23 Matrix methods of structural analysis

23.1 Introduction

This chapter describes and applies the matrix displacement method to various problems in
structural analysis. The matrix displacement method first appeared in the aircraft industry in the
1940s’, where it was used to improve the strength-to-weight ratio of aircraft structures.

In today's terms, the structures that were analysed then were relatively simple, but despite this,
teams of operators of mechanical, and later electromechanical, calculators were required to
implement it. Even in the 1950s, the inversion of a matrix of modest size, often took a few weeks
to determine. Nevertheless, engineers realised the importance of the method, and it led to the
invention of the finite element method in 1956°, which is based on the matrix displacement
method. Today, of course, with the progress made in digital computers, the matrix displacement
method, together with the finite element method, is one of the most important forms of analysis
in engineering science.

The method is based on the elastic theory, where it can be assumed that most structures behave
like complex elastic springs, the load—displacement relationship of which is linear. Obviously, the
analysis of such complex springs is extremely difficult, but if the complex spring is subdivided into
a number of simpler springs, which can readily be analysed, then by considering equilibrium and
compatibility at the boundaries, or nodes, of these simpler elastic springs, the entire structure can
be represented by a large number of simultaneous equations. Solution of the simultaneous
equations results in the displacements at these nodes, whence the stresses in each individual spring
element can be determined through Hookean elasticity.

In this chapter, the method will first be applied to pin-jointed trusses, and then to continuous
beams and rigid-jointed plane frames.

23.2 Elemental stiffness matrix for a rod

A pin-jointed truss can be assumed to be a structure composed of line elements, called rods, which
possess only axial stiffness. The joints connecting the rods together are assumed to be in the form
of smooth, frictionless hinges. Thus these rod elements in fact behave like simple elastic springs,
as described in Chapter 1.

Consider now the rod element of Figure 23.1, which is described by two nodes at its ends,
namely, node 1 and node 2.

7I.Jevy, S., Computation of Influence Coefficients for Aircraft Structures with Discontinuities and Sweepback,
J. Aero. Sci., 14, 547-560, October 1947.

8Tumer, M.}, Clough, R.-W_, Martin, H.C. and Topp, L.J., Stiffness and Deflection Analysis of Complex Structures,
J. Aero. Sci., 23, 805-823, 1956.
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Node 1 Node 2
X1, Uy Xo, Uy XU
[ J l
Figure 23.1 Simple rod element.
Let
X, = axial force at node 1
X, = axial force at node 2
u, = axial deflection at node 1
u, = axial deflection at node 2
A = cross-sectional area of the rod element
! = elemental length
E = Young's modulus of elasticity

Applying Hooke's law to node 1,

S -k
but

o = X/A
and

e = (uI - uz)’l
so that

X, = AE (u] - uz)/l

From equilibrium considerations

X, = -X, = AE (u2 - u,)’l

1

(23.1)

(23.2)
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Rewriting equations (23.1) and (23.2), into matrix form, the following relationship is obtained:

X 1 -1 [u
oo 4E ‘ (233)
X, [ -1 1) |y
or in short form, equation (23.3) can be written

P o= K {u} (23.4)

where,

{P,} = = a vector of loads

{u} = = a vector of nodal displacements

u,

Now, as Force = stiffness x displacement

1 -1
N - 42
] (23.5)
-1 1

= the stiffness matrix for a rod element

23.3 System stiffness matrix [K]

A structure such as pin-jointed truss consists of several rod elements; so to demonstrate how to
form the system or structural stiffness matrix, consider the structure of Figure 23.2, which is
composed of two in-line rod elements.

A E A E
1e——————§> 43 — =
f—— fy ————f— ‘

Figure 23.2 Two-element structure.
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Consider element 1-2. Then from equation (23.5), the stiffness matrix for the rod element 1-2 is

I (23.6)

The element is described as 1-2, which means it points from node 1 to node 2, so that its start node
is 1 and its finish node is 2. The displacements u, and u, are not part of the stiffness matrix, but
are used to describe the coefficients of stiffness that correspond to those displacements.

Consider element 2-3. Substituting the values 4,, E, and /, into equation (23.5), the elemental
stiffness matrix for element 2-3 is given by

Uy, U

Ak 1 -1 ]

L 3.7
- 1 1 u3

[ka-s] =

Here again, the displacements u, and u, are not part of the stiffness matrix, but are used to describe
the components of stiffness corresponding to these displacements.

The system stiffness matrix [K] is obtained by superimposing the coefficients of stiffness of
the elemental stiffness matrices of equations (23.6) and (23.7), into a system stiffness matrix of
pigeon holes, as shown by equation (23.8):

LT L) U
AE, /] - AE /] 0 U

K] - 238
(] ~AE L AE L+ 4E 1L, - 4E L] u (238)

0 — 4E, /1, 4B L],

It can be seen from equation (23.8), that the components of stiffness are added together with
reference to the displacements u,, u, and ;. This process, effectively mathematically joins together
the two springs at their common node, namely node 2.
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Let

@ = 1 (23.9)

a vector of known externally applied loads at the nodes, 1, 2 and 3, respectively

~.E

——
1]
[

N

(23.10)

a vector of unknown nodal displacements, due to {g}, at nodes 1, 2 and 3
respectively

Now for the entire structure,
force = stiffness x displacement, or

{a} =IK] {u} (23.11)

where [K] is the system or structural stiffness matrix.

Solution of equation (23.11) cannot be carried out, as [K] is singular, i.e. the structure is
floating in space and has not been constrained. To constrain the structure of Figure 23.2, let us
assume that it is firmly fixed at (say) node 3, so thatu, = 0.

Equation (23.11) can now be partitioned with respect to the free displacements, namely «, and
u,, and the constrained displacement, namely u,, as shown by equation (23.12):

qr up
= 23.
R} {u3 - 0} (23.12)

Pl
lar} = { Pz] (23.13)

= a vector of known nodal forces, corresponding to the free displacements,
namely ¥, and u,

K Ky

K21 KZZ

where
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fs} = {:l} (23.14)

= a vector of free displacements, which have to be determined

AE, /1, -AE//I,

(23.15)
AE\l, AE/1 + AE, /L)

= that part of the system stiffness matrix that corresponds to the free
displacements, which in this case is ¥, and u,

{R} = avector ofreactions corresponding to the constrained displacements, which in
this case is u,
(K] = [4, E; /1]

Kyl = [0- 4,E, /L)

in this case

[K,.] = |:_ 212 E, /12:|

Expanding the top part of equation (23.12):

far} = [Ku]
{“F} = [Ku]_l {qF}

(23.16)

Once {u,} is determined, the initial stresses can be determined through Hookean elasticity.
For some cases u, may not be zero but may have a known value, say u.. For these cases,

equation (23.12) becomes
K u,
I {_*} (23.17)
uC

Ky K
KZ] KZZ

qr
R

e = Kal" (g - Ko ) (23.18)

so that
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and

(R} = [K21]{uF}+[K22]{uc} (23.19)

23.4 Relationship between local and global co-ordinates

The rod element of Figure 23.1 is not very useful element because it lies horizontally, when in fact
a typical rod element may lie at some angle to the horizontal, as shown in Figures 23.3 and 23 .4,
where the x—y° axes are the global axes and the x—y axes are the local axes.

x
YoV Typi .
ypical rod element j /

"\

i

Figure 23.3 Plane pin-jointed truss.

yO’ VO
X, u
2 /
yVV\
(¢
) -

x°,u°

Figure 23.4 Rod element, shown in local and global systems.

From Figure 23.4, it can be seen that the relationships between the local displacements » and
v, and the global displacements #° and v°, are given by equation (23.20):
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which, when written in matrix form, becomes:

i

e

For node 1,

where,

Matrix methods of structural analysis

u°cosa + v°sina

-u°sina + v°cosa

n

cosa sina| [,e°
-sina cosa| |v°

Or, for both nodes,
1 u,°
1 4 | 0,[ " °
2 0, C)%°
2 v,°

where,

(23.20)

(23.21)

(23.22)

(23.23)
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@ =

[0 0
[0) =

00

Equation (23.23) can be written in the form:

f} = [DC] {u°} (23.24)
where,
0
pc] = | &2 (23.25)
0, ¢
= a matrix of directional cosines
1
= o
l 2
2
u,°
v,°
I B T
U
v,°
From equation (23.25), it can be seen that [DC] is orthogonal, i.e.
[C]”’ = [DCT
(23.26)

~A{u;°} [DC]T {u}
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Similarly, it can be shown that
{P} = [DC}{P;°} (23.27)

and (P} - [DCT (P}

where
1
Y,
Py =
2
Y,
and
10
Y
{P’} = -]
2
Y -]

23.5 Plane rod element in global co-ordinates

For this case, there are four degrees of freedom per element, namely u,°, v,°, u,° and v,°. Thus,
the elemental stiffness matrix for a rod in local co-ordinates must be written as a 4 X 4 matrix, as
shown by equation (23.28):

U, v, u, v
1 0 -1 0]
[k]——’g- 0 0 0 0w (23.28)
I -1 0 1 0|4 ‘
o 0 o o,

The reason why the coefficients of the stiffness matrix under v, and v, are zero, is that the rod only
possesses axial stiffness in the local x-direction, as shown in Figure 23.1.
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For the inclined rod of Figure 23 .4, although the rod only possesses stiffness in the x-direction,
it has components of stiffness in the global x°- and y°-directions.

The elemental stiffness matrix for a rod in global co-ordinates is obtained, as follows. From
equation (23.4):

Ph o= b ) (23.29)
but
| p} = [bcl{r7) (23.30)
and

fuf = IDC] fu°} (23.31)

Substituting equations (23.30) and (23.31) into equation (23.29), the following is obtained:

[bC] {P°} = [K] [DC] {u,°) (23.32)

Premultiplying both sides by [DC] ',

{P°} = [DC]” k] [DC] {u,°)

but from equation (22.28),

1

[pC]™

=P}

[DCj”
(23.33)

[DC]™ [k] [DC] {u,°)

Now,
force = stiffness x deflection

- APy = (K1 {%} (23.34)
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Comparing equation (23.34) with (23.33),

[k°] = [DC] [K] [DC] (23.35)
= elemental stiffness matrix in global co-ordinates
ul -] vl o uz o v2 (-]
¢ o5 -c? -osfi’
ke] = AE es s? -es -sty° (23.36)

-c -5 ¢ cs U,

-cs -s° o5 sty

= the elemental stiffness matrix for a rod in global co-ordinates

Problem 23.1  The plane pin-jointed truss below may be assumed to be composed of uniform
section members, with the same material properties. If the truss is subjected to
the load shown, determine the forces in the members of the truss.

v

Solution
This truss has two free degrees of freedom, namely, the unknown displacements u,° and v,°.
Element [-2

This element points from 1 to 2, so that its start node is 1 and its end node is 2, as shown:
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a = 135° ~¢ = -0707, s = 0.707, I =1414m

Substituting the above information into equation (23.36), and removing the rows and columns
corresponding to the zero displacements, namely u,° and v,°, the elemental stiffness matrix for
element 1-2 is given by

05 -0.5 u,*

AE o

k °l = 2£ [-05 o5 v
k127 1414 : (23.37)

u,’

.v ]

Element -3

This member points from 1 to 3, so that its start node is 1 and its end node is 3, as shown below.

X, y°

1

J 90°
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Substituting the above values into equation (23.36) and removing the rows and columns

comresponding to the zero displacements, namely u,° and v,°, the elemental stiffness matrix for
element 1-3 is given by:

[kis?] = T (23.38)

Element 4 -1

This element points from 4 to 1, so that its start node is 4 and its end node is 1, as shown:

Yo
a = 210°
or a = -150°
¢ = -0.866
s = -05
I = 2

Substituting the above information into equation (23.36), and removing the rows and columns
corresponding to the zero displacements, which in this case are u,° and v,°, the elemental stiffness
matrix is given by
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4 (23.39)
0.75 0.433|,,

0.433 025 ], o

.Jvl

The system stiffness matrix corresponding to the free displacements, namely u,° and v,°, is given
by adding together the appropriate coefficients of equations (23.37) to (23.39), as shown by
equation (23.40):

u,’ v,°
0354+0 ~-0.354+0
u,’°
+0.375 +0.217
(K] = 4E
-0.354+0 0354 +1
v,°
+0.217 +0.125
L (23.40)
or
u° v,°
-0.137  1.479) v/,°
NB [K,,] is of order two, as it corresponds to the two free displacements u,° and v,°, which
are unknown.

The vector of external loads {q,}, corresponds to the two free displacements u,° and v,°, and can
readily be shown to be given by equation (23.42), ie

{gF} = {Z}u' (23.42)

-]
3) v,

where the load value 2 is in the u,° direction, and the load value -3 is in the v,° direction.
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Substituting equations (23.41) and (23.42) into equation (23.16)

{ur"}

1}
= R
o "o
D
i
—
»
-
—_—
-
]
w N
e —

1 (1479 0.137(] 2
AE [0.137 0.729] {-3

(0.729 x 1.479 - 0.137 x 0.137)

1.396 0.129] ) 2
0.129 0.688) {-3

1L
AE

i.e.

u,” 1 [ 2405 (23.43)
v,° AE |-1.806

These displacements are in global co-ordinates, so it will be necessary to resolve these
displacements along the length of each rod element, to discover how much each rod extends or
contacts along its length, and then through the use of Hookean elasticity to obtain the internal
forces in each element.

Element 1- 2

Now,
c=-0707, s =0707 and / = 1414m

Hence, from equation (23.23),

t)

1 2.405
= [-0.707 0.707] —
AE [-1.806

i

U

-2977/AE

=
|



Plane rod element in global co-ordinates
From Hooke's law,

F,_, = force in element 1-2

4E

] (e - )

2977

1.414

F,_, = 2.106 MN (tension)

Element 1-3

!
u, = [c ]

v,°
2.405

1

(0 1] 5
-1.806

u, = -1806/AE

From Hooke's law,

F,_, = force in element 1-3

AE
)

s - w)
F,; = 1.806 MN (tension)

Element 4-1
c = -0866, s =05 and !l =2m

From equation (23.23),

581
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__2
1]

u,
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]

[-0.866 0.5]

1 2.405
AE |-1.806

-1.1797 / AE

From Hooke's law,

F4l

Problem 23.2

force in element 14

4E

()~ uy)

AE (-1.1797 - 0)

2 AE

-0.59 MN (compression)

Using the matrix displacement method, determine the forces in the members
of the plane pin-jointed truss below, which is free to move horizontally at node
3, but not vertically. It may also be assumed that the truss is firmly pinned at
node 1, and that the material and geometrical properties of its members are
given in the table below.

2m —=—

2
—/<—4MN

30 60° l
3MN
3 Rollers
/
A x°. u°

Member A E

1-2 2A4 E

1-3 A 3E

2-3 34 2F
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Solution

Element 1-2

u‘O v‘Q ulo v‘lO
1w°
o 24F °
[kl-Z } = -——2— vl
1 0 u,®
0 O0f. o
.v2

Element 2-3

a = 240°, ¢ = -05, s = -0.866 and l =

u, v, U, v,
[ 025 0433 -025

0433 Q.75 - 0437

o 3Ax2E
i) 2022

1
-025 -0433 025

AE
26 45 -2.6(v,°

-15 -26 1.5 u,°

5]

Va2

U

V3

583

(23.44)

(23.45)
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Element 3-1

a = 150°, ¢ = -0.866, s =05 and/ = 1.732m

o

Q [+] . O
3" vy up v,

[ 0.75 1.

Uy
A x 3FE °
k. .,°| = V.
[ks-1°] 1.732 ’
u,®
-vlo
uy

- 13w (23.46)
= [13] 4

The system stiffness matrix [K,,] is obtained by adding together the appropriate components of
stiffness, from the elemental stiffness matrices of equations (23.44) to (23.46), with reference to
the free degrees of freedom, namely, ,°, v,° and u,°, as shown by equation (23.47):

u,’ v,° u,°
1 +1.5 0+26 -15 |u,°
[K,.] = AE 0+2.6 0+45 -26 |v,°
-15 -26 1.5+13 (u,°

(23.47)

u,°* v, u’

25 26 -150u,°

= AE 23.48
26 45 -26|y° ( )

15 <26 28 [u°

The vector of loads {g.}, corresponding to the free degrees of freedom, namely, «,°, v,° and u,°
is given by:
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-4 u2°
st = 3 (23.49)

-3
0} u,

Substituting equations (23.48) and (23.49) into equation (23.16) and solving, the vector of free
displacements {u;} is given by

2 -2.27
ot = {0125 (23.50)
AE
o 1332

The member forces will be obtained by resolving these displacements along the length of each rod
element, and then by finding the amount that each rod extends or contracts, to determine the force
in each member through Hookean elasticity.

Element 1-2

u,
wm = [ s
v2°
i -2.27
= [1 0]__
AE 19125
u, = -227/4E

From Hooke's law,

F,_, = force in element 1-2

. 24E( 221
2 AE

F,_, = -2.27 MN (compression)
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Element 2-3

c = -0.5, s =-086 and ! Im

u, = [e s
20
) -2.27
= [-0.5 -0.866] —
-0.125
u, = 1243/4E
Similarly, from equation (23.23),
30
u, = [c s
30
-1.332
1
= [-0.5 -0.866] —
AFE 0
u;, = 0.666/4E

From Hooke's law,

F, , = force in element 2-3

= .M_:—zé (u} - uz)

64E x

(-0.577)
AE

-3.46 MN (compression)

!
1
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Element 3-1

¢c=-0866, s =05and / =1732m

u, = [c s
30
-1.332
- [-0.866 0.5] -—
AE
0
u; = 1.154/4E
From Hooke's law,

F,—, = force in element 1-3

A x 3E (0 ) 1.154)

1.732 AE

F,—, = -2 MN (compression)

23.6 Pin-jointed space trusses

In three dimensions, the relationships between forces and displacements for the rod element of
Figure 23.5 are given by equation (23.51):

XJ u,
v, t o o -1 o0 o |
0 0 0
2 i 0 0 0 "
{1 = £ 0 0 o o0 o4 ¢ (23.51)
LY, I} u,
-1 0 0 1 0 0
Y. (o0 0o o o o o |
& 2

where,
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load in the x direction at node 1

=
1}

AE (u, -u,)/l

=<
"

load in the y direction at node 1
0

load in the z direction at node 1

N
1}

0

load in the x direction at node 2

Ke
1

AE(u, -u)/l

e
n

load in the y direction at node 2
0

load in the z direction at node 2

N
1

1]

0

X%, u°, X°

Figure 23.6 Rod in three dimensions.
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For the case of the three dimensional rod in the global co-ordinate system of Figure 23.6, it can be
shown through resolution that the relationship between local loads and global loads is given by:

x,
Y,
A g
{ } =
X, 0,
r
Z,
where
Cu;
[g] = Cy,x"
Cu.,
Xy z
xO’ yO, zO
Cis C,s C, s etc

x,°
Y,
z,°
X,°
r,°
.22 ’

local axes

global axes

the directional cosines of x with x°,
respectively, etc.

force in x° direction at node 1
force in y° direction at node 1
force in z° direction at node 1
force in x° direction at node 2
force in y° direction at node 2

force in z° direction at node 2

x with y°,

(23.52)

(23.53)

x with z°,
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Now from equation (23.35) the elemental stiffness matrix for a rod in global co-ordinates is given
by:

k] = [DC]" [k] [DC]

¢ o [¢ o,
= (k]
o, ¢ 0, ¢ (23.54)
a -a
k°] =
-a a
where
Cle CoCpe CiiCi.
b - 2l c,. . ¢, (23.55)

By Pythagoras' theorem in three dimensions:
i

D= [ =P s - nf - @ ) (23.56)
The directional cosines’ can readily be shown to be given by equation (23.57):

C..°= [x° - x°)1

C,'= b -l (23.57)

C..°= (5° - z,°)1

x,z 2

Problem 23.3 A tripod, with pinned joints, is constructed from three uniform section
members, made from the same material. If the tripod is firmly secured to the
ground at nodes 1 to 3, and loaded at node 4, as shown below, determine the
forces in the members of the tripod, using the matrix displacement method.

9Ross, C T F, Advanced Applied Element Methods, Horwood, 1998.
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Solution
Element 14

The element points from 1 to 4, so that the start node is 1 and the finish node is 4. From the figure
below it can readily be seen that:

x° =0, y,° = 0. z,° =0,
z,° = Sm, y.° = 5m, z,° = 707m
yD,VO
3 T
7.07Tm
4| —=2MN
| 5m
' l
| .
1 2 Xo'uo
| 5m | 5m
[ !
(a) Plan view of the tripod.
2w | |
1

l 5m

(b) Front view of tripod.
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Substituting the above into equation (23.56),
1
I = [5-07+(5-07+ (107 - 07

! = 10m

Substituting the above into equation (23.57),

c o= X ~H _5-0 _ 45
~ / 10
¥ -n° 5-0
C. °= = = 05
i ) 10
o, % "% 707-0
R e e

Substituting the above values into equation (23.54), and removing the coefficients of the stiffness
matrix corresponding to the zero displacements, which in this case are u,°, v,° and w,°, the
stiffness matrix for element 14 is given by equation 23.58):

u1° v]o w1° u4° v40 w40
u'
v’
[ ,,]_ 4E w' (23.58)
R 025 Uy’
025 025 Vs
I 0354 0354 05| Wi

Element 2—4

The member points from 2 to 4, so that the start node is 2 and the finish node is 4. From the above
figure,

x,° =10, ¥,° =0, z,° =0
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Substituting the above and x,°, y,° and z,° into equation (23.56),
1

(5 - 107 + (5 - OF + (7.07 - OF

-
1

! = 10m

From equation (23.57),

- (=4

o _ X2 X _ 5-10
C.,° = 7 = " = -0.5
o . Y- 5.0
G, = ; = ™ = 05
z,° - z,° -
c., - 4 2 _ 7.07-0 _ 0.707
/ 10

Substituting the above values into equation (23.54), and removing the rows and columns
corresponding to the zero displacements, which in this case are u,°, v,° and w,°, the stiffness
matrix for element 2—4 is given by equation (23.59):

w’ V2° W2° u®' vy owy
uy
vy
[ o]_A_E W2° (23.59)
e 025 Uy’
~025 025 va
i - 0354 0354 05) "3

Element 4-3

The member points from 4 to 3, so that the start node is 4 and the finish node is 3. From the figure
at the start of this problem,

x° =5 y° = 1207 z° =0
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Substituting the above and x,°, y,° and z,° into equation (23.56),

1

I = [5-57+ (1207 - 57 + (0 - 707

~
"

10 m

From equation (23.57),

o [~

X. - X -
C..o = 3 L B B 0
d ! 10
C.e - Y TV 1207 -5 oo00
! ! 10
z,° - z,° _
co- 2% . 0270 . o0
z ] 10

Substituting the above into equation (23.54), and removing the rows and columns corresponding
to the zero displacements, which in this case are u,°, v,° and w,°, the stiffness matrix for element
4-3 is given by equation (23.60):

u’' v, ow, u; vy owy
0 u”
0 05 v
-05 0. o
1 AE 0 > Wi (23.60)
[k4-3 ] = W o
U
vy
Wy’

To obtain [K,,], the system stiffness matrix corresponding to the free displacements, namely «,°,
v,° and w,°, the appropriate coefficients of the elemental stiffness matrices of equations (23.58)
to (23.60) are added together, with reference to these free displacements, as shown by equation
(23.61):
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u40 V4° W4°
0.25
+0.25
+0 u’°
0.25 0.25
[K, °] =4E -0.25 +0.25
10 +0 +0.5 v,°
0.354 0.354 0.5
- 0.354 +0.354 +0.5
+0 -05 +0.5 w,°
- (23.61)
u4° V4° Wy °
05 0 0] 4’
AE . (23.62)
=—\0 1.0 0208 | v,
0 0.208 L5 wy®

The vector of loads is obtained by considering the loads in the directions of the free displacements,
namely «,°, v,° and w,°, as shown by equation (23.63):

2 )4’
s = {o v (23.63)

_ o
3w,

Substituting equations (23.62) and (23.63) into (23.16), the following three simultaneous equations
are obtained:

2 = |4E} <0500 (23.64a)
10
0 = (f’f) (v + 0.208 w,°) (23.64b)

-3 = (%) (0.208 v,° + 1.5 w,°) (23.64c)
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From (23.64a)
u,° = 40/AE

Hence, from (20.64b) and (23.64c),

v,° = 4.284/4E
w,° = -20.594/AE
so that,
U, 40
o 1
= &y = — {4284 23.65

fus} 4 1E ( )

° -20.594

To determine the forces in the members, the displacements of equation (23.65) must be resolved
along the length of each rod, so that the amount the rod contracts or extends can be determined.
Then through the use of Hookean elasticity, the internal forces in each member can be obtained.

Element 14

Cs” =05 G, =05 C,°=0707 /=10m

xy X,z

From equation (23.52):

u,
4 = [Cuo Cx,yo C,zc] Ve’
w,°
40
= [os 05 0707) ——{ 428
AE
-20.59

u, = 1.568/AF



Pin-jointed space trusses
From Hooke's law,
F,, = force in member 14
AE 7568

=g (=) ETRDT:

F,, = 0.757 MN (tension)

Element 2—4

C.° =-05 C,° =05 C. =0707,

xy X,z

From equation (23.52):

Uy
u, = [Cu° C,° Cx;°] v,°
w,°
40
= [-05 05 0707 - { 428
AE
-20.59
u, = -32417/4E
From Hooke's law,
F, , = force in member 2-4
- AL - = 2E s 2a17/48)
10
F,, = 3.242 MN (tension)

1

10m

597
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Element 4-3
C.° =0 C,° =077 Cf=-0707, [=10m
u,°
U, = [Cx,xo nyo vao] v4°
40
40
u, = [0 0707 -0707) - { 428
AE
-20.59
u, = 17.58/4E

From Hooke's law,

F,, = force in member 4-3
AE
ST (s~ uy)
- AL o - 17.58/4E)
10
F,; = -1.758 MN (compression)

23.7 Beam element

The stiffness matrix for a beam element can be obtained by considering the beam element of Figure
23.7.
y.v

M. 0,

A 20
‘-.u \LYZ' ]V2 .

Yy, vy !

|
M, 0y I
|

Figure 23.7 Beam element.
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From equation (13.4),

B9 - M- vxeM
; - - Rl + 1 (2366)
& Yx?
El — = + Mx + A (23.67)
dx 2
Yx?  Mx? ,
Elv = + + Ax + B (23.68)
6 2
where
Y, = vertical reaction at node 1
Y, = vertical reaction at node 2

M, = clockwise couple at node 1

M, = clockwise couple at node 2

v, = vertical deflection at node 1
v, = vertical deflection at node 2
0, = rotational displacement (clockwise) at node 1
6, = rotational displacement (clockwise) at node 2

There are four unknowns in equation (23.68), namely Y|, M|, A and B; therefore, four boundary
values will have to be substituted into equations (23.67) and (23.68) to determine these four
unknowns, through the solution of four linear simultaneous equations.

These four boundary values are as follows:

Atx = 0, v = v, and Gl:-iv-
dxx=0

Atx = [, v = v, and 92=-£v—
dxx:l

Substituting these four boundary conditions into equations (23.67) and (23.68), the following are
obtained:
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6LE] 12ET
Y, = _1_2 (& 8,) + B (Vl - V) (23.69)
6EI EI
M, = 1_2 (v, - )+ T (48, + 28,) (23.70)
6L] 12ET
Y, = "17(91 + 92) - B ("1 - 2) (23.71)
2E1 4E] 6E]
M, = - 8, + - 0, - —l—z— (vl -~ "z) (23.72)
Equations (23.69) to (23.72) can be put in the form:
P} = [k}
where,
¢! 9, ¢! 8,
1213 -6/1* -12/1* -6/1*["1
k] = Er|-6/1* 41 en* 2l |8 (23.73)
12 et 1217 6/ v,
-6/1* 21 61 4/l |8,
= the elemental stiffness matrix for a beam
K
M, .
{E} 1y = a vector of generalised loads (23.74)
2
M,
¢!
6, .
{u,-} = = a vector of generalised displacements (23.75)
V2
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Problem 23.4 Deiermine the nodal displacements and bending moments for the uniform
section beam below, which can be assumed to be fully fixed at its ends.

AN

lti kN
A

2

|

1

3m

w
77777777

2m

Solution
= 1
Prior to solving this problem, it must be emphasised that the nodes must be numbered in ascending

order from left to right, because the beam element has been developed with the assumption that the
start node is on the left and the finish node is on the right.

Element 1-2
{=3m
Substituting this value of / into equation (23.73), and removing the components of the stiffness

matrix corresponding to the zero displacements, namely v, and 8,, the stiffness matrix for element
1-2 is given by equation (23.76):

vi 8, v 8,
Vi
[k, o] = EI 8, (23.76)
0.444 0.667|,,

0.667 1.333 6,

Element 2-3
I =2m

Substituting this value of / into equation (23.73), and removing the components of the stiffness
matrix corresponding to the zero displacements, namely v, and 6,, the following is obtained for the
elemental stiffness matrix 2-3:
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15 -15 g

ko s] = EI |-15 15 8, (23.77)
V3
93

The system stiffness matrix, which corresponds to the free displacements v, and 6,, is obtained by
adding together the appropriate components of the elemental stiffness matrices of equations (23.76)
and (23.77), as shown by equation (23.78):

vzo 920
0.444 0.667
+15 -15 |ve
(K] = EI
0.667 1.332
- 15 +20 |90
(23.78)
A6} 9,
= EI 1.944 -0.833|V, (23.79)
-0.833 33338,

The vector of generalised loads is obtained by considering the loads in the directions of the free
displacements v, and 0,, as follows:

= o

From equation (23.11),
-4 1.944 -0.833| 2

= EI
0 -0.833 3333 P,

1 (3333 0.833] |-4
2 Er|os33 1944 |0
5 (1.944 x 3.333 - 0.8332)

or,
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1 ]0.576 0.144] |-4
0.144 0336 |0

EI

(23.80)

(23.81)

To obtain the nodal bending moments, these values of displacement must be substituted into the
slope-deflection equations (23.70) and (23.72), as follows.

Element 1 -2

Substituting v,, 8,, v, and 0, into equations (23.70) and (23.72):

M,

M,
and,

M,

M,
Element 2-3

SEI[ 2304 _ | , Ef 4 x0 -
9 EI 3

-1.536 - 0.384

-1.92 kNm

2 x 0.576
El

-0.576) _ 6EI
EI 9

£x0+ﬂx
3 3

-0.768 - 1.536
~-2.304 kNm

t

2.304
+
EI

Substituting v,, 8,, v, and 6, into equations (23.70) and (23.72), and remembering that the first node
is node 2 and the second node is node 3, the following is obtained for M, and M,:

M,

4E[ [ -0576] ., _ 6EI ( -2.304
2 EI a \ E
-1.152 + 3.456

2.304 kNm
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and,

M, - 2EL(-0576)  _ 6EI( 2304
2 \ E 4

= -0.576 + 3.456

M, = 2.88 kNm

Problem 23.5 Determine the nodal displacements and bending moments for the encastré
beam:

1 kN/m 2 kN/m

AN

AN

77777777

Y.

3m 2m

Solution

Now the matrix displacement method is based on applying the loads at the nodes, but for the above
beam, the loading on each element is between the nodes. It will therefore be necessary to adopt
the following process, which is based on the principle of superposition:

1.  Fix the beam at its nodes and determine the end fixing forces, as shown in the following
figure at (a) and (b) and as calculated below.

2, The beam in condition (1) is not in equilibrium at node 2, hence, it will be necessary to
subject the beam to the negative resultants of the end fixing forces at node 2 to achieve
equilibrium, as shown in the figure at (c). It should be noted that, as the beam is firmly
fixed at nodes 1 and 3, any load or couple applied to these ends will in fact be absorbed
by these walls.

3.  Using the matrix displacement method, determine the nodal displacements due to the
loads of the figure at (¢) and, hence, the resulting bending moments.

4.  To obtain the final values of nodal bending moments, the bending moments of condition
(1) must be superimposed with those of condition (3).



(@

(®)

()

End-fixing forces
Element 1-2

F
M, =

Element 2-3

ME. =

2-3

Beam element

M, 1kN/m M5, M5, 2kN/m M,
N
1 2
3m '<—2m—J
Yio2 Yooy Y23 Yi-2
075

0.75 0.667 0.667
15 2

5 2
/ 1.5+2=35kN
1 kz' 3
0.75 - 0.667 = 0.0833 kN/m
2 2
L X3 L 075 km
12 12
2
¥ 075 kNm
12
v,, = X3 - 15k
2
2 2
W 2X2 . 0667 kNm
12 12
2
¥ 0667 KNm
12
Y;, = _w_l = 2x2 = 2 kN

605
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From the figure above, at (c), the vector of generalised loads is obtained by considering the free
degrees of freedom, which in this case, are v, and 6,.

-3.5 V2 (23.82)
fre) -0.0833)6, '
From equation (23.80),

Kt = =

El10.144 0.336

0.576 0.144]

and from equation (23.16),

2 1 |0.576 0.144 -3.5
{MF} N E710.144 0.336] |-0.0833

|1 [2028 2383
| Er|-0532 '

or,

To determine the nodal bending moments, the nodal bending moments obtained from the equations
(23.70) and (20.72) must be superimposed with the end-fixing bending moment of the figure
above, as follows.

Element 1-2

Substituting equation (23.83) into equation (23.70) and adding the end-fixing bending moment
from the figure above (b),

M, - SEL[Z2008 ) B, o 2x0532)
9o \ E 3 EI

= -1.352 - 0355 - 0.75

M, = -2.457 kNm
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Similarly, substituting equation (23.83) into equation (23.72) and adding the end-fixing bending
moment of the above figure at (b),

M, - -SEL(q, 2028) [ EIf, 4x0532)
3 EI 3 EI
-1.352 - 0.709 + 0.75

M, = 1311 kN/m

Element 2-3

Substituting equation (23.83) into equations (23.70) and (23.72) and remembering that node 2 is
the first node and node 3 is the second node, and adding the end fixing moments from the above
figure at (b),

M, - SEL(2028 | EI( 4x0532) e
4\ E 2 EI
= 3.042 - 1.064 - 0.667
M, = 1311 kNm

p, - SEL(2028 ) Bl 2x052) o
a \ E 2 EI
= 3.042 - 0.532 + 0.667
M; = 3.177 kNm

23.8 Rigid-jointed plane frames

The elemental stiffness matrix for a rigid-jointed plane frame element in local co-ordinates, can
be obtained by superimposing the elemental stiffness matrix for the rod element of equation
(23.28) with that of the beam element of equation (23.73), as shown by equation (23.84):

[(4ar1) 0 0 (~4/u) o0 0
0 12/ -6/ 0 -12/P -6/
0 -6/1> 471 0 6/1° 2/1
(K] = EI (23.84)
(-4/1) o 0 (a471y 0 0
0 -12/° 6/I* 0 12/ 6/
0 -6/ 2/1 0 6/ 4/l

= the elemental stiffness matrix for a rigid-jointed plane frame element, in local
co-ordinates
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Now the stiffness matrix of equation (23.84) is of little use in that form, as most elements for a
rigid-jointed plane frame will be inclined at some angle to the horizontal, as shown by Figure 23.8.

Y,°

X
0 0 Y2 /
¥V X,
' 1 _’ch
M,

Figure 23.8 Rigid-jointed plane frame element.

It can readily be shown that the relationships between the local and global forces for the
element are:

(v ) o
V\,l c s 0 X
e -s ¢ 0 0, r®
W, 0 0 1 M,°
{ "} = $ 3 (23.85)
LY, c s 0]1X°
Y, 0, -s ¢ 0 Y,°
M, 0 0 1] M,°

or,

where,



Rigid-jointed plane frames

c s 0
[§] = |-s ¢ O
0 01

Now, from equation (23.35):

k] = [DC]T [k] [DC]
- e ]
where,
u,®v,° 8, uw® v,° 8,
c? e 0 -¢? -¢s 0™
s s? 0 -cs -s? 0|V
[k,°] = AE1o o0 0 0o o o]l8
r !
-c? -¢cs 0 ¢ ¢ 0 |u°
-cs -s2 0 e s 0 v,°
o 00 0 0 o]g
W' v’ 8, Uy’
12
rad
12 , 12 ,
re 7
6 6 4
7T T
k.°|= EI
[ ”] 12, 12 6 12,
—1—35 -F-CS —1—2.5‘ 1—3S
12 12 , 6 12
"ITCS —1—30 12C I—BCS
6s 6c 2 6
— — - - =5
|2 2 I ?

V2° 0,
12 ,

'ITC

6 4
—C

I [

609

(23.86)

(23.87)

(23.88)
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c = cosa
s =sina
A = cross-sectional area
I = second moment of area of the element's cross-section
! = elemental length

E = Young's modulus of elasticity

Problem 23.6  Using the matrix displacement method, determine the nodal bending moments
for the rigid-jointed plane frame shown in the figure below. It may be assumed
that the axial stiffness of each element is very large compared to the flexural
stiffness, so that v, = v;° = 0,and u,° = u,°.

v
4m ——————
_ —= 5kN
2 3
3m
1 4
XX S N o o

Solution
As the axial stiffness of the elements are large compared with their flexural stiffness, the effects
of [k,°] can be ignored.
Element 1-2
a = 90° c=0 s =1 [ =3m
Substituting the above into equation (23.88), and removing the rows and columns corresponding

to the zero displacements, which in this case are #,°, v,°, 8, and v,°, the elemental stiffness matrix
for member 1-2 becomes
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u® v,° 8 ' v 6
u’
v
8,
[k1—2 ]= El 0.444 (23.89)
» u2°
i -0667 1333 V)
e2
Element 2-3
a =0, c =1, s =0, /] =4m

Substituting the above into equation (23.88), and removing the columns and rows corresponding
to zero displacements, which in this case are v,° and v, °, the elemental stiffness matrix for member
2-3 is given by

u,* v,° 6, u,° v;° 6,

— -— %o

0 o

\¢)
[k ] g1|° : ° 23.90
2.3 | = 0 0 ] (23.90)

U

0 05 0 1w

6,

Element 3—4
a = -90°, c =0, s =-1,1 =3m

Substituting the above into equation (23.88), and removing the columns and rows corresponding
to zero displacements, namely v,°, 4,°, v,° and 6,, the elemental stiffness matrix for member 3—4
is given by
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[ks-s°]=ET |-0.667 1333 8 (23.91)

Superimposing the stiffness influence coefficients, corresponding to the free displacements, u,°,
0,, u,° and 8, the system stiffness matrix [K,,] is obtained, as shown by equation (23.92):

uy° 0, uy° 8,
0.444
u,’°
+0
- 0.667 1.333
(K" = EI %,
+0 +1
0.444 u,°
0.5 - 0.667 1+1.333 |,
(23.92)
u2° 62 u3° 93
0444 -0667 0 0o |«
[K,,°]- B7 |-0.667 2333 0 05 |9 (23.93)
0 0 0444 -0.667|u,°
0 05  -0.667 2333 |g
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The vector of loads corresponding to these free displacements is given by

(23.94)

) =

===
D
N

Rewriting equations (23.93) and (23.94) in the form of four linear simultaneous equations, and
noting that the S kN load is shared between members 1-2 and 34, the following is obtained:

2.5 = EI0.444u,° - 0.6679,)

0 = EI(-0.667u,° +2.3338, +0.58,)

(23.95)
25 = EI(0.444u3° —0.66793)
0 = EI0.56,-0.667u,° +2.333 93)
Now for this case
8, = 6, (23.96)
and
uzo = u30
Hence, equation (23.95) can be reduced to the form shown in equation (23.97):
2.5 = 0444 Elu,° - 0.667 EIB,
(23.97)
0 = -0.667 Efu,” + 2.833 EIS,
Solving the above
uw,° = u,° = 8707/El
and
0, = 0, = 2.049/E] (23.98)

To determine the nodal bending moments, the displacements in the local v and 6 directions will
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have to be calculated, prior to using equations (23.70) and (23.72).

Element 1-2

U
v, = [-s ]
v,°
8.707
- [-1 o]ﬁ
0
v, = -8707/El

v, = 8 = 0 and 8, = 2.049/E/

Substituting the above values into the slope—deflection equations (23.70) and (23.72)

= 1.366 - 5.805
M, = -443 kNm
= 2732 - 5.805
M, , = -3.07 kNm
Element 2-3
I =4m

and



Rigid-jointed plane frames

9, = 0, = 2.049/EI

Substituting the above values into the slope—deflection equations (23.70) an (23.72):

4EI 2,049  2El _ 2.049

M. = = < 4 = -
2 4 EI 4 EI
M, , = 3.07 kNm
Element 3—4
c =0, s = -1, ! =3m

U3
v, = [-s ]

v,°

8.707
- o é
0
v, = 8.707/El
By inspection,

v, =0, =0 and 0, = 2.049/E]

Substituting the above values into equations (23.70) and (23.72),

M,, - JEL, 2049 ., 6EI[8707
3 EI 9 I;
= 2.732 - 5.805
M, , = -3.07 kNm
M, = 25, 2.049 + 0 - SEI 8707 _
3 9 El
= 1.366 - 5.805

M,, = -444 kKNm

615
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Problem 23.7  Using the matrix displacement method, determine the nodal bending moments
for the rigid-jointed plane frame shown below.

3kN/m
/

NN YN

2 3
2kN/m 3m

1 4

<<

b= 4m -

Solution

As this frame has distributed loading between some of the nodes, it will be necessary to treat the
problem in a manner similar to that described in the solution of Problem 23.5.
There are four degrees of freedom for this structure, namely, u,°, 8,, 4,° and 0, hence {q,} will

be of order 4 x 1.
To determine {gq.}, it will be necessary to fix the structure at its nodes, and calculate the end

fixing forces, as shown and calculated below.

1.5kNm

4kN m 4kNm
2 3
/29;3KN Q D 3

6kN 6kN

1
Qg\‘_ 3kN W"T\
1.5kNm
1.5kNm 4kNm 4 kNm
o C—




End fixing forces
IZ
M, = -Z= =
1-2 12
F wi?
My, = — =

Horizontal reaction at node 1

Horizontal reaction at node 2

12
Y A L
2-3 D)
F F
My, = My, =

Vertical reaction atnode 2 =

Vertical reaction at node 3 =

Now, for this problem, as

the only components of the end-fixing forces required for calculating {g.} are shown below:

Rigid-jointed plane frames

_2x3 . )5 kNm
12

1.5 kNm

IO LE BN
2 2

owl 2x3
2 2

= 3kN

2

3xa -4 kKNm
12

4 kNm

! 3x4

i = 6kN
2

wl  3x4

2 2

6 kN

617
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- /NZS KNm 4 kNm/;

gr = (23.99)

-4 6,

From equation (23.93),

u,° 6, u,° 8,
[ 0444 -0667 0 0o |4
K| = E1|-0667 2333 0 05 |8 (23.100)
0 0 0.444  -0.667[u,°
0 0.5 -0667 2333]¢,

Rewriting equations (23.99) and (23.100) in the form of four simultaneous equations,

3= 0444w, / EI - 06670, / EI (23.101a)
25= - 0667w, / EI + 23330, / EI+0.50, / EI (23.101b)
0 = 0.444u," / EI - 0.6670, / EI (23.101c)

-4=050,/EI - 0667uy’ / EI+2.3330,/EI (23.101d)
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Now, as the 2.5 kN load is shared between elements 1-2 and 34, equation (23.101a) must be
added to equation (23.101c), as shown by equation (23.102):

3 = 0888w," / EI-0.6676,/ EI-0.6670,/ EI (23.102)
Putting #,° = wu,°, the simultaneous equations (23.101) now become:
3 = 0.888u,°/El-0.6676,/EI-0.6676,/El

2.5 = -0.667u,°/EI+2.3336,/El+0.50,/ E (23.103)

-4 = -0.667u,”/EI+0.58,/El+2.3338,/E]

Solving the above,

u,” u,° = 4.61/El

>
il

, = 2.593/EI

D
w
1

-0.953/EI

To determine the nodal bending moments, the end fixing moments will have to be added to the
moments obtained from the slope—deflection equations.
Element 1-2

c=0 s =1 l=3m

From equation (23.23)

u,°
v, = [-s (]
{vzo
4.61/E]
o
0

-4.61/E/

V2

By inspection,

v, =0, =0 and 8, = -0.953/EI
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Substituting the above into the slope—deflection equations (23.70) and (23.72), and adding the end
fixing moments,

6E]

+ 2B 2.593/ED - S0 + as1/E - 15

M, =0

= 1729 - 3.07 - 15

M,_, = -2.84 kNm
and
M, = L2598 307415
3 EI
M,, = 1.89 kNm
Element 2-3
By inspection,
v, =v; =0
and

6,

"

2.593/El, 6, = ~0.953/El

Substituting the above into equations (23.70) and (23.72), adding the end-fixing moments for this
element, and remembering that node 2 is the first node and node 3 the second node,

M,, - AEL, 2593 2B (-0953) ,
a4 E 4 EI

M,, = -1.88 kNm

_ 2EI 2593  4AEI -0.953
M3_2 = I x IS+ —/— X + 4
4 EI 4 EI

M,, = 434 kNm
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Element 3—4

Uy
v; = [ ]
v,;°
4.61/El
=1 o
0
v, = 4.61/El
By inspection,

u, =u, =v, =0, =0

and

8; = -0.953/EI

M, = 3EL [ Z093) o SEL 4 61/ED
3 EI 9

M,, = -434 KNm

M, = 2EL | 20231 o - SEL 461/En
3 EI 9

M,, = -3.71 kNm

Further problems (answers on page 697)
23.8 Determine the forces in the members of the framework of the figure below, under the
following conditions:

(a) all joints are pinned;
(b) alljoints are rigid (i.e. welded).
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23.9

Matrix methods of structural analysis

The following may be assumed:

AE = 100 E/

A = cross-sectional area

I = second moment of area

E = Young's modulus

[k]° = the elemental stiffness matrix

= [k,°]1+[k°]
YoV . 2kN
T
im
1 45° 9 45° 3
~ AN XY %

XO UO

(Portsmouth, 1987, Standard level)

Determine the displacements at node S for the framework shown below under the
following conditions:

(a) all joints are pinned;
(b) all joints are rigid (i.e. welded).

It may be assumed, for all members of the framework,

'S
n

100 E1

A = cross-sectional area
I = second moment of area
E = Young's modulus
[k]°= the stiffness mattix

= [k,°]1+[k°]

(Portsmouth, 1987, Honours level)



Further problems 623

2310 Determine the nodal displacements and moments for the beams shown below, using the
matrix displacement method.
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23.11  Determine the nodal bending moments in the continuous beam below, using the marrix
displacement method.

1 kN/m 2 kN/m 3 kN/m
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23.12 A ship's bulkhead stiffener is subjected to the hydrostatic loading shown below. If the
stiffener is firmly supported at nodes 2 and 3, and fixed at nodes 1 and 4, determine the
nodal displacements and moments.
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2313  Using the matrix displacement method, determine the forces in the pin-jointed space
trusses shown in the following figures. It may be assumed that AE = a constant.
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(Portsmouth, 1989)

(Portsmouth, 1983)
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(Portsmouth, 1989)
23.14 Determine the nodal displacements and moments for the uniform section rigid-jointed

plane frames shown in the two figures below.

It may be assumed that the axial stiffness of each member is large compared with its
flexural stiffness, so that,

v = =0
and
u20 = u3°
yov°
2 kN/m

1 kN/m 3 kN
2 3
E=2x 10°kN/m?
J=1x10"°m*
1 4
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: 4m -

(Portsmouth, 1984)
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