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Preface

OBJECTIVES

The main objective of a basic mechanics course should be to develop
in the engineering student the ability to analyze a given problem in
a simple and logical manner and to apply to its solution a few fun-
damental and well-understood principles. This text is designed for a
course that combines statics and mechanics of materials—or strength
of materials—offered to engineering students in the sophomore
year.

GENERAL APPROACH

In this text the study of statics and mechanics of materials is based
on the understanding of a few basic concepts and on the use of
simplified models. This approach makes it possible to develop all the
necessary formulas in a rational and logical manner, and to clearly
indicate the conditions under which they can be safely applied to the
analysis and design of actual engineering structures and machine
components.

Practical Applications Are Introduced Early. One of the char-
acteristics of the approach used in this text is that mechanics of
particles is clearly separated from the mechanics of rigid bodies. This
approach makes it possible to consider simple practical applications
at an early stage and to postpone the introduction of the more diffi-
cult concepts. As an example, statics of particles is treated first (Chap. 2);
after the rules of addition and subtraction of vectors are introduced,
the principle of equilibrium of a particle is immediately applied to
practical situations involving only concurrent forces. The statics of
rigid bodies is considered in Chaps. 3 and 4. In Chap. 3, the vector
and scalar products of two vectors are introduced and used to define
the moment of a force about a point and about an axis. The presen-
tation of these new concepts is followed by a thorough and rigorous
discussion of equivalent systems of forces leading, in Chap. 4, to
many practical applications involving the equilibrium of rigid bodies
under general force systems.

New Concepts Are Introduced in Simple Terms. Since this
text is designed for the first course in mechanics, new concepts are
presented in simple terms and every step is explained in detail. On
the other hand, by discussing the broader aspects of the problems
considered and by stressing methods of general applicability, a defi-
nite maturity of approach is achieved. For example, the concepts of
partial constraints and statical indeterminacy are introduced early
and are used throughout.



Fundamental Principles Are Placed in the Context of Simple
Applications.  The fact that mechanics is essentially a deductive
science based on a few fundamental principles is stressed. Deriva-
tions have been presented in their logical sequence and with all the
rigor warranted at this level. However, the learning process being
largely inductive, simple applications are considered first.

As an example, the statics of particles precedes the statics of rigid
bodies, and problems involving internal forces are postponed until
Chap. 6. In Chap. 4, equilibrium problems involving only coplanar
forces are considered first and solved by ordinary algebra, while prob-
lems involving three-dimensional forces and requiring the full use of
vector algebra are discussed in the second part of the chapter.

The first four chapters treating mechanics of materials (Chaps.
8, 9, 10, and 11) are devoted to the analysis of the stresses and of
the corresponding deformations in various structural members, con-
sidering successively axial loading, torsion, and pure bending. Each
analysis is based on a few basic concepts, namely, the conditions of
equilibrium of the forces exerted on the member, the relations exist-
ing between stress and strain in the material, and the conditions
imposed by the supports and loading of the member. The study of
each type of loading is complemented by a large number of exam-
ples, sample problems, and problems to be assigned, all designed to
strengthen the students’ understanding of the subject.

Free-body Diagrams Are Used Extensively. Throughout the
text, free-body diagrams are used to determine external or internal
forces. The use of “picture equations” will also help the students
understand the superposition of loadings and the resulting stresses
and deformations.

Design Concepts Are Discussed Throughout the Text When-
ever Appropriate. A discussion of the application of the factor
of safety to design can be found in Chap. 8, where the concept of
allowable stress design is presented.

A Careful Balance Between Sl and U.S. Customary Units Is
Consistently Maintained.  Because it is essential that students be
able to handle effectively both SI metric units and U.S. customary
units, half the examples, sample problems, and problems to be
assigned have been stated in SI units and half in U.S. customary
units. Since a large number of problems are available, instructors can
assign problems using each system of units in whatever proportion
they find most desirable for their class.

It also should be recognized that using both SI and U.S. cus-
tomary units entails more than the use of conversion factors. Since
the SI system of units is an absolute system based on the units of
time, length, and mass, whereas the U.S. customary system is a gravi-
tational system based on the units of time, length, and force, different
approaches are required for the solution of many problems. For
example, when SI units are used, a body is generally specified by its
mass expressed in kilograms; in most problems of statics it will be
necessary to determine the weight of the body in newtons, and an
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additional calculation will be required for this purpose. On the other
hand, when U.S. customary units are used, a body is specified by its
weight in pounds and, in dynamics problems (such as would be
encountered in a follow-on course in dynamics), an additional calcu-
lation will be required to determine its mass in slugs (or Ib - s¥/ft).
The authors, therefore, believe that problem assignments should
include both systems of units.

Optional Sections Offer Advanced or Specialty Topics. A
number of optional sections have been included. These sections are
indicated by asterisks and thus are easily distinguished from those
which form the core of the basic first mechanics course. They may
be omitted without prejudice to the understanding of the rest of
the text.

The material presented in the text and most of the problems
require no previous mathematical knowledge beyond algebra, trigo-
nometry, and elementary calculus; all the elements of vector algebra
necessary to the understanding of mechanics are carefully presented
in Chaps. 2 and 3. In general, a greater emphasis is placed on the
correct understanding of the basic mathematical concepts involved
than on the nimble manipulation of mathematical formulas. In this
connection, it should be mentioned that the determination of the
centroids of composite areas precedes the calculation of centroids by
integration, thus making it possible to establish the concept of the
moment of an area firmly before introducing the use of integration.

CHAPTER ORGANIZATION AND PEDAGOGICAL FEATURES

Each chapter begins with an introductory section setting the purpose
and goals of the chapter and describing in simple terms the material
to be covered and its application to the solution of engineering
problems.

Chapter Lessons. The body of the text has been divided into
units, each consisting of one or several theory sections followed by
sample problems and a large number of problems to be assigned.
Each unit corresponds to a well-defined topic and generally can be
covered in one lesson.

Examples and Sample Problems. The theory sections include
examples designed to illustrate the material being presented and
facilitate its understanding. The sample problems are intended to
show some of the applications of the theory to the solution of engi-
neering problems. Since they have been set up in much the same
form that students will use in solving the assigned problems, the
sample problems serve the double purpose of amplifying the text and
demonstrating the type of neat and orderly work that students should
cultivate in their own solutions.

Homework Problem Sets. Most of the problems are of a practical
nature and should appeal to engineering students. They are primarily
designed, however, to illustrate the material presented in the text



and help the students understand the basic principles used in
engineering mechanics. The problems have been grouped according
to the portions of material they illustrate and have been arranged in
order of increasing difficulty. Answers to problems are given at the
end of the book, except for those with a number set in italics.

Chapter Review and Summary. Each chapter ends with a
review and summary of the material covered in the chapter. Notes
in the margin have been included to help the students organize their
review work, and cross references are provided to help them find
the portions of material requiring their special attention.

Review Problems. A set of review problems is included at the end
of each chapter. These problems provide students further opportunity
to apply the most important concepts introduced in the chapter.

ELECTRONIC TEXTBOOK OPTIONS

Ebooks are an innovative way for students to save money and create
a greener environment at the same time. An ebook can save students
about half the cost of a traditional textbook and offers unique fea-
tures like a powerful search engine, highlighting, and the ability to
share notes with classmates using ebooks.

McGraw-Hill offers this text as an ebook. To talk about the
ebook options, contact your McGraw-Hill sales representative or visit
the site www.coursesmart.com to learn more.

ONLINE RESOURCES

A website of instructor resources to accompany the text is available
at www.mhhe.com/beerjohnston. Instructors should contact their
sales representative to gain full access to these materials.
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Chapter 1 Introduction

1.1
1.2
1.3
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1.7

What Is Mechanics?
Fundamental Concepts and
Principles—Mechanics of Rigid
Bodies

Fundamental Concepts—
Mechanics of Deformable Bodies
Systems of Units

Conversion from One System of
Units to Another

Method of Problem Solution
Numerical Accuracy

1.1 WHAT IS MECHANICS?

Mechanics can be defined as that science which describes and pre-
dicts the conditions of rest or motion of bodies under the action of
forces. It is divided into three parts: mechanics of rigid bodies, me-
chanics of deformable bodies, and mechanics of fluids.

The mechanics of rigid bodies is subdivided into statics and dy-
namics, the former dealing with bodies at rest, the latter with bodies
in motion. In this part of the study of mechanics, bodies are assumed
to be perfectly rigid. Actual structures and machines, however, are
never absolutely rigid and deform under the loads to which they are
subjected. But these deformations are usually small and do not appre-
ciably affect the conditions of equilibrium or motion of the structure
under consideration. They are important, though, as far as the resis-
tance of the structure to failure is concerned and are studied in me-
chanics of materials, which is a part of the mechanics of deformable
bodies. The third division of mechanics, the mechanics of fluids, is
subdivided into the study of incompressible fluids and of compressible
fluids. An important subdivision of the study of incompressible fluids
is hydraulics, which deals with problems involving water.

Mechanics is a physical science, since it deals with the study of
physical phenomena. However, some associate mechanics with math-
ematics, while many consider it as an engineering subject. Both these
views are justified in part. Mechanics is the foundation of most engi-
neering sciences and is an indispensable prerequisite to their study.
However, it does not have the empiricism found in some engineering
sciences, i.e., it does not rely on experience or observation alone; by
its rigor and the emphasis it places on deductive reasoning, it resem-
bles mathematics. But, again, it is not an abstract or even a pure
science; mechanics is an applied science. The purpose of mechanics
is to explain and predict physical phenomena and thus to lay the
foundations for engineering applications.

1.2 FUNDAMENTAL CONCEPTS AND PRINCIPLES—
MECHANICS OF RIGID BODIES

Although the study of mechanics of rigid bodies goes back to the time
of Aristotle (384-322 B.c.) and Archimedes (287-212 B.c.), one has to
wait until Newton (1642-1727) to find a satisfactory formulation of its
fundamental principles. These principles were later expressed in a
modified form by d’Alembert, Lagrange, and Hamilton. Their validity
remained unchallenged, however, until Einstein formulated his theory
of relativity (1905). While its limitations have now been recognized, new-
tonian mechanics still remains the basis of today’s engineering sciences.

The basic concepts used in mechanics are space, time, mass,
and force. These concepts cannot be truly defined; they should be
accepted on the basis of our intuition and experience and used as a
mental frame of reference for our study of mechanics.

The concept of space is associated with the notion of the posi-
tion of a point P. The position of P can be defined by three lengths
measured from a certain reference point, or origin, in three given
directions. These lengths are known as the coordinates of P.



To define an event, it is not sufficient to indicate its position in
space. The time of the event should also be given.

The concept of mass is used to characterize and compare bodies
on the basis of certain fundamental mechanical experiments. Two bod-
ies of the same mass, for example, will be attracted by the earth in
the same manner; they will also offer the same resistance to a change
in translational motion.

A force represents the action of one body on another. It can be
exerted by actual contact or at a distance, as in the case of gravita-
tional forces and magnetic forces. A force is characterized by its
point of application, its magnitude, and its direction; a force is rep-
resented by a vector (Sec. 2.3).

In newtonian mechanics, space, time, and mass are absolute con-
cepts, independent of each other. (This is not true in relativistic mechan-
ics, where the time of an event depends upon its position, and where
the mass of a body varies with its velocity.) On the other hand, the
concept of force is not independent of the other three. Indeed, one of
the fundamental principles of newtonian mechanics listed below indi-
cates that the resultant force acting on a body is related to the mass of
the body and to the manner in which its velocity varies with time.

In the first part of the book, the four basic concepts that we
have introduced are used to study the conditions of rest or motion
of particles and rigid bodies. By particle we mean a very small
amount of matter which may be assumed to occupy a single point
in space. A rigid body is a combination of a large number of par-
ticles occupying fixed positions with respect to each other. The
study of the mechanics of particles is obviously a prerequisite to
that of rigid bodies. Besides, the results obtained for a particle can
be used directly in a large number of problems dealing with the
conditions of rest or motion of actual bodies.

The study of elementary mechanics rests on six fundamental
principles based on experimental evidence.

The Parallelogram Law for the Addition of Forces. This
states that two forces acting on a particle may be replaced by a single
force, called their resultant, obtained by drawing the diagonal of the
parallelogram which has sides equal to the given forces (Sec. 2.2).

The Principle of Transmissibility. This states that the conditions
of equilibrium or of motion of a rigid body will remain unchanged if a
force acting at a given point of the rigid body is replaced by a force of
the same magnitude and same direction, but acting at a different point,
provided that the two forces have the same line of action (Sec. 3.3).

Newton’s Three Fundamental Laws. Formulated by Sir Isaac
Newton in the latter part of the seventeenth century, these laws can
be stated as follows:

FIRST LAW. If the resultant force acting on a particle is zero, the
particle will remain at rest (if originally at rest) or will move with
constant speed in a straight line (if originally in motion) (Sec. 2.10).

1.2 Fundamental Concepts and Principles—
Mechanics of Rigid Bodies

3
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Fig. 1.1

Photo 1.1 When in earth orbit, people and
objects are said to be weightless even though the
gravitational force acting is approximately 90%
of that experienced on the surface of the earth.
This apparent contradiction can be resolved in a
course on Dynamics when Newton's second law
is applied to the motion of particles.

SECOND LAW. If the resultant force acting on a particle is not

zero, the particle will have an acceleration proportional to the mag-

nitude of the resultant and in the direction of this resultant force.
This law can be stated as

F = ma 11

where F, m, and a represent, respectively, the resultant force acting
on the particle, the mass of the particle, and the acceleration of the
particle, expressed in a consistent system of units.

THIRD LAW. The forces of action and reaction between bodies in
contact have the same magnitude, same line of action, and opposite
sense (Sec. 6.1).

Newton’s Law of Gravitation. This states that two particles of
mass M and m are mutually attracted with equal and opposite forces
F and —F (Fig. 1.1) of magnitude F given by the formula

Mm

2
r

F=G

(1.2)

where r = distance between the two particles
G = universal constant called the constant of gravitation

Newton’s law of gravitation introduces the idea of an action exerted
at a distance and extends the range of application of Newton’s third
law: the action F and the reaction —F in Fig. 1.1 are equal and
opposite, and they have the same line of action.

A particular case of great importance is that of the attraction
of the earth on a particle located on its surface. The force F exerted
by the earth on the particle is then defined as the weight W of the
particle. Taking M equal to the mass of the earth, m equal to the
mass of the particle, and r equal to the radius R of the earth, and
introducing the constant

GM
g=—7 (1.3)

R2
the magnitude W of the weight of a particle of mass m may be ex-
pressed ast

W = mg (1.4)

The value of R in formula (1.3) depends upon the elevation of the
point considered; it also depends upon its latitude, since the earth is
not truly spherical. The value of g therefore varies with the position
of the point considered. As long as the point actually remains on the
surface of the earth, it is sufficiently accurate in most engineering
computations to assume that g equals 9.81 m/s” or 32.2 ft/s”.

The principles we have just listed will be introduced in the
course of our study of mechanics of rigid bodies, covered in Chaps.
2 through 7. The study of the statics of particles carried out in Chap. 2

A more accurate definition of the weight W should take into account the rotation of
the earth.



will be based on the parallelogram law of addition and on Newton’s
first law alone. The principle of transmissibility will be introduced in
Chap. 3 as we begin the study of the statics of rigid bodies, and
Newton’s third law in Chap. 6 as we analyze the forces exerted on
each other by the various members forming a structure.

As noted earlier, the six fundamental principles listed above are
based on experimental evidence. Except for Newtons first law and the
principle of transmissibility, they are independent principles which can-
not be derived mathematically from each other or from any other ele-
mentary physical principle. On these principles rests most of the intricate
structure of newtonian mechanics. For more than two centuries a tre-
mendous number of problems dealing with the conditions of rest and
motion of rigid bodies, deformable bodies, and fluids have been solved
by applying these fundamental principles. Many of the solutions obtained
could be checked experimentally, thus providing a further verification
of the principles from which they were derived. It is only in this century
that Newton’s mechanics was found at fault, in the study of the motion
of atoms and in the study of the motion of certain planets, where it
must be supplemented by the theory of relativity. But on the human or
engineering scale, where velocities are small compared with the speed
of light, Newton’s mechanics has yet to be disproved.

1.3 FUNDAMENTAL CONCEPTS—MECHANICS OF
DEFORMABLE BODIES

The concepts needed for mechanics of deformable bodies, also
referred to as mechanics of materials, are necessary for analyzing and
designing various machines and load-bearing structures. These con-
cepts involve the determination of stresses and deformations.

In Chaps. 8 through 16, the analysis of stresses and the corre-
sponding deformations will be developed for structural members sub-
ject to axial loading, torsion, and pure bending. This requires the use
of basic concepts involving the conditions of equilibrium of forces
exerted on the member, the relations existing between stress and
deformation in the material, and the conditions imposed by the sup-
ports and loading of the member. Subsequent chapters expand on this
material, providing a basis for designing both structures that are stati-
cally determinant and those that are indeterminant, i.e., structures in
which the internal forces cannot be determined from statics alone.

1.4 SYSTEMS OF UNITS

The fundamental concepts introduced in the preceding sections are
associated with the so-called kinetic units, i.e., the units of length, time,
mass, and force. These units cannot be chosen independently if Eq. (1.1)
is to be satisfied. Three of the units may be defined arbitrarily; they are
then referred to as basic units. The fourth unit, however, must be chosen
in accordance with Eq. (1.1) and is referred to as a derived unit. Kinetic
units selected in this way are said to form a consistent system of units.

International System of Units (SI Unitst). In this system, the base
units are the units of length, mass, and time, and they are called,

ST stands for Systéme International d’Unités (French).

1.4 Systems of Units
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a=1m/s2
—
Fig. 1.2
m=1kg
a=9.81m/2
W=981N
Y

Fig. 1.3

respectively, the meter (m), the kilogram (kg), and the second (s). All
three are arbitrarily defined. The second, which was originally chosen to
represent 1/86 400 of the mean solar day, is now defined as the duration
of 9 192 631 770 cycles of the radiation corresponding to the transition
between two levels of the fundamental state of the cesium-133 atom.
The meter, originally defined as one ten-millionth of the distance from
the equator to either pole, is now defined as 1 650 763.73 wavelengths
of the orange-red light corresponding to a certain transition in an atom
of krypton-86. The kilogram, which is approximately equal to the mass
of 0.001 m® of water, is defined as the mass of a platinum-iridium stan-
dard kept at the International Bureau of Weights and Measures at
Sévres, near Paris, France. The unit of force is a derived unit. It is called
the newton (N) and is defined as the force which gives an acceleration
of 1 m/s” to a mass of 1 kg (Fig. 1.2). From Eq. (1.1) we write

IN = (1kg)(1m/s*) = 1kg - m/s® (1.5)

The SI units are said to form an absolute system of units. This means
that the three base units chosen are independent of the location
where measurements are made. The meter, the kilogram, and the
second may be used anywhere on the earth; they may even be used
on another planet. They will always have the same significance.

The weight of a body, or the force of gravity exerted on that body,
should, like any other force, be expressed in newtons. From Eq. (1.4)
it follows that the weight of a body of mass 1 kg (Fig. 1.3) is

W = mg
= (1kg)(9.81 m/s>)
=98I N
Multiples and submultiples of the fundamental SI units may be
obtained through the use of the prefixes defined in Table 1.1. The
multiples and submultiples of the units of length, mass, and force
most frequently used in engineering are, respectively, the kilometer
(km) and the millimeter (mm); the megagramt (Mg) and the gram
(g); and the kilonewton (kN). According to Table 1.1, we have
1 km = 1000 m 1 mm = 0.001 m
1 Mg = 1000 ke 1¢ = 0.001 ke
1kN = 1000 N
The conversion of these units into meters, kilograms, and newtons,
respectively, can be effected by simply moving the decimal point three
places to the right or to the left. For example, to convert 3.82 km into
meters, one moves the decimal point three places to the right:
3.82 km = 3820 m

Similarly, 47.2 mm is converted into meters by moving the decimal
point three places to the left:

472 mm = 0.0472 m
Using scientific notation, one may also write

3.82km = 3.82 X 10°m
472 mm = 47.2 X 10 > m

tAlso known as a metric ton.



TABLE 1.1 Sl Prefixes

Multiplication Factor Prefixt Symbol

1 000 000 000 000 = 102 tera T

1 000 000 000 = 10° giga G

1.000 000 = 10° mega M

1000 = 10° kilo k

100 = 10? hecto} h
10 = 10 dekat da

0.1=10" decit d

0.01 = 1o*z cexﬁtifg c

0.001 = 10 milli m

0.000 001 = 107° micro w

0.000 000 001 = 107° nano n

0.000 000 000 001 = 10~ "* pico p

0.000 000 000 000 001 = 1071 femto f
0.000 000 000 000 000 001 = 10~ ' atto a

tThe first syllable of every prefix is accented so that the prefix will retain its identity. Thus, the
preferred pronunciation of kilometer places the accent on the first syllable, not the second.

{The use of these prefixes should be avoided, except for the measurement of areas and
volumes and for the nontechnical use of centimeter, as for body and clothing measurements.

The multiples of the unit of time are the minute (min) and the
hour (h). Since 1 min = 60 s and 1 h = 60 min = 3600 s, these
multiples cannot be converted as readily as the others.

By using the appropriate multiple or submultiple of a given
unit, one can avoid writing very large or very small numbers. For
example, one usually writes 427.2 km rather than 427 200 m, and
2.16 mm rather than 0.002 16 m.t

Units of Area and Volume. The unit of area is the square meter
(m?), which represents the area of a square of side 1 m; the unit of
volume is the cubic meter (m?), equal to the volume of a cube of side
1 m. In order to avoid exceedingly small or large numerical values
in the computation of areas and volumes, one uses systems of sub-
units obtained by respectively squaring and cubing not only the mil-
limeter but also two intermediate submultiples of the meter, namely,
the decimeter (dm) and the centimeter (cm). Since, by definition,

1dm=01m=10"m
lem =0.0lm=102m
ITmm=000lm=10"3m
the submultiples of the unit of area are
1dm®>= (1dm)* = (10 'm)> =102 m?
lem?= (1lem)? = (10 2m)?> = 10"*m?
(1mm)?> = (10°m)*>=10"°m?

B
1 mm

1t should be noted that when more than four digits are used on either side of the
decimal point to express a quantity in SI units—as in 427 200 m or 0.002 16 m—
spaces, never commas, should be used to separate the digits into groups of three. This
is to avoid confusion with the comma used in place of a decimal point, which is the
convention in many countries.

1.4 Systems of Units
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and the submultiples of the unit of volume are
1dm?® = (1dm)* = (10" m)® = 10"° m?
lem?= (1em)®* = (102m)® =10 m?®
Imm® = (I1mm)®>=(10"2m)>=10""m?

It should be noted that when the volume of a liquid is being measured,
the cubic decimeter (dm?) is usually referred to as a liter (L).

Other derived SI units used to measure the moment of a force,
the work of a force, etc., are shown in Table 1.2. While these units
will be introduced in later chapters as they are needed, we should
note an important rule at this time: When a derived unit is obtained
by dividing a base unit by another base unit, a prefix may be used
in the numerator of the derived unit but not in its denominator. For
example, the constant k of a spring which stretches 20 mm under
a load of 100 N will be expressed as

100 N 100 N

k = = = 5000 N/m or k = 5kN/m
20 mm 0.020 m

but never as k = 5 N/mm.

U.S. Customary Units. Most practicing American engineers still
commonly use a system in which the base units are the units of length,
force, and time. These units are, respectively, the foot (ft), the pound
(Ib), and the second (s). The second is the same as the corresponding
SI unit. The foot is defined as 0.3048 m. The pound is defined as the

TABLE 1.2 Principal Sl Units Used in Mechanics

Quantity Unit Symbol Formula
Acceleration Meter per second squared S m/s’
Angle Radian rad 1
Angular acceleration Radian per second squared . rad/s?
Angular velocity Radian per second S rad/s
Area Square meter - m?
Density Kilogram per cubic meter L kg/m:3
Energy Joule ] N -m
Force Newton N kg - m/s>
Frequency Hertz Hz s
Impulse Newton-second . kg - m/s
Length Meter m H
Mass Kilogram kg i
Moment of a force Newton-meter R N - -m
Power Watt w /s
Pressure Pascal Pa N/m?
Stress Pascal Pa N/m?
Time Second s H
Velocity Meter per second C m/s
Volume

Solids Cubic meter o m®

Liquids Liter L 10 %m®
Work Joule ] N - -m

tSupplementary unit (1 revolution = 27 rad = 360°).

{Base unit.



weight of a platinum standard, called the standard pound, which is
kept at the National Institute of Standards and Technology outside
Washington, the mass of which is 0.453 592 43 kg. Since the weight
of a body depends upon the earth’s gravitational attraction, which var-
ies with location, it is specified that the standard pound should be
placed at sea level and at a latitude of 45° to properly define a force
of 1 1b. Clearly the U.S. customary units do not form an absolute sys-
tem of units. Because of their dependence upon the gravitational
attraction of the earth, they form a gravitational system of units.

While the standard pound also serves as the unit of mass in
commercial transactions in the United States, it cannot be so used
in engineering computations, since such a unit would not be consis-
tent with the base units defined in the preceding paragraph. Indeed,
when acted upon by a force of 1 Ib, that is, when subjected to the
force of gravity, the standard pound receives the acceleration of grav-
ity, g = 32.2 ft/s? (Fig. 1.4), not the unit acceleration required by
Eq. (1.1). The unit of mass consistent with the foot, the pound, and
the second is the mass which receives an acceleration of 1 ft/s> when
a force of 1 1b is applied to it (Fig. 1.5). This unit, sometimes called
a slug, can be derived from the equation F = ma after substituting
11b and 1 ft/s for F and «, respectively. We write

F = ma 11b = (1 slug)(1 ft/s?)
and obtain
11b
1 ft/s®

Comparing Figs. 1.4 and 1.5, we conclude that the slug is a mass
32.2 times larger than the mass of the standard pound.

The fact that in the U.S. customary system of units bodies are
characterized by their weight in pounds rather than by their mass in
slugs will be a convenience in the study of statics, where one constantly
deals with weights and other forces and only seldom with masses.
However, in the study of dynamics, where forces, masses, and accel-
erations are involved, the mass m of a body will be expressed in slugs
when its weight W is given in pounds. Recalling Eq. (1.4), we write

m = W (1.7)
g
where g is the acceleration of gravity (g = 32.2 ft/s?).

Other U.S. customary units frequently encountered in engi-
neering problems are the mile (mi), equal to 5280 ft; the inch (in.),
equal to ﬁ ft; and the kilopound (kip), equal to a force of 1000 Ib.
The ton is often used to represent a mass of 2000 lb but, like the
pound, must be converted into slugs in engineering computations.

The conversion into feet, pounds, and seconds of quantities
expressed in other U.S. customary units is generally more involved
and requires greater attention than the corresponding operation in
SI units. If, for example, the magnitude of a velocity is given as v =
30 mi/h, we convert it to ft/s as follows. First we write

1 slug = =11b - s/ft (1.6)

mi
v=230—

h

1.4 Systems of Units
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Since we want to get rid of the unit miles and introduce instead the
unit feet, we should multiply the right-hand member of the equation
by an expression containing miles in the denominator and feet in the
numerator. But, since we do not want to change the value of the
right-hand member, the expression used should have a value equal to
unity. The quotient (5280 ft)/(1 mi) is such an expression. Operating
in a similar way to transform the unit hour into seconds, we write

( mi><5280 ft>< 1h >
v=|30— -
h 1 mi 3600 s

Carrying out the numerical computations and canceling out units
which appear in both the numerator and the denominator, we obtain

ft
v 244;244&/5

1.5 CONVERSION FROM ONE SYSTEM OF UNITS
TO ANOTHER

There are many instances when an engineer wishes to convert into
SI units a numerical result obtained in U.S. customary units or vice
versa. Because the unit of time is the same in both systems, only two
kinetic base units need be converted. Thus, since all other kinetic
units can be derived from these base units, only two conversion fac-
tors need be remembered.

Units of Length. By definition the U.S. customary unit of length is
1ft = 0.3048 m (1.8)

It follows that
1 mi = 5280 ft = 5280(0.3048 m) = 1609 m

or
1 mi = 1.609 km (1.9)
Also
lin. = {5 ft = 5(0.3048 m) = 0.0254 m
or

1in. = 25.4 mm (1.10)

Units of Force. Recalling that the U.S. customary unit of force
(pound) is defined as the weight of the standard pound (of mass
0.4536 kg) at sea level and at a latitude of 45° (where g = 9.807 m/s?)
and using Eq. (1.4), we write
W = mg
11b = (0.4536 ke)(9.807 m/s?) = 4.448 kg - m/s>

or, recalling Eq. (1.5),

11b = 4448 N (1.11)



Units of Mass.  The U.S. customary unit of mass (slug) is a derived
unit. Thus, using Eqs. (1.6), (1.8), and (1.11), we write
11b 4.448 N

Islug = 11b - s/ft = 5= 5= 1459 N - s%/m
1ft/s”  0.3048 m/s

and, recalling Eq. (1.5),
Islug = 11b - s%/ft = 14.59 kg (1.12)

Although it cannot be used as a consistent unit of mass, we recall
that the mass of the standard pound is, by definition,

1 pound mass = 0.4536 kg (1.13)

This constant may be used to determine the mass in SI units (kilo-
grams) of a body which has been characterized by its weight in U.S.
customary units (pounds).

To convert a derived U.S. customary unit into SI units, one
simply multiplies or divides by the appropriate conversion factors.
For example, to convert the moment of a force which was found to
be M = 47 1b - in. into SI units, we use formulas (1.10) and (1.11)
and write

M = 471b - in. = 47(4.448 N)(25.4 mm)
=5310N-mm = 531N 'm

The conversion factors given in this section may also be used
to convert a numerical result obtained in ST units into U.S. custom-
ary units. For example, if the moment of a force was found to be
M = 40 N - m, we write, following the procedure used in the last
paragraph of Sec. 1.4,

| fi
M=4ON-m=(4ON-m)< L1b >< LIt )
4.448 N /\ 0.3048 m

Carrying out the numerical computations and canceling out units
which appear in both the numerator and the denominator, we obtain

M=2951b - ft

The U.S. customary units most frequently used in mechanics
with their SI equivalents are listed in Table 1.3.

1.6 METHOD OF PROBLEM SOLUTION

You should approach a problem in mechanics as you would
approach an actual engineering situation. By drawing on your own
experience and intuition, you will find it easier to understand and
formulate the problem. Once the problem has been clearly stated,
however, there is no place in its solution for your particular fancy.
Your solution must be based on the fundamental principles of stat-
ics and the concepts you will learn in this course. Every step taken
must be justified on that basis. Strict rules must be followed, which
lead to the solution in an almost automatic fashion, leaving no

1.6 Method of Problem Solution
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TABLE 1.3 U.S. Customary Units and Their SI Equivalents

Quantity U.S. Customary Unit SI Equivalent
Acceleration ft/s? 0.3048 m/s*
in./s* 0.0254 m/s”
Area ft® 0.0929 m*
in’ 645.2 mm?>
Energy ft - b 1.356 ]
Force kip 4.448 kN
b 4448 N
0z 0.2780 N
Impulse Ib-s 4448 N - s
Length ft 0.3048 m
in. 25.40 mm
mi 1.609 km
Mass 0Z mass 28.35 ¢
Ib mass 0.4536 kg
slug 14.59 kg
ton 907.2 kg
Moment of a force Ib - ft 1.356 N - m
Ib - in. 0.1130 N - m
Moment of inertia
Of an area in 0.4162 X 10° mm*
Of a mass Ib-ft-s? 1.356 kg - m>
Momentum Ib-s 4.448 kg - m/s
Power ft - Ib/s 1.356 W
hp 745.7 W
Pressure or stress b/t 47.88 Pa
Ib/in® (psi) 6.895 kPa
Velocity ft/s 0.3048 m/s
in./s 0.0254 m/s
mi/h (mph) 0.4470 m/s
mi/h (mph) 1.609 km/h
Volume ft* 0.02832 m®
in® 16.39 cm®
Liquids gal 3.785 L
qt 0.9464 L
Work ft - b 1.356 J

room for your intuition or “feeling.” After an answer has been
obtained, it should be checked. Here again, you may call upon
your common sense and personal experience. If not completely
satisfied with the result obtained, you should carefully check your
formulation of the problem, the validity of the methods used for
its solution, and the accuracy of your computations.

The statement of a problem should be clear and precise. It
should contain the given data and indicate what information is
required. A neat drawing showing all quantities involved should be
included. Separate diagrams should be drawn for all bodies involved,
indicating clearly the forces acting on each body. These diagrams are
known as free-body diagrams and are described in detail in Secs.
2.11 and 4.2.

The fundamental principles of mechanics listed in Sec. 1.2 will
be used to write equations expressing the conditions of rest or motion



of the bodies considered. Each equation should be clearly related to
one of the free-body diagrams. You will then proceed to solve the
problem, observing strictly the usual rules of algebra and recording
neatly the various steps taken.

After the answer has been obtained, it should be carefully checked.
Mistakes in reasoning can often be detected by checking the units. For
example, to determine the moment of a force of 50 N about a point
0.60 m from its line of action, we would have written (Sec. 3.12)

M = Fd = (50 N)(0.60 m) = 30N - m

The unit N - m obtained by multiplying newtons by meters is the
correct unit for the moment of a force; if another unit had been
obtained, we would have known that some mistake had been made.
Errors in computation will usually be found by substituting the
numerical values obtained into an equation which has not yet been
used and verifying that the equation is satisfied. The importance of
correct computations in engineering cannot be overemphasized.

1.7 NUMERICAL ACCURACY

The accuracy of the solution of a problem depends upon two items:
(1) the accuracy of the given data and (2) the accuracy of the com-
putations performed.

The solution cannot be more accurate than the less accurate of
these two items. For example, if the loading of a bridge is known to
be 75,000 Ib with a possible error of 100 Ib either way, the relative
error which measures the degree of accuracy of the data is

100 1b

750001, 0013 = 0.13 percent

In computing the reaction at one of the bridge supports, it would
then be meaningless to record it as 14,322 lb. The accuracy of the
solution cannot be greater than 0.13 percent, no matter how accurate
the computations are, and the possible error in the answer may be
as large as (0.13/100)(14,322 1b) = 20 lb. The answer should be
properly recorded as 14,320 = 20 lb.

In engineering problems, the data are seldom known with an
accuracy greater than 0.2 percent. It is therefore seldom justified to
write the answers to such problems with an accuracy greater than 0.2
percent. A practical rule is to use 4 figures to record numbers begin-
ning with a “1” and 3 figures in all other cases. Unless otherwise
indicated, the data given in a problem should be assumed known with
a comparable degree of accuracy. A force of 40 Ib, for example, should
be read 40.0 Ib, and a force of 15 lb should be read 15.00 Ib.

Pocket electronic calculators are widely used by practicing
engineers and engineering students. The speed and accuracy of
these calculators facilitate the numerical computations in the solu-
tion of many problems. However, students should not record more
significant figures than can be justified merely because they are
easily obtained. As noted above, an accuracy greater than 0.2 per-
cent is seldom necessary or meaningful in the solution of practical
engineering problems.

1.7 Numerical Accuracy
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Chapter 2 Statics of Particles

2.1 Introduction

2.2  Force on a Particle. Resultant of

Two Forces
2.3  Vectors
2.4 Addition of Vectors

2.5 Resultant of Several Concurrent

Forces

2.6  Resolution of a Force into

Components

2.7  Rectangular Components of a

Force. Unit Vectors

2.8 Addition of Forces by Summing

X and Y Components

2.9 Equilibrium of a Particle
2.10 Newton'’s First Law of Motion

2.11 Problems Involving the

Equilibrium of a Particle. Free-

Body Diagrams

2.12 Rectangular Components of a

Force in Space

2.13 Force Defined by Its Magnitude

and Two Points on lts Line of

Action

2.14 Addition of Concurrent Forces

in Space

2.15 Equilibrium of a Particle in Space

2.1 INTRODUCTION

In this chapter you will study the effect of forces acting on particles.
First you will learn how to replace two or more forces acting on a
given particle by a single force having the same effect as the original
forces. This single equivalent force is the resultant of the original
forces acting on the particle. Later the relations which exist among
the various forces acting on a particle in a state of equilibrium will
be derived and used to determine some of the forces acting on the
particle.

The use of the word “particle” does not imply that our study
will be limited to that of small corpuscles. What it means is that the
size and shape of the bodies under consideration will not significantly
affect the solution of the problems treated in this chapter and that
all the forces acting on a given body will be assumed to be applied
at the same point. Since such an assumption is verified in many
practical applications, you will be able to solve a number of engineer-
ing problems in this chapter.

The first part of the chapter is devoted to the study of forces
contained in a single plane, and the second part to the analysis of
forces in three-dimensional space.

2.2 FORCE ON A PARTICLE. RESULTANT
OF TWO FORCES

A force represents the action of one body on another and is generally
characterized by its point of application, its magnitude, and its direc-
tion. Forces acting on a given particle, however, have the same point
of application. Each force considered in this chapter will thus be
completely defined by its magnitude and direction.

The magnitude of a force is characterized by a certain num-
ber of units. As indicated in Chap. 1, the SI units used by engi-
neers to measure the magnitude of a force are the newton (N) and
its multiple the kilonewton (kN), equal to 1000 N, while the U.S.
customary units used for the same purpose are the pound (Ib) and
its multiple the kilopound (kip), equal to 1000 Ib. The direction
of a force is defined by the line of action and the sense of the
force. The line of action is the infinite straight line along which
the force acts; it is characterized by the angle it forms with some
fixed axis (Fig. 2.1). The force itself is represented by a segment of



that line; through the use of an appropriate scale, the length of this
segment may be chosen to represent the magnitude of the force.
Finally, the sense of the force should be indicated by an arrowhead.
It is important in defining a force to indicate its sense. Two forces
having the same magnitude and the same line of action but different
sense, such as the forces shown in Fig. 2.1a and b, will have directly
opposite effects on a particle.

Experimental evidence shows that two forces P and Q acting
on a particle A (Fig. 2.2a) can be replaced by a single force R which
has the same effect on the particle (Fig. 2.2¢). This force is called
the resultant of the forces P and Q and can be obtained, as shown
in Fig. 2.2b, by constructing a parallelogram, using P and Q as two
adjacent sides of the parallelogram. The diagonal that passes through
A represents the resultant. This method for finding the resultant is
known as the parallelogram law for the addition of two forces. This
law is based on experimental evidence; it cannot be proved or derived
mathematically.

2.3 VECTORS

It appears from the above that forces do not obey the rules of addi-
tion defined in ordinary arithmetic or algebra. For example, two
forces acting at a right angle to each other, one of 4 Ib and the other
of 3 1b, add up to a force of 5 Ib, not to a force of 7 Ib. Forces are
not the only quantities which follow the parallelogram law of addi-
tion. As you will see later, displacements, velocities, accelerations, and
momenta are other examples of physical quantities possessing mag-
nitude and direction that are added according to the parallelogram
law. All these quantities can be represented mathematically by vec-
tors, while those physical quantities which have magnitude but not
direction, such as volume, mass, or energy, are represented by plain
numbers or scalars.

Vectors are defined as mathematical expressions possessing
magnitude and direction, which add according to the parallelo-
gram law. Vectors are represented by arrows in the illustrations
and will be distinguished from scalar quantities in this text through
the use of boldface type (P). In longhand writing, a vector may be
denoted by drawing a short arrow above the letter used to repre-
sent it (P) or by underlining the letter (P). The last method may
be preferred since underlining can also be used on a computer.
The magnitude of a vector defines the length of the arrow used
to represent the vector. In this text, italic type will be used to
denote the magnitude of a vector. Thus, the magnitude of the vec-
tor P will be denoted by P.

A vector used to represent a force acting on a given particle
has a well-defined point of application, namely, the particle itself.
Such a vector is said to be a fixed, or bound, vector and cannot be
moved without modifying the conditions of the problem. Other
physical quantities, however, such as couples (see Chap. 3), are
represented by vectors that may be freely moved in space; these

2.3 Vectors
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Fig. 2.4

-P
Fig. 2.5

Fig. 2.6

180

vectors are called free vectors. Still other physical quantities, such
as forces acting on a rigid body (see Chap. 3), are represented by
vectors which can be moved, or slid, along their lines of action;
they are known as sliding vectors.t

Two vectors which have the same magnitude and the same
direction are said to be equal, whether or not they also have the same
point of application (Fig. 2.4); equal vectors may be denoted by the
same letter.

The negative vector of a given vector P is defined as a vector
having the same magnitude as P and a direction opposite to that of
P (Fig. 2.5); the negative of the vector P is denoted by —P. The
vectors P and —P are commonly referred to as equal and opposite
vectors. Clearly, we have

P+ (—-P)=0

2.4 ADDITION OF VECTORS

We saw in the preceding section that, by definition, vectors add
according to the parallelogram law. Thus, the sum of two vectors P
and Q is obtained by attaching the two vectors to the same point A
and constructing a parallelogram, using P and Q as two sides of the
parallelogram (Fig. 2.6). The diagonal that passes through A repre-
sents the sum of the vectors P and Q, and this sum is denoted by
P + Q. The fact that the sign + is used to denote both vector and
scalar addition should not cause any confusion if vector and scalar
quantities are always carefully distinguished. Thus, we should note
that the magnitude of the vector P + Q is not, in general, equal to
the sum P + Q of the magnitudes of the vectors P and Q.

Since the parallelogram constructed on the vectors P and Q does
not depend upon the order in which P and Q are selected, we con-
clude that the addition of two vectors is commutative, and we write

P+Q=Q+P 2.1)

tSome expressions have magnitude and direction but do not add according to the
parallelogram law. While these expressions may be represented by arrows, they cannot
be considered as vectors.

A group of such expressions is the finite rotations of a rigid body. Place a closed
book on a table in front of you, so that it lies in the usual fashion, with its front cover
up and its binding to the left. Now rotate it through 180° about an axis parallel to the
binding (Fig. 2.3a); this rotation may be represented by an arrow of length equal to
180 units and oriented as shown. Picking up the book as it lies in its new position, rotate

1@ _

80 — ¢

)

Fig. 2.3 Finite rotations of a rigid body



From the parallelogram law, we can derive an alternative
method for determining the sum of two vectors. This method, known
as the triangle rule, is derived as follows. Consider Fig. 2.6, where
the sum of the vectors P and Q has been determined by the paral-
lelogram law. Since the side of the parallelogram opposite Q is equal
to Q in magnitude and direction, we could draw only half of the
parallelogram (Fig. 2.7a). The sum of the two vectors can thus be
found by arranging P and Q in tip-to-tail fashion and then connect-
ing the tail of P with the tip of Q. In Fig. 2.7b, the other half of the
parallelogram is considered, and the same result is obtained. This
confirms the fact that vector addition is commutative.

The subtraction of a vector is defined as the addition of the
corresponding negative vector. Thus, the vector P — Q representing
the difference between the vectors P and Q is obtained by adding
to P the negative vector —Q (Fig. 2.8). We write

P-Q=P+ (-Q) 2.2)

Here again we should observe that, while the same sign is used to
denote both vector and scalar subtraction, confusion will be avoided
if care is taken to distinguish between vector and scalar quantities.

We will now consider the sum of three or more vectors. The
sum of three vectors P, Q, and S will, by definition, be obtained by
first adding the vectors P and Q and then adding the vector S to the
vector P + Q. We thus write

P+Q+S=(P+Q)+S (2.3)

Similarly, the sum of four vectors will be obtained by adding the
fourth vector to the sum of the first three. It follows that the sum
of any number of vectors can be obtained by applying repeatedly the
parallelogram law to successive pairs of vectors until all the given
vectors are replaced by a single vector.

it now through 180° about a horizontal axis perpendicular to the binding (Fig. 2.3b); this
second rotation may be represented by an arrow 180 units long and oriented as shown.
But the book could have been placed in this final position through a single 180° rotation
about a vertical axis (Fig. 2.3¢). We conclude that the sum of the two 180° rotations repre-
sented by arrows directed respectively along the z and x axes is a 180° rotation represented
by an arrow directed along the y axis (Fig. 2.3d). Clearly, the finite rotations of a rigid
body do not obey the parallelogram law of addition; therefore, they cannot be represented
by vectors.

A 180

180

Fig. 2.7

(a)
Fig. 2.8

2.4 Addition of Vectors
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If the given vectors are coplanar, i.e., if they are contained in
the same plane, their sum can be easily obtained graphically. For this
case, the repeated application of the triangle rule is preferred to the
application of the parallelogram law. In Fig. 2.9 the sum of three
vectors P, Q, and S was obtained in that manner. The triangle rule
was first applied to obtain the sum P + Q of the vectors P and Q;
it was applied again to obtain the sum of the vectors P + Q and S.
The determination of the vector P + Q, however, could have been
omitted and the sum of the three vectors could have been obtained
directly, as shown in Fig. 2.10, by arranging the given vectors in tip-
to-tail fashion and connecting the tail of the first vector with the tip
of the last one. This is known as the polygon rule for the addition of
vectors.

We observe that the result obtained would have been unchanged
if, as shown in Fig. 2.11, the vectors Q and S had been replaced by
their sum Q + S. We may thus write

P+Q+S=P+Q) +S=P+ (Q+8) (2.4)

which expresses the fact that vector addition is associative. Recalling
that vector addition has also been shown, in the case of two vectors,
to be commutative, we write

P+Q+S=P+Q) +S=S+(P+Q)

=S+ (Q+P)=S+Q+P 2.5)

This expression, as well as others which may be obtained in the same
way, shows that the order in which several vectors are added together
is immaterial (Fig. 2.12).

Product of a Scalar and a Vector. Since it is convenient to
denote the sum P + P by 2P, the sum P + P + P by 3P, and,
in general, the sum of n equal vectors P by the product nP, we
will define the product nP of a positive integer n and a vector P
as a vector having the same direction as P and the magnitude nP.
Extending this definition to include all scalars, and recalling the
definition of a negative vector given in Sec. 2.3, we define the
product kP of a scalar k and a vector P as a vector having the same
direction as P (if k is positive), or a direction opposite to that of
P (if k is negative), and a magnitude equal to the product of P and
of the absolute value of k (Fig. 2.13).

2.5 RESULTANT OF SEVERAL CONCURRENT FORCES

Consider a particle A acted upon by several coplanar forces, i.e., by
several forces contained in the same plane (Fig. 2.14a). Since the
forces considered here all pass through A, they are also said to be
concurrent. The vectors representing the forces acting on A may be
added by the polygon rule (Fig. 2.14D). Since the use of the polygon
rule is equivalent to the repeated application of the parallelogram
law, the vector R thus obtained represents the resultant of the given
concurrent forces, i.e., the single force which has the same effect on



the particle A as the given forces. As indicated above, the order in
which the vectors P, Q, and S representing the given forces are
added together is immaterial.

2.6 RESOLUTION OF A FORCE INTO COMPONENTS

We have seen that two or more forces acting on a particle may be
replaced by a single force which has the same effect on the particle.
Conversely, a single force F acting on a particle may be replaced by
two or more forces which, together, have the same effect on the
particle. These forces are called the components of the original force
F, and the process of substituting them for F is called resolving the
force F into components.

Clearly, for each force F there exist an infinite number of pos-
sible sets of components. Sets of two components P and Q are the
most important as far as practical applications are concerned. But,
even then, the number of ways in which a given force F may be
resolved into two components is unlimited (Fig. 2.15). Two cases are
of particular interest:

1. One of the Two Components, P, Is Known. The second com-
ponent, Q, is obtained by applying the triangle rule and join-
ing the tip of P to the tip of F (Fig. 2.16); the magnitude and
direction of Q are determined graphically or by trigonometry.
Once Q has been determined, both components P and Q
should be applied at A.

2. The Line of Action of Each Component Is Known. The magni-
tude and sense of the components are obtained by applying the
parallelogram law and drawing lines, through the tip of F, par-
allel to the given lines of action (Fig. 2.17). This process leads
to two well-defined components, P and Q, which can be deter-
mined graphically or computed trigonometrically by applying

the law of sines.

Many other cases can be encountered; for example, the direc-
tion of one component may be known, while the magnitude of the
other component is to be as small as possible (see Sample Prob. 2.2).
In all cases the appropriate triangle or parallelogram which satisfies
the given conditions is drawn.

2.6 Resolution of a Force into Components

Fig. 2.15
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Q 60N

P 40N

SAMPLE PROBLEM 2.1

The two forces P and Q act on a bolt A. Determine their resultant.

SOLUTION

Graphical Solution. A parallelogram with sides equal to P and Q is drawn
to scale. The magnitude and direction of the resultant are measured and
found to be
R = 98 N a = 35° R = 98 N «35°
The triangle rule may also be used. Forces P and Q are drawn in tip-to-
tail fashion. Again the magnitude and direction of the resultant are measured.
R =98N a = 35° R = 98 N 235°
Trigonometric Solution. The triangle rule is again used; two sides and the
included angle are known. We apply the law of cosines.
R* = P* + Q* — 2PQ cos B
R* = (40 N)* + (60 N)* — 2(40 N)(60 N) cos 155°
R = 97.73 N
Now, applying the law of sines, we write
sin A sin B sin A sin 155°
Q R 60 N 97.73 N

Solving Eq. (1) for sin A, we have

(60 N) sin 155°

o
s 97.73 N

Using a calculator, we first compute the quotient, then its arc sine,
and obtain
A = 15.04° a = 20° + A = 35.04°

We use 3 significant figures to record the answer (cf. Sec. 1.7):
R = 97.7N «£35.0°

Alternative Trigonometric Solution. We construct the right triangle BCD

and compute
CD = (60 N) sin 25° = 25.36 N

BD = (60 N) cos 25° = 54.38 N
Then, using triangle ACD, we obtain
25.36 N
tan A = SA A = 15.04°
94.38 N
25.36
== R =9773N
sin A
Again, a=20°+ A =35.04° R = 97.7N £35.0°
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SAMPLE PROBLEM 2.2

A barge is pulled by two tugboats. If the resultant of the forces exerted by
the tugboats is a 5000-Ib force directed along the axis of the barge, determine
(a) the tension in each of the ropes knowing that & = 45°, (b) the value of «
for which the tension in rope 2 is minimum.

SOLUTION

a. Tension for & = 45°. Graphical Solution. The parallelogram law is
used; the diagonal (resultant) is known to be equal to 5000 Ib and to be
directed to the right. The sides are drawn parallel to the ropes. If the draw-
ing is done to scale, we measure

T, =37001b T, = 2600 Ib

Trigonometric Solution. The triangle rule can be used. We note that the
triangle shown represents half of the parallelogram shown above. Using the
law of sines, we write

T, T,  50001b

sin 45°  sin 30°  sin 105°

With a calculator, we first compute and store the value of the last quo-
tient. Multiplying this value successively by sin 45° and sin 30°, we obtain

T, = 3660 Ib Ty, = 2590 Ib

b. Value of & for Minimum T,. To determine the value of « for which the
tension in rope 2 is minimum, the triangle rule is again used. In the sketch
shown, line 1-1" is the known direction of T;. Several possible directions of Ty
are shown by the lines 2-2’. We note that the minimum value of T, occurs
when T, and T, are perpendicular. The minimum value of T is

Ty = (5000 Ib) sin 30° = 2500 Ib
Corresponding values of T} and a are

T1 = (5000 Ib) cos 30° = 4330 Ib
a = 90° — 30° a = 60°
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PROBLEMS

2.1 and 2.2 Determine graphically the magnitude and direction of
the resultant of the two forces shown using (a) the parallelogram
law, (b) the triangle rule.

800 Ib

Fig. P2.1

500 Ib

Fig. P2.2

2.3 Two structural members B and C are bolted to the bracket A.
Knowing that the tension in member B is 6 kN and that the tension
in C is 10 kN, determine graphically the magnitude and direction
of the resultant force acting on the bracket.

2.4 Two structural members B and C are bolted to the bracket A.
Knowing that the tension in member B is 2500 lb and that the
tension in C is 2000 Ib, determine graphically the magnitude and
direction of the resultant force acting on the bracket.

2.5 The force F of magnitude 100 Ib is to be resolved into two com-
ponents along the lines a-a and b-b. Determine by trigonometry
the angle @, knowing that the component of F along line a-a is

70 1b.

Fig. P2.3 and P2.4

50°
b

Fig. P2.5 and P2.6

2.6 The force F of magnitude 800 N is to be resolved into two com-
ponents along the lines a-a and b-b. Determine by trigonometry
the angle @, knowing that the component of F along line b-b is
120 N.

24



2.7 A trolley that moves along a horizontal beam is acted upon by two Problems
forces as shown. (a¢) Knowing that & = 25°, determine by trigo-
nometry the magnitude of the force P so that the resultant force
exerted on the trolley is vertical. (b) What is the corresponding
magnitude of the resultant?

Fig. P2.7 and P2.11

2.8 A disabled automobile is pulled by means of two ropes as shown.
The tension in AB is 500 lb, and the angle « is 25°. Knowing
that the resultant of the two forces applied at A is directed along
the axis of the automobile, determine by trigonometry (a) the
tension in rope AC, (b) the magnitude of the resultant of the
two forces applied at A.

Fig. P2.8 and P2.10

2.9 Determine by trigonometry the magnitude of the force P so that
the resultant of the two forces applied at A is vertical. What is the
corresponding magnitude of the resultant?

20 Ib P
40°
80°
25° A

Fig. P2.9 and P2.12

2.10 A disabled automobile is pulled by means of two ropes as shown.
Knowing that the tension in rope AB is 750 Ib, determine by trigo-
nometry the tension in rope AC and the value of « so that the
resultant force exerted at A is a 1200-Ib force directed along the
axis of the automobile.
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2.11 A trolley that moves along a horizontal beam is acted upon by two
forces as shown. Determine by trigonometry the magnitude and
direction of the force P so that the resultant is a vertical force of
2500 N.

2.12 Knowing that P = 30 Ib, determine by trigonometry the resultant
of the two forces applied at point A.

2.13 Solve Prob. 2.1 by trigonometry.
2.14 Solve Prob. 2.4 by trigonometry.

2.15 1If the resultant of the two forces exerted on the trolley of Prob. 2.7
is to be vertical, determine (a) the value of « for which the mag-
nitude of P is minimum, (b) the corresponding magnitude of P.

2.7 RECTANGULAR COMPONENTS OF A FORCE.
UNIT VECTORS?

In many problems it will be found desirable to resolve a force into
two components which are perpendicular to each other. In Fig. 2.18,
the force F has been resolved into a component F, along the x axis
and a component F, along the y axis. The parallelogram drawn to
obtain the two components is a rectangle, and F, and F, are called
rectangular components.

A

Fig. 2.19

The x and y axes are usually chosen horizontal and vertical,
respectively, as in Fig. 2.18; they may, however, be chosen in any
two perpendicular directions, as shown in Fig. 2.19. In determining
the rectangular components of a force, the student should think of
the construction lines shown in Figs. 2.18 and 2.19 as being parallel
to the x and y axes, rather than perpendicular to these axes. This
practice will help avoid mistakes in determining oblique compo-
nents as in Sec. 2.6.

tThe properties established in Secs. 2.7 and 2.8 may be readily extended to the
rectangular components of any vector quantity.



Two vectors of unit magnitude, directed respectively along
the positive x and y axes, will be introduced at this point. These
vectors are called unit vectors and are denoted by i and j, respec-
tively (Fig. 2.20). Recalling the definition of the product of a scalar
and a vector given in Sec. 2.4, we note that the rectangular com-
ponents F, and F, of a force F may be obtained by multiplying
respectively the unit vectors i and j by appropriate scalars (Fig.
2.21). We write

F,=Fi F, =F,j 2.6)

and
F = Fi + F,j 2.7)

While the scalars F, and F, may be positive or negative, depending
upon the sense of F, and of F, their absolute values are respectively
equal to the magnitudes of the component forces F, and F,. The
scalars F, and F, are called the scalar components of the force F,
while the actual component forces F, and F, should be referred to
as the vector components of F. However, when there exists no pos-
sibility of confusion, the vector as well as the scalar components of
F may be referred to simply as the components of F. We note that
the scalar component F, is positive when the vector component F,
has the same sense as the unit vector i (i.e., the same sense as the
positive x axis) and is negative when F, has the opposite sense. A
similar conclusion may be drawn regarding the sign of the scalar
component F,.

Denoting by F the magnitude of the force F and by 6 the angle
between F and the x axis, measured counterclockwise from the posi-
tive x axis (Fig. 2.21), we may express the scalar components of F as
follows:

F. = F cos 0 F, = F sin0 2.8)

We note that the relations obtained hold for any value of the angle 6
from 0° to 360° and that they define the signs as well as the absolute
values of the scalar components F, and F,.

When a force F is defined by its rectangular components F,
and F, (see Fig. 2.21), the angle 6 defining its direction can be
obtained by writing

Yy
tanf = — 2.9
anf = — (2.9)

X

The magnitude F of the force can be obtained by applying the
Pythagorean theorem and writing

F=VF +F, (2.10)

or by solving for F from one of the formulas in Egs. (2.8).

2.7 Rectangular Components of a Force. Unit

1

Fig. 2.20

j i ZMagnitude =1

Vectors

F=800N
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F,=(700Ib)i ¥

EXAMPLE 2.1 A force of 800 N is exerted on a bolt A as shown in
Fig. 2.22a. Determine the horizontal and vertical components of the force.

In order to obtain the correct sign for the scalar components F, and
F,, the value 180° — 35° = 145° should be substituted for 6 in Eqs. (2.8).
However, it will be found more practical to determine by inspection the
signs of F, and F, (Fig. 2.22b) and to use the trigonometric functions of the
angle o = 35°. We write, therefore,

F. = —F cosa = —(800 N) cos 35° = —655 N

F, = +F sina = +(800 N) sin 35° = +459 N

The vector components of F are thus

F, = —(655 N)i F, = +(459 N)j

and we may write F in the form

F = (655 N)i + (459 N)j =
EXAMPLE 2.2 A man pulls with a force of 300 N on a rope attached
to a building, as shown in Fig. 2.23¢. What are the horizontal and vertical

components of the force exerted by the rope at point AP
It is seen from Fig. 2.23D that

F. = +(300 N) cosa F, = —(300 N) sina
Observing that AB = 10 m, we find from Fig. 2.23a

8 m 8 m 4 . 6 m 6 m 3
cosa = ——— = = — sihaog = — = J—
AB 10m 5 AB 10m 5
We thus obtain
F, =+(300 N)2 =+240 N F, =—(300N); =—180 N

and write
F = (240 N)i — (180 N)J [ |

EXAMPLE 2.3 A force F = (700 Ib)i + (1500 Ib)j is applied to a bolt
A. Determine the magnitude of the force and the angle 6 it forms with the
horizontal.

First we draw a diagram showing the two rectangular components of
the force and the angle 6 (Fig. 2.24). From Eq. (2.9), we write

F,  15001b
tan @ = — =

F.  7001b

Using a calculator,t we enter 1500 Ib and divide by 700 Ib; computing
the arc tangent of the quotient, we obtain 6 = 65.0°. Solving the second
formula of Egs. (2.8) for F, we have

F, 1500 1b

Y

F = = = 16551b
sin 6 sin 65.0°

The last calculation is facilitated if the value of F, is stored when originally
entered; it may then be recalled to be divided by sin 6. ®

1t is assumed that the calculator used has keys for the computation of trigonometric
and inverse trigonometric functions. Some calculators also have keys for the direct
conversion of rectangular coordinates into polar coordinates, and vice versa. Such
calculators eliminate the need for the computation of trigonometric functions in
Examples 2.1, 2.2, and 2.3 and in problems of the same type.



2.8 ADDITION OF FORCES BY SUMMING
X AND Y COMPONENTS

It was seen in Sec. 2.2 that forces should be added according to the
parallelogram law. From this law, two other methods, more readily
applicable to the graphical solution of problems, were derived in
Secs. 2.4 and 2.5: the triangle rule for the addition of two forces and
the polygon rule for the addition of three or more forces. It was also
seen that the force triangle used to define the resultant of two forces
could be used to obtain a trigonometric solution.

When three or more forces are to be added, no practical trigo-
nometric solution can be obtained from the force polygon which
defines the resultant of the forces. In this case, an analytic solution
of the problem can be obtained by resolving each force into two
rectangular components. Consider, for instance, three forces P, Q,
and S acting on a particle A (Fig. 2.25a). Their resultant R is
defined by the relation

R=P+Q+S (2.11)
Resolving each force into its rectangular components, we write

Ri+ Rj=Pi+Pj+ Qi+ Qj+Si+5j
= (Px + Qx + Sx>i + <Py + Qy + Sy>j

from which it follows that
Ro=P+Q +S R =P +Q+5, (212
or, for short,

R, =SF, R, = 3F, (2.13)
We thus conclude that the scalar components R, and R, of the
resultant R of several forces acting on a particle are obtained by
adding algebraically the corresponding scalar components of the
given forces.t

In practice, the determination of the resultant R is carried out
in three steps as illustrated in Fig. 2.25. First the given forces shown
in Fig. 2.25a are resolved into their x and y components (Fig. 2.25b).
Adding these components, we obtain the x and y components of R
(Fig. 2.25¢). Finally, the resultant R = R + R,j is determined by
applying the parallelogram law (Fig. 2.25d). The procedure just
described will be carried out most efficiently if the computations are
arranged in a table. While it is the only practical analytic method for
adding three or more forces, it is also often preferred to the trigo-
nometric solution in the case of the addition of two forces.

tClearly, this result also applies to the addition of other vector quantities, such as
velocities, accelerations, or momenta.

2.8 Addition of Forces by Summing

X and Y Components

|
Q]
|
|
0,iV__NX
(b)
H.’/j
A
R,i
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y SAMPLE PROBLEM 2.3

F; =150 N Four forces act on bolt A as shown. Determine the resultant of the forces
on the bolt.

F,=100 N

VF,=110N

SOLUTION

(Fy cos 20°)j The x and y components of each force are determined by trigonometry as
R shown and are entered in the table below. According to the convention
(Fy sin 30°)j . . .

adopted in Sec. 2.7, the scalar number representing a force component is
positive if the force component has the same sense as the corresponding
coordinate axis. Thus, x components acting to the right and y components
acting upward are represented by positive numbers.

o
|

(Fy cos 30°)i

-
-

—(Fy sin 20°)i !
‘K _____ (F4 cos 15°)i

—(F4 sin 15°)
Force Magnitude, N x Component, N y Component, N
i
o) F, 150 +129.9 +75.0
F, 80 —27.4 +75.2
F; 110 0 —110.0
F, 100 +96.6 —25.9
R, = +199.1 Ry = +143
Thus, the resultant R of the four forces is
R = Ri + R,jj R = (199.1 N)i + (14.3 N)j
The magnitude and direction of the resultant may now be determined.
From the triangle shown, we have
\__pn na =y 143N
T WETR T 990N YT
. . - : 14.3 N
R, =(143N)j Jr.= (901 R=—"""=1996N R = 199.6 N 04.1°
sin «

With a calculator, the last computation may be facilitated if the value
of R, is stored when originally entered; it may then be recalled to be divided
by sin a. (Also see the footnote on p. 28.)
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PROBLEMS

2.16 through 2.19 Determine the x and y components of each of
the forces shown.

Yy

600N Y| SOON

350 N

607’

150 Ib

2 120 1b
Fig. P2.16 Fig. P2.17

y
y
. B A
S — ‘o]
r 340 N e
e 75 mm - 72 mm

e
Q

2001 % i
mm-——
24 in.——] 40 mm
Fig. P2.18 Fig. P2.19

2.20 The tension in the support wire AB is 65 lb. Determine the hori-
zontal and vertical components of the force acting on the pin at A.

@
24 in. ﬂ
F
— e 1
|<—10 in.—>|
Fig. P2.20
2.21 The hydraulic cylinder GE exerts on member DF a force P directed
along line GE. Knowing that P must have a 600-N component

perpendicular to member DF, determine the magnitude of P and
its component parallel to DF.
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Fig. P2.23

2.22

2.23

2.24
2.25
2.26
2.27

2.28

Cable AC exerts on beam AB a force P directed along line
AC. Knowing that P must have a 350-1b vertical component,
determine (@) the magnitude of the force P, (b) its horizontal
component.

C
55°
A
7 | o
B
Fig. P2.22

The hydraulic cylinder BD exerts on member ABC a force P
directed along line BD. Knowing that P must have a 750-N com-
ponent perpendicular to member ABC, determine (a) the magni-
tude of the force P, (b) its component parallel to ABC.

Using x and y components, solve Prob. 2.1.

Using x and y components, solve Prob. 2.2.

Determine the resultant of the three forces of Prob. 2.17.
Determine the resultant of the three forces of Prob. 2.19.

Two cables of known tensions are attached to the top of pylon AB.
A third cable AC is used as a guy wire. Determine the tension in

AC, knowing that the resultant of the forces exerted at A by the
three cables must be vertical.

12°
A

Fig. P2.28



2.29 A hoist trolley is subjected to the three forces shown. Knowing that
a = 40°, determine (a) the magnitude of the force P for which
the resultant of the three forces is vertical, (b) the corresponding
magnitude of the resultant.

400 1b 200 1b
Fig. P2.29 and P2.30

2.30 A hoist trolley is subjected to the three forces shown. Knowing that
P = 250 Ib, determine (@) the value of the angle a for which the
resultant of the three forces is vertical, (b) the corresponding mag-
nitude of the resultant.

2.31 A collar that can slide on a vertical rod is subjected to the three
forces shown. The direction of the force F may be varied. If pos-
sible, determine the direction of the force F so that the resultant

of the three forces is horizontal, knowing that the magnitude of F
is (a) 2.4 kN, (b) 1.4 kN.

1200 N

800 N

Fig. P2.31

2.9 EQUILIBRIUM OF A PARTICLE

In the preceding sections, we discussed the methods for determining
the resultant of several forces acting on a particle. Although it has
not occurred in any of the problems considered so far, it is quite
possible for the resultant to be zero. In such a case, the net effect
of the given forces is zero, and the particle is said to be in equilibrium.
We thus have the following definition: When the resultant of all the
forces acting on a particle is zero, the particle is in equilibrium.

A particle which is acted upon by two forces will be in equi-
librium if the two forces have the same magnitude and the same line
of action but opposite sense. The resultant of the two forces is then
zero. Such a case is shown in Fig. 2.26.

100 Ib

A

100 1b
Fig. 2.26

2.9 Equilibrium of a Particle
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F,=17321b

F,=4001b
F3=2001b

Fig. 2.28

Another case of equilibrium of a particle is represented in
Fig. 2.27, where four forces are shown acting on A. In Fig. 2.28,
the resultant of the given forces is determined by the polygon rule.
Starting from point O with F; and arranging the forces in tip-to-tail
fashion, we find that the tip of F, coincides with the starting point O.
Thus the resultant R of the given system of forces is zero, and the
particle is in equilibrium.

The closed polygon drawn in Fig. 2.28 provides a graphical
expression of the equilibrium of A. To express algebraically the con-
ditions for the equilibrium of a particle, we write

R=2F=0 (2.14)

Resolving each force F into rectangular components, we have
S(Fi+ Fj) =0 or (SF)i+ (3F)j=0
We conclude that the necessary and sufficient conditions for the
equilibrium of a particle are
SF, =0 (2.15)

Returning to the particle shown in Fig. 2.27, we check that the equi-
librium conditions are satisfied. We write

2F, = 300 Ib — (200 Ib) sin 30° — (400 Ib) sin 30°
=3001b —1001b — 2001b =0

—173.2 1b — (200 Ib) cos 30° + (400 1b) cos 30°

= —17321b — 1732 1b + 3464 1b = 0

2.10 NEWTON'S FIRST LAW OF MOTION

In the latter part of the seventeenth century, Sir Isaac Newton for-
mulated three fundamental laws upon which the science of mechan-
ics is based. The first of these laws can be stated as follows:

If the resultant force acting on a particle is zero, the particle
will remain at rest (if originally at rest) or will move with constant
speed in a straight line (if originally in motion).

From this law and from the definition of equilibrium given in
Sec. 2.9, it is seen that a particle in equilibrium either is at rest or
is moving in a straight line with constant speed. In the following
section, various problems concerning the equilibrium of a particle
will be considered.

2.11 PROBLEMS INVOLVING THE EQUILIBRIUM
OF A PARTICLE. FREE-BODY DIAGRAMS

In practice, a problem in engineering mechanics is derived from an
actual physical situation. A sketch showing the physical conditions of
the problem is known as a space diagram.

The methods of analysis discussed in the preceding sections
apply to a system of forces acting on a particle. A large number of
problems involving actual structures, however, can be reduced to
problems concerning the equilibrium of a particle. This is done by

2F,



choosing a significant particle and drawing a separate diagram show-
ing this particle and all the forces acting on it. Such a diagram is
called a free-body diagram.

As an example, consider the 75-kg crate shown in the space
diagram of Fig. 2.29a. This crate was lying between two buildings,
and it is now being lifted onto a truck, which will remove it. The crate
is supported by a vertical cable, which is joined at A to two ropes
which pass over pulleys attached to the buildings at B and C. It is
desired to determine the tension in each of the ropes AB and AC.

In order to solve this problem, a free-body diagram showing a
particle in equilibrium must be drawn. Since we are interested in
the rope tensions, the free-body diagram should include at least one
of these tensions or, if possible, both tensions. Point A is seen to be
a good free body for this problem. The free-body diagram of point A
is shown in Fig. 2.29b. It shows point A and the forces exerted on
A by the vertical cable and the two ropes. The force exerted by the
cable is directed downward, and its magnitude is equal to the weight W
of the crate. Recalling Eq. (1.4), we write

W = mg = (75 kg)(9.81 m/s*) = 736 N

and indicate this value in the free-body diagram. The forces exerted
by the two ropes are not known. Since they are respectively equal
in magnitude to the tensions in rope AB and rope AC, we denote
them by T,z and Ty¢ and draw them away from A in the directions
shown in the space diagram. No other detail is included in the free-
body diagram.

Since point A is in equilibrium, the three forces acting on it
must form a closed triangle when drawn in tip-to-tail fashion. This
force triangle has been drawn in Fig. 2.29¢. The values T,z and Ty¢
of the tension in the ropes may be found graphically if the triangle
is drawn to scale, or they may be found by trigonometry. If the latter
method of solution is chosen, we use the law of sines and write

Tap Tac 736 N

sin 60°  sin 40°  sin 80°
TAB = 647 N TAC =480 N

When a particle is in equilibrium under three forces, the problem
can be solved by drawing a force triangle. When a particle is in equi-
librium under more than three forces, the problem can be solved graph-
ically by drawing a force polygon. If an analytic solution is desired, the
equations of equilibrium given in Sec. 2.9 should be solved:

SF,=0 3F,=0 (2.15)

These equations can be solved for no more than two unknowns;
similarly, the force triangle used in the case of equilibrium under
three forces can be solved for two unknowns.

The more common types of problems are those in which the
two unknowns represent (1) the two components (or the magnitude
and direction) of a single force, (2) the magnitudes of two forces,
each of known direction. Problems involving the determination of
the maximum or minimum value of the magnitude of a force are also
encountered (see Probs. 2.40 through 2.45).

2.11 Problems Involving the Equilibrium of a 35
Particle. Free-Body Diagrams

736 N

(b) Free-body diagram (¢) Force triangle
Fig. 2.29

Photo 2.1 As illustrated in the above example,
it is possible to determine the tensions in the
cables supporting the shaft shown by treating
the hook as a particle and then applying the
equations of equilibrium to the forces acting on

the hook.
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3500 Ib

W = (30 kg)(9.81 m/s2)
=294 N

¢ /)
FY
A

15¢

SAMPLE PROBLEM 2.4

In a ship-unloading operation, a 3500-Ib automobile is supported by a cable.
A rope is tied to the cable at A and pulled in order to center the automobile
over its intended position. The angle between the cable and the vertical is 2°,
while the angle between the rope and the horizontal is 30°. What is the
tension in the rope?

SOLUTION

Free-Body Diagram. Point A is chosen as a free body, and the complete
free-body diagram is drawn. T,z is the tension in the cable AB, and T is
the tension in the rope.

Equilibrium Condition.  Since only three forces act on the free body, we draw
a force triangle to express that it is in equilibrium. Using the law of sines, we
write
Tas  Tac _ 35001b
sin 120° sin 2° sin 58°
With a calculator, we first compute and store the value of the last quotient.
Multiplying this value successively by sin 120° and sin 2°, we obtain

SAMPLE PROBLEM 2.5

Determine the magnitude and direction of the smallest force F which will
maintain the package shown in equilibrium. Note that the force exerted by
the rollers on the package is perpendicular to the incline.

SOLUTION

Free-Body Diagram. We choose the package as a free body, assuming that
it can be treated as a particle. We draw the corresponding free-body

diagram.

Equilibrium Condition. Since only three forces act on the free body, we
draw a force triangle to express that it is in equilibrium. Line I-1' represents
the known direction of P. In order to obtain the minimum value of the
force F, we choose the direction of F perpendicular to that of P. From the
geometry of the triangle obtained, we find
F=(294N)sin15° = 761N @« = 15°
F = 76.1 N =15°
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o= 60.26°

Tyz=401b
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(40 1b) cos 60.26° j

60.26°

—(40 1b) sin 60.26° i

T,c=42.91b

B=20.56° /‘

Typ=401b

Y
=60 1b

T ¢ cos 20.56°
20.56°

Ty sin 20.56° i
A

~(601b)j

Fp =19.66 b

T,z =601b

o= 60.26°

SAMPLE PROBLEM 2.6

As part of the design of a new sailboat, it is desired to determine the drag force
which may be expected at a given speed. To do so, a model of the proposed hull
is placed in a test channel and three cables are used to keep its bow on the cen-
terline of the channel. Dynamometer readings indicate that for a given speed,
the tension is 40 Ib in cable AB and 60 Ib in cable AE. Determine the drag force
exerted on the hull and the tension in cable AC.

SOLUTION

Determination of the Angles. First, the angles « and 8 defining the direc-
tion of cables AB and AC are determined. We write
7 ft 1.5 ft

Tft = 1.75 tan B = Tft = 0.375

60.26° B = 20.56°
Free-Body Diagram. Choosing the hull as a free body, we draw the free-

body diagram shown. It includes the forces exerted by the three cables on
the hull, as well as the drag force Fj, exerted by the flow.

tan «

a

Equilibrium Condition. We express that the hull is in equilibrium by writ-
ing that the resultant of all forces is zero:
R=Tu + Tyc + Ty + Fp =0 1)

Since more than three forces are involved, we resolve the forces into x and y
components:

T,p = —(40 Ib) sin 60.26°1 + (40 Ib) cos 60.26°%
—(34.73 1Ib)i + (19.84 lb)j
Tac = Ty sin 20.56%1 + Ty cos 20.56°%
0.3512T4ci + 0.9363T,¢

Tar = —(60 Ib)j

Fp = Fyi
Substituting the expressions obtained into Eq. (1) and factoring the unit
vectors i and j, we have

(—34.73 b + 0.3512T,¢c + Fp)i + (19.84 Ib + 0.9363T,c — 60 Ib)j = 0

This equation will be satisfied if, and only if, the coefficients of i and j are
equal to zero. We thus obtain the following two equilibrium equations,
which express, respectively, that the sum of the x components and the sum
of the y components of the given forces must be zero.

(SF, = 0:) —3473 b + 0.3512T,c + Fp = 0 )
(EFy = 0:) 19.84 1b + 0.9363T,c — 60 1b = 0 (3)
From Eq. (3) we find Tic = +42.9 1b
and, substituting this value into Eq. (2), Fp = +19.66 1b

In drawing the free-body diagram, we assumed a sense for each unknown
force. A positive sign in the answer indicates that the assumed sense is correct.
The complete force polygon may be drawn to check the results.
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2.32 through 2.35 Two cables are tied together at C and loaded

as shown. Determine the tension in AC and BC.

B
l«—2.95 m—]

Fig. P2.32

B
75K

-

A

200 kg
Fig. P2.34

4 N 400 204 P

300 Ib
Fig. P2.33

Il 55 . |
I I " I

3600 Ib
Fig. P2.35

2.36 Two cables are tied together at C and loaded as shown. Knowing
that P = 500 N and a@ = 60°, determine the tension in AC

and BC.




2.37 Two forces of magnitude T, = 8 kips and Ty = 15 kips are applied
as shown to a welded connection. Knowing that the connection is in
equilibrium, determine the magnitudes of the forces T¢ and Tp.

Tc
Fig. P2.37 and P2.38

2.38 Two forces of magnitude T, = 6 kips and T = 9 kips are applied
as shown to a welded connection. Knowing that the connection is in
equilibrium, determine the magnitudes of the forces Ty and T'p.

2.39 Two forces of magnitude T, = 5000 N and Ty = 2500 N are
applied as shown to the connection shown. Knowing that the con-
nection is in equilibrium, determine the magnitudes of the forces

T¢ and Tp.
Ty 300 ATc
Ta \ Tp
—] ¢ —
Fig. P2.39

2.40 Determine the range of values of P for which both cables remain
taut.

2.41 For the cables of Prob. 2.36, it is known that the maximum allow-
able tension is 600 N in cable AC and 750 N in cable BC. Deter-
mine (¢) the maximum force P that can be applied at C, (b) the
corresponding value of a.

2.42 Two ropes are tied together at C. If the maximum permissible
tension in each rope is 2.5 kN, what is the maximum force F that
can be applied? In what direction must this maximum force act?

Fig. P2.42

30°

Fig. P2.40

7120 b

Problems
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4Q  Statics of Particles 2.43 A 600-1b block is supported by two cables AC and BC. (a) For what
value of « is the tension in cable AC maximum? (b) What are the
corresponding values of the tension in cables AC and BC?

2.44 A 600-Ib block is supported by two cables AC and BC. Determine
(a) the value of « for which the larger of the cable tensions is as
small as possible, (b) the corresponding values of the tension in
cables AC and BC.

2.45 Two cables are tied together at C as shown. Find the value of «
for which the tension is as small as possible (a) in cable BC, (b) in
both cables simultaneously. In each case determine the tension in
both cables.

600 Ib
Fig. P2.43 and P2.44

|<—15 in.—»l

h
65 Ib
A[ S ,
01b Fig. P2.45
2.46 The 60-1b collar A can slide on a frictionless vertical rod and is
connected as shown to a 65-1b counterweight C. Determine the
Fig. P2.46 value of h for which the system is in equilibrium.
2.47 The force P is applied to a small wheel that rolls on the cable ACB.
Knowing that the tension in both parts of the cable is 750 N,
determine the magnitude and direction of P.
60 Ib 200 Ib
o |30°
45°
601b <t N Fig. P2.47

2.48 The directions of the 60-1b forces may vary, but the angle between
the forces is always 45°. Determine the value of « for which the
Fig. P2.48 resultant of the forces acting at A is directed vertically upward.



2.49 A 3.6-m length of steel pipe of mass 300 kg is lifted by a crane
cable CD. Determine the tension in the cable sling ACB, knowing
that the length of the sling is (¢) 4.5 m, (b) 6 m.
1D

C

Aq » B

| 3.6 m |
Fig. P2.49

2.50 A movable bin and its contents weigh 700 Ib. Determine the short-
est chain sling ACB that can be used to lift the loaded bin if the
tension in the chain is not to exceed 1250 1b.

2.51 A 250-kg crate is supported by several rope-and-pulley arrange-
ments as shown. Determine for each arrangement the tension in
the rope. (The tension in the rope is the same on each side of a

simple pulley. This can be proved by the methods of Chap. 4.)

(a) (b) © (d) ®)
Fig. P2.51

2.52 Solve parts b and d of Prob. 2.51 assuming that the free end of
the rope is attached to the crate.

2.53 A 450-Ib crate is to be supported by the rope-and-pulley arrange-
ment shown. Determine the magnitude and direction of the force F
that should be exerted on the free end of the rope.

2.54 For W = 800 N, P = 200 N, and d = 600 mm, determine the
value of h to maintain equilibrium.

Fig. P2.54

28 in.

P

Fig. P2.50

450 Ib
Fig. P2.53

Problems
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2.55 The collar A can slide freely on the horizontal smooth rod. Deter-
mine the magnitude of the force P required to maintain equilib-
rium when (a) ¢ = 9 in., (b) ¢ = 16 in.

ricﬂ

Fig. P2.55

2.12 RECTANGULAR COMPONENTS
OF A FORCE IN SPACE

The problems considered in the first part of this chapter involved
only two dimensions; they could be formulated and solved in a single
plane. In this section and in the remaining sections of the chapter,
we will discuss problems involving the three dimensions of space.

Consider a force F acting at the origin O of the system of
rectangular coordinates x, y, z. To define the direction of F, we draw
the vertical plane OBAC containing F (Fig. 2.30a). This plane passes
through the vertical y axis; its orientation is defined by the angle ¢
it forms with the xy plane. The direction of F within the plane is
defined by the angle 6, that F forms with the y axis. The force F
may be resolved into a vertical component F, and a horizontal com-
ponent Fy; this operation, shown in Fig. 2.30D, is carried out in plane
OBAC according to the rules developed in the first part of the chap-
ter. The corresponding scalar components are

F, = F cos 9, F), = F sin 6, (2.16)
But Fj, may be resolved into two rectangular components F, and F,
along the x and z axes, respectively. This operation, shown in Fig. 2.30c,
is carried out in the xz plane. We obtain the following expressions for
the corresponding scalar components:

F. = Fj cos¢ = F sin 6, cos ¢
F. = F), sin¢ = F sin 6, sin ¢

(2.17)

The given force F has thus been resolved into three rectangular vec-
tor components F,, F,, F., which are directed along the three coor-
dinate axes.

Applying the Pythagorean theorem to the triangles OAB and
OCD of Fig. 2.30, we write

F?* = (0OA)* = (OB)*> + (BA)® = F, + F;
Fi = (OC)*= (OD)* + (DC)* = F?> + F?



Eliminating F, from these two equations and solving for F, we obtain
the following relation between the magnitude of F and its rectangular
scalar components:

F=VF +F,+F (2.18)

The relationship existing between the force F and its three com-
ponents F,, F,, F. is more easily visualized if a “box” having F,, F,,
F. for edges is drawn as shown in Fig. 2.31. The force F is then rep-
resented by the diagonal OA of this box. Figure 2.31b shows the right
triangle OAB used to derive the first of the formulas (2.16): F, =
F cos 0, In Fig. 2.31a and ¢, two other right triangles have also been
drawn: OAD and OAE. These triangles are seen to occupy in the box
positions comparable with that of triangle OAB. Denoting by 6, and
6., respectively, the angles that F forms with the x and z axes, we can
derive two formulas similar to F, = F cos 6, We thus write

F. = F cos 6, F, = F cos 6, F. = F cosf. (2.19)

The three angles 6, 6,, 6. define the direction of the force F; they are
more commonly used for this purpose than the angles 6, and ¢ intro-
duced at the beginning of this section. The cosines of 6,, 6,, 6. are
known as the direction cosines of the force F.

Introducing the unit vectors i, j, and k, directed respectively
along the x, y, and z axes (Fig. 2.32), we can express F in the form

F = Fi + F,j + Fk (2.20)

where the scalar components F,, F,, F. are defined by the relations
(2.19). ‘
EXAMPLE 2.4 A force of 500 N forms angles of 60°, 45°, and 120°,
respectively, with the x, y, and z axes. Find the components F,, F, and F.
of the force.

Substituting F = 500 N, 6, = 60°, 6, = 45°, 6. = 120° into formulas
(2.19), we write

F, = (500 N) cos 60° = +250 N
F, = (500 N) cos 45° = +354 N
F. = (500 N) cos 120° = =250 N

Carrying into Eq. (2.20) the values obtained for the scalar components of
F, we have

F = (250 N)i + (354 N)j — (250 N)k

As in the case of two-dimensional problems, a plus sign indicates that the
component has the same sense as the corresponding axis, and a minus sign
indicates that it has the opposite sense. ®

The angle a force F forms with an axis should be measured from
the positive side of the axis and will always be between 0 and 180°. An
angle 6, smaller than 90° (acute) indicates that F (assumed attached to
O) is on the same side of the yz plane as the positive x axis; cos 6, and
F, will then be positive. An angle 6, larger than 90° (obtuse) indicates
that F is on the other side of the yz plane; cos 6, and F, will then be

2.12 Rectangular Components of a Force in
Space

\/

Yy

k : x

Fig. 2.32
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Fyj
A (Magnitude = 1)
cos ()l/j
P 4 F=FA\
: .
cos 6.k ] Fi
cos 0,d
F.k
Fig. 2.33

negative. In Example 2.4 the angles 6, and 6, are acute, while 6. is
obtuse; consequently, F,, and F, are positive, while I is negative.

Substituting into (2.20) the expressions obtained for F,, F, F.
in (2.19), we write

F = F(cos 0,i + cos 0,j + cos 6.k) (2.21)

which shows that the force F can be expressed as the product of the
scalar F and the vector

A = cos 0, + cos 0,j + cos .k (2.22)

Clearly, the vector A is a vector whose magnitude is equal to 1 and
whose direction is the same as that of F (Fig. 2.33). The vector A is
referred to as the unit vector along the line of action of F. It follows
from (2.22) that the components of the unit vector A are respectively
equal to the direction cosines of the line of action of F:
A, = cos 6, A, = cos 0, A, = cos 0. (2.23)
We should observe that the values of the three angles 6,, 6,, 0.
are not independent. Recalling that the sum of the squares of the
components of a vector is equal to the square of its magnitude, we
write

N+ +2=1
or, substituting for A,, A,, A, from (2.23),

cos® 0, + cos’ 6, + cos? 6, =1 (2.24)

In Example 2.4, for instance, once the values 6, = 60° and 6, = 45°
have been selected, the value of 6, must be equal to 60° or 120° in
order to satisfy identity (2.24).

When the components F,, F,, F of a force F are given, the
magnitude F of the force is obtained from (2.18).t The relations
(2.19) can then be solved for the direction cosines,

v

9—& 0, = — 0—& (2.25)
cosx—F cos v =R cosZ—F .

and the angles 6,, 0,, 6. characterizing the direction of F can be

found.

EXAMPLE 2.5 A force F has the components F, = 201b, F, = —=301b, F. =
60 Ib. Determine its magnitude F and the angles 6,, 6,, 0. it forms with the
coordinate axes.

From formula (2.18) we obtaint

F=VF;+F, +F
=V(201b)2 + (=301b)2 + (60 Ib)>
= V49001b = 70 1b

tWith a calculator programmed to convert rectangular coordinates into polar coordinates,
the following procedure will be found more expeditious for computing F: First determine
Fy, from its two rectangular components F, and F. (Fig. 2.30c), then determine F from
its two rectangular components Fj, and F, (Fig. 2.30b). The actual order in which the
three components F,, F,, F. are entered is immaterial.



Substituting the values of the components and magnitude of F into Egs.
(2.25), we write
F. 201b F,  —301b F. 601lb

cos 0, = — cosf, = — = cos 0. =

F 701b v F 70 Ib *F  701b

Calculating successively each quotient and its arc cosine, we obtain
0, = 73.4° Oy = 115.4° 0. = 31.0°

These computations can be carried out easily with a calculator. ®

2.13 FORCE DEFINED BY ITS MAGNITUDE AND TWO
POINTS ON ITS LINE OF ACTION

In many applications, the direction of a force F is defined by the

coordinates of two points, M(xy, ¢, z1) and N(xa, 2, 25), located on its
—

line of action (Fig. 2.34). Consider the vector MN joining M and N

N(xy, ys, z9)

K dy=ys— 1y

d:=z9— 7 <0

M(xy, yy, z1) dy=x9—x;

Fig. 2.34

and of the same sense as F. Denoting its scalar components by d,, dy,
d., respectively, we write

MN = d,i + d,j + d.k (2.26)
The unit vector A along the line of action of F (i.e., along the line MN)

may be obtained by dividing the vector MN by its magnitude MN.

Substituting for Z\W from (2.26) and observing that MN is equal to
the distance d from M to N, we write

MN 1
=—— = (di+d,j+ :
N~ d (di+d,j+ dk) (2.27)
Recalling that F is equal to the product of F and A, we have
F
F=FA= i (dd + d,j + dk) (2.28)

from which it follows that the scalar components of F are,
respectively,

F,=— F,=— F,=—" (2.29)

2.13 Force Defined by its Magnitude and Two
Points on its Line of Action

45



46

Statics of Particles

The relations (2.29) considerably simplify the determination of
the components of a force F of given magnitude F when the line of
action of F is defined by two points M and N. Subtracting the coor-
dinates of M from those of N, we first determine the components of

the vector MN and the distance d from M to N:

d, = x — x3 dy:yz_yl d, =z — 2z

d=\d:+d,+d’

Substituting for F and for d,, d,, d., and d into the relations (2.29),
we obtain the components F,, F,, F. of the force.

The angles 6,, 6,, 6. that F forms with the coordinate axes can
then be obtained from Egs. (2.25). Comparing Eqs. (2.22) and (2.27),

we can also write

cos 0, = cos 0, = - cos 0., = (2.30)

d d d

and determine the angles 6., 0, 6. directly from the components and
—

magnitude of the vector MN.

2.14 ADDITION OF CONCURRENT FORCES IN SPACE

The resultant R of two or more forces in space will be determined by
summing their rectangular components. Graphical or trigonometric
methods are generally not practical in the case of forces in space.

The method followed here is similar to that used in Sec. 2.8
with coplanar forces. Setting

R =2F
we resolve each force into its rectangular components and write

Ri + Rjj + Rk = 2(F.i + Fj + Fk)
= (2F)i + ZF)j + SF)k

from which it follows that

R, =3F, R, =3F,

R, = SF, (2.31)
The magnitude of the resultant and the angles 0., 6,, 0. that the
resultant forms with the coordinate axes are obtained using the
method discussed in Sec. 2.12. We write

R= VR + R, + R (2.32)
6 B 6 By 6. = i (2.33)
cos 0, R cos 0, R cos U, = R .



& SAMPLE PROBLEM 2.7

A tower guy wire is anchored by means of a bolt at A. The tension in the
wire is 2500 N. Determine (a) the components F,, 19518, of the force acting
on the bolt, (b) the angles 6., 6,, 6. defining the direction of the force.

s

S e———

iﬁz‘“‘!

NN

80 m

SOLUTION

a. Components of the Force. The line of action of the force acting on
the bolt passes through A and B, and the force is directed from

—
A to B. The components of the vector AB, which has the same direction
as the force, are

d, = —40 m d, = +80 m d. = +30 m

e

A A A=
S,

S0 The total distance from A to B is
AB=d=Vd; +d; +d=943m
Denoting by i, j, k the unit vectors along the coordinate axes, we have

'17 30 m AB = —(40 m)i + (80 m)j + (30 m)k

\i’—'gﬂ
i
LS
=
\T

Introducing the unit vector A = AB/AB , We write

AB 2500 N —
F = FA = F2= = AB
‘ AB 943 m

—
Substituting the expression found for AB, we obtain

2500 N
= — i+ j +
F e [—(40 m)i + (80 m)j + (30 m)k]
g F = — (1060 N)i + (2120 N)j + (795 N)k
B The components of F, therefore, are

F,=-10600N F,=+2120N F, = +795 N

s

b. Direction of the Force. Using Egs. (2.25), we write

7|

= g — Fx _ Z1060N o F,  +2120N
S x = — = OS —_ —_——=

§;’ OB E T 2500 T F T 2500N

i g o F-_ +795N

| ST T 500N

/ ¥ Calculating successively each quotient and its arc cosine, we obtain
‘-

6, = 1151° 6, =320° 6, = TL5°

(Note. This result could have been obtained by using the components and
—
magnitude of the vector AB rather than those of the force F.)
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Ty = (1200 1b) A{«\(]

SAMPLE PROBLEM 2.8

A wall section of precast concrete is temporarily held by the cables shown.
Knowing that the tension is 840 1b in cable AB and 1200 Ib in cable AC,
determine the magnitude and direction of the resultant of the forces exerted
by cables AB and AC on stake A.

SOLUTION

Components of the Forces. The force exerted by each cable on stake A
will be resolved into x, y, and z components. We first determine the com-
—

ponents and magnitude of the vectors A—B> and AC, measuring them from
A toward the wall section. Denoting by i, j, k the unit vectors along the
coordinate axes, we write
AB = —(16 ft)i + (8 ft)j + (11 ft)k
AC = —(16ft)i + (8 ft)j — (16 ft)k

AB = 21 ft
AC = 24 ft
Denoting by A,p the unit vector along AB, we have

AB  8401b =

Tap = TapAap = Tap—— =
AB ABAAB AB 4B ol ft

—
Substituting the expression found for AB, we obtain

~ 8401b
AB T 91 ft
Tus = —(640 Ib)i + (320 Ib)j + (440 Ib)k

[— (16 ft)i + (8 ft)j + (11 ft)k]

16 ft Denoting by A4 the unit vector along AC, we obtain in a similar way

AC _ 12001b—
AC 24 ft
T, = —(800 Ib)i + (400 Ib)j — (800 1b)k

Resultant of the Forces. The resultant R of the forces exerted by the two
cables is

R:TAB+TAC:

Tyc = TacAsc = Tac

— (1440 Ib)i + (720 1b)j — (360 Ib)k
The magnitude and direction of the resultant are now determined:

R=VR:+ Ry + R = V (—1440)2 + (720)2 + (—360)2

R = 1650 Ib
From Egs. (2.33) we obtain
cosg o B ztasolb 0 By +7201b
* R 1650 1b Y R 1650 1b
cos 8. = R, _ —360 Ib
: R 1650 Ib

Calculating successively each quotient and its arc cosine, we have

0, = 150.8° 6, = 64.1° 0. = 102.6°



2.56

2.57

2.58

2.59

2.60

2.61

2.62

2.63

2.64

2.65

2.66

2.67

PROBLEMS

Determine (a) the x, y, and z components of the 250-N force, (b) the
angles 6,, 0,, and 0. that the force forms with the coordinate axes.
Determine (a) the x, y, and z components of the 300-N force, (b) the
angles 6,, 0,, and 0. that the force forms with the coordinate axes.

The angle between the guy wire AB and the mast is 20°. Knowing
that the tension in AB is 300 Ib, determine (a) the x, y, and z
components of the force exerted on the boat at B, (b) the angles
0y, 0,, and 6. defining the direction of the force exerted at B.

The angle between the guy wire AC and the mast is 20°. Knowing
that the tension in AC is 300 Ib, determine (a) the x, y, and z
components of the force exerted on the boat at C, (b) the angles
Oy, 0y, and 6, defining the direction of the force exerted at C.

A gun is aimed at a point A located 20° west of north. Knowing
that the barrel of the gun forms an angle of 35° with the horizontal
and that the maximum recoil force is 800 N, determine (a) the x,
y, and z components of the force, (b) the angles 6,, 0y, and 6.
defining the direction of the recoil force. (Assume that the x, v,
and z axes are directed, respectively, east, up, and south.)

Solve Prob. 2.60, assuming that point A is located 25° north of west
and that the barrel of the gun forms an angle of 30° with the
horizontal.

Determine the magnitude and direction of the force F = —(240 Ib)i
— (320 Ib)j + (600 Ib)k.

Determine the magnitude and direction of the force F = (690 Ib)i +
(300 Ib)j — (580 Ib)k.

A force acts at the origin in a direction defined by the angles 6, =
120° and 6, = 75°. It is known that the x component of the force is
+40 N. Determine the magnitude of the force and the value of 6,.

A 250-1b force acts at the origin in a direction defined by the angles
6, = 65° and 0, = 40°. Tt is known that the z component of the
force is positive. Determine the value of 6, and the components of
the force.

A force acts at the origin in a direction defined by the angles 6, =
70° and 6, = 130°. Knowing that the y component of the force is
+400 1b, determine (a) the other components and the magnitude
of the force, (b) the value of 6,.

A force acts at the origin in a direction defined by the angles 6, =
65° and 6, = 40°. Knowing that the x component of the force is
—750 N, determine (a) the other components and the magnitude
of the force, (b) the value of 6,.

300 N, 40°

z 20°

250 N
30°
I~
/Xzsfi
6] X

Fig. P2.56 and P2.57

Fig. P2.58 and P2.59
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5Q Statics of Particles 2.68 Knowing that the tension in cable AB is 900 N, determine the
components of the force exerted on the plate at A.

Y
0.8:11/’

v

Fig. P2.68 and P2.69

2.69 Knowing that the tension in cable BC is 450 N, determine the
components of the force exerted on the plate at C.

2.70 Knowing that the tension in cable AB is 285 Ib, determine the
components of the force exerted on the plate at B.

Yy

ISin/f

46 in.
B3
y 30in. D
450 Ib 1
45 in. \}/ ¢
z
600 1b )y, 40 55 Fig. P2.70, P2.71, and P2.73
/Xso
- 2.71 Knowing that the tension in cable AC is 426 b, determine the

components of the force exerted on the plate at C.

2.72 Determine the resultant of the two forces shown.

2.73 Knowing that the tension is 285 Ib in cable AB and 426 b in cable
2 5 AC, determine the magnitude and direction of the resultant of the
Fig. P2.72 forces exerted at A by the two cables.




2.74 The angle between each of the springs AB and AC and the post
DA is 30°. Knowing that the tension is 50 Ib in spring AB and 40 Ib
in spring AC, determine the magnitude and direction of the resul-
tant of the forces exerted by the springs on the post at A.

Z

Fig. P2.74

2.75 Determine the two possible values of 6, for a force F, (a) if the
force forms equal angles with the positive x, y, and z axes, (b) if
the force forms equal angles with the positive y and z axes and an
angle of 45° with the positive x axis.

2.76 Knowing that the tension in AB is 39 kN, determine the required
values of the tension in AC and AD so that the resultant of the
three forces applied at A is vertical.

Yy

=

N

—

48 m

/AN NN

S

=]

Fig. P2.76 and P2.77

Problems
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52  Statics of Particles 2.77 Knowing that the tension in AC is 28 kN, determine the required
values of the tension in AB and AD so that the resultant of the
three forces applied at A is vertical.

2.78 The boom OA carries a load P and is supported by two cables as
shown. Knowing that the tension in cable AB is 732 N and that
the resultant of the load P and of the forces exerted at A by the
two cables must be directed along OA, determine the tension in
cable AC.

580 mm

960 mm

2

Fig. P2.78

2.79 For the boom and loading of Prob. 2.78, determine the magnitude
of the load P.

2.15 EQUILIBRIUM OF A PARTICLE IN SPACE

According to the definition given in Sec. 2.9, a particle A is in equi-
librium if the resultant of all the forces acting on A is zero. The com-
ponents R, R,, R. of the resultant are given by the relations (2.31);
expressing that the components of the resultant are zero, we write

SF,=0 3F,=0 SF.=0 (2.34)

Equations (2.34) represent the necessary and sufficient conditions
for the equilibrium of a particle in space. They can be used to solve
problems dealing with the equilibrium of a particle involving no
more than three unknowns.

To solve such problems, you first should draw a free-body dia-
gram showing the particle in equilibrium and all the forces acting on
it. You can then write the equations of equilibrium (2.34) and solve
them for three unknowns. In the more common types of problems,

Photo 2.2 While the tension in the four cables
supporting the car cannot be found using the

three equations of (2.34), a relation between the ) )
tensions can be obtained by considering the these unknowns will represent (1) the three components of a single

equilibrium of the hook. force or (2) the magnitude of three forces, each of known direction.



SAMPLE PROBLEM 2.9

A 200-kg cylinder is hung by means of two cables AB and AC, which are
attached to the top of a vertical wall. A horizontal force P perpendicular to
the wall holds the cylinder in the position shown. Determine the magnitude
of P and the tension in each cable.

SOLUTION

Free-body Diagram. Point A is chosen as a free body; this point is sub-
jected to four forces, three of which are of unknown magnitude.

Introducing the unit vectors i, j, k, we resolve each force into rect-
angular components.

P="r (1)

W = —mgj = —(200 kg)(9.81 m/s)j = —(1962 N)j
In the case of T,z and Ty, it is necessary first to determine the com-
ponents and magnitudes of the vectors AB and AC. Denoting by A,p the
unit vector along AB, we write

zﬁ = —(12m)i + (10 m)j + (8 m)k AB = 12.862 m
5

~ 12.862m
Tap = TagAap = —0.09330Typi + 0.7775T s5j + 0.6220T sk (2)

Aup = —0.09330i + 0.7775j + 0.6220k

Denoting by A,¢ the unit vector along AC, we write in a similar way
—
AC = —(12m)i + (10 m)j — (10 m)k AC = 14.193 m
—
AC
Apg = ——
414193 m
TAC = TACAAC = _008455TA(‘i A O7046Tch - 07046TACk (3)

= —0.08455i + 0.7046j — 0.7046k

Equilibrium Condition. Since A is in equilibrium, we must have
SF = 0: Tys + Tae + P+ W =0
or, substituting from (1), (2), (3) for the forces and factoring i, j, k,
(—0.09330T,5 — 0.08455T,¢ + P)i

+ (0.7775Typ + 0.7046T,c — 1962 N)j

+ (0.6220T, 5 — 0.7046T,)k = 0
Setting the coefficients of i, j, k equal to zero, we write three scalar equa-
tions, which express that the sums of the x, y, and z components of the
forces are respectively equal to zero.
(SF, = 0:)  —0.09330T,5 — 0.08455T,c + P = 0
(SF, = 0  +0.7775Ty5 + 0.7046Tyc — 1962 N = 0
(SF. = 0:)  +0.6220Ty5 — 0.7046Tyc = 0
Solving these equations, we obtain
P=235N Tgp=1402N T, = 1238 N
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PROBLEMS

2.80 A container is supported by three cables that are attached to a
ceiling as shown. Determine the weight W of the container know-
ing that the tension in cable AB is 6 kN.

y

450 mm _ 500 mm

360 mm
320 mm

mm

Fig. P2.80, P2.81, and P2.82

2.81 A container is supported by three cables that are attached to a
ceiling as shown. Determine the weight W of the container know-
ing that the tension in cable AD is 4.3 kN.

2.82 A container of weight W = 9.32 kN is supported by three cables
that are attached to a ceiling as shown. Determine the tension in
each cable.

2.83 A load W is supported by three cables as shown. Determine the
value of W knowing that the tension in cable BD is 975 Ib.

Fig. P2.83, P2.84, and P2.85

2.84 A load W is supported by three cables as shown. Determine the
value of W knowing that the tension in cable CD is 300 Ib.

2.85 A load W of magnitude 555 Ib is supported by three cables as
shown. Determine the tension in each cable.

54



2.86 Three wires are connected at point D, which is located 18 in. Problems B 5
below the T-shaped pipe support ABC. Determine the tension in
each wire when a 180-1b container is suspended from point D as
shown.

2.87 A triangular plate of weight 18 Ib is supported by three wires as
shown. Determine the tension in each wire.

7

Fig. P2.86

12 in.

8 in.

Fig. P2.87

2.88 Three cables are connected at A, where the forces P and Q are
applied as shown. Determine the tension in each of the cables
when P = 0 and Q = 36.4 kN.

Fig. P2.88 and P2.89

2.89 Three cables are connected at A, where the forces P and Q are
applied as shown. Knowing that Q = 36.4 kN and that the tension
in cable AD is zero, determine (@) the magnitude and sense of P,
(b) the tension in cables AB and AC.

2.90 In trying to move across a slippery icy surface, a 175-Ib man uses
two ropes AB and AC. Knowing that the force exerted on the man
by the icy surface is perpendicular to that surface, determine the
tension in each rope.
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17.5in| 45 in./

]

291

2,92

2.93

2.94

2.95

2,96

297

298

Solve Prob. 2.90, assuming that a friend is helping the man at A
by pulling on him with a force P = —(45 Ib)k.

A container of weight W = 360 N is supported by cables AB and
AC, which are tied to ring A. Knowing that Q = 0, determine (a)
the magnitude of the force P that must be applied to the ring to
maintain the container in the position shown, (b) the correspond-
ing values of the tension in cables AB and AC.

120 mm

Fig. P2.92 and P2.94

Solve Prob. 2.92 knowing that Q = (60 N)k.

A container is supported by a single cable that passes through a
frictionless ring A and is attached to fixed points B and C. Two forces
P = Pi and Q = Qk are applied to the ring to maintain the container
in the position shown. Knowing that the weight of the container is
W = 660 N, determine the magnitudes of P and Q. (Hint: The
tension must be the same in portions AB and AC of the cable.)

Determine the weight W of the container of Prob. 2.94 knowing
that P = 478 N.

Cable BAC passes through a frictionless ring A and is attached to
fixed supports at B and C, while cables AD and AE are both tied
to the ring and are attached, respectively, to supports at D and E.
Knowing that a 200-1b vertical load P is applied to ring A, deter-
mine the tension in each of the three cables.

Knowing that the tension in cable AE of Prob. 2.96 is 75 lb, deter-
mine (a) the magnitude of the load P, (b) the tension in cables
BAC and AD.

The uniform circular ring shown has a mass of 20 kg and a diam-
eter of 300 mm. It is supported by three wires each of length
250 mm. If @ = 120°, B = 150°, and y = 90°, determine the ten-
sion in each wire.



2.99 Collar A weighs 5.6 b and may slide freely on a smooth vertical Problems 7
rod; it is connected to collar B by wire AB. Knowing that the length
of wire AB is 18 in., determine the tension in the wire when (a) ¢ = y
2 in., (b) ¢ = 8 in.

e ¢
2.100 Solve Prob. 2.99 when (a) ¢ = 14 in., (b) ¢ = 16 in. |/ '

2.101 Two wires are attached to the top of pole CD. It is known that the
force exerted by the pole is vertical and that the 500-1b force
applied to point C is horizontal. If the 500-1b force is parallel to
the z axis (& = 90°), determine the tension in each cable. 2 A

2.102 Three cables are connected at D, where an upward force of 30 kN W

is applied. Determine the tension in each cable. .
Fig. P2.99

y y 500 1b

A 30 kN

a

Fig. P2.101

Fig. P2.102

2.103 A 6-kg circular plate of 200-mm radius is supported as shown by
three wires of length L. Knowing that a = 30°, determine the
smallest permissible value of the length L if the tension is not to
exceed 35 N in any of the wires. Fig. P2.103




REVIEW AND SUMMARY

In this chapter we have studied the effect of forces on particles, i.e.,
on bodies of such shape and size that all forces acting on them may
be assumed applied at the same point.

Resultant of two forces Forces are vector quantities; they are characterized by a point of
application, a magnitude, and a direction, and they add according to
the parallelogram law (Fig. 2.35). The magnitude and direction of
the resultant R of two forces P and Q can be determined either
graphically or by trigonometry, using successively the law of cosines
R and the law of sines [Sample Prob. 2.1].
Fig. 2.35
Components of a force  Any given force acting on a particle can be resolved into two or more
components, i.e., it can be replaced by two or more forces which
have the same effect on the particle. A force F can be resolved into
two components P and Q by drawing a parallelogram which has F
for its diagonal; the components P and Q are then represented by
the two adjacent sides of the parallelogram (Fig. 2.36) and can be
determined either graphically or by trigonometry [Sec. 2.6].

A force F is said to have been resolved into two rectangular
components if its components F, and F, are perpendicular to each
other and are directed along the coordinate axes (Fig. 2.37). Intro-
ducing the unit vectors i and j along the x and y axes, respectively,

Fig. 2.36 TS we write [Sec. 2.7]
Rectangular components F.=Fi F,=Fj (2.6)
Unit vectors .
F = Fi+ Fj @7
y where F, and F, are the scalar components of F. These components,
which can be positive or negative, are defined by the relations
F. = F cos F, = F sin 6 2.8)

When the rectangular components F, and F, of a force F are

given, the angle 6 defining the direction of the force can be obtained
by writing

E,
tan 0 = — 2.
an B 2.9)

X

The magnitude F of the force can then be obtained by solving one
of the equations (2.8) for F or by applying the Pythagorean theorem

and writing
F=VF;+F, (2.10)
58



When three or more coplanar forces act on a particle, the rectangular
components of their resultant R can be obtained by adding algebra-
ically the corresponding components of the given forces [Sec. 2.8].
We have

R, =3F, R, =3F, (2.13)

The magnitude and direction of R can then be determined from
relations similar to Eqs. (2.9) and (2.10) [Sample Prob. 2.3].

A force F in three-dimensional space can be resolved into
rectangular components F,, F, and F, [Sec. 2.12]. Denoting by 6,,
0, and 6., respectively, the angles that F forms with the x, y, and z
axes (Fig. 2.38), we have

Review and Summary
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Resultant of several coplanar forces

Forces in space

F. = F cos 0, F, = F cos 0, F. = F cos 0. (2.19)
y y y
B B B
Fy F, F!/
A A A
F 0, F
0, I
0 Jmy N 0 - 0 »>
F, D x F, D x F, F, D x
E F, 0.
/E c /E c /E c
Fig. 2.38 (a) (b) (c)

The cosines of 6,, 6,, 6. are known as the direction cosines of the
force F. Introducing the unit vectors i, j, k along the coordinate axes,
we write

F =Fi+ Fj+ Fk (2.20)
or
F = F(cos 6,i + cos 0,j + cos 0.k) (2.21)

which shows (Fig. 2.39) that F is the product of its magnitude F and
the unit vector

A = cos 0, + cos 0,j + cos 0.k
Since the magnitude of A is equal to unity, we must have
cos® 0, + cos 0, + cos’ 6. = 1 (2.24)

When the rectangular components F,, F,, F. of a force F are
given, the magnitude F of the force is found by writing

F=V\VF. +F, +F

and the direction cosines of F are obtained from Eqs. (2.19). We have

(2.18)

! F.
Iy Yy _ Iz
cos 0, = 7 cos 0, = T cos 6, = 7 (2.25)

Direction cosines

Fyj
A (Magnitude = 1)
cos 9:/.i
F=FM\
e Ways
o i T
cos 0.k ] ol
cos 6,
F.k
Fig. 2.39
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Fig. 2.40

Resultant of forces in space

Equilibrium of a particle

Free-body diagram

Equilibrium in space

When a force F is defined in three-dimensional space by its
magnitude F and two points M and N on its line of action [Sec. 2.13],
its rectangula_r901nponents can be obtained as follows. We first express

the vector MN joining points M and N in terms of its components
d,, d,, and d, (Fig. 2.40); we write

v —
MN = di + d,j + d.k (2.26)

We next detﬂnine the unit vector A along the line of action of F
by dividing MN by its magnitude MN = d:

MN 1
=—— = (di+dj+d. .
Recalling that F is equal to the product of F and A, we have
F
F=FA= g(dxi +d,j+ dk) (2.28)

from which it follows [Sample Probs. 2.7 and 2.8] that the scalar
components of F are, respectively,
_ Fd, Fd,

Fo=—"  F

_Fd.
d

(2.29)

When two or more forces act on a particle in three-dimensional
space, the rectangular components of their resultant R can be
obtained by adding algebraically the corresponding components of
the given forces [Sec. 2.14]. We have

R, =3F, R, =3F, R.=23F. (2.31)

The magnitude and direction of R can then be determined from
relations similar to Eqgs. (2.18) and (2.25) [Sample Prob. 2.8].

A particle is said to be in equilibrium when the resultant of all the
forces acting on it is zero [Sec. 2.9]. The particle will then remain
at rest (if originally at rest) or move with constant speed in a straight
line (if originally in motion) [Sec. 2.10].

To solve a problem involving a particle in equilibrium, one first should
draw a free-body diagram of the particle showing all the forces acting
on it [Sec. 2.11]. If only three coplanar forces act on the particle, a
force triangle may be drawn to express that the particle is in equilib-
rium. Using graphical methods of trigonometry, this triangle can be
solved for no more than two unknowns [Sample Prob. 2.4]. If more
than three coplanar forces are involved, the equations of equilibrium

SF,=0 SF,=0 (2.15)
should be used. These equations can be solved for no more than two
unknowns [Sample Prob. 2.6].

When a particle is in equilibrium in three-dimensional space [Sec. 2.15],
the three equations of equilibrium
SF,=0 SF,=0 SF.=0 (2.34)

should be used. These equations can be solved for no more than
three unknowns [Sample Prob. 2.9].



REVIEW PROBLEMS

2.104 A cable loop of length 1.5 m is placed around a crate. Knowing
that the mass of the crate is 300 kg, determine the tension in the
cable for each of the arrangements shown.

E E
— B¢ A
300 mm
400 mm
C D
I 400 mm |

D
L—S()() mm*>| B

(a) (b)
Fig. P2.104

2.105 Knowing that the magnitude of the force P is 75 Ib, determine the
resultant of the three forces applied at A.

2.106 Determine the range of values of P for which the resultant of the
three forces applied at A does not exceed 175 Ib.

2.107 The directions of the 300-N forces may vary, but the angle
between the forces is always 40°. Determine the value of a for

which the resultant of the forces acting at A is directed parallel

to the plane b-b.

300 N

b

500 N

b

Fig. P2.107

2.108 Knowing that P = 300 Ib, determine the tension in cables AC
and BC.

2.109 Determine the range of values of P for which both cables remain
taut.

150 Ib
Fig. P2.105 and P2.106

200 1b

Fig. P2.108 and P2.109
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62  Statics of Particles 2.110 A container is supported by three cables as shown. Determine the
weight W of the container knowing that the tension in cable AB
is 500 N.

384 mm

480 mm

2

Fig. P2.110

2,111 In Prob. 2.110, determine the angles 6,, 0,, and 6. for the force
exerted at D by cable AD.

2.112 A 1200-N force acts at the origin in a direction defined by the
angles 6, = 65° and 6, = 40°. It is also known that the z compo-
nent of the force is positive. Determine the value of 6. and the
components of the force.

2.113 Two cables BG and BH are attached to frame ACD as shown. Know-
ing that the tension is 540 N in cable BG and 750 N in cable BH,
determine the magnitude and direction of the resultant of the
forces exerted by the cables on the frame at B.

Fig. P2.113




2,114 A crate is supported by three cables as shown. Determine the weight Review Problems 43
W of the crate knowing that the tension in cable AD is 924 Ib.

Yy

26 in

Fig. P2.114

2.115 A triangular steel plate is supported by three wires as shown.
Knowing that @ = 6 in. and that the tension in wire AD is 17 Ib,
determine the weight of the plate.

24 in.

s A
Zan

4
8 in. 16 in.

Fig. P2.115




The battleship USS New Jersey is
maneuvered by four tugboats at
Bremerton Naval Shipyard. It will be
shown in this chapter that the forces
exerted on the ship by the tugboats

could be replaced by an equivalent

force exerted by a single, more

powerful tugboat.
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3.1 INTRODUCTION

In the preceding chapter it was assumed that each of the bodies con-
sidered could be treated as a single particle. Such a view, however, is
not always possible, and a body, in general, should be treated as a com-
bination of a large number of particles. The size of the body will have
to be taken into consideration, as well as the fact that forces will act on
different particles and thus will have different points of application.

Most of the bodies considered in elementary mechanics are
assumed to be rigid, a rigid body being defined as one which does
not deform. Actual structures and machines, however, are never
absolutely rigid and deform under the loads to which they are sub-
jected. But these deformations are usually small and do not appre-
ciably affect the conditions of equilibrium or motion of the structure
under consideration. They are important, though, as far as the resis-
tance of the structure to failure is concerned and are considered in
the study of mechanics of materials.

In this chapter you will study the effect of forces exerted on a
rigid body, and you will learn how to replace a given system of forces
by a simpler equivalent system. This analysis will rest on the funda-
mental assumption that the effect of a given force on a rigid body
remains unchanged if that force is moved along its line of action (prin-
ciple of transmissibility). It follows that forces acting on a rigid body
can be represented by sliding vectors, as indicated earlier in Sec. 2.3.

Two important concepts associated with the effect of a force
on a rigid body are the moment of a force about a point (Sec. 3.6)
and the moment of a force about an axis (Sec. 3.11). Since the deter-
mination of these quantities involves the computation of vector prod-
ucts and scalar products of two vectors, the fundamentals of vector
algebra will be introduced in this chapter and applied to the solution
of problems involving forces acting on rigid bodies.

Another concept introduced in this chapter is that of a couple,
i.e., the combination of two forces which have the same magnitude,
parallel lines of action, and opposite sense (Sec. 3.12). As you will
see, any system of forces acting on a rigid body can be replaced by
an equivalent system consisting of one force acting at a given point
and one couple. This basic system is called a force-couple system. In
the case of concurrent, coplanar, or parallel forces, the equivalent
force-couple system can be further reduced to a single force, called
the resultant of the system, or to a single couple, called the resultant
couple of the system.

3.2 EXTERNAL AND INTERNAL FORCES

Forces acting on rigid bodies can be separated into two groups:
(1) external forces and (2) internal forces.

1. The external forces represent the action of other bodies on the
rigid body under consideration. They are entirely responsible
for the external behavior of the rigid body. They will either
cause it to move or ensure that it remains at rest. We shall be
concerned only with external forces in this chapter and in
Chaps. 4 and 5.



2. The internal forces are the forces which hold together the par-
ticles forming the rigid body. If the rigid body is structurally
composed of several parts, the forces holding the component
parts together are also defined as internal forces. Internal forces
will be considered in Chaps. 6 and 7.

As an example of external forces, let us consider the forces
acting on a disabled truck that three people are pulling forward by
means of a rope attached to the front bumper (Fig. 3.1). The external
forces acting on the truck are shown in a free-body diagram (Fig. 3.2).
Let us first consider the weight of the truck. Although it embodies
the effect of the earth’s pull on each of the particles forming the
truck, the weight can be represented by the single force W. The
point of application of this force, i.e., the point at which the force
acts, is defined as the center of gravity of the truck. It will be seen
in Chap. 5 how centers of gravity can be determined. The weight W
tends to make the truck move vertically downward. In fact, it would
actually cause the truck to move downward, i.e., to fall, if it were not
for the presence of the ground. The ground opposes the downward
motion of the truck by means of the reactions R; and R,. These
forces are exerted by the ground on the truck and must therefore
be included among the external forces acting on the truck.

The people pulling on the rope exert the force F. The point of
application of F is on the front bumper. The force F tends to make
the truck move forward in a straight line and does actually make it
move, since no external force opposes this motion. (Rolling resistance
has been neglected here for simplicity.) This forward motion of the
truck, during which each straight line keeps its original orientation
(the floor of the truck remains horizontal, and the walls remain verti-
cal), is known as a translation. Other forces might cause the truck to
move differently. For example, the force exerted by a jack placed
under the front axle would cause the truck to pivot about its rear axle.
Such a motion is a rotation. It can be concluded, therefore, that each
of the external forces acting on a rigid body can, if unopposed, impart
to the rigid body a motion of translation or rotation, or both.

3.3 PRINCIPLE OF TRANSMISSIBILITY.
EQUIVALENT FORCES

The principle of transmissibility states that the conditions of equi-
librium or motion of a rigid body will remain unchanged if a force
F acting at a given point of the rigid body is replaced by a force F" of
the same magnitude and same direction, but acting at a different point,
provided that the two forces have the same line of action (Fig. 3.3).
The two forces F and F' have the same effect on the rigid body and
are said to be equivalent. This principle, which states that the action
of a force may be transmitted along its line of action, is based on
experimental evidence. It cannot be derived from the properties
established so far in this text and must therefore be accepted as an
experimental law. However, as you will see in Sec. 16.5, the principle
of transmissibility can be derived from the study of the dynamics of
rigid bodies, but this study requires the introduction of Newton’s

3.3 Principle of Transmissibility.
Equivalent Forces
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second and third laws and of a number of other concepts as well.
Therefore, our study of the statics of rigid bodies will be based on
the three principles introduced so far, i.e., the parallelogram law of
addition, Newton’s first law, and the principle of transmissibility.

It was indicated in Chap. 2 that the forces acting on a particle
could be represented by vectors. These vectors had a well-defined
point of application, namely, the particle itself, and were therefore
fixed, or bound, vectors. In the case of forces acting on a rigid body,
however, the point of application of the force does not matter, as
long as the line of action remains unchanged. Thus, forces acting on
a rigid body must be represented by a different kind of vector, known
as a sliding vector, since forces may be allowed to slide along their
lines of action. We should note that all the properties which will be
derived in the following sections for the forces acting on a rigid body
will be valid more generally for any system of sliding vectors. In
order to keep our presentation more intuitive, however, we will carry
it out in terms of physical forces rather than in terms of mathematical
sliding vectors.

Fig. 3.4

Returning to the example of the truck, we first observe that the
line of action of the force F is a horizontal line passing through both
the front and the rear bumpers of the truck (Fig. 3.4). Using the
principle of transmissibility, we can therefore replace F by an equiva-
lent force F' acting on the rear bumper. In other words, the condi-
tions of motion are unaffected, and all the other external forces
acting on the truck (W, Ry, Ry) remain unchanged if the people push
on the rear bumper instead of pulling on the front bumper.

The principle of transmissibility and the concept of equivalent
forces have limitations, however. Consider, for example, a short bar
AB acted upon by equal and opposite axial forces Py and Py, as shown
in Fig. 3.5a. According to the principle of transmissibility, the force
P, can be replaced by a force P; having the same magnitude, the
same direction, and the same line of action but acting at A instead
of B (Fig. 3.5b). The forces P; and Pj acting on the same particle

A B A B
(a) (b)
A B A B
— - [ [
(d) (e)

Fig. 3.5



can be added according to the rules of Chap. 2, and, as these forces
are equal and opposite, their sum is equal to zero. Thus, in terms of
the external behavior of the bar, the original system of forces shown
in Fig. 3.5a is equivalent to no force at all (Fig. 3.5¢).

Consider now the two equal and opposite forces Py and Py
acting on the bar AB as shown in Fig. 3.5d. The force Py can be
replaced by a force P; having the same magnitude, the same direction,
and the same line of action but acting at B instead of at A (Fig. 3.5¢).
The forces Py and P; can then be added, and their sum is again zero
(Fig. 3.5f). From the point of view of the mechanics of rigid bodies,
the systems shown in Fig. 3.5¢ and d are thus equivalent. But the
internal forces and deformations produced by the two systems are
clearly different. The bar of Fig. 3.5a is in tension and, if not abso-
lutely rigid, will increase in length slightly; the bar of Fig. 3.5d is in
compression and, if not absolutely rigid, will decrease in length
slightly. Thus, while the principle of transmissibility may be used
freely to determine the conditions of motion or equilibrium of rigid
bodies and to compute the external forces acting on these bodies, it
should be avoided, or at least used with care, in determining internal
forces and deformations.

3.4 VECTOR PRODUCT OF TWO VECTORS

In order to gain a better understanding of the effect of a force on a
rigid body, a new concept, the concept of @ moment of a force about a
point, will be introduced at this time. This concept will be more clearly
understood, and applied more effectively, if we first add to the mathe-
matical tools at our disposal the vector product of two vectors.

The vector product of two vectors P and Q is defined as the
vector V which satisfies the following conditions.

1. The line of action of V is perpendicular to the plane containing
P and Q (Fig. 3.6a).

2. The magnitude of V is the product of the magnitudes of P and
Q and of the sine of the angle 6 formed by P and Q (the mea-
sure of which will always be 180° or less); we thus have

V = PQ sin 6 (3.1)

3. The direction of V is obtained from the right-hand rule. Close
your right hand and hold it so that your fingers are curled in
the same sense as the rotation through 6 which brings the vec-
tor P in line with the vector Q; your thumb will then indicate
the direction of the vector V (Fig. 3.6b). Note that if P and Q
do not have a common point of application, they should first
be redrawn from the same point. The three vectors P, Q, and
V—taken in that order—are said to form a right-handed
triad. 1

tWe should note that the x, y, and z axes used in Chap. 2 form a right-handed system
of orthogonal axes and that the unit vectors i, j, k defined in Sec. 2.12 form a
right-handed orthogonal triad.

3.4 Vector Product of Two Vectors
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Q'

As stated above, the vector V satisfying these three conditions
(which define it uniquely) is referred to as the vector product of P
and Q; it is represented by the mathematical expression

V=PxQ (3.2)

Because of the notation used, the vector product of two vectors P
and Q is also referred to as the cross product of P and Q.

It follows from Eq. (3.1) that, when two vectors P and Q have
either the same direction or opposite directions, their vector product
is zero. In the general case when the angle 6 formed by the two vectors
is neither 0° nor 180°, Eq. (3.1) can be given a simple geometric inter-
pretation: The magnitude V of the vector product of P and Q is equal
to the area of the parallelogram which has P and Q for sides (Fig. 3.7).
The vector product P X Q will therefore remain unchanged if we
replace Q by a vector Q" which is coplanar with P and Q and such
that the line joining the tips of Q and Q' is parallel to P. We write

V=PXQ=PxQ (3.3)

From the third condition used to define the vector product V
of P and Q, namely, the condition stating that P, Q, and V must
form a right-handed triad, it follows that vector products are not
commutative, i.e., Q X P is not equal to P X Q. Indeed, we can
easily check that Q X P is represented by the vector —V, which is
equal and opposite to V. We thus write

QxP=—-PxQ) (3.4)

EXAMPLE 3.1 Let us compute the vector product V.= P X Q where
the vector P is of magnitude 6 and lies in the zx plane at an angle of 30°
with the x axis, and where the vector Q is of magnitude 4 and lies along
the x axis (Fig. 3.8).

It follows immediately from the definition of the vector product that
the vector V must lie along the y axis and have the magnitude

V = PQ sin 0 = (6)(4) sin 30° = 12

and be directed upward. ®

We saw that the commutative property does not apply to vector
products. We may wonder whether the distributive property holds,
i.e., whether the relation

PX(Q +Q)=PxQ +PXxQ, (3.5)

is valid. The answer is yes. Many readers are probably willing to accept
without formal proof an answer which they intuitively feel is correct.
However, since the entire structure of both vector algebra and statics
depends upon the relation (3.5), we should take time out to derive it.

We can, without any loss of generality, assume that P is directed
along the y axis (Fig. 3.9a). Denoting by Q the sum of Q; and Q,
we drop perpendiculars from the tips of Q, Qy, and Q, onto the zx
plane, defining in this way the vectors Q’, Q}, and Qj. These vectors
will be referred to, respectively, as the projections of Q, Q,, and Q,
on the zx plane. Recalling the property expressed by Eq. (3.3), we



note that the left-hand member of Eq. (3.5) can be replaced by
P X Q' and that, similarly, the vector products P X Q; and P X Q,
can respectively be replaced by P X Q] and P X Qj. Thus, the
relation to be proved can be written in the form

PXQ =PxQ+PxQ) (3.5")

We now observe that P X Q' can be obtained from Q' by
multiplying this vector by the scalar P and rotating it counterclock-
wise through 90° in the zx plane (Fig. 3.9b); the other two vector

Fig. 3.9

products in (3.5') can be obtained in the same manner from Q} and
Q3, respectively. Now, since the projection of a parallelogram onto
an arbitrary plane is a parallelogram, the projection Q" of the sum
Q of Q, and Q, must be the sum of the projections Qf and Qj of
Q; and Q; on the same plane (Fig. 3.9a). This relation between the
vectors Q', Q1, and Q3 will still hold after the three vectors have
been multiplied by the scalar P and rotated through 90° (Fig. 3.9b).
Thus, the relation (3.5") has been proved, and we can now be sure
that the distributive property holds for vector products.

A third property, the associative property, does not apply to
vector products; we have in general

PXQ)XS#PX(QXS) (3.6)

3.5 VECTOR PRODUCTS EXPRESSED IN TERMS
OF RECTANGULAR COMPONENTS

Let us now determine the vector product of any two of the unit
vectors i, j, and k, which were defined in Chap. 2. Consider first the
product i X j (Fig. 3.10a). Since both vectors have a magnitude
equal to 1 and since they are at a right angle to each other, their
vector product will also be a unit vector. This unit vector must be k,
since the vectors i, j, and k are mutually perpendicular and form a
right-handed triad. On the other hand, it follows from the right-hand
rule given on page 69 that the product j X i will be equal to —k
(Fig. 3.10b). Finally, it should be observed that the vector product

3.5 Vector Products Expressed in Terms

of Rectangular Components
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Fig. 3.11

of a unit vector with itself, such as i X i, is equal to zero, since both
vectors have the same direction. The vector products of the various
possible pairs of unit vectors are

ixi=0 jxi=-k kxi=j
ixj=k jxj=0 k xXj=-i (3.7)
ixk=-j jxk=i kxk=0

By arranging in a circle and in counterclockwise order the three let-
ters representing the unit vectors (Fig. 3.11), we can simplify the
determination of the sign of the vector product of two unit vectors:
The product of two unit vectors will be positive if they follow each
other in counterclockwise order and will be negative if they follow
each other in clockwise order.

We can now easily express the vector product V of two given
vectors P and Q in terms of the rectangular components of these
vectors. Resolving P and Q into components, we first write

V=P xQ=(Pi+Pj+Pk x Qi+ Q,j+ 0k

Making use of the distributive property, we express V as the sum of
vector products, such as Pi X Q,j. Observing that each of the
expressions obtained is equal to the vector product of two unit vec-
tors, such as i X j, multiplied by the product of two scalars, such as
P.Q,, and recalling the identities (3.7), we obtain, after factoring out
i, j, and k,

V = (P,Q. — P.Q)i + (P.Q, — PO + (P.Q, — P,O)k (3.8)

The rectangular components of the vector product V are thus found
to be

Ve = P,Q. — P.Q,
Vy = P:Qt - PxQz (3.9)

V. =P.Q, — P,Q,

Returning to Eq. (3.8), we observe that its right-hand member repre-
sents the expansion of a determinant. The vector product V can thus
be expressed in the following form, which is more easily memorized:

i j ok
v=|p, P, P (3.10)
Qr Qy ©:

tAny determinant consisting of three rows and three columns can be evaluated by
repeating the first and second columns and forming products along each diagonal line.
The sum of the products obtained along the red lines is then subtracted from the sum
of the products obtained along the black lines.




3.6 MOMENT OF A FORCE ABOUT A POINT

Let us now consider a force F acting on a rigid body (Fig. 3.12a). As we
know, the force F is represented by a vector which defines its magnitude
and direction. However, the effect of the force on the rigid body depends
also upon its point of application A. The position of A can be conve-
niently defined by the vector r which joins the fixed reference point O
with A; this vector is known as the position vector of A.1 The position
vector r and the force F define the plane shown in Fig. 3.12a.

We will define the moment of F about O as the vector product
of r and F:

My, =rxF (3.11)

According to the definition of the vector product given in Sec. 3.4,
the moment My, must be perpendicular to the plane containing O and
the force F. The sense of M, is defined by the sense of the rotation
which will bring the vector r in line with the vector F; this rotation will
be observed as counterclockwise by an observer located at the tip of
M,,. Another way of defining the sense of M, is furnished by a variation
of the right-hand rule: Close your right hand and hold it so that your
fingers are curled in the sense of the rotation that F would impart to
the rigid body about a fixed axis directed along the line of action of Mo;
your thumb will indicate the sense of the moment M, (Fig. 3.12b).

Finally, denoting by 6 the angle between the lines of action of
the position vector r and the force F, we find that the magnitude of
the moment of F about O is

My, = rF sin 0 = Fd (3.12)

where d represents the perpendicular distance from O to the line of
action of F. Since the tendency of a force F to make a rigid body
rotate about a fixed axis perpendicular to the force depends upon the
distance of F from that axis as well as upon the magnitude of F, we
note that the magnitude of Mo measures the tendency of the force F
to make the rigid body rotate about a fixed axis directed along M.

In the SI system of units, where a force is expressed in newtons
(N) and a distance in meters (m), the moment of a force is expressed
in newton-meters (N - m). In the U.S. customary system of units,
where a force is expressed in pounds and a distance in feet or inches,
the moment of a force is expressed in Ib - ft or Ib - in.

We can observe that although the moment M, of a force about
a point depends upon the magnitude, the line of action, and the
sense of the force, it does not depend upon the actual position of
the point of application of the force along its line of action. Con-
versely, the moment My, of a force F does not characterize the posi-
tion of the point of application of F.

tWe can easily verify that position vectors obey the law of vector addition and, thus, are
truly vectors. Consider, for example, the position vectors r and r’ of A with respect to two
reference points O and O and the position vector s of O with respect to O" (Fig. 3.40a,

—

Sec. 3.16). We verify that the position vector ' = O’A can be obtained from the position

— —
vectors s = O'O and r = OA by applying the triangle rule for the addition of vectors.

3.6 Moment of a Force about a Point 73
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However, as it will be seen presently, the moment My, of a force
F of given magnitude and direction completely defines the line of
action of F. Indeed, the line of action of F must lie in a plane
through O perpendicular to the moment My; its distance d from O
must be equal to the quotient Mo/F of the magnitudes of My and
F; and the sense of M, determines whether the line of action of F
is to be drawn on one side or the other of the point O.

We recall from Sec. 3.3 that the principle of transmissibility
states that two forces F and F’ are equivalent (i.e., have the same
effect on a rigid body) if they have the same magnitude, same direc-
tion, and same line of action. This principle can now be restated as
follows: Two forces F and F' are equivalent if, and only if, they are
equal (i.e., have the same magnitude and same direction) and have
equal moments about a given point O. The necessary and sufficient
conditions for two forces F and F' to be equivalent are thus

F=F and M,=M), (3.13)

We should observe that it follows from this statement that if the rela-
tions (3.13) hold for a given point O, they will hold for any other point.

Problems Involving Only Two Dimensions. Many applications
deal with two-dimensional structures, i.e., structures which have length
and breadth but only negligible depth and which are subjected to
forces contained in the plane of the structure. Two-dimensional struc-
tures and the forces acting on them can be readily represented on a
sheet of paper or on a blackboard. Their analysis is therefore consider-
ably simpler than that of three-dimensional structures and forces.

F
X e
//T{O// P \\ /ﬂ,/ Fs \\
e &~ —

<
(a) My =+ Fd (b) My, =—Fd
Fig. 3.13

Consider, for example, a rigid slab acted upon by a force F
(Fig. 3.13). The moment of F about a point O chosen in the plane
of the figure is represented by a vector My, perpendicular to that
plane and of magnitude Fd. In the case of Fig. 3.13a the vector Mo
points out of the paper, while in the case of Fig. 3.13b it points into
the paper. As we look at the figure, we observe in the first case that
F tends to rotate the slab counterclockwise and in the second case
that it tends to rotate the slab clockwise. Therefore, it is natural to
refer to the sense of the moment of F about O in Fig. 3.13a as
counterclockwise , and in Fig. 3.13b as clockwise .

Since the moment of a force F acting in the plane of the figure
must be perpendicular to that plane, we need only specify the magni-
tude and the sense of the moment of F about O. This can be done by
assigning to the magnitude M, of the moment a positive or negative sign
according to whether the vector My, points out of or into the paper.



3.7 VARIGNON'’S THEOREM

The distributive property of vector products can be used to deter-
mine the moment of the resultant of several concurrent forces. If
several forces Fy, Fy, . . . are applied at the same point A (Fig. 3.14),
and if we denote by r the position vector of A, it follows immediately
from Eq. (3.5) of Sec. 3.4 that

rx<F1+F2+>=erl+er2+ <3.].4:)

In words, the moment about a given point O of the resultant of several
concurrent forces is equal to the sum of the moments of the various
forces about the same point O. This property, which was originally
established by the French mathematician Varignon (1654-1722) long
before the introduction of vector algebra, is known as Varignon’s
theorem.

The relation (3.14) makes it possible to replace the direct deter-
mination of the moment of a force F by the determination of the
moments of two or more component forces. As you will see in the
next section, F will generally be resolved into components parallel
to the coordinate axes. However, it may be more expeditious in some
instances to resolve F into components which are not parallel to the
coordinate axes (see Sample Prob. 3.3).

3.8 RECTANGULAR COMPONENTS OF THE MOMENT
OF A FORCE

In general, the determination of the moment of a force in space will
be considerably simplified if the force and the position vector of its
point of application are resolved into rectangular x, y, and z compo-
nents. Consider, for example, the moment My about O of a force F
whose components are F,, F,, and F. and which is applied at a point
A of coordinates x, y, and z (Fig. 3.15). Observing that the compo-
nents of the position vector r are respectively equal to the coordi-

nates x, y, and z of the point A, we write

r=uxi+yj+zk (3.15)
F=Fi+Fj+Fk (3.16)

Substituting for r and F from (3.15) and (3.16) into
My =rxF (3.11)

and recalling the results obtained in Sec. 3.5, we write the moment
M, of F about O in the form

M, = M,i + M,j + M.k (3.17)

where the components M,, M,

and M, are defined by the relations
M, = yF, — zF,
M, = zF, — «F, (3.18)
M, = xF, — yF,

3.8 Rectangular Components of the 75
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As you will see in Sec. 3.11, the scalar components M,, M,, and M,
of the moment My measure the tendency of the force F to impart
to a rigid body a motion of rotation about the x, y, and z axes, respec-
tively. Substituting from (3.18) into (3.17), we can also write M, in

the form of the determinant

k
z (3.19)

& e

1
MO = | X
F,

~

yFZ

To compute the moment My about an arbitrary point B of a
force F applied at A (Fig. 3.16), we must replace the position vector
r in Eq. (3.11) by a vector drawn from B to A. This vector is the
position vector of A relative to B and will be denoted by r,/5 Observ-
ing that ry; can be obtained by subtracting ry from r,, we write

MB = Ta/B X F = (l'A - I'B> X F (3.20)

or, using the determinant form,

i j Kk
Mg = [xa5  Yam Zam (3.21)
F, F, F.

where x5, Y45, and z,p denote the components of the vector ryp:

Xa/B = XA — X Ya/B = Ya — Yp ZA/B = %A T 2B

In the case of problems involving only two dimensions, the
force F can be assumed to lie in the xy plane (Fig. 3.17). Setting
z =0and F, = 0 in Eq. (3.19), we obtain

M, = (xF, — yF,)k

We verify that the moment of F about O is perpendicular to the plane
of the figure and that it is completely defined by the scalar

MO = Mz =«xF, — ny (3.22)

Yy

As noted earlier, a positive value for My, indicates that the vector My
points out of the paper (the force F tends to rotate the body counter-
clockwise about O), and a negative value indicates that the vector My
points into the paper (the force F tends to rotate the body clockwise
about O).

To compute the moment about B(xg, y3) of a force lying in the
xy plane and applied at A(xy, ya) (Fig. 3.18), we set z,5 = 0 and
F. = 0 in the relations (3.21) and note that the vector My is perpen-
dicular to the xy plane and is defined in magnitude and sense by the
scalar

Mg = (x4 — xB>Fy - (yA - yB>Fx (3.23)



24 in.

A

100 Ib

SAMPLE PROBLEM 3.1

A 100-1b vertical force is applied to the end of a lever which is attached to a shaft
at O. Determine (a) the moment of the 100-1b force about O; (b) the horizontal
force applied at A which creates the same moment about O; (¢) the smallest
force applied at A which creates the same moment about O; (d) how far from
the shaft a 240-Ib vertical force must act to create the same moment about O;
(e) whether any one of the forces obtained in parts b, ¢, and d is equivalent to
the original force.

SOLUTION

a. Moment about O. The perpendicular distance from O to the line of
action of the 100-Ib force is

d = (24 in.) cos 60° = 12 in.
The magnitude of the moment about O of the 100-1b force is
My = Fd = (100 1b)(12 in.) = 1200 1Ib - in.

Since the force tends to rotate the lever clockwise about O, the moment
will be represented by a vector My, perpendicular to the plane of the figure
and pointing into the paper. We express this fact by writing

M, = 1200 Ib - in. )
b. Horizontal Force. In this case, we have
d = (24 in.) sin 60° = 20.8 in.

Since the moment about O must be 1200 1b - in., we write

Mo = Fd
1200 Ib - in. = F(20.8 in.)
F=5771b F=5771b—

c. Smallest Force. Since My, = Fd, the smallest value of F occurs when
d is maximum. We choose the force perpendicular to OA and note that
d = 24 in.; thus,

M() = Fd
1200 1b - in. = F(24 in.)
F=501b F = 50 Ib ~530°

d. 240-lb Vertical Force. In this case My, = Fd yields

1200 1b - in. = (240 lb)d d = 5 in.
but OB cos 60° = d OB = 10 in.

e. None of the forces considered in parts b, ¢, and d is equivalent to the
original 100-Ib force. Although they have the same moment about O, they
have different x and y components. In other words, although each force
tends to rotate the shaft in the same manner, each causes the lever to pull
on the shaft in a different way.
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800 N SAMPLE PROBLEM 3.2

A 60° A force of 800 N acts on a bracket as shown. Determine the moment of the
"7 force about B.
160 mm
| s, SOLUTION
L]
! 900 mm The moment Mj, of the force F about B is obtained by forming the vector
product

M =14 X F

where r,,5 is the vector drawn from B to A. Resolving r,; and F into
rectangular components, we have

v = —(02 m)i + (0.16 m)j

G N F = (800 N) cos 60% + (800 N) sin 60%
W = (400 N)i + (693 N)j
|,60°
\/ Recalling the relations (3.7) for the cross products of unit vectors (Sec. 3.5),
n IF, = (400 N)i we obtain

My =145 X F = [—(02m)i + (0.16 m)j] X [(400 N)i + (693 N)j]
—(138.6 N - mk — (64.0 N - m)k
= —(202.6 N - m)k M; = 203N - m )

TA/B

+(0.16 m)j

“D Mg The moment Mj is a vector perpendicular to the plane of the figure and
pointing into the paper.

—(0.2m)i B

SAMPLE PROBLEM 3.3

A 30-Ib force acts on the end of the 3-ft lever as shown. Determine the
moment of the force about O.

SOLUTION

The force is replaced by two components, one component P in the direction
of OA and one component Q perpendicular to OA. Since O is on the line
of action of P, the moment of P about O is zero and the moment of the
30-Ib force reduces to the moment of Q, which is clockwise and, thus, is
represented by a negative scalar.

© = (30 Ib) sin 20° = 10.26 1b
My = —Q(3 ft) = —(10.26 Ib)(3 ft) = —30.8 Ib - ft

Since the value obtained for the scalar My is negative, the moment My
points into the paper. We write

M, = 30.81b - ft )



SAMPLE PROBLEM 3.4

A rectangular plate is supported by brackets at A and B and by a wire CD.
Knowing that the tension in the wire is 200 N, determine the moment about
A of the force exerted by the wire on point C.

SOLUTION

The moment M about A of the force F exerted by the wire on point C is
obtained by forming the vector product

Yy My =rgu X F 1)
0.08 m 0.3m where r¢, is the vector drawn from A to C,
/‘f rom = AC = (0.3 m)i + (0.08 m)k @)

and F is the 200-N force directed along CD. Introducing the unit vector
—
A = CD/CD, we write
CD
F =FA = (200N) — 3
( ) oD 3)

Resolving the vector GD into rectangular components, we have
CD = —(03m)i + (024m)j — (0.32m)k  CD =0.50m
Substituting into (3), we obtain

200N
= —(0.3m)i + (0. i — (0.
F 050m [—(0.3m)i + (0.24 m)j — (0.32 m)k]
= —(120N)i + (96 N)j — (128 N)k 4)
Substituting for r¢;y and F from (2) and (4) into (1) and recalling the

relations (3.7) of Sec. 3.5, we obtain
M, = 1o X F = (0.3i + 0.08k) X (—120i + 96j — 128Kk)
B . = (0.3)(96)k + (0.3)(—128)(—j) 4F (0.08)(—120)j + (0.08)(96)(—1i)
o i M, = —(768 N - m)i + (288 N - m)j + (288 N - m)k
Alternative Solution. As indicated in Sec. 3.8, the moment M, can be
F=(200 NN expressed in the form of a determinant:

(28.8 N'm)j

(28.8 Nom)k i j k i j k
¢ My = |x¢c =xa Yo~ Yya zc—za| = |03 0 0.08
P F F, ~120 96 —128

y
M, = — (768N -m)i + (28.8N - m)j + (28.8 N - m)k
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A
@
{
240 mm ‘
B
((c
el
100 mm

Fig. P3.3 and P3.4

12 in. 60°
Fig. P3.7 and P3.8

PROBLEMS

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

A 20-1b force is applied to the control rod AB as shown. Knowing
that the length of the rod is 9 in. and that a = 25°, determine the
moment of the force about point B by resolving the force into
horizontal and vertical components.

A 20-1b force is applied to the control rod AB as shown. Knowing
that the length of the rod is 9 in. and that the moment of the force
about B is 120 Ib - in. clockwise, determine the value of «.

For the brake pedal shown, determine the magnitude and direction
of the smallest force P that has a 104-N - m clockwise moment
about B.

A force P is applied to the brake pedal at A. Knowing that P =
450 N and o = 30°, determine the moment of P about B.

A 450-N force is applied at A as shown. Determine (a) the moment
of the 450-N force about D, (b) the smallest force applied at B
that creates the same moment about D.

i 300 mm 450 N

A

225 mm

s
225 mm

Fig. P3.5 and P3.6

A 450-N force is applied at A as shown. Determine (a) the moment
of the 450-N force about D, (b) the magnitude and sense of the
horizontal force applied at C that creates the same moment about D,
(¢) the smallest force applied at C that creates the same moment
about D.

Compute the moment of the 100-1b force about A, (a) by using the
definition of the moment of a force, (b) by resolving the force into
horizontal and vertical components, (¢) by resolving the force into
components along AB and in the direction perpendicular to AB.

Determine the moment of the 100-1b force about C.



3.9 and 3.10 It is known that the connecting rod AB exerts on the
crank BC a 2.5-kN force directed down to the left along the cen-
terline AB. Determine the moment of that force about C.

144 mm

42 mm

Fig. P3.9 Fig. P3.10

3.11 Rod AB is held in place by the cord AC. Knowing that the tension
in the cord is 300 lb and that ¢ = 18 in., determine the moment
about B of the force exerted by the cord at point A by resolving
that force into horizontal and vertical components applied (a) at
point A, (b) at point C.

12 in.

A

! 22.5 in.
Fig. P3.11 and P3.12
3.12 Rod AB is held in place by the cord AC. Knowing that ¢ = 42 in.

and that the moment about B of the force exerted by the cord at
point A is 700 Ib - ft, determine the tension in the cord.

3.13 Determine the moment about the origin of coordinates O of the
force F = 4i — 3j + 2k that acts at a point A. Assume that the
position of Ais (@) r =i+ 5j + 6k, (b)) r =6i +j + 3k, (¢) r =
5i — 4j + k.

3.14 Determine the moment about the origin of coordinates O of the
force F = —i + 3j + 5k that acts at a point A. Assume that the
position of A'is (a) r = 2i — 4j + k, (b) r = 4i + 6j + 10k,
(c)r = =3i + 9 + 15k

Problems
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3.15 The line of action of the force P of magnitude 420 Ib passes through
the two points A and B as shown. Compute the moment of P about
O using the position vector (a) of point A, (b) of point B.

y
12 in. i B
1
s
s
s
pid 6 in.
Ve
v
o |
- x
s
s
v
p 18 in.

3in‘—y/A

z

Fig. P3.15

3.16 A force P of magnitude 200 N acts along the diagonal BC of the
bent plate shown. Determine the moment of P about point E.

Yy

X
225 mm

Fig. P3.16

3.17 Knowing that the tension in cable AB is 1800 Ib, determine the
moment of the force exerted on the plate at A about (@) the origin
of coordinates O, (b) corner D.

Yy
/‘%g'
O C
; X

4 ft b _/

Fig. P3.17 and P3.18

3.18 Knowing that the tension in cable BC is 900 Ib, determine the
moment of the force exerted on the plate at C about (@) the origin
of coordinates O, (b) corner D.



3.19 A 200-N force is applied as shown to the bracket ABC. Determine
the moment of the force about A.

200 N

Fig. P3.19

3.20 A small boat hangs from two davits, one of which is shown in the
figure. The tension in line ABAD is 82 1b. Determine the moment
about C of the resultant force R, exerted on the davit at A.

Fig. P3.20

3.21 1In Prob. 3.15, determine the perpendicular distance from the line
of action of P to the origin O.

3.22 In Prob. 3.16, determine the perpendicular distance from the line
of action of P to point E.

3.23 In Prob. 3.20, determine the perpendicular distance from the point
C to the portion AD of line ABAD.

3.24 1In Sample Prob. 3.4, determine the perpendicular distance from
point A to wire CD.

Problems
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3.9 SCALAR PRODUCT OF TWO VECTORS

The scalar product of two vectors P and Q is defined as the product
of the magnitudes of P and Q and of the cosine of the angle 6 formed
by P and Q (Fig. 3.19). The scalar product of P and Q is denoted
by P - Q. We write therefore

P:-Q =PQcosb (3.24)

Note that the expression just defined is not a vector but a scalar,
which explains the name scalar product; because of the notation
used, P - Q is also referred to as the dot product of the vectors P
and Q.

It follows from its very definition that the scalar product of two
vectors is comimutative, i.e., that

P-Q=Q: P (3.25)

To prove that the scalar product is also distributive, we must prove
the relation

P-(Q +Q;)=P-Q, +P-Q, (3.26)

We can, without any loss of generality, assume that P is directed
along the y axis (Fig. 3.20). Denoting by Q the sum of Q; and Q,
and by 6, the angle Q forms with the y axis, we express the left-hand
member of (3.26) as follows:

P:(Q +Qy) =P-Q=PQcosb, =PQ, (3.27)

where Q, is the y component of Q. We can, in a similar way, express
the right-hand member of (3.26) as

pP- Ql +P- QQ = P(Ql)y + P(QQ)y (328)

Since Q is the sum of Q, and Q,, its y component must be equal to
the sum of the y components of Q; and Q,. Thus, the expressions
obtained in (3.27) and (3.28) are equal, and the relation (3.26) has
been proved.

As far as the third property—the associative property—is con-
cerned, we note that this property cannot apply to scalar products.
Indeed, (P - Q) - S has no meaning since P - Q is not a vector but
a scalar.

The scalar product of two vectors P and Q can be expressed
in terms of their rectangular components. Resolving P and Q into
components, we first write

P-Q=(Pi+Pj+Pk) - (Qi+ Q4+ QK

Making use of the distributive property, we express P - Q as the sum
of scalar products, such as P,i - Q,i and P.i - Q,j. However, from the



definition of the scalar product it follows that the scalar products of
the unit vectors are either zero or one.

i-i

1 jij =

1 k-k=1
icj=0 j-k=0 k-i=0 (3.29)
Thus, the expression obtained for P - Q reduces to
P-Q=PQ,+P,Q, + P.0. (3.30)
In the particular case when P and Q are equal, we note that
P-P=P +P, +P.=P (3.31)

Applications

1. Angle formed by two given vectors. Let two vectors be given
in terms of their components:

P =Pi+ Pjj+ Pk
Q= Qi+ Q,j+ Qk

To determine the angle formed by the two vectors, we equate
the expressions obtained in (3.24) and (3.30) for their scalar
product and write

PQcos 6 = P.Q, + P,Q, + P.Q.

Solving for cos 6, we have

PxQx+P1Q1 +P:Q:
cos 0 = AL (3.32)
PQ

2. Projection of a vector on a given axis. Consider a vector P
forming an angle 6 with an axis, or directed line, OL

(Fig. 3.21). The projection of P on the axis OL is defined as
the scalar

Por, = P cos 0 (3.33)

We note that the projection Py, is equal in absolute value to
the length of the segment OA; it will be positive if OA has the
same sense as the axis OL, that is, if 6 is acute, and negative
otherwise. If P and OL are at a right angle, the projection of
P on OL is zero.

Consider now a vector Q directed along OL and of the
same sense as OL (Fig. 3.22). The scalar product of P and Q
can be expressed as

P-Q=PQ cos 0= Py, Q (3.34)

3.9 Scalar Product of Two Vectors
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Fig. 3.25

from which it follows that

P-Q _POQ.+ PO, +PO.
Q Q

In the particular case when the vector selected along OL is the
unit vector A (Fig. 3.23), we write

Por, = (3.35)

Po,=P-A (3.36)

Resolving P and A into rectangular components and recalling
from Sec. 2.12 that the components of A along the coordinate
axes are respectively equal to the direction cosines of OL, we
express the projection of P on OL as

Por, = Picos 0, + P,cos 6, + P_cos 6, (3.37)

where 6., 6,, and 6. denote the angles that the axis OL forms
with the coordinate axes.

3.10 MIXED TRIPLE PRODUCT OF THREE VECTORS

We define the mixed triple product of the three vectors S, P, and Q
as the scalar expression

S- (Px Q) (3.38)

obtained by forming the scalar product of S with the vector product
of P and Q.

A simple geometrical interpretation can be given for the
mixed triple product of S, P, and Q (Fig. 3.24). We first recall
from Sec. 3.4 that the vector P X Q is perpendicular to the plane
containing P and Q and that its magnitude is equal to the area of
the parallelogram which has P and Q for sides. On the other hand,
Eq. (3.34) indicates that the scalar product of § and P X Q can
be obtained by multiplying the magnitude of P X Q (i.e., the area
of the parallelogram defined by P and Q) by the projection of S
on the vector P X Q (i.e., by the projection of S on the normal
to the plane containing the parallelogram). The mixed triple prod-
uct is thus equal, in absolute value, to the volume of the parallel-
epiped having the vectors S, P, and Q for sides (Fig. 3.25). We
note that the sign of the mixed triple product will be positive if S,
P, and Q form a right-handed triad and negative if they form a
left-handed triad [that is, S - (P X Q) will be negative if the rotation
which brings P into line with Q is observed as clockwise from the
tip of S]. The mixed triple product will be zero if S, P, and Q are
coplanar.



Since the parallelepiped defined in the preceding paragraph is
independent of the order in which the three vectors are taken, the
six mixed triple products which can be formed with S, P, and Q will
all have the same absolute value, although not the same sign. It is
easily shown that

S-PXxQ =P-(Qx8=Q:-(SxXP)
=-5-QxP)=-P-(SXQ)=-Q-(Px5S)
(3.39)

Arranging in a circle and in counterclockwise order the letters rep-
resenting the three vectors (Fig. 3.26), we observe that the sign of
the mixed triple product remains unchanged if the vectors are per-
muted in such a way that they are still read in counterclockwise
order. Such a permutation is said to be a circular permutation. It
also follows from Eq. (3.39) and from the commutative property of
scalar products that the mixed triple product of S, P, and Q can be
defined equally well as S - (P X Q) or (S X P) - Q.

The mixed triple product of the vectors S, P, and Q can be
expressed in terms of the rectangular components of these vectors.
Denoting P X Q by V and using formula (3.30) to express the scalar
product of S and V, we write

S-(PxQ)=S-V=SV,+S,V, +S.V.

¥y

Substituting from the relations (3.9) for the components of V, we
obtain

S - (P X Q) = Sx<P;/Qz - P;Qy) + S;/(P:Qx - PxQ:)
+ S.(PO, ~ P,0.) (3.40)

This expression can be written in a more compact form if we observe
that it represents the expansion of a determinant:

S,
S-(PxQ)=|P, P, P. (3.41)

By applying the rules governing the permutation of rows in a deter-
minant, we could easily verify the relations (3.39) which were derived
earlier from geometrical considerations.

3.11 MOMENT OF A FORCE ABOUT A GIVEN AXIS

Now that we have further increased our knowledge of vector alge-
bra, we can introduce a new concept, the concept of moment of a
force about an axis. Consider again a force F acting on a rigid body
and the moment My, of that force about O (Fig. 3.27). Let OL be

3.11 Moment of a Force about a Given Axis
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L
FI
P Q
rp L)
-=r
(0]
Fig. 3.28

an axis through O; we define the moment Moy, of F about OL as the
projection OC of the moment My onto the axis OL. Denoting by A
the unit vector along OL and recalling from Secs. 3.9 and 3.6,
respectively, the expressions (3.36) and (3.11) obtained for the pro-
jection of a vector on a given axis and for the moment My, of a force
F, we write

M()L:/\‘MO:A'(I'xF> (3.42)

which shows that the moment M, of F about the axis OL is the
scalar obtained by forming the mixed triple product of A, r, and F.
Expressing Moy, in the form of a determinant, we write

AA, A
MOL = |X Yy z (3.43)
F, F, F.

where Ax, Ay, Az = direction cosines of axis OL
x, y, z = coordinates of point of application of F
F,, F,, F. = components of force F

The physical significance of the moment My, of a force F
about a fixed axis OL becomes more apparent if we resolve F into
two rectangular components F; and Fs, with F; parallel to OL and
F; lying in a plane P perpendicular to OL (Fig. 3.28). Resolving r
similarly into two components r; and ry and substituting for F and r
into (3.42), we write

Mop = A« [(r; + 1) X (F; + Fy)]
:A'<r1xFl>+A'<r1XF2)+A'(I'2XF1>+A'<I'2XF2)

Noting that all of the mixed triple products except the last one are
equal to zero, since they involve vectors which are coplanar when
drawn from a common origin (Sec. 3.10), we have

Mo, = A+ (ry X Fy) (3.44)

The vector product ry X Fy is perpendicular to the plane P and
represents the moment of the component F; of F about the point
Q where OL intersects P. Therefore, the scalar My, which will
be positive if ry X Fy and OL have the same sense and negative
otherwise, measures the tendency of Fy to make the rigid body
rotate about the fixed axis OL. Since the other component F; of F
does not tend to make the body rotate about OL, we conclude that
the moment Moy, of F about OL measures the tendency of the force
F to impart to the rigid body a motion of rotation about the fixed
axis OL.

It follows from the definition of the moment of a force about
an axis that the moment of F about a coordinate axis is equal to
the component of My, along that axis. Substituting successively each



of the unit vectors i, j, and k for A in (3.42), we observe that the
expressions thus obtained for the moments of ¥ about the coordinate
axes are respectively equal to the expressions obtained in Sec. 3.8
for the components of the moment My, of F about O:

M, = yF, — zF,
M, = zF, — xF; (3.18)
M, = xF, — yF,

We observe that just as the components F,, F,, and F. of a force F
acting on a rigid body measure, respectively, the tendency of F to
move the rigid body in the x, y, and z directions, the moments M,,
M,, and M. of F about the coordinate axes measure the tendency of
F to impart to the rigid body a motion of rotation about the x, y,
and z axes, respectively.

More generally, the moment of a force F applied at A about
an axis which does not pass through the origin is obtained by
choosing an arbitrary point B on the axis (Fig. 3.29) and determin-
ing the projection on the axis BL of the moment Mg of F about B.
We write

Mg, = A Mg= A (ryp X F) (3.45)

where ryp = ry — rp represents the vector drawn from B to A.
Expressing Mg, in the form of a determinant, we have

A, /\y AL
Mg, = |xam Ya/B  ZA/B (3.46)
F. F,j F.
where \,, N, \. = direction cosines of axis BL
XaB = XA — Xp Ya/B = Ya — Yp ZA/B = %A T ZB

F, F,, F. = components of force F

v

It should be noted that the result obtained is independent of the
choice of the point B on the given axis. Indeed, denoting by M;, the
result obtained with a different point C, we have

Mcr, = A - [(ry — ro) X F]
=A:[(ry —rg) X F] + A+ [(rg — rg) X F]

But, since the vectors A and rz — r¢ lie in the same line, the vol-
ume of the parallelepiped having the vectors A, rz — r¢, and F for
its sides is zero, as is the mixed triple product of these three vec-
tors (Sec. 3.10). The expression obtained for M, thus reduces to
its first term, which is the expression used earlier to define Mpy;.
In addition, it follows from Sec. 3.6 that, when computing the
moment of F about the given axis, A can be any point on the line
of action of F.

3.11 Moment of a Force about a Given Axis
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SAMPLE PROBLEM 3.5

A cube of side a is acted upon by a force P as shown. Determine the
moment of P (a) about A, (b) about the edge AB, (c) about the diagonal
AG of the cube. (d) Using the result of part ¢, determine the perpendicular
distance between AG and FC.

SOLUTION

a. Moment about A. Choosing x, y, and z axes as shown, we resolve into

rectangular components the force P and the vector rp, = AF drawn from
A to the point of application F of P.

Ypi = ai - dj = ll(i _j)
P = (P/V2)j — (P/V2)k = (P/V2)(j — k)
The moment of P about A is
M, =rpa X P=a(i—j) x (P/V2)(j— k)
M, = (aP/V2)(i+j+ k)
b. Moment about AB. Projecting M, on AB, we write
My =1i-My=1i-(aP/V2)(i+j+k)
L‘\IAB = (lP/\/§

We verify that, since AB is parallel to the x axis, M,p is also the x component
of the moment M.

¢. Moment about Diagonal AG. The moment of P about AG is obtained
by projecting M,y on AG. Denoting by A the unit vector along AG, we have
— . .

AG  ai—aj — dk
=T - (VB)i-j—k
e oy (1/V3)(i —j )

My =AM, = (/V3)(i—j—k)-(aP/V2)(i+j+k)
Muc = (aP/V6)(1 — 1 —1) My = —aP/\NV6

Alternative Method. The moment of P about AG can also be expressed
in the form of a determinant:

Ao A, A /V3 -1UV3 -1V3
Mac = [Xpa Yma zpa| = | @ —a 0 = —aP/V6
F., F, F. 0 P/IN2  —P/\V2

y
d. Perpendicular Distance between AG and FC. We first observe that P
is perpendicular to the diagonal AG. This can be checked by forming the
scalar product P + A and verifying that it is zero:

P-A=(P/V2)j—k) - (UV3)i-j—k ={PVE)O—-1+1)=0

The moment M, can then be expressed as —Pd, where d is the perpen-
dicular distance from AG to FC. (The negative sign is used since the rotation
imparted to the cube by P appears as clockwise to an observer at G.) Recall-
ing the value found for M, in part ¢,

Mo = —Pd = —aP/\V6 d = a/V6



3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32
3.33

3.34

PROBLEMS

Given the vectors P = 2i + j + 2k, Q = 3i + 4j — 5k, and S =
—4i + j — 2k, compute the scalar products P - Q, P - S, and
Q-S.

Form the scalar product Py + Py, and use the result obtained to
prove the identity cos (6; — 63) = cos 6, cos 6, + sin 6, sin 6.

Knowing that the tension in cable BC is 1400 N, determine (a) the
angle between cable BC and the boom AB, (b) the projection on
AB of the force exerted by cable BC at point B.

Knowing that the tension in cable BD is 900 N, determine (a) the
angle between cable BD and the boom AB, (b) the projection on
AB of the force exerted by cable BD at point B.

Three cables are used to support a container as shown. Determine
the angle formed by cables AB and AD.

Fig. P3.29 and P3.30

Three cables are used to support a container as shown. Determine
the angle formed by cables AC and AD.

The 500-mm tube AB can slide along a horizontal rod. The ends
A and B of the tube are connected by elastic cords to the fixed
point C. For the position corresponding to x = 275 mm, determine
the angle formed by the two cords, (a) using Eq. (3.32), (b) apply-
ing the law of cosines to triangle ABC.

Solve Prob. 3.31 for the position corresponding to x = 100 mm.

Given the vectors P = 3i + 2j + k, Q = 2i + j, and S = i, com-
pute P - (Q X S), (P X Q)-S, and (S X Q) - P.

Given the vectors P = 2i + 3j + 4k, Q = —i + 2j — 2k, and S =
—3i — j + S.k, determine the value of S, for which the three vec-
tors are coplanar.

Yy

P,

)

Fig. P3.26

: ]

Fig. P3.27 and P3.28

600 1n<’| C/f
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Y

3.35

3.36

3.37

3.38

3.39

3.40

3.41

3.42

The jib crane is oriented so that the boom DA is parallel to the
x axis. At the instant shown, the tension in cable AB is 13 kN.
Determine the moment about each of the coordinate axes of the
force exerted on A by the cable AB.

3.2m

z

Fig. P3.35 and P3.36

The jib crane is oriented so that the boom DA is parallel to the
x axis. Determine the maximum permissible tension in the cable
AB if the absolute values of the moments about the coordinate axes
of the force exerted on A must be as follows: [M,| = 10 kN + m,
M,/ = 6 kN + m, and [M_| = 16 kN * m.

The primary purpose of the crank shown is to produce a moment about
the x axis. Show that a single force acting at A and having moment
M, different from zero about the x axis must also have a moment dif-
ferent from zero about at least one of the other coordinate axes.

A single force F of unknown magnitude and direction acts at point
A of the crank shown. Determine the moment M, of F about the
x axis knowing that M, = +180 Ib - in. and M, = —320 Ib - in.

The rectangular platform is hinged at A and B and supported by
a cable that passes over a frictionless hook at E. Knowing that the
tension in the cable is 1349 N, determine the moment about each
of the coordinate axes of the force exerted by the cable at C.

For the platform of Prob. 3.39, determine the moment about each
of the coordinate axes of the force exerted by the cable at D.

A small boat hangs from two davits, one of which is shown in the
figure. It is known that the moment about the z axis of the resultant
force R, exerted on the davit at A must not exceed 279 1b - ft in
absolute value. Determine the largest allowable tension in the line
ABAD when x = 6 ft.

For the davit of Prob. 3.41, determine the largest allowable dis-
tance x when the tension in the line ABAD is 60 1b.



3.43 A force P of magnitude 25 Ib acts on a bent rod as shown. Deter- Problems Q3
mine the moment of P about (a) a line joining points C and F, (b)
a line joining points O and C. y

3.44 A force P of magnitude 25 Ib acts on a bent rod as shown. Deter- 12in.
mine the moment of P about («) a line joining points A and C, (b) Azl
a line joining points A and D. !

3.45 Two rods are welded together to form a T-shaped lever that is
acted upon by a 650-N force as shown. Determine the moment of
the force about rod AB.

Fig. P3.43 and P3.44

z

Fig. P3.45

3.46 The rectangular plate ABCD is held by hinges along its edge AD y
and by the wire BE. Knowing that the tension in the wire is 546 N,
determine the moment about AD of the force exerted by the wire
at point B.

450 mm

3.47 The 23-in. vertical rod CD is welded to the midpoint C of the 50-in.
rod AB. Determine the moment about AB of the 235-1b force P.

X
125 mm

300 mm
e

\
24 in/ 32 in.
D

125 mm
Fig. P3.46

18 in.

21 in.
Fig. P3.47 and P3.48

3.48 The 23-in. vertical rod CD is welded to the midpoint C of the 50-in.
rod AB. Determine the moment about AB of the 174-1b force Q.
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Fig. 3.32

3.12 MOMENT OF A COUPLE

Two forces F and —F having the same magnitude, parallel lines of
action, and opposite sense are said to form a couple (Fig. 3.30).
Clearly, the sum of the components of the two forces in any direction
is zero. The sum of the moments of the two forces about a given
point, however, is not zero. While the two forces will not translate
the body on which they act, they will tend to make it rotate.

Denoting by r, and rj, respectively, the position vectors of the
points of application of F and —F (Fig. 3.31), we find that the sum
of the moments of the two forces about O is

ry XF+ 15 X (—F) =(ry —1rz) XF

Setting ry — rz = r, where r is the vector joining the points of
application of the two forces, we conclude that the sum of the
moments of F and —F about O is represented by the vector

M=rXF (3.47)

The vector M is called the moment of the couple; it is a vector
perpendicular to the plane containing the two forces, and its mag-
nitude is

M = rF sin 0 = Fd (3.48)

where d is the perpendicular distance between the lines of action of
F and —F. The sense of M is defined by the right-hand rule.

Since the vector r in (3.47) is independent of the choice of the
origin O of the coordinate axes, we note that the same result would
have been obtained if the moments of F and —F had been computed
about a different point O’. Thus, the moment M of a couple is a free
vector (Sec. 2.3) which can be applied at any point (Fig. 3.32).

From the definition of the moment of a couple, it also follows
that two couples, one consisting of the forces F; and —F), the other
of the forces Fy and —F, (Fig. 3.33), will have equal moments if

Fid, = Fyd, (3.49)

and if the two couples lie in parallel planes (or in the same plane)
and have the same sense.

Fig. 3.33



3.13 EQUIVALENT COUPLES 3.13 Equivalent Couples ~ Qf

Figure 3.34 shows three couples which act successively on the same
rectangular box. As seen in the preceding section, the only motion a
couple can impart to a rigid body is a rotation. Since each of the
three couples shown has the same moment M (same direction and
same magnitude M = 120 b - in.), we can expect the three couples
to have the same effect on the box.
y Yy
M

30 1b

Fig. 3.34 (a) b) (c)

As reasonable as this conclusion appears, we should not accept
it hastily. While intuitive feeling is of great help in the study of mechan-
ics, it should not be accepted as a substitute for logical reasoning.
Before stating that two systems (or groups) of forces have the same
effect on a rigid body, we should prove that fact on the basis of the
experimental evidence introduced so far. This evidence consists of
the parallelogram law for the addition of two forces (Sec. 2.2) and
the principle of transmissibility (Sec. 3.3). Therefore, we will state
that two systems of forces are equivalent (i.e., they have the same
effect on a rigid body) if we can transform one of them into the other
by means of one or several of the following operations: (1) replacing
two forces acting on the same particle by their resultant; (2) resolving
a force into two components; (3) canceling two equal and opposite
forces acting on the same particle; (4) attaching to the same particle
two equal and opposite forces; (5) moving a force along its line of
action. Each of these operations is easily justified on the basis of the
parallelogram law or the principle of transmissibility.

Let us now prove that two couples having the same moment M
are equivalent. First consider two couples contained in the same
plane, and assume that this plane coincides with the plane of the
figure (Fig. 3.35). The first couple consists of the forces F; and —F,
of magnitude F;, which are located at a distance d, from each other
(Fig. 3.35a), and the second couple consists of the forces Fy and —F,
of magnitude F,, which are located at a distance d; from each other
(Fig. 3.35d). Since the two couples have the same moment M, which
is perpendicular to the plane of the figure, they must have the same
sense (assumed here to be counterclockwise), and the relation

Fldl = F2d2 (349)
must be satisfied. To prove that they are equivalent, we shall show

that the first couple can be transformed into the second by means
of the operations listed above.
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Denoting by A, B, C, and D the points of intersection of the
lines of action of the two couples, we first slide the forces F; and —F,
until they are attached, respectively, at A and B, as shown in Fig. 3.35b.
The force F; is then resolved into a component P along line AB and
a component Q along AC (Fig. 3.35¢); similarly, the force —F, is
resolved into —P along AB and —Q along BD. The forces P and —P
have the same magnitude, the same line of action, and opposite sense;
they can be moved along their common line of action until they are
applied at the same point and may then be canceled. Thus the couple
formed by F; and —F, reduces to a couple consisting of Q and —Q.

We will now show that the forces Q and —Q are respectively
equal to the forces —F; and Fy. The moment of the couple formed
by Q and —Q can be obtained by computing the moment of Q about
B; similarly, the moment of the couple formed by F; and —F is the
moment of F; about B. But, by Varignon’s theorem, the moment of
F, is equal to the sum of the moments of its components P and Q.
Since the moment of P about B is zero, the moment of the couple
formed by Q and —Q must be equal to the moment of the couple
formed by F; and —F;. Recalling (3.49), we write

QdQ = Fldl = deg and Q = F2

Thus the forces Q and —Q are respectively equal to the forces —F,
and F,, and the couple of Fig. 3.35¢ is equivalent to the couple of
Fig. 3.35d.

Next consider two couples contained in parallel planes P, and
P,; we will prove that they are equivalent if they have the same
moment. In view of the foregoing, we can assume that the couples
consist of forces of the same magnitude F acting along parallel lines
(Fig. 3.36a and d). We propose to show that the couple contained
in plane P can be transformed into the couple contained in plane
P, by means of the standard operations listed above.

Let us consider the two planes defined respectively by the lines of
action of F; and —F, and by those of —F,; and F, (Fig. 3.36b). At
a point on their line of intersection we attach two forces F5 and —Fj,
respectively equal to F; and —F;. The couple formed by F; and —F;
can be replaced by a couple consisting of F; and —F, (Fig. 3.36¢),
since both couples clearly have the same moment and are contained
in the same plane. Similarly, the couple formed by —F; and F; can
be replaced by a couple consisting of —F; and Fy. Canceling the two
equal and opposite forces F3 and —F;, we obtain the desired couple
in plane P, (Fig. 3.36d). Thus, we conclude that two couples having



the same moment M are equivalent, whether they are contained in
the same plane or in parallel planes.

The property we have just established is very important for the
correct understanding of the mechanics of rigid bodies. It indicates
that when a couple acts on a rigid body, it does not matter where
the two forces forming the couple act or what magnitude and direc-
tion they have. The only thing which counts is the moment of the
couple (magnitude and direction). Couples with the same moment
will have the same effect on the rigid body.

3.14 ADDITION OF COUPLES

Consider two intersecting planes P; and P, and two couples acting
respectively in P; and Py;. We can, without any loss of generality,
assume that the couple in P, consists of two forces F; and —F; per-
pendicular to the line of intersection of the two planes and acting
respectively at A and B (Fig. 3.37a). Similarly, we assume that the
couple in Py consists of two forces Fy and —F; perpendicular to AB
and acting, respectively, at A and B. It is clear that the resultant R of
F, and F; and the resultant —R of —F; and —F, form a couple.
Denoting by r the vector joining B to A and recalling the definition
of the moment of a couple (Sec. 3.12), we express the moment M
of the resulting couple as follows:

M=rXR=rxF, +F,)
and, by Varignon’s theorem,
M =r X Fl +r X F2

But the first term in the expression obtained represents the moment
M, of the couple in P, and the second term represents the moment
M, of the couple in P,. We have

M = Ml + MQ (3'50)

and we conclude that the sum of two couples of moments M; and
M, is a couple of moment M equal to the vector sum of M; and M,
(Fig. 3.37D).

3.15 COUPLES CAN BE REPRESENTED BY VECTORS

As we saw in Sec. 3.13, couples which have the same moment,
whether they act in the same plane or in parallel planes, are equiva-
lent. There is therefore no need to draw the actual forces forming a
given couple in order to define its effect on a rigid body (Fig. 3.38a).
It is sufficient to draw an arrow equal in magnitude and direction to
the moment M of the couple (Fig. 3.38b). On the other hand, we
saw in Sec. 3.14 that the sum of two couples is itself a couple and
that the moment M of the resultant couple can be obtained by form-
ing the vector sum of the moments M; and M; of the given couples.
Thus, couples obey the law of addition of vectors, and the arrow used
in Fig. 3.38b to represent the couple defined in Fig. 3.38a can truly
be considered a vector.

3.15 Couples Can Be Represented by Vectors

Fig. 3.37

97
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Fig. 3.38

The vector representing a couple is called a couple vector. Note
that, in Fig. 3.38, a red arrow is used to distinguish the couple vector,
which represents the couple itself, from the moment of the couple,
which was represented by a green arrow in earlier figures. Also note
that the symbol Y is added to this red arrow to avoid any confusion
with vectors representing forces. A couple vector, like the moment
of acouple, is a free vector. Its point of application, therefore, can
be chosen at the origin of the system of coordinates, if so desired
(Fig. 3.38¢). Furthermore, the couple vector M can be resolved into
component vectors M,, M,, and M., which are directed along the
coordinate axes (Fig. 3.38d). These component vectors represent cou-
ples acting, respectively, in the yz, zx, and xy planes.

<

AT

3.16 RESOLUTION OF A GIVEN FORCE INTO A
FORCE AT O AND A COUPLE

Consider a force F acting on a rigid body at a point A defined by
the position vector r (Fig. 3.39a). Suppose that for some reason we
would rather have the force act at point O. While we can move F
along its line of action (principle of transmissibility), we cannot move
it to a point O which does not lie on the original line of action with-
out modifying the action of F on the rigid body.

(a) (b) ©)
Fig. 3.39

We can, however, attach two forces at point O, one equal to F
and the other equal to —F, without modifying the action of the orig-
inal force on the rigid body (Fig. 3.39b). As a result of this transforma-
tion, a force F is now applied at O; the other two forces form a
couple of moment My, = r X F. Thus, any force F acting on a rigid
body can be moved to an arbitrary point O provided that a couple
is added whose moment is equal to the moment of F about O. The



couple tends to impart to the rigid body the same rotational motion
about O that the force F tended to produce before it was transferred
to O. The couple is represented by a couple vector My perpendicular
to the plane containing r and F. Since M, is a free vector, it may
be applied anywhere; for convenience, however, the couple vector is
usually attached at O, together with F, and the combination obtained
is referred to as a force-couple system (Fig. 3.39c).

If the force F had been moved from A to a different point O’
(Fig. 3.40a and ¢), the moment My = r’ X F of F about O’ should
have been computed, and a new force-couple system, consisting of
F and of the couple vector My, would have been attached at O'.
The relation existing between the moments of F about O and O’ is
obtained by writing

My =r XF=+s)XF=rXF+sXF
My =My +s XF (3.51)

where s is the vector joining O' to O. Thus, the moment My of F
about O is obtained by adding to the moment My, of F about O the
vector product s X F representing the moment about O’ of the force
F applied at O.

(a) ) (c)
Fig. 3.40

This result could also have been established by observing that,
in order to transfer to O’ the force-couple system attached at O
(Fig. 3.40b and ¢), the couple vector My can be freely moved to O';
to move the force F from O to O, however, it is necessary to add
to F a couple vector whose moment is equal to the moment about
O’ of the force F applied at O. Thus, the couple vector My must
be the sum of M, and the vector s X F.

As noted above, the force-couple system obtained by transferring
a force F from a point A to a point O consists of F and a couple vector
M,, perpendicular to F. Conversely, any force-couple system consisting
of a force F and a couple vector My which are mutually perpendicular
can be replaced by a single equivalent force. This is done by moving
the force F in the plane perpendicular to M until its moment about
O is equal to the moment of the couple to be eliminated.

3.16 Resolution of a Given Force into a
Force at O and a Couple
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X

M, +(240 1b-m.>%
>

— (540 Ibein.) i
4@%—
22

7M.+ (180 1brin) k

Yy

SAMPLE PROBLEM 3.6

Determine the components of the single couple equivalent to the two
couples shown.

SOLUTION

Our computations will be simplified if we attach two equal and opposite
20-1b forces at A. This enables us to replace the original 20-lb-force couple
by two new 20-Ib-force couples, one of which lies in the zx plane and the
other in a plane parallel to the xy plane. The three couples shown in the
* adjoining sketch can be represented by three couple vectors M,, M, and
M, directed along the coordinate axes. The corresponding moments are

M, = —(30 1b)(18 in.) = =540 1b - in.
M, = +(20 Ib)(12 in.) = +240 Ib - in.
M. = +(20 1b)(9 in.) = +180 Ib - in.

These three moments represent the components of the single couple M
equivalent to the two given couples. We write

M= —(5401b - in.)i + (240 Ib - in.)j + (180 Ib - in.)k

Alternative Solution. The components of the equivalent single couple M
can also be obtained by computing the sum of the moments of the four
given forces about an arbitrary point. Selecting point D, we write

M =M, = (18 in.)j X (=30 bk + [(9 in.)j — (12 in.)k] X (=20 Ib)i

and, after computing the various cross products,

M= —(5401b - in.)i + (240 Ib - in.)j + (180 1b - in.)k



SAMPLE PROBLEM 3.7

Replace the couple and force shown by an equivalent single force applied
to the lever. Determine the distance from the shaft to the point of applica-
tion of this equivalent force.

SOLUTION
— (400 N)j First, the given force and couple are replaced by an equivalent force-couple
system at O. We move the force F = —(400 N)j to O and at the same time
add a couple of moment My, equal to the moment about O of the force in
its original position.

— (60 N-m) k N

O

— (24 N'm)k )

150 mm (24 N-m)k

[(0.150m)i + (0.260m)j] X (—400N)j
= — (60N - m)k

This couple is added to the couple of moment —(24 N - m)k formed by the
two 200-N forces, and a couple of moment —(84 N - m)k is obtained. This
last couple can be eliminated by applying F at a point C chosen in such a
way that

—(84N -m)k = OC x F

— (400 N)j = [(OC) cos 60°i + (OC) sin 60°j] X (—400N)j
— (84 N-m)k 60 = —(OC)cos 60°(400N)k
o o
We conclude that
— (400 N)j
(OC) cos 60° = 0.210 m = 210 mm OC = 420 mm
_ (@4 N-m)k Alternative Solution. Since the effect of a couple does not depend on its

location, the couple of moment —(24 N - m)k can be moved to B; we thus
obtain a force-couple system at B. The couple can now be eliminated by
applying F at a point C chosen in such a way that

— (24 N-m)k

(

~ (400 N)j —(24N-m)k = BC x F
= —(BC) cos 60°(400N)k

— (400 N)j

150 mm
We conclude that
B — (24 N'm)k
(BC) cos 60° = 0.060 m = 60 mm BC = 120 mm
) . OC = OB + BC = 300 mm + 120 mm OC = 420 mm
— (400 N)j
~ (400 N)j
O O
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PROBLEMS

3.49

3.50

3.51

A couple formed by two 975-N forces is applied to the pulley
assembly shown. Determine an equivalent couple that is formed
by (a) vertical forces acting at A and C, (b) the smallest possible
forces acting at B and D, (c¢) the smallest possible forces that can
be attached to the assembly.

975 N
R o
100 n;m(:h/ ( -.
o o)

A O
|<—>L—B 200 mm—»l

160 mm

_°

,_.
SN

=
2
2

2y

975

=

Fig. P3.49

Four 1-in.-diameter pegs are attached to a board as shown. Two
strings are passed around the pegs and pulled with forces of mag-
nitude P = 20 b and Q = 35 Ib. Determine the resultant couple
acting on the board.

PN N
ﬁ . P
4 in.
| g 12
= ! i | __2 in.
|
1

"4in. 3in.|5in. 3in.

/Q
Fig. P3.50

Two 80-N forces are applied as shown to the corners B and D of
a rectangular plate. (¢) Determine the moment of the couple
formed by the two forces by resolving each force into horizontal
and vertical components and adding the moments of the two
resulting couples. (b) Use the result obtained to determine the
perpendicular distance between lines BE and DF.

E
2 @
50°
80 N
300 mm
80 N
50°
A F B
500 mm

Fig. P3.51



3.52 A piece of plywood in which several holes are being drilled succes- Problems 103
sively has been secured to a workbench by means of two nails. Know-
ing that the drill exerts a 12 N + m couple on the piece of plywood,
determine the magnitude of the resulting forces applied to the nails
if they are located (a) at A and B, (b) at B and C, (c) at A and C.

Co\
e
B 240 mm

450 mm '\/
Fig. P3.52

3.53 Four 1j-in.-diameter pegs are attached to a board as shown. Two 401b
strings are passed around the pegs and pulled with the forces indi-
cated. (@) Determine the resultant couple acting on the board. (b)
If only one string is used, around which pegs should it pass and in
what directions should it be pulled to create the same couple with
the minimum tension in the string? (¢) What is the value of that
minimum tension?

60 1b

3.54 Four pegs of the same diameter are attached to a board as shown.
Two strings are passed around the pegs and pulled with the
forces indicated. Determine the diameter of the pegs knowing
that the resultant couple applied to the board is 1132.5 Ib - in.
counterclockwise. Fig. P3.53 and P3.54

3.55 The axles and drive shaft of a rear-wheel drive automobile are
acted upon by the three couples shown. Replace these three cou-
ples by a single equivalent couple.

250 N-m

f)/

5 &

350 N-m x

/f\) 150 N-m
-

-
z

Fig. P3.55

3.56 Two shafts for a speed-reducer unit are subjected to couples of
magnitude M; = 12 1b - ft and M, = 5 1b - ft. Replace the two
couples by a single equivalent couple, specifying its magnitude and
the direction of its axis. Fig. P3.56

z
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3.57 Replace the two couples shown by a single equivalent couple,
specifying its magnitude and the direction of its axis.

Yy

160 mm
A

Fig. P3.57

3.58 Solve Prob. 3.57 assuming that two 10-N vertical forces have been
added, one acting upward at C and the other downward at B.

3.59 Shafts A and B connect the gear box to the wheel assemblies of a
tractor, and shaft C connects it to the engine. Shafts A and B lie
in the vertical yz plane, while shaft C is directed along the x axis.
Replace the couples applied to the shafts by a single equivalent
couple, specifying its magnitude and the direction of its axis.

Y
900 Ib-ft

o B

z % 1200 Ibeft

Fig. P3.59

3.60 M, and M, represent couples that are contained in the planes ABC
and ACD, respectively. Assuming that M; = M, = M, determine a
single couple equivalent to the two given couples.

Fig. P3.60



3.61 A 60-1b vertical force P is applied at A to the bracket shown, which Problems 105
is held by screws at B and C. () Replace P by an equivalent force-

couple system at B. (b) Find the two horizontal forces at B and C
that are equivalent to the couple obtained in part a. Pl 75—
3.62 The force and couple shown are to be replaced by an equivalent
single force. Determine the required value of « so that the line of A 3in
action of the single equivalent force will pass through point B. B = 4%
4.5 in.
150 N c 960 N o _1
Fig. P3.61

260 1b

Fig. P3.62 and P3.63 25in. /
A

3.63 Knowing that & = 60°, replace the force and couple shown by a -T_
single force applied at a point located (a) on line AB, (b) on line i
CD. In each case determine the distance from the center O to the
point of application of the force.

3.64 A 260-1b force is applied at A to the rolled-steel section shown.
Replace that force by an equivalent force-couple system at the
center C of the section.

3.65 Force P has a magnitude of 300 N and is applied at A in a direc-
tion perpendicular to the handle (o = 0). Assuming 8 = 30°,
replace force P by (a) an equivalent force-couple system at B, (b)
an equivalent system formed by two parallel forces applied at B

and C.
P
A
¢ B
90° \\
\
250 mm \ B
N\
\
\
150 mm @C
¥ p
W —
Fig. P3.65 > ’
3.66 A force and couple act as shown on a square plate of side a = 25 in. ¢
Knowing that P = 60 b, Q = 40 lb, and a = 50°, replace the -0 J

given force and couple by a single force applied at a point located <=
(a) on line AB, (b) on line AC. In each case determine the distance
from A to the point of application of the force. Fig. P3.66
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3.67 Replace the 250-kN force P by an equivalent force-couple system
at G.

X

\

Fig. P3.67

3.68 A 4-kip force is applied on the outside face of the flange of a steel
channel. Determine the components of the force and couple at G
that are equivalent to the 4-kip load.

y
4 kips
@ @ 1ps
( 1.375 in.
4 in. )
PRI
< '
0.58 in.
z
Fig. P3.68

3.69 The 12-ft boom AB has a fixed end A, and the tension in cable BC
is 570 Ib. Replace the force that the cable exerts at B by an equiva-
lent force-couple system at A.

Fig. P3.69



3.70 Replace the 150-N force by an equivalent force-couple system Problems 107
at A.

3.71 The jib crane shown is orientated so that its boom AD is parallel
to the x axis and is used to move a heavy crate. Knowing that the
tension in cable AB is 2.6 kips, replace the force exerted by the
cable at A by an equivalent force-couple system at the center O of
the base of the crane.

10 ft

Fig. P3.70

15 ft

//
/ - 6.25 ft

z

Fig. P3.71

3.72 A 200-N force is applied as shown on the bracket ABC. Determine
the components of the force and couple at A that are equivalent
to this force.

200 N

Fig. P3.72




108  Rigid Bodies: Equivalent Systems of Forces 3.17 REDUCTION OF A SYSTEM OF FORCES TO ONE
FORCE AND ONE COUPLE

Consider a system of forces Fy, Fy, Fs, . . ., acting on a rigid body at
the points Ay, Ay, As, . . ., defined by the position vectors ry, s, 13,
etc. (Fig. 3.41a). As seen in the preceding section, F; can be moved
from A, to a given point O if a couple of moment M; equal to the
moment r; X F; of F; about O is added to the original system of
forces. Repeating this procedure with Fy, F3, . . ., we obtain the

system shown in Fig. 3.41b, which consists of the original forces, now
acting at O, and the added couple vectors. Since the forces are now
concurrent, they can be added vectorially and replaced by their
resultant R. Similarly, the couple vectors My, My, M3, . . ., can be
added vectorially and replaced by a single couple vector ME. Any
system of forces, however complex, can thus be reduced to an equiv-
alent force-couple system acting at a given point O (Fig. 3.41c). We
should note that while each of the couple vectors My, My, M3, . . .,
in Fig. 3.41b is perpendicular to its correspondlng force, the resul-
tant force R and the resultant couple vector ME in Fi ig. 3.41c¢ will
not, in general, be perpendicular to each other.

The equivalent force-couple system is defined by the equations

R=3F ME=3M,=3(rx%xF) (3.52)

which express that the force R is obtained by adding all the forces
M3 v of the system, while the moment of the resultant couple vector ME,
called the moment resultant of the system, is obtained by adding the
o ‘% moments about O of all the forces of the system.
o' Once a given system of forces has been reduced to a force and
a couple at a point O, it can easily be reduced to a force and a couple
R at another point O'. While the resultant force R will remain
ME, unchdnged the new moment resultant Mgy will be equal to the
oo @ sum of M2 and the moment about O’ of the force R attached at O
(Fig. 3.42). We have

Fig. 3.42 ME =ME +s xR (3.53)



In practice, the reduction of a given system of forces to a single
force R at O and a couple vector Mg will be carried out in terms of
components. Resolving each position vector r and each force F of
the system into rectangular components, we write

r

F

x +yj +zk (3.54)
Fi + F,j + Fk (3.55)

Substituting for r and F in (3.52) and factoring out the unit vectors
i, j, k, we obtain R and MZE in the form

R = Ri+ R,j + Rk M{ = M + Mjj + Mk (3.56)

The components R,, R,, R, represent, respectively, the sums of the
x, y, and z components of the given forces and measure the ten-
dency of the system to impart to the rigid body a motion of transla-
tion in the x, y, or z direction. Similarly, the components MR ij,
M~E represent, respectively, the sum of the moments of the given
forces about the x, y, and z axes and measure the tendency of the
system to impart to the rigid body a motion of rotation about the x,
y, or z axis.

If the magnitude and direction of the force R are desired, they
can be obtained from the components R,, R,, R. by means of the
relations (2.18) and (2.19) of Sec. 2.12; similar computations will
yield the magnitude and direction of the couple vector ME.

3.18 EQUIVALENT SYSTEMS OF FORCES

We saw in the preceding section that any system of forces acting on
a rigid body can be reduced to a force-couple system at a given point
O. This equivalent force-couple system characterizes completely the
effect of the given force system on the rigid body. Two systems of
forces are equivalent, therefore, if they can be reduced to the same
force-couple system at a given point O. Recalling that the force-
couple system at O is defined by the relations (3.52), we state that
two systems of forces, ¥y, ¥y, F5, . .., and F{, Fy, F5, . . ., which
act on the same rigid body are equivalent if, and only if, the sums
of the forces and the sums of the moments about a given point O of
the forces of the two systems are, respectively, equal. Expressed
mathematically, the necessary and sufficient conditions for the two
systems of forces to be equivalent are

>F = 2F’ and M, = 2My (3.57)

Note that to prove that two systems of forces are equivalent, the
second of the relations (3.57) must be established with respect to
only one point O. It will hold, however, with respect to any point if
the two systems are equivalent.

Resolving the forces and moments in (3.57) into their rectangular
components, we can express the necessary and sufficient conditions

3.18 Equivalent Systems of Forces
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for the equivalence of two systems of forces acting on a rigid body
as follows:

2F, = 2F; 3F, = 3F, 2F, = 3F} (3.55)
M, = ZM, 3IM,=3M, M, =3IM;

These equations have a simple physical significance. They express

that two systems of forces are equivalent if they tend to impart to

the rigid body (1) the same translation in the x, y, and z directions,

respectively, and (2) the same rotation about the «x, y, and z axes,

respectively.

3.19 EQUIPOLLENT SYSTEMS OF VECTORS

In general, when two systems of vectors satisty Eqs. (3.57) or (3.58),
i.e., when their resultants and their moment resultants about an arbi-
trary point O are respectively equal, the two systems are said to be
equipollent. The result established in the preceding section can thus
be restated as follows: If two systems of forces acting on a rigid body
are equipollent, they are also equivalent.

It is important to note that this statement does not apply to any
system of vectors. Consider, for example, a system of forces acting on
a set of independent particles which do not form a rigid body. A dif-
ferent system of forces acting on the same particles may happen to be
equipollent to the first one; i.e., it may have the same resultant and
the same moment resultant. Yet, since different forces will now act on
the various particles, their effects on these particles will be different;
the two systems of forces, while equipollent, are not equivalent.

3.20 FURTHER REDUCTION OF A SYSTEM OF FORCES

We saw in Sec. 3.17 that any given system of forces acting on a rigid
body can be reduced to an equivalent force-couple system at O con-
sisting of a force R equal to the sum of the forces of the system and
a couple vector M of moment equal to the moment resultant of the
system.

When R = 0, the force-couple system reduces to the couple
vector Mg, The given system of forces can then be reduced to a
single couple, called the resultant couple of the system.

Let us now investigate the conditions under which a given system
of forces can be reduced to a single force. It follows from Sec. 3.16
that the force-couple system at O can be replaced by a single force R
acting along a new line of action if R and Mg are mutually perpen-
dicular. The systems of forces which can be reduced to a single force,
or resultant, are therefore the systems for which the force R and the
couple vector ME are mutually perpendicular. While this condition is
generally not satisfied by systems of forces in space, it will be satisfied
by systems consisting of (1) concurrent forces, (2) coplanar forces, or
(3) parallel forces. These three cases will be discussed separately.

1. Concurrent forces are applied at the same point and can there-
fore be added directly to obtain their resultant R. Thus, they



always reduce to a single force. Concurrent forces were dis- 3.20 Further Reduction of a System of Forces 1171
cussed in detail in Chap. 2.

2. Coplanar forces act in the same plane, which may be assumed
to be the plane of the figure (Fig. 3.43a). The sum R of the
forces of the system will also lie in the plane of the figure,
while the moment of each force about O, and thus the moment
resultant Mg, will be perpendicular to that plane. The force-
couple system at O consists, therefore, of a force R and a
couple vector Mg which are mutually perpendicular (Fig.
3.43b).1 They can be reduced to a single force R by moving
R in the plane of the figure until its moment about O becomes
equal to Mg. The distance from O to the line of action of R
is d = My/R (Fig. 3.43¢).

/R
—_— ™ —_—
j— MS j—

F, ! O'J * % y *
A
F3
d MER
(a) D) ()
Fig. 3.43

As noted in Sec. 3.17, the reduction of a system of forces
is considerably simplified if the forces are resolved into rectan-
gular components. The force-couple system at O is then char-
acterized by the components (Fig. 3.44a)

R, =3F, R,=3F, M!=M;=3M, (3.59)

Yy

x ME/R,

(a) )

Fig. 3.44

tSince the couple vector Mg is perpendicular to the plane of the figure, it has been
represented by the symbol . A counterclockwise couple  represents a vector pointing
out of the paper, and a clockwise couple ) represents a vector pointing into the paper.



112 Rigid Bodies: Equivalent Systems of Forces To reduce the system to a single force R, we express that the
moment of R about O must be equal to Mg, Denoting by x and
y the coordinates of the point of application of the resultant
and recalling formula (3.22) of Sec. 3.8, we write

xR, — yR, = Mj
which represents the equation of the line of action of R. We
can also determine directly the x and y mtercepts of the line
of action of the resultant by noting that Mg must be equal to
the moment about O of the y component of R when R is
attached at B (Fig. 3.44b) and to the moment of its x compo-
nent when R is attached at C (Fig. 3.44c).

3. Parallel forces have parallel lines of action and may or may not
have the same sense. Assuming here that the forces are parallel to
the y axis (Fig. 3.45a), we note that their sum R will also be paral-
lel to the y axis. On the other hand, since the moment of a given
force must be perpendicular to that force, the moment about O of
each force of the system, and thus the moment resultant Mg, will
lie in the zx plane. The force-couple system at O consists, therefore,

y ¥, y‘
F
o - o M -
- X C X
BN
- Fy \IU
(a) ) ()
Fig. 3.45

of a force R and a couple vector ME which are mutually perpen-
dicular (Fig. 3.45b). They can be reduced to a single force R
(Fig. 3.45¢) or, if R = 0, to a single couple of moment M5,

In practice, the force-couple system at O will be charac-
terized by the components

R, = 3F, =3M, Mi=3M. (3.60)

y
The reduction of the system to a single force can be carried
out by moving R to a new point of application A(x 0, z) chosen

so that the moment of R about O is equal to Mg. We write
r X R =M}
(i +zk) X R,j = Mi + Mk
By computing the vector products and equating the coefficients
of the corresponding unit vectors in both members of the equa-
tion, we obtain two scalar equations which define the coordi-
nates of A:
—zR, = M} xR, = M

These equations express that the moments of R about the x
and z axes must, respectively, be equal to My and M~
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SAMPLE PROBLEM 3.8

0N
R | :
. A 4.80-m-long beam is subjected to the forces shown. Reduce the given
A —obdo- system of forces to (@) an equivalent force-couple system at A, (b) an equiva-
L ‘L lent force-couple system at B, (¢) a single force or resultant.
L6 m 12m 2m — Note. Since the reactions at the supports are not included in the

given system of forces, the given system will not maintain the beam in
equilibrium.

A

150j  —600j 100 -250j  SOLUTION

v ¢
A JLB a. Force-Couple System at A. The force-couple system at A equivalent to
|, 6i—>| the given system of forces consists of a force R and a couple M} defined
] . as follows:
— 2.8i
481 R = 2F
. _ . - . q e .
e i (21<51~0xN)F | (600 N)j + (100 N)j — (250 N)j = —(600 N)j
JL = (1.6i) X (—600j) + (2.8i) x (100j) + (4.81) X (—250j)
il B‘ = —(1880 N - m)k

— (1880 N-m) k The equivalent force-couple system at A is thus
R = 600 N | ME =180 N - m )

b. Force-Couple System at B. We propose to find a force-couple system
at B equivalent to the force-couple system at A determined in part a. The
— (1880 N-m) k force R is unchanged, but a new couple M must be determined, the

( JL ) moment of which is equal to the moment about B of the force-couple sys-
Al B

— (600 N)j

tem determined in part a. Thus, we have

! 48m (2850 N-m)k  ME =M + BA x R
— (600 N) j = —(1880N - m)k + (—4.8m)i X (—600N)j
JL ‘ = —(1880N - m)k + (2880N - m)k = +(1000N - m)k
l ) The equivalent force-couple system at B is thus
A B
(1000 N-m) k R = 600 N | M5 = 1000 N - m )

c. Single Force or Resultant. The resultant of the given system of forces
is equal to R, and its point of application must be such that the moment of
R about A is equal to ME. We write

r Xx R =M}
xi X (=600 N)j = —(1880 N - m)k
—x(600 N)k = —(1880 N - m)k

— (600 N) and conclude that x = 3.13 m. Thus, the single force equivalent to the given
‘ system is defined as

Al

| 5 R = 600 N | x = 3.13m
I x |
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SAMPLE PROBLEM 3.9

Four tugboats are used to bring an ocean liner to its pier. Each tugboat
exerts a 5000-1b force in the direction shown. Determine (a) the equivalent
force-couple system at the foremast O, (b) the point on the hull where a
single, more powerful tugboat should push to produce the same effect as
the original four tugboats.

SOLUTION

a. Force-Couple System at O. Each of the given forces is resolved into
components in the diagram shown (kip units are used). The force-couple
system at O equivalent to the given system of forces consists of a force R
and a couple MZE defined as follows:

R = SF
= (250i — 4.33)) + (3.00i — 4.00§) + (—5.00j) + (3.54i + 3.54)
= 9.04i — 9.79j

ME = 3 x F)

= (—90i + 50§) X (
+ (100i + 70§) X
+ (400i + 70§) % (—5.00j)
+ (300i — 70j) X (3.54i + 3.54j)
(390 — 125 — 400 — 210 — 2000 + 1062 + 248)k
= —1035k

2.50i — 4.33j)
(3.00i — 4.005)

The equivalent force-couple system at O is thus
R = (9.04 kips)i — (9.79 kips)j ~ Mg = —(1035 kip - ftk
or R = 13.33 kips ~547.3°  Mp = 1035 kip - ft )

Remark. Since all the forces are contained in the plane of the figure,
we could have expected the sum of their moments to be perpendicular to
that plane. Note that the moment of each force component could have been
obtained directly from the diagram by first forming the product of its mag-
nitude and perpendicular distance to O and then assigning to this product
a positive or a negative sign depending upon the sense of the moment.

b. Single Tugboat. The force exerted by a single tugboat must be equal
to R, and its point of application A must be such that the moment of R
about O is equal to ME, Observing that the position vector of A is
r =xi + 70j
we write
r X R =M}
(xi + 70j) X (9.04i — 9.79j) = —1035k
—x(9.79)k — 633k = —1035k x = 41.1 ft
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SAMPLE PROBLEM 3.10

Three cables are attached to a bracket as shown. Replace the forces
exerted by the cables with an equivalent force-couple system at A.

SOLUTION

We first determine the relative position vectors drawn from point A to the
points of application of the various forces and resolve the forces into rect-
angular components. Observing that Fi = (700 N)Ag; where

BE  75i — 150j + 50k
BE 175

App =

we have, using meters and newtons,

—

rya = AB = 0.075i + 0.050k
—

reu = AC = 0.0751 — 0.050k
—

rpa = AD = 0.100i — 0.100j

Fp = 300i — 6005 + 200k

F. = 707i — 707k

Fp = 600i + 1039j

The force-couple system at A equivalent to the given forces consists

of a force R = 2F and a couple Mﬁ = 3(r X F). The force R is readily
obtained by adding respectively the x, y, and z components of the forces:

R = 3F = (1607 N)i + (439 N)j — (507 N)k

(439 N)j A — (507 N) k . n - .
o The computation of My will be facilitated if we express the moments of the
(118.9 N-m) k C“’ forces in the form of determinants (Sec. 3.8):
(1607 N) i ) . .
© (30 Nem) i i J k
| rza X Fp = (0.075 0 0.050 | = 30i — 45k
300 —600 200
a i j k
© v rom X Fo = 0.075 0 —0.050| — 17.68j
707 0 —707
i k
rpa X Fp = 10.100 —0.100 0 = 163.9k
z 600 1039 0

Adding the expressions obtained, we have

M§ =3(0r x F) = (30N - m)i + (17.68 N - m)j + (1189 N - m)k

The rectangular components of the force R and the couple M5 are shown
in the adjoining sketch.
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g SAMPLE PROBLEM 3.11

A square foundation mat supports the four columns shown. Determine the
magnitude and point of application of the resultant of the four loads.

40 kips

8 kips 12 kips

SOLUTION

We first reduce the given system of forces to a force-couple system at the
origin O of the coordinate system. This force-couple system consists of a
force R and a couple vector M{, defined as follows:

R = 3F ME = S x F)

The position vectors of the points of application of the various forces are

Yy determined, and the computations are arranged in tabular form.
, ft F, ki x F, kip - ft
— (80 kips)j = ps r P
0 —40j 0
@80 kipfk 9 (2 10i —12 — 120k
10i + 5k —§j 40i — SOk
4i + 10k —20j 200i — SOk
\ 1 ] 1
x R = —80j M§ = 240i — 280k

A\

Since the force R and the couple vector M2 are mutually perpendicu-
lar, the force-couple system obtained can be reduced further to a single force
R. The new point of application of R will be selected in the plane of the mat
and in such a way that the moment of R about O will be equal to M. Denot-
ing by r the position vector of the desired point of application, and by x and
z its coordinates, we write

r X R=Mj
— (80 kips)j (xi + zk) X (—80j) = 240i — 280k
—80xk + 80zi = 240i — 280k

from which it follows that

T~ —80x = —280 80z = 240
x x = 3.50 ft z = 3.00 ft

We conclude that the resultant of the given system of forces is

R = 80 kipsl atx = 3.50 ft, z = 3.00 ft
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PROBLEMS

3.73 A 12-ft beam is loaded in the various ways represented in the fig-
ure. Find two loadings that are equivalent.

200 Ib 200 1b 200 Ib 200 1b

12 ft JL
w—C, g G e

1800 600 1800 1800
(@) Ib-ft Ib-ft b) Ib-ft () () Ib-ft

200 Ib 200 Ib 200 1b 200 Ib

Cﬁw ﬁg Jﬁ)

1800 600 1800 600
(e) Ib-ft Ib-ft 2 (@) Ib-ft (h) Ib-ft
Fig. P3.73
3.74 A 12-ft beam is loaded as shown. Determine the loading of Prob.  1501b 50 Ib

3.73 that is equivalent to this loading.

3.75 By driving the truck shown over a scale, it was determined that the
loads on the front and rear axles are, respectively, 18 kN and 12 kN A A
when the truck is empty. Determine (a) the location of the center 12 ft
of gravity of the truck, (b) the weight and location of the center of Fig. P3.74
gravity of the heaviest load that can be carried by the truck if the
load on each axle is not to exceed 40 kN. 12 kKN 18 kKN

3.76 Four packages are transported at constant speed from A to B by
the conveyor. At the instant shown, determine the resultant of the
loading and the location of its line of action.

2 ft

4 fe 4 ft 5 ft—| |
500 Ib | 5m |

Fig. P3.75

150 1b
250 Ib

| 2m |

‘ Im
| 18 ft A B D
Fig. P3.76

3.77 Determine the distance from point A to the line of action of the
resultant of the three forces shown when (@) ¢ = 1 m, (b) a = 1.5 m,
(¢) a = 2.5 m. Fig. P3.77
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118 Rigid Bodies: Equivalent Systems of Forces 3.78 Two parallel forces P and Q are applied at the ends of a beam AB
of length L. Find the distance x from A to the line of action of
their resultant. Check the formula obtained by assuming L =
200 mm and (¢) P = 50 N down, Q = 150 N down; (b) P =
50 N down, Q = 150 N up.

Q
~— X —>
Y
A B

| L |
Fig. P3.78

7 ft 3.79 Three forces act as shown on a traffic-signal pole. Determine (a) the
equivalent force-couple system at A, (b) the resultant of the system
B and the point of intersection of its line of action with the pole.

455 1b 3.80 Four forces act on a 700 X 375 mm plate as shown. (¢) Find the
' ‘ resultant of these forces. (b) Locate the two points where the line
250 1b

1,200 b of action of the resultant intersects the edge of the plate.

24 ft

340 N

C 1A

-
10 ft—

Fig. P3.79

375 mm

A

760 N

~—— 500 mm ——|=——

200 mm

600 N
Fig. P3.80

3.81 The three forces shown and a couple of magnitude M = 80 1b - in.
are applied to an angle bracket. (a) Find the resultant of this sys-
tem of forces. (b) Locate the points where the line of action of the
resultant intersects line AB and line BC.

251b
/ 60°

301b |10
A 12in.

6in.

401b
2001b -in.  4001b - in.

Fig. P3.81

3.82 A bracket is subjected to the system of forces and couples shown.
Find the resultant of the system and the point of intersection of
Fig. P3.82 its line of action with (a) line AB, (b) line BC, (c) line CD.




3.83 The roof of a building frame is subjected to the wind loading Problems 119
shown. Determine (a) the equivalent force-couple system at D,
(b) the resultant of the loading and its line of action.

‘)
1kN \ \ / T } #30°
3m 3.6m 90 kN
. 2.4m__ 30°
" 36m | 90 kN
A
! T T T T 1 3.6m
3m 3m 3m 3m 3m 3m A
\ B

Fig. P3.83

3.84 Two cables exert forces of 90 kN each on a truss of weight W =
200 kN. Find the resultant force acting on the truss and the point
of intersection of its line of action with line AB. Fig. P3.84

6.3 m

3.85 Two forces are applied to the vertical post as shown. Determine
the force and couple at O equivalent to the two forces.

/00]

500 lb

4ft

O/ 2

Z

Fig. P3.85

3.86 1In order to move a 70.6-kg crate, two men push on it while two other
men pull on it by means of ropes. The force exerted by man A is
600 N and that exerted by man B is 200 N; both forces are horizontal.
Man C pulls with a force equal to 320 N and man D with a force
equal to 480 N. Both cables form an angle of 30° with the vertical.
Determine the resultant of all the forces acting on the crate.

Dimension in meters

Fig. P3.86




120 Rigid Bodies: Equivalent Systems of Forces 3.87 The machine component is subject to the forces shown, each of
which is parallel to one of the coordinate axes. Replace these forces

y by an equivalent force-couple system at A.
20 I:1/75 Hﬁ 3.88 In drilling a hole in a wall, a man applies a vertical 30-1b force at B

on the brace and bit, while pushing at C with a 10-1b force. The
brace lies in the horizontal xz plane. (¢) Determine the other com-
ponents of the total force that should be exerted at C if the bit is
not to be bent about the y and z axes (i.e., if the system of forces
applied on the brace is to have zero moment about both the y and
z axes). (b) Reduce the 30-lb force and the total force at C to an
equivalent force and couple at A.

Y | 301b

Fig. P3.87

<&

8 in.

8 in.

Fig. P3.88

3.89 In order to unscrew the tapped faucet A, a plumber uses two pipe
wrenches as shown. By exerting a 40-lb force on each wrench, at a
distance of 10 in. from the axis of the pipe and in a direction perpen-
dicular to the pipe and to the wrench, the plumber prevents the pipe
from rotating, and thus avoids loosening or further tightening the joint
between the pipe and the tapped elbow C. Determine (a) the angle 6
that the wrench at A should form with the vertical if elbow C is not
to rotate about the vertical, (b) the force-couple system at C equiva-
lent to the two 40-lb forces when this condition is satisfied.

401b |Y

25 in.

z 18 in.
E T~

Fig. P3.89




3.90 Assuming 6 = 60° in Prob. 3.89, replace the two 40-1b forces by
an equivalent force-couple system at D and determine whether the
plumber’s action tends to tighten or loosen the joint between (@) pipe
CD and elbow D, (b) elbow D and pipe DE. Assume all the threads
to be right-handed.

3.91 A rectangular concrete foundation mat supports four column loads

as shown. Determine the magnitude and point of application of
the resultant of the four loads.

100 kN

200 kN

3.92 A concrete foundation mat in the shape of a regular hexagon of 10-ft
sides supports four column loads as shown. Determine the magnitude
and point of application of the resultant of the four loads.

<

15 kips

20 kips
25 kips
10 kips P

F E

A (@)

» =
7—CL/ 10 ft

Fig. P3.92 and P3.93

3.93 Determine the magnitudes of the additional loads that must be
applied at B and F if the resultant of all six loads is to pass through
the center of the mat.

3.94 In Prob. 3.91, determine the magnitude and point of application
of the smallest additional load that must be applied to the founda-
tion mat if the resultant of the five loads is to pass through the
center of the mat.

3.95 Four horizontal forces act on a vertical quarter-circular plate of
radius 250 mm. Determine the magnitude and point of application
of the resultant of the four forces if P = 40 N.

3.96 Determine the magnitude of the force P for which the resultant
of the four forces acts on the rim of the plate.

30

80 N

la~]

Problems

250 mm

200 N

z

Fig. P3.95 and P3.96
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REVIEW AND SUMMARY

Principle of transmissibility In this chapter we studied the effect of forces exerted on a rigid
body. We first learned to distinguish between external and internal
,/ forces [Sec. 3.2] and saw that, according to the principle of transmis-
y sibility, the effect of an external force on a rigid body remains
unchanged if that force is moved along its line of action [Sec. 3.3].
In other words, two forces F and F' acting on a rigid body at two
different points have the same effect on that body if they have the
same magnitude, same direction, and same one of action (Fig. 3.46).

Two such forces are said to be equivalent.

/
/

Fig. 3.46

Before proceeding with the discussion of equivalent systems of forces,
we introduced the concept of the vector product of two vectors
[Sec. 3.4]. The vector product

Vector product of two vectors V=PxQ

of the vectors P and Q was defined as a vector perpendicular to the
V P Q plane containing P and Q (Fig. 3.47), of magnitude

V = PQ sin 6 3.1)

6 and directed in such a way that a person located at the tip of V will
observe as counterclockwise the rotation through 6 which brings the
vector P in line with the vector Q. The three vectors P, Q, and V—
(a) taken in that order—are said to form a right-handed triad. Tt follows
that the vector products Q X P and P X Q are represented by equal
lV and opposite vectors. We have
/

b QxP=—(PxQ) (3.4)

It also follows from the definition of the vector product of two vec-
®) tors that the vector products of the unit vectors i, j, and k are

Fig. 3.47 ixi=o0 ixj=k jxi= -k

and so on. The sign of the vector product of two unit vectors can be
obtained by arranging in a circle and in counterclockwise order the
three letters representing the unit vectors (Fig. 3.48): The vector
product of two unit vectors will be positive if they follow each other
in counterclockwise order and negative if they follow each other in
clockwise order.

The rectangular components of the vector product V of two vectors
P and Q were expressed [Sec. 3.5] as

Rectangular components V., =P,Q. — P.Q,
of vector product V, = P.Q, — PO, (3.9)
Vz = Pny - Pny
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Using a determinant, we also wrote

i j ok
V=|p, P, P (3.10)
Qv Oy ©:

The moment of a force ¥ about a point O was defined [Sec. 3.6] as the
vector product

My, =rxF (3.11)

where r is the position vector drawn from O to the point of applica-
tion A of the force F (Fig. 3.49). Denoting by 6 the angle between
the lines of action of r and F, we found that the magnitude of the
moment of F about O can be expressed as

My, = rF sin 0 = Fd (3.12)

where d represents the perpendicular distance from O to the line of
action of F.

The rectangular components of the moment Mg of a force F were
expressed [Sec. 3.8] as

M, = yF. — =F,
M, = zF, — xF. (3.18)
M. = xF, — yF,

where x, y, z are the components of the position vector r (Fig. 3.50).

Using a determinant form, we also wrote

i
Mo=|x ¢y =z (3.19)
F, F, F.

In the more general case of the moment about an arbitrary point B

of a force F applied at A, we had

i J k
Mg = |xa3  Yam Zam (3.21)
F, F F,

Y

where x5, yu5, and z,p denote the components of the vector ryp:

XA/B = XA — Xp Ya/B = Ya — YB ZA/B = %A T ZB

In the case of problems involving only two dimensions, the force F
can be assumed to lie in the xy plane. Its moment My about a point
B in the same plane is perpendicular to that plane (Fig. 3.51) and is
completely defined by the scalar

My = (x4 — xB)Fy - (yA - yB>Fx (3.23)
Various methods for the computation of the moment of a force about
a point were illustrated in Sample Probs. 3.1 through 3.4.
The scalar product of two vectors P and Q [Sec. 3.9] was denoted
by P + Q and was defined as the scalar quantity

P-Q = PQ cos 0 (3.24)
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Moment of a force about a point

Fig. 3.49
Rectangular components of moment

Yy

F_k

(Y= yp)i

TA/B

Fig. 3.51
Scalar product of two vectors
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Q

[

P
Fig. 3.52

Mixed triple product of three vectors

Fig. 3.53

Mixed triple product of three vectors

-

Fig. 3.54

Moment of a force about an axis

where 6 is the angle between P and Q (Fig. 3.52). By expressing the
scalar product of P and Q in terms of the rectangular components
of the two vectors, we determined that

P-Q=PQ.+PQ, + PO (3.30)

The projection of a vector P on an axis OL (Fig. 3.53) can be obtained
by forming the scalar product of P and the unit vector N along OL.
We have

Por, =P+ A (3.36)
or, using rectangular components,
Pop = Py cos 0, + P, cos 6, + P cos 6, (3.37)

where 0., 0,, and 0. denote the angles that the axis OL forms with

the coordinate axes.

The mixed triple product of the three vectors S, P, and Q was defined
as the scalar expression

S-(PxQ) (3.38)

obtained by forming the scalar product of § with the vector product
of P and Q [Sec. 3.10]. It was shown that

S, S, S
S-(PxQ)=|P, P, P. (3.41)
Q: ©y ©:

where the elements of the determinant are the rectangular compo-
nents of the three vectors.

The moment of a force F about an axis OL [Sec. 3.11] was defined
as the projection OC on OL of the moment M, of the force F
(Fig. 3.54), i.e., as the mixed triple product of the unit vector \, the
position vector r, and the force F:

Mo, =N-Mp=A-(rXF) (3.42)

Using the determinant form for the mixed triple product, we have

AA, A
Mo, =|x y = (3.43)
F, F, F

=

y z

where \,, \,, A, = direction cosines of axis OL
x, y, = = components of r
F,, F,, F. = components of F

An example of the determination of the moment of a force about a
skew axis was given in Sample Prob. 3.5.



Two forces F and —F having the same magnitude, parallel lines of ~ Couples

action, and opposite sense are said to form a couple [Sec. 3.12]. Tt
was shown that the moment of a couple is independent of the point
about which it is computed; it is a vector M perpendicular to the
plane of the couple and equal in magnitude to the product of the
common magnitude F of the forces and the perpendicular distance d
between their lines of action (Fig. 3.55).

Two couples having the same moment M are equivalent, i.e., they
have the same effect on a given rigid body [Sec. 3.13]. The sum of
two couples is itself a couple [Sec. 3.14], and the moment M of
the resultant couple can be obtained by adding vectorially the
moments M; and M of the original couples [Sample Prob. 3.6]. It
follows that a couple can be represented by a vector, called a couple
vector, equal in magnitude and direction to the moment M of
the couple [Sec. 3.15]. A couple vector is a free vector which can be
attached to the origin O if so desired and resolved into components
(Fig. 3.56).

M f
> (M Fd)

<>

(a) ) (e)
Fig. 3.56

Any force F acting at a point A of a rigid body can be replaced by
a force-couple system at an arbitrary point O, consisting of the force
F applied at O and a couple of moment My equal to the moment
about O of the force F in its original position [Sec. 3.16]; it should
be noted that the force F and the couple vector My are always per-
pendicular to each other (Fig. 3.57).

Fig. 3.57

It follows [Sec. 3.17] that any system of forces can be reduced to a
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Fig. 3.55

Force-couple system

Reduction of a system of forces

force-couple system at a given point O by first replacing each of o g force-couple system

the forces of the system by an equivalent force-couple system at O
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Fig. 3.58

Equivalent systems of forces

Further reduction of a
system of forces

(Fig. 3.58) and then adding all the forces and all the couples deter-
mined in this manner to obtain a resultant force R and a resultant
couple vector M, [Sample Probs. 3.8 through 3.11]. Note that, in
general, the resultant R and the couple vector Mg will not be per-
pendicular to each other.

We concluded from the above [Sec. 3.18] that, as far as rigid

bodies are concerned, two systems of forces, ¥y, Fy, F5, . . . and
Fi, F5 F5, ..., are equivalent if, and only if,
>F = 2F’ and M, = 2M,, (3.57)

If the resultant force R and the resultant couple vector ME are per-
pendicular to each other, the force-couple system at O can be further
reduced to a single resultant force [Sec. 3.20]. This will be the case
for systems consisting either of (¢) concurrent forces (cf. Chap. 2),
(b) coplanar forces [Sample Probs. 3.8 and 3.9], or (¢) parallel forces
[Sample Prob. 3.11]. If the resultant R and the couple vector ME
are not perpendicular to each other, the system cannot be reduced
to a single force.



3.97

3.98

3.99

3.100

3.101

REVIEW PROBLEMS

A force P of magnitude 520 Ib acts on the frame shown at point E.
Determine the moment of P (a) about point D, (b) about a line
joining points O and D.

A force P acts on the frame shown at point E. Knowing that the
absolute value of the moment of P about a line joining points F
and B is 300 Ib - ft, determine the magnitude of the force P.

A crane is oriented so that the end of the 25-m boom AO lies in
the yz plane. At the instant shown the tension in cable AB is 4 kN.
Determine the moment about each of the coordinate axes of the
force exerted on A by cable AB.

Fig. P3.99 and P3.100

The 25-m crane boom AO lies in the yz plane. Determine the
maximum permissible tension in cable AB if the absolute value of
the moments about the coordinate axes of the force exerted on A by
cable AB must be as follows: [M,| = 60 kN - m, [M,| = 12 kN - m,
and |[M.| = 8 kN - m.

A single force P acts at C in a direction perpendicular to the handle
BC of the crank shown. Determine the moment M, of P about the
x axis when 6 = 65° knowing that M, = —15 N - m and M, =
—36 N - m.

Fig. P3.101

Fig. P3.97 and P3.98
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128 Rigid Bodies: Equivalent Systems of Forces 3.102 A multiple-drilling machine is used to drill simultaneously six holes
in the steel plate shown. Each drill exerts a clockwise couple of

| 16 in. magnitude 40 Ib - in. on the plate. Determine an equivalent couple
A B formed by the smallest possible forces acting (a) at A and C,
O O (b) at A and D, (c¢) on the plate.
o) o
12in. o o 3.103 A 500-N force is applied to a bent plate as shown. Determine (a)

an equivalent force-couple system at B, (b) an equivalent system
formed by a vertical force at A and a force at B.

O O
] Q
C L J D
9in.

Fig. P3.102

75 mm

30°
>
175 mm

| | 300 mm !
125mm

Fig. P3.103

3.104 A 100-kN load is applied eccentrically to the column shown. Deter-
mine the components of the force and couple at G that are equiva-
lent to the 100-kN load.

100 kN

125 mm
50 mm
IG |

e x

Fig. P3.104

3.105 The speed-reducer unit shown weighs 75 Ib, and its center of
gravity is located on the y axis. Show that the weight of the unit
and the two couples acting on it, of magnitude M; = 20 Ib - ft and
M, = 41b - ft, respectively, can be replaced by a single equivalent
force and determine (a) the magnitude and direction of that force,

Fig. P3.105 (b) the point where its line of action intersects the floor.

3.106 For the truss and loading shown, determine the resultant of the
loads and the distance from point A to its line of action.

3kips 4kips 5 kips

SEEE
ps oy
I«S ft—LS ft)LS ft)LS ft:

Fig. P3.106




3.107 A force P of given magnitude P is applied to the edge of a semicir-

3.108

cular plate of radius @ as shown. (a) Replace P by an equivalent
force-couple system at point D obtained by drawing the perpendicu-
lar from B to the x axis. (b) Determine the value of 0 for which the
moment of the equivalent force-couple system at D is maximum.

Fig. P3.107

A concrete foundation mat of 5-m radius supports four equally
spaced columns, each of which is located 4 m from the center of
the mat. Determine the magnitude and point of application of the
smallest additional load that must be applied to the foundation mat
if the resultant of the five loads is to pass through the center of
the mat.

Fig. P3.108

Review Problems
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This telecommunications tower,
constructed in the heart of the
Barcelona Olympic complex to
broadcast the 1992 games, was
designed to remain in equilibrium

under the vertical force of gravity and

the lateral forces exerted by wind.
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Chapter 4 Equilibrium
of Rigid Bodies
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Dimensional Structure
Equilibrium of a Rigid Body in
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Problems Involving Dry Friction

4.1 INTRODUCTION

We saw in the preceding chapter that the external forces acting on
a rigid body can be reduced to a force-couple system at some arbi-
trary point O. When the force and the couple are both equal to zero,
the external forces form a system equivalent to zero, and the rigid
body is said to be in equilibrium.

The necessary and sufficient conditions for the equilibrium of
a rigid body, therefore, can be obtained by setting R and M{ equal
to zero in the relations (3.52) of Sec. 3.17:

2F =0 SMp =2 X F) =0 4.1)

Resolving each force and each moment into its rectangular
components, we can express the necessary and sufficient conditions
for the equilibrium of a rigid body with the following six scalar
equations:

SF, =0
SM, = 0

SF. =0
SM. =0

4.2)

SM, = 0 (4.3)

The equations obtained can be used to determine unknown forces
applied to the rigid body or unknown reactions exerted on it by its
supports. We note that Eqs. (4.2) express the fact that the compo-
nents of the external forces in the x, y, and z directions are balanced;
Eqgs. (4.3) express the fact that the moments of the external forces
about the «x, y, and z axes are balanced. Therefore, for a rigid body
in equilibrium, the system of the external forces will impart no trans-
lational or rotational motion to the body considered.

In order to write the equations of equilibrium for a rigid body,
it is essential to first identify all of the forces acting on that body
and then to draw the corresponding free-body diagram. In this
chapter we first consider the equilibrium of two-dimensional struc-
tures subjected to forces contained in their planes and learn how to
draw their free-body diagrams. In addition to the forces applied to
a structure, the reactions exerted on the structure by its supports
will be considered. A specific reaction will be associated with each
type of support. You will learn how to determine whether the struc-
ture is properly supported, so that you can know in advance whether
the equations of equilibrium can be solved for the unknown forces
and reactions.

Later in the chapter, the equilibrium of three-dimensional struc-
tures will be considered, and the same kind of analysis will be given to
these structures and their supports. This will be followed with a discus-
sion of equilibrium of rigid bodies supported on surfaces in which fric-
tion acts to restrain motion of one surface with respect to the other.



4.2 FREE-BODY DIAGRAM

In solving a problem concerning the equilibrium of a rigid body, it
is essential to consider all of the forces acting on the body; it is
equally important to exclude any force which is not directly applied
to the body. Omitting a force or adding an extraneous one would
destroy the conditions of equilibrium. Therefore, the first step in
the solution of the problem should be to draw a free-body diagram
of the rigid body under consideration. Free-body diagrams have
already been used on many occasions in Chap. 2. However, in view
of their importance to the solution of equilibrium problems, we
summarize here the various steps which must be followed in draw-

ing a free-body diagram.

1. A clear decision should be made regarding the choice of the
free body to be used. This body is then detached from the
ground and is separated from all other bodies. The contour of
the body thus isolated is sketched.

2. All external forces should be indicated on the free-body dia-
gram. These forces represent the actions exerted on the free
body by the ground and by the bodies which have been
detached; they should be applied at the various points where
the free body was supported by the ground or was connected
to the other bodies. The weight of the free body should also
be included among the external forces, since it represents the
attraction exerted by the earth on the various particles forming
the free body. As will be seen in Chap. 5, the weight should
be applied at the center of gravity of the body. When the free
body is made of several parts, the forces the various parts exert
on each other should not be included among the external
forces. These forces are internal forces as far as the free body
is concerned.

3. The magnitudes and directions of the known external forces
should be clearly marked on the free-body diagram. When indi-
cating the directions of these forces, it must be remembered
that the forces shown on the free-body diagram must be those
which are exerted on, and not by, the free body. Known exter-
nal forces generally include the weight of the free body and
forces applied for a given purpose.

4. Unknown external forces usually consist of the reactions,

through which the ground and other bodies oppose a possible

motion of the free body. The reactions constrain the free body
to remain in the same position, and, for that reason, are some-
times called constraining forces. Reactions are exerted at the
points where the free body is supported by or connected to
other bodies and should be clearly indicated. Reactions are dis-

cussed in detail in Secs. 4.3 and 4.8.

The free-body diagram should also include dimensions, since

these may be needed in the computation of moments of forces.

Any other detail, however, should be omitted.

o

4.2 Free-Body Diagram
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Photo 4.1 A free-body diagram of the tractor
shown would include all of the external forces
acting on the tractor: the weight of the tractor,
the weight of the load in the bucket, and the
forces exerted by the ground on the tires.

Photo 4.2
determine the internal forces in structures made of
several connected pieces, such as the forces in the

members that support the bucket of the tractor of
Photo 4.1.

In Chap. 6, we will discuss how to
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Photo 4.3 As the link of the awning window
opening mechanism is extended, the force it
exerts on the slider results in a normal force being
applied to the rod, which causes the window to
open.

Photo 4.4 The abutment-mounted rocker
bearing shown is used to support the roadway

of a bridge.

Photo 4.5 Shown is the rocker expansion

bearing of a plate girder bridge. The convex

surface of the rocker allows the support of the
girder to move horizontally.

4.3

REACTIONS AT SUPPORTS AND CONNECTIONS
FOR A TWO-DIMENSIONAL STRUCTURE

In the first part of this chapter, the equilibrium of a two-dimensional
structure is considered; i.e., it is assumed that the structure being
analyzed and the forces applied to it are contained in the same plane.
Clearly, the reactions needed to maintain the structure in the same
position will also be contained in this plane.

The reactions exerted on a two-dimensional structure can be

divided into three groups corresponding to three types of supports,
or connections:

Reactions Equivalent to a Force with Known Line of Action.
Supports and connections causing reactions of this type include
rollers, rockers, frictionless surfaces, short links and cables, col-
lars on frictionless rods, and frictionless pins in slots. Each of
these supports and connections can prevent motion in one
direction only. They are shown in Fig. 4.1, together with the
reactions they produce. Each of these reactions involves one
unknown, namely, the magnitude of the reaction; this magni-
tude should be denoted by an appropriate letter. The line of
action of the reaction is known and should be indicated clearly
in the free-body diagram. The sense of the reaction must be
as shown in Fig. 4.1 for the cases of a frictionless surface
(toward the free body) or a cable (away from the free body).
The reaction can be directed either way in the case of double-
track rollers, links, collars on rods, and pins in slots. Single-
track rollers and rockers are generally assumed to be reversible,
and thus the corresponding reactions can also be directed
either way.

Reactions Equivalent to a Force of Unknown Direction and
Magnitude. Supports and connections causing reactions of this
type include frictionless pins in fitted holes, hinges, and rough
surfaces. They can prevent translation of the free body in all
directions, but they cannot prevent the body from rotating
about the connection. Reactions of this group involve two
unknowns and are usually represented by their x and y com-
ponents. In the case of a rough surface, the component normal
to the surface must be directed away from the surface.

Reactions Equivalent to a Force and a Couple. These reactions
are caused by fixed supports, which oppose any motion of the
free body and thus constrain it completely. Fixed supports actu-
ally produce forces over the entire surface of contact; these
forces, however, form a system which can be reduced to a force
and a couple. Reactions of this group involve three unknowns,
consisting usually of the two components of the force and the
moment of the couple.
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Support or Connection Reaction %ﬁrﬁl&e\&rfﬁsf
660
Frictionless Force with known
Rollers Rocker surface line of action

N |

Short cable Short link Force with known
line of action

/
/
90° /

/ 1
/
/

/
Collar on Friction] inin slot Force with known
frictionless rod rictionless pin i sio line of action

| 0

Frictionless pin Rough surface Force of unknown
or hinge direction

i

Force and couple

Fixed support

Fig. 4.1 Reactions at supports and connections.

When the sense of an unknown force or couple is not readily
apparent, no attempt should be made to determine it. Instead, the
sense of the force or couple should be arbitrarily assumed; the sign
of the answer obtained will indicate whether the assumption is cor-
rect or not.
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(b)
Fig. 4.2

4.4 EQUILIBRIUM OF A RIGID BODY
IN TWO DIMENSIONS

The conditions stated in Sec. 4.1 for the equilibrium of a rigid body
become considerably simpler for the case of a two-dimensional struc-
ture. Choosing the x and y axes to be in the plane of the structure,
we have

F.=0 M,=M,=0 M. =M,

for each of the forces applied to the structure. Thus, the six equa-
tions of equilibrium derived in Sec. 4.1 reduce to
2F, =0 2F, =0 2Mp =0 4.4)

y

and to three trivial identities, 0 = 0. Since =M, = 0 must be satis-
fied regardless of the choice of the origin O, we can write the equa-
tions of equilibrium for a two-dimensional structure in the more
general form

SF,=0 SF,=0 SM,=0 (4.5)

where A is any point in the plane of the structure. The three equa-
tions obtained can be solved for no more than three unknowns.

We saw in the preceding section that unknown forces include
reactions and that the number of unknowns corresponding to a given
reaction depends upon the type of support or connection causing
that reaction. Referring to Sec. 4.3, we observe that the equilibrium
equations (4.5) can be used to determine the reactions associated
with two rollers and one cable, one fixed support, or one roller and
one pin in a fitted hole, etc.

Consider Fig. 4.2a, in which the truss shown is subjected to
the given forces P, Q, and S. The truss is held in place by a pin at
A and a roller at B. The pin prevents point A from moving by exert-
ing on the truss a force which can be resolved into the components
A, and A;; the roller keeps the truss from rotating about A by exert-
ing the vertical force B. The free-body diagram of the truss is shown
in Fig. 4.2b; it includes the reactions A,, A, and B as well as the
applied forces P, Q, S and the weight W of the truss. Expressing
that the sum of the moments about A of all of the forces shown
in Fig. 4.2b is zero, we write the equation XM, = 0, which can be
used to determine the magnitude B since it does not contain A, or A,
Next, expressing that the sum of the x components and the sum
of the y components of the forces are zero, we write the equations
2F, = 0 and 2F, = 0, from which we can obtain the components
A, and A, respectively.

An additional equation could be obtained by expressing that
the sum of the moments of the external forces about a point other than
A is zero. We could write, for instance, 2Mp = 0. Such a statement,
however, does not contain any new information, since it has already
been established that the system of the forces shown in Fig. 4.2b is
equivalent to zero. The additional equation is not independent and
cannot be used to determine a fourth unknown. It will be useful,



however, for checking the solution obtained from the original three
equations of equilibrium.

While the three equations of equilibrium cannot be augmented
by additional equations, any of them can be replaced by another
equation. Therefore, an alternative system of equations of equilib-
rium is

SF,=0 SM,=0 SMz=0 (4.6)

where the second point about which the moments are summed (in
this case, point B) cannot lie on the line parallel to the y axis that
passes through point A (Fig. 4.2b). These equations are sufficient
conditions for the equilibrium of the truss. The first two equations
indicate that the external forces must reduce to a single vertical force
at A. Since the third equation requires that the moment of this
force be zero about a point B which is not on its line of action, the
force must be zero, and the rigid body is in equilibrium.
A third possible set of equations of equilibrium is

EMA =0 EMB =0 EMC =0 (4.7)

where the points A, B, and C do not lie in a straight line (Fig. 4.2b).
The first equation requires that the external forces reduce to a single
force at A; the second equation requires that this force pass through
B; and the third equation requires that it pass through C. Since the
points A, B, C do not lie in a straight line, the force must be zero,
and the rigid body is in equilibrium.

The equation =M, = 0, which expresses that the sum of the
moments of the forces about pin A is zero, possesses a more defi-
nite physical meaning than either of the other two equations in (4.7).
These two equations express a similar idea of balance, but with
respect to points about which the rigid body is not actually hinged.
They are, however, as useful as the first equation, and our choice
of equilibrium equations should not be unduly influenced by the
physical meaning of these equations. Indeed, it will be desirable in
practice to choose equations of equilibrium containing only one
unknown, since this eliminates the necessity of solving simultaneous
equations. Equations containing only one unknown can be obtained
by summing moments about the point of intersection of the lines
of action of two unknown forces or, if these forces are parallel, by
summing components in a direction perpendicular to their com-
mon direction. For example, in Fig. 4.3, in which the truss shown
is held by rollers at A and B and a short link at D, the reactions at
A and B can be eliminated by summing x components. The reac-
tions at A and D will be eliminated by summing moments about
C, and the reactions at B and D by summing moments about D.
The equations obtained are

EFA=() EMC=() EMDZO

Each of these equations contains only one unknown.

4.4 Equilibrium of a Rigid Body in
Two Dimensions

c

A B

o A
(a)

P, Q, .

‘/l P, -/1 o, | s.
P YV ‘4—:
¢ D p
w
A B
. ,
(b)

Fig. 4.3

137



138 Equilibrium of Rigid Bodies

C ¢
(a)
P Q S
Yy y y
Vit ‘Q" Y
c - D
W%
A |la B|| B,
A A
Ay B,
(b)
Fig. 4.4 Statically indeterminate
reactions.
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Fig. 4.5 Partial constraints.

4.5 STATICALLY INDETERMINATE REACTIONS.
PARTIAL CONSTRAINTS

In the two examples considered in the preceding section (Figs. 4.2
and 4.3), the types of supports used were such that the rigid body
could not possibly move under the given loads or under any other
loading conditions. In such cases, the rigid body is said to be com-
pletely constrained. We also recall that the reactions corresponding
to these supports involved three unknowns and could be determined
by solving the three equations of equilibrium. When such a situation
exists, the reactions are said to be statically determinate.

Consider Fig. 4.4a, in which the truss shown is held by pins at
A and B. These supports provide more constraints than are necessary
to keep the truss from moving under the given loads or under any
other loading conditions. We also note from the free-body diagram
of Fig. 4.4b that the corresponding reactions involve four unknowns.
Since, as was pointed out in Sec. 4.4, only three independent equi-
librium equations are available, there are more unknowns than equa-
tions; thus, all of the unknowns cannot be determined. While the
equations XM, = 0 and XMy = 0 yield the vertical components B,
and A, respectively, the equation 2F, = 0 gives only the sum A, + B,
of the horizontal components of the reactions at A and B. The com-
ponents A, and B, are said to be statically indeterminate. They could
be determined by considering the deformations produced in the
truss by the given loading, but this method is beyond the scope of
statics and belongs to the study of mechanics of materials.

The supports used to hold the truss shown in Fig. 4.5a consist of
rollers at A and B. Clearly, the constraints provided by these supports are
not sufficient to keep the truss from moving. While any vertical motion
is prevented, the truss is free to move horizontally. The truss is said to
be partially constrained.t Turning our attention to Fig. 4.5b, we note that
the reactions at A and B involve only two unknowns. Since three equa-
tions of equilibrium must still be satisfied, there are fewer unknowns than
equations, and, in general, one of the equilibrium equations will not be
satisfied. While the equations 2M, = 0 and XMy = 0 can be satisfied by
a proper choice of reactions at A and B, the equation =F, = 0 will not be
satisfied unless the sum of the horizontal components of the applied forces
happens to be zero. We thus observe that the equlibrium of the truss
of Fig. 4.5 cannot be maintained under general loading conditions.

It appears from the above that if a rigid body is to be com-
pletely constrained and if the reactions at its supports are to be
statically determinate, there must be as many unknowns as there are
equations of equilibrium. When this condition is not satisfied, we can
be certain that either the rigid body is not completely constrained
or that the reactions at its supports are not statically determinate; it
is also possible that the rigid body is not completely constrained and
that the reactions are statically indeterminate.

We should note however that, while necessary, the above condi-
tion is not sufficient. In other words, the fact that the number of

fPartially constrained bodies are often referred to as unstable. However, to avoid confusion
between this type of instability, due to insufficient constraints, and the type of instability
considered in Chap. 16, which relates to the behavior of columns, we shall restrict the use
of the words stable and unstable to the latter case.



unknowns is equal to the number of equations is no guarantee that
the body is completely constrained or that the reactions at its supports
are statically determinate. Consider Fig. 4.6a, in which the truss
shown is held by rollers at A, B, and E. While there are three unknown
reactions, A, B, and E (Fig. 4.6b), the equation 2F, = 0 will not be
satisfied unless the sum of the horizontal components of the applied
forces happens to be zero. Although there are a sufficient number of
constraints, these constraints are not properly arranged, and the truss
is free to move horizontally. We say that the truss is improperly con-
strained. Since only two equilibrium equations are left for determin-
ing three unknowns, the reactions will be statically indeterminate.
Thus, improper constraints also produce static indeterminacy.

Another example of improper constraints—and of static inde-
terminacy—is provided by the truss shown in Fig. 4.7. This truss is
held by a pin at A and by rollers at B and C, which altogether involve
four unknowns. Since only three independent equilibrium equations
are available, the reactions at the supports are statically indetermi-
nate. On the other hand, we note that the equation M, = 0 cannot
be satisfied under general loading conditions, since the lines of action
of the reactions B and C pass through A. We conclude that the truss
can rotate about A and that it is improperly constrained.t

The examples of Figs. 4.6 and 4.7 lead us to conclude that a rigid
body is improperly constrained whenever the supports, even though
they may provide a sufficient number of reactions, are arranged in such
a way that the reactions must be either concurrent or parallel.§

In summary, to be sure that a two-dimensional rigid body is com-
pletely constrained and that the reactions at its supports are statically
determinate, we should verify that the reactions involve three—and only
three—unknowns and that the supports are arranged in such a way that
they do not require the reactions to be either concurrent or parallel.

Supports involving statically indeterminate reactions should be
used with care in the design of structures and only with a full knowl-
edge of the problems they may cause. On the other hand, the analysis
of structures possessing statically indeterminate reactions often can
be partially carried out by the methods of statics. In the case of the
truss of Fig. 4.4, for example, the vertical components of the reactions
at A and B were obtained from the equilibrium equations.

For obvious reasons, supports producing partial or improper
constraints should be avoided in the design of stationary structures.
However, a partially or improperly constrained structure will not nec-
essarily collapse; under particular loading conditions, equilibrium can
be maintained. For example, the trusses of Figs. 4.5 and 4.6 will be
in equilibrium if the applied forces P, Q, and S are vertical. Besides,
structures which are designed to move should be only partially con-
strained. A railroad car, for instance, would be of little use if it were
completely constrained by having its brakes applied permanently.

tRotation of the truss about A requires some “play” in the supports at B and C. In
practice such play will always exist. In addition, we note that if the play is kept small, the
displacements of the rollers B and C and, thus, the distances from A to the lines of action of
the reactions B and C will also be small. The equation ZM, = 0 then requires that B and
C be very large, a situation which can result in the failure of the supports at B and C.
{Because this situation arises from an inadequate arrangement or geometry of the
supports, it is often referred to as geometric instability.
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5 9.81 kN
107.1 kN L
2 m*l<74 m
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SAMPLE PROBLEM 4.1

A fixed crane has a mass of 1000 kg and is used to lift a 2400-kg crate. It
is held in place by a pin at A and a rocker at B. The center of gravity of
the crane is located at G. Determine the components of the reactions at A
and B.

SOLUTION

Free-Body Diagram. A free-body diagram of the crane is drawn. By mul-
tiplying the masses of the crane and of the crate by g = 9.81 m/s>, we obtain
the corresponding weights, that is, 9810 N or 9.81 kN, and 23 500 N or
23.5 kN. The reaction at pin A is a force of unknown direction; it is repre-
sented by its components A, and A,. The reaction at the rocker B is per-
pendicular to the rocker surface; thus, it is horizontal. We assume that A,
A,, and B act in the directions shown.

Determination of B. We express that the sum of the moments of all external
forces about point A is zero. The equation obtained will contain neither A,
nor A,, since the moments of A, and A, about A are zero. Multiplying the
magnitude of each force by its perpendicular distance from A, we write

+N=EM, = 0: +B(1.5 m) — (9.81 kN)(2 m) — (23.5 kN)(6 m) = 0
B = +107.1 kN B = 107.1 kN —

Since the result is positive, the reaction is directed as assumed.

Determination of A,. The magnitude of A, is determined by expressing
that the sum of the horizontal components of all external forces is zero.

HSF.=0. A, +B=0
A, + 107.1kN = 0
A, = —107.1 kN A, = 107.1 kN «

Since the result is negative, the sense of A, is opposite to that assumed

originally.

Determination of A,. The sum of the vertical components must also equal
Zero.

+13F, = 0: A, — 981 kN — 235 kN = 0

A, = +333 kN A, = 333 kN 1

Adding vectorially the components A, and A,, we find that the reac-
tion at A is 112.2 kN =.17.3°.

Check. The values obtained for the reactions can be checked by recalling
that the sum of the moments of all of the external forces about any point
must be zero. For example, considering point B, we write

+\EMp = —(9.81 kN)(2 m) — (23.5 kN)(6 m) + (107.1 kN)(1.5 m) = 0
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SAMPLE PROBLEM 4.2

Three loads are applied to a beam as shown. The beam is supported by a
roller at A and by a pin at B. Neglecting the weight of the beam, determine
the reactions at A and B when P = 15 kips.

SOLUTION

Free-Body Diagram. A free-body diagram of the beam is drawn. The reac-
tion at A is vertical and is denoted by A. The reaction at B is represented
by components B, and B,. Each component is assumed to act in the direc-
tion shown.

Equilibrium Equations. We write the following three equilibrium equa-
tions and solve for the reactions indicated:

H3F, = 0 B, =0 B, =0

+W2MA = ():
—(15 kips)(3 ft) + B,(9 ft) — (6 kips)(11 ft) — (6 kips)(13 ft) = 0
B, = +21.0 kips B, = 21.0 kips 1

+’S2MB = OZ
—A(9 ft) + (15 kips)(6 ft) — (6 kips)(2 ft) — (6 kips)(4 ft) = 0
A = +6.00 kips A = 6.00 kips 1

Check. The results are checked by adding the vertical components of all
of the external forces:

+12F, = +6.00 kips — 15 kips + 21.0 kips — 6 kips — 6 kips = 0

Remark. In this problem the reactions at both A and B are vertical; how-
ever, these reactions are vertical for different reasons. At A, the beam is
supported by a roller; hence the reaction cannot have any horizontal com-
ponent. At B, the horizontal component of the reaction is zero because it
must satisfy the equilibrium equation 2F, = 0 and because none of the
other forces acting on the beam has a horizontal component.

We could have noticed at first glance that the reaction at B was verti-
cal and dispensed with the horizontal component B,. This, however, is a bad
practice. In following it, we would run the risk of forgetting the component
B, when the loading conditions require such a component (i.e., when a
horizontal load is included). Also, the component B, was found to be zero
by using and solving an equilibrium equation, XF, = 0. By setting B, equal
to zero immediately, we might not realize that we actually make use of this
equation and thus might lose track of the number of equations available for
solving the problem.
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4980 1b

SAMPLE PROBLEM 4.3

A loading car is at rest on a track forming an angle of 25° with the vertical.
The gross weight of the car and its load is 5500 lb, and it is applied at a
point 30 in. from the track, halfway between the two axles. The car is held
by a cable attached 24 in. from the track. Determine the tension in the
cable and the reaction at each pair of wheels.

SOLUTION

Free-Body Diagram. A free-body diagram of the car is drawn. The reac-
tion at each wheel is perpendicular to the track, and the tension force T is
parallel to the track. For convenience, we choose the x axis parallel to the
track and the y axis perpendicular to the track. The 5500-Ib weight is then
resolved into x and y components.

W, = +(5500 Ib) cos 25° = +4980 lb

W, = —(5500 Ib) sin 25° = —2320 Ib

Equilibrium Equations. We take moments about A to eliminate T and R,
from the computation.

FNSM, = 0: —(2320 Ib)(25 in.) — (4980 Ib)(6 in.) + Rs(50 in.) = 0
R, = +1758 b R, = 1758 Ib /7

Now, taking moments about B to eliminate T and R, from the computation,
we write

FNSMy = 0: (2320 1b)(25 in.) — (4980 1b)(6 in.) — R,(50 in.) = 0
R, = +562 Ib R, = +562 b /

The value of T is found by writing

NH2F, = 0: +49801b — T =0
T = +4980 b T = 4980 Ib N\

The computed values of the reactions are shown in the adjacent sketch.
Check. The computations are verified by writing
7+3F, = +5621b + 1758 b — 2320 Ib = 0

The solution could also have been checked by computing moments about
any point other than A or B.



~———— SAMPLE PROBLEM 4.4

B | 2.25m

PP

20 kN 20 kN 20 kN 20 kN
\ \ \ \
'1.8m L8m 1.8 m L8

A The frame shown supports part of the roof of a small building. Knowing that

the tension in the cable is 150 kN, determine the reaction at the fixed end E.

| su_.] SOLUTION

Free-Body Diagram. A free-body diagram of the frame and of the cable BDF
is drawn. The reaction at the fixed end E is represented by the force compo-
nents E, and E, and the couple Mg. The other forces acting on the free body
are the four 20-kN loads and the 150-kN force exerted at end F of the cable.

Equilibrium Equations. Noting that DF = V(4.5 m)? + (6 m)? = 75 m,

D .
we write
A B + — 4.5
SIF, = 0: E, + ﬁ(ISO kN) =0
‘ 6m E, = —90.0 kN E, = 90.0 kN —
20 kN 20 kN 2( ®
e ¥ +12F, = 0 E, - 4(20kN) — ——(150kN) = 0
1.8m1.8m 1.8m 1.8m F 7.5

B = - = - E, = +200 kN E, = 200 kN
+YEMg = 0: (20 kN)(7.2 m) + (20 kN)(5.4 m) + (20 kN)(3.6 m)

EI/ 150 kN 6
’ + (20 kN)(1.8 m) — 75(150 kN)(4.5 m) + My = 0
Mp = +180.0 kN - m M; = 180.0 kN - m
/\ SAMPLE PROBLEM 4.5
[ 8Sin.
A \ A 400-1b weight is attached at A to the lever shown. The constant of the
B YW C| spring BC is k = 250 Ib/in., and the spring is unstretched when 6 = 0.

k250 Ib/in. Determine the position of equilibrium.

SOLUTION

Free-Body Diagram. We draw a free-body diagram of the lever and
cylinder. Denoting by s the deflection of the spring from its undeformed
position, and noting that s = r6, we have F = ks = kr6.

W 400 1b

Undeformed L .
positon  Equilibrium Equation.  Summing the moments of W and F about O, we write

k 2
+\2ZM, = 0: Wi sin 0 — r(kr@) = 0 sin 0 = é@
Substituting the given data, we obtain

o (2501b/in.)(31n.)20 10 = 0.703 6
S0 = 00 1b) (8 in.) mes

Solving by trial and error, we find 0=0 0 = 80.3°
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PROBLEMS

600 Ib-ft 100 Ib-ft 4.1 Two external shafts of a gearbox carry torques as shown. Determine
the vertical components of the forces that must be exerted by the
bolts at A and B to maintain the gearbox in equilibrium.

4.2 A 2800-kg forklift truck is used to lift a 1500-kg crate. Determine the
reaction at each of the two (@) front wheels A, (b) rear wheels B.

| 30 in.
Fig. P4.1
Ge
Fig. P4.2
4.3 A gardener uses a 12-1b wheelbarrow to transport a 50-1b bag of
fertilizer. What force must the gardener exert on each handle?
06m 0.4m

|<— 0.3m

C

o/l

2.0 m—>\
[T

6 in.

Fig. P4.3

"\V @ ﬁ\
H v If 4.4 A load of lumber of weight W = 25 kN is being raised as shown
by a mobile crane. Knowing that the tension is 25 kN in all portions
~—2.0 —»l«—»l«—z.o — 0.5 Y g P
" 0.9m " | " of cable AEF and that the weight of boom ABC is 3 kN, determine
Fig. P4.4 (a) the tension in rod CD, (b) the reaction at pin B.
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4.5

4.6

4.7

4.8

49

4.10

4.11

Three loads are applied as shown to a light beam supported by
cables attached at B and D. Neglecting the weight of the beam,
determine the range of values of Q for which neither cable becomes
slack when P = 0.

Three loads are applied as shown to a light beam supported by
cables attached at B and D. Knowing that the maximum allowable
tension in each cable is 12 kN and neglecting the weight of the
beam, determine the range of values of Q for which the loading is
safe when P = 5 kN.

The 10-ft beam AB rests upon, but is not attached, to supports at
C and D. Neglecting the weight of the beam, determine the range
of values of P for which the beam will remain in equilibrium.

P 240 1b
! !

AC B

L @

LSft ! 5 ft |

"o ft

Fig. P4.7

For the beam of Sample Prob. 4.2, determine the range of values
of P for which the beam will be safe knowing that the maximum
allowable value for each of the reactions is 25 kips and that the
reaction at A must be directed upward.

The 40-ft boom AB weighs 2 kips; the distance from the axle A to
the center of gravity G of the boom is 20 ft. For the position shown,
determine the tension T in the cable and the reaction at A.

The ladder AB, of length L and weight W, can be raised by the
cable BC. Determine the tension T required to raise end B just
off the floor (a) in terms of W and 0, (b) it h = S ft, L = 10 ft,
and W = 35 1b.

Neglecting the radius of the pulley, determine the tension in cable
ABD and the reaction at the support C.

B
125 mm
T [97A
175 mm
C
_
Yy 5 D
O
225 mm I
150 NY 75 mm

Fig. P4.11

Problems

¥ N4
7.5 kN
P
\ \ X9 \
A
I'B D
0.5 m — 1.5m
0.75m 0.75 m

Fig. P4.5 and P4.6
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146 Equilibrium of Rigid Bodies 4.12 The lever AB is hinged at C and attached to a control cable at A.
If the lever is subjected at B to a 500-N horizontal force, determine

/\ (a) the tension in the cable, (b) the reaction at C.
250 mm

A 4.13 Determine the reactions at A and B when a = 60°.

400 N

250 mm—|=<250 mm
" y _>| B

T y Al

Fig. P4.12

Fig. P4.13

4.14 The required tension in cable AB is 300 Ib. Determine (a) the
vertical force P that must be applied to the pedal, (b) the corre-
sponding reaction at C.

Fig. P4.14 and P4.15

4.15 Determine the maximum tension that can be developed in cable
AB if the maximum allowable magnitude of the reaction at C is

650 Ib.

4.16 A truss may be supported in three different ways as shown. In each
one, determine the reactions at the supports.

3 kN 3 kN 3 kN
-2 mM—>

2 kN T :" 2 kN :" 2 kN :"

1.5m
21(NL> 2 kN -1 O KN -t

A

1A_A_ g ' &° AR= £ a0

@ ) ©

Fig. P4.16




4.17

4.18

4.19

4.20

4.21

A light bar AD is suspended from a cable BE and supports a 20-kg
block at C. The extremities A and D of the bar are in contact with
frictionless, vertical walls. Determine the tension in cable BE and
the reactions A and D.

A light rod, supported by rollers at B, C, and D, is subjected to an
800-N force applied at A. If B = 0, determine (a) the reactions at
B, C, and D, (b) the rollers that can be safely removed for this
loading.

Fig. P4.18

A 160-1b overhead garage door consists of a uniform rectangular
panel AC, 84 in. long, supported by the cable AE attached at the
middle of the upper edge of the door and by two sets of frictionless
rollers at A and B. Each set consists of two rollers located on either
side of the door. The rollers A are free to move in horizontal chan-
nels, while the rollers B are guided by vertical channels. If the door
is held in the position for which BD = 42 in., determine (a) the
tension in cable AE, (b) the reaction at each of the four rollers.

In Prob. 4.19, determine the distance BD for which the tension in
cable AE is equal to 600 Ib.

A 150-kg telephone pole is used to support the ends of two wires
as shown. The tension in the wire to the left is 400 N, and, at the
point of support, the wire forms an angle of 10° with the horizontal.
(a) If the tension T} is zero, determine the reaction at the base A.
(b) Determine the largest and smallest allowable tension T if the
magnitude of the couple at A may not exceed 900 N - m.

B

0d

T, = 400 N

Fig. P4.21

Problems

75 mm
<125 mm 175 mm —|
Ve
D
C
200 mm B
= B
20 kg

Fig. P4.17

84 in.

147

Fig. P4.19
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3.75 ft
| 17.5 ft |
b |
5 !
5 ft
B
®C 1t
A
~6.5 ft—|
|
W 12001b 10 ft
x I

E F 8
3600 Ib ‘

Fig. P4.22

7.2m

4.22 The rig shown consists of a 1200-Ib horizontal member ABC and
a vertical member DBE welded together at B. The rig is being
used to raise a 3600-1b crate at a distance x = 12 ft from the verti-
cal member DBE. If the tension in the cable is 4 kips, determine
the reaction at E, assuming that the cable is () anchored at F as
shown in the figure, (b) attached to the vertical member at a point
located 1 ft above E.

4.23 For the rig and crate of Prob. 4.22, and assuming that the cable is
anchored at F as shown, determine (a) the required tension in
cable ADCF if the maximum value of the couple at E as x varies
from 1.5 to 17.5 ft is to be as small as possible, (b) the correspond-
ing maximum value of the couple.

4.24 A traffic-signal pole may be supported in the three ways shown; in
part ¢, the tension in cable BC is to be 1950 N. Determine the
reactions for each type of support.

2.1 2.1
|.~m| |4_m,|
5 900 N 900 N
B
44()()0 N ’l4()00 N
A
)
L 3 m— (a) (b) (c)

Fig. P4.24

4.25 A truss may be supported in eight different ways as shown. All
connections consist of frictionless pins, rollers, and short links. In
each case, determine whether (a) the truss is completely, partially,
or improperly constrained, (b) the reactions are statically determi-
nate or indeterminate, (¢) the equilibrium of the truss is main-
tained in the position shown. Also, wherever possible, compute the
reactions, assuming that the magnitude of the force P is 12 kips.

1 3 4

T

9 fi O O 0

Jt_j N E N DN N
A J . T A . A A .
LGH»FGH

1

Fig. P4.25



4.26 Nine identical rectangular plates, 500 X 750 mm, and each of mass
m = 40 kg, are held in a vertical plane as shown. All connections
consist of frictionless pins, rollers, and short links. For each case,
answer the questions listed in Prob. 4.25, and wherever possible,
compute the reactions.

x N N
NN

o

Fig. P4.26

4.6 EQUILIBRIUM OF A TWO-FORCE BODY

A particular case of equilibrium which is of considerable interest is
that of a rigid body subjected to two forces. Such a body is commonly
called a two-force body. It will be shown that if a two-force body is
in equilibrium, the two forces must have the same magnitude, the
same line of action, and opposite sense.

Consider a corner plate subjected to two forces Fy and F act-
ing at A and B, respectively (Fig. 4.8a). If the plate is to be in equi-
librium, the sum of the moments of F; and F, about any axis must
be zero. First, we sum moments about A. Since the moment of F,
is obviously zero, the moment of Fy must also be zero and the line
of action of Fy must pass through A (Fig. 4.8b). Summing moments
about B, we prove similarly that the line of action of F; must pass
through B (Fig. 4.8c). Therefore, both forces have the same line of
action (line AB). From either of the equations 2F, = 0 and 2F, = 0
it is seen that they must also have the same magnitude but opposite
sense.

4.6 Equilibrium of a Two-Force Body 149
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F

Fig. 4.9

\Fz

°B C

/ T,

(a)
Fig. 4.8 (repeated)

If several forces act at two points A and B, the forces acting at
A can be replaced by their resultant F; and those acting at B can be
replaced by their resultant F;. Thus a two-force body can be more
generally defined as a rigid body subjected to forces acting at only
two points. The resultants F; and F, then must have the same line
of action, the same magnitude, and opposite sense (Fig. 4.8).

In the study of structures, frames, and machines, you will see
how the recognition of two-force bodies simplifies the solution of
certain problems.

4.7 EQUILIBRIUM OF A THREE-FORCE BODY

Another case of equilibrium that is of great interest is that of a three-
force body, i.e., a rigid body subjected to three forces or, more gen-
erally, a rigid body subjected to forces acting at only three points.
Consider a rigid body subjected to a system of forces which can be
reduced to three forces Fy, Fy, and F; acting at A, B, and C, respec-
tively (Fig. 4.9a). It will be shown that if the body is in equilibrium,
the lines of action of the three forces must be either concurrent or
parallel.

Since the rigid body is in equilibrium, the sum of the moments
of F;, Fy, and F; about any axis must be zero. Assuming that the
lines of action of F; and F, intersect and denoting their point of
intersection by D, we sum moments about D (Fig. 4.9b). Since the
moments of F; and Fy about D are zero, the moment of F5 about
D must also be zero, and the line of action of F5 must pass through
D (Fig. 4.9¢). Therefore, the three lines of action are concurrent.
The only exception occurs when none of the lines intersect; the lines
of action are then parallel.

Although problems concerning three-force bodies can be solved
by the general methods of Secs. 4.3 to 4.5, the property just estab-
lished can be used to solve them either graphically or mathematically
from simple trigonometric or geometric relations.

Fy Fy
\ /F:z \ Fs
B C B C
\ \ //
b .

) )
A/CX /CX

F F



SAMPLE PROBLEM 4.6

A man raises a 10-kg joist, of length 4 m, by pulling on a rope. Find the
tension T in the rope and the reaction at A.

SOLUTION

/ B Free-Body Diagram. The joist is a three-force body, since it is acted upon
by three forces: its weight W, the force T exerted by the rope, and the
reaction R of the ground at A. We note that

W = mg = (10 kg)(9.81 m/s*) = 98.1 N

W 981N

Three-Force Body. Since the joist is a three-force body, the forces acting
on it must be concurrent. The reaction R, therefore, will pass through the
point of intersection C of the lines of action of the weight W and the ten-
sion force T. This fact will be used to determine the angle « that R forms
with the horizontal.

Drawing the vertical BF through B and the horizontal CD through C,
we note that

AF = BF = (AB) cos 45° = (4 m) cos 45° = 2.828 m

CD = EF = AE = }(AF) = 1414 m

BD = (CD) cot (45° + 25°) = (1.414 m) tan 20° = 0.515 m
CE = DF = BF — BD = 2828 m — 0.515 m = 2313 m

We write

g CE_2313m _
METUE 1414m

a = 58.6°

We now know the direction of all the forces acting on the joist.

Force Triangle. A force triangle is drawn as shown, and its interior angles
are computed from the known directions of the forces. Using the law of
sines, we write

JBIN T R 981N

sin31.4° sin 110°  sin 38.6°

T=819N
R = 1478 N £58.6°
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PROBLEMS

60 mm 40 mm, 4.27 Determine the reactions at B and C when ¢ = 30 mm.

| 100 mm
‘ 4.28 The spanner shown is used to rotate a shaft. A pin fits in a hole at
ce f A, while a flat, frictionless surface rests against the shaft at B. If a
60 mm 300-N force P is exerted on the spanner at D, find the reactions
a |a b at A and B.
R o
D
Yo50 N A :
- e
Fig. P4.27 50° 4N  J
J N D
B
75 mm
|<— 375 mm ———
Fig. P4.28
i 7 ft | 4.29 A 10-ft wooden beam weighing 120 1b is supported by a pin and
C bracket at A and by cable BC. Find the reaction at A and the ten-
sion in the cable.
5 ft 4.30 A T-shaped bracket supports a 300-N load as shown. Determine
A . the reactions at A and C when (a) a = 90°, (b) o = 45°.
Qo
S R

mzlb | @

A \3
Fig. P4.29 \
<& 4 300 N
300 mm
e) C
250 mm—
150 mm

Fig. P4.30

4.31 One end of a rod AB rests in the corner A, and the other is attached
—r to cord BD. If the rod supports a 200-N load at its midpoint C,
find the reaction at A and the tension in the cord.

450 mm 4.32 Using the method of Sec. 4.7, solve Prob. 4.12.

4.33 Using the method of Sec. 4.7, solve Prob. 4.13.

)I 4.34 Using the method of Sec. 4.7, solve Prob. 4.14.
<300 mm —{= 300 mm —|

Fig. P4.31 4.35 Using the method of Sec. 4.7, solve Prob. 4.15.
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4,36 Determine the reactions at A and E when a = 0. Problems 1573

o) A
500 N
200 mm \ &
B

C

200 mm D 30
75 1b

©)

E ’~10 in.—|<—10 in.—>|
B

150 mm 200 mm Y

3
] o
Fig. P4.36 and P4.37

12 in.
4.37 Determine (a) the value of a for which the reaction at A is vertical, 4,
(b) the corresponding reactions at A and E. |
4.38 Determine the reactions at A and B when a = 90°. Fig. P4.38 and P4.39

4.39 Determine the reactions at A and B when o = 30°.

4.40 A slender rod BC of length L and weight W is held by two cables
as shown. Knowing that cable AB is horizontal and that the rod
forms an angle of 40° with the horizontal, determine (@) the
angle 6 that cable CD forms with the horizontal, (b) the tension
in each cable.

4.41 A slender rod AB of length L and weight W is attached to a collar
at A and rests on a small wheel at C. Neglecting the effect of fric-
tion and the weight of the collar, determine the angle 6 corre-
sponding to equilibrium.

Fig. P4.40

80 Ib Q) —1—
Fig. P4.41 ‘ 4in,

4.42 Determine the reactions at A and B when ¢ = 7.5 in.

<~ ——>

12 in.

4.43 Determine the value of a for which the magnitude of the reaction
B is equal to 200 Ib. Fig. P4.42 and P4.43




154  Equilibrivm of Rigid Bodies 4.44 Rod AB is supported by a pin and bracket at A and rests against
a frictionless peg at C. Determine the reactions at A and C when
a 170-N vertical force is applied at B.

4.45 Solve Prob. 4.44 assuming that the 170-N force applied at B is
horizontal and directed to the left.
150 mm
4.46 A uniform plate girder weighing 6000 Ib is held in a horizontal
a2 position by two crane cables. Determine the angle « and the ten-
sion in each cable.
150 mm
30°
o 7
B
7 oNa B
170N [ || [ [ |
Fig. P4.44 |<—20 ft— 60 ft .
Fig. P4.46

4.47 A 12-ft ladder, weighing 40 Ib, leans against a frictionless vertical
wall. The lower end of the ladder rests on rough ground, 4 ft away
from the wall. Determine the reactions at both ends.

C
ft
Frictionless
A 30° B
1.2m
225 N _‘
i 09 m—b—oom—
Fig. P4.47 Fig. P4.48

4.48 A 225-N sign is supported by a pin and bracket at A and by a cable
5 BC. Determine the reaction at A and the tension in the cable.

_@5 4.49 The L-shaped member ACB is supported by a pin and bracket
at C and by an inextensible cord attached at A and B and passing
over a frictionless pulley at D. The tension may be assumed to
12 in. be the same in portions AD and BD of the cord. If the magni-
tudes of the forces applied at A and B are, respectively, P = 25 Ib
and Q = 0, determine (a) the tension in the cord, (b) the reaction
at C.

s

4.50 For the L-shaped member of Prob. 4.49, (a) express the tension T
in the cord in terms of the magnitudes P and Q of the forces
applied at A and B, (b) assuming Q = 40 lb, find the smallest

Fig. P4.49 allowable value of P if the equilibrium is to be maintained.

| 16 in. |




4.8 EQUILIBRIUM OF A RIGID BODY
IN THREE DIMENSIONS

We saw in Sec. 4.1 that six scalar equations are required to express
the conditions for the equilibrium of a rigid body in the general
three-dimensional case:

SF,=0 SF,=0 SF.=0 4.2)
= 0 SM.=0 (4.3)

These equations can be solved for no more than six unknowns, which
generally will represent reactions at supports or connections.

In most problems the scalar equations (4.2) and (4.3) will be
more conveniently obtained if we first express in vector form the con-
ditions for the equilibrium of the rigid body considered. We write

SF=0 SMy=23(rxF) =0 4.1)

and express the forces F and position vectors r in terms of scalar
components and unit vectors. Next, we compute all vector products,
either by direct calculation or by means of determinants (see Sec. 3.8).
We observe that as many as three unknown reaction components
may be eliminated from these computations through a judicious
choice of the point O. By equating to zero the coefficients of the
unit vectors in each of the two relations (4.1), we obtain the desired
scalar equations.

4.9 REACTIONS AT SUPPORTS AND CONNECTIONS
FOR A THREE-DIMENSIONAL STRUCTURE

The reactions on a three-dimensional structure range from the single
force of known direction exerted by a frictionless surface to the
force-couple system exerted by a fixed support. Consequently, in
problems involving the equilibrium of a three-dimensional structure,
there can be between one and six unknowns associated with the
reaction at each support or connection. Various types of supports and

tIn some problems, it will be found convenient to eliminate the reactions at two points
A and B from the solution by writing the equilibrium equation M, = 0, which
involves the determination of the moments of the forces about the axis AB joining
points A and B (see Sample Prob. 4.10).

4.9 Reactions at Supports and Connections for
a Three-Dimensional Structure
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156  Equilibrium of Rigid Bodies

Photo 4.6 Universal joints, easily seen on the
drive shafts of rear-wheel-drive cars and trucks,
allow rotational motion to be transferred between
two noncollinear shafts.

Photo 4.7 The pillow block bearing shown
supports the shaft of a fan used in an industrial
facility.

connections are shown in Fig. 4.10 with their corresponding reac-
tions. A simple way of determining the type of reaction correspond-
ing to a given support or connection and the number of unknowns
involved is to find which of the six fundamental motions (translation in
the «x, y, and z directions and rotation about the x, y, and z axes) are
allowed and which motions are prevented.

Ball supports, frictionless surfaces, and cables, for example, pre-
vent translation in one direction only and thus exert a single force whose
line of action is known; each of these supports involves one unknown,
namely, the magnitude of the reaction. Rollers on rough surfaces and
wheels on rails prevent translation in two directions; the corresponding
reactions consist of two unknown force components. Rough surfaces in
direct contact and ball-and-socket supports prevent translation in three
directions; these supports involve three unknown force components.

Some supports and connections can prevent rotation as well
as translation; the corresponding reactions include couples as well as
forces. For example, the reaction at a fixed support, which prevents
any motion (rotation as well as translation), consists of three unknown
forces and three unknown couples. A universal joint, which is designed
to allow rotation about two axes, will exert a reaction consisting of
three unknown force components and one unknown couple.

Other supports and connections are primarily intended to pre-
vent translation; their design, however, is such that they also prevent
some rotations. The corresponding reactions consist essentially of
force components but may also include couples. One group of sup-
ports of this type includes hinges and bearings designed to support
radial loads only (for example, journal bearings, roller bearings). The
corresponding reactions consist of two force components but may
also include two couples. Another group includes pin-and-bracket
supports, hinges, and bearings designed to support an axial thrust as
well as a radial load (for example, ball bearings). The corresponding
reactions consist of three force components but may include two
couples. However, these supports will not exert any appreciable cou-
ples under normal conditions of use. Therefore, only force compo-
nents should be included in their analysis unless it is found that
couples are necessary to maintain the equilibrium of the rigid body,
or unless the support is known to have been specifically designed to
exert a couple (see Probs. 4.71 and 4.72).

If the reactions involve more than six unknowns, there are
more unknowns than equations, and some of the reactions are stati-
cally indeterminate. If the reactions involve fewer than six unknowns,
there are more equations than unknowns, and some of the equations
of equilibrium cannot be satisfied under general loading conditions;
the rigid body is only partially constrained. Under the particular
loading conditions corresponding to a given problem, however, the
extra equations often reduce to trivial identities, such as 0 = 0, and
can be disregarded; although only partially constrained, the rigid
body remains in equilibrium (see Sample Probs. 4.7 and 4.8). Even
with six or more unknowns, it is possible that some equations of
equilibrium will not be satisfied. This can occur when the reactions
associated with the given supports either are parallel or intersect the
same line; the rigid body is then improperly constrained.



Ball Frictionless surface

= g
- 7 s / Force with known
Z Z - z line of action

(one unknown)

~~
Force with known

Cable line of action
(one unknown)

Roller on /Wheel on rail
rough surface

g
s Z —- >
- ’e

Rough surface Ball and socket

>

Three force components

Universal Three force components
joint and one couple

Fixed support

A

Fy F'-#x

el
Three force components
(and three couples)

g

Two force COl’l’lpOIleIltS

I

F,

(and two couples)

Hinge and bearing supporting
axial thrust and radial load

Pin and bracket

A
F,
Mm% F

Three force components
(and two couples)

Fig. 4.10 Reactions at supports and connections.
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SAMPLE PROBLEM 4.7

A 20-kg ladder used to reach high shelves in a storeroom is supported by
two flanged wheels A and B mounted on a rail and by an unflanged wheel
C resting against a rail fixed to the wall. An 80-kg man stands on the ladder
and leans to the right. The line of action of the combined weight W of the
man and ladder intersects the floor at point D. Determine the reactions at
A, B, and C.

SOLUTION

Free-Body Diagram. A free-body diagram of the ladder is drawn. The
forces involved are the combined weight of the man and ladder,

W = —mgj = —(80 kg + 20 kg)(9.81 m/s>)j = —(981 N)j

and five unknown reaction components, two at each flanged wheel and one
at the unflanged wheel. The ladder is thus only partially constrained; it is
free to roll along the rails. It is, however, in equilibrium under the given
load since the equation 2F, = 0 is satisfied.

Equilibrium Equations. We express that the forces acting on the ladder
form a system equivalent to zero:

SF = 0: Aj+Ak+Bj+ Bk—(98IN)j+Ck=0
(A,+ B, =981 N)j + (A, + B, + C)k = 0 1)
SM, =232(r X F) =0: 1.2i X (B,j + B.k) + (0.9i — 0.6k) x (—981j)
+ (0.6 + 3j — 1.2k) x Ck =0

Computing the vector products, we havet

1.2B )k — 1.2B.j — 882.9k — 588.6i — 0.6Cj + 3Ci = 0
(3C — 588.6)i — (1.2B; + 0.6C)j + (1.2B, — 882.9)k = 0 2)

Setting the coefficients of i, j, k equal to zero in Eq. (2), we obtain
the following three scalar equations, which express that the sum of the
moments about each coordinate axis must be zero:

3C — 588.6 = 0 C = +196.2 N
1.2B. + 0.6C = 0 B,= —981N

12B, — 8829 =0 B, = +736 N

The reactions at B and C are therefore
B = +(736 N)j — (98.1 N)k C = +(196.2 N)k

Setting the coefficients of j and k equal to zero in Eq. (1), we obtain two scalar
equations expressing that the sums of the components in the  and z directions
are zero. Substituting for B,, B., and C the values obtained above, we write
A j+B,—981=0 A +736-981=0 A, =+245N
A +B.+C=0 A —981+19%2=0 A =-981N

We conclude that the reaction at Ais A = +(245 N)j — (98.1 N)k

tThe moments in this sample problem and in Sample Probs. 4.8 and 4.9 can also be
expressed in the form of determinants (see Sample Prob. 3.10).
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SAMPLE PROBLEM 4.8

A 5 X 8-ft sign of uniform density weighs 270 1b and is supported by a
ball-and-socket joint at A and by two cables. Determine the tension in each
cable and the reaction at A.

SOLUTION

Free-Body Diagram. A free-body diagram of the sign is drawn. The forces
acting on the free body are the weight W = —(270 1b)j and the reactions
at A, B, and E. The reaction at A is a force of unknown direction and is
represented by three unknown components. Since the directions of the
forces exerted by the cables are known, these forces involve only one
unknown each, namely, the magnitudes Tgp and Tgc. Since there are only
five unknowns, the sign is partially constrained. It can rotate freely about
the x axis; it is, however, in equilibrium under the given loading, since the
equation XM, = 0 is satisfied.

The components of the forces Tpp and Ty can be expressed in terms
of the unknown magnitudes Tgp and Ty by writing

BD = —(8f)i + (4ft)j - (Sfok  BD = 12t
EC=—(6ft£)+(3ft)j+(2ft)k EC = 7 ft
BD 5
Tpp = TBD(E) = Tpp(—3i + %_] - 3k)

EC
Tge = TEC(E) = Tpe(—% + 3j — 2k)

Equilibrium Equations. We express that the forces acting on the sign form
a system equivalent to zero:
>F = 0: Ad +Aj+ Ak + Tpp + Ty — (270 Ib)j = 0
(Ac = 5Tsp = 3Tgc)i + (A, + 5Tpp + 3Tpc — 270 1b)j
+ (A, = 3Tpp + 3Tk =0 (1)
M, =2(r X F) = 0:
(8ft)i X Tgp(—%i + 3j — 2k) + (6ft)i X Tpc(—4i + 3j + 2k)
+ (4ft)i x (—2701b)j =0
(2.667Tpp + 2.571Txe — 1080 Ib)k + (5.333Tp — 1.714Tc)j = 0 (2)

Setting the coefficients of j and k equal to zero in Eq. (2), we obtain
two scalar equations which can be solved for Tpp and Tgc:

TBD = 101.3 H’) TF(] = 315 lb

Setting the coefficients of i, j, and k equal to zero in Eq. (1), we obtain
three more equations, which yield the components of A. We have

A = +(3381b)i + (101.2 Ib)j — (22.5 Ib)k
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160 mm

Yy

80 mm

160 mm

SAMPLE PROBLEM 4.9

A uniform pipe cover of radius » = 240 mm and mass 30 kg is held in a
horizontal position by the cable CD. Assuming that the bearing at B does
not exert any axial thrust, determine the tension in the cable and the reac-
tions at A and B.

SOLUTION

Free-Body Diagram. A free-body diagram is drawn with the coordinate
axes shown. The forces acting on the free body are the weight of the cover,

W = —mgj = —(30 kg)(9.81 m/s?)j = —(294 N)j

and reactions involving six unknowns, namely, the magnitude of the force T
exerted by the cable, three force components at hinge A, and two at hinge B.
The components of T are expressed in terms of the unknown magnitude T

by resolving the vector DC into rectangular components and writing
ﬁ = —(480 mm)i + (240 mm)j — (160 mm)k DC = 560 mm
DC
T=T,-= =& 4 2 = 2k

Equilibrium Equations. We express that the forces acting on the pipe

- cover form a system equivalent to zero:

SF = 0: Ad+Aj+Ak+ Bi+ Bj+ T~ (294 N)j
(A, + B, — )i + (A, + B, + 3T — 294 N)j + (A, — 2Dk

0
0 (1)

SM; = 3(r X F) = 0:
2rk X (Ad + Aj + Ak
T+ (2ri+ k) x (-8 + 3T - 2TK)
+ (ri +rk) X (=294 N)j =0
(=24, — 3T + 294 N)ri + (24, — #T)rj + BT — 294 N)rk =0 (2)

Setting the coefficients of the unit vectors equal to zero in Eq. (2),
we write three scalar equations, which yield

A, = +490 N A, = +735 N T = 343 N

Setting the coefficients of the unit vectors equal to zero in Eq. (1), we obtain
three more scalar equations. After substituting the values of T, A,, and A,
into these equations, we obtain

A, = +98.0 N B, = +245 N By = +735 N
The reactions at A and B are therefore

A = +(49.0 N)i + (735 N)j + (98.0 N)k
B = +(245 N)i + (73.5 N)j



SAMPLE PROBLEM 4.10

A 450-1b load hangs from the corner C of a rigid piece of
pipe ABCD which has been bent as shown. The pipe is
12 ft supported by the ball-and-socket joints A and D, which are
fastened, respectively, to the floor and to a vertical wall,
and by a cable attached at the midpoint E of the portion
BC of the pipe and at a point G on the wall. Determine
(a) where G should be located if the tension in the cable
is to be minimum, (b) the corresponding minimum value
of the tension.

SOLUTION

Free-Body Diagram. The free-body diagram of the pipe includes the load
W = (—450 Ib)j, the reactions at A and D, and the force T exerted by the
cable. To eliminate the reactions at A and D from the computations, we
express that the sum of the moments of the forces about AD is zero. Denot-
ing by A the unit vector along AD, we write

SMup=0. A-(AEXT)+A-(ACXW)=0 (1)

The second term in Eq. (1) can be computed as follows:

AC X W = (12i + 12j) X (—450§) = —5400k

AD 12i +12j — 6k

12 ft AD 18 o3
A 2. 4 2. 1

A (AC X W) = (5i +35j — 5k) - (=5400k) = +1800

i+ 1) - Ik

Substituting the value obtained into Eq. (1), we write

T A-(AE x T) = —18001b - ft @)

Minimum Value of Tension. Recalling the commutative property for
mixed triple products, we rewrite Eq. (2) in the form

T-(AXAE) = —18001b - ft 3)

—
which shows that the projection of T on the vector A X AE is a constant.
It follows that T is minimum when parallel to the vector

AR 2., 2. 1 . . . .
A X AE = (5i + 35j — 5k) x (61 + 12j) = 4i — 2j + 4k
Since the corresponding unit vector is %1 - é] + %k, we write
T = T(Gi — 5 + 3k) 4
Substituting for T and A X AF in Eq. (3) and computing the dot products,
we obtain 6T = —1800 and, thus, T = —300. Carrying this value into (4),
T, = —200i + 100j — 200k Toin = 300 1b

. —_—>
Location of G. Since the vector EG and the force T,,;, have the same
direction, their components must be proportional. Denoting the coordinates

1 D,j
. D.k
B X B C
[ =
ol l
19 £t Y W=—450]
|
|
! I
g |
A \‘l : / 6 _ /6 ft
Aka” M
12 ft
Ay
—c& Glx,y, 0)
\Tmin
/ D
B/ =
E®6,12,6) | C
w :
we obtain
X
Ad

of G by «x, y, 0, we write

x—6_y—12 0-6
-200  +100  —200

%= y = 151t
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PROBLEMS

4.51 Two transmission belts pass over a double-sheaved pulley that is
attached to an axle supported by bearings at A and D. The radius
of the inner sheave is 125 mm and the radius of the outer sheave
is 250 mm. Knowing that when the system is at rest, the tension
is 90 N in both portions of belt B and 150 N in both portions of
belt C, determine the reactions at A and D. Assume that the bear-
ing at D does not exert any axial thrust.

Tg

3

Fig. P4.51

4.52 Solve Prob. 4.51, assuming that the pulley rotates at a constant rate
and that Ty = 104 N, T, = 84 N, and T, = 175 N.

4.53 A 4 X 8 ft sheet of plywood weighing 40 Ib has been temporarily
propped against column CD. It rests at A and B on small wooden
blocks and against protruding nails. Neglecting friction at all the
surfaces of contact, determine the reactions at A, B and C.

Fig. P4.53
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4.54

4.55

4.56

4.57

4.58

A small wrench is used to raise a 120-Ib load. Find (@) the magni-
tude of the vertical force P that should be applied at C to maintain
equilibrium in the position shown, (b) the reactions at A and B,
assuming that the bearing at B does not exert any axial thrust.

Fig. P4.54

A 200-mm lever and a 240-mm-diameter pulley are welded to the
axle BE that is supported by bearings at C and D. If a 720-N verti-
cal load is applied at A when the lever is horizontal, determine (a)
the tension in the cord, (b) the reactions at C and D. Assume that
the bearing at D does not exert any axial thrust.

Yy

40 mm

80 mm
200 mm

120 mm,

Fig. P4.55

Solve Prob. 4.55 assuming that the axle has been rotated clockwise
in its bearings by 30° and that the 720-N load remains vertical.

The rectangular plate shown weighs 80 1b and is supported by
three wires. Determine the tension in each wire.

A load W is to be placed on the 80-Ib plate of Prob. 4.57. Deter-
mine the magnitude of W and the point where it should be placed
if the tension is to be 60 1b in each of the three wires.

Problems

15in.

-

30 in.

60 in.

60 in.

Fig. P4.57
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]64 Equilibrium of Rigid Bodies 4.59

4.60
375 mm B
125 mm >/ x 4.61
@
/A 500 mm
z L—SOO mm J
Fig. P4.59
6 ft
y /
E ~
F
A / B C
3 ft (8 -
| ' '
V¥ 300 1b
D /va ft’Lzl ft— 4.62
Z- \/4 ft 4.63
Fig. P4.63
4.64

The 20-kg square plate is supported by the three wires shown.
Determine the tension in each wire.

Determine the mass and location of the smallest block that should
be placed on the 20-kg plate of Prob. 4.59 if the tensions in the
three wires are to be equal.

The 12-ft boom AB is acted upon by the 850-1b force shown.
Determine (a) the tension in each cable, (b) the reaction of the

ball and socket at A.

Fig. P4.61

Solve Prob. 4.61 assuming that the 850-Ib load is applied at point B.

A 7-ft boom is held by a ball and socket at A and by two cables
EBF and DC; cable EBF passes around a frictionless pulley at B.
Determine the tension in each cable.

A 300-kg crate hangs from a cable that passes over a pulley B and
is attached to a support at H. The 100-kg boom AB is supported
by a ball and socket at A and by two cables DE and DF. The center
of gravity of the boom is located at G. Determine (a) the tension
in cables DE and DF, (b) the reaction at A.

084m |y




4.65 The horizontal platform ABCD weighs 60 Ib and supports a 240-Ib Problems 145
load at its center. The platform is normally held in position by hinges
at A and B and by braces CE and DE. If brace DE is removed,
determine the reactions at the hinges and the force exerted by the y
remaining brace CE. The hinge at A does not exert any axial thrust.

1.2m

Fig. P4.66

Fig. P4.65

4.66 A 1.2 X 2.4-m sheet of plywood is temporarily held by nails at D and
E and by two wooden braces nailed at A, B and C. Wind is blowing
on the hidden face of the plywood sheet, and it is assumed that its
effect may be represented by a force Pk applied at the center of the
sheet. Knowing that each brace becomes unsafe with respect to buck-
ling when subjected to a 1.8-kN axial force, determine (a) the maxi-
mum allowable value of the magnitude of P of the wind force,
(b) the corresponding value of the z component of the reaction at E.

4 ft
Assume that the nails are loose and do not exert any couple.

4.67 A 3 X 4-ft plate weighs 150 lb and is supported by hinges at A
and B. It is held in the position shown by the 2-ft chain CD.
Assuming that the hinge at A does not exert any axial thrust, deter-
mine the tension in the chain and the reactions at A and B.

4.68 The lid of a roof scuttle weighs 75 Ib. It is hinged at corners A and
B and maintained in the desired position by a rod CD pivoted at
C; a pin at end D of the rod fits into one of several holes drilled
in the edge of the lid. For & = 50°, determine (a) the magnitude
of the force exerted by rod CD, (b) the reactions at the hinges.
Assume that the hinge at B does not exert any axial thrust.

Fig. P4.67

26 in. \/

Fig. P4.68




166 Equilibrium of Rigid Bodies 4.69 A 10-kg storm window measuring 900 X 1500 mm is held by
hinges at A and B. In the position shown, it is held away from the
side of the house by a 600-mm stick CD. Assuming that the hinge
at A does not exert any axial thrust, determine the magnitude of
the force exerted by the stick and the components of the reactions

A and B.
Y
12w | )
I‘/ —to25m
E[6 1 —1
,/ C A z
1.5m
m 1500

15 kg||/f

Fig. P4.69

\
=
WY

4.70 A 20-kg door is made self-closing by hanging a 15-kg counter-

x weight from a cable attached at C. The door is held open by a

force P applied at the knob D in a direction perpendicular to the

- 0.90 m door. Determine the magnitude of P and the components of the

z reactions A and B when 6 = 90°. It is assumed that the hinge at
Fig. P4.70 A does not exert any axial thrust.

4.71 Solve Prob. 4.65 assuming that the hinge at A has been removed
and that the hinge at B can exert couples about the axes parallel
to the x and y axes, respectively.

4.72 Solve Prob. 4.69 assuming that the hinge at A has been removed.

4.73 The rigid L-shaped member ABC is supported by a ball and socket
at A and three cables. Determine the tension in each cable and
the reaction at A caused by the 500-Ib load applied at G.

500 Ib

Fig. P4.73

4.74 Three rods are welded together to form the “corner” shown. The
corner is supported by three smooth eyebolts. Determine the reac-
tions at A, B, and C when P = 1.2 kN, ¢ = 300 mm, b = 200 mm,

and ¢ = 250 mm.
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of Friction

4.10 FRICTION FORCES

In the preceding sections, it was assumed that surfaces in contact
were either frictionless or rough. If they were frictionless, the force
each surface exerted on the other was normal to the surfaces and
the two surfaces could move freely with respect to each other. If they
were rough, it was assumed that tangential forces could develop to
prevent the motion of one surface with respect to the other.

This view was a simplified one. Actually, no perfectly friction-
less surface exists. When two surfaces are in contact, tangential
forces, called friction forces, will always develop if one attempts to
move one surface with respect to the other. On the other hand,
these friction forces are limited in magnitude and will not prevent
motion if sufficiently large forces are applied. The distinction
between frictionless and rough surfaces is thus a matter of degree.
This will be seen more clearly in the following sections, which are
devoted to the study of friction and of its applications to common
engineering situations.

There are two types of friction: dry friction, sometimes called
Coulomb friction, and fluid friction. Fluid friction develops between
layers of fluid moving at different velocities. Fluid friction is of
great importance in problems involving the flow of fluids through
pipes and orifices or dealing with bodies immersed in moving
fluids. It is also basic in the analysis of the motion of lubricated
mechanisms. Such problems are considered in texts on fluid
mechanics. The present study is limited to dry friction, i.e., to prob-
lems involving rigid bodies which are in contact along nonlubri-
cated surfaces.

4.11 THE LAWS OF DRY FRICTION.
COEFFICIENTS OF FRICTION

The laws of dry friction are exemplified by the following experiment.
A block of weight W is placed on a horizontal plane surface
(Fig. 4.11a). The forces acting on the block are its weight W and the
reaction of the surface. Since the weight has no horizontal component,

%% W
F | Equilibrium i Motion
‘ ' P ];771 I
—-
A B A B | -
'\ < | '
|

N N ' 7

(a) (b) (c)

Fig. 4.11
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the reaction of the surface also has no horizontal component; the
reaction is therefore normal to the surface and is represented by N
in Fig. 4.11a. Suppose, now, that a horizontal force P is applied to
the block (Fig. 4.11b). If P is small, the block will not move; some
other horizontal force must therefore exist, which balances P. This
other force is the static-friction force F, which is actually the resul-
tant of a great number of forces acting over the entire surface of
contact between the block and the plane. The nature of these forces
is not known exactly, but it is generally assumed that these forces are
due to the irregularities of the surfaces in contact and, to a certain
extent, to molecular attraction.

If the force P is increased, the friction force F also increases,
continuing to oppose P, until its magnitude reaches a certain maximum
value F,, (Fig. 4.11c). If P is further increased, the friction force
cannot balance it any more and the block starts sliding.t As soon as
the block has been set in motion, the magnitude of F drops from F,,
to a lower value F\. This is because there is less interpenetration
between the irregularities of the surfaces in contact when these
surfaces move with respect to each other. From then on, the block
keeps sliding with increasing velocity while the friction force, denoted
by F; and called the kinetic-friction force, remains approximately
constant.

Experimental evidence shows that the maximum value F,, of
the static-friction force is proportional to the normal component N
of the reaction of the surface. We have

where pu, is a constant called the coefficient of static friction. Simi-
larly, the magnitude F; of the kinetic-friction force may be put in
the form

Fp = mN (4.9)

where w; is a constant called the coefficient of kinetic friction. The
coefficients of friction u, and w; do not depend upon the area of
the surfaces in contact. Both coefficients, however, depend
strongly on the nature of the surfaces in contact. Since they also
depend upon the exact condition of the surfaces, their value is

1t should be noted that, as the magnitude F of the friction force increases from 0 to
F,,, the point of application A of the resultant N of the normal forces of contact moves
to the right, so that the couples formed, respectively, by P and F and by W and N
remain balanced. If N reaches B before F reaches its maximum value F,,, the block
will tip about B before it can start sliding (see Probs. 4.85 through 4.88).



seldom known with an accuracy greater than 5 percent. Approxi-
mate values of coefficients of static friction for various dry sur-
faces are given in Table 4.1. The corresponding values of the
coefficient of kinetic friction would be about 25 percent smaller.
Since coefficients of friction are dimensionless quantities, the val-
ues given in Table 4.1 can be used with both SI units and U.S.
customary units.

TABLE 4.1 Approximate
Values of Coefficient of
Static Friction for Dry

Surfaces

Metal on metal 0.15-0.60
Metal on wood 0.20-0.60
Metal on stone 0.30-0.70
Metal on leather 0.30-0.60
Wood on wood 0.25-0.50
Wood on leather 0.25-0.50
Stone on stone 0.40-0.70
Earth on earth 0.20-1.00
Rubber on concrete 0.60-0.90

From the description given above, it appears that four different

situations can occur when a rigid body is in contact with a horizontal
surface:

1.

2,

The forces applied to the body do not tend to move it along
the surface of contact; there is no friction force (Fig. 4.12a).
The applied forces tend to move the body along the surface
of contact but are not large enough to set it in motion. The
friction force F which has developed can be found by solv-
ing the equations of equilibrium for the body. Since there is
no evidence that F has reached its maximum value, the equa-
tion F,, = u,N cannot be used to determine the friction force
(Fig. 4.125).

The applied forces are such that the body is just about to slide.
We say that motion is impending. The friction force F has
reached its maximum value F,, and, together with the normal
force N, balances the applied forces. Both the equations of
equilibrium and the equation F,, = uN can be used. We also
note that the friction force has a sense opposite to the sense of
impending motion (Fig. 4.12¢).

The body is sliding under the action of the applied forces,
and the equations of equilibrium do not apply any more.
However, F is now equal to Fy, and the equation F; = wN may
be used. The sense of Fj is opposite to the sense of motion
(Fig. 4.12d).

4.11 The Laws of Dry Friction. Coefficients

N

P w
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Fig. 4.12

of Friction

169



170  Equilibrium of Rigid Bodies

(a) No friction

P w
! l
L

(d) Motion ——

Fig. 4.13

4.12 ANGLES OF FRICTION

It is sometimes convenient to replace the normal force N and the
friction force F by their resultant R. Let us consider again a block
of weight W resting on a horizontal plane surface. If no horizontal
force is applied to the block, the resultant R reduces to the normal
force N (Fig. 4.13a). However, if the applied force P has a horizontal
component P, which tends to move the block, the force R will have
a horizontal component F and, thus, will form an angle ¢ with the
normal to the surface (Fig. 4.13b). If P, is increased until motion
becomes impending, the angle between R and the vertical grows
and reaches a maximum value (Fig. 4.13¢). This value is called the
angle of static friction and is denoted by ¢,. From the geometry of
Fig. 4.13c, we note that

_ BN
N

m

tan ¢, =
an ¢, N

tan ¢, = (4.10)

If motion actually takes place, the magnitude of the friction
force drops to Fy; similarly, the angle ¢ between R and N drops to
a lower value ¢y, called the angle of kinetic friction (Fig. 4.13d).
From the geometry of Fig. 4.13d, we write

Frp  mN
WA TN
tan d)k = Mk (411)

Another example will show how the angle of friction can be
used to advantage in the analysis of certain types of problems. Con-
sider a block resting on a board and subjected to no other force than
its weight W and the reaction R of the board. The board can be
given any desired inclination. If the board is horizontal, the force R
exerted by the board on the block is perpendicular to the board and
balances the weight W (Fig. 4.14a). If the board is given a small angle
of inclination 6, the force R will deviate from the perpendicular to
the board by the angle 6 and will keep balancing W (Fig. 4.14D); it
will then have a normal component N of magnitude N = W cos 6
and a tangential component F of magnitude F = W sin 6.

If we keep increasing the angle of inclination, motion will soon
become impending. At that time, the angle between R and the nor-
mal will have reached its maximum value ¢ (Fig. 4.14c). The value
of the angle of inclination corresponding to impending motion is
called the angle of repose. Clearly, the angle of repose is equal to
the angle of static friction ¢,. If the angle of inclination 6 is further
increased, motion starts and the angle between R and the normal
drops to the lower value ¢y (Fig. 4.14d). The reaction R is not vertical
any more, and the forces acting on the block are unbalanced.
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(a) No friction (b) No motion

Fig. 4.14

4.13 PROBLEMS INVOLVING DRY FRICTION

Problems involving dry friction are found in many engineering appli-
cations. Some deal with simple situations such as the block sliding
on a plane described in the preceding sections. Others involve more
complicated situations as in Sample Prob. 4.13; many deal with the
stability of rigid bodies in accelerated motion and are studied in
dynamics. Also, a number of common machines and mechanisms can
be analyzed by applying the laws of dry friction.

The methods which should be used to solve problems involv-
ing dry friction are the same that were used in the preceding chap-
ters. If a problem involves only a motion of translation, with no
possible rotation, the body under consideration can usually be
treated as a particle, and the methods of Chap. 2 used. If the prob-
lem involves a possible rotation, the body must be considered as a
rigid body.

If the body considered is acted upon by more than three forces
(including the reactions at the surfaces of contact), the reaction at
each surface will be represented by its components N and F and the
problem will be solved from the equations of equilibrium. If only
three forces act on the body under consideration, it may be more
convenient to represent each reaction by the single force R and to
solve the problem by drawing a force triangle.

Most problems involving friction fall into one of the following
three groups: In the first group of problems, all applied forces are
given and the coefficients of friction are known; we are to determine
whether the body considered will remain at rest or slide. The friction
force F required to maintain equilibrium is unknown (its magnitude
is not equal to u,N) and should be determined, together with the
normal force N, by drawing a free-body diagram and solving the
equations of equilibrium (Fig. 4.15a). The value found for the mag-
nitude F of the friction force is then compared with the maximum
value F,, = u,N. If F is smaller than or equal to F,,, the body remains
at rest. If the value found for F is larger than F,,, equilibrium cannot
be maintained and motion takes place; the actual magnitude of the
friction force is then F; = w.N.

(¢) Motion impending

0 = o5
Wecos 6
AN = Wcos 6 Py
<“F,, = Wsin 0> ¢, BT <wsin e
le of repose /
(d) Motion

Photo 4.8 The coefficient of static friction
between a package and the inclined conveyer
belt must be sufficiently large to enable the
package to be transported without slipping.

Fig. 4.15a
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.

Teg,, .
Quireg

(a)
Fig. 4.16

In problems of the second group, all applied forces are given
and the motion is known to be impending; we are to determine the
value of the coefficient of static friction. Here again, we determine
the friction force and the normal force by drawing a free-body dia-
gram and solving the equations of equilibrium (Fig. 4.15b). Since we
know that the value found for F is the maximum value F,,, the coef-
ficient of friction may be found by writing and solving the equation
Fm = /J‘SN

In problems of the third group, the coefficient of static fric-
tion is given, and it is known that the motion is impending in a
given direction; we are to determine the magnitude or the direction
of one of the applied forces. The friction force should be shown in
the free-body diagram with a sense opposite to that of the impend-
ing motion and with a magnitude F,, = u,N (Fig. 4.15¢). The equa-
tions of equilibrium can then be written, and the desired force
determined.

As noted above, when only three forces are involved, it may be
more convenient to represent the reaction of the surface by a single
force R and to solve the problem by drawing a force triangle. Such
a solution is used in Sample Prob. 4.12.

When two bodies A and B are in contact (Fig. 4.16a), the
forces of friction exerted, respectively, by A on B and by B on A
are equal and opposite (Newton’s third law). In drawing the free-
body diagram of one of the bodies, it is important to include the
appropriate friction force with its correct sense. The following rule
should then be observed: The sense of the friction force acting on
A is opposite to that of the motion (or impending motion) of A as
observed from B (Fig. 4.16b).t1 The sense of the friction force act-
ing on B is determined in a similar way (Fig. 4.16¢). Note that the
motion of A as observed from B is a relative motion. For example,
if body A is fixed and body B moves, body A will have a relative
motion with respect to B. Also, if both B and A are moving down
but B is moving faster than A, body A will be observed, from B,
to be moving up.

11t is therefore the same as that of the motion of B as observed from A.

—_———————————

Motion of A with respect to B

Motion of B with respect to A
——

-Q
N | —
Q <_N 2
.
(b) (c)



100 Ib

300 1b

1001
()17 N

300 Ib

100 Ib

N =240 1b

SAMPLE PROBLEM 4.11

A 100-1b force acts as shown on a 300-1b block placed on an inclined plane.
The coefficients of friction between the block and the plane are u, = 0.25
and g = 0.20. Determine whether the block is in equilibrium, and find the
value of the friction force.

SOLUTION

Force Required for Equilibrium. We first determine the value of the fric-
tion force required to maintain equilibrium. Assuming that F is directed
down and to the left, we draw the free-body diagram of the block and write

+73F, =0 1001b — 23001b) — F =0
F=-81Ib F=80lb/

+\ZF,=0: N —4(3001b)=0
N=+2401b N = 240 b\

The force F required to maintain equilibrium is an 80-Ib force directed up
and to the right; the tendency of the block is thus to move down the plane.

Maximum Friction Force. The magnitude of the maximum friction force
which may be developed is

F,, = uN F,, = 0.25(240 Ib) = 60 Ib

Since the value of the force required to maintain equilibrium (80 Ib) is
larger than the maximum value which may be obtained (60 1b), equilibrium
will not be maintained and the block will slide down the plane.

Actual Value of Friction Force. The magnitude of the actual friction force
is obtained as follows:

Forua = Fr = N
= 0.20(240 Ib) = 48 1b

The sense of this force is opposite to the sense of motion; the force is thus
directed up and to the right:

Fuctlml =48 1b/

It should be noted that the forces acting on the block are not balanced; the
resultant is

3300 Ib) — 100 1b — 48 Ib = 32 Ibv
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SAMPLE PROBLEM 4.12

A support block is acted upon by two forces as shown. Knowing that the
coefficients of friction between the block and the incline are p; = 0.35 and
we = 0.25, determine the force P required (a) to start the block moving up
the incline, (b) to keep it moving up, (¢) to prevent it from sliding down.

800 N

SOLUTION

Free-Body Diagram. For each part of the problem we draw a free-body
diagram of the block and a force triangle including the 800-N vertical force,
the horizontal force P, and the force R exerted on the block by the incline.
The direction of R must be determined in each separate case. We note that
since P is perpendicular to the 800-N force, the force triangle is a right tri-
angle, which can easily be solved for P. In most other problems, however,
the force triangle will be an oblique triangle and should be solved by apply-
ing the law of sines.

a. Force P to Start Block Moving Up

800 N
tan ¢, = 4, 500 N P = (800 N) tan 44.29° P = 780 N«
=0.35
o, = 19.29° B

25° + 19.29° = 44.29°

b. Force P to Keep Block Moving Up

800 N
P tand =g 500 N 1€— P = (800 N) tan 39.04° P = 649 N
= 0.25
o @) = 14.04° =
25° + 14.04° = 39.04°
R
25°
800 N c. Force P to Prevent Block from Sliding Down
¢, = 19.29°
p o 25°-1929°=571° Lt
P = (800 N) tan 5.71° P = 80.0 N«
800N | R
9s
25 R
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SAMPLE PROBLEM 4.13

The movable bracket shown may be placed at any height on the 3-in.-
diameter pipe. If the coefficient of static friction between the pipe and
bracket is 0.25, determine the minimum distance x at which the load W can
be supported. Neglect the weight of the bracket.

SOLUTION

I«—x—» w Free-Body Diagram. We draw the free-body diagram of the bracket.

i When W is placed at the minimum distance x from the axis of the pipe, the
I‘_x_l's m'_’" bracket is just about to slip, and the forces of friction at A and B have
reached their maximum values:

FA = I"LSNA = 0.25 NA
FB = /*LSNB = 0.25 NB

oginel? N Equilibrium Equations
i>EP‘X:OI NB_NA:O
NB = NA

H3F, =0: Fy+Fy—W=0
0.25N, + 0.25N; = W

And, since Ng has been found equal to N,

0.50N, = W
NA = 2W

+Y2EMp = 0: N6 in.) — F4(3in.) — W(x — 1.5in.) = 0
6N, — 3(0.25N,) — Wx + 1L5W = 0
6(2W) — 0.75(2W) — Wx + 1.5W = 0

Dividing through by W and solving for «,
x = 12 in.
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PROBLEMS

4.75

The coefficients of friction between the block and the incline are
s = 0.35 and py = 0.25. Determine whether the block is in equi-
librium, and find the magnitude and direction of the friction force
when 0 = 25° and P = 750 N.

Solve Prob. 4.75 when 6 = 30° and P = 150 N.

The coefficients of friction between the 50-1b block and the incline
are u;, = 0.40 and ;. = 0.30. Determine whether the block is in
equilibrium, and find the magnitude and direction of the friction
force when P = 120 Ib.

50 H) P
>
©.
i40°
30°
Fig. P4.77

Solve Prob. 4.77 assuming that P = 80 Ib.

4.79 A support block is acted upon by the two forces shown. Determine

4.76
4.77

Fig. P4.75
4,78
P 4.80

A

4.81

mo
4.82

o

Fig. P4.81 and P4.82

the magnitude of P required to start the block up the plane.

l 100 Ib

s = 0.30
= 0.20

Fig. P4.79 and P4.80

Determine the smallest magnitude of the force P that will prevent

the support block from sliding down the plane.

Denoting by ¢, the angle of static friction between the block and
the plane, determine the magnitude and direction of the smallest
force P that will cause the block to move up the plane.

A block of mass m = 20 kg rests on a rough plane as shown. Know-
ing that @ = 25° and u, = 0.20, determine the magnitude and
direction of the smallest force P required (a) to start the block up
the plane, (b) to prevent the block from moving down the plane.



4.83

4.84

4.85

4.86

4.87

4.88

4.89

The coefficients of friction between the block and the rail are u, =
0.30 and p; = 0.25. Knowing that 6 = 65°, determine the smallest
value of P required (a) to start the block up the rail, (b) to keep it
from moving down.

The coefficients of friction between the block and the rail are p, =
0.30 and uy = 0.25. Find the magnitude and direction of the small-
est force P required (a) to start the block up the rail, (b) to keep
it from moving down.

A 60-kg cabinet is mounted on casters that can be locked to pre-
vent their rotation. The coefficient of static friction between the
floor and each caster is 0.35. If h = 600 mm, determine the
magnitude of the force P required to move the cabinet to the right
(a) if all the casters are locked, (b) if the casters at B are locked
and the casters at A are free to rotate, (c) if the casters at A are
locked and the casters at B are free to rotate.

8
F_< B
8

h
8
Au uB

500 mm
Fig. P4.85 and P4.86

A 60-kg cabinet is mounted on casters that can be locked to pre-
vent their rotation. The coefficient of static friction between the
floor and each caster is 0.35. Assuming that the casters at both A
and B are locked, determine (a) the force P required to move the
cabinet to the right, (b) the largest allowable value of / if the cabi-
net is not to tip over.

A packing crate of mass 40 kg must be moved to the left along the
floor without tipping. Knowing that the coefficient of static friction
between the crate and the floor is 0.35, determine (a) the largest al-
lowable value of a, (b) the corresponding magnitude of the force P.

A packing crate of mass 40 kg is pulled by a rope as shown. The
coefficient of static friction between the crate and the floor is 0.35.
If « = 40°, determine (a) the magnitude of the force P required
to move the crate, (b) whether the crate will slide or tip.

A 180-1b sliding door is mounted on a horizontal rail as shown.
The coefficients of static friction between the rail and the door at
A and B are 0.20 and 0.30, respectively. Determine the horizontal
force that must be applied to the handle C in order to move the
door to the left.

35°
500 N

Fig. P4.83 and P4.84

Fig. P4.87 and P4.88

B

<~—4 ft —

A

TTA ]

Fig. P4.89

Problems
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7.51in.

A
SR P—

Fig. P4.91

a1

Fig. P4.95

B
Fig. P4.97 and P4.98

4.90

491

4.92

4.93

4.94

495

4.96

4.97

4.98

Solve Prob. 4.89 assuming that the door is to be moved to the
right.

The 10-Ib uniform rod AB is held in the position shown by the
force P. Knowing that the coefficient of friction is 0.20 at A and
B, determine the smallest value of P for which equilibrium is
maintained.

In Prob. 4.91, determine the largest value of P for which equilib-
rium is maintained.

The end A of a slender, uniform rod of length L and weight W
bears on the horizontal surface, while its end B is supported by a
cord BC. Knowing that the coefficients of friction are u, = 0.30
and u = 0.25, determine (a) the maximum value of 6 for which
equilibrium is maintained, (b) the corresponding value of the ten-
sion in the cord.

Fig. P4.93

Determine whether the rod of Prob. 4.93 is in equilibrium when
6 = 30°, and find the magnitude and direction of the friction force
exerted on the rod at A.

A slender rod of length L is lodged between peg C and the vertical
wall and supports a load P at end A. Knowing that L = 12.54, 6 =
30°, and that the coefficients of friction are u, = 0.20 and u; =
0.15 at C and zero at B, determine whether the rod is in
equilibrium.

Solve Prob. 4.95 assuming that L = 6a, 8 = 30°, and that the
coefficients of friction are u, = 0.20 and w; = 0.15 at B and zero
at C.

Find the magnitude of the largest couple M that can be applied
to the cylinder if it is not to spin. The cylinder has a weight W and
a radius r, and the coefficient of static friction w, is the same at A
and B.

The cylinder has a weight W and a radius r. Express in terms of
W and r the magnitude of the largest couple M that can be applied
to the cylinder if it is not to spin, assuming that the coefficient of
static friction is to be (a) zero at A and 0.35 at B, (b) 0.28 at A and
0.35 at B.



REVIEW AND SUMMARY

This chapter was devoted to the study of the equilibrium of rigid Equilibrium equations
bodies, i.e., to the situation when the external forces acting on a rigid
body form a system equivalent to zero [Sec. 4.1]. We then have

SF=0 SM,=23rXTF) =0 4.1)

Resolving each force and each moment into its rectangular compo-
nents, we can express the necessary and sufficient conditions for the
equilibrium of a rigid body with the following six scalar equations:

SF,=0 3F,=0 3F =0 (4.2)
SM,=0 SM,=0 SM.=0 4.3)

These equations can be used to determine unknown forces applied
to the rigid body or unknown reactions exerted by its supports.

When solving a problem involving the equilibrium of a rigid body, it Free-body diagram
is essential to consider all of the forces acting on the body. Therefore,

the first step in the solution of the problem should be to draw a

free-body diagram showing the body under consideration and all of

the unknown as well as known forces acting on it [Sec. 4.2].

In the first part of the chapter, we considered the equilibrium of a  Equilibrium of a two-dimensional
two-dimensional structure; i.e., we assumed that the structure con- structure
sidered and the forces applied to it were contained in the same
plane. We saw that each of the reactions exerted on the structure by
its supports could involve one, two, or three unknowns, depending
upon the type of support [Sec. 4.3].
In the case of a two-dimensional structure, Eqs. (4.1), or Egs.
(4.2) and (4.3), reduce to three equilibrium equations, namely

2F, =0 2F, =0 M, =0 4.5)

where A is an arbitrary point in the plane of the structure [Sec. 4.4].
These equations can be used to solve for three unknowns. While the
three equilibrium equations (4.5) cannot be augmented with addi-
tional equations, any of them can be replaced by another equation.
Therefore, we can write alternative sets of equilibrium equations,
such as

2F,. =0 M, =0 2Mp =0 (4.6)

where point B is chosen in such a way that the line AB is not parallel
to the y axis, or

M, =0 Mz =0 2Mq =0 4.7)
where the points A, B, and C do not lie in a straight line.
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Statical indeterminacy

Partial constraints

Improper constraints

Two-force body

Three-force body

Equilibrium of a three-dimensional

body

Since any set of equilibrium equations can be solved for only three
unknowns, the reactions at the supports of a rigid two-dimensional
structure cannot be completely determined if they involve more
than three unknowns; they are said to be statically indeterminate
[Sec. 4.5]. On the other hand, if the reactions involve fewer than
three unknowns, equilibrium will not be maintained under general
loading conditions; the structure is said to be partially constrained.
The fact that the reactions involve exactly three unknowns is no
guarantee that the equilibrium equations can be solved for all three
unknowns. If the supports are arranged in such a way that the reactions
are either concurrent or parallel, the reactions are statically indeter-
minate, and the structure is said to be improperly constrained.

Two particular cases of equilibrium of a rigid body were given
special attention. In Sec. 4.6, a two-force body was defined as a rigid
body subjected to forces at only two points, and it was shown that
the resultants F; and F; of these forces must have the same mag-
nitude, the same line of action, and opposite sense (Fig. 4.17), a
property which will simplify the solution of certain problems in later
chapters. In Sec. 4.7, a three-force body was defined as a rigid body
subjected to forces at only three points, and it was shown that the
resultants F,, F,, and F; of these forces must be either concurrent
(Fig. 4.18) or parallel. This property provides us with an alternative
approach to the solution of problems involving a three-force body
[Sample Prob. 4.6].

Fig. 4.17 Fig. 4.18

In the second part of the chapter, we considered the equilib-
rium of a three-dimensional body and saw that each of the reactions
exerted on the body by its supports could involve between one and
six unknowns, depending upon the type of support [Sec. 4.8].

In the general case of the equilibrium of a three-dimensional
body, all of the six scalar equilibrium equations (4.2) and (4.3) listed
at the beginning of this review should be used and solved for six
unknowns [Sec. 4.9]. In most problems, however, these equations
will be more conveniently obtained if we first write

SF=0 SM,=30rxF) =0 4.1)

and express the forces F and position vectors r in terms of scalar com-
ponents and unit vectors. The vector products can then be computed
either directly or by means of determinants, and the desired scalar
equations obtained by equating to zero the coefficients of the unit vec-
tors [Sample Probs. 4.7 through 4.9].



We noted that as many as three unknown reaction components
may be eliminated from the computation of ZM, in the second of
the relations (4.1) through a judicious choice of point O. Also, the
reactions at two points A and B can be eliminated from the solution
of some problems by writing the equation ZM,; = 0, which involves
the computation of the moments of the forces about an axis AB join-
ing points A and B [Sample Prob. 4.10].

If the reactions involve more than six unknowns, some of the
reactions are statically indeterminate; if they involve fewer than six
unknowns, the rigid body is only partially constrained. Even with six
or more unknowns, the rigid body will be improperly constrained it
the reactions associated with the given supports either are parallel
or intersect the same line.

The last part of this chapter was devoted to the study of dry friction,

i.e., to problems involving rigid bodies which are in contact along
nonlubricated surfaces.

W

F |Equilibrium | Motion
|
|
P F?H
—
| F/;
|
F :
I
N P
Fig. 4.19

Applying a horizontal force P to a block resting on a horizontal sur-
face [Sec. 4.11], we note that the block at first does not move. This
shows that a friction force F must have developed to balance P
(Fig. 4.19). As the magnitude of P is increased, the magnitude of F
also increases until it reaches a maximum value F,,. If P is further
increased, the block starts sliding and the magnitude of F drops from
F,, to a lower value F;. Experimental evidence shows that F,, and Fy
are proportional to the normal component N of the reaction of the
surface. We have

F,=uN F, = N (4.8, 4.9)

where u, and u; are called, respectively, the coefficient of static
friction and the coefficient of kinetic friction. These coefficients
depend on the nature and the condition of the surfaces in contact.
Approximate values of the coefficients of static friction were given
in Table 4.1.

It is sometimes convenient to replace the normal force N and the
friction force F by their resultant R (Fig. 4.20). As the friction force
increases and reaches its maximum value F,, = u,N, the angle ¢ that
R forms with the normal to the surface increases and reaches a
maximum value ¢;, called the angle of static friction. If motion actu-
ally takes place, the magnitude of F drops to Fy; similarly the angle ¢
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Static and kinetic friction
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Fig. 4.20

Angles of friction
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Problems involving friction

(a)
Fig. 4.22

drops to a lower value ¢y, called the angle of kinetic friction. As
shown in Sec. 4.12, we have

tan ¢, = u,  tan ¢ = wy (4.10, 4.11)

When solving equilibrium problems involving friction, we should keep
in mind that the magnitude F of the friction force is equal to F,, =
wN only if the body is about to slide [Sec. 4.13]. If motion is not
impending, F and N should be considered as independent unknowns
to be determined from the equilibrium equations (Fig. 4.21a). We

Fig. 4.21

should also check that the value of F required to maintain equilibrium
is not larger than F,; if it is, the body would move and the magnitude
of the friction force would be F;, = uN [Sample Prob. 4.11]. On the
other hand, if motion is known to be impending, F has reached its
maximum value F,, = u,N (Fig. 4.21b), and this expression may be
substituted for F in the equilibrium equations [Sample Prob. 4.13].
When only three forces are involved in a free-body diagram, including
the reaction R of the surface in contact with the body, it is usually
more convenient to solve the problem by drawing a force triangle
[Sample Prob. 4.12].

When a problem involves the analysis of the forces exerted on
each other by two bodies A and B, it is important to show the friction
forces with their correct sense. The correct sense for the friction force
exerted by B on A, for instance, is opposite to that of the relative
motion (or impending motion) of A with respect to B [Fig. 4.22].
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REVIEW PROBLEMS

4,99 The maximum allowable value for each of the reactions is 150 kN, P 30 kN 30 kN
and the reaction at A must be directed upward. Neglecting the 7 1 7
weight of the beam, determine the range of values of P for which 4 |
the beam is safe. gy - B A\ ‘

4.100 Determine the reactions at A and B for the loading shown. ~sm 3m ! T T

Fig. P4.99

960 N

250 mm

@ﬂﬂ/j/ 772 o ‘

150 mm

960 N
e o ——
C

Fig. P4.100

4.101 The light bar AD is attached to collars B and C that can move
freely on vertical rods. Knowing that the surface at A is smooth,
determine the reactions at A, B, and C (a) if a = 60°, (b) if

a = 90°.
a
<4 in.T4 in.+‘¢4 111_.‘712() b
> 75 mm
| 475 mm —»I«»‘ ‘e 50 mm
16()() N

»

9in.

|

Fig. P4.101

Fig. P4.102

4.102 A movable bracket is held at rest by a cable attached at C and by
frictionless rollers at A and B. For the loading shown, determine

~C
(a) the tension in the cable, (b) the reactions at A and B. M |
5 ft
. . A D
4.103 The 300-Ib beam AB carries a 500-1b load at B. The beam is held =g B
by a fixed support at A and by the cable CD that is attached to the 3001h ‘ )
counterweight W. (a) If W = 1300 Ib, determine the reaction at - s i Y 500 1b
A. (b) Determine the range of values of W for which the magnitude S ft—i=d fti=d fi]
of the couple at A does not exceed 1500 Ib - ft. Fig. P4.103

183



184

Equilibrium of Rigid Bodies 4.104

4.105

ES

Fig. P4.106

Fig.

pegll
. / 4.106

A 100-kg roller, of diameter 500 mm, is used on a lawn. Determine
the force F required to make it roll over a 50-mm obstruction (a)
if the roller is pushed as shown, (b) if the roller is pulled as
shown.

(a) (b)
Fig. P4.104

The overhead transmission shaft AE is driven at a constant speed
by an electric motor connected by a flat belt to pulley B. Pulley C
may be used to drive a machine tool located directly below C,
while pulley D drives a parallel shaft located at the same height as
AE. Knowing that Ty + T% = 36 1b, Tc = 40 Ib, T = 16 b, Tp =
0, and T, = 0, determine (a) the tension in each portion of the
belt driving pulley B, (b) the reactions at the bearings A and E
caused by the tension in the belts.

A vertical load P is applied at end B of rod BC. The constant of
the spring is k and the spring is unstretched when 6 = 60°. (a)
Neglecting the weight of the rod, express the angle 6 correspond-
ing to the equilibrium position in terms of P, k, and . (b) Deter-
mine the values of 6 corresponding to equilibrium if P = {kl.



4.107 A force P is applied to a bent rod AD that may be supported in Review Problems 185
four different ways as shown. In each case determine the reactions
at the supports.

r—(t*»&aﬁ r—aagaj ’47(;*»
A VB C A VB C A
© ‘f © ‘f \{(@,
a a

O—L Do—l- 45
D

45

(a) (b)
Fig. P4.107

4.108 A 500-1b marquee, 8 X 10 ft, is held in a horizontal position by
two horizontal hinges at A and B and by a cable CD attached to a
point D located 5 ft directly above B. Determine the tension in
the cable and the components of the reactions at the hinges.

4.109 The 10-kg block is attached to link AB and rests on a conveyor belt
that is moving to the left. Knowing that the coefficients of friction
between the block and the belt are p, = 0.30 and w; = 0.25 and
neglecting the weight of the link, determine (@) the force in link
AB, (b) the horizontal force P that should be applied to the belt
to maintain its motion.

Fig. P4.108

10 kg
P A
<
@) O @) ]

Fig. P4.109

4.110 A 10-ft uniform plank of weight 45 Ib rests on two joists as shown.
The coefficient of static friction between the joists and the plank is
0.40. (a) Determine the magnitude of the horizontal force P
required to move the plank. (b) Solve part a assuming that a single
nail driven into joist A prevents motion of the plank along joist A.

rs ft—><\6 ft

Fig. P4.110

1 ft

P




A precast section of roadway for a
new interchange on Interstate 93 is
shown being lowered from a gantry
crane. In this chapter we will introduce
the concept of the centroid of an areq;
in later chapters the relation between

the location of the centroid and the

behavior of the roadway under loading

will be established.
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5.8
5.9

5.10

Photo 5.1
components of a mobile requires an understanding
of centers of gravity and centroids, the main topics
of this chapter.

188

Chapter 5 Distributed Forces:
Centroids and Centers of Gravity

Introduction

Center of Gravity of a Two-
Dimensional Body

Centroids of Areas and Lines
First Moments of Areas and Lines
Composite Plates and Wires
Determination of Centroids

by Integration

Theorems of Pappus-Guldinus
Distributed Loads on Beams
Center of Gravity of a Three-
Dimensional Body. Centroid of
a Volume

Composite Bodies

The precise balancing of the

5.1 INTRODUCTION

We have assumed so far that the attraction exerted by the earth on a
rigid body could be represented by a single force W. This force, called
the force of gravity or the weight of the body, was to be applied at the
center of gravity of the body (Sec. 3.2). Actually, the earth exerts a force
on each of the particles forming the body. The action of the earth on a
rigid body should thus be represented by a large number of small forces
distributed over the entire body. You will learn in this chapter, however,
that all of these small forces can be replaced by a single equivalent force
W. You will also learn how to determine the center of gravity, i.e., the
point of application of the resultant W, for bodies of various shapes.

In the first part of the chapter, two-dimensional bodies, such
as flat plates and wires contained in a given plane, are considered.
Two concepts closely associated with the determination of the center
of gravity of a plate or a wire are introduced: the concept of the
centroid of an area or a line and the concept of the first moment of
an area or a line with respect to a given axis.

You will also learn that the computation of the area of a surface
of revolution or of the volume of a body of revolution is directly
related to the determination of the centroid of the line or area used
to generate that surface or body of revolution (Theorems of Pappus-
Guldinus). And, as is shown in Sec. 5.8, the determination of the
centroid of an area simplifies the analysis of beams subjected to dis-
tributed loads.

In the last part of the chapter, you will learn how to determine
the center of gravity of a three-dimensional body as well as the cen-
troid of a volume and the first moments of that volume with respect
to the coordinate planes.

5.2 CENTER OF GRAVITY OF A
TWO-DIMENSIONAL BODY

Let us first consider a flat horizontal plate (Fig. 5.1). We can divide
the plate into n small elements. The coordinates of the first element

TW=3x AW
yW=3y AW

ZMU:

IM,:

Fig. 5.1 Center of gravity of a plate.



are denoted by x; and y;, those of the second element by x, and y,,
etc. The forces exerted by the earth on the elements of plate will be
denoted, respectively, by AW, AW,, ... , AW,. These forces or
weights are directed toward the center of the earth; however, for all
practical purposes they can be assumed to be parallel. Their resultant
is therefore a single force in the same direction. The magnitude W
of this force is obtained by adding the magnitudes of the elemental
weights.

EF:_: W = AWl + AWZ + -+ AW)’L

To obtain the coordinates x and y of the point G where the resultant W
should be applied, we write that the moments of W about the y and
x axes are equal to the sum of the corresponding moments of the
elemental weights,

EM!/Z xW = Xy AWI + ) AWQ R X, A‘/Vn 51
If we now increase the number of elements into which the plate is
divided and simultaneously decrease the size of each element, we
obtain in the limit the following expressions:

szdw xWZdeW yW=JydW (5.2)

These equations define the weight W and the coordinates x and y
of the center of gravity G of a flat plate. The same equations can be
derived for a wire lying in the xy plane (Fig. 5.2). We note that the
center of gravity G of a wire is usually not located on the wire.

: aW=Zx AW
M, yW=3yAW
Fig. 5.2 Center of gravity of a wire.

5.2 Center of Gravity of a Two-Dimensional

Body

189



]90 Distributed Forces: Centroids and Centers 5.3 CENTROIDS OF AREAS AND LINES

of Gravity
In the case of a flat homogeneous plate of uniform thickness, the
magnitude AW of the weight of an element of the plate can be
expressed as

AW = vyt AA

where y = specific weight (weight per unit volume) of the material
t = thickness of the plate
AA = area of the element

Similarly, we can express the magnitude W of the weight of the entire
plate as
W = ytA

where A is the total area of the plate.

If U.S. customary units are used, the specific weight vy should
be expressed in Ib/ft’, the thickness t in feet, and the areas AA and A
in square feet. We observe that AW and W will then be expressed
in pounds. If ST units are used, y should be expressed in N/m® ¢ in
meters, and the areas AA and A in square meters; the welghts AW
and W will then be expressed in newtons.t

Substituting for AW and W in the moment equations (5.1) and
dividing throughout by ¢, we obtain
>M,: YA = x1 AA;] + x5 AAy + - -0+ x, AA,

v <
XM, YA = y1 AA) + ys AAy + -+ +y, AA,
If we increase the number of elements into which the area A is
divided and simultaneously decrease the size of each element, we
obtain in the limit

XA =deA yA =JydA (5.3)

These equations define the coordinates x and y of the center of
gravity of a homogeneous plate. The point whose coordinates are x
and y is also known as the centroid C of the area A of the plate
(Fig. 5.3). If the plate is not homogeneous, these equations cannot
be used to determine the center of gravity of the plate; they still
define, however, the centroid of the area.

In the case of a homogeneous wire of uniform cross section, the
magnitude AW of the weight of an element of wire can be expressed as

AW = ya AL

where y = specific weight of the material
a = cross-sectional area of the wire
AL = length of the element

1t should be noted that in the ST system of units a given material is generally charac-
terized by its density p (mass per unit volume) rdthcr than by its specific weight y. The
specific weight of the material can then be obtained from the relation

Y = pPg

where g = 9.81 m/s”. Since p is expressed in kg/m®, we observe that y will be expressed in
kg/m )(m/s?), that is, in N/m®>.
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. XA=ZxAA
IM,: yA=ZyAA

(0]

IM,: xL=%XxAL

IM,: yL=3yAL

Fig. 5.3 Centroid of an area. Fig. 5.4 Centroid of a line.

The center of gravity of the wire then coincides with the centroid C of
the line L defining the shape of the wire (Fig. 5.4). The coordinates x
and y of the centroid of the line L are obtained from the equations

xLZdeL yLZJydL (5.4)

5.4 FIRST MOMENTS OF AREAS AND LINES

The integral [ x dA in Eqs. (5.3) of the preceding section is known
as the first moment of the area A with respect to the y axis and is
denoted by Q,. Similarly, the integral [ y dA defines the first moment
of A with respect to the x axis and is denoted by Q,. We write

QyZdeA szfydA (5.5)

Comparing Egs. (5.3) with Egs. (5.5), we note that the first moments
of the area A can be expressed as the products of the area and the
coordinates of its centroid:

Q,=xA Q.=yA (5.6)

It follows from Egs. (5.6) that the coordinates of the centroid
of an area can be obtained by dividing the first moments of that area
by the area itself. The first moments of the area are also useful in
mechanics of materials for determining the shearing stresses in
beams under transverse loadings. Finally, we observe from Egs. (5.6)
that if the centroid of an area is located on a coordinate axis, the
first moment of the area with respect to that axis is zero. Conversely,
if the first moment of an area with respect to a coordinate axis is
zero, then the centroid of the area is located on that axis.

Relations similar to Eqs. (5.5) and (5.6) can be used to define
the first moments of a line with respect to the coordinate axes and



192 Distributed Forces: Centroids and Centers to express these moments as the products of the length L of the line
of Gravity and the coordinates x and y of its centroid.
An area A is said to be symmetric with respect to an axis BB'
P. / if for every point P of the area there exists a point P’ of the same
, area such that the line PP’ is perpendicular to BB" and is divided into
X\ two equal parts by that axis (Fig. 5.5a). A line L is said to be sym-
/ ~ metric with respect to an axis BB’ if it satisfies similar conditions.
. P When an area A or a line L possesses an axis of symmetry BB', its
first moment with respect to BB' is zero, and its centroid is located
B (a) on that axis. For example, in the case of the area A of Fig. 5.5b, which
is symmetric with respect to the y axis, we observe that for every
y element of area dA of abscissa x there exists an element dA" of equal
area and with abscissa —x. It follows that the integral in the first of
Egs. (5.5) is zero and, thus, that Q, = 0.1t also follows from the first
of the relations (5.3) that x = 0. Thus, if an area A or a line L pos-
A" o dA sesses an axis of symmetry, its centroid C is located on that axis.
) We further note that if an area or line possesses two axes of sym-
metry, its centroid C must be located at the intersection of the two axes
) * (Fig. 5.6). This property enables us to determine immediately the cen-
troid of areas such as circles, ellipses, squares, rectangles, equilateral tri-
angles, or other symmetric figures as well as the centroid of lines in the
shape of the circumference of a circle, the perimeter of a square, etc.

Fig. 5.5

(a) )
Fig. 5.6

An area A is said to be symmetric with respect to a center O if
for every element of area dA of coordinates x and y there exists an
element dA’" of equal area with coordinates —x and —y (Fig. 5.7). It

y then follows that the integrals in Eqs. (5.5) are both zero and that
&xﬂl Q. = Q, = 0. It also follows from Egs. (5.3) that x = y = 0, that is,
A maa that the centroid of the area coincides with its center of symmetry O.
T Similarly, if a line possesses a center of symmetry O, the centroid of
the line will coincide with the center O.
It should be noted that a figure possessing a center of symme-
I try does not necessarily possess an axis of symmetry (Fig. 5.7), while
' / * afigure possessing two axes of symmetry does not necessarily possess
/ a center of symmetry (Fig. 5.6a). However, if a figure possesses two
L / axes of symmetry at a right angle to each other, the point of intersec-
o da’ tion of these axes is a center of symmetry (Fig. 5.6b).
Determining the centroids of unsymmetrical areas and lines
I‘T’ and of areas and lines possessing only one axis of symmetry will be
discussed in Secs. 5.6 and 5.7. Centroids of common shapes of areas
Fig. 5.7 and lines are shown in Fig. 5.8A and B.




5.4 First Moments of Areas and Lines ]93

Shape x v Area
. h bh
Triangular area 3 o>
Quarter-circular 4r 4r r?
area 3T 3 4
Semicircular area 0 4r r?
37 2
Quarter-elliptical 4a 4b 7ab
area 3 37 4
Semielliptical 0 4b 7rab
area 3 2
Semiparabolic 3a 3h 2ah
area s 5 3
Parabolic area 0 3h 4ah
5 3
Parabolic spandrel 3a 3h ah
4 10 3
n+1 n+1 ah
1 sh: n+lgy
General spandrel L e ]
/ r
Circular sector \/\ 9rsina 0 ar?
- = = 3o
o a |C
DI

Fig. 5.8A Centroids of common shapes of areas.
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Shape X y Length
Quarter-circular 2r or ar
arc p P B
- 2r
Semicircular arc 0 = mr
rsin o
Arc of circle IT 0 2ar

Fig. 5.8B Centroids of common shapes of lines.

5.5 COMPOSITE PLATES AND WIRES

In many instances, a flat plate can be divided into rectangles, triangles,
or the other common shapes shown in Fig. 5.8A. The abscissa X of its
center of gravity G can be determined from the abscissas x1, x,, . . . , x,
of the centers of gravity of the various parts by expressing that the
moment of the weight of the whole plate about the ¢ axis is equal
to the sum of the moments of the weights of the various parts about
the same axis (Fig. 5.9). The ordinate Y of the center of gravity of
the plate is found in a similar way by equating moments about the
x axis. We write

EMy: X(Wy+ Wyt o+ W) =W, + W, + -+ + x,W,
EM: YW+ Wy + -+ W) =yW, + y.Wo + - + 4y, W,

2
2

W ju—

’ /

IM,: XIW=XxW

M, YEW=XyW

Fig. 5.9 Center of gravity of a composite plate.



or, for short,
XSW =3xW  YSW =3yW (5.7)

These equations can be solved for the coordinates X and Y of the
center of gravity of the plate.

—_— Ay

X O X

Q,= XZA=37A
Q.= YEA=XyA
Fig. 5.10 Centroid of a composite area.

If the plate is homogeneous and of uniform thickness, the center
of gravity coincides with the centroid C of its area. The abscissa X of
the centroid of the area can be determined by noting that the first
moment Q, of the composite area with respect to the y axis can be
expressed both as the product of X and the total area and as the sum
of the first moments of the elementary areas with respect to the y axis
(Fig. 5.10). The ordinate Y of the centroid is found in a similar way
by considering the first moment Q, of the composite area. We have

Qy:X(Al+A2+"'+A;1):9?1A1+§2A2+"'+EHAH
Qx=Y<A1+A2+"'+An)=y1A1+yzA2+"'+ynAn

or, for short,
Q,=X3ZA=3xA Q,=YSA=3yA (5.8)

These equations yield the first moments of the composite area, or
they can be used to obtain the coordinates X and Y of its centroid.

Care should be taken to assign the appropriate sign to the
moment of each area. First moments of areas, like moments of
forces, can be positive or negative. For example, an area whose cen-
troid is located to the left of the y axis will have a negative first
moment with respect to that axis. Also, the area of a hole should be
assigned a negative sign (Fig. 5.11).

Similarly, it is possible in many cases to determine the center
of gravity of a composite wire or the centroid of a composite line
by dividing the wire or line into simpler elements (see Sample

Prob. 5.2).

5.5 Composite Plates and Wires

Ll

|
b=

S
\\J
L

A; Semicircle
A, Full rectangle

Aj; Circular hole

+ o+ >

Fig. 5.11
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y SAMPLE PROBLEM 5.1
120 mm
For the plane area shown, determine (a) the first moments with respect to
60 mm the x and y axes, (b) the location of the centroid.
—ti — 40 mm
80 1nm
60 fnm x
4
SOLUTION
Components of Area. The area is obtained by adding a rectangle, a tri-
angle, and a semicircle and by then subtracting a circle. Using the coordi-
nate axes shown, the area and the coordinates of the centroid of each of the
component areas are determined and entered in the table below. The area
of the circle is indicated as negative, since it is to be subtracted from the
other areas. We note that the coordinate y of the centroid of the triangle is
negative for the axes shown. The first moments of the component areas with
respect to the coordinate axes are computed and entered in the table.
Y Y Y Y Y
4rq
120 mm 3, - 2046mm | . _ 60 mm
r; = 60 mm 60 mm ro =40 mm
ry = 40 mm - 4‘7‘—’ + + \J; . —
40 mm |
80 mm ° / 80 mm 105.46 mm 80 mm
| T [
- I - o
60 fm * * C T * *
50 i 60 mm 60 mm
Component A, mm? X, mm y, mm XA, mm® yA, mm®
Rectangle (120)(80) = 9.6 X 10° 60 40 +576 X 10° +384 % 10°
Triangle %(120)(60) = 3.6 X 10’ 40 —20 +144 X 10 —-72 X 10°
Semicircle 1m(60)? = 5.655 X 10° 60 105.46 +339.3 x 10° +596.4 X 10°
Circle —m(40)* = —5.027 X 10? 60 80 —301.6 X 10° —402.2 X 10°
SA = 13.828 x 10° S¥A = +757.7 X 10° SyA = +506.2 X 10°
y a. First Moments of the Area. Using Egs. (5.8), we write

()

Cce

]

X=

196

54.8 mm

| | ¥-366mm
X

Qx:
Qy =

b. Location of Centroid.

SyA = 506.2 X 10° mm®
SXA = 757.7 X 10°> mm?

Q, = 506 x 10° mm’
Q, = 758 X 10° mm?®

Substituting the values given in the table into

the equations defining the centroid of a composite area, we obtain

X(13.828 X 10° mm®) = 757.7 X 10° mm”®

XS A = 3xA:

YSA = ZyA:

X = 54.8 mm

Y(13.828 X 10° mm?) = 506.2 X 10° mm®

Y = 36.6 mm



SAMPLE PROBLEM 5.2

The figure shown is made from a piece of thin, homogeneous wire. Deter-
mine the location of its center of gravity.

| 24 in. !

SOLUTION

Since the figure is formed of homogeneous wire, its center of gravity coin-
cides with the centroid of the corresponding line. Therefore, that centroid
will be determined. Choosing the coordinate axes shown, with origin at A,
we determine the coordinates of the centroid of each line segment and
compute the first moments with respect to the coordinate axes.

: Segment L, in. X, in. y, in. xL, in® yL, in’
AB 24 12 0 288 0
BC 26 12 5 312 130
CA 10 0 5 0 50
2L = 60 2xL = 600 2yL = 180

Substituting the values obtained from the table into the equations defining
the centroid of a composite line, we obtain
X2L = 3xL: X(60 in.) = 600 in?
YSL = 3yL:  Y(60 in.) = 180 in®

= 10 in.

= 3in.

=~
|
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SAMPLE PROBLEM 5.3

A uniform semicircular rod of weight W and radius r is attached to a pin
at A and rests against a frictionless surface at B. Determine the reactions
at A and B.

SOLUTION

Free-Body Diagram. A free-body diagram of the rod is drawn. The forces
acting on the rod are its weight W, which is applied at the center of gravity
G (whose position is obtained from Fig. 5.8B); a reaction at A, represented
by its components A, and A; and a horizontal reaction at B.

Equilibrium Equations

2
+y3M, = 0: B(2r)—W<r>=0
aw
14 W
B=+— B=—>
a aw
55F.=0. A +B=0
w w
.= —-B=-— A = —«
aw T
+15F,=0. A, -W=0 A, =W1

Adding the two components of the reaction at A:
ACALE 1\2
A= [Wz = (—) } A= W(l + —2)
T T

tanae = ——=m
W/

The answers can also be expressed as follows:

A = 1.049W =n72.3° B = 0.318W—



PROBLEMS

5.1 through 5.8 Locate the centroid of the plane area shown.

y Yy <4 in. > |~

~——6in. —>| | - ] Y
~—120 mm—>|
31n. 5in.
100 mm 300 mm
iy

4

in. 2 in.
60 lflm l || =30 mrﬁtﬁ
A ;= lam 240 mm—] .
Fig. P5.1 Fig. P5.2 Fig. P5.3 Fig. P5.4
y| B W Iy } . -
r=161n. i
75 mm !
_1_ 75 mm i 12 in. r=4in.
a=8in. i 2
1 x | B x
T =8in. l 75 mm | x L—Sm—»l
Fig. P5.5 Fig. P5.6 Fig. P5.7 Fig. P5.8

5.9 through 5.12 Locate the centroid of the plane area shown.

Yy

[<~—— 240 mm —>| I —'
T Parabola
T 10 in. ﬁrtex AN

150 mm

y = ka? ‘ 3in.
| X
X I 16 in. 1

Fig. P5.9 Fig. P5.10

10 ft Parabola —1-
200 mm
r=06ft ‘ x e l

. 15 ft 15 ft—| "240 mm 240 mm
Fig. P5.11 Fig. P5.12

Parabola
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5.13

and 5.14  The horizontal x axis is drawn through the centroid C
of the area shown and divides it into two component areas A; and
A;. Determine the first moment of each component area with
respect to the x axis and explain the results obtained.

Y
’4—40—><—404—‘
_ Y
20 A1 0.24in. | 0.24 in.
5]
C X
0.84 in. Ay
65 1
Y
AZ T C X
0.60 in. Ay
"l 20 L J_
c _f Dimensions in mm L0.72 in><0.72 in?‘
Y
| Fig. P5.13 Fig. P5.14
ci x
C
5.15 The first moment of the shaded area with respect to the x axis
L is denoted by Q,. (a) Express Q, in terms of b, ¢, and the dis-
L_ _’I tance y from the base of the shaded area to the x axis. (b) For
b what value of y is Q, maximum, and what is that maximum
Fig. P5.15 value?
5.16 A built-up beam has been constructed by nailing together seven

T
Nf

400

Fig. P5.16

planks as shown. The nails are equally spaced along the beam,
and the beam supports a vertical load. As will be shown in Chap-
ter 13, the shearing forces exerted on the nails at A and B are
proportional to the first moments with respect to the centroidal
x axis of the red-shaded areas shown, respectively, in parts a and
b of the figure. Knowing that the force exerted on the nail at A
is 120 N, determine the force exerted on the nail at B.

ﬂf B ﬂ“ﬁ
= e |l

100

X

200

Dimensions in mm



5.17 through 5.20 A thin homogeneous wire is bent to form the 5.6 Determination of Centroids by Integration  9() ]
perimeter of the figure indicated. Locate the center of gravity of
the wire figure thus formed.
5.17 Fig. P5.1.
5.18 TFig. P5.2.
5.19 Fig. P54,
5.20 Fig P55,

5.21 The homogeneous wire ABCD is bent as shown and is attached to
a hinge at C. Determine the length L that results in portion BCD

of the wire being horizontal.
A B
< 200 mm —} L |
| ‘ .
B A D
Ic
150 mm :
| Q
A C
Fig. P5.21 and P5.22 Fig. P5.23
5.22 The homogeneous wire ABCD is bent as shown and is attached to
a hinge at C. Determine the length L that results in portion AB of
the wire being horizontal. /
o o
. , . . o N Y
5.23 A uniform circular rod of weight 8 Ib and radius 10 in. is attached
to a pin at C and to the cable AB. Determine (a) the tension in
the cable, (b) the reaction at C. <
5.24 Knowing that the object shown is formed of a thin homogeneous
wire, determine the angle o for which the center of gravity of the
object is located at the origin O. Fig. P5.24

5.6 DETERMINATION OF CENTROIDS
BY INTEGRATION

The centroid of an area bounded by analytical curves (i.e., curves
defined by algebraic equations) is usually determined by evaluating
the integrals in Egs. (5.3) of Sec. 5.3:

XA = J xdA  yA = j y dA (5.3)

If the element of area dA is a small rectangle of sides dx and dy,
the evaluation of each of these integrals requires a double integra-
tion with respect to x and y. A double integration is also necessary
if polar coordinates are used for which dA is a small element of
sides dr and r d#.

In most cases, however, it is possible to determine the coordi-
nates of the centroid of an area by performing a single integration.
This is achieved by choosing dA to be a thin rectangle or strip or a
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P(x,y)

O’«—k:—»

o =%
Y =y/2
dA = ydx

(a)

thin sector or pie-shaped element (Fig. 5.12); the centroid of the
thin rectangle is located at its center, and the centroid of the thin
sector is located at a distance 3r from its vertex (as it is for a triangle).
The coordinates of the centroid of the area under consideration are
then obtained by expressing that the first moment of the entire area
with respect to each of the coordinate axes is equal to the sum (or
integral) of the corresponding moments of the elements of area.
Denoting by x,; and y,; the coordinates of the centroid of the element
dA, we write

(5.9)

If the area A is not already known, it can also be computed from
these elements.

The coordinates x,; and y,; of the centroid of the element of
area dA should be expressed in terms of the coordinates of a point
located on the curve bounding the area under consideration. Also,
the area of the element dA should be expressed in terms of the
coordinates of that point and the appropriate differentials. This has
been done in Fig. 5.12 for three common types of elements; the
pie-shaped element of part ¢ should be used when the equation of
the curve bounding the area is given in polar coordinates. The
appropriate expressions should be substituted into formulas (5.9),
and the equation of the bounding curve should be used to express
one of the coordinates in terms of the other. The integration is thus
reduced to a single integration. Once the area has been determined
and the integrals in Egs. (5.9) have been evaluated, these equations
can be solved for the coordinates x and y of the centroid of the area.

dy

X

Xl = B Eelf ? cos 6
Y=Y yel_ 3 sing
dA=(a—x)dy dA=1r2de

) (e)

Fig. 5.12 Centroids and areas of differential elements.



When a line is defined by an algebraic equation, its centroid can
be determined by evaluating the integrals in Eqs. (5.4) of Sec. 5.3:

xL = J x dL yL = J y dL (5.4)

The differential length dL should be replaced by one of the following
expressions depending upon which coordinate, x, y, or 6, is chosen
as the independent variable in the equation used to define the line
(these expressions can be derived using the Pythagorean theorem):

dL—\/1+ dx \ll-i- dx dy
dr
L =/
d r-l-(de)dﬂ

After the equation of the line has been used to express one of the
coordinates in terms of the other, the integration can be performed,
and Egs. (5.4) can be solved for the coordinates x and y of the cen-
troid of the line.

5.7 THEOREMS OF PAPPUS-GULDINUS

These theorems, which were first formulated by the Greek geometer
Pappus during the third century A.D. and later restated by the Swiss
mathematician Guldinus, or Guldin, (1577-1643) deal with surfaces
and bodies of revolution.

A surface of revolution is a surface which can be generated by
rotating a plane curve about a fixed axis. For example (Fig. 5.13), the

Sphere Cone Torus

surface of a sphere can be obtained by rotating a semicircular arc ABC
about the diameter AC, the surface of a cone can be produced by
rotating a straight line AB about an axis AC, and the surface of a torus
or ring can be generated by rotating the circumference of a circle
about a nonintersecting axis. A body of revolution is a body which can
be generated by rotating a plane area about a fixed axis. As shown in
Fig. 5.14, a sphere, a cone, and a torus can each be generated by
rotating the appropriate shape about the indicated axis.

5.7 Theorems of Pappus-Guldinus 203

Photo 5.2 The storage tanks shown are all
bodies of revolution. Thus, their surface areas
and volumes can be determined using the
theorems of Pappus-Guldinus.
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dL\»
\!

2\

dA
Fig. 5.15

27y

THEOREM |. The area of a surface of revolution is equal to the
length of the generating curve times the distance traveled by the
centroid of the curve while the surface is being generated.

Proof. Consider an element dL of the line L (Fig. 5.15), which
is revolved about the x axis. The area dA generated by the element
dL is equal to 27y dL. Thus, the entire area generated by L is
A = [ 27y dL. Recalling that we found in Sec. 5.3 that the integral
[ y dL is equal to yL, we therefore have

A = 2myL (5.10)

where 27y is the distance traveled by the centroid of L (Fig. 5.15).
It should be noted that the generating curve must not cross the axis
about which it is rotated; if it did, the two sections on either side of
the axis would generate areas having opposite signs, and the theorem
would not apply.

THEOREM II.  The volume of a body of revolution is equal to the
generating area times the distance traveled by the centroid of the
area while the body is being generated.

Proof. Consider an element dA of the area A which is revolved
about the x axis (Fig. 5.16). The volume dV generated by the element
dA is equal to 27y dA. Thus, the entire volume generated by A is
V = [ 2my dA, and since the integral [ y dA is equal to yA
(Sec. 5.3), we have

V = 2myjA (5.11)

dA
—r -
y v
L L
av
Fig. 5.16

where 27y is the distance traveled by the centroid of A. Again, it
should be noted that the theorem does not apply if the axis of rota-
tion intersects the generating area.

The theorems of Pappus-Guldinus offer a simple way to compute
the areas of surfaces of revolution and the volumes of bodies of revolu-
tion. Conversely, they can also be used to determine the centroid of a
plane curve when the area of the surface generated by the curve is
known or to determine the centroid of a plane area when the volume
of the body generated by the area is known (see Sample Prob. 5.8).



. SAMPLE PROBLEM 5.4
y=kax*
T Determine by direct integration the location of the centroid of a parabolic
b spandrel.
|
X
I @ !
SOLUTION
Determination of the Constant k. The value of k is determined by sub-
stituting x = @ and y = b into the given equation. We have b = ka® or
k = b/a*. The equation of the curve is thus
y = ?xz or % = ;7 L2
Y Vertical Differential Element. We choose the differential element shown
dA=ydx and find the total area of the figure.
- _Y “b b3l ab
Y =5 A=JdA=J d =J —x2d :|:f*:| = —
zv.Ty yax Oaz‘x 23, 3
T x The first moment of the differential element with respect to the y axis is
" . x, dA; hence, the first moment of the entire area with respect to this axis is
_ “ (b bxtle b
i = = [ o) = [ 2]~
Qy th ny x Lx(azx dx 24, 1
Since Q, = xA, we have
_ _ _ab b .
xA=Jxe,dA r3 = X =ja
Likewise, the first moment of the differential element with respect to the
x axis is y, dA, and the first moment of the entire area is
_ y “1/b .,)2 [ b? xs}” ab?®
=l gudA=|Zydi=| -5 )dx=|=%| ==
& J 2 J 2t L 2<a2x S EVIE AT
Since Q, = yA, we have
_ _ _ab  ab? _
yA:Jyesz Y3 T T0 y = 15b
y Horizontal Differential Element. The same results can be obtained by
dA=(a-x)dy considering a horizontal element. The first moments of the area are
b 2 2
f _ a+ «x a — x°
. b Qy=JxeldA=J 5 (a—x)dy=f 5 dy
0
. L Yy
X Ya =Y 2 0 ¢ b 1) 4
a+x
Hrel: G —_— _ a
2 o :J Yo dA :J yla —x)dy :J y(a - ﬁym)dy

b 2
- _ @ e _ab”
L <ay pzY )dy 10

To determine x and y, the expressions obtained are again substituted into
the equations defining the centroid of the area.
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SAMPLE PROBLEM 5.5

Determine the location of the centroid of the arc of circle shown.

SOLUTION

Since the arc is symmetrical with respect to the x axis, y = 0. A differential
element is chosen as shown, and the length of the arc is determined by
integration.

L=jdL=J rd0=rf do = 2ra

The first moment of the arc with respect to the y axis is
Qy =deL =f (rcos 0)(rdd) = r* J cos 0 dO
= r*[sin 0]*, = 2r’sin
Since Qy = xL, we write

r sin «

X(2ra) = 2/%sin G —
o

SAMPLE PROBLEM 5.6

Determine the area of the surface of revolution shown, which is obtained
by rotating a quarter-circular arc about a vertical axis.

SOLUTION

According to Theorem I of Pappus-Guldinus, the area generated is equal
to the product of the length of the arc and the distance traveled by its cen-
troid. Referring to Fig. 5.8B, we have

§=2r—&=2r(l—i>

T T
.= o (1~ 7)|(%)
A=2mxL = 27| 2r| 1 — — e
T 2

A =27 (m — 1)
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SAMPLE PROBLEM 5.7

The outside diameter of a pulley is 0.8 m, and the cross section of its rim is as
shown. Knowing fthat thQ pulley is made of steel and that the density of steel
is p = 7.85 X 10’ kg/m’, determine the mass and the weight of the rim.

SOLUTION

The volume of the rim can be found by applying Theorem II of Pappus-
Guldinus, which states that the volume equals the product of the given
cross-sectional area and the distance traveled by its centroid in one complete
revolution. However, the volume can be more easily determined if we
observe that the cross section can be formed from rectangle I, whose area
is positive, and rectangle 11, whose area is negative.

Distance Traveled

Area, mm® g, mm | by C, mm Volume, mm®
+5000 7> 21 (375) = 2356 (5000)(2356) = 11.78 X 10°
II | —1800 365 27r(365) = 2293 | (—1800)(2293) = —4.13 X 10°

Volume of rim = 7.65 x 10°

Since 1 mm = 10 °m, we have 1 mm® = (10 >m)®> = 10" m>, and we ob-
tain V = 7.65 X 10° mm® = (7.65 X 10°)(107° m®) = 7.65 X 10° m®.

m = pV = (7.85 X 10> kg/m*)(7.65 X 10> m®)  m = 60.0 kg
W = mg = (60.0 kg)(9.81 m/s>) = 589 kg - m/s> W = 589 N

SAMPLE PROBLEM 5.8

Using the theorems of Pappus-Guldinus, determine (a) the centroid of a
semicircular area, (b) the centroid of a semicircular arc. We recall that the
volume and the surface area of a sphere are ymr° and 471, respectively.

SOLUTION

The volume of a sphere is equal to the product of the area of a semicircle
and the distance traveled by the centroid of the semicircle in one revolution
about the x axis.
V = 2myA %ﬂrS = Zwy(%ﬂ'rz) y = 3
Likewise, the area of a sphere is equal to the product of the length of the gen-
erating semicircle and the distance traveled by its centroid in one revolution.
21,-

A = 2myL dr? = 27y (7r) y=—
: T
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PROBLEMS

T 1,

Fig. P5.25

208

5.25

Fig. P5.39

| T y b1 —kid)
j | N
-
S e :
Fig. P5.26
Y 5.29
2
T éh(z 32 :72>
h
L| ; | = 5.33
Fig. P5.33 and P5.34 5.34
5.35
5.36
Y
Vertex 5.37
_1_
h 5.38
L X
| “ 5.39

through 5.28 Determine by direct integration the centroid of
the area shown.

7 y
yy ka2 Y
b
yl mx
| X
I a *
Fig. P5.27 Fig. P5.28

through 5.32 Derive by direct integration the expressions for
x and y given in Fig. 5.8A for

5.29 A general spandrel (y = kx")

5.30 A quarter-elliptical area

5.31 A semicircular area

5.32 A semiparabolic area

Determine by direct integration the x coordinate of the centroid
of the area shown.

Determine by direct integration the y coordinate of the centroid
of the area shown.

Determine the centroid of the area shown when ¢ = 4 in.

Fig. P5.35 and P5.36

Determine the centroid of the area shown in terms of a.

Determine the volume of the solid obtained by rotating the trape-
zoid of Prob. 5.2 about (@) the x axis, (b) the y axis.

Determine the volume of the solid obtained by rotating the area
of Prob. 5.4 about (a) the x axis, (b) the y axis.

Determine the volume of the solid obtained by rotating the semi-
parabolic area shown about (a) the y axis, (b) the x axis.



5.40 Determine the surface area and the volume of the half-torus shown.

5.41 A spherical pressure vessel has an inside diameter of 0.8 m. Deter-
mine (a) the volume of liquefied propane required to fill the vessel
to a depth of 0.6 m, (b) the corresponding mass of the liquefied
propane. (Density of liquefied propane = 580 kg/ms.)

5.42 For the pressure vessel of Prob. 5.41, determine the area of the
surface in contact with the liquefied propane.

5.43 A spherical dish is formed by passing a horizontal plane through a
spherical shell of radius R. Knowing that R = 10 in. and ¢ = 60°,
determine the area of the inside surface of the dish.

NP RN
Fig. P5.43

5.44 Determine the volume and weight of water required to completely
fill the sgherical dish of Prob. 5.43. (Specific weight of water =
62.4 1b/ft°.)

5.45 Determine the volume and weight of the solid brass knob shown.
(Specific weight of brass = 0.306 b/in®.)

5.46 Determine the total surface area of the solid brass knob shown.

5.47 Determine the volume and total surface area of the body shown.

52mm 42 mm

Y

\
60 mm
20 mm \l\

Fig. P5.47

5.48 Determine the volume of the steel collar obtained by rotating the
shaded area shown about the vertical axis AA’.

AI
15 mm \1 45 mm »/I 18 mm
)
30 mm '
¥
\ 60 1nm
A

Fig. P5.48

Problems 209

Fig. P5.40

r=0.75in.
Fig. P5.45 and P5.46
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w
dW
dW =dA
w
o \B «x
A d +| |l <R
——
I L 1
(a)
w
w
W=A
= | .
OA P = R
I L |
(b)
Fig. 5.17

Photo 5.3 The roofs of the buildings shown
must be able to support not only the total weight
of the snow but also the nonsymmetric distributed
loads resulting from drifting of the snow.

*5.8 DISTRIBUTED LOADS ON BEAMS

The concept of the centroid of an area can be used to solve other
problems besides those dealing with the weights of flat plates. Con-
sider, for example, a beam supporting a distributed load; this load may
consist of the weight of materials supported directly or indirectly by
the beam, or it may be caused by wind or hydrostatic pressure. The
distributed load can be represented by plotting the load w supported
per unit length (Fig. 5.17); this load is expressed in N/m or in Ib/ft.
The magnitude of the force exerted on an element of beam of length
dx is dW = w dx, and the total load supported by the beam is

L
W=J w dx

0

We observe that the product w dx is equal in magnitude to the ele-
ment of area dA shown in Fig. 5.17a. The load W is thus equal in
magnitude to the total area A under the load curve:

W=JdA=A

We now determine where a single concentrated load W, of the
same magnitude W as the total distributed load, should be applied
on the beam if it is to produce the same reactions at the supports
(Fig. 5.17b). However, this concentrated load W, which represents the
resultant of the given distributed loading, is equivalent to the loading
only when considering the free-body diagram of the entire beam. The
point of application P of the equivalent concentrated load W is obtained
by expressing that the moment of W about point O is equal to the
sum of the moments of the elemental loads dW about O:

(OP)W = j x dW
or, since dW = w dx = dA and W = A,

L
(OP)A :J' x dA (5.12)
0

Since the integral represents the first moment with respect to the w
axis of the area under the load curve, it can be replaced by the
product xA. We therefore have OP = x, where x is the distance
from the w axis to the centroid C of the area A (this is not the cen-
troid of the beam).

A distributed load on a beam can thus be replaced by a con-
centrated load; the magnitude of this single load is equal to the area
under the load curve, and its line of action passes through the cen-
troid of that area. It should be noted, however, that the concentrated
load is equivalent to the given loading only as far as external forces
are concerned. It can be used to determine reactions but should not
be used to compute internal forces and deflections.
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SAMPLE PROBLEM 5.9

A beam supports a distributed load as shown. (a) Determine the equivalent
concentrated load. (b) Determine the reactions at the supports.

SOLUTION

a. Equivalent Concentrated Load. The magnitude of the resultant of the
load is equal to the area under the load curve, and the line of action of the
resultant passes through the centroid of the same area. We divide the area
under the load curve into two triangles and construct the table below. To
simplify the computations and tabulation, the given loads per unit length
have been converted into kN/m.

Component A, kN X, m xA, kN - m
Triangle I 45 2 9
Triangle II 135 4 54
2A = 18.0 2xA = 63
Thus, XA =3xA:  X(18kN) =63kN-m X =35m
The equivalent concentrated load is
W = 1S kN |

and its line of action is located at a distance
X = 3.5 m to the right of A

b. Reactions. The reaction at A is vertical and is denoted by A; the reaction
at B is represented by its components B, and B,. The given load can be
considered to be the sum of two triangular loads as shown. The resultant of
each triangular load is equal to the area of the triangle and acts at its centroid.
We write the following equilibrium equations for the free body shown:

L3F, = 0: B, =0
+YSM, = 0:  —(45kN)@2 m) — (135 kN)(4 m) + B,(6 m) = 0
B, = 105 kN 1
+YSMy =0:  +(45kN)4 m) + (135 kN)2m) — A6 m) = 0
A=75kN?

Alternative Solution. The given distributed load can be replaced by its
resultant, which was found in part a. The reactions can be determined by
writing the equilibrium equations 2F, = 0, M, = 0, and 2Mp = 0. We
again obtain

B, = 105kNT A =75kN?
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PROBLEMS

5.49 and 5.50 Determine the magnitude and location of the resul-
tant of the distributed load shown. Also calculate the reactions at

A and B.
3000 N/ e Parabola
Wwp= m Ny /
wy = 1200 N/m
6 kN/m
A | B
' " A’
o I ! 8 m !

Fig. P5.49 R

5.51 through 5.56 Determine the reactions at the beam supports

60 Ib/in.

for the given loading.

A |B
~—12in. 18 in. !
Fig. P5.51
1500 N/m
A /ﬂ/ﬂ/ﬂ/ 5
900 N/m W
! 4m !
Fig. P5.53
200 Ib/ft
| B
A A ks
~—6 ft ! 9 ft 6 ft—»l

212 Fig. P5.55

‘ 90 Ib/in.
40 Ib/in.
A B

<4 in. | 6 in. |

Fig. P5.52

‘ 500 Ib/ft
|
8 A L A\ B
‘ 6 it~
20 fi

4ft
Fig. P5.54

/((ﬂ/( 900 N/m

Al . B

A e
400 N/m ‘
I T 1.5m |
0.4m 0.6 m

Fig. P5.56



*5.9 CENTER OF GRAVITY OF A THREE-DIMENSIONAL
BODY. CENTROID OF A VOLUME

The center of gravity G of a three-dimensional body is obtained by
dividing the body into small elements and by then expressing that the
weight W of the body acting at G is equivalent to the system of dis-
tributed forces AW representing the weights of the small elements.
Choosing the y axis to be vertical with positive sense upward (Fig. 5.18)
and denoting by r the position vector of G, we write that W is equal
to the sum of the elemental weights AW, and its moment about O is
equal to the sum of the moments about O of the elemental weights:

SF: ~Wj = 3(—AWj) 513
Mo ¥ X (—Wj) = S[r x (—AWj)] ‘
Rewriting the last equation in the form

rW x (—j) = Cr AW) x (—j) (5.14)

we observe that the weight W of the body is equivalent to the system

of the elemental weights AW if the following conditions are satisfied:
W =22 AW rW = 3r AW

Increasing the number of elements and simultaneously decreasing

the size of each element, we obtain in the limit

W = J dW rW = J r dW (5.15)

We note that the relations obtained are independent of the orienta-
tion of the body. For example, if the body and the coordinate axes
were rotated so that the z axis pointed upward, the unit vector —j
would be replaced by —k in Eqgs. (5.13) and (5.14), but the relations
(5.15) would remain unchanged. Resolving the vectors r and r into
rectangular components, we note that the second of the relations
(5.15) is equivalent to the three scalar equations

xW=deW yW=JydW szjde (5.16)

If the body is made of a homogeneous material of specific
weight vy, the magnitude dW of the weight of an infinitesimal ele-
ment can be expressed in terms of the volume dV of the element,
and the magnitude W of the total weight can be expressed in terms
of the total volume V. We write

dW = ydV W = yV
Substituting for dW and W in the second of the relations (5.15), we
write

rv = J rdV (5.17)

or, in scalar form,

xV=deV yV=Jde zV=jde (5.18)

5.9 Center of Gravity of a Three-Dimensional 9] 3
Body. Centroid of a Volume

Yy
/' G
/|
ya—
T
o
X
W=_Wj
¥4
y
/ 1
i
/3 1
1
— . l
AW
AW =AW
10}
X
z
Fig. 5.18

Photo 5.4 To predict the flight characteristics
of the modified Boeing 747 when used to
transport a space shuttle, the center of gravity
of each craft had to be determined.



214 Distributed Forces: Centroids and Centers The point whose coordinates are x, y, z is also known as the centroid
of Gravity C of the volume V of the body. If the body is not homogeneous,
Egs. (5.18) cannot be used to determine the center of gravity of the

body; however, Eqs. (5.18) still define the centroid of the volume.

The integral [ x dV is known as the first moment of the volume
with respect to the yz plane. Similarly, the integrals [y dV and [z dV
define the first moments of the volume with respect to the zx plane
and the xy plane, respectively. It is seen from Egs. (5.18) that if the
centroid of a volume is located in a coordinate plane, the first moment
of the volume with respect to that plane is zero.

A volume is said to be symmetrical with respect to a given plane
if for every point P of the volume there exists a point P’ of the same
volume, such that the line PP’ is perpendicular to the given plane and
is bisected by that plane. The plane is said to be a plane of symmetry
for the given volume. When a volume V possesses a plane of symmetry,
the first moment of V with respect to that plane is zero, and the cen-
troid of the volume is located in the plane of symmetry. When a volume
possesses two planes of symmetry, the centroid of the volume is located
on the line of intersection of the two planes. Finally, when a volume
possesses three planes of symmetry which intersect at a well-defined
point (i.e., not along a common line), the point of intersection of the
three planes coincides with the centroid of the volume. This property
enables us to determine immediately the locations of the centroids of
spheres, ellipsoids, cubes, rectangular parallelepipeds, etc.

The centroids of unsymmetrical volumes or of volumes possessing
only one or two planes of symmetry should be determined by integra-
tion.t The centroids of several common volumes are shown in Fig.
5.19. It should be observed that in general the centroid of a volume of
revolution does not coincide with the centroid of its cross section. Thus,
the centroid of a hemisphere is different from that of a semicircular
area, and the centroid of a cone is different from that of a triangle.

*5.10 COMPOSITE BODIES

If a body can be divided into several of the common shapes shown
in Fig. 5.19, its center of gravity G can be determined by expressing
that the moment about O of its total weight is equal to the sum of
the moments about O of the weights of the various component parts.
Proceeding as in Sec. 5.9, we obtain the following equations defining

the coordinates X, Y, Z of the center of gravity G.
XSW =3xW  YIW =3yW ZZW=3zW  (5.19)

If the body is made of a homogeneous material, its center of
gravity coincides with the centroid of its volume, and we obtain:

X3V =3xV YIV=3yV Z3V=3zV (5.20)
tFor the determination of centroids of volumes by integration, see Ferdinand P. Beer,

E. Russell Johnston, Jr., David F. Mazurek, and Elliot R. Eisenberg, Vector Mechanics
for Engineers, 9th ed., McGraw-Hill, New York, 2010, sec. 5.12.



Shape X Volume
Hemisphere 3a 203
8 3
Semiellipsoid 3h 24
of revolution s 37 h
Paraboloid h L ra2h
of revolution 3 o
Cone % é ma2h
Pyramid % % bh

Fig. 5.19 Centroids of common shapes and volumes.
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y SAMPLE PROBLEM 5.10
}——100 mm —»I

Determine the location of the center of gravity of the homogeneous body
7 of revolution shown, which was obtained by joining a hemisphere and a

|

I wlinder and carvi tac

| - 60 mm Cy maer an (/(lrvlng out a cone.
|

O\\\ %
\\\ 60 mm

SOLUTION

Because of symmetry, the center of gravity lies on the x axis. As shown in
the figure below, the body can be obtained by adding a hemisphere to a
cylinder and then subtracting a cone. The volume and the abscissa of the
centroid of each of these components are obtained from Fig. 5.19 and are
entered in the table below. The total volume of the body and the first
moment of its volume with respect to the yz plane are then determined.

’/| y| Yy
|
|
60 mm :

| -

o : O /;f’—o———f—————o—x — x/—————r—-e—x

| o | o) |

| | | |

| | | |

| | |

%(60 mm) = 22.5 mm 50 mm %(IOO mm) =75 mm

Component | Volume, mm® x, mm |xV, mm*

; 1 4m 3 6 6
Hemisphere 23 (60)° = 0.4524 X 10° |—22.5 —10.18 X 10
Cylinder m(60)%(100) = 1.1310 X 10°|+50 +56.55 X 10°
Cone ~T (60)%(100) = —0.3770 X 10° | +75 —28.28 x 10°

SV = 1206 X 10° SxV = +18.09 X 10°
Thus,
X3V = 3xV:  X(1.206 X 10° mm®) = 18.09 X 10° mm*
X = 15 mm
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4.5 in.

\2.5 in.

\\‘
y

4.5 in.

2 in.

SAMPLE PROBLEM 5.11

Locate the center of gravity of the steel machine element shown. The diame-

ter of each hole is 1 in.

0.5 in

\<'

ar

SOLUTION

The machine element can be obtained by adding a rectangular parallelepi-
ped (I) to a quarter cylinder (II) and then subtracting two 1-in.-diameter
cylinders (IIT and IV). The volume and the coordinates of the centroid of
each component are determined and are entered in the table below. Using

_|_ 1 in. diam. the data in the table, we then determine the total volume and the moments
of the volume with respect to each of the coordinate planes.
11 v d 05 d
.0 1.
:;171” 4:13( )—08488 in.
' ™o < 2.25 in.—]
. | —{ |=0.251n.
A / xR l iﬁ n
1. [ m. °
Cm Ciy 1 y37
Cy, Cur, Cry Cg Crr
0.5 in.
—| —o0.25in. 2 in; 15 in~]
V, in® x, in. y, in z, in. xV, in* yV, in* zV, in?
1 (4.5)(2)(0.5) = 0.25 =1 2.25 1.125 —4.5 10.125
11 Lr(2)2(0.5) = 1 571 1.3488 | —0.8488 | 025 2.119 ~1.333 0.393
m | —#(05)2%05) = —0.3927 | 025 —1 355 —0.098 0.393 —1.374
I\% —77(0.5)2(0 5) = —0.3927 0.25 =1l 1.5 —0.098 0.393 —0.589
2V = 5.286 2xV = 3.048 2yV = —5.047 2zV = 8.555
Thus,
XSV = 3xV:  X(5.286 in®) = 3.048 in* X = 0577 in.
YSV = 3yV:  Y(5.286 in®) = —5.047 in* Y = —0.955 in.
Z3V = 3ZV.  Z(5.286 in®) = 8.555 in* Z 1.618 in.
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PROBLEMS

5.57 A cone and a cylinder of the same radius @ and height h are
a attached as shown. Determine the location of the centroid of the
composite body.

5.58 Determine the y coordinate of the centroid of the body shown

ol
4‘7 when (a) b = h, (b) b = h.
h [
AN

Fig. P5.57

Fig. P5.58

5.59 A hemisphere and a cylinder are placed together as shown. Deter-
mine the ratio h/r for which the centroid of the composite body is
located in the plane between the hemisphere and the cylinder.

-]

-

Fig. P5.59

5.60 Determine the location of the center of gravity of the parabolic
reflector shown, which is formed by machining a rectangular block
so that the curved surface is a paraboloid of revolution of base

radius a and height h.




5.61 For the machine element shown, locate the x coordinate of the Problems 2710
center of gravity.

5.62 For the machine element shown, locate the y coordinate of the
center of gravity.

5.63 For the machine element shown, locate the x coordinate of the
center of gravity.

Y
N
50 mm O

\>\ 1 10 in.
50 mm I 10 rrnmr?l KL\ in.
J\ \ Fig. P5.61 and P5.62

N z
r =30 mm
Y

60 mrﬂ\’ ’/go min 250 mm\‘

60 mm

10 mm

Fig. P5.63 and P5.64

5.64 For the machine element shown, locate the y coordinate of the
center of gravity.

5.65 A wastebasket, designed to fit in the corner of a room, is 400 400 mm
mm high and has a base in the shape of a quarter circle of radius
250 mm. Locate the center of gravity of the wastebasket, know-
ing that it is made of sheet metal of uniform thickness. T

5.66 through 5.68 Locate the center of gravity of the sheet-metal

z
form shown.

Fig. P5.65

3in.

40 mm

P =

Fig. P5.66 Fig. P5.67 Fig. P5.68




220 DfisfribU'_ed Forces: Centroids and Centers 5.69 and 5.70 Locate the center of gravity of the figure shown,
o Gravity knowing that it is made of thin brass rods of uniform diameter.
’|

T

Yy

750 mm in.
O %

/ D

\
~ ™~ SOOE\X x
z 500mm\/BN/ z r=16in.

Fig. P5.70

Fig. P5.69 ‘9

5.71 Three brass plates are brazed to a steel pipe to form the flagpole
base shown. Knowing that the pipe has a wall thickness of 0.25 in.
and that each plate is 0.2 in. thick, determine the location of the
center of gravity of the base. (Specific weights: brass = 0.306 1b/
in®, steel = 0.284 1b/in®)

120° ‘ Aj—
Fig. P5.71
5.72 A brass collar, of length 50 mm, is mounted on an aluminum rod

of length 80 mm. Locate the center of gravity of the composite
body. (Densities: brass = 8470 kg/ms, aluminum = 2800 kg/ms.)

-
\

80 mm
50 mm

e :

Fig. P5.72




REVIEW AND SUMMARY

This chapter was devoted chiefly to the determination of the center
of gravity of a rigid body, i.e., to the determination of the point G
where a single force W, called the weight of the body, can be applied
to represent the effect of the earth’s attraction on the body.

In the first part of the chapter, we considered two-dimensional ~Center of gravity of a
bodies, such as flat plates and wires contained in the xy plane. By two-dimensional body
adding force components in the vertical z direction and moments

about the horizontal y and x axes [Sec. 5.2], we derived the

relations

W=fdw xW=deW yW=JydW (5.2)

which define the weight of the body and the coordinates x and y of
its center of gravity.

In the case of a homogeneous flat plate of uniform thickness [Sec. 5.3], Centroid of an area or line
the center of gravity G of the plate coincides with the centroid C of

the area A of the plate, the coordinates of which are defined by the

relations

xA=deA yA=fyclA (5.3)

Similarly, the determination of the center of gravity of a homoge-
neous wire of uniform cross section contained in a plane reduces to
the determination of the centroid C of the line L representing the
wire; we have

xL = Jx dL yL = jy dL (5.4)

The integrals in Eqgs. (5.3) are referred to as the first moments of ~First moments
the area A with respect to the y and x axes and are denoted by Q,
and Q,, respectively [Sec. 5.4]. We have

Q,=TA  Q.=yA (5.6)

The first moments of a line can be defined in a similar way.

The determination of the centroid C of an area or line is simplified Properties of symmetry
when the area or line possesses certain properties of symmetry. If
the area or line is symmetric with respect to an axis, its centroid C
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222 Distributed Forces: Centroids and Centers
of Gravity

Center of gravity of a
composite body

Fig. 5.20

Determination of centroid
by integration

Theorems of Pappus-Guldinus

lies on that axis; if it is symmetric with respect to two axes, C is
located at the intersection of the two axes; if it is symmetric with
respect to a center O, C coincides with O.

The areas and the centroids of various common shapes are tabulated in
Fig. 5.8. When a flat plate can be divided into several of these shapes,
the coordinates X and Y of its center of f gravity G can be determined
from the coordinates xy, x5, . . . and yy,ys, . . . of the centers of
gravity Gy, Gs, . . . of the various parts [Sec. 5.5]. Equating moments
about the y and x axes, respectively (Fig. 5.20), we have

XIW = SxW  YSW = SyW (5.7)

If the plate is homogeneous and of uniform thickness, its center of
gravity coincides with the centroid C of the area of the plate, and
Egs. (5.7) reduce to

Q,=XSA =3¥W  Q,=YSA=3pA (5.9)

These equations yield the first moments of the composite area, or
they can be solved for the coordinates X and Y of its centroid [Sam-
ple Prob. 5.1]. The determination of the center of gravity of a com-
posite wire is carried out in a similar fashion [Sample Prob. 5.2].

When an area is bounded by analytical curves, the coordinates of its
centroid can be determined by integration [Sec. 5.6]. This can be
done by evaluating either the double integrals in Eqs. (5.3) or a sin-
gle integral which uses one of the thin rectangular or pie-shaped
elements of area shown in Fig. 5.12. Denoting by x,; and y,; the
coordinates of the centroid of the element dA, we have

Q, = TA ZJxeldA Q. =yA =j jadA  (5.9)

It is advantageous to use the same element of area to compute both
of the first moments Q, and Q,; the same element can also be used
to determine the area A [Sample Prob. 5.4].

The theorems of Pappus-Guldinus relate the determination of the
area of a surface of revolution or the volume of a body of revolution
to the determination of the centroid of the generating curve or area
[Sec. 5.7]. The area A of the surface generated by rotating a curve
of length L about a fixed axis (Fig. 5.21a) is

A = 2myL (5.10)

where y represents the distance from the centroid C of the curve to
the fixed axis. Similarly, the volume V of the body generated by
rotating an area A about a fixed axis (Fig. 5.21b) is

V = 2myA (5.11)

where y represents the distance from the centroid C of the area to
the fixed axis.



The concept of centroid of an area can also be used to solve problems
other than those dealing with the weight of flat plates. For example,
to determine the reactions at the supports of a beam [Sec. 5.8], we
can replace a distributed load w by a concentrated load W equal in
magnitude to the area A under the load curve and passing through
the centroid C of that area (Fig. 5.22).

w w
w
W=A

Fig. 5.22

The last part of the chapter was devoted to the determination of the
center of gravity G of a three-dimensional body. The coordinates x,
y, z of G were defined by the relations

xW=deW yW=JydW szfde (5.16)

In the case of a homogeneous body, the center of gravity G coincides
with the centroid C of the volume V of the body; the coordinates of
C are defined by the relations

xV=deV yV=Jde zV=szV (5.18)

If the volume possesses a plane of symmetry, its centroid C will lie
in that plane; if it possesses two planes of symmetry, C will be located
on the line of intersection of the two planes; if it possesses three
planes of symmetry which intersect at only one point, C will coincide
with that point [Sec. 5.9].

The volumes and centroids of various common three-dimensional
shapes are tabulated in Fig. 5.19. When a body can be divided into
several of these shapes, the coordinates X, Y, Z of its center of gravity
G can be determined from the corresponding coordinates of the
centers of gravity of its various parts [Sec. 5.10]. We have

XSW = ZxW  YSW =3yW  ZIW =3zW  (5.19)

If the body is made of a homogeneous material, its center of gravity
coincides with the centroid C of its volume, and we write [Sample
Probs. 5.10 and 5.11]

XSV =3xV  YSV=3yV Z3V =3V  (5.20)

Review and Summary 223

Distributed loads

Center of gravity of a three-
dimensional body

Centroid of a volume

Center of gravity of a composite

body



REVIEW PROBLEMS

5.73 and 5.74 Locate the centroid of the plane area shown.

Y| 90 mm
135 mm
270 mm
x
X L«é&in,»l«&in,»‘
Fig. P5.73 Fig. P5.74

5.75 A thin homogenous wire is bent to form the perimeter of the plane
area of Prob. 5.73. Locate the center of gravity of the wire figure
thus formed.

5.76 Knowing that the figure shown is formed of a thin homogeneous
wire, determine the length [ of portion CE of the wire for which
the center of gravity of the figure is located at point C when (a) 6 =
15°, (b) 6 = 60°.

~
y
0 f AL C E
ex,/’ |
/ 7
! s I l |
, \ b
Fig. P5.76
X
I a I a !
Fig. P5.77 5.77 Determine by direct integration the centroid of the area shown.

5.78 Determine by direct integration the x coordinate of the centroid
of the area shown.

y :<5£—3ﬁ>h
y L L?

Fig. P5.78
224



5.79 Determine the volume of the body shown. Review Problems 995

r=>50 mm

25 mmT
\I

25 mm

25 mm 40 mm\‘
Fig. P5.79 and P5.80

5.80 Determine the total surface area of the body shown.

5.81 Determine the reactions at the beam supports for the given loading 600 Ib/it
when w, = 450 Ib/ft. “o
A 5 A C
5.82 Determine (a) the distributed load w, at the end C of the beam
ABC for which the reaction at C is zero, (b) the corresponding ~—5 ft— 7t 1
reaction at B. Fig. P5.81 and P5.82

5.83 Determine the center of gravity of the machine element shown.

Fig. P5.83

5.84 A regular pyramid 300 mm high, with a square base of side 250
mm, is made of wood. Its four triangular faces are covered with
steel sheets 1 mm thick. Locate the center of gravity of the com-
posite body. (Densities: steel = 7850 kg/ms, wood = 500 kg/ms.)

\

300 mm

250 mm

Fig. P5.84




Trusses, such as this Pratt-style
cantilever arch bridge in New York
State, provide both a practical and an

economical solution to many

engineering problems.
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6.6
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6.8
6.9
6.10

6.11
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Introduction

Definition of a Truss

Simple Trusses

Andlysis of Trusses by the

Chapter 6 Analysis of Structures

Method of Joints

Joints under Special Loading

Conditions

Analysis of Trusses by the
Method of Sections
Trusses Made of Several Simple

Trusses

Structures Containing Multiforce

Members

Analysis of a Frame
Frames Which Cease to Be Rigid
when Detached from Their

Supports
Machines

Fig. 6.1

6.1 INTRODUCTION

The problems considered in the preceding chapters concerned the
equilibrium of a single rigid body, and all the forces involved were
external to the rigid body. We now consider problems dealing with
the equilibrium of structures made of several connected parts. These
problems call for the determination not only of the external forces
acting on the structure but also of the forces which hold together
the various parts of the structure. From the point of view of the
structure as a whole, these forces are internal forces.

Consider, for example, the crane shown in Fig. 6.1a, which
carries a load W. The crane consists of three beams AD, CF, and
BE connected by frictionless pins; it is supported by a pin at A and
by a cable DG. The free-body diagram of the crane has been drawn
in Fig. 6.1b. The external forces, which are shown in the diagram,
include the weight W, the two components A, and A, of the reaction
at A, and the force T exerted by the cable at D. The internal forces
holdmg the various parts of the crane together do not appear in the
diagram. If, however, the crane is dismembered and if a free-body
diagram is drawn for each of its component parts, the forces holding
the three beams together will also be represented, since these forces
are external forces from the point of view of each component part
(Fig. 6.1¢).

D

ira i;m-i Er

€9, W
| ‘
N N A
“ “t
A.’/ A.’/
) ()

It will be noted that the force exerted at B by member BE on
member AD has been represented as equal and opposite to the force
exerted at the same point by member AD on member BE; the
force exerted at E by BE on CF is shown equal and opposite to the
force exerted by CF on BE; and the components of the force exerted
at C by CF on AD are shown equal and opposite to the components
of the force exerted by AD on CF. This is in conformity with Newton’s
third law, which states that the forces of action and reaction between
bodies in contact have the same magnitude, same line of action, and
opposite sense. As pointed out in Chap. 1, this law, which is based
on experimental evidence, is one of the six fundamental principles
of elementary mechanics, and its application is essential to the solu-
tion of problems involving connected bodies.



In this chapter, three broad categories of engineering structures
will be considered:

1. Trusses, which are designed to support loads and are usually
stationary, fully constrained structures. Trusses consist exclu-
sively of straight members connected at joints located at the
ends of each member. Members of a truss, therefore, are two-
force members, i.e., members acted upon by two equal and
opposite forces directed along the member.

2. Frames, which are also designed to support loads and are also
usually stationary, fully constrained structures. However, like
the crane of Fig. 6.1, frames always contain at least one mul-
tiforce member, i.e., a member acted upon by three or more
forces which, in general, are not directed along the
member.

3. Machines, which are designed to transmit and modify forces
and are structures containing moving parts. Machines, like
frames, always contain at least one multiforce member.

6.2 DEFINITION OF A TRUSS

The truss is one of the major types of engineering structures. It
provides both a practical and an economical solution to many engi-
neering situations, especially in the design of bridges and buildings.
A typical truss is shown in Fig. 6.2a. A truss consists of straight
members connected at joints. Truss members are connected at their
extremities only; thus no member is continuous through a joint. In
Fig. 6.2a, for example, there is no member AB; there are instead two
distinct members AD and DB. Most actual structures are made of
several trusses joined together to form a space framework. Each truss
is designed to carry those loads which act in its plane and thus may
be treated as a two-dimensional structure.

In general, the members of a truss are slender and can sup-
port little lateral load; all loads, therefore, must be applied to the
various joints, and not to the members themselves. When a con-
centrated load is to be applied between two joints, or when a dis-
tributed load is to be supported by the truss, as in the case of a
bridge truss, a floor system must be provided which, through the
use of stringers and floor beams, transmits the load to the joints
(Fig. 6.3).

The weights of the members of the truss are also assumed to
be applied to the joints, half of the weight of each member being
applied to each of the two joints the member connects. Although
the members are actually joined together by means of welded,
bolted, or riveted connections, it is customary to assume that the
members are pinned together; therefore, the forces acting at each
end of a member reduce to a single force and no couple. Thus, the
only forces assumed to be applied to a truss member are a single

6.2 Definition of a Truss 229

Photo 6.1 Shown is a pin-jointed connection
on the approach span to the San Francisco-
Oakland Bay Bridge.

©Q

Fig. 6.2
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Floor beams

Fig. 6.3

force at each end of the member. Each member can then be treated
as a two-force member, and the entire truss can be considered as a
group of pins and two-force members (Fig. 6.2b). An individual
member can be acted upon as shown in either of the two sketches
of Fig. 6.4. In Fig. 6.4a, the forces tend to pull the member apart,
and the member is in tension; in Fig. 6.4b, the forces tend to com-

(@) (b) press the member, and the member is in compression. A number
Fig. 6.4 of typical trusses are shown in Fig. 6.5.
Pratt Howe Fink
Typical Roof Trusses

Pratt Warren

Howe

Baltimore K truss

Typical Bridge Trusses

7
7
7
ﬂ\
N
N
N @
\

Cantilever portion
of a truss Bascule

Stadium Other Types of Trusses

Fig. 6.5



6.3 SIMPLE TRUSSES

Consider the truss of Fig. 6.6a, which is made of four members con-
nected by pins at A, B, C, and D. If a load is applied at B, the truss
will greatly deform, completely losing its original shape. In contrast,
the truss of Fig. 6.6b, which is made of three members connected
by pins at A, B, and C, will deform only slightly under a load applied
at B. The only possible deformation for this truss is one involving
small changes in the length of its members. The truss of Fig. 6.6b
is said to be a rigid truss, the term rigid being used here to indicate
that the truss will not collapse.

A C A

Fig. 6.6

As shown in Fig. 6.6¢, a larger rigid truss can be obtained by
adding two members BD and CD to the basic triangular truss of
Fig. 6.6b. This procedure can be repeated as many times as desired,
and the resulting truss will be rigid if each time two new members
are added, they are attached to two existing joints and connected at
a new joint.t A truss which can be constructed in this manner is
called a simple truss.

It should be noted that a simple truss is not necessarily made
only of triangles. The truss of Fig. 6.6d, for example, is a simple truss
which was constructed from triangle ABC by adding successively the
joints D, E, F, and G. On the other hand, rigid trusses are not always
simple trusses, even when they appear to be made of triangles. The
Fink and Baltimore trusses shown in Fig. 6.5, for instance, are not
simple trusses, since they cannot be constructed from a single trian-
gle in the manner described above. All the other trusses shown in
Fig. 6.5 are simple trusses, as may be easily checked. (For the K
truss, start with one of the central triangles.)

Returning to Fig. 6.6, we note that the basic triangular truss of
Fig. 6.6b has three members and three joints. The truss of Fig. 6.6¢
has two more members and one more joint, i.e., five members and
four joints altogether. Observing that every time two new members
are added, the number of joints is increased by one, we find that in
a simple truss the total number of members is m = 2n — 3, where
n is the total number of joints.

tThe three joints must not be in a straight line.

6.3 Simple Trusses 93]

AQ oG
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Photo 6.2 Two K-trusses were used as the
main components of the movable bridge shown
which moved above a large stockpile of ore.
The bucket below the trusses picked up ore and
redeposited it until the ore was thoroughly mixed.
The ore was then sent to the mill for processing
into steel.



232 Andlysis of Structures

Fig. 6.7

Photo 6.3 Because roof trusses, such as those
shown, require support only at their ends, it is
possible to construct buildings with large,
unobstructed floor areas.

6.4 ANALYSIS OF TRUSSES BY THE METHOD
OF JOINTS

We saw in Sec. 6.2 that a truss can be considered as a group of pins
and two-force members. The truss of Fig. 6.2, whose free-body diagram
is shown in Fig. 6.7a, can thus be dismembered, and a free-body dia-
gram can be drawn for each pin and each member (Fig. 6.7h). Each
member is acted upon by two forces, one at each end; these forces have
the same magnitude, same line of action, and opposite sense (Sec. 4.6).
Furthermore, Newton’s third law indicates that the forces of action and
reaction between a member and a pin are equal and opposite. There-
fore, the forces exerted by a member on the two pins it connects must
be directed along that member and be equal and opposite. The common
magnitude of the forces exerted by a member on the two pins it con-
nects is commonly referred to as the force in the member considered,
even though this quantity is actually a scalar. Since the lines of action of
all the internal forces in a truss are known, the analysis of a truss reduces
to computing the forces in its various members and to determining
whether each of its members is in tension or in compression.

Since the entire truss is in equilibrium, each pin must be in
equilibrium. The fact that a pin is in equilibrium can be expressed by
drawing its free-body diagram and writing two equilibrium equations
(Sec. 2.9). If the truss contains n pins, there will, therefore, be 2n
equations available, which can be solved for 2n unknowns. In the case
of a simple truss, we have m = 2n — 3, that is, 2n = m + 3, and the
number of unknowns which can be determined from the free-body
diagrams of the pins is thus m + 3. This means that the forces in all
the members, the two components of the reaction Ry, and the reaction
Rj can be found by considering the free-body diagrams of the pins.

The fact that the entire truss is a rigid body in equilibrium can
be used to write three more equations involving the forces shown in
the free-body diagram of Fig. 6.7a. Since they do not contain any
new information, these equations are not independent of the equa-
tions associated with the free-body diagrams of the pins. Neverthe-
less, they can be used to determine the components of the reactions
at the supports. The arrangement of pins and members in a simple
truss is such that it will then always be possible to find a joint involv-
ing only two unknown forces. These forces can be determined by
the methods of Sec. 2.11 and their values transferred to the adjacent
joints and treated as known quantities at these joints. This procedure
can be repeated until all the unknown forces have been determined.

As an example, the truss of Fig. 6.7 will be analyzed by con-
sidering the equilibrium of each pin successively, starting with a joint
at which only two forces are unknown. In the truss considered, all
pins are subjected to at least three unknown forces. Therefore, the
reactions at the supports must first be determined by considering
the entire truss as a free body and using the equations of equilibrium
of a rigid body. We find in this way that R, is vertical and determine
the magnitudes of R, and Rg.

The number of unknown forces at joint A is thus reduced to
two, and these forces can be determined by considering the equilib-
rium of pin A. The reaction R, and the forces F ¢ and F,p exerted
on pin A by members AC and AD, respectively, must form a force
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triangle. First we draw R, (Fig. 6.8); noting that F,c and F,p, are
directed along AC and AD, respectively, we complete the triangle
and determine the magnitude and sense of F4¢ and F,p. The mag-
nitudes F,c and Fyp represent the forces in members AC and AD,
respectively. Since F,¢ is directed down and to the left, that is,
toward joint A, member AC pushes on pin A and is in compression.
Since F,p is directed away from joint A, member AD pulls on pin A
and is in tension.

We can now proceed to joint D, where only two forces, Fpc and
Fpp, are still unknown. The other forces are the load P, which is
given, and the force Fp, exerted on the pin by member AD. As indi-
cated above, this force is equal and opposite to the force F,p exerted
by the same member on pin A. We can draw the force polygon cor-
responding to joint D, as shown in Fig. 6.8, and determine the forces
Fpc and Fpg from that polygon. However, when more than three
forces are involved, it is usually more convenient to solve the equa-
tions of equilibrium XF, = 0 and 2F, = 0 for the two unknown
forces. Since both of these forces are found to be directed away from
joint D, members DC and DB pull on the pin and are in tension.

6.4 Analysis of Trusses by the Method of Joints
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Fig. 6.9
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Fig. 6.10

Next, joint C is considered; its free-body diagram is shown in
Fig. 6.8. It is noted that both Fcp and F¢, are known from the
analysis of the preceding joints and that only Fp is unknown. Since
the equilibrium of each pin provides sufficient information to deter-
mine two unknowns, a check of our analysis is obtained at this joint.
The force triangle is drawn, and the magnitude and sense of Fjp are
determined. Since F¢p is directed toward joint C, member CB
pushes on pin C and is in compression. The check is obtained by
verifying that the force Fcz and member CB are parallel.

At joint B, all of the forces are known. Since the corresponding
pin is in equilibrium, the force triangle must close and an additional
check of the analysis is obtained.

It should be noted that the force polygons shown in Fig. 6.8 are
not unique. Each of them could be replaced by an alternative configu-
ration. For example, the force triangle corresponding to joint A could
be drawn as shown in Fig. 6.9. The triangle actually shown in Fig. 6.8
was obtained by drawing the three forces Ry, Fac, and F,p in tip-to-tail
fashion in the order in which their lines of action are encountered when
moving clockwise around joint A. The other force polygons in Fig. 6.8,
having been drawn in the same way, can be made to fit into a single
diagram, as shown in Fig. 6.10. Such a diagram, known as Maxwell’s
diagram, greatly facilitates the graphical analysis of truss problems.

6.5 JOINTS UNDER SPECIAL LOADING CONDITIONS

Consider Fig. 6.11a, in which the joint shown connects four members
lying in two intersecting straight lines. The free-body diagram of
Fig. 6.11b shows that pin A is subjected to two pairs of directly opposite
forces. The corresponding force polygon, therefore, must be a parallelo-
gram (Fig. 6.11¢), and the forces in opposite members must be equal.

Consider next Fig. 6.12a, in which the joint shown connects
three members and supports a load P. Two of the members lie in
the same line, and the load P acts along the third member. The free-
body diagram of pin A and the corresponding force polygon will be
as shown in Fig. 6.11b and ¢, with F4z replaced by the load P. Thus,
the forces in the two opposite members must be equal, and the force
in the other member must equal P. A particular case of special inter-
est is shown in Fig. 6.12b. Since, in this case, no external load is
applied to the joint, we have P = 0, and the force in member AC is
zero. Member AC is said to be a zero-force member.

E Fap

A Fap

Als % A / Fak
\J
Fap

(a) (b) (c)
Fig. 6.11
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x



Consider now a joint connecting two members only. From
Sec. 2.9, we know that a particle which is acted upon by two forces will
be in equilibrium if the two forces have the same magnitude, same line
of action, and opposite sense. In the case of the joint of Fig. 6.13a,
which connects two members AB and AD lying in the same line, the
forces in the two members must be equal for pin A to be in equilibrium.
In the case of the joint of Fig. 6.13b, pin A cannot be in equilibrium
unless the forces in both members are zero. Members connected as
shown in Fig. 6.13b, therefore, must be zero-force members.

Spotting the joints which are under the special loading condi-
tions listed above will expedite the analysis of a truss. Consider, for
example, a Howe truss loaded as shown in Fig. 6.14. All of the mem-
bers represented by green lines will be recognized as zero-force
members. Joint C connects three members, two of which lie in the
same line and is not subjected to any external load; member BC is
thus a zero-force member. Applying the same reasoning to joint K,
we find that member JK is also a zero-force member. But joint | is
now in the same situation as joints C and K, and member I] must be
a zero-force member. The examination of joints C, ], and K also shows
that the forces in members AC and CE are equal, that the forces in
members HJ and JL are equal, and that the forces in members IK
and KL are equal. Turning our attention to joint I, where the 20-kN
load and member HI are collinear, we note that the force in member
HI is 20 kN (tension) and that the forces in members GI and IK are
equal. Hence, the forces in members GI, IK, and KL are equal.

Note that the conditions described above do not apply to joints B
and D in Fig. 6.14, and it would be wrong to assume that the force in
member DE is 25 kN or that the forces in members AB and BD are
equal. The forces in these members and in all the remaining members
should be found by carrying out the analysis of joints A, B, D, E, F, G,
H, and L in the usual manner. Thus, until you have become thoroughly
familiar with the conditions under which the rules established in this
section can be applied, you should draw the free-body diagrams of all the
pins and write the corresponding equilibrium equations (or draw the
corresponding force polygons) whether or not the joints being consid-
ered are under one of the special loading conditions described above.

A final remark concerning zero-force members: These mem-
bers are not useless. For example, although the zero-force members
of Fig. 6.14 do not carry any loads under the loading conditions
shown, the same members would probably carry loads if the loading
conditions were changed. Besides, even in the case considered, these
members are needed to support the weight of the truss and to main-
tain the truss in the desired shape.

25 k\]l lg lS() kN
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25 kN D H

—
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6.5 Joints under Special Loading Conditions
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SAMPLE PROBLEM 6.1

Using the method of joints, determine the force in each member of the
truss shown.

SOLUTION

Free-Body: Entire Truss. A free-body diagram of the entire truss is drawn;
external forces acting on this free body consist of the applied loads and the
reactions at C and E. We write the following equilibrium equations.

+Y2M: = 0: (2000 1b)(24 ft) + (1000 Ib)(12 ft) — E(6 ft) = 0

E = +10,000 Ib E = 10,000 Ib1
3F, = 0: C.=0
+15F, = 0. —2000 Ib — 1000 Ib + 10,000 Ib + C, = 0

C, = —7000 Ib C, = 7000 Ib)

Free-Body: Joint A. This joint is subjected to only two unknown forces,
namely, the forces exerted by members AB and AD. A force triangle is used
to determine F,5 and F,p We note that member AB pulls on the joint and
thus is in tension and that member AD pushes on the joint and thus is in
compression. The magnitudes of the two forces are obtained from the
proportion

20001b  Fap  Fyp

4 3 5

1500 Ib T
2500 1b C

Fap
FAD

Free-Body: Joint D. Since the force exerted by member AD has been
determined, only two unknown forces are now involved at this joint. Again,
a force triangle is used to determine the unknown forces in members DB
and DE.

Fpg = Fpa Fpp = 2500 1b T
Fpp = 2()Fpa Fpr = 3000 1b C



1000 Ib
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Free-Body: Joint B. Since more than three forces act at this joint, we
determine the two unknown forces Fpe and Fpp by solving the equilibrium
equations 2F, = 0 and 2F, = 0. We arbitrarily assume that both unknown
forces act away from the joint, i.e., that the members are in tension. The
positive value obtained for Fg indicates that our assumption was correct;
member BC is in tension. The negative value of Fgp indicates that our
assumption was wrong; member BE is in compression.

+13F, = 0:  —1000 — 5(2500) — 5Fz; = 0
Fyp = —3750 Ib Fyr =37501b C

5H3F, = 0. Fyze — 1500 — £(2500) — £(3750) = 0
FBC = +5250 lb Fl)’(] = 525() lb T

Free-Body: Joint E. The unknown force Fy is assumed to act away from
the joint. Summing x components, we write

53F, =00 2Fye + 3000 + £(3750) = 0

Summing y components, we obtain a check of our computations:

+13F, = 10,000 — 5(3750) — 5(8750)
= 10,000 — 3000 — 7000 = 0 (checks)

Free-Body: Joint C. Using the computed values of F¢p and Fep, we can
determine the reactions C, and C, by considering the equilibrium of
this joint. Since these reactions have already been determined from the
equilibrium of the entire truss, we will obtain two checks of our com-
putations. We can also simply use the computed values of all forces acting
on the joint (forces in members and reactions) and check that the joint is

in equilibrium:

5H3F, = —5250 + 3(8750) = —5250 + 5250 = 0 (checks)
+13F, = —7000 + §(8750) = —7000 + 7000 = 0 (checks)
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PROBLEMS

6.1 through 6.18 Using the method of joints, determine the force
in each member of the truss shown. State whether each member

is in tension or compression.
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6.19 Determine whether the trusses given as Probs. 6.17, 6.21, and 6.23
are simple trusses.

6.20 Determine whether the trusses given as Probs. 6.12, 6.14, 6.22,
and 6.24 are simple trusses.
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6.21 through 6.24 Determine the zero-force members in the truss
shown for the given loading.
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6.6 ANALYSIS OF TRUSSES BY THE METHOD
OF SECTIONS
The method of joints is most effective when the forces in all the
members of a truss are to be determined. If, however, the force in
only one member or the forces in a very few members are desired,
another method, the method of sections, is more efficient.
P, P, P, Assume, for example, that we want to determine the force in
A 5Y . D member BD of the truss shown in Fig. 6.15a. To do this, we must
% { el
\

P, P,
A BY

Fig. 6.15

determine the force with which member BD acts on either joint B
or joint D. If we were to use the method of joints, we would choose
either joint B or joint D as a free body. However, we can also choose
as a free body a larger portion of the truss, composed of several joints
and members, provided that the desired force is one of the external
forces acting on that portion. If, in addition, the portion of the truss
is chosen so that there is a total of only three unknown forces acting
upon it, the desired force can be obtained by solving the equations
of equilibrium for this portion of the truss. In practice, the portion
of the truss to be utilized is obtained by passing a section through
three members of the truss, one of which is the desired member,
i.e., by drawing a line which divides the truss into two completely
separate parts but does not intersect more than three members.
Either of the two portions of the truss obtained after the intersected
members have been removed can then be used as a free body.t

In Fig. 6.15a, the section nn has been passed through members
BD, BE, and CE, and the portion ABC of the truss is chosen as the

tIn the analysis of certain trusses, sections are passed which intersect more than three
members; the forces in one, or possibly two, of the intersected members may be
obtained if equilibrium equations can be found, each of which involves only one
unknown (see Probs. 6.41 through 6.43).



free body (Fig. 6.15b). The forces acting on the free body are the loads
P, and P; at points A and B, respectively, and the three unknown forces
Fpp, Fip, and Fop. Since it is not known whether the members removed
were in tension or compression, the three forces have been arbitrarily
drawn away from the free body as if the members were in tension.

The fact that the rigid body ABC is in equilibrium can be
expressed by writing three equations which can be solved for the three
unknown forces. If only the force Fjp is desired, we need write only
one equation, provided that the equation does not contain the other
unknowns. Thus, the equation 2My = 0 yields the value of the magni-
tude Fpp, of the force Fgp (Fig. 6.15). A positive sign in the answer will
indicate that our original assumption regarding the sense of Fgp was
correct and that member BD is in tension; a negative sign will indicate
that our assumption was incorrect and that BD is in compression.

On the other hand, if only the force Fcf is desired, an equation
which does not involve Fgp or Fgg should be written; the appropriate
equation is XMy = 0. Again a positive sign for the magnitude Fcr of
the desired force indicates a correct assumption, that is, tension; and a
negative sign indicates an incorrect assumption, that is, compression.

If only the force Fyz is desired, the appropriate equation is
2F, = 0. Whether the member is in tension or compression is again
determined from the sign of the answer.

When the force in only one member is determined, no inde-
pendent check of the computation is available. However, when all
the unknown forces acting on the free body are determined, the
computations can be checked by writing an additional equation. For
instance, if Fgp, Fyp, and Fgp are determined as indicated above,
the computation can be checked by verifying that 2F, = 0.

*6.7 TRUSSES MADE OF SEVERAL SIMPLE TRUSSES

Consider two simple trusses ABC and DEF. If they are connected by
three bars BD, BE, and CE as shown in Fig. 6.16a, they will form
together a rigid truss ABDF. The trusses ABC and DEF can also be
combined into a single rigid truss by joining joints B and D into a single
joint B and by connecting joints C and E by a bar CE (Fig. 6.16b).
The truss thus obtained is known as a Fink truss. It should be noted
that the trusses of Fig. 6.16a and b are not simple trusses; they cannot
be constructed from a triangular truss by adding successive pairs of
members as prescribed in Sec. 6.3. They are rigid trusses, however,
as we can check by comparing the systems of connections used to hold
the simple trusses ABC and DEF together (three bars in Fig. 6.16a,
one pin and one bar in Fig. 6.16b) with the systems of supports

B D
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o o o
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Fig. 6.16

6.7 Trusses Made of Several Simple Trusses
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discussed in Secs. 4.4 and 4.5. Trusses made of several simple trusses
rigidly connected are known as compound trusses.

In a compound truss the number of members m and the number
of joints n are still related by the formula m = 2n — 3. This can be
verified by observing that, if a compound truss is supported by a fric-
tionless pin and a roller (involving three unknown reactions), the total
number of unknowns is m + 3, and this number must be equal to the
number 2n of equations obtained by expressing that the n pins are in
equilibrium; it follows that m = 2n — 3. Compound trusses supported
by a pin and a roller, or by an equivalent system of supports, are stati-
cally determinate, rigid, and completely constrained. This means that
all of the unknown reactions and the forces in all the members can
be determined by the methods of statics and that the truss will neither
collapse nor move. The forces in the members, however, cannot all be
determined by the method of joints, except by solving a large number
of simultaneous equations. In the case of the compound truss of Fig.
6.16a, for example, it is more efficient to pass a section through mem-
bers BD, BE, and CE to determine the forces in these members.

Suppose, now, that the simple trusses ABC and DEF are con-
nected by four bars BD, BE, CD, and CE (Fig. 6.17). The number of
members m is now larger than 2n — 3; the truss obtained is overrigid,
and one of the four members BD, BE, CD, or CE is said to be redun-
dant. If the truss is supported by a pin at A and a roller at F, the
total number of unknowns is m + 3. Since m > 2n — 3, the number
m + 3 of unknowns is now larger than the number 2n of available
independent equations; the truss is statically indeterminate.

Finally, let us assume that the two simple trusses ABC and
DEF are joined by a pin as shown in Fig. 6.18a. The number of mem-
bers m is smaller than 2n — 3. If the truss is supported by a pin at
A and a roller at F, the total number of unknowns is m + 3. Since
m < 2n — 3, the number m + 3 of unknowns is now smaller than
the number 2n of equilibrium equations which should be satisfied;
the truss is nonrigid and will collapse under its own weight. How-
ever, if two pins are used to support it, the truss becomes rigid
and will not collapse (Fig. 6.18b). We note that the total number
of unknowns is now m + 4 and is equal to the number 2n of equa-
tions. More generally, if the reactions at the supports involve r
unknowns, the condition for a compound truss to be statically deter-
minate, rigid, and completely constrained is m + r = 2n. However,
while necessary, this condition is not sufficient for the equilibrium
of a structure which ceases to be rigid when detached from its sup-
ports (see Sec. 6.10).
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28 kips 28 kips SAMPLE PROBLEM 6.2

Yc E YG I K ]flkips
Determine the force in members EF and GI of the truss shown.

.

10 ft
4B
A D F H
T8fe U 8ft | 8ft ' 8ft | 8ft !

28 kips 28 kips SOLUTION
A Yo E VG 1 K 16kips  Free-Body: Entire Truss. A free-body diagram of the entire truss is
—1_ . drawn; external forces acting on this free body consist of the applied
10 ft loads and the reactions at B and J. We write the following equilibrium
:B > ) > equations.
B. A D F| H A
] +\2Mp = 0:
By SR TSk "8k 8k Sk —(28 kips)(8 ft) — (28 kips)(24 ft) — (16 kips)(10 ft) + (32 ft) = 0
J = +33kips  J = 33 kips?
28 kips 28 kips
, ISF, = 0 B, + 16 kips = 0
A Yc E }IVG'EI I K 16kips B, = —16 kips B, = 16 kips«<—
7 ?
, ‘ +\2ZM; = 0:
) =] (28 kips)(24 ft) + (28 kips)(8 ft) — (16 kips)(10 ft) — B, (32 ft) = 0
16kips A D/ F H | T B, = +23kips B, = 23 kips
23 kips 33 kips
SileES Force in Member EF. Section nn is passed through the truss so that it
intersects member EF and only two additional members. After the inter-
A Yc E > sected members have been removed, the left-hand portion of the truss is
Fre chosen as a free body. Three unknowns are involved; to eliminate the two
m horizontal forces, we write
EF
B +12F, = 0: +23 kips — ?8 kips — Frp = 0
]6k<_ips A = Fgr = —5 kips
23 kips The sense of Fzr was chosen assuming member EF to be in tension; the
negative sign obtained indicates that the member is in compression.
For 1 K - Fgp =5 kips ©
[ 16 kips
10 ft FI:”/
L / Force in Member GI. Section mm is passed through the truss so that it
—HCF’;—A T intersects member GI and only two additional members. After the inter-
) sected members have been removed, we choose the right-hand portion of
8 ft—133 kips the truss as a free body. Three unknown forces are again involved; to elimi-

nate the two forces passing through point H, we write

+N\EMy = 0: (33 kips)(8 ft) — (16 kips)(10 ft) + Fg(10 ft) = 0
FGI = —-104 klpS F(;[ =104 klps ©
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h=8m
1a N,
ANE E G I K =tes

Vv

5kN 5kN 5kN
6 panels @ 5 m = 30 m

SAMPLE PROBLEM 6.3

Determine the force in members FH, GH, and GI of the roof truss
shown.

SOLUTION

Free Body: Entire Truss. From the free-body diagram of the entire truss,
we find the reactions at A and L:

\
1kN * [ 1kN A = 1250 kN1 L =750 kN1
1kN 2 1 kN
DV H We note that
5 \ J, a=28.07 I
i | IS tana = - = —" = 05333 a = 2807°
T c‘ E| G| | I KA T GL 15m
‘ -
5KN 5kN 5N | B
12.50 kN n
1 kN Force in Member GI. Section nn is passed through the truss as shown.

FFH
- O 1 kN
Fen \ T
2(8m)=5.33m

Fo 1
5 m—=<5m—=

Fppy sin

=

FI"H

7
Fey sin 5,7

g

I~

_4_
Gi For I
Fp cos S
|<—5rn—> 5m
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Using the portion HLI of the truss as a free body, the value of F; is obtained
by writing
VM, = 0 (750 kKN)(10 m) — (1 kN)(5 m) — F(5.33 m) = 0

L
7.50 kN

Force in Member FH. The value of Fpy is obtained from the equation
>M; = 0. We move Fry along its line of action until it acts at point F,
where it is resolved into its x and y components. The moment of Fry with
respect to point G is now equal to (Fpy cos a)(8 m).

+'§2Mc = 0:

(7.50 kN)(15 m) — (1 kN)(10 m) — (1 kN)(5 m) + (Fpy cos a)(8 m) = 0
Fpy = —13.81 kN Fpy = 1381 kN C

Force in Member GH. We first note that
GI

HI

S _ 9375

tan B = = 43.15°
g 3(8m P
The value of Fgy is then determined by resolving the force Fgy into x and
y components at point G and solving the equation =M; = 0.

L
}7,0 LML =0 (LKN)(0 m) + (1 KN)G m) + (Fou cos B)(15 m) = 0

K
lm



PROBLEMS

6.25 Determine the force in members BD and CD of the truss shown.

36 kips 36 kips

B Dl F H

C E G
4 panels at 10 ft = 40 ft———
Fig. P6.25 and P6.26

QB

6.26 Determine the force in members DF and DG of the truss shown.

6.27 Determine the force in members FG and FH of the truss shown
when P = 35 kN.

A

‘ Ej\jgicu
4m->{<4m

<4 m>l<-4 m*Lﬁl mJ

Fig. P6.27 and P6.28

6.28 Determine the force in members EF and EG of the truss shown
when P = 35 kN.

6.29 Determine the force in members DE and DF of the truss shown

when P = 20 kips.
H
0 J
% A

F
f DA
7.5 ft B
1A
l A c |E E I ﬁ:Kl
P Yo Yo Ye r

L—G panels @ 6 ft = 36 ft—>| 30kN  20kN

Fig. P6.29 and P6.30 l
)A B D F4
6.30 Determine the force in members EG and EF of the truss shown 15,
when P = 20 kips. | i
C\CE\ _L
6.31 Determine the force in members DF and DE of the truss shown. _GJ
<2 m 2m 2m

6.32 Determine the force in members CD and CE of the truss shown. Fig. P6.31 and P6.32
245



246 Andlysis of Structures

A
-
/15 kN
3m
B i»--
15 kN
3m
E

nge—g—+
L—4.5 1n—>|

Fig. P6.33 and P6.34

6.33 Determine the force in members BD and DE of the truss shown.
6.34 Determine the force in members FH and DH of the truss shown.

6.35 Determine the force in members FH, GH, and GI of the stadium
truss shown.

1 ki
2 kips !
2 kips F+
B . 6 ft
A s

C E G

1 ]
15 ft
K L
M N
<8 ft 8 ft 8ft—>l<6 ft~<6 ft»l

Fig. P6.35 and P6.36

6.36 Determine the force in members DF, DE, and CE of the stadium
truss shown.

6.37 Determine the force in members CE, DE, and DF of the truss

shown.
H
3 m_ F I
3m G K
3m E ] M
3m L
16 kN 16 kN N

Fig. P6.37 and P6.38

6 panels @ 4 m = 24 m—>|

6.38 Determine the force in members GI, GJ, and HI of the truss
shown.

6.39 Determine the force in members AD, CD, and CE of the truss

shown.
15 ft i 15 ft i 15 ft
5 kips 5 kips
9 kips |4 D G ]
—
8 ft
K 3

Fig. P6.39 and P6.40

6.40 Determine the force in members DG, FG, and FH of the truss
shown.



6.41 Determine the force in member GJ of the truss shown. (Hint: Use Problems 947
section a-a.)

6.42 Determine the force in members AB and KL of the truss shown. A 15N
(Hint: Use section a-a.) 5
Zm
15 kN
6.43 Determine the force in members DG and FH of the truss shown. g ¢ _;Ak
(Hint: Use section a-a.) b 9
N 15 kN
BReLE | Ak
a ||, NG a
T == 2m
L q I

Y S

Fig. P6.41

35 kN 35kN 35kN

6 panels@5m 30 m A la B c P
Fig. P6.43 N _E
N ¢
6.44 The diagonal members in the center panels of the truss shown are AN P
very slender and can act only in tension; such members are known D E ) F—>
as counters. Determine the force in member DE and in the coun- s J

ters that are acting under the given loading.

Counters

B /I DN\ F

K
H 6 J . Y
A i 3 - ai
e E G B L p d4’|
\ Y )
6kips  9kips 12 kips Fig. P6.42

8 ft-»L—S ft-»L—S ft->l<—8 ft

Fig. P6.44

//
G \H
N\

==

[l

-«

6.45 Solve Prob. 6.44 assuming that the 6-kip load has been removed.
6.46 Solve Prob. 6.44 assuming that the 9-kip load has been removed.

6.47 and 6.48 Classify each of the given structures as completely,
partially, or improperly constrained; if completely constrained, fur-
ther classify as determinate or indeterminate. All members can act
both in tension and in compression.

/ SN ST

) B B JLP B A *P B
(a) (b) (c)
Fig. P6.47
) N\IX X/
) —— e S - uﬂc A 4 =
P P P

(a) (b) (c)
Fig. P6.48
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D
E
) e} F
C
B0
w
G Afe)
(a)
D
S
) () F
¢ v
B<@ w
A,
—|
1
Ay
(b)
-C, C E
(,/
1 C.
l BE
Fm. —Fyp
B /
E
A,
—\> A }G
1*\// Fpg
(c)
Fig. 6.19

6.8 STRUCTURES CONTAINING MULTIFORCE MEMBERS

Under trusses, we have considered structures consisting entirely of
pins and straight two-force members. The forces acting on the two-
force members were known to be directed along the members them-
selves. We now consider structures in which at least one of the
members is a multiforce member, i.e., a member acted upon by three
or more forces. These forces will generally not be directed along the
members on which they act; their direction is unknown, and they
should be represented therefore by two unknown components.

Frames and machines are structures containing multiforce
members. Frames are designed to support loads and are usually sta-
tionary, fully constrained structures. Machines are designed to trans-
mit and modify forces; they may or may not be stationary and will
always contain moving parts.

6.9 ANALYSIS OF A FRAME

As a first example of analysis of a frame, the crane described in Sec. 6.1,
which carries a given load W (Fig. 6.19a), will again be considered.
The free-body diagram of the entire frame is shown in Fig. 6.19b. This
diagram can be used to determine the external forces acting on the
frame. Summing moments about A, we first determine the force T
exerted by the cable; summing x and y components, we then deter-
mine the components A, and A, of the reaction at the pin A.

In order to determine the internal forces holding the various
parts of a frame together, we must dismember the frame and draw
a free-body diagram for each of its component parts (Fig. 6.19¢).
First, the two-force members should be considered. In this frame,
member BE is the only two-force member. The forces acting at each
end of this member must have the same magnitude, same line of
action, and opposite sense (Sec. 4.6). They are therefore directed
along BE and will be denoted, respectively, by Fgz and —Fgg. Their
sense will be arbitrarily assumed as shown in Fig. 6.19¢; later the
sign obtained for the common magnitude Fgg of the two forces will
confirm or deny this assumption.

Next, we consider the multiforce members, i.e., the members
which are acted upon by three or more forces. According to Newton’s
third law, the force exerted at B by member BE on member AD
must be equal and opposite to the force Fpp exerted by AD on BE.
Similarly, the force exerted at E by member BE on member CF
must be equal and opposite to the force —Fg exerted by CF on BE.
Thus the forces that the two-force member BE exerts on AD and
CF are equal to —Fgp and Fgp, respectively; they have the same
magnitude Fyg and opposite sense and should be directed as shown
in Fig. 6.19¢.

At C two multiforce members are connected. Since neither
the direction nor the magnitude of the forces acting at C is known,
these forces will be represented by their x and y components. The



components C, and C, of the force acting on member AD will be
arbitrarily directed to the right and upward. Since, according to
Newton’s third law, the forces exerted by member CF on AD and by
member AD on CF are equal and opposite, the components of the
force acting on member CF must be directed to the left and down-
ward; they will be denoted, respectively, by —C, and —-C, Whether
the force C, is actually directed to the right and the force —C, is
actually directed to the left will be determined later from the sign
of their common magnitude C,, a plus sign indicating that the
assumption made was correct and a minus sign that it was wrong.
The free-body diagrams of the multiforce members are completed
by showing the external forces acting at A, D, and F.t

The internal forces can now be determined by considering the
free-body diagram of either of the two multiforce members. Choos-
ing the free-body diagram of CF, for example, we write the equations
2ZM¢ = 0, ZMg = 0, and 2F, = 0, which yield the values of the
magnitudes Fgg, C,, and C,, respectively. These values can be checked
by verifying that member AD is also in equilibrium.

It should be noted that the pins in Fig. 6.19 were assumed
to form an integral part of one of the two members they connected
and so it was not necessary to show their free-body diagram. This
assumption can always be used to simplify the analysis of frames
and machines. When a pin connects three or more members, how-
ever, or when a pin connects a support and two or more members,
or when a load is applied to a pin, a clear decision must be made
in choosing the member to which the pin will be assumed to
belong. (If multiforce members are involved, the pin should be
attached to one of these members.) The various forces exerted on
the pin should then be clearly identified. This is illustrated in
Sample Prob. 6.6.

6.10 FRAMES WHICH CEASE TO BE RIGID WHEN
DETACHED FROM THEIR SUPPORTS

The crane analyzed in Sec. 6.9 was so constructed that it could keep
the same shape without the help of its supports; it was therefore
considered as a rigid body. Many frames, however, will collapse if
detached from their supports; such frames cannot be considered as
rigid bodies. Consider, for example, the frame shown in Fig. 6.20a,

1t is not strictly necessary to use a minus sign to distinguish the force exerted by one
member on another from the equal and opposite force exerted by the second mem-
ber on the first since the two forces belong to different free-body diagrams and thus
cannot easily be confused. In the Sample Problems, the same symbol is used to rep-
resent equal and opposite forces which are applied to different free bodies. It should
be noted that, under these conditions, the sign obtained for a given force component
will not directly relate the sense of that component to the sense of the corresponding
coordinate axis. Rather, a positive sign will indicate that the sense assumed for that
component in the free-body diagram is correct, and a negative sign will indicate that
it is wrong.

6.10 Frames Which Cease to Be Rigid when
Detached from Their Supports

Fig. 6.20
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250 Analysis of Structures

Fig. 6.20 (repeated)

which consists of two members AC and CB carrying loads P and Q,
respectively, at their midpoints; the members are supported by pins
at A and B and are connected by a pin at C. If detached from its
supports, this frame will not maintain its shape; it should therefore
be considered as made of two distinct rigid parts AC and CB.

The equations 2F, = 0, 2F, = 0, SM = 0 (about any given
point) express the conditions for the equilibrium of a rigid body
(Chap. 4); we should use them, therefore, in connection with the
free-body diagrams of rigid bodies, namely, the free-body diagrams
of members AC and CB (Fig. 6.20D). Since these members are multi-
force members, and since pins are used at the supports and at the
connection, the reactions at A and B and the forces at C will each be
represented by two components. In accordance with Newton’s third
law, the components of the force exerted by CB on AC and the com-
ponents of the force exerted by AC on CB will be represented by
vectors of the same magnitude and opposite sense; thus, if the first
pair of components consists of C, and C, the second pair will be
represented by —C, and —C,. We note that four unknown force
components act on free body AC, while only three independent equa-
tions can be used to express that the body is in equilibrium; similarly,
four unknowns, but only three equations, are associated with CB.
However, only six different unknowns are involved in the analysis of
the two members, and altogether six equations are available to express
that the members are in equilibrium. Writing XM, = 0 for free body
AC and ZMjy = 0 for CB, we obtain two simultaneous equations
which may be solved for the common magnitude C, of the compo-

nents C, and —C,, and for the common magnitude C, of the com-

ponents C, and —C,. We then write F, = 0 and 2F, = 0 for each
of the two free bodies, obtaining, successively, the magnitudes A,, A,,
B,, and B,,.

It can now be observed that since the equations of equilibrium
2F, =0, 2F, = 0, and 2M = 0 (about any given point) are satisfied
by the forces acting on free body AC, and since they are also satisfied
by the forces acting on free body CB, they must be satisfied when the
forces acting on the two free bodies are considered simultaneously.
Since the internal forces at C cancel each other, we find that the equa-
tions of equilibrium must be satisfied by the external forces shown on



the free-body diagram of the frame ACB itself (Fig. 6.20c) although
the frame is not a rigid body. These equations can be used to deter-
mine some of the components of the reactions at A and B. We will
also find, however, that the reactions cannot be completely determined
from the free-body diagram of the whole frame. It is thus necessary to
dismember the frame and to consider the free-body diagrams of
its component parts (Fig. 6.20b), even when we are interested in
determining external reactions only. This is because the equilibrium
equations obtained for free body ACB are necessary conditions for
the equilibrium of a nonrigid structure, but are not sufficient
conditions.

The method of solution outlined in the second paragraph of
this section involved simultaneous equations. A more efficient method
is now presented, which utilizes the free body ACB as well as the
free bodies AC and CB. Writing ZM, = 0 and My = 0 for free
body ACB, we obtain B, and A,. Writing XM = 0, 2F, = 0, and
2F, =0 for free body AC, we obtain, successively, A,, C,, and C,.
Finally, writing 2F, = 0 for ACB, we obtain B,.

We noted above that the analysis of the frame of Fig. 6.20
involves six unknown force components and six independent equi-
librium equations. (The equilibrium equations for the whole frame
were obtained from the original six equations and, therefore, are
not independent.) Moreover, we checked that all unknowns could
be actually determined and that all equations could be satisfied.
The frame considered is statically determinate and rigid.t In gen-
eral, to determine whether a structure is statically determinate and
rigid, we should draw a free-body diagram for each of its compo-
nent parts and count the reactions and internal forces involved. We
should also determine the number of independent equilibrium
equations (excluding equations expressing the equilibrium of the
whole structure or of groups of component parts already analyzed).
If there are more unknowns than equations, the structure is stati-
cally indeterminate. If there are fewer unknowns than equations,
the structure is nonrigid. If there are as many unknowns as equa-
tions, and if all the unknowns can be determined and all the equa-
tions satisfied under general loading conditions, the structure is
statically determinate and rigid. If, however, due to an improper
arrangement of members and supports, all the unknowns cannot
be determined and all the equations cannot be satisfied, the struc-
ture is statically indeterminate and nonrigid.

tThe word “rigid” is used here to indicate that the frame will maintain its shape as long
as it remains attached to its supports.

6.10 Frames Which Cease to Be Rigid when
Detached from Their Supports
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SAMPLE PROBLEM 6.4

In the frame shown, members ACE and BCD are connected by a pin at C
and by the link DE. For the loading shown, determine the force in link DE
and the components of the force exerted at C on member BCD.

SOLUTION

Free Body: Entire Frame. Since the external reactions involve only three
unknowns, we compute the reactions by considering the free-body diagram
of the entire frame.

+13F, =0: A, —480N=0 A, = +480 N A, =450N1
+YEM, = 0: —(480 N)(100 mm) + B(160 mm) = 0
B = +300 N B = 300 N—
5SF, =0 B+A =0
300N +A,=0 A =—300N A, = 300 N

Members. We now dismember the frame. Since only two members are
connected at C, the components of the unknown forces acting on ACE and

80 mm BCD are, respectively, equal and opposite and are assumed directed as

shown. We assume that link DE is in tension and exerts equal and opposite
forces at D and E, directed as shown.

Free Body: Member BCD. Using the free body BCD, we write

+)ZM; = 0:
(Fpg sin a)(250 mm) + (300 N)(80 mm) + (480 N)(100 mm) = 0
Fpr = —561 N Fpz = 561 N C
HSF, = 0 C, — Fpgcosa + 300 N =0
C, — (=561 N) cos 28.07° + 300N =0 C, = —T7T95 N
+13F, = 0. G, — Fppsina — 480N = 0
C, — (=561 N) sin 28.07° — 480 N =0 C, = +216 N

From the signs obtained for C, and C, we conclude that the force compo-
nents C, and C, exerted on member BCD are directed, respectively, to the

left and up. We have
C, = 795 N, G, = 216 N|

Free Body: Member ACE (Check). The computations are checked by
considering the free body ACE. For example,

+\2EM, = (Fpg cos a)(300 mm) + (Fpg sin @)(100 mm) — C(220 mm)
= (=561 cos a)(300) + (=561 sin a)(100) — (—=795)(220) = 0
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SAMPLE PROBLEM 6.5

Determine the components of the forces acting on each member of the
frame shown.

SOLUTION

Free Body: Entire Frame. Since the external reactions involve only three
unknowns, we compute the reactions by considering the free-body diagram
of the entire frame.

+YSM; = 0:  —(2400 N)(3.6 m) + F(4.8 m) = 0

F = +1800 N F = 1800 N|
+13F,=0: —2400N + 1800N + E, = 0

E, = +600 N E, = 600 N1
E5F, = 0: E =0

Members. The frame is now dismembered; since only two members are
connected at each joint, equal and opposite components are shown on each
member at each joint.

Free Body: Member BCD

+VEMg = 0:  —(2400 N)(3.6 m) + C,(24m) =0 C, = +3600 N
+YEMc=0:  —(2400N)(12m) + B,(24m) =0 B, = +1200 N
53F,=0: —B,+C,=0

We note that neither B, nor C, can be obtained by considering only member
BCD. The positive values obtained for B, and C, indicate that the force
components B, and C, are directed as assumed.

Free Body: Member ABE

+NEM, =0: B (27m)=0 B,=0
XSF, = 0: +B,— A, =0 A, =0
+13F,=0:  —A,+B,+ 600N =0

A + 1200 N + 600 N = 0 A, = +1800 N

Free Body: Member BCD. Returning now to member BCD, we write
LSF, =0 —-B,+C, =0 0+C,=0 C,=0

Free Body: Member ACF (Check). All unknown components have now

been found; to check the results, we verify that member ACF is in

equilibrium.

+\EM = (1800 N)(2.4 m) — A,
= (1800 N)(2.4 m) — (1

(2 4m) — A(2.7m)
800 N)24m) —0=0 (checks)
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SAMPLE PROBLEM 6.6

A 600-Ib horizontal force is applied to pin A of the frame shown. Determine
the forces acting on the two vertical members of the frame.

SOLUTION

Free Body: Entire Frame. The entire frame is chosen as a free body;
although the reactions involve four unknowns, E, and F, may be deter-
mined by writing

+YEMe = 0: (600 Ib)(10 ft) + F,(6 ft) = 0

F, = +1000 Ib F, = 1000 Ib7
+15F,=0: E,+F,=0

E, = —1000 Ib E, = 1000 Ib|

Members. The equations of equilibrium of the entire frame are not suffi-
cient to determine E, and F,. The free-body diagrams of the various mem-
bers must now be considered in order to proceed with the solution. In
dismembering the frame, we will assume that pin A is attached to the mul-
tiforce member ACE and, thus, that the 600-1b force is applied to that
member. We also note that AB and CD are two-force members.

Free Body: Member ACE

+13F, = 0. —3Fag + 5Fcp — 10001b = 0

+NEMp = 0:  —(600 Ib)(10 ft) — (EF.s)(10 ft) — (33Fp)(2.5 ft) = 0
Solving these equations simultaneously, we find

Fupp = —10401b  Feop = +1560 1b

The signs obtained indicate that the sense assumed for Fop was correct and
the sense for F,5 incorrect. Summing now x components,
E3F, =0:  6001b + 13(—1040 Ib) + 13(+1560 Ib) + E, = 0

E. = —1080 1b E, = 1080 Ib<—

Free Body: Entire Frame. Since E, has been determined, we can return
to the free-body diagram of the entire frame and write
55F. =0: 6001b — 1080 1b + F, = 0

F, = +480 Ib F, = 480 Ib—

Free Body: Member BDF (Check). We can check our computations by
verifying that the equation My = 0 is satisfied by the forces acting on
member BDF.

+YZMp

—(BFep)25 ft) + (F)(7.5 ft)
= —12(1560 1b)(2.5 ft) + (480 1b)(7.5 ft)
= —-36001b - ft + 3600 1b - ft = 0 (checks)



PROBLEMS

6.49 through 6.51 Determine the force in member BD and the 310N 4
components of the reaction at C.

5 A
350 N
100 mm <50 mm>|
Y 5 12in
e ©) © ' B
’ c
75 mm 4.5 in.
> __l_
©

6.52 Determine the components of all the forces acting on member
ABCD of the assembly shown.

120 1b
T
m
2 in. ‘
] o D

I<—4 1n*l<—4 in:

2in. 2 in.

Fig. P6.52

6.53 Determine the components of all the forces acting on member
ABCD when 6 = 0.

12 in.

8 in.

Fig. P6.53 and P6.54

6.54 Determine the components of all the forces acting on member
ABCD when 6 = 90°.
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6.55 An aircraft tow bar is positioned by means of a single hydraulic
cylinder CD that is connected to two identical arm-and-wheel units
DEF. The entire tow bar has a mass of 200 kg, and its center of
gravity is located at G. For the position shown, determine (a) the
force exerted by the cylinder on bracket C, (b) the force exerted
on each arm by the pin at E.

|

Dimensions in mm 100
D '

} = 1
A@ Ge / | WWJ:'B 4?0

1150

850 500 675 825

Fig. P6.55
6.56 Solve Prob. 6.55, assuming that a 70-kg mechanic is standing on
the tow bar at point B.

6.57 Knowing that P = 90 Ib and Q = 60 lb, determine the components
of all the forces acting on member BCDE of the assembly shown.

B Q
A
4in
C E
1O E) q—L
==y
6 in. 6in. 4 in> 8 in.—>|

Fig. P6.57

6.58 The marine crane shown is used in offshore drilling operations.
Determine (a) the force in link CD, (b) the force in the brace AC,
(c) the force exerted at A on the boom AB.

<15 m>}~—25 mAr‘ |<— 3m
7

Fig. P6.58



6.59 Determine the components of the reactions at D and E if the
frame is loaded by a clockwise couple of magnitude 150 N - m
applied (a) at point A, (b) at point B.

A
o

@

0.4 m
{ 5\ D
<— 0.6 m O6m—>L()6m

Fig. P6.59

6.60 Determine the components of the force exerted at B on member
E (a) if the 200-Ib load is applied as shown, (b) if the 200-1b load
is moved along its line of action and is applied at point F.

200 Ib

A
~—10 in.—‘

Fig. P6.60

6.61 Determine all of the forces exerted on member Al if the frame is
loaded by a clockwise couple of magnitude 180 Ib - ft applied (a)
at point D, (b) at point E.

A
Q
2.5 ft
B
*— Q Q) C__
1.25 ft 1.25 ft
+—ep Ele—F
1.25 ft 1.25 ft
J_ @ Q
T F G
2.5 ft 2.5 ft
Sl o

I
Fig. P6.61 and P6.62

6.62 Determine all of the forces exerted on member AI if the frame is
loaded by a 48-lb force directed horizontally to the right and
applied (a) at point D, (b) at point E.

Problems
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258 Analysis of Structures 6.63 The hydraulic cylinder CF, which partially controls the position of
rod DE, has been locked in the position shown. Knowing that § =
60°, determine (a) the force P for which the tension in link AB is
410 N, (b) the corresponding force exerted on member BCD at
point C.

175 mm

/\ i
100 miTh ©
i )
Q A \X
_ % C a0

200 mm

45 mm

Fig. P6.63 and P6.64

6.64 The hydraulic cylinder CF, which partially controls the position of
rod DE, has been locked in the position shown. Knowing that P =
400 N and 0 = 75°, determine (a) the force in link AB, (b) the
corresponding force exerted on member BCD at point C.

6.65 A pipe weights 40 Ib/ft and is supported every 30 ft by the small
frame shown. Knowing that 6 = 30°, determine the components
of the reactions and the components of the force exerted at B on
member AB.

6.66 A 2-ft diameter pipe is supported every 16 ft by the small frame
shown. Knowing that the combined weight of the pipe and its
contents is 300 Ib/ft and neglecting the effect of friction, determine
the components (a) of the reaction at E, (b) of the force exerted
at C on member CDE.

6 ft |

7.5 ft

C
Fig. P6.66




6.67 Knowing that each pulley has a radius of 250 mm, determine the
components of the reactions at D and E.

| 2m | 2m

Fig. P6.67

6.68 Knowing that the pulley has a radius of 75 mm, determine the
components of the reactions at A and B.

©
D
300 mm 300 mm——‘

240 N
Fig. P6.68

6.69 The cab and motor units of the front-end loader shown are con-
nected by a vertical pin located 60 in. behind the cab wheels. The
distance from C to D is 30 in. The center of gravity of the 50-kip
motor unit is located at G,,, while the centers of gravity of the 18-
kip cab and 16-kip load are located, respectively, at G, and G;.
Knowing that the machine is at rest with its brakes released, deter-
mine (a) the reactions at each of the four wheels, (b) the forces
exerted on the motor unit at C and D.

18 kips 50 kips

L60 1n’l—85 in —>I

Fig. P6.69

6.70 Solve Prob. 6.69, assuming that the 16-kip load has been removed.

Problems
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260 Andlysis of Structures

6.71 The tractor and scraper units shown are connected by a vertical
pin located 0.6 m behind the tractor wheels. The distance from C
to D is 0.75 m. The center of gravity of the 10-Mg tractor unit is
located at G,. The scraper unit and the load have a total mass of
50 Mg and a combined center of gravity located at G;. Knowing
that the machine is at rest, with its brakes released, determine (a)
the reactions at each of the four wheels, (b) the forces exerted on
the tractor unit at C and D.

6.72 The 1000-kg trailer is attached to a 1250-kg automobile by a
ball-and-socket trailer hitch at D. Determine (@) the reactions at
each of the six wheels when the automobile and trailer are at
rest, (b) the additional load on each of the automobile wheels
due to the trailer.

Fig. P6.72

6.11 MACHINES

Machines are structures designed to transmit and modify forces.
Whether they are simple tools or include complicated mechanisms,
their main purpose is to transform input forces into output forces.
Consider, for example, a pair of cutting pliers used to cut a wire
(Fig. 6.21a). If we apply two equal and opposite forces P and —P on
their handles, they will exert two equal and opposite forces Q and
—Q on the wire (Fig. 6.21b).



Fig. 6.21

To determine the magnitude Q of the output forces when the
magnitude P of the input forces is known (or, conversely, to deter-
mine P when Q is known), we draw a free-body diagram of the pliers
alone, showing the input forces P and —P and the reactions —Q and
Q that the wire exerts on the pliers (Fig. 6.22). However, since a
pair of pliers forms a nonrigid structure, we must use one of the
component parts as a free body in order to determine the unknown
forces. Considering Fig. 6.23a, for example, and taking moments
about A, we obtain the relation Pa = Qb, which defines the magni-
tude Q in terms of P or P in terms of Q. The same free-body diagram
can be used to determine the components of the internal force at A;
we find A, = 0and A, = P + Q.

P a b*l

Fig. 6.23

In the case of more complicated machines, it generally will be
necessary to use several free-body diagrams and, possibly, to solve
simultaneous equations involving various internal forces. The free
bodies should be chosen to include the input forces and the reactions
to the output forces, and the total number of unknown force compo-
nents involved should not exceed the number of available independent
equations. It is advisable, before attempting to solve a problem, to
determine whether the structure considered is determinate. There is
no point, however, in discussing the rigidity of a machine, since a
machine includes moving parts and thus must be nonrigid.

6.11 Machines 26]

Fig. 6.22

Photo 6.4 The lamp shown can be placed
in many positions. By considering various free
bodies, the force in the springs and the internal
forces at the joints can be determined.
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SAMPLE PROBLEM 6.7

A hydraulic-lift table is used to raise a 1000-kg crate. It con-
sists of a platform and two identical linkages on which hydrau-
lic cylinders exert equal forces. (Only one linkage and one
cylinder are shown.) Members EDB and CG are each of length
2a, and member AD is pinned to the midpoint of EDB. If the
crate is placed on the table, so that half of its weight is sup-
ported by the system shown, determine the force exerted by
each cylinder in raising the crate for § = 60°, = 0.70 m, and
L = 3.20 m. Show that the result obtained is independent of
the distance d.

SOLUTION

The machine considered consists of the platform and of the link-
age. Its free-body diagram includes an input force Fpy exerted
by the cylinder, the weight %W, equal and opposite to the output
force, and reactions at E and G that we assume to be directed
as shown. Since more than three unknowns are involved, this
diagram will not be used. The mechanism is dismembered and
a free-body diagram is drawn for each of its component parts.
We note that AD, BC, and CG are two-force members. We
already assumed member CG to be in compression; we now
assume that AD and BC are in tension and direct as shown the
forces exerted on them. Equal and opposite vectors will be used
to represent the forces exerted by the two-force members on the
platform, on member BDE, and on roller C.




J‘ 7
 /

Lcr As Ac I
N? |
Fip B © Free Body: Platform ABC.
i)2‘41'7;6:0! FADCOSOZO FADZO
+15F,=0: B+C-3W=0 B+C=3;W (1)

Free Body: Roller C. We draw a force triangle and obtain Fpe = C cot 6.

Free Body: Member BDE. Recalling that F,p = 0,

+\EMp = 0: Fpy cos (¢ — 90°)a — B(2a cos 0) — Fpa(2a sin ) = 0
Fppa sin ¢ — B(2a cos 0) — (C cot 0)(2a sin ) = 0
Fpysing — 2B+ C)cos 0 =0

Recalling Eq. (1), we have
cos 0
sin ¢

and we observe that the result obtained is independent of d.

@)

Fpg =

Applying first the law of sines to triangle EDH, we write

sin ¢ sin 6 EH
= = —qj 3
EH  DH né = pysin? )
/ND Using now the law of cosines, we have
< (DH)? = a® + L2 — 2aL cos 0
< L H = (0.70)> + (3.20)% — 2(0.70)(3.20) cos 60°

L | (DH} =849  DH =291 m
I i
We also note that
W = mg = (1000 kg)(9.81 m/s>) = 9810 N = 9.81 kN

Substituting for sin ¢ from (3) into (2) and using the numerical data, we
write

DH m
F = — = (9.81 kN 60°
DH WEHcot0 ( )3.20m00t
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PROBLEMS

360 N 6.73 A 360-N force is applied to the toggle vise at C. Determine (a) the
o I horizontal force exerted on the block at D, (b) the force exerted
fm on member ABC at B.

B o C
45 mmE— © D 6.74 The control rod CE passes through a horizontal hole in the body
@ | ® of the toggle clamp shown. Determine (a) the force Q required
to hold the clamp in equilibrium, (b) the corresponding force in

J link BD.
<— 200 mm —{=—200 mm

Fig. P6.73

t
B

25 ¥ RN | _
é{ . T e P—
125 n. 2.25m\/C

Fig. P6.74

6.75 The shear shown is used to cut and trim electronic-circuit-board
laminates. For the position shown, determine (@) the vertical com-
ponent of the force exerted on the shearing blade at D, (b) the
reaction at C.

30 400 N

300 mm

60 mm

25 mm 30 mmI

Fig. P6.75

6.76 Water pressure in the supply system exerts a downward force of
30 Ib on the vertical plug at A. Determine the tension in the fusible
link DE and the force exerted on member BCE at B.

264



6.77 A 9-m length of railroad rail of mass 40 kg/m is lifted by the
tongs shown. Determine the forces exerted at D and F on tong
BDF.

240 mm | 240 mm
I

20 mm I+
—>| <~ 20 mm

Fig. P6.77

6.78 A steel ingot weighing 8000 Ib is lifted by a pair of tongs as shown.
Determine the forces exerted at C and E on the tong BCE.

8000 Ib

55 in.—] S
9

Fig. P6.78 f
9 A B

6.79 1If the toggle shown is added to the tongs of Prob. 6.78 and the .
load is lifted by applying a single force at G, determine the forces ' 73 in. !
exerted at C and E on the tong BCE. Fig. P6.79
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266 Andlysis of Structures

6.80 The gear-pulling assembly shown consists of a crosshead CF, two
grip arms ABC and FGH, two links BD and EG, and a threaded
center rod JK. Knowing that the center rod JK must exert a 4800-N
force on the vertical shaft KL in order to start the removal of the
gear, determine all the forces acting on grip arm ABC. Assume that
the rounded ends of the crosshead are smooth and exert horizontal
forces on the grip arms.

80 mm 60 mm 80 mm

150 mm

250 mm

95 mm

Fig. P6.80

6.81 A force P of magnitude 2.4 kN is applied to the piston of the
engine system shown. For each of the two positions shown, deter-
mine the couple M required to hold the system in equilibrium.

75 mm
(a)
Fig. P6.81 and P6.82

6.82 A couple M of magnitude 315 N - m is applied to the crank of the
engine system shown. For each of the two positions shown, deter-
mine the force P required to hold the system in equilibrium.



6.83 and 6.84 Two rods are connected by a frictionless collar B.
Knowing that the magnitude of the couple My is 500 Ib - in.,
determine (a) the couple M¢ required for equilibrium, (b) the
corresponding components of the reaction at C.

[
S

M,

6 in.

14 in.

M

Fig. P6.83 Fig. P6.84

6.85 Two 300-N forces are applied to the handles of the pliers as
shown. Determine (a) the magnitude of the forces exerted on the
rod, (b) the force exerted by the pin at A on portion AB of the
pliers.

300 N

I 300 N
Fig. P6.85

6.86 1In using the bolt cutter shown, a worker applies two 100-Ib forces
to the handles. Determine the magnitude of the forces exerted by
the cutter on the bolt.

T
1in.

Fig. P6.86

IlOOIb
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6.87 The upper blade and lower handle of the compound-lever shears
are pin connected to the main element ABE at A and B, respec-
tively, and to the short link CD at C and D, respectively. Determine
the forces exerted on a twig when two 120-N forces are applied to
the handles.

20 40 30

f—80
120N
D

o

<

F

Dimensions in mm

120 N
Fig. P6.87

6.88 A hand-operated hydraulic cylinder has been designed for use
where space is severely limited. Determine the magnitude of the
force exerted on the piston at D when two 90-1b forces are applied
as shown.

90 1Ib

0.9 in,_
0.9 in.

90 Ib

Fig. P6.88

6.89 A shelf is held horizontally by a self-locking brace that consists of
two parts EDC and CDB hinged at C and bearing against each
other at D. If the shelf is 10 in. wide and weighs 24 1b, determine
the force P required to release the brace. (Hint: To release the
brace, the forces of contact at D must be zero.)

X Sin. I2in.I
| I
|
©
P B
A /}
6 in ¢ O/ 5 in.
“D
0// Sin.
% N
1.25in. A\
Fig. P6.89



6.90 Since the brace shown must remain in position even when the Problems 249
magnitude of P is very small, a single safety spring is attached at
D and E. The spring DE has a constant of 50 Ib/in. and an
unstretched length of 7 in. Knowing that [ = 10 in. and that the
magnitude of P is 800 Ib, determine the force Q required to release
the brace.

6.91 and 6.92 Determine the force P that must be applied to the
toggle CDE to maintain bracket ABC in the position shown.

¥ T

7 rlSO mm 20 in.

Dt 9 in <] I«lm.
150 mm Fig. P6.90
9

B ‘ c
910 N

150 mm 150 mm 30 mm 150 mm 150 mm

Fig. P6.91 Fig. P6.92

6.93 In the boring rig shown, the center of gravity of the 3000-kg tower
is located at point G. For the position shown, determine the force
exerted by the hydraulic cylinder AB.

6.94 The action of the backhoe bucket is controlled by the three hydrau-
lic cylinders shown. Determine the force exerted by each cylinder
in supporting the 3000-Ib load shown.

1 ft 3 ft
~—6 ft 4 ft —f 8 ft | 4 ft
‘ Al
11t ' ' 21t
2 ft Fig. P6.93
4 ft
7 ft
AL 8 ft
2 ft 3000 Ib
7——4*3 ft - F v
I

31t

Fig. P6.94




270 Andlysis of Structures 6.95 The motion of the backhoe bucket is controlled by the hydraulic
cylinders AB, DE, and FI. Determine the force exerted by each
cylinder in supporting the 7.5-kN load shown.

0.64 m

0.25 m

1.68 m

0.4m N\ o5,
Fig. P6.95

6.96 The elevation of the platform is controlled by two identical mecha-
nisms, only one of which is shown. A load of 1200 Ib is applied to
the mechanism shown. Knowing that the pin at C can transmit only
a horizontal force, determine (@) the force in link BE, (b) the com-
ponents of the force exerted by the hydraulic cylinder on H.

1200 1b
30 in.
C
L)
18 in.
K
D] —
F
24 in.
18 in. 12in
36 in.
YH ;
<24 in. 48 in.

Fig. P6.96




REVIEW AND SUMMARY

In this chapter you learned to determine the internal forces holding
together the various parts of a structure.

The first half of the chapter was devoted to the analysis of trusses, Analysis of trusses
i.e., to the analysis of structures consisting of straight members con-

nected at their extremities only. The members being slender and

unable to support lateral loads, all the loads must be applied at the

joints; a truss may thus be assumed to consist of pins and two-force

members [Sec. 6.2].

A truss is said to be rigid if it is designed in such a way that it will ~Simple trusses
not greatly deform or collapse under a small load. A triangular truss

consisting of three members connected at three joints is clearly a

rigid truss (Fig. 6.24a) and so will be the truss obtained by adding

two new members to the first one and connecting them at a new

joint (Fig. 6.24D). Trusses obtained by repeating this procedure are

called simple trusses. We may check that in a simple truss the total

number of members is m = 2n — 3, where n is the total number of

joints [Sec. 6.3].

(a) (b)
Fig. 6.24

The forces in the various members of a simple truss can be deter- Method of joints
mined by the method of joints [Sec. 6.4]. First, the reactions at the
supports can be obtained by considering the entire truss as a free
body. The free-body diagram of each pin is then drawn, showing the
forces exerted on the pin by the members or supports it connects.
Since the members are straight two-force members, the force exerted
by a member on the pin is directed along that member, and only the
magnitude of the force is unknown. It is always possible in the case
of a simple truss to draw the free-body diagrams of the pins in such
an order that only two unknown forces are included in each dia-
gram. These forces can be obtained from the corresponding two
equilibrium equations or—if only three forces are involved—from
the corresponding force triangle. If the force exerted by a member
on a pin is directed toward that pin, the member is in compression;
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272 Andlysis of Structures

Method of sections

Compound trusses

if it is directed away from the pin, the member is in tension [Sam-
ple Prob. 6.1]. The analysis of a truss is sometimes expedited by
first recognizing joints under special loading conditions [Sec. 6.5].

The method of sections is usually preferred to the method of joints
when the force in only one member—or very few members—of a
truss is desired [Sec. 6.6]. To determine the force in member BD of
the truss of Fig. 6.25a, for example, we pass a section through mem-
bers BD, BE, and CE, remove these members, and use the portion
ABC of the truss as a free body (Fig. 6.25b). Writing My = 0, we
determine the magnitude of the force Fgp, which represents the
force in member BD. A positive sign indicates that the member is
in tension; a negative sign indicates that it is in compression [Sample
Probs. 6.2 and 6.3].

Fig. 6.25

The method of sections is particularly useful in the analysis of com-
pound trusses, i.e., trusses which cannot be constructed from the
basic triangular truss of Fig. 6.24a but which can be obtained by
rigidly connecting several simple trusses [Sec. 6.7]. If the component
trusses have been properly connected (e.g., one pin and one link, or
three nonconcurrent and nonparallel links) and if the resulting struc-
ture is properly supported (e.g., one pin and one roller), the
compound truss is statically determinate, rigid, and completely con-
strained. The following necessary—but not sufficient—condition is
then satisfied: m + r = 2n, where m is the number of members, r is
the number of unknowns representing the reactions at the supports,
and n is the number of joints.



The second part of the chapter was devoted to the analysis of frames
and machines. Frames and machines are structures which contain
multiforce members, i.e., members acted upon by three or more
forces. Frames are designed to support loads and are usually station-
ary, fully constrained structures. Machines are designed to transmit
or modify forces and always contain moving parts [Sec. 6.8].

To analyze a frame, we first consider the entire frame as a free body
and write three equilibrium equations [Sec. 6.9]. If the frame remains
rigid when detached from its supports, the reactions involve only
three unknowns and may be determined from these equations
[Sample Probs. 6.4 and 6.5]. On the other hand, if the frame ceases
to be rigid when detached from its supports, the reactions involve
more than three unknowns and cannot be completely determined
from the equilibrium equations of the frame [Sec. 6.10; Sample
Prob. 6.6].

We then dismember the frame and identify the various members as
either two-force members or multiforce members; pins are assumed
to form an integral part of one of the members they connect. We
draw the free-body diagram of each of the multiforce members,
noting that when two multiforce members are connected to the
same two-force member, they are acted upon by that member with
equal and opposite forces of unknown magnitude but known direc-
tion. When two multiforce members are connected by a pin, they
exert on each other equal and opposite forces of unknown direction,
which should be represented by two unknown components. The
equilibrium equations obtained from the free-body diagrams of the
multiforce members can then be solved for the various internal
forces [Sample Probs. 6.4 and 6.5]. The equilibrium equations can
also be used to complete the determination of the reactions at the
supports [Sample Prob. 6.6]. Actually, if the frame is statically deter-
minate and rigid, the free-body diagrams of the multiforce members
could provide as many equations as there are unknown forces
(including the reactions) [Sec. 6.10]. However, as suggested above,
it is advisable to first consider the free-body diagram of the entire
frame to minimize the number of equations that must be solved
simultaneously.

To analyze a machine, we dismember it and, following the same
procedure as for a frame, draw the free-body diagram of each of the
multiforce members. The corresponding equilibrium equations yield
the output forces exerted by the machine in terms of the input forces
applied to it as well as the internal forces at the various connections
[Sec. 6.11; Sample Prob. 6.7].

Review and Summary 973
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REVIEW PROBLEMS

A 6.97 Using the method of joints, determine the force in each member
T of the truss shown.
45m 24 kN
1 5 c 6.98 Determine the force in each member of the truss shown.
1 l>‘ ‘ E A B
S‘le #30 30 A
| D
6 m | 6 m |
Fig. P6.97 G
500 Ib 1000 1b 1000 Ib 500 1b E
D D e
E* *F *H ‘ A =212 kN
f ] .
ot > - Fig. P6.98
c G 6.99 Determine the force in members EF, FG, and GI of the truss
5 ft A‘ D shown.
B
LIQ i »LS fimles fioles f 6.100 S?f)t\s;mme the force in members CE, CD, and CB of the truss

Fig. P6.99 and P6.100
6.101 The low-bed trailer shown is designed so that the rear end of the

P Q bed can be lowered to ground level in order to facilitate the loading
15 ft 20 6 of equipment or wrecked vehicles. A 1400-kg vehicle has been
| B hauled to the position shown by a winch; the trailer is then returned
10‘ f | to a traveling position where & = 0 and both AB and BE are hori-
v A zontal. Considering only the weight of the disabled automobile,
14 fi determine the force that must be exerted by the hydraulic cylinder
* t to maintain a position with a = 0.
C
| | ~35m 1.5m
I 28 ft 1 42 ft |
Fig. P6.102 D g
=
48 mm
738 mm

Fig. P6.101

6.102 The axis of the three-hinged arch ABC is a parabola with vertex at

B. Knowing that P = 109.2 kips and Q = 72.8 kips, determine (a)

mm the components of the reaction at C, (b) the components of the
force exerted at B on segment AB.

6.103 A 48-mm-diameter pipe is gripped by the Stillson wrench shown.
Portions AB and DE of the wrench are rigidly attached to each

FIUrooN other, and portion CF is connected by a pin at D. Assuming that
i no slipping occurs between the pipe and the wrench, determine
Fig. P6.103 the components of the forces exerted on the pipe at A and C.
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6.104 The compound-lever pruning shears shown can be adjusted by
placing pin A at various ratchet positions on blade ACE. Knowing
that 292-Ib vertical forces are required to complete the pruning of
a twig, determine the magnitude P of the forces that must be
applied to the handles when the shears are adjusted as shown.

0.5 in.

0.55in. |
0.25in"

-P 0.65in. 0.75in.

Fig. P6.104

6.105 Determine the couple M that must be applied to the crank CD to
hold the mechanism in equilibrium. The block at D is pinned to
the crank CD and is free to slide in a slot cut in member AB.

80 mm D
< &j@ B
M 600 N
360 mm ‘»L 240 mm »‘

Fig. P6.105

6.106 An automobile front-wheel assembly supports 750 1b. Determine
the force exerted by the spring and the components of the forces
exerted on the frame at points A and D.

6.107 For the bevel-gear system shown, determine the required value of
a if the ratio of My to M, is to be three. Fig. P6.107

6.108 A 400-kg block may be supported by a small frame in each of the four
ways shown. The diameter of the pulley is 250 mm. For each case,
determine (a) the force components and the couple representing the
reaction at A, (b) the force exerted at D on the vertical member.

Fig. P6.108

Review Problems
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The strength of structural members used

in the construction of buildings depends

to a large extent on the properties of
their cross sections. This includes the
second moments of area, or moments

of inertia, of these cross sections.
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Chapter 7 Distributed Forces:
Moments of Inertia of Areas

Introduction

Second Moment, or Moment of
Inertia, of an Area
Determination of the Moment of
Inertia of an Area by Integration
Polar Moment of Inertia

Radius of Gyration of an Area
Parallel-Axis Theorem

Moments of Inertia of Composite
Areas

7.1 INTRODUCTION

In Chap. 5, we analyzed various systems of forces distributed over an
area or volume. The three main types of forces considered were (1)
weights of homogeneous plates of uniform thickness (Secs. 5.3 through
5.6), (2) distributed loads on beams (Sec. 5.8), and (3) weights of homo-
geneous three-dimensional bodies (Secs. 5.9 and 5.10). In the case of
homogeneous plates, the magnitude AW of the weight of an element
of a plate was proportional to the area AA of the element. For distrib-
uted loads on beams, the magnitude AW of each elemental weight was
represented by an element of area AA = AW under the load curve. In
the case of homogeneous three-dimensional bodies, the magnitude AW
of the weight of an element of the body was proportional to the volume
AV of the element. Thus, in all cases considered in Chap. 5, the dis-
tributed forces were proportional to the elemental areas or volumes
associated with them. The resultant of these forces, therefore, could be
obtained by summing the corresponding areas or volumes, and the
moment of the resultant about any given axis could be determined by
computing the first moments of the areas or volumes about that axis.
In this chapter, we consider distributed forces AF whose magni-
tudes depend not only upon the elements of area AA on which these
forces act but also upon the distance from AA to some given axis. More
precisely, the magnitude of the force per unit area AF/AA is assumed
to vary linearly with the distance to the axis. As indicated in the next
section, forces of this type are found in the study of the bending of
beams. Assuming that the elemental forces involved are distributed over
an area A and vary linearly with the distance ¢ to the x axis, it will be
shown that while the magnitude of their resultant R depends upon the
first moment Q, = [ y dA of the area A, the location of the point where
R is applied depends upon the second moment, or moment of inertia,
I, = [ 47 dA of the same area with respect to the x axis. You will learn
to compute the moments of inertia of various areas with respect to given
x and y axes. Also introduced in this chapter is the polar moment of
inertia Jo = [ > dA of an area, where r is the distance from the element
of area dA to the point O. To facilitate your computations, a relation
will be established between the moment of inertia I, of an area A with
respect to a given x axis and the moment of inertia I, of the same area
with respect to the parallel centroidal x" axis (parallel-axis theorem).

7.2 SECOND MOMENT, OR MOMENT OF INERTIA,
OF AN AREA

In this chapter, we consider distributed forces AF whose magnitudes
AF are proportional to the elements of area AA on which the forces
act and at the same time vary linearly with the distance from AA to
a given axis.

Consider, for example, a beam of uniform cross section which
is subjected to two equal and opposite couples applied at each end
of the beam. Such a beam is said to be in pure bending, and it is
shown in mechanics of materials that the internal forces in any
section of the beam are distributed forces whose magnitudes AF =
ky AA vary linearly with the distance y between the element of area



Fig. 7.1

AA and an axis passing through the centroid of the section. This axis,
represented by the x axis in Fig. 7.1, is known as the neutral axis of
the section. The forces on one side of the neutral axis are forces
of compression, while those on the other side are forces of tension;
on the neutral axis itself the forces are zero.

The magnitude of the resultant R of the elemental forces AF
which act over the entire section is

R=JkydA=kjydA

The last integral obtained is recognized as the first moment Q, of
the section about the x axis; it is equal to yA and is thus equal to
zero, since the centroid of the section is located on the x axis. The
system of the forces AF thus reduces to a couple. The magnitude M
of this couple (bending moment) must be equal to the sum of the
moments AM, = y AF = ky2 AA of the elemental forces. Integrating
over the entire section, we obtain

MZJkysz ijysz

The last integral is known as the second moment, or moment of iner-
tia,t of the beam section with respect to the x axis and is denoted by
L. Tt is obtained by multiplying each element of area dA by the square
of its distance from the x axis and integrating over the beam section.
Since each product y2 dA is positive, regardless of the sign of y, or
zero (if y is zero), the integral I, will always be positive.

7.3 DETERMINATION OF THE MOMENT OF INERTIA
OF AN AREA BY INTEGRATION

We defined in the preceding section the second moment, or moment
of inertia, of an area A with respect to the x axis. Defining in a similar

tThe term second moment is more proper than the term moment of inertia since, logically,
the latter should be used only to denote integrals of mass. In engineering practice,
however, moment of inertia is used in connection with areas as well as masses.

7.3 Determination of the Moment of Inertia of
an Area by Integration
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y y
dA = dx dy dA =y dx
<~ x
Yy
x ‘
dx *
dI, = y2dA dI, =x2dA
==Y y=7 dl, = x2dA
dI, = y2dA v
(a) (b) (c)

way the moment of inertia I, of the area A with respect to the y axis,
we write (Fig. 7.2a)

I,C:JygdA I =Jx2dA (7.1)

Yy

These integrals, known as the rectangular moments of inertia of the
area A, can be more easily evaluated if we choose dA to be a thin strip
parallel to one of the coordinate axes. To compute I, the strip is cho-
sen parallel to the x axis, so that all of the points of the strip are at
the same distance y from the x axis (Fig. 7.2b); the moment of inertia
dI, of the strip is then obtained by multiplying the area dA of the strip
by 4*. To compute I, the strip is chosen parallel to the y axis so that
all of the points of the strip are at the same distance x from the y axis
(Fig. 7.2¢); the moment of inertia dIy of the strip is 2 dA.

Moment of Inertia of a Rectangular Area. As an example, let
us determine the moment of inertia of a rectangle with respect to its
base (Fig. 7.3). Dividing the rectangle into strips parallel to the x axis,
we obtain

dA =bdy  dI, = y’bdy

h
I, =J by dy = hh® (7.2)
0

dA = bdy
dy

t
.
f—p—]

Fig. 7.3



Computing I, and |, Using the Same Elemental Strips. The
formula just derived can be used to determine the moment of inertia
dI, with respect to the x axis of a rectangular strip which is parallel
to the y axis, such as the strip shown in Fig. 7.2¢. Setting b = dx and
h =y in formula (7.2), we write

dl, = 3y° dx
On the other hand, we have
dl, = 2 dA = xzy dx

The same element can thus be used to compute the moments of
inertia I, and I, of a given area (Fig. 7.4).

Yy
Yy
) ‘
dx *
dI, = %yS dx
dl, = x?ydx
Fig. 7.4

7.4 POLAR MOMENT OF INERTIA

An integral of great importance in problems concerning the torsion of
cylindrical shafts and in problems dealing with the rotation of slabs is

Jo = J p” dA (7.3)

where p is the distance from O to the element of area dA (Fig. 7.5).
This integral is the polar moment of inertia of the area A with respect
to the “pole” O.

The polar moment of inertia of a given area can be computed from
the rectangular moments of inertia I, and I,, of the area if these quanti-
ties are already known. Indeed, noting that pP =2+ yz, we write

Jo =Jp2dA =J (x® + yg)dA =Jy2dA +jx2dA
that is,

]O = Ix + Iy (74)

7.4 Polar Moment of Inertia

Fig. 7.5
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Yy

Fig. 7.6

7.5 RADIUS OF GYRATION OF AN AREA

Consider an area A which has a moment of inertia I, with respect
to the x axis (Fig. 7.6a). Let us imagine that we concentrate this area
into a thin strip parallel to the x axis (Fig. 7.6b). If the area A, thus
concentrated, is to have the same moment of inertia with respect to
the x axis, the strip should be placed at a distance r, from the x axis,
where r, is defined by the relation

I, =rA
Solving for r,, we write
r, = L (7.5)
A

The distance r, is referred to as the radius of gyration of the area
with respect to the x axis. In a similar way, we can define the radii
of gyration ry and ro (Fig. 7.6c and d); we write

I

I,=rA r,= N (7.6)
Jo

Jo = roA ro = n (7.7)

If we rewrite Eq. (7.4) in terms of the radii of gyration, we find that
(7.8)

2 2 2
ro=rx+ry

EXAMPLE 7.1 For the rectangle shown in Fig. 7.7, let us compute the
radius of gyration r, with respect to its base. Using formulas (7.5) and
(7.2), we write

, I hh® K2 h

ry=—= =— r=—=

A bh 3 RYA)
The radius of gyration r, of the rectangle is shown in Fig. 7.7. It should not
be confused with the ordinate y = h/2 of the centroid of the area. While
r, depends upon the second moment, or moment of inertia, of the area, the
ordinate y is related to the first moment of the area. ®
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SAMPLE PROBLEM 7.1

Determine the moment of inertia of a triangle with respect to its base.

SOLUTION

A triangle of base b and height h is drawn; the x axis is chosen to coincide
with the base. A differential strip parallel to the x axis is chosen to be dA. Since
all portions of the strip are at the same distance from the x axis, we write

dl, = y* dA dA = ldy
Using similar triangles, we have
I h-—y _h—y L h—y
b =D A dA =D N

Integrating dI, from y = 0 to y = h, we obtain

dy

h h
2 b ;
I, =jy‘ dA =J yzbih dy = EJ (hy2 = ys)dy
0 0

_b[hy‘“’_y“]’l b
hl 3 4], Y12

SAMPLE PROBLEM 7.2

(a) Determine the centroidal polar moment of inertia of a circular area by
direct integration. (b) Using the result of part ¢, determine the moment of
inertia of a circular area with respect to a diameter.

SOLUTION

a. Polar Moment of Inertia. An annular differential element of area is
chosen to be dA. Since all portions of the differential area are at the same
distance from the origin, we write

dJo = p*dA dA = 2mp dp
Jo :Jd]o =f p*(2mp dp) = 277[ p’dp
0 0
]0 = g’A

b. Moment of Inertia with Respect to a Diameter. Because of the sym-
metry of the circular area, we have I, = I,. We then write

]O = Ix + 11/ = 211 %fl = 2I~c ldiamvtcr = Ix =7
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| s

a

SAMPLE PROBLEM 7.3

(a) Determine the moment of inertia of the shaded area shown with respect
to each of the coordinate axes. (Properties of this area were considered in
Sample Prob. 5.4.) (b) Using the results of part a, determine the radius of
gyration of the shaded area with respect to each of the coordinate axes.

SOLUTION

Referring to Sample Prob. 5.4, we obtain the following expressions for the
equation of the curve and the total area:

b .
y=7x2 A=%ab
a

Moment of Inertia I,. A vertical differential element of area is chosen to
be dA. Since all portions of this element are not at the same distance from
the x axis, we must treat the element as a thin rectangle. The moment of
inertia of the element with respect to the x axis is then

3 3
dl, = ]§y3 dx = *( b2x2) dx = é%xs dx
a a

“1b° 10327
I = dl":J — ] ={———]
J ' 0 3(16x * 3a67 0

ab?®

I ="
’ 21

Moment of Inertia I,. The same vertical differential element of area is

used. Since all portions of the element are at the same distance from the
Yy axis, we write

dr, = > dA = xQ(y dx) = x2<%x2>dx = %x“ dx

a a

“b b2
11 - ll :J 7ﬁ4d :|:77:|
y J( y ! azl & 25 |

B a’b
I!/ 5
Radii of Gyration r, and r,. We have, by definition,
, L. ab*21 b*
ry=—= = — ro= 1 b
’ A ab/3 7 e g
and
Ir asb/b’ -
2 _— L = = 3.2 8
MTAT a3 r,= Via



PROBLEMS

7.1 through 7.4 Determine by direct integration the moment of
inertia of the shaded area with respect to the y axis.

7.5 through 7.8 Determine by direct integration the moment of
inertia of the shaded area with respect to the x axis.

, Yoy =k T
_f b
T hy ‘
hy 1 .
] w a
Fig. P7.1 and P7.5 Fig. P7.2 and P7.6
Yy
y=ﬂ<
b
y=kaZ ‘
x | x
I a
Fig. P7.3 and P7.7 Fig. P7.4 and P7.8

7.9 through 7.12 Determine the moment of inertia and radius of
gyration of the shaded area shown with respect to the x axis.

7.13 through 7.16 Determine the moment of inertia and radius of
gyration of the shaded area shown with respect to the y axis.

Yy
. y )
y =k 22 Y
b
| i x
- ] s—
Fig. P7.9 and P7.13 Fig. P7.10 and P7.14

y

Yy i3 = koxV/2

y =kx23

1
1
L—a—>| ' f L 1

Fig. P7.11 and P7.15 Fig. P7.12 and P7.16 285
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<—2a—>|

o
_L

Fig. P7.17 and P7.18

717

7.18

7.19

7.20

7.21

7.22

7.23

Determine the polar moment of inertia and the polar radius of
gyration of the rectangle shown with respect to the midpoint of
one of its (a) longer sides, (b) shorter sides.

Determine the polar moment of inertia and the polar radius of
gyration of the rectangle shown with respect to one of its corners.

Determine the polar moment of inertia and the polar radius of
gyration of the trapezoid shown with respect to point P.

4

a

Al
bofafa |

Fig. P7.19

a i a

Determine the polar moment of inertia and the polar radius of
gyration of the semielliptical area of Prob. 7.10 with respect to O.

(a) Determine by direct integration the polar moment of inertia of
the annular area shown with respect to point O. (b) Using the
result of part @, determine the moment of inertia of the given area
with respect to the x axis.

Fig. P7.21 and P7.22

(a) Show that the polar radius of gyration r, of the annular area
shown is approximately equal to the mean radius R,, = (R, + Ry)/2
for small values of the thickness t = Ry — R;. (b) Determine the
percentage error introduced by using R,, in place of rp for the

following values of #/R,,: 1, 3, and 7.

Determine the moment of inertia of the shaded area with respect
to the x axis.

y=acosx

——

§ _
SR B

Fig. P7.23 and P7.24

X

7.24 Determine the moment of inertia of the shaded area with respect

to the y axis.
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Consider the moment of inertia I, of an area A with respect to an
axis AA" (Fig. 7.8). Denoting by y the distance from an element of
area dA to AA’, we write

IAA’ :J y2 dA

Let us now draw through the centroid C of the area an axis BB’
parallel to AA’; this axis is called a centroidal axis. Denoting by y'

L
B B’

C

A A’
Fig. 7.8

the distance from the element dA to BB', we write y = ¢y’ + d,
where d is the distance between the axes AA" and BB'. Substituting
for y in the above integral, we write

Tan =j deA = J (y" + d)*dA

ij’ZdA + 2dJy’dA +d2JdA

The first integral represents the moment of inertia Ip of the area
with respect to the centroidal axis BB'. The second integral repre-
sents the first moment of the area with respect to BB'; since the cen-
troid C of the area is located on that axis, the second integral must
be zero. Finally, we observe that the last integral is equal to the total
area A. Therefore, we have

IAA' = TBB' + Ad2 (79)

This formula expresses that the moment of inertia I, of an
area with respect to any given axis AA” is equal to the moment of inertia
I of the area with respect to a centroidal axis BB’ parallel to AA’
plus the product of the area A and the square of the distance d
between the two axes. This theorem is known as the parallel-axis
theorem. Substituting iy A for Iy and 73 A for Iz, the theorem

can also be expressed as
raa = Thy + d (7.10)

A similar theorem can be used to relate the polar moment
of inertia Jo of an area about a point O to the polar moment of
inertia [c of the same area about its centroid C. Denoting by d the
distance between O and C, we write

Jo=Jc+Ad®> or rp=retd (7.11)
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d=r
T
D D'
d':%h
h
C
B B’
d=<h \
A ! ‘ ‘ A’
\ b \
Fig. 7.10

Photo 7.1 Appendix B tabulates data for a
small sample of the rolled-steel shapes that are
readily available. Shown above are two examples
of wide-flange shapes that are commonly used in
the construction of buildings.

EXAMPLE 7.2 As an application of the parallel-axis theorem, let us
determine the moment of inertia I of a circular area with respect to a line
tangent to the circle (Fig. 7.9). We found in Sample Prob. 7.2 that the
moment of inertia of a circular area about a centroidal axis is I = rr*. We
can write, therefore,

Ip =1+ Ad* =imr* + (wr?y? =37/ m

EXAMPLE 7.3 The parallel-axis theorem can also be used to determine
the centroidal moment of inertia of an area when the moment of inertia of
the area with respect to a parallel axis is known. Consider, for instance, a
triangular area (Fig. 7.10). We found in Sample Prob. 7.1 that the moment
of inertia of a triangle with respect to its base AA’ is equal to 15bh”. Using
the parallel-axis theorem, we write

IAA' = TBB' + Adz
Loy = Ly — Ad® = 5bh® — Sbh(3h)? = Lbk®

It should be observed that the product Ad® was subtracted from the given
moment of inertia in order to obtain the centroidal moment of inertia of
the triangle. Note that this product is added when transferring from a cen-
troidal axis to a parallel axis, but it should be subtracted when transferring
to a centroidal axis. In other words, the moment of inertia of an area is
always smaller with respect to a centroidal axis than with respect to any
parallel axis.

Returning to Fig. 7.10, we observe that the moment of inertia of the
triangle with respect to the line DD’ (which is drawn through a vertex) can
be obtained by writing

Ippy = Lpp + Ad"® = 35bh® + Sbh(Gh)* = 1b1°

Note that I could not have been obtained directly from I,4.. The parallel-
axis theorem can be applied only if one of the two parallel axes passes
through the centroid of the area. ®

7.7 MOMENTS OF INERTIA OF COMPOSITE AREAS

Consider a composite area A made of several component areas A, Ay,
As, . .. Since the integral representing the moment of inertia of A can
be subdivided into integrals evaluated over A, Ay, As, . . ., the moment
of inertia of A with respect to a given axis is obtained by adding the
moments of inertia of the areas A, Ay, A, . . ., with respect to the
same axis. The moment of inertia of an area consisting of several of
the common shapes shown in Fig. 7.11 can thus be obtained by using
the formulas given in that figure. Before adding the moments of inertia
of the component areas, however, the parallel-axis theorem may have
to be used to transfer each moment of inertia to the desired axis. This
is shown in Sample Probs. 7.4 and 7.5.

The properties of the cross sections of various structural shapes
are given in App. B. As noted in Sec. 7.2, the moment of inertia of
a beam section about its neutral axis is closely related to the com-
putation of the bending moment in that section of the beam. The
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Fig. 7.11 Moments of inertia of common geometric shapes.

determination of moments of inertia is thus a prerequisite to the
analysis and design of structural members.

It should be noted that the radius of gyration of a composite area is
not equal to the sum of the radii of gyration of the component areas. In
order to determine the radius of gyration of a composite area, it is first
necessary to compute the moment of inertia of the composite area.

7.7 Moments of Inertia of Composite Areas
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14.1 in.

6.77 in.

-1
=
o
Ut
=]
Q
<l %RA

SAMPLE PROBLEM 7.4

The strength of a W14 X 38 rolled-steel beam is increased by attaching a
9 X f-in. plate to its upper flange as shown. Determine the moment of
inertia and the radius of gyration of the composite section with respect to
an axis which is parallel to the plate and passes through the centroid C of
the section.

SOLUTION

The origin O of the coordinates is placed at the centroid of the wide-flange
shape, and the distance Y to the centroid of the composite section is com-
puted using the methods of Chap. 5. The area of the wide-flange shape is
found by referring to App. B. The area and the y coordinate of the centroid
of the plate are

A = (9in.)(0.75 in.) = 6.75 in’
y = 3(14.1in.) + 3(0.75 in.) = 7.425 in.

Section Area, in’ y, in. yA, in®
Plate 6.75 7.425 50.12
Wide-flange shape 11.2 0 0
JA = 1795 SyA = 50.12
YZA = SyA Y(17.95) = 50.12 Y = 2792 in.

Moment of Inertia. The parallel-axis theorem is used to determine the
moments of inertia of the wide-flange shape and the plate with respect to
the x" axis. This axis is a centroidal axis for the composite section but not
for either of the elements considered separately. The value of I, for the
wide-flange shape is obtained from App. B.

For the wide-flange shape,
I, =1, + AY? = 385 + (11.2)(2.792)*> = 472.3 in*
For the plate,

I =1, + Ad* = (5)(9)(3)® + (6.75)(7.425 — 2.792)> = 145.2 in*

For the composite area,

I, = 472.3 + 1452 = 617.5 in* I, = 618 in*
Radius of Gyration. We have
, L, 6175in*
== T o, ry = 5.87 in.

A 17.95in®



120 mm

——

<240 mm ——

l«<— 240 mm 4>|

120 mm

Y
A
' / a =382 mm
Ce
120 mm
L b=81.8 mm

SAMPLE PROBLEM 7.5

Determine the moment of inertia of the shaded area with respect to the
X axis.

SOLUTION

The given area can be obtained by subtracting a half circle from a rectangle.
The moments of inertia of the rectangle and the half circle will be computed
separately.

A A’
\ ) a
Ce x'
b —
{

Moment of Inertia of Rectangle. Referring to Fig. 7.11, we obtain

I, = ibh® = 1(240 mm)(120 mm)® = 138.2 X 10° mm*

Moment of Inertia of Half Circle. Referring to Fig. 5.8, we determine the
location of the centroid C of the half circle with respect to diameter AA’.
A 4r (4)(90 mm)

: - LT 58
X a Y Y mim

The distance b from the centroid C to the x axis is
X

b =120 mm — ¢ = 120 mm — 38.2 mm = 81.8 mm

Referring now to Fig. 7.11, we compute the moment of inertia of the half circle
with respect to diameter AA’; we also compute the area of the half circle.
Ly = st = 27(90 mm)* = 25.76 X 10° mm*

A=} 12.72 X 10° mm?

o = %77(90 mm)?>
Using the parallel-axis theorem, we obtain the value of I
T = Lo 40 AGP
25.76 X 10° mm* = I, + (12.72 X 10° mm?)(38.2 mm)>
I, = 7.20 X 10° mm*
Again using the parallel-axis theorem, we obtain the value of L:

I, =1, + Ab*> = 7.20 X 10° mm* + (12.72 X 10°> mm?)(81.8 mm)>
=923 X 10°mm*

Moment of Inertia of Given Area. Subtracting the moment of inertia of
the half circle from that of the rectangle, we obtain

I, = 138.2 X 10° mm* — 92.3 X 10° mm*
I, = 45.9 X 10° mm*
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PROBLEMS

7.25 through 7.28 Determine the moment of inertia and the radius
of gyration of the shaded area with respect to the x axis.

7.29 through 7.32 Determine the moment of inertia and the radius
of gyration of the shaded area with respect to the y axis.

o = ¢

[<—3in.
7,
50 mm 10 mm T
| )
l C Ehih Lin
X 2
f 6 in 1 ¢ x
50 mm '1
Ein - ~=in
—r xE
—>| "10 mm
]
90 mm —— 3 in.—>|
Fig. P7.25 and P7.29 Fig. P7.26 and P7.30
Y
~125mm~| y

<6 in.—>|

75 mm
r 4 250 mm

6 in.
125 mm m
4 in, ‘

Fig. P7.27 and P7.31 Fig. P7.28 and P7.32

7.33 Determine the shaded area and its moment of inertia with respect
to a centroidal axis parallel to AA’, knowing that its moments
of inertia with respect to AA" and BB’ are, respectively, 2.2 X
10° mm* and 4 X 10° mm*, and that ¢, = 25 mm and d, = 10 mm.

f

dy

A A’
d
B Zp

Fig. P7.33 and P7.34

7.34 Knowing that the shaded area is equal to 6000 mm? and that its
moment of inertia with respect to AA" is 18 X 10° mm*, deter-
mine its moment of inertia with respect to BB’ for d; = 50 mm
and dy = 10 mm.
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7.35 and 7.36 Determine the moments of inertia I, and fy of the Problems 9203
area shown with respect to centroidal axes that are respectively
parallel and perpendicular to the side AB.

<=3 in. =<3 in. =<3 in. -

60 mm

6 in.
A B

20 mmI
20 mm t
2 in. T
3 60 mm

A B 20 mm 20 mm
Fig. P7.35 Fig. P7.36

<_—>‘

7.37 Determine the moments of inertia I, and Ty of the area shown with

respect to centroidal axes that are respectively parallel and perpen-
dicular to the side AB.

A|<—6 in.—»IB
] Dise

— ~ 21in.

Fig. P7.37 and P7.38

T 80
60

7.38 Determine the centroidal polar moment of inertia of the area

0
shown. | 40+<40 1< 40 +1<s0~]

7.39 and 7.40 Determine the polar moment of inertia of the area Dimensions in mm
shown with respect to (a) point O, (b) the centroid of the area. Fig. P7.39

7.41 Two W8 X 31 rolled sections can be welded at A and B in either
of the two ways shown. For each arrangement, determine the

moment of inertia of the section with respect to the horizontal
centroidal axis. ——

oY

< 3in. _.I _——
~—45in. (a) )
Fig. P7.40 Fig. P7.41
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y

6in. C

%IQ |<—4 in—

Fig. P7.42

C8x11.5

L=

1c

S12 x 31.8

[ t—
Fig. P7.45

7.42

7.43

7.44

7.45

7.46

7.47

Two 6 X 4 X 3-in. angles are welded together to form the section
shown. Determine the moments of inertia and the radii of gyration
of the section with respect to the centroidal axes shown.

Two channels and two plates are used to form the column section
shown. For b = 200 mm, determine the moments of inertia and
the radii of gyration of the combined section with respect to the
centroidal axes.

y
— C250 x 22.8
PR
¢ X
10 mm b
L ,
1 375 mm —>|

Fig. P7.43

In Prob. 7.43, determine the distance b for which the centroidal
moments of inertia I, and I, of the column section are equal.

The strength of the rolled S section shown is increased by welding
a channel to its upper flange. Determine the moments of inertia of
the combined section with respect to its centroidal x and y axes.

A channel and a plate are welded together as shown to form a
section that is symmetrical with respect to the y axis. Determine
the moments of inertia of the section with respect to its centroidal
x and y axes.

C8x11.5

0.5 in. LF ] x

i

| 12 in. !

Fig. P7.46

Two L102 X 102 X 12.7-mm angles are welded to a 12-mm steel
plate as shown. For b = 250 mm, determine the moments of iner-
tia of the combined section with respect to centroidal axes that are
respectively parallel and perpendicular to the plate.

L102 x 102 x 12.7

102 mm

12 mm}_ b

Fig. P7.47

7.48 Solve Prob. 7.47 assuming that b = 300 mm.



REVIEW AND SUMMARY

In this chapter, we discussed the determination of the resultant R of
forces AF distributed over a plane area A when the magnitudes of
these forces are proportional to both the areas AA of the elements
on which they act and the distances y from these elements to a given
x axis; we thus had AF = ky AA. We found that the magnitude of
the resultant R is proportional to the first moment Q, = [y dA of
the area A, while the moment of R about the x axis is proportional
to the second moment, or moment of inertia, I, = fyz dA of A with
respect to the same axis [Sec. 7.2].

The rectangular moments of inertia I, and I, of an area [Sec. 7.3] Rectangular moments of inertia

were obtained by evaluating the integrals
y
I = J y dA I, = J x* dA (7.0)

These computations can be reduced to single integrations by choos-
ing dA to be a thin strip parallel to one of the coordinate axes. We .
also recall that it is possible to compute I, and I, from the same

dl, = %ys’ dx
dl, = x2y dx

elemental strip (Fig. 7.12) using the formula for the moment of iner-

tia of a rectangular area [Sample Prob. 7.3]. o

Fig. 7.12

dA
x
0

Fig. 7.13

The polar moment of inertia of an area A with respect to the pole Polar moment of inertia

O [Sec. 7.4] was defined as

Jo = f p*dA (7.3)

where r is the distance from O to the element of area dA (Fig. 7.13).
Observing that p* = x* + 4, we established the relation
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Radius of gyration

Parallel-axis theorem

Composite areas

The radius of gyration of an area A with respect to the x axis
[Sec. 7.5] was defined as the distance r,, where I, = r>A. With
similar definitions for the radii of gyration of A with respect to the
y axis and with respect to O, we had

I8 Iy Jo
r.= \/; ry = 4 /X ro = \/; (7.5-7.7)

The parallel-axis theorem was presented in Sec. 7.6. It states that the
moment of inertia I, of an area with respect to any given axis AA’
(Fig. 7.14) is equal to the moment of inertia Ip of the area with
respect to the centroidal axis BB’ that is parallel to AA" plus the
product of the area A and the square of the distance d between the
two axes:

Iy = Iy + Ad? (7.9)

This formula can also be used to determine the moment of inertia
Ipp of an area with respect to a centroidal axis BB” when its moment
of inertia I, with respect to a parallel axis AA" is known. In this
case, however, the product Ad? should be subtracted from the known
moment of inertia I,

B B’
C
d
A A’
Fig. 7.14

A similar relation holds between the polar moment of inertia
Jo of an area about a point O and the polar moment of inertia [ of
the same area about its centroid C. Letting d be the distance between
O and C, we have

Jo =Jc + Ad® (7.11)

The parallel-axis theorem can be used very effectively to compute
the moment of inertia of a composite area with respect to a given
axis [Sec. 7.7]. Considering each component area separately, we first
compute the moment of inertia of each area with respect to its cen-
troidal axis, using the data provided in Fig. 7.11 and App. B when-
ever possible. The parallel-axis theorem is then applied to determine
the moment of inertia of each component area with respect to the
desired axis, and the various values obtained are added [Sample
Probs. 7.4 and 7.5].



REVIEW PROBLEMS

7.49 Determine by direct integration the moment of inertia of the
shaded area with respect to the y axis.

Fig. P7.49 and P7.50
7.50 Determine by direct integration the moment of inertia of the
shaded area with respect to the x axis.

7.51 Determine the moment of inertia and radius of gyration of the
shaded area shown with respect to the x axis.

Fig. P7.51 and P7.52

7.52 Determine the moment of inertia and radius of gyration of the
shaded area shown with respect to the y axis.

7.53 Determine the polar moment of inertia and the polar radius of
gyration of an equilateral triangle of side a with respect to one of
its vertices.

Fig. P7.53
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o

120 mm
Fig. P7.56

7.54 Determine the moments of inertia of the shaded area shown with
respect to the x and y axes when ¢ = 20 mm.

Fig. P7.54

7.55 (a) Determine I, and I, if b = 10 in. (b) Determine the dimension
b for which I, = I,,.

) |~ T Lin.
0] | V1lin «

! ! 12 in. |
2 in.

Fig. P7.55

7.56 Determine the moment of inertia of the shaded area shown with
respect to the y axis.

7.57 The shaded area is equal to 5000 mm?® Determine its centroi-
dal moments of inertia I, and I, knowing that I, = 2I, and that
the polar moment of inertia of the area about point A is [, =
22.5 X 10° mm*,

1 T
60 mmkz / |

Fig. P7.57



7.58 Determine the polar moment of inertia and the polar radius of

gyration of the shaded

area shown with respect to its centroid C.

Fig. P7.58

/.

7.59 Determine the polar moment of inertia of the area shown with

respect to (a) point O,

4 in,—

(b) the centroid of the area.

<—4 in.—]

B

E
Fig. P7.59

7.60 Three 1-in. steel plates

are bolted to four L6 X 6 X 1-in. angles

to form the column whose cross section is shown. Determine the

moments of inertia and

the radii of gyration of the section with

respect to centroidal axes that are respectively parallel and perpen-

dicular to the flanges.

L6x6x1

_l
fl ]

< 1in. 8 in.

4

[

Fig