of both energy and exergy 
(4 terms). 

  
 Solution: 
 C.V. Water line. No work but heat transfer out. 
 Energy Eq.:        Q

.
out = m

.
 (h1 – h2) = 10(2345.35 – 191.81) = 21 535 kW 

 C.V. Ocean water line. No work but heat transfer in equals water heattransfer out 
 Energy Eq.:        q =  h4 - h3 = 83.94 – 62.98 = 20.96 kJ/kg 

      m
.

ocean =  Q
.

out /q = 21 535 / 20.96 = 1027.4 kg/s  

 
 Exergy out of the water follows Eq.10.37 
   Φ

.
out = m

.
(ψ1 - m

.
ψ2 ) = m

.
 [ h1 - h2 - To ( s1 - s2) ] 

           = 10 [ 2345.35 – 191.81 – 288.15(7.4001 – 0.6492)] 
           = 2082.3 kW 
 
 Exergy into the ocean water 

 Φ
.

ocean = m
.

ocean(ψ4 - ψ3) = m
.

ocean [ h4 - h3 – To(s4 - s3)] 

         = 1027.4 [ 20.96 – 288.15(0.2966 – 0.2245)] 

         = 189.4 kW 
  
 Notice there is a large amount of energy exchanged but very little exergy. 
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10.90 
 Use the exergy equation to analyze the compressor in Example 6.10 to find its 

second law efficiency assuming an ambient at 20oC. 
 
 C.V. The R-134a compressor. Steady flow. We need to find the reversible work 

and compare that to the actual work. 
 

 Exergy eq.: 10.36:    0 = m
.

(ψ1 - m
.

ψ2 ) + (-W
. rev

comp) + 0 

-W
. rev

comp = m
.

 [ h2 - h1 - To ( s2 - s1 ) ] 

  = -W
. ac

comp - m
.

To ( s2 - s1 ) 

  = 5 kW – 0.1 kg/s × 293.15 K × (1.7768 – 1.7665) 
kJ

kg K 

  = 4.7 kW 

ηII = -W
. rev

comp / -W
. ac

comp = 
4.7
5  = 0.94 

 
  For a real device this is a little high. 
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10.91 
 Consider the car engine in Example 7.1 and assume the fuel energy is delivered at 

a constant 1500 K. The 70% of the energy that is lost is 40% exhaust flow at 900 
K and the remainder 30% heat transfer to the walls at 450 K goes on to the 

coolant fluid at 370 K, finally ending up in atmospheric air at ambient 20oC. Find 
all the energy and exergy flows for this heat engine. Find also the exergy 
destruction and where that is done. 

 
 From the example in the text we get:   Q

.
L = 0.7 Q

.
H = 233 kW 

 This is separated into two fluxes: 
  Q

.
L1 = 0.4 Q

.
H = 133 kW   @900 K 

  Q
.

L2 = 0.3 Q
.

H = 100 kW   @450 K  

          = Q
.

L3 = 100 kW   @370 K 

          = Q
.

L4 = 100 kW   @293 K 

 
 

    Gases       Steel      Glycol            Air flow 
   1500 K     450 K    370 K               293 K 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Radiator 

 
 
 Assume all the fuel energy is delivered at 1500 K then that has an exergy of 

  Φ
.

QH = (1 –  
To
TH

 ) Q
.

H = (1 – 
293
1500) 333 = 267.9 kW 
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10.92 
 Estimate some reasonable temperatures to use and find all the fluxes of exergy in 

the refrigerator given in Example 7.2 
 
  We will assume the following temperatures: 

  Ambient:     T = 20oC   usually it is the kitchen air. 

  Low T:        T = 5oC  (refrigerator)     T= -10oC  (freezer) 
 
   Φ

.
W = W

.
 = 150 W 

   Φ
.

H = (1 –  
To
TH

) Q
.

H = (1 – 
Tamb
Tamb

) Q
.

H = 0 

   Φ
.

L = (1 –  
To
TL

) Q
.

L = (1 – 
293
278) 250 = -13.5 W 

  I.e. the flux goes into the cold space!   Why?     As you cool it T < To and 

you increase its availability (exergy), it is further away from the ambient. 
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10.93 
 Use the exergy equation to evaluate the exergy destruction for Problem 10.44. 
 A 2-kg piece of iron is heated from room temperature 25°C to 400°C by a heat 

source at 600°C. What is the irreversibility in the process? 
 Solution: 

C.V. Iron out to 600°C source, which is a control mass. 

Exergy Eq.10.42:  Φ2 - Φ1 = (1 –  
To
TH

)1Q2 - 1W2 + Po(V2 – V1) - 1Φ2 destr. 

To evaluate it we need the heat transfer and the change in exergy Eq.10.43 

 Φ2 - Φ1 = mFe(u2 - u1) + Po(V2 – V1) - mFeTo(s2 - s1) 

Energy Eq.5.11: mFe(u2 - u1) = 1Q2 - 1W2   

Process: Constant pressure     =>   1W2  = PmFe(v2 - v1) 

 ⇒  1Q2 = mFe(h2 - h1) = mFeC(T2 - T1) = 2 × 0.42 × (400 - 25) = 315 kJ 
 

  1Φ2 destr. = (1 –  
To
TH

)1Q2  −  1W2 − mFe(u2 - u1) + mFeTo(s2 - s1) 

      = (1 –  
To
TH

)1Q2  −  1Q2  + mFeTo(s2 - s1) 

      = (1 - 
298
873) 315 – 315 + 2 × 0.42 × 298 ln 

673
298 = 96.4 kJ 

 
 Notice the destruction is equal to  1I2 = To Sgen 
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10.94 
 Use the exergy balance equation to solve for the work in Problem 10.33.  

A piston/cylinder has forces on the piston so it keeps constant pressure. It 
contains 2 kg of ammonia at 1 MPa, 40°C and is now heated to 100°C by a 
reversible heat engine that receives heat from a 200°C source. Find the work out of 
the heat engine. 

Solution: 

To evaluate it we need the change in exergy Eq.10.43 

 Φ2 - Φ1 = mam(u2 - u1) + Po(V2 – V1) - mamTo(s2 - s1) 

The work in Eq.10.44 ( W = WH.E. + 1W2,pist) is from the exergy Eq.10.42 

 W = Po(V2 – V1) + (1 –  
To
TH

)1Q2 – (Φ2 – Φ1) – 0 

      = (1 –  
To
TH

)1Q2 – mam(u2 – u1) + mamTo(s2 - s1) 

Now we must evaluate the three terms on the RHS and the work 1W2,pist. 

State 1:     u1 = 1369.8 kJ/kg,  v1 = 0.13868 m3/kg,  s1 = 5.1778 kJ/kg K 

State 2:     u2 = 1490.5 kJ/kg,  v2 = 0.17389 m3/kg,  s2 = 5.6342 kJ/kg K 

1W2,pist = mamP(v2 - v1) = 2 × 1000 (0.17389 - 0.13868) = 70.42 kJ 

 

 C.V. Heat engine and ammnia (otherwise we involve 
another Q) 

Entropy:    mam(s2 - s1) = 1Q2/TH  + 0 

             =>   1Q2 = TH mam(s2 - s1) 

                           = 473.15 × 2 (5.6342 – 5.1778)  

                           = 431.89 kJ 

Substitute this heat transfer into the work term 

 
H 

Q 

W 

L 

Q 

HE

200 C
o

NH
3

cb

 

 W = (1 - 
298.15
473.15) 431.89 – 2(1490.5–1369.8) + 2×298.15(5.6342–5.1778) 

     =  159.74 – 241.4 + 272.15 = 190.49 kJ 

 WH.E. = W - 1W2,pist = 190.49 – 70.42 = 120.0 kJ 
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Review Problems 
 
10.95 

 A small air gun has 1 cm3 air at 250 kPa, 27oC. The piston is a bullet of mass 20 
g. What is the potential highest velocity with which the bullet can leave? 

 
 Solution: 
 The availability of the air can give the bullet kinetic energy expressed in the 

exergy balance Eq.10.42 (no heat transfer and reversible), 

 Φ2 - Φ1 = m(u2 - u1) + Po(V2 – V1) - mTo(s2 - s1) = -1W2 + Po(V2 – V1) 

Ideal gas so:        m = PV/RT = 
250 × 1 × 10-6

0.287 × 300
 = 2.9 × 10-6 kg 

The second state with the lowest exergy to give maximum velocity is the dead 

state and we take To = 20oC. Now solve for the work term 

 1W2 = -m(u2 - u1) + mTo(s2 - s1)  

       = mCv(T1 – T2) + mTo [ Cp ln(
T2

T1
) – R ln(

P2

P1
) ] 

       = 2.9 × 10-6 [ 0.717(27 – 20) + 293.15 (1.004 ln
293
300 – 0.287 ln

100
250)] 

       = 0.0002180 kJ = 0.218 J =  
1
2 mbulletV

2
ex 

 

  V2
ex = 2 × 0.218/0.020 = 4.67 m/s 

 
 Comment:  Notice that an isentropic expansion from 250 kPa to 100 kPa will give 

the final air temperature as 230.9 K but less work out. The above process is not 
adiabatic but Q is transferred from ambient at To. 
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10.96 
 Calculate the reversible work and irreversibility for the process described in 

Problem 5.134, assuming that the heat transfer is with the surroundings at 20°C. 

C.V.: A + B. This is a control mass. 

Continuity equation:        m2 - (mA1 + mB1) = 0 ;  

Energy:      m2u2 - mA1uA1 - mB1uB1 = 1Q2 - 1W2 

 System: if   VB ≥ 0   piston floats   ⇒    PB = PB1 = const. 

 if  VB = 0   then  P2 < PB1 and   v = VA/mtot   see P-V diagram 

 State A1: Table B.1.1,  x = 1 

     vA1 = 1.694 m3/kg,  uA1 = 2506.1 kJ/kg 

     mA1 = VA/vA1 = 0.5903 kg 

State B1:  Table B.1.2 sup. vapor 

    vB1 = 1.0315 m3/kg,  uB1 = 2965.5 kJ/kg 

V

P
2a

PB1

2
 

    mB1 = VB1/vB1 = 0.9695 kg   =>    m2 = mTOT = 1.56 kg 

At (T2 , PB1)        v2 = 0.7163  >  va = VA/mtot = 0.641   so VB2 > 0  

so now state 2:  P2 = PB1 = 300 kPa, T2 = 200 °C  

  =>  u2 = 2650.7 kJ/kg   and   V2 = m2 v2 =  1.56 × 0.7163 = 1.117 m3  

(we could also have checked Ta at:  300 kPa, 0.641 m3/kg   =>   T = 155 °C) 

 1W
ac
2  = ⌡⌠PBdVB = PB1(V2 - V1)

B
 = PB1(V2 - V1)

tot
 = -264.82 kJ  

 1Q2 = m2u2 - mA1uA1 - mB1uB1 + 1W2 = -484.7 kJ 

From the results above we have : 

 sA1 = 7.3593 kJ/kg K,   sB1 = 8.0329 kJ/kg K,   s2 = 7.3115 kJ/kg K 

1W
rev
2  = To(S2 - S1) - (U2 - U1) + 1Q2(1 - To/TH) 

  = To(m2s2 - mA1sA1 - mB1sB1) + 1W
ac
2  - 1Q2To/TH 

  = 293.15 (1.5598 × 7.3115 - 0.5903 × 7.3593 - 0.9695 × 8.0329) 

   + (-264.82) - (-484.7) × 293.15 / 293.15 

  = -213.3 - 264.82 + 484.7  = 6.6 kJ 

1I2 = 1W
rev
2  - 1W

ac
2  = 6.6 - (-264.82) = 271.4 kJ 
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10.97 
 A piston/cylinder arrangement has a load on the piston so it maintains constant 

pressure. It contains 1 kg of steam at 500 kPa, 50% quality. Heat from a reservoir 
at 700°C brings the steam to 600°C. Find the second-law efficiency for this 
process. Note that no formula is given for this particular case so determine a 
reasonable expression for it. 

 Solution: 

1: Table B.1.2       P1, x1    ⇒     v1 = 0.001093 + 0.5×0.3738 = 0.188 m3/kg,    

 h1 = 640.21 + 0.5×2108.47 = 1694.5 kJ/kg,   

s1 = 1.8606 + 0.5×4.9606 = 4.341 kJ/kg K 

2: P2 = P1,T2   ⇒   v2 = 0.8041,   h2 = 3701.7 kJ/kg,   s2 = 8.3521 kJ/kg K 

Energy Eq.: m(u2 - u1) = 1Q2 - 1W2 = 1Q2 - P(V2 - V1) 

 1Q2 = m(u2 - u1) + Pm(v2 - v1) = m(h2 - h1) = 2007.2 kJ 

 1W2 = Pm(v2 - v1) = 308.05 kJ 

 1W2 to atm = P0m(v2 - v1) = 61.61 kJ 

 Useful work out = 1W2 - 1W2 to atm = 246.44 kJ 

 ∆φreservoir = (1 - T0/Tres)1Q2 = 



1 - 

298.15
973.15  2007.2 = 1392.2 kJ 

 ηII = Wnet/∆φ = 0.177 
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10.98 

Consider the high-pressure closed feedwater heater in the nuclear power plant 
described in Problem 6.102. Determine its second-law efficiency. 

For this case with no work the second law efficiency is from Eq. 10.25: 

  ηII = m• 16(ψ18 - ψ16)/m• 17(ψ17 - ψ15) 

Properties (taken from computer software): 

     h [kJ/kg] h15 = 585 h16 = 565 h17 = 2593 h18 = 688 

     s [kJ/kgK] s15 = 1.728 s16 = 1.6603 s17 = 6.1918 s18 = 1.954 

The change in specific flow availability becomes 

ψ18 - ψ16 = h18 - h16 - T0(s18 - s16) = 35.433 kJ/kg 

 ψ17 - ψ15 = h17 - h15 - T0(s17 - s15) = 677.12 kJ/kg 

  ηII = (75.6 × 35.433)/(4.662 × 677.12) = 0.85 
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10.99 
 Consider a gasoline engine for a car as a steady device where air and fuel enters at 

the surrounding conditions 25°C, 100 kPa and leaves the engine exhaust manifold 
at 1000 K, 100 kPa as products assumed to be air. The engine cooling system 
removes 750 kJ/kg air through the engine to the ambient. For the analysis take the 
fuel as air where the extra energy of 2200 kJ/kg of air released in the combustion 
process, is added as heat transfer from a 1800 K reservoir. Find the work out of 
the engine, the irreversibility per kilogram of air, and the first- and second-law 
efficiencies. 

 

C.V. Total out to reservoirs 

Energy Eq.: m• ah1 + Q
•

H = m• ah2 + W
•

 + Q
•

out 

Entropy Eq.: m• as1 + Q
•

H/TH + S
•

gen = m• ass + Q
•

out/T0  
 
 

Exhaust flow

Air intake filter

Coolant flow

Shaft
power

Radiator
1

2

W

Q

Fuel line

To

o

 

 
Burning of the fuel releases 
Q
•

H at TH. 
From the air Table A.7 
         kJ/kg                 kJ/kg K 
h1 = 298.61      s°

T1 = 6.8631 

h2 = 1046.22    s°
T1 = 8.1349 

 

wac = W
•

/m• a = h1 - h2 + qH - qout = 298.6 - 1046.22 + 2200 - 750 = 702.4 kJ/kg 

 ηTH = w/qH = 702.4/2200 = 0.319 

sgen = s2 - s1 + 
qout

T0
 - 

qH

TH
 = 8.1349 - 6.8631 + 

750
298.15 - 

2200
1800 = 2.565 kJ/kg K 

 itot = (T0)sgen = 764.8 kJ/kg 

 For reversible case have     sgen = 0 and   qR
0 from T0,  no qout 

  qR
0,in = T0(s2 - s1) - (T0/TH)qH = 14.78 kJ/kg 

  wrev = h1 - h2 + qH + qR
0,in = wac + itot = 1467.2 kJ/kg  

 ηII = wac/w
rev = 0.479 
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10.100 
 Consider the nozzle in Problem 9.112. What is the second law efficiency for the 

nozzle? 

A nozzle in a high pressure liquid water sprayer has an area of 0.5 cm2. It receives 
water at 250 kPa, 20°C and the exit pressure is 100 kPa. Neglect the inlet kinetic 
energy and assume a nozzle isentropic efficiency of 85%. Find the ideal nozzle 
exit velocity and the actual nozzle mass flow rate. 

 Solution: 

C.V. Nozzle. Liquid water is incompressible v ≈ constant, no work, no heat 
transfer     =>  Bernoulli Eq.9.17 

 
1
2V

2
ex – 0 = v(Pi - Pe)  = 0.001002 ( 250 – 100) = 0.1503 kJ/kg 

   Vex  = 2 × 0.1503 × 1000 J/kg = 17.34 m s -1 

This was the ideal nozzle now we can do the actual nozzle, Eq. 9.30 

1
2V

2
ex ac = η 

1
2V

2
ex = 0.85 × 0.1503 = 0.12776 kJ/kg 

   Vex ac  = 2 × 0.12776 × 1000 J/kg = 15.99 m s -1 

The second law efficiency is the actual nozzle compare to a reversible process 
between the inlet and actual exit states. However here there is no work so the 
actual exit state then must have the reversible possible kinetic energy. 

Energy actual nozzle:      hi + 0 = he + 
1
2V

2
ex ac     same Z, no q and no w. 

The reversible process has zero change in exergies from Eq.10.36 as 

  0 = 0 – 0 + 0 + ψi - ψe – 0 

  ψi = ψe = hi + 0 – To si = he +  
1
2V

2
ex rev – Tose 

   
1
2V

2
ex rev = hi - he + To (se - si) = 

1
2V

2
ex ac + To sgen  

 We can not get properties for these states accurately enough by interpolation 
to carry out the calculations. With the computer program we can get: 

  Inlet:     hi = 84.173 kJ/kg, si = 0.29652 kJ/kg K 

  Exit,s:     he s = 84.023 kJ/kg,  Te s = 19.998°C,     
1
2V

2
ex = 0.15 kJ/kg 

  Exit,ac:    
1
2V

2
ex ac = 0.1275 kJ/kg, he = 84.173 – 0.1275 = 84.0455 kJ/kg 

      (P, h)  =>     se = 0.29659 kJ/kg K,   T = 20.003°C 

  
1
2V

2
ex rev = 12V

2
ex ac + To sgen = 0.1275 + 293.15(0.29659 – 0.29652)  

     = 0.148 kJ/kg 

         ηII = 0.1275/0.148 = 0.86  
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10.101 
 Air in a piston/cylinder arrangement is at 110 kPa, 25°C, with a volume of 50 L. 

It goes through a reversible polytropic process to a final state of 700 kPa, 500 K, 
and exchanges heat with the ambient at 25°C through a reversible device. Find the 
total work (including the external device) and the heat transfer from the ambient. 

 C.V. Total out to ambient 

     ma(u2 - u1) = 1Q2 - 1W2,tot ,    ma(s2 - s1) = 1Q2/T0 

 ma = 110 × 0.05/0.287 × 298.15 = 0.0643 kg 

 1Q2 = T0ma(s2 - s1) = 298.15 × 0.0643[7.3869 - 6.8631 

        - 0.287 ln (700/110)] = -0.14 kJ 

 1W2,tot = 1Q2 - ma(u2 - u1) 

   = -0.14 - 0.0643 × (359.844 - 213.037) = -9.58 kJ 
 



   Sonntag, Borgnakke and van Wylen 

 
10.102 
 Consider the irreversible process in Problem 8.128. Assume that the process 

could be done reversibly by adding heat engines/pumps between tanks A and B 
and the cylinder. The total system is insulated, so there is no heat transfer to or 
from the ambient. Find the final state, the work given out to the piston and the 
total work to or from the heat engines/pumps. 

C.V. Water mA + mB + heat engines. No Qexternal, only 1W2,cyl + WHE 

 m2 = mA1 + mB1 = 6 kg,   m2u2 - mA1uA1 - mB1uB1 = -1W2,cyl - WHE 

 m2s2 - mA1sA1 - mB1sB1 = 0/  + 0/  

 vA1 = 0.06283  uA1 = 3448.5  sA1 = 7.3476  VA = 0.2513 m3 

 vB1 = 0.09053  uB1 = 2843.7  sB1 = 6.7428  VB = 0.1811 m3 

 m2s2 = 4×7.3476 + 2×6.7428 = 42.876 ⇒  s2 = 7.146 kJ/kg K 

If P2 < Plift = 1.4 MPa then 

    V2’ = VA + VB = 0.4324 m3 ,  v2’ = 0.07207 m3/kg 

 (Plift , s2) ⇒  v2 = 0.20135 ⇒  V2 = 1.208 m3 > V2’    OK 

    ⇒ P2 = Plift = 1.4 MPa  u2 = 2874.2 kJ/kg 

 1W2,cyl = Plift(V2 - VA - VB) = 1400×(1.208 - 0.4324) = 1085.84 kJ 

 WHE = mA1uA1 + mB1uB1 - m2u2 - 1W2,cyl 

    = 4 × 3447.8 + 2 × 2843.7 - 6 × 2874.2 - 1085.84 = 1147.6 kJ 
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10.103 
 Consider the heat engine in Problem 10.79. The exit temperature was given as 

800 K, but what are the theoretical limits for this temperature? Find the lowest 
and the highest, assuming the heat transfers are as given. For each case give the 
first and second law efficiency. 

The lowest exhaust temperature will occur when the maximum amount of 
work is delivered which is a reversible process.  Assume no other heat 
transfers then 

 2nd law: si + qH/TH + 0/  = se + qm/Tm 

   se - si = qH/TH - qm/Tm = sTe
°  - sTi

°  - R ln(Pe/Pi) 

 sTe
°  = sTi

°  + R ln(Pe/Pi) + qH/TH - qm/Tm 

      = 6.86926 + 0.287 ln(100/100) + 1200/1500 - 300/750 

      = 7.26926 kJ/kg K 

Table A.7.1     ⇒   Te,min = 446 K,   he = 447.9 kJ/kg 

  hi + q1500 = q750 + he + w 

  wrev = hi + q1500 - q750 - he = 300.47 + 1200 - 300 - 447.9  

        = 752.57 kJ/kg 

ηI = ηTH =  
w rev

q1500
 =  

752.57
1200  = 0.627    

The second law efficiency measures the work relative to the source of 
availability and not q1500. So 

 ηII = 
wrev

(1- To/TH)q1500
 = 

752.57
(1 - 300/1500)1200 = 

752.57
960  = 0.784 

The maximum exhaust temperature occurs with no work out 

  hi + qH = qm + he  ⇒  he = 300.473 + 1200 - 300 = 1200.5 kJ/kg 

  Table A.7.1     ⇒   Te,max = 1134 K 
 

Now :   wac = 0   so   ηI = ηII =  0 
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10.104 
 Air in a piston/cylinder arrangement, shown in Fig. P10.104, is at 200 kPa, 300 K 

with a volume of 0.5 m3. If the piston is at the stops, the volume is 1 m3 and a 
pressure of 400 kPa is required. The air is then heated from the initial state to 
1500 K by a 1900 K reservoir. Find the total irreversibility in the process 
assuming surroundings are at 20°C. 

 
 Solution: 

Energy Eq.: m(u2 - u1) = 1Q2 - 1W2 

Entropy Eq,: m(s2 - s1) = ⌡⌠ dQ/T + 1S2 gen 

Process:   P = P0 + α(V-V0)    if   V ≤ Vstop 

Information:  Pstop = P0 + α(Vstop-V0) 

Eq. of state ⇒  Tstop = T1PstopVstop/P1V1 = 1200 < T2 

So the piston will hit the stops =>  V2 = Vstop  

  P2 = (T2/Tstop) Pstop = (1500/1200) 400 = 500 kPa = 2.5 P1 
 

State 1: 

  m2 = m1 = 
P1V1

RT1
  

       = 
200 × 0.5

0.287 × 300
 

       = 1.161 kg 

2
P

v

1a1

v vstop1  
Air

Q
Tres

 

 1W2 = 1
2
(P1 + Pstop)(Vstop- V1) = 1

2
(200 + 400)(1 - 0.5) = 150 kJ 

 1Q2 = M(u2 - u1) + 1W2 = 1.161(1205.25 - 214.36) + 150 = 1301 kJ 

s2 - s1 = s
o
T2 - s

o
T1 -R ln(P2/P1) = 8.6121 - 6.8693 - 0.287 ln 2.5 = 1.48 kJ/kg K 

Take control volume as total out to reservoir at TRES 

 1S2 gen tot = m(s2 - s2) - 1Q2/TRES = 1.034 kJ/K 

 1I2 = T0( )1S2 gen  = 293.15 × 1.034 = 303 kJ 
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10.105 

 A jet of air at 200 m/s flows at 25oC, 100 kPa towards a wall where the jet flow 
stagnates and leaves at very low velocity. Consider the process to be adiabatic and 
reversible. Use the exergy equation and the second law to find the stagnation 
temperature and pressure.  

 Solution: 
 C.V. From free flow to stagnation point. Reversible adiabatic steady flow. 
 Exergy Eq.10.36: 0 =  m

.
ψi - m

.
ψe - Φ

.
estr. d

Entropy Eq.:  0 = m
.

si - m
.

se  +  ∫ m
.

dq/T + m
.

sgen = m
.

si - m
.

se + 0 + 0 

 Process: Reversible Φ
.

destr. = 0,  sgen = 0,   adiabatic    q = 0 

 From exergy Eq.:       ψe - ψi = 0 = he – Tose – hi + Tosi –  
1
2V

2
i  

 From entropy Eq.: se = si ,      so entropy terms drop out 

 Exergy eq. now leads to: he = hi + 
1
2V

2
i     =>   Te = Ti + 

1
2V

2
i  /Cp 

    Te = 25 + 
1
2 

2002 J/kg
1004 J/kg K = 44.92oC 

 Eq.8.32: Pe = Pi ( Te/Te )

k
k-1 = 100 



273 + 44.92

273 +25
1.4 / 0.4

 = 125.4 kPa 

 

  

State i is the free 
stream state. 

State e is the 
stagnation state. 

i
e

cb  
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10.106 
 Consider the light bulb in Problem 8.123. What are the fluxes of exergy at the 

various locations mentioned? What are the exergy destruction in the filament, the 
entire bulb including the glass and the entire room including the bulb? The light 
does not affect the gas or the glass in the bulb but it gets absorbed on the room 
walls. 
A small halogen light bulb receives an electrical power of 50 W. The small 
filament is at 1000 K and gives out 20% of the power as light and the rest as heat 
transfer to the gas, which is at 500 K; the glass is at 400 K. All the power is 

absorbed by the room walls at 25oC. Find the rate of generation of entropy in the 
filament, in the total bulb including glass and the total room including bulb. 

Solution: 
   

W
.

el = 50 W  

Q
.

RAD = 10 W 

Q
.

COND = 40 W glass

leads g
a
s

 
 

We will assume steady state and no storage in the bulb, air or room walls. 

C.V. Filament steady-state 

Energy Eq.5.31:  dEc.v./dt = 0 = W
.

el – Q
.

RAD – Q
.

COND 

Entropy Eq.8.43:  dSc.v./dt = 0 = – 
Q
.

RAD
TFILA

  –  
Q
.

COND
TFILA

 + S
.
gen 

S
.
gen = (Q

.
RAD + Q

.
COND)/TFILA = W

.
el/TFILA = 

50
1000 = 0.05 W/K 

 

C.V. Bulb including glass 

 Q
.

RAD leaves at 1000 K  Q
.

COND leaves at 400 K 

 S
.
gen = ∫ dQ

.
/T = -(-10/1000) – (-40/400) = 0.11 W/K 

 

C.V. Total room.  All energy leaves at 25°C 

 Eq.5.31: dEc.v./dt = 0 = W
.

el – Q
.

RAD – Q
.

COND 

 Eq.8.43: dSc.v./dt = 0 =  –  
Q
.

TOT
TWALL

 + S
.
gen 

  S
.
gen = 

Q
.

TOT
TWALL

 = 50/(25+273) = 0.168 W/K 
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Problems Solved Using Pr and vr Functions 
 
 
10.31 
 An air compressor receives atmospheric air at T0 = 17°C, 100 kPa, and 

compresses it up to 1400 kPa. The compressor has an isentropic efficiency of 
88% and it loses energy by heat transfer to the atmosphere as 10% of the 
isentropic work. Find the actual exit temperature and the reversible work. 

 C.V. Compressor 

 Isentropic:  wc,in,s = he,s - hi  ;    se,s = si 

 Table A.7: Pr,e,s = Pr,i × (Pe/Pi) = 0.9917 × 14 = 13.884 

   ⇒  he,s = 617.51 kJ/kg 

  wc,in,s = 617.51 - 290.58 = 326.93 kJ/kg 

 Actual:  wc,in,ac = wc,in,s/ηc = 371.51  ;     qloss = 32.693 kJ/kg 

  wc,in,ac + hi = he,ac + qloss 

  =>  he,ac = 290.58 + 371.51 - 32.693 = 629.4 kJ/kg 

  =>  Te,ac = 621 K 

 Reversible:    wrev = hi - he,ac + T0(se,ac - si)   

        = 290.58 - 629.4 + 290.15 × (7.6121 - 6.8357)  

        = -338.82 + 225.42 = -113.4 kJ/kg 

Since qloss is also to the atmosphere it is not included as it will not be 
reversible. 
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10.61 
 An air compressor is used to charge an initially empty 200-L tank with air up to 5 

MPa. The air inlet to the compressor is at 100 kPa, 17°C and the compressor 
isentropic efficiency is 80%. Find the total compressor work and the change in 
availability of the air. 

 Solution: 

C.V. Tank + compressor  Transient process with constant inlet conditions, no 
heat transfer. 

Continuity:    m2 - m1 = min    ( m1 = 0 )      Energy:      m2u2 = minhin - 1W2  

Entropy:     m2s2 = minsin + 1S2 gen 

Reversible compressor: 1S2 GEN = 0  ⇒  s2 = sin    

State 1:   v1 = RT1/P1 = 0.8323 m3/kg,     

State inlet,  Table A.7.1:   hin = 290.43 kJ/kg,    s
o
Tin = 6.8352 kJ/kg K 

  Table A.7.2 Prin = 0.9899     used for constant s process 

Table A.7.2   ⇒   Pr2 = Prin(P2/Pin) = 0.9899 × (5000/100) = 49.495 

  ⇒  T2,s = 855 K,  u2,s = 637.2  kJ/kg  

⇒  1w2,s = hin - u2,s = 290.43 – 637.2 = -346.77 kJ/kg 

Actual compressor:  1w2,AC = 1w2,s/ηc = -433.46 kJ/kg 

 u2,AC = hin - 1w2,AC = 290.43 – (-433.46) = 723.89 kJ/kg 

Backinterpolate in Table A.7.1     ⇒  T2,AC = 958 K, s
o
T2,AC = 8.0867 kJ/kg K 

⇒   v2 = RT2/P2 = 0.055 m3/kg 

State 2 u, P    m2 = V2/v2 = 3.636 kg ⇒  1W2 = m2(1w2,AC) = -1576 kJ 

 m2(φ2 - φ1) = m2[u2 - u1 + P0(v2 - v1) - T0(s2 - s1)] 

  = 3.636 [723.89 - 207.19 + 100(0.055 - 0.8323) - 290[8.0867 - 

     6.8352 - 0.287 ln(5000/100)] = 1460.3 kJ 
   

Here we used Eq.8.28 for the change in entropy. 
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Concept-Study Guide Problems 
 
11.1 
  Is a steam power plant running in a Carnot cycle? Name the four processes. 
 
   No.   It runs in a Rankine cycle. 
 
   1-2:   An isentropic compression (constant s)    Pump 
   2-3:   An isobaric heating (constant P)   Boiler 
   3-4:   An isentropic expansion (constant s)   Turbine 
   4-1:   An isobaric cooling, heat rejection (constant P) Condenser 
 
11.2 
  Consider a Rankine cycle without superheat. How many single properties are 

needed to determine the cycle?  Repeat the answer for a cycle with superheat. 
 
   a. No superheat.  Two single properties. 

 High pressure (or temperature) and low pressure (or temperature). 
This assumes the condenser output is saturated liquid and the boiler 
output is saturated vapor. Physically the high pressure is determined by 
the pump and the low temperature is determined by the cooling 
medium. 

 
   b. Superheat. Three single properties. 
  High pressure and temperature and low pressure (or temperature).  

 This assumes the condenser output is saturated liquid. Physically the 
high pressure is determined by the pump and the high temperature by 
the heat transfer from the hot source. The low temperature is 
determined by the cooling medium. 

 
 
11.3 
  Which component determines the high pressure in a Rankine cycle? What 

determines the low pressure? 
 
   The high pressure in the Rankine cycle is determined by the pump. 
  The low pressure is determined as the saturation pressure for the 

temperature you can cool to in the condenser.   
 



 
11.4 
  Mention two benefits of a reheat cycle. 
 
   The reheat raises the average temperature at which you add heat. 
 

 The reheat process brings the states at the lower pressure further out in the 
superheated vapor region and thus raises the quality (if two-phase) in the 
last turbine section. 

 
11.5 
  What is the difference between an open and a closed feedwater heater? 
 

 The open feedwater heater mixes the two flows at the extraction pressure 
and thus requires two feedwater pumps. 

 
 The closed feedwater heater does not mix the flows but let them exchange 

energy (it is a two fluid heat exchanger). The flows do not have to be at 
the same pressure. The condensing source flow is dumped into the next 
lower pressure feedwater heater or the condenser or it is pumped up to line 
pressure by a drip pump and added to the feedwater line. 

 
11.6 
  Can the energy removed in a power plant condenser be useful? 
 
   Yes.  

  In some applications it can be used for heating buildings locally or 
as district heating. Other uses could be to heat green houses or as general 
process steam in a food process or paper mill. These applications are all 
based on economics and scale. The condenser then has to operate at a 
higher temperature than it otherwise would. 

 
 
11.7 
  In a cogenerating power plant, what is cogenerated? 
 
   The electricity is cogenerated. The main product is a steam supply. 
 
 



 
11.8 
  Why is the back work ratio in the Brayton cycle much higher than in the Rankine 

cycle? 
 
   Recall the expression for shaft work in a steady flow device 

     w = − ⌡⌠ v dP    

  The specific volume in the compressor is not so much smaller than the 
specific volume in the turbine of the Brayton cycle as it is in the pump 
(liquid) compared to turbine (superheated vapor) in the Rankine cycle. 

 
 
11.9 
  The Brayton cycle has the same 4 processes as the Rankine cycle, but the T-s and 

P-v diagrams look very different; why is that? 
 

 The Brayton cycle have all processes in the superheated vapor (close to 
ideal gas) region. The Rankine cycle crosses in over the two-phase region. 

 
11.10 
  Is it always possible to add a regenerator to the Brayton cycle? What happens 

when the pressure ratio is increased? 
 

 No.   When the pressure ratio is high, the temperature after compression is 
higher than the temperature after expansion. The exhaust flow can then not 
heat the flow into the combustor. 

  
11.11 
   Why would you use an intercooler between compressor stages? 
 

 The cooler provides two effects. It reduces the specific volume and thus 
reduces the work in the following compressor stage. It also reduces the 
temperature into the combustor and thus lowers the peak temperature. This 
makes the control of the combustion process easier (no autoignition or 
uncontrollable flame spread), it reduces the formation of NOx that takes 
place at high temperatures and lowers the cooling requirements for the 
chamber walls. 

  



 
11.12 
  The jet engine does not produce shaft work; how is power produced? 
 
 The turbine produces just enough shaft work to drive the compressor and it makes 

a little electric power for the aircraft. The power is produced as thrust of the 
engine. In order to exhaust the gases at high speed they must be accelerated so the 
high pressure in the turbine exit provides that force (high P relative to ambient). 
The high P into the turbine is made by the compressor, that pushes the flow 
backwards, and thus has a net resulting force forwards on the blades transmitted 
to the shaft and the aircraft. The outer housing also has a higher pressure inside 
that gives a net component in the forward direction. 

 
11.13 
  How is the compression in the Otto cycle different from the Brayton cycle? 
 
   The compression in an Otto cycle is a volume reduction dictated by the 

piston motion. The physical handles are the volumes V1 and V2. 
   The compression in a Brayton cycle is the compressor pushing on the flow 

so it determines the pressure. The physical control is the pressure P2. 
 



 
11.14 
  Does the inlet state (P1, T1) have any influence on the Otto cycle efficiency? How 

about the power produced by a real car engine? 
 
   Very little. The efficiency for the ideal cycle only depends on compression 

ratio when we assume cold air properties. The u’s are slightly non-linear in T so 
there will be a small effect. 

   In a real engine there are several effects. The inlet state determines the 
density and thus the total mass in the chamber. The more mass the more energy is 
released when the fuel burns, the peak P and T will also change which affects the 
heat transfer loss to the walls and the formation of Nox (sensitive to T). The 
combustion process may become uncontrollable if T is too high (knocking). Some 
increase in P1 like that done by a turbo-charger or super-charger increases the 
power output and if high, it must be followed by an intercooler to reduce T1. If P1 
is too high the losses starts to be more than the gain so there is an optimum level. 

 
 
11.15 
  How many parameters do you need to know to completely describe the Otto 

cycle? How about the Diesel cycle? 
 
   Otto cycle.  State 1 (2 parameters) and the compression ratio CR and the 

energy release per unit mass in the combustion, a total of 4 parameters. With that 
information you can draw the diagrams in Figure 11.28. Another way of looking 
at it is four states (8 properties) minus the four process equations (s2 = s1, v3 = v2, 
s4 = s3 and v4 = v1) gives 4 unknowns. 

 
   Diesel cycle. Same as for the Otto cycle namely 4 parameters. The only 

difference is that one constant v process is changed to a constant P process. 
 
 
11.16 
  The exhaust and inlet flow processes are not included in the Otto or Diesel cycles. 

How do these necessary processes affect the cycle performance? 
 
   Due to the pressure loss in the intake system and the dynamic flow process 

we will not have as much mass in the cylinder nor as high a P as in a reversible 
process. The exhaust flow requires a slightly higher pressure to push the flow out 
through the catalytic converter and the muffler (higher back pressure) and the 
pressure loss in the valve so again there is a loss relative to a reversible process. 
Both of these processes subtracts a pumping work from the net work out of the 
engine and a lower charge mass gives less power (not necessarily lower 
efficiency) than other wise could be obtained. 

 



    
11.17 
  A refrigerator in my 20oC kitchen uses R-12 and I want to make ice cubes at –5o

C. What is the minimum high P and the maximum low P it can use? 
 
   Since the R-12 must give heat transfer out to the kitchen air at 20oC, it 

must at least be that hot at state 3. 
 
   From Table B.3.1: P3 = P2 = Psat = 567 kPa  is minimum high P. 

   Since the R-12 must absorb heat transfer at the freezers –5oC, it must at 
least be that cold at state 4. 

 
   From Table B.3.1: P1 = P4 = Psat = 261 kPa  is maximum low P. 
 
 
11.18 
  How many parameters are needed to completely determine a standard vapor 

compression refrigeration cycle? 
 
   Two parameters: The high pressure and the low pressure. This assumes 

the exit of the condenser is saturated liquid and the exit of the evaporator is 
saturated vapor. 

 
11.19 
  Why would one consider a combined cycle system for a power plant? For a heat 

pump or refrigerator? 
 
   Dual cycle or combined cycle systems have the advantage of a smaller 

difference between the high and low ranges for P and T. The heat can be added at 
several different temperatures reducing the difference between the energy source 
T and the working substance T. The working substance vapor pressure at the 
desired T can be reduced from a high value by adding a topping cycle with a 
different substance or have a higher low pressure at very low temperatures. 

 



 
11.20 
 Since any heat transfer is driven by a temperature difference, how does that affect 

all the real cycles relative to the ideal cycles? 
 

   Heat transfers are given as  Q
.
 = CA ∆T  so to have a reasonable rate the 

area and the temperature difference must be large. The working substance then 
must have a different temperature than the ambient it exchanges energy with. This 
gives a smaller temperature difference for a heat engine with a lower efficiency as 
a result. The refrigerator or heat pump must have the working substance with a 
higher temperature difference than the reservoirs and thus a lower coefficient of 
performance (COP).   

   The smaller CA is the larger ∆T must be for a certain magnitude of the 
heat transfer rate. This can be a design problem, think about the front end air 
intake grill for a modern car which is very small compared to a car 20 years ago. 

 



 
Simple Rankine cycles 
 
11.21 
 A steam power plant as shown in Fig. 11.3 operating in a Rankine cycle has 

saturated vapor at 3.0 MPa leaving the boiler. The turbine exhausts to the 
condenser operating at 10 kPa. Find the specific work and heat transfer in each of 
the ideal components and the cycle efficiency. 

Solution:  

C.V. Pump  Reversible and adiabatic. 

 Energy:  wp =  h2 - h1 ;     Entropy:   s2 =  s1  

 since incompressible it is easier to find work (positive in) as  

  wp = ∫ v dP =  v1 (P2 - P1) = 0.00101 (3000 - 10) = 3.02 kJ/kg 

  =>  h2 = h1 + wp = 191.81 + 3.02 = 194.83 kJ/kg 

C.V. Boiler :   qH = h3 - h2 = 2804.14 - 194.83 = 2609.3 kJ/kg 

C.V. Turbine :   wT =  h3 - h4  ;   s4 =  s3 

 s4 = s3 = 6.1869 = 0.6492 + x4 (7.501)   =>   x4 = 0.7383 

 =>  h4 = 191.81 + 0.7383 (2392.82) = 1958.34 kJ/kg 

       wT = 2804.14 - 1958.34 = 845.8 kJ/kg 

C.V. Condenser :   qL = h4 - h1 = 1958.34 - 191.81 = 1766.5 kJ/kg 

 ηcycle = wnet / qH = (wT + wp) / qH = (845.8 - 3.0) / 2609.3 = 0.323 
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11.22 
 Consider a solar-energy-powered ideal Rankine cycle that uses water as the 

working fluid. Saturated vapor leaves the solar collector at 175°C, and the 
condenser pressure is 10 kPa. Determine the thermal efficiency of this cycle. 

 Solution: 

C.V.   H2O   ideal Rankine cycle 

State 3:    T3 = 175°C     ⇒     P3 = PG 175°C = 892 kPa,   s3 = 6.6256  

CV Turbine adiabatic and reversible so second law gives 

 s4 = s3 = 6.6256 = 0.6493 + x4 × 7.5009 =>    x4 = 0.797    

 h4 = 191.83 + 0.797 × 2392.8 = 2098.3 kJ/kg 

The energy equation gives 

 wT = h3 - h4 = 2773.6 - 2098.3 = 675.3 kJ/kg 

C.V. pump and incompressible liquid gives work into pump 

 wP = v1(P2 - P1) = 0.00101(892 - 10) = 0.89 kJ/kg 

 h2 = h1 + wP = 191.83 + 0.89 = 192.72 kJ/kg 

C.V. boiler gives the heat transfer from the energy equation as  

 qH = h3 - h2 = 2773.6 - 192.72 = 2580.9 kJ/kg 

The cycle net work and efficiency are found as 

 wNET = wT - wP = 675.3 - 0.89 = 674.4 kJ/kg 

 ηTH = wNET/qH = 674.4/2580.9 = 0.261 
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11.23 
 A utility runs a Rankine cycle with a water boiler at 3.0 MPa and the cycle has the 

highest and lowest temperatures of 450°C and 45°C respectively. Find the plant 
efficiency and the efficiency of a Carnot cycle with the same temperatures. 

Solution: 

The states properties from Tables B.1.1 and B.1.3 

 1: 45oC ,   x = 0    =>   h1 = 188.42 ,    v1 = 0.00101 ,    Psat = 9.6 kPa 

 3: 3.0 MPa ,   450oC     =>     h3 = 3344 ,    s3 = 7.0833  

C.V. Pump  Reversible and adiabatic. 

 Energy:  wp =  h2 - h1 ;     Entropy:   s2 =  s1  

 since incompressible it is easier to find work (positive in) as  

  wp = ∫ v dP = v1 (P2 - P1) = 0.00101 (3000 - 9.6) = 3.02 kJ/kg 

  =>  h2 = h1 +  wp = 188.42 + 3.02 = 191.44 kJ/kg 

C.V. Boiler :   qH = h3 - h2 = 3344 - 191 = 3152.56 kJ/kg 

C.V. Turbine : wT =  h3 - h4  ;  s4 =  s3   

  s4 = s3 = 7.0833 = 0.6386 + x4 (7.5261)     =>       x4 = 0.8563 

   =>  h4 = 188.42 + 0.8563 (2394.77) = 2239.06 kJ/kg 

        wT = 3344 – 2239.06 = 1105 kJ/kg 

C.V. Condenser : qL = h4 - h1 = 2239.06 - 188.42 = 2050.64 kJ/kg 

 ηcycle = wnet / qH = (wT + wp) / qH = (1105 - 3.02) / 3152.56 = 0.349 

  ηcarnot = 1 - TL / TH = 1 -  
273.15 + 45
273.15 + 450 = 0.56 
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11.24 
  A Rankine cycle uses ammonia as the working substance and powered by solar 

energy. It heats the ammonia to 140oC at 5000 kPa in the boiler/superheater. The 
condenser is water cooled and the exit kept at 25oC. Find (T, P and x if 
applicable) for all four states in the cycle.  

 

Solution: 

Based on the standard Rankine cycle and Table B.2 and Table A.4 for Cp. 

State 1:  Saturated liquid. P1 = Psat = 1003 kPa,  x1 = 0 

State 2:  P2 = 5000 kPa,  consider C.V. pump 

Energy:   h2 - h1 = wp = v1 (P2 - P1) = 0.001658 (5000 – 1003) = 6.627 kJ/kg 

  T2 = T1 + (h2 - h1)/Cp = 25 + 6.627/4.84 = 26.4oC 

State 3:  Table B.2.2   140oC at 5000 kPa,   s = 4.9068 kJ/kg K 

State 4:  P4 = P1 = 1003 kPa. Consider the turbine for which   s4 = s3. 

  s3 < sg = 5.0293 kJ/kg K at 25oC 

  x4 = (s3 – sf)/sfg = (4.9068 – 1.121)/3.9083 = 0.96866 
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11.25 
 A steam power plant operating in an ideal Rankine cycle has a high pressure of 5 

MPa and a low pressure of 15 kPa. The turbine exhaust state should have a quality 
of at least 95% and the turbine power generated should be 7.5 MW. Find the 
necessary boiler exit temperature and the total mass flow rate. 

Solution: 

C.V. Turbine assume adiabatic and reversible. 

Energy:     wT = h3 - h4;       Entropy:      s4 = s3 

Since the exit state is given we can relate that to the inlet state from entropy. 

 4:  15 kPa,  x4 = 0.95   =>   s4 = 7.6458 kJ/kg K,   h4 = 2480.4 kJ/kg 

 3:  s3 = s4,  P3   ⇒   h3 = 4036.7 kJ/kg,   T3 = 758°C 

  wT = h3 - h4 = 4036.7 - 2480.4 = 1556.3 kJ/kg 

  m
.

 = W
.

T/wT = 7.5 × 1000/1556.3 = 4.82 kg/s 
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11.26 
 A supply of geothermal hot water is to be used as the energy source in an ideal 

Rankine cycle, with R-134a as the cycle working fluid. Saturated vapor R-134a 
leaves the boiler at a temperature of 85°C, and the condenser temperature is 40°C. 
Calculate the thermal efficiency of this cycle. 

  Solution: 

CV: Pump   (use R-134a Table B.5) 

  wP = h2 - h1 = ⌡⌠
1

2

 vdP ≈ v1(P2-P1) 

         = 0.000873(2926.2 - 1017.0)  = 1.67 kJ/kg 

  h2 = h1 + wP = 256.54 + 1.67 = 258.21 kJ/kg 

CV: Boiler 

      qH = h3 - h2 = 428.10 - 258.21 = 169.89 kJ/kg 

CV: Turbine 

       s4 = s3 = 1.6782 = 1.1909 + x4 × 0.5214   =>     x4 = 0.9346 

       h4 = 256.54 + 0.9346 × 163.28 = 409.14 kJ/kg 

 Energy Eq.:       wT = h3 - h4 = 428.1 - 409.14 = 18.96 kJ/kg 

       wNET = wT - wP = 18.96 - 1.67 = 17.29 kJ/kg 

       ηTH = wNET/qH = 17.29/169.89 = 0.102 
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11.27 
 Do Problem 11.26 with R-22 as the working fluid. 
 A supply of geothermal hot water is to be used as the energy source in an ideal 

Rankine cycle, with R-134a as the cycle working fluid. Saturated vapor R-134a 
leaves the boiler at a temperature of 85°C, and the condenser temperature is 40°C. 
Calculate the thermal efficiency of this cycle. 

Solution: 

CV: Pump   (use R-22 Table B.4) 

    wP = h2 - h1 = ⌡⌠
1

2

 vdP ≈ v1(P2-P1) = 0.000884(4037 - 1534) = 2.21 kJ/kg 

    h2 = h1 + wP = 94.27 + 2.21 = 96.48 kJ/kg 

CV: Boiler:    qH = h3 - h2 = 253.69 - 96.48 = 157.21 kJ/kg 

CV: Turbine 

     s4 = s3 = 0.7918 = 0.3417 + x4 × 0.5329,  =>  x4 = 0.8446 

       h4 = 94.27 + 0.8446 × 166.88 = 235.22 

       wT = h3 - h4 = 253.69 - 235.22 = 18.47 kJ/kg 

       ηTH = wNET/qH = (18.47 - 2.21)/157.21 = 0.1034 
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11.28 
 Do Problem 11.26 with ammonia as the working fluid. 
 A supply of geothermal hot water is to be used as the energy source in an ideal 

Rankine cycle, with R-134a as the cycle working fluid. Saturated vapor R-134a 
leaves the boiler at a temperature of 85°C, and the condenser temperature is 40°C. 
Calculate the thermal efficiency of this cycle. 

Solution: 

CV: Pump   (use Ammonia Table B.2) 

  wP = h2 - h1 = ⌡⌠1
2 vdP = v1(P2-P1) 

       = 0.001725(4608.6 - 1554.9) = 5.27 kJ/kg 

  h2 = h1 + wP = 371.43 + 5.27 = 376.7 kJ/kg 

CV: Boiler 

       qH = h3 - h2 = 1447.8 - 376.7 = 1071.1 kJ/kg 

CV: Turbine 

       s4 = s3 = 4.3901 = 1.3574 + x4 × 3.5088  =>  x4 = 0.8643 

       h4 = 371.43 + 0.8643 × 1098.8 = 1321.13 kJ/kg 

 Energy Eq.: 

       wT = h3 - h4 = 1447.8 - 1321.13 = 126.67 kJ/kg 

       wNET = wT - wP = 126.67 - 5.27 = 121.4 kJ/kg 

       ηTH = wNET/qH = 121.4/1071.1 = 0.113 
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11.29 
 Consider the boiler in Problem 11.26 where the geothermal hot water brings the 

R-134a to saturated vapor. Assume a counter flowing heat exchanger 
arrangement. The geothermal water temperature should be equal to or greater than 
the R-134a temperature at any location inside the heat exchanger. The point with 
the smallest temperature difference between the source and the working fluid is 
called the pinch point. If 2 kg/s of geothermal water is available at 95°C, what is 
the maximum power output of this cycle for R-134a as the working fluid? (hint: 
split the heat exchanger C.V. into two so the pinch point with ∆T = 0, T = 
85°C appears). 
2 kg/s of water is available at 95 oC for the boiler. The restrictive factor is the 
boiling temperature of 85° C. Therefore, break the process up from 2-3 into two 
parts as shown in the diagram. 
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Write the energy equation for the first section A-B and D-3: 

  -Q
.

AB = m
.

H2O(hA - hB) = 2(397.94 - 355.88) = 84.12 kW 

             = m
.

R134A(428.1 - 332.65)   ⇒   m
.

R134A = 0.8813 kg/s 

To be sure that the boiling temp. is the restrictive factor, calculate TC from the 
energy equation for the remaining section: 

  -Q
.

AC = 0.8813(332.65 - 258.21) = 65.60 kW  = 2(355.88 - hC)   

   ⇒   hC = 323.1 kJ/kg,  TC = 77.2°C > T2   OK 

CV Pump:      wP = v1(P2-P1) = 0.000873(2926.2 - 1017.0)  = 1.67 kJ/kg 

CV: Turbine:     s4 = s3 = 1.6782 = 1.1909 + x4 × 0.5214   =>     x4 = 0.9346 

               h4 = 256.54 + 0.9346 × 163.28 = 409.14 kJ/kg 

Energy Eq.: wT = h3 - h4 = 428.1 - 409.14 = 18.96 kJ/kg 

Cycle:        wNET = wT - wP = 18.96 - 1.67 = 17.29 kJ/kg 

   W
.

NET = m
.

R134AwNET = 0.8813 × 17.29 = 15.24 kW 



 
11.30 

 Do the previous problem with R-22 as the working fluid. 

A flow with 2 kg/s of water is available at 95oC for the boiler. The restrictive 
factor is the boiling temperature of 85oC. Therefore, break the process up from 2-
3 into two parts as shown in the diagram. 
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 -Q
.

AB = m
.

H2O(hA - hB) = 2(397.94 - 355.88) = 84.12 kW 

       = m
.

R-22(253.69 - 165.09)   ⇒   m
.

R-22 = 0.949 kg/s 

To verify that TD = T3 is the restrictive factor, find TC. 

 -Q
.

AC = 0.949(165.09 - 96.48) = 65.11 = 2.0(355.88 - hC) 

 hC = 323.32 kJ/kg  ⇒   TC = 77.2oC   OK 

State 1: 40oC,   1533.5 kPa,  v1 = 0.000884 m3/kg 

CV Pump:      wP = v1(P2 -P1) = 0.000884(4036.8 - 1533.5)  = 2.21 kJ/kg 

CV: Turbine 

       s4 = s3 = 0.7918 = 0.3417 + x4 × 0.5329   =>     x4 = 0.8446 

       h4 = 94.27 + 0.8446 × 166.88 = 235.22 kJ/kg 

Energy Eq.: wT = h3 - h4 = 253.69 - 235.22 = 18.47 kJ/kg 

Cycle:        wNET = wT - wP = 18.47 - 2.21 = 16.26 kJ/kg 

   W
.

NET = m
.

R22wNET = 0.949 × 16.26 = 15.43 kW 
 



 
11.31 
 Consider the ammonia Rankine-cycle power plant shown in Fig. P11.31. The 

plant was designed to operate in a location where the ocean water temperature is 
25°C near the surface and 5°C at some greater depth. The mass flow rate of the 
working fluid is 1000 kg/s. 
 a. Determine the turbine power output and the pump power input for the cycle. 
 b. Determine the mass flow rate of water through each heat exchanger. 
 c. What is the thermal efficiency of this power plant? 

Solution: 

a) C.V. Turbine. Assume reversible and adiabatic. 

    s2 = s1 = 5.0863 = 0.8779 + x2 × 4.3269        =>        x2 = 0.9726 

    h2 = 227.08 + 0.9726 × 1225.09 = 1418.6 kJ/kg 

    wT = h1 - h2 = 1460.29 - 1418.6 = 41.69 kJ/kg 

   W
.

T = m
.

wT = 1000 × 41.69 = 41 690 kW 

 Pump:  wP ≈ v3(P4 - P3) = 0.0016(857 - 615) = 0.387 kJ/kg 

   W
.

P = m
.

wP = 1000 × 0.387 = 387 kW 

b)     Consider to condenser heat transfer to the low T water 

    Q
.

to low T H2O = 1000(1418.6 - 227.08) = 1.1915×106 kW 

    m
.

low T H2O = 
1.1915×106

29.38 - 20.98 = 141 850 kg/s  

    h4 = h3 + wP = 227.08 + 0.39 = 227.47 kJ/kg 

 Now consider the boiler heat transfer from the high T water 

    Q
.

from high T H2O = 1000(1460.29 - 227.47) = 1.2328×106 kW 

    m
.

high T H2O = 
1.2328×106

104.87 - 96.50 = 147 290 kg/s  

c)   ηTH = W
.

NET/Q
.

H = 
41 690 - 387

1.2328×106  = 0.033 
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11.32 
  A smaller power plant produces 25 kg/s steam at 3 MPa, 600oC in the boiler. It 

cools the condenser with ocean water coming in at 12oC and returned at 15oC so 
the condenser exit is at 45oC. Find the net power output and the required mass 
flow rate of ocean water.  

Solution: 

The states properties from Tables B.1.1 and B.1.3 

 1: 45oC,  x = 0:  h1 = 188.42 kJ/kg,  v1 = 0.00101 m3/kg,  Psat = 9.59 kPa 

 3: 3.0 MPa,  600oC:     h3 = 3682.34 kJ/kg,    s3 = 7.5084 kJ/kg K  

C.V. Pump  Reversible and adiabatic. 

 Energy:  wp =  h2 - h1 ;     Entropy:   s2 =  s1  

 since incompressible it is easier to find work (positive in) as  

  wp = ∫ v dP = v1 (P2 - P1) = 0.00101 (3000 - 9.6) = 3.02 kJ/kg 

C.V. Turbine : wT =  h3 - h4  ;  s4 =  s3   

  s4 = s3 = 7.5084 = 0.6386 + x4 (7.5261)     =>       x4 = 0.9128 

   =>  h4 = 188.42 + 0.9128 (2394.77) = 2374.4 kJ/kg 

        wT = 3682.34 – 2374.4 = 1307.94 kJ/kg 

  W
.

NET = m
.

(wT – wp) = 25 (1307.94 – 3.02) = 32.6 MW 

C.V. Condenser : qL = h4 - h1 = 2374.4 - 188.42 = 2186 kJ/kg 

  Q
.

L = m
.

qL = 25 × 2186 = 54.65 MW = m
.

ocean Cp ∆T 

  m
.

ocean = Q
.

L / Cp ∆T = 54 650 / (4.18 × 3) = 4358 kg/s 
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11.33 

 The power plant in Problem 11.21 is modified to have a super heater section 
following the boiler so the steam leaves the super heater at 3.0 MPa, 400°C. Find the 
specific work and heat transfer in each of the ideal components and the cycle 
efficiency. 

Solution: 

C.V. Tubine: Energy:     wT,s = h3 - h4;     

   Entropy:      s4 = s3 = 6.9211 kJ/kg K 

      ⇒   x4 =  
s4 - sf

sfg
 =  

6.9211 - 0.6492
7.501  = 0.83614 ;   

  h4 = 191.81 + 0.83614 × 2392.82 = 2192.5 kJ/kg 

        wT,s = 3230.82 - 2192.5 =  1038.3 kJ/kg 

C.V. Pump:  wP = ⌡⌠v dP = v1(P2 - P1) = 0.00101(3000 - 10) = 3.02 kJ/kg 

       ⇒  h2 = h1 + wP = 191.81 + 3.02 = 194.83 kJ/kg 

C.V. Condenser:   qC = h4 - h1 = 2192.5 - 191.81 = 2000.7 kJ/kg 

C.V. Boiler:    qH = h3 - h2 = 3230.82 – 194.83 = 3036 kJ/kg 

 ηCYCLE = wNET/qH = 
1038.3 – 3.02

3036  = 0.341 
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11.34 
 A steam power plant has a steam generator exit at 4 MPa, 500°C and a condenser 

exit temperature of 45°C. Assume all components are ideal and find the cycle 
efficiency and the specific work and heat transfer in the components. 

Solution: 

From the Rankine cycle we have the states: 

1:  45°C   x = 0/  ,   v1 = 0.00101 m3/kg,  h1 = 188.45 kJ/kg 

3:  4 MPa, 500°C ,  h3 = 3445.3 kJ/kg,   s3 = 7.0901 kJ/kg K 

 

C.V. Turbine:  s4 = s3   ⇒   x4 = (7.0901 - 0.6386)/7.5261 = 0.8572,    

        h4 = 188.42 + 0.8572 × 2394.77 = 2241.3  

  wT = h3 - h4 = 3445.3 - 2241.3 = 1204 kJ/kg 

C.V. Pump:  wP = v1(P2 - P1) = 0.00101(4000 - 9.6) = 4.03 kJ/kg 

  wP = h2 - h1   ⇒   h2 = 188.42 + 4.03 = 192.45 kJ/kg 

C.V. Boiler:     qH = h3 - h2 = 3445.3 - 192.45 = 3252.8 kJ/kg 

C.V. Condenser:    qL,out = h4 - h1 = 2241.3 - 188.42 = 2052.9 kJ/kg 

 ηTH = wnet/qH = (wT + wP)/qH = (1204 - 4.03)/3252.8 = 0.369 
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11.35 

 Consider an ideal Rankine cycle using water with a high-pressure side of the 
cycle at a supercritical pressure. Such a cycle has a potential advantage of 
minimizing local temperature differences between the fluids in the steam 
generator, such as the instance in which the high-temperature energy source is the 
hot exhaust gas from a gas-turbine engine. Calculate the thermal efficiency of the 
cycle if the state entering the turbine is 30 MPa, 550°C, and the condenser 
pressure is 5 kPa. What is the steam quality at the turbine exit? 

Solution: 

For the efficiency we need the net work and steam generator heat transfer. 

C.V. Pump. For this high exit pressure we use Table B.1.4 

State 1:   s1 = 0.4764 kJ/kg K,   h1 = 137.82 kJ/kg 

Entropy Eq.:    s2 = s1    =>    h2 = 168.36 kJ/kg 

   wp = h2 - h1 = 30.54 kJ/kg 

C.V. Turbine. Assume reversible and adiabatic. 

Entropy Eq.: s4 = s3 = 6.0342 = 0.4764 + x4 × 7.9187 

   x4 = 0.70186      Very low for a turbine exhaust 

  h4 = 137.79 + x4 × 2423.66 = 1838.86 ,     h3 = 3275.36 kJ/kg 

  wT = h3 - h4 = 1436.5 kJ/kg 

Steam generator:       qH = h3 - h2 = 3107 kJ/kg 

  wNET = wT − wp = 1436.5 – 30.54 = 1406 kJ/kg 

    η = wNET/qH = 1406 / 3107 = 0.45 
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Reheat Cycles 
 
11.36 
 A smaller power plant produces steam at 3 MPa, 600oC in the boiler. It keeps the 

condenser at 45oC by transfer of 10 MW out as heat transfer. The first turbine 
section expands to 500 kPa and then flow is reheated followed by the expansion 
in the low pressure turbine. Find the reheat temperature so the turbine output is 
saturated vapor. For this reheat find the total turbine power output and the boiler 
heat transfer. 
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The states properties from Tables B.1.1 and B.1.3 

 1: 45oC,  x = 0:  h1 = 188.42 kJ/kg,  v1 = 0.00101 m3/kg,  Psat = 9.59 kPa 

 3: 3.0 MPa,  600oC:     h3 = 3682.34 kJ/kg,    s3 = 7.5084 kJ/kg K  

 6: 45oC,  x = 1:  h6 = 2583.19 kJ/kg,  s6 = 8.1647 kJ/kg K  

 

C.V. Pump  Reversible and adiabatic. 

 Energy:     wp =  h2 - h1 ;     Entropy:   s2 =  s1  

 since incompressible it is easier to find work (positive in) as  

  wp = ∫ v dP = v1 (P2 - P1) = 0.00101 (3000 - 9.59) = 3.02 kJ/kg 

   h2 = h1 + wp = 188.42 + 3.02 = 191.44 kJ/kg 

C.V. HP Turbine section 

 Entropy Eq.:    s4 = s3       =>   h4 = 3093.26 kJ/kg;  T4 = 314oC  

C.V. LP Turbine section 

 Entropy Eq.: s6 = s5 = 8.1647 kJ/kg K  =>    state 5 

 State 5:  500 kPa, s5    =>     h5 = 3547.55 kJ/kg,   T5 = 529oC 

 

C.V. Condenser. 



 Energy Eq.: qL = h6 – h1 = hfg = 2394.77 kJ/kg    

   m
.

 =  Q
.

L / qL = 10 000 / 2394.77 = 4.176 kg/s 

 

Both turbine sections 

 W
.

T,tot = m
.

wT,tot = m
.

(h3 - h4 + h5 - h6)  

  = 4.176 (3682.34 - 3093.26 +3547.55 – 2583.19) = 6487 kW 

Both boiler sections 

 Q
.

H = m
.

(h3 - h2 + h5 - h4)  

       = 4.176 (3682.34 – 191.44 + 3547.55 - 3093.26) = 16 475 kW 
 



 
11.37 

 Consider an ideal steam reheat cycle where steam enters the high-pressure turbine 
at 3.0 MPa, 400°C, and then expands to 0.8 MPa. It is then reheated to 400°C and 
expands to 10 kPa in the low-pressure turbine. Calculate the cycle thermal 
efficiency and the moisture content of the steam leaving the low-pressure turbine. 

 

Solution: 

C.V. Pump reversible, adiabatic and assume incompressible flow  

    wP = v1(P2 - P1) = 0.00101(3000 - 10) = 3.02 kJ/kg, 

     h2 = 191.81 + 3.02 = 194.83 kJ/kg 
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C.V. HP Turbine section 

 P3 = 3 MPa, T3 = 400oC   =>    h3 = 3230.82 kJ/kg,   s3 = 6.9211 kJ/kg K 

    s4 = s3   =>   h4 = 2891.6 kJ/kg;    

C.V. LP Turbine section 

 State 5:  400oC, 0.8 MPa  =>     h5 = 3267.1 kJ/kg,   s5 = 7.5715 kJ/kg K 

 Entropy Eq.: s6 = s5 = 7.5715 kJ/kg K  =>    two-phase state 

   x6 = 
s6 - sf

sfg
 = 

7.5715 - 0.6492
7.501  = 0.92285 = 0.923 

   h6 = 191.81 + 0.92285 × 2392.82 = 2400 kJ/kg 

 wT,tot = h3 - h4 + h5 - h6 = 3230.82 - 2891.6+3267.1 - 2400 = 1237.8 kJ/kg 

    qH1 = h3 - h2 = 3230.82 - 194.83 = 3036 kJ/kg 

    qH = qH1 + h5 - h4 = 3036 + 3267.1 - 2891.6 = 3411.5 kJ/kg 

 ηCYCLE = (1237.8 - 3.02)/3411.5 = 0.362 
 



 
11.38 
 A smaller power plant produces 25 kg/s steam at 3 MPa, 600oC in the boiler. It 

cools the condenser with ocean water so the condenser exit is at 45oC. There is a 
reheat done at 500 kPa up to 400oC and then expansion in the low pressure 
turbine. Find the net power output and the total heat transfer in the boiler.  

Solution: 

The states properties from Tables B.1.1 and B.1.3 

 1: 45oC,  x = 0:  h1 = 188.42 kJ/kg,  v1 = 0.00101 m3/kg,  Psat = 9.59 kPa 

 3: 3.0 MPa,  600oC:     h3 = 3682.34 kJ/kg,    s3 = 7.5084 kJ/kg K  

 5: 500 kPa, 400oC:     h5 = 3271.83 kJ/kg,    s5 = 7.7937 kJ/kg K   

C.V. Pump  Reversible and adiabatic. Incompressible flow so 

 Energy:      wp = h2 - h1 = v1(P2 - P1) = 0.00101 (3000 - 9.6) = 3.02 kJ/kg  

C.V. LP Turbine section 

 Entropy Eq.: s6 = s5 = 7.7937 kJ/kg K  =>    two-phase state 

   x6 = (s6 - sf)/sfg = 
7.7937 - 0.6386

7.5261  = 0.9507 

   h6 = 188.42 + 0.9507 × 2394.77 = 2465.1 kJ/kg 

Both turbine sections 

 wT,tot = h3 - h4 + h5 - h6 

   = 3682.34 - 3093.26 + 3271.83 – 2465.1 = 1395.81 kJ/kg 

  W
.

net = W
.

T - W
.

p = m
.

(wT,tot – wp) = 25 (1395.81 – 3.02) = 34 820 kW 

Both boiler sections 

  Q
.

H = m
.

(h3 - h2 + h5 - h4)  

       = 25 (3682.34 – 191.44 + 3271.83 - 3093.26) = 91 737 kW 
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11.39 

 The reheat pressure effect the operating variables and thus turbine performance. 
Repeat Problem 11.37 twice, using 0.6 and 1.0 MPa for the reheat pressure. 

  
 Solution 
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C.V. Pump reversible, adiabatic and assume incompressible flow  

    wP = v1(P2 - P1) = 0.00101(3000 - 10) = 3.02 kJ/kg, 

     h2 = h1 + wP = 191.81 + 3.02 = 194.83 kJ/kg 

State 3:  3 MPa, 400oC   =>   h3 = 3230.82 kJ/kg,  s3 = 6.9211 kJ/kg K 

Low T boiler section:   qH1 = h3 - h2 = 3230.82 - 194.83 = 3035.99 kJ/kg 

State 4:  P4,  s4 = s3   

For P4 = 1 MPa:  h4 = 2940.85 kJ/kg  state 4 is sup. vapor 

State 5: 400oC, P5 = P4    =>    h5 = 3263.9 kJ/kg,  s5 = 7.465 kJ/kg K,  

 For P4 = 0.6 MPa:   h4 = 2793.2 kJ/kg  state 4 is sup. vapor 

 State 5: 400oC, P5 = P4    =>   h5 = 3270.3 kJ/kg,  s5 = 7.7078 kJ/kg K,  

 State 6:  10 kPa,    s6 = s5    =>   x6 = (s6 - sf)/sfg 

Total turbine work:  wT,tot = h3- h4 + h5 - h6 

Total boiler H.Tr.:  qH = qH1 + h5 - h4 

Cycle efficiency:  ηCYCLE = (wT,tot – wP)/qH 

 
   P4=P5 x6 h6 wT qH ηCYCLE 
   1        0.9087 2366 1187.9 3359.0 0.3527 
   0.6     0.9410  2443.5 1228.0 3437.7 0.3563 
 

 Notice the very small changes in efficiency. 



 
11.40 
 The effect of a number of reheat stages on the ideal steam reheat cycle is to be 

studied. Repeat Problem 11.37 using two reheat stages, one stage at 1.2 MPa and 
the second at 0.2 MPa, instead of the single reheat stage at 0.8 MPa. 

 

C.V. Pump reversible, adiabatic and assume incompressible flow, work in  

    wP = v1(P2 - P1) = 0.00101(3000 - 10) = 3.02 kJ/kg, 

     h2 = h1 + wP = 191.81 + 3.02 = 194.83 kJ/kg 
 
 P4 = P5 = 1.2 MPa,  P6 = P7 = 0.2 MPa 

 

3: h3 = 3230.82 kJ/kg,  s3 = 6.9211 kJ/kg K 

4: P4, s4 = s3  ⇒ sup. vap.  h4 = 2985.3 

5: h5 = 3260.7 kJ/kg,  s5 = 7.3773 kJ/kg K 

6: P6, s6 = s5  ⇒ sup. vapor   

          h6 = 2811.2 kJ/kg 
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  7: h7 = 3276.5 kJ/kg,  s7 = 8.2217 kJ/kg K  

   8: P8, s8 = s7 ⇒ sup. vapor   h8 = 2607.9 kJ/kg 

 

Total turbine work, same flow rate through all sections 

wT = (h3 - h4) + (h5 - h6) + (h7 - h8) = 245.5 + 449.5 + 668.6 = 1363.6 kJ/kg 

Total heat transfer in boiler, same flow rate through all sections 

qH = (h3 - h2) + (h5 - h4) + (h7 - h6) = 3036 + 319.8 + 465.3 = 3821.1 kJ/kg 

Cycle efficiency:  ηTH = 
wT - wP

qH
 = 

1363.6 - 3.02
3821.1  = 0.356 

 



 
Open Feedwater Heaters 
 
11.41 

 An open feedwater heater in a regenerative steam power cycle receives 20 kg/s of 
water at 100°C, 2 MPa. The extraction steam from the turbine enters the heater at 
2 MPa, 275°C, and all the feedwater leaves as saturated liquid. What is the 
required mass flow rate of the extraction steam? 

Solution: 

  

The complete diagram is as in 
Figure 11.8 in main text. 

2

6

3

Feedwater
heater

From turbine

to P2 Feedwater

from P1
 

 

C.V Feedwater heater 

Continuity Eq.:   m
.

2 + m
.

6 = m
.

3  

Energy Eq.: m
.

2h2 + m
.

6h6 = m
.

3h3 = (m
.

2 + m
.

6) h3  

Table B.1.4:   h2 = 420.45 kJ/kg,    Table B.1.2:  h3 = 908.77 kJ/kg 

Table B.1.3:   h6 = 2963 kJ/kg,   this is interpolated 

With the values substituted into the energy equation we get 

  m
.

6  = m
.

2 
h3 - h2
h6 - h3

 = 20 × 
908.77 - 420.45
2963 - 908.77  = 4.754 kg/s 

Remark: For lower pressures at state 2 where Table B.1.4 may not have an entry 
the corresponding saturated liquid at same T from Table B.1.1 is used. 



 
11.42 

 A power plant with one open feedwater heater has a condenser temperature of 
45°C, a maximum pressure of 5 MPa, and boiler exit temperature of 900°C. 
Extraction steam at 1 MPa to the feedwater heater is mixed with the feedwater 
line so the exit is saturated liquid into the second pump. Find the fraction of 
extraction steam flow and the two specific pump work inputs. 

Solution: 

  

The complete diagram is as in 
Figure 11.8 in the main text. 
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State out of boiler 5: h5 = 4378.82 kJ/kg,   s5 = 7.9593 kJ/kg K 

C.V. Turbine reversible, adiabatic:   s7 = s6 = s5 

 State 6:   P6 , s6    =>    h6 = 3640.6 kJ/kg, T6 = 574oC 

C.V Pump P1 

 wP1 = h2 - h1 = v1(P2 - P1) = 0.00101(1000 - 9.6) = 1.0 kJ/kg 

  =>  h2 = h1 + wP1 = 188.42 + 1.0 = 189.42 kJ/kg 

C.V. Feedwater heater: Call    m
.

6 / m
.

tot = x   (the extraction fraction) 

 Energy Eq.: (1 - x) h2 + x h6 = 1 h3  

  x = 
h3 - h2

h6 - h2
 =  

762.79 - 189.42
3640.6 - 189.42  = 0.1661 

C.V Pump P2 

 wP2 = h4 - h3 = v3(P4 - P3) = 0.001127(5000 - 1000) = 4.5 kJ/kg 



 
11.43 
 A Rankine cycle operating with ammonia is heated by some low temperature 

source so the highest T is 120oC at a pressure of 5000 kPa. Its low pressure is 
1003 kPa and it operates with one open feedwater heater at 2033 kPa. The total 
flow rate is 5 kg/s. Find the extraction flow rate to the feedwater heater assuming 
its outlet state is saturated liquid at 2033 kPa. Find the total power to the two 
pumps.  
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  State 1:   x1 = 0,  h1 = 298.25 kJ/kg, v1 = 0.001658 m3/kg 

  State 3:   x3 = 0,  h3 = 421.48 kJ/kg, v3 = 0.001777 m3/kg 

  State 5:   h5 = 421.48 kJ/kg, s5 = 4.7306 kJ/kg K 

  State 6:   s6 = s5   =>    x6 = (s6 – sf)/sfg = 0.99052,    h6 = 1461.53 kJ/kg 

C.V Pump P1 

 wP1 = h2 - h1 = v1(P2 - P1) = 0.001658(2033 - 1003) = 1.708 kJ/kg 

  =>  h2 = h1 + wP1 = 298.25 + 1.708 = 299.96 kJ/kg 

C.V. Feedwater heater: Call    m
.

6 / m
.

tot = x   (the extraction fraction) 

 Energy Eq.: (1 - x) h2 + x h6 = 1 h3  

  x = 
h3 - h2

h6 - h2
 =  

762.79 - 189.42
3640.6 - 189.42  = 0.1046 

  m
.

extr = x m
.

tot =  0.1046 × 5 = 0.523 kg/s 

  m
.

1 = (1-x) m
.

tot = (1 – 0.1046) 5 = 4.477 kg/s 

C.V Pump P2 

 wP2 = h4 - h3 = v3(P4 - P3) = 0.001777(5000 - 2033) = 5.272 kJ/kg 

  Total pump work 

   W
.

p = m
.

1wP1 + m
.

tot wP2 = 4.477 × 1.708 + 5 × 5.272 = 34 kW 



 
11.44 

 A steam power plant operates with a boiler output of 20 kg/s steam at 2 MPa, 
600°C. The condenser operates at 50°C dumping energy to a river that has an 
average temperature of 20°C. There is one open feedwater heater with extraction 
from the turbine at 600 kPa and its exit is saturated liquid. Find the mass flow rate  
of the extraction flow. If the river water should not be heated more than 5°C how 
much water should be pumped from the river to the heat exchanger (condenser)? 

Solution:  

The setup is as shown in Fig. 11.10.  

 1: 50oC  sat liq.   v1 = 0.001012 m3/kg,  

                            h1 = 209.31 kJ/kg 

2: 600 kPa  s2 = s1 

3: 600 kPa, sat liq.       h3 = hf = 670.54 kJ/kg 

5: (P, T)   h5 = 3690.1 kJ/kg,  

                s5 = 7.7023 kJ/kg K 

           Condenser 
 

7

1

Fromriver
To

river

To pump 1

Ex turbine

 

      6: 600 kPa,  s6 = s5 =>   h6 = 3270.0 kJ/kg 

CV P1 

  wP1 = v1(P2 - P1) = 0.001012 (600 - 12.35) = 0.595 kJ/kg 

  h2 = h1 + wP1 = 209.9 kJ/kg 

C.V FWH  

  x h6 + (1 -x) h2 = h3 

  x =  
h3 - h2  
h6 - h2

 = 
670.54 - 209.9
3270.0 - 209.9   = 0.1505  

  m
.

6 = x m
.

5 = 0.1505 × 20 = 3 kg/s 

CV Turbine: s7 = s6 = s5 =>    x7 = 0.9493 , h7 = 2471.17 kJ/kg 

CV Condenser  

  qL = h7 - h1 = 2471.17 - 209.31 = 2261.86 kJ/kg 

The heat transfer out of the water from 7 to 1 goes into the river water 

  Q
.

L = (1 - x) m
.

qL = 0.85 × 20 × 2261.86 = 38 429 kW 

        = m
.

H2O ∆hH2O = m
.

H2O (hf25 - hf20) = m
.

 (20.93)  

   m
.

  = 38 429 / 20.93 = 1836 kg/s 



 
11.45 

 Consider an ideal steam regenerative cycle in which steam enters the turbine at 
3.0 MPa, 400°C, and exhausts to the condenser at 10 kPa. Steam is extracted from 
the turbine at 0.8 MPa for an open feedwater heater. The feedwater leaves the 
heater as saturated liquid. The appropriate pumps are used for the water leaving 
the condenser and the feedwater heater. Calculate the thermal efficiency of the 
cycle and the net work per kilogram of steam. 

Solution: 

This is a standard Rankine cycle with an open FWH as shown in Fig.11.10 

C.V Pump P1 

  wP1 = h2 - h1 = v1(P2 - P1) = 0.00101(800 - 10) = 0.798 kJ/kg 

  =>  h2 = h1 + wP1 = 191.81 + 0.798 = 192.61 kJ/kg 

C.V. FWH  Call m
.

6 / m
.

tot = x   (the extraction fraction) 

  (1 - x) h2 + x h6 = 1 h3  

  x = 
h3 - h2  
h6 - h2

 =  
721.1 - 192.61
2891.6 - 192.61  = 0.1958 

C.V Pump P2 

  wP2 = h4 - h3 = v3(P4 - P3) = 0.001115(3000 - 800) = 2.45 kJ/kg 

   h4 = h3 + wP2 = 721.1 + 2.45 = 723.55 kJ/kg 

CV Boiler:  qH = h5 - h4 = 3230.82 - 723.55 = 2507.3 kJ/kg 

CV Turbine  

  2nd Law s7 = s6 = s5 = 6.9211 kJ/kg K  

  P6 , s6   =>   h6 = 2891.6 kJ/kg (superheated vapor)  

   s7 = s6 = s5 = 6.9211    =>     x7 = 
6.9211 - 0.6492

7.501  = 0.83614 

    =>    h7 = 191.81 + x7 2392.82 = 2192.55 kJ/kg 

 Turbine has full flow in HP section and fraction 1-x  in LP section 

  W
.

T / m
.

5 =   h5 - h6 + (1 - x) (h6 - h7) 

  wT = 3230.82 – 2891.6 + (1 - 0.1988) ( 2891.6 – 2192.55) = 899.3 

 P2 has the full flow and P1 has the fraction 1-x of the flow 

  wnet = wT - (1 - x) wP1 - wP2      

          = 899.3 - (1 - 0.1988)0.798 – 2.45 = 896.2 kJ/kg 

  ηcycle = wnet / qH = 896.2 / 2507.3 = 0.357 



 
11.46 
 In one type of nuclear power plant, heat is transferred in the nuclear reactor to 

liquid sodium. The liquid sodium is then pumped through a heat exchanger where 
heat is transferred to boiling water. Saturated vapor steam at 5 MPa exits this heat 
exchanger and is then superheated to 600°C in an external gas-fired superheater. 
The steam enters the turbine, which has one (open-type) feedwater extraction at 
0.4 MPa. The isentropic turbine efficiency is 87%, and the condenser pressure is 
7.5 kPa. Determine the heat transfer in the reactor and in the superheater to 
produce a net power output of 1 MW. 

Solution: 

The complete cycle diagram is similar to Figure 11.8 except the boiler is sparated 
into a section heated by the reactor and a super heater section. 

 
 

1 

TURBINE

COND. 

FWH

P2 4 

2 3 

5 

6 

SUPER  
HEATER 

REACTOR

Q 
7 

8 

P1 
 

s 

1 

2 3 

4 5 

6 

8 

7
7.5 kPa

5 MPa

0.4 MPa

T

 
 

 

CV. Pump P1 

  wP1 = 0.001008(400 - 7.5) = 0.4 kJ/kg ;    

  h2 = h1 + wP1 = 168.8 + 0.4 = 169.2 kJ/kg 

CV. Pump P2 

  wP2 = 0.001084(5000 - 400) = 5.0 kJ/kg 

  h4 = h3 + wP2 = 604.7 + 5.0 = 609.7 kJ/kg 

C.V. Turbine (to get exit state properties) 

 s7 = s6 = 7.2589,   P7 = 0.4 MPa  =>   T7 = 221.2oC,   h7 = 2904.5 kJ/kg 

 s8 = s6 = 7.2589 = 0.5764 + x8 × 7.6750     x8 = 0.8707 

 h8 = 168.8 + 0.8707 × 2406.0 = 2263.7 kJ/kg 

CV: Feedwater heater FWH  (to get the extraction fraction  x7) 

 Divide the equations with the total mass flow rate m
.

3 = m
.

4 = m
.

5 = m
.

6 

 Continuity:  x2 + x7 = x3 = 1.0 ,    Energy Eq.:     x2h2 + x7h7 = h3 

   x7 = (604.7-169.2)/(2904.5-169.2) = 0.1592 



CV: Turbine (to get the total specific work) 

 Full flow from 6 to 7 and the fraction  (1 - x7) from 7 to 8. 

    wT = (h6 - h7) + (1 - x7)(h7 - h8) 

         = 3666.5-2904.5 + 0.8408(2904.5-2263.7) = 1300.8 kJ/kg 

CV: Pumps  (P1 has x1 = 1 - x7,     P2 has the full flow  x3 = 1) 

    wP = x1wP1 + x3wP2 = 0.8408 × 0.4 + 1 × 5.0 = 5.3 kJ/kg 

    wNET = 1300.8 - 5.3 = 1295.5   =>   m
.

 = 1000/1295.5 = 0.772 kg/s 

CV: Reactor (this has the full flow) 

    Q
.

REACT = m
.

(h5 - h4) = 0.772(2794.3 - 609.7) = 1686 kW 

CV: Superheater (this has the full flow) 

    Q
.

SUP = m
.

(h6 - h5) = 0.772 (3666.5 - 2794.3) = 673 kW 

 



 
11.47 

 A steam power plant has high and low pressures of 20 MPa and 10 kPa, and one 
open feedwater heater operating at 1 MPa with the exit as saturated liquid. The 
maximum temperature is 800°C and the turbine has a total power output of 5 
MW. Find the fraction of the flow for extraction to the feedwater and the total 
condenser heat transfer rate. 

The physical components and the T-s diagram is as shown in Fig. 11.10 in the 
main text for one open feedwater heater. The same state numbering is used. From 
the Steam Tables: 

 State 5:   (P, T)    h5 = 4069.8 kJ/kg,  s5 = 7.0544 kJ/kg K,  

 State 1:   (P, x = 0)   h1 = 191.81 kJ/kg,  v1 = 0.00101 m3/kg 

 State 3:   (P, x = 0)   h3 = 762.8 kJ/kg,  v3 = 0.001127 m3/kg 

Pump P1:  wP1 = v1(P2 - P1) = 0.00101 × 990 = 1 kJ/kg 

            h2 = h1 + wP1 = 192.81 kJ/kg 

Turbine 5-6:  s6 = s5   ⇒   h6 = 3013.7 kJ/kg 

  wT56 = h5 - h6 = 4069.8 – 3013.7 = 1056.1 kJ/kg 

Feedwater Heater (m
.

TOT = m
.

5):       xm
.

5h6 + (1 - x)m
.

5h2 = m
.

5h3 

  ⇒   x = 
h3 - h2

h6 - h2
 = 

762.8 - 192.81
3013.7 - 192.81 = 0.2021 

To get state 7 into condenser consider turbine. 

  s7 = s6 = s5  ⇒  x7 = (7.0544 - 0.6493)/7.5009 = 0.85391 

  h7 = 191.81 + 0.85391 × 2392.82 = 2235.1 kJ/kg 

Find specific turbine work to get total flow rate 

  W
.

T = m
.

TOTh5 - xm
.

TOTh6 - (1 - x)m
.

TOTh7 =  

        = m
.

TOT × (h5 - xh6 - (1 - x)h7) = m
.

TOT × 1677.3 

  m
.

TOT = 5000/1677.3 = 2.98 kg/s 

 Q
.

L = m
.

TOT (1-x) (h7-h1) = 2.98 × 0.7979(2235.1 - 191.81) = 4858 kW 

 



 
Closed Feedwater Heaters 
 
11.48 

 A closed feedwater heater in a regenerative steam power cycle heats 20 kg/s of 
water from 100°C, 20 MPa to 250°C, 20 MPa. The extraction steam from the 
turbine enters the heater at 4 MPa, 275°C, and leaves as saturated liquid. What is 
the required mass flow rate of the extraction steam? 

Solution: 

The schematic is from Figure 11.11 has the feedwater from the pump coming at 
state 2 being heated by the extraction flow coming from the turbine state 6 so the 
feedwater leaves as saturated liquid state 4 and the extraction flow leaves as 
condensate state 6a.   

 
 

24

6

6a
 

From table B.1                     h        kJ/kg 

  B.1.4:  100°C, 20 MPa      h2 = 434.06  

  B.1.4:  250°C, 20 MPa      h4 = 1086.75 

  B.1.3:  4 MPa, 275°C        h6 = 2886.2 

  B.1.2:  4 MPa, sat. liq.      h6a = 1087.31 

 

C.V. Feedwater Heater 

 Energy Eq.: m
.

2h2 + m
.

6h6 = m
.

2h4 + m
.

6h6a 

Since all four state are known we can solve for the extraction flow rate 

   m
.

6 = m
.

2 
h2 - h4
h6a - h6

 = 7.257 kg/s 

 



 
11.49 

 A power plant with one closed feedwater heater has a condenser temperature of 
45°C, a maximum pressure of 5 MPa, and boiler exit temperature of 900°C. 
Extraction steam at 1 MPa to the feedwater heater condenses and is pumped up to 
the 5 MPa feedwater line where all the water goes to the boiler at 200°C. Find the 
fraction of extraction steam flow and the two specific pump work inputs. 

Solution: 

 
 s1 = 0.6387 kJ/kg K,   

h1 = 188.45 kJ/kg 

v1 = 0.00101 m3/kg, 
s4 = 2.1387 kJ/kg K,   
h4 = 762.81 kJ/kg 
 
T6 =>  h6 = 853.9 kJ/kg 

From turbine 3
1

2

4

From
condenser

Pump 1

Pump 2

56

7

 
 

C.V. Turbine: Reversible, adiabatic so constant s from inlet to extraction point 

     s3 = sIN = 7.9593 kJ/kg K   =>    T3 = 573.8,    h3 = 3640.6 kJ/kg 

C.V. P1:   wP1 = v1(P2 - P1) = 5.04 kJ/kg  ⇒   h2 = h1 + wP1 = 193.49 kJ/kg 

C.V. P2:   wP2 = v4(P7 - P4) = 4.508 kJ/kg  ⇒   h7 = h4 + wP2 = 767.31 kJ/kg 

C.V. Total FWH and pumps:  

 The extraction fraction is: x = m
.

3/m
.

6  

 Continuity Eq.:     m
.

6 = m
.

1 + m
.

3 ,       1 = (1-x) + x 

 Energy:      (1 - x)(h1 + wP1) + x(h3 +wP2) = h6 

 x = 
h6 - h2

h3 + wP2 - h2
 = 

853.9 - 193.49
3640.6 + 4.508 - 193.49 = 0.1913 

  m
.

3/m
.

6  = x = 0.1913 

 



 
11.50 

 Repeat Problem 11.45, but assume a closed instead of an open feedwater heater. 
A single pump is used to pump the water leaving the condenser up to the boiler 
pressure of 3.0 MPa. Condensate from the feedwater heater is drained through a 
trap to the condenser. 

Solution: 

  

C.V. Turbine, 2nd law: 

s4 = s5 = s6 = 6.9211 kJ/kg K 

h4 = 3230.82  , h5 = 2891.6 

=>  x6 = (6.9211 - 0.6492)/7.501 

           = 0.83614 

h6 = 191.81 + x6 2392.82 

           =2192.55 kJ/kg 

 
P 
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Assume feedwater heater exit at the T of the condensing steam 

 C.V Pump 

  wP = h2 - h1 = v1(P2 - P1) = 0.00101(3000 - 10) = 3.02 kJ/kg 

   h2 = h1 + wP = 191.81 + 3.02 = 194.83 kJ/kg 

   T3 = Tsat (P5) = 170.43°C,   h3 = hf = h7 = 721.1 kJ/kg 

 C.V FWH 

  m
.

5 / m
.

3  = x ,     Energy Eq.:    h2 + x h5 = h3 + h7 x 

  x = 
 h3 - h2

 h5 - hf 800
 = 

721.1 - 194.83
2891.6 - 721.1  = 0.2425 

 Turbine work with full flow from 4 to 5 fraction 1-x flows from 5 to 6 

  wT = h4 - h5 + (1 - x)(h5 - h6) 

       = 3230.82 – 2891.6 + 0.7575 (2891.6 - 2192.55)  

       = 868.75 kJ/kg 

  wnet = wT - wP = 868.75 - 3.02 = 865.7 kJ/kg 

  qH = h4 - h3 = 3230.82 - 721.1 = 2509.7 kJ/kg 

  ηcycle = wnet / qH = 865.7 / 2509.7 = 0.345 

 



 
11.51 

 Do Problem 11.47 with a closed feedwater heater instead of an open and a drip 
pump to add the extraction flow to the feed water line at 20 MPa. Assume the 
temperature is 175°C after the drip pump flow is added to the line. One main 
pump brings the water to 20 MPa from the condenser. 

Solution: 

 v1 = 0.00101 m3/kg,    

h1 = 191.81 kJ/kg 

T4 = 175oC;  h4 = 751.66 kJ/kg 

h6a = hf 1MPa =  762.79 kJ/kg,  

 v6a = 0.001127 m3/kg 

From turbine

3

1

2

4

From
condenser

Pump 1

Pump 2

6

6b

6a  
 

 Turbine section 1: s6 = s5 = 7.0544 kJ/kg K  

    P6 = 1 MPa    =>   h6 = 3013.7 kJ/kg 

 C.V Pump 1 

  wP1 = h2 - h1 = v1(P2 - P1) = 0.00101(20 000 - 10) = 20.19 kJ/kg 

   =>   h2 = h1 + wP1 = 191.81 + 20.19 = 212.0 kJ/kg 

 C.V Pump 2 

 wP2 = h6b - h6a = v6a(P6b - P6a) = 0.001127(20 000 - 1000) = 21.41 kJ/kg 

 C.V FWH + P2   select the extraction fraction to be x = m
.

6 / m
.

4 

  x h6 + (1 - x) h2 + x (wP2) = h4  

  x = 
 h4 - h2

 h6 - h2 - wP2
 = 

751.66 - 212.0
3013.7 - 212.0 + 21.41  = 0.191 

 Turbine: s7 = s6 = s5  &   P7 = 10 kPa 

  =>   x7 = 
7.0544 - 0.6493

7.5009  = 0.85391 

   h7 = 191.81 + 0.85391 × 2392.82 = 2235.1 kJ/kg 

 wT =  [ h5 - h6 + (1 - x) (h6 - h7) ] 

       =  [ 4069.8 – 3013.7 + 0.809 (3013.7 - 2235.1)]  =  1686 kJ/kg 

 W
.

T = 5000 kW =  m
.

5 × wT = m
.

5 × 1686 kJ/kg     =>    m
.

5 = 2.966 kg/s 

 Q
.

L =  m
.

5(1 - x) (h7 - h1) = 2.966 × 0.809 (2235.1 - 191.81) = 4903 kW 



 
11.52 
  Assume the powerplant in Problem 11.43 has one closed feedwater heater instead 

of the open FWH. The extraction flow out of the FWH is saturated liquid at 2033 
kPa being dumped into the condenser and the feedwater is heated to 50oC. Find 
the extraction flow rate and the total turbine power output. 
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  State 1:   x1 = 0,  h1 = 298.25 kJ/kg, v1 = 0.001658 m3/kg 

  State 3:  h3 = hf + (P3–Psat)vf = 421.48 + (5000–2033)0.001777 = 426.75 kJ/kg 

  State 5:   h5 = 421.48 kJ/kg, s5 = 4.7306 kJ/kg K 

  State 6:   s6 = s5   =>    x6 = (s6 – sf)/sfg = 0.99052,    h6 = 1461.53 kJ/kg 

  State 6a:   x6a = 0   =>    h6a = 421.48 kJ/kg 

  State 7:   s7 = s5   =>    x7 = (s7 – sf)/sfg = 0.9236,    h7 = 1374.43 kJ/kg 

C.V Pump P1 

 wP1 = h2 - h1 = v1(P2 - P1) = 0.001658(5000 - 1003) = 6.627 kJ/kg 

  =>  h2 = h1 + wP1 = 298.25 + 6.627 = 304.88 kJ/kg 

C.V. Feedwater heater: Call    m
.

6 / m
.

tot = x   (the extraction fraction) 

 Energy Eq.: h2 + x h6 = 1 h3 + x h6a  

  x = 
h3 - h2

h6 - h6a
 =  

426.75 - 304.88
1461.53 - 421.48  = 0.1172 

  m
.

extr = x m
.

tot =  0.1172 × 5 = 0.586 kg/s 

  Total turbine work 

   W
.

T = m
.

tot(h5 – h6) + (1 – x)m
.

tot (h6 – h)  

          = 5(1586.3 – 1461.53) + (5 – 0.586)(1461.53 – 1374.43)  

               = 1008 kW 



 
Nonideal Cycles 
 
11.53 
 Steam enters the turbine of a power plant at 5 MPa and 400°C, and exhausts to the 

condenser at 10 kPa. The turbine produces a power output of 20 000 kW with an 
isentropic efficiency of 85%. What is the mass flow rate of steam around the 
cycle and the rate of heat rejection in the condenser? Find the thermal efficiency 
of the power plant and how does this compare with a Carnot cycle. 

Solution:     W
.

T = 20 000 kW   and    ηTs = 85 % 

State 3:         h3 = 3195.6 kJ/kg ,   s3 = 6.6458 kJ/kgK 

State 1:      P1 = P4 = 10 kPa , sat liq , x1 = 0  

   T1 = 45.8oC , h1 = hf = 191.8 kJ/kg , v1 = vf = 0.00101 m3/kg 

C.V Turbine : 1st Law:    qT + h3 = h4 + wT ;    qT = 0 

  wT = h3 - h4 , Assume Turbine is isentropic 

  s4s = s3 = 6.6458 kJ/kgK , s4s = sf + x4s sfg , solve for x4s = 0.7994 

  h4s = hf + x4shfg = 1091.0 kJ/kg 

  wTs = h3 - h4s = 1091 kJ/kg , wT = ηTswTs = 927.3 kJ/kg 

  m
.

 = 
W
.

T 
wT

 = 21.568 kg/s ,      h4 = h3 - wT = 2268.3 kJ/kg 

C.V. Condenser: 1st Law :    h4 = h1 + qc + wc  ;    wc = 0 

  qc = h4 - h1  = 2076.5 kJ/kg ,    Q
.

c = m
.

 qc = 44 786 kW 

C.V. Pump: Assume adiabatic, reversible and incompressible flow 

  wps = ∫ v dP = v1(P2 - P1) = 5.04 kJ/kg  

  1st Law :  h2 = h1 + wp = 196.8 kJ/kg 

C.V Boiler : 1st Law :      qB + h2 = h3 + wB ; wB = 0 

  qB = h3 - h2 = 2998.8 kJ/kg  

  wnet = wT - wP = 922.3 kJ/kg 

  ηth = wnet / qB = 0.307 

Carnot cycle :    TH = T3 = 400oC , TL = T1 = 45.8oC  

  ηth = 
TH - TL  

TH
 = 0.526 



 
11.54 

 A steam power plant has a high pressure of 5 MPa and maintains 50°C in the 
condenser. The boiler exit temperature is 600°C. All the components are ideal 
except the turbine which has an actual exit state of saturated vapor at 50°C. Find 
the cycle efficiency with the actual turbine and the turbine isentropic efficiency. 

Solution: 

A standard Rankine cycle with an actual non-ideal turbine. 

Boiler exit:    h3 = 3666.5 kJ/kg,     s3 = 7.2588 kJ/kg K 

Ideal Turbine:    4s:  50°C,  s = s3 =>  x = (7.2588 - 0.7037)/7.3725 = 0.88913, 

    h4s = 209.31 + 0.88913 × 2382.75 = 2327.88 kJ/kg 

    =>    wTs = h3 - h4s = 1338.62 kJ/kg 

Condenser exit: h1 = 209.31 ,    Actual turbine exit:   h4ac = hg = 2592.1 

Actual turbine: wTac = h3 - h4ac = 1074.4 kJ/kg 

  ηT = wTac / wTs = 0.803:  Isentropic Efficiency 

Pump:  wP = v1( P2 - P1) = 0.001012(5000-12.35) = 5.05 kJ/kg 

  h2 = h1 + wP = 209.31 + 5.05 = 214.36 kJ/kg 

  qH = h3 - h2 = 3666.5 - 214.36 = 3452.14 kJ/kg 

  ηcycle = (wTac - wP) / qH = 0.31:  Cycle Efficiency 



 
11.55 

 A steam power cycle has a high pressure of 3.0 MPa and a condenser exit 
temperature of 45°C. The turbine efficiency is 85%, and other cycle components 
are ideal. If the boiler superheats to 800°C, find the cycle thermal efficiency. 

Solution: 

Basic Rankine cycle as shown in Figure 11.3 in the main text. 

C.V. Turbine:   wT = h3 - h4,     s4 = s3 + sT,GEN 

  Ideal Table B.1.3:  s4 = s3 = 7.9862  kJ/kg K    

   =>  x4s = (7.9862 – 0.6386)/7.5261 = 0.9763 

  h4s = hf + x hfg = 188.42 + 0.9763 × 2394.77 = 2526.4 kJ/kg 

  wTs = h3 - h4s = 4146 – 2526.4 = 1619.6 kJ/kg 

 Actual:  wT,AC = η × wT,S = 0.85 × 1619.6 = 1376.66 kJ/kg 

C.V. Pump:    wP = ∫ v dP  ≈  v1(P2 - P1) = 0.00101 (3000 - 9.6) = 3.02 kJ/kg 

  h2 = h1 + wP = 188.42 + 3.02 = 191.44 kJ/kg 

C.V. Boiler:    qH = h3 - h2 = 4146 – 191.44 = 3954.6 kJ/kg 

  η = (wT,AC - wP)/qH = (1376.66 – 3.02)/3954.6 = 0.347 

 
 P

v1

2 3

4s

4ac

 

T

s1

2

3

4s

4ac

 
 



 
11.56 

 A steam power plant operates with with a high pressure of 5 MPa and has a boiler 
exit temperature of of 600°C receiving heat from a 700°C source. The ambient at 
20°C provides cooling for the condenser so it can maintain 45°C inside. All the 
components are ideal except for the turbine which has an exit state with a quality 
of 97%. Find the work and heat transfer in all components per kg water and the 
turbine isentropic efficiency. Find the rate of entropy generation per kg water in 
the boiler/heat source setup. 

Solution: 

Take CV around each component steady state in standard Rankine Cycle. 

 1:  v = 0.00101; h = 188.42,  s = 0.6386 (saturated liquid at 45°C). 

 3:  h = 3666.5 kJ/kg,   s = 7.2588 kJ/kg K   superheated vapor 

 4ac:  h = 188.42 + 0.97 × 2394.8 = 2511.4 kJ/kg 

CV Turbine:  no heat transfer q = 0 

  wac = h3 - h4ac = 3666.5 - 2511.4 = 1155.1 kJ/kg 

 Ideal turbine: s4 =  s3 = 7.2588   =>    x4s = 0.88,    h4s = 2295 kJ/kg 

  ws = h3 - h4s = 3666.5 - 2295 = 1371.5 kJ/kg, 

  Eff = wac / ws = 1155.1 / 1371.5 = 0.842 

CV Condenser:  no shaft work w = 0 

  qout = h4ac - h1 = 2511.4 - 188.42 = 2323 kJ/kg 

CV Pump:  no heat transfer, q = 0 incompressible flow so v = constant 

  w = v(P2- P1) = 0.00101(5000-9.59) = 5.04 kJ/kg 

CV Boiler:  no shaft work, w = 0 

  qH = h3 - h2 = h3 - h1 - wP = 3666.5 - 188.42 -5.04 = 3473 kJ/kg 

  s2 + (qH/ TH) + sGen = s3  and   s2 = s1 (from pump analysis) 

  sgen = 7.2588 - 0.6386 - 3473/(700+273) = 3.05 kJ/kg K 

 



 
11.57 

 For the steam power plant described in Problem 11.21, assume the isentropic 
efficiencies of the turbine and pump are 85% and 80%, respectively. Find the 
component specific work and heat transfers and the cycle efficiency. 

Solution: 

This is a standard Rankine cycle with actual non-ideal turbine and pump. 

CV Pump, Rev & Adiabatic: 

 w
Ps

 = h
2s

 - h
1
 = v

1
(P2 - P

1
) = 0.00101(3000 - 10) = 3.02 kJ/kg;    s

2s
 = s

1
 

 w
Pac

 = w
Ps

 / η
P
 = 3.02/0.8 = 3.775 kJ/kg = h

2a
 - h

1
 

  h
2a

 = w
Pac

 + h
1
 = 3.775 + 191.81 = 195.58 kJ/kg 

CV Boiler:     q
H

 = h
3
 - h

2a
 = 2804.14 – 195.58 = 2608.56 kJ/kg 

C.V. Turbine :   wT =  h3 - h4  ;   s4 =  s3 

 s4 = s3 = 6.1869 = 0.6492 + x4 (7.501)   =>   x4 = 0.7383 

 =>  h4 = 191.81 + 0.7383 (2392.82) = 1958.34 kJ/kg 

  w
Ts

 = 2804.14 - 1958.34 = 845.8 kJ/kg 

   w
Tac

 = w
Ts

 × η
T
 = 718.9 = h

3
 - h

4a
 

  h
4a

 = h
3
 - w

Tac
 = 2804.14 - 718.9 = 2085.24 kJ/kg 

CV Condenser: q
L
 = h

4a
 - h

1
 = 2085.24 - 191.81 = 1893.4 kJ/kg 

  η
cycle

 = (w
Tac

 - w
Pac

) / q
H

 = (718.9 – 3.78) / 2608.56 = 0.274 

 This compares to 0.32 for the ideal case. 
 

 

Q

WT

3

2 4

1
Condenser

Boiler
Turbine

WP

QB

 

  

T

s

1

2

3

4s 4ac

 
state 2s and 2ac nearly the same 

 



 
11.58 

 A small steam power plant has a boiler exit of 3 MPa, 400°C while it maintains 
50 kPa in the condenser. All the components are ideal except the turbine which 
has an isentropic efficiency of 80% and it should deliver a shaft power of 9.0 MW 
to an electric generator. Find the specific turbine work , the needed flow rate of 
steam and the cycle efficiency. 

   

Solution: 

This is a standard Rankine cycle with an actual non-ideal turbine. 

CV Turbine (Ideal): 

 s
4s

 = s
3
 = 6.9211 kJ/kg K,   x

4s
 = (6.9211 - 1.091)/6.5029 = 0.8965 

 h
4s

 = 2407.35 kJ/kg,   h
3
 = 3230.8 kJ/kg  

     =>   w
Ts

 = h
3
 - h

4s
 = 823.45 kJ/kg 

CV Turbine (Actual): 

  w
Tac

 = η
T
 × w

Ts
 = 658.76 = h

3
 - h

4ac
,   =>   h

4ac
 = 2572 kJ/kg 

  m
.

 = W
.

 / w
Tac

 = 9000/658.76 = 13.66 kg/s 

C.V. Pump: 

  w
P
 = h2 - h1 = v1(P2 - P1) = 0.00103 (3000 - 50) = 3.04 kJ/kg  

      =>  h2 = h1 + w
P
 = 340.47 + 3.04 = 343.51 kJ/kg 

C.V. Boiler: qH = h3 - h2 = 3230.8 - 343.51 = 2887.3 kJ/kg 

  η
cycle

 = (w
Tac

 - w
P
) / q

H
 = (658.76 - 3.04) / 2887.3 = 0.227 

 



 
11.59 

 Repeat Problem 11.47 assuming the turbine has an isentropic efficiency of 85%. 

The physical components and the T-s diagram is as shown in Fig. 11.10 in the 
main text for one open feedwater heater. The same state numbering is used. From 
the Steam Tables: 

 State 5:   (P, T)    h5 = 4069.8 kJ/kg,  s5 = 7.0544 kJ/kg K,  

 State 1:   (P, x = 0)   h1 = 191.81 kJ/kg,  v1 = 0.00101 m3/kg 

 State 3:   (P, x = 0)   h3 = 762.8 kJ/kg,  v3 = 0.001127 m3/kg 

Pump P1:  wP1 = v1(P2 - P1) = 0.00101 × 990 = 1 kJ/kg 

            h2 = h1 + wP1 = 192.81 kJ/kg 

Turbine 5-6:  s6 = s5   ⇒   h6 = 3013.7 kJ/kg 

   wT56,s = h5 - h6 = 4069.8 – 3013.7 = 1056.1 kJ/kg 

      ⇒   wT56,AC = 1056.1 × 0.85 = 897.69 kJ/kg 

 wT56,AC = h5 - h6AC   ⇒   h6AC = h5 - wT56,AC  

    = 4069.8 - 897.69 = 3172.11 kJ/kg 

Feedwater Heater (m
.

TOT = m
.

5):       xm
.

5h6AC + (1 - x)m
.

5h2 = m
.

5h3 

  ⇒   x = 
h3 - h2

h6 - h2
 = 

762.8 - 192.81
3172.11 - 192.81 = 0.1913 

To get the turbine work apply the efficiency to the whole turbine. (i.e. the first 
section should be slightly different). 

 s7s = s6s = s5   ⇒   x7s = (7.0544 – 0.6493)/7.5009 = 0.85391,    

  h7s = 191.81 + 0.85391 × 2392.82 = 2235.1 kJ/kg 

 wT57,s = h5 - h7s = 4069.8 - 2235.1 = 1834.7 kJ/kg 

 wT57,AC = wT57,sηT = 1559.5 = h5 - h7AC    =>   h7AC = 2510.3 kJ/kg 

Find specific turbine work to get total flow rate 

m
.

TOT = 
W
.

T

xwT56 + (1-x)wT57
  = 

5000
0.1913×897.69 + 0.8087×1559.5

 = 3.489 kg/s 

 Q
.

L = m
.

TOT(1 - x)(h7 - h1) = 3.489 × 0.8087(2510.3 - 191.81) = 6542 kW 



 
11.60 

 Steam leaves a power plant steam generator at 3.5 MPa, 400°C, and enters the 
turbine at 3.4 MPa, 375°C. The isentropic turbine efficiency is 88%, and the 
turbine exhaust pressure is 10 kPa. Condensate leaves the condenser and enters 
the pump at 35°C, 10 kPa. The isentropic pump efficiency is 80%, and the 
discharge pressure is 3.7 MPa. The feedwater enters the steam generator at 3.6 
MPa, 30°C. Calculate the thermal efficiency of the cycle and the entropy 
generation for the process in the line between the steam generator exit and the 
turbine inlet, assuming an ambient temperature of 25°C. 

 
 

ST. 
GEN.

3 
6 

COND. 

TURBINE.

1 
2 

P 

4 
5 

η = 0.88

 

T 

s 

400 C 
375 C 

2 

5s

o 

o 

6 4 3s 3

5

3.5 MPa
3.4 MPa

10 kPa

1

 

 

1:   h1 = 3222.3 kJ/kg,    s1 = 6.8405 kJ/kg K,   

2:    h2 = 3165.7 kJ/kg,    s2 = 6.7675 kJ/kg K 

3s:   s3S = s2   ⇒   x3S = 0.8157, h3S = 2143.6 kJ/kg 

 wT,S = h2 - h3S = 3165.7 - 2143.6 = 1022.1 kJ/kg 

 wT,AC = ηwT,S = 899.4 kJ/kg,      3ac:    h3 = h2 - wT,AC = 2266.3 kJ/kg 

 -wP,S = vf(P5 - P4) = 0.001006(3700 - 10) = 3.7 kJ/kg 

 -wP,AC = -wP,S/ηP = 4.6 kJ/kg 

 qH = h1 - h6 = 3222.3 - 129.0 = 3093.3 kJ/kg 

 η = wNET/qH = (899.4 - 4.6)/3093.3 = 0.289 

C.V. Line from 1 to 2:        w = /0,   

 Energy Eq.:    q = h2 - h1 = 3165.7 - 3222.3 = - 56.6 kJ/kg 

 Entropy Eq.:   s1 + sgen + q/T0 = s2    => 

     sgen = s2 - s1 -q/T0 = 6.7675 - 6.8405 - (-56.6/298.15) = 0.117 kJ/kg K 

 



 
11.61 
 In a particular reheat-cycle power plant, steam enters the high-pressure turbine at 

5 MPa, 450°C and expands to 0.5 MPa, after which it is reheated to 450°C. The 
steam is then expanded through the low-pressure turbine to 7.5 kPa. Liquid water 
leaves the condenser at 30°C, is pumped to 5 MPa, and then returned to the steam 
generator. Each turbine is adiabatic with an isentropic efficiency of 87% and the 
pump efficiency is 82%. If the total power output of the turbines is 10 MW, 
determine the mass flow rate of steam, the pump power input and the thermal 
efficiency of the power plant. 

  

T 

s 

2 

3 

6 

4 4S

6S

450 C 
o 

2S

5 

1 

5 MPa

0.5 MPa

7.5 kPa

 
P 

1 

2 

4 

5 

6 

COND. 

3 

HP LP  
TURBINE.

η SP= 0.82

η η 
ST1 ST2 = 0.87= 

 
a)   s4S = s3 = 6.8185 = 1.8606 + x4S × 4.9606   =>     x4S = 0.999 

    h4S = 640.21 + 0.999 × 2108.5 = 2746.6 kJ/kg 

    wT1,S = h3 - h4S = 3316.1 - 2746.6 = 569.5 kJ/kg 

    wT1 = ηT1,S × wT1,S = 0.87 × 569.5 = 495.5 kJ/kg 

    h4ac = 3316.1 - 495.5 = 2820.6 kJ/kg 

    s6S = s5 = 7.9406 = 0.5764 + x6S × 7.675    ⇒    x6S = 0.9595 

    h6S = 168.79 + 0.9595 × 2406 = 2477.3 kJ/kg 

    wT2,S = h5 - h6S = 3377.9 - 2477.3 = 900.6 kJ/kg 

    wT2 = 0.87 × 900.6 = 783.5 kJ/kg 

    m
.

 = W
.

T/(wT1 + wT2) = 10000/(783.5 + 495.5) = 7.82 kg/s 

b)     -wP,S = (0.001004)(5000 - 7.5) = 5.01 kJ/kg 

    -wP = -wSP/ηSP = 5.01/0.82 = 6.11 kJ/kg 

    W
.

P = wPm
.

 = -7.82 × 6.11 = -47.8 kW 

c)      qH = (h3 - h2) + (h5 - h4) = 3316.1 - 130.2 + 3377.9 - 2820.6 = 3743.2 kJ/kg 

    wN = 1279.0 - 6.11 = 1272.9 kJ/kg 

    ηTH = wN/qH = 1272.9/3743.2 = 0.34 



 
11.62 
 A supercritical steam power plant has a high pressure of 30 MPa and an exit 

condenser temperature of 50°C. The maximum temperature in the boiler is 
1000°C and the turbine exhaust is saturated vapor There is one open feedwater 
heater receiving extraction from the turbine at 1MPa, and its exit is saturated 
liquid flowing to pump 2. The isentropic efficiency for the first section and the 
overall turbine are both 88.5%. Find the ratio of the extraction mass flow to total 
flow into turbine. What is the boiler inlet temperature with and without the 
feedwater heater? 

 
 

 
Basically a Rankine Cycle 
1:    50°C,   12.35 kPa, 
       h = 209.31 kJ/kg,   s = 0.7037 kJ/kg K 
2:    30 MPa 
3:    30 MPa,  1000 °C, 
       h = 4554.7 kJ/kg,   s = 7.2867 kJ/kg K 
4AC: 50°C,   x = 1,   h = 2592.1 kJ/kg    

1 

T 3 

2 

s 

4s

30 MPa

1000 C

50 C

1 MPa 

1a
1b

2b

3b
3a

4ac 
 

a) C.V. Turbine Ideal:  s4S = s3  ⇒  x4S = 0.8929,  

    h4S = 2336.8 kJ/kg    =>  wT,S = h3 - h4S = 2217.86 kJ/kg 

    Actual:  wT,AC = h3 - h4AC = 1962.6 kJ/kg,  η = wT,AC/wT,S = 0.885 
 
 b) 

1a 1 P1

1b
3b

P2

m 

tot 

1 

2b m 

 

1b:   Sat liq. 179.91°C, h = 762.81 kJ/kg 
3a:   1 MPa, s = s3 -> h3a = 3149.09 kJ/kg,  
       T3a = 345.96 -> wT1s = 1405.6 kJ/kg 

3b:  1 MPa, wT1ac = ηwT1s = 1243.96 kJ/kg 
        wT1ac = h3-h3b => h3b = 3310.74 kJ/kg 
1a:   wP1 = v1(P1a-P1) ≈ 1 kJ/kg 
        h1a = h1 + wP1 = 210.31 kJ/kg 

C.V. Feedwater Heater:  m
.

TOTh1b = m
.

1h3b + (m
.

TOT - m
.

1)h1a 

    ⇒  m
.

1/m
.

TOT = x = (h1b - h1a)/(h3b - h1a) = 0.178 

c) C.V. Turbine:  (m
.

TOT)3 = (m
.

1)3b + (m
.

TOT - m
.

1)4AC 

    W_ T = m
.

TOTh3 - m
.

1h3b - (m
.

TOT - m
.

1)h4AC = 25 MW = m
.

TOTwT 

    wT = h3-xh3b - (1-x)h4AC = 1834.7 kJ/kg       =>  m
.

TOT = 13.63 kg/s 

d) C.V. No FWH, Pump Ideal:    wP = h2S -  h1,  s2S = s1 

    Steam table ⇒  h2S = 240.1 kJ/kg,   T2S = 51.2°C 

        1 FWH, CV: P2.   s2b = s1b = 2.1386 kJ/kg K   =>  T2b = 183.9°C  



 
Cogeneration 
 
11.63 
 A cogenerating steam power plant, as in Fig. 11.13, operates with a boiler output 

of  25 kg/s steam at 7 MPa, 500°C. The condenser operates at 7.5 kPa and the 
process heat is extracted as 5 kg/s from the turbine at 500 kPa, state 6 and after 
use is returned as saturated liquid at 100 kPa, state 8. Assume all components are 
ideal and find the temperature after pump 1, the total turbine output and the total 
process heat transfer. 

Solution: 

Pump 1:   Inlet state is saturated liquid:    h1 = 168.79 kJ/kg,  v1 = 0.001008 m3/kg 

 wP1 = ∫ v dP = v1 ( P2 - P1) = 0.001008( 100 - 7.5) = 0.093 kJ/kg 

  wP1 = h2 - h1 => h2 = h1 + wP1 = 168.88 kJ/kg,   T2 = 40.3°C 

Turbine:    h5 = 3410.3 kJ/kg,   s5 = 6.7974 kJ/kg K 

 P6, s6 = s5  =>  x6 = 0.9952,   h6 = 2738.6 kJ/kg 

 P7, s7 = s5  =>  x7 = 0.8106,   h7 = 2119.0 kJ/kg 

From the continuity equation we have the full flow from 5 to 6 and the remainder 
after the extraction flow is taken out flows from 6 to 7. 

 W
.

T = m
.

5 ( h5 - h6) + 0.80m
.

5 ( h6 - h7) = 25 (3410.3 - 2738.6)  

  + 20 (2738.6 - 2119) = 16 792.5 + 12 392 = 29.185 MW 

 Q
.

proc = m
.

6(h6 - h8) = 5(2738.6 - 417.46) = 11.606 MW 
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11.64 

 A 10 kg/s steady supply of saturated-vapor steam at 500 kPa is required for drying 
a wood pulp slurry in a paper mill. It is decided to supply this steam by 
cogeneration, that is, the steam supply will be the exhaust from a steam turbine. 
Water at 20°C, 100 kPa, is pumped to a pressure of 5 MPa and then fed to a steam 
generator with an exit at 400°C. What is the additional heat transfer rate to the 
steam generator beyond what would have been required to produce only the 
desired steam supply? What is the difference in net power? 

Solution: 

Desired exit State 4: P4 = 500 kPa, sat. vap.  =>  x4 = 1.0, T4 = 151.9°C 

  h4 = hg = 2748.7 kJ/kg,   s4 = sg = 6.8212 kJ/kg-K 

Inlet State:  20°C, 100 kPa  h1 = hf = 83.94 kJ/kg,  v1 = vf = 0.001002 m3/kg 

Without Cogeneration;  The water is pumped up to 500 kPa and then heated in 
the steam generator to the desired exit T. 

 C.V. Pump:    wPw/o = v1( P4- P1) = 0.4 kJ/kg 

   h2 = h1 + wPw/o = 84.3 kJ/kg 

 C.V. Steam Generator:    qw/o = h4 - h2 = 2664.4 kJ/kg 

With Cogeneration;  The water is pumped to 5 MPa, heated in the steam 
generator to 400°C and then flows through the turbine with desired exit state. 

 C.V. Pump:    wPw = ∫ vdP = v1( P2- P1) = 4.91 kJ/kg 

   h2 = h1 + wPw = 88.85 kJ/kg 

 C.V. Steam Generator:   Exit 400°C, 5 MPa   =>    h3 = 3195.64 kJ/kg 

   qw = h3 - h2 = 3195.64 - 88.85 = 3106.8 kJ/kg 

 C.V.:  Turbine, Inlet and exit states given 

  wt = h3 - h4 = 3195.64 - 2748.7 = 446.94 kJ/kg 

Comparison 

 Additional Heat Transfer: qw - qw/o = 3106.8 - 2664.4 = 442.4 kJ/kg 

   Q
.

extra = m
.

(qw - qw/o) = 4424 kW 

 Difference in Net Power: wdiff = (wt - wPw) + wPw/o, 

  wdiff = 446.94 - 4.91 + 0.4 = 442.4 kJ/kg 

  W
.

diff = m
.

wdiff = 4424 kW 

  By adding the extra heat transfer at the higher pressure and a turbine all the 
extra heat transfer can come out as work (it appears as a 100% efficiency) 

 



 
11.65 
 In a cogenerating steam power plant the turbine receives steam from a high-

pressure steam drum and a low-pressure steam drum as shown in Fig. P11.65. The 
condenser is made as two closed heat exchangers used to heat water running in a 
separate loop for district heating. The high-temperature heater adds 30 MW and 
the low-temperature heaters adds 31 MW to the district heating water flow. Find 
the power cogenerated by the turbine and the temperature in the return line to the 
deaerator. 

 Solution: 
 
 Inlet states from Table B.1.3 

    h1 = 3445.9 kJ/kg,    s1 = 6.9108 kJ/kg K 

    h2 = 2855.4 kJ/kg,    s2 = 7.0592 kJ/kg K 

    m
.

TOT = m
.

1 + m
.

2 = 27 kg/s  

Assume a reversible turbine and the 

two flows can mix without s generation. 

3 4 

1 

2 

T 
.
W

Turbine

 

Energy Eq.6.10:           m
.

1h1 + m
.

2h2 = m
.

3h3 + m
.

4h4 + W
.

T 

Entropy Eq.9.7:           m
.

1s1 + m
.

2s2 = m
.

TOTsmix    ⇒    sMIX = 6.9383 kJ/kg K 

State 3:  s3 = sMIX   ⇒   h3 = 2632.4 kJ/kg,  x3 = 0.966 

State 4:  s4 = sMIX   ⇒   h4 = 2413.5 kJ/kg,  x4 = 0.899 

  W
.

T = 22 × 3445.9 + 5 × 2855.4 - 13 × 2632.4 - 14 × 2413.5 

        = 22 077 kW = 22 MW 

District heating line      Q
.

TOT = m
.

(h95 - h60) = 60 935 kW 

  OK, this matches close enough 

C.V. Both heaters:   m
.

3h3 + m
.

4h4 - Q
.

TOT = m
.

TOThEX 

 13 × 2632.4 - 14 × 2413.5 – 60 935 = 7075.2 = 27 × hEX 

 hEX = 262 ≈ hf   ⇒   TEX = 62.5°C 
 



 
11.66 
 A boiler delivers steam at 10 MPa, 550°C to a two-stage turbine as shown in Fig. 

11.17. After the first stage, 25% of the steam is extracted at 1.4 MPa for a process 
application and returned at 1 MPa, 90°C to the feedwater line. The remainder of 
the steam continues through the low-pressure turbine stage, which exhausts to the 
condenser at 10 kPa. One pump brings the feedwater to 1 MPa and a second pump 
brings it to 10 MPa. Assume the first and second stages in the steam turbine have 
isentropic efficiencies of 85% and 80% and that both pumps are ideal. If the 
process application requires 5 MW of power, how much power can then be 
cogenerated by the turbine? 

 Solution: 
 
 5:   h

5
 = 3500.9, s

5
 = 6.7567 kJ/kg K 

First ideal turbine T1 

6s:  s
6S

 = s
5
 ⇒  h

6S
 = 2932.1 kJ/kg 

        w
T1,S

 = h
5
 - h

6S
 = 568.8 kJ/kg 

Now the actual turbine T1 

        ⇒   w
T1,AC

 = 483.5 kJ/kg 

       h
6AC

 = h
5
 - w

T1,AC
 = 3017.4 

6ac: P
6
, h

6AC
 ⇒ s

6AC
 = 6.9129 kJ/kg K 

 

P2

P1
C1

2

8

4

3

5

6

7

T1 T2
Boiler
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heat

5 MW

 

First ideal turbine T2 (it follows the actual T1) 
State 7s:   s

7S
 = s

6AC
      ⇒      h

7S
 = 2189.9 kJ/kg 

         w
T2,S

 = h
6AC

 - h
7S

 = 827.5 kJ/kg 

 w
T2,AC

 = ηw
T2,S

 = 622 = h
6AC

 - h
7AC

       ⇒      h
7AC

 = 2355.4 kJ/kg 

Now do the process heat requirement 

 8: h
8
 = 377.6 kJ/kg,      q

PROC
 = h

6AC
 - h

8
 = 2639.8 kJ/kg 

   m
.

6
 = Q

.
/q

PROC
 = 5000/2639.8 = 1.894 kg/s = 0.25 m

.
TOT

   

        ⇒   m
.

TOT
 = m

.
5
 = 7.576 kg/s,  m

.
7
 = m

.
5
 - m

.
6
 = 5.682 kg/s 

    W
.

T
 = m

.
5
h

5
 - m

.
6
h

6AC
 - m

.
7
h

7AC
 = 7424 kW 

 



 
11.67 
 A smaller power plant produces 25 kg/s steam at 3 MPa, 600 C, in the boiler. It 

cools the condenser to an exit of 45C and the cycle is shown in Fig. P11.67. There  
is an extraction done at 500 kPa to an open feedwater heater, and in addition a 
steam supply of 5 kg/s is taken out and not returned. The missing 5 kg/s water is 
added to the feedwater heater from a 20C, 500 kPa source. Find the needed 
extraction flow rate to cover both the feedwater heater and the steam supply. Find 
the total turbine power output. 
Solution: 
The states properties from Tables B.1.1 and B.1.3 

 1: 45oC,  x = 0:  h1 = 188.42 kJ/kg,  v1 = 0.00101 m3/kg,  Psat = 9.59 kPa 

 5: 3.0 MPa,  600oC:     h5 = 3682.34 kJ/kg,    s5 = 7.5084 kJ/kg K  

 3: 500 kPa, x = 0:     h3 = 640.21 kJ/kg           8:   h8 = 84.41 kJ/kg   

       6: 500 kPa,  s6 = s5  from HP turbine,   h6 = 3093.26 kJ/kg 

C.V. Pump 1. Reversible and adiabatic. Incompressible so v = constant 

 Energy:      wp1 = h2 - h1 = ∫ v dP = v1(P2 - P1) 

   = 0.00101 (500 - 9.6) = 0.495 kJ/kg  

       h2 = h1 + wp1 = 188.42 + 0.495 = 188.915 kJ/kg 
C.V. Turbine sections 

 Entropy Eq.: s7 = s5 = 7.5084 kJ/kg K  =>    two-phase state 

  s7 = 7.5084 = 0.6386 + x7 × 7.5261   ⇒    x7 = 0.9128 

   h7 = 188.42 + 0.9128 × 2394.77 = 2374.4 kJ/kg 

C.V. Feedwater heater, including the make-up water flow,  x = m
.

6/m
.

5. 

Energy eq.:     m
.

8h8 + (m
.

5 - m
.

6)h2 + (m
.

6 - m
.

8)h6 = m
.

5h3 

Divide by m
.

5 and solve for x 

 x = 
h3 - h2 + (h6 - h8) m

.
8/ m

.
5

h6 - h2
 = 

640.21 - 188.915 + (3093.26 - 84.41)5/25
3093.26 - 188.915  

    = 0.3626 

 m
.

6 = x m
.

5 = 0.3626 × 25 = 9.065 kg/s    

C.V. Turbine energy equation 

 W
.

T
 = m

.
5
h

5
 - m

.
6
h

6
 - m

.
7
h

7
  

      = 25 × 3682.34 – 9.065 × 3093.26 – 16.935 × 2374.4 

       = 26 182 kW 



 
Brayton Cycles, Gas Turbines 

 
11.68 

 Consider an ideal air-standard Brayton cycle in which the air into the compressor 
is at 100 kPa, 20°C, and the pressure ratio across the compressor is 12:1. The 
maximum temperature in the cycle is 1100°C, and the air flow rate is 10 kg/s. 
Assume constant specific heat for the air, value from Table A.5. Determine the 
compressor work, the turbine work, and the thermal efficiency of the cycle. 

Solution: 

 

1 

2 3 

4 

P

v

s
s

 
1 

2 

3 

4 
P 

P = 100 kPa 

T

s
 

Compression ratio 

       
P2

P1
 = 12 

Max temperature 
    T3 = 1100oC 

m
.

 = 10 kg/s 

 

The compression is reversible and adiabatic so  constant s. From Eq.8.32 

  T2 = T1





P2

P1

k-1
k  = 293.2(12)0.286 = 596.8 K 

Energy equation with compressor work in 

    wC = -1w2 = CP0(T2 - T1) = 1.004(596.8 - 293.2) = 304.8 kJ/kg 

The expansion is reversible and adiabatic so  constant s. From Eq.8.32 

    T4 = T3





P4

P3

k-1
k  = 1373.2



1

12
0.286

 = 674.7 K 

Energy equation with turbine work out 

    wT = CP0(T3 - T4) = 1.004(1373.2 - 674.7) = 701.3 kJ/kg 

Scale the work with the mass flow rate 

    W
.

C = m
.

wC = 3048 kW,      W
.

T = m
.

wT = 7013 kW 

Energy added by the combustion process 

    qH = CP0(T3 - T2) = 1.004(1373.2 - 596.8) = 779.5 kJ/kg 

    ηTH = wNET/qH = (701.3 - 304.8)/779.5 = 0.509 



 
11.69 

 Repeat Problem 11.68, but assume variable specific heat for the air, table A.7. 
Consider an ideal air-standard Brayton cycle in which the air into the compressor 
is at 100 kPa, 20°C, and the pressure ratio across the compressor is 12:1. The 

maximum temperature in the cycle is 1100
o
C, and the air flow rate is 10 kg/s. 

Assume constant specific heat for the air, value from Table A.5. Determine the 
compressor work, the turbine work, and the thermal efficiency of the cycle. 

Solution: 

From A.7:     h1 = 293.6 kJ/kg,     s
o
T1 = 6.84597 kJ/kg K 

The compression is reversible and adiabatic so constant s. From Eq.8.28 

  s2 = s1   ⇒    s
o
T2 = s

o
T1 + Rln(P2/P1) = 6.84597 + 0.287ln12 = 7.55914 

       ⇒  T2 = 590 K,   h2 = 597.2 kJ/kg 

Energy equation with compressor work in 

    wC = -1w2 = h2 - h1 = 597.2 - 293.6 = 303.6 kJ/kg 

The expansion is reversible and adiabatic so  constant s. From Eq.8.28 

    From A.7:    h3 = 1483.1,    s
o
T3 = 8.50554 

  s4 = s3  ⇒  s
o
T4 = s

o
T3 + Rln(P4/P3) = 8.50554 + 0.287ln(1/12) = 7.79237 

      ⇒  T4 = 734.8 K,   h4 = 751.1 kJ/kg 

Energy equation with turbine work out 

    wT = h3 - h4 = 1483.1 - 751.1 = 732 kJ/kg 

Scale the work with the mass flow rate 

      ⇒  W
.

C = m
.

wC = 3036 kW,     W
.

T = m
.

wT = 7320 kW 

Energy added by the combustion process 

    qH = h3 - h2 = 1483.1 - 597.2 = 885.9 kJ/kg 

    wNET = wT - wC = 732 - 303.6 = 428.4 kJ/kg 

    ηTH = wNET/qH = 428.4/885.9 = 0.484 

 



 
11.70 

 A Brayton cycle inlet is at 300 K, 100 kPa and the combustion adds 670 kJ/kg. 
The maximum temperature is 1200 K due to material considerations. What is the 
maximum allowed compression ratio? For this calculate the net work and cycle 
efficiency assuming variable specific heat for the air, table A.7. 

 

Solution: 

Combustion: h3 = h2 + qH;      2w3 = 0   and   Tmax = T3 = 1200 K 

 h2 = h3 - qH = 1277.8 - 670 = 607.8 kJ/kg 

From Table A.7.1 

 T2 ≈ 600 K;   s
o
T2 = 7.57638 ;  T1 = 300 K;   s

o
T1 = 6.86926 kJ/kg K 

Reversible adiabatic compression leads to constant s, from Eq.8.28: 

 P2 / P1 = exp[ (s
o
T2 - s

o
T1)/R ] = exp(2.4638) = 11.75 

Reversible adiabatic expansion leads to constant s, from Eq.8.28 

 s
o
T4 = s

o
T3 + R ln(P4 / P3) = 8.34596 + 0.287 ln(1 / 11.75) = 7.6388 kJ/kgK 

From Table A.7.1 by linear interpolation     T4 ≈ 636.6 K,   h4 = 645.97 kJ/kg 

  wT = h3 - h4 = 1277.8 - 645.97 = 631.8 kJ/kg 

  wC = h2 - h1 = 607.8 - 300.47 = 307.3 kJ/kg 

  wnet = wT - wC = 631.8 - 307.3 = 324.5 kJ/kg 

  η = wnet / qH = 324.5 / 670 = 0.484 

 



 
11.71 

 A large stationary Brayton cycle gas-turbine power plant delivers a power output 
of 100 MW to an electric generator. The minimum temperature in the cycle is 300 
K, and the maximum temperature is 1600 K. The minimum pressure in the cycle 
is 100 kPa, and the compressor pressure ratio is 14 to 1. Calculate the power 
output of the turbine. What fraction of the turbine output is required to drive the 
compressor? What is the thermal efficiency of the cycle? 

 Solution: 
  

Brayton cycle so this means: 
       Minimum T:      T1 = 300 K 
       Maximum T:     T3 = 1600 K 
       Pressure ratio:      P2/P1 = 14 
 
Solve using constant CP0  1 

2 

3 

4 
P 

P = 100 kPa 

T

s
 

Compression in compressor:     s2 = s1   ⇒     Implemented in Eq.8.32 

   T2 = T1(P2/P1)
k-1
k  = 300(14)0.286 = 638.1 K 

  wC = h2 - h1 = CP0(T2 - T1) = 1.004 (638.1 - 300) = 339.5 kJ/kg 

Expansion in turbine:       s4 = s3      ⇒     Implemented in Eq.8.32 

   T4 = T3(P4/P3)
k-1
k  = 1600 (1/14)0.286 = 752.2 K 

  wT = h3 − h4 = CP0(T3 − T4) = 1.004 (1600 − 752.2) = 851.2 kJ/kg 

   wNET = 851.2 - 339.5 = 511.7 kJ/kg 

Do the overall net and cycle efficiency 

  m
.

 = W
.

NET/wNET = 100000/511.7 = 195.4 kg/s 

  W
.

T = m
.

wT = 195.4 × 851.2 = 166.32 MW 

  wC/wT = 339.5/851.2 = 0.399 

Energy input is from the combustor 

  qH = CP0(T3 - T2) = 1.004 (1600 - 638.1) = 965.7 kJ/kg 

  ηTH = wNET/qH = 511.7/965.7 = 0.530 

 



 
11.72 

  A Brayton cycle produces 14 MW with an inlet state of 17
o
C, 100 kPa, and a 

compression ratio of 16:1. The heat added in the combustion is 960 kJ/kg. What 
are the highest temperature and the mass flow rate of air, assuming cold air 
properties? 

 Solution: 
 Efficiency is from Eq.11.8 

  η = 
 W

.
net

 Q
.

H

 = 
wnet

qH
 = 1 - r

-(k-1)/k
p

 = 1 - 16
-0.4/1.4

 = 0.547 

 from the required power we can find the needed heat transfer  

    Q
.

H =  W
.

net / η = 
14 000
0.547  = 25 594 kW 

    m
.

 =  Q
.

H / qH = 25 594 kW/ 960 kJ/kg = 26.66 kg/s 
 
 Temperature after compression is 

    T2 = T1 r
(k-1)/k
p  = 290 × 16

0.4/1.4
 = 640.35 K 

 The highest temperature is after combustion 

    T3 = T2 + qH/Cp = 640.35 + 
960

1.004 = 1596.5 K 

 



 
11.73 
  Do the previous problem with properties from table A.7.1 instead of cold air 

properties. 
 Solution: 
 With the variable specific heat we must go through the processes one by one to 

get net work and the highest temperature T3. 

From A.7.1:     h1 = 290.43 kJ/kg,     s
o
T1 = 6.83521 kJ/kg K 

The compression is reversible and adiabatic so constant s. From Eq.8.28 

  s2 = s1   ⇒    s
o
T2 = s

o
T1 + Rln(P2/P1) = 6.83521 + 0.287 ln16 = 7.63094 

       ⇒  T2 = 631.9 K,   h2 = 641 kJ/kg 

Energy equation with compressor work in 

    wC = -1w2 = h2 - h1 = 641 - 290.43 = 350.57 kJ/kg 

Energy Eq. combustor: h3 = h2 + qH = 641 + 960 = 1601 kJ/kg 

State 3:  (P, h):     T3 = 1471 K,   s
o
T3 = 8.58811 kJ/kg K 

The expansion is reversible and adiabatic so constant s. From Eq.8.28 

  s4 = s3  ⇒  s
o
T4 = s

o
T3 + Rln(P4/P3) = 8.58811 + 0.287ln(1/16) = 7.79238 

      ⇒  T4 = 734.8 K,   h4 = 751.11 kJ/kg 

Energy equation with turbine work out 

    wT = h3 - h4 = 1601 - 751.11 = 849.89 kJ/kg 

Now the net work is 

 wnet = wT - wC = 849.89 – 350.57 = 499.32 kJ/kg 

The total required power requires a mass flow rate as 

         m
.

 = 
W
.

net

wnet
 = 

14 000
499.32 

kW
kJ/kg = 28.04 kg/s 

 
 



 
Regenerators, Intercoolers, and Nonideal Cycles 

 
11.74 

 An ideal regenerator is incorporated into the ideal air-standard Brayton cycle of 
Problem 11.68. Find the thermal efficiency of the cycle with this modification. 
Consider an ideal air-standard Brayton cycle in which the air into the compressor 
is at 100 kPa, 20°C, and the pressure ratio across the compressor is 12:1. The 
maximum temperature in the cycle is 1100°C, and the air flow rate is 10 kg/s. 
Assume constant specific heat for the air, value from Table A.5. Determine the 
compressor work, the turbine work, and the thermal efficiency of the cycle. 

Solution: 

 

1 

2 3 

4 

P

v

s
s

 
1 

2 

3 

4 

P = 100 kPa 

T

s

x

y

 

Compression ratio 

       
P2

P1
 = 12 

Max temperature 
    T3 = 1100oC 

m
.

 = 10 kg/s 

 

The compression is reversible and adiabatic so  constant s. From Eq.8.32 

  T2 = T1





P2

P1

k-1
k  = 293.2(12)0.286 = 596.8 K 

Energy equation with compressor work in 

    wC = h2 - h1 = CP0(T2 - T1) = 1.004(596.8 - 293.2) = 304.8 kJ/kg 

The expansion is reversible and adiabatic so  constant s. From Eq.8.32 

    T4 = T3





P4

P3

k-1
k  = 1373.2



1

12
0.286

 = 674.7 K 

Energy equation with turbine work out 

    wT = CP0(T3 - T4) = 1.004(1373.2 - 674.7) = 701.3 kJ/kg 

Ideal regenerator:       TX = T4 = 674.7 K 

    qH = h3 - hX = 1.004(1373.2 - 674.7) = 701.3 kJ/kg = wT 

    ηTH = wNET/qH = (701.3 - 304.8)/701.3 = 0.565 

 



 
11.75 
   The gas-turbine cycle shown in Fig. P11.75 is used as an automotive engine. In 

the first turbine, the gas expands to pressure P
5
, just low enough for this turbine to 

drive the compressor. The gas is then expanded through the second turbine 
connected to the drive wheels. The data for the engine are shown in the figure and 
assume that all processes are ideal. Determine the intermediate pressure P

5
, the 

net specific work output of the engine, and the mass flow rate through the engine. 
Find also the air temperature entering the burner T

3
, and the thermal efficiency of 

the engine. 

a)  Consider the compressor 

  s
2
 = s

1
  ⇒  T

2
 = T

1





P

2

P
1

k-1
k  = 300(6)0.286 = 500.8 K 

    -w
C
 = -w

12
 = C

P0
(T

2
 - T

1
) = 1.004(500.8 - 300) = 201.6 kJ/kg 

 Consider then the first turbine work 

    w
T1

 = -w
C
 = 201.6 = C

P0
(T

4
 - T

5
) = 1.004(1600 - T

5
) 

        ⇒  T
5
 = 1399.2 K 

    s
5
 = s

4
  ⇒  P

5
 = P

4





T

5

T
4

k-1
k  = 600



1399.2

1600
3.5

 = 375 kPa 

b)  s
6
 = s

5
  ⇒  T

6
 =T

5





P

6

P
5

k-1
k  = 1399.2



100

375
0.286

 = 958.8 K 

 The second turbine gives the net work out 

    w
T2

 = C
P0

(T
5
 - T

6
) = 1.004(1399.2 - 958.8) = 442.2 kJ/kg 

    m
.

 = W
.

NET
/w

T2
 = 150/442.2 = 0.339 kg/s 

c) Ideal regenerator   ⇒   T
3
 = T

6
 = 958.8 K 

    q
H

 = C
P0

(T
4
 - T

3
) = 1.004(1600 - 958.8) = 643.8 kJ/kg 

    η
TH

 = w
NET

/q
H

 = 442.2/643.8 = 0.687 

 



 
11.76 

 Repeat Problem 11.71, but include a regenerator with 75% efficiency in the cycle. 
A large stationary Brayton cycle gas-turbine power plant delivers a power output 
of 100 MW to an electric generator. The minimum temperature in the cycle is 300 
K, and the maximum temperature is 1600 K. The minimum pressure in the cycle 
is 100 kPa, and the compressor pressure ratio is 14 to 1. Calculate the power 
output of the turbine. What fraction of the turbine output is required to drive the 
compressor? What is the thermal efficiency of the cycle? 

Solution: 

Both compressor and turbine are reversible and adiabatic so constant s, Eq.8.32 
relates then T to P assuming constant heat capacity. 

Compressor:        ⇒ T2 = T1(P2/P1)
k-1
k  = 300(14)0.286 = 638.1 K 

  wC = h2 - h1 = CP0(T2 - T1) = 1.004 (638.1 - 300) = 339.5 kJ/kg 

Turbine    s4 = s3   ⇒   T4 = T3(P4/P3)
k-1
k  = 1600 (1/14)0.286 = 752.2 K 

  wT = h3 − h4 = CP0(T3 − T4) = 1.004 (1600 − 752.2) = 851.2 kJ/kg 

      wNET = 851.2 - 339.5 = 511.7 kJ/kg 

     m
.

 = W
.

NET/wNET = 100 000/511.7 = 195.4 kg/s 

     W
.

T = m
.

wT = 195.4 × 851.2 = 166.32 MW 

     wC/wT = 339.5/851.2 = 0.399 

 
 

1 

2 

3 

4 

P = 100 kPa 

T

s

x'
x

 

For the regenerator 

ηREG = 0.75 = 
hX - h2

hX' - h2
 = 

TX - T2

T4 - T2
 = 

TX - 638.1
752.2 - 638.1 

                       ⇒  TX = 723.7 K 

Turbine and compressor work not affected by 
regenerator. 

 

Combustor needs to add less energy with the regenerator as 

  qH = CP0(T3 - TX) = 1.004(1600 – 723.7) = 879.8 kJ/kg 

  ηTH = wNET/qH = 511.7/879.8 = 0.582 

 



 
11.77 

 A two-stage air compressor has an intercooler between the two stages as shown in 
Fig. P11.77. The inlet state is 100 kPa, 290 K, and the final exit pressure is 1.6 
MPa. Assume that the constant pressure intercooler cools the air to the inlet 
temperature, T3 = T1. It can be shown that the optimal pressure, P2 = (P1P4)1/2, 
for minimum total compressor work. Find the specific compressor  works and the 
intercooler heat transfer for the optimal P2. 

Solution: 

Optimal intercooler pressure P2 = 100 × 1600 = 400 kPa 

 1:    h1 = 290.43,   s
o
T1 = 6.83521 

C.V. C1:    wC1 = h2 - h1,   s2 = s1       leading to Eq.8.28 

 ⇒    s
o
T2 = s

o
T1 + R ln(P2/P1) = 6.83521 + 0.287 ln 4 = 7.2331 

      ⇒  T2 = 430.3 K,   h2 = 432.05 kJ/kg 

    wC1 = 432.05 - 290.43 = 141.6 kJ/kg 

C.V. Cooler:   T3 = T1   ⇒   h3 = h1 

    qOUT = h2 - h3 = h2 - h1 = wC1 = 141.6 kJ/kg 

C.V. C2:   T3 = T1,   s4 = s3     and since  s
o
T3 = s

o
T1 ,   P4/P3 = P2/P1 

 ⇒    s
o
T4 = s

o
T3 + R ln(P4/P3) = s

o
T2 ,   so we have  T4 = T2 

Thus we get   wC2 = wC1 = 141.6 kJ/kg 

 
 

s

TP

v

1

2
3

4

1

2

3

4

100 kPa

400 kPa

1600 kPa

 

 

 



 
11.78 

 A two-stage compressor in a gas turbine brings atmospheric air at 100 kPa, 17oC 
to 500 kPa, then cools it in an intercooler to 27oC at constant P. The second stage 
brings the air to 1000 kPa. Assume both stages are adiabatic and reversible. Find 
the combined specific work to the compressor stages. Compare that to the specific 
work for the case of no intercooler (i.e. one compressor from 100 to 1000 kPa). 

Solution: 

C.V. Stage 1: 1 => 2    

Reversible and adiabatic gives constant s which from Eq.8.32 gives: 

  T2 = T1 (P2/P1)(k-1)/k  = 290 (500/100) 0.2857 = 459.3 K 

  wc1in = CP( T2 - T1) = 1.004(459.3 –290) = 187.0 kJ/kg 

C.V. Stage 2:  3 => 4 

Reversible and adiabatic gives constant s which from Eq.8.32 gives: 

  T4 = T3 (P4/P3)(k-1)/k = 300 (1000/500) 0.2857 = 365.7 K 

  wc2in = CP( T4 - T3) = 1.004(365.7 – 300) = 65.96 kJ/kg 

  wtot = wc1 + wc2 = 187 + 65.96 = 253 kJ/kg 

The intercooler reduces the work for stage 2 as T is lower and so is specific 
volume. 

 

C.V. One compressor   1 => 5 

Reversible and adiabatic gives constant s which from Eq.8.32 gives: 

  T5 = T1 (P5/P1)(k-1)/k = 290 (1000/100) 0.2857 = 559.88 K 

  win = CP( T5 - T1) = 1.004(559.88 –290) = 271 kJ/kg 

 
 

s

TP

v

1

2
3

4

1

2

3

4

5

100 kPa

500 kPa

1000 kPa
5

 

 

 

The reduction in work due to the intercooler is shaded in the P-v diagram. 

 



 
11.79 
 A gas turbine with air as the working fluid has two ideal turbine sections, as 

shown in Fig. P11.79, the first of which drives the ideal compressor, with the 
second producing the power output. The compressor input is at 290 K, 100 kPa, 
and the exit is at 450 kPa. A fraction of flow, x, bypasses the burner and the rest  
(1 − x) goes through the burner where 1200 kJ/kg is added by combustion. The 
two flows then mix before entering the first turbine and continue through the 
second turbine, with exhaust at 100 kPa. If the mixing should result in a 
temperature of 1000 K into the first turbine find the fraction x. Find the required 
pressure and temperature into the second turbine and its specific power output. 

 

C.V.Comp.:  -w
C
 = h

2
 - h

1
;  s

2
 = s

1
 

Reversible and adiabatic gives constant s which from Eq.8.32 gives: 

 T2 = T1 (P2/P1)(k-1)/k  = 290 (450/100) 0.2857 = 445.7 K 

 h
2
 = 447.75 kJ/kg,     -w

C
 = 447.75 - 290.43 = 157.3 kJ/kg 

C.V.Burner:  h
3
 = h

2
 + q

H
 = 447.75 + 1200 = 1647.75 kJ/kg 

     ⇒  T
3
 = 1510 K 

C.V.Mixing chamber:  (1 - x)h
3
 + xh

2
 = h

MIX
 = 1046.22 kJ/kg 

    x = 
h

3
 - h

MIX

h
3
 - h

2
 = 

1647.75 - 1046.22
1647.75 - 447.75  = 0.5013 

 W
.

T1
 = W

.
C,in

   ⇒   w
.

T1
 = -w

C
 = 157.3 = h

3
 - h

4
 

    h
4
 = 1046.22 - 157.3 = 888.9 kJ/kg  ⇒   T

4
 = 860 K 

 P
4
 = P

MIX
(T

4
/T

MIX
)k/(k-1) = 450 × (860/1000)3.5 = 265 kPa 

 s
4
 = s

5
   ⇒   T

5
 = T

4
 (P

5
/P

4
)(k-1)/k = 860 (100/265)0.2857 = 651 K 

    h
5
 = 661.2 kJ/kg    

 w
T2

 = h
4
 - h

5
 = 888.9 - 661.2 = 227.7 kJ/kg 



 
11.80 
 Repeat Problem 11.71, but assume that the compressor has an isentropic 

efficiency of 85% and the turbine an isentropic efficiency of 88%. 

 Solution: 
  

Brayton cycle so this means: 
       Minimum T:      T1 = 300 K 
       Maximum T:     T3 = 1600 K 
       Pressure ratio:      P2/P1 = 14 
 
Solve using constant CP0  1 

2s 

3 

4s 

P 

P = 100 kPa 

T

s

4
2

 
Ideal compressor:     s2 = s1   ⇒     Implemented in Eq.8.32 

  T2s = T1(P2/P1)
k-1
k  = 300(14)0.286 = 638.1 K 

  wCs = h2 - h1 = CP0(T2 - T1) = 1.004 (638.1 - 300) = 339.5 kJ/kg 

Actual compressor 

    ⇒  wC = wSC/ηSC = 339.5/0.85 = 399.4 kJ/kg = CP0(T2-T1) 

       ⇒  T2 = T1 + wc/CP0 = 300 + 399.4/1.004 = 697.8 K 

Ideal turbine:       s4 = s3      ⇒     Implemented in Eq.8.32 

  T4s = T3(P4/P3)
k-1
k  = 1600 (1/14)0.286 = 752.2 K 

 wTs = h3 − h4 = CP0(T3 − T4) = 1.004 (1600 − 752.2) = 851.2 kJ/kg 

Actual turbine 

     ⇒ wT = ηST  wST = 0.88 × 851.2 = 749.1 kJ/kg = CP0(T3-T4) 

       ⇒ T4 = T3 - wT/CP0 = 1600 - 749.1/1.004 = 853.9 K 

Do the overall net and cycle efficiency 

     wNET = 749.1 - 399.4 = 349.7 kJ/kg 

  m
.

 = W
.

NET/wNET = 100000/349.7 = 286.0 kg/s 

     W
.

T = m
.

wT = 286.0×749.1 = 214.2 MW 

     wC/wT = 399.4/749.1 = 0.533 

Energy input is from the combustor 

    qH = CP0(T3 - T2) = 1.004(1600 - 697.8) = 905.8 kJ/kg 

    ηTH = wNET/qH = 349.7/905.8 = 0.386 



 
11.81 
 Repeat Problem 11.77 when the intercooler brings the air to T

3
 = 320 K. The 

corrected formula for the optimal pressure is P
2
 = [ P

1
P

4
 (T

3
/T

1
)n/(n-1)]1/2 see 

Problem 9.184, where n is the exponent in the assumed polytropic process. 
 
 Solution: 

The polytropic process has n = k (isentropic) so   n/(n - 1) = 1.4/0.4 = 3.5 

    P
2
 = 400 (320/290)3.5 = 475.2 kPa 

C.V. C1:  s
2
 = s

1
  ⇒  T

2
 = T

1
 (P

2
/P

1
)
k-1
k  = 290 (475.2/100)0.2857 = 452.67 K 

    -w
C1

 = h
2
 - h

1
 = C

p
(T

2
 − T

1
) = 1.004(452.67 – 290) = 163.3 kJ/kg 

C.V. Cooler:     q
OUT

 = h
2
 - h

3
 = 1.004(452.67 – 320) = 133.2 kJ/kg 

C.V. C2: s
4
 = s

3
  ⇒  T

4
 = T

3
 (P

4
/P

3
)
k-1
k  = 320 (1600/475.2)0.2857  = 452.67 K  

    -w
C2

 = h
4
 - h

3
 = C

p
(T

2
 − T

1
) = 1.004(452.67 – 320) = 133.2 kJ/kg 

 



 
11.82 
 Consider an ideal gas-turbine cycle with two stages of compression and two 

stages of expansion. The pressure ratio across each compressor stage and each 
turbine stage is 8 to 1. The pressure at the entrance to the first compressor is 100 
kPa, the temperature entering each compressor is 20°C, and the temperature 
entering each turbine is 1100°C. An ideal regenerator is also incorporated into the 
cycle. Determine the compressor work, the turbine work, and the thermal 
efficiency of the cycle. 

 Solution: 
 

REG 

COMP  TURB  TURB  COMP  

CC

CC
I.C.

1 

2 4 

10

6 

7 8 

9 

5 

 
 
 P2/P1 = P4/P3 = P6/P7 = P8/P9 = 8.0 

P1 = 100 kPa 

T1 = T3 = 20oC,   T6 = T8 = 1100oC 
Assume constant specific heat 
   s2 = s1  and  s4 = s3     ⇒   

T4 = T2 = T1





P2

P1

k-1
k  = 293.2(8)0.286 = 531.4 K 

1

2

3

4

5

6

7

8

9

10

T

s
 

Total wC = 2 × w12 = 2CP0(T2 - T1) = 2 × 1.004(531.4 - 293.2) = 478.1 kJ/kg 

Also s6 = s7 and s8 = s9:   ⇒ T7 = T9 = T6





P7

P6

k-1
k  = 1373.2



1

8
0.286

 = 757.6 K 

Total wT = 2 × w67 = 2CP0(T6 - T7) = 2 × 1.004(1373.2 - 756.7) = 1235.5 kJ/kg 

 wNET = 1235.5 - 478.1 = 757.4 kJ/kg 

Ideal regenerator: T5 = T9, T10 = T4 

   ⇒ qH = (h6 - h5) + (h8 - h7) = 2CP0(T6 - T5) 

       = 2 × 1.004(1373.2 - 757.6) = 1235.5 kJ/kg 

 ηTH = wNET/qH = 757.4/1235.5 = 0.613  

 



 
11.83 

 A gas turbine cycle has two stages of compression, with an intercooler between 
the stages. Air enters the first stage at 100 kPa, 300 K. The pressure ratio across 
each compressor stage is 5 to 1, and each stage has an isentropic efficiency of 
82%. Air exits the intercooler at 330 K. Calculate the temperature at the exit of 
each compressor stage and the total specific work required. 

  Solution: 

 State 1:  P1 = 100 kPa, T1 = 300 K  

 State 3: T3 = 330 K 

   P2 = 5 P1 = 500 kPa;     P4 = 5 P3 = 2500 kPa 

 Energy Eq.:  wc1 + h1 = h2   =>    wc1 = h2 - h1 = CP(T2 - T1) 

 Ideal C1 constant s,  Eq.8.32:    T2s = T1 (P2/P1)(k-1)/k = 475.4 K 

  wc1 s = CP(T2s - T1)  = 176.0 kJ/kg, 

 Actual Eq.9.28:    wc1 = wc1 s/η = 176/0.82 = 214.6 kJ/kg 

  T2 = T1 + wc1/CP = 513.7 K 

 Ideal C2 constant s,  Eq.8.32:    T4s = T3 (P4/P3)(k-1)/k = 552.6 K 

  wc2 s = CP(T4s - T3 ) = 193.4 kJ/kg;   

 Actual Eq.9.28:    wc2 = wc2 s/η  = 235.9 kJ/kg 

  T4 = T3 + wc2 / CP = 565 K 

 Total work in: 

  w = wc1 + wc2 = 214.6 + 235.9 = 450.5 kJ/kg 
 
 

1

2s
2ac

3

4s
4ac

s

TP

v

1

2ac2s

3

4s 4ac

 

 

 



 
11.84 
 Repeat the questions in Problem 11.75 when we assume that friction causes 

pressure drops in the burner and on both sides of the regenerator. In each case, the 
pressure drop is estimated to be 2% of the inlet pressure to that component of the 
system, so P

3
 = 588 kPa, P4 = 0.98 P3 and P6 = 102 kPa.  

 Solution: 

a) From solution 11.75: T
2
 = T

1





P2

P1

k-1
k  = 300(6)0.286 = 500.8 K 

    -w
C
 = -w

12
 = C

P0
(T

2
 - T

1
) = 1.004(500.8 - 300) = 201.6 kJ/kg    

    P
3
 = 0.98 × 600 = 588 kPa,   P

4
 = 0.98 × 588 = 576.2 kPa 

    s
5
 = s

4
 ⇒ P

5
 = P

4
(T

5S
/T

4
)

k
k-1 = 576.2(1399.2

1600 )3.5
= 360.4 kPa 

 

b) P
6
 = 100/0.98 = 102 kPa,   s

6S
 = s

5
 

    T
6
 = T

5





P6

P5

k-1
k  = 1399.2



102

292.8
0.286

 = 975.2 K 

    w
ST2

 = C
P0

(T
5
-T

6
) = 1.004(1399.2 - 975.2) = 425.7 kJ/kg 

    m
.

 = W
.

NET
/w

NET
 = 150/425.7 = 0.352 kg/s 

c) T
3
 = T

6
 = 975.2 K 

    q
H

 = C
P0

(T
4
 - T

3
) = 1.004 (1600 - 975.2) = 627.3 kJ/kg 

    η
TH

 = w
NET

/q
H

 = 425.7/627.3 = 0.678 

 



 
Ericsson Cycles 
 
11.85 

 Consider an ideal air-standard Ericsson cycle that has an ideal regenerator as 
shown in Fig. P11.85. The high pressure is 1 MPa and the cycle efficiency is 
70%. Heat is rejected in the cycle at a temperature of 300 K, and the cycle 
pressure at the beginning of the isothermal compression process is 100 kPa. 
Determine the high temperature, the compressor work, and the turbine work per 
kilogram of air. 

 
 P 

v 

1 

2 3 

4 

T 
T 

P 

P 

1 
2 

3 4T 

T 

P 
P 

s 

T 

 

 

P
2
 = P

3
 = 1 MPa 

T
1
 = T

2
 = 300 K 

P
1
 = 100 kPa 

2
q

3
 = -

4
q

1
 (ideal reg.) 

⇒ q
H

 = 
3
q

4
 & w

T
 = q

H
  

rp = P2/P1 = 10 

 

 η
TH

 = η
CARNOT TH.

 = 1 - T
L
/T

H
 = 0.7  ⇒  T

3
 = T

4
 = T

H
 = 1000 K 

 q
L
 = -w

C
 = ⌡⌠v dP = RT

1
ln







P2

P1
 = 0.287 × 300 × ln



1000

100  = 198.25 

 w
T
 = q

H
 = -⌡⌠v dP = -RT

3
ln(P

4
/P

3
) = 660.8 kJ/kg 

 



 
11.86 
 An air-standard Ericsson cycle has an ideal regenerator. Heat is supplied at 

1000°C and heat is rejected at 20°C. Pressure at the beginning of the isothermal 
compression process is 70 kPa. The heat added is 600 kJ/kg. Find the compressor 
work, the turbine work, and the cycle efficiency. 

Solution: 

  Identify the states  
Heat supplied at high temperature T

3
 = T

4
 = 1000°C  = 1273.15 K 

Heat rejected at low temperature        T
1
 = T

2
 = 20°C = 293.15 K 

Beginning of the compression: P
1
 = 70 kPa 

Ideal regenerator: 
2
q

3
 = -

4
q

1
      ⇒      q

H
 = 

3
q

4
 = 600 kJ/kg  

 ⇒      w
T
 = q

H
 = 600 kJ/kg 

  η
TH

 = η
CARNOT

 = 1 - 
293.15
1273.15 = 0.7697 

  w
NET

 = η
TH

q
H

 = 0.7697 × 600 = 461.82 kJ/kg 

  q
L
 = -w

C
 = 600 - 461.82 = 138.2 kJ/kg 

 
  

 
 
 
  

P 

v 
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4 

T 
T 

P 
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s
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Jet Engine Cycles 
 



 
11.87 

 Consider an ideal air-standard cycle for a gas-turbine, jet propulsion unit, such as 
that shown in Fig. 11.27. The pressure and temperature entering the compressor 
are 90 kPa, 290 K. The pressure ratio across the compressor is 14 to 1, and the 
turbine inlet temperature is 1500 K. When the air leaves the turbine, it enters the 
nozzle and expands to 90 kPa. Determine the pressure at the nozzle inlet and the 
velocity of the air leaving the nozzle. 

 Solution: 
 
 

COMPR.  TURBINE

BURNER

NOZ 
1 

2 3 

4 
5 

 

1 

2 

3 

4 
5 

P 

P = 90 kPa 

T

s
 

 

C.V. Compressor: Reversible and adiabatic     s2 = s1      From Eq.8.28 

 ⇒    s
o
T2 = s

o
T1 + R ln(P2/P1) = 6.83521 + 0.287 ln 14 = 7.59262 kJ/kg K 

  From A.7      h2 = 617.2 kJ/kg,   T2 = 609.4 K 

    wC = h2 - h1 = 617.2 - 290.43 = 326.8 kJ/kg 

C.V. Turbine:   wT = h3 - h4 = wC  and   s4 = s3 ⇒    

  h4 = h3 - wC = 1635.8 - 326.8 = 1309  

   ⇒   s
o
T4 = 8.37142 kJ/kg K,   T4 = 1227 K 

  P4 = P3 exp[(s
o
T4 - s

o
T3)/R] = 1260 exp[ (8.37142 - 8.61208)/0.287 ] 

  = 1260 exp(-0.83854) = 544.8 kPa 

C.V. Nozzle:   s5 = s4 = s3     so from Eq.8.28 

 ⇒  s
o
T5 = s

o
T3 + R ln(P5/P3) = 8.61208 + 0.287 ln (1/14) = 7.85467 kJ/kgK 

         => From A.7        T5 = 778 K,       h5 = 798.2 kJ/kg 

 Now the energy equation 

 (1/2)V5
2 = h4 - h5 = 510.8   ⇒     V5 = 2 × 1000 × 510.8  = 1011 m/s 



 
11.88 

 The turbine section in a jet engine receives gas (assume air) at 1200 K, 800 kPa 
with an ambient atmosphere at 80 kPa. The turbine is followed by a nozzle open 
to the atmosphere and all the turbine work drives a compressor receiving air at 85 
kPa, 270 K with the same flow rate. Find the turbine exit pressure so the nozzle 
has an exit velocity of 800 m/s. To what pressure can the compressor bring the 
incomming air? 

Solution: 

C.V. Reversible and adiabatic turbine and nozzle. This gives constant s,  from 
Eq.8.32 we can relate the T’s and P’s 

State 1:  1200 K, 800 kPa  State 3:   80 kPa;    s3 = s1 

Eq.8.32: T3 = T1 (P3/P1)(k-1)/k = 1200(80/800) 0.2857 = 621.56 K 

Energy: h1 + 0 = h3 + (1/2)V3
2 + wT = h2 + wT 

 wT = h1 - h3 - (1/2)V3
2 ≅ CP(T1 - T3) - (1/2)V3

2 

      = 1.004(1200 – 621.56) – (1/2) × 8002/1000 

      = 580.75 – 320 = 260.75 kJ/kg 

C.V. Nozzle alone to establish state 2. 

 h2 = h3 + (1/2)V3
2 

 T2 = T3 + (1/2)V3
2/CP = 621.56 + 320/1.004 = 940.29 K 

 P2 = P1 + (T2/T1)k/(k-1) = 800 × (940.29/1200)3.5 = 340.7 kPa 

C.V. Compressor 

 wc = he - hi = wT = 260.75 kJ/kg 

 Te = Ti + wc/ CP = 270 + 260.75/1.004 = 529.71 K 

Reversible adiabatic compressor, constant s gives relation in Eq.8.32 

 Pe = Pi × (Te/Ti)
k/(k-1) = 85 × (529.71/270)3.5 = 899 kPa 
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11.89 

 The turbine in a jet engine receives air at 1250 K, 1.5 MPa. It exhausts to a nozzle 
at 250 kPa, which in turn exhausts to the atmosphere at 100 kPa. The isentropic 
efficiency of the turbine is 85% and the nozzle efficiency is 95%. Find the nozzle 
inlet temperature and the nozzle exit velocity. Assume negligible kinetic energy 
out of the turbine. 

Solution: 

C.V. Turbine:   hi = 1336.7,   s
o
Ti = 8.3940,   ses = si        then from Eq.8.28 

     ⇒  s
o
Tes = s

o
Ti + R ln(Pe/Pi) = 8.3940 + 0.287 ln (250/1500) = 7.8798 kJ/kg K 

  Table A.7.1    Tes = 796 K,   hes = 817.9 kJ/kg,  

Energy Eq.:    wT,s = hi - hes = 1336.7 - 817.9 = 518.8 kJ/kg 

Eq.9.27:      wT,AC = wT,s × ηT = 441 kJ/kg = he,AC - hi   

  ⇒   he,AC = 895.7   ⇒   Te,AC = 866 K,   s
o
Te = 7.9730 kJ/kg K 

C.V. Nozzle:   hi = 895.7 kJ/kg,  s
o
Ti = 7.9730 KJ/kgK,   ses = si    

then from Eq.8.28 

 ⇒  s
o
Tes = s

o
Ti + R ln(Pe/Pi) = 7.9730 + 0.287 ln (100/250) = 7.7100 kJ/kgK 

 Table A.7.1   ⇒   Te,s = 681 K,   he,s = 693.1 kJ/kg 

 Energy Eq.:   (1/2)Ve,s
2  = hi - he,s = 895.7 - 693.1 = 202.6 kJ/kg 

 Eq.9.30:      (1/2)Ve,AC
2  = (1/2)Ve,s

2  × ηNOZ = 192.47 kJ/kg 

    Ve,AC = 2 × 1000 × 192.47 = 620 m/s 

 



 
11.90 

 Consider an air standard jet engine cycle operating in a 280K, 100 kPa 
environment. The compressor requires a shaft power input of 4000 kW. Air enters 
the turbine state 3 at 1600 K, 2 MPa, at the rate of 9 kg/s, and the isentropic 
efficiency of the turbine is 85%. Determine the pressure and temperature entering 
the nozzle at state 4. If the nozzle efficiency is 95%, determine the temperature and 
velocity exiting the nozzle at state 5. 

Solution: 

C.V. Shaft:    W
.

T = m
.

(h3 - h4) = W
.

C 

CV Turbine: h3 - h4 = W
.

C / m
.

 = 4000/9 = 444.4 kJ/kg 

  h4 = 1757.3 – 444.4 = 1312.9 kJ/kg 

Work back to the ideal turbine conditions 

Eq.9.27: wTa = wC = 444.4     ⇒   wTs = wTa / η = 522.82 = h3 - h4s 

  h4s = 1234.5   ⇒     T4s ≈ 1163 K,   s
o
T4s = 8.3091 kJ/kg K 

  s4s - s3 = 0 = s
o
T4s - s

o
T3 - R ln(P4/P3 )  

  0 = 8.3091 - 8.6905 - 0.287 ln(P4/2000)   =>   P4 = 530 kPa 

State 4 from A.7.1:    h4 = 1312.9,   T4 = 1229.8 K,   s
o
T4 = 8.3746 kJ/kg K 

First consider the reversible adiabatic (isentropic) nozzle so from Eq.8.28 

  s5s - s4 = 0 = s
o
T5s - s

o
T4 - R ln(P5/P4 )  

  s
o
T5s = 8.3746 + 0.287 ln(100/530) = 7.8960 kJ/kg K 

 Table A.7.1:    T5s = 808.1 K,   h5s = 831.0 kJ/kg  

   ⇒    0.5V
2
5s = h4 - h5s = 1312.9 - 831.0 = 481.9 kJ/kg 

Now consider the actual nozzle 

 Eq.9.30: 0.5V
2
5a = η(0.5V

2
5s) = 457.81    ⇒   V5a= 957 m/s 

  h5a = h4 - 0.5V
2
5a = 1312.9 – 457.81 = 855.1 kJ/kg 

    ⇒ T5a ≈ 830 K 
 



 
11.91 

 A jet aircraft is flying at an altitude of 4900 m, where the ambient pressure is 
approximately 55 kPa and the ambient temperature is −18°C. The velocity of the 
aircraft is 280 m/s, the pressure ratio across the compressor is 14:1 and the cycle 
maximum temperature is 1450 K. Assume the inlet flow goes through a diffuser 
to zero relative velocity at state 1. Find the temperature and pressure at state 1 and 
the velocity (relative to the aircraft) of the air leaving the engine at 55 kPa. 

 Solution: 
 

1 

2 

3 

4 
5 

P = 55 kPa 

T

sx
 

Ambient 
    TX = -18oC = 255.2 K, PX = 55 kPa = P5 
also VX = 280 m/s 

Assume that the air at this state is reversibly 
decelerated to zero velocity and then 
enters the compressor at 1. 

P2/P1 = 14   &   T3 = 1450 K 
 

C.V. Diffuser section. 

EnergyEq.:    T1 = TX + 
V

2
X

2 × 1000
 = 255.2 + 

(280)2

2 × 1000 × 1.0035
 = 294.3 K 

Eq.8.32:         P1 = PX





T1

TX

k
k-1 = 55



294.3

255.2
3.5

 = 90.5 kPa 

C.V. Compressor, isentropic so use Eq.8.32 and then energy equation 

  T2 = T1 (P2/P1)
k-1
k  = 294.3(14)0.286 = 626.0 K 

 wC = -1w2 = CP0(T2-T1) = 1.004(1450 - T4)    ⇒   T4 = 1118.3 K 

Pressure ratio: P3 = P2 = 14 × 90.5 = 1267 kPa 

C.V. Turbine, isentropic so use Eq.8.32 

 P4 = P3 (T4/T3)
k

k-1 = 1267(1118.3/1450)3.5 = 510 kPa 

C.V. Nozzle, isentropic so use Eq.8.32 and energy equation 

 T5 = T4 (P5/P4)
k-1
k  = 1118.3(55/510)

0.286
 = 591.5 K 

 
V2

5

2 × 1000
 = CP0(T4 - T5) = 1.004(1118.3 - 591.5) = 528.7 kJ/kg 

   ⇒   V5 = 1028 m/s 
 



 
11.92 

 An afterburner in a jet engine adds fuel after the turbine thus raising the pressure 
and temperature due to the energy of combustion. Assume a standard condition of 
800 K, 250 kPa after the turbine into the nozzle that exhausts at 95 kPa. Assume 
the afterburner adds 450 kJ/kg to that state with a rise in pressure for same 
specific volume, and neglect any upstream effects on the turbine. Find the nozzle 
exit velocity before and after the afterburner is turned on. 

Solution: 

Before afterburner is on:     1:  800 K;  250 kPa   and   2:  95 kPa 

After afterburner is on:       3:  v = v1    and   4:  95 kPa 

  

1

3

2

4

 

1 

2 

3 

4 

P = 95 kPa 

T

s

v1

 
Assume reversible adiabatic nozzle flow, then constant s from Eq.8.32 

  T2 = T1 (P2/P1)(k-1)/k = 800 × (95/250) 
0.2857

 = 606.8 K 

Energy Eq.: (1/2)V2
2 = CP(T1 - T2) 

 V2 = 2 CP(T1 - T2) = 2 × 1004(800 - 606.8)   = 622.8 m/s 

Add the qAB at assumed constant volume then energy equation gives 

 T3 = T1 + qAB/Cv = 800 + 450/0.717 = 1427.6 K 

 v3 = v1  =>  P3 = P1( T3/T1) = 250 × 1427.6/800 = 446.1 kPa 

Reversible adiabatic expansion, again from Eq.8.32 

 T4 = T3 (P4/P3)(k-1)/k = 1427.6 × (95/446.1) 
0.2857

 = 917.7 K 

 V2 = 2 CP(T3 - T4) = 2 × 1004(1427.6 - 917.7)   = 1012 m/s 



 
Otto Cycles 
 
11.93 
 Air flows into a gasoline engine at 95 kPa, 300 K. The air is then compressed with 

a volumetric compression ratio of 8:1. In the combustion process 1300 kJ/kg of 
energy is released as the fuel burns. Find the temperature and pressure after 
combustion using cold air properties. 

Solution: 

Solve the problem with constant heat capacity. 

 Compression 1 to 2:   s2 = s1   ⇒   From Eq.8.33 and Eq.8.34 

    T2 = T1 (v1/v2)
k-1

 = 300 × 8
0.4

 = 689.2 K 

    P2 = P1×(v1/v2)
k
 = 95 × 8

1.4
 = 1746 kPa 

 Combustion 2 to 3 at constant volume:   u3 = u2 + qH 

    T3 = T2 + qH/Cv = 689.2 + 1300/0.717 = 2502 K 

    P3 = P2 × (T3/T2) = 1746 (2502 / 689.2) = 6338 kPa 
 

 P

v1 
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11.94 

  A gasoline engine has a volumetric compression ratio of 9. The state before 
compression is 290 K, 90 kPa, and the peak cycle temperature is 1800 K. Find the 
pressure after expansion, the cycle net work and the cycle efficiency using 
properties from Table A.5. 

 

Compression 1 to 2:   s2 = s1   ⇒   From Eq.8.33 and Eq.8.34 

    T2 = T1 (v1/v2)
k-1

 = 290 × 9
0.4

 = 698.4 K 

    P2 = P1× (v1/v2)
k
 = 90 × 9

1.4
 = 1950.7 kPa 

Combustion 2 to 3 at constant volume:      v3 = v2 

    qH = u3 – u2 = Cv(T3 – T2) = 0.717 (1800 – 698.4) = 789.85 kJ/kg 

    P3 = P2 × (T3/T2) = 1950.7 (1800 / 698.4) = 5027.6 kPa 

Expansion 3 to 4:    s4 = s3   ⇒   From Eq.8.33 and Eq.8.34 

    T4 = T3 (v3/v4)
k-1

 = 1800 × (1/9)
0.4

 = 747.4 K 

    P4 = P3(T4/T3)(v3/v4) = 5027.6 (747.4/1800) (1/9) = 232 kPa 

Find now the net work 

    1w2 = u1 - u2 = Cv(T1 - T2) = 0.717(290 – 698.4) = -292.8 kJ/kg 

    3w4 = u3 - u4 = Cv(T3 - T4) = 0.717(1800 – 747.4) = 754.7 kJ/kg 

Net work and overall efficiency 

 wNET = 3w4 + 1w2 = 754.7 - 292.8 = 461.9 kJ/kg 

 η = wNET/qH = 461.9/789.85 = 0.585 

 Comment: We could have found η from Eq.11.18 and then wNET = ηqH. 
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11.95 

 To approximate an actual spark-ignition engine consider an air-standard Otto 
cycle that has a heat addition of 1800 kJ/kg of air, a compression ratio of 7, and a 
pressure and temperature at the beginning of the compression process of 90 kPa, 
10°C. Assuming constant specific heat, with the value from Table A.5, determine 
the maximum pressure and temperature of the cycle, the thermal efficiency of the 
cycle and the mean effective pressure. 

 Solution: 
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Compression:  Reversible and adiabatic  so constant s  from Eq.8.33-34 

    P2 = P1(v1/v2)
k
 = 90(7)1.4 = 1372 kPa 

    T2 = T1(v1/v2)
k-1

  = 283.2 × (7)0.4 = 616.6 K 

Combustion:   constant volume 

    T3 = T2 + qH/CV0 = 616.6 + 1800/0.717 = 3127 K 

    P3 = P2T3/T2= 1372 × 3127 / 616.6 = 6958 kPa 

Efficiency and net work 

    ηTH = 1 - T1/T2 = 1 - 283.2/616.5 = 0.541 

    wnet = ηTH × qH = 0.541 × 1800 = 973.8 kJ/kg 

Displacement and Pmeff 

    v1 = RT1/P1 = (0.287 × 283.2)/90 = 0.9029 m3/kg 

    v2 = (1/7) v1 = 0.1290 m3/kg 

    Pmeff = 
wNET

v1-v2
 = 

973.8
0.9029 - 0.129 = 1258 kPa 

 



 
11.96 

 A gasoline engine has a volumetric compression ratio of 8 and before 
compression has air at 280 K, 85 kPa. The combustion generates a peak pressure 
of 6500 kPa. Find the peak temperature, the energy added by the combustion 
process and the exhaust temperature. 

Solution: 

Solve the problem with cold air properties. 

Compression. Isentropic so we use Eqs.8.33-8.34 

   P2 = P1(v1/v2)
k
 = 85(8)1.4 = 1562 kPa 

   T2 = T1(v1/v2)
k-1

 = 280(8)0.4 = 643.3 K 

Combustion. Constant volume 

   T3 = T2 (P3/P2) = 643.3 × 6500/1562 = 2677 K 

   qH = u3 - u2 ≈ Cv(T3 - T2) 

        = 0.717 (2677 – 643.3) = 1458 kJ/kg 

Exhaust. Isentropic expansion so from Eq.8.33 

   T4 = T3/80.4 = 2677/2.2974 = 1165 K 
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11.97 

 A gasoline engine has a volumetric compression ratio of 10 and before 
compression has air at 290 K, 85 kPa in the cylinder. The combustion peak 
pressure is 6000 kPa. Assume cold air properties. What is the highest temperature 
in the cycle? Find the temperature at the beginning of the exhaust (heat rejection) 
and the overall cycle efficiency.  

 Solution: 

Compression. Isentropic so we use Eqs.8.33-8.34 

  P2 = P1(v1/v2)
k
 = 85 (10)1.4 = 2135.1 kPa 

  T2 = T1(v1/v2)
k-1

 = 290 (10)0.4 = 728.45 K 

Combustion. Constant volume 

  T3 = T2 (P3/P2) = 728.45 × 6000/2135.1 = 2047 K 

Exhaust. Isentropic expansion so from Eq.8.33 

  T4 = T3 / (v1/v2)
k-1

 = T3 / 100.4 = 2047 / 2.5119 = 814.9 K 

  Overall cycle efficiency is from Eq.11.18,  rv = v1/v2 

    η = 1 − r
1-k
v  = 1 − 10

-0.4
 = 0.602 

  Comment: No actual gasoline engine has an efficiency that high, maybe 35%. 

 



 
11.98 

 A for stroke gasoline engine has a compression ratio of 10:1 with 4 cylinders of 
total displacement 2.3 L. the inlet state is 280 K, 70 kPa and the engine is running 
at 2100 RPM with the fuel adding 1800 kJ/kg in the combustion process. What is 
the net work in the cycle and how much power is produced? 

  solution: 

  Overall cycle efficiency is from Eq.11.18,  rv = v1/v2 

    ηTH = 1 − r
1-k
v  = 1 − 10

-0.4
 = 0.602 

  wnet = ηTH × qH = 0.602 × 1800 = 1083.6 kJ/kg 

  We also need specific volume to evaluate Eqs.11.15 to 11.17 

    v1 = RT1 / P1 = 0.287 × 280 / 70 = 1.148 m3/kg 

    Pmeff = 
wnet

v1 – v2
 = 

wnet

v1 (1 – 
1

rv )
  = 

1083.6
1.148 × 0.9

 = 1048.8 kPa 

  Now we can find the power from Eq.11.17 

   W
.

 = Pmeff Vdispl 
RPM

60  
1
2 = 1048.8 × 0.0023 × 

2100
60  × 

1
2 = 42.2 kW 



 
11.99 

 A gasoline engine takes air in at 290 K, 90 kPa and then compresses it. The 
combustion adds 1000 kJ/kg to the air after which the temperature is 2050 K. Use 
the cold air properties (i.e. constant heat capacities at 300 K) and find the 
compression ratio, the compression specific work and the highest pressure in the 
cycle. 

Solution: 

Standard Otto Cycle 

Combustion process:    T3 = 2050 K;     u2 = u3 - qH 

 T2 = T3 - qH / Cvo = 2050 - 1000 / 0.717 = 655.3 K 

Compression process 

 P2 = P1(T2 / T1)k/(k-1) = 90(655.3/290) 3.5 = 1561 kPa 

 CR = v1 / v2 = (T2 / T1)1/(k-1) = (655.3 / 290) 2.5 = 7.67 

 -1w2 = u2 - u1 = Cvo( T2 - T1) = 0.717(655.3 - 290) = 262 kJ / kg 

Highest pressure is after the combustion  

 P3 = P2T3 / T2 = 1561 × 2050 / 655.3 = 4883 kPa 
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11.100 

 Answer the same three questions for the previous problem, but use variable heat 
capacities (use table A.7). 

 A gasoline engine takes air in at 290 K, 90 kPa and then compresses it. The 
combustion adds 1000 kJ/kg to the air after which the temperature is 2050 K. Use 
the cold air properties (i.e. constant heat capacities at 300 K) and find the 
compression ratio, the compression specific work and the highest pressure in the 
cycle. 

Solution: 

Standard Otto cycle, solve using Table A.7.1 

Combustion process: T3 = 2050 K ;  u3 = 1725.7 kJ/kg 

 u2 = u3 - qH = 1725.7 - 1000 = 725.7 kJ/kg 

  ⇒ T2 = 960.5 K ; s
o
T2 = 8.0889 kJ/kg K 

Compression 1 to 2:   s2 = s1   ⇒   From Eq.8.28 

 0 = s
o
T2 - s

o
T1 - R ln(P2/P1) = s

o
T2 - s

o
T1 - R ln(Τ2v1/T1v2)  

    = 8.0889 - 6.8352 - 0.287 ln(960.5/290) - 0.287 ln(v1/v2) 

 Solving   =>   v1 / v2 = 23.78 

Comment:  This is much too high for an actual Otto cycle. 

 -1w2 = u2 - u1 = 725.7 - 207.2 = 518.5 kJ/kg 

Highest pressure is after combustion 

 P3 = P2T3 / T2 = P1(T3 / T1)(v1 / v3)  

      = 90 × (2050 / 290) × 23.78 = 15 129 kPa 
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11.101 

 When methanol produced from coal is considered as an alternative fuel to 
gasoline for automotive engines, it is recognized that the engine can be designed 
with a higher compression ratio, say 10 instead of 7, but that the energy release 
with combustion for a stoichiometric mixture with air is slightly smaller, about 
1700 kJ/kg. Repeat Problem 11.95 using these values. 

 Solution: 
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Compression:  Reversible and adiabatic  so constant s  from Eq.8.33-34 

 P2 = P1(v1/v2)
k
 = 90(10)1.4 = 2260.7 kPa 

 T2 = T1(v1/v2)
k-1

 = 283.15(10)0.4 = 711.2 K 

Combustion: constant volume 

 T3 = T2 + qH / Cvo = 711.2 + 1700 / 0.717 = 3082 K 

 P3 = P2(T3 / T2) = 2260.7×3082 / 711.2 = 9797 kPa 

Efficiency, net work, displacement and Pmeff 

 ηTH = 1 - T1/T2 = 1 - 283.15/711.2 = 0.602 

 wnet = ηTH × qH = 0.6 × 1700 = 1023.4 kJ/kg 

 v1 = RT1/P1 = 0.287×283.15/90 = 0.9029  m3/kg,    

 v2 = v1/10 = 0.0903  m3/kg 

 Pmeff = 
wnet

v1 – v2
 = 1023.4 / (0.9029 - 0.0903) = 1255 kPa 

 



 
11.102 

 A gasoline engine receives air at 10 C, 100 kPa, having a compression ratio of 9:1 
by volume. The heat addition by combustion gives the highest temperature as 
2500 K. use cold air properties to find the highest cycle pressure, the specific 
energy added by combustion, and the mean effective pressure. 

 Solution: 
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Compression:  Reversible and adiabatic  so constant s  from Eq.8.33-34 

 P2 = P1(v1/v2)
k
 = 100 (9)1.4 = 2167.4 kPa 

 T2 = T1(v1/v2)
k-1

 = 283.15 (9)0.4 = 681.89 K 

Combustion: constant volume 

 P3 = P2(T3 / T2) = 2167.4 × 2500 / 681.89 = 7946.3 kPa 

 qH = u3 – u2 = Cvo(T3 - T2) = 0.717 (2500 – 681.89) = 1303.6 kJ/kg 

Efficiency, net work, displacement and Pmeff 

 ηTH = 1 - T1/T2 = 1 - 283.15/681.89 = 0.5847 

 wnet = ηTH × qH = 0.5847 × 1303.6 = 762.29 kJ/kg 

 v1 = RT1/P1 = 0.287 × 283.15 / 100 = 0.81264  m3/kg,    

 v2 = v1/10 = 0.081264  m3/kg 

 Pmeff = 
wnet

v1 – v2
 = 

762.29
0.81264 - 0.081264 = 1055 kPa 

 



 
11.103 
 Repeat Problem 11.95, but assume variable specific heat. The ideal gas air tables, 

Table A.7, are recommended for this calculation (and the specific heat from Fig. 
5.10 at high temperature). 

Solution: 

 Table A.7 is used with interpolation. 

 T1 = 283.2 K,    u1 = 202.3 kJ/kg,   s
o
T1 = 6.8113 kJ/kg K 

Compression 1 to 2:   s2 = s1   ⇒   From Eq.8.28 

 0 = s
o
T2 - s

o
T1 - R ln(P2/P1) = s

o
T2 - s

o
T1 - R ln(Τ2v1/T1v2)  

 s
o
T2 - R ln(Τ2/T1) = s

o
T1 + R ln(v1/v2) = 6.8113 + 0.287 ln 7 = 7.3698 

This becomes trial and error so estimate first at 600 K and use A.7.1.  

 LHS600 = 7.5764 - 0.287 ln(600/283.2) = 7.3609 (too low) 

 LHS620 = 7.6109 - 0.287 ln(620/283.2) = 7.3860  (too high) 

 Interpolate to get:     T2 = 607.1 K,     u2 = 440.5 kJ/kg 

  =>  -1w2 = u2 - u1 = 238.2 kJ/kg, 

 u3 = 440.5 + 1800 = 2240.5   =>    T3 = 2575.8 K ,    s
o
T3 = 9.2859 kJ/kgK 

  P3 = 90 × 7 × 2575.8 / 283.2 = 5730 kPa 

Expansion 3 to 4:       s4 = s3   ⇒     From Eq.8.28  as before 

 s
o
T4 - R ln(Τ4/T3) = s

o
T3 + R ln(v3/v4) = 9.2859 + 0.287 ln(1/7) = 8.7274 

This becomes trial and error so estimate first at 1400 K and use A.7.1.  

 LHS1400 = 8.5289 - 0.287 ln(1400/2575.8) = 8.7039 (too low) 

 LHS1450 = 8.5711 - 0.287 ln(1450/2575.8) = 8.7360  (too high) 

  Interpolation    ⇒   T4 = 1436.6 K,    u4 = 1146.9 kJ/kg 

  3w4 = u3 - u4 = 2240.5 - 1146.9 = 1093.6 kJ/kg 

Net work, efficiency and mep 

  Î wnet = 3w4 + 1w2 = 1093.6 - 238.2 = 855.4 kJ/kg 

   ηTH = wnet / qH = 855.4 / 1800 = 0.475 

    v1 = RT1/P1 = (0.287 × 283.2)/90 = 0.9029 m3/kg 

    v2 = (1/7) v1 = 0.1290 m3/kg 

  Pmeff = 
wnet

v1 – v2
 = 855.4 / (0.9029 - 0.129) = 1105 kPa 



 
11.104 

 It is found experimentally that the power stroke expansion in an internal 
combustion engine can be approximated with a polytropic process with a value of 
the polytropic exponent n somewhat larger than the specific heat ratio k. Repeat 
Problem 11.95 but assume that the expansion process is reversible and polytropic 
(instead of the isentropic expansion in the Otto cycle) with n equal to 1.50. 

 See solution to 11.95  except for process 3 to 4. 

 T
3
 = 3127 K,   P

3
 = 6.958 MPa 

 v
3
 = RT

3
/P

3
 = v

2
 = 0.129 m3/kg,   v

4
 = v

1
 = 0.9029 m3/kg 

 Process:    Pv1.5 = constant. 

 P
4
 = P

3
(v

3
/v

4
)1.5 =  6958 (1/7)1.5 = 375.7 kPa 

 T
4
 = T

3
(v

3
/v

4
)0.5 =  3127(1/7)0.5 =  1181.9 K 

 

 
1
w

2
 = ⌡⌠Pdv = R

1-1.4
(T

2
 - T

1
) = 0.287

-0.4
(606.6 -283.15)= -239.3 kJ/kg 

 
3
w

4
 = ⌡⌠Pdv = R(T

4
 - T

3
)/(1 - 1.5) 

  = -0.287(1181.9-3127)/0.5 = 1116.5 kJ/kg 

 w
NET

 = 1116.5 - 239.3 = 877.2 kJ/kg 

 η
CYCLE

 = w
NET

/q
H

 = 877.2/1800 = 0.487 

 Pmeff = 
wnet

v1 – v2
 = 877.2/(0.9029 - 0.129) = 1133 kPa 

 Note a smaller w
NET

, η
CYCLE

, Pmeff compared to an ideal cycle. 

 



 
11.105 

 In the Otto cycle all the heat transfer qH occurs at constant volume. It is more 
realistic to assume that part of qH occurs after the piston has started its downward 
motion in the expansion stroke. Therefore, consider a cycle identical to the Otto 
cycle, except that the first two-thirds of the total qH occurs at constant volume and 
the last one-third occurs at constant pressure. Assume that the total qH is 2100 

kJ/kg, that the state at the beginning of the compression process is 90 kPa, 20°C, 
and that the compression ratio is 9. Calculate the maximum pressure and 
temperature and the thermal efficiency of this cycle. Compare the results with 
those of a conventional Otto cycle having the same given variables. 
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P
1
 = 90 kPa, T

1
 = 20oC  

r
V

 = v
1
/v

2
 = 7 

 
a) q

23
 = (2/3) × 2100   

          = 1400 kJ/kg; 
 
    q

34
 = 2100/3 = 700 kJ/kg 

b)    P
2
 = P

1
(v

1
/v

2
)k = 90(9)1.4 = 1951 kPa 

    T
2
 = T

1
(v

1
/v

2
)k-1 = 293.15(9)0.4 = 706 K 

    T
3
 = T

2
 + q

23
/C

V0
 = 706 + 1400/0.717 = 2660 K 

    P
3
 = P

2
T

3
/T

2
 = 1951(2660/706) = 7350.8 kPa = P

4
 

    T
4
 = T

3
 + q

34
/C

P0
 = 2660 + 700/1.004 = 3357 K 

    
v

5

v
4
 = 

v
1

v
4
 = 

P
4

P
1
 × 

T
1

T
4
 = 

7350.8
90  × 

293.15
3357  = 7.131 

    T
5
 = T

4
(v

4
/v

5
)k-1 = 3357(1/7.131)0.4 = 1530 K 

    q
L
 = C

V0
(T

5
-T

1
) = 0.717(1530 - 293.15) = 886.2 kJ/kg 

    η
TH

 = 1 - q
L
/q

H
 = 1 - 886.2/2100 = 0.578 

 Std. Otto Cycle:    η
TH

 = 1 - (9)-0.4 = 0.585,  small difference 

 



 
Diesel Cycles 

 
11.106 
 A diesel engine has a state before compression of 95 kPa, 290 K, and a peak 

pressure of  6000 kPa, a maximum temperature of 2400 K. Find the volumetric 
compression ratio and the thermal efficiency. 

Solution: 

Standard Diesel cycle and we will use cold air properties. 

Compression process (isentropic)  from Eqs.8.32-8.34:  

  (P2/P1) = (v1/v2)
k
 = CR1.4 

  CR = v1/v2 = (P2/P1)
1/k

 = (6000/95)
1/1.4

 = 19.32 

  T2 = T1(P2/P1)
k-1/k

 = 290 × (6000/95) 
0.2857

 = 947.9 K 

Combustion and expansion volumes 

  v3 = v2 × T3/T2 = v1 T3/(T2 × CR) ;   v4 = v1 

Expansion process, isentropic from Eq.8.32 

  T4 = T3 (v3/v4)
k-1

 = T3 [T3/ (CR × T2)]
k-1

 

       = 2400 × [ 2400/(19.32 × 947.9) ]
0.4

 = 1064.6 K 

Efficiency from Eq.11.7 

  η = 1 – 
1
k 

T4 - T1
T3 - T2

  = 1 – 
1

1.4 
1064.6 – 290
2400 – 947.9  = 0.619 

 

 P

v1 

2 3 

4 s

s

 

1 

4 

v

T

s

2 

3 
P

 

 

 



 
11.107 

 A diesel engine has a bore of 0.1 m, a stroke of 0.11 m and a compression ratio of 
19:1 running at 2000 RPM (revolutions per minute). Each cycle takes two 
revolutions and has a mean effective pressure of 1400 kPa. With a total of 6 
cylinders find the engine power in kW and horsepower, hp. 

Solution: 

Work from mean effective pressure, Eq.11.15. 

  Pmeff = 
wnet

vmax – vmin
     =>   wnet = Pmeff (vmax - vmin) 

The displacement is 

 ∆V = πBore2 × 0.25 × S = π × 0.12 × 0.25 × 0.11 = 0.000864 m3 

Work per cylinder per power stroke, Eq.11.16 

 W = Pmeff(Vmax - Vmin) = 1400 × 0.000864 kPa m3 = 1.2096 kJ/cycle 

Only every second revolution has a power stroke so we can find the power, see 
also Eq.11.17 

 W
.

 = W × Ncyl × RPM × 0.5 (cycles / min)×(min / 60 s)×(kJ / cycle) 

      = 1.2096 × 6 × 2000 × 0.5 × (1/60) = 121 kW = 162  hp 

 

The conversion factor from kW to hp is from Table A.1 under power. 



 
11.108 

 A diesel engine has a compression ratio of 20:1 with an inlet of 95 kPa, 290 K, 
state 1, with volume 0.5 L. The maximum cycle temperature is 1800 K. Find the 
maximum pressure, the net specific work and the thermal efficiency. 

Solution: 

Compression process (isentropic)  from Eqs.8.33-34 

 T2 = T1(v1 / v2)k-1 = 290 × 200.4 = 961 K 

 P2 = 95×(20) 1.4 = 6297.5 kPa ;      v2 = v1/20 = RT1/(20 P1) = 0.043805 

 -1w2 = u2 - u1 ≈ Cvo( T2 - T1) = 0.717 (961 - 290) = 481.1 kJ/kg 

Combustion at constant P which is the maximum presssure 

 P3 = P2 = 6298 kPa ;     v3 = v2 T3 /T2 = 0.043805 × 1800/961 = 0.08205 

 2w3 = P (v3 - v2) = 6298 × (0.08215 - 0.043805) = 241.5 kJ/kg 

 2q3 = u3 - u2 + 2w3 = h3 - h2 = Cpo(T3 - T2) = 1.004(1800 - 961) = 842.4 

Expansion process (isentropic) from Eq.8.33 

 T4 = T3( v3 / v4)0.4 = 1800 (0.08205 / 0.8761) 0.4 = 698 K 

 3w4 = u3 - u4 ≈ Cvo(T3 - T4) = 0.717 (1800 - 698) = 790.1 kJ/kg 

Cycle net work and efficiency 

 wnet = 2w3 + 3w4 + 1w2 = 241.5 + 790.1 - 481.1 = 550.5 kJ/kg 

 η = wnet / qH = 550.5/ 842.4 = 0.653 
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11.109 

 At the beginning of compression in a diesel cycle T = 300 K, P = 200 kPa and 
after combustion (heat addition) is complete T = 1500 K and P = 7.0 MPa. Find 
the compression ratio, the thermal efficiency and the mean effective pressure. 

Solution: 

Standard Diesel cycle. See P-v and T-s diagrams for state numbers. 

Compression process (isentropic)  from Eqs.8.33-8.34 

 P2 = P3 = 7000 kPa   =>  v1 / v2 = (P2/P1)1/ k = (7000 / 200)0.7143 = 12.67 

 T2 = T1(P2 / P1)(k-1) / k = 300(7000 / 200) 0.2857= 828.4 K 

Expansion process (isentropic)   first get the volume ratios 

 v3 / v2 = T3 / T2 = 1500 / 828.4 = 1.81 

 v4 / v3 = v1 / v3 = (v1 / v2)( v2 / v3) = 12.67 / 1.81 = 7 

The exhaust temperature follows from Eq.8.33 

 T4 = T3(v3 / v4)k-1 = (1500 / 7) 0.4 = 688.7 K 

 qL = Cvo(T4 - T1) = 0.717(688.7 - 300) = 278.5 kJ/kg 

 qH = h3 - h2 ≈ Cpo(T3 - T2) = 1.004(1500 - 828.4) = 674 kJ/kg 

Overall performance 

 η = 1 - qL / qH = 1- 278.5 / 674 = 0.587 

 wnet = qnet = qH - qL = 674 - 278.5 = 395.5 kJ/kg 

 vmax = v1 = R T1 / P1 = 0.287×300 / 200 = 0.4305 m3/kg 

 vmin = vmax / (v1 / v2) = 0.4305 / 12.67 = 0.034 m3/kg 

 Pmeff = 
wnet

vmax – vmin
 = 395.5 / (0.4305 - 0.034) = 997 kPa 
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 Remark: This is a too low compression ratio for a practical diesel cycle. 
 



 
11.110 
 Do problem 11.106, but use the properties from A.7 and not the cold air 

properties. 
 A diesel engine has a state before compression of 95 kPa, 290 K, and a peak 

pressure of  6000 kPa, a maximum temperature of 2400 K. Find the volumetric 
compression ratio and the thermal efficiency. 

Solution: 

Compression:   s2 = s1   =>   from Eq.8.28 

  s°
T2

 = s°
T1

 + R ln(P2 / P1) = 6.8352 + 0.287 ln(6000/95) = 8.025 kJ/kg K 

 A.7.1   =>  T2 = 907.6 K;  h2 = 941.16;   

  h3 = 2755.8 kJ/kg;   s°
T3

 = 9.19586 kJ/kg K 

 qH = h3 - h2 = 2755.8 – 941.16 = 1814.2 kJ/kg 

 CR = v1/v2 = (T1/T2)(P2/P1) = (290/907.6) × (6000/ 95) = 20.18 

Expansion process 

 s°
T4

 = s°
T3

 + R ln(P4 / P3) = s°
T3

 + R ln(T4 / T3) + R ln(v3/v4) 

 v3/v4 = v3/v1= (v2/v1) × (T3/T2) = (T3/T2) (1/CR)  

  = (2400/907.6) (1/20.18) = 0.13104 

s°
T4

 - R ln(T4 / T3) = s°
T3

 + R ln(v3/v4) = 9.1958 + 0.287 ln 0.13104 = 8.61254 

Trial and error on T4 since it appears both in s°
T4

 and the ln function 

 T4 =1300  LHS = 8.4405 – 0.287 ln (1300/2400) = 8.616 

 T4 = 1250   LHS = 8.3940 – 0.287 ln (1250/2400) = 8.5812 

Now Linear interpolation T4 = 1295 K, u4 = 1018.26 kJ/kg 

 qL = u4 - u1 = 1018.26 – 207.19 = 811.08 kJ/kg 

 η = 1 – (qL/ qH) = 1 – (811.08/1814.2) = 0.553 
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11.111 
 A diesel engine has air before compression at 280 K, 85 kPa. The highest 

temperature is 2200 K and the highest pressure is 6 MPa. Find the volumetric 
compression ratio and the mean effective pressure using cold air properties at 300 
K. 

Solution: 

Compression  (P2/P1) = (v1/v2)
k
 = CR

k
 

 CR = v1/v2 = (P2/P1)
1/k

 = (6000/85)
1/1.4

 = 20.92 

 T2 = T1(P2/P1)
k-1/k

 = 280 × (6000/85) 
0.2857

 = 944.8 K  

Combustion. Highest temperature is after combustion. 

 qH = h3 - h2 = CP(T3 –T 2) = 1.004(2200 – 944.8) = 1260.2 kJ/kg 

Expansion 

 T4 = T3 (v3/v4)
k-1

 = T3 [ T3/ (CR × T2) ]
k-1

 

      = 2200 × (2200/20.92 × 944.8) 
0.4

 = 914.2 K 

 qL = u4 - u1 = CV( T4 - T1) = 0.717(914.2 – 280) = 454.7 kJ/kg 

 v1 = RT1/P1 = 0.287 × 280/85 = 0.9454 m3/kg 

Displacement and mep from net work 

 v1 - v2 = v1- v1/CR = v1[1 – (1/CR)] = 0.9002 m3/kg 

 Pmeff  = wnet/(v1 – v2) = (qH - qL)/( v1 - v2)  

         = (1260.2 – 454.7)/0.9002 = 894.8 kPa 
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11.112 

 Consider an ideal air-standard diesel cycle in which the state before the compression 
process is 95 kPa, 290 K, and the compression ratio is 20. Find the maximum 
temperature (by iteration) in the cycle to have a thermal efficiency of 60%? 

 Solution: 

Diesel cycle:    P
1
 = 95 kPa,    T

1
 = 290 K,    v

1
/v

2
 = 20,    η

TH
 = 0.6 

Since the efficiency depends on T
3
 and T

4
, which are connected through the 

expansion process in a nonlinear manner we have an iterative problem. 

 T
2
 = T

1
(v

1
/v

2
)
k-1

 = 290(20)0.4 = 961.2 K 

 v
1
 = 0.287 × 290/95 = 0.876 m3/kg = v

4
,       

 v
2
 = v

1
/CR = 0.876 / 20 = 0.0438 m3/kg 

 v
3
 = v

2
(T

3
/T

2
) = 0.0438 (T

3
/961.2) = 0.0000456 T

3
 

 T
3
 = T

4
 (v

4
/v

3
)
k-1

 = ( 0.876
0.0000456 T

3
)0.4

   ⇒   T
4
 = 0.019345 T

3
1.4 

Now substitute this into the formula for the efficiency 

 η
TH

 = 0.60 = 1 - 
T

4
 - T

1

k(T
3
 - T

2
) = 1 - 

0.019345 × T
3
1.4 - 290

1.4(T
3
 - 961.2)  

      ⇒  0.019345 × T
3
1.4 - 0.56 × T

3
 + 248.272 = 0 

Trial and error on this non-linear equation in T
3
 

   3050 K:  LHS = +1.06     3040 K:  LHS = -0.036,  

 Linear interpolation     T
3
 = 3040 K 

 



 
Stirling-cycle engine 
 
11.113 
 Consider an ideal Stirling-cycle engine in which the state at the beginning of the 

isothermal compression process is 100 kPa, 25°C, the compression ratio is 6, and 
the maximum temperature in the cycle is 1100°C. Calculate the maximum cycle 
pressure and the thermal efficiency of the cycle with and without regenerators. 
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Ideal Stirling cycle 
T

1
 = T

2
 = 25 oC 

P
1
 = 100 kPa 

CR = v
1
/v

2
 = 6 

T
3
 = T

4
 = 1100 oC 

Isothermal compression (heat goes out) 

   T
1
 = T2  ⇒  P2 = P

1
(v

1
/v2) = 100 × 6 = 600 kPa 

    
1
w2 = 

1
q2 = -RT

1
 ln(v

1
/v2) = -0.287× 298.2 ln(6) = -153.3 kJ/kg 

Constant volume heat addition 

    V2 = V3  ⇒  P3 = P2T3/T
2
 = 600×1373.2/298.2 = 2763 kPa 

    q23 = u3 – u2 = Cv o(T3 - T2) = 0.717 (1100 - 25) = 770.8 kJ/kg 

Isothermal expansion (heat comes in) 

     w
34

 = q
34

 = RT
3
 ln(v

4
/v

3
) = 0.287 × 1373.2 × ln6 = 706.1 kJ/kg 

    wnet = 706.1 - 153.3 = 552.8 kJ/kg 
Efficiency without regenerator, (q23 and q34 are coming in from source) 

  η
NO REGEN

 = 
wnet

q23 + q34
 = 

552.8
770.8 + 706.1 = 0.374,  

 Efficiency with regenerator, (Now only q34 is coming in from source) 

    η
WITH REGEN

 = 
wnet
q34

 = 
552.8
706.1 = 0.783 

 



 
11.114 

 An air-standard Stirling cycle uses helium as the working fluid. The isothermal 
compression brings helium from 100 kPa, 37°C to 600 kPa. The expansion takes 
place at 1200 K and there is no regenerator. Find the work and heat transfer in all 
of the 4 processes per kg helium and the thermal cycle efficiency. 

 Helium  table A.5:    R = 2.077  kJ/kg K,     C
vo

 = 3.1156 kJ/kg K 

 Compression/expansion:     v
4
 / v

3
 = v

1
 / v

2
 = P

2
 / P

1
 = 600 / 100 = 6 

 1 -> 2 -1w2 = -q
12

 = ∫ P dv = R T
1
ln(v

1
 / v

2
) = RT

1
ln (P

2
 /P

1
) 

   = 2.077 × 310 × ln 6 = 1153.7 kJ/kg 

 2 -> 3 :    2w3 = 0;    q
23

 = C
vo

(T
3
 - T

2
) = 3.1156(1200 - 310) = 2773 kJ/kg 

 3 -> 4:      3w4 = q
34

 = R T
3
ln

v4
v3

 = 2.077×1200 ln 6 = 4465.8 kJ/kg 

 4 -> 1 4w1 = 0;      q
41

 = C
vo

(T
4
 - T

1
) = -2773 kJ/kg 

  η
cycle

 = 
1w2 + 3w4
q23 + q34

 = 
-1153.7 + 4465.8
2773  + 4465.8  = 0.458 



 
11.115 

 Consider an ideal air-standard Stirling cycle with an ideal regenerator. The 
minimum pressure and temperature in the cycle are 100 kPa, 25°C, the 
compression ratio is 10, and the maximum temperature in the cycle is 1000°C. 
Analyze each of the four processes in this cycle for work and heat transfer, and 
determine the overall performance of the engine. 

 Ideal Stirling cycle diagram as in Fig. 11.31, with 

 P
1
 = 100 kPa,    T

1
 = T

2
 = 25oC,    v

1
/v

2
 = 10,    T

3
 = T

4
 = 1000oC 

 From 1-2 at const T:   
1
w

2
 = 

1
q

2
 = T

1
(s

2
 - s

1
)  

    = -RT
1
ln(v

1
/v

2
) = -0.287 × 298.2 × ln(10) = -197.1 kJ/kg 

 From 2-3 at const V:    
2
w

3
 = 0/  

    q
23

 = C
V0

(T
3
 - T

2
) = 0.717 (1000 - 25) = 699 kJ/kg 

 From 3-4 at const T;    
3
w

4
 = 

3
q

4
 = T

3
(s

4
 - s

3
) 

     = +RT
3
 × ln 

v
4

v
3
 = 0.287 × 1237.2 × ln(10) = 841.4 kJ/kg 

 From 4-1 at const V;     
4
w

1
 = 0/  

    q
41

 = C
V0

(T
1
 - T

4
) = 0.717 (25 - 1000) = -699 kJ/kg 

 w
NET

 = -197.1 + 0 + 841.4 + 0 = 644.3 kJ/kg 

 Since q
23

 is supplied by -q
41

 (regenerator) 

 q
H

 = q
34

 = 841.4 kJ/kg,    η
TH

 = 
w

NET

q
H

 = 
644.3
841.4 = 0.766 

NOTE:    q
H

 =  q
34

 = RT
3
 × ln(10),    q

L
 = -

1
q

2
 = RT

1
 × ln(10) 

 η
TH

 = 
qH - qL

qH
  = 

T
3
 - T

1

T
3

 = 
975

1273.2 = 0.766 = Carnot efficiency 

 



 
11.116 
 The air-standard Carnot cycle was not shown in the text; show the T–s diagram 

for this cycle. In an air-standard Carnot cycle the low temperature is 280 K and 
the efficiency is 60%. If the pressure before compression and after heat rejection 
is 100 kPa, find the high temperature and the pressure just before heat addition. 

 Solution: 

Carnot cycle efficiency from Eq.7.5 

  η = 0.6 = 1 - TH/TL 

     ⇒  TH = TL/0.4 = 700 K 

Just before heat addition is state 2 and after heat rejection is state 1 so  P1 = 100 
kPa and the isentropic compression is from Eq.8.32 

  P2 = P1(TH/TL)
1

k-1 = 2.47 MPa 
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11.117 
 Air in a piston/cylinder goes through a Carnot cycle in which TL = 26.8°C and the 

total cycle efficiency is η = 2/3. Find TH, the specific work and volume ratio in 
the adiabatic expansion for constant CP, Cv. 

Solution: 

Carnot cycle efficiency Eq.7.5:  

  η = 1 - TL/TH = 2/3  ⇒    TH = 3 × TL = 3 × 300 = 900 K 

Adiabatic expansion 3 to 4:    Pvk = constant,  work from Eq.8.38 (n = k) 

 3w4 = (P4v4 - P3v3)/(1 - k) = 
R

1 - k(T4 - T3) = u3 - u4  

     = Cv(T3 - T4) = 0.717(900 - 300) = 429.9 kJ/kg 

 v4/v3 = (T3/T4)1/(k - 1) = 32.5 = 15.6 
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11.118 

 Do the previous problem 11.117 using values from Table A.7.1. 

Air in a piston/cylinder goes through a Carnot cycle in which TL = 26.8°C and the 

total cycle efficiency is η = 2/3. Find TH, the specific work and volume ratio in 
the adiabatic expansion. 

Solution: 

Carnot cycle efficiency Eq.7.5:  

  η = 1 - TL/TH = 2/3  ⇒    TH = 3 × TL = 3 × 300 = 900 K 

From A.7.1:    u3 = 674.82 kJ/kg,   s°
T3

 = 8.0158 kJ/kg K  

   u4 = 214.36 kJ/kg,   s°
T4

 = 6.8693 kJ/kg K 

Energy equation with q = 0 

 3w4 = u3 - u4 = 674.82 - 214.36 = 460.5 kJ/kg 

Entropy equation, constant s 

 s°
T4

 = s°
T3

 + R ln(P4 / P3) = s°
T3

 + R ln(T4 / T3) + R ln(v3/v4) 

     =>    6.8693 = 8.0158 + 0.287 ln(300/900) + 0.287 ln(v3/v4) 

     =>     v4/v3 =  18.1 
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Refrigeration cycles 

 
11.119 
 A refrigerator with R-12 as the working fluid has a minimum temperature of  

−10°C and a maximum pressure of 1 MPa. Assume an ideal refrigeration cycle as 
in Fig. 11.24. Find the specific heat transfer from the cold space and that to the 
hot space, and the coefficient of performance. 

Solution: 

Exit evaporator sat. vapor −10°C  from B.3.1:  h1 = 183.19,   s1 = 0.7019 kJ/kgK 

Exit condenser sat. liquid  1 MPa from B.3.1:   h3 = 76.22 kJ/kg 

Compressor: s2 = s1  &  P2  from  B.3.2   ⇒   h2 ≈ 210.1 kJ/kg 

Evaporator: qL = h1 - h4 = h1 - h3 = 183.19 - 76.22 = 107 kJ/kg 

Condenser: qH = h2 - h3 = 210.1 - 76.22 = 133.9 kJ/kg 

COP:  β = qL/wc = qL/(qH - qL) = 3.98 

 
  

Ideal refrigeration cycle 
Pcond = P3= P2 = 1 MPa 

Tevap = -10oC = T1 
 
Properties from Table B.3 
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11.120 
 Consider an ideal refrigeration cycle that has a condenser temperature of 45°C 

and an evaporator temperature of −15°C. Determine the coefficient of 
performance of this refrigerator for the working fluids R-12 and R-22. 

 Solution: 
  

Ideal refrigeration cycle 
Tcond =  45oC = T3 

Tevap = -15oC = T1 
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  Property for: R-12, B.3 R-22, B.4 

 Compressor h1, kJ/kg 180.97 244.13 
  s2 = s1, kJ/kg K 0.7051 0.9505 
  P2, MPa 1.0843 1.729 
  T2, oC 54.7 74.4 

  h2, kJ/kg 212.63 289.26 
  wC = h2 - h1  31.66  45.13 
 Exp. valve h3 = h4, kJ/kg  79.71 100.98 
 Evaporator qL = h1 - h4 101.26 143.15 
  β = qL/wC  3.198  3.172 

 

  The value of h2 is taken from the computer program as it otherwise will be 
a double interpolation due to the value of  P2. 



 
11.121 

 The environmentally safe refrigerant R-134a is one of the replacements for R-12 
in refrigeration systems. Repeat Problem 11.120 using R-134a and compare the 
result with that for R-12. 

 Consider an ideal refrigeration cycle that has a condenser temperature of 45°C 
and an evaporator temperature of −15°C. Determine the coefficient of 
performance of this refrigerator for the working fluids R-12 and R-22. 

 Solution: 
  

Ideal refrigeration cycle 
Tcond =  45oC = T3 

Tevap = -15oC = T1 
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  Property for: R-12, B.3 R-134a, B.5 

 Compressor h1, kJ/kg 180.97 389.2 
  s2 = s1, kJ/kg K 0.7051 1.7354 
  P2, MPa 1.0843 1.16 
  T2, oC 54.7 51.8* 

  h2, kJ/kg 212.63 429.9* 
  wC = h2 - h1  31.66  40.7 
 Exp. valve h3 = h4, kJ/kg  79.71 264.11 
 Evaporator qL = h1 - h4 101.26 125.1 
  β = qL/wC  3.198  3.07 

 

* To get state 2 an interpolation is needed: 

 At 1 MPa, s = 1.7354 :    T = 45.9    and   h = 426.8 kJ/kg 

 At 1.2 MPa, s = 1.7354 :  T = 53.3   and   h = 430.7 kJ/kg 

make a linear interpolation to get properties at 1.16 MPa 

 



 
11.122 

 A refrigerator using R-22 is powered by a small natural gas fired heat engine with 
a thermal efficiency of 25%, as shown in Fig.P11.122. The R-22 condenses at 
40°C and it evaporates at −20°C and the cycle is standard. Find the two specific 
heat transfers in the refrigeration cycle. What is the overall coefficient of 
performance as QL/Q1? 

Solution: 

Evaporator:  Inlet State is saturated liq-vap with    h4 = h3 =94.27 kJ/kg 

 The exit state is saturated vapor with   h1 = 242.06 kJ/kg 

  qL = h1 - h4 = h1 - h3 = 147.79 kJ/kg 

Compressor:  Inlet State 1 and Exit State 2 about 1.6 MPa 

  wC = h2 - h1  ;   s2 = s1 = 0.9593 kJ/kgK 

  2: T2 ≈ 70°C h2 = 287.2 kJ/kg 

   wC = h2 - h1 = 45.14 kJ/kg 

Condenser:  Brings it to saturated liquid at state 3 

  qH = h2 - h3 = 287.2 - 94.27 = 192.9 kJ/kg 

Overall Refrigerator: 

   β = qL / wC = 147.79 / 45.14 = 3.274 

Heat Engine: 

   W
.

HE = ηHEQ
.

1 = W
.

C = Q
.

L / β 

   Q
.

L / Q
.

1 = ηβ = 0.25 × 3.274 = 0.819 

 
  

Ideal refrigeration cycle 
Tcond =  40oC = T3 

Tevap = -20oC = T1 
Properties from Table B.4 
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11.123 

 A refrigerator in a meat warehouse must keep a low temperature of -15°C and the 
outside temperature is 20°C. It uses R-12 as the refrigerant which must remove 5 
kW from the cold space. Find the flow rate of the R-12 needed assuming a 
standard vapor compression refrigeration cycle with a condenser at 20°C. 

Solution: 

Basic refrigeration cycle:    T1 = T4 = -15°C,     T3 = 20°C 

 Table B.3: h4 = h3 = 54.87 kJ/kg;       h1 = hg = 180.97 kJ/kg 

  Q
.

L = m
.

R-12 × qL = m
.

R-12(h1 - h4) 

  qL = 180.97 - 54.87 = 126.1 kJ/kg 

  m
.

R-12 = 5.0 / 126.1 = 0.03965 kg/s 

 
  

Ideal refrigeration cycle 
Tcond = 20oC  

Tevap = -15oC = T1 
 
Properties from Table B.3 
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11.124 

 A refrigerator with R-12 as the working fluid has a minimum temperature of  
−10°C and a maximum pressure of 1 MPa. The actual adiabatic compressor exit 
temperature is 60°C. Assume no pressure loss in the heat exchangers. Find the 
specific heat transfer from the cold space and that to the hot space, the coefficient 
of performance and the isentropic efficiency of the compressor. 

Solution: 

 State 1: Inlet to compressor, sat. vapor -10°C, 

             h1 = 183.19 kJ/kg,   s1 = 0.7019 kJ/kg K 

 State 2: Actual compressor exit,  h2AC = 217.97 kJ/kg 

 State 3: Exit condenser, sat. liquid 1MPa,   h3 = 76.22 kJ/kg 

 State 4: Exit valve,  h4 = h3  

 C.V. Evaporator:  qL = h1 - h4 = h1 - h3 = 107 kJ/kg 

 C.V. Ideal Compressor:  wC,S = h2,S - h1,   s2,S = s1 

 State 2s:  1 MPa, s = 0.7019 kJ/kg K;   T2,S = 49.66°C,  h2,S = 210.1 kJ/kg  

  wC,S = h2,S - h1 = 26.91 kJ/kg 

 C.V. Actual Compressor:   wC = h2,AC - h1 = 34.78 kJ/kg 

       β = 
qL

wC
 = 3.076,  ηC = wC,S/wC = 0.774 

 C.V. Condenser:   qH = h2,AC - h3 = 141.75 kJ/kg 

 
 Ideal refrigeration cycle 

with actual compressor 
Pcond = P3= P2 = 1 MPa 

T2 = 60oC 

Tevap = -10oC = T1 
Properties from Table B.3 
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11.125 

 Consider an ideal heat pump that has a condenser temperature of 50°C and an 
evaporator temperature of 0°C. Determine the coefficient of performance of this 
heat pump for the working fluids R-12, R-22, and ammonia. 

 Solution: 
  

Ideal heat pump 
Tcond =  50oC = T3 

Tevap = 0oC = T1 
 

T
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 C.V. Property for: 

From Table: 
R-12 
B.3 

R-22 
B.4 

 NH3 
B.2 

  h1, kJ/kg 187.53 249.95 1442.32 
 Compressor s2 = s1, kJ/kgK     0.6965     0.9269      5.3313 
  P2, MPa     1.2193     1.9423      2.0333 
  T2, oC 56.7 72.2 115.6 

  h2, kJ/kg 211.95 284.25 1672.84 
  wC = h2 - h1  24.42 34.3  230.52 
 Exp. valve h3 = h4, kJ/kg  84.94 107.85  421.58 
 Condenser qH = h2 - h3 127.01 176.4 1251.26 
  β′ =qH/wC    5.201    5.143     5.428 

 



 
11.126 

 The air conditioner in a car uses R-134a and the compressor power input is 1.5 kW 
bringing the R-134a from 201.7 kPa to 1200 kPa by compression. The cold space is 
a heat exchanger that cools atmospheric air from the outside 30°C down to 10°C 
and blows it into the car. What is the mass flow rate of the R-134a and what is the 
low temperature heat transfer rate. How much is the mass flow rate of air at 10°C? 

Standard Refrigeration Cycle 

 Table B.5:    h1 = 392.28 kJ/kg;    s1 = 1.7319 kJ/kg K;   h4 = h3 = 266 

 C.V. Compressor (assume ideal) 

  m
.

1 = m
.

2 wC = h2 - h1; s2 = s1 + sgen 

  P2, s = s1  =>   h2 = 429.5 kJ/kg    =>   wC = 37.2 kJ/kg 

  m
.

 wC = W
.

C   =>   m
.

 = 1.5 / 37.2 = 0.0403 kg/s 

 C.V. Evaporator 

  Q
.

L = m
.

(h1 - h4) = 0.0405(392.28 - 266) = 5.21 kW 

 C.V. Air Cooler 

  m
.

air∆hair = Q
.

L ≈ m
.

airCp∆T 

  m
.

air = Q
.

L / (Cp∆T) = 5.21 / (1.004×20) = 0.26 kg / s 

 
  

Ideal refrigeration cycle 
 
Pcond = 1200 kPa = P3 
Pevap = 201.7 kPa = P1 
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11.127 

 A refrigerator using R-134a is located in a 20°C room. Consider the cycle to be 
ideal, except that the compressor is neither adiabatic nor reversible. Saturated 
vapor at -20°C enters the compressor, and the R-134a exits the compressor at 
50°C.  The condenser temperature is 40°C. The mass flow rate of refrigerant 
around the cycle is 0.2 kg/s, and the coefficient of performance is measured and 
found to be 2.3. Find the power input to the compressor and the rate of entropy 
generation in the compressor process. 

Solution: 

 Table B.5:   P2 = P3 = Psat 40C = 1017 kPa,      h4 = h3 = 256.54 kJ/kg 

     s2 ≈ 1.7472 kJ/kg K,   h2 ≈ 430.87 kJ/kg;  

       s1 = 1.7395 kJ/kg K,   h1 = 386.08 kJ/kg 

 β = qL / wC  -> wC = qL / β = (h1- h4) / β = (386.08 - 256.54) / 2.3 = 56.32 

  W
.

C = m
.

 wC = 11.26 kW 

C.V. Compressor h1 + wC + q = h2  -> 

 qin = h2 - h1 - wC = 430.87 - 386.08 - 56.32 = -11.53 kJ/kg   i.e. a heat loss 

 s1 + ∫ dQ/T + sgen = s2 

 sgen = s2 - s1 - q / To = 1.7472 - 1.7395 + (11.53 / 293.15) = 0.047 kJ/kg K 

 S
.
gen = m

.
 sgen = 0.2 × 0.047 = 0.0094 kW / K 

 
 Ideal refrigeration cycle 

with actual compressor 
Tcond = 40oC 

T2 = 50oC 

Tevap = -20oC = T1 
Properties from Table B.5 
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11.128 

 A refrigerator has a steady flow of R-22 as saturated vapor at –20°C into the 
adiabatic compressor that brings it to 1000 kPa. After the compressor, the 
temperature is measured to be 60°C. Find the actual compressor work and the 
actual cycle coefficient of performance. 

Solution: 

 Table B.4.1:     h1 = 242.06 kJ/kg,    s1 = 0.9593 kJ/kg K 

   P2 = P3 = 1000 kPa,      h4 = h3 = hf = 72.86 kJ/kg 

   h2 ac = 286.97 kJ/kg 

C.V. Compressor (actual) 

Energy Eq.:      wC ac = h2 ac - h1 = 286.97 – 242.06 = 44.91 kJ/kg 

C.V. Evaporator 

Energy Eq.: qL = h1- h4 = h1- h3 = 242.06 – 72.86 = 169.2 kJ/kg  

   β = 
qL

wC ac
 = 

169.2
44.91  = 3.77 

 
 Ideal refrigeration cycle 

with actual compressor 
Tcond = 23.4oC = Tsat 1000 kPa 

T2 = 60oC 

Tevap = -20oC = T1 
Properties from Table B.4 

T

s
1

2s

3

4

2ac

 

 

 

 



 
11.129 

 A small heat pump unit is used to heat water for a hot-water supply. Assume that 
the unit uses R-22 and operates on the ideal refrigeration cycle. The evaporator 
temperature is 15°C and the condenser temperature is 60°C. If the amount of hot 
water needed is 0.1 kg/s, determine the amount of energy saved by using the heat 
pump instead of directly heating the water from 15 to 60°C. 

 Solution: 
 
 Ideal R-22 heat pump 

 
T1 = 15oC,    T3 = 60oC 
From Table B.4.1 
h1 = 255.02 kJ/kg,   s2 = s1 = 0.9062 kJ/kg K 
P2 = P3 = 2.427 MPa,   h3 = 122.18 kJ/kg 
 

T

s
1

2

3

4

 

 Entropy compressor:  s2 = s1   =>     T2 = 78.4oC,   h2 = 282.86 kJ/kg 

 Energy eq. compressor: wC = h2 - h1 = 27.84 kJ/kg 

 Energy condenser:  qH = h2 - h3 = 160.68 kJ/kg 

To heat 0.1 kg/s of water from 15oC to 60oC, 

  Q
.

H2O = m
.

(∆h) = 0.1(251.11 - 62.98) = 18.81 kW 

Using the heat pump 

  W
.

IN = Q
.

H2O(wC/qH) = 18.81(27.84/160.68) = 3.26 kW 

 a saving of 15.55 kW 

 



 
11.130 

 The refrigerant R-22 is used as the working fluid in a conventional heat pump 
cycle. Saturated vapor enters the compressor of this unit at 10°C; its exit 
temperature from the compressor is measured and found to be 85°C. If the 
compressor exit is at 2 MPa what is the compressor isentropic efficiency and the 
cycle COP? 

 Solution: 
 R-22 heat pump: 

Table B.4 
State 1:  TEVAP = 10oC, x = 1 
h1 = 253.42 kJ/kg,   s1 = 0.9129 kJ/kg K 
 
State 2:   T2, P2:    h2 = 295.17 kJ/kg 

T

s
1

2s

3

4

2

 
C.V. Compressor  

Energy Eq.:      wC ac = h2 - h1 = 295.17 – 253.42 = 41.75 kJ/kg 

State 2s:  2 MPa , s2S = s1 = 0.9129 kJ/kg    T2S = 69oC,  h2S = 280.2 kJ/kg  

Efficiency:   η = 
wC s

wC ac
 = 

h2S - h1

h2 - h1
 = 

280.2 - 253.42
295.17 - 253.42 = 0.6414 

C.V. Condenser 

Energy Eq.: qH = h2 - h3 = 295.17 – 109.6 = 185.57 kJ/kg  

COP Heat pump:  β = 
qH

wC ac
 = 

185.57
41.75   = 4.44 



 
11.131 
 A refrigerator in a laboratory uses R-22 as the working substance. The high 

pressure is 1200 kPa, the low pressure is 201 kPa, and the compressor is 
reversible. It should remove 500 W from a specimen currently at –20°C (not 
equal to T in the cycle) that is inside the refrigerated space. Find the cycle COP 
and the electrical power required. 

 Solution: 

 State 1:  201 kPa, x = 1, Table B.4.1:    h1 = 239.92 kJ/kg,   s1 = 0.9685 kJ/kg K 

 State 3: 1200 kPa, x = 0, Table B.4.1:   h3 = 81.57 kJ/kg 

C.V. Compressor  

Energy Eq.:      wC = h2 - h1   

Entropy Eq.:  s2 = s1 + sgen = s1    

State 2:  1.2 MPa , s2 = s1 = 0.9685 kJ/kg,   T2 ≈ 60oC,  h2 = 285.21 kJ/kg  

   wC = h2 - h1 = 285.21 – 239.92 = 45.29 kJ/kg 

Energy Eq. evaporator:     qL = h1 – h4 = h1 – h3 = 239.92 – 81.57 = 158.35 kJ/kg 

 COP Refrigerator:  β = 
qL

wC
 = 

158.35
45.29   = 3.5 

 Power:   W
.

IN = Q
.

L / β = 500 W/ 3.5 = 142.9 W 



 
11.132 

 Consider the previous problem and find the two rates of entropy generation in the 
process and where they occur. 

 Solution: 

From the basic cycle we know that entropy is generated in the valve as the throttle 
process is irreversible. 

 State 1:  201 kPa, x = 1, Table B.4.1:    h1 = 239.92 kJ/kg,   s1 = 0.9685 kJ/kg K 

 State 3: 1200 kPa, x = 0, Table B.4.1:   h3 = 81.57 kJ/kg,   s3 = 0.30142 kJ/kg K 

Energy Eq. evaporator:     qL = h1 – h4 = h1 – h3 = 239.92 – 81.57 = 158.35 kJ/kg 

Mass flow rate: m
.

 = Q
.

L / qL = 0.5 / 158.35 = 0.00316 kg/s 

C.V. Valve  

Energy Eq.:      h4 = h3 = 81.57 kJ/kg    =>     x4 = (h4 – hf)/hfg 

   x4 = 
81.57 - 16.19

223.73  = 0.29223 

   s4 = sf + x4 sfg = 0.067 + x4 × 0.9015 = 0.33045 kJ/kg K 

Entropy Eq.:  sgen = s4 - s3 = 0.33045 – 0.30142 = 0.02903 kJ/kg K 

     S
.
gen valve = m

.
sgen = 0.00316 × 0.02903 = 0.0917 W/K 

 

There is also entropy generation in the heat transfer process from the specimen at 
–20°C to the refrigerant T = -25°C = Tsat (201 kPa). 

   S
.
gen inside = Q

.
L [ 

1
Tspecimen

 – 
1

TL
 ] = 500 (

1
248 – 

1
253) = 0.04 W/K 



 
11.133 

 In an actual refrigeration cycle using R-12 as the working fluid, the refrigerant flow 
rate is 0.05 kg/s. Vapor enters the compressor at 150 kPa, −10°C, and leaves at 1.2 
MPa, 75°C. The power input to the compressor is measured and found be 2.4 kW. 
The refrigerant enters the expansion valve at 1.15 MPa, 40°C, and leaves the 
evaporator at 175 kPa, −15°C. Determine the entropy generation in the compression 
process, the refrigeration capacity and the coefficient of performance for this cycle. 

 Solution: 
 Actual refrigeration cycle 

 
1: compressor inlet   T1 = -10oC, P1 = 150 kPa 

2:  compressor exit   T2 = 75oC, P2 = 1.2 MPa 

3:  Expansion valve inlet    T3 = 40oC 
      P3 = 1.15 MPa 

5:  evaporator exit    T5 = -15oC, P5 = 175 kPa 

T

1

3
5

2

s

4

 

 Table B.3     h1 = 184.619,   s1 = 0.7318,  h2 = 226.543,   s2 = 0.7404 

CV Compressor:   h1 + qCOMP + wCOMP = h2  ;    s1 + ∫ dq/T + sgen = s2 

    wCOMP = W
.

COMP/m
.

 = 2.4/0.05 = 48.0 kJ/kg 

    qCOMP = h2 - wCOMP - h1 = 226.5 - 48.0 - 184.6  = -6.1 kJ/kg   

 sgen = s2 - s1 - q / To = 0.7404 - 0.7318 + 6.1/298.15 = 0.029 kJ / kg K 

C.V. Evaporator 

       qL = h5 - h4 = 181.024 - 74.527 = 106.5 kJ/kg 

     ⇒  Q
.

L = m
.

qL = 0.05 × 106.5 = 5.325 kW 

COP:      β = qL/wCOMP = 106.5/48.0 = 2.219 

 



 
Ammonia absorption cycles 

 
11.134 

 Consider a small ammonia absorption refrigeration cycle that is powered by solar 
energy and is to be used as an air conditioner. Saturated vapor ammonia leaves 
the generator at 50°C, and saturated vapor leaves the evaporator at 10°C. If 7000 
kJ of heat is required in the generator (solar collector) per kilogram of ammonia 
vapor generated, determine the overall performance of this system. 

 Solution; 
  

NH3 absorption cycle: 

sat. vapor at 50oC exits the generator 
sat. vapor at 10oC exits the evaporator 
 
  qH = qGEN = 7000 kJ/kg NH3   out of gen. 
       

T

s
1 2

Exit generator

Evaporator

exit

 
C.V. Evaporator 

  qL = h2 - h1 = hg 10oC - hf 50oC = 1452.2 - 421.6  = 1030.6 kJ/kg  

COP  ⇒   qL/qH = 1030.6/7000 = 0.147 

 



 
11.135 

 The performance of an ammonia absorption cycle refrigerator is to be compared 
with that of a similar vapor-compression system. Consider an absorption system 
having an evaporator temperature of −10°C and a condenser temperature of 50°C. 
The generator temperature in this system is 150°C. In this cycle 0.42 kJ is 
transferred to the ammonia in the evaporator for each kilojoule transferred from 
the high-temperature source to the ammonia solution in the generator. To make 
the comparison, assume that a reservoir is available at 150°C, and that heat is 
transferred from this reservoir to a reversible engine that rejects heat to the 
surroundings at 25°C. This work is then used to drive an ideal vapor-compression 
system with ammonia as the refrigerant. Compare the amount of refrigeration that 
can be achieved per kilojoule from the high-temperature source with the 0.42 kJ 
that can be achieved in the absorption system. 

 Solution: 
 

Q L 

Q H 

W C REV.  
H.E. COMP. 

CONDENSER 

EVAPORATOR 

T    = -10 CL 
o 

 = 50 C T   H 
o 

T    = 150 Co 
�����
�����' 

 = 1 kJ Q   H 
' 

Q L 
' 

T    = 25 C L 
' o 

H 3

41

2
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s
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T1 = -10 oC 
h1 = 1430.8 ,  s1 = 5.4673 
h4 = h3 = 421.48 

 

For the rev. heat engine:         ηTH = 1 - T′
L
/T′

H
 = 1 - 

298.2
423.2 = 0.295   

                  ⇒  WC = ηTH Q′
H

 = 0.295 kJ 

For the NH3 refrig. cycle:     P2 = P3 = 2033 kPa ,    Use 2000 kPa Table 

 s2 = s1 = 5.4673 => T2 ≈ 135°C  h2 ≈ 1724 

  wC = h2 - h1 = 1724 - 1430.8 = 293.2 kJ/kg 

  qL = h1 - h4 = 1430.8 - 421.48 = 1009.3 kJ/kg 

    β = qL/wC = 1009.3 / 293.2 = 3.44 

    ⇒  QL = βwC = 3.44 × 0.295 = 1.015 kJ 

 based on assumption of ideal heat engine & refrigeration cycle. 



 
Air standard refrigeration cycles 
 
11.136 
 The formula for the coefficient of performance when we use cold air properties is 

not given in the text. Derive the expression for COP as function of the 
compression ratio similar to how the Brayton cycle efficiency was found. 

 

 Definition of COP: β = 
qL

wnet
 = 

qL

qH - qL
 = 

1
qH

qL
 - 1

 

 From the refrigeration cycle we get the ratio of the heat transfers as 

     
qH

qL
 = 

Cp(T2 - T3)

Cp(T1 - T4) = 
T2(1 - T3/T2)

T1(1 - T4/T1) 

 The pressure ratios are the same and we have isentropic compression/expansion 

     
P2

P1
 = 

P3

P4
 = 







T2

T1

k/(k-1)
 = 







T3

T4

k/(k-1)
 

 so now we get 

     
T2

T1
 = 

T3

T4
        or      

T4

T1
 = 

T3

T2
 

 The heat transfer ratio simplifies to 

     
qH

qL
 = 

T2

T1
 

 and so the COP reduces to 

     β = 
1

T2

T1
 - 1

 = 
1







P2

P1

(k-1)/k
 - 1

 



 
11.137 
 A heat exchanger is incorporated into an ideal air-standard refrigeration cycle, as 

shown in Fig. P11.137. It may be assumed that both the compression and the 
expansion are reversible adiabatic processes in this ideal case. Determine the 
coefficient of performance for the cycle. 

 Solution: 
 

EXP COMP  

q H 

q L 
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Standard air refrigeration cycle with 

 T1 = T3 = 15 oC = 288.2 K,   P1 = 100 kPa,   P2 = 1.4 MPa 

 T4 = T6 = -50 oC = 223.2 K 

We will solve the problem with cold air properties. 

Compressor, isentropic   s2 = s1     so from Eq.8.32 

 ⇒  T2 = T1(P2/P1)
k-1
k  = 288.2(1400/100)0.286 = 613 K 

 wC = -w12 = CP0(T2 - T1) = 1.004(613 - 288.2) = 326 kJ/kg 

Expansion in expander (turbine) 

 s5 = s4 ⇒  T5 = T4(P5/P4)
k-1
k  = 223.2(100/1400)

0.286
 = 104.9 K 

 wE = CP0(T4 - T5) = 1.004(223.2 - 104.9) = 118.7 kJ/kg 

Net cycle work 

 wNET = wE - wC = 118.7 - 326.0 = -207.3 kJ/kg 

 qL = CP0(T6 - T5) = wE = 118.7 kJ/kg 

Overall cycle performance, COP 

 β = qL/wNET = 118.7 / 207.3 = 0.573 
 



 
11.138 
 Repeat Problems 11.137, but assume that helium is the cycle working fluid 

instead of air. Discuss the significance of the results. 
 A heat exchanger is incorporated into an ideal air-standard refrigeration cycle, as 

shown in Fig. P11.137. It may be assumed that both the compression and the 
expansion are reversible adiabatic processes in this ideal case. Determine the 
coefficient of performance for the cycle. 

 Solution: 
 

EXP COMP  
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Standard air refrigeration cycle with helium and states as 

 T1 = T3 = 15 oC = 288.2 K,   P1 = 100 kPa,   P2 = 1.4 MPa 

 T4 = T6 = -50 oC = 223.2 K 

Compressor, isentropic   s2 = s1     so from Eq.8.32 

 ⇒  T2 = T1(P2/P1)
k-1
k  = 288.2



1400

100
0.40

= 828.2 K 

 wC = -w12 = CP0(T2 - T1) = 5.193(828.2 - 288.2) = 2804.1 kJ/kg 

Expansion in expander (turbine) 

 s5 = s4    ⇒      T5 = T4(P5/P4)
k-1
k  = 223.2



100

1400
0.40

= 77.7 K 

 wE = CP0(T4 - T5) = 15.193(223.2 - 77.7) = 755.5 kJ/kg 

Net cycle work 

 wNET = 755.5 - 2804.1 = -2048.6 kJ/kg 

 qL = CP0(T6 - T5) = 5.193(223.2 - 77.7) = 755.5 kJ/kg 

Overall cycle performance, COP 

 β = qL/wNET = 755.5/2048.6 = 0.369 

  Notice that the low temperature is lower and work terms higher than with air. 
It is due to the higher heat capacity CP0 and ratio of specific heats ( k = 1 2/3). The 
expense is a lower COP requiring more work input per kJ cooling. 

 



 
11.139 
 Repeat Problem 11.137, but assume an isentropic efficiency of 75% for both the 

compressor and the expander. 
 

Standard air refrigeration cycle with 

 T1 = T3 = 15 oC = 288.2 K,   P1 = 100 kPa,   P2 = 1.4 MPa 

 T4 = T6 = -50 oC = 223.2 K 

We will solve the problem with cold air properties. 

Ideal compressor, isentropic   s
2S

 = s1     so from Eq.8.32 

 ⇒  T
2S

 = T1(P2/P1)
k-1
k  = 288.2(1400/100)0.286 = 613 K 

 w
SC

 = -w12 = CP0(T
2S

 - T1) = 1.004(613 - 288.2) = 326 kJ/kg 

The actual compressor 

  w
C
 = w

SC
 / η

SC
 = 326/0.75 = 434.6 kJ/kg 

Expansion in ideal expander (turbine) 

 s5 = s4 ⇒  T
5S

 = T4(P5/P4)
k-1
k  = 223.2(100/1400)

0.286
 = 104.9 K 

 wE = CP0(T4 - T5) = 1.004(223.2 - 104.9) = 118.7 kJ/kg 
   
  The actual expander (turbine) 

   
 w

E
 = η

SE
 × w

SE
 = 0.75 × 118.7 = 89.0 kJ/kg 

         = C
P0

(T
4
-T

5
) = 1.004(223.2 - T

5
) 

 
                     ⇒  T

5
 = 134.5 K   

 
    w

NET
 = 89.0 - 434.6 = -345.6 kJ/kg 

1 

2 

3 

s 

T 

4 

5 

6 

2S

5S

 
 q

L
 = C

P0
(T

6
 - T

5
) = 1.004(223.2 - 134.5) = 89.0 kJ/kg 

          β = q
L
/(-w

NET
) = 89.0/345.6 = 0.258 

 



 
Combined Cycles 



 
11.140 
 A binary system power plant uses mercury for the high-temperature cycle and 

water for the low-temperature cycle, as shown in Fig. 11.39. The temperatures 
and pressures are shown in the corresponding T–s diagram. The maximum 
temperature in the steam cycle is where the steam leaves the superheater at point 4 
where it is 500°C. Determine the ratio of the mass flow rate of mercury to the 
mass flow rate of water in the heat exchanger that condenses mercury and boils 
the water and the thermal efficiency of this ideal cycle. 

 The following saturation properties for mercury are known 

 P, MPa       Tg, °C    hf, kJ/kg hg, kJ/kg   sf kJ/kgK   sg, kJ/kgK 

  0.04 309 42.21 335.64 0.1034           0.6073 
  1.60 562 75.37 364.04 0.1498           0.4954 

 Solution: 

For the mercury cycle: 

    sd = sc = 0.4954 = 0.1034 + xd × 0.5039,   xd = 0.7779 

    hb = ha - wP HG ≈ ha ( since vF is very small) 

    qH = hc - ha = 364.04 - 42.21 = 321.83 kJ/kg 

    qL = hd - ha = 270.48 - 42.21 = 228.27 kJ/kg 

 For the steam cycle: 

    s5 = s4 = 7.0097 = 0.6493 + x5 × 7.5009,   x5 = 0.8480 

    h5 = 191.83 + 0.848 × 2392.8 = 2220.8 

    wP ≈ v1(P2 - P1) = 0.00101(4688 - 10) = 4.7 kJ/kg 

    h2 = h1 + wP = 191.8 + 4.7 = 196.5 

    qH (from Hg) = h3 - h2 = 2769.9 - 196.5 = 2600.4 

    qH (ext. source) = h4 - h3 = 3437.4 - 2796.9 = 640.5 

CV: Hg condenser - H2O boiler:     1st law:     mHg(hd - ha) = mH2O(h3 - h2) 

          mHg/mH2O = 
2796.9 - 196.5
270.48 - 42.21 = 11.392 

  qH TOTAL = (mHg/mH2O)(hc - hb) + (h4 - h3)  (for 1 kg H2O) 

        = 11.392 × 321.83 + 640.5 = 4306.8 kJ 

   All qL is from the H2O condenser:   

    qL = h5 - h1 = 2220.8 - 191.8 = 2029.0 kJ 

    wNET = qH - qL = 4306.8 - 2029.0 = 2277.8 kJ 

    ηTH = wNET/qH = 2277.8/4306.8 = 0.529 



 
11.141 
 A Rankine steam power plant should operate with a high pressure of 3 MPa, a low 

pressure of 10 kPa, and the boiler exit temperature should be 500°C. The 
available high-temperature source is the exhaust of 175 kg/s air at 600°C from a 
gas turbine. If the boiler operates as a counterflowing heat exchanger where the 
temperature difference at the pinch point is 20°C, find the maximum water mass 
flow rate possible and the air exit temperature. 

 Solution: 
 
 C.V. Pump 

   wP = h2 - h1 = v1(P2 - P1) 

         = 0.00101(3000 - 10) = 3.02 kJ/kg 
    h2 = h1 + wP = 191.83 + 3.02 = 194.85 kJ/kg 

Heat exchanger water states 
State 2a:    T2a = TSAT = 233.9 °C 

                  h2a = 1008.42 kJ/kg 
1 

T 

3 

2 

s 

2a

 
 State 3:       h3 = 3456.5 kJ/kg 

 
Heat exchanger air states 
inlet:          hair,in = 903.16 kJ/kg 

State 2a:    hair(T2a + 20) = 531.28 kJ/kg 
 

HEAT EXCH 

i e 
a 

2a 3 2 
 

Air temperature should be 253.9°C at the point where the water is at state 2a. 

C.V. Section 2a-3, i-a 

  m
.

H2O(h3 - h2a) = m
.

air(hi - ha) 

   m
.

H2O = 175 
903.16 - 531.28
3456.5 - 1008.42   = 26.584 kg/s 

Take C.V. Total:   m
.

H2O(h3 - h2) = m
.

air(hi - he) 

  ⇒   he = hi - m
.

H2O(h3 - h2)/m
.

air  

  = 903.6 - 26.584(3456.5 - 194.85)/175 = 408.13 kJ/kg 

   ⇒   Te = 406.7 K = 133.6 °C,   Te > T2 = 46.5 °C   OK. 

 



 
11.142 
 A simple Rankine cycle with R-22 as the working fluid is to be used as a 

bottoming cycle for an electrical generating facility driven by the exhaust gas 
from a Diesel engine as the high temperature energy source in the R-22 boiler. 
Diesel inlet conditions are 100 kPa, 20°C, the compression ratio is 20, and the 
maximum temperature in the cycle is 2800°C. Saturated vapor R-22 leaves the 
bottoming cycle boiler at 110°C, and the condenser temperature is 30°C. The 
power output of the Diesel engine is 1 MW. Assuming ideal cycles throughout, 
determine 

 a. The flow rate required in the diesel engine. 
 b. The power output of the bottoming cycle, assuming that the diesel exhaust is 

cooled to 200°C in the R-22 boiler. 
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Diesel cycle information given means: 

 Inlet state:   P1 = 100 kPa,  T1 = 20 oC,  

 Compression ratio:   v1/v2 = 20, 

 High temperature:   T3 = 2800oC,   Power output:   W
.

DIESEL = 1.0 MW 

Rankine cycle information given means: 

 Boiler exit state:     T7 = 110 oC,   x7 = 1.0 

 Condenser temperature:    T5 = T8 = 30oC 

a) Consider the Diesel cycle 

    T2 = T1(v1/v2)k-1 = 293.2(20)0.4 = 971.8 K 

    P2 = P1(v1/v2)k = 100(20)1.4 = 6629 kPa 

    qH = CP0(T3 - T2) = 1.004(3073.2 - 971.8) = 2109.8 kJ/kg 

    v1 = 
0.287 × 293.2

100  = 0.8415,   v2 = 
0.8415

20  = 0.04208 

    v3 = v2(T3/T2) = 0.04208(3073.2/971.8) = 0.13307 

    T4 = T3





v3

v4

k-1
 = 3073.2



0.133 07

0.8415
0.4

 = 1469.6 K 



    qL = 0.717(293.2 - 1469.6) = -843.5 kJ/kg 

    wNET = 2109.8 - 843.5 = 1266.3 kJ/kg 

    m
.

AIR = W
.

NET/wNET = 1000/1266.3 = 0.79 kg/s 

b) Consider the Rankine cycle 

    s8 = s7 = 0.60758 = 0.2399 + x8 × 0.4454,   x8 = 0.8255 

    h8 = 64.59 + 0.8255 × 135.03 = 176.1 kJ/kg 

    wT = h7 - h8 = 198.0 - 176.1 = 21.9 kJ/kg 

    -wP  = v5(P6 - P5) = 0.000774(3978.5 - 744.9) = 2.50 

    h6 = h5 - wP = 64.6 + 2.5 = 67.1 kJ/kg 

    qH = h7 - h6 = 198.0 - 67.1 = 130.9 kJ/kg 

Connecting the two cycles. 

    Q
.

H available from Diesel exhaust cooled to 200 oC: 

       Q
.

H = 0.79 × 0.717(1469.6 - 473.2) = 564 kW 

     ⇒  m
.

R-12 = Q
.

H/qH = 564/130.9 = 4.309 kg/s 

    W
.

R-12 = 4.309(21.9 - 2.5) = 83.6 kW 
 
 Comment: The heat exchange process between the two cycles is not realistic. The 

exhaust must be expanded down to 100 kPa from state 4 and then flow at constant 
P through a heat exchanger. 

 



 
11.143 
 A cascade system is composed of two ideal refrigeration cycles, as shown in Fig. 

11.41. The high-temperature cycle uses R-22. Saturated liquid leaves the 
condenser at 40°C, and saturated vapor leaves the heat exchanger at −20°C. The 
low-temperature cycle uses a different refrigerant, R-23. Saturated vapor leaves 
the evaporator at −80°C, h = 330 kJ/kg, and saturated liquid leaves the heat 
exchanger at −10°C, h = 185 kJ/kg. R-23 out of the compressor has h = 405 kJ/kg. 
Calculate the ratio of the mass flow rates through the two cycles and the 
coefficient of performance of the system. 

 
 

R-22C 

1 ' 

COND
3 ' 

4 ' 
-20 C 

o 

T   =  40 C o 
' 

  
3 2'

sat. vapor

R-23C 

EVAP

2 

1 
T   = -80 C 

o 
1 

  

T   = -10 C o 
3 
  

sat. vapor

3
sat. liquid

sat. liquid

4
 

 
 T

s
1'

2'

3'

4'

 

 T

s
1

2

3

4

 
 

 T,oC P h s  T,oC P h s 

1′ -20  0.245 242.1 0.9593 1 -80 0.12 330 1.76 

2′  71 1.534 289.0 0.9593 2  50 1.90 405 1.76 

3′  40 1.534 94.3  3 -10 1.90 185  

4′ -20  94.3  4 -80 0.12 185  

           m
.

/m
.

′ = 
h′1 - h′4
h2 - h3

 = 
242.1 - 94.3

405 - 185  = 0.672 

             qL = h1 - h4 = 330 - 185 = 145 kJ/kg 

        - W
.

TOT/m
.

 = (h2 - h1) + (m
.

′/m
.

)(h′2 - h′1) 

    = (405 - 330) + (1/0.672)(289 - 242.1) = 144.8 kJ/kg 

        β = QL/-W
.

TOT = 145/144.8 = 1.0 



 
11.144 
 Consider an ideal dual-loop heat-powered refrigeration cycle using R-12 as the 

working fluid, as shown in Fig. P11.87. Saturated vapor at 105°C leaves the boiler 
and expands in the turbine to the condenser pressure. Saturated vapor at −15°C 
leaves the evaporator and is compressed to the condenser pressure. The ratio of 
the flows through the two loops is such that the turbine produces just enough 
power to drive the compressor. The two exiting streams mix together and enter 
the condenser. Saturated liquid leaving the condenser at 45°C is then separated 
into two streams in the necessary proportions. Determine the ratio of mass flow 
rate through the power loop to that through the refrigeration loop. Find also the 

performance of the cycle, in terms of the ratio Q
.

L /Q
.

H. 
 
 Solution: 
 
 

BOIL. 
COND. 

E 
V 
A 
P 
. 

TURB. COMP. 

1 

2 7 6 

3 
4 

5 
P 

Q 
. 
L

 

T 

3 

4 

s 

6 

7 

2 

1 

5 

 
 
 T1 = -15 oC sat. vap. 

 

Table B.3.1 T6 = 105oC sat. vapor    =>    P5 = P6 = 3.6509 MPa 

Table B.3.1 T3 = 45oC sat. liquid    =>      P2 = P3 = P7 = 1.0843 MPa 

   h1 = 180.97;   h3 = h4 = 79.71;   h6 = 206.57 

C.V. Turbine 

 s7 = s6 = 0.6325 = 0.2877 + x7 × 0.3934;        x7 = 0.8765 

 h7 = 79.71 + 0.8765 × 125.16 = 189.41 

C.V. Compressor      (computer tables are used for this due to value of P) 

 s2 = s1 = 0.7051,  P2  =>      T2 = 54.7oC,     h2 = 212.6 kJ/kg 

CV: turbine + compressor 

 Continuity Eq.: m
.

1 = m
.

2,   m
.

6 = m
.

7  ;     

 Energy Eq.:   m
.

1h1 + m
.

6h6 = m
.

2h2 + m
.

7h7 

     m
.

6/m
.

1 = (212.6 - 180.97)/(206.57 - 189.41) = 1.843 



 

CV: pump 

    wP = v3(P5 - P3) = 0.000811(3651 - 1084) = 2.082 kJ/kg 

    h5 = h3 + wP = 81.79 kJ/kg 

CV: evaporator  ⇒    Q
.

L = m
.

1(h1 - h4) 

CV: boiler          ⇒    Q
.

H = m
.

6(h6 - h5) 

    β = 
Q
.

L

Q
.

H

 = 
m
.

1(h1 - h4)

m
.

6(h6 - h5)
 = 

180.97 - 79.71
1.843(206.57 - 81.79) = 0.44 

 



 
11.145 
 For a cryogenic experiment heat should be removed from a space at 75 K to a 

reservoir at 180 K. A heat pump is designed to use nitrogen and methane in a 
cascade arrangement (see Fig. 11.41), where the high temperature of the nitrogen 
condensation is at 10 K higher than the low-temperature evaporation of the 
methane. The two other phase changes take place at the listed reservoir 
temperatures. Find the saturation temperatures in the heat exchanger between the 
two cycles that gives the best coefficient of performance for the overall system. 

The nitrogen cycle is the bottom cycle and the methane  cycle is the top cycle. 
Both std. refrigeration cycles. 

 T
Hm

 = 180 K = T
3m

 ,     T
LN

 = 75 K = T
4N

 = T
1N

 

 T
Lm

 = T
4m

 = T
1m

 = T
3N

 - 10,   Trial and error on T
3N

 or T
Lm

. 

For each cycle we have, 

 -w
C
 = h

2
 - h

1
,   s

2
 = s

1
,      -q

H
 = h

2
 - h

3
,       q

L
 = h

1
 - h

4
 = h

1
 - h

3
 

 
 Nitrogen:  T

4
 = T

1
 = 75 K   ⇒   h

1
 = 74.867 kJ/kg,  s

1
 = 5.4609 kJ/kg K 

N2  T3    h3   P2   h2  -wc   -qH   qL 
a) 120 -17.605 2.5125 202.96 128.1 220.57  92.47 
b) 115 -34.308 1.9388 188.35 113.5 222.66 109.18 
c) 110 -48.446 1.4672 173.88  99.0 222.33 123.31 

 
 Methane:   T

3
 = 180 K   ⇒   h

3
 = -0.5 kJ/kg,  P

2
 = 3.28655 MPa 

CH4 T4    h1    s1   h2  -wc   -qH   qL 
a) 110   221  9.548 540.3 319.3 540.8 221.5 
b) 105   212.2  9.691 581.1 368.9 581.6 212.7 
c) 100   202.9  9.851 629.7 426.8 630.2 203.4 

 The heat exchanger that connects the cycles transfers a Q  

     Q
.

Hn
 = qHn m

.
n =  Q

.
Lm

 = qLm m
.

m   =>  m
.

m/m
.

n = qHn/qLm  

 The overall unit then has  

     Q
.

L 75 K
 = m

.
n qLn ;   W

.
tot in

 = - (m
.

nwcn + m
.

mwcm) 

     β = Q
.

L 75 K
/W

.
tot in

 = qLn/[-wcn -(m
.

m/m
.

n)wcm] 

  
Case 

m
.

m/m
.

n wcn+(m
.

m/m
.

n)wcm 
  β  

 a) 0.996    446.06 0.207 
 b) 1.047    499.65 0.219 
 c) 1.093    565.49 0.218 

A maximum coeff. of performance is between case b) and c).  



 
Availabilty or Exergy Concepts 
 
11.146 
  Find the flows and fluxes of exergy in the condenser of Problem 11.32. Use those 

to determine the second law efficiency. 
 
 For this case we select To = 12°C = 285 K, the ocean water temperature. 

The states properties from Tables B.1.1 
and B.1.3 

1: 45oC,  x = 0:  h1 = 188.42 kJ/kg, 

3: 3.0 MPa,  600oC: s3 = 7.5084 kJ/kg K 

 

56

41

cb
 

C.V. Turbine : wT =  h3 - h4  ;  s4 =  s3   

  s4 = s3 = 7.5084 = 0.6386 + x4 (7.5261)     =>       x4 = 0.9128 

   =>  h4 = 188.42 + 0.9128 (2394.77) = 2374.4 kJ/kg 

C.V. Condenser : qL = h4 - h1 = 2374.4 - 188.42 = 2186 kJ/kg 

  Q
.

L = m
.

qL = 25 × 2186 = 54.65 MW = m
.

ocean Cp ∆T 

  m
.

ocean = Q
.

L / Cp ∆T = 54 650 / (4.18 × 3) = 4358 kg/s 
The net drop in exergy of the water is 

  Φ
.

water = m
.

water [h4
 – h

1
 – To(s

4
 – s

1
)]  

   = 25 [ 2374.4 – 188.4 – 285 (7.5084 – 0.6386)]  

   = 54 650 – 48 947 = 5703 kW 
The net gain in exergy of the ocean water is 

  Φ
.

ocean = m
.

ocean[h
6
 – h

5
 – To(s

6
 – s

5
)]  

= m
.

ocean[Cp(T
6
 – T

5
) – ToCp ln(

T6

T5
) ] 

= 4358 [ 4.18(15 – 12) – 285 × 4.18 ln 
273 + 15
273 + 12 ]  

= 54 650 – 54 364 = 286 kW 
The second law efficiency is 

   η
II
 = Φ

.
ocean / Φ

.
water = 

286
5703 = 0.05 

  
In reality all the exergy in the ocean water is destroyed as the 15°C water mixes 
with the ocean water at 12°C after it flows back out into the ocean and the 
efficiency does not have any significance. Notice the small rate of exergy relative 
to the large rates of energy being transferred.  



 
11.147 

 Find the availability of the water at all four states in the Rankine cycle described 
in Problem 11.33. Assume that the high-temperature source is 500°C and the low-
temperature reservoir is at 25°C. Determine the flow of availability in or out of 
the reservoirs per kilogram of steam flowing in the cycle. What is the overall 
cycle second law efficiency? 

 Solution: 

Reference State:  100 kPa, 25°C, so = 0.3674 kJ/kg K, ho = 104.89 kJ/kg 

 ψ
1
 = h

1
 - ho - To(s

1
 - so) 

       = 191.83 - 104.89 - 298.15(0.6493 - 0.3674) = 2.89 kJ/kg 

 ψ
2
 = 195.35 - 104.89 - 298.15(0.6493 - 0.3674) = ψ

1
 + 3.525 = 6.42 kJ/kg 

 ψ
3
 = 3222.3 - 104.89 - 298.15(6.8405 - 0.3674) = 1187.5 kJ/kg 

 ψ
4
 = ψ

3
 - w

T,s
 = 131.96 kJ/kg 

 ∆ψ
H

 = (1 - To/T
H

)q
H

 = 0.6144 × 3027 = 1859.7 kJ/kg 

 ∆ψ
L
 = (1 - To/To)q

C
 = 0 kJ/kg 

 η
II
 = w

NET
/∆ψ

H
 = (1055.5 - 3.53)/1859.7 = 0.5657 

 

Notice—  T
H

 > T
3
, T

L
 < T

4
 = T

1
 so cycle is externally irreversible.  Both q

H
 and 

q
C
 over finite ∆T. 



 
11.148 

  Find the flows of exergy into and out of the feedwater heater in Problem 11.43. 
 

  State 1:   x1 = 0,  h1 = 298.25 kJ/kg, v1 = 0.001658 m3/kg 

  State 3:   x3 = 0,  h3 = 421.48 kJ/kg, v3 = 0.001777 m3/kg 

  State 5:   h5 = 421.48 kJ/kg, s5 = 4.7306 kJ/kg K 

  State 6:   s6 = s5   =>    x6 = (s6 – sf)/sfg = 0.99052,    h6 = 1461.53 kJ/kg 

C.V Pump P1 

 wP1 = h2 - h1 = v1(P2 - P1) = 0.001658(2033 - 1003) = 1.708 kJ/kg 

  =>  h2 = h1 + wP1 = 298.25 + 1.708 = 299.96 kJ/kg 

C.V. Feedwater heater: Call    m
.

6 / m
.

tot = x   (the extraction fraction) 

Energy Eq.: (1 - x) h2 + x h6 = 1 h3  

  

x = 
h3 - h2

h6 - h2
 =  

762.79 - 189.42
3640.6 - 189.42  = 0.1046 

m
.

extr = x m
.

tot =  0.1046 × 5 = 0.523 kg/s 

m
.

2
 = (1-x) m

.
tot = (1 – 0.1046) 5 = 4.477 kg/s 2

6

3

x

1-x

FWH

 

 

Reference State:  100 kPa, 20°C,  so = 6.2826 kJ/kg K,  ho = 1516.1 kJ/kg 

 ψ
2
 = h

2
 - ho - To(s

2
 - so) 

       = 299.96 - 1516.1 - 293.15(1.121 - 6.2826) = 296.21 kJ/kg 

 ψ
6
 = 1461.53 - 1516.1 - 293.15(4.7306 - 6.2826) = 400.17 kJ/kg 

 ψ
3
 = 421.48 - 1516.1 - 293.15(1.5121 - 6.2826) = 303.14 kJ/kg 

The rate of exergy flow is then 

 Φ
.

2
 = m

.
2
ψ

2
 = 4.477 × 296.21 = 1326 kW  

  Φ
.

6
 = m

.
6
ψ

6
 = 0.523 × 400.17 = 209.3 kW 

Φ
.

3
 = m

.
3
ψ

3
 = 5.0 × 303.14 = 1516 kW 

       The mixing is destroying 1326 + 209 – 1516 = 19 kW of exergy 



 
11.149 

 Find the availability of the water at all the states in the steam power plant 
described in Problem 11.57. Assume the heat source in the boiler is at 600°C and 
the low-temperature reservoir is at 25°C. Give the second law efficiency of all the 
components. 

From solution to 11.21  and 11.57 : 

States 0 1 sat liq. 2a 3 4a (x = 0.7913) 

h  [kJ/kg] 104.89 191.81 195.58 2804.14 2085.24 

s  [kJ/kg K] 0.3674 0.6492 0.6529  6.1869 6.5847 

 

The entropy for state 2a was done using the compressed liquid entry at 2MPa at 
the given h. You could interpolate in the compressed liquid tables to get at 3 MPa 
or use the computer tables to be more accurate. 

  

Definition of flow exergy: ψ = h - h
o
 - T

o
(s - s

o
)  

 ψ
1
= 191.81 - 104.89 - 298.15(0.6492 - 0.3674) = 2.90 kJ/kg 

 ψ
2a

 = 195.58 - 104.89 - 298.15(0.6529 - 0.3674) = 5.57 kJ/kg 

 ψ
3
 = 2804.14 - 104.89 - 298.15(6.1869 - 0.3674) = 964.17 kJ/kg 

 ψ
4a

 = 2085.24 - 104.89 - 298.15(6.5847 - 0.3674) = 126.66 kJ/kg 

 η
II Pump

 = (ψ
2a

 - ψ
1
) / w

p ac
 = (5.57 - 2.9) / 3.775 = 0.707 

 η
II Boiler

 = (ψ
3
 - ψ

2a
) / [(1- T

o
/T

H
) q

H
]  

    = (964.17 - 3.18) / [0.658×2608.6] = 0.56 

 η
II Turbine

 = w
T ac

 / (ψ
3
 - ψ

4a
) = 718.9 / (964.17 - 126.66) = 0.858 

 η
II Cond

 = ∆ψ
amb

 / (ψ
4a

 - ψ
1
) = 0 

 

Remark: Due to the interpolation the efficiency for the pump is not quite correct. 
It should have a second law efficiency greater than the isentropic efficiency. 



 
11.150 

Consider the Brayton cycle in Problem 11.72. Find all the flows and fluxes of 
exergy and find the overall cycle second-law efficiency. Assume the heat transfers 
are internally reversible processes, and we then neglect any external 
irreversibility. 

 
 Solution: 
 Efficiency is from Eq.11.8 

   η = 
 W

.
net

 Q
.

H

 = 
wnet

qH
 = 1 - r

-(k-1)/k
p

 = 1 - 16
-0.4/1.4

 = 0.547 

 from the required power we can find the needed heat transfer  

    Q
.

H =  W
.

net / η = 
14 000
0.547  = 25 594 kW 

    m
.

 =  Q
.

H / qH = 25 594 kW/ 960 kJ/kg = 26.66 kg/s 
 Temperature after compression is 

    T2 = T1 r
(k-1)/k
p  = 290 × 16

0.4/1.4
 = 640.35 K 

  The highest temperature is after combustion 

    T3 = T2 + qH/Cp = 640.35 + 
960

1.004 = 1596.5 K 

For the exit flow I need the exhaust temperature 

T
4
 = T

3
   rp

−
k-1
k    = 1596.5 × 16−0.2857   = 723 K 

 η
II
 = W

.
NET

/Φ
.

H
       since the low T exergy flow out is lost 

The high T exergy input from combustion is 

 Φ
.

H
 = m

.
(ψ

3
 - ψ

2
) = m

.
[h

3
 – h

2
 – T(s

3
 – s

2
)]  

       = 26.66 [960 – 298 × 1.004 ln (
1596.5
640.35)] = 18 303 kW 

 η
II
 = W

.
NET

/Φ
.

H
   = 14 000 / 18 303 = 0.765 

Φ
.

flow in
 = m

.
(ψ

4
 - ψ

o
) = m

.
[h

4
 – h

o
 – T(s

4
 – s

o
)] 

 = 26.66 [ 1.004(17 – 25) – 298 × 1.004 ln ( 
290
298 ) ] = 2.0 kW 

Φ
.

flow out
 = m

.
(ψ

1
 - ψ

o
) = m

.
[h

1
 – h

o
 – T(s

1
 – s

o
)]  

 = 26.66 [ 1.004(723 – 298) – 298 × 1.004 ln ( 
723
298 ) ] = 4302 kW 



 
11.151 
 For Problem 11.141, determine the change of availability of the water flow and 

that of the air flow. Use these to determine a second law efficiency for the boiler 
heat exchanger. 

 From solution to 11.141 : 

 m
.

H2O
 = 26.584 kg/s,   h

2
 = 194.85 kJ/kg,   s

2
 = 0.6587 kJ/kg K 

 h
3
 = 3456.5 kJ/kg,   s

3
 = 7.2338,   s°

Ti
 = 7.9820,   s°

Te
 = 7.1762 kJ/kg K 

 h
i
 = 903.16 kJ/kg,   h

e
 = 408.13 kJ/kg 

 ψ
3
 - ψ

2
 = h

3
 - h

2
 - T

0
(s

3
 - s

2
) = 1301.28 kJ/kg 

 ψ
i
 - ψ

e
 = h

i
 - h

e
 - T

0
(s°

Ti
 - s°

Te
) = 254.78 kJ/kg 

 η
II
 = 

(ψ
3
 - ψ

2
)m

.
H2O

(ψ
i
 - ψ

e
)m

.
air

 = 
1301.28 × 26.584

254.78 × 175
 = 0.776 



 

Review Problems 
 



 
11.152 
 A simple steam power plant is said to have the four states as listed:   1: (20oC, 100 

kPa), 2: (25oC, 1 MPa), 3: (1000oC, 1 MPa), 4: (250oC, 100 kPa) with an energy 
source at 1100oC and it rejects energy to a 0oC ambient. Is this cycle possible? 
Are any of the devices impossible? 

Solution: 

The cycle should be like Figure 11.3 for an ideal or Fig.11.9 for an actual pump 
and turbine in the cycle. We look the properties up in Table B.1: 

State 1:   h1 = 83.94 ,   s1 = 0.2966       State 2:  h2 = 104.87,    s2 = 0.3673 

State 3:   h3 = 4637.6 ,   s3 = 8.9119     State 4:  h4 = 2974.3,    s4 = 8.0332 

We may check the overall cycle performance 

 Boiler:  qH = h3 - h2 = 4637.6 - 104.87 = 4532.7 kJ/kg 

 Condenser: qL = h4 - h1 = 2974.3 - 83.94 = 2890.4 kJ/kg 

 ηcycle = qnet / qH = (qH − qL) / qH = 1642.3 / 4532.7 = 0.362 

 ηcarnot = 1 - TL / TH = 1 -  
273.15

273.15 + 1100 = 0.80  > ηcycle    OK 

Check the second law for the individual devices: 

C.V. Boiler plus wall to reservoir 

 sgen = s3 - s2 - 
qH
Tres

 = 8.9119 - 0.3673 - 
4532.7
1373  = 5.24 kJ/kg K  > 0   OK 

C.V. Condenser plus wall to reservoir 

 sgen = s1 - s4 + 
qL

Tres
 = 0.2966 - 8.0332 + 

2890.4
273  = 2.845 kJ/kg K  > 0   OK 

C.V. Pump:     wp =  h2 - h1 = 20.93 kJ/kg ;   

       sgen = s2 - s1 = 0.3673 - 0.2966 = 0.0707 kJ/kg K  > 0   OK 

C.V. Turbine:   wT =  h3 - h4 = 4637.6 - 2974.3 = 1663.3 kJ/kg 

 sgen = s4 - s3 = 8.0332 - 8.9119 = - 0.8787 kJ/kg K    

    sgen  <  0    NOT POSSIBLE 

 
 

WT
QH

WP, in QL
.

3

2

1

4

 

T

s
1

2

3

4

 



 
11.153 
 Do Problem 11.31 with R-134a as the working fluid in the Rankine cycle. 
 Consider the ammonia Rankine-cycle power plant shown in Fig. P11.31, a plant 

that was designed to operate in a location where the ocean water temperature is 
25°C near the surface and 5°C at some greater depth. The mass flow rate of the 
working fluid is 1000 kg/s. 
 a. Determine the turbine power output and the pump power input for the cycle. 
 b. Determine the mass flow rate of water through each heat exchanger. 

      c. What is the thermal efficiency of this power plant? 

Solution: 

a) Turbine 

        s2 = s1 = 1.7183 = 1.0485 + x2 × 0.6733        =>         x2 = 0.9948 

        h2 = 213.58 + 0.9948 × 190.65 = 403.24 kJ/kg 

        wT = h1 - h2 = 409.84 - 403.24 = 6.6 kJ/kg 

   W
.

T = m
.

wT = 6600 kW 

   Pump:  wP  ≈ v3(P4 - P3) = 0.000794(572.8 - 415.8) = 0.125 kJ/kg 

   wP = wP /ηS = 0.125     =>        W
.

P = m
.

wP = 125 kW 

b)     Consider the condenser heat transfer to the low T water 

    Q
.

to low T H2O = 1000(403.24 - 213.58) = 189 660 kW 

    m
.

low T H2O = 
189660

29.38 - 20.98 = 22 579 kg/s  

    h4 = h3 - wP = 213.58 + 0.125 = 213.71 kJ/kg 

 Now consider the boiler heat transfer from the high T water 

    Q
.

from high T H2O = 1000(409.84 - 213.71) = 196 130 kW 

    m
.

high T H2O = 
196130

104.87 - 96.50 = 23 432 kg/s  

c)      ηTH = W
.

NET/Q
.

H = 
6600 - 125

196130  = 0.033 

 
 

WTQH

WP, in QL
.

3
2

1

4

 

T

s
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4

 



 
11.154 
 An ideal steam power plant is designed to operate on the combined reheat and 

regenerative cycle and to produce a net power output of 10 MW. Steam enters the 
high-pressure turbine at 8 MPa, 550°C, and is expanded to 0.6 MPa, at which 
pressure some of the steam is fed to an open feedwater heater, and the remainder 
is reheated to 550°C. The reheated steam is then expanded in the low-pressure 
turbine to 10 kPa. Determine the steam flow rate to the high-pressure turbine and 
the power required to drive each of the pumps. 

 a) 

         s 
1 

2 3 

5 

6 

7 

8 

550 C o 

4 
10 kPa

T

 

P P 
1 

2 
4 

5 

6 

7 

8 

COND. HTR 

3 

6a

T1 T2
HI P LOW P

 
b)  -wP12 = 0.00101(600 - 10) = 0.6 kJ/kg 

    h2 = h1 - wP12 = 191.8 + 0.6 = 192.4 kJ/kg 

   -wP34 = 0.00101(8000 - 600) = 8.1 kJ/kg 

    h4 = h3 - wP34 = 670.6 + 8.1 = 678.7 ;     h5 = 3521.0 kJ/kg, 

    s6 = s5 = 6.8778   ⇒   T6 = 182.32 oC    h6 = 2810.0 kJ/kg, 

    h7 = 3591.9,   s8 = s7 = 8.1348 = 0.6493 + x8 × 7.5009   ⇒   x8 = 0.9979 

    h8 = 191.83 + 0.9979 × 2392.8 = 2579.7 kJ/kg 

CV: heater 

     Cont: m6a + m2 = m3 = 1 kg,  1st law:     m6ah6 + m2h2 = m3h3 

          m6a = 
670.6 - 192.4
2810.0 - 192.4 = 0.1827,   m2 = m7 = 1 - m6a = 0.8173 

CV: turbine 

       wT = (h5 - h6) + (1 - m6a)(h7 - h8) 

             = 3521 - 2810 + 0.8173(3591.9 - 2579.7) = 1538.2 kJ/kg 

CV: pumps 

       wP = m2wP12 + m4wP34 = 0.8214×(-0.6) + 1×(-8.1) = -8.6 kJ/kg 

       wN = 1538.2 - 8.6 = 1529.6 kJ/kg (m5) 

       m
.

5 = W
.

N/wN = 10000/1529.6 = 6.53 kg/s 



 
11.155 
 Steam enters the turbine of a power plant at 5 MPa and 400°C, and exhausts to the 

condenser at 10 kPa. The turbine produces a power output of 20 000 kW with an 
isentropic efficiency of 85%. What is the mass flow rate of steam around the 
cycle and the rate of heat rejection in the condenser? Find the thermal efficiency 
of the power plant and how does this compare with a Carnot cycle. 

Solution:     W
.

T = 20 000 kW   and    ηTs = 85 % 

State 3:         h3 = 3195.6 kJ/kg ,   s3 = 6.6458 kJ/kgK 

State 1:      P1 = P4 = 10 kPa , sat liq , x1 = 0  

   T1 = 45.8oC , h1 = hf = 191.8 kJ/kg , v1 = vf = 0.00101 m3/kg 

C.V Turbine : 1st Law:    qT + h3 = h4 + wT ;    qT = 0 

  wT = h3 - h4 , Assume Turbine is isentropic 

  s4s = s3 = 6.6458 kJ/kgK , s4s = sf + x4s sfg , solve for x4s = 0.7994 

  h4s = hf + x4shfg = 1091.0 kJ/kg 

  wTs = h3 - h4s = 1091 kJ/kg , wT = ηTswTs = 927.3 kJ/kg 

  m
.

 = 
W
.

T 
wT

 = 21.568 kg/s ,      h4 = h3 - wT = 2268.3 kJ/kg 

C.V. Condenser: 1st Law :    h4 = h1 + qc + wc  ;    wc = 0 

  qc = h4 - h1  = 2076.5 kJ/kg ,    Q
.

c = m
.

 qc = 44786 kW 

C.V. Pump: Assume adiabatic, reversible and incompressible flow 

  wps = ∫ v dP = v1(P2 - P1) = 5.04 kJ/kg  

  1st Law :  h2 = h1 + wp = 196.8 kJ/kg 

C.V Boiler : 1st Law :      qB + h2 = h3 + wB ; wB = 0 

  qB = h3 - h2 = 2998.8 kJ/kg  

  wnet = wT - wP = 922.3 kJ/kg 

  ηth = wnet / qB = 0.307 

Carnot cycle :    TH = T3 = 400oC , TL = T1 = 45.8oC  

  ηth = 
TH - TL  

TH
 = 0.526 

 



 
11.156 

 Consider an ideal combined reheat and regenerative cycle in which steam enters 
the high-pressure turbine at 3.0 MPa, 400°C, and is extracted to an open 
feedwater heater at 0.8 MPa with exit as saturated liquid. The remainder of the 
steam is reheated to 400°C at this pressure, 0.8 MPa, and is fed to the low-
pressure turbine. The condenser pressure is 10 kPa. Calculate the thermal 
efficiency of the cycle and the net work per kilogram of steam. 

Solution: 

In this setup the flow is separated into fractions x and 1-x after coming out of T1. 
The two flows are recombined in the FWH.  

C.V.  T1  s6 = s5 = 6.9211 kJ/kg K    =>    h6 = 2891.6 kJ/kg 

  wT1 = h5 - h6 = 3230.82 – 2891.6  = 339.22 kJ/kg 

C.V. Pump 1:     

 wP1 = h2 - h1 = v1(P2 - P1) = 0.00101(800 - 10) = 0.798 kJ/kg 

  =>   h2 = h1 + wP1 = 191.81 + 0.798 = 192.61 kJ/kg 

 

  

s 
1 

2 3 

5 

6 

7 

8 

400 C o 

4 
10 kPa

T

 
 

 

C.V. FWH,     h3 = hf = 721.1 

P1 P2 1 
2 

4 

5 

6 

7 

8 

COND. FWH 

3 

T1 T2

x

1-x

1-x

 

Energy equation per unit mass flow exit at 3: 

   x h6 + (1 - x) h2 = h3   =>     x = 
 h3 - h2
 h6 - h2

 = 
721.1 - 192.61
2891.6 - 192.61 = 0.1958 

C.V. Pump 2 

 wP2 = h4 - h3 = v3(P4 - P3) = 0.001115(3000 - 800) = 2.45 kJ/kg 

  =>   h4 = h3 + wP2 = 721.1 + 2.45 = 723.55 kJ/kg 

C.V. Boiler/steam generator including reheater. 

 Total flow from 4 to 5 only fraction 1-x from 6 to 7 

 qH = h5 - h4 + (1 - x)(h7 - h6 )  = 2507.3 + 301.95 = 2809.3 kJ/kg 

 



C.V. Turbine 2 

 s8 = s7 = 7.5715 kJ/kg K   =>   x8 = (7.5715 - 0.6492)/7.501 = 0.92285 

 h8 = hf + x8 hfg = 191.81 + 0.92285 × 2392.82 = 2400.0 kJ/kg 

  wT2 = h7 - h8 = 3267.07 - 2400.02 = 867.05 kJ/kg 

Sum the work terms to get net work. Total flow through T1 only fraction 1-x 
through T2 and P1 and after FWH we have the total flow through P2. 

  wnet = wT1 + (1 - x) wT2 - (1 - x) wP1 - wP2 

         = 339.2 + 697.3 - 0.64 – 2.45 = 1033.41 kJ/kg 

  ηcycle = wnet / qH = 1033.41 / 2809.3 = 0.368 

 



 
11.157 
 In one type of nuclear power plant, heat is transferred in the nuclear reactor to 

liquid sodium. The liquid sodium is then pumped through a heat exchanger where 
heat is transferred to boiling water. Saturated vapor steam at 5 MPa exits this heat 
exchanger and is then superheated to 600°C in an external gas-fired superheater. 
The steam enters the turbine, which has one (open-type) feedwater extraction at 
0.4 MPa. The isentropic turbine efficiency is 87%, and the condenser pressure is 
7.5 kPa. Determine the heat transfer in the reactor and in the superheater to 
produce a net power output of 1 MW. 

 

P 
1 

TURBINE.

COND. 

HTR.

P 
4 2 

3 

5 

6 

SUP.  
HT. 

REACT.

Q 
7 

8 

 

s 

1 

2 3 

600 C o 

4 5 

6 

7 

8 

7s

8s

7.5 kPa

5 MPa

0.4 MPa

T

 

W
.

NET = 1 MW ,  ηST = 0.87 

 

 -wP12 = 0.001008(400 - 7.5) = 0.4 kJ/kg 

 h2 = h1 - wP12 = 168.8 + 0.4 = 169.2 kJ/kg 

 -wP34 = 0.001084(5000 - 400) = 5.0 kJ/kg 

 h4 = h3 - wP34 = 604.7 + 5.0 = 609.7 kJ/kg 

 s7S = s6 = 7.2589,   P7=0.4 MPa  =>   T7S = 221.2 oC,   h7S = 2904.5 kJ/kg 

 h6 - h7 = ηST(h6 - h7S)   ⇒   3666.5 - h7 = 0.87(3666.5  

    - 2904.5) = 662.9   ⇒   h7 = 3003.6 kJ/kg 

 s8S = s6 = 7.2589 = 0.5764 + x8S × 7.6750 ;    x8S = 0.8707 

 h8S = 168.8 + 0.8707 × 2406.0 = 2263.7 kJ/kg 

 h6 - h8 = ηST(h6 - h8S)   ⇒   3666.5 - h8 = 0.87(3666.5 

    - 2263.7) = 1220.4   ⇒   h8 = 2446.1 kJ/kg 

 

CV: heater 

   cont:  m2 + m7 = m3 = 1.0 kg,    Energy Eq.:     m2h2 + m7h7 = m3h3 

       m7 = (604.7-169.2)/(3003.6-169.2) = 0.1536 

 



CV: turbine 

    wT = (h6 - h7) + (1 - m7)(h7 - h8) 

         = 3666.5-3003.6 + 0.8464(3003.6-2446.1) = 1134.8 kJ/kg 

CV: pumps 

    wP = m1wP12 + m3wP34 = 0.8464(-0.4) + 1(-5.0) = -5.3 kJ/kg 

    wNET = 1134.8 - 5.3 = 1129.5   =>   m
.

 = 1000/1129.5 = 0.885 kg/s 

CV: reactor 

    Q
.

REACT = m
.

(h5 - h4) = 0.885(2794.3 - 609.7) = 1933 kW 

CV: superheater 

    Q
.

SUP = 0.885(h6 - h5) = 0.885(3666.5 - 2794.3) = 746 kW 

 



 
11.158 
 An industrial application has the following steam requirement: one 10-kg/s stream 

at a pressure of 0.5 MPa and one 5-kg/s stream at 1.4 MPa (both saturated or 
slightly superheated vapor). It is obtained by cogeneration, whereby a high-
pressure boiler supplies steam at 10 MPa, 500°C to a turbine. The required 
amount is withdrawn at 1.4 MPa, and the remainder is expanded in the low-
pressure end of the turbine to 0.5 MPa providing the second required steam flow. 
Assuming both turbine sections have an isentropic efficiency of 85%, determine 
the following. 

 a. The power output of the turbine and the heat transfer rate in the boiler. 
 b. Compute the rates needed were the steam generated in a low-pressure boiler 

without cogeneration. Assume that for each, 20°C liquid water is pumped to the 
required pressure and fed to a boiler. 

 Solution: 
 

1 

H O IN2 

20 Co W
. 

P 

BOILER 

Q 
. 
H HP TURB.

LP TURB.

HPT W 
. 

W 
. 
LPT 

10 MPa, 500 C o 

1.4 MPa 

5 kg/s

STEAM 

0.5 MPa 
10 kg/s 

STEAM 

η s = 0.85

η s = 0.85

2 3 

4 

5 

P 

 
a) With cogeneration 

 high-pressure turbine, first the ideal then the actual. 

    s4S = s3 = 6.5966 kJ/kg K     ⇒    T4S = 219.9 oC,  h4S = 2852.6 kJ/kg 

    wS HPT = h3 - h4S = 3373.7 - 2852.6 = 521.1 kJ/kg 

 actual turbine from Eq.9.27 

    wHPT = ηSwS HPT = 0.85 × 521.1 = 442.9 kJ/kg 

    h4 = h3 - w = 3373.7-442.9 = 2930.8 kJ/kg 

   ⇒   T4 = 251.6°C,   s4 = 6.7533 kJ/kg K 

    low-pressure turbine first the ideal then the actual 

    s5S = s4 = 6.7533 = 1.8607 + x5S × 4.9606,  x5S = 0.9863 

    h5S = 640.23 + 0.9863 × 2108.5 = 2719.8 kJ/kg 

    wS LPT = h4 - h5S = 2930.8 - 2719.8 = 211.0 kJ/kg 

 actual turbine from Eq.9.27 



    wLPT = ηSwS LPT = 0.85 × 211.0 = 179.4 kJ/kg 

    h5 = h4 - w = 2930.8 - 179.4 = 2751.4  >  hG   OK 

    W
.

TURB = 15 × 442.9 + 10 × 179.4 = 8438 kW 

    W
.

P = 15[0.001002(10000 - 2.3)] = 150.3 kW 

    h2 = h1 + wP = 83.96 + 10.02 = 94.0 kJ/kg 

    Q
.

H = m
.

1(h3 - h2) = 15(3373.7 - 94.0) = 49196 kW 

 

b)  Without cogeneration  

This is to be compared to the amount of heat required to supply 5 kg/s of 1.4 MPa 
sat. vap. plus 10 kg/s of 0.5 MPa sat. vap. from 20oC water. 

 
 

1 2 3

WP1

Q2    3

4
5 6

WP2

Q5    6

5 kg/s

10 kg/s

Sat. vapor

1.4 MPa

Sat. vapor

0.5 MPa

20 C
o

20 C
o

 

  Pump 1 and boiler 1 

    wP = 0.001002(1400 - 2.3) = 14.0 kJ/kg, 

    h2 = h1 + wP = 83.96 + 14.0 = 85.4 kJ/kg 

    2Q
.

3 = m
.

1(h3 - h2) = 5(2790.0 - 85.4) = 13 523 kW 

    W
.

P1 = 5 × 14.0 = 7 kW 

 Pump 2 and boiler 2 

    h5 = h4 + wP2 = 83.96 + 0.001002(500 - 2.3) = 84.5 kJ/kg 

    5Q
.

6 = m
.

4(h6 - h5) = 10(2748.7 - 84.5) = 26 642 kW 

    W
.

P2 = 10 × 0.5 = 5 kW 

    Total Q
.

H = 13523 + 26642 = 40 165 kW 



 
11.159 
 Repeat Problem 11.75, but assume that the compressor has an efficiency of 82%, 

that both turbines have efficiencies of 87%, and that the regenerator efficiency is 
70%.  

a) From solution 11.54: T
2
 = T

1





P

2

P
1

k-1
k  = 300(6)0.286 = 500.8 K 

    -w
C
 = -w

12
 = C

P0
(T

2
 - T

1
) = 1.004(500.8 - 300) = 201.6 kJ/kg 

    -w
C
 = -w

SC
/η

SC
 = 201.6/0.82 = 245.8 kJ/kg = w

T1
 

       = C
P0

(T
4
 - T

5
) = 1.004(1600 - T

5
)    ⇒     T

5
 = 1355.2 K 

    w
ST1

 = w
T1

/η
ST1

 = 245.8/0.87 = 282.5 kJ/kg 

       = C
P0

(T
4
 - T

5S
) = 1.004(1600 - T

5S
)    ⇒    T

5S
 = 1318.6 K 

    s
5S

 = s
4
 ⇒ P

5
 = P

4
(T

5S
/T

4
)

k
k-1 =  600(

1318.6
1600 )

3.5
=  304.9 kPa 

b) P
6
 = 100 kPa,   s

6S
 = s

5
 

    T
6S

 = T
5





P

6

P
5

k-1
k  = 1355.2



100

304.9
0.286

 = 985.2K 

    w
ST2

 = C
P0

(T
5
-T

6S
) = 1.004(1355.2- 985.2) = 371.5 kJ/kg 

    w
T2

 = η
ST2

 × w
ST2

 = 0.87 × 371.5 = 323.2 kJ/kg 

    323.2 = C
P0

(T
5
-T

6
) = 1.004(1355.2 -T

6
) ⇒ T

6
 = 1033.3K 

    m
.

 = W
.

NET
/w

NET
 = 150/323.2 = 0.464 kg/s 

c)      w
C
 = 245.8 = C

P0
(T

2
 - T

1
) = 1.004(T

2
 – 300) ⇒  T

2
 = 544.8 K 

    η
REG

 = 
h

3
 - h

2

h
6
 - h

2
 = 

T
3
 - T

2

T
6
 - T

2
 = 

T
3
 - 544.8

1033.3 - 544.8 = 0.7 

       ⇒  T
3
 = 886.8 K 

    q
H

 = C
P0

(T
4
 - T

3
) = 1.004(1600 – 886.8) = 716 kJ/kg 

    η
TH

 = w
NET

/q
H

 = 323.2/716 = 0.451 

 



 
11.160 
 Consider a gas turbine cycle with two stages of compression and two stages of 

expansion. The pressure ratio across each compressor stage and each turbine stage 
is 8 to 1. The pressure at the entrance of the first compressor is 100 kPa, the 
temperature entering each compressor is 20oC, and the temperature entering each 
turbine is 1100oC. A regenerator is also incorporated into the cycle and it has an 
efficiency of 70%. Determine the compressor work, the turbine work, and the 
thermal efficiency of the cycle. 

 

See Fig.11.23 for the configuration. 
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T
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
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Total -w
C
 = 2 × (-w

12
) = 2C

P0
(T

2
 - T

1
) = 2 × 1.004(531 - 293.15) = 477.6 kJ/kg 

Also s
6
 = s

7
 and s

8
 = s

9
:   ⇒    T

7
 = T

9
 = T

6





P7

P6

k-1
k  = 1373.15



1

8
0.286

 = 758 K 

Total w
T
 = 2 × w

67
 = 2C

P0
(T

6
 - T

7
) = 2 × 1.004(1373.15 - 758) = 1235.2 kJ/kg 

 w
NET

 = 1235.2 - 477.6 = 757.6 kJ/kg 

Ideal regenerator: T
5
 = T

9
,  T

10
 = T

4
  so the actual one has  

 η
REG

 = 
h

5
 - h

4

h
9
 - h

4
 = 

T
5
 - T

4

T
9
 - T

4
  = 

T
5
 - 531

758 - 531  = 0.7       ⇒  T
5
 = 689.9 K 

   ⇒ q
H

 = (h
6
 - h

5
) + (h

8
 - h

7
) = C

P0
(T

6
 - T

5
) + C

P0
(T

8
 - T

7
) 

       = 1.004(1373.15 – 689.9) + 1.004 (1373.15 – 758) = 1303.6 kJ/kg 

 η
TH

 = w
NET

/q
H

 = 757.6/1303.6 = 0.581  

 



 
11.161 

 A gas turbine cycle has two stages of compression, with an intercooler between 
the stages. Air enters the first stage at 100 kPa, 300 K. The pressure ratio across 
each compressor stage is 5 to 1, and each stage has an isentropic efficiency of 
82%. Air exits the intercooler at 330 K. The maximum cycle temperature is 1500 
K, and the cycle has a single turbine stage with an isentropic efficiency of 86%. 
The cycle also includes a regenerator with an efficiency of 80%. Calculate the 
temperature at the exit of each compressor stage, the second-law efficiency of the 
turbine and the cycle thermal efficiency. 

   
  State 1:  P

1
 = 100 kPa, T

1
 = 300 K State 7:  P

7
 = P

o
 = 100 kPa 

  State 3: T
3
 = 330 K; State 6: T

6
 = 1500 K,   P

6
 = P

4
 

    P
2
 = 5 P1 = 500 kPa;     P

4
 = 5 P3 = 2500 kPa 

  Ideal compression   T
2s

 = T
1
 (P

2
/P

1
)(k-1)/k = 475.4 K 

  1st Law:  q + h
i
 = h

e
 + w;  q = 0    =>    w

c1
 = h

1
 - h

2
 = CP(T1 - T

2
) 

   w
c1 s

 = CP(T1 - T
2s

) = -176.0 kJ/kg,    w
c1

 = w
c1 s

/ η = -214.6 

   T
2
 = T1 - w

c1
/CP = 513.9 K 

   T
4s

 = T3 (P
4
/P3)(k-1)/k = 475.4 K 

   w
c2 s

 = CP(T3 - T
4s

) = -193.6 kJ/kg;     w
c2

 = -236.1 kJ/kg 

   T
4
 = T3 - w

c2
 / CP = 565.2 K 

  Ideal Turbine (reversible and adiabatic) 

      T
7s

 = T
6
(P

7
/P

6
)(k-1)/k = 597.4 K    =>   w

Ts
 = CP(T

6
 - T

7s
) = 905.8 kJ/kg 

  1st Law Turbine:    q + h
6
 = h

7
 + w;    q = 0 

      w
T
 = h

6
 - h

7
 = CP(T

6
 - T

7
) = η

Ts
 w

Ts
 = 0.86 × 905.8 = 779.0 kJ/kg 

       T
7
 = T

6
 -  w

T
/ CP =  1500 - 779/1.004 = 723.7 K 

   s
6
 - s

7
 = CP ln 

T6
T7

 - R ln 
P6
P7

 = -0.1925 kJ/kg K 

       ψ
6
 - ψ

7
 = (h

6
 - h

7
) - T

o
(s

6
 - s

7
) = 779.0 - 298.15(-0.1925) = 836.8 kJ/kg 

   η
2nd Law

 = 
wT

ψ6-ψ7
 = 779.0 / 836.8 = 0.931 

  d)      η
th

 = q
H

 / w
net

 ;         w
net

 = w
T
 + w

c1
 + w

c2
 = 328.3 kJ/kg 

  1st Law Combustor:  q + h
i
 = h

e
 + w;     w = 0 

    q
c
 = h

6
 - h

5
 = CP(T

6
 - T

5
) 

  Regenerator: η
reg

 = 
T5 - T4
T7 - T4

 = 0.8      ->    T
5
 = 692.1 K 

   q
H

 = q
c
 = 810.7 kJ/kg;  η

th
 = 0.405 



 
11.162 

 A gasoline engine has a volumetric compression ratio of 9. The state before 
compression is 290 K, 90 kPa, and the peak cycle temperature is 1800 K. Find the 
pressure after expansion, the cycle net work and the cycle efficiency using 
properties from Table A.7. 

 Use table A.7 and interpolation. 

Compression 1 to 2:   s2 = s1   ⇒   From Eq.8.28 

 0 = s
o
T2 - s

o
T1 - R ln(P2/P1) = s

o
T2 - s

o
T1 - R ln(Τ2v1/T1v2)  

 s
o
T2 - R ln(Τ2/T1) = s

o
T1 + R ln(v1/v2) = 6.83521 + 0.287 ln 9 = 7.4658 

 This becomes trial and error so estimate first at 680 K and use A.7.1.  

 LHS680 = 7.7090 - 0.287 ln(680/290) = 7.4644 (too low) 

 LHS700 = 7.7401 - 0.287 ln(700/290) = 7.4872  (too high) 

 Interpolate to get:     T2 = 681.23 K,     u2 = 497.9 kJ/kg 

    P2 = P1 (Τ2/T1) (v1/v2) = 90 (681.23 / 290) × 9 = 1902.7 kPa 

    1w2 = u1 - u2 = 207.2 - 497.9 = -290.7 kJ/kg 

Combustion 2 to 3:   constant volume   v3 = v2 

    qH = u3 - u2 = 1486.3 - 497.9 = 988.4 kJ/kg 

    P3 = P2(T3/T2) = 1902.7 (1800/681.2) = 5028 kPa 

Expansion 3 to 4:       s4 = s3   ⇒     From Eq.8.28  as before 

 s
o
T4 - R ln(Τ4/T3) = s

o
T3 + R ln(v3/v4) = 8.8352 + 0.287 ln(1/9) = 8.2046 

 This becomes trial and error so estimate first at 850 K and use A.7.1.  

 LHS850 = 7.7090 - 0.287 ln(850/1800) = 8.1674 (too low) 

 LHS900 = 7.7401 - 0.287 ln(900/1800) = 8.2147  (too high) 

  Interpolation    ⇒   T4 = 889.3 K,    u4 = 666 kJ/kg 

    P4 = P3(T4/T3)(v3/v4) = 5028 (889.3/1800) (1/9) = 276 kPa 

    3w4 = u3 - u4 = 1486.3 - 666.0 = 820.3 kJ/kg 

Net work and overall efficiency 

 wNET = 3w4 + 1w2 = 820.3 - 290.7 = 529.6 kJ/kg 

 η = wNET/qH = 529.6/988.4 = 0.536 

 



 
11.163 

 The effect of a number of open feedwater heaters on the thermal efficiency of an 
ideal cycle is to be studied. Steam leaves the steam generator at 20 MPa, 600°C, 
and the cycle has a condenser pressure of 10 kPa. Determine the thermal 
efficiency for each of the following cases. A: No feedwater heater. B: One 
feedwater heater operating at 1 MPa. C: Two feedwater heaters, one operating at 
3 MPa and the other at 0.2 MPa. 

 
 a) no feed water heater 

   w
P
 = ⌡⌠

1

2

 vdP 

      ≈ 0.00101(20000 - 10) 
      = 20.2 kJ/kg 
   h

2
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   η
TH

 = 
w

N

q
H

 = 
1457.7
3325.6 = 0.438 

  
b) one feedwater heater 
   w

P12
 = 0.00101(1000 - 10)  

            = 1.0 kJ/kg 
   h

2
 = h

1
 + w

P12
 = 191.8 + 1.0 = 192.8 

   w
P34

 = 0.001127 (20000- 1000) 

        = 21.4 kJ/kg 
   h

4
 = h

3
 + w

P34
 = 762.8 + 21.4 = 784.2 

   s
6
 = s

5
 = 6.5048 

       = 2.1387 + x
6
 × 4.4478 

ST. 
GEN.

P 

1 

TURBINE.

COND. 

HTR.

P 
4 2 

3 

5 

6 
7 

 
 



    x
6
 = 0.9816 

   h
6
 = 762.8 + 0.9816 × 2015.3 = 2741.1 

   CV: heater 
      const: m

3
 = m

6
 + m

2
 = 1.0 kg 

      1st law: m
6
h

6
 + m

2
h

2
 = m

3
h

3
 

      m
6
 = 

762.8 - 192.8
2741.1 - 192.8 = 0.2237 

T 

s 
1 

2 3 
10 kPa

600 C o 

4 

20 MPa

5 

6 

7 

1 MPa 

 
 

       m
2
 = 0.7763,   h

7
 = 2059.7  ( = h

4
 of part a) ) 

CV: turbine    w
T
 = (h

5
 - h

6
) + m

2
(h

6
 - h

7
) 

       = (3537.6 - 2741.1) + 0.7763(2741.1 - 2059.7)  = 1325.5 kJ/kg 

CV: pumps 

    w
P
 = m

1
w

P12
 + m

3
w

P34
 = 0.7763(1.0) + 1(21.4) = 22.2 kJ/kg 

       w
N

 = 1325.5 - 22.2 = 1303.3 kJ/kg 

CV: steam generator 

       q
H

 = h
5
 - h

4
 = 3537.6 - 784.2 = 2753.4 kJ/kg 

       η
TH

 = w
N

/q
H

 = 1303.3/2753.4 = 0.473 

 
 c) two feedwater heaters  

   wP12 = 0.00101 ×  
               (200 - 10) 
           = 0.2 kJ/kg 
   h

2
 = w

P12
 + h

1
 

      = 191.8 + 0.2 
      = 192.0 
   w

P34
 = 0.001061 × 

                (3000 - 200) 
            = 3.0 kJ/kg 
   h

4
 = h

3
 + w

P34
 

      = 504.7 + 3.0 
      = 507.7 

ST. 
GEN.

P P P 

HP  
HTR 

LP  
HTR 

10

1 
3 

2 4 

5 

6 

7 

8 
9 

COND. 

TURBINE.

 
 



    w
P56

 = 0.001217(20000 - 3000) 

            = 20.7 kJ/kg 
   h

6
 = h

5
 + w

P56
 = 1008.4 + 20.7 = 1029.1 

   


s

8
 = s

7
 = 6.5048

at P
8
 = 3 MPa  

T
8
 = 293.2 oC

h
8
 = 2974.8

 

   s
9
 = s

8
 = 6.5048 = 1.5301 + x

9
 × 5.5970 

T 

s 
1 

2 3 
4 5 

6 

7 

8 

9 
10

600 C 
o 

10 kPa
0.2 MPa

3 MPa

80 MPa

 
 

    x
9
 = 0.8888  =>  h

9
 = 504.7 + 0.888 × 2201.9 = 2461.8 kJ/kg 

CV: high pressure heater 

       cont:    m
5
 = m

4
 + m

8
 = 1.0 kg  ;      1st law: m

5
h

5
 = m

4
h

4
 + m

8
h

8
 

          m
8
 = 

1008.4 - 507.7
2974.8 - 507.7 = 0.2030      m

4
 = 0.7970 

CV: low pressure heater 

       cont:    m
9
 + m

2
 = m

3
 = m

4
  ;      1st law: m

9
h

9
 + m

2
h

2
 = m

3
h

3
 

          m
9
 = 

0.7970(504.7 - 192.0)
2461.8 - 192.0  = 0.1098 

          m
2
 = 0.7970 - 0.1098 = 0.6872 

CV: turbine 

       w
T
 = (h

7
 - h

8
) + (1 - m

8
)(h

8
 - h

9
) + (1 - m

8
 - m

9
)(h

9
 - h

10
) 

          = (3537.6 - 2974.8) + 0.797(2974.8 - 2461.8) 

                + 0.6872(2461.8 - 2059.7) = 1248.0 kJ/kg 

CV: pumps 

       w
P
 = m

1
w

P12
 + m

3
w

P34
 + m

5
w

P56
 

          = 0.6872(0.2) + 0.797(3.0) + 1(20.7) = 23.2 kJ/kg 

       w
N

 = 1248.0 - 23.2 = 1224.8 kJ/kg 

CV: steam generator 

       q
H

 = h
7
 - h

6
 = 3537.6 - 1029.1 = 2508.5 kJ/kg 

       η
TH

 = w
N

/q
H

 = 1224.8/2508.5 = 0.488 

 
 



 
11.164 
 The power plant shown in Fig. 11.40 combines a gas-turbine cycle and a steam-

turbine cycle. The following data are known for the gas-turbine cycle. Air enters 
the compressor at 100 kPa, 25°C, the compressor pressure ratio is 14, and the 
isentropic compressor efficiency is 87%; the heater input rate is 60 MW; the 
turbine inlet temperature is 1250°C, the exhaust pressure is 100 kPa, and the 
isentropic turbine efficiency is 87%; the cycle exhaust temperature from the heat 
exchanger is 200°C. The following data are known for the steam-turbine cycle. 
The pump inlet state is saturated liquid at 10 kPa, the pump exit pressure is 12.5 
MPa, and the isentropic pump efficiency is 85%; turbine inlet temperature is 
500°C and the isentropic turbine efficiency is 87%. Determine 

 a. The mass flow rate of air in the gas-turbine cycle. 
 b. The mass flow rate of water in the steam cycle. 
 c. The overall thermal efficiency of the combined cycle. 
 

HEAT EXCH 

STEAM 
TURB

COND

GAS 
TURB

COMP

HEAT

P 

AIR 
1 

2 3 

4 5 

6 

7 

8 9 

Q = 60 MW H 
. 

T = 1250 C3 
o 

P = 100 kPa 

T = 25 C  

P /P  = 14  

η  = 0.87 

1 

1 

1 2 

SC

o 
T = 200 C 5 

o 

P = P = 12.5 MPa6 7 

H O 2 

η    = 0.85 
SP P = P = 10 kPa8 9 

η  = 0.87 ST

W ST
. 

T = 500 C 7 
o 

P = 100 kPa 

η  = 0.87 
4 

ST

. 
W NET CT

 
a) From Air Tables, A.7: P

r1
 = 1.0913,    h

1
 = 298.66,    h

5
 = 475.84 kJ/kg 

    s
2
 = s

1
  ⇒  P

r2S
 = P

r1
(P

2
/P

1
) = 1.0913 × 14 = 15.2782 

       T
2S

 = 629 K,   h
2S

 = 634.48 

    w
SC

 = h
1
 - h

2S
 = 298.66 - 634.48 = -335.82 kJ/kg 

    w
C
 = w

SC
/η

SC
 = -335.82/0.87 = -386 = h

1
 - h

2
    ⇒    h

2
 = 684.66 kJ/kg 

    At T
3
 = 1523.2 K: P

r3
 = 515.493, h

3
 = 1663.91 kJ/kg 



    m
.

AIR
 = Q

.
H

/(h
3
 - h

2
) = 

60 000
1663.91 - 684.66 = 61.27 kg/s 

b)       P
r4S

 = P
r3

(P
4
/P

3
) = 515.493(1/14) = 36.8209  

   =>  T
4S

 = 791 K,   h
4S

 = 812.68 kJ/kg 

    w
ST

 = h
3
 - h

4S
 = 1663.91 - 812.68 = 851.23 kJ/kg 

 w
T
 = η

ST
 × w

ST
 = 0.87 × 851.23 = 740.57 = h

3
 - h

4
   =>   h

4
 = 923.34 kJ/kg 

    Steam cycle:   -w
SP

 ≈ 0.00101(12500 - 10) = 12.615 kJ/kg 

                   -w
P
 = - w

SP
/η

SP
 = 12.615/0.85 = 14.84 kJ/kg 

                  h
6
 = h

9
 - w

P
 = 191.83 + 14.84 = 206.67 kJ/kg 

    At 12.5 MPa, 500 oC:  h
7
 = 3341.7 kJ/kg,   s

7
 = 6.4617 kJ/kg K 

    m
.

H
2
O

 = m
.

AIR 
h4 - h5

h7 - h6
 = 61.27 

923.34 - 475.84
3341.7 - 206.67 = 8.746 kg/s 

c)      s
8S

 = s
7
 = 6.4617 = 0.6492 + x

8S
 × 7.501,   x

8S
 = 0.7749 

    h
8S

 = 191.81 + 0.7749 × 2392.8 = 2046.0 kJ/kg 

    w
ST

 = h
7
 - h

8S
 = 3341.7 - 2046.0 = 1295.7 kJ/kg 

    w
T
 = η

ST
 × w

ST
 = 0.87 × 1295.7 = 1127.3 kJ/kg 

    W
.

NET
 = 



m

.
(w

T
+w

C
)

AIR
 +



m

.
(w

T
+w

P
)

H
2
O

 

               = 61.27(740.57 - 386.0) + 8.746(1127.3 - 14.84) 

               = 21725 + 9730 = 31455 kW = 31.455 MW 

    η
TH

 = W
.

NET
/Q

.
H

 = 31.455/60 = 0.524 



 
11.165 

 One means of improving the performance of a refrigeration system that operates 
over a wide temperature range is to use a two-stage compressor. Consider an ideal 
refrigeration system of this type that uses R-12 as the working fluid, as shown in 
Fig. P11.165. Saturated liquid leaves the condenser at 40°C and is throttled to  
−20°C. The liquid and vapor at this temperature are separated, and the liquid is 
throttled to the evaporator temperature, −70°C. Vapor leaving the evaporator is 
compressed to the saturation pressure corresponding to −20°C, after which it is 
mixed with the vapor leaving the flash chamber. It may be assumed that both the 
flash chamber and the mixing chamber are well insulated to prevent heat transfer 
from the ambient. Vapor leaving the mixing chamber is compressed in the second 
stage of the compressor to the saturation pressure corresponding to the condenser 
temperature, 40°C. Determine 

 a. The coefficient of performance of the system. 
 b. The coefficient of performance of a simple ideal refrigeration cycle operating 

over the same condenser and evaporator ranges as those of the two-stage 
compressor unit studied in this problem. 

 
 ROOM  

COND

EVAP

FLASH 
CHAMBER 

. 
L -Q

H +Q
. 

COMP. 
ST.2

COMP. 
ST.1

MIX.CHAM

COLD SPACE

SAT.LIQ.  
40 C

o 

SAT.VAP.  
-70 C 

o 

SAT.LIQ.  
-20 C 

o 

SAT.VAP.  
-20 C 

o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

1 

2 

T 

3 
4 

s 

5 

6 

7 8 

9 

-70 C 
o 

 40 C o 

-20 C 
o 

 
 
   R-12 refrigerator with 
   2-stage compression 
 

 

  CV: expansion valve, upper loop 

    h
2
 = h

1
 = 74.527 = 17.8 + x

2
 × 160.81;   x

2
 = 0.353 

    m
3
 = x

2
m

2
 = x

2
m

1
 = 0.353 kg ( for m

1
=1 kg) 

    m
6
 = m

1
 - m

3
 = 0.647 kg 

  CV: expansion valve, lower loop 



    h
7
 = h

6
 = 17.8 = -26.1 + x

7
 × 181.64,   x

7
 = 0.242 

    Q
L
 = m

3
(h

8
 - h

7
) = 0.647(155.536 - 17.8) 

       q
L
 = 89.1 kJ/kg-m

1
 

  CV: 1st stage compressor 

    s
8
 = s

9
 = 0.7744,  P

9
 = P

SAT -20 
o
C
 = 0.1509 MPa 

    ⇒  T
9
 = 9 oC,   h

9
 = 196.3 kJ/kg 

  CV: mixing chamber (assume constant pressure mixing) 

    1st law: m
6
h

9
 + m

3
h

3
 = m

1
h

4
 

       or h
4
 = 0.647 × 196.3 + 0.353 × 178.61 = 190.06 kJ/kg 

    h
4
, P

4
 = 0.1509 MPa  ⇒  T

4
 = -1.0 oC,  s

4
 = 0.7515 kJ/kg K 

  CV: 2nd stage compressor   P
4 

= 0.1509 MPa = P
9
 = P

3
 

   P
5
 = P

sat 40
o
C
 = 0.9607 MPa, s

5
 = s

4
  ⇒  T

5
 = 70oC, h

5
 = 225.8 kJ/kg 

  CV: condenser 

    1st law: -q
H

 = h
1
 - h

5
 = 74.527 - 225.8 = -151.27 kJ/kg 

    β
2 stage

 = q
L
/(q

H
 - q

L
) = 89.1/(151.27 - 89.1) = 1.433 

b) 1 stage compression 

 
    h

3
 = h

4
 = 74.53 kJ/kg 

   h
1
 = 155.54 kJ/kg 

   q
L
 = h

1
 - h

4
 = 81.0 kJ/kg 

   


s

1
 = s

2
 = 0.7744

P
2
 = 0.9607 MPa  

   ⇒  T
2
 = 80.9 oC, h

2
 = 234.0 

1 

2 

T 

3 

4 

s 

40 Co 

-70 C o 

 
 

    q
H

 = h
2
 - h

3
 = 234.0 - 74.53 = 159.47 kJ/kg 

    β
1 stage

 = q
L
/(q

H
 - q

L
) = 81.0/(159.47 - 81.0) = 1.032 



 
11.166 
 A jet ejector, a device with no moving parts, functions as the equivalent of a 

coupled turbine-compressor unit (see Problems 9.82 and 9.90). Thus, the turbine-
compressor in the dual-loop cycle of Fig. P11.109 could be replaced by a jet 
ejector. The primary stream of the jet ejector enters from the boiler, the secondary 
stream enters from the evaporator, and the discharge flows to the condenser. 
Alternatively, a jet ejector may be used with water as the working fluid. The 
purpose of the device is to chill water, usually for an air-conditioning system. In 
this application the physical setup is as shown in Fig. P11.116. Using the data 
given on the diagram, evaluate the performance of this cycle in terms of the ratio 
Q

L
/Q

H
. 

 a. Assume an ideal cycle. 
 b. Assume an ejector efficiency of 20% (see Problem 9.90). 
 

JET 
EJECT.BOIL. 

HP  
P.

LP  
P.

COND. 

CHILL 

FLASH 
CH. 

2 

11

1 

3 

4 

10

9 7 

8 
Q 
. 
L 

Q 
. 
H 

LIQ 
10 Co 

VAP 
10 Co 

30 Co 

VAP 
150 C 

o 

20 C
o 

6 5 

 

T 

3 4 

s 

5,10

6 7 8 
9 

11

2 

1 

1 ' 

2 ' 

 
T

1
 = T

7
 = 10 oC 

T
2
 = 150 oC 

T
4
 = 30 oC 

T
9
 = 20 oC 

Assume  T5 = T10 

 (from mixing streams 4 & 9). 

 P
3
 = P

4
 = P

5
 = P

8
 = P

9
 = P

10
 = P

G 30 
o
C
 = 4.246 kPa 

 P
11

 = P
2
 = P

G 150
o
C

 = 475.8 kPa,   P
1
 = P

6
 = P

7
 = P

G 10
o
C

 = 1.2276 kPa 

 Cont: m
.

1
 + m

.
9
 = m

.
5
 + m

.
10

,   m
.

5
 = m

.
6
 = m

.
7 

+ m
.

1
 

       m
.

7
 = m

.
8
 = m

.
9
,   m

.
10

 = m
.

11
 = m

.
2
,   m

.
3
 = m

.
4
 

a) m
.

1
 + m

.
2
 = m

.
3
;   ideal jet ejector 

    s′
1
 = s

1
  &  s′

2
 = s

2
 (1' & 2'  at P

3
 = P

4
) 

    then,  m
.

1
(h′

1
 - h

1
) = m

.
2
(h

2
 - h′

2
) 



    From s′
2
 = s

2
 = 0.4369 + x′

2
 × 8.0164;   x′

2
 = 0.7985 

    h′
2
 = 125.79 + 0.7985 × 2430.5 = 2066.5 kJ/kg 

    From s′
1
 = s

1
 = 8.9008  ⇒  T′

1
 = 112 °C,  h′

1
 = 2710.4 kJ/kg 

     ⇒  m
.

1
/m

.
2
 = 

2746.5 - 2066.5
2710.4 - 2519.8 = 3.5677 

    Also h
4
 = 125.79 kJ/kg,   h

7
 = 42.01 kJ/kg,   h

9
 = 83.96 kJ/kg 

    Mixing of streams 4 & 9  ⇒  5 & 10: 

      (m
.

1
 + m

.
2
)h

4
 + m

.
7
h

9
 = (m

.
7
 + m

.
1
 + m

.
2
)h

5 = 10
 

    Flash chamber (since h
6
 = h

5
) :      (m

.
7
+m

.
1
)h

5 = 10
 = m

.
1
h

1
 + m

.
7
h

1
 

     ⇒  using the primary stream  m
.

2
 = 1 kg/s: 

    4.5677 × 125.79 + m
.

7
 × 83.96 = (m

.
7
 + 4.5677)h

5
 

    & (m
.

7
 + 3.5677)h

5
 = 3.5677 × 2519.8 + m

.
7
 × 42.01 

    Solving, m
.

7
 = 202.627  &  h

5
 = 84.88 kJ/kg 

    LP pump:   -w
LP P

 = 0.0010(4.246 - 1.2276) = 0.003 kJ/kg 

       h
8
 = h

7
 - w

LP P
 = 42.01 + 0.003 = 42.01 kJ/kg 

 Chiller:   Q
.

L
 = m

.
7
(h

9
-h

8
) = 202.627(83.96 - 42.01) = 8500 kW   (for m

.
2
 = 1) 

    HP pump:   -w
HP P

 = 0.001002(475.8 - 4.246) = 0.47 kJ/kg 

       h
11

 = h
10

 - w
HP P

 = 84.88 + 0.47 = 85.35 kJ/kg 

    Boiler:         Q
.

11
 = m

.
11

(h
2
 - h

11
) = 1(2746.5 - 85.35) = 2661.1 kW 

       ⇒  Q
.

L
/Q

.
H

 = 8500/2661.1 = 3.194 

b)   Jet eject. eff. = (m
.

1
/m

.
2
)
ACT

/(m
.

1
/m

.
2
)
IDEAL

 = 0.20 

    ⇒  (m
.

1
/m

.
2
)

ACT
 = 0.2 × 3.5677 = 0.7135 

 using   m
.

2
 = 1 kg/s:    1.7135 × 125.79 + m

.
7
 × 83.96 = (m

.
7
 + 1.7135)h

5
 

    &  (m
.

7
 + 0.7135)h

5
 = 0.7135 × 2519.8 + m

.
7
 × 42.01 

    Solving,     m
.

7
 = 39.762    &    h

5
 = h

10
 = 85.69 kJ/kg 



    Then,   Q
.

L
 = 39.762(83.96 - 42.01) = 1668 kW 

       h
11

 = 85.69 + 0.47 = 86.16 kJ/kg 

       Q
.

H
 = 1(2746.5 - 86.16) = 2660.3 kW 

       &  Q
.

L
/Q

.
H

 = 1668/2660.3 = 0.627 



 
Problems solved using Table A.7.2 

 
 
11.79 
 A gas turbine with air as the working fluid has two ideal turbine sections, as 

shown in Fig. P11.79, the first of which drives the ideal compressor, with the 
second producing the power output. The compressor input is at 290 K, 100 kPa, 
and the exit is at 450 kPa. A fraction of flow, x, bypasses the burner and the rest  
(1 − x) goes through the burner where 1200 kJ/kg is added by combustion. The 
two flows then mix before entering the first turbine and continue through the 
second turbine, with exhaust at 100 kPa. If the mixing should result in a 
temperature of 1000 K into the first turbine find the fraction x. Find the required 
pressure and temperature into the second turbine and its specific power output. 

C.V.Comp.:  -w
C
 = h

2
 - h

1
;  s

2
 = s

1
 

    P
r2

 = P
r1

(P
2
/P

1
) = 0.9899(450/100) = 4.4545,  T

2
 = 445 K 

    h
2
 = 446.74,     -w

C
 = 446.74 - 290.43 = 156.3 kJ/kg 

C.V.Burner:  h
3
 = h

2
 + q

H
 = 446.74 + 1200 = 1646.74 kJ/kg 

     ⇒  T
3
 = 1509 K 

C.V.Mixing chamber:  (1 - x)h
3
 + xh

2
 = h

MIX
 = 1046.22 kJ/kg 

    x = 
h

3
 - h

MIX

h
3
 - h

2
 = 

1646.74 - 1046.22
1646.74 - 446.74  = 0.50 

 W
.

T1
 = W

.
C,in

   ⇒   w
.

T1
 = -w

C
 = 156.3 = h

3
 - h

4
 

    h
4
 = 1046.22 - 156.3 = 889.9   ⇒   T

4
 = 861 K 

 P
4
 = (P

r4
/P

rMIX
)P

MIX
 = (51/91.65) × 450 = 250.4 kPa 

 s
4
 = s

5
   ⇒   P

r5
 = P

r4
(P

5
/P

4
) = 51(100/250.4) = 20.367 

    h
5
 = 688.2   T

5
 = 676 K 

 w
T2

 = h
4
 - h

5
 = 889.9 - 688.2 = 201.7 kJ/kg 

 



 
11.81 
 Repeat Problem 11.77 when the intercooler brings the air to T

3
 = 320 K. The 

corrected formula for the optimal pressure is P
2
 = [ P

1
P

4
 (T

3
/T

1
)n/(n-1)]1/2 see 

Problem 9.184, where n is the exponent in the assumed polytropic process. 
 
 Solution: 

The polytropic process has n = k (isentropic) so   n/(n - 1) = 1.4/0.4 = 3.5 

    P
2
 = 400 (320/290)3.5 = 475.2 kPa 

C.V. C1:  s
2
 = s

1
  ⇒  P

r2
 = P

r1
(P

2
/P

1
) = 0.9899(475.2/100) 

    = 4.704   ⇒   T
2
 = 452 K,  h

2
 = 453.75 

    -w
C1

 = h
2
 - h

1
 = 453.75 - 290.43 = 163.3 kJ/kg 

C.V. Cooler:     q
OUT

 = h
2
 - h

3
 = 453.75 - 320.576 = 133.2 kJ/kg 

C.V. C2: s
4
 = s

3
  ⇒  P

r4
 = P

r3
(P

4
/P

3
) = 1.3972(1600/475.2)  = 4.704  

  ⇒    T
4
 = T

2
 = 452 K,     h

4
 = 453.75 

    -w
C2

 = h
4
 - h

3
 = 453.75 - 320.576 = 133.2 kJ/kg 



 
11.93 
  Air flows into a gasoline engine at 95 kPa, 300 K. The air is then compressed with 

a volumetric compression ratio of 8:1. In the combustion process 1300 kJ/kg of 
energy is released as the fuel burns. Find the temperature and pressure after 
combustion using cold air properties. 

Solution: 

Solve the problem with variable heat capacity, use A.7.1 and A.7.2. 
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 Compression 1 to 2:   s2 = s1   ⇒   From A.7.2 

     v
r2

 = 
v

r1

8  = 
179.49

8  = 22.436, 

                T
2
 = 673 K,     u

2
 = 491.5 kJ/kg,      P

r2
 = 20 

                 P
2
 = P1 × 

P
r2

P
r1

 = 20 × 
95

1.1146 = 1705 kPa 

 Compression 2 to 3:  

   u
3
 = u

2
 + q

H
 = 491.5 + 1300 = 1791.5 kJ/kg 

      T
3
 = 2118 K 

     P
3
 = P

2
 × (T

3
/T

2
) = 1705 × 

2118
673  = 5366 kPa 

  



 
11.94 

  A gasoline engine has a volumetric compression ratio of 9. The state before 
compression is 290 K, 90 kPa, and the peak cycle temperature is 1800 K. Find the 
pressure after expansion, the cycle net work and the cycle efficiency using 
properties from Table A.7. 

Use table A.7 and interpolation. 

Compression 1 to 2:   s
2
 = s

1
   ⇒   v

r2
 = v

r1
(v

2
/v

1
) 

    v
r2

 = 196.37/9 = 21.819   ⇒   T
2
 ≅ 680 K,    P

r2
 ≅ 20.784,    u

2
 = 496.94 

    P
2
 = P

1
(P

r2
/P

r1
) = 90 (20.784 / 0.995) = 1880 kPa 

    
1
w

2
 = u

1
 - u

2
 = 207.19 - 496.94 = -289.75 kJ/kg 

Combustion 2 to 3:    

    q
H

 = u
3
 - u

2
 = 1486.33 - 496.94 = 989.39 kJ/kg 

    P
3
 = P

2
(T

3
/T

2
) = 1880 (1800 / 680) = 4976 kPa 

Expansion 3 to 4:    

    s
4
 = s

3
   ⇒   v

r4
 = v

r3
 × 9 = 1.143 × 9 = 10.278 

    ⇒   T
4
 = 889 K,   P

r4
 = 57.773,   u

4
 = 665.8 kJ/kg 

    P
4
 = P

3
(P

r4
/P

r3
) = 4976 (57.773 / 1051) = 273.5 kPa 

    
3
w

4
 = u

3
 - u

4
 = 1486.33 - 665.8 = 820.5 kJ/kg 

    w
NET

 = 
3
w

4
 + 

1
w

2
 = 820.5 - 289.75 = 530.8 kJ/kg 

     η = w
NET

/q
H

 = 530.8/989.39 = 0.536 

 



 
11.100 

 Answer the same three questions for the previous problem, but use variable heat 
capacities (use table A.7). 

 A gasoline engine takes air in at 290 K, 90 kPa and then compresses it. The 
combustion adds 1000 kJ/kg to the air after which the temperature is 2050 K. Use 
the cold air properties (i.e. constant heat capacities at 300 K) and find the 
compression ratio, the compression specific work and the highest pressure in the 
cycle. 

Solution: 

Standard Otto cycle, solve using Table A.7.1 and Table A.7.2 

Combustion process: T3 = 2050 K ;  u3 = 1725.7 kJ/kg 

 u2 = u3 - qH = 1725.7 - 1000 = 725.7 kJ/kg 

  ⇒ T2 = 960.5 K ; vr2 = 8.2166 

Compression 1 to 2:   s2 = s1   ⇒   From the vr function 

  v1/v2 = vr1/vr2 = 195.36/8.2166 = 23.78 

Comment:  This is much too high for an actual Otto cycle. 

 -1w2 = u2 - u1 = 725.7 - 207.2 = 518.5 kJ/kg 

Highest pressure is after combustion 

 P3 = P2T3 / T2 = P1(T3 / T1)(v1 / v3)  

      = 90 × (2050 / 290) × 23.78 = 15 129 kPa 
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11.103 
 Repeat Problem 11.95, but assume variable specific heat. The ideal gas air tables, 

Table A.7, are recommended for this calculation (and the specific heat from Fig. 
5.10 at high temperature). 

Solution: 

 Table A.7 is used with interpolation. 

 T1 = 283.2 K,    u1 = 202.3 kJ/kg,   vr1 = 210.44 

Compression 1 to 2:   s2 = s1   ⇒   From definition of the vr function 

 vr2 = vr1 (v2/v1) = 210.4 (1/7) =  30.063 

 Interpolate to get:     T2 = 603.9 K,     u2 = 438.1 kJ/kg 

  =>  -1w2 = u2 - u1 = 235.8 kJ/kg, 

 u3 = 438.1 + 1800 = 2238.1   =>    T3 = 2573.4 K ,    vr3 = 0.34118 

  P3 = 90 × 7 × 2573.4 / 283.2 = 5725 kPa 

Expansion 3 to 4:       s4 = s3   ⇒     From the vr function  as before 

  vr4 = vr3 (v4/v3) = 0.34118 (7) =  2.3883 

  Interpolation    ⇒   T4 = 1435.4 K,    u4 = 1145.8 kJ/kg 

  3w4 = u3 - u4 = 2238.1 - 1145.8 = 1092.3 kJ/kg 

Net work, efficiency and mep 

  Î wnet = 3w4 + 1w2 = 1092.3 - 235.8 = 856.5 kJ/kg 

   ηTH = wnet / qH = 856.5 / 1800 = 0.476 

    v1 = RT1/P1 = (0.287 × 283.2)/90 = 0.9029 m3/kg 

    v2 = (1/7) v1 = 0.1290 m3/kg 

  Pmeff = 
wnet

v1 – v2
 = 856.5 / (0.9029 - 0.129) = 1107 kPa 

 



 
11.110 
 Do problem 11.106, but use the properties from A.7 and not the cold air 

properties. 
 A diesel engine has a state before compression of 95 kPa, 290 K, and a peak 

pressure of  6000 kPa, a maximum temperature of 2400 K. Find the volumetric 
compression ratio and the thermal efficiency. 

Solution: 

Compression:   s2 = s1   =>   From definition of the Pr function 

  Pr2 = Pr1 (P2/P1) = 0.9899 (6000/95) =  62.52 

 A.7.1   =>  T2 = 907 K;  h2 = 941.0 kJ/kg;   

   h3 = 2755.8 ;   vr3 = 0.43338 

 qH = h3 - h2 = 2755.8 – 941.0 = 1814.8 kJ/kg 

 CR = v1/v2 = (T1/T2)(P2/P1) = (290/907) × (6000/ 95) = 20.19 

Expansion process 

 vr4 =  vr3 (v4 / v3) = vr3 (v1 / v3) = vr3 (v1 / v2) × (T2/T3) 

       = vr3 CR × (T2/T3) = 0.43338 × 20.19 × (907/2400) = 3.30675 

 Linear interpolation T4 = 1294.8 K, u4 = 1018.1 kJ/kg 

 qL = u4 - u1 = 1018.1 – 207.2 = 810.9 kJ/kg 

 η = 1 – (qL/ qH) = 1 – (810.9/1814.8) = 0.553 
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11.118 

 Do the previous problem 11.117 using values from Table A.7.1. and A.7.2 

Air in a piston/cylinder goes through a Carnot cycle in which TL = 26.8°C and the 

total cycle efficiency is η = 2/3. Find TH, the specific work and volume ratio in 
the adiabatic expansion. 

Solution: 

Carnot cycle efficiency Eq.7.5:  

  η = 1 - TL/TH = 2/3  ⇒    TH = 3 × TL = 3 × 300 = 900 K 

From A.7.1:    u3 = 674.82 kJ/kg,   vr3 = 9.9169  

  u4 = 214.36 kJ/kg,   vr4 = 179.49 

Energy equation with q = 0 

 3w4 = u3 - u4 = 674.82 - 214.36 = 460.5 kJ/kg 

Entropy equation, constant s expressed with the vr function 

   v4/v3 = vr4/vr3 = 179.49 / 9.9169 = 18.1 
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11.167E 
 A steam power plant, as shown in Fig. 11.3, operating in a Rankine cycle has 

saturated vapor at 600 lbf/in.2 leaving the boiler. The turbine exhausts to the 

condenser operating at 2.225 lbf/in.2. Find the specific work and heat transfer in 
each of the ideal components and the cycle efficiency. 

Solution: 

For the cycle as given: 

 1:   h
1
 = 97.97 Btu/lbm,  v

1
 = 0.01625 ft3/lbm,    

 3:   h
3
 = h

g
 = 1204.06 Btu/lbm,  s

3
 = s

g
 = 1.4464 Btu/lbm R 

C.V. Pump  Reversible and adiabatic. 

 Energy:  wp =  h2 - h1 ;     Entropy:   s2 =  s1  

 since incompressible it is easier to find work (positive in) as  

  w
P
 = ∫ v dP  = v

1
(P

2
 - P

1
) = 0.01625(600 – 2.2)

144
778 = 1.8 Btu/lbm 

    h
2
 = h

1
 + w

P
 = 97.97 + 1.8 = 99.77 Btu/lbm 

C.V. Boiler:  q
H

 = h
3
 - h

2
 = 1204.06 - 99.77 = 1104.3 Btu/lbm 

C.V. Tubine:  w
T
 = h

3
 - h

4
,   s

4
 = s

3
 

    s
4
 = s

3
 = 1.4464 = 0.1817 + x

4
 × 1.7292    =>   x

4
 = 0.7314,  

    h
4
 = 97.97 + 0.7314 × 1019.78 = 843.84 Btu/lbm 

    w
T
 = 1204.06 - 843.84 = 360.22 Btu/lbm 

    η
CYCLE

 = (w
T
 - w

P
)/q

H
 = (360.22 - 1.8)/1104.3 = 0.325 

C.V. Condenser:    q
L
 = h

4
 - h

1
 = 843.84 - 97.97 = 745.9 Btu/lbm 
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11.168E 
 Consider a solar-energy-powered ideal Rankine cycle that uses water as the 

working fluid. Saturated vapor leaves the solar collector at 350 F, and the 

condenser pressure is 0.95 lbf/in.2. Determine the thermal efficiency of this cycle. 
 
 H

2
O   ideal Rankine cycle 

CV: turbine 
 State 3:   Table F.7.1     h

3
 = 1193.1  Btu/lbm,  s

3
 = 1.5793 Btu/lbm R 

     s
4
 = s

3
 = 1.5793 = 0.1296 + x

4
 × 1.8526        =>       x

4
 = 0.7825 

      h
4
 = 68.04 + 0.7825 × 1036.98 = 879.5 Btu/lbm 

 w
T
 = h

3
 - h

4
 = 1193.1 - 879.5  = 313.6 Btu/lbm 

    w
P 

= ∫ vdP ≈ v
1
(P

2
 - P

1
) = 0.01613(134.54 – 0.95) 

144
778 = 0.4 Btu/lbm 

    ⇒  w
NET

 = w
T
 - w

P
 = 313.6 - 0.4 = 313.2 Btu/lbm 

    h
2
 = h

1
 + w

P
 = 68.04 + 0.4 = 68.44 Btu/lbm 

    q
H

 = h
3
 - h

2
 = 1193.1 - 68.44 = 1124.7 Btu/lbm 

    η
TH

 = w
NET

/q
H

 = 313.2/1124.7 = 0.278 
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11.169E 

  A Rankine cycle uses ammonia as the working substance and powered by solar 
energy. It heats the ammonia to 320 F at 800 psia in the boiler/superheater. The 
condenser is water cooled, and the exit is kept at 70 F. Find (T, P, and x if 
applicable) for all four states in the cycle. 

  
 NH

3
   ideal Rankine cycle 

 
 State 1:  Table F.8.1, T = 70 F,   x = 0,   P

1
 = 128.85 psia,   

h
1
 = 120.21 Btu/lbm,   v

1
 = 0.2631 ft3/lbm 

 CV  Pump: 

 w
P 

= h
2
 - h

1
 = ∫ vdP ≈ v

1
(P

2
 - P

1
) = 0.02631(800 – 128.85) 

144
778  

  = 3.27 Btu/lbm    

 h
2
 = h

1
 + w

P
 = 120.21 + 3.27 = 123.48 Btu/lbm = h

f
    =>  T

2
 = 72.8 F 

 [we need the computer software to do better  (P
2
, s

2
 = s

1
) ] 

 State 3:  320 F, 800 psia :   superheated vapor,   s
3
 = 1.1915 Btu/lbm 

CV: turbine 
     s

4
 = s

3
 = 1.1915 = 0.2529 + x

4
 × 0.9589       =>       x

4
 = 0.9788 

   P
4
 = P

1
 = 128.85 psia,   T

4
 = T

1
 = 70 F 
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11.170E  
  A supply of geothermal hot water is to be used as the energy source in an ideal 

Rankine cycle, with R-134a as the cycle working fluid. Saturated vapor R-134a 
leaves the boiler at a temperature of 180 F, and the condenser temperature is 100 
F. Calculate the thermal efficiency of this cycle. 

 

Solution: 

CV: Pump   (use R-134a Table F.10) 
      P

1
 = 138.93 psia,    P

2
 = P

3
 = 400.4 psia 

      h
3
 = 184.36 Btu/lbm,    s

3
 = 0.402 Btu/lbm R 

       h
1
 = 108.86 Btu/lbm,  v

1
 = 0.01387 ft3/lbm 

  wP = h2 - h1 = ⌡⌠
1

2

 vdP ≈ v1(P2-P1) 

                  = 0.01387(400.4 - 138.93) 
144
778 = 0.671 Btu/lbm  

          h
2
 = h

1
 + w

P
 = 108.86 + 0.671 = 109.53 Btu/lbm 

CV: Boiler 

       q
H

 = h
3
 - h

2
 = 184.36 - 109.53 = 74.83 Btu/lbm 

CV: Turbine 

       s
4
 = s

3
 = 0.402  ⇒  x

4
 = (0.402 - 0.2819)/0.1272 = 0.9442 

       h
4
 = 176.08 Btu/lbm,   

 Energy Eq.:      w
T
 = h

3
 - h

4
 = 8.276 Btu/lbm 

       wNET = wT - wP = 8.276 - 0.671 = 7.605 Btu/lbm 

       η
TH

 =  wNET / q
H

 =  7.605/74.83 = 0.102 
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11.171E 

   Do Problem 11.170 with R-22 as the working fluid. 

Standard Rankine cycle with properties from the R-22 tables, 

       h
1
 = 39.267 Btu/lbm,  v

1
 = 0.01404 ft3/lbm,  P

1
 = 210.6 psia, 

       P
2
 = P

3
 = 554.8 psia,  h

3
 = 110.07 Btu/lbm,  s

3
 = 0.1913 Btu/lbm R 

CV: Pump    w
P
 = v

1
(P

2
-P

1
) = 0.01404 (554.8-210.6)

144
778 = 0.894 Btu/lbm 

   h
2
 = h

1
 + w

P
 = 39.267 + 0.894 = 40.16 Btu/lbm 

CV: Turbine   s
4
 = s

3
   

          ⇒  x
4
 = (0.1913 - 0.07942)/0.13014 = 0.9442 

       h
4
 = 101.885 Btu/lbm,  w

T
 = h

3
 - h

4
 = 8.185 Btu/lbm 

CV: Boiler 

       q
H

 = h
3
 - h

2
 = 110.07 - 40.16 = 69.91 Btu/lbm 

       η
TH

 = (w
T
 − w

P
)/q

H
 = (8.185 - 0.894)/157.21 = 0.104 
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11.172E 

  A smaller power plant produces 50 lbm/s  steam at 400 psia, 1100 F, in the boiler. 
It cools the condenser with ocean water coming in at 55 F and returned at 60 F so 
that the condenser exit is at 110 F. Find the net power output and the required 
mass flow rate of the ocean water. 

Solution: 

The states properties from Tables F.7.1 and F.7.2 

1: 110 F,  x = 0:  h1 = 78.01 Btu/lbm,  v1 = 0.01617 ft3/lbm,  Psat = 1.28 psia 

3: 400 psia, 1100 F:     h3 = 1577.44 Btu/lbm,    s3 = 1.7989 Btu/lbm R  

C.V. Pump  Reversible and adiabatic. 

 Energy:  wp =  h2 - h1 ;     Entropy:   s2 =  s1  

 since incompressible it is easier to find work (positive in) as  

  wp = ∫ v dP = v1 (P2 - P1) = 0.01617 (400 - 1.3)
144
778 = 1.19 Btu/lbm 

C.V. Turbine : wT =  h3 - h4  ;  s4 =  s3   

  s4 = s3 = 1.7989 = 0.1473 + x4 (1.8101)     =>       x4 = 0.9124 

   =>  h4 = 78.01 + 0.9124 (1031.28) = 1018.95 Btu/lbm 

        wT = 1577.44 – 1018.95 = 558.5 Btu/lbm 

  W
.

NET = m
.

(wT – wp) = 50 (558.5 – 1.19) = 27 866 Btu/s 

C.V. Condenser : qL = h4 - h1 = 1018.95 - 78.01 = 940.94 Btu/lbm 

  Q
.

L = m
.

qL = 50 × 940.94 = 47 047 Btu/s = m
.

ocean Cp ∆T 

  m
.

ocean = Q
.

L / Cp ∆T = 47 047 / (1.0 × 5) = 9409 lbm/s 
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11.173E 
  The power plant in Problem 11.167 is modified to have a superheater section 

following the boiler so the steam leaves the super heater at 600 lbf/in.2, 700 F. 
Find the specific work and heat transfer in each of the ideal components and the 
cycle efficiency. 

Solution: 

For this cycle from Table F.7 

State 3: Superheated vapor     h
3
 = 1350.62 Btu/lbm,  s

3
 = 1.5871 Btu/lbm R,   

State 1: Saturated liquid         h
1
 = 97.97 Btu/lbm,  v

1
 = 0.01625 ft3/lbm 

C.V. Pump:   Adiabatic and reversible. Use incompressible fluid so  

 w
P
 = ⌡⌠v dP = v

1
(P

2
 - P

1
) = 0.01625(600 – 2.2)

144
778 = 1.8 Btu/lbm 

    h
2
 = h

1
 + w

P
 = 95.81 Btu/lbm 

C.V. Boiler:         q
H

 = h
3
 - h

2
 = 1350.62 - 97.97 = 1252.65 Btu/lbm 

C.V. Tubine:        w
T
 = h

3
 - h

4
,         s

4
 = s

3
 

        s
4
 = s

3
 = 1.5871 Btu/lbm R = 0.1817 +  x

4
 1.7292   ⇒   x

4
 = 0.8127,   

          h
4
 = 97.97 + 0.8127 × 1019.78 = 926.75 Btu/lbm 

    w
T
 = 1350.62 - 926.75 = 423.87 Btu/lbm 

    η
CYCLE

 = (w
T
 - w

P
)/q

H
 = (423.87 - 1.8)/1252.65 = 0.337 

C.V. Condenser:  

    q
L
 = h

4
 - h

1
 = 926.75 - 97.97 = 828.8 Btu/lbm 
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11.174E 
  Consider a simple ideal Rankine cycle using water at a supercritical pressure. 

Such a cycle has a potential advantage of minimizing local temperature 
differences between the fluids in the steam generator, such as the instance in 
which the high-temperature energy source is the hot exhaust gas from a gas-
turbine engine. Calculate the thermal efficiency of the cycle if the state entering 

the turbine is 8000 lbf/in.2, 1300 F, and the condenser pressure is 0.95 lbf/in.2. 
What is the steam quality at the turbine exit? 

 

Solution: 

For the efficiency we need the net work and steam generator heat transfer. 

State 1:   s1 = 0.1296  Btu/lbm R,   h1 = 68.04 Btu/lbm 

State 3:   h3 = 1547.5 Btu/lbm,   s
3
 = 1.4718 Btu/lbm R 

C.V. Pump. For this high exit pressure we use Table F.7.3 to get state 2. 

Entropy Eq.:    s2 = s1    =>    h2 = 91.69 Btu/lbm  

   wp = h2 - h1 = 91.69 – 68.04 = 23.65 Btu/lbm 

C.V. Turbine. Assume reversible and adiabatic. 
Entropy Eq.: s

4
 = s

3
 = 1.4718 = 0.1296 + x

4
×1.8526 

       x
4
 = 0.7245         Very low for a turbine exhaust 

  h4 = 68.04 + x4 × 1036.98 = 751.29 Btu/lbm,      

  wT = h3 - h4 = 796.2 Btu/lbm 

Steam generator:       qH = h3 - h2 = 1547.5 – 91.69 = 1455.8 Btu/lbm 

  wNET = wT − wp = 796.2 – 23.65 = 772.6 Btu/lbm 

    η = wNET/qH = 772.6 / 1455.8 = 0.53 
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11.175E 

  Consider an ideal steam reheat cycle in which the steam enters the high-pressure 

turbine at 600 lbf/in.2, 700 F, and then expands to 150 lbf/in.2. It is then reheated 

to 700 F and expands to 2.225 lbf/in.2 in the low-pressure turbine. Calculate the 
thermal efficiency of the cycle and the moisture content of the steam leaving the 
low-pressure turbine. 

Solution: 

Basic Rankine cycle with a reheat section. For this cycle from Table F.7 

State 3: Superheated vapor     h
3
 = 1350.62 Btu/lbm,  s

3
 = 1.5871 Btu/lbm R,   

State 1: Saturated liquid         h
1
 = 97.97 Btu/lbm,  v

1
 = 0.01625 ft3/lbm 

C.V. Pump:   Adiabatic and reversible. Use incompressible fluid so  

 

      w
P
 = ⌡⌠v dP = v

1
(P

2
 - P

1
)  

           = 0.01625(600 – 2.2)
144
778 = 1.8 Btu/lbm 

       h
2
 = h

1
 + w

P
 = 95.81 Btu/lbm 

 

C.V. Tubine 1:        w
T1

 = h
3
 - h

4
,         s

4
 = s

3
 

T

s
1

2

3

4

5

6

 

    s
4
 = s

3
 = 1.5871 Btu/lbm R     =>     h

4
 = 1208.93 Btu/lbm 

    w
T1

 = 1350.62 - 1208.93 = 141.69 Btu/lbm 

C.V. Tubine 2:        w
T2

 = h
5
 - h

6
,         s

6
 = s

5
 

State 5: h
5
 = 1376.55 Btu/lbm,   s5 = 1.7568 Btu/lbm R 

State 6: s
6
 = s

5
 = 1.7568 = 0.1817 + x

6
 × 1.7292   =>    x

6
 = 0.9109 

  h
6
 = 97.97 + 0.9109 × 1019.78 = 1026.89 Btu/lbm 

  w
T2

 = 1376.55 – 1026.89 = 349.66 Btu/lbm 

 w
T,tot

 = wT1 + wT2 = 141.69 + 349.66 = 491.35 Btu/lbm    

C.V. Boiler:         q
H1

 = h
3
 - h

2
 = 1350.62 - 97.97 = 1252.65 Btu/lbm 

 q
H

 = q
H1

 + h
5
 - h

4
 = 1252.65 + 1376.55 – 1208.93 = 1420.3 Btu/lbm 

 η
CYCLE

 = (w
T,tot

 - w
P
)/q

H
 = (491.35 – 1.8)/1420.3 = 0.345 
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11.176E 

  Consider an ideal steam regenerative cycle in which steam enters the turbine at 

600 lbf/in.2, 700 F, and exhausts to the condenser at 2.225 lbf/in.2. Steam is 

extracted from the turbine at 150 lbf/in.2 for an open feedwater heater. The 
feedwater leaves the heater as saturated liquid. The appropriate pumps are used 
for the water leaving the condenser and the feedwater heater. Calculate the 
thermal efficiency of the cycle and the net work per pound-mass of steam. 

 
 From Table F.7.2 

   h
5
 = 1350.62 Btu/lbm,    

   s
5
 = 1.5871 Btu/lbm R 

   h
1
 = 97.97 Btu/lbm,   

   v
1
 = 0.01625 ft3/lbm 

Interpolate to get 

   h
3
 = 330.67 Btu/lbm,   

   v
3
 = 0.01809 ft3/lbm 

ST. 
GEN.

P1 P2 
FW  
HTR 

COND. 

TURBINE.

4

3

5

6
7

1
2

 

  
C.V. Pump1: 

  w
P12

 = 0.01625(150 – 2.2)
144
778  

           = 0.44 Btu/lbm = h
2
 – h

1
 

      h
2
 = h

1
 + w

P12
 = 98.41 Btu/lbm 

 
C.V. Pump2: 

 

2.2 psi

150 psi

600 psi

1

2

4

3

7

6

5

T

s  
       
   w

P34
 = 0.01809(600 - 150)144/778 = 1.507 Btu/lbm 

      ⇒     h
4
 = h

3
 + w

P34
 = 332.18 Btu/lbm 

C.V. Turbine (high pressure section) 
2nd law:    s

6
 = s

5
 = 1.5871  Btu/lbm R      =>    h

6
 = 1208.93 Btu/lbm 

CV: feedwater heater, call the extraction fraction   y = m
.

6
/m

.
3
 

Continuity Eq.:    m
.

3
 = m

.
6
 + m

.
2
,     Energy Eq.: m

.
6
h

6
 + m

.
2
h

2
 = m

.
3
h

3
 

           y
6
h

6
 + (1 - y

6
)h

2
 = h

3
       ⇒     y

6
 = (h

3
 – h

2
)/(h

6
 – h

2
)  

         ⇒      y
6
 = (330.67 – 98.41)/(1208.93 – 98.41) = 0.2091     
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CV: Turbine from 5 to 7 

  s
7
 = s

5
     ⇒  x

7
 = (1.5871 - 0.1817)/1.7292 = 0.8127 

  h
7
 = 97.97 + 0.8127 × 1019.78 = 926.75 Btu/lbm 

  

    w
T
 = (h

5
 - h

6
) + (1• - y

6
)(h

6
 - h

7
)  

          = (1350.62 – 1208.93) + 0.7909(1208.93 - 926.75) = 364.87 Btu/lbm 

CV: pumps 

    w
P
 = (1 - y

6
)w

P12
 + w

P34
 = 0.7909 × 0.44 + 1 × 1.507 = 1.855 Btu/lbm 

    w
NET

 = w
T
 - w

P
 = 364.87 - 1.855 = 363.0 Btu/lbm 

CV: steam generator 

    q
H

 = h
5
 - h

4
 = 1350.62 – 332.18 = 1018.44 Btu/lbm 

    η
TH

 = w
NET

/q
H

 = 363/1018.44 = 0.356 



   Sonntag, Borgnakke and van Wylen 

  
11.177E 

  A closed feedwater heater in a regenerative steam power cycle heats 40 lbm/s of 

water from 200 F, 2000 lbf/in.2 to 450 F, 2000 lbf/in.2. The extraction steam from 

the turbine enters the heater at 600 lbf/in.2, 550 F and leaves as saturated liquid. 
What is the required mass flow rate of the extraction steam? 

 

 
 

24

6

6a
 

  From the steam tables F.7: 
F.7.3:     h2 = 172.6  Btu/lbm 

F.7.3:     h4 = 431.13  Btu/lbm 

F.7.2:     h6 = 1255.36 Btu/lbm 

Interpolate for this state 
F.7.1:     h6a = 471.56  Btu/lbm 

C.V. Feedwater Heater 

 Energy Eq.: m
.

2h2 + m
.

6h6 = m
.

2h4 + m
.

6h6a 

Since all four state are known we can solve for the extraction flow rate 

         m
.

6 = m
.

2 
h2 - h4
h6a - h6

 = 40 
172.6 - 431.13

471.56 - 1255.36 = 13.2 
lbm

s  
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11.178E 

  A steam power cycle has a high pressure of 600 lbf/in.2 and a condenser exit 
temperature of 110 F. The turbine efficiency is 85%, and other cycle components 
are ideal. If the boiler superheats to 1400 F, find the cycle thermal efficiency. 

 

State 3:     h
3
 = 1739.51 Btu/lbm,   s

3
 = 1.8497 Btu/lbm R 

State 1:     h
1
 = 78.01 Btu/lbm,  v

1
 = 0.01617 ft3/lbm 

C.V. Pump:    w
P
 = ⌡⌠vdP ≈ v

1
(P

2
 - P

1
) = h

2
 – h

1
 

         =  0.01617(600 – 1.28) 144/778 = 1.79 Btu/lbm   

   h
2
 = h

1
 + w

P
 = 78.01 + 1.79 = 79.8 Btu/lbm      

C.V. Turb.:  w
T
 = h

3
 - h

4
,   s

4
 = s

3
 + s

T,GEN
 

 Ideal: s
4S

 = s
3
 = 1.8497  Btu/lbm R = 0.1473 + x

4S
 1.8101 

   =>   x
4S

 = 0.9405,   h
4S

 = 78.01 + x
4S

 1031.28 = 1047.93 Btu/lbm 

  =>  w
T,S

 = 1739.51 - 1047.93 = 691.58 Btu/lbm  

 Actual:     w
T,AC

 = η × w
T,S

 = 0.85 × 691.58 = 587.8 Btu/lbm 

C.V. Boiler:      q
H

 = h
3
 - h

2
 = 1739.51 – 79.8 = 1659.7 Btu/lbm 

 η = (w
T,AC

 - w
P
)/q

H
 = (587.8 - 1.79)/1659.7 = 0.353 

 

 P

v1

2 3

4s

4ac

 

T

s1

2

3

4s

4ac
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11.179E 

  The steam power cycle in Problem 11.167 has an isentropic efficiency of the 
turbine of 85% and that for the pump it is 80%. Find the cycle efficiency and the 
specific work and heat transfer in the components. 

 States numbered as in fig 11.3 of text. 

 CV Pump: w
P,S

 = v1(P2 - P1) = 0.01625(600 – 2.2)144/778 = 1.8 Btu/lbm 

    ⇒  w
P,AC

 = 1.8/0.8 = 2.245 Btu/lbm 

            h
2
 = h

1
 + w

P,AC
 = 97.97 + 2.245 = 100.2 Btu/lbm 

 CV Turbine:  w
T,S

 = h
3
 - h

4s
 ,    s

4
 = s

3
 = 1.4464 Btu/lbm R 

    s
4
 = s

3
 = 1.4464 = 0.1817 + x

4
 × 1.7292    =>   x

4
 = 0.7314,  

    h
4
 = 97.97 + 0.7314 × 1019.78 = 843.84 Btu/lbm 

       ⇒  w
T,S

 = 1204.06 - 843.84 = 360.22 Btu/lbm 

  w
T,AC

 = h
3
 - h

4AC
 = 360.22 × 0.85 = 306.2  

   ⇒   h
4AC

 = 897.86 Btu/lbm (still two-phase) 

 CV Boiler:     q
H

 = h
3
 - h

2
 = 1204.06 - 100.2 = 1103.9 Btu/lbm 

  q
L
 = h

4AC
 - h

1
 = 897.86 - 97.97 = 799.9 Btu/lbm 

 η
CYCLE

 = (w
T
 - w

P
)/q

H
 = (306.2 - 2.245)/1103.9 = 0.275 

 

 Compared to (360.22-1.8)/1104.3 = 0.325 in the ideal case. 

 

 

Q

WT

3

2 4

1
Condenser

Boiler
Turbine

WP

QB

 

  

T

s

1

2

3

4s 4ac

 
state 2s and 2ac nearly the 
same 
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11.180E 

  Steam leaves a power plant steam generator at 500 lbf/in.2, 650 F, and enters the 

turbine at 490 lbf/in.2, 625 F. The isentropic turbine efficiency is 88%, and the 

turbine exhaust pressure is 1.7 lbf/in.2. Condensate leaves the condenser and 

enters the pump at 110 F, 1.7 lbf/in.2. The isentropic pump efficiency is 80%, and 

the discharge pressure is 520 lbf/in.2. The feedwater enters the steam generator at 

510 lbf/in.2, 100 F. Calculate the thermal efficiency of the cycle and the entropy 
generation of the flow in the line between the steam generator exit and the turbine 
inlet, assuming an ambient temperature of 77 F. 

 
 

ST. 
GEN.

P 

1 

3 

2 

4 

6 
COND. 

TURBINE.

5 

= 0.88ηsT

 

T 

s 

650 F 
625 F 

2 

5s
6 4 3s 3

5

500 psia
490 psia

1.7 psia

1

 
η

ST
 = 0.88,   η

SP
 = 0.80 

h
1
 = 1328.0,   h

2
 = 1314.0 Btu/lbm 

  s
3S

 = s
2
 = 1.5752 = 0.16483 + x

3S
×1.7686     =>     x

3S
 = 0.79745 

  h
3S

 = 88.1 + 0.797 45×1025.4 = 905.8 Btu/lbm 

  w
ST

 = h
2
 - h

3S
 = 1314.0 - 905.8 = 408.2 Btu/lbm 

  w
T
 = η

ST
w

ST
 = 0.88×408.2 = 359.2 Btu/lbm 

  h
3
 = h

2
 - w

T
 = 1314.0 - 359.2 = 954.8 Btu/lbm 

  w
SP

 = 0.016166(520-1.7)
144
778 = 1.55 Btu/lbm 

  w
p
 = w

SP
/η

SP
 = 1.55/0.80 = 1.94 Btu/lbm 

  q
H

 = h
1
 - h

6
 = 1328.0 - 68.1 = 1259.9 Btu/lbm 

  η
TH

 = w
NET

/q
H

 = (359.2 - 1.94)/1259.9 = 0.284 

C.V. Line from 1 to 2:        w = /0,   

 Energy Eq.:    q = h2 - h1 = 1314 - 1328 = -14 Btu/lbm 

 Entropy Eq.:   s1 + sgen + q/T0 = s2    => 

     sgen = s2 - s1 -q/T0 = 1.5752 - 1.586 - (-14/536.7) = 0.0153 Btu/lbm R 
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11.181E 

  A boiler delivers steam at 1500 lbf/in.2, 1000 F to a two-stage turbine as shown in 

Fig. 11.17. After the first stage, 25% of the steam is extracted at 200 lbf/in.2 for a 

process application and returned at 150 lbf/in.2, 190 F to the feedwater line. The 
remainder of the steam continues through the low-pressure turbine stage, which 

exhausts to the condenser at 2.225 lbf/in.2. One pump brings the feedwater to 150 

lbf/in.2 and a second pump brings it to 1500 lbf/in.2. Assume the first and second 
stages in the steam turbine have isentropic efficiencies of 85% and 80% and that 
both pumps are ideal. If the process application requires 5000 Btu/s of power, 
how much power can then be cogenerated by the turbine? 

 
 3: h

3
 = 1490.32,  s

3
 = 1.6001 Btu/lbmR 

C.V. Turbine T1 
4s: Rev and adiabatic    s

4S
 = s

3
   ⇒    

Table F.7.2  Sup. vapor 
       h

4S
 = 1246.6 Btu/lbm 

    w
T1,S

 = h
3
 - h

4S
 = 243.7 Btu/lbm  

    ⇒ w
T1,AC

 = 207.15 Btu/lbm 

   h
4AC

 = h
3
 - w

T1,AC
 = 1283.16 

4ac: P
4
, h

4AC
    

      ⇒   s
4AC

 = 1.6384 Btu/lbm R 

 

T1 T2

3 

4 

5 

7 
6 

1 

2 
P2

Proc. 
5000

B 

C P1

Btu/s 

 

5s:     s
5S

 = s
4AC

     ⇒        x
5S

 = 
1.6384 – 0.1817

1.7292  = 0.8424 

    h
5S

 = 97.97 + x
5S

 1019.78 = 957.03 Btu/lbm 

    w
T2,S

 = h
4AC

 - h
5S

 = 326.13 Btu/lbm 

     w
T2,AC

 = 260.9 = h
4AC

 - h
5AC

          ⇒  h
5AC

 = 1022.3 Btu/lbm  

 7:  Compressed liquid  use sat. liq. same T:     h
7
 = 158.02 Btu/lbm;   

  C.V. process unit. Assume no work only heat out.   

 q
PROC

 = h
4AC

 - h
7
 = 1125.1 Btu/lbm 

   m
.

4
 = Q

.
/q

PROC
 = 5000/1125.1 = 4.444 lbm/s = 0.25 m

.
TOT

   

       ⇒  m
.

TOT
 = m

.
3
 = 17.776 lbm/s,       m

.
5
 = m

.
3
 - m

.
4
 = 13.332 lbm/s 

C.V. Total turbine 

   W
.

T
 = m

.
3
h

3
 - m

.
4
h

4AC
 - m

.
5
h

5AC
 = 7160 Btu/s 
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Brayton Cycles  

 
11.182E 

  A large stationary Brayton cycle gas-turbine power plant delivers a power output 
of 100 000 hp to an electric generator. The minimum temperature in the cycle is 
540 R, and the maximum temperature is 2900 R. The minimum pressure in the 
cycle is 1 atm, and the compressor pressure ratio is 14 to 1. Calculate the power 
output of the turbine, the fraction of the turbine output required to drive the 
compressor and the thermal efficiency of the cycle? 

 
 Brayton:  

w
.

NET
 = 100 000 hp 

P
1
 = 1 atm, T

1
 = 540 R 

P
2
/P

1
 = 14, T

3
 = 2900 R 

Solve using constant C
P0

: 

 
1 

2 

3 

4 
P 

P = 1 atm 

T

s
 

Compression in compressor:     s2 = s1   ⇒     Implemented in Eq.8.32 

    → T
2
 = T

1
(P

2

P
1
)

k-1
k  = 540(14)0.286 = 1148.6 R 

    w
C
 =  h

2
 - h

1
 = C

P0
(T

2
-T

1
)   = 0.24 (1148.6 - 540) = 146.1 Btu/lbm 

Expansion in turbine:       s4 = s3      ⇒     Implemented in Eq.8.32 

      T
4
 = T

3
(P

4

P
3
)

k-1
k  = 2900(

1
14)

0.286
 = 1363.3 R 

    w
T
 = h

3
 - h

4
 = C

P0
(T

3
-T

4
)  = 0.24(2900 - 1363.3) = 368.8 Btu/lbm 

    w
NET

 = w
T
 - w

C
 = 368.8 - 146.1 = 222.7 Btu/lbm 

    m
.

 = W
.

NET
/w

NET
 = 100 000×2544/222.7 = 1 142 344 lbm/h 

    W
.

T
 = m

.
w

T
 = 165 600 hp,    w

C
/w

T
 = 0.396 

Energy input is from the combustor 

    q
H

 = C
P0

(T
3
 - T

2
) = 0.24(2900 - 1148.6) = 420.3 Btu/lbm 

    η
TH

 = w
NET

/q
H

 = 222.7/420.3 = 0.530 
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11.183E 
  A Brayton cycle produces 14 000 Btu/s with an inlet state of 60 F, 14.7 psia, and 

a compression ratio of 16:1. The heat added in the combustion is 400 Btu/lbm. 
What are the highest temperature and the mass flow rate of air, assuming cold air 
properties? 

 Solution: 

 Efficiency is from Eq.11.8 

  η = 
 W

.
net

 Q
.

H

 = 
wnet

qH
 = 1 - r

-(k-1)/k
p

 = 1 - 16
-0.4/1.4

 = 0.547 

 from the required power we can find the needed heat transfer  

    Q
.

H =  W
.

net / η = 
14 000
0.547  = 25 594 Btu/s 

    m
.

 =  Q
.

H / qH = 
25 594 Btu/s
400 Btu/lbm = 63.99 lbm/s 

 

 Temperature after compression is 

   T2 = T1 r
(k-1)/k
p  = 520 × 16

0.4/1.4
 = 1148 R 

 The highest temperature is after combustion 

   T3 = T2 + qH/Cp = 1148 + 
400
0.24 = 2815 R 
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11.184E 

  Do the previous problem with properties from table F.5 instead of cold air 
properties. 

 Solution: 

 With the variable specific heat we must go through the processes one by 
one to get net work and the highest temperature T3. 

From F.5:     h1 = 124.38 btu/lbm,     s
o
T1 = 1.63074 Btu/lbm R 

The compression is reversible and adiabatic so constant s. From Eq.8.28 

  s2 = s1   ⇒    s
o
T2 = s

o
T1 + R ln (

P2

P1
) = 1.63074 + 

53.34
778  ln16  

       = 1.82083 Btu/lbm R 

      back interpolate in F.5    ⇒     T2 = 1133.5 R,   h2 = 274.58 Btu/lbm 

Energy equation with compressor work in 

    wC = -1w2 = h2 - h1 = 274.58 - 124.383 = 150.2 Btu/lbm 

Energy Eq. combustor: h3 = h2 + qH = 274.58 + 400 = 674.6 Btu/lbm 

State 3:  (P, h):     T3 = 2600 R,   s
o
T3 = 2.04523 Btu/lbm R 

The expansion is reversible and adiabatic so constant s. From Eq.8.28 

  s4 = s3  ⇒  s
o
T4 = s

o
T3 + Rln(P4/P3) = 2.04523 + 

53.34
778  ln(1/16) = 1.85514 

      ⇒  T4 = 1297 R,   h4 = 316.21 Btu/lbm 

Energy equation with turbine work out 

    wT = h3 - h4 = 674.6 - 316.21 = 358.4 Btu/lbm 

Now the net work is 

 wnet = wT - wC = 358.4 – 150.2 = 208.2 Btu/lbm 

The total required power requires a mass flow rate as 

         m
.

 = 
W
.

net

wnet
 = 

14 000
208.2  

Btu/s
Btu/lbm = 67.2 lbm/s 
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11.185E 

  An ideal regenerator is incorporated into the ideal air-standard Brayton cycle of 
Problem 11.182. Calculate the cycle thermal efficiency with this modification. 

Solution: 

 

 

1 

2 3 

4 

P

v

s
s

 
1 

2 

3 

4 

P = 1 atm 

T

s

x

y

 

Compression ratio 

       
P2

P1
 = 14 

Max temperature 
    T3 = 2900 R 

 

 

The compression is reversible and adiabatic so  constant s. From Eq.8.32 

    → T
2
 = T

1
(P

2

P
1
)

k-1
k  = 540(14)0.286 = 1148.6 R 

    w
C
 =  h

2
 - h

1
 = C

P0
(T

2
-T

1
)   = 0.24 (1148.6 - 540) = 146.1 Btu/lbm 

Expansion in turbine:       s4 = s3      ⇒     Implemented in Eq.8.32 

      T
4
 = T

3
(P

4

P
3
)

k-1
k  = 2900(

1
14)

0.286
 = 1363.3 R 

    w
T
 = h

3
 - h

4
 = C

P0
(T

3
-T

4
)  = 0.24(2900 - 1363.3) = 368.8 Btu/lbm 

    w
NET

 = w
T
 - w

C
 = 368.8 - 146.1 = 222.7 Btu/lbm 

Ideal regenerator:     T
X

 = T
4
 = 1363.3 R 

   q
H

 = h
3
 - h

X
 = 0.24(2900 - 1363.3) = 368.8 Btu/lbm = wT 

   η
TH

 = w
NET

/q
H

 = 222.7/368.8 = 0.604 
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11.186E 

  An air-standard Ericsson cycle has an ideal regenerator as shown in Fig. P11.62. 
Heat is supplied at 1800 F and heat is rejected at 68 F. Pressure at the beginning 

of the isothermal compression process is 10 lbf/in.2. The heat added is 275 
Btu/lbm. Find the compressor work, the turbine work, and the cycle efficiency. 

 

  Identify the states  
Heat supplied at high temperature T

4
 = T

3
 = 1800 F = 2349.7 R 

Heat rejected at low temperature        T
1
 = T

2
 = 68 F = 527.7 R 

Beginning of the compression: P
1
 = 10 lbf/in2 

Ideal regenerator: 
2
q

3
 = -

4
q

1
      ⇒      q

H
 = 

3
q

4
  ⇒  

      w
T
 = q

H
 = 275 Btu/lbm 

 η
TH

 = η
CARNOT TH.

 = 1 - T
L
/T

H
 = 1 - 527.7/2349.7 = 0.775 

 wnet = η
TH

 q
H

 = 0.775 × 275 = 213.13 Btu/lbm 

 q
L
 = -w

C
 = 275 - 213.13 = 61.88 Btu/lbm 

 
 P 

v 

1 

2 3 

4 

T 
T 

P 

P 

 

1 
2 

3 4 T 

T 

P 
P 

s

T 
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11.187E 

  The turbine in a jet engine receives air at 2200 R, 220 lbf/in.2. It exhausts to a 

nozzle at 35 lbf/in.2, which in turn exhausts to the atmosphere at 14.7 lbf/in.2. 
The isentropic efficiency of the turbine is 85% and the nozzle efficiency is 95%. 
Find the nozzle inlet temperature and the nozzle exit velocity. Assume negligible 
kinetic energy out of the turbine. 

Solution: 

C.V. Turbine:   hi = 560.588 Btu/lbm,   s
o
Ti = 1.99765 Btu/lbm R,   ses = si        

Then from Eq.8.28 

 ⇒  s
o
Tes = s

o
Ti + R ln(Pe/Pi) = 1.99765 + 

53.34
778  ln (35/220) = 1.8716 

Btu
lbm R 

  Table F.5    Tes = 1382 R,   hes = 338.27 Btu/lbm,  

Energy eq.:   w
T,s

 = hi - hes = 560.588 - 338.27 = 222.3 Btu/lbm 

Eq.9.27:    w
T,AC

 = w
T,s

 × η
T
 = 188.96 = h

i
 - h

e,AC
     ⇒  h

e,AC
 = 371.6 

 Table F.5   ⇒   Te,AC = 1509 R,   s
o
Te = 1.8947 Btu/lbm R 

C.V. Nozzle:   hi = 371.6  Btu/lbm,   s
o
Ti = 1.8947 Btu/lbm R,   ses = si         

Then from Eq.8.28 

 ⇒    s
o
Tes = s

o
Ti + R ln(Pe/Pi) = 1.8947 + 

53.34
778  ln (

14.7
35 ) = 1.8352 

Btu
lbm R 

 Table F.5   ⇒   T
e,s

 = 1199.6 R,   h
e,s

 = 291.3 Btu/lbm 

Energy Eq.: (1/2)V
e,s
2  = h

i
 - h

e,s
 = 371.6 - 291.3 = 80.3 Btu/lbm 

Eq.9.30:  (1/2)V
e,AC

2  = (1/2)V
e,s
2  × η

NOZ
 = 76.29 Btu/lbm 

     V
e,AC

 = 2 × 25037 × 76.29 = 1954 ft/s 

 

   Recall  1 Btu/lbm = 25 037 ft2/s2 
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Otto, Diesel, Stirling and Carnot Cycles  

 
11.188E 

  Air flows into a gasoline engine at 14 lbf/in.2, 540 R. The air is then compressed 
with a volumetric compression ratio of 8:1. In the combustion process 560 
Btu/lbm of energy is released as the fuel burns. Find the temperature and pressure 
after combustion. 

Solution: 

Solve the problem with constant heat capacity. 

 Compression 1 to 2:   s2 = s1   ⇒   From Eq.8.33 and Eq.8.34 

    T2 = T1 (v1/v2)
k-1

 = 540 × 8
0.4

 = 1240.6 R 

    P2 = P1×(v1/v2)
k
 = 14 × 8

1.4
 = 257.3 lbf/in2 

 Combustion 2 to 3 at constant volume:   u3 = u2 + qH 

    T3 = T2 + qH/Cv = 1240.6 + 560/0.171 = 4515 R 

    P3 = P2 × (T3/T2) = 257.3 (4515 / 1240.6) = 936 lbf/in2 

 

 P

v1 

2 

3 

4 
s

 

1 

2 

3 

4 
v

T

s
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11.189E 

  To approximate an actual spark-ignition engine consider an air-standard Otto 
cycle that has a heat addition of 800 Btu/lbm of air, a compression ratio of 7, and 
a pressure and temperature at the beginning of the compression process of 13 

lbf/in.2, 50 F. Assuming constant specific heat, with the value from Table F.4, 
determine the maximum pressure and temperature of the cycle, the thermal 
efficiency of the cycle and the mean effective pressure. 

Solution: 

 P

v1 

2 

3 

4 

 

1 

2 

3 

4 

v

T

s
 

 

 

       State 1: v
1
 = RT

1
/P

1
 = 

53.34×510
13×144

 = 14.532 ft3/lbm,  v
2
 = v

1
/7 = 2.076 ft3/lbm 

The compression process, reversible adiabatic so then isentropic. The constant 
s is implemented with Eq.8.25 leading to Eqs.8.34 and 8.32 

    P
2
 = P

1
(v

1
/v

2
)
k
 = 13(7)1.4 = 198.2 lbf/in2 

    T
2
 = T

1
(v

1
/v

2
)
k-1

 = 510(7)0.4 = 1110.7 R 

The combustion process with constant volume, q
H

 = 800 Btu/lbm 

    T
3
 = T

2
 + q

H
/C

V0
 = 1110.7 + 800/0.171 = 5789 R 

    P
3
 = P

2
T

3
/T

2
= 198.2 × 5789/1110.7 = 1033 lbf/in2 

Cycle efficiency from the ideal cycle as in Eq.11.18 

    η
TH

 = 1 - (T
1
/T

2
) = 1 - 510/1110.7 = 0.541 

To get the mean effective pressure we need the net work 

    w
NET

 = η
TH

 × q
H

 = 0.541 × 800 = 432.8 Btu/lbm 

    P
m eff

 = 
w

NET

v
1
-v

2
 = 

432.8×778
(14.532-2.076)×144

 = 188 lbf/in2 
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11.190E 
  A gasoline engine has a volumetric compression ratio of 10 and before 

compression has air at 520 R, 12.2 psia in the cylinder. The combustion peak 
pressure is 900 psia. Assume cold air properties. What is the highest temperature 
in the cycle? Find the temperature at the beginning of the exhaust (heat rejection) 
and the overall cycle efficiency.  

 Solution: 

Compression. Isentropic so we use Eqs.8.33-8.34 

  P2 = P1(v1/v2)
k
 = 12.2 (10)1.4 = 306.45 psia 

  T2 = T1(v1/v2)
k-1

 = 520 (10)0.4 = 1306.2 R 

Combustion. Constant volume 

  T3 = T2 (P3/P2) = 1306.2 × 900/306.45 = 3836 R 

Exhaust. Isentropic expansion so from Eq.8.33 

  T4 = T3 / (v1/v2)
k-1

 = T3 / 100.4 = 3836 / 2.5119 = 1527 R 

  Overall cycle efficiency is from Eq.11.18,  rv = v1/v2 

    η = 1 − r
1-k
v  = 1 − 10

-0.4
 = 0.602 

Comment: No actual gasoline engine has an efficiency that high, maybe 35%. 
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11.191E 
  A for stroke gasoline engine has a compression ratio of 10:1 with 4 cylinders of 

total displacement 75 in3. the inlet state is 500 R, 10 psia and the engine is 
running at 2100 RPM with the fuel adding 750 Btu/lbm in the combustion 
process. What is the net work in the cycle and how much power is produced? 

 Solution: 

 Overall cycle efficiency is from Eq.11.18,  rv = v1/v2 

   ηTH = 1 − r
1-k
v  = 1 − 10

-0.4
 = 0.602 

  wnet = ηTH × qH = 0.602 × 750 = 451.5 Btu/lbm 

 We also need specific volume to evaluate Eqs.11.15 to 11.17 

  v1 = RT1 / P1 = 53.34 × 500 / (10 × 144) = 18.52 ft3/lbm 

  Pmeff = 
wnet

v1 – v2
 = 

wnet

v1 (1 – 
1

rv )
  = 

451.5
18.52 × 0.9

 
778
144= 146.3 psia 

 Now we can find the power from Eq.11.17 

  W
.

 = Pmeff Vdispl 
RPM

60  
1
2 = 146.3 × 

75
12 × 

2100
60  × 

1
2 = 16 002 lbf-ft/s 

      = 29 hp 
  Recall  1 hp = 550 lbf-ft/s. 
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11.192E 

  It is found experimentally that the power stroke expansion in an internal 
combustion engine can be approximated with a polytropic process with a value of 
the polytropic exponent n somewhat larger than the specific heat ratio k. Repeat 
Problem 11.189 but assume the expansion process is reversible and polytropic 
(instead of the isentropic expansion in the Otto cycle) with n equal to 1.50. 

 

     First find states 2 and 3. based on the inlet state we get 

  v
4
 = v

1
 = RT

1
/P

1
 = 53.34×510/13×144 = 14.532 ft3/lbm 

  v
3
 = v

2
 = v

1
/7 = 2.076 ft3/lbm 

After compression we have constant s leads to Eq.8.34 and Eq.8.32 

    P
2
 = P

1
(v

1
/v

2
)
k
 = 13(7)1.4 = 198.2 lbf/in2 

    T
2
 = T

1
(v

1
/v

2
)
k-1

 = 510(7)0.4 = 1110.7 R 

 Constant volume combustion 

    T
3
 = T

2
 + q

H
/C

V0
 = 1110.7 + 800/0.171 = 5789 R 

    P
3
 = P

2
T

3
/T

2
= 198.2 × 5789/1110.7 = 1033 lbf/in2 

 Process 3 to 4:    Pv1.5 = constant. 

  P
4
 = P

3
(v

3
/v

4
)1.5 = 1033(1/7)1.5 = 55.78 lbf/in2 

  T4 = T3(v3/v4)0.5 = 5789(1/7)0.5 = 2188 R 

 For the mean effective pressure we need the net work and therefore the 

 induvidual process work terms 

  1w2 = ∫ P dv = R(T2 - T1)/(1 - 1.4) 

         = -53.34(1110.7 - 510)/(0.4×778) = -102.96 Btu/lbm 

  3w4 = ∫ P dv = R(T4 - T3)/(1 - 1.5) 

         = -53.34(2188 - 5789)/(0.5×778) = 493.8 Btu/lbm 

  wNET = 493.8 - 102.96 = 390.84 Btu/lbm 

  ηCYCLE = wNET/qH = 390.84/700 = 0.488 

 Pmeff = w
NET

/(v
1
-v

2
) = 390.84×778/(14.532 - 2.076) = 169.5 lbf/in2 

 Notice a smaller w
NET

, η
CYCLE

, Pmeff compared to ideal cycle. 
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11.193E 

  In the Otto cycle all the heat transfer qH occurs at constant volume. It is more 
realistic to assume that part of qH occurs after the piston has started its 
downwards motion in the expansion stroke. Therefore consider a cycle identical 
to the Otto cycle, except that the first two-thirds of the total qH occurs at constant 
volume and the last one-third occurs at constant pressure. Assume the total qH is 
700 Btu/lbm, that the state at the beginning of the compression process is 13 

lbf/in.2, 68 F, and that the compression ratio is 9. Calculate the maximum 
pressure and temperature and the thermal efficiency of this cycle. Compare the 
results with those of a conventional Otto cycle having the same given variables. 

 
 

1 

2 

3 4 

s 

s 

P 

v 

5 

 

1 

2 

3 
4 T 

s

s 

s 

v 

v 

 

5 

 

P
1
 = 13, T

1
 = 527.67 R 

r
V

 = v
1
/v

2
 = 7 

q
23

 = 
2
3×700 = 466.7 

Btu
lbm 

q
34

 = 
1
3×700 = 233.3 

Btu
lbm 

 

    P
2
 = P

1
(v

1
/v

2
)
k
 = 13(9)1.4 = 281.8 lbf/in2 

    T
2
 = T

1
(v

1
/v

2
)
k-1

 = 527.67(9)0.4 = 1270.7 R 

    T
3
 = T

2
 + q

23
/C

V0
 = 1270.7 + 466.7/0.171 = 4000 R 

    P
3
 = P

2
(T

3
/T

2
) = 281.8 × 4000/1270.7 = 887.1 lbf/in2 = P

4
 

    T
4
 = T

3
 + q

34
/C

P0
 = 4000 + 233.3/0.24 = 4972 R 

    
v

5

v
4
 = 

v
1

v
4
 = (P

4
/P

1
) × (T

1
/T

4
) = 

88.1
13  × 

527.67
4972  = 7.242 

    T
5
 = T

4
(v

4
/v

5
)
k-1

 = 4972(1/7.242)
0.4

 = 2252 R 

    q
L
 = C

V0
(T

5
-T

1
) = 0.171(2252 - 527.67) = 294.9 Btu/lbm 

    η
TH

 = 1 - q
L
/q

H
 = 1 - 294.9/700 = 0.579 

    Standard Otto cycle:        η
TH

 = 1 - (9)-0.4 = 0.585 
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11.194E 

  A diesel engine has a bore of 4 in., a stroke of 4.3 in. and a compression ratio of 
19:1 running at 2000 RPM (revolutions per minute). Each cycle takes two 

revolutions and has a mean effective pressure of 200 lbf/in.2. With a total of 6 
cylinders find the engine power in Btu/s and horsepower, hp. 

Solution: 

Work from mean effective pressure. 

 Pmeff = w
net

 / (v
max

 - v
min

)     ->    w
net

 = Pmeff (vmax
 - v

min
) 

The displacement is 

 ∆V = πBore2 × 0.25 × S = π × 42 × 0.25 × 4.3 = 54.035 in3 

Work per cylinder per power stroke 

 W = Pmeff(Vmax
 - V

min
) = 200 × 54.035 / (12 × 778) = 1.1575 Btu/cycle 

Only every second revolution has a power stroke so we can find the power 

 W
.

 = W × Ncyl × RPM × 0.5 (
cycles
min ) × (

min
60 s) × (

Btu
cycle) 

      = 1.1575 × 6 × 2000 × 0.5 × (1/60) = 115.75 Btu/s 

      = 115.75 × 3600/2544.43 hp = 164  hp 
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11.195E 
  At the beginning of compression in a diesel cycle T = 540 R, P = 30 lbf/in.2  and 

the state after combustion (heat addition) is  2600 R and 1000  lbf/in.2. Find the 
compression ratio, the thermal efficiency and the mean effective pressure. 

Solution: 

Compression process (isentropic)  from Eqs.8.33-8.34 

 P2 = P3 = 1000 lbf/in2   =>  v1/v2 = (P2/P1)1/k = (1000/30)0.7143 = 12.24 

  T2 = T1(P2/P1)(k-1)/k = 540(1000/30) 0.2857 = 1470.6 R 

Expansion process (isentropic)   first get the volume ratios 

  v3/v2 = T3/T2 = 2600/1470.6 = 1.768 

  v
4
/v3 = v1/v3 = (v1/v2)(v2/v3) = 12.24/1.768 = 6.923 

The exhaust temperature follows from Eq.8.33 

  T
4
 = T3(v3/v

4
)k-1 = 2600*6.923-0.4 = 1199 R 

  q
L
 = CV(T

4
 - T

1
) = 0.171(1199-540) = 112.7 Btu/lbm 

  q
H

 = h3 - h2 = CP(T3 - T2) = 0.24(2600 - 1470.6) = 271.1 Btu/lbm 

  η = 1 - q
L
/q

H
 = 1 - 112.7 / 271.1 = 0.5843 

  w
net

 = q
net

 = 271.1 - 112.7 = 158.4 Btu/lbm 

  v
max

 = v1 = RT1/P1 = 53.34 × 540/(30 × 144) = 6.6675 ft3/lbm 

  vmin = v
max

(v1/v2) = 6.6675 / 12.24 = 0.545 ft3/lbm 

  Pmeff = [158.4/(6.6675 - 0.545)] × (778/144) = 139.8 lbf/in2 

 

 P

v1 

2 3 

4 s

s

 

1 

2 

3 

4 

v

T

s

P

 

 

 

 Remark: This is a too low compression ratio for a practical diesel cycle. 
 



   Sonntag, Borgnakke and van Wylen 

 
11.196E 

  Consider an ideal air-standard diesel cycle where the state before the compression 

process is 14 lbf/in.2, 63 F and the compression ratio is 20. Find the maximum 
temperature(by iteration) in the cycle to have a thermal efficiency of 60%. 

Diesel cycle: P
1
= 14,  T

1
 = 522.67 R,  v

1
/v

2
 = 20,  η

TH
 = 0.60 

From the inlet state and the compression we get 

 T
2
 = T

1
(v

1
/v

2
)
k-1

 = 522.67(20)0.4 = 1732.4 R 

 v
1
 = 

53.34×522.67
14×144

 = 13.829 ft3/lbm,      v
2
 = 

13.829
20  = 0.6915 ft3/lbm 

Constant pressure combustion relates  v
3
 and T

3
 

  v
3
 = v

2
×T

3
/T

2
 = 0.6915×T

3
/1732.4 = 0.000399 T

3
 

The expansion then gives T
4
 interms of T

3
 

 
T

3

T
4
 = (v

4

v
3
)k-1

 = ( 13.829
0.000399 T

3
)0.4

 →       T
4
 = 0.0153 T

1.4
3  

Now these T’s relate to the given efficiency 

 η
TH

 = 0.60 = 1 - 
T

4
-T

1

k(T
3
-T

2
) = 1 - 

0.0153 T
1.4
3 -522.67

1.4(T
3
-1732.4)  

        ⇒    0.0153 T
1.4
3  - 0.56 T

3
 + 447.5 = 0 

Trial and error on this non-linear equation 

 5100 R: LHS = -35.54,      5500 R: LHS = 5.04,      5450 R: LHS = -0.5 

                Linear interpolation, T
3
 = 5455 R 
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11.197E 
  Consider an ideal Stirling-cycle engine in which the pressure and temperature at 

the beginning of the isothermal compression process are 14.7 lbf/in.2, 80 F, the 
compression ratio is 6, and the maximum temperature in the cycle is 2000 F. 
Calculate the maximum pressure in the cycle and the thermal efficiency of the 
cycle with and without regenerators. 

 
 

T 

T 
v 

v 

1 

2 

3 

4 

P 

v  

1 
2 

3 4 T 

T 

v 
v 

s

T 

  

Ideal Stirling cycle 
T

1
 = T

2
 = 80 F 

P
1
 = 14.7 lbf/in2 

v
1

v
2
 = 6 

T
3
 = T

4
 = 2000 F 

     T
1
 = T

2
 → P

2
 = P

1
× v

1
/v

2
 = 14.7×6 = 88.2 

    V
2
 = V

3
 → P

3
 = P

2
× T

3
/T

2
 = 88.2×

2460
540  = 401.8 lbf/in2 

    w
34

 = q
34

 = RT
3
 ln (v

4
/v

3
) 

            = (53.34/778) × 2460 ln 6 = 302.2 Btu/lbm 

    q
23

 = C
V0

(T
3
-T

2
) = 0.171(2460-540) = 328.3 Btu/lbm 

    w
12

 = q
12

 = -RT
1
 ln 

v
1

v
2
 = -

53.34
778 ×540 ln 6 = -66.3 Btu/lbm 

    w
NET

 = 302.2 - 66.3 = 235.9 Btu/lbm 

    η
NO REGEN

 = 
235.9

302.2+328.3 = 0.374, 

    η
WITH REGEN

 = 
235.9
302.2 = 0.781 
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11.198E 
  An ideal air-standard Stirling cycle uses helium as working fluid. The isothermal 

compression brings the helium from 15 lbf/in.2, 70 F to 90 lbf/in.2. The 
exspansion takes place at 2100 R and there is no regenerator. Find the work and 
heat transfer in all four processes per lbm helium and the cycle efficiency. 

 

Substance helium  F.4:       R = 386 ft-lbf/lbmR, Cv = 0.753 Btu/lbm R 

  v
4
/v3 = v1/v2 = P2/P1 = 90/15 = 6 

1 -> 2: -1w2 = -1q2 = ∫ P dV = RT ln (v1/v2) 

                          = 386 × 530 × ln(6)/778 = 471.15 Btu/lbm 

2 -> 3: 2w3 = 0;   2q3 = CP(T3 - T2) = 0.753(2100 - 530) = 1182.2 

3 -> 4: 3w4 = 3q4 = RT3 ln(v
4
/v3) = 386 × 2100 × ln(6)/778  

         = 1866.8 Btu/lbm 

4 -> 1: 4w1 = 0;     4q1 = CP(T4 - T1) = -1182.2 Btu/lbm 

 η
Cycle

 = wnet/ qH = 
-471.15 + 1866.0
1182.2 + 1866.8  = 0.458 
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11.199E 
  The air-standard Carnot cycle was not shown in the text; show the T–s diagram 

for this cycle. In an air-standard Carnot cycle the low temperature is 500 R and 
the efficiency is 60%. If the pressure before compression and after heat rejection 

is 14.7 lbf/in.2, find the high temperature and the pressure just before heat 
addition. 

 

Solution: 

Carnot cycle efficiency from Eq.7.5 

  η = 0.6 = 1 - TH/TL 

     ⇒  TH = TL/0.4 = 500/0.4 = 1250 R 

Just before heat addition is state 2 and after heat rejection is state 1 so  P1 = 
100 kPa and the isentropic compression is from Eq.8.32 

  P2 = P1(TH/TL)
1

k-1 = 14.7(
1250
500 )3.5 = 363.2 lbf/in2 

  

OR if we do not use constant specific heat, but use Table F.5 in Eq.8.28 

 P
2
 = P

1
 exp[(s

o
T2 - s

o
T1)/R] = 14.7 × exp[

1.84573 – 1.62115
53.34 / 778  ]  = 389 lbf/in2 

 

 P

v
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3 

4 
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T
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T
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11.200E 

  Air in a piston/cylinder goes through a Carnot cycle in which T
L
 = 80.3 F and the 

total cycle efficiency is η = 2/3. Find T
H

, the specific work and volume ratio in 

the adiabatic expansion for constant Cp, Cv. 

Carnot cycle: 

  η = 1 - T
L
/T

H
 = 2/3  ⇒    T

H
 = 3 × T

L
 = 3 × 540 = 1620 R 

 Adiabatic expansion 3 to 4:    Pvk = constant 

 
3
w

4
 = (P

4
v

4
 - P

3
v

3
)/(1 - k) = [R/(1-k)](T

4
 - T

3
) = u

3
 - u

4
  

     = C
v
(T

3
 - T

4
) = 0.171(1620 - 540) = 184.68 Btu/lbm 

 v
4
/v

3
 = (T

3
/T

4
)1/(k - 1) = 32.5 = 15.6 

  

 P

v
1 

2 
3 

4 

s s

T

T

 

1 4 

T

s

2 3 
T

T

H

L
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11.201E 

  Do the previous problem 11.200E using Table F.5.  

  Air in a piston/cylinder goes through a Carnot cycle in which T
L
 = 80.3 F and the 

total cycle efficiency is η = 2/3. Find T
H

, the specific work and volume ratio in 

the adiabatic expansion for constant Cp, Cv. 

 

Carnot cycle: 

  η = 1 - T
L
/T

H
 = 2/3  ⇒    T

H
 = 3 × T

L
 = 3 × 540 = 1620 R 

 
3
w

4
 = u

3
 - u

4
 = 290.13 - 92.16 = 197.97 Btu/lbm 

Adiabatic expansion 3 to 4:      s
4
 = s

3
   ⇒     Eq.8.28 

 s
o
T4 = s

o
T3 + R ln 

P4

P3
  ⇒ Table F.5 for standard entropy 

 
P4

P3
 = exp[(s

o
T4 - s

o
T3)/R] = exp[1.63979-1.91362

53.34/778  ] = 0.018426 

Ideal gas law then gives 

  
v4

v3
 = 

T4

T3
 × 

P3

P4
 = 

540
1620 × 

1
0.018426  = 18.09 

 

 P

v
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Refrigeration Cycles  

 
11.202E 

  A car air-conditioner (refrigerator) in 70 F ambient uses R-134a and I want to 
have cold air at 20 F produced. What is the minimum high P and the maximum 
low P it can use? 

 
   Since the R-134a must give heat transfer out to the ambient at 70 F, it 

must at least be that hot at state 3. 
 
   From Table F.10.1: P3 = P2 = Psat = 85.95 psia  is minimum high P. 

   Since the R-134a must absorb heat transfer at the cold air 20 F, it must at 
least be that cold at state 4. 

 
   From Table F.10.1: P1 = P4 = Psat = 33.29 psia  is maximum low P. 

 
  

Ideal Ref. Cycle 
T

cond
 =  70 F = T

3
 

T
evap

 =  20 F 

 
Use Table F.10 for R-134a 
 

1 

2 

T 

3 

4 

s  
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11.203E 

  Consider an ideal refrigeration cycle that has a condenser temperature of 110 F 
and an evaporator temperature of 5 F. Determine the coefficient of performance 
of this refrigerator for the working fluids R-12 and R-22. 

 
  

Ideal Ref. Cycle 
T

cond
 =  110 F = T

3
 

T
evap

 =  5 F 

 
Use Table F.9 for R-22 
Use computer table for R-12 

1 

2 

T 

3 

4 

s  
    R-12   R-22  
 h

1
, Btu/lbm 77.803 104.954  

 s
2
 = s

1
  0.16843 0.22705  

 P
2
, lbf/in2 151.11 241.04  

 T
2
, F 127.29 161.87  

 h
2
, Btu/lbm 91.107 123.904  

 h
3
=h

4
, Btu/lbm  33.531 42.446  

 -w
C
 = h

2
-h

1
  13.3 18.95  

 q
L
 = h

1
-h

4
 44.27 62.51  

 β =q
L
/(-w

C
)    3.33 3.30  
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11.204E 

  The environmentally safe refrigerant R-134a is one of the replacements for R-12 
in refrigeration systems. Repeat Problem 11.203 using R-134a and compare the 
result with that for R-12. 

 
  

Ideal refrigeration cycle 
T

cond
 =  110 F = T

3
 

T
evap

 =  5 F 

 
Use Table F.10 for R-134a 
or computer table 

       

T

s
1

2

3

4

 
 

C.V. Compressor:   Adiabatic and reversible   so constant s 

 State 1:    Table F.10.1        h1 =167.32 Btu/lbm,    s1 = 0.4145 Btu/lbm R 

 State 2:    s2 = s1 and P2 = 161.1 psia = P3 = Psat 110 F 

 Interpolate   =>   h2 = 184.36 Btu/lbm  and   T2 = 121.8 F 

 Energy eq.:     wC = h2 - h1 = 184.36 - 167.32 = 17.04 Btu/lbm 

Expansion valve:    h3 = h4 = 112.46 Btu/lbm 

Evaporator:     qL = h1 - h4 = 167.32 - 112.46 = 54.86 Btu/lbm 

Overall performance, COP 

  β = qL/wC = 54.86 / 17.04 = 3.22 
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11.205E 

  Consider an ideal heat pump that has a condenser temperature of 120 F and an 
evaporator temperature of 30 F. Determine the coefficient of performance of this 
heat pump for the working fluids R-12, R-22, and ammonia. 

  
Ideal Heat Pump 
T

cond
 = 120 F 

T
evap

 =  30 F 

Use Table F.8 for NH3 
Use Table F.9 for R-22 
Use computer table for R-12 

1 

2 
T 

3 

4 

s  
    R-12   R-22   NH3 
 h

1
, Btu/lbm   80.42  107.28  619.58 

 s
2
 = s

1
 0.1665 0.2218 1.2769 

 P
2
, lbf/in2 172.3 274.6 286.5 

 T
2
, F 132.2 160.4 239.4 

 h
2
, Btu/lbm  91.0  122.17 719.5 

 h
3
=h

4
, Btu/lbm    36.011   45.71  178.83 

 -w
C
 = h

2
-h

1
   10.58   14.89   99.92 

 q
H

 = h
2
-h

3
    54.995   76.46  540.67 

 β′ =q
H

/(-w
C
)     5.198     5.135     5.411 
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11.206E 

   The refrigerant R-22 is used as the working fluid in a conventional heat pump 
cycle. Saturated vapor enters the compressor of this unit at 50 F; its exit 
temperature from the compressor is measured and found to be 185 F. If the  
compressor exit is 300 psia, what is the isentropic efficiency of the compressor 
and the coefficient of performance of the heat pump? 

 
  

R-22 heat pump:  T
2
 = 185 F 

                             T
EVAP

 = 50 F 

 
State 1:  Table F.9.1 
     h

1
 = 108.95 Btu/lbm,   

     s
1
 = 0.2180 Btu/lbm R 

1 

2 
T 

3 

4 

s 

2S

 
 
  State 2:     h

2
 = 126.525 Btu/lbm 

  Compressor work:        w
C
 = h

2
 – h

1
 = 126.525 – 108.95 = 17.575 Btu/lbm 

 Isentropic compressor:      s
2S

 = s
1
 = 0.2180 Btu/lbm R 

     State 2s:  (P
2
, s)    T

2S
 = 160 F,     h

2S
 = 120.82 Btu/lbm  

  Ideal compressor work:      w
C s

 = h
2S

 - h
1
 = 120.82 – 108.95 = 11.87 Btu/lbm 

 

      The efficiency is the ratio of the two work terms 

   η
S COMP

= 
w

C s

w
C

 = 
11.87
17.575 = 0.675 

 The condenser has heat transfer as (h
3
 = h

f
 at 300 psia) 

        q
H

 = h
2
 - h

3
 = 126.525 - 48.02 = 78.505 Btu/lbm 

 and a coefficient of performance of 

    β′ = q
H

/w
C
 = 4.47 
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11.207E 
  Consider an air standard refrigeration cycle that has a heat exchanger included as 

shown in Fig. P11.137. The low pressure is 14.7 psia and the high pressure is 200 
psia. The temperature into the compressor is 60 F which is T

1
 and T

3
 in 

Fig.11.38, and T
4
 = T

6
 = -60 F. Determine the coefficienct of performance of this 

cycle. 
 

Solution: 
 

EXP COMP  

q H 

q L 

5 

4 

6 

3 2 
1 

 

2 

s 

T 

1 
3 

4 

5 

6 

 
Standard air refrigeration cycle with 

 T1 = T3 = 60 F = 519.67 R,   P1 = 14.7 psia,   P2 = 200 psia 

 T4 = T6 = -60 F = 399.67 R 

We will solve the problem with cold air properties. 

Compressor, isentropic   s2 = s1     so from Eq.8.32 

 ⇒  T2 = T1(P2/P1)
k-1
k  = 519.67 (200/14.7)0.2857 = 1095.5 R 

 wC = -w12 = CP0(T2 - T1) = 0.24 (1095.5 - 519.67) = 138.2 Btu/lbm 

Expansion in expander (turbine) 

 s5 = s4 ⇒  T5 = T4 (P5/P4)
k-1
k  = 399.67 (14.7/200)

0.2857
 = 189.58 R 

 wE = CP0(T4 - T5) = 0.24 (399.67 - 189.58) = 50.42 Btu/lbm 

Net cycle work 

 wNET = 50.42 - 138.2 = -87.78 kJ/kg 

 qL = CP0(T6 - T5) = wE = 50.42 Btu/lbm 

Overall cycle performance, COP 

 β = qL/(-wNET) = 50.42 / 87.78 = 0.574 
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Availability and Combined Cycles 
 
11.208E 
  Find the flows and fluxes of exergy in the condenser of Problem 11.172E. Use 

those to determine the 2nd law efficiency. 

  A smaller power plant produces 50 lbm/s  steam at 400 psia, 1100 F, in the boiler. 
It cools the condenser with ocean water coming in at 55 F and returned at 60 F so 
that the condenser exit is at 110 F. Find the net power output and the required 
mass flow rate of the ocean water. 

 Solution: 

  Take the reference state at the ocean temperature 55 F = 514.7 R 

 

The states properties from Tables F.7.1 

and F.7.2. Ref. state 14.7 lbf/in2, 55 F,    
       h

0
 = 23.06 Btu/lbm,     

       s
0
 = 0.0458 Btu/lbm R 

 

56

41

cb
 

State 1: 110 F,  x = 0:  h1 = 78.01 Btu/lbm,  s1 = 0.1473 Btu/lbm R,   

State 3: 400 psia, 1100 F:     h3 = 1577.44 Btu/lbm,    s3 = 1.7989 Btu/lbm R  

C.V. Turbine : wT =  h3 - h4  ;  s4 =  s3   

  s4 = s3 = 1.7989 = 0.1473 + x4 (1.8101)     =>       x4 = 0.9124 

  =>  h4 = 78.01 + 0.9124 (1031.28) = 1018.95 Btu/lbm 

C.V. Condenser : qL = h4 - h1 = 1018.95 - 78.01 = 940.94 Btu/lbm 

  Q
.

L = m
.

qL = 50 × 940.94 = 47 047 Btu/s = m
.

ocean Cp ∆T 

   m
.

ocean = Q
.

L / Cp ∆T = 47 047 / (1.0 ×•5) = 9409 lbm/s 

The specific flow exergy for the two states are  from Eq.10.24 neglecting 
kinetic and potential energy 

 ψ4 = h4 - h
0
 - T

0
(s4 - s

0
),     ψ1 = h1 - h

0
 - T

0
(s1 - s

0
) 

 
The net drop in exergy of the water is 

  Φ
.

water = m
.

water [h4
 – h

1
 – To(s

4
 – s

1
)]  

   = 50 [ 1018.95 – 78.01 – 514.7 (1.7989 – 0.1473)]  

   = 47 047 – 42 504 = 4543 Btu/s 
 
The net gain in exergy of the ocean water is 
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  Φ
.

ocean = m
.

ocean[h
6
 – h

5
 – To(s

6
 – s

5
)]  

= m
.

ocean[Cp(T
6
 – T

5
) – ToCp ln(

T6

T5
) ] 

= 9409 [ 1.0 (60 – 55) – 514.7 × 1.0 ln 
459.7 + 60
459.7 + 55 ]  

= 47 047 – 46 818 = 229 Btu/s 
The second law efficiency is 

   η
II
 = Φ

.
ocean / Φ

.
water = 

229
4543 = 0.05 

  
In reality all the exergy in the ocean water is destroyed as the 60 F water mixes 
with the ocean water at 55 F after it flows back out into the ocean and the 
efficiency does not have any significance. Notice the small rate of exergy relative 
to the large rates of energy being transferred.  
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11.209E 

  (Adv.)  Find the availability of the water at all four states in the Rankine cycle 
described in Problem 11.173. Assume the high-temperature source is 900 F and 
the low-temperature reservoir is at 65 F. Determine the flow of availability in or 
out of the reservoirs per pound-mass of steam flowing in the cycle. What is the 
overall cycle second law efficiency? 

Ref. state 14.7 lbf/in2, 77°F,   h
0
 = 45.08 Btu/lbm,    s

0
 = 0.08774 Btu/lbm R 

For this cycle from Table F.7 

State 3: Superheated vapor     h
3
 = 1350.62 Btu/lbm,  s

3
 = 1.5871 Btu/lbm R,   

State 1: Saturated liquid         h
1
 = 97.97 Btu/lbm,  v

1
 = 0.01625 ft3/lbm 

C.V. Pump:   Adiabatic and reversible. Use incompressible fluid so  

 w
P
 = ⌡⌠v dP = v

1
(P

2
 - P

1
) = 0.01625(600 – 2.2)

144
778 = 1.8 Btu/lbm 

    h
2
 = h

1
 + w

P
 = 95.81 Btu/lbm 

C.V. Boiler:         q
H

 = h
3
 - h

2
 = 1350.62 - 97.97 = 1252.65 Btu/lbm 

C.V. Tubine:        w
T
 = h

3
 - h

4
,         s

4
 = s

3
 

        s
4
 = s

3
 = 1.5871 Btu/lbm R = 0.1817 +  x

4
 1.7292   ⇒   x

4
 = 0.8127,   

          h
4
 = 97.97 + 0.8127 × 1019.78 = 926.75 Btu/lbm 

    w
T
 = 1350.62 - 926.75 = 423.87 Btu/lbm 

    η
CYCLE

 = (w
T
 - w

P
)/q

H
 = (423.87 - 1.8)/1252.65 = 0.337 

C.V. Condenser:  

    q
L
 = h

4
 - h

1
 = 926.75 - 97.97 = 828.8 Btu/lbm 

 

 P

v1

2 3

4
 

T

s
1

2

3

4

 
  

From solution to 11.121: 

 s
1
 = 0.17497,    s

2
 = 0.175 = s

1
,    s

4
 = s

3
 = 1.5871 Btu/lbm R 

 h
1
 = 94.01,    h

2
 = 95.81,    h

3
 = 1350.6,    h

4
 = 921.23 Btu/lbm 
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 ψ = h - h
0
 - T

0
(s - s

0
) 

 ψ
1
 = 94.01 - 45.08 - 536.67(0.17497 - 0.08774) = 2.116 Btu/lbm 

 ψ
2
 = 3.92,   ψ

3
 = 500.86,   ψ

4
 = 71.49 Btu/lbm 

 ∆ψ
H

 = (1 - T
0
/T

H
)q

H
 = 0.6054 × 1254.79 = 759.65 Btu/lbm 

 ∆ψ
L
 = (1 - T

0
/T

0
)q

C
 = 0/  

 η
II
 = w

NET
/∆ψ

H
 = (429.37 - 1.8)/759.65 = 0.563 

Notice T
H

 > T
3
,  T

L
 < T

4
 = T

1
, so cycle is externally irreversible.  Both q

H
 and 

q
C
 over finite ∆T. 

 



   Sonntag, Borgnakke and van Wylen 

 
11.210E 
  Find the flows of exergy into and out of the feedwater heater in Problem 11.176E. 
 

  State 1:   x1 = 0,  h1 = 97.97 Btu/lbm, v1 = 0.01625 ft3/lbm, s = 0.17497  

  State 3:   x3 = 0,  h3 = 330.67 Btu/lbm, s3 = 0.49199 Btu/lbm R 

  State 5:   h5 = 1350.52 Btu/lbm,  s5 = 1.5871 Btu/lbm R 

  State 6:   s6 = s5 = 1.5871 Btu/lbm R    =>     h6 = 1208.93 Btu/lbm 

C.V Pump P1 

 wP1 = h2 - h1 = v1(P2 - P1) = 0.01625(150 – 2.225)
144
778 = 0.44 Btu/lbm 

  =>  h2 = h1 + wP1 = 97.97 + 0.4439 = 98.41 Btu/lbm 

  s2 = s1 = 0.17497 Btu/lbm R 

C.V. Feedwater heater: Call    m
.

6 / m
.

tot = x   (the extraction fraction) 

 Energy Eq.: (1 - x) h2 + x h6 = 1 h3  

 

x = 
h3 - h2

h6 - h2
 =  

330.67 - 98.41
1208.93 - 98.41  = 0.2091 

 
2

6

3

x

1-x

FWH

 
Ref. State:  14.7 psia, 77 F,  so = 0.08774 Btu/lbm R,  ho = 45.08 Btu/lbm 

 ψ
2
 = h

2
 - ho - To(s

2
 - so) 

       = 98.41 - 45.08 – 536.67(0.17497 - 0.08774) = 6.52 Btu/lbm 

 ψ
6
 = 1208.93 - 45.08 - 536.67(1.5871 - 0.08774) = 359.2 Btu/lbm 

 ψ
3
 = 330.67 - 45.08 - 536.67(0.49199 - 0.08774) = 68.64 Btu/lbm 

The rate of exergy flow scaled with maximum flow rate is then 

 Φ
.

2
/m

.
3
 = (1 - x) ψ

2
 = 0.7909 × 6.52 = 5.157 Btu/lbm  

  Φ
.

6
/m

.
3
 = xψ

6
 = 0.2091 × 359.2 = 75.109 Btu/lbm 

Φ
.

3
/m

.
3
 = ψ

3
 = 68.64 Btu/lbm 

       The mixing is destroying 5.157 + 75.109 – 68.64 = 11.6 Btu/lbm of exergy 
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11.211E 
  Consider the Brayton cycle in problem 11.183E. Find all the flows and fluxes of 

exergy and find the overall cycle second-law efficiency. Assume the heat 
transfers are internally reversible processes and we then neglect any external 
irreversibility. 

Solution: 

Efficiency is from Eq.11.8 

   η = W
.

NET
/ Q

.
H

   = 
wnet

qH
 = 1 - r

-(k-1)/k
p

 = 1 - 16
-0.4/1.4

 = 0.547 

from the required power we can find the needed heat transfer  

  Q
.

H =  W
.

net / η = 14 000 / 0.547 = 25 594 Btu/s 

   m
.

 =  Q
.

H / qH = 25 594 (Btu/s) / 400 Btu/lbm = 63.99 lbm/s 

Temperature after compression is 

   T2 = T1 r
(k-1)/k
p  = 519.67 × 16

0.4/1.4
 = 1148 R 

The highest temperature is after combustion 

   T3 = T2 + qH/Cp = 1148 + 
400
0.24 = 2815 R 

 For the exit flow I need the exhaust temperature 

T
4
 = T

3
   rp

−(k-1)/k
   = 2815 × 16−0.2857   = 1274.8 R 

 The high T exergy input from combustion is 

 Φ
.

H
 = m

.
(ψ

3
 - ψ

2
) = m

.
[h

3
 – h

2
 – T(s

3
 – s

2
)]  

       = 63.99 [400 – 536.67 × 0.24 ln (
2815
1148)] = 17 895 Btu/s 

 Since the low T exergy flow out is lost the second law efficiency is 

η
II
 = W

.
NET

/Φ
.

H
   = 14 000 / 17 895 = 0.782 

Φ
.

flow out
 = m

.
(ψ

4
 - ψ

o
) = m

.
[h

4
 – h

o
 – T(s

4
 – s

o
)] 

 = 63.99 [ 0.24(1274.8 – 536.7) – 536.7 ×0.24 ln (
1274.8
536.7  ) ] = 4205 Btu/s 

Φ
.

flow in
 = m

.
(ψ

1
 - ψ

o
) = m

.
[h

1
 – h

o
 – T(s

1
 – s

o
)]  

 = 63.99 [ 0.24(60 – 77) – 536.7 × 0.24 ln ( 
519.7
536.7 ) ] = 4.2 Btu/s 
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11.212E 
  Consider an ideal dual-loop heat-powered refrigeration cycle using R-12 as the 

working fluid, as shown in Fig. P11.144. Saturated vapor at 220 F leaves the 
boiler and expands in the turbine to the condenser pressure. Saturated vapor at 0 F 
leaves the evaporator and is compressed to the condenser pressure. The ratio of 
the flows through the two loops is such that the turbine produces just enough 
power to drive the compressor. The two exiting streams mix together and enter 
the condenser. Saturated liquid leaving the condenser at 110 F is then separated 
into two streams in the necessary proportions. Determine the ratio of mass flow 
rate through the power loop to that through the refrigeration loop. Find also the 
performance of the cycle, in terms of the ratio QL/QH. 

 
 

BOIL. 
COND. 

E 
V 
A 
P 
. 

TURB. COMP. 

1 

2 7 6 

3 
4 

5 
P 

Q 
. 
L

 

T 

3 

4 

s 

6 

7 

2 

1 

5 

 

 
   T    P    h    s Computer tables for 
   F lbf/in2 Btu/lbm Btu/lbm R properties. 

 1  0 23.849 77.271  168.88  P
2
=P

3
=P

SAT
 at 110 F 

 2  - 151.11   168.88  P
5
=P

6
=P

SAT
 at 220 F 

 3 110 151.11 33.531 0.067 45  s
2
=s

1
=0.168 88 

 4  0 23.849 33.531   h
2
=91.277 

 5  - 524.43  0.067 45  Pump work: 
 6 220 524.43 89.036 0.151 49  -w

P
 = h

5
-h

3
 

 7 110 151.11  0.151 49         ≈ v
5
(P

5
-P

3
) 

 

 -w
P
 = 0.0129(524.4 - 151.1)

144
778 = 0.894 

 h
5
 = 33.531 + 0.894 = 34.425 Btu/lbm 

 (1-x
7
) = 

0.162 79 - 0.151 49
0.095 34  = 

0.011 30
0.095 34 = 0.1187 

 h
7
 = 87.844 - 0.1187(54.313) = 81.397 Btu/lbm 
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 CV: turbine + compressor 

    Continuity Eq.:     m
.

1
 = m

.
2
,      m

.
6
 = m

.
7
 

    Energy Eq.:        m
.

1
h

1
 + m

.
6
h

6
 = m

.
2
h

2
 + m

.
7
h

7
 

    m
.

1
/m

.
6
 = 

89.036-81.397
91.277-77.271 = 

7.639
14.006 = 0.545,       m

.
6
/m

.
1
 = 1.833 

 CV: pump:     -w
P
 = v

3
(P

5
-P

3
),     h

5
 = h

3
 - w

P
 

 CV evaporator:   Q
.

L
 = m

.
1
(h

1
-h

4
),         CV boiler:   Q

.
H

 = m
.

6
(h

6
-h

5
) 

    ⇒ β = Q
.

L
/Q

.
H

 = 
m
.

1
(h

1
-h

4
)

m
.

6
(h

6
-h

5
)
 = 

77.271-33.531
1.833(89.036-34.425) = 0.436 
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11.213E 
 Consider an ideal combined reheat and regenerative cycle in which steam enters 

the high-pressure turbine at 500 lbf/in.2, 700 F, and is extracted to an open 

feedwater heater at 120 lbf/in.2 with exit as saturated liquid. The remainder of the 

steam is reheated to 700 F at this pressure, 120 lbf/in.2, and is fed to the low-

pressure turbine. The condenser pressure is 2 lbf/in.2. Calculate the thermal 
efficiency of the cycle and the net work per pound-mass of steam. 

 
 5:   h5 = 1356.66,    s5 = 1.6112  

7:   h7 = 1378.17,    s7 = 1.7825 

3:   h3 = hf = 312.59, v3 = 0.01788 

C.V.  T1 

  s5 = s6     => h6 = 1209.76 

wT1 = h5 - h6 = 1356.66 - 1209.76  

       = 146.9 Btu/lbm 

C.V. Pump 1 

-wP1 = h2 - h1 = v1(P2 - P1) 
        = 0.01623(120 - 2) = 0.354 

P P 
1 

2 
4 

5 

6 

7 

8 

COND. HTR 

3 

T1 T2

x

1-x

1-x

 

  =>   h2 = h1 - wP1 = 93.73 + 0.354 = 94.08 Btu/lbm 

C.V. FWH 

   x h6 + (1 - x) h2 = h3  

   x = 
 h3 - h2

 h6 - h2
 = 

312.59 - 94.08
1209.76 - 94.08 = 0.1958 

C.V. Pump 2 

 

s 
1 

2 3 

5 

6 

7 

8 

700 F 

4 
2 psi

T

 
 -wP2 = h4 - h3 = v3(P4 - P3) = 0.01788(500 - 120)(144/778) = 1.26 Btu/lbm 

  =>   h4 = h3 - wP2 = 312.59 + 1.26 = 313.85 Btu/lbm 

 qH = h5 - h4 + (1 - x)(h7 - h6 )  = 1042.81 + 135.43 = 1178.2 Btu/lbm 

C.V. Turbine 2 

  s7 = s8    => x8 = (1.7825 - 0.1744)/1.746 = 0.921 

  h8 = hf + x8 hfg = 93.73 + 0.921 × 1022.2 = 1035.2 

  wT2 = h7 - h8 = 1378.17 - 1035.2 = 342.97 

  wnet = wT1 + (1 - x) wT2 + (1 - x) wP1 + wP2 

         = 146.9 + 275.8 - 0.285 - 1.26 = 421.15 kJ/kg 

  ηcycle = wnet / qH = 421.15 / 1178.2 = 0.357 
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11.214E 
  In one type of nuclear power plant, heat is transferred in the nuclear reactor to 

liquid sodium. The liquid sodium is then pumped through a heat exchanger where 

heat is transferred to boiling water. Saturated vapor steam at 700 lbf/in.2 exits this 
heat exchanger and is then superheated to 1100 F in an external gas-fired 
superheater. The steam enters the turbine, which has one (open-type) feedwater 

extraction at 60 lbf/in.2. The isentropic turbine efficiency is 87%, and the 

condenser pressure is 1 lbf/in.2. Determine the heat transfer in the reactor and in 
the superheater to produce a net power output of 1000 Btu/s. 

 

P 
1 

TURBINE.

COND. 

HTR.

P 
4 2 

3 

5 

6 

SUP.  
HT. 

REACT.

Q 
7 

8 

 

T 

s 

1 
2 3 

1100 F

4 5 

6 

7 

8 

7s

8s

700 lbf/in  2 

60 lbf/in 2 

1 lbf/in 2 

 

 W
.

NET
 = 1000 Btu/s,   η

ST
 = 0.87 

 -wP12 = 0.016136(60 - 1)144/778 = 0.18 Btu/lbm 

 h2 = h1 - wP12 = 69.73 + 0.18 = 69.91 Btu/lbm 

 -wP34 = 0.017378(700 - 60)144/778 = 2.06 Btu/lbm 

 h4 = h3 - wP34 = 262.24 + 2.06 = 264.3 Btu/lbm 

 s
7S

=s
6
 = 1.7682,  P

7
     =>  T

7S
 = 500.8 F,    h

7S
 = 1283.4 

 h
7
 = h

6
 - η

ST
(h

6
 - h

7S
) = 1625.8 - 0.87(1625.8 - 1283.4) = 1327.9 

 s
8S

 = s
6
 = 1.7682 = 0.13264 + x

8S
 × 1.8453  =>    x

8S
 = 0.8863 

 h
8S

 = 69.73 + 0.8863 × 1036 = 987.9 Btu/lbm 

 h
8
 = h

6
 - η

ST
(h

6
 - h

8S
) = 1625.8 - 0.87(1625.8 - 987.9) = 1070.8 

CV: heater:   cont:  m
2
 + m

7
 = m

3
 = 1.0 lbm, 1st law: m

2
h

2
 + m

7
h

7
 = m

3
h

3
 

   m
7
 = (262.24-69.91) / (1327.9-69.91) = 0.1529 

CV: turbine:  w
T
 = (h

6
 - h

7
) + (1 - m

7
)(h

7
 - h

8
) 

          = 1625.8-1327.9 + 0.8471(1327.9-1070.8) = 515.7 Btu/lbm 

CV pumps:   w
P
 = m

1
w

P12
 + m

3
w

P34
 = -(0.8471×0.18 + 1×2.06) = -2.2 Btu/lbm 

    w
NET

 = 515.7 - 2.2 = 513.5 Btu/lbm    =>    m
.

 = 1000/513.5 = 1.947 lbm/s 



   Sonntag, Borgnakke and van Wylen 

CV: reactor      Q
.

REACT
 = m

.
(h

5
-h

4
) = 1.947(1202 - 264.3) = 1825.7 Btu/s 

CV: superheater    Q
.

SUP
 = m

.
(h

6
 - h

5
) = 1.947(1625.8 - 1202) = 825 Btu/s 
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11.215E 

  Consider an ideal gas-turbine cycle with two stages of compression and two 
stages of expansion. The pressure ratio across each compressor stage and each 
turbine stage is 8 to 1. The pressure at the entrance to the first compressor is 14 

lbf/in.2, the temperature entering each compressor is 70 F, and the temperature 
entering each turbine is 2000 F. An ideal regenerator is also incorporated into the 
cycle. Determine the compressor work, the turbine work, and the thermal 
efficiency of the cycle. 

 REG 

COMP  TURB  TURB  COMP  

CC

CC
I.C.

1 

2 4 

10

6 

7 8 

9 

5 

 
 
 P

2
/P

1
 = P

4
/P

3
 = P

6
/P

7
 = P

8
/P

9
 = 8.0 

P
1
 = 14 lbf/in2 

T
1
 = T

3
 = 70 F,   T

6
 = T

8
 = 2000 F 

Assume const. specific heat 
   s

2
 = s

1
 and s

4
 = s

3
 

  T
4
 = T

2
 = T

1
(P

2
/P

1
)
k-1
k  = 529.67(8)0.2857 = 959.4 R

1 

2 

3 

s 

T 

4 

5 

6 

7 

8 

9 

10

 
Total compressor work  

   -w
C
 = 2 ×(-w

12
) = 2C

P0
(T

2
 - T

1
) = 2 × 0.24(959.4 - 529.67) = 206.3 Btu/lbm 

Also s
6
 = s

7
 and s

8
 = s

9
 

   ⇒  T
7
 = T

9
 = T

6





P7

P6

k-1
k  = 2459.67



1

8
0.2857

 = 1357.9 R 

Total turbine work 

      w
T
 = 2× w

67
 = 2C

P0
(T

6
 - T

7
) = 2 × 0.24(2459.67 - 1357.9) = 528.85 Btu/lbm 

      w
NET

 = 528.85 - 206.3 = 322.55 Btu/lbm 

 

Ideal regenerator:  T
5
 = T

9
,  T

10
 = T

4
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   ⇒ q
H

 = (h
6
 - h

5
) + (h

8
 - h

7
) = 2C

P0
(T

6
 - T

5
) 

       = 2 × 0.24(2459.67 - 1357.9) = w
T
 = 528.85 Btu/lbm 

     η
TH

 = w
NET

/q
H

 = 322.55/528.85 = 0.61 
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11.216E 

  Repeat Problem 11.215, but assume that each compressor stage and each turbine 
stage has an isentropic efficiency of 85%. Also assume that the regenerator has an 
efficiency of 70%. 

 
  T

4S
 = T

2S
 = 959.4 R,   -w

CS
 = 206.3 

 T
7S

 = T
9S

 = 1357.9 R,  w
TS

 = 528.85 

 ⇒    -w
C
 = -w

SC
/η

SC
 = 242.7 Btu/lbm 

 -w
12

 = -w
34

 = 242.7/2 = 121.35 Btu/lbm 

 T
2
 = T

4
 = T

1
 + (-w

12
/C

P0
) 

      = 529.67 + 121.35/0.24 = 1035.3 R 1 

2 

3 

s

T 

 

4 
5 

6 

7 

8 

9 

4S

9S7S

2S

 
 w

T
 = η

T
 w

TS
 = 449.5 Btu/lbm 

 T
7
 = T

9
 = T

6
 - (+w

67
/C

P0
) = 2459.67 - 449.5/2×0.24 = 1523 R 

 η
REG

 = 
h

5
 - h

4

h
9
 - h

4
 = 

T
5
 - T

4

T
9
 - T

4
 = 

T
5
 - 1035.3

1523 - 1035.3 = 0.7     ⇒  T
5
 = 1376.7 R 

 q
H

 = C
P0

(T
6
 - T

5
) + C

P0
(T

8
 - T

7
) 

      = 0.24(2459.67 - 1376.7) + 0.24(2459.67 - 1523) = 484.7 Btu/lbm 

 w
NET

 = w
T
 + w

C
 = 449.5 - 242.7 = 206.8 Btu/lbm 

 η
TH

 = w
NET

/q
H

 = 206.8/484.7 = 0.427 
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11.217E 
  Consider a small ammonia absorption refrigeration cycle that is powered by solar 

energy and is to be used as an air conditioner. Saturated vapor ammonia leaves 
the generator at 120 F, and saturated vapor leaves the evaporator at 50 F. If 3000 
Btu of heat is required in the generator (solar collector) per pound-mass of 
ammonia vapor generated, determine the overall performance of this system. 

 
 NH

3
 absorption cycle: 

sat. vapor at 120 F exits the generator. 
Sat. vapor at 50 F exits the evaporator 

  q
H

 = q
GEN

 = 3000 Btu/lbm NH
3
  

      out of generator. 1 2 

T 

s 

GEN.  
EXIT

EVAP 
EXIT

120F

50 F

 
 q

L
 = h

2
 - h

1
 = h

G 50 F
 - h

F 120 F
 = 624.28 - 178.79  

     = 445.49 Btu/lbm   ⇒   q
L
/q

H
 = 445.49/3000 = 0.1485 
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  SUBSECTION    PROB NO. 
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  Mixture Composition and Properties      142-144 
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  Air Water vapor Mixtures       157-168 
  Review Problems         169-170 
 
 
Correspondence List 
 
 The correspondence between the new English unit problem set and the previous 

5th edition chapter 12 problem set. 

 

New 5th SI New 5th SI New 5th SI 
134 new 4 146 84 39 158 new 78 
135 new 5 147 85 40 159 94 85 
136 new 6 148 new 43 160 new 80 
137 new 7 149 89 51 161 95 86 
138 new 8 150 90a 53 162 96 87 
139 new 9 151 88 55 163 97 89 
140 new 10 152 86 62 164 99 92 
141 new 16 153 87 66 165 new 98 
142 81 21 154 91 68 166 98 102 
143 82 26 155 92 72 167 100 105 
144 new 30 156 90b - 168 101 115 
145 83 34 157 93 76 169 103 127 
      170 102 130 
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Concept Problems 
 
12.134E 
  If oxygen is 21% by mole of air, what is the oxygen state (P, T, v) in a room at 

540 R, 15 psia of total volume 2000 ft3? 
 
  The temperature is 540 R,  
  The partial pressure is PO2 = yPtot = 3.15 psia. 

  At this T, P:  v = RT/P  = 
48.28 × 540
3.15 × 144

 
(ft-lbf/lbm R) × R
 (lbf/in2) (in/ft)2  = 57.48 ft3/lbm 

 
 
12.135E 
  A flow of oxygen and one of nitrogen, both 540 R, are mixed to produce 1 lbm/s 

air at 540 R, 15 psia. What are the mass and volume flow rates of each line? 
 

  For the mixture, M = 0.21 × 32 + 0.79 × 28.013 = 28.85 

  For O2 ,  c = 0.21 × 32 / 28.85 = 0.2329  

  For N2 ,  c = 0.79 × 28.013 / 28.85 = 0.7671 

 Since the total flow out is 1 lbm/s, these are the component flows in lbm/s. 
 Volume flow of  O2 in is 

   V
.
 = cm

.
v = cm

.
 
RT
P  =  0.2329 ×

48.28×540
15×144 

 = 2.81 ft3/s 

 Volume flow of  N2 in is 

   V
.
 = cm

.
v = cm

.
 
RT
P  = 0.7671 × 

55.15×540
15×144 

 = 10.58 ft3/s 

 
 
12.136E 
    A flow of gas A and a flow of gas B are mixed in a 1:1 mole ratio with same T. 

What is the entropy generation per kmole flow out? 
 
  For this each mole fraction is one half so, 
 

  Eq. 12.19:     ∆S =  - R
_

(0.5 ln0.5 + 0.5 ln0.5)  = + 0.6931 R
_

 

        = 0.6931 × 1.98589 = 1.376 Btu/lbmol-R 
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12.137E 
  A rigid container has 1 lbm argon at 540 R and 1 lbm argon at 720 R both at 20 

psia. Now they are allowed to mix without any external heat transfer. What is 
final T, P?  Is any s generated? 

 

 Energy Eq.:   U2 – U1 = 0 = 2mu2 - mu1a - mu1b = mCv(2T2 – T1a – T1b)  

    T2 = (T1a + T1b)/2 = 630 R, 

 Process Eq.:  V = constant  =>     

   P2V = 2mRT2 = mR(T1a + T1b) = P1V1a + P1V1b = P1V 

   P2 = P1 = 20 psia  

 ∆S due to temp changes only , not P  

  ∆S =  m (s2 – s1a) + m (s2 – s1b) = mC [ ln (T2/T1a)  + ln (T2/T1b) ] 

        =  1 × 0.124 [ ln 
630
540 + ln 

630
720 ] = 0.00256 Btu/R    

  
 

Ar Ar

cb
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12.138E 
    A rigid container has 1 lbm CO2 at 540 R and 1 lbm argon at 720 R both at 20 

psia. Now they are allowed to mix without any heat transfer. What is final T, P? 
 

 No Q, No W   so the energy equation gives constant U 

   ∆U = 0 = (1×0.201 + 1×0.124) × T2 - 1×0.201×540 - 1×0.124×720 

  T2 = 608.7 R,  

 Volume from the beginning state 

  V = [1×35.10×540/20 + 1×38.68×720/20 ]/144 = 16.25 ft3 

 Pressure from ideal gas law and Eq.12.15 for R 

  P2 = (1×35.10 + 1×38.68) × 608.7/(16.25 ×144) = 19.2 psia 

 
 

CO2
Ar
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12.139E 
     A flow of 1 lbm/s argon at 540 R and another flow of 1 lbm/s CO2 at 2800 R 

both at 20 psia are mixed without any heat transfer. What is the exit T, P? 
 
 No work implies no pressure change for a simple flow. The energy equation 

becomes 

  m
.

hi = m
.

he = (m
.

hi)Ar +  (m
.

hi)CO2 = (m
.

he)Ar + (m
.

he)CO2   

 ⇒        m
.

CO2Cp CO2(Te – Ti)CO2 + m
.

ArCp Ar(Te – Ti)Ar = 0 

 ⇒ m
.

ArCp ArTi + m
.

CO2Cp CO2Ti = [m
.

ArCp Ar + m
.

CO2Cp CO2] Te 

 
             1 × 0.124 × 540 + 1× 0.201 × 2800 = (1 × 0.124 + 1 × 0.201) × T2 

   T2  =  1937.7 R              P2 = 20 psia 
 

 
1 Ar

2  CO
3 MixMIXING

CHAMBER
cb

2

 

 

 
 
12.140E 
     What is the rate of entropy increase in problem 12.139? 
 
 
 Using Eq. 12.4, the mole fraction of  CO2 in the mixture is 0.4758. 

 From Eqs. 12.16 and 12.17, from the two inlet states to state 2, 

   ∆S = 1×[0.124 ln(
1937.7

540 ) – 
38.68
778  ln (

0.5242×20
20 )] 

              +1×[0.201 ln(
1937.7
2800 ) – 

35.10
778  ln (

0.4758×20
20 )]  =  0.15 Btu/s R 
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12.141E 
     If I have air at 14.7 psia and a) 15 F  b) 115 F and  c) 230 F what is the 

maximum absolute humidity I can have? 
 
 Humidity is related to relative humidity (max 100%) and the pressures as in 

Eq.12.28 where  from Eq.12.25  Pv = Φ Pg  and  Pa = Ptot - Pv. 

 

   ω = 0.622 
Pv
Pa

 = 0.622 
Φ Pg

Ptot - ΦPg
 

 
 

a) ω = 0.622 × 0.2601/99.74 = 0.001 62 
b) ω = 0.622 × 9.593/90.407 = 0.0660 
c) Pg = 20.78 psia, no max ω for P > 14.7 psia 
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Mixture Composition and Properties 
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12.142E 

 A gas mixture at 250 F, 18 lbf/in.2 is 50% N2, 30% H2O and 20% O2 on a mole 

basis. Find the mass fractions, the mixture gas constant and the volume for 10 
lbm of mixture. 

 

From Eq. 12.3:  ci = yi Mi/ ∑ yjMj 

MMIX = ∑ yjMj = 0.5 × 28.013 + 0.3 × 18.015 + 0.2 × 31.999  

         = 14.0065 + 5.4045 + 6.3998 = 25.811 

cN2 = 14.0065 / 25.811 = 0.5427,   cH2O = 5.4045 / 25.811 = 0.2094 

cO2 = 6.3998 / 25.811 = 0.2479,    sums to 1    OK 

RMIX = R
−

/MMIX = 1545.36 / 25.811 = 59.87 lbf ft/lbm R 

V = mRMIX T/P = 10 × 59.87 × 710 / (18 × 144) =  164 ft3 
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12.143E 

 Weighing of masses gives a mixture at 80 F, 35 lbf/in.2 with 1 lbm O2, 3 lbm N2 

and 1 lbm CH4. Find the partial pressures of each component, the mixture specific 

volume (mass basis), mixture molecular weight and the total volume. 

From Eq. 12.4:  yi = (mi /Mi) / ∑ mj/Mj 

ntot = ∑ mj/Mj = (1/31.999) + (3/28.013) + (1/16.04)  

        = 0.031251 + 0.107093 + 0.062344 = 0.200688 

yO2 = 0.031251/0.200688 = 0.1557,  yN2 = 0.107093/0.200688 = 0.5336,  

yCH4 = 0.062344/0.200688 = 0.3107 

 PO2 = yO2 Ptot = 0.1557 × 35 = 5.45 lbf/in.2,   

 PN2 = yN2 Ptot = 0.5336 × 35 = 18.676 lbf/in.2, 

 PCH4 = yCH4 Ptot = 0.3107 × 35 = 10.875 lbf/in.2 

Vtot = ntot R
−

T/P = 0.200688 × 1545 × 539.7 / (35 × 144) = 33.2 ft3 

v = Vtot/mtot = 33.2 / (1 + 3 + 1) = 6.64 ft3/lbm 

MMIX = ∑ yjMj = mtot/ntot = 5/0.200688 = 24.914 
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12.144E 
  A new refrigerant R-410a is a mixture of R-32 and R-125 in a 1:1 mass ratio. 

What is the overall molecular weight, the gas constant and the ratio of specific 
heats for such a mixture? 

 

Eq.12.15: 

 Rmix = ∑ ciRi = 0.5 × 29.7 + 0.5 × 12.87 = 21.285 ft-lbf/lbm R 
 

Eq.12.23: 

 CP mix = ∑ ci CP i = 0.5 × 0.196 + 0.5 × 0.189 = 0.1925 Btu/lbm R 

 

Eq.12.21: 

 CV mix = ∑ ciCV i = 0.5 × 0.158 + 0.5 × 0.172 = 0.165 Btu/lbm R   

( = CP mix - Rmix ) 

 

 kmix =  CP mix / CV mix = 0.1925 / 0.165 = 1.1667 

 M =  ∑ yjMj = = 1 / ∑ ( cj / Mj) = 
1

0.5
52.024 + 

0.5
120.022

 = 72.586 
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Simple Processes 
 
12.145E 
 A pipe flows 1.5 lbm/s mixture with mass fractions of 40% CO2 and 60% N2 at 

60 lbf/in.2, 540 R. Heating tape is wrapped around a section of pipe with 
insulation added and 2 Btu/s electrical power is heating the pipe flow. Find the 
mixture exit temperature. 

Solution: 

C.V. Pipe heating section. Assume no heat loss to the outside, ideal gases. 

Energy Eq.:    Q
.
 = m

.
(he − hi) = m

.
CP mix(Te − Ti) 

From Eq.12.23  

 CP mix = ∑ ci Ci = 0.4 × 0.201 + 0.6 × 0.249 = 0.2298 Btu/lbm R 

Substitute into energy equation and solve for exit temperature 

 Te = Ti + Q
.
 / m

.
CP mix = 540 + 2/(1.5 × 0.2298) = 545.8 R 
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12.146E 
 An insulated gas turbine receives a mixture of 10% CO2, 10% H2O and 80% N2 

on a mass basis at 1800 R, 75 lbf/in.2. The volume flow rate is 70 ft3/s and its 

exhaust is at 1300 R, 15 lbf/in.2. Find the power output in Btu/s using constant 
specific heat from F.4 at 540 R. 

 

C.V. Turbine,   Steady, 1 inlet, 1 exit flow with an ideal gas mixture, q = 0. 

Energy Eq.: W
.

T = m
.

(hi − he) = n
.
(h
-

i − h
-

e) = n
.
C
−

P mix(Ti − Te) 

 PV = nR
−

T   =>   n
.
 = 

PV
.

R
−

T
 = 

75 × 144 × 70
1545.4 × 1800

 = 0.272 lbmol/s 

C
−

P mix = ∑yi C
−

i = 0.1 × 44.01 × 0.201 + 0.1 × 18.015 × 0.447 

    + 0.8 × 28.013 × 0.249 = 7.27 Btu/lbmol R 

W
.

T = 0.272 × 72.7 × (1800 − 1300) = 988.7 Btu/s 
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12.147E 
 Solve Problem 12.146 using the values of enthalpy from Table F.6 
 

C.V. Turbine,   Steady, 1 inlet, 1 exit flow with an ideal gas mixture, q = 0. 

Energy Eq.: W
.

T = m
.

(hi − he) = n
.
(h
-

i − h
-

e) 

 PV = nR
−

T   =>   n
.
 = 

PV
.

R
−

T
 = 

75 × 144 × 70
1545.4 × 1800

 = 0.272 lbmol/s 

 W
.

T = 0.272 × [0.1(14 358 − 8121) + 0.1(11 178 − 6468.5)  

    + 0.8(9227 − 5431)]  

       = 1123.7 Btu/s 
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12.148E 
    A piston cylinder device contains 0.3 lbm of a mixture of 40% methane and 60% 

propane by mass at 540 R and 15 psia. The gas is now slowly compressed in an 
isothermal (T = constant) process to a final pressure of 40 psia. Show the process 
in a P-V diagram and find both the work and heat transfer in the process. 

 

Solution: 

C.V. Mixture of methane and propane, this is a control mass. 

Assume methane & propane are ideal gases at these conditions. 

Energy Eq.5.11: m(u2 − u1) = 1Q2 - 1W2 

Property from Eq.12.15 

 Rmix = 0.4 RCH4 + 0.6 RC3H8 

          = 0.4 × 96.35 + 0.6 × 35.04 = 59.564 
ft-lbf
lbm R = 0.07656 

Btu
lbm R 

Process:  T = constant  &  ideal gas  => 

 1W2 = ∫ P dV = mRmixT ∫ (1/V)dV = mRmixT ln (V2/V1) 

  = mRmixT ln (P1/P2) 

  = 0.3 × 0.07656 × 540 ln (15/40) = -12.16 Btu 

Now heat transfer from the energy equation where we notice that u is a 
constant (ideal gas and constant T) so  

 1Q2 = m(u2 − u1) + 1W2 = 1W2 = -12.16 Btu 

 
 

  P

v

2

1

T

s

2 1

T = C 
P = C v -1
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12.149E 
 A mixture of 4 lbm oxygen and 4 lbm of argon is in an insulated piston cylinder 

arrangement at 14.7 lbf/in.2, 540 R. The piston now compresses the mixture to 
half its initial volume. Find the final pressure, temperature and the piston work. 

 Since T
1
 >> T

C
 assume ideal gases. 

   Energy Eq.:    u
2
 - u

1
 = 

1
q

2
 - 

1
w

2
 = - 

1
w

2
 ;    Entropy Eq.:   s

2
 - s

1
 = 0 

   Process Eq.:    Pvk = constant,       v
2
 = v

1
/2 

    P
2
 = P

1
(v

1
/v

2
)k = P

1
(2)k;  T

2
 = T

1
(v

1
/v

2
)k-1 = T

1
(2)k-1 

 Find  k
mix

  to get  P
2
,  T

2
  and  C

v mix
  for  u

2
 - u

1
 

 R
mix

 = Σc
i
R

i
 = (0.5 × 48.28 + 0.5 × 38.68)/778 = 0.055887 Btu/lbm R 

 C
Pmix

 = Σc
i
C

Pi
 = 0.5 × 0.219 + 0.5 × 0.1253 = 0.17215 Btu/lbm R 

  C
vmix

 = C
Pmix

 - R
mix

 = 0.11626,   k
mix

 = C
Pmix

/C
vmix

 = 1.4807 

 P
2
 = 14.7(2)1.4805= 41.03 lbf/in2,    T

2
 = 540 × 20.4805= 753.5 R 

 
1
w

2
 = u

1
- u

2
 = C

v
(T

1
-T

2
) = 0.11626 (540 - 753.5) = -24.82 Btu/lbm 

  
1
W

2
 = m

tot
 
1
w

2
 = 8 (-24.82) = -198.6 Btu 
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12.150E 
 Two insulated tanks A and B are connected by a valve. Tank A has a volume of 

30 ft3 and initially contains argon at 50 lbf/in.2, 50 F. Tank B has a volume of 60 

ft3 and initially contains ethane at 30 lbf/in.2, 120 F. The valve is opened and 
remains open until the resulting gas mixture comes to a uniform state. Find the 
final pressure and temperature. 

Energy eq.:    U
2
-U

1
 = 0 = n

Ar
C
-

V0
(T

2
-T

A1
) + n

C
2
H

6
C
-

VO
(T

2
-T

B1
)  

    n
Ar

 = P
A1

V
A

/R
-
T

A1
 = 

50×144×30
1545×509.7

 = 0.2743 lbmol 

    n
C

2
H

6
 = P

B1
V

B
/R
-
T

B1
 = 

30×144×60
1545×579.7

 = 0.2894 lbmol 

    n
2
 = n

Ar
 + n

C
2
H

6
 = 0.5637 lbmol 

Substitute this into the energy equation 

      0.2743 × 39.948 × 0.0756 (T
2
 - 509.7) 

                     + 0.2894 × 30.07 × 0.361 (T
2
 - 509.7) = 0 

    Solving, T
2
 = 565.1 R 

    P
2
 = n

2
R
-
T

2
/(V

A
+V

B
) = 

0.5637×1545×565.1
90×144

 = 38 lbf/in2 

 
  

AB cb
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12.151E 
 A mixture of 50% carbon dioxide and 50% water by mass is brought from 2800 

R, 150 lbf/in.2 to 900 R, 30 lbf/in.2 in a polytropic process through a steady flow 
device. Find the necessary heat transfer and work involved using values from F.4. 

Process   Pvn = constant    leading to  

        n ln(v
2
/v

1
) = ln(P

1
/P

2
);   v = RT/P 

  n = ln(150/30) / ln(900 × 150/30 × 2800) =3.3922 

 R
mix

 = Σc
i
R

i
 = (0.5 × 35.1 + 0.5 × 85.76)/778 = 0.07767 Btu/lbm R 

 C
P mix

 = Σc
i
C

Pi
 = 0.5 × 0.203 + 0.5 × 0.445 = 0.324 Btu/lbm R 

 w = -⌡⌠vdP = −
n

n-1 (P
e
v

e
 - P

i
v

i
) = − 

nR
n-1 (T

e
 - T

i
)  

     = − 
3.3922 × 0.07767

2.3922  (900 – 2800)  = 209.3 
Btu
lbm  

 q = h
e
- h

i
 + w = C

P
(T

e
 − T

i
) + w = -406.3 Btu/lbm 
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Entropy Generation 
 
12.152E 
 Carbon dioxide gas at 580 R is mixed with nitrogen at 500 R in an insulated 

mixing chamber. Both flows are at 14.7 lbf/in.2 and the mole ratio of carbon 
dioxide to nitrogen is 2:1. Find the exit temperature and the total entropy 
generation per mole of the exit mixture. 

CV mixing chamber, Steady flow. The inlet ratio is n
.
CO2

 = 2 n
.
N2

   and assume 

no external heat transfer, no work involved. 

      n
.
CO

2
 + 2n

.
N

2
 = n

.
ex

 = 3n
.
N

2
;    n

.
N

2
(h
-

N
2
 + 2h

-
CO

2
) = 3n

.
N

2
h
-

mix ex
 

Take 540 R as reference and write h
-
 = h

-
540

 + C
-

Pmix
(T-540). 

 C
-

P N
2
(T

i N
2
-540) + 2C

-
P CO

2
(T

i CO
2
-540) = 3C

-
P mix

(T
mix ex

 -540) 

  C
-

P mix
 = ∑y

i
C
-

P i
 = (29.178 + 2×37.05)/3 = 8.2718  Btu/lbmol R 

  3C
-

P mix
T

mix ex
 = C

-
P N

2
T

i N
2
 + 2C

-
P CO

2
T

i CO
2
 = 13 837 Btu/lbmol 

  T
mix ex

 = 557.6 R;   P
ex N

2
 = P

tot
/3;   P

ex CO
2
 = 2P

tot
/3  

 S
.

gen
 = n

.
ex

s
-
ex

-(n
.
s
-
)
iCO

2
- (n

.
s
-
)
iN

2
 = n

.
N

2
(s
-
e
 - s

-
i
)
N

2
 + 2n

.
N

2
(s
-
e
 - s

-
i
)
CO

2
 

 S
.

gen
/n
.
N

2
 = C

-
PN

2
ln 

T
ex

T
iN

2

 - R
-
ln y

N
2
 + 2C

-
PCO

2
ln 

T
ex

T
iCO

2

 - 2 R
-
ln y

CO
2
 

       = 0.7575 + 2.1817 - 0.7038 + 1.6104 = 3.846 Btu/lbmol N2 R 

 

  
1 N

2  CO
3 Mix

MIXING
CHAMBER

cb

2

2

S gen
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12.153E 
 A mixture of 60% helium and 40% nitrogen by mole enters a turbine at 150 

lbf/in.2, 1500 R at a rate of 4 lbm/s. The adiabatic turbine has an exit pressure of 

15 lbf/in.2 and an isentropic efficiency of 85%. Find the turbine work. 

Assume ideal gas mixture and take CV as turbine. 

Energy Eq. ideal turbine:     w
T s

 = h
i
 - h

es
,  

Entropy Eq. ideal turbine:        s
es

 = s
i
     ⇒      T

es
 = T

i
(P

e
/P

i
)(k-1)/k 

    C
-

P mix
 = 0.6× 1.25× 4.003 + 0.4× 0.248× 28.013 = 5.7811 Btu/lbmol R 

 (k-1)/k = R
-
/C
-

P mix
 = 1545/(5.7811×778) = 0.3435 

  M
mix

= 0.6 × 4.003 + 0.4 × 28.013 = 13.607,  

  C
P
 = C

-
P
/M

mix
= 0.4249 Btu/lbm R 

 T
es

= 1500(15/150)0.3435 = 680 R,  w
Ts

 = C
P
(T

i
-T

es
) = 348.4 Btu/lbm 

Then do the actual turbine 

 w
T ac

 = ηw
Ts

 = 296.1 Btu/lbm;   W
.

 = m
.

w
Ts

 = 1184 Btu/s 
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12.154E 
 A large air separation plant takes in ambient air (79% N2, 21% O2 by volume) at 

14.7 lbf/in.2, 70 F, at a rate of 2 lb mol/s. It discharges a stream of pure O2 gas at 

30 lbf/in.2, 200 F, and a stream of pure N2 gas at 14.7 lbf/in.2, 70 F. The plant 

operates on an electrical power input of 2000 kW. Calculate the net rate of 
entropy change for the process. 

 
 Air 79 % N

2
 

    21 % O
2
 

P
1
 = 14.7 

T
1
 = 70 F 

n
.
1
 = 2 lbmol/s 

1 2 

3 

pure O2 

pure N 2

 

-W
.

IN
 = 2000 kW 

P
2
 = 30  

T
2
 = 200 F 

P
3
 = 14.7  

T
3
 = 70 F 

 
dS

NET

dt  = - 
Q
.

CV

T
0

 + ∑

i
 n
.
i
∆s-

i
 = - 

Q
.

CV

T
0

 + (n
.

2
s-

2
 + n

.
3
s-

3
 - n

.
1
s-

1
) 

 Q
.

CV
 = Σn

.
∆h

-
i
 + W

.
CV

 = n
.
O

2
C
-

P0 O
2
(T

2
-T

1
) + n

.
N

2
C
-

P0 N
2
(T

3
-T

1
) + W

.
CV

 

         = 0.21×2×[32×0.213×(200-70)] + 0 - 2000×3412/3600  

         = +382.6 - 1895.6 = -1513 Btu/s 

 Σn
.

i
∆s-

i
 = 0.21×2[32×0.219 ln 

660
530 - 

1545
778  ln 

30
0.21×14.7

] 

    + 0.79×2[0 - 
1545
778  ln 

14.7
0.79×14.7

] 

           = -1.9906 Btu/R s 

 
dS

NET

dt  = + 
1513
530  - 1.9906 = 0.864 Btu/R s 
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12.155E 
 A tank has two sides initially separated by a diaphragm. Side A contains 2 lbm of 

water and side B contains 2.4 lbm of air, both at 68 F, 14.7 lbf/in.2. The 
diaphragm is now broken and the whole tank is heated to 1100 F by a 1300 F 
reservoir. Find the final total pressure, heat transfer, and total entropy generation. 

 U
2
-U

1
 = m

a
(u

2
-u

1
)
a
 + m

v
(u

2
-u

1
)
v
 = 

1
Q

2
  

 S
2
-S

1
 = m

a
(s

2
-s

1
)
a
 + m

v
(s

2
-s

1
)
v
 =  ⌡⌠ 

1
Q

2
/T + S

gen
  

 V
2
 = V

A
 + V

B
 = m

v
v

v1
 + m

a
v

a1
 = 0.0321 + 31.911 = 31.944 ft3 

 v
v2

 = V
2
/m

v
 = 15.9718,  T

2
 =>  P

2v
 = 58.7 lbf/in2 

 v
a2

 = V
2
/m

a
 = 13.3098,  T

2
 =>  P

2a
 = mRT

2
/V

2
 = 43.415 lbf/in2 

 P
2tot

 = P
2v

 + P
2a

 = 102 lbf/in2 

 Water:   u
1
 = 36.08 Btu/lbm,   u

2
 = 1414.3 Btu/lbm,    

  s
1
 = 0.0708 Btu.lbm R,   s

2
 = 2.011 Btu/lbm R 

 Air:   u
1
 = 90.05 Btu/lbm,   u

2
 = 278.23 Btu/lbm,   

   s
T1

 = 1.6342 Btu/lbm R,   s
T2

 = 1.9036 Btu/lbm R 

 
1
Q

2
 = 2(1414.3 - 36.08) + 2.4(278.23 - 90.05) = 3208 Btu 

 S
gen

 = 2(2.011-0.0708) + 2.4[1.9036 - 1.6342 

  - (53.34/778)×ln(43.415/14.7)] - 3208/1760 

        = 3.8804 + 0.4684 - 1.823 = 2.526 Btu/R 
 
 

1300 F

Q1 2

A B
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12.156E 
       Find the entropy generation for the process in Problem 12.150E.  
 

Energy eq.            U
2
-U

1
 = 0 = n

Ar
C
-

V0
(T

2
-T

A1
) + n

C
2
H

6
C
-

VO
(T

2
-T

B1
)  

    n
Ar

 = P
A1

V
A

/R
-
T

A1
 = 

50×144×30
1545×509.7

 = 0.2743 lbmol 

    n
C

2
H

6
 = P

B1
V

B
/R
-
T

B1
 = 

30×144×60
1545×579.7

 = 0.2894 lbmol 

    n
2
 = n

Ar
 + n

C
2
H

6
 = 0.5637 lbmol 

Substitute into energy equation 

      0.2743 × 39.948 × 0.0756 (T
2
 - 509.7) 

                     + 0.2894 × 30.07 × 0.361 (T
2
 - 509.7) = 0 

    Solving, T
2
 = 565.1 R 

    P
2
 = n

2
R
-
T

2
/(V

A
+V

B
) = 

0.5637×1545×565.1
90×144

 = 38 lbf/in2 

    ∆S
SURR

 = 0       → ∆S
NET

 = ∆S
SYS

 = n
Ar

∆S
-

Ar
 + n

C
2
H

6
∆S

-
C

2
H

6
 

    y
Ar

 = 0.2743/0.5637 = 0.4866 

    ∆S
-

Ar = C
-

P Ar ln 
T2

TA1
 - R

-
 ln 

yArP2

PA1
 

        = 39.948×0.1253 ln 
565.1
509.7  - 

1545
778  ln 

0.4866×38
50  = 2.4919 Btu/lbmol R 

    ∆S
-

C2H6
 = C

-
C2H6

 ln 
T2

TB1
 - R

-
 ln 

yC2H6
P2

PB1
 

     = 30.07×0.427 ln 
565.1
579.7 - 

1545
778  ln 

0.5134×38
30  

     = 0.5270 Btu/lbmol R 

    ∆SNET = 0.2743×2.4919 + 0.2894×0.5270 = 0.836 Btu/R 
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Air Water vapor Mixtures 
 
12.157E 

 Consider a volume of 2000 ft3 that contains an air-water vapor mixture at 14.7 

lbf/in.2, 60 F, and 40% relative humidity. Find the mass of water and the humidity 
ratio. What is the dew point of the mixture? 

Air-vap   P = 14.7 lbf/in.2, T = 60 F, φ = 40% 

 Pg = Psat60 = 0.256 lbf/in.2 

Pv = φ Pg = 0.4 × 0.256 = 0.1024 lbf/in.2 

 mv1 = 
PvV
RvT = 

0.1024 × 144 × 2000
85.76 × 520

 = 0.661 lbm 

 Pa = Ptot- Pv1 = 14.7 – 0.1024 = 14.598 lbf/in.2 

 ma = 
PaV
RaT

 = 
14.598 × 144 × 2000

53.34 × 520  = 151.576 lbm 

 w1 = 
mv

ma
 = 

0.661
151.576 = 0.00436 

 Tdew is T when Pg(Tdew) = 0.1024 lbf/in.2;    T = 35.5 F 
 



   Sonntag, Borgnakke and van Wylen 

 

12.158E 
      A 1 lbm/s flow of saturated moist air (relative humidity 100%) at 14.7 psia and 

50 F goes through a heat exchanger and comes out at 77 F. What is the exit 
relative humidity and the how much power is needed? 

 

Solution: 

State 1 :  φ1 = 1 ;  Pv = Pg = 0.178 psia 

Eq.12.28: w = 0.622 Pv/Pa = 0.622 × 0.178/(14.7 – 0.178) = 0.00762 

State 2 : No water added    =>   w2 = w1   =>    Pv2 = Pv1 

 φ2 = Pv2/Pg2 = 0.178/0.464 = 0.384 or 38 % 

Energy Eq.6.10 

 Q
.
 =  m

.
2h2 - m

.
1h1 = m

.
a( h2 - h1)air + wm

.
a( h2 - h1)vapor 

 m
.

tot = m
.

a + m
.

v = m
.

a(1 + w1) 

Energy equation with CP air from F.4 and h’s from F.7.1 

 Q
.
 = 

m
.

tot

1 + w1
 CP air (77 – 50) + 

m
.

tot

1 + w1
 w (hg2 - hg1) 

    = 
1

1.00762 × 0.24 (77 – 50) + 
1× 0.00762

1.00762  (1090.73 – 1083.29) 

    = 6.431 + 0.0563 = 6.49 Btu/s 

 

  

Q
.

1 2
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12.159E 

 Consider a 10-ft3 rigid tank containing an air-water vapor mixture at 14.7 lbf/in.2, 
90 F, with a 70% relative humidity. The system is cooled until the water just 
begins to condense. Determine the final temperature in the tank and the heat 
transfer for the process. 

 P
v1

 = φP
G1

 = 0.7 × 0.6988 = 0.489 lbf/in2 

 Since m
v
 = const & V = const & also P

v
 = P

G2
: 

 P
G2

 = P
v1

×T
2
/T

1
 = 0.489×T

2
/549.7 

For T
2
 = 80 F:        0.489×539.7/549.7 = 0.4801 =/  0.5073 ( = P

G
 at 80 F ) 

For T
2
 = 70 F:        0.489×529.7/549.7 = 0.4712 =/  0.3632 ( = P

G
 at 70 F ) 

  interpolating → T
2
 = 78.0 F 

 w
2
 = w

1
 = 0.622 

0.489
(14.7-0.489) = 0.0214 

 m
a
 = 

P
a1

V

R
a
T

1
 = 

14.211×144×10
53.34×549.7

 = 0.698 lbm 

 1st law: 

    
1
Q

2
 = U

2
-U

1
 = m

a
(u

a2
-u

a1
) + m

v
(u

v2
-u

v1
) 

           = 0.698[0.171(78 - 90) + 0.0214(1036.3 - 1040.2)]  

           = 0.698(-2.135 Btu/lbm air) = -1.49 Btu 
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12.160E 

     Consider a 35 ft3/s flow of atmospheric air at 14.7 psia, 77 F and 80% relative 
humidity. Assume this flows into a basement room where it cools to 60 F at 14.7 psia. 
How much liquid will condense out? 

 

Solution: 

State 1: Pg = Psat25 = 0.464 psia   =>   Pv = φ Pg = 0.8 × 0.464 = 0.371 psia 

 m
.

v1 = 
PvV

.

RvT = 
0.371 × 35 × 144
85.76 × 536.67

 = 0.0406 lbm/s 

 w1 = 
m
.

v1

m
.

A1

 = 0.622 
Pv1
PA1

 = 0.622 
0.371

14.7 - 0.371 = 0.0161 

 m
.

A1 = 
m
.

v1
w1

 = 
0.0406
0.0161 = 2.522 lbm/s = m

.
A2        (continuity for air) 

 

 Check for state 2: 

Pg60F = 0.256  psia  <  Pv1 

so liquid water out. 
Q
.

1 2

Liquid  
 

State 2 is saturated   φ2 = 100% ,   Pv2 = Pg2 = 0.256 psia 

 w2 = 0.622 
Pv2
PA2

 = 0.622 
0.256

14.7 - 0.256 = 0.0110 

 m
.

v2 = w2m
.

A2 = 0.0110 × 2.522 = 0.0277 lbm/s 

 m
.

liq = m
.

v1 - m
.

v2 = 0.0406 – 0.0277 = 0.0129 lbm/s 

 

Note that the given volume flow rate at the inlet is not that at the exit. The 
mass flow rate of dry air is the quantity that is the same at the inlet and exit. 
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12.161E 

 Air in a piston/cylinder is at 95 F, 15 lbf/in.2 and a relative humidity of 80%. It is 

now compressed to a pressure of 75 lbf/in.2 in a constant temperature process. 
Find the final relative and specific humidity and the volume ratio V

2
/V

1
. 

Check if the second state is saturated or not. First assume no water is condensed 

 1:    Pv1= φ
1
P

G1
 = 0.66,    w1 = 0.622×0.66/14.34 = 0.0286  

 2:   w2 = 0.622 Pv2/(P2-Pv2) = w1  =>   Pv2 = 3.297 > Pg = 0.825 lbf/in2 

 Conclusion is state 2 is saturated 

     φ2 = 100%,  w2 = 0.622 Pg/(P2-Pg) = 0.00692 

To get the volume ratio, write the ideal gas law for the vapor phases 

    V2 = Va2 + Vv2 + Vf2 = (maRa + mv2Rv)T/P2 + mliq vf   

    V1 = Va1 + Vv1 = (maRa + mv1Rv)T/P1  

Take the ratio and devide through with maRaT/P2 to get 

   V2/V1 = (P1/P2) 
1 + 0.622w2 + (w1-w2)P2vf/RaT

1 + 0.622 w1
 = 0.1974 

The liquid contribution is nearly zero (= 0.000127) in the numerator. 
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12.162E 

 A 10-ft3 rigid vessel initially contains moist air at 20 lbf/in.2, 100 F, with a 
relative humidity of 10%. A supply line connected to this vessel by a valve carries 

steam at 100 lbf/in.2, 400 F. The valve is opened, and steam flows into the vessel 
until the relative humidity of the resultant moist air mixture is 90%. Then the 
valve is closed. Sufficient heat is transferred from the vessel so the temperature 
remains at 100 F during the process. Determine the heat transfer for the process, 
the mass of steam entering the vessel, and the final pressure inside the vessel. 

 
 

AIR 
 +  
H O 2 

i 

H O 2 

 

Air-vap mix: P
1
 = 20 lbf/in2, T

1
 = 560 R 

             φ
1
 = 0.10, T

2
 = 560 R, φ

2
 = 0.90 

P
v1

 = φ
1
P

G1
 = 0.1×0.9503 = 0.095 lbf/in2 

P
v2

 = 0.9×0.9503 = 0.8553 lbf/in2 

P
a2

 = P
a1

 = P
1
 - P

v1
 = 20 - 0.095 = 19.905 

w
1
 = 0.622×0.095/19.905 = 0.002 96 

 w
2
 = 0.622×0.8553/19.905 = 0.026 64 

 w = 
m

v

m
a
 → m

vi
 = m

a
(w

2
-w

1
),   m

a
 = 

19.905×144×10
53.34×560

 = 0.96 lbm 

 P2 = 19.905 + 0.855 = 20.76 lbf/in2 

 m
vi

 = 0.96(0.02664 - 0.00296) = 0.0227 lbm 

 CV: vessel 

 Q
CV

 = m
a
(u

a2
-u

a1
) + m

v2
u

v2
 - m

v1
u

v1
 - m

vi
h

i
 

    u
v
 ≈ u

G at T
 →     u

v1
 = u

v2
 = u

G at 100 F
,     u

a2
 = u

a1
 

 → Q
CV

 = m
vi

(u
G at T

 - h
i
) = 0.0227(1043.5-1227.5) = -4.18 Btu 
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12.163E 

 A water-filled reactor of 50 ft3 is at 2000 lbf/in.2, 550 F and located inside an 

insulated containment room of 5000 ft3 that has air at 1 atm. and 77 F. Due to a 
failure the reactor ruptures and the water fills the containment room. Find the 
final pressure. 

CV Total container.     

Energy:     mv(u2 - u1) + ma(u2 - u1) = 1Q2 - 1W2 = 0 

Initial water:  v1 = 0.021407 ft3/lbm,   u1 = 539.24,   mv = V/v = 2335.7 lbm 

Initial air:     ma = PV/RT = 14.7×4950×144/53.34×536.67 = 366.04 lbm 

Substitute into energy equation 

       2335.7 (u2 - 539.24) + 366.04 × 0.171 (T2 - 77) = 0 

       u2 + 0.0268 T2 = 541.3          &       v2 = V2/mv = 2.1407 ft3/lbm 

Trial and error 2-phase (Tguess, v2 => x2 => u2 => LHS) 

 T = 300  x2 = (2.1407 – 0.01745)/6.4537 = 0.329,   u2 = 542.73 Btu/lbm 

     LHS = 550.789  Btu/lbm    too large 

 T = 290  x2 = (2.1407 – 0.01735)/7.4486 = 0.28507,   u2 = 498.27 Btu/lbm 

     LHS = 506.05 Btu/lbm    too small 

    T2 = 298 F,  x2 = 0.3198,  Psat = 65 lbf/in2,  LHS = 541.5 OK  

       Pa2 = Pa1V1T2/V2T1 = 14.7×4950×757.7/5000×536.67 = 20.55 lbf/in2   

          =>  P2 = Pa2 + Psat = 85.55 lbf/in2 
 

 
5000 ft 3

50 ft 3
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12.164E 
 Two moist air streams with 85% relative humidity, both flowing at a rate of 0.2 

lbm/s of dry air are mixed in a steady flow setup. One inlet flowstream is at 90 F 
and the other at 61 F. Find the exit relative humidity. 

Solution: 

CV mixing chamber. 

 Continuity Eq. water:          m
.

air w1 + m
.

air w2 = 2m
.

air wex;  

 Energy Eq.:                         m
.

air h̃1 + m
.

air h̃2 = 2m
.

air h̃ex 

Properties from the tables and formulas 

 Pg90 = 0.699 ;  Pv1 = 0.85 × 0.699 = 0.594 psia 

 w1 = 0.622 × 0.594 / (14.7 - 0.594) = 0.0262 

 Pg61 = 0.2667 ;  Pv2 = 0.85 × 0.2667 = 0.2267 psia 

 w2 = 0.622 × 0.2267 / (14.7 - 0.2267) = 0.00974 

Continuity Eq. water:          wex = (w1 + w2)/2 = 0.018 ;  

For the energy equation we have    h̃ = ha + whv     so: 

 2 h̃ex - h̃1 - h̃2 = 0 = 2ha ex - ha 1 - ha 2 + 2wexhv ex - w1hv 1 - whv 2 

we will use constant heat capacity to avoid an iteration on Tex. 

 Cp air(2Tex - T1 - T2) + Cp H2O(2wexTex - w1T1 - w2T2) = 0 

 Tex = [ Cp air(T1 + T2) + Cp H2O(w1T1 + w2T2) ]/ [2Cp air + 2wexCp H2O] 

        = [ 0.24 (90 + 61) + 0.447(0.0262 × 90 + 0.00974 × 61]/0.4961 

        =  75.7 F 

 Pv ex = 
wex

0.622 + wex
 Ptot = 

0.018
0.622 + 0.018 14.7 = 0.413 psia,   

Pg ex = 0.445 psia     =>        φ = 0.413 / 0.445 = 0.93   or   93% 
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12.165E 
    A flow of moist air from a domestic furnace, state 1 in Figure P12.98,  is at 120 

F, 10% relative humidity with a flow rate of 0.1 lbm/s dry air. A small electric 
heater adds steam at 212 F, 14.7 psia generated from tap water at 60 F. Up in the 
living room the flow comes out at state 4: 90 F, 60% relative humidity. Find the 
power needed for the electric heater and the heat transfer to the flow from state 1 
to state 4. 
  

1

3 4
Liquid

cb

2

 
 

State 1:    F.7.1:    Pg1 = 1.695 psia,   hg1 = 1113.54 Btu/lbm 

 Pv1 = φ Pg1 = 0.1 × 1.695 = 0.1695 psia 

 w1 = 0.622 
Pv1

Ptot - Pv1
  = 0.622 

0.1695
14.7 – 0.1695 = 0.00726 

Starte 2:    hf = 28.08  Btu/lbm ;          State 2a:    hg 212 = 1150.49 Btu/lbm     

State 4:      Pg4 = 0.699 psia,   hg4 = 1100.72 Btu/lbm 

 Pv4 = φ Pg4 = 0.6 × 0.699 = 0.4194 psia 

 w4 = 0.622 
Pv4

Ptot - Pv4
  = 0.622 

0.4194
14.7 – 0.4194 = 0.0183 

  m
.

liq = m
.

a (ω1 - ω4) = 0.1 (0.0183 – 0.00726) = 0.0011 lbm/s 

Energy Eq. for heater: 

   Q
.

heater = m
.

liq (hout – hin) = 0.0011 (1150.49 – 28.08)  

  = 1.235 Btu/s = 1.17 kW 

Energy Eq. for line (excluding the heater): 

   Q
.

line = m
.

a (ha4 + w4hg4 – ha1 – w1hg1) – m
.

liq hg 212 

 = 0.1[ 0.24(90 – 120) + 0.0183 × 1100.72 – 0.00726 × 1113.54 ] 

   – 0.0011 × 1150.49 

  = –0.78 Btu/s 
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12.166E 
 Atmospheric air at 95 F, relative humidity of 10%, is too warm and also too dry. 

An air conditioner should deliver air at 70 F and 50% relative humidity in the 

amount of 3600 ft3 per hour. Sketch a setup to accomplish this, find any amount 
of liquid (at 68 F) that is needed or discarded and any heat transfer. 

 

CV air conditioner. Check first the two states, inlet 1, exit 2.  

In:  Pg1 = 0.8246 psia,   hg1 = 1102.9 Btu/lbm,    hf,68 = 36.08 Btu/lbm,  

  Pv1 = φ1 Pg1 = 0.08246 psia,    w1 = 0.622 Pv1/(Ptot-Pv1) = 0.0035  

Ex:  Pg2 = 0.36324 psia,    hg2 = 1092 Btu/lbm 

    Pv2 = φ2 Pg2 = 0.1816 psia,    w2 = 0.622 Pv2/(Ptot-Pv2) = 0.00778 

Water must be added ( w2 > w1). Continuity and energy equations 

 m
.

A(1 + w1) + m
.

liq = m
.

A(1 + w2)    &    m
.

Ah1mix + m
.

liqhf + Q
.

CV = m
.

Ah2mix 

 m
.

tot = PV
.

tot/RT = 14.7×3600×144/53.34×529.67 = 270 lbm/h 

 m
.

A = m
.

tot/(1 + w2) = 267.91 lbm/h 

 m
.

liq = m
.

A(w2 - w1) = 267.91(0.00778 - 0.0035) = 1.147 lbm/h 

 Q
.

CV = m
.

A[Cp a (T2 – T1) + w2hg2 - w1hg1] - m
.

liqhf,68 

         = 267.91 [ 0.24(70 - 95) + 0.00778 × 1092 – 0.0035 × 1102.9] 

 - 1.147 × 36.08  

         = - 406.8 Btu/h 

  

 Liquid water
Cooler

Inlet Exit

1 2  
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12.167E 
  An indoor pool evaporates 3 lbm/h of water, which is removed by a dehumidifier 

to maintain 70 F, Φ = 70% in the room. The dehumidifier is a refrigeration cycle 
in which air flowing over the evaporator cools such that liquid water drops out, 
and the air continues flowing over the condenser, as shown in Fig. P12.71. For an 
air flow rate of 0.2 lbm/s the unit requires 1.2 Btu/s input to a motor driving a fan 
and the compressor and it has a coefficient of performance, β  = QL /WC = 2.0. 

Find the state of the air after the evaporator, T2, ω2, Φ2 and the heat rejected. Find 
the state of the air as it returns to the room and the compressor work input. 

The unit must remove 3 lbm/h liquid to keep steady state in the room. As 
water condenses out state 2 is saturated. 

1:  70 F,  70%  =>  Pg1 = 0.363 psia,  hg1 = 1092.0 Btu/lbm,   

  Pv1 = φ1 Pg1 = 0.2541 psia,    w1 = 0.622 Pv1/(Ptot-Pv1) = 0.01094  

CV 1 to 2:   m
.

liq = m
.

a(w1 - w2)   =>  w2 = w1 - m
.

liq/m
.

a  

                     qL = h1 - h2 - (w1 - w2) hf2 

             w2 = 0.01094 - 3/(3600 × 0.2) = 0.006774 

  Pv2 = Pg2 = Ptot w2 /(0.622 + w2) =  
14.7× 0.006774

0.628774  = 0.1584 psia 

Table F.7.1:    T2 = 46.8 F   hf2 = 14.88 btu/lbm,   hg2 = 1081.905 Btu/lbm 

            qL = 0.24(70 – 46.8) + 0.01094 ×1092 – 0.006774 ×1081.905 

   – 0.00417 ×14.88 = 10.12 Btu/lbm dry air 

                 W
.

c = m
.

a qL/ β = 1 Btu/s 

CV Total system : 

  h̃3 - h̃1 = W
.

el/m
.

a - (w1-w2) hf  = 1.2/0.2 - 0.062 = 5.938 Btu/lbm dry air 

         =  Cp a (T3 – T1) + w2hv3 - w1hv1  

Trial and error on T3 

        3:  w3 = w2, h3  =>  T3 = 112 F,     Pg3 = 1.36 psia,   Pv3 = Pv2 = 0.1584 

          φ3 = Pv3/Pg3 = 0.12      or     φ3 = 12% 
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12.168E 
  To refresh air in a room, a counterflow heat exchanger is mounted in the wall, as 

shown in Fig. P12.115. It draws in outside air at 33 F, 80% relative humidity and 
draws room air, 104 F, 50% relative humidity, out. Assume an exchange of 6 
lbm/min dry air in a steady flow device, and also that the room air exits the heat 
exchanger to the atmosphere at 72 F. Find the net amount of water removed from 
room, any liquid flow in the heat exchanger and (T, φ) for the fresh air entering 
the room. 

       State 3:   Pg3 = 1.0804 psia,  hg3 = 1106.73 Btu/lbm,  

  Pv3 = φ3 Pg3 = 0.5402,    w3 = 0.622 Pv3/(Ptot-Pv3) = 0.02373  

The room air is cooled to 72 F  < Tdew1 = 82 F so liquid will form in the exit 
flow channel and state 4 is saturated. 

      4: 72 F, φ = 100% =>  Pg4 = 0.3918 psia,  hg4 = 1092.91 Btu/lbm, 

   w4 = 0.017,   hf4 = 40.09 Btu/lbm 

      1: 33 F, φ = 80%   =>  Pg1 = 0.0925 psia,  hg1 = 1075.83 Btu/lbm, 

  Pv1 = φ1 Pg1 = 0.074 psia,     w1 = 0.00315 

CV 3 to 4:   m
.

liq,4 = m
.

a (w3 - w4) = 6 (0.02373 - 0.017) = 0.04 lbm/min 

CV room:    m
.

v,out = m
.

a (w3 - w2) = m
.

a (w3 - w1)   

                              = 6(0.02373 - 0.00315) = 0.1235 lbm/min 

CV Heat exchanger:    m
.

a(h̃2 - h̃1) = m
.

a(h̃3 - h̃4) - m
.

liqhf4          

 Cp a(T2–T1) + w2hv2 – w1hv1 = Cp a(T3–T4) + w3hv3 - w4hv4 - (w3-w4) hf4 

0.24(T2–33) + w2hv2 – 3.3888 = 0.24(104-72) + 26.2627 – 18.5795 – 0.2698 

  0.24 T2 + 0.00315 hv2 = 26.402 btu/lbm 

          Trial and error on T2:    T2 = 95.5 F,    Pg2 = 0.837 psia,  Pv2 = Pv1 

  φ = Pv2 / Pg2 = 0.074 / 0.837 = 0.088   or  φ = 9% 
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Review Problems 
 

12.169E 

  Ambient air is at a condition of 14.7 lbf/in.2, 95 F, 50% relative humidity. A 

steady stream of air at 14.7 lbf/in.2, 73 F, 70% relative humidity, is to be 
produced by first cooling one stream to an appropriate temperature to condense 
out the proper amount of water and then mix this stream adiabatically with the 
second one at ambient conditions. What is the ratio of the two flow rates? To 
what temperature must the first stream be cooled? 

 

COOL

LIQ H O 2 

-Q   = 0MIX 
. 

. 
-QCOOL

MIX 

1 

2 

3 
4 

5 

 

P
1
 = P

2
 = P

5
 = 14.7 lbf/in2 

T
1
 = T

2
 = 95 F 

φ
1
 = φ

2
 = 0.50,  φ

4
 = 1.0 

T
5
 = 73 F, φ

5
 = 0.70 

       P
v1

 = P
v2

 = 0.5×0.8246 = 0.4123,  w
1
 = w

2
 = 0.622×

0.4123
14.7-0.4123 = 0.0179 

       Pv5 = 0.7×0.4064 = 0.2845    =>    w5 = 0.622×
0.2845

14.7-0.2845 = 0.0123 

MIX:  Call the mass flow ratio r = ma2/ma1  

Conservation of water mass:    w1 + r w4 = (1 + r)w5 

Energy Eq.: ha1 + w1hv1 + rha4 + rw4hv4 = (1 + r)ha5 + (1 + r)w5hv5 

      →    0.0179 + rw
4
 = (1 + r) 0.0123 

 or     r = 
0.0179-0.0123

0.0123-w4
, with     w4 = 0.622 × 

PG4

14.7-PG4
 

  0.24×555 + 0.0179 × 1107.2 + r × 0.24 × T4 + rw4hv4 

      = (1 + r) × 0.24 × 533  + (1 + r) × 0.0123 × 1093.3 

 or               r[0.24 × T
4
 + w

4
h

G4
 - 141.4] + 11.66 = 0 

Assume T
4
 = 40 F     → P

G4
 = 0.121 66 psia,   h

G4
 = 1078.9 Btu/lbm 

 w
4
 = 0.622 × 

0.121 66
14.7-0.121 66 = 0.0052 

 
ma2

ma1
 = 

0.0179-0.0123
0.0123-0.0052 = 0.7887  

 0.7887[0.24×500 + 0.0052×1078.9 - 141.4] + 11.66 = -0.29 ≈ 0    OK    
   =>   T

4
 = 40 F 
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12.170E 

  A 4-ft3 insulated tank contains nitrogen gas at 30 lbf/in.2 and ambient 
temperature 77 F. The tank is connected by a valve to a supply line flowing 

carbon dioxide at 180 lbf/in.2, 190 F. A mixture of 50 mole percent nitrogen and 
50 mole percent carbon dioxide is to be obtained by opening the valve and 
allowing flow into the tank until an appropriate pressure is reached and the valve 
is closed. What is the pressure? The tank eventually cools to ambient temperature. 
Calculate the net entropy change for the overall process. 

 
 CO2 

N 
2 

i 

 

V = 4 ft3, P
1
 = 30 lbf/in2,  T

1
 = T

0
 = 77 F 

At state 2: y
N

2
 = y

CO
2
 = 0.50 

  n
2 CO

2
 = n

2 N
2
 = n

1 N
2
 = P

1
V/R

-
T

1
 

             = 30×4×144/(1545×536.67) = 0.02084 lbmol  
   n

2
 = 0.04168 lbmol 

 Energy Eq.:  n
i
h
-

i
 = n

2
u-

2
 - n

1
u-

1
 ,         use constant specific heats 

 n
i
C
-

Poi
T

i
 = (n

i
C
-

Voi
+ n

1
C
-

Vo1
)T

2
 - n

1
C
-

Vo1
T

1
 

    But n
i
 = n

1
      → C

-
Poi

T
i
 = C

-
Voi

T
2
 + C

-
Vo1

(T
2
-T

1
) 

    44.01×0.201× 649.67 = 44.01 × 0.156 T
2
 + 28.013 × 0.178 (T

2
 - 536.67) 

    T
2
 = 710.9 R 

 P
2
 = n

2
R
-
T

2
/V = 0.04168×1545×710.9/4×144 = 79.48 lbf/in2 

 Cool to T
3
 = T

0
 = 77 F = 536.67 R 

  P
3
 = P

2
× T

3
/T

2
 = 79.48× 536.67/710.9 = 60 lbf/in2 

 Q
23

 = n
2
C
-

Vo2
(T

3
 - T

2
) = 0.04168 (0.5×28.013×0.178 

     + 0.5×44.01×0.156)(536.67 - 710.9) = - 43.0 Btu     

∆S
NET

 = n
3
s-

3
 - n

1
s-

1
 - n

i
s-

i
 - Q

23
/T

0
  = n

i
[(s-

CO
2
)
3
 - s-

i
] + n

1
[(s-

N
2
)
3
 - s-

1
] - Q

23
/T

0
 

       = 0.02084(44.01×0.201 ln 
536.67
649.67 - 1.98589 ln 

0.5×60
180 ) 

                             + 0.02084×( - 1.98589 ln 
0.5×60

30  ) − 
−43.0
536.67 

       = +0.03893 + 0 + 0.0801 = +0.119 Btu/R 
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CHAPTER 13         6th ed.          CORRESPONDANCE TABLE 
 
 The new problem set relative to the problems in the fifth edition. 
 

New 5th New 5th New 5th New 5th 
  50 new 80 50 110 46 
21 1 51 new 81 33 111 55 
22 3 52 new 82 34 112 57 
23 new 53 new 83 35 113 62 
24 2 54 new 84 39 114 65 
25 4 55 22 85 42 115 69 
26 new 56 25 86 56 116 70 
27 new 57 24a 87 44 117 67 
28 new 58 24b 88 45 118 74a 
29 6 59 47b 89 48 119 74b 
30 7 60 29 90 51   
31 5 61 23 91 52   
32 9 62 27a 92 53   
33 8 63 27b 93 58a   
34 new 64 28 94 58b   
35 11 65 30 95 new    
36 new 66 68 96 new    
37 10 67 new 97 new    
38 12 68 new 98 54   
39 new 69 20 99 new   
40 new 70 21 100 new   
41 13 71 31 101 new   
42 new 72 38 102 60   
43 16 73 new 103 37   
44 new 74 new 104 61   
45 17 75 36 105 73a,b   
46 new 76 43 106 73a,c   
47 14 77 47a 107 26   
48 new 78 new 108 40   
49 15 79 49 109 41   
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The English-unit problems are: 
 

New 5th SI New 5th SI New 5th SI 
120 75 21mod 130 83 69 140 97 86 
121 76 22 131 84 70 141 93 90 
122 new 27 132 82 73 142 96 92 
123 77 31 133 86 74 143 new 95 
124 78 41 134 95 75 144 90 108 
125 81 45 135 92 76 145 89 109 
126 79 47 136 87 81    
127 80 49 137 88 82    
128 new 51 138 94 80    
129 85 65 139 91 85    

 
 
 mod indicates a modification from the previous problem that changes the solution 
but otherwise is the same type problem. 
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The following table gives the values for the compressibility, enthalpy departure and the 
entropy departure along the saturated liquid-vapor boundary. These are used for all the 
problems using generalized charts as the figures are very difficult to read accurately 
(consistently) along the saturated liquid line. It is suggested that the instructor hands out 
copies of this page or let the students use the computer for homework solutions. 
 

 

T
r
 P

r
 Z

f
 Z

g
 d(h/RT)

f
 d(h/RT)

g
 d(s/R)

f
 d(s/R)

g
 

        

0.96 0.78 0.14 0.54 3.65 1.39 3.45 1.10 

0.94 0.69 0.12 0.59 3.81 1.19 3.74 0.94 

0.92 0.61 0.10 0.64 3.95 1.03 4.00 0.82 

0.90 0.53 0.09 0.67 4.07 0.90 4.25 0.72 

0.88 0.46 0.08 0.70 4.17 0.78 4.49 0.64 

0.86 0.40 0.07 0.73 4.26 0.69 4.73 0.57 

0.84 0.35 0.06 0.76 4.35 0.60 4.97 0.50 

0.82 0.30 0.05 0.79 4.43 0.52 5.22 0.45 

0.80 0.25 0.04 0.81 4.51 0.46 5.46 0.39 

0.78 0.21 0.035 0.83 4.58 0.40 5.72 0.35 

0.76 0.18 0.03 0.85 4.65 0.34 5.98 0.31 

0.74 0.15 0.025 0.87 4.72 0.29 6.26 0.27 

0.72 0.12 0.02 0.88 4.79 0.25 6.54 0.23 

0.70 0.10 0.017 0.90 4.85 0.21 6.83 0.20 

0.68 0.08 0.014 0.91 4.92 0.18 7.14 0.17 

0.66 0.06 0.01 0.92 4.98 0.15 7.47 0.15 

0.64 0.05 0.009 0.94 5.04 0.12 7.81 0.12 

0.60 0.03 0.005 0.95 5.16 0.08 8.56 0.08 

0.58 0.02 0.004 0.96 5.22 0.06 8.97 0.07 

0.54 0.01 0.002 0.98 5.34 0.03 9.87 0.04 

0.52 0.0007 0.0014 0.98 5.41 0.02 10.38 0.03 
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Concept-Study Guide Problems 
 
 
13.1 
 Mention two uses of the Clapeyron equation. 
 
  If you have experimental information about saturation properties down to 

a certain temperature Clapeyron equation will allow you to make an intelligent 
curve extrapolation of the saturated pressure versus temperature function Psat(T) 
for lower temperatures. 

 
  From Clapeyrons equation we can calculate a heat of evaporation, heat of  

sublimation or heat of fusion based on measurable properties P, T and v. 
 
13.2 
 The slope dP/dT of the vaporization line is finite as you approach the critical 

point, yet hfg and vfg both approach zero. How can that be? 

 
  The slope is    dP/dT =  hfg / Tvfg 

 
  Recall the math problem what is the limit of    f(x)/g(x)   when x goes 

towards a point where both functions f and g goes towards zero. A finite limit for 
the ratio is obtained if both first derivatives are different from zero so we have 

     dP/dT →  [dhfg /dT] / d(Tvfg)/dT   as   T →  Tc 

 
13.3 
 In view of Clapeyron’s equation and Fig. 3.7, is there something special about ice 

I versus the other forms of ice? 
 
  Yes. The slope of the phase boundary  dP/dT is negative for ice I to liquid 

whereas it is positive for all the other ice to liquid interphases. This also means 
that these other forms of ice are all heavier than liquid water. The pressure must 
be more than 200 MPa = 2000 atm so even the deepest ocean cannot reach that 
pressure (recall about 1 atm per 10 meters down). 

 
13.4 
   If we take a derivative as  (∂P/∂T)v in the two-phase region, see Figs. 3.18 and 

3.19, does it matter what v is? How about T? 
 
  In the two-phase region, P is a function only of T, and not dependent on v. 



  Sonntag, Borgnakke and van Wylen 

 
13.5 
 Sketch on a P-T diagram how a constant v line behaves in the compressed liquid 

region, the two-phase L-V region and the superheated vapor region? 
 
     P

T

VL

Cr.P.

S

v < vc

v
large

vmedium

v        > vcsmall

 

 

 
 
 P

T

v

V

L

S

C.P.

vlarge

v
v > vc

medium
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13.6 

If I raise the pressure in an isentropic process, does h go up or down? Is that 
independent upon the phase? 

 
Tds = 0 = dh – vdP  ,  so h increases as P increases, for any phase. The 
magnitude is proportional to v (i.e. large for vapor and small for liquid and 
solid phases) 

 
 
13.7 
 If I raise the pressure in an isothermal process does h go up or down for a liquid 

or solid? What do you need to know if it is a gas phase? 
 

Eq. 13.25:   (
∂h
∂P

)
T
  = v – T (

∂v
∂T

)
P
  = v[1 - Tα 

P
] 

 Liquid or solid, α 
P
 is very small, h increases with P ;  

 For a gas, we need to know the equation of state. 
 

 
13.8 
 The equation of state in Example 13.3 was used as explicit in v. Is it explicit in P? 
 
  Yes, the equation can be written explicitly in P. 

    P = RT / [v + C/T3] 
 
13.9 
 Over what range of states are the various coefficients in Section 13.5 most useful? 
 

 For solids or liquids, where the coefficients are essentially constant over a 
wide range of P’s and T’s. 
 

 
13.10 
  For a liquid or a solid is v more sensitive to T or P?  How about an ideal gas? 
 

For a liquid or solid, v is more sensitive to T than P. 
  For an ideal gas,  v = RT/P , varies directly with T, inversely with P. 
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13.11 
  If I raise the pressure in a solid at constant T, does s go up or down? 
 

In Example 13.4, it is found that change in s with P at constant T is 
negatively related to volume expansivity (a positive value for a solid), 
ds

T
 = - v α 

P
 dP

T
     , so raising P decreases s. 

 
 
13.12 
 Most equations of state are developed to cover which range of states? 
 

 Most equations of state are developed to cover the gaseous phase, from 
low to moderate densities.  Many cover high-density regions as well, including 
the compressed liquid region. 
 

 
13.13 
 Is an equation of state valid in the two-phase regions? 
 

 No.  In a two-phase region, P depends only on T.  There is a discontinuity 
at each phase boundary. 
  

 
13.14 
 As P → 0, the specific volume v → ∞. For P → ∞, does   v → 0? 
 
  At very low P, the substance will be essentially an ideal gas,  Pv  = RT, so 

that v becomes very large.  However at very high P, the substance eventually 
must become a solid, which cannot be compressed to a volume approaching zero. 

 
 
13.15 
 Must an equation of state satisfy the two conditions in Eqs. 13.50 and 13.51? 
 

 It has been observed from experimental measurements that substances do 
behave in that manner.  If an equation of state is to be accurate in the near-critical 
region, it would have to satisfy these two conditions. 
 If the equation is simple it may be overly restrictive to inpose these as it 
may lead to larger inaccuracies in other regions.  
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13.16 
 At which states are the departure terms for h and s small? What is Z there? 
 

 Departure terms for h and s are small at very low pressure or at very high 
temperature.  In both cases, Z is close to 1. 
  

 
13.17 
 What is the benefit of the generalized charts? Which properties must be known 

besides the charts themselves? 
 

 The generalized charts allow for the approximate calculations of enthalpy 
and entropy changes (and P,v,T behavior), for processes in cases where specific 
data or equation of state are not known. They also allow for approximate phase 
boundary determinations.  It is necessary to know the critical pressure and 
temperature, as well as ideal-gas specific heat. 
 

 
13.18 
 What does it imply if the compressibility factor is larger than 1? 
 

 Compressibility factor greater than one results from domination of 
intermolecular forces of repulsion (short range) over forces of attraction (long 
range) – either high temperature or very high density. This implies that the 
density is lower than what is predicted by the ideal gas law, the ideal gas law 
assumes the molecules (atoms) can be pressed closer together. 
 

 
13.19 
 The departure functions for h and s as defined are always positive. What does that 

imply for the real substance h and s values relative to ideal gas values? 
 
  Real-substance h and s are less than the corresponding ideal-gas values. 
 
 
13.20 
 What is the benefit of Kay’s rule versus a mixture equation of state? 
 

 Kay’s rule for a mixture is not nearly as accurate as an equation of state 
for the mixture, but it is very simple to use. 
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Clapeyron Equation 
 
13.21 

 A special application requires R-12 at −140°C. It is known that the triple-point 
temperature is −157°C. Find the pressure and specific volume of the saturated 
vapor at the required condition. 

The lowest temperature in Table B.3 for R-12 is -90oC, so it must be extended 

to -140oC using the Clapeyron Eq. 13.7 integrated as in example 13.1  

Table B.3:    at T
1
 = -90oC = 183.2 K,    P

1
 = 2.8 kPa. 

 R = 
8.3145
120.914 = 0.068 76 kJ/kg K 

 ln 
P
P

1
 = 

h
fg

R   
(T - T

1
)

T × T
1

 = 
189.748
0.068 76 

(133.2 - 183.2)
133.2 × 183.2

 = -5.6543 

    P  = 2.8 exp(-5.6543) = 0.0098 kPa 
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13.22 

 Ice (solid water) at −3°C, 100 kPa, is compressed isothermally until it becomes 
liquid. Find the required pressure. 

Water, triple point T = 0.01oC ,   P = 0.6113 kPa 

Table B.1.1:   vf = 0.001 m3/kg,   hf = 0.01 kJ/kg,  

Tabel B.1.5:    vi = 0.001 0908 m3/kg,   hi = -333.4 kJ/kg 

Clapeyron   
dPif
dT  = 

hf - hi
(vf - vi)T

 = 
333.4

-0.0000908 × 273.16
 = -13 442 kPa/K 

  ∆P ≈ 
dPif
dT  ∆T = -13 442(-3 - 0.01) = 40 460 kPa 

  P = P
tp

 + ∆P = 40 461 kPa  
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13.23 

An approximation for the saturation pressure can be ln Psat = A – B/T, where A 

and B are constants. Which phase transition is that suitable for, and what kind of 
property variations are assumed? 

 

 Clapeyron Equation expressed for the three phase transitions are shown in Eqs. 
13.5-13.7. The last two leads to a natural log function if integrated and ideal gas 
for the vapor is assumed. 

     
dPsat

dT  = Psat 
hevap

RT2  

 where hevap is either hfg or hig. Separate the variables and integrate 

    P
-1
sat dPsat = hevap R-1 T-2 dT 

    ln Psat = A – B/T ; B = hevap R-1 

 if we also assume hevap is constant and A is an integration constant. The function 
then applies to the liquid-vapor and the solid-vapor interphases with different 
values of A and B. As hevap is not excactly constant over a wide interval in T 
means that the equation cannot be used for the total domain. 
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13.24 
In a Carnot heat engine, the heat addition changes the working fluid from 
saturated liquid to saturated vapor at T, P. The heat rejection process occurs at 
lower temperature and pressure (T − ∆T), (P − ∆P). The cycle takes place in a 
piston cylinder arrangement where the work is boundary work. Apply both the 
first and second law with simple approximations for the integral equal to work. 
Then show that the relation between ∆P and ∆T results in the Clapeyron equation 
in the limit ∆T → dT. 

 
 

s 

−∆ 

P 

v 

P 

T 

T-∆ T 

1 2 

3 4 
P-∆ P 

P-∆ P P 

s   at T v   at Tfg fg

4 3

1 2
T

T

T T

 
  

q
H

 = Tsfg;     q
L
 = (T-∆T)sfg  ; wnet = q

H
 - q

L
 = ∆Tsfg 

Problem similar to development in section 13.1 for shaft work, here boundary 

movement work,   w = ⌡⌠ Pdv 

    w
NET

 = P(v
2
-v

1
) + ⌡⌠

2

3

 Pdv + (P - ∆P)(v
4
 - v

3
) + ⌡⌠

1

4

 Pdv 

Approximating, 

       ⌡⌠
2

3

 Pdv  ≈  (P - 
∆P
2 ) (v

3
 - v

2
);   ⌡⌠

1

4

 Pdv  ≈  (P - 
∆P
2 ) (v

1
 - v

4
) 

Collecting terms:    w
NET

 ≈ ∆P[(
v2+v3

2 ) - (
v1+v4

2 )]  

(the smaller the ∆P, the better the approximation) 

    ⇒  
∆P
∆T

  ≈  
sfg

1
2(v2 + v3) − 

1
2(v1 + v4)

 

In the limit as    ∆T → 0:    v3 →  v2 = vg ,     v4 → v1 = vf 

                 & lim∆T→0
∆P
∆T

 = 
dPsat
dT  = 

sfg
vfg
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13.25 

 Calculate the values hfg and sfg for nitrogen at 70 K and at 110 K from the 
Clapeyron equation, using the necessary pressure and specific volume values 
from Table B.6.1. 

Clapeyron equation Eq.13.7:          
dPg
dT  = 

hfg
Tvfg

 = 
sfg
vfg

 

For N2 at 70 K, using values for Pg from Table B.6 at 75 K and 65 K, and also 

vfg at 70 K, 

 hfg ≈ T(vg-vf)
∆Pg

∆Τ   = 70(0.525 015)(76.1-17.41
75-65 ) = 215.7 kJ/kg  (207.8) 

 sfg = hfg/T = 3.081 kJ/kg K  (2.97) 

Comparison not very close because Pg not linear function of T. Using 71 K & 

69 K from the software,  

      hfg = 70(0.525 015)(44.56-33.24
71-69 ) = 208.0 kJ/kg 

At 110 K,   hfg ≈ 110(0.014 342)(1938.8-1084.2
115-105 ) = 134.82 kJ/kg  (134.17) 

  sfg = 
134.82

110  = 1.226 kJ/kg K  (1.22) 
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13.26 

Ammonia at –70oC is used in a special application at a quality of 50%. Assume 

the only table available is B.2 that goes down to –50oC. To size a tank to hold 0.5 
kg with x = 0.5, give your best estimate for the saturated pressure and the tank 
volume. 

 
 To size the tank we need the volume and thus the specific volume. If we do not 

have the table values for vf and vg we must estimate those at the lower T.  We 

therefore use Clapeyron equation to extrapolate from –50oC to –70oC to get the 
saturation pressure and thus vg assuming ideal gas for the vapor. 

 
 The values for vf  and hfg do not change significantly so we estimate 

 Between  -50oC and –70oC:   vf = 0.001375 m3/kg,  hfg = 1430 kJ/kg 
  
 The integration of Eq.13.7 is the same as in Example 13.1 so we get 
 

  ln 
P2
P1

 =  
hfg
R   ( 

T2 - T1
T2T1

 ) = 
1430

0.4882 
-70 + 50

203.15 × 223.15
 = -1.2923 

  P2 = P1 exp(-1.2923) = 40.9 exp(-1.2923) = 11.2 kPa 

  vg = RT2/P2 = 
0.4882 × 203.15

11.2  = 8.855 m3/kg 

  v2 = (1-x) vf + x vg = 0.5 × 0.001375 + 0.5 × 8.855 = 4.428 m3/kg 

  V2 = mv2 = 2.214 m3  
 
  

  
 
 
A straight line extrapolation 
will give a negative pressure. 

P

T

-50-70  
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13.27 

The saturation pressure can be approximated as  ln Psat = A – B/T, where A and B 

are constants. Use the steam tables and determine A and B from properties at 25o

C only. Use the equation to predict the saturation pressure at 30oC and compare to 
table value. 

 

ln Psat = A – B/T   ⇒ 
dPsat
dT  = Psat (-B)(-T-2) 

 so we notice from Eq.13.7 and Table values from B.1.1 and A.5 that    

B = 
hfg
R  = 

2442.3
0.4615 = 5292 K 

 Now the constant A comes from the saturation pressure as 

   A = ln Psat + B/T = ln 3.169 + 
5292

273.15 + 25 = 18.9032 

 Use the equation to predict the saturation pressure at 30C as 

   ln Psat = A – B/T = 18.9032 - 
5292

273.15 + 30 = 1.4462 

    Psat = 4.2469 kPa 

compare this with the table value of  Psat = 4.246 kPa and we have a very close 

approximation. 
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13.28 

Using the properties of water at the triple point, develop an equation for the 
saturation pressure along the fusion line as a function of temperature. 

 Solution: 

 The fusion line is shown in Fig. 3.4 as the S-L interphase. From Eq.13.5 we have 

      
dPfusion

dT  = 
hif

Tvif
 

 Assume hif and vif are constant over a range of T’s. We do not have any simple 

models for these as function of T other than curve fitting. Then we can integrate 
the above equation from the triple point (T1, P1) to get the pressure P(T) as 

     P – P1 =  
hif
vif

  ln 
T
T1

  

 Now take the properties at the triple point from B.1.1 and B.1.5 

    P1 = 0.6113 kPa,     T1 = 273.16 K 

    vif = vf – vi = 0.001 – 0.0010908 = - 9.08 × 10−5 m3/kg 

    hif = hf – hi = 0.0 – (-333.4) = 333.4 kJ/kg 

 The function that approximates the pressure becomes 

    P = 0.6113 – 3.672  × 106  ln 
T
T1

       [kPa] 
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13.29 

Helium boils at 4.22 K at atmospheric pressure, 101.3 kPa, with hfg = 83.3 

kJ/kmol. By pumping a vacuum over liquid helium, the pressure can be lowered, 
and it may then boil at a lower temperature. Estimate the necessary pressure to 
produce a boiling temperature of 1 K and one of 0.5 K. 

 Solution: 

Helium at 4.22 K:   P
1
 = 0.1013 MPa,    h

-
FG

 = 83.3 kJ/kmol 

 
dP

SAT

dT  = 
h

FG

Tv
FG

 ≈ 
h

FG
P

SAT

RT2    ⇒    ln 
P

2

P
1
 = 

h
FG

R [ 1
T

1
 − 

1
T

2
] 

 For T
2
 = 1.0 K: 

  ln 
P

2

101.3 = 
83.3

8.3145[
1

4.22 − 
1

1.0]     =>   P
2
 = 0.048 kPa = 48 Pa 

 For T
2
 = 0.5 K: 

  ln 
P

2

101.3 = 
83.3

8.3145[
1

4.22 − 
1

0.5] 

  P
2
 = 2.1601×10-6 kPa = 2.1601 × 10-3 Pa 
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13.30 

 A certain refrigerant vapor enters a steady flow constant pressure condenser at 
150 kPa, 70°C, at a rate of 1.5 kg/s, and it exits as saturated liquid. Calculate the 
rate of heat transfer from the condenser. It may be assumed that the vapor is an 
ideal gas, and also that at saturation, vf << vg. The following quantities are known 

for this refrigerant: 

    ln Pg = 8.15 - 1000/T ;  CP = 0.7 kJ/kg K 

 with pressure in kPa and temperature in K. The molecular weight is 100. 

Refrigerant:  State 1   T
1
 = 70oC  P

1
 = 150 kPa 

State 2   P
2
 = 150 kPa x

2
 = 1.0        State 3 P

3
 = 150 kPa x

3
 = 0.0 

Get the saturation temperature at the given pressure 

 ln (150) = 8.15 - 1000/T
2
  =>  T

2
 = 318.5 K = 45.3oC = T

3
  

1
q

3
 = h

3
 - h

1
 = (h

3
 - h

2
) + (h

2
 - h

1
) = - hfg T3 + C

P0
(T

2
 - T

1
) 

 
dPg

dT  = 
hfg

Tvfg
 ,           vfg ≈ vg = 

RT
Pg

 ,           
dPg
dT  = Pg 

d ln Pg
dT   = 

hfg

RT2 Pg 

 
d ln Pg

dT   =  +1000/T2 =  hfg/RT2 

 hfg = 1000 × R = 1000 × 8.3145/100 = 83.15 kJ/kg 

 
1
q

3
 = -83.15 + 0.7(45.3 - 70) = -100.44 kJ/kg 

 Q
.

COND
  = 1.5(-100.44) = -150.6 kW 

 
 

v

P

s

T

1

23
123
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13.31 

 Using thermodynamic data for water from Tables B.1.1 and B.1.5, estimate the 
freezing temperature of liquid water at a pressure of 30 MPa. 

 
  

 

H
2
O   

dPif
dT  = 

hif
Tvif

 ≈ const 

 
T.P.

30 MPaP 

T  
  At the triple point, 

vif = vf - vi = 0.001 000 - 0.001 090 8 = -0.000 090 8 m3/kg 

hif = hf - hi = 0.01 - (-333.40) = 333.41 kJ/kg 

  
dPif
dT  = 

333.41
273.16(-0.000 090 8) = -13 442 kPa/K 

 ⇒   at P = 30 MPa, 

  T ≈ 0.01 + 
(30 000-0.6)

(-13 442)  = -2.2 oC 
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13.32 

 Small solid particles formed in combustion should be investigated. We would like 
to know the sublimation pressure as a function of temperature. The only 
information available is T, h

FG
 for boiling at 101.3 kPa and T, h

IF
 for melting at 

101.3 kPa. Develop a procedure that will allow a determination of the sublimation 
pressure, P

sat
(T). 

 
 T

NBP
 = normal boiling pt T. 

T
NMP

 = normal melting pt T. 

T
TP 

= triple point T. 

 
1) T

TP
 ≈ T

NMP
 

P

TP

TP

NMP NBP 

101.3 kPa

T

Solid Liquid

Vap.

T TT

P

 

 2) ⌡⌠
0.1013 MPa

P
TP

 (1/P
SAT

) dP
SAT

 ≈ 
⌡

⌠

TNMP

T
TP

 
h

FG

RT2 dT 

    Since h
FG

 ≈ const ≈ h
FG NBP

  the integral over temperature becomes 

  ln 
P

TP

0.1013 ≈ 
h

FG NBP

R [ 1
T

NBP
 - 

1
T

TP
]       →     get P

TP
 

3) h
IG at TP

 = h
G

 - h
I
 = (h

G
 - h

F
) + (h

F
 - h

I
) ≈ h

FG NBP
 + h

IF NMP
  

    Assume h
IG

 ≈ const.  again we can evaluate the integral 

    ln 
P

SUB

P
TP

 = ⌡⌠
PTP

P
SUB

 (1/P
SUB

) dP
SUB

 ≈ 
⌡

⌠

TTP

T

 
h

IG

RT2 dT ≈ 
h

IG

R [ 1
T

TP
 − 

1
T] 

    or P
SUB

 = fn(T) 
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13.33 

 A container has a double wall where the wall cavity is filled with carbon dioxide 
at room temperature and pressure. When the container is filled with a cryogenic 
liquid at 100 K the carbon dioxide will freeze so that the wall cavity has a mixture 
of solid and vapor carbon dioxide at the sublimation pressure. Assume that we do 
not have data for CO2 at 100 K, but it is known that at −90°C: Psat = 38.1 kPa,  

hIG = 574.5 kJ/kg. Estimate the pressure in the wall cavity at 100 K. 

 Solution: 

For CO2 space: at T1 = -90 oC = 183.2 K ,  P1 = 38.1 kPa, hIG = 574.5 kJ/kg 

For T2 = TcO2 = 100 K:  Clapeyron       
dPSUB

dT  = 
hIG

TvIG
 ≈ 

hIGPSUB

RT2  

 ln 
P2

P1
 = 

hIG

R  [ 1
183.2 − 

1
100] = 

574.5
0.188 92 [ 1

183.2 − 
1

100] = -13.81 

 or   P
2
 = P

1
 × 1.005×10-6    ⇒    P

2
 = 3.83×10-5 kPa = 3.83×10-2 Pa 
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Property Relations 
 
13.34 

Use Gibbs relation  du = Tds – Pdv and one of Maxwell’s relations to find an 
expression for (∂u/∂P)T that only has properties P, v and T involved. What is the 

value of that partial derivative if you have an ideal gas? 
 
  du = Tds – Pdv       divide this by dP   so  we get 
 

  






∂u

∂P T
 = T 







∂s

∂P T
 – P 







∂v

∂P T
 =  –T 







∂v

∂T P
 – P 







∂v

∂P T
 

 
 where we have used Maxwell Eq.13.23. Now for an ideal gas we get 

  Ideal gas:    Pv = RT     ⇒     v = 
RT
P  

 then the derivatives are 

    






∂v

∂T P
 = 

R
P and 







∂v

∂P T
 = –RTP–2 

 and the derivative of u is 

   






∂u

∂P T
 =  –T 







∂v

∂T P
 – P 







∂v

∂P T
 = –T 

R
P – P( –RTP–2) = 0 

 This confirm that  u is not sensitive to P and only a function of T. 
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13.35 
 Start from Gibbs relation dh = Tds + vdP and use one of Maxwell’s equation to 

get (∂h/∂v)T in terms of properties P, v and T. Then use Eq.13.24 to also find an 

expression for (∂h/∂T)v. 

       Find  (∂h
∂v
)T  and  (∂h

∂T
)v 

       dh = Tds + vdP  and use Eq.13.22 

      ⇒       (∂h
∂v
)T = T (∂s

∂v
)T + v(∂P

∂v
)T   = T (∂P

∂T
)v + v(∂P

∂v
)T 

 Also for the second first derivative use Eq.13.28 

       (∂h
∂T

)v = T(∂s
∂T

)v + v(∂P
∂T

)v = Cv + v(∂P
∂T

)v 
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13.36 

From Eqs. 13.23 and 13.24 and the knowledge that Cp > Cv what can you 

conclude about the slopes of constant v and constant P curves in a T-s diagram? 
Notice that we are looking at functions T(s, P or v given). 

 Solution: 
 The functions and their slopes are: 

   Constant v:    T(s)   at that v   with slope  






∂T

∂s v
 

   Constant P:    T(s)   at that P with slope  






∂T

∂s P
 

 Slopes of these functions are now evaluated using Eq.13.23 and Eq.13.24 as 
    

     






∂T

∂s P
 = 















∂s

∂T P

-1
 = 

T
Cp

 

     






∂T

∂s v
 = 















∂s

∂T v

-1
 = 

T
Cv

 

 Since we know Cp > Cv then it follows that T/Cv  >  T/Cp and therefore 

      






∂T

∂s v
   >   







∂T

∂s P
 

 which means that constant v-lines are steeper than constant P lines in a T-s 
diagram. 
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13.37 

 Derive expressions for (∂T/∂v)u and for (∂h/∂s)v that do not contain the properties 
h, u, or s. Use Eq. 13.30 with du = 0. 

 (∂T
∂v

)u = - (∂u
∂v

)T/(∂u
∂T

)v = 
P - T(∂P

∂T
)v

Cv
 (see Eqs. 13.33 and 13.34) 

 As dh = Tds + vdP  => (∂h
∂s

)v = T + v(∂P
∂s

)v = T - v(∂T
∂v

)s (Eq.13.20) 

 But    (∂T
∂v

)s = - (∂s
∂v

)T/(∂s
∂T

)v = - 

T(∂P
∂T

)v

Cv
  (Eq.13.22) 

 ⇒  (∂h
∂s

)v = T  +  
vT
Cv

 (∂P
∂T

)v 
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13.38 

 Develop an expression for the variation in temperature with pressure in a constant 
entropy process, (∂T/∂P)

s
, that only includes the properties P–v–T and the specific 

heat, Cp. Follow the development for Eq.13.32. 

   (∂T
∂P

)s = - 

(∂s
∂P

)T

(∂s
∂T

)P

 = - 

-(∂v
∂T

)P

(C
P
/T)  = 

T
C

P
 (∂v

∂T
)P 

{(∂s
∂P

)T = -(∂v
∂T

)P, Maxwell relation Eq. 13.23 and the other is Eq.13.27} 
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13.39 

Use Eq. 13.34 to get an expression for the derivative (∂T/∂v)s. What is the general 

shape of a constant s process curve in a T-v diagram? For an ideal gas can you 
say a little more about the shape? 

 
 Equation 13.34 says 

    ds = Cv 
dT
T   + (∂P

∂T
)v dv 

 so then in a constant s process we have ds = 0 and we find 

    (∂T
∂v

)s = − 
T
Cv

 (∂P
∂T

)v 

 As T is higher the slope is steeper (but negative) unless the last term (∂P/∂T)v 

counteracts. If we have an ideal gas this last term can be determined 

  P = RT/v     ⇒    (∂P
∂T

)v = 
R
v 

    (∂T
∂v

)s = − 
T
Cv

 
R
v = − 

P
Cv

 

 and we see the slope is steeper for higher P and a little lower for higher T as Cv is 

an increasing function of T. 
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13.40 

Evaluate the isothermal changes in the internal energy, the enthalpy and the 
entropy for an ideal gas. Confirm the results in Chapters 5 and 8. 

 We need to evaluate  duT, dhT  and dsT for an ideal gas:   P = RT/v. 

 From Eq.13.31 we get 

   duT = [ T  (∂P
∂T

)v – P ] dvT = [ T ( 
R
v ) – P ] dvT = [ P – P] dvT = 0 

 From Eq.13.27 we get using v = RT/P  

   dhT = [ v – T (∂v
∂T

)P ] dPT = [ v – T ( 
R
P ) ] dPT = [ v – v ] dPT = 0 

 These two equations confirms the statements in chapter 5 that u and h are 
functions of T only for an ideal gas. 

 From eq.13.32 or Eq.13.34 we get  

         dsT = – (∂v
∂T

)P dPT  =  (∂P
∂T

)v dvT  

    = – 
R
P dPT  =  

R
v dvT 

 so the change in s can be integrated to find 

    s2 – s1 = –R ln 
P2
P1

 = R ln 
v2
v1

            when  T2 = T1 
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Volume Expansivity and Compressibility 
 
13.41 

 Determine the volume expansivity, α
P
, and the isothermal compressibility, β

T
, for 

water at 20°C, 5 MPa and at 300°C, and 15 MPa using the steam tables. 

Water at 20oC, 5 MPa (compressed liquid) 

  α
P
 =  

1
v(

∂v
∂T

)P ≈  
1
v(

∆v
∆T

)P Estimate by finite difference. 

Using values at 0oC, 20oC and 40oC, 

 

 α
P
 ≈  

1
0.000 9995 

0.001 0056 - 0.000 9977
40 - 0   = 0.000 1976 oC-1 

 β
T
 = - 

1
v(

∂v
∂P

)T ≈ - 
1
v(

∆v
∆P

)T 

 Using values at saturation, 5 MPa and 10 MPa, 

  

 β
T
 ≈ - 

1
0.000 9995 

0.000 9972 - 0.001 0022
10 - 0.0023  = 0.000 50 MPa-1 

 Water at 300oC, 15 MPa (compressed liquid) 

 

  α
P
 ≈  

1
0.001 377 

0.001 4724 - 0.001 3084
320 - 280   = 0.002 977 oC-1 

  β
T
 ≈ - 

1
0.001 377 

0.001 3596 - 0.001 3972
20 - 10  = 0.002 731 MPa-1  
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13.42 

What are the volume expansivity αp, the isothermal compressibility βT, and the 

adiabatic compressibility βs for an ideal gas? 

 
 The volume expansivity from Eq.13.37 and ideal gas  v = RT/P gives 

   αp =  
1
v(

∂v
∂T

)P =  
1
v ( 

R
P ) = 

1
T 

 The isothermal compressibility from Eq.13.38 and ideal gas gives 

   β
T
 = − 

1
v(

∂v
∂P

)T = − 
1
v ( − RT P−2 ) = 

1
P 

 The adiabatic compressibility βs from Eq.13.40 and ideal gas 

   βs = − 
1
v(

∂v
∂P

)s  

 From Eq.13.32 we get  for constant s (ds = 0) 

   (∂T
∂P

)s  =  
T
Cp

 (∂v
∂T

)P  =  
T
Cp

 
R
P  =  

v
Cp

 

 and from Eq.13.34 we get 

   (∂v
∂T

)s  =  − 
Cv
T  (∂P

∂T
)v =  − 

Cv
T  

v
R  =  − 

Cv
P  

 Finally we can form the desired derivative 

   (∂v
∂P

)s = (∂v
∂T

)s (
∂T
∂P

)s = − 
Cv
P  

v
Cp

 = − 
v

kP 

   βs = − 
1
v(

∂v
∂P

)s  = (− 
1
v) (− 

v
kP) = 

1
kP =  

1
k β

T
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13.43 

 Find the speed of sound for air at 20°C, 100 kPa using the definition in Eq. 13.43 
and relations for polytropic processes in ideal gases. 

From problem 13.14  : c2 = (∂P
∂ρ)s = -v2(∂P

∂v
)s 

For ideal gas and isentropic process, Pvk = constant 

 P = Cv-k   ⇒  
∂P
∂v

 = -kCv-k-1 = -kPv-1 

 c2 = -v2(-kPv-1) = kPv = kRT 

 

 c = kRT = 1.4×0.287×293.15×1000 = 343.2 m/s 

 

  

For every 3 
seconds after the 
lightning the 
sound travels 
about 1 km. 
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13.44 

Assume a substance has uniform properties in all directions with V = LxLyLz and 

show that volume expansivity αp = 3δT. Hint: differentiate with respect to T and 

divide by V. 
 
    V = LxLyLz    

 From Eq.13.37 

         αp =  
1
V(∂V

∂T
)P  = 

1
LxLyLz

 (
∂ LxLyLz

∂T
)P 

   = 
LyLz

LxLyLz
 (

∂ Lx

∂T
)P + 

LxLz
LxLyLz

 (
∂ Ly

∂T
)P + 

LxLy
LxLyLz

 (
∂ Lz

∂T
)P  

   = 
1

Lx
 (

∂ Lx

∂T
)P + 

1
Ly

 (
∂ Ly

∂T
)P + 

1
Lz

 (
∂ Lz

∂T
)P 

   = 3 δT  

 This of course assumes isotropic properties (the same in all directions). 
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13.45 

 A cylinder fitted with a piston contains liquid methanol at 20°C, 100 kPa and 
volume 10 L. The piston is moved, compressing the methanol to 20 MPa at 
constant temperature. Calculate the work required for this process. The isothermal 

compressibility of liquid methanol at 20°C is 1.22 × 10-9 m2/N. 

 1w2 = ⌡⌠
1

2

 Pdv = 
⌡

⌠

 P(∂v
∂P

)T 
dPT = -⌡⌠

1

2

 vβ
T

 PdPT 

For v ≈ constant  &  βT ≈ constant   the integral can be evaluated 

 1w2 = - 
vβ

T

2  (P
2
2 - P

2
1) 

For liquid methanol, from Table A.4:   ρ = 787 m3/kg 

 V
1
 = 10 L,    m = 0.01 × 787 = 7.87 kg 

 1W2 = 
0.01×1220

2  [(20)2 - (0.1)2]  = 2440 J = 2.44 kJ 
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13.46 

Use Eq. 13.32 to solve for (∂T/∂P)s in terms of T, v, Cp and αp. How large a 

temperature change does 25oC water (αp = 2.1 × 10-4 K-1) have, when 

compressed from 100 kPa to 1000 kPa in an isentropic process?   

  

 From Eq.13.32 we get for constant s (ds = 0) and Eq.13.37 

    (∂T
∂P

)s =  
T
Cp

 (∂v
∂T

)P  =  
T
Cp

 αp v 

 Assuming the derivative is constant for the isentropic compression we estimate 
with heat capacity from Table A.3 and v from B.1.1 

    ∆Ts = (∂T
∂P

)s ∆Ps = 
T
Cp

 αp v ∆Ps 

            = 
273.15 + 25

4.18  × 2.1 × 10-4 × 0.001003 × (1000 – 100)  

            = 0.013 K                   barely measurable. 
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13.47 

 Sound waves propagate through a media as pressure waves that cause the media 
to go through isentropic compression and expansion processes. The speed of 

sound c is defined by c2 = (∂P/∂ρ)
s
 and it can be related to the adiabatic 

compressibility, which for liquid ethanol at 20°C is 9.4 × 10-10 m2/N. Find the 
speed of sound at this temperature. 

 

 c2 = (∂P
∂ρ)s = −v2(∂P

∂v
)s  = 

1

-
1
v(

∂v
∂P

)s ρ
 = 

1
β

s
ρ 

 From Table A.4 for ethanol,     ρ = 783 kg/m3 

 ⇒ c = ( 1

940×10-12×783
)1/2

 = 1166 m/s 
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13.48 

For commercial copper at 25oC (see table A.3) the speed of sound is about 4800 
m/s. What is the adiabatic compressibility βs? 

 

 From Eq.13.43 and Eq.13.40 

    c2 = (∂P
∂ρ)s = −v2(∂P

∂v
)s  = 

1

-
1
v(

∂v
∂P

)s ρ
 = 

1
β

s
ρ 

 Then we get using density from Table A.3 

    βs = 
1

c2ρ = 
1

48002 × 8300
  

s2 m3

m2 kg
 = 

1000
48002 × 8300

  
1

kPa 

         = 5.23 × 10−9  kPa−1 

 

  

Cu 
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13.49 

 Consider the speed of sound as defined in Eq. 13.43. Calculate the speed of sound 
for liquid water at 20°C, 2.5 MPa, and for water vapor at 200°C, 300 kPa, using 
the steam tables. 

 From Eq. 13.43:     c2 = (∂P
∂ρ)s = -v2(∂P

∂v
)s 

 Liquid water at 20oC, 2.5 MPa, assume 

  (∂P
∂v

)s ≈ (∆P
∆v

)
T
 

 Using saturated liquid at 20oC and compressed liquid at 20oC, 5 MPa, 

 c2 = -(0.001 002+0.000 9995
2 )2( 5-0.0023

0.000 9995-0.001 002) =  2.002×106 

  =>        c  =  1415 m/s 

 Superheated vapor water at 200oC, 300 kPa 

   v = 0.7163 m3/kg,   s = 7.3115 kJ/kg K 

 At P = 200 kPa &  s = 7.3115 kJ/kg K:   T = 157oC,     v = 0.9766 m3/kg 

 At P = 400 kPa &  s = 7.3115 kJ/kg K:   T = 233.8oC,  v = 0.5754 m3/kg 

  c2 = -(0.7163)2 ( 0.400-0.200
0.5754-0.9766) = 0.2558 × 106 m2/s2 

   =>        c  = 506 m/s 
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13.50 

Soft rubber is used as a part of a motor mounting. Its adiabatic bulk modulus is Bs 

= 2.82 × 106 kPa, and the volume expansivity is αp = 4.86 × 10-4 K-1. What is the 

speed of sound vibrations through the rubber, and what is the relative volume 
change for a pressure change of 1 MPa? 

 

 From Eq.13.43 and Eq.13.40 

    c2 = (∂P
∂ρ)s = −v2(∂P

∂v
)s  = 

1

-
1
v(

∂v
∂P

)s ρ
 = 

1
β

s
ρ = 

B
s

ρ  

        = 2.82 × 106 × 1000 Pa / 1100 kg/m3 = 2.564 × 106  m2/s2 

    c = 1601 m/s 

 If the volume change is fast it is isentropic and if it is slow it is isothermal. We 
will assume it is isentropic 

       
1
V(∂V

∂P
)s  = −βs = − 

1
Bs

  

 then 

    
∆V
V  = − 

∆P
Bs

 =  − 
1000

2.82 × 106 = −3.55 × 10−4  

 



  Sonntag, Borgnakke and van Wylen 

 
13.51 

Liquid methanol at 25oC has an adiabatic compressibility of  1.05 × 10-9 m2/N. 
What is the speed of sound? If it is compressed from 100 kPa to 10 MPa in an 
insulated piston/cylinder, what is the specific work? 

 

 From Eq.13.43 and Eq.13.40 and the density from table A.4 

    c2 = (∂P
∂ρ)s = −v2(∂P

∂v
)s  =  

1
β

s
ρ = 

1

1.05 × 10-9 × 787
  

        = 1.210 × 106  m2/s2  

  c  = 1100 m/s 
 The specific work becomes 

  w = ⌡⌠P dv = ⌡⌠P (-β
s
v ) dP = − ⌡⌠ β

s
v P dP = −βs v ⌡⌠

1

2

 P dP 

      = −βs v 0.5 (P
2
2 – P

2
1)  

    = −1.05 × 10-9 m2/N × 
0.5
787 m3/kg × (10 0002 – 1002) × 10002 Pa2 

    = −66.7 J/kg 
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13.52 

Use Eq. 13.32 to solve for (∂T/∂P)s in terms of T, v, Cp and αp. How much higher 

does the temperature become for the compression of the methanol in Problem 

13.51?  Use αp = 2.4 × 10-4 K-1 for methanol at 25oC. 

 

 From Eq.13.32 we get for constant s (ds = 0) and Eq.13.37 

    (∂T
∂P

)s =  
T
Cp

 (∂v
∂T

)P  =  
T
Cp

 αp v 

 Assuming the derivative is constant for the isentropic compression we estimate 
with heat capacity and density (v = 1/ρ) from Table A.4 

   ∆Ts = (∂T
∂P

)s ∆Ps = 
T
Cp

 αp v ∆Ps 

          = 
298.15
2.55  

K kg K
kJ  × 2.4 × 10-4 K-1 × 

1
787 

m3

kg × (10 000 – 100) kPa 

          = 0.353 K 
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Equations of State 
 
13.53 
 Use the equation of state as shown in Example 13.3 where changes in enthalpy 

and entropy were found. Find the isothermal change in internal energy in a similar 
fashion; do not compute it from enthalpy.  

 
 The equation of state is 

     
Pv
RT = 1 – C’ 

P
T4 

 and to integrate for changes in u from eq.13.31 we it explicit in P as 

           P = T4 ( 
v
R T3 + C’ )−1 

 Now perform the partial derivative of P 

  (∂P
∂T

)v = 4 T3 ( 
v
R T3 + C’ )−1 − T4 ( 

v
R T3 + C’ )−2 3 

v
R T2 

   = 4 
P
T − 

P2

T4 3 
v
R T2 = 4 

P
T − 3 

P
T × 

Pv
RT =  

P
T [ 4 – 3 

Pv
RT ]  

 Substitute into Eq.13.31 

  duT = [ T  (∂P
∂T

)v – P ] dvT = [ P( 4 – 3 
Pv
RT) – P ] dvT 

         = 3 P ( 1 –  
Pv
RT)  dvT = 3 P C’ 

P
T4  dvT 

The P must be eliminated in terms of v or the opposite, we do the latter as from 
the equation of state 

  v = 
RT
P  – C’ R 

1

T3         ⇒ dvT = – 
RT

P2  dPT 

so now 

    duT = 3 C’ 
P2

T4 dvT = – 3 C’ R 
1

T3  dPT 

 and the integration becomes 

   u2 – u1 =  − 3 C’ R T−3 (P2 – P1) 
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13.54 
 Evaluate changes in an isothermal process for u, h and s for a gas with an 

equation of state as P (v − b) = RT. 
 

 From Eq.13.31 we get 

   duT = [ T  (∂P
∂T

)v – P ] dvT = [ T ( 
R

v – b ) – P ] dvT = [ P – P] dvT = 0 

 From Eq.13.27 we get using v = b + RT/P  

   dhT = [ v – T (∂v
∂T

)P ] dPT = [ v – T ( 
R
P ) ] dPT =  b dPT  

 From eq.13.32 or Eq.13.34 we get  

         dsT = – (∂v
∂T

)P dPT  =  (∂P
∂T

)v dvT  

    = – 
R
P dPT  =  

R
v – b dvT 

 Now the changes in u, h and s can be integrated to find 

    u2 – u1 = 0 

    h2 – h1 = ⌡⌠ b dP = b(P2 – P1) 

    s2 – s1 = –R ln 
P2
P1

 = R ln 
v2 – b

v1 – b         
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13.55 

 Two uninsulated tanks of equal volume are connected by a valve. One tank 
contains a gas at a moderate pressure P

1
, and the other tank is evacuated. The 

valve is opened and remains open for a long time. Is the final pressure P
2
 greater 

than, equal to, or less than P
1
/2?  Hint: Recall Fig. 13.5. 

 

 Assume the temperature stays constant then for an ideal gas the pressure will be 
reduced to half the original pressure. For the real gas the compressibility factor 
maybe different from 1 and then changes towards one as the pressure drops. 

 
  

V
A

 = V
B
   ⇒   V

2
 = 2V

1
,   T

2
 = T

1
 = T 

         
P

2

P
1
 = 

V
1

V
2
  
Z

2

Z
1
  
mRT
mRT  =  

1
2 

Z
2

Z
1
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GAS EVAC.  

 
If T < T

B
,   Z

2
 > Z

1
   ⇒   

P
2

P
1
 > 

1
2 

If T > T
B
,   Z

2
 < Z

1
   ⇒   

P
2

P
1
 < 

1
2 

P 

Z 

1 

1 

2 

2 
1.0 

T > T B

T < T B 

P 1 P 2  
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13.56 

 Determine the reduced Boyle temperature as predicted by an equation of state (the 
experimentally observed value for most substances is about 2.5), using the van 
der Waals equation and the Redlich–Kwong equation. Note:  It is helpful to use 
Eqs. 13.47 and 13.48 in addition to Eq. 13.46 

The Boyle temp. is that T at which     lim
P→0

(∂Z
∂P

)T = 0 

 But lim
P→0

(∂Z
∂P

)T = lim
P→0 

Z-1
P-0 = 

1
RT 

lim
P→0(v - 

RT
P ) 

van der Waals:      P = 
RT
v-b − 

a

v2 

    multiply by 
v-b
P , get 

    v-b = 
RT
P  - 

a(v-b)

Pv2     or    v - 
RT
P  = b − 

a(1-b/v)
Pv  

    &    RT × lim
P→0

(∂Z
∂P

)T  = b −  
a(1-0)

RT   = 0    only at T
Boyle

 

    or    T
Boyle

 = 
a

Rb = 
27
8  T

C
 = 3.375 TC 

Redlich-Kwong:        P = 
RT
v-b − 

a

v(v+b)T1/2 

    as in the first part, get 

    v - 
RT
P  = b − 

a(1-b/v)

Pv(1+b/v)T1/2 

    & RT × lim
P→0

(∂Z
∂P

)T  = b − 
a(1-0)

Pv(1+0)T1/2  = 0     only at T
Boyle

 

    or    T
3/2
Boyle = 

a
Rb = 

0.427 48 R2
 T

5/2
C

RP
C

×
P

C

0.08 664 R T
C
 

    T
Boyle

 = (0.427 48
0.086 64)

2/3
T

C
 = 2.9 TC 
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13.57 
 Develop expressions for isothermal changes in internal energy, enthalpy and 

entropy for a gas obeying the van der Waals equation of state. 
 

van der Waals equation of state:       P = 
RT
v-b − 

a

v2 

    (∂P
∂T

)v = 
R

v-b 

    (∂u
∂v
)T = T(∂P

∂T
)v - P = 

RT
v-b − 

RT
v-b + 

a

v2 

    (u
2
-u

1
)T = 

⌡

⌠

1

2

 [T(∂P
∂T

)v - P]dv = 
⌡

⌠

1

2

 
a

v2dv = a(
1
v

1
 − 

1
v

2
) 

    (h
2
-h

1
)T = (u

2
-u

1
)T + P

2
v

2
 - P

1
v

1
  =  P

2
v

2
 − P

1
v

1
 + a(

1
v

1
 − 

1
v

2
) 

    (s
2
-s

1
)T = 

⌡

⌠

1

2

(∂P
∂T

)v dv = 
⌡
⌠

1

2

 
R

v-b dv = R ln(v
2
-b

v
1
-b) 
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13.58 
 Develop expressions for isothermal changes in internal energy, enthalpy and 

entropy for a gas obeying Redlich-Kwong equation of state. 
 

Redlich-Kwong equation of state:      P = 
RT

v − b
 − 

a

v(v + b)T1/2 

   (∂P
∂T

)v = 
R

v − b + 
a

2v(v + b)T3/2 

From eq.13.31 

    (u
2
 − u

1
)T = 

⌡

⌠

1

2

 
3a

2v(v + b)T1/2 dv = 
−3a

2bT1/2  ln[(
v

2
 + b

v
2

)(
v1

v1 + b)] 

We find change in h from change in  u, so we do not do the derivative in 
eq.13.27. This is due to the form of the EOS. 

    (h
2
 − h

1
)T = P

2
v

2
 − P

1
v

1
 − 

3a

2bT1/2 ln[(v2 + b
v2

)( v1

v1 + b)] 

Entropy follows from Eq.13.35 

    (s
2
 − s

1
)T = 

⌡

⌠

1

2

[ R
v − b

 + 
 a/2

v(v + b)T3/2]dv 

    = R ln(v2 − b

v1 − b
) −  

a

2bT3/2  ln[(v2 + b
v2

)( v1

v1 + b)] 
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13.59 

Consider the following equation of state, expressed in terms of reduced pressure 

and temperature:     Z = 1 + (Pr/14Tr)[1 – 6T
−2
r ].  What does this predict for the 

reduced Boyle temperature? 
 

   Z = 
Pv
RT = 1 + 

 Pr

14 Tr
(1 - 

6

Tr
2) 

 






∂Z

∂P
 
T

 = 
1

14PcTr
(1 - 

6

Tr
2)      =>     Lim

P→0 






∂Z

∂P
 
T

 = 0  at Tboyle 

 (1 - 
6

Tr
2) = 0       Tr = 6 = 2.45 
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13.60 

What is the Boyle temperature for the following equation of state:  P = 
RT
v-b - 

a
v2T

 

 where a and b are constants. 
 

   P = 
RT
v-b − 

a

v2T
 

    Multiplying by   
v-b
P    gives:     v − b = 

RT
P  − 

a(1-b/v)
PvT  

    Using solution from 13.56  for T
Boyle

: 

    lim
P→0

(v − 
RT
P ) = b − 

a(1-0)
RT×T

 = b − 
a

RT2 = 0 at T
Boyle

 

    or     T
Boyle

 = 
a

Rb = 
27
64 

R2T
3
C

PC
 
1
R 

8PC

RTC
 = 

27
8  TC 
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13.61 

 Show that the van der Waals equation can be written as a cubic equation in the 
compressibility factor involving the reduced pressure and reduced temperature as  

   Z3 – (
P

r

8T
r
 + 1) Z2 + 









27 P

r

64 T
2
r

 Z – 
27 P

r
2

 512 T
r
 3

 = 0 

 van der Waals equation, Eq.13.55:       P = 
RT
v-b - 

a

v2 

    a = 
27
64 

R2T
C

2

P
C

    b = 
RT

C

8P
C

 

 multiply equation by 
v2(v-b)

P  

 Get:  v3 - (b + 
RT
P ) v2 + (

a
P) v - 

ab
P  = 0 

 Multiply by   
P3

 R3 T3   and substitute  Z = 
Pv
RT 

 Get: Z3 – (
bP
RT + 1) Z2 + (

aP

 R2T2) Z – (
abP2

R3 T3)  = 0 

 Substitute for a and b, get: 

   Z3 – (
Pr

8Tr
 + 1) Z2 + 







27 Pr

64 T
2
r

 Z – 
27 Pr

2

 512 Tr 
3 = 0 

 Where  Pr = 
P

 Pc
,   Tr = 

T
 Tc
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13.62 
 Determine the second virial coefficient B(T) using the van der Waals equation of 

state. Also find its value at the critical temperature where the experimentally 
observed value is about –0.34 RTc/Pc. 

 

From Eq. 13.51: B(T) = - lim
P→0

 α where Eq. 13.47:  α = 
RT
P  − v 

van der Waals:      P = 
RT
v-b - 

a

v2  which we can multiply by  
v-b
P , get 

   v - b = 
RT
P  − 

a(v-b)

Pv2        or    v − 
RT
P  = b − 

a(1-b/v)
Pv  

Taking the limit for P -> 0 then (Pv -> RT  and   v -> ∞ ) we get : 

  B(T) = b − a/RT = 
RTC

P
C

 ( 
1
8 − 

27 TC

64 T  ) 

where a,b are from Eq.13.59.  At T = TC   then we have 

   B(T
C
) = 

RTC

P
C

( - 
19
64) = −0.297 

RTC

P
C

  

 



  Sonntag, Borgnakke and van Wylen 

 
13.63 
 Determine the second virial coefficient B(T) using the Redlich-Kwong equation 

of state. Also find its value at the critical temperature where the experimentally 
observed value is about –0.34 RTc/Pc. 

 

From Eq.13.51: B(T) = - lim
P→0

 α where Eq.13.47:  α = 
RT
P  − v 

For Redlich Kwong the result becomes 

  v − 
RT
P  = b − 

a(1- b/v)

Pv(1 + b/v) T1/2     

 Taking the limit for P -> 0 then (Pv -> RT  and   v -> ∞ ) we get : 

  =>     B(T) = b − 
a

RT3/2 

Now substitute Eqs. 13.61 and 13.62 for a and b, 

  B(T) = 
RTC

P
C

 [0.08664 - 0.42748 





TC

T

3/2] 

and evaluated at TC it becomes 

 B(TC) = 
RTC

P
C

 [0.08664 - 0.42748] = −0.341 
RTC

P
C
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13.64 

 One early attempt to improve on the van der Waals equation of state was an 
expression of the form 

     P = 
RT
v-b - 

a

v2T
 

 Solve for the constants a, b, and v
C
 using the same procedure as for the van der 

Waals equation. 

From the equation of state take the first two derivatives of P with v: 

    (∂P
∂v

)T = - 
RT

(v-b)2 + 
2a

v3T
    and    (∂2P

∂v2)T = - 
2RT

(v-b)3 - 
6a

v4T
 

Since both these derivatives are zero at the critical point: 

    - 
RT

(v-b)2 + 
2a

v3T
 = 0       and     - 

2RT

(v-b)3 - 
6a

v4T
 = 0 

Also,           P
C
 = 

RT
C

v
C
-b − 

a

v
2
C T

C

 

    solving these three equations: 

     v
C
 = 3b,    a = 

27
64 

R2T
3
C

P
C

,      b = 
RT

C

8P
C
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13.65 

 Calculate the difference in internal energy of the ideal-gas value and the real-gas 
value for carbon dioxide at the state 20°C, 1 MPa, as determined using the virial 
equation of state, including second virial coefficient terms. For carbon dioxide we 

have: B = -0.128 m3/kmol, T(dB/dT) = 0.266 m3/kmol, both at 20°C. 

virial eq.:    P = 
RT
v  + 

BRT

 v2   ; (∂P
∂T

) v = 
R
v + 

BR

v2  + 
RT

 v2 (
dB
dT) 

 u-u* = -
⌡

⌠

∞

v[ (∂P
∂T

) v - P]dv = - 
⌡

⌠

∞

v
[ 

RT2

 v2  (dB
dT)]dv  = - 

RT
v  [T (dB

dT)] 

Solution of virial equation (quadratic formula): 

 v
−

 = 
1
2 

R
−

T
P  [1 + 1 + 4BP/R

−
T ] where:  

R
−

T
P  = 

8.3145×293.15
1000  = 2.43737 

 v
−

 = 
1
2 × 2.43737  [1 + 1 + 4(-0.128)/2.43737 ] = 2.3018 m3/kmol 

Using the minus-sign root of the quadratic formula results in a compressibility 
factor < 0.5, which is not consistent with such a truncated equation of state. 

  u-u* =  
-8.3145 × 293.15

 2.3018  [0.266] = - 281.7 kJ/kmol 
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13.66 

 Calculate the difference in entropy of the ideal-gas value and the real-gas value 
for carbon dioxide at the state 20°C, 1 MPa, as determined using the virial 
equation of state.  Use numerical values given in Problem 13.65. 

 CO
2
 at T = 20oC, P = 1 MPa 

  s
*
P* - s

P
 =

⌡

⌠

v(P)

RT/P*

(∂P
∂T

)v dv ;  ID Gas,          s
*
P* - s

P
 =

⌡
⌠

v(P)

RT/P*

 
R
v dv = R ln 

P

P* 

  Therefore, at P:    s
*
P - s

P
 = -R ln 

P

P* +
⌡

⌠

v(P)

RT/P*

(∂P
∂T

)v dv  

  virial:     P = 
RT
v  + 

BRT

v2     and      (∂P
∂T

)v = 
R
v + 

BR

v2  + 
RT

v2 (dB
dT) 

  Integrating, 

  s
*
P - s

P
 = -R ln 

P

P* + R ln 
RT

P*v
 + R[B + T(dB

dT)](
1
v - 

P*

RT)  

    = R[ln 
RT
Pv + (B + T(dB

dT))
1
v ] 

  Using values for CO
2
 from solution 13.65, 

  s-
*
P - s-

P
 = 8.3145[ln 

2.437 37
2.3018  +(-0.128 + 0.266) 1

2.3018] 

    = 0.9743 kJ/kmol K 
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13.67 
 A rigid tank contains 1 kg oxygen at 160 K, 4 MPa. Determine the volume of the 

tank assuming we can use the Redlich-Kwong equation of state for oxygen. 
Compare the result with the ideal gas law. 

 
 For the ideal gas law:       Pv = RT       so     v = RT/P 

  v = 0.2598 × 160 / 4000 =  0.0104 m3/kg ; V = mv = 0.0104 m3 
 
 For Redlich-Kwong, Eq.13.57 and oxygen 
  Pc = 5040 kPa;  Tc = 154.6 K;  R = 0.2598 kJ/kg K 

  b = 0.08664 
RTc

Pc
 = 0.08664 × 

0.2598 × 154.6
5040  = 0.000 690 5 m3/kg 

  a = 0.427 48 
R2T

5/2
c

Pc
 = 0.427 48 × 

0.25982 × 154.65/2

5040  = 1.7013  

 

  P = 
RT

v − b
 − 

a

v(v + b)T1/2        trial and error to get v due to nonlinearity 

 

  v = 0.01 m3/kg  ⇒ P = 4465.1 – 1279.9 = 3185.2 kPa   too low 

  v = 0.008 m3/kg  ⇒ P = 5686.85 – 1968.1 = 3718.8 kPa  too low 

  v = 0.0075 m3/kg  ⇒ P = 6104.41 – 2227.43 = 3876.98 kPa 

  v = 0.007 m3/kg  ⇒ P = 6588.16 – 2541.70 = 4046.46 kPa 
  

Now we interpolate between the last two entries and check 

  v = 0.00714 m3/kg ⇒ P = 6445.15 – 2447.3 = 3997.8 kPa   OK 

  V = mv = 0.00714 m3     (69% of the ideal gas value) 
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13.68 
 A flow of oxygen at 230 K, 5 MPa is throttled to 100 kPa in a steady flow 

process. Find the exit temperature and the specific entropy generation using 
Redlich-Kwong equation of state and ideal gas heat capacity. Notice that this 
becomes iterative due to the nonlinearity coupling h, P, v and T. 

 

 C.V. Throttle. Steady single flow, no heat transfer and no work. 

 Energy eq.:    h1 + 0 = h2 + 0         so constant h 

 Entropy Eq.: s1 + sgen = s2               so entropy generation 

 Find the change in h from Eq.13.26 assuming  Cp is constant. 

Redlich-Kwong equation of state:      P = 
RT

v − b
 − 

a

v(v + b)T1/2 

   (∂P
∂T

)v = 
R

v − b + 
a

2v(v + b)T3/2 

From eq.13.31 

    (u2 − u1)T = 
⌡

⌠

1

2

 
3a

2v(v + b)T1/2 dv = 
−3a

2bT1/2 ln[(
v

2
 + b

v
2

)(
v1

v1 + b)] 

We find change in h from change in  u, so we do not do the derivative in 
eq.13.27. This is due to the form of the EOS. 

    (h2 − h1)T = P2v2 − P1v1 − 
3a

2bT1/2 ln[(v2 + b
v2

)( v1

v1 + b)] 

Entropy follows from Eq.13.35 

    (s2 − s1)T = 
⌡

⌠

1

2

[ R
v − b

 + 
 a/2

v(v + b)T3/2]dv 

    = R ln(v2 − b

v1 − b
) −  

a

2bT3/2  ln[(v2 + b
v2

)( v1

v1 + b)] 

 
  Pc = 5040 kPa;  Tc = 154.6 K;  R = 0.2598 kJ/kg K 

  b = 0.08664 
RTc

Pc
 = 0.08664 × 

0.2598 × 154.6
5040  = 0.000 690 5 m3/kg 
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  a = 0.427 48 
R2T

5/2
c

Pc
 = 0.427 48 × 

0.25982 × 154.65/2

5040  = 1.7013  

       We need to find T2 so the energy equation is satisfied 

   h2 – h1 =  h2 – hx + hx – h1  = Cp(T2 – T1) + (h2 − h1)T = 0 

 and we will evaluate it similar to Fig. 13.4, where the first term is done from state 
x to 2 and the second term is done from state 1 to state x (at T1 = 230 K). We do 
this as we assume state 2 is close to ideal gas, but we do not know T2. 
We first need to find v1 from the EOS, so guess v and find P 

  v1 = 0.011 m3/kg     ⇒    P =  5796.0 – 872.35 = 4924    too low 

  v1 = 0.01082 m3/kg     ⇒    P =  5899.0 – 900.7 = 4998.3   OK 
 Now evaluate the change in h along the 230 K from state 1 to state x, that requires 

a value for vx. Guess ideal gas at Tx = 230 K,   

vx = RTx/P2 = 0.2598 × 230/100 = 0.59754 m3/kg 
 From the EOS:      P2 =  100.1157 – 0.3138 = 99.802 kPa  (close) 
 A few more guesses and adjustments gives 

  vx = 0.59635 m3/kg;   P2 =  100.3157 – 0.3151 = 100.0006 kPa    OK 

 (hx − h1)T = Pxvx − P1v1 − 
3a

2bT1/2 ln[(vx + b
vx

)( v1

v1 + b)] 

  = 59.635 – 5000 × 0.01082 – 243.694 ln [
0.59704
0.59635 × 

0.01082
0.01151] 

  = 59.635 – 54.1 + 14.78335 = 20.318 kJ/kg 
 

From energy eq.:    T2 = T1 –  (hx − h1)T/Cp = 230 – 20.318 / 0.922 = 208 K 

Now the change in s is done in a similar fashion, 

 sgen = s2 – s1 = (sx − s1)T + s2 – sx 

        = R ln(vx − b

v1 − b
) −  

a

2bT3/2  ln[(vx + b
vx

)( v1

v1 + b)] + Cp ln 
T2

Tx
  

        = 0.2598 ln(
0.59566

0.0101295) – 0.35318 ln (0.94114) + 0.922 ln(
208
230) 

        = 1.05848 + 0.021425 – 0.092699 

        = 0.987 kJ/kg K 
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Generalized Charts 
 
13.69 

 A 200-L rigid tank contains propane at 9 MPa, 280°C. The propane is then 
allowed to cool to 50°C as heat is transferred with the surroundings. Determine 
the quality at the final state and the mass of liquid in the tank, using the 
generalized compressibility chart, Fig. D.1. 

 Propane C
3
H

8
:  V = 0.2 m3, P

1
 = 9 MPa, T

1
 = 280oC = 553.2 K 

 cool to T
2
 = 50 oC = 323.2 K 

 From Table A.2:    T
C
 = 369.8 K,    P

C
 = 4.25 MPa 

    P
r1

 = 
9

4.25 = 2.118,   T
r1

 = 
553.2
369.8 = 1.496     From Fig. D.1:   Z

1
 = 0.825 

    v
2
 = v

1
 = 

Z
1
RT

1

P
1

 = 
0.825×0.188 55×553.2

9 000  = 0.00956 m3/kg 

 From Fig. D.1 at T
r2

 = 0.874, 

    P
G2

 = 0.45 × 4250 = 1912 kPa 

    v
G2

 = 0.71 × 0.188 55 × 323.2/1912 = 0.02263 m3/kg 

    v
F2

 = 0.075 ×0.188 55× 323.2/1912 = 0.00239 m3/kg 

 0.00956 = 0.002 39 + x
2
(0.02263 - 0.00239)    =>       x

2
 = 0.354 

 m
LIQ 2

 = (1-0.354)×0.2/0.00956 = 13.51 kg  

 

  

These tanks 
contain liquid 
propane. 
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13.70 

 A rigid tank contains 5 kg of ethylene at 3 MPa, 30°C. It is cooled until the 
ethylene reaches the saturated vapor curve. What is the final temperature? 

 
 

�������������������������������
�������������������������������
�������������������������������2 4 C  H

T

v

1

2

 

V = const   m = 5 kg 

P
1
 = 3 MPa   T

1
 = 30 oC = 303.2 K 

cool to x
2
 = 1.0 

P
r1

 = 
3

5.04 = 0.595,    T
r1

 = 
303.2
282.4 = 1.074 

 
Fig. D.1:    Z

1
 =  0.82 

  P
r2

 = P
r1

 
Z

2
T

r2

Z
1
T

r1
 = 0.595 

Z
G2

T
r2

0.82×1.074
 = 0.6756 Z

G2
T

r2
 

Trial & error: 

     T
r2

         Z
G2

        P
r2

        P
r2 CALC

 

   0.866     0.72       0.42       0.421        ~ OK       =>  T
2
 = 244.6 K 
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13.71 

 Refrigerant-123, dichlorotrifluoroethane, which is currently under development as 
a potential replacement for environmentally hazardous refrigerants, undergoes an 
isothermal steady flow process in which the R-123 enters a heat exchanger as 
saturated liquid at 40°C and exits at 100 kPa. Calculate the heat transfer per 
kilogram of R-123, using the generalized charts, Fig. D.2 

 

 R-123:  M = 152.93,  TC = 456.9 K,  PC = 3.67 MPa 

 
 

1 2 
Heat exchanger 

 

 

T1 = T2 = 40 oC,   x1 = 0 
P2 = 100 kPa 
 

 

 Tr1 = Tr2 = 313.2/456.9 = 0.685,     Pr2 = 0.1/3.67 = 0.027 

 From Fig. D.2:    Pr1 = 0.084,    (h* − h)1/RTC = 4.9 

From D.1:   saturated    P1 = 0.084×3670 = 308 kPa 

 P2 < P1 with no work done, so process is irreversibel.  

Energy Eq.:     q + h1 = h2,     Entropy Eq.:    s1 +  ∫ dq/T + sgen = s2,   sgen > 0 

 From Fig. D.2:     (h*- h)2/RTC = 0.056 

 q = h2 - h1 = 8.3145 × 456.9 [-0.056 + 0 + 4.90]/152.93 = 120.4 kJ/kg 

 



  Sonntag, Borgnakke and van Wylen 

 
13.72 

 An ordinary lighter is nearly full of liquid propane with a small amount of vapor, 

the volume is 5 cm3, and temperature is 23°C. The propane is now discharged 
slowly such that heat transfer keeps the propane and valve flow at 23°C. Find the 
initial pressure and mass of propane and the total heat transfer to empty the 
lighter. 

 Propane C
3
H

8
        T

1
 = 23oC = 296.2 K = constant,     x1 = 0.0 

     V
1
 = 5 cm3 = 5×10-6 m3,     T

r1
 = 296.2/369.8 = 0.804     

 From Figs. D.1 and D.2, 

    P
1
 = P

G T1
 = 0.25×4.25 = 1.063 MPa,     Z

1
 = 0.04  

    (h
*
1-h

1
) = 0.188 55×369.8×4.51 = 314.5 

  m
1
 = 

P
1
V

1

Z
1
RT

1
 = 

1063×5×10-6

0.04×0.188 55×296.2
 = 0.00238 kg 

 State 2:  Assume vapor at 100 kPa, 23oC  

       Therefore, m
2
 much smaller than m

1
 ( ∼ 9.0 × 10-6 kg) 

      Q
CV

  = m
2
u

2 
- m

1
u

1
 + m

e
h

e
  

       = m
2
h

2
 - m

1
h

1
 - (P

2
-P

1
)V + (m

1
-m

2
)h

e
 

   = m
2
(h

2
-h

e
) + m

1
(h

e
-h

1
) - (P

2
-P

1
)V  

    (h
e
 - h

1
) = 0 + 0 + 314.5 

    Q
CV

 = ≈ 0 + 0.00238(314.5) - (100-1063)×5×10-6  = 0.753 kJ 

 

  

Actual lighters uses 
butane and some 
propane. 
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13.73 

 A piston/cylinder contains 5 kg of butane gas at 500 K, 5 MPa. The butane 
expands in a reversible polytropic process to 3 MPa, 460 K. Determine the 
polytropic exponent n and the work done during the process. 

 

C
4
H

10
   m = 5 kg   T

1
 = 500 K   P

1
 = 5 MPa 

 Rev. polytropic process:      P
1
V

n
1 = P

2
V

n
2  

 T
r1

 = 
500

425.2 = 1.176,   P
r1

 = 
5

3.8 = 1.316     From Fig. D.1:    Z
1
 = 0.68 

 T
r2

 = 
460

425.2 = 1.082,   P
r2

 = 
3

3.8 = 0.789     From Fig. D.1:    Z
2
 = 0.74 

    V
1
 = 

mZRT
P  = 

5 × 0.68 × 0.1430 × 500
5000  = 0.0486 m3 

 V
2
 = 

mZRT
P  = 

5 × 0.74 × 0.1430 × 460
3000  = 0.0811 m3 

Solve for the polytropic exponent, n, as 

 n = ln(P
1
/P

2
) / ln(V

2
/V

1
) = ln (

5
3) / ln (

0.0811
0.0486) = 0.9976 

 
1
W

2
 = ⌡⌠

1

2

 PdV = 
P2V2 - P1V1

1-n  = 
3000×0.0811 - 5000×0.0486

1 - 0.9976   = 125 kJ 
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13.74 

 Calculate the heat transfer during the process described in Problem 13.73. 

From solution 13.73, 

 V
1
 = 0.0486 m3,   V

2
 = 0.0811 m3,    

1
W

2
 = 125 kJ 

 T
r1

 = 
500

425.2 = 1.176,   P
r1

 = 
5

3.8 = 1.316     From Fig. D.1:    Z
1
 = 0.68 

T
r2

 = 1.082,  P
r2

 = 0.789,  T
2
 = 460 K 

 From Fig. D.2:    (h*- h)
1
 = 1.30 RT

C
 ,    (h*- h)

2
 = 0.90 RT

C
 

 h
*
2 - h

*
1 = 1.716(460 - 500) = -83.1 kJ/kg 

 h
2
 - h

1
 = -83.1 + 

8.3145×425.2
58.124  (-0.90 + 1.30)  = -58.8 kJ/kg 

 U
2
 - U

1
 = m(h

2
 - h

1
) - P

2
V

2
 + P

1
V

1
 

    = 5(-58.8) – 3000 × 0.0811 + 5000 × 0.0486  = -288.3 kJ 

 
1
Q

2
 = U

2
 - U

1
 + 

1
W

2
 = -174.3 kJ 
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13.75 

 A cylinder contains ethylene, C
2
H

4
, at 1.536 MPa, −13°C. It is now compressed 

in a reversible isobaric (constant P) process to saturated liquid. Find the specific 
work and heat transfer. 

Ethylene C
2
H

4
 ;   P

1
 = 1.536 MPa = P

2
 ,    T

1
 = -13oC = 260.2 K 

 State 2: saturated liquid, x2 = 0.0          

    T
r1

 = 
260.2
282.4 = 0.921   P

r1
 = P

r2
 = 

1.536
5.04  = 0.305  

 From Figs. D.1, D.2: Z
1
 = 0.85 , (h

*
1-h

1
)/RT

c
 = 0.40  

    v
1
 = 

Z
1
RT

1

P
1

 = 
0.85×0.29637×260.2

1536  = 0.042675 

    (h
*
1-h

1
) = 0.296 37×282.4×0.40 = 33.5 

 From Figs. D.1, D.2: T
2
 = 0.824×282.4 = 232.7 K 

    Z
2
 = 0.05 ,   (h

*
2-h

2
)/RT

c
 = 4.42 

    v
2
 = 

Z
2
RT

2

P
2

 = 
0.05×0.29637×232.7

1536  = 0.002245 

    (h
*
2-h

2
) = 0.296 37×282.4×4.42 = 369.9  

    (h
*
2-h

*
1) = C

P0
(T

2
-T

1
) = 1.5482(232.7-260.2) = -42.6  

 w
12

 = ⌡⌠ Pdv = P(v
2
-v

1
) = 1536(0.002 245-0.042 675)  = -62.1 kJ/kg 

 q
12

  = (u
2
-u

1
) + w

12
 = (h

2
-h

1
)  = -369.9  - 42.6 + 33.5 =  -379 kJ/kg 
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13.76 

 Carbon dioxide collected from a fermentation process at 5°C, 100 kPa should be 
brought to 243 K, 4 MPa in a steady flow process. Find the minimum amount of 
work required and the heat transfer. What devices are needed to accomplish this 
change of state? 

    T
ri
 = 

278.2
304.1 = 0.915,    P

ri
 = 

100
7380 = 0.0136 

 From D.2 and D.3 : (h*-h)
ri

/RT
C
 = 0.02,   (s*-s)ri/R = 0.01   

    T
re

 = 
243

304.1 = 0.80,    P
re

 = 
4

7.38 = 0.542   

From D.2 and D.3:      (h*-h)
re

/RT
C
 = 4.5 ,     (s*-s)re/R = 4.74 

 (h
i
-h

e
) = - (h

*
i -h

i
) + (h

*
i -h

*
e) + (h

*
e-h

e
)  

   = - 0.188 92×304.1×0.01 + 0.8418(278.2-243)  

   + 0.188 92×304.1×4.5    = 287.6 kJ/kg 

  (s
i
-s

e
) = - (s

*
i -s

i
) + (s

*
i -s

*
e) + (s

*
e-s

e
) 

          = - 0.188 92×0.01 + 0.8418 ln(278.2/243)  

   - 0.188 92 ln(0.1/4) + 0.188 92×4.74  = 1.7044 kJ/kg K 

    wrev = (h
i
-h

e
) -T

0
(s

i
-s

e
)  = 287.6 - 278.2(1.7044) = -186.6 kJ/kg 

    qrev = (h
e
-h

i
) + wrev  = -287.6 -186.6 = -474.2 kJ/kg 

We need a compressor to bring the pressure up and a cooler to bring the 
temperature down. Cooling it before compression and intercooling between 
stages in the compressor lowers the compressor work. In an actual set-up we 
require more work than the above reversible limit. 
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13.77 

 Consider the following equation of state, expressed in terms of reduced pressure 
and temperature: 

    Z = 1 + 
 Pr

14 Tr
 (1 - 

 6

 Tr
2 ) 

 What does this equation predict for enthalpy departure from the ideal gas value at 
the state Pr = 0.4, Tr = 0.9 ?   

   Z = 
Pv
RT = 1 + 

 Pr

14 Tr
(1 - 

6

Tr
2) 

 v = 
RT
P  + 

RTc

14Pc
 (1 - 

6Tc
2

T2 ) ;     






∂v

∂T p
 = 

R
P + 

12RT
3
c

14PcT
3 

 v - T 






∂v

∂T p
 = 

RTc

14Pc
 - 

18RT
3
c

14PcT
2  

Now Eq.13.27 is integrated with limits similar to Eq.13.62 

 h - h* = ⌡⌠
0

P

 [v - T 






∂v

∂T p
 ] dP = 

RTc

14  (1 − 
18

Tr
2) Pr = 0.606 RTc 
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 Consider the following equation of state, expressed in terms of reduced pressure 
and temperature: 

    Z = 1 + 
 Pr

14 Tr
 (1 - 

 6

 Tr
2 ) 

 What does this equation predict for entropy departure from the ideal gas value at 
the state Pr = 0.4, Tr = 0.9 ?   

 

  The entropy departure is the change in s for a real gas minus the change in s 
for an ideal gas, so from Eq.13.32 and eq.8.23 we get 

    d(s - s*) = Cp
dT
T  - 







∂v

∂T
 
p
 dP - [ Cp

dT
T  - 

R
P dP] = [R

P − 






∂v

∂T
 
p
] dP 

Solve now for v from the compressibility factor ( Z = Pv/RT) to get 

   Z = 
Pv
RT = 1 + 

 Pr

14 Tr
(1 − 

6

Tr
2) 

 v = 
RT
P  + 

RTc

14Pc
 (1 − 

6Tc
2

T2 ) ;     






∂v

∂T
 
p
 = 

R
P + 

12RT
3
c

14PcT
3 

 s - s* = ⌡⌠
0

P

 [R
P - 







∂v

∂T
 
p
] dP =  ⌡⌠

0

P

 [ − 
12RT

3
c

14PcT
3 ] dP = − 

6
7 R 

Pr

T
3
r

 

Evaluate at  Pr = 0.4, Tr = 0.9 to get 

s - s* = −0.4703 R 
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 A flow of oxygen at 230 K, 5 MPa is throttled to 100 kPa in a steady flow 
process. Find the exit temperature and the entropy generation. 

 
  

���1 2

 

      Process:  Throttling 

      Small surface area:  Q
.
 = 0;    

      No shaft:      W
.

 = 0   

      Irreversible:       S
.
gen > 0 

 

 We will soove the problem using generalized charts. 

 Tri = 
230

154.6 = 1.488,   Pri = 
5

5.04 = 0.992,    Pre = 
0.1
5.04 = 0.02 

 From D.2:       (h
*
i -hi) = 0.2598 × 154.6 × 0.50 = 20.1 

Energy Eq.:    (he- hi) = 0 = - (h
*
e-he) + (h

*
e-h

*
i ) + (h

*
i -hi)  

Assume  Te = 208 K , Tre = 1.345:     (h
*
e-h

*
i ) = 0.922(208 - 230) = -20.3 

 From D.2:    (h
*
e-h

e
) = 0.2598 × 154.6 × 0.01 = 0.4  

Check first law    (h
e
- h

i
) = -0.4 -20.3 + 20.1 ≈ 0  OK    =>    T

e
 = 208 K  

 From D.3, 

   (s
*
i -s

i
) = 0.2598×0.25 = 0.0649    and     (s

*
e-s

e
) = 0.2598×0.01 = 0.0026 

    (s
*
e-s

*
i ) = 0.9216 ln 

208
230 - 0.2598 ln 

0.1
5  = 0.9238 kJ/kg K 

 sgen = (s
e
- s

i
) = -0.0026 + 0.9238 + 0.0649 = 0.9861 kJ/kg K 
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 A cylinder contains ethylene, C2H4, at 1.536 MPa, −13°C. It is now compressed 
isothermally in a reversible process to 5.12 MPa. Find the specific work and heat 
transfer. 

 Ethylene C2H4  P1 = 1.536 MPa , T2 = T1 = -13oC = 260.2 K 

    Tr2 = Tr1 = 260.2 / 282.4 = 0.921  ,  Pr1 = 1.536 / 5.04 = 0.305 

From D.1, D.2 and D.3:    Z1 = 0.85 

   (h
*
1-h1) = 0.2964×282.4×0.40 = 33.5   and       (s

*
1-s1) = 0.2964×0.30 = 0.0889 

From D.1, D.2 and D.3:    Z2 = 0.17 ,     Pr2 = 5.12/5.04 = 1.016 (comp. liquid) 

   (h
*
2-h2) = 0.2964×282.4×4.0 = 334.8   and      (s

*
2-s2) = 0.2964×3.6 = 1.067 

Ideal gas:      (h
*
2-h

*
1) = 0        and       (s

*
2-s

*
1) = 0 - 0.2964 ln 

5.12
1.536 = -0.3568 

 1q2 = T(s2-s1) = 260.2(-1.067 - 0.3568 + 0.0889) = -347.3 kJ/kg 

 (h2 - h1) = -334.8 + 0 + 33.5 = -301.3 kJ/kg 

 (u2 - u1) = (h2-h1) - RT(Z2-Z1) = -301.3 - 0.2964×260.2(0.17-0.85) = -248.9 

 1w2 = 1q2  - (u2 - u1) = -347.3 + 248.9 = -98.4 kJ/kg 
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 Saturated vapor R-22 at 30°C is throttled to 200 kPa in a steady flow process. 
Calculate the exit temperature assuming no changes in the kinetic energy, using 
the generalized charts, Fig. D.2 and the R-22 tables, Table B.4. 

R-22 throttling process  1st law:     h
2
-h

1
 = (h

2
-h

*
2) + (h

*
2-h

*
1) + (h

*
1-h

1
) = 0 

a) Generalized Chart, Fig. D.2,    R = 8.31451/86.469 = 0.096156 

 T
r1

 = 
303.2
369.3 = 0.821   =>   (h

*
1-h

1
) = 0.096156 × 369.3 (0.53) = 18.82 

    For C
P0

, use h values from Table B.4 at low pressure. 

    C
P0

 ≈ 278.115 - 271.594) / (30 - 20) = 0.6521 kJ/kg K 

    Substituting:   (h
2
-h

*
2) + 0.6521(T

2
-30) + 18.82 = 0 

       at P
r2

 = 200/4970 = 0.040 

    Assume T
2
 = 5.0 oC  =>  T

r2
 =278.2/369.3 = 0.753 

    (h
*
2-h

2
) = RT × 0.07 = 0.096156 × 369.3 (0.07) = 2.49 

    Substituting :    -2.49 + 0.6521(5.0-30) + 18.82 = -0.03 ≈ 0 

    ⇒ T
2
 = 5.0 oC 

b)     R-22 tables, B.4:   at T
1
 = 30 oC, x

1
 = 1.0    =>   h

1
 = 259.12 kJ/kg 

    h
2
 = h

1
 = 259.12 , P

2
 = 0.2 MPa  =>  T

2
 = 4.7 oC 
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 250-L tank contains propane at 30°C, 90% quality. The tank is heated to 300°C. 
Calculate the heat transfer during the process. 

 
 

T 

v 

1 

2 

���������������������������
���������������������������
���������������������������C H 3 8 

 

V = 250 L = 0.25 m3 

T
1
 = 30 oC = 303.2 K, x

1
 = 0.90 

Heat to T
2
 = 300 oC = 573.2 K 

M = 44.094, T
C
 = 369.8 K, P

C
 = 4.25 MPa 

R = 0.188 55,   C
P0

 = 1.6794 

 T
r1

 = 0.82 → Fig. D.1:  

 Z
1
 = (1- x

1
) Z

f1
 + x

1
 Z

g1
 = 0.1 × 0.05 + 0.9 × 0.785 = 0.711 

 Fig D.2:       
h

*
1-h

1

 RT
c
  = 0.1 × 4.43 + 0.9 × 0.52 = 0.911 

P
SAT
r  = 0.30   P

SAT
1  = 1.275 MPa 

 m = 
1275×0.25

0.711×0.188 55×303.2
 = 7.842 kg 

 P
r2

 = 
7.842×Z

2
×0.188 55×573.2

0.25×4250
 = 

Z
2

1.254 

 at T
r2

 = 1.55    Trial and error on P
r2

 

     P
r2

 = 0.743  =>  P
2
 = 3.158 MPa,   Z

2
 = 0.94 ,  (h*- h)

2
 = 0.35 RT

C
 

 (h
*
2-h

*
1) = 1.6794(300-30)        = 453.4 kJ/kg 

 (h
*
1-h

1
) = 0.911×0.188 55×369.8 =  63.5 kJ/kg 

 (h
*
2-h

2
) = 0.35×0.188 55×369.8 =  24.4 kJ/kg 

 Q
12

 = m(h
2
-h

1
) - (P

2
-P

1
)V = 7.842(-24.4+453.4+63.5) - (3158-1275)×0.25 

        = +3862 - 471 = 3391 kJ 
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 The new refrigerant fluid R-123 (see Table A.2) is used in a refrigeration system 
that operates in the ideal refrigeration cycle, except the compressor is neither 
reversible nor adiabatic. Saturated vapor at -26.5°C enters the compressor and 
superheated vapor exits at 65°C. Heat is rejected from the compressor as 1 kW, 
and the R-123 flow rate is 0.1 kg/s. Saturated liquid exits the condenser at 37.5°C. 
Specific heat for R-123 is CP = 0.6 kJ/kg. Find the coefficient of performance. 

 

R-123: Tc = 456.9 K, Pc = 3.67 MPa,  M = 152.93 kg/kmol, R = 0.05438 kJ/kg K 

State 1: T1 = -26.5oC = 246.7 K, sat vap., x1 = 1.0 

 Tr1 = 0.54, Fig D.1, Pr1 = 0.01, P1 = Pr1Pc = 37 kPa 

 Fig. D.2,    h
*
1-h1 = 0.03 RTC = 0.8 kJ/kg 

State 2: T2 = 65oC = 338.2 K 

State 3: T3 = 37.5oC = 310.7 K, sat. liq., x3 = 0 

Tr3 = 0.68, Fig. D.1: Pr3 = 0.08,   P3 = Pr3Pc = 294 kPa  

 P2 = P3 = 294 kPa,   Pr2 = 0.080,   Tr2 = 0.74,  

Fig. D.2:     h
*
2-h2  = 0.25 RTC = 6.2 kJ/kg 

     h
*
3-h3 = 4.92 RTC = 122.2 kJ/kg  

State 4: T4 = T1 = 246.7 K,      h4 = h3 

1st Law Evaporator: qL + h4 = h1 + w; w = 0,     h4 = h3 

 qL = h1 - h3 = (h1 − h
*
1) + (h

*
1 − h

*
3) + (h

*
3 − h3) 

 h
*
1 − h

*
3 = CP(T1 - T3) = -38.4 kJ/kg, qL = -0.8 – 38.4 + 122.2 = 83.0 kJ/kg 

1st Law Compressor: q + h1 = h2 + wc;    Q
.
 = -1.0 kW,      m

.
 = 0.1 kg/s 

 wc = h1 - h2 + q; h1 - h2 = (h1 − h
*
1) + (h

*
1 − h

*
2) + (h

*
2 − h2) 

 h
*
1 − h

*
2 = CP(T1 - T2) = -54.9 kJ/kg,  

wc = -0.8 –54.9 + 6.2 – 10.0 = -59.5 kJ/kg 

 β = qL/wc = 83.0/59.5 = 1.395 
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 An uninsulated piston/cylinder contains propene, C
3
H

6
, at ambient temperature, 

19°C, with a quality of 50% and a volume of 10 L. The propene now expands 
very slowly until the pressure in the cylinder drops to 460 kPa. Calculate the mass 
of propene, the work, and heat transfer for this process. 

 Propene C
3
H

6
:     T

1
 = 19oC = 292.2 K,    x

1
 = 0.50,    V

1
 = 10 L  

 From Fig. D.1: T
r1

 = 292.2/364.9 = 0.80, 

P
r1

 = P
r sat

 = 0.25,    P
1
 = 0.25 × 4.6 = 1.15 MPa  

 From D.1:     Z
1
 = 0.5 × 0.04 + 0.5 × 0.805 = 0.4225  

 m = 
P

1
V

1

Z
1
RT

1
 = 

1150×0.010
0.4225×0.197 58×292.2

 = 0.471 kg 

Assume reversible and isothermal process (slow, no friction, not insulated) 

    
1
Q

2
  = m(u

2
-u

1
) + 

1
W

2
  

    
1
W

2
 = ⌡⌠

1

2

 PdV  (cannot integrate);      
1
Q

2
 = ⌡⌠

1

2

 TdS = Tm(s
2
-s

1
) 

 From Figs. D.2 and D.3: 

    h
*
1 - h

1
 = 0.19758 × 364.9(0.5 × 4.51 + 0.5 × 0.46) = 179.2 kJ/kg 

    (s
*
1 - s

1
) = 0.197 58 (0.5 × 5.46 + 0.5 × 0.39) = 0.5779 kJ/kg K 

The ideal gas change in h and s are 

    (h
*
2 - h

*
1) = 0 and (s

*
2 - s

*
1) = 0 - 0.197 58 ln 

460
1161 = + 0.1829 kJ/kg K 

  At T
r2

 = 0.80,   P
r2

 = 0.10, from D.1, D.2 and D.3,   Z
2
 = 0.93  

    (h
*
2 - h

2
) = 0.197 58 × 364.9 × 0.16 = 11.5 kJ/kg 

    (s
*
2 - s

2
) = 0.197 58 × 0.13 = 0.0257 kJ/kg K 

Now we can do the change in s and h from state 1 to state 2 

    (s
2
 - s

1
) =  -(s

*
2 - s

2
) + (s

*
2 - s

*
1) + (s

*
1 - s

1
) 

  = -0.0257 + 0.1829 + 0.5779 = 0.7351 kJ/kg K 

    (h
2
 - h

1
) = - (h

*
2 - h

2
) + (h

*
2 - h

*
1) +  h

*
1 - h

1
 

  = -11.5 + 0 + 179.2 = 167.7 kJ/kg 



  Sonntag, Borgnakke and van Wylen 

The heat transfer is found from the second law 

   
1
q

2
 = 292.2 × 0.7351 = 214.8 kJ/kg      =>     

1
Q

2
 = m 

1
q

2
 = 101.2 kJ 

We need the internal energy in the energy equation 

 u
2
 - u

1
 = (h

2
 - h

1
) + RT(Z

1
 - Z

2
) = 167.7 + 0.197 58 × 292.2 (0.4225 - 0.93)  

= 138.4 kJ/kg 

    
1
w

2
 = 

1
q

2
 - (u

2
 - u

1
) = 214.8 - 138.4 = 76.4 kJ/kg 

    
1
W

2
 = m 

1
w

2
 = 36.0 kJ 
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 A geothermal power plant on the Raft River uses isobutane as the working fluid. 
The fluid enters the reversible adiabatic turbine, as shown in Fig. P13.42, at 
160°C, 5.475 MPa, and the condenser exit condition is saturated liquid at 33°C. 
Isobutane has the properties Tc= 408.14 K, Pc= 3.65 MPa, CP0= 1.664 kJ/kg K 

and ratio of specific heats k = 1.094 with a molecular weight as 58.124. Find the 
specific turbine work and the specific pump work. 

 Turbine inlet: T1 = 160oC , P1 = 5.475 MPa 

 Condenser exit:  T3 = 33oC , x3 = 0.0, Tr3 = 306.2 / 408.1 = 0.75  

 From Fig. D.1: 

    Pr3 = 0.16,  Z3 = 0.03 =>   P2 = P3 = 0.16 × 3.65 = 0.584 MPa  

    Tr1 = 433.2 / 408.1  = 1.061,    Pr1 = 5.475 / 3.65 = 1.50 

 From Fig. D.2 & D.3: 

    (h
*
1-h1) = 0.143 05×408.1×2.84 = 165.8 

    (s
*
1-s1) = 0.143 05×2.15 = 0.3076 

    (s
*
2-s

*
1) = 1.664 ln 

306.2
433.2 - 0.143 05 ln 

0.584
5.475 = -0.2572 

    (s
*
2-s2) = (s

*
2-sF2) - x2sFG2 

         = 0.143 05×6.12 - x2×0.143 05(6.12-0.29) = 0.8755 - x
2
×0.8340 

    (s2-s1) = 0 = -0.8755 + x2×0.8340 - 0.2572 + 0.3076     =>     x2 = 0.99 

    (h
*
2-h

*
1) = C

P0
(T

2
-T

1
) = 1.664(306.2 - 433.2) = -211.3   

From Fig. D.2:, 

    (h
*
2-h2) = (h

*
2-hF2) - x2hFG2 = 0.143 05×408.1[4.69-0.99(4.69-0.32)] 

      = 273.8 − 0.99 × 255.1 = 21.3 

Turbine:    wT = (h1-h2) = -165.8 + 211.3 + 21.3 = 66.8 kJ/kg 

Pump:    v
F3

 = 
ZF3RT3

P3
 = 

0.03×0.143 05×306.2
584  = 0.00225 

    wP = -  ∫ v dP ≈  vF3(P4 -P3) = -0.00225 (5475-584) = -11.0 kJ/kg 
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 A line with a steady supply of octane, C8H18, is at 400°C, 3 MPa. What is your 

best estimate for the availability in a steady flow setup where changes in potential 
and kinetic energies may be neglected? 

 Availability of Octane at  T
i
 = 400 oC, P

i
 = 3 MPa  

    P
ri
 = 

3
2.49 = 1.205,     T

ri
 = 

673.2
568.8 = 1.184 

 From D.2 and D.3, 

 (h
*
1-h

1
) = 0.072 79×568.8×1.13 = 46.8 ;     (s

*
1-s

1
) = 0.072 79×0.69 = 0.05 

Exit state in equilibrium with the surroundings, assume  T
0
 = 298.2 K, P

0
 = 

100 kPa 

    T
r0

 = 
298.2
568.8 = 0.524 , P

r0
 = 

0.1
2.49 = 0.040 

    From D.2 and D.3, 

   (h
*
0-h

0
) = RT

C
×5.4 = 223.6        and          (s

*
0-s

0
) = R×10.37 = 0.755 

    (h
*
i -h

*
0) = 1.7113(673.2-298.2) = 641.7 

    (s
*
i -s

*
0) = 1.7113 ln 

673.2
298.2 - 0.072 79 ln 

3
0.1 = 1.1459 

    (h
i
-h

0
) = -46.8 + 641.7 + 223.6 = 818.5 

    (s
i
-s

0
) = -0.05 + 1.1459 + 0.755 = 1.8509    

    ϕ
i
 = wrev = (h

i
-h

0
) - T

0
(s

i
-s

0
)  = 818.5 - 298.2(1.8509) = 266.6 kJ/kg 
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 An insulated cylinder fitted with a frictionless piston contains saturated-vapor 
carbon dioxide at 0oC, at which point the cylinder volume is 20 L.  The external 
force on the piston is now slowly decreased, allowing the carbon dioxide to 
expand until the temperature reaches - 30oC.  Calculate the work done by the  
CO2 during this process. 

CO2: Tc = 304.1 K, Pc = 7.38 MPa, Cp = 0.842 kJ/kg-K, R = 0.1889 kJ/kg K 

State 1:  T1 = 0oC, sat. vap., x1 = 1.0, V1 = 20 L 

 Tr1 = 0.9, P1 = Pr1Pc = 0.53 × 7380 = 3911 kPa, Z1 = Zg = 0.67 

 (h
*
1 − h1)g  = 0.9 RTC,  (s

*
1 − s1)g/R = 0.72,   m = 

P1V1
Z1RT1

 = 2.262 kg 

State 2:  T2 = -30oC 

 Tr2 = 0.8, P2 = Pr2Pc = 0.25 × 7380 = 1845 kPa 

2nd Law:      ∆Snet =m(s2 − s1) − 1Q2/T ;      1Q2 = 0,      ∆Snet = 0 

 s2 - s1 = (s2 − s
*
2) + (s

*
2 − s

*
1) + (s

*
1 − s1) = 0 

 s
*
2 − s

*
1 = CP ln 

T2
T1

  − R ln 
P2
P1

 = 0.044 kJ/kg-K,   s
*
1 − s1 = 0.136 kJ/kg-K 

 s
*
2 - s2  = 0.180 kJ/kg K,   (s

*
2 − s2)f = 5.46 R,   (s

*
2 − s2)g = 0.39 R 

 (s
*
2 − s2) = (1-x2)(s

*
2 − s2)f + x2 (s

*
2 − s2)g      x2 = 0.889 

1st Law:       1Q2 = m(u2 − u1) + 1W2 ;   1Q2 = 0,    u = h - Pv 

 Z2 = (1 - x2)Zf + x2Zg = 0.111 × 0.04 + 0.889 × 0.81 =  0.725; 

 (h2 - h1) = (h2 − h
*
2) + (h

*
2 − h

*
1) + (h

*
1 − h1) 

 h
*
2 − h

*
1 = Cp(T2 - T1) = -25.3 kJ/kg,  (h

*
1 − h1) = 51.7 kJ/kg 

 (h
*
2 − h2)f  = 4.51 RTC ,   (h

*
2 − h2)g = 0.46 RTC 

 (h
*
2 − h2) = (1 - x2)(h

*
2 − h2)f + x2 (h

*
2 − h2)g =   52.2 kJ/kg 

h2 - h1 = -52.2 – 25.3 + 51.7 = -25.8 kJ/kg 

 u2 - u1 = (h2 - h1) - Z2RT2 + Z1RT1  = -25.8 – 0.725 × 0.18892 × 243.2  

       + 0.67 × 0.18892 × 273.2  =  -24.5 kJ/kg 

1W2 = 55.4 kJ 
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13.88 

 An evacuated 100-L rigid tank is connected to a line flowing R-142b gas, 
chlorodifluoroethane, at 2 MPa, 100°C. The valve is opened, allowing the gas to 
flow into the tank for a period of time, and then it is closed. Eventually, the tank 
cools to ambient temperature, 20°C, at which point it contains 50% liquid, 50% 
vapor, by volume. Calculate the quality at the final state and the heat transfer for 
the process. The ideal-gas specific heat of R-142b is  Cp = 0.787 kJ/kg K. 

 Rigid tank V = 100 L, m1 = 0  Line: R-142b CH3CClF2 

 M = 100.495, TC = 410.3 K, PC = 4.25 MPa,    CP0 = 0.787 kJ/kg K 

 R = R
−

/M = 8.31451 / 100.495 = 0.082 73 kJ/kg K 

 Line Pi = 2 MPa, Ti = 100 oC,   Flow in to T2 = T0 = 20oC 

    VLIQ 2 = VVAP 2 = 50 L 

 Continuity:   m
i
 = m

2
 ;   Energy: Q

CV
 + m

i
h

i
 = m

2
u

2
 = m

2
h

2
 - P

2
V 

 From D.2 at i:  P
ri
 = 2 / 4.25  = 0.471,    T

ri
 = 373.15 / 410.3 = 0.91 

    (h
*
i -h

i
) = 0.082 73×410.3×0.72 = 24.4 

    (h
*
2-h

*
i ) = C

P0
(T

2
-T

i
) = 0.787(20-100) = -63.0 

 From D.2: T
r2

 = 
293.2
410.3 = 0.715   => P

2
 = 0.115×4250 = 489 kPa 

 sat. liq.: ZF = 0.02,   (h*-hF) = RTC×4.85 = 164.6 

 sat. vap.: ZG = 0.88,   (h*-hG) = RTC×0.25 = 8.5 

 mLIQ 2 = 
P2VLIQ 2

ZFRT2
 = 

489×0.050
0.02×0.082 73×293.2

 = 50.4 kg 

 m
VAP 2

 = 
P2VVAP 2

ZGRT2
 = 1.15 kg,       m2 =  51.55 kg 

 x2 = mVAP 2/m2  = 0.0223 

 (h
*
2-h2) = (1-x2)(h

*
2-hF2) + x2(h

*
2-hG2) = 0.9777 × 164.6 + 0.0223 × 8.5 = 161.1 

 QCV = m2(h2-hi) - P2V = 51.55(-161.1-63.0+24.4) - 489×0.10  

           = -10 343 kJ 
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13.89 

 Saturated liquid ethane at 2.44 MPa enters a heat exchanger and is brought to 611 
K at constant pressure, after which it enters a reversible adiabatic turbine where it 
expands to 100 kPa. Find the heat transfer in the heat exchanger, the turbine exit 
temperature and turbine work. 

 From D.2, 

  P
r1

 = 2.44/4.88 = 0.50 ,   T
r1

 = 0.89, T
1
 = 0.89×305.4 = 271.8 K 

    (h
*
1-h

1
) = 0.2765×305.4×4.12 = 347.9 

     (h
*
2-h

*
1) = 1.766 (611 - 271.8) = 599.0 

    P
r2

 = 0.50 ,  T
r2

 = 611/305.4 = 2.00 

 From D.2:       (h
*
2-h

2
) = RTc × 0.14 = 0.2765×305.4×0.14 = 11.8 

 q = (h
2
-h

1
) = -11.8 + 599.0 + 347.9 = 935.1 kJ/kg 

 From D.3, 

    (s
*
2-s2) = 0.2765×0.05 = 0.0138 

    (s
*
3-s

*
2) = 1.766 ln 

T3

611 - 0.2765 ln 
100
2440 

 Assume T3 = 368 K , Tr3 = 1.205 

  at Pr3 = 0.020 

    (s
*
3-s

*
2) = -0.8954 + 0.8833 = -0.0121 

 From D.3, 

    (s
*
3-s3) = 0.2765×0.01 = 0.0028 

 (s
3
-s2) = -0.0028 - 0.0121 + 0.0138 ≈ 0    ΟΚ 

 Therefore, T3 = 368 K 

 From D.2, 

    (h
*
3-h3) = 0.2765×305.4×0.01 = 0.8 

 w = (h2-h3) = -11.8 + 1.766 (611 - 368) + 0.8 = 418.1 kJ/kg 
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 A control mass of 10 kg butane gas initially at 80°C, 500 kPa, is compressed in a 
reversible isothermal process to one-fifth of its initial volume. What is the heat 
transfer in the process? 

 Butane C
4
H

10
: m = 10 kg,  T

1
 = 80 oC, P

1
 = 500 kPa 

 Compressed, reversible T = const, to V
2
 = V

1
/5 

 T
r1

 = 
353.2
425.2 = 0.831, P

r1
 = 

500
3800 = 0.132 

 From D.1 and D.3:    Z
1
 = 0.92,    (s

*
1- s

1
) = 0.143×0.16 = 0.0230 

 v
1
 = 

Z
1
RT

1

P
1

 = 
0.92×0.143×353.2

500  = 0.09296 m3/kg 

 v
2
 = v

1
/5 = 0.01859 m3/kg 

 At T
r2

 = T
r1

 = 0.831  

 From D.1: P
G

 = 0.325×3800 = 1235 kPa 

 sat. liq.: Z
F
 = 0.05,      (s*-s

F
) = R×5.08 = 0.7266 

 sat. vap.: Z
G

 = 0.775,      (s*-s
G

) = R×0.475 = 0.0680 

 Therefore 

  v
F
 = 

0.05×0.143×353.2
1235  = 0.00205 m3/kg 

  v
G

 = 
0.775×0.143×353.2

1235  = 0.0317 m3/kg 

 Since v
F
 < v

2
 < v

G
  →  x

2
 = (v

2
-v

F
)/(v

G
-v

F
) = 0.5578 

 (s
*
2 - s

2
) = (1 - x

2
)(s

*
2 - s

F2
) + x

2
(s

*
2 - s

G2
) 

            = 0.4422 × 0.7266 + 0.5578 × 0.0680 = 0.3592 kJ/kg K 

 (s
*
2 - s

*
1) = C

P0
 ln (T

2
/T

1
) - R ln (P

2
/P

1
) = 0 - 0.143 ln (1235/500) = -0.1293 

 (s
2
 - s

1
) = -0.3592 - 0.1293 + 0.0230 = -0.4655 kJ/kg K 

 
1
Q

2
 = Tm(s

2
 - s

1
) = 353.2 × 10 (-0.4655) = -1644 kJ 
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13.91 
 An uninsulated compressor delivers ethylene, C2H4, to a pipe, D = 10 cm, at 10.24 

MPa, 94°C and velocity 30 m/s. The ethylene enters the compressor at 6.4 MPa, 
20.5°C and the work input required is 300 kJ/kg. Find the mass flow rate, the total 
heat transfer and entropy generation, assuming the surroundings are at 25°C. 

    T
ri
 = 

293.7
282.4 = 1.040 , P

ri
 = 

6.4
5.04 = 1.270 

 From D.2 and D.3, 

    (h
*
i -h

i
) = 0.296 37 × 282.4 × 2.65 = 221.8 kJ/kg 

    (s
*
i -s

i
) = 0.296 37 × 2.08 = 0.6164 kJ/kg K 

    T
re

 = 
367.2
282.4 = 1.30 , P

re
 = 

10.24
5.04  = 2.032   =>  From D.1:    Z

e
 = 0.69 

    v
e
 = 

Z
e
RT

e

P
e

 = 
0.69×0.296 37×367.2

10 240  = 0.0073 m3/kg 

 A
e
 = 

π
4 D2

e = 0.007 85 m2    =>      m
.

 = 
A

e
V

e

v
e

 = 
0.007 85×30

0.0073  = 32.26 kg/s 

 From D.2 and D.3, 

    (h
*
e-h

e
) = 0.296 37 × 282.4 × 1.6 = 133.9 kJ/kg 

    (s
*
e-s

e
) = 0.296 37 × 0.90 = 0.2667 kJ/kg K 

    (h
*
e-h

*
i ) = 1.5482(367.2-293.7) = 113.8  

 (s
*
e-s

*
i ) = 1.5482 ln 

367.2
293.7 - 0.296 37 ln 

10.24
6.4  = 0.2065 

    (h
e
-h

i
) = -133.9 + 113.8 + 221.8 = 201.7 kJ/kg  

    (s
e
-s

i
) = -0.2667 + 0.2065 + 0.6164 = 0.5562 kJ/kg K 

 First law: 

    q = (h
e
-h

i
) + KE

e
 + w = 201.7 + 

302

2×1000
 - 300 = -97.9 kJ/kg 

 Q
.

cv
 = m

.
q = 32.26(-97.9) = -3158 kW 

 S
.

gen
 = −

Q
.

cv

To
 + m

.
(s

e
 - s

i
) = + 

3158
298.2 + 32.26(0.5562) = 28.53 kW/K 
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13.92 

 A distributor of bottled propane, C3H8, needs to bring propane from 350 K, 100 

kPa to saturated liquid at 290 K in a steady flow process. If this should be 
accomplished in a reversible setup given the surroundings at 300 K, find the ratio of 
the volume flow rates V

.
in/V

.
out, the heat transfer and the work involved in the 

process. 

 From Table A.2:   T
ri
 = 

350
369.8 = 0.946 ,     P

ri
 = 

0.1
4.25 = 0.024 

 From D.1, D.2 and D.3, 

     Z
i
 = 0.99 

    (h
*
i -h

i
) = 0.1886×369.8×0.03 = 2.1 kJ/kg 

    (s
*
i -s

i
) = 0.1886×0.02 = 0.0038 kJ/kg K 

    T
re

 = 
290

369.8 = 0.784, 

 From D.1, D.2 and D.3, 

     P
re

 = 0.22 ,  P
e
 = 0.22×4.25 = 0.935 MPa    and         Z

e
 = 0.036  

    (h
*
e-h

e
) = 0.1886×369.8×4.57 = 318.6 kJ/kg 

    (s
*
e-s

e
) = 0.1886×5.66 = 1.0672 kJ/kg K  

    (h
*
e-h

*
i ) = 1.679(290 - 350) = -100.8 kJ/kg 

    (s
*
e-s

*
i )    = 1.679 ln 

290
350  - 0.1886 ln 

0.935
0.1  = -0.7373 kJ/kg K 

     (h
e
-h

i
) = -318.6 - 100.8 + 2.1 = -417.3 kJ/kg  

    (s
e
-s

i
) = -1.0672 - 0.7373 + 0.0038 = -1.8007 kJ/kg K 

 
V
.

in

 V 
.

out
 = 

Z
i
T

i
/P

i

Z
e
T

e
/P

e
 = 

0.99
0.036 × 

350
290 × 

0.935
0.1  = 310.3  

wrev = (h
i
-h

e
) -T

0
(s

i
-s

e
) = 417.3 - 300(1.8007) = -122.9 kJ/kg 

 qrev = (h
e
-h

i
) + wrev = -417.3 –122.9 = -540.2 kJ/kg 
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13.93 
 The environmentally safe refrigerant R-152a is to be evaluated as the working 

fluid for a heat pump system that will heat a house. It uses an evaporator 

temperature of –20oC and a condensing temperature of 30oC. Assume all 
processes are ideal and R-152a has a heat capacity of Cp = 0.996 kJ/kg K. 

Determine the cycle coefficient of performance. 

 

Ideal Heat Pump   T
H

 = 30 oC  

 From A.2:     M = 66.05, R = 0.125 88,  T
C
 = 386.4 K, P

C
 = 4.52 MPa 

 
 T 

v 

1 

2 
3 

4 

��

��

�
�

�

 

 T
r3

 = 
303.2
386.4 = 0.785 

 P
r3

 = P
r2

 = 0.22    =>    P
3
 = P

2
 = 994 kPa 

 Sat.liq.:      h
*
3 - h

3
 = 4.56×RT

C
 = 221.8 

 

T
1
 = -20 oC = 253.2 K,  T

r1
 = 0.655,   P

r1
 = 0.058 → P

1
 = 262 kPa 

    h
*
1 - h

1
 = 0.14×RT

C
 = 6.8    and         s

*
1 - s

1
 = 0.14×R   = 0.0176 

Assume T
2
 = 307 K,   T

r2
 = 0.795   given   P

r2
 = 0.22  

From D.2, D.3:   s
*
2 - s

2
 = 0.34×R = 0.0428  ;     h

*
2 - h

2
 = 0.40×RT

c
 = 19.5 

    s
*
2 - s

*
1 = 0.996 ln 

307
253.2 - 0.125 88 ln 

994
262 = 0.0241 

    s
2
 - s

1
 = -0.0428 + 0.0241 + 0.0176 = -0.001 ≈ 0  OK 

    ⇒ h
2
 - h

1
 = -19.5 + 0.996(307-253.2) + 6.8 = 40.9 

    h
2
 - h

3
 = -19.5 + 0.996(307-303.2) + 221.8 = 206.1 

     β = 
q

H

w
IN

 = 
h

2
 - h

3

h
2
 - h

1
 = 

206.1
40.9   = 5.04 
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13.94 

 Rework the previous problem using an evaporator temperature of 0oC. 

Ideal Heat Pump   T
H

 = 30 oC  

 From A.2:     M = 66.05,  R = 0.125 88,  T
C
 = 386.4 K, P

C
 = 4.52 MPa 

 
 T 

v 

1 

2 
3 

4 

�

�

�

�

 

 T
r3

 = 
303.2
386.4 = 0.785 

 P
r3

 = P
r2

 = 0.22    =>    P
3
 = P

2
 = 994 kPa 

 Sat.liq.:      h
*
3 - h

3
 = 4.56×RT

C
 = 221.8 

 

 T
1
 = 0 oC = 273.2 K, T

r1
 = 0.707  =>   P

r1
 = 0.106,  P

1
 = 479 kPa 

    h
*
1 - h

1
 = 0.22×RT

C
 = 10.7          and       s

*
1 - s

1
 = 0.21×R   = 0.0264 

    Assume T
2
 = 305 K, T

r2
 = 0.789 

    s
*
2 - s

2
 = 0.35×R   = 0.0441        and       h

*
2 - h

2
 = 0.38×RT

C
 = 18.5 

    s
*
2 - s

*
1 = 0.996 ln 

305.0
273.2 - 0.125 88 ln 

994
479 = 0.0178 

    s
2
 - s

1
 = -0.0441 + 0.0178 + 0.0264 = 0.0001 ≈ 0  OK 

    h
2
 - h

1
 = -18.5 + 0.996(305.0-273.2) + 10.7 = 23.9 

    h
2
 - h

3
 = -18.5 + 0.996(305.0-303.2) + 221.8 = 205.1 

    β = 
h

2
 - h

3

h
2
 - h

1
 = 

205.1
23.9  = 8.58 
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Mixtures 
 
 
13.95 
 A 2 kg mixture of 50% argon and 50% nitrogen by mole is in a tank at 2 MPa, 

180 K. How large is the volume using a model of   (a)  ideal gas  and  (b)  Kays 
rule with generalized compressibility charts. 

 
 a)  Ideal gas mixture 

  Eq.12.5:    Mmix =  ∑ yi Mi = 0.5 × 39.948 + 0.5 × 28.013 = 33.981 

    V = 
mR

−
T

MmixP = 
2 × 8.3145 × 180

33.981 × 2000
 = 0.044 m3 

  
 b)  Kay’s rule   Eq.13.86 
  Pc mix = 0.5 × 4.87 + 0.5 × 3.39 = 4.13 MPa 

  Tc mix =  0.5 × 150.8 + 0.5 × 126.2 = 138.5 K 

       Reduced properties: Pr = 
2

4.13 = 0.484,    Tr = 
180

138.5 = 1.30 

      Fig. D.1:    Z = 0.925 

  V = Z 
mR

−
T

MmixP = 0.925 × 0.044 = 0.0407 m3 
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   A 2 kg mixture of 50% argon and 50% nitrogen by mass is in a tank at 2 MPa, 

180 K. How large is the volume using a model of   (a)  ideal gas  and  (b)  van der 
Waals equation of state with a, b for a mixture? 

 
 a)  Ideal gas mixture 

      Eq.12.15:   Rmix =  ∑ ci Ri = 0.5 × 0.2081 + 0.5 × 0.2968 = 0.25245 kJ/kg K 

   V = 
mRmixT

P  = 
2 × 0.25245 × 180

2000  = 0.0454 m3 

b) van der Waals equation of state. before we can do the parameters a, b for the 
mixture we need the individual component parameters. 

  aAr = 
27
64 

R2T
2
c

Pc
 = 

27
64 

(0.2081 × 150.8)2

4870  = 0.08531 

  aN2 = 
27
64 

R2T
2
c

Pc
 = 

27
64 

(0.2968 × 126.2)2

3390  = 0.17459 

  bAr =  
RTc
8Pc

 = 
0.2081 × 150.8

8 × 4870
 = 0.000 805 

  bN2 = 
RTc
8Pc

 = 
0.2968 × 126.2

8 × 3390
 = 0.001 381 

    Now the mixture parameters are from eq.13.87 

   amix =  



∑ ci a

1/2
i

2
 = (0.5 × 0.08531 + 0.5 × 0.17459)2 = 0.126 

  bmix =  ∑ ci bi = 0.5 × 0.000 805 + 0.5 × 0.001 381 = 0.001 093 

    Using now eq.13.52:  P = 
RT

v − b
 − 

a
v2  

     2000 = 
0.25245 × 180
v − 0.001 093

 − 
0.126

v2  

    By trial and error we find the specific volume,  v = 0.02097 m3/kg 

   V = mv = 0.04194 m3 
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   A 2 kg mixture of 50% argon and 50% nitrogen by mass is in a tank at 2 MPa, 

180 K. How large is the volume using a model of   (a)  ideal gas  and  (b)  Redlich 
Kwong equation of state with a, b for a mixture. 

 
 a)  Ideal gas mixture 

      Eq.12.15:   Rmix =  ∑ ci Ri = 0.5 × 0.2081 + 0.5 × 0.2968 = 0.25245 kJ/kg K 

   V = 
mRmixT

P  = 
2 × 0.25245 × 180

2000  = 0.0454 m3 

b) Redlich Kwong equation of state. Before we can do the parameters a, b for the 
mixture we need the individual component parameters, Eq.13.58, 13.59. 

  aAr = 0.42748 
R2T

5/2
c

Pc
 = 0.42748 

0.20812 × 150.82.5

4870  = 1.06154 

  aN2 = 0.42748 
R2T

5/2
c

Pc
 = 0.42748 

0.29682 × 126.22.5

3390  = 1.98743 

  bAr = 0.08664  
RTc
Pc

 = 0.08664  
0.2081 × 150.8

4870  = 0.000 558 

  bN2 = 0.08664  
RTc
Pc

 = 0.08664  
0.2968 × 126.2

3390  = 0.000 957 

    Now the mixture parameters are from eq.13.87 

   amix =  



∑ ci a

1/2
i

2
 = (0.5 × 1.06154 + 0.5 × 1.98743)2 = 1.4885 

  bmix =  ∑ ci bi = 0.5 × 0.000 558 + 0.5 × 0.000 957 = 0.000 758 

    Using now eq.13.57: P = 
RT

v − b
 − 

a
v(v + b)T1/2  

    2000 = 
0.25245 × 180
v − 0.000 758

 − 
1.4885

v(v + 0.000 758) 1801/2 

    By trial and error we find the specific volume,  v = 0.02102 m3/kg 

   V = mv = 0.04204 m3 
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13.98 

 Saturated-liquid ethane at T1 = 14°C is throttled into a steady flow mixing 

chamber at the rate of 0.25 kmol/s.  Argon gas at T2 = 25°C, P2 = 800 kPa, enters 

the chamber at the rate of 0.75 kmol/s.  Heat is transferred to the chamber from a 

heat source at a constant temperature of 150oC at a rate such that a gas mixture 

exits the chamber at T3 = 120oC, P3 = 800 kPa. Find the rate of heat transfer and 

the rate of entropy generation. 

Argon,   Ta2 = 25oC,   P2 = 800 kPa,  n
.
2 = 0.75 kmol/s 

 Tca = 150 K, Pca = 4.87 MPa, Ma = 39.948 kg/kmol, Cpa = 0.52 kJ/kg K 

 h
-

a3 - h
-

a2 = MaCpa(T3 - Ta2) = 1973.4 kJ/kmol 

Inlet:  Ethane, Tb1 = 14oC, sat. liq., xb1 = 0,  n
.
1 = 0.25 kmol/s 

 Tcb = 305.4 K, Pcb = 4.88 MPa, Mb = 30.07 kg/kmol, Cpb = 1.766 kJ/kg-K 

 Tr1 = 0.94,   Pb1 = Pr1Pcb = 0.69 × 4880 = 3367 kPa 

 h
−∗

b1 − h
−

b1 = 3.81 R
−

Tcb = 9674.5 kJ/kmol,    s-
∗
b1 − s-b1 = 3.74 R

−
 = 31.1 

 h
−∗

b3 - h
−∗

b1  = MbCpb(T3 - Tb1) = 5629.6 kJ/kmol  

Exit:  Mix, T3 = 120oC, P3 = 800 kPa   consider this an ideal gas mixture.  

Energy Eq.:   n
.
1h
-

b1 + n
.
2h
-

a2 +Q
.
 = n

.
3h
-

3 = n
.
1h
-

b3 + n
.
2h
-

a3 

 Q
.
 = n

.
1(h

-
b3 - h

-
b1) + n

.
2(h

-
a3 - h

-
a2) = 0.25 (5629.6 + 9674.5) + 0.75(1973.4) 

     = 5306 kW 

Entropy Eq.:     S
.
gen = n

.
1(s-b3 − s-b ) + n

.
2(s-a3 − s-a2) - Q

.
/TH ;     TH = 150oC 1

 ya = n
.
2/n

.
tot = 0.75;    yb = n

.
1/n

.
tot = 0.25 

 s-a3 − s-a2 = MaCpaln
T3
Ta2

- R
−

 ln 
yaP3
Pa2

 = 8.14 kJ/kmol-K 

 s-b3 − s-b1 = MbCpbln
T3
Tb1

 - R
−

 ln 
ybP3
Pb1

 + s-
∗
b1 − s-b1 = 

   = 40.172 + 31.1 = 71.27 kJ/kmol K 

 S
.
gen = 0.25 × 71.27 + 0.75 × 8.14 - 5306 / 423 = 11.38 kW/K 
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 A modern jet engine operates so that the fuel is sprayed into air at a P, T higher 

than the fuel critical point. Assume we have a rich mixture of 50% n-octane and 
50% air by mole at 500 K and 3.5 MPa near the nozzle exit. Do I need to treat this 
as a real gas mixture or is an ideal gas assumption reasonable? To answer find Z 
and the enthalpy departure for the mixture assuming Kay’s rule and the 
generalized charts. 

 
 The mole fractions are: 
  yC8H18 = 0.5,   yN2 = 0.5 × 0.79 = 0.395,   yO2 = 0.5 × 0.21 = 0.105 

 Eq.12.5:  

Mmix =  ∑ yi Mi = 0.5 × 114.232 + 0.395 × 28.013 + 0.105 × 31.999 

          = 71.541 
Kay’s rule Eq.13.86 

  Pc mix = 0.5 × 2.49 + 0.395 × 3.39 + 0.105 × 5.04 = 3.113 MPa 

  Tc mix = 0.5 × 568.8 + 0.395 × 126.2 + 0.105 × 154.6 = 350.5 K 

       Reduced properties: Pr = 
3.5

3.113 = 1.124,    Tr = 
500

350.5 = 1.427 

      Fig. D.1:    Z = 0.87 I must treat it as a real gas mixture. 

      Fig. D.2     h* − h = 0.70 × RT
c
 = 0.70 × 

8.3145
71.541 × 350.5 = 28.51 kJ/kg 
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A mixture of 60% ethylene and 40% acetylene by moles is at 6 MPa, 300 K. The 
mixture flows through a preheater where it is heated to 400 K at constant P. Using 
the Redlich Kwong equation of state with a, b for a mixture find the inlet specific 
volume. Repeat using Kays rule and the generalized charts. 
 
To do the EOS we need the gas constant, so from Eq.12.5 we get 

Mmix =  ∑ yi Mi = 0.6 × 28.054 + 0.4 × 26.068 = 27.26 

Rmix = 8.3145/27.26 = 0.305 kJ/kg K 

Redlich Kwong EOS the individual component parameters, Eq.13.58, 13.59. 

  aC2H4 = 0.42748 
R2T

5/2
c

Pc
 = 0.42748 

0.29642 × 282.42.5

5040  = 9.9863 

  aC2H2 = 0.42748 
R2T

5/2
c

Pc
 = 0.42748 

0.31932 × 308.32.5

6140  = 11.8462 

  bC2H4 = 0.08664  
RTc
Pc

 = 0.08664  
0.2964 × 282.4

5040  = 0.001 439 

  bC2H2 = 0.08664  
RTc
Pc

 = 0.08664  
0.3193 × 308.3

6140  = 0.001 389 

    Now the mixture parameters are from eq.13.87 so we need the mass fractions 

  cC2H4 = 
y M

Mmix
 = 

0.6 × 28.054
 27.26  = 0.6175,       cC2H4 = 1 - cC2H4 = 0.3825 

  amix =  



∑ ci a

1/2
i

2
 = (0.6175 × 9.9863 + 0.3825 × 11.8462)2 = 10.679 

  bmix =  ∑ ci bi = 0.6175 × 0.001 439 + 0.3825 × 0.001 389 = 0.001 42 

    Using now eq.13.57: P = 
RT

v − b
 − 

a
v(v + b)T1/2  

    6000 = 
0.305 × 300
v − 0.001 42

 − 
10.679

v(v + 0.001 42) 3001/2 

   By trial and error we find the specific volume,  v = 0.006683 m3/kg 
  Kay’s rule Eq.13.86 

  Pc mix = 0.6 × 5.04 + 0.4 × 6.14 = 5.48 MPa 

  Tc mix = 0.6 × 282.4 + 0.4 × 308.3 = 292.8 K 

    Reduced properties:   Pr = 
6

5.48 = 1.095,    Tr = 
300

292.8 = 1.025 

    Fig. D.1:   Z = 0.4   (difficult to read) 

  v = ZRT/P = 0.4 × 0.305 × 300 / 6000 = 0.0061 m3/kg   
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For the previous problem, find the specific heat transfer using Kay’s rule and the 
generalized charts. 

 
To do the EOS we need the gas constant, so from Eq.12.5 we get 

Mmix =  ∑ yi Mi = 0.6 × 28.054 + 0.4 × 26.068 = 27.26 

Rmix = 8.3145/27.26 = 0.305 kJ/kg K 

  cC2H4 = 
y M

Mmix
 = 

0.6 × 28.054
 27.26  = 0.6175,       cC2H4 = 1 - cC2H4 = 0.3825 

CP mix = ∑ ci CP i = 0.6175 × 1.548 + 0.3825 × 1.699 = 1.606 kJ/kg K 

  Kay’s rule Eq.13.86 
  Pc mix = 0.6 × 5.04 + 0.4 × 6.14 = 5.48 MPa 

  Tc mix = 0.6 × 282.4 + 0.4 × 308.3 = 292.8 K 

    Reduced properties 1:   Pr1 = 
6

5.48 = 1.095,    Tr1 = 
300

292.8 = 1.025 

  Fig. D.1:    (h
*
1 − h1) = 2.1 × RT

c
 = 2.1 × 0.305 × 292.8 = 187.5 kJ/kg 

    Reduced properties 2:   Pr2 = 
6

5.48 = 1.095,    Tr2 = 
400

292.8 = 1.366 

  Fig. D.1:   (h
*
2 − h2) = 0.7 × RT

c
 = 0.7 × 0.305 × 292.8 = 62.5 kJ/kg 

   The energy equation gives 

 1q2 = (h2 - h1) = (h2 − h
*
2) + (h

*
2 − h

*
1) + (h

*
1 − h1) 

       = -62.5 + 1.606 (400 – 300) + 187.5 

       = 285.6 kJ/kg mix 
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 One kmol/s of saturated liquid methane, CH4, at 1 MPa and 2 kmol/s of ethane, 
C2H6, at 250°C, 1 MPa are fed to a mixing chamber with the resultant mixture 
exiting at 50°C, 1 MPa. Assume that Kay’s rule applies to the mixture and 
determine the heat transfer in the process. 

Control volume the mixing chamber, inlet CH4 is 1, inlet C2H6 is 2 and the 
exit state is 3. Energy equation is 

 Q
.

CV
 = n

.
3
 h
-

3 -  n
.
1
 h
-

1  -  n
.
2
 h
-

2 

 Select the ideal gas reference temperature to be  T3  and use the 
generalized charts for all three states. 

 Pr1 = Prsat = 1/4.60 = 0.2174  =>   Trsat = 0.783,  

 T1 = 0.783 × 190.4 = 149.1 K,    ∆h1 = 4.57  

 Pr2 = 1/4.88 = 0.205,   Tr2 = 523/305.4 = 1.713,     ∆h2 = 0.08 

 h
-

1 =  C
-

1(T1 - T3) - ∆h1 R
-
Tc = 36.15(149.1 - 323.2) - 4.57 × 8.3145 × 190.4 

      = -13528 kJ/kmol 

 h
-

2 =  C
-

2(T2 - T3) - ∆h2 R
-
Tc = 53.11(250 - 50)  - 0.08 × 8.3145 × 305.4 

      = 10 419 kJ/kmol 

Kay’s rule Eq.13.86 

 Tcmix = (1 × 190.4 + 2 × 305.4)/3 = 267.1 K 

 Pcmix = (1 × 4.60 + 2 × 4.88)/3 = 4.79 MPa 

 Tr3 = 323.2/267.1 = 1.21  , Pr3 = 1/4.79 = 0.21,     ∆h3 = 0.15     

 h
-

3 = 0 - 0.15 × 267.1 × 8.3145 = - 333 kJ/kmol 

 Q
.

CV
 = 3(-333) - 1(-13528) - 2(10 419) = - 8309 kW 
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 A piston/cylinder initially contains propane at T = -7°C, quality 50%, and volume 
10L. A valve connecting the cylinder to a line flowing nitrogen gas at T = 20°C, P 
= 1 MPa is opened and nitrogen flows in. When the valve is closed, the cylinder 
contains a gas mixture of 50% nitrogen, 50% propane on a mole basis at T = 
20°C, P = 500 kPa. What is the cylinder volume at the final state, and how much 
heat transfer took place? 

State 1: Propane, T1 = -7oC,   x1 = 0.5,  V1 = 10 L 

Tc = 369.8 K, Pc = 4.25 kPa, CP = 1.679 kJ/kg-K,   M = 44.097 kg/kmol 

 Fig. D.1:     Tr1 = 0.72,   Pr1 = 0.12,    P1 = Pr1Pc = 510 kPa 

 Fig. D.1:    Zf1 = 0.020,    Zg1 = 0.88,    Z1 = (1 - x1)Zf1 + x1Zg1 = 0.45 

 n1 = P1V1/(Z1R
−

T1) = 510 × 0.01/(0.45 × 8.3145 × 266.2) = 0.00512 kmol 

 h
−

1 = h
−*

1o
 + C

−
P(T1 - To) + (h

−
1 - h

−*
1
) ;   h

−*
1o

 = 0,   

 (h
−*

1-h
−

1)f /R
−

Tc  = 4.79,    (h
−*

1-h
−

1)g /R
−

Tc = 0.25 

 h
−*

1 - h
−

1 = (1 - x1) (h
−*

1 - h
−

1)f + x1 (h
−*

1 - h
−

1)g  = 7748 kJ/kmol 

 h
−

1 = 0 + 1.679 × 44.094(-7 - 20) - 7748 = -9747 kJ/kmol 

Inlet: Nitrogen, Ti = 20oC, Pi = 1.0 MPa, 

Tc = 126.2 K, Pc = 3.39 MPa, Cpn = 1.042 kJ/kg-K, M = 28.013 kg/kmol 

 Tri = 2.323, Pri = 0.295,   h
−*

i -h
−

i = 0.06 × 8.3145 × 126.2 = 62.96 kJ/kmol 

 h
−

i = h
−*

io
 + C

−
Pn(Ti - To) + (h

−
i - h

−*
i
) ;   h

−*
io

 = 0,   Ti - To = 0 

State 2: 50% Propane, 50% Nitrogen by mol, T2 = 20oC, P2 = 500 kPa 

 Tcmix = ∑yiTci  = 248 K,     Pcmix = ∑yiPci = 3.82 MPa 

 Tr2 = 1.182,  Pr2 = 0.131,   Z2 = 0.97,   (h
−*

2 - h
−

2)/R
−

Tc  = 0.06 

 h
−

2 = h
−*

2o
 + C

−
Pmix(T2 - To) + (h

−
2 - h

−*
2
) ;   h

−*
2o

 = 0,    T2 - To = 0 

a)  ni = n1   =>   n2 = n1 + ni = 0.1024,    V2 = n2Z2R
−

T2/P2 = 0.0484 m3 

b)  1st Law:     Qcv + nih
-

i = n2u-2 - n21u-21 + Wcv;        u- = h
-
 - Pv- 

 Wcv =  (P1 + P2)(V2 - V1)/2 = 19.88 kJ 

 Qcv = n2h
-

2 - n1h
-

1 - nih
-

i - P2V2 + P1V1 + Wcv 

 h
−

i = -62.96 kJ/kmol, h
−

2 = -123.7 kJ/kmol, Qcv = 50.03 kJ 
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 Consider the following reference state conditions: the entropy of real saturated 
liquid methane at −100°C is to be taken as 100 kJ/kmol K, and the entropy of 
hypothetical ideal gas ethane at −100°C is to be taken as 200 kJ/kmol K. 
Calculate the entropy per kmol of a real gas mixture of 50% methane, 50% ethane 
(mole basis) at 20°C, 4 MPa, in terms of the specified reference state values, and 
assuming Kay’s rule for the real mixture behavior. 

 CH
4
: T

0
 = -100 oC,    s-

LIQ 0
 = 100 kJ/kmol K 

 C
2
H

6
: T

0
 = -100 oC,   P

0
 = 1 MPa,    s-

*
0 = 200 kJ/kmol K  

 Also for  CH
4
:  T

C
 = 190.4 K,   P

C
 = 4.60 MPa  

 For a 50% mixture Kay’s rule Eq.13.86: 

  Tcmix = 0.5 × 190.4 + 0.5 × 305.4 = 247.9 K 

  Pcmix = 0.5 × 4.60 + 0.5 × 4.88 = 4.74 MPa 

 IG MIX at T
0
(=-100 oC), P

0
(=1 MPa): 

    CH
4
: T

r0
 = 0.91 ,      P

G
 = 0.57 × 4.60 = 2.622 MPa 

 s-
*
0 CH4 = s-

LIQ 0 P
G

 + (s-*-s-
LIQ

)
at P

G
 - R

-
 ln (P

0
/P

G
) 

   = 100 + 4.01×8.3145 - 8.3145 ln (1/2.622) = 141.36 

 s-
*
0 MIX = 0.5×141.36 + 0.5×200 - 8.3145(0.5 ln 0.5 + 0.5 ln 0.5) = 176.44 

 C
-

P0 MIX
 = 0.5×16.04×2.254 + 0.5×30.07×1.766 = 44.629 

 s-
*
TP MIX = 176.44 + 44.629 ln 

293.2
173.2 - 8.3145 ln 

4
1  = 188.41 kJ/kmol K  

 For the mixture at T, P:  T
r
 = 1.183,    P

r
 = 0.844 

 Entropy departure     s-
*
TP MIX - s-

TP MIX
  = 0.4363×8.3145 = 3.63 kJ/kmol K 

 Therefore, 

    s-
TP MIX

 = 188.41 - 3.63 = 184.78 kJ/kmol K  

 

An alternative is to form the ideal gas mixture at T, P instead of at T
0
, P

0
 :   

 s-
*
TP CH4 = s-

LIQ 0
 + (s-*-s-

LIQ
) + C

-
P0 CH4

 ln 
T
T

0
 - R

-
 ln 

P
P

G
 

            P
G

, T
0
    at P

G
, T

0
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   = 100 + 33.34 + 16.04×2.254 ln 
293.2
173.2 - 8.3145 ln 

4
2.6 

   = 100 + 33.34 + 19.03 - 3.53 = 148.84 kJ/kmol K 

 s-
*
TP C2H6 = 200 + 30.07×1.766 ln 

293.2
173.2 - 8.3145 ln 

4
1 

   = 200 + 27.96 - 11.53 = 216.43  kJ/kmol K 

 s-
*
TP MIX = 0.5×148.84 + 0.5×216.43  

     - 8.3145(0.5 ln 0.5 + 0.5 ln 0.5)  = 188.41  kJ/kmol K 

 s-
TP MIX

 = 188.41 - 3.63 = 184.78 kJ/kmol K 
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 A cylinder/piston contains a gas mixture, 50% CO2 and 50% C2H6 (mole basis) 
at 700 kPa, 35°C, at which point the cylinder volume is 5 L. The mixture is now 
compressed to 5.5 MPa in a reversible isothermal process. Calculate the heat 
transfer and work for the process, using the following model for the gas mixture: 

  a. Ideal gas mixture. 

  b. Kay’s rule and the generalized charts. 

a) Ideal gas mixture 

    U2 - U1 = mC
v mix

(T2 - T1) = 0 

    Q12 = W12 = ⌡⌠ P dV = P1V1 ln(V2/V1) = - P1V1 ln(P2/P1)  

        = - 700 × 0.005 ln(5500/700) = -7.71 kJ 

b) Kay's rule 

    Tcmix = 0.5 × 304.1 + 0.5 × 305.4 = 304.75 K 

    Pcmix = 0.5 × 7.38 + 0.5 × 4.88 = 6.13 MPa 

    Tr1 = 308.15/304.75 = 1.011,   Pr1 = 0.7/6.13 = 0.1142 

    Z1 = 0.96,   ∆h1 = 0.12,   ∆s1 = 0.08 

    n = P1V1/Z1R
-

 T1 = 
700*0.005

0.962*8.3145*308.15 = 0.00142 kmol 

    Tr2 = Tr1 ,  Pr2 = 5.5/6.13 = 0.897, 

    Z2 = 0.58,    ∆h2 = 1.35,     ∆s2 = 1.0 

    h
-

2 - h
-

1 = (h
-

2 - h
-

1)  - R
-
 Tc(∆h2 - ∆h1)  

        = 0 - 8.3145 × 304.75(1.35 - 0.12) = - 3117 

    u-2 - u-1 = h
-

2 - h
-

1 + R
-
T(Z1 - Z2) = - 3117  

      + 8.3145 × 308.15(0.96 - 0.58) = -2143 kJ/kmol 

    Q12 = nT(s-2 - s-1)T = 0.00142 × 308.15 × 8.3145[ 0 - ln(5.5/0.7) -1.0  

   + 0.08 ] = - 10.85 kJ 

    W12 = Q12 - n(u-2 - u-1) = -10.85 - 0.00142(-2143) = - 7.81 kJ 
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 A cylinder/piston contains a gas mixture, 50% CO2 and 50% C2H6 (mole basis) 
at 700 kPa, 35°C, at which point the cylinder volume is 5 L. The mixture is now 
compressed to 5.5 MPa in a reversible isothermal process. Calculate the heat 
transfer and work for the process, using the following model for the gas mixture: 

  a. Ideal gas mixture. 

  b. The van der Waals equation of state. 

a) Ideal gas mixture 

    U2 - U1 = mC
v mix

(T2 - T1) = 0 

    Q12 = W12 = ⌡⌠ P dV = P1V1 ln(V2/V1) = - P1V1 ln(P2/P1)  

        = - 700 × 0.005 ln(5500/700) = -7.71 kJ 

b) van der waal's equation 

    For CO2 : 

       b = R
-

 Tc/8Pc = 8.3145 × 304.1/8 × 7380 = 0.04282 

       a = 27 Pc b2 = 27 × 7380 × 0.042822 = 365.45 

    For C2H6 : 

       b = R
-

 Tc/8Pc = 8.3145 × 305.4/8 × 4880 = 0.06504 

       a = 27 Pc b2 = 27 × 4880 × 0.065042 = 557.41 

    amix = (0.5 365.45 + 0.5 557.41)2 = 456.384 

    bmix = 0.5 × 0.04282 + 0.5 × 0.06504 = 0.05393 

    
8.3145*308.2
v-1 - 0.05393  - 

456.384
v-12  - 700 = 0  

    By trial and error:   v-1 = 3.5329 m3/kmol 

    
8.3145*308.2
v-2 - 0.05393  - 

456.384
v-22  - 5500 = 0   

    By trial and error:   v-2 = 0.2815 m3/kmol 

    n = V1/v-1 = 0.005/3.5329 = 0.00142  

    Q12 = nT(s-2 - s-1)T = n R
-

 T ln 
v-2 - b
v-1 - b 

   = 0.00142 × 8.3145 × 308.2 ln 
0.2815 - 0.05392
3.5329 - 0.05392  = - 9.93 kJ 

   U2-U1 = 0.00142 × 456.39(3.5329-1 - 0.2815-1) = -2.12 kJ 

   Q12 = U2-U1 + W12  =>  W12 = -9.93 -(-2.12) = -7.81 kJ  
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 Consider a straight line connecting the point P = 0, Z = 1 to the critical point  
P = P

C
, Z = Z

C
 on a Z versus P compressibility diagram. This straight line will be 

tangent to one particular isotherm at low pressure. The experimentally determined 
value is about 0.8 T

C
.  Determine what value of reduced temperature is predicted 

by an equation of state, using the van der Waals equation and the Redlich–Kwong 
equation. See also note for Problem 13.56. 

 
 

slope = 
Z

C
 - 1

P
C
 - 0 

But also equals  lim
P→0

(∂Z
∂P

)T   for   T = T′ 

From solution 13.25 P C 

1.0 
Z 

C.P.

P 

Z C 

0 
 

  lim
P→0

(∂Z
∂P

)T  =  lim
P→0 

Z-1
P-0  =  

1
RT 

lim
P→0(v − 

RT
P ) 

VDW: using solution  13.25:      lim
P→0

(∂Z
∂P

)T = 
ZC - 1

PC
 = 

1
RT′[b − 

a
RT′] 

    or       (
1-ZC

PC
)(RT′)2 + bRT′ − a = 0 

    Substituting Z
C
 = 

3
8,    a = 

27
64 

R2T
2
C

PC
,    b = 

RTC

8PC
 

    40 T′ 2r  + 8 T′
r
 − 27 = 0     solving,    T′

r
 = 0.727 

 Redlich-Kwong:    using solution 13.25, 

 lim
P→0

(∂Z
∂P

)T = 
ZC-1
PC

 = 
1

RT′[b - 
a

RT′ 3/2]   or   (
1-ZC

PC
)R2T′ 5/2 + bRT′ 3/2 - a = 0 

 Substitute     ZC = 
1
3,    a = 0.42748 

R2T
5/2
C

PC
,     b = 0.08664 

RTC

PC
 

 get         
2
3 T′ 5/2

r  + 0.086 64 T′ 3/2
r  − 0.427 48 = 0 

      solving,    T′
r
 = 0.787 
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 A 200-L rigid tank contains propane at 400 K, 3.5 MPa. A valve is opened, and 
propane flows out until half the initial mass has escaped, at which point the valve 
is closed. During this process the mass remaining inside the tank expands 

according to the relation Pv1.4 = constant. Calculate the heat transfer to the tank 
during the process. 

 C
3
H

8
: V = 200 L, T

1
 = 400 K, P

1
 = 3.5 MPa 

 Flow out to m
2
 = m

1
/2 ; Pv1.4 = const inside 

 Tr1 = 
400

369.8 = 1.082, Pr1 = 
3.5
4.25 = 0.824   Fig D.1: Z1 = 0.74 

 v1 = 
0.74×0.188 55×400

3500  = 0.01594,  v2 = 2v1 = 0.03188  

 m1 = 
0.2

0.015 94 = 12.55 kg,     m2 = 
1
2 m1 = 6.275 kg,  

 P2 = P1(
v1

v2
)1.4

 = 
3500

21.4  = 1326 kPa 

 


Pr2 = 

1.326
4.25  = 0.312 

P2v2 = Z2RT2

 

Trial & error: saturated with
T2 = 0.826×369.8 = 305.5 K &

Z2 = 
1326×0.03188
0.188 55×305.5

 = 0.734
 

 Z2 = ZF2 + x2(ZG2 - ZF2) = 0.734 = 0.05 + x2(0.78-0.05)    =>    x2 = 0.937 

 (h
*
1-h1) = 0.188 55×369.8(0.9) = 62.8 

 (h
*
2-h

*
1) = 1.6794(305.5-400) = -158.7 

 (h
*
2-h2) = (h

*
2-hF2) - x2hFG2 = 0.188 55×369.8[4.41 - 0.937(4.41-0.55)]   

   = 55.3 

 1st law: QCV = m2h2 - m1h1 + (P1-P2)V + mehe AVE 

 Let h
*
1 = 0 then     h1 = 0 + (h1-h

*
1) = -62.8 

 h
2
 = h

*
1 + (h

*
2-h

*
1) + (h

2
-h

*
2) = 0 - 158.7 – 55.3 = -214.0 

h
e AVE

 = (h
1
+h

2
)/2 = -138.4 

 Q
CV

 = 6.275(-214.0) - 12.55(-62.8) 

   + (3500-1326)×0.2 + 6.275(-138.4) = -981.4 kJ 
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 A newly developed compound is being considered for use as the working fluid in 
a small Rankine-cycle power plant driven by a supply of waste heat. Assume the 
cycle is ideal, with saturated vapor at 200°C entering the turbine and saturated 
liquid at 20°C exiting the condenser. The only properties known for this 
compound are molecular weight of 80 kg/kmol, ideal gas heat capacity C

PO
= 0.80 

kJ/kg K and T
C
 = 500 K, P

C
 = 5 MPa. Calculate the work input, per kilogram, to 

the pump and the cycle thermal efficiency. 

 
 

Turbine 

Cond

Ht. 
Exch

P 
3 

1 

4 

2 

. 
Q H 

W 
. 
T

. 
-WP  

T
1
 = 200oC = 473.2 K,  x

1
 = 1.0 

T
3
 = 20oC = 293.2 K,  x

3
 = 0.0 

Properties known: 
M = 80,   C

PO
 = 0.8 kJ/kg K 

T
C
 = 500 K,  P

C
 = 5.0 MPa 

T
r1

 = 
473.2
500  = 0.946 ,   T

r3
 = 

293.2
500  = 0.586 

 
R = R/M = 8.31451/80 = 0.10393 kJ/kg K 

 From Fig. D.1, 

    P
r1

 = 0.72,   P
1
 = 0.72 × 5 = 3.6 MPa = P

4
   

    P
r3

 = 0.023, P
3
 = 0.115 MPa = P

2
 ,   Z

F3
 = 0.004   

    v
F3

 = 
ZF3RT3

P3
 = 

0.004 × 0.10393 × 293.2
115  = 0.00106 m3/kg 

    w
P
 = - ⌡⌠

3

4

 vdP ≈  v
F3

(P
4
 -P

3
) = -0.00106(3600-115) = -3.7 kJ/kg 

    q
H

 + h
4
 = h

1
  ,  but h

3
 = h

4
 + w

P
    =>      q

H
 = (h

1
-h

3
) + w

P
  

 From Fig. D.2: 

    (h
*
1-h

1
) = RT

C
 × 1.25  = 0.103 93 × 500 × 1.25 = 64.9 kJ/kg 

    (h
*
3-h

3
) = 0.103 93 × 500 × 5.2 = 270.2 kJ/kg 

    (h
*
1-h

*
3) = C

P0
(T

1
-T

3
) = 0.80(200-20) = 144.0 kJ/kg 
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    (h
1
-h

3
) = -64.9 + 144.0 + 270.2 = 349.3 kJ/kg 

    q
H

 = 349.3 + (-3.7) = 345.6 kJ/kg 

 Turbine,   (s
2
 - s

1
) = 0 = -(s

*
2 - s

2
)+(s

*
2 - s

*
1) + (s

*
1 - s

1
) 

 From Fig. D.3, 

    (s
*
1-s

1
) = 0.10393×0.99 = 0.1029 kJ/kg K 

    (s
*
2-s

*
1) = 0.80 ln 

293.2
473.2 - 0.103 93 ln 

115
3600 = -0.0250 

 Substituting, 

    s
*
2-s

2
 = +0.1029 - 0.0250 = 0.0779 = (s

*
2-s

F2
) - x

2
s

FG2
 

    0.0779 = 0.103 93×8.85 - x
2
×0.103 93(8.85-0.06)      =>  x

2
 = 0.922 

    (h
*
2-h

2
) = (h

*
2-h

F2
) - x

2
h

FG2
 

 From Fig. D.2, 

    h
FG2

 = 0.10393 × 500 (5.2-0.07) = 266.6 

    (h*
2-h

2
) = 270.2 -0.922 × 266.6 = 25.0 

   w
T
 = (h

1
-h

2
) = -64.9 + 144.0 + 25.0 = 104.1 kJ/kg 

            η
TH

 = 
w

NET

q
H

 = 
104.1-3.7

345.6  = 0.29  
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13.110 

 A cylinder fitted with a movable piston contains propane, initially at 67oC and 50 
% quality, at which point the volume is 2 L.  The piston has a cross-sectional area 

of 0.2 m2.  The external force on the piston is now gradually reduced to a final 
value of 85 kN, during which process the propane expands to ambient 
temperature, 4oC.  Any heat transfer to the propane during this process comes 
from a constant-temperature reservoir at 67oC, while any heat transfer from the 
propane goes to the ambient.  It is claimed that the propane does 30 kJ of work 
during the process.  Does this violate the second law? 

 

 
 

FextC  H3 8
 

+Q from Tres = 67oC 

-Q to Environment To = 4oC 

Fext 2 = 85 kN 

 

Propane: Tc= 369.8 K, Pc = 4.25 MPa, R = 0.18855 kJ/kg K, Cp = 1.679 kJ/kg K 

State 1: T1 = 67oC = 340.2 K,  x1 = 0.5,  V1 = 2.0 L 

 Tr1 = 0.92, Fig D.1,   Pr1 = 0.61,   P1 = Pr1Pc = 2.592 MPa 

 Zf1 = 0.10,   Zg1 = 0.64,   Z1 = (1 - x1)Zf1 + x1Zg1 = 0.37 

 m = 
P1V1

Z1RT1
 = 0.218 kg,  (h

*
1 − h1)f = 3.95 RTc , (h

*
1 − h1)g = 1.03 RTc  

 (s
*
1 − s1)f = 4.0 R ,    (s

*
1 − s1)g = 0.82 R 

State 2: T2 = 4oC = 277.2 K, Fext 2 = 85 kN 

 Tr2 = 0.75,   P
sat
2  = P

sat
r2 Pc = 0.165 × 4250 = 701 kPa 

 P2 = Fext 2/Ap = 425 kPa,    P2  <  P
sat
2       State 2 is a vapor 

 Pr2 = 0.10,   Z2 = 0.92,    V2 = mZ2RT2/P2 = 0.0247 m3 

 h
*
2 − h2  = 0.18 RTc =12.6 kJ/kg,     s

*
2 − s2 = 0.16 R = 0.0302 kJ/kg K 

1st Law: 1Q2 = m(u2 - u1) + 1W2;    1W2 = 30 kJ, u = h - Pv 

 1Q2 = m(h2 - h1) - P2V2 + P1V1 + 1W2 

 (h2 - h1) = (h2 − h
*
2) + (h

*
2 − h

*
1) + (h

*
1 − h1) 

 (h
*
1 − h1) = (1 - x1)(h

*
1 − h1)f + x1 (h

*
1 − h1)g =   173.6 kJ/kg 
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 h
*
2 − h

*
1  = Cp(T2 - T1) = -105.8 kJ/kg 

 1Q2 = 0.218 (-12.6 - 105.8 + 173.6) - 425×0.0247 + 2592×0.002 + 30  

 = 36.7 kJ 

2nd Law:    ∆Snet = m(s2 − s1) − 
1Q2
T  ;   Tres = 67oC = 340.2 K 

 s2 - s1 = (s2 − s
*
2) + (s

*
2 − s

*
1) + (s

*
1 − s1)  

 s
*
1 − s1 = (1 - x1)(s

*
1 − s1)f + x1 (s

*
1 − s1)g = 0.4544 kJ/kg-K 

 s
*
2 − s

*
1 = Cpln 

T2
T1

 - R ln 
P2
P1

 = -0.0030 kJ/kg K 

 ∆Snet = 0.218 (-0.0302-0.0030+0.4544) – 36.7/340.2 = -0.0161 kJ/K; 

∆Snet < 0       Process is Impossible 
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13.111 

 One kilogram per second water enters a solar collector at 40°C and exits at 
190°C, as shown in Fig. P13.111. The hot water is sprayed into a direct-contact 
heat exchanger (no mixing of the two fluids) used to boil the liquid butane. Pure 
saturated-vapor butane exits at the top at 80°C and is fed to the turbine. If the 
butane condenser temperature is 30°C and the turbine and pump isentropic 
efficiencies are each 80%, determine the net power output of the cycle. 

H
2
O cycle: solar energy input raises 1 kg/s of liquid H

2
O from 40oC to 190oC. 

Therefore, corresponding heat input to the butane in the heat exchanger is 

 Q
.

H
 = m

.
(h

F 190 C
-h

F 40 C
)
H2O

 = 1(807.62-167.57) = 640.05 kW 

 
 

Turbine 

Cond

Ht. 
Exch

P 
3 

1 

4 

2 

. 
Q H 

W 
. 
T

. 
-WP  

C
4
H

10
 cycle  

T
1
 = 80 oC, x

1
 = 1.0  ;  T

3
 = 30 oC, x

3
 = 0.0 

η
ST

 = η
SP

 = 0.80 

T
r1

 = 
353.2
425.2 = 0.831 

From D.1, D.2 and D.3: 
          P

1
 = 0.325×3800 = 1235 kPa 

    (h
*
1-h

1
) = 0.143 04×425.2×0.56 = 34.1 

    (s
*
1-s

1
) = 0.143 04×0.475 = 0.0680 

 T
r3

 = 
303.2
425.2 = 0.713 

 From D.1, D.2 and D.3:   P
3
 = 0.113×3800 = 429 kPa 

 sat. liq.:   (h*-h
F
) = RT

C
×4.81 = 292.5  ;           (s*-s

F
) = R×6.64 = 0.950 

 sat. vap.:   (h*-h
G

) = RT
C
×0.235 = 14.3  ;         (s*-s

G
) = R×0.22 = 0.031 

Because of the combination of properties of C
4
H

10
  (particularly the large C

P0

/R), s
1
 is larger than s

G
 at T

3
.  To demonstrate, 

 (s
*
1-s

*
G3) = 1.7164 ln 

353.2
303.2 - 0.143 04 ln 

1235
429  = 0.1107 

 (s
1
-s

G3
) = -0.0680 + 0.1107 + 0.031 = +0.0737 kJ/kg K 
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3
22s

1

s

T

 

so that T
2S

 will be  > T
3
, as shown in the T-s 

diagram. A number of other heavy hydrocarbons 
also exhibit this behavior. 
Assume T

2S
 = 315 K, T

r2S
 = 0.741 

 From D.2 and D.3: 

    (h
*
2S-h

2S
) = RT

C
×0.21 = 12.8      and       (s

*
2S-s

2S
) = R×0.19 = 0.027 

 (s
*
1-s

*
2S) = 1.7164 ln 

353.2
315  - 0.143 04 ln 

1235
429  = +0.0453 

 (s
1
-s

2S
) = -0.0680 + 0.0453 + 0.027 ≈ 0 

 ⇒ T
2S

 = 315 K 

 (h
*
1-h

*
2S) = 1.7164(353.2-315) = 65.6 

 w
ST

 = h
1
-h

2S
 = -34.1 + 65.6 + 12.8= 44.3 kJ/kg 

 w
T
 = η

S
×w

ST
 = 0.80×44.3 = 35.4 kJ/kg 

 At state 3, 

 v
3
 = 

0.019×0.143 04×303.2
429  = 0.001 92 m3/kg 

 -w
SP

 ≈ v
3
(P

4
-P

3
) = 0.001 92(1235-429) = 1.55 kJ/kg 

 -w
P
 = 

-w
SP

η
SP

 = 
1.55
0.8  = 1.94 kJ/kg 

 w
NET

 = w
T
 + w

P
 = 35.4 - 1.94= 33.46 kJ/kg 

 For the heat exchanger, 

    Q
.

H
 = 640.05 = m

.
C4H10

(h
1
-h

4
) 

 But    h
1
-h

4
 = h

1
-h

3
+w

P
  

 h
1
-h

3
 = (h

1
-h

*
1) + (h

*
1-h

*
3) + (h

*
3-h

3
) 

       = -34.1 + 1.716(80 - 30) + 292.5 = 344.2 kJ/kg 

 Therefore, 

  m
.

C4H10
 = 

640.05
344.2-1.94 = 1.87 kg/s 

  W
.

NET
 = m

.
C4H10

w
NET

 = 1.87 × 33.46 = 62.57 kW 
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13.112 

 A piston/cylinder contains ethane gas, initially at 500 kPa, 100 L, and at ambient 
temperature, 0°C.  The piston is now moved, compressing the ethane until it is at 
20°C, with a quality of 50%.  The work required is 25% more than would have 
been required for a reversible polytropic process between the same initial and 
final states. Calculate the heat transfer and the net entropy change for the process. 

Ethane:  Tc = 305.4 K, Pc = 4.88 MPa,  

  R = 0.2765 kJ/kg-K, Cp = 1.766 kJ/kg K 

State 1:  Tr1 = 0.895, Pr1 = 0.102       Z1 = 0.95 

 v1 = Z1RT1/P1 = 0.1435 m3/kg,     m1 = V1/v1 = 0.697 kg 

 (h
*
1 − h1) = 0.13RTc = 11.0 kJ/kg,    (s

*
1 − s1) = 0.09 R = 0.025 kJ/kg K 

State 2: T2 = 20oC,  x2 = 0.5,    1W2 = 1.25Wrev 

 Tr2 = 0.96,    Pr2 = 0.78,   P2 = Pr2Pc = 3806 kPa 

 Zf2 = 0.14,    Zg2 = 0.54,    Z2 = (1 - x2)Zf + x2Zg = 0.34 

 (h
*
2 − h2) = (1 - x2) 3.65 RTc + x2 (1.39 RTc) = 212.8 kJ/kg 

 (s
*
2 − s2) = (1 - x2) 3.45 R + x2 × 1.10 R = 0.629 kJ/kg K 

 v2 = Z2RT2/P2 = 0.0072 m3/kg,    V2 = mv2 = 0.005 m3 

 P1V
n
1 = P2V

n
2 ,    ln 

P2
P1

  = n ln 
V1
V2

      n = 0.6783 

 Wrev = ∫ P dV = 
P2V2 - P1V1

1 - n  = -96.3 kJ, 1W2 = 1.25Wrev = -120.4 kJ 

a)  1st Law: 1Q2 = m(u2 - u1) + 1W2;     u = h - Pv 

 h2 - h1 = (h2 − h
*
2) + (h

*
2 − h

*
1) + (h

*
1 − h1) 

  = -212.8 + 1.766(20 – 0) + 11.0 = -166.5 kJ/kg 

 u2 - u1 = (h2 - h1) - (P2v2 - P1v1) = -122.2 kJ/kg 

     1Q2 = 0.697(-122.2) - 120.4 = -205.6 kJ 

b)  2nd Law: ∆Snet = m(s2 - s1) - 1Q2 /To;    To = 0oC 

 s2 - s1 = (s2 − s
*
2) + (s

*
2 − s

*
1) + (s

*
1 − s1)  

 (s
*
2 − s

*
1) = Cp ln(T2 / T1) − R ln(P2 / P1) = -0.436 kJ/kg K,  

           ∆Snet = 0.697(-0.629 - 0.436 + 0.025) + 
205.6
273.2 = 0.028 kJ/K 
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13.113 

 An experiment is conducted at −100°C inside a rigid sealed tank containing liquid 
R-22 with a small amount of vapor at the top. When the experiment is done the 
container and the R-22 warms up to room temperature of 20°C. What is the 
pressure inside the tank during the experiment? If the pressure at room 
temperature should not exceed 1 MPa, what is the maximum percent of liquid by 
volume that can be used during the experiment? 

 R-22 tables   Go to -70 oC 
a) For h

FG
 ≈ const & 

   v
FG

 ≈ v
G

 ≈ RT/P
G

 

   ln 
P

G1

P
G0

 ≈ 
h

FG

R [ 1
T

0
 - 

1
T

1
] 

   extrapolating from -70 oC 

T 

v
1 

2 

-100 C
o 

20 Co 

  

 (Table B.4.1) to T
AVE

 = -85 oC, h
FG

 ≈ 256.5 

    Also R = 
8.3145
86.469 = 0.096 15 kJ/kg K 

    For T
0
 = 203.2 K & T

1
 = 173.2 K 

    ln(P
G1

20.5)= 
256.5

0.096 15 [ 1
203.2 - 

1
173.2] 

       P
G1

 = 2.107 kPa 

 b) Extrapolating v
F
 from -70 oC to T

1
 = -100 oC 

    v
F1

 ≈ 0.000 634 

    Also v
G1

 ≈ RT
1
/P

G1
 = 

0.096 15×173.2
2.107  = 7.9037 

    Since v
1
 = v

2
 ≈ v

F2
 = 0.000 824 

    0.000 824 = 0.000 634 + x
1
×7.9031  =>  x

1
 = 2.404×10-5 

    
V

LIQ 1

m  = (1-x
1
)v

F1
 = 0.000 634,  

V
VAP 1

m  = x
1
v

G1
 = 0.000 190 

    % LIQ, by vol. = 
0.000 634
0.000 824 ×100 = 76.9 % 
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13.114 
 The refrigerant R-152a, difluoroethane, is tested by the following procedure. A 

10-L evacuated tank is connected to a line flowing saturated-vapor R-152a at 
40°C. The valve is then opened, and the fluid flows in rapidly, so that the process 
is essentially adiabatic. The valve is to be closed when the pressure reaches a 
certain value P2, and the tank will then be disconnected from the line. After a 
period of time, the temperature inside the tank will return to ambient temperature, 
25°C, through heat transfer with the surroundings. At this time, the pressure 
inside the tank must be 500 kPa. What is the pressure P2 at which the valve 
should be closed during the filling process? The ideal gas specific heat of R-152a 
is CP0 = 0.996 kJ/kg K.   

 R-152a CHF2CH3 :   A.2:     M = 66.05, TC = 386.4 K, PC = 4.52 MPa,  

 T3 = T0 = 25oC, P3 = 500 kPa, R = R- /M = 8.3145/66.05 = 0.12588 

 Tr3 = 298.2/386.4 = 0.772,      Pr3 = 500/4520 = 0.111 

 From D.1 and D.2 at 3:  Z3 = 0.92,    (h*-h)3 = 0.19 RTC 

 ⇒    m3 = m2 = mi = 
P3V

Z3RT3
 = 

500×0.010
0.92×0.125 88×298.2

 = 0.145 kg 

Filling process:    Energy Eq.:      hi = u2 = h2 - Z2RT2 

      or       (h2-h
*
2) + CP0(T2-Ti) + (h

*
i -hi) - P2V/m2 = 0 

From D.2 with Tri = 313.2/386.4 = 0.811, 

    (h
*
i -hi) = 0.125 88×386.4×0.49 = 23.8  ;    Pi = 0.276×4520 = 1248 kPa 

Assume P2 = 575 kPa,   Pr2 = 0.127 

 Now assume T2 = 339 K, Tr2 = 0.877   =>    From D.1:  Z2 = 0.93 

 ⇒ 
Z2T2

P2
 = 

0.93×339
575  = 0.5483 ≈ 

Z3T3

P3
 = 

0.92×298.2
500  = 0.5487 

 ⇒ T2 = 339 K is the correct T2 for the assumed P2 of 575 kPa.  Now 
check the 1st law to see if 575 kPa is the correct P2. 

 From D.2,    h
*
2-h2 = 0.125 88×386.4×0.17 = 8.3 

Energy eq.: -8.3 + 0.996(339-313.2) + 23.8 - 
575×0.010

0.1456  = +1.5 ≈ 0 

   ⇒ P2 = 575 kPa 

 (Note: for P2 = 580 kPa, T2 = 342 K,    1st law sum = +4.2) 
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13.115 

 Carbon dioxide gas enters a turbine at 5 MPa, 100°C, and exits at 1 MPa. If the 
isentropic efficiency of the turbine is 75%, determine the exit temperature and the 
second-law efficiency. 

      CO
2
 turbine:   η

S
 = w/w

S
 = 0.75 

    inlet: T
1
 = 100oC, P

1
 = 5 MPa,  exhaust: P

2
 = 1 MPa 

 a) P
r1

 = 
5

7.38 = 0.678, T
r1

 = 
373.2
304.1 = 1.227, P

r2
 = 

1
7.38 = 0.136 

    From D.2 and D.3, 

       (h
*
1-h

1
) = 0.188 92×304.1×0.52 = 29.9 

       (s
*
1-s

1
) = 0.188 92×0.30 = 0.0567 

    Assume T
2S

 = 253 K,   T
r2S

 = 0.832 

    From D.2 and D.3:     (h
*
2S-h

2S
) = RT

C
×0.20 = 11.5 

                   (s
*
2S-s

2S
) = R×0.17 = 0.0321 

    (s
*
2S-s

*
1) = 0.8418 ln 

253
373.2 - 0.188 92 ln 

1
5 = -0.0232 

    (s
2S

-s
1
) = -0.0321 - 0.0232 + 0.0567 ≈ 0 

    ⇒ T
2S

 = 253 K 

    (h
*
2S-h

*
1) = 0.8418(253-373.2) = -101.2 

    w
S
 = (h

1
-h

2S
) = -29.9 + 101.2 + 11.5 = 82.8 kJ/kg 

    w = η
S
×w

S
 = 0.75×82.8 = 62.1 kJ/kg = (h

1
-h

*
1) + (h

*
1-h

*
2) + (h

*
2-h

2
) 

    Assume T
2
 = 275 K, T

r2
 = 0.904 

       (h
*
1-h

*
2) = 0.8418(373.2-275) = 82.7 

    From D.2 and D.3, 

       (h
*
2-h

2
) = RT

C
×0.17 = 9.8  ;      (s

*
2-s

2
) = R×0.13 = 0.0245 

    Substituting, 

     w = -29.9 + 82.7 + 9.8 = 62.7 ≈ 62.1        ⇒ T
2
 = 275 K 

 b) (s
*
2-s

*
1) = 0.8418 ln 

275
373.2 - 0.188 92 ln 

1
5 = +0.0470 
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    (s
2
-s

1
) = -0.0245 + 0.0470 + 0.0567 = +0.0792 

    Assuming T
0
 = 25 oC, 

    (ϕ
1
-ϕ

2
) = (h

1
 - h

2
) - T

0
(s

1
 - s

2
)  = 62.1 + 298.2(0.0792) = 85.7 kJ/kg 

    η
2nd Law

 = 
w

ϕ
1
-ϕ

2
 = 

62.1
85.7 = 0.725 
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13.116 

 A 4- m3 uninsulated storage tank, initially evacuated, is connected to a line 
flowing ethane gas at 10 MPa, 100°C. The valve is opened, and ethane flows into 
the tank for a period of time, after which the valve is closed. Eventually, the 
whole system cools to ambient temperature, 0°C, at which time the it contains 
one-fourth liquid and three-fourths vapor, by volume. For the overall process, 
calculate the heat transfer from the tank and the net change of entropy. 

 Rigid tank V = 4 m3, m
1
 = 0 

 Line: C
2
H

6
 at P

i
 = 10 MPa, T

i
 = 100 oC 

 Flow in, then cool to    T
2
 = T

0
 = 0 oC,   V

LIQ 2
 = 1 m3 &  V

VAP 2
 = 3 m3 

 M = 30.07,    R = 0.2765,   C
P0

 = 1.766 

 P
ri
 = 

10
4.88 = 2.049,     T

ri
 = 

373.2
305.4 = 1.225 

 From D.2 and D.3, 

 (h
*
i -h

i
) = 0.2765×305.4×2.0 = 168.9  and     (s

*
i -s

i
) = 0.2765×1.22 = 0.3373 

 T
r2

 = 
273.2
305.4 = 0.895 

From D.1, D.2 and D.3,      P
2
 = P

G
 = 0.51×4880 = 2489 kPa 

sat. liq.: Z
F
 = 0.087 ;   (h*-h

F
) = RT

C
×4.09 = 345.4  ;  (s*-s

F
) = R×4.3 = 1.189 

sat. vap. : Z
G

 = 0.68 ;   (h*-h
G

) = RT
C
×0.87 = 73.5 ;  (s*-s

G
) = R×0.70 = 0.193 

 m
LIQ 2

 = 
2489×1

0.087×0.2765×273.2
 = 378.7 kg 

 m
VAP 2

 = 
2489×3

0.68×0.2765×273.2
  = 145.4 kg 

 m
2
 = 524.1 kg      =>       x

2
 = 

145.4
524.1 = 0.277 

 1st law: 

 Q
CV

 = m
2
u

2
 - m

i
h

i
 = m

2
(h

2
-h

i
) - P

2
V = m

2
[(h

2
-h

*
2) + (h

*
2-h

*
i ) + (h

*
i -h

i
)]- P

2
V 

    (h
*
2-h

*
i ) = 1.7662(0-100) = -176.6 

    (h
*
2-h

2
) = (1-x

2
)(h

*
2-h

F2
) + x

2
(h

*
2-h

G2
) 

            = 0.723 × 345.4 + 0.277 × 73.5 = 270.1 
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 Q
CV

 = 524.1[-270.1 - 176.6 + 168.9]- 2489 × 4  = -155 551 kJ 

 ∆S
NET

 = m
2
(s

2
-s

i
) - Q

CV
/T

0
 

 (s
2
-s

i
) = (s

2
-s

*
2) + (s

*
2-s

*
i ) + (s

*
i -s

i
) 

 (s
*
2-s

*
i ) = 1.7662 ln 

273.2
373.2 - 0.2765 ln 

2.489
10  = -0.1664 

 (s
*
2-s

2
) = (1-x

2
)(s

*
2-s

F2
) + x

2
(s

*
2-s

G2
)  

  = 0.723 ×1.189 + 0.277 × 0.193 = 0.9131 

 (s
2
-s

i
) = -0.9131 - 0.1664 + 0.3373 = -0.7422 

 ∆S
NET

 = 524.1(-0.7422) - 
-155 551

273.2  = 180.4 kJ/K 
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13.117 

 A 10- m3 storage tank contains methane at low temperature. The pressure inside 
is 700 kPa, and the tank contains 25% liquid and 75% vapor, on a volume basis. 
The tank warms very slowly because heat is transferred from the ambient. 

 a. What is the temperature of the methane when the pressure reaches 10 MPa? 

 b. Calculate the heat transferred in the process, using the generalized charts. 

 c. Repeat parts (a) and (b), using the methane tables, Table B.7. Discuss the 
differences in the results. 

 CH
4
: V = 10 m3, P

1
 = 700 kPa 

      V
LIQ 1

 = 2.5 m3, V
VAP 1

 = 7.5 m3 

a)   P
r1

 = 
0.70
4.60 = 0.152,  P

r2
 = 

10
4.60 = 2.174 

    From D.1: Z
F1

 = 0.025, Z
G1

 = 0.87 & 

               T
1
 = 0.74 × 190.4 = 140.9 K 

    v
F1

 = 
0.025×0.518 35×140.9

700  = 0.00261 

    v
G1

 = 
0.87×0.518 35×140.9

700  = 0.0908 

    m
LIQ 1

 = 
2.5

0.00261 = 957.9 kg, m
VAP 1

 = 
7.5

0.0908 = 82.6 kg 

         Total m = 1040.3 kg 

    v
2
 = v

1
 = 

V
m = 

10
1040.5 = 0.00961  = 

Z
2
×0.518 35×190.4×T

r2

10 000  

    or  Z
2
T

r2
 = 0.9737 at P

r2
 = 2.174 

    By trial and error 

      T
r2

 = 1.334 & Z
2
 = 0.73, T

2 
 = 1.334×190.4 = 254.0 K 

 b) 1st law: 

    Q
12

 = m(u
2
-u

1
) = m(h

2
-h

1
) - V(P

2
-P

1
) 

    Using D.2 & x
1
 = 

82.6
1040.5 = 0.0794 

    (h
*
1-h

1
) = (h

*
1-h

F1
) - x

1
h

FG1
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      = 0.518 35×190.4[4.72-0.0794(4.72-0.29)]  = 431.1 

    (h
*
2-h

*
1) = 2.2537(254.0-140.9) = 254.9 

    (h
*
2-h

2
) = 0.518 35×190.4(1.47) = 145.1 

    (h
2
-h

1
) = -145.1 + 254.9 + 431.1 = 540.9 kJ/kg 

    Q
12

 = 1040.5(540.9) - 10(10 000-700)  = 469 806 kJ 

 c) Using Table B.7 for CH
4
 

    T
1
 = T

SAT 1
 = 141.7 K,     v

F1
 = 0.002 675,    u

F1
 = -178.47 

    v
G1

 = 0.090 45 , u
G1

 = 199.84 

    m
LIQ 1

 = 
2.5

0.002 675 = 934.6, m
VAP 1

 = 
7.5

0.090 45  =  82.9 

    Total mass    m = 1017.5 kg    and       v
2
 = 

10
1017.5 = 0.009 828 m3/kg 

    At v
2
 & P

2
 = 10 MPa → 





 
T

2
 = 259.1 K

u
2
 = 296.11  

    Q
12

 = m(u
2
-u

1
)  = 1017.5×296.11 - 934.6(-178.47) - 82.9(199.84) 

        = 451 523 kJ 
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13.118 

 A gas mixture of a known composition is frequently required for different 
purposes, e.g., in the calibration of gas analyzers. It is desired to prepare a gas 
mixture of 80% ethylene and 20% carbon dioxide (mole basis) at 10 MPa, 25°C 
in an uninsulated, rigid 50-L tank. The tank is initially to contain CO2 at 25°C 
and some pressure P1. The valve to a line flowing C2H4 at 25°C, 10 MPa, is now 
opened slightly, and remains open until the tank reaches 10 MPa, at which point 
the temperature can be assumed to be 25°C. Assume that the gas mixture so 
prepared can be represented by Kay’s rule and the generalized charts. Given the 
desired final state, what is the initial pressure of the carbon dioxide, P1?  

 
 A = C

2
H

4
, B = CO

2
 

T
1
 = 25 oC 

P
2
 = 10 MPa, T

2
 = 25 oC 

y
A2

 = 0.8, y
B2

 = 0.2 

���������
���������
���������
���������

�����������������
�����������������
�����������������
�����������������
B 

P =10 MPa i 

T = 25 Co i 

A 

V=0.05 m3 

 
  

Mixture at 2 : 

    P
C2

 = 0.8 × 5.04 + 0.2 × 7.38 = 5.508 MPa 

        T
C2

 = 0.8 × 282.4 + 0.2 × 304.1 = 286.7 K 

    T
r2

 = 298.15/286.7 = 1.040; P
r2

 = 10/5.508 = 1.816 

    D.1 :    Z
2
 = 0.32 

    n
2
 = 

P
2
V

Z
2
R
-
T

2
 = 

10 000×0.05
0.32×8.3145×298.2

 = 0.6302 kmol 

    n
A2

 = n
i
 = 0.8 n

2
 = 0.5042 kmol C

2
H

4
 

    n
B2

 = n
1
 = 0.2 n

2
 = 0.1260 kmol CO

2
 

    T
r1

 = 
298.2
304.1 = 0.981 

    P
r1

 = 
n

1
Z

B1
R
-
T

1

P
CB

V  = 
0.126 Z

B1
× 8.3145×298.2

7380×0.05
 = 0.8466 Z

B1
 

    By trial & error: P
r1

 = 0.618 & Z
B1

 = 0.73 

    ⇒ P
1
 = 0.618 × 7.38 = 4.56 MPa 
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13.119 
 Determine the heat transfer and the net entropy change in the previous problem. 

Use the initial pressure of the carbon dioxide to be 4.56 MPa before the ethylene 
is flowing into the tank. 

 A gas mixture of a known composition is frequently required for different 
purposes, e.g., in the calibration of gas analyzers. It is desired to prepare a gas 
mixture of 80% ethylene and 20% carbon dioxide (mole basis) at 10 MPa, 25°C 
in an uninsulated, rigid 50-L tank. The tank is initially to contain CO2 at 25°C 
and some pressure P1. The valve to a line flowing C2H4 at 25°C, 10 MPa, is now 
opened slightly, and remains open until the tank reaches 10 MPa, at which point 
the temperature can be assumed to be 25°C. Assume that the gas mixture so 
prepared can be represented by Kay’s rule and the generalized charts. Given the 
desired final state, what is the initial pressure of the carbon dioxide, P1?  

 
 A = C

2
H

4
, B = CO

2
 

T
1
 = 25 oC 

P
2
 = 10 MPa, T

2
 = 25 oC 

y
A2

 = 0.8, y
B2

 = 0.2 

���������
���������
���������
���������

�����������������
�����������������
�����������������B 

P =10 MPa i 

T = 25 Co i 

A 

V=0.05 m3 

 
 Mixture at 2 : 

    P
C2

 = 0.8 × 5.04 + 0.2 × 7.38 = 5.508 MPa 

        T
C2

 = 0.8 × 282.4 + 0.2 × 304.1 = 286.7 K 

    T
r2

 = 298.15/286.7 = 1.040; P
r2

 = 10/5.508 = 1.816 

    D.1 :    Z
2
 = 0.32 

    n
2
 = 

P
2
V

Z
2
R
-
T

2
 = 

10 000×0.05
0.32×8.3145×298.2

 = 0.6302 kmol 

    n
A2

 = n
i
 = 0.8 n

2
 = 0.5042 kmol C

2
H

4
 

    n
B2

 = n
1
 = 0.2 n

2
 = 0.1260 kmol CO

2
 

    T
r1

 = 
298.2
304.1 = 0.981  and     P

r1
 = 

4560
7380 = 0.618 

 1st law: Q
CV

 + n
i
h
-

i
 = n

2
u-

2
 - n

1
u-

1
 = n

2
h
-

2
 - n

1
h
-

1
 - (P

2
-P

1
)V 

    or Q
CV

 = n
2
(h
-

2
-h
-*

2) - n
1
(h
-

1
-h
-*

1) - n
i
(h
-

i
-h
-*

i ) - (P
2
-P

1
)V 

    (since T
i
 = T

1
 = T

2
, h

-*
i  = h

-*
1 = h

-*
2) 
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    (h
-*

1-h
-

1
) = 0.83 × 8.3145 × 304.1 = 2099 kJ/kmol 

    (h
-*

2-h
-

2
) = 3.40 × 8.3145 × 286.7 = 8105 kJ/kmol 

    T
ri
 = 

298.2
282.4 = 1.056, P

ri
 = 

10
5.04 = 1.984 

    (h
-*

i -h
-

i
) = 3.35×8.3145×282.4 = 7866 kJ/kmol 

 Q
CV

 = 0.6302(-8105) - 0.126(-2099) - 0.5042(-7866) - (10 000-4560)×0.05 

          = -1149 kJ 

    ∆S
CV

 = n
2
s-

2
 - n

1
s-

1
 ,   ∆S

SURR
 = - Q

CV
/T

0
 - n

i
s-

i
 

    ∆S
NET

 = n
2
s-

2
 - n

1
s-

1
 - Q

CV
/T

0
 - n

i
s-

i
 

    Let s-
*
A0 = s-

*
B0 = 0 at T

0
 = 25 oC, P

0
 = 0.1 MPa 

    Then s-
*
MIX 0 = -8.3145 (0.8 ln 0.8 + 0.2 ln 0.2)  = 4.161 kJ/kmol K 

    s-
1
 = s-

*
B0 + (s-

*
P1 T1-s-

*
P0 T0)

B
 + (s-

1
-s-

*
P1 T1)

B
 

       = 0 + (0-8.3145 ln 
4.56
0.1 ) - 0.60 × 8.3145 = -36.75 kJ/kmol K 

    s-
i
 = s-

*
A0 + (s-

*
Pi Ti-s

-*
P0 T0)

A
 + (s-

i
-s-

*
Pi Ti)A

 

       = 0 + (0-8.3145 ln 
10
0.1) - 2.44×8.3145 = -58.58 kJ/kmol K 

    s-
2
 = s-

*
MIX 0 + (s-

*
P2 T2-s-

*
P0 T0)

MIX
 + (s-

2
-s-

*
P2 T2)

MIX
 

       = 4.161 + (0-8.3145 ln 
10
0.1) - 2.551×8.3145 = -55.34 kJ/kmol K 

    ∆S
NET

 = 0.6302(-55.33) - 0.126(-36.75) - 0.5042(-58.58) + 1149/298.2  

         = +3.15 kJ/K 
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Correspondence List 
 
CHAPTER 14  6th edition  Sonntag/Borgnakke/Wylen 
 
 The correspondence between the new problem set and the previous 5th edition 

chapter 14 problem set. 
 
 The concepts study guide problems 14.1-14.20 are all new 
 

New 5th New 5th New 5th New 5th 
21 1 51 16 81 37 111 63 
22 3 52 30 82 38 112 23 
23 new 53 41 83 39 113 new 
24 2mod 54 68 84 new 114 36 
25 4 55 18 85 48 115 40 
26 5 56 new 86 52 116 49 
27 6 57 22mod 87 new 117 55 
28 new 58 42 88 new 118 71 
29 7 59 43 89 53 119 73 
30 8 60 24mod 90 new 120 70 
31 9 61 44 91 54 121 72 
32 new 62 45 92 57   
33 10 63 25mod 93 58   
34 11 64 new 94 60   
35 12 65 46 95 new   
36 13 66 47 96 69   
37 new 67 new 97 21   
38 14 68 new 98 27   
39 15 69 50 99 33   
40 51 70 new 100 56   
41 19 71 new 101 66   
42 20 72 32 102 67   
43 22 73 new 103 74   
44 17 74 34 104 64   
45 24 75 new 105 new   
46 new 76 new 106 65a   
47 25 77 35 107 65mod   
48 26 78 31 108 59   
49 28 79 new 109 61   
50 29 80 new 110 62   
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 The English unit problems are: 
 

New 5th  SI New 5th  SI New 5th  SI 
122 new 11 132 86 52 142 91 83 
123 new 13 133 92 53 143 new 87 
124 75 34 134 new 64 144 94 93 
125 76 39 135 93 66 145 95 94 
126 78 41 136 new 71 146 80 97 
127 79 42 137 new 73 147 83 98 
128 82 45 138 87 78 148 98 104 
129 84 49 139 88 77 149 96 110 
130 85 50 140 89 81 150 97 111 
131 77 51 141 90 82 151 81 112 
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Concept-Study Guide Problems 
 
 
14.1 
 How many kmoles of air are needed to burn 1 kmol of carbon? 
 
  Combustion Eq.:     C + O2  ⇒    1 CO2  

One kmol of  O2 is required to form CO2 .  Since air is 21 % O2 , this 

means 4.76 kmol of air. 
 
 
14.2 
 If I burn 1 kmol of hydrogen H2 with 6 kmol air what is A/F ratio on a mole basis 

and what is the percent theoretical air? 
 
  Combustion Eq. stoichiometric:     
    H2 + νO2(O2 + 3.76 N2)  ⇒    1 H2O +  3.76 νO2 N2 

   νO2 = 0.5 ; (A/F)S = νO2 × (1 + 3.76) / 1 = 2.38 

   
Six kmol of air is:  1.26 O2 + 4.74 N2 .   

The A/F mole ratio is 6, so the percent theoretical air is  

%Theoretical air =  
(A/F)ac
(A/F)S

 × 100 = 
6

2.38 × 100 = 252 % 

 
 
14.3 
 Why would I sometimes need A/F on a mole basis? on a mass basis? 
 
  If you want to meter (measure) the fuel and air flows it can be done as a 

volume flowrate which is proportional to moles (PV
.
 = n

.
R
−

T) in which case 
concentrations on a mole basis are needed. 

  The fuel and air flows can also be measured with a method that measures 
mass flow rate m

.
 or if you are filling up tanks to store the fuel and oxidicer as in a 

rocket in both cases the concentrations on a mass basis are needed. 
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14.4 
 Why is there no significant difference between the number of moles of reactants 

versus products in combustion of hydrocarbon fuels with air? 
 
 In most hydrocarbon fuels, there are approximately twice as many hydrogen 

atoms as carbon atoms, so the numbers of moles of  CO2 and H2O in the products 

are roughly equal, the total of which is not too different from the O2 required in 

the reactants.  The number of excess O2  is the same in reactants and products. 

The total number of moles is dominated by the N2 in each, especially with excess 

air. 
 
 
14.5 
 For the 110% theoretical air in Eq.14.8 what is the equivalence ratio?  Is that 

mixture rich or lean? 
 
  110% Theoretical air means also     AF = 1.1 AFS 

 so from the definition in Eq.14.6 

    Φ = 
AFS
AF  = 

1
1.10 = 0.909      a lean mixture 

 
 
14.6 
 Why are products measured on a dry basis? 
 
 Combustion products have traditionally been measured by passing the gas 

mixture through a series of solutions that selectively absorb the components one-
by-one and measuring the resulting gas volume decreases.  The water component 
is condensed out in these processes, leaving the others – that is, a dry basis.  Other 
and newer instruments measure the concentrations by optical means and these are 
sensitive to moisture content, which can corrode the surfaces and destroy the 
sensors. If the water stays in the mixture it typically have to stay hot to prevent 
condensation at undesirable locations where that would alter the concentrations of 
the remaining gas mixture components. 
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14.7 
 What is the dew point of hydrogen burned with stoichiometric pure oxygen? air? 
 
 For  H2 burned with pure oxygen 

    H2 + 0.5 O2     ⇒      1 H2O 

 with the only product as water, so the dew-point at 100 kPa pressure is 99.6°C.  
For   H2 burned with stoichiometric air 

    H2 + 0.5 (O2 + 3.76 N2)     ⇒      1 H2O  + 1.88 N2 

 the product mixture is water and nitrogen. The partial pressure of the water at a 
pressure of 100 kPa is  

    Pv = Ptot yv = 100 × 
1

1 + 1.88 = 34.7 kPa,  

 corresponding to a dew-point of  72.3°C . 
 
 
14.8 
 How does the dew point change as equivalence ratio goes from 0.9 to 1 to 1.1? 
 

For a given amount of water in the products, the smaller the total number 
of moles of other gases is (as Φ increases), the higher the partial pressure of the 
water and therefore the dew-point temperature.  As Φ becomes greater than 1.0, 
there will be incomplete combustion, and the resulting composition will be 
affected to have some unburned fuel and therefore relative less water. The relative 
maximum amount of water is then at a stoichiometric mixture Φ = 1 and this is 
also maximum dew point temperature. 

 
 
14.9 
 In most cases combustion products are exhausted above the dew point. Why? 
 
 If any water in the products condenses, it will be acidic due to the other gases in 

the products. There are always minute amounts of unburned or partially burned 
fuel and intermediate species in the products that can combine with water and 
create a very corrosive mixture.  
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14.10 
  Why does combustion contribute to global warming? 
 
 Any combustion of a hydrocarbon fuel produces carbon dioxide, which in the 

atmosphere is a contributing factor to global warming. Carbon dioxide absorbs 
radiation over a wide spectrum and thus heats the atmosphere. This is not just 
man-made, but nature has forest fires and volcanic action that liberates gases into 
the atmosphere. 

 
 
14.11 
  What is the enthalpy of formation for oxygen as O2? If O?   For CO2? 

 
  The enthalpy of formation of O2 is zero, by choice of the reference base.  

Relative to this base, the value for the monatomic form O is 

   h
-°

f O = +249 170 kJ/kmol (Table A.9),  

 and the value for CO2 is  

   h
-°

f CO2 = –393 522 kJ/kmol  (Table A.9 or A.10). 

 
 
14.12 
 How is a fuel enthalpy of combustion connected to its enthalpy of formation? 
 
 The enthalpy of combustion of a fuel  is the difference in enthalpy of the products 

and reactants for the combustion involving the fuel, these enthalpies include the 
various enthalpies of formation. 
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14.13 
 What is the higher and lower heating value HHV, LHV of n-Butane? 
 
  The heating value is the negative of the enthalpy of combustion.  From 

Table 14.3, the HHV of gaseous n-Butane at 25°C is  

    HHV =  49 500 kJ/kg,  

 and the corresponding LHV is  

    LHV =  45 714 kJ/kg. 

 Notice the table is on a mass basis (per kg fuel). 
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14.14 
 What is the value of hfg for n-Octane? 

 
 This can be obtained from two places. From Table A.10 we get 

       hfg = (h
-0

f vap - h
-0

f liq) / M = [(-208 600 – (-250 105)] / 114.232 = 363 kJ/kg 

 
  The hfg of a fuel listed in Table 14.3 is the difference between the first two 

columns in the table (or the third and fourth).  For n-Octane, this value is 

   hfg = -47 893 – (-48 256) = 363 kJ/kg 

 To see this remember 

   H
°
RP = H

°
P - H

°
R = H

°
P - h

-0
f fuel vap or liq 

 so when we take the difference between fuel as gas or liquid all other terms will 
cancel out leaving hfg for the fuel. 

  
 
14.15 
 Why do some fuels not have entries for liquid fuel in Table 14.3? 
 

 Those fuels cannot exist as liquids at 25°C (above their critical temperature). 
 
 
14.16 
 Does it make a difference for the enthalpy of combustion whether I burn with 

pure oxygen or air? What about the adiabatic flame temperature? 
 
 No difference in the enthalpy of combustion – the nitrogen in the air is the same 

in the reactants and products, and its enthalpy cancels out.  The adiabatic flame 
temperature is much lower for combustion with air, because a significant part of 
the energy release from the combustion goes into heating the nitrogen (as well as 
the other products) to the flame temperature. 
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14.17 
 What happens to the adiabatic flame temperature if I burn rich or lean? 
 
 The higher the percent theoretical air used in combustion (the leaner), the larger 

the number of moles of products, especially nitrogen, which decreases the 
adiabatic flame temperature.  Burning rich causes incomplete combustion, 
however, with a smaller release of energy. 

 
 Experimentally the highest temperature is reached for slightly rich.  
 

  
 
Heavy molecules 
show up as yellow. 
Oxygen diffuses in 
from the air and the 
fuel evaporates 
from the wick. As 
air mixes in, the 
flame cools. 

 
 
 
14.18 
 Is the irreversibility in a combustion process significant? Why is that? 
 
 A combustion process is highly irreversible with a large increase in entropy.  It 

takes place at a rapid rate, due to large driving forces, and results in stable 
products of combustion that have little or  no tendency to return to their former 
constituents and states. 

 
 
14.19 
 If the A/F ratio is larger than stoichiometric is it more or less reversible? 
 
 Less reversible more irreversible. The excess oxydizer (air) is being heated up, Q 

over a finite temperature difference is an irreversible process. The same is true for 
A/F smaller than one where the excess fuel is heated up. 
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14.20 
 What makes the fuel cell attractive from a power generating point of view? 
 
 Fuel cells are attractive for power generation because their direct output is 

electrical energy. They also have a much higher power density as power per unit 
volume or power per unit mass and thus can be used in mobile applications. 
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Fuels and the Combustion Process 

 
14.21 

 Calculate the theoretical air-fuel ratio on a mass and mole basis for the 
combustion of ethanol, C2H5OH. 

Reaction Eq.:   C2H5OH +  νO2(O2 + 3.76N2)  ⇒  aCO 2+  bH2O + cN2 

Balance C:   2 = a  Balance H:   6 = 2b        ⇒   b = 3 

Balance O:   1 + 2νO2 = 2a + b = 4 + 3 = 7             ⇒   νO2 = 3 

(air/fuel)mol = νO2(1 + 3.76)/1 = 3 × 4.76 = 14.28 

(air/fuel)mass = (νO2MO2 + νN2 MN2)/MFuel 

     =  (3×31.999 + 11.28×28.013)/46.069 = 8.943 
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14.22 

 A certain fuel oil has the composition C10H22. If this fuel is burned with 150% 

theoretical air, what is the composition of the products of combustion? 

 

C
10

H
22

 + (1/φ) ν
O2

 (O
2
 + 3.76 N

2
) → a H

2
O + b CO

2
 + c N

2
 + d O

2
 

Stoichiometric combustion:   φ = 1,   d = 0,          

C balance:  b = 10 

H balance:  a = 22/2 = 11,       

O balance:   2 ν
O2

 = a + 2b = 11 + 20 = 31    =>   ν
O2

 = 15.5 

Actual case:    1/φ = 1.5   =>   ν
O2

 = 1.5 × 15.5 = 23.25 

H balance:   a = 11,     C balance:    b = 10,     

N balance:   c = 23.25 × 3.76 = 87.42 

O2 balance:    d = 23.25 - 10 - 11/2 = 7.75  (excess oxygen) 
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14.23 

Methane is burned with 200% theoretical air. Find the composition and the dew 
point of the products. 

 

The reaction equation for stoichiometric mixture is: 

CH4 + ν
O2

 (O2 + 3.76 N2)   →    a H2O + b CO2 + c N2  

C balance:    1 = b ;   H balance:    4 = 2a  

O balance:    2 ν
O2

 = a + 2b = 2 + 2 × 1     =>   ν
O2

 = 2 

N2 balance:    3.76 ν
O2

 = c = 7.52 

200% theoretical air:   ν
O2

 = 2 × 2 = 4       so now more O2 and N2 

CH4 + ν
O2

 (O2 + 3.76 N2)   →    a H2O + b CO2 + c N2 + d O2 

N2 balance:    3.76 ν
O2

 = c = 15.04 

Extra oxygen:   d = 4 – 1 - 1 = 2 

Products:      2 H2O + 1 CO2 + 15.04 N2 + 2 O2 

Water vapor mole fraction: yv = 
2

1 + 2 + 2 + 15.04 = 0.0998 

Partial water vapor pressure: Pv = yv Po = 0.0998 × 101 = 9.98 kPa              

Pg(Tdew) = Pv = 9.98 kPa    ⇒     Tdew = 45.8oC 
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14.24 

 In a combustion process with decane, C10H22, and air, the dry product mole 

fractions are 83.61% N2, 4.91% O2, 10.56% CO2 and 0.92% CO. Find the 

equivalence ratio and the percent theoretical air of the reactants. 

 

x C
10

H
22

 + (1/φ) ν
O2

 (O
2
 + 3.76 N

2
) → a H

2
O + b CO

2
 + c CO + d N

2
 + e O

2
 

Stoichiometric combustion:   φ = 1,   c = 0,   e = 0,       

C balance:  b = 10x 

H balance:   a = 22x/2 = 11x,    

O balance:    2 ν
O2

 = a + 2b = 11x + 20x = 31x 

   ν
O2

 = 15.5x,    ν
N2

 = 58.28x  ⇒  (A/F)
s
 = (ν

O2
 + ν

N2
)/x = 73.78 

Actual combustion:    d = 83.61    →    

N balance:  (1/φ) ν
O2

 × 3.76 = 83.61     → (1/φ) ν
O2

 = 22.24 

C balance:  10x = 10.56 + 0.92 = 11.48    ⇒   x = 1.148 

 (A/F)
ac

 = (1/φ) ν
O2

 × 4.76/1.148 = 92.215 

 φ = (F/A)
ac

 / (F/A)
s
 = (A/F)

s
 / (A/F)

ac
 = 73.78 / 92.215 = 0.80   or   φ = 0.8 

 Percent theoretical air  = 100 (1/φ) = 125% 
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14.25 

 Natural gas B from Table 14.2 is burned with 20% excess air. Determine the 
composition of the products. 

 

The reaction equation (stoichiometric and  complete combustion) with the 
fuel composition is: 

60.1 CH4 + 14.8 C2H6 + 13.4 C3H8 + 4.2 C4H10 + 7.5 N2  

   + ν
O2

 (O2 + 3.76 N2)   →    a H2O + b CO2 + c N2  

C balance:    60.1 + 2×14.8 + 3×13.4 + 4×4.2 = b = 146.7 

H balance:    4×60.1 + 6×14.8 + 8×13.4 + 10×4.2 = 2a = 478.4   ⇒  a = 239.2 

O balance:    2 ν
O2

 = a + 2b = 239.2 + 2×146.7     ⇒   ν
O2

 = 266.3 

N2 balance:    7.5 + 3.76 ν
O2

 = c = 1008.8 

20% excess air:   ν
O2

 = 1.2×266.3 = 319.56       so now more O2 and N2 

Extra oxygen:   d = 319.56 - 266.3 = 53.26,    c = 7.5 + 3.76×319.56 = 1209 

  Products:          239.2 H2O + 146.7 CO2 + 1209 N2 + 53.26 O2 

 

  

 

To the expert the color of the flame can 
tell about the composition. It can also 
tell about other gases present if they 
have distinct color emission. 
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14.26 

 A Pennsylvania coal contains 74.2% C, 5.1% H, 6.7% O, (dry basis, mass 
percent) plus ash and small percentages of N and S. This coal is fed into a gasifier 
along with oxygen and steam, as shown in Fig. P14.26. The exiting product gas 
composition is measured on a mole basis to: 39.9% CO, 30.8% H2, 11.4% CO2, 

16.4% H2O plus small percentages of CH4, N2, and H2S. How many kilograms of 

coal are required to produce 100 kmol of product gas? How much oxygen and 
steam are required? 

Convert the mass concentrations to number of kmol per 100 kg coal: 

 C :   n = 74.2/12.01 = 6.178  H2:   n = 5.1/2.016 = 2.530 

 O2:   n = 6.7/31.999 = 0.209 

Now the combustion equation reads 

  x(6.178 C + 2.53 H
2
 + 0.209 O

2
) + y H

2
O + z O

2
  in and 

   39.9 CO + 30.8 H2 + 11.4 CO2 + 16.4 H2O  out 

   in 100 kmol of mix out 

Now we can do the atom balance to find (x, y, z) 

C balance:     6.178 x = 39.9 + 11.4    →     x = 8.304 

H2 balance:    2.53×8.304 + y = 30.8 + 16.4     →    y = 26.191 

O2 balance:   0.209 × 8.304 + 
26.191

2  + z = 
39.9

2  + 11.4 + 
16.4

2    → z = 24.719 

  

 

 Therefore, for 100 kmol of mixture out 

 require:       830.4  kg   of coal 

        26.191 kmol of steam 

        24.719 kmol of oxygen 
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14.27 

 Repeat Problem 14.26 for a certain Utah coal that contains, according to the coal 
analysis, 68.2% C, 4.8% H, 15.7% O on a mass basis. The exiting product gas 
contains 30.9% CO, 26.7% H2, 15.9% CO2 and 25.7% H2O on a mole basis. 

Convert the mass concentrations to number of kmol per 100 kg coal: 

 C : 68.2/12.01 = 5.679   H2:  4.8/2.016 = 2.381 

 O2: 15.7/32.00 = 0.491 

Now the combustion equation reads 

  x(5.679 C + 2.381 H2 + 0.491 O2) + y H2O + z O2  in  

   30.9 CO + 26.7 H2 + 15.9 CO2 + 25.7 H2O  out 

                             in 100 kmol of mix out 

Now we can do the atom balance to find (x, y, z) 

C :      5.679x = 30.9 + 15.9     →    x = 8.241 

 H2:      2.381 × 8.241 + y = 26.7 + 25.7     →    y = 32.778 

 O2:      0.491 × 8.241 + 
32.778

2  + z = 
30.9

2  + 15.9 + 
25.7

2  

                                  →    z = 23.765 

  

Therefore, for 100 kmol of mixture out, 

 require: 824.1  kg   of coal 

             32.778 kmol of steam 

             23.765 kmol of oxygen 
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14.28 

For complete stoichiometric combustion of gasoline, C7H17, determine the fuel 

molecular weight, the combustion products, and the mass of carbon dioxide 
produced per kg of fuel burned. 

 

Stoichiometric combustion:  

   C7H17 + ν
O2

 (O
2
 + 3.76 N

2
) →•  a H

2
O + b CO

2
 + c N

2
 

C balance:      7 = b 

H balance:   17 = 2a,         ⇒    a = 8.5    

O balance:    2 ν
O2

 = a + 2b = 8.5 + 14 = 22.5    ⇒    ν
O2

 = 11.25 

N balance:  c = 3.76  ν
O2

 = 3.76 × 11.25 = 42.3 

M
FUEL

 = 7 M
C
 + 17 M

H
 = 7 × 12.011 + 17 × 1.008 = 101.213 

 

  
mCO2

mFUEL
 = 

7 MCO2

MFUEL
 = 

7 × 44.01
101.213  = 3.044 kg CO2 per kg fuel 
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14.29 

 A sample of pine bark has the following ultimate analysis on a dry basis, percent 
by mass: 5.6% H, 53.4% C, 0.1% S, 0.1% N, 37.9% O and 2.9% ash. This bark 
will be used as a fuel by burning it with 100% theoretical air in a furnace. 
Determine the air–fuel ratio on a mass basis. 

Converting the Bark Analysis from a mass basis: 

 

 Substance S H2 C O2 N2 

 c/M =  0.1/32 5.6/2 53.4/12 37.9/32 0.1/28 

 kmol / 100 kg coal 0.003 2.80 4.45 1.184 0.004 

 Product SO2 H2O CO2   

 oxygen required 0.003 1.40 4.45 -- -- 

 

Combustion requires:   0.003 + 1.40 + 4.45 = 5.853 kmol O2 there is in the 

bark 1.184 kmol O2  so the net from air is   4.669 kmol O2  

 AF = (4.669 + 4.669 × 3.76) × 
28.97
100   = 6.44 

kg air
kg bark 
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14.30 

 Liquid propane is burned with dry air. A volumetric analysis of the products of 
combustion yields the following volume percent composition on a dry basis: 8.6% 
CO2, 0.6% CO, 7.2% O2 and 83.6% N2. Determine the percent of theoretical air 

used in this combustion process. 

 a C
3
H

8
 + b O

2
 + c N

2
  → 8.6 CO

2
 + 0.6 CO + d H

2
O + 7.2 O

2
 + 83.6 N

2
 

 C  balance:      3a = 8.6 + 0.6 = 9.2 ⇒ a = 3.067 

 H
2
 balance:     4a = d ⇒ d = 12.267 

 N
2
 balance:      c = 83.6 

 O
2
 balance:      b = 8.6 + 

0.6
2  + 

12.267
2  + 7.2 = 22.234 

 Air-Fuel ratio = 
22.234 + 83.6

3.067  = 34.51 

 Theoretical: 

C
3
H

8
 + 5 O

2
 + 18.8 N

2
   →   3 CO

2
 + 4 H

2
O + 18.8 N

2
 

 ⇒ theo. A-F ratio = 
5 + 18.8

1  = 23.8 

 % theoretical air = 
34.51
23.8  × 100 % = 145 % 
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14.31 

 A fuel, CxHy, is burned with dry air and the product composition is measured on a 
dry mole basis to be: 9.6% CO2, 7.3% O2 and 83.1% N2. Find the fuel 

composition (x/y) and the percent theoretical air used. 

 

 ν
Fu

CxHy + ν
O2

O
2
 + 3.76ν

O2
N

2
 → 9.6 CO

2
 + 7.3 O

2
 + 83.1 N

2
 + ν

H2O
H

2
O 

 N
2
 balance:  3.76ν

O2
 = 83.1 ⇒ ν

O2
 = 22.101 

 O
2
 balance:  ν

O2
 = 9.6 + 7.3 + 

1
2 ν

H2O
 ⇒ ν

H2O
 = 10.402 

 H balance:  ν
Fu

 y = 2 ν
H2O

 = 20.804 

 C balance:  ν
Fu

 x = 9.6 

 Fuel composition ratio = x/y = 9.6/20.804 = 0.461 

 Theoretical air = 
ν

O2AC

ν
O2stoich

 100 = 
22.101

9.6 + 
1
4 × 29.804

  100 = 149.3% 
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14.32 

 For the combustion of methane 150% theoretical air is used at 25oC, 100 kPa and 
relative humidity of 70%. Find the composition and dew point of the products.  

 

The reaction equation for stoichiometric mixture is: 

CH4 + ν
O2

 (O2 + 3.76 N2)   →    2 H2O + 1 CO2 + 3.76 ν
O2

 N2  

C balance:  ν
CO2

 = 1 ,  H balance:   2ν
H2O

 = 4 ,  N2 balance:  ν
N2

 = 3.76 ν
O2

 

O balance:    2 ν
O2

 = ν
H2O

 + 2ν
CO2

 = 2 + 2 × 1     =>   ν
O2

 = 2 

150% theoretical air:   ν
O2

 = 1.5 × 2 = 3       so now more O2 and N2 

CH4 + 3 (O2 + 3.76 N2)   →     2 H2O + 1 CO2 + 11.28 N2 + 1 O2 

Add water to the dry air from Eq.12.28 

  w = 0.622 
φPg

Ptot - φPg
 = 0.622 

0.7 × 3.169
100 - 0.7  × 3.169

 = 0.0141 

So the number of moles to add is from Eq.14.9 

  x = 7.655 w = 7.655 × 0.0141 = 0.108 

and the added number of moles is  ν
O2

 x = 0.324, the products are then 

  Products:     2.324 H2O + 1 CO2 + 11.28 N2 + 1 O2 

The water partial pressure becomes 

   Pv = yv Ptot = 
2.324

2.324 + 1 + 11.28 + 1 100 = 14.894 kPa 

   Tdew = 53.8oC 
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14.33 

 Many coals from the western United States have a high moisture content.  
Consider the following sample of Wyoming coal, for which the ultimate analysis 
on an as-received basis is, by mass: 

 Component  Moisture  H C S N O  Ash 
 % mass     28.9  3.5 48.6 0.5 0.7 12.0  5.8 

  This coal is burned in the steam generator of a large power plant with 
150% theoretical air. Determine the air–fuel ratio on a mass basis. 

Converting from mass analysis: 

 

 Substance S H
2
 C O

2
 N

2
 

 c/M =  0.5/32 3.5/2 4.86/12 12/32 0.7/28 

 kmol / 100 kg coal 0.0156 1.75 4.05 0.375 0.025 

 Product SO
2
 H

2
O CO

2
   

 oxygen required 0.0156 0.875 4.05 -- -- 

 

Combustion requires then oxygen as:   0.0156 + 0.875 + 4.05 = 4.9406 

The coal does include 0.375 O
2
  so only  4.5656 O

2
 from air/100 kg coal 

AF = 1.5 × (4.5656 + 4.5656 × 3.76) × 28.97/100 = 9.444 kg air/kg coal 
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14.34 

 Pentane is burned with 120% theoretical air in a constant pressure process at 100 
kPa. The products are cooled to ambient temperature, 20°C. How much mass of 
water is condensed per kilogram of fuel? Repeat the answer, assuming that the air 
used in the combustion has a relative humidity of 90%. 

 

C5H12 + 1.2 × 8 (O2 + 3.76 N2) →  5 CO2 + 6 H2O + 0.96 O2 + 36.1 N2 

Products cooled to 20oC, 100 kPa, so for H2O at 20°C: Pg = 2.339 kPa 

yH2O MAX = Pg/P = 
2.339
100  = 

nH2O MAX

nH2O MAX + 42.06   ⇒   nH2O MAX = 1.007 < nH2O 

 Therefore,    n
H2O VAP

 = 1.007,    n
H2O LIQ

 = 6 - 1.007 = 4.993 

    m
H2O LIQ

 = 
4.993 × 18.015

72.151  = 1.247 kg/kg fuel 

 Pv1 = 0.9 × 2.339 = 2.105 kPa    ⇒    w1 = 0.622 × 
2.105
97.895 = 0.013375 

    nH2O IN = 0.013375 × 
28.97
18.015 × (9.6 + 36.1) = 0.983 kmol 

 nH2O OUT = 0.983 + 6 = 6.983   ⇒   nH2O LIQ = 6.983 - 1.007 = 5.976 kmol 

    nH2O LIQ = 
5.976 × 18.015

72.151  = 1.492 kg/kg fuel 
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 The coal gasifier in an integrated gasification combined cycle (IGCC) power 
plant produces a gas mixture with the following volumetric percent composition: 

  Product CH4 H2 CO CO2 N2 H2O H2S NH3 

  % vol.   0.3 29.6 41.0 10.0 0.8 17.0 1.1 0.2 

  This gas is cooled to 40°C, 3 MPa, and the H2S and NH3 are removed in 

water scrubbers. Assuming that the resulting mixture, which is sent to the 
combustors, is saturated with water, determine the mixture composition and the 
theoretical air–fuel ratio in the combustors. 

 
 CH

4
 H

2
 CO CO

2
 N

2
 n 

 0.3 29.6 41.0 10.0 0.8 81.7 

 y
H2O

 = 
n

V

n
V

+81.7,     where    n
V

 = number of moles of water vapor 

 Cool to 40°C  P
G

 = 7.384,   P = 3000 kPa 

 y
H2O MAX

 = 
7.384
3000  = 

n
V

n
V

+81.7     →      n
V

 = 0.2016 

 a) Mixture composition: 
 CH

4
 H2 CO CO2 N2 H2O(v) 

 0.3 kmol 29.6 41.0 10.0 0.8 0.2016 

    81.9016 kmol (from 100 kmol of the original gas mixture) 

      0.3 CH
4
 + 0.6 O2   →   0.3 CO2 + 0.6 H2O 

     29.6 H2 + 14.8 O2  →   29.6 H2O 

       41 CO + 20.5 O
2
  →   41 CO

2
 

     ⇒ Number of moles of O2 = 0.6 + 14.8 + 20.5 = 35.9 

    Number of moles of air = 35.9 + 3.76 × 35.9 (N2) 

   A/F = 
28.97(35.9 + 3.76(35.9))

0.3(16) + 29.6(2) + 41(28) + 10(44) + 0.8(28) + 0.2016(18) 

          = 2.95 kg air/kg fuel 
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14.36 

 The hot exhaust gas from an internal combustion engine is analyzed and found to 
have the following percent composition on a volumetric basis at the engine 
exhaust manifold. 10% CO2, 2% CO, 13% H2O, 3% O2 and 72% N2. This gas is 

fed to an exhaust gas reactor and mixed with a certain amount of air to eliminate 
the carbon monoxide, as shown in Fig. P14.36. It has been determined that a mole 
fraction of 10% oxygen in the mixture at state 3 will ensure that no CO remains. 
What must the ratio of flows be entering the reactor? 

 
 Exhaust gas at state 1: CO2 10 %,  H2O 13%,   

                                CO   2%,  O2   3%,  N2  72% 
 
Exhaust gas at state 3:    CO = 0 %, O2 = 10 % 
 

Air

Exh. gas
gas

out
Reactor

1

2

3

 

Reaction equation for the carbon monoxide 

 

 ⇒ 0.02 CO + x O2 + 3.76x N2  → 0.02 CO2 + (x-0.01) O2 + 3.76x N2 

 

At 3: ν
CO2

 = 0.10 + 0.02 = 0.12,      ν
H2O

 = 0.13 

  ν
O2

 = (x-0.01) + 0.03 = x + 0.02 ν
N2

 = 0.72 + 3.76x 

or  

n
TOT

 = 0.12 + 0.13 + x + 0.02 + 0.72 + 3.76x   = 0.99 + 4.76x 

 y
O2

 = 0.10 = 
x + 0.02

0.99 + 4.76x        →     x = 0.151 

 or       
air 2

Exh. Gas 1
 = 

4.76x
1  = 0.718 

kmol air
kmol Exh. gas 

 

 

 

 
 



   Sonntag, Borgnakke and van Wylen 

 
14.37 

 Butane is burned with dry air at 40oC, 100 kPa with AF = 26 on a mass basis. For 
complete combustion find the equivalence ratio, % theoretical air and the dew 
point of the products. How much water (kg/kg fuel) is condensed out, if any, 
when the products are cooled down to ambient temperature? 

 Solution: 

 C
4
H

10
 + ν

O2
{O

2
 + 3.76 N

2
} →  4 CO

2
 + 5 H

2
O + 3.76 ν

O2
N

2
  

 Stoichiometric     ν
O2

 S = 4 + 5/2 = 6.5;        3.76 ν
O2

 = 24.44 

  (A/F)S = 6.5(31.999 + 3.76 × 28.013)/58.124 = 15.3574 

 Actual:  ν
O2ac = 

(A/F)ac
(A/F)s

 ν
O2

 S =  
26

15.3574 6.5 = 11 

  % Theoretical air = 
26

15.3574 100 = 169.3% 

  Equivalence ratio    Φ = 1/1.693 = 0.59 

  

Actual products:         4 CO2 + 5 H2O + 4.5 O2 + 41.36 N2 

The water partial pressure becomes 

  Pv = yv Ptot = 
5

4 + 5 + 4.5 + 41.36 100 = 9.114 kPa 

   Tdew = 43.85oC 

  Pg 40 = 7.348 kPa     ⇒         yv max = 
7.384
100  = 

νH2O

4 + νH2O + 4.5 + 41.36
 

 

 Solve for νH2O vap:  

       νH2O vap  = 3.975   still vapor,       

       νH2O LIQ = 5 – 3.975 = 1.025   is liquid 

       
mH2O LIQ

mFuel
 = 

1.025 × 18.015
58.124  = 0.318 
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14.38 
 Methanol, CH

3
OH, is burned with 200% theoretical air in an engine and the 

products are brought to 100 kPa, 30°C. How much water is condensed per 
kilogram of fuel? 

 

 CH
3
OH + ν

O2
{O

2
 + 3.76 N

2
} → CO

2
 + 2 H

2
O + 3.76 ν

O2
N

2
  

 Stoichiometric    ν
O2 S

 = 1.5    ⇒    ν
O2 AC

 = 3 

 Actual products: CO2 + 2 H2O + 1.5 O2 + 11.28 N2 

 Psat(30°C) = 4.246 kPa 

  ⇒ yH2O = 0.04246 = 
νH2O

1 + νH2O + 1.5 + 11.28
 

  ⇒ νH2O = 0.611    ⇒     ∆νH2O cond = 2 - 0.611 = 1.389 

     MFu = 32.042             
∆MH2O

MFu
 = 

1.389 × 18
32.042  = 0.781 

kg H2O
kg fuel  
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14.39 
 The output gas mixture of a certain air–blown coal gasifier has the composition of 

producer gas as listed in Table 14.2. Consider the combustion of this gas with 
120% theoretical air at 100 kPa pressure. Determine the dew point of the products 
and find how many kilograms of water will be condensed per kilogram of fuel if 
the products are cooled 10°C below the dew-point temperature. 

 

  {3 CH
4
 + 14 H

2
 + 50.9 N

2
 + 0.6 O

2
 + 27 CO + 4.5 CO

2
} 

     + 31.1 O
2
 + 116.9 N

2
 → 34.5 CO

2
 + 20 H

2
O + 5.2 O

2
 + 167.8 N

2
 

   Products: 

    y
H2O

 = y
H2O MAX

 = P
G

/100 = 
20

34.5 + 20 + 5.2 + 167.8 

    ⇒ P
G

 = 8.79 kPa    →     T
DEW PT

 = 43.2°C 

At T = 33.2°C, P
G

 = 5.13 kPa 

    y
H2O

 = 
5.13
100  = 

n
H2O

n
H2O

+34.5+5.2+167.8     →     n
H2O

 = 11.22 

m
H2O LIQ

 = 
8.78(18)

3(16) +14(2) +50.9(28) +0.6(32) +27(28) +4.5(44)  = 0.0639 kg/kg fuel 
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14.40 
 In an engine liquid octane and ethanol, mole ration 9:1, and stoichiometric air are 

taken in at 298 K, 100 kPa. After complete combustion, the products run out of 

the exhaust system where they are cooled to 10oC. Find the dew point of the 
products and the mass of water condensed per kilogram of fuel mixture. 

 

 Reaction equation with 0.9 octane and 0.1 ethanol is 

 0.9 C
8
H

18
 + 0.1 C

2
H

5
OH + 11.55 O

2
 + 43.428 N

2
 

     → 8.4 H
2
O + 7.4 CO

2
 + 43.428 N

2
 

 y
H2O

 = 
8.4

8.4 + 7.4 + 43.428 = 0.1418 

 P
H2O

 = y
H2O

P
tot

 = 14.3 kPa    ⇒  T
dew

= 52.9 °C 

 10 °C ⇒ P
H2O

 = 1.2276    ⇒    y
H2O

 = 0.012276 = 
x

x + 7.4 + 43.428 

  ⇒ x = 0.6317   ⇒   ∆ν
H2O

= -7.77 
kmol

kmol Fu mix 

 m
H2O cond

= 
-∆ν

H2O
 × 18.015

107.414  = 1.303 
kmol

kmol Fu mix 
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Energy Equation, Enthalpy of Formation 

 
14.41 

 A rigid vessel initially contains 2 kmol of carbon and 2 kmol of oxygen at 25°C, 
200 kPa. Combustion occurs, and the resulting products consist of 1 kmol of 
carbon dioxide, 1 kmol of carbon monoxide, and excess oxygen at a temperature 
of 1000 K. Determine the final pressure in the vessel and the heat transfer from 
the vessel during the process. 

 2 C + 2 O
2
   → 1 CO

2
 + 1 CO + 

1
2 O

2
 

 Process    V = constant,        C: solid,   n
1(GAS)

 = 2,   n
2(GAS)

 = 2.5 

 P2 = P1 × 
n2T2

n1T1
 = 200 × 

2.5 × 1000
2 × 298.2

 = 838.4 kPa 

 H1 = 0 

 H2 = 1(-393 522 + 33 397) + 1(-110 527 + 21 686) 

   + (1/2)(0 + 22 703) = -437 615 kJ 

    
1
Q

2
 = (U

2
 - U

1
) = (H

2
 - H

1
) - n

2
R
-
T

2
 + n

1
R
-
T

1
 

      = (-437 615 - 0) - 8.3145(2.5 × 1000 - 2 × 298.2)  = -453 442 kJ 

 
 

GAS
COMBUSTION

cb  
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14.42 
 In a test of rocket propellant performance, liquid hydrazine (N2H4) at 100 kPa, 

25°C, and oxygen gas at 100 kPa, 25°C, are fed to a combustion chamber in the 
ratio of 0.5 kg O2/kg N2H4. The heat transfer from the chamber to the 

surroundings is estimated to be 100 kJ/kg N2H4. Determine the temperature of the 

products exiting the chamber. Assume that only H2O, H2, and N2 are present. The 

enthalpy of formation of liquid hydrazine is +50 417 kJ/kmol. 

 
  

Liq. N
2
H

4
:  100 kPa, 25oC 

Gas  O
2
:  100 kPa, 25oC 

 

1 

2 

3 Comb. 
Chamber 

 

 
 
Products 

    

 m
.

O2
/m

.
N2H4

 = 0.5 = 32n
.
O2

/32n
.
N2H4

    and      Q
.
/m

.
N2H4

 = -100 kJ/kg 

 Energy Eq.:     Q
CV

 = H
P
 - H

R
 = -100 × 32.045 = -3205 kJ/kmol fuel 

 Combustion eq.: 1 N
2
H

4
 + 

1
2 O

2
 → H

2
O + H

2
 + N

2
 

 H
R
 = 1(50417) + 

1
2(0) = 50417 kJ 

 H
P
 = -241 826 + ∆h

-
H2O

 + ∆h
-

H2
 + ∆h

-
N2

 

Energy Eq. now reads 

   H
P
 = H

R
 + Q

CV
  =  H

o
P +  ∆HP 

  ∆HP = ∆h
-

H2O
 + ∆h

-
H2

 + ∆h
-

N2
 = -H

o
P +  H

R
 + Q

CV
 

= 241 826 + 50 417 - 3205 = 289 038 kJ/kmol fuel 

Table A.9  :   Guess T and read for water, hydrogen and nitrogen 

2800 K:   ∆HP = 115 463 + 81 355 + 85 323 = 282 141  too low  

3000 K:   ∆HP = 126 548 + 88 725 + 92 715 = 307 988  too high 

   Interpolate to get    T
P
 = 2854 K 
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14.43 

 The combustion of heptane C7H16 takes place in a steady flow burner where fuel 

and air are added as gases at Po, To. The mixture has 125% theoretical air and the 

products are going through a heat exchanger where they are cooled to 600 K.Find 
the heat transfer from the heat exchanger per kmol of heptane burned. 

The reaction equation for stoichiometric ratio is: 

  C7H16  +  vO2 (O2 + 3.76 N2)     =>  7CO2 + 8 H2O + vO2 × 3.76 N2 

So the balance (C and H was done in equation) of oxygen gives vO2 = 7 + 4 = 

11, and actual one is  11×1.25 = 13.75. Now the actual reaction equation is: 

  C7H16  +  13.75 O2 + 51.7 N2     =>  7CO2 + 8 H2O + 51.7 N2+  2.75 O2 

To find the heat transfer take control volume as combustion chamber and heat 
exchanger 

  HR + Q = HP    =>    Q = H
o
P  + ∆HP - H

o
R  

Take the enthalpies from Tables A.9 for products and A.10 for fuel 

 Q = 7(-393 522 + 12 906) + 8 (-241 826 + 10 499) + 51.7(8894)  

 + 2.75(9245)  - (-187 900) 

     = - 3 841 784 kJ/kmol fuel 
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14.44 

 Butane gas and 200% theoretical air, both at 25°C, enter a steady flow combustor. 
The products of combustion exits at 1000 K. Calculate the heat transfer from the 
combustor per kmol of butane burned. 

 

C4H10 + (1/φ) ν
O2

(O
2
 + 3.76 N

2
)   →   a CO

2
 + b H

2
O + c N

2
 + d O

2
  

First we need to find the stoichiometric air ( φ = 1,   d = 0 ) 

C balance:   4 = a,  H balance:   10 = 2b   =>    b = 5 

O balance:   2ν
O2

 = 2a + b = 8 + 5 = 13   =>   ν
O2

 = 6.5 

Now we can do the actual air:   (1/φ) = 2   =>   ν
O2

 = 2 × 6.5 = 13 

N balance:   c = 3.76 ν
O2

 = 48.88,   O balance:   d = 13 - 6.5 = 6.5 

Energy Eq.: q = HR - HP = H
o
R - H

o
P - ∆HP   

Table A.10:   H
o
R = -126 200 + 0 + 0 = -126 200 kJ/kmol fuel 

          H
o
P = 4 (-393 522) + 5(-241 826) + 0 + 0 = -2 783 218 kJ/kmol fuel 

The rest of the values are from Table A.9 at 1000 K 

∆h
−

CO2 = 33397,   ∆h
−

N2 = 21463,   ∆h
−

O2 = 22703,   ∆h
−

H2O = 26000 kJ/kmol 

 ∆HP = 4 × 33 397 + 5 × 26 000 + 48.88 × 21 463 + 6.5 × 22 703 

         = 1 460 269 kJ/kmol fuel 

From the energy equation we get 

q = -126 200 –(-2 783 218) - 1 460 269 = 1 196 749 kJ/kmol butane 
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14.45 
 One alternative to using petroleum or natural gas as fuels is ethanol (C2H5OH), 

which is commonly produced from grain by fermentation. Consider a combustion 
process in which liquid ethanol is burned with 120% theoretical air in a steady 
flow process. The reactants enter the combustion chamber at 25°C, and the 
products exit at 60°C, 100 kPa. Calculate the heat transfer per kilomole of 
ethanol. 

 

C2H5OH + 1.2 × 3 (O2 + 3.76 N2)   →   2CO2 + 3H2O + 0.6O2 + 13.54N2 

Fuel:  h
-0

f  = -277 380 kJ/kmol for liquid from Table A.10,       

Products at 60°C, 100 kPa, check for condensation of water 

yH2O MIX = 
19.94
100  = 

nV MAX

nV MAX+2+0.6+13.54    =>   nV MAX = 4.0 > 3  ⇒  No liq. 

 HR = 1(-277 380) + 0 + 0 = -277 380 kJ/kmol fuel 

 HP = 2(-393 522 + 1327) + 3(-241 826 + 1178) 

              + 0.6(0 + 1032) + 13.54(0 + 1020) = -1 491 904 kJ/kmol fuel 

 QCV = HP - HR = -1 214 524 kJ/kmol fuel 
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14.46 
 Do the previous problem with the ethanol fuel delivered as a vapor. 

One alternative to using petroleum or natural gas as fuels is ethanol (C2H5OH), 

which is commonly produced from grain by fermentation. Consider a combustion 
process in which liquid ethanol is burned with 120% theoretical air in a steady 
flow process. The reactants enter the combustion chamber at 25°C, and the 
products exit at 60°C, 100 kPa. Calculate the heat transfer per kilomole of 
ethanol. 

 

C2H5OH + 1.2 × 3 (O2 + 3.76 N2)   →   2CO2 + 3H2O + 0.6O2 + 13.54N2 

Fuel:  h
-0

f  = -235 000 kJ/kmol for IG  from Table A.10     

Products at 60°C, 100 kPa, check for condensation of water 

yH2O MIX = 
19.94
100  = 

nV MAX

nV MAX+2+0.6+13.54    =>   nV MAX = 4.0 > 3  ⇒  No liq. 

 HR = 1(-235 000) + 0 + 0 = -235 000 kJ/kmol fuel 

 HP = 2(-393 522 + 1327) + 3(-241 826 + 1178) 

              + 0.6(0 + 1032) + 13.54(0 + 1020) = -1 491 904 kJ/kmol fuel 

 QCV = HP - HR = -1 256 904 kJ/kmol fuel 
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14.47 

 Another alternative to using petroleum or natural gas as fuels is methanol, 
CH

3
OH, which can be produced from coal. Both methanol and ethanol have been 

used in automotive engines. Repeat the previous problem using liquid methanol 
as the fuel instead of ethanol. 

CH
3
OH + 1.2 × 1.5 (O

2
 + 3.76 N

2
)  →  1 CO

2
 + 2 H

2
O + 0.3 O

2
 + 6.77 N

2
  

Reactants at 25 oC, products are at 60 oC = 333.2 K, 100 kPa, check for 
condensation of water 

y
H2O MAX

 = 
19.94
100  = 

nV MAX

nV MAX+1+0.3+6.77  =>   nV MAX = 2.0 > 2 ⇒ No liq. 

 CH
3
OH:  h

-o
f  = -239 220 kJ/kmol from table A.10 for the liquid state 

 H
R
 = 1 h

-
LIQ = -239 220 kJ/kmol fuel 

 HP = 1(-393 522 + 1327) + 2(-241 826 + 1178) 

          + 0.3(1032) + 6.77(1020) = -866 276 kJ/kmol fuel 

 Q = HP - HR = -627 056 kJ/kmol fuel 
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14.48 

 Another alternative fuel to be seriously considered is hydrogen. It can be 
produced from water by various techniques that are under extensive study. Its 
biggest problem at the present time are cost, storage, and safety. Repeat Problem 
14.45 using hydrogen gas as the fuel instead of ethanol. 

 

 H2 + 1.2 × 0.5 O2 + 1.2 × 3.76 × 0.5 N2   → 1 H2O + 0.1 O2 + 2.256 N2 

 Products at 60°C, 100 kPa, check for condensation of water 

 yH2O MAX = 
19.94
100  = 

nV MAX

nV MAX + 0.1 + 2.256 

 Solving, nV MAX = 0.587 < 1   =>  nV = 0.587,   nLIQ = 0.413 

 HR = 0 + 0 + 0 = 0 

 Notice the products are at 60°C so add for water liquid from steam tables 

 HP = 0.413[-285 830 + 18.015(251.1 - 104)] + 0.587(-241 826 + 1178)  

          + 0.1(0 + 1032) + 2.256(0 + 1020)  = -255 816 kJ 

 QCV = HP - HR = -255 816 kJ 
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14.49 

 In a new high-efficiency furnace, natural gas, assumed to be 90% methane and 
10% ethane (by volume) and 110% theoretical air each enter at 25°C, 100 kPa, 
and the products (assumed to be 100% gaseous) exit the furnace at 40°C, 100 kPa. 
What is the heat transfer for this process? Compare this to an older furnace where 
the products exit at 250°C, 100 kPa. 

 
 

110% Air

Prod. 
Furnace 

0.90CH + 0.10C H  4 2 6 

25 C
o 40 C  

100 kPa 

o 

 

 

 

 0.9 CH
4
 + 0.1 C

2
H

6
 + 1.1 × 2.15 O

2
 + 3.76 × 2.365 N

2
 

     → 1.1 CO
2
 + 2.1 H

2
O + 0.215 O

2
 + 8.892 N

2
 

Fuel values from table A.10 and the rest from Table A.9 

    H
R
 = 0.9(-74 873) + 0.1(-84 740) = -75860 kJ/kmol fuel 

    H
P
 = 1.1(-393 522 + 562) + 2.1(-241 826 + 504) + 0.215(441) + 8.892(437) 

          = -935 052 kJ/kmol fuel   assuming all gas 

     

    Q
CV

 = H
P
 - H

R
 = -859 192 kJ/kmol fuel 

 

b) TP = 250 oC 

     HP = 1.1(-393 522 + 9346) + 2.1(-241 826 + 7740) 

     + 0.215(6808) + 8.892(6597)   = -854 050 kJ  

     QCV = HP - HR = -778 190 kJ/kmol fuel  
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14.50 

 Repeat the previous problem, but take into account the actual phase behavior of 
the products exiting the furnace. 

 

 0.9 CH
4
 + 0.1 C

2
H

6
 + 1.1 × 2.15 O

2
 + 3.76 × 2.365 N

2
 

     → 1.1 CO
2
 + 2.1 H

2
O + 0.215 O

2
 + 8.892 N

2
 

Same as 14.49, except check products for saturation at 40oC, 100 kPa 

    yV MAX = 
7.384
100  = 

nV MAX

nV MAX+10.207   =>    Solving, nV MAX = 0.814 

    n
V

 = 0.814,    n
LIQ

 = 2.1 - 0.814 = 1.286 

Fuel values from table A.10 and the rest from Table A.9 

    H
R
 = 0.9(-74 873) + 0.1(-84 740) = -75 860 kJ/kmol fuel 

For the liquid water add difference (40oC – 25oC) from steam tables 

    H
LIQ

 = 1.286[-285 830 + 18.015(167.6 - 104.9)] = -366 125 kJ/kmol fuel 

    H
GAS

 = 1.1(-393 522 + 562) + 0.814(-241 826 + 504 ) 

           + 0.215(441) + 8.892(437) = -624 711 kJ/kmol fuel 

   Q
CV

 = H
P
 - H

R
 = (-366 125 - 624 711) + 75 860 

            = -914 976 kJ/kmol fuel 

 

b) TP = 250 oC 

     HP = 1.1(-393 522 + 9346) + 2.1(-241 826 + 7740) 

     + 0.215(6808) + 8.892(6597)    

          = -854 050 kJ/kmol 

     QCV = HP - HR = -778 190 kJ/kmol fuel 
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14.51 

 Pentene, C
5
H

10
 is burned with pure oxygen in a steady flow process. The 

products at one point are brought to 700 K and used in a heat exchanger, where 
they are cooled to 25°C. Find the specific heat transfer in the heat exchanger. 

 C
5
H

10
 + ν

O2
O

2
 → 5 CO

2
 + 5 H

2
O        ⇒        ν

O2
 = 7.5 

 The heat exchanger cools the products so energy equation is 

 5 n
.
F h

-
CO2

 + 5 n
.
F h

-
H2O

 + Q
.
 = 5 n

.
F h

-°
f  CO2

  

    + (5 - x) n
.
F h

-°
liq H2O

 + (x) n
.
F h

-°
vap H2O

 

Check for condensation amount 

 Find x:    y
H2O max

 = 
Pg(25°)

Ptot
 = 0.0313 = 

x
5 + x      ⇒     x = 0.1614 

 Out of the 5 H
2
O only 0.1614 still vapor. 

 
Q
.

n⋅
F
 = -5 ∆h

-
CO2,700

 + (5-x)(h
-°

f liq
 - h-°

f vap
 - ∆h

-
700

) + x(h
-°

f vap
 - h-°

f vap
 - ∆h

-
700

) 

     = -5(17 761) + 4.84(-44 011 – 14 184) - 0.16(14 184)  

    = -372 738 kJ/kmol Fu 
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14.52 

 Methane, CH4, is burned in a steady flow process with two different oxidizers: 

Case A: Pure oxygen, O2 and case B: A mixture of O2 + x Ar. The 

reactants are supplied at T0, P0 and the products for both cases should be at 1800 
K. Find the required equivalence ratio in case (A) and the amount of Argon, x, for 
a stoichiometric ratio in case (B). 

 

  a) Stoichiometric has ν = 2, actual has: 

    CH
4
 + νO

2
 → CO

2
 + 2H

2
O + (ν - 2)O

2
 

 Energy eq.: H
°
R = H

°
P + ∆H

P 1800
      

     ∆H
P 1800

= H
°
R - H

°
P = h

-o
f fuel + 0 - h

-o
f CO2

 - 2h
-o

f H2O - 0  

  = -74 873 –(-393 522) – 2(-241 826) = 802 301 kJ/kmol 

 ∆h
-

CO2
= 79 432,    ∆h

-
H2O

= 62 693,   ∆h
-

O2
= 51 674 all in kJ/kmol 

 ∆H
P 1800

= 101 470 + ν 51 674 = 802 301 kJ/kmol fuel 

   ⇒     ν = 13.56,     Φ = 
AFS

AF  = 
2

13.56 = 0.1475 

  b)  CH
4
 + 2 O

2
 + 2x Ar → CO

2
 + 2H

2
O + 2x Ar 

 ∆H
P 1800

= 79 432 + 2 × 62 693  

  + 2x × 0.52 × 39.948(1800 - 298) = 204 818 + x 62 402 

 Now the energy equation becomes 

  802 301 = 204 818 + x 62 402    ⇒     x = 9.575 
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14.53 

 A closed, insulated container is charged with a stoichiometric ratio of oxygen and 
hydrogen at 25°C and 150 kPa. After combustion, liquid water at 25°C is sprayed 
in such that the final temperature is 1200 K. What is the final pressure? 

 

Combustion reaction:  H
2
 + 

1
2( )O

2
 → H

2
O 

Products:        1 H
2
O + x

i
H

2
O 

 U
2
 - U

1
 = x

i
h
-

i
 = x

i
h

°
f liq = ( )1 + x

i
H

P
 - H

R
 - ( )1 + x

i
R
-
T

P
 + 

3
2R

-
T

R
 

From Table A.9:    H
R
 = 0,   H

P
 = -241 826 + 34 506 = -207 320 kJ/kmol    

From Table A.10:  h
°
f liq= -285 830 kJ/kmol 

Substitute 

  x
i( )-285830 + 207320 + 8.3145 × 1200  =  

   -207 320 - 8.3145  1200 - 
3
2×298.15  = -213 579 

  x
i
 = 3.116 

 P
1
V

1
 = n

R
R
-
T

1
,    P

2
V

1
 = n

p
R
-
T

p
 

 P
2
 = 

P
1( )1 + x

i
T

P
3
2( )T

1

 = 
150 × 4.116 × 1200

3
2 × 298.15

 = 1657 kPa 
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14.54 
 Gaseous propane mixes with air, both supplied at 500 K, 0.1 MPa. The mixture 

goes into a combustion chamber and products of combustion exit at 1300 K, 0.1 
MPa. The products analyzed on a dry basis are 11.42% CO2, 0.79% CO, 2.68% 

O2, and 85.11% N2 on a volume basis. Find the equivalence ratio and the heat 

transfer per kmol of fuel. 

 C
3
H

8
 + α O

2
 + 3.76 α N

2
 → β CO

2
 + γ H

2
O + 3.76 α N

2
 

  β = 3,   γ = 4,   α = β + γ/2 = 5,      ( )A/F
S
 = 4.76α = 23.8   

The actual combustion reaction is 

 xC
3
H

8
 + α O

2
 + 3.76 α N

2
 →  

11.42 CO
2
 + y H

2
O + 85.11 N

2
 + 0.79 CO + 2.68 O

2
 

C balance:    3x = 11.42 + 0.79      =>     x = 4.07 

H balance:    8x = 2y   =>    y = 4x = 16.28 

O balance:    2α = 2 × 11.42 + y + 0.79 + 2 × 2.68 = 45.27     =>   α = 22.635 

N balance:    3.76 α  = 85.11      =>    α = 22.6356     checks close enough 

Rescale the equation by dividing with x to give 

 C
3
H

8
 + 5.5614 (O

2
 + 3.76 N

2
) →  

2.806 CO
2
 + 4 H

2
O + 20.91 N

2
 + 0.194 CO + 0.6584 O

2
 

  A/F = 5.5614 (1 + 3.76) / 1 = 26.472 

 φ = ( )A/F
S
/( )A/F  = 23.8 / 26.472 = 0.899,    %Theo. air = 1/φ = 111% 

 h
P
 = h

o
P + ∑νi∆h(1300 K)  

 q = h
P
 - h

R
 = h

o
P  + ∑νi∆h(1300 K) - h

R
 

 h
R
 = h

o
f fuel + ∆hfuel + 5.5614 ∆hO2 + 20.91 ∆hN2 

      = -103 900 + 1.679 × 44.094 (500 – 298) + 5.5614 (6086)  

+ 20.91 (5911)  = 68 500 kJ/kmol fuel 

  h
o
P = 2.806 (-393 522) + 4(-241 826) + 0 + 0.194 (-110 527) + 0 

      = -2 092 969 kJ/kmol fuel 

 ∑νi∆h(1300 K) =  2.806 (50 148) + 4(38 941) + 20.91 (31 503) 

 + 0.194 (31 867) + 0.6584 (33 345) 

  = 983 344 kJ/kmol fuel  

 q = -2 092 969 + 983 344 – 68 500 = -1 178 125 kJ/kmol fuel 
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Enthalpy of Combustion and Heating Value 
 

 
14.55 
 Liquid pentane is burned with dry air and the products are measured on a dry 

basis as: 10.1% CO2, 0.2% CO, 5.9% O2 remainder N2. Find the enthalpy of 

formation for the fuel and the actual equivalence ratio. 

 ν
Fu

C
5
H

12
 + ν

O2
O

2
 + 3.76 ν

O2
N

2
 →  

   x H
2
O + 10.1 CO

2
 + 0.2 CO + 5.9 O

2
 + 83.8 N

2
 

 Balance of C:   5 ν
Fu

 = 10.1 + 0.2   ⇒   ν
Fu

 = 2.06 

 Balance of H:   12 ν
Fu

 = 2 x   ⇒   x = 6 ν
Fu

 = 12.36 

 Balance of O:   2 ν
O2

 = x + 20.2 + 0.2 + 2 × 5.9   ⇒   ν
O2

 = 22.28 

 Balance of N:   2 × 3.76 ν
O2

 = 83.8 × 2   ⇒   ν
O2

 = 22.287 ⇒ OK 

 ν
O2

 for 1 kmol fuel = 10.816 

 φ = 1,  C
5
H

12
 + 8 O

2
 + 8 × 3.76 N

2
 → 6 H

2
O + 5 CO

2
 + 30.08 N

2
 

 H
°
RP = H

°
P - H

°
R = 6 h

-°
f H2O + 5 h

-°
f CO2 - h

-°
f fuel 

 14.3:   H
°
RP = 44 983 × 72.151  ⇒      h

-°
f fuel  = -172 998 kJ/kmol 

  φ = AFs / AF = νO2 stoich/νO2 AC = 8/10.816 = 0.74 
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14.56 

 Phenol has an entry in Table 14.3, but it does not have a corresponding value of 
the enthalpy of formation in Table A.10. Can you calculate it? 

 

 C6H5OH + ν
O2

[ O
2
 + 3.76 N

2
 ] →   3 H

2
O + 6 CO

2
 + 3.76ν

O2
 N

2
 

The C and H balance was introduced (6 C’s and 6 H’s). At the reference 
condition the oxygen and nitrogen have zero enthalpy of formation. 

 

Energy Eq.: HP = HR = H
o
P = H

o
R     since ref. T is assumed. 

   H
°
RP = HP − HR = H

o
P − H

o
R =  3 h

-°
f H2O + 6 h

-°
f CO2 - h

-°
f fuel 

Table 14.3 is on a mass basis and let us chose liquid fuel, so we get the 
molecular weight from the composition 

  M = 6 × 12.011 + 3 × 2.016  + 16 = 94.114 

  H
°
RP = 94.114 (-31 117) = -2 928 545 kJ/kmol 

Solve the energy equation for fuel formation enthalpy 

  h
-°

f fuel =  3 h
-°

f H2O + 6 h
-°

f CO2 - H
°
RP 

           =  3 (-241 826) + 6(-393 522) – (-2 928 545) 

           = -158 065 kJ/kmol 

For fuel as vapor we get 

  H
°
RP = 94.114 (-31 774) = -2 990 378 kJ/kmol 

  h
-°

f fuel =  3 h
-°

f H2O + 6 h
-°

f CO2 - H
°
RP 

           =  3 (-241 826) + 6(-393 522) – (-2 990 378) 

           = -96 232 kJ/kmol 

Notice if I took liquid water in products to do H
°
RP then I must use liquid value 

for  h
-°

f H2O = - 285 830 kJ/kmol and the final result is the same. 
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14.57 
 Do problem 14.43 using table 14.3 instead of Table A.10 for the solution. 
 

The reaction equation for stiochiometric ratio is: 

 C7H16  +  νO2 (O2 + 3.76 N2)     =>  7CO2 + 8 H2O + νO2 × 3.76 N2 

So the balance (C and H was done in equation) of oxygen gives vO2 = 7 + 4 = 

11, and actual one is  11×1.25 = 13.75. Now the actual reaction equation is: 

 C7H16  +  13.75 O2 + 51.7 N2     =>  7CO2 + 8 H2O + 51.7 N2+  2.75 O2 

To find the heat transfer take control volume as combustion chamber and heat 
exchanger 

  HR + Q = HP    =>    Q = HPo  + ∆HP - HRo  = HRPo  + ∆HP 

Now we get the enthalpy of combustion from table 14.3, which is per kg, so 
scale it with the molecular weight for the fuel. Add all the ∆HP from A.9 

 

 Q =  M HRPo +  7 ∆h
-

CO2
 + 8 ∆h

-
H2O

  + 51.7 ∆h
-

N2
 + 2.75 ∆h

-
O2

 

    = 100.205(-44 922) + 7(12 906) + 8(10 499) + 51.7(8894) + 2.75(9245) 

     = -4 501 409 + 90 342 + 83 922 + 459 819.8 + 25 423.75 

     = - 3 841 831 kJ/kmol fuel 
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14.58 
 Wet biomass waste from a food-processing plant is fed to a catalytic reactor, 

where in a steady flow process it is converted into a low-energy fuel gas suitable 
for firing the processing plant boilers. The fuel gas has a composition of 50% 
methane, 45% carbon dioxide, and 5% hydrogen on a volumetric basis. 
Determine the lower heating value of this fuel gas mixture per unit volume. 

 For 1 kmol fuel gas, 

 0.5 CH
4
 + 0.45 CO

2
 + 0.05 H

2
 + 1.025 O

2
 

       → (0.5 + 0.45) CO
2
 + 1.05 H

2
O 

The lower heating value is with water vapor in the products.  Since the  
0.45 CO

2
 cancels, 

 h
-

RP
 = 0.5(-393 522) + 1.05(-241 826) - 0.5(-74 873) - 0.05(0) 

        = -413242 kJ/kmol fuel gas 

 With    
n
V = P/R

-
T = 

100
8.3145 × 298.2

 = 0.04033 kmol/m3 

 LHV = +413 242 × 0.04033 = 16 666 kJ/m3 
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14.59 

 Determine the lower heating value of the gas generated from coal as described in 
Problem 14.35. Do not include the components removed by the water scrubbers. 

The gas from problem 14.35 is saturated with water vapor. Lower heating 
value LHV has water as vapor. 

  LHV = -H
°
RP = H

°
P - H

°
R 

Only CH
4
, H

2
 and CO contributes. From 14.12 the gas mixture after the 

scrubbers has ∑νi = 81.9  of composition: 

  0.3 CH
4
 + 29.6 H

2
 + 41 CO + 10 CO

2
 + 0.8 N

2
 + 0.2016 H

2
O 

 LHV = -[0.3H
- °

RPCH4 + 29.6H
- °

RPH2 + 41H
- °

RPCO]/81.9 

          = -[0.3(-50 010 × 16.043) + 29.6(-241 826)  

      + 41(-393 522 + 110 527)]/81.9 

          = 232 009 
kJ

kmol gas 
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14.60 
    Do problem 14.45 using table 14.3 instead of Table A.10 for the solution. 

One alternative to using petroleum or natural gas as fuels is ethanol (C2H5OH), 
which is commonly produced from grain by fermentation. Consider a combustion 
process in which liquid ethanol is burned with 120% theoretical air in a steady 
flow process. The reactants enter the combustion chamber at 25°C, and the 
products exit at 60°C, 100 kPa. Calculate the heat transfer per kilomole of 
ethanol. 

 

C2H5OH + 1.2 × 3 (O2 + 3.76 N2)   →   2 CO2 + 3 H2O + 0.6 O2 + 13.54 N2 

Products at 60°C, 100 kPa, so check for condensation of water 

yH2O MIX = 
19.94
100  = 

nV MAX

nV MAX+2+0.6+13.54    =>   nV MAX = 4.0 > 3  ⇒  No liq. 

Fuel:  table 14.3  select (liquid fuel, water vapor) and convert to mole basis   

H
°
RP = 46.069 (-26 811) = -1 235 156 kJ/kmol       

Since the reactants enter at the reference state the energy equation becomes 

QCV = HP - HR = H
o
P + ∆HP - H

o
R = H

°
RP + ∆HP 

 ∆HP =  2 ∆h
-

CO2
 + 3 ∆h

-
H2O

 + 0.6 ∆h
-

O2
 + 13.54 ∆h

-
N2

 

  = 2(1327) + 3(1178) + 0.6(1032) + 13.54(1020) = 20 618 kJ/kmol 

  QCV = -1 235 156 + 20 618 = -1 214 538 kJ/kmol fuel 
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 Propylbenzene, C
9
H

12
, is listed in Table 14.3, but not in table A.10. No molecular 

weight is listed in the book. Find the molecular weight, the enthalpy of formation 
for the liquid fuel and the enthalpy of evaporation. 

  C
9
H

12
 + 12 O

2
 →   9 CO

2
 + 6 H

2
O 

 M̂ = 9 × 12.011 + 6 × 2.016 = 120.195  

 h
-°

RP = = H
o
P - H

o
R = ∑

P

 νih
-°

fi - h
-°

fFu      ⇒   h
-°

fFu = ∑
P

 νih
-°

fi - h
-°

RP 

Formation enthalpies from Table A.10 and enthalpy of combustion from 
Table 14.3 

 h
-°

fFu = 9h
-°

fCO2
 + 6h

-°
fH2O g - M̂(-41 219)

liq Fu H2O vap
  

 = 9(-393 522) + 6(-241 826) – 120.195(-41 219)  

 = -38 336 kJ/kmol 

Take the enthalpy of combustion from Table 14.3 for fuel as a gas and as a 
vapor, the difference is the enthalpy of evaporation 

  hfg = -(h
°
RP gas - h

°
RP liq) = 41 603 – 41 219 = 384 kJ/kg 
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14.62 

 Determine the higher heating value of the sample Wyoming coal as specified in 
Problem 14.33. 

The higher heating value is for liquid water in the products. We need the 
composition of the products. 

Converting from mass analysis: 

 

 Substance S H
2
 C O

2
 N

2
 

 c/M =  0.5/32 3.5/2 4.86/12 12/32 0.7/28 

 kmol / 100 kg coal 0.0156 1.75 4.05 0.375 0.025 

 Product SO
2
 H

2
O CO

2
   

 

So the combustion equation becomes (for 100 kg coal) 

  Fuel + Air   →  1.75 H
2
O + 4.05 CO

2
 + 0.0156 SO

2
 

The formation enthalpies are from Table A.10. Therefore, 

 h
-

RP0 = H
o
P - H

o
R = 4.05(-393 522) + 1.75(-285 830) + 0.0156(-296 842) 

         = -2 098 597 kJ/100 kg coal 

 So that HHV = +20 986 kJ/kg coal 
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14.63 
    Do problem 14.47 using table 14.3 instead of Table A.10 for the solution. 

 Another alternative to using petroleum or natural gas as fuels is methanol, 
CH

3
OH, which can be produced from coal. Both methanol and ethanol have been 

used in automotive engines. Repeat the previous problem using liquid methanol 
as the fuel instead of ethanol. 

CH
3
OH + 1.2 × 1.5 (O

2
 + 3.76 N

2
)  →  1 CO

2
 + 2 H

2
O + 0.3 O

2
 + 6.77 N

2
  

Products at 60°C, 100 kPa, so check for condensation of water 

y
H2O MAX

 = 
19.94
100  = 

nV MAX

nV MAX + 1 + 0.3 + 6.77  

 =>   nV MAX = 2.0 > 2   ⇒ No liquid is formed 

Fuel:  table 14.3  select (liquid fuel, water vapor) and convert to mole basis   

H
°
RP = 32.042 (-19 910) = -637 956 kJ/kmol       

Since the reactants enter at the reference state the energy equation becomes 

QCV = HP - HR = H
o
P + ∆HP - H

o
R = H

°
RP + ∆HP 

The enthalpies are from Table A.9 

 ∆HP =  ∆h
-

CO2
 + 2 ∆h

-
H2O

 + 0.3 ∆h
-

O2
 + 6.77 ∆h

-
N2

 

= 1(1327) + 2(1178) + 0.3(1032) + 6.77(1020) = 10 898 kJ/kmol 

  QCV = -637 956 + 10 898 = -627 058 kJ 
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14.64 
    A burner receives a mixture of two fuels with mass fraction 40% n-butane and 

60% methanol, both vapor. The fuel is burned with stoichiometric air. Find the 
product composition and the lower heating value of this fuel mixture (kJ/kg fuel 
mix). 

 
 Since the fuel mixture is specified on a mass basis we need to find the mole 

fractions for the combustion equation. From Eq.12.4 we get 

  ybutane = (0.4/58.124) / [0.4/58.124  + 0.6/32.042] = 0.26875 

  ymethanol = 1 – ybutane = 0.73125 

 The reaction equation is 

  0.73125 CH
3
OH + 0.26875 C

4
H

10
  + νO2 (O2 + 3.76 N2)  

→ νCO2 CO
2
 +  νH2OH

2
O +  3.76 νO2 N

2
 

 C balance:      0.73125 + 4 × 0.26875 = νCO2 = 1.80625 

 H2 balance:    2 × 0.73125 + 5 × 0.26875 = νH2O = 2.80625 

 O balance:      0.73125 + 2 νO2 = 2 νCO2 + νH2O = 6.41875   => νO2 = 2.84375 

 Now the products are: 

   1.80625 CO
2
 + 2.80625 H

2
O +  10.6925 N

2
 

 Since the enthalpy of combustion is on a mass basis in table 14.3 (this is also the 
negative of the heating value) we get 

  LHV = 0.4 × 45 714 + 0.6 × 21 093 = 30 941 kJ/kg fuel mixture 

 Notice we took fuel vapor and water as vapor (lower heating value). 



   Sonntag, Borgnakke and van Wylen 

 
14.65 

 Consider natural gas A and natural gas D, both of which are listed in Table 14.2. 
Calculate the enthalpy of combustion of each gas at 25°C, assuming that the 
products include vapor water. Repeat the answer for liquid water in the products. 

Natural Gas A 

 0.939 CH
4
 + 0.036 C

2
H

6
 + 0.012 C

3
H

8
 + 0.013 C

4
H

10
 

    + 2.1485 O
2
 + 3.76 × 2.1485 N

2
 → 1.099 CO

2
 + 2.099 H

2
O + 8.0784 N

2
 

 H
R
 = 0.939(-74 878) + 0.036(-84 740) + 0.012(-103 900) 

  + 0.013(-126 200) = -76244 kJ 

a) vapor H
2
O 

    H
P
 = 1.099(-393 522) + 2.099(-241 826) = -940 074 

    h
-

RP
 = H

P
 - H

R
 = -863 830 kJ/kmol 

b) Liq. H
2
O 

    H
P
 = 1.099(-393 522) + 2.099(-285 830) = -1 032 438 

    h
-

RP
 = -956 194 kJ/kmol 

Natural Gas D: 

 0.543 CH
4
 + 0.163 C

2
H

6
 + 0.162 C

3
H

8
 + 0.074 C

4
H

10
  

  + 0.058 N
2
 + O

2
 + N

2
     →     1.651 CO

2
 + 2.593 H

2
O + N

2
 

 H
R
 = 0.543(-74 873) + 0.163(-84 740) + 0.162(-130 900) 

   + 0.074(-126 200) = -80 639 kJ 

a) vapor H
2
O 

    H
P
 = 1.651(-393 522) + 2.593(-241 826) = -1 276 760 kJ 

    h
-

RP
 = -1 196 121 kJ/kmol 

b) Liq. H
2
O 

    H
P
 = 1.651(-393 522) + 2.593(-285 830) = -1 390 862 kJ 

    h
-

RP
 = -1 310 223 kJ/kmol 
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 Blast furnace gas in a steel mill is available at 250°C to be burned for the 

generation of steam. The composition of this gas is, on a volumetric basis, 
 Component CH4 H2 CO CO2 N2 H2O 
 Percent by volume 0.1 2.4 23.3 14.4 56.4 3.4 

 Find the lower heating value (kJ/m3) of this gas at 250°C and ambient pressure. 

Of the six components in the gas mixture, only the first 3 contribute to the 
heating value. These are, per kmol of mixture: 

             0.024 H
2
,    0.001 CH

4
,    0.233 CO 

For these components, 

 0.024 H
2
 + 0.001 CH

4
 + 0.233 CO + 0.1305 O

2
  → 0.026 H

2
O + 0.234 CO

2
 

The remainder need not be included in the calculation, as the contributions to 
reactants and products cancel. For the lower HV(water as vapor) at 250°C 

 h
-

RP
 =  0.026(-241 826 + 7742) + 0.234(-393 522 + 9348)  

- 0.024(0 + 6558) - 0.001(-74 873 + 2.254 × 16.04(250-25))  

- 0.233(-110 527 + 6625) – 0.1305(0 + 6810)  

      = -72 573 
kJ

kmol fuel 

v-
0
 = R

−
 To/Po = 8.3145 × 523.2/100  = 43.5015 m3/kmol 

 LHV = +72 573 / 43.5015 = 1668 kJ/m3 
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 Natural gas, we assume methane, is burned with 200% theoretical air and the 

reactants are supplied as gases at the reference temperature and pressure. The 
products are flowing through a heat exchanger where they give off energy to 

some water flowing in at 20oC, 500 kPa and out at 700oC, 500 kPa. The products 
exit at 400 K to the chimney. How much energy per kmole fuel can the products 
deliver and how many kg water per kg fuel can they heat? 

 

The reaction equation for stoichiometric mixture is: 

CH4 + ν
O2

 (O2 + 3.76 N2)   →    2 H2O + 1 CO2 + c N2  

O balance:    2 ν
O2

 = 2 + 2      =>   ν
O2

 = 2 

200% theoretical air:   ν
O2

 = 2 × 2 = 4       so now more O2 and N2 

CH4 + 4 (O2 + 3.76 N2)   →    2 H2O + 1 CO2 + 15.04 N2 + 2 O2 

The products are cooled to 400 K (so we do not consider condensation) and 
the energy equation is 

Energy Eq.:      HR + Q = HP = H
°
P + ∆HP = H

°
R + Q 

       Q = H°
P - H

°
R + ∆HP = H

°
RP + ∆HP 

From Table 14.3:     H
°
RP = 16.04 (-50 010) = -802 160 kJ/kmol 

  ∆HP =  ∆h
-*

CO2 + 2 ∆h
-*

H2O + 2 ∆h
-*

O2 + 15.04 ∆h
-*

N2 

From Table A.9 

   ∆HP 400  = 4003 + 2 × 3450 + 2 × 3027 + 15.04 × 2971 = 61 641 kJ/kmol 

       Q = H°
RP + ∆HP = -802 160 + 61 641 = -740 519 kJ/kmol 

       qprod = -Q / M = 740 519 / 16.04 = 46 167 kJ/kg fuel 

 

      The water flow has a required heat transfer, using B.1.3 and B.1.4 as 

       q
H2O

 = hout – hin = 3925.97 – 83.81 = 3842.2 kJ/kg water 

      The mass of water becomes 

  m
H2O

 / m
fuel

 = qprod / q
H2O

 = 12.0 kg water / kg fuel 



   Sonntag, Borgnakke and van Wylen 

 
14.68 
 Gasoline, C7H17, is burned in a steady state burner with stoichiometric air at Po, 

To. The gasoline is flowing as a liquid at To to a carburetor where it is mixed with 

air to produce a fuel air gas mixture at To. The carburetor takes some heat transfer 

from the hot products to do the heating. After the combustion the products go 
through a heat exchanger, which they leave at 600 K. The gasoline consumption 
is 10 kg per hour. How much power is given out in the heat exchanger and how 
much power does the carburetor need? 

 

Stoichiometric combustion:  

   C7H17 + ν
O2

 (O
2
 + 3.76 N

2
) →•  8.5 H

2
O + 7 CO

2
 + c N

2
 

O balance:    2 ν
O2

 = 8.5 + 14 = 22.5    ⇒    ν
O2

 = 11.25 

N balance:  c = 3.76  ν
O2

 = 3.76 × 11.25 = 42.3 

M
FUEL

 = 7 M
C
 + 17 M

H
 = 7 × 12.011 + 8.5 × 2.016 = 101.213 

C.V. Total, heat exchanger and carburetor included, Q out. 

Energy Eq.: HR = H
°
R = H

°
P + ∆HP + Qout 

From Table A.9 

       ∆HP = 8.5 × 10 499 + 7 × 12 906 + 42.3 × 8894 = 555 800 kJ/kmol 
From energy equation and Table 14.3 

   Qout = H
°
R - H

°
P - ∆HP = -H

°
RP - ∆HP 

           = 101.213 (44 506) – 555 800 = 3 948 786 kJ/kmol 

Now the power output is 

      Q
.
 = n

.
 Qout = Qout m

.
/M = 3 948 786 × 

10
3600 / 101.213 = 108.4 kW 

The carburetor air comes in and leaves at the same T so no change in energy, 
all we need is to evaporate the fuel, hfg so 

  Q
.
 = m

.
 hfg = 

10
3600 (44 886 – 44 506) = 

1
360 × 380 = 1.06 kW 

Here we used Table 14.3 for fuel liquid and fuel vapor to get hfg. 
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 In an engine a mixture of liquid octane and ethanol, mole ratio 9:1, and 

stoichiometric air are taken in at T0, P0. In the engine the enthalpy of combustion 
is used so that 30% goes out as work, 30% goes out as heat loss and the rest goes 
out the exhaust. Find the work and heat transfer per kilogram of fuel mixture and 
also the exhaust temperature. 

 0.9 C
8
H

18
 + 0.1 C

2
H

5
OH + 11.55 O

2
 + 43.428 N

2
 

     → 8.4 H
2
O + 7.4 CO

2
 + 43.428 N

2
 

 For 0.9 octane + 0.1 ethanol, convert to mole basis 

   H
- °

RP mix= 0.9 H
°
RP C8H18 + 0.1 H

°
RP C2H5OH  

= 0.9 (-44 425) ×114.232 + 0.1 (-26 811)× 46.069 

= -4 690 797  
kJ

kmol 

  M̂
mix

 = 0.9 M̂
oct

 + 0.1 M̂
alc

 = 107.414 

 Energy:     h
-°

in + q
in

 = h
-

ex
 + ω

ex
 = h

-°
ex + ∆h

-
ex

 + ω
ex

 

 h
-°

ex - h
-°

in = H
- °

RP mix    ⇒    ω
ex

 + ∆h
-

ex
 - q

in
 = -H

- °
RP mix 

 ω
ex

= -q
in

 = 0.3( )-H
- °

RP = 1 407 239 
kJ

kmol = 13 101 
kJ

kg Fu 

   ∆h
-

prod
 = ∆h

-
ex

 = 0.4( )-H
- °

RP = 1 876 319 
kJ

kmol Fu 

 ∆h
-

prod
 = 8.4 ∆h

-
H2O

 + 7.4∆h
-

CO2
 + 43.428 ∆h

-
N2

 

 ∆h
-

prod 1300
 = 8.4× 38 941 + 7.4× 50 148 + 43.428× 31 503 = 2 066 312 

 ∆h
-

prod 1200
 = 8.4× 34 506 + 7.4× 44 473 + 43.428× 28 109 = 1 839 668 

Linear interpolation to get the value of   ∆h
-

prod
 = 1 876 319 

  ⇒   satisfied for   T = 1216 K 
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    Liquid nitromethane is added to the air in a carburetor to make a stoichiometric 
mixture where both fuel and air are added at 298 K, 100 kPa. After combustion a 
constant pressure heat exchanger brings the products to 600 K before being 
exhausted. Assume the nitrogen in the fuel becomes N2 gas. Find the total heat 

transfer per kmole fuel in the whole process. 
 

 CH
3
NO

2
 +   ν

O2
 (O2 + 3.76 N2)   →   1.5 H

2
O + 1 CO

2
 + a N

2
 

 C and H balances done in equation. The remaining 

  O balance:   2 + 2 ν
O2  = 1.5 + 2     =>        ν

O2
 = 0.75 

  N balance:   1 + 3.76 ν
O2

 × 2 = 2a      =>       a = 3.32 

 Energy eq.: H
R
 + Q = H

P
     =>    Q = H

P
 − H

R
 = H

°
P − H

°
R + ∆H

P
 − ∆H

R
 

The reactants enter at the reference state, ∆H
R
 = 0, and the products at 600 K 

from table A.9 

  ∆H
P
 =  1.5 ∆h

-
H2O

 + ∆h
-

CO2
 + 3.32 ∆h

-
N2

 

        =  1.5 (10 499) + 1 (12 906) + 3.32 (8894) = 58 183 kJ/kmol fuel 

  H
°
P − H

°
R = H

°
RP =  61.04 (-10 537) = -643 178 kJ/kmol 

  Q = -643 178 + 58 183 = -584 995 kJ/kmol fuel 
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Adiabatic Flame Temperature 
 
 
14.71 
  Hydrogen gas is burned with pure oxygen in a steady flow burner where both 

reactants are supplied in a stoichiometric ratio at the reference pressure and 
temperature. What is the adiabatic flame temperature? 

 

The reaction equation is: 

  H2 + νO2 O2    =>  H2O   

The balance of hydrogen is done, now for oxygen we need   vO2 = 0.5.  

Energy Eq.: HR = HP  =>  0 = -241 826 +  ∆h
-

H2O    

  =>    ∆h
-

H2O  = 241 826 kJ/kmol 

Interpolate now in table A.9 for the temperature to give this enthalpy 

        T = 4991 K 
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 In a rocket, hydrogen is burned with air, both reactants supplied as gases at Po, To. 
The combustion is adiabatic and the mixture is stoichiometeric (100% theoretical 
air). Find the products dew point and the adiabatic flame temperature (~2500 K). 

The reaction equation is: 

  H2 + νO2 (O2 + 3.76 N2)  =>  H2O  + 3.76 vO2 N2 

The balance of hydrogen is done, now for oxygen we need   vO2 = 0.5 and 
thus we have 1.88 for nitrogen.  

 yv = 1/(1+1.88) = 0.3472   =>  Pv = 101.325 × 0.3472 = 35.18 kPa = Pg 

  Table B.1.2:    Tdew = 72.6 C. 

 HR = HP  =>  0 = -241826 +  ∆hwater + 1.88  ∆hnitrogen 

Find now from table A.9 the two enthalpy terms  

 At 2400 K  :   ∆HP  =   93741 + 1.88 × 70640 = 226544 kJ/kmol fuel 

 At 2600 K  :   ∆HP  = 104520 + 1.88 × 77963 = 251090 kJ/kmol fuel 

 Then interpolate to hit  241 826  to give     T = 2525 K 
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 Carbon is burned with air in a furnace with 150% theoretical air and both 
reactants are supplied at the reference pressure and temperature. What is the 
adiabatic flame temperature? 

 
  C + ν

O2
O

2
  + 3.76 ν

O2
N

2
   →   1 CO

2
 + 3.76 ν

O2
N

2
 

 From this we find ν
O2

 = 1 and the actual combustion reaction is 

  C + 1.5 O
2
  + 5.64 N

2
   →   1 CO

2
 + 5.64 N

2
 + 0.5 O

2
 

 H
P
 = H

°
P + ∆H

P
 = H

R
 = H°

R  ⇒  

∆H
P

 = H
°
R - H

°
P = 0  - (-393 522) = 393 522 kJ/kmol 

∆H
P

 =  ∆h
-

CO2 + 5.64 ∆h
-

N2 + 0.5 ∆h
-

O2 

 Find T so ∆H
P
 takes on the required value. To start guessing assume all products 

are nitrogen (1 + 5.64 + 0.5 = 7.14) that gives  1900 < T < 2000 K from Table 
A.9. 

  ∆H
P 1900

  = 85 420 + 5.64 ×•52 549 + 0.5•×•55 414 = 409 503   too high 

  ∆H
P 1800

  = 79 432 + 5.64 ×•48 979 + 0.5•×•51 674 = 381 511 

 Linear interpolation to find  

    T = 1800 + 100 
393 522 - 381 511
409 503 - 381 511 = 1843 K 
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 A stoichiometric mixture of benzene, C6H6, and air is mixed from the reactants 

flowing at 25°C, 100 kPa. Find the adiabatic flame temperature. What is the error 
if constant specific heat at T0 for the products from Table A.5 are used? 

 C
6
H

6
 + ν

O2
O

2
  + 3.76 ν

O2
N

2
   →   6CO

2
 + 3H

2
O + 3.76 ν

O2
N

2
 

 ν
O2

 = 6 + 3/2 = 7.5   ⇒   ν
N2

 = 28.2 

  H
P
 = H

°
P + ∆H

P
 = H

R
 = H°

R  ⇒  

∆H
P

 = -H
°
RP = 40576 × 78.114 = 3 169 554 kJ/kmol 

∆H
P
 =  6 ∆h

-
CO2 + 3 ∆h

-
H2O + 28.2 ∆h

-
N2  

 ∆H
P 2600K

 = 6(128074) + 3(104 520) + 28.2(77 963) = 3 280 600,     

∆H
P 2400K

= 6(115 779) + 3(93 741) + 28.2(70 640) = 2 968 000 

Linear interpolation    ⇒    T
AD

= 2529 K 

∑ν
i
C
-

Pi
 = 6 × 0.842 × 44.01 + 3 × 1.872 × 18.015 + 28.2 × 1.042 × 28.013 

 = 1146.66 kJ/kmol K  

  ∆T = ∆H
P
/∑ν

i
C
-

Pi
 = 3 169 554 / 1146.66 = 2764  

    ⇒    T
AD

= 3062 K,   21% high 
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 Hydrogen gas is burned with 200% theoretical air in a steady flow burner where 
both reactants are supplied at the reference pressure and temperature. What is the 
adiabatic flame temperature? 

 

The stoichiometric reaction equation is: 

  H
2
 + ν

O2
 (O

2
 + 3.76 N

2
)  =>  H

2
O  + 3.76 ν

O2
 N

2
 

The balance of hydrogen is done, now for oxygen we need   ν
O2

 = 0.5 and 

thus we have for the actual mixture  ν
O2

 = 1. The actual reaction is 

  H
2
 + 1 (O

2
 + 3.76 N

2
)  =>  1 H

2
O  + 3.76 N

2
 + 0.5 O

2
 

The energy equation with formation enthalpy from A.9 or A.10 for water is 

 HR = HP  =>  0 = -241 826 +  ∆h
H2O

 + 3.76 ∆h
N2

 + 0.5 ∆h
O2

 

Find now from table A.9 the two enthalpy terms  

 At 2000 K  :   ∆HP  = 72 788 + 3.76 × 56 137 + 0.5 × 59 176 = 313 451 

 At 1800 K  :   ∆HP  = 62 693 + 3.76 × 48 979 + 0.5 × 51 674 = 272 691 

 At 1600 K  :   ∆HP  = 52 907 + 3.76 × 41 904 + 0.5 × 44 267 = 232 600 

 At 1700 K  :   ∆HP  = 57 757 + 3.76 × 45 430 + 0.5 × 47 959 = 252 553    

 Then interpolate to hit  241 826  to give 

     T = 1600 + 100 
241 826 - 232 600
252 553 - 232 600 = 1646 K 
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A gasturbine burns natural gas (assume methane) where the air is supplied to the 
combustor at 1000 kPa, 500 K and the fuel is at 298 K, 1000 kPa. What is the 
equivalence ratio and the percent theoretical air if the adiabatic flame temperature 
should be limited to 1800 K? 

 

The reaction equation for a mixture with excess air is: 

CH4 + ν
O2

 (O2 + 3.76 N2)  →   2 H2O + 1 CO2 + 3.76ν
O2

 N2 + (ν
O2

 – 2)O2 

   H
P
 = H

°
P + ∆H

P
 = H

R
 = H°

R + ∆H
R
 

From table A.9 at 500 K (notice fuel is at 298 K) 

 ∆H
R
 = 0 + ν

O2
(∆h

O2
 + 3.76 ∆h

N2
) = ν

O2
(6086 + 3.76 × 5911) = 28 311.4 ν

O2
 

From table A.9 at 1800 K: 

 ∆H
P
 = 2 ∆h

H2O
 + ∆h

CO2
 + 3.76 ν

O2
 ∆h

N2
 + (ν

O2
 – 2) ∆h

O2
 

           = 2 × 62 693 + 79432 + 3.76 ν
O2

 × 48 979 + (ν
O2

 – 2) 51 674 

           = 101 470 + 235 835 ν
O2

 

 From table 14.3:    H
°
P - H

°
R = H

°
RP = 16.04(-50 010) = -802 160 kJ/kmol 

 Now substitute all terms into the energy equation 

   -802 160 + 101 470 + 235 835 ν
O2

 = 28 311.4 ν
O2

 

 Solve for ν
O2

 

   ν
O2

 = 
802 160 - 101 470
235 835 - 28 311.4 = 3.376 

   %Theoretical air = 100 (3.376 / 2) = 168.8 % 

   Φ = AFs / AF = 2 / 3.376 = 0.592 
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14.77 

 Liquid n-butane at T0, is sprayed into a gas turbine with primary air flowing at 1.0 
MPa, 400 K in a stoichiometric ratio. After complete combustion, the products 
are at the adiabatic flame temperature, which is too high, so secondary air at 1.0 
MPa, 400 K is added, with the resulting mixture being at 1400 K. Show that Tad > 
1400 K and find the ratio of secondary to primary air flow. 

C.V. Combustion Chamber.  

 C4H10 + 6.5 O2 + 6.5 × 3.76 N2 → 5 H2O + 4 CO2 + 24.44 N2 

 

AD
Mixing

Combustion
Chamber

To turbine

1400 K

Fuel Air
Air

Primary Secondary

T  

 Energy Eq.:        Hair + Hfuel = HR = HP 

 H
°
P + ∆HP = H

°
R + ∆HR       ⇒       ∆HP = H

°
R + ∆HR - H

°
P = -H

°
RP + ∆HR 

 ∆HP = 45344 × 58.124 + 6.5(3.76 × 2971 + 3027) = 2 727 861 kJ/kmol 

 ∆HP 1400  = 5 × 43491 + 4 × 55895 + 24.44 × 34936 = 1 294 871 < ∆HP 

 Try TAD > 1400:   ∆HP = 2658263 @2400 K,    ∆HP = 2940312 @2600 K 

 C.V. Mixing Chamber.  Air Second:   νO2 sO2 + 3.76 N2 

 ∆ΗP + ν
O2 second 

∆H
air

 = ∆HP 1400 + ν
O2 second 

∆H
air 1400

 

 ⇒ νO2 second= 
∆HP - ∆HP 1400

∆Hair 1400 - ∆Hair 400
   = 

1432990
168317 - 14198 = 9.3 

 ratio = νO2 sec/νO2 prim = 9.3/6.5 = 1.43 
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14.78 

 Butane gas at 25°C is mixed with 150% theoretical air at 600 K and is burned in 
an adiabatic steady flow combustor. What is the temperature of the products 
exiting the combustor? 

 
 

Prod. 

at Tp 

25 C GAS  C H 4 10
o 

150% Air  
600 K 

Adiab.  
Comb. 

Q  = 0CV  

 

 C
4
H

10
 + 1.5×6.5 (O

2
 + 3.76 N

2
 )→ 4 CO

2
 + 5 H

2
O + 3.25 O

2
 + 36.66 N

2
 

Energy Eq.: HP - HR = 0     =>     ∆HP = H
°
R + ∆HR - H

°
P  

Reactants:      ∆HR = 9.75(9245) + 36.66(8894) = 416 193 kJ ; 

  H
°
R = h

-
C4H10 = h

-o
f IG = -126 200 kJ    =>      HR = +289 993 kJ 

    H
°
P = 4(-393522) + 5(-241826) = -2 783 218 kJ/kmol 

 ∆HP = 4 ∆h
-*

CO2 + 5 ∆h
-*

H2O + 3.25 ∆h
-*

O2 + 36.66 ∆h
-*

N2 

From the energy equation we then get 

 ∆HP = -126 200 + 416 193 –(-2 783 218) = 3 073 211 kJ/kmol 

Trial and Error:    LHS2000 K = 2 980 000,       LHS2200 K = 3 369 866 

Linear interpolation to match RHS      =>   TP = 2048 K 
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14.79 

 Natural gas, we assume methane, is burned with 200% theoretical air and the 
reactants are supplied as gases at the reference temperature and pressure. The 
products are flowing through a heat exchanger and then out the exhaust, as in Fig. 
P14.79. What is the adiabatic flame temperature right after combustion before the 
heat exchanger? 

 

The reaction equation for stoichiometric mixture is: 

CH4 + ν
O2

 (O2 + 3.76 N2)   →   1 CO2 + 2 H2O + c N2  

O balance:    2 ν
O2

 = 2 + 2      =>   ν
O2

 = 2 

200% theoretical air:   ν
O2

 = 2 × 2 = 4       so now more O2 and N2 

CH4 + 4 (O2 + 3.76 N2)   →   1 CO2 +  2 H2O + 15.04 N2 + 2 O2 

Energy Eq.:        Hair + Hfuel = HR = HP 

 H
°
P + ∆HP = H

°
R + ∆HR       ⇒       ∆HP = H

°
R + ∆HR - H

°
P = -H

°
RP + 0 

From Table 14.3:     -H
°
RP = -16.04 (-50 010) = 802 160 kJ/kmol 

  ∆HP =  ∆h
-*

CO2 + 2 ∆h
-*

H2O + 2 ∆h
-*

O2 + 15.04 ∆h
-*

N2 

From Table A.9 

   ∆HP 1600  = 67 659 + 2 × 52 907 + 2 × 44 267 + 15.04 × 41 904 = 892 243 

   ∆HP 1500  = 61 705 + 2 × 48 149 + 2 × 40 600 + 15.04 × 38 405 = 816 814 

   ∆HP 1400  = 55 895 + 2 × 43 491 + 2 × 36 958 + 15.04 × 34 936 = 742 230 

Linear interpolation to get 802 160 

 T = 1400 + 100 
802 160 - 742 230
816 814 - 742 230 = 1480 K 
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14.80 

  Liquid butane at 25oC is mixed with 150% theoretical air at 600 K and is burned 
in a steady flow burner. Use the enthalpy of combustion from Table 14.3 to find 
the adiabatic flame temperature out of the burner. 

 

 C
4
H

10
 + 1.5×6.5 (O

2
 + 3.76 N

2
 )→ 4 CO

2
 + 5 H

2
O + 3.25 O

2
 + 36.66 N

2
 

Energy Eq.:    HP - HR = 0     =>     ∆HP = H
°
R + ∆HR - H

°
P = -H

°
RP + ∆HR 

Reactants:      ∆HR = 9.75(9245) + 36.66(8894) = 416 193 kJ/kmol; 

                           H
°
RP = 58.124(-45 344) = -2 635 575 kJ/kmol 

     ∆HP = 4∆h
-*

CO2 + 5∆h
-*

H2O + 3.25 ∆h
-*

O2 + 36.66 ∆h
-*

N2 

So the energy equation becomes 

  ∆HP = 2 635 575 + 416 193 = 3 051 768 kJ/kmol 

Trial and Error:    LHS2000 K = 2 980 000,       LHS2200 K = 3 369 866 

Linear interpolation to match RHS      =>   TP = 2037 K 
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14.81 
 Acetylene gas at 25°C, 100 kPa is fed to the head of a cutting torch. Calculate the 

adiabatic flame temperature if the acetylene is burned with 
 a. 100% theoretical air at 25°C. 
 b. 100% theoretical oxygen at 25°C. 
 

a)     C
2
H

2
 + 2.5 O

2
 + 2.5 × 3.76 N

2
 → 2 CO

2
 + 1 H

2
O + 9.4 N

2
 

    H
R
 = h

-o
f C2H2 = +226 731 kJ/kmol    from table A.10 

     H
P
 = 2(-393 522 + ∆h

-*
CO2) + 1(-241 826 + ∆h

-*
H2O)  + 9.4 ∆h

-*
N2 

 Q
CV

 = H
P
 - H

R
 = 0   ⇒      2 ∆h

-*
CO2 + 1 ∆h

-*
H2O + 9.4 ∆h

-*
N2 = 1 255 601 kJ 

 Trial and Error A.9:    LHS2800 = 1 198 369,    LHS3000 = 1 303 775 

 Linear interpolation:    T
PROD

 = 2909 K 

b)   C
2
H

2
 + 2.5 O

2
 → 2 CO

2
 + H

2
O 

    H
R
 = +226 731 kJ ;     H

P
 = 2(-393 522 + ∆h

-*
CO2) + 1(-241 826 + ∆h

-*
H2O) 

    ⇒    2 ∆h
-*

CO2 + 1 ∆h
-*

H2O = 1 255 601 kJ/kmol fuel 

 At 6000 K (limit of A.9)   2 × 343 782 + 302 295 = 989 859 

 At 5600 K              2 × 317 870 + 278 161 = 913 901 

  Slope     75 958/400 K change        

Extrapolate to cover the difference above 989 859 kJ/kmol fuel 

     T
PROD

 ≈ 6000 + 400(265 742/75 958) ≈ 7400 K 
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14.82 
 Ethene, C2H4, burns with 150% theoretical air in a steady flow constant-pressure 

process with reactants entering at P0, T0. Find the adiabatic flame temperature. 

 Stoichiometric 

 C
2
H

4
 + 3(O

2
 + 3.76N

2
) → 2CO

2
 + 2H

2
O + 11.28N

2
 

 Actual 

 C
2
H

4
 + 4.5(O

2
 + 3.76N

2
) → 2CO

2
 + 2H

2
O + 1.5 O

2
 + 16.92N

2
 

 H
P
 = H

°
P + 2∆h

-
CO2

 + 2∆h
-

H2O
 + 1.5∆h

-
O2

 + 16.92∆h
-

N2
 

 H
°
R = h

-°
f Fu   ∆H

P
 + H

°
P = H

°
R  

         ⇒ ∆H
P
 = -H

°
RP = 28.054 × 47158 = 1 322 970.5 

kJ
kmol Fu 

  ∆H
P
 =  2∆h

-
CO2

 + 2∆h
-

H2O
 + 1.5∆h

-
O2

 + 16.92∆h
-

N2
 

 Initial guess based on (2+2+1.5+16.92) N
2
  from A.9:     T

1
 = 2100 K 

  ∆H
P
(2000) = 1 366 982,     ∆H

P
(1900) = 1 278 398 

    =>   TAD ≅ 1950 K 
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14.83 
 Solid carbon is burned with stoichiometric air in a steady flow process. The 

reactants at T0, P0 are heated in a preheater to T2 = 500 K as shown in Fig. 
P14.83, with the energy given by the product gases before flowing to a second 
heat exchanger, which they leave at T0. Find the temperature of the products T4, 
and the heat transfer per kmol of fuel (4 to 5) in the second heat exchanger. 

Control volume: Total minus last heat exchanger. 

 

  C + O
2
 + 3.76 N

2
 → CO

2
 + 3.76 N

2
 

C.V. Combustion chamber and preheater from 1 to 4, no external Q. For this 
CV states 2 and 3 are internal and do not appear in equations. 

Energy Eq.:  

  H
R
 = H

°
R = H

P4
 = H

°
P + ∆H

P4
 = h

-
f CO2

 + ∆h
-

CO2
 + 3.76∆h

-
N2

 

Table A.9 or A.10: h
-

f CO2
= -393 522 kJ/kmol,    

∆H
P4 2400

 = 115 779 + 3.76 × 70 640 = 381 385 kJ/kmol fuel,    

∆H
P4 2600

 = 128 074 + 3.76 × 77 963 = 421 215 kJ/kmol fuel 

  ⇒  T4 = T
ad.flame

 = 2461 K 

Control volume: Total. Then energy equation: 

  H
°
R + Q

−
 = H

°
P 

 Q
−

 = H
- °

RP = h
-°

f CO2 - 0 = -393 522 
kJ

kmol fuel 
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14.84 
 Gaseous ethanol, C2H5OH, is burned with pure oxygen in a constant volume 

combustion bomb. The reactants are charged in a stoichiometric ratio at the 
reference condition. Assume no heat transfer and find the final temperature ( > 
5000 K). 

 

C2H5OH + 3 O2   →   2 CO2 + 3 H2O  

Energy Eq.: 

  U
P
 = U

R
 = H

°
R + ∆H

R
 – n

R
R
-
T

R
 = H

°
P + ∆H

P
 - n

P
R
-
T

P
 

Solve for the properties that depends on T
P
 and recall  ∆H

R
 = 0 

 ∆H
P
 - n

P
R
-
T

P
 = H

°
R - H

°
P  – n

R
R
-
T

R
 = h

-0
f fuel – 2 h

-0
f CO2 – 3 h

-0
f H2O - 4R

-
T

R
 

Fuel:  h
-0

f fuel = -235 000 kJ/kmol for IG  from Table A.10  so 

∆H
P
 - n

P
R
-
T

P
 = -235 000 –2(-393 522) – 3(-241 826)  

– 4 × 8.31451 × 298.15 = 1 267 606 kJ/kmol 

 LHS =  ∆H
P
 - n

P
R
-
T

P
 = 2 ∆h

-
CO2

 + 3 ∆h
-

H2O
 - 5 × 8.31451 × T

P
 

From Table A.9 we find 

 LHS5600 = 2 × 317 870 + 3 × 278 161 – 41.5726 × 5600 = 1 237 417 

 LHS6000 = 2 × 343 782 + 3 × 302 295 – 41.5726 × 6000 = 1 345 014 

    T
ad.flame

 = 5712 K 
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14.85 

 The enthalpy of formation of magnesium oxide, MgO(s), is −601827 kJ/kmol at 
25°C. The melting point of magnesium oxide is approximately 3000 K, and the 
increase in enthalpy between 298 and 3000 K is 128 449 kJ/kmol. The enthalpy 
of sublimation at 3000 K is estimated at 418 000 kJ/kmol, and the specific heat of 
magnesium oxide vapor above 3000 K is estimated at 37.24 kJ/kmol K. 

  a.     Determine the enthalpy of combustion per kilogram of magnesium. 

  b.     Estimate the adiabatic flame temperature when magnesium is burned with 
theoretical oxygen. 

a)     Mg + 
1
2 O

2
   →   MgO(s) 

  ∆h
COMB

 = ∆h
-

COMB
/M = h

-°
f
/M = -601827/24.32 = -24746 kJ/kg 

b) assume T
R
 = 25°C and also that T

P
 > 3000 K,     (MgO = vapor phase) 

    1st law: Q
CV

 = H
P
 - H

R
 = 0,    but H

R
 = 0 

    ⇒ H
P
 = h

-°
f
 + (h

-
3000

 - h
-

298
)
SOL

 + ∆h
-

SUB
 + C

-
P VAP

(T
P
 - 3000) 

          = -601827 + 128449 + 418000 + 37.24(T
P
 - 3000) = 0 

      Solving,   T
P
 = 4487 K 
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Second Law for the Combustion Process 

 
14.86 

 Calculate the irreversibility for the process described in Problem 14.41. 

  2 C + 2 O
2
   → 1 CO

2
 + 1 CO + 

1
2 O

2
 

 Process    V = constant,        C: solid,   n
1(GAS)

 = 2,   n
2(GAS)

 = 2.5 

 P2 = P1 × 
n2T2

n1T1
 = 200 × 

2.5 × 1000
2 × 298.2

 = 838.4 kPa 

 H1 = H
R
 = 0 

 H2 = H
P
 = 1(-393522 + 33397) + 1(-110527 + 21686) 

   + (1/2)(0 + 22703) = -437 615 kJ 

    
1
Q

2
 = (U

2
 - U

1
) = (H

2
 - H

1
) - n

2
R
-
T

2
 + n

1
R
-
T

1
 

      = (-437 615 - 0) - 8.3145(2.5 × 1000 - 2 × 298.2)  = -453 442 kJ 

 
 

GAS
COMBUSTION

cb  

 

 Reactants: 

 S
R
 = 2(5.740) + 2(205.148 - 8.31451 ln 

200
100)  = 410.250 kJ/K 

 Products: 
  n

i
 y

i
 s-°

i
 

-R
-
ln 

yiP
P0

 
S-

i
 

 CO
2
 1.0 0.40 269.299 -10.061 259.238 

 CO 1.0 0.40 234.538 -10.061 224.477 
 O

2
 0.5 0.20 243.579 -4.298 239.281 

 S
P
 = 1.0(259.238) + 1.0(224.477) + 0.5(239.281)  = 603.355 kJ/K 

 I = T
0
(S

P
 - S

R
) - 

1
Q

2
 

   = 298.15(603.355 - 410.250) - (-453 442) = +511 016 kJ 
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14.87 
 Methane is burned with air, both of which are supplied at the reference 

conditions. There is enough excess air to give a flame temperature of 1800 K. 
What are the percent theoretical air and the irreversibility in the process? 

 
 The combustion equation with X times theoretical air is 

CH4 + 2X(O2 + 3.76 N2)  CO2 + 2H2O + 2(X-1)O2 + 7.52X N2 

Energy Eq.:        Hair + Hfuel = HR = HP = H
°
P + ∆HP = H

°
R + ∆HR 

        ⇒       ∆HP = H
°
R + ∆HR - H

°
P = -H

°
RP + 0 

From Table 14.3:     -H
°
RP = -16.04 (-50 010) = 802 160 kJ/kmol 

  ∆HP =  ∆h
-*

CO2 + 2 ∆h
-*

H2O + 2(X-1) ∆h
-*

O2 + 7.52X ∆h
-*

N2 

From Table A.9 and the energy equation 

∆HP 1800 = 79 432 + 2 × 62 693 + 2(X-1) 51 674 + 7.52X × 48 979 = 802 160 
 so 
   101 470 + 471 670 X = 802 160   =>    X = 1.4856 
     %Theoretical air = 148.6% 
 The products are 

  Products: CO2 + 2H2O + 0.9712 O2 + 11.172 N2 

 The second law 
    Sgen = SP - SR   and       I = To Sgen 

 

  Reactants: Pi = 100 kPa, Po = 100 kPa,   s−
o
f  from Table A.9 

 ni yi s−
o
f    -R

−
 ln 

yiPi
Po

  S
-

i
   

kJ
kmol K 

CH4 1 1 186.251       0 186.251 

O2 2X 0.21 205.148      12.976 218.124 

N2 7.52 X 0.79 191.609      1.96 193.569 

 

    SR = ∑ niS
-

i = 2996.84 kJ/K kmol fuel 
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 Products: Pe = 100 kPa, Po = 100 kPa 

 ni yi s−
o
1800 - R

−
 ln 

yiPe
Po

 S
-

i
   

kJ
kmol K 

CO2 1 0.06604 302.969 22.595 325.564 

H2O 2 0.13208 259.452 16.831 276.283 

O2 0.9712 0.06413 264.797 22.838 287.635 

N2 11.172 0.73775 248.304   2.529 250.833 

  

 SP = ∑ niS
-

i
 = 3959.72  kJ/K kmol fuel;  

  I = To(SP - SR) = 298.15(3959.72 - 2996.84) = 287 MJ/kmol fuel 
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14.88 
 Consider the combustion of hydrogen with pure oxygen in a stoichiometric ratio 

under steady flow adiabatic conditions. The reactants enter separately at 298 K, 
100 kPa and the product(s) exit at a pressure of 100 kPa. What is the exit 
temperature and what is the irreversibility? 

 

The reaction equation is: 

  H2 + νO2 O2    =>  H2O   

The balance of hydrogen is done, now for oxygen we need   vO2 = 0.5.  

Energy Eq.: HR = HP  =>  0 = -241 826 +  ∆h
-

H2O    

  =>    ∆h
-

H2O  = 241 826 kJ/kmol 

Interpolate now in table A.9 for the temperature to give this enthalpy 

        T = 4991 K 

For this temperature we find from Table A.9,  P = Po, so we do not need any 
pressure correction for the entropy 

  S
P
 = S

°
P = s-

°
H2O = 315.848 kJ/kmol K 

For the reactants we have (again no pressure correction) 

     S
R
 = s-

°
H2 + 0.5 s-

°
O2 = 130.678 + 0.5 × 205.148 = 233.252 kJ/kmol K 

   S
gen

 = S
P
 – S

R
 = 315.848 – 233.252 = 82.596 kJ/kmol H2 K 

   I = To S
gen

 = 298.15 × 82.596 = 24 626 kJ/kmol H2 



   Sonntag, Borgnakke and van Wylen 

 
14.89 
 Pentane gas at 25°C, 150 kPa enters an insulated steady flow combustion 

chamber. Sufficient excess air to hold the combustion products temperature to 
1800 K enters separately at 500 K, 150 kPa. Calculate the percent theoretical air 
required and the irreversibility of the process per kmol of pentane burned. 

 

C5H12 + 8X( O2 + 3.76 N2)  5 CO2 + 6 H2O + 8(X-1) O2 + 30.08X N2 

 

Energy Eq.:    Qcv + HR = HP + WCV;  WCV= 0,  Qcv = 0 

Reactants: C5H12 :  h
−o

f  from A.9    and  ∆h
−

500 for O2 and N2  from A.9 

 HR = (h
−o

f )C5H12 + 8X ∆h
−

O2 + 30.08X ∆h
−

N2 

       = -146 500 + 8X 6086 + 30.08 X 5911 = 226 491 X - 146 500 

 HP = 5(h
−o

f  + ∆h
−)CO2 + 6(h

−o
f  + ∆h

−)H2O + 8(X-1) ∆h
−

O2 + 30.08 X ∆h
−

N2 

       = 5(-393 522 + 79 432) + 6(-241 826 + 62 693) + 8(X-1) 51 674  

  + 30.08 X 48 979 = 1 886 680 X - 3 058 640 

 

Energy Eq. solve for X;    

HR = HP = 226 491 X - 146 500 =  1 886 680 X - 3 058 640 

 ⇒    X = 1.754 

b)  Reactants: Pi = 150 kPa, Po = 100 kPa,   s−
o
f  

 

 ni yi s−
o
f , s−

o
500 - R

−
 ln 

yiPi
Po

  S
-

i
   

kJ
kmol K 

C5H12 1 1 348.945  -3.371 345.574 

O2 8X 0.21 220.693    9.605 230.298 

N2 30.08 X 0.79 206.74  -1.411 205.329 

  

    SR = ∑ niS
-

i
 = 14410.34 kJ/K kmol fuel 
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 Products: Pe = 150 kPa, Po = 100 kPa 

 

 ni yi s−
o
1800 - R

−
 ln 

yiPe
Po

 S
-

i
   

kJ
kmol K 

CO2 5 0.0716 302.969 18.550 321.519 

H2O 6 0.086 259.452 17.027 276.479 

O2 8(X-1) 0.0864 264.797 16.988 281.785 

N2 30.08X 0.756 248.304 -1.045 247.259 

  

    SP = ∑ niS
-

i
 = 17 732.073  kJ/K kmol fuel;  

    I = To(SP - SR) = 298.15(17 732.07 - 14 410.34)  

      = 990 MJ/kmol fuel 
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14.90 
 Consider the combustion of methanol, CH3OH, with 25% excess air. The 

combustion products are passed through a heat exchanger and exit at 200 kPa, 
400 K. Calculate the absolute entropy of the products exiting the heat exchanger 
assuming all the water is vapor. 

 

CH3OH + 1.25 × 1.5 (O2 + 3.76 N2) → CO2 + 2 H2O + 0.375 O2 + 7.05 N2 
 
  We need to find the mole fractions to do the partial pressures, 
 
   n = 1 + 2 + 0.375 + 7.05 = 10.425      =>     y

i
 =  ni / n 

 Gas mixture: 
  ni y

i
 s-°

i 
-R
-
ln 

yiP
P0

 
S
-

i
 

 CO
2
 1.0 0.0959 225.314 +13.730 239.044 

 H
2
O 2 0.1918 198.787 +7.967 206.754 

 O
2
 0.375 0.0360 213.873 +20.876 234.749 

 N
2
 7.05 0.6763 200.181  -2.511 197.670 

  

S
GAS MIX

 = ∑ n
i
S
-

i
 = 2134.5 kJ/K kmol fuel 
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14.91 

 Consider the combustion of methanol, CH3OH, with 25% excess air. The 
combustion products are passed through a heat exchanger and exit at 200 kPa, 
40°C. Calculate the absolute entropy of the products exiting the heat exchanger 
per kilomole of methanol burned, using the proper amounts of liquid and vapor 
for the water. 

CH3OH + 1.25 × 1.5 (O2 + 3.76 N2) → CO2 + 2 H2O + 0.375 O2 + 7.05 N2 

 Products exit at 40 oC, 200 kPa, check for saturation: 

 y
V MAX

 = 
P

G

P  = 
7.384
200  = 

n
V MAX

n
V MAX

 + 1 + 0.375 + 7.05 

 n
V

 = n
V MAX

 = 0.323    n
LIQ

 = 1.677 

 Gas mixture: 
  ni y

i
 s-°

i 
-R
-
ln 

yiP
P0

 
S
-

i
 

 CO
2
 1.0 0.1143 215.633 +12.270 227.903 

 H
2
O 0.323 0.0369 190.485 +21.671 212.156 

 O
2
 0.375 0.0429 206.592 +20.418 227.01 

 N
2
 7.05 0.8059 193.039  -3.969 189.07 

  

S
GAS MIX

 = ∑ n
i
S
-

i
 = 1714.50 kJ/K kmol fuel 

 s-
LIQ

 = 69.950 + 18.015(0.5725 - 0.3674) = 73.645 kJ/kmol 

 S
LIQ

 = 1.677 × 73.645 = 123.50 kJ/K kmol fuel 

 S
PROD

 = 1714.50 + 123.50 = 1838 kJ/K kmol fuel 
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14.92 

 An inventor claims to have built a device that will take 0.001 kg/s of water from 
the faucet at 10°C, 100 kPa, and produce separate streams of hydrogen and 
oxygen gas, each at 400 K, 175 kPa. It is stated that this device operates in a 25°C 
room on 10-kW electrical power input. How do you evaluate this claim? 

 
      Liq H

2
O 

10oC, 100 kPa 
0.001 kg/s  

-W
.

CV
 = 10 kW 

H
2
 gas 

O
2
 gas 





 

each at
400 K
175 kPa

 

T
0
 = 25 oC 

    H
2
O → H

2
 + 

1
2 O

2
 

H
i
 - H

e
 = [-285830 + 18.015(42.01 - 104.89)] - 2961 - 

1
2 (3027)  

            = -291 437 kJ/kmol 

(S
i
 - S

e
) = [69.950 + 18.015(0.151 - 0.3674)] - (139.219 - 8.3145 ln 1.75) 

            - 
1
2 (213.873 - 8.3145 ln 1.75) = -173.124 kJ/kmol K 

WREV = (Hi - He) - T0(Si - Se) = -291 437 - 298.15(-173.124)   

     = -239820 kJ/kmol 

 W
.

REV = (0.001/18.015)(-239 820) = -13.31 kW 

 I
.
 = W

.
REV - W

.
CV = -13.31 - (-10) < 0            Impossible 
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14.93 

 Two kilomoles of ammonia are burned in a steady flow process with x kmol of 
oxygen. The products, consisting of H2O, N2, and the excess O2, exit at 200°C, 7 

MPa. 

  a.  Calculate x if half the water in the products is condensed. 

  b.  Calculate the absolute entropy of the products at the exit conditions. 

 2NH
3
 + xO

2
   →   3H

2
O + N

2
 + (x - 1.5)O

2
 

 Products at 200 oC, 7 MPa with    nH2O LIQ = nH2O VAP = 1.5 

 a) yH2O VAP = PG/P  = 
1.5538

7  = 
1.5

1.5 + 1 + x - 1.5    =>      x = 5.757 

 b) SPROD = SGAS MIX + SH2O LIQ 

 
 Gas mixture: n

i
 y

i
 s-°

i -R
-
ln(yiP/P0) S-

i
 

 H2O 1.5 0.222 204.595 -22.810 181.785 
 O2 4.257 0.630 218.985 -31.482 187.503 
 N2 1.0 0.148 205.110 -19.439 185.671 

  

SGAS MIX = 1.5(181.785) + 4.257(187.503) + 1.0(185.67)  = 1256.55 kJ/K 

 SH2O LIQ = 1.5[69.950 + 18.015(2.3223 - 0.3674)]  = 157.75 kJ/K 

 SPROD = 1256.55 + 157.75 = 1414.3 kJ/K 
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14.94 

 Graphite, C, at P0, T0 is burned with air coming in at P0, 500 K in a ratio so the 
products exit at P0, 1200 K. Find the equivalence ratio, the percent theoretical air, 
and the total irreversibility. 

 C + (1/φ)b(O
2
 + 3.76 N

2
)   →   CO

2
 + ( )(1/φ) - 1 O

2
 + 3.76 (1/φ) N

2
 

 Energy Eq.: H
P
 = H

R
 ⇒ ∆H

P 1200
 - ∆H

R
 = H

°
R - H

°
P 

 44 473 + ( )(1/φ) - 1 29 761 + 3.76(1/φ)28 109 

 - (1/φ)( )6086 + 3.76×5911  = 0 - (-393 522)   ⇒  (1/φ) = 3.536 

   

 S
gen

 = S
P
 - S

R
 = ∑

P-R

ν( )s
-° - R

-
 ln( )y  

 R: y
O2

 = 0.21, y
N2

 = 0.79 

 P: y
O2

 = 0.1507, y
N2

 = 0.79, y
CO2

 = 0.0593 

 S
°
P = 279.39 + 2.536 × 250.011 + 13.295 × 234.227 = 4027.5 

 S
°
R = 5.74 + 3.536(220.693 + 3.76 × 206.74) = 3534.8 

 For the pressure correction the term with the nitrogen drops out (same y). 

 R
-
 ∑
P-R

-ν ln( )y  = 8.3145(2.8235 + 1.8927 - 1.5606) = 26.236 

 S
gen

 = 4027.5 - 3534.8 + 26.236 = 518.94 kJ/kmol carbon-K 

 I = T
0
 S

gen
 = 154 721 

kJ
kmol C 
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14.95 
 A flow of hydrogen gas is mixed with a flow of oxygen in a stoichiometric ratio, 

both at 298 K and 50 kPa. The mixture burns without any heat transfer in 
complete combustion. Find the adiabatic flame temperature and the amount of 
entropy generated per kmole hydrogen in the process. 

 

The reaction equation is: 

  H2 + νO2 O2    =>  H2O   

The balance of hydrogen is done, now for oxygen we need   vO2 = 0.5.  

Energy Eq.: HR = HP  =>  0 = -241 826 +  ∆h
-

H2O    

  =>    ∆h
-

H2O  = 241 826 kJ/kmol 

Interpolate now in table A.9 for the temperature to give this enthalpy 

        T = 4991 K 

For this temperature we find from Table A.9 

 S
P
 = s-

°
H2O – R

-
 ln(P/Po) = 315.848 – 8.31451 ln(0.5) = 321.611 kJ/kmol K 

For the reactants we have 

  S
R
 = s-

°
H2  – R

-
 ln(P/Po) + 0.5 [s-

°
O2  – R

-
 ln(P/Po) ]  

       = 130.678 + 0.5 × 205.148  - 1.5 × 8.31451 ln(0.5)  

       = 241.897 kJ/kmol K 

  S
gen

 = S
P
 – S

R
 = 321.611 – 241.897 = 79.714 kJ/kmol H2 K 

      Recall that this includes the mixing process. 
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14.96 

 A closed rigid container is charged with propene, C
3
H

6
, and 150% theoretical air 

at 100 kPa, 298 K. The mixture is ignited and burns with complete combustion. 
Heat is transferred to a reservoir at 500 K so the final temperature of the products 
is 700 K. Find the final pressure, the heat transfer per kmole fuel and the total 
entropy generated per kmol fuel in the process. 

 

 C
3
H

6
 + ν

O2( )O
2
 + 3.76 N

2
 →  3 CO

2
 + 3 H

2
O + x N

2
 

 Oxygen, O
2
 , balance:         2 ν

O2
= 6 + 3 = 9     ⇒     ν

O2
= 4.5 

Actual Combustion:       φ = 1.5   ⇒   ν
O2 ac

 = 1.5 × 4.5 = 6.75 

 C
3
H

6
 + 6.75 O

2
 + 25.38 N

2
   →   3 CO

2
 + 3 H

2
O + 25.38 N

2
 + 2.25 O

2
 

  P
2
 = P

1
 
npT2

nRT1
 = 100 × 

33.63 × 700
33.13 × 298.15

 = 238.3 kPa 

Enthalpies from Table A.9 

∆H
P 700

 = 3×17 754 + 3×14 190 + 25.38×11 937 + 2.25×12 499  

 = 426 916 
kJ

kmol fuel 

Enthalpy of combustion from table 14.3 converted to mole basis 

  H
 °
RP = -45 780 × 42.081 = -1 926 468 kJ/kmol fuel 

  U
2
 - U

1
 = 

1
Q

2
 - 0 = H

2
 - H

1
 - n

2
RT

2
 + n

1
RT

1
 

  
1
Q

2
 = H

 °
RP + ∆H

P 700
 - n

P
RT

2
 + n

1
RT

1
 

         = -1 926 468 + 426 916 - 33.63 × 8.3145 × 700 

    + 33.13 × 8.3145 × 298.15 = -1.613×106 
kJ

kmol fuel  

 

Entropies from Table A.9 and pressure correction 
 

 Reactants: n
i
 y

i
 s-°

i
 -R

-
ln(yiP/P0) S-

i
 

 C
3
H

8
 1.0 0.0302 267.066 29.104 296.17 

 O
2
 6.75 0.2037 205.143 13.228 218.376 

 N
2
 25.38 0.7661 191.609 2.216 189.393 

  

S
1
= 296.17 + 6.75 × 218.376 + 25.38 × 189.393 = 6577 

kJ
kmol fuel K  
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 Products: n

i
 y

i
 s-°

i
 -R

-
ln(yiP/P0) S-

i
 

 CO
2
  3 0.0892 250.752 +12.875 263.627 

 H
2
O  3 0.0892 218.739 +12.875 231.614 

 O
2
 2.25 0.0669 231.465 +15.266 246.731 

 N
2
 25.38 0.7547 216.865 - 4.88 211.985 

 

 S
2 

= 3(263.627 + 231.614) + 2.25 × 246.731 + 25.38 × 211.985 

      = 7421 kJ/kmol fuel K 

 
1
S

2 gen
= S

2
 - S

1
 - 

1
Q

2
/T

res
 = 7421 - 6577 + 

1.613×106

500  = 4070 
kJ

kmol fuel K 
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Problems Involving Generalized Charts or Real Mixtures 

 
14.97 

 Repeat Problem 14.42, but assume that saturated-liquid oxygen at 90 K is used 
instead of 25°C oxygen gas in the combustion process. Use the generalized  charts 
to determine the properties of liquid oxygen. 

Problem same as 14.42, except oxygen enters at 2 as saturated liquid at 90 K. 

    m
.

O2
/m

.
N2H4

 = 0.5 = 32n
.
O2

/32n
.

N2H4
    and      Q

.
/m

.
N2H4

 = -100 kJ/kg 

 Energy Eq.:     Q
CV

 = H
P
 - H

R
 = -100 × 32.045 = -3205 kJ/kmol fuel 

 Reaction equation:  1 N
2
H

4
 + 

1
2 O

2
   →   H

2
O + H

2
 + N

2
 

 At 90 K, T
r2

 = 90/154.6 = 0.582    ⇒    ∆h
~

f
 = 5.2   

Figure D.2,    (h
-*

  - h-) = 8.3145 × 154.6 × 5.2 = 6684 kJ/kmol 

 ∆h
-

AT 2
 = -6684 + 0.922 × 32(90 - 298.15) = -12825 kJ/kmol 

 H
R
 = 50417 + 

1
2(0 - 12825) = 44005 kJ,     H°

P
  = -241826 

 1st law: ∆h
-

P
 = ∆h

-
H2O

 + ∆h
-

H2
 + ∆h

-
N2

 = Q
cv

 + H
R
 - H°

P
 = 282626 

 From Table A.9,   ∆H
P 2800K

 = 282141,   ∆H
P 3000K

 = 307988 

 Therefore, T
P
 = 2804 K 
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14.98 

 Hydrogen peroxide, H2O2, enters a gas generator at 25°C, 500 kPa at the rate of 

0.1 kg/s and is decomposed to steam and oxygen exiting at 800 K, 500 kPa. The 
resulting mixture is expanded through a turbine to atmospheric pressure, 100 kPa, 
as shown in Fig. P14.98. Determine the power output of the turbine, and the heat 
transfer rate in the gas generator. The enthalpy of formation of liquid H2O2 is 

−187 583 kJ/kmol. 

   H2O2 →  H2O + 
1
2 O2 n

.
H2O2 = 

m
.

H2O2

M  = 
0.1

34.015 = 0.00294 kmol/s 

   n
.

MIX = n
.
H2O2× 1.5 = 0.00441 kmol/s 

 C
-

P0 MIX = 
2
3 × 1.872 × 18.015 + 13 × 0.922 × 31.999 = 32.317 

 C
-

V0 MIX = 32.317 - 8.3145 = 24.0   =>   kMIX = 32.317/24.0 = 1.3464 

CV: turbine.   Assume reversible → s
3
 = s

2
 

 T
3
 = T

2
(
P3

P2
)

k-1
k  = 800(100

500)
0.2573

 = 528.8 K 

 w = C
-

P0(T2 - T3) = 32.317(800 - 528.8) = 8765 kJ/kmol 

 W
.

CV = 0.00441 × 8765 = 38.66 kW 

CV: Gas Generator 

 H
.

1 = 0.00294(-187 583 + 0) = -551.49 

 H
.

2 = 0.00294(-241 826 + 18002) + 0.00147(0 + 15836) = -634.76 

 Q
.

CV = H
.

2 - H
.

1 = -634.76 + 551.49 = -83.27 kW 
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14.99 

 Liquid butane at 25°C is mixed with 150% theoretical air at 600 K and is burned 
in an adiabatic steady state combustor. Use the generalized charts for the liquid 
fuel and find the temperature of the products exiting the combustor. 

 
 

Prod. 

at Tp 

25 C LIQ. C H 4 10
o 

150% Air  
600 K 

Adiab.  
Comb. 

Q  = 0CV  

T
C
 = 425.2 K 

T
R
 = 0.701 

 h
-

C4H10
 = h

-o
f IG + (h

-
LIQ

 - h
-*)  see Fig. D.2 

            = -126200 + (-4.85 × 8.3145 × 425.2)  = -143 346 kJ 

 C
4
H

10
 + 1.5 × 6.5 O

2
 + 3.76 × 9.75 N

2
 

       → 4 CO
2
 + 5 H

2
O + 3.25 O

2
 + 36.66 N

2
 

 h
-

AIR
 = 9.75(9245) + 36.66(8894) = 416 193 kJ 

 ⇒    H
R
 = 416 193- 143 346 = +272 847 kJ 

H
P
 = 4(-393522 + ∆h

-*
CO2) + 5(-241826 + ∆h

-*
H2O) + 3.25 ∆h

-*
O2 + 36.66 ∆h

-*
N2 

Energy Eq.: H
P
 - H

R
 = 0 

 4 ∆h
-*

CO2 + 5 ∆h
-*

H2O + 3.25 ∆h
-*

O2 + 36.66 ∆h
-*

N2 = 3 056 065 

Trial and Error:    LHS
2000 K

 = 2 980 000,       LHS
2200 K

 = 3 369 866 

Linear interpolation to match RHS      =>   T
P
 = 2039 K 

 



   Sonntag, Borgnakke and van Wylen 

 
14.100 

 Saturated liquid butane enters an insulated constant pressure combustion chamber 
at 25°C, and x times theoretical oxygen gas enters at the same P and T. The 
combustion products exit at 3400 K. With complete combustion find x. What is 
the pressure at the chamber exit? and what is the irreversibility of the process? 

 

Butane: T1 = To = 25oC,   sat liq.,   x1 = 0,   Tc = 425.2 K,   Pc = 3.8 MPa 

Do the properties from the generalized charts 

Fig. D.1:  Tr1 = 0.7,  Pr1 = 0.1,    P1 = Pr1Pc = 380 kPa 

Figs. D.2 and D.3:     



h

−*
1 − h

−
1  f = 4.85 R

−
Tc ,   (s−

*
1 - s−1)f =  6.8 R

−
  

Oxygen:  T2 = To = 25oC,    X - Theoretical O2 

Products:  T3 = 3400 K,   Assumes complete combustion 

  C4H10 + 6.5X O
2
    4 CO

2
 + 5 H

2
O + 6.5(X-1) O

2
 

Energy Eq.:  Qcv + HR = HP + Wcv;   Qcv = 0,   Wcv = 0 

 HR = n(h
−o

f  + ∆h
−)C4H10 = 1(-126 200 + -17 146) = -143 346 kJ 

 

Products: CO
2
 n(h

−o
f  + ∆h

−)CO2 = 4(-393 522 + 177 836) = -862 744 kJ 

  H
2
O n(h

−o
f  + ∆h

−)H2O = 5(-241 826 + 149 073) = -463 765 kJ 

  O
2
 n(h

−o
f  + ∆h

−)O2 = 6.5(X-1)(0 + 114 101) = (X-1)741 657 kJ 

  HP =  ∑ni (h
−o

f  + ∆h
−)i = 741 657X – 2 068 166 

 

Energy Eq.: HP = HR  solve for X;      X = 2.594 

 

Assume that the exit pressure equals the inlet pressure:       Pe = Pi = 380 kPa 

 s−C4H10
 = [s−

o
f  - R

−
 ln 

P1
Po

- (s−
*
1 - s−1)f]   ;   s−O2

 = [s−o - R
−

 ln 
P1
Po

 ]  

 

 SR = SC4H10 + SO2 = [306.647 - 11.10 - 56.539]  

  + [205.48 - 11.10] × 6.5 × 2.594  = 3516.45 kJ/K 
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Products:  
 ni yi s−

o
i  − R

−
 ln 

yiPe
Po

 S
-

i
   

kJ
kmol K  

CO2 4 0.2065 341.988  2.016 344.004 

H2O 5 0.2582 293.550  0.158 293.708 

O2 10.368 0.5353 289.499  -5.904 283.595 

  

 SP = ∑ niS
-

i
 = 5784.87 kJ/K;     

 I = To(SP - SR) = 298.15 (5784.87 - 3516.45) = 676 329 kJ 
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14.101 
 A gas mixture of 50% ethane and 50% propane by volume enters a combustion 

chamber at 350 K, 10 MPa. Determine the enthalpy per kilomole of this mixture 
relative to the thermochemical base of enthalpy using Kay’s rule. 

 h
-*

MIX O
 = 0.5(-84740) + 0.5(-103900) = -94320 kJ/kmol 

 C
-

P0 MIX
 = 0.5 × 30.07 × 1.7662 + 0.5 × 44.097 × 1.67 = 63.583 

 h
-*

350 - h
-*

298 = 63.583(350 - 298.2) = 3294 kJ/kmol 

 Kay’s rule:   T
C MIX

 = 0.5 × 305.4 + 0.5 × 369.8 = 337.6 K  

 P
C MIX

 = 0.5 × 4.88 + 0.5 × 4.25 = 4.565 MPa 

  T
r
 = 350/337.6  = 1.037,    P

r
 = 10/4.565 = 2.19 

 From Fig. D.2:     h
-*

  - h
-
 = 8.3145 × 337.6 × 3.53 = 9909 kJ/kmol 

 h
-

MIX 350K,10MPa
 = -94320 + 3294 - 9909 = -100 935 kJ/kmol 
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14.102 

 A mixture of 80% ethane and 20% methane on a mole basis is throttled from 10 
MPa, 65°C, to 100 kPa and is fed to a combustion chamber where it undergoes 
complete combustion with air, which enters at 100 kPa, 600 K. The amount of air 
is such that the products of combustion exit at 100 kPa, 1200 K. Assume that the 
combustion process is adiabatic and that all components behave as ideal gases 
except the fuel mixture, which behaves according to the generalized charts, with 
Kay’s rule for the pseudocritical constants. Determine the percentage of 
theoretical air used in the process and the dew-point temperature of the products. 

Reaction equation:     

Fuel mix:    h
-0

f FUEL = 0.2(-74873) + 0.8(-84740) = -82767 kJ/kmol 

 C
-

P0 FUEL = 0.2 × 2.2537 × 16.04 + 0.8 × 1.7662 × 30.07 = 49.718 

 ∆h
-*

FUEL = 49.718(65 - 25) = 1989 kJ/kmol 

 TCA = 305.4 K,   TCB = 190.4 K   ⇒   Tc mix=282.4 K 

 PCA = 4.88,  PCB=4.60   ⇒   Pc mix= 4.824 MPa 

 Tr = 338.2/282.4 = 1.198,   Pr = 10/4.824 = 2.073 

 (h
-* - h

-
)FUEL IN = 8.31451 × 282.4 × 2.18 = 5119 

    ⇒ h
-

FUEL IN = -82767 + 1989 - 5119 = -85897 
kJ

kmol 

1st law: 

    1.8(-393522 + 44473) + 2.8(-241826 + 34506) 

       + 3.2(x - 1)(29761) + (12.03x)(28109) 

       + 85897 - (3.2x)(9245) - (12.03x)(8894) = 0 

a)    x = 4.104 or 410.4 % 

b) n
P
 = 1.8 + 2.8 + 3.2(4.104 - 1) + 12.03 × 4.104  = 63.904 

    y
H2O

 = 2.8/63.904 = P
V

/100  ;      P
V

 = 4.38 kPa,   T = 30.5°C 
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14.103 

 Liquid hexane enters a combustion chamber at 31°C, 200 kPa, at the rate 1 kmol/s 
200% theoretical air enters separately at 500 K, 200 kPa, and the combustion 
products exit at 1000 K, 200 kPa. The specific heat of ideal gas hexane is C

p
 = 

143 kJ/kmol K. Calculate the rate of irreversibility of the process. 

Hexane:  Tc = 507.5 K, Pc = 3010 kPa 

 Tr1 = 0.6, Fig. D.1:   Prg = 0.028,   Pg1  = Pr1Pc = 84.47 kPa 

      Figs D.2 and D.3: (h
−*

1 - h
−

1) f = 5.16 R
−

Tc ,   (s−*
1 - s−1) f = 8.56 R

−
 

 Air: T2 = 500 K, P2 = 200 kPa, 200% theoretical air 

 Products: T3 = 1000 K, P3 = 200 kPa 

a)  h
−

C6H14 = h
−o

f  - (h
−*

1 - h
−

1)f + (h
−*

1 - h
−*

0) + (h
−*

0 - h
−

0) 

 h
−*

0 - h
−

0 = 0 , h
−*

1 - h
−*

0 = C
−

P (T1 - To) = 858 kJ/kmol, h
−o

f  = -167300 kJ/kmol 

 h
−*

1 - h
−

1 = 5.16 × 8.3145 × 507.5 = 21773 kJ/kmol, h
−

C6H14 = -188215 kJ/kmol 

 s−C6H14 = s−
o
 To

 + C
−

P ln 
T1
To

 - R
−

 ln 
P1
Po

 + (s−1 - s−*
1) 

 s−
o
 To

 + C
−

P ln 
T1
To

 - R
−

 ln 
P1
Po

 = 387.979 + 2.85 – 5.763 = 385.066 kJ/kmol-K 

 s−*
1 - s−1 = 8.56×8.3145 = 71.172 kJ/kmol-K, s−C6H14 = 313.894 kJ/kmol-K 

b)  C6H14 + 19O2 + 71.44N2  6CO2 + 7H2O + 9.5O2 + 71.44N2 

 Tc prod = ∑yiTci = 179.3 K, Tr3 = 
T3

Tc prod
 = 5.58  Ideal Gas 

c)  1st Law:  Q + HR = HP + W;    W = 0      =>       Q = HP - HR  

  HR = (h
−)C6H14 + 19∆h

−
O2 + 71.44 ∆h

−
N2 

      = -188 215 + 19  6086 + 71.44  5911 = 349701 kJ/kmol fuel 

HP = 6(h
−o

f  + ∆h
−)CO2 = 7(h

−o
f  + ∆h

−)H2O + 9.5 (h
−o

f  + ∆h
−)O2 + 71.44(h

−o
f  + ∆h

−)N2 

  CO2 - (h
−o

f  + ∆h
−) = (-393522 + 33397) = -360125 kJ/kmol 

  H2O - (h
−o

f  + ∆h
−) = (-241826 + 26000) = -215826 kJ/kmol 

  O2 - (h
−o

f  + ∆h
−) = (0 + 22703) = 22703 kJ/kmol 

  N2 - (h
−o

f  + ∆h
−) = (0 + 21463) = 21463 kJ/kmol 
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 HP = -1922537 kJ;  Q
.
 = -2272238 kW 

d)  I
.
 = To n

.
 (SP - SR) - Q

.
; To = 25oC 

 SR = (s−)C6H14 + 19 (s−
o
500 - R

−
ln 

yO2P2
Po

 )O2  + 71.44(s−
o
500 - R

−
ln 

yN2P2
Po

 )N2 

 (s−)C6H14 = 313.894 kJ/kmol K, (s−
o
500)O2 = 220.693 kJ/kmol K 

 (s−
o
500)N2 = 206.740 kJ/kmol K,   yO2 = 0.21,   yN2 = 0.79 

 S
.
R = 19141.9 kW/K 

Products:  

 ni yi s−
o
i  − R

−
 ln 

yiPe
Po

 
S
-

i
 

(kJ/kmol-K) 

CO2 6 0.0639 269.299 17.105 286.404 

H2O 7 0.0745 232.739 15.829 248.568 

O2 9.5 0.1011 243.579 13.291 256.87 

N2 71.44 0.7605 228.171 -3.487 224.684 

 

 SP = ∑ nis
−

i = 21950.1 kJ/K;  

 I
.
 = To n

.
 (SP - SR) - Q

.
 = 3 109 628 kW 
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Fuel Cells 

 
14.104 

 In Example 14.16, a basic hydrogen–oxygen fuel cell reaction was analyzed at 
25°C, 100 kPa. Repeat this calculation, assuming that the fuel cell operates on air 
at 25°C, 100 kPa, instead of on pure oxygen at this state. 

 Anode:   2 H
2
        → 4 e- + 4 H+ 

 Cathode: 4 H+ + 4 e- → 1 O
2
 + 2 H

2
O 

 Overall: 2 H
2
 + 1 O

2
 → 2 H

2
O 

 Example 14.16:     ∆G
25°C

 = -474 283 kJ (for pure O
2
) 

  For P
O2

 = 0.21 × 0.1 MPa: 

 S
-

O2
 = 205.148 – 8.3145 ln 0.21 = 218.124 kJ/kmol 

 ∆S = 2(69.950) – 2(130.678) – 1(218.124) = -339.58 kJ/kmol K 

 ∆G
25°C

 = -571 660 – 298.15(-339.58) = -470 414 kJ/kmol 

  E° = 
470414

96487 × 4 = 1.219 V 
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14.105 

 Assume that the basic hydrogen-oxygen fuel cell operates at 600 K instead of 298 
K as in example 14.16. Find the change in the Gibbs function and the reversible 
EMF it can generate. 

 

  Reaction:          2 H2 + O2   ⇒   2 H2O 

 At a temperature of 600 K the water formed is in a vapor state. We can thus find 
the change in the enthalpy as 

    ∆H
0
600 K = 2(h

−o
f  + ∆h

−)H2O g - 2(h
−o

f  + ∆h
−)H2 - (h

−o
f  + ∆h

−)O2 

       = 2(-241 826 + 10 499) – 2(0 + 8799) – 0 – 9245 

       = -489 497 kJ/4 kmol e- 

    ∆S
0
600 K = 2 s

−o
f H2O g – 2 s

−o
f H2 – s

−o
f O2 

      = 2 × 213.051 – 2 × 151.078 – 226.45  

    = -102.504 kJ/4 kmol e- K 

    ∆G
0
600 K = ∆H

0
600 K – T∆S

0
600 K = -489 497 – 600(-102.504)  

     = - 427 995 kJ/4 kmol e-  

    Wrev = -∆G
- 0 = 427 995 kJ/4 kmol e- 

    E 0 = 
-∆G

- 0

96485 × 8
 = 

427 995
96 485 × 4

 = 1.109 V 
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14.106 

 Consider a methane-oxygen fuel cell in which the reaction at the anode is 

   CH4 + 2H2O  →   CO2 + 8e- + 8H+ 

 The electrons produced by the reaction flow through the external load, and the 
positive ions migrate through the electrolyte to the cathode, where the reaction is 

   8 e- + 8 H+ + 2 O2  →  4 H2O 

 Calculate the reversible work and the reversible EMF for the fuel cell operating at 
25°C, 100 kPa. 

             CH
4
 + 2H

2
O → CO

2
 + 8e- + 8H+ 

 and   8e- + 8H+ + 2CO
2
 → 4H

2
O 

 Overall      CH
4
 + 2O

2
 → CO

2
 + 2H

2
O 

a) 25 oC assume all liquid H
2
O and all comp. at 100 kPa 

    ∆H
0
25 C = -393 522 + 2(-285 830) – (-74 873) – 0 = -890 309 kJ 

    ∆S
0
25 C = 213.795 + 2(69.950) – 186.251 – 2(205.148) = - 242.852 kJ/K 

    ∆G
0
25 C = -890 309 – 298.15(-242.852) = - 817 903 kJ 

    Wrev = -∆G
- 0 = +817903 kJ 

    E 0 = 
-∆G

- 0

96485 × 8
 = 

+817903
96485 × 8

 = 1.06 V 
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14.107 

 Consider a methane-oxygen fuel cell in which the reaction at the anode is 

   CH
4
 + 2H2O  →   CO2 + 8e- + 8H+ 

 The electrons produced by the reaction flow through the external load, and the 
positive ions migrate through the electrolyte to the cathode, where the reaction is 

   8 e- + 8 H+ + 2 O2  →  4 H2O 

  Assume that the fuel cell operates at 1200 K instead of at room temperature. 

             CH
4
 + 2H

2
O → CO

2
 + 8e- + 8H+ 

 and   8e- + 8H+ + 2CO
2
 → 4H

2
O 

 Overall      CH
4
 + 2O

2
 → CO

2
 + 2H

2
O 

1200 K assume all gas H
2
O and all comp. at 100 kPa 

 ∆H
0
1200 K = 1(-393522 + 44473) + 2(-241826 + 34506)  - 2(0 + 29761) 

             - 1[-74873 + 16.043 × 2.254(1200 - 298.2)]   = -780 948 kJ 

  ∆S
0
1200 K = 1(279.390) + 2(240.485) 

             - 1(186.251 + 16.043 × 2.254 ln 
1200
298.2)  - 2(250.011) 

            = 23.7397 kJ/K 

  ∆G
0
1200 K = ∆H

0
1200 K - T∆S

0
1200 K  = -780 948 - 1200(23.7397)  

    = -809 436 kJ 

    Wrev = +809 436 kJ         E 0 = 
+809 436
96 485 × 8

 = 1.049 V 
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Combustion Efficiency 
 
14.108 

 Consider the steady combustion of propane at 25°C with air at 400 K. The 
products exit the combustion chamber at 1200 K. It may be assumed that the 
combustion efficiency is 90%, and that 95% of the carbon in the propane burns to 
form carbon dioxide; the remaining 5% forms carbon monoxide. Determine the 
ideal fuel–air ratio and the heat transfer from the combustion chamber. 

 

Ideal combustion process, assumed adiabatic, excess air to keep 1200 K out.
 C3H8 + 5x O2 + 18.8x N2   →   3 CO2 + 4 H2O + 5(x - 1) O2 + 18.8x N2 

 H
R
 = -103900 +5x(0 + 3027) + 18.8x(0 + 2971)  = -103900 + 70990x 

 H
P
 = 3(-393522 + 44473) + 4(-241826 + 34506)  

    + 5(x - 1)(0 + 29761) + 18.8x(0 + 28109)  = -2025232 + 677254x 

    1st law: H
P
 - H

R
 = 0         Solving, x = 3.169 

    FA
IDEAL

 = 1/(23.8 × 3.169) = 0.01326 

b)      FA
ACTUAL

 = 0.01326/0.90 = 0.01473 

    C
3
H

8
 + 14.26 O

2
 + 53.62 N

2
 

     → 2.85 CO
2
 + 0.15 CO + 4 H

2
O + 9.335 O

2
 + 53.62 N

2
 

 H
R
 = -103900 + 14.26(0 + 3027) + 53.62(0 + 2971)  = +98570 kJ 

 H
P
 = 2.85(-393522 + 44473) + 0.15(-110527 + 28427) + 4(-241826 + 34506) 

           + 9.335(0 + 29761) + 53.62(0 + 28109) = -51361 kJ 

    Q
CV

 = H
P
 - H

R
 = -149931 kJ 
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14.109 

 A gasoline engine is converted to run on propane. Assume the propane enters the 
engine at 25°C, at the rate 40 kg/h. Only 90% theoretical air enters at 25°C such 
that 90% of the C burns to form CO2, and 10% of the C burns to form CO. The 

combustion products also include H2O, H2 and N2, exit the exhaust at 1000 K. 

Heat loss from the engine (primarily to the cooling water) is 120 kW. What is the 
power output of the engine? What is the thermal efficiency? 

Propane: T
1
 = 25oC, m

.
 = 40 kg/hr, M = 44.094 kg/kmol 

Air:  T
2
 = 25oC, 90% theoretical Air produces 90% CO

2
, 10% CO 

Products: T3 = 1000 K, CO
2
, CO, H

2
O, H

2
, N

2
 

C3H8 + 4.5O
2
 + 16.92N

2
  2.7 CO

2
 + 0.3CO + 3.3H

2
O + 0.7H

2
 + 16.92N

2
 

 n
.
C3H8 = m

.
/(M×3600) = 0.000252 kmol/s 

1st Law: Q
.
 + H

R
 = H

P
 + W

.
 ;  Q

.
 = -120 kW 

 HR = nC3H8 h
−o

f  = -103 900 kJ 

Products: 

 CO
2
 - nCO2(h

−o
f  + ∆h

−) = 2.7(-393522 + 33397) = -972337.5 kJ 

 CO - nCO(h
−o

f  + ∆h
−) = 0.3(-110527 + 21686) = -26652 kJ 

 H
2
O - nH2O(h

−o
f  + ∆h

−) = 3.3(-241826 + 26000) = -712226 kJ 

 H
2
 - nH2(h

−o
f  + ∆h

−) = 0.7(0 + 20663) = 14464.1 kJ 

 N
2
 - nN2(h

−o
f  + ∆h

−) = 16.92(0 + 21463) = 363154 kJ 

 HP =  ∑ni (h
−o

f  + ∆h
−)i  = -1 333 598 kJ 

 W
.

 = Q
.
 + n

.
(H

R
 - H

P
) = 189.9 kW 

  C3H8:  Table 14.3  HRPo = -50343 kJ/kg 

 HHV
.

 = n
.
C3 8 M(-HRPo)  = 559.4 kW H

 ηth = W
.

/HHV
.

 = 0.339 
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14.110 

 A small air-cooled gasoline engine is tested, and the output is found to be 1.0 kW. 
The temperature of the products is measured to 600 K. The products are analyzed 
on a dry volumetric basis, with the result: 11.4%  CO2, 2.9% CO, 1.6% O2 and 

84.1% N2. The fuel may be considered to be liquid octane. The fuel and air enter 

the engine at 25°C, and the flow rate of fuel to the engine is 1.5 × 10-4 kg/s. 
Determine the rate of heat transfer from the engine and its thermal efficiency.
 a C

8
H

18
 + b O

2
 + 3.76b N

2
 

   → 11.4 CO
2
 + 2.9 CO + c H

2
O + 1.6 O

2
 + 84.1 N

2
 

  b = 
84.1
3.76 = 22.37,       a = 

1
8 (11.4 + 2.9) = 1.788 

  c = 9a = 16.088 

 C
8
H

18
 + 12.5 O

2
 + 47.1 N

2
 

   → 6.38 CO
2
 + 1.62 CO + 9 H

2
O + 0.89 O

2
 + 47.1 N

2
 

    H
R
 = h

-0
f C8H18 = -250 105 kJ/kmol  

    H
P
 = 6.38(-393 522 + 15 788) + 1.62(-110527 + 10 781) 

         + 9(-241 826 + 12 700) + 0.89(0 + 11187) 

 

     + 47.1(0 + 10712) = -4 119 174 kJ/kmol 

    H
P
 - H

R
 = -4 119 174 - (-250 105) = -3 869 069 kJ/kmol 

    H
.

P
 - H

.
R
 = (0.00015/114.23)(-3 869 069) = -5.081 kW 

    Q
.

CV
 = -5.081 + 1.0 = -4.081 kW 

 Fuel heating value from table 14.3 

 Q
.

H
 = 0.00015 (47 893) = 7.184 kW 

     η
TH

 = W
.

NET
/Q

.
H

 = 1.0/7.184 = 0.139 
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14.111 

 A gasoline engine uses liquid octane and air, both supplied at P
0
, T

0
, in a 

stoichiometric ratio. The products (complete combustion) flow out of the exhaust 
valve at 1100 K. Assume that the heat loss carried away by the cooling water, at 
100°C, is equal to the work output. Find the efficiency of the engine expressed as 
(work/lower heating value) and the second law efficiency. 

  C
8
H

18
 + ν

O2( )O
2
 + 3.76 N

2
 → 8 CO

2
 + 9 H

2
O + 47 N

2
  

  2 ν
O2

 = 16 + 9 ⇒ ν
O2

 = 12.5 

 LHV = 44425 
kJ

kg fuel  ⇒  LHV = 5.07476×106 
kJ

kmol fuel 

 ∆H
P 1100

 = 8 × 38885 + 9 × 30190 + 47 × 24760 = 1746510 

C.V. Total engine 

  H
in

 = H
ex

 + W + Q
loss

 = H
ex

 + 2 W 

    ⇒ 2 W = H
in

 - H
ex

= H
R
 - Hν= -H

°
RP + ∆H

R
- ∆H

P 1100
 

     = 5.07476×106 + 0 - 1746510 = 3328250 

  W = 1.664×106 
kJ

kmol fuel 

  η
th

 = 
W

LHV = 
1.664×106

5.07476×106 = 0.328 

 Find entropies in and out: 

 inlet: S
- °

Fu
 = 360.575    

  S
- °

O2
 = 205.148 - 8.3145 ln 

1
4.76 = 218.12    

  S
- °

N2
 = 191.609 - 8.3145 ln 

3.76
4.76 = 193.57    

  S
- °

in
 = 360.575 + 12.5 × 218.12 + 47 × 193.57 = 12185  

 exit: S
- °

CO2
 = 275.528 - 8.3145 ln 

8
64 = 292.82 

  S
- °

H2O
 = 236.732 - 8.3145 ln 

9
64 = 253.04 

  S
- °

N2
 = 231.314 - 8.1345 ln 

47
64 = 233.88 

  S
- °

ex = 8 × 292.82 + 9 × 253.04 + 47 × 233.88 = 15612 
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Assume the same Qloss out to 100°C reservoir in the reversible case and 

compute Q
rev
0 : 

 S
-

in + Q
rev
0 /T0 = S

-
ex + Qloss/Tres 

 Q
rev
0   = T0( )S

-
ex - S

-
in  + Qloss T0/Tres  

  = 298.15(15612 - 12185) + 1.664×106 × 298.15/373.15 

  = 2.351×106 
kJ

kmol fuel 

 H
in

 + Q
rev
0  = H

ex
 + Wrev + Q

loss
 

 ⇒ Wrev  = Hin - Hex - Qloss + Q
rev
0  = Wac + Q

rev
0  = 4.015×106 

kJ
kmol fuel 

 ηII = Wac/ W
rev =1.664×106/4.015×106 = 0.414 
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Review Problems 
 
14.112 

 Ethene, C2H4, and propane, C3H8, in a 1:1 mole ratio as gases are burned with 

120% theoretical air in a gas turbine. Fuel is added at 25°C, 1 MPa and the air 
comes from the atmosphere, 25°C, 100 kPa through a compressor to 1 MPa and 
mixed with the fuel. The turbine work is such that the exit temperature is 800 K 
with an exit pressure of 100 kPa. Find the mixture temperature before 
combustion, and also the work, assuming an adiabatic turbine. 

φ = 1:     C2H4 + C
3
H

8
 + 8 O

2
 + 30.08 N

2
 → 5 CO

2
 + 6 H

2
O + 30.08 N

2
 

φ = 1.2: C
2
H

4
 + C

3
H

8
 + 9.6 O

2
 + 36.096 N

2
  

    → 5 CO
2
 + 6 H

2
O + 1.6 O

2
 + 36.096 N

2
 

  45.696 kmol air per 2 kmol fuel 

C.V. Compressor (air flow) 

 Energy Eq.:    w
c
 = h

2
 - h

1
    Entropy Eq.:     s

2
 = s

1
      ⇒ 

 P
r2

 = P
r1

× P
2
/P

1
 = 13.573  ⇒  T

2 air
 = 570.8 K 

 w
c
 = 576.44 - 298.34 = 278.1 kJ/kg = 8056.6 kJ/kmol air 

C.V. Mixing Chanber (no change in composition) 

 n
.

air
h
-

air in
 + n

.
Fu1

h
-

1 in
 + n

.
Fu2

h
-

2 in
 = (SAME)

exit
 

 ( )C
-

P F1
 + C

-
P F2 ( )T

exit
 - T

0
 = 45.696 C

-
P air( )T

2 air
 - T

exit
 

 C
2
H

4
:    C

-
P F1

 = 43.43,    C
3
H

8
: C

-
P F2

 = 74.06,    C
-

P air
 = 29.07 

 T
exit

 = 
( )45.696C

-
P air

T
2
 + ( )C

-
P F1

 + C
-

P F2
T

0

C
-

P F1
 + C

-
P F2

 + 45.696 C
-

P air
 = 548.7 K 

 Dew Point Products: y
H2O

 = 
6

5 + 6 + 1.6 + 36.096
 = 0.1232 

 P
H2O

 = y
H2O

P
tot

 = 123.2 kPa  ⇒  T
dew

 = 105.5°C 

C.V. Turb. + combustor + mixer + compressor (no Q) 

 w
net

 = H
in

 - H
out

 = H
R
 - H

P 800
     (800°K out so no liquid H2O) 

      = h
-°

fC2H4 + h
-°

fC3H8 - 5 h
-

CO2
 - 6 h

-
H2O

 - 1.6 h
-

O2
 - 36.096 h

-
N2

 

  = 2 576 541 
kJ

2 kmol Fu 

 w
T
 = w

net
 + w

comp
 =  2 944 695  

kJ
2 kmol Fu 
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14.113 

 Carbon monoxide, CO, is burned with 150% theoretical air and both gases are 
supplied at 150 kPa and 600 K. Find the reference enthalpy of reaction and the 
adiabatic flame temperature. 

  CO +  ν
O2( )O

2
 + 3.76 N

2
 →  CO

2
 + ν

N2
 N

2
 

 O balance:     1 + 2ν
O2

 = 1     ⇒    ν
O2

 = 0.5    ⇒  ν
O2 actual

 = 0.75 

 Now the actual reaction equation has excess oxygen as 

  CO +  0.75 ( )O
2
 + 3.76 N

2
 →  CO

2
 + 2.82 N

2
 + 0.25 O

2
 

 From the definition of enthalpy of combustion, Eq.14.14 or 14.15  

      H
°
RP = H

°
P - H

°
R = h

-o
f CO2

 + 0 - h
-o

f CO 

   = -393 522 – (-110 527) = -282 995 kJ/kmol CO 

   = - 10 103 kJ/kg CO       (as for Table 14.3) 

Actual energy Eq.:      HR = HP = H
°
P + ∆HP = H

°
R + ∆HR 

        ∆HP = H
°
R + ∆HR - H

°
P = -H

°
RP + ∆h

-
CO

 + 0.75 ∆h
-

O2
 + 2.82 ∆h

-
N2

 

      = 282 995 + 8942 + 0.75 × 9245 + 2.82 × 8894  

      = 323 952 kJ/kmol 

 The left hand side is 

   ∆HP = ∆h
-

CO2
 + 0.25 ∆h

-
O2

 + 2.82 ∆h
-

N2
 

 ∆H
P 2600

= 128 074 + 0.25 × 82 225 + 2.82 × 77 963 = 368 486  

 ∆H
P 2400

= 115 779 + 0.25 × 74 453 + 2.82 × 70 640 = 333 597  

 ∆H
P 2200

= 103 562 + 0.25 × 66 770 + 2.82 × 63 362 = 298 935 

 Now we can do a linear interpolation for the adiabatic flame temperature 

   T = 2200 + 200 
323 952 - 298 935
333 597 - 298 935 = 2344 K 
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14.114 

 Consider the gas mixture fed to the combustors in the integrated gasification 
combined cycle power plant, as described in Problem 14.12. If the adiabatic flame 
temperature should be limited to 1500 K, what percent theoretical air should be 
used in the combustors? 

  Product CH4 H2 CO CO2 N2 H2O H2S NH3 

  % vol.   0.3 29.6 41.0 10.0 0.8 17.0 1.1 0.2 

        Mixture may be saturated with water so the gases are  ( H2S and  NH3  out) 

 CH
4
 H

2
 CO CO

2
 N

2
 n 

 0.3 29.6 41.0 10.0 0.8 81.7 

 y
V MAX

 = 7.384/3000 = n
V

/(n
V

 + 81.7) 

 Solving,   n
V

 = 0.2 kmol, rest condensed 

 {0.3 CH
4
 + 29.6 H

2
 + 41.0 CO + 10.0 CO

2
 + 0.8 N

2
 

    + 0.2 H
2
O + 35.9x O

2
 + 3.76 × 35.9x N

2
}→ 

    51.3 CO
2
 + 30.4 H

2
O + 35.9(x - 1) O

2
 + (135.0x + 0.8) N

2
 

 For the fuel gas mixture, 

 nC
-

P0 MIX
 = 0.3 × 16.04 × 2.2537 + 29.6 × 2.016 × 14.2091 

          + 41.0 × 28.01 × 1.0413 + 10.0 × 44.01 × 0.8418 

          + 0.8 × 28.013 × 1.0416 + 0.2 × 18.015 × 1.8723   = 2455.157 

 nh
-0

f MIX = 0.3(-74873) + 29.6(0) + 41.0(-110527) 

                     + 10.0(-393522) + 0.8(0) + 0.2(-241826)   = -8537654 kJ 

 At 40°C, for the fuel mixture: 

  H
MIX

 = -8537654 + 2455.157(40 - 25) = -8500827 kJ 

 Assume air enters at 25°C:  h
-

AIR
 = 0 

 Products at 1500 K: 

 H
P
 = 51.3(-393522 + 61705) + 30.4(-241826 + 48149) 

   + 35.9(x - 1)(0 + 40600) + (135x + 0.8)(0 + 38405) 

      = -24336806 + 6642215x 

 1st law: H
P
 = H

R
 = H

MIX
 

 x = 
+24336809 - 8500827

6642215  = 2.384    or    238 % theo. air 



   Sonntag, Borgnakke and van Wylen 

 
14.115 

 A study is to be made using liquid ammonia as the fuel in a gas-turbine engine. 
Consider the compression and combustion processes of this engine. 

 a. Air enters the compressor at 100 kPa, 25°C, and is compressed to 1600 kPa, 
where the isentropic compressor efficiency is 87%. Determine the exit 
temperature and the work input per kilomole. 

 b. Two kilomoles of liquid ammonia at 25°C and x times theoretical air from the 
compressor enter the combustion chamber. What is x if the adiabatic flame 
temperature is to be fixed at 1600 K? 

 
          Air    

P
1
 = 100 kPa 

T
1
 = 25 oC 

COMP. 
1 2 

-W  

 
P

2
 = 1600 kPa 

η
S COMP

 = 0.87 

 

a) ideal compressor process (adiabatic reversible): 

    s
2S

 = s
1
 ⇒ T

2S
 = T

1
(
P

2

P
1
)

k-1
k  = 298.2(1600

100 )
0.286

 = 659 K 

    -w
S
 = C

P0
(T

2S
 - T

1
) = 1.004(659 - 298.2) = 362.2 

 Real process: 

             -w = -w
S
/η

S
  = 362.2/0.87 = 416.3 kJ/kg 

             T
2
 = T

1
 - w/C

P0
 = 298.2 + 416.3/1.004  = 713 K 

             Also -w = 416.3 × 28.97 = 12060 kJ/kmol 

 
 b) 

      2 liq NH
3
, 25 

oC 

     Air 100 kPa, 25 
oC 

 

COMB. 
CHAMBER COMP

-W -Q  =   0  

Prod. 
P

P
 = 1600 kPa 

T
P

 = 1600 K 

 

 2 NH
3
 + 1.5x O

2
 + 5.64x N

2
 → 3 H

2
O + 1.5(x - 1) O

2
 + (5.64x + 1) N

2
 

   Using Tables 14.3, A.10 and A.2, 

    h
-

NH3
 = -45 720 + 17.031(298.36 - 1530.04)  = -66 697 kJ/kmol 

    H
R
 = 2(-66 697) + 0 = -133 394 kJ 

    -W = 12 060 × 7.14x = 86 108 x kJ 
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 H
P
 = 3(-241 826 + 52 907) + 1.5(x - 1)(0 + 44267) + (5.64x + 1)(0 + 41904) 

       = 302 739x – 591 254 

 

   Energy Eq.:  H
R
 = H

P
 + W  

-133 394 = 302 739 x – 591 254 – 86 108 x 

     ⇒    x = 2.11 
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14.116 

 A rigid container is charged with butene, C4H8, and air in a stoichiometric ratio at 
P0, T0. The charge burns in a short time with no heat transfer to state 2. The 
products then cool with time to 1200 K, state 3. Find the final pressure, P3, the 
total heat transfer, 1Q3, and the temperature immediately after combustion, T2. 

 The reaction equation is, having used C and H atom balances: 

 C
4
H

8
 + ν

O2( )O
2
 + 3.76 N

2
 → 4 CO

2
 + 4 H

2
O + 3.76 ν

O2
N

2
 

 Counting now the oxygen atoms we get ν
O2

= 6.   

 C.V. analysis gives: 

 U
2
 - U

1
 = Q - W = Q = H

2
 - H

1
 - P

2
V

2
 + P

1
V

1
  

    = H
2
 - H

1
 - R

-
( )n

2
T

2
 - n

1
T

1
 

 H
2
 - H

1
 = H

P 1200
 - H

°
R = H

°
P - H

°
R + ∆H

P
 = M̂ H

°
RP + ∆H

P
 

   = -2542590 + 950055 = -1592535 

Where M̂ = 56.108    and       n
1
= 1 + 6 × 4.76 = 29.56,  

 n
2
 = 4 + 4 + 6 × 3.76 = 30.56,  

Τable A.9 at 1200 K:     ∆h
CO2

 = 44473,     ∆h
H2O

=34506,     ∆h
N2

=28109. 

Now solving for the heat transfer: 

 Q = -1592535 - 8.3145(30.56 × 1200 - 29.56 × 298.15) = -1824164 
kJ

kmol fuel 

 To get the pressure, assume ideal gases: 

 P
2
 = 

n
2
R
-
T

2

V
2

 = P
1 

n
2
T

2

n
1
T

1
 = 421.6 kPa 

 Before heat transfer takes place we have constant U so: 

 U
1a

 - U
1
 = 0 = H

1a
 - H

1
 - n

2
R
-
T

1a
 + n

1
R
-
T

1
 

Now split the enthalpy H
1a

= H
°
P + ∆H

P( )T
1a

and arrange things with the 

unknowns on LHS and knowns on RHS: 

 ∆H
P
- n

2
R
-
T = H

R
 - H

°
P - n

1
R
-
T

1
= 2 542 590 - 73278 = 2 469 312 

 Trial and error leads to:  

 LHS (3000 K) = 3 209 254 - 30.56 × 8.31451 × 3000 = 2 446 980 

 LHS (3200 K) = 3 471 331 - 30.56 × 8.31451 × 3200 = 2 658 238 

 linear interpolation       T = 3021 K 
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14.117 

 The turbine in Problem 14.112 is adiabatic. Is it reversible, irreversible, or 
impossible? 

 

 Inlet to the turbine is the exit from the mixing of air and fuel at 1 MPa.  
From solution to 14.112, we have: 

 C
-

P C2H2
 = 43.43,    C

-
P C3H8

 = 74.06,   T
turbine,in

 = 548.7 K 

 C
2
H

4
 + C

3
H

8
 + 9.6 O

2
 + 36.096 N

2
  

     → 5 CO
2
 +6 H

2
O + 1.6 O

2
 + 36.096 N

2
 

 S
ex

 - S
in

 = 
⌡
⌠dQ

T  + S
gen

 = S
gen

 ≥ φ 

 Inlet: 1 MPa, 548.7 K         S
-

Fu
 = S

- °
i  + C

-
P Fu 

ln( )T/T
0

 

  n
i
 y

i
 s-°

i
 

-R
-
ln

yiP
P0

 
S
-

i
 

 C
2
H

4
 1 0.02097 245.82 12.989 258.809 

 C
3
H

8
 1 0.02097 315.09 12.989 328.079 

 O
2
 9.6 0.2013 223.497 -5.816 217.681 

 N
2
 36.096 0.7568 209.388 -16.828 192.56 

 

S
in

  = 258.809 + 328.079 + 9.6 × 217.681 + 36.096 × 192.56 = 9627.3 

 
  n

i
 y

i
 s-°

i
 

-R
-
ln

yiP
P0

 
S-

i
 

 CO
2
 5 0.1027 257.496 18.925 276.421 

 H
2
O 6 0.1232 223.826 17.409 241.235 

 O
2
 1.6 0.0329 235.92 28.399 264.319 

 N
2
 36.096 0.7413 221.016 2.489 223.505 

 

 S
ex

  = 5 × 276.421 + 6 × 241.235 1.6 × 264.319 

   + 36.096 × 223.505 = 11320 
kJ

2kmol Fu K 

 S
gen

  = S
ex

 - S
in

 = 1693 
kJ

2kmol Fu K > 0 

Possible, but one should check the state after combustion to account for 
generation by combustion alone and then the turbine expansion separately. 
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14.118 

 Consider the combustion process described in Problem 14.102. 

 a. Calculate the absolute entropy of the fuel mixture before it is throttled into the 
combustion chamber. 

 b. Calculate the irreversibility for the overall process. 

From solution to 14.102, fuel mixture   0.8 C2H6 + 0.2 CH4  at 65°C, 10 MPa 

C
-

P0 FUEL
 = 49.718 kJ/kmol K.  Using Kay’s rule:    T

r1
 = 1.198, P

r1
 = 2.073 

 and   x = 410.4 % theoretical air 

    or 13.13 O
2
 + 49.36 N

2
     in at 600 K, 100 kPa 

 and 1.8CO
2
 + 2.8H

2
O + 9.93O

2
 + 49.36N

2
       out at 100 kPa, 1200 K 

 a) s-
*
0 FUEL = 0.2(186.251) + 0.8(229.597) 

             - 8.3145(0.2 ln 0.2 + 0.8 ln 0.8)   = 225.088 

    ∆s
*
TP = 49.718 ln 

338.2
298.2 - 8.3145 ln 

10
0.1 = -32.031 

 From Fig. D.3:   (s-
*
  -s-)

FUEL
 = 1.37 × 8.3145 = 11.391 

 s-
FUEL

 = 225.088 - 32.031 - 11.391 = 181.66 kJ/kmol K 

 b) Air at 600 K, 100 kPa 

 
  n

i
 y

i
 s-°

i
 -R

-
ln(yiP/P0) S-

i
 

 O
2
 13.13 0.21 226.45 +12.976 239.426 

 N
2
 49.36 0.79 212.177 +1.96 214.137 

 S
AIR

 = ∑ n
i
S
-

i
 = 13713.47 kJ/K 

 S
R
 = 181.66 + 13713.47 = 13895.1 kJ/K 

 Products at 1200 K, 100 kPa  
 PROD n

i
 y

i
 s-

o
i  -R

-
ln(yiP/P0) S-

i
 

 CO
2
 1.8 0.0282 279.390 +29.669 309.059 

 H
2
O 2.8 0.0438 240.485 +26.008 266.493 

 O
2
 9.93 0.1554 250.011 +15.479 265.490 

 N
2
 49.36 0.7726 234.227  +2.145 236.372 

 S
P
 = ∑ n

i
S
-

i
 = 15606.1 kJ/K 

 I = T
0
(S

P
 - S

R
) - Q

CV
 = 298.15(15 606.1 – 13 895.1) + 0  = 510 132 kJ 
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14.119 

 Natural gas (approximate it as methane) at a ratio of 0.3 kg/s is burned with 250% 
theoretical air in a combustor at 1 MPa where the reactants are supplied at T0. 
Steam at 1 MPa, 450°C at a rate of 2.5 kg/s is added to the products before they 
enter an adiabatic turbine with an exhaust pressure of 150 kPa. Determine the 
turbine inlet temperature and the turbine work assuming the turbine is reversible. 

 

 CH
4
 + ν

O2( )O
2
 + 3.76 N

2
 → CO

2
 + 2 H

2
O + 7.52 N

2
  

  2 ν
O2

 = 2 + 2   ⇒  ν
O2

 = 2      =>     Actual ν
O2

= 2 × 2.5 = 5 

  CH
4
 + 5 O

2
 + 18.8 N

2
 → CO

2
 + 2 H

2
O + 3 O

2
 + 18.8 N

2
  

C.V. combustor and mixing chamber 

  H
R
 + n

H2O
h
-

H2O in
 = H

P ex
 

 n
H2O

 = 
n
.
H2O

n
.
Fu

 = 
m
.

H2OMFu

m
.

FuMH2O
 = 

2.5 × 16.043
0.3 × 18.015

 = 7.421 
kmol steam
kmol fuel   

Energy equation becomes 

 n
H2O( )h

-
ex

 - h
-

in H2O
 + ( )∆h

-
CO2

 + 2∆h
-

H2O
 + 3∆h

-
O2

 + 18.8∆h
-

N2 ex
 

   = -H
°
RP = 50 010 × 16.043 = 802 310 

 ( )h
-

ex
 - h

-
in H2O

 = ∆h
-

H2O ex
 - 15072.5, so then: 

 ( )∆h
-

CO2
 + 9.421∆h

-
H2O

 + 3∆h
-

O2
 + 18.8∆h

-
N2 ex

 = 914 163 
kJ

kmol fuel  

Trial and error on Tex 

 Tex = 1000 K  ⇒  LHS = 749 956 ;          Tex = 1100 K  ⇒  LHS = 867429 

 Tex = 1200 K  ⇒  LHS = 987 286     ⇒     Tex ≅ 1139 K = Tin turbine 

 

If air then Tex turbine ≈ 700 K and Tavg ≈ 920 K. Find C
-

P mix between 900 and 
1000 K. From Table A.9: 

 C
-

P mix = ∑ niC
-

Pi
/∑ ni = 

53.67 + 9.421(40.63) + 3(34.62) + 18.8(32.4)
32.221   

            = 35.673 kJ/kmol K 

 C
-

V mix = C
-

P mix - R
-
 = 27.3587 kJ/kmol,   kmix= 1.304 

 Tex turbine = 1139 (150 / 1000)0.2331= 732 K 
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 ∆H732 = 19370.6 + 9.421(15410) + 3(13567) + 18.8(12932) 

= 448 371 kJ/kmol 

 wT = Hin - Hex = ∆Hin - ∆Hex = 914 163 - 448 371 = 465 792 
kJ

kmol fuel 

 W
.

T = n
.
FuwT = m• FuwT/M̂Fu = (0.3 × 465 792)16.043 = 8710 kW 
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14.120 

 Consider one cylinder of a spark-ignition, internal-combustion engine. Before the 
compression stroke, the cylinder is filled with a mixture of air and methane. 
Assume that 110% theoretical air has been used, that the state before compression 
is 100 kPa, 25°C. The compression ratio of the engine is 9 to 1. 

a. Determine the pressure and temperature after compression, assuming a 
reversible adiabatic process. 

b. Assume that complete combustion takes place while the piston is at top dead 
center (at minimum volume) in an adiabatic process. Determine the temperature 
and pressure after combustion, and the increase in entropy during the 
combustion process. 

c. What is the irreversibility for this process? 

 1 CH
4
 + 1.1 × 2 O

2
 + 3.76 × 2.2 N

2
 → 1 CO

2
 + 2 H

2
O + 0.2 O

2
 + 2 H

2
O 

  P
1
 = 100 kPa, T

1
 = 298.2 K,    V

2
/V

1
 = 1/8,   Rev. Ad. s

2
 = s

1
 

 Assume T
2
 ~ 650 K → T

AVE
 ~ 475 K 

 Table A.6:    C
-

P0 CH4
 = 44.887,   C

-
P0 O2

 = 30.890,   C
-

P0 N2
 = 29.415 

 C
-

P0 MIX
 = (1 × 44.887 + 2.2 × 30.890 + 8.27 × 29.415)/11.47 = 31.047 

 C
-

V0 MIX
 = C

-
P0

 - R
-
 = 22.732,    k = C

-
P0

/C
-

V0
 = 1.366 

a) T
2
 = T

1
(V

1
/V

2
)k-1 = 298.2 (9)0.366 = 666.4 K (avg OK) 

      P
2
 = P

1
(V

1
/V

2
)k = 100 (9)1.366 = 2011 kPa 

b)  comb. 2-3 const. vol., Q = 0 

    
2
Q

3
 = 0 = (H

3
 - H

2
) - R

-
(n

3
T

3
 - n

2
T

2
) 

    H
2
 = 1 h

-0
f CH4 + n

2
 C
-

P0 MIX
 (T

2 
- T

1
) 

    H
2
 = -74873 + 11.47 × 31.047(666.4 -298.2) = +56246 kJ 

    H
3
 = 1(-393522 + ∆h

-*
CO2) + 2(-241826 + ∆h

-*
H2O) + 0.2 ∆h

-*
O2 + 8.27 ∆h

-*
N2 

   Substituting, 

    1 ∆h
-*

CO2 + 2 ∆h
-*

H2O + 0.2 ∆h
-*

O2 + 8.27 ∆h
-*

N2 - 95.366 T
3
 - 869868 = 0 

    Trial & error: T
3
 = 2907 K 

    1 × 147072 + 2 × 121377 + 0.2 × 94315 + 8.27 × 89274 

       - 95.366 × 2907 - 869868 ≈ 0   OK 

    P3 = P2 
n3T3

n2T2
 = P2 

T3

T2
 = 2011 × 

2907
666.4 = 8772 kPa 
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 c) state 1 

 
 REAC n

i
 y

i
 s-°

i
 - R

-
 ln(yiP/P0) S-

i
 

 CH
4
 1 0.0872 186.251 +20.283 206.534 

 O
2
 2.2 0.1918 205.148 +13.730 218.878 

 N
2
 8.27 0.7210 191.609  +2.720 194.329 

  11.47     

 S
2
 = S

1
 = ∑ n

i
S
-

i
 = 2295.17 kJ/K 

 

 state 3 
 PROD n

i
 y

i
 s-°

i
 - R

-
 ln(yiP/P0) S-

i
 

 CO
2
 1 0.0872 332.213 -16.916 315.297 

 H
2
O 2 0.1744 284.753 -22.680 262.073 

 O
2
 0.2 0.0174 283.213  -3.516 279.697 

 N
2
 8.27 0.7210 265.726 -34.480 231.246 

  11.47     

 S
3
 = ∑ n

i
S
-

i
 = 2807.79 kJ/K 

 I = T
0
(S

3
 - S

2
) = 298.2(2807.79 - 2295.17) = 152860 kJ 
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14.121 
 Liquid acetylene, C2H2, is stored in a high-pressure storage tank at ambient 

temperature, 25°C. The liquid is fed to an insulated combustor/steam boiler at the 
steady rate of 1 kg/s, along with 140% theoretical oxygen, O2, which enters at 

500 K, as shown in Fig. P14.72. The combustion products exit the unit at 500 
kPa, 350 K. Liquid water enters the boiler at 10°C, at the rate of 15 kg/s, and 
superheated steam exits at 200 kPa. 

a.Calculate the absolute entropy, per kmol, of liquid acetylene at the storage tank state. 

b. Determine the phase(s) of the combustion products exiting the combustor boiler 
unit, and the amount of each, if more than one. 

c. Determine the temperature of the steam at the boiler exit. 

a) C
2
H

2
: S

- °
IG 25°C = 200.958  

 T
R1

 = 298.2/308.3 = 0.967  =>   From Fig. D.1:  P
R1

 = 0.82  

 P
1
 = 0.82 × 6.14 = 5.03 MPa,     ( )S

- * - S
-

1
 = 3.33R

-
 = 27.687 

 S
-

liq T1 P1
 = S

- °
T0 P0

 + ∆T - R
-
 ln( )P

1
/P°  + ( )S

-
 - S

- *
P1 T1

 = 140.695 
kJ

kmol K 

  b) 1 C
2
H

2
 + 1.4 × 2.5 O

2
 → 2 CO

2
 + 1 H

2
O + 1 O

2
 

 H
1
 = 226731 + (-3.56 × R-  × 308.3) = 217605 kJ 

 H
2
 = 3.5(0 + 6086) = 21301 kJ 

 Products T
3
 = 350 K = 76.8°C   ⇒   P

G
 = 41.8 kPa 

 yV max = 
PG

P  = 
41.8
500  = 0.0836 = 

nV max

nV max + 2 + 1  ⇒ nV max = 0.2737 = nV gas mix 

  ⇒ n
liq

 = 1 - 0.2737 = 0.7263 

  Gas Mix = 2 CO2 + 0.2737 H2O + 1 O2 

c) H
liq3

= 0.7263(-285830 + 18.015(321.5 - 104.9)) = -204764 kJ 

 H
gas mix3

 = 2(-393522 + 2036) + 0.2737(-241826 + 1756) + 1541 

     = -847138 kJ 

 H
3
 = H

liq3
 + H

gas mix3
 = -204 764 -847 138 = -1 051 902 kJ 

 H
3
 - H

1
 - H

2
 = -1 290 808 kJ 

 or H
.

3
 - H

.
1
 - H

.
2
 = -1 290 808/26.038 = -49 574 kW = m

.
H2O( )h

4
 - h

5
 

 h
5
 = 42.01 + 

49574
15  = 3346.9    ⇒    T

5
 = 433.4°C 
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28 6 51 29 74  
29 7 52 14 75 49 
30 new 53  76 50 
31 8 54 24 77  
32 10 55 25 78 51 
33 11 56  79 53 
34 13 57 26b 80 27 
35 new 58 32 81 38 
36 15 59 30 82 41 
37 17 60 33 83 43 
38 18 61 34 84 16 
39 9 62 35 85 54 
40 20 63 37 86 55 
41 21 64 39 87 56 
42 26a 65 40 88 57 
43  66 52   

 
 
 The English unit problems are: 
 

New 5th  SI New 5th SI New 5th SI 
89 53 21 95 62 45 101 67 71 
90 new 25 96 63 54 102 68 72 
91 58 31 97 64 58 103 69 73 
92 59 36 98 new 59 104 70 88 
93 60 37 99 new 63 105 71 80 
94 61 39 100 65 68 106 72 87 
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Concept-Study Guide Problems 
 
 
15.1 
  Is the concept of equilibrium limited to thermodynamics?  
 
   Equilibrium is a condition in which the driving forces present are 

balanced, with no tendency for a change to occur spontaneously.  This concept 
applies to many diverse fields of study – one no doubt familiar to the student 
being that of mechanical equilibrium in statics, or engineering mechanics. 

 
 
15.2 
  How does Gibbs function vary with quality as you move from liquid to vapor? 
 
   There is no change in Gibbs function between liquid and vapor. For 

equilibrium we have   gg = gf. 
 
 
15.3 
  How is a chemical equilibrium process different from a combustion process? 
 
   Chemical equilibrium occurs at a given state, T and P, following a 

chemical reaction process, possibly a combustion followed by one or more 
dissociation reactions within the combustion products. Whereas the combustion is 
a one-way process (irreversible) the chemical equilibrium is a reversible process 
that can proceed in both directions. 

 
 
15.4 
  Must P and T be held fixed to obtain chemical equilibrium? 
 
   No, but we commonly evaluate the condition of chemical equilibrium at a 

state corresponding to a given temperature and pressure. 
 
 
15.5 
  The change in Gibbs function for a reaction is a function of which property? 
 
   The change in Gibbs function for a reaction is a function of T and P.  The 

change in standard-state Gibbs function is a function only of T. 
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15.6 
  In a steady flow burner T is not controlled, which properties are? 
 
   The pressure tends to be constant, only minor pressure changes due to 

acceleration of the products as density decreases velocity must increase to have 
the same mass flow rate. 

 
 
15.7 
  In a closed rigid combustion bomb which properties are held fixed? 
 
   The volume is constant.  The number of atoms of each element is 

conserved, although the amounts of various chemical species change. As the 
products have more internal energy but cannot expand the pressure increases 
significantly. 

 
 
15.8 
  Is the dissociation of water pressure sensitive? 
 
   Yes, since the total number of moles on the left and right sides of the 

reaction equation(s) is not the same. 
 
 
15.9 
  At 298 K, K = exp(-184) for the water dissociation, what does that imply? 
 
   This is an extremely small number, meaning that the reaction tends to go 

strongly from right to left – in other words, does not tend to go from left to right 
(dissociation of water) at all. 

 
15.10 
 For a mixture of O2 and O the pressure is increased at constant T; what happens 

to the composition? 
 
  An increase in pressure causes the reaction to go toward the side of 

smaller total number of moles, in this case toward the O2 . 
 
15.11 
   For a mixture of O2 and O the temperature is increased at constant P; what 

happens to the composition? 
 
   A temperature increase causes more O2 to dissociate to O. 
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15.12 
  For a mixture of O2 and O I add some argon keeping constant T, P; what happens 

to the moles of O? 
 
   Diluting the mixture with a non-reacting gas has the same effect as 

decreasing the pressure, causing the reaction to shift toward the side of larger total 
number of moles, in this case the O . 

 
 
15.13 
  In a combustion process is the adiabatic flame temperature affected by reactions? 
 
   The adiabatic flame temperature is decreased by dissociation reactions of 

the products. 
 
 
15.14 
  When dissociations occur after combustion, does T go up or down? 
 
   Dissociation reactions of combustion products lower the temperature. 
 
 
15.15 
  In equilibrium Gibbs function of the reactants and the products is the same; how 

about the energy? 
 
   The chemical equilibrium mixture at a given T, P has a certain total 

internal energy.  There is no restriction on its division among the constituents. 
 
15.16 
  Does a dissociation process require energy or does it give out energy? 
 
   Dissociation reactions require energy and is thus endothermic. 
 
15.17 
  If I consider the non-frozen (composition can vary) heat capacity, but still assume 

all components are ideal gases, does that C become a function of temperature? of 
pressure?  

 
   The non-frozen mixture heat capacity will be a function of both T and P, 

because the mixture composition depends on T and P, while the individual 
component heat capacities depend only on T. 
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15.18 
  What is K for the water gas reaction in Example 15.4 at 1200 K? 
 
   Using the result of Example 15.4 and Table A.11 
 
   ln K =  0.5 [ -35.736 – (-36.363)]  = + 0.3135  ,   K = 1.3682 
 
 
15.19 
  Which atom in air ionizes first as T increases?  What is the explanation? 
 
   Using Fig. 15.11, we note that as temperature increases, atomic N ionizes 

to N+, becoming significant at about 6-8000 K.  N has a lower ionization potential 
compared to O or Ar. 

 
 
15.20 
  At what temperature range does air become a plasma? 
 
   From Fig. 15.11, we note that air becomes predominantly ions and 

electrons, a plasma, at about 10-12 000 K.  
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Equilibrium and Phase Equilibrium 
 
15.21 
 Carbon dioxide at 15 MPa is injected into the top of a 5-km deep well in 

connection with an enhanced oil-recovery process. The fluid column standing in 
the well is at a uniform temperature of 40°C. What is the pressure at the bottom of 
the well assuming ideal gas behavior? 

 

Z 1

Z 2

CO 2

cb  

  
(Z1-Z2) = 5000 m, P1 = 15 MPa 

T = 40 oC = constant 
Equilibrium at constant T 
-wREV = 0 = ∆g + ∆PE  = RT ln (P2/P1)  + g(Z2-Z1) = 0 

  

  ln (P2/P1)  = 
9.807×5000

1000×0.188 92×313.2 = 0.8287 

       P2 = 15 exp(0.8287) = 34.36 MPa 
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15.22 
 Consider a 2-km-deep gas well containing a gas mixture of methane and ethane at 

a uniform temperature of 30oC. The pressure at the top of the well is 14 MPa, and 
the composition on a mole basis is 90% methane, 10% ethane. Each component is 
in equilibrium (top to bottom) with dG + g dZ = 0 and assume ideal gas, so for 
each component Eq.15.10 applies. Determine the pressure and composition at the 
bottom of the well. 

 

Z 1

Z 2

mixture

cb

Gas

A + B

 

 
(Z1-Z2) = 2000 m,  Let    A = CH4,     B = C2H6 
P1 = 14 MPa,   yA1 = 0.90,   yB1 = 0.10 

T = 30 oC = constant 
From section 15.1, for A to be at equilibrium between 

  
1 and 2:             WREV = 0 = nA(G- A1-G- A2) + nAMAg(Z1-Z2) 

 Similarly, for B:    WREV = 0 = nB(G- B1-G- B2) + nBMBg(Z1-Z2) 

Using eq. 15.10 for A:      R- T ln (PA2/PA1) = MAg(Z1-Z2) 

with a similar expression for B. Now, ideal gas mixture,    PA1 = yA1P, etc. 

Substituting:      ln 
yA2P2
yA1P1

 = 
MAg(Z1-Z2)

R- T        and        ln 
yB2P2
yB1P1

 = 
MBg(Z1-Z2)

R- T  

 ln (yA2P2) = ln(0.9×14) + 
16.04×9.807(2000)
1000×8.3145×303.2  = 2.6585   

    =>   yA2P2 = 14.2748 

 ln (yB2P2) = ln(0.1×14) + 
30.07×9.807(2000)
1000×8.3145×303.2  = 0.570 43 

    =>     yB2P2 = (1-yA2)P2 = 1.76903 

 Solving: P2 = 16.044 MPa   &    yA2 = 0.8897 
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15.23 
 A container has liquid water at 20oC , 100 kPa in equilibrium with a mixture of 

water vapor and dry air also at 20oC, 100 kPa. How much is the water vapor 
pressure and what is the saturated water vapor pressure? 

 

 From the steam tables we have for saturated liquid: 

  Pg = 2.339 kPa,    vf = 0.001002 m3/kg 

 The liquid is at 100 kPa so it is compressed liquid still at 20oC so from Eq.13.15 

   gliq – gf = ⌡⌠ v dP = vf (P – Pg) 

 The vapor in the moist air is at the partial pressure Pv also at 20oC so we assume 
ideal gas for the vapor 

   gvap – gg = ⌡⌠ v dP = RT ln 
Pv
Pg

 

 We have the two saturated phases so  gf = gg  (  q = hfg = Tsfg ) and now for 
equilibrium the two Gibbs function must be the same as 

    gvap = gliq = RT ln 
Pv
Pg

 + gg = vf (P – Pg) + gf 

 leaving us with 

   ln 
Pv
Pg

 = vf (P – Pg)/ RT = 
0.001002 (100 - 2.339)

0.4615 × 293.15  = 0.000723 

    Pv = Pg exp(0.000723) = 2.3407 kPa. 

 This is only a minute amount above the saturation pressure. For the moist air 
applications in Chapter 12 we neglected such differences and assumed the partial 
water vapor pressure at equilibrium (100% relative humidity) is Pg. The pressure 
has to be much higher for this to be a significant difference. 
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15.24 
 Using the same assumptions as those in developing Eq. d in Example 15.1, 

develop an expression for pressure at the bottom of a deep column of liquid in 
terms of the isothermal compressibility, βT. For liquid water at 20oC, βT = 0.0005 
[1/MPa]. Use the result of the first question to estimate the pressure in the Pacific 
ocean at the depth of 3 km. 

 
 d gT = v° (1-βTP) dPT          d gT + g dz = 0 

 v° (1-βTP) dPT + g dz = 0   and integrate    ⌡⌠v°(1-βTP) dPT = - g ⌡⌠dz 

 
⌡
⌠

P0

P  (1-βTP) dPT = + 
g
v° ⌡⌠0

+Hdz    =>      P - P0 - βT 
1
2 [P2 - P0

2] = 
g
v° H 

  P (1 - 
1
2 βT P) = P0 - 

1
2βT P0

2 + 
g
v° H 

 v° = vf 20°C = 0.001002; H = 3000 m ,  g = 9.80665 m/s2; βT = 0.0005 1/MPa 

 P (1 - 12 × 0.0005P) = 0.101 - 12 × 0.0005 × 0.1012  

    + [9.80665 × 3000/0.001002] × 10-6 
          = 29.462 MPa,    which is close to P 
Solve by iteration or solve the quadratic equation 
  P = 29.682 MPa 

 



   Sonntag, Borgnakke and van Wylen 

 
Chemical Equilibrium, Equilibrium Constant 
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15.25 
 Calculate the equilibrium constant for the reaction O2 ⇔ 2O at temperatures of 

298 K and 6000 K. Verify the result with Table A.11. 
    Reaction    O2     ⇔    2O 

 At 25 oC (298.15 K): 

 ∆H0 = 2h-0
f O - 1h-0

f O2 = 2(249 170) - 1(0) = 498 340 kJ/kmol 

 ∆S0 = 2s-0
O - 1s-0

O2 = 2(161.059) - 1(205.148) = 116.97 kJ/kmol K 

 ∆G0 = ∆H0 - T∆S0 = 498 340 - 298.15×116.97 = 463 465 kJ/kmol 

          ln K = - 
∆G0

R- T  = - 
463 465

8.3145×298.15 = -186.961 

 At 6000 K: 

 ∆H0 = 2(249 170 + 121 264) - (0 + 224 210) = 516 658 kJ/kmol 

 ∆S0 = 2(224.597) -1(313.457) = 135.737 kJ/kmol K 

 ∆G0 = 516 658 - 6000×135.737 = -297 764 kJ/kmol 

               ln K = 
+297 764

8.3145×6000 = +5.969 

 



   Sonntag, Borgnakke and van Wylen 

 
15.26 

For the dissociation of oxygen, O2 ⇔ 2O, around 2000 K we want a 
mathematical expression for the equilibrium constant K(T). Assume constant heat 
capacity, at 2000 K, for O2 and O from Table A.9 and develop the expression 
from Eqs. 15.12 and 15.15. 

 
From Eq.15.15 the equilibrium constant is 

   K = exp( − 
∆G0

R−T  ) ;        ∆G0 = ∆H0 – T ∆S0 

and the shift is  

   ∆G0 = 2 h-O - h-O2 - T(2s-o
O – s-

o
O2) 

Substitute the first order approximation to the functions h-  and s-o as 

 h- = h-2000 K + C−p (T – 2000) ;   s-o = s-o
2000 K + C−p ln 

T
2000 

The properties are from Table A.9 and R− = 8.3145 kJ/kmol K 

Oxygen O2: h-2000 K = 59 176 kJ/kmol,   s-o
2000 K = 268.748 kJ/kmol K 

  C−p =  
h-2200 K − h-2200 K

2200 - 1800  = 
66 770 − 51 674

400  = 37.74 kJ/kmol K 

Oxygen O: h-2000 K = 35 713 + 249 170 = 284 883 kJ/kmol,   

s-o
2000 K = 201.247 kJ/kmol K 

  C−p =  
h-2200 K − h-2200 K

2200 - 1800  = 
39 878 − 31 547

400  = 20.8275 kJ/kmol K 

Substitute and collect terms 

 
∆G0

R−T  = 
∆Η0

R−T  – 
∆S0

R−  = 
∆Η

0
 2000

R−T  + 
∆C−p 2000

R−  [ 
T − 2000

T  – ln 
T

2000] – 
∆S0

2000
R−  

 
Now we have 

  ∆H0
2000/R− = (2 × 284 883 – 59 176)/8.3145 = 61 409.6 K 

  ∆C−p 2000/R− = (2 × 20.8275 – 37.74)/8.3145 = 0.470864 

∆S0
2000/R− = (2 × 201.247 – 268.748)/8.3145 = 16.08587 

  
so we get 
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∆G0

R−T  = 
61 409.6

T  + 0.470864 [ 
T − 2000

T  – ln 
T

2000 ] – 16.08587 

           = 
60 467.9

T  – 15.615 – 0.470864 ln 
T

2000 

 Now the equilibrium constant  K(T) is approximated as 
 

   K(T) = exp [ 15.615 – 
60 467.9

T   + 0.470864 ln 
T

2000 ] 

 

Remark:  We could have chosen to expand the function  ∆G0/ R−T as a linear 
expression instead or even expand the whole exp(-∆G0/ R−T) in a linear function. 
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15.27 
  Calculate the equilibrium constant for the reaction H2 ⇔ 2H at a temperature of 

2000 K, using properties from Table A.9. Compare the result with the value listed 
in Table A.11.  

 From Table A.9 at 2000 K we find: 

  ∆h
-

H2
 = 52 942 kJ/kmol;   s

-
H2

 = 188.419 kJ/kmol K;   h
−o

f  = 0 

  ∆h
-

H  = 35 375 kJ/kmol;   s
-
H = 154.279 kJ/kmol K;   h

−o
f  = 217 999 kJ/kmol 

  ∆G0  =  ∆H - T∆S = HRHS - HLHS – T (S0
RHS - S0

LHS) 

           =  2 × (35 375 + 217 999) – 52943 – 2000(2×154.279 - 182.419) 
           =  213 528 kJ/kmol 

  ln K = -∆G0/R
-
T = -213 528 / (8.3145 × 2000) = -12.8407 

  Table A.11  ln K = -12.841  OK 
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15.28 
 Plot to scale the values of ln K versus 1/T for the reaction 2 CO2 ⇔ 2 CO + O2. 

Write an equation for ln K as a function of temperature. 
           2 CO2 ⇔ 2 CO + 1 O2 

 
 T(K) 

104 × 
1
T 

  ln K T(K) 
104 × 

1
T 

  ln K 

 2000 5.000 -13.266 4000  2.500   3.204 
 2400 4.167  -7.715 4500  2.222   4.985 
 2800 3.571  -3.781 5000  2.000   6.397 
 3200 3.125  -0.853 5500  1.818   7.542 
 3600 2.778   1.408 6000  1.667   8.488 
 
 For the range 

below ~ 5000 K, 
 
   ln K ≈ A + B/T 
 
Using values at 
  2000 K  &  5000 K 
 
   A = 19.5056 
   B = -65 543 K 

8 

4 

0 

-4

-8

-12 

1 2 3 4 5 0 
1 

almost  

 linear 

10
T 
_ x 

4 
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15.29 
 Calculate the equilibrium constant for the reaction:2CO2 ⇔ 2CO + O2 at 3000 K 

using values from Table A.9 and compare the result to Table A.11. 
From Table A.9 we get: 
              kJ/kmol  kJ/kmol  kJ/kmol K 

∆h
-

CO = 93 504  h-o
f  CO = -110 527 s

-
CO = 273.607 

∆h
-

CO2
 = 152 853 h-

o
f  CO2 = -393 522 s

-
CO2

 = 334.17 

∆h
-

O2
 = 98 013  h-

o
f  O2 = 0  s

-
O2

 = 284.466 

∆G0  =  ∆H - T∆S = 2 HCO + HO2
 – 2 HCO2

- T (2s
-
CO + s

-
O2

 - 2s
-
CO2

) 

         = 2 (93 504 – 110 527) + 98 013 + 0 – 2(152 853 - 393 522)  

  -3000(2×273.607 + 284.466 - 2×334.17) = 55 285 kJ/kmol 

  ln K = -∆G0/R
-
T = -55 285/ (8.31451×3000) = -2.2164 

  Table A.11  ln K = -2.217  OK 
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15.30 

Consider the dissociation of oxygen, O2 ⇔ 2 O, starting with 1 kmol oxygen at 
298 K and heating it at constant pressure 100 kPa. At which temperature will we 
reach a concentration of monatomic oxygen of 10%? 

 
Look at initially 1 mol Oxygen and shift reaction with x 

 O2  ⇔  2 O    

 

Initial 1 0        

Change -x 2x   

Equil. 1-x 2x  ntot = 1 - x + 2x = 1 + x 

 

   yO = 
2x

1 + x = 0.1   ⇒ x = 0.1/(2 – 0.1) = 0.0526,   yO2 = 0.9 

   K = 
yO

2

y02
 ( P

Po
)2-1

 = 
0.12

0.9  1 = 0.01111      ⇒ ln K = –4.4998  

 Now look in Table A.11: T = 2980 K 
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15.31 
 Pure oxygen is heated from 25°C to 3200 K in an steady flow process at a 

constant pressure of 200 kPa. Find the exit composition and the heat transfer. 
 

The only reaction will be the dissociation of the oxygen 
 O2  ⇔  2O   ;    From A.11:   K(3200) = exp(-3.069) = 0.046467 

Look at initially 1 mol Oxygen and shift reaction with x 
  nO2 = 1 - x;     nO = 2x;    ntot = 1 + x;    yi = ni/ntot 

 K = 
yO

2

y02
 ( P

Po
)2-1

 = 
4x2

(1 + x)2 
1 + x
1 - x  2 = 

8x2

1 - x2 

 x2 = 
K/8

1 + K/8     ⇒     x = 0.07599;    y02
 = 0.859;    y0 = 0.141 

 q- = n02exh-02ex + n0exh-Oex - h-02in = (1 + x)(y02
h-02

 + y0h-O) - 0 

 h-02
 = 106 022 kJ/kmol;     h-O = 249 170 + 60 767 = 309 937 kJ/kmol 

    ⇒     q- = 145 015 kJ/kmol O2 

   q = q-/32 = 4532 kJ/kg  ( = 3316.5 if no reaction) 
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15.32 
 Nitrogen gas, N2,  is heated to 4000 K, 10 kPa. What fraction of the N2 is 

dissociated to N at this state? 
               N2  <=>   2 N        @ T = 4000 K,   lnK = -12.671 

 

Initial 1 0        K = 3.14x10-6 

Change -x 2x   

Equil. 1-x 2x  ntot = 1 - x + 2x = 1 + x 
  

  yN2 = 
1 - x
1 + x ,    yN = 

2x
1 + x  

K = 
y2

N
yN2

 






P

Po

2-1
; =>       3.14x10-6 = 

4x2

1 - x2 



10

100  =>   x = 0.0028 

yN2 =  
1 - x
1 + x = 0.9944,   yN = 

2x
1 + x = 0.0056 
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15.33 

 Hydrogen gas is heated from room temperature to 4000 K, 500 kPa, at which state 
the diatomic species has partially dissociated to the monatomic form. Determine 
the equilibrium composition at this state. 

 
 H2 ⇔ 2 H  Equil. nH2 = 1 -  x 
 -x   +2x   nH  = 0 + 2x 
    n   = 1 +  x 

 K = 
(2x)2

(1-x)(1+x) ( P
P0)

2-1
         at 4000 K:    ln K = 0.934  =>  K = 2.545 

 
2.545

4×(500/100) = 0.127 25 = 
x2

1-x2        Solving,       x = 0.3360 

             nH2 = 0.664,   nH  = 0.672,   ntot = 1.336 

             yH2 = 0.497,   yH  = 0.503   
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15.34 
 One kilomole Ar and one kilomole O2 are heated up at a constant pressure of 100 

kPa to 3200 K, where it comes to equilibrium. Find the final mole fractions for 
Ar, O2, and O. 

The only equilibrium reaction listed in the book is dissociation of O2.  

So assuming that we find in Table A.10:   ln(K) = -3.072 
  Ar + O2  ⇒  Ar + (1 - x) O2 + 2x O 

The atom balance already shown in above equation can also be done as 
   Species Ar O2 O 

   Start 1 1 0 
   Change 0 -x 2x 
   Total     1 1-x 2x 
The total number of moles is    ntot = 1 + 1-x + 2x = 2 + x     so 

 yAr = 1/(2 + x);   yO2
 = 1 - x/(2 + x);   yO = 2x/(2 + x) 

and the definition of the equilibrium constant (Ptot = Po) becomes 

  K = e-3.072 = 0.04633 = 
yO

2

y02
 = 

4x2

(2 + x)(1 - x) 

The equation to solve becomes from the last expression 

  (K + 4)x2 + Kx - 2K = 0 
If that is solved we get 
  x = -0.0057 ± 0.1514 = 0.1457;         x must be positive 
  yO = 0.1358;     y02

 = 0.3981;      yAr = 0.4661 
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15.35 

Consider the reaction 2 CO2  ⇔  2 CO + O2 obtained after heating 1 kmol CO2 to 
3000 K. Find the equilibrium constant from the shift in Gibbs function and verify 
its value with the entry in Table A.11. What is the mole fraction of CO at 3000 K, 
100 kPa? 

From Table A.9 we get: 

∆h
-

CO = 93 504  h-0
f  CO = -110 527 s

-
CO = 273.607 

∆h
-

CO2
 = 152 853 h-

0
f  CO2 = -393 522 s

-
CO2

 = 334.17 

∆h
-

O2
 = 98 013  s

-
O2

 = 284.466 

∆G0  =  ∆H - T∆S = 2 HCO + HO2
 – 2 HCO2

- T (2s
-
CO + s

-
O2

 - 2s
-
CO2

) 

         = 2 (93 504 – 110 527) + 98 013 + 0 – 2(152 853 - 393 522)  

  -3000(2×273.607 + 284.466 - 2×334.17)    = 55 285 

  ln K = -∆G0/R
-
T = -55 285/ (8.31451×3000) = -2.2164 

  Table A.11  ln K = -2.217  OK 

 
 At 3000 K,                        2 CO2 ⇔ 2 CO + 1 O2 
 ln K = -2.217  Initial     1      0        0 
 K = 0.108935  Change -2z   +2z       +z 
   Equil.     1-2z     2z         z 

  

We have P = Po = 0.1 MPa, and   ntot = 1 + z,  so from Eq.15.29 

 K =  
yCO

2 yO2

yCO2
2  (

P
P0) = 



2z

1 - 2z
2
 



z

1 + z  (1) = 0.108935 ; 

  4 z3 = 0.108935 (1 – 2z)2(1 + z)    =>     z = 0.22 
 
  yCO = 2z / (1 + z) = 0.36  
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15.36 
 Air (assumed to be 79% nitrogen and 21% oxygen) is heated in a steady state 

process at a constant pressure of 100 kPa, and some NO is formed. At what 
temperature will the mole fraction of N.O  be 0.001? 

     0.79 N2 + 0.21 O2 heated at 100 kPa, forms NO 
   
   N2 + O2 ⇔ 2 NO  nN2 = 0.79 -  x 
   -x  -x    +2x  nO2 = 0.21 -  x 
   nNO = 0    + 2x 
   ntot   = 1.0 

 At exit,   yNO = 0.001 = 
2x
1.0      ⇒        x = 0.0005  

  ⇒ nN2 = 0.7895, nO2 = 0.2095 

 K = 
y2

NO
yN2yO2

 ( P
P0)0 = 

10-6

0.7895×0.2095 = 6.046×10-6        or   ln K = -12.016 

 From Table A.10,     T = 1444 K 
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15.37 
 The combustion products from burning pentane, C5H12, with pure oxygen in a 

stoichiometric ratio exists at 2400 K, 100 kPa. Consider the dissociation of only 
CO2 and find the equilibrium mole fraction of CO. 

   C5H12 + 8 O2 → 5 CO2 + 6 H2O 
  
 At 2400K,                        2 CO2 ⇔ 2 CO + 1 O2 
 ln K = -7.715  Initial     5      0        0 
 K = 4.461 × 10-4  Change -2z   +2z       +z 
   Equil.     5-2z     2z         z 

  

Assuming P = Po = 0.1 MPa, and   ntot = 5 + z + 6 = 11 + z 

 K =  
yCO

2 yO2

yCO2
2  (

P
P0) = 



2z

5 - 2z
2
 



z

11 + z  (1) = 4.461 × 10-4 ; 

Trial & Error (compute LHS for various values of z):        z = 0.291 
 nCO2

 = 4.418;    nCO = 0.582;    nO2
 = 0.291     =>       yCO = 0.0515 

 



   Sonntag, Borgnakke and van Wylen 

 
15.38 
 Find the equilibrium constant for the reaction 2NO + O2 ⇔ 2NO2 from the 

elementary reactions in Table A.11 to answer which of the nitrogen oxides, NO or 
NO2, is the more stable at ambient conditions? What about at 2000 K? 

     2 NO  +   O2 ⇔ 2 NO2   (1) 

 But  N2   +   O2 ⇔ 2 NO    (2) 

       N2   + 2 O2 ⇔ 2 NO2   (3) 

 Reaction 1 = Reaction 3 - Reaction 2 

 ⇒      ∆G0
1 = ∆G0

3 - ∆G0
2    =>     ln K1 = ln K3 - ln K2 

At 25 oC, from Table A.10:    ln K1 = -41.355 - (-69.868) = +28.513 

     or     K1 = 2.416×1012 

an extremely large number, which means reaction 1 tends to go very strongly 
from left to right. 

At 2000 K:     ln K1 = -19.136 - (-7.825) = - 11.311     or   K1 = 1.224 × 10-5 

meaning that reaction 1 tends to go quite strongly from right to left. 
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15.39 
 Pure oxygen is heated from 25°C, 100 kPa to 3200 K in a constant volume 

container. Find the final pressure, composition, and the heat transfer. 
As oxygen is heated it dissociates 
  O2 ⇔  2O  ln Keq = -3.069   from table A.11 

C. V. Heater: U2 - U1 = 1Q2 = H2 - H1 - P2v + P1v 

 Per mole O2:     1q-2 = h-2 - h-1 + R- [T1 - (n2/n1)T2] 

 Shift x in reaction  1 to have final composition:  (1 - x)O2 + 2xO 

 n1 = 1  n2 = 1 - x + 2x = 1 + x 

 yO22 = (1 - x)/(1 + x) ;   yO2 = 2x/(1 + x) 

Ideal gas and V2 = V1  ⇒ P2 = P1n2T2/n1T1     ⇒   P2/Po = (1 + x)T2/T1 

Substitute the molefractions and the pressure into the equilibrium equation 

 Keq = e-3.069 = 
yO

2

y02
 (

P2
Po

) = (
2x

1 + x)2 (
1 + x
1 - x ) (

1 + x
1 ) (

T2
T1

) 

 ⇒   
4x2

1 - x = 
T1
T2

 e-3.069 = 0.00433    ⇒    x = 0.0324 

The final pressure is then 

  P2 = Po(1 + x)
T2
T1

 = 100 (1 + 0.0324) × 
3200
298.2 = 1108 kPa 

 (nO2
)2 = 0.9676,   (nO)2 = 0.0648,    n2 = 1.0324 

 1q-2 = 0.9676 × 106022 + 0.0648 (249170 + 60767) - 0  

  + 8.3145 (298.15 - 1.0324 × 3200) = 97681 kJ/kmolO2 

  yO22= 
0.9676
1.0324 = 0.937;   yO2= 

0.0648
1.0324  = 0.0628 
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15.40 
 A mixture of 1 kmol carbon dioxide, 2 kmol carbon monoxide, and 2 kmol 

oxygen, at 25°C, 150 kPa, is heated in a constant pressure steady state process to 
3000 K. Assuming that only these same substances are present in the exiting 
chemical equilibrium mixture, determine the composition of that mixture. 

 
 initial mix: 

 1 CO2, 2 CO, 
 2 O2 

Constant
pressure
reactor

Q  

Equil. mix:  
CO2, CO, O2 at  
T = 3000 K, 
P = 150 kPa 

 
 Reaction 2 CO2  ⇔ 2 CO +   O2 
 initial 1    2    2 
 change -2x   +2x   +x 
 equil. (1-2x)  (2+2x)  (2+x) 

 
 From A.10 at 3000 K:   K = exp(-2.217) = 0.108935 

 For each  n > 0      ⇒     -1 < x < +1
2 

 K = 
y2

COyO2

y2
CO2

 ( P
P0)

1
 = 4(1+x

1-2x)
2(2+x

5+x)(
150
100) 

 or      ( 1+x
1-2x)

2(2+x
5+x) = 0.018 156,        Trial & error: x = -0.521 

 


nCO2 = 2.042

nCO  = 0.958       
nO2  = 1.479
nTOT = 4.479  





 

yCO2 = 0.4559
yCO  = 0.2139
yO2  = 0.3302
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15.41 
 Repeat the previous problem for an initial mixture that also includes 2 kmol of 

nitrogen, which does not dissociate during the process. 
 
 This problem has a dilution of the reantant with nitrogen. 
 
 initial mix: 

 1 CO2, 2 CO, 
 2 O2, 2 N2 

Constant
pressure
reactor

Q  

Equilibrium mix:  
     CO2, CO, O2 and N2   
at  T = 3000 K, P = 150 kPa 

 
 Reaction 2 CO2  ⇔ 2 CO +   O2 
 initial 1    2    2 
 change -2x   +2x   +x 
 equil. (1-2x)  (2+2x)  (2+x) 

 
 From A.10 at 3000 K:   K = exp(-2.217) = 0.108935 

 For each  n > 0      ⇒     -1 < x < +1
2 

 Equilibrium: nCO2 = (1 - 2x),  nCO = (2 + 2x),  nO2 = (2 + x),  

nN2 = 2    so then  ntot = 7 + x 

  K = 
y2

COyO2

y2
CO2

  ( P
P0)

1
 = 4 (1+x

1-2x)
2
 (2+x

7+x) (
150
100) 

 or  ( 1+x
1-2x)

2
 (2+x

7+x) = 0.018167       Trial & error: x = -0.464 

 


nCO2 = 1.928

nCO  = 1.072   

nO2  = 1.536
nN2  = 2.0
nTOT = 6.536

  



 
yCO2 = 0.295
yCO  = 0.164   

yO2  = 0.235
yN2  = 0.306 
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15.42 

  One approach to using hydrocarbon fuels in a fuel cell is to “reform” the 
hydrocarbon to obtain hydrogen, which is then fed to the fuel cell. As a part of the 
analysis of such a procedure, consider the reforming section and determine the 
equilibrium constant for this reaction at a temperature of 800 K. 

 
For CH4, use CP0 at ave. temp., 550 K. Table A.6,  C- P0 = 49.316 kJ/kmol K 

a) h-0
800 K = h-0

f  + C- P0∆T = -74 873 + 49.316(800-298.2)   = -50 126 kJ/kmol 

    s-0
800 K = 186.251 + 49.316 ln 

800
298.2 = 234.918 kJ/kmol K 

    For   CH4 + H2O ⇔ 3H2 + CO 

∆H0
800 K = 3(0+14 681) + 1(-110 527+15 174) - 1(-50 126) 

   - 1(-241 826+18 002)   = +222 640 kJ/kmol 

∆S0
800 K = 3(159.554) + 1(227.277) - 1(234.918) - 1(223.826)  

= +247.195 kJ/kmol K 

    ∆G0 = ∆H0 - T∆S0 = 222 640 - 800(247.195) = +24 884 kJ/kmol 

    ln K = - 
∆G0

R- T  = 
-24 884

8.3145×800 = -3.7411      =>      K = 0.0237  
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15.43 
 Consider combustion of methane with pure oxygen forming carbon dioxide and 

water as the products. Find the equilibrium constant for the reaction at 1000 K. 
Use an average heat capacity of Cp = 52 kJ/kmol K for the fuel and Table A.9 for 
the other components. 

 
For the reaction equation, 

 
CH4  + 2 O2  ⇔  CO2  +  2 H2O 

 
At 1000 K 
 
∆H0

1000 K =  1(-393 522 + 33 397)  +  2(-241 826 + 26 000) 
- 1[-74 873 + 52(1000 – 298.2)]  -  2(0 + 22 703) 
=  - 798 804 kJ/kmol 

     ∆S0
1000 K =  1×269.299 + 2×232.739 – 1(186.251 + ln

1000
298.2 ) - 2×243.579 

         =  487.158 kJ/kmol K 
     ∆G0

1000 K  =    ∆H0
1000 K  - T   ∆S0

1000 K 
          =  - 798 804 – 1000 × 487.158   =  - 1 285 962 kJ/kmol 

      ln K = - 
∆G0

R- T   =   
+ 1 285 962
8.3145×1000  =  + 154.665   ,   K = 1.4796 E 67 

 
 This means the reaction is shifted totally to the right. 
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15.44 

Find the equilibrium constant for the reaction:  2NO + O2   ⇔    2NO2  from the 
elementary reaction in Table A.11 to answer these two questions. Which of the 
nitrogen oxides NO or NO2 is the more stable at 25oC, 100 kPa? At what T do we 
have an equal amount of each? 

 
 The elementary reactions are the last two ones in Table A.11: 

  a)   N2 + O2  ⇔  2 NO     b)    N2 + 2O2  ⇔ 2 NO2 

 Actual reaction is :    c  =  b - a      ⇒       ln(Kc) = ln(Kb) - ln(Ka) 

 

 At 25oC  (approx. 300 K)  Table A.11:  ln(Ka) = -69.868;        ln(Kb) = -41.355 

 so now:       

   ln(Kc) = -41.355 + 69.868 = 28.5     ⇒      Kc = 2.4 × 10 12 

 meaning reaction is pushed completely to the right and NO2 is the stable 
compound. Assume we start at room T with 1 kmol  NO2: then 

    NO O2 NO2 TOT 

  start  0 0 1 

  change  2x x -2x 

  Final  2x x 1-2x 1+x 

 Equal amount of each 

  y(NO) = 
2x

1 + x  =   y(NO2) = 
1 - 2x
1 + x      ⇒     x = 0.25 

 

  K(T) = 
(1 - 2x)2

4x3  = 
 0.52

4 × 0.253 = 4     ⇒     ln(K) = 1.386 

 We quickly see 

  ln(K) at 500 K  = -30.725 + 40.449 = 9.724 

  ln(K) at 1000 K = -23.039 + 18.709 = -4.33 

   Linear interpolation     T = 500 + 0.406 × 500 = 703 K 
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15.45 
 The equilibrium reaction as: CH4 ⇔ C + 2H2. has ln K = -0.3362 at 800 K and 

lnK = -4.607 at 600 K. By noting the relation of K to temperature show how you 
would interpolate ln K in (1/T) to find K at 700 K and compare that to a linear 
interpolation. 

 
A.11:       ln K = - 0.3362 at 800K  ln K = -4.607 at 600K 

lnK700  = lnK800 + 

1
700 - 

1
800

1
600 - 

1
800

 × (-4.607 + 0.3362)  

= -0.3362 + 

800
700 -1

800
600 -1

 × (-4.2708)   = -2.1665 

Linear interpolation: 

 lnK700  = lnK600 + 
700 - 600
800 -600  (lnK800 - lnK600)  

   = -4.607 + 
1
2 (-0.3362 + 4.607) = -2.4716 
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15.46 

Water from the combustion of hydrogen and pure oxygen is at 3800 K and 50 
kPa. Assume we only have H2O, O2 and H2 as gases find the equilibrium 
composition. 

  
 With only the given components we have the reaction 

     2 H2O    ⇔    2H2 + O2 

      which at 3800 K has an equilibrium constant from A.11 as  ln K = -1.906 
 Assume we start with 2 kmol water and let it dissociate x to the left then 
 
   Species H2O        H2         O2         

   Initial    2            0           0 
   Change  -2x         2x          x 

   Final  2 − 2x      2x         x        Tot:   2 + x 
 Then we have 

  K = exp(-1.906)  = 
yH2

2  yO2

yH2O
2   







P

P0
2+1-2

 =  




2x

2 + x
2
 x
2 + x





2 - 2x

2 + x
2   

50
100 

 which reduces to 

  0.148674 = 
1

(1- x)2  
4x3

2 + x  
1
4  

1
2     or     x3 = 0.297348  (1 – x)2 (2 + x)   

 Trial and error to solve for x = 0.54  then the concentrations are 
 

  yH2O = 
2 - 2x
2 + x  = 0.362;    yO2 = 

x
2 + x = 0.213;    yH2 = 

2x
2 + x = 0.425 
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15.47 
 Complete combustion of hydrogen and pure oxygen in a stoichiometric ratio at Po

To to form water would result in a computed adiabatic flame temperature of 4990 
K for a steady state setup. 

 a. How should the adiabatic flame temperature be found if the equilibrium reaction 
2H2 + O2 ⇔  2 H2O is considered? Disregard all other possible reactions 
(dissociations) and show the final equation(s) to be solved. 

 b. Which other reactions should be considered and which components will be 
present in the final mixture? 

  a)  2H2 + O2 ⇔  2H2O           Species  H2  O2 H2O 

 HP = HR = HP
o + ∆HP = HR

o  = Ø      Initial  2  1  Ø 

 Shift -2x -x 2x 
 Final 2-2x 1-x 2x 

 Keq = 
yH2O

2

yH2
2 yO2

 (
P
P0)-1,    ntot = 2-2x + 1-x + 2x = 3-x 

 Hp = (2-2x)∆h-H2
 + (1-x)∆h-O2

 + 2x(h-fH2O
o  + ∆h-H2O) = Ø   (1) 

 Keq = 
4x2

(3-x)2 
(3-x)2

(2-2x)2 
3-x
1-x = 

x2(3-x)
(1-x)3  = Keq(T)  (2) 

 h-fH2O
o  = -241826;   ∆h-H2

(T),   ∆h-O2
(T),   ∆h-H2O(T) 

 Trial and Error (solve for x,T) using Eqs. (1) and (2). 
     yO2

 = 0.15;  yH2
 = 0.29;   yH2O = 0.56] 

  b) At 3800 K    Keq = e1.906 (Reaction is times -1 of table) 

 x2(3-x)(1-x)-3 = e1.906  = 6.726   ⇒   x ≅ 0.5306 

 yH2O = 
2x
3-x = 0.43;  yO2

 = 
1-x
3-x = 0.19;  yH2

 = 
2-2x
3-x  = 0.38 

  c) Other possible reactions from table A.10 
  H2 ↔ 2 H   O2 ↔ 2 O    2 H2O ↔ H2 + 2 OH 
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15.48 
 The van't Hoff equation 

     d ln K =  
∆Ho

R−T2  dTP
o 

 relates the chemical equilibrium constant K to the enthalpy of reaction ∆Ho. From 
the value of K in Table A.11 for the dissociation of hydrogen at 2000 K and the 
value of ∆Ho calculated from Table A.9 at 2000 K use van’t Hoff equation to 
predict the constant at 2400 K. 
 

    H2 ⇔ 2H 

  ∆H° = 2 × (35 375+217 999) – 52 942 = 453 806 kJ/kmol 
   lnK2000 = -12.841; 

  Assume ∆H° is constant and integrate the Van’t Hoff equation 

  lnK2400 - lnK2000 = ⌡⌠

2400

2000

(∆H°/R- T
2
)dT = - 

∆H°
R-  (

1
T2400

 - 
1

T2000
) 

  lnK2400 = lnK2000 +  ∆H° (
1

T2400
 - 

1
T2000

) / R-  

    = -12.841 + 453 806 (
6-5

12000) / 8.31451 = -12.841 + 4.548 

    = -8.293 

  Table A.11 lists –8.280   (∆H° not exactly constant) 
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15.49 
 Gasification of char (primarily carbon) with steam following coal pyrolysis yields 

a gas mixture of 1 kmol CO and 1 kmol H2. We wish to upgrade the hydrogen 
content of this syngas fuel mixture, so it is fed to an appropriate catalytic reactor 
along with 1 kmol of H2O. Exiting the reactor is a chemical equilibrium gas 
mixture of CO, H2, H2O, and CO2 at 600 K, 500 kPa. Determine the equilibrium 
composition. Note: see Example 15.4. 

 
               1 CO + 1 H2 
 
                    + 1 H2O 

Constant
pressure
reactor

 

 
Chem. Equil. Mix 
CO, H2, H2O, CO2 

 
 600 K 
 500 kPa 

 (1) 1 CO + 1 H2O ⇔ 1 CO2 + 1 H2 

       -x    -x    +x      +x 
 (2) 2 H2O ⇔ 2 H2 + 1 O2   (3) 2 CO2 ⇔ 2 CO + 1 O2 

 (1) = 
1
2 (2) - 

1
2 (3) 

 ln K1 = 
1
2[-85.79-(-92.49)]= +3.35,       K1 = 28.503 

 Equilibrium: 
    nCO = 1-x,    nH2O = 1-x,      nCO2 = 0 + x,       nH2 = 1 + x 

    ∑ n = 3,    K = 
yCO2yH2
yCOyH2O

( P
P0)0 =  

yCO2yH2
yCOyH2O

 

    28.503 = 
x(1+x)
(1-x)2  → x = 0.7794 

      n       y   % 
  CO 0.2206 0.0735  7.35 
  H2O 0.2206 0.0735  7.35 
  CO2 0.7794 0.2598 26.0 
  H2 1.7794 0.5932 59.3 
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15.50 
 Consider the water gas reaction in Example 15.4. Find the equilibrium constant at 

500, 1000, 1200 and 1400 K. What can you infer from the result? 
 
 

As in Example 15.4,  III    H2  +  CO2  ⇔   H2O  +  CO 
 
   I     2 CO2  ⇔  2 CO  +  O2 
 
   II   2 H2O ⇔  2 H2   +  O2  
 
Then,  ln KIII  =  0.5 (ln KI  -  ln KII ) 
 

At 500 K,   ln KIII  =  0.5 ( -115.234 – (-105.385))  =  - 4.9245 ,  
K = 0.007 266 

 
At 1000 K,  ln KIII = 0.5 ( -47.052 – (- 46.321)) = - 0.3655 ,  

K = 0.693 85 
 

At 1200 K, ln KIII = 0.5 ( -35.736 – (-36.363)) = + 0.3135 ,  
K = 1.3682 

 
At 1400 K, ln KIII = 0.5 ( -27.679 – (-29.222)) = + 0.7715 ,  

K = 2.163 
 
It is seen that at lower temperature, reaction III tends to go strongly from right to 
left, but as the temperature increases, the reaction  tends to go more strongly from 
left to right. If the goal of the reaction is to produce more hydrogen, then it is 
desirable to operate at lower temperature. 
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15.51 
 Catalytic gas generators are frequently used to decompose a liquid, providing a 

desired gas mixture (spacecraft control systems, fuel cell gas supply, and so 
forth). Consider feeding pure liquid hydrazine, N2H4, to a gas generator, from 
which exits a gas mixture of N2, H2, and NH3 in chemical equilibrium at 100°C, 
350 kPa. Calculate the mole fractions of the species in the equilibrium mixture. 

 Initially, 2 N2H4 → 1 N2 + 1 H2 + 2 NH3 

 
 then, N2 +  3 H2 ⇔ 2 NH3  
 initial 1    1    2  
 change -x   -3x   +2x  
 equil. (1-x)  (1-3x)  (2+2x) nTOTAL = (4-2x) 

  K = 
y2

NH3

yN2y3
H2

 ( P
P0)

-2
 = 

(2+2x)2(4-2x)2

(1-x)(1-3x)3  (350
100)

-2
 

At 100 oC = 373.2 K, for NH3 use A.5    C- P0 = 17.03×2.130 = 36.276 

    h-0
NH3 = -45 720 + 36.276(373.2-298.2) = -42 999 kJ/kmol 

    s-0
NH3 = 192.572 + 36.276 ln 

373.2
298.2 = 200.71 kJ/kmol K 

 Using A.8, 

    ∆H0
100 C = 2(-42 999) - 1(0+2188) - 3(0+2179)  = -94 723 kJ 

    ∆S0
100 C = 2(200.711) - 1(198.155) - 3(137.196) = -208.321 kJ/K 

    ∆G0
100 C = ∆H0 - T∆S0 = -94 723 - 373.2(-208.321)  = -16 978 kJ 

  ln K = - 
∆G0

R−T  = 
+16 978

8.3145×373.2 = 5.4716     =>      K = 237.84 

 Therefore, 

  [(1+x)(2-x)
(1-3x) ]2

 
1

(1-x)(1-3x) = 
237.84×3.52

16  = 182.096 

 By trial and error, x = 0.226 

     


nN2  = 0.774

nH2  = 0.322  
nNH3 = 2.452
nTOT = 3.518  





 

yN2  = 0.2181
yH2  = 0.0908
yNH3 = 0.6911
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15.52 

 A piston/cylinder contains 0.1 kmol hydrogen and 0.1 kmol Ar gas at 25°C, 200 
kPa. It is heated up in a constant pressure process so the mole fraction of atomic 
hydrogen is 10%. Find the final temperature and the heat transfer needed. 

When gas is heated up H2 splits partly into H as 

  H2    ⇔    2H    and the gas is diluted with Ar 

  Component H2 Ar H 

     Initial 0.1 0.1 0 
     Shift  -x 0 2x 
     Final  0.1-x 0.1 2x Total = 0.2 + x 
 yH = 0.1 = 2x/(0.2+x) ⇒ 2x = 0.02+0.1x    ⇒      x = 0.010526  

  ⇒ ntot = 0.21053 

  yH2 = 0.425 = [(0.1-x)/(0.2+x)];     yAr = 1 – rest = 0.475 

Do the equilibrium constant: 

  K(T) = 
y2

H
yH2

 ( P
P0)2-1 = ( 0.01

0.425) × (200
100) = 0.047059 

 ln (K) = -3.056 so from Table A.10 interpolate to get   T = 3110 K 
To do the energy eq., we look up the enthalpies in Table A.8 at 3110K 
  hH2 = 92 829.1; hH = 217 999 + 58 447.4 = 276 445.4 (= hf + ∆h) 

  hAr = CP(3110–298.15) = 20.7863 × (3110-298.13) = 58 447.9  

  (same as ∆h for H) 
Now get the total number of moles to get 

 nH = 0.021053;      nH2 = ntot ×  
1-x
2+x  = 0.08947;    nAr = 0.1 

Since pressure is constant W = P∆V and Q becomes differences in h 
  Q = n∆h = 0.08947 × 92 829.1 – 0 + 0.021053 × 276 446.4 
          – 0 + 0.1 × 58 447.9 
      = 19 970 kJ 
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15.53 

A tank contains 0.1 kmol hydrogen and 0.1 kmol of argon gas at 25oC, 200 kPa 
and the tank keeps constant volume. To what T should it be heated to have a mole 
fraction of atomic hydrogen, H, of 10%? 

 
 

For the reaction   H2  ⇔  2H    ,     K = 
yH

2

yH2
 ( P

Po)
2-1

 

 Assume the dissociation shifts right with an amount x then we get 
 
 reaction H2  ⇔  2 H  also, Ar  
 initial 0.1    0   0.1  
 change -x   2x   0  
 equil. 0.1 - x   2x   0.1     Tot:  0.2 + x 

   yH = 
2x

0.2 + x = 0.10       ⇒      x = 0.010526 

 We need to find T so K will take on the proper value, since K depends on P we 
need to evaluate P first. 

  P1V = n1R−T1;    P2V = n2R−T2       ⇒    P2 = P1 
n2T2
n1T1

 

 where we have  n1 = 0.2  and  n2 = 0.2 + x = 0.210526 

  K = 
yH

2

yH2
 ( P

Po)
2-1

 = 
(2x)2

(0.1 - x) n2
 
200
100 

n2T2
0.2 × 298.15 = 0.0001661 T2 

 Now it is trial and error to get T2 so the above equation is satisfied with K from 
A.11 at T2. 

  3600 K:   ln K = -0.611,   K = 0.5428,    RHS = 0.59796,   error = 0.05516 
  3800 K:   ln K = 0.201,   K = 1.22262,   RHS = 0.63118,   error = -0.59144 
 Linear interpolation between the two to make zero error 

   T = 3600 + 200 × 
0.05516

0.05516 + 0.59144 = 3617 K 
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15.54 
 A gas mixture of 1 kmol carbon monoxide, 1 kmol nitrogen, and 1 kmol oxygen 

at 25°C, 150 kPa, is heated in a constant pressure process. The exit mixture can be 
assumed to be in chemical equilibrium with CO2, CO, O2, and N2 present. The mole 
fraction of CO2 at this point is 0.176. Calculate the heat transfer for the process. 

 
 initial mix: 

 1 CO, 1 O2, 
 1 N2 

Constant
pressure
reactor

Q  

Equil. mix: 
 CO2, CO, O2, N2 
       yCO2 = 0.176 
      P = 150 kPa 

 
 reaction 2 CO2  ⇔  2 CO +   O2 also, N2 
 initial 0    1    1  1 
 change +2x   -2x   -x  0 
 equil. 2x  (1-2x)  (1-x)  1 
 

 yCO2 = 0.176 = 
2x
3-x    ⇒      x = 0.242 65 

 


nCO2 = 0.4853

nCO  = 0.5147    
nO2  = 0.7574
nN2  = 1  




 
yCO2 = 0.176
yCO  = 0.1867 yO2  = 0.2747 

 K = 
y2

COyO2

y2
CO2

 ( P
P0)

1
 = 

0.18672×0.2747
0.1762  (150

100) = 0.4635 

 From A.10, TPROD = 3213 K 

 From A.9, HR = -110 527 kJ 

 HP = 0.4853(-393 522 + 166 134) + 0.5147(-110 527 + 101 447) 

   + 0.7574(0 + 106 545) + 1(0 + 100 617) 
      = +66 284 kJ 
 QCV = HP - HR = 66 284 - (-110 527) = +176 811 kJ 
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15.55 
 A rigid container initially contains 2 kmol of carbon monoxide and 2 kmol of 

oxygen at 25°C, 100 kPa. The content is then heated to 3000 K at which point an 
equilibrium mixture of CO2, CO, and O2 exists. Disregard other possible species 
and determine the final pressure, the equilibrium composition and the heat 
transfer for the process. 

 2 CO + 2 O2 ⇔ 2 CO2 + O2  Species:    CO   O2     CO2 

  Initial  2   2     0 
  Shift -2x -2x+x    2x 
  Final 2-2x  2-x     2x : ntot = 2-2x + 2-x + 2x = 4-x 

  yCO = 
2-2x
4-x ;     yO2

 = 
2-x
4-x;     yCO2

 = 
2x
4-x 

 U2 - U1 = 1Q2 = H2 - H1 - P2v + P1v 

  = (2 - 2x)h-CO 2 + (2 - x)h-O22 + 2xh-CO2
 - 2h-fCO2

o  - 2h-fO2
o   

   - R- (4 - x)T2 + 4R- T1 

 Keq = e2.217 = 
yCO2

2

 y02
yCO

2  (
P2
Po

)-1 = 
4x2

4(1-x)2 
4-x
2-x 

4T1
(4-x)T2

  

  ⇒   (
x

1-x)2 
1

2-x = 
1
4 

T2
T1

 e2.217 = 23.092 

 x = 0.8382;     yCO = 0.102;     yO2
 = 0.368;     yCO2

 = 0.53 

 P2 = P1(4-x)T2/4T1 = 100(3.1618)(3000/4)(298.15)  = 795.4 kPa 

 1Q2 = 0.3236(-110527 + 93504) + 1.1618(98013) + 1.6764(-393522  

            + 152853) - 2(-110527) - 2(Ø) + 8.3145(4(298.15) - 3000(3.1618))  
       = -142991 kJ 
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15.56 
 A coal gasifier produces a mixture of  1 CO and  2H2 that is fed to a catalytic 

converter to produce methane. The reaction is      CO + 3H2 ⇔  CH4 + H2O. The 

equilibrium constant at 600 K is K = 1.83 × 106 . What is the composition of the 
exit flow assuming a pressure of 600 kPa? 

 

 The reaction equation is: 

 
  CO + 3 H2 ⇔  CH4 + H2O  
 initial 1    2    0  0  
 change −x   −3x   +x  +x  
 equil. 1 − x  2 − 3x    x  x  nTOTAL = 3 − 2x 

 

   K =  
yCH4

 yH2O

 y
3
H2 yCO

 ( P
Po)

1+1−1−3
 = 

x2 (3 - 2x)2

(1-x)(2 - 3x)3 ( P
Po)

−2
 

   1.83 × 106 × (600
100)

2
 = 6.588 × 107 = 

x2 (3 - 2x)2

(1-x)(2 - 3x)3 

 Trial and error to solve for x. 

   x = 0.6654 LHS = 6.719 × 107 

   x = 0.66538 LHS = 6.41 × 107 

   x = 0.66539 LHS = 6.562 × 107  close enough 
  
  nCH4 = 0.66539,   nH2O = 0.66539, nCO = 0.66539,   nH2 = 0.00383 

 so we used up nearly all the hydrogen gas. 
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15.57 

  One approach to using hydrocarbon fuels in a fuel cell is to “reform” the 
hydrocarbon to obtain hydrogen, which is then fed to the fuel cell. As a part of the 
analysis of such a procedure, consider the reaction  CH4 + H2O ⇔  CO + 3H2. 
One kilomole each of methane and water are fed to a catalytic reformer. A 
mixture of CH4, H2O, H2, and CO exits in chemical equilibrium at 800 K, 100 
kPa; determine the equilibrium composition of this mixture using an equilibrium 
constant of K = 0.0237. 

 The reaction equation is: 

 
  CH4 +  H2O ⇔ 3 H2 + CO 
 initial 1    1    0  0 
 change -x   -x   +3x  +x 
 equil. (1-x)  (1-x)    3x  x 

 nTOTAL = 2 + 2x 

 K = 
y3

H2yCO
yCH4yH2O

( P
P0)

2
 = 

(3x)3x
(1-x)(1-x)(2+2x)2(100

100)
2
 

 or     ( x
1-x)

2( x
1+x)

2
 = 

4×0.0237
27×1  = 0.003 51 

 or      
x2

1-x2 = 0.003 51 = 0.059 25     Solving,    x = 0.2365 

            





nCH4 = 0.7635
nH2O = 0.7635
nH2  = 0.7095
nCO  = 0.2365
nTOT = 2.473

  





 

yCH4 = 0.3087
yH2O = 0.3087
yH2  = 0.2870
yCO  = 0.0956
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15.58 

 Use the information in Problem 15.45 to estimate the enthalpy of reaction, ∆H
o
, 

at 700 K using Van’t Hoff equation (see problem 15.48) with finite differences 
for the derivatives. 

  

  dlnK = [∆H°/R- T
2
]dT     or     solve for ∆H°   

  ∆H° = R- T
2
 
dlnK
 dT  = R- T

2
 
∆lnK
∆T  

          = 8.31451 × 700
2
 × 

-0.3362 + 4.607
800 - 600   = 86 998 kJ/kmol 

[ Remark: compare this to A.9 values + A.5, A.10, 
   ∆H° = HC + 2HH2

 - HCH4
 = 0.61 × 12 × (700-298) + 2 × 11730  

   – 2.254 × 16.04 × (700-298) - (-74873) = 86 739 kJ/kmol ] 
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15.59 
 Acetylene gas at 25°C is burned with 140% theoretical air, which enters the 

burner at 25°C, 100 kPa, 80% relative humidity. The combustion products form a 
mixture of CO2, H2O, N2, O2, and NO in chemical equilibrium at 2200 K, 100 
kPa. This mixture is then cooled to 1000 K very rapidly, so that the composition 
does not change. Determine the mole fraction of NO in the products and the heat 
transfer for the overall process. 

 
 C2H2 + 3.5 O2 + 13.16 N2 + water → 

       2 CO2 + 1 H2O + 1 O2 + 13.16 N2 + water 

 water:   PV = 0.8×3.169 = 2.535 kPa 

          nV = nA PV/PA = (3.5+13.16) 2.535/97.465 = 0.433 

 So, total H2O in products is 1.433. 

 a) reaction: N2 + O2   <->   2 NO 

    change  :  -x     -x              +2x 
    at 2200 K, from A.10:     K = 0.001 074 
    Equil. products:     nCO2 = 2,      nH2O = 1.433,   nO2  = 1-x, 

            nN2  = 13.16-x,   nNO = 0+2x,    nTOT = 17.593 

    K = 
(2x)2

(1-x)(13.16-x) = 0.001 074   =>  x = 0.0576 

    yNO = 
2×0.0576

17.593  = 0.006 55 

 b) Final products (same composition) at 1000 K 
    HR = 1(226 731) + 0.433(-241 826) = 122 020 kJ 

    HP = 2(-393 522 + 33 397) + 1.433(-241 826+26 000) 

         + 0.9424(0+22 703) + 13.1024(0+21 463) + 0.1152(90 291+22 229) 
       = -713 954 kJ 
    QCV = HP - HR = -835 974 kJ 
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15.60 
 A step in the production of a synthetic liquid fuel from organic waste matter is the 

following conversion process: 1 kmol of ethylene gas (converted from the waste) 
at 25°C, 5 MPa, and 2 kmol of steam at 300°C, 5 MPa, enter a catalytic reactor. 
An ideal gas mixture of ethanol, ethylene, and water in chemical equilibrium 
leaves the reactor at 700 K, 5 MPa. Determine the composition of the mixture and 
the heat transfer for the reactor. 

 

  25 oC, 5 MPa 
 
300 oC, 5 MPa 2 H O2

1 C H 2 4

 

IG chem. equil. mixture 
C2H5OH, C2H4, H2O 
700 K, 5 MPa 

  1 C2H4 + 1 H2O ⇔ 1 C2H5OH      A.6 at ~ 500 K: 
 init         1           2                0       C- P0 C2H4 = 62.3 
 ch.        -x          -x             +x  
 equil.     (1-x)      (2-x)              x  

a) ∆H0
700 K = 1(-235 000 + 115(700-298.2)) - 1(+52 467 + 62.3(700-298.2)) 

             - 1(-241 826 + 14 190)  = -38 656 kJ 

 ∆S0
700 K = 1(282.444 + 115 ln 

700
298.2) - 1(219.330 + 62.3 ln 

700
298.2) - 1(218.739) 

              = -110.655 kJ/K 

    ∆G0
700 K = ∆H0 - T∆S0 = +38 803 kJ 

    ln K = 
-∆G0

R- T  = -6.667     =>        K = 0.001 272 = 
yC2H5OH

yC2H4yH2O
( P

P0)-1
 

    ⇒   ( x
1-x)(3-x

2-x) = 0.001272 × 
5.0
0.1 = 0.0636 

 By trial and error:   x = 0.0404   =>  C2H5OH:   n = 0.0404,   y = 0.01371 

        C2H4:   n = 0.9596,  y = 0.3242,     H2O:   n = 1.9596 ,   y = 0.6621 

b) Reactants:       C2H4:     Tr = 298.2/282.4  = 1.056,     Pr = 5/5.04 = 0.992 

      A.15: (h-*-h-) = 1.30×8.3145×282.4 = 3062 kJ 
      ⇒ HC2H4 = 1(+52 467 - 3062) = +49 405 kJ 

 H2O, LIQ Ref. + St. Table: 

    HH2O = 2(-285830 + 18.015(2924.5-104.9)) = -470 070 kJ 

 HPROD = 0.0404(-235 000 + 115(700-298.2)) + 0.9596(+52 467  

    + 62.3(700-298.2)) + 1.9596(-241 826 + 14 190)  = -379 335 kJ 
    QCV = HP - HR = +41 330 kJ 
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15.61 
 Methane at 25°C, 100 kPa, is burned with 200% theoretical oxygen at 400 K, 100 

kPa, in an adiabatic steady state process, and the products of combustion exit at 
100 kPa. Assume that the only significant dissociation reaction in the products is 
that of carbon dioxide going to carbon monoxide and oxygen. Determine the 
equilibrium composition of the products and also their temperature at the 
combustor exit. 

 Combustion:      CH4 + 4O2 → CO2 + 2H2O + 2O2 

 Dissociation: 
  2 CO2 ⇔ 2 CO +  O2   ,H2O  inert 
 initial 1 0   2   2  
 change -2x +2x  +x   0  
 equil. 1-2x 2x  2+x   2    nTOT = 5+x 

 Equil. Eq'n:  K = 
y2

COyO2

y2
CO2

( P
P0)= ( x

0.5-x)
2(2+x

5+x)(
P
P0) 

 
     or       ( x

0.5-x)
2(2+x

5+x)= 
K

(P/P0)
 

 1st law: HP - HR = 0 

 (1-2x)(-393 522 + ∆h-CO2) + 2x(-110 527 + ∆h-CO) 

   + 2(-241 826 + ∆h-H2O) + (2+x)∆h-O2  - 1(-74 873) - 4(3027) = 0 

or  (1-2x)∆h-CO2 + 2x∆h-CO + 2∆h-H2O + (2+x)∆h-O2 + 565 990x - 814 409 = 0 

 
  Assume TP = 3256 K.   From A.10:    K = 0.6053 

Solving (1) by trial & error,    x = 0.2712 
Substituting x and the ∆h- values from A.8 (at 3256 K) into (2) 
    0.4576×168 821 + 0.5424×103 054 + 2×140 914 
      + 2.2712×108 278 + 565 990×0.2712 - 814 409 ≈ 0  OK 
 TP = 3256 K & x = 0.2712 

    nCO2 = 0.4576, nCO = 0.5424, nH2O = 2.0, nO2 = 2.2712 
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15.62 
 Calculate the irreversibility for the adiabatic combustion process described in the 

previous problem. 
From solution of Prob. 15.61, it is found that the product mixture consists of 
0.4576 CO2,   0.5424 CO,   2.0 H2O &   2.2712 O2 at 3256 K, 100 kPa.  The 
reactants include 

 1 CH4 at 25 oC, 100 kPa and 4 O2 at 400 K, 100 kPa. 

 Reactants: 
    SR = 1(186.251) + 4(213.873) = 1041.74 kJ/K 

 Products: 
 
    ni   yi   s-0

i  -R-  ln 
yiP
P0

   S- *
i  

 CO2 0.4576 0.0868 339.278 +20.322 359.600 
 CO 0.5424 0.1029 276.660 +18.907 295.567 
 H2O 2.0 0.3794 291.099  +8.058 299.157 
 O2 2.2712 0.4309 287.749  +7.000 294.749 
 

 SP = 0.4576(359.600) + 0.5424(295.567) + 2.0(299.157) 

         + 2.2712(294.749)  = 1592.62 kJ/K 
 I = T0(SP-SR) - QCV = 298.15(1592.62 - 1041.74) - 0 = 164 245 kJ 
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15.63 
 An important step in the manufacture of chemical fertilizer is the production of 

ammonia, according to the reaction:   N2 + 3H2  ⇔  2NH3 
 a. Calculate the equilibrium constant for this reaction at 150°C. 
 b. For an initial composition of 25% nitrogen, 75% hydrogen, on a mole 

basis, calculate the equilibrium composition at 150°C, 5 MPa. 

           1N2 + 3H2  ⇔  2NH3   at 150 oC 

 h-o
NH3 150 C = -45 720 + 2.13×17.031(150-25) = -41 186 

 s-o
NH3 150 C = 192.572 + 2.13×17.031 ln 

423.2
298.2 = 205.272 

 ∆Ho
150 C = 2(-41 186) - 1(0+3649) - 3(0+3636)  = -96 929 kJ 

 ∆S0
150 C = 2(205.272) - 1(201.829) - 3(140.860)  = -213.865 kJ/K 

 ∆G0
150 C = -96 929 - 423.2(-213.865) = -6421 kJ/kmol 

 ln K = 
+6421

8.3144×423.2 = 1.8248,  K = 6.202 

 b) nNH3 = 2x, nN2 = 1-x, nH2 = 3-3x 

    K = 
y2

NH3

yN2y3
H2
( P

P0)-2
 = 

(2x)222(2-x)2

33(1-x)4  ( P
P0)-2

 

    or    ( x
1-x)

2(2-x
1-x)

2
 = 

27
16 × 6.202 × ( 5

0.1)
2
 = 26165 

    or    ( x
1-x)(2-x

1-x) = 161.755 

     n   y 
 → Trial & Error: NH3 1.843 0.8544 
    x = 0.9215  N2 0.0785 0.0364 
   H2 0.2355 0.1092 
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15.64 
 One kilomole of carbon dioxide, CO2, and 1 kmol of hydrogen, H2 at room 

temperature, 200 kPa is heated to 1200 K at 200 kPa. Use the water gas reaction  
to determine the mole fraction of CO. Neglect dissociations of H2 and O2. 

         1 CO2 + 1 H2 ⇔ 1 CO + 1 H2O 

       Initial     1             1              0          0        
      Shift       -x           -x            +x        +x 
      Total     1-x          1-x             x         x;         ntot = 2 
   yH2O = yCO = x/2,   yH2 = yCO2 = (1-x)/2 
From solution to problem 15.36, K = 1.3682 

        
(x/2)(x/2)

(
1-x
2 )(

1-x
2 )

 = K = 
x2

(1-x)2     =>   
x

1-x = 1.1697 

   x = 1.1697 / 2.1697 = 0.5391 
   yH2O = yCO = x/2 = 0.27,     yH2 = yCO2 = (1-x)/2 = 0.23  
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15.65 
 Consider the production of a synthetic fuel (methanol) from coal. A gas mixture 

of 50% CO and 50% H
2
 leaves a coal gasifier at 500 K, 1 MPa, and enters a 

catalytic converter. A gas mixture of methanol, CO and H2 in chemical 
equilibrium with the reaction:  CO + 2H2  ⇔  CH3OH  leaves the converter at the 
same temperature and pressure, where it is known that ln K = -5.119. 

 a.   Calculate the equilibrium composition of the mixture leaving the converter. 
 b.   Would it be more desirable to operate the converter at ambient pressure? 
 
 1 CO 

1 H2 Converter
 

Equil. 
Mix 

CH3OH, CO, H2 
500 K, 1 MPa 

 
 Reaction:   CO +  2 H2 ⇔ CH3OH 

 initial    1    1   0 
 change   -x   -2x  +x 
 equil.  (1-x)  (1-2x)   x 

a)     K = 
yCH3OH

yCOy2
H2

( P
P0)

-2
 = ( x

1-x)(
2-2x
1-2x)

2( P
P0)

-2
     =>         

x(1-x)
(1-2x)2 = 

K
4( P

P0)
2
 

    ln K = -5.119,       K = 0.005 98 

    
x(1-x)
(1-2x)2 = 

0.005 98
4  ( 1

0.1)
2
 = 0.1495    =>    x = 0.1045 

 nCH3OH = x = 0.1045,      nCO = 1-x = 0.8955,        nH2 = 1 - 2x = 0.791 

  yCH3OH    = 0.0583,      yCO = 0.5000,        yH2 = 0.4417 

 

b) For P = 0.1 MPa 

     
x(1-x)
(1-2x)2 = 

0.005 98
4 (0.1

0.1)
2
 = 0.001 495 

    x is much smaller (~ 0.0015)  not good 
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15.66 
 Hydrides are rare earth metals, M, that have the ability to react with hydrogen to 

form a different substance MH
x
 with a release of energy. The hydrogen can then 

be released, the reaction reversed, by heat addition to the MH
x
. In this reaction 

only the hydrogen is a gas so the formula developed for the chemical equilibrium 
is inappropriate. Show that the proper expression to be used instead of Eq. 15.14 
is 
   ln (PH2/Po) =  ∆Go/RT  

  when the reaction is scaled to 1 kmol of H2. 

            M + 
1
2 x H2    ⇔   MHx   

 At equilibrium GP = GR , assume g of the solid is a  function of T only.  

 g-MHx = h-0
MHx - Ts-0

MHx = g-0
MHx ,    g-M = h-0

M - Ts-0
M = g-0

M  

 g-H2 = h-0
H2 - Ts-0

H2 + R- T ln(PH2/Po) = g-0
H2 + R- T ln(PH2/Po) 

 GP = GR:      g-MHx = g-M + 
1
2 x g-H2 = g-0

M + 
1
2 x[g-0

H2 + R- T ln(PH2/Po)] 

 ∆G- 0 = g-0
MHx - g-0

M - x g-0
H2/2 = g-0

MHx - g-0
M  

 Scale to 1 mole of hydrogen 

           ∆G~0 = (g-0
MHx - g-0

M)/(x/2) = R- T ln(PH2/Po) 

 which is the desired result.  
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Simultaneous Reactions 
 
 
15.67 

Water from the combustion of hydrogen and pure oxygen is at 3800 K and 50 
kPa. Assume we only have H2O, O2, OH and H2 as gases with the two simple 
water dissociation reactions active find the equilibrium composition. 

 
 This problem is very similar to Example 15.7 in the text. The only difference is 

that we have T = 3800 K and P = 50 kPa. From table A.11 we have 

       ln K1 = - 1.906 ;     K1 = 0.14867;         ln K2 = -0.984 ;       K2 = 0.3738 

       K1 = ( 2a + b
1 - 2a - 2b)

2
 

a
1 + a + b(

P
P0);   K2 = 

2a + b
1 + a + b(

2b
1 - 2a - 2b)

2( P
P0) 

 So we have two equations as 

   ( 2a + b
1 - 2a - 2b)

2
 

a
1 + a + b = K1 / ( P

P0) = 0.29734  (1) 

    2a + b
1 + a + b(

2b
1 - 2a - 2b)

2
 = K2 / ( P

P0) = 0.7476   (2) 

 Divide the second equation by the first to give 

     
4b2

(2a + b) a = 
0.7476
0.29734 = 2.5143 

 or 

    2a2 + ba – 1.5909 b2 = 0 

   a = -(b/4) ± (1/4) b2 - 4 × 2 × (-1.5909 b2) = 0.676256 b 
 Now we can do trial and error on equation 1 for only one variable, say b: 
   a = 0.14228,   b = 0.2104 
 

nH2O = 1 - 2a - 2b = 0.29464,     nH2 = 2a + b = 0.49496,    

nO2 = a = 0.14228,     nOH = 2b = 0.4208 
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15.68 

 Ethane is burned with 150% theoretical air in a gas turbine combustor. The 
products exiting consist of a mixture of CO

2
, H

2
O, O

2
, N

2
, and NO in chemical 

equilibrium at 1800 K, 1 MPa. Determine the mole fraction of NO in the 
products. Is it reasonable to ignore CO in the products? 

Combustion: 
   C2H6 + 5.25 O2 + 19.74 N2   →   2 CO2 + 3 H2O + 1.75 O2 + 19.74 N2 

    Products at 1800 K, 1 MPa 
Equilibrium mixture: CO2, H2O, O2, N2, NO 

     N2 +  O2  ⇔  2 NO 
 initial  19.74  1.75    0 
 change   -x   -x   +2x 
 equil. 19.74-x 1.75-x    2x 
 

Equil. comp.  nCO2 = 2,   nO2  = 1.75-x,  nNO  = 2x ,  nH2O = 3,   nN2  = 19.74-x  

K = 1.192×10-4 = 
y2

NO
yN2yO2

( P
P0)

0
 = 

4x2

(19.74-x)(1.75-x) 

    Solving, x = 0.031 75 

    yNO = 
2×0.031 75

26.49  = 0.0024 

b)   2 CO2 ⇔ 2 CO +  O2 

  initial   2       0    0 
  change  -2a   +2a  +2x 
  equil. 2-2a    2a   2x 

    K = 4.194×10-8 = 
y2

COyO2

y2
CO2

( P
P0)

1
 =( 2a

2-2a)
2(1.75-x+a

26.49+a )×
1

0.1 

This equation should be solved simultaneously with the equation solved in 
part a) (modified to include the unknown a).  Since x was found to be small 
and also a will be very small, the two are practically independent.  Therefore, 
use the value   x = 0.031 75 in the equation above, and solve for a. 

    ( a
1-a)

2(1.75-0.031 75+a
26.49+a ) = (0.1

1.0)×4.194×10-8 

Solving, a = 0.000 254  or   yCO = 1.92×10-5 negligible for most applications. 
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15.69 
 Butane is burned with 200% theoretical air, and the products of combustion, an 

equilibrium mixture containing only CO2, H2O, O2, N2, NO, and NO2, exit from 
the combustion chamber at 1400 K, 2 MPa. Determine the equilibrium 
composition at this state. 

Combustion: 
    C4H10 + 13 O2 + 48.9 N2  →   4 CO2 + 5 H2O + 6.5 O2 + 48.9 N2 

Dissociation: 
    1)         N2 +  O2 ⇔ 2 NO              2)     N2 + 2O2 ⇔ 2 NO2 

  change   -a       -a        +2a        change     -b      -2b        +2b  
 
 At equilibrium: 

    nH2O = 5     nN2  = 48.9-a-b    nNO  = 2a 
    nCO2 = 4     nO2  = 6.5-a-2b    nNO2 = 2b 
      nTOT = 64.4-b 

At 1400 K, from A.10:        K1 = 3.761×10-6,   K2 = 9.026×10-10 

 K1 = 
(2a)2

(48.9-a-b)(6.5-a-2b)  ;  K2 = 
(2b)2(64.4-b)

(6.5-a-2b)2(48.9-a-b)
( P
P0)

-1
 

As K1 and K2 are both very small, with K2 << K1, the unknowns a & b will 
both be very small, with b << a. From the equilibrium eq.s, for a first trial 

 a ~ 
1
2 K1×48.9×6.5 ~ 0.0173 ; b ~ 

1
2×6.5 K2×

2
0.1×

48.9
64.4 ~ 0.000 38 

Then by trial & error, 

  
a2

(48.9-a-b)(6.5-a-2b) = 
3.761×10-6

4  = 0.940 25×10-6 

  
b2(64.4-b)

(6.5-a-2b)2(48.9-a-b)
 = 

9.026×10-10×(
2

0.1)

4  = 45.13×10-10 

 Solving,   a = 0.017 27,   b = 0.000 379 
 nCO2 =  4 ,              nH2O = 5 ,                 nN2  = 48.882 ,     nO2  = 6.482 , 

 yCO2 = 0.062 11 ,   yH2O = 0.077 64 ,    yN2  = 0.759 04 ,   yO2  = 0.100 65 

 nNO  =  0.034 54 ,     nNO2 =  0.000 76  

 yNO  = 0.000 55 ,      yNO2 = 0.000 01 
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15.70 

 A mixture of 1 kmol water and 1 kmol oxygen at 400 K is heated to 3000 K, 200 
kPa, in a steady flow process. Determine the equilibrium composition at the outlet 
of the heat exchanger, assuming that the mixture consists of H2O, H2, O2, and 
OH. 

Reactions and equilibrium eq'ns the same as in example 15.7 (but different 
initial composition). 
 At equil.:  nH2O = 1 - 2a - 2b,   nH2 = 2a + b,   nO2 = 1 + a 

         nOH = 2b,     nTOT = 2 + a + b 

Since T = 3000 K is the same, the two equilibrium constants are the same:  
 From Table A.11:  K1 = 0.002 062,      K2 = 0.002 893 

The two equilibrium equations are 

   K1 = ( 2a + b
1 - 2a - 2b)

2
 

1 + a
2 + a + b(

P
P0);   K2 = 

2a + b
2 + a + b(

2b
1 - 2a - 2b)

2( P
P0) 

which must be solved simultaneously for a & b.  If solving manually, it 
simplifies the solution to divide the first by the second, which leaves a 
quadratic equation in a & b - can solve for one in terms of the other using the 
quadratic formula (with the root that gives all positive moles).  This reduces 
the problem to solving one equation in one unknown, by trial & error. 
Solving  =>       b = 0.116,       a = -0.038      => 
 nH2O = 0.844,  nH2 = 0.0398,  nO2 = 0.962,  nOH = 0.232,   nTOT = 2.0778 

 yH2O = 0.4062,   yH2 = 0.0191,   yO2 = 0.4630,   yOH = 0.1117 
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15.71 
 One kilomole of air (assumed to be 78% nitrogen, 21% oxygen, and 1% argon) at 

room temperature is heated to 4000 K, 200 kPa. Find the equilibrium composition 
at this state, assuming that only N2, O2, NO, O, and Ar are present. 

 1 kmol air (0.78 N2, 0.21 O2, 0.01 Ar) heated to 

 4000 K, 200 kPa. 
                                     Equil.: 

  1)     N2 + O2 ⇔ 2 NO     nN2 = 0.78-a 
  change -a  -a    +2a     nO2 = 0.21-a-b 
       nAr = 0.01 
  2)     O2 ⇔ 2 O     nO  = 2b 
  change -b    +2b     nNO = 2a 
       ntot = 1+b 

 K1 = 0.0895 = 
4a2

(0.78-a)(0.21-a-b)(
200
100)

0
 

 K2 = 2.221  = 
4b2

(1+b)(0.21-a-b)(
200
100) 

Divide 1st eq'n by 2nd and solve for  a  as function(b), using 

    X = 
K1
K2

( P
P0)= 0.0806  

Get 
 

   a = 
Xb2

2(1+b)[-1+ 1+
4×0.78(1+b)

Xb2 ] 
(1) 

Also 
 

  
b2

(1+b)(0.21-a-b) = 
K2

4(P/P0)
 = 0.277 63 

(2) 

 Assume    b = 0.1280  From (1),  get a = 0.0296 
 Then, check a & b in (2)   ⇒   OK 
 Therefore, 
   nN2 = 0.7504  nO  = 0.2560   yN2 = 0.6652  yO  = 0.2269 

   nO2 = 0.0524  nNO = 0.0592   yO2 = 0.0465  yNO = 0.0525 

   nAr = 0.01                  yAr = 0.0089 
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15.72 

 One kilomole of water vapor at 100 kPa, 400 K, is heated to 3000 K in a constant 
pressure steady flow process. Determine the final composition, assuming that 
H2O, H2, H, O2, and OH are present at equilibrium. 

 Reactions: 
    1)     2 H2O ⇔ 2 H2 + O2      2)     2 H2O ⇔ H2 + 2 OH 

    change -2a       +2a     +a   change    -2b        +b     +2b 
    3)     H2 ⇔ 2 H 

   change -c    +2c 
 At equilibrium (3000 K, 100 kPa) 

    nH2O =  1-2a-2b    nO2  =  a    nH   =  2c 
    nH2  =  2a+b-c    nOH  =  2b    nTOT =  1+a+b+c 

 
K1

(P/P0)
 = 

2.062×10-3

1  = ( 2a+b-c
1-2a-2b)

2( a
1+a+b+c) 

 
K2

(P/P0)
 = 

2.893×10-3

1  = ( 2a+b-c
1+a+b+c)(

2b
1-2a-2b)

2
 

 
K3

(P/P0)
 = 

2.496×10-2

1  = 
(2a)2

(2a+b-c)(1+a+b+c) 

These three equations must be solved simultaneously for  a, b  &  c: 
  a = 0.0622,      b = 0.0570,      c = 0.0327 
  
 and    nH2O = 0.7616   yH2O = 0.6611 

     nH2  = 0.1487   yH2  = 0.1291 

      nO2  = 0.0622   yO2  = 0.0540 

     nOH  = 0.1140   yOH  = 0.0990 

     nH   = 0.0654   yH   = 0.0568 
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15.73 
 Acetylene gas and x times theoretical air (x > 1) at room temperature and 500 kPa 

are burned at constant pressure in an adiabatic steady flow process. The flame 
temperature is 2600 K, and the combustion products are assumed to consist of N2, 
O2, CO2, H2O, CO, and NO. Determine the value of x. 

Combustion: 
    C2H2 + 2.5x O2 + 9.4x N2 → 2 CO2 + H2O + 2.5(x-1)O2 + 9.4x N2 

Eq. products 2600 K, 500 kPa:  N2, O2, CO2, H2O, CO & NO 

 2 Reactions: 
     1)     2 CO2 ⇔ 2 CO + O2           2)     N2 + O2 ⇔ 2 NO 

     change  -2a      +2a      +a       change  -b     -b         +2b 
Equil. Comp.:    nN2  = 9.4x-b  ,     nH2O = 1 ,     nCO  = 2a ,    nNO  = 2b 

    nO2  = 2.5x - 2.5 + a - b ,     nCO2 = 2 - 2a ,   nTOT = 11.9x + 0.5 + a 

At 2600 K, from A.11:   K1 = 3.721 × 10-3,    K2 = 4.913 × 10-3 

 EQ1:  
K1

(P/Po)
 = 

3.721×10-3

5  = ( a
1 - a)

2
 (2.5x - 2.5 + a - b

11.9x + 0.5 + a ) 

 EQ2:  K2 = 4.913×10-3 = 
(2b)2

(9.4 - b)(2.5x - 2.5 + a - b) 

Also, from the 1st law: HP - HR = 0  where 

    HR = 1(+226 731) + 0 + 0 = +226 731 kJ 

    HP = (9.4x - b)(0 + 77 963) + (2.5x - 2.5 + a - b)(0 + 82 225) 

         + (2 - 2a)(-393 522 + 128 074) + 1(-241 826 + 104 520) 
         + 2a(-110 527 + 78 679) + 2b(90 291 + 80 034) 
Substituting, 
 EQ3:      988 415x + 549 425a + 180 462b - 1 100 496 = 0 
which results in a set of 3 equations in the 3 unknowns x, a, b.  Assume x = 
1.07    Then 

 EQ1:    7.442 × 10 -2 = ( a
1-a)

2(0.175 + a - b
13.233 + a )        

 EQ2:   1.2283 × 10 -3 = 
b2

(10.058 - b)(0.175 + a + b)     

Solving,    a = 0.1595,    b = 0.0585     Then checking in EQ3, 
     988 415×1.07 + 549 425×0.1595 + 180 462×0.0585 - 1 100 496 ≈ 0 
Therefore, x = 1.07 
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Ionization 

 
15.74 
 At 10 000 K the ionization reaction for Ar is: Ar   ⇔  Ar+ + e−   with 

equilibrium constant of   K = 4.2 × 10−4. What should the pressure be for a mole 
concentration of argon ions (Ar+) of 10%? 

 
From the reaction (ionization) we recognize that the concentration of electrons 
must equal that of argon ions so 
  yAr+ = ye− = 0.1      and       yAr  = 1 – yAr+ – ye− = 0.8 

Now 

  K = 4.2 × 10−4 = 
yAr+ ye−

yAr
 ( P

Po)
1+1−1

 = 
0.1 × 0.1

0.8  
P

100 

 

  P = 0.00042 × 
0.8

0.1 × 0.1 × 100 = 3.36 kPa 
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15.75 

 Operation of an MHD converter requires an electrically conducting gas. It is 
proposed to use helium gas “seeded” with 1.0 mole percent cesium, as shown in 
Fig. P15.75. The cesium is partly ionized (Cs ⇔ Cs+ + e−) by heating the mixture 
to 1800 K, 1 MPa, in a nuclear reactor to provide free electrons. No helium is 
ionized in this process, so that the mixture entering the converter consists of He, 
Cs, Cs+, and e−. Determine the mole fraction of electrons in the mixture at 1800 K, 
where ln K = 1.402 for the cesium ionization reaction described. 

 Reaction:  Cs  ⇔  Cs+  +  e−,    Also He        ln K = 1.402  
 initial       0.01        0       0           0.99       =>    K = 4.0633 
 change      -x        +x      +x          0 
 Equil   (0.01-x)      x        x          0.99  ;     total:  1 + x 
 

  K = 
ye- yCs+

yCs
 ( P

P0) = ( x
0.01 − x) ( x

1 + x) ( P
P0) 

  or     ( x
0.01 − x) ( x

1 + x) = 4.0633 / (1/0.1) = 0.40633 

 Quadratic equation:      x = 0.009767  

     ⇒    ye- = 
x

1 + x = 0.00967 
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15.76 
 One kilomole of argon gas at room temperature is heated to 20000 K, 100 kPa. 

Assume that the plasma in this condition consists of an equilibrium mixture of Ar, 
Ar`, Ar``, and e− according to the simultaneous reactions 

  (1)  Ar  ⇔  Ar+ + e-       (2)  Ar+  ⇔  Ar++ + e- 

 The ionization equilibrium constants for these reactions at 20000 K have been 
calculated from spectroscopic data as ln K1 = 3.11 and  ln K2 = -4.92. Determine 
the equilibrium composition of the plasma. 

 1)  Ar ⇔ Ar+ + e-       2)  Ar+ ⇔ Ar++ + e- 
     ch. -a        +a    +a       ch.  -b         +b     +b 
Equil. Comp.:   nAr = 1-a,   nAr+ = a-b,   nAr++ = b,   ne- = a+b,   nTOT = 1+a+b 

  K1 = 
yAr+ye-

yAr
( P

P0)= 
(a - b)(a + b)

(1 - a)(1 + a + b) (1) = 22.421 

  K2 = 
yAr++ye-

yAr+
( P

P0)= 
b(a + b)

(a - b)(1 + a + b) (1) = 0.0073 

 By trial & error:     a = 0.978 57,      b = 0.014 13 
nAr = 0.02143,   nAr+ = 0.96444,   nAr++ = 0.01413,   ne- = 0.9927 

yAr = 0.0107,     yAr+ = 0.484,       yAr++ = 0.0071,     ye- = 0.4982 
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15.77 
 At 10 000 K the two ionization reactions for N and Ar as 
  1: Ar   ⇔  Ar+ + e−  2: N   ⇔  N+ + e− 
 have equilibrium constants of   K1 = 4.2 × 10−4  and  K2 = 6.3 × 10−4, 

respectively. If we start out with 1 kmol Ar and 0.5 kmol N2, what is the 
equilibrium composition at a pressure of 10 kPa? 

 

 At 10 000 K we assume all the nitrogen is dissociated to N. 

 Assume we shift the argon ionization with a and the nitrogen ionization with b we 
get 

         Ar       Ar+        e−       N        N+  

  Initial        1          0           0         1      0 

  Change       -a         a        a + b      -b       b 

  Final        1-a        a        a + b     1-b      b          Tot:   2 + a + b 

 

  K1 = 4.2 × 10−4 =  
yAr+ye-

yAr
( P

P0) = 
a (a + b)

(1 - a)(2 + a + b) (
10
100)  (1) 

  K2 = 6.3 × 10−4 =  
yN+ye-

yN
( P

P0) = 
b (a + b)

(1 - b)(2 + a + b) (
10
100)  (2) 

 Divide the second equation with the first to get 

  
b

(1 - b) 
(1 - a)

a  = 
K2
K1

 = 1.5      ⇒ 
b - ab
a - ab = 1.5 

  b – ab = 1.5 a – 1.5 ab      ⇒ b = 1.5 a – 0.5 ab = a(1.5 – 0.5 b) 

  a = 
b

1.5 - 0.5 b    trial and error on equation (1)   

  a = 0.059    and   b = 0.086 
 
nAr = 0.941,   nAr+ = 0.059,   nN = 0.914,   nN+ = 0.086,   ne- = 0.145 

yAr = 0.439,   yAr+ = 0.027,   yN = 0.426,   yN+ = 0.04,   ye- = 0.068 
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15.78 
 Plot to scale the equilibrium composition of nitrogen at 10 kPa over the 

temperature range 5000 K to 15000 K, assuming that N2, N, N+, and e− are 
present. For the ionization reaction N  ⇔  N+ + e−, the ionization equilibrium 
constant K has been calculated from spectroscopic data as 

  T [K] 10000 12 000 14 000 16 000 
  100K 0.0626 1.51 15.1     92 

         1)   N2   ⇔   2N                2)   N   ⇔   N+ + e- 

 change   -a           +2a       change   -b         +b    +b 
 Equil. Comp.:    nN2 = 1-a,    nN = 2a-b,    nN+ = b,    ne- = b 

 EQ1:  K1 = 
y2

N
yN2

 ( P
P0)= 

(2a - b)2

(1 - a)(1 + a + b)( P
P0) 

 EQ2:  K2 = 
yN+ye-

yN
( P

P0)= 
b2

(2a - b)(1 + a + b)( P
P0) 

  For T < 10 000 K:    b ~ 0  so neglect EQ2:       ⇒   K1 = 
4a2

(1-a2)
( 10
100) 

To extrapolate K1 above 6000 K:    ln K1 ≈ 16.845 - 
118 260

T  

    (from values at 5000 K & 6000 K) 
 
  T(K)    K1    a   yN   yN2 
  5000   0.0011 0.0524 0.0996 0.9004 
  6000   0.0570 0.3532 0.5220 0.4780 
  7000   0.9519 0.8391 0.9125 0.0875 
  8000   7.866 0.9755 0.9876 0.0124 
 10000 151.26 0.9987 0.9993 0.0007 
 

For T > 10 000 K:    a ≈ 1.0     =>     K2 = 
b2

(2-b)(2+b)(
10
100) = 

b2

(4-b2)
 0.1 

 
  T(K)    K2   b   yN  yN+ 
 10 000  6.26×10-4 0.1577 0.8538 0.0731 
 12 000  1.51×10-2 0.7244 0.4862 0.2659 
 14 000  0.151 1.5512 0.1264 0.4368 
 16 000  0.92 1.8994 0.0258 0.4871 
 

Note that b ≈ 0 is not a very good approximation in the vicinity of 10 000 K.   
In this region, it would be better to solve the original set simultaneously for a 
& b.   The answer would be approximately the same. 
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Review Problems 
 
15.79 

 Repeat Problem 15.21 using the generalized charts, instead of ideal gas behavior. 

 
 Z 1

Z 2

CO 2

cb  

 
(Z1-Z2) = 5000 m,    P1 = 15 MPa 
T = 40 oC = const 

Tr = 
313.2
304.1 = 1.03,   Pr1 = 

15
7.38 = 2.033 

Equilibrium:     -wREV = 0 = ∆g + ∆PE  

  g2 - g1 = h2 - h1 -T(s2 - s1) = g(Z1 - Z2) = 
9.807×5000

1000  = 49.04 kJ/kg 

 From Figures D.2 and D.3, 

 h*
1 - h1 = RTc× 3.54 = 203.4 kJ/kg ;   s*

1 - s1 = R × 2.61 = 0.4931 kJ/kg K 

 h*
2 - h*

1 = 0 ;    s*
2 - s*

1 = 0 - R ln(P2 /P1) = 0.18892 ln( P2 /15) 

Trial and error. Assume P2 = 55 MPa   (Pr2 = 55/7.38 = 7.45) 

 h*
2 - h2 = RTc× 3.60 = 206.8 kJ/kg ;   s*

2 - s2 = R × 2.14 = 0.4043 kJ/kg K 

∆g = -206.8 + 0 + 203.4 - 313.2[-0.4043 - 0.18892 ln(55/15) + 0.4931] = 45.7 
Too low so assume P2 = 60 MPa   (Pr2 = 60/7.38 = 8.13) 

 h*
2 - h2 = RTc× 3.57 = 205.1 kJ/kg ;   s*

2 - s2 = R × 2.11 = 0.3986 kJ/kg K 

∆g = -205.1 + 0 + 203.4 - 313.2[-0.3986 - 0.18892 ln(60/15) + 0.4931] = 50.7 
  Make linear interpolation     ⇒     P2 = 58 MPa 
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15.80 
 In a test of a gas-turbine combustor, saturated-liquid methane at 115 K is to be 

burned with excess air to hold the adiabatic flame temperature to 1600 K. It is 
assumed that the products consist of a mixture of CO

2
, H

2
O, N

2
, O

2
, and NO in 

chemical equilibrium. Determine the percent excess air used in the combustion, 
and the percentage of NO in the products. 

 CH4 + 2x O2 + 7.52x N2 

    → 1 CO2 + 2 H2O + (2x-2) O2 + 7.52x N2 
 
 Then    N2   +   O2    ⇔    2 NO    Also   CO2   H2O 
 initial  7.52x     2x-2             0                1          2 
 change     -a       -a               +2a                0          0 
 final (7.52x-a) (2x-2-a)      2a                1          2 

                         nTOT = 1 + 9.52x 

 1600 K: ln K = -10.55, K = 2.628×10-5 

 2.628×10-5 K = 
y2

NO
yN2yO2

( P
P0)0 = 

y2
NO

yN2yO2
 = 

4a2

(7.52x-a)(2x-2-a) 

From A.9 and B.7, 

HR = 1[-74 873 + 16.043(-274.7-624.1)]+ 0 + 0 = -89 292 kJ   

(Air assumed 25 oC) 
HP = 1(-393 522 + 67 569) + 2(-241 826 + 52 907) 

          + (7.52x-a)(41 904) + (2x-2-a)(44 267)  + 2a(90 291 + 43 319) 
   = -792 325 + 403 652 x + 181 049 a 
Assume a ~ 0, then from    HP - HR = 0  →  x = 1.7417    and substitute 

a2

(13.098-a)(1.483-a) = 
2.628×10-5

4 ,         get     a ≈ 0.0113 

Use this a in the energy equation 

    x = 
703 042 - 181 049×0.0113

403 652  = 1.7366 

 ⇒ 
a2

(13.059-a)(1.4732-a) = 
2.628×10-5

4 , a = 0.0112      ⇒      x = 1.7366 

                 % excess air = 73.7 % 

                 % NO = 
2×0.0112×100
1+9.52×1.7366 = 0.128 % 
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15.81 
  A space heating unit in Alaska uses propane combustion is the heat supply. 

Liquid propane comes from an outside tank at -44°C and the air supply is also 
taken in from the outside at -44°C. The airflow regulator is misadjusted, such that 
only 90% of the theoretical air enters the combustion chamber resulting in 
incomplete combustion. The products exit at 1000 K as a chemical equilibrium 
gas mixture including only CO2, CO, H2O, H2, and N2. Find the composition of 
the products. Hint: use the water gas reaction in Example 15.4. 

Propane: Liquid, T1 = -44oC = 229.2 K 
Air:  T2 = -44oC = 229.2 K, 90% Theoretical Air 
Products:  T3 = 1000 K,  CO2,  CO,  H2O,  H2,  N2 
Theoretical Air: 
  C3H8 + 5O2 + 18.8N2   =>   3CO2 + 4H2O + 18.8N2 
90% Theoretical Air: 
 C3H8 + 4.5O2 + 16.92N2   =>   aCO2 + bCO + cH2O + dH2 + 16.92N2 
Carbon:   a + b = 3 
Oxygen:  2a + b + c = 9 Where:   2  ≤  a  ≤  3 
Hydrogen: c + d = 4 
Reaction:  CO   +   H2O     ↔  CO2    +   H2 

Initial: b c a d 

Change: -x -x x x 

Equil: b - x c - x a + x d + x 
Chose an Initial guess such as: a = 2, b = 1, c = 4, d = 0 
Note:  A different initial choice of constants will produce a different value for 
x, but will result in the same number of moles for each product. 
 nCO2 = 2 + x,   nCO = 1 - x,   nH2O = 4 - x,   nH2 = x,   nN2 = 16.92  
The reaction can be broken down into two known reactions to find K 
 (1)  2CO2 ↔ 2CO + O2  @ 1000 K ln(K1) = -47.052 
 (2)  2H2O ↔ 2H2 + O2   @ 1000 K ln(K2) = -46.321 
For the overall reaction:  lnK = (ln(K2) - ln(K1))/2 = 0.3655; K = 1.4412 

K = 
yCO2yH2
yCOyH2O

 






P

Po

1+1-1-1
 = 

yCO2yH2
yCOyH2O

  = 1.4412  = 
(2 + x)x

(1 − 4)(4 − x)  

   =>    x = 0.6462 
 nCO2 = 2.6462  nCO = 0.3538   nN2 = 16.92 
 nH2O = 3.3538  nH2 = 0.6462  
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15.82 

 Consider the following coal gasifier proposed for supplying a syngas fuel to a gas 
turbine power plant. Fifty kilograms per second of dry coal (represented as 48 kg 
C plus 2 kg H) enter the gasifier, along with 4.76 kmol/s of air and 2 kmol/s of 
steam. The output stream from this unit is a gas mixture containing H2, CO, N2, 
CH4, and CO2 in chemical equilibrium at 900 K, 1 MPa. 

 a.   Set up the reaction and equilibrium equation(s) for this system, and calculate 
the appropriate equilibrium constant(s). 

 b.   Determine the composition of the gas mixture leaving the gasifier. 
a) Entering the gasifier:        4 C + 1 H2 + 1 O2 + 3.76 N2 + 2 H2O 

Since the chem. equil. outlet mixture contains no C,  O2 or H2O, we must first 
consider “preliminary” reaction (or reactions) to eliminate those substances in 
terms of substances that are assumed to be present at equilibrium.  One 
possibility is 
       4 C + 1 O2 + 2 H2O → 4 CO + 2 H2 

such that the "initial" composition for the equilibrium reaction is 
       4 CO + 3 H2 + 3.76 N2 

(or convert equal amounts of CO and H2 to half of CH4   and CO2 - also 
present at equilibrium.  The final answer will be the same.) 
 

 reaction 2 CO + 2 H2  ⇔  CH4 + CO2 also N2 
 initial   4    3   0   0 3.76 
 change  -2x   -2x  +x  +x 0 
 equil. (4-2x)  (3-2x)   x   x 3.76 

       nTOT = 10.76 - 2x 

 For CH4 at 600 K (formula in Table A.6),    C- P0 = 52.22 

    At 900 K   

      h-0
CH4 = -74 873 + 52.22(900 - 298.2) = -43 446 kJ/kmol 

      s-0
CH4 = 186.251 + 52.22 ln (900 / 298.2) = 243.936 kJ/kmol K 

     (The integrated-equation values are -43 656 and  240.259) 

    ∆H0
900 K = 1(-43 447) + 1(-393 522 + 28 030) 

             - 2(-110 527 + 18 397) - 2(0 + 17 657)  = -259 993 kJ 

    ∆S0
900 K = 1(243.935) + 1(263.646) 

             - 2(231.074) - 2(163.060) = -280.687 kJ/K 
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    ∆G0
900 K = -259 993 - 900(-280.687) = -7375 kJ 

    ln K = 
+7375

8.3145×900 = 0.9856,       K = 2.679 

 b)       K = 
yCH4yCO2

y2
COy2

H2
 ( P

P0)
-2

 = 
x×x×(10.76-2x)2

(4-2x)2(3-2x)2  ( P
P0)

-2
 

    or       
x(10.76-2x)
(4-2x)(3-2x) = 

P
P0 K = 

1
0.1 2.679 = 16.368 

    By trial & error,     x = 1.2781 
    nCO = 1.444,    nH2 = 0.444,   nCH4 = nCO2 = 1.278,    nN2 = 3.76  

    yCO = 0.176,    yH2 = 0.054,   yCH4 = yCO2 = 0.156,    yN2 = 0.458 
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15.83 
 One kilomole of liquid oxygen, O2, at 93 K, and x kmol of gaseous hydrogen, H

2
, 

at 25°C, are fed to a combustion chamber. x is greater than 2, such that there is 
excess hydrogen for the combustion process. There is a heat loss from the 
chamber of 1000 kJ per kmol of reactants. Products exit the chamber at chemical 
equilibrium at 3800 K, 400 kPa, and are assumed to include only H2O, H2, and O. 

 a. Determine the equilibrium composition of the products and also x, the amount of 
H2 entering the combustion chamber. 

 b. Should another substance(s) have been included in part (a) as being present in 
the products? Justify your answer. 

    x H2 + 1 O2  →  2 H2O + (x-2) H2  

     (1)  1 H2O ⇔ 1 H2 + 1 O     

   shift      -a           +a       +a        and   a > 0 
   Equil  2-a          x-2+a      a                a < 2   and         ntot = x + a 
        (2) 2 H2O ⇔ 2 H2 + 1 O2      ln K2 = -1.906 

        (3)    1 O2 ⇔ 2 O                  ln K3 = -0.017 

   ln K1 = 0.5( ln K2 + ln K3 ) = -0.9615     =>     K1 = 0.3823 

   Equil.:      
K1

(P/Po)1 = 
(x-2+a)a

(2-a)(x+a) = 
0.3823

4  = 0.95575 

   1st law:   Q + HR = HP ,    Q = (1+x)(-1000) kJ 

  Table A.8:  ∆h-*
IG = -5980 kJ/kmol  

           [or = 0.922 × 32(93 - 298.2) = - 6054 kJ/kmol ]  
  Fig. D.2:   Tr = 93/154.6 = 0.601,    ∆h-f = -5.16×R- ×154.6 = -6633 

   HR = x(0 + 0) + 1(0 + ∆h-*
IG + ∆h-f) = 1(-5980 - 6633) = - 12613 kJ 

   HP = (2-a)(-241 826 + 171 981) + (x-2+a)(0 + 119077)  
  + a(249170 + 73424)   = 119077 x + 511516 a - 377844 
        = Q + HR = -1000 - 1000 x - 12613 
Rearrange eq. to:    x + 4.2599 a = 3.03331 

Substitute it into the equilibrium eq.:      
(1.03331 + 5.2599 a) a

(2-a)(3.03331-3.2599 a) = 0.095575 

   Solve  a = 0.198,   LHS = 0.09547,     x = 2.1898 

   yH2O = 
2-a
x+a = 0.755,     yH2 = 

x-2+a
x+a  = 0.162,     yO = 

a
x+a = 0.083 

Other substances and reactions:     2 H2O <=> H2 + 2 OH,   ln K = -0.984, 
    H2 <=> 2 H,    :  ln K = 0.201,           O2 <=> 2 O,  :    ln K = -0.017 
       All are significant as K's are of order 1. 
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15.84 
 Saturated liquid butane (note: use generalized charts) enters an insulated constant 

pressure combustion chamber at 25°C, and x times theoretical oxygen gas enters 
at the same pressure and temperature. The combustion products exit at 3400 K. 
Assuming that the products are a chemical equilibrium gas mixture that includes 
CO, what is x? 

Butane:  T1 = 25oC, sat. liq.,  x1 = 0,  Tc = 425.2 K,  Pc = 3.8 MPa 
 Tr1 = 0.7, Figs. D.1and D.2,    Pr1 = 0.10,    P1 = Pr1Pc = 380 kPa 

Fig D.2: 



h−*

1 − h−1 f = 4.85 RTc 

Oxygen:  T2 = 25oC, X * theoretical air   Products:  T3 = 3400 K 
 
  C4H10 + 6.5X O2  =>  4 CO2 + 5 H2O + 6.5(X-1) O2 

                               2CO2   <=>  2CO   +   O2 

Initial 4 0 6.5(X-1)  
Change -2a 2a a  
Equil. 4-2a 2a 6.5(X-1) + a     ntot = 2.5 + a + 6.5X 

 
nCO2 = 4 - 2a,   nCO = 2a,    nO2 = 6.5(X-1) + a,   nH2O = 5,   

yCO = 
2a

2.5 + a +6.5X ,   yCO2 = 
4 - 2a

2.5 + a +6.5X ,   yO2 = 
6.5(x - 1) + a
2.5 + a +6.5X 

The equilibrium constant is 

  K =  
y2

COyO2

y2
 CO2

 






P1

Po

2+1-2
 = 



a

2-a
2
 



6.5X - 6.5 + a

6.5X - 2.5 + a  






P1

Po
 

@ T3 = 3400 K Table A.11,    ln(K) = 0.346,    K = 1.4134 

  1.4134 = 



a

2-a
2
 



6.5X - 6.5 + a

6.5X - 2.5 + a  (3.76)               Equation 1. 

Need a second equation: 
Energy eq.:       Qcv + HR = HP + Wcv;     Qcv = 0,   Wcv = 0 

  HR = (h
−o

f  + ∆h
−)C4H10

 = (-126 200 – 17 146) = -143 346 kJ 
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Products @ 3400 K: 

 HP = n(h
−o

f  + ∆h
−)CO2 + n(h

−o
f  + ∆h

−)CO + n(h
−o

f  + ∆h
−)O2 + n(h

−o
f  + ∆h

−)H2O 

       = (4 - 2a)(-393 522 + 177 836) + 2a(-110 527 + 108 440) 
  + [6.5(X - 1) + a](0 + 114101)  + 5(-241 826 + 149 073)  
       = -463 765 kJ/kmol 
HP = HR     =>         1924820 = 541299a + 741656.5 X      Equation 2. 
Two equations and two unknowns, solve for X and a. 

   a ≅ 0.87,   X ≅ 1.96 



   Sonntag, Borgnakke and van Wylen 

 
15.85 

 Derive the van’t Hoff equation given in problem 15.48, using Eqs.15.12 and 
15.15. Note: the d(g-/T) at constant P for each component can be expressed using 
the relations in Eqs. 13.18 and 13.19. 

 

Eq. 15.12: ∆G0 = vC g-0
C + vD g-0

D - vA g-0
A - vB g-0

B 

Eq. 15.15: lnK = ∆G0/RT   Eq. 13.19: ∆G0 = ∆Η° - T ∆S0 

dlnK
dT  = - 

d
dT (

∆G0

R- T ) = -
1

RT 
dG0

dT  + 
∆G0

R- T2  = 
1

R- T2 [∆G0 – T
dG0

dT ] 

    = 
1

R- T2 [∆G0 + T ∆S0] used Eq.13.19       
dg-
dT = - s- 

    = 
1

R- T2 ∆Η0 
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15.86 
 A coal gasifier produces a mixture of 1 CO and 2H2 that is then fed to a catalytic 

converter to produce methane. A chemical-equilibrium gas mixture containing 
CH4, CO, H2, and H2O exits the reactor at 600 K, 600 kPa. Determine the mole 
fraction of methane in the mixture. 

                   CO    + 3H2  ↔  CH4   + H2O   

Initial 1 2 0 0 

Change -x -3x x x 

Equil. 1-x 2-3x x x 
n = (1 - x) + (2 - 3x) + x + x = 3 - 2x 

 K = 
yCH4yH2O

yCOy3
H2

 






P

Po

(1+1-1-3) = -2
 = 

x2

(1-x)(2-3x)3 






P

Po

-2
 

lnK = - ∆Go/R−;    ∆Go = ∆Ho - T∆So 

HP = nCH4 [h−o
f  + C−P(T - To)] + nH2O (h−o

f  + ∆h−)   
 = [-74873 + 2.254×16.04(600 - 298.15)] + (-241826 + 10499) = -295290 

HR = nCO (h−o
f  + ∆h−) + nH2 (h−o

f  + ∆h−) = 1(-110527 + 8942) + 3(0 + 8799) 

  = -75188 kJ 

∆Η
o
600 = HP - HR = -295290 - (-75188) = -220102 kJ 

(s−o
T)CH4 = s−o

To + C−Pln(T/To) = 186.251 + 2.254×16.04 ln(600/298.2) = 211.549 

(s−o
T )H2O = 213.051 kJ/kmol-K;    SP = 424.6 kJ/K 

(s−o
T)CO  = 218.321 kJ/kmol-K,   (s−o

T)H2  = 151.078 kJ/kmol-K 

∆So
600  = SP - SR = (ns−o

T)CH4 + (ns−o
T )H2O -  (ns−o

T)CO - (ns−o
T)H2  

       = (211.549 + 213.051) - (218.321 + 3 × 151.078) = -246.955 kJ/K 
∆Go = ∆Ho - T∆So = -220 102 - 600(-246.955) = -71929 kJ,    
 lnK = -(-71915)/(8.31451×600) = 14.418      =>    K = 1.827×106 
Solve for x,    x = 0.6667,    ntot = 1.6667,    yCH4 = 0.4 
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15.87 

 Dry air is heated from 25°C to 4000 K in a 100-kPa constant-pressure process. 
List the possible reactions that may take place and determine the equilibrium 
composition. Find the required heat transfer. 

Air assumed to be 21% oxygen and 79% nitrogen by volume. 
From the elementary reactions we have at 4000 K (A.10) 

  (1)  O2 <=> 2 O          K1 = 2.221 = y2
O/yO2  

  (2)  N2 <=> 2 N          K2 = 3.141 × 10-6 = y2
N/yN2  

   (3)  N2 + O2 <=> 2 NO    K3 = 0.08955 = y2
NO/yN2 yO2 

 Call the shifts a,b,c respectively so we get 
   nO2 = 0.21-a-c,  nO = 2a,  nN2 = 0.79-b-c,  nN = 2b,  
   nNO = 2c,  ntot = 1+a+b 
From which the molefractions are formed and substituted into the three 
equilibrium equations. The result is 

     K1 = 2.221 = y2
O/yO2 = 4a2/[(1+a+b)(0.21-a-c)] 

     K2 = 3.141 × 10-6 = y2
N/yN2 = 4b2/[(1+a+b)(0.79-b-c)] 

         K3 = 0.08955 = y2
NO/yN2 yO2 = 4c2/[(0.79-b-c)(0.21-a-c)] 

which gives 3 eqs. for the unknowns (a,b,c). Trial and error assume b = c = 0 
solve for a from K1 then for c  from K3 and finally given the (a,c) solve for b 
from K2. The order chosen according to expected magnitude K1>K3>K2 

      a = 0.15,  b = 0.000832,  c = 0.0244  => 
 nO2 = 0.0356,  nO = 0.3,  nN2 = 0.765,  nN = 0.00167,  nNO = 0.049 
 Q = Hex - Hin = nO2∆h-O2 + nN2∆h-N2 + nO(h-  + ∆h-O)  fO

                  + nN(h-fN + ∆h-N) + nNO(h-fNO + ∆h-NO)  - 0 
          = 0.0356 × 138705 + 0.765 × 130027 + 0.3(249170 + 77675) 
                 + 0.00167(472680 + 77532) + 0.049(90291 + 132671) 
     = 214  306 kJ/kmol air 
 [If no reac.  Q = nO2∆h-O2 + nN2∆h-N2 = 131 849 kJ/kmol air] 
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15.88 

 Methane is burned with theoretical oxygen in a steady flow process, and the 
products exit the combustion chamber at 3200 K, 700 kPa. Calculate the 
equilibrium composition at this state, assuming that only CO

2
, CO, H

2
O, H

2
, O

2
, 

and OH are present. 
Combustion:     CH4 + 2 O2 → CO2 + 2 H2O 

Dissociation reactions: 
    1)      2 H2O ⇔ 2 H2 + O2     2)    2 H2O ⇔ H2 + 2 OH 

    change  -2a     +2a   +a    change  -2b     +b   +2b 
    3)      2 CO2 ⇔ 2 CO + O2 

    change  -2c     +2c   +c 
At equilibrium: 

    NH2O =  2-2a-2b     nO2  =  a+c     nCO2 =  1-2c 
    NH2  =  2a+b     nOH  =  2b     nCO  =  2c 
              nTOT =  3+a+b+c 

Products at 3200 K, 700 kPa 

    K1 = 0.007 328 = ( 2a+b
2-2a-2b)

2( a+c
3+a+b+c)(

700
100) 

    K2 = 0.012 265 = ( 2b
2-2a-2b)

2( 2a+b
3+a+b+c)(

700
100) 

    K3 = 0.426 135 = ( 2c
1-2c)

2( a+c
3+a+b+c)(

700
100) 

These 3 equations must be solved simultaneously for a, b, & c.  If solving by 
hand divide the first equation by the second, and solve for c = fn(a,b).  This 
reduces the solution to 2 equations in 2 unknowns.  Solving, 
      a = 0.024, b = 0.1455, c = 0.236 
 

 Substance: H2O H2 O2 OH CO2 CO 

 n 1.661 0.1935 0.260 0.291 0.528 0.472 
 y 0.4877 0.0568 0.0764 0.0855 0.1550 0.1386 
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  To maximize the mass flow rate of air through a given nozzle, which properties 
should I try to change and in which direction, higher or lower? 

 
  The mass flow rate is given by Eq.16.41 and if we have M = 1 at the throat 

then Eq.16.42 gives the maximum mass flow rate possible. 
 
  Max flow for: 
    Higher upstream stagnation pressure  
    Lower upstream stagnation temperature 
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Stagnation properties 

 
16.74E 
  Steam leaves a nozzle with a velocity of 800 ft/s. The stagnation pressure is 100 

lbf/in2, and the stagnation temperature is 500 F. What is the static pressure and 
temperature? 

  h
1
 = h

o1
 - V

1
2/2g

c
= 1279.1 - 

8002

2 × 32.174
 × 778 = 1266.3 

Btu
lbm  

  s
1
 = s

0
 = 1.7085 Btu/lbm R  

  (h, s)  Computer table  ⇒  P
1
 = 88 lbf/in.2,   T = 466 F  
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16.75E 
  Air leaves the compressor of a jet engine at a temperature of 300 F, a pressure of 

45 lbf/in2, and a velocity of 400 ft/s. Determine the isentropic stagnation 
temperature and pressure. 

  h
o1

 - h
1
 = V

1
2/2g

c
 = 4002/2 × 32.174 × 778 = 3.2  Btu/lbm  

  T
o1

 - T - 1 = (h
o1

 - h
1
)/C

p
 = 3.2/0.24 = 13.3  

  T
o1

 = T + ∆T = 300 + 13.3 = 313.3 F = 773 R  

  P
o1

 = P
1
 ( )T

o1
/T

1

k
k-1 = 45(773/759.67)3.5 = 47.82 lbf/in2 
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16.76E 
  A meteorite melts and burn up at temperatures of 5400 R. If it hits air at 0.75 

lbf/in.2, 90 R how high a velocity should it have to reach such temperature? 

  Assume we have a stagnation T = 5400 R 

  h
1
 + V

1
2/2 = h

stagn.
 

  Extrapolating from table F.5,    h
stagn.

 = 1515.6,   h
1
 = 21.4 Btu/lbm 

  V
1
2/2 = 1515.6 – 21.4 = 1494.2 Btu/lbm 

   V
1
 = 2 × 32.174 × 778 × 1494.2 = 8649 ft/s 
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Momentum Equation and Forces 
 
16.77E 

  A jet engine receives a flow of 500 ft/s air at 10 lbf/in.2, 40 F inlet area of 7 ft2 

with an exit at 1500 ft/s, 10 lbf/in.2, 1100 R. Find the mass flow rate and thrust. 

  m
.

 = ρAV;    ideal gas     ρ = P/RT 

  m
.

 = (P/RT)AV  =  
10 × 144

53.34 × 499.7
 × 7 × 500  = 189.1 lbm/s 

  F
net

 = m
.

 (V
ex

 - V
in

) = 189.1 × (1500 - 500) / 32.174  = 5877 lbf 

 
    Inlet                  High P                           Low P exit 

cb
 

                          ←   F
net

 

 The shaft must have axial load bearings to transmit thrust to aircraft. 
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16.78E 
  A water turbine using nozzles is located at the bottom of Hoover Dam 575 ft 

below the surface of Lake Mead. The water enters the nozzles at a stagnation 
pressure corresponding to the column of water above it minus 20% due to 
friction. The temperature is 60 F and the water leaves at standard atmospheric 
pressure. If the flow through the nozzle is reversible and adiabatic, determine the 
velocity and kinetic energy per kilogram of water leaving the nozzle. 

 

  ∆P = 
ρg∆Z

g
c

 = g(∆Z/v)/g
c
 = 575/(0.016035 × 144) = 249 lbf/in.2   

   ∆P
ac

 = 0.8∆P = 199.2 lbf/in.2    and Bernoulli      v∆P = V
ex

2/2  

   V
ex

 = 2v∆ P = 2g∆ Z = 2× 32.174× 575 = 192.4 ft/s  

   V
ex
2 /2 = v∆P = g∆Z/g

c
 = 575/778 = 0.739 Btu/lbm   
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Velocity of Sound 
 
16.79E 
  Find the speed of sound for air at 15 lbf/in.2, at the two temperatures of 32 F and 

90 F. Repeat the answer for carbon dioxide and argon gases. 

  From eq. 16.28 we have 

   c
32

 = kRT = 1.4 × 32.174 × 53.34 × 491.7 = 1087 ft/s 

   c
90

 =  1.4 × 32.174 × 53.34 × 549.7 = 1149 ft/s 

  For Carbon Dioxide: R = 35.1,   k = 1.289 

   c
32

 =  1.289 × 32.174 × 35.1 × 491.7 = 846 ft/s 

   c
90

 = 1.289 × 32.174 × 35.1 × 549.7 = 894.5 ft/s 

  For Argon:  R = 38.68,   k = 1.667 

   c
32

 =  1.667 × 32.174 × 38.68 × 491.7 = 1010 ft/s 

     c
90

 = 1.667 × 32.174 × 38.68 × 549.7 = 1068 ft/s 
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Flow Through Nozzles, Shocks 
 
16.80E 

  Air is expanded in a nozzle from 300 lbf/in.2, 1100 R to 30 lbf/in.2. The mass 
flow rate through the nozzle is 10 lbm/s. Assume the flow is reversible and 
adiabatic and determine the throat and exit areas for the nozzle. 

 
 

Velocity

DensityArea

Mach #

300 psia 30 psiaP  

P* = P
o
 



2

k+1

k
k-1 

     = 300 × 0.5283 = 158.5 lbf/in.2. 

T* = T
o
× 2/(k+1) = 1100 × 0.8333 = 916.6 R 

v* = RT*/P* = 53.34 × 916.6/(158.5 × 144) 

     = 2.1421 ft3/lbm 
 

   

  c* = kRT* = 1.4 × 32.174 × 53.34 × 916.6 = 1484 ft/s  

    A* = m
.

v*/c* = 10 × 2.1421/1484 = 0.0144 ft2  

    P
2
/P

o
 = 30/300 = 0.1    Table A.11  ⇒    M*

2
 = 1.701 = V

2
/c*  

    V
2
 = 1.701 × 1484 = 2524 ft/s 

  T
2
 = 916.6 × 0.5176 = 474.4 R 

   v
2
 = RT

2
/P

2
 = 53.34 × 474.4/(30 × 144) = 5.8579 ft3/lbm 

   A
2
 = m

.
v

2
/V

2
 = 10 × 5.8579 / 2524 = 0.0232 ft2  
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16.81E 

  A jet plane travels through the air with a speed of 600 mi/h at an altitude of  

20000 ft, where the pressure is 5.75 lbf/in.2 and the temperature is 25 F. Consider 
the diffuser of the engine where air leaves at with a velocity of 300 ft/s. 
Determine the pressure and temperature leaving the diffuser, and the ratio of inlet 
to exit area of the diffuser, assuming the flow to be reversible and adiabatic. 

 
  V = 600 mi/h = 880 ft/s 

 v1 = 53.34 × 484.67/(5.75 × 144) = 31.223  ft3/lbm,    
 h1 = 115.91 Btu/lbm,    

  ho1 = 115.91 + 8802/(2 × 32.174 × 778) = 131.38 Btu/lbm  

    Table F.5 ⇒  T
o1

 = 549.2 R,   

  P
o1

 = P
1
 (T

o1
/T

1
)k/(k-1) = 5.75 × (549.2/484.67)3.5 = 8.9 lbf/in.2 

 h2 = 131.38 - 3002/(2 × 32.174 × 778) = 129.58 Btu/lbm   
  T2 = 542 R,    =>   

  P2 = P
o1

 (T
2
/T

o1
)k/(k-1) = 8.9 × (542/549.2)3.5 = 8.5 lbf/in.2  

  v2 = 53.34 × 542/(8.5 × 144) = 23.62 ft3/lbm  
  A1/A2 = (v

1
/v

2
)(V

2
/V

1
) = (31.223/23.62)(300/880) = 0.45  
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16.82E 

  A convergent nozzle has a minimum area of 1 ft2 and receives air at 25 lbf/in.2,  
1800 R flowing with 330 ft/s. What is the back pressure that will produce the 
maximum flow rate and find that flow rate? 

 
P*

P
o
 = (

2
k+1)

k
k-1 = 0.528   Critical Pressure Ratio 

 Find P
o
:     C

p
 = (463.445 - 449.794)/50 = 0.273       from  table C.6 

  h
0
 = h

1
 + V

1
2/2     ⇒    T

0
 = T

i
 +  V2/2Cp  

 T
0
 = 1800 + 

3302/2
32.174 × 778 × 0.273

 = 1807.97  =>  T* = 0.8333 T
o
 = 1506.6 R 

  P
0
 = P

i
 (T

0
/T

i
)k/(k-1) = 25 × (1807.97/1800)3.5 = 25.39 lbf/in.2 

  P* = 0.528 P
o
 = 0.528 × 25.39 = 13.406 lbf/in2 

  ρ* = 
P*

RT* = 
13.406 × 144

53.34 × 1506.6
 = 0.024 lbm/ft3 

  V = c = kRT*  = 1.4 × 53.34 × 1506.6 × 32.174 = 1902.6 ft/s 

  m
.

 = ρAV = 0.024 × 1 × 1902.6 = 45.66 lbm/s 
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16.83E 

  The products of combustion enter a nozzle of a jet engine at a total pressure of 18 

lbf/in.2, and a total temperature of 1200 F. The atmospheric pressure is 6.75 

lbf/in.2. The nozzle is convergent, and the mass flow rate is 50 lbm/s. Assume the 
flow is adiabatic. Determine the exit area of the nozzle. 

 

  Pcrit = P
2
 = 18 × 0.5283 = 9.5  lbf/in.2 >  Pamb   

 The flow is then choked. 
  T

2
 = 1660 × 0.8333 = 1382 R  

  V
2
 = c

2
 = 1.4 × 32.174 × 53.34 × 1382 = 1822 ft/s  

  v
2
 = 53.34 × 1382/9.5 × 144 = 53.9  ft3/lbm 

  A
2
 = m

.
 v

2
/ V

2
 = 50 × 53.9/1822 = 1.479 ft2  
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16.84E 

  A 50-ft3 uninsulated tank contains air at 150 lbf/in.2, 1000 R. The tank is now 

discharged through a small convergent nozzle to the atmosphere at 14.7 lbf/in.2 
while heat transfer from some source keeps the air temperature in the tank at 

1000 R. The nozzle has an exit area of 2 × 10−4 ft2. 
  a. Find the initial mass flow rate out of the tank. 
  b. Find the mass flow rate when half the mass has been discharged. 
  c. Find the mass of air in the tank and the mass flow rate out of the tank  
     when the nozzle flow changes to become subsonic. 
 

 

P

AIR

e
cb  

 

 

 P
B
/P

o
 = 14.7/150 = 0.098  <  (P*/P

o
)crit = 0.5283 

a. The flow is choked, max possible flow rate 

 M
E
 =1 ;     P

E
 = 0.5283 × 150 = 79.245 lbf/in.2  

 T
E
 = T* = 0.8333 × 1000 = 833.3 R 

 V
E
 = c = kRT* = 1.4 × 53.34 × 833.3 × 32.174 = 1415 ft/s 

 v
E
 = RT*/P

E
 = 53.34 × 833.3/(79.245 × 144) = 3.895 ft3/lbm  

Mass flow rate is :   m
.

1
 = AV

E
/v

E
  = 2 × 10-4 × 1415/3.895 = 0.0727 lbm/s 

b.  m
1
 = P

1
V/RT

1
 = 150 × 50 × 144/53.34 × 1000 = 20.247 lbm  

  m
2
 = m

1
/2 = 10.124 lbm,    P

2
 = P

1
/2 = 75 lbf/in.2 ;    T

2
 = T

1
   

 P
B
/P

2
= 14.7/75 = 0.196  <  (P*/P

o
)crit   

 The flow is choked and the velocity is the same as in a) 

 P
E
 = 0.5283 × 75 = 39.623 lbf/in.2 ;  M

E
 =1  

 m
.

2
 = AV

E
P

E
/RT

E
 = 

2 × 10-4 × 1415 × 39.623 × 144
53.34 × 1000

  = 0.0303 lbm/s  

c. Flow changes to subsonic when the pressure ratio reaches critical. 

 P
B
/P

o
 = 0.5283  P

3
 = 27.825 lbf/in.2  

 m
3
 = m

1
P

3
/P

1
 = 3.756 lbm ;   T

3
 = T

1
   ⇒   V

E
 = 1415 ft/s  

 m
.

3
 = AV

E
P

E
/RT

E
 = 

2 × 10-4 × 1415 × 27.825 × 144
53.34 × 1000

  = 0.02125 lbm/s  
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Nozzles, Diffusers and Orifices 
 
16.85E 

  Repeat Problem 16.81 assuming a diffuser efficiency of 80%. 
    

    
            From solution to 16.81 

  h
1
 = 115.91 Btu/lbm,  v

1
 = 31.223 ft3/lbm 

           ho1 = 115.91 + 8802/(2 × 32.174 × 778) 
                 = 131.38 Btu/lbm 
 
           Table F.5 ⇒  T

o1
 = 549.2 R,  

 
h 

01
02

3 

1 

2 

s  
       

  η
D

 = (h
3
 - h

1
)/(h

o1
 - h

1
) = 0.8    ⇒    h

3
 = 128.29 Btu/lbm,  T

3
 = 536.29 R 

  P
o2

 = P
3
 = P

1
 (Τ

3
/Τ

1
)k/(k-1) = 5.75 × (536.29/484.67)3.5 = 8.194 lbf/in.2   

 T
o2

 = T
o1

 = 549.2 R 

 h2 = 131.38 - 3002/(2 × 32.174 × 778) = 129.58 Btu/lbm   

   T2 = 542 R,    =>   

  P2 = P
o2

 (T2/T
o1

)k/(k-1) = 8.194 × (542/549.2)3.5 = 7.824 lbf/in.2  

     ⇒   v
2
 = 

53.34 × 542
7.824 × 144

 = 25.66 ft3/lbm  

  A
1
/A

2
 = v

1
V

2
/v

2
V

1
 = 31.223 × 300/(25.66 × 880) = 0.415  
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16.86E 

  Air enters a diffuser with a velocity of 600 ft/s, a static pressure of 10 lbf/in.2, and 
a temperature of 20 F. The velocity leaving the diffuser is 200 ft/s and the static 

pressure at the diffuser exit is 11.7 lbf/in.2. Determine the static temperature at 
the diffuser exit and the diffuser efficiency. Compare the stagnation pressures at 
the inlet and the exit. 

 T
o1

 = T
1
 + 

V
1
2

2g
c
C

p
 = 480 + 6002/(2 × 32.174 × 778 × 0.24) = 510 R  

 T
o2

 = T
o1

      ⇒     

 T
2
 = T

o2
 - V

2
2/2C

p
 = 510 - 2002/(2 × 32.174 × 0.24 × 778) = 506.7 R 

 
T

o2
 - T

2

T
2

 = 
k-1
k  

P
o2

 - P
2

P
2

   ⇒   P
o2

 - P
2
 = 0.267  ⇒  P

o2
 = 11.97 lbf/in.2  

 T
ex,s

 = T
1
 (P

o2
/P

1
)(k-1)/k = 480 × 1.0528 = 505.3 R 

 η
D

 = 
T

ex,s
 - T

1

T
o1

 - T
1

 = 
505.3 - 480

51 - 480  = 0.844  
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16.87E 
 A convergent nozzle with exit diameter of 1 in. has an air inlet flow of 68 F, 14.7 

lbf/in.2 (stagnation conditions). The nozzle has an isentropic efficiency of 95% 
and the pressure drop is measured to 20 in. water column. Find the mass flow rate 
assuming compressible adiabatic flow. Repeat calculation for incompressible 
flow. 

 Convert ∆P to lbf/in2 

 ∆P = 20 in H
2
O = 20 × 0.03613 = 0.7226 lbf/in2 

 T
0
 = 68 F = 527.7 R  P

0
 = 14.7 lbf/in2 

 Assume inlet V
i
 = 0  P

e
 = P

0
 - ∆P = 14.7 - 0.7226 = 13.977 lbf/in2 

 T
e
 = T

0
 (

P
e

P
0
)
k-1
k  = 527.7 ×(

13.977
14.7 )0.2857 = 520.15 R 

 V
e
2/2 = h

i
 - h

e
 = C

p
 (T

i
 - T

e
) = 0.24 × (527.7 - 520.15) = 1.812 Btu/lbm 

  V
e ac

2 /2 = η V
e
2/2 = 0.95 × 1.812 = 1.7214 Btu/lbm 

  ⇒  V
e ac

 = 2 × 32.174 × 1.7214 × 778 = 293.6 ft/s 

  T
e ac

 = T
i
 - 

V
e ac

2 /2

C
p

 = 527.7 - 
1.7214
0.24  = 520.53 R 

  ρ
e ac

 = 
P

e

RT
e ac

 = 
13.977 × 144

53.34 × 520.53
 = 0.07249 lbm/ft3 

 m
.

 = ρAV = 0.07249 × 
π
4 × (

1
12)2 × 293.6 = 0.116 lbm/s 

 Incompressible:      ρ
i
 = 

P
0

RT
0
 = 

14.7 × 144
53.34 × 527.7

 = 0.0752 lbm/ft3 

 V
e
2/2 = v

i
 (P

i
 - P

e
) = 

∆P
ρ

i
 = 

0.7226 × 144
0.0752 × 778

 = 1.7785 Btu/lbm 

 V
e ac

2 /2 = η V
e
2/2 = 0.95 × 1.7785 = 1.6896 Btu/lbm 

 ⇒  V
e ac

 = 2 × 32.174 × 1.6896 × 778 = 290.84 ft/s 

 m
.

 = ρAV = 0.0752 × 
π
4 × ( 1

12
)2 × 290.84 = 0.119 lbm/s 
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