
I 9  Lateral deflections of circular plates 

19.1 Introduction 

In this chapter, consideration will be made of three classes of plate problem, namely 

(i) small deflections ofplates, where the maximum deflection does not exceed half the plate 
thickness, and the deflections are mainly due to the effects of flexure; 

(ii) large deflections of plates, where the maximum deflection exceeds half the plate 
thickness, and membrane effects become significant; and 

(iii) very thick plates, where shear deflections are significant, 

Plates take many and various forms from circular plates to rectangular ones, and from plates on 
ships' decks to ones of arbitrary shape with cut-outs etc; however, in this chapter, considerations 
will be made mostly of the small deflections of circular plates. 

19.2 Plate differential equation, based on small deflection 
elastic theory 

Let, w be the out-of-plane deflection at any radius r, so that, 

and 

d2w - de - - -  
dr ' dr 

Also let 

R, = tangential or circumferential radius of curvature at r = AC (see Figure 19.1). 

R, = radial or meridional radius of curvature at r = BC. 
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Figure 19.1 Deflected form of a circular plate. 

From standard small deflection theory of beams (see Chapter 13) it is evident that 

= 1 i ” -  = l /  de dr (19.1) 
dr2 

Rr 

or 

& 
Rr dr (19.2) - - -  1 -  

From Figure 19.1 it can be seen that 

R, = AC = rl8 (19.3) 

or 

8 
R, rdr r (19.4) 
1 -  l h  - - - - - -  

Let z = the distance of any fibre on the plate from its neutral axis, so that 

1 
(19.5) 

= -  
E~ = radial strain = - - E (or - YO,) 

Rr 
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and 

E, = circumferential strain = - z 1  = - (ai - vor) 

R, E 

From equations (19.1) to (19.6) it can be shown that 

where, 

a, = radial stress due to bending 

a, = circumferential stress due to bending 

The tangential of circumferential bending moment per unit radial length is 

de z3 +‘I* E 
= - (1 - v’) (: + 7) [TI-,,’ 

- Et3 - 
12(1 - v’) 

therefore 

MI = D ( : + v $ )  = . I - - + . - )  1 dw d’w 
r dr dr’ 

(19.6) 

( 1  9.7) 

(19.8) 

(1  9.9) 

where, 

t = plate hckness 
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and 

= flexural rigidity Et 3 D =  
12(1 - Y’) 

S d a r l y ,  the radial bending moment per unit circumferential length, 

Mr = D($+:) = D[&+&) dr’ rdr 
(19.10) 

Substituting equation (19.9) and (19.10) into equations (19.7) and (19.8), the bending stresses 
could be put in the following form: 

(s, = 12 M ,  x z I t’ 
and 

(J = 1 2 ~ ,  x z i t 3  (19.1 1) 

and the maximum stresses 6, and 6, will occur at the outer surfaces of the plate (ie, @z = *IC). 
Therefore 

(19.12) 2 e t  = 6Mt  I t  

br = 6Mr I t’ 
and 

(19.13) 
The plate differential equation can now be obtained by considering the equilibrium of the plate 
element of Figure 19.2. 

Figure 19.2 Element of a circular plate. 

Takmg moments about the outer circumference of the element, 

(Mr + 6M,) (r + 6r) 69 - M, r6q - 2M, 6r sin - 6q  - F r 6q6r = 0 
2 
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In the limit, this becomes 

Lateral deflections of circular plates 

dMr M , + r . - - M , - F r  = 0 
dr 

Substituting equation (19.9) and (19.10) into equation (19.14), 

or 

which can be re-written in the form 

(19.14) 

(19.15) 

where F is the shearing force / unit circumferential length. 
Equation (19.15) is known as the plate differential equation for circular plates. 
For a horizontal plate subjected to a lateral pressure p per unit area and a concentrated load W 

at the centre, F can be obtained from equilibrium considerations. Resolving ‘vertically’, 

2nrF = nr’ p + W 

therefore 

W 
2 2nr 

F = + - (except at r = 0) 

Substituting equation (19.16) into equation (19.15), 

(19.16) 

therefore 
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since, 

- -  & - e  
dr 

w = /e dr + C, 

hence, 

4 wr c 1 r 2  w=- pr +-(~n r - 1 ) + - + c 2  In r + C 3  
640 8xD 4 

Note that 

2 

2 

7 r -  2 r 
= -1n r - - + a constant 

2 4 

(19.17) 

(19.18) 

(19.19) 

Problem 19.1 Determine the maximum deflection and stress in a circular plate, clamped 
around its circumference, when it is subjected to a centrally placed 
concentrated load W. 
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Solution 

Putting p = 0 into equation (1 9.18), 

Wr Clr2 
w = - ( h r - l ) + -  + C 2  I n r + C 3  

8x0 4 

asdw/drcamotequal-at r = 0, C, = 0 

- w = o  a t r =  R ,  - - my 
dr 

therefore 

and 

WR WR WR C,R 
4nD 4nD 8nD 2 

0 = - I n R - - + - + -  

Hence, 

W 
4nD 

Cl  = -(1 - 2  In R) 

WR - WR2 WR2 WR2 In = h R + - - - + -  WR 
8nD 8nD 16nD 8nD 1 6nD 

c3 = -- 

WR h R + -  w = -  WR I n r - - + - - -  Wr2 Wr2 Wr2 
8nD 8nD 16110 8x0  16nD 

or 

w = - 1  WR 1 - - r 2  + - 2R2 .(;)I 
16x0 R 2  R 2  

The maximum deflection (6) occurs at r = 0 
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WR ’ * = -  
16x0 

Substituting the derivatives of w into equations (19.9) and (19.10), 

M, = [I + In (;) (1 + 41 
4n 

MI M, = - v + ( l  + v )  In 
4x w [  

Problem 19.2 Determine the maximum deflection and stress that occur when a circular plate 
clamped around its external circumference is subjected to a uniform lateral 
pressure p .  

Solution 

From equation (19.18), 

4 C , r 2  
w = E+- + C, In r + C, 

640 4 

dw 3 C,r C, - = E + - + -  
dr 1 6 0  2 r 

and 

d2w - 3pr2 CI c 2  - -  - + - - -  
dr ’ 160 2 r 2  

at r = 0, - + - therefore C, = 0 
& 

a t r  = R, w = - & - o  - 
dr 

therefore 
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therefore 

-pR2 c, = - 
8 0  

PR c, = - 
640  

therefore 
2 

640 

Substituting the appropriate derivatives of w into equations (1 9.9) and (1 9. IO), 

M, = - pR2 1 - ( I  + v) + (3 + v) - 
16 

-(1 + v) + (1 + 3v) - 
16 R 2  r 2  1 

Maximum deflection (6) occurs at r = 0 

G = -  PR 
640 

(19.20) 

(19.21) 

(19.22) 

(19.23) 

By inspection it can be seen that the maximum bending moment is obtained from (19.21), when 
r = R, i.e. 

hr = pR’I8 

and = 6 k ,  I t 2  

= 0.75pR2 I t 2  
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Determine the expression for M, and M, in an annular disc, simply-supported 
around its outer circumference, when it is subjected to a concentrated load W, 
distributed around its inner circumference, as shown in Figure 19.3. 

Problem 19.3 

Figure 19.3 Annular disc. 

W = total load around the inner Circumference. 

Solution 

From equation (19.18), 

Wr 2 

8KD 4 

C , r 2  
+ C, In r + C ,  w = - ( I n r - l ) + -  

at r = R,, w = 0 

or 

(19.24) WR; c 7  
0 = -(In R2-1)+- - ! -R;+C2  In R2+C3 

8xD 4 

Now, 

(19.25) Wr Wr C,r  C,  
dr 4nD 8 x 0  2 r 
- -  d w -  -(In r - 1) + - + - + - 

and, 
2 

d w  W w W C C ,  
(19.26) -- - -(ln r - l ) + - + - + L - -  

dr2 4 x D  4xD 8xD 2 r2  

A suitable boundary condition is that 
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M, = 0 at r = R ,  and at r = R, 

but 

therefore 

W 3 w  c, c, - (In R l - l )  + -+- - - 
4nD 8nD 2 R: 

R ,  4xD 

and 

Solving equations (19.27) and (19.28) for C, and i2, 

and 

C, is not required to determine expressions for M, and M,. Hence, 

M, = D(W/8nD) {(l + v)2 In r + (1 - v)} 

( 1  9.27) 

(19.28) 

(19.29) 

(19.30) 

(19.31) 
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and 

M, = D(WI8nD) ((1 + v)2 In r - (1  - v)} 

+ ( ~ , / 2 )  (1 + v) + (c2/r2) ( 1  - v) 
(19.32) 

Problem 19.4 A flat circular plate of radius R, is simply-supported concentrically by a tube 
of radius R , ,  as shown in Figure 19.4. If the 'internal' portion of the plate is 
subjected to a uniform pressurep, show that the central deflection 6 of the plate 
is given by 

6 = "{3+2[?)2(L2)]  6 4 0  

Figure 19.4 Circular plate with a partial pressure load. 

Solution 

Now the shearing force per unit length F for r > R,  is zero, and for r < R,,  

F = prl2 

so that the plate differential equation becomes 

r > R, ---- c _ _ _ _ _ _ _ _ _  r < R, _ _ _ _ _ _ _ _  ~ - _ _ _  

= o  - d { l d ( r : ) } = g  -- 
dr r dr 

~ " ( r : )  = E + A  = B  (19.33) 
r dr 

For continuity at r = R , ,  the two expressions on the right of equation (19.33) must be equal, i.e. 
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or 

or 

or 

+ A  = B PR: - 
40 

g = -  
40 

+ ( r z )  = 40 

which on integrating becomes, 

dw - p r 4  Ar2 + 

dr 160 2 
r -  - - + -  

my 
dr 

at r = 0, - + m therefore C 

- pRjr  
+ Ar - -  

40 

8 0  2 

= o  

(19.34) 

(1 9.35) 

For continuity at r = R , ,  the value of the slope must be the same from both expressions on the 
right of equation (19.35), i.e. 

therefore 
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F = -pR: l ( 1 6 D )  (19.36) 

therefore 

A r  _ - -  dw - pr +- 
dr 160 2 

whch on integrating becomes 

pr4 A r 2  
6 4 0  4 

w = - + - + G  

(19.37) 

(19.38) - pR:r2 Ar2 Rf r + H  - -  +--- 
160 4 160 

Now, there are three unknowns in equation (19.38), namely A, G and H, and therefore, three 
simultaneous equations are required to determine these unknowns. One equation can be obtained 
by considering the continuity of w at r = R ,  in equation (19.38), and the other two equations can 
be obtained by considering boundary conditions. 

One suitable boundary condition is that at r = R,, M, = 0, which can be obtained by 
considering that portion of the plate where R, > r > R, ,  as follows: 

dw - PR:r A r  PRP 
dr 8 0  2 16Dr 
- -  - + + - - -  

Now 

A 
2 

(1  + v) + - (1  + v)+ 

Now, at r = R,, M, = 0;  therefore 

(19.39)  

(1  - 4 - ( 1  + v) = -- (1 + v) - - A PR: PRP 

2 8D 16DRi 
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or 

Lateral deflections of circular plates 

(19.40) 

Another suitable boundary condition is that 

at r = R , ,  w = 0 

In this case, it will be necessary to consider only that portion of the plate where r c R , ,  as follows: 

p r 4  A r 2  + 

6 4 0  4 
w = - + -  

at r = R , ,  w = 0 

Therefore 

P R , ~  AR: 
0 = - + -  + G  

640 4 

or 

= -+[!$+L&(fi)}$ -PR,4 640 

or 

G = L [ 3 + 2 [ 2 ) 2 ( e ) }  P R 4  
640 

(19.41) 

The central deflection 6 occurs at r = 0; hence, from (19.41), 
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6 = G  

6 = "6+2(2]2(J2)} (19.42) 

640  

0.1 15 WR2/(ET3); - w [ 0.621 In (f) -0.436 + 0.0224 (!).I} [ t 2  

Problem 19.5 A flat circular plate of outer radius R, is clamped firmly around its outer 
circumference. If a load Wis applied concentrically to the plate, through a tube 
of radius R, ,  as shown in Figure 19.5, show that the central deflection 6 is 

6 = L ( . i h ( ! L ] * + l ? : - R / j J  16x0 

Figure 19.5 Plate under an annular load. 

Solution 

When r < R, ,  F = 0, and when R, > r > R,, F = W/(Zm), so that the plate differential 
equation becomes 

+ - - - - - _ - , . < R ,  _ _ _ _ _ _ _ _  + - _ _ -  r > R,  ----- 

- w  i { L d ( r $ ) }  = 0 - -  
dr r 2nD 
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or 

Lateral deflections of circular plates 

i d ( , $ )  r = A 

or d(r:) = Ar 

- -  - ~ n r + ~  
2nD 

Wr In r 

2xD 
- + Br - -  (19.43) 

From continuity considerations at r =R,, the two expressions on the right of equation (1 9.43) must 
be equal, i.e. 

W 
2nD 

A = -hR, + B 

On integrating equation (1 9.43), 

mV - Ar2 
dr 2 2 

r - - - + C  

or 
dw Ar C 

dr 2 r 
+ -  - - -  - 

at r = 0 ,  - + m therefore C = 0 
dr 

From continuity considerations for dw/dr, at r = R,, 

(19.44) 

(19.45) 

(19.46) 

On integrating equation (1 9.46) 

or 

w = -  + G  
2 

Wr' Br 
-(In r - l ) + - + F  In r + H  
8x D 4 

(19.47) 
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From continuity considerations for w, at r = R , ,  

Arf 
2 

+ G  - BR: + F In R, + H (19.48) WR; 
8nD 4 

-- - (In R , - I ) + -  

In order to obtain the necessary number of simultaneous equations to determine the arbitrary 
constants, it will be necessary to consider boundary considerations. 

at r = R,, - h = o  
dr 

therefore 

Also, at r = R,, w = 0; therefore 

WR; B R , ~  
0 = - (h R,- 1) + - + F In (R2) + H 

8nD 4 

Solving equations (19.46), (19.48), (19.49) and (19.50), 

(19.49) 

(19.50) 

(19.5 1) 

W 
8nD 

H = -- {-R,2/2 - R:/2 + R : h  (R?)) 

and 
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WR: WR: 
8aD 8nD In (4) + H G = - - + -  

+ R: ln (41 = -WR: + WR: ’.(R*) w (3 - g 
8nD 8aD 2 2 

W 
16aD 

= - ( -2R:  + 2Rf In (R,) + R i  + R: - 2R: In &)} 

G = z h f l n [ : )  2 + ( $ - . : I  
6 = G = z [ : In [ : )  2 + ( R ; - R : i  

16nD 

6 occurs at r = 0, i.e. 

16nD 

19.3 Large deflections of plates 

If the maximum deflection of a plate exceeds half the plate thickness, the plate changes to a 
shallow shell, and withstands much of the lateral load as a membrane, rather than as a flexural 
structure. 

For example, consider the membrane shown in Figure 19.6, which is subjected to uniform 
lateral pressure p. 

Figure 19.6 Portion of circular membrane. 

Let 
w = out-of-plane deflection at any radius r 

u = membrane tension at a radius r 

t = thickness of membrane 
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Resolving vertically, 

or 

P' 
dr 2ot 
- -  - 

or 

at r = R, w = 0; therefore 

i.e. 
6 = maximum deflection of membrane 

G = -pRZ/(4ot) 

The change of meridional (or radial) length is given by 

where s is any length along the meridian 

Using Pythagoras' theorem, 

61 = / (my' + dr2)" - j d r  

(1 9.52) 

Expanding binomially and neglecting hgher order terms, 
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61 = [[l + ‘ (7?1dr  2 dr 
- [dr  

(19.53) 
2 

= if($) 2 dr 

Substituting the derivative of w, namely equation (19.52) into equation (19.53), 
2 

6 1 =  I f R ( E )  2 0  dr 

= p ’ R 3/(24$t ’) 

but 

or 

i.e. 

but 

0 = p R ’ J ( 4 ~ )  

From equations (19.55) and (19.56), 

P =  3(1 - V) 

According to small deflection theory of plates (19.23) 

P = -(x) 6 4 0  G 
R 3  

(19.54) 

(19.55) 

(19.56) 

(19.57) 

(19.58) 
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Thus, for the large deflections of clamped circular plates under lateral pressure, equations (19.57) 
and (19.58) should be added together, as follows: 

3 

(19.59) 640  GJ 8 
p = F ( x )  + 3(1 - v ) ( i )  (:) 

If v = 0.3, then (19.59) becomes 

& = (!) f + 0.65 (!)} (19.60) 
64Dt 

where the second term in (19.60) represents the membrane effect, and the first term represents the 
flexural effect. 

When GJ/t = 0.5, the membrane effect is about 16.3% of the bending effect, but when GJ/t = 1, 
the membrane effect becomes about 65% of the bending effect. The bending and membrane 
effects are about the same when GJ/t = 1.24. A plot of the variation of GJ due to bending and due 
to the combined effects of bending plus membrane stresses, is shown in Figure 19.7. 

Figure 19.7 Small and large deflection theory. 

19.3.1 Power series solution 

This method of solution, which involves the use of data sheets, is based on a power series solution 
of the fundamental equations governing the large deflection theory of circular plates. 
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For a circular plate under a uniform lateral pressure p ,  the large deflection equations are given by 
(19.61) to (19.63). 

d ; tur) - a* = 0 

(19.61) 

(19.62) 

(19.63) 

Way' has shown that to assist in the solution of equations (19.61) to (19.63), by the power series 
method, it will be convenient to introduce the dimensionless ratio 6, where 

6 = r/R 

r =1;R 
or 

R = outer radius of disc 

r = any value of radius between 0 and R 

Substituting for r int (19.61): 

or 

Inspecting (19.64), it can be seen that the LHS is dependent only on the slope 0. 

Now 

(19.64) 

5Way, S. ,  Bending of circular plates with large deflections, A.S.M.E.. APM-56-12, 56,1934. 
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whch, on substituting into (19.64), gives: 

but 

are all dunensionless, and h s  feature will be used later on in the present chapter. 
Substituting r, in terms of 1; into equation (19.62), equation (19.66) is obtained: 

Similarly, substituting r in terms of 6 equation (19.63), equation (19.67) is obtained: 

(19.66) 

(19.67) 

Equation (19.67) can be seen to be dependent ocly on the deflected form of the plate. 

dimensionless form by introducing the following dimensionless variables: 
The fundamental equations, which now appear as equations (1 9.65) to (1 9.67), can be put into 

X = r/t = CWt 

W = w/r 

u = u/t 

S, = a,/E 

S, = C J ~  /E 

S, = p/E (19.68) 
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or 

w = J e d x  

Now from standard circular plate theory, 

I 

and 

Hence, 

1 
sri = 2(1 - v ' )  (% + :) 

and 

s, I = ' ("2) 
2(1 - v ' )  x 

Now from elementary two-dimensional stress theory, 

- -  uE - o[ - vo, 
r 

or 

u = X(S, - VSr)  

(19.69) 

(19.70) 

(19.71) 

(19.72) 

(19.73) 

where u is the in-plane radial deflection at r. 

equations take the form of equations (19.74) to (19.76): 
Substituting equations (19.68) to (19.73) into equations (19.65) to (19.67), the fundamental 
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d e2 
dx 2 

x- (S, + S,) + - = 0 
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(19.74) 

(19.75) 

(19.76) 

Solution of equations (19.74) to (19.76) can be achieved through a power series solution. 

even series powers of X. 

power of X. Let 

Now S, is a symmetrical h c t i o n ,  i.e. S,(X) = S,(-X), so that it can be approximated in an 

Furthermore, as 8 is antisymmetrical, i.e. e(X) = -e(*, it can be expanded in an odd series 

S, = B,  + B F ’  + B3X4 + . . . 

and 

e = c,x + c2x3 + c3x5 + . 

or 
- 

S,  = B,X” - 2  
r = l  

and 
= 

e = crxZf - 
1 . 1  

Now from equation (19.75) 

(19.77) 

(19.78) 

(19.79) 
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Pressure rat0 g(q)' 

Figure 19.8 Central deflection versus pressure for a simply-supported plate. 

w = /e& = C - [ ;) C J * '  (19.80) 
r = l  

Hence 

C1X2' - 2 (19.81) 
2 (2i + v - I )  s,' = 

I = I 2(1 - v') 

CIX*' - * (19.82) 
s,' = 2 (1 + v(2i - 1)) 

I = 1 2(1 - v2) 
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Now 

u = x(s, - vs,) 
- (19.83) 

= c (2i - 1 - V)BrX2' - ' 
r = l  

fori = 1,2,3,4 - a. 

Pressure ratio - PE (*7 - r 

Figure 19.9 Central deflection versus pressure for an encastre plate. 
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From equations (19.77) to (19.83), it can be seen that if B ,  and C, are known all quantities of 

Way has shown that 
interest can readily be determined. 

k - I  

m = l  Bk = 
8k(k - 1) 

fork = 2,3 ,4  etc. and 

3(1 - v’) ‘ - I  

k(k - 1) In = I 
Ck = 1 Bmck - in 

fork = 3,4,  5 etc. and 

Once B ,  and C, are known, the other constants can be found. In fact, using this approach, Hewitt 
and Tannent6 have produced a set of curves which under uniform lateral pressure, as shown in 
Figures 19.8 to 19.12. Hewitt and Tannent have also compared experiment and small deflection 
theory with these curves. 

19.4 Shear deflections of very thick plates 

If a plate is very thick, so that membrane effects are insignificant, then it is possible that shear 
deflections can become important. 

For such cases, the bending effects and shear effects must be added together, as shown by 
equation (19.84), which is rather similar to the method used for beams in Chapter 13, 

which for a plate under uniform pressure p is 

6 = pR 1, ( :)3 + k, ( i)’] (19.84) 

where k, and k, are constants. 
From equations (19.84), it can be seen that becomes important for large values of (t/R). 

6Hewin D A. Tannent J 0, Luge deflections ofcircularphes, Portsmouth Polytechnic Report M195, 1973-74 
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Pressure ratio - - : (*7 r 

Figure 19.10 Central stress versus pressure for an encastre plate. 
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Pressure ratio - - : (2; 1 
Figure 19.11 Radial stresses near edge versus pressure for an encastrk plate. 
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Figure 19.12 Circumferential stresses versus pressure near edge for an encastre plate. 
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Further problems (answers on page 694) 

19.6 

Lateral deflections of circular plates 

Determine an expression for the deflection of a circular plate of radius R, simply- 
supported around its edges, and subjected to a centrally placed concentrated load W. 

19.7 Determine expressions for the deflection and circumferential bending moments for a 
circular plate of radius R, simply-supported around its edges and subjected to a uniform 
pressure p .  

19.8 Determine an expression for the maximum deflection of a simply-supported circular 
plate, subjected to the loading shown in Figure 19.13. 

Figure 19.13 Simply-supported plate. 

19.9 Determine expressions for the maximum deflection and bending moments for the 
concentrically loaded circular plates of Figure 19.14(a) and (b). 

(a) Simply supported. (b) Clamped. 

Figure 19.14 Problem 19.9 
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19.1 0 A flat circular plate of radius R is firmly clamped around its boundary. The plate has 
stepped variation in its thickness, where the hckness inside a radius of (R/5) is so large 
that its flexural stiffness may be considered to approach infinity. When the plate is 
subjected to a pressure p over its entire surface, determine the maximum central 
deflection and the maximum surface stress at any radius r. v = 0.3. 

19.1 1 If the loading of Example 19.9 were replaced by a centrally applied concentrated load 
W, determine expressions for the central deflection and the maximum surface stress at 
any radlus r. 


