
18 Buckling of columns and beams 

18.1 Introduction 

In all the problems treated in preceding chapters, we were concerned with the small strains and 
distortions of a stressed material. In certain types of problems, and especially those involving 
compressive stresses, we find that a structural member may develop relatively large distortions 
under certain critical loading conditions. Such structural members are said to buckle, or become 
unstable, at these critical loads. 

As an example of elastic buckling, we consider firstly the buckling of a slender column under 
an axial compressive load. 

18.2 Flexural buckling of a pin-ended strut 

A perfectly straight bar of uniform cross-section has two axes of symmetry Cx and Cy in the cross- 
section on the right of Figure 18.1. We suppose the bar to be a flat sirip of material, Cx being the 
weakest axis of the cross-section. End thrusts P are applied along the centroidai axis Cz of the bar, 
and EI its uniform flexural stiffness for bending about Cx. 

Figure 18.1 Flexural buckling of a pin-ended strut under axial thrust. 

Now Cx is the weakest axis of bending of the bar, and if bowing of the compressed bar occurs 
we should expect bending to take place in the yz-plane. Consider the possibility that at some value 
of P, the end thrust, the strut can buckle laterally in the yz-plane. There can be no lateral 
deflections at the ends of the strut; suppose v is the displacement of the centre line of the bar 
parallel to Cy at any point. There can be no forces at the hinges parallel to Cy, as these would 
imply bending moments at the ends of the bar. The only two external forces are the end thrusts P, 
which are assumed to maintain their original line of action after the onset ofbuckling. The bending 
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moment at any section of the bar is then 

M = P v  (18.1) 

which is a sagging moment in relation to the axes Cz and Cy, in the sense of Section 13.2. But the 
moment-curvature relationship for the beam at any section is 

d2v 

d Z 2  
M = -EI- 

provided the deflection v is small. Thus 

-EId2v = pv  
dZ2 

Then 

Put 

P 
EI 
- = k 2  

Then 

The general solution of this dfferential equation is 

v = A c o s k  + B s i n k  

(1 8.2) 

(1 8.3) 

(1 8.4) 

(18.5) 

where A and B are arbitrary constants. We have two boundary conditions to satisfy: at the ends z 
= Oandz = L,v  = 0. Then 

A = 0 and B s i n  kL = 0 

Now consider the implications of the equation 

B sin kL = 0 

wbch is derived from the boundary conditions. If B = 0, then both A and B are zero, and 
obviously the strut is undeflected. 
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Figure 18.2 Modes of buckling of a pin-ended strut. 

If, however, sin kL = 0, B is indeterminate, and the strut may assume the form 

v = B sin k 

This is called a buckled condition of the strut. Obviously B is indeterminate when kL, assumes the 
values, 

kL = x ,  2n, . . . etc. (18.6) 

We need not consider the solution kL = 0, which implies k = 0, because the solution of the 
differential equation is not trigonometric in form when k = 0. Instability occurs when kLx, = 2x, 
etc. 

:. P = k2EI = - x 2 E I ,  4x2 EI etc (18.7) 
L 2  L 2  

There are infinite number of values of P for instability, corresponding with various modes of 
buckling, Figure 18.2. The fundamental mode occurs at the lowest critical load 

P, = x2 E/ = Euler load for pin-ended struts (18.8) 
L’ 

This is known as the Euler formula and corresponds with buckling in a single longitudinal half- 
wave. The critical load 

(1 8.9) 
p = 2-x-  7 7 - E l  = 45r 2g 

L 2  L’ 
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corresponds with buckling in two longitudinal half-waves, and so on for hgher modes. In practice 
the critical load P, is never exceeded because high stresses develop at this load and collapse of the 
strut ensues. We are not therefore concerned with buckling loads higher than the lowest buckling 
load. For all practical purposes the buckling load of a pin-ended strut is given by equation (18.8). 

At this load a perfectly straight pin-ended strut is in a state of neutral equilibrium; the small 
deflection 

v = B sin kz 

is indeterminate, because B itself is indeterminate. Theoretically, the strut is in equilibrium at the 
load dEI/L2 for any small value of B, corresponding with a condition of neutral equilibrium; at thls 
buckling load we should expect to be able to push the strut into any sinusoidal wave of small 
amplitude. Th~s  can be verified experimentally by compressing a long slender strip of material 
which remains elastic during bending. 

At values of P less than n2EI/L2 the strut is in a condition of unstable equilibrium; any small 
lateral disturbance produces motion and finally collapse of the strut. This, however, is a 
hypothetical situation as, in practice, the load n2EI/L2 cannot be exceeded if the loads are static, and 
not applied suddenly. 

The condition of neutral equilibrium at 

P e = x -  2 EI 
L2 

is only attained for small lateral displacements of the strut. When these displacements become 
large, the moment-curvature relation 

d2v A4 = -EI- 
dz2 

is no longer valid; theoretically the problem becomes more difficult. The effect of large lateral 
displacements is to increase the flexural stiffness of the strut; in this case, provided the material 
remains elastic, end thrusts greater than n2EI/L2 are attainable. If the thrust P is plotted against the 
lateral displacement v at any section, the P - v relation for a perfectly straight strut has the form 
shown in Figure 18.3(i), when account is taken of large deflections. Lateral deflections become 
possible only when 

X ~ E I  
L2 

P 2  - 

This analysis is restricted to the hypothetical case of a perfectly straight strut. When the strut has 
small imperfections, displacements v are possible for all values of P (Figure 18.3(ii)), and the 
hypothetical condition of neutral equilibrium at 

is never attained. All materials have a limit of proportionality; when this is attained the flexural 
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stiffness of the strut usually falls off rapidly. On the P-v dagram for the strut this corresponds 
with the development of a region of unstable equihbrium. 

Figure 183 Large deflections and material breakdown of struts. 

18.3 Rankine-Gordon formula 

Predictions of buckling loads by the Euler formula is only reasonable for very long and slender 
struts that have very small geometrical imperfections. In practice, however, most struts suffer 
plastic knockdown and the experimentally obtained buckling loads are much less than the Euler 
predictions. For struts in this category, a suitable formula is the Rankine4ordon formula which 
is a semi-empirical formula, and takes into account the crushing strength of the material, its 
Young's modulus and its slenderness ratio, namely uk, where 

L = length of the stmt 

k = least radius of gyration of the strut's cross-section 

P, = a/ ( 1 8.10) 

where 
A = cross-sectional area 

a, = crushing stress 



%nkinc+Gordon formula 

Then 

where 
PR = Rankine-Gordon buckling load 
P,  = Eulerbuckling load 

- -  - ‘’E’ for a pin-ended strut 
L 2  

n’EAk’ oyJ 

2 Lo oYc i n2Ek’ 

d E A k 2 0 y c  
- - 

or 

d E A k 2 0 y c  

LioYc i $Ek’ 
PR = 

L:oyc I $ E l k 2  + Ir2Ek2 I IT’ EAk’ 

oyc A P R  = 
(oyc / n2E) (Lo I k)’ + 1 

Let 

a = -  
IT2 E 
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(18.11) 

(18.12) 

(18.13) 

(18.14) 
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Then 

Buckling of columns and beams 

(18.15) P, = “YP 
1 + a(& / K)* 

where a is the denominator constant in the Rankine-Gordon formula, which is dependent on the 
boundary conditions and material properties. 

A comparison of the Rankine-Gordon and Euler formulae, for geometrically perfect struts, is 
given in Figure 18.4. Some typical values for lla and 0, are given in Table 18.1. Where Lo is the 
effective length of the strut; see Section 18.4. 

Figure 18.4 Comparison of Euler and Rankine-Gordon formulae. 

Table 18.1 Rankine Constants 

18.4 Effects of geometrical imperfections 

For intermediate struts with geometrical imperfections, the buckling load is further decreased, as 
shown in Figure 18.5. 
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Figure 18.5 R a n k i n d o r d o n  loads for perfect and imperfect struts. 

18.5 Effective lengths of struts 

The theoretical buckling load for a pinned-ended strut is one-quarter of the theoretical buckline 
load of a fixed-ended strut and four times the theoretical buckling load for a strut fixed at one enc 
and free at the other end; see Sections 18.10 to 18.12. 

Table 18.2 Effective lengths of struts U,,) 

Table 18.2 gives the effective lengths of struts (L,,), which have actual lengths of L, for different 
boundary conditions, where BS449 allows for elastic relaxation at the ends of the strut. 
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18.6 Pin-ended strut with eccentric end thrusts 

In practice it is difficult, if not impossible, to apply the end thrusts along the longitudinal centroidal 
axis Cz of a strut. We consider now the effect of an eccentrically applied compressive load P on 
a uniform strut of flexural stiffness EI and length L. 

Figure 18.6 Eccentric loading of a strut. 

Suppose the end thrusts are applied at a distance e from the centroid and on the axis Cy of the 
cross-section. We assume again that the cross-section is that of a flat rectangular strip, Cx being 
the weaker axis of bending. The end thrusts P are applied to rigid arms attached to the ends of the 
strut. 

An end load P causes the straight strut to bend; suppose v is the displacement of any point on 
Cz from its original position. The bending moment at that section is 

M = P ( e + v )  

which is a sagging moment in relation to the axes Cz and Cy. If v is small we have 

d2v 

d Z 2  
M = -EI- 

Thus 

d2v 

dz 
- E I 7  = P ( ~ + v )  

Then 

d2v 
a!Z2 

E l -  + Pv = -Pe 

When e = 0, t l u s  differential equation reduces to that already derived for an axially loaded strut. 
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As before, put 

P k2 = - 
EI 

Then 

d2v - + k2v = -k2e 
G?z2 

The complete solution is 

v = A c o s k z + B s i n k z - e  

Now v = 0 at z = 0 and z = L,  so that 

A - e  = 0, and A c o s k L + B s i n M . - e  = 0 

Figure 18.7 Deflections of an eccentrically loaded strut. 

The first of these equations gives A = e, and the second gives 

e(l - cos kL) 
sin kL 

B =  

Then 

(18.16) 
e(1 - cos kL) sin kz v = e(cos kz - 1) + 

sin kL 

The displacement v at the mid-length, z = YL, is 
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2 
vo = e[( cos kL - 1) + 1 - COS kL 

sin kL 

If sin !h kL + 0, we have 

vo = e sec -kL - 1 ( i )  
When P = 0, 

( 1 8.1 7) 

( 18.1 8) 

and v, = 0. As P approaches x2EI/L', !4kL approaches xJ2, and 

1 
2 

sec -kL - m 
Thus values of v, are possible from the onset of loading; the values of v, increase non-linearly with 
increases of P. The value of P = x2 EI/L2 is not attainable as h s  would imply an infinitely large 
value of v,, and material breakdown would occur at some smaller value of P. 

It is interesting to evaluate the longitudinal stresses at the mid-length of the strut; the largest 
lateral deflection occurs at this section, and the greatest bending moment also occurs at this section, 
therefore. The bending moment is 

1 
2 

M = P(vo + e )  = Pe sec - kL (18.19) 

Suppose c is the distance from the centroidal axis Cx to the extreme fibres of the strut. Then the 
longitudinal bending stress set up by M is 

1 Pec sec - kL 

I 
Mc - 2 

G I = - -  I 

The average longitudinal compressive stress set up by P is 

(18.20) 

P 
0 2  = - 

A 
(18.21) 
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where A is the cross-sectional area of the strut. Then the maximum longitudinal compressive stress 
is 

(18.22) 
P Pec 1 
A I  2 

omax = (T2 + 0 ,  = - + - sec -kL 

Suppose I = A?, where r is the radius of gyration of the cross-section about Cx. Then 

2 

= LLl+y ec 

A r  
max 

The minimum compressive stress is 

(J min = '[ 1 - 7  sec-kL 2 ' J  ec 

A r  

The value of P giving rise to a maximum compressive stress (T is 

A 0  
ec 1 I + - sec -kL 
r 2  2 

P =  

However, 

(1 8.23) 

(1 8.24) 

(18.25) 

and is therefore a function of P, so that the above equations must be solved by trial and error. A 
good approximation is derived as follows: let VAL = 8, then for 0 < 8 < %x 

which leads to the following equation for P 

P 2  ( 1  - 0.26 :) - P be ( 1  + F) + aA] + (TAP, = 0 

If e = 0, this has the roots P = P, or aA 
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18.7 Initially curved pin-ended strut 

In practice a strut cannot be made perfectly straight, and our analysis for the flexure of a 
compressed bar would become more realistic if account could be taken of the slight deviations 
fiom straightness of the centroidal axis of a strut. 

Consider again a strut consisting of a flat strip of material. Suppose the centroidal longitudinal 
axis is initially curved, the lateral displacement at any point being v,, from the axis Oz, Figure 18.8. 
Thrusts P are now applied at the ends of the strut and at the centroids of the end cross-sections. 

Figure 18.8 Initially curved strut. 

The strut then bends further from its initial unloaded position. Suppose v is the additional lateral 
displacement at any section due to the application of P. If the ends of the strut are pinned there can 
be no lateral forces at the ends. The bending moment at any section of the strut is 

M = P(v  + Y O )  

If the strut is initially unstressed then the bending moment at any section is proportioned to the 
change of curvature at that section. Then 

d2v M = -EI- 
d Z 2  

because the change of curvature is due only to the additional displacement v of the strut and not 
the total displacement (v + vo). Then 

E I & + P ( v + v 0 )  = 0 
d Z 2  
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Put P/EZ = k2, as before. Then 

- d2v + k2v = -k2vo 
dz2  

Suppose for the sake of simplicity that v, is sinusoidal in form; take 

KZ vo = a sin - 
L 

43 7 

( 1  8.26) 

where a is a constant, and is the initial lateral hsplacement at the centre of the strut. Then 

d2v N 

d z 2  L 
- t k2v = -k2a sin - 

The general solution is 

N v = A c o s k z + B s i n k z +  k2a sin - 
IC’ k2 L - -  
L 2  

If the ends are pinned we have 

v = O  at z = O  and z = L  

Then 

A = 0 and B s i n k L  = 0 

If k is to assume any non-zero value we must have B = 0, so the relationship for v reduces to 

m sin - k 2a v =  
K 2  k2 L ( 1  8.27) - -  
L 2  

This may be written 

N a sin - 
L v =  

1 K 2  

k 2 L 2  
- -  

(1 8.28) 
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But p = P/EI, so on putting n2 EI/L2 = P,, we have 
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m a sin - 
L -  VO 

(18.29) - -  v =  
- -  - -  pe  1 pe  1 

P P 

Now P, is the buckling load for the perfectly straight strut. The relation for v,  whch is the 
additional lateral displacement of the strut, shows that the effect of the end thrust P is to increase 
v, by the factor l / [ (P,  /P)  - 11. Obviously as P approaches Pe,v tends to infinity. The additional 
displacement at the mid-length of the strut is 

a vc = - 
(18.30) - -  p e  1 

P 

This relation between P and v, has the form shown in Figure 18.9(i); v, increases rapidly as P 
approaches P,. Theoretically, the load P, can only be attained at an infinitely large deflection. In 
practice material breakdown would occur before P, could be attained, and at a finite displacement. 
We may write the relation for v, in the form 

vc = a (18.31) VC 

P 
Pe - - 

ms gives a linear relation between (v, / P )  and v,, Figure 18.9. The negative intercept on the axis 
of vc is equal to ( -u) .  If values of (v,/P) and v, are plotted in a strut test, it will be found that as the 
critical condition is approached these variables are related by a straight-line equation of the type 
discussed above. The slope of this straight line defines P,, the buckling load for a perfectly-straight 
strut. 

Figure 18.9 Deflections of an initially curved strut. 
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The P-v, curve is asymptotic to the line P = Pe if the materia1 remains elastic. It is of considerable 
interest to evaluate the maximum longitudinal compressive stress in the strut. The maximum 
bending moment occurs at the mid-length, and has the value 

The maximum compressive stress occurs in an extreme fibre, and has the value 

(1 8.32) 

(18.33) 

where A is the area of the cross-section, c is the distance from the centroidal axis to the extreme 
fibres, and r is the relevant radius of gyration of the cross-section. Now PIA is the average stress 
on the strut; if h s  is equal to o, then 

a [ oe-a(:)] 
om, = a I+' 

where 

ac 
r 2  

Suppose - = q. Then 

[ ..""] omax = o 1 + -  

Then 

omax = (ae - a) = a [(I + q) oe - o] 

(18.34) 

(18.35) 

(18.36) 

Thus, 

d - cs [.ma + (1  + q)ae] + om, ae = 0 
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Then 
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(3 = -cr,,t 2 ’[ ( l + q  ) (3, I-/- (18.37) 

We need not consider the positive square root, since we are only interested in the smaller of the two 
roots of the equation. This relation gives the value of average stress, 0, at which a maximum 
compressive stress om would be attained for any value of 11. If we are interested in the value of 
0 at which yield stress oy of a mild-steel strut is attained, we have 

(3 = ‘[(3y 2 i- (it q ) 4 -  /= (1 8.38) 

18.8 Design of pin-ended struts 

A commonly used structural material is mild steel. It has been found from tests on rmld-steel pin- 
ended struts that failure of an initially-curved member takes place when the yield stress is first 
attained in one of the extreme fibres. From a wide range of tests Robertson concluded that the 
failing loads of mild-steel struts could be estimated i fq  is taken to be proportional to (Ur) the 
slenderness ratio of the strut; Robertson suggests that 

v = O.W3(;) (18.39) 

This value of 11 gives 

(3 = - 2 ’[ u Y +  ( 1t0.003- :) (3, 1 - 1 1  (18.40) 

This represents a transition curve between yielding of the material for low Slenderness ratios, 
Figure 18.10, and buckling at high slenderness ratios. 

Figure 18.10 Effect of material breakdown 
on the buckling of a strut. 

Figure 18.1 1 ‘Interaction’ curves for 
practical struts. 
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In the case of mild-steel struts under true axial loading buckling occurs at (T, the elastic buckling 
load or at ( T ~  the yield stress. If true axial loading could be achieved in practice, all struts would 
fail at stresses that could be represented either by c/oy = 1, or (T/(T~ = 1. In a series of strut tests 
it is found that the test results are usually defined by a curve on the (T/ (T~ - o/a, diagram, Figure 
18.11, and not by the two straight lines d o y  = 1 and doe = 1. if the experimental technique is 
improved to give better axial-loading conditions the curve approaches these two straight lines. Any 
convenient transition curve on this diagram may be taken as a design curve for practical conditions 
of axial loading. 

18.9 Strut with uniformly distributed lateral loading 

In the preceding sections we considered the effects of end eccentricities and initial curvatures on 
the lateral bending of compressed struts; these produce lateral bending of the strut from the onset 
of compression. 

A similar problem arises when a compressed strut carries a lateral load. Consider a pin-ended 
strut length L and d o r m  flexural stiffness EI, Figure 18.12. Suppose the axial thrust on the strut 
is P, and that there is a lateral load of uniform intensity w per unit length. At the ends of the strut 
there are lateral shearing forces %wL. 

Figure 18.12 Laterally loaded struts. 

If v is the lateral deflection at any point of the centroidal axis, then the bending moment at any 
section is 

1 1 M = - E I -  d2v = pv 4. -wLz - -WZZ 
dz2 2 2 
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Then 
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W 
- - (Lz - z2) d2v Pv - 

( i z 2  E l  2EI 
- + -  - 

If P/EI = k’, then 

wk2 d2v 
(iz2 2P 

+ k2v = -- (Lz - z’) - 

The complete solution of h s  equation is 

v = A ~ ~ ~ k z + B s i n k z - -  (Lz - z 2  + ;) 
2P 

in which A and B are arbitrary constants. Now, at z = 0 and z = L we have v = 0, so 

W A - -  = o  
Pk2 

and 

A COS kL + B sin kL - w = 0 
Pk 

Then 

A = -  W B = X [  1 - COS kL ] 
Pk2 ’ pk2 sin kL 

Thus 

I-COSkL 
v = z [ c o s k + (  Pk sin kL 2 

The maximum value of v occurs at the mid-length, z = %L, and is given by 

(18.41) 

(18.42) 
8 

1 - COS kL 1 - Vmax - z [ c o s f k L + (  Pk 
sinkL )sinTkL- 
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This may be written 

W 1 1 
P k  2 8 v,, = - [sec -kL - 1 - -k2L2  

443 

(1 8.43) 

The maximum bending moment also occurs at the mid-length, and has the value 

(18.44) 
1 
8 

M,, = PV, ,  + -wL' 

On substituting for v-, we have 

2]  [ ] (18.45) M,, = W[spC-kL-l--k L + - W L  = -  sec-kL-1 
1 

k 2  2 8 k 2  

When P is small, k is also small, and 

1 

sec -kL 1 = 
1 1 & . [ 1 - L 2 ( 2  I k L  )2+a(+)4/ 

COS -kL 2 
2 

Thus, approximately, 

1 

2 [i 384 
sec-kL 6 1 +  -(kL) - l ( k L )  

= 1 + 1 - (kL)2+- (kL)4  5 
8 3 84 

Then 

5 w L 4  
384 E l  'rn, 

(1 8.46) 

(18.47) 

This agrees with the value of the central deflection of a laterally loaded beam without end thrust. 
Similarly, when k is small, 

W L  M,, = - 
8 k 2  L 2  

(18.48) 

the term in square brackets is the factor by which the bending moment due to w alone must be 
multiplied to give the correct bending moment. 
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18.10 Buckling of a strut with built-in ends 

In the elastic buckling of struts, we have assumed so far that the ends of the strut are always hinged 
to some foundation. When the ends are supported so that no rotations can occur, Figure 18.13, 
then the relevant mode of instability for the lowest critical load involves points of contra flexure 
at the quarter points. The buckling load is therefore the same as that of a pin-ended strut of half 
thelength. Then 

a2 EI Pcr = - = 4a2 E,  where Lo = 0.5L 
L 2  (1 8.49) ( +)2  

Figure 18.13 Buckling of a strut with built-in ends. 

When the ends of the strut are built-in, no restraining moments are induced at the ends until the 
strut develops a buckled form. 

18.11 Buckling of a strut with one end fixed and the other end free 

When a vertical load P is applied to the free end of a vertical cantilever, AB, at the lowest critical 
load the laterally deflected form of the strut is a sinusoidal wave of length 2L. If we consider the 
reflection of the buckled strut about A,  Figure 18.14, then the strut of length 2L behaves as a pin- 
ended strut. The buckling load is 

(18.50) pcr = - K2Er - - - r r2EI ,  where L, = 2~ 
(2L)* 4 L 2  

An important assumption in the preceding analysis is that the load at the free end of the cantilever 
is maintained in a vertical direction. If the load is always directed at A, that is its line of action is 
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BA, Figure 18.15 in the buckled fonn, then there is no restraining moment at A,  and the cantilever 
behaves as a pin-ended strut. The buckling load is 

(18.51) P ,  = x 2 g  

LZ 

Figure 18.14 Buckling of a strut with one Figure 18.15 Thrust inclined to its original 
end free and the other built in. direction. 

18.12 Buckling of a strut with one end pinned and the 
other end fixed 

For other combinations of end conditions we are usually led to more involved calculations. A strut 
is pinned at its upper end and built-in to a rigid foundation at the lower end, Figure 18.16. In the 
buckled form of the strut a lateral shearing force F is induced at the upper end. 

Figure 18.16 Strut with one end pinned and the other end fixed. 
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If v is the deflection of the central axis of the strut parallel to they-axis, the bending moment at any 
section is 

M = PV - FZ 

But 

d2v 
dz2 

M = -El  - 

Thus 

d2v 
d Z 2  

-EI - = PV - FZ 

Putk' = P/EI. Then 

d2v Fk 'z - + k 2 v  = - 
d Z 2  P 

The general solution is 
F 
P 

v = Acoskz+Bsinkz+ - Z  

where A and B are arbitrary constants; the value of F is also unknown as yet, so there are three 
unknown constants in this equation. The boundary conditions are 

v = O ,  at z = O  

dv 

dz 
and v = 0 a n d -  = 0, at z = L 

These give 

A = O  

B sin kL + - = 0 FL 
P 

F 
P 

Bk COS kL + - = 0 

The last two of these equations give 

B - -  L - 1 - -  - 

F P sin kL Pk  cos kL 



Buckling of a strut with one end pinned and the other end fixed 447 

Thus 

kL cos kL = sin kL (18.52) 

This equation gives the values of kL at which B and Fare indeterminate, that is, at a condition of 
neutral equilibrium. The equation may be written 

kl, = tan kL (18.53) 

The smallest non-zero value of kL satisfying this equation is approximately equal to 4.49 (see 
Figure 18.17). Thls gives 

EI P,, = k 2 E I  = 4.492 E = 20.2 - 
L 2  L 2  

We may derive an approximate value of kL in the following way: suppose kL is less than 3d2  by 
a small amount E, then 

kL = - -  37c E I 
I 

Figure 18.17 Graphical determination of buckling load. 

Then we are interested in the roots of the equation 

- -  37c E = 
t a n ( $ - & )  

_ -  37c E = c o t &  = +fa') 

2 

If E is small, then 

2 E 
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Approximately 

Then 

and 

(18.54) 

where 

Lo = d G  = 0.7 

18.13 Flexural buckling of struts with other cross-sectional forms 

In Section 18.2 we considered the strut to be in the form of a flat rectangular strip. We considered 
buckling to involve bendmg about the major axis Cx only, Figure 18.18. In the case of a flat 
rectangular strip the axis Cx is clearly the weaker axis of bending. In practice, structural sections 
rarely have this simple cross-sectional form, but fiequently have I-sections, or angle sections, or 
circular sections. 

In general, if the cross-sectional form of a strut has two axes of symmetry, we can consider 
flexural instability about these two axes independently. If an I-section has two axes of symmetry 
in the cross-section, Figure 18.19, flexural instability occurs usually about the axis of smaller 
stiffness, usually Cx. In a rectangular strut, Figure 18.19, the weaker bending axis is parallel to the 
longer sides. Circular cross-sectional forms have the property that any two mutually pexpendicular 
diameters are principal centroidal axes; for these sections flexural instability is equally likely about 
any principal centroidal axis, Figure 18.19; when buckling occurs it is usually restricted to one 
plane. In malung these statement we assume the ends of the strut are hinged about both axes Cy 
and Cz; this can be achieved in practice by loading through ball-ends. When the ends are not 
supported in the same way about Cy and Cx, then torsional effects may become important in the 
buckling behaviour. 
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Figure 18.18 Narrow strip cross-section. Figure 18.19 Cross-section with two axes of 
symmetry. 

Figure 18.20 Cross-sections with only one Figure 18.21 Unequal angle strut. 
axis of symmetry. 

In the case of cross-sectional forms with only one axis of symmetry, Cy, say (Figure 18.20), 
torsional effects become important if the shear centre is not coincident with the centroid. This is 
true of channel sections, T-sections, and equal angle sections. Although for certain struts flexural 
instability occurs about the weaker principal axis Cz, in general twisting also occurs. 

In the case of cross-sectional forms with no axes of symmetry, Figure 18.2 1, the buckled form 
always involves torsion, and the flexural buckling load has little meaning. This is true of unequal 
angle struts. 

Problem 18.1 What thrust will a round steel rod take without buckling if it is 1.25 cm 
diameter, 2 m long, perfectly straight, and pin-jointed at the ends, the load 
being applied exactly along the axis of the rod? 

Solution 

We have 

I =  ~(0 .0125)~  
= 1-20 x 10-9 m4, L = 2 m 

64 
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Taking E = 200GN/m2, wehave 
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p e = - -  ''E' - 591 N 
L 2  

18.14 Torsional buckling of a cruciform strut 

We mentioned above that some struts are prone to torsional buckling effects. A cross-sectional 
form in which torsional instability occurs independently of any other form of buckling is a 
symmetrical cruciform section. 

Figure 18.22 Cross-section of a cruciform strut. 

The cruciform has four equally spaced limbs each of breadth b and uniform thickness t, Figure 
18.22. Consider the section under a uniform compressive stress 0, Figure 18.23(i). We consider 
the possibility that the section may become unstable by twisting about the longitudinal axis Cz, 
Figure 18.23(ii); the stresses (3 over the ends remain parallel to Cz during buckling. 

Over any cross-section of the cruciform the stress is 0, acting parallel to Cz. Consider an 
elemental area 6A of one limb at a distance x from the axis Cz, Figure 18.23(iii). If the relative 
twist between two cross-sections a distance Sz apart is SO, then the force 

06A 

on the elemental area is statically equivalent to a force oSA acting along the twisted form of the 
strut and a small force 

de OGAX - 
a5 

acting in the plane of the cross-section. The inclined forces o6A on the two cross-sections are in 
equilibrium with each other, but the two forces oSAx (deldz) give rise to a resultant torque at any 
cross-section. This torque is 

ox2 E dA = 40 q h x 2 d A  4 1 b h  dx a 5 0  

since there are four limbs. 
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Figure 18.23 Torsional buckling of a cruciform column. 

The geometrical quantity 

4 s , h  x 2 d A  

is the polar second moment of area of the cross-section about Cz. The resultant torque at any cross- 
section is then 

de 
CJ - Jo 

dz 

where 

Jo = 4 Lh x 2  dA = 4t J O h x 2  dz = -b3t 4 
3 

Now, we found in Chapter 16 that the torque-twist relation for a cruciform section is 

Torque = G J  - de = -Gbt 4 3 %  

dz 3 dz 

In the case of the compressed cruciform, the twisted form can be maintained if 

de de o - J 0  = G J -  
dz dz 
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Then 

4 
(z = G[$) = G[*] -bt = G ( i ) 2  

-b 3t 
3 

(18.55) 

18.15 Modes of buckling of a cruciform strut 

With a knowledge of the torsional and flexural buckling loads of a cruciform strut, we can estimate 
the range of struts, we can estimate the range of struts for which buckling is likely in the two 
modes. 

If b is very much greater than t ,  and if all the limbs are similar in form, flexural buckling of a 
pin-ended strut is possible about any axis through the junction of the limbs, since the flexural 
stiffness is the same for all axes. For flexural instability the critical stress is 

EI 
Of = It2 - 

AL 

Now I = 1/12 t(2b)3 = %b3t and A = 4bt, and SO 

n2 Eb2 
Of = 7 7  

(18.56) 

(1 8.57) 

Now, as we have seen, the torsional buckling stress is independent of L, and has the value 
2 

0, = G ( i )  

Then or > (z, when 

-- IC’ Eb2 > G (t)2 
6 L 2  

i.e. when 

b4 6G - 6 3 - > -  - - - 
L 2 t Z  n2E 2d (1 + v) n2 (1 + v) 

I fv  = 0.3, then 

b 4  3 
L 2 t 2  1.37~’ 
- > - = 0.234 

(18.58) 

(18.59) 

(18.60) 
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Thus torsional buckling takes place when 

E > 4- = 0.484 
Lt 

i.e. when 

Lt - < 2.07 
b 2  

This condition may be written 

($) < 2.07 (!) (18.61) 

We can show the domains of flexural and torsional instability by plotting (Wb) against (b/t), Figure 
18.24. For a practical material, yielding or material breakdown occurs when L/b and b/t approach 
zero; the lower left-hand comer is therefore the yielding domain. Above the straight line 

[ $) = 2.07 [ !) 

buckling is by flexure, whereas below thls line buckling is by torsion. 

Figure 18.24 Modes of buckling of a cruciform strut. 
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18.16 Lateral buckling of a narrow beam 

We have seen that the axial compression of a slender strut can lead to a condition of neutral 
equilibrium, in which at a certain compressive load a flexural form of deformation becomes 
possible. In the case of a cruciform strut we have shown that a form of neutral equilibrium 
involving torsion is possible under certain conditions. 

Problems of structural instability are not restricted entirely to compression members, although 
there are many problems of this type. In the case of deep beams, for example, lateral buckling may 
occur, involving torsion and bending perpendicular to the plane of the depth of the beam. In 
general this problem is a complex one; however, we can determine some of the factors involved 
by studying the relatively simple case of the bending of a narrow deep beam. 

Figure 18.25 Lateral buckling of a narrow strip in pure bending. 

A long rectangular strip has a depth h and thickness t ,  which is small compared with h, Figure 
18.25. The principal centroidal axes are Cx, Cy and Cz. At the ends of the beam are vertical rollers 
which prevent twisting of the beam about a longitudinal axis. The distance between the end 
supports is L. 

The beam is loaded with moments M applied at each end about axes parallel to Cx. Consider 
the possibility that the beam may become laterally unstable at some critical value of M. If h >> 
t then bending displacements in the yz plane may be neglected. Suppose in the buckled form the 
principal centroidal axes at any cross-section are Cx', Cy' and Cz'. The lateral displacements 
parallel to Cx is u, and 8 is the angle of twist about Cz at any cross-section. The moments Mare 
assumed to be maintained along their original lines of action; the only other forces which may be 
induced at the ends are equal and opposite longitudinal torques T. The bending moment about the 
axis Cy' is then 



Lateral buckling of a narrow beam 45 5 

and as this gives rise to the curvature of the beam in the xz plane we have 

Where EIy is the bending stiffness of the beam about Cy. Again, for twisting about Cz' 

du T + M -  
dz 

dB GJ - 
dz 

where G J  is the torsional stiffness about Cx. Differentiation of the second equations gives 

d2U d20 M -  = G J -  
d Z 2  dz2  

Thus, on eliminating u, 

Then 

Put 

Then 

d20 M 2  - + - e  = 0 
& 2  GJEI, 

M 2  
GJEI, 

k 2  = - (18.62) 

The general solution is 

0 = A cos kz + B sin kz 
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where A and B are arbitrary constants. If 8 = 0 at z = 0, then A = 0. Further if 8 = 0 at z =L, 

B s i n k L  = 0 

If B = 0, then both A and B are zero, and no buckling occurs; but B can be non-zero if 

sin kL = 0 

We can disregard the root kL = 0, since the general solution is only valid if k is non-zero. The 
relevant roots are 

kL = 7 c ,  2 x ,  37c. . , (1 8.63) 

The smallest value of critical moment is 

Now, for a beam of rectangular cross-section, 

1 1 
3 12 

GJ = - Ght3 ,  EI,, = - Eht3 

Then 

- -m x ht3 
MCr = 2 L 4- = L 6  

If G = ER(l+v)then 

& E = / - =  E 

m 

The maximum bending stress at the bending moment M,, is 

(18.64) 

(18.65) 

(1 8.66) 

(18.67) 

For a strip of given depth h and thickness t, the buckling stress oC, is proportional to the inverse of 
(Lh), which is sometimes referred to as the slenderness ratio of the beam. 
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Further problems (answers on page 694) 

18.2 Calculate the buckling load of a pin-joined strut made of round steel rod 2 cm diameter 
and 4 m long. 

Find the thickness of a round steel tubular strut 3.75 cm external diameter, 2 m long, pin- 
joined at the end, to withstand an axial load of 10 kN. 

Calculate the buckling load of a strut built-in at both ends, the cross-section being a 
square 1 cm by 1 cm, and the length 2 m. Take E = 200 GN/m*. 

A steel scaffolding pole acts as a strut, but the load is applied eccentrically at 7.5 cm 
distance from the centre line with leverages in the same duection at top and bottom. The 
pole is tubular, 5 cm external diameter and 0.6 cm thick, 3 m in length between its ends 
which are not fured in direction. If the steel has a yield stress of 300 MN/m2 and E = 
200 GN/mz, estimate approximately the load required to buckle the strut. (WEC)  

Two similar members of the same dimensions are connected together at their ends by 
two equal rigid links, the llnks being pin-jointed to the members. At the middle the 
members are rigidly connected by a distance piece. Equal couples are applied to the 
links, the axes of the couples being parallel to the pins of the joints. Show that buckling 
will occur in the top member if the couples M exceed a value given by the root of the 
equation 

18.3 

18.4 

18.5 

18.6 

1 1 
2 2 

tan -kL = tanh -kL 

where kz = M/EId. (Cambridge) 


