21 Thick circular cylinders, discs
and spheres

21.1 Introduction

Thin shell theory is satisfactory when the thickness of the shell divided by its radius is less than
1/30. When the thickness: radius ratio of the shell is greater than this, errors start to occur and
thick shell theory should be used. Thick shells appear in the form of gun barrels, nuclear reactor
pressure vessels, and deep diving submersibles.

21.2 Derivation of the hoop and radial stress equations for a thick-
walled circular cylinder

The following convention will be used, where all the stresses and strains are assumed to be tensile
and positive. At any radius,

o, = hoop stress

o, = radial stress
o, = longitudinal stress
€, = hoop strain

€ = radial strain

Figure 21.1 Thick cylinder.



516 Thick circular cylinders, discs and spheres
g, = longitudinal strain (assumed to be constant)
w = radial deflection

From Figure 21.2, it can be seen that at any radius 7,

2n(r + w) - 2nr
2nr

or

g = wir

Similarly,

\ dr+dw
iR
r \ w ‘ wadw

Figure 21.2. Deformation at any radius r.

From the standard stress—strain relationships,

Ee, = o,-va6, -vo, = aconstant
Ew
Eey = - = Gg— VO ,— VO,
dw
Ee, = E— = 0,-voq4- VO,

" ar

(21.1)

(21.2)

(21.3)

(21.4)
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Multiplying equation (21.3) by ,
Ew = oy xr-ve,xr-ve xr (21.5)

and differentiating equation (21.5) with respect to r, we get
do do do
EY . Gy-VG,- VG, +r| — -V —2-v — (21.6)
dr dr

Subtracting equation (21.4) from equation (21.6),

A do, do,
(ce—cr)(l +V)rr—-vr —Z-vr =0 (21.7)
dr dr
As ¢, is constant
0, - VG, - V0, = constant (21.8)

Differentiating equation (21.8)with respect to 7,

do, do, do,
-V — -V = 0
dr dr dr
or
do, _ | 9% , do (21.9)
dr dr dr

Substituting equation (21.9) into equation (21.7),

do do
(O -o )1 +V)+r(l - vl)ﬁ—vr(l +v)d—r’ =0 (21.10)

and dividing equation (21.10) by (1 + v), we get

do, do,
6, -6, +r(l +v)— - wvr =0 (21.11)
dr dr

Considering now the radial equilibrium of the shell element, shown in Figure 21.3,
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O'e, dr
\ (o +do)r+dide
/
/
o/do \
Ue, dr

Figure 21.3 Shell element.

264 9, sin(%)ﬂs, r 9, —(c,+ 60,)(r+ 8r)69 =0 (21.12)

Neglecting higher order terms in the above, we get

do,
-6, -r— =0 (21.13)

o
6
dr

Subtracting equation (21.11) from equation (21.12)

do, do,

— +—Z =0 (21.14)
dr dr
. Gy + 6, = constant = 24 (21.15)

Subtracting equation (21.13) from equation (21.15),

do,
26, +r— = 24
dr
or
2
l d(crr) Iy
r dr
2
d(or r) o



Lamé line
Integrating the above,
o, ¥r’? = Ar’ - B
6 = A - 2
r 2
2

From equation (21.15),

B

rZ

09 = A+

21.3 Lamé line
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(21.16)

(21.17)

If equations (21.16) and (21.17) are plotted with respect to a horizontal axis, where 1/7* is the
horizontal axis, the two equations appear as a single straight line, where o, lies to the left and o,
to the right, as shown by Figure 21.4. For the case shown in Figure 21.4, ¢, is compressive and o,

tensile, where

G

65, = external hoop stress

+ ve stress

Radial stress | Hoop stress

internal hoop stress, which can be seen to be the maximum stress

12

- o ! i -
1 l/ VR_| VIR !
P 1R | 1R |
+ ve stress

Figure 21.4 Lamé line for the case of internal pressure.
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To calculate 6, and o4,, equate similar triangles in Figure 21.4,

or

1o} R
R} R (21.18)

%1 5 TS

(&} - &)

Similarly, from Figure 21.4

or,

L) RR
R} R’ (21.19)
2PR}
Gg =
R} - &)

Problem 21.1 A thick-walled circular cylinder of internal diameter 0.2 m is subjected to an
internal pressure of 100 MPa. If the maximum permissible stress in the
cylinder is limited to 150 MPa, determine the maximum possible external
diameter d,.



Lamé line
Solution
100 ) 150
1 1 1 1
— — — + —
[0.?.2 d;) [0.22 d;]
+ ve stress
Radial stress l Hoop stress
|/ 06,=150 MPa
- ]
1/d3 | 1d}
s —1001/;-_2.- : i
2 2
. 1/0.2 | 1/0.2 :
1 al
+ ve stress
Figure 21.5 Lamé line for thick cylinder.
or
1
+ —
(0.22 d? 0.22 4}
2/ x 2l = 15
1 _ 1 0.22 d;
2 2
0.2 d,
d; + 02
- - 1.5
dz = 0.22}
d2 2 _ 2 2
or 2,022 = 15(d2—02 )
or 02%(1+15) = d3(15-1)

521
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d;

d;

Thick circular cylinders, discs and spheres

= 02m?

0447 m

H

Problem 21.2  If the cylinder in the previous problem were subjected to an external pressure

Solution

1
)

d,

Now

of 100 MPa and an internal pressure of zero, what would be the maximum
magnitude of stress.

= 25 and—l; = 5,
d;

hence the Lameé line would take the form of Figure 21.6.

+ve stress
- 25 ? 25 o
| . 5 I 5
00 |
hoop stress
Radial stress \; - o8
+ve stress

Figure 21.6 Lamé line for external pressure case.

By equating similar triangles,

100 _ Oy,

25

- 5) 25 + 25

where oy, is the internal stress which has the maximum magnitude
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. 250 %100 o 550 MPa

C..
8/ 2 0

Problem 21.3 A steel disc of external diameter 0.2 m and internal diameter 0.1 m is shrunk
onto a solid steel shaft of external diameter 0.1 m, where all the dimensions are

nominal. If the interference fit, based on diameters, between the shaft and the

disc at the common surface is 0.2 mm, determine the maximum stress.
Forstee, E = 2x 10" N/m*,v = 0.3

Solution

Consider the steel disc. In this case the radial stress on the internal surfaces is the unknown P,
Hence, the Lameé line will take the form shown in Figure 21.7.

+ve stress
PC |

"{: \

100 100 |

-ve stress

Figure 21.7 Lamé line for steel ring.
Let,

Og,q = hoop stress (maximum stress) on the internal surface of the disc
0,,; = radial stress on the internal surface of the disc
Equating similar triangles, in Figure 21.7

Pc Gald

(100 - 25) 100 + 25

125 P
Gy = £ = 1667 P,
75
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Consider now the solid shaft. In this case, the internal diameter of the shaft is zero and as 1/0° -
=, the Lamé line must be horizontal or the shaft's hoop stress will be infinity, which is impossible;

see Figure 21.8.

-t Oy

wl

8
-——_—t 1 _

~ ve stress

Figure 21.8 Lamé line for a solid shaft.

Let
P, = external pressure on the shaft

[

. 6, = 0y = —P_(everywhere) (21.20)

Let,
w, = increase in the radius of the disc at its inner surface

w. = increase in the radius of the shaft at its outer surface

Now, applying the expression

to the inner surface of the disc
EwW,

—— [e] - VGO
681d 1d
5 x 1072 i

but,

therefore
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25100 xwy b 03 p

-2
5% 10 (21.21)
w, = 4918 x 1077 P,
Similarly, for the shaft
Ew,
- .5 = 69: - VCF”
5 x 1072
but Cgs = 0p = Pc
2 x 10" w,
——— = -P_(1 - V)
5 x 102
w, = -1.75 x 1078 P, (21.22)
but wy-w, = 2x107/2

(4918 x 107" +1.75x 10°*) P, = 1 x 10

=P, = 150 MPa

Maximum stress is

Cga = 1.667 P, = 250 MPa

21.4 Compound tubes

A compound tube is usually made from two cylinders of different materials where one is shrunk
onto the other.

Problem 21.4 A circular steel cylinder of external diameter 0.2 m and internal diameter 0.1
m is shrunk onto a circular aluminium alloy cylinder of external diameter 0.1
m and internal diameter 0.05 m, where the dimensions are nominal.
Determine the radial pressure at the common surface due to shrinkage alone,
so that when there is an internal pressure of 300 MPa, the maximum hoop
stress in the inner cylinders is 150 Mpa. Sketch the hoop stress distributions.
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Forsteel, E, = 2 x 10" N/m’, v, = 0.3

For aluminium alloy, £, = 6.7 x 10'"° N/m%, v, = 0.32

Solution
o, = the hoop stress due to pressure alone
o, = the hoop stress due to shrinkage alone
Gy, = hoop stress in the steel on the 0.2 m diameter
Gy, = hoop stress in the steel on the 0.1 m diameter
0., = Tradial stress in the steel on the 0.2 m diameter
6, = radial stress in the steel on the 0.1 m diameter
Gg;, = hoop stress in the aluminium on the 0.1 m diameter
o,,. = radial stress in the aluminium on the 0.1 m diameter
Ogs, = hoop stress in the aluminum on the 0.05 m diameter
o = radial stress in the aluminium on the 0.05 m diameter

Consider first the stress due to shrinkage alone, as shown in Figures 21.9 and 21.10.

\P!\\ 0‘95.13 Oo553
I i -

Figure 21.9 Lamé line for aluminium alloy tube.
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—- o o553

100 | 100

Figure 21.10 Lamé line for steel tube, due to shrinkage with respect to e.

Equating similar triangles in Figure 21.9.

02,50 _ —PCS
400 + 400 400 - 100 (21.23)
Ops, = -2.667 P
Similarly, from figure 21.9,
c;, la _ _P:
400 + 100 400 - 100 (21.24)
Og1e = -1.667 P
Equating similar triangles in Figure 21.10.
Gg’ ls _ ch
100 + 25 100 - 25 (21.25)
Oy, = 1.667 P;

Consider the stresses due to pressure alone

P

c

internal pressure

PP

pressure at the common surface due to pressure alone

The Lame lines will be as shown in Figures 21.11 and 21.12.
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0912
// Tghs;

0 -
o L — 0
/ 35 25
P |
400 400

Figure 21.11 Lamé line in aluminium alloy, due to pressure alone.

/

25

25

100

100

ogP 15

Figure 21.12 Lamé line for steel, due to pressure alone.

Equating similar triangles in Figure 21.11.

P-PP  og+ P
400-100 400+ 100

300- P*  og,,+ 300
300 500

or

or 64, =200-1667P°
Similarly, from Figure 21.11,

P-P’  Ggs.t P

300 800

(21.26)
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300- BF  ogs,+ 300

(21.27)
300 800
or oy, = §(300- P’)-300
0,5a 3 c
Ggsq =500 - 2.667 P
Similarly , from Figure 21.12,
P
100+25 100-25
o4 = 1667 PF
Owing to pressure alone, there is no interference fit, so that
wl = w’
Now
E w’
(;(;‘;‘ = c;ls+vsPcP
or wh = 99 (1667 P7 + 03 PF)
2 x 10"
or w, = 4917x1071 pF (21.29)
Similarly
E, w,
005~ Cews Vel
0.05
P P P
or w, =————|0g,, + 032P.
? 7 67x 10‘°( ola ‘ )
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0.05 , ,
=m(200—l.6671’c +032P") (21.30)

w! =1493x107- 1.0x1072 PP
Equating (21.29) and (21.30)

4917x107° PP = 1493x107'°-1.0x 107" (21.31)

.. PY = 100 MPa

<

Substituting equation (21.31) into equations (21.26) and (21.27)

500 - 2.667 x 100

Gy s, 233.3 MPa (21.32)

1l

o, = 200 - 1.667 x 100 = 33.3 MPa (21.33)

Now the maximum hoop stress in the inner tube lies either on its internal surface or its external
surface, so that either

Cora * Ghi = 150 (21.34)

or

Opsa * Opsg = 150 (21.35)

Substituting equations (21.32) and (21.24) into equation (21.34), we get
150

333 - 1.667 P;

or P’ -70 MPa

<

"

Substituting equations (21.33) and (21.23) into equation (21.35), we get

2333 - 2667 P = 150

~ P} = 312 MPa

c
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le. P’ = 31.2 MPa, as P, cannot be negative!
P =P  + Pl =312 +100 = 1312 MPa (21.36)
8 #
09,2.1' Pc + Pc
25 + 25 100 - 25
G, , 87.5 MPa
K P
oo, = 1667 (P + P} = 2187 MPa
Gy = 200 - 1.667 (P’ + P[) = -18.7 MPa
Ggsa = 500 - 2.667 (P’ + P[) = 150 MPa
i 2187
N\
N
al alloy N
150 ~ ~
\ ~ —~
\ steel —87.5
AN
0 N .
0.05m ~ 0.01m 0.2m
187
Figure 21.13 Hoop stress distribution.
21.5 Plastic deformation of thick tubes
The following assumptions will be made in this theory:
1. Yielding will take place according to the maximum shear stress theory, (Tresca).
2. The material of construction will behave in an ideally elastic-plastic manner.
3. The longitudinal stress will be the ‘minimax’ stress in the three-dimensional system of

stress.
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For this case, the equilibrium considerations of equation (21.13) apply, so that

do, 0 21.37
G, -~ G - 7r = .
[} r i ( )

Now, according to the maximum shear stress criterion of yield,

G, — G0, = ©

p
(21.38)
6, = G, +0,
Substituting equation (21.38) into equation (21.37),
do,
6, *+6, -6 -r— =0
dr 21.39
do, = o, — ( )
r
6, = O, Inr +C
For the case of the partially plastic cylinder shown in Figure 21.14,
at r = R, o, = -P,
Substituting this boundary condition into equation (21.39), we get
-P, = o, ImR, +C
therefore
C = -o,InR, - P,
and,
’
6, = g, [—] - P, (21.40)
- Rz

Similarly, from equation (21.38),

o, = o, {1 + In RL)} - P, (21.41)
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where,
R, = internal radius
R, = outer radius of plastic section of cylinder
R, = external radius
P, = internal pressure
P, = extemal pressure

Elastic
Plastic

7
&

%,
2R3

Figure 21.14 Partially plastic cylinder.

The vessel can be assumed to behave as a compound cylinder, with the internal portion
behaving plastically, and the external portion elastically. The Lamé line for the elastic portion of
the cylinder is shown in Figure 21.15.

I / X
_— — Tge
0 - 0
Rz | R
PZ 3 3
2
RS ! 1R

Figure 21.15 Lamé line for elastic zone.
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534
In Figure 21.15,
G,, = elastic hoop stress atr =R,

so that according to the maximum shear stress criterion of yield on this radius,
(21.42)

c_vp = 692+P2

From Figure 21.15
69e

therefore
(21.43)

66«:
Substituting equation (21.43) into equation (21.42),
(21.44)

P, = o[RS - R}) ! 2R])

2

Consider now the portion of the cylinder that is plastic. Substituting equation (21.44) into equation

(21.41), the stress distributions in the plastic zone are given by:

2 2
R Ry - R,
6, = _cvp In [—ZJ + —( £l 2) (2145)

r 2R}

R} + R]

o, = ©, ) 1n[_2) (21.46)
R 2
2R; r

To find the pressure to just cause yield, put

= -P, when r = R

o, =
where P, is the internal pressure that causes the onset of yield. Therefore,
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2 2
P - i I B 2147
1= S || | (21.47)

in (21.61), so that,
P, = o, (R - R}/ [2R]) (21.48)

To determine the plastic collapse pressure P, put R, = R, in equation (21.47), to give
R

P, = oypln[—Ri] (21.49)
1

To determine the hoop stress distribution in the plastic zone, oy, it must be remembered that

G, = G4 - O,
therefore
Gp = G, {1 +In(Ry/ R (21.50)

Plots of the stress distributions in a partially plastic cylinder, under internal pressure, are shown
in Figure 21.16.

Plastic | Hastic I
one zone ]
| |
| |
|
«~ I }
e ] |
. | }
— -\ |
I\ |
PN |
| ~N ]
I >0 ey
Ry Ry R

Figure 21.16 Stress distribution plots.
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Problem 21.5 A circular cylinder of 0.2 m external diameter and of 0.1 m internal diameter
is shrunk onto another circular cylinder of external diameter 0.1 m and of bore
0.05 m, where the dimensions are nominal. If the interference fit is such that
when an internal pressure of 10 MPa is applied to the inner face of the inner
cylinder, the inner face of the inner cylinder is on the point of yielding. What
internal pressure will cause plastic penetration through half the thickness of the
inner cylinder. It may be assumed that the Young's modulus and Poisson's ratio
for both cylinders is the same, but that the outer cylinder is made of a higher
grade steel which will not yield under these conditions. The yield stress of the
inner cylinder may be assumed to be 160 MPa.

Solution

The Lamé line for the compound cylinder at the onset of yield is shown in Figure 21.17.

///
-
J/,/ /"/
‘ /,/ ! v”"
P —r
| 2 1

100 = 25 25
17/ 100 100

400 400

Figure 21.17 Lamé line for compound cylinder.

In Figure 21.17,
0, = hoop stress on inner surface of inner cylinder.
0, = hoop stress on outer surface of inner cylinder.
6, = hoop stress on inner surface of outer cylinder.

As yield occurs on the inner surface of the inner surface when an internal pressure of 50 MPa is
applied,

6, - (-100) = 160

» 6, = 60 MPa

Equating similar triangles in Figure 21.17, we get
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G, + 100 100 - P,

400 + 400 400 - 100

_1%@. = 100 - P,
(21.51)
.~ P, = 40 MPa
Similarly from Figure 21.17
o, + 100 100 - P,
400 + 100 400 - 100 (21.52)
o, = 0
Also from Figure 21.17,
03 _ Pc
100 + 25 100 - 25
(21.53)
se, = % - 66.7 MPa

Consider, now, plastic penetration of the inner cylinder to a diameter 0.075. The Lamé line in the
elastic zones will be as shown in Figure 21.17. From Figure 21.18,

G, + P; = 160

Figure 21.18 Lamé line in elastic zones.
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therefore
. G = 160 - P, (21.54)
Similarly
P, -P o, + P
22 . 70 180 (21.55)
400 - 100 400 + 400 800
~ Py = 60 + P, (21.56)
Also from Figure 21.18
c P
u = 2 (21.57)
100 + 25 100 - 25
or o, = 1.667P, (21.58)
Substituting equation (21.56) into equation (21.58), we get
o, = 1.667 (P, - 60)
or o, = 1.667 P; -100
Also from equation (21.55)
P Bk 160
100 + 400 400 - 100 800
.~ 65 = 100 - P, (21.59)
Now,
’
w = — (o, - vo
E ( 8 r)
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or

Substituting equations (21.52), (21.53), (21.58) and (21.59) into the above, we get

100 - P, -0 = 1667 P, - 100 - 66.7
or 2.667 P, = 100 + 100 + 66.7
P, = 100

Consider now the yielded portion

c = cyplnr+c

r

s, = 160

at r = 0.0375 m,

6, = -P, = -100
or  -100 = 160 In (0.0375) + C
C = -100 + 5253
2 C = 4253

Now, at r = 0.025m,

-P = 160 In (0.025) + 4253
= -590.2 + 4253

P = 1649 MPa
which is the pressure to cause plastic penetration.
Problem 21.6  Determine the internal pressure that will cause complete plastic collapse of the

compound cylinder given that the yield stress for the material of the outer
cylinder is 700 MPa.
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Solution

Now,

R3
P, = o, In|l=2 (21.60)

_ R, R,
= qwgln E; + qwlln .E:

= 700 [2L] + 160 In | 203
| 0.0

= 485 + 46

P, = 531 MPa

which is the plastic collapse pressure of the compound cylinder.

21.6 Thick spherical shells

Consider a thick hemispherical shell element of radius r, under a compressive radial stress P, as
shown in Figure 21.19.

‘ P+dP

Figure 21.19 Thick hemispherical shell element.
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Let w be the radial deflection at any radius r,
so that
hoop strain = w/r

and

aw
radial strain = —
r

From three-dimensional stress—strain relationships,

EX = 6-vo+vP (21.61)
r
and
dw
E— = -P-voc -vo (21.62)
dr
= -P -2vo
Now
Ew = 6 r-vo r+vP r

which, on differentiating with respect to r, gives

Ed_w
dr

1]

do do drP
0+r——vc—vr—+vP+vr—d7

(1 —v)(c—rﬂ) +V(P +r£)
dr dr

Equating (21.62) and (21.63),

-P-2ve = (1 -v) o-r3) . ylps,r92
dr dr

(21.63)

or

(l+v)(c+P)+r(l—v);+vr—=0 (21.64)
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Considering now the equilibrium of the hemispherical shell element,

o x 2mr x dr = P x w2 —(P+dP) x m x (r+ar)’ (21.65)

Neglecting higher order terms, equation 21.65 becomes

dpP
c+P = (~-r2) — .
p» (21.66)

Substituting equation (21.66) into equation (21.64),
-(r/2) (dP/dr) (1 + v) + r (1 - v) (do/dr) + vr (dP/dr) = ©

or

P _
5 0 (21.67)

1
a2
which on integrating becomes,

c-P2 = 4 (21.68)

Substituting equation (21.68) into equation (21.66)

3PI2 + A = (-r/2) (dP/dr)

or
3
Ldpxrd) o,
r2 dr
or
3
AP xrd) g
dr

which on integrating becomes,

Pxr® = -24r33 + B

or
P = 243 +B/¥ (21.69)
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and 6 = 24/3+B/2P) (21.70)

21.7 Rotating discs

These are of much importance in engineering components that rotate at high speeds. If the speed

is high enough, such components can shatter when the centrifugal stresses become too large. The

theory for thick circular cylinders can be extended to deal with problems in this category.
Consider a uniform thickness disc, of density p, rotating at a constant angular velocity o.

From
dw
E— =0, -vo 21.71
" : @1.71)
and,
EZ =¢, - vo, (21.72)
r
or,
Ew =o0y,xr -ve, xr (21.73)

Differentiating equation (21.73) with respect to 7,

E—= o4 +r e—vc—vrdr' (21.74)

Equating (21.71) and (21.74),

do do
L =0 (21.75)
dr

(6o - o) (1 +v) fr

Considering radial equilibrium of an element of the disc, as shown in Figure 21.20,

ZGSXersin(?) +0, xrxd

-0, +do,)(r + dr)d8 = p x @ x r’ x dr x d
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//(Or +do,)(r +dr)de

ds
Figure 21.20 Element of disc.
In the limit, this reduces to
do
6, -6, -r— = poir?
dr

Substituting equation (21.76) into equation (21.75),

do do do
r__'_+p(ozr2 (1+v)+r—9-vr-—r=0
dr dr

or,

do do
98 + r - _pm2r2 (1 + v)
dr dr

which on integrating becomes,

G, + 6, = {pa?¥2) (1 +v) + 24

Subtracting equation (21.76) from equation (21.77),

do
26, + r — = ~(pa?2) 3 +v) + 24
dr
or,
1 d(cr x "z) po’ r2 (3 +v)

_— . = - =+ 24
r dr 2

(21.76)

(21.77)
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which on integrating becomes,

o, r* =-(po?r*/8)(3+v)+ 4r* - B (21.78)
or
o, = A-B/r*- (3+v)(po?r?/8)
and,
oo = A+ B/r*- (1+3)(po*r? /8) (21.79)

Problem 21.7 Obtain an expression for the variation in the thickness of a disc, in its radial
direction, so that it will be of constant strength when it is rotated at an angular
velocity ©.

Solution
Let,
t = thickness at centre
t = thickness at a radius r
t+dt = thickness at a radius r +dr
c = stress = constant (everywhere)

Consider the radial equilibrium of an element of this disc at any radius 7 as shown in Figure 21.21.

pmz.rz.de.dr.t

1 o(r + dr).do.(t + di)

Figure 21.21 Element of constant strength disc.
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Resolving forces radially

ZGXIXdrSiD(%e-) +otrd® = ofr + dr) (¢ + dt) d® + pw’r’ d8 dr

Neglecting higher order terms, this equation becomes

otdt = ordr + otdr + pw’redr

or

dr 2
— = -pwortlc
dr P

which on integrating becomes,

Int = -pw’ri(20) + In C
or
t = Ce(-pmzr2/2c)
Now,atr =0, ¢t =¢t, .C =1¢,
Hence,
t = gelee’rio) (21.80)

21.7.1 Plastic coliapse of rotating discs

Assume that 6, > ¢,, and that plastic collapse occurs when

06 = O'yp

where 6, is the yield stress.

Let R be the external radius of the disc. Then,

from equilibrium considerations,

do, )
O'yp - O'r -r E- = pwr

2
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or,

f rde, = f {cvp -6, - pa)zrz} dr
Integrating the left-hand side of the above equation by parts,
r c,—fcr dr = o, r—fcr dr po*r33 + A

therefore

6, = o, - po’r¥3 + Alr (21.81)

For a solid disc, at r = 0, 6, # o0, or the disc will collapse at small values of m. Therefore
A =0

and
- 2.2
6, = G, - pOr /3

at r = R, 6, = 0; therefore

_ _ 2p2
0 = o, pw°R*/3

(21.82)

where,  1s the angular velocity of the disc, which causes plastic collapse of the disc.

For an annular disc, of internal radius R, and external radius R,, suitable boundary conditions
for equation (21.81) are:

at r = R,, 6, = 0; therefore

A = [po’R}3 - 6,k
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2
2o, = o, - por¥3 + [polRY3 - o ) (RN (21.83)
at r = R,, 0,= 0; therefore

0 = o, - PR3 + (pmlezB - Gyp) (R/R,)

Hence, ® = {30”’) R - R) (21.84)

P (R; - Rls)

21.8 Collapse of rotating rings

Consider the radial equilibrium of the thin semicircular ring element shown in Figure 21.21.

pw R 3, do

/

do

Figure 21.21 Ring element.

Let,

]
1}

cross-sectional area of ring

P
i

mean radius of ring
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Resolving forces vertically

o, xax2 = f”pu)szadG sin@
0

pw’ R? a [-cos8fy

2pw’ R? a
.6y = po’R?
at collapse,

Gy = Oy,

co=L |2
R P

where o is the angular velocity required to fracture the ring.
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(21.85)



