
I Tension and compression: 
direct stresses 

1 .I Introduction 

The strength of a material, whatever its nature, is defined largely by the internal stresses, or 
intensities of force, in the material. A knowledge of these stresses is essential to the safe design 
of a machine, aircraft, or any type of structure. Most practical structures consist of complex 
arrangements of many component members; an aircraft fuselage, for example, usually consists of 
an elaborate system of interconnected sheeting, longitudmal stringers, and transverse rings. The 
detailed stress analysis of such a structure is a difficult task, even when the loading condhons are 
simple. The problem is complicated further because the loads experienced by a structure are 
variable and sometimes unpredictable. We shall be concerned mainly with stresses in materials 
under relatively simple loading conditions; we begin with a discussion of the behaviour of a 
stretched wire, and introduce the concepts of direct stress and strain. 

1.2 Stretching of a steel wire 

One of the simplest loading conditions of a material is that of tension, in which the fibres of the 
material are stretched. Consider, for example, a long steel wire held rigidly at its upper end, Figure 
1.1, and loaded by a mass hung from the lower end. If vertical movements of the lower end are 
observed during loading it will be found that the wire is stretched by a small, but measurable, 
amount from its original unloaded length. The material of the wire is composed of a large number 
of small crystals which are only visible under a microscopic study; these crystals have irregularly 
shaped boundaries, and largely random orientations with respect to each other; as loads are applied 
to the wire, the crystal structure of the metal is distorted. 

Figure 1.1 Stretching of a steel wire under end load. 
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For small loads it is found that the extension of the wire is roughly proportional to the applied load, 
Figure 1.2. This linear relationship between load and extension was discovered by Robert Hooke 
in 1678; a material showing this characteristic is said to obey Hooke's law. 

As the tensile load in the wire is increased, a stage is reached where the material ceases to show 
this linear characteristic; the corresponding point on the load-extension curve of Figure 1.2 is 
known as the limit of proportionality. If the wire is made from a hgh-strength steel then the 
load-extension curve up to the breakingpoint has the form shown in Figure 1.2. Beyond the limit 
of proportionality the extension of the wire increases non-linearly up to the elastic limit and, 
eventually, the breaking point. 

The elastic h u t  is important because it divides the load-extension curve into two regions. For 
loads up to the elastic limit, the wire returns to its original unstretched length on removal of the 
loads; tlus properly of a material to recover its original form on removal of the loads is known as 
elasticity; the steel wire behaves, in fact, as a still elastic spring. When loads are applied above the 
elastic limit, and are then removed, it is found that the wire recovers only part of its extension and 
is stretched permanently; in tlus condition the wire is said to have undergone an inelastic, or 
plastic, extension. For most materials, the limit of proportionality and the elastic limit are assumed 
to have the same value. 

In the case of elastic extensions, work performed in stretching the wire is stored as strain 
energy in the material; this energy is recovered when the loads are removed. During inelastic 
extensions, work is performed in makmg permanent changes in the internal structure of the 
material; not all the work performed during an inelastic extension is recoverable on removal of the 
loads; this energy reappears in other forms, mainly as heat. 

The load-extension curve of Figure 1.2 is not typical of all materials; it is reasonably typical, 
however, of the behaviour of brittle materials, which are discussed more fully in Section 1.5. An 
important feature of most engineering materials is that they behave elastically up to the limit of 
proportionality, that is, all extensions are recoverable for loads up to this limit. The concepts of 
linearity and elasticity' form the basis of the theory of small deformations in stressed materials. 

Figure 1.2 Load-extension curve for a steel wire, showing the limit of linear-elastic 
behaviour (or limit of proportionality) and the breaking point. 

'The definition of elasticity requires only that the extensions are recoverable on removal of the loads; this does not preclus 
the possibility of a non-linear relation between load and extension . 
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1.3 Tensile and compressive stresses 

The wire of Figure 1.1 was pulled by the action of a mass attached to the lower end; in this 
condition the wire is in tension. Consider a cylindrical bar ab, Figure 1.3, which has a uniform 
cross-section throughout its length. Suppose that at each end of the bar the cross-section is dwided 
into small elements of equal area; the cross-sections are taken normal to the longitudinal axis of 
the bar. To each of these elemental areas an equal tensile load is applied normal to the cross- 
section and parallel to the longitudinal axis of the bar. The bar is then uniformly stressed in 
tension. 

Suppose the total load on the end cross-sections is P; if an imaginary break is made 
perpendicular to the axis of the bar at the section c, Figure 1.3, then equal forces P are required at 
the section c to maintain equilibrium of the lengths ac and cb. This is equally true for any section 
across the bar, and hence on any imaginary section perpendicular to the axis of the bar there is a 
total force P. 

When tensile tests are carried out on steel wires of the same material, but of different cross- 
sectional area, the breaking loads are found to be proportional approximately to the respective 
cross-sectional areas of the wires. This is so because the tensile strength is governed by the 
intensity of force on a normal cross-section of a wire, and not by the total force. Thls intensity of 
force is known as stress; in Figure 1.3 the tensile stress (T at any normal cross-section of the bar 
is 

P 
A (1.1) ( T = -  

where P is the total force on a cross-section and A is the area of the cross-section. 

Figure 1.3 Cylindrical bar under uniform tensile stress; there is a similar state of 
tensile stress over any imaginary normal cross-section. 
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In Figure 1.3 uniform stressing of the bar was ensured by applying equal loads to equal small areas 
at the ends of the bar. In general we are not dealing with equal force intensities of this type, and 
a more precise definition of stress is required. Suppose 6A is an element of area of the cross- 
section of the bar, Figure 1.4; if the normal force acting on thls element is 6P, then the tensile stress 
at this point of the cross-section is defined as the limiting value of the ratio (6P/6A) as 6A becomes 
infinitesimally small. Thus 

. . 6 P  d P  
is = Limit -= - 

6A-0 6 A  dA ( 1 4  

Thls definition of stress is used in studying problems of non-uniform stress distribution in 
materials. 

Figure 1.4 Normal load on an element of area of the cross-section. 

When the forces P in Figure 1.3 are reversed in direction at each end of the bar they tend to 
compress the bar; the loads then give rise to compressive stresses. Tensile and compressive 
stresses are together referred to as direct (or normal) stresses, because they act perpendicularly to 
the surface. 

Problem 1.1 A steel bar of rectangular cross-section, 3 cm by 2 cm, carries an axial load of 
30 kN. Estimate the average tensile stress over a normal cross-section of the 
bar. 
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Solution 

The area of a normal cross-section of the bar is 

Tension and compression: direct stresses 

A = 0.03 x 0.02 = 0.6 x lO-3 m2 

The average tensile stress over this cross-section is then 

P - 3 o x  io3 
A 0.6 x 10-~ 

0 = - -  = ~ o M N / ~ ’  

Problem 1.2 A steel bolt, 2.50 cm in diameter, cames a tensile load of 40 kN. Estimate the 
average tensile stress at the section a and at the screwed section b, where the 
diameter at the root of the thread is 2.10 cm. 

Solution 

The cross-sectional area of the bolt at the section a is 

Il 
Aa = - (0.025)2 = 0.491 x lO-3  m2 

4 

The average tensile stress at A is then 

P 
A, 0.491 x lO-3 

40 x io3 
= 81.4 M N h 2  = , = - =  

The cross-sectional area at the root of the thread, section b, is 

A, = - (0.021)2 = 0.346 x lO-3 m2 
x 

4 

The average tensile stress over this section is 

40 x io3 
- = 115.6 M N h 2  

P 
A, 0.346 x lO-3 ‘ b  = - -  
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1.4 Tensile and compressive strains 

In the steel wire experiment of Figure 1.1 we discussed the extension of the whole wire. If we 
measure the extension of, say, the lowest quarter-length of the wire we find that for a given load 
it is equal to a quarter of the extension of the whole wire. In general we find that, at a given load, 
the ratio of the extension of any length to that length is constant for all parts of the wire; this ratio 
is known as the tensile strain. 

Suppose the initial unstrained length of the wire is Lo, and the e is the extension due to 
straining; the tensile strain E is defined as 

e 
(13  E = -  

LO 

Thls definition of strain is useful only for small distortions, in which the extension e is small 
compared with the original length Lo; this definition is adequate for the study of most engineering 
problems, where we are concerned with values of E of the order 0.001, or so. 

If a material is compressed the resulting strain is defined in a similar way, except that e is the 
contraction of a length. 

We note that strain is a Ron-dimensional quantity, being the ratio of the extension, or 
contraction, of a bar to its original length. 

Problem 1.3 A cylindrical block is 30 cm long and has a circular cross-section 10 cm in 
diameter. It carries a total compressive load of 70 kN, and under this load it 
contracts by 0.02 cm. Estimate the average compressive stress over a normal 
cross-section and the compressive strain. 

Solution 

The area of a normal cross-section is 

4 
?c 

A = -  (0.10)2 = 7.85 x 10-’m2 
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The average compressive stress over this cross-section is then 
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P 70 x io3 
A 7.85 x 10-~  = 8.92MN/m2 - = - -  - 

The average compressive strain over the length of the cylinder is 

0.02 x 1o-2 = 0.67 x 10-3 E =  
30 x lo-* 

1.5 Stress-strain curves for brittle materials 

Many of the characteristics of a material can be deduced from the tensile test. In the experiment 
of Figure 1.1 we measured the extensions of the wire for increasing loads; it is more convenient 
to compare materials in terms of stresses and strains, rather than loads and extensions of a 
particular specimen of a material. 

The tensile stress-struin curve for a hgh-strength steel has the form shown in Figure 1 3. The 
stress at any stage is the ratio of the load of the original cross-sectional area of the test specimen; 
the strain is the elongation of a unit length of the test specimen. For stresses up to about 750 
MNlm2 the stress-strain curve is linear, showing that the material obeys Hooke’s law in this range; 
the material is also elastic in this range, and no permanent extensions remain after removal of the 
stresses. The ratio of stress to strain for this linear region is usually about 200 GN/m2 for steels; 
this ratio is known as Young’s modulus and is denoted by E. The strain at the limit of 
proportionality is of the order 0.003, and is small compared with strains of the order 0.100 at 
fracture. 

Figure 1.5 Tensile stress-strain curve for a high-strength steel. 
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We note that Young’s modulus has the units of a stress; the value of E defines the constant in the 
linear relation between stress and strain in the elastic range of the material. We have 

for the linear-elastic range. If P is the total tensile load in a bar, A its cross-sectional area, and Lo 
its length, then 

(J P I A  
E e I L ,  

E = - = -  

where e is the extension of the length Lo. Thus the expansion is given by 

PLO e = -  
EA 

If the material is stressed beyond the linear-elastic range the limit of proportionality is 
exceeded, and the strains increase non-linearly with the stresses. Moreover, removal of the stress 
leaves the material with some permanent extension; h range is then bothnon-linear and inelastic. 
The maximum stress attained may be of the order of 1500 MNlm’, and the total extension, or 
elongation, at this stage may be of the order of 10%. 

The curve of Figure 1.5 is typical of the behaviour of brittle materials-as, for example, area 
characterized by small permanent elongation at the breaking point; in the case of metals this is 
usually lo%, or less. 

When a material is stressed beyond the limit of proportionality and is then unloaded, permanent 
deformations of the material take place. Suppose the tensile test-specimen of Figure 1.5 is stressed 
beyond the limit of proportionality, (point a in Figure lA), to a point b on the stress-strain 
diagram. If the stress is now removed, the stress-strain relation follows the curve bc; when the 
stress is completely removed there is a residual strain given by the intercept Oc on the &-axis. If 
the stress is applied again, the stress-strain relation follows the curve cd initially, and finally the 
curve df to the breaking point. Both the unloading curve bc and the reloading curve cd are 
approximately parallel to the elastic line Oa; they are curved slightly in opposite directions. The 
process of unloading and reloading, bcd, had little or no effect on the stress at the breaking point, 
the stress-strain curve being interrupted by only a small amount bd, Figure 1.6. 

The stress-strain curves of brittle materials for tension and compression are usually similar in 
form, although the stresses at the limit of proportionality and at fracture may be very different for 
the two loading conditions. Typical tensile and compressive stress-strain curves for concrete are 
shown in Figure 1.7; the maximum stress attainable in tension is only about one-tenth of that in 
compression, although the slopes of the stress-strain curves in the region of zero stress are nearly 
equal. 
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Figure 1.6 Unloading and reloading of a material in the inelastic range; the paths bc 
and cd are approximately parallel to the linear-elastic line oa. 

Figure 1.7 Typical compressive and tensile stress-strain cuwes for concrete, showing 
the comparative weakness of concrete in tension. 

1.6 Ductile materials /see Section 1.8) 

A brittle material is one showing relatively little elongation at fracture in the tensile test; by 
contrast some materials, such as mild steel, copper, and synthetic polymers, may be stretched 
appreciably before breaking. These latter materials are ductile in character. 

If tensile and compressive tests are made on a mild steel, the resulting stress-strain curves are 
different in form from those of a brittle material, such as a high-strength steel. If a tensile test 
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specimen of mild steel is loaded axially, the stress-strain curve is linear and elastic up to a point 
a, Figure 1.8; the small strain region of Figure 1.8. is reproduced to a larger scale in Figure 1.3. 
The ratio of stress to strain, or Young’s modulus, for the linear portion Oa is usually about 
200 GN/m2, ie, 200 x109 N/m2. The tensile stress at the point a is of order 300 MN/m2, i.e. 
300 x lo6 N/m2. If the test specimen is strained beyond the point a, Figures 1.8 and 1.9, the stress 
must be reduced almost immediately to maintain equilibrium; the reduction of stress, ab, takes 
place rapidly, and the form of the curve ab is lfficult to define precisely. Continued straining 
proceeds at a roughly constant stress along bc. In the range of strains from a to c the material is 
said to yield; a is the upper yieldpoint, and b the lower yieldpoint. Yielding at constant stress 
along bc proceeds usually to a strain about 40 times greater than that at a; beyond the point c the 
material strain-hardens, and stress again increases with strain where the slope from c to d is about 
1150th that from 0 to a.  The stress for a tensile specimen attains a maximum value at d if the stress 
is evaluated on the basis of the original cross-sectional area of the bar; the stress corresponding to 
the point d is known as the ultimate stress, (T,,,, of the material. From d to f there is a reduction in 
the nominal stress until fracture occurs at$ The ultimate stress in tension is attained at a stage 
when necking begins; this is a reduction of area at a relatively weak cross-section of the test 
specimen. It is usual to measure the diameter of the neck after fracture, and to evaluate a true stress 
at fracture, based on the breakmg load and the reduced cross-sectional area at the neck. Necking 
and considerable elongation before fracture are characteristics of ductile materials; there is little 
or no necking at fracture for brittle materials. 

Figure 1.8 Tensile stress-strain curve for an 
annealed mild steel, showing the drop in stress at 
yielding from the upper yield point a to the lower 

yield point b. 

Figure 1.9 Upper and lower yield points of a 
mild steel. 

Compressive tests of mild steel give stress-strain curves similar to those for tension. If we 
consider tensile stresses and strains as positive, and compressive stresses and strains as negative, 
we can plot the tensile and compressive stress-strain curves on the same diagram; Figure 1.10 
shows the stress-strain curves for an annealed mild steel. In determining the stress-strain curves 
experimentally, it is important to ensure that the bar is loaded axially; with even small eccentricities 
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of loading the stress distribution over any cross-section of the bar is non-uniform, and the upper 
yield point stress is not attained in all fibres of the material simultaneously. For this reason the 
lower yield point stress is taken usually as a more realistic definition of yielding of the material. 

Some ductile materials show no clearly defined upper yield stress; for these materials the limit 
ofproportionality may be lower than the stress for continuous yielding. The termyieldstress refers 
to the stress for continuous yielding of a material; this implies the lower yield stress for a material 
in which an upper yield point exists; the yield stress is denoted by oy. 

Tensile failures of some steel bars are shown in Figure 1.1 1; specimen (ii) is a brittle material, 
showing little or no necking at the fractured section; specimens (i) and (iii) are ductile steels 
showing a characteristic necking at the fractured sections. The tensile specimens of Figure 1.12 
show the forms of failure in a ductile steel and a ductile light-alloy material; the steel specimen (i) 
fails at a necked section in the form of a ‘cup and cone’; in the case of the light-alloy bar, two 
‘cups’ are formed. The compressive failure of a brittle cast iron is shown in Figure 1.13. In the 
case of a mild steel, failure in compression occurs in a ‘barrel-lke’ fashion, as shown in 
Figure 1.14. 

Figure 1.10 Tensile and compressive stress-strain curves for an annealed 
mild steel; in the annealed condition the yield stresses in tension and 

Compression are approximately equal. 

The stress-strain curves discussed in the preceding paragraph refer to static tests carried out at 
negligible speed. When stresses are applied rapidly the yield stress and ultimate stresses ofmetallic 
materials are usually raised. At a strain rate of 100 per second the yield stress of a mild steel may 
be twice that at negligible speed. 
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(ii) 

(iii) 

Figure 1.11 Tensile failures in steel specimens showing necking in mild steel, (i) and (iii), 
and brittle fracture in high-strength steel, (ii). 

(ii) 

Figure 1.12 Necking in tensile failures of ductile materials. 
(i) Mild-steel specimen showing ‘cup and cone’ at the broken section. 
(ii) Aluminium-alloy specimen showing double ‘cup’ type of failure. 

Figure 1.13 Failure in compression of a 
circular specimen of cast iron, showing fracture 

on a diagonal plane. 

Figure 1.14 Barrel-like failure in a compressed 
specimen of mild steel. 
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Problem 1.4 

Tension and compression: direct stresses 

A tensile test is carried out on a bar of mild steel of diameter 2 cm. The bar 
yields under a load of 80 kN. It reaches a maximum load of 150 kN, and 
breaks finally at a load of 70 kN. 

Estimate: 

(1) 
(ii) the ultimate tensile stress; 
(iii) 

the tensile stress at the yield point; 

the average stress at the breakmg point, if the diameter of the 
fractured neck is 1 cm. 

Solution 

The original cross-section of the bar is 

A 
= - (0.020)2 = 0.314 x m z  

4 

(i) The average tensile stress at yielding is then 

= 254 MNIm’, p y  - 80 x 103 
% = - -  

A0 0.314 x 

where P, = load at the yield point 

(ii) The ultimate stress is the nominal stress at the maximum load, i.e., 

where P,, = maximum load 

(iii) The cross-sectional area in the fractured neck is 

Af = - (0.010)2 = 0.0785 x m 2  A 

4 

The average stress at the breaking point is then 

= 892 MN/m2, - pf = 70 x 10) 
Of - - 

Af 0.0785 x 

where PI = final breaking load. 
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Problem 1.5 A circular bar of diameter 2.50 cm is subjected to an axial tension of 20 kN. 
If the material is elastic with a Young's modulus E = 70 GN/m2, estimate the 
percentage elongation. 

Solution 

The cross-sectional area of the bar is 

I[ A = - (0.025)2 = 0.491 x lO-3 m 2  
4 

The average tensile stress is then 

= 40.7 MN/mz p -  20 x IO3 
( I = - -  

A 0.491 x l O - 3  

The longitudinal tensile strain will therefore be 

= 0.582 x io-3 0 -  40.7 x IO6 & = - -  

E 70 x 109 

The percentage elongation will therefore be 

(0.582 x lO-3) 100 = 0.058% 

ProDlem 1.6 The piston of a hydraulic ram is 40 cm diameter, and the piston rod 6 cm 
diameter. The water pressure is 1 MN/mz. Estimate the stress in the piston 
rod and the elongation of a length of 1 m of the rod when the piston is under 
pressure from the piston-rod side. Take Young's modulus as E = 200 GN/m*. 
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Solution 

The pressure on the back of the piston acts on a net area 

Tension and compression: direct stresses 

IC x - [(0.40)2 - (0.06)2] = - (0.46) (0.34) = 0.123 m 2  
4 4 

The load on the piston is then 

P = (1) (0.123) = 0.123 MN 

Area of the piston rod is 

x A = - (0.060)2 = 0.283 x m 2  
4 

The average tensile stress in the rod is then 

From equation (1.6), the elongation of a length L = 1 m is 

- - (43.5 x 106) (1) 
200 x 109 

= 0.218 x m 

= 0.0218 cm 

Problem 1.7 The steel wire working a signal is 750 m long and 0.5 cm diameter. 
Assuming a pull on the wire of 1.5 kN, find the movement which must be 
given to the signal-box end of the wire if the movement at the signal end is 
to be 17.5 cm. Take Young’s modulus as 200 GN/m2. 
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Solution 

If 6(cm) is the movement at the signal-box end, the actual stretch of the wire is e = (6 - 17.5)cm 

The longitudinal strain is then 

(6 - 17.5) lo-' 
E =  

750 

Now the cross-sectional area of the wire is 

I[ A = - (0.005)2 = 0.0196 x lO-3 m 2  
4 

The longitudinal strain can also be defrned in terms of the tensile load, namely, 

e -  p -  1.5 x io3 
L EA (200 x io9) (0.0196 x io-3) 

E = - - - -  

= 0.383 x lO-3 

On equating these two values of E, 

(6 - 17'5) 1o-2 
= 0.383 x 10-3 

750 

The equation gives 

6 = 46.2 cm 
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Problem 1.8 

Tension and compression: direct stresses 

A circular, metal rod of diameter 1 cm is loaded in tension. When the 
tensile load is 5kN, the extension of a 25 cm length is measured accurately 
and found to be 0.0227 cm. Estimate the value of Young’s modulus, E, of 
the metal. 

Solution 

The cross-sectional area is 

x A = - (0.01)2 = 0.0785 x l O - 3  m 2  
4 

The tensile stress is then 

= 63.7 MN/m2 p -  5 x 103 = = - -  
A 0.0785 x lO-3 

The measured tensile strain is 

& = - -  e -  0.0227 x 1O-2 = 0.910 x 10-3 
L 25 x 1O-2 

Then Young’s modulus is defined by 

E = - -  = -  63*7 x lo6 = 70 GN/m2 
E 0.91 x lO-3 

A straight, uniform rod of length L rotates at uniform angular speed u about 
an axis through one end and perpendicular to its length. Estimate the 
maximum tensile stress generated in the rod and the elongation of the rod at 
this speed. The density of the material is p and Young’s modulus is E. 

Problem 1.9 
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Solution 

Suppose the radial lsplacement of any point a distance r from the axis of rotation is u.  The 
radial displacement a distance r + 6r) from 0 is then (u + 6u), and the elemental length 6r of the 
rod is stretched therefore an amount 6u. The longitudinal strain of th~s element is therefore 

- du 
sI - o 6r dr 

E = Limit- - - 

The longitudinal stress in the elemental length is then 

du 
0 = EE = E -  

dr 

If A is the cross-sectional area of the rod, the longitudinal load at any radius r is then 

du 
dr 

P =  OA = EA-  

The centrifugal force acting on the elemental length 6r is 

(pA6r) wzr 

Then, for radial equilibrium of the elemental length, 

6P + p A o z  r 6r = 0 

This gives 

- -  dp - -pAo2r 
a? 

On integrating, we have 

1 
2 

P = - - p A o 2 r 2  + C  

where C is an arbitrary constant; if P = 0 at the remote end, r = L, of the rod, then 

1 

2 
C = - pAo2L2 
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and 

The tensile stress at any radius is then 

This is greatest at the axis of rotation, r = 0, so that 

The longitudinal stress, 0, is defined by 

du 
dr 

o = E -  

so 

On integrating, 

where D is an arbitrary constant; if there is no radial movement at 0, then u = 0 at = r = 0, and 
we have D = 0. 

Thus 

At the remote end, r = L, 

p w2 L 3  
U L  = 

2E 3E 
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1.7 Proof stresses 

Many materials show no well-defmed yield stresses when tested in tension or compression. A 
typical stress-strain curve for an aluminium alloy is shown in Figure 1.1 5. 

Figure 1.15 Proof stresses of an aluminium-alloy material; the proof stress is found 
by drawing the line parallel to the linear-elastic line at the appropriate proof strain. 

The limit of proportionality is in the region of 300 MNlm2, but the exact position of this limit is 
difficult to determine experimentally. To overcome this problem a proof stress is defined; the 
0.1% proof stress required to produce a permanent strain of 0.001 (or 0.1%) on removal of the 
stress. Suppose we draw a line from the point 0.001 on the strain axis, Figure 1.15, parallel to 
the elastic line of the material; the point where this line cuts the stress-strain curve defines the 
proof stress. The 0.2% proof stress is defined in a similar way. 

1.8 Ductility measurement 

The Ductility value of a material can be described as the ability of the material to suffer plastic 
deformation whle still being able to resist applied loading. The more ductile a material is the 
more it is said to have the ability to deform under applied loading. 

The ductility of a metal is usually measured by its percentage reduction in cross-sectional 
area or by its percentage increase in length, i.e. 

('41 - '4d x 100% 

( L ,  - L F )  x 100% 

'41 
percentage reduction in area = 

and 

Ll 
percentage increase in length = 

where 
A,  = initial cross-sectional area of the tensile specimen 

A ,  = final cross-sectional area of the tensile specimen 

L, = initial gauge length of the tensile specimen 

L,  = final gauge length of the tensile specimen 
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Place LI 

UK 4Jarea 

USA 4.5 1 Jarea 

Europe 5.65Jarea 

It should be emphasised that the shape of the tensile specimen plays a major role on the 
measurement of the ductility and some typical relationships between length and character for 
tensile specimens i.e. given in Table 1.1 

bronze and cast iron have low ductility. 
Materials such as copper and mild steel have high ductility and brittle materials such as 

L I 4 *  

3.54 

4.0 

5 .O 

area = cross-sectional area 

* 0, = initial diameter of the tensile specimen 

1.9 Working stresses 

In many engineering problems the loads sustained by a component of a machine or structure 
are reasonably well-defined; for example, the lower stanchions of a tall buildmg support the 
weight of material forming the upper storeys. The stresses which are present in a component, 
under normal working conditions, are called the working stresses; the ratio of the yield stress, 
oy, of a material to the largest working stress, ow, in the component is the stress factor against 
yielding. The stress factor on yielding is then 

If the material has no well-defined yield point, it is more convenient to use the proof stress, op; 
the stress factor on proof stress is then 

Some writers refer to the stress factor defined above as a ‘safety factor’. It is preferable, 
however, to avoid any reference to ‘safe’ stresses, as the degree of safety in any practical 
problem is difficult to define. The present writers prefer the term ‘stress factor’ as this defines 
more precisely that the worlung stress is compared with the yield, or proof stress of the 
material. Another reason for using ‘stress factor’ will become more evident after the reader has 
studied Section 1.10. 
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1.1 0 Load factors 

The stress fucior in a component gives an indication of the working stresses in relation to the 
yield, or proof, stress of the material. In practical problems working stresses can only be 
estimated approximately in stress calculations. For this reason the stress factor may give little 
indication of the degree of safety of a component. 

A more realistic estimate of safety can be made by finding the extent to which the workmg 
loads on a component may be increased before collapse or fracture occurs. Consider, for 
example, the continuous beam in Figure 1.16, resting on three supports. Under working 
conditions the beam carries lateral loads P,, P2 and P3, Figure l.l6(i). If all these loads can be 
increased simultaneously by a factor n before collapse occurs, the load factor against collapse is 
n. In some complex structural systems, as for example continuous beams, the collapse loads, 
such as nP1, "Pi and nP,, can be estimated reasonably accurately; the value of the load factor 
can then be deduced to give working loads PI, P2 and P3. 

Figure 1.16 Factored loads on a continuous beam. 
(i) Working loads. (ii) Factored working loads leading to collapse. 

1 .I 1 Lateral strains due to direct stresses 

When a bar of a material is stretched longitudinally-as in a tensile test-the bar extends in the 
direction of the applied load. This longitudinal extension is accompanied by a lateral contraction 
of the bar, as shown in Figure 1.17. In the linear-elastic range of a material the lateral strain is 
proportional to the longitudinal strain; if E, is the longitudinal strain of the bar, then the lateral 
strain is 

Er = VEX (1.9) 

The constant v in this relationshp is known as Poisson 's ratio, and for most metals it has a 
value of about 0.3 in the linear-elastic range; it cannot exceed a value of 0.5. For concrete it has 
a value of about 0.1. If the longitudinal strain is tensile, the lateral strain is a contraction; for a 
compressed bar there is a lateral expansion. 
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Figure 1.17 The Poisson ratio effect leading to lateral contraction of a bar in tension. 

With a knowledge of the lateral contraction of a stretched bar it is possible to calculate the change 
in volume due to straining. The bar of Figure 1.17 is assumed to have a square cross-section of 
side a; Lo is the unstrained length of the bar. When strained longitudinally an amount E,, the 
corresponding lateral strain of contractions is E ~ .  The bar extends therefore an amount &Ao, and 
each side of the cross-section contracts an amount E,Q. The volume of the bar before stretching is 

vo = aZLo 

After straining the volume is 

v = (a -&Yay (Lo + E, Lo) 

v = a2Lo(1 - E Y y  (1 +E,) = V0(1 -Ey)2 (1 + Ey) 

which may be written 

If E, and E~ are small quantities compared to unit, we may write 

( 1 - E y ) 2 ( 1 + E , )  = ( 1 - 2 E y ) ( 1 + E , )  = I + E , - 2 E y  

ignoring squares and products of E, and E ~ .  The volume after straining is then 

v = V0(l+E,-2Ey) 

The volumetric strain is defined as the ratio of the change of volume to the original volume, and 
is therefore 

v- V" 

61 
(1.10) - -  - Ex - 2 E)' 
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If E,, = v E~ then the volumetric strain is E, (1 - 2v). Equation (1.10) shows why v cannot be greater 
than 0.5; if it were, then under compressive hydrostatic stress a positive volumetric strain will 
result, whch is impossible. 

Problem 1.10 A bar of steel, having a rectangular cross-section 7.5 cm by 2.5 cm, carries an 
axial tensile load of 180 kN. Estimate the decrease in the length of the sides of 
the cross-section if Young’s modulus, E, is 200 GN/m2 and Poisson’s ratio, v, 
is 0.3. 

Solution 

The cross-sectional area is 

A = (0.075) (0.025) = 1.875 x m2 

The average longitudinal tensile stress is 

The longitudmal tensile strain is therefore 

The lateral strain is therefore 

VE = 0.3(0.48 x = 0.144 x 

The 7.5 cm side then contracts by an amount 

(0.075) (0.144 x = 0.0108 x m 
= 0.00108cm 

The 2.5 cm side contracts by an amount 

(0.025) (0.144 x = 0.0036 x m 
= 0.00036cm 
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1 . I2  Strength properties of some engineering materials 

The mechanical properties of some engineering materials are given in Table 1.2. Most of the 
materials are in common engineering use, including a number of relatively new and important 
materials; namely glass-fibre composites, carbon-fibre composites and boron composites. In the 
case of some brittle materials, such as cast iron and concrete, the ultimate stress in tension is 
considerably smaller than in compression. 

Composite materials, such as glass fibre reinforced plastics, (GRP), carbon-fibre reinforced 
plastics (CFRP), boron-fibre remforced plastics, ‘Kevlar’ and metal-matrix composites are likely 
to revolutionise the design and construction of many structures in the 2 1 st century. The glass fibres 
used in GRP are usually made from a borosilicate glass, similar to the glass used for cooking 
utensils. Borosilicate glass fibres are usually produced in ‘E’ glass or glass that has good electrical 
resistance. A very strong form of borosilicate glass fibre appears in the form of ‘S’ glass which 
is much more expensive than ‘E’ glass. 

Some carbon fibres, namely high modulus (HM) carbon fibres , have a tensile modulus much 
larger than high strength steels, whereas other carbon fibres have a very high tensile strength (HS) 
much larger than hgh  tensile steels. 

Currently ‘S’ glass is some eight times more expensive than ‘E’ glass and HS carbon is about 
50 times more expensive than ‘E’ glass. HM carbon is some 250 times more expensive than ‘E’ 
glass while ‘Kevlar’ is some 15 times more expensive than ‘E’ glass. 

1 . I3  Weight and stiffness economy of materials 

In some machme components and structures it is important that the weight of material should be 
as small as possible. This is particularly true of aircraft, submarines and rockets, for example, in 
which less structural weight leads to a larger pay-load. If odt is the ultimate stress of a material in 
tension and p is its density, then a measure of the strength economy is the ratio 

The materials shown in Table 1.2 are compared on the basis of strength economy in Table 1.3 from 
which it is clear that the modern fibre-reinforced composites offer distinct savings in weight over 
the more common materials in engineering use. 

In some engineering applications, stiffness rather than strength is required of materials; th is  is 
so in structures likely to buckle and components governed by deflection limitations. A measure of 
the stiffness economy of a material is the ratio 

some values ofwhich are shown in Table 1.2. Boron composites and carbon-fibre composites show 
outstanding stiffness properties, whereas glass-fibre composites fall more into line with the best 
materials already in common use. 
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1.14 Strain energy and work done in the tensile test 

As a tensile specimen extends under load, the forces applied to the ends of the test specimen move 
through small distances. These forces perform work in stretchmg the bar. If, at a tensile load P, 
the bar is stretched a small additional amount 6e, Figure 1.18, then the work done on the bar is 
approximately P6e 

Figure 1.18 Work done in stretching a bar through a small extension, 6e. 

The total work done in extending the bar to the extension e is then 

W = 1 Pde,  (1.11) 

u = w =  ] P d e  (1.12) 

0 

which is the area under the P-e curve up to the stretched condition. If the limit of proportionality 
is not exceeded, the work done in extending the bar is stored as strain energy, which is directly 
recoverable on removal of the load. For h s  case, the strain energy, U, is 

0 

But in the linear-elastic range of the material, we have from equation (1.6) that 

e = -  PLLl 
EA 

where Lo is the initial length of the bar, A is its cross-sectional area and E is Young's modulus. 
Then equation ( 1.12) becomes 

u = j , e ,  = a ( e 2 )  (1.13) 
LO 2LO 

0 
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In terms of P 

- -(P) (1.14) 
EA 
2Lo 2 EA 

u = -(ez) - Lo 

Now (P/A) is the tensile stress e in the bar, and so we may write 

o 2  

2 E  2 E  
(1.15) ALO u = - ( 0 2 )  =-  x thevolume 

Moreover, as AL, is the original volume of the bar, the strain ,energy per unit volume is 

(1.16) 
o 2  - 
2E 

When the limit of proportionality of a material is exceeded, the work done in extending the bar is 
still given by equation (1.11); however, not all this work is stored as strain energy; some of the 
work done is used in producing permanent &tortions in the material, the work reappearing largely 
in the form of heat. Suppose a mild-steel bar is stressed beyond the yield point, Figure 1.19, and 
up to the point where strain-hardening begins; the strain at the limit of proportionality is small 
compared with h s  large inelastic strain; the work done per unit volume in producing a strain E is 
approximately 

w = C y &  (1.17) 

in which e,, is the yield stress of the material. This work is considerably greater than that required 
to reach the limit of proportionality. A ductile material of this type is useful in absorbing relatively 
large amounts of work before breakmg. 

Figure 1.19 Work done in stretching a mild-steel bar; the work done during plastic 
deformation is very considerable compared with the elastic strain energy. 
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1 . I5  Initial stresses 

It frequently happens that, before any load is applied to some part of a machme or structure, it is 
already in a state of stress. In other words, the component is initially stressed before external 
forces are applied. Bolted joints and connections, for example, involve bolts whch are pre- 
tensioned; subsequent loading may, or may not, affect the tension in a bolt. Most forms of welded 
connections introduce initial stresses around the welds, unless the whole connection is stress 
relieved by a suitable heat treatment; in such cases, the initial stresses are not usually known with 
any real accuracy. Initial stresses can also be used to considerable effect in strengthening certain 
materials; for example, concrete can be made a more effective material by precompression in the 
form of prestressed concrete. The problems solved below are statically indeterminate 
(see Chapter 2) and therefore require compatibility considerations as well as equilibrium 
considerations. 

Problem 1.1 1 A 2.5 cm dnmeter steel bolt passes through a steel tube 5 cm internal diameter, 
6.25 cm external diameter, and 40 cm long. The bolt is then tightened up onto 
the tube through rigid end blocks until the tensile force in the bolts is 40 kN. 
The distance between the head of the bolt and the nut is 50 cm. If an external 
force of 30 kN is applied to the end blocks, tending to pull them apart, estimate 
the resulting tensile force in the bolt. 

Solution: 

The cross-sectional area of the bolt is 
a - (0.025)2 = 0.491 x lO-3 m 2  
4 

The cross-sectional are of the tube is 
II 5c - [(0.0625)2 - (0.050)’] = - (0.1125) (0.0125) = 0.110 x lO-2 m 2  
4 4 

Before the external load of 30 kN is applied, the bolt and tube carry internal loads of 40 kN. When 
the external load of 30 kN is applied, suppose the tube and bolt are each stretched by amounts 6; 
suppose further that the change of load in the bolt is (A&, tensile, and the change of load in the 
tube is (AP),, tensile. 
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Then for compatibility, the elastic stretch of each component due to the additional external load 
of 30 kN is 

( W ) h  (0.50) (M) ,  (0.40) 
6=-= 

(0.491 x lO-3) E 

where E is Young's modulus. Then 

(0.110 x lo-*) E 

(AP), = 0.357 (AP), 

But for equilibrium of internal and external forces, 

(AP),, + (AP), = 30 kN 

These two equations give 

(AP),, = 7.89 kN, (AP), = 22.11 kN 

The resulting tensile force in the bolt is 

40 + (AI'),, = 47.89 kN 

1 . I6  Composite bars in tension or compression 

A composite bar is one made of two materials, such as steel rods embedded in concrete. The 
construction of the bar is such that constituent components extend or contract equally under load. 
To illustrate the behaviour of such bars consider a rod made of two materials, 1 and 2, Figure 1.20; 
A,,  A, are the cross-sectional areas of the bars, and E,, E, are the values of Young's modulus. We 
imagine the bars to be rigidly connected together at the ends; then for compatibility, the 
longitudinal strains to be the same when the composite bar is stretched we must have 

(1.18) 61 = 2  & =  - -  - -  
E ,  E, 
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Figure 1.20 Composite bar in tension; if the bars are connected rigidly 
at their ends, they suffer the same extensions. 

where 0, and oz are the stresses in the two bars. But from equilibrium considerations, 

P = (T, A, + 6, A, 

Equations (1.18) and (1.19) give 

(1.19) 

(1.20) PE, 
A, E,  + A2 E2 

, (-J, = 
PE, 

A, E, + A2 E2 
0, = 

Problem 1.12 A concrete column, 50 cm square, is reinforced with four steel rods, each 
2.5 cm in diameter, embedded in the concrete near the comers of the square. 
If Young's modulus for steel is 200 GN/mz and that for concrete is 14 GN/mz, 
estimate the compressive stresses in the steel and concrete when the total thrust 
on the column is 1 MN. 

Solution 

Suppose subscripts c and s refer to concrete and steel, respectively. The cross-sectional area of 
steel is 

As = 4 5 (0.025)* = 1.96 x l O - 3  m 2  
[4 I 
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and the cross-sectional area of concrete is 
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A ,  = (0.50)2 - A, = 0.248 m 2  

Equations (1.20) then give 

0, = = 3.62 MN/m2 1 o6 
(0.248) + (1.96 x lO-3) - 

(2::) 

= 51.76 MN/m2 1 o6 
0, = 

(0.248) (2) + (1.96 x lO-3) 

Problem 1.13 A uniform beam weighing 500 N is held in a horizontal position by three 
vertical wires, one attached to each end of the beam, and one at the mid-length. 
The outer wires are brass of diameter 0.125 cm, and the central wire is of steel 
of diameter 0.0625 cm. If the beam is rigid and the wires are of the same 
length, and unstressed before the beam is attached, estimate the stresses in the 
wires. Young's modulus for brass is 85 GN/m2 and for steel is 200 GN/m*. 

Solution 

On considering the two outer brass wires together, we may take the system as a composite one 
consisting of a single brass member and a steel member. The area of the steel member is 

IC A, = - (0.625 x 10-312 = 0.306 x 1O-6 m 2  
4 

The total area of the two brass members is 

A,, = 2 [: (1.25 x 10-3p] = 2.45 x 1O-6 m 2  
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Equations (1.20) then give, for the steel wire 

= 370 MN/mz 500 
0, = 

(0.306 x + (2.45 x 

and for the brass wires 

= 158 MN/m2 500 
Ob = 

(0.306 x (E) + (2.45 x 

1 . I7  Temperature stresses 

When the temperature of a body is raised, or lowered, the material expands, or contracts. If this 
expansion or contraction is wholly or partially resisted, stresses are set up in the body. Consider 
a long bar of a material; suppose Lo is the length of the bar at a temperature e,, and that a is the 
coefficient of linear expansion of the material. The bar is now subjected to an increase 8 in 
temperature. If the bar is completely free to expand, its length increases by d 0 8 ,  and the length 
becomes Lo (1 + a8) were compressed to a length Lo; in th is case the compressive strain is 

a Lo 6 
E =  = a6 

Lo (1 + a6) 

since a8 is small compared with unity; the corresponding stress is 

(T = EE = a 8 E  (1.21) 

By a similar argument the tensile stress set up in a constrained bar by a fall 8 in temperature is a8 
E. It is assumed that the material remains elastic. 

In the case of steel a = 1.3 x per "C; the product aE is approximately 2.6 MN/m2 per "C, 
so that a change in temperature of 4°C produces a stress of approximately 10 h4N/m2 if the bar is 
completely restrained. 

1 .I 8 Temperature stresses in composite bars 

In a component or structure made wholly of one material, temperature stresses arise only if external 
restraints prevent thermal expansion or contraction. In composite bars made of materials with 
different rates of thermal expansion, internal stresses can be set up by temperature changes; these 
stresses occur independently of those due to external restraints. 

Consider, for example, a simple composite bar consisting of two members-a solid circular bar, 
1, contained inside a circular tube, 2, Figure 1.2 1. The materials of the bar and tube have 
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different coefficients of linear expansion, a, and q, respectively. If the ends of the bar and tube 
are attached rigidly to each other, longitudinal stresses are set up by a change of temperature. 
Suppose firstly, however, that the bar and tube are quite free of each other; if Lo is the original 
length of each bar, Figure 1.21, the extensions due to a temperature increase 0 are a, 015, and a, 
OLo, Figure 1.21(ii). The difference in lengths of the two members is (a, - q) 0L,; this is now 
eliminated by compressing the inner bar with a force P, and pulling the outer tube with an equal 
force P, Figure 1.2l(iii). 

(1) (ii) (iii) 

Figure 1.21 Temperature stress in a composite bar. 

If A ,  and E, are the cross-sectional area and Young's modulus, respectively, of the inner bar, and 
A, and E, refer to the outer tube, then the contraction of the inner bar to P is 

PLO 

E ,  A ,  
e ,  = - 

and the extension of the outer tube due to P is 

PLO 

E, A ,  
e2 = - 

Then from compatibility considerations, the difference in lengths (a, - %) OL, is eliminated 
completely when 

(a ,  - q) 8Lo = e ,  + e, 
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On substituting for e, + e2, we have 

The force P is induced by the temperature change 8 if the ends of the two members are attached 
rigidly to each other; from equation (1.22), P has the value 

(1.23) 

An internal load is only set up if a, is different from q. 

Problem 1.1 4 An aluminium rod 2.2 cm diameter is screwed at the ends, and passes through 
a steel tube 2.5 cm internal diameter and 0.3 cm thick. Both are heated to a 
temperature of 140"C, when the nuts on the rod are screwed lightly on to the 
ends of the tube. Estimate the stress in the rod when the common temperature 
has fallen to 20°C. For steel, E = 200 GN/m2 and a = 1.2 ~ 1 0 . ~  per "C, and 
for aluminium, E = 70 GN/m2 and a = 2.3 x per "C, where E is Young's 
modulus and a is the coefficient of linear expansion. 

Solution 

Let subscript a refer to the aluminium rod and subscripts to the steel tube. The problem is similar 
to the one discussed in Section 1.17, except that the composite rod has its temperature lowered, in 
this case from 140°C to 20°C. From equation (1.23), the common force between the two 
components is 

@a - as) 0 

(EA),  (EA), 

P =  
1 1 - + -  

The stress in the rod is therefore 

Now 

(EA) ,  = (70 x io9) - (0.022)~ = 26.6 MN [: 1 
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Again 
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(EA), = (200 x lo’) [n (0.028) (0.003)] = 52.8 MN 

Then 
- -  P - 12.3 - 1.2) 10-~]  (70 x 10’) (120) = 61.4 MN,m2 
A ,  

1 +(%) 

1 . I9  Circular ring under radial pressure 

When a thin circular ring is loaded radially, a circumferential force is set up in the ring; this force 
extends the circumference of the ring, wbch in turn leads to an increase in the radius of the ring. 
Consider a thm ring of mean radius r, Figure 1.22(i), acted upon by an internal radial force of 
intensity p per unit length of the boundary. If the ring is cut across a diameter, Figure 1.22(ii), 
circumferential forces P are required at the cut sections of the ring to maintain equilibrium of the 
half-ring. For equilibrium 

2P = 2pr 

P = pr (1.24) 

A section may be taken across any diameter, leading to the same result; we conclude, therefore, 
that P is the circumferential tension in all parts of the ring. 

If A is the cross-sectional area of the ring at any point of the circumference, then the tensile 
circumferential stress in the ring is 

so that 

(1.25) p P‘ o = - = -  
A A  

Figure 1.22 Thin circular ring under uniform radial loading, 
leading to a uniform circumferential tension. 

If the cross-section is a rectangle of breadth b, (normal to the plane of Figure 1.22), and duchess 
t ,  (in the plane of Figure 1.22), then 
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(1.26) Pr 
bt 

( J = -  

Circumferential stresses of a similar type are set up in a circular ring rotating about an axis through 
its centre. We suppose the ring is a uniform circular one, having a cross-sectional area A at any 
point, and that it is rotating about its central axis at uniform angular velocity o. If p is the density 
of the material of the ring, then the centrifugal force on a unit length of the circumference is 

p A o 2 r  

In equation (1.25) we put this equal to p; thus, the circumferential tensile stress in the ring is 

(1.27) 2 2  l J = - -  pr - p a  r 
A 

which we see is independent of the actual cross-sectional area. Now, or is the circumferential 
velocity, V(say), of the ring, so 

0 = pv 2 (1.28) 

For steel we have p = 7840 kg/m3; to produce a tensile stress of 10 MN/m2, the circumferential 
velocity must be 

v =  E = j,,.,,., = 35.7 m/s  
7840 

Problem 1.1 5 A circular cylinder, containing oil, has an internal bore of 30 cm diameter. The 
cylinder is 1.25 cm thick. If the tensile stress in the cylinder must not exceed 
75 MN/m2, estimate the maximum load Wwhch may be supported on a piston 
sliding in the cylinder. 
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Solution 

A load Won the piston generates an internal pressure p given by 

w = x r ’ p  

where r is the radius of the cylinder. In this case 

w -  W 
P = - -  

x r z  A (0.150)’ 

A unit length of the cylinder is equivalent to a circular ring subjected to an internal load o f p  per 
unit length of circumference. The circumferential load set up by p in this ring is, from equation 
(1.24), 

P = pr = p (0.150) 

The circumferential stress is, therefore, 

o = - - - -  p -  - 80P 
1 X t  0.0125 

where t is the thickness of the wall of the cylinder. If o is limited to 75 MN/m2, then 

80P = 75 x lo6 

But 

12 w 
(0.150)’ 

80P = 80 [p (0.150)] = 12p = 

Then 

12w = 75 x 1 0 6  
A (0.150)’ 

giving 

W = 441 kN 

Problem 1.1 6 An aluminium-alloy cylinder o f  internal diameter 10.000 cm and wall thickness 
0.50 cm is shrunk onto a steel cylinder of external diameter 10.004 cm and wall 
thickness 0.50 cm. If the values of Young’s modulus for the alloy and the steel 
are 70 GN/m2 and 200 GN/m2, respectively, estimate the circumferential 
stresses in the cylinders and the radial pressure between the cylinders. 
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Solution 

We take unit lengths of the cylinders as behaving like thin circular rings. After the s w i n g  
operation, we suppose p is the radial between the cylinders. The mean radius of the steel tube is 

[10.004 - 0.501 = 4.75 cm 

The compressive circumferential stress in the steel tube is then 

P‘ - P (0.0475) 
= 9.5p o s = - -  

t 0.0050 

The circumferential strain in the steel tube is then 

os - 9 . 5 0 ~  
E s = - -  

E S  200 x io9 

The mean radius of the alloy tube is 

[lO.OOO + 0.501 = 5.25 cm 

The tensile circumferential stress in the alloy tube is then 

The circumferential strain in the alloy tube is then 

The circumferential expansion of the alloy tube is 

2x r E, 

so the mean radius increases effectively by an amount 

6, = r E ,  = 0.0525 E ,  

Similarly, the mean radius of the steel tube contracts by an amount 

6s = r cS = 0.0475 es 
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For the shrinking operation to be carried out we must have that the initial lack of fit, 6, is given by 

6 = 6, + 6, 

Then 

6, + 6, = 0.002 x 10-2 

On substituting for 6, and 6,, we have 

0.0525 [ ] + 0.0475 [ 9'50p ] = 0.002 x lo-' 
70 x 109 200 x io9 

This gives 

p = 1.97 MN/m2 

The compressive circumferential stress in the steel cylinder is then 

os = 9 . 5 0 ~  = 18.7 MN/m2 

The tensile circumferential stress in the alloy cylinder is 

o, = 1 0 . 5 ~  = 20.7 MN/m2 

1.20 Creep of materials under sustained stresses 

At ordinary laboratory temperatures most metals will sustain stresses below the limit of 
proportionality for long periods without showing additional measurable strains. At these 
temperatures metals deform continuously when stressed above the elastic range. This process of 
continuous inelastic strain is called creep. At high temperatures metals lose some of their elastic 
properties, and creep under constant stress takes place more rapidly. 

When a tensile specimen of a metal is tested at a high temperature under a constant load, the 
strain assumes instantaneously some value E,, Figure 1.23. If the initial strain is in the inelastic 
range of the material then creep takes place under constant stress. At first the creep rate is fairly 
rapid, but diminishes until a point a is reached on-the strain-time curve, Figure 1.23; the point a 
is a point of inflection in this curve, and continued application of the load increases the creep rate 
until fracture of the specimen occurs at b. 

At ordinary temperatures concrete shows creep properties; these may be important in pre- 
stressed members, where some of the initial stresses in the concrete may be lost after a long period 
due to creep. Composites are also vulnerable to creep and this must be considered when using 
them for construction. 
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Figure 1.23 Creep curve for a material in the inelastic range; E, is the instantaneous plastic strain. 

1.21 Fatigue under repeated stresses  

When a material is subjected to repeated cyclic loading, it can fail at a stress which may be much 
less than the material's yield stress. The problem that occurs here, is that the structure might have 
minute cracks in it or other stress raisers. Under repeated cyclic loading the large stresses that 
occur at these stress concentrations cause the cracks to grow, until fracture eventually occurs. 
Materials likely to suffer fatigue include aluminium alloys and composites; see Figure 1.24. 

Failure of a material after a large number of cycles of tensile stress occurs with little, or no, 
permanent set; fractures show the characteristics of brittle materials. Fatigue is primarily a 
problem of repeated tensile stresses; th ls is due probably to the fact that microscopic cracks in a 
material can propagate more easily when the material is stressed in tension. In the case of steels 
it is found that there is a critical stress-called the endurance l imitbelow which fluctuating 
stresses cannot cause a fatigue failure; titanium alloys show a similar phenomenon. No such 
en&inr-no, 1:m:t h-c hnnn fniincl f n n r  nthnnr nnn-fn-n,>e m n t - l c  * n A  nthnr m*tnnr;olc 

Figure 1.24 Comparison of the fatigue strengths of metals under repeated tensile stresses. 
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Further problems (answers on page 691) 

Tension and compression: direct stresses 

1.17 

1.18 

1.19 

1.20 

1.21 

1.22 

The piston rod of a double-acting hydraulic cylinder is 20 cm diameter and 4 m long. 
The piston has a diameter of 40 cm, and is subjected to 10 MN/m2 water pressure on one 
side and 3 MN/m2 on the other. On the return stroke these pressures are interchanged. 
Estimate the maximum stress occurring in the piston-rod, and the change of length of the 
rod between two strokes, allowing for the area of piston-rod on one side of the piston. 
Take E = 200 GN/m*. (We) 
A uniform steel rope 250 m long hangs down a shaft. Find the elongation of the first 125 
m at the top if the density of steel is 7840 kg/m3 and Young's modulus is 200 GN/m*. 
(Cam bridge) 

A steel wire, 150 m long, weighs 20 N per metre length. It is placed on a horizontal 
floor and pulled slowly along by a horizontal force applied to one end. If this force 
measures 600 N, estimate the increase in length of the wire due to its being towed, 
assuming a uniform coefficient of friction. Take the density of steel as 7840 kg/m3 and 
Young's modulus as 200 GN/m2. (RNEC) 

The hoisting rope for a mine shaft is to lift a cage of weight W. The rope is of variable 
section so that the stress on every section is equal to (T when the rope is fully extended. 
If p is the density of the material of the rope, show that the cross-sectional area A at a 
height z above the cage is 

To enable two walls, 10 m apart, to give mutual support they are stayed together by a 2.5 
cm diameter steel tension rod with screwed ends, plates and nuts. The rod is heated to 
100°C when the nuts are screwed up. If the walls yield, relatively, by 0.5 cm when the 
rod cools to 15"C, find the pull of rod at that temperature. The coefficient of linear 
expansion of steel is a = 1.2 x per "C, and Young's modulus E = 200 GN/m2. 
(RNEC) 

A steel tube 3 cm diameter, 0.25 cm thick and 4 m long, is covered and lined throughout 
with copper tubes 0.2 cm thick. The three tubes are f d y  joined together at their ends. 
The compound tube is then raised in temperature by 100°C. Find the stresses in the steel 
and copper, and the increase in length of the tube, will prevent its expansion? Assume 
E = 200 GN/m2 for steel and E = 110 GN/mZ for copper; the coefficients of linear 
expansion of steel and copper are 1.2 x per "C, respectively. per "C and 1.9 x 


