25 Structural vibrations

25.1 Introduction

In this chapter, we will commence with discussing the free vibrations of a beam, which will be
analysed by traditional methods. This fundamental approach will then be extended to forced
vibrations and to damped oscillations, all on beams and by traditional methods.

The main snag with using traditional methods for vibration analysis, however, is that it is
extremely difficult to analyse complex structures by this approach. For this reason, the finite
element method discussed in the previous chapters will be extended to free vibration analysis, and
applications will then be made to a number of simple structures.

Vibrations of structures usually occur due to pulsating or oscillating forces, such as those due
to gusts of wind or from the motion of machinery, vehicles etc. If the pulsating load is oscillating
at the same natural frequency of the structure, the structure can vibrate dangerously (i.e. resonate).
If these vibrations continue for any length of time, the structure can suffer permanent damage.

25.2 Free vibrations of a mass on a beam

We can simplify the treatment of the free vibrations of a beam by considering its mass to be
concentrated at the mid-length. Consider, for example, a uniform simply-supported beam of length
L and flexural stiffness E7, Figure 25.1.
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Figure 25.1 Vibrations of a concentrated mass on a beam.

Suppose the beam itself is mass-less, and that a concentrated mass M is held at the mid-span. If
we ignore for the moment the effect of the gravitational field, the beam is undeflected when the
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mass is at rest. Now consider the motion of the mass when the beam is deflected laterally to some
position and then released. Suppose, v, is the lateral deflection of the beam at the mid-span at a
time #; as the beam is mass-less the force P on the beam at the mid-span is

48EM,
- —
If k = 48 E/L’, then
P=h

c

The mass-less beam behaves then as a simple elastic spring cf stiffness k. In the deflected position
there is an equal and opposite reaction P on the mass. The equation of vertical motion of the mass
18

Thus

The general solution of this differential equation is

v, = Acos -E-I+Bsin it
M M

where 4 and B are arbitrary constants; this may also be written in the form

v, = Csin[ —]it+e]
\JM

where C and ¢ are also arbitrary constants. Obviously C is the amplitude of a simple-harmonic
motion of the beam (Figure 25.2); v, first assumes its peak value when

k T
— tl + £ = —
M 2
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Figure 25.2 Variations of displacement of beam with time.

and again attains this value when

k _ 5n
— [2 + g = =
M 2

This period T of one complete oscillation is then

M
T=1—-t,=2n 7 (25.1)

The number of complete oscillations occurring in unit time is the frequency of vibrations; this is
denoted by n, and is given by

n=—=—,/— (25.2)

The behaviour of the system is therefore directly analogous to that of a simple mass—spring system.
On substituting for the value of £ we have

n=—=— (25.3)

Problem 25.1 A steel I-beam, simply supported at each end of a span of 10 m, has a second
moment of area of 10" m*. It carries a concentrated mass of 500 kg at the mid-
span. Estimate the natural frequency of lateral vibrations.
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Solution
In this case
EI = (200 x 10°(10™) = 20 x 10° Nm?
Then
P - A8EL | 48020 x 108 _ 960 x 10° N/m
L3 (10

The natural frequency is

3
o= L& o L 960 X100 _ 697 cyclesisec = 697 Hz
2n N\ M 2n 500

25.3 Free vibrations of a beam with distributed mass

Consider a uniform beam of length L, flexural stiffness £/, and mass m per unit length (Figure
25.3); suppose the beam is simply-supported at each end, and is vibrating freely in the yz-plane,
the displacement at any point parallel to the y-axis being v. We assume first that the beam vibrates
in a sinusoidal form

. mz .
v = asm-—L—sm2nm (25.4)

where a is the lateral displacement, or amplitude, at the mid-length, and #n is the frequency of
oscillation. The kinetic energy of an elemental length 8z of the beam is

2
lm oz (iv_) = lm oz [21tna sin% cosZ1tnt]2

2 2

Figure 25.3 Vibrations of a beam having an intrinsic mass.
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The bending strain energy in an elemental length is

2

2

lEI‘ﬂ] 6z = LE
2 dz? 2

2
an . nz .
— sin — sin2nnt| 6z
LZ

The total kinetic energy at any time ¢ is then

Lo lantn2a? cos? 2nme f bsinz Z2 dz] (25.5)
0 L
The total strain energy at time ¢ is
Ta a'n! sin2mnr [*sin? Z & 25.6
2 L? fo L (25.6)

For the free vibrations we must have the total energy, i.e. the sum of the kinetic and strain energies,
is constant and independent of time. This is true if

4 2
R (@n*n2a?) cos? 2mnr + Tgr| ™9 in? 2nm = constant
2 2 L?
For this condition we must have
4 2
—l-m (41t2n202) = lEI ra
2 2 L4
This gives
nt - XH (25.7)
4mL* '

Now mL = M, say is the total mass of the beam, so that

n o= & |_EL (25.8)
2N mL?

This is the frequency of oscillation of a simply-supported beam in a single sinusoidal half-wave.
If we consider the possibility of oscillations in the form

. 2nz .
v = a sin — sin2nn,t
L
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then proceeding by the same analysis we find that

n, = 4n, = 2n AfLIB (25.9)

This is the frequency of oscillations of two sinusoidal half-waves along the length of the beam,

Figure 25.4, and corresponds to the second mode of vibration. Other higher modes are found
similarly.

i - = - T =9 _on __E_l_
=== = T T M

Figure 25.4 Modes of vibration of a simply-supported beam.

As in the case of the beam with a concentrated mass at the mid-length, we have ignored
gravitation effects; when the weight of the beam causes initial deflections of the beam, oscillations
take place about this deflected condition; otherwise the effects of gravity may be ignored.

The effect of distributing the mass uniformly along a beam, compared with the whole mass
being concentrated at the mid-length, is to increase the frequency of oscillations from

1 |48E1  m | _EI
2n N ML3 2\ MmL3

If

then
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h,

Problem 25.2  If the steel beam of the Problem 25.1 has a mass of 15 kg per metre run,
estimate the lowest natural frequency of vibrations of the beam itself.

2 2
l‘.) L WY (25.10)
2 4ﬁ

/a3

Solution

The lowest natural frequency of vibrations is

Now

EI = 20 x 10° Nm?
and

ML’ = (15) (10) (10)* = 150 x 10* kg.m’
Then

6

El_ 20x10° _ .o o

ML?® 150 x 10°
Thus

=
"

% 133 = 18.1 cycles per sec = 18.1 Hz

25.4 Forced vibrations of a beam carrying a single mass

Consider a light beam, simply-supported at each end and carrying a mass M at mid-span, Figure
25.5. Suppose the mass is acted upon by an alternating lateral force

P sin 2nNt (25.11)

which is applied with a frequency N. Ifv, is the central deflection of the beam, then the equation
of motion of the mass is



650 Structural vibrations

S+ kv = P sin2nNt

<

where k = 48 EI/L’. Then

d¥v

<

dr?

*i"c = -IisinZnNt
M M

Psin2nNt

Figure 25.5 Alternating force applied to a beam.

The general solution is

ﬁsin 27Nt

v, = Acos it+Bsin ,—k—t+—k——— (25.12)
JM M 1-47:2N2-k"1

in which 4 and B are arbitrary constants. Suppose initially, i.e. at time ¢ = 0, both v, and dv /dt
are zero. Then A4 = 0 and

2nN. £
k

—

1 - 4n°N? % k

X

Then
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. IM . l k
sin2niNt - 27N TSm A_/It] (25.13)

Now, the natural frequency of free vibrations of the system is

Plk

A\ T e———

1 -am2n? M
k

1 k
n = — ———
2Zn N\ M
Then
\/k/M = 2nn
and
v, = _Pk__ [sin 2nNt - N sin 21tnt} (25.14)
1 - N¥n? n
Now, the maximum value that the term
(sin 2Nt - N sin21rnt)
n
may assume is
1 + E
n
and occurs when sin 2nNt = -sin2nnt = 1. Then
picf1+ X
v _ n - Plk
cmax Iz N (25.15)
- M 1-=
n? n

Thus, if ¥V <n, v,,,,. is positive and in phase with the alternating load P sin 2nNt. As N approaches

n, the values of v_,,, become very large. When N > n, v, is negative and out of phase with P
sin 2nNt. When N =n, the beam is in a condition of resonance.
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25.5 Damped free oscillations of a beam

The free oscillations of practical systems are inhibited by damping forces. One of the commonest
forms of damping is known as velocity, or viscous, damping; the damping force on a particle or
mass is proportional to its velocity.

AYe

Figure 25.6 Effect of damping on free vibrations.

Suppose in the beam problem discussed in Section 25.2 we have as the damping force p(dv /df).
Then the equation of motion of the mass is

d zvc .
M = -kv, - |
t dt
Thus
d¥v, dv, o 0
+ + =
dr? # dr ¢
Hence
dv dv

[
+ +

i *
dt? M da& M°

The general solution of this equation is

v, = etwar Ve kale, g, {wmt- Sy -k (25.16)
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Now (k/M) is usually very much greater than (u/2M)’, and so we may write
v = Ae(—p/ZM + r‘/kJM} + Be(—p/ZM - i‘/(kM)I

o -2 1 [AE,ﬂm, . Be-wm,]

C cos —k—t+e}]
NM

Thus, when damping is present, the free vibrations given by

Ccos[ —k—t+e)
JM

are damped out exponentially, Figure 25.7. The peak values on the curve of v, correspond to
points of zero velocity.

(25.17)

e _(P/zM)
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Figure 25.7 Form of damped oscillation of a beam.

These are given by
dv(‘
= 0
dt

or
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k
‘,——sin "—k— t+g| - Lcos ‘/i t+e =0
M M 2M M

Obviously the higher peak values are separated in time by an amount

T=21rA—'{
k

We note that successive peak values are in the ratio

v

- e(‘"“M)’{Ccos(y[(k/—M)’ ”)}
v e@,zm(uz,‘m)[m{ JiTi+ )|

=e(u/M)1t Mik

Then
v
logc =< = ﬂ"'_ M
~ M k
Now
1 k
n = — ——
2Zn N\ M
Thus
v
log, <L - H
Ve, 2Mn
Hence

vcl
B = 2Mnlog, —
vc?

(25.18)

(25.19)

(25.20)

(25.21)
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25.6 Damped forced oscillations of a beam

We imagine that the mass on the beam discussed in Section 25.5 is excited by an alternating force
P sin 2nNt. The equation of motion becomes

dzvc dv, )
+ 0 — + kv, = P sin 2nNt
dr? dr

M

The complementary function is the damped free oscillation; as this decreases rapidly in amplitude
we may assume it to be negligible after a very long period. Then the particular integral is

v = P sin 2aNt
 MD?+uD +k
This gives
P[(k -4n%N2 M)sin 21Nt -2 Ny cosZnNt}
v, = - (25.22)
(k—41t2N2M) +4n2N2y?
If we write
1 k
n = — ——
2n \ M
then
N? —
k 1—-—2 sin2Nt -2 Ny cos2n Nt
n
v, =P (25.23)

2
2
N
k2(1—-—2—J +41‘[N2p2
n

The amplitude of this forced oscillation is

2\? (25.24
sz[l »L] + 4N Y2 )
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25.7 Vibrations of a beam with end thrust

In general, when a beam carries end thrust the period of free undamped vibrations is greater than
when the beam carries no end thrust. Consider the uniform beam shown in Figure 25.8; suppose
the beam is vibrating in the fundamental mode so that the lateral displacement at any section is
given by

v = asin % sin 2nnt (25.25)
y
El
P—> > Y -

¢ 2 l i P

| a !

) |

r— L —>

Figure 25.8 Vibrations of a beam carrying a constant end thrust.

If these displacements are small, the shortening of the beam from the straight configuration is
approximately

2 2.2
f t1 (ﬂ) & = 2T sin? 2nm (25.26)
0o 2\ dz 4L

If m is the mass per unit length of the beam, the total kinetic energy at any instant is
1 2
fEm(ZRa sinEI:z-cos21mt) dz = mn’a’n® L cos’ 2nnt (25.27)

The total potential energy of the system is the strain energy stored in the strut together with the
potential energy of the external loads; the total potential energy is then

2 2.2
el - lpf 2% in? 2nm (25.28)
2 L? 4 L

If the total energy of the system is the same at all instants
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L? 4 L
This gives
2
nto- ZEL L2 (25.29)
4mL* P,
where
p . PE
L 2
and is the Euler load of the column. If we write
2 n’El
n,= = 25.30
Y amLt (25.30)

then

l P
n=nl 1—;—

Clearly, as P approaches P, the natural frequency of the column diminishes and approaches zero.

25.8 Derivation of expression for the mass matrix

Consider an infinitesimally small element of volume d(vol) and density p, osciilating at a certain
time #, with a velocity .
The kinetic energy ot this element (KE) is given by:

KE - %p x d(vol) x i’

and for the whole body,

_ 1 .2
KE = > fpu d(vol) (25.31)
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or in matrix form:

1 . .
KE = 5 f {u}Tp {u} d(VOl) (2532)
vol
NB The premultiplier of equation (25.32) must be a row and the postmultiplier of this

equation must be a column, because KE is a scalar.

Assuming that the structure oscillates with simple harmonic motion, as described in Section 25.2,

W = {Cle™ (25.33)
where

{C} = avector of amplitudes

® = resonant frequency

j =AM

Differentiating {u} with respect to ¢,
i} = jo {C} & (25.34)

= jo {u} (25.35)
Substituting equation (25.35) into equation (25.32):

N T
KE = . ) f {u} plu} d(vol)

vol

but,
= (N fu)
- KE = _% o Ju) [ INIT o [N] dvol) ) (25.36)
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but,

or in matrix form:

but,

1, (25.37)
KE = 2o’ o [m] fu)
Comparing equation (25.37) with equation (25.36):

vol

= elemental mass matrix

25.9 Mass matrix for a rod element

The one-dimensional rod element, which has two degree of freedom, is shown in Figure 23.1. As
the rod element has two degrees of freedom, it will be convenient to assume a polynomial with two
arbitrary constants, as shown in equation (25.39):

U o= ooyt (25.39)

The boundary conditions or boundary values are:

atx =0, u = u,
and
atx = L, u = u (25.40)

o = (25.41)
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and
u, = u + ayj

or

o, (, - wyl (25.42)

Substituting equations (25.41) and (25.42) into equation (25.39),
u = up + (uy - ugpll

or

u = u (1 -8 + uk (25.43)

where,

E = x/l

Rewriting equation (25.43) in matrix form,

1

u = [1-8 ¢
= [N] {“r}
where
Nl = [1-8 ¢ (25.44)

Substituting equation (25.44) into equation (24.38),

m] = [ (N p [N] devoD

a-9
pf (1 -8 g ald

U—x+ﬂé—8
pal [ &
g -8 g
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up

2 1 ul
pAl (25.45)

[m] = =

In two dimensions, it can readily be shown that the elemental mass matrix for a rod is

U vy 4 W

m - &4 o 2 0o 1w (25.46)

The expression for the elemental mass matrix in global co-ordinates is given by an expression
similar to that of equation (25.35), as shown by equation (25.47):

[m°] = [DC]T [m] [DC] (25.47)
where,

'g 0

[DC] =
0
% & (25.48)
-C RY

gl =

L—S c

c = Cosa

s = sina

a is defined in Figure 23.4.
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Substituting equations (23.25) and (25.46) into equation (25.47):
u® vi®u® v°
> 0 1 o

me] - &4 fo 2 0 1M (25.49)

= the elemental mass matrix for a rod in two dimensions, in global co-
ordinates.

Similarly, in three dimensions, the elemental mass matrix for a rod in global co-ordinates, is
given by:

0° v W v, owy’
2 T
0 2 v’
me] - P4 1o o 2 K (25.50)
6 1 0 0 2 u,°
1002 o
0o 010 0 2.

Equations (25.49) and (25.50) show the mass matrix for the self-mass of the structure, but if the
effects of an additional concentrated mass are to be included at a particular node, this concentrated
mass must be added to the mass matrix at the appropriate node, as follows:

M 1 0} % (in two dimensions) (25.51)
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and
u’ v° w’®
1 0 Oof%
M, (in three dimensions) (25.52)
0 1 o|v°
0 0 1 w’°
where

M, = the value of the added mass
i = ithnode
Problem 25.3 Determine the resonant frequencies and eigenmodes for the plane pin-jointed
truss, below.

It may be assumed that the following apply:

A = 1x10%m?
p = 7860 kg/m’
E = 2x 10" N/m?

Solution
Element 1-3

a = 60°, c =05, s = 0.866

L, = — = 1.155 m = length of element 1-3
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Substituting the above values into equations (23.36) and (25.49), and removing the rows and
columns corresponding to the zero displacements, namely u,° and v,°, the stiffness and mass
matrices for element 1-3 are given by:

[k ,]_ 1x107* x2x10'1 [025 0433
= 1155|0433 075

-] o

Uy V3

7 7| u,°
0.433 x 10" 0.75 x 10'| % (25.53)

0.75 x 107 1.3 x 107{v5°

o7 _ 7860 x 1 x 10 x 1.155 [2 0
[m,5°] =
02

u,°v°
= 0.303 0 u3(J (25.54)
0 0303]v,°

Element 2-3

a = 150°, ¢ = -0.866, s =05

Substituting the above values into equations (23.36) and (25.49), and removing the rows and
columns corresponding to the zero displacements, namely #,° and v,°, the stiffness and mass
matrices for element 2-3 are given by:
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o 1 x10%x 2 x 10| 075 -0433
s’ 2 0433 025
u3° v3°
- | 075 x 107 -0.433 x 107| % (25.55)
-0.433 x 107 025 x 107|v°
o _7860><1x10'4x220
[m;°] =
6 02

u,° v,°
. 0524 0 |%° (25.56)
0 0.524) v,°

The system stiffness matrix corresponding to the free displacements »,° and v,° is obtained by
adding together equations (25.53) and (25.55), as shown by equation (25.57):

=] o

U Vi
0.433 x 10’ 0.75 =107 W
uo
+0.75 x107 |-0433 x10° |
[Kn] = 5 .
0.75 x10 1.3 x10
125
-0.433 x 107 | +0.25 x 10’
| (25.57)
u,° vs°
[Ku] = 1.183 x 107 0.317 x 107|%;° (25.58)

0317 x 107 1.55 = 107 v;°
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The system mass matrix corresponding to the free displacements u,° and v,° is obtained by adding
together equations (25.54) and (25.56), as shown by equation (25.59):

Uy Vi
0.303
0 u,°
+0.524
M, ] =
0.303
0 v°
+0.524
/ (25.59)
uy° v,°
- Jos27 o ]w° (25.60)
0 0.827] v;°
Now, from Section 25.2,
div, kv,
+ =0 (25.61)
dt? M
If simple harmonic motion takes place, so that
v, = Ce/*
then,
d%v, 3 ,
= -0 C = -0y, (25.62)
dr?
Substituting equation (25.62) into equation (25.61),
2 kv,
-0V, + = 0 (25.63)
M
In matrix form, equation (25.63) becomes
(K] -o® M) fe} = o (25.64)

or, for a constrained structure,
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(Ky] - ©* My) 1} = 0 (25.65)

Now, in equation (25.65), the condition {#} = {0} is not of practical interest, therefore the
solution of equation (25.65) becomes equivalent to expanding the determinant of equation (25.66):

| [Kyy] -0 M) | = 0 (25.66)

Substituting equations (25.58) and (25.60) into equation (25.66), the following is obtained:

,[0827 0 2567
“| 0o 0827 '

Expanding equation (25.67), results in the quadratic equation (25.68):

1183 x 107 0317 x 107
0317 x 107 155 x 107

(1.183 x 107-0.82703)(1.55 x 107-0.8270?)-(0.317 x 107 = 0

or

1.834 x 10" - 226 x 10" &? + 0.684 w* - 1 x 10® = 0

or

0.6840"-2.26x10"@? +1.734x 10" = 0 (25.68)

Solving the quadratic equation (25.68), the following are obtained for the roots »,* and w,

7 6
m? _ 226 x 10 6.028 x 10° 1211 x 107

1.368

or
®, = 3480; n, = 533.9 Hz
7 6
o - 226107+ 6028 x 10° _ L oos oo
1.368
or

R
"

4575, n, = 728 Hz
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To determine the eigenmodes, substitute ®,” into the first row of equation (25.67) and substitute
o, into the second row of equation (25.67), as follows:

(1.183 x 107 — 34807 x 0.827)143" +0317x 10" v;" = 0 (25.69)

1815 x 10% " + 317 x 105 v3° = 0

Let,

o _
u,° = 1

AV = 047

so that the first eigenmode is:

[u,° v,°] = [1 - 0.47] see the figure below at (a).

Similarly, to determine the second eigenmode, substitute ,” into the second row of equation
(25.67), as follows:

0317 x 107 u,° + (1.55 x 107 - 0.827 x 45753 v,° = 0

or

0.317 x 10" u,° - 1.81 x 10°v,° = 0
Let,

v o= 1

~uy = 057

so that the second eigenmode is given by

[u,° v,°] = [0.57 1] see below at (b).

(a) First eigenmode.
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(b) Second eigenmode.

Problem 25.4  If the pin-jointed truss of Problem 25.3 had an additional mass of 0.75 kg
attached to node 3, what would be the values of the resulting resonant
frequencies?

Solution

From equation (25.58):

u,’ v,°
1183 x 107 0317 x 107 | 5’
[Ku] = ; 1 (25.70)
0317 x 107 155 x 107 | v,
From equation (25.60)
0.827 0 075 0
My = *
0 0.827 0 075
u;* vy°
- 1577 0 |u%° (25.71)
0 1577 v,°

Substituting equations (25.70) and (25.71) into equations (25.65), the following is obtained:

=0 (25.72)

1183 x 10" 0.317 x 10’ 2[1.577 0}
0317 x 107 155 x 10’ 0 1577
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Expanding the determinant of equation (25.72), results in the quadratic equation (25.73):

(1.183 x 107 - 1.5770? (1.55 x 107 - 1.5770% - (0.317 x 107 = 0

or

1.834 x 10" - 431 x 10" 0® + 2487 * - 1 x 102 = 0

or

24870 - 431 x 107 @ + 1.734 x 10" = 0 (25.73)

The quadratic equation (25.73) has two roots, namely ®,” and w,’, which are obtained as follows:

7 _ 7
o - 431107 - LT X 10T g e

4.974

®, = 2509 n, = 3993 Hz

and

7 7
0 - A3} 107 LI 10T sy

4.974

®, = 3322;n, = 5286 Hz

Problem 25.5 Determine the resonant frequencies and eigenmodes for the pin-jointed space
truss of Problem 23.3, given that,

=2%x10%m?

A
E = 2x10" N/m?
p = 7860 kg/m’

Solution
Element |4
From Problem 25.3,

I =10m
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Substituting this and other values into equation (25.50), and removing the rows and columns
corresponding to the zero displacements, namely «,°, v,° and w, °, the mass matrix for element 1-4
is given by

200
-4
m, 0] = 7860 = 2 xs 107 % 10|, 5 (25.74)
00 2

= (25.75)

Element 24
From Problem 25.3,
[ = 10m
Substituting this and other values into equation (25.50), and removing the rows and columns

corresponding to the zero displacements, namely u,°, v,° and w,°, the mass matrix for element
24 is given by

(25.76)

Element 4-3
From Problem 25.3,

!l =10m
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Substituting the above and other values into equation (25.50), and removing the rows and columns
corresponding to the zero displacements, namely u,°, v;° and w,°, the mass matrix for element 4-3
is given by

) 524 0 0 ]%
Ml = 10 524 0 |ve
0 0 524)w,°

(25.77)

To obtain [M, ], the system mass matrix corresponding to the free displacements »,°, v,° and w,°,
the elemental mass matrices of equations (25.75) to (25.77), are added together, as shown by
equation (25.78): :

W v owe
1572 0 0 ]
[M“° 0 1572 0 |ve (25.78)
0 0 1572fw,°
From equation (23.62),
u® v e
2 0 R
K,y = 1 x 10° (25.79)

0 4 0832|v,°
0 0832 6 [w>

Substituting equations (25.78) and (25.79) into equation (25.65), the following determinant is
obtained:

2 0 0 1572 0 0
1x10%0 4 0832|-0% 0 1572 0 (25.80)
0 0832 6 0 0 1572

From the top line of equation (25.80):

2x10°-1572@* = 0
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or

2 2 x 108
15.72

= 1272 x 10°

3567, n = 56.76 Hz

£
"

As the first line of equation (25.80) is uncoupled, this equation can be reduced to the 2 x 2
determinant of equation (25.81):

4 0832 1572 0
1 x 106[ }—wz[ ] =0 (25.81)

0832 6 0 1572

Expanding equation (25.81), the quadratic equation (25.82) is obtained:

@ x 10® - 15.720%) (6 x 10° - 15.720%) - (0.832 x 10°f = 0

or

2.4 x 10 - 1.572 x 10%0? + 247.120* - 6.922 x 10"' = 0

or

247.120% - 1.572x 10%w? +2.33x 10" = 0 (25.82)

Solving equation (25.82), the roots w,” and o, are obtained, as follows:

8 _ 8
mg _ 1572 x 10 041 x 10° _ 2361 x 10°
492.24
@, = 4859, n, = 7732 Hz
8 8
a)§ _ 1572 x10° + 041 x 100 _ 4.026 x 10°
492.24
®; = 6345, n, = 10098 Hz
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To determine the eigenmodes
By inspection of the first line of equation (25.80),
=1 v°=0 and wS° =0
Therefore, the first eigenmode is
[u° v,° w,°] = [1 00]

To obtain the second eigenmode, substitute w,” into the second line of equation (25.80) to give

0 x u,° +[4 x 10° - (48592 x 15.72)]v,° + 0.832 x 10°w,° = 0

or
0.289v,° + 0.832w,° = 0 (25.83)
Let,
v, =1
~w,= - 0347

Therefore, the second eigenmode is

[,° v°  we°] =[01 -0347]

To obtain the third eigenmode, substitute ®,’ into the third line of equation (25.80) to give

0 x u,° +0.832 x 10°v,° + (6 x 10° - 634.5* x 15.72) w,° = 0

or
0.832v,° - 0329w, = 0 (25.84)
Let,
w,S =1
- v,° = 0395

Therefore, the third eigenmode is

(4,° v° w,°] = [0 0.395 1]
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Problem 25.6  Determine the resonant frequencies for the tripod of Problem 25.5, if this tripod
has a mass of 10 kg added to node 4.

Solution

From equation (25.79),

2 0 R

K1 - 6 . (25.85)
Ka] =110 100 em v,
0 0832 6 [w,°
From equation (25.78):
15.72 0 0 10 0 O
My = | 0 1572 0 |+]0 10 0
0 0 15.72 0 0 10
u,’ v,° w,°
2572 0 0 ]
= o (25.86)

0 2572 0 |v
0 0 2572fy0

Substituting equations (25.85) and (25.86) into equation (25.65), the following determinant is
obtained:

2 0 0 2572 0 0
1x10°0 4 0832|-02] 0 2572 0 ||=0 (25.87)
0 0832 6 0 0 2572

From the first line of equation (25.65):

6
o = 2x100 _ 7776 x 10°

25.72

2789; n, = 44.1 Hz

£
I



676 Structural vibrations

As first line is uncoupled, the determinant of equation (25.87) can be reduced to the 2 x 2
determinant of equation (25.88):

o 4 0832 ,12572 0
1x 10 -

= 25.88
0 2572 0 ¢ )

Expanding the determinant of equation (25.88), the following quadratic is obtained:

(4 x 10° - 25.72 @?) (6 x 10° - 25.72 %) - (0.832 x 10°)® = 0

or

2.4 x 10" - 2,572 x 10* @* + 661.5 0* - 6.92 x 10" = 0
or

661.5@* - 2.572 x 10° @*+2.33 x 10" = 0 (25.89)
Solving equation (25.89),

of = 2572 10° - 0.671 x 10° _ | 437 , 105

1323
®, = 3791;n, = 603 Hz
o - 2372 10° + 0.671 x 10° _ .5 o 108

1323

e
i

, = 495.1;n, = 788 Hz

25.10 Mass matrix for a beam element

The beam element, which has four degrees of freedom, is shown in Figure 25.9.

yvVT
Vo

Figure 25.9 Beam element.
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A convenient polynomial with which to describe the lateral deflection v is

v o= @ +ox + ooy xlvax’ (25.90)
and

dv

= - a, + 20,x + 3o,x’ (25.91)

In equation (25.90), it can be seen that the polynomial has four arbitrary constants, and this
corresponds to the four degrees of freedom, namely, v,, 8,, v, and 8,, i.e.

1

Atx = 0, v =V, and 8, = -(dv/dx),

Atx =1 v =y, and 8, = -(dv/dx)_,
Substituting the first two boundary conditions into equations (25.90) and (25.91):
a, = v
and
a = -6

Substituting the remaining two boundary conditions into equations (25.90) and (25.91), the
following two simultaneous equations are obtained:

v, = v, - 01+ al +ap (25.92)

and,

0, = 0, - 20,/ - 3P (25.93)

Multiplying equation (25.92) by 2/1, we get:

2
n P, ~vy) = 28, + 2ay + 2a,/? (25.94)

Adding equation (25.93) to equation (25.94):

n v, - v) + 8, = 8,-20, - 3q,/% + 20,0’

or
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-a? = %(v2 - v) + 8, + 8,

25.95
o =-£(v—v)—(ez+el) ( )
4 TG 1 2
Substituting equation (25.95) into equation (25.92):
v, v+ 80 = ol? -2, - v) -0, +8)!
or
3 1
o = b = w) + T @8+ &) (25.96)
Substituting the above values of a, to a, into equation (25.90)
2
v=v-0;x+ 3@2(v2 - v1)+x7(291 + 92)
2 X
- 28 (v2 —vl)+l—2(92 + 91)
or
v=v(1-382+28%) 40,0 (-5 +28 - &)
vy (382-28%)+0,0 (82 - %) (25.97)
where,
& =1
ie.
v= (1-3§2+2§3) 1(-§+2§2 - ;3)
Vi
2 3 2 3 ,
(se2-22°) 1 (e - 2)
V2
9,

= [N]{u) (25.98)
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where [N] is a matrix of shape functions for a beam element:
N] - [(1_3g2 +2g3)1(-§+2g2- 53)(3§2—2§3)I(§2 - §3)] (25.99)

From equation (25.38):

[m] = [,'[N]" p[N] Ald¢& (25.100)

Substituting equation (25.99) into equation (25.100), and integrating, the mass matrix for a beam
element is given by

v, 6, v, 8
156 1
m] = 24L 221 a2 8, (25.101)

54 -131 156 v,

131 =312 221 4%,

Equation (25.101) is the mass matrix of a beam element due to the self-mass of the structure, but
if an additional concentrated mass is added to node i, the following additional components of mass
must be added to equation (25.102) at the appropriate node.

Added mass matrix at node i

v, 8
= M, 0V (25.102)
0 MMI S,

where MMI is the mass moment of inertia and M, is the mass.

Problem 25.7  Determine the resonant frequencies for the beam of the figure in Problem 23 .4,
assuming that the 4 kN load is not present, and that

E

H

2 x 10" N/m?, p = 7860 kg/m’

A =1x10"m? I=1x10"m'
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Solution
Element 1-2
/1 =3m
Substituting the above value of / into equation (25.101), together with the other properties of this

element, and removing the columns and rows corresponding to the zero displacements v, and 0,,
the elemental mass matrix is given by

v, 8
-4
{m_]=7860><1><10 x 3 156 66| Vs
12 420
66 36) 86,
v, o,
= 0.876 0.371| V2 (25.103)
0.371 0.202] 8,
Element 2-3
l=2m

Substituting the above value of / into equation (25.101), together with the other properties of this
element, and removing the columns and rows corresponding to the zero displacements v, and 6,,
the elemental mass matrix is given by:

V2 8,
[mz_a] = 0.584 -0.165] Y2 (25_104)
~0.165 0.0599] 8,

The system mass matrix [M,,] is obtained by adding together the elemental mass matrices of
equations (25.103) and (25.104):

V2 8,
[M"] = | 1.46 0.206| V2 (25.105)
0.206 0.262] 6,

From equation (25.84),



Mass matrix for a beam element 681

v, 9,
[Ku] = | 38 880 -16 660( V> (25.106)
-16 660 66 660 8,

Substituting equations (25.105) and (25.106) into equation (25.65), the following determinant is
obtained:

-0 (25.107)

38 880 -16 660| 1146 0.206
-0
-16 660 66 660 0.206 0.262

Expanding the determinant of equation (25.107), the following quadratic equation is obtained:
(38 880 - 1.460%) (66 660 - 0.262w%) - (- 16 660 - 0.206w>)* = 0
or,

2592 x 10° - 0.107 x 10° @’ + 0.383 o*

Il
o

- 278 x 10° - 6864 o* - 0.042 0"

|
(=2

0341 @* - 0.1139 x 10° @ + 2.314 x 10° (25.108)

The roots of equation (25.108), namely, »,” and ®,’, can readily be shown to be:

6 _
wf _ 0.1139 x 10 99 080 _ 2173 x 10°
0.682
or
o, = 1474;n = 2345 Hz
6
co; _ 0.1139 < 10° + 99 080 _ 3123 x 10°
0.682
and,
®, = 5588, n, = 8893 Hz

To obtain the first eigenmode, substitute @, into the first line of equation (25.107), to give
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(38 880 - 1.46 x 147.42) v, + (- 16 660 + 0.206 x 147.42) 0, =0

or
7159 v, - 211360, = 0 (25.109)

ie.
fv, 8,] = [1 0.339] — see the figure below at (a).

To obtain the second eigenmode, substitute w,’ into the second line of equation (25.107) to give:
(- 16 660 - 0.206 x 558.8%) v, + (66 660 - 0.262 x 558.8%) 8, = 0

or,
-80985v,- 151500, = 0 (25.110)

le.
v, 0,] = [- 0.187 1]~ see the figure below at (b).

(b) Second eigenmode

Problem 25.8  If the beam of Problem 25.7 has a mass of 1 kg, with a mass moment of inertia
of 0.1 kg m* added to node 2, determine the resonant frequencies of the beam.

Solution

From equation (25.105)

1.46 0.206 1 0
Mu] = '
0.206 0.262 0 0.1
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V) 8,
246 0.206| V2 (25.111)
0.206 0.362) 8,

From equation (25.101),

38880 -16660
[ al = (25.112)
-16660 66660
Substituting equations (25.111) and (25.112) into equation (25.65),
38 880 -16 660 246 0.206
-@? = 0 (25.113)
-16 660 66 660 0.206 0.362

(38 880 - 2.46 ©?) (66 660 - 0.362 w?) - (16 660 + 0.206 w2)* = 0

or
0.259 x 10" - 0.178 x 10° @’ + 0.891 @* - 2.776 x 10° - 6864 w® - 0.042 w* = 0

or
0.849 o* - 0.1849 x 10° w* + 0.231 x 10" = 0 (25.114)

Solution of the quadratic equation (25.114) results in the roots ®,* and w,%, as follows:

6 _ 6
o - 01849 X 10° - 0162 X 10° 39, g

1.698

or

e
"

116.1; n, = 13.48 Hz

and,

6 6
(o; _ 0.1849 x 10° + 0.162 x 10° _ 2043 x 10°

1.698

or

£
"

452; n, = 7193 Hz
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25.11 Mass matrix for a rigid-jointed plane frame element

Structural vibratiens

Prior to obtaining the mass matrix for an element of a rigid-jointed plane frame, it will be necessary
to obtain the mass matrix for the inclined beam of Figure 25.10.
The mass matrix for an inclined beam element in global co-ordinates is

[m,°] = [DC]" [m] [DC]

where,

[DC] is given equation (25.85) and [m] is given by equation (25.101).

[

V2

},0Y VO
A
Vi 0,
« /
\
0, /
x°, u°
Figure 25.10 Inclined beam element.
w’ v’ 8, w vy By
[ 15652 1w
~156¢s?  156¢2 v
pdl| 22Is -22lc 4P 0,
420 545> -54cs  13ls 15657 u°
-54cs  54c¢* -13cl -156cs  156¢* v,°
-13s 13lc -317 -22s  22ic 4| ©;

(25.115)

(25.116)
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For the element of a rigid-jointed plane frame, the elemental mass matrix in global co-ordinates
is given by

[m°] = [m,°]+[m°] (25.117)

where [m,°] is the axial part of the mass matrix of a rod element:

[DC] (25.118)

S

T
©c o =~ © o N
o o o © o o

o O O o o O
o O O O o ©
[ S = A =]

o O ©O © O QO

where, in equation (25.118), the components of mass in the v displacement direction have been
removed, because they have already been included in [m,°].
Substituting [DC] from equation (25.85) into equation (25.118):

o o (=] (-]
w° v° 8w v° e,

[2¢2 1™
2cs 2s? v’
[m,°] = P4l 1o 0 0 5 (25.119)
r 6
c? e 0 2t u,®
s s? 0 2cs 2s? v,°
0 00 0 0 0]g,

From equations (25.116) and (25.118), it can be seen that application of these elemental mass
matrices, together with the elemental stiffness matrix of equation (25.85), to a realistic rigid-jointed
plane frame will be extremely difficult without the aid of a computer.

Equation (25.117) shows the mass matrix for the self-mass of an element of a rigid-jointed
plane frame, but if the effects of an additional concentrated mass are to be included at a particular
node, the concentrated mass must be added to the appropriate node, as follows:
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M, 0 0 |u°

. (25.120)
0 M, 0 |v
0 0 MMI| 6

where
M, = the value of the mass

MMI = the mass moment of inertia of this mass

25.12 Units in structural dynamics

Considerable care should be taken in choosing suitable units in structural dynamics.
Recommended units are as follows:

(i) Imperial

Mass (Ibf s%/in); density (Ibf s%in*); E (Ibf/in?); time(s); length (in); Force(Ibf); second moment

of area (in*); cross-sectional area (in?).

(ii) S

Mass (kg); density (kg/m’); E (N/m?); time (s); length (m); Force(N); second moment of area

(m*); cross-sectional area (m?).

(iii) Derived SI

Mass (kg); density (kg/mm®); £ (mN/mm?); time (s); length (mm); force(mN); second moment

of area (mm®*); cross-sectional area (mm?®).

Further problems (answers on page 698)

25.9 A doubly symmetrical beam consists of a hollow rectangular steel section, having the
cross-section shown, and of length 10 m. It is simply-supported in bending about both

axes Cx, Cy at the ends. Estimate the lowest few natural frequencies of lateral vibrations
of the beam about the axes Cx and Cy. Take £ = 200 GN/m’.
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—=1cm thick
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|
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|

|

If the beam of Problem 25.7 carries an axial thrust of 10° kN, what is the lowest natural
frequency of the beam?

A light, uniform cantilever, of length L and uniform flexural stiffness £/, carries a mass
M at the free end. Estimate the natural frequency of vibrations.

Determine the resonant frequencies for the plane pin-jointed truss shown below,
assuming that the truss is loaded with a mass of 1 kg at node 4, and that the following
apply:

A =1x10"m’

E = 2x10" N/m?

1

p = 7860 kg/m’

(Portsmouth 1989)

Determine the resonant frequencies for the pin-jointed tripod, below, given that the
following apply:

Element A (md) E(N/m? kg/m’
14 1x107? 2 x 10" 7860
24 2x107? 2 x 10" 7860

34 1x10° 2 x 10" 7860
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25.14

Structural vibrations

Plan

l im  Front elevation

1 3 2
fe— 1 m—f—9 m —]|
(Portsmouth 1983)

A continuous beam is fixed at the nodes 1 and 4, and simply-supported at the nodes 2
and 3, as shown in the figure below.

Determine the two lowest resonant frequencies of vibration, given the following:

E = 2x10" N/m?

p = 7860 kg/m’

Element A(md) I(m*)
1-2 1x10™* 1x107
2-3 2x10™* 2x1077

34 1x10* 2x1077
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WA
—

7777

3m 2m-=|

(Portsmouth 1987)

A continuous beam is fixed at the nodes 1 and 5, and simply-supported at the nodes 2,

3 and 4, as shown below.

Determine the two lowest resonant frequencies of vibration given the following:

E = 2x 10" N/m®

p = 7860 kg/m’

Element A (m?) I(m"Y

1-2 1x10* 1x107

2-3 2x10 2x1077

34 2x 10" 2x1077

4-5 1x10™* 1x107

1 y2 3 4 5:

A 1m N
f 3m 3m 2m-=]

(Portsmouth 1987, Honours)

Calculate the three lowest natural frequencies of vibration for the continuous beam

below, where
A=0.001m’

I =1%x10°m*
E =2x10" N/m’

p = 7860 kg/m’
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Structural vibrations

fe——2m

im

1m—=]



