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OBJECTIVES
The main objective of a basic mechanics course should be to develop 
in the engineering student the ability to analyze a given problem in 
a simple and logical manner and to apply to its solution a few fun-
damental and well-understood principles. This text is designed for a 
course that combines statics and mechanics of materials—or strength 
of materials—offered to engineering students in the sophomore 
year.

GENERAL APPROACH
In this text the study of statics and mechanics of materials is based 
on the understanding of a few basic concepts and on the use of 
simplified models. This approach makes it possible to develop all the 
necessary formulas in a rational and logical manner, and to clearly 
indicate the conditions under which they can be safely applied to the 
analysis and design of actual engineering structures and machine 
components.

Practical Applications Are Introduced Early. One of the char-
acteristics of the approach used in this text is that mechanics of 
particles is clearly separated from the mechanics of rigid bodies. This 
approach makes it possible to consider simple practical applications 
at an early stage and to postpone the introduction of the more diffi-
cult concepts. As an example, statics of particles is treated first (Chap. 2); 
after the rules of addition and subtraction of vectors are introduced, 
the principle of equilibrium of a particle is immediately applied to 
practical situations involving only concurrent forces. The statics of 
rigid bodies is considered in Chaps. 3 and 4. In Chap. 3, the vector 
and scalar products of two vectors are introduced and used to define 
the moment of a force about a point and about an axis. The presen-
tation of these new concepts is followed by a thorough and rigorous 
discussion of equivalent systems of forces leading, in Chap. 4, to 
many practical applications involving the equilibrium of rigid bodies 
under general force systems.

New Concepts Are Introduced in Simple Terms. Since this 
text is designed for the first course in mechanics, new concepts are 
presented in simple terms and every step is explained in detail. On 
the other hand, by discussing the broader aspects of the problems 
considered and by stressing methods of general applicability, a defi-
nite maturity of approach is achieved. For example, the concepts of 
partial constraints and statical indeterminacy are introduced early 
and are used throughout.
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xiFundamental Principles Are Placed in the Context of Simple 
Applications. The fact that mechanics is essentially a deductive 
science based on a few fundamental principles is stressed. Deriva-
tions have been presented in their logical sequence and with all the 
rigor warranted at this level. However, the learning process being 
largely inductive, simple applications are considered first.
 As an example, the statics of particles precedes the statics of rigid 
bodies, and problems involving internal forces are postponed until 
Chap. 6. In Chap. 4, equilibrium problems involving only coplanar 
forces are considered first and solved by ordinary algebra, while prob-
lems involving three-dimensional forces and requiring the full use of 
vector algebra are discussed in the second part of the chapter.
 The first four chapters treating mechanics of materials (Chaps. 
8, 9, 10, and 11) are devoted to the analysis of the stresses and of 
the corresponding deformations in various structural members, con-
sidering successively axial loading, torsion, and pure bending. Each 
analysis is based on a few basic concepts, namely, the conditions of 
equilibrium of the forces exerted on the member, the relations exist-
ing between stress and strain in the material, and the conditions 
imposed by the supports and loading of the member. The study of 
each type of loading is complemented by a large number of exam-
ples, sample problems, and problems to be assigned, all designed to 
strengthen the students’ understanding of the subject.

Free-body Diagrams Are Used Extensively. Throughout the 
text, free-body diagrams are used to determine external or internal 
forces. The use of “picture equations” will also help the students 
understand the superposition of loadings and the resulting stresses 
and deformations.

Design Concepts Are Discussed Throughout the Text When-
ever Appropriate. A discussion of the application of the factor 
of safety to design can be found in Chap. 8, where the concept of 
allowable stress design is presented.

A Careful Balance Between SI and U.S. Customary Units Is 
Consistently Maintained. Because it is essential that students be 
able to handle effectively both SI metric units and U.S. customary 
units, half the examples, sample problems, and problems to be 
assigned have been stated in SI units and half in U.S. customary 
units. Since a large number of problems are available, instructors can 
assign problems using each system of units in whatever proportion 
they find most desirable for their class.
 It also should be recognized that using both SI and U.S. cus-
tomary units entails more than the use of conversion factors. Since 
the SI system of units is an absolute system based on the units of 
time, length, and mass, whereas the U.S. customary system is a gravi-
tational system based on the units of time, length, and force,  different 
approaches are required for the solution of many problems. For 
example, when SI units are used, a body is generally specified by its 
mass expressed in kilograms; in most problems of statics it will be 
necessary to determine the weight of the body in newtons, and an 
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additional calculation will be required for this purpose. On the other 
hand, when U.S. customary units are used, a body is specified by its 
weight in pounds and, in dynamics problems (such as would be 
encountered in a follow-on course in dynamics), an additional calcu-
lation will be required to determine its mass in slugs (or lb ? s2/ft). 
The authors, therefore, believe that problem assignments should 
include both systems of units.

Optional Sections Offer Advanced or Specialty Topics. A 
number of optional sections have been included. These sections are 
indicated by asterisks and thus are easily distinguished from those 
which form the core of the basic first mechanics course. They may 
be omitted without prejudice to the understanding of the rest of 
the text.
 The material presented in the text and most of the problems 
require no previous mathematical knowledge beyond algebra, trigo-
nometry, and elementary calculus; all the elements of vector algebra 
necessary to the understanding of mechanics are carefully presented 
in Chaps. 2 and 3. In general, a greater emphasis is placed on the 
correct understanding of the basic mathematical concepts involved 
than on the nimble manipulation of mathematical formulas. In this 
connection, it should be mentioned that the determination of the 
centroids of composite areas precedes the calculation of centroids by 
integration, thus making it possible to establish the concept of the 
moment of an area firmly before introducing the use of integration.

CHAPTER ORGANIZATION AND PEDAGOGICAL FEATURES
Each chapter begins with an introductory section setting the purpose 
and goals of the chapter and describing in simple terms the material 
to be covered and its application to the solution of engineering 
problems.

Chapter Lessons. The body of the text has been divided into 
units, each consisting of one or several theory sections followed by 
sample problems and a large number of problems to be assigned. 
Each unit corresponds to a well-defined topic and generally can be 
covered in one lesson.

Examples and Sample Problems. The theory sections include 
examples designed to illustrate the material being presented and 
facilitate its understanding. The sample problems are intended to 
show some of the applications of the theory to the solution of engi-
neering problems. Since they have been set up in much the same 
form that students will use in solving the assigned problems, the 
sample problems serve the double purpose of amplifying the text and 
demonstrating the type of neat and orderly work that students should 
cultivate in their own solutions.

Homework Problem Sets. Most of the problems are of a  practical 
nature and should appeal to engineering students. They are primarily 
designed, however, to illustrate the material presented in the text 
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xiiiand help the students understand the basic principles used in 
 engineering mechanics. The problems have been grouped according 
to the portions of material they illustrate and have been arranged in 
order of increasing difficulty. Answers to problems are given at the 
end of the book, except for those with a number set in italics.

Chapter Review and Summary. Each chapter ends with a 
review and summary of the material covered in the chapter. Notes 
in the margin have been included to help the students organize their 
review work, and cross references are provided to help them find 
the portions of material requiring their special attention.

Review Problems. A set of review problems is included at the end 
of each chapter. These problems provide students further opportunity 
to apply the most important concepts introduced in the chapter.

ELECTRONIC TEXTBOOK OPTIONS
Ebooks are an innovative way for students to save money and create 
a greener environment at the same time. An ebook can save students 
about half the cost of a traditional textbook and offers unique fea-
tures like a powerful search engine, highlighting, and the ability to 
share notes with classmates using ebooks.
 McGraw-Hill offers this text as an ebook. To talk about the 
ebook options, contact your McGraw-Hill sales representative or visit 
the site www.coursesmart.com to learn more.

ONLINE RESOURCES
A website of instructor resources to accompany the text is available 
at www.mhhe.com/beerjohnston. Instructors should contact their 
sales representative to gain full access to these materials.
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 In the latter part of the seventeenth 

century, Sir Isaac Newton stated the 

fundamental principles of mechanics, 

which are the foundation of much of 

today’s engineering. 
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2

 1.1 WHAT IS MECHANICS?
Mechanics can be defined as that science which describes and pre- 
dicts the conditions of rest or motion of bodies under the action of 
forces. It is divided into three parts: mechanics of rigid bodies, me- 
chanics of deformable bodies, and mechanics of fluids.
 The mechanics of rigid bodies is subdivided into statics and dy- 
namics, the former dealing with bodies at rest, the latter with bodies 
in motion. In this part of the study of mechanics, bodies are assumed 
to be perfectly rigid. Actual structures and machines, however, are 
never absolutely rigid and deform under the loads to which they are 
subjected. But these deformations are usually small and do not appre- 
ciably affect the conditions of equilibrium or motion of the structure 
under consideration. They are important, though, as far as the resis- 
tance of the structure to failure is concerned and are studied in me- 
chanics of materials, which is a part of the mechanics of deformable 
bodies. The third division of mechanics, the mechanics of fluids, is 
subdivided into the study of incompressible fluids and of compressible 
fluids. An important subdivision of the study of incompressible fluids 
is hydraulics, which deals with problems involving water.
 Mechanics is a physical science, since it deals with the study of 
physical phenomena. However, some associate mechanics with math- 
ematics, while many consider it as an engineering subject. Both these 
views are justified in part. Mechanics is the foundation of most engi- 
neering sciences and is an indispensable prerequisite to their study. 
However, it does not have the empiricism found in some engineering 
sciences, i.e., it does not rely on experience or observation alone; by 
its rigor and the emphasis it places on deductive reasoning, it resem-
bles mathematics. But, again, it is not an abstract or even a pure 
science; mechanics is an applied science. The purpose of mechanics 
is to explain and predict physical phenomena and thus to lay the 
foundations for engineering applications.

1.2  FUNDAMENTAL CONCEPTS AND PRINCIPLES—
MECHANICS OF RIGID BODIES

Although the study of mechanics of rigid bodies goes back to the time 
of Aristotle (384–322 b.c.) and Archimedes (287–212 b.c.), one has to 
wait until Newton (1642–1727) to find a satisfactory formulation of its 
fundamental principles. These principles were later expressed in a 
modified form by d’Alembert, Lagrange, and Hamilton. Their validity 
remained unchallenged, however, until Einstein formulated his theory 
of relativity (1905). While its limitations have now been recognized, new-
tonian mechanics still remains the basis of today’s engineering sciences.
 The basic concepts used in mechanics are space, time, mass, 
and force. These concepts cannot be truly defined; they should be 
accepted on the basis of our intuition and experience and used as a 
mental frame of reference for our study of mechanics.
 The concept of space is associated with the notion of the posi-
tion of a point P. The position of P can be defined by three lengths 
measured from a certain reference point, or origin, in three given 
directions. These lengths are known as the coordinates of P.

Chapter 1  Introduction
 1.1 What Is Mechanics?
 1.2 Fundamental Concepts and 

Principles—Mechanics of Rigid 
Bodies

 1.3 Fundamental Concepts— 
Mechanics of Deformable Bodies

 1.4 Systems of Units
 1.5 Conversion from One System of 

Units to Another
 1.6 Method of Problem Solution
 1.7 Numerical Accuracy
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3    To define an event, it is not sufficient to indicate its position in 
space. The  time  of the event should also be given. 
    The concept of  mass  is used to characterize and compare  bodies 
on the basis of certain fundamental mechanical experiments. Two bod-
ies of the same mass, for example, will be attracted by the earth in 
the same manner; they will also offer the same resistance to a change 
in translational motion. 
    A  force  represents the action of one body on another. It can be 
exerted by actual contact or at a distance, as in the case of gravita-
tional forces and magnetic forces. A force is characterized by its 
 point of application , its  magnitude , and its  direction ; a force is rep-
resented by a  vector  (Sec. 2.3). 
    In newtonian mechanics, space, time, and mass are absolute con-
cepts, independent of each other. (This is not true in  relativistic mechan-
ics , where the time of an event depends upon its position, and where 
the mass of a body varies with its velocity.) On the other hand, the 
concept of force is not independent of the other three. Indeed, one of 
the fundamental principles of newtonian mechanics listed below indi-
cates that the resultant force acting on a body is related to the mass of 
the body and to the manner in which its velocity varies with time. 
    In the first part of the book, the four basic concepts that we 
have introduced are used to study the conditions of rest or motion 
of particles and rigid bodies. By particle we mean a very small 
amount of matter which may be assumed to occupy a single point 
in space. A  rigid body  is a combination of a large number of par-
ticles occupying fixed positions with respect to each other. The 
study of the mechanics of particles is obviously a prerequisite to 
that of rigid bodies. Besides, the results obtained for a particle can 
be used directly in a large number of problems dealing with the 
conditions of rest or motion of actual bodies. 
    The study of elementary mechanics rests on six fundamental 
principles based on experimental evidence.  

 The Parallelogram Law for the Addition of Forces.   This 
states that two forces acting on a particle may be replaced by a single 
force, called their  resultant , obtained by drawing the diagonal of the 
parallelogram which has sides equal to the given forces (Sec. 2.2).   

 The Principle of Transmissibility.   This states that the conditions 
of equilibrium or of motion of a rigid body will remain unchanged if a 
force acting at a given point of the rigid body is replaced by a force of 
the same magnitude and same direction, but acting at a different point, 
provided that the two forces have the same line of action (Sec. 3.3).   

 Newton’s Three Fundamental Laws.   Formulated by Sir Isaac 
Newton in the latter part of the seventeenth century, these laws can 
be stated as follows:  

 FIRST LAW.   If the resultant force acting on a particle is zero, the 
particle will remain at rest (if originally at rest) or will move with 
constant speed in a straight line (if originally in motion) (Sec. 2.10).   

1.2 Fundamental Concepts and Principles—
Mechanics of Rigid Bodies
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4 Introduction  SECOND LAW.   If the resultant force acting on a particle is not 
zero, the particle will have an acceleration proportional to the mag-
nitude of the resultant and in the direction of this resultant force. 
  This law can be stated as 

    F 5 ma (1.1)  

 where  F ,  m , and  a  represent, respectively, the resultant force acting 
on the particle, the mass of the particle, and the acceleration of the 
particle, expressed in a consistent system of units.   

 THIRD LAW.   The forces of action and reaction between bodies in 
contact have the same magnitude, same line of action, and opposite 
sense (Sec. 6.1).   

 Newton’s Law of Gravitation.   This states that two particles of 
mass  M  and  m  are mutually attracted with equal and opposite forces 
 F  and  2F  ( Fig. 1.1 ) of magnitude  F  given by the formula 

   
F 5 G  

Mm

r  

2  (1.2)  

    where  r  5 distance between the two particles 
     G  5 universal constant called the  constant of gravitation  

   Newton’s law of gravitation introduces the idea of an action exerted 
at a distance and extends the range of application of Newton’s third 
law: the action  F  and the reaction  2F  in  Fig. 1.1  are equal and 
opposite, and they have the same line of action. 
    A particular case of great importance is that of the attraction 
of the earth on a particle located on its surface. The force  F  exerted 
by the earth on the particle is then defined as the  weight   W  of the 
particle. Taking  M  equal to the mass of the earth,  m  equal to the 
mass of the particle, and  r  equal to the radius  R  of the earth, and 
introducing the constant 

   
g 5

GM

R2  
(1.3)

  

   the magnitude  W  of the weight of a particle of mass  m  may be ex-
pressed as †  

  W 5 mg (1.4) 

  The value of  R  in formula (1.3) depends upon the elevation of the 
point considered; it also depends upon its latitude, since the earth is 
not truly spherical. The value of  g  therefore varies with the position 
of the point considered. As long as the point actually remains on the 
surface of the earth, it is sufficiently accurate in most engineering 
computations to assume that  g  equals 9.81 m/s 2  or 32.2 ft/s 2 . 
    The principles we have just listed will be introduced in the 
course of our study of mechanics of rigid bodies, covered in Chaps. 
2 through 7. The study of the statics of particles carried out in Chap. 2 

M

–F

F

m

r

Fig. 1.1

†A more accurate definition of the weight W should take into account the rotation of 
the earth.

Photo 1.1 When in earth orbit, people and 
objects are said to be weightless even though the 
gravitational force acting is approximately 90% 
of that experienced on the surface of the earth. 
This apparent contradiction can be resolved in a 
course on Dynamics when  Newton’s second law 
is applied to the motion of particles.
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5will be based on the parallelogram law of addition and on Newton’s 
first law alone. The principle of transmissibility will be introduced in 
Chap. 3 as we begin the study of the statics of rigid bodies, and 
Newton’s third law in Chap. 6 as we analyze the forces exerted on 
each other by the various members forming a structure. 
    As noted earlier, the six fundamental principles listed above are 
based on experimental evidence. Except for Newton’s first law and the 
principle of transmissibility, they are independent principles which can-
not be derived mathematically from each other or from any other ele-
mentary physical principle. On these principles rests most of the intricate 
structure of newtonian mechanics. For more than two centuries a tre-
mendous number of problems dealing with the conditions of rest and 
motion of rigid bodies, deformable bodies, and fluids have been solved 
by applying these fundamental principles. Many of the solutions obtained 
could be checked experimentally, thus providing a further verification 
of the principles from which they were derived. It is only in this century 
that Newton’s mechanics was found at fault, in the study of the motion 
of atoms and in the study of the motion of certain planets, where it 
must be supplemented by the theory of relativity. But on the human or 
engineering scale, where velocities are small compared with the speed 
of light, Newton’s mechanics has yet to be disproved.  

  1.3    FUNDAMENTAL CONCEPTS—MECHANICS OF 
DEFORMABLE BODIES   

 The concepts needed for mechanics of deformable bodies, also 
referred to as mechanics of materials, are necessary for analyzing and 
designing various machines and load-bearing structures. These con-
cepts involve the determination of stresses and deformations.  
 In Chaps. 8 through 16, the analysis of stresses and the corre-
sponding deformations will be developed for structural members sub-
ject to axial loading, torsion, and pure bending. This requires the use 
of basic concepts involving the conditions of equilibrium of forces 
exerted on the member, the relations existing between stress and 
deformation in the material, and the conditions imposed by the sup-
ports and loading of the member. Subsequent chapters expand on this 
material, providing a basis for designing both structures that are stati-
cally determinant and those that are indeterminant, i.e., structures in 
which the internal forces cannot be determined from statics alone.

  1.4   SYSTEMS OF UNITS   
 The fundamental concepts introduced in the preceding sections are 
associated with the so-called  kinetic units , i.e., the units of  length, time, 
mass , and  force . These units cannot be chosen independently if Eq. (1.1) 
is to be satisfied. Three of the units may be defined arbitrarily; they are 
then referred to as  basic units . The fourth unit, however, must be chosen 
in accordance with Eq. (1.1) and is referred to as a  derived unit . Kinetic 
units selected in this way are said to form a  consistent system of units .  

  International System of Units (SI Units †).     In this system, the base 
units are the units of length, mass, and time, and they are called, 

1.4  Systems of Units  

†SI stands for  Système International d’Unités  (French).  
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6 Introduction respectively, the  meter  (m), the  kilogram  (kg), and the  second  (s). All 
three are arbitrarily defined. The second, which was originally chosen to 
represent 1/86 400 of the mean solar day, is now defined as the duration 
of 9 192 631 770 cycles of the radiation corresponding to the transition 
between two levels of the fundamental state of the cesium-133 atom. 
The meter, originally defined as one ten-millionth of the distance from 
the equator to either pole, is now defined as 1 650 763.73 wavelengths 
of the orange-red light corresponding to a certain transition in an atom 
of krypton-86. The kilogram, which is approximately equal to the mass 
of 0.001 m 3  of water, is defined as the mass of a platinum-iridium stan-
dard kept at the International Bureau of Weights and Measures at 
Sèvres, near Paris, France. The unit of force is a derived unit. It is called 
the  newton  (N) and is defined as the force which gives an acceleration 
of 1 m/s 2  to a mass of 1 kg ( Fig. 1.2 ). From Eq. (1.1) we write 

  1 N 5 (1 kg)(1 m/s2) 5 1 kg ? m/s2 (1.5) 

  The SI units are said to form an  absolute  system of units. This means 
that the three base units chosen are independent of the location 
where measurements are made. The meter, the kilogram, and the 
second may be used anywhere on the earth; they may even be used 
on another planet. They will always have the same significance. 
    The  weight  of a body, or the  force of gravity  exerted on that body, 
should, like any other force, be expressed in newtons. From Eq. (1.4) 
it follows that the weight of a body of mass 1 kg ( Fig. 1.3 ) is 

  W 5 mg
  5 (1 kg)(9.81 m/s2) 
  5 9.81 N  

   Multiples and submultiples of the fundamental SI units may be 
obtained through the use of the prefixes defined in  Table 1.1 . The 
multiples and submultiples of the units of length, mass, and force 
most frequently used in engineering are, respectively, the  kilometer  
(km) and the  millimeter  (mm); the  megagram  †    (Mg) and the  gram  
(g); and the  kilonewton  (kN). According to  Table 1.1 , we have 

  1 km 5 1000 m       1 mm 5 0.001 m
  1 Mg 5 1000 kg   1 g 5 0.001 kg

 1 kN 5 1000 N

  The conversion of these units into meters, kilograms, and  newtons, 
respectively, can be effected by simply moving the decimal point three 
places to the right or to the left. For example, to convert 3.82 km into 
meters, one moves the decimal point three places to the right: 

 3.82 km 5 3820 m 

   Similarly, 47.2 mm is converted into meters by moving the decimal 
point three places to the left: 

 47.2 mm 5 0.0472 m

  Using scientific notation, one may also write 

  3.82 km 5 3.82 3 103 m  
  47.2 mm 5 47.2 3 1023 m 

a = 1 m/s2

m = 1 kg F = 1 N

Fig. 1.2

a = 9.81 m/s2

m = 1 kg

W = 9.81 N

Fig. 1.3

† Also known as a  metric ton .
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7

    The multiples of the unit of time are the  minute  (min) and the 
 hour  (h). Since 1 min 5 60 s and 1 h 5 60 min 5 3600 s, these 
multiples cannot be converted as readily as the others. 
   By using the appropriate multiple or submultiple of a given 
unit, one can avoid writing very large or very small numbers. For 
example, one usually writes 427.2 km rather than 427 200 m, and 
2.16 mm rather than 0.002 16 m. † 

 Units of Area and Volume.  The unit of area is the  square meter  
(m 2 ), which represents the area of a square of side 1 m; the unit of 
volume is the  cubic meter  (m 3 ), equal to the volume of a cube of side 
1 m. In order to avoid exceedingly small or large numerical values 
in the computation of areas and volumes, one uses systems of sub-
units obtained by respectively squaring and cubing not only the mil-
limeter but also two intermediate submultiples of the meter, namely, 
the   decimeter  (dm) and the  centimeter  (cm). Since, by definition, 

   1 dm 5 0.1 m 5 1021 m   
   1 cm 5 0.01 m 5 1022 m
 1 mm 5 0.001 m 5 1023 m

  the submultiples of the unit of area are 

  1 dm2 5 (1 dm)2 5 (1021 m)2 5 1022 m2   
  1 cm2 5 (1 cm)2 5 (1022 m)2 5 1024 m2   
  1 mm2 5 (1 mm)2 5 (1023 m)2 5 1026 m2  

 TABLE 1.1   Sl Prefixes 

 Multiplication Factor   Prefix †   Symbol 

    1 000 000 000 000 5 10 12    tera   T  
   1 000 000 000 5 10 9    giga   G  
   1 000 000 5 10 6    mega   M  
   1 000 5 10 3    kilo   k  
  100 5 10 2    hecto ‡   h
   10 5 10 1    deka ‡    da  
  0.1 5 10 21   deci ‡   d 
  0.01 5 10 22   centi ‡   c 
  0.001 5 10 23   milli   m 
  0.000 001 5 10 26   micro   m 
  0.000 000 001 5 10 29   nano   n 
  0.000 000 000 001 5 10 212   pico   p 
  0.000 000 000 000 001 5 10 215   femto   f 
  0.000 000 000 000 000 001 5 10 218   atto   a 

 †The first syllable of every prefix is accented so that the prefix will retain its identity. Thus, the 
preferred pronunciation of kilometer places the accent on the first syllable, not the second. 
 ‡The use of these prefixes should be avoided, except for the measurement of areas and 
volumes and for the nontechnical use of centimeter, as for body and clothing measurements.   

 †It should be noted that when more than four digits are used on either side of the 
 decimal point to express a quantity in SI units—as in 427 200 m or 0.002 16 m—
spaces, never commas, should be used to separate the digits into groups of three. This 
is to avoid confusion with the comma used in place of a decimal point, which is the 
convention in many countries. 

1.4  Systems of Units  
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8 Introduction   and the submultiples of the unit of volume are 

   1 dm3 5 (1 dm)3 5 (1021 m)3 5 1023 m3   
   1 cm3 5 (1 cm)3 5 (1022 m)3 5 1026 m3   
   1 mm3 5 (1 mm)3 5 (1023 m)3 5 1029 m3  

  It should be noted that when the volume of a liquid is being measured, 
the cubic decimeter (dm 3 ) is usually referred to as a  liter  (L). 
    Other derived SI units used to measure the moment of a force, 
the work of a force, etc., are shown in  Table 1.2 . While these units 
will be introduced in later chapters as they are needed, we should 
note an important rule at this time: When a derived unit is obtained 
by dividing a base unit by another base unit, a prefix may be used 
in the numerator of the derived unit but not in its denominator. For 
example, the constant  k  of a spring which stretches 20 mm under 
a load of 100 N will be expressed as 

  
k 5

100 N
20 mm

5
100 N

0.020 m
5 5000 N/m    or    k 5 5 kN/m

   

but never as  k  5 5 N/mm.  

 U.S. Customary Units.  Most practicing American engineers still 
commonly use a system in which the base units are the units of length, 
force, and time. These units are, respectively, the  foot  (ft), the  pound  
(lb), and the  second  (s). The second is the same as the corresponding 
SI unit. The foot is defined as 0.3048 m. The pound is defined as the 

 TABLE 1.2   Principal SI Units Used in Mechanics          

  Quantity   Unit   Symbol   Formula    

  Acceleration   Meter per second squared   . . .   m/s 2   
  Angle   Radian   rad    †  
Angular acceleration   Radian per second squared   . . .   rad/s 2   
 Angular velocity   Radian per second   . . .   rad/s  
  Area   Square meter   . . .   m 2   
  Density   Kilogram per cubic meter   . . .   kg/m 3   
  Energy   Joule   J   N ? m 
  Force   Newton   N   kg ? m/s 2   
 Frequency   Hertz   Hz  s 21 
 Impulse   Newton-second   . . .   kg ? m/s  
  Length   Meter   m    ‡  
Mass   Kilogram   kg    ‡   
  Moment of a force   Newton-meter   . . .   N ? m  
  Power   Watt   W   J/s  
  Pressure   Pascal   Pa   N/m 2   
  Stress   Pascal   Pa   N/m 2   
  Time   Second   s    ‡   
  Velocity   Meter per second   . . .   m/s  
  Volume  
   Solids   Cubic meter   . . .   m 3   
   Liquids   Liter   L   10 23 m 3   
  Work   Joule   J   N ? m 

†Supplementary unit (1 revolution 5 2p rad 5 3608).    
‡Base unit.      
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9 weight  of a platinum standard, called the  standard pound , which is 
kept at the National Institute of Standards and Technology outside 
Washington, the mass of which is 0.453 592 43 kg. Since the weight 
of a body depends upon the earth’s gravitational attraction, which var-
ies with location, it is specified that the standard pound should be 
placed at sea level and at a latitude of 458 to properly define a force 
of 1 lb. Clearly the U.S. customary units do not form an absolute sys-
tem of units. Because of their dependence upon the gravitational 
attraction of the earth, they form a  gravitational  system of units. 
   While the standard pound also serves as the unit of mass in 
commercial transactions in the United States, it cannot be so used 
in engineering computations, since such a unit would not be consis-
tent with the base units defined in the preceding paragraph. Indeed, 
when acted upon by a force of 1 lb, that is, when subjected to the 
force of gravity, the standard pound receives the acceleration of grav-
ity,  g  5 32.2 ft/s 2  ( Fig. 1.4 ), not the unit acceleration required by 
Eq. (1.1). The unit of mass consistent with the foot, the pound, and 
the second is the mass which receives an acceleration of 1 ft/s 2  when 
a force of 1 lb is applied to it ( Fig. 1.5 ). This unit, sometimes called 
a  slug , can be derived from the equation  F 5 ma  after substituting 
1 lb and 1 ft/s 2  for  F  and  a , respectively. We write 

  F 5 ma    1 lb 5 (1 slug)(1 ft/s2)

  and obtain 

   
1 slug 5

1 lb
1 ft/s2 5 1 lb ? s2/ft

  
(1.6)

   Comparing  Figs. 1.4  and  1.5 , we conclude that the slug is a mass 
32.2 times larger than the mass of the standard pound. 
    The fact that in the U.S. customary system of units bodies are 
characterized by their weight in pounds rather than by their mass in 
slugs will be a convenience in the study of statics, where one constantly 
deals with weights and other forces and only seldom with masses. 
However, in the study of dynamics, where forces, masses, and accel-
erations are involved, the mass  m  of a body will be expressed in slugs 
when its weight  W  is given in pounds. Recalling Eq. (1.4), we write 

   
m 5

W
g  

(1.7)
  

   where  g  is the acceleration of gravity ( g  5 32.2 ft/s 2 ). 
    Other U.S. customary units frequently encountered in engi-
neering problems are the  mile  (mi), equal to 5280 ft; the  inch  (in.), 
equal to 1

12 ft; and the  kilopound  (kip), equal to a force of 1000 lb. 
The  ton  is often used to represent a mass of 2000 lb but, like the 
pound, must be converted into slugs in engineering computations. 
    The conversion into feet, pounds, and seconds of quantities 
expressed in other U.S. customary units is generally more involved 
and requires greater attention than the corresponding operation in 
SI units. If, for example, the magnitude of a velocity is given as  v  5 
30 mi/h, we convert it to ft/s as follows. First we write 

  
v 5 30  

mi
h   

a = 32.2 ft /s2

m = 1 lb

F = 1 lb

Fig. 1.4

a = 1 ft /s2

m = 1 slug
(= 1 lb • s2/ft) 

F = 1 lb

Fig. 1.5

1.4  Systems of Units  
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10 Introduction    Since we want to get rid of the unit miles and introduce instead the 
unit feet, we should multiply the right-hand member of the equation 
by an expression containing miles in the denominator and feet in the 
numerator. But, since we do not want to change the value of the 
right-hand member, the expression used should have a value equal to 
unity. The quotient (5280 ft)/(1 mi) is such an expression. Operating 
in a similar way to transform the unit hour into seconds, we write 

  
v 5 a30 

mi
h
b a5280 ft

1 mi
b a 1 h

3600 s
b

  

   Carrying out the numerical computations and canceling out units 
which appear in both the numerator and the denominator, we obtain 

  
v 5 44 

ft
s

5 44 ft/s
    

 1.5   CONVERSION FROM ONE SYSTEM OF UNITS 
TO ANOTHER  

 There are many instances when an engineer wishes to convert into 
SI units a numerical result obtained in U.S. customary units or vice 
versa. Because the unit of time is the same in both systems, only two 
kinetic base units need be converted. Thus, since all other kinetic 
units can be derived from these base units, only two conversion fac-
tors need be remembered.  

 Units of Length.   By definition the U.S. customary unit of length is 

   1 ft 5 0.3048 m (1.8)  

   It follows that 

  1 mi 5 5280 ft 5 5280(0.3048 m) 5 1609 m  

   or 
 1 mi 5 1.609 km (1.9)  

   Also
 1 in. 5 1

12 ft 5 1
12 (0.3048 m) 5 0.0254 m  

   or 
 1 in. 5 25.4 mm     (1.10)

 Units of Force.   Recalling that the U.S. customary unit of force 
(pound) is defined as the weight of the standard pound (of mass 
0.4536 kg) at sea level and at a latitude of 458 (where  g  5 9.807 m/s 2 ) 
and using Eq. (1.4), we write 

   W 5 mg   
   1 lb 5 (0.4536 kg)(9.807 m/s2) 5 4.448 kg ? m/s2  

   or, recalling Eq. (1.5), 

   1 lb 5 4.448 N (1.11)    
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11 Units of Mass.  The U.S. customary unit of mass (slug) is a derived 
unit. Thus, using Eqs. (1.6), (1.8), and (1.11), we write 

  
1 slug 5 1 lb ? s2/ft 5

1 lb
1 ft/s2 5

4.448 N
0.3048 m/s2 5 14.59 N ? s2/m

  

   and, recalling Eq. (1.5), 

   1 slug 5 1 lb ? s2/ft 5 14.59 kg (1.12)  

   Although it cannot be used as a consistent unit of mass, we recall 
that the mass of the standard pound is, by definition, 

   1 pound mass 5 0.4536 kg (1.13)  

   This constant may be used to determine the  mass  in SI units (kilo-
grams) of a body which has been characterized by its  weight  in U.S. 
customary units (pounds). 
    To convert a derived U.S. customary unit into SI units, one 
simply multiplies or divides by the appropriate conversion factors. 
For example, to convert the moment of a force which was found to 
be  M  5 47 lb ? in. into SI units, we use formulas (1.10) and (1.11) 
and write 

   M 5 47 lb ? in. 5 47(4.448 N)(25.4 mm)   
   5 5310 N ? mm 5 5.31 N ? m  

    The conversion factors given in this section may also be used 
to convert a numerical result obtained in SI units into U.S. custom-
ary units. For example, if the moment of a force was found to be 
 M  5 40 N ? m, we write, following the procedure used in the last 
paragraph of Sec. 1.4, 

  
M 5 40 N ? m 5 (40 N ? m) a 1 lb

4.448 N
b a 1 ft

0.3048 m
b

  

   Carrying out the numerical computations and canceling out units 
which appear in both the numerator and the denominator, we obtain 

  M 5 29.5 lb ? ft  

    The U.S. customary units most frequently used in mechanics 
with their SI equivalents are listed in  Table 1.3 .  

       1.6  METHOD OF PROBLEM SOLUTION  
 You should approach a problem in mechanics as you would 
approach an actual engineering situation. By drawing on your own 
experience and intuition, you will find it easier to understand and 
formulate the problem. Once the problem has been clearly stated, 
however, there is no place in its solution for your particular fancy. 
Your solution must be based on the fundamental principles of stat-
ics and the concepts you will learn in this course.  Every step taken 
must be justified on that basis. Strict rules must be followed, which 
lead to the  solution in an almost automatic fashion, leaving no 

1.6 Method of Problem Solution
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12 Introduction

room for your intuition or “feeling.” After an answer has been 
obtained, it should be checked. Here again, you may call upon 
your common sense and personal experience. If not completely 
satisfied with the result obtained, you should carefully check your 
formulation of the problem, the validity of the methods used for 
its solution, and the accuracy of your computations. 
    The  statement  of a problem should be clear and precise. It 
should contain the given data and indicate what information is 
required. A neat drawing showing all quantities involved should be 
included. Separate diagrams should be drawn for all bodies involved, 
indicating clearly the forces acting on each body. These diagrams are 
known as  free-body diagrams  and are described in detail in Secs. 
2.11 and 4.2. 
    The  fundamental principles  of mechanics listed in Sec. 1.2  will 
be used to write equations  expressing the conditions of rest or motion 

 TABLE 1.3  U.S. Customary Units and Their SI Equivalents 

          Quantity U.S. Customary Unit   SI Equivalent 

    Acceleration  ft/s 2    0.3048 m/s2  
     in./s2  0.0254 m/s2  
  Area  ft2   0.0929 m2 
     in 2  645.2 mm2 
  Energy ft ? lb   1.356 J  
 Force   kip  4.448 kN  
   lb   4.448 N 
    oz   0.2780 N 
 Impulse  lb ? s   4.448 N ? s  
 Length   ft  0.3048 m 
   in.   25.40 mm  
   mi   1.609 km 
 Mass   oz mass   28.35 g  
    lb mass 0.4536 kg  
  slug   14.59 kg  
   ton   907.2 kg  
 Moment of a force   lb ? ft   1.356 N ? m  
    lb ? in.  0.1130 N ? m 
 Moment of inertia      
   Of an area in 4    0.4162 3 106 mm 4   
   Of a mass  lb ? ft ? s 2    1.356 kg ? m2  
  Momentum lb ? s   4.448 kg ? m/s 
  Power   ft ? lb/s   1.356 W  
    hp   745.7 W 
  Pressure or stress   lb/ft 2    47.88 Pa 
   lb/in 2 (psi)   6.895 kPa  
 Velocity  ft/s   0.3048 m/s 
    in./s  0.0254 m/s 
    mi/h (mph)  0.4470 m/s 
    mi/h (mph)  1.609 km/h 
 Volume   ft 3   0.02832 m 3 
     in 3  16.39 cm3 
   Liquids  gal  3.785 L 
    qt   0.9464 L 
 Work   ft ? lb  1.356 J  
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13of the bodies considered. Each equation should be clearly related to 
one of the free-body diagrams. You will then proceed to solve the 
problem, observing strictly the usual rules of algebra and recording 
neatly the various steps taken. 
    After the answer has been obtained, it should be  carefully checked.  
Mistakes in  reasoning  can often be detected by checking the units. For 
example, to determine the moment of a force of 50 N about a point 
0.60 m from its line of action, we would have written (Sec. 3.12) 

  M 5 Fd 5 (50 N)(0.60 m) 5 30 N ? m 

   The unit N ? m obtained by multiplying newtons by meters is the 
correct unit for the moment of a force; if another unit had been 
obtained, we would have known that some mistake had been made. 
    Errors in computation  will usually be found by substituting the 
numerical values obtained into an equation which has not yet been 
used and verifying that the equation is satisfied. The importance of 
correct computations in engineering cannot be overemphasized.    

 1.7   NUMERICAL ACCURACY  
 The accuracy of the solution of a problem depends upon two items: 
(1) the accuracy of the given data and (2) the accuracy of the com-
putations performed. 
    The solution cannot be more accurate than the less accurate of 
these two items. For example, if the loading of a bridge is known to 
be 75,000 lb with a possible error of 100 lb either way, the relative 
error which measures the degree of accuracy of the data is 

  
100 lb

75,000 lb
5 0.0013 5 0.13 percent

  

   In computing the reaction at one of the bridge supports, it would 
then be meaningless to record it as 14,322 lb. The accuracy of the 
solution cannot be greater than 0.13 percent, no matter how accurate 
the computations are, and the possible error in the answer may be 
as large as (0.13/100)(14,322 lb) < 20 lb. The answer should be 
properly recorded as 14,320 6 20 lb. 
    In engineering problems, the data are seldom known with an 
accuracy greater than 0.2 percent. It is therefore seldom justified to 
write the answers to such problems with an accuracy greater than 0.2 
percent. A practical rule is to use 4 figures to record numbers begin-
ning with a “1” and 3 figures in all other cases. Unless otherwise 
indicated, the data given in a problem should be assumed known with 
a comparable degree of accuracy. A force of 40 lb, for example, should 
be read 40.0 lb, and a force of 15 lb should be read 15.00 lb. 
    Pocket electronic calculators are widely used by practicing 
engineers and engineering students. The speed and accuracy of 
these calculators facilitate the numerical computations in the solu-
tion of many problems. However, students should not record more 
significant figures than can be justified merely because they are 
easily obtained. As noted above, an accuracy greater than 0.2 per-
cent is seldom necessary or meaningful in the solution of practical 
engineering problems.                 

1.7   Numerical Accuracy
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14

Many engineering problems can be 

solved by considering the equilibrium of 

a “particle.” In the case of this 

excavator, which is being loaded onto 

a ship, a relation between the tensions 

in the various cables involved can be 

obtained by considering the equilibrium 

of the hook to which the cables are 

attached.
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2 C H A P T E R 

15

 Statics of Particles  
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        2.1   INTRODUCTION  
 In this chapter you will study the effect of forces acting on particles. 
First you will learn how to replace two or more forces acting on a 
given particle by a single force having the same effect as the original 
forces. This single equivalent force is the  resultant  of the original 
forces acting on the particle. Later the relations which exist among 
the various forces acting on a particle in a state of  equilibrium  will 
be derived and used to determine some of the forces acting on the 
particle. 
    The use of the word “particle” does not imply that our study 
will be limited to that of small corpuscles. What it means is that the 
size and shape of the bodies under consideration will not significantly 
affect the solution of the problems treated in this chapter and that 
all the forces acting on a given body will be assumed to be applied 
at the same point. Since such an assumption is verified in many 
practical applications, you will be able to solve a number of engineer-
ing problems in this chapter. 
    The first part of the chapter is devoted to the study of forces 
contained in a single plane, and the second part to the analysis of 
forces in three-dimensional space.    

 FORCES IN A PLANE       

 2.2    FORCE ON A PARTICLE. RESULTANT 
OF TWO FORCES  

 A force represents the action of one body on another and is generally 
characterized by its  point of application , its  magnitude , and its  direc-
tion.  Forces acting on a given particle, however, have the same point 
of application. Each force considered in this chapter will thus be 
completely defined by its magnitude and direction. 
    The magnitude of a force is characterized by a certain num-
ber of units. As indicated in Chap. 1, the SI units used by engi-
neers to measure the magnitude of a force are the newton (N) and 
its multiple the kilonewton (kN), equal to 1000 N, while the U.S. 
customary units used for the same purpose are the pound (lb) and 
its multiple the kilopound (kip), equal to 1000 lb. The direction 
of a force is defined by the  line of action  and the  sense  of the 
force. The line of action is the infinite straight line along which 
the force acts; it is characterized by the angle it forms with some 
fixed axis ( Fig. 2.1 ).     The force itself is represented by a segment of 

Fig. 2.1 (a)

A 30°
10 lb

(b)

A 30°
10 lb

 Chapter 2 Statics of Particles
 2.1 Introduction
 2.2  Force on a Particle. Resultant of 

Two Forces
 2.3 Vectors
 2.4 Addition of Vectors
 2.5 Resultant of Several Concurrent 

Forces
 2.6 Resolution of a Force into 

Components
 2.7 Rectangular Components of a 

Force. Unit Vectors
 2.8 Addition of Forces by Summing

X and Y Components
 2.9 Equilibrium of a Particle
 2.10 Newton’s First Law of Motion
 2.11 Problems Involving the 

Equilibrium of a Particle. Free-
Body Diagrams

 2.12 Rectangular Components of a 
Force in Space

 2.13 Force Defined by Its Magnitude 
and Two Points on Its Line of 
Action

 2.14 Addition of Concurrent Forces 
in Space

 2.15 Equilibrium of a Particle in Space

bee80156_ch02_014-063.indd Page 16  9/29/09  9:31:42 PM user-s173bee80156_ch02_014-063.indd Page 16  9/29/09  9:31:42 PM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-02/Volumes/MHDQ-New/MHDQ152/MHDQ152-02



17that line; through the use of an appropriate scale, the length of this 
segment may be chosen to represent the magnitude of the force. 
Finally, the sense of the force should be indicated by an arrowhead. 
It is important in defining a force to indicate its sense. Two forces 
having the same magnitude and the same line of action but different 
sense, such as the forces shown in  Fig. 2.1  a  and  b , will have directly 
opposite effects on a particle. 
    Experimental evidence shows that two forces  P  and  Q  acting 
on a particle  A  ( Fig. 2.2  a ) can be replaced by a single force  R  which 
has the same effect on the particle ( Fig. 2.2  c ). This force is called 
the  resultant  of the forces  P  and  Q  and can be obtained, as shown 
in  Fig. 2.2  b , by constructing a parallelogram, using  P  and  Q  as two 
adjacent sides of the parallelogram.  The diagonal that passes through 
A represents the resultant.  This method for finding the resultant is 
known as the  parallelogram law  for the addition of two forces. This 
law is based on experimental evidence; it cannot be proved or derived 
mathematically.    

 2.3   VECTORS  
 It appears from the above that forces do not obey the rules of addi-
tion defined in ordinary arithmetic or algebra. For example, two 
forces  acting at a right angle to each other, one of 4 lb and the other 
of 3 lb, add up to a force of 5 lb,  not  to a force of 7 lb. Forces are 
not the only quantities which follow the parallelogram law of addi-
tion. As you will see later,  displacements, velocities, accelerations , and 
 momenta  are other examples of physical quantities possessing mag-
nitude and direction that are added according to the parallelogram 
law. All these quantities can be represented mathematically by  vec-
tors , while those physical quantities which have magnitude but not 
direction, such as  volume, mass , or  energy , are represented by plain 
numbers or  scalars.  
    Vectors are defined as  mathematical expressions possessing 
magnitude and direction, which add according to the parallelo-
gram law.  Vectors are represented by arrows in the illustrations 
and will be distinguished from scalar quantities in this text through 
the use of boldface type ( P ). In longhand writing, a vector may be 
denoted by drawing a short arrow above the letter used to repre-
sent it (    P

S
) or by underlining the letter (P ). The last method may 

be preferred since underlining can also be used on a computer. 
The magnitude of a vector defines the length of the arrow used 
to represent the vector. In this text, italic type will be used to 
denote the magnitude of a vector. Thus, the magnitude of the vec-
tor  P  will be denoted by  P.  
    A vector used to represent a force acting on a given particle 
has a well-defined point of application, namely, the particle itself. 
Such a vector is said to be a  fixed , or  bound , vector and cannot be 
moved without modifying the conditions of the problem. Other 
physical quantities, however, such as couples (see Chap. 3), are 
represented by vectors that may be freely moved in space; these 

A

P

Q

(a)

A

P
R

Q

(b)

A

R

(c)

Fig. 2.2

2.3   Vectors
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18 Statics of Particles vectors are called  free  vectors. Still other physical quantities, such 
as forces acting on a rigid body (see Chap. 3), are represented by 
vectors which can be moved, or slid, along their lines of action; 
they are known as  sliding  vectors. †    
    Two vectors which have the same magnitude and the same 
direction are said to be  equal , whether or not they also have the same 
point of application ( Fig. 2.4 ); equal vectors may be denoted by the 
same letter. 
    The  negative vector  of a given vector  P  is defined as a vector 
 having the same magnitude as  P  and a direction opposite to that of 
 P  ( Fig. 2.5 ); the negative of the vector  P  is denoted by  2P . The 
vectors  P  and  2P  are commonly referred to as  equal and opposite  
vectors. Clearly, we have

  P 1 (2P) 5 0   

    2.4   ADDITION OF VECTORS  
 We saw in the preceding section that, by definition, vectors add 
according to the parallelogram law. Thus, the sum of two vectors  P  
and  Q  is obtained by attaching the two vectors to the same point  A  
and constructing a parallelogram, using  P  and  Q  as two sides of the 
parallelogram ( Fig. 2.6 ). The diagonal that passes through  A  repre-
sents the sum of the vectors  P  and  Q , and this sum is denoted by 
 P  1  Q . The fact that the sign 1 is used to denote both vector and 
scalar addition should not cause any confusion if vector and scalar 
quantities are always carefully distinguished. Thus, we should note 
that the magnitude of the vector  P  1  Q  is  not , in general, equal to 
the sum  P 1 Q  of the magnitudes of the vectors  P  and  Q . 
    Since the parallelogram constructed on the vectors  P  and  Q  does 
not depend upon the order in which  P  and  Q  are selected, we con-
clude that the addition of two vectors is  commutative , and we write

   P 1 Q 5 Q 1 P    (2.1)

†Some expressions have magnitude and direction but do not add according to the 
 parallelogram law. While these expressions may be represented by arrows, they cannot 
be considered as vectors.
 A group of such expressions is the finite rotations of a rigid body. Place a closed 
book on a table in front of you, so that it lies in the usual fashion, with its front cover 
up and its binding to the left. Now rotate it through 180° about an axis parallel to the 
binding (Fig. 2.3a); this rotation may be represented by an arrow of length equal to 
180 units and oriented as shown. Picking up the book as it lies in its new position, rotate 

Fig. 2.3 Finite rotations of a rigid body

= =

(a) (b)
180°

180°

Fig. 2.4

P

P

Fig. 2.5

P

–P

A

P
P + Q

Q

Fig. 2.6
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19    From the parallelogram law, we can derive an alternative 
method for determining the sum of two vectors. This method, known 
as the  triangle rule , is derived as follows. Consider  Fig. 2.6 , where 
the sum of the vectors  P  and  Q  has been determined by the paral-
lelogram law. Since the side of the parallelogram opposite  Q  is equal 
to  Q  in magnitude and direction, we could draw only half of the 
parallelogram ( Fig. 2.7  a ). The sum of the two vectors can thus be 
found by  arranging   P   and   Q   in tip-to-tail fashion and then connect-
ing the tail of   P   with the tip of   Q . In  Fig. 2.7  b , the other half of the 
parallelogram is considered, and the same result is obtained. This 
confirms the fact that vector addition is commutative. 
    The  subtraction  of a vector is defined as the addition of the 
corresponding negative vector. Thus, the vector  P 2 Q  representing 
the difference between the vectors  P  and  Q  is obtained by adding 
to  P  the negative vector  2Q  ( Fig. 2.8 ). We write

   P 2 Q 5 P 1 (2Q)    (2.2)

         Here again we should observe that, while the same sign is used to 
denote both vector and scalar subtraction, confusion will be avoided 
if care is taken to distinguish between vector and scalar quantities. 
    We will now consider the  sum of three or more vectors.  The 
sum of three vectors  P, Q , and  S  will,  by definition , be obtained by 
first adding the vectors  P  and  Q  and then adding the vector  S  to the 
vector  P 1 Q . We thus write

   P 1 Q 1 S 5 (P 1 Q) 1 S   (2.3)

Similarly, the sum of four vectors will be obtained by adding the 
fourth vector to the sum of the first three. It follows that the sum 
of any number of vectors can be obtained by applying repeatedly the 
parallelogram law to successive pairs of vectors until all the given 
vectors are replaced by a single vector. 

=
=

y

x

z

y

x

z

(c) (d)

180° 180°

180°

180°

it now through 180° about a horizontal axis perpendicular to the binding (Fig. 2.3b); this 
second rotation may be represented by an arrow 180 units long and oriented as shown. 
But the book could have been placed in this final position through a single 180° rotation 
about a vertical axis (Fig. 2.3c). We conclude that the sum of the two 180° rotations repre-
sented by arrows directed respectively along the z and x axes is a 180° rotation represented 
by an arrow directed along the y axis (Fig. 2.3d). Clearly, the finite rotations of a rigid 
body do not obey the parallelogram law of addition; therefore, they cannot be represented 
by vectors.

A

A

P

P

Q

Q

P + Q

P + Q

(a)

(b)

Fig. 2.7

P 
– 

Q

P
P

Q

–Q

(a) (b)

Fig. 2.8

2.4 Addition of Vectors
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20 Statics of Particles     If the given vectors are  coplanar , i.e., if they are contained in 
the same plane, their sum can be easily obtained graphically. For this 
case, the repeated application of the triangle rule is preferred to the 
application of the parallelogram law. In  Fig. 2.9  the sum of three 
vectors  P, Q , and  S  was obtained in that manner. The triangle rule 
was first applied to obtain the sum  P 1 Q  of the vectors  P  and  Q ; 
it was applied again to obtain the sum of the vectors  P 1 Q  and  S . 
The determination of the vector  P 1 Q , however, could have been 
omitted and the sum of the three vectors could have been obtained 
directly, as shown in  Fig. 2.10 ,  by arranging the given vectors in tip-
to-tail fashion and connecting the tail of the first vector with the tip 
of the last one.  This is known as the  polygon rule  for the addition of 
vectors. 
    We observe that the result obtained would have been unchanged 
if, as shown in  Fig. 2.11 , the vectors  Q  and  S  had been replaced by 
their sum  Q 1 S . We may thus write

   P 1 Q 1 S 5 (P 1 Q) 1 S 5 P 1 (Q 1 S)    (2.4)

   which expresses the fact that vector addition is  associative.  Recalling 
that vector addition has also been shown, in the case of two vectors, 
to be commutative, we write

    P 1 Q 1 S 5 (P 1 Q) 1 S 5 S 1 (P 1 Q)   
(2.5)    5 S 1 (Q 1 P) 5 S 1 Q 1 P   

This expression, as well as others which may be obtained in the same 
way, shows that the order in which several vectors are added together 
is immaterial ( Fig. 2.12 ).  

 Product of a Scalar and a Vector.   Since it is convenient to 
denote the sum  P 1 P  by  2P , the sum  P 1 P 1 P  by  3P , and, 
in  general, the sum of  n  equal vectors  P  by the product  n  P , we 
will define the product  n  P  of a positive integer  n  and a vector  P  
as a vector having the same direction as  P  and the magnitude  nP . 
Extending this definition to include all scalars, and recalling the 
definition of a negative vector given in Sec. 2.3, we define the 
product  k  P  of a scalar  k  and a vector  P  as a vector having the same 
direction as  P  (if  k  is positive), or a direction opposite to that of 
 P  (if  k  is negative), and a magnitude equal to the product of  P  and 
of the absolute value of  k  ( Fig. 2.13 ).     

 2.5   RESULTANT OF SEVERAL CONCURRENT FORCES  
 Consider a particle  A  acted upon by several coplanar forces, i.e., by 
several forces contained in the same plane ( Fig. 2.14  a ). Since the 
forces considered here all pass through  A , they are also said to be 
 concurrent.  The vectors representing the forces acting on  A  may be 
added by the polygon rule ( Fig. 2.14  b ). Since the use of the polygon 
rule is equivalent to the repeated application of the parallelogram 
law, the vector  R  thus obtained represents the resultant of the given 
concurrent forces, i.e., the single force which has the same effect on 

Fig. 2.13
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21

the particle  A  as the given forces. As indicated above, the order in 
which the vectors  P, Q , and  S  representing the given forces are 
added together is immaterial.    

 2.6   RESOLUTION OF A FORCE INTO COMPONENTS  
 We have seen that two or more forces acting on a particle may be 
replaced by a single force which has the same effect on the particle. 
Conversely, a single force  F  acting on a particle may be replaced by 
two or more forces which, together, have the same effect on the 
particle. These forces are called the  components  of the original force 
 F , and the process of substituting them for  F  is called  resolving the 
force   F   into components.  
    Clearly, for each force  F  there exist an infinite number of pos-
sible sets of components. Sets of  two components   P   and   Q  are the 
most important as far as practical applications are concerned. But, 
even then, the number of ways in which a given force  F  may be 
resolved into two components is unlimited ( Fig. 2.15 ). Two cases are 
of particular interest:  

   1.    One of the Two Components,   P  , Is Known.  The second com-
ponent,  Q , is obtained by applying the triangle rule and join-
ing the tip of  P  to the tip of F ( Fig. 2.16 ); the magnitude and 
direction of  Q  are determined graphically or by trigonometry. 
Once  Q  has been determined, both components  P  and  Q  
should be applied at  A .  

   2.    The Line of Action of Each Component Is Known.  The magni-
tude and sense of the components are obtained by applying the 
parallelogram law and drawing lines, through the tip of  F , par-
allel to the given lines of action ( Fig. 2.17 ). This process leads 
to two well-defined components,  P  and  Q , which can be deter-
mined graphically or computed trigonometrically by applying 
the law of sines.   

    Many other cases can be encountered; for example, the direc-
tion of one component may be known, while the magnitude of the 
other component is to be as small as possible (see Sample Prob. 2.2). 
In all cases the appropriate triangle or parallelogram which satisfies 
the given conditions is drawn.  

A

P

Q
F

Fig. 2.17

Fig. 2.16

A

P

Q

F

A
A

P

P

Q

Q

S

S

(a)

R

(b)

Fig. 2.14

A

A
A

P

P P

Q

Q

Q

F

F
F

(a) (b)

(c)

Fig. 2.15

2.6 Resolution of a Force into Components
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 SAMPLE PROBLEM 2.1 

 The two forces  P  and  Q  act on a bolt  A . Determine their resultant.     
25°

20°
A

Q = 60 N

P = 40 N

  SOLUTION  

 Graphical Solution.   A parallelogram with sides equal to  P  and  Q  is drawn 
to scale. The magnitude and direction of the resultant are measured and 
found to be

  R 5 98 N  a 5 35°  R 5 98 N a35° ◀   

      The triangle rule may also be used. Forces  P  and  Q  are drawn in tip-to-
tail fashion. Again the magnitude and direction of the resultant are measured.

  R 5 98 N  a 5 35°  R 5 98 N a35° ◀  

    Trigonometric Solution.   The triangle rule is again used; two sides and the 
included angle are known. We apply the law of cosines.

   R2 5 P2 1 Q2 2 2PQ cos B  
   R2 5 (40 N)2 1 (60 N)2 2 2(40 N)(60 N) cos 155°  
   R 5 97.73 N   

     Now, applying the law of sines, we write

   
 sin A

Q
5

 sin B
R

     sin A
60 N

5
 sin 155°
97.73 N    

(1)

Solving Eq. (1) for sin  A , we have

  
 sin A 5

(60 N) sin 155°
97.73 N   

 Using a calculator, we first compute the quotient, then its arc sine, 
and obtain

  A 5 15.04°  a 5 20° 1 A 5 35.04°   

     We use 3 significant figures to record the answer (cf. Sec. 1.7):

  R 5 97.7 N a35.0° ◀  

    Alternative Trigonometric Solution.   We construct the right triangle  BCD  
and compute

  CD 5 (60 N) sin 25° 5 25.36 N  
  BD 5 (60 N) cos 25° 5 54.38 N   

     Then, using triangle  ACD , we obtain

  
  tan  A 5

25.36 N
94.38 N

     A 5 15.04°
  

  
 R 5

25.36
 sin A

 R 5 97.73 N
  

Again,   a 5 20° 1 A 5 35.04° R 5 97.7 N a35.0° ◀         

A
P

Q

R

a

A
P

Q

R

�

155º 25°

20°

R

B

C

P = 40 N

Q = 60 N

aA

25°

20°

= 60 NQ

R

B

C

D

40

25.36

54.38

94.38

a
A
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 SAMPLE PROBLEM 2.2 

     A barge is pulled by two tugboats. If the resultant of the forces exerted by 
the tugboats is a 5000-lb force directed along the axis of the barge, determine 
( a ) the tension in each of the ropes knowing that a 5 45°, ( b ) the value of a 
for which the tension in rope 2 is minimum. 

30°
1

2
a

A

C

B

  SOLUTION  

 a.   Tension for a 5 45°.  Graphical Solution.    The parallelogram law is 
used; the diagonal (resultant) is known to be equal to 5000 lb and to be 
directed to the right. The sides are drawn parallel to the ropes. If the draw-
ing is done to scale, we measure

  T1 5 3700 lb  T2 5 2600 lb ◀   

  Trigonometric Solution.   The triangle rule can be used. We note that the 
triangle shown represents half of the parallelogram shown above. Using the 
law of sines, we write

  
T1

 sin 45°
5

T2

 sin 30°
5

5000 lb
 sin 105°  

 With a calculator, we first compute and store the value of the last quo-
tient. Multiplying this value successively by sin 45° and sin 30°, we obtain

  T1 5 3660 lb  T2 5 2590 lb ◀  

     b.   Value of a for Minimum  T  2 .   To determine the value of a for which the 
tension in rope 2 is minimum, the triangle rule is again used. In the sketch 
shown, line  1-1 9 is the known direction of  T  1 . Several possible directions of  T  2  
are shown by the lines 2-29. We note that the minimum value of  T  2  occurs 
when  T  1  and  T  2  are perpendicular. The minimum value of  T  2  is

  T2 5 (5000 lb) sin 30° 5 2500 lb  

Corresponding values of  T  1  and a are

  T1 5 (5000 lb) cos 30° 5 4330 lb  
   a 5 90° 2 30° a 5 60° ◀        

30° 45°

30°45°

5000 lb

T1

T2

B

45° 30°

5000 lb

105°
T1

T2

B

1

2
2

2

5000 lb
1'

2'

2'

2'

30°

5000 lb

T1
T2 90°

a
B
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PROBLEMS
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 2.1 and 2.2 Determine graphically the magnitude and direction of 
the resultant of the two forces shown using (a) the parallelogram 
law, (b) the triangle rule.

2.3 Two structural members B and C are bolted to the bracket A. 
Knowing that the tension in member B is 6 kN and that the tension 
in C is 10 kN, determine graphically the magnitude and direction 
of the resultant force acting on the bracket.

2.4 Two structural members B and C are bolted to the bracket A. 
Knowing that the tension in member B is 2500 lb and that the 
tension in C is 2000 lb, determine graphically the magnitude and 
direction of the resultant force acting on the bracket.

2.5 The force F of magnitude 100 lb is to be resolved into two com-
ponents along the lines a-a and b-b. Determine by trigonometry 
the angle a, knowing that the component of F along line a-a is 
70 lb.

2.6 The force F of magnitude 800 N is to be resolved into two com-
ponents along the lines a-a and b-b. Determine by trigonometry 
the angle a, knowing that the component of F along line b-b is 
120 N.

60�

800 lb

500 lb

35�

Fig. P2.2

45�

30�

900 N

600 N

Fig. P2.1

A

B

C 40°

15°

Fig. P2.3 and P2.4
F

50�

�

a

a
b

b

Fig. P2.5 and P2.6
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25Problems 2.7 A trolley that moves along a horizontal beam is acted upon by two 
forces as shown. (a) Knowing that a 5 25°, determine by trigo-
nometry the magnitude of the force P so that the resultant force 
exerted on the trolley is vertical. (b) What is the corresponding 
magnitude of the resultant?

 2.8 A disabled automobile is pulled by means of two ropes as shown. 
The tension in AB is 500 lb, and the angle a is 25°. Knowing 
that the resultant of the two forces applied at A is directed along 
the axis of the automobile, determine by trigonometry (a) the 
tension in rope AC, (b) the magnitude of the resultant of the 
two forces applied at A.

 2.9 Determine by trigonometry the magnitude of the force P so that 
the resultant of the two forces applied at A is vertical. What is the 
corresponding magnitude of the resultant?

 2.10 A disabled automobile is pulled by means of two ropes as shown. 
Knowing that the tension in rope AB is 750 lb, determine by trigo-
nometry the tension in rope AC and the value of a so that the 
resultant force exerted at A is a 1200-lb force directed along the 
axis of the automobile.

1600 N

P

15°

a

A

Fig. P2.7 and P2.11

C

B

�

30�
A

Fig. P2.8 and P2.10

P20 lb

40°

25° A

80°

Fig. P2.9 and P2.12
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 2.11 A trolley that moves along a horizontal beam is acted upon by two 
forces as shown. Determine by trigonometry the magnitude and 
direction of the force P so that the resultant is a vertical force of 
2500 N.

 2.12 Knowing that P 5 30 lb, determine by trigonometry the resultant 
of the two forces applied at point A.

 2.13 Solve Prob. 2.1 by trigonometry.

 2.14 Solve Prob. 2.4 by trigonometry.

 2.15 If the resultant of the two forces exerted on the trolley of Prob. 2.7 
is to be vertical, determine (a) the value of a for which the mag-
nitude of P is minimum, (b) the corresponding magnitude of P.

†The properties established in Secs. 2.7 and 2.8 may be readily extended to the 
rectangular components of any vector quantity.

  2.7    RECTANGULAR COMPONENTS OF A FORCE. 
UNIT VECTORS † 

   In many problems it will be found desirable to resolve a force into 
two components which are perpendicular to each other. In  Fig. 2.18 , 
the force  F  has been resolved into a component  F   x   along the  x  axis 
and a component  F   y   along the  y  axis. The parallelogram drawn to 
obtain the two components is a  rectangle , and  F   x   and  F   y   are called 
 rectangular components.  

O

F
Fy

Fx
x

y

�

Fig. 2.18

Fy
Fx

F
x

y

O

�

Fig. 2.19

    The  x  and  y  axes are usually chosen horizontal and vertical, 
respectively, as in  Fig. 2.18 ; they may, however, be chosen in any 
two perpendicular directions, as shown in  Fig. 2.19 . In determining 
the rectangular components of a force, the student should think of 
the construction lines shown in Figs. 2.18 and 2.19 as being  parallel  
to the  x  and  y  axes, rather than  perpendicular  to these axes. This 
practice will help avoid mistakes in determining  oblique  compo-
nents as in Sec. 2.6. 

26 Statics of Particles
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27    Two vectors of unit magnitude, directed respectively along 
the positive  x  and  y  axes, will be introduced at this point. These 
vectors are called  unit vectors  and are denoted by  i  and  j , respec-
tively ( Fig. 2.20 ). Recalling the definition of the product of a scalar 
and a vector given in Sec. 2.4, we note that the rectangular com-
ponents  F   x   and  F   y   of a force  F  may be obtained by multiplying 
respectively the unit vectors  i  and  j  by appropriate scalars ( Fig. 
2.21 ). We write

   Fx 5 Fxi  Fy 5 Fyj (2.6)               

   and

   F 5 Fxi 1 Fyj (2.7)  

While the scalars  F x   and  F y   may be positive or negative, depending 
upon the sense of  F   x   and of  F   y  , their absolute values are respectively 
equal to the magnitudes of the component forces  F   x   and  F   y  . The 
scalars  F x   and  F y   are called the  scalar components  of the force  F , 
while the actual component forces  F   x   and  F   y   should be referred to 
as the  vector components  of  F . However, when there exists no pos-
sibility of  confusion, the vector as well as the scalar components of 
 F  may be referred to simply as the  components  of  F . We note that 
the scalar component  F x   is positive when the vector component  F   x   
has the same sense as the unit vector  i  (i.e., the same sense as the 
positive  x  axis) and is negative when  F   x   has the opposite sense. A 
similar conclusion may be drawn regarding the sign of the scalar 
component  F y  . 
    Denoting by  F  the magnitude of the force  F  and by u the angle 
between  F  and the  x  axis, measured counterclockwise from the posi-
tive  x  axis ( Fig. 2.21 ), we may express the scalar components of  F  as 
follows:

   Fx 5 F cos u  Fy 5 F sin u (2.8)   

   We note that the relations obtained hold for any value of the angle u 
from 0° to 360° and that they define the signs as well as the absolute 
values of the scalar components  F x   and  F y  .  
  When a force  F  is defined by its rectangular components  F x   
and  F y   (see  Fig. 2.21 ), the angle u defining its direction can be 
obtained by writing

   
 tan u 5

Fy

Fx    
(2.9)

The magnitude  F  of the force can be obtained by applying the 
Pythagorean theorem and writing

   F 5 2F2
x 1 F2

y   (2.10)

or by solving for  F  from one of the formulas in Eqs. (2.8). 

F = 800 N

F = 800 N

35º

A

A

(a)

(b)

x

y

Fy

Fx

� = 35º

� = 145º

Fig. 2.22

x

y

Magnitude = 1j

i

Fig. 2.20

F

x

y

Fy = Fy j

Fx = Fx i

j

i

�

Fig. 2.21

2.7 Rectangular Components of a Force. Unit 
Vectors
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28 Statics of Particles  EXAMPLE 2.1   A force of 800 N is exerted on a bolt  A  as shown in 
 Fig. 2.22  a . Determine the horizontal and vertical components of the force. 
        In order to obtain the correct sign for the scalar components  F x   and 
 F y  , the value 180° 2 35° 5 145° should be substituted for u in Eqs. (2.8). 
However, it will be found more practical to determine by inspection the 
signs of  F x   and  F y   ( Fig. 2.22  b ) and to use the trigonometric functions of the 
angle a 5 35°. We write, therefore,

   Fx 5 2F cos a 5 2(800 N) cos 35° 5 2655 N  
   Fy 5 1F sin a 5 1(800 N) sin 35° 5 1459 N   

 The vector components of  F  are thus

  Fx 5 2(655 N)i Fy 5 1(459 N)j  

and we may write  F  in the form

  F 5 2(655 N)i 1 (459 N)j ◾     

 EXAMPLE 2.2   A man pulls with a force of 300 N on a rope attached 
to a building, as shown in  Fig. 2.23  a . What are the horizontal and vertical 
components of the force exerted by the rope at point  A ? 
        It is seen from  Fig. 2.23  b  that

  Fx 5 1(300 N) cos a Fy 5 2(300 N) sin a  

Observing that  AB  5 10 m, we find from  Fig. 2.23  a 

  
 cos a 5

8 m
AB

5
8 m

10 m
5

4
5
       sin a 5

6 m
AB

5
6 m

10 m
5

3
5  

We thus obtain

  Fx 51(300 N)4
5 51240 N       Fy 52(300 N)3

5 52180 N  

and write

  F 5 (240 N)i 2 (180 N)j    ◾

   EXAMPLE 2.3   A force  F  5 (700 lb) i  1 (1500 lb) j  is applied to a bolt 
 A.  Determine the magnitude of the force and the angle u it forms with the 
horizontal. 
  First we draw a diagram showing the two rectangular components of 
the force and the angle u ( Fig. 2.24 ). From Eq. (2.9), we write

  
 tan u 5

Fy

Fx
5

1500 lb
700 lb    

        Using a calculator, †    we enter 1500 lb and divide by 700 lb; computing 
the arc tangent of the quotient, we obtain u 5 65.0°. Solving the second 
formula of Eqs. (2.8) for  F , we have

  
F 5

Fy

 sin u
5

1500 lb
 sin 65.0°

5 1655 lb
  

The last calculation is facilitated if the value of  F y   is stored when originally 
entered; it may then be recalled to be divided by sin u.      ◾

†It is assumed that the calculator used has keys for the computation of trigonometric 
and inverse trigonometric functions. Some calculators also have keys for the direct 
 conversion of rectangular coordinates into polar coordinates, and vice versa. Such 
 calculators eliminate the need for the computation of trigonometric functions in 
 Examples 2.1, 2.2, and 2.3 and in problems of the same type.

A x

y

F

Fx = (700 lb) i

F
y 

= 
(1

50
0 

lb
)j

�

Fig. 2.24

(b)

Fig. 2.23

(a)

F = 300 N

6 m

8 m

A

A

B

Fy

Fx

x

y

�

�

�
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292.8 Addition of Forces by Summing 
X and Y Components 2.8    ADDITION OF FORCES BY SUMMING 

 X  AND  Y  COMPONENTS  
 It was seen in Sec. 2.2 that forces should be added according to the 
parallelogram law. From this law, two other methods, more readily 
applicable to the  graphical  solution of problems, were derived in 
Secs. 2.4 and 2.5: the triangle rule for the addition of two forces and 
the polygon rule for the addition of three or more forces. It was also 
seen that the force triangle used to define the resultant of two forces 
could be used to obtain a  trigonometric  solution. 
    When three or more forces are to be added, no practical trigo-
nometric solution can be obtained from the force polygon which 
defines the resultant of the forces. In this case, an  analytic  solution 
of the problem can be obtained by resolving each force into two 
rectangular components. Consider, for instance, three forces  P, Q , 
and  S  acting on a particle  A  ( Fig. 2.25  a ). Their resultant  R  is 
defined by the relation

   R 5 P 1 Q 1 S    (2.11)

         Resolving each force into its rectangular components, we write

   Rxi 1 Ryj 5 Pxi 1 Pyj 1 Qxi 1 Qyj 1 Sxi 1 Syj  
   5 (Px 1 Qx 1 Sx)i 1 (Py 1 Qy 1 Sy)j  

from which it follows that

   Rx 5 Px 1 Qx 1 Sx  Ry 5 Py 1 Qy 1 Sy   (2.12)

or, for short,

   Rx 5 oFx  Ry 5 oFy    (2.13)

   We thus conclude that  the scalar components R x   and  R y  of the 
resultant   R   of several forces acting on a particle are obtained by 
adding algebraically the corresponding scalar components of the 
given forces.  † 
     In practice, the determination of the resultant  R  is carried out 
in three steps as illustrated in  Fig. 2.25 . First the given forces shown 
in  Fig. 2.25  a  are resolved into their  x  and  y  components ( Fig. 2.25  b ). 
Adding these components, we obtain the  x  and  y  components of  R  
( Fig. 2.25  c ). Finally, the resultant  R  5  R x   i  1  R y    j  is determined by 
applying the parallelogram law ( Fig. 2.25  d ). The procedure just 
described will be carried out most efficiently if the computations are 
arranged in a table. While it is the only practical analytic method for 
adding three or more forces, it is also often preferred to the trigo-
nometric solution in the case of the addition of two forces.  

†Clearly, this result also applies to the addition of other vector quantities, such as 
velocities, accelerations, or momenta.

(b)

(c)

S

P

Q

A

A

(a)

(d )

A

R

q

Py j

Sy j

Sx i

Qy j

Qxi

Ry j

R x i

Px i

Fig. 2.25
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 SAMPLE PROBLEM 2.3 

 Four forces act on bolt  A  as shown. Determine the resultant of the forces 
on the bolt.  

F2 = 80 N F1 = 150 N

F3 = 110 N

F4 = 100 N

20°

30°

15° x

y

A

 SOLUTION 

 The  x  and  y  components of each force are determined by trigonometry as 
shown and are entered in the table below. According to the convention 
adopted in Sec. 2.7, the scalar number representing a force component is 
positive if the force component has the same sense as the corresponding 
coordinate axis. Thus,  x  components acting to the right and  y  components 
acting upward are represented by positive numbers. 

(F2 cos 20°) j

(F1 sin 30°) j

(F1 cos 30°) i

–(F2 sin 20°) i
(F4 cos 15°) i

–(F4 sin 15°) j

–F3 j
             Force   Magnitude, N    x  Component, N    y  Component, N  

     F  1    150   1129.9   175.0  
   F  2     80   227.4   175.2  
   F  3    110   0   2110.0  
   F  4    100   196.6   225.9  

         R x   5 1199.1    R y   5 114.3     

  Thus, the resultant  R  of the four forces is

  R 5 Rxi 1 Ryj  R 5 (199.1 N)i 1 (14.3 N)j   ◀

 The magnitude and direction of the resultant may now be determined. 
From the triangle shown, we have

   
  tan a 5

Ry

Rx
5

14.3 N
199.1 N

    a 5 4.1°
  

   
 R 5

14.3 N
 sin a

5 199.6 N
 

R 5 199.6 N a4.1°   ◀

 With a calculator, the last computation may be facilitated if the value 
of  R y   is stored when originally entered; it may then be recalled to be divided 
by sin a. (Also see the footnote on p. 28.)      

R

Ry = (14.3 N) j Rx = (199.1 N) i

a

30
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PROBLEMS

3131

 2.16 through 2.19 Determine the x and y components of each of 
the forces shown.

2.20 The tension in the support wire AB is 65 lb. Determine the hori-
zontal and vertical components of the force acting on the pin at A.

60�
25�

45�
350 N

800 N600 N
y

x

Fig. P2.16

80 lb

120 lb

150 lb

30�

45�

40�

y

x

Fig. P2.17

145 lb

200 lb

21 in.

20 in.

7 in.

y

x

24 in.

A

B

O

Fig. P2.18

y

xO

AB

75 mm

40 mm
135 mm

72 mm

340 N

255 N

Fig. P2.19

A

B

24 in.

10 in.

Fig. P2.20

56�

30�

A

D

G

B

E

C

F

Fig. P2.21

2.21 The hydraulic cylinder GE exerts on member DF a force P directed 
along line GE. Knowing that P must have a 600-N component 
perpendicular to member DF, determine the magnitude of P and 
its component parallel to DF.
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32 Statics of Particles  2.22 Cable AC exerts on beam AB a force P directed along line 
AC. Knowing that P must have a 350-lb vertical component, 
determine (a) the magnitude of the force P, (b) its horizontal 
component.

 2.23 The hydraulic cylinder BD exerts on member ABC a force P 
directed along line BD. Knowing that P must have a 750-N com-
ponent perpendicular to member ABC, determine (a) the magni-
tude of the force P, (b) its component parallel to ABC.

 2.24 Using x and y components, solve Prob. 2.1.

 2.25 Using x and y components, solve Prob. 2.2.

 2.26 Determine the resultant of the three forces of Prob. 2.17.

 2.27 Determine the resultant of the three forces of Prob. 2.19.

 2.28 Two cables of known tensions are attached to the top of pylon AB. 
A third cable AC is used as a guy wire. Determine the tension in 
AC, knowing that the resultant of the forces exerted at A by the 
three cables must be vertical.

A

B

C

55°

Fig. P2.2260°

50°

B

C

D

A

Fig. P2.23

A

C
B

45 kN

20 kN

32 m

24 m

30�

12�

Fig. P2.28
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 2.29 A hoist trolley is subjected to the three forces shown. Knowing that 
a 5 40°, determine (a) the magnitude of the force P for which 
the resultant of the three forces is vertical, (b) the corresponding 
magnitude of the resultant.

 2.30 A hoist trolley is subjected to the three forces shown. Knowing that 
P 5 250 lb, determine (a) the value of the angle a for which the 
resultant of the three forces is vertical, (b) the corresponding mag-
nitude of the resultant.

 2.31 A collar that can slide on a vertical rod is subjected to the three 
forces shown. The direction of the force F may be varied. If pos-
sible, determine the direction of the force F so that the resultant 
of the three forces is horizontal, knowing that the magnitude of F 
is (a) 2.4 kN, (b) 1.4 kN.

�

�

400 lb

P

200 lb

Fig. P2.29 and P2.30

Fα

800 N

1200 N

60°

Fig. P2.31

A

100 lb

100 lb

Fig. 2.26

   2.9   EQUILIBRIUM OF A PARTICLE  
 In the preceding sections, we discussed the methods for determining 
the resultant of several forces acting on a particle. Although it has 
not occurred in any of the problems considered so far, it is quite 
possible for the resultant to be zero. In such a case, the net effect 
of the given forces is zero, and the particle is said to be in equilibrium. 
We thus have the following definition:  When the resultant of all the 
forces acting on a particle is zero, the particle is in equilibrium.  
    A particle which is acted upon by two forces will be in equi-
librium if the two forces have the same magnitude and the same line 
of action but opposite sense. The resultant of the two forces is then 
zero. Such a case is shown in  Fig. 2.26 . 

332.9 Equilibrium of a Particle
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34 Statics of Particles           Another case of equilibrium of a particle is represented in 
 Fig. 2.27 , where four forces are shown acting on  A.  In  Fig. 2.28 , 
the resultant of the given forces is determined by the polygon rule. 
Starting from point  O  with  F  1  and arranging the forces in tip-to-tail 
fashion, we find that the tip of  F  4  coincides with the starting point  O . 
Thus the resultant  R  of the given system of forces is zero, and the 
particle is in equilibrium. 
          The closed polygon drawn in  Fig. 2.28  provides a  graphical  
expression of the equilibrium of  A.  To express  algebraically  the con-
ditions for the equilibrium of a particle, we write

   R 5 oF 5 0    (2.14)

         Resolving each force  F  into rectangular components, we have

  o(Fxi 1 Fyj) 5 0  or  (oFx)i 1 (oFy)j 5 0  

We conclude that the necessary and sufficient conditions for the 
equilibrium of a particle are

   oFx 5 0  oFy 5 0   (2.15)

Returning to the particle shown in  Fig. 2.27 , we check that the equi-
librium conditions are satisfied. We write

   oFx 5 300 lb 2 (200 lb) sin 30° 2 (400 lb) sin 30°
 5 300 lb 2 100 lb 2 200 lb 5 0  
   oFy 5 2173.2 lb 2 (200 lb) cos 30° 1 (400 lb) cos 30°
 5 2173.2 lb 2 173.2 lb 1 346.4 lb 5 0      

 2.10   NEWTON’S FIRST LAW OF MOTION  
 In the latter part of the seventeenth century, Sir Isaac Newton for-
mulated three fundamental laws upon which the science of mechan-
ics is based. The first of these laws can be stated as follows:  
   If the resultant force acting on a particle is zero, the particle 
will remain at rest (if originally at rest) or will move with constant 
speed in a straight line (if originally in motion).   
    From this law and from the definition of equilibrium given in 
Sec. 2.9, it is seen that a particle in equilibrium either is at rest or 
is moving in a straight line with constant speed. In the following 
section, various problems concerning the equilibrium of a particle 
will be considered.    

 2.11    PROBLEMS INVOLVING THE EQUILIBRIUM 
OF A PARTICLE. FREE-BODY DIAGRAMS  

 In practice, a problem in engineering mechanics is derived from an 
actual physical situation. A sketch showing the physical conditions of 
the problem is known as a  space diagram.  
    The methods of analysis discussed in the preceding sections 
apply to a system of forces acting on a particle. A large number of 
problems involving actual structures, however, can be reduced to 
problems concerning the equilibrium of a particle. This is done by 

A

F1 = 300 lb

F2 = 173.2 lb

F4 = 400 lb

F3 = 200 lb

30º

30º

Fig. 2.27

F4 = 400 lb

F1 = 300 lb

F3 = 200 lb

F2 = 173.2 lb

O

Fig. 2.28
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35choosing a significant particle and drawing a separate diagram show-
ing this particle and all the forces acting on it. Such a diagram is 
called a  free-body diagram.  
    As an example, consider the 75-kg crate shown in the space 
diagram of  Fig. 2.29  a.  This crate was lying between two buildings, 
and it is now being lifted onto a truck, which will remove it. The crate 
is supported by a vertical cable, which is joined at  A  to two ropes 
which pass over pulleys attached to the buildings at  B  and  C.  It is 
desired to determine the tension in each of the ropes  AB  and  AC . 
    In order to solve this problem, a free-body diagram showing a 
particle in equilibrium must be drawn. Since we are interested in 
the rope tensions, the free-body diagram should include at least one 
of these tensions or, if possible, both tensions. Point  A  is seen to be 
a good free body for this problem. The free-body diagram of point  A  
is shown in  Fig. 2.29  b.  It shows point  A  and the forces exerted on 
 A  by the vertical cable and the two ropes. The force exerted by the 
cable is directed downward, and its magnitude is equal to the weight  W  
of the crate. Recalling Eq. (1.4), we write

  W 5 mg 5 (75 kg)(9.81 m/s2) 5 736 N  

and indicate this value in the free-body diagram. The forces exerted 
by the two ropes are not known. Since they are respectively equal 
in magnitude to the tensions in rope  AB  and rope  AC , we denote 
them by  T   AB   and  T   AC   and draw them away from  A  in the directions 
shown in the space diagram. No other detail is included in the free-
body diagram. 
    Since point  A  is in equilibrium, the three forces acting on it 
must form a closed triangle when drawn in tip-to-tail fashion. This 
 force triangle  has been drawn in  Fig. 2.29  c . The values  T AB   and  T AC   
of the tension in the ropes may be found graphically if the triangle 
is drawn to scale, or they may be found by trigonometry. If the latter 
method of solution is chosen, we use the law of sines and write

  
TAB

 sin 60°
5

TAC

 sin 40°
5

736 N
 sin 80°

  

  TAB 5 647 N  TAC 5 480 N   

    When a particle is in  equilibrium under three forces , the problem 
can be solved by drawing a force triangle. When a particle is in  equi-
librium under more than three forces , the problem can be solved graph-
ically by drawing a force polygon. If an analytic solution is desired, the 
 equations of equilibrium  given in Sec. 2.9 should be solved:

   oFx 5 0  oFy 5 0 (2.15)  

These equations can be solved for no more than  two unknowns;  
similarly, the force triangle used in the case of equilibrium under 
three forces can be solved for two unknowns. 
    The more common types of problems are those in which the 
two unknowns represent (1) the two components (or the magnitude 
and direction) of a single force, (2) the magnitudes of two forces, 
each of known direction. Problems involving the determination of 
the maximum or minimum value of the magnitude of a force are also 
encountered (see Probs. 2.40 through 2.45).  

TAB
TAC

A

A

B

C

50º 30º

50º 30º

(a) Space diagram

(b) Free-body diagram (c) Force triangle

736 N

TAB

TAC

736 N

40º

60º
80º

Fig. 2.29

2.11 Problems Involving the Equilibrium of a 
Particle. Free-Body Diagrams

Photo 2.1 As illustrated in the above example, 
it is possible to determine the tensions in the 
cables supporting the shaft shown by treating 
the hook as a particle and then applying the 
equations of equilibrium to the forces acting on 
the hook.
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 SAMPLE PROBLEM 2.4 

 In a ship-unloading operation, a 3500-lb automobile is supported by a cable. 
A rope is tied to the cable at  A  and pulled in order to center the automobile 
over its intended position. The angle between the cable and the vertical is 2°, 
while the angle between the rope and the horizontal is 30°. What is the 
tension in the rope?  

 SOLUTION 

  Free-Body Diagram.  Point  A  is chosen as a free body, and the complete 
free-body diagram is drawn.  T AB   is the tension in the cable  AB , and  T AC   is 
the tension in the rope. 

  Equilibrium Condition.  Since only three forces act on the free body, we draw 
a force triangle to express that it is in equilibrium. Using the law of sines, we 
write

  
TAB

 sin 120°
5

TAC

 sin 2°
5

3500 lb
 sin 58°    

  With a calculator, we first compute and store the value of the last quotient. 
Multiplying this value successively by sin 120° and sin 2°, we obtain

   TAB 5 3570 lb TAC 5 144 lb ◀      

TAB

TAC

TAB

TAC

2°

2°

30°
A

3500 lb

3500 lb

120°

58°

36

 SAMPLE PROBLEM 2.5 

 Determine the magnitude and direction of the smallest force  F  which will 
maintain the package shown in equilibrium. Note that the force exerted by 
the rollers on the package is perpendicular to the incline.  

 SOLUTION 

  Free-Body Diagram.  We choose the package as a free body, assuming that 
it can be treated as a particle. We draw the corresponding free-body 
diagram. 

  Equilibrium Condition.  Since only three forces act on the free body, we 
draw a force triangle to express that it is in equilibrium. Line  1-1 9 represents 
the known direction of  P . In order to obtain the minimum value of the 
force  F , we choose the direction of  F  perpendicular to that of  P.  From the 
geometry of the triangle obtained, we find

  F 5 (294 N) sin 15° 5 76.1 N  a 5 15°  
   F 5 76.1 N b15° ◀      

2°

30°
A

C

B

15°

30 kg F
�

15°

FP

W = (30 kg)(9.81 m/s2)
     = 294 N

�

F

P

15°

1

1'

294 N

�
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 SOLUTION 

  Determination of the Angles.  First, the angles a and b defining the direc-
tion of cables  AB  and  AC  are determined. We write

  
  tan a 5

7 ft
4 ft

5 1.75         tan b 5
1.5 ft
4 ft

5 0.375
  

   a 5 60.26°      b 5 20.56°   

 Free-Body Diagram.  Choosing the hull as a free body, we draw the free-
body diagram shown. It includes the forces exerted by the three cables on 
the hull, as well as the drag force  F   D   exerted by the flow. 

  Equilibrium Condition.  We express that the hull is in equilibrium by writ-
ing that the resultant of all forces is zero:

   R 5 TAB 1 TAC 1 TAE 1 FD 5 0     (1)

 Since more than three forces are involved, we resolve the forces into  x  and  y  
components:

   TAB 5 2(40 lb) sin 60.26°i 1 (40 lb) cos 60.26°j  
   5 2(34.73 lb)i 1 (19.84 lb)j  
   TAC 5 TAC sin 20.56°i 1 TAC cos 20.56°j  
   5 0.3512TACi 1 0.9363TACj  
   TAE 5 2(60 lb)j  
   FD 5 FDi   

 Substituting the expressions obtained into Eq. (1) and factoring the unit 
vectors  i  and  j , we have

  (234.73 lb 1 0.3512TAC 1 FD)i 1 (19.84 lb 1 0.9363TAC 2 60 lb)j 5 0   

 This equation will be satisfied if, and only if, the coefficients of  i  and  j  are 
equal to zero. We thus obtain the following two equilibrium equations, 
which express, respectively, that the sum of the  x  components and the sum 
of the  y  components of the given forces must be zero.

  (oFx 5 0:) 234.73 lb 1 0.3512TAC 1 FD 5 0  (2)  
  (oFy 5 0:) 19.84 lb 1 0.9363TAC 2 60 lb 5 0  (3)  

From Eq. (3) we find    TAC 5 142.9 lb ◀  
and, substituting this value into Eq. (2),    FD 5 119.66 lb ◀   

 In drawing the free-body diagram, we assumed a sense for each unknown 
force. A positive sign in the answer indicates that the assumed sense is correct. 
The complete force polygon may be drawn to check the results.     

TAC

FD

TAB = 40 lb

TAE = 60 lb

α = 60.26°

β = 20.56°

A

FDi

TAC sin 20.56° i

TAC cos 20.56° j

20.56°
60.26°

(40 lb) cos 60.26° j

–(40 lb) sin 60.26° i

–(60 lb) j

y

xA

TAC = 42.9 lb

TAE = 60 lb

TAB = 40 lb

FD = 19.66 lb

β = 20.56°

α = 60.26°

37

Flow A

B C

E

4 ft

4 ft

7 ft 1.5 ft

a
b

 SAMPLE PROBLEM 2.6 

 As part of the design of a new sailboat, it is desired to determine the drag force 
which may be expected at a given speed. To do so, a model of the proposed hull 
is placed in a test channel and three cables are used to keep its bow on the cen-
terline of the channel. Dynamometer readings indicate that for a given speed, 
the tension is 40 lb in cable  AB  and 60 lb in cable  AE . Determine the drag force 
exerted on the hull and the tension in cable  AC .  

bee80156_ch02_014-063.indd Page 37  9/29/09  9:33:02 PM user-s173bee80156_ch02_014-063.indd Page 37  9/29/09  9:33:02 PM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-02/Volumes/MHDQ-New/MHDQ152/MHDQ152-02



PROBLEMS

38

 2.32 through 2.35 Two cables are tied together at C and loaded 
as shown. Determine the tension in AC and BC.

 2.36 Two cables are tied together at C and loaded as shown. Knowing 
that P 5 500 N and a 5 60°, determine the tension in AC
and BC.

3 m

2.25 m

1.4 m

660 N

A

C

B

Fig. P2.32

40° 20°
A B

C

300 lb

Fig. P2.33

75°

75°

200 kg

C

A

B

Fig. P2.34

B

C

A

3600 lb

48 in.

20 in.
55 in.

Fig. P2.35

45º
A B

C

P

25º

α

Fig. P2.36
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39Problems 2.37 Two forces of magnitude TA 5 8 kips and TB 5 15 kips are applied 
as shown to a welded connection. Knowing that the connection is in 
equilibrium, determine the magnitudes of the forces TC and TD.

 2.38 Two forces of magnitude TA 5 6 kips and TC 5 9 kips are applied 
as shown to a welded connection. Knowing that the connection is in 
equilibrium, determine the magnitudes of the forces TB and TD.

 2.39 Two forces of magnitude TA 5 5000 N and TB 5 2500 N are 
applied as shown to the connection shown. Knowing that the con-
nection is in equilibrium, determine the magnitudes of the forces 
TC and TD.

 2.40 Determine the range of values of P for which both cables remain 
taut.

 2.41 For the cables of Prob. 2.36, it is known that the maximum allow-
able tension is 600 N in cable AC and 750 N in cable BC. Deter-
mine (a) the maximum force P that can be applied at C, (b) the 
corresponding value of a.

 2.42 Two ropes are tied together at C. If the maximum permissible 
tension in each rope is 2.5 kN, what is the maximum force F that 
can be applied? In what direction must this maximum force act?

40° TB

TD

TC

TA

Fig. P2.37 and P2.38

TB TC

TDTA

30°

Fig. P2.39

30º

3

4

P

A

B C

120 lb

Fig. P2.40

F

50º

C

A B20º

α

Fig. P2.42
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40 Statics of Particles

 2.48 The directions of the 60-lb forces may vary, but the angle between 
the forces is always 45°. Determine the value of a for which the 
resultant of the forces acting at A is directed vertically upward.

A

B

C
6 kN

55°

α

Fig. P2.45

65 lb

C h

15 in.

A
60 lb

Fig. P2.46

30º
A B

C

P

45º

a

Fig. P2.47
45°

30°a

60 lb

60 lb 200 lb

A

Fig. P2.48

 2.46 The 60-lb collar A can slide on a frictionless vertical rod and is 
connected as shown to a 65-lb counterweight C. Determine the 
value of h for which the system is in equilibrium.

 2.47 The force P is applied to a small wheel that rolls on the cable ACB. 
Knowing that the tension in both parts of the cable is 750 N, 
determine the magnitude and direction of P.

C

A

600 lb

B
60�

α

Fig. P2.43 and P2.44

 2.43 A 600-lb block is supported by two cables AC and BC. (a) For what 
value of a is the tension in cable AC maximum? (b) What are the 
corresponding values of the tension in cables AC and BC?

 2.44 A 600-lb block is supported by two cables AC and BC. Determine 
(a) the value of a for which the larger of the cable tensions is as 
small as possible, (b) the corresponding values of the tension in 
cables AC and BC.

 2.45 Two cables are tied together at C as shown. Find the value of a 
for which the tension is as small as possible (a) in cable BC, (b) in 
both cables simultaneously. In each case determine the tension in 
both cables.
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41Problems 2.49 A 3.6-m length of steel pipe of mass 300 kg is lifted by a crane 
cable CD. Determine the tension in the cable sling ACB, knowing 
that the length of the sling is (a) 4.5 m, (b) 6 m.

 2.50 A movable bin and its contents weigh 700 lb. Determine the short-
est chain sling ACB that can be used to lift the loaded bin if the 
tension in the chain is not to exceed 1250 lb.

 2.51 A 250-kg crate is supported by several rope-and-pulley arrange-
ments as shown. Determine for each arrangement the tension in 
the rope. (The tension in the rope is the same on each side of a 
simple pulley. This can be proved by the methods of Chap. 4.)

3.6 m

A

C

B

D

Fig. P2.49

A

C

28 in.

B

48 in.

Fig. P2.50

 2.52 Solve parts b and d of Prob. 2.51 assuming that the free end of 
the rope is attached to the crate.

 2.53 A 450-lb crate is to be supported by the rope-and-pulley arrange-
ment shown. Determine the magnitude and direction of the force F 
that should be exerted on the free end of the rope.

 2.54 For W 5 800 N, P 5 200 N, and d 5 600 mm, determine the 
value of h to maintain equilibrium.

T

T
T T T

(a) (b) (c) (d) (e)

Fig. P2.51
�

8 ft
F

2.5 ft

450 lb

Fig. P2.53

P

h

d d

W

Fig. P2.54
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 2.55 The collar A can slide freely on the horizontal smooth rod. Deter-
mine the magnitude of the force P required to maintain equilib-
rium when (a) c 5 9 in., (b) c 5 16 in.

P

c

B

A
30 lb

12 in.

Fig. P2.55

 FORCES IN SPACE     

  2.12    RECTANGULAR COMPONENTS 
OF A FORCE IN SPACE  

 The problems considered in the first part of this chapter involved 
only two dimensions; they could be formulated and solved in a single 
plane. In this section and in the remaining sections of the chapter, 
we will discuss problems involving the three dimensions of space. 
    Consider a force  F  acting at the origin  O  of the system of 
rectangular coordinates  x, y, z.  To define the direction of  F , we draw 
the vertical plane  OBAC  containing  F  ( Fig. 2.30  a ). This plane passes 
through the vertical  y  axis; its orientation is defined by the angle f 
it forms with the  xy  plane. The direction of  F  within the plane is 
defined by the angle u  y   that  F  forms with the  y  axis. The force  F  
may be resolved into a vertical component  F   y   and a horizontal com-
ponent  F   h  ; this operation, shown in  Fig. 2.30  b , is carried out in plane 
 OBAC  according to the rules developed in the first part of the chap-
ter. The corresponding scalar components are
   Fy 5 F cos uy  Fh 5 F sin uy    (2.16)
         But  F   h   may be resolved into two rectangular components  F   x   and  F   z   
along the  x  and  z  axes, respectively. This operation, shown in  Fig. 2.30  c , 
is carried out in the  xz  plane. We obtain the following expressions for 
the corresponding scalar components:

  Fx 5 Fh cos f 5 F sin uy cos f
 Fz 5 Fh sin f 5 F sin uy sin f    

(2.17)

   The given force  F  has thus been resolved into three rectangular vec-
tor components  F   x  ,  F   y  ,  F   z  , which are directed along the three coor-
dinate axes. 
    Applying the Pythagorean theorem to the triangles  OAB  and 
 OCD  of  Fig. 2.30 , we write

   F2 5 (OA)2  5 (OB)2  1 (BA)2  5 F2
y 1 F2

h  
   F2

h 5 (OC)2 5 (OD)2 1 (DC)2 5 F2
x 1 F2

z   

(a)

A

B

C

z

y

x
O

F

�

�y

(b)

Fh

Fy A

B

C

z

y

x
O

F�y

(c)

Fh

Fy

Fx

Fz

E

D

B

C
z

y

x
O

�

Fig. 2.30

42 Statics of Particles
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Fig. 2.31

y

x

z

ik

j

Fig. 2.32

   Eliminating   F2
h   from these two equations and solving for  F , we obtain 

the following relation between the magnitude of  F  and its rectangular 
scalar components: 

     F 5 2F2
x 1 F2

y 1 F2
z (2.18)

    The relationship existing between the force  F  and its three com-
ponents  F   x  ,  F   y  ,  F   z   is more easily visualized if a “box” having  F   x  ,  F   y  , 
 F   z   for edges is drawn as shown in  Fig. 2.31 . The force  F  is then rep-
resented by the diagonal  OA  of this box. Figure 2.31 b  shows the right 
triangle  OAB  used to derive the first of the formulas (2.16):  F y   5 
 F  cos u  y  . In  Fig. 2.31  a  and  c , two other right triangles have also been 
drawn:  OAD  and  OAE.  These triangles are seen to occupy in the box 
positions comparable with that of triangle  OAB.  Denoting by u  x   and 
u  z  , respectively, the angles that  F  forms with the  x  and  z  axes, we can 
derive two formulas similar to  F y   5  F  cos u  y.   We thus write

   Fx 5 F cos ux  Fy 5 F cos uy  Fz 5 F cos uz    (2.19)

         The three angles u  x  , u  y  , u  z   define the direction of the force  F ; they are 
more commonly used for this purpose than the angles u  y   and f intro-
duced at the beginning of this section. The cosines of u  x  , u  y  , u  z       are 
known as the  direction cosines  of the force  F . 
    Introducing the unit vectors  i ,  j , and  k , directed respectively 
along the  x ,  y , and  z  axes ( Fig. 2.32 ), we can express  F  in the form

   F 5 Fxi 1 Fyj 1 Fzk    (2.20)

         where the scalar components  F x  ,  F y  ,  F z   are defined by the relations 
(2.19).  

 EXAMPLE 2.4   A force of 500 N forms angles of 60°, 45°, and 120°, 
respectively, with the  x ,  y , and  z  axes. Find the components  F x  ,  F y  , and  F z   
of the force. 
  Substituting  F  5 500 N, u  x   5 60°, u  y   5 45°, u  z   5 120° into formulas 
(2.19), we write

   Fx 5 (500 N) cos 60° 5 1250 N  
   Fy 5 (500 N) cos 45° 5 1354 N  
   Fz 5 (500 N) cos 120° 5 2250 N   

 Carrying into Eq. (2.20) the values obtained for the scalar components of 
 F , we have

  F 5 (250 N)i 1 (354 N)j 2 (250 N)k   

 As in the case of two-dimensional problems, a plus sign indicates that the 
component has the same sense as the corresponding axis, and a minus sign 
indicates that it has the opposite sense.   ◾

    The angle a force  F  forms with an axis should be measured from 
the positive side of the axis and will always be between 0 and 180°. An 
angle u  x   smaller than 90° (acute) indicates that  F  (assumed attached to 
 O ) is on the same side of the  yz  plane as the positive  x  axis; cos u  x   and 
 F x   will then be positive. An angle u  x   larger than 90° (obtuse) indicates 
that  F  is on the other side of the  yz  plane; cos u  x   and  F x   will then be 

2.12 Rectangular Components of a Force in 
Space
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44 Statics of Particles negative. In Example 2.4 the angles u  x   and u  y   are acute, while u  z   is 
obtuse; consequently,  F x   and  F y   are positive, while  F z   is negative. 
    Substituting into (2.20) the expressions obtained for  F x  ,  F y  ,  F z   
in (2.19), we write

   F 5 F(cos uxi 1 cos uyj 1 cos uzk)   (2.21)

which shows that the force  F  can be expressed as the product of the 
scalar  F  and the vector

   l 5 cos uxi 1 cos uyj 1 cos uzk    (2.22)

   Clearly, the vector l is a vector whose magnitude is equal to 1 and 
whose direction is the same as that of  F  ( Fig. 2.33 ). The vector  l  is 
referred to as the  unit vector  along the line of action of  F . It follows 
from (2.22) that the components of the unit vector  l  are respectively 
equal to the direction cosines of the line of action of  F :

   lx 5 cos ux  ly 5 cos uy  lz 5 cos uz    (2.23)

          We should observe that the values of the three angles u  x  , u  y  , u  z   
are not independent. Recalling that the sum of the squares of the 
components of a vector is equal to the square of its magnitude, we 
write

  l  

2
x 1 l2

y 1 l2
z 5 1  

or, substituting for l  x  , l  y  , l  z   from (2.23),

    cos2 ux 1  cos2 uy 1  cos2 uz 5 1    (2.24)

   In Example 2.4, for instance, once the values u  x   5 60° and u  y   5 45° 
have been selected, the value of u  z    must  be equal to 60° or 120° in 
order to satisfy identity (2.24). 
    When the components  F x  ,  F y  ,  F z   of a force  F  are given, the 
magnitude  F  of the force is obtained from (2.18). †  The relations 
(2.19) can then be solved for the direction cosines,

   
 cos ux 5

Fx

F
  cos uy 5

Fy

F
  cos uz 5

Fz

F    
(2.25)

and the angles u  x  , u  y  , u  z   characterizing the direction of  F  can be 
found.  

 EXAMPLE 2.5   A force  F  has the components  F x   5 20 lb,  F y   5 230 lb,  F z  5 
 60 lb. Determine its magnitude  F  and the angles u  x  , u  y  , u  z   it forms with the 
coordinate axes. 
  From formula (2.18) we obtain†

   F 5 2F2
x 1 F2

y 1 F2
z   

   5 2 (20 lb)2 1 (230 lb)2 1 (60 lb)2  
   5 14900 lb 5 70 lb    

x

y

z

λλ (Magnitude = 1)

F = F λλ

Fy j

Fxi

Fzk

cos �y j

cos �zk

cos �xi

Fig. 2.33

†With a calculator programmed to convert rectangular coordinates into polar coordinates, 
the following procedure will be found more expeditious for computing F: First determine 
Fh from its two rectangular components Fx and Fz (Fig. 2.30c), then determine F from 
its two rectangular components Fh and Fy (Fig. 2.30b). The actual order in which the 
three components Fx, Fy, Fz are entered is immaterial.
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452.13 Force Defi ned by its Magnitude and Two 
Points on its Line of Action

 Substituting the values of the components and magnitude of  F  into Eqs. 
(2.25), we write

  
cos ux 5

Fx

F
5

20 lb
70 lb       

cos uy 5
Fy

F
5

230 lb
70 lb      

cos uz 5
Fz

F
5

60 lb
70 lb  

 Calculating successively each quotient and its arc cosine, we obtain

  u  x   5 73.4°  u  y   5 115.4°  u  z   5 31.0°   

 These computations can be carried out easily with a calculator.      ◾

 2.13    FORCE DEFINED BY ITS MAGNITUDE AND TWO 
POINTS ON ITS LINE OF ACTION  

 In many applications, the direction of a force  F  is defined by the 
coordinates of two points,  M ( x  1 ,  y  1 ,  z  1 ) and  N ( x  2 ,  y  2 ,  z  2 ), located on its
line of action ( Fig. 2.34 ). Consider the vector   MN

¡
   joining  M  and  N  

y

x

z

O

M(x1, y1, z1)

N(x2, y2, z2)

dy = y2 –  y1

dz = z2 –  z1 < 0

d x = x2 –  x1

F

λ

Fig. 2.34

         and of the same sense as  F . Denoting its scalar components by  d x  ,  d y  , 
 d z  , respectively, we write

   MN
¡

5 dxi 1 dyj 1 dzk    (2.26)

   The unit vector l along the line of action of  F  (i.e., along the line  MN )
may be obtained by dividing the vector   MN

¡
   by its magnitude  MN.  

Substituting for   MN
¡

   from (2.26) and observing that  MN  is equal to 
the distance  d  from  M  to  N , we write

   L 5
MN
¡

MN
5

1
d

 (dxi 1 dy j 1 dzk)    (2.27)

   Recalling that  F  is equal to the product of  F  and l, we have

   
F 5 FL 5

F
d

 (dxi 1 dyj 1 dzk)
   

(2.28)

from which it follows that the scalar components of  F  are, 
respectively,

   
Fx 5

Fdx

d      
Fy 5

Fdy

d   
Fz 5

Fdz

d  
(2.29)
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46 Statics of Particles     The relations (2.29) considerably simplify the determination of 
the components of a force  F  of given magnitude  F  when the line of 
action of  F  is defined by two points  M  and  N.  Subtracting the coor-
dinates of  M  from those of  N , we first determine the components of
the vector   MN

¡
   and the distance  d  from  M  to  N :

  dx 5 x2 2 x1  dy 5 y2 2 y1  dz 5 z2 2 z1  

  d 5 2d2
x 1 d2

y 1 d2
z   

   Substituting for  F  and for  d x  ,  d y  ,  d z  , and  d  into the relations (2.29), 
we obtain the components  F x  ,  F y  ,  F z   of the force. 
    The angles u  x  , u  y  , u  z   that  F  forms with the coordinate axes can 
then be obtained from Eqs. (2.25). Comparing Eqs. (2.22) and (2.27), 
we can also write

   
 cos ux 5

dx

d
    cos uy 5

dy

d
    cos uz 5

dz

d    
(2.30)

and determine the angles u  x  , u  y  , u  z       directly from the components and
magnitude of the vector   MN

¡
.      

 2.14   ADDITION OF CONCURRENT FORCES IN SPACE  
 The resultant  R  of two or more forces in space will be determined by 
summing their rectangular components. Graphical or trigonometric 
methods are generally not practical in the case of forces in space. 
    The method followed here is similar to that used in Sec. 2.8 
with coplanar forces. Setting

  R 5 oF  

we resolve each force into its rectangular components and write

   Rxi 1 Ryj 1 Rzk 5 o(Fxi 1 Fyj 1 Fzk)  
   5 (oFx)i 1 (oFy) j 1 (oFz)k  

from which it follows that

   Rx 5 oFx  Ry 5 oFy  Rz 5 oFz (2.31)   

   The magnitude of the resultant and the angles u  x  , u  y  , u  z   that the 
resultant forms with the coordinate axes are obtained using the 
method discussed in Sec. 2.12. We write

   R 5 2R2
x 1 R2

y 1 R2
z (2.32)  

   
 cos ux 5

Rx

R
   cos uy 5

Ry

R
   cos uz 5

Rz

R  
(2.33)
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 SOLUTION  

  a.    Components of the Force.  The line of action of the force acting on 
the bolt passes through  A  and  B , and the force is directed from 
 A  to  B . The components of the vector   AB

¡
  , which has the same direction 

as the force, are

  dx 5 240 m  dy 5 180 m  dz 5 130 m  

The total distance from  A  to  B  is

  AB 5 d 5 2d2
x 1 d2

y 1 d2
z 5 94.3 m  

Denoting by  i ,  j ,  k  the unit vectors along the coordinate axes, we have

  AB
¡

5 2(40 m)i 1 (80 m)j 1 (30 m)k  

Introducing the unit vector   L 5 AB
¡

/AB,   we write

  
F 5 FL 5 F  

AB
¡

AB
5

2500 N
94.3 m

  AB
¡

  

Substituting the expression found for   AB
¡

  , we obtain

  
 F 5

2500 N
94.3 m

 [2(40 m)i 1 (80 m)j 1 (30 m)k]
  

   F 5 2(1060 N)i 1 (2120 N)j 1 (795 N)k   

The components of  F , therefore, are

    Fx 5 21060 N  Fy 5 12120 N  Fz 5 1795 N ◀    

  b.    Direction of the Force.  Using Eqs. (2.25), we write

  
cos ux 5

Fx

F
5

21060 N
2500 N

    cos uy 5
Fy

F
5

12120 N
2500 N   

  
 cos uz 5

Fz

F
5

1795 N
2500 N   

Calculating successively each quotient and its arc cosine, we obtain

   ux 5 115.1°  uy 5 32.0°  uz 5 71.5° ◀  

( Note.  This result could have been obtained by using the components and 
magnitude of the vector   AB

¡
   rather than those of the force  F .)      

A

B

F

y

z

x
k

j

i

80 m 40 m

30 m

λ

A

B

y

z

x

qy

qx

qz

 SAMPLE PROBLEM 2.7 

 A tower guy wire is anchored by means of a bolt at  A.  The tension in the 
wire is 2500 N. Determine ( a ) the components  F x  ,  F y  ,  F z   of the force acting 
on the bolt, ( b ) the angles u  x  , u  y  , u  z   defining the direction of the force.  

A

B

80 m 40 m

30 m

47
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48

 SAMPLE PROBLEM 2.8 

 A wall section of precast concrete is temporarily held by the cables shown. 
Knowing that the tension is 840 lb in cable  AB  and 1200 lb in cable  AC , 
determine the magnitude and direction of the resultant of the forces exerted 
by cables  AB  and  AC  on stake  A.   

C

B

A

16 ft

16 ft
8 ft

11 ft

y

z

x

ik

j
TAB = (840 lb) λλAB

TAC = (1200 lb) λλAC

λλAB

λλAC

 SOLUTION 

  Components of the Forces.  The force exerted by each cable on stake  A  
will be resolved into  x, y , and  z  components. We first determine the com-
ponents and magnitude of the vectors   AB

¡
   and AC

¡
    , measuring them from 

 A  toward the wall section. Denoting by  i ,  j ,  k  the unit vectors along the 
coordinate axes, we write

   AB
¡

5 2(16 ft)i 1 (8 ft)j 1 (11 ft)k    AB 5 21 ft  
     AC
¡

5 2(16 ft)i 1 (8 ft)j 2 (16 ft)k    AC 5 24 ft     

 Denoting by   lAB   the unit vector along  AB , we have

  
TAB 5 TABLAB 5 TAB

AB
¡

AB
5

840 lb
21 ft

 AB
¡

   

 Substituting the expression found for   AB
¡

  , we obtain

  
 TAB 5

840 lb
21 ft

[2(16 ft)i 1 (8 ft)j 1 (11 ft)k]
  

    TAB 5 2(640 lb)i 1 (320 lb)j 1 (440 lb)k   

 Denoting by   lAC   the unit vector along  AC , we obtain in a similar way

   
 TAC 5 TACLAC 5 TAC

AC
¡

AC
5

1200 lb
24 ft

 AC
¡

  
   TAC 5 2(800 lb)i 1 (400 lb)j 2 (800 lb)k   

  Resultant of the Forces.  The resultant  R  of the forces exerted by the two 
cables is

  R 5 TAB 1 TAC 5 2(1440 lb)i 1 (720 lb)j 2 (360 lb)k   

 The magnitude and direction of the resultant are now determined:

  R 5 2R2
x 1 R2

y 1 R2
z 5 2 (21440)2 1 (720)2 1 (2360)2

   R 5 1650 lb ◀  
From Eqs. (2.33) we obtain

  
 cos ux 5

Rx

R
5

21440 lb
1650 lb

    cos uy 5
Ry

R
5

1720 lb
1650 lb   

  
 cos uz 5

Rz

R
5

2360 lb
1650 lb    

 Calculating successively each quotient and its arc cosine, we have

    ux 5 150.8°  uy 5 64.1°  uz 5 102.6° ◀       

27 ft

C

D

A

B

8 ft

16 ft

11 ft
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PROBLEMS

49

 2.56 Determine (a) the x, y, and z components of the 250-N force, (b) the 
angles ux, uy, and uz that the force forms with the coordinate axes.

2.57 Determine (a) the x, y, and z components of the 300-N force, (b) the 
angles ux, uy, and uz that the force forms with the coordinate axes.

2.58 The angle between the guy wire AB and the mast is 20°. Knowing 
that the tension in AB is 300 lb, determine (a) the x, y, and z 
components of the force exerted on the boat at B, (b) the angles 
ux, uy, and uz defining the direction of the force exerted at B.

 2.59 The angle between the guy wire AC and the mast is 20°. Knowing 
that the tension in AC is 300 lb, determine (a) the x, y, and z 
components of the force exerted on the boat at C, (b) the angles 
ux, uy, and uz defining the direction of the force exerted at C.

 2.60 A gun is aimed at a point A located 20° west of north. Knowing 
that the barrel of the gun forms an angle of 35° with the horizontal 
and that the maximum recoil force is 800 N, determine (a) the x, 
y, and z components of the force, (b) the angles ux, uy, and uz 
defining the direction of the recoil force. (Assume that the x, y, 
and z axes are directed, respectively, east, up, and south.)

 2.61 Solve Prob. 2.60, assuming that point A is located 25° north of west 
and that the barrel of the gun forms an angle of 30° with the 
horizontal.

 2.62 Determine the magnitude and direction of the force F 5 2(240 lb)i 
2 (320 lb)j 1 (600 lb)k.

 2.63 Determine the magnitude and direction of the force F 5 (690 lb)i 1 
(300 lb)j 2 (580 lb)k.

 2.64 A force acts at the origin in a direction defined by the angles uy 5 
120° and uz 5 75°. It is known that the x component of the force is 
140 N. Determine the magnitude of the force and the value of ux.

 2.65 A 250-lb force acts at the origin in a direction defined by the angles 
ux 5 65° and uy 5 40°. It is known that the z component of the 
force is positive. Determine the value of ux and the components of 
the force.

 2.66 A force acts at the origin in a direction defined by the angles ux 5 
70° and uz 5 130°. Knowing that the y component of the force is 
1400 lb, determine (a) the other components and the magnitude 
of the force, (b) the value of uy.

 2.67 A force acts at the origin in a direction defined by the angles uy 5 
65° and uz 5 40°. Knowing that the x component of the force is 
2750 N, determine (a) the other components and the magnitude 
of the force, (b) the value of ux.

y

x

z

250 N

300 N

O

25°

40°
30°

20°

  Fig. P2.56 and P2.57    

x

z

40°
40°

y

A

C
B

  Fig. P2.58 and P2.59    
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50 Statics of Particles  2.68 Knowing that the tension in cable AB is 900 N, determine the 
components of the force exerted on the plate at A.

 2.69 Knowing that the tension in cable BC is 450 N, determine the 
components of the force exerted on the plate at C.

 2.70 Knowing that the tension in cable AB is 285 lb, determine the 
components of the force exerted on the plate at B.

x

y

z

B

C

D

A

O

1.6 m

2.8 m

3.6 m

0.8 m

1.6 m

  Fig. P2.68 and P2.69    

x

y

z

A

B

D

C

O

30 in.

46 in.

18 in.

45 in.

  Fig. P2.70, P2.71, and P2.73  

z

y

x

450 lb

600 lb

O

30°
55°

40°

25°

  Fig. P2.72  

 2.71 Knowing that the tension in cable AC is 426 lb, determine the 
components of the force exerted on the plate at C.

 2.72 Determine the resultant of the two forces shown.

 2.73 Knowing that the tension is 285 lb in cable AB and 426 lb in cable 
AC, determine the magnitude and direction of the resultant of the 
forces exerted at A by the two cables.
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51Problems 2.74 The angle between each of the springs AB and AC and the post 
DA is 30°. Knowing that the tension is 50 lb in spring AB and 40 lb 
in spring AC, determine the magnitude and direction of the resul-
tant of the forces exerted by the springs on the post at A.

 2.75 Determine the two possible values of uy for a force F, (a) if the 
force forms equal angles with the positive x, y, and z axes, (b) if 
the force forms equal angles with the positive y and z axes and an 
angle of 45° with the positive x axis.

 2.76 Knowing that the tension in AB is 39 kN, determine the required 
values of the tension in AC and AD so that the resultant of the 
three forces applied at A is vertical.

y

x

z

35°35°

A

C
D

B

h � 24 in.

  Fig. P2.74  

z

x

y

16 m

16 m

14 m

48 m

24 m

12 m

O
D

B

C

A

  Fig. P2.76 and P2.77    
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 2.77 Knowing that the tension in AC is 28 kN, determine the required 
values of the tension in AB and AD so that the resultant of the 
three forces applied at A is vertical.

 2.78 The boom OA carries a load P and is supported by two cables as 
shown. Knowing that the tension in cable AB is 732 N and that 
the resultant of the load P and of the forces exerted at A by the 
two cables must be directed along OA, determine the tension in 
cable AC.

z

480 mm

580 mm

500 mm

960 mm
A

C

B

O

y
720 mm

x

P

  Fig. P2.78  

 2.79 For the boom and loading of Prob. 2.78, determine the magnitude 
of the load P.

52 Statics of Particles

  2.15   EQUILIBRIUM OF A PARTICLE IN SPACE  
 According to the definition given in Sec. 2.9, a particle  A  is in equi-
librium if the resultant of all the forces acting on  A  is zero. The com-
ponents  R x  ,  R y  ,  R z   of the resultant are given by the relations (2.31); 
expressing that the components of the resultant are zero, we write

   oFx 5 0  oFy 5 0  oFz 5 0 (2.34)   

   Equations (2.34) represent the necessary and sufficient conditions 
for the equilibrium of a particle in space. They can be used to solve 
problems dealing with the equilibrium of a particle involving no 
more than three unknowns. 
    To solve such problems, you first should draw a free-body dia-
gram showing the particle in equilibrium and  all  the forces acting on 
it. You can then write the equations of equilibrium (2.34) and solve 
them for three unknowns. In the more common types of problems, 
these unknowns will represent (1) the three components of a single 
force or (2) the magnitude of three forces, each of known direction.  

Photo 2.2 While the tension in the four cables 
supporting the car cannot be found using the 
three equations of (2.34), a relation between the 
tensions can be obtained by considering the 
equilibrium of the hook.
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 SAMPLE PROBLEM 2.9 

 A 200-kg cylinder is hung by means of two cables  AB  and  AC , which are 
attached to the top of a vertical wall. A horizontal force  P  perpendicular to 
the wall holds the cylinder in the position shown. Determine the magnitude 
of  P  and the tension in each cable.  A

B

C

P

8 m

10 m

1.2 m

2 m200kg
12 m

 SOLUTION 

  Free-body Diagram.  Point  A  is chosen as a free body; this point is sub-
jected to four forces, three of which are of unknown magnitude. 
  Introducing the unit vectors  i, j, k , we resolve each force into rect-
angular components.
    P 5 Pi  
   W 5 2mgj 5 2(200 kg)(9.81 m/s2)j 5 2(1962 N)j    

(1)

 In the case of  T   AB   and  T   AC  , it is necessary first to determine the com-
ponents and magnitudes of the vectors   AB

¡
   and   AC

¡
.   Denoting by   LAB   the 

unit vector along  AB , we write

  AB
¡

5 2(1.2 m)i 1 (10 m)j 1 (8 m)k    AB 5 12.862 m  

  
LAB 5

AB
¡

12.862 m
5 20.09330i 1 0.7775j 1 0.6220k

  
   TAB 5 TABLAB 5 20.09330TABi 1 0.7775TABj 1 0.6220TABk    (2)

 Denoting by   lAC   the unit vector along  AC , we write in a similar way
  AC
¡

5 2(1.2 m)i 1 (10 m)j 2 (10 m)k  AC 5 14.193 m  

  
LAC 5

AC
¡

14.193 m
5 20.08455i 1 0.7046j 2 0.7046k

  
   TAC 5 TAClAC 5 20.08455TACi 1 0.7046TACj 2 0.7046TACk    (3)

  Equilibrium Condition.  Since  A  is in equilibrium, we must have
  oF 5 0: TAB 1 TAC 1 P 1 W 5 0  
or, substituting from (1), (2), (3) for the forces and factoring  i, j, k ,
  (20.09330TAB 2 0.08455TAC 1 P)i

1 (0.7775TAB 1 0.7046TAC 2 1962 N)j
1 (0.6220TAB 2 0.7046TAC)k 5 0   

 Setting the coefficients of  i, j, k  equal to zero, we write three scalar equa-
tions, which express that the sums of the  x, y , and  z  components of the 
forces are respectively equal to zero.
  (oFx 5 0:)  20.09330TAB 2 0.08455TAC 1 P 5 0  
  (oFy 5 0:)  10.7775TAB 1 0.7046TAC 2 1962 N 5 0  
  (oFz 5 0:)  10.6220TAB 2 0.7046TAC 5 0   
 Solving these equations, we obtain

  P 5 235 N  TAB 5 1402 N  TAC 5 1238 N ◀       

W

12 m

C

B

z

y

x

A
O

P

8 m

10 m

1.2 m

2 m

TAB

j
TAC

k

i

�AB

��AC
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PROBLEMS

54

 2.80 A container is supported by three cables that are attached to a 
ceiling as shown. Determine the weight W of the container know-
ing that the tension in cable AB is 6 kN.

y

x

z

450 mm 500 mm

360 mm

320 mm

600 mm

A

C

D

B

W

  Fig. P2.80, P2.81, and P2.82  

x

y

z

D

W

C

A

B

O

12 ft

5 ft

4 ft

6ft

9 ft

Fig. P2.83, P2.84, and P2.85

 2.84 A load W is supported by three cables as shown. Determine the 
value of W knowing that the tension in cable CD is 300 lb.

2.85 A load W of magnitude 555 lb is supported by three cables as 
shown. Determine the tension in each cable.

2.81 A container is supported by three cables that are attached to a 
ceiling as shown. Determine the weight W of the container know-
ing that the tension in cable AD is 4.3 kN.

2.82 A container of weight W 5 9.32 kN is supported by three cables 
that are attached to a ceiling as shown. Determine the tension in 
each cable.

 2.83 A load W is supported by three cables as shown. Determine the 
value of W knowing that the tension in cable BD is 975 lb.
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55Problems

 2.89 Three cables are connected at A, where the forces P and Q are 
applied as shown. Knowing that Q 5 36.4 kN and that the tension 
in cable AD is zero, determine (a) the magnitude and sense of P, 
(b) the tension in cables AB and AC.

 2.90 In trying to move across a slippery icy surface, a 175-lb man uses 
two ropes AB and AC. Knowing that the force exerted on the man 
by the icy surface is perpendicular to that surface, determine the 
tension in each rope.

180 lb

D
A

B

C

18 in.

16 in.

22 in.

24 in.

24 in.

Fig. P2.86
12 in.

3 in.

3 in.

4 in.
8 in.

x

z

D

C

A

B

y

Fig. P2.87

y

xz

7 m

7 m

4 m

4 m
3 m

4 m
12 m

3 m

D

E

B

C

A

Q

P

Fig. P2.88 and P2.89

z
16 ft

8 ft

B

A

C
O

x

y

4 ft

30 ft

32 ft

12 ft

Fig. P2.90

 2.86 Three wires are connected at point D, which is located 18 in. 
below the T-shaped pipe support ABC. Determine the tension in 
each wire when a 180-lb container is suspended from point D as 
shown.

 2.87 A triangular plate of weight 18 lb is supported by three wires as 
shown. Determine the tension in each wire.

 2.88 Three cables are connected at A, where the forces P and Q are 
applied as shown. Determine the tension in each of the cables 
when P 5 0 and Q 5 36.4 kN.
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56 Statics of Particles  2.91 Solve Prob. 2.90, assuming that a friend is helping the man at A 
by pulling on him with a force P 5 2(45 lb)k.

 2.92 A container of weight W 5 360 N is supported by cables AB and 
AC, which are tied to ring A. Knowing that Q 5 0, determine (a) 
the magnitude of the force P that must be applied to the ring to 
maintain the container in the position shown, (b) the correspond-
ing values of the tension in cables AB and AC.

 2.93 Solve Prob. 2.92 knowing that Q 5 (60 N)k.

 2.94 A container is supported by a single cable that passes through a 
frictionless ring A and is attached to fixed points B and C. Two forces 
P 5 Pi and Q 5 Qk are applied to the ring to maintain the container 
in the position shown. Knowing that the weight of the container is 
W 5 660 N, determine the magnitudes of P and Q. (Hint: The 
tension must be the same in portions AB and AC of the cable.)

 2.95 Determine the weight W of the container of Prob. 2.94 knowing 
that P 5 478 N.

 2.96 Cable BAC passes through a frictionless ring A and is attached to 
fixed supports at B and C, while cables AD and AE are both tied 
to the ring and are attached, respectively, to supports at D and E. 
Knowing that a 200-lb vertical load P is applied to ring A, deter-
mine the tension in each of the three cables.

 2.97 Knowing that the tension in cable AE of Prob. 2.96 is 75 lb, deter-
mine (a) the magnitude of the load P, (b) the tension in cables 
BAC and AD.

 2.98 The uniform circular ring shown has a mass of 20 kg and a diam-
eter of 300 mm. It is supported by three wires each of length 
250 mm. If a 5 120°, b 5 150°, and g 5 90°, determine the ten-
sion in each wire.

D

x

E
OB

25 in.

17.5 in. 45 in.

60 in.

80 in.

y

C

A

z

P

Fig. P2.96

A

B

C
�

� �

D

Fig. P2.98

Q
P

O

A

C

B

y

x
z

W

160 mm

480 mm

120 mm

220 mm

240 mm

Fig. P2.92 and P2.94
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57Problems 2.99 Collar A weighs 5.6 lb and may slide freely on a smooth vertical 
rod; it is connected to collar B by wire AB. Knowing that the length 
of wire AB is 18 in., determine the tension in the wire when (a) c 5 
2 in., (b) c 5 8 in.

 2.100 Solve Prob. 2.99 when (a) c 5 14 in., (b) c 5 16 in.

 2.101 Two wires are attached to the top of pole CD. It is known that the 
force exerted by the pole is vertical and that the 500-lb force 
applied to point C is horizontal. If the 500-lb force is parallel to 
the z axis (a 5 90°), determine the tension in each cable.

 2.102 Three cables are connected at D, where an upward force of 30 kN 
is applied. Determine the tension in each cable.

 2.103 A 6-kg circular plate of 200-mm radius is supported as shown by 
three wires of length L. Knowing that a 5 30°, determine the 
smallest permissible value of the length L if the tension is not to 
exceed 35 N in any of the wires.

y

x

z

8 in.

c

A

B

W

P

Fig. P2.99

500 lby

A

C

D

B

z

60°

30°
40°

a

x

Fig. P2.101

30 kN

y

xz

0.75 m

3 m

1 m

1 m
1.5m

D

A

C

B

Fig. P2.102

A

D
O

B

C
�

�

Fig. P2.103
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58

   REVIEW AND SUMMARY 

 In this chapter we have studied the effect of forces on particles, i.e., 
on bodies of such shape and size that all forces acting on them may 
be assumed applied at the same point. 

 Forces are  vector quantities;  they are characterized by a  point of 
application, a magnitude , and a  direction , and they add according to 
the  parallelogram law  ( Fig. 2.35 ). The magnitude and direction of 
the resultant  R  of two forces  P  and  Q  can be determined either 
graphically or by trigonometry, using successively the law of cosines 
and the law of sines [Sample Prob. 2.1]. 

 Any given force acting on a particle can be resolved into two or more 
components , i.e., it can be replaced by two or more forces which 
have the same effect on the particle. A force  F  can be resolved into 
two components  P  and  Q  by drawing a parallelogram which has  F
for its diagonal; the components  P  and  Q  are then represented by 
the two adjacent sides of the parallelogram ( Fig. 2.36 ) and can be 
determined either graphically or by trigonometry [Sec. 2.6]. 

  A force  F  is said to have been resolved into two  rectangular 
components  if its components  F   x   and  F   y   are perpendicular to each 
other and are directed along the coordinate axes ( Fig. 2.37 ). Intro-
ducing the  unit vectors   i  and  j  along the  x  and  y  axes, respectively, 
we write [Sec. 2.7]

   Fx 5 Fxi  Fy 5 Fyj (2.6)   

 and

   F 5 Fxi 1 Fyj (2.7)  

where  F x   and  F y   are the  scalar components  of  F.  These components, 
which can be positive or negative, are defined by the relations

   Fx 5 F cos u  Fy 5 F sin u (2.8)   

  When the rectangular components  F x   and  F y   of a force  F  are 
given, the angle u defining the direction of the force can be obtained 
by writing

   
 tan u 5

Fy

Fx     
(2.9)

 The magnitude  F  of the force can then be obtained by solving one 
of the equations (2.8) for  F  or by applying the Pythagorean theorem 
and writing

   F 5 2F2
x 1 F2

y    (2.10)

    Resultant of two forces        Resultant of two forces    

    Components of a force        Components of a force    

    Rectangular components 
Unit vectors    

    Rectangular components 
Unit vectors    

Q

R

P

A
  Fig. 2.35  

Q
F

P

A

  Fig. 2.36  

F

x

y

Fy = Fy j

Fx = Fx i

j

i

�

  Fig. 2.37  
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59Review and Summary   When  three or more coplanar forces  act on a particle, the rectangular 
components of their resultant  R  can be obtained by adding algebra-
ically the corresponding components of the given forces [Sec. 2.8]. 
We have

   Rx 5 oFx  Ry 5 oFy (2.13)   

 The magnitude and direction of  R  can then be determined from 
relations similar to Eqs. (2.9) and (2.10) [Sample Prob. 2.3].  

   A force  F  in  three-dimensional space  can be resolved into 
 rectangular components  F   x  ,  F   y  , and  F   z   [Sec. 2.12]. Denoting by u  x  , 
u  y  , and u  z  , respectively, the angles that  F  forms with the  x, y,  and  z  
axes ( Fig. 2.38 ), we have

   Fx 5 F cos ux  Fy 5 F cos uy  Fz 5 F cos uz             (2.19)   

 Resultant of several coplanar forces  Resultant of several coplanar forces 

 Forces in space  Forces in space 

x

y

z

A

B

C

D

E

F

Fx

Fy

Fz

�x

�y

�z

(a)

x

y

z

A

B

C

D

E

F

Fx

Fy

Fz

x

y

z

A

B

C

D

E

F

Fx

Fy

Fz

(b) (c)

OOO

  Fig. 2.38    

  Fig. 2.39    

x

y

z

λλ (Magnitude = 1)

F = F λλ

Fy j

Fxi

Fzk

cos �y j

cos �zk

cos �xi

   The cosines of u  x  , u  y  , u  z   are known as the  direction cosines  of the 
force  F . Introducing the unit vectors  i, j, k  along the coordinate axes, 
we write

   F 5 Fxi 1 Fyj 1 Fzk (2.20)  

or

   F 5 F(cos uxi 1 cos uyj 1 cos uzk) (2.21)  

which shows ( Fig. 2.39 ) that  F  is the product of its magnitude  F  and 
the unit vector

  l 5 cos uxi 1 cos uyj 1 cos uzk   

 Since the magnitude of  l  is equal to unity, we must have

   cos2 ux 1 cos2 uy 1 cos2 uz 5 1 (2.24)   

  When the rectangular components  F x  ,  F y  ,  F z   of a force  F  are 
given, the magnitude  F  of the force is found by writing

   F 5 2F2
x 1 F2

y 1 F2
z (2.18)  

and the direction cosines of  F  are obtained from Eqs. (2.19). We have

   
cos ux 5

Fx

F
  cos uy 5

Fy

F
  cos uz 5

Fz

F  
(2.25)

   

 Direction cosines  Direction cosines 
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60 Statics of Particles   When a force  F  is defined in three-dimensional space by its 
magnitude  F  and two points  M  and  N  on its line of action [Sec. 2.13], 
its rectangular components can be obtained as follows. We first express 
the vector   MN

¡
   joining points  M  and  N  in terms of its components 

d x  ,  d y  , and  d z   ( Fig. 2.40 ); we write

   MN
¡

5 dxi 1 dyj 1 dzk (2.26)   

 We next determine the unit vector  l  along the line of action of  F
by dividing   MN

¡
   by its magnitude  MN  5  d :

   
L 5

MN
¡

MN
5

1
d

(dxi 1 dyj 1 dzk)
 

(2.27)
   

 Recalling that  F  is equal to the product of  F  and l, we have

   
F 5 FL 5

F
d

(dxi 1 dy 
j 1 dzk)

 
(2.28)

  

from which it follows [Sample Probs. 2.7 and 2.8] that the scalar 
components of  F  are, respectively,

   
Fx 5

Fdx

d
    Fy 5

Fdy

d
    Fz 5

Fdz

d  
(2.29)

   

   When  two or more forces  act on a particle in  three-dimensional 
space , the rectangular components of their resultant  R  can be 
obtained by adding algebraically the corresponding components of 
the given forces [Sec. 2.14]. We have

   Rx 5 oFx  Ry 5 oFy  Rz 5 oFz (2.31)   

 The magnitude and direction of  R  can then be determined from 
relations similar to Eqs. (2.18) and (2.25) [Sample Prob. 2.8].  

  A particle is said to be in  equilibrium  when the resultant of all the 
forces acting on it is zero [Sec. 2.9]. The particle will then remain 
at rest (if originally at rest) or move with constant speed in a straight 
line (if originally in motion) [Sec. 2.10].  

  To solve a problem involving a particle in equilibrium, one first should 
draw a  free-body diagram  of the particle showing all the forces acting 
on it [Sec. 2.11]. If  only three coplanar forces  act on the particle, a 
 force triangle  may be drawn to express that the particle is in equilib-
rium. Using graphical methods of trigonometry, this triangle can be 
solved for no more than two unknowns [Sample Prob. 2.4]. If  more 
than three coplanar forces  are involved, the equations of equilibrium

   oFx 5 0  oFy 5 0 (2.15)  

should be used. These equations can be solved for no more than two 
unknowns [Sample Prob. 2.6].  

  When a particle is in  equilibrium in three-dimensional space  [Sec. 2.15], 
the three equations of equilibrium

   oFx 5 0  oFy 5 0  oFz 5 0 (2.34)  

should be used. These equations can be solved for no more than 
three unknowns [Sample Prob. 2.9].  

 Resultant of forces in space  Resultant of forces in space 

 Equilibrium of a particle  Equilibrium of a particle 

 Free-body diagram  Free-body diagram 

 Equilibrium in space  Equilibrium in space 

  Fig. 2.40    

x

y

z

F

O

M(x1, y1, z1)  

N(x2, y2, z2)  

dy = y2 – y1  

dx = x2 – x1  

dz = z2 – z1 < 0  λ
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61

 REVIEW PROBLEMS 

 2.104 A cable loop of length 1.5 m is placed around a crate. Knowing 
that the mass of the crate is 300 kg, determine the tension in the 
cable for each of the arrangements shown.

 2.105 Knowing that the magnitude of the force P is 75 lb, determine the 
resultant of the three forces applied at A.

 2.106 Determine the range of values of P for which the resultant of the 
three forces applied at A does not exceed 175 lb.

 2.107 The directions of the 300-N forces may vary, but the angle 
between the forces is always 40°. Determine the value of a for 
which the resultant of the forces acting at A is directed parallel 
to the plane b-b. 

 2.108 Knowing that P 5 300 lb, determine the tension in cables AC
and BC.

2.109 Determine the range of values of P for which both cables remain 
taut.

(b)(a)

A AB C

D B

E

DC

E

400 mm

300 mm

400 mm

300 mm

Fig. P2.104 90 lb

150 lb

P

70°

30°

A

Fig. P2.105 and P2.106

300 N

300 N

500 N

40°

b

b

�

30°

A

Fig. P2.107

P

200 lb

B

C

A

30�

45�

30�

Fig. P2.108 and P2.109
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62 Statics of Particles  2.110 A container is supported by three cables as shown. Determine the 
weight W of the container knowing that the tension in cable AB 
is 500 N.

 2.111 In Prob. 2.110, determine the angles ux, uy, and uz for the force 
exerted at D by cable AD.

 2.112 A 1200-N force acts at the origin in a direction defined by the 
angles ux 5 65° and uy 5 40°. It is also known that the z compo-
nent of the force is positive. Determine the value of uz and the 
components of the force.

 2.113 Two cables BG and BH are attached to frame ACD as shown. Know-
ing that the tension is 540 N in cable BG and 750 N in cable BH, 
determine the magnitude and direction of the resultant of the 
forces exerted by the cables on the frame at B.

y

z
x

O

480 mm

234 mm

322 mm300 mm

384 mm

C

B

A

D

Fig. P2.110

y

z
xA

B
C

D

H

G

O

1.4 m

1.2 m1.48 m

0.8 m
0.8 m

1.2 m

0.56 m

P
Fig. P2.113
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63Review Problems 2.114 A crate is supported by three cables as shown. Determine the weight 
W of the crate knowing that the tension in cable AD is 924 lb.

 2.115 A triangular steel plate is supported by three wires as shown. 
Knowing that a 5 6 in. and that the tension in wire AD is 17 lb, 
determine the weight of the plate.                                                                                                                          

B

A
z

y

x

C
O

D

45 in.

24 in.

28 in.18 in.

26 in.

Fig. P2.114

y

x

D

C

B

A

24 in.

16 in.8 in.

a

a

z

Fig. P2.115
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 The battleship USS New Jersey is 

maneuvered by four tugboats at 

Bremerton Naval Shipyard. It will be 

shown in this chapter that the forces 

exerted on the ship by the tugboats 

could be replaced by an equivalent 

force exerted by a single, more 

powerful tugboat.    
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 Rigid Bodies: 
Equivalent Systems of Forces  

65

3C H A P T E R 
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 Chapter 3 Rigid Bodies: 
Equivalent Systems of Forces
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Terms of Rectangular 
Components
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Given Axis
 3.12 Moment of a Couple
 3.13 Equivalent Couples
 3.14 Addition of Couples
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a Force at O and a Couple
 3.17 Reduction of a System of Forces 

to One Force and One Couple
 3.18 Equivalent Systems of Forces
 3.19 Equipollent Systems of Vectors
 3.20 Further Reduction of a System 

of Forces

 3.1   INTRODUCTION  
 In the preceding chapter it was assumed that each of the bodies con-
sidered could be treated as a single particle. Such a view, however, is 
not always possible, and a body, in general, should be treated as a com-
bination of a large number of particles. The size of the body will have 
to be taken into consideration, as well as the fact that forces will act on 
different particles and thus will have different points of application. 
    Most of the bodies considered in elementary mechanics are 
assumed to be  rigid,  a  rigid body  being defined as one which does 
not deform. Actual structures and machines, however, are never 
absolutely rigid and deform under the loads to which they are sub-
jected. But these deformations are usually small and do not appre-
ciably affect the conditions of equilibrium or motion of the structure 
under consideration. They are important, though, as far as the resis-
tance of the structure to failure is concerned and are considered in 
the study of mechanics of materials. 
    In this chapter you will study the effect of forces exerted on a 
rigid body, and you will learn how to replace a given system of forces 
by a simpler equivalent system. This analysis will rest on the funda-
mental assumption that the effect of a given force on a rigid body 
remains unchanged if that force is moved along its line of action ( prin-
ciple of transmissibility ). It follows that forces acting on a rigid body 
can be represented by  sliding vectors,  as indicated earlier in Sec. 2.3. 
    Two important concepts associated with the effect of a force 
on a rigid body are the  moment of a force about a point  (Sec. 3.6) 
and the  moment of a force about an axis  (Sec. 3.11). Since the deter-
mination of these quantities involves the computation of vector prod-
ucts and scalar products of two vectors, the fundamentals of vector 
algebra will be introduced in this chapter and applied to the solution 
of problems involving forces acting on rigid bodies. 
    Another concept introduced in this chapter is that of a  couple,  
i.e., the combination of two forces which have the same magnitude, 
parallel lines of action, and opposite sense (Sec. 3.12). As you will 
see, any system of forces acting on a rigid body can be replaced by 
an equivalent system consisting of one force acting at a given point 
and one couple. This basic system is called a  force-couple system.  In 
the case of concurrent, coplanar, or parallel forces, the equivalent 
force-couple system can be further reduced to a single force, called 
the  resultant  of the system, or to a single couple, called the  resultant 
couple  of the system.    

 3.2   EXTERNAL AND INTERNAL FORCES  
 Forces acting on rigid bodies can be separated into two groups: 
(1)  external forces  and (2)  internal forces.   

   1.   The  external forces  represent the action of other bodies on the 
rigid body under consideration. They are entirely responsible 
for the external behavior of the rigid body. They will either 
cause it to move or ensure that it remains at rest. We shall be 
concerned only with external forces in this chapter and in 
Chaps. 4 and 5.  
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67   2.   The  internal forces  are the forces which hold together the par-
ticles forming the rigid body. If the rigid body is structurally 
composed of several parts, the forces holding the component 
parts together are also defined as internal forces. Internal forces 
will be considered in Chaps. 6 and 7.   

    As an example of external forces, let us consider the forces 
acting on a disabled truck that three people are pulling forward by 
means of a rope attached to the front bumper ( Fig. 3.1 ). The external 
forces acting on the truck are shown in a  free-body diagram  ( Fig. 3.2 ). 
Let us first consider the  weight  of the truck. Although it embodies 
the effect of the earth’s pull on each of the particles forming the 
truck, the weight can be represented by the single force  W . The 
 point of application  of this force, i.e., the point at which the force 
acts, is defined as the  center of gravity  of the truck. It will be seen 
in Chap. 5 how centers of gravity can be determined. The weight  W  
tends to make the truck move vertically downward. In fact, it would 
actually cause the truck to move downward, i.e., to fall, if it were not 
for the presence of the ground. The ground opposes the downward 
motion of the truck by means of the reactions  R  1  and  R  2 . These 
forces are exerted  by  the ground  on  the truck and must therefore 
be included among the external forces acting on the truck. 
    The people pulling on the rope exert the force  F . The point of 
application of  F  is on the front bumper. The force  F  tends to make 
the truck move forward in a straight line and does actually make it 
move, since no external force opposes this motion. (Rolling resistance 
has been neglected here for simplicity.) This forward motion of the 
truck, during which each straight line keeps its original orientation 
(the floor of the truck remains horizontal, and the walls remain verti-
cal), is known as a  translation . Other forces might cause the truck to 
move differently. For example, the force exerted by a jack placed 
under the front axle would cause the truck to pivot about its rear axle. 
Such a motion is a  rotation . It can be concluded, therefore, that each 
of the  external forces  acting on a  rigid body  can, if unopposed, impart 
to the rigid body a motion of translation or rotation, or both.    

 3.3    PRINCIPLE OF TRANSMISSIBILITY. 
EQUIVALENT FORCES  

 The  principle of transmissibility  states that the conditions of equi-
librium or motion of a rigid body will remain unchanged if a force 
 F  acting at a given point of the rigid body is replaced by a force  F 9 of 
the same magnitude and same direction, but acting at a different point, 
 provided that the two forces have the same line of action  ( Fig. 3.3 ). 
The two forces  F  and  F 9 have the same effect on the rigid body and 
are said to be  equivalent . This principle, which states that the action 
of a force may be  transmitted  along its line of action, is based on 
experimental evidence. It  cannot  be derived from the properties 
established so far in this text and must therefore be accepted as an 
experimental law. However, as you will see in Sec. 16.5, the principle 
of transmissibility can be derived from the study of the dynamics of 
rigid bodies, but this study requires the introduction of Newton’s 
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3.3 Principle of Transmissibility. 
Equivalent Forces
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68 Rigid Bodies: Equivalent Systems of Forces second and third laws and of a number of other concepts as well. 
Therefore, our study of the statics of rigid bodies will be based on 
the three principles introduced so far, i.e., the parallelogram law of 
addition, Newton’s first law, and the principle of transmissibility. 
    It was indicated in Chap. 2 that the forces acting on a particle 
could be represented by vectors. These vectors had a well-defined 
point of application, namely, the particle itself, and were therefore 
fixed, or bound, vectors. In the case of forces acting on a rigid body, 
however, the point of application of the force does not matter, as 
long as the line of action remains unchanged. Thus, forces acting on 
a rigid body must be represented by a different kind of vector, known 
as a  sliding vector , since forces may be allowed to slide along their 
lines of action. We should note that all the properties which will be 
derived in the following sections for the forces acting on a rigid body 
will be valid more generally for any system of sliding vectors. In 
order to keep our presentation more intuitive, however, we will carry 
it out in terms of physical forces rather than in terms of mathematical 
sliding vectors. 

W

F

R1 R2

W

F'

R1 R2

=

  Fig. 3.4    

    Returning to the example of the truck, we first observe that the 
line of action of the force  F  is a horizontal line passing through both 
the front and the rear bumpers of the truck ( Fig. 3.4 ). Using the 
principle of transmissibility, we can therefore replace  F  by an  equiva-
lent force   F 9 acting on the rear bumper. In other words, the condi-
tions of motion are unaffected, and all the other external forces 
acting on the truck ( W ,  R  1 ,  R  2 ) remain unchanged if the people push 
on the rear bumper instead of pulling on the front bumper. 
    The principle of transmissibility and the concept of equivalent 
forces have limitations, however. Consider, for example, a short bar 
 AB  acted upon by equal and opposite axial forces  P  1  and  P  2 , as shown 
in  Fig. 3.5  a . According to the principle of transmissibility, the force 
 P  2  can be replaced by a force  P 9 2  having the same magnitude, the 
same direction, and the same line of action but acting at  A  instead 
of  B  (Fig. 3.5 b ). The forces  P  1  and  P 9 2  acting on the same particle 

=P1 P2

A B

(a)

=P1
P'2

A B

(b)

A B

(c)

=P1P2

A B

(d)

=P1

P'2

A B

(e)

A B

( f )

  Fig. 3.5    
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69can be added according to the rules of Chap. 2, and, as these forces 
are equal and opposite, their sum is equal to zero. Thus, in terms of 
the external behavior of the bar, the original system of forces shown 
in Fig. 3.5 a  is equivalent to no force at all (Fig. 3.5 c ). 
    Consider now the two equal and opposite forces  P  1  and  P  2  
acting on the bar  AB  as shown in Fig. 3.5 d . The force  P  2  can be 
replaced by a force P92 having the same magnitude, the same direction, 
and the same line of action but acting at  B  instead of at  A  (Fig. 3.5 e ). 
The forces  P  1  and P92 can then be added, and their sum is again zero 
(Fig. 3.5 f  ). From the point of view of the mechanics of rigid bodies, 
the systems shown in Fig. 3.5 a  and  d  are thus equivalent. But the 
 internal forces  and  deformations  produced by the two systems are 
clearly different. The bar of Fig. 3.5 a  is in  tension  and, if not abso-
lutely rigid, will increase in length slightly; the bar of Fig. 3.5 d  is in 
 compression  and, if not absolutely rigid, will decrease in length 
slightly. Thus, while the principle of transmissibility may be used 
freely to determine the conditions of motion or equilibrium of rigid 
bodies and to compute the external forces acting on these bodies, it 
should be avoided, or at least used with care, in determining internal 
forces and deformations.    

 3.4   VECTOR PRODUCT OF TWO VECTORS  
 In order to gain a better understanding of the effect of a force on a 
rigid body, a new concept, the concept of  a moment of a force about a 
point , will be introduced at this time. This concept will be more clearly 
understood, and applied more effectively, if we first add to the mathe-
matical tools at our disposal the  vector product  of two vectors. 
    The vector product of two vectors  P  and  Q  is defined as the 
vector  V  which satisfies the following conditions.  

   1.   The line of action of  V  is perpendicular to the plane containing 
 P  and  Q  ( Fig. 3.6  a ).  

   2.   The magnitude of  V  is the product of the magnitudes of  P  and 
 Q  and of the sine of the angle u formed by  P  and  Q  (the mea-
sure of which will always be 180° or less); we thus have

   V 5 PQ sin u     (3.1)

   3.   The direction of  V  is obtained from the  right-hand rule . Close 
your right hand and hold it so that your fingers are curled in 
the same sense as the rotation through u which brings the vec-
tor  P  in line with the vector  Q ; your thumb will then indicate 
the direction of the vector  V  (Fig. 3.6 b ). Note that if  P  and  Q  
do not have a common point of application, they should first 
be redrawn from the same point. The three vectors  P ,  Q,  and 
 V —taken in that order—are said to form a  right-handed 
triad.  †  

 †We should note that the  x, y,  and  z  axes used in Chap. 2 form a right-handed system 
of orthogonal axes and that the unit vectors  i ,  j ,  k  defined in Sec. 2.12 form a 
right-handed orthogonal triad. 

Q

P

V = P × Q

θ

(a)

V

(b)

  Fig. 3.6     

3.4 Vector Product of Two Vectors
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70 Rigid Bodies: Equivalent Systems of Forces         As stated above, the vector  V  satisfying these three conditions 
(which define it uniquely) is referred to as the vector product of  P  
and  Q ; it is represented by the mathematical expression

   V 5 P 3 Q (3.2)   

   Because of the notation used, the vector product of two vectors  P  
and  Q  is also referred to as the  cross product  of  P  and  Q . 
    It follows from Eq. (3.1) that, when two vectors  P  and  Q  have 
either the same direction or opposite directions, their vector product 
is zero. In the general case when the angle u formed by the two vectors 
is neither 0° nor 180°, Eq. (3.1) can be given a simple geometric inter-
pretation: The magnitude  V  of the vector product of  P  and  Q  is equal 
to the area of the parallelogram which has  P  and  Q  for sides ( Fig. 3.7 ). 
The vector product  P 3 Q  will therefore remain unchanged if we 
replace  Q  by a vector  Q 9 which is coplanar with  P  and  Q  and such 
that the line joining the tips of  Q  and  Q 9 is parallel to  P . We write

   V 5 P 3 Q 5 P 3 Q9 (3.3)   

    From the third condition used to define the vector product  V  
of  P  and  Q , namely, the condition stating that  P ,  Q , and  V  must 
form a right-handed triad, it follows that vector products  are not 
commutative , i.e.,  Q 3 P  is not equal to  P 3 Q . Indeed, we can 
easily check that  Q 3 P  is represented by the vector  2V , which is 
equal and opposite to  V.  We thus write

   Q 3 P 5 2(P 3 Q) (3.4)    

 EXAMPLE  3.1  Let us compute the vector product  V 5 P 3 Q  where 
the vector  P  is of magnitude 6 and lies in the  zx  plane at an angle of 30° 
with the  x  axis, and where the vector  Q  is of magnitude 4 and lies along 
the  x  axis ( Fig. 3.8 ). 
    It follows immediately from the definition of the vector product that 
the vector  V  must lie along the  y  axis and have the magnitude

  V 5 PQ sin u 5 (6)(4) sin 30° 5 12   

   and be directed upward.  ◾

    We saw that the commutative property does not apply to vector 
products. We may wonder whether the  distributive  property holds, 
i.e., whether the relation

   P 3 (Q1 1 Q2) 5 P 3 Q1 1 P 3 Q2 (3.5)   

   is valid. The answer is  yes . Many readers are probably willing to accept 
without formal proof an answer which they intuitively feel is correct. 
However, since the entire structure of both vector algebra and statics 
depends upon the relation (3.5), we should take time out to derive it. 
    We can, without any loss of generality, assume that  P  is directed 
along the  y  axis ( Fig. 3.9  a ). Denoting by  Q  the sum of  Q  1  and  Q  2 , 
we drop perpendiculars from the tips of  Q ,  Q  1 , and  Q  2  onto the  zx  
plane, defining in this way the vectors  Q9 ,  Q9  1 , and  Q9  2 . These vectors 
will be referred to, respectively, as the  projections  of  Q ,  Q  1 , and  Q  2  
on the  zx  plane. Recalling the property expressed by Eq. (3.3), we 
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71note that the left-hand member of Eq. (3.5) can be replaced by 
 P 3 Q9  and that, similarly, the vector products  P 3 Q  1  and  P 3 Q  2  
can respectively be replaced by  P 3 Q91  and  P 3 Q92   . Thus, the 
relation to be proved can be written in the form

 P 3 Q9 5 P 3 Q91 1 P 3 Q92 (3.59) 

    We now observe that  P 3 Q 9 can be obtained from  Q 9 by 
multiplying this vector by the scalar  P  and rotating it counterclock-
wise through 90° in the  zx  plane (Fig. 3.9 b ); the other two vector 

products     in (3.59) can be obtained in the same manner from  Q 9 1  and 
 Q 9 2 , respectively. Now, since the projection of a parallelogram onto 
an arbitrary plane is a parallelogram, the projection  Q 9 of the sum 
 Q  of  Q  1  and  Q  2  must be the sum of the projections  Q 9 1  and  Q 9 2  of 
 Q  1  and  Q  2  on the same plane (Fig. 3.9 a ). This relation between the 
vectors  Q 9,  Q 9 1 , and  Q 9 2  will still hold after the three vectors have 
been multiplied by the scalar  P  and rotated through 90° (Fig. 3.9 b ). 
Thus, the relation (3.59) has been proved, and we can now be sure 
that the distributive property holds for vector products. 
    A third property, the associative property, does not apply to 
vector products; we have in general

   (P 3 Q) 3 S fi P 3 (Q 3 S) (3.6)       

 3.5    VECTOR PRODUCTS EXPRESSED IN TERMS 
OF RECTANGULAR COMPONENTS  

Let us now determine the vector product of any two of the unit 
vectors  i ,  j , and  k , which were defined in Chap. 2. Consider first the 
product  i 3 j  ( Fig. 3.10  a ). Since both vectors have a magnitude 
equal to 1 and since they are at a right angle to each other, their 
vector product will also be a unit vector. This unit vector must be  k , 
since the vectors  i ,  j , and  k  are mutually perpendicular and form a 
right-handed triad. On the other hand, it follows from the right-hand 
rule given on page 69 that the product  j 3 i  will be equal to  2k  
(Fig. 3.10 b ). Finally, it should be observed that the vector product 
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  Fig. 3.9    
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  Fig. 3.10    

3.5 Vector Products Expressed in Terms 
of Rectangular Components
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72 Rigid Bodies: Equivalent Systems of Forces of a unit vector with itself, such as  i 3 i , is equal to zero, since both 
vectors have the same direction. The vector products of the various 
possible pairs of unit vectors are

 i 3 i 5 0 j 3 i 5 2k k 3 i 5 j
 i 3 j 5 k j 3 j 5 0 k 3 j 5 2i (3.7)
 i 3 k 5 2j j 3 k 5 i k 3 k 5 0

   By arranging in a circle and in counterclockwise order the three let-
ters representing the unit vectors ( Fig. 3.11 ), we can simplify the 
determination of the sign of the vector product of two unit vectors: 
The product of two unit vectors will be positive if they follow each 
other in counterclockwise order and will be negative if they follow 
each other in clockwise order. 
    We can now easily express the vector product  V  of two given 
vectors  P  and  Q  in terms of the rectangular components of these 
vectors. Resolving  P  and  Q  into components, we first write

  V 5 P 3 Q 5 (Pxi 1 Pyj 1 Pzk) 3 (Qxi 1 Qyj 1 Qzk)   

   Making use of the distributive property, we express  V  as the sum of 
vector products, such as  P x   i  3  Q y   j . Observing that each of the 
expressions obtained is equal to the vector product of two unit vec-
tors, such as  i  3  j , multiplied by the product of two scalars, such as 
 P x Q y  , and recalling the identities (3.7), we obtain, after factoring out 
 i ,  j,  and  k ,

   V 5 (PyQz 2 PzQy)i 1 (PzQx 2 PxQz)j 1 (PxQy 2 PyQx)k    (3.8)

   The rectangular components of the vector product  V  are thus found 
to be

   

Vx 5 PyQz 2 PzQy

Vy 5 PzQx 2 PxQz

Vz 5 PxQy 2 PyQx    
(3.9)

   Returning to Eq. (3.8), we observe that its right-hand member repre-
sents the expansion of a determinant. The vector product  V  can thus 
be expressed in the following form, which is more easily memorized: † 

     
V 5 †

i j k
Px Py Pz

Qx Qy Qz

†
 

(3.10)

j 

ik

  Fig. 3.11    

  †Any determinant consisting of three rows and three columns can be evaluated by 
repeating the first and second columns and forming products along each diagonal line. 
The sum of the products obtained along the red lines is then subtracted from the sum 
of the products obtained along the black lines.  

i j k i j

Px Py Pz Px Py

Qx Qy Qz Qx Qy
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73 3.6   MOMENT OF A FORCE ABOUT A POINT  
 Let us now consider a force  F  acting on a rigid body ( Fig. 3.12  a ). As we 
know, the force  F  is represented by a vector which defines its magnitude 
and direction. However, the effect of the force on the rigid body depends 
also upon its point of application  A . The position of  A  can be conve-
niently defined by the vector  r  which joins the fixed reference point  O  
with  A ; this vector is known as the  position vector  of  A.  †  The position 
vector  r  and the force  F  define the plane shown in Fig. 3.12 a.  
    We will define the  moment of   F   about O  as the vector product 
of  r  and  F :

   MO 5 r 3 F    (3.11)

    According to the definition of the vector product given in Sec. 3.4, 
the moment  M   O   must be perpendicular to the plane containing  O  and 
the force  F.  The sense of  M   O   is defined by the sense of the rotation 
which will bring the vector  r  in line with the vector  F ; this rotation will 
be observed as  counterclockwise  by an observer located at the tip of 
 M   O  . Another way of defining the sense of  M   O   is furnished by a variation 
of the right-hand rule: Close your right hand and hold it so that your 
fingers are curled in the sense of the rotation that  F  would impart to 
the rigid body about a fixed axis directed along the line of action of  M   O  ; 
your thumb will indicate the sense of the moment  M   O   (Fig. 3.12 b ). 
    Finally, denoting by u the angle between the lines of action of 
the position vector  r  and the force  F , we find that the magnitude of 
the moment of  F  about  O  is

   MO 5 rF sin u 5 Fd    (3.12)

   where  d  represents the perpendicular distance from  O  to the line of 
action of  F . Since the tendency of a force  F  to make a rigid body 
rotate about a fixed axis perpendicular to the force depends upon the 
distance of  F  from that axis as well as upon the magnitude of  F , we 
note that  the magnitude of   M   O    measures the tendency of the force   F   
to make the rigid body rotate about a fixed axis directed along   M   O  . 
    In the SI system of units, where a force is expressed in newtons 
(N) and a distance in meters (m), the moment of a force is expressed 
in newton-meters (N ? m). In the U.S. customary system of units, 
where a force is expressed in pounds and a distance in feet or inches, 
the moment of a force is expressed in lb ? ft or lb ? in. 
    We can observe that although the moment  M   O   of a force about 
a point depends upon the magnitude, the line of action, and the 
sense of the force, it does  not  depend upon the actual position of 
the point of application of the force along its line of action. Con-
versely, the moment  M   O   of a force  F  does not characterize the posi-
tion of the point of application of  F . 

3.6 Moment of a Force about a Point

  †We can easily verify that position vectors obey the law of vector addition and, thus, are 
truly vectors. Consider, for example, the position vectors  r  and  r 9 of  A  with respect to two 
reference points  O  and  O 9 and the position vector  s  of  O  with respect to  O 9 (Fig. 3.40 a , 
Sec. 3.16). We verify that the position vector  r 9 5 O¿A

¡
   can be obtained from the position 

vectors s 5  O¿O
¡

    and  r  5  OA
¡

    by applying the triangle rule for the addition of vectors.   

MO

d A
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r
q

O

(a)

MO

(b)

  Fig. 3.12    
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74 Rigid Bodies: Equivalent Systems of Forces     However, as it will be seen presently, the moment  M   O   of a force 
 F  of given magnitude and direction  completely defines the line of 
action of   F.  Indeed, the line of action of  F  must lie in a plane 
through  O  perpendicular to the moment  M   O  ; its distance  d  from  O  
must be equal to the quotient  M   O  / F  of the magnitudes of  M   O   and 
 F ; and the sense of  M   O   determines whether the line of action of  F  
is to be drawn on one side or the other of the point  O.  
    We recall from Sec. 3.3 that the principle of transmissibility 
states that two forces  F  and  F 9 are equivalent (i.e., have the same 
effect on a rigid body) if they have the same magnitude, same direc-
tion, and same line of action. This principle can now be restated as 
follows:  Two forces   F   and   F 9  are equivalent if, and only if, they are 
equal  (i.e., have the same magnitude and same direction)  and have 
equal moments about a given point O . The necessary and sufficient 
conditions for two forces  F  and  F 9 to be equivalent are thus

   F 5 F9  and  MO 5 M9O    (3.13)

   We should observe that it follows from this statement that if the rela-
tions (3.13) hold for a given point  O , they will hold for any other point.  

 Problems Involving Only Two Dimensions.   Many applications 
deal with two-dimensional structures, i.e., structures which have length 
and breadth but only negligible depth and which are subjected to 
forces contained in the plane of the structure. Two-dimensional struc-
tures and the forces acting on them can be readily represented on a 
sheet of paper or on a blackboard. Their analysis is therefore consider-
ably simpler than that of three-dimensional structures and forces. 

F

(b) MO = – Fd

MO

d

O
MO

F

d

O

(a) MO = + Fd

  Fig. 3.13    

    Consider, for example, a rigid slab acted upon by a force  F  
( Fig. 3.13 ). The moment of  F  about a point  O  chosen in the plane 
of the figure is represented by a vector  M   O   perpendicular to that 
plane and of magnitude  Fd . In the case of Fig. 3.13 a  the vector  M   O   
points  out of  the paper, while in the case of Fig. 3.13 b  it points  into  
the paper. As we look at the figure, we observe in the first case that 
 F  tends to rotate the slab counterclockwise and in the second case 
that it tends to rotate the slab clockwise. Therefore, it is natural to 
refer to the sense of the moment of  F  about  O  in Fig. 3.13 a  as 
counterclockwise l, and in Fig. 3.13 b  as clockwise i. 
    Since the moment of a force  F  acting in the plane of the figure 
must be perpendicular to that plane, we need only specify the  magni-
tude  and the  sense  of the moment of  F  about  O . This can be done by 
assigning to the magnitude  M   O   of the moment a positive or negative sign 
according to whether the vector  M   O   points out of or into the paper.     
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75 3.7   VARIGNON’S THEOREM  
The distributive property of vector products can be used to deter-
mine the moment of the resultant of several  concurrent forces . If 
several forces  F  1 ,  F  2 , . . . are applied at the same point  A  ( Fig. 3.14 ), 
and if we denote by  r  the position vector of  A , it follows immediately 
from Eq. (3.5) of Sec. 3.4 that

 r 3 (F1 1 F2 1 . . .) 5 r 3 F1 1 r 3 F2 1 . . . (3.14)

   In words,  the moment about a given point O of the resultant of several 
concurrent forces is equal to the sum of the moments of the various 
forces about the same point O . This property, which was originally 
established by the French mathematician Varignon (1654–1722) long 
before the introduction of vector algebra, is known as  Varignon’s 
theorem.  
    The relation (3.14) makes it possible to replace the direct deter-
mination of the moment of a force  F  by the determination of the 
moments of two or more component forces. As you will see in the 
next section,  F  will generally be resolved into components parallel 
to the coordinate axes. However, it may be more expeditious in some 
instances to resolve  F  into components which are not parallel to the 
coordinate axes (see Sample Prob. 3.3).   

 3.8    RECTANGULAR COMPONENTS OF THE MOMENT 
OF A FORCE 

 In general, the determination of the moment of a force in space will 
be considerably simplified if the force and the position vector of its 
point of application are resolved into rectangular  x ,  y , and  z  compo-
nents. Consider, for example, the moment  M   O   about  O  of a force  F  
whose components are  F x  ,  F y  , and  F z   and which is applied at a point 
 A  of coordinates  x ,  y , and  z  ( Fig. 3.15 ). Observing that the compo-
nents of the position vector  r  are respectively equal to the coordi-
nates  x ,  y , and  z  of the point  A , we write

    r 5 xi 1 yj 1 zk   (3.15) 
    F 5 Fxi 1 Fyj 1 Fzk    (3.16)

   Substituting for  r  and  F  from (3.15) and (3.16) into

   MO 5 r 3 F (3.11)   

   and recalling the results obtained in Sec. 3.5, we write the moment 
 M   O   of  F  about  O  in the form

   MO 5 Mxi 1 My j 1 Mzk  (3.17)  

   where the components  M x  ,  M y  , and  M z   are defined by the relations

   

Mx 5 yFz 2 zFy

My 5 zFx 2 xFz

Mz 5 xFy 2 yFx    
(3.18)

  Fig. 3.14    

y

x

z

O

A

r
F1

F2

F3
F4

Fz k
x

y

z

O

zk

y j

x i
r

A (x, y, z)

Fy j

Fx i

  Fig. 3.15    

3.8 Rectangular Components of the 
Moment of a Force
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76 Rigid Bodies: Equivalent Systems of Forces   As you will see in Sec. 3.11, the scalar components  M x ,  M y,  and  M z  
of the moment  M O  measure the tendency of the force  F  to impart 
to a rigid body a motion of rotation about the  x ,  y , and  z  axes, respec-
tively. Substituting from (3.18) into (3.17), we can also write  M O  in 
the form of the determinant

   
MO 5 †

i j k
x y z
Fx Fy Fz

†
   

(3.19)

    To compute the moment  M  B  about an arbitrary point  B  of a 
force  F  applied at  A  ( Fig. 3.16 ), we must replace the position vector 
 r  in Eq. (3.11) by a vector drawn from  B  to  A . This vector is the 
 position vector of A relative to B  and will be denoted by  r  A/B.  Observ-
ing that  r  A/B  can be obtained by subtracting  r  B  from  r  A , we write

   MB 5 rA /B 3 F 5 (rA 2 rB) 3 F (3.20)  

   or, using the determinant form,

   
MB 5 †

i j k
xA /B yA /B zA /B

Fx Fy Fz

†
 

(3.21)
  

   where  x  A/B ,  y  A/B , and  z  A/B  denote the components of the vector  r  A/B :

  xA/B 5 xA 2 xB    yA/B 5 yA 2 yB    zA/B 5 zA 2 zB  

    In the case of  problems involving only two dimensions,  the 
force  F  can be assumed to lie in the  xy  plane ( Fig. 3.17 ). Setting
 z  5 0 and  F z   5 0 in Eq. (3.19), we obtain

  MO 5 (xFy 2 yFx)k  

 We verify that the moment of  F  about  O  is perpendicular to the plane 
of the figure and that it is completely defined by the scalar

   MO 5 Mz 5 xFy 2 yFx (3.22)  

  As noted earlier, a positive value for  M O  indicates that the vector  M O  
points out of the paper (the force  F  tends to rotate the body counter-
clockwise about  O ), and a negative value indicates that the vector  M O  
points into the paper (the force  F  tends to rotate the body clockwise 
about  O ). 
   To compute the moment about  B ( x B ,  y B ) of a force lying in the 
 xy  plane and applied at  A ( x A ,  y A ) ( Fig. 3.18 ), we set  z A/B  5 0 and 
 F z  5 0 in the relations (3.21) and note that the vector  M B  is perpen-
dicular to the  xy  plane and is defined in magnitude and sense by the 
scalar

   MB 5 (xA 2 xB)Fy 2 (yA 2 yB)Fx (3.23) 

 Fig. 3.16 

Fz k

x

y

z

B

O

ArA/B

(xA – xB)i

(zA – zB)k

(yA – yB)j
Fy j

Fx i

y

x

z

O

Fy j

Fx i

F

xi

y j
r

MO = Mzk

A (x, y,0)

 Fig. 3.17 

y

x

z

O
B

Fy j

Fx i

F

A

(yA – yB)j

(xA – xB)i

rA/B

MB = MB k

 Fig. 3.18 
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77

 SAMPLE PROBLEM 3.1 

 A 100-lb vertical force is applied to the end of a lever which is attached to a shaft 
at  O . Determine ( a ) the moment of the 100-lb force about  O ; ( b ) the horizontal 
force applied at  A  which creates the same moment about  O ; ( c ) the smallest 
force applied at  A  which creates the same moment about  O ; ( d ) how far from 
the shaft a 240-lb vertical force must act to create the same moment about  O ; 
( e ) whether any one of the forces obtained in parts  b ,  c , and  d  is equivalent to 
the original force. 

100 lb

60°

A

O

24 in.

  SOLUTION  

 a.   Moment about  O.   The perpendicular distance from  O  to the line of 
action of the 100-lb force is

 d 5 (24 in.) cos 60° 5 12 in. 

 The magnitude of the moment about  O  of the 100-lb force is

  MO 5 Fd 5 (100 lb)(12 in.) 5 1200 lb ? in.  

  Since the force tends to rotate the lever clockwise about  O , the moment 
will be represented by a vector  M   O   perpendicular to the plane of the figure 
and pointing  into  the paper. We express this fact by writing

 MO 5 1200 lb ? in. i ◀ 

 b.   Horizontal Force.   In this case, we have

 d 5 (24 in.) sin 60° 5 20.8 in. 

 Since the moment about  O  must be 1200 lb · in., we write

  MO 5 Fd 
  1200 lb ? in. 5 F(20.8 in.) 
   F 5 57.7 lb F 5 57.7 lb y ◀ 

 c.   Smallest Force.   Since  M O  5  Fd , the smallest value of  F  occurs when 
 d  is maximum. We choose the force perpendicular to  OA  and note that  
d  5 24 in.; thus,

  MO 5 Fd 
  1200 lb ? in. 5 F(24 in.) 
   F 5 50 lb F 5 50 lb c30° ◀   

 d.   240-lb Vertical Force.   In this case  M   O   5 Fd  yields

  1200 lb ? in. 5 (240 lb)d  d 5 5 in. 
 but  OB cos 60° 5 d OB 5 10 in. ◀ 

 e.   None of the forces considered in parts  b ,  c , and  d  is equivalent to the 
original 100-lb force. Although they have the same moment about  O , they 
have different  x  and  y  components. In other words, although each force 
tends to rotate the shaft in the same manner, each causes the lever to pull 
on the shaft in a different way. 

60°

MO

100 lb

A

O

24 in.

d

F

60°

MO

A

O

24 in.
d

F

MO

60°

A

O

24 in.

240 lb

MO
60°

A

B

O
d
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 SAMPLE PROBLEM 3.3 

 A 30-lb force acts on the end of the 3-ft lever as shown. Determine the 
moment of the force about  O.  

 SAMPLE PROBLEM 3.2 

 A force of 800 N acts on a bracket as shown. Determine the moment of the 
force about  B.  

      SOLUTION 

 The moment  M  B  of the force  F  about  B  is obtained by forming the vector 
product

  MB 5 rA/B 3 F 

  where  r  A/B  is the vector drawn from  B  to  A . Resolving  r  A/B  and  F  into 
rectangular components, we have

  rA/B 5 2(0.2 m)i 1 (0.16 m)j 
   F 5 (800 N) cos 60°i 1 (800 N) sin 60°j 
  5 (400 N)i 1 (693 N)j 

   Recalling the relations (3.7) for the cross products of unit vectors (Sec. 3.5), 
we obtain

   MB 5 rA/B 3 F 5 [2(0.2 m)i 1 (0.16 m)j] 3 [(400 N)i 1 (693 N)j] 
  5 2(138.6 N ? m)k 2 (64.0 N ? m)k 
   5 2(202.6 N ? m)k MB 5 203 N ? m i ◀ 

  The moment  M  B  is a vector perpendicular to the plane of the figure and 
pointing  into  the paper.      

60°

Fy = (693 N) j

Fx = (400 N) i

rA/B

MB

F = 800 N

+ (0.16 m) j

– (0.2 m) i

A

B

800 N

60°

B

A

160 mm

200 mm

A

O

20°

50°

30 lb

3 ft

MO

P

Q

A

O

20° 30 lb

3 ft

  SOLUTION 

 The force is replaced by two components, one component  P  in the direction 
of  OA  and one component  Q  perpendicular to  OA . Since  O  is on the line 
of action of  P , the moment of  P  about  O  is zero and the moment of the 
30-lb force reduces to the moment of  Q , which is clockwise and, thus, is 
represented by a negative scalar. 

 Q 5 (30 lb) sin 20° 5 10.26 lb 
  MO 5 2Q(3 ft) 5 2(10.26 lb)(3 ft) 5 230.8 lb ? ft 

  Since the value obtained for the scalar  M   O   is negative, the moment  M   O   
points  into  the paper. We write

  MO 5 30.8 lb ? ft i ◀        
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 SAMPLE PROBLEM 3.4 

  A rectangular plate is supported by brackets at  A  and  B  and by a wire  CD . 
Knowing that the tension in the wire is 200 N, determine the moment about 
 A  of the force exerted by the wire on point  C .   80 mm

80 mm

A

B

C

D

240 mm

240 mm

300 mm

SOLUTION 

 The moment  M  A  about  A  of the force  F  exerted by the wire on point  C  is 
obtained by forming the vector product

   MA 5 rC/A 3 F (1) 

  where  r  C/A  is the vector drawn from  A  to  C ,

   rC/A 5 AC
¡

5 (0.3 m)i 1 (0.08 m)k  (2)

  and  F  is the 200-N force directed along  CD . Introducing the unit vector
L 5 CD

¡
/CD, we write

   
F 5 FL 5 (200 N) 

CD
¡

CD   
(3)

     

 Resolving the vector CD
¡

 into rectangular components, we have

   CD
¡

5 2(0.3 m)i 1 (0.24 m)j 2 (0.32 m)k    CD 5 0 .50 m  

  Substituting into (3), we obtain

   
 F 5

200 N
0.50 m

 [2(0.3 m)i 1 (0.24 m)j 2 (0.32 m)k]
  

    5 2(120 N)i 1 (96 N)j 2 (128 N)k    (4)

   Substituting for  r  C/A  and  F  from (2) and (4) into (1) and recalling the 
relations (3.7) of Sec. 3.5, we obtain

   MA 5 rC/A 3 F 5 (0.3i 1 0.08k) 3 (2120i 1 96j 2 128k)  
  5 (0.3)(96)k 1 (0.3)(2128)(2j) 1 (0.08)(2120)j 1 (0.08)(96)(2i)  

  MA 5 2(7.68 N ? m)i 1 (28.8 N ? m)j 1 (28.8 N ? m)k ◀         

Alternative Solution.   As indicated in Sec. 3.8, the moment  M  A  can be 
expressed in the form of a determinant:

    
MA 5 †

i j k
xC 2 xA yC 2 yA zC 2 zA

Fx Fy Fz

† 5 †
i j k

0.3 0 0.08
2120 96 2128

†

MA 5 2(7.68 N ? m)i 1 (28.8 N ? m)j 1 (28.8 N ? m)k     ◀

rC/A

A

B

C

D

x

y

z

O0.08 m

0.08 m 0.3 m

200 N
0.24 m

0.24 m

A

C

D

(28.8 N•m) j

(28.8 N•m) k

– (7.68 N•m) i

F = (200 N)�
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PROBLEMS

80

3.1 A 20-lb force is applied to the control rod AB as shown. Knowing 
that the length of the rod is 9 in. and that a 5 25°, determine the 
moment of the force about point B by resolving the force into 
horizontal and vertical components.

3.2 A 20-lb force is applied to the control rod AB as shown. Knowing 
that the length of the rod is 9 in. and that the moment of the force 
about B is 120 lb ? in. clockwise, determine the value of a.

3.3 For the brake pedal shown, determine the magnitude and direction 
of the smallest force P that has a 104-N ? m clockwise moment 
about B.

 3.4 A force P is applied to the brake pedal at A. Knowing that P 5
450 N and a 5 30°, determine the moment of P about B.

 3.5 A 450-N force is applied at A as shown. Determine (a) the moment 
of the 450-N force about D, (b) the smallest force applied at B 
that creates the same moment about D.

A

B

20 lb

65°

�

 Fig. P3.1  and  P3.2  

A

B

100 mm

P

240 mm

�

 Fig. P3.3   and   P3.4  

B

D

A

C

300 mm

225 mm

125 mm

225 mm

450 N

30°

 Fig. P3.5   and   P3.6  

3.6 A 450-N force is applied at A as shown. Determine (a) the moment 
of the 450-N force about D, (b) the magnitude and sense of the 
horizontal force applied at C that creates the same moment about D, 
(c) the smallest force applied at C that creates the same moment 
about D.

 3.7 Compute the moment of the 100-lb force about A, (a) by using the 
definition of the moment of a force, (b) by resolving the force into 
horizontal and vertical components, (c) by resolving the force into 
components along AB and in the direction perpendicular to AB.

 3.8 Determine the moment of the 100-lb force about C.

100 lb

A C

B

60�12 in.

8 in.
5 in.

5 in.

 Fig. P3.7   and   P3.8  
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81Problems 3.9 and 3.10 It is known that the connecting rod AB exerts on the 
crank BC a 2.5-kN force directed down to the left along the cen-
terline AB. Determine the moment of that force about C.

 3.11 Rod AB is held in place by the cord AC. Knowing that the tension 
in the cord is 300 lb and that c 5 18 in., determine the moment 
about B of the force exerted by the cord at point A by resolving 
that force into horizontal and vertical components applied (a) at 
point A, (b) at point C.

c

22.5 in.

12 in.

C

B

A

 Fig. P3.11   and   P3.12  

A

B

B

C
C

A

42 mm

144 mm

56 mm
88 mm

56 mm

42 mm

 Fig. P3.9  Fig.   P3.10  

 3.12 Rod AB is held in place by the cord AC. Knowing that c 5 42 in. 
and that the moment about B of the force exerted by the cord at 
point A is 700 lb ? ft, determine the tension in the cord.

 3.13 Determine the moment about the origin of coordinates O of the 
force F 5 4i 2 3j 1 2k that acts at a point A. Assume that the 
position of A is (a) r 5 i 1 5j 1 6k, (b) r 5 6i 1 j 1 3k, (c) r 5 
5i 2 4j 1 3k.

 3.14 Determine the moment about the origin of coordinates O of the 
force F 5 2i 1 3j 1 5k that acts at a point A. Assume that the 
position of A is (a) r 5 2i 2 4j 1 k, (b) r 5 4i 1 6j 1 10k, 
(c) r 5 23i 1 9j 1 15k.
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82 Rigid Bodies: Equivalent Systems of Forces  3.15 The line of action of the force P of magnitude 420 lb passes through 
the two points A and B as shown. Compute the moment of P about 
O using the position vector (a) of point A, (b) of point B.

 3.16 A force P of magnitude 200 N acts along the diagonal BC of the 
bent plate shown. Determine the moment of P about point E.

 3.17 Knowing that the tension in cable AB is 1800 lb, determine the 
moment of the force exerted on the plate at A about (a) the origin 
of coordinates O, (b) corner D.

P

O

A

B
12 in.

18 in.

3 in.

y

x

z

6 in.

 Fig. P3.15

y

x

z

225 mm

200 mm

300 mm

O

A

B

E

D
C

P

 Fig. P3.16

y

x

z

7 ft

D

O

B

C

A

4 ft
9 ft

4 ft

2 ft

 Fig. P3.17   and   P3.18  

 3.18 Knowing that the tension in cable BC is 900 lb, determine the 
moment of the force exerted on the plate at C about (a) the origin 
of coordinates O, (b) corner D.
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83Problems 3.19 A 200-N force is applied as shown to the bracket ABC. Determine 
the moment of the force about A.

 3.20 A small boat hangs from two davits, one of which is shown in the 
figure. The tension in line ABAD is 82 lb. Determine the moment 
about C of the resultant force RA exerted on the davit at A.

 3.21 In Prob. 3.15, determine the perpendicular distance from the line 
of action of P to the origin O.

 3.22 In Prob. 3.16, determine the perpendicular distance from the line 
of action of P to point E.

 3.23 In Prob. 3.20, determine the perpendicular distance from the point 
C to the portion AD of line ABAD.

 3.24 In Sample Prob. 3.4, determine the perpendicular distance from 
point A to wire CD.

3 ft

x

y

z

A

C

D7.75 ft

6 ft

B

 Fig. P3.20

B

A

x

y

z
50 mm

60 mm

25 mm

200 N

30°
60°

C

 Fig. P3.19
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84 Rigid Bodies: Equivalent Systems of Forces 3.9   SCALAR PRODUCT OF TWO VECTORS  
The  scalar product  of two vectors  P  and  Q  is defined as the product 
of the magnitudes of  P  and  Q  and of the cosine of the angle u formed 
by  P  and  Q  ( Fig. 3.19 ). The scalar product of  P  and  Q  is denoted 
by  P ? Q . We write therefore

   P ? Q 5 PQ cos u (3.24)  

   Note that the expression just defined is not a vector but a   scalar , 
which explains the name  scalar product ; because of the notation 
used,  P ? Q  is also referred to as the  dot product  of the vectors  P  
and  Q.  
   It follows from its very definition that the scalar product of two 
vectors is  commutative , i.e., that

   P ? Q 5 Q ? P   (3.25)

  To prove that the scalar product is also  distributive,  we must prove 
the relation

   P ? (Q1 1 Q2) 5 P ? Q1 1 P ? Q2 (3.26)  

  We can, without any loss of generality, assume that  P  is directed 
along the  y  axis ( Fig. 3.20 ). Denoting by  Q  the sum of  Q  1  and  Q  2  
and by u  y   the angle  Q  forms with the  y  axis, we express the left-hand 
member of (3.26) as follows:

   P ? (Q1 1 Q2) 5 P ? Q 5 PQ cos uy 5 PQy (3.27)  

  where  Q y   is the  y  component of  Q . We can, in a similar way, express 
the right-hand member of (3.26) as

   P ? Q1 1 P ? Q2 5 P(Q1)y 1 P(Q2)y (3.28)  

  Since  Q  is the sum of  Q  1  and  Q  2 , its  y  component must be equal to 
the sum of the  y  components of  Q  1  and  Q  2 . Thus, the expressions 
obtained in (3.27) and (3.28) are equal, and the relation (3.26) has 
been proved. 
   As far as the third property—the associative property—is con-
cerned, we note that this property cannot apply to scalar products. 
Indeed, ( P ?  Q) ?  S has no meaning since  P ?  Q is not a vector but 
a scalar. 
    The scalar product of two vectors  P  and  Q  can be expressed 
in terms of their rectangular components. Resolving  P  and  Q  into 
components, we first write

  P ? Q 5 (Pxi 1 Pyj 1 Pzk) ? (Qxi 1 Qyj 1 Qzk)  

   Making use of the distributive property, we express  P ? Q  as the sum 
of scalar products, such as  Px i ?  Qx i and  Px i ?  Qy j. However, from the 

Fig. 3.19   
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85definition of the scalar product it follows that the scalar products of 
the unit vectors are either zero or one.

   
i ? i 5 1   j ? j  5 1   k ? k 5 1
i ? j 5 0    j ? k 5 0     k ? i  5 0 (3.29)  

  Thus, the expression obtained for  P ?  Q  reduces to

   P ? Q 5 PxQx 1 PyQy 1 PzQz (3.30)  

 In the particular case when  P and  Q are equal, we note that

   P ? P 5 P2
x 1 P2

y 1 P2
z 5 P2 (3.31)  

Applications  

  1.    Angle formed by two given vectors .  Let two vectors be given 
in terms of their components:

   P 5 Pxi 1 Py j 1 Pzk   
  Q 5 Qxi 1 Qy j 1 Qzk  

   To determine the angle formed by the two vectors, we equate 
the expressions obtained in (3.24) and (3.30) for their scalar 
product and write

  PQ cos u 5 PxQx 1 PyQy 1 PzQz  

   Solving for cos u, we have

   
cos u 5

PxQx 1 PyQy 1 PzQz

PQ  
(3.32)  

  2.   Projection of a vector on a given axis .  Consider a vector  P 
forming an angle u with an axis, or directed line,  OL  
( Fig. 3.21 ). The  projection of   P  on the axis OL  is defined as 
the scalar

   POL 5 P cos u (3.33)  

   We note that the projection  P OL  is equal in absolute value to 
the length of the segment  OA ; it will be positive if  OA  has the 
same sense as the axis  OL , that is, if u is acute, and negative 
otherwise. If  P and  OL  are at a right angle, the projection of 
 P on  OL  is zero. 

    Consider now a vector  Q directed along  OL  and of the 
same sense as  OL  ( Fig. 3.22 ). The scalar product of  P and  Q 
can be expressed as

   P ? Q 5 PQ cos u 5 POLQ (3.34)  
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86 Rigid Bodies: Equivalent Systems of Forces    from which it follows that

   
POL 5

P ? Q
Q

5
PxQx 1 PyQy 1 PzQz

Q  
(3.35)

  

   In the particular case when the vector selected along  OL  is the 
unit vector l ( Fig. 3.23 ), we write

   POL 5 P ? l (3.36)  

   Resolving  P and l into rectangular components and recalling 
from Sec. 2.12 that the components of l along the coordinate 
axes are respectively equal to the direction cosines of  OL , we 
express the projection of  P on  OL  as

   POL 5 Px cos ux 1 Py cos uy 1 Pz cos uz (3.37)  

   where u  x , u  y , and u  z  denote the angles that the axis  OL  forms 
with the coordinate axes.  

3.10   MIXED TRIPLE PRODUCT OF THREE VECTORS  
We define the  mixed triple product  of the three vectors  S ,  P , and  Q  
as the scalar expression

   S ? (P 3 Q) (3.38)  

 obtained by forming the scalar product of  S with the vector product 
of  P and  Q.    
  A simple geometrical interpretation can be given for the 
mixed triple product of  S,  P, and  Q ( Fig. 3.24 ). We first recall 
from Sec. 3.4 that the vector  P 3 Q  is perpendicular to the plane 
containing  P and  Q and that its magnitude is equal to the area of 
the parallelogram which has  P and  Q for sides. On the other hand, 
Eq. (3.34) indicates that the scalar product of  S and  P 3  Q can 
be obtained by multiplying the magnitude of  P 3  Q (i.e., the area 
of the parallelogram defined by  P and  Q) by the projection of  S 
on the vector  P 3  Q (i.e., by the projection of  S on the normal 
to the plane containing the parallelogram). The mixed triple prod-
uct is thus equal, in absolute value, to the volume of the parallel-
epiped having the vectors  S,  P, and  Q for sides ( Fig. 3.25 ). We 
note that the sign of the mixed triple product will be positive if  S, 
 P, and  Q form a right-handed triad and negative if they form a 
left-handed triad [that is,  S ? ( P 3  Q) will be negative if the rotation 
which brings  P into line with  Q is observed as clockwise from the 
tip of  S]. The mixed triple product will be zero if  S,  P, and  Q are 
coplanar. 

 Fig. 3.24  
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87  Since the parallelepiped defined in the preceding paragraph is 
independent of the order in which the three vectors are taken, the 
six mixed triple products which can be formed with  S,  P, and  Q will 
all have the same absolute value, although not the same sign. It is 
easily shown that

  S ? (P 3 Q) 5 P ? (Q 3 S) 5 Q ? (S 3 P)  
  5 2S ? (Q 3 P) 5 2P ? (S 3 Q) 5 2Q ? (P 3 S)

(3.39)     

 Arranging in a circle and in counterclockwise order the letters rep-
resenting the three vectors ( Fig. 3.26 ), we observe that the sign of 
the mixed triple product remains unchanged if the vectors are per-
muted in such a way that they are still read in counterclockwise 
order. Such a permutation is said to be a  circular permutation . It 
also follows from Eq. (3.39) and from the commutative property of 
scalar products that the mixed triple product of  S,  P, and  Q can be 
defined equally well as  S ? ( P 3  Q) or ( S 3  P) ?  Q.  
  The mixed triple product of the vectors  S,  P, and  Q can be 
expressed in terms of the rectangular components of these vectors. 
Denoting  P 3  Q by  V and using formula (3.30) to express the scalar 
product of  S and  V, we write

  S ? (P 3 Q) 5 S ? V 5 SxVx 1 SyVy 1 SzVz  

 Substituting from the relations (3.9) for the components of  V, we 
obtain

  S ? (P 3  Q) 5 Sx(PyQz 2 PzQy) 1 Sy(PzQx 2 PxQz)
1 Sz(PxQy 2 PyQx) (3.40)  

 This expression can be written in a more compact form if we observe 
that it represents the expansion of a determinant:

   
S ? (P 3 Q) 5 †

Sx Sy Sz

Px Py Pz

Qx Qy Qz

†
 

(3.41)
  

 By applying the rules governing the permutation of rows in a deter-
minant, we could easily verify the relations (3.39) which were derived 
earlier from geometrical considerations.  

3.11    MOMENT OF A FORCE ABOUT A GIVEN AXIS  
Now that we have further increased our knowledge of vector alge-
bra, we can introduce a new concept, the concept of  moment of a 
force about an axis . Consider again a force  F  acting on a rigid body 
and the moment  M   O   of that force about  O  ( Fig. 3.27 ). Let  OL  be 

 Fig. 3.26  
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88 Rigid Bodies: Equivalent Systems of Forces an axis through  O; we define the moment M OL  of   F   about OL as the 
projection OC of the moment   M   O    onto the axis OL . Denoting by L 
the unit vector along  OL  and recalling from Secs. 3.9 and 3.6, 
respectively, the expressions (3.36) and (3.11) obtained for the pro-
jection of a vector on a given axis and for the moment  M   O   of a force 
 F , we write

   MOL 5 L ? MO 5 L ? (r 3 F) (3.42)  

 which shows that the moment  M OL  of  F about the axis  OL  is the 
scalar obtained by forming the mixed triple product of L,  r, and  F. 
Expressing  M OL  in the form of a determinant, we write

   
MOL 5 †

lx ly lz

x y z
Fx Fy Fz

†
 

(3.43)
  

 where l  x , l  y , l  z  5 direction cosines of axis  OL 
               x,  y,  z 5 coordinates of point of application of  F 
           Fx ,  Fy ,  Fz  5 components of force  F 

  The physical significance of the moment  M OL  of a force  F 
about a fixed axis  OL  becomes more apparent if we resolve  F into 
two rectangular components  F 1 and  F 2, with  F 1 parallel to  OL  and 
 F 2 lying in a plane  P perpendicular to  OL  ( Fig. 3.28 ). Resolving  r 
similarly into two components  r  1  and  r  2  and substituting for  F  and  r  
into (3.42), we write

  MOL 5 L ? [(r1 1 r2) 3 (F1 1 F2)]  
 5 L ? (r1 3 F1) 1 L ? (r1 3 F2) 1 L ? (r2 3 F1) 1 l ? (r2 3 F2)  

  Noting that all of the mixed triple products except the last one are 
equal to zero, since they involve vectors which are coplanar when 
drawn from a common origin (Sec. 3.10), we have

   MOL 5 L ? (r2 3 F2)  (3.44) 

  The vector product  r  2 3  F  2  is perpendicular to the plane  P  and 
represents the moment of the component  F  2  of  F  about the point 
 Q  where  OL  intersects  P . Therefore, the scalar  M  OL , which will 
be positive if  r  2 3  F  2  and  OL  have the same sense and negative 
otherwise, measures the tendency of  F  2  to make the rigid body 
rotate about the fixed axis  OL . Since the other component  F  1  of  F  
does not tend to make the body rotate about  OL , we conclude that 
 the moment M OL  of   F   about OL measures the tendency of the force  
 F   to impart to the rigid body a motion of rotation about the fixed 
axis OL.  
   It follows from the definition of the moment of a force about 
an axis that the moment of  F  about a coordinate axis is equal to 
the component of  M   O   along that axis. Substituting successively each 
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89of the unit vectors  i ,  j , and  k  for L in (3.42), we observe that the 
expressions thus obtained for the  moments of   F  about the coordinate 
axes  are respectively equal to the expressions obtained in Sec. 3.8 
for the components of the moment  M O  of  F about  O:

   

Mx 5 yFz 2 zFy

My 5 zFx 2 xFz

Mz 5 xFy 2 yFx   
(3.18)

   We observe that just as the components  F x  ,  F y  , and  F z   of a force  F  
acting on a rigid body measure, respectively, the tendency of  F  to 
move the rigid body in the  x ,  y , and  z  directions, the moments  M x  , 
 M y  , and  M z   of  F  about the coordinate axes measure the tendency of 
 F  to impart to the rigid body a motion of rotation about the  x ,  y , 
and  z  axes, respectively. 
   More generally, the moment of a force  F  applied at  A  about 
an axis which does not pass through the origin is obtained by 
choosing an arbitrary point  B  on the axis ( Fig. 3.29 ) and determin-
ing the projection on the axis  BL  of the moment  M  B  of  F  about  B . 
We write

   MBL 5 L ? MB 5 L ? (rA/B 3 F) (3.45)  

 where  r  A/B  5  r  A 2  r  B  represents the vector drawn from  B  to  A . 
Expressing  M BL   in the form of a determinant, we have

   
MBL 5 †

lx ly lz

xA /B yA /B zA /B

Fx Fy Fz

†
 

(3.46)
  

 where l  x , l  y , l  z  5 direction cosines of axis  BL 
xA/B 5 xA 2 xB  yA/B 5 yA 2 yB  zA/B 5 zA 2 zB

 Fx ,  Fy ,  Fz  5 components of force  F 

  It should be noted that the result obtained is independent of the 
choice of the point  B  on the given axis. Indeed, denoting by  M  CL  the 
result obtained with a different point  C , we have

   MCL 5 L ? [(rA 2 rC) 3 F]
 5 L ? [(rA 2 rB) 3 F] 1 L ? [(rB 2 rC) 3 F]

  But, since the vectors L and  r  B 2  r  C  lie in the same line, the vol-
ume of the parallelepiped having the vectors L,  r  B 2  r  C , and  F  for 
its sides is zero, as is the mixed triple product of these three vec-
tors (Sec. 3.10). The expression obtained for  M  CL  thus reduces to 
its first term, which is the expression used earlier to define  M  BL . 
In addition, it follows from Sec. 3.6 that, when computing the 
moment of  F  about the given axis,  A  can be any point on the line 
of action of  F.   
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SAMPLE PROBLEM 3.5 

 A cube of side  a  is acted upon by a force  P  as shown. Determine the 
moment of  P  ( a ) about  A , ( b ) about the edge  AB , ( c ) about the diagonal 
 AG  of the cube. ( d ) Using the result of part  c , determine the perpendicular 
distance between  AG  and  FC.   
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d P

SOLUTION  

 a.   Moment about A.   Choosing  x ,  y , and  z  axes as shown, we resolve into
rectangular components the force  P  and the vector  r  F/A  5 AF

¡
 drawn from 

 A  to the point of application  F  of  P. 

  rF/A 5 ai 2 aj 5 a(i 2 j)   
  P 5 (P/12)j 2 (P/12)k 5 (P/12) ( j 2 k)  

The moment of  P about  A is

  MA 5 rF/A 3 P 5 a(i 2 j) 3 (P/12) (j 2 k)
MA 5 (aP/12) (i 1 j 1 k)   ◀

      b.  Moment about  AB. Projecting  M A on  AB , we write

  MAB 5 i ? MA 5 i ? (aP/12) (i 1 j 1 k)  
MAB 5 aP/12  ◀

We verify that, since  AB  is parallel to the  x axis,  M AB  is also the  x component 
of the moment  M A. 

c.  Moment about Diagonal  AG.  The moment of P about  AG  is obtained 
by projecting  M A on  AG . Denoting by L the unit vector along  AG , we have

  
L 5

AG
¡

AG
5

ai 2 aj 2 ak

a13
5 (1/13) (i 2 j 2 k)

  
 MAG 5 L ? MA 5 (1/13) (i 2 j 2 k) ? (aP/12) (i 1 j 1 k)  

 MAG 5 (aP/16) (1 2 1 2 1)  MAG 5 2aP/16   ◀

 Alternative Method.  The moment of  P about  AG  can also be expressed 
in the form of a determinant:

  
MAG 5 †

lx ly lz

xF/A yF/A zF/A

Fx Fy Fz

† 5 †
1/13 21/13 21/13

a 2a 0
0 P/12 2P/12

† 5 2aP/16
  

 d.  Perpendicular Distance between  AG  and  FC.  We first observe that  P 
is perpendicular to the diagonal  AG . This can be checked by forming the 
scalar product  P ? L and verifying that it is zero:

  P ? L5 (P/12)( j 2 k) ? (1/13)(i 2 j 2 k) 5 (P16)(0 2 1 1 1) 5 0  

The moment  M AG  can then be expressed as 2 Pd , where  d is the perpen-
dicular distance from  AG  to  FC . (The negative sign is used since the rotation 
imparted to the cube by  P appears as clockwise to an observer at  G.) Recall-
ing the value found for  M AG  in part  c,

  MAG 5 2Pd 5 2aP/16       d 5 a/16 ◀
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91

PROBLEMS

91

3.25 Given the vectors P 5 2i 1 j 1 2k, Q 5 3i 1 4j 2 5k, and S 5
24i 1 j 2 2k, compute the scalar products P ? Q, P ? S, and 
Q ? S.

3.26 Form the scalar product P1 ? P2, and use the result obtained to 
prove the identity cos (u1 2 u2) 5 cos u1 cos u2 1 sin u1 sin u2.

3.27 Knowing that the tension in cable BC is 1400 N, determine (a) the 
angle between cable BC and the boom AB, (b) the projection on 
AB of the force exerted by cable BC at point B.

 3.28 Knowing that the tension in cable BD is 900 N, determine (a) the 
angle between cable BD and the boom AB, (b) the projection on 
AB of the force exerted by cable BD at point B.

 3.29 Three cables are used to support a container as shown. Determine 
the angle formed by cables AB and AD.

x
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θ1
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P2

 Fig. P3.26
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B
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D
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z

2.6 m

 Fig. P3.27  and  P3.28   

3.30 Three cables are used to support a container as shown. Determine 
the angle formed by cables AC and AD.

3.31 The 500-mm tube AB can slide along a horizontal rod. The ends 
A and B of the tube are connected by elastic cords to the fixed 
point C. For the position corresponding to x 5 275 mm, determine 
the angle formed by the two cords, (a) using Eq. (3.32), (b) apply-
ing the law of cosines to triangle ABC.

3.32 Solve Prob. 3.31 for the position corresponding to x 5 100 mm.

3.33 Given the vectors P 5 3i 1 2j 1 k, Q 5 2i 1 j, and S 5 i, com-
pute P ? (Q 3 S), (P 3 Q) ? S, and (S 3 Q) ? P.

 3.34 Given the vectors P 5 2i 1 3j 1 4k, Q 5 2i 1 2j 2 2k, and S 5
23i 2 j 1 Szk, determine the value of Sz for which the three vec-
tors are coplanar.
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92 Rigid Bodies: Equivalent Systems of Forces  3.35 The jib crane is oriented so that the boom DA is parallel to the 
x axis. At the instant shown, the tension in cable AB is 13 kN. 
Determine the moment about each of the coordinate axes of the 
force exerted on A by the cable AB.
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2 m

y
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x

 Fig. P3.35 and  P3.36  

 3.36 The jib crane is oriented so that the boom DA is parallel to the 
x axis. Determine the maximum permissible tension in the cable 
AB if the absolute values of the moments about the coordinate axes 
of the force exerted on A must be as follows: 0Mx 0 # 10 kN ? m, 0My 0 # 6 kN ? m, and 0Mz 0 # 16 kN ? m.

 3.37 The primary purpose of the crank shown is to produce a moment about 
the x axis. Show that a single force acting at A and having moment 
Mx different from zero about the x axis must also have a moment dif-
ferent from zero about at least one of the other coordinate axes.

 3.38 A single force F of unknown magnitude and direction acts at point 
A of the crank shown. Determine the moment Mx of F about the 
x axis knowing that My 5 1180 lb ? in. and Mz 5 2320 lb ? in.

 3.39 The rectangular platform is hinged at A and B and supported by 
a cable that passes over a frictionless hook at E. Knowing that the 
tension in the cable is 1349 N, determine the moment about each 
of the coordinate axes of the force exerted by the cable at C.

 3.40 For the platform of Prob. 3.39, determine the moment about each 
of the coordinate axes of the force exerted by the cable at D.

 3.41 A small boat hangs from two davits, one of which is shown in the 
figure. It is known that the moment about the z axis of the resultant 
force RA exerted on the davit at A must not exceed 279 lb ? ft in 
absolute value. Determine the largest allowable tension in the line 
ABAD when x 5 6 ft.

 3.42 For the davit of Prob. 3.41, determine the largest allowable dis-
tance x when the tension in the line ABAD is 60 lb.
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93Problems 3.43 A force P of magnitude 25 lb acts on a bent rod as shown. Deter-
mine the moment of P about (a) a line joining points C and F, (b) 
a line joining points O and C.

 3.44 A force P of magnitude 25 lb acts on a bent rod as shown. Deter-
mine the moment of P about (a) a line joining points A and C, (b) 
a line joining points A and D.

 3.45 Two rods are welded together to form a T-shaped lever that is 
acted upon by a 650-N force as shown. Determine the moment of 
the force about rod AB. O
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 3.46 The rectangular plate ABCD is held by hinges along its edge AD 
and by the wire BE. Knowing that the tension in the wire is 546 N, 
determine the moment about AD of the force exerted by the wire 
at point B.

 3.47 The 23-in. vertical rod CD is welded to the midpoint C of the 50-in. 
rod AB. Determine the moment about AB of the 235-lb force P.

 3.48 The 23-in. vertical rod CD is welded to the midpoint C of the 50-in. 
rod AB. Determine the moment about AB of the 174-lb force Q.
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94 Rigid Bodies: Equivalent Systems of Forces   3.12   MOMENT OF A COUPLE  
  Two forces   F   and  2 F   having the same magnitude, parallel lines of 
action, and opposite sense are said to form a couple  ( Fig. 3.30 ). 
Clearly, the sum of the components of the two forces in any direction 
is zero. The sum of the moments of the two forces about a given 
point, however, is not zero. While the two forces will not translate 
the body on which they act, they will tend to make it rotate. 
 Denoting by  r   A   and  r   B  , respectively, the position vectors of the 
points of application of  F  and 2 F  ( Fig. 3.31 ), we find that the sum 
of the moments of the two forces about  O  is

  rA 3 F 1 rB 3 (2F) 5 (rA 2 rB) 3 F  

Setting  r  A 2  r  B 5 r , where  r  is the vector joining the points of 
application of the two forces, we conclude that the sum of the 
moments of  F  and 2 F  about  O  is represented by the vector

   M 5 r 3 F (3.47)   

The vector  M  is called the  moment of the couple ; it is a vector 
perpendicular to the plane containing the two forces, and its mag-
nitude is

   M 5 rF sin u 5 Fd (3.48)   

 where  d  is the perpendicular distance between the lines of action of 
 F  and 2F. The sense of  M  is defined by the right-hand rule. 
    Since the vector  r  in (3.47) is independent of the choice of the 
origin  O  of the coordinate axes, we note that the same result would 
have been obtained if the moments of  F  and 2 F  had been computed 
about a different point  O 9. Thus, the moment  M  of a couple is a  free 
vector  (Sec. 2.3) which can be applied at any point ( Fig. 3.32 ). 
   From the definition of the moment of a couple, it also follows 
that two couples, one consisting of the forces F 1  and 2F 1 , the other 
of the forces F 2  and 2F 2  ( Fig. 3.33 ), will have equal moments if

   F1d1 5 F2d2 (3.49)   

and if the two couples lie in parallel planes (or in the same plane) 
and have the same sense. 
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95 3.13   EQUIVALENT COUPLES  
 Figure 3.34 shows three couples which act successively on the same 
rectangular box. As seen in the preceding section, the only motion a 
couple can impart to a rigid body is a rotation. Since each of the 
three couples shown has the same moment  M  (same direction and 
same magnitude  M  5 120 lb ? in.), we can expect the three couples 
to have the same effect on the box. 

  As reasonable as this conclusion appears, we should not accept 
it hastily. While intuitive feeling is of great help in the study of mechan-
ics, it should not be accepted as a substitute for logical reasoning. 
Before stating that two systems (or groups) of forces have the same 
effect on a rigid body, we should prove that fact on the basis of the 
experimental evidence introduced so far. This evidence consists of 
the parallelogram law for the addition of two forces (Sec. 2.2) and 
the principle of transmissibility (Sec. 3.3). Therefore, we will state 
that  two systems of forces are equivalent  (i.e., they have the same 
effect on a rigid body)  if we can transform one of them into the other 
by means of one or several of the following operations : (1) replacing 
two forces acting on the same particle by their resultant; (2) resolving 
a force into two components; (3) canceling two equal and opposite 
forces acting on the same particle; (4) attaching to the same particle 
two equal and opposite forces; (5) moving a force along its line of 
action. Each of these operations is easily justified on the basis of the 
parallelogram law or the principle of transmissibility. 
    Let us now prove that  two couples having the same moment   M   
are equivalent . First consider two couples contained in the same 
plane, and assume that this plane coincides with the plane of the 
figure ( Fig. 3.35 ). The first couple consists of the forces F 1  and 2F 1  
of magnitude F 1 , which are located at a distance  d  1  from each other 
(Fig. 3.35 a ), and the second couple consists of the forces F 2  and 2F 2  
of magnitude  F  2 , which are located at a distance  d  2  from each other 
(Fig. 3.35 d ). Since the two couples have the same moment M, which 
is perpendicular to the plane of the figure, they must have the same 
sense (assumed here to be counterclockwise), and the relation

   F1d1 5 F2d2 (3.49)   

 must be satisfied. To prove that they are equivalent, we shall show 
that the first couple can be transformed into the second by means 
of the operations listed above. 

3.13   Equivalent Couples  
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96 Rigid Bodies: Equivalent Systems of Forces
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 Fig. 3.35     Denoting by  A, B, C, and D  the points of intersection of the 
lines of action of the two couples, we first slide the forces F 1  and 2F 1  
until they are attached, respectively, at  A  and  B , as shown in Fig. 3.35 b . 
The force F 1  is then resolved into a component  P  along line  AB  and 
a component  Q  along  AC  (Fig. 3.35 c ); similarly, the force 2F 1  is 
resolved into 2 P  along  AB  and 2 Q  along  BD . The forces  P  and 2 P  
have the same magnitude, the same line of action, and opposite sense; 
they can be moved along their common line of action until they are 
applied at the same point and may then be canceled. Thus the couple 
formed by F 1  and 2F 1  reduces to a couple consisting of  Q  and 2Q. 
    We will now show that the forces  Q  and 2 Q  are respectively 
equal to the forces 2F 2  and F 2 . The moment of the couple formed 
by  Q  and 2 Q  can be obtained by computing the moment of  Q  about 
 B ; similarly, the moment of the couple formed by F 1  and 2F 1  is the 
moment of F 1  about  B.  But, by Varignon’s theorem, the moment of 
F 1  is equal to the sum of the moments of its components  P  and Q. 
Since the moment of  P  about  B  is zero, the moment of the couple 
formed by  Q  and 2 Q  must be equal to the moment of the couple 
formed by F 1  and 2F 1 . Recalling (3.49), we write

 Qd2 5 F1d1 5 F2d2  and  Q 5 F2   

  Thus the forces  Q  and 2 Q  are respectively equal to the forces 2F 2  
and F 2 , and the couple of Fig. 3.35 a is equivalent to the couple of 
Fig. 3.35 d .
    Next consider two couples contained in parallel planes  P  1  and 
 P  2 ; we will prove that they are equivalent if they have the same 
moment. In view of the foregoing, we can assume that the couples 
consist of forces of the same magnitude  F  acting along parallel lines 
( Fig. 3.36  a  and  d ). We propose to show that the couple contained 
in plane  P  1  can be transformed into the couple contained in plane 
 P  2  by means of the standard operations listed above. 
   Let us consider the two planes defined respectively by the lines of 
action of F 1  and 2F 2  and by those of 2F 1  and F 2  (Fig. 3.36b ). At 
a point on their line of intersection we attach two forces  F  3  and 2 F  3 , 
respectively equal to  F  1  and 2F  1 . The couple formed by  F  1  and 2 F  3  
can be replaced by a couple consisting of  F  3  and 2 F  2  (Fig. 3.36 c ), 
since both couples clearly have the same moment and are contained 
in the same plane. Similarly, the couple formed by 2 F  1  and  F  3  can 
be replaced by a couple consisting of 2 F  3  and  F  2 . Canceling the two 
equal and opposite forces  F  3  and 2 F  3 , we obtain the desired couple 
in plane  P  2  (Fig. 3.36 d ). Thus, we conclude that two couples having 
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97the same moment  M  are equivalent, whether they are contained in 
the same plane or in parallel planes. 
  The property we have just established is very important for the 
correct understanding of the mechanics of rigid bodies. It indicates 
that when a couple acts on a rigid body, it does not matter where 
the two forces forming the couple act or what magnitude and direc-
tion they have. The only thing which counts is the  moment  of the 
couple (magnitude and direction). Couples with the same moment 
will have the same effect on the rigid body.    

 3.14   ADDITION OF COUPLES  
 Consider two intersecting planes  P  1  and  P  2  and two couples acting 
respectively in  P  1  and  P  2 . We can, without any loss of generality, 
assume that the couple in  P  1  consists of two forces  F  1  and 2 F  1  per-
pendicular to the line of intersection of the two planes and acting 
respectively at  A  and  B  ( Fig. 3.37  a ). Similarly, we assume that the 
couple in  P  2  consists of two forces  F  2  and 2 F  2  perpendicular to  AB  
and acting, respectively, at  A  and  B . It is clear that the resultant  R  of 
 F  1  and  F  2  and the resultant 2 R  of 2 F  1  and  2    F  2  form a couple. 
Denoting by  r  the vector joining  B  to  A  and recalling the definition 
of the moment of a couple (Sec. 3.12), we express the moment  M  
of the resulting couple as follows:

  M 5 r 3 R 5 r 3 (F1 1 F2)  

and, by Varignon’s theorem,

  M 5 r 3 F1 1 r 3 F2   

But the first term in the expression obtained represents the moment 
 M  1  of the couple in  P  1 , and the second term represents the moment 
 M  2  of the couple in  P  2 . We have

   M 5 M1 1 M2 (3.50)   

 and we conclude that the sum of two couples of moments  M  1  and 
 M  2  is a couple of moment  M  equal to the vector sum of  M  1  and  M  2  
(Fig. 3.37 b )    .

 3.15   COUPLES CAN BE REPRESENTED BY VECTORS  
 As we saw in Sec. 3.13, couples which have the same moment, 
whether they act in the same plane or in parallel planes, are equiva-
lent. There is therefore no need to draw the actual forces forming a 
given couple in order to define its effect on a rigid body ( Fig. 3.38  a ). 
It is sufficient to draw an arrow equal in magnitude and direction to 
the moment  M  of the couple (Fig. 3.38 b ). On the other hand, we 
saw in Sec. 3.14 that the sum of two couples is itself a couple and 
that the moment  M  of the resultant couple can be obtained by form-
ing the vector sum of the moments  M  1  and  M  2  of the given couples. 
Thus, couples obey the law of addition of vectors, and the arrow used 
in Fig. 3.38 b to represent the couple defined in Fig. 3.38 a  can truly 
be considered a vector. 

Fig. 3.37   
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3.15   Couples Can Be Represented by Vectors  
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98 Rigid Bodies: Equivalent Systems of Forces    The vector representing a couple is called a  couple vector . Note 
that, in Fig. 3.38, a red arrow is used to distinguish the couple vector, 
 which represents the couple itself , from the  moment  of the couple, 
which was represented by a green arrow in earlier figures. Also note 
that the symbol   l is added to this red arrow to avoid any confusion 
with vectors representing forces. A couple vector, like the moment 
of a couple, is a free vector. Its point of application, therefore, can 
be chosen at the origin of the system of coordinates, if so desired 
(Fig. 3.38 c ). Furthermore, the couple vector  M  can be resolved into 
component vectors  M  x ,  M  y , and  M  z , which are directed along the 
coordinate axes (Fig. 3.38 d ). These component vectors represent cou-
ples acting, respectively, in the  yz, zx , and  xy  planes. 
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 Fig. 3.38   

 3.16    RESOLUTION OF A GIVEN FORCE INTO A 
FORCE AT O AND A COUPLE  

 Consider a force  F  acting on a rigid body at a point  A  defined by 
the position vector  r  ( Fig. 3.39  a ). Suppose that for some reason we 
would rather have the force act at point  O . While we can move  F  
along its line of action (principle of transmissibility), we cannot move 
it to a point  O  which does not lie on the original line of action with-
out modifying the action of  F  on the rigid body. 

 We can, however, attach two forces at point  O , one equal to  F  
and the other equal to 2 F , without modifying the action of the orig-
inal force on the rigid body (Fig. 3.39 b ). As a result of this transforma-
tion, a force  F  is now applied at  O ; the other two forces form a 
couple of moment  M  O  5  r  3  F . Thus,  any force   F   acting on a rigid 
body can be moved to an arbitrary point O provided that a couple 
is added whose moment is equal to the moment of   F   about O.  The 

 Fig. 3.39   
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99couple tends to impart to the rigid body the same rotational motion 
about  O  that the force  F  tended to produce before it was transferred 
to  O.  The couple is represented by a couple vector  M   O     perpendicular 
to the plane containing  r  and  F . Since  M   O    is a free vector, it may 
be applied anywhere; for convenience, however, the couple vector is 
usually attached at  O , together with  F , and the combination obtained 
is referred to as a  force-couple system  (Fig. 3.39 c ). 
 If the force  F  had been moved from  A  to a different point  O 9 
( Fig. 3.40  a  and  c ), the moment  M  O 9 5  r 9 3  F  of  F  about  O 9 should 
have been computed, and a new force-couple system, consisting of 
 F  and of the couple vector  M  O9, would have been attached at  O 9. 
The relation existing between the moments of  F  about  O  and  O 9 is 
obtained by writing

  MO9 5 r9 3 F 5 (r 1 s) 3 F 5 r 3 F 1 s 3 F  

 MO9 5 MO 1 s 3 F (3.51)   

where s is the vector joining  O 9 to  O . Thus, the moment  M  O9 of  F  
about  O 9 is obtained by adding to the moment  M  O of  F  about  O  the 
vector product s 3  F  representing the moment about  O 9 of the force 
 F  applied at  O . 

 Fig. 3.40   

OO

r A

O'

s
r'

F

(a)

MO

r
A F

(b) (c)

MO'

O'

s
r' = = O

r
A

O'

s
r'

F

 This result could also have been established by observing that, 
in order to transfer to  O 9 the force-couple system attached at  O  
(Fig. 3.40 b  and  c ), the couple vector  M  O can be freely moved to  O 9; 
to move the force  F  from  O  to  O 9, however, it is necessary to add 
to  F  a couple vector whose moment is equal to the moment about 
 O 9 of the force  F  applied at  O . Thus, the couple vector  M  O9 must 
be the sum of  M  O and the vector s 3  F . 
   As noted above, the force-couple system obtained by transferring 
a force  F  from a point  A  to a point  O  consists of  F  and a couple vector 
 M  O   perpendicular to  F . Conversely, any force-couple system consisting 
of a force  F  and a couple vector  M  O   which are  mutually perpendicular  
can be replaced by a single equivalent force. This is done by moving 
the force  F  in the plane perpendicular to  M  O   until its moment about 
 O  is equal to the moment of the couple to be eliminated.  

3.16   Resolution of a Given Force into a 
Force at O and a Couple
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 SOLUTION 

 Our computations will be simplified if we attach two equal and opposite 
20-lb forces at  A . This enables us to replace the original 20-lb-force couple 
by two new 20-lb-force couples, one of which lies in the  zx  plane and the 
other in a plane parallel to the  xy  plane. The three couples shown in the 
adjoining sketch can be represented by three couple vectors  M   x  ,  M   y  , and 
 M   z   directed along the coordinate axes. The corresponding moments are

   Mx 5 2(30 lb)(18 in.) 5 2540 lb ? in.  
 My 5 1(20 lb)(12 in.) 5 1240 lb ? in.  
  Mz 5 1(20 lb)(9 in.) 5 1180 lb ? in.   

These three moments represent the components of the single couple  M  
equivalent to the two given couples. We write

  M 5 2(540 lb ? in.)i 1 (240 lb ? in.)j 1 (180 lb ? in.)k ◀    

Alternative Solution.   The components of the equivalent single couple  M  
can also be obtained by computing the sum of the moments of the four 
given forces about an arbitrary point. Selecting point  D , we write

  M 5 MD 5 (18 in.)j 3 (230 lb)k 1 [(9 in.)j 2 (12 in.)k] 3 (220 lb)i   

and, after computing the various cross products,

  M 5 2(540 lb ? in.)i 1 (240 lb ? in.)j 1 (180 lb ? in.)k    ◀z
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   SAMPLE PROBLEM 3.6 

 Determine the components of the single couple equivalent to the two 
 couples shown.      
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        SAMPLE PROBLEM 3.7 

 Replace the couple and force shown by an equivalent single force applied 
to the lever. Determine the distance from the shaft to the point of applica-
tion of this equivalent force.      

=
C
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– (400 N) j

– (84 N•m) k

O O
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=
B
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O
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– (400 N) j – (400 N) j

– (24 N•m) k
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B

150 mm

O

B

O

 SOLUTION 

 First, the given force and couple are replaced by an equivalent force-couple 
system at  O . We move the force  F  5 2(400 N) j  to  O  and at the same time 
add a couple of moment  M   O   equal to the moment about  O  of the force in 
its original position. 

  MO 5 OB
¡

3 F 5 [ (0.150 m)i 1 (0.260 m)j] 3 (2400 N)j  
   5 2(60 N ? m)k

  This couple is added to the couple of moment 2(24 N · m) k  formed by the 
two 200-N forces, and a couple of moment 2(84 N · m) k  is obtained. This 
last couple can be eliminated by applying  F  at a point  C  chosen in such a 
way that

   2(84 N ? m)k 5 OC
¡

3 F   
 5 [ (OC) cos 60°i 1 (OC) sin 60°j] 3 (2400 N)j  
 5 2(OC)cos 60°(400 N)k    

   We conclude that

  (OC) cos 608 5 0.210 m 5 210 mm  OC 5 420 mm     ◀

 Alternative Solution.   Since the effect of a couple does not depend on its 
location, the couple of moment 2(24 N ? m) k  can be moved to  B ; we thus 
obtain a force-couple system at  B . The couple can now be eliminated by 
applying  F  at a point  C  chosen in such a way that

   2(24 N ? m)k 5 BC
¡

3 F   
 5 2(BC) cos 60°(400 N)k   

   We conclude that

  (BC) cos 608 5 0.060 m 5 60 mm  BC 5 120 mm  
OC 5 OB 1 BC 5 300 mm 1 120 mm  OC 5 420 mm    ◀         

101
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102

PROBLEMS

102

3.49 A couple formed by two 975-N forces is applied to the pulley 
assembly shown. Determine an equivalent couple that is formed 
by (a) vertical forces acting at A and C, (b) the smallest possible 
forces acting at B and D, (c) the smallest possible forces that can 
be attached to the assembly.

3.50 Four 1-in.-diameter pegs are attached to a board as shown. Two 
strings are passed around the pegs and pulled with forces of mag-
nitude P 5 20 lb and Q 5 35 lb. Determine the resultant couple 
acting on the board.

3.51 Two 80-N forces are applied as shown to the corners B and D of 
a rectangular plate. (a) Determine the moment of the couple 
formed by the two forces by resolving each force into horizontal 
and vertical components and adding the moments of the two 
resulting couples. (b) Use the result obtained to determine the 
perpendicular distance between lines BE and DF.
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103Problems 3.52 A piece of plywood in which several holes are being drilled succes-
sively has been secured to a workbench by means of two nails. Know-
ing that the drill exerts a 12 N ? m couple on the piece of plywood, 
determine the magnitude of the resulting forces applied to the nails 
if they are located (a) at A and B, (b) at B and C, (c) at A and C.

 3.53 Four 11
2-in.-diameter pegs are attached to a board as shown. Two 

strings are passed around the pegs and pulled with the forces indi-
cated. (a) Determine the resultant couple acting on the board. (b) 
If only one string is used, around which pegs should it pass and in 
what directions should it be pulled to create the same couple with 
the minimum tension in the string? (c) What is the value of that 
minimum tension?

 3.54 Four pegs of the same diameter are attached to a board as shown. 
Two strings are passed around the pegs and pulled with the 
forces indicated. Determine the diameter of the pegs knowing 
that the resultant couple applied to the board is 1132.5 lb ? in. 
counterclockwise.

 3.55 The axles and drive shaft of a rear-wheel drive automobile are 
acted upon by the three couples shown. Replace these three cou-
ples by a single equivalent couple.

A

B

C

450 mm
240 mm

 Fig. P3.52

A B

C D
60 lb

60 lb

40 lb

40 lb

9 in.

12 in.

 Fig. P3.53 and P3.54

250 N•m

150 N•m
350 N•m

y

x

z

 Fig. P3.55

 3.56 Two shafts for a speed-reducer unit are subjected to couples of 
magnitude M1 5 12 lb ? ft and M2 5 5 lb ? ft. Replace the two 
couples by a single equivalent couple, specifying its magnitude and 
the direction of its axis.

M2M1

y

z

x

 Fig. P3.56
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104 Rigid Bodies: Equivalent Systems of Forces  3.57 Replace the two couples shown by a single equivalent couple, 
specifying its magnitude and the direction of its axis.

 3.60 M1 and M2 represent couples that are contained in the planes ABC 
and ACD, respectively. Assuming that M1 5 M2 5 M, determine a 
single couple equivalent to the two given couples.

144 mm

160 mm

192 mm

120 mm

y

xz

120 mm

50 N

50 N
12.5 N

12.5 N

A

B

E

C

F

D

 Fig. P3.57

y

B

A

C

x
z

900 lb•ft

840 lb•ft

1200 lb•ft

20°

20°

 Fig. P3.59

 3.58 Solve Prob. 3.57 assuming that two 10-N vertical forces have been 
added, one acting upward at C and the other downward at B.

 3.59 Shafts A and B connect the gear box to the wheel assemblies of a 
tractor, and shaft C connects it to the engine. Shafts A and B lie 
in the vertical yz plane, while shaft C is directed along the x axis. 
Replace the couples applied to the shafts by a single equivalent 
couple, specifying its magnitude and the direction of its axis.

D

C
B

A

2a

3a

y

z

x

M1

M2

a

 Fig. P3.60
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105Problems 3.61 A 60-lb vertical force P is applied at A to the bracket shown, which 
is held by screws at B and C. (a) Replace P by an equivalent force-
couple system at B. (b) Find the two horizontal forces at B and C 
that are equivalent to the couple obtained in part a.

 3.62 The force and couple shown are to be replaced by an equivalent 
single force. Determine the required value of a so that the line of 
action of the single equivalent force will pass through point B.

P
7.5 in.

3 in.A

B

C

4.5 in.

 Fig. P3.61

 3.63 Knowing that a 5 60°, replace the force and couple shown by a 
single force applied at a point located (a) on line AB, (b) on line 
CD. In each case determine the distance from the center O to the 
point of application of the force.

 3.64 A 260-lb force is applied at A to the rolled-steel section shown. 
Replace that force by an equivalent force-couple system at the 
center C of the section.

 3.65 Force P has a magnitude of 300 N and is applied at A in a direc-
tion perpendicular to the handle (a 5 0). Assuming b 5 30°, 
replace force P by (a) an equivalent force-couple system at B, (b) 
an equivalent system formed by two parallel forces applied at B 
and C.

 3.66 A force and couple act as shown on a square plate of side a 5 25 in. 
Knowing that P 5 60 lb, Q 5 40 lb, and a 5 50°, replace the 
given force and couple by a single force applied at a point located 
(a) on line AB, (b) on line AC. In each case determine the distance 
from A to the point of application of the force.

B

D

A
O

C

�

960 N120 N

100 mm

120 N

 Fig. P3.62 and  P3.63  

A

B

C

260 lb

2 in.

2.5 in.

4 in.

4 in.

 Fig. P3.64

P

90°

250 mm

A

B

C150 mm

�
�

 Fig. P3.65
A B

DC

a

�a

–Q

Q

P

 Fig. P3.66
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106 Rigid Bodies: Equivalent Systems of Forces  3.67 Replace the 250-kN force P by an equivalent force-couple system 
at G.

 3.68 A 4-kip force is applied on the outside face of the flange of a steel 
channel. Determine the components of the force and couple at G 
that are equivalent to the 4-kip load.

30 mm

y

G
A

x

z

P

60 mm

 Fig. P3.67

x

z

4 kips

1.375 in.

0.58 in.

4 in.
G

y

 Fig. P3.68

z

A

C

B12 ft

8 ft

4.8 ft

x

y

 Fig. P3.69

 3.69 The 12-ft boom AB has a fixed end A, and the tension in cable BC 
is 570 lb. Replace the force that the cable exerts at B by an equiva-
lent force-couple system at A.
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 3.70 Replace the 150-N force by an equivalent force-couple system 
at A.

 3.71 The jib crane shown is orientated so that its boom AD is parallel 
to the x axis and is used to move a heavy crate. Knowing that the 
tension in cable AB is 2.6 kips, replace the force exerted by the 
cable at A by an equivalent force-couple system at the center O of 
the base of the crane.

 3.72 A 200-N force is applied as shown on the bracket ABC. Determine 
the components of the force and couple at A that are equivalent 
to this force.

x

y

z

A

C

120 mm

40 mm
60 mm20 mm

35°

150 N D

B

200 mm

 Fig. P3.70

15 ft

10 ft

6.25 ft

y

D

A

CO

B

z

x

 Fig. P3.71

B

A

x

y

z
50 mm

60 mm

25 mm

200 N

30°
60°

C

 Fig. P3.72

Problems 107
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108 Rigid Bodies: Equivalent Systems of Forces  3.17    REDUCTION OF A SYSTEM OF FORCES TO ONE 
FORCE AND ONE COUPLE  

Consider a system of forces  F  1 ,  F  2 ,  F  3 , . . . , acting on a rigid body at 
the points  A  1 ,  A  2 ,  A  3 , . . . ,  defined by the position vectors   r  1 , r  2 ,  r  3 , 
 etc . ( Fig. 3.41  a ). As seen in the preceding section,  F  1  can be moved 
from  A  1  to a given point  O  if a couple of moment  M  1  equal to the 
moment  r  1  3  F  1  of  F  1  about  O  is added to the original system of 
forces. Repeating this procedure with  F  2 ,  F  3 , . . . , we obtain the 

(c)

R

MO
R

O

(b)

F1

F2

M1

M2

M3

=O

F3

(a)

F1

F2

F3r2
r3

A2

A3

=
O

r1

A1

 Fig. 3.41   

system shown in Fig. 3.41 b , which consists of the original forces, now 
acting at  O , and the added couple vectors. Since the forces are now 
concurrent, they can be added vectorially and replaced by their 
resultant  R . Similarly, the couple vectors  M  1 ,  M  2 ,  M  3 , . . . , can be 
added   vectorially and replaced by a single couple vector  M   R    O  . Any 
system of forces, however complex, can thus be reduced to an  equiv-
alent force-couple system acting at a given point O  (Fig. 3.41 c ). We 
should note that while each of the couple vectors  M  1 ,  M  2 ,  M  3 , . . . , 
in Fig. 3.41 b  is perpendicular to its corresponding force, the resul-
tant force  R  and the resultant couple vector  M   R    O   in Fig. 3.41 c  will 
not, in general, be perpendicular to each other. 
    The equivalent force-couple system is defined by the equations

 R 5 oF  MR
O 5 oMO 5 o(r 3 F) (3.52)   

  which express that the force  R  is obtained by adding all the forces 
of the system, while the moment of the resultant couple vector  M   R    O  , 
called the  moment resultant  of the system, is obtained by adding the 
moments about  O  of all the forces of the system. 
   Once a given system of forces has been reduced to a force and 
a couple at a point  O , it can easily be reduced to a force and a couple 
at another point  O 9. While the resultant force  R  will remain 
unchanged, the new moment resultant  M   R    O9   will be equal to the 
sum of  M   R    O   and the moment about  O 9 of the force  R  attached at  O  
( Fig. 3.42 ). We have

   M   R    O9 5 M   R    O 1 s 3 R (3.53)   

O

O'

s

O

O'
s

R

R

MO
R

MO'
R

=

Fig. 3.42   
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109 In practice, the reduction of a given system of forces to a single 
force  R  at  O  and a couple vector  M   R    O   will be carried out in terms of 
components. Resolving each position vector  r  and each force  F  of 
the system into rectangular components, we write

 r 5 xi 1 yj 1 zk (3.54)
 F 5 Fxi 1 Fyj 1 Fzk (3.55)

 Substituting for  r  and  F  in (3.52) and factoring out the unit vectors 
 i, j, k , we obtain  R  and  M   R    O   in the form

 R 5 Rxi 1 Ryj 1 Rzk    MR
O 5 Mx

Ri 1 My
Rj 1 Mz

Rk (3.56)   

  The components  R x , R y , R z   represent, respectively, the sums of the 
 x, y , and  z  components of the given forces and measure the ten-
dency of the system to impart to the rigid body a motion of transla-
tion in the  x, y , or  z  direction. Similarly, the components  M R  x , M R  y , 
M R  z   represent, respectively, the sum of the moments of the given 
forces about the  x, y , and  z  axes and measure the tendency of the 
system to impart to the rigid body a motion of rotation about the  x, 
y , or  z  axis. 
    If the magnitude and direction of the force  R  are desired, they 
can be obtained from the components  R x , R y , R z   by means of the 
relations (2.18) and (2.19) of Sec. 2.12; similar computations will 
yield the magnitude and direction of the couple vector  M   R    O.      

3.18   EQUIVALENT SYSTEMS OF FORCES  
 We saw in the preceding section that any system of forces acting on 
a rigid body can be reduced to a force-couple system at a given point 
 O . This equivalent force-couple system characterizes completely the 
effect of the given force system on the rigid body.  Two systems of 
forces are equivalent, therefore, if they can be reduced to the same 
force-couple system at a given point O . Recalling that the force-
couple system at  O  is defined by the relations (3.52), we state that 
 two systems of forces ,  F  1 ,  F  2 ,  F  3 , . . . , and  F 9 1 , F 9 2 , F 9 3 , . . . ,  which 
act on the same rigid body are equivalent if, and only if, the sums 
of the forces and the sums of the moments about a given point O of 
the forces of the two systems are, respectively, equal . Expressed 
mathematically, the necessary and sufficient conditions for the two 
systems of forces to be equivalent are

 oF 5 oF9  and  oMO 5 oM9O (3.57)   

  Note that to prove that two systems of forces are equivalent, the 
second of the relations (3.57) must be established with respect to 
 only one point O . It will hold, however, with respect to  any point  if 
the two systems are equivalent. 
    Resolving the forces and moments in (3.57) into their rectangular 
components, we can express the necessary and sufficient conditions 

3.18 Equivalent Systems of Forces
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110 Rigid Bodies: Equivalent Systems of Forces for the equivalence of two systems of forces acting on a rigid body 
as follows:

   oFx 5 oF9x   oFy 5 oF9y   oFz 5 oF9z
 oMx 5 oM9x  oMy 5 oM9y  oMz 5 oM9z 

(3.58)
   

  These equations have a simple physical significance. They express 
that two systems of forces are equivalent if they tend to impart to 
the rigid body (1) the same translation in the  x, y , and  z  directions, 
respectively, and (2) the same rotation about the  x, y , and  z  axes, 
respectively.    

3.19   EQUIPOLLENT SYSTEMS OF VECTORS  
In general, when two systems of vectors satisfy Eqs. (3.57) or (3.58), 
i.e., when their resultants and their moment resultants about an arbi-
trary point  O  are respectively equal, the two systems are said to be 
 equipollent . The result established in the preceding section can thus 
be restated as follows:  If two systems of forces acting on a rigid body 
are equipollent, they are also equivalent . 
    It is important to note that this statement does not apply to  any  
system of vectors. Consider, for example, a system of forces acting on 
a set of independent particles which do  not  form a rigid body. A dif-
ferent system of forces acting on the same particles may happen to be 
equipollent to the first one; i.e., it may have the same resultant and 
the same moment resultant. Yet, since different forces will now act on 
the various particles, their effects on these particles will be  different; 
the two systems of forces, while equipollent, are  not equivalent .    

3.20   FURTHER REDUCTION OF A SYSTEM OF FORCES  
 We saw in Sec. 3.17 that any given system of forces acting on a rigid 
body can be reduced to an equivalent force-couple system at  O  con-
sisting of a force  R  equal to the sum of the forces of the system and 
a couple vector M   R    O   of moment equal to the moment resultant of the 
system. 
    When  R  5 0, the force-couple system reduces to the couple 
vector  M   R    O  . The given system of forces can then be reduced to a 
single couple, called the  resultant couple  of the system. 
    Let us now investigate the conditions under which a given system 
of forces can be reduced to a single force. It follows from Sec. 3.16 
that the force-couple system at  O  can be replaced by a single force  R  
acting along a new line of action if  R  and  M   R    O   are mutually perpen-
dicular. The systems of forces which can be reduced to a single force, 
or  resultant , are therefore the systems for which the force  R  and the 
couple vector  M   R    O   are mutually perpendicular. While this condition  is 
generally not satisfied  by systems of forces in space, it will be satisfied  
by systems consisting of (1) concurrent forces, (2) coplanar forces, or 
(3) parallel forces. These three cases will be discussed separately.  

   1.    Concurrent forces  are applied at the same point and can there-
fore be added directly to obtain their resultant  R . Thus, they 
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1113.20   Further Reduction of a System of Forcesalways reduce to a single force. Concurrent forces were dis-
cussed in detail in Chap. 2.  

   2.    Coplanar forces  act in the same plane, which may be assumed 
to be the plane of the figure ( Fig. 3.43  a ). The sum  R  of the 
forces of the system will also lie in the plane of the figure, 
while the moment of each force about  O , and thus the moment 
resultant  M   R    O  , will be perpendicular to that plane. The force-
couple system at  O  consists, therefore, of a force  R  and a 
couple vector M   R    O   which are mutually perpendicular (Fig. 
3.43 b ).†  They can be reduced to a single force  R  by moving 
 R  in the plane of the figure until its moment about  O  becomes 
equal to  M  R O. The distance from  O  to the line of action of  R  
is  d 5 M  R OyR (Fig. 3.43 c ).

†Since the couple vector  M   R    O   is perpendicular to the plane of the figure, it has been 
represented by the symbol   l. A counterclockwise couple   l represents a vector pointing 
out of the paper, and a clockwise couple   i represents a vector pointing into the paper.   

F1

F2

F3

x

y

O

(a)

=
x

y

O

(b)

MO
R

R

=
x

y

O

(c)

R

A

d = MO/RR

 Fig. 3.43   

     As noted in Sec. 3.17, the reduction of a system of forces 
is considerably simplified if the forces are resolved into rectan-
gular components. The force-couple system at  O  is then char-
acterized by the components ( Fig. 3.44  a )

 Rx 5 oFx  Ry 5 oFy  Mz
R 5 MO

R 5 oMO (3.59)   

x

y

O

(a)

MO
R

Rx

Ry
R

=
x

y

O

(b)

Rx

Ry

R

=
B

x = MO /Ry
R

x

y

O

(c)

Rx

Ry R

y = – MO /Rx
R

C

Fig. 3.44   
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112 Rigid Bodies: Equivalent Systems of Forces     To reduce the system to a single force  R , we express that the 
moment of  R  about  O  must be equal to  M   R    O  . Denoting by  x  and  
y  the coordinates of the point of application of the resultant 
and recalling formula (3.22) of Sec. 3.8, we write

xRy 2 yRx 5 MO
R   

    which represents the equation of the line of action of  R . We 
can also determine directly the  x  and  y  intercepts of the line 
of action of the resultant by noting that  M   R    O   must be equal to 
the moment about  O  of the  y  component of  R  when  R  is 
attached at  B  (Fig. 3.44 b ) and to the moment of its  x  compo-
nent when  R  is attached at  C  (Fig. 3.44 c ). 

 3.    Parallel forces  have parallel lines of action and may or may not 
have the same sense. Assuming here that the forces are parallel to 
the  y  axis ( Fig. 3.45  a), we note that their sum  R  will also be paral-
lel to the  y  axis. On the other hand, since the moment of a given 
force must be perpendicular to that force, the moment about  O  of 
each force of the system, and thus the moment resultant  M   R    O, will 
lie in the  zx plane. The force-couple system at  O  consists,  therefore, 

y

x

z

F1

F2

F3

O

(a)

=

y

x

z

O

(b)

MO
R

Mz
R k

Mx
R i

R

=

y

x

z

O

(c)

r
A

x

z

R

 Fig. 3.45   

of a force  R  and a couple   vector  M   R    O which are mutually perpen-
dicular (Fig. 3.45 b ). They can be reduced to a single force  R  
(Fig. 3.45 c ) or, if  R  5 0, to a single couple of moment  M   R    O.

     In practice, the force-couple system at  O  will be charac-
terized by the components

 Ry 5 oFy  MR
x 5 oMx  MR

z 5 oMz (3.60)   

    The reduction of the system to a single force can be carried 
out by moving  R  to a new point of application  A ( x , 0,  z ) chosen 
so that the moment of  R  about  O  is equal to  M   R    O  . We write

 r 3 R 5 MR
O

 (xi 1 zk) 3 Ryj 5 Mx
Ri 1 Mz

Rk

    By computing the vector products and equating the coefficients 
of the corresponding unit vectors in both members of the equa-
tion, we obtain two scalar equations which define the coordi-
nates of  A :

  2zRy 5 MR
x  xRy 5 MR

z

    These equations express that the moments of  R  about the  x  
and  z  axes must, respectively, be equal to  M R  x   and  M R  z  .     
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SAMPLE PROBLEM 3.8 

 A 4.80-m-long beam is subjected to the forces shown. Reduce the given 
system of forces to ( a ) an equivalent force-couple system at  A, (b)  an equiva-
lent force-couple system at  B, (c)  a single force or resultant. 
   Note . Since the reactions at the supports are not included in the 
given system of forces, the given system will not maintain the beam in 
equilibrium. 

150 N 600 N 100 N 250 N

A B

1.6 m 1.2 m 2 m

A B

150 j – 600 j 100 j – 250 j

1.6 i
2.8 i

4.8 i

A B

– (600 N) j

– (1880 N•m) k

A B

– (600 N) j
– (1880 N•m) k

(2880 N•m) k4.8 m

A

– (600 N) j

(1000 N•m) k
B

A
B

– (600 N) j

x

     SOLUTION  

 a.  Force-Couple System at  A . The force-couple system at  A  equivalent to 
the given system of forces consists of a force  R  and a couple  MR

A    defined 
as follows:

 R 5 oF
 5 (150 N)j 2 (600 N)j 1 (100 N)j 2 (250 N)j 5 2(600 N)j
 MR

A 5 o(r 3 F)
 5 (1.6i) 3 (2600j) 1 (2.8i) 3 (100j) 1 (4.8i) 3 (2250j)
 5 2(1880 N ? m)k

   The equivalent force-couple system at  A  is thus

R 5 600 Nw  MR
A 5 1880 N ? m i ◀     

  b.   Force-Couple System at  B .   We propose to find a force-couple system 
at  B  equivalent to the force-couple system at  A  determined in part  a . The 
force  R  is unchanged, but a new couple  MR

B    must be determined, the 
moment of which is equal to the moment about  B  of the force-couple sys-
tem determined in part  a . Thus, we have

   MR
B 5 MR

A 1 BA
¡

3 R   
  5 2(1880 N ? m)k 1 (24.8 m)i 3 (2600 N)j   
  5 2(1880 N ? m)k 1 (2880 N ? m)k 5 1 (1000 N ? m)k    

 The equivalent force-couple system at  B  is thus

  R 5 600 Nw  MR
B 5 1000 N ? m l ◀   

  c.   Single Force or Resultant.   The resultant of the given system of forces 
is equal to  R , and its point of application must be such that the moment of 
 R  about  A  is equal to  MR

A   . We write

 r 3 R 5 MR
A

xi 3 (2600 N)j 5 2(1880 N ? m)k
 2x(600 N)k 5 2(1880 N ? m)k

   and conclude that  x  5 3.13 m. Thus, the single force equivalent to the given 
system is defined as

R 5 600 Nw  x 5 3.13 m ◀      

113
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 SAMPLE PROBLEM 3.9 

 Four tugboats are used to bring an ocean liner to its pier. Each tugboat 
exerts a 5000-lb force in the direction shown. Determine ( a ) the equivalent 
force-couple system at the foremast  O, (b)  the point on the hull where a 
single, more powerful tugboat should push to produce the same effect as 
the original four tugboats.      

3
2 3

4

1

4

60°

50 ft 90 ft

110 ft

200 ft
O

70 ft

45°

100

ft

100

ft

100

ft

 SOLUTION  

  a.   Force-Couple System at  O . Each of the given forces is resolved into 
components in the diagram shown (kip units are used). The force-couple 
system at  O  equivalent to the given system of forces consists of a force  R  
and a couple  M   R    O    defined as follows:

 R 5 oF
 5 (2.50i 2 4.33j) 1 (3.00i 2 4.00j) 1 (25.00j) 1 (3.54i 1 3.54j)
 5 9.04i 2 9.79j

 MR
O 5 o(r 3 F)

 5 (290i 1 50j) 3 (2.50i 2 4.33j)
  1 (100i 1 70j) 3 (3.00i 2 4.00j)
  1 (400i 1 70j) 3 (25.00j)
  1 (300i 2 70j) 3 (3.54i 1 3.54j)
 5 (390 2 125 2 400 2 210 2 2000 1 1062 1 248)k
 5 21035k

The equivalent force-couple system at  O  is thus

R 5 (9.04 kips)i 2 (9.79 kips)j  MR
O 5 2(1035 kip ? ft)k

or R 5 13.33 kips c47.3°  MR
O 5 1035 kip ? ft i ◀

   Remark.   Since all the forces are contained in the plane of the figure, 
we could have expected the sum of their moments to be perpendicular to 
that plane. Note that the moment of each force component could have been 
obtained directly from the diagram by first forming the product of its mag-
nitude and perpendicular distance to  O  and then assigning to this product 
a positive or a negative sign depending upon the sense of the moment.    

 b.   Single Tugboat.   The force exerted by a single tugboat must be equal 
to  R , and its point of application  A  must be such that the moment of  R  
about  O  is equal to  MR

O. Observing that the position vector of  A  is

r 5 xi 1 70j   

we write

 r 3 R 5 MR
O

 (xi 1 70j) 3 (9.04i 2 9.79j) 5 21035k
2x(9.79)k 2 633k 5 21035k x 5 41.1 ft ◀

– 4.33 j – 4 j – 5 j
F1

F2 F3

F4

3 i

3.54 j

3.54 i

2.5i
50 ft

110 ft

200 ft
O

70 ft90 ft 100

ft

100

ft

100

ft

MO =  –1035 kR

9.04 i

–9.79 j

47.3°

R

O

70 ft

x

9.04 i

– 9.79 jR

A

O
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SAMPLE PROBLEM 3.10 

 Three cables are attached to a bracket as shown. Replace the forces 
exerted by the cables with an equivalent force-couple system at  A .   

x

y

z

O

(17.68 N•m) j

(439 N) j – (507 N) k

(1607 N) i
(118.9 N•m) k

(30 N•m) i

 SOLUTION 

 We first determine the relative position vectors drawn from point  A  to the 
points of application of the various forces and resolve the forces into rect-
angular components. Observing that  F   B   5 (700 N)L  BE   where

  
LBE 5

BE
¡

BE
5

75i 2 150j 1 50k

175    

we have, using meters and newtons,

   rB/A 5 AB
¡

5 0.075i 1 0.050k      FB 5 300i 2 600j 1 200k  
  rC/A 5 AC

¡
5 0.075i 2 0.050k     FC 5 707i   2 707k  

 rD/A 5 AD
¡

5 0.100i 2 0.100j      FD 5 600i 1 1039j    

 The force-couple system at  A  equivalent to the given forces consists 
of a force  R  5 o F  and a couple  M   R   A 5 o( r 3 F ). The force  R  is readily 
obtained by adding respectively the  x, y , and  z  components of the forces:

R 5 oF 5 (1607 N)i 1 (439 N)j 2 (507 N)k ◀

The computation of  M   R   A  will be facilitated if we express the moments of the 
forces in the form of determinants (Sec. 3.8):

 
rByA 3 FB 5

 
† i  j k
0.075  0 0.050
300  2600 200

†
 
5 30i   245k

 
rCyA 3 FC 5

 
† i  j k
0.075  0 20.050
707  0 2707

†
 
5  17.68j

 
rDyA 3 FD 5

 
† i j    k
0.100 20.100    0
600 1039    0

   †
 
5    163.9k

 Adding the expressions obtained, we have

  MA
R 5 o(r 3 F) 5 (30 N ? m)i 1 (17.68 N ? m)j 1 (118.9 N ? m)k   ◀

 The rectangular components of the force  R  and the couple  M   R   A are shown 
in the adjoining sketch.    

50 mm

50 mm

100 mm

100 mm

75 mm 1000 N

1200 N
700 N

x

y

z

O

A
B

C

D

45º

45º

30º

60º

E(150 mm, –50 mm, 100 mm)
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A

B

C

4 ft
5 ft

5 ft

6 ft

40 kips

20 kips

12 kips

x

z

O
8 kips

y  SAMPLE PROBLEM 3.11 

 A square foundation mat supports the four columns shown. Determine the 
magnitude and point of application of the resultant of the four loads.      

x

y

z

O

– (80 kips) j

xi

zk

x

z

O– (280 kip•ft)k

– (80 kips) j

(240 kip•ft) i

y

 SOLUTION 

 We first reduce the given system of forces to a force-couple system at the 
origin  O  of the coordinate system. This force-couple system consists of a 
force  R  and a couple vector  M   R    O   defined as follows:

  R 5 oF  MR
O 5 o(r 3 F)   

 The position vectors of the points of application of the various forces are 
determined, and the computations are arranged in tabular form.        

r, ft     F, kips   r 3 F,  kip · ft    

 0 240 j   0
 10 i  212 j   2 120k   
 10 i 1 5k   28j  40i 2 80 k   
  4i 1 10 k   220 j   200 i  2 80 k   

   R 5 280 j   MR O 5 240 i  2 280 k    

 Since the force  R  and the couple vector  M   R O are mutually perpendicu-
lar, the force-couple system obtained can be reduced further to a single force 
 R . The new point of application of  R  will be selected in the plane of the mat 
and in such a way that the moment of  R  about  O  will be equal to  M   R O. Denot-
ing by  r  the position vector of the desired point of application, and by  x  and 
 z  its coordinates, we write

 r 3 R 5 MR
O

 (xi 1 zk) 3 (280j) 5 240i 2 280k
 280xk 1 80zi 5 240i 2 280k

 from which it follows that

 280x 5 2280   80z 5 240
 x 5 3.50 ft    z 5 3.00 ft   

 We conclude that the resultant of the given system of forces is

R 5 80 kipsw  at x 5 3.50 ft, z 5 3.00 ft    ◀   
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117

PROBLEMS

117

 3.73 A 12-ft beam is loaded in the various ways represented in the fig-
ure. Find two loadings that are equivalent.

12 ft

(a)

200 lb

1800
lb⋅ft (b)

200 lb

600
lb⋅ft (c)

200 lb

1800
lb⋅ft

(h)

200 lb

600
lb⋅ft

(d)

200 lb

1800
lb⋅ft

(e)

200 lb

1800
lb⋅ft (g)

200 lb

1800
lb⋅ft(f )

200 lb

600
lb⋅ft

 Fig. P3.73

3.74 A 12-ft beam is loaded as shown. Determine the loading of Prob. 
3.73 that is equivalent to this loading.

3.75 By driving the truck shown over a scale, it was determined that the 
loads on the front and rear axles are, respectively, 18 kN and 12 kN 
when the truck is empty. Determine (a) the location of the center 
of gravity of the truck, (b) the weight and location of the center of 
gravity of the heaviest load that can be carried by the truck if the 
load on each axle is not to exceed 40 kN.

3.76 Four packages are transported at constant speed from A to B by 
the conveyor. At the instant shown, determine the resultant of the 
loading and the location of its line of action.

12 ft

150 lb 50 lb

 Fig. P3.74

12 kN 18 kN

5 m

 Fig. P3.75

400 lb

150 lb
250 lb

500 lb

2 ft
4 ft 4 ft 5 ft

6 ft

18 ft

 Fig. P3.76

4 kN

8 kN

2 kN

1 m 2 m

a

A
B D

C

 Fig. P3.77

3.77 Determine the distance from point A to the line of action of the 
resultant of the three forces shown when (a) a 5 1 m, (b) a 5 1.5 m, 
(c) a 5 2.5 m.
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118 Rigid Bodies: Equivalent Systems of Forces  3.78 Two parallel forces P and Q are applied at the ends of a beam AB 
of length L. Find the distance x from A to the line of action of 
their resultant. Check the formula obtained by assuming L 5 
200 mm and (a) P 5 50 N down, Q 5 150 N down; (b) P 5 
50 N down, Q 5 150 N up.

 3.81 The three forces shown and a couple of magnitude M 5 80 lb ? in. 
are applied to an angle bracket. (a) Find the resultant of this sys-
tem of forces. (b) Locate the points where the line of action of the 
resultant intersects line AB and line BC.

 3.82 A bracket is subjected to the system of forces and couples shown. 
Find the resultant of the system and the point of intersection of 
its line of action with (a) line AB, (b) line BC, (c) line CD.

P R Q

L

x

BA

 Fig. P3.78

B

250 lb1,200 lb

455 lb

24 ft

10 ft

C A

7 ft

 Fig. P3.79

A B

D E
C

500 N

600 N

760 N

340 N

500 mm
200 mm

375 mm

 Fig. P3.80

A B

C

10 lb 25 lb

60°
12 in.

40 lb

M 8 in.

 Fig. P3.81

B

A

D

C

4 in. 5 in. 3 in.

5 in.400 lb � in.200 lb � in.

25 lb

50 lb

30 lb

85 lb

6 in.

 Fig. P3.82

 3.79 Three forces act as shown on a traffic-signal pole. Determine (a) the 
equivalent force-couple system at A, (b) the resultant of the system 
and the point of intersection of its line of action with the pole.

 3.80 Four forces act on a 700 3 375 mm plate as shown. (a) Find the 
resultant of these forces. (b) Locate the two points where the line 
of action of the resultant intersects the edge of the plate.
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119Problems 3.83 The roof of a building frame is subjected to the wind loading 
shown. Determine (a) the equivalent force-couple system at D, 
(b) the resultant of the loading and its line of action.

2 kN

1 kN

2 kN

A C

B

6 m

3 m

1 kN2 kN

1 kN

1 kN 2 kN

3 m

ED

3 m 3 m 3 m 3 m 3 m

 Fig. P3.83

y

3 ft

x

z

3 ft

A

B

D
OC 2 ft

3 ft

4 ft

500 lb

700 lb

 Fig. P3.85

 3.84 Two cables exert forces of 90 kN each on a truss of weight W 5 
200 kN. Find the resultant force acting on the truss and the point 
of intersection of its line of action with line AB.

 3.85 Two forces are applied to the vertical post as shown. Determine 
the force and couple at O equivalent to the two forces.

90 kN

30�

90 kN

30�

3.6 m

3.6 m
2.4 m

A

G W

B

3.6 m

6.3 m

 Fig. P3.84

 3.86 In order to move a 70.6-kg crate, two men push on it while two other 
men pull on it by means of ropes. The force exerted by man A is 
600 N and that exerted by man B is 200 N; both forces are horizontal. 
Man C pulls with a force equal to 320 N and man D with a force 
equal to 480 N. Both cables form an angle of 30° with the vertical. 
Determine the resultant of all the forces acting on the crate.

B
D

A
C

2.6

Dimension in meters

0.6
1.3

2

1

30�
30�

 Fig. P3.86

bee80156_ch03_064-129.indd Page 119  10/1/09  3:05:10 PM user-s173bee80156_ch03_064-129.indd Page 119  10/1/09  3:05:10 PM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-03/Volumes/MHDQ-New/MHDQ152/MHDQ152-03



120 Rigid Bodies: Equivalent Systems of Forces  3.87 The machine component is subject to the forces shown, each of 
which is parallel to one of the coordinate axes. Replace these forces 
by an equivalent force-couple system at A.

 3.88 In drilling a hole in a wall, a man applies a vertical 30-lb force at B 
on the brace and bit, while pushing at C with a 10-lb force. The 
brace lies in the horizontal xz plane. (a) Determine the other com-
ponents of the total force that should be exerted at C if the bit is 
not to be bent about the y and z axes (i.e., if the system of forces 
applied on the brace is to have zero moment about both the y and 
z axes). (b) Reduce the 30-lb force and the total force at C to an 
equivalent force and couple at A.

240 N

150 N

300 N

125 N

y

x

z

50 mm

60 mm

75 mm

90 mm

30 mm A

O

B

C

D

 Fig. P3.87

8 in.

6 in.z

y

x

8 in.

30 lb

10 lb

Cz

Cy

B
A

C

 Fig. P3.88

 3.89 In order to unscrew the tapped faucet A, a plumber uses two pipe 
wrenches as shown. By exerting a 40-lb force on each wrench, at a 
distance of 10 in. from the axis of the pipe and in a direction perpen-
dicular to the pipe and to the wrench, the plumber prevents the pipe 
from rotating, and thus avoids loosening or further tightening the joint 
between the pipe and the tapped elbow C. Determine (a) the angle u 
that the wrench at A should form with the vertical if elbow C is not 
to rotate about the vertical, (b) the force-couple system at C equiva-
lent to the two 40-lb forces when this condition is satisfied.

40 lb

40 lb

y

x
z

25 in.

18 in.

7.5 in.

10 in.

�

10 in.

A

B

C

D

E

F

7.5 in.

 Fig. P3.89
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121Problems 3.90 Assuming u 5 60° in Prob. 3.89, replace the two 40-lb forces by 
an equivalent force-couple system at D and determine whether the 
plumber’s action tends to tighten or loosen the joint between (a) pipe 
CD and elbow D, (b) elbow D and pipe DE. Assume all the threads 
to be right-handed.

 3.91 A rectangular concrete foundation mat supports four column loads 
as shown. Determine the magnitude and point of application of 
the resultant of the four loads.

A

D

C

B

100 kN

200 kN

80 kN

120 kN

4 m
5 m

 Fig. P3.91

 3.92 A concrete foundation mat in the shape of a regular hexagon of 10-ft 
sides supports four column loads as shown. Determine the magnitude 
and point of application of the resultant of the four loads.

 3.93 Determine the magnitudes of the additional loads that must be 
applied at B and F if the resultant of all six loads is to pass through 
the center of the mat.

 3.94 In Prob. 3.91, determine the magnitude and point of application 
of the smallest additional load that must be applied to the founda-
tion mat if the resultant of the five loads is to pass through the 
center of the mat.

 3.95 Four horizontal forces act on a vertical quarter-circular plate of 
radius 250 mm. Determine the magnitude and point of application 
of the resultant of the four forces if P 5 40 N.

 3.96 Determine the magnitude of the force P for which the resultant 
of the four forces acts on the rim of the plate.

A

B
C

D

EF

O

20 kips

15 kips

10 kips
25 kips

y

x

z

10 ft

 Fig. P3.92   and   P3.93  
y

x

z

P

30°

250 mm

120 N

80 N

200 N

 Fig. P3.95   and   P3.96  
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122

In this chapter we studied the effect of forces exerted on a rigid
body. We first learned to distinguish between  external  and  internal
forces [Sec. 3.2] and saw that, according to the  principle of transmis-
sibility , the effect of an external force on a rigid body remains 
unchanged if that force is moved along its line of action [Sec. 3.3]. 
In other words, two forces  F  and  F 9 acting on a rigid body at two 
different points have the same effect on that body if they have the 
same magnitude, same direction, and same one of action ( Fig. 3.46 ). 
Two such forces are said to be  equivalent .     

Before proceeding with the discussion of  equivalent systems of forces ,
we introduced the concept of the  vector product of two vectors
[Sec. 3.4]. The vector product

V 5 P 3 Q

 of the vectors  P  and  Q  was defined as a vector perpendicular to the 
plane containing  P  and  Q  ( Fig. 3.47 ), of magnitude

 V 5 PQ sin u (3.1)

 and directed in such a way that a person located at the tip of  V  will 
observe as counterclockwise the rotation through u which brings the 
vector  P  in line with the vector  Q . The three vectors  P, Q , and  V —
taken in that order—are said to form a  right-handed triad . It follows 
that the vector products  Q 3 P  and  P 3 Q  are represented by equal 
and opposite vectors. We have

 Q 3 P 5 2(P 3 Q)   (3.4)   

It also follows from the definition of the vector product of two vec-
tors that the vector products of the unit vectors  i, j , and  k  are

i 3 i 5 0  i 3 j 5 k  j 3 i 5 2k

 and so on. The sign of the vector product of two unit vectors can be 
obtained by arranging in a circle and in counterclockwise order the 
three letters representing the unit vectors ( Fig. 3.48 ): The vector 
product of two unit vectors will be positive if they follow each other 
in counterclockwise order and negative if they follow each other in 
clockwise order. 

The  rectangular components of the vector product   V  of two vectors 
 P  and  Q  were expressed [Sec. 3.5] as

Vx 5 PyQz 2 PzQy
  Vy 5 PzQx 2 PxQz (3.9)

Vz 5 PxQy 2 PyQx

  Principle of transmissibility  Principle of transmissibility

Vector product of two vectors    Vector product of two vectors    

  Rectangular components 
of vector product    

  Rectangular components 
of vector product    

REVIEW AND SUMMARY 

F

F'

=

 Fig. 3.46

Q

P

V = P × Q

q

(a)

V

(b)

 Fig. 3.47

i

j

k

 Fig. 3.48
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123 Using a determinant, we also wrote

   
V 5 † i j k

Px Py Pz

Qx Qy Qz

†
 

(3.10)
   

 The moment of a force   F   about a point O  was defined [Sec. 3.6] as the 
vector product

 MO 5 r 3 F (3.11)   

where  r  is the  position vector  drawn from  O  to the point of applica-
tion  A  of the force  F  ( Fig. 3.49 ). Denoting by u the angle between 
the lines of action of  r  and  F , we found that the magnitude of the 
moment of  F  about  O  can be expressed as

   MO 5 rF sin u 5 Fd (3.12)   

 where  d  represents the perpendicular distance from  O  to the line of 
action of  F . 

 The  rectangular components of the moment   M   O    of a force   F  were 
expressed [Sec. 3.8] as

Mx 5 yFz 2 zFy
  My 5 zFx 2 xFz (3.18)

Mz 5 xFy 2 yFx

 where  x, y, z  are the components of the position vector  r  ( Fig. 3.50 ). 
Using a determinant form, we also wrote

   
MO 5 † i j k

x y z
Fx Fy Fz

†
 

(3.19)   

In the more general case of the moment about an arbitrary point  B  
of a force  F  applied at  A , we had

   
MB 5 † i j k

xA/B yA/B zA/B

Fx Fy Fz

†
 

(3.21)   

 where  x A/B  ,  y A/B  , and  z A/B   denote the components of the vector  r   A/B:

xA/B 5 xA 2 xB  yA/B 5 yA 2 yB  zA/B 5 zA 2 zB

 In the case of  problems involving only two dimensions , the force  F  
can be assumed to lie in the  xy  plane. Its moment  M   B   about a point 
 B  in the same plane is perpendicular to that plane ( Fig. 3.51 ) and is 
completely defined by the scalar

 MB 5 (xA 2 xB)Fy 2 (yA 2 yB)Fx (3.23)   

Various methods for the computation of the moment of a force about 
a point were illustrated in Sample Probs. 3.1 through 3.4. 

 The scalar product  of two vectors  P  and  Q  [Sec. 3.9] was denoted 
by  P ? Q  and was defined as the scalar quantity

   P ? Q 5 PQ cos u (3.24)   

 Moment of a force about a point     

Rectangular components of moment    

  Scalar product of two vectors    

 Fig. 3.49  

MO

d A

F

r
θ

O

 Fig. 3.50

Fy j

Fx i

Fz k

x

y

z

O

zk

y j

x i
r

A (x, y, z)

y

x

z

O
B

Fy j

Fx i

F

A

(yA – yB)j

(xA – xB)i

rA/B

MB = MB k

 Fig. 3.51    

Review and Summary
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124 Rigid Bodies: Equivalent Systems of Forces where u is the angle between  P  and  Q  ( Fig. 3.52 ). By expressing the 
scalar product of  P  and  Q  in terms of the rectangular components 
of the two vectors, we determined that

   P ? Q 5 PxQx 1 PyQy 1 PzQz (3.30)   

 The  projection of a vector   P   on an axis OL  ( Fig. 3.53 ) can be obtained 
by forming the scalar product of  P  and the unit vector  l  along  OL . 
We have

 POL 5 P ? l (3.36)   

 or, using rectangular components,

 POL 5 Px cos ux 1 Py cos uy 1 Pz cos uz (3.37)   

where u  x  , u  y  , and u  z   denote the angles that the axis  OL  forms with 
the coordinate axes. 

 The  mixed triple product  of the three vectors  S, P , and  Q  was defined 
as the scalar expression

 S ? (P 3 Q) (3.38)   

 obtained by forming the scalar product of  S  with the vector product 
of  P  and  Q  [Sec. 3.10]. It was shown that

 
S ? (P 3 Q) 5 †

Sx Sy Sz

Px Py Pz

Qx Qy Qz

†
 

(3.41)
   

 where the elements of the determinant are the rectangular compo-
nents of the three vectors. 

 The  moment of a force   F   about an axis OL  [Sec. 3.11] was defined 
as the projection  OC  on  OL  of the moment  M   O   of the force  F  
( Fig.  3.54 ), i.e., as the mixed triple product of the unit vector l, the 
position vector  r , and the force  F :

 MOL 5 l ? MO 5 l ? (r 3 F) (3.42)   

 Using the determinant form for the mixed triple product, we have

 
MOL 5 † lx

ly lz

x y z
Fx Fy Fz

†
 

(3.43)
   

 where l  x  , ly  , lz   5 direction cosines of axis  OL
   x, y, z  5 components of  r  
 Fx,  Fy ,  Fz  5 components of  F  

An example of the determination of the moment of a force about a 
skew axis was given in Sample Prob. 3.5. 

 Fig. 3.52

Q

P

q

y

x

z

O

A

P

L

� qx

qy

qz

 Fig. 3.53

y

x

z

r

L

A

C

O

MO
F

�

 Fig. 3.54

  Moment of a force about an axis    

  Mixed triple product of three vectors    

  Mixed triple product of three vectors    
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125  Two forces   F   and  2 F   having the same magnitude, parallel lines of 
action, and opposite sense are said to form a couple  [Sec. 3.12]. It 
was shown that the moment of a couple is independent of the point 
about which it is computed; it is a vector  M  perpendicular to the 
plane of the couple and equal in magnitude to the product of the 
common magnitude  F  of the forces and the perpendicular distance  d  
between their lines of action ( Fig. 3.55 ). 

 Two couples having the same moment  M  are  equivalent , i.e., they 
have the same effect on a given rigid body [Sec. 3.13]. The sum of 
two couples is itself a couple [Sec. 3.14], and the moment  M  of
the resultant couple can be obtained by adding vectorially the 
moments  M  1  and  M  2  of the original couples [Sample Prob. 3.6]. It 
follows that a couple can be represented by a vector, called a  couple 
vector , equal in magnitude and direction to the moment  M  of 
the couple [Sec. 3.15]. A couple vector is a  free vector  which can be 
attached to the origin  O  if so desired and resolved into components 
( Fig. 3.56 ). 
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 Any force  F  acting at a point  A  of a rigid body can be replaced by 
a  force-couple system  at an arbitrary point  O , consisting of the force 
 F  applied at  O  and a couple of moment  M   O   equal to the moment 
about  O  of the force  F  in its original position [Sec. 3.16]; it should 
be noted that the force  F  and the couple vector  M   O   are always per-
pendicular to each other ( Fig. 3.57 ).  

Force-couple system  

O

MO

r

A A

F
F

O=
 Fig. 3.57   

 It follows [Sec. 3.17] that  any system of forces can be reduced to a 
force-couple system at a given point O  by first replacing each of 
the forces of the system by an equivalent force-couple system at  O  

 Reduction of a system of forces 
to a force-couple system  

Review and Summary
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126 Rigid Bodies: Equivalent Systems of Forces ( Fig. 3.58 ) and then adding all the forces and all the couples deter-
mined in this manner to obtain a resultant force  R  and a resultant 
couple vector  MR

O     [Sample Probs. 3.8 through 3.11]. Note that, in 
general, the resultant  R  and the couple vector  MR

O     will not be per-
pendicular to each other. 
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 Fig. 3.58

 We concluded from the above [Sec. 3.18] that, as far as rigid 
 bodies are concerned,  two systems of forces ,  F  1 ,  F  2 ,  F  3 , . . . and   
 F 9  1 ,  F 9 2 ,  F 9 3 , . . . ,  are equivalent if, and only if ,

 oF 5 oF9  and  oMO 5 oM9O (3.57)   

 If the resultant force  R  and the resultant couple vector MR
O         are per-

pendicular to each other, the force-couple system at  O  can be further 
reduced to a single resultant force [Sec. 3.20]. This will be the case 
for systems consisting either of ( a ) concurrent forces (cf. Chap. 2), 
( b ) coplanar forces [Sample Probs. 3.8 and 3.9], or ( c ) parallel forces 
[Sample Prob. 3.11]. If the resultant  R  and the couple vector  MR

O         
are  not  perpendicular to each other, the system  cannot  be reduced 
to a single force.    

 Equivalent systems of forces  

 Further reduction of a 
system of forces   
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REVIEW PROBLEMS

 3.97 A force P of magnitude 520 lb acts on the frame shown at point E. 
Determine the moment of P (a) about point D, (b) about a line 
joining points O and D.

 3.98 A force P acts on the frame shown at point E. Knowing that the 
absolute value of the moment of P about a line joining points F 
and B is 300 lb ? ft, determine the magnitude of the force P.

 3.99 A crane is oriented so that the end of the 25-m boom AO lies in 
the yz plane. At the instant shown the tension in cable AB is 4 kN. 
Determine the moment about each of the coordinate axes of the 
force exerted on A by cable AB.

y
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D

G

H

O

B

F

P

7.5 in.

10 in. 30 in.

7.5 in.

10 in.

10 in.
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 Fig. P3.97 and P3.98     
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C B

y

2.5 m
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x

z

 Fig. P3.99 and P3.100     

3.100 The 25-m crane boom AO lies in the yz plane. Determine the 
maximum permissible tension in cable AB if the absolute value of 
the moments about the coordinate axes of the force exerted on A by 
cable AB must be as follows: 0Mx 0 # 60 kN ? m, 0My 0 # 12 kN ? m, 
and 0Mz 0 # 8 kN ? m.

 3.101 A single force P acts at C in a direction perpendicular to the handle 
BC of the crank shown. Determine the moment Mx of P about the 
x axis when u 5 65° knowing that My 5 215 N ? m and Mz 5
236 N ? m.

y

O

B

A

C
�

�

100 mm

200 mm

150 mm

P

x
z

 Fig. P3.101
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128 Rigid Bodies: Equivalent Systems of Forces  3.102 A multiple-drilling machine is used to drill simultaneously six holes 
in the steel plate shown. Each drill exerts a clockwise couple of 
magnitude 40 lb ? in. on the plate. Determine an equivalent couple 
formed by the smallest possible forces acting (a) at A and C, 
(b) at A and D, (c) on the plate.

 3.103 A 500-N force is applied to a bent plate as shown. Determine (a) 
an equivalent force-couple system at B, (b) an equivalent system 
formed by a vertical force at A and a force at B.

9 in.

12 in.

16 in.
BA

C D

 Fig. P3.102   

 3.104 A 100-kN load is applied eccentrically to the column shown. Deter-
mine the components of the force and couple at G that are equiva-
lent to the 100-kN load.

 3.105 The speed-reducer unit shown weighs 75 lb, and its center of 
 gravity is located on the y axis. Show that the weight of the unit 
and the two couples acting on it, of magnitude M1 5 20 lb ? ft and 
M2 5 4 lb ? ft, respectively, can be replaced by a single equivalent 
force and determine (a) the magnitude and direction of that force, 
(b) the point where its line of action intersects the floor.

 3.106 For the truss and loading shown, determine the resultant of the 
loads and the distance from point A to its line of action.

A

B
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175 mm

75 mm

125mm

500 N

30�

 Fig. P3.103
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 Fig. P3.104M2M1
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 Fig. P3.105
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 Fig. P3.106
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129Review Problems 3.107 A force P of given magnitude P is applied to the edge of a semicir-
cular plate of radius a as shown. (a) Replace P by an equivalent 
force-couple system at point D obtained by drawing the perpendicu-
lar from B to the x axis. (b) Determine the value of u for which the 
moment of the equivalent force-couple system at D is maximum.

 3.108 A concrete foundation mat of 5-m radius supports four equally 
spaced columns, each of which is located 4 m from the center of 
the mat. Determine the magnitude and point of application of the 
smallest additional load that must be applied to the foundation mat 
if the resultant of the five loads is to pass through the center of 
the mat.

y

x
C

A D

P
B

O
�

 Fig. P3.107
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 Fig. P3.108
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This telecommunications tower, 

constructed in the heart of the 

Barcelona Olympic complex to 

broadcast the 1992 games, was 

designed to remain in equilibrium 

under the vertical force of gravity and 

the lateral forces exerted by wind.
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Chapter 4 Equilibrium 
of Rigid Bodies

 4.1 Introduction
 4.2 Free-Body Diagram
 4.3 Reactions at Supports and 

Connections for a Two-
Dimensional Structure

 4.4 Equilibrium of a Rigid Body in 
Two Dimensions

 4.5 Statically Indeterminate Reactions. 
Partial Constraints

 4.6 Equilibrium of a Two-Force Body
 4.7 Equilibrium of a Three-Force 

Body
 4.8 Equilibrium of a Rigid Body in 

Three Dimensions
 4.9 Reactions at Supports and 

Connections for a Three-
Dimensional Structure

 4.10 Friction Forces
 4.11 The Laws of Dry Friction. 

Coefficients of Friction
 4.12 Angles of Friction
 4.13 Problems Involving Dry Friction

4.1 INTRODUCTION
We saw in the preceding chapter that the external forces acting on 
a rigid body can be reduced to a force-couple system at some arbi-
trary point O. When the force and the couple are both equal to zero, 
the external forces form a system equivalent to zero, and the rigid 
body is said to be in equilibrium.
 The necessary and sufficient conditions for the equilibrium of 
a rigid body, therefore, can be obtained by setting R and MR

O equal 
to zero in the relations (3.52) of Sec. 3.17:

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

 Resolving each force and each moment into its rectangular 
components, we can express the necessary and sufficient conditions 
for the equilibrium of a rigid body with the following six scalar 
equations:

 oFx 5 0 oFy 5 0  oFz 5 0 (4.2)
 oMx 5 0  oMy 5 0  oMz 5 0 (4.3)

The equations obtained can be used to determine unknown forces 
applied to the rigid body or unknown reactions exerted on it by its 
supports. We note that Eqs. (4.2) express the fact that the compo-
nents of the external forces in the x, y, and z directions are balanced; 
Eqs. (4.3) express the fact that the moments of the external forces 
about the x, y, and z axes are balanced. Therefore, for a rigid body 
in equilibrium, the system of the external forces will impart no trans-
lational or rotational motion to the body considered.
 In order to write the equations of equilibrium for a rigid body, 
it is essential to first identify all of the forces acting on that body 
and then to draw the corresponding free-body diagram. In this 
chapter we first consider the equilibrium of two-dimensional struc-
tures subjected to forces contained in their planes and learn how to 
draw their free-body diagrams. In addition to the forces applied to 
a structure, the reactions exerted on the structure by its supports 
will be considered. A specific reaction will be associated with each 
type of support. You will learn how to determine whether the struc-
ture is properly supported, so that you can know in advance whether 
the equations of equilibrium can be solved for the unknown forces 
and reactions.
 Later in the chapter, the equilibrium of three-dimensional struc-
tures will be considered, and the same kind of analysis will be given to 
these structures and their supports. This will be followed with a discus-
sion of equilibrium of rigid bodies supported on surfaces in which fric-
tion acts to restrain motion of one surface with respect to the other.
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1334.2 FREE-BODY DIAGRAM
In solving a problem concerning the equilibrium of a rigid body, it 
is essential to consider all of the forces acting on the body; it is 
equally important to exclude any force which is not directly applied 
to the body. Omitting a force or adding an extraneous one would 
destroy the conditions of equilibrium. Therefore, the first step in 
the solution of the problem should be to draw a free-body diagram 
of the rigid body under consideration. Free-body diagrams have 
already been used on many occasions in Chap. 2. However, in view 
of their importance to the solution of equilibrium problems, we 
summarize here the various steps which must be followed in draw-
ing a free-body diagram.

 1. A clear decision should be made regarding the choice of the 
free body to be used. This body is then detached from the 
ground and is separated from all other bodies. The contour of 
the body thus isolated is sketched.

 2. All external forces should be indicated on the free-body dia-
gram. These forces represent the actions exerted on the free 
body by the ground and by the bodies which have been 
detached; they should be applied at the various points where 
the free body was supported by the ground or was connected 
to the other bodies. The weight of the free body should also 
be included among the external forces, since it represents the 
attraction exerted by the earth on the various particles forming 
the free body. As will be seen in Chap. 5, the weight should 
be applied at the center of gravity of the body. When the free 
body is made of several parts, the forces the various parts exert 
on each other should not be included among the external 
forces. These forces are internal forces as far as the free body 
is concerned.

 3. The magnitudes and directions of the known external forces 
should be clearly marked on the free-body diagram. When indi-
cating the directions of these forces, it must be remembered 
that the forces shown on the free-body diagram must be those 
which are exerted on, and not by, the free body. Known exter-
nal forces generally include the weight of the free body and 
forces applied for a given purpose.

 4. Unknown external forces usually consist of the reactions, 
through which the ground and other bodies oppose a possible 
motion of the free body. The reactions constrain the free body 
to remain in the same position, and, for that reason, are some-
times called constraining forces. Reactions are exerted at the 
points where the free body is supported by or connected to 
other bodies and should be clearly indicated. Reactions are dis-
cussed in detail in Secs. 4.3 and 4.8.

 5. The free-body diagram should also include dimensions, since 
these may be needed in the computation of moments of forces. 
Any other detail, however, should be omitted.

4.2 Free-Body Diagram

Photo 4.1 A free-body diagram of the tractor 
shown would include all of the external forces 
acting on the tractor: the weight of the tractor, 
the weight of the load in the bucket, and the 
forces exerted by the ground on the tires.

Photo 4.2 In Chap. 6, we will discuss how to 
determine the internal forces in structures made of 
several connected pieces, such as the forces in the 
members that support the bucket of the tractor of 
Photo 4.1.
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134 Equilibrium of Rigid Bodies
EQUILIBRIUM IN TWO DIMENSIONS

4.3  REACTIONS AT SUPPORTS AND CONNECTIONS 
FOR A TWO-DIMENSIONAL STRUCTURE

In the first part of this chapter, the equilibrium of a two-dimensional 
structure is considered; i.e., it is assumed that the structure being 
analyzed and the forces applied to it are contained in the same plane. 
Clearly, the reactions needed to maintain the structure in the same 
position will also be contained in this plane.
 The reactions exerted on a two-dimensional structure can be 
divided into three groups corresponding to three types of supports, 
or connections:

 1. Reactions Equivalent to a Force with Known Line of Action. 
Supports and connections causing reactions of this type include 
rollers, rockers, frictionless surfaces, short links and cables, col-
lars on frictionless rods, and frictionless pins in slots. Each of 
these supports and connections can prevent motion in one 
direction only. They are shown in Fig. 4.1, together with the 
reactions they produce. Each of these reactions involves one 
unknown, namely, the magnitude of the reaction; this magni-
tude should be denoted by an appropriate letter. The line of 
action of the reaction is known and should be indicated clearly 
in the free-body diagram. The sense of the reaction must be 
as shown in Fig. 4.1 for the cases of a frictionless surface 
(toward the free body) or a cable (away from the free body). 
The reaction can be directed either way in the case of double-
track rollers, links, collars on rods, and pins in slots. Single-
track rollers and rockers are generally assumed to be reversible, 
and thus the corresponding reactions can also be directed 
either way.

 2. Reactions Equivalent to a Force of Unknown Direction and 
Magnitude. Supports and connections causing reactions of this 
type include frictionless pins in fitted holes, hinges, and rough 
surfaces. They can prevent translation of the free body in all 
directions, but they cannot prevent the body from rotating 
about the connection. Reactions of this group involve two 
unknowns and are usually represented by their x and y com-
ponents. In the case of a rough surface, the component normal 
to the surface must be directed away from the surface.

 3. Reactions Equivalent to a Force and a Couple. These reactions 
are caused by fixed supports, which oppose any motion of the 
free body and thus constrain it completely. Fixed supports actu-
ally produce forces over the entire surface of contact; these 
forces, however, form a system which can be reduced to a force 
and a couple. Reactions of this group involve three unknowns, 
consisting usually of the two components of the force and the 
moment of the couple.

Photo 4.3 As the link of the awning window 
opening mechanism is extended, the force it 
exerts on the slider results in a normal force being 
applied to the rod, which causes the window to 
open.

Photo 4.4 The abutment-mounted rocker 
bearing shown is used to support the roadway 
of a bridge.

Photo 4.5 Shown is the rocker expansion 
bearing of a plate girder bridge. The convex 
surface of the rocker allows the support of the 
girder to move horizontally.
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 When the sense of an unknown force or couple is not readily 
apparent, no attempt should be made to determine it. Instead, the 
sense of the force or couple should be arbitrarily assumed; the sign 
of the answer obtained will indicate whether the assumption is cor-
rect or not.

4.3 Reactions at Supports and Connections for 
a Two-Dimensional Structure

Fig. 4.1 Reactions at supports and connections.

Support or Connection Reaction Number of
Unknowns

Rollers Rocker Frictionless
surface

Force with known
line of action

Force with known
line of action

Force with known
line of action

1

1

1

Short cable Short link

Collar on
frictionless rod Frictionless pin in slot

90º

Frictionless pin
or hinge

Rough surface Force of unknown
direction

or

or

2

Fixed support Force and couple

3

a

a
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136 Equilibrium of Rigid Bodies 4.4  EQUILIBRIUM OF A RIGID BODY 
IN TWO DIMENSIONS

The conditions stated in Sec. 4.1 for the equilibrium of a rigid body 
become considerably simpler for the case of a two-dimensional struc-
ture. Choosing the x and y axes to be in the plane of the structure, 
we have

Fz 5 0  Mx 5 My 5 0  Mz 5 MO

for each of the forces applied to the structure. Thus, the six equa-
tions of equilibrium derived in Sec. 4.1 reduce to

 oFx 5 0  oFy 5 0  oMO 5 0 (4.4)

and to three trivial identities, 0 5 0. Since oMO 5 0 must be satis-
fied regardless of the choice of the origin O, we can write the equa-
tions of equilibrium for a two-dimensional structure in the more 
general form

 oFx 5 0  oFy 5 0  oMA 5 0 (4.5)

where A is any point in the plane of the structure. The three equa-
tions obtained can be solved for no more than three unknowns.
 We saw in the preceding section that unknown forces include 
reactions and that the number of unknowns corresponding to a given 
reaction depends upon the type of support or connection causing 
that reaction. Referring to Sec. 4.3, we observe that the equilibrium 
equations (4.5) can be used to determine the reactions associated 
with two rollers and one cable, one fixed support, or one roller and 
one pin in a fitted hole, etc.
 Consider Fig. 4.2a, in which the truss shown is subjected to 
the given forces P, Q, and S. The truss is held in place by a pin at 
A and a roller at B. The pin prevents point A from moving by exert-
ing on the truss a force which can be resolved into the components 
Ax and Ay; the roller keeps the truss from rotating about A by exert-
ing the vertical force B. The free-body diagram of the truss is shown 
in Fig. 4.2b; it includes the reactions Ax, Ay, and B as well as the 
applied forces P, Q, S and the weight W of the truss. Expressing 
that the sum of the moments about A of all of the forces shown 
in Fig. 4.2b is zero, we write the equation oMA 5 0, which can be 
used to determine the magnitude B since it does not contain Ax or Ay. 
Next, expressing that the sum of the x components and the sum 
of the y components of the forces are zero, we write the equations 
oFx 5 0 and oFy 5 0, from which we can obtain the components 
Ax and Ay, respectively.
 An additional equation could be obtained by expressing that 
the sum of the moments of the external forces about a point other than 
A is zero. We could write, for instance, oMB 5 0. Such a statement, 
however, does not contain any new information, since it has already 
been established that the system of the forces shown in Fig. 4.2b is 
equivalent to zero. The additional equation is not independent and 
cannot be used to determine a fourth unknown. It will be useful, 

Fig. 4.2 
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137however, for checking the solution obtained from the original three 
equations of equilibrium.
 While the three equations of equilibrium cannot be augmented 
by additional equations, any of them can be replaced by another 
equation. Therefore, an alternative system of equations of equilib-
rium is

 oFx 5 0  oMA 5 0  oMB 5 0 (4.6)

where the second point about which the moments are summed (in 
this case, point B) cannot lie on the line parallel to the y axis that 
passes through point A (Fig. 4.2b). These equations are sufficient 
conditions for the equilibrium of the truss. The first two equations 
indicate that the external forces must reduce to a single vertical force 
at A. Since the third equation requires that the moment of this 
force be zero about a point B which is not on its line of action, the 
force must be zero, and the rigid body is in equilibrium.
 A third possible set of equations of equilibrium is

 oMA 5 0  oMB 5 0  oMC 5 0 (4.7)

where the points A, B, and C do not lie in a straight line (Fig. 4.2b). 
The first equation requires that the external forces reduce to a single 
force at A; the second equation requires that this force pass through 
B; and the third equation requires that it pass through C. Since the 
points A, B, C do not lie in a straight line, the force must be zero, 
and the rigid body is in equilibrium.
 The equation oMA 5 0, which expresses that the sum of the 
moments of the forces about pin A is zero, possesses a more defi-
nite physical meaning than either of the other two equations in (4.7). 
These two equations express a similar idea of balance, but with 
respect to points about which the rigid body is not actually hinged. 
They are, however, as useful as the first equation, and our choice 
of equilibrium equations should not be unduly influenced by the 
physical meaning of these equations. Indeed, it will be desirable in 
practice to choose equations of equilibrium containing only one 
unknown, since this eliminates the necessity of solving simulta neous 
equations. Equations containing only one unknown can be obtained 
by summing moments about the point of intersection of the lines 
of action of two unknown forces or, if these forces are parallel, by 
summing components in a direction perpendicular to their com-
mon direction. For example, in Fig. 4.3, in which the truss shown 
is held by rollers at A and B and a short link at D, the reactions at 
A and B can be eliminated by summing x components. The reac-
tions at A and D will be eliminated by summing moments about 
C, and the reactions at B and D by summing moments about D. 
The equations obtained are

oFx 5 0  oMC 5 0  oMD 5 0

Each of these equations contains only one unknown. Fig. 4.3 
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4.4 Equilibrium of a Rigid Body in 
Two Dimensions
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138 Equilibrium of Rigid Bodies 4.5  STATICALLY INDETERMINATE REACTIONS. 
PARTIAL CONSTRAINTS

In the two examples considered in the preceding section (Figs. 4.2 
and 4.3), the types of supports used were such that the rigid body 
could not possibly move under the given loads or under any other 
loading conditions. In such cases, the rigid body is said to be com-
pletely constrained. We also recall that the reactions corresponding 
to these supports involved three unknowns and could be determined 
by solving the three equations of equilibrium. When such a situation 
exists, the reactions are said to be statically determinate.
 Consider Fig. 4.4a, in which the truss shown is held by pins at 
A and B. These supports provide more constraints than are necessary 
to keep the truss from moving under the given loads or under any 
other loading conditions. We also note from the free-body diagram 
of Fig. 4.4b that the corresponding reactions involve four unknowns. 
Since, as was pointed out in Sec. 4.4, only three independent equi-
librium equations are available, there are more unknowns than equa-
tions; thus, all of the unknowns cannot be determined. While the 
equations oMA 5 0 and oMB 5 0 yield the vertical components By 
and Ay, respectively, the equation oFx 5 0 gives only the sum Ax 1 Bx 
of the horizontal components of the reactions at A and B. The com-
ponents Ax and Bx are said to be statically indeterminate. They could 
be determined by considering the deformations produced in the 
truss by the given loading, but this method is beyond the scope of 
statics and belongs to the study of mechanics of materials.
 The supports used to hold the truss shown in Fig. 4.5a consist of 
rollers at A and B. Clearly, the constraints provided by these supports are 
not sufficient to keep the truss from moving. While any vertical motion 
is prevented, the truss is free to move horizontally. The truss is said to 
be partially constrained.† Turning our attention to Fig. 4.5b, we note that 
the reactions at A and B involve only two unknowns. Since three equa-
tions of equilibrium must still be satisfied, there are fewer unknowns than 
equations, and, in general, one of the equilibrium equations will not be 
satisfied. While the equations oMA 5 0 and oMB 5 0 can be satisfied by 
a proper choice of reactions at A and B, the equation oFx 5 0 will not be 
satisfied unless the sum of the horizontal components of the applied forces 
happens to be zero. We thus observe that the equlibrium of the truss 
of Fig. 4.5 cannot be maintained under general loading conditions.
 It appears from the above that if a rigid body is to be com-
pletely constrained and if the reactions at its supports are to be 
statically determinate, there must be as many unknowns as there are 
equations of equilibrium. When this condition is not satisfied, we can 
be certain that either the rigid body is not completely constrained 
or that the reactions at its supports are not statically determinate; it 
is also possible that the rigid body is not completely constrained and 
that the reactions are statically indeterminate.
 We should note however that, while necessary, the above condi-
tion is not sufficient. In other words, the fact that the number of 

Fig. 4.4 Statically indeterminate 
reactions.
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Fig. 4.5 Partial constraints.
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B †Partially constrained bodies are often referred to as unstable. However, to avoid confusion 
between this type of instability, due to insufficient constraints, and the type of instability 
considered in Chap. 16, which relates to the behavior of columns, we shall restrict the use 
of the words stable and unstable to the latter case.
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139unknowns is equal to the number of equations is no guarantee that 
the body is completely constrained or that the reactions at its supports 
are statically determinate. Consider Fig. 4.6a, in which the truss 
shown is held by rollers at A, B, and E. While there are three unknown 
reactions, A, B, and E (Fig. 4.6b), the equation oFx 5 0 will not be 
satisfied unless the sum of the horizontal components of the applied 
forces happens to be zero. Although there are a sufficient number of 
constraints, these constraints are not properly arranged, and the truss 
is free to move horizontally. We say that the truss is improperly con-
strained. Since only two equilibrium equations are left for determin-
ing three unknowns, the reactions will be statically indeterminate. 
Thus, improper constraints also produce static indeterminacy.
 Another example of improper constraints—and of static inde-
terminacy—is provided by the truss shown in Fig. 4.7. This truss is 
held by a pin at A and by rollers at B and C, which altogether involve 
four unknowns. Since only three independent equilibrium equations 
are available, the reactions at the supports are statically indetermi-
nate. On the other hand, we note that the equation oMA 5 0 cannot 
be satisfied under general loading conditions, since the lines of action 
of the reactions B and C pass through A. We conclude that the truss 
can rotate about A and that it is improperly constrained.†
 The examples of Figs. 4.6 and 4.7 lead us to conclude that a rigid 
body is improperly constrained whenever the supports, even though 
they may provide a sufficient number of reactions, are arranged in such 
a way that the reactions must be either concurrent or parallel.‡
 In summary, to be sure that a two-dimensional rigid body is com-
pletely constrained and that the reactions at its supports are statically 
determinate, we should verify that the reactions involve three—and only 
three—unknowns and that the supports are arranged in such a way that 
they do not require the reactions to be either concurrent or parallel.
 Supports involving statically indeterminate reactions should be 
used with care in the design of structures and only with a full knowl-
edge of the problems they may cause. On the other hand, the analysis 
of structures possessing statically indeterminate reactions often can 
be partially carried out by the methods of statics. In the case of the 
truss of Fig. 4.4, for example, the vertical components of the reactions 
at A and B were obtained from the equilibrium equations.
 For obvious reasons, supports producing partial or improper 
constraints should be avoided in the design of stationary structures. 
However, a partially or improperly constrained structure will not nec-
essarily collapse; under particular loading conditions, equilibrium can 
be maintained. For example, the trusses of Figs. 4.5 and 4.6 will be 
in equilibrium if the applied forces P, Q, and S are vertical. Besides, 
structures which are designed to move should be only partially con-
strained. A railroad car, for instance, would be of little use if it were 
completely constrained by having its brakes applied permanently.
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Fig. 4.6 Improper constraints.

Fig. 4.7 Improper constraints.
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4.5 Statically Indeterminate Reactions. 
Partial Constraints

†Rotation of the truss about A requires some “play” in the supports at B and C. In 
practice such play will always exist. In addition, we note that if the play is kept small, the 
displacements of the rollers B and C and, thus, the distances from A to the lines of action of 
the reactions B and C will also be small. The equation oMA 5 0 then requires that B and 
C be very large, a situation which can result in the failure of the supports at B and C.

‡Because this situation arises from an inadequate arrangement or geometry of the 
supports, it is often referred to as geometric instability.
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SOLUTION

Free-Body Diagram. A free-body diagram of the crane is drawn. By mul-
tiplying the masses of the crane and of the crate by g 5 9.81 m/s2, we obtain 
the corresponding weights, that is, 9810 N or 9.81 kN, and 23 500 N or 
23.5 kN. The reaction at pin A is a force of unknown direction; it is repre-
sented by its components Ax and Ay. The reaction at the rocker B is per-
pendicular to the rocker surface; thus, it is horizontal. We assume that Ax, 
Ay, and B act in the directions shown.

Determination of B. We express that the sum of the moments of all external 
forces about point A is zero. The equation obtained will contain neither Ax 
nor Ay, since the moments of Ax and Ay about A are zero. Multiplying the 
magnitude of each force by its perpendicular distance from A, we write

1loMA 5 0:  1B(1.5 m) 2 (9.81 kN)(2 m) 2 (23.5 kN)(6 m) 5 0
 B 5 1107.1 kN B 5 107.1 kN n ◀

Since the result is positive, the reaction is directed as assumed.

Determination of Ax. The magnitude of Ax is determined by expressing 
that the sum of the horizontal components of all external forces is zero.

n1 oFx 5 0:  Ax 1 B 5 0
 Ax 1 107.1 kN 5 0
 Ax 5 2107.1 kN  Ax 5 107.1 kN m ◀

Since the result is negative, the sense of Ax is opposite to that assumed 
originally.

Determination of Ay. The sum of the vertical components must also equal 
zero.

1hoFy 5 0:   Ay 2 9.81 kN 2 23.5 kN 5 0
 Ay 5 133.3 kN Ay 5 33.3 kN h ◀

 Adding vectorially the components Ax and Ay, we find that the reac-
tion at A is 112.2 kN b17.3°.

Check. The values obtained for the reactions can be checked by recalling 
that the sum of the moments of all of the external forces about any point 
must be zero. For example, considering point B, we write

1loMB 5 2(9.81 kN)(2 m) 2 (23.5 kN)(6 m) 1 (107.1 kN)(1.5 m) 5 0

SAMPLE PROBLEM 4.1

A fixed crane has a mass of 1000 kg and is used to lift a 2400-kg crate. It 
is held in place by a pin at A and a rocker at B. The center of gravity of 
the crane is located at G. Determine the components of the reactions at A 
and B.

2400 kg
A

B

G

4 m2 m

1.5 m

A

BB

23.5 kN

Ay

Ax

9.81 kN

1.5 m

4 m2 m

33.3 kN

107.1 kN

107.1 kN

A

B

23.5 kN

9.81 kN

4 m2 m

1.5 m
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141

SOLUTION

Free-Body Diagram. A free-body diagram of the beam is drawn. The reac-
tion at A is vertical and is denoted by A. The reaction at B is represented 
by components Bx and By. Each component is assumed to act in the direc-
tion shown.

Equilibrium Equations. We write the following three equilibrium equa-
tions and solve for the reactions indicated:

n1 oFx 5 0: Bx 5 0 Bx 5 0 ◀

1loMA 5 0:
2(15 kips)(3 ft) 1 By(9 ft) 2 (6 kips)(11 ft) 2 (6 kips)(13 ft) 5 0

 By 5 121.0 kips By 5 21.0 kips h ◀

1loMB 5 0:
2A(9 ft) 1 (15 kips)(6 ft) 2 (6 kips)(2 ft) 2 (6 kips)(4 ft) 5 0

 A 5 16.00 kips A 5 6.00 kips h ◀

Check. The results are checked by adding the vertical components of all 
of the external forces:

1hoFy 5 16.00 kips 2 15 kips 1 21.0 kips 2 6 kips 2 6 kips 5 0

Remark. In this problem the reactions at both A and B are vertical; how-
ever, these reactions are vertical for different reasons. At A, the beam is 
supported by a roller; hence the reaction cannot have any horizontal com-
ponent. At B, the horizontal component of the reaction is zero because it 
must satisfy the equilibrium equation oFx 5 0 and because none of the 
other forces acting on the beam has a horizontal component.
 We could have noticed at first glance that the reaction at B was verti-
cal and dispensed with the horizontal component Bx. This, however, is a bad 
practice. In following it, we would run the risk of forgetting the component 
Bx when the loading conditions require such a component (i.e., when a 
horizontal load is included). Also, the component Bx was found to be zero 
by using and solving an equilibrium equation, oFx 5 0. By setting Bx equal 
to zero immediately, we might not realize that we actually make use of this 
equation and thus might lose track of the number of equations available for 
solving the problem.

SAMPLE PROBLEM 4.2

Three loads are applied to a beam as shown. The beam is supported by a 
roller at A and by a pin at B. Neglecting the weight of the beam, determine 
the reactions at A and B when P 5 15 kips.

3 ft 2 ft 2 ft

6 kips 6 kipsP

6 ft

A B

3 ft 2 ft 2 ft

6 kips15 kips 6 kips

6 ft

By

BxA
A

B
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SOLUTION

Free-Body Diagram. A free-body diagram of the car is drawn. The reac-
tion at each wheel is perpendicular to the track, and the tension force T is 
parallel to the track. For convenience, we choose the x axis parallel to the 
track and the y axis perpendicular to the track. The 5500-lb weight is then 
resolved into x and y components.

 Wx 5 1(5500 lb) cos 25° 5 14980 lb
Wy 5 2(5500 lb) sin 25° 5 22320 lb

Equilibrium Equations. We take moments about A to eliminate T and R1 
from the computation.

1loMA 5 0:  2(2320 lb)(25 in.) 2 (4980 lb)(6 in.) 1 R2(50 in.) 5 0
 R2 5 11758 lb R2 5 1758 lb p ◀

Now, taking moments about B to eliminate T and R2 from the computation, 
we write

1loMB 5 0:  (2320 lb)(25 in.) 2 (4980 lb)(6 in.) 2 R1(50 in.) 5 0
 R1 5 1562 lb R1 5 1562 lb p ◀

The value of T is found by writing

q1oFx 5 0:  14980 lb 2 T 5 0
 T 5 14980 lb T 5 4980 lb r ◀

The computed values of the reactions are shown in the adjacent sketch.

Check. The computations are verified by writing

p1oFy 5 1562 lb 1 1758 lb 2 2320 lb 5 0

The solution could also have been checked by computing moments about 
any point other than A or B.

SAMPLE PROBLEM 4.3

A loading car is at rest on a track forming an angle of 25° with the vertical. 
The gross weight of the car and its load is 5500 lb, and it is applied at a 
point 30 in. from the track, halfway between the two axles. The car is held 
by a cable attached 24 in. from the track. Determine the tension in the 
cable and the reaction at each pair of wheels.

24 in.

25º
G

25 in.

25 in.
30 in.

y

x

R1

R2

2320 lb 6 in.

A

T

B

G

25 in.

25 in.

4980 lb

562 lb

1758 lb

y

x

4980 lb

25 in.

25 in.

2320 lb
6 in.

A

B

G

4980 lb
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SAMPLE PROBLEM 4.4

The frame shown supports part of the roof of a small building. Knowing that 
the tension in the cable is 150 kN, determine the reaction at the fixed end E.

20 kN 20 kN 20 kN 20 kN

A B

C

D

E F1.8 m 1.8 m 1.8 m 1.8 m

2.25 m

3.75 m

4.5 m

SAMPLE PROBLEM 4.5

A 400-lb weight is attached at A to the lever shown. The constant of the 
spring BC is k 5 250 lb/in., and the spring is unstretched when u 5 0. 
Determine the position of equilibrium.

A
s

O
W

F = ks

Ry

R x

Undeformed
position

q

r

l sin q

SOLUTION

Free-Body Diagram. We draw a free-body diagram of the lever and 
 cylinder. Denoting by s the deflection of the spring from its undeformed 
position, and noting that s 5 ru, we have F 5 ks 5 kru.

Equilibrium Equation. Summing the moments of W and F about O, we write

1loMO 5 0:  Wl sin u 2 r(kru) 5 0  sin u 5 
kr2

Wl
 u

Substituting the given data, we obtain

sin u 5
(250 lb/in.) (3 in.)2

(400 lb) (8 in.)
 u   sin u 5 0.703 u

Solving by trial and error, we find  u 5 0  u 5 80.3˚ ◀

A
B C

O

k = 250 lb/in.

r = 3 in.

l = 8 in.

W = 400 lb

q

6 m

150 kNEy

Ex

ME

20 kN 20 kN 20 kN 20 kN

A B
C

D

E F

4.5 m

1.8 m 1.8 m 1.8 m 1.8 m

SOLUTION

Free-Body Diagram. A free-body diagram of the frame and of the cable BDF 
is drawn. The reaction at the fixed end E is represented by the force compo-
nents Ex and Ey and the couple ME. The other forces acting on the free body 
are the four 20-kN loads and the 150-kN force exerted at end F of the cable.

Equilibrium Equations. Noting that DF 5 2 (4.5 m)2 1 (6 m)2 5 7.5 m, 
we write

n1 oFx 5 0: Ex 1
4.5
7.5

(150 kN) 5 0

 Ex 5 290.0 kN Ex 5 90.0 kN z ◀

1hoFy 5 0:  Ey 2 4(20 kN) 2
6

7.5
(150 kN) 5 0

 Ey 5 1200 kN Ey 5 200 kNx ◀

1loME 5 0:  (20 kN)(7.2 m) 1 (20 kN)(5.4 m) 1 (20 kN)(3.6 m)

1 (20 kN)(1.8 m) 2 
6

7.5
(150 kN)(4.5 m) 1 ME 5 0

 ME 5 1180.0 kN ? m ME 5 180.0 kN ? m l ◀
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PROBLEMS

144

 4.1 Two external shafts of a gearbox carry torques as shown. Determine 
the vertical components of the forces that must be exerted by the 
bolts at A and B to maintain the gearbox in equilibrium.

 4.2 A 2800-kg forklift truck is used to lift a 1500-kg crate. Determine the 
reaction at each of the two (a) front wheels A, (b) rear wheels B.

 Fig. P4.1

600 lb•ft 100 lb•ft

30 in.

A B

BA

0.3 m

G'

G

0.4 m 0.6 m

 Fig. P4.2

4.3 A gardener uses a 12-lb wheelbarrow to transport a 50-lb bag of 
fertilizer. What force must the gardener exert on each handle?

6 in. 6 in.

12 lb

50 lb

A

28 in.

 Fig. P4.3

4.4 A load of lumber of weight W 5 25 kN is being raised as shown 
by a mobile crane. Knowing that the tension is 25 kN in all portions 
of cable AEF and that the weight of boom ABC is 3 kN, determine 
(a) the tension in rod CD, (b) the reaction at pin B.

D

2.0 m

2.0 m

H K

B EA

C

2.0 m
0.9 m

3 kN

0.5 m

0.6 m 0.4 m

0.3 m

50 kN
H

F

K

W

 Fig. P4.4
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145Problems 4.5 Three loads are applied as shown to a light beam supported by 
cables attached at B and D. Neglecting the weight of the beam, 
determine the range of values of Q for which neither cable becomes 
slack when P 5 0.

 4.6 Three loads are applied as shown to a light beam supported by 
cables attached at B and D. Knowing that the maximum allowable 
tension in each cable is 12 kN and neglecting the weight of the 
beam, determine the range of values of Q for which the loading is 
safe when P 5 5 kN.

 4.7 The 10-ft beam AB rests upon, but is not attached, to supports at 
C and D. Neglecting the weight of the beam, determine the range 
of values of P for which the beam will remain in equilibrium.

0.5 m
0.75 m 0.75 m

1.5 m

7.5 kN
P Q

A

B D

C
E

 Fig. P4.5 and P4.6

A
C D

B

P 240 lb

3 ft
2 ft

5 ft

 Fig. P4.7

 Fig. P4.9

T

5 kips

2 kips

10º

30º

G

B

C

A

 Fig. P4.10

T

CA

L

G

q

h

B

h
2

175 mm

225 mm
75 mm

125 mm

B

A

D
C

150 N

 Fig. P4.11

 4.8 For the beam of Sample Prob. 4.2, determine the range of values 
of P for which the beam will be safe knowing that the maximum 
allowable value for each of the reactions is 25 kips and that the 
reaction at A must be directed upward.

 4.9 The 40-ft boom AB weighs 2 kips; the distance from the axle A to 
the center of gravity G of the boom is 20 ft. For the position shown, 
determine the tension T in the cable and the reaction at A.

 4.10 The ladder AB, of length L and weight W, can be raised by the 
cable BC. Determine the tension T required to raise end B just 
off the floor (a) in terms of W and u, (b) if h 5 8 ft, L 5 10 ft, 
and W 5 35 lb.

 4.11 Neglecting the radius of the pulley, determine the tension in cable 
ABD and the reaction at the support C.
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146 Equilibrium of Rigid Bodies  4.12 The lever AB is hinged at C and attached to a control cable at A. 
If the lever is subjected at B to a 500-N horizontal force, determine 
(a) the tension in the cable, (b) the reaction at C.

 4.13 Determine the reactions at A and B when a 5 608.

250 mm

250 mm

200 mm

C

B

D

A

500 N

30º

 Fig. P4.12

250 mm

A

B

300 mm

250 mm

400 N

α

 Fig. P4.13

 4.14 The required tension in cable AB is 300 lb. Determine (a) the 
vertical force P that must be applied to the pedal, (b) the corre-
sponding reaction at C.

12 in.3 in.

5 in. P

A B

C

D

 Fig. P4.14 and P4.15

 4.15 Determine the maximum tension that can be developed in cable 
AB if the maximum allowable magnitude of the reaction at C is 
650 lb.

 4.16 A truss may be supported in three different ways as shown. In each 
one, determine the reactions at the supports.

2 kN

3 kN

2 kN

1.5 m

1.5 m

2 m

(a)

BA

2 kN

3 kN

2 kN

(b)

BA

(c)

30�

2 kN

3 kN

2 kN

BA

 Fig. P4.16
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147Problems 4.17 A light bar AD is suspended from a cable BE and supports a 20-kg 
block at C. The extremities A and D of the bar are in contact with 
frictionless, vertical walls. Determine the tension in cable BE and 
the reactions A and D.

 4.18 A light rod, supported by rollers at B, C, and D, is subjected to an 
800-N force applied at A. If b 5 0, determine (a) the reactions at 
B, C, and D, (b) the rollers that can be safely removed for this 
loading.

B

A

C

D

E

200 mm

125 mm
75 mm

175 mm

20 kg

 Fig. P4.17

 4.19 A 160-lb overhead garage door consists of a uniform rectangular 
panel AC, 84 in. long, supported by the cable AE attached at the 
middle of the upper edge of the door and by two sets of frictionless 
rollers at A and B. Each set consists of two rollers located on either 
side of the door. The rollers A are free to move in horizontal chan-
nels, while the rollers B are guided by vertical channels. If the door 
is held in the position for which BD 5 42 in., determine (a) the 
tension in cable AE, (b) the reaction at each of the four rollers.

 4.20 In Prob. 4.19, determine the distance BD for which the tension in 
cable AE is equal to 600 lb.

 4.21 A 150-kg telephone pole is used to support the ends of two wires 
as shown. The tension in the wire to the left is 400 N, and, at the 
point of support, the wire forms an angle of 108 with the horizontal. 
(a) If the tension T2 is zero, determine the reaction at the base A. 
(b) Determine the largest and smallest allowable tension T2 if the 
magnitude of the couple at A may not exceed 900 N ? m.

100 mm

100 mm

100 mm

240 mm

800 N
�

B

A

C

D

2

4

3

1

 Fig. P4.18

DE
A

B
C

G

84 in.
14 in.

28 in.42 in.

160 lb

 Fig. P4.19

A

B

4.8 m

20°
T1 = 400 N

T2

10°

 Fig. P4.21
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148 Equilibrium of Rigid Bodies  4.22 The rig shown consists of a 1200-lb horizontal member ABC and 
a vertical member DBE welded together at B. The rig is being 
used to raise a 3600-lb crate at a distance x 5 12 ft from the verti-
cal member DBE. If the tension in the cable is 4 kips, determine 
the reaction at E, assuming that the cable is (a) anchored at F as 
shown in the figure, (b) attached to the vertical member at a point 
located 1 ft above E.

 4.23 For the rig and crate of Prob. 4.22, and assuming that the cable is 
anchored at F as shown, determine (a) the required tension in 
cable ADCF if the maximum value of the couple at E as x varies 
from 1.5 to 17.5 ft is to be as small as possible, (b) the correspond-
ing maximum value of the couple.

 4.24 A traffic-signal pole may be supported in the three ways shown; in 
part c, the tension in cable BC is to be 1950 N. Determine the 
reactions for each type of support.

A

CB

FE

x

D

5 ft

10 ft

17.5 ft

6.5 ft

3.75 ft

W = 1200 lb

3600 lb

 Fig. P4.22

900 N

4000 N

2.1 m

3 m

7.2 m

900 N

4000 N

1950 N

2.1 m

900 N

4000 N

2.1 m

B B
B

C
A A AC

(a) (b) (c)

 Fig. P4.24

 4.25 A truss may be supported in eight different ways as shown. All 
connections consist of frictionless pins, rollers, and short links. In 
each case, determine whether (a) the truss is completely, partially, 
or improperly constrained, (b) the reactions are statically determi-
nate or indeterminate, (c) the equilibrium of the truss is main-
tained in the position shown. Also, wherever possible, compute the 
reactions, assuming that the magnitude of the force P is 12 kips.

B

A
C

P

1

P

2

P

5

P

3

6 ft 6 ft

9 ft

P

6

P

7

P

8

P

4

 Fig. P4.25
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 4.26 Nine identical rectangular plates, 500 3 750 mm, and each of mass 
m 5 40 kg, are held in a vertical plane as shown. All connections 
consist of frictionless pins, rollers, and short links. For each case, 
answer the questions listed in Prob. 4.25, and wherever possible, 
compute the reactions.

BA

CD

1 2

4

3

5 6

7 8 9

 Fig. P4.26

4.6 EQUILIBRIUM OF A TWO-FORCE BODY
A particular case of equilibrium which is of considerable interest is 
that of a rigid body subjected to two forces. Such a body is commonly 
called a two-force body. It will be shown that if a two-force body is 
in equilibrium, the two forces must have the same magnitude, the 
same line of action, and opposite sense.
 Consider a corner plate subjected to two forces F1 and F2 act-
ing at A and B, respectively (Fig. 4.8a). If the plate is to be in equi-
librium, the sum of the moments of F1 and F2 about any axis must 
be zero. First, we sum moments about A. Since the moment of F1 
is obviously zero, the moment of F2 must also be zero and the line 
of action of F2 must pass through A (Fig. 4.8b). Summing moments 
about B, we prove similarly that the line of action of F1 must pass 
through B (Fig. 4.8c). Therefore, both forces have the same line of 
action (line AB). From either of the equations oFx 5 0 and oFy 5 0 
it is seen that they must also have the same magnitude but opposite 
sense.

(c)

A

B

F1

F2

(b)

A

B

F2

(a)

A

B

F1

F2

F1

Fig. 4.8

1494.6 Equilibrium of a Two-Force Body
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150 Equilibrium of Rigid Bodies

 If several forces act at two points A and B, the forces acting at 
A can be replaced by their resultant F1 and those acting at B can be 
replaced by their resultant F2. Thus a two-force body can be more 
generally defined as a rigid body subjected to forces acting at only 
two points. The resultants F1 and F2 then must have the same line 
of action, the same magnitude, and opposite sense (Fig. 4.8).
 In the study of structures, frames, and machines, you will see 
how the recognition of two-force bodies simplifies the solution of 
certain problems.

4.7 EQUILIBRIUM OF A THREE-FORCE BODY
Another case of equilibrium that is of great interest is that of a three-
force body, i.e., a rigid body subjected to three forces or, more gen-
erally, a rigid body subjected to forces acting at only three points. 
Consider a rigid body subjected to a system of forces which can be 
reduced to three forces F1, F2, and F3 acting at A, B, and C, respec-
tively (Fig. 4.9a). It will be shown that if the body is in equilibrium, 
the lines of action of the three forces must be either concurrent or 
parallel.
 Since the rigid body is in equilibrium, the sum of the moments 
of F1, F2, and F3 about any axis must be zero. Assuming that the 
lines of action of F1 and F2 intersect and denoting their point of 
intersection by D, we sum moments about D (Fig. 4.9b). Since the 
moments of F1 and F2 about D are zero, the moment of F3 about 
D must also be zero, and the line of action of F3 must pass through 
D (Fig. 4.9c). Therefore, the three lines of action are concurrent. 
The only exception occurs when none of the lines intersect; the lines 
of action are then parallel.
 Although problems concerning three-force bodies can be solved 
by the general methods of Secs. 4.3 to 4.5, the property just estab-
lished can be used to solve them either graphically or mathematically 
from simple trigonometric or geometric relations.

(c)

A

B

F1

F2

(b)

A

B

F2

(a)

A

B

F1

F2

F1

Fig. 4.8 (repeated)

F2

F3

F1

B C

D
A

(a) (b) (c)

F2

F3

F1

B C

D
A

F2

F3

F1

B C

A

Fig. 4.9
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SOLUTION

Free-Body Diagram. The joist is a three-force body, since it is acted upon 
by three forces: its weight W, the force T exerted by the rope, and the 
reaction R of the ground at A. We note that

W 5 mg 5 (10 kg)(9.81 m/s2) 5 98.1 N

Three-Force Body. Since the joist is a three-force body, the forces acting 
on it must be concurrent. The reaction R, therefore, will pass through the 
point of intersection C of the lines of action of the weight W and the ten-
sion force T. This fact will be used to determine the angle a that R forms 
with the horizontal.
 Drawing the vertical BF through B and the horizontal CD through C, 
we note that

 AF 5 BF 5 (AB) cos 458 5 (4 m) cos 458 5 2.828 m
CD 5 EF 5 AE 5 1

2(AF) 5 1.414 m
BD 5 (CD) cot (458 1 258) 5 (1.414 m) tan 208 5 0.515 m
 CE 5 DF 5 BF 2 BD 5 2.828 m 2 0.515 m 5 2.313 m

We write

tan a 5
CE
AE

5
2.313 m
1.414 m

5 1.636

a 5 58.68 ◀

We now know the direction of all the forces acting on the joist.

Force Triangle. A force triangle is drawn as shown, and its interior angles 
are computed from the known directions of the forces. Using the law of 
sines, we write

T
sin 31.4°

5
R

sin 110°
5

98.1 N
sin 38.6°

T 5 81.9 N ◀

R 5 147.8 N a58.68 ◀

SAMPLE PROBLEM 4.6

A man raises a 10-kg joist, of length 4 m, by pulling on a rope. Find the 
tension T in the rope and the reaction at A.

45°

25°
4 m

B

A

A

B

C

G

T

R

W = 98.1 Na

45°

45°
4 m

A

B
C

G

D

E F

25°

a

T

R98.1 N

110°

38.6°
20°

31.4°

a = 58.6°
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PROBLEMS

152

 4.27 Determine the reactions at B and C when a 5 30 mm.

4.28 The spanner shown is used to rotate a shaft. A pin fits in a hole at 
A, while a flat, frictionless surface rests against the shaft at B. If a 
300-N force P is exerted on the spanner at D, find the reactions 
at A and B.

4.29 A 10-ft wooden beam weighing 120 lb is supported by a pin and 
bracket at A and by cable BC. Find the reaction at A and the ten-
sion in the cable.

4.30 A T-shaped bracket supports a 300-N load as shown. Determine 
the reactions at A and C when (a) a 5 90°, (b) a 5 45°.

100 mm40 mm60 mm

60 mm

250 N

A

C

B

D

a

Fig. P4.27

375 mm
75 mm

PA

B

C D
50º

Fig. P4.28

7 ft

5 ft 5 ft

5 ft

120 lb

C

BA

Fig. P4.29
A

C

300 N

B

300 mm

250 mm
150 mm

α

Fig. P4.30

200 NA

B

C

D

300 mm300 mm

450 mm

250 mm

Fig. P4.31

4.31 One end of a rod AB rests in the corner A, and the other is attached 
to cord BD. If the rod supports a 200-N load at its midpoint C, 
find the reaction at A and the tension in the cord.

4.32 Using the method of Sec. 4.7, solve Prob. 4.12.

4.33 Using the method of Sec. 4.7, solve Prob. 4.13.

4.34 Using the method of Sec. 4.7, solve Prob. 4.14.

4.35 Using the method of Sec. 4.7, solve Prob. 4.15.
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153Problems

500 N

200 mm

150 mm 200 mm

200 mm

A

C

D

B

E

�

30°

Fig. P4.36 and P4.37

10 in. 10 in.

A

B

12 in.

75 lb

α

Fig. P4.38 and P4.39

40°

C

B

D

L

θ

A

Fig. P4.40

 4.36 Determine the reactions at A and E when a 5 0.

 4.37 Determine (a) the value of a for which the reaction at A is vertical, 
(b) the corresponding reactions at A and E.

 4.38 Determine the reactions at A and B when a 5 90°.

 4.39 Determine the reactions at A and B when a 5 30°.

 4.40 A slender rod BC of length L and weight W is held by two cables 
as shown. Knowing that cable AB is horizontal and that the rod 
forms an angle of 40° with the horizontal, determine (a) the 
angle u that cable CD forms with the horizontal, (b) the tension 
in each cable.

 4.41 A slender rod AB of length L and weight W is attached to a collar 
at A and rests on a small wheel at C. Neglecting the effect of fric-
tion and the weight of the collar, determine the angle u corre-
sponding to equilibrium.

 4.42 Determine the reactions at A and B when a 5 7.5 in.

 4.43 Determine the value of a for which the magnitude of the reaction 
B is equal to 200 lb.

A

C

B

L
θ

a

Fig. P4.41

80 lb

A

B

12 in.

4 in.

a

Fig. P4.42 and P4.43
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154 Equilibrium of Rigid Bodies  4.44 Rod AB is supported by a pin and bracket at A and rests against 
a frictionless peg at C. Determine the reactions at A and C when 
a 170-N vertical force is applied at B.

 4.45 Solve Prob. 4.44 assuming that the 170-N force applied at B is 
horizontal and directed to the left.

 4.46 A uniform plate girder weighing 6000 lb is held in a horizontal 
position by two crane cables. Determine the angle a and the ten-
sion in each cable.

A

B

C

170 N

150 mm

150 mm

160 mm

Fig. P4.44

30°

60 ft20 ft

A B
α

Fig. P4.46

 4.47 A 12-ft ladder, weighing 40 lb, leans against a frictionless vertical 
wall. The lower end of the ladder rests on rough ground, 4 ft away 
from the wall. Determine the reactions at both ends.

 4.48 A 225-N sign is supported by a pin and bracket at A and by a cable 
BC. Determine the reaction at A and the tension in the cable.

 4.49 The L-shaped member ACB is supported by a pin and bracket 
at C and by an inextensible cord attached at A and B and passing 
over a frictionless pulley at D. The tension may be assumed to 
be the same in portions AD and BD of the cord. If the magni-
tudes of the forces applied at A and B are, respectively, P 5 25 lb 
and Q 5 0, determine (a) the tension in the cord, (b) the reaction 
at C.

 4.50 For the L-shaped member of Prob. 4.49, (a) express the tension T 
in the cord in terms of the magnitudes P and Q of the forces 
applied at A and B, (b) assuming Q 5 40 lb, find the smallest 
allowable value of P if the equilibrium is to be maintained.

40 lb Rough

Frictionless

6 ft

6 ft

A

C B

A

4 ft

Fig. P4.47

1.2 m

0.9 m 0.9 m

BA

C

30º

225 N

Fig. P4.48

16 in.

12 in.

P

Q B

AC

D

Fig. P4.49
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155EQUILIBRIUM IN THREE DIMENSIONS

4.8  EQUILIBRIUM OF A RIGID BODY 
IN THREE DIMENSIONS

We saw in Sec. 4.1 that six scalar equations are required to express 
the conditions for the equilibrium of a rigid body in the general 
three-dimensional case:

 oFx 5 0 oFy 5 0  oFz 5 0 (4.2)
 oMx 5 0  oMy 5 0  oMz 5 0 (4.3)

These equations can be solved for no more than six unknowns, which 
generally will represent reactions at supports or connections.
 In most problems the scalar equations (4.2) and (4.3) will be 
more conveniently obtained if we first express in vector form the con-
ditions for the equilibrium of the rigid body considered. We write

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

and express the forces F and position vectors r in terms of scalar 
components and unit vectors. Next, we compute all vector products, 
either by direct calculation or by means of determinants (see Sec. 3.8). 
We observe that as many as three unknown reaction components 
may be eliminated from these computations through a judicious 
choice of the point O. By equating to zero the coefficients of the 
unit vectors in each of the two relations (4.1), we obtain the desired 
scalar equations.†

4.9  REACTIONS AT SUPPORTS AND CONNECTIONS 
FOR A THREE-DIMENSIONAL STRUCTURE

The reactions on a three-dimensional structure range from the single 
force of known direction exerted by a frictionless surface to the 
force-couple system exerted by a fixed support. Consequently, in 
problems involving the equilibrium of a three-dimensional structure, 
there can be between one and six unknowns associated with the 
reaction at each support or connection. Various types of supports and 

†In some problems, it will be found convenient to eliminate the reactions at two points 
A and B from the solution by writing the equilibrium equation oMAB 5 0, which 
involves the determination of the moments of the forces about the axis AB joining 
points A and B (see Sample Prob. 4.10).

4.9 Reactions at Supports and Connections for 
a Three-Dimensional Structure
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156 Equilibrium of Rigid Bodies connections are shown in Fig. 4.10 with their corresponding reac-
tions. A simple way of determining the type of reaction correspond-
ing to a given support or connection and the number of unknowns 
involved is to find which of the six fundamental motions (translation in 
the x, y, and z directions and rotation about the x, y, and z axes) are 
allowed and which motions are prevented.
 Ball supports, frictionless surfaces, and cables, for example, pre-
vent translation in one direction only and thus exert a single force whose 
line of action is known; each of these supports involves one unknown, 
namely, the magnitude of the reaction. Rollers on rough surfaces and 
wheels on rails prevent translation in two directions; the corresponding 
reactions consist of two unknown force components. Rough surfaces in 
direct contact and ball-and-socket supports prevent translation in three 
directions; these supports involve three unknown force components.
 Some supports and connections can prevent rotation as well 
as translation; the corresponding reactions include couples as well as 
forces. For example, the reaction at a fixed support, which prevents 
any motion (rotation as well as translation), consists of three unknown 
forces and three unknown couples. A universal joint, which is designed 
to allow rotation about two axes, will exert a reaction consisting of 
three unknown force components and one unknown couple.
 Other supports and connections are primarily intended to pre-
vent translation; their design, however, is such that they also prevent 
some rotations. The corresponding reactions consist essentially of 
force components but may also include couples. One group of sup-
ports of this type includes hinges and bearings designed to support 
radial loads only (for example, journal bearings, roller bearings). The 
corresponding reactions consist of two force components but may 
also include two couples. Another group includes pin-and-bracket 
supports, hinges, and bearings designed to support an axial thrust as 
well as a radial load (for example, ball bearings). The corresponding 
reactions consist of three force components but may include two 
couples. However, these supports will not exert any appreciable cou-
ples under normal conditions of use. Therefore, only force compo-
nents should be included in their analysis unless it is found that 
couples are necessary to maintain the equilibrium of the rigid body, 
or unless the support is known to have been specifically designed to 
exert a couple (see Probs. 4.71 and 4.72).
 If the reactions involve more than six unknowns, there are 
more unknowns than equations, and some of the reactions are stati-
cally indeterminate. If the reactions involve fewer than six unknowns, 
there are more equations than unknowns, and some of the equations 
of equilibrium cannot be satisfied under general loading conditions; 
the rigid body is only partially constrained. Under the particular 
loading conditions corresponding to a given problem, however, the 
extra equations often reduce to trivial identities, such as 0 5 0, and 
can be disregarded; although only partially constrained, the rigid 
body remains in equilibrium (see Sample Probs. 4.7 and 4.8). Even 
with six or more unknowns, it is possible that some equations of 
equilibrium will not be satisfied. This can occur when the reactions 
associated with the given supports either are parallel or intersect the 
same line; the rigid body is then improperly constrained.

Photo 4.6 Universal joints, easily seen on the 
drive shafts of rear-wheel-drive cars and trucks, 
allow rotational motion to be transferred between 
two noncollinear shafts.

Photo 4.7 The pillow block bearing shown 
supports the shaft of a fan used in an industrial 
facility.
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Fig. 4.10 Reactions at supports and connections.

Ball Frictionless surface

Force with known
line of action

(one unknown)

Force with known
line of action

(one unknown)
Cable

F
F

Roller on
rough surface

Rough surface

Universal
joint

Hinge and bearing supporting radial load only

Wheel on rail
Two force components

Three force components

Three force components
and one couple

Three force components
(and three couples)

Three force components
(and two couples)

Two force components
(and two couples)

Fy

Fx

Fx

Mx

Fz

Fy

Fz
Fx

Fy

Fz

Fy

Fz

Fy

Fz

My

(Mz)

(My)

(Mz)

(My)

Mz

Ball and socket

Fixed support

Hinge and bearing supporting
axial thrust and radial loadPin and bracket

Fx

Mx

Fy
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158

SAMPLE PROBLEM 4.7

A 20-kg ladder used to reach high shelves in a storeroom is supported by 
two flanged wheels A and B mounted on a rail and by an unflanged wheel 
C resting against a rail fixed to the wall. An 80-kg man stands on the ladder 
and leans to the right. The line of action of the combined weight W of the 
man and ladder intersects the floor at point D. Determine the reactions at 
A, B, and C.

A 0.6 m
0.6 m

0.9 m 0.3 m

x

y

z

Ck

–(981 N)j

Ayj

Azk

Bzk Byj

3 m

A

B

C

D
0.6 m

0.6 m

0.9 m 0.3 m

W

3 m

SOLUTION

Free-Body Diagram. A free-body diagram of the ladder is drawn. The 
forces involved are the combined weight of the man and ladder,

W 5 2mg j 5 2(80 kg 1 20 kg)(9.81 m/s2)j 5 2(981 N)j

and five unknown reaction components, two at each flanged wheel and one 
at the unflanged wheel. The ladder is thus only partially constrained; it is 
free to roll along the rails. It is, however, in equilibrium under the given 
load since the equation oFx 5 0 is satisfied.

Equilibrium Equations. We express that the forces acting on the ladder 
form a system equivalent to zero:

 oF 5 0:  Ay j 1 Azk 1 Byj 1 Bzk 2 (981 N)j 1 Ck 5 0
 (Ay 1 By 2 981 N)j 1 (Az 1 Bz 1 C)k 5 0 (1)
oMA 5 o(r 3 F) 5 0:   1.2i 3 (By j 1 Bzk) 1 (0.9i 2 0.6k) 3 (2981j)

1 (0.6i 1 3j 2 1.2k) 3 Ck 5 0

Computing the vector products, we have†

 1.2Byk 2 1.2Bz j 2 882.9k 2 588.6i 2 0.6Cj 1 3Ci 5 0
 (3C 2 588.6)i 2 (1.2Bz 1 0.6C)j 1 (1.2By 2 882.9)k 5 0 (2)

 Setting the coefficients of i, j, k equal to zero in Eq. (2), we obtain 
the following three scalar equations, which express that the sum of the 
moments about each coordinate axis must be zero:

 3C 2 588.6 5 0 C 5 1196.2 N
 1.2Bz 1 0.6C 5 0 Bz 5 298.1 N
 1.2By 2 882.9 5 0 By 5 1736 N

The reactions at B and C are therefore

B 5 1(736 N)j 2 (98.1 N)k  C 5 1(196.2 N)k ◀

Setting the coefficients of j and k equal to zero in Eq. (1), we obtain two scalar 
equations expressing that the sums of the components in the y and z directions 
are zero. Substituting for By, Bz, and C the values obtained above, we write

 Ay 1 By 2 981 5 0 Ay 1 736 2 981 5 0 Ay 5 1245 N
 Az 1 Bz 1 C 5 0 Az 2 98.1 1 196.2 5 0 Az 5 298.1 N

We conclude that the reaction at A is A 5 1(245 N)j 2 (98.1 N)k ◀

†The moments in this sample problem and in Sample Probs. 4.8 and 4.9 can also be 
expressed in the form of determinants (see Sample Prob. 3.10).
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SAMPLE PROBLEM 4.8

A 5 3 8-ft sign of uniform density weighs 270 lb and is supported by a 
ball-and-socket joint at A and by two cables. Determine the tension in each 
cable and the reaction at A.

W = – (270 lb) j

A x i

Azk

A y j

TEC TBD
A

B

C

D

E

x

y

z 6 ft

2 ft

2 ft
4 ft

4 ft
4 ft

8 ft

3 ft

SOLUTION

Free-Body Diagram. A free-body diagram of the sign is drawn. The forces 
acting on the free body are the weight W 5 2(270 lb)j and the reactions 
at A, B, and E. The reaction at A is a force of unknown direction and is 
represented by three unknown components. Since the directions of the 
forces exerted by the cables are known, these forces involve only one 
unknown each, namely, the magnitudes TBD and TEC. Since there are only 
five unknowns, the sign is partially constrained. It can rotate freely about 
the x axis; it is, however, in equilibrium under the given loading, since the 
equation oMx 5 0 is satisfied.
 The components of the forces TBD and TEC can be expressed in terms 
of the unknown magnitudes TBD and TEC by writing

 BD
¡

5 2(8 ft)i 1 (4 ft)j 2 (8 ft)k    BD 5 12 ft
 EC
¡

5 2(6 ft)i 1 (3 ft)j 1 (2 ft)k    EC 5 7 ft

 TBD 5 TBDaBD
¡

BD
b 5 TBD(22

3i 1 1
3 j 2 2

3k)

 TEC 5 TECaEC
¡

EC
b 5 TEC(26

7 i 1 3
7 j 2 2

7k)

Equilibrium Equations. We express that the forces acting on the sign form 
a system equivalent to zero:

oF 5 0:  Axi 1 Ayj 1 Azk 1 TBD 1 TEC 2 (270 lb)j 5 0
(Ax 2 2

3 TBD 2 6
7 TEC)i 1 (Ay 1 1

3 TBD 1 3
7 TEC 2 270 lb)j

1 (Az 2 2
3 TBD 1 2

7 TEC)k 5 0 (1)

oMA 5 o(r 3 F) 5 0:
(8 ft)i 3 TBD(22

3 
i 1 1

3 
j 2 2

3 
k) 1 (6 ft)i 3 TEC(26

7 
i 1 3

7 
j 1 2

7 
k)

1 (4 ft)i 3 (2270 lb)j 5 0
(2.667TBD 1 2.571TEC 2 1080 lb)k 1 (5.333TBD 2 1.714TEC)j 5 0 (2)

 Setting the coefficients of j and k equal to zero in Eq. (2), we obtain 
two scalar equations which can be solved for TBD and TEC:

TBD 5 101.3 lb  TEC 5 315 lb ◀

Setting the coefficients of i, j, and k equal to zero in Eq. (1), we obtain 
three more equations, which yield the components of A. We have

A 5 1(338 lb)i 1 (101.2 lb)j 2 (22.5 lb)k ◀

A

B

C

D

E

x

y

z 6 ft

2 ft

2 ft

5 ft

4 ft

8 ft

3 ft
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SAMPLE PROBLEM 4.9

A uniform pipe cover of radius r 5 240 mm and mass 30 kg is held in a 
horizontal position by the cable CD. Assuming that the bearing at B does 
not exert any axial thrust, determine the tension in the cable and the reac-
tions at A and B.

r = 240 mm

A

B

C

D

W = – (294 N) j

Bx i
By j

A x i
Ayj

Azk

160 mm

80 mm

Tr = 240 mm

r = 240 mm

x

y

z

240 mm

r = 240 mm

A

B

C

D

160 mm

240 mm
240 mm

240 mm

SOLUTION

Free-Body Diagram. A free-body diagram is drawn with the coordinate 
axes shown. The forces acting on the free body are the weight of the cover,

W 5 2mg j 5 2(30 kg)(9.81 m/s2)j 5 2(294 N)j

and reactions involving six unknowns, namely, the magnitude of the force T 
exerted by the cable, three force components at hinge A, and two at hinge B. 
The components of T are expressed in terms of the unknown magnitude T 
by resolving the vector DC

¡
 into rectangular components and writing

DC
¡

 5 2(480 mm)i 1 (240 mm)j 2 (160 mm)k  DC 5 560 mm

T 5 T 
DC
¡

DC
5 26

7 
Ti 1 3

7 
Tj 2 2

7 
T  k

Equilibrium Equations. We express that the forces acting on the pipe 
cover form a system equivalent to zero:

oF 5 0:    Axi 1 Ay j 1 Azk 1 Bxi 1 Byj 1 T 2 (294 N)j 5 0
 (Ax 1 Bx 2 6

7T)i 1 (Ay 1 By 1 3
7T 2 294 N)j 1 (Az 2 2

7T)k 5 0 (1)

oMB 5 o(r 3 F) 5 0:
2rk 3 (Axi 1 Ayj 1 Azk)
 1 (2r i 1 rk) 3 (2 67Ti 1 37  Tj 2 27  Tk)
  1 (ri 1 rk) 3 (2294 N)j 5 0
 (22Ay 2 3

7T 1 294 N)r i 1 (2Ax 2 2
7T)rj 1 (6

7T 2 294 N)rk 5 0 (2)

 Setting the coefficients of the unit vectors equal to zero in Eq. (2), 
we write three scalar equations, which yield

Ax 5 149.0 N  Ay 5 173.5 N  T 5 343 N ◀

Setting the coefficients of the unit vectors equal to zero in Eq. (1), we obtain 
three more scalar equations. After substituting the values of T, Ax, and Ay 
into these equations, we obtain

Az 5 198.0 N  Bx 5 1245 N  By 5 173.5 N

The reactions at A and B are therefore

A 5 1(49.0 N)i 1 (73.5 N)j 1 (98.0 N)k ◀

B 5 1(245 N)i 1 (73.5 N)j       ◀
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SAMPLE PROBLEM 4.10

A 450-lb load hangs from the corner C of a rigid piece of 
pipe ABCD which has been bent as shown. The pipe is 
supported by the ball-and-socket joints A and D, which are 
fastened, respectively, to the floor and to a vertical wall, 
and by a cable attached at the midpoint E of the portion 
BC of the pipe and at a point G on the wall. Determine 
(a) where G should be located if the tension in the cable 
is to be minimum, (b) the corresponding minimum value 
of the tension.

12 ft

12 ft

450 lb

A

B
C DE

G

6 ft6 ft

6 ft

A

B C DE

x

y

z

T

�

Dxi

Dy j
Dzk

A x i

Ay j

Azk

W = –450 j

6 ft

6 ft

12 ft

12 ft

12 ft

A

B
C

D

G(x, y, 0)

E(6, 12, 6)

x

y

z

W

Tmin

SOLUTION

Free-Body Diagram. The free-body diagram of the pipe includes the load 
W 5 (2450 lb)j, the reactions at A and D, and the force T exerted by the 
cable. To eliminate the reactions at A and D from the computations, we 
express that the sum of the moments of the forces about AD is zero. Denot-
ing by l the unit vector along AD, we write

 oMAD 5 0:    L ? (AE
¡

3 T) 1 L ? (AC
¡

3 W) 5 0 (1)

 The second term in Eq. (1) can be computed as follows:

 AC
¡

3 W 5 (12i 1 12j) 3 (2450j) 5 25400k

 L 5
AD
¡

AD
5

12i 1 12j 2 6k

18
5 2

3 i 1 2
3 j 2 1

3 k

 L ? (AC
¡

3 W) 5 (2
3 
i 1 2

3 
j 2 1

3 
k) ? (25400k) 5 11800

Substituting the value obtained into Eq. (1), we write

 L ? (AE
¡

3 T) 5 21800 lb ? ft (2)

Minimum Value of Tension. Recalling the commutative property for 
mixed triple products, we rewrite Eq. (2) in the form

 T ? (L 3 AE
¡

) 5 21800 lb ? ft (3)

which shows that the projection of T on the vector L 3 AE
¡

 is a constant. 
It follows that T is minimum when parallel to the vector

L 3 AE
¡

5 (2
3 i 1 2

3 j 2 1
3 k) 3 (6i 1 12j) 5 4i 2 2j 1 4k

Since the corresponding unit vector is 2
3 i 2 1

3 j 1 2
3 k, we write

 Tmin 5 T(2
3 i 2 1

3 j 1 2
3 k) (4)

Substituting for T and L 3 AE
¡

 in Eq. (3) and computing the dot products, 
we obtain 6T 5 21800 and, thus, T 5 2300. Carrying this value into (4), 
we obtain

Tmin 5 2200i 1 100j 2 200k  Tmin 5 300 lb ◀

Location of G. Since the vector EG
¡

 and the force Tmin have the same 
direction, their components must be proportional. Denoting the coordinates 
of G by x, y, 0, we write

x 2 6
2200

5
y 2 12

1100
5

0 2 6
2200

    x 5 0    y 5 15 ft ◀
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PROBLEMS
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 4.51 Two transmission belts pass over a double-sheaved pulley that is 
attached to an axle supported by bearings at A and D. The radius 
of the inner sheave is 125 mm and the radius of the outer sheave 
is 250 mm. Knowing that when the system is at rest, the tension 
is 90 N in both portions of belt B and 150 N in both portions of 
belt C, determine the reactions at A and D. Assume that the bear-
ing at D does not exert any axial thrust.

4.52 Solve Prob. 4.51, assuming that the pulley rotates at a constant rate 
and that TB 5 104 N, T9B 5 84 N, and TC 5 175 N.

 4.53 A 4 3 8 ft sheet of plywood weighing 40 lb has been temporarily 
propped against column CD. It rests at A and B on small wooden 
blocks and against protruding nails. Neglecting friction at all the 
surfaces of contact, determine the reactions at A, B and C.

TC

TC'

TB'

TB

y

150 mm 100 mm

200 mm

A
B

D

x

z

C

Fig. P4.51

y

D

B

A

C

O

z

x
5 ft

2 ft

1 ft

2 ft

4 ft

60°

Fig. P4.53
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163Problems 4.54 A small wrench is used to raise a 120-lb load. Find (a) the magni-
tude of the vertical force P that should be applied at C to maintain 
equilibrium in the position shown, (b) the reactions at A and B, 
assuming that the bearing at B does not exert any axial thrust.

 4.55 A 200-mm lever and a 240-mm-diameter pulley are welded to the 
axle BE that is supported by bearings at C and D. If a 720-N verti-
cal load is applied at A when the lever is horizontal, determine (a) 
the tension in the cord, (b) the reactions at C and D. Assume that 
the bearing at D does not exert any axial thrust.

 4.56 Solve Prob. 4.55 assuming that the axle has been rotated clockwise 
in its bearings by 30° and that the 720-N load remains vertical.

 4.57 The rectangular plate shown weighs 80 lb and is supported by 
three wires. Determine the tension in each wire.

 4.58 A load W is to be placed on the 80-lb plate of Prob. 4.57. Deter-
mine the magnitude of W and the point where it should be placed 
if the tension is to be 60 lb in each of the three wires.

x

z

y

8 in. 10 in.

10 in.

10 in.

9 in.

3 in.

P

120 lb

A

B

C

30�

Fig. P4.54

T

720 N

y

80 mm 120 mm

120 mm

200 mm

A
E

B

C

D

x

z

40 mm

Fig. P4.55

x
C

A

60 in.

60 in.
60 in. 30 in.

15 in.

15 in.

B

z

y

Fig. P4.57
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164 Equilibrium of Rigid Bodies  4.59 The 20-kg square plate is supported by the three wires shown. 
Determine the tension in each wire.

 4.60 Determine the mass and location of the smallest block that should 
be placed on the 20-kg plate of Prob. 4.59 if the tensions in the 
three wires are to be equal.

 4.61 The 12-ft boom AB is acted upon by the 850-lb force shown. 
Determine (a) the tension in each cable, (b) the reaction of the 
ball and socket at A.

 4.62 Solve Prob. 4.61 assuming that the 850-lb load is applied at point B.

 4.63 A 7-ft boom is held by a ball and socket at A and by two cables 
EBF and DC; cable EBF passes around a frictionless pulley at B. 
Determine the tension in each cable.

 4.64 A 300-kg crate hangs from a cable that passes over a pulley B and 
is attached to a support at H. The 100-kg boom AB is supported 
by a ball and socket at A and by two cables DE and DF. The center 
of gravity of the boom is located at G. Determine (a) the tension 
in cables DE and DF, (b) the reaction at A.

A

C

B

z

x

y

500 mm

500 mm

375 mm
125 mm

Fig. P4.59

850 lb

3 ft

4 ft

6 ft

6 ft

6 ft

4 ft
D

B
A

C

xz

y

Fig. P4.61

y

z

x

A

D

E

B

F

C

4 ft
3 ft

3 ft

6 ft

4 ft
300 lb

Fig. P4.63

x

y

E

G

A

B

C D6.75 m

4.95 m

1.5 m

1.98 m1.5 m

3.9 m

1.8 m

0.84 m
0.96 m

F

H

z

1.98 m

Fig. P4.64
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165Problems 4.65 The horizontal platform ABCD weighs 60 lb and supports a 240-lb 
load at its center. The platform is normally held in position by hinges 
at A and B and by braces CE and DE. If brace DE is removed, 
determine the reactions at the hinges and the force exerted by the 
remaining brace CE. The hinge at A does not exert any axial thrust.

 4.66 A 1.2 3 2.4-m sheet of plywood is temporarily held by nails at D and 
E and by two wooden braces nailed at A, B and C. Wind is blowing 
on the hidden face of the plywood sheet, and it is assumed that its 
effect may be represented by a force Pk applied at the center of the 
sheet. Knowing that each brace becomes unsafe with respect to buck-
ling when subjected to a 1.8-kN axial force, determine (a) the maxi-
mum allowable value of the magnitude of P of the wind force, 
(b) the corresponding value of the z component of the reaction at E. 
Assume that the nails are loose and do not exert any couple.

 4.67 A 3 3 4-ft plate weighs 150 lb and is supported by hinges at A 
and B. It is held in the position shown by the 2-ft chain CD. 
Assuming that the hinge at A does not exert any axial thrust, deter-
mine the tension in the chain and the reactions at A and B.

 4.68 The lid of a roof scuttle weighs 75 lb. It is hinged at corners A and 
B and maintained in the desired position by a rod CD pivoted at 
C; a pin at end D of the rod fits into one of several holes drilled 
in the edge of the lid. For a 5 50°, determine (a) the magnitude 
of the force exerted by rod CD, (b) the reactions at the hinges. 
Assume that the hinge at B does not exert any axial thrust.

D

B

E

A

4 ft

3 ft
2 ft

2 ft

z

y

x

C

300 lb

Fig. P4.65

0.6 m

1.2 m

y

A

D

C

x

B

E1.2 m

1.2 m
z

Fig. P4.66

3 ft

4 ft

4 ft
z

y

x

D
C

B

A

Fig. P4.67

C

A
D

y

x

z

B

32 in.

7 in.

26 in.

15 in.
�

Fig. P4.68
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166 Equilibrium of Rigid Bodies  4.69 A 10-kg storm window measuring 900 3 1500 mm is held by 
hinges at A and B. In the position shown, it is held away from the 
side of the house by a 600-mm stick CD. Assuming that the hinge 
at A does not exert any axial thrust, determine the magnitude of 
the force exerted by the stick and the components of the reactions 
A and B.

y

x

z

D

E

A

B

C

1500 mm

1500 mm

900 mm

Fig. P4.69

 4.70 A 20-kg door is made self-closing by hanging a 15-kg counter-
weight from a cable attached at C. The door is held open by a 
force P applied at the knob D in a direction perpendicular to the 
door. Determine the magnitude of P and the components of the 
reactions A and B when u 5 90°. It is assumed that the hinge at 
A does not exert any axial thrust.

 4.71 Solve Prob. 4.65 assuming that the hinge at A has been removed 
and that the hinge at B can exert couples about the axes parallel 
to the x and y axes, respectively.

 4.72 Solve Prob. 4.69 assuming that the hinge at A has been removed.

 4.73 The rigid L-shaped member ABC is supported by a ball and socket 
at A and three cables. Determine the tension in each cable and 
the reaction at A caused by the 500-lb load applied at G.

y

z

x

2 m
15 kg

1.5 m
0.15 m

0.25 m

0.90 m

0.25 m
1.2 m

P

E
A

B

�

C

D

Fig. P4.70

60 in.
15 in.

15 in.
25 in.

25 in.

30 in.
y

z
x

500 lb

A

E

F

G

B

C
D

Fig. P4.73
x

y

z

b

cA

B

C

P

a

Fig. P4.74

 4.74 Three rods are welded together to form the “corner” shown. The 
corner is supported by three smooth eyebolts. Determine the reac-
tions at A, B, and C when P 5 1.2 kN, a 5 300 mm, b 5 200 mm, 
and c 5 250 mm.
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167FRICTION

4.10 FRICTION FORCES
In the preceding sections, it was assumed that surfaces in contact 
were either frictionless or rough. If they were frictionless, the force 
each surface exerted on the other was normal to the surfaces and 
the two surfaces could move freely with respect to each other. If they 
were rough, it was assumed that tangential forces could develop to 
prevent the motion of one surface with respect to the other.
 This view was a simplified one. Actually, no perfectly friction-
less surface exists. When two surfaces are in contact, tangential 
forces, called friction forces, will always develop if one attempts to 
move one surface with respect to the other. On the other hand, 
these friction forces are limited in magnitude and will not prevent 
motion if sufficiently large forces are applied. The distinction 
between frictionless and rough surfaces is thus a matter of degree. 
This will be seen more clearly in the following sections, which are   
devoted to the study of friction and of its applications to common 
engineering situations.
 There are two types of friction: dry friction, sometimes called 
Coulomb friction, and fluid friction. Fluid friction develops between 
layers of fluid moving at different velocities. Fluid friction is of 
great importance in problems involving the flow of fluids through 
pipes and orifices or dealing with bodies immersed in moving 
 fluids. It is also basic in the analysis of the motion of lubricated 
mechanisms. Such problems are considered in texts on fluid 
mechanics. The present study is limited to dry friction, i.e., to prob-
lems involving rigid bodies which are in contact along nonlubri-
cated surfaces.

4.11  THE LAWS OF DRY FRICTION. 
COEFFICIENTS OF FRICTION

The laws of dry friction are exemplified by the following experiment. 
A block of weight W is placed on a horizontal plane surface 
(Fig. 4.11a). The forces acting on the block are its weight W and the 
reaction of the surface. Since the weight has no horizontal  component, 

4.11 The Laws of Dry Friction. Coeffi cients 
of Friction

W

N

P

(a)

F

P

Fm

Fk

Equilibrium Motion

A B

W

N

(b) (c)

A B

F

Fig. 4.11
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168 Equilibrium of Rigid Bodies the reaction of the surface also has no horizontal component; the 
reaction is therefore normal to the surface and is represented by N 
in Fig. 4.11a. Suppose, now, that a horizontal force P is applied to 
the block (Fig. 4.11b). If P is small, the block will not move; some 
other horizontal force must therefore exist, which balances P. This 
other force is the static-friction force F, which is actually the resul-
tant of a great number of forces acting over the entire surface of 
contact between the block and the plane. The nature of these forces 
is not known exactly, but it is generally assumed that these forces are 
due to the irregularities of the surfaces in contact and, to a certain 
extent, to molecular attraction.
 If the force P is increased, the friction force F also increases, 
continuing to oppose P, until its magnitude reaches a certain maximum 
value Fm (Fig. 4.11c). If P is further increased, the friction force 
cannot balance it any more and the block starts sliding.† As soon as 
the block has been set in motion, the magnitude of F drops from Fm 
to a lower value Fk. This is because there is less interpenetration 
between the irregularities of the surfaces in contact when these 
 surfaces move with respect to each other. From then on, the block 
keeps sliding with increasing velocity while the friction force, denoted 
by Fk and called the kinetic-friction force, remains approximately 
constant.
 Experimental evidence shows that the maximum value Fm of 
the static-friction force is proportional to the normal component N 
of the reaction of the surface. We have

 Fm 5 msN (4.8)

where ms is a constant called the coefficient of static friction. Simi-
larly, the magnitude Fk of the kinetic-friction force may be put in 
the form

 Fk 5 mkN (4.9)

where mk is a constant called the coefficient of kinetic friction. The 
coefficients of friction ms and mk do not depend upon the area of 
the surfaces in contact. Both coefficients, however, depend 
strongly on the nature of the surfaces in contact. Since they also 
depend upon the exact condition of the surfaces, their value is 

†It should be noted that, as the magnitude F of the friction force increases from 0 to 
Fm, the point of application A of the resultant N of the normal forces of contact moves 
to the right, so that the couples formed, respectively, by P and F and by W and N 
remain balanced. If N reaches B before F reaches its maximum value Fm, the block 
will tip about B before it can start sliding (see Probs. 4.85 through 4.88).

bee80156_ch04_130-185.indd Page 168  9/30/09  2:53:51 PM user-s173bee80156_ch04_130-185.indd Page 168  9/30/09  2:53:51 PM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-04/Volumes/MHDQ-New/MHDQ152/MHDQ152-04



169seldom known with an accuracy greater than 5 percent. Approxi-
mate values of coefficients of static friction for various dry sur-
faces are given in Table 4.1. The corresponding values of the 
coefficient of kinetic friction would be about 25 percent smaller. 
Since coefficients of friction are dimensionless quantities, the val-
ues given in Table 4.1 can be used with both SI units and U.S. 
customary units.

 From the description given above, it appears that four different 
situations can occur when a rigid body is in contact with a horizontal 
surface:

 1. The forces applied to the body do not tend to move it along 
the surface of contact; there is no friction force (Fig. 4.12a).

 2. The applied forces tend to move the body along the surface 
of contact but are not large enough to set it in motion. The 
friction force F which has developed can be found by solv-
ing the equations of equilibrium for the body. Since there is 
no evidence that F has reached its maximum value, the equa-
tion Fm 5 msN cannot be used to determine the friction force 
(Fig. 4.12b).

 3. The applied forces are such that the body is just about to slide. 
We say that motion is impending. The friction force F has 
reached its maximum value Fm and, together with the normal 
force N, balances the applied forces. Both the equations of 
equilibrium and the equation Fm 5 msN can be used. We also 
note that the friction force has a sense opposite to the sense of 
impending motion (Fig. 4.12c).

 4. The body is sliding under the action of the applied forces, 
and the equations of equilibrium do not apply any more. 
 However, F is now equal to Fk, and the equation Fk 5 mkN may 
be used. The sense of Fk is opposite to the sense of motion 
(Fig. 4.12d).

TABLE 4.1 Approximate
Values of Coefficient of 
Static Friction for Dry 
Surfaces

Metal on metal 0.15–0.60
Metal on wood 0.20–0.60
Metal on stone 0.30–0.70
Metal on leather 0.30–0.60
Wood on wood 0.25–0.50
Wood on leather 0.25–0.50
Stone on stone 0.40–0.70
Earth on earth 0.20–1.00
Rubber on concrete 0.60–0.90

W

P

N

F = 0

Py

Px

F = Px

N = Py + W
F <    sN

N = P + W

(a) No friction (Px = 0)

WP

N

F

(b) No motion (Px < Fm)

Py

Px

Fm = Px

N = Py + W
Fm =    sN

WP

N

Fm

(c) Motion impending              (Px = Fm)

Py

Px

Fk < Px

N = Py + W
Fk =    kN

WP

N

Fk

(d) Motion             (Px > Fm)

μ

μ

μ

Fig. 4.12

4.11 The Laws of Dry Friction. Coeffi cients 
of Friction
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170 Equilibrium of Rigid Bodies 4.12 ANGLES OF FRICTION
It is sometimes convenient to replace the normal force N and the 
friction force F by their resultant R. Let us consider again a block 
of weight W resting on a horizontal plane surface. If no horizontal 
force is applied to the block, the resultant R reduces to the normal 
force N (Fig. 4.13a). However, if the applied force P has a horizontal 
component Px which tends to move the block, the force R will have 
a horizontal component F and, thus, will form an angle f with the 
normal to the surface (Fig. 4.13b). If Px is increased until motion 
becomes impending, the angle between R and the vertical grows 
and reaches a maximum value (Fig. 4.13c). This value is called the 
angle of static friction and is denoted by fs. From the geometry of 
Fig. 4.13c, we note that

tan fs 5
Fm

N
5
msN
N

 tan fs 5 ms (4.10)

 If motion actually takes place, the magnitude of the friction 
force drops to Fk; similarly, the angle f between R and N drops to 
a lower value fk, called the angle of kinetic friction (Fig. 4.13d). 
From the geometry of Fig. 4.13d, we write

tan fk 5
Fk

N
5
mkN

N

 tan fk 5 mk (4.11)

 Another example will show how the angle of friction can be 
used to advantage in the analysis of certain types of problems. Con-
sider a block resting on a board and subjected to no other force than 
its weight W and the reaction R of the board. The board can be 
given any desired inclination. If the board is horizontal, the force R 
exerted by the board on the block is perpendicular to the board and 
balances the weight W (Fig. 4.14a). If the board is given a small angle 
of inclination u, the force R will deviate from the perpendicular to 
the board by the angle u and will keep balancing W (Fig. 4.14b); it 
will then have a normal component N of magnitude N 5 W cos u 
and a tangential component F of magnitude F 5 W sin u.
 If we keep increasing the angle of inclination, motion will soon 
become impending. At that time, the angle between R and the nor-
mal will have reached its maximum value fs (Fig. 4.14c). The value 
of the angle of inclination corresponding to impending motion is 
called the angle of repose. Clearly, the angle of repose is equal to 
the angle of static friction fs. If the angle of inclination u is further 
increased, motion starts and the angle between R and the normal 
drops to the lower value fk (Fig. 4.14d). The reaction R is not vertical 
any more, and the forces acting on the block are unbalanced.

R = N

P

P

(a) No friction

(b) No motion

(c) Motion impending

(d ) Motion

f < fs

P

R
N

Fk < Px

R
N

Fm = Px

RN

F = Px

Px

Py

Px

Py

Py

Px

P W

W

W

W

f = fs

f = fk

Fig. 4.13
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W

R

W
W

(a) No friction (b) No motion

q = 0
q < fs R

R R

W

q

q

(c) Motion impending (d ) Motion

q = fs = angle of repose

W sin q

W cos q

F = W sin q

N = W cos q
N = W cos q

q

Fm = W sin q Fk < W sin qq > fs

N = W cos q

q

q = fs

fk

Fig. 4.14

4.13 PROBLEMS INVOLVING DRY FRICTION
Problems involving dry friction are found in many engineering appli-
cations. Some deal with simple situations such as the block sliding 
on a plane described in the preceding sections. Others involve more 
complicated situations as in Sample Prob. 4.13; many deal with the 
stability of rigid bodies in accelerated motion and are studied in 
dynamics. Also, a number of common machines and mechanisms can 
be analyzed by applying the laws of dry friction. 
 The methods which should be used to solve problems involv-
ing dry friction are the same that were used in the preceding chap-
ters. If a problem involves only a motion of translation, with no 
possible rotation, the body under consideration can usually be 
treated as a particle, and the methods of Chap. 2 used. If the prob-
lem involves a possible rotation, the body must be considered as a 
rigid body.
 If the body considered is acted upon by more than three forces 
(including the reactions at the surfaces of contact), the reaction at 
each surface will be represented by its components N and F and the 
problem will be solved from the equations of equilibrium. If only 
three forces act on the body under consideration, it may be more 
convenient to represent each reaction by the single force R and to 
solve the problem by drawing a force triangle.
 Most problems involving friction fall into one of the following 
three groups: In the first group of problems, all applied forces are 
given and the coefficients of friction are known; we are to determine 
whether the body considered will remain at rest or slide. The friction 
force F required to maintain equilibrium is unknown (its magnitude 
is not equal to msN) and should be determined, together with the 
normal force N, by drawing a free-body diagram and solving the 
equations of equilibrium (Fig. 4.15a). The value found for the mag-
nitude F of the friction force is then compared with the maximum 
value Fm 5 msN. If F is smaller than or equal to Fm, the body remains 
at rest. If the value found for F is larger than Fm, equilibrium cannot 
be maintained and motion takes place; the actual magnitude of the 
friction force is then Fk 5 mkN.

Photo 4.8 The coefficient of static friction 
between a package and the inclined conveyer 
belt must be sufficiently large to enable the 
package to be transported without slipping.
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W
P

N

Frequired

(a)

Fig. 4.15a

bee80156_ch04_130-185.indd Page 171  9/30/09  2:54:04 PM user-s173bee80156_ch04_130-185.indd Page 171  9/30/09  2:54:04 PM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-04/Volumes/MHDQ-New/MHDQ152/MHDQ152-04



172 Equilibrium of Rigid Bodies  In problems of the second group, all applied forces are given 
and the motion is known to be impending; we are to determine the 
value of the coefficient of static friction. Here again, we determine 
the friction force and the normal force by drawing a free-body dia-
gram and solving the equations of equilibrium (Fig. 4.15b). Since we 
know that the value found for F is the maximum value Fm, the coef-
ficient of friction may be found by writing and solving the equation 
Fm 5 msN.
 In problems of the third group, the coefficient of static fric-
tion is given, and it is known that the motion is impending in a 
given direction; we are to determine the magnitude or the direction 
of one of the applied forces. The friction force should be shown in 
the free-body diagram with a sense opposite to that of the impend-
ing motion and with a magnitude Fm 5 msN (Fig. 4.15c). The equa-
tions of equilibrium can then be written, and the desired force 
determined.
 As noted above, when only three forces are involved, it may be 
more convenient to represent the reaction of the surface by a single 
force R and to solve the problem by drawing a force triangle. Such 
a solution is used in Sample Prob. 4.12.
 When two bodies A and B are in contact (Fig. 4.16a), the 
forces of friction exerted, respectively, by A on B and by B on A 
are equal and opposite (Newton’s third law). In drawing the free-
body diagram of one of the bodies, it is important to include the 
appropriate friction force with its correct sense. The following rule 
should then be observed: The sense of the friction force acting on 
A is opposite to that of the motion (or impending motion) of A as 
observed from B (Fig. 4.16b).† The sense of the friction force act-
ing on B is determined in a similar way (Fig. 4.16c). Note that the 
motion of A as observed from B is a relative motion. For example, 
if body A is fixed and body B moves, body A will have a relative 
motion with respect to B. Also, if both B and A are moving down 
but B is moving faster than A, body A will be observed, from B, 
to be moving up.

F
m  = ms N

W
P

N

Frequired

(a)

W
P

N
(b)

F
m  = ms N

WP

N
(c)

Sense of
impending motion

Fig. 4.15

†It is therefore the same as that of the motion of B as observed from A.
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SAMPLE PROBLEM 4.11

A 100-lb force acts as shown on a 300-lb block placed on an inclined plane. 
The coefficients of friction between the block and the plane are ms 5 0.25 
and mk 5 0.20. Determine whether the block is in equilibrium, and find the 
value of the friction force.

100 lb

300 lb

3

4

5

100 lb

300 lb

3

4
5

F

N

x
y

Motio
n

F = 48 lb

N = 240 lb

100 lb

300 lb

SOLUTION

Force Required for Equilibrium. We first determine the value of the fric-
tion force required to maintain equilibrium. Assuming that F is directed 
down and to the left, we draw the free-body diagram of the block and write

1p  oFx 5 0:  100 lb 2 3
5(300 lb) 2 F 5 0

 F 5 280 lb  F 5 80 lb p

1r oFy 5 0:   N 2 45(300 lb) 5 0
 N 5 1240 lb  N 5 240 lbr

The force F required to maintain equilibrium is an 80-lb force directed up 
and to the right; the tendency of the block is thus to move down the plane.

Maximum Friction Force. The magnitude of the maximum friction force 
which may be developed is

Fm 5 msN    Fm 5 0.25(240 lb) 5 60 lb

Since the value of the force required to maintain equilibrium (80 lb) is 
larger than the maximum value which may be obtained (60 lb), equilibrium 
will not be maintained and the block will slide down the plane.

Actual Value of Friction Force. The magnitude of the actual friction force 
is obtained as follows:

 Factual 5 Fk 5 mkN
 5 0.20(240 lb) 5 48 lb

The sense of this force is opposite to the sense of motion; the force is thus 
directed up and to the right:

Factual 5 48 lbp ◀

It should be noted that the forces acting on the block are not balanced; the 
resultant is

3
5(300 lb) 2 100 lb 2 48 lb 5 32 lbo
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SAMPLE PROBLEM 4.12

A support block is acted upon by two forces as shown. Knowing that the 
coefficients of friction between the block and the incline are ms 5 0.35 and 
mk 5 0.25, determine the force P required (a) to start the block moving up 
the incline, (b) to keep it moving up, (c) to prevent it from sliding down.

800 N

25°
P

fs

tan fs = ms

25° + 19.29° = 44.29°
fs = 19.29°

= 0.35

800 N

800 N

25°

P

R

P

R

tan fk = mk

 fk
25° + 14.04° = 39.04°

fk = 14.04°
= 0.25

P

R

800 N

800 N

25°

P

R

25° – 19.29° = 5.71°
fs = 19.29°

P

R
fs

800 N

800 N

25°

P

R

SOLUTION

Free-Body Diagram. For each part of the problem we draw a free-body 
diagram of the block and a force triangle including the 800-N vertical force, 
the horizontal force P, and the force R exerted on the block by the incline. 
The direction of R must be determined in each separate case. We note that 
since P is perpendicular to the 800-N force, the force triangle is a right tri-
angle, which can easily be solved for P. In most other problems, however, 
the force triangle will be an oblique triangle and should be solved by apply-
ing the law of sines.

a. Force P to Start Block Moving Up

 P 5 (800 N) tan 44.29° P 5 780 Nz ◀

b. Force P to Keep Block Moving Up

 P 5 (800 N) tan 39.04° P 5 649 Nz ◀

c. Force P to Prevent Block from Sliding Down

 P 5 (800 N) tan 5.71° P 5 80.0 Nz ◀
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SAMPLE PROBLEM 4.13

The movable bracket shown may be placed at any height on the 3-in.-
 diameter pipe. If the coefficient of static friction between the pipe and 
bracket is 0.25, determine the minimum distance x at which the load W can 
be supported. Neglect the weight of the bracket.

SOLUTION

Free-Body Diagram. We draw the free-body diagram of the bracket. 
When W is placed at the minimum distance x from the axis of the pipe, the 
bracket is just about to slip, and the forces of friction at A and B have 
reached their maximum values:

FA 5 msNA 5 0.25 NA

FB 5 msNB 5 0.25 NB

Equilibrium Equations

n1 oFx 5 0: NB 2 NA 5 0
 NB 5 NA

 1hoFy 5 0: FA 1 FB 2 W 5 0
 0.25NA 1 0.25NB 5 W

And, since NB has been found equal to NA,

 0.50NA 5 W
 NA 5 2W

 1l oMB 5 0: NA(6 in.) 2 FA(3 in.) 2 W(x 2 1.5 in.) 5 0
 6NA 2 3(0.25NA) 2 Wx 1 1.5W 5 0
 6(2W) 2 0.75(2W) 2 Wx 1 1.5W 5 0

Dividing through by W and solving for x,

x 5 12 in. ◀

W

6 in.

3 in.

x

NA

NB

FA

FB

W

A

B
3 in.

x – 1.5 in.

x

6 in.
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PROBLEMS

176

4.75 The coefficients of friction between the block and the incline are 
ms 5 0.35 and mk 5 0.25. Determine whether the block is in equi-
librium, and find the magnitude and direction of the friction force 
when u 5 25° and P 5 750 N.

 4.76 Solve Prob. 4.75 when u 5 30° and P 5 150 N.

 4.77 The coefficients of friction between the 50-lb block and the incline 
are ms 5 0.40 and mk 5 0.30. Determine whether the block is in 
equilibrium, and find the magnitude and direction of the friction 
force when P 5 120 lb.

4.78 Solve Prob. 4.77 assuming that P 5 80 lb.

 4.79 A support block is acted upon by the two forces shown. Determine 
the magnitude of P required to start the block up the plane.

P

1.2 kN

q

Fig. P4.75

30°

40°

P50 lb

Fig. P4.77

100 lb

P

20°�s � 0.30
�k � 0.20

Fig. P4.79 and P4.80

m

P

�

�

Fig. P4.81 and P4.82

4.80 Determine the smallest magnitude of the force P that will prevent 
the support block from sliding down the plane.

4.81 Denoting by fs the angle of static friction between the block and 
the plane, determine the magnitude and direction of the smallest 
force P that will cause the block to move up the plane.

 4.82 A block of mass m 5 20 kg rests on a rough plane as shown. Know-
ing that a 5 25° and ms 5 0.20, determine the magnitude and 
direction of the smallest force P required (a) to start the block up 
the plane, (b) to prevent the block from moving down the plane.
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177Problems 4.83 The coefficients of friction between the block and the rail are ms 5 
0.30 and mk 5 0.25. Knowing that u 5 65°, determine the smallest 
value of P required (a) to start the block up the rail, (b) to keep it 
from moving down.

 4.84 The coefficients of friction between the block and the rail are ms 5 
0.30 and mk 5 0.25. Find the magnitude and direction of the small-
est force P required (a) to start the block up the rail, (b) to keep 
it from moving down.

 4.85 A 60-kg cabinet is mounted on casters that can be locked to pre-
vent their rotation.  The coefficient of static friction between the 
floor and each caster is 0.35.  If h 5 600 mm, determine the 
magnitude of the force P required to move the cabinet to the right 
(a) if all the casters are locked, (b) if the casters at B are locked 
and the casters at A are free to rotate, (c) if the casters at A are 
locked and the casters at B are free to rotate.

P

500 N

35°

q

Fig. P4.83 and P4.84

C

A B

P

h

500 mm

Fig. P4.85 and P4.86

4 ft

5 ft

A B

C

Fig. P4.89

 4.86 A 60-kg cabinet is mounted on casters that can be locked to pre-
vent their rotation. The coefficient of static friction between the 
floor and each caster is 0.35. Assuming that the casters at both A 
and B are locked, determine (a) the force P required to move the 
cabinet to the right, (b) the largest allowable value of h if the cabi-
net is not to tip over.

 4.87 A packing crate of mass 40 kg must be moved to the left along the 
floor without tipping. Knowing that the coefficient of static friction 
between the crate and the floor is 0.35, determine (a) the largest al-
lowable value of a, (b) the corresponding magnitude of the force P.

 4.88 A packing crate of mass 40 kg is pulled by a rope as shown. The 
coefficient of static friction between the crate and the floor is 0.35. 
If a 5 40°, determine (a) the magnitude of the force P required 
to move the crate, (b) whether the crate will slide or tip.

 4.89 A 180-lb sliding door is mounted on a horizontal rail as shown.  
The coefficients of static friction between the rail and the door at 
A and B are 0.20 and 0.30, respectively. Determine the horizontal 
force that must be applied to the handle C in order to move the 
door to the left.

0.8 m

B
A

DC

α

P

Fig. P4.87 and P4.88
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178 Equilibrium of Rigid Bodies  4.90 Solve Prob. 4.89 assuming that the door is to be moved to the 
right.

 4.91 The 10-lb uniform rod AB is held in the position shown by the 
force P. Knowing that the coefficient of friction is 0.20 at A and 
B, determine the smallest value of P for which equilibrium is 
maintained.

 4.92 In Prob. 4.91, determine the largest value of P for which equilib-
rium is maintained.

 4.93 The end A of a slender, uniform rod of length L and weight W 
bears on the horizontal surface, while its end B is supported by a 
cord BC. Knowing that the coefficients of friction are ms 5 0.30 
and mk 5 0.25, determine (a) the maximum value of u for which 
equilibrium is maintained, (b) the corresponding value of the ten-
sion in the cord.

 4.94 Determine whether the rod of Prob. 4.93 is in equilibrium when  
u 5 30°, and find the magnitude and direction of the friction force 
exerted on the rod at A.

 4.95 A slender rod of length L is lodged between peg C and the vertical 
wall and supports a load P at end A. Knowing that L 5 12.5a, u 5 
30°, and that the coefficients of friction are ms 5 0.20 and mk 5 
0.15 at C and zero at B, determine whether the rod is in 
equilibrium.

 4.96 Solve Prob. 4.95 assuming that L 5 6a, u 5 30°, and that the 
coefficients of friction are ms 5 0.20 and mk 5 0.15 at B and zero 
at C.

 4.97 Find the magnitude of the largest couple M that can be applied 
to the cylinder if it is not to spin. The cylinder has a weight W and 
a radius r, and the coefficient of static friction ms is the same at A 
and B.

 4.98 The cylinder has a weight W and a radius r. Express in terms of 
W and r the magnitude of the largest couple M that can be applied 
to the cylinder if it is not to spin, assuming that the coefficient of 
static friction is to be (a) zero at A and 0.35 at B, (b) 0.28 at A and 
0.35 at B.

A

B

G 15 in.
P

7.5 in.

8 in.

Fig. P4.91

A

C
B

L

L
q

Fig. P4.93

�

A

B

C
L

a

P

Fig. P4.95

A

B

M

Fig. P4.97 and P4.98
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This chapter was devoted to the study of the equilibrium of rigid 
bodies, i.e., to the situation when the external forces acting on a rigid 
body form a system equivalent to zero [Sec. 4.1]. We then have

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

Resolving each force and each moment into its rectangular compo-
nents, we can express the necessary and sufficient conditions for the 
equilibrium of a rigid body with the following six scalar equations:

 oFx 5 0 oFy 5 0   oFz 5 0 (4.2)
oMx 5 0  oMy 5 0  oMz 5 0 (4.3)

These equations can be used to determine unknown forces applied 
to the rigid body or unknown reactions exerted by its supports.

When solving a problem involving the equilibrium of a rigid body, it 
is essential to consider all of the forces acting on the body. Therefore, 
the first step in the solution of the problem should be to draw a 
free-body diagram showing the body under consideration and all of 
the unknown as well as known forces acting on it [Sec. 4.2].

In the first part of the chapter, we considered the equilibrium of a 
two-dimensional structure; i.e., we assumed that the structure con-
sidered and the forces applied to it were contained in the same 
plane. We saw that each of the reactions exerted on the structure by 
its supports could involve one, two, or three unknowns, depending 
upon the type of support [Sec. 4.3].
 In the case of a two-dimensional structure, Eqs. (4.1), or Eqs. 
(4.2) and (4.3), reduce to three equilibrium equations, namely

 oFx 5 0  oFy 5 0  oMA 5 0 (4.5)

where A is an arbitrary point in the plane of the structure [Sec. 4.4]. 
These equations can be used to solve for three unknowns. While the 
three equilibrium equations (4.5) cannot be augmented with addi-
tional equations, any of them can be replaced by another equation. 
Therefore, we can write alternative sets of equilibrium equations, 
such as

 oFx 5 0  oMA 5 0  oMB 5 0 (4.6)

where point B is chosen in such a way that the line AB is not parallel 
to the y axis, or

 oMA 5 0  oMB 5 0  oMC 5 0 (4.7)

where the points A, B, and C do not lie in a straight line.

Equilibrium equationsEquilibrium equations

Free-body diagramFree-body diagram

Equilibrium of a two-dimensional 
structure
Equilibrium of a two-dimensional 
structure

REVIEW AND SUMMARY
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180 Equilibrium of Rigid Bodies  Since any set of equilibrium equations can be solved for only three 
unknowns, the reactions at the supports of a rigid two-dimensional 
structure cannot be completely determined if they involve more 
than three unknowns; they are said to be statically indeterminate 
[Sec. 4.5]. On the other hand, if the reactions involve fewer than 
three unknowns, equilibrium will not be maintained under general 
loading conditions; the structure is said to be partially constrained. 
The fact that the reactions involve exactly three unknowns is no 
guarantee that the equilibrium equations can be solved for all three 
unknowns. If the supports are arranged in such a way that the reactions 
are either concurrent or parallel, the reactions are statically indeter-
minate, and the structure is said to be improperly constrained.

 Two particular cases of equilibrium of a rigid body were given 
special attention. In Sec. 4.6, a two-force body was defined as a rigid 
body subjected to forces at only two points, and it was shown that 
the resultants F1 and F2 of these forces must have the same mag-
nitude, the same line of action, and opposite sense (Fig. 4.17), a 
property which will simplify the solution of certain problems in later 
chapters. In Sec. 4.7, a three-force body was defined as a rigid body 
subjected to forces at only three points, and it was shown that the 
resultants F1, F2, and F3 of these forces must be either concurrent 
(Fig. 4.18) or parallel. This property provides us with an alternative 
approach to the solution of problems involving a three-force body 
[Sample Prob. 4.6].

Statical indeterminacyStatical indeterminacy

Partial constraintsPartial constraints

Improper constraintsImproper constraints

Two-force bodyTwo-force body

Three-force bodyThree-force body

F2

F3

F1

B C

D
A

 Fig. 4.18

A

B

F1

F2

 Fig. 4.17

 In the second part of the chapter, we considered the equilib-
rium of a three-dimensional body and saw that each of the reactions 
exerted on the body by its supports could involve between one and 
six unknowns, depending upon the type of support [Sec. 4.8].
 In the general case of the equilibrium of a three-dimensional 
body, all of the six scalar equilibrium equations (4.2) and (4.3) listed 
at the beginning of this review should be used and solved for six 
unknowns [Sec. 4.9]. In most problems, however, these equations 
will be more conveniently obtained if we first write

 oF 5 0  oMO 5 o(r 3 F) 5 0 (4.1)

and express the forces F and position vectors r in terms of scalar com-
ponents and unit vectors. The vector products can then be  computed 
either directly or by means of determinants, and the desired scalar 
equations obtained by equating to zero the coefficients of the unit vec-
tors [Sample Probs. 4.7 through 4.9].

Equilibrium of a three-dimensional 
body

Equilibrium of a three-dimensional 
body
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181 We noted that as many as three unknown reaction components 
may be eliminated from the computation of oMO in the second of 
the relations (4.1) through a judicious choice of point O. Also, the 
reactions at two points A and B can be eliminated from the solution 
of some problems by writing the equation oMAB 5 0, which involves 
the computation of the moments of the forces about an axis AB join-
ing points A and B [Sample Prob. 4.10].
 If the reactions involve more than six unknowns, some of the 
reactions are statically indeterminate; if they involve fewer than six 
unknowns, the rigid body is only partially constrained. Even with six 
or more unknowns, the rigid body will be improperly constrained if 
the reactions associated with the given supports either are parallel 
or intersect the same line.

The last part of this chapter was devoted to the study of dry friction, 
i.e., to problems involving rigid bodies which are in contact along 
nonlubricated surfaces.

Static and kinetic frictionStatic and kinetic friction

N

F

W

P

P

F Equilibrium Motion

Fm

Fk

Fig. 4.19

Applying a horizontal force P to a block resting on a horizontal sur-
face [Sec. 4.11], we note that the block at first does not move. This 
shows that a friction force F must have developed to balance P 
(Fig. 4.19). As the magnitude of P is increased, the magnitude of F 
also increases until it reaches a maximum value Fm. If P is further 
increased, the block starts sliding and the magnitude of F drops from 
Fm to a lower value Fk. Experimental evidence shows that Fm and Fk 
are proportional to the normal component N of the reaction of the 
surface. We have

 Fm 5 msN  Fk 5 mkN (4.8, 4.9)

where ms and mk are called, respectively, the coefficient of static 
 friction and the coefficient of kinetic friction. These coefficients 
depend on the nature and the condition of the surfaces in contact. 
Approximate values of the coefficients of static friction were given 
in Table 4.1.

It is sometimes convenient to replace the normal force N and the 
friction force F by their resultant R (Fig. 4.20). As the friction force 
increases and reaches its maximum value Fm 5 msN, the angle f that 
R forms with the normal to the surface increases and reaches a 
maximum value fs, called the angle of static friction. If motion actu-
ally takes place, the magnitude of F drops to Fk; similarly the angle f 

Angles of frictionAngles of friction

Review and Summary

R

W

P

φ
N

F

Fig. 4.20
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182 Equilibrium of Rigid Bodies drops to a lower value fk, called the angle of kinetic friction. As 
shown in Sec. 4.12, we have

 tan fs 5 ms  tan fk 5 mk (4.10, 4.11)

When solving equilibrium problems involving friction, we should keep 
in mind that the magnitude F of the friction force is equal to Fm 5 
msN only if the body is about to slide [Sec. 4.13]. If motion is not 
impending, F and N should be considered as independent unknowns 
to be determined from the equilibrium equations (Fig. 4.21a). We 

Problems involving frictionProblems involving friction

should also check that the value of F required to maintain equilibrium 
is not larger than Fm; if it is, the body would move and the magnitude 
of the friction force would be Fk 5 mkN [Sample Prob. 4.11]. On the 
other hand, if motion is known to be impending, F has reached its 
maximum value Fm 5 msN (Fig. 4.21b), and this expression may be 
substituted for F in the equilibrium equations [Sample Prob. 4.13]. 
When only three forces are involved in a free-body diagram, including 
the reaction R of the surface in contact with the body, it is usually 
more convenient to solve the problem by drawing a force triangle 
[Sample Prob. 4.12].
 When a problem involves the analysis of the forces exerted on 
each other by two bodies A and B, it is important to show the friction 
forces with their correct sense. The correct sense for the friction force 
exerted by B on A, for instance, is opposite to that of the relative 
motion (or impending motion) of A with respect to B [Fig. 4.22].
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Fig. 4.21
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REVIEW PROBLEMS

 4.99 The maximum allowable value for each of the reactions is 150 kN, 
and the reaction at A must be directed upward. Neglecting the 
weight of the beam, determine the range of values of P for which 
the beam is safe.

 4.100 Determine the reactions at A and B for the loading shown.

B
A

1 m1 m1.5 m
3 m

30 kN30 kNP

Fig. P4.99

960 N

960 N

� = 30°

200 mm

150 mm

A

B C

250 mm

Fig. P4.100

 4.101 The light bar AD is attached to collars B and C that can move 
freely on vertical rods. Knowing that the surface at A is smooth, 
determine the reactions at A, B, and C (a) if a 5 60°, (b) if 
a 5 90°.

A

B

C
D

120 lb
�

4 in.

9 in.

4 in.4 in.

Fig. P4.101

A

B

C

600 N
475 mm

75 mm
50 mm

90 mm

Fig. P4.102

 4.102 A movable bracket is held at rest by a cable attached at C and by 
frictionless rollers at A and B. For the loading shown, determine 
(a) the tension in the cable, (b) the reactions at A and B.

 4.103 The 300-lb beam AB carries a 500-lb load at B. The beam is held 
by a fixed support at A and by the cable CD that is attached to the 
counterweight W. (a) If W 5 1300 lb, determine the reaction at 
A. (b) Determine the range of values of W for which the magnitude 
of the couple at A does not exceed 1500 lb ? ft.

500 lb300 lb

8 ft 4 ft

5 ft

4 ft

A

C

D
B

W

Fig. P4.103
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184 Equilibrium of Rigid Bodies  4.104 A 100-kg roller, of diameter 500 mm, is used on a lawn. Determine 
the force F required to make it roll over a 50-mm obstruction (a) 
if the roller is pushed as shown, (b) if the roller is pulled as 
shown.

30°

F

30°

F

(b)(a)

Fig. P4.104

 4.105 The overhead transmission shaft AE is driven at a constant speed 
by an electric motor connected by a flat belt to pulley B. Pulley C 
may be used to drive a machine tool located directly below C, 
while pulley D drives a parallel shaft located at the same height as 
AE. Knowing that TB 1 T9B 5 36 lb, TC 5 40 lb, T9C 5 16 lb, TD 5 
0, and T9D 5 0, determine (a) the tension in each portion of the 
belt driving pulley B, (b) the reactions at the bearings A and E 
caused by the tension in the belts.

z

8 in.
4 in.

T�C

T�B TC
TB

w

A

C

22°

30°

y

2 ft
1 ft

B
T�D

TD
2 ft

1 ft

6 in.

D x

E

Fig. P4.105

 4.106 A vertical load P is applied at end B of rod BC. The constant of 
the spring is k and the spring is unstretched when u 5 60°. (a) 
Neglecting the weight of the rod, express the angle u correspond-
ing to the equilibrium position in terms of P, k, and l. (b) Deter-
mine the values of u corresponding to equilibrium if P 5 1

4kl.

q

A

B

C

P

l

l

Fig. P4.106
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185Review Problems 4.107 A force P is applied to a bent rod AD that may be supported in 
four different ways as shown. In each case determine the reactions 
at the supports.

45°

P
a a

a

A B C

D

(a)

45°

P
a a

a

A B C

D

(b)

P
a a

a

A B C

D45°

(c)

P
a a

a

A B C

D
45°

45°

(d)

Fig. P4.107

 4.108 A 500-lb marquee, 8 3 10 ft, is held in a horizontal position by 
two horizontal hinges at A and B and by a cable CD attached to a 
point D located 5 ft directly above B. Determine the tension in 
the cable and the components of the reactions at the hinges.

 4.109 The 10-kg block is attached to link AB and rests on a conveyor belt 
that is moving to the left. Knowing that the coefficients of friction 
between the block and the belt are ms 5 0.30 and mk 5 0.25 and 
neglecting the weight of the link, determine (a) the force in link 
AB, (b) the horizontal force P that should be applied to the belt 
to maintain its motion.

G

B

A

C

D

5 ft

10 ft6 ft

2 ft

Fig. P4.108

35°

10 kg

A

B

P

Fig. P4.109

 4.110 A 10-ft uniform plank of weight 45 lb rests on two joists as shown. 
The coefficient of static friction between the joists and the plank is 
0.40. (a) Determine the magnitude of the horizontal force P 
required to move the plank. (b) Solve part a assuming that a single 
nail driven into joist A prevents motion of the plank along joist A.

A BP

1 ft6 ft3 ft

Fig. P4.110
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 A precast section of roadway for a 

new interchange on Interstate 93 is 

shown being lowered from a gantry 

crane. In this chapter we will introduce 

the concept of the centroid of an area; 

in later chapters the relation between 

the location of the centroid and the 

behavior of the roadway under loading 

will be established.
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Distributed Forces: Centroids 
and Centers of Gravity
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5.1 INTRODUCTION
We have assumed so far that the attraction exerted by the earth on a 
rigid body could be represented by a single force W. This force, called 
the force of gravity or the weight of the body, was to be applied at the 
center of gravity of the body (Sec. 3.2). Actually, the earth exerts a force 
on each of the particles forming the body. The action of the earth on a 
rigid body should thus be represented by a large number of small forces 
distributed over the entire body. You will learn in this chapter, however, 
that all of these small forces can be replaced by a single equivalent force 
W. You will also learn how to determine the center of gravity, i.e., the 
point of application of the resultant W, for bodies of various shapes.
 In the first part of the chapter, two-dimensional bodies, such 
as flat plates and wires contained in a given plane, are considered. 
Two concepts closely associated with the determination of the center 
of gravity of a plate or a wire are introduced: the concept of the 
centroid of an area or a line and the concept of the first moment of 
an area or a line with respect to a given axis.
 You will also learn that the computation of the area of a surface 
of revolution or of the volume of a body of revolution is directly 
related to the determination of the centroid of the line or area used 
to generate that surface or body of revolution (Theorems of Pappus-
Guldinus). And, as is shown in Sec. 5.8, the determination of the 
centroid of an area simplifies the analysis of beams subjected to dis-
tributed loads. 
 In the last part of the chapter, you will learn how to determine 
the center of gravity of a three-dimensional body as well as the cen-
troid of a volume and the first moments of that volume with respect 
to the coordinate planes.

AREAS AND LINES

5.2  CENTER OF GRAVITY OF A 
TWO-DIMENSIONAL BODY

Let us first consider a flat horizontal plate (Fig. 5.1). We can divide 
the plate into n small elements. The coordinates of the first element 

 Chapter 5 Distributed Forces: 
Centroids and Centers of Gravity

 5.1 Introduction
 5.2 Center of Gravity of a Two-

Dimensional Body
 5.3 Centroids of Areas and Lines
 5.4 First Moments of Areas and Lines
 5.5 Composite Plates and Wires
 5.6 Determination of Centroids 

by Integration
 5.7 Theorems of Pappus-Guldinus
 5.8 Distributed Loads on Beams
 5.9 Center of Gravity of a Three-

Dimensional Body. Centroid of 
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 5.10 Composite Bodies
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Fig. 5.1 Center of gravity of a plate.

Photo 5.1 The precise balancing of the 
components of a mobile requires an understanding 
of centers of gravity and centroids, the main topics 
of this chapter.
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Fig. 5.2 Center of gravity of a wire.
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5.2 Center of Gravity of a Two-Dimensional 
Body

are denoted by x1 and y1, those of the second element by x2 and y2, 
etc. The forces exerted by the earth on the elements of plate will be 
denoted, respectively, by DW1, DW2, . . . , DWn. These forces or 
weights are directed toward the center of the earth; however, for all 
practical purposes they can be assumed to be parallel. Their resultant 
is therefore a single force in the same direction. The magnitude W 
of this force is obtained by adding the magnitudes of the elemental 
weights.

oFz:  W 5 DW1 1 DW2 1 ? ? ? 1 DWn

To obtain the coordinates x and y of the point G where the resultant W 
should be applied, we write that the moments of W about the y and 
x axes are equal to the sum of the corresponding moments of the 
elemental weights,

oMy:  x W 5 x1 DW1 1 x2 DW2 1 ? ? ? 1 xn DWn

oMx:  y W 5 y1 DW1 1 y2 DW2 1 ? ? ? 1 yn DWn (5.1)

If we now increase the number of elements into which the plate is 
divided and simultaneously decrease the size of each element, we 
obtain in the limit the following expressions:

 W 5 #  dW   x W 5 #  x dW   y W 5 #  y dW  (5.2)

These equations define the weight W and the coordinates x and y 
of the center of gravity G of a flat plate. The same equations can be 
derived for a wire lying in the xy plane (Fig. 5.2). We note that the 
center of gravity G of a wire is usually not located on the wire.
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5.3 CENTROIDS OF AREAS AND LINES
In the case of a flat homogeneous plate of uniform thickness, the 
magnitude DW of the weight of an element of the plate can be 
expressed as

DW 5 g t DA

 where g 5 specific weight (weight per unit volume) of the material
 t 5 thickness of the plate
 DA 5 area of the element

Similarly, we can express the magnitude W of the weight of the entire 
plate as

W 5 g tA

where A is the total area of the plate.
 If U.S. customary units are used, the specific weight g should 
be expressed in lb/ft3, the thickness t in feet, and the areas DA and A 
in square feet. We observe that DW and W will then be expressed 
in pounds. If SI units are used, g should be expressed in N/m3, t in 
meters, and the areas DA and A in square meters; the weights DW 
and W will then be expressed in newtons.†
 Substituting for DW and W in the moment equations (5.1) and 
dividing throughout by gt, we obtain

oMy:  xA 5 x1 DA1 1 x2 DA2 1 ? ? ? 1 xn DAn
oMx:  yA 5 y1 DA1 1 y2 DA2 1 ? ? ? 1 yn DAn

If we increase the number of elements into which the area A is 
divided and simultaneously decrease the size of each element, we 
obtain in the limit

 xA 5 #  x dA   yA 5 #  y dA (5.3)

These equations define the coordinates x and y of the center of 
 gravity of a homogeneous plate. The point whose coordinates are x 
and y is also known as the centroid C of the area A of the plate 
(Fig. 5.3). If the plate is not homogeneous, these equations cannot 
be used to determine the center of gravity of the plate; they still 
define, however, the centroid of the area.
 In the case of a homogeneous wire of uniform cross section, the 
magnitude DW of the weight of an element of wire can be expressed as

DW 5 ga DL

 where g 5 specific weight of the material
 a 5 cross-sectional area of the wire
 DL 5 length of the element

†It should be noted that in the SI system of units a given material is generally charac-
terized by its density r (mass per unit volume) rather than by its specific weight g. The 
specific weight of the material can then be obtained from the relation

g 5 rg

where g 5 9.81 m/s2. Since r is expressed in kg/m3, we observe that g will be expressed in 
(kg/m3)(m/s2), that is, in N/m3.

190  Distributed Forces: Centroids and Centers 
of Gravity
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The center of gravity of the wire then coincides with the centroid C of 
the line L defining the shape of the wire (Fig. 5.4). The coordinates x 
and y of the centroid of the line L are obtained from the equations

 xL 5 #  x dL   yL 5 #  y dL (5.4)

5.4 FIRST MOMENTS OF AREAS AND LINES
The integral e x dA in Eqs. (5.3) of the preceding section is known 
as the first moment of the area A with respect to the y axis and is 
denoted by Qy. Similarly, the integral e y dA defines the first moment 
of A with respect to the x axis and is denoted by Qx. We write

 Qy 5 #  x dA   Qx 5 #  y dA (5.5)

Comparing Eqs. (5.3) with Eqs. (5.5), we note that the first moments 
of the area A can be expressed as the products of the area and the 
coordinates of its centroid:

 Qy 5 xA   Qx 5 yA (5.6)

 It follows from Eqs. (5.6) that the coordinates of the centroid 
of an area can be obtained by dividing the first moments of that area 
by the area itself. The first moments of the area are also useful in 
mechanics of materials for determining the shearing stresses in 
beams under transverse loadings. Finally, we observe from Eqs. (5.6) 
that if the centroid of an area is located on a coordinate axis, the 
first moment of the area with respect to that axis is zero. Conversely, 
if the first moment of an area with respect to a coordinate axis is 
zero, then the centroid of the area is located on that axis.
 Relations similar to Eqs. (5.5) and (5.6) can be used to define 
the first moments of a line with respect to the coordinate axes and 

Fig. 5.4 Centroid of a line.
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Fig. 5.3 Centroid of an area.

5.4 First Moments of Areas and Lines
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192  Distributed Forces: Centroids and Centers 
of Gravity

to express these moments as the products of the length L of the line 
and the coordinates x and y of its centroid.
 An area A is said to be symmetric with respect to an axis BB9 
if for every point P of the area there exists a point P9 of the same 
area such that the line PP9 is perpendicular to BB9 and is divided into 
two equal parts by that axis (Fig. 5.5a). A line L is said to be sym-
metric with respect to an axis BB9 if it satisfies similar conditions. 
When an area A or a line L possesses an axis of symmetry BB9, its 
first moment with respect to BB9 is zero, and its centroid is located 
on that axis. For example, in the case of the area A of Fig. 5.5b, which 
is symmetric with respect to the y axis, we observe that for every 
element of area dA of abscissa x there exists an element dA9 of equal 
area and with abscissa 2x. It follows that the integral in the first of 
Eqs. (5.5) is zero and, thus, that Qy 5 0. It also follows from the first 
of the relations (5.3) that x 5 0. Thus, if an area A or a line L pos-
sesses an axis of symmetry, its centroid C is located on that axis.
 We further note that if an area or line possesses two axes of sym-
metry, its centroid C must be located at the intersection of the two axes 
(Fig. 5.6). This property enables us to determine immediately the cen-
troid of areas such as circles, ellipses, squares, rectangles, equilateral tri-
angles, or other symmetric figures as well as the centroid of lines in the 
shape of the circumference of a circle, the perimeter of a square, etc.
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A

– x

dAdA'

P
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B

Fig. 5.5

 An area A is said to be symmetric with respect to a center O if 
for every element of area dA of coordinates x and y there exists an 
element dA9 of equal area with coordinates 2x and 2y (Fig. 5.7). It 
then follows that the integrals in Eqs. (5.5) are both zero and that 
Qx 5 Qy 5 0. It also follows from Eqs. (5.3) that x 5 y 5 0, that is, 
that the centroid of the area coincides with its center of symmetry O. 
Similarly, if a line possesses a center of symmetry O, the centroid of 
the line will coincide with the center O.
 It should be noted that a figure possessing a center of symme-
try does not necessarily possess an axis of symmetry (Fig. 5.7), while 
a figure possessing two axes of symmetry does not necessarily possess 
a center of symmetry (Fig. 5.6a). However, if a figure possesses two 
axes of symmetry at a right angle to each other, the point of intersec-
tion of these axes is a center of symmetry (Fig. 5.6b).
 Determining the centroids of unsymmetrical areas and lines 
and of areas and lines possessing only one axis of symmetry will be 
discussed in Secs. 5.6 and 5.7. Centroids of common shapes of areas 
and lines are shown in Fig. 5.8A and B.

x

y

O

A dA

dA'

x

y

– y

– x

Fig. 5.7

C
C

B

B'

B

B'
D

D'

D'D

(a) (b)

Fig. 5.6
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Fig. 5.8A Centroids of common shapes of areas.

5.4 First Moments of Areas and Lines
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194  Distributed Forces: Centroids and Centers 
of Gravity

5.5 COMPOSITE PLATES AND WIRES
In many instances, a flat plate can be divided into rectangles, triangles, 
or the other common shapes shown in Fig. 5.8A. The abscissa X of its 
center of gravity G can be determined from the abscissas x1, x2, . . . , xn 
of the centers of gravity of the various parts by expressing that the 
moment of the weight of the whole plate about the y axis is equal 
to the sum of the moments of the weights of the various parts about 
the same axis (Fig. 5.9). The ordinate Y of the center of gravity of 
the plate is found in a similar way by equating moments about the 
x axis. We write

 ©My:  X(W1 1 W2 1 . . . 1 Wn) 5 x1W1 1 x2W2 1 . . . 1 xnWn

 ©Mx:  Y(W1 1 W2 1 . . . 1 Wn) 5 y1W1 1 y2W2 1 . . . 1 ynWn

⎯x

⎯y

r sin a
a

2r
� �

�

2r

2r

2
� r

� r

Shape

Quarter-circular
arc

Semicircular arc

Arc of circle

Length

0

2ar0

O
O

O

C

C

r

rC

⎯x

⎯y⎯x

a

a

Fig. 5.8B Centroids of common shapes of lines.

=

x

y

z

x

y

z

O
G

⎯X

⎯Y

W1 W2

W3

G1
G2

G3

ΣW

ΣMy :  ⎯X Σ W = Σ⎯x W

ΣMx :  ⎯Y Σ W = Σ⎯y W

O

Fig. 5.9 Center of gravity of a composite plate.
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195or, for short,

 X©W 5©x W   Y©W 5©y W  (5.7)

These equations can be solved for the coordinates X and Y of the 
center of gravity of the plate.

=

x

y

O

C⎯X

⎯Y

A1

A3

A2

C1 C2

C3
ΣA

Qy  = ⎯X Σ A = Σ⎯x A

Qx  = ⎯Y Σ A = Σ⎯y A

x

y

O

Fig. 5.10 Centroid of a composite area.

 If the plate is homogeneous and of uniform thickness, the center 
of gravity coincides with the centroid C of its area. The abscissa X of 
the centroid of the area can be determined by noting that the first 
moment Qy of the composite area with respect to the y axis can be 
expressed both as the product of X and the total area and as the sum 
of the first moments of the elementary areas with respect to the y axis 
(Fig. 5.10). The ordinate Y of the centroid is found in a similar way 
by considering the first moment Qx of the composite area. We have

 Qy 5 X(A1 1 A2 1 . . . 1 An) 5 x1A1 1 x2 A2 1 . . . 1 xnAn

 Qx 5 Y(A1 1 A2 1 . . . 1 An) 5 y1A1 1 y2 A2 1 . . . 1 ynAn

or, for short,

 Qy 5 X©A 5©xA   Qx 5 Y©A 5©yA (5.8)

These equations yield the first moments of the composite area, or 
they can be used to obtain the coordinates X and Y of its centroid.
 Care should be taken to assign the appropriate sign to the 
moment of each area. First moments of areas, like moments of 
forces, can be positive or negative. For example, an area whose cen-
troid is located to the left of the y axis will have a negative first 
moment with respect to that axis. Also, the area of a hole should be 
assigned a negative sign (Fig. 5.11).
 Similarly, it is possible in many cases to determine the center 
of gravity of a composite wire or the centroid of a composite line 
by dividing the wire or line into simpler elements (see Sample 
Prob. 5.2).

x

y

z

x

y

⎯x1

⎯x2

⎯xA⎯x

W1
W2

W3

A1

A1 Semicircle

A2 Full rectangle

A3 Circular hole

A2 A3

+

–

A

⎯x3

⎯x1

⎯x3

⎯x2

+

+

–

+ +

–

–

Fig. 5.11

5.5 Composite Plates and Wires
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SAMPLE PROBLEM 5.1

For the plane area shown, determine (a) the first moments with respect to 
the x and y axes, (b) the location of the centroid.

y

x

80 mm

60 mm

60 mm
40 mm

120 mm

SOLUTION

Components of Area. The area is obtained by adding a rectangle, a tri-
angle, and a semicircle and by then subtracting a circle. Using the coordi-
nate axes shown, the area and the coordinates of the centroid of each of the 
component areas are determined and entered in the table below. The area 
of the circle is indicated as negative, since it is to be subtracted from the 
other areas. We note that the coordinate y of the centroid of the triangle is 
negative for the axes shown. The first moments of the component areas with 
respect to the coordinate axes are computed and entered in the table.

y y

x

80 mm

60 mm

r1 = 60 mm

r2 = 40 mm

120 mm

x x x x

y y y

= + + _
40 mm

40 mm

–20 mm

= 25.46 mm
4r1 
3 r1 = 60 mm

r2 = 40 mm

60 mm60 mm

60 mm

80 mm 105.46 mm 80 mm

�

a. First Moments of the Area. Using Eqs. (5.8), we write

 Qx 5 ©yA 5 506.2 3 103 mm3  Qx 5 506 3 103 mm3 ◀

 Qy 5 ©xA 5 757.7 3 103 mm3  Qy 5 758 3 103 mm3 ◀

b. Location of Centroid. Substituting the values given in the table into 
the equations defining the centroid of a composite area, we obtain

X©A 5 ©xA:  X(13.828 3 103 mm2) 5 757.7 3 103 mm3

X 5 54.8 mm ◀

Y©A 5 ©yA:  Y(13.828 3 103 mm2) 5 506.2 3 103 mm3

Y 5 36.6 mm ◀

y

x

C

X = 54.8 mm

Y = 36.6 mm

Component A, mm2 x, mm y, mm x A, mm3 y A, mm3

Rectangle (120)(80) 5 9.6 3 103 60 40 1576 3 103 1384 3 103

Triangle 1
2(120)(60) 5 3.6 3 103 40 220 1144 3 103 272 3 103

Semicircle 1
2p(60)2 5 5.655 3 103 60 105.46 1339.3 3 103 1596.4 3 103

Circle 2p(40)2 5 25.027 3 103 60 80 2301.6 3 103 2402.2 3 103

 oA 5 13.828 3 103   oxA 5 1757.7 3 103 oyA 5 1506.2 3 103
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SAMPLE PROBLEM 5.2

The figure shown is made from a piece of thin, homogeneous wire. Deter-
mine the location of its center of gravity.

26 in.
10 in.

24 in.

C

BA

SOLUTION

Since the figure is formed of homogeneous wire, its center of gravity coin-
cides with the centroid of the corresponding line. Therefore, that centroid 
will be determined. Choosing the coordinate axes shown, with origin at A, 
we determine the coordinates of the centroid of each line segment and 
compute the first moments with respect to the coordinate axes.

Segment L, in. x, in. y, in. x L, in2 y L, in2

AB 24 12 0 288   0
BC 26 12 5 312 130
CA 10  0 5   0  50

 oL 5 60   ©x L 5 600 ©y L 5 180

Substituting the values obtained from the table into the equations defining 
the centroid of a composite line, we obtain

X©L 5 ©x L:   X(60 in.) 5 600 in2 X 5 10 in. ◀

Y©L 5 ©y L:  Y(60 in.) 5 180 in2 Y 5  3 in. ◀

10 in.

12 in.

5 in.

24 in.

C

y

xBA

26 in.
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SAMPLE PROBLEM 5.3

A uniform semicircular rod of weight W and radius r is attached to a pin 
at A and rests against a frictionless surface at B. Determine the reactions 
at A and B.

A

B

O

r

SOLUTION

Free-Body Diagram. A free-body diagram of the rod is drawn. The forces 
acting on the rod are its weight W, which is applied at the center of gravity 
G (whose position is obtained from Fig. 5.8B); a reaction at A, represented 
by its components Ax and Ay; and a horizontal reaction at B.

Equilibrium Equations

1l oMA 5 0: B(2r) 2 W  a2r
p
b 5 0

 
B 5 1

W
p  

B 5
W
p
y ◀

y
1 ©Fx 5 0: Ax 1 B 5 0

 
Ax 5 2B 5 2

W
p
    Ax 5

W
p
z

1x©Fy 5 0: Ay 2 W 5 0 Ay 5 W  x

Adding the two components of the reaction at A:

 
A 5 cW2 1 aW

p
b2 d 1/2

 
A 5 W  a1 1

1
p2b

1/2

 ◀

tan a 5
W

W/p
5 p

 
 a 5 tan21p ◀

The answers can also be expressed as follows:

A 5 1.049W b72.3°  B 5 0.318Wy ◀

G

B

Ax

A

Ay

WB

2r

2r
�

Ay = W

a

Ax =
W
�

A

bee80156_ch05_186-225.indd Page 198  10/16/09  11:44:43 AM user-s173bee80156_ch05_186-225.indd Page 198  10/16/09  11:44:43 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-05/Volumes/MHDQ-New/MHDQ152/MHDQ152-05



PROBLEMS
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 5.1 through 5.8 Locate the centroid of the plane area shown.

a = 8 in.

a = 8 in.

r = 16 in.

y

x

Fig. P5.5

75 mm x

y

75 mm

75 mm

Fig. P5.6

x

y

r1 = 72 mm

r2 = 120 mm

Fig. P5.7

x

y

8 in.

r = 4 in.12 in.

Fig. P5.8

x

y

120 mm

100 mm

60 mm

Fig. P5.1

3 in.

6 in.

4 in.

x

y

Fig. P5.2

1 in.

1 in.

2 in.

5 in.

4 in.

x

y

Fig. P5.3

300 mm

240 mm

30 mm

30 mm

x

y

Fig. P5.4

5.9 through 5.12 Locate the centroid of the plane area shown.

x

y

150 mm

240 mm

y = kx2

Fig. P5.9

Parabola

Vertex
10 in.

3 in.

16 in.

y

x

Fig. P5.10

10 ft

15 ft15 ft

r = 6 ft

Vertex
Parabola

x

y

200 mm

Parabola

x

240 mm

y

240 mm

Fig. P5.12Fig. P5.11
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200 Distributed Forces: Centroids and Centers
of Gravity

 5.13 and 5.14 The horizontal x axis is drawn through the centroid C 
of the area shown and divides it into two component areas A1 and 
A2. Determine the first moment of each component area with 
respect to the x axis and explain the results obtained.

 5.15 The first moment of the shaded area with respect to the x axis 
is denoted by Qx. (a) Express Qx in terms of b, c, and the dis-
tance y from the base of the shaded area to the x axis. (b) For 
what value of y is Qx maximum, and what is that maximum 
value?

 5.16 A built-up beam has been constructed by nailing together seven 
planks as shown. The nails are equally spaced along the beam, 
and the beam supports a vertical load. As will be shown in Chap-
ter 13, the shearing forces exerted on the nails at A and B are 
proportional to the first moments with respect to the centroidal 
x axis of the red-shaded areas shown, respectively, in parts a and 
b of the figure. Knowing that the force exerted on the nail at A 
is 120 N, determine the force exerted on the nail at B.

65

20

40

20

Dimensions in mm

x

y

15

40

A2

A1

C

Fig. P5.13

0.60 in.

0.84 in.

0.24 in. 0.24 in.

0.72 in.

x

y

0.72 in.

A2

A1

C

Fig. P5.14

x

y

b

c
y

c

C

Fig. P5.15

300

100

200

400

60

60

60

60

B

A

x
C

Dimensions in mm

300

100

200

400

60

60

60

60

B

A

x
C

(a) (b)

Fig. P5.16
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 5.17 through 5.20 A thin homogeneous wire is bent to form the 
perimeter of the figure indicated. Locate the center of gravity of 
the wire figure thus formed.

   5.17 Fig. P5.1.
   5.18 Fig. P5.2.
   5.19 Fig. P5.4.
   5.20 Fig. P5.8.

 5.21 The homogeneous wire ABCD is bent as shown and is attached to 
a hinge at C. Determine the length L that results in portion BCD 
of the wire being horizontal.

200 mm

B

L

C

A

D

150 mm

Fig. P5.21 and P5.22

B

r

C

A

Fig. P5.23

x
r

y

� �

O

Fig. P5.24

 5.22 The homogeneous wire ABCD is bent as shown and is attached to 
a hinge at C. Determine the length L that results in portion AB of 
the wire being horizontal.

 5.23 A uniform circular rod of weight 8 lb and radius 10 in. is attached 
to a pin at C and to the cable AB. Determine (a) the tension in 
the cable, (b) the reaction at C.

 5.24 Knowing that the object shown is formed of a thin homogeneous 
wire, determine the angle a for which the center of gravity of the 
object is located at the origin O.

5.6  DETERMINATION OF CENTROIDS 
BY INTEGRATION

The centroid of an area bounded by analytical curves (i.e., curves 
defined by algebraic equations) is usually determined by evaluating 
the integrals in Eqs. (5.3) of Sec. 5.3:

 xA 5 #  x dA   yA 5 #  y dA (5.3)

If the element of area dA is a small rectangle of sides dx and dy, 
the evaluation of each of these integrals requires a double integra-
tion with respect to x and y. A double integration is also necessary 
if polar coordinates are used for which dA is a small element of 
sides dr and r du.
 In most cases, however, it is possible to determine the coordi-
nates of the centroid of an area by performing a single integration. 
This is achieved by choosing dA to be a thin rectangle or strip or a 

5.6 Determination of Centroids by Integration 201
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202  Distributed Forces: Centroids and Centers 
of Gravity

thin sector or pie-shaped element (Fig. 5.12); the centroid of the 
thin rectangle is located at its center, and the centroid of the thin 
sector is located at a distance 23 

r from its vertex (as it is for a triangle). 
The coordinates of the centroid of the area under consideration are 
then obtained by expressing that the first moment of the entire area 
with respect to each of the coordinate axes is equal to the sum (or 
integral) of the corresponding moments of the elements of area. 
Denoting by xel and yel the coordinates of the centroid of the element 
dA, we write

  Qy 5 xA 5 #  xel dA  

(5.9)

 Qx 5 yA 5 #  yel dA

If the area A is not already known, it can also be computed from 
these elements.
 The coordinates xel and yel of the centroid of the element of 
area dA should be expressed in terms of the coordinates of a point 
located on the curve bounding the area under consideration. Also, 
the area of the element dA should be expressed in terms of the 
coordinates of that point and the appropriate differentials. This has 
been done in Fig. 5.12 for three common types of elements; the 
pie-shaped element of part c should be used when the equation of 
the curve bounding the area is given in polar coordinates. The 
appropriate expressions should be substituted into formulas (5.9), 
and the equation of the bounding curve should be used to express 
one of the coordinates in terms of the other. The integration is thus 
reduced to a single integration. Once the area has been  determined 
and the integrals in Eqs. (5.9) have been evaluated, these equations 
can be solved for the coordinates x and y of the centroid of the area.

Fig. 5.12 Centroids and areas of differential elements.

⎯xel = x

⎯yel = y/2

dA = ydx

(c)

⎯yel = y

dA = (a – x) dy

(b)

⎯xel =
a + x

2

(a)

⎯xel =
2r
3

⎯yel =
2r
3

dA = 1
2

cosθ

sinθ

r2 dθ

⎯xel

⎯yel

⎯xel ⎯xel

⎯yel

⎯yel

x

a

y

x

y

x

x x

y yy

O O Odx

dy

P(x, y)

P(x, y)

r

θ

2r
3

P(  , r)θ
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2035.7 Theorems of Pappus-Guldinus When a line is defined by an algebraic equation, its centroid can 
be determined by evaluating the integrals in Eqs. (5.4) of Sec. 5.3:

 xL 5 #  x dL   yL 5 #  y dL (5.4)

The differential length dL should be replaced by one of the following 
expressions depending upon which coordinate, x, y, or u, is chosen 
as the independent variable in the equation used to define the line 
(these expressions can be derived using the Pythagorean theorem):

dL 5
B

1 1 ady

dx
b2

dx   dL 5
B

1 1 a dx
dy
b2

dy

dL 5
B

r2 1 a dr
du
b2

du

After the equation of the line has been used to express one of the 
coordinates in terms of the other, the integration can be performed, 
and Eqs. (5.4) can be solved for the coordinates x and y of the cen-
troid of the line.

5.7 THEOREMS OF PAPPUS-GULDINUS
These theorems, which were first formulated by the Greek geometer 
Pappus during the third century a.d. and later restated by the Swiss 
mathematician Guldinus, or Guldin, (1577–1643) deal with surfaces 
and bodies of revolution.
 A surface of revolution is a surface which can be generated by 
rotating a plane curve about a fixed axis. For example (Fig. 5.13), the 

A

B

CA C

B

Sphere Cone
A C

Torus

Fig. 5.13

Sphere Cone Torus

Fig. 5.14

Photo 5.2 The storage tanks shown are all 
bodies of revolution. Thus, their surface areas 
and volumes can be determined using the 
theorems of Pappus-Guldinus.

surface of a sphere can be obtained by rotating a semicircular arc ABC 
about the diameter AC, the surface of a cone can be pro duced by 
rotating a straight line AB about an axis AC, and the surface of a torus 
or ring can be generated by rotating the circumference of a circle 
about a nonintersecting axis. A body of revolution is a body which can 
be generated by rotating a plane area about a fixed axis. As shown in 
Fig. 5.14, a sphere, a cone, and a torus can each be generated by 
rotating the appropriate shape about the indicated axis.
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204  Distributed Forces: Centroids and Centers 
of Gravity

THEOREM I. The area of a surface of revolution is equal to the 
length of the generating curve times the distance traveled by the 
centroid of the curve while the surface is being generated.

Proof. Consider an element dL of the line L (Fig. 5.15), which 
is revolved about the x axis. The area dA generated by the element 
dL is equal to 2py dL. Thus, the entire area generated by L is 
A 5 e 2py dL. Recalling that we found in Sec. 5.3 that the integral 
e y dL is equal to yL, we therefore have

 A 5 2pyL (5.10)

where 2py is the distance traveled by the centroid of L (Fig. 5.15). 
It should be noted that the generating curve must not cross the axis 
about which it is rotated; if it did, the two sections on either side of 
the axis would generate areas having opposite signs, and the theorem 
would not apply.

THEOREM II. The volume of a body of revolution is equal to the 
generating area times the distance traveled by the centroid of the 
area while the body is being generated.

Proof. Consider an element dA of the area A which is revolved 
about the x axis (Fig. 5.16). The volume dV generated by the element 
dA is equal to 2py dA. Thus, the entire volume generated by A is 
V 5 e 2py dA, and since the integral e y dA is equal to yA 
(Sec. 5.3), we have

 V 5 2pyA (5.11)

x x

dL

dA

C

L

⎯yy

2 ⎯y�

Fig. 5.15

y

x

dV

dA

y

x

A
C

2  y�

Fig. 5.16

where 2py is the distance traveled by the centroid of A. Again, it 
should be noted that the theorem does not apply if the axis of rota-
tion intersects the generating area.
 The theorems of Pappus-Guldinus offer a simple way to compute 
the areas of surfaces of revolution and the volumes of bodies of revolu-
tion. Conversely, they can also be used to determine the centroid of a 
plane curve when the area of the surface generated by the curve is 
known or to determine the centroid of a plane area when the volume 
of the body generated by the area is known (see Sample Prob. 5.8).
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SAMPLE PROBLEM 5.4

Determine by direct integration the location of the centroid of a parabolic 
spandrel.

SOLUTION

Determination of the Constant k. The value of k is determined by sub-
stituting x 5 a and y 5 b into the given equation. We have b 5 ka2 or 
k 5 b/a2. The equation of the curve is thus

y 5
b

a2  x2    or    x 5
a

b1/2  y1/2

Vertical Differential Element. We choose the differential element shown 
and find the total area of the figure.

A 5 #  dA 5 #  y dx 5 #
a

0

 
b

a2  x2 dx 5 c b

a2

x3

3
d a

0
5

ab
3

The first moment of the differential element with respect to the y axis is 
xel dA; hence, the first moment of the entire area with respect to this axis is

Qy 5 #  xel dA 5 #  xy dx 5 #
a

0

 x a b

a2  x2b dx 5 c b

a2

x4

4
d a

0
5

a2b
4

Since Qy 5 xA, we have

xA 5 # xel dA     x  

ab
3

5
a2b
4

      x 5 3
4a ◀

Likewise, the first moment of the differential element with respect to the 
x axis is yel dA, and the first moment of the entire area is

Qx 5 #  yel dA 5 #  
y

2
  y dx 5 #

a

0

 
1
2

 a b

a2   x2b2

dx 5 c b2

2a4  

x5

5
d a

0
5

ab2

10

Since Qx 5 yA, we have

yA 5 #  yel dA     y  

ab
3

5
ab2

10
      y 5 3

10 b ◀

Horizontal Differential Element. The same results can be obtained by 
considering a horizontal element. The first moments of the area are

 Qy 5 #  xel dA 5 #  
a 1 x

2
 (a 2 x)  dy 5 #

b

0

 
a2 2 x2

2
 dy

 5
1
2

 #
b

0
 
aa2 2

a2

b
  yb dy 5

a2b
4

 Qx 5 #  yel dA 5 #  y(a 2 x)  dy 5 #  y aa 2
a

b1/2  y1/2b 

dy

 5 #
b

0
 
aay 2

a

b1/2   y3/2b 

dy 5
ab2

10

To determine x and y, the expressions obtained are again substituted into 
the equations defining the centroid of the area.

a

x

y

y

dA = y dx

⎯yel =
y
2

⎯xel = x

x

b

⎯yel = y

⎯xel =
a + x

2

dA = (a – x) dy

a

y

x

a
x

y = k x2

y

b
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SAMPLE PROBLEM 5.5

Determine the location of the centroid of the arc of circle shown.

SOLUTION

Since the arc is symmetrical with respect to the x axis, y 5 0. A differential 
element is chosen as shown, and the length of the arc is determined by 
integration.

L 5 #  dL 5 #
a

2a
 
r du 5 r #

a

2a
 
du 5 2ra

The first moment of the arc with respect to the y axis is

 Qy 5 #  x dL 5 #
a

2a
 
(r cos u) (r du) 5 r2 #

a

2a
 
cos u du

 5 r2 3sin u 4a2a 5 2r2 sin a

Since Qy 5 xL, we write

x(2ra) 5 2r2 sin a      x 5
r sin a
a  ◀

x

y

θ
O

r

 = θ α

dθ
dL = r dθ

x = r cosθ

 = –θ α

SAMPLE PROBLEM 5.6

Determine the area of the surface of revolution shown, which is obtained 
by rotating a quarter-circular arc about a vertical axis.

SOLUTION

According to Theorem I of Pappus-Guldinus, the area generated is equal 
to the product of the length of the arc and the distance traveled by its cen-
troid. Referring to Fig. 5.8B, we have

 x 5 2r 2
2r
p

5 2r a1 2
1
p
b

 A 5 2pxL 5 2p c 2r a1 2
1
p
b d  apr

2
b

A 5 2pr2(p 2 1) ◀

y

x

x

2r

C

2r
�

O

α

α

r

r

2r
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SAMPLE PROBLEM 5.7

The outside diameter of a pulley is 0.8 m, and the cross section of its rim is as 
shown. Knowing that the pulley is made of steel and that the density of steel 
is r 5 7.85 3 103 kg/m3, determine the mass and the weight of the rim.

  Distance Traveled
 Area, mm2 y, mm by C, mm Volume, mm3

 I 15000 375 2p(375) 5 2356  (5000)(2356) 5 11.78 3 106

II 21800 365 2p(365) 5 2293 (21800)(2293) 5 24.13 3 106

     Volume of rim 5 7.65 3 106

Since 1 mm 5 1023 m, we have 1 mm3 5 (1023 m)3 5 1029 m3, and we ob -
tain V 5 7.65 3 106 mm3 5 (7.65 3 106)(1029 m3) 5 7.65 3 1023 m3.

m 5 rV 5 (7.85 3 103 kg/m3)(7.65 3 1023 m3)  m 5 60.0 kg ◀

W 5 mg 5 (60.0 kg)(9.81 m/s2) 5 589 kg ? m/s2  W 5 589 N ◀

_

100 mm 60 mm

50 mm 30 mm

CII

CI II
I

375 mm 365 mm

SOLUTION

The volume of the rim can be found by applying Theorem II of Pappus-
Guldinus, which states that the volume equals the product of the given 
cross-sectional area and the distance traveled by its centroid in one complete 
revolution. However, the volume can be more easily determined if we 
observe that the cross section can be formed from rectangle I, whose area 
is positive, and rectangle II, whose area is negative.

SAMPLE PROBLEM 5.8

Using the theorems of Pappus-Guldinus, determine (a) the centroid of a 
semicircular area, (b) the centroid of a semicircular arc. We recall that the 
volume and the surface area of a sphere are 4

3pr3 and 4pr2, respectively.

20 mm

20 mm 20 mm
60 mm

30 mm
400 mm

100 mm

x

x

r

r2
A = 2

L =

⎯y

⎯yr

�

r�

SOLUTION

The volume of a sphere is equal to the product of the area of a semicircle 
and the distance traveled by the centroid of the semicircle in one revolution 
about the x axis.

V 5 2pyA    4
3pr3 5 2py(1

2pr2)    y 5
4r
3p  

◀

Likewise, the area of a sphere is equal to the product of the length of the gen-
erating semicircle and the distance traveled by its centroid in one revolution.

A 5 2pyL    4pr2 5 2py(pr)    y 5
2r
p  

◀
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PROBLEMS

208

 5.25 through 5.28 Determine by direct integration the centroid of 
the area shown.

5.29 through 5.32 Derive by direct integration the expressions for 
x and y given in Fig. 5.8A for 

  5.29 A general spandrel (y 5 kxn)
  5.30 A quarter-elliptical area
  5.31 A semicircular area
  5.32 A semiparabolic area

5.33 Determine by direct integration the x coordinate of the centroid 
of the area shown.

5.34 Determine by direct integration the y coordinate of the centroid 
of the area shown.

5.35 Determine the centroid of the area shown when a 5 4 in.

x

y

h

b

Fig. P5.25

x

y

y = b(1 – kx3)

b

a

Fig. P5.26

x

y

a

b

y2 = kx1/2

y1 = mx

Fig. P5.27

x

y

a

a

x = ky2

y = kx2

Fig. P5.28

x

y

h

a

y =     h(2 − 3   +    )1
2

x
a

x2

a2

Fig. P5.33 and P5.34

x

y = x

y

a

a

1

Fig. P5.35 and P5.36

5.36 Determine the centroid of the area shown in terms of a.

5.37 Determine the volume of the solid obtained by rotating the trape-
zoid of Prob. 5.2 about (a) the x axis, (b) the y axis.

 5.38 Determine the volume of the solid obtained by rotating the area 
of Prob. 5.4 about (a) the x axis, (b) the y axis.

 5.39 Determine the volume of the solid obtained by rotating the semi-
parabolic area shown about (a) the y axis, (b) the x axis.

x

Vertex

y

h

a

Fig. P5.39
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209Problems 5.40 Determine the surface area and the volume of the half-torus shown.

 5.41 A spherical pressure vessel has an inside diameter of 0.8 m. Deter-
mine (a) the volume of liquefied propane required to fill the vessel 
to a depth of 0.6 m, (b) the corresponding mass of the liquefied 
propane. (Density of liquefied propane 5 580 kg/m3.)

 5.42 For the pressure vessel of Prob. 5.41, determine the area of the 
surface in contact with the liquefied propane.

 5.43 A spherical dish is formed by passing a horizontal plane through a 
spherical shell of radius R. Knowing that R 5 10 in. and f 5 60°, 
determine the area of the inside surface of the dish.

y

xrR

Fig. P5.40

 5.44 Determine the volume and weight of water required to completely 
fill the spherical dish of Prob. 5.43. (Specific weight of water 5 
62.4 lb/ft3.)

 5.45 Determine the volume and weight of the solid brass knob shown. 
(Specific weight of brass 5 0.306 lb/in3.)

 5.46 Determine the total surface area of the solid brass knob shown.

 5.47 Determine the volume and total surface area of the body shown.

 5.48 Determine the volume of the steel collar obtained by rotating the 
shaded area shown about the vertical axis AA9.

R� �

Fig. P5.43

1.25 in.
r = 0.75 in.

r = 0.75 in.

Fig. P5.45 and P5.46

52 mm 42 mm

20 mm

60 mm

Fig. P5.47

45 mm15 mm 18 mm

30 mm

60 mm

A

A�

Fig. P5.48
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210  Distributed Forces: Centroids and Centers 
of Gravity *5.8 DISTRIBUTED LOADS ON BEAMS

The concept of the centroid of an area can be used to solve other 
problems besides those dealing with the weights of flat plates. Con-
sider, for example, a beam supporting a distributed load; this load may 
consist of the weight of materials supported directly or indirectly by 
the beam, or it may be caused by wind or hydrostatic pressure. The 
distributed load can be represented by plotting the load w supported 
per unit length (Fig. 5.17); this load is expressed in N/m or in lb/ft. 
The magnitude of the force exerted on an element of beam of length 
dx is dW 5 w dx, and the total load supported by the beam is

W 5 #
L

0
 
w dx

We observe that the product w dx is equal in magnitude to the ele-
ment of area dA shown in Fig. 5.17a. The load W is thus equal in 
magnitude to the total area A under the load curve:

W 5 #  dA 5 A

 We now determine where a single concentrated load W, of the 
same magnitude W as the total distributed load, should be applied 
on the beam if it is to produce the same reactions at the supports 
(Fig. 5.17b). However, this concentrated load W, which represents the 
resultant of the given distributed loading, is equivalent to the loading 
only when considering the free-body diagram of the entire beam. The 
point of application P of the equivalent concentrated load W is obtained 
by expressing that the moment of W about point O is equal to the 
sum of the moments of the elemental loads dW about O:

(OP)W 5 #  x dW

or, since dW 5 w dx 5 dA and W 5 A,

 
(OP)A 5 #

L

0
 
x dA

 
(5.12)

Since the integral represents the first moment with respect to the w 
axis of the area under the load curve, it can be replaced by the 
product xA. We therefore have OP 5 x, where x is the distance 
from the w axis to the centroid C of the area A (this is not the cen-
troid of the beam).
 A distributed load on a beam can thus be replaced by a con-
centrated load; the magnitude of this single load is equal to the area 
under the load curve, and its line of action passes through the cen-
troid of that area. It should be noted, however, that the concentrated 
load is equivalent to the given loading only as far as external forces 
are concerned. It can be used to determine reactions but should not 
be used to compute internal forces and deflections.

(a)

(b)

w

O

w

dx
x

L

B

dW = dA

x

d W

w

O B x

L

P

W = A
W

C⎯x=

Fig. 5.17

Photo 5.3 The roofs of the buildings shown 
must be able to support not only the total weight 
of the snow but also the nonsymmetric distributed 
loads resulting from drifting of the snow.
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SAMPLE PROBLEM 5.9

A beam supports a distributed load as shown. (a) Determine the equivalent 
concentrated load. (b) Determine the reactions at the supports.

A B

wA = 1500 N/m

wB = 4500 N/m

L = 6 m

SOLUTION

a. Equivalent Concentrated Load. The magnitude of the resultant of the 
load is equal to the area under the load curve, and the line of action of the 
resultant passes through the centroid of the same area. We divide the area 
under the load curve into two triangles and construct the table below. To 
simplify the computations and tabulation, the given loads per unit length 
have been converted into kN/m.

Component A, kN x, m xA, kN ? m

Triangle I 4.5 2 9
Triangle II 13.5 4 54

 oA 5 18.0  oxA 5 63

Thus, X©A 5 ©xA:  X(18 kN) 5 63 kN ? m  X 5 3.5 m

The equivalent concentrated load is

W 5 18 kNw ◀

and its line of action is located at a distance

X 5 3.5 m to the right of A ◀

b. Reactions. The reaction at A is vertical and is denoted by A; the reaction 
at B is represented by its components Bx and By. The given load can be 
considered to be the sum of two triangular loads as shown. The resultant of 
each triangular load is equal to the area of the triangle and acts at its centroid. 
We write the following equilibrium equations for the free body shown:

y
1 ©Fx 5 0: Bx 5 0 ◀

1l oMA 5 0:  2(4.5 kN)(2 m) 2 (13.5 kN)(4 m) 1 By(6 m) 5 0

By 5 10.5 kNx ◀ 

1l oMB 5 0:  1(4.5 kN)(4 m) 1 (13.5 kN)(2 m) 2 A(6 m) 5 0

A 5 7.5 kNx ◀ 

Alternative Solution. The given distributed load can be replaced by its 
resultant, which was found in part a. The reactions can be determined by 
writing the equilibrium equations oFx 5 0, oMA 5 0, and oMB 5 0. We 
again obtain

Bx 5 0  By 5 10.5 kNx  A 5 7.5 kNx ◀

I

II
4.5 kN/m

1.5 kN/m

6 m
⎯x = 2 m

⎯x = 4 m

x

A B

18 kN
⎯X = 3.5 m

A

Bx

By

4.5 kN
13.5 kN

2 m

4 m

6 m
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PROBLEMS

212

 5.49 and 5.50 Determine the magnitude and location of the resul-
tant of the distributed load shown. Also calculate the reactions at 
A and B.

5.51 through 5.56 Determine the reactions at the beam supports 
for the given loading.

A B

wA = 1200 N/m

wB = 3000 N/m

4.5 m

Fig. P5.49

6 kN/m

8 m

BA

Vertex Parabola

Fig. P5.50

A B

12 in. 18 in.

60 lb/in.

Fig. P5.51

A B

90 lb/in.
40 lb/in.

4 in. 6 in.

Fig. P5.52

1500 N/m

900 N/m
A B

4 m

Fig. P5.53

A B

20 ft
4 ft

800 lb/ft

6 ft

Fig. P5.54

9 ft

A
B

200 lb/ft

6 ft6 ft

Fig. P5.55

400 N/m

900 N/m

A B

0.6 m0.4 m
1.5 m

Fig. P5.56
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213VOLUMES

*5.9  CENTER OF GRAVITY OF A THREE-DIMENSIONAL 
BODY. CENTROID OF A VOLUME

The center of gravity G of a three-dimensional body is obtained by 
dividing the body into small elements and by then expressing that the 
weight W of the body acting at G is equivalent to the system of dis-
tributed forces DW representing the weights of the small elements. 
Choosing the y axis to be vertical with positive sense upward (Fig. 5.18) 
and denoting by r the position vector of G, we write that W is equal 
to the sum of the elemental weights DW, and its moment about O is 
equal to the sum of the moments about O of the elemental weights:
oF: 2Wj 5 o(2DWj) 

(5.13)
oMO: r 3 (2Wj) 5 o[r 3 (2DWj)] 
Rewriting the last equation in the form
 rW 3 (2j) 5 (or DW) 3 (2j) (5.14)
we observe that the weight W of the body is equivalent to the system 
of the elemental weights DW if the following conditions are satisfied:

W 5 o DW  rW 5 or DW 
Increasing the number of elements and simultaneously decreasing 
the size of each element, we obtain in the limit

 W 5 #  dW   r W 5 #  r dW  (5.15)

We note that the relations obtained are independent of the orienta-
tion of the body. For example, if the body and the coordinate axes 
were rotated so that the z axis pointed upward, the unit vector 2j 
would be replaced by 2k in Eqs. (5.13) and (5.14), but the relations 
(5.15) would remain unchanged. Resolving the vectors r  and r into 
rectangular components, we note that the second of the relations 
(5.15) is equivalent to the three scalar equations

 x W 5 #  x dW   y W 5 #  y dW   z W 5 #  z dW  (5.16)

 If the body is made of a homogeneous material of specific 
weight g, the magnitude dW of the weight of an infinitesimal ele-
ment can be expressed in terms of the volume dV of the element, 
and the magnitude W of the total weight can be expressed in terms 
of the total volume V. We write

dW 5 g dV  W 5 gV
Substituting for dW and W in the second of the relations (5.15), we 
write
 r V 5 #  r dV (5.17)

or, in scalar form,

 x V 5 #  x dV   y V 5 #  y dV   z V 5 #  z dV (5.18)
Photo 5.4 To predict the flight characteristics 
of the modified Boeing 747 when used to 
transport a space shuttle, the center of gravity 
of each craft had to be determined.

5.9 Center of Gravity of a Three-Dimensional 
Body. Centroid of a Volume

G

y

O
x

z

r

W = –W j

=
ΔW

y

x

z

O

r

ΔW = –ΔW j

Fig. 5.18
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214  Distributed Forces: Centroids and Centers 
of Gravity

The point whose coordinates are x, y, z is also known as the centroid 
C of the volume V of the body. If the body is not homogeneous, 
Eqs. (5.18) cannot be used to determine the center of gravity of the 
body; however, Eqs. (5.18) still define the centroid of the volume.
 The integral e x dV is known as the first moment of the volume 
with respect to the yz plane. Similarly, the integrals e y dV and e z dV 
define the first moments of the volume with respect to the zx plane 
and the xy plane, respectively. It is seen from Eqs. (5.18) that if the 
centroid of a volume is located in a coordinate plane, the first moment 
of the volume with respect to that plane is zero.
 A volume is said to be symmetrical with respect to a given plane 
if for every point P of the volume there exists a point P9 of the same 
volume, such that the line PP9 is perpendicular to the given plane and 
is bisected by that plane. The plane is said to be a plane of symmetry 
for the given volume. When a volume V possesses a plane of symmetry, 
the first moment of V with respect to that plane is zero, and the cen-
troid of the volume is located in the plane of symmetry. When a volume 
possesses two planes of symmetry, the centroid of the volume is located 
on the line of intersection of the two planes. Finally, when a volume 
possesses three planes of symmetry which intersect at a well-defined 
point (i.e., not along a common line), the point of intersection of the 
three planes coincides with the centroid of the volume. This property 
enables us to determine immediately the locations of the centroids of 
spheres, ellipsoids, cubes, rectangular parallelepipeds, etc.
 The centroids of unsymmetrical volumes or of volumes possessing 
only one or two planes of symmetry should be determined by integra-
tion.† The centroids of several common volumes are shown in Fig. 
5.19. It should be observed that in general the centroid of a volume of 
revolution does not coincide with the centroid of its cross section. Thus, 
the centroid of a hemisphere is different from that of a semicircular 
area, and the centroid of a cone is different from that of a triangle.

*5.10 COMPOSITE BODIES
If a body can be divided into several of the common shapes shown 
in Fig. 5.19, its center of gravity G can be determined by expressing 
that the moment about O of its total weight is equal to the sum of 
the moments about O of the weights of the various component parts. 
Proceeding as in Sec. 5.9, we obtain the following equations defining 
the coordinates X, Y, Z of the center of gravity G.

 X©W 5 ©x W   Y©W 5 ©y W   Z©W 5 ©z W  (5.19)

 If the body is made of a homogeneous material, its center of 
gravity coincides with the centroid of its volume, and we obtain:

 X©V 5 ©x V   Y©V 5 ©y V   Z©V 5 ©z V (5.20)

†For the determination of centroids of volumes by integration, see Ferdinand P. Beer, 
E. Russell Johnston, Jr., David F. Mazurek, and Elliot R. Eisenberg, Vector Mechanics 
for Engineers, 9th ed., McGraw-Hill, New York, 2010, sec. 5.12.
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Shape

Semiellipsoid
of revolution

Paraboloid 
of revolution

Cone

Pyramid

Hemisphere
C

Volume

3a
8

3h
8

h
3

h
4

h
4

1
3

abh

⎯x

a

a

a

a

a

b

C

C

C

C

h

h

h

h

⎯x

⎯x

⎯x

⎯x

⎯x

2
3

a3�

2
3

a2h�

1
2

a2h�

1
3

a2h�

Fig. 5.19 Centroids of common shapes and volumes.
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SAMPLE PROBLEM 5.10

Determine the location of the center of gravity of the homogeneous body 
of revolution shown, which was obtained by joining a hemisphere and a 
cylinder and carving out a cone.

100 mm

x

z

60 mm

60 mm

y

O

SOLUTION

Because of symmetry, the center of gravity lies on the x axis. As shown in 
the figure below, the body can be obtained by adding a hemisphere to a 
cylinder and then subtracting a cone. The volume and the abscissa of the 
centroid of each of these components are obtained from Fig. 5.19 and are 
entered in the table below. The total volume of the body and the first 
moment of its volume with respect to the yz plane are then determined.

50 mm

xxx

yyy

O O O

60 mm

3
8

(60 mm) = 22.5 mm 3
4

(100 mm) = 75 mm

+ –

Component Volume, mm3 x, mm x V, mm4

Hemisphere
 

 
1
2

 
4p
3

 (60)3 5 0.4524 3 106

 
222.5 210.18 3 106

Cylinder p(60)2(100) 5   1.1310 3 106 150 156.55 3 106

Cone
 

 2
p

3
 (60)2(100) 5 20.3770 3 106

 
175 228.28 3 106

 oV 5     1.206 3 106  oxV 5 118.09 3 106

Thus,

XoV 5 oxV:  X(1.206 3 106 mm3) 5 18.09 3 106 mm4

X 5 15 mm ◀
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217

0.5 in.

0.5 in.

1 in.

1 in.

1 in.
x

z

y

4.5 in.
2.5 in.

2 in.

2 in.

SOLUTION

The machine element can be obtained by adding a rectangular parallelepi-
ped (I) to a quarter cylinder (II) and then subtracting two 1-in.-diameter 
cylinders (III and IV). The volume and the coordinates of the centroid of 
each component are determined and are entered in the table below. Using 
the data in the table, we then determine the total volume and the moments 
of the volume with respect to each of the coordinate planes.

4.5 in.
2 in.

I

II

III IV

2 in.

1 in. diam.+
_ _

0.5 in.

0.5 in.

CII CII

CICIII CIV

CI, CIII, CIV 

1 in. 1 in.

2 in. 1.5 in.

2.25 in.
0.25 in.

0.25 in.

4r
3= =4(2)

0.8488 in.

x z

y y

8 in.

�3�

3�

  V, in3 x, in. y, in. z, in. x V, in4 y V, in4 z V, in4

 I   (4.5)(2)(0.5) 5 4.5 0.25 21 2.25   1.125 24.5  10.125
 II    1

4 p(2)2(0.5) 5 1.571 1.3488 20.8488 0.25   2.119 21.333   0.393
 III 2p(0.5)2(0.5) 5 20.3927 0.25 21 3.5 20.098   0.393 21.374
 IV 2p(0.5)2(0.5) 5 20.3927 0.25 21 1.5 20.098   0.393 20.589

 oV 5 5.286    oxV 5 3.048 oyV 5 25.047 ozV 5 8.555

Thus,

XoV 5 oxV:  X(5.286 in3) 5 3.048 in4 X 5  0.577 in. ◀

YoV 5 oyV:  Y(5.286 in3) 5 25.047 in4 Y 5  20.955 in. ◀

ZoV 5 ozV:  Z(5.286 in3) 5 8.555 in4 Z 5  1.618 in. ◀

SAMPLE PROBLEM 5.11

Locate the center of gravity of the steel machine element shown. The diame-
ter of each hole is 1 in.
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PROBLEMS

218

 5.57 A cone and a cylinder of the same radius a and height h are 
attached as shown. Determine the location of the centroid of the 
composite body.

5.58 Determine the y coordinate of the centroid of the body shown 
when (a) b 5 1

3h, (b) b 5 1
2h.

5.59 A hemisphere and a cylinder are placed together as shown. Deter-
mine the ratio h/r for which the centroid of the composite body is 
located in the plane between the hemisphere and the cylinder.

a

h

h

Fig. P5.57

x

z

a
a

h
b

y

Fig. P5.58

r

h

Fig. P5.59

y

x

h
h

a

a

az

a

Fig. P5.60

5.60 Determine the location of the center of gravity of the parabolic 
reflector shown, which is formed by machining a rectangular block 
so that the curved surface is a paraboloid of revolution of base 
radius a and height h.
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219Problems 5.61 For the machine element shown, locate the x coordinate of the 
center of gravity.

 5.62 For the machine element shown, locate the y coordinate of the 
center of gravity.

 5.63 For the machine element shown, locate the x coordinate of the 
center of gravity.

 5.64 For the machine element shown, locate the y coordinate of the 
center of gravity.

 5.65 A wastebasket, designed to fit in the corner of a room, is 400 
mm high and has a base in the shape of a quarter circle of radius 
250 mm. Locate the center of gravity of the wastebasket, know-
ing that it is made of sheet metal of uniform thickness.

 5.66 through 5.68 Locate the center of gravity of the sheet-metal 
form shown.

z

y
x

O

10 mm

10 mm
10 mm

60 mm

60 mm

50 mm

50 mm

60 mm
r � 40 mm

r � 30 mm

Fig. P5.63 and P5.64

x

y

z

400 mm

250 mm250 mm

Fig. P5.65

xz

y

2 in.

3 in.

1 in.

1 in.

Fig. P5.66

2 in.
8 in.

y

z

x

3 in.

4 in.

Fig. P5.67

40 mm
25 mm

50 mm

150 mm

y

z x

Fig. P5.68

y

z

x

r = 1 in.

1 in.

1 in. 3 in.

6 in.

4 in.

Fig. P5.61 and P5.62
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220 Distributed Forces: Centroids and Centers
of Gravity

 5.69 and 5.70 Locate the center of gravity of the figure shown, 
knowing that it is made of thin brass rods of uniform diameter.

 5.71 Three brass plates are brazed to a steel pipe to form the flagpole 
base shown. Knowing that the pipe has a wall thickness of 0.25 in. 
and that each plate is 0.2 in. thick, determine the location of the 
center of gravity of the base. (Specific weights: brass 5 0.306 lb/
in3, steel 5 0.284 lb/in3.)

 5.72 A brass collar, of length 50 mm, is mounted on an aluminum rod 
of length 80 mm. Locate the center of gravity of the composite 
body. (Densities: brass 5 8470 kg/m3, aluminum 5 2800 kg/m3.)

x

y

z

A

B

D

O

750 mm

300 mm
500 mm

Fig. P5.69

x

y

z

A

B

E
D

O

30 in.

r = 16 in.

Fig. P5.70

8 in.

2.5 in.
4 in.

120°

120°

Fig. P5.71

80 mm

32 mm

50 mm

60 mm

Fig. P5.72
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221

REVIEW AND SUMMARY

This chapter was devoted chiefly to the determination of the center 
of gravity of a rigid body, i.e., to the determination of the point G
where a single force W, called the weight of the body, can be applied 
to represent the effect of the earth’s attraction on the body.

In the first part of the chapter, we considered two-dimensional 
 bodies, such as flat plates and wires contained in the xy plane. By 
adding force components in the vertical z direction and moments 
about the horizontal y and x axes [Sec. 5.2], we derived the 
relations

 W 5 #  dW   xW 5 #  x dW   yW 5 #  y dW  (5.2)

which define the weight of the body and the coordinates x and y of 
its center of gravity.

In the case of a homogeneous flat plate of uniform thickness [Sec. 5.3], 
the center of gravity G of the plate coincides with the centroid C of 
the area A of the plate, the coordinates of which are defined by the 
relations

 xA 5 #  x dA   yA 5 #  y dA (5.3)

Similarly, the determination of the center of gravity of a homoge-
neous wire of uniform cross section contained in a plane reduces to 
the determination of the centroid C of the line L representing the 
wire; we have

 xL 5 # x dL    yL 5 #y dL (5.4)

The integrals in Eqs. (5.3) are referred to as the first moments of 
the area A with respect to the y and x axes and are denoted by Qy 
and Qx, respectively [Sec. 5.4]. We have

 Qy 5 xA   Qx 5 yA (5.6)

The first moments of a line can be defined in a similar way.

The determination of the centroid C of an area or line is simplified 
when the area or line possesses certain properties of symmetry. If 
the area or line is symmetric with respect to an axis, its centroid C 

Center of gravity of a 
two-dimensional body
Center of gravity of a 
two-dimensional body

Centroid of an area or lineCentroid of an area or line

First momentsFirst moments

Properties of symmetryProperties of symmetry
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222  Distributed Forces: Centroids and Centers 
of Gravity

lies on that axis; if it is symmetric with respect to two axes, C is 
located at the intersection of the two axes; if it is symmetric with 
respect to a center O, C coincides with O.

The areas and the centroids of various common shapes are tabulated in 
Fig. 5.8. When a flat plate can be divided into several of these shapes, 
the coordinates X and Y of its center of gravity G can be determined 
from the coordinates x1, x2, . . . and y1, y2, . . . of the centers of 
gravity G1, G2, . . . of the various parts [Sec. 5.5]. Equating moments 
about the y and x axes, respectively (Fig. 5.20), we have

 XwoW 5 oxwW  YwoW 5 oywW (5.7)

If the plate is homogeneous and of uniform thickness, its center of 
gravity coincides with the centroid C of the area of the plate, and 
Eqs. (5.7) reduce to

 Qy 5 XwoA 5 oxwA  Qx 5 YwoA 5 oywA (5.8)

These equations yield the first moments of the composite area, or 
they can be solved for the coordinates X and Y of its centroid [Sam-
ple Prob. 5.1]. The determination of the center of gravity of a com-
posite wire is carried out in a similar fashion [Sample Prob. 5.2].

When an area is bounded by analytical curves, the coordinates of its 
centroid can be determined by integration [Sec. 5.6]. This can be 
done by evaluating either the double integrals in Eqs. (5.3) or a sin-
gle integral which uses one of the thin rectangular or pie-shaped 
elements of area shown in Fig. 5.12. Denoting by xel and yel the 
coordinates of the centroid of the element dA, we have

 Qy 5 xA 5 #  xel dA   Qx 5 yA 5 #  yel dA (5.9)

It is advantageous to use the same element of area to compute both 
of the first moments Qy and Qx; the same element can also be used 
to determine the area A [Sample Prob. 5.4].

The theorems of Pappus-Guldinus relate the determination of the 
area of a surface of revolution or the volume of a body of revolution 
to the determination of the centroid of the generating curve or area 
[Sec. 5.7]. The area A of the surface generated by rotating a curve 
of length L about a fixed axis (Fig. 5.21a) is

 A 5 2pyL (5.10)

where y represents the distance from the centroid C of the curve to 
the fixed axis. Similarly, the volume V of the body generated by 
rotating an area A about a fixed axis (Fig. 5.21b) is

 V 5 2pyyyA (5.11)

where y represents the distance from the centroid C of the area to 
the fixed axis.

Center of gravity of a 
composite body

Center of gravity of a 
composite body

Determination of centroid 
by integration

Determination of centroid 
by integration

Theorems of Pappus-GuldinusTheorems of Pappus-Guldinus

x

y

z

O
G

⎯X

⎯Y

ΣW

Fig. 5.20

x

y

z

O

=
G1

G2

G3

W1 W2

W3

(a) (b)

x

C

L

⎯y
y

x

A
C

2   y�2   y�

Fig. 5.21
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223Review and SummaryThe concept of centroid of an area can also be used to solve problems 
other than those dealing with the weight of flat plates. For example, 
to determine the reactions at the supports of a beam [Sec. 5.8], we 
can replace a distributed load w by a concentrated load W equal in 
magnitude to the area A under the load curve and passing through 
the centroid C of that area (Fig. 5.22). 

Distributed loadsDistributed loads

w w

O O

w

dx
x

L

B B

dW = dA

x x

L

P

x

W = A
Wd W

C=

Fig. 5.22

The last part of the chapter was devoted to the determination of the 
center of gravity G of a three-dimensional body. The coordinates x, 
y, z of G were defined by the relations

 xW 5 #  x dW   yW 5 #  y dW   z W 5 #  z dW  (5.16)

In the case of a homogeneous body, the center of gravity G coincides 
with the centroid C of the volume V of the body; the coordinates of 
C are defined by the relations

 xV 5 #  x dV   yV 5 #  y dV   zV 5 #  z dV (5.18)

If the volume possesses a plane of symmetry, its centroid C will lie 
in that plane; if it possesses two planes of symmetry, C will be located 
on the line of intersection of the two planes; if it possesses three 
planes of symmetry which intersect at only one point, C will coincide 
with that point [Sec. 5.9].

The volumes and centroids of various common three-dimensional 
shapes are tabulated in Fig. 5.19. When a body can be divided into 
several of these shapes, the coordinates X, Y, Z of its center of gravity 
G can be determined from the corresponding coordinates of the 
centers of gravity of its various parts [Sec. 5.10]. We have

 XwoW 5 oxw W  YwoW 5 oyw W  Zw oW 5 ozw W (5.19)

If the body is made of a homogeneous material, its center of gravity 
coincides with the centroid C of its volume, and we write [Sample 
Probs. 5.10 and 5.11]

 XwoV 5 oxw V  YwoV 5 oyw V  Zw oV 5 ozw V (5.20)

Center of gravity of a three-
dimensional body
Center of gravity of a three-
dimensional body

Centroid of a volumeCentroid of a volume

Center of gravity of a composite 
body
Center of gravity of a composite 
body
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224

REVIEW PROBLEMS

5.73 and 5.74 Locate the centroid of the plane area shown.

 5.75 A thin homogenous wire is bent to form the perimeter of the plane 
area of Prob. 5.73. Locate the center of gravity of the wire figure 
thus formed.

 5.76 Knowing that the figure shown is formed of a thin homogeneous 
wire, determine the length l of portion CE of the wire for which 
the center of gravity of the figure is located at point C when (a) u 5 
15°, (b) u 5 60°.

x

y 90 mm
135 mm

270 mm

Fig. P5.74

5 in.
8 in.

8 in.
x

y

8 in.

Fig. P5.73

Fig. P5.76

l

A

C E
D

B

r

q

q

 5.77 Determine by direct integration the centroid of the area shown.

5.78 Determine by direct integration the x coordinate of the centroid 
of the area shown.

x

y

y = kx2

h

a a

Fig. P5.77

Fig. P5.78

x

y

2h

h

L

y = 5     – 3 x2

L2
x
L( (
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225Review Problems 5.79 Determine the volume of the body shown.

 5.80 Determine the total surface area of the body shown.

 5.81 Determine the reactions at the beam supports for the given loading 
when w0 5 450 lb/ft.

 5.82 Determine (a) the distributed load w0 at the end C of the beam 
ABC for which the reaction at C is zero, (b) the corresponding 
reaction at B.

 5.83 Determine the center of gravity of the machine element shown.

25 mm

r = 50 mm

40 mm

25 mm

25 mm

Fig. P5.79 and P5.80

B
A C

5 ft 7 ft

600 lb/ft
w0

Fig. P5.81 and P5.82

3 in.

3 in.

1.2 in.

2.25 in.

6 in.
6 in.

3 in.

4.5 in.

z
x

y

Fig. P5.83

 5.84 A regular pyramid 300 mm high, with a square base of side 250 
mm, is made of wood. Its four triangular faces are covered with 
steel sheets 1 mm thick. Locate the center of gravity of the com-
posite body. (Densities: steel 5 7850 kg/m3, wood 5 500 kg/m3.)

250 mm

250 mm

300 mm

Fig. P5.84
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Trusses, such as this Pratt-style 

cantilever arch bridge in New York 

State, provide both a practical and an 

economical solution to many 

engineering problems.
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Analysis of Structures

C H A P T E R
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228

6.1 INTRODUCTION
The problems considered in the preceding chapters concerned the 
equilibrium of a single rigid body, and all the forces involved were 
external to the rigid body. We now consider problems dealing with 
the equilibrium of structures made of several connected parts. These 
problems call for the determination not only of the external forces 
acting on the structure but also of the forces which hold together 
the various parts of the structure. From the point of view of the 
structure as a whole, these forces are internal forces.
 Consider, for example, the crane shown in Fig. 6.1a, which 
carries a load W. The crane consists of three beams AD, CF, and 
BE connected by frictionless pins; it is supported by a pin at A and 
by a cable DG. The free-body diagram of the crane has been drawn 
in Fig. 6.1b. The external forces, which are shown in the diagram, 
include the weight W, the two components Ax and Ay of the reaction 
at A, and the force T exerted by the cable at D. The internal forces 
holding the various parts of the crane together do not appear in the 
diagram. If, however, the crane is dismembered and if a free-body 
diagram is drawn for each of its component parts, the forces holding 
the three beams together will also be represented, since these forces 
are external forces from the point of view of each component part 
(Fig. 6.1c).

Chapter 6 Analysis of Structures
 6.1 Introduction
 6.2 Definition of a Truss
 6.3 Simple Trusses
 6.4 Analysis of Trusses by the 

Method of Joints
 6.5 Joints under Special Loading 

Conditions
 6.6 Analysis of Trusses by the 

Method of Sections
 6.7 Trusses Made of Several Simple 

Trusses
 6.8 Structures Containing Multiforce 

Members
 6.9 Analysis of a Frame
 6.10 Frames Which Cease to Be Rigid 

when Detached from Their 
Supports

 6.11 Machines

 It will be noted that the force exerted at B by member BE on 
member AD has been represented as equal and opposite to the force 
exerted at the same point by member AD on member BE; the 
force exerted at E by BE on CF is shown equal and opposite to the 
force exerted by CF on BE; and the components of the force exerted 
at C by CF on AD are shown equal and opposite to the components 
of the force exerted by AD on CF. This is in conformity with  Newton’s 
third law, which states that the forces of action and reaction between 
bodies in contact have the same magnitude, same line of action, and 
opposite sense. As pointed out in Chap. 1, this law, which is based 
on experimental evidence, is one of the six fundamental principles 
of elementary mechanics, and its application is essential to the solu-
tion of problems involving connected bodies.

Fig. 6.1

TT

A

B

C

D

E
F

W

B

C

D

E

E

F
E

F

W W

G

(a)

B

B

C
C

D

(b) (c)

Ay

Ax

A
Ay

Ax

A
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229 In this chapter, three broad categories of engineering structures 
will be considered:

 1. Trusses, which are designed to support loads and are usually 
stationary, fully constrained structures. Trusses consist exclu-
sively of straight members connected at joints located at the 
ends of each member. Members of a truss, therefore, are two-
force members, i.e., members acted upon by two equal and 
opposite forces directed along the member.

 2. Frames, which are also designed to support loads and are also 
usually stationary, fully constrained structures. However, like 
the crane of Fig. 6.1, frames always contain at least one mul-
tiforce member, i.e., a member acted upon by three or more 
forces which, in general, are not directed along the 
member.

 3. Machines, which are designed to transmit and modify forces 
and are structures containing moving parts. Machines, like 
frames, always contain at least one multiforce member.

TRUSSES

6.2 DEFINITION OF A TRUSS
The truss is one of the major types of engineering structures. It 
provides both a practical and an economical solution to many engi-
neering situations, especially in the design of bridges and buildings. 
A typical truss is shown in Fig. 6.2a. A truss consists of straight 
members connected at joints. Truss members are connected at their 
extremities only; thus no member is continuous through a joint. In 
Fig. 6.2a, for example, there is no member AB; there are instead two 
distinct members AD and DB. Most actual structures are made of 
several trusses joined together to form a space framework. Each truss 
is designed to carry those loads which act in its plane and thus may 
be treated as a two-dimensional structure.
 In general, the members of a truss are slender and can sup-
port little lateral load; all loads, therefore, must be applied to the 
various joints, and not to the members themselves. When a con-
centrated load is to be applied between two joints, or when a dis-
tributed load is to be supported by the truss, as in the case of a 
bridge truss, a floor system must be provided which, through the 
use of stringers and floor beams, transmits the load to the joints 
(Fig. 6.3).
 The weights of the members of the truss are also assumed to 
be applied to the joints, half of the weight of each member being 
applied to each of the two joints the member connects. Although 
the members are actually joined together by means of welded, 
bolted, or riveted connections, it is customary to assume that the 
members are pinned together; therefore, the forces acting at each 
end of a member reduce to a single force and no couple. Thus, the 
only forces assumed to be applied to a truss member are a single 

A B

C

D

(a)

(b)

P

A B

C

D

P

Fig. 6.2

6.2 Defi nition of a Truss

Photo 6.1 Shown is a pin-jointed connection 
on the approach span to the San Francisco–
Oakland Bay Bridge.
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230  Analysis of Structures

Fig. 6.5

Pratt

Pratt

Howe

Howe

Fink
Typical Roof Trusses
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Baltimore

Warren

K truss

Stadium

Cantilever portion
of a truss Bascule

Other Types of Trusses

Floor beams

Stringers

Fig. 6.3

force at each end of the member. Each member can then be treated 
as a two-force member, and the entire truss can be considered as a 
group of pins and two-force members (Fig. 6.2b). An individual 
member can be acted upon as shown in either of the two sketches 
of Fig. 6.4. In Fig. 6.4a, the forces tend to pull the member apart, 
and the member is in tension; in Fig. 6.4b, the forces tend to com-
press the member, and the member is in compression. A number 
of typical trusses are shown in Fig. 6.5.

(a) (b)

Fig. 6.4
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2316.3 SIMPLE TRUSSES
Consider the truss of Fig. 6.6a, which is made of four members con-
nected by pins at A, B, C, and D. If a load is applied at B, the truss 
will greatly deform, completely losing its original shape. In contrast, 
the truss of Fig. 6.6b, which is made of three members connected 
by pins at A, B, and C, will deform only slightly under a load applied 
at B. The only possible deformation for this truss is one involving 
small changes in the length of its members. The truss of Fig. 6.6b 
is said to be a rigid truss, the term rigid being used here to indicate 
that the truss will not collapse.

†The three joints must not be in a straight line.

Fig. 6.6
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 As shown in Fig. 6.6c, a larger rigid truss can be obtained by 
adding two members BD and CD to the basic triangular truss of 
Fig. 6.6b. This procedure can be repeated as many times as desired, 
and the resulting truss will be rigid if each time two new members 
are added, they are attached to two existing joints and connected at 
a new joint.† A truss which can be constructed in this manner is 
called a simple truss.
 It should be noted that a simple truss is not necessarily made 
only of triangles. The truss of Fig. 6.6d, for example, is a simple truss 
which was constructed from triangle ABC by adding successively the 
joints D, E, F, and G. On the other hand, rigid trusses are not always 
simple trusses, even when they appear to be made of triangles. The 
Fink and Baltimore trusses shown in Fig. 6.5, for instance, are not 
simple trusses, since they cannot be constructed from a single trian-
gle in the manner described above. All the other trusses shown in 
Fig. 6.5 are simple trusses, as may be easily checked. (For the K 
truss, start with one of the central triangles.)
 Returning to Fig. 6.6, we note that the basic triangular truss of 
Fig. 6.6b has three members and three joints. The truss of Fig. 6.6c 
has two more members and one more joint, i.e., five members and 
four joints altogether. Observing that every time two new members 
are added, the number of joints is increased by one, we find that in 
a simple truss the total number of members is m 5 2n 2 3, where 
n is the total number of joints.

6.3 Simple Trusses

Photo 6.2 Two K-trusses were used as the 
main components of the movable bridge shown 
which moved above a large stockpile of ore. 
The bucket below the trusses picked up ore and 
redeposited it until the ore was thoroughly mixed.
The ore was then sent to the mill for processing 
into steel.
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232  Analysis of Structures 6.4  ANALYSIS OF TRUSSES BY THE METHOD
OF JOINTS

We saw in Sec. 6.2 that a truss can be considered as a group of pins 
and two-force members. The truss of Fig. 6.2, whose free-body  diagram 
is shown in Fig. 6.7a, can thus be dismembered, and a free-body dia-
gram can be drawn for each pin and each member (Fig. 6.7b). Each 
member is acted upon by two forces, one at each end; these forces have 
the same magnitude, same line of action, and opposite sense (Sec. 4.6). 
Furthermore, Newton’s third law indicates that the forces of action and 
reaction between a member and a pin are equal and opposite. There-
fore, the forces exerted by a member on the two pins it connects must 
be directed along that member and be equal and opposite. The common 
magnitude of the forces exerted by a member on the two pins it con-
nects is commonly referred to as the force in the member considered, 
even though this quantity is actually a scalar. Since the lines of action of 
all the internal forces in a truss are known, the analysis of a truss reduces 
to computing the forces in its various members and to determining 
whether each of its members is in tension or in compression.
 Since the entire truss is in equilibrium, each pin must be in 
equilibrium. The fact that a pin is in equilibrium can be expressed by 
drawing its free-body diagram and writing two equilibrium equations 
(Sec. 2.9). If the truss contains n pins, there will, therefore, be 2n 
equations available, which can be solved for 2n unknowns. In the case 
of a simple truss, we have m 5 2n 2 3, that is, 2n 5 m 1 3, and the 
number of unknowns which can be determined from the free-body 
diagrams of the pins is thus m 1 3. This means that the forces in all 
the members, the two components of the reaction RA, and the reaction 
RB can be found by considering the free-body diagrams of the pins.
 The fact that the entire truss is a rigid body in equilibrium can 
be used to write three more equations involving the forces shown in 
the free-body diagram of Fig. 6.7a. Since they do not contain any 
new information, these equations are not independent of the equa-
tions associated with the free-body diagrams of the pins. Neverthe-
less, they can be used to determine the components of the reactions 
at the supports. The arrangement of pins and members in a simple 
truss is such that it will then always be possible to find a joint involv-
ing only two unknown forces. These forces can be determined by 
the methods of Sec. 2.11 and their values transferred to the adjacent 
joints and treated as known quantities at these joints. This procedure 
can be repeated until all the unknown forces have been determined.
 As an example, the truss of Fig. 6.7 will be analyzed by con-
sidering the equilibrium of each pin successively, starting with a joint 
at which only two forces are unknown. In the truss considered, all 
pins are subjected to at least three unknown forces. Therefore, the 
reactions at the supports must first be determined by considering 
the entire truss as a free body and using the equations of equilibrium 
of a rigid body. We find in this way that RA is vertical and determine 
the magnitudes of RA and RB.
 The number of unknown forces at joint A is thus reduced to 
two, and these forces can be determined by considering the equilib-
rium of pin A. The reaction RA and the forces FAC and FAD exerted 
on pin A by members AC and AD, respectively, must form a force 

Fig. 6.7
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RB

D

RA
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Photo 6.3 Because roof trusses, such as those 
shown, require support only at their ends, it is 
possible to construct buildings with large, 
unobstructed floor areas.
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233

triangle. First we draw RA (Fig. 6.8); noting that FAC and FAD are 
directed along AC and AD, respectively, we complete the triangle 
and determine the magnitude and sense of FAC and FAD. The mag-
nitudes FAC and FAD represent the forces in members AC and AD, 
respectively. Since FAC is directed down and to the left, that is, 
toward joint A, member AC pushes on pin A and is in compression. 
Since FAD is directed away from joint A, member AD pulls on pin A 
and is in tension.
 We can now proceed to joint D, where only two forces, FDC and 
FDB, are still unknown. The other forces are the load P, which is 
given, and the force FDA exerted on the pin by member AD. As indi-
cated above, this force is equal and opposite to the force FAD exerted 
by the same member on pin A. We can draw the force polygon cor-
responding to joint D, as shown in Fig. 6.8, and determine the forces 
FDC and FDB from that polygon. However, when more than three 
forces are involved, it is usually more convenient to solve the equa-
tions of equilibrium oFx 5 0 and oFy 5 0 for the two unknown 
forces. Since both of these forces are found to be directed away from 
joint D, members DC and DB pull on the pin and are in tension.

Fig. 6.8

Free-body diagram

Joint A

Joint D

Joint C

Joint B B

Force  polygon

FAC

FAC

FAD
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FCA
FCB

FCD
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6.4 Analysis of Trusses by the Method of Joints
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234  Analysis of Structures  Next, joint C is considered; its free-body diagram is shown in 
Fig. 6.8. It is noted that both FCD and FCA are known from the 
analysis of the preceding joints and that only FCB is unknown. Since 
the equilibrium of each pin provides sufficient information to deter-
mine two unknowns, a check of our analysis is obtained at this joint. 
The force triangle is drawn, and the magnitude and sense of FCB are 
determined. Since FCB is directed toward joint C, member CB 
pushes on pin C and is in compression. The check is obtained by 
verifying that the force FCB and member CB are parallel.
 At joint B, all of the forces are known. Since the corresponding 
pin is in equilibrium, the force triangle must close and an additional 
check of the analysis is obtained.
 It should be noted that the force polygons shown in Fig. 6.8 are 
not unique. Each of them could be replaced by an alternative configu-
ration. For example, the force triangle corresponding to joint A could 
be drawn as shown in Fig. 6.9. The triangle actually shown in Fig. 6.8 
was obtained by drawing the three forces RA, FAC, and FAD in tip-to-tail 
fashion in the order in which their lines of action are encountered when 
moving clockwise around joint A. The other force polygons in Fig. 6.8, 
having been drawn in the same way, can be made to fit into a single 
diagram, as shown in Fig. 6.10. Such a diagram, known as Maxwell’s 
diagram, greatly facilitates the  graphical analysis of truss problems.

6.5  JOINTS UNDER SPECIAL LOADING CONDITIONS
Consider Fig. 6.11a, in which the joint shown connects four members 
lying in two intersecting straight lines. The free-body diagram of 
Fig. 6.11b shows that pin A is subjected to two pairs of directly opposite 
forces. The corresponding force polygon, therefore, must be a parallelo-
gram (Fig. 6.11c), and the forces in opposite members must be equal.
 Consider next Fig. 6.12a, in which the joint shown connects 
three members and supports a load P. Two of the members lie in 
the same line, and the load P acts along the third member. The free-
body diagram of pin A and the corresponding force polygon will be 
as shown in Fig. 6.11b and c, with FAE replaced by the load P. Thus, 
the forces in the two opposite members must be equal, and the force 
in the other member must equal P. A particular case of special inter-
est is shown in Fig. 6.12b. Since, in this case, no external load is 
applied to the joint, we have P 5 0, and the force in member AC is 
zero. Member AC is said to be a zero-force member.

Fig. 6.9
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235 Consider now a joint connecting two members only. From 
Sec. 2.9, we know that a particle which is acted upon by two forces will 
be in equilibrium if the two forces have the same magnitude, same line 
of action, and opposite sense. In the case of the joint of Fig. 6.13a, 
which connects two members AB and AD lying in the same line, the 
forces in the two members must be equal for pin A to be in equilibrium. 
In the case of the joint of Fig. 6.13b, pin A cannot be in equilibrium 
unless the forces in both members are zero. Members connected as 
shown in Fig. 6.13b, therefore, must be zero-force members.
 Spotting the joints which are under the special loading condi-
tions listed above will expedite the analysis of a truss. Consider, for 
example, a Howe truss loaded as shown in Fig. 6.14. All of the mem-
bers represented by green lines will be recognized as zero-force 
members. Joint C connects three members, two of which lie in the 
same line and is not subjected to any external load; member BC is 
thus a zero-force member. Applying the same reasoning to joint K, 
we find that member JK is also a zero-force member. But joint J is 
now in the same situation as joints C and K, and member IJ must be 
a zero-force member. The examination of joints C, J, and K also shows 
that the forces in members AC and CE are equal, that the forces in 
members HJ and JL are equal, and that the forces in members IK 
and KL are equal. Turning our attention to joint I, where the 20-kN 
load and member HI are collinear, we note that the force in member 
HI is 20 kN (tension) and that the forces in members GI and IK are 
equal. Hence, the forces in members GI, IK, and KL are equal.
 Note that the conditions described above do not apply to joints B 
and D in Fig. 6.14, and it would be wrong to assume that the force in 
member DE is 25 kN or that the forces in members AB and BD are 
equal. The forces in these members and in all the remaining members 
should be found by carrying out the analysis of joints A, B, D, E, F, G, 
H, and L in the usual manner. Thus, until you have become thoroughly 
familiar with the conditions under which the rules established in this 
section can be applied, you should draw the free-body diagrams of all the 
pins and write the corresponding equilibrium equations (or draw the 
corresponding force polygons) whether or not the joints being consid-
ered are under one of the special loading conditions described above.
 A final remark concerning zero-force members: These mem-
bers are not useless. For example, although the zero-force members 
of Fig. 6.14 do not carry any loads under the loading conditions 
shown, the same members would probably carry loads if the loading 
conditions were changed. Besides, even in the case considered, these 
members are needed to support the weight of the truss and to main-
tain the truss in the desired shape.

6.5 Joints under Special Loading Conditions

Fig. 6.12
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SAMPLE PROBLEM 6.1

Using the method of joints, determine the force in each member of the 
truss shown.

SOLUTION

Free-Body: Entire Truss. A free-body diagram of the entire truss is drawn; 
external forces acting on this free body consist of the applied loads and the 
reactions at C and E. We write the following equilibrium equations.

 1loMC 5 0: (2000 lb)(24 ft) 1 (1000 lb)(12 ft) 2 E(6 ft) 5 0
 E 5 110,000 lb E 5 10,000 lbx

y
1 oFx 5 0: Cx 5 0

 1xoFy 5 0: 22000 lb 2 1000 lb 1 10,000 lb 1 Cy 5 0
 Cy 5 27000 lb Cy 5 7000 lbw

Free-Body: Joint A. This joint is subjected to only two unknown forces, 
namely, the forces exerted by members AB and AD. A force triangle is used 
to determine FAB and FAD. We note that member AB pulls on the joint and 
thus is in tension and that member AD pushes on the joint and thus is in 
compression. The magnitudes of the two forces are obtained from the 
proportion

2000 lb
4

5
FAB

3
5

FAD

5
FAB 5 1500 lb T ◀

FAD 5 2500 lb C ◀

Free-Body: Joint D. Since the force exerted by member AD has been 
determined, only two unknown forces are now involved at this joint. Again, 
a force triangle is used to determine the unknown forces in members DB 
and DE.

 FDB 5 FDA FDB 5 2500 lb T ◀

 FDE 5 2(3
5)FDA FDE 5 3000 lb C ◀

FDA = 2500 lb
FDB

FDB
FDE

FDE FDA

3 3
4 45 5

FAD
FAD

FAB

FAB

A

2000 lb

2000 lb

3

3

4
45 5

12 ft

12 ft

12 ft

6 ft6 ft

8 ft

A B C

D E
E

2000 lb 1000 lb Cy

C x

12 ft

12 ft

12 ft

6 ft6 ft

8 ft

A B C

D E

2000 lb 1000 lb
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237

Free-Body: Joint B. Since more than three forces act at this joint, we 
determine the two unknown forces FBC and FBE by solving the equilibrium 
equations oFx 5 0 and oFy 5 0. We arbitrarily assume that both unknown 
forces act away from the joint, i.e., that the members are in tension. The 
positive value obtained for FBC indicates that our assumption was correct; 
member BC is in tension. The negative value of FBE indicates that our 
assumption was wrong; member BE is in compression.

1xoFy 5 0: 21000 2 4
5(2500) 2 4

5FBE 5 0
 FBE 5 23750 lb FBE 5 3750 lb C ◀

y
1 oFx 5 0:  FBC 2 1500 2 3

5(2500) 2 3
5(3750) 5 0

 FBC 5 15250 lb FBC 5 5250 lb T ◀

Free-Body: Joint E. The unknown force FEC is assumed to act away from 
the joint. Summing x components, we write

y
1 oFx 5 0:  3

5FEC 1 3000 1 3
5(3750) 5 0

 FEC 5 28750 lb FEC 5 8750 lb C ◀

 Summing y components, we obtain a check of our computations:

 1xoFy 5 10,000 2 4
5(3750) 2 4

5(8750)
 5 10,000 2 3000 2 7000 5 0 (checks)

Free-Body: Joint C. Using the computed values of FCB and FCE, we can 
determine the reactions Cx and Cy by considering the equilibrium of 
this joint. Since these reactions have already been determined from the 
equilibrium of the entire truss, we will obtain two checks of our com-
putations. We can also simply use the computed values of all forces acting 
on the joint (forces in members and reactions) and check that the joint is 
in equilibrium:

 y
1 oFx 5 25250 1 3

5(8750) 5 25250 1 5250 5 0 (checks)
 1xoFy 5 27000 1 4

5(8750) 5 27000 1 7000 5 0 (checks)

FCB = 5250 lb

FCE = 8750 lb

Cy = 7000 lb

Cx = 0
C

3
4

FEB = 3750 lb FEC

FED = 3000 lb

E = 10,000 lb

E
33

44

FBA = 1500 lb

FBD = 2500 lb FBE

B
FBC

1000 lb

33
44
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PROBLEMS

238

 6.1 through 6.18 Using the method of joints, determine the force 
in each member of the truss shown. State whether each member 
is in tension or compression.
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239Problems

 6.19 Determine whether the trusses given as Probs. 6.17, 6.21, and 6.23 
are simple trusses.

 6.20 Determine whether the trusses given as Probs. 6.12, 6.14, 6.22, 
and 6.24 are simple trusses.
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 6.21 through 6.24 Determine the zero-force members in the truss 
shown for the given loading.
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Fig. P6.21
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Fig. P6.22
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Fig. P6.24

6.6  ANALYSIS OF TRUSSES BY THE METHOD 
OF SECTIONS

The method of joints is most effective when the forces in all the 
members of a truss are to be determined. If, however, the force in 
only one member or the forces in a very few members are desired, 
another method, the method of sections, is more efficient.
 Assume, for example, that we want to determine the force in 
member BD of the truss shown in Fig. 6.15a. To do this, we must 
determine the force with which member BD acts on either joint B 
or joint D. If we were to use the method of joints, we would choose 
either joint B or joint D as a free body. However, we can also choose 
as a free body a larger portion of the truss, composed of several joints 
and members, provided that the desired force is one of the external 
forces acting on that portion. If, in addition, the portion of the truss 
is chosen so that there is a total of only three unknown forces acting 
upon it, the desired force can be obtained by solving the equations 
of equilibrium for this portion of the truss. In practice, the portion 
of the truss to be utilized is obtained by passing a section through 
three members of the truss, one of which is the desired member, 
i.e., by drawing a line which divides the truss into two completely 
separate parts but does not intersect more than three members. 
Either of the two portions of the truss obtained after the intersected 
members have been removed can then be used as a free body.†
 In Fig. 6.15a, the section nn has been passed through members 
BD, BE, and CE, and the portion ABC of the truss is chosen as the 

†In the analysis of certain trusses, sections are passed which intersect more than three 
members; the forces in one, or possibly two, of the intersected members may be 
obtained if equilibrium equations can be found, each of which involves only one 
unknown (see Probs. 6.41 through 6.43).

Fig. 6.15
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241free body (Fig. 6.15b). The forces acting on the free body are the loads 
P1 and P2 at points A and B, respectively, and the three unknown forces 
FBD, FBE, and FCE. Since it is not known whether the members removed 
were in tension or compression, the three forces have been arbitrarily 
drawn away from the free body as if the members were in tension.
 The fact that the rigid body ABC is in equilibrium can be 
expressed by writing three equations which can be solved for the three 
unknown forces. If only the force FBD is desired, we need write only 
one equation, provided that the equation does not contain the other 
unknowns. Thus, the equation oME 5 0 yields the value of the magni-
tude FBD of the force FBD (Fig. 6.15). A positive sign in the answer will 
indicate that our original assumption regarding the sense of FBD was 
correct and that member BD is in tension; a negative sign will indicate 
that our assumption was incorrect and that BD is in compression.
 On the other hand, if only the force FCE is desired, an equation 
which does not involve FBD or FBE should be written; the appropriate 
equation is oMB 5 0. Again a positive sign for the magnitude FCE of 
the desired force indicates a correct assumption, that is, tension; and a 
negative sign indicates an incorrect assumption, that is, compression.
 If only the force FBE is desired, the appropriate equation is 
oFy 5 0. Whether the member is in tension or compression is again 
determined from the sign of the answer.
 When the force in only one member is determined, no inde-
pendent check of the computation is available. However, when all 
the unknown forces acting on the free body are determined, the 
computations can be checked by writing an additional equation. For 
instance, if FBD, FBE, and FCE are determined as indicated above, 
the computation can be checked by verifying that oFx 5 0.

*6.7 TRUSSES MADE OF SEVERAL SIMPLE TRUSSES
Consider two simple trusses ABC and DEF. If they are connected by 
three bars BD, BE, and CE as shown in Fig. 6.16a, they will form 
together a rigid truss ABDF. The trusses ABC and DEF can also be 
combined into a single rigid truss by joining joints B and D into a single 
joint B and by connecting joints C and E by a bar CE (Fig. 6.16b). 
The truss thus obtained is known as a Fink truss. It should be noted 
that the trusses of Fig. 6.16a and b are not simple trusses; they cannot 
be constructed from a triangular truss by adding successive pairs of 
members as prescribed in Sec. 6.3. They are rigid trusses, however, 
as we can check by comparing the systems of connections used to hold 
the simple trusses ABC and DEF together (three bars in Fig. 6.16a, 
one pin and one bar in Fig. 6.16b) with the systems of supports 
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C E
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Fig. 6.16

6.7 Trusses Made of Several Simple Trusses

bee80156_ch06_226-275.indd Page 241  10/16/09  11:51:05 AM user-s173bee80156_ch06_226-275.indd Page 241  10/16/09  11:51:05 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-06/Volumes/MHDQ-New/MHDQ152/MHDQ152-06



242  Analysis of Structures
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Fig. 6.16 (repeated )

 discussed in Secs. 4.4 and 4.5. Trusses made of several simple trusses 
rigidly connected are known as compound trusses.
 In a compound truss the number of members m and the number 
of joints n are still related by the formula m 5 2n 2 3. This can be 
verified by observing that, if a compound truss is supported by a fric-
tionless pin and a roller (involving three unknown reactions), the total 
number of unknowns is m 1 3, and this number must be equal to the 
number 2n of equations obtained by expressing that the n pins are in 
equilibrium; it follows that m 5 2n 2 3. Compound trusses supported 
by a pin and a roller, or by an equivalent system of supports, are stati-
cally determinate, rigid, and completely constrained. This means that 
all of the unknown reactions and the forces in all the members can 
be determined by the methods of statics and that the truss will neither 
collapse nor move. The forces in the members, however, cannot all be 
determined by the method of joints, except by solving a large number 
of simultaneous equations. In the case of the compound truss of Fig. 
6.16a, for example, it is more efficient to pass a section through mem-
bers BD, BE, and CE to determine the forces in these members.
 Suppose, now, that the simple trusses ABC and DEF are con-
nected by four bars BD, BE, CD, and CE (Fig. 6.17). The number of 
members m is now larger than 2n 2 3; the truss obtained is overrigid, 
and one of the four members BD, BE, CD, or CE is said to be redun-
dant. If the truss is supported by a pin at A and a roller at F, the 
total number of unknowns is m 1 3. Since m . 2n 2 3, the number 
m 1 3 of unknowns is now larger than the number 2n of available 
independent equations; the truss is statically indeterminate.
 Finally, let us assume that the two simple trusses ABC and 
DEF are joined by a pin as shown in Fig. 6.18a. The number of mem-
bers m is smaller than 2n 2 3. If the truss is supported by a pin at 
A and a roller at F, the total number of unknowns is m 1 3. Since 
m , 2n 2 3, the number m 1 3 of unknowns is now smaller than 
the number 2n of equilibrium equations which should be satisfied; 
the truss is nonrigid and will collapse under its own weight. How-
ever, if two pins are used to support it, the truss becomes rigid 
and will not collapse (Fig. 6.18b). We note that the total number 
of unknowns is now m 1 4 and is equal to the number 2n of equa-
tions. More generally, if the reactions at the supports involve r 
unknowns, the condition for a compound truss to be statically deter-
minate, rigid, and completely constrained is m 1 r 5 2n. However, 
while necessary, this condition is not sufficient for the equilibrium 
of a structure which ceases to be rigid when detached from its sup-
ports (see Sec. 6.10).
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SOLUTION

Free-Body: Entire Truss. A free-body diagram of the entire truss is 
drawn; external forces acting on this free body consist of the applied 
loads and the reactions at B and J. We write the following equilibrium 
equations.

 1loMB 5 0:
 2(28 kips)(8 ft) 2 (28 kips)(24 ft) 2 (16 kips)(10 ft) 1 J(32 ft) 5 0

J 5 133 kips  J 5 33 kipsx

y
1 oFx 5 0:  Bx 1 16 kips 5 0

Bx 5 216 kips  Bx 5 16 kipsz

 1loMJ 5 0:
 (28 kips)(24 ft) 1 (28 kips)(8 ft) 2 (16 kips)(10 ft) 2 By(32 ft) 5 0

By 5 123 kips  By 5 23 kipsx

Force in Member EF. Section nn is passed through the truss so that it 
intersects member EF and only two additional members. After the inter-
sected members have been removed, the left-hand portion of the truss is 
chosen as a free body. Three unknowns are involved; to eliminate the two 
horizontal forces, we write

 1xoFy 5 0:  123 kips 2 28 kips 2 FEF 5 0
 FEF 5 25 kips

The sense of FEF was chosen assuming member EF to be in tension; the 
negative sign obtained indicates that the member is in compression.

FEF 5 5 kips C ◀

Force in Member GI. Section mm is passed through the truss so that it 
intersects member GI and only two additional members. After the inter-
sected members have been removed, we choose the right-hand portion of 
the truss as a free body. Three unknown forces are again involved; to elimi-
nate the two forces passing through point H, we write

 1loMH 5 0:  (33 kips)(8 ft) 2 (16 kips)(10 ft) 1 FGI(10 ft) 5 0
FGI 5 210.4 kips  FGI 5 10.4 kips C ◀

A

B
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8 ft 8 ft 8 ft 8 ft 8 ft
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28 kips 28 kips
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J
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28 kips 28 kips

16 kips
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n

n
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m
23 kips 33 kips

FEG
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FDF
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16 kips
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C E
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FHI
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I

J
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33 kips

SAMPLE PROBLEM 6.2

Determine the force in members EF and GI of the truss shown.
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SOLUTION

Free Body: Entire Truss. From the free-body diagram of the entire truss, 
we find the reactions at A and L:

A 5 12.50 kNx  L 5 7.50 kNx

We note that

tan a 5
FG
GL

5
8 m

15 m
5 0.5333   a 5 28.07°

Force in Member GI. Section nn is passed through the truss as shown. 
Using the portion HLI of the truss as a free body, the value of FGI is obtained 
by writing

 1loMH 5 0:  (7.50 kN)(10 m) 2 (1 kN)(5 m) 2 FGI(5.33 m) 5 0
FGI 5 113.13 kN  FGI 5 13.13 kN T ◀

Force in Member FH. The value of FFH is obtained from the equation 
oMG 5 0. We move FFH along its line of action until it acts at point F, 
where it is resolved into its x and y components. The moment of FFH with 
respect to point G is now equal to (FFH cos a)(8 m).

 1loMG 5 0:
 (7.50 kN)(15 m) 2 (1 kN)(10 m) 2 (1 kN)(5 m) 1 (FFH cos a)(8 m) 5 0

FFH 5 213.81 kN  FFH 5 13.81 kN C ◀

Force in Member GH. We first note that

 tan b 5
GI
HI

5
5 m

2
3(8 m)

5 0.9375   b 5 43.15°

The value of FGH is then determined by resolving the force FGH into x and 
y components at point G and solving the equation oML 5 0.

 1loML 5 0:  (1 kN)(10 m) 1 (1 kN)(5 m) 1 (FGH cos b)(15 m) 5 0
FGH 5 21.371 kN  FGH 5 1.371 kN C ◀

SAMPLE PROBLEM 6.3

Determine the force in members FH, GH, and GI of the roof truss 
shown.h = 8 m
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1 kN
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PROBLEMS

245

 6.25 Determine the force in members BD and CD of the truss shown.

6.26 Determine the force in members DF and DG of the truss shown.

6.27 Determine the force in members FG and FH of the truss shown 
when P 5 35 kN.

6.28 Determine the force in members EF and EG of the truss shown 
when P 5 35 kN.

 6.29 Determine the force in members DE and DF of the truss shown 
when P 5 20 kips.

6.30 Determine the force in members EG and EF of the truss shown 
when P 5 20 kips.

 6.31 Determine the force in members DF and DE of the truss shown.

 6.32 Determine the force in members CD and CE of the truss shown.

A B D F H

C E G

36 kips 36 kips

4 panels at 10 ft = 40 ft

7.5 ft

Fig. P6.25 and P6.26

4 m 4 m 4 m 4 m 4 m

3.5 m

P P P P P P
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B D F H

I
GE
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Fig. P6.27 and P6.28
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K

L

PP P P P

Fig. P6.29 and P6.30
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E

F

G

30 kN 20 kN

2 m

1.5 m 2 m

2 m 2 m

Fig. P6.31 and P6.32
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246 Analysis of Structures  6.33 Determine the force in members BD and DE of the truss shown.

 6.34 Determine the force in members FH and DH of the truss shown.

 6.35 Determine the force in members FH, GH, and GI of the stadium 
truss shown.

 6.36 Determine the force in members DF, DE, and CE of the stadium 
truss shown.

 6.37 Determine the force in members CE, DE, and DF of the truss 
shown.

 6.38 Determine the force in members GI, GJ, and HI of the truss 
shown.

 6.39 Determine the force in members AD, CD, and CE of the truss 
shown.
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B
C

D
E

F

H I

G

15 kN

4.5 m

3 m

3 m

3 m

3 m

15 kN

15 kN
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Fig. P6.33 and P6.34
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Fig. P6.37 and P6.38
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B C
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H
I K

9 kips
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15 ft 15 ft 15 ft

8 ft

J

Fig. P6.39 and P6.40

 6.40 Determine the force in members DG, FG, and FH of the truss 
shown.
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247Problems 6.41 Determine the force in member GJ of the truss shown. (Hint: Use 
section a-a.)

 6.42 Determine the force in members AB and KL of the truss shown. 
(Hint: Use section a-a.)

 6.43 Determine the force in members DG and FH of the truss shown. 
(Hint: Use section a-a.)
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2 m
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Fig. P6.41
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a

a

Fig. P6.42

 6.44 The diagonal members in the center panels of the truss shown are 
very slender and can act only in tension; such members are known 
as counters. Determine the force in member DE and in the coun-
ters that are acting under the given loading.

 6.45 Solve Prob. 6.44 assuming that the 6-kip load has been removed.

 6.46 Solve Prob. 6.44 assuming that the 9-kip load has been removed.

 6.47 and 6.48 Classify each of the given structures as completely, 
partially, or improperly constrained; if completely constrained, fur-
ther classify as determinate or indeterminate. All members can act 
both in tension and in compression.

3.5 m

35 kN 35 kN 35 kN

6 panels @ 5 m = 30 m

a

a

3.5 m

D

B L

NC

F H K M

E J
A

G I

Fig. P6.43
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6 kips 9 kips 12 kips

A

B

C E G

H

D F

8 ft 8 ft 8 ft 8 ft
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Fig. P6.44

(a) (b) (c)
P P P

Fig. P6.47

(a) (b) (c)
P P P

Fig. P6.48
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248  Analysis of Structures
 FRAMES AND MACHINES

6.8 STRUCTURES CONTAINING MULTIFORCE MEMBERS
Under trusses, we have considered structures consisting entirely of 
pins and straight two-force members. The forces acting on the two-
force members were known to be directed along the members them-
selves. We now consider structures in which at least one of the 
members is a multiforce member, i.e., a member acted upon by three 
or more forces. These forces will generally not be directed along the 
members on which they act; their direction is unknown, and they 
should be represented therefore by two unknown components.
 Frames and machines are structures containing multiforce 
members. Frames are designed to support loads and are usually sta-
tionary, fully constrained structures. Machines are designed to trans-
mit and modify forces; they may or may not be stationary and will 
always contain moving parts.

6.9 ANALYSIS OF A FRAME
As a first example of analysis of a frame, the crane described in Sec. 6.1, 
which carries a given load W (Fig. 6.19a), will again be considered. 
The free-body diagram of the entire frame is shown in Fig. 6.19b. This 
diagram can be used to determine the external forces acting on the 
frame. Summing moments about A, we first determine the force T 
exerted by the cable; summing x and y components, we then deter-
mine the components Ax and Ay of the reaction at the pin A.
 In order to determine the internal forces holding the various 
parts of a frame together, we must dismember the frame and draw 
a free-body diagram for each of its component parts (Fig. 6.19c). 
First, the two-force members should be considered. In this frame, 
member BE is the only two-force member. The forces acting at each 
end of this member must have the same magnitude, same line of 
action, and opposite sense (Sec. 4.6). They are therefore directed 
along BE and will be denoted, respectively, by FBE and 2FBE. Their 
sense will be arbitrarily assumed as shown in Fig. 6.19c; later the 
sign obtained for the common magnitude FBE of the two forces will 
confirm or deny this assumption.
 Next, we consider the multiforce members, i.e., the members 
which are acted upon by three or more forces. According to  Newton’s 
third law, the force exerted at B by member BE on member AD 
must be equal and opposite to the force FBE exerted by AD on BE. 
Similarly, the force exerted at E by member BE on member CF 
must be equal and opposite to the force 2FBE exerted by CF on BE. 
Thus the forces that the two-force member BE exerts on AD and 
CF are equal to 2FBE and FBE, respectively; they have the same 
magnitude FBE and opposite sense and should be directed as shown 
in Fig. 6.19c.
 At C two multiforce members are connected. Since neither 
the direction nor the magnitude of the forces acting at C is known, 
these forces will be represented by their x and y components. The 
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2496.10 Frames Which Cease to Be Rigid when 
Detached from Their Supports

components Cx and Cy of the force acting on member AD will be 
arbitrarily directed to the right and upward. Since, according to 
Newton’s third law, the forces exerted by member CF on AD and by 
member AD on CF are equal and opposite, the components of the 
force acting on member CF must be directed to the left and down-
ward; they will be denoted, respectively, by 2Cx and 2Cy. Whether 
the force Cx is actually directed to the right and the force 2Cx is 
actually directed to the left will be determined later from the sign 
of their common magnitude Cx, a plus sign indicating that the 
assumption made was correct and a minus sign that it was wrong. 
The free-body diagrams of the multiforce members are completed 
by showing the external forces acting at A, D, and F.†
 The internal forces can now be determined by considering the 
free-body diagram of either of the two multiforce members. Choos-
ing the free-body diagram of CF, for example, we write the equations 
oMC 5 0, oME 5 0, and oFx 5 0, which yield the values of the 
magnitudes FBE, Cy, and Cx, respectively. These values can be checked 
by verifying that member AD is also in equilibrium.
 It should be noted that the pins in Fig. 6.19 were assumed 
to form an integral part of one of the two members they connected 
and so it was not necessary to show their free-body diagram. This 
assumption can always be used to simplify the analysis of frames 
and machines. When a pin connects three or more members, how-
ever, or when a pin connects a support and two or more members, 
or when a load is applied to a pin, a clear decision must be made 
in choosing the member to which the pin will be assumed to 
belong. (If multiforce members are involved, the pin should be 
attached to one of these members.) The various forces exerted on 
the pin should then be clearly identified. This is illustrated in 
Sample Prob. 6.6.

6.10  FRAMES WHICH CEASE TO BE RIGID WHEN 
DETACHED FROM THEIR SUPPORTS

The crane analyzed in Sec. 6.9 was so constructed that it could keep 
the same shape without the help of its supports; it was therefore 
considered as a rigid body. Many frames, however, will collapse if 
detached from their supports; such frames cannot be considered as 
rigid bodies. Consider, for example, the frame shown in Fig. 6.20a, 

†It is not strictly necessary to use a minus sign to distinguish the force exerted by one 
member on another from the equal and opposite force exerted by the second mem-
ber on the first since the two forces belong to different free-body diagrams and thus 
cannot easily be confused. In the Sample Problems, the same symbol is used to rep-
resent equal and opposite forces which are applied to different free bodies. It should 
be noted that, under these conditions, the sign obtained for a given force component 
will not directly relate the sense of that component to the sense of the corresponding 
coordinate axis. Rather, a positive sign will indicate that the sense assumed for that 
component in the free-body diagram is correct, and a negative sign will indicate that 
it is wrong.

A B

C

(a)

QP

A B

C C

(b)

Ay

A x

By

Bx

Cy

C x

–Cy

–C x

QP

A B

C

(c)
Ay

A x

By

Bx

QP

Fig. 6.20
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250  Analysis of Structures which consists of two members AC and CB carrying loads P and Q, 
respectively, at their midpoints; the members are supported by pins 
at A and B and are connected by a pin at C. If detached from its 
supports, this frame will not maintain its shape; it should therefore 
be considered as made of two distinct rigid parts AC and CB.
 The equations oFx 5 0, oFy 5 0, oM 5 0 (about any given 
point) express the conditions for the equilibrium of a rigid body 
(Chap. 4); we should use them, therefore, in connection with the 
free-body diagrams of rigid bodies, namely, the free-body diagrams 
of members AC and CB (Fig. 6.20b). Since these members are multi-
force members, and since pins are used at the supports and at the 
connection, the reactions at A and B and the forces at C will each be 
represented by two components. In accordance with Newton’s third 
law, the components of the force exerted by CB on AC and the com-
ponents of the force exerted by AC on CB will be represented by 
vectors of the same magnitude and opposite sense; thus, if the first 
pair of components consists of Cx and Cy, the second pair will be 
represented by 2Cx and 2Cy. We note that four unknown force 
components act on free body AC, while only three independent equa-
tions can be used to express that the body is in equilibrium; similarly, 
four unknowns, but only three equations, are associated with CB. 
However, only six different unknowns are involved in the analysis of 
the two members, and altogether six equations are available to express 
that the members are in equilibrium. Writing oMA 5 0 for free body 
AC and oMB 5 0 for CB, we obtain two simultaneous equations 
which may be solved for the common magnitude Cx of the compo-
nents Cx and 2Cx, and for the common magnitude Cy of the com-
ponents Cy and 2Cy. We then write oFx 5 0 and oFy 5 0 for each 
of the two free bodies, obtaining, successively, the magnitudes Ax, Ay, 
Bx, and By.

A B

C

(a)

QP

A B

C C

(b)

Ay

A x

By

Bx

Cy

C x

–Cy

–C x

QP

A B

C

(c)
Ay

A x

By

Bx

QP

Fig. 6.20 (repeated)

 It can now be observed that since the equations of equilibrium 
oFx 5 0, oFy 5 0, and oM 5 0 (about any given point) are satisfied 
by the forces acting on free body AC, and since they are also satisfied 
by the forces acting on free body CB, they must be satisfied when the 
forces acting on the two free bodies are considered simultaneously. 
Since the internal forces at C cancel each other, we find that the equa-
tions of equilibrium must be satisfied by the external forces shown on 
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2516.10 Frames Which Cease to Be Rigid when 
Detached from Their Supports

the free-body diagram of the frame ACB itself (Fig. 6.20c) although 
the frame is not a rigid body. These equations can be used to deter-
mine some of the components of the reactions at A and B. We will 
also find, however, that the reactions cannot be completely determined 
from the free-body diagram of the whole frame. It is thus necessary to 
dismember the frame and to consider the free-body diagrams of 
its component parts (Fig. 6.20b), even when we are interested in 
determining external reactions only. This is because the equilibrium 
equations obtained for free body ACB are necessary conditions for 
the equilibrium of a nonrigid structure, but are not sufficient 
conditions.
 The method of solution outlined in the second paragraph of 
this section involved simultaneous equations. A more efficient method 
is now presented, which utilizes the free body ACB as well as the 
free bodies AC and CB. Writing oMA 5 0 and oMB 5 0 for free 
body ACB, we obtain By and Ay. Writing oMC 5 0, oFx 5 0, and 
oFy 5 0 for free body AC, we obtain, successively, Ax, Cx, and Cy. 
Finally, writing oFx 5 0 for ACB, we obtain Bx.
 We noted above that the analysis of the frame of Fig. 6.20 
involves six unknown force components and six independent equi-
librium equations. (The equilibrium equations for the whole frame 
were obtained from the original six equations and, therefore, are 
not independent.) Moreover, we checked that all unknowns could 
be actually determined and that all equations could be satisfied. 
The frame considered is statically determinate and rigid.† In gen-
eral, to determine whether a structure is statically determinate and 
rigid, we should draw a free-body diagram for each of its compo-
nent parts and count the reactions and internal forces involved. We 
should also determine the number of independent equilibrium 
equations (excluding equations expressing the equilibrium of the 
whole structure or of groups of component parts already analyzed). 
If there are more unknowns than equations, the structure is stati-
cally indeterminate. If there are fewer unknowns than equations, 
the structure is  nonrigid. If there are as many unknowns as equa-
tions, and if all the unknowns can be determined and all the equa-
tions satisfied under general loading conditions, the structure is 
statically determinate and rigid. If, however, due to an improper 
arrangement of members and supports, all the unknowns cannot 
be determined and all the equations cannot be satisfied, the struc-
ture is statically indeterminate and nonrigid.

†The word “rigid” is used here to indicate that the frame will maintain its shape as long 
as it remains attached to its supports.
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SAMPLE PROBLEM 6.4

In the frame shown, members ACE and BCD are connected by a pin at C 
and by the link DE. For the loading shown, determine the force in link DE 
and the components of the force exerted at C on member BCD.

SOLUTION

Free Body: Entire Frame. Since the external reactions involve only three 
unknowns, we compute the reactions by considering the free-body diagram 
of the entire frame.

 1xoFy 5 0: Ay 2 480 N 5 0  Ay 5 1480 N Ay 5 480 Nx
 1loMA 5 0:  2(480 N)(100 mm) 1 B(160 mm) 5 0
  B 5 1300 N B 5 300 Ny
y
1 oFx 5 0: B 1 Ax 5 0
 300 N 1 Ax 5 0 Ax 5 2300 N Ax 5 300 Nz

Members. We now dismember the frame. Since only two members are 
connected at C, the components of the unknown forces acting on ACE and 
BCD are, respectively, equal and opposite and are assumed directed as 
shown. We assume that link DE is in tension and exerts equal and opposite 
forces at D and E, directed as shown.

Free Body: Member BCD. Using the free body BCD, we write

 1ioMC 5 0:
(FDE sin a)(250 mm) 1 (300 N)(80 mm) 1 (480 N)(100 mm) 5 0

 FDE 5 2561 N FDE 5 561 N C ◀

y
1 oFx 5 0: Cx 2 FDE cos a 1 300 N 5 0
 Cx 2 (2561 N) cos 28.07° 1 300 N 5 0 Cx 5 2795 N
 1xoFy 5 0: Cy 2 FDE sin a 2 480 N 5 0
 Cy 2 (2561 N) sin 28.07° 2 480 N 5 0 Cy 5 1216 N

From the signs obtained for Cx and Cy we conclude that the force compo-
nents Cx and Cy exerted on member BCD are directed, respectively, to the 
left and up. We have

Cx 5 795 Nz, Cy 5 216 Nx ◀

Free Body: Member ACE (Check). The computations are checked by 
considering the free body ACE. For example,

 1loMA 5 (FDE cos a)(300 mm) 1 (FDE sin a)(100 mm) 2 Cx(220 mm)
 5 (2561 cos a)(300) 1 (2561 sin a)(100) 2 (2795)(220) 5 0

A

B

C D

E

160 mm

80 mm

480 N

100 mm
150 mm

Ay

B

A x

a

a = tan–1 = 28.07°80
150

C

A

E

D

E

80 mm

480 N

100 mm

aCy

Cx
FDE

FDE

FDE

300 N

220 mm

B

C

D

60 mm

60 mm
480 N

100 mm
150 mm

a

Cy

Cx

FDE

300 N

A

B

C D

E

60 mm

60 mm

80 mm

480 N

100 mm
150 mm

160 mm
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SAMPLE PROBLEM 6.5

Determine the components of the forces acting on each member of the 
frame shown.

2400 N

A

C
D

E F

3.6 m

4.8 m

Ey F
Ex

B

SOLUTION

Free Body: Entire Frame. Since the external reactions involve only three 
unknowns, we compute the reactions by considering the free-body diagram 
of the entire frame.

 1loME 5 0:  2(2400 N)(3.6 m) 1 F(4.8 m) 5 0
 F 5 11800 N F 5 1800 Nx ◀

 1xoFy 5 0: 22400 N 1 1800 N 1 Ey 5 0
 Ey 5 1600 N Ey 5 600 Nx ◀

y
1 oFx 5 0:   Ex 5 0 ◀

Members. The frame is now dismembered; since only two members are 
connected at each joint, equal and opposite components are shown on each 
member at each joint.

Free Body: Member BCD

 1loMB 5 0: 2(2400 N)(3.6 m) 1 Cy(2.4 m) 5 0 Cy 5 13600 N ◀

 1loMC 5 0: 2(2400 N)(1.2 m) 1 By(2.4 m) 5 0 By 5 11200 N ◀

y
1 oFx 5 0: 2Bx 1 Cx 5 0

We note that neither Bx nor Cx can be obtained by considering only member 
BCD. The positive values obtained for By and Cy indicate that the force 
components By and Cy are directed as assumed.

Free Body: Member ABE

 1loMA 5 0: Bx(2.7 m) 5 0 Bx 5 0 ◀

y
1 oFx 5 0: 1Bx 2 Ax 5 0 Ax 5 0 ◀

 1xoFy 5 0: 2Ay 1 By 1 600 N 5 0
 2Ay 1 1200 N 1 600 N 5 0 Ay 5 11800 N ◀

Free Body: Member BCD. Returning now to member BCD, we write

y
1 oFx 5 0: 2Bx 1 Cx 5 0  0 1 Cx 5 0 Cx 5 0 ◀

Free Body: Member ACF (Check). All unknown components have now 
been found; to check the results, we verify that member ACF is in 
equilibrium.

 1loMC 5 (1800 N)(2.4 m) 2 Ay(2.4 m) 2 Ax(2.7 m)
 5 (1800 N)(2.4 m) 2 (1800 N)(2.4 m) 2 0 5 0  (checks)600 N 1800 N

2.7 m

2.7 m

By Cy

Bx

By

Ay

Ay

Ax

Ax

Bx

Cx

Cy

Cx

A
A

B

B

C

E F

2400 N

C
D

2.4 m

2.4 m

1.2 m

2400 N

A

B

C
D

E F

2.7 m

3.6 m

4.8 m

2.7 m
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SAMPLE PROBLEM 6.6

A 600-lb horizontal force is applied to pin A of the frame shown. Determine 
the forces acting on the two vertical members of the frame.

600 lb A

B

C

D

E F

Ey

Ex

Fy

Fx

6 ft

10 ft

SOLUTION

Free Body: Entire Frame. The entire frame is chosen as a free body; 
although the reactions involve four unknowns, Ey and Fy may be deter-
mined by writing

 1loME 5 0:  2(600 lb)(10 ft) 1 Fy(6 ft) 5 0
 Fy 5 11000 lb Fy 5 1000 lbx ◀

 1xoFy 5 0:  Ey 1 Fy 5 0
 Ey 5 21000 lb Ey 5 1000 lbw ◀

Members. The equations of equilibrium of the entire frame are not suffi-
cient to determine Ex and Fx. The free-body diagrams of the various mem-
bers must now be considered in order to proceed with the solution. In 
dismembering the frame, we will assume that pin A is attached to the mul-
tiforce member ACE and, thus, that the 600-lb force is applied to that 
member. We also note that AB and CD are two-force members.

Free Body: Member ACE

 1xoFy 5 0:  2 5
13FAB 1 5

13FCD 2 1000 lb 5 0
 1loME 5 0:  2(600 lb)(10 ft) 2 (12

13FAB)(10 ft) 2 (12
13FCD)(2.5 ft) 5 0

Solving these equations simultaneously, we find

FAB 5 21040 lb  FCD 5 11560 lb ◀

The signs obtained indicate that the sense assumed for FCD was correct and 
the sense for FAB incorrect. Summing now x components,

y
1 oFx 5 0:  600 lb 1 12

13(21040 lb) 1 12
13(11560 lb) 1 Ex 5 0

 Ex 5 21080 lb Ex 5 1080 lbz ◀

Free Body: Entire Frame. Since Ex has been determined, we can return 
to the free-body diagram of the entire frame and write

y
1 oFx 5 0:  600 lb 2 1080 lb 1 Fx 5 0
 Fx 5 1480 lb Fx 5 480 lby ◀

Free Body: Member BDF (Check). We can check our computations by 
verifying that the equation oMB 5 0 is satisfied by the forces acting on 
member BDF.

 1loMB 5 2(12
13FCD)(2.5 ft) 1 (Fx)(7.5 ft)

 5 212
13(1560 lb)(2.5 ft) 1 (480 lb)(7.5 ft)

 5 23600 lb ? ft 1 3600 lb ? ft 5 0  (checks)

A

B

C

D

FAB

FAB

FCD

FCD

600 lb A

B

C

D

E F

FAB

FAB

FCD

FCD

Ey = 1000 lb Fy = 1000 lb
Ex Fx

12

12

13

13

5

5

2.5 ft

5 ft

7.5 ft

2.5 ft

600 lb A

B

C

D

E F

2.5 ft

2.5 ft

2.5 ft

2.5 ft

6 ft
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PROBLEMS

255

 6.49 through 6.51 Determine the force in member BD and the 
components of the reaction at C.

6.52 Determine the components of all the forces acting on member 
ABCD of the assembly shown.

6.53 Determine the components of all the forces acting on member 
ABCD when u 5 0.

6.54 Determine the components of all the forces acting on member 
ABCD when u 5 90°.

350 N

75 mm

100 mm 50 mm

A

D

C

B

Fig. P6.49

12 in.

4.5 in.

7.5 in.

90 lbA

B

C D

6 in.

Fig. P6.50

1.92 m

0.56 m

B

C

D

A310 N

r � 1.4 m

30�

Fig. P6.51

D

C

E

B

JA

120 lb

4 in.
2 in.

2 in. 2 in.
4 in. 4 in.

Fig. P6.52

A

B

C D

E

F

8 in.

12 in. 4 in.4 in.
2 in.

q60 lb

Fig. P6.53 and P6.54

bee80156_ch06_226-275.indd Page 255  10/16/09  11:51:42 AM user-s173bee80156_ch06_226-275.indd Page 255  10/16/09  11:51:42 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-06/Volumes/MHDQ-New/MHDQ152/MHDQ152-06



256 Analysis of Structures  6.55 An aircraft tow bar is positioned by means of a single hydraulic 
cylinder CD that is connected to two identical arm-and-wheel units 
DEF. The entire tow bar has a mass of 200 kg, and its center of 
gravity is located at G. For the position shown, determine (a) the 
force exerted by the cylinder on bracket C, (b) the force exerted 
on each arm by the pin at E.

 6.56 Solve Prob. 6.55, assuming that a 70-kg mechanic is standing on 
the tow bar at point B.

 6.57 Knowing that P 5 90 lb and Q 5 60 lb, determine the components 
of all the forces acting on member BCDE of the assembly shown.

 6.58 The marine crane shown is used in offshore drilling operations. 
Determine (a) the force in link CD, (b) the force in the brace AC, 
(c) the force exerted at A on the boom AB.

C
BG

D

E

1150
Dimensions in mm

250

100

450

F

A

850 500 675 825

Fig. P6.55

A
B

C

D

E

Q

P

6 in. 6 in. 4 in. 8 in.

4 in.

Fig. P6.57

A
D

C

B

3 m25 m15 m

35 m

80 Mg

15 m

Fig. P6.58
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257Problems 6.59 Determine the components of the reactions at D and E if the 
frame is loaded by a clockwise couple of magnitude 150 N ? m 
applied (a) at point A, (b) at point B.

 6.60 Determine the components of the force exerted at B on member 
BE (a) if the 200-lb load is applied as shown, (b) if the 200-lb load 
is moved along its line of action and is applied at point F.

 6.61 Determine all of the forces exerted on member AI if the frame is 
loaded by a clockwise couple of magnitude 180 lb ? ft applied (a) 
at point D, (b) at point E.

 6.62 Determine all of the forces exerted on member AI if the frame is 
loaded by a 48-lb force directed horizontally to the right and 
applied (a) at point D, (b) at point E.

0.6 m0.6 m0.6 m

ED

C

A

B

0.4 m

0.4 m

Fig. P6.59

D

EA
F

10 in.

4 in.

6 in.

5 in.

B

C

200 lb

Fig. P6.60

C

D E

F

H I

G

B

A

2.5 ft

1.25 ft

2.5 ft

1.25 ft

1.25 ft

2.5 ft

1.25 ft

6 ft

Fig. P6.61 and P6.62
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258 Analysis of Structures  6.63 The hydraulic cylinder CF, which partially controls the position of 
rod DE, has been locked in the position shown. Knowing that u 5 
60°, determine (a) the force P for which the tension in link AB is 
410 N, (b) the corresponding force exerted on member BCD at 
point C.

 6.64 The hydraulic cylinder CF, which partially controls the position of 
rod DE, has been locked in the position shown. Knowing that P 5 
400 N and u 5 75°, determine (a) the force in link AB, (b) the 
corresponding force exerted on member BCD at point C.

 6.65 A pipe weights 40 lb/ft and is supported every 30 ft by the small 
frame shown. Knowing that u 5 30°, determine the components 
of the reactions and the components of the force exerted at B on 
member AB.

 6.66 A 2-ft diameter pipe is supported every 16 ft by the small frame 
shown. Knowing that the combined weight of the pipe and its 
contents is 300 lb/ft and neglecting the effect of friction, determine 
the components (a) of the reaction at E, (b) of the force exerted 
at C on member CDE.

P200 mm

45 mm

100 mm

175 mm

20�CB

A
F

E

D

�

Fig. P6.63 and P6.64

B

D

�

A C

E
6 ft

8 ft

16 ft

Fig. P6.65

6 ft

4.5 ft

7.5 ft
r � 1 ft

A

B

C

D

E

Fig. P6.66
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259Problems 6.67 Knowing that each pulley has a radius of 250 mm, determine the 
components of the reactions at D and E.

 6.68 Knowing that the pulley has a radius of 75 mm, determine the 
components of the reactions at A and B.

 6.69 The cab and motor units of the front-end loader shown are con-
nected by a vertical pin located 60 in. behind the cab wheels. The 
distance from C to D is 30 in. The center of gravity of the 50-kip 
motor unit is located at Gm, while the centers of gravity of the 18-
kip cab and 16-kip load are located, respectively, at Gc and Gl. 
Knowing that the machine is at rest with its brakes released, deter-
mine (a) the reactions at each of the four wheels, (b) the forces 
exerted on the motor unit at C and D.

2 m

1.5 m

2 m

4.8 kN

C

B D

A E

Fig. P6.67

A B

C

D
E

240 N

125 mm

75 mm

300 mm 300 mm

Fig. P6.68

A B

95 in.

60 in. 85 in.

35 in.
25 in.

18 kips

16 kips

50 kips

GmGc

Gl

C
D

Fig. P6.69

 6.70 Solve Prob. 6.69, assuming that the 16-kip load has been removed.
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 6.71 The tractor and scraper units shown are connected by a vertical 
pin located 0.6 m behind the tractor wheels. The distance from C 
to D is 0.75 m. The center of gravity of the 10-Mg tractor unit is 
located at Gt. The scraper unit and the load have a total mass of 
50 Mg and a combined center of gravity located at Gs. Knowing 
that the machine is at rest, with its brakes released, determine (a) 
the reactions at each of the four wheels, (b) the forces exerted on 
the tractor unit at C and D.

 6.72 The 1000-kg trailer is attached to a 1250-kg automobile by a 
ball-and-socket trailer hitch at D. Determine (a) the reactions at 
each of the six wheels when the automobile and trailer are at 
rest, (b) the additional load on each of the automobile wheels 
due to the trailer.

A B

C

D
Gs

3.7 m
1.5 m

0.6 m

Gt

3.4 m

Fig. P6.71

A B C

D

Wa

Wt

0.7 m
3 m 1.2 m 1.5 m 1.3 m

Fig. P6.72

260 Analysis of Structures

6.11 MACHINES
Machines are structures designed to transmit and modify forces. 
Whether they are simple tools or include complicated mechanisms, 
their main purpose is to transform input forces into output forces. 
Consider, for example, a pair of cutting pliers used to cut a wire 
(Fig. 6.21a). If we apply two equal and opposite forces P and 2P on 
their handles, they will exert two equal and opposite forces Q and 
2Q on the wire (Fig. 6.21b).
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 To determine the magnitude Q of the output forces when the 
magnitude P of the input forces is known (or, conversely, to deter-
mine P when Q is known), we draw a free-body diagram of the pliers 
alone, showing the input forces P and 2P and the reactions 2Q and 
Q that the wire exerts on the pliers (Fig. 6.22). However, since a 
pair of pliers forms a nonrigid structure, we must use one of the 
component parts as a free body in order to determine the unknown 
forces. Considering Fig. 6.23a, for example, and taking moments 
about A, we obtain the relation Pa 5 Qb, which defines the magni-
tude Q in terms of P or P in terms of Q. The same free-body diagram 
can be used to determine the components of the internal force at A; 
we find Ax 5 0 and Ay 5 P 1 Q.

A

(a) (b)

P

–P

Q

–Qba

Fig. 6.21

 In the case of more complicated machines, it generally will be 
necessary to use several free-body diagrams and, possibly, to solve 
simultaneous equations involving various internal forces. The free 
 bodies should be chosen to include the input forces and the reactions 
to the output forces, and the total number of unknown force compo-
nents involved should not exceed the number of available independent 
equations. It is advisable, before attempting to solve a problem, to 
determine whether the structure considered is determinate. There is 
no point, however, in discussing the rigidity of a machine, since a 
machine includes moving parts and thus must be nonrigid.

Fig. 6.23

–A x

A

A

(a)

(b)

Ay

–Ay

A x

P
Q

–P
–Q

a b

Q

–Q

A

P

–P

Fig. 6.22

6.11 Machines

Photo 6.4 The lamp shown can be placed 
in many positions. By considering various free 
bodies, the force in the springs and the internal 
forces at the joints can be determined.
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SAMPLE PROBLEM 6.7

A hydraulic-lift table is used to raise a 1000-kg crate. It con-
sists of a platform and two identical linkages on which hydrau-
lic  cylinders exert equal forces. (Only one linkage and one 
cylinder are shown.) Members EDB and CG are each of length 
2a, and member AD is pinned to the midpoint of EDB. If the 
crate is placed on the table, so that half of its weight is sup-
ported by the system shown, determine the force exerted by 
each cylinder in raising the crate for u 5 60°, a 5 0.70 m, and 
L 5 3.20 m. Show that the result obtained is independent of 
the distance d.

SOLUTION

The machine considered consists of the platform and of the link-
age. Its free-body diagram includes an input force FDH exerted 
by the cylinder, the weight 1

2 W, equal and opposite to the output 
force, and reactions at E and G that we assume to be directed 
as shown. Since more than three unknowns are involved, this 
diagram will not be used. The mechanism is dismembered and 
a free-body diagram is drawn for each of its component parts. 
We note that AD, BC, and CG are two-force members. We 
already assumed member CG to be in  compression; we now 
assume that AD and BC are in tension and direct as shown the 
forces exerted on them. Equal and opposite vectors will be used 
to represent the forces exerted by the two-force members on the 
platform, on member BDE, and on roller C.

A B C

D

E G
H

2a

W1
2

q

L
2

L
2

d

FDH

FCGEy

Ex
E G

A B C

D

W1
2

FAD

A B

B

C

C

W1
2

q

d

A

D

FAD

FAD

FAD

FDH

FBC

Ey

Ex

a

a

f

B

B

D

E

q

B CFBC FBC

FCG

FCG

G

C

FCG

FBC
C

C

q
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Free Body: Platform ABC.

y
1 oFx 5 0: FAD cos u 5 0 FAD 5 0
 1xoFy 5 0: B 1 C 2 

1
2W 5 0 B 1 C 5 1

2W (1)

Free Body: Roller C. We draw a force triangle and obtain FBC 5 C cot u.

FAD

A B

B

C

C

W1
2

q

d

FAD

FDH

FBC

Ey

Ex

a

a

f

B

B

D

E

q

Free Body: Member BDE. Recalling that FAD 5 0,

 1loME 5 0: FDH cos (f 2 90°)a 2 B(2a cos u) 2 FBC(2a sin u) 5 0
 FDHa sin f 2 B(2a cos u) 2 (C cot u)(2a sin u) 5 0
 FDH sin f 2 2(B 1 C) cos u 5 0

Recalling Eq. (1), we have

 
FDH 5 W  

 cos u
 sin f  

(2)

and we observe that the result obtained is independent of d. ◀

 Applying first the law of sines to triangle EDH, we write

 
 sin f
EH

5
 sin u
DH

  sin f 5
EH
DH

 sin u
 

(3)

Using now the law of cosines, we have

 (DH)2 5 a2 1 L2 2 2aL cos u
 5 (0.70)2 1 (3.20)2 2 2(0.70)(3.20) cos 60°
 (DH)2 5 8.49  DH 5 2.91 m

We also note that

W 5 mg 5 (1000 kg)(9.81 m/s2) 5 9810 N 5 9.81 kN

Substituting for sin f from (3) into (2) and using the numerical data, we 
write

FDH 5 W  

DH
EH

 cot u 5 (9.81 kN) 

2.91 m
3.20 m

 cot 60°

FDH 5 5.15 kN ◀

a
f

D

H
E

q

L

FCG

FBC

C

q
FCG

FBC
C

C

q
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PROBLEMS

264

 6.73 A 360-N force is applied to the toggle vise at C. Determine (a) the 
horizontal force exerted on the block at D, (b) the force exerted 
on member ABC at B.

 6.74 The control rod CE passes through a horizontal hole in the body 
of the toggle clamp shown. Determine (a) the force Q required 
to hold the clamp in equilibrium, (b) the corresponding force in 
link BD.

6.75 The shear shown is used to cut and trim electronic-circuit-board 
laminates. For the position shown, determine (a) the vertical com-
ponent of the force exerted on the shearing blade at D, (b) the 
reaction at C.

360 N

200 mm200 mm

300 mm

45 mm A

B C
D

Fig. P6.73

5  in.

2.25 in.1.25 in.

0.5 in.

25°

A

C

B D

E

P = 25 lb

Q

Fig. P6.74

400 N

300 mm

60 mm
45 mm

30°

30°

A

C

E

B

25 mm 30 mm

D

Fig. P6.75

6.76 Water pressure in the supply system exerts a downward force of 
30 lb on the vertical plug at A. Determine the tension in the fusible 
link DE and the force exerted on member BCE at B.

A
D

B

E
C

1
2

in.

3
4

in.

3
4

in.

3
16

in.

Fig. P6.76
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265Problems 6.77 A 9-m length of railroad rail of mass 40 kg/m is lifted by the 
tongs shown. Determine the forces exerted at D and F on tong 
BDF.

 6.78 A steel ingot weighing 8000 lb is lifted by a pair of tongs as shown. 
Determine the forces exerted at C and E on the tong BCE.

D

A

CB

240 mm 240 mm

FE

150 mm

200 mm

300 mm

20 mm
20 mm

Fig. P6.77

A
B

C D

F

14 in.

45 in.

55 in.

35 in.

55 in.

8000 lb

A B

E

Fig. P6.78

8000 lb

20 in.G

A B

73 in.

Fig. P6.79

 6.79 If the toggle shown is added to the tongs of Prob. 6.78 and the 
load is lifted by applying a single force at G, determine the forces 
exerted at C and E on the tong BCE.
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266 Analysis of Structures  6.80 The gear-pulling assembly shown consists of a crosshead CF, two 
grip arms ABC and FGH, two links BD and EG, and a threaded 
center rod JK. Knowing that the center rod JK must exert a 4800-N 
force on the vertical shaft KL in order to start the removal of the 
gear, determine all the forces acting on grip arm ABC. Assume that 
the rounded ends of the crosshead are smooth and exert horizontal 
forces on the grip arms.

 6.81 A force P of magnitude 2.4 kN is applied to the piston of the 
engine system shown.  For each of the two positions shown, deter-
mine the couple M required to hold the system in equilibrium. 

 6.82 A couple M of magnitude 315 N ? m is applied to the crank of the 
engine system shown. For each of the two positions shown, deter-
mine the force P required to hold the system in equilibrium. 

J

D E

B

K

G

HAA

L

80 mm60 mm80 mm

150 mm

250 mm

95 mm

C F

Fig. P6.80

M

A

B

P

(a) (b)

C

75 mm

100 mm 100 mm

150 mm
250 mm

A

B
M

P

C

75 mm

Fig. P6.81 and P6.82
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267Problems 6.83 and 6.84 Two rods are connected by a frictionless collar B.  
Knowing that the magnitude of the couple MA is 500 lb ? in., 
determine (a) the couple MC required for equilibrium, (b) the 
corresponding components of the reaction at C.

 6.85 Two 300-N forces are applied to the handles of the pliers as 
shown. Determine (a) the magnitude of the forces exerted on the 
rod, (b) the force exerted by the pin at A on portion AB of the 
pliers.

 6.86 In using the bolt cutter shown, a worker applies two 100-lb forces 
to the handles. Determine the magnitude of the forces exerted by 
the cutter on the bolt.

A

B

C

MA

MC

8 in.

6 in.

14 in.

Fig. P6.83

A

B

C

MA

MC

8 in.

6 in.

14 in.

Fig. P6.84

B A

C

30 mm300 N

300 N

30°

250 mm

Fig. P6.85

0.5 in.

1 in.

1 in.

1 in.

100 lb

100 lb

19 in.
4 in.

A
B

C
D

E

Fig. P6.86
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268 Analysis of Structures

 6.88 A hand-operated hydraulic cylinder has been designed for use 
where space is severely limited. Determine the magnitude of the 
force exerted on the piston at D when two 90-lb forces are applied 
as shown.

 6.89 A shelf is held horizontally by a self-locking brace that consists of 
two parts EDC and CDB hinged at C and bearing against each 
other at D. If the shelf is 10 in. wide and weighs 24 lb, determine 
the force P required to release the brace. (Hint: To release the 
brace, the forces of contact at D must be zero.)

 6.87 The upper blade and lower handle of the compound-lever shears 
are pin connected to the main element ABE at A and B, respec-
tively, and to the short link CD at C and D, respectively. Determine 
the forces exerted on a twig when two 120-N forces are applied to 
the handles.

120 N

120 N

80

Dimensions in mm

20 40 30

D
E

F
C

B
A

Fig. P6.87

E

A

D

C

B

90 lb

90 lb

0.9 in.

0.9 in.

2 in.

2.4 in.

2.4 in.

4 in. 9.2 in.

Fig. P6.88

2 in.
8 in.

6 in.

1.25 in.

5 in.

5 in.

A
B

C

D

E

P

Fig. P6.89
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269Problems 6.90 Since the brace shown must remain in position even when the 
magnitude of P is very small, a single safety spring is attached at 
D and E. The spring DE has a constant of 50 lb/in. and an 
unstretched length of 7 in. Knowing that l 5 10 in. and that the 
magnitude of P is 800 lb, determine the force Q required to release 
the brace.

 6.91 and 6.92 Determine the force P that must be applied to the 
toggle CDE to maintain bracket ABC in the position shown.

 6.93 In the boring rig shown, the center of gravity of the 3000-kg tower 
is located at point G. For the position shown, determine the force 
exerted by the hydraulic cylinder AB.  

 6.94 The action of the backhoe bucket is controlled by the three hydrau-
lic cylinders shown. Determine the force exerted by each cylinder 
in supporting the 3000-lb load shown.

l

A

D

B

E

C

Q

P

15 in.

20 in.

2 in. 1 in.

Fig. P6.90

150 mm 150 mm

150 mm

30 mm
910 N

P

A

B

C

D

E

150 mm

150 mm

Fig. P6.91

30 mm

910 N

P

A

B C

D

E

150 mm

150 mm

150 mm

150 mm 150 mm

Fig. P6.92

2.5 m

3 m

1.5 m

q  = 30°

DB

A

G

C

1 m

Fig. P6.93

F

E

J

D
C

B

A

K 3000 lb

1 ft

8 ft

4 ft

4 ft4 ft6 ft

1 ft

1 ft

2 ft

2 ft

7 ft

8 ft

2 ft

3 ft

3 ft

H3 ft G

Fig. P6.94
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270 Analysis of Structures  6.95 The motion of the backhoe bucket is controlled by the hydraulic 
cylinders AB, DE, and FI. Determine the force exerted by each 
cylinder in supporting the 7.5-kN load shown.

 6.96 The elevation of the platform is controlled by two identical mecha-
nisms, only one of which is shown. A load of 1200 lb is applied to 
the mechanism shown. Knowing that the pin at C can transmit only 
a horizontal force, determine (a) the force in link BE, (b) the com-
ponents of the force exerted by the hydraulic cylinder on H.

7.5 kN

A

1 m

0.1 m
0.3 m

0.26 m

0.64 m

0.25 m

0.25 m0.4 m

1.68 m

1.44 m

0.45 m

0.22 m

G

E

H

D

F

I
J

C
B

Fig. P6.95

30 in.

18 in.

24 in.

48 in.

36 in.

12 in.

A

J

D

B

E

C

F

KG

H

18 in.

24 in.

1200 lb

Fig. P6.96
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271

REVIEW AND SUMMARY

In this chapter you learned to determine the internal forces holding 
together the various parts of a structure.

The first half of the chapter was devoted to the analysis of trusses,
i.e., to the analysis of structures consisting of straight members con-
nected at their extremities only. The members being slender and 
unable to support lateral loads, all the loads must be applied at the 
joints; a truss may thus be assumed to consist of pins and two-force 
members [Sec. 6.2].

A truss is said to be rigid if it is designed in such a way that it will 
not greatly deform or collapse under a small load. A triangular truss 
consisting of three members connected at three joints is clearly a 
rigid truss (Fig. 6.24a) and so will be the truss obtained by adding 
two new members to the first one and connecting them at a new 
joint (Fig. 6.24b). Trusses obtained by repeating this procedure are 
called simple trusses. We may check that in a simple truss the total 
number of members is m 5 2n 2 3, where n is the total number of 
joints [Sec. 6.3].

Analysis of trussesAnalysis of trusses

Simple trussesSimple trusses

The forces in the various members of a simple truss can be deter-
mined by the method of joints [Sec. 6.4]. First, the reactions at the 
supports can be obtained by considering the entire truss as a free 
body. The free-body diagram of each pin is then drawn, showing the 
forces exerted on the pin by the members or supports it connects. 
Since the members are straight two-force members, the force exerted 
by a member on the pin is directed along that member, and only the 
magnitude of the force is unknown. It is always possible in the case 
of a simple truss to draw the free-body diagrams of the pins in such 
an order that only two unknown forces are included in each dia-
gram. These forces can be obtained from the corresponding two 
equilibrium equations or—if only three forces are involved—from 
the  corresponding force triangle. If the force exerted by a member 
on a pin is directed toward that pin, the member is in compression;

Fig. 6.24

(a) (b)

A

B

C A

B

C

D

Method of joints
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272  Analysis of Structures if it is directed away from the pin, the member is in tension [Sam-
ple Prob. 6.1]. The analysis of a truss is sometimes expedited by 
first recognizing joints under special loading conditions [Sec. 6.5].

The method of sections is usually preferred to the method of joints 
when the force in only one member—or very few members—of a 
truss is desired [Sec. 6.6]. To determine the force in member BD of 
the truss of Fig. 6.25a, for example, we pass a section through mem-
bers BD, BE, and CE, remove these members, and use the portion 
ABC of the truss as a free body (Fig. 6.25b). Writing oME 5 0, we 
determine the magnitude of the force FBD, which represents the 
force in member BD. A positive sign indicates that the member is 
in tension; a negative sign indicates that it is in compression [Sample 
Probs. 6.2 and 6.3].

Method of sectionsMethod of sections

Fig. 6.25

A B

C

A B

C

D

E

E

G

(a)

(b)

n

n
P1 P2

P1 P2

P3

FCE

FBD

FBE

The method of sections is particularly useful in the analysis of com-
pound trusses, i.e., trusses which cannot be constructed from the 
basic triangular truss of Fig. 6.24a but which can be obtained by 
rigidly connecting several simple trusses [Sec. 6.7]. If the component 
trusses have been properly connected (e.g., one pin and one link, or 
three nonconcurrent and nonparallel links) and if the resulting struc-
ture is properly supported (e.g., one pin and one roller), the 
 compound truss is statically determinate, rigid, and completely con-
strained. The following necessary—but not sufficient—condition is 
then satisfied: m 1 r 5 2n, where m is the number of members, r is 
the number of unknowns representing the reactions at the supports, 
and n is the number of joints.

Compound trusses
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273The second part of the chapter was devoted to the analysis of frames 
and machines. Frames and machines are structures which contain 
multiforce members, i.e., members acted upon by three or more 
forces. Frames are designed to support loads and are usually station-
ary, fully constrained structures. Machines are designed to transmit 
or modify forces and always contain moving parts [Sec. 6.8].

To analyze a frame, we first consider the entire frame as a free body 
and write three equilibrium equations [Sec. 6.9]. If the frame remains 
rigid when detached from its supports, the reactions involve only 
three unknowns and may be determined from these equations 
[Sample Probs. 6.4 and 6.5]. On the other hand, if the frame ceases 
to be rigid when detached from its supports, the reactions involve 
more than three unknowns and cannot be completely determined 
from the equilibrium equations of the frame [Sec. 6.10; Sample 
Prob. 6.6].

We then dismember the frame and identify the various members as 
either two-force members or multiforce members; pins are assumed 
to form an integral part of one of the members they connect. We 
draw the free-body diagram of each of the multiforce members, 
noting that when two multiforce members are connected to the 
same two-force member, they are acted upon by that member with 
equal and opposite forces of unknown magnitude but known direc-
tion. When two multiforce members are connected by a pin, they 
exert on each other equal and opposite forces of unknown direction, 
which should be represented by two unknown components. The 
equilibrium equations obtained from the free-body diagrams of the 
multiforce members can then be solved for the various internal 
forces [Sample Probs. 6.4 and 6.5]. The equilibrium equations can 
also be used to complete the determination of the reactions at the 
supports [Sample Prob. 6.6]. Actually, if the frame is statically deter-
minate and rigid, the free-body diagrams of the multiforce members 
could provide as many equations as there are unknown forces 
(including the reactions) [Sec. 6.10]. However, as suggested above, 
it is advisable to first consider the free-body diagram of the entire 
frame to minimize the number of equations that must be solved 
simultaneously.

To analyze a machine, we dismember it and, following the same 
procedure as for a frame, draw the free-body diagram of each of the 
multiforce members. The corresponding equilibrium equations yield 
the output forces exerted by the machine in terms of the input forces 
applied to it as well as the internal forces at the various connections 
[Sec. 6.11; Sample Prob. 6.7].

Frames and machinesFrames and machines

Analysis of a frameAnalysis of a frame

Multiforce membersMultiforce members

Analysis of a machineAnalysis of a machine

Review and Summary
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274

REVIEW PROBLEMS

 6.97 Using the method of joints, determine the force in each member 
of the truss shown.

6.98 Determine the force in each member of the truss shown.

 6.99 Determine the force in members EF, FG, and GI of the truss 
shown.

 6.100 Determine the force in members CE, CD, and CB of the truss 
shown.

 6.101 The low-bed trailer shown is designed so that the rear end of the 
bed can be lowered to ground level in order to facilitate the loading 
of equipment or wrecked vehicles. A 1400-kg vehicle has been 
hauled to the position shown by a winch; the trailer is then returned 
to a traveling position where a 5 0 and both AB and BE are hori-
zontal. Considering only the weight of the disabled automobile, 
determine the force that must be exerted by the hydraulic cylinder 
to maintain a position with a 5 0.

A

B C

D

E

24 kN4.5 m

3.2 m

6 m 6 m

Fig. P6.97

A B

C

D
E

12 kN

30°30°

Fig. P6.98

500 lb 500 lb1000 lb 1000 lb

12 ft

5 ft

10 ft

8 ft 8 ft 8 ft

A
D

G

HFE

I

J

B

C

Fig. P6.99 and P6.100

3.5 m
1 m

3.5 m 1.5 m

2.5 m

B

G
EA

D

C �

Fig. P6.101

B

C

A

P Q

30 ft
15 ft

10 ft

14 ft

28 ft 42 ft

Fig. P6.102

6.102 The axis of the three-hinged arch ABC is a parabola with vertex at 
B. Knowing that P 5 109.2 kips and Q 5 72.8 kips, determine (a) 
the components of the reaction at C, (b) the components of the 
force exerted at B on segment AB.

 6.103 A 48-mm-diameter pipe is gripped by the Stillson wrench shown. 
Portions AB and DE of the wrench are rigidly attached to each 
other, and portion CF is connected by a pin at D. Assuming that 
no slipping occurs between the pipe and the wrench, determine 
the components of the forces exerted on the pipe at A and C.

48 mm

38 mm

360 mm

F

B

A

D
E

C

400 N

20 mm

Fig. P6.103
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275Review Problems 6.104 The compound-lever pruning shears shown can be adjusted by 
placing pin A at various ratchet positions on blade ACE. Knowing 
that 292-lb vertical forces are required to complete the pruning of 
a twig, determine the magnitude P of the forces that must be 
applied to the handles when the shears are adjusted as shown.

 6.105 Determine the couple M that must be applied to the crank CD to 
hold the mechanism in equilibrium. The block at D is pinned to 
the crank CD and is free to slide in a slot cut in member AB.

 6.106 An automobile front-wheel assembly supports 750 lb. Determine 
the force exerted by the spring and the components of the forces 
exerted on the frame at points A and D.

 6.107 For the bevel-gear system shown, determine the required value of 
a if the ratio of MB to MA is to be three.

 6.108 A 400-kg block may be supported by a small frame in each of the four 
ways shown. The diameter of the pulley is 250 mm. For each case, 
determine (a) the force components and the couple representing the 
reaction at A, (b) the force exerted at D on the vertical member.

A

B

C

D

E

3.5 in. 1.5 in.

0.5 in.
0.55 in.
0.25 in.

0.65 in. 0.75 in.

P

–P

Fig. P6.104

9 in. 9 in.

5 in.

7 in.

8 in.

A B

C

D

12 in.

2 in.

Fig. P6.106

600 N

240 mm

80 mm

360 mm

BD

A C 60°

M

Fig. P6.105

MA

MB

O
�

�

Fig. P6.107

1 m
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A

(1) (2) (3) (4)

D

E
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A

D

E
CB

A

D

E
CB

A

D

E
CB

45�

1 m 1 m

Fig. P6.108

bee80156_ch06_226-275.indd Page 275  10/16/09  11:52:32 AM user-s173bee80156_ch06_226-275.indd Page 275  10/16/09  11:52:32 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-06/Volumes/MHDQ-New/MHDQ152/MHDQ152-06



The strength of structural members used 

in the construction of buildings depends 

to a large extent on the properties of 

their cross sections. This includes the 

second moments of area, or moments 

of inertia, of these cross sections.
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Distributed Forces: 
Moments of Inertia of Areas
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7.1 INTRODUCTION
In Chap. 5, we analyzed various systems of forces distributed over an 
area or volume. The three main types of forces considered were (1) 
weights of homogeneous plates of uniform thickness (Secs. 5.3 through 
5.6), (2) distributed loads on beams (Sec. 5.8), and (3) weights of homo-
geneous three-dimensional bodies (Secs. 5.9 and 5.10). In the case of 
homogeneous plates, the magnitude DW of the weight of an element 
of a plate was proportional to the area DA of the element. For distrib-
uted loads on beams, the magnitude DW of each elemental weight was 
represented by an element of area DA 5 DW under the load curve. In 
the case of homogeneous three-dimensional bodies, the magnitude DW 
of the weight of an element of the body was proportional to the volume 
DV of the element. Thus, in all cases considered in Chap. 5, the dis-
tributed forces were proportional to the elemental areas or volumes 
associated with them. The resultant of these forces, therefore, could be 
obtained by summing the corresponding areas or volumes, and the 
moment of the resultant about any given axis could be determined by 
computing the first moments of the areas or volumes about that axis.
 In this chapter, we consider distributed forces DF whose magni-
tudes depend not only upon the elements of area DA on which these 
forces act but also upon the distance from DA to some given axis. More 
precisely, the magnitude of the force per unit area DF/DA is assumed 
to vary linearly with the distance to the axis. As indicated in the next 
section, forces of this type are found in the study of the bending of 
beams. Assuming that the elemental forces involved are distributed over 
an area A and vary linearly with the distance y to the x axis, it will be 
shown that while the magnitude of their resultant R depends upon the 
first moment Qx 5 e y dA of the area A, the location of the point where 
R is applied depends upon the second moment, or moment of inertia, 
Ix 5 e y2 dA of the same area with respect to the x axis. You will learn 
to compute the moments of inertia of various areas with respect to given 
x and y axes. Also introduced in this chapter is the polar moment of 
inertia JO 5 e r2 dA of an area, where r is the distance from the element 
of area dA to the point O. To facilitate your computations, a relation 
will be established between the moment of inertia Ix of an area A with 
respect to a given x axis and the moment of inertia Ix9 of the same area 
with respect to the parallel centroidal x9 axis (parallel-axis theorem). 

7.2  SECOND MOMENT, OR MOMENT OF INERTIA, 
OF AN AREA

In this chapter, we consider distributed forces DF whose magnitudes 
DF are proportional to the elements of area DA on which the forces 
act and at the same time vary linearly with the distance from DA to 
a given axis.
 Consider, for example, a beam of uniform cross section which 
is subjected to two equal and opposite couples applied at each end 
of the beam. Such a beam is said to be in pure bending, and it is 
shown in mechanics of materials that the internal forces in any 
 section of the beam are distributed forces whose magnitudes DF 5 
ky DA vary linearly with the distance y between the element of area 

Chapter 7 Distributed Forces: 
Moments of Inertia of Areas

 7.1 Introduction
 7.2 Second Moment, or Moment of 

Inertia, of an Area
 7.3 Determination of the Moment of 

Inertia of an Area by Integration
 7.4 Polar Moment of Inertia
 7.5 Radius of Gyration of an Area
 7.6 Parallel-Axis Theorem
 7.7 Moments of Inertia of Composite 

Areas
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DA and an axis passing through the centroid of the section. This axis, 
represented by the x axis in Fig. 7.1, is known as the neutral axis of 
the section. The forces on one side of the neutral axis are forces 
of compression, while those on the other side are forces of tension; 
on the neutral axis itself the forces are zero.
 The magnitude of the resultant R of the elemental forces DF 
which act over the entire section is

R 5#  ky dA 5 k #  y dA

The last integral obtained is recognized as the first moment Qx of 
the section about the x axis; it is equal to y A and is thus equal to 
zero, since the centroid of the section is located on the x axis. The 
system of the forces DF thus reduces to a couple. The magnitude M 
of this couple (bending moment) must be equal to the sum of the 
moments DMx 5 y DF 5 ky2 DA of the elemental forces. Integrating 
over the entire section, we obtain

M 5 #  ky2 dA 5 k #  y2 dA

The last integral is known as the second moment, or moment of iner-
tia,† of the beam section with respect to the x axis and is denoted by 
Ix. It is obtained by multiplying each element of area dA by the square 
of its distance from the x axis and integrating over the beam section. 
Since each product y2 dA is positive, regardless of the sign of y, or 
zero (if y is zero), the integral Ix will always be positive.

7.3  DETERMINATION OF THE MOMENT OF INERTIA 
OF AN AREA BY INTEGRATION

We defined in the preceding section the second moment, or moment 
of inertia, of an area A with respect to the x axis. Defining in a similar 

y

x
y

ΔF = ky Δ A

Δ A

Fig. 7.1

†The term second moment is more proper than the term moment of inertia since, logically, 
the latter should be used only to denote integrals of mass. In engineering practice, 
 however, moment of inertia is used in connection with areas as well as masses.

7.3 Determination of the Moment of Inertia of 
an Area by Integration
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way the moment of inertia Iy of the area A with respect to the y axis, 
we write (Fig. 7.2a)

 Ix 5 #  y
2 dA   Iy 5 #  x

2 dA (7.1)

These integrals, known as the rectangular moments of inertia of the 
area A, can be more easily evaluated if we choose dA to be a thin strip 
parallel to one of the coordinate axes. To compute Ix, the strip is cho-
sen parallel to the x axis, so that all of the points of the strip are at 
the same distance y from the x axis (Fig. 7.2b); the moment of inertia 
dIx of the strip is then obtained by multiplying the area dA of the strip 
by y2. To compute Iy, the strip is chosen parallel to the y axis so that 
all of the points of the strip are at the same distance x from the y axis 
(Fig. 7.2c); the moment of inertia dIy of the strip is x2 dA.

Moment of Inertia of a Rectangular Area. As an example, let 
us determine the moment of inertia of a rectangle with respect to its 
base (Fig. 7.3). Dividing the rectangle into strips parallel to the x axis, 
we obtain

dA 5 b dy  dIx 5 y2b dy

 
Ix 5 #

h

0
 
by2 dy 5 1

3 
bh3

 
(7.2)

x

y

y

x

(a)

dA = dx dy

dx
dy

dIx = y2 dA dIy = x2 dA

x

y

y

x

(b)

a

dA = ( a – x ) dy

dy

dIx = y2 dA

y
x

y

x

(c)

dA = y dx

dx
dIy = x2 dA

Fig. 7.2

h

y

y

b

dy

x

dA = b dy

Fig. 7.3
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281Computing lx and ly Using the Same Elemental Strips. The 
formula just derived can be used to determine the moment of inertia 
dIx with respect to the x axis of a rectangular strip which is parallel 
to the y axis, such as the strip shown in Fig. 7.2c. Setting b 5 dx and 
h 5 y in formula (7.2), we write

dIx 5 1
3 
y3 dx

On the other hand, we have

dIy 5 x2 dA 5 x2y dx

The same element can thus be used to compute the moments of 
inertia Ix and Iy of a given area (Fig. 7.4).

y

x

y

xdx

dIx =     y3 dx1
3

dIy = x2 y  dx

Fig. 7.4

7.4 POLAR MOMENT OF INERTIA
An integral of great importance in problems concerning the torsion of 
cylindrical shafts and in problems dealing with the rotation of slabs is

 JO 5 #  r  

2 dA (7.3)

where r is the distance from O to the element of area dA (Fig. 7.5). 
This integral is the polar moment of inertia of the area A with respect 
to the “pole” O.
 The polar moment of inertia of a given area can be computed from 
the rectangular moments of inertia Ix and Iy of the area if these quanti-
ties are already known. Indeed, noting that r2 5 x2 1 y2, we write

JO 5 #  r
2 dA 5 #  (x2 1 y2) dA 5 #  y2 dA 1 #  x2 dA

that is,

 JO 5 Ix 1 Iy (7.4)

y

y

x

dA

A

x
r

O

Fig. 7.5

7.4 Polar Moment of Inertia
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282  Distributed Forces: Moments of Inertia of Areas 7.5 RADIUS OF GYRATION OF AN AREA
Consider an area A which has a moment of inertia Ix with respect 
to the x axis (Fig. 7.6a). Let us imagine that we concentrate this area 
into a thin strip parallel to the x axis (Fig. 7.6b). If the area A, thus 
concentrated, is to have the same moment of inertia with respect to 
the x axis, the strip should be placed at a distance rx from the x axis, 
where rx is defined by the relation

Ix 5 rx
2A

Solving for rx, we write

 
rx 5

B
Ix

A  
(7.5)

The distance rx is referred to as the radius of gyration of the area 
with respect to the x axis. In a similar way, we can define the radii 
of gyration ry and rO (Fig. 7.6c and d); we write

 
 Iy 5 r2

y 
A    ry 5

B

Iy

A  
(7.6)

 
  JO 5 r2

OA    rO 5
B

JO

A  
(7.7)

If we rewrite Eq. (7.4) in terms of the radii of gyration, we find that

 r2
O 5 r2

x 1 r2
y (7.8)

rx

y

x

A

O

(a)

y

x

A

O

(b)

ry

y

x

A

O

(c)

rO

y

x

A

O

(d)

Fig. 7.6

h

b

rx   y

C

Fig. 7.7

EXAMPLE 7.1 For the rectangle shown in Fig. 7.7, let us compute the 
radius of gyration rx with respect to its base. Using formulas (7.5) and 
(7.2), we write

r2
x 5

Ix

A
5

1
3bh3

bh
5

h2

3
    rx 5

h

13

The radius of gyration rx of the rectangle is shown in Fig. 7.7. It should not 
be confused with the ordinate y 5 h/2 of the centroid of the area. While 
rx depends upon the second moment, or moment of inertia, of the area, the 
ordinate y is related to the first moment of the area. ◾
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SAMPLE PROBLEM 7.1

Determine the moment of inertia of a triangle with respect to its base.

SAMPLE PROBLEM 7.2

(a) Determine the centroidal polar moment of inertia of a circular area by 
direct integration. (b) Using the result of part a, determine the moment of 
inertia of a circular area with respect to a diameter.

x

y

r
dr

r

O

SOLUTION

a. Polar Moment of Inertia. An annular differential element of area is 
chosen to be dA. Since all portions of the differential area are at the same 
distance from the origin, we write

dJO 5 r2 dA   dA 5 2pr dr 

JO 5 #  dJO 5 #
r

0
 
r2(2pr dr) 5 2p #

r

0
 

r3 dr

JO 5
p

2
 r4

 
◀

b. Moment of Inertia with Respect to a Diameter. Because of the sym-
metry of the circular area, we have Ix 5 Iy. We then write

JO 5 Ix 1 Iy 5 2Ix   p
2

 r4 5 2Ix   Idiameter 5 Ix 5
p

4
 r4

 
◀

SOLUTION

A triangle of base b and height h is drawn; the x axis is chosen to coincide 
with the base. A differential strip parallel to the x axis is chosen to be dA. Since 
all portions of the strip are at the same distance from the x axis, we write

dIx 5 y2 dA  dA 5 l dy

Using similar triangles, we have

l
b

5
h 2 y

h
    l 5 b 

h 2 y

h
    dA 5 b 

h 2 y

h
 dy

Integrating dIx from y 5 0 to y 5 h, we obtain

Ix 5 #  y
2 dA 5 #

h

0
 
y2b 

h 2 y

h
 dy 5

b
h #

h

0

(hy2 2 y3)  dy

 
5

b
h

 c h 

y3

3
2

y4

4
d h

0 
Ix 5

bh3

12  
◀

x

y

y

dy

b

h

h – y

l
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284

SOLUTION

Referring to Sample Prob. 5.4, we obtain the following expressions for the 
equation of the curve and the total area:

y 5
b

a2  x2   A 5 1
3ab

Moment of Inertia Ix. A vertical differential element of area is chosen to 
be dA. Since all portions of this element are not at the same distance from 
the x axis, we must treat the element as a thin rectangle. The moment of 
inertia of the element with respect to the x axis is then

 dIx 5 1
3 
y3 dx 5

1
3

 a b

a2  x2b3

 dx 5
1
3

  
b3

a6  x6 dx

 
 Ix 5 #  dIx 5 #

a

0

 
1
3

  
b3

a6  x6 dx 5 c 1
3

  
b3

a6   
x7

7
d a

0

Ix 5
ab3

21  
◀

Moment of Inertia Iy. The same vertical differential element of area is 
used. Since all portions of the element are at the same distance from the 
y axis, we write

dIy 5 x2 dA 5 x2(y dx) 5 x2 a b

a2  x2b 

dx 5
b

a2  x4 dx

Iy 5 #  dIy 5 #
a

0

 
b

a2  x4 dx 5 c b

a2  
x5

5
d a

0

Iy 5
a3b
5  

◀

Radii of Gyration rx and ry. We have, by definition,

 
r2

x 5
Ix

A
5

ab3/21
ab/3

5
b2

7  rx 5 21
7 b 

◀

and

 
r2

y 5
Iy

A
5

a3b/5
ab/3

5 3
5a2

 ry 5 23
5a 

◀

dxx
x

y

a

y

SAMPLE PROBLEM 7.3

(a) Determine the moment of inertia of the shaded area shown with respect 
to each of the coordinate axes. (Properties of this area were considered in 
Sample Prob. 5.4.) (b) Using the results of part a, determine the radius of 
gyration of the shaded area with respect to each of the coordinate axes.

x

y

b
y = kx2

a
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PROBLEMS

285

 7.1 through 7.4 Determine by direct integration the moment of 
inertia of the shaded area with respect to the y axis.

 7.5 through 7.8 Determine by direct integration the moment of 
inertia of the shaded area with respect to the x axis.

7.9 through 7.12 Determine the moment of inertia and radius of 
gyration of the shaded area shown with respect to the x axis.

7.13 through 7.16 Determine the moment of inertia and radius of 
gyration of the shaded area shown with respect to the y axis.

x

y

h1
h2

a

Fig. P7.1 and P7.5

x

y

b

y � kx1/2

a

Fig. P7.2 and P7.6

h

y

x
a

y = 4h(          )x
a

x2

a2
−

Fig. P7.3 and P7.7

x

y

y = mx

y = kx2

b

a

Fig. P7.4 and P7.8

b

y

x
a

y2 = k2x1/2

y1 = k1x2

Fig. P7.12 and P7.16

x

y

b

aO

x2

a2

y2

b2
+ = 1

Fig. P7.10 and P7.14

y

b

x
a

y = kx3

Fig. P7.9 and P7.13

y

x

b

a

y = kx2/3

Fig. P7.11 and P7.15
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286  Distributed Forces: Moments of Inertia of Areas  7.17 Determine the polar moment of inertia and the polar radius of 
gyration of the rectangle shown with respect to the midpoint of 
one of its (a) longer sides, (b) shorter sides.

 7.18 Determine the polar moment of inertia and the polar radius of 
gyration of the rectangle shown with respect to one of its corners.

 7.19 Determine the polar moment of inertia and the polar radius of 
gyration of the trapezoid shown with respect to point P.

 7.20 Determine the polar moment of inertia and the polar radius of 
gyration of the semielliptical area of Prob. 7.10 with respect to O.

 7.21 (a) Determine by direct integration the polar moment of inertia of 
the annular area shown with respect to point O. (b) Using the 
result of part a, determine the moment of inertia of the given area 
with respect to the x axis.

 7.22 (a) Show that the polar radius of gyration rO of the annular area 
shown is approximately equal to the mean radius Rm 5 (R1 1 R2)/2 
for small values of the thickness t 5 R2 2 R1. (b) Determine the 
percentage error introduced by using Rm in place of rO for the 
following values of t/Rm: 1, 1

2, and 1
10.

 7.23 Determine the moment of inertia of the shaded area with respect 
to the x axis.

 7.24 Determine the moment of inertia of the shaded area with respect 
to the y axis.

a

2a

Fig. P7.17 and P7.18

a

a a

P
a
2

a
2

a
2

a
2

Fig. P7.19

R1

R2

y

xO

Fig. P7.21 and P7.22

a

�
2

�
2

y

x

y = a cos x

Fig. P7.23 and P7.24
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2877.6 PARALLEL-AXIS THEOREM
Consider the moment of inertia IAA9 of an area A with respect to an 
axis AA9 (Fig. 7.8). Denoting by y the distance from an element of 
area dA to AA9, we write

IAA¿ 5 #  y2 dA

Let us now draw through the centroid C of the area an axis BB9 
parallel to AA9; this axis is called a centroidal axis. Denoting by y9 

A'A

B'B
C

y

y'

d

dA

Fig. 7.8

the distance from the element dA to BB9, we write y 5 y9 1 d, 
where d is the distance between the axes AA9 and BB9. Substituting 
for y in the above integral, we write

 IAA¿ 5 #  y2 dA 5 #  (y ¿ 1 d)2 dA

 5 #  y ¿2 dA 1 2d # y ¿ dA 1 d2 # dA

The first integral represents the moment of inertia IBB¿ of the area 
with respect to the centroidal axis BB9. The second integral repre-
sents the first moment of the area with respect to BB9; since the cen-
troid C of the area is located on that axis, the second integral must 
be zero. Finally, we observe that the last integral is equal to the total 
area A. Therefore, we have

 IAA¿ 5 IBB¿ 1 Ad2 (7.9)

 This formula expresses that the moment of inertia IAA9 of an 
area with respect to any given axis AA9 is equal to the moment of inertia 
IBB¿ of the area with respect to a centroidal axis BB9 parallel to AA9 
plus the product of the area A and the square of the distance d 
between the two axes. This theorem is known as the parallel-axis 
theorem. Substituting r2

AA9A for IAA9 and r 
2
BB¿ A for IBB¿, the theorem 

can also be expressed as
 r2

AA¿ 5 r 
2
BB¿ 1 d2 (7.10)

 A similar theorem can be used to relate the polar moment 
of inertia JO of an area about a point O to the polar moment of 
inertia JC of the same area about its centroid C. Denoting by d the 
distance between O and C, we write

 JO 5 JC 1 Ad2   or   r2
O 5 r 

2
C 1 d2 (7.11)

7.6 Parallel-Axis Theorem
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288  Distributed Forces: Moments of Inertia of Areas EXAMPLE 7.2 As an application of the parallel-axis theorem, let us 
determine the moment of inertia IT of a circular area with respect to a line 
tangent to the circle (Fig. 7.9). We found in Sample Prob. 7.2 that the 
moment of inertia of a circular area about a centroidal axis is I 5 1

4pr4. We 
can write, therefore,

IT 5 II 1 Ad2 5 1
4pr4 1 (pr2)r2 5 5

4pr4 ◾

EXAMPLE 7.3 The parallel-axis theorem can also be used to determine 
the centroidal moment of inertia of an area when the moment of inertia of 
the area with respect to a parallel axis is known. Consider, for instance, a 
triangular area (Fig. 7.10). We found in Sample Prob. 7.1 that the moment 
of inertia of a triangle with respect to its base AA9 is equal to 1

12 
bh3. Using 

the parallel-axis theorem, we write

 IAA¿ 5 IBB¿ 1 Ad2

 IBB¿ 5 IAA¿ 2 Ad2 5 1
12bh3 2 1

2bh(1
3h)2 5 1

36bh3

It should be observed that the product Ad2 was subtracted from the given 
moment of inertia in order to obtain the centroidal moment of inertia of 
the triangle. Note that this product is added when transferring from a cen-
troidal axis to a parallel axis, but it should be subtracted when transferring 
to a centroidal axis. In other words, the moment of inertia of an area is 
always smaller with respect to a centroidal axis than with respect to any 
parallel axis.
 Returning to Fig. 7.10, we observe that the moment of inertia of the 
triangle with respect to the line DD9 (which is drawn through a vertex) can 
be obtained by writing

IDD¿ 5 IBB¿ 1 Ad ¿2 5 1
36bh3 1 1

2bh(2
3h)2 5 1

4bh3

Note that IDD9 could not have been obtained directly from IAA9. The parallel-
axis theorem can be applied only if one of the two parallel axes passes 
through the centroid of the area. ◾

7.7 MOMENTS OF INERTIA OF COMPOSITE AREAS
Consider a composite area A made of several component areas A1, A2, 
A3, . . . Since the integral representing the moment of inertia of A can 
be subdivided into integrals evaluated over A1, A2, A3, . . . , the moment 
of inertia of A with respect to a given axis is obtained by adding the 
moments of inertia of the areas A1, A2, A3, . . . , with respect to the 
same axis. The moment of inertia of an area consisting of several of 
the common shapes shown in Fig. 7.11 can thus be obtained by using 
the formulas given in that figure. Before adding the moments of inertia 
of the component areas, however, the parallel-axis theorem may have 
to be used to transfer each moment of inertia to the desired axis. This 
is shown in Sample Probs. 7.4 and 7.5.
 The properties of the cross sections of various structural shapes 
are given in App. B. As noted in Sec. 7.2, the moment of inertia of 
a beam section about its neutral axis is closely related to the com-
putation of the bending moment in that section of the beam. The 

Fig. 7.9

r

T

C

d = r

Fig. 7.10

b
A'A

C
B'B

D'D

h

d' =    h2
3

d =    h1
3

Photo 7.1 Appendix B tabulates data for a 
small sample of the rolled-steel shapes that are 
readily available. Shown above are two examples 
of wide-flange shapes that are commonly used in 
the construction of buildings.
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2897.7 Moments of Inertia of Composite Areas
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Ellipse

b

y y'

x'

x

1
12

⎯Ix' =     bh3

1
12
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Fig. 7.11 Moments of inertia of common geometric shapes.

determination of moments of inertia is thus a prerequisite to the 
analysis and design of structural members.
 It should be noted that the radius of gyration of a composite area is 
not equal to the sum of the radii of gyration of the component areas. In 
order to determine the radius of gyration of a composite area, it is first 
necessary to compute the moment of inertia of the composite area.
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SAMPLE PROBLEM 7.4

The strength of a W14 3 38 rolled-steel beam is increased by attaching a 
9 3 3

4-in. plate to its upper flange as shown. Determine the moment of 
inertia and the radius of gyration of the composite section with respect to 
an axis which is parallel to the plate and passes through the centroid C of 
the section.

SOLUTION

The origin O of the coordinates is placed at the centroid of the wide-flange 
shape, and the distance Y to the centroid of the composite section is com-
puted using the methods of Chap. 5. The area of the wide-flange shape is 
found by referring to App. B. The area and the y coordinate of the centroid 
of the plate are

 A 5 (9 in.)(0.75 in.) 5 6.75 in2

 yy 5 1
2(14.1 in.) 1 1

2 (0.75 in.) 5 7.425 in.

Moment of Inertia. The parallel-axis theorem is used to determine the 
moments of inertia of the wide-flange shape and the plate with respect to 
the x9 axis. This axis is a centroidal axis for the composite section but not 
for either of the elements considered separately. The value of Ix for the 
wide-flange shape is obtained from App. B.

 For the wide-flange shape,

Ix9 5 Ix 1 AY2 5 385 1 (11.2)(2.792)2 5 472.3 in4

 For the plate,

 Ix9 5 Ix 1 Ad2 5 ( 1
12)(9)(3

4)3 1 (6.75)(7.425 2 2.792)2 5 145.2 in4

 For the composite area,

 Ix9 5 472.3 1 145.2 5 617.5 in4 Ix9 5 618 in4 ◀

Radius of Gyration. We have

 
r2

x¿ 5
Ix¿

A
5

617.5 in4

17.95 in2 rx¿ 5 5.87 in. 
◀

Section Area, in2 y, in. yA, in3

Plate 6.75 7.425 50.12
Wide-fl ange shape 11.2  0 0

 oA 5 17.95  oyyA 5 50.12

YoA 5 oyA    YY(17.95) 5 50.12     Y 5 2.792 in.

x

y

d

C

O

7.425 in.
x'

⎯Y

9 in.

14.1 in.

6.77 in.

C

3
4

in.
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SAMPLE PROBLEM 7.5

Determine the moment of inertia of the shaded area with respect to the 
x axis.

SOLUTION

The given area can be obtained by subtracting a half circle from a rectangle. 
The moments of inertia of the rectangle and the half circle will be computed 
separately.

A

C
a

240 mm

120 mm

y y y

x
x

x

A'

x'

=b
−

Moment of Inertia of Rectangle. Referring to Fig. 7.11, we obtain

Ix 5 1
3 
bh3 5 1

3 
(240 mm)(120 mm)3 5 138.2 3 106 mm4

Moment of Inertia of Half Circle. Referring to Fig. 5.8, we determine the 
location of the centroid C of the half circle with respect to diameter AA9.

a 5
4r
3p

5
(4)(90 mm)

3p
5 38.2 mm

The distance b from the centroid C to the x axis is

b 5 120 mm 2 a 5 120 mm 2 38.2 mm 5 81.8 mm

Referring now to Fig. 7.11, we compute the moment of inertia of the half circle 
with respect to diameter AA9; we also compute the area of the half circle.

 IAA¿ 5 1
8 
pr4 5 1

8 
p(90 mm)4 5 25.76 3 106 mm4

 A 5 1
2 
pr2 5 1

2 
p(90 mm)2 5 12.72 3 103 mm2

Using the parallel-axis theorem, we obtain the value of Ix¿:

 IAA¿ 5 Ix¿ 1 Aa2

 25.76 3 106 mm4 5 Ix¿ 1 (12.72 3 103 mm2) (38.2 mm)2

 Ix¿ 5 7.20 3 106 mm4

Again using the parallel-axis theorem, we obtain the value of Ix:

 Ix 5 Ix¿ 1 Ab2 5 7.20 3 106 mm4 1 (12.72 3 103 mm2)(81.8 mm)2

 5 92.3 3 106
 mm4

Moment of Inertia of Given Area. Subtracting the moment of inertia of 
the half circle from that of the rectangle, we obtain

 Ix 5 138.2 3 106 mm4 2 92.3 3 106 mm4

Ix 5 45.9 3 106 mm4 ◀

A'A

C
a = 38.2 mm

x'
120 mm

y

x

b = 81.8 mm

240 mm

120 mm

y

x

r = 90 mm
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PROBLEMS

292

 7.25 through 7.28 Determine the moment of inertia and the radius 
of gyration of the shaded area with respect to the x axis.

7.29 through 7.32 Determine the moment of inertia and the radius 
of gyration of the shaded area with respect to the y axis.

7.33 Determine the shaded area and its moment of inertia with respect 
to a centroidal axis parallel to AA9, knowing that its moments 
of inertia with respect to AA9 and BB9 are, respectively, 2.2 3
106 mm4 and 4 3 106 mm4, and that d1 5 25 mm and d2 5 10 mm.

7.34 Knowing that the shaded area is equal to 6000 mm2 and that its 
moment of inertia with respect to AA9 is 18 3 106 mm4, deter-
mine its moment of inertia with respect to BB9 for d1 5 50 mm 
and d2 5 10 mm.

10 mm

90 mm

10 mm

50 mm

50 mm

10 mm

y

xC

Fig. P7.25 and P7.29
y

x

125 mm

250 mm

125 mm

75 mm

Fig. P7.27 and P7.31

6 in.

4 in.

6 in.

y

x

Fig. P7.28 and P7.32

x

y

6 in.

3 in.

C

3 in.

1
2

in.

1
2

in.

1
2

in.

3 in.

Fig. P7.26 and P7.30

C

A'

d1

d2
A

B'B

Fig. P7.33 and P7.34

bee80156_ch07_276-299.indd Page 292  10/16/09  12:03:35 PM user-s173bee80156_ch07_276-299.indd Page 292  10/16/09  12:03:35 PM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-07/Volumes/MHDQ-New/MHDQ152/MHDQ152-07



293Problems 7.35 and 7.36 Determine the moments of inertia Ix and Iy of the 
area shown with respect to centroidal axes that are respectively 
parallel and perpendicular to the side AB.

 7.37 Determine the moments of inertia Ix and Iy of the area shown with 
respect to centroidal axes that are respectively parallel and perpen-
dicular to the side AB.

 7.38 Determine the centroidal polar moment of inertia of the area 
shown.

 7.39 and 7.40 Determine the polar moment of inertia of the area 
shown with respect to (a) point O, (b) the centroid of the area.

 7.41 Two W8 3 31 rolled sections can be welded at A and B in either 
of the two ways shown. For each arrangement, determine the 
moment of inertia of the section with respect to the horizontal 
centroidal axis.

A B

2 in.

3 in.

6 in.

3 in. 3 in.

Fig. P7.35

A B

60 mm
20 mm20 mm

20 mm

20 mm

60 mm

Fig. P7.36

1.5 in.

1.5 in.

2 in.

A B
6 in.

9 in.

Fig. P7.37 and P7.38

O

40

Dimensions in mm

4040 40

60
80

Fig. P7.39

3 in.
4.5 in.

O

Fig. P7.40

A AB B

(a) (b)

Fig. P7.41

bee80156_ch07_276-299.indd Page 293  10/16/09  12:03:40 PM user-s173bee80156_ch07_276-299.indd Page 293  10/16/09  12:03:40 PM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-07/Volumes/MHDQ-New/MHDQ152/MHDQ152-07



294  Distributed Forces: Moments of Inertia of Areas  7.42 Two 6 3 4 3 1
2-in. angles are welded together to form the section 

shown. Determine the moments of inertia and the radii of gyration 
of the section with respect to the centroidal axes shown.

 7.43 Two channels and two plates are used to form the column section 
shown. For b 5 200 mm, determine the moments of inertia and 
the radii of gyration of the combined section with respect to the 
centroidal axes.

 7.44 In Prob. 7.43, determine the distance b for which the centroidal 
moments of inertia Ix and Iy of the column section are equal.

 7.45 The strength of the rolled S section shown is increased by welding 
a channel to its upper flange. Determine the moments of inertia of 
the combined section with respect to its centroidal x and y axes.

 7.46 A channel and a plate are welded together as shown to form a 
section that is symmetrical with respect to the y axis. Determine 
the moments of inertia of the section with respect to its centroidal 
x and y axes.

 7.47 Two L102 3 102 3 12.7-mm angles are welded to a 12-mm steel 
plate as shown. For b 5 250 mm, determine the moments of iner-
tia of the combined section with respect to centroidal axes that are 
respectively parallel and perpendicular to the plate.

 7.48 Solve Prob. 7.47 assuming that b 5 300 mm.

10 mm

C250 × 22.8

C

b

y

x

375 mm

Fig. P7.43

C

y

x
6 in.

4 in.in.1
2

Fig. P7.42

12 in.

0.5 in.

y

x

C8 × 11.5

C

Fig. P7.46

b12 mm

102 mm

L102 × 102 × 12.7

Fig. P7.47

S12 × 31.8

C8 × 11.5

C

y

x

Fig. P7.45
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295

REVIEW AND SUMMARY

In this chapter, we discussed the determination of the resultant R of 
forces DF distributed over a plane area A when the magnitudes of 
these forces are proportional to both the areas DA of the elements 
on which they act and the distances y from these elements to a given 
x axis; we thus had DF 5 ky DA. We found that the magnitude of 
the resultant R is proportional to the first moment Qx 5 ey dA of 
the area A, while the moment of R about the x axis is proportional 
to the second moment, or moment of inertia, Ix 5 ey2 dA of A with 
respect to the same axis [Sec. 7.2].

The rectangular moments of inertia Ix and Iy of an area [Sec. 7.3] 
were obtained by evaluating the integrals

Ix 5 #  y
2 dA   Iy 5 #  x

2 dA (7.1)

These computations can be reduced to single integrations by choos-
ing dA to be a thin strip parallel to one of the coordinate axes. We 
also recall that it is possible to compute Ix and Iy from the same 
elemental strip (Fig. 7.12) using the formula for the moment of iner-
tia of a rectangular area [Sample Prob. 7.3].

Rectangular moments of inertiaRectangular moments of inertia

The polar moment of inertia of an area A with respect to the pole 
O [Sec. 7.4] was defined as

JO 5 #  r
2 dA (7.3)

where r is the distance from O to the element of area dA (Fig. 7.13). 
Observing that r2 5 x2 1 y2, we established the relation

 JO 5 Ix 1 Iy (7.4)

y
x

y

xdx

dIx =    y3 dx
3
1

dIy = x2 y dx

Fig. 7.12

y

y

x

dA

A

x
r

O

Fig. 7.13

Polar moment of inertia
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296  Distributed Forces: Moments of Inertia of Areas The radius of gyration of an area A with respect to the x axis 
[Sec. 7.5] was defined as the distance rx, where Ix 5 r2

x A. With 
similar definitions for the radii of gyration of A with respect to the 
y axis and with respect to O, we had

 
rx 5

B
Ix

A
  ry 5

B

Iy

A
  rO 5

B

JO

A  
(7.5–7.7)

The parallel-axis theorem was presented in Sec. 7.6. It states that the 
moment of inertia IAA9 of an area with respect to any given axis AA9 
(Fig. 7.14) is equal to the moment of inertia IBB¿ of the area with 
respect to the centroidal axis BB9 that is parallel to AA9 plus the 
product of the area A and the square of the distance d between the 
two axes:

 IAA¿ 5 IBB¿ 1 Ad2 (7.9)

This formula can also be used to determine the moment of inertia 
IBB¿ of an area with respect to a centroidal axis BB9 when its moment 
of inertia IAA9 with respect to a parallel axis AA9 is known. In this 
case, however, the product Ad2 should be subtracted from the known 
moment of inertia IAA9.

Radius of gyrationRadius of gyration

Parallel-axis theoremParallel-axis theorem

Fig. 7.14

A'

B'B

A

C

d

 A similar relation holds between the polar moment of inertia 
JO of an area about a point O and the polar moment of inertia JC of 
the same area about its centroid C. Letting d be the distance between 
O and C, we have

 JO 5 JC 1 Ad2 (7.11)

The parallel-axis theorem can be used very effectively to compute 
the moment of inertia of a composite area with respect to a given 
axis [Sec. 7.7]. Considering each component area separately, we first 
compute the moment of inertia of each area with respect to its cen-
troidal axis, using the data provided in Fig. 7.11 and App. B when-
ever possible. The parallel-axis theorem is then applied to determine 
the moment of inertia of each component area with respect to the 
desired axis, and the various values obtained are added [Sample 
Probs. 7.4 and 7.5].

Composite areasComposite areas
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297

REVIEW PROBLEMS

 7.49 Determine by direct integration the moment of inertia of the 
shaded area with respect to the y axis.

7.52 Determine the moment of inertia and radius of gyration of the 
shaded area shown with respect to the y axis.

 7.53 Determine the polar moment of inertia and the polar radius of 
gyration of an equilateral triangle of side a with respect to one of 
its vertices.

x

y

a

b

y2 = kx1/2

y1 = mx

Fig. P7.49 and P7.50

x

y

y = kx2

h

a a

Fig. P7.51 and P7.52

aa

a

Fig. P7.53

7.50 Determine by direct integration the moment of inertia of the 
shaded area with respect to the x axis.

 7.51 Determine the moment of inertia and radius of gyration of the 
shaded area shown with respect to the x axis.

bee80156_ch07_276-299.indd Page 297  10/16/09  12:03:51 PM user-s173bee80156_ch07_276-299.indd Page 297  10/16/09  12:03:51 PM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-07/Volumes/MHDQ-New/MHDQ152/MHDQ152-07



298  Distributed Forces: Moments of Inertia of Areas

y

x
C D

BA

d

60 mm

Fig. P7.57

 7.56 Determine the moment of inertia of the shaded area shown with 
respect to the y axis.

 7.57 The shaded area is equal to 5000 mm2. Determine its centroi-
dal moments of inertia Ix and Iy, knowing that Iy 5 2Ix and that 
the polar moment of inertia of the area about point A is JA 5 
22.5 3 106 mm4.

12 in.

b
O

2 in.

y

x
1 in.
1 in.

Fig. P7.55

 7.54 Determine the moments of inertia of the shaded area shown with 
respect to the x and y axes when a 5 20 mm.

y

x
a

a

C

a

a

Fig. P7.54

y

x

120 mm

r = 120 mm

O

Fig. P7.56

 7.55 (a) Determine Ix and Iy if b 5 10 in. (b) Determine the dimension 
b for which Ix 5 Iy.
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299Review Problems 7.58 Determine the polar moment of inertia and the polar radius of 
gyration of the shaded area shown with respect to its centroid C.

 7.59 Determine the polar moment of inertia of the area shown with 
respect to (a) point O, (b) the centroid of the area.

xC

y

2a 2a

2a

2a

a a

a

a

Fig. P7.58

O

E

A

B

D

4 in.

4 in.

4 in. 4 in.

x

y

Fig. P7.59

18 in.

1 in.

1 in.

1 in.
L 6 × 6 × 1

18 in.

Fig. P7.60

 7.60 Three 1-in. steel plates are bolted to four L6 3 6 3 1-in. angles 
to form the column whose cross section is shown. Determine the 
moments of inertia and the radii of gyration of the section with 
respect to centroidal axes that are respectively parallel and perpen-
dicular to the flanges.
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This chapter is devoted to the study of 

the stresses occurring in many of the 

elements contained in these  excavators, 

such as two-force members, axles, 

bolts, and pins.
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Concept of Stress
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8C H A P T E R
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8.1  INTRODUCTION
The main objective of the study of the mechanics of materials is to 
provide the future engineer with the means of analyzing and design-
ing various machines and load-bearing structures.
 Both the analysis and the design of a given structure involve 
the determination of stresses and deformations. This chapter is 
devoted to the concept of stress.
 Section 8.2 will introduce you to the concept of stress in a 
member of a structure, and you will be shown how that stress can 
be determined from the force in the member. You will consider suc-
cessively the normal stresses in a member under axial loading (Sec. 
8.3), the shearing stresses caused by the application of equal and 
opposite transverse forces (Sec. 8.4), and the bearing stresses created 
by bolts and pins in the members they connect (Sec. 8.5). These vari-
ous concepts will be applied in Sec. 8.6 to the determination of the 
stresses in the members of the simple structure. Engineering design 
will be discussed in Sec. 8.7.
 In Sec. 8.8, where a two-force member under axial loading is con-
sidered again, it will be observed that the stresses on an oblique plane 
include both normal and shearing stresses, while in Sec. 8.9 you will 
note that six components are required to describe the state of stress at 
a point in a body under the most general loading conditions.
 Finally, Sec. 8.10 will be devoted to the determination from test 
specimens of the ultimate strength of a given material and to the use of 
a factor of safety in the computation of the allowable load for a structural 
component made of that material.

8.2 STRESSES IN THE MEMBERS OF A STRUCTURE
The force per unit area, or intensity of the forces distributed over a 
given section, is called the stress on that section. When the stress is 
perpendicular to the cross-section, it is denoted by the Greek letter 
s (sigma). The stress in a member of cross-sectional area A subjected 
to an axial load P (Fig. 8.1) is therefore obtained by dividing the 
magnitude P of the load by the area A:

 
s 5

P
A  

(8.1)

A positive sign will be used to indicate a tensile stress (member in 
tension) and a negative sign to indicate a compressive stress (mem-
ber in compression).
 Since SI metric units are used in this discussion, with P expressed 
in newtons (N) and A in square meters (m2), the stress s will be 
expressed in N/m2. This unit is called a pascal (Pa). However, one 
finds that the pascal is an exceedingly small quantity and that, in 
practice, multiples of this unit must be used, namely, the kilopascal 
(kPa), the megapascal (MPa), and the gigapascal (GPa). We have

 1 kPa 5 103 Pa 5 103 N/m2

 1 MPa 5 106 Pa 5 106 N/m2

 1 GPa 5 109 Pa 5 109 N/m2
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Structure
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3038.3 Axial Loading. Normal Stress When U.S. customary units are used, the force P is usually 
expressed in pounds (lb) or kilopounds (kip), and the cross-sectional 
area A in square inches (in2). The stress s will then be expressed in 
pounds per square inch (psi) or kilopounds per square inch (ksi).†

8.3 AXIAL LOADING. NORMAL STRESS
The member shown in Fig. 8.1 in the preceding section is subject 
to forces P and P9 applied at the ends. The forces are directed along 
the axis of the member, and we say that the member is under axial 
loading. An actual example of structural members under axial loading 
is provided by the members of the bridge truss shown in Photo 8.1.

†The principal SI and U.S. customary units used in mechanics for stresses are listed in 
tables inside the front cover of this book. From this table, we note that 1 psi is approxi-
mately equal to 7 kPa, and 1 ksi is approximately equal to 7 MPa.

Photo 8.1 This bridge truss consists of two-force members that may be in 
tension or in compression.

 As shown in Fig. 8.1b, the internal force and the corresponding 
stress are perpendicular to the axis of the member; the correspond-
ing stress is described as a normal stress. Thus, formula (8.1) gives 
us the normal stress in a member under axial loading:

 
s 5

P
A

 (8.1)

 We should also note that, in formula (8.1), s is obtained by 
dividing the magnitude P of the resultant of the internal forces dis-
tributed over the cross section by the area A of the cross section; it 
represents, therefore, the average value of the stress over the cross 
section, rather than the stress at a specific point of the cross section.
 To define the stress at a given point Q of the cross section, we 
should consider a small area DA (Fig. 8.2). Dividing the magnitude 

P'

Q

�A

�F

Fig. 8.2
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of DF by DA, we obtain the average value of the stress over DA. 
Letting DA approach zero, we obtain the stress at point Q:

 
s 5 lim

¢Ay0
 
¢F
¢A

 (8.2)

 In general, the value obtained for the stress s at a given point 
Q of the section is different from the value of the average stress given 
by formula (8.1), and s is found to vary across the section. In a slen-
der rod subjected to equal and opposite concentrated loads P and P9 
(Fig. 8.3a), this variation is small in a section away from the points of 
application of the concentrated loads (Fig. 8.3c), but it is quite notice-
able in the neighborhood of these points (Fig. 8.3b and d).
 It follows from Eq. (8.2) that the magnitude of the resultant of 
the distributed internal forces is

#dF 5 #
A

s dA

But the conditions of equilibrium of each of the portions of rod 
shown in Fig. 8.3 require that this magnitude be equal to the mag-
nitude P of the concentrated loads. We have, therefore,

 
P 5 #dF 5 #

A

s dA (8.3)

which means that the volume under each of the stress surfaces in 
Fig. 8.3 must be equal to the magnitude P of the loads. This, how-
ever, is the only information that we can derive from our knowledge 
of statics, regarding the distribution of normal stresses in the various 
sections of the rod. The actual distribution of stresses in any given 
section is statically indeterminate. To learn more about this distribu-
tion, it is necessary to consider the deformations resulting from the 
particular mode of application of the loads at the ends of the rod. 
This will be discussed further in Chap. 9.
 In practice, it will be assumed that the distribution of normal 
stresses in an axially loaded member is uniform, except in the imme-
diate vicinity of the points of application of the loads. The value s 
of the stress is then equal to save and can be obtained from formula 
(8.1). However, we should realize that, when we assume a uniform 
distribution of stresses in the section, i.e., when we assume that the 
internal forces are uniformly distributed across the section, it fol-
lows from elementary statics that the resultant P of the internal 
forces must be applied at the centroid C of the section (Fig. 8.4). 
This means that a uniform distribution of stress is possible only if 
the line of action of the concentrated loads P and P9 passes through 
the centroid of the section considered (Fig. 8.5). This type of loading 
is called centric loading and will be assumed to take place in all 
straight two-force members found in trusses and pin-connected 
structures. However, if a two-force member is loaded axially, but 
eccentrically as shown in Fig. 8.6a, we find from the conditions of 
equilibrium of the portion of the member shown in Fig. 8.6b that 
the internal forces in a given section must be equivalent to a force 

304  Concept of Stress
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P applied at the centroid of the section and a couple M of moment 
M 5 Pd. The distribution of forces-—-and, thus, the corresponding 
distribution of stresses-—-cannot be uniform. Nor can the distribution 
of stresses be symmetric as shown in Fig. 8.3. This point will be dis-
cussed in detail in Chap. 11.

8.4 SHEARING STRESS
The internal forces and the corresponding stresses discussed in Secs. 
8.2 and 8.3 were normal to the section considered. A very different 
type of stress is obtained when transverse forces P and P9 are applied 
to a member AB (Fig. 8.7). Passing a section at C between the points 
of application of the two forces (Fig. 8.8a), we obtain the diagram 
of portion AC shown in Fig. 8.8b. We conclude that internal forces 
must exist in the plane of the section, and that their resultant is equal 
to P. These elementary internal forces are called shearing forces, and 
the magnitude P of their resultant is the shear in the section. Divid-
ing the shear P by the area A of the cross section, we obtain the 
average shearing stress in the section. Denoting the shearing stress 
by the Greek letter t (tau), we write

 
tave 5

P
A

 (8.4)

 It should be emphasized that the value obtained is an average 
value of the shearing stress over the entire section. Contrary to what 
we said earlier for normal stresses, the distribution of shearing 
stresses across the section cannot be assumed uniform. As you will 
see in Chap. 13, the actual value t of the shearing stress varies from 
zero at the surface of the member to a maximum value tmax that may 
be much larger than the average value tave.

8.4 Shearing Stress
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 Shearing stresses are commonly found in bolts, pins, and rivets 
used to connect various structural members and machine compo-
nents (Photo 8.2). Consider the two plates A and B, which are con-
nected by a bolt CD (Fig. 8.9). If the plates are subjected to tension 
forces of magnitude F, stresses will develop in the section of bolt 
corresponding to the plane EE9. Drawing the diagrams of the bolt 
and of the portion located above the plane EE9 (Fig. 8.10), we con-
clude that the shear P in the section is equal to F. The average 
shearing stress in the section is obtained, according to formula (8.4), 
by dividing the shear P 5 F by the area A of the cross section:

 
tave 5

P
A

5
F
A

 (8.5)
Photo 8.2 Cutaway view of a connection 
with a bolt in shear.

C

D

A
F

E'B
E

F'

Fig. 8.9

C C

D

F

PE�E

(a) (b)

F

F'

Fig. 8.10

K
AB

L

E H

G J

C

D 

K'

L'

FF'

Fig. 8.11

K

L

H

J

K'

L'
F

FC

FD

F
P

P

(a) (b)

Fig. 8.12

8.5 BEARING STRESS IN CONNECTIONS
Bolts, pins, and rivets create stresses in the members they connect 
along the bearing surface, or surface of contact. For example, con-
sider again the two plates A and B connected by a bolt CD that we 
have discussed in the preceding section (Fig. 8.9). The bolt exerts on 

 The bolt we have just considered is said to be in single shear. 
Different loading situations may arise, however. For example, if splice 
plates C and D are used to connect plates A and B (Fig. 8.11), shear 
will take place in bolt HJ in each of the two planes KK9 and LL9 (and 
similarly in bolt EG). The bolts are said to be in double shear. To 
determine the average shearing stress in each plane, we draw free-
body diagrams of bolt HJ and of the portion of bolt located between 
the two planes (Fig. 8.12). Observing that the shear P in each of the 
sections is P 5 Fy2, we conclude that the average shearing stress is

 
tave 5

P
A

5
Fy2

A
5

F
2A

 (8.6)
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307plate A a force P equal and opposite to the force F exerted by the 
plate on the bolt (Fig. 8.13). The force P represents the resultant of 
elementary forces distributed on the inside surface of a half-cylinder 
of diameter d and of length t equal to the thickness of the plate. Since 
the distribution of these forces—and of the corresponding stresses—is 
quite complicated, one uses in practice an average nominal value sb of 
the stress, called the bearing stress, obtained by dividing the load P by 
the area of the rectangle representing the projection of the bolt on the 
plate section (Fig. 8.14). Since this area is equal to td, where t is the 
plate thickness and d the diameter of the bolt, we have

 
sb 5

P
A

5
P
td

 (8.7)

8.6  APPLICATION TO THE ANALYSIS OF 
A SIMPLE STRUCTURE

We are now in a position to determine the stresses in the members 
and connections of simple two-dimensional structure and, thus, to 
design such a structure.
 The structure shown in Fig. 8.15 was designed to support a 
30-kN load. It consists of a boom AB with a 30 3 50-mm rectangular 
cross section and a rod BC with a 20-mm-diameter circular cross 
section. The boom and the rod are connected by a pin at B and are 
supported by pins and brackets at A and C, respectively. 
 We first use the basic methods of statics to find the reactions 
and then the internal forces in the members. We start by drawing a 
free-body diagram of the structure by detaching it from its supports 
at A and C, and showing the reactions that these supports exert on 
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308  Concept of Stress the structure (Fig. 8.16). The reactions are represented by two com-
ponents Ax and Ay at A, and Cx and Cy at C. We write the following 
three equilibrium equations: 

 1l o MC 5 0: Ax(0.6 m) 2 (30 kN)(0.8 m) 5 0
 Ax 5 140 kN (8.8)
y
1   o Fx 5 0: Ax 1 Cx 5 0
 Cx 5 2Ax  Cx 5 240 kN (8.9)
1x o Fy 5 0: Ay 1 Cy 2 30 kN 5 0
 Ay 1 Cy 5 130 kN (8.10)

We have found two of the four unknowns. We must now dismember 
the structure. Considering the free-body diagram of the boom AB 
(Fig. 8.17), we write the following equilibrium equation:

 1l o MB 5 0: 2Ay(0.8 m) 5 0  Ay 5 0 (8.11)

Substituting for Ay from (8.11) into (8.10), we obtain Cy 5 130 kN. 
Expressing the results obtained for the reactions at A and C in vector 
form, we have

A 5 40 kNy, Cx 5 40 kNz , Cy 5 30 kNx

We note that the reaction at A is directed along the axis of the boom 
AB  and causes compression in that member. Observing that the 
components Cx and Cy of the reaction at C are, respectively, propor-
tional to the horizontal and vertical components of the distance from 
B to C, we conclude that the reaction at C is equal to 50 kN, is 
directed along the axis of the rod BC, and causes tension in that 
member.
 These results could have been anticipated by recognizing that 
AB and BC are two-force members, i.e., members that are sub-
jected to forces at only two points, these points being A and B for 
member AB, and B and C for member BC. Indeed, for a two-force 
member the lines of action of the resultants of the forces acting at 
each of the two points are equal and opposite and pass through 
both points. Using this property, we could have obtained a simpler 
solution by considering the free-body diagram of pin B. The forces 
on pin B are the forces FAB and FBC exerted, respectively, by mem-
bers AB and BC, and the 30-kN load (Fig. 8.18a). We can express 
that pin B is in equilibrium by drawing the corresponding force 
triangle (Fig. 8.18b).
 Since the force FBC is directed along member BC, its slope 
is the same as that of BC, namely, 3/4. We can, therefore, write the 
 proportion 

FAB

4
5

FBC

5
5

30 kN
3

from which we obtain

FAB 5 40 kN    FBC 5 50 kN

 The forces F9AB and F9BC exerted by pin B, respectively, on boom 
AB and rod BC are equal and opposite to FAB and FBC (Fig. 8.19).
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 Knowing the forces at the ends of each of the members, we 
can now determine the internal forces in these members. Passing a 
section at some arbitrary point D of rod BC, we obtain two portions 
BD and CD (Fig. 8.20). Since 50-kN forces must be applied at D to 
both portions of the rod to keep them in equilibrium, we conclude 
that an internal force of 50 kN is produced in rod BC when a 30-kN 
load is applied at B. We further check from the directions of the 
forces FBC and F9BC in Fig. 8.20 that the rod is in tension. A similar 
procedure would enable us to determine that the internal force in 
boom AB is 40 kN and that the boom is in compression.
 We now determine the stresses in the members and connections. 
As shown in Fig. 8.21, the 20-mm-diameter rod BC has flat ends of 
20 3 40-mm-rectangular cross section, while boom AB has a 30 3 
50-mm rectangular cross section and is fitted with a clevis at end B. 
Both members are connected at B by a pin from which the 30-kN 
load is suspended by means of a U-shaped bracket. Boom AB is sup-
ported at A by a pin fitted into a double bracket, while rod BC is 
connected at C to a single bracket. All pins are 25 mm in  diameter.

a. Determination of the Normal Stress in Boom AB and Rod 
BC. The force in rod BC is FBC 5 50 kN (tension). Recalling that 
the diameter of the rod is 20 mm, we use Eq. (8.1) to determine the 
stress created in the rod by the given loading. We have

 P 5 FBC 5 150 kN 5 150 3 103 N

 A 5 pr2 5 pa20 mm
2
b2

5 p 110 3 1023 m 22 5 314 3 1026 m2

 sBC 5
P
A

5
150 3 103 N

314 3 1026 m2 5 1159 3 106 Pa 5 1159 MPa

However, the flat parts of the rod are also under tension and at 
the narrowest section, where a hole is located, we have

A 5 120 mm2 140 mm 2 25 mm2 5 300 3 1026 m2

The corresponding average value of the stress, therefore, is

1sBC2end 5
P
A

5
50 3 103 N

300 3 1026 m2 5 167 MPa

FAB F'AB

FBC

F'BCB

A B

C

Fig. 8.19
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310  Concept of Stress

Note that this is an average value; close to the hole, the stress will actu-
ally reach a much larger value, as you will see in Sec. 9.15. It is clear that, 
under an increasing load, the rod will fail near one of the holes rather 
than in its cylindrical portion; its design, therefore, could be improved 
by increasing the width or the thickness of the flat ends of the rod.
 Turning now our attention to boom AB, we recall that the force 
in the boom is FAB 5 40 kN (compression). Since the area of the boom’s 
rectangular cross section is A 5 30 mm 3 50 mm 5 1.5 3 1023 m2, 

the average value of the normal stress in the main part of the rod, 
between pins A and B, is

sAB 5 2
40 3 103 N

1.5 3 1023 m2 5 226.7 3 106 Pa 5 226.7 MPa

Note that the sections of minimum area at A and B are not under 
stress, since the boom is in compression, and, therefore, pushes on 
the pins (instead of pulling on the pins as rod BC does).

b. Determination of the Shearing Stress in Various Connec-
tions. To determine the shearing stress in a connection such as a 
bolt, pin, or rivet, we first clearly show the forces exerted by the 
various members it connects. Thus, in the case of pin C of our exam-
ple (Fig. 8.22a), we draw Fig. 8.22b, showing the 50-kN force exerted 
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by member BC on the pin, and the equal and opposite force exerted 
by the bracket. Drawing now the diagram of the portion of the pin 
located  below the plane DD9 where shearing stresses occur (Fig. 
8.22c), we conclude that the shear in that plane is P 5 50 kN. Since 
the cross- sectional area of the pin is

A 5 pr2 5 pa25 mm
2
b2

5 p112.5 3 1023 m22 5 491 3 1026 m2

we find that the average value of the shearing stress in the pin at C is

tave 5
P
A

5
50 3 103 N

491 3 1026 m2 5 102 MPa

 Considering now the pin at A (Fig. 8.23), we note that it is in 
double shear. Drawing the free-body diagrams of the pin and of the 
portion of pin located between the planes DD9 and EE9 where shear-
ing stresses occur, we conclude that P 5 20 kN and that

tave 5
P
A

5
20 kN

491 3 1026 m2 5 40.7 MPa

 Considering the pin at B (Fig. 8.24a), we note that the pin may 
be divided into five portions which are acted upon by forces exerted 
by the boom, rod, and bracket. Considering successively the portions 
DE (Fig. 8.24b) and DG (Fig. 8.24c), we conclude that the shear in 
section E is PE 5 15 kN, while the shear in section G is PG 5 25 kN. 
Since the loading of the pin is symmetric, we conclude that the 
maximum value of the shear in pin B is PG 5 25 kN, and that the 
largest shearing stresses occur in sections G and H, where

tave 5
PG

A
5

25 kN
491 3 1026 m2 5 50.9 MPa

c. Determination of the Bearing Stresses. To determine the 
nominal bearing stress at A in member AB, we use formula (8.7) of 
Sec. 8.5. From Fig. 8.21, we have t 5 30 mm and d 5 25 mm. Recall-
ing that P 5 FAB 5 40 kN, we have

sb 5
P
td

5
40 kN

130 mm2 125 mm2 5 53.3 MPa

(a) (b) (c)
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312  Concept of Stress To obtain the bearing stress in the bracket at A, we use t 5 2(25 mm) 
5 50 mm and d 5 25 mm:

sb 5
P
td

5
40 kN

150 mm2 125 mm2 5 32.0 MPa

 The bearing stresses at B in member AB, at B and C in mem-
ber BC, and in the bracket at C are found in a similar way.

8.7 DESIGN
Considering again the structure of Fig. 8.15, let us assume that 
rod BC is made of a steel with a maximum allowable stress sall 5 
165 MPa. Can rod BC safely support the load to which it will be 
subjected? The magnitude of the force FBC in the rod was found 
earlier to be 50 kN and the stress sBC was found to be 159 MPa. 
Since the value obtained is smaller than the value sall of the allow-
able stress in the steel used, we conclude that rod BC can safely 
support the load to which it will be subjected. We should also 
determine whether the deformations produced by the given load-
ing are acceptable. The study of deformations under axial loads 
will be the subject of Chap. 9. An additional consideration re-
quired for members in compression involves the stability of the 
member, i.e., its ability to support a given load without expe-
riencing a sudden change in configuration. This will be discussed 
in Chap. 16.
 The engineer’s role is not limited to the analysis of existing 
structures and machines subjected to given loading conditions. Of 
even greater importance to the engineer is the design of new struc-
tures and machines, that is, the selection of appropriate components 
to perform a given task. As an example of design, let us return to 
the structure of Fig. 8.15, and assume that aluminum with an allow-
able stress sall  5 100 MPa is to be used. Since the force in rod BC 
will still be P 5 FBC 5 50 kN under the given loading, we must have, 
from Eq. (8.1),

sall 5
P
A
    A 5

P
sall

5
50 3 103 N

100 3 106 Pa
 5  500 3 1026 m2

and, since A 5 pr2,

 r 5
B

A
p

5
B

500 3 1026 m2

p
5 12.62 3 1023 m 5  12.62 mm

d 5 2r 5 25.2 mm

We conclude that an aluminum rod 26 mm or more in diameter will 
be adequate.
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313

SAMPLE PROBLEM 8.1

In the hanger shown, the upper portion of link ABC is 3
8 in. thick and the 

lower portions are each 1
4 in. thick. Epoxy resin is used to bond the upper 

and lower portions together at B. The pin at A is of 3
8-in. diameter while a 

1
4-in.-diameter pin is used at C. Determine (a) the shearing stress in pin A, 
(b) the shearing stress in pin C, (c) the largest normal stress in link ABC, 
(d ) the average shearing stress on the bonded surfaces at B, (e) the bearing 
stress in the link at C.

SOLUTION

Free Body: Entire Hanger. Since the link ABC is a two-force member, the 
reaction at A is vertical; the reaction at D is represented by its components 
Dx and Dy. We write

1l oMD 5 0: 1500 lb2 115 in.2 2 FAC110 in.2 5 0
FAC 5 1750 lb    FAC 5 750 lb    tension

a. Shearing Stress in Pin A. Since this 3
8-in.-diameter pin is in single 

shear, we write

 
tA 5

FAC

A
5

750 lb
1
4p10.375 in.22 tA 5 6790 psi ◀

b. Shearing Stress in Pin C. Since this 1
4-in.-diameter pin is in double 

shear, we write

 
tC 5

1
2 FAC

A
5

375 lb
1
4p 10.25 in.22 

tC 5 7640 psi ◀

c. Largest Normal Stress in Link ABC. The largest stress is found where 
the area is smallest; this occurs at the cross section at A where the 3

8-in. hole 
is located. We have

sA 5
FAC

Anet
5

750 lb
138 in.2 11.25 in. 2 0.375 in.2 5

750 lb
0.328 in2    

sA 5 2290 psi ◀

d. Average Shearing Stress at B. We note that bonding exists on both 
sides of the upper portion of the link and that the shear force on each side 
is F1 5 (750 lb)/2 5 375 lb. The average shearing stress on each surface 
is thus

 tB 5
F1

A
5

375 lb
11.25 in.2 11.75 in.2  tB 5 171.4 psi ◀

e. Bearing Stress in Link at C. For each portion of the link, F1 5 375 lb 
and the nominal bearing area is (0.25 in.)(0.25 in.) 5 0.0625 in2.

 
sb 5

F1

A
5

375 lb
0.0625 in2 

sb 5 6000 psi ◀

6 in.

7 in.

1.75 in.

5 in.

1.25 in.

10 in.

500 lb

A

B

C

D

E

5 in.

500 lb

10 in.

A D
Dx

FAC
Dy

E
C

-in. diameter

750 lb
FAC � 750 lb FAC � 750 lb

1
4

-in. diameter3
8

FAC � 375 lb1
2

FAC � 375 lb1
2

CA

F1 � F2 �   FAC � 375 lb 1
2

FAC � 750 lb 

-in. diameter3
8

in.

1.25 in.

1.25 in.

1.75 in.

3
8

FAC

F2 F1

A
B

375 lb F1 � 375 lb 

-in. diameter1
4

1
4 in.
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314

SOLUTION

a. Diameter of the Bolt. Since the bolt is in double shear, F1 5 1
2P 5 

60 kN.

t 5
F1

A
5

60 kN
1
4p d2     100 MPa 5

60 kN
1
4p d2     d 5 27.6 mm

We will use  d 5 28 mm ◀

At this point we check the bearing stress between the 20-mm-thick plate 
and the 28-mm-diameter bolt.

tb 5
P
td

5
120 kN

10.020 m 2 10.028 m 2 5 214 MPa , 350 MPa    OK

b. Dimension b at Each End of the Bar. We consider one of the end 
portions of the bar. Recalling that the thickness of the steel plate is t 5 
20 mm and that the average tensile stress must not exceed 175 MPa, we 
write

s 5
1
2 P

ta
    175 MPa 5

60 kN
10.02 m 2a    a 5 17.14 mm

 b 5 d 1 2a 5 28 mm 1 2(17.14 mm) b 5 62.3 mm ◀

c. Dimension h of the Bar. Recalling that the thickness of the steel plate 
is t 5 20 mm, we have

s 5
P
th
    175 MPa 5

120 kN
10.020 m 2h    h 5 34.3 mm

We will use  h 5 35 mm ◀

SAMPLE PROBLEM 8.2

The steel tie bar shown is to be designed to carry a tension force of magni-
tude P 5 120 kN when bolted between double brackets at A and B. The 
bar will be fabricated from 20-mm-thick plate stock. For the grade of steel 
to be used, the maximum allowable stresses are: s 5 175 MPa, t 5 100 
MPa, sb 5 350 MPa. Design the tie bar by determining the required values 
of (a) the diameter d of the bolt, (b) the dimension b at each end of the 
bar, (c) the dimension h of the bar.

A B

d
F1 �   P

P

F1

F1

1
2

b

d

h

t � 20 mm

P

P' � 120 kN
a

t

a

db

1
2

P1
2

P � 120 kN

t � 20 mm

h
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PROBLEMS

315

 8.1 Two solid cylindrical rods AB and BC are welded together at B
and loaded as shown. Knowing that d1 5 50 mm and d2 5 30 mm, 
find the average normal stress at the midsection of (a) rod AB, 
(b) rod BC.

8.2 Two solid cylindrical rods AB and BC are welded together at B
and loaded as shown. Knowing that the average normal stress must 
not exceed 140 MPa in either rod, determine the smallest allow-
able values of d1 and d2.

8.3 Two solid cylindrical rods AB and BC are welded together at B
and loaded as shown. Determine the average normal stress at the 
midsection of (a) rod AB, (b) rod BC.

8.4 In Prob. 8.3, determine the magnitude of the force P for which 
the tensile stress in rod AB has the same magnitude as the com-
pressive stress in rod BC.

8.5 Link BD consists of a single bar 30 mm wide and 12 mm thick. 
Knowing that each pin has a 10-mm diameter, determine the maxi-
mum value of the average normal stress in link BD if (a) u 5 0°, 
(b) u 5 90°.

d2

d1

40 kN

30 kN

B

C

250 mm

300 mm

A

Fig. P8.1 and P8.2

2 in.
3 in.

30 kips

P � 40 kips

30 kips

C
A

B

30 in. 40 in.

Fig. P8.3

300 mm

30�

150 mm

B

A
D

C
20 kN

�

Fig. P8.5
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316 Concept of Stress  8.6 Knowing that the central portion of the link BD has a uniform cross-
sectional area of 800 mm2, determine the magnitude of the load 
P for which the normal stress in that portion of BD is 50 MPa.

 8.7 Link AC has a uniform rectangular cross section 1
8 in. thick and 1 in. 

wide. Determine the normal stress in the central portion of the link.

 8.8 Two horizontal 5-kip forces are applied to pin B of the assembly 
shown. Knowing that a pin of 0.8-in. diameter is used at each con-
nection, determine the maximum value of the average normal 
stress (a) in link AB, (b) in link BC.

 8.9 For the Pratt bridge truss and loading shown, determine the aver-
age normal stress in member BE, knowing that the cross-sectional 
area of that member is 5.87 in2.

 8.10 Knowing that the average normal stress in member CE of the Pratt 
bridge truss shown must not exceed 21 ksi for the given loading, 
determine the cross-sectional area of the member that will yield 
the most economical and safe design. Assume that both ends of 
the member will be adequately reinforced.

P

120 mm

450 mm

135 mm 240 mm

510 mm

D
C

B

A

Fig. P8.6

10 in.
30�

4 in.

12 in.

8 in.

2 in.

120 lb

120 lb

B

C

A

Fig. P8.7

B

A

C

0.5 in.

0.5 in.

1.8 in.

1.8 in.

45�

60�

5 kips
5 kips

Fig. P8.8

9 ft

80 kips 80 kips 80 kips

9 ft 9 ft 9 ft

12 ft

B D F

H
GEC

A

Fig. P8.9 and P8.10
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317Problems 8.11 A couple M of magnitude 1500 N ? m is applied to the crank of 
an engine. For the position shown, determine (a) the force P 
required to hold the engine system in equilibrium, (b) the average 
normal stress in the connecting rod BC, which has a 450-mm2 
uniform cross section.

 8.12 Two hydraulic cylinders are used to control the position of the 
robotic arm ABC. Knowing that the control rods attached at A and 
D each have a 20-mm diameter and happen to be parallel in the 
position shown, determine the average normal stress in (a) mem-
ber AE, (b) member DG.

 8.13 The wooden members A and B are to be joined by plywood splice 
plates that will be fully glued on the surfaces in contact. As part 
of the design of the joint, and knowing that the clearance between 
the ends of the members is to be 8 mm, determine the smallest 
allowable length L if the average shearing stress in the glue is not 
to exceed 800 kPa.

 8.14 Determine the diameter of the largest circular hole that can be 
punched into a sheet of polystyrene 6 mm thick, knowing that the 
force exerted by the punch is 45 kN and that a 55-MPa average 
shearing stress is required to cause the material to fail.

 8.15 Two wooden planks, each 7
8 in. thick and 6 in. wide, are joined by 

the glued mortise joint shown. Knowing that the joint will fail when 
the average shearing stress in the glue reaches 120 psi, determine 
the smallest allowable length d of the cuts if the joint is to with-
stand an axial load of magnitude P 5 1200 lb.

A
B

E F G

D

C

400 mm

150 mm 200 mm

300 mm 600 mm
800 N

150 mm

Fig. P8.12

200 mm

80 mmM

60 mm

B

A

C

P

Fig. P8.11

24 kN

A

L

B
100 mm

24 kN

8 mm

Fig. P8.13

P' P
33333333333333333333333333333
44444444444444444444444444 in.ininininininininininininininininininininininininininin.in.in.in.in.in.in.in.in.in.in.in.

6 in.6 i6 i6 i6 i6 i6666666 in.

d

GlueueueueueGlueGlueGlueGlueGlueGlueGlueGlueGlueGlue

33333333333333
44444444444 in.ininininininininininininininiiiiii

Fig. P8.15
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318 Concept of Stress  8.16 A load P is applied to a steel rod supported as shown by an alu-
minum plate into which a 0.6-in.-diameter hole has been drilled. 
Knowing that the shearing stress must not exceed 18 ksi in the 
steel rod and 10 ksi in the aluminum plate, determine the largest 
load P that can be applied to the rod.

 8.17 An axial load P is supported by a short W250 3 67 column of 
cross-sectional area A 5 8580 mm2 and is distributed to a concrete 
foundation by a square plate as shown. Knowing that the average 
normal stress in the column must not exceed 150 MPa and that 
the bearing stress on the concrete foundation must not exceed 12.5 
MPa, determine the side a of the plate that will provide the most 
economical and safe design.

 8.18 The axial force in the column supporting the timber beam shown is 
P 5 75 kN. Determine the smallest allowable length L of the bearing 
plate if the bearing stress in the timber is not to exceed 3.0 MPa.

 8.19 Three wooden planks are fastened together by a series of bolts to 
form a column. The diameter of each bolt is 1

2 in. and the inner 
diameter of each washer is 5

8 in., which is slightly larger than the 
diameter of the holes in the planks. Determine the smallest allow-
able outer diameter d of the washers, knowing that the average 
normal stress in the bolts is 5 ksi and that the bearing stress 
between the washers and the planks must not exceed 1.2 ksi.

1.6 in.

0.25 in.

0.6 in.

P

0.4 in.

Fig. P8.16

a aP

Fig. P8.17
140 mm

L

P

Fig. P8.18

1
2d in.

Fig. P8.19
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319Problems 8.20 Link AB, of width b 5 2 in. and thickness t 5 1
4 in., is used to 

support the end of a horizontal beam. Knowing that the average 
normal stress in the link is 220 ksi and that the average shearing 
stress in each of the two pins is 12 ksi, determine (a) the diameter 
d of the pins, (b) the average bearing stress in the link.

 8.21 For the assembly and loading of Prob. 8.8, determine (a) the aver-
age shearing stress in the pin at A, (b) the average bearing stress 
at A in member AB.

 8.22 The hydraulic cylinder CF, which partially controls the position of 
rod DE, has been locked in the position shown. Member BD is 
5
8 in. thick and is connected to the vertical rod by a 3

8-in.-diameter 
bolt. Determine (a) the average shearing stress in the bolt, (b) the 
bearing stress at C in member BD.

 8.23 Knowing that u 5 40° and P 5 9 kN, determine (a) the smallest 
allowable diameter of the pin at B if the average shearing stress in 
the pin is to not exceed 120 MPa, (b) the corresponding average 
bearing stress in member AB at B, (c) the corresponding average 
bearing stress in each of the support brackets at B.

 8.24 Determine the largest load P that can be applied at A when u 5 60°, 
knowing that the average shearing stress in the 10-mm-diameter pin 
at B must not exceed 120 MPa and that the average bearing stress 
in member AB and in the bracket at B must not exceed 90 MPa.

1.8 in.

8 in.

4 in. 7 in.

D

F

E

A

C
B

400 lb

20�
75�

Fig. P8.22

b
d

t

B

A

d

Fig. P8.20

16 mm

750 mm

750 mm

12 mm

50 mm B

A

C

P

�

Fig. P8.23 and P8.24

bee80156_ch08_300-341.indd Page 319  10/16/09  12:17:45 PM user-s173bee80156_ch08_300-341.indd Page 319  10/16/09  12:17:45 PM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-08/Volumes/MHDQ-New/MHDQ152/MHDQ152-08



320  Concept of Stress 8.8  STRESS ON AN OBLIQUE PLANE 
UNDER AXIAL LOADING

In the preceding sections, axial forces exerted on a two-force 
member (Fig. 8.25a) were found to cause normal stresses in that 
member (Fig. 8.25b), while transverse forces exerted on bolts and 
pins (Fig 8.26a) were found to cause shearing stresses in those 
connections (Fig. 8.26b). The reason such a relation was observed 
between axial forces and normal stresses on the one hand and 
transverse forces and shearing stresses on the other was because 
stresses were being determined only on planes perpendicular to 
the axis of the member or connection. As you will see in this sec-
tion, axial forces cause both normal and shearing stresses on planes 
which are not perpendicular to the axis of the member. Similarly, 
transverse forces exerted on a bolt or a pin cause both normal and 
shearing stresses on planes which are not perpendicular to the axis 
of the bolt or pin.

 Consider the two-force member of Fig. 8.25, which is subjected 
to axial forces P and P9. If we pass a section forming an angle u with 
a normal plane (Fig. 8.27a) and draw the free-body diagram of the 
portion of member located to the left of that section (Fig. 8.27b), 
we find from the equilibrium conditions of the free body that the 
distributed forces acting on the section must be equivalent to the 
force P.
 Resolving P into components F and V, respectively normal and 
tangential to the section (Fig. 8.27c), we have

 F 5 P cos u    V 5 P sin u (8.12)

The force F represents the resultant of normal forces distributed 
over the section, and the force V the resultant of shearing forces 
(Fig. 8.27d). The average values of the corresponding normal and 
shearing stresses are obtained by dividing, respectively, F and V by 
the area Au of the section:

 
s 5

F
Au

    t 5
V
Au

 (8.13)

Substituting for F and V from (8.12) into (8.13), and observing 
from Fig. 8.27c that A0 5 Au  cos u, or Au 5 A0 /cos u, where A0 

(a)

(b)

P

P

P'

P'

P'

�

Fig. 8.25

P'

PP

P' P'

�

(a) (b)

Fig. 8.26

Fig. 8.27

P'

P'

P'

P

A
A0

�

P

V

F

P'

(a)

(c)

(b)

(d)

�

�

�

�

P
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321denotes the area of a section perpendicular to the axis of the mem-
ber, we obtain

 s 5
P cos u

A0ycos u
    t 5

P sin u
A0ycos u

or

 
 s 5

P
A0

 cos2 u    t 5
P
A0

 sin u cos u (8.14)

 We note from the first of Eqs. (8.14) that the normal stress s 
is maximum when u 5 0°, i.e., when the plane of the section is per-
pendicular to the axis of the member, and that it approaches zero as 
u approaches 90°. We check that the value of s when u 5 0° is

 
sm 5

P
A0

 (8.15)

as we found earlier in Sec. 8.2. The second of Eqs. (8.14) shows that 
the shearing stress t is zero for u 5 0° and u 5 90°, and that for 
u 5 45° it reaches its maximum value

 
tm 5

P
A0

 sin 45° cos 45° 5
P

2A0
 (8.16)

The first of Eqs. (8.14) indicates that, when u 5 45°, the normal 
stress s9 is also equal to Py2A0:

 
s ¿ 5

P
A0

 cos2 45° 5
P

2A0
 (8.17)

 The results obtained in Eqs. (8.15), (8.16), and (8.17) are 
shown graphically in Fig. 8.28. We note that the same loading may 
produce either a normal stress sm 5 PyA0 and no shearing stress 
(Fig. 8.28b), or a normal and a shearing stress of the same mag-
nitude s9 5 tm 5 Py2A0 (Fig. 8.28 c and d ), depending upon the 
orientation of the section.

8.9  STRESS UNDER GENERAL LOADING 
CONDITIONS. COMPONENTS OF STRESS

The examples of the previous sections were limited to members 
under axial loading and connections under transverse loading. Most 
structural members and machine components are under more 
involved loading conditions.
 Consider a body subjected to several loads P1, P2, etc. (Fig. 8.29). 
To understand the stress condition created by these loads at some 
point Q within the body, we shall first pass a section through Q, 
using a plane parallel to the yz plane. The portion of the body to 
the left of the section is subjected to some of the original loads and 
to normal and shearing forces distributed over the section. We shall 
denote by DFx and DVx, respectively, the normal and the shearing 

P'

(a) Axial loading

(b) Stresses for    � 0

m � P/A0

� 

(c) Stresses for    � 45°�

(d) Stresses for    � –45°�

�

' � P/2A0�

'� P/2A0�

m � P/2A0�

m � P/2A0�

P

Fig. 8.28

Fig. 8.29

P1
P4

P3

P2y

z

x

8.9 Stress under General Loading Conditions. 
Components of Stress
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322  Concept of Stress

forces acting on a small area DA surrounding point Q (Fig. 8.30a). 
Note that the superscript x is used to indicate that the forces DFx 
and DVx act on a surface perpendicular to the x axis. While the 
normal force DFx has a well-defined direction, the shearing force 
DVx may have any direction in the plane of the section. We therefore 
resolve DVx into two component forces, DVy

x and DV z
x, in directions 

parallel to the y and z axes, respectively (Fig. 8.30b). Dividing now 
the magnitude of each force by the area DA, and letting DA approach 
zero, we define the three stress components shown in Fig. 8.31:

sx 5 lim
¢Ay0

 
¢F x

¢A

 
txy 5 lim

¢Ay0
 
¢Vy

x

¢A
    txz 5 lim

¢Ay0
 
¢Vz

x

¢A

 (8.18)

We note that the first subscript in sx, txy, and txz is used to indicate 
that the stresses under consideration are exerted on a surface per-
pendicular to the x axis. The second subscript in txy and txz identi-
fies the direction of the component. The normal stress sx is positive 
if the corresponding arrow points in the positive x direction, i.e., if 
the body is in tension, and negative otherwise. Similarly, the shear-
ing stress components txy and txz are positive if the corresponding 
arrows point, respectively, in the positive y and z directions.
 The above analysis may also be carried out by considering the 
portion of body located to the right of the vertical plane through 
Q (Fig. 8.32). The same magnitudes, but opposite directions, are 
obtained for the normal and shearing forces DFx, DVy

x, and DV z
x. 

Therefore, the same values are also obtained for the corresponding 
stress components, but since the section in Fig. 8.32 now faces the 
negative x axis, a positive sign for sx will indicate that the corre-
sponding arrow points in the negative x direction. Similarly, posi-
tive signs for txy and txz will indicate that the corresponding arrows 
point, respectively, in the negative y and z directions, as shown in 
Fig. 8.32.

Fx

P2 P2

P1

y

z

x
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323 Passing a section through Q parallel to the zx plane, we define 
in the same manner the stress components, sy, tyz, and tyx. Finally, 
a section through Q parallel to the xy plane yields the components 
sz, tzx, and tzy.
 To facilitate the visualization of the stress condition at point 
Q, we shall consider a small cube of side a centered at Q and the 
stresses exerted on each of the six faces of the cube (Fig. 8.33). 
The stress components shown in the figure are sx, sy, and sz, 
which represent the normal stress on faces respectively perpen-
dicular to the x, y, and z axes, and the six shearing stress compo-
nents txy, txz,  etc. We recall that, according to the definition of 
the shearing stress components, txy represents the y component of 
the shearing stress exerted on the face perpendicular to the x axis, 
while tyx represents the x component of the shearing stress exerted 
on the face perpendicular to the y axis. Note that only three faces 
of the cube are actually visible in Fig. 8.33, and that equal and 
opposite stress components act on the hidden faces. While the 
stresses acting on the faces of the cube differ slightly from the 
stresses at Q, the error involved is small and vanishes as side a of 
the cube approaches zero.
 Important relations among the shearing stress components 
will now be derived. Let us consider the free-body diagram of the 
small cube centered at point Q (Fig. 8.34). The normal and shear-
ing forces acting on the various faces of the cube are obtained by 
multiplying the corresponding stress components by the area DA 
of each face. We first write the following three equilibrium 
equations:

 oFx 5 0    oFy 5 0    oFz 5 0 (8.19)

Since forces equal and opposite to the forces actually shown in Fig. 
8.34 are acting on the hidden faces of the cube, it is clear that Eqs. 
(8.19) are satisfied. Considering now the moments of the forces 
about axes x9, y9, and z9 drawn from Q in directions respectively 
parallel to the x, y, and z axes, we write the three additional 
equations

 oMx¿ 5 0    oMy¿ 5 0    oMz¿ 5 0 (8.20)

Using a projection on the x9y9 plane (Fig. 8.35), we note that the 
only forces with moments about the z axis different from zero are 
the shearing forces. These forces form two couples, one of counter-
clockwise (positive) moment (txy DA)a, the other of clockwise (nega-
tive) moment 2(txy DA)a. The last of the three Eqs. (8.20) yields, 
therefore,

 1 l oMz 5 0: (txy DA)a 2 (tyx DA)a 5 0

from which we conclude that

 txy 5 tyx (8.21)

The relation obtained shows that the y component of the shearing 
stress exerted on a face perpendicular to the x axis is equal to the 
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8.9 Stress under General Loading Conditions. 
Components of Stress
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324  Concept of Stress x component of the shearing stress exerted on a face perpendicular 
to the y axis. From the remaining two equations (8.20), we derive in 
a similar manner the relations

 tyz 5 tzy    tzx 5 txz (8.22)

 We conclude from Eqs. (8.21) and (8.22) that only six stress 
components are required to define the condition of stress at a given 
point Q, instead of nine as originally assumed. These six components 
are sx, sy, sz, txy, tyz, and tzx. We also note that, at a given point, 
shear cannot take place in one plane only; an equal shearing stress 
must be exerted on another plane perpendicular to the first one. For 
example, considering again the bolt of Fig. 8.26 and a small cube at 
the center Q of the bolt (Fig. 8.36a), we find that shearing stresses 
of equal magnitude must be exerted on the two horizontal faces of 
the cube and on the two faces that are perpendicular to the forces 
P and P9 (Fig. 8.36b).
 Before concluding our discussion of stress components, let us 
consider again the case of a member under axial loading. If we con-
sider a small cube with faces respectively parallel to the faces of the 
member and recall the results obtained in Sec. 8.8, we find that the 
conditions of stress in the member may be described as shown in Fig. 
8.37a; the only stresses are normal stresses sx exerted on the faces of 
the cube which are perpendicular to the x axis. However, if the small 
cube is rotated by 45° about the z axis so that its new orientation 
matches the orientation of the sections considered in Fig. 8.28c and 
d, we conclude that normal and shearing stresses of equal magnitude 
are exerted on four faces of the cube (Fig. 8.37b). We thus observe 
that the same loading condition may lead to different interpretations 
of the stress situation at a given point, depending upon the orientation 
of the element considered. More will be said about this in Chap. 14.

8.10  DESIGN CONSIDERATIONS
In the preceding sections you learned to determine the stresses in 
rods, bolts, and pins under simple loading conditions. In later chap-
ters you will learn to determine stresses in more complex situations. 
In engineering applications, however, the determination of stresses 
is seldom an end in itself. Rather, the knowledge of stresses is used 
by engineers to assist in their most important task, namely, the design 
of structures and machines that will safely and economically perform 
a specified function.

a. Determination of the Ultimate Strength of a Material. An 
important element to be considered by a designer is how the material 
that has been selected will behave under a load. For a given material, 
this is determined by performing specific tests on prepared samples 
of the material. For example, a test specimen of steel may be pre-
pared and placed in a laboratory testing machine to be subjected to 
a known centric axial tensile force, as described in Sec. 9.3. As the 
magnitude of the force is increased, various changes in the specimen 
are measured, for example, changes in its length and its diameter. 
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325Eventually the largest force which may be applied to the specimen is 
reached, and the specimen either breaks or begins to carry less load. 
This largest force is called the ultimate load for the test specimen and 
is denoted by PU. Since the applied load is centric, we may divide the 
ultimate load by the original cross-sectional area of the rod to obtain 
the ultimate normal stress of the material used. This stress, also known 
as the ultimate strength in tension of the material, is

 
sU 5

PU

A
 (8.23)

 Several test procedures are available to determine the ultimate 
shearing stress, or ultimate strength in shear, of a material. The one 
most commonly used involves the twisting of a circular tube (Sec. 
10.5). A more direct, if less accurate, procedure consists in clamping 
a rectangular or round bar in a shear tool (Fig. 8.38) and applying 
an increasing load P until the ultimate load PU for single shear is 
obtained. If the free end of the specimen rests on both of the hard-
ened dies (Fig. 8.39), the ultimate load for double shear is obtained. 
In either case, the ultimate shearing stress tU is obtained by dividing 
the ultimate load by the total area over which shear has taken place. 
We recall that, in the case of single shear, this area is the cross- sectional 
area A of the specimen, while in double shear it is equal to twice 
the cross-sectional area.

b. Allowable Load and Allowable Stress. Factor of Safety. The 
maximum load that a structural member or a machine component 
will be allowed to carry under normal conditions of utilization is con-
siderably smaller than the ultimate load. This smaller load is referred 
to as the allowable load and, sometimes, as the working load or design 
load. Thus, only a fraction of the ultimate-load capacity of the mem-
ber is utilized when the allowable load is applied. The remaining 
portion of the load-carrying capacity of the member is kept in reserve 
to assure its safe performance. The ratio of the ultimate load to the 
allowable load is used to define the factor of safety.† We have

 
Factor of safety 5 F.S. 5

ultimate load
allowable load

 (8.24)

An alternative definition of the factor of safety is based on the use 
of stresses:

 
Factor of safety 5 F.S. 5

ultimate stress
allowable stress

 (8.25)

The two expressions given for the factor of safety in Eqs. (8.24) and 
(8.25) are identical when a linear relationship exists between the load 
and the stress. In most engineering applications, however, this rela-
tionship ceases to be linear as the load approaches its ultimate value, 
and the factor of safety obtained from Eq. (8.25) does not provide a 

P

Fig. 8.38

P

Fig. 8.39

†In some fields of engineering, notably aeronautical engineering, the margin of safety is 
used in place of the factor of safety. The margin of safety is defined as the factor of 
safety minus one; that is, margin of safety 5 F.S. 2 1.00.

8.10 Design Considerations
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326  Concept of Stress true assessment of the safety of a given design. Nevertheless, the 
 allowable-stress method of design, based on the use of Eq. (8.25), is 
widely used.

c. Selection of an Appropriate Factor of Safety. The selec-
tion of the factor of safety to be used for various applications is one 
of the most important engineering tasks. On the one hand, if a factor 
of safety is chosen too small, the possibility of failure becomes unac-
ceptably large; on the other hand, if a factor of safety is chosen 
unnecessarily large, the result is an uneconomical or nonfunctional 
design. The choice of the factor of safety that is appropriate for a 
given design application requires engineering judgment based on 
many considerations, such as the following:

 1.  Variations that may occur in the properties of the member 
under consideration. The composition, strength, and dimen-
sions of the member are all subject to small variations during 
manufacture. In addition, material properties may be altered 
and residual stresses introduced through heating or deforma-
tion that may occur during manufacture, storage, transporta-
tion, or  construction.

 2.  The number of loadings that may be expected during the life of 
the structure or machine. For most materials the ultimate stress 
decreases as the number of load applications is increased. This 
phenomenon is known as fatigue and, if ignored, may result in 
sudden failure (see Sec. 9.6).

 3.  The type of loadings that are planned for in the design, or that 
may occur in the future. Very few loadings are known with 
complete accuracy-—-most design loadings are engineering esti-
mates. In addition, future alterations or changes in usage may 
introduce changes in the actual loading. Larger factors of safety 
are also required for dynamic, cyclic, or impulsive loadings.

 4.  The type of failure that may occur. Brittle materials fail sud-
denly, usually with no prior indication that collapse is immi-
nent. On the other hand, ductile materials, such as structural 
steel, normally undergo a substantial deformation called yield-
ing before failing, thus providing a warning that overloading 
exists. However, most buckling or stability failures are sudden, 
whether the material is brittle or not. When the possibility of 
sudden failure exists, a larger factor of safety should be used 
than when failure is preceded by obvious warning signs.

 5.  Uncertainty due to methods of analysis. All design methods are 
based on certain simplifying assumptions which result in calcu-
lated stresses being approximations of actual stresses.

 6.  Deterioration that may occur in the future because of poor main-
tenance or because of unpreventable natural causes. A larger fac-
tor of safety is necessary in locations where conditions such as 
corrosion and decay are difficult to control or even to discover.

 7.  The importance of a given member to the integrity of the whole 
structure. Bracing and secondary members may in many cases 
be designed with a factor of safety lower than that used for 
primary members.
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327 In addition to the above considerations, there is the additional 
consideration concerning the risk to life and property that a failure 
would produce. Where a failure would produce no risk to life and 
only minimal risk to property, the use of a smaller factor of safety 
can be considered. Finally, there is the practical consideration that, 
unless a careful design with a nonexcessive factor of safety is used, 
a structure or machine might not perform its design function. For 
example, high factors of safety may have an unacceptable effect on 
the weight of an  aircraft.
 For the majority of structural and machine applications, fac-
tors of safety are specified by design specifications or building 
codes written by committees of experienced engineers working 
with professional societies, with industries, or with federal, state, 
or city agencies. Examples of such design specifications and build-
ing codes are

 1.  Steel: American Institute of Steel Construction, Specification 
for Structural Steel Buildings

 2.  Concrete: American Concrete Institute, Building Code Require-
ment for Structural Concrete

 3.  Timber: American Forest and Paper Association, National 
Design Specification for Wood Construction

 4.  Highway bridges: American Association of State Highway 
Officials, Standard Specifications for Highway Bridges

*d. Load and Resistance Factor Design. As we saw above, the 
allowable-stress method requires that all the uncertainties associ-
ated with the design of a structure or machine element be grouped 
into a single factor of safety. An alternative method of design, 
which is gaining acceptance chiefly among structural engineers, 
makes it possible through the use of three different factors to 
distinguish between the uncertainties associated with the structure 
itself and those associated with the load it is designed to support. 
This method, referred to as Load and Resistance Factor Design 
(LRFD), further allows the designer to distinguish between uncer-
tainties associated with the live load, PL, that is, with the load 
to be supported by the structure, and the dead load, PD, that is, 
with the weight of the portion of structure contributing to the 
total load. 
 When this method of design is used, the ultimate load, PU, of 
the structure, that is, the load at which the structure ceases to be 
useful, should first be determined. The proposed design is then 
acceptable if the following inequality is satisfied:

 gD PD 1 gL PL # fPU (8.26)

The coefficient f is referred to as the resistance factor; it accounts 
for the uncertainties associated with the structure itself and will nor-
mally be less than 1. The coefficients gD and gL are referred to as 
the load factors; they account for the uncertainties associated, respec-
tively, with the dead and live load and will normally be greater than 1, 
with gL generally larger than gD. The allowable-stress method of 
design will be used in this text.

8.10 Design Considerations
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328

SOLUTION

Free Body: Entire Bracket. The reaction at C is represented by its com-
ponents Cx and Cy.

  1 l oMC 5 0: P(0.6 m) 2 (50 kN)(0.3 m) 2 (15 kN)(0.6 m) 5 0 P 5 40 kN
oFx 5 0: Cx 5 40 k 

C 5 2C2
x 1 C2

y 5 76.3 kNoFy 5 0: Cy 5 65 kN

a. Control Rod AB. Since the factor of safety is to be 3.3, the allowable 
stress is

sall 5
sU

F.S.
5

600 MPa
3.3

5 181.8 MPa

For P 5 40 kN the cross-sectional area required is

 
 Areq 5

P
sall

5
40 kN

181.8 MPa
5 220 3 1026 m2

 
 Areq 5

p

4
 dAB

2 5 220 3 1026 m2 dAB 5 16.74 mm ◀

b. Shear in Pin C. For a factor of safety of 3.3, we have

tall 5
tU

F.S.
5

350 MPa
3.3

5 106.1 MPa

Since the pin is in double shear, we write

 Areq 5
Cy2
tall

5
176.3 kN 2y2

106.1 MPa
5 360 mm2

 Areq 5
p

4
 dC

2 5 360 mm2   dC 5 21.4 mm  Use: dC 5 22 mm ◀

The next larger size pin available is of 22-mm diameter and should be used.

c. Bearing at C. Using d 5 22  mm,  the nominal bearing area of each 
bracket is 22t. Since the force carried by each bracket is Cy2 and the allow-
able bearing stress is 300 MPa, we write

Areq 5
Cy2
sall

5
176.3 kN 2y2

300 MPa
5 127.2 mm2

Thus 22t 5 127.2  t 5 5.78 mm  Use: t 5 6 mm ◀

SAMPLE PROBLEM 8.3

Two forces are applied to the bracket BCD as shown. (a) Knowing that the 
control rod AB is to be made of a steel having an ultimate normal stress of 
600 MPa, determine the diameter of the rod for which the factor of safety 
with respect to failure will be 3.3. (b) The pin at C is to be made of a steel 
having an ultimate shearing stress of 350 MPa. Determine the diameter of 
the pin C for which the factor of safety with respect to shear will also be 
3.3. (c) Determine the required thickness of the bracket supports at C 
knowing that the allowable bearing stress of the steel used is 300 MPa.

t t

A

D 

B

dAB

C

0.6 m

0.3 m 0.3 m

50 kN 15 kN

P

50 kN 15 kN0.6 m

0.3 m 0.3 m

D

B

C

P

Cx

Cy

C

C

dC

F2

F1
F1 � F2 � 

1
2

d � 22 mm

t C1
2

C1
2
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329

SOLUTION

The factor of safety with respect to failure must be 3.0 or more in each of 
the three bolts and in the control rod. These four independent criteria will 
be considered separately.

Free Body: Beam BCD. We first determine the force at C in terms of the 
force at B and in terms of the force at D.

1l oMD 5 0:  B 114 in.2 2 C 18 in.2 5 0 C 5 1.750B (1)
1l oMB 5 0:  2D 114 in.2 1 C 16 in.2 5 0 C 5 2.33D (2)

Control Rod. For a factor of safety of 3.0 we have

sall 5
sU

F.S.
5

60 ksi
3.0

5 20 ksi

The allowable force in the control rod is

B 5 sall1A 2 5 120 ksi2 14p 1 7
16 in.22 5 3.01 kips

Using Eq. (1) we find the largest permitted value of C:

 C 5 1.750B 5 1.750 13.01 kips2 C 5 5.27 kips ◀

Bolt at B. tall 5 tUyF.S. 5 (40 ksi)y3 5 13.33 ksi. Since the bolt is in double 
shear, the allowable magnitude of the force B exerted on the bolt is

B 5 2F1 5 2 1tall A 2 5 2 113.33 ksi2 114p 2 138 in.22 5 2.94 kips

From Eq. (1): C 5 1.750B 5 1.750 12.94 kips2 C 5 5.15 kips ◀

Bolt at D. Since this bolt is the same as bolt B, the allowable force is 
D 5 B 5 2.94 kips. From Eq. (2):

 C 5 2.33D 5 2.33 12.94 kips2 C 5 6.85 kips ◀

Bolt at C. We again have tall 5 13.33 ksi and write

 C 5 2F2 5 2 1tall A 2 5 2 113.33 ksi2 114 p 2 112 in.22  C 5 5.23 kips ◀

Summary. We have found separately four maximum allowable values of 
the force C. In order to satisfy all these criteria, we must choose the smallest 
value, namely: C 5 5.15 kips ◀

SAMPLE PROBLEM 8.4

The rigid beam BCD is attached by bolts to a control rod at B, to a hydraulic 
cylinder at C, and to a fixed support at D. The diameters of the bolts used 
are: dB 5 dD 5 3

8 in., dC 5 1
2 in. Each bolt acts in double shear and is made 

from a steel for which the ultimate shearing stress is tU 5 40 ksi. The con-
trol rod AB has a diameter dA 5 7

16 in. and is made of a steel for which the 
ultimate tensile stress is sU 5 60 ksi. If the minimum factor of safety is to 
be 3.0 for the entire unit, determine the largest upward force which may 
be applied by the hydraulic cylinder at C.

DC

B

A

6 in.

8 in.

D

DB

C

B C

6 in. 8 in.

F1

F1

B

3
8

in.

B � 2F1

C

F2

F2

1
2

in.

C � 2F2
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PROBLEMS

330

 8.25 Two wooden members of 3 3 6-in. uniform rectangular cross sec-
tion are joined by the simple glued scarf splice shown. Knowing 
that P 5 2400 lb, determine the normal and shearing stresses in 
the glued splice.

8.26 Two wooden members of 3 3 6-in. uniform rectangular cross sec-
tion are joined by the simple glued scarf splice shown. Knowing 
that the maximum allowable shearing stress in the glued splice is 
90 psi, determine (a) the largest load P that can be safely applied, 
(b) the corresponding tensile stress in the splice.

 8.27 The 6-kN load P is supported by two wooden members of 75 3
125-mm uniform cross section that are joined by the simple glued 
scarf splice shown. Determine the normal and shearing stresses in 
the glued splice.

3 in.

6 in.

4040404040404040404040404040404040404040404040404040��

P'

P

Fig. P8.25 and P8.26

P

70�

125 mm
75 mm

Fig. P8.27 and P8.28

8.28 Two wooden members of 75 3 125-mm uniform cross section are 
joined by the simple glued scarf splice shown. Knowing that the 
maximum allowable tensile stress in the glued splice is 500 kPa, 
determine (a) the largest load P that can be safely supported, 
(b) the corresponding shearing stress in the splice.
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331Problems 8.29 A 240-kip load P is applied to the granite block shown. Determine 
the resulting maximum value of (a) the normal stress, (b) the shear-
ing stress. Specify the orientation of the plane on which each of 
these maximum values occurs.

 8.30 A centric load P is applied to the granite block shown. Knowing 
that the resulting maximum value of the shearing stress in the 
block is 2.5 ksi, determine (a) the magnitude of P, (b) the orienta-
tion of the surface on which the maximum shearing stress occurs, 
(c) the normal stress exerted on that surface, (d) the maximum 
value of the normal stress in the block.

 8.31 A steel pipe of 300-mm outer diameter is fabricated from 6-mm-
thick plate by welding along a helix that forms an angle of 25° with 
a plane perpendicular to the axis of the pipe. Knowing that a 250-
kN axial force P is applied to the pipe, determine the normal and 
shearing stresses in directions respectively normal and tangential 
to the weld.

 8.32 A steel pipe of 300-mm outer diameter is fabricated from 6-mm-
thick plate by welding along a helix that forms an angle of 25° with 
a plane perpendicular to the axis of the pipe. Knowing that the 
maximum allowable normal and shearing stresses in the directions 
respectively normal and tangential to the weld are s 5 50 MPa 
and t 5 30 MPa, determine the magnitude P of the largest axial 
force that can be applied to the pipe.

 8.33 Link AB is to be made of a steel for which the ultimate normal 
stress is 450 MPa. Determine the cross-sectional area for AB for 
which the factor of safety will be 3.50. Assume that the link will 
be adequately reinforced around the pins at A and B.

 8.34 Member ABC, which is supported by a pin and bracket at C and 
a cable BD, was designed to support the 4-kip load P as shown. 
Knowing that the ultimate load for cable BD is 25 kips, determine 
the factor of safety with respect to cable failure.

 8.35 Knowing that the ultimate load for cable BD is 25 kips and that a 
factor of safety of 3.2 with respect to cable failure is required, 
determine the magnitude of the largest force P that can be safely 
applied as shown to member ABC.

6 in.

6 in.

P

Fig. P8.29 and P8.30

6 mm

25�

P

Weld

Fig. P8.31 and P8.32

0.4 m

35�

B

A

C D
E

0.4 m 0.4 m

8 kN/m

20 kN

Fig. P8.33

A

D 

B

C

12 in.

30�

40�

18 in.

15 in.

P

Fig. P8.34 and P8.35
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332 Concept of Stress

 8.39 Two wooden members of 3.5 3 5.5-in. uniform rectangular cross 
section are joined by the simple glued scarf splice shown. Knowing 
that the maximum allowable shearing stress in the glued splice is 
75 psi, determine the largest axial load P that can be safely 
applied.

 8.36 Members AB and AC of the truss shown consist of bars of square 
cross section made of the same alloy. It is known that a 20-mm-
square bar of the same alloy was tested to failure and that an ulti-
mate load of 120 kN was recorded. If a factor of safety of 3.2 is to 
be achieved for both bars, determine the required dimensions of 
the cross section of (a) bar AB, (b) bar AC.

 8.37 Three 3
4-in.-diameter steel bolts are to be used to attach the steel 

plate shown to a wooden beam. Knowing that the plate will support 
a 24-kip load and that the ultimate shearing stress for the steel 
used is 52 ksi, determine the factor of safety for this design.

 8.38 Two plates, each 3 mm thick, are used to splice a plastic strip as 
shown. Knowing that the ultimate shearing stress of the bonding 
between the surfaces is 900 kPa, determine the factor of safety 
with respect to shear when P 5 1500 N.

28 kN

0.75 m

0.4 m

A

C

B

1.4 m

Fig. P8.36

24 kips

Fig. P8.37

15 mm

5 mm

20 mm

60 mm

P'

P

Fig. P8.38

P'

P20�

5.5 in.

3.5 in.

Fig. P8.39
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333Problems 8.40 A load P is supported as shown by a steel pin that has been inserted 
in a short wooden member hanging from the ceiling. The ultimate 
strength of the wood used is 60 MPa in tension and 7.5 MPa in 
shear, while the ultimate strength of the steel is 150 MPa in shear. 
Knowing that the diameter of the pin is d 5 16 mm and that the 
magnitude of the load is P 5 20 kN, determine (a) the factor of 
safety for the pin, (b) the required values of b and c if the factor 
of safety for the wooden member is to be the same as that found 
in part a for the pin.

 8.41 A steel plate 5
16 in. thick is embedded in a horizontal concrete slab 

and is used to anchor a high-strength vertical cable as shown. The 
diameter of the hole in the plate is 3

4 in., the ultimate strength of 
the steel used is 36 ksi, and the ultimate bonding stress between 
plate and concrete is 300 psi. Knowing that a factor of safety of 
3.60 is desired when P 5 2.5 kips, determine (a) the required 
width a of the plate, (b) the minimum depth b to which a plate 
of that width should be embedded in the concrete slab. (Neglect 
the normal stresses between the concrete and the lower end of 
the plate.)

 8.42 Determine the factor of safety for the cable anchor in Prob. 8.41 
when P 5 3 kips, knowing that a 5 2 in. and b 5 7.5 in.

 8.43 In the structure shown, an 8-mm-diameter pin is used at A and 
12-mm-diameter pins are used at B and D. Knowing that the ulti-
mate shearing stress is 100 MPa at all connections and the ultimate 
normal stress is 250 MPa in each of the two links joining B and D, 
determine the allowable load P if an overall factor of safety of 3.0 
is desired.

1
2

40 mm

d

c

b

P

1
2 P

Fig. P8.40

a

b

P

3
4

in.

5
16

in.

Fig. P8.41

 8.44 In an alternative design for the structure of Prob. 8.43, a pin of 
10-mm-diameter is to be used at A. Assuming that all other speci-
fications remain unchanged, determine the allowable load P if an 
overall factor of safety of 3.0 is desired.

180 mm200 mm

Top view

Side view
Front view

8 mm

20 mm
8 mm

8 mm

12 mm

12 mm

B C
B

D D

A

B CA

P

Fig. P8.43 and P8.44
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334 Concept of Stress

 8.46 Solve Prob. 8.45 assuming that the structure has been redesigned 
to use 5

16-in.-diameter pins at A and C as well as at B and that no 
other change has been made.

 8.47 Each of the two vertical links CF connecting the two horizontal 
members AD and EG has a 10 3 40-mm uniform rectangular cross 
section and is made of a steel with an ultimate strength in tension 
of 400 MPa, while each of the pins at C and F has a 20-mm diam-
eter and is made of a steel with an ultimate strength in shear of 
150 MPa. Determine the overall factor of safety for the links CF 
and the pins connecting them to the horizontal members.

 8.48 Solve Prob. 8.47 assuming that the pins at C and F have been 
replaced by pins with a 30-mm diameter.

1
2

A

B C D

8 in.

P
6 in. 4 in.

 in.

Fig. P8.45

24 kN

250 mm

250 mm

400 mm

C

A
B

E
D

F G

Fig. P8.47

 8.45 Link AC is made of a steel with a 65-ksi ultimate normal stress 
and has a 1

4 3 1
2-in. uniform rectangular cross section. It is connec-

ted to a support at A and to member BCD at C by 3
8-in.-diameter 

pins, while member BCD is connected to its support at B by a 
5

16-in.-diameter pin; all of the pins are made of a steel with a 25-ksi 
ultimate shearing stress and are in single shear. Knowing that a 
factor of safety of 3.25 is desired, determine the largest load P that 
can be applied at D. Note that link AC is not reinforced around 
the pin holes.
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335

This chapter was devoted to the concept of stress and to an introduc-
tion to the methods used for the analysis and design of machines and 
load-bearing structures.

The concept of stress was first introduced in Sec. 8.2 by considering 
a two-force member under an axial loading. The normal stress in that 
member was obtained by dividing the magnitude P of the load by the 
cross-sectional area A of the member (Fig. 8.40). We wrote

 
s 5

P
A  

(8.1)

 As noted in Sec. 8.3, the value of s obtained from Eq. (8.1) 
represents the average stress over the section rather than the stress 
at a specific point Q of the section. Considering a small area ¢A 
surrounding Q and the magnitude ¢F of the force exerted on ¢A, 
we defined the stress at point Q as

 
s 5 lim

¢Ay0
 
¢F
¢A  

(8.2)

 In general, the value obtained for the stress s at point Q is 
different from the value of the average stress given by formula (8.1) 
and is found to vary across the section. However, this variation is 
small in any section away from the points of application of the loads. 
In practice, therefore, the distribution of the normal stresses in an 
axially loaded member is assumed to be uniform, except in the 
immediate vicinity of the points of application of the loads.
 However, for the distribution of stresses to be uniform in a 
given section, it is necessary that the line of action of the loads P
and P ¿ pass through the centroid C of the section. Such a loading is 
called a centric axial loading. In the case of an eccentric axial loading, 
the distribution of stresses is not uniform. Stresses in members sub-
jected to an eccentric axial loading will be discussed in Chap 11.

When equal and opposite transverse forces P and P ¿ of magnitude 
P are applied to a member AB (Fig. 8.41), shearing stresses t are 
created over any section located between the points of application 
of the two forces [Sec 8.4]. These stresses vary greatly across the 
section and their distribution cannot be assumed uniform. However 
dividing the magnitude P-—-referred to as the shear in the  section-—-by 
the cross-sectional area A, we defined the average shearing stress over 
the section:

 
tave 5

P
A  

(8.4)

Axial loading. Normal stressAxial loading. Normal stress

Transverse forces. Shearing stressTransverse forces. Shearing stress

A

P'

P

  Fig. 8.40  

A C B

P

P�

  Fig. 8.41  

REVIEW AND SUMMARY
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336  Concept of Stress Shearing stresses are found in bolts, pins, or rivets connecting two 
structural members or machine components. For example, in the 
case of bolt CD (Fig. 8.42), which is in single shear, we wrote

 
tave 5

P
A

5
F
A  

(8.5)

while, in the case of bolts EG and HJ (Fig. 8.43), which are both in 
double shear, we had

 
tave 5

P
A

5
Fy2

A
 5

F
2A  

(8.6)

Bolts, pins, and rivets also create stresses in the members they con-
nect, along the bearing surface, or surface of contact [Sec. 8.5]. The 
bolt CD of Fig. 8.42, for example, creates stresses on the semicylin-
drical surface of plate A with which it is in contact (Fig. 8.44). Since 
the distribution of these stresses is quite complicated, one uses in 
practice an average nominal value sb of the stress, called bearing 
stress, obtained by dividing the load P by the area of the rectangle 
representing the projection of the bolt on the plate section. Denoting 
by t the thickness of the plate and by d the diameter of the bolt, we 
wrote

 
sb 5

P
A

5
P
td 

(8.7)

 In Sec. 8.6, we applied the concept introduced in the previous 
sections to the analysis of a simple structure consisting of two pin-
connected members supporting a given load. We determined succes-
sively the normal stresses in the two members, paying special 
attention to their narrowest sections, the shearing stresses in the 
various pins, and the bearing stress at each connection.

Section 8.7 was devoted to a short discussion of the design of struc-
tures and machines.

In Sec. 8.8, we considered the stresses created on an oblique section 
in a two-force member under axial loading. We found that both nor-
mal and shearing stresses occurred in such a situation. Denoting by 
u the angle formed by the section with a normal plane (Fig. 8.45a) 
and by A0 the area of a section perpendicular to the axis of the 
member, we derived the following expressions for the normal stress 
s and the shearing stress t on the oblique section:

 
s 5

P
A0

 cos2 u   t 5
P
A0

 sin u cos u
 

(8.14)

 We observed from these formulas that the normal stress is 
maximum and equal to sm 5 PyA0 for u 5 0°, while the shearing 
stress is maximum and equal to tm 5 Py2A0 for u 5 45°. We also 
noted that t 5 0 when u 5 0°, while s 5 Py2A0 when u 5 45°.

Single and double shearSingle and double shear

  Fig. 8.42  

C

D

A
F

E'B
E

F'

K
AB

L

E H

G J

C

D 

K'

L'

FF'

  Fig. 8.43  

Bearing stress

A

C

D

d

t

F

P

F'

  Fig. 8.44  

Design

Stresses on an oblique section

P'
�

P

  Fig. 8.45  
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337Next, we discussed the state of stress at a point Q in a body under 
the most general loading condition [Sec. 8.9]. Considering a small 
cube centered at Q (Fig. 8.46), we denoted by sx the normal stress 
exerted on a face of the cube perpendicular to the x axis, and by txy 
and txz, respectively, the y and z components of the shearing stress 
exerted on the same face of the cube. Repeating this procedure for 
the other two faces of the cube and observing that txy 5 tyx, tyz 5 tzy, 
and tzx 5 txz, we concluded that six stress components are required to 
define the state of stress at a given point Q, namely, sx, sy, sz, txy, tyz, 
and tzx.

Stress under general loading

Factor of safety

Load and Resistance Factor Design

�yz
�yx

�xy

�xz�zx

�zy

�y

�z

�x

a

Qa

a

z

y

x

  Fig. 8.46  

Review and Summary

Section 8.10 was devoted to a discussion of the various concepts used 
in the design of engineering structures. The ultimate load of a given 
structural member or machine component is the load at which the 
member or component is expected to fail; it is computed from the 
ultimate stress or ultimate strength of the material used, as deter-
mined by a laboratory test on a specimen of that material. The ulti-
mate load should be considerably larger than the allowable load, 
i.e., the load that the member or component will be allowed to carry 
under normal conditions. The ratio of the ultimate load to the allow-
able load is defined as the factor of safety:

 
Factor of safety 5 F.S. 5

ultimate load
allowable load 

(8.24)

The determination of the factor of safety that should be used in the 
design of a given structure depends upon a number of consider-
ations, some of which were listed in this section.

Section 8.10 ended with the discussion of an alternative approach to 
design, known as Load and Resistance Factor Design, which allows 
the engineer to distinguish between the uncertainties associated with 
the structure and those associated with the load.
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338

REVIEW PROBLEMS

 8.49 A 40-kN axial load is applied to a short wooden post that is sup-
ported by a concrete footing resting on undisturbed soil. Deter-
mine (a) the maximum bearing stress on the concrete footing, 
(b) the size of the footing for which the average bearing stress in 
the soil is 145 kPa.

P � 40 kN

b b

120 mm 100 mm

Fig. P8.49

40 in.

45 in.

15 in.

4 in.

A
B C

D E F

4 in.

30 in.

30 in.

480 lb

Fig. P8.50

 8.51 Two steel plates are to be held together by means of 14-in.-diameter 
high-strength steel bolts fitting snugly inside cylindrical brass 
spacers. Knowing that the average normal stress must not exceed 
30 ksi in the bolts and 18 ksi in the spacers, determine the outer 
diameter of the spacers that yields the most economical and safe 
design.Fig. P8.51

8.50 The frame shown consists of four wooden members, ABC, DEF, 
BE, and CF. Knowing that each member has a 2 3 4-in. rectan-
gular cross section and that each pin has a 1

2-in. diameter, deter-
mine the maximum value of the average normal stress (a) in 
member BE, (b) in member CF.
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339Review Problems8.52 When the force P reached 8 kN, the wooden specimen shown 
failed in shear along the surface indicated by the dashed line.  
Determine the average shearing stress along that surface at the 
time of failure.

15 mm

90 mm WoodSteel

PP'

Fig. P8.52

60 lb

F

D

E

C D

B

A

8 in.

2 in.

4 in. 12 in. 4 in.

�

Fig. P8.53

50 mm
25 mmP'

16 mm

16 mm

50 mm
25 mm 225 mm

P

Fig. P8.54

 8.54 Two wooden planks, each 12 mm thick and 225 mm wide, are 
joined by the dry mortise joint shown. Knowing that the wood 
used shears off along its grain when the average shearing stress 
reaches 8 MPa, determine the magnitude P of the axial load that 
will cause the joint to fail.

 8.55 Two identical linkage-and-hydraulic-cylinder systems control the 
position of the forks of a fork-lift truck. The load supported by the 
one system shown is 1500 lb. Knowing that the thickness of mem-
ber BD is 5

8 in., determine (a) the average shearing stress in the 
1
2-in.-diameter pin at B, (b) the bearing stress at B in member BD.

 8.53 Knowing that link DE is 1 in. wide and 1
8 in. thick, determine the 

normal stress in the central portion of that link when (a) u 5 0, 
(b) u 5 908.

A B

12 in.

12 in.

15 in.

16 in. 16 in. 20 in.

1500 lb

G

D E

C

Fig. P8.55
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340 Concept of Stress  8.56 A 1
2-in.-diameter steel rod AB is fitted to a round hole near end C of 

the wooden member CD. For the loading shown, determine (a) the 
maximum average normal stress in the wood, (b) the distance b for 
which the average shearing stress is 90 psi on the surfaces indicated 
by the dashed lines, (c) the average bearing stress on the wood.

125 mm

75 mm65�

P'

P

Fig. P8.58

 8.58 Two wooden members of 75 3 125-mm uniform rectangular cross 
section are joined by the simple glued joint shown. Knowing that 
P 5 3.6 kN and that the ultimate strength of the glue is 1.1 MPa 
in tension and 1.4 MPa in shear, determine the factor of safety.

D
A

C
B

b

1000 lb

500 lb

500 lb

in.

3 in.

3
4

Fig. P8.56

240 mm

180 mm
24 mm

C

D

Q

A

10 mm

180 mm

240 mm

F

Q'

12 mm

B
E

Fig. P8.57

 8.57 A steel loop ABCD of length 1.2 m and of 10-mm diameter is 
placed as shown around a 24-mm-diameter aluminum rod AC. 
Cables BE and DF, each of 12-mm diameter, are used to apply the 
load Q. Knowing that the ultimate strength of the aluminum used 
for the rod is 260 MPa and that the ultimate strength of the steel 
used for the loop and the cables is 480 MPa, determine the largest 
load Q that can be applied if an overall factor of safety of 3 is 
desired.
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341Review Problems

A B

C
D

480 mm

600 mm

90�

w

P

Fig. P8.59

A

1.25 in.

2.4 kips

2.0 in.

B

�

Fig. P8.60

 8.59 Link BC is 6 mm thick, has a width w 5 25 mm, and is made of 
a steel with a 480-MPa ultimate strength in tension. What was the 
safety factor used if the structure shown was designed to support 
a 16-kN load P?

 8.60 The two portions of member AB are glued together along a plane 
forming an angle u with the horizontal. Knowing that the ultimate 
stress for the glued joint is 2.5 ksi in tension and 1.3 ksi in shear, 
determine the range of values of u for which the factor of safety 
of the members is at least 3.0.
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This chapter is devoted to the study of 

deformations occurring in structural 

components subjected to axial loading. 

The change in length of the diagonal 

stays was carefully accounted for in the 

design of this cable-stayed bridge.
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9.1 INTRODUCTION
In Chap. 8 we analyzed the stresses created in various members and 
connections by the loads applied to a structure or machine. We also 
learned to design simple members and connections so that they 
would not fail under specified loading conditions. Another important 
aspect of the analysis and design of structures relates to the deforma-
tions caused by the loads applied to a structure. Clearly, it is impor-
tant to avoid deformations so large that they may prevent the structure 
from fulfilling the purpose for which it was intended. But the analysis 
of deformations may also help us in the determination of stresses. 
Indeed, it is not always possible to determine the forces in the mem-
bers of a structure by applying only the principles of statics. This is 
because statics is based on the assumption of undeformable, rigid 
structures. By considering engineering structures as deformable and 
analyzing the deformations in their various members, it will be pos-
sible for us to compute forces that are statically indeterminate, i.e., 
indeterminate within the framework of statics. Also, as we indicated 
in Sec. 8.3, the distribution of stresses in a given member is statically 
indeterminate, even when the force in that member is known. To 
determine the actual distribution of stresses within a member, it is 
thus necessary to analyze the deformations that take place in that 
member. In this chapter, you will consider the deformations of a 
structural member such as a rod, bar, or plate under axial loading.
 First, the normal strain P in a member will be defined as the 
deformation of the member per unit length. Plotting the stress s versus 
the strain P as the load applied to the member is increased will yield a 
stress-strain diagram for the material used. From such a diagram we 
can determine some important properties of the material, such as its 
modulus of elasticity, and whether the material is ductile or brittle (Secs. 
9.2 to 9.4). 
 From the stress-strain diagram, we can also determine whether 
the strains in the specimen will disappear after the load has been 
removed—in which case the material is said to behave elastically—or 
whether a permanent set or plastic deformation will result (Sec. 9.5).
 Section 9.6 is devoted to the phenomenon of fatigue, which causes 
structural or machine components to fail after a very large number of 
repeated loadings, even though the stresses remain in the elastic 
range. 
 The first part of the chapter ends with Sec. 9.7, which is devoted 
to the determination of the deformation of various types of members 
under various conditions of axial loading.
 In Secs. 9.8 and 9.9, statically indeterminate problems will be con-
sidered, i.e., problems in which the reactions and the internal forces 
cannot be determined from statics alone. The equilibrium equations 
derived from the free-body diagram of the member under consideration 
must be complemented by relations involving deformations; these rela-
tions will be obtained from the geometry of the problem.
 In Secs. 9.10 to 9.13, additional constants associated with isotropic 
materials—i.e., materials with mechanical characteristics independent of 
direction—will be introduced. They include Poisson’s ratio, which relates 
lateral and axial strain, and the modulus of rigidity, which relates the 

Chapter 9 Stress and 
Strain—Axial Loading

 9.1 Introduction
 9.2 Normal Strain under Axial 

Loading
 9.3 Stress-Strain Diagram
 9.4 Hooke’s Law. Modulus of 

Elasticity
 9.5 Elastic versus Plastic Behavior 

of a Material
 9.6 Repeated Loadings. Fatigue
 9.7 Deformations of Members 

under Axial Loading
 9.8 Statically Indeterminate Problems
 9.9 Problems Involving Temperature 

Changes
 9.10 Poisson’s Ratio
 9.11 Multiaxial Loading. Generalized 

Hooke’s Law
 9.12 Shearing Strain
 9.13 Further Discussion of 

Deformations under Axial 
Loading. Relation among E, n, 
and G

 9.14 Stress and Strain Distribution 
under Axial Loading. Saint-
Venant’s Principle

 9.15 Stress Concentrations
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3459.2 Normal Strain under Axial Loadingcomponents of the shearing stress and shearing strain. Stress-strain rela-
tionships for an isotropic material under a multi-axial loading will also 
be derived.
 In the text material described so far, stresses are assumed to be 
uniformly distributed in any given cross section; they are also assumed 
to remain within the elastic range. The validity of the first assumption 
is discussed in Sec. 9.14, while stress concentrations near circular holes 
and fillets in flat bars are considered in Sec. 9.15.

9.2 NORMAL STRAIN UNDER AXIAL LOADING
Let us consider a rod BC, of length L and uniform cross-sectional 
area A, which is suspended from B (Fig. 9.1a). If we apply a load P 
to end C, the rod elongates (Fig. 9.1b). Plotting the magnitude P of 
the load against the deformation d (Greek letter delta), we obtain a 
certain load-deformation diagram (Fig. 9.2). While this diagram con-
tains information useful to the analysis of the rod under consideration, 
it cannot be used directly to predict the deformation of a rod of the 
same material but of different dimensions. Indeed, we observe that, 
if a deformation d is produced in rod BC by a load P, a load 2P is 
required to cause the same deformation in a rod B9C9 of the same 
length L, but of cross-sectional area 2A (Fig. 9.3). We note that, in 
both cases, the value of the stress is the same: s 5 PyA. On the other 
hand, a load P applied to a rod B0C0, of the same cross-sectional area 
A, but of length 2L, causes a deformation 2d in that rod (Fig. 9.4), 
i.e., a deformation twice as large as the deformation d it produces in 
rod BC. But in both cases the ratio of the deformation over the length 
of the rod is the same; it is equal to dyL. This observation brings us 
to introduce the concept of strain: We define the normal strain in a 
rod under axial loading as the deformation per unit length of that rod. 
Denoting the normal strain by P (Greek letter epsilon), we write

 
P 5

d

L  
(9.1)

 Plotting the stress s 5 PyA against the strain P 5 dyL, we 
obtain a curve that is characteristic of the properties of the material 
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346  Stress and Strain—Axial Loading and does not depend upon the dimensions of the particular specimen 
used. This curve is called a stress-strain diagram and will be dis-
cussed in detail in Sec. 9.3.
 Since the rod BC considered in the preceding discussion had 
a uniform cross section of area A, the normal stress s could be 
assumed to have a constant value PyA throughout the rod. Thus, it 
was appropriate to define the strain P as the ratio of the total defor-
mation d over the total length L of the rod. In the case of a member 
of variable cross-sectional area A, however, the normal stress s 5 
PyA varies along the member, and it is necessary to define the strain 
at a given point Q by considering a small element of undeformed 
length Dx (Fig. 9.5). Denoting by Dd the deformation of the element 
under the given loading, we define the normal strain at point Q as

 
P 5 lim

¢xy0

¢d
¢x

5
dd
dx

 (9.2)

 Since deformation and length are expressed in the same units, 
the normal strain P obtained by dividing d by L (or dd by dx) is a 
dimensionless quantity. Thus, the same numerical value is obtained 
for the normal strain in a given member, whether SI metric units or 
U.S. customary units are used. Consider, for instance, a bar of length 
L 5 0.600 m and uniform cross section, which undergoes a deforma-
tion d 5 150 3 1026 m. The corresponding strain is

P 5
d

L
5

150 3 1026 m
0.600 m

5 250 3 1026 m/m 5 250 3 1026

Note that the deformation could have been expressed in  micrometers: 
d 5 150 mm. We would then have written

P 5
d

L
5

150 mm
0.600 m

5 250 mm/m 5 250 m

and read the answer as “250 micros.” If U.S. customary units are 
used, the length and deformation of the same bar are, respectively, 
L 5 23.6 in. and d 5 5.91 3 1023 in. The corresponding strain is

P 5
d

L
5

5.91 3 1023  in.
23.6 in.

5 250 3 1026 in./in.

which is the same value that we found using SI units. It is customary, 
however, when lengths and deformations are expressed in inches or 
micro inches (min.), to keep the original units in the expression obtained 
for the strain. Thus, in our example, the strain would be recorded as 
P 5 250 3 1026 in./in. or, alternatively, as P 5 250 min./in.

9.3 STRESS-STRAIN DIAGRAM
We saw in Sec. 9.2 that the diagram representing the relation between 
stress and strain in a given material is an important characteristic of 
the material. To obtain the stress-strain diagram of a material, one 
usually conducts a tensile test on a specimen of the material. One type 
of specimen commonly used is shown in Photo 9.1. The cross-sectional 
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Q

Q

�x x 

�
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Fig. 9.5

Photo 9.1 Typical 
tensile-test specimen.
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347

area of the cylindrical central portion of the specimen has been accu-
rately determined and two gage marks have been inscribed on that 
portion at a distance L0 from each other. The distance L0 is known as 
the gage length of the specimen.
 The test specimen is then placed in a testing machine (Photo 9.2), 
which is used to apply a centric load P. As the load P increases, the 
distance L between the two gage marks also increases (Photo 9.3). 
The distance L is measured with a dial gage, and the elongation d 5 
L 2 L0 is recorded for each value of P. A second dial gage is often 
used simultaneously to measure and record the change in diameter 
of the specimen. From each pair of readings P and d, the stress s is 
computed by dividing P by the original cross-sectional area A0 of the 
specimen, and the strain P is computed by dividing the elongation d 
by the original distance L0 between the two gage marks. The stress-
strain diagram may then be obtained by plotting P as an abscissa and 
s as an ordinate.
 Stress-strain diagrams of various materials vary widely, and dif-
ferent tensile tests conducted on the same material may yield differ-
ent results, depending upon the temperature of the specimen and 
the speed of loading. It is possible, however, to distinguish some 
common characteristics among the stress-strain diagrams of various 
groups of materials and to divide materials into two broad categories 

9.3 Stress-Strain Diagram

Photo 9.2 This machine is used to test tensile-test specimens, such 
as those shown in this chapter.

Photo 9.3 Test specimen with 
tensile load.
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348  Stress and Strain—Axial Loading

on the basis of these characteristics, namely, the ductile materials 
and the brittle materials.
 Ductile materials, which comprise structural steel, as well as 
many alloys of other metals, are characterized by their ability to 
yield at normal temperatures. As the specimen is subjected to an 
increasing load, its length first increases linearly with the load and 
at a very slow rate. Thus, the initial portion of the stress-strain 
diagram is a straight line with a steep slope (Fig. 9.6). However, 
after a critical value sY of the stress has been reached, the speci-
men undergoes a large deformation with a relatively small increase 
in the applied load. This deformation is caused by slippage of the 
material along oblique surfaces and is due, therefore, primarily to 
shearing stresses. As we can note from the stress-strain diagrams 
of two typical ductile materials (Fig. 9.6), the elongation of the 
specimen after it has started to yield can be 200 times as large as 
its deformation before yield. After a certain maximum value of the 
load has been reached, the diameter of a portion of the specimen 
begins to decrease because of local instability (Photo 9.4a). This 
phenomenon is known as necking. After necking has begun, some-
what lower loads are sufficient to keep the specimen elongating 
further, until it finally ruptures (Photo 9.4b). We note that rupture 
occurs along a cone-shaped surface that forms an angle of approxi-
mately 458 with the original surface of the specimen. This indicates 
that shear is primarily responsible for the failure of ductile materi-
als, and confirms the fact that, under an axial load, shearing stresses 
are largest on surfaces forming an angle of 458 with the load (cf. 
Sec. 8.8). The stress sY at which yield is initiated is called the yield 
strength of the material, the stress sU corresponding to the maxi-
mum load applied to the specimen is known as the ultimate 
strength, and the stress sB corresponding to rupture is called the 
breaking strength.
 Brittle materials, which comprise cast iron, glass, and stone, are 
characterized by the fact that rupture occurs without any noticeable 
prior change in the rate of elongation (Fig. 9.7). Thus, for brittle 
materials, there is no difference between the ultimate strength and 
the breaking strength. Also, the strain at the time of rupture is much 
smaller for brittle than for ductile materials. From Photo 9.5, we 
note the absence of any necking of the specimen in the case of a 
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Fig. 9.6 Stress-strain diagrams of two typical ductile materials.

Photo 9.4 Tested specimen of a 
ductile material.

Rupture

�

B�U ��

�

Fig. 9.7 Stress-strain diagrams for a 
typical brittle material.
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349brittle material, and observe that rupture occurs along a surface per-
pendicular to the load. We conclude from this observation that nor-
mal stresses are primarily responsible for the failure of brittle 
materials.†
 The stress-strain diagrams of Fig. 9.6 show that structural 
steel and aluminum, while both ductile, have different yield char-
acteristics. In the case of structural steel (Fig. 9.6a), the stress 
remains constant over a large range of values of the strain after the 
onset of yield. Later the stress must be increased to keep elongat-
ing the specimen, until the maximum value sU has been reached. 
This is due to a property of the material known as strain-hardening. 
The yield strength of structural steel can be determined during the 
tensile test by watching the load shown on the display of the testing 
machine. After increasing steadily, the load is observed to suddenly 
drop to a slightly lower value, which is maintained for a certain 
period while the specimen keeps elongating. In a very carefully 
conducted test, one may be able to distinguish between the upper 
yield point, which corresponds to the load reached just before yield 
starts, and the lower yield point, which corresponds to the load 
required to maintain yield. Since the upper yield point is transient, 
the lower yield point should be used to determine the yield strength 
of the material.
 In the case of aluminum (Fig. 9.6b) and of many other ductile 
materials, the onset of yield is not characterized by a horizontal por-
tion of the stress-strain curve. Instead, the stress keeps increasing-—
-although not linearly-—-until the ultimate strength is reached. Necking 
then begins, leading eventually to rupture. For such materials, the yield 
strength sY can be defined by the offset method. The yield strength at 
0.2% offset, for example, is obtained by drawing through the point of 
the horizontal axis of abscissa P 5 0.2% (or P 5 0.002), a line parallel 
to the initial straight-line portion of the stress-strain diagram (Fig. 9.8). 
The stress sY corresponding to the point Y obtained in this fashion is 
defined as the yield strength at 0.2% offset.
 A standard measure of the ductility of a material is its percent 
elongation, which is defined as

Percent elongation 5 100 
LB 2 L0

L0

where L0 and LB denote, respectively, the initial length of the 
tensile test specimen and its final length at rupture. The specified 
minimum elongation for a 2-in. gage length for commonly used 
steels with yield strengths up to 50 ksi is 21%. We note that 
this means that the average strain at rupture should be at least 
0.21 in./in.

†The tensile tests described in this section were assumed to be conducted at normal 
temperatures. However, a material that is ductile at normal temperatures may display 
the characteristics of a brittle material at very low temperatures, while a normally brittle 
material may behave in a ductile fashion at very high temperatures. At temperatures 
other than normal, therefore, one should refer to a material in a ductile state or to a 
material in a brittle state, rather than to a ductile or brittle material.

Photo 9.5 Tested 
specimen of a 
brittle material.

Rupture

0.2% offset
�

Y

Y
�

�

Fig. 9.8 Determination of yield 
strength by offset method.

9.3 Stress-Strain Diagram
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350  Stress and Strain—Axial Loading  Another measure of ductility which is sometimes used is the 
percent reduction in area, defined as

Percent reduction in area 5 100 
A0 2 AB

A0

where A0 and AB denote, respectively, the initial cross-sectional area 
of the specimen and its minimum cross-sectional area at rupture. For 
structural steel, percent reductions in area of 60 to 70 percent are 
common.
 Thus far, we have discussed only tensile tests. If a specimen 
made of a ductile material were loaded in compression instead of 
tension, the stress-strain curve obtained would be essentially the 
same through its initial straight-line portion and through the begin-
ning of the portion corresponding to yield and strain-hardening. Par-
ticularly noteworthy is the fact that for a given steel, the yield strength 
is the same in both tension and compression. For larger values of 
the strain, the tension and compression stress-strain curves diverge, 
and it should be noted that necking cannot occur in compression. 
For most brittle materials, one finds that the ultimate strength in 
compression is much larger than the ultimate strength in tension. 
This is due to the presence of flaws, such as microscopic cracks or 
cavities, which tend to weaken the material in tension, while not 
appreciably affecting its resistance to compressive failure.
 An example of brittle material with different properties in ten-
sion and compression is provided by concrete, whose stress-strain 
diagram is shown in Fig. 9.9. On the tension side of the diagram, we 
first observe a linear elastic range in which the strain is proportional 
to the stress. After the yield point has been reached, the strain 
increases faster than the stress until rupture occurs. The behavior of 
the material in compression is different. First, the linear elastic range 
is significantly larger. Second, rupture does not occur as the stress 
reaches its maximum value. Instead, the stress decreases in magni-
tude while the strain keeps increasing until rupture occurs. Note that 
the modulus of elasticity, which is represented by the slope of the 
stress-strain curve in its linear portion, is the same in tension and 
compression. This is true of most brittle materials.

Linear elastic range

Rupture, compression

Rupture, tension

�

   U, tension

�

   U, compression�

�

Fig. 9.9 Stress-strain diagram for concrete.
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3519.4 HOOKE’S LAW. MODULUS OF ELASTICITY
Most engineering structures are designed to undergo relatively 
small deformations, involving only the straight-line portion of the 
corresponding stress-strain diagram. For that initial portion of the 
diagram (Fig. 9.6), the stress s is directly proportional to the strain 
P, and we can write

 s 5 E P (9.3)

This relation is known as Hooke’s law, after the English mathemati-
cian Robert Hooke (1635–1703). The coefficient E is called the modu-
lus of elasticity of the material involved, or also Young’s modulus, after 
the  English scientist Thomas Young (1773 – 1829). Since the strain P is 
a  dimensionless quantity, the modulus E is expressed in the same units 
as the stress s, namely in pascals or one of its multiples if SI units are 
used, and in psi or ksi if U.S. customary units are used.
 The largest value of the stress for which Hooke’s law can be used 
for a given material is known as the proportional limit of that material. 
In the case of ductile materials possessing a well-defined yield point, 
as in Fig. 9.6a, the proportional limit almost coincides with the yield 
point. For other materials, the proportional limit cannot be defined as 
easily, since it is difficult to determine with accuracy the value of the 
stress s for which the relation between s and P ceases to be linear. 
But from this very difficulty we can conclude for such materials that 
using Hooke’s law for values of the stress slightly larger than the actual 
proportional limit will not result in any significant error.
 Some of the physical properties of structural metals, such as 
strength, ductility, and corrosion resistance, can be greatly affected 
by alloying, heat treatment, and the manufacturing process used. For 
example, we note from the stress-strain diagrams of pure iron and 
of three different grades of steel (Fig. 9.10) that large variations in 
the yield strength, ultimate strength, and final strain (ductility) exist 
among these four metals. All of them, however, possess the same 
modulus of elasticity; in other words, their “stiffness,” or ability to 
resist a deformation within the linear range, is the same. Therefore, 
if a high-strength steel is substituted for a lower-strength steel in a 
given structure, and if all dimensions are kept the same, the structure 
will have an increased load-carrying capacity, but its stiffness will 
remain unchanged.
 For each of the materials considered so far, the relation between 
normal stress and normal strain, s 5 EP, is independent of the direc-
tion of loading. This is because the mechanical properties of each 
material, including its modulus of elasticity E, are independent of 
the direction considered. Such materials are said to be isotropic. 
Materials whose properties depend upon the direction considered 
are said to be anisotropic. 
 An important class of anisotropic materials consists of fiber-
reinforced composite materials. These composite materials are 
obtained by embedding fibers of a strong, stiff material into a weaker, 
softer material, referred to as a matrix. Typical materials used as fibers 
are graphite, glass, and polymers, while various types of resins are 
used as a matrix. Figure 9.11 shows a layer, or lamina, of a composite 
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�

Fig. 9.10 Stress-strain diagrams for 
iron and different grades of steel.
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Fig. 9.11 Layer of fiber-reinforced
composite material.

9.4 Hooke’s Law. Modulus of Elasticity
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352  Stress and Strain—Axial Loading material consisting of a large number of parallel fibers embedded in 
a matrix. An axial load applied to the lamina along the x axis, that is, 
in a direction parallel to the fibers, will create a normal stress sx in 
the lamina and a corresponding normal strain Px which will satisfy 
Hooke’s law as the load is increased and as long as the elastic limit 
of the lamina is not exceeded. Similarly, an axial load applied along 
the y axis, that is, in a direction perpendicular to the lamina, will create 
a normal stress sy and a normal strain Py satisfying Hooke’s law, and 
an axial load applied along the z axis will create a normal stress sz and 
a normal strain Pz which again satisfy Hooke’s law. However, the mod-
uli of elasticity Ex, Ey, and Ez corresponding, respectively, to each of 
the above loadings will be different. Because the fibers are parallel to 
the x axis, the lamina will offer a much stronger resistance to a loading 
directed along the x axis than to a loading directed along the y or 
z axis, and Ex will be much larger than either Ey or Ez.
 A flat laminate is obtained by superposing a number of layers 
or laminas. If the laminate is to be subjected only to an axial load 
causing tension, the fibers in all layers should have the same orienta-
tion as the load in order to obtain the greatest possible strength. But 
if the laminate may be in compression, the matrix material may not 
be sufficiently strong to prevent the fibers from kinking or buckling. 
The lateral stability of the laminate may then be increased by posi-
tioning some of the layers so that their fibers will be perpendicular 
to the load. Positioning some layers so that their fibers are oriented 
at 308, 458, or 608 to the load may also be used to increase the resis-
tance of the laminate to in-plane shear.

*9.5  ELASTIC VERSUS PLASTIC BEHAVIOR OF 
A MATERIAL

If the strains caused in a test specimen by the application of a given 
load disappear when the load is removed, the material is said to 
behave elastically. The largest value of the stress for which the mate-
rial behaves elastically is called the elastic limit of the material.
 If the material has a well-defined yield point as in Fig. 9.6a, 
the elastic limit, the proportional limit (Sec. 9.4), and the yield point 
are essentially equal. In other words, the material behaves elastically 
and linearly as long as the stress is kept below the yield point. If the 
yield point is reached, however, yield takes place as described in Sec. 
9.3 and, when the load is removed, the stress and strain decrease in 
a linear fashion, along a line CD parallel to the straight-line portion 
AB of the loading curve (Fig. 9.12). The fact that P does not return 
to zero after the load has been removed indicates that a permanent 
set or plastic deformation of the material has taken place. For most 
materials, the plastic deformation depends not only upon the maxi-
mum value reached by the stress, but also upon the time elapsed 
before the load is removed. The stress-dependent part of the plas-
tic deformation is referred to as slip, and the time-dependent 
part-—-which is also influenced by the  temperature-—-as creep.
 When a material does not possess a well-defined yield point, the 
elastic limit cannot be determined with precision. However, assuming 
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Fig. 9.12
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353the elastic limit equal to the yield strength as defined by the offset 
method (Sec. 9.3) results in only a small error. Indeed, referring to Fig. 
9.8, we note that the straight line used to determine point Y also rep-
resents the unloading curve after a maximum stress sY has been reached. 
While the material does not behave truly elastically, the resulting plastic 
strain is as small as the selected offset.
 If, after being loaded and unloaded (Fig. 9.13), the test specimen is 
loaded again, the new loading curve will closely follow the earlier unloading 
curve until it almost reaches point C; it will then bend to the right and 
connect with the curved portion of the original stress-strain diagram. We 
note that the straight-line portion of the new loading curve is longer than 
the corresponding portion of the initial one. Thus, the proportional limit 
and the elastic limit have increased as a result of the strain-hardening that 
occurred during the earlier loading of the specimen. However, since the 
point of rupture R remains unchanged, the ductility of the specimen, which 
should now be measured from point D, has decreased.
 We have assumed in our discussion that the specimen was loaded 
twice in the same direction, i.e., that both loads were tensile loads. Let 
us now consider the case when the second load is applied in a direction 
opposite to that of the first one.
 We assume that the material is mild steel, for which the yield 
strength is the same in tension and in compression. The initial load is 
tensile and is applied until point C has been reached on the stress-strain 
diagram (Fig. 9.14). After unloading (point D), a compressive load is 
applied, causing the material to reach point H, where the stress is equal 
to 2sY. We note that portion DH of the stress-strain diagram is curved 
and does not show any clearly defined yield point. This is referred to 
as the Bauschinger  effect. As the compressive load is maintained, the 
material yields along line HJ.
 If the load is removed after point J has been reached, the stress 
returns to zero along line JK, and we note that the slope of JK is equal 
to the modulus of elasticity E. The resulting permanent set AK may be 
positive, negative, or zero, depending upon the lengths of the segments 
BC and HJ. If a tensile load is applied again to the test specimen, the 
portion of the stress-strain diagram beginning at K (dashed line) will 
curve up and to the right until the yield stress sY has been reached.
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9.5 Elastic versus Plastic Behavior of a 
Material
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354  Stress and Strain—Axial Loading  If the initial loading is large enough to cause strain-hardening 
of the material (point C9), unloading takes place along line C9D9. As 
the reverse load is applied, the stress becomes compressive, reaching 
its maximum value at H9 and maintaining it as the material yields 
along line H9J9. We note that while the maximum value of the com-
pressive stress is less than sY, the total change in stress between C9 
and H9 is still equal to 2sY.
 If point K or K9 coincides with the origin A of the diagram, the 
permanent set is equal to zero, and the specimen may appear to have 
returned to its original condition. However, internal changes will 
have taken place and, while the same loading sequence may be 
repeated, the specimen will rupture without any warning after rela-
tively few repetitions. This indicates that the excessive plastic defor-
mations to which the specimen was subjected have caused a radical 
change in the characteristics of the material. Reverse loadings into 
the plastic range, therefore, are seldom allowed, and only under 
carefully controlled conditions. Such situations occur in the straight-
ening of damaged material and in the final alignment of a structure 
or machine.

*9.6  REPEATED LOADINGS. FATIGUE
In the preceding sections we have considered the behavior of a test 
specimen subjected to an axial loading. We recall that, if the maxi-
mum stress in the specimen does not exceed the elastic limit of the 
material, the specimen returns to its initial condition when the load 
is removed. You might conclude that a given loading may be 
repeated many times, provided that the stresses remain in the elas-
tic range. Such a conclusion is correct for loadings repeated a few 
dozen or even a few hundred times. However, as you will see, it is 
not correct when loadings are repeated thousands or millions of 
times. In such cases, rupture will occur at a stress much lower than 
the static breaking strength; this phenomenon is known as fatigue. 
A fatigue failure is of a brittle nature, even for materials that are 
normally ductile.
 Fatigue must be considered in the design of all structural and 
machine components that are subjected to repeated or to fluctuat-
ing loads. The number of loading cycles that may be expected 
during the useful life of a component varies greatly. For example, 
a beam supporting an industrial crane may be loaded as many as 
two million times in 25 years (about 300 loadings per working 
day), an automobile crankshaft will be loaded about half a billion 
times if the automobile is driven 200,000 miles, and an individual 
turbine blade may be loaded several hundred billion times during 
its lifetime.
 Some loadings are of a fluctuating nature. For example, the 
passage of traffic over a bridge will cause stress levels that will fluctu-
ate about the stress level due to the weight of the bridge. A more 
severe condition occurs when a complete reversal of the load occurs 
during the loading cycle. The stresses in the axle of a railroad car, 
for example, are completely reversed after each half-revolution of 
the wheel.
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355 The number of loading cycles required to cause the failure of 
a specimen through repeated successive loadings and reverse 
 loadings may be determined experimentally for any given maximum 
stress level. If a series of tests is conducted, using different maxi-
mum stress levels, the resulting data may be plotted as a s-n curve. 
For each test, the maximum stress s is plotted as an ordinate and 
the number of cycles n as an abscissa; because of the large number 
of cycles required for rupture, the cycles n are plotted on a loga-
rithmic scale.
 A typical s-n curve for steel is shown in Fig. 9.15. We note 
that, if the applied maximum stress is high, relatively few cycles are 
required to cause rupture. As the magnitude of the maximum stress 
is reduced, the number of cycles required to cause rupture increases, 
until a stress, known as the endurance limit, is reached. The endur-
ance limit is the stress for which failure does not occur, even for an 
indefinitely large number of loading cycles. For a low-carbon steel, 
such as structural steel, the endurance limit is about one-half of the 
ultimate strength of the steel.
 For nonferrous metals, such as aluminum and copper, a typical 
s-n curve (Fig. 9.15) shows that the stress at failure continues to 
decrease as the number of loading cycles is increased. For such met-
als, one defines the fatigue limit as the stress corresponding to failure 
after a specified number of loading cycles, such as 500 million.
 Examination of test specimens, of shafts, of springs, and of 
other components that have failed in fatigue shows that the failure 
was initiated at a microscopic crack or at some similar imperfection. 
At each loading, the crack was very slightly enlarged. During suc-
cessive loading cycles, the crack propagated through the material 
until the amount of undamaged material was insufficient to carry 
the maximum load, and an abrupt, brittle failure occurred. Because 
fatigue failure may be initiated at any crack or imperfection, the 
surface condition of a specimen has an important effect on the 
value of the endurance limit obtained in testing. The endurance 
limit for machined and polished specimens is higher than for rolled 
or forged components, or for components that are corroded. In 
applications in or near seawater, or in other applications where 
corrosion is expected, a reduction of up to 50% in the endurance 
limit can be expected.

9.7  DEFORMATIONS OF MEMBERS UNDER 
AXIAL LOADING

Consider a homogeneous rod BC of length L and uniform cross sec-
tion of area A subjected to a centric axial load P (Fig. 9.16). If the 
resulting axial stress s 5 PyA does not exceed the proportional limit 
of the material, we may apply Hooke’s law and write

 s 5 E P  (9.3)

from which it follows that

 
P 5

s

E
5

P
AE  

 (9.4)
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356  Stress and Strain—Axial Loading Recalling that the strain P was defined in Sec. 9.2 as P 5 dyL, we 
have

 d 5 P L  (9.5)

and, substituting for P from (9.4) into (9.5):

 
d 5

PL
AE

 (9.6)

 Equation (9.6) may be used only if the rod is homogeneous 
(constant E), has a uniform cross section of area A, and is loaded at 
its ends. If the rod is loaded at other points, or if it consists of several 
portions of various cross sections and possibly of different materials, 
we must divide it into component parts that satisfy individually the 
required conditions for the application of formula (9.6). Denoting, 
respectively, by Pi, Li, Ai, and Ei the internal force, length, cross-
sectional area, and modulus of elasticity corresponding to part i, we 
express the deformation of the entire rod as

 
d 5 a

i

PiLi

AiEi
 (9.7)

 We recall from Sec. 9.2 that, in the case of a rod of variable 
cross section (Fig. 9.5), the strain P depends upon the position of 
the point Q where it is computed and is defined as P 5 ddydx. Solv-
ing for dd and substituting for P from Eq. (9.4), we express the 
deformation of an element of length dx as

dd 5 P dx 5
P dx
AE

The total deformation d of the rod is obtained by integrating this 
expression over the length L of the rod:

 
d 5 #

L

0

 
P dx
AE

 (9.8)

Formula (9.8) should be used in place of (9.6), not only when the 
cross-sectional area A is a function of x, but also when the internal 
force P depends upon x, as is the case for a rod hanging under its 
own weight.

EXAMPLE 9.1 Determine the deformation of the steel rod shown in 
Fig. 9.17a under the given loads (E 5 29 3 106 psi).
 We divide the rod into three component parts shown in Fig. 9.17b 
and write

 L1 5 L2 5 12 in.      L3 5 16 in.
 A1 5 A2 5 0.9 in2     A3 5 0.3 in2

To find the internal forces P1, P2, and P3, we must pass sections through 
each of the component parts, drawing each time the free-body diagram of 
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357the portion of rod located to the right of the section (Fig. 9.17c). Expressing 
that each of the free bodies is in equilibrium, we obtain successively

 P1 5 60 kips 5 60 3 103 lb
 P2 5 215 kips 5 215 3 103 lb
 P3 5 30 kips 5 30 3 103 lb

Carrying the values obtained into Eq. (9.7), we have

 d 5 a
i

PiLi

AiEi
5

1
E

 aP1L1

A1
1

P2L2

A2
1

P3L3

A3
b

 5
1

29 3 106 c 160 3 1032 112 2
0.9

 
 1
1215 3 1032 112 2

0.9
1
130 3 1032 116 2

0.3
d

 
 d 5

2.20 3 106

29 3 106 5 75.9 3 1023 in. ◾

 The rod BC of Fig. 9.16, which was used to derive formula 
(9.6), and the rod AD of Fig. 9.17, which has just been discussed in 
Example 9.1, both had one end attached to a fixed support. In each 
case, therefore, the deformation d of the rod was equal to the dis-
placement of its free end. When both ends of a rod move, however, 
the deformation of the rod is measured by the relative displacement 
of one end of the rod with respect to the other. Consider, for instance, 
the assembly shown in Fig. 9.18a, which consists of three elastic bars 
of length L connected by a rigid pin at A. If a load P is applied at 
B (Fig. 9.18b), each of the three bars will deform. Since the bars AC 
and AC9 are attached to fixed supports at C and C9, their common 
deformation is mea sured by the displacement dA of point A. On the 
other hand, since both ends of bar AB move, the deformation of AB 
is measured by the difference between the displacements dA and dB 
of points A and B, i.e., by the relative displacement of B with respect 
to A. Denoting this relative displacement by dByA, we write

 
dByA 5 dB 2 dA 5

PL
AE  

 (9.9)

where A is the cross-sectional area of AB and E is its modulus of 
elasticity.
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358

SAMPLE PROBLEM 9.1

The rigid bar BDE is supported by two links AB and CD. Link AB is made 
of aluminum (E 5 70 GPa) and has a cross-sectional area of 500 mm2; link 
CD is made of steel (E 5 200 GPa) and has a cross-sectional area of 600 mm2. 
For the 30-kN force shown, determine the deflection (a) of B, (b) of D, 
(c) of E.

SOLUTION

Free Body: Bar BDE

 1lo MB 5 0: 2 130 kN 2 10.6 m 2 1 FCD 10.2 m 2 5 0
 FCD 5 190 kN     FCD 5 90 kN  tension
1lo MD 5 0: 2 130 kN 2 10.4 m 2 2 FAB 10.2 m 2 5 0
 FAB 5 260 kN      FAB 5 60 kN  compression

a. Deflection of B. Since the internal force in link AB is compressive, we 
have P 5 260 kN

dB 5
PL
AE

5
1260 3 103 N 2 10.3 m 2

1500 3 1026 m22 170 3 109 Pa2 5 2514 3 1026 m

 The negative sign indicates a contraction of member AB, and, thus, 
an upward deflection of end B:

 dB 5 0.514 mmx ◀

b. Deflection of D. Since in rod CD, P 5 90 kN, we write

 dD 5
PL
AE

5
190 3 103 N 2 10.4 m 2

1600 3 1026 m22 1200 3 109 Pa2
  5 300 3 1026 m dD 5 0.300 mmw ◀

c. Deflection of E. We denote by B9 and D9 the displaced positions of 
points B and D. Since the bar BDE is rigid, points B9, D9, and E9 lie in a 
straight line and we write

 
BB ¿
DD ¿

5
BH
HD

     
0.514 mm
0.300 mm

5
1200 mm 2 2 x

x
    x 5 73.7 mm

 
EE ¿
DD ¿

5
HE
HD

     
dE

0.300 mm
5
1400 mm 2 1 173.7 mm 2

73.7 mm

dE 5 1.928 mmw ◀

30 kN

30 kN

0.4 m
0.3 m

0.3 m

0.2 m
0.4 m

0.2 m
0.4 m

C

A

B

A

B

D

B D

E

FAB

F'AB � 60 KN

FAB � 60 kN

A � 500 mm2

E � 70 GPa

FCD

E

0.4 m

C

D
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400 mm

(200 mm – x)
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359

SAMPLE PROBLEM 9.2

The rigid castings A and B are connected by two 3
4-in.-diameter steel bolts 

CD and GH and are in contact with the ends of a 1.5-in.-diameter aluminum 
rod EF. Each bolt is single-threaded with a pitch of 0.1 in., and after being 
snugly fitted, the nuts at D and H are both tightened one-quarter of a turn. 
Knowing that E is 29 3 106 psi for steel and 10.6 3 106 psi for aluminum, 
determine the normal stress in the rod.

SOLUTION

Deformations
Bolts CD and GH. Tightening the nuts causes tension in the bolts. 
Because of symmetry, both are subjected to the same internal force Pb and 
undergo the same deformation db. We have

db 5 1
PbLb

AbEb
5 1

Pb118 in.2
1
4 p 10.75 in.22129 3 106 psi2 5 11.405 3 1026 Pb (1)

Rod EF. The rod is in compression. Denoting by Pr the magnitude of the 
force in the rod and by dr the deformation of the rod, we write

dr 5 2
PrLr

ArEr
5 2

Pr112 in.2
1
4 
p 11.5 in.22110.6 3 106 psi2 5 20.6406 3 1026 Pr (2)

Displacement of D Relative to B. Tightening the nuts one-quarter of 
a turn causes ends D and H of the bolts to undergo a displacement of 
1
4(0.1 in.) relative to casting B. Considering end D, we write

 dDyB 5 1
4 10.1 in.2 5 0.025 in. (3)

But dDyB 5 dD 2 dB, where dD and dB represent the displacements of D 
and B. If we assume that casting A is held in a fixed position while the nuts 
at D and H are being tightened, these displacements are equal to the defor-
mations of the bolts and of the rod, respectively. We have, therefore,

 dDyB 5 db 2 dr  (4)

Substituting from (1), (2), and (3) into (4), we obtain

 0.025 in. 5 1.405 3 1026 Pb 1 0.6406 3 1026 Pr  (5)

Free Body: Casting B

y
1  oF 5 0: Pr 2 2Pb 5 0    Pr 5 2Pb (6)

Forces in Bolts and Rod Substituting for Pr from (6) into (5), we have

 0.025 in. 5 1.405 3 1026 Pb 1 0.6406 3 102612Pb2
 Pb 5 9.307 3 103 lb 5 9.307 kips
 Pr 5 2Pb 5 2 19.307 kips2 5 18.61 kips

Stress in Rod

 
sr 5

Pr

Ar
5

18.61 kips
1
4 p 11.5 in.22 

sr 5 10.53 ksi ◀
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PROBLEMS

360

9.1 A 4.8-ft-long steel wire of 1
4-in. diameter is subjected to a 750-lb 

tensile load. Knowing that E 5 29 3 106 psi, determine (a) the 
elongation of the wire, (b) the corresponding normal stress.

 9.2 Two gage marks are placed exactly 250 mm apart on a 12-mm-
diameter aluminum rod with E 5 73 GPa and an ultimate strength 
of 140 MPa. Knowing that the distance between the gage marks is 
250.28 mm after a load is applied, determine (a) the stress in the 
rod, (b) the factor of safety.

 9.3 A nylon thread is subjected to a 2-lb tensile load. Knowing that 
E 5 0.7 3 106 psi and that the length of the thread increases by 
1.1%, determine (a) the diameter of the thread, (b) the stress in 
the thread.

 9.4 A 9-m length of 6-mm-diameter steel wire is to be used in a 
hanger. It is noted that the wire stretches 18 mm when a tensile 
force P is applied. Knowing that E 5 200 GPa, determine (a) the 
magnitude of the force P, (b) the corresponding normal stress in 
the wire.

 9.5 A steel rod is 2.2 m long and must not stretch more than 1.2 mm 
when an 8.5-kN load is applied to it. Knowing that E 5 200 GPa, 
determine (a) the smallest diameter rod that should be used, 
(b) the corresponding normal stress caused by the load.

 9.6 A control rod made of yellow brass must not stretch more than 1
8 in. 

when the tension in the wire is 800 lb. Knowing that E 5 15 3 
106 psi and that the maximum allowable normal stress is 32 ksi, 
determine (a) the smallest diameter that can be selected for the 
rod, (b) the corresponding maximum length of the rod.

 9.7 An aluminum pipe must not stretch more than 0.05 in. when it is 
subjected to a tensile load. Knowing that E 5 10.1 3 106 psi and 
that the allowable tensile strength is 14 ksi, determine (a) the maxi-
mum allowable length of the pipe, (b) the required area of the pipe 
if the tensile load is 127.5 kips.

 9.8 A cast-iron tube is used to support a compressive load. Knowing 
that E 5 69 GPa and that the maximum allowable change in length 
is 0.025%, determine (a) the maximum normal stress in the tube, 
(b) the minimum wall thickness for a load of 7.2 kN if the outside 
diameter of the tube is 50 mm.

 9.9 A block of 10-in. length and 1.8 3 1.6-in. cross section is to support 
a centric compressive load P. The material to be used is a bronze 
for which E 5 14 3 106 psi. Determine the largest load that can 
be applied, knowing that the normal stress must not exceed 18 ksi 
and that the decrease in length of the block should be at most 
0.12% of its original length.
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361Problems 9.10 A 9-kN tensile load will be applied to a 50-m length of steel wire with 
E 5 200 GPa. Determine the smallest-diameter wire that can be used 
knowing that the normal stress must not exceed 150 MPa and that 
the increase in the length of the wire should be at most 25 mm.

 9.11 The 4-mm-diameter cable BC is made of a steel with E 5 200 GPa. 
Knowing that the maximum stress in the cable must not exceed 
190 MPa and that the elongation of the cable must not exceed 
6 mm, find the maximum load P that can be applied as shown.

 9.12 Rod BD is made of steel (E 5 29 3 106 psi) and is used to brace 
the axially compressed member ABC. The maximum force that can 
be developed in member BD is 0.02P. If the stress must not exceed 
18 ksi and the maximum change in length of BD must not exceed 
0.001 times the length of ABC, determine the smallest-diameter 
rod that can be used for member BD.

 9.13 The specimen shown is made from a 1-in.-diameter cylindrical 
steel rod with two 1.5-in.-outer-diameter sleeves bonded to the rod 
as shown. Knowing that E 5 29 3 106 psi, determine (a) the load 
P so that the total deformation is 0.002 in., (b) the corresponding 
deformation of the central portion BC.

 9.14 Both portions of the rod ABC are made of an aluminum for which 
E 5 70 GPa. Knowing that the magnitude of P is 4 kN, determine 
(a) the value of Q so that the deflection at A is zero, (b) the cor-
responding deflection of B.

 9.15 The rod ABC is made of an aluminum for which E 5 70 GPa. 
Knowing that P 5 6 kN and Q 5 42 kN, determine the deflection 
of (a) point A, (b) point B.
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362 Stress and Strain—Axial Loading  9.16 Two solid cylindrical rods are joined at B and loaded as shown. 
Rod AB is made of steel (E 5 29 3 106 psi), and rod BC of brass 
(E 5 15 3 106 psi). Determine (a) the total deformation of the 
composite rod ABC, (b) the deflection of point B.

 9.17 A 1
8-in.-thick hollow polystyrene cylinder (E 5 0.45 3 106 psi) and 

a rigid circular plate (only part of which is shown) are used to sup-
port a 10-in.-long steel rod AB (E 5 29 3 106 psi) of 1

4-in. diameter. 
If an 800-lb load P is applied at B, determine (a) the elongation 
of rod AB, (b) the deflection of point B, (c) the average normal 
stress in rod AB.

 9.18 The 36-mm-diameter steel rod ABC and a brass rod CD of the 
same diameter are joined at point C to form the 7.5-m rod ABCD. 
For the loading shown and neglecting the weight of the rod, deter-
mine the deflection of (a) point C, (b) point D.

C

B

A

3 in.

2 in.
30 kips 30 kips
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363Problems 9.19 The steel frame (E 5 200 GPa) shown has a diagonal brace BD 
with an area of 1920 mm2. Determine the largest allowable load P 
if the change in length of member BD is not to exceed 1.6 mm.

 9.20 For the steel truss (E 5 29 3 106 psi) and loading shown, deter-
mine the deformations of members AB and AD, knowing that their 
cross-sectional areas are 4.0 in2 and 2.8 in2, respectively.

 9.21 Members AB and BC are made of steel (E 5 29 3 106 psi) with 
cross-sectional areas of 0.80 in2 and 0.64 in2, respectively. For the 
loading shown, determine the elongation of (a) member AB, (b) 
member BC.

 9.22 Members ABC and DEF are joined with steel links (E 5 200 GPa). 
Each of the links is made of a pair of 25 3 35-mm plates. Deter-
mine the change in length of (a) member BE, (b) member CF.

 9.23 Each of the links AB and CD is made of aluminum (E 5 75 GPa) 
and has a cross-sectional area of 125 mm2. Knowing that they sup-
port the rigid member BC, determine the deflection of point E.

 9.24 Link BD is made of brass (E 5 15 3 106 psi) and has a cross-sectional 
area of 0.40 in2. Link CE is made of aluminum (E 5 10.4 3 106 psi) 
and has a cross-sectional area of 0.50 in2. Determine the maximum 
force P that can be applied vertically at point A if the deflection 
of A is not to exceed 0.014 in.
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364  Stress and Strain—Axial Loading 9.8 STATICALLY INDETERMINATE PROBLEMS
In the problems considered in the preceding section, we could always 
use free-body diagrams and equilibrium equations to determine the 
internal forces produced in the various portions of a member under 
given loading conditions. The values obtained for the internal forces 
were then entered into Eq. (9.7) or (9.8) to obtain the deformation 
of the member.
 There are many problems, however, in which the internal forces 
cannot be determined from statics alone. In fact, in most of these 
problems the reactions themselves—which are external forces—cannot 
be determined by simply drawing a free-body diagram of the mem-
ber and writing the corresponding equilibrium equations. The equi-
librium equations must be complemented by relations involving 
deformations obtained by considering the geometry of the problem. 
Because statics is not sufficient to determine either the reactions or 
the internal forces, problems of this type are said to be statically 
indeterminate. The following examples will show how to handle this 
type of problem.

EXAMPLE 9.2 A rod of length L, cross-sectional area A1, and modulus 
of elasticity E1, has been placed inside a tube of the same length L, but of 
cross-sectional area A2 and modulus of elasticity E2 (Fig. 9.19a). What is 
the deformation of the rod and tube when a force P is exerted on a rigid 
end plate as shown?
 Denoting by P1 and P2, respectively, the axial forces in the rod and in 
the tube, we draw free-body diagrams of all three elements (Fig. 9.19b, c, 
d). Only the last of the diagrams yields any significant information, namely:

 P1 1 P2 5 P  (9.10)

Clearly, one equation is not sufficient to determine the two unknown inter-
nal forces P1 and P2. The problem is statically indeterminate.
 However, the geometry of the problem shows that the deformations d1 
and d2 of the rod and tube must be equal. Recalling Eq. (9.6), we write

 
d1 5

P1L
A1E1

     d2 5
P2L
A2E2 

 (9.11)

Equating the deformations d1 and d2, we obtain:

 
P1

A1E1
5

P2

A2E2
  (9.12)

Equations (9.10) and (9.12) can be solved simultaneously for P1 and P2:

P1 5
A1E1P

A1E1 1 A2E2
    P2 5

A2E2P
A1E1 1 A2E2

Either of Eqs. (9.11) can then be used to determine the common deforma-
tion of the rod and tube. ◾

P

P1 P'1

Tube (A2, E2)

Rod (A1, E1)

End plate 

(a)

(b)

(c)

(d)

L

P'2P2

P
P1

P2

Fig. 9.19

bee80156_ch09_342-405.indd Page 364  10/16/09  1:27:38 PM user-s173bee80156_ch09_342-405.indd Page 364  10/16/09  1:27:38 PM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-09/Volumes/MHDQ-New/MHDQ152/MHDQ152-09



365EXAMPLE 9.3 A bar AB of length L and uniform cross section is attached 
to rigid supports at A and B before being loaded. What are the stresses in 
portions AC and BC due to the application of a load P at point C 
(Fig. 9.20a)?
 Drawing the free-body diagram of the bar (Fig. 9.20b), we obtain the 
equilibrium equation

 RA 1 RB 5 P (9.13)

Since this equation is not sufficient to determine the two unknown reac-
tions RA and RB, the problem is statically indeter minate.
 However, the reactions may be determined if we observe from the 
geometry that the total elongation d of the bar must be zero. Denoting by 
d1 and d2, respectively, the elongations of the portions AC and BC, we 
write

d 5 d1 1 d2 5 0

or, expressing d1 and d2 in terms of the corresponding internal forces P1 
and P2:

 
d 5

P1L1

AE
1

P2L2

AE
5 0

 
(9.14)

But we note from the free-body diagrams shown respectively in parts b and c 
of Fig. 9.21 that P1 5 RA and P2 5 2RB. Carrying these values into (9.14), 
we write

 RAL1 2 RBL2 5 0 (9.15)

Equations (9.13) and (9.15) can be solved simultaneously for RA and RB; we 
obtain RA 5 PL2yL and RB 5 PL1yL. The desired stresses s1 in AC and 
s2 in BC are obtained by dividing, respectively, P1 5 RA and P2 5 2RB by 
the cross-sectional area of the bar:

s1 5
PL2

AL
    s2 5 2

PL1

AL
 ◾

Superposition Method. We observe that a structure is statically 
indeterminate whenever it is held by more supports than are 
required to maintain its equilibrium. This results in more unknown 
reactions than available equilibrium equations. It is often found con-
venient to designate one of the reactions as redundant and to elimi-
nate the corresponding support. Since the stated conditions of the 
problem cannot be arbitrarily changed, the redundant reaction must 
be maintained in the solution. But it will be treated as an unknown 
load that, together with the other loads, must produce deformations 
that are compatible with the original constraints. The actual solution 
of the problem is carried out by considering separately the deforma-
tions caused by the given loads and by the redundant reaction, and 
by adding-—-or superposing-— the results obtained.†

†The general conditions under which the combined effect of several loads can be 
obtained in this way are discussed in Sec. 9.11.

P

L1

L2

RA

RB

(a) (b)

L

A

B

A

B

C C

P

Fig. 9.20

RA

P

RA

RB RB

(a)

(b)

(c)

A

B

C P1

P2

Fig. 9.21

9.8 Statically Indeterminate Problems
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366  Stress and Strain—Axial Loading EXAMPLE 9.4 Determine the reactions at A and B for the steel bar and 
loading shown in Fig. 9.22, assuming a close fit at both supports before the 
loads are applied.

A

300 kN 

600 kN 

A

300 kN 

600 kN 

A

L�� R�

(a) (b) (c)

  � 0

RB RB 

Fig. 9.23

C

K

D
3

4

2

1

A

B

300 kN 

600 kN 150 mm

150 mm

150 mm

150 mm

Fig. 9.24

 The deformation dL is obtained from Eq. (9.7) after the bar has been 
divided into four portions, as shown in Fig. 9.24.
Following the same procedure as in Example 9.1, we write

 P1 5 0    P2 5 P3 5 600 3 103 N    P4 5 900 3 103 N
 A1 5 A2 5 400 3 1026 m2    A3 5 A4 5 250 3 1026 m2

L1 5 L2 5 L3 5 L4 5 0.150 m

Substituting these values into Eq. (9.7), we obtain

 
 dL 5 a

4

i5 1

PiLi

AiE
5 a0 1

600 3 103 N
400 3 1026 m2

 
 1

600 3 103 N
250 3 1026 m2 1

900 3 103 N
250 3 1026 m2b 0.150 m

E

 
 dL 5

1.125 3 109

E  
(9.16)

C

A

D

K

B

A � 250 mm2 

A � 400 mm2 

300 kN 

600 kN 150 mm

150 mm

150 mm

150 mm

Fig. 9.22

 We consider the reaction at B as redundant and release the bar from 
that support. The reaction RB is now considered as an unknown load 
(Fig. 9.23a) and will be determined from the condition that the deformation 
d of the rod must be equal to zero. The solution is carried out by consider-
ing separately the deformation dL caused by the given loads (Fig. 9.23b) 
and the deformation dR due to the redundant reaction RB (Fig. 9.23c).
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367 Considering now the deformation dR due to the redundant reaction 
RB, we divide the bar into two portions, as shown in Fig. 9.25, and write

P1 5 P2 5 2RB

A1 5 400 3 1026 m2    A2 5 250 3 1026 m2

L1 5 L2 5 0.300  m

Substituting these values into Eq. (9.7), we obtain

 
dR 5

P1L1

A1E
1

P2L2

A2E
5 2

11.95 3 1032RB

E  
(9.17)

 Expressing that the total deformation d of the bar must be zero, we 
write

 d 5 dL 1 dR 5 0 (9.18)

and, substituting for dL and dR from (9.16) and (9.17) into (9.18),

d 5
1.125 3 109

E
2
11.95 3 1032RB

E
5 0

Solving for RB, we have

RB 5 577 3 103 N 5 577 kN

 The reaction RA at the upper support is obtained from the free-body 
diagram of the bar (Fig. 9.26). We write

 1ÿxoFy 5 0:    RA 2 300 kN 2 600 kN 1 RB 5 0
 RA 5 900 kN 2 RB 5 900 kN 2 577 kN 5 323 kN

 Once the reactions have been determined, the stresses and strains in 
the bar can easily be obtained. It should be noted that, while the total 
deformation of the bar is zero, each of its component parts does deform 
under the given loading and restraining conditions. ◾

EXAMPLE 9.5 Determine the reactions at A and B for the steel bar and 
loading of Example 9.4, assuming now that a 4.50-mm clearance exists 
between the bar and the ground before the loads are applied (Fig. 9.27). 
Assume E 5 200 GPa.
 We follow the same procedure as in Example 9.4. Considering the 
reaction at B as redundant, we compute the deformations dL and dR caused, 
respectively, by the given loads and by the redundant reaction RB. How-
ever, in this case the total deformation is not zero, but d 5 4.5 mm. We 
write therefore

 d 5 dL 1 dR 5 4.5 3 1023 m (9.19)

Substituting for dL and dR from (9.16) and (9.17) into (9.19), and recalling 
that E 5 200 GPa 5 200 3 109 Pa, we have

d 5
1.125 3 109

200 3 109 2
11.95 3 1032RB

200 3 109 5 4.5 3 1023 m

Solving for RB, we obtain

RB 5 115.4 3 103 N 5 115.4 kN

The reaction at A is obtained from the free-body diagram of the bar 
(Fig. 9.27):

 1xo Fy 5 0:    RA 2 300 kN 2 600 kN 1 RB 5 0
 RA 5 900 kN 2 RB 5 900 kN 2 115.4 kN 5 785 kN ◾

C

A

300 kN 

600 kN 

B

RB

RA

Fig. 9.26

CC

AA

B B

300 kN

600 kN

300 mm

4.5 mm

300 mm

A � 250 mm2 

A � 400 mm2 

�

Fig. 9.27

9.8 Statically Indeterminate Problems

C

1

2

A

B

RB

300 mm

300 mm

Fig. 9.25
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368  Stress and Strain—Axial Loading 9.9 PROBLEMS INVOLVING TEMPERATURE CHANGES
All of the members and structures that we have considered so far 
were assumed to remain at the same temperature while they were 
being loaded. We are now going to consider various situations involv-
ing changes in temperature.
 Let us first consider a homogeneous rod AB of uniform cross 
section, which rests freely on a smooth horizontal surface (Fig. 9.28a). 
If the temperature of the rod is raised by ¢T, we observe that the rod 
elongates by an amount dT which is proportional to both the tempera-
ture change ¢T and the length L of the rod (Fig. 9.28b). We have

 dT 5 a 1¢T 2L (9.20)

where a is a constant characteristic of the material, called the coef-
ficient of thermal expansion. Since dT and L are both expressed in 

L

(b)

A B

A B

P' P

(a)

Fig. 9.29

units of length, a represents a quantity per degree C, or per degree 
F, depending whether the temperature change is expressed in 
degrees Celsius or in degrees Fahrenheit.
 With the deformation dT must be associated a strain PT 5 dTyL. 
Recalling Eq. (9.20), we conclude that

 PT 5 a ¢T (9.21)

The strain PT is referred to as a thermal strain, since it is caused by 
the change in temperature of the rod. In the case we are considering 
here, there is no stress associated with the strain PT.
 Let us now assume that the same rod AB of length L is placed 
between two fixed supports at a distance L from each other (Fig. 
9.29a). Again, there is neither stress nor strain in this initial condi-
tion. If we raise the temperature by ¢T, the rod cannot elongate 
because of the restraints imposed on its ends; the elongation dT of 
the rod is thus zero. Since the rod is homogeneous and of uniform 
cross section, the strain PT at any point is PT 5 dTyL and, thus, also 
zero. However, the supports will exert equal and opposite forces P 
and P ¿ on the rod after the temperature has been raised, to keep it 
from elongating (Fig. 9.29b). It thus follows that a state of stress (with 
no corresponding strain) is created in the rod.
 As we prepare to determine the stress s created by the tempera-
ture change ¢T, we observe that the problem we have to solve is stati-
cally indeterminate. Therefore, we should first compute the magnitude P 

A

L

L

B

B

(b)

A

(a)

T�

Fig. 9.28
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369

of the reactions at the supports from the condition that the elongation 
of the rod is zero. Using the superposition method described in Sec. 
9.8, we detach the rod from its support B (Fig. 9.30a) and let it elongate 
freely as it undergoes the temperature change ¢T (Fig. 9.30b). Accord-
ing to formula (9.20), the corresponding elongation is

dT 5 a 1¢T 2L
Applying now to end B the force P representing the redundant reac-
tion, and recalling formula (9.6), we obtain a second deformation 
(Fig. 9.30c)

dP 5
PL
AE

Expressing that the total deformation d must be zero, we have

d 5 dT 1 dP 5 a 1¢T 2L 1
PL
AE

5 0

from which we conclude that

P 5 2AEa 1¢T 2
and that the stress in the rod due to the temperature change ¢T is

 
s 5

P
A

5 2Ea 1¢T 2
  

(9.22)

 It should be kept in mind that the result we have obtained 
here and our earlier remark regarding the absence of any strain in 
the rod apply only in the case of a homogeneous rod of uniform 
cross section. Any other problem involving a restrained structure 
undergoing a change in temperature must be analyzed on its own 
merits. However, the same general approach can be used, i.e., we 
can consider separately the deformation due to the temperature 
change and the deformation due to the redundant reaction and 
superpose the solutions obtained.

L

(b)

(c)

L

A

A B

B

P

(a)
T�

A B

P�

Fig. 9.30

9.9 Problems Involving Temperature Changes
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370  Stress and Strain—Axial Loading EXAMPLE 9.6 Determine the values of the stress in portions AC and CB 
of the steel bar shown (Fig. 9.31) when the temperature of the bar is 250°F, 
knowing that a close fit exists at both of the rigid supports when the tempera-
ture is 175°F. Use the values E 5 29 3 106 psi and a 5 6.5 3 106/°F 
for steel.

(b)

(c)

RB

(a)
T�

R�

C
A

B

C

L1 L2

A
B

C

1 2

1 2

A
B

Fig. 9.32

C
A

A � 0.6 in2 A � 1.2 in2

12 in.12 in.

B

Fig. 9.31

 We first determine the reactions at the supports. Since the problem 
is statically indeterminate, we detach the bar from its support at B and let 
it undergo the temperature change

¢T 5 1250°F 2 2 175°F 2 5 2125°F

The corresponding deformation (Fig. 9.32b) is

 dT 5 a 1¢T 2L 5 16.5 3 1026/°F 2 12125°F 2 124 in.2
 5 219.50 3 1023 in.

Applying now the unknown force RB at end B (Fig. 9.32c), we use Eq. (9.7) 
to express the corresponding deformation dR. Substituting

L1 5 L2 5 12 in.
A1 5 0.6 in2    A2 5 1.2 in2

P1 5 P2 5 RB    E 5 29 3 106 psi

into Eq. (9.7), we write

 dR 5
P1L1

A1E
1

P2L2

A2E

 5
RB

29 3 106 psi
 a 12 in.

0.6 in2 1
12 in.
1.2 in2b

 5 11.0345 3 1026 in./lb 2RB
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371Expressing that the total deformation of the bar must be zero as a result of 
the imposed constraints, we write

 d 5 dT 1 dR 5 0
 5 219.50 3 1023 in. 1 11.0345 3 1026 in./lb 2RB 5 0

from which we obtain

RB 5 18.85 3 103 lb 5 18.85 kips

 The reaction at A is equal and opposite.
 Noting that the forces in the two portions of the bar are P1 5 P2 5 18.85 
kips, we obtain the following values of the stress in portions AC and CB of 
the bar:

 s1 5
P1

A1
5

18.85 kips

0.6 in2 5 131.42 ksi

s2 5
P2

A2
5

18.85 kips

1.2 in2 5 115.71 ksi

 We cannot emphasize too strongly the fact that, while the total defor-
mation of the bar must be zero, the deformations of the portions AC and 
CB are not zero. A solution of the problem based on the assumption that 
these deformations are zero would therefore be wrong. Neither can the 
values of the strain in AC or CB be assumed equal to zero. To amplify this 
point, let us determine the strain PAC in portion AC of the bar. The strain 
PAC can be divided into two component parts; one is the thermal strain PT 
produced in the unrestrained bar by the temperature change ¢T (Fig. 
9.32b). From Eq. (9.21) we write

 PT 5 a ¢T 5 16.5 3 1026/°F 2 12125°F 2
 5 2812.5 3 1026 in./in.

The other component of PAC is associated with the stress s1 due to the force 
RB applied to the bar (Fig. 9.32c). From Hooke’s law, we express this com-
ponent of the strain as

s1

E
5

131.42 3 103 psi

29 3 106 psi
5 11083.4 3 1026 in./in.

Adding the two components of the strain in AC, we obtain

 PAC 5 PT 1
s1

E
5 2812.5 3 1026 1 1083.4 3 1026

 5 1271 3 1026 in./in.

A similar computation yields the strain in portion CB of the bar:

 PCB 5 PT 1
s2

E
5 2812.5 3 1026 1 541.7 3 1026

 5 2271 3 1026 in./in.

 The deformations dAC and dCB of the two portions of the bar are 
expressed respectively as

 dAC 5 PAC 1AC 2 5 11271 3 10262 112 in.2
 5 13.25 3 1023 in.

 dCB 5 PCB 1CB 2 5 12271 3 10262 112 in.2
 5 23.25 3 1023 in.

We thus check that, while the sum d 5 dAC 1 dCB of the two deformations 
is zero, neither of the deformations is zero. ◾

9.9 Problems Involving Temperature Changes
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372

SAMPLE PROBLEM 9.3

The 1
2-in.-diameter rod CE and the 3

4-in.-diameter rod DF are attached to 
the rigid bar ABCD as shown. Knowing that the rods are made of aluminum 
and using E 5 10.6 3 106 psi, determine (a) the force in each rod caused 
by the loading shown, (b) the corresponding deflection of point A.

SOLUTION

Statics. Considering the free body of bar ABCD, we note that the reaction 
at B and the forces exerted by the rods are indeterminate. However, using 
statics, we may write

1 l o MB 5 0:  110 kips2 118 in.2 2 FCE 112 in.2 2 FDF 120 in.2 5 0
 12FCE 1 20FDF 5 180 (1)

Geometry. After application of the 10-kip load, the position of the bar is 
A ¿BC ¿D ¿. From the similar triangles BAA ¿, BCC ¿, and BDD ¿ we have

 
dC

12 in.
5
dD

20 in.
    dC 5 0.6dD 

(2)

 
dA

18 in.
5
dD

20 in.
    dA 5 0.9dD 

(3)

Deformations. Using Eq. (9.6), we have

dC 5
FCELCE

ACEE
    dD 5

FDFLDF

ADFE

Substituting for dC and dD into (2), we write

dC 5 0.6dD    FCELCE

ACEE
5 0.6 

FDFLDF

ADFE

FCE 5 0.6 
LDF

LCE
 
ACE

ADF
 FDF 5 0.6 a30 in.

24 in.
b c

1
4 p 112 in.22
1
4 p 134 in.22 d  FDF  FCE 5 0.333FDF

Force in Each Rod. Substituting for FCE into (1) and recalling that all 
forces have been expressed in kips, we have

 12 10.333FDF2 1 20FDF 5 180 FDF 5 7.50 kips ◀

 FCE 5 0.333FDF 5 0.333 17.50 kips2 FCE 5 2.50 kips ◀

Deflections. The deflection of point D is

dD 5
FDFLDF

ADFE
5
17.50 3 103 lb 2  130 in.2

1
4 p 134 in.22110.6 3 106 psi2    dD 5 48.0 3 1023 in.

Using (3), we write

 dA 5 0.9dD 5 0.9 148.0 3 1023 in.2 dA 5 43.2 3 1023 in. ◀

30 in.
24 in.

C�
D�

C D

E

F

in.1
2

in.3
4

FCE FDF

18 in.
12 in. 8 in.

FCE

By

Bx

FDF10 kips

B
C DA

18 in.
12 in.

30 in.
24 in.

8 in.

10 kips

B

E

F

C DA

18 in.
12 in. 8 in.

B
C' D'

C D
A

A' A� C�
D�
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SAMPLE PROBLEM 9.4

The rigid bar CDE is attached to a pin support at E and rests on the 30-mm-
diameter brass cylinder BD. A 22-mm-diameter steel rod AC passes through 
a hole in the bar and is secured by a nut which is snugly fitted when the 
temperature of the entire assembly is 20°C. The temperature of the brass 
cylinder is then raised to 50°C while the steel rod remains at 20°C.  Assuming 
that no stresses were present before the temperature change, determine the 
stress in the cylinder.

 Rod AC: Steel Cylinder BD: Brass
  E 5 200 GPa E 5 105 GPa
 a 5 11.7 3 1026/°C a 5 20.9 3 1026/°C

SOLUTION

Statics. Considering the free body of the entire assembly, we write

1l o ME 5 0:  RA 10.75 m 2 2 RB 10.3 m 2 5 0   RA 5 0.4RB (1)

Deformations. We use the method of superposition, considering RB as 
redundant. With the support at B removed, the temperature rise of the cylinder 
causes point B to move down through dT. The reaction RB must cause a deflec-
tion d1 equal to dT so that the final deflection of B will be zero (Fig. 3).

Deflection dT. Because of a temperature rise of 50° 2 20° 5 30°C, the 
length of the brass cylinder increases by dT.
 dT 5 L 1¢T 2a 5 10.3 m 2  130°C 2  120.9 3 1026/°C 2 5 188.1 3 1026 m w

C

A

B0.9 m

0.3 m

0.45 m 0.3 m

D

E

1 2

�
0.3 0.4   C0.75

3

C

C C

D
DD

E E

A AA

B
B B

RB

RA  

�T

�C �C

�D �� �C

�1

C

A

B

0.3 m0.45 m

D E

RA

RB

Ey

Ex

Deflection d1. We note that dD 5 0.4 dC and d1 5 dD 1 dByD.

 dC 5
RAL
AE

5
RA 10.9 m 2

1
4 p 10.022 m 221200 GPa2 5 11.84 3 1029RA x

 dD 5 0.40dC 5 0.4 111.84 3 1029RA 2 5 4.74 3 1029RAx

  dByD 5
RBL
AE

5
RB 10.3 m 2

1
4 p 10.03 m 221105 GPa2 5 4.04 3 1029RB x

We recall from (1) that RA 5 0.4RB and write

d1 5 dD 1 dByD 5 34.74 10.4RB 2 1 4.04RB 41029 5 5.94 3 1029RB x

But dT 5 d1: 188.1 3 1026 m 5 5.94 3 1029 RB RB 5 31.7 kN

Stress in Cylinder: sB 5
RB

A
5

31.7 kN
1
4p 10.03m 22  sB 5 44.8 MPa ◀
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PROBLEMS

374

9.25 An axial force of 60 kN is applied to the assembly shown by means 
of rigid end plates. Determine (a) the normal stress in the brass 
shell, (b) the corresponding deformation of the assembly.

250 mm

5 mm5 mm

5 mm5 mm
20 mm20 mm

Steel core
E � 200 GPa

Brass shell
E � 105 GPa

Fig. P9.25 and P9.26

9.26 The length of the assembly decreases by 0.15 mm when an axial 
force is applied by means of rigid end plates. Determine (a) the 
magnitude of the applied force, (b) the corresponding stress in the 
steel core.

9.27 The 4.5-ft concrete post is reinforced with six steel bars, each 
with a 11

8-in. diameter. Knowing that Es 5 29 3 106 psi and Ec 5 
4.2 3 106 psi, determine the normal stresses in the steel and in 
the concrete when a 350-kip axial centric force P is applied to 
the post.

4    ft

18 in.

1
2

P

Fig. P9.27
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375Problems 9.28 For the concrete post of Prob. 9.27, determine the maximum cen-
tric force that can be applied if the allowable normal stress is 20 ksi 
in the steel and 2.4 ksi in the concrete.

 9.29 Three steel rods (E 5 29 3 106 psi) support an 8.5-kip load P. 
Each of the rods AB and CD has a 0.32-in2 cross-sectional area 
and rod EF has a 1-in2 cross-sectional area. Neglecting the defor-
mation of rod BED, determine (a) the change in length of rod EF, 
(b) the stress in each rod.

 9.30 Two cylindrical rods, one of steel and the other of brass, are joined 
at C and restrained by rigid supports at A and E. For the loading 
shown and knowing that Es 5 200 GPa and Eb 5 105 GPa, deter-
mine (a) the reactions at A and E, (b) the deflection of point C.

CA

DB

20 in.

16 in.
E

F

P

Fig. P9.29

180

40-mm diam. 30-mm diam.

120
100

Dimensions in mm

100

A C D E

60 kN 40 kN

BrassSteel B

Fig. P9.30

 9.31 Solve Prob. 9.30 assuming that rod AC is made of brass and rod 
CE is made of steel.

 9.32 Two cylindrical rods, CD made of steel (E 5 29 3 106 psi) and 
AC made of aluminum (E 5 10.4 3 106 psi), are joined at C and 
restrained by rigid supports at A and D. Determine (a) the reac-
tions at A and D, (b) the deflection of point C.

 9.33 Three wires are used to suspend the plate shown. Aluminum wires 
of 1

8-in. diameter are used at A and B while a steel wire of 1
12-in. 

diameter is used at C. Knowing that the allowable stress for alu-
minum (E 5 10.4 3 106 psi) is 14 ksi and that the allowable stress 
for steel (E 5 29 3 106 psi) is 18 ksi, determine the maximum load 
P that can be applied.

1   -in. diameter1
8 1   -in. diameter5

8

C DA

B

18 kips 14 kips 

8 in. 10 in. 10 in.

Fig. P9.32

A

B

P

C
L

L

Fig. P9.33
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376 Stress and Strain—Axial Loading  9.34 The rigid bar AD is supported by two steel wires of 1
16-in. diameter 

(E 5 29 3 106 psi) and a pin and bracket at D. Knowing that the 
wires were initially taut, determine (a) the additional tension in 
each wire when a 220-lb load P is applied at D, (b) the correspond-
ing deflection of point D.

 9.35 The rigid rod ABC is suspended from three wires of the same 
material. The cross-sectional area of the wire at B is equal to half 
of the cross-sectional area of the wires at A and C. Determine the 
tension in each wire caused by the load P.

 9.36 The rigid bar ABCD is suspended from four identical wires. Deter-
mine the tension in each wire caused by the load P.

 9.37 The brass shell (ab 5 20.9 3 10–6/8C) is fully bonded to the steel 
core (as 5 11.7 3 10–6/8C). Determine the largest allowable 
increase in temperature if the stress in the steel core is not to 
exceed 55 MPa.

 9.38 The assembly shown consists of an aluminum shell (Ea 5 70 GPa, 
aa 5 23.6 3 10–6/8C) fully bonded to a steel core (Es 5 200 GPa, 
as 5 11.7 3 10–6/8C) and is unstressed at a temperature of 208C. 
Considering only axial deformations, determine the stress in the 
aluminum shell when the temperature reaches 1808C.

P

A

L

L L

B
C

D

3
4

Fig. P9.35

P

A

L L

B C D

L

Fig. P9.36
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Steel core
E � 200 GPa
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E � 105 GPa

Fig. P9.37

200 mm

Aluminum shell

50 mm
Steel
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20 mm

Fig. P9.38
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377Problems 9.39 A 4-ft concrete post is reinforced by four steel bars, each of 3
4-in. 

diameter. Knowing that Es 5 29 3 106 psi, as 5 6.5 3 10–6/8F and 
Ec 5 3.6 3 106 psi and ac 5 5.5 3 10–6/8F, determine the nor-
mal stresses induced in the steel and in the concrete by a tempera-
ture rise of 808F.

 9.40 The steel rails for a railroad track (Es 5 29 3 106 psi, as 5 6.5 3 
10–6/8F) were laid out at a temperature of 308F. Determine the 
normal stress in the rails when the temperature reaches 1258F 
assuming that the rails (a) are welded to form a continuous track, 
(b) are 39 ft long with 1

4-in. gaps between them.

 9.41 A rod consisting of two cylindrical portions AB and BC is restrained 
at both ends. Portion AB is made of brass (Eb 5 105 GPa, ab 5 
20.9 3 10–6/8C) and portion BC is made of aluminum (Ea 5 72 GPa, 
aa 5 23.9 3 10–6/8C). Knowing that the rod is initially unstressed, 
determine (a) the normal stresses induced in portions AB and BC 
by a temperature rise of 428C, (b) the corresponding deflection of 
point B.

 9.42 A rod consisting of two cylindrical portions AB and BC is restrained 
at both ends. Portion AB is made of steel (Es 5 29 3 106 psi, as 5 
6.5 3 10–6/8F) and portion BC is made of brass (Eb 5 15 3 
106 psi, ab 5 10.4 3 10–6/8F). Knowing that the rod is initially 
unstressed, determine (a) the normal stresses induced in portions 
AB and BC by a temperature rise of 658F, (b) the corresponding 
deflection of point B.

 9.43 For the rod of Prob. 9.42, determine the maximum allowable tem-
perature change if the stress in the steel portion AB is not to 
exceed 18 ksi and if the stress in the brass portion BC is not to 
exceed 7 ksi.

 9.44 Determine (a) the compressive force in the bars shown after a 
temperature rise of 968C, (b) the corresponding change in length 
of the bronze bar.

 9.45 Knowing that a 0.5-mm gap exists when the temperature is 208C, 
determine (a) the temperature at which the normal stress in the 
aluminum bar will be equal to –90 MPa, (b) the corresponding 
exact length of the aluminum bar.

4 ft

8 in.
8 in.

Fig. P9.39

B

C

1.3 m

1.1 m 60-mm diameter

A

40-mm diameter

Fig. P9.41

B

C

15 in.

12 in.
1 -in. diameter

A

1
4

2 -in. diameter1
4

Fig. P9.42

Bronze
 A � 1500 mm2

 E � 105 GPa
     � 21.6 � 10–6/�C

0.5 mm
0.35 m 0.45 m

	

Aluminum
 A � 1800 mm2

 E � 73 GPa
     � 23.2 � 10–6/�C	

Fig. P9.44 and P9.45
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378 Stress and Strain—Axial Loading  9.46 At room temperature (708F) a 0.02-in. gap exists between the ends 
of the rods shown. At a later time when the temperature has 
reached 3208F, determine (a) the normal stress in the aluminum 
rod, (b) the change in length of the aluminum rod.

 9.47 A brass link (Eb 5 15 3 106 psi, ab 5 10.4 3 10–6/8F) and a steel 
rod (Es 5 29 3 106 psi, as 5 6.5 3 1026/8F) have the dimensions 
shown at a temperature of 658F. The steel rod is cooled until it fits 
freely into the link. The temperature of the whole assembly is then 
raised to 1008F. Determine (a) the final normal stress in the steel 
rod, (b) the final length of the steel rod.

 9.48 Two steel bars (Es 5 200 GPa and as 5 11.7 3 10–6/8C) are used 
to reinforce a brass bar (Eb 5 105 GPa, ab 5 20.9 3 10–6/8C) that 
is subjected to a load P 5 25 kN. When the steel bars were fabri-
cated, the distance between the centers of the holes that were to 
fit on the pins was made 0.5 mm smaller than the 2 m needed. 
The steel bars were then placed in an oven to increase their length 
so that they would just fit on the pins. Following fabrication, the 
temperature in the steel bars dropped back to room temperature. 
Determine (a) the increase in temperature that was required to fit 
the steel bars on the pins, (b) the stress in the brass bar after the 
load is applied to it.

Aluminum
 A � 2.8 in2

 E � 10.4 � 106 psi
     � 13.3 � 10–6/�F

A B

12 in. 10 in.

0.02 in.

	

Stainless steel
 A � 1.2 in2

 E � 28.0 � 106 psi
     � 9.6 � 10–6/�C	

Fig. P9.46
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A

Fig. P9.47
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P

Fig. P9.48
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3799.10 POISSON’S RATIO
We saw in the earlier part of this chapter that, when a homogeneous 
slender bar is axially loaded, the resulting stress and strain satisfy 
Hooke’s law as long as the elastic limit of the material is not exceeded. 
Assuming that the load P is directed along the x axis (Fig. 9.33a), 
we have sx 5 PyA, where A is the cross-sectional area of the bar, 
and, from Hooke’s law,

 Px 5 sxyE (9.23)

where E is the modulus of elasticity of the material.
 We also note that the normal stresses on faces respectively 
perpendicular to the y and z axes are zero: sy 5 sz 5 0 (Fig. 9.33b). 
It would be tempting to conclude that the corresponding strains Py 
and Pz are also zero. This, however, is not the case. In all engineer-
ing materials, the elongation produced by an axial tensile force P in 
the direction of the force is accompanied by a contraction in any 
transverse direction (Fig. 9.34). In this section and the following 
sections (Secs. 9.11 through 9.13), all materials considered will be 
assumed to be both homogeneous and isotropic, i.e., their mechani-
cal properties will be assumed independent of both position and 
direction. It follows that the strain must have the same value for any 
transverse direction. Therefore, for the loading shown in Fig. 9.33 
we must have Py 5 Pz. This common value is referred to as the 
 lateral strain. An important constant for a given material is its Pois-
son’s ratio, named after the French mathematician Siméon Denis 
Poisson (1781-–-1840) and denoted by the Greek letter n (nu). It is 
defined as

 
 n 5 2

lateral strain
axial strain

 (9.24)

or

 
 n 5 2

Py

Px
5 2

Pz

Px
 (9.25)

for the loading condition represented in Fig. 9.33. Note the use 
of a minus sign in the above equations to obtain a positive value 
for v, the axial and lateral strains having opposite signs for all 
engineering materials.† Solving Eq. (9.25) for Py and Pz, and recall-
ing (9.23), we write the following relations, which fully describe 
the condition of strain under an axial load applied in a direction 
parallel to the x axis:

 
Px 5

sx

E
      Py 5 Pz 5 2

nsx

E
 (9.26)

†However, some experimental materials, such as polymer foams, expand laterally when 
stretched. Since the axial and lateral strains have then the same sign, the Poisson’s ratio 
of these materials is negative. (See Roderic Lakes, “Foam Structures with a Negative 
Poisson’s Ratio,” Science, 27 February 1987, Volume 235, pp. 1038–1040.)

z

y

x

x

(a)

(b)

P
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z 0� �

P

A

Fig. 9.33

P

P'

Fig. 9.34

9.10 Poisson’s Ratio
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380  Stress and Strain—Axial Loading EXAMPLE 9.7 A 500-mm-long, 16-mm-diameter rod made of a homog-
enous, isotropic material is observed to increase in length by 300 mm, 
and to decrease in diameter by 2.4 mm when subjected to an axial 12-kN 
load. Determine the modulus of elasticity and Poisson’s ratio of the 
material.
 The cross-sectional area of the rod is

A 5 pr2 5 p 18 3 1023 m 22 5 201 3 1026 m2

Choosing the x axis along the axis of the rod (Fig. 9.35), we write

 sx 5
P
A

5
12 3 103 N

201 3 1026  m2 5 59.7 MPa

 Px 5
dx

L
5

300 mm
500 mm

5 600 3 1026

 Py 5
dy

d
5

22.4 mm
16 mm

5 2150 3 1026

From Hooke’s law, sx 5 EPx, we obtain

E 5
sx

Px
5

59.7 MPa
600 3 1026 5 99.5 GPa

and, from Eq. (9.25),

v 5 2
Py

Px
5 2

2150 3 1026

600 3 1026 5 0.25 ◾

9.11  MULTIAXIAL LOADING. GENERALIZED 
HOOKE’S LAW

All the examples considered so far in this chapter have dealt with 
slender members subjected to axial loads, i.e., to forces directed 
along a single axis. Choosing this axis as the x axis, and denoting by 
P the internal force at a given location, the corresponding stress 
components were found to be sx 5 PyA, sy 5 0, and sz 5 0.
 Let us now consider structural elements subjected to loads 
acting in the directions of the three coordinate axes and producing 
normal stresses sx, sy, and sz which are all different from zero 
(Fig. 9.36). This condition is referred to as a multiaxial loading. 
Note that this is not the general stress condition described in Sec. 8.9, 
since no shearing stresses are included among the stresses shown 
in Fig. 9.36.
 Consider an element of an isotropic material in the shape of a 
cube (Fig. 9.37a). We can assume the side of the cube to be equal 
to unity, since it is always possible to select the side of the cube as 
a unit of length. Under the given multiaxial loading, the element will 
deform into a rectangular parallelepiped of sides equal, respectively, 
to 1 1 Px, 1 1 Py, and 1 1 Pz, where Px, Py, and Pz denote the val-
ues of the normal strain in the directions of the three coordinate 
axes (Fig. 9.37b). You should note that, as a result of the deforma-
tions of the other elements of the material, the element under 

12 kN

L � 500 mm

d � 16 mm

�y � – 2.4    


� x � 300    

z

y

x

m

m

Fig. 9.35

x�

y�

y�

x�
z�

z�

Fig. 9.36
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381consideration could also undergo a translation, but we are concerned 
here only with the actual deformation of the element, and not with 
any possible superimposed rigid-body displacement.
 In order to express the strain components Px, Py, Pz in terms of 
the stress components sx, sy, sz, we will consider separately the 
effect of each stress component and combine the results obtained. 
The approach we propose here will be used repeatedly in this text, 
and is based on the principle of superposition. This principle states 
that the effect of a given combined loading on a structure can be 
obtained by determining separately the effects of the various loads 
and combining the results obtained, provided that the following con-
ditions are satisfied:

 1. Each effect is linearly related to the load that produces it.
 2. The deformation resulting from any given load is small and does 

not affect the conditions of application of the other loads.

 In the case of a multiaxial loading, the first condition will be 
satisfied if the stresses do not exceed the proportional limit of the 
material, and the second condition will also be satisfied if the stress 
on any given face does not cause deformations of the other faces that 
are large enough to affect the computation of the stresses on those 
faces.
 Considering first the effect of the stress component sx, we 
recall from Sec. 9.10 that sx causes a strain equal to sxyE in the 
x direction, and strains equal to 2nsxyE in each of the y and 
z directions. Similarly, the stress component sy, if applied sepa-
rately, will cause a strain syyE in the y direction and strains 
2nsyyE in the other two directions. Finally, the stress component 
sz causes a strain szyE in the z direction and strains 2nszyE in 
the x and y directions. Combining the results obtained, we con-
clude that the components of strain corresponding to the given 
multiaxial loading are

 Px 5 1
sx

E
2
nsy

E
2
nsz

E

 
 Py 5 2

nsx

E
1
sy

E
2
nsz

E
 (9.27)

 Pz 5 2
nsx

E
2
nsy

E
1
sz

E

 The relations (9.27) are referred to as the generalized Hooke’s 
law for the multiaxial loading of a homogeneous isotropic material. 
As we indicated earlier, the results obtained are valid only as long as 
the stresses do not exceed the proportional limit and as long as the 
deformations involved remain small. We also recall that a positive 
value for a stress component signifies tension, and a negative value 
compression. Similarly, a positive value for a strain component indi-
cates expansion in the corresponding direction, and a negative value 
contraction.
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1 � 

x�1 � 

y�1 � 

z

y

x

z

y

x

Fig. 9.37

9.11 Multiaxial Loading. Generalized 
Hooke’s Law
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382  Stress and Strain—Axial Loading EXAMPLE 9.8 The steel block shown (Fig. 9.38) is subjected to a uniform 
pressure on all its faces. Knowing that the change in length of edge AB is 
21.2 3 1023 in., determine (a) the change in length of the other two edges, 
(b) the pressure p applied to the faces of the block. Assume E 5 29 3 106 
psi and n 5 0.29.

(a) Change in Length of Other Edges. Substituting sx 5 sy 5 sz 5 
2p into the relations (9.27), we find that the three strain components have 
the common value

 
Px 5 Py 5 Pz 5 2

p

E
 11 2 2n 2 (9.28)

Since

 Px 5 dxyAB 5 121.2 3 1023 in.2y 14 in.2
 5 2300 3 1026 in./in.

we obtain

Py 5 Pz 5 Px 5 2300 3 1026 in./in.

from which it follows that

dy 5 Py1BC 2 5 12300 3 10262 12 in.2 5 2600 3 1026 in.
dz 5 Pz1BD 2 5 12300 3 10262 13 in.2 5 2900 3 1026 in.

(b) Pressure. Solving Eq. (9.28) for p, we write

p 5 2
EPx

1 2 2n
5 2

129 3 106 psi2 12300 3 10262
1 2 0.58

p 5 20.7 ksi ◾

9.12 SHEARING STRAIN
When we derived in Sec. 9.11 the relations (9.27) between normal 
stresses and normal strains in a homogeneous isotropic material, we 
assumed that no shearing stresses were involved. In the more general 
stress situation represented in Fig. 9.39, shearing stresses txy, tyz, and 
tzx will be present (as well, of course, as the corresponding shearing 
stresses tyx, tzy, and txz). These stresses have no direct effect on the 
normal strains and, as long as all the deformations involved remain 
small, they will not affect the derivation nor the validity of the rela-
tions (9.27). The shearing stresses, however, will tend to deform a 
cubic element of material into an oblique parallelepiped.
 Consider first a cubic element of side one (Fig. 9.40) subjected 
to no other stresses than the shearing stresses txy and tyx applied to 
faces of the element respectively perpendicular to the x and y axes. 
(We recall from Sec. 8.9 that txy 5 tyx.) The element is observed to 
deform into a rhomboid of sides equal to one (Fig. 9.41). Two of the 
angles formed by the four faces under stress are reduced from p2  to  
p
2 2 gxy, while the other two are increased from p2  to p2 1 gxy, The 
small angle gxy (expressed in radians) defines the shearing strain cor-
responding to the x and y directions. When the deformation involves 
a reduction of the angle formed by the two faces oriented respectively 
toward the positive x and y axes (as shown in Fig. 9.41), the shearing 
strain gxy is said to be positive; otherwise, it is said to be negative.

zy�
yz� yx�
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383 We should note that, as a result of the deformations of the 
other elements of the material, the element under consideration can 
also undergo an overall rotation. However, as was the case in our 
study of normal strains, we are concerned here only with the actual 
deformation of the element, and not with any possible superimposed 
rigid-body  displacement.†
 Plotting successive values of txy against the corresponding val-
ues of gxy, we obtain the shearing stress-strain diagram for the 
material under consideration. This can be accomplished by carrying 
out a torsion test, as you will see in Chap. 10. The diagram obtained 
is similar to the normal stress-strain diagram obtained for the same 
material from the tensile test described earlier in this chapter. 
However, the values obtained for the yield strength, ultimate 
strength, etc., of a given material are only about half as large in 
shear as they are in tension. As was the case for normal stresses 
and strains, the initial portion of the shearing stress-strain diagram 
is a straight line. For values of the shearing stress that do not 
exceed the proportional limit in shear, we can therefore write for 
any homogeneous isotropic material,

 txy 5 Ggxy (9.28)

This relation is known as Hooke’s law for shearing stress and strain, 
and the constant G is called the modulus of rigidity or shear modulus 
of the material. Since the strain gxy was defined as an angle in radi-
ans, it is dimensionless, and the modulus G is expressed in the same 
units as txy, that is, in pascals or in psi. The modulus of rigidity G 
of any given material is less than one-half, but more than one-third 
of the modulus of elasticity E of that material.
 Considering now a small element of material subjected to 
shearing stresses tyz and tzy (Fig. 9.44a), we define the shearing 
strain gyz as the change in the angle formed by the faces under stress. 
The shearing strain gzx is defined in a similar way by considering an 
element subjected to shearing stresses tzx and txz (Fig. 9.44b). For 
values of the stress that do not exceed the proportional limit, we can 
write the two additional relations

 tyz 5 Ggyz      tzx 5 Ggzx (9.29)

where the constant G is the same as in Eq. (9.28).

1

1

z

y

x

yx�

xy�

xy

 �2 �

xy

 �2 �

Fig. 9.41

†In defining the strain gxy, some authors arbitrarily assume that the actual deformation 
of the element is accompanied by a rigid-body rotation such that the horizontal faces of 
the element do not rotate. The strain gxy is then represented by the angle through 
which the other two faces have rotated (Fig. 9.42). Others assume a rigid-body rotation 
such that the horizontal faces rotate through 1

2gxy counterclockwise and the vertical faces 
through 1

2gxy clockwise (Fig. 9.43). Since both assumptions are unnecessary and may 
lead to confusion, we prefer in this text to associate the shearing strain gxy with the 
change in the angle formed by the two faces, rather than with the rotation of a given 
face under restrictive conditions.
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9.12 Shearing Strain
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384  Stress and Strain—Axial Loading  For the general stress condition represented in Fig. 9.39, and 
as long as none of the stresses involved exceeds the corresponding 
proportional limit, we can apply the principle of superposition and 
combine the results obtained in this section and in Sec. 9.11. We 
obtain the following group of equations representing the generalized 
Hooke’s law for a homogeneous isotropic material under the most 
general stress condition.

 Px 5 1
sx

E
2
nsy

E
2
nsz

E

 Py 5 2
nsx

E
1
sy

E
2
nsz

E

 
 Pz 5 2

nsx

E
2
nsy

E
1
sz

E

 (9.30)

 gxy 5
txy

G
    gyz 5

tyz

G
    gzx 5

tzx

G

 An examination of Eqs. (9.30) might lead us to believe that 
three distinct constants, E, n, and G, must first be determined exper-
imentally, if we are to predict the deformations caused in a given 
material by an arbitrary combination of stresses. Actually, only two 
of these constants need be determined experimentally for any given 
material. As you will see in the next section, the third constant can 
then be obtained through a very simple computation.

EXAMPLE 9.9 A rectangular block of a material with a modulus of rigidity 
G 5 90 ksi is bonded to two rigid horizontal plates. The lower plate is fixed, 
while the upper plate is subjected to a horizontal force P (Fig. 9.45). Know-
ing that the upper plate moves through 0.04 in. under the action of the 
force, determine (a) the average shearing strain in the material, (b) the force 
P exerted on the upper plate.

(a) Shearing Strain. We select coordinate axes centered at the midpoint 
C of edge AB and directed as shown (Fig. 9.46). According to its defini-
tion, the shearing strain gxy is equal to the angle formed by the vertical 
and the line CF joining the midpoints of edges AB and DE. Noting that 
this is a very small angle and recalling that it should be expressed in radi-
ans, we write

gxy < tan gxy 5
0.04 in.

2 in.
    gxy 5 0.020 rad

(b) Force Exerted on Upper Plate. We first determine the shearing 
stress txy in the material. Using Hooke’s law for shearing stress and strain, 
we have

txy 5 Ggxy 5 190 3 103 psi2 10.020 rad 2 5 1800 psi

The force exerted on the upper plate is thus

P 5 txy A 5 11800 psi2 18 in.2 12.5 in.2 5 36.0 3 103 lb
P 5 36.0 kips ◾

yz�
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x

zy�
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385*9.13  FURTHER DISCUSSION OF DEFORMATIONS 
UNDER AXIAL LOADING. RELATION AMONG 
E, n, AND G

We saw in Sec. 9.10 that a slender bar subjected to an axial tensile 
load P directed along the x axis will elongate in the x direction and 
contract in both of the transverse y and z directions. If Px denotes 
the axial strain, the lateral strain is expressed as Py 5 Pz 5 2nPx, 
where n is Poisson’s ratio. Thus, an element in the shape of a cube 
of side equal to one and oriented as shown in Fig. 9.47a will deform 
into a rectangular parallelepiped of sides 1 1 Px, 1 2 nPx, and 1 2 nPx, 
(Note that only one face of the element is shown in the figure.) On 
the other hand, if the element is oriented at 45° to the axis of the 
load (Fig. 9.47b), the face shown in the figure is observed to deform 
into a rhombus. We conclude that the axial load P causes in this 
element a shearing strain g9 equal to the amount by which each of 
the angles shown in Fig. 9.47b increases or decreases.
 The fact that shearing strains, as well as normal strains, result 
from an axial loading should not come to us as a surprise, since we 
already observed at the end of Sec. 8.9 that an axial load P causes 
normal and shearing stresses of equal magnitude on four of the faces 
of an element oriented at 45° to the axis of the member. This was 
illustrated in Fig. 8.37, which, for convenience, has been repeated 
here. It was also shown in Sec. 8.8 that the shearing stress is maxi-
mum on a plane forming an angle of 45° with the axis of the load. 
It follows from Hooke’s law for shearing stress and strain that the 
shearing strain g9 associated with the element of Fig. 9.47b is also 
maximum: g9 5 gm.
 We will now derive a relation between the maximum shearing 
strain g9 5 gm associated with the element of Fig. 9.47b and the 
normal strain Px in the direction of the load. Let us consider for this 
purpose the prismatic element obtained by intersecting the cubic 
element of Fig. 9.47a by a diagonal plane (Fig. 9.48a and b). Refer-
ring to Fig. 9.47a, we conclude that this new element will deform 
into the element shown in Fig. 9.48c, which has horizontal and 
vertical sides respectively equal to 1 1 Px and 1 2 nPx. But the  angle 
formed by the oblique and horizontal faces of the element of Fig. 9.48b 
is precisely half of one of the right angles of the cubic element con-
sidered in Fig. 9.47b. The angle b into which this angle deforms 
must therefore be equal to half of py2 2 gm. We write

b 5
p

4
2
gm

2

y

x1

1

1 � x�

1 � x��

(a)

P

(b)


 �22 '� ' �
 �
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Fig. 9.47
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386  Stress and Strain—Axial Loading Applying the formula for the tangent of the difference of two angles, 
we obtain

tan b 5

tan 
p

4
2 tan 

gm

2

1 1 tan 
p

4
 tan 
gm

2

5

1 2 tan 
gm

2

1 1 tan 
gm

2

or, since gm/2 is a very small angle,

 

tan b 5

1 2
gm

2

1 1
gm

2

 (9.31)

But, from Fig. 9.48c, we observe that

 
tan b 5

1 2 nPx

1 1 Px
 (9.32)

Equating the right-hand members of (9.31) and (9.32), and solving 
for gm, we write

gm 5
11 1 n2Px

1 1
1 2 n

2
 Px

Since Px V 1, the denominator in the expression obtained can be 
assumed equal to one; we have, therefore,

 gm 5 11 1 n2Px (9.33)

which is the desired relation between the maximum shearing strain 
gm and the axial strain Px.
 To obtain a relation among the constants E, n, and G, we recall 
that, by Hooke’s law, gm 5 tmyG, and that, for an axial loading, 
Px 5 sxyE. Equation (9.33) can therefore be written as

tm

G
5 11 1 n2sx

E

or

 
E
G

5 11 1 n2sx

tm
 (9.34)

We now recall from Fig. 8.37 that sx 5 PyA and tm 5 Py2A, where 
A is the cross-sectional area of the member. It thus follows that 
sxytm 5 2. Substituting this value into (9.34) and dividing both 
members by 2, we obtain the relation

 
E

2G
5 1 1 n (9.35)

which can be used to determine one of the constants E, n, or G from 
the other two. For example, solving Eq. (9.35) for G, we write

 
G 5

E
2 11 1 n2  (9.359)
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387

SAMPLE PROBLEM 9.5

A circle of diameter d 5 9 in. is scribed on an unstressed aluminum plate 
of thickness t 5 3

4 in. Forces acting in the plane of the plate later cause 
normal stresses sx 5 12 ksi and sz 5 20 ksi. For E 5 10 3 106 psi and 
n 5 1

3, determine the change in (a) the length of diameter AB, (b) the length 
of diameter CD, (c) the thickness of the plate.

SOLUTION

Hooke’s Law. We note that sy 5 0. Using Eqs. (9.27), we find the strain 
in each of the coordinate directions.

 Px 5 1
sx

E
2
nsy

E
2
nsz

E

 5
1

10 3 106 psi
  c 112 ksi2 2 0 2

1
3

 120 ksi2 d 5 10.533 3 1023 in./in.

 Py 5 2  

nsx

E
1
sy

E
2
nsz

E

 5
1

10 3 106 psi
  c21

3
 112 ksi2 1 0 2

1
3

  120 ksi2 d 5 21.067 3 1023 in./in.

 Pz 5 2  

nsx

E
2
nsy

E
1
sz

E

 5
1

10 3 106 psi
  c21

3
  112 ksi2 2 0 1 120 ksi2 d 5 11.600 3 1023 in./in.

a. Diameter AB. The change in length is dByA 5 Pxd.

dByA 5 Pxd 5 110.533 3 1023 in./in.2 19 in.2    
dByA 5 14.8 3 1023 in. ◀

b. Diameter CD.

dCyD 5 Pzd 5 111.600 3 1023 in./in.2 19 in.2 
dCyD 5 114.4 3 1023 in. ◀

c. Thickness. Recalling that t 5 3
4 in., we have

dt 5 Pyt 5 121.067 3 1023 in./in.2 134 in.2
dt 5 20.800 3 1023 in. ◀

x�
z�

15 in.
15 in.

z

y

x

A
B

C

D
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PROBLEMS

388

9.49 In a standard tensile test a steel rod of 7
8-in. diameter is subjected 

to a tension force of 17 kips. Knowing that n 5 0.3 and E 5
29 3 106 psi, determine (a) the elongation of the rod in an 8-in. 
gage length, (b) the change in diameter of the rod.

9.50 A standard tension test is used to determine the properties of an 
experimental plastic. The test specimen is a 15-mm-diameter rod, 
and it is subjected to a 3.5-kN tensile force. Knowing that an elon-
gation of 11 mm and a decrease in diameter of 0.62 mm are 
observed in a 120-mm gage length, determine the modulus of elas-
ticity, the modulus of rigidity, and Poisson’s ratio of the material.

9.51 A 2-m length of an aluminum pipe of 240-mm outer diameter and 
10-mm wall thickness is used as a short column and carries a cen-
tric axial load of 640 kN. Knowing that E 5 73 GPa and n 5 0.33, 
determine (a) the change in length of the pipe, (b) the change in 
its outer diameter, (c) the change in its wall thickness.

9.52 The change in diameter of a large steel bolt is carefully measured 
as the nut is tightened. Knowing that E 5 200 GPa and n 5 0.29, 
determine the internal force in the bolt if the diameter is observed 
to decrease by 13 mm.

8 in.

17 kips 17 kips
-in. diameter7

8

Fig. P9.49

15-mm diameter
120 mm

P'

P

Fig. P9.50

640 kN

2 m

Fig. P9.51

60 mm

Fig. P9.52
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389Problems 9.53 An aluminum plate (E 5 74 GPa, n 5 0.33) is subjected to a cen-
tric axial load that causes a normal stress s. Knowing that, before 
loading, a line of slope 2:1 is scribed on the plate, determine the 
slope of the line when s 5 125 MPa.

 9.54 A 600-lb tensile load is applied to a test coupon made from 1
16-in. 

flat steel plate (E 5 29 3 106 psi, n 5 0.30). Determine the result-
ing change (a) in the 2-in. gage length, (b) in the width of portion 
AB of the test coupon, (c) in the thickness of portion AB, (d) in 
the cross-sectional area of portion AB.

 9.55 The aluminum rod AD is fitted with a jacket that is used to apply 
a hydrostatic pressure of 6000 psi to the 12-in. portion BC of the 
rod. Knowing that E 5 10.1 3 106 psi and n 5 0.36, determine 
(a) the change in the total length AD, (b) the change in diameter 
at the middle of the rod.

 9.56 For the rod of Prob. 9.55, determine the forces that should be 
applied to the ends A and D of the rod (a) if the axial strain in 
portion BC of the rod is to remain zero as the hydrostatic pressure 
is applied, (b) if the total length AD of the rod is to remain 
unchanged.

 9.57 A 20-mm square has been scribed on the side of a large steel pres-
sure vessel. After pressurization, the biaxial stress condition of the 
square is as shown. Using the data available in App. A, for struc-
tural steel, determine the percent change in the slope of diagonal 
DB due to the pressurization of the vessel.

600 lb600 lb

2 in.

A B

in.1
2

Fig. P9.54

�

1

2 �

Fig. P9.53

12 in. 20 in.

C

D
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B
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Fig. P9.55
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x � 160 MPa�20 mm

A B
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390 Stress and Strain—Axial Loading  9.58 A fabric used in air-inflated structures is subjected to a biaxial 
loading that results in normal stresses sx 5 120 MPa and sz 5 
160 MPa. Knowing that the properties of the fabric can be approxi-
mated as E 5 87 GPa and n 5 0.34, determine the change in 
length of (a) side AB, (b) side BC, (c) diagonal AC.

 9.59 In many situations it is known that the normal stress in a given 
direction is zero. For example, sz 5 0 in the case of the thin plate 
shown. For this case, which is known as plane stress, show that if 
the strains Px and Py have been determined experimentally, we can 
express sx, sy and Pz as follows:

 sx 5 E  

Px 1 nPy

1 2 n2

 sy 5 E  

Py 1 nPx

1 2 n2

 Pz 5 2
n

1 2 n
 1Px 1 Py2

 9.60 In many situations physical constraints prevent strain from occur-
ring in a given direction. For example, Pz 5 0 in the case shown, 
where longitudinal movement of the long prism is prevented at 
every point. Plane sections perpendicular to the longitudinal axis 
remain plane and the same distance apart. Show that for this situ-
ation, which is known as plane strain, we can express sz, Px, and 
Py as follows:

 sz 5 n 1sx 1 sy2
 Px 5

1
E

 3 11 2 n22sx 2 n 11 1 n 2sy 4
 Py 5

1
E

 3 11 2 n22sy 2 n 11 1 n 2sx 4
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 9.61 The plastic block shown is bonded to a rigid support and to a vertical 
plate to which a 240-kN load P is applied. Knowing that for the 
plastic used G 5 1050 MPa, determine the deflection of the plate.

 9.62 A vibration isolation unit consists of two blocks of hard rubber 
bonded to a plate AB and to rigid supports as shown. Knowing that 
a force of magnitude P 5 6 kips causes a deflection d 5 1

16 in. of 
plate AB, determine the modulus of rigidity of the rubber used.

 9.63 A vibration isolation unit consists of two blocks of hard rubber with 
a modulus of rigidity G 5 2.75 ksi bonded to a plate AB and to 
rigid supports as shown. Denoting by P the magnitude of the force 
applied to the plate and by d the corresponding deflection, deter-
mine the effective spring constant, k = P/d, of the system.

 9.64 An elastomeric bearing (G 5 0.9 MPa) is used to support a bridge 
girder as shown to provide flexibility during earthquakes. The 
beam must not displace more than 10 mm when a 22-kN lateral 
load is applied as shown. Knowing that the maximum allowable 
shearing stress is 420 kPa, determine (a) the smallest allowable 
dimension b, (b) the smallest required thickness a.

6 in.
4 in.

1.25 in.

B

A

1.25 in.

P

Fig. P9.62 and P9.63

120

80

50

Dimensions in mm

P

Fig. P9.61

200 mm

b

a

P

Fig. P9.64

9.14  STRESS AND STRAIN DISTRIBUTION UNDER 
AXIAL LOADING. SAINT-VENANT’S PRINCIPLE

We have assumed so far that, in an axially loaded member, the nor-
mal stresses are uniformly distributed in any section perpendicular 
to the axis of the member. As we saw in Sec. 8.3, such an assump-
tion may be quite in error in the immediate vicinity of the points of 
application of the loads. However, the determination of the actual 
stresses in a given section of the member requires the solution of a 
statically indeterminate problem.
 In Sec. 9.8, you saw that statically indeterminate problems 
involving the determination of forces can be solved by considering the 
deformations caused by these forces. It is thus reasonable to conclude 
that the determination of the stresses in a member requires the analysis 

3919.14 Stress and Strain Distribution under Axial 
Loading. Saint-Venant’s Principle
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392  Stress and Strain—Axial Loading of the strains produced by the stresses in the member. This is essen-
tially the approach found in advanced textbooks, where the mathe-
matical theory of elasticity is used to determine the distribution of 
stresses corresponding to various modes of application of the loads at 
the ends of the member. Given the more limited mathematical means 
at our disposal, our analysis of stresses will be restricted to the par-
ticular case when two rigid plates are used to transmit the loads to a 
member made of a homogeneous isotropic material (Fig. 9.49).
 If the loads are applied at the center of each plate,† the plates 
will move toward each other without rotating, causing the member 
to get shorter, while increasing in width and thickness. It is reason-
able to assume that the member will remain straight, that plane 
sections will remain plane, and that all elements of the member will 
deform in the same way, since such an assumption is clearly compat-
ible with the given end conditions. This is illustrated in Fig. 9.50, 
which shows a rubber model before and after loading.‡ Now, if all 
elements deform in the same way, the distribution of strains through-
out the member must be uniform. In other words, the axial strain Py 
and the lateral strain Px 5 2nPy are constant. But, if the stresses do 
not exceed the proportional limit, Hooke’s law applies and we may 
write sy 5 EPy, from which it follows that the normal stress sy is 
also constant. Thus, the distribution of stresses is uniform throughout 
the member and, at any point,

sy 5 1sy2ave 5
P
A

 On the other hand, if the loads are concentrated, as illustrated 
in Fig. 9.51, the elements in the immediate vicinity of the points of 
application of the loads are subjected to very large stresses, while 
other elements near the ends of the member are unaffected by the 
loading. This may be verified by observing that strong deformations, 
and thus large strains and large stresses, occur near the points of 
application of the loads, while no deformation takes place at the 
corners. As we consider elements farther and farther from the ends, 
however, we note a progressive equalization of the deformations 
involved, and thus a more nearly uniform distribution of the strains 
and stresses across a section of the member. This is further illustrated 
in Fig. 9.52, which shows the result of the calculation by advanced 
mathematical methods of the distribution of stresses across various 
sections of a thin rectangular plate subjected to concentrated loads. 
We note that at a distance b from either end, where b is the width 
of the plate, the stress distribution is nearly uniform across the sec-
tion, and the value of the stress sy at any point of that section can 
be assumed equal to the average value PyA. Thus, at a distance equal 
to, or greater than, the width of the member, the distribution of 
stresses across a given section is the same, whether the member is 
loaded as shown in Fig. 9.49 or Fig. 9.51. In other words, except in 
the immediate vicinity of the points of application of the loads, the 

†More precisely, the common line of action of the loads should pass through the centroid 
of the cross section (cf. Sec. 8.3).
‡Note that for long, slender members, another configuration is possible, and indeed will 
prevail, if the load is sufficiently large; the member buckles and assumes a curved 
shape. This will be discussed in Chap. 16.
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393

stress distribution may be assumed independent of the actual mode 
of application of the loads. This statement, which applies not only to 
axial loadings, but to practically any type of load, is known as Saint-
Venant’s principle, after the French mathematician and engineer 
Adhémar Barré de Saint-Venant (1797 – 1886).
 While Saint-Venant’s principle makes it possible to replace a 
given loading by a simpler one for the purpose of computing the 
stresses in a structural member, you should keep in mind two impor-
tant points when applying this principle:

 1. The actual loading and the loading used to compute the stresses 
must be statically equivalent.

 2. Stresses cannot be computed in this manner in the immediate 
vicinity of the points of application of the loads. Advanced theo-
retical or experimental methods must be used to determine the 
distribution of stresses in these areas.

 You should also observe that the plates used to obtain a uni-
form stress distribution in the member of Fig. 9.50 must allow the 
member to freely expand laterally. Thus, the plates cannot be rigidly 
attached to the member; you must assume them to be just in contact 
with the member, and smooth enough not to impede the lateral 
expansion of the member. While such end conditions can actually 
be achieved for a member in compression, they cannot be physically 
realized in the case of a member in tension. It does not matter, 
however, whether or not an actual fixture can be realized and used 
to load a member so that the distribution of stresses in the member 
is uniform. The important thing is to imagine a model that will allow 
such a distribution of stresses, and to keep this model in mind so 
that you may later compare it with the actual loading conditions.

9.15 STRESS CONCENTRATIONS
As you saw in the preceding section, the stresses near the points of 
application of concentrated loads can reach values much larger than 
the average value of the stress in the member. When a structural mem-
ber contains a discontinuity, such as a hole or a sudden change in cross 
section, high localized stresses can also occur near the  discontinuity. 

b b
b1

2
b1

4 �min

�ave

�max

P
A�

�min �ave� 0.973

�max �ave� 1.027

�min �ave� 0.668

�max �ave� 1.387

�min �ave� 0.198

�max �ave� 2.575

PPPP

P'

Fig. 9.52

9.15 Stress Concentrations
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394  Stress and Strain—Axial Loading

Figures 9.53 and 9.54 show the distribution of stresses in critical 
sections corresponding to two such situations. Figure 9.53 refers to 
a flat bar with a circular hole and shows the stress distribution in a 
section passing through the center of the hole. Figure 9.54 refers to 
a flat bar consisting of two portions of different widths connected by 
fillets; it shows the stress distribution in the narrowest part of the 
connection, where the highest stresses occur.
 These results were obtained experimentally through the use of a 
photoelastic method. Fortunately for the engineer who has to design a 
given member and cannot afford to carry out such an analysis, the 
results obtained are independent of the size of the member and of the 
material used; they depend only upon the ratios of the geometric 
parameters involved, i.e., upon the ratio ryd in the case of a circular 
hole, and upon the ratios ryd and Dyd in the case of fillets. Further-
more, the designer is more interested in the maximum value of the 
stress in a given section than in the actual distribution of stresses in 
that section, since his main concern is to determine whether the allow-
able stress will be exceeded under a given loading, and not where this 
value will be exceeded. For this reason, one defines the ratio

 
K 5

smax

save
 (9.36)

of the maximum stress over the average stress computed in the criti-
cal (narrowest) section of the discontinuity. This ratio is referred to 
as the stress-concentration factor of the given discontinuity. Stress-
concentration factors can be computed once and for all in terms of the 
ratios of the geometric parameters involved, and the results obtained 
can be  expressed in the form of tables or of graphs, as shown in Fig. 
9.55. To determine the maximum stress occurring near a discontinuity 
in a given member subjected to a given axial load P, the designer needs 
only to compute the average stress save 5 PyA in the critical section 
and multiply the result obtained by the appropriate value of the stress-
concentration factor K. You should note, however, that this procedure 
is valid only as long as smax does not exceed the proportional limit of 
the material, since the values of K plotted in Fig. 9.55 were obtained 
by assuming a linear relation between stress and strain.

PP'

P'

r
D

d1
2

d1
2

�max

�ave

Fig. 9.53 Stress distribution near circular 
hole in flat bar under axial loading.

PP'

P'

�max

�ave

dD

r

Fig. 9.54 Stress distribution near fillets 
in flat bar under axial loading.
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EXAMPLE 9.10 Determine the largest axial load P that can be safely 
supported by a flat steel bar consisting of two portions, both 10 mm thick 
and, respectively, 40 and 60 mm wide, connected by fillets of radius r 5 8 mm. 
Assume an allowable normal stress of 165 MPa.

 We first compute the ratios

D
d

5
60 mm
40 mm

5 1.50     r
d

5
8 mm

40 mm
5 0.20

Using the curve in Fig. 9.55b corresponding to Dyd 5 1.50, we find that 
the value of the stress-concentration factor corresponding to ryd 5 0.20 is

K 5 1.82

Carrying this value into Eq. (9.36) and solving for save, we have

save 5
smax

1.82

But smax cannot exceed the allowable stress sall 5 165 MPa. Substituting 
this value for smax, we find that the average stress in the narrower portion 
(d 5 40 mm) of the bar should not exceed the value

save 5
165 MPa

1.82
5 90.7 MPa

Recalling that save 5 PyA, we have

P 5 Asave 5 140 mm 2 110 mm 2 190.7 MPa2 5 36.3 3 103 N
P 5 36.3 kN ◾

P' P

3.0

3.2

3.4

2.8

2.6

2.4

2.2

2.0

K

1.8

1.6

1.4

1.2

1.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

2r/D

1
2 d

D
1
2 d

r P' P

3.0

3.2

3.4

2.8

2.6

2.4

2.2

2.0

K

1.8

1.6

1.4

1.2

1.0
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.180.16 0.20 0.22 0.24 0.26 0.28 0.30

d

r

D

D/d � 2

1.5

1.3

1.2

1.1

r/d

Fig. 9.55 Stress concentration factors for flat bars under axial loading†

Note that the average stress must be computed across the narrowest
section: save 5 P/td, where t is the thickness of the bar.

(a) Flat bars with holes (b) Flat bars with fillets

†W. D. Pilkey, Peterson’s Stress Concentration Factors, 2nd ed., John Wiley & Sons, New 
York, 1997.
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PROBLEMS

396

 9.65 Two holes have been drilled through a long steel bar that is sub-
jected to a centric axial load as shown. For P 5 6.5 kips, determine 
the maximum value of the stress (a) at A, (b) at B.

 9.66 Knowing that sall 5 16 ksi, determine the maximum allowable 
value of the centric axial load P.

 9.67 Knowing that, for the plate shown, the allowable stress is 125 MPa, 
determine the maximum allowable value of P when (a) r 5 12 mm, 
(b) r 5 18 mm.

 9.68 Knowing that P 5 38 kN, determine the maximum stress when (a) 
r 5 10 mm, (b) r 5 16 mm, (c) r 5 18 mm.

 9.69 (a) Knowing that the allowable stress is 140 MPa, determine the 
maximum allowable magnitude of the centric load P. (b) Determine 
the percent change in the maximum allowable magnitude of P if 
the raised portions are removed at the ends of the specimen.

9.70 A centric axial force is applied to the steel bar shown. Knowing 
that sall is 135 MPa, determine the maximum allowable load P.

9.71 Knowing that the hole has a diameter of 3
8 in., determine (a) the 

radius rf of the fillets for which the same maximum stress occurs 
at the hole A and at the fillets, (b) the corresponding maximum 
allowable load P if the allowable stress is 15 ksi.

 9.72 For P 5 8.5 kips, determine the minimum plate thickness t 
required if the allowable stress is 18 ksi.

1
2 in.

1
2 in.

1
21    in.B

A
3 in.

P

Fig. P9.65 and P9.66

120 mm

15 mm

60 mm r

P

Fig. P9.67 and P9.68

50 mm

75 mm

P

P
t � 15 mm

r � 6 mm

Fig. P9.69

P

90 mm
rf � 10 mm

120 mm

15 mm

18 mm

Fig. P9.70

P

3
8 in.

3
8 in.

3
8 in.

1
22    in.

A
4 in.

rf

Fig. P9.71

1
2rA �      in.

3
8rB �      in.

B

A

1.6 in.

2.2 in.

P

t

Fig. P9.72
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397

REVIEW AND SUMMARY

This chapter was devoted to the introduction of the concept of strain,
to the discussion of the relationship between stress and strain in 
various types of materials, and to the determination of the deforma-
tions of structural components under axial loading.

Considering a rod of length L and uniform cross section and  denot-
ing by d its deformation under an axial load P (Fig. 9.56), we defined 
the normal strain P in the rod as the deformation per unit length
[Sec. 9.2]:

P 5
d

L
  (9.1)

In the case of a rod of variable cross section, the normal strain was 
defined at any given point Q by considering a small element of rod 
at Q. Denoting by Dx the length of the element and by Dd its defor-
mation under the given load, we wrote

P 5 lim
¢xy0

 
¢d
¢x

5
dd
dx

 (9.2)

Plotting the stress s versus the strain P as the load increased, we 
obtained a stress-strain diagram for the material used [Sec. 9.3]. 
From such a diagram, we were able to distinguish between brittle
and ductile materials: A specimen made of a brittle material  rup-
tures without any noticeable prior change in the rate of elongation 
(Fig. 9.58), while a specimen made of a ductile material yields after 
a critical stress sY, called the yield strength, has been reached, i.e., 
the specimen undergoes a large deformation before rupturing, with 
a relatively small increase in the applied load (Fig. 9.57). An example 
of brittle material with different properties in tension and in com-
pression was provided by concrete.

Normal strainNormal strain

Stress-strain diagramStress-strain diagram

B B

C
C

L

A

P

�

(a) (b)

Fig. 9.56

Yield Strain-hardening

Rupture

0.02

(a) Low-carbon steel
 0.0012

0.2 0.25

60

40

20

Necking
�

Y�

(k
si

)
�

U�

B�

Rupture

(b) Aluminum alloy
 0.004

0.2

60

40

20

�

Y�(k
si

)
�

U�

B�

Fig. 9.57

Rupture

�

B�U ��

�

Fig. 9.58
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398  Stress and Strain—Axial Loading We noted in Sec. 9.4 that the initial portion of the stress-strain dia-
gram is a straight line. This means that for small deformations, the 
stress is directly proportional to the strain:

 s 5 EP  (9.3)

This relation is known as Hooke’s law and the coefficient E as the 
modulus of elasticity of the material. The largest stress for which Eq. 
(9.3) applies is the proportional limit of the material.
 Materials considered up to this point were isotropic, i.e., their 
properties were independent of direction. In Sec. 9.4 we also con-
sidered a class of anisotropic materials, i.e., materials whose proper-
ties depend upon direction. They were fiber-reinforced composite 
materials, made of fibers of a strong, stiff material embedded in 
layers of a weaker, softer material (Fig. 9.59). We saw that different 
moduli of elasticity had to be used, depending upon the direction of 
loading.

If the strains caused in a test specimen by the application of a given 
load disappear when the load is removed, the material is said to 
behave elastically, and the largest stress for which this occurs is 
called the elastic limit of the material [Sec. 9.5]. If the elastic limit 
is exceeded, the stress and strain decrease in a linear fashion when 
the load is removed and the strain does not return to zero (Fig. 
9.60), indicating that a permanent set or plastic deformation of the 
material has taken place.

In Sec. 9.6, we discussed the phenomenon of fatigue, which causes 
the failure of structural or machine components after a very large 
number of repeated loadings, even though the stresses remain in 
the elastic range. A standard fatigue test consists in determining 
the number n of successive loading-and-unloading cycles required 
to cause  the failure of a specimen for any given maximum stress 
level s, and plotting the resulting s-n curve. The value of s for 
which failure does not occur, even for an indefinitely large number 
of cycles, is known as the endurance limit of the material used in 
the test.

 Section 9.7 was devoted to the determination of the elastic deforma-
tions of various types of machine and structural components under 
various conditions of axial loading. We saw that if a rod of length L 
and uniform cross section of area A is subjected at its end to a centric 
axial load P (Fig. 9.61), the corresponding deformation is

 
d 5

PL
AE  

(9.6)

If the rod is loaded at several points or consists of several parts of 
various cross sections and possibly of different materials, the defor-
mation d of the rod must be expressed as the sum of the deforma-
tions of its component parts [Example 9.1]:

 
d 5 a

i

PiLi

AiEi 
(9.7)

Elastic limit. Plastic deformationElastic limit. Plastic deformation

Fatigue. Endurance limitFatigue. Endurance limit

Elastic deformation under axial 
loading

Elastic deformation under axial 
loading

Hooke’s law
Modulus of elasticity

Layer of
material

Fibers

y

z
x

Fig. 9.59

C

A D

Rupture

B

�

�

Fig. 9.60

�

L

C
C

A

B B

PFig. 9.61
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399

Section 9.8 was devoted to the solution of statically indeterminate 
problems, i.e., problems in which the reactions and the internal forces 
cannot be determined from statics alone. The equilibrium  equations 
derived from the free-body diagram of the member under consider-
ation were complemented by relations involving deformations and 
obtained from the geometry of the problem. The forces in the rod and 
in the tube of Fig. 9.62, for instance, were determined by observing, 
on the one hand, that their sum is equal to P, and on the other, that 
they cause equal deformations in the rod and in the tube [Example 9.2]. 
Similarly, the reactions at the supports of the bar of Fig. 9.63 could not 
be obtained from the free-body diagram of the bar alone [Example 9.3]; 
but they could be determined by expressing that the total elongation 
of the bar must be equal to zero.

In Sec. 9.9, we considered problems involving temperature changes. 
We first observed that if the temperature of an unrestrained rod AB 
of length L is increased by ¢T, its elongation is

 dT 5 a 1¢T 2  L  (9.20)

where a is the coefficient of thermal expansion of the material. We 
noted that the corresponding strain, called thermal strain, is

 PT 5 a¢T  (9.21)

and that no stress is associated with this strain. However, if the rod 
AB is restrained by fixed supports (Fig. 9.64), stresses develop in the 

Statically indeterminate problems

Problems with temperature changes

P

Tube (A2, E2)

Rod (A1, E1)

End plate 
L

Fig. 9.62

P

L1

L2

RA

RB

(a) (b)

L

A

B

A

B

C C

P

Fig. 9.63

rod as the temperature increases because of the reactions at the 
supports. To determine the magnitude P of the reactions, we detached 
the rod from its support at B (Fig. 9.65) and considered separately 
the deformation dT of the rod as it expands freely because of the 
temperature change and the deformation dP caused by the force P 
required to bring it back to its original length, so that it may be reat-
tached to the support at B. Writing that the total deformation 
d 5 dT 1 dP is equal to zero, we obtained an equation that could be 
solved for P. While the final strain in rod AB is clearly zero, this will 
generally not be the case for rods and bars consisting of elements of 
different cross sections or materials, since the deformations of the 
various elements will usually not be zero [Example 9.6].

Review and Summary

Fig. 9.64

L

A B

Fig. 9.65

L

(b)

(c)

L

A

A B

B

P

(a)
T�

A B

P�
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400  Stress and Strain—Axial Loading

When an axial load P is applied to a homogeneous, slender bar (Fig. 
9.66), it causes a strain, not only along the axis of the bar but in any 
transverse direction as well [Sec. 9.10]. This strain is referred to as 
the lateral strain, and the ratio of the lateral strain over the axial 
strain is called Poisson’s ratio and is denoted by n (Greek letter nu). 
We wrote

 
n 5 2  

lateral strain
axial strain  

(9.24)

 Recalling that the axial strain in the bar is Px 5 sxyE, we 
expressed as follows the condition of strain under an axial loading in 
the x direction:

 
Px 5

sx

E
  Py 5 Pz 5 2  

nsx

E  
(9.26)

This result was extended in Sec. 9.11 to the case of a multiaxial 
loading causing the state of stress shown in Fig. 9.67. The resulting 
strain condition was described by the following relations, referred to 
as the generalized Hooke’s law for a multiaxial loading.

 Px 5 1
sx

E
2
nsy

E
2
nsz

E

 
 Py 5 2  

nsx

E
1
sy

E
2
nsz

E  
(9.27)

 Pz 5 2  

nsx

E
2
nsy

E
1
sz

E

As we saw in Chap. 8, the state of stress in a material under the most 
general loading condition involves shearing stresses, as well as nor-
mal stresses (Fig. 9.68). The shearing stresses tend to deform a cubic 
element of material into an oblique parallelepiped [Sec. 9.12]. Con-
sidering, for instance, the stresses txy and tyx shown in Fig. 9.69 
(which, we recall, are equal in magnitude), we noted that they cause 
the angles formed by the faces on which they act to either increase 
or decrease by a small angle gxy; this angle, expressed in radians, 
defines the shearing strain corresponding to the x and y directions. 
Defining in a similar way the shearing strains gyz and gzx, we wrote 
the relations

 txy 5 Ggxy    tyz 5 Ggyz    tzx 5 Ggzx  (9.28, 9.29)

Lateral strain. Poisson’s ratio

Multiaxial loading

z

y

xP

A

Fig. 9.66

x�

y�

y�

x�
z�

z�

Fig. 9.67

Shearing strain. Modulus of rigidity
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401

which are valid for any homogeneous isotropic material within its pro-
portional limit in shear. The constant G is called the modulus of rigidity 
of the material and the relations obtained express Hooke’s law for 
shearing stress and strain. Together with Eqs. (9.27), they form a group 
of equations representing the generalized Hooke’s law for a homoge-
neous isotropic material under the most general stress condition.
 We observed in Sec. 9.13 that while an axial load exerted on a 
slender bar produces only normal strains-—-both axial and transverse-—
-on an element of material oriented along the axis of the bar, it will 
produce both normal and shearing strains on an element  rotated 
through 45° (Fig. 9.70). We also noted that the three  constants E, 
n, and G are not independent; they satisfy the relation

 
E

2G
5 1 1 n

 
(9.35)

which may be used to determine any of the three constants in terms 
of the other two.

In Sec. 9.14, we discussed Saint-Venant’s principle, which states that 
except in the immediate vicinity of the points of application of the 
loads, the distribution of stresses in a given member is independent of 
the actual mode of application of the loads. This principle makes it 
possible to assume a uniform distribution of stresses in a member 
subjected to concentrated axial loads, except close to the points of 
application of the loads, where stress concentrations will occur.

Stress concentrations will also occur in structural members near a 
discontinuity, such as a hole or a sudden change in cross section [Sec. 
9.15]. The ratio of the maximum value of the stress occurring near 
the discontinuity over the average stress computed in the critical 
section is referred to as the stress-concentration factor of the discon-
tinuity and is denoted by K:

 
K 5

smax

save   
(9.36)

Values of K for circular holes and fillets in flat bars were given in 
Fig. 9.55 on p. 395.
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402

REVIEW PROBLEMS

 9.73 The aluminum rod ABC (E 5 10.1 3 106 psi), which consists of 
two cylindrical portions AB and BC, is to be replaced with a cylin-
drical steel rod DE (E 5 29 3 106 psi) of the same overall length. 
Determine the minimum required diameter d of the steel rod if 
its vertical deformation is not to exceed the deformation of the 
aluminum rod under the same load and if the allowable stress in 
the steel rod is not to exceed 24 ksi.

B

d

C

A

12 in.

18 in.

1.5 in.

2.25 in.

28 kips

E

D

28 kips

Fig. P9.73

Fig. P9.74

15.0 in.

C

D A

B

3
64

P

 in.

9.74 The brass tube AB (E 5 15 3 106 psi) has a cross-sectional area 
of 0.22 in2 and is fitted with a plug at A. The tube is attached at 
B to a rigid plate that is itself attached at C to the bottom of an 
aluminum cylinder (E 5 10.4 3 106 psi) with a cross-sectional area 
of 0.40 in2. The cylinder is then hung from a support at D. In order 
to close the cylinder, the plug must move down through 3

64 in. 
Determine the force P that must be applied to the cylinder.

 9.75 The length of the 2-mm-diameter steel wire CD has been adjusted 
so that with no load applied, a gap of 1.5 mm exists between the 
end B of the rigid beam ACB and a contact point E. Knowing that 
E 5 200 GPa, determine where a 20-kg block should be placed 
on the beam in order to cause contact between B and E.

0.25 m

D

C
A

x

B20 kg

0.32 m
0.08 m

E
1.5 mm

Fig. P9.75
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403Review Problems 9.76 The uniform rods AB and BC are made of steel and are loaded as 
shown. Knowing that E 5 29 3 106 psi, determine the magnitude 
and direction of the deflection of point B when u 5 228.

25 kips

45 in.

25 in.

CB

A

�

Area � 0.8 in2

Area � 1.2 in2

Fig. P9.76

 9.77 The steel bars BE and AD each have a 6 3 18-mm cross section. 
Knowing that E 5 200 GPa, determine the deflections of points 
A, B, and C of the rigid bar ABC.

9.78 In Prob. 9.77, the 3.2-kN force caused point C to deflect to the 
right. Using a 5 11.7 3 10–6/8C, determine (a) the overall change 
in temperature that causes point C to return to its original position, 
(b) the corresponding total deflection of points A and B.

9.79 An axial centric force P is applied to the composite block shown 
by means of a rigid end plate. Determine (a) the value of h if the 
portion of the load carried by the aluminum plates is half the por-
tion of the load carried by the brass core, (b) the total load if the 
stress in the brass is 80 MPa.

Fig. P9.77

300 mm

75 mm

400 mm 400 mm

C

BE
D

A

3.2 kN

40 mm

60 mm

h

h

300 mm

Aluminum plates
(E � 70 GPa)

Rigid
 end plate

Brass core
(E � 105 GPa)

P

Fig. P9.79
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404 Stress and Strain—Axial Loading  9.80 A steel tube (E 5 29 3 106 psi) with a 11
4-in. outer diameter and 

a 1
8-in. thickness is placed in a vise that is adjusted so that its jaws 

just touch the ends of the tube without exerting any pressure on 
them. The two forces shown are then applied to the tube. After 
these forces are applied, the vise is adjusted to decrease the dis-
tance between its jaws by 0.008 in. Determine (a) the forces 
exerted by the vise on the tube at A and D, (b) the change in length 
of the portion BC of the tube.

8 kips 6 kips

A

B

D

C

3 in. 3 in. 3 in.

Fig. P9.80

 9.81 The block shown is made of a magnesium alloy for which E 5 6.5 3 
106 psi and n 5 0.35. Knowing that sx 5 –20 ksi, determine (a) the 
magnitude of sy for which the change in the height of the block will 
be zero, (b) the corresponding change in the area of the face ABCD, 
(c) the corresponding change in the volume of the block.

3
81 in.

1 in.

4 in. xz

y

x�

y�

C

BD

G

F

A

E

Fig. P9.81

 9.82 A vibration isolation unit consists of two blocks of hard rubber 
bonded to plate AB and to rigid supports as shown. For the type 
and grade of rubber used, tall 5 220 psi and G 5 1800 psi. Know-
ing that a centric vertical force of magnitude P 5 3.2 kips must 
cause a 0.1-in. vertical deflection of the plate AB, determine the 
smallest allowable dimensions a and b of the block.

B

b

A 3.0 in.

P

a
a

Fig. P9.82
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405Review Problems 9.83 A hole is to be drilled in the plate at A. The diameters of the bits 
available to drill the hole range from 9 to 27 mm in 6-mm incre-
ments. If the allowable stress in the plate is 145 MPa, determine 
(a) the diameter d of the largest bit that can be used if the allow-
able load P at the hole is to exceed that at the fillets, (b) the cor-
responding allowable load P.

12 mm

75 mm
112.5 mm

A

d rf � 9 mm

P

Fig. P9.83 and P9.84

 9.84 (a) For P 5 58 kN and d 5 12 mm, determine the maximum stress 
in the plate shown. (b) Solve part a assuming that the hole at A is 
not drilled.

bee80156_ch09_342-405.indd Page 405  10/16/09  1:30:26 PM user-s173bee80156_ch09_342-405.indd Page 405  10/16/09  1:30:26 PM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-09/Volumes/MHDQ-New/MHDQ152/MHDQ152-09



This chapter is devoted to the study 

of torsion and of the stresses and 

deformations it causes. In the jet engine 

shown here, the central shaft links the 

components of the engine to develop 

the thrust that propels the plane.
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10.1 INTRODUCTION
In Chaps. 8 and 9 you studied how to calculate the stresses and 
strains in structural members subjected to axial loads, that is, to 
forces directed along the axis of the member. In this chapter struc-
tural members and machine parts that are in torsion will be consid-
ered. More specifically, you will analyze the stresses and strains in 
members of circular cross section subjected to twisting couples, or 
torques, T and T9 (Fig. 10.1). These couples have a common mag-
nitude T, and opposite senses. They are vector quantities and can be 
represented either by curved arrows as in Fig. 10.1a, or by couple 
vectors as in Fig. 10.1b.
 Members in torsion are encountered in many engineering 
applications. The most common application is provided by transmis-
sion shafts, which are used to transmit power from one point to 
another. For example, the shaft shown in Photo 10.1 is used to trans-
mit power from the engine to the rear wheels of an automobile. 
These shafts can be either solid, as shown in Fig. 10.1, or hollow.

Chapter 10 Torsion
 10.1 Introduction
 10.2 Preliminary Discussion of the 

Stresses in a Shaft
 10.3 Deformations in a Circular Shaft
 10.4 Stresses
 10.5 Angle of Twist
 10.6 Statically Indeterminate Shafts

(a)

(b)

T

B

A

T'

T'

B

A

T

Fig. 10.1

Photo 10.1 In the automotive power train shown, the shaft transmits power 
from the engine to the rear wheels.

 Consider the system shown in Fig. 10.2a, which consists of 
a steam turbine A and an electric generator B connected by a 
transmission shaft AB. By breaking the system into its three com-
ponent parts (Fig. 10.2b), you can see that the turbine exerts a 
twisting couple or torque T on the shaft and that the shaft exerts 
an equal torque on the generator. The generator reacts by exerting 
the equal and opposite torque T9 on the shaft, and the shaft by 
exerting the torque T9 on the turbine.
 You will first analyze the stresses and deformations that take 
place in circular shafts. In Sec. 10.3, an important property of  circular 
shafts is demonstrated: When a circular shaft is subjected to torsion, 
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every cross section remains plane and undistorted. In other words, 
while the various cross sections along the shaft rotate through differ-
ent angles, each cross section rotates as a solid rigid slab. This prop-
erty will enable you to determine the distribution of shearing strains 
in a circular shaft and to conclude that the shearing strain varies 
linearly with the distance from the axis of the shaft.
 Considering deformations in the elastic range and using Hooke’s 
law for shearing stress and strain, you will determine the distribution 
of shearing stresses in a circular shaft and derive the elastic torsion 
formulas (Sec. 10.4).
 In Sec. 10.5, you will learn how to find the angle of twist of a 
circular shaft subjected to a given torque, assuming again elastic 
deformations. The solution of problems involving statically indeter-
minate shafts is considered in Sec. 10.6.

10.2  PRELIMINARY DISCUSSION OF THE STRESSES 
IN A SHAFT

Considering a shaft AB subjected at A and B to equal and opposite 
torques T and T9, we pass a section perpendicular to the axis of the 
shaft through some arbitrary point C (Fig. 10.3). The free-body dia-
gram of the portion BC of the shaft must include the elementary 

B Rotation

Generator

A
Turbine

B

A T'

T'

T

(a)

(b)

T

Fig. 10.2

B

A

C

TT'

Fig. 10.3

10.2 Preliminary Discussion of the Stresses 
in a Shaft
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410  Torsion shearing forces dF, perpendicular to the radius of the shaft, that 
portion AC exerts on BC as the shaft is twisted (Fig. 10.4a). But the 
conditions of equilibrium for BC require that the system of these 
elementary forces be equivalent to an internal torque T, equal and 
opposite to T9 (Fig. 10.4b). Denoting by r the perpendicular dis-
tance from the force dF to the axis of the shaft, and expressing that 
the sum of the moments of the shearing forces dF about the axis of 
the shaft is equal in magnitude to the torque T, we write

erdF 5 T

or, since dF 5 t dA, where t is the shearing stress on the element 
of area dA,

 er(t dA) 5 T (10.1)

 While the relation obtained expresses an important condition 
that must be satisfied by the shearing stresses in any given cross 
section of the shaft, it does not tell us how these stresses are distrib-
uted in the cross section. We thus observe, as we already did in 
Sec. 8.3, that the actual distribution of stresses under a given load is 
statically indeterminate, i.e., this distribution cannot be determined 
by the methods of statics. However, having assumed in Sec. 8.3 that 
the normal stresses produced by an axial centric load were uniformly 
distributed, we found later (Sec. 9.14) that this assumption was justi-
fied, except in the neighborhood of concentrated loads. A similar 
assumption with respect to the distribution of shearing stresses in an 
elastic shaft would be wrong. We must withhold any judgment 
regarding the distribution of stresses in a shaft until we have analyzed 
the deformations that are produced in the shaft. This will be done 
in the next section.
 One more observation should be made at this point. As was 
indicated in Sec. 8.9, shear cannot take place in one plane only. 
Consider the very small element of shaft shown in Fig. 10.5. We 
know that the torque applied to the shaft produces shearing stresses 
t on the faces perpendicular to the axis of the shaft. But the condi-
tions of equilibrium discussed in Sec. 8.9 require the existence of 
equal stresses on the faces formed by the two planes containing the 
axis of the shaft. That such shearing stresses actually occur in torsion 
can be demonstrated, by considering a “shaft” made of separate slats 
pinned at both ends to disks as shown in Fig. 10.6a. If markings have 
been painted on two adjoining slats, it is observed that the slats slide 
with respect to each other when equal and opposite torques are 
applied to the ends of the “shaft” (Fig. 10.6b). While sliding will not 
actually take place in a shaft made of a homogeneous and cohesive 
material, the tendency for sliding will exist, showing that stresses 
occur on longitudinal planes as well as on planes perpendicular to 
the axis of the shaft.†

B

C

B

C

(a)

(b)

dF
�

T

T'

T'

Fig. 10.4

Axis of shaft

�

Fig. 10.5

(b)

(a)

TT'

Fig. 10.6
†The twisting of a cardboard tube that has been slit lengthwise provides another demon-
stration of the existence of shearing stresses on longitudinal planes.
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41110.3  DEFORMATIONS IN A CIRCULAR SHAFT
Consider a circular shaft that is attached to a fixed support at one 
end (Fig. 10.7a). If a torque T is applied to the other end, the shaft 
will twist, with its free end rotating through an angle f called the 
angle of twist (Fig. 10.7b). Observation shows that, within a certain 
range of values of T, the angle of twist f is proportional to T. It 
also shows that f is proportional to the length L of the shaft. In 
other words, the angle of twist for a shaft of the same material and 
same cross section, but twice as long, will be twice as large under 
the same torque T. One purpose of our analysis will be to find the 
specific relation existing among f, L, and T; another purpose will 
be to determine the distribution of shearing stresses in the shaft, 
which we were unable to obtain in the preceding section on the 
basis of statics alone.
 At this point, an important property of circular shafts should 
be noted: When a circular shaft is subjected to torsion, every cross 
section remains plane and undistorted. In other words, while the 
various cross sections along the shaft rotate through different 
amounts, each cross section rotates as a solid rigid slab. This is illus-
trated in Fig. 10.8a, which shows the deformations in a rubber model 
subjected to torsion. The property we are discussing is characteristic 
of circular shafts, whether solid or hollow; it is not enjoyed by mem-
bers of noncircular cross section. For example, when a bar of square 
cross section is subjected to torsion, its various cross sections 
warp and do not remain plane (Fig. 10.8b).
 The cross sections of a circular shaft remain plane and undis-
torted because a circular shaft is axisymmetric, i.e., its appearance 
remains the same when it is viewed from a fixed position and rotated 
about its axis through an arbitrary angle. (Square bars, on the other 
hand, retain the same appearance only if they are rotated through 
90° or 180°.) As we will see presently, the axisymmetry of circular 
shafts may be used to prove theoretically that their cross sections 
remain plane and undistorted.
 Consider the points C and D located on the circumference of 
a given cross section of the shaft, and let C9 and D9 be the positions 
they will occupy after the shaft has been twisted (Fig. 10.9a). The 
axisymmetry of the shaft and of the loading requires that the rotation 
which would have brought D into C should now bring D9 into C9. 
Thus C9 and D9 must lie on the circumference of a circle, and the 
arc C9D9 must be equal to the arc CD (Fig. 10.9b). We will now 
examine whether the circle on which C9 and D9 lie is different from 
the original circle. Let us assume that C9 and D9 do lie on a different 
circle and that the new circle is located to the left of the original 
circle, as shown in Fig. 10.9b. The same situation will prevail for any 
other cross section, since all the cross sections of the shaft are sub-
jected to the same internal torque T, and an observer looking at the 
shaft from its end A will conclude that the loading causes any given 
circle drawn on the shaft to move away. But an observer located at 
B, to whom the given loading looks the same (a clockwise couple in 
the foreground and a counterclockwise couple in the background) 
will reach the opposite conclusion, i.e., that the circle moves toward 

L
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B
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Fig. 10.7
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412  Torsion him. This contradiction proves that our assumption is wrong and that 
C9 and D9 lie on the same circle as C and D. Thus, as the shaft is 
twisted, the original circle just rotates in its own plane. Since the 
same reasoning may be applied to any smaller, concentric circle 
located in the cross section under consideration, we conclude that 
the entire cross section remains plane (Fig. 10.10).
 The above argument does not preclude the possibility for the 
various concentric circles of Fig. 10.10 to rotate by different amounts 
when the shaft is twisted. But if that were so, a given diameter of 
the cross section would be distorted into a curve which might look 
as shown in Fig. 10.11a. An observer looking at this curve from A 
would conclude that the outer layers of the shaft get more twisted 
than the inner ones, while an observer looking from B would reach 
the opposite conclusion (Fig. 10.11b). This inconsistency leads us to 
conclude that any diameter of a given cross section remains straight 
(Fig. 10.11c) and, therefore, that any given cross section of a circular 
shaft remains plane and undistorted.
 Our discussion so far has ignored the mode of application of 
the twisting couples T and T9. If all sections of the shaft, from one 
end to the other, are to remain plane and undistorted, we must make 
sure that the couples are applied in such a way that the ends of the 
shaft themselves remain plane and undistorted. This may be accom-
plished by applying the couples T and T9 to rigid plates, which are 
solidly attached to the ends of the shaft (Fig. 10.12a). We can then be 
sure that all sections will remain plane and undistorted when the 
loading is applied and that the resulting deformations will occur in 
a uniform fashion throughout the entire length of the shaft. All of 
the equally spaced circles shown in Fig. 10.12a will rotate by the 
same amount relative to their neighbors, and each of the straight 
lines will be transformed into a curve (helix) intersecting the various 
circles at the same angle (Fig. 10.12b).
 The derivations given in this and the following sections will 
be based on the assumption of rigid end plates. Loading conditions 
encountered in practice may differ appreciably from those corre-
sponding to the model of Fig. 10.12. The chief merit of this model 
is that it helps us define a torsion problem for which we can obtain 
an exact solution, just as the rigid-end-plates model of Sec. 9.14 
made it possible for us to define an axial-load problem which could 
be easily and accurately solved. By virtue of Saint-Venant’s princi-
ple, the results obtained for our idealized model may be extended 
to most engineering applications. However, we should keep these 
results associated in our mind with the specific model shown in 
Fig. 10.12.
 We will now determine the distribution of shearing strains in 
a circular shaft of length L and radius c which has been twisted 
through an angle f (Fig. 10.13a). Detaching from the shaft a cylinder 
of radius r, we consider the small square element formed by two 
adjacent circles and two adjacent straight lines traced on the surface 
of the cylinder before any load is applied (Fig. 10.13b). As the shaft 
is subjected to a torsional load, the element deforms into a rhombus 
(Fig. 10.13c). We now recall from Sec. 9.12 that the shearing strain 
g in a given element is measured by the change in the angles formed 
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413by the sides of that element. Since the circles defining two of the 
sides of the element considered here remain unchanged, the shear-
ing strain g must be equal to the angle between lines AB and A9B. 
(We recall that g should be expressed in radians.)
 We observe from Fig. 10.13c that, for small values of g, we can 
express the arc length AA9 as AA9 5 Lg. But, on the other hand, we 
have AA9 5 rf. It follows that Lg 5 rf, or

 
g 5

rf

L  
(10.2)

where g and f are both expressed in radians. The equation obtained 
shows, as we could have anticipated, that the shearing strain g at a 
given point of a shaft in torsion is proportional to the angle of twist 
f. It also shows that g is proportional to the distance r from the axis 
of the shaft to the point under consideration. Thus, the shearing 
strain in a circular shaft varies linearly with the distance from the 
axis of the shaft.
 It follows from Eq. (10.2) that the shearing strain is maximum 
on the surface of the shaft, where r 5 c. We have

 
gmax 5

cf
L  

(10.3)

Eliminating f from Eqs. (10.2) and (10.3), we can express the shear-
ing strain g at a distance r from the axis of the shaft as

 
g 5

r

c
 gmax 

(10.4)

10.4 STRESSES
No particular stress-strain relationship has been assumed so far in 
our discussion of circular shafts in torsion. Let us now consider the 
case when the torque T is such that all shearing stresses in the shaft 
remain below the yield strength tY. We know from Chap. 9 that, for 
all practical purposes, this means that the stresses in the shaft will 
remain below the proportional limit and below the elastic limit as 
well. Thus, Hooke’s law will apply, and there will be no permanent 
deformation.
 Recalling Hooke’s law for shearing stress and strain from Sec. 9.12, 
we write

 t 5 Gg (10.5)

where G is the modulus of rigidity or shear modulus of the material. 
Multiplying both members of Eq. (10.5) by G, we write

Gg 5
r

c
 Ggmax
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414  Torsion or, making use of Eq. (10.5),

 
t 5

r

c
 tmax 

(10.6)

The equation obtained shows that, as long as the yield strength (or 
proportional limit) is not exceeded in any part of a circular shaft, the 
shearing stress in the shaft varies linearly with the distance r from 
the axis of the shaft. Figure 10.14a shows the stress distribution in 
a solid circular shaft of radius c, and Fig. 10.14b in a hollow circular 
shaft of inner radius c1 and outer radius c2. From Eq. (10.6), we find 
that, in the latter case,

 
tmin 5

c1

c2
 tmax 

(10.7)

 We now recall from Sec. 10.2 that the sum of the moments of 
the elementary forces exerted on any cross section of the shaft must 
be equal to the magnitude T of the torque exerted on the shaft:

 er 1t dA 2 5 T (10.1)

Substituting for t from (10.6) into (10.1), we write

T 5 ert dA 5
tmax

c er2 dA

But the integral in the last member represents the polar moment of 
inertia J of the cross section with respect to its center O. We have 
therefore

 
T 5

tmax
J

c  
(10.8)

or, solving for tmax,

 
tmax 5

Tc
J  

(10.9)

Substituting for tmax from (10.9) into (10.6), we express the shearing 
stress at any distance r from the axis of the shaft as

 
t 5

Tr
J  

(10.10)

Equations (10.9) and (10.10) are known as the elastic torsion formu-
las. We recall from statics that the polar moment of inertia of a circle 
of radius c is J 5 1

2 pc4. In the case of a hollow circular shaft of inner 
radius c1 and outer radius c2, the polar moment of inertia is

 J 5 1
2pc2

4 2 1
2pc1

4 5 1
2p 1c2

4 2 c4
12 (10.11)

We note that, if SI metric units are used in Eq. (10.9) or (10.10), T 
will be expressed in N ? m, c or r in meters, and J in m4; we check 
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415that the resulting shearing stress will be expressed in N/m2, that is, 
pascals (Pa). If U.S. customary units are used, T should be expressed 
in lb ? in., c or r in inches, and J in in4, with the resulting shearing 
stress expressed in psi.

EXAMPLE 10.1 A hollow cylindrical steel shaft is 1.5 m long and has 
inner and outer diameters respectively equal to 40 and 60 mm (Fig. 10.15). 
(a) What is the largest torque that can be applied to the shaft if the shearing 
stress is not to exceed 120 MPa? (b) What is the corresponding minimum 
value of the shearing stress in the shaft?

(a) Largest Permissible Torque. The largest torque T that can be applied 
to the shaft is the torque for which tmax 5 120 MPa. Since this value is less 
than the yield strength for steel, we can use Eq. (10.9). Solving this equation 
for T, we have

 
T 5

Jtmax

c   
(10.12)

Recalling that the polar moment of inertia J of the cross section is given by 
Eq. (10.11), where  c1 5 1

2 140 mm 2 5 0.02 m and  c2 5 1
2 160 mm 2 5 0.03 m, 

we write

J 5 1
2 p 1c4

2 2 c4
12 5 1

2 p 10.034 2 0.0242 5 1.021 3 1026 m4

Substituting for J and  tmax into (10.12), and letting   c 5 c2 5 0.03 m, we 
have

T 5
Jtmax

c
5
11.021 3 1026 m42 1120 3 106 Pa2

0.03 m
5 4.08 kN ? m

  

(b) Minimum Shearing Stress. The minimum value of the shearing stress 
occurs on the inner surface of the shaft. It is obtained from Eq. (10.7), which 
expresses that  tmin and  tmax are respectively proportional to  c1 and c2: 

tmin 5
c1

c2
 tmax 5

0.02 m
0.03 m

 1120 MPa2 5 80 MPa
 
 ◾

 The torsion formulas (10.9) and (10.10) were derived for a shaft 
of uniform circular cross section subjected to torques at its ends. 
However, they can also be used for a shaft of variable cross section 
or for a shaft subjected to torques at locations other than its ends 
(Fig. 10.16a). The distribution of shearing stresses in a given cross 
section S of the shaft is obtained from Eq. (10.9), where J denotes the 
polar moment of inertia of that section, and where T represents the 
internal torque in that section. The value of T is obtained by drawing 
the free-body diagram of the portion of shaft located on one side of 
the section (Fig. 10.16b) and writing that the sum of the torques 
applied to that portion, including the internal torque T, is zero (see 
Sample Prob. 10.1).
 Up to this point, our analysis of stresses in a shaft has been 
limited to shearing stresses. This is due to the fact that the element 
we had selected was oriented in such a way that its faces were either 
parallel or perpendicular to the axis of the shaft (Fig. 10.5). We know 
from earlier discussions (Secs. 8.8 and 8.9) that normal stresses, 
shearing stresses, or a combination of both may be found under the 
same loading condition, depending upon the orientation of the ele-
ment which has been chosen. Consider the two elements a and b 
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416  Torsion located on the surface of a circular shaft subjected to torsion (Fig. 
10.17). Since the faces of element a are respectively parallel and 
perpendicular to the axis of the shaft, the only stresses on the ele-
ment will be the shearing stresses defined by formula (10.9), namely 
tmax 5 TcyJ. On the other hand, the faces of element b, which form 
arbitrary angles with the axis of the shaft, will be subjected to a 
combination of normal and shearing stresses.
 Let us consider the particular case of an element c (not shown) 
at 458 to the axis of the shaft. In order to determine the stresses on 
the faces of this element, we consider the two triangular elements 
shown in Fig. 10.18 and draw their free-body diagrams. In the case 
of the element of Fig. 10.18a, we know that the stresses exerted on 
the faces BC and BD are the shearing stresses tmax 5 TcyJ. The 
magnitude of the corresponding shearing forces is thus tmax A0, where 
A0 denotes the area of the face. Observing that the components along 
DC of the two shearing forces are equal and opposite, we conclude 
that the force F exerted on DC must be perpendicular to that face. 
It is a tensile force, and its magnitude is

 F 5 2 1tmaxA02cos 45° 5 tmaxA012 (10.13)

The corresponding stress is obtained by dividing the force F by the 
area A of face DC. Observing that A 5 A012, we write

 
s 5

F
A

5
tmax A012

A012
5 tmax 

(10.14)

A similar analysis of the element of Fig. 10.18b shows that the stress 
on the face BE is s 5 2tmax. We conclude that the stresses exerted 
on the faces of an element c at 458 to the axis of the shaft (Fig. 10.19) 
are normal stresses equal to 6tmax. Thus, while the element a in 
Fig. 10.19 is in pure shear, the element c in the same figure is sub-
jected to a tensile stress on two of its faces and to a compressive 
stress on the other two. We also note that all the stresses involved 
have the same magnitude, TcyJ.†
 As you learned in Sec. 9.3, ductile materials generally fail in 
shear. Therefore, when subjected to torsion, a specimen J made of 
a ductile material breaks along a plane perpendicular to its longitu-
dinal axis (Photo 10.2a). On the other hand, brittle materials are 
weaker in tension than in shear. Thus, when subjected to torsion, a 
specimen made of a brittle material tends to break along surfaces 
which are perpendicular to the direction in which tension is maxi-
mum, i.e., along surfaces forming a 458 angle with the longitudinal 
axis of the specimen (Photo 10.2b).

a

max�
T

T'
b

Fig. 10.17

(a) (b)

C CB B

D E

maxA0�maxA0�

maxA0� maxA0�
45� 45�

F F'

Fig. 10.18

†Stresses on elements of arbitrary orientation, such as element b of Fig. 10.17, will be 
discussed in Chap. 14.

�
Tc
J

max� ��
Tc
J

45�	

a

T

T'

c

Fig. 10.19

Photo 10.2

(a) (b)
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SAMPLE PROBLEM 10.1

Shaft BC is hollow with inner and outer diameters of 90 mm and 120 mm, 
respectively. Shafts AB and CD are solid and of diameter d. For the loading 
shown, determine (a) the maximum and minimum shearing stress in shaft 
BC, (b) the required diameter d of shafts AB and CD if the allowable shear-
ing stress in these shafts is 65 MPa.

0.9 m

d

A

B

TC  26 kN · m

TD  6 kN · m

0.7 m

0.5 m

120 mm

d

C
D

TA  6 kN · m

TB  14 kN · m

SOLUTION

Equations of Statics. Denoting by TAB the torque in shaft AB, we pass a 
section through shaft AB and, for the free body shown, we write

©Mx 5 0:    16 kN ? m 2 2 TAB 5 0    TAB 5 6 kN ? m

We now pass a section through shaft BC and, for the free body shown, we have

©Mx 5 0:  16 kN ? m 2 1 114 kN ? m 2 2 TBC 5 0    TBC 5 20 kN ? m

a. Shaft BC. For this hollow shaft we have

J 5
p

2
1c4

2 2 c4
12 5

p

2
3 10.060 24 2 10.045 24 4 5 13.92 3 1026 m4

Maximum Shearing Stress. On the outer surface, we have

tmax 5 t2 5
TBC c2

J
5
120 kN ? m 2  10.060 m 2

13.92 3 1026 m4
  tmax 5 86.2 MPa b

Minimum Shearing Stress. We write that the stresses are proportional 
to the distance from the axis of the shaft.

tmin

tmax
5

c1

c2
         tmin

86.2 MPa
5

45 mm
60 mm  

tmin 5 64.7 MPa b

b. Shafts AB and CD. We note that in both of these shafts the magnitude 
of the torque is T 5 6 kN ? m and tall 5 65 MPa. Denoting by c the radius 
of the shafts, we write

t 5
Tc
J
        65 MPa 5

16 kN ? m 2c
p

2
 c4

c3 5 58.8 3 1026 m3    c 5 38.9 3 1023 m
 d 5 2c 5 2 138.9 mm 2    d 5 77.8 mm b

A TAB

x

TA  6 kN · m

TB  14 kN · m

A

B TBC

xx

TA  6 kN · m

c1 � 45 mm

c2 � 60 mm

2

1

A

B

6 kN · m

6 kN · m
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SAMPLE PROBLEM 10.2

The preliminary design of a large shaft connecting a motor to a generator 
calls for the use of a hollow shaft with inner and outer diameters of 4 in. 
and 6 in., respectively. Knowing that the allowable shearing stress is 12 ksi, 
determine the maximum torque that can be transmitted (a) by the shaft as 
designed, (b) by a solid shaft of the same weight, (c) by a hollow shaft of the 
same weight and of 8-in. outer diameter.

8 ft

T'

T

6 in.4 in.

SOLUTION

a. Hollow Shaft as Designed.  For the hollow shaft we have

J 5
p

2
1c4

2 2 c4
12 5

p

2
3 13 in.24 2 12 in.24 4 5 102.1 in4

Using Eq. (10.9), we write

 tmax 5
Tc2

J
        12 ksi 5

T 13 in.2
102.1 in4    T 5 408 kip ? in. b

b. Solid Shaft of Equal Weight.  For the shaft as designed and this solid 
shaft to have the same weight and length, their cross-sectional areas must 
be equal.

 A1a2 5 A1b2
 p 3 13 in.22 2 12 in.22 4 5 pc2

3         c3 5 2.24 in.

Since tall 5 12 ksi, we write

 tmax 5
Tc3

J
      12 ksi 5

T 12.24 in.2
p

2
12.24 in.24

    T 5 211 kip ? in. b

c. Hollow Shaft of 8-in. Diameter.  For equal weight, the cross-sectional 
areas again must be equal. We determine the inside diameter of the shaft 
by writing

 A1a2 5 A1c2
 p 3 13 in.22 2 12 in.22 4 5 p 3 14 in.22 2 c2

5 4      c5 5 3.317 in.

For c5 5 3.317 in. and c4 5 4 in.,

J 5
p

2
3 14 in.24 2 13.317 in.24 4 5 212 in4

With tall 5 12 ksi and c4 5 4 in.,

tmax 5
Tc4

J
     12 ksi 5

T 14 in.2
212 in4   T 5 636 kip ? in. b

c2 � 3 in.

c1 � 2 in.

T

c3

T

c4 � 4 in.

c5

T
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PROBLEMS

419

 10.1 Determine the torque T that causes a maximum shearing stress of 
70 MPa in the steel cylindrical shaft shown.

10.2 Determine the maximum shearing stress caused by a torque of 
magnitude T 5 800 N ? m.

10.3 (a) For the hollow shaft and loading shown, determine the maxi-
mum shearing stress. (b) Determine the diameter of a solid shaft 
for which the maximum shearing stress in the loading shown is the 
same as in part a.

10.4 (a) Determine the torque that can be applied to a solid shaft of 
3.6-in. outer diameter without exceeding an allowable shearing stress 
of 10 ksi. (b) Solve part a, assuming that the solid shaft is replaced 
by a hollow shaft of the same mass and of 3.6-in. inner diameter.

10.5 (a) For the 3-in.-diameter solid cylinder and loading shown, deter-
mine the maximum shearing stress. (b) Determine the inner diam-
eter of the hollow cylinder, of 4-in. outer diameter, for which the 
maximum stress is the same as in part a.

10.6 (a) Determine the torque that can be applied to a solid shaft of 
0.75-in. diameter without exceeding an allowable shearing stress of 
10 ksi. (b) Solve part a assuming that the solid shaft has been 
replaced by a hollow shaft of the same cross-sectional area and with 
an inner diameter equal to half of its outer diameter.

10.7 The torques shown are exerted on pulleys A, B, and C. Knowing 
that both shafts are solid, determine the maximum shearing stress 
in (a) shaft AB, (b) shaft BC.

18 mm

T

Fig. P10.1 and P10.2

2.4 in.

1.6 in.

1800 lb · ft

Fig. P10.3

T'

T

3 in.

4 in.

(a)

(b)

T � 40 kip · in.

T � 40 kip · in.

T'

Fig. P10.5

800 N · m

40 mm

1.8 m

C
1200 N · m

30 mm400 N · m

B

1.2 mA

Fig. P10.7 and P10.8

10.8 The shafts of the pulley assembly shown are to be redesigned. Know-
ing that the allowable shearing stress in each shaft is 60 MPa, deter-
mine the smallest allowable diameter of (a) shaft AB, (b) shaft BC.
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 10.9 Knowing that each of the shafts AB, BC, and CD consist of solid 
circular rods, determine (a) the shaft in which the maximum shear-
ing stress occurs, (b) the magnitude of that stress.

 10.10 Knowing that a 0.40-in.-diameter hole has been drilled through each 
of the shafts AB, BC, and CD, determine (a) the shaft in which the 
maximum shearing stress occurs, (b) the magnitude of that stress.

 10.11 Under normal operating conditions, the electric motor exerts a 
torque of 2.4 kN ? m on shaft AB. Knowing that each shaft is solid, 
determine the maximum shearing stress (a) in shaft AB, (b) in shaft 
BC, (c) in shaft CD.

D

dCD � 1.2 in.

B

dBC � 1 in.
C

1000 lb · in.

800 lb · in.

A
dAB � 0.8 in.

2400 lb · in.

Fig. P10.9 and P10.10

A

54 mm TB � 1.2 kN · m

B

46 mm

46 mm

40 mm

C
D

TC � 0.8 kN · m

TD � 0.4 kN · m

E

Fig. P10.11

B

C

Brass

T
A

Steel

Fig. P10.13 and P10.14

 10.12 In order to reduce the total mass of the assembly of Prob. 10.11, 
a new design is being considered in which the diameter of shaft 
BC will be smaller. Determine the smallest diameter of shaft BC 
for which the maximum value of the shearing stress in the assembly 
will not be increased.

 10.13 The allowable shearing stress is 15 ksi in the 1.5-in.-diameter steel 
rod AB and 8 ksi in the 1.8-in.-diameter rod BC. Neglecting the 
effect of stress concentrations, determine the largest torque that 
can be applied at A.

 10.14 The allowable shearing stress is 15 ksi in the steel rod AB and 8 ksi 
in the brass rod BC. Knowing that a torque of magnitude T 5 10 
kip ? in. is applied at A and neglecting the effect of stress concentra-
tions, determine the required diameter of (a) rod AB, (b) rod BC.

420 Torsion
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421Problems 10.15 The solid rod AB has a diameter dAB 5 60 mm and is made of a 
steel for which the allowable shearing stress is 85 MPa. The pipe 
CD, which has an outer diameter of 90 mm and a wall thickness 
of 6 mm, is made of an aluminum for which the allowable shearing 
stress is 54 MPa. Determine the largest torque T that can be 
applied at A.

D

A

B

90 mm

dAB
C

T

Fig. P10.15

 10.16 The allowable shearing stress is 50 MPa in the brass rod AB and 
25 MPa in the aluminum rod BC. Knowing that a torque of mag-
nitude T 5 1250 N ? m is applied at A, determine the required 
diameter of (a) rod AB, (b) rod BC.

Brass

Aluminum

B

C

A

T

Fig. P10.16

 10.17 The solid shaft shown is formed of a brass for which the allowable 
shearing stress is 55 MPa. Neglecting the effect of stress concen-
trations, determine the smallest diameters dAB and dBC for which 
the allowable shearing stress is not exceeded.

A

600 mm

750 mm

dAB

dBC C

B

TB � 1200 N · m

TC � 400 N · m

Fig. P10.17 and P10.18

 10.18 Solve Prob. 10.17 assuming that the direction of TC is reversed.

bee80156_ch10_406-441.indd Page 421  10/16/09  1:36:24 PM user-s173bee80156_ch10_406-441.indd Page 421  10/16/09  1:36:24 PM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-10/Volumes/MHDQ-New/MHDQ152/MHDQ152-10



 10.19 and 10.20 Under normal operating conditions a motor exerts a 
torque of magnitude TF 5 1200 lb ? in. at F. Knowing that the 
allowable shearing stress is 10.5 ksi in each shaft, determine for the 
given data the required diameter of (a) shaft CDE, (b) shaft FGH.

   10.19 rD 5 8 in., rG 5 3 in.
   10.20 rD 5 3 in., rG 5 8 in.

 10.21 A torque of magnitude T 5 1000 N ? m is applied at D as shown. 
Knowing that the diameter of shaft AB is 56 mm and that the 
diameter of shaft CD is 42 mm, determine the maximum shearing 
stress in (a) shaft AB, (b) shaft CD.

 10.22 A torque of magnitude T 5 1000 N ? m is applied at D as shown. 
Knowing that the allowable shearing stress is 60 MPa in each shaft, 
determine the required diameter of (a) shaft AB, (b) shaft CD.

 10.23 Two solid shafts are connected by gears as shown and are made of 
a steel for which the allowable shearing stress is 8500 psi. Knowing 
that a torque of magnitude TC 5 5 kip ? in. is applied at C and 
that the assembly is in equilibrium, determine the required diam-
eter of (a) shaft BC, (b) shaft EF.

 10.24 Two solid shafts are connected by gears as shown and are made of 
a steel for which the allowable shearing stress is 7000 psi. Knowing 
that the diameters of the two shafts are, respectively, dBC 5 1.6 in. 
and dEF 5 1.25 in., determine the largest torque TC that can be 
applied at C.

F

TE
H

E

A

B
D

C

GrG

rDTF

Fig. P10.19 and P10.20

A

100 mm

40 mmC

B
D

T � 1000 N · m

Fig. P10.21 and P10.22

B4 in.

2.5 in.

E

G

H

A

D

F

C TC

TF

Fig. P10.23 and P10.24

422 Torsion
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42310.5 ANGLE OF TWIST
In this section, a relation will be derived between the angle of twist 
f of a circular shaft and the torque T exerted on the shaft. The entire 
shaft will be assumed to remain elastic. Considering first the case of 
a shaft of length L and of uniform cross section of radius c subjected 
to a torque T at its free end (Fig. 10.20), we recall from Sec. 10.3 
that the angle of twist f and the maximum shearing strain gmax are 
related as follows:

 
gmax 5

cf
L

 (10.3)

But, in the elastic range, the yield stress is not exceeded anywhere 
in the shaft, Hooke’s law applies, and we have gmax 5 tmaxyG or, 
recalling Eq. (10.9),

 
gmax 5

tmax

G
5

Tc
JG

 (10.15)

Equating the right-hand members of Eqs. (10.3) and (10.15), and 
solving for f, we write

 
f 5

TL
JG

 (10.16)

where f is expressed in radians. The relation obtained shows that, 
within the elastic range, the angle of twist f is proportional to the 
torque T applied to the shaft. This is in accordance with the experi-
mental evidence cited at the beginning of Sec. 10.3.
 Equation (10.16) provides us with a convenient method for 
determining the modulus of rigidity of a given material. A specimen 
of the material, in the form of a cylindrical rod of known diameter 
and length, is placed in a torsion testing machine (Photo 10.3). Torques 

L

T
c

�

�max

Fig. 10.20

Photo 10.3 Torsion testing machine.

10.5 Angle of Twist
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424  Torsion of increasing magnitude T are applied to the specimen, and the cor-
responding values of the angle of twist f in a length L of the speci-
men are recorded. As long as the yield stress of the material is not 
exceeded, the points obtained by plotting f against T will fall on a 
straight line. The slope of this line represents the quantity JGyL, 
from which the modulus of rigidity G may be computed.

EXAMPLE 10.2 What torque should be applied to the end of the shaft 
of Example 10.1 to produce a twist of 2°? Use the value G 5 77 GPa for 
the modulus of rigidity of steel.

Solving Eq. (10.16) for T, we write

T 5
JG

L
f

Substituting the given values

 G 5 77 3 109 Pa        L 5 1.5 m

 f 5 2°a2p rad
360°

b 5 34.9 3 1023 rad

and recalling from Example 10.1 that, for the given cross  section,

J 5 1.021 3 1026 m4

we have

T 5
JG

L
 f 5

11.021 3 1026 m42  177 3 109 Pa2
1.5 m

 134.9 3 1023 rad 2
T 5 1.829 3 103 N ? m 5 1.829 kN ? m ◾

EXAMPLE 10.3 What angle of twist will create a shearing stress of 70 MPa 
on the inner surface of the hollow steel shaft of Examples 10.1 and 10.2?

 The method of attack for solving this problem that first comes to mind 
is to use Eq. (10.10) to find the torque T corresponding to the given value 
of t, and Eq. (10.16) to determine the angle of twist f corresponding to 
the value of T just found.
 A more direct solution, however, may be used. From Hooke’s law, we 
first compute the shearing strain on the inner surface of the shaft:

gmin 5
tmin

G
5

70 3 106 Pa
77 3 109 Pa

5 909 3 1026

Recalling Eq. (10.2), which was obtained by expressing the length of arc 
AA9 in Fig. 10.13c in terms of both g and f, we have

f 5
Lgmin

c1
5

1500 mm
20 mm

 1909 3 10262 5 68.2 3 1023 rad

To obtain the angle of twist in degrees, we write

f 5 168.2 3 1023 rad 2a 360°
2p rad

b 5 3.91°
 
◾

Formula (10.16) for the angle of twist can be used only if the shaft 
is homogeneous (constant G), has a uniform cross section, and is 
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425

loaded only at its ends. If the shaft is subjected to torques at  locations 
other than its ends, or if it consists of several portions with various 
cross sections and possibly of different materials, we must divide it 
into component parts that satisfy individually the required conditions 
for the application of formula (10.16). In the case of the shaft AB 
shown in Fig. 10.21, for example, four different parts should be con-
sidered: AC, CD, DE, and EB. The total angle of twist of the shaft, 
i.e., the angle through which end A rotates with respect to end B, is 
obtained by adding algebraically the angles of twist of each compo-
nent part. Denoting, respectively, by Ti, Li, Ji, and Gi the internal 
torque, length, cross-sectional polar moment of inertia, and modulus 
of rigidity corresponding to part i, the total angle of twist of the shaft 
is expressed as

 
f 5 a

i
 
Ti Li

Ji Gi
 (10.17)

The internal torque Ti in any given part of the shaft is obtained by 
passing a section through that part and drawing the free-body dia-
gram of the portion of shaft located on one side of the section. This 
procedure, which has already been explained in Sec. 10.4 and illus-
trated in Fig. 10.16, is applied in Sample Prob. 10.3.
 In the case of a shaft with a variable circular cross section, as 
shown in Fig. 10.22, formula (10.16) may be applied to a disk of 
thickness dx. The angle by which one face of the disk rotates with 
respect to the other is thus

df 5
T dx
JG

where J is a function of x which may be determined. Integrating in 
x from 0 to L, we obtain the total angle of twist of the shaft:

 
f 5 #

L

0

 
T dx
JG

 (10.18)

 The shaft shown in Fig. 10.20, which was used to derive formula 
(10.16), and the shaft of Fig. 10.15, which was discussed in Exam-
ples 10.2 and 10.3, both had one end attached to a fixed support. In 
each case, therefore, the angle of twist f of the shaft was equal to the 
angle of rotation of its free end. When both ends of a shaft rotate, 

TC

TD

TA

TB

A

C

B

E

D

Fig. 10.21

x

A

dx
B

L

T'

T

Fig. 10.22

10.5 Angle of Twist
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however, the angle of twist of the shaft is equal to the angle through 
which one end of the shaft rotates with respect to the other. Consider, 
for instance, the assembly shown in Fig. 10.23a, consisting of two 
elastic shafts AD and BE, each of length L, radius c, and modulus of 
rigidity G, which are attached to gears meshed at C. If a torque T is 
applied at E (Fig. 10.23b), both shafts will be twisted. Since the end 
D of shaft AD is fixed, the angle of twist of AD is measured by the 
angle of rotation fA of end A. On the other hand, since both ends of 
shaft BE rotate, the angle of twist of BE is equal to the difference 
between the angles of rotation fB and fE, i.e., the angle of twist is 
equal to the angle through which end E rotates with respect to end 
B. Denoting this relative angle of rotation by fEyB, we write

fEyB 5 fE 2 fB 5
TL
JG

EXAMPLE 10.4 For the assembly of Fig. 10.23, knowing that rA 5 2rB, 
determine the angle of rotation of end E of shaft BE when the torque T is 
applied at E.
 We first determine the torque TAD exerted on shaft AD. Observing 
that equal and opposite forces F and F9 are applied on the two gears at C 
(Fig. 10.24), and recalling that rA 5 2rB, we conclude that the torque exerted 

(a)

C

Fixed support

B

L

rB

A

D

rA

E

(b)

C''

T

E�

B�

C

Fixed end

B

L

A

D

A�

C'

E

Fig. 10.23

A
B

C

F

F'

rA rB

Fig. 10.24

426  Torsion
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427on shaft AD is twice as large as the torque exerted on shaft BE; thus, 
TAD 5 2T.
 Since the end D of shaft AD is fixed, the angle of rotation fA of gear 
A is equal to the angle of twist of the shaft and is obtained by writing

fA 5
TAD  

L
JG

5
2TL
JG

Observing that the arcs CC9 and CC0 in Fig. 10.23b must be equal, we 
write rA fA 5 rB fB and obtain

fB 5 1rAyrB 2fA 5  2fA 

We have, therefore,

fB 5 2fA 5
4TL
JG

 Considering now shaft BE, we recall that the angle of twist of the 
shaft is equal to the angle fEyB through which end E rotates with respect 
to end B. We have

fEyB 5
TBEL

JG
5

TL
JG

The angle of rotation of end E is obtained by writing

 fE 5 fB 1 fEyB

 5
4TL
JG

1
TL
JG

5
5TL
JG  

◾

10.6 STATICALLY INDETERMINATE SHAFTS
You saw in Sec. 10.4 that, in order to determine the stresses in a 
shaft, it was necessary to first calculate the internal torques in the 
various parts of the shaft. These torques were obtained from statics 
by drawing the free-body diagram of the portion of shaft located on 
one side of a given section and writing that the sum of the torques 
exerted on that portion was zero.
 There are situations, however, where the internal torques can-
not be determined from statics alone. In fact, in such cases the exter-
nal torques themselves, i.e., the torques exerted on the shaft by the 
supports and connections, cannot be determined from the free-body 
diagram of the entire shaft. The equilibrium equations must be com-
plemented by relations involving the deformations of the shaft and 
obtained by considering the geometry of the problem. Because stat-
ics is not sufficient to determine the external and internal torques, 
the shafts are said to be statically indeterminate. The following exam-
ple, as well as Sample Prob. 10.5, will show how to analyze statically 
indeterminate shafts.

10.6 Statically Indeterminate Shafts
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428  Torsion EXAMPLE 10.5 A circular shaft AB consists of a 10-in.-long, 78-in.-diameter 
steel cylinder, in which a 5-in.-long, 5

8-in.-diameter cavity has been drilled 
from end B. The shaft is attached to fixed supports at both ends, and a 
90 lb ? ft torque is applied at its midsection (Fig. 10.25). Determine the 
torque exerted on the shaft by each of the supports.

5 in.

5 in.

90 lb · ft
B

A

Fig. 10.25

(a)

(b)

(c)

TBT1
T2

TA

TB

TA

A

A

C

B

B

90 lb · ft

Fig. 10.26

 Drawing the free-body diagram of the shaft and denoting by TA and 
TB the torques exerted by the supports (Fig. 10.26a), we obtain the equi-
librium equation

TA 1 TB 5 90 lb ? ft

Since this equation is not sufficient to determine the two unknown torques 
TA and TB, the shaft is statically indeterminate.
 However, TA and TB can be determined if we observe that the total 
angle of twist of shaft AB must be zero, since both of its ends are restrained. 
Denoting by f1 and f2, respectively, the angles of twist of portions AC and 
CB, we write

f 5 f1 1 f2 5 0

From the free-body diagram of a small portion of shaft including end A 
(Fig. 10.26b), we note that the internal torque T1 in AC is equal to TA; from 
the free-body diagram of a small portion of shaft including end B (Fig. 
10.26c), we note that the internal torque T2 in CB is equal to TB. Recalling 
Eq. (10.16) and observing that portions AC and CB of the shaft are twisted 
in opposite senses, we write

f 5 f1 1 f2 5
TAL1

J1G
2

TBL   2

J2G
5 0

Solving for TB, we have

TB 5
L1 

J2

L2 
J1

 TA

Substituting the numerical data

L1 5 L2 5 5 in.
  J1 5 1

2p 1 7
16 in.24 5 57.6 3 1023 in4

          J2 5 1
2p 3 1 7

16 in.24 2 1 5
16 in.24 4 5 42.6 3 1023 in4

we obtain

TB 5 0.740 TA

Substituting this expression into the original equilibrium equation, we write

1.740 TA 5 90 lb ? ft

TA 5 51.7 lb ? ft      TB 5 38.3 lb ? ft ◾
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B

D

C

A
0.2 m

0.4 m

0.6 m

60 mm

30 mm

250 N · m

2000 N · m44 mm

SOLUTION

Since the shaft consists of three portions AB, BC, and CD, each of uniform cross 
section and each with a constant internal torque, Eq. (10.17) may be used.

Statics.  Passing a section through the shaft between A and B and using 
the free body shown, we find

©Mx 5 0: 1250 N ? m 2 2 TAB 5 0    TAB 5 250 N ? m

Passing now a section between B and C, we have

©Mx 5 0: 1250 N ? m 2 1 12000 N ? m 2 2 TBC 5 0   TBC 5 2250 N ? m

Since no torque is applied at C,

TCD 5 TBC 5 2250 N ? m

Polar Moments of Inertia

 JAB 5
p

2
 c4 5

p

2
 10.015 m 24 5 0.0795 3 1026 m4

 JBC 5
p

2
 c4 5

p

2
 10.030 m 24 5 1.272 3 1026 m4

  JCD 5
p

2
 1c2

4 2 c1
42 5

p

2
3 10.030 m 24 2 10.022 m 24 4 5 0.904 3 1026 m4

Angle of Twist.  Using Eq. (10.17) and recalling that G 5 77 GPa for the 
entire shaft, we have

fA 5 a
i

 
TiLi

JiG
5

1
G
aTABLAB

JAB
1

TBCLBC

JBC
1

TCDLCD

JCD
b

fA 5
1

77 GPa
c 1250 N ? m 2  10.4 m 2

0.0795 3 1026 m4 1
12250 2  10.2 2

1.272 3 1026 1
12250 2  10.6 2

0.904 3 1026 d
5 0.01634 1 0.00459 1 0.01939 5 0.0403 rad

fA 5 10.0403 rad 2 360°
2p rad

 fA 5 2.31° b

A x

TAB

250 N · m

B

A

TBC

2000 N · m

250 N · m

x

22 mm

15 mm
30 mm

30 mm

AB BC CD

C

B
A

A

D

�

SAMPLE PROBLEM 10.3

The horizontal shaft AD is attached to a fixed base at D and is subjected to 
the torques shown. A 44-mm-diameter hole has been drilled into portion 
CD of the shaft. Knowing that the entire shaft is made of steel for which 
G 5 77 GPa, determine the angle of twist at end A.
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24 in.
B

c � 0.375 in. A

TAB � T0

TAB � T0

36 in.

TCD

TCD

c � 0.5 in.

D

C

C

B

D

A

�A � 10.48�

�B � 8.26�

�C � 2.95�

24 in.

0.75 in.

36 in.

0.875 in.
2.45 in.

A T0

D

C

B

1 in.

SAMPLE PROBLEM 10.4

Two solid steel shafts are connected by the gears shown. Knowing that for 
each shaft G 5 11.2 3 106 psi and that the allowable shearing stress is 8 ksi, 
determine (a) the largest torque T0 that may be applied to end A of shaft 
AB, (b) the corresponding angle through which end A of shaft AB rotates.

SOLUTION

Statics.  Denoting by F the magnitude of the tangential force between gear 
teeth, we have
Gear B. oMB 5 0:  F 10.875 in.2 2 T0 5 0

   TCD 5 2.8T0 (1)Gear C. oMC 5 0:  F 12.45 in.2 2 TCD 5 0 

Kinematics.  Noting that the peripheral motions of the gears are equal, 
we write

 
rBfB 5 rC fC        fB 5 fC

rC

rB
5 fC

2.45 in.
0.875 in.

5 2.8fC (2)

a. Torque T0

Shaft AB.  With TAB 5 T0 and c 5 0.375 in., together with a maximum 
permissible shearing stress of 8000 psi, we write

t 5
TAB c

J
       8000 psi 5

T010.375 in.2
1
2p 10.375 in.24       T0 5 663 lb ? in.

 
◀

Shaft CD.  From (1) we have TCD 5 2.8T0. With c 5 0.5 in. and tall 5 
8000 psi, we write

t 5
TCD c

J
       8000 psi 5

2.8T010.5 in.2
1
2p 10.5 in.24        T0 5 561 lb ? in.

 
◀

Maximum Permissible Torque.  We choose the smaller value obtained 
for T0

T0 5 561 lb ? in. ◀

b. Angle of Rotation at End A.  We first compute the angle of twist for 
each shaft.

Shaft AB.  For TAB 5 T0 5 561 lb ? in., we have

fAyB 5
TABL

JG
5

1561 lb ? in.2  124 in.2
1
2p 10.375 in.24111.2 3 106 psi2 5 0.0387 rad 5 2.22°

Shaft CD.  TCD 5 2.8T0 5 2.8(561 lb ? in.)

fCyD 5
TCDL

JG
5

2.8 1561 lb ? in.2  136 in.2
1
2p 10.5 in.24111.2 3 106 psi2 5 0.514 rad 5 2.95°

 Since end D of shaft CD is fixed, we have fC 5 fC@D 5 2.958. Using 
(2), we find the angle of rotation of gear B to be

fB 5 2.8fC 5 2.8 12.95°2 5 8.26°

For end A of shaft AB, we have

 fA 5 fB 1 fAyB 5 8.26° 1 2.22° fA 5 10.48° ◀

�C

C B

�B

rB � 0.875 in.
rC � 2.45 in.

C

TCD

F

F

rB � 0.875 in.
rC � 2.45 in.

B

TAB � T0
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50 mm76 mm

8 mm

500 mm

SOLUTION

Statics.  Free Body of Disk. Denoting by T1 the torque exerted by the 
tube on the disk and by T2 the torque exerted by the shaft, we find

 T0 5 T1 1 T2  (1)

Deformations.  Since both the tube and the shaft are connected to the 
rigid disk, we have

   
f1 5 f2:    T1L1

J1G1
5

T2L2

J2G2

T1 10.5 m 2
12.003 3 1026 m42 127 GPa2 5

T2 10.5 m 2
10.614 3 1026 m42 177 GPa2

 T2 5 0.874T1 (2)

Shearing Stresses. We assume that the requirement talum < 70 MPa is 
critical. For the aluminum tube, we have

T1 5
talum  

J1

c1
5
170 MPa2 12.003 3 1026 m42

0.038 m
5 3690 N ? m

Using Eq. (2), we compute the corresponding value T2 and then find the 
maximum shearing stress in the steel shaft.

T2 5 0.874T1 5 0.874 13690 2 5 3225 N ? m

tsteel 5
T2c2

J2
5
13225 N ? m 2 10.025 m 2

0.614 3 1026 m4 5 131.3 MPa

We note that the allowable steel stress of 120 MPa is exceeded; our assump-
tion was wrong. Thus, the maximum torque T0 will be obtained by making 
tsteel 5 120 MPa. We first determine the torque T2.

T2 5
tsteel J2

c2
5
1120 MPa2  10.614 3 1026

  m42
0.025 m

5 2950 N ? m

From Eq. (2), we have

2950 N ? m 5 0.874T1     T1 5 3375 N ? m 

Using Eq. (1), we obtain the maximum permissible torque

T0 5 T1 1 T2 5 3375 N ? m 1 2950 N ? m

 T0 5 6.325 kN ? m ◀

T1

T2

T0

30 mm

0.5 m

T1

1�

�J1 �    �(38 mm)4 � (30 mm)4	2

G1 � 27 GPa
Aluminum

� 2.003 
 10�6m4

38 mm

25 mm

T2

2�

�J1 �    �(25 mm)4	2

G1 � 77 GPa
Steel

� 0.614 
 10�6m4

0.5 m

SAMPLE PROBLEM 10.5

A steel shaft and an aluminum tube are connected to a fixed support and 
to a rigid disk as shown in the cross section. Knowing that the initial stresses 
are zero, determine the maximum torque T0 that can be applied to the disk 
if the allowable stresses are 120 MPa in the steel shaft and 70 MPa in 
the aluminum tube. Use G 5 77 GPa for steel and G 5 27 GPa for 
aluminum.
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PROBLEMS

432

10.25 For the aluminum shaft shown (G 5 3.9 3 106 psi), determine (a) 
the torque T that causes an angle of twist of 58, (b) the angle of 
twist caused by the same torque T in a solid cylindrical shaft of 
the same length and cross-sectional area.

T

4 ft

0.5 in.
0.75 in.

Fig. P10.25

10.26 (a) For the solid steel shaft shown (G 5 11.2 3 106 psi), determine 
the angle of twist at A. (b) Solve part (a), assuming that the steel 
shaft is hollow with a 1.2-in. outer diameter and a 0.8-in. inner 
diameter.

 10.27 Determine the largest allowable diameter of a 3-m-long steel rod 
(G 5 77 GPa) if the rod is to be twisted through 308 without 
exceeding a shearing stress of 80 MPa.

 10.28 The ship at A has just started to drill for oil on the ocean floor at 
a depth of 5000 ft. Knowing that the top of the 8-in.-diameter steel 
drill pipe (G 5 11.2 3 106 psi) rotates through two complete revo-
lutions before the drill bit at B starts to operate, determine the 
maximum shearing stress caused in the pipe by torsion.

 10.29 The torques shown are exerted on pulleys A and B. Knowing that 
the shafts are solid and made of steel (G 5 77 GPa), determine 
the angle of twist between (a) A and B, (b) A and C.

2 kip · in.1.2 in.
A

6ft

Fig. P10.26

5000 ft

A

B

Fig. P10.28

30 mm

A

B

C

0.9 m

0.75 m

TA � 300 N · m

TB � 400 N · m

46 mm

Fig. P10.29
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433Problems 10.30 The torques shown are exerted on pulleys B, C, and D. Knowing 
that the entire shaft is made of aluminum (G 5 27 GPa), deter-
mine the angle of twist between (a) C and B, (b) D and B.

30 mm

B

30 mm
400 N · m

900 N · m

500 N · m

0.6 m

0.8 m

1 m

0.5 m

36 mm

C

D
E

A

36 mm

Fig. P10.30

 10.31 The aluminum rod BC (G 5 3.9 3 106 psi) is bonded to the brass 
rod AB (G 5 5.6 3 106 psi). Knowing that each rod is solid and 
has a diameter of 0.5 in., determine the angle of twist (a) at B, 
(b) at C.

 10.32 The solid brass rod AB (G 5 39 GPa) is bonded to the solid 
aluminum rod BC (G 5 27 GPa). Determine the angle of twist 
(a) at B, (b) at A.

 10.33 Two solid steel shafts (G 5 77 GPa) are connected by the gears 
shown. Knowing that the radius of gear B is rB 5 20 mm, determine 
the angle through which end A rotates when TA 5 75 N ? m.

Brass

4 ft

6 ft

A

B

C

Aluminum

300 lb · in.

Fig. P10.31

30 mm

36 mm

320 mm

250 mm

C

B

A

180 N · m

Fig. P10.32

400 mm

500 mm

20 mm

D
C

B

A

TA

rC � 60 mm

rB

24 mm

Fig. P10.33

 10.34 Solve Prob. 10.33 assuming that a change in design of the assembly 
resulted in the radius of gear B being increased to 30 mm.
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 10.35 Two shafts, each of 3
4-in. diameter, are connected by the gears 

shown. Knowing that G 5 11.2 3 106 psi and that the shaft at F 
is fixed, determine the angle through which end A rotates when a 
750 lb ? in. torque is applied at A.

T
E

F B

A

3 in.

4 in.

8 in.

6 in.

5 in.

D

C

Fig. P10.35

 10.36 Solve Prob. 10.35 assuming that after a design change the radius 
of gear B is 4 in. and the radius of gear E is 3 in.

 10.37 The design specifications of a 1.2-m-long solid transmission shaft 
require that the angle of twist of the shaft not exceed 48 when a 
torque of 750 N ? m is applied. Determine the required diameter 
of the shaft, knowing that the shaft is made of a steel with an 
allowable shearing stress of 90 MPa and a modulus of rigidity of 
77.2 GPa.

 10.38 The design specifications of a 2-m-long solid circular transmission 
shaft require that the angle of twist of the shaft not exceed 38 when 
a torque of 9 kN ? m is applied. Determine the required diameter 
of the shaft, knowing that the shaft is made of (a) a steel with an 
allowable shearing stress of 90 MPa and a modulus of rigidity of 
77 GPa, (b) a bronze with an allowable shearing stress of 35 MPa 
and a modulus of rigidity of 42 GPa.

434 Torsion
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435Problems 10.39 The design of the gear-and-shaft system shown requires that steel 
shafts of the same diameter be used for both AB and CD. It is 
further required that tmax # 9 ksi and that the angle fD through 
which end D of shaft CD rotates not exceed 28. Knowing that 
G 5 11.2 3 106 psi, determine the required diameter of the shafts.

A

4 in.

1.6 in.C

B
D

T � 5 kip · in.

1.5 ft

2 ft

Fig. P10.39 and P10.40

Steel core

Aluminum jacket

3 in.

2   in.

A

B

1
4

8 ft
T

Fig. P10.41 and P10.42

 10.42 The composite shaft shown is to be twisted by applying a torque 
T at end A. Knowing that the modulus of rigidity is 11.2 3 106 psi 
for the steel and 3.9 3 106 psi for the aluminum, determine 
the largest angle through which end A can be rotated if the follow-
ing allowable stresses are not be exceeded: tsteel 5 8500 psi and 
taluminum 5 6500 psi.

 10.40 In the gear-and-shaft system shown, the diameters of the shafts are 
dAB 5 2 in. and dCD 5 1.5 in. Knowing that G 5 11.2 3 106 psi, 
determine the angle through which end D of shaft CD rotates.

 10.41 A torque of magnitude T 5 35 kip ? in. is applied at end A of the 
composite shaft shown. Knowing that the modulus of rigidity is 
11.2 3 106 psi for the steel and 3.9 3 106 psi for the aluminum, 
determine (a) the maximum shearing stress in the steel core, (b) 
the maximum shearing stress in the aluminum jacket, (c) the angle 
of twist at A.
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 10.43 The composite shaft shown consists of a 0.2-in.-thick brass jacket 
(Gbrass 5 5.6 3 106 psi) bonded to a 1.2-in.-diameter steel core 
(Gsteel 5 11.2 3 106 psi). Knowing that the shaft is subjected to 
5 kip ? in. torques, determine (a) the maximum shearing stress in 
the steel core, (b) the angle of twist of B relative to end A.

6 ft

1.2 in.

0.2 in.

B

A

Brass jacket

Steel core

T

T'

Fig. P10.43 and P10.44

 10.46 Solve Prob. 10.45 assuming that shaft AB is replaced by a hollow 
shaft of the same outer diameter and of 25-mm inner diameter.

 10.47 At a time when rotation is prevented at the lower end of each shaft, 
a 50-N ? m torque is applied to end A of shaft AB. Knowing that 
G 5 77 GPa for both shafts, determine (a) the maximum shearing 
stress in shaft CD, (b) the angle of rotation at A.

 10.48 Solve Prob. 10.47 assuming that the 50-N ? m torque is applied to 
end C of shaft CD.

250 mm

38 mm

1.4 kN · m
50 mm

C 
200 mm

B

A

Fig. P10.4512 mm15 mm

200 mm

C

B
D

A r � 40 mm

r � 60 mm

Fig. P10.47

436 Torsion

 10.44 The composite shaft shown consists of a 0.2-in.-thick brass jacket 
(Gbrass 5 5.6 3 106 psi) bonded to a 1.2-in.-diameter steel core 
(Gsteel 5 11.2 3 106 psi). Knowing that the shaft is being subjected 
to the torques shown, determine the largest angle through which 
it can be twisted if the following allowable stresses are not to be 
exceeded: tsteel 5 15 ksi and tbrass 5 8 ksi.

 10.45 Two solid steel shafts (G 5 77.2 GPa) are connected to a coupling 
disk B and to fixed supports at A and C. For the loading shown, 
determine (a) the reaction at each support, (b) the maximum 
shearing stress in shaft AB, (c) the maximum shearing stress in 
shaft BC.
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REVIEW AND SUMMARY

This chapter was devoted to the analysis and design of shafts subjected 
to twisting couples, or torques. Our discussion was limited to circular 
shafts.
 In a preliminary discussion [Sec. 10.2], it was pointed out that 
the distribution of stresses in the cross section of a circular shaft is 
statically indeterminate. The determination of these stresses, there-
fore, requires a prior analysis of the deformations occurring in the 
shaft [Sec. 10.3]. Having demonstrated that in a circular shaft sub-
jected to torsion, every cross section remains plane and undistorted,
we derived the following expression for the shearing strain in a small 
element with sides parallel and perpendicular to the axis of the shaft 
and at a distance r from that axis:

g 5
rf

L  
(10.2)

where f is the angle of twist for a length L of the shaft (Fig. 10.27). 
Equation (10.2) shows that the shearing strain in a circular shaft 
varies linearly with the distance from the axis of the shaft. It follows 
that the strain is maximum at the surface of the shaft, where r is 
equal to the radius c of the shaft. We wrote

gmax 5
cf
L
  g 5

r

c
  gmax 

(10.3, 10.4)

Considering shearing stresses in a circular shaft within the elastic 
range [Sec. 10.4] and recalling Hooke’s law for shearing stress and 
strain, t 5 Gg, we derived the relation

t 5
r

c
  tmax  

(10.6)

which shows that within the elastic range, the shearing stress t in a 
circular shaft also varies linearly with the distance from the axis of 
the shaft. Equating the sum of the moments of the elementary forces 
exerted on any section of the shaft to the magnitude T of the torque 
applied to the shaft, we derived the elastic torsion formulas

tmax 5
Tc
J
    t 5

Tr
J  

(10.9, 10.10)           

where c is the radius of the cross section and J its centroidal polar 
moment of inertia. We noted that J 5 1

2 pc4 for a solid shaft and 
J 5 1

2 p 1c4
2 2 c4

12 for a hollow shaft of inner radius c1 and outer 
radius c2.

Deformations in circular shafts

L

L

(a)

(b)

(c)

L

B

O
�

c

�

B

B

A
�

O

O
A'

A
�

�

Fig.10.27

Shearing stresses in elastic range
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 We noted that while the element a in Fig. 10.28 is in pure 
shear, the element c in the same figure is subjected to normal stresses 
of the same magnitude, TcyJ, two of the normal stresses being tensile 
and two compressive. This explains why in a torsion test ductile 
materials, which generally fail in shear, will break along a plane per-
pendicular to the axis of the specimen, while brittle materials, which 
are weaker in tension than in shear, will break along surfaces forming 
a 458 angle with that axis.

In Sec. 10.5, we found that within the elastic range, the angle of 
twist f of a circular shaft is proportional to the torque T applied to 
it (Fig. 10.29). Expressing f in radians, we wrote

 
f 5

TL
JG   

(10.16)

where  L 5 length of shaft
 J 5 polar moment of inertia of cross section
 G 5 modulus of rigidity of material

If the shaft is subjected to torques at locations other than its ends 
or consists of several parts of various cross sections and possibly of 
different materials, the angle of twist of the shaft must be expressed 
as the algebraic sum of the angles of twist of its component parts 
[Sample Prob. 10.3]:

 
f 5 a

i

TiLi

JiGi   
(10.17)

 We observed that when both ends of a shaft BE rotate (Fig. 10.30), 
the angle of twist of the shaft is equal to the difference between the 
angles of rotation fB and fE of its ends. We also noted that when 
two shafts AD and BE are connected by gears A and B, the torques 
applied, respectively, by gear A on shaft AD and by gear B on shaft 
BE are directly proportional to the radii rA and rB of the two gears-—
-since the forces applied on each other by the gear teeth at C are equal 
and opposite. On the other hand, the angles fA and fB through which 
the two gears rotate are inversely proportional to rA and rB—since the 
arcs CC9 and CC0 described by the gear teeth are equal [Example 10.4 
and Sample Prob. 10.4].

If the reactions at the supports of a shaft or the internal torques cannot 
be determined from statics alone, the shaft is said to be statically inde-
terminate [Sec. 10.6]. The equilibrium equations obtained from free-
body diagrams must then be complemented by relations involving the 
deformations of the shaft and obtained from the geometry of the prob-
lem [Example 10.5 and Sample Prob. 10.5].

Angle of twist

Statically inderterminate shafts

Fig. 10.29
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REVIEW PROBLEMS

 10.49 Knowing that the internal diameter of the hollow shaft shown is 
d 5 0.9 in., determine the maximum shearing stress caused by a 
torque of magnitude T 5 9 kip ? in.

d

1.6 in.

T

Fig. P10.49 and P10.50

 10.50 Knowing that d 5 1.2 in., determine the torque T that causes a 
maximum shearing stress of 7.5 ksi in the hollow shaft shown.

10.51 The solid spindle AB has a diameter ds 5 1.5 in. and is made of 
a steel with an allowable shearing stress of 12 ksi, while the sleeve 
CD is made of a brass with an allowable shearing stress of 7 ksi. 
Determine the largest torque T that can be applied at A.

4 in.

8 in.

3 in.
C

B

D

A

ds

t � 0.25 in.

T

Fig. P10.51 and P10.52

10.52 The solid spindle AB is made of a steel with an allowable shearing 
stress of 12 ksi, while sleeve CD is made of a brass with an allow-
able shearing stress of 7 ksi. Determine (a) the largest torque T 
that can be applied at A if the allowable shearing stress is not to 
be exceeded in sleeve CD, (b) the corresponding required value 
of the diameter ds of spindle AB.
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 10.53 (a) Determine the torque that can be applied to a solid shaft of 
90-mm outer diameter without exceeding an allowable shearing 
stress of 75 MPa. (b) Solve part a assuming that the solid shaft is 
replaced by a hollow shaft of the same mass and of 90-mm inner 
diameter.

 10.54 Two solid brass rods AB and CD are brazed to a brass sleeve EF. 
Determine the ratio d2/d1 for which the same maximum shearing 
stress occurs in the rods and in the sleeve.

 10.55 The aluminum rod AB (G 5 27 GPa) is bonded to the brass rod 
BD (G 5 39 GPa). Knowing that portion CD of the brass rod is 
hollow and has an inner diameter of 40 mm, determine the angle 
of twist at A.

440 Torsion

C

B

F

E

D

A

d2

d1

T

T'

Fig. P10.54

400 mm

375 mm

250 mm

D

60 mm

36 mm

TA � 800 N · m

TB � 1600 N · m

C

B

A

Fig. P10.55

 10.56 In the bevel-gear system shown, a 5 18.438. Knowing that the 
allowable shearing stress is 8 ksi in each shaft and that the system 
is in equilibrium, determine the largest torque TA that can be 
applied at A.

 10.57 The solid cylindrical steel rod BC of length L 5 24 in. is attached 
to the rigid lever AB of length a 5 15 in. and to the support at C. 
Design specifications require that the displacement of A not exceed 
1 in. when a 100-lb force P is applied at A. Determine the required 
diameter of the rod. G 5 11.2 3 106 psi and tall 5 15 ksi.

B

C
A

TB

TA

�
�

0.625 in.

0.5 in.

Fig. P10.56

C

L
a

A

P

B

Fig. P10.57
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441Review Problems 10.58 Two solid steel shafts, each of 30-mm diameter, are connected by 
the gears shown. Knowing that G 5 77 GPa, determine the angle 
through which end A rotates when a torque of magnitude T 5 200 
N ? m is applied at A.

0.2 m

0.4 m

0.2 m

0.1 m

0.5 m

30 mm

60 mm
90 mm

30 mm

C

B

D

E

A

T

Fig. P10.58

 10.59 Two solid steel shafts are fitted with flanges that are then con-
nected by fitted bolts so that there is no relative rotation between 
the flanges. Knowing that G 5 77 GPa, determine the maximum 
shearing stress in each shaft when a torque of magnitude T 5 500 
N ? m is applied to flange B.

Fig. P10.59

36 mm

30 mm

900 mm

600 mm

C

B

D

A

T � 500 N · m

 10.60 The steel jacket CD has been attached to the 40-mm-diameter 
steel shaft AE by means of rigid flanges welded to the jacket and 
to the rod. The outer diameter of the jacket is 80 mm and its wall 
thickness is 4 mm. If 500 N ? m torques are applied as shown, 
determine the maximum shearing stress in the jacket.

B

C

D
E

A
T

T'

Fig. P10.60
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The athlete shown holds the barbell 

with his hands placed at equal 

distances from the weights. This results 

in pure bending in the center portion 

of the bar. The normal stresses and the 

curvature resulting from pure bending 

will be determined in this chapter.

442

bee80156_ch11_442-499.indd Page 442  10/8/09  4:26:44 AM user-s173bee80156_ch11_442-499.indd Page 442  10/8/09  4:26:44 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-11/Volumes/MHDQ-New/MHDQ152/MHDQ152-11



 Pure Bending

443

11C H A P T E R

bee80156_ch11_442-499.indd Page 443  10/8/09  4:28:35 AM user-s173bee80156_ch11_442-499.indd Page 443  10/8/09  4:28:35 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-11/Volumes/MHDQ-New/MHDQ152/MHDQ152-11



444

11.1  INTRODUCTION
In the preceding three chapters you studied how to determine the 
stresses in prismatic members subjected to axial loads or to twisting 
couples. In this chapter and in the following two you will analyze 
the stresses and strains in prismatic members subjected to bending. 
Bending is a major concept used in the design of many machine and 
structural components, such as beams and girders.

This chapter will be devoted to the analysis of prismatic mem-
bers subjected to equal and opposite couples M and M9 acting in the 
same longitudinal plane. Such members are said to be in pure bend-
ing. The members will be assumed to possess a plane of symmetry 
and the couples M and M9 to be acting in that plane (Fig. 11.1).

Chapter 11 Pure Bending
 11.1 Introduction
 11.2 Symmetric Member in Pure 

Bending
 11.3 Deformations in a Symmetric 

Member in Pure Bending
 11.4 Stresses and Deformations
 11.5 Bending of Members Made of 

Several Materials
 11.6 Eccentric Axial Loading in a 

Plane of Symmetry
 11.7 Unsymmetric Bending
 11.8 General Case of Eccentric Axial 

Loading

Fig. 11.1

A

B

M

M'

An example of pure bending is provided by the bar of a typical barbell 
as it is held overhead by a weight lifter. The bar carries equal weights 
at equal distances from the hands of the weight lifter. Because of 
the symmetry of the free-body diagram of the bar (Fig. 11.2a), the 
reactions at the hands must be equal and opposite to the weights. 
Therefore, as far as the middle portion CD of the bar is concerned, the 
weights and the reactions can be replaced by two equal and opposite 
960-lb ? in. couples (Fig. 11.2b), showing that the middle portion of 
the bar is in pure bending. A similar analysis of the axle of a small 
sport baggy (Photo 11.1) would show that, between the two points 
where it is attached to the trailer, the axle is in pure bending.

12 in. 26 in. 12 in.

A B

M' = 960 lb · in.M = 960 lb · in.

C D

C D

RC = 80 lb

80 lb80 lb

RD = 80 lb
(a)

(b)

Fig. 11.2

Photo 11.1 For the sport buggy 
shown, the center portion of the rear 
axle is in pure bending.
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44511.1 IntroductionAs interesting as the direct applications of pure bending may 
be, devoting an entire chapter to its study would not be justified if 
it were not for the fact that the results obtained will be used in the 
analysis of other types of loadings as well, such as eccentric axial 
loadings and transverse loadings.

Photo 11.2 shows a 12-in. steel bar clamp used to exert 150-lb 
forces on two pieces of lumber as they are being glued together. 
Figure 11.3a shows the equal and opposite forces exerted by the 
lumber on the clamp. These forces result in an eccentric loading of 
the straight portion of the clamp. In Fig. 11.3b a section CC9 has 

Photo 11.2

been passed through the clamp and a free-body diagram has been 
drawn of the upper half of the clamp, from which we conclude that 
the internal forces in the section are equivalent to a 150-lb axial 
tensile force P and a 750-lb ? in. couple M. We can thus combine 
our knowledge of the stresses under a centric load and the results of 
our forthcoming analysis of stresses in pure bending to obtain the 
distribution of stresses under an eccentric load. This will be further 
discussed in Sec. 11.6.

The study of pure bending will also play an essential role in the 
study of beams, i.e., the study of prismatic members subjected to 
various types of transverse loads. Consider, for instance, a cantilever 
beam AB supporting a concentrated load P at its free end (Fig. 11.4a). 
If we pass a section through C at a distance x from A, we observe 
from the free-body diagram of AC (Fig. 11.4b) that the internal forces 
in the section consist of a force P9 equal and opposite to P and a 
couple M of magnitude M 5 Px. The distribution of normal stresses 
in the section can be obtained from the couple M as if the beam were 
in pure bending. On the other hand, the shearing stresses in the sec-
tion depend on the force P9, and you will learn in Chap. 13 how to 
determine their distribution over a given section.

The first part of the chapter is devoted to the analysis of the 
stresses and deformations caused by pure bending in a homogeneous 

5 in.

C C' C C'
P' � 150 lb

P � 150 lb

P' � 150 lb

M � 750 lb · in.
P � 150 lb

5 in.

(a) (b)

Fig. 11.3

L 

x 

P

P

B 

C 

C 

A 

A 

P'

M

(a)

(b)

Fig. 11.4
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446  Pure Bending member possessing a plane of symmetry and made of a material fol-
lowing Hooke’s law. In a preliminary discussion of the stresses due 
to bending (Sec. 11.2), the methods of statics will be used to derive 
three fundamental equations which must be satisfied by the normal 
stresses in any given cross section of the member. In Sec. 11.3, it 
will be proved that transverse sections remain plane in a member 
subjected to pure bending, while in Sec. 11.4, formulas will be devel-
oped that can be used to determine the normal stresses, as well as 
the radius of curvature for that member within the elastic range.

In Sec. 11.5, you will study the stresses and deformations in 
composite members made of more than one material, such as  reinforced-
concrete beams, which utilize the best features of steel and concrete 
and are extensively used in the construction of buildings and bridges. 
You will learn to draw a transformed section representing the section 
of a member made of a homogeneous material that undergoes the 
same deformations as the composite member under the same load-
ing. The transformed section will be used to find the stresses and 
deformations in the original composite member. 

In Sec. 11.6, you will learn to analyze an eccentric axial loading 
in a plane of symmetry, such as the one shown in Photo 11.2, by 
superposing the stresses due to pure bending and the stresses due 
to a centric axial loading.

Your study of the bending of prismatic members will conclude 
with the analysis of unsymmetric bending (Sec. 11.7), and the study 
of the general case of eccentric axial loading (Sec. 11.8).

11.2   SYMMETRIC MEMBER IN PURE BENDING
Consider a prismatic member AB possessing a plane of symmetry 
and subjected to equal and opposite couples M and M9 acting in that 
plane (Fig. 11.5a). We observe that if a section is passed through the 
member AB at some arbitrary point C, the conditions of equilibrium 
of the portion AC of the member require that the internal forces in 
the section be equivalent to the couple M (Fig. 11.5b). Thus, the 
internal forces in any cross section of a symmetric member in pure 
bending are equivalent to a couple. The moment M of that couple is 
referred to as the bending moment in the section. Following the usual 
convention, a positive sign will be assigned to M when the member 
is bent as shown in Fig. 11.5a, i.e., when the concavity of the beam 
faces upward, and a negative sign otherwise.

A

B
C

M

M'

A

C

M

M'

(a) (b)

Fig. 11.5
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447Denoting by sx the normal stress at a given point of the cross 
section and by txy and txz the components of the shearing stress, we 
express that the system of  the elementary internal forces exerted on 
the section is equivalent to the couple M (Fig. 11.6).

We recall from statics that a couple M actually consists of two 
equal and opposite forces. The sum of the components of these 
forces in any direction is therefore equal to zero. Moreover, the 
moment of the couple is the same about any axis perpendicular to 
its plane, and is zero about any axis contained in that plane. Selecting 
arbitrarily the z axis as shown in Fig. 11.6, we express the equiva-
lence of the elementary internal forces and of the couple M by writ-
ing that the sums of the components and of the moments of the 
elementary forces are equal to the corresponding components and 
moments of the couple M:

 x components: esxdA 5 0 (11.1)

 moments about y axis: ezsxdA 5 0 (11.2)

 moments about z axis: e(2ysxdA) 5 M (11.3)

Three additional equations could be obtained by setting equal to zero 
the sums of the y components, z components, and moments about the 
x axis, but these equations would involve only the components of the 
shearing stress and, as you will see in the next section, the components 
of the shearing stress are both equal to zero.

Two remarks should be made at this point: (1) The minus sign 
in Eq. (11.3) is due to the fact that a tensile stress (sx . 0) leads 
to a negative moment (clockwise) of the normal force sx dA about 
the z axis. (2) Equation (11.2) could have been anticipated, since 
the application of couples in the plane of symmetry of member AB 
will result in a distribution of normal stresses that is symmetric 
about the y axis.

Once more, we note that the actual distribution of stresses in 
a given cross section cannot be determined from statics alone. It is 
statically indeterminate and may be obtained only by analyzing the 
deformations produced in the member.

x

z

y 

M

x
z

z
y

y 

xydA�

xzdA�

xdA�

=

Fig. 11.6

11.2 Symmetric Member in Pure Bending
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448  Pure Bending 11.3   DEFORMATIONS IN A SYMMETRIC MEMBER 
IN PURE BENDING

Let us now analyze the deformations of a prismatic member pos-
sessing a plane of symmetry and subjected at its ends to equal and 
opposite couples M and M9 acting in the plane of symmetry. The 
member will bend under the action of the couples, but will remain 
symmetric with respect to that plane (Fig. 11.7). Moreover, since the 

C

D

A
B

M M

B 

�

�

Fig. 11.7

bending moment M is the same in any cross section, the member will 
bend uniformly. Thus, the line AB along which the upper face of the 
member intersects the plane of the couples will have a constant curva-
ture. In other words, the line AB, which was originally a straight line, 
will be transformed into a circle of center C, and so will the line A9B9 
(not shown in the figure) along which the lower face of the member 
intersects the plane of symmetry. We also note that the line AB will 
decrease in length when the member is bent as shown in the figure, 
i.e., when M . 0, while A9B9 will become longer.

Next we will prove that any cross section perpendicular to the 
axis of the member remains plane and that the plane of the section 
passes through C. If this were not the case, we could find a point E 
of the original section through D (Fig. 11.8a) which, after the member 
has been bent, would not lie in the plane perpendicular to the plane 
of symmetry that contains line CD (Fig. 11.8b). But, because of the 
symmetry of the member, there would be another point E9 that would 
be transformed exactly in the same way. Let us assume that, after the 
beam has been bent, both points would be located to the left of the 
plane defined by CD, as shown in Fig. 11.8b. Since the bending 
moment M is the same throughout the member, a similar situation 
would prevail in any other cross section, and the points corresponding 
to E and E9 would also move to the left. Thus, an observer at A would 
conclude that the loading causes the points E and E9 in the various 
cross sections to move forward (toward the observer). But an observer 
at B, to whom the loading looks the same, and who observes the 
points E and E9 in the same positions (except that they are now 
inverted) would reach the opposite conclusion. This inconsistency 
leads us to conclude that E and E9 will lie in the plane defined by 
CD and, therefore, that the section remains plane and passes through 
C. We should note, however, that this discussion does not rule out 
the possibility of deformations within the plane of the section.

D

D

E
A B

A B

M' M

E�
E E�

C

EE�

(a)

(b)

Fig. 11.8
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449Suppose that the member is divided into a large number of 
small cubic elements with faces respectively parallel to the three 
coordinate planes. The property we have established requires that 
these elements be transformed as shown in Fig. 11.9 when the 
 member is subjected to the couples M and M9. Since all the faces 
represented in the two projections of Fig. 11.9 are at 908 to each 
other, we conclude that gxy 5 gzx 5 0 and, thus, that txy 5 txz 5 0. 
Regarding the three stress components that we have not yet dis-
cussed, namely, sy, sz, and tyz, we note that they must be zero on 
the surface of the member. Since, on the other hand, the deforma-
tions involved do not require any interaction between the elements 
of a given transverse cross section, we can assume that these three 
stress components are equal to zero throughout the member. This 
assumption is verified, both from experimental evidence and from 
the theory of elasticity, for slender members undergoing small defor-
mations. We conclude that the only nonzero stress component 
exerted on any of the small cubic elements considered here is the 
normal component sx. Thus, at any point of a slender member in 
pure bending, we have a state of uniaxial stress. Recalling that, for 
M . 0, lines AB and A9B9 are observed, respectively, to decrease 
and increase in length, we note that the strain Px and the stress sx 
are negative in the upper portion of the member (compression) and 
positive in the lower portion (tension).

It follows from the above that there must exist a surface paral-
lel to the upper and lower faces of the member, where Px and sx 
are zero. This surface is called the neutral surface. The neutral 
surface intersects the plane of symmetry along an arc of circle DE 
(Fig. 11.10a), and it intersects a transverse section along a straight 
line called the neutral axis of the section (Fig. 11.10b). The origin 

y

A

C

B

x

x

z

M' M

M'

A� B�

(a) Longitudinal, vertical section
(plane of symmetry)

(b) Longitudinal, horizontal section

M

Fig. 11.9
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(a) Longitudinal, vertical section
(plane of symmetry)

(b) Transverse section

Neutral 
axis

�

� �

Fig. 11.10

of coordinates will now be selected on the neutral surface, rather 
than on the lower face of the member as done earlier, so that the 
distance from any point to the neutral surface will be measured by 
its coordinate y.

11.3 Deformations in a Symmetric Member 
in Pure Bending
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450  Pure Bending Denoting by r the radius of arc DE (Fig. 11.10a), by u the 
central angle corresponding to DE, and observing that the length of 
DE is equal to the length L of the undeformed member, we write

 L 5 ru (11.4)

Considering now the arc JK located at a distance y above the neutral 
surface, we note that its length L9 is

 L9 5 (r 2 y)u (11.5)

Since the original length of arc JK was equal to L, the deformation 
of JK is
 d 5 L9 2 L (11.6)

or, if we substitute from (11.4) and (11.5) into (11.6),

 d 5 (r 2 y)u 2 ru 5 2yu (11.7)

The longitudinal strain Px in the elements of JK is obtained by dividing 
d by the original length L of JK. We write

Px 5
d

L
5

2yu
ru

or

 
Px 5 2  

y
r  

(11.8)

The minus sign is due to the fact that we have assumed the bending 
moment to be positive and, thus, the beam to be concave upward.

Because of the requirement that transverse sections remain 
plane, identical deformations will occur in all planes parallel to the 
plane of symmetry. Thus, the value of the strain given by Eq. (11.8) 
is valid anywhere, and we conclude that the longitudinal normal strain 
Px varies linearly with the distance y from the neutral surface.

The strain Px reaches its maximum absolute value when y itself is 
largest. Denoting by c the largest distance from the neutral surface 
(which corresponds to either the upper or the lower surface of the mem-
ber), and by Pm the maximum absolute value of the strain, we have

 
Pm 5

c
r  

(11.9)

Solving (11.9) for r and substituting the value obtained into (11.8), 
we can also write

 
Px 5 2

y
c

 Pm 
(11.10)

We conclude our analysis of the deformations of a member in pure 
bending by observing that we are still unable to compute the strain or 
stress at a given point of the member, since we have not yet located 
the neutral surface in the member. In order to locate this surface, we 
must first specify the stress-strain relation of the material used.†

†Let us note, however, that if the member possesses both a vertical and a horizontal 
plane of symmetry (e.g., a member with a rectangular cross section), and if the stress-
strain curve is the same in tension and compression, the neutral surface will coincide 
with the plane of symmetry.

y
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 – y

A
J

D

O

C

B
K

E
xA� B�

(a) Longitudinal, vertical section
(plane of symmetry)

�

� �

Fig. 11.10a (repeated )
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45111.4   STRESSES AND DEFORMATIONS
We now consider the case when the bending moment M is such that 
the normal stresses in the member remain below the yield strength 
sY. This means that, for all practical purposes, the stresses in the 
member will remain below the proportional limit and the elastic limit 
as well. There will be no permanent deformation, and Hooke’s law for 
uniaxial stress applies. Assuming the material to be homogeneous, and 
denoting by E its modulus of elasticity, we have in the longitudinal 
x direction

 sx 5 EPx (11.11)

Recalling Eq. (11.10), and multiplying both members of that 
equation by E, we write

EPx 5 2
y
c
1EPm 2

or, using (11.11),

 
sx 5 2

y
c

 sm 
(11.12)

where sm denotes the maximum absolute value of the stress. This 
result shows that, in the elastic range, the normal stress varies linearly 
with the distance from the neutral surface (Fig. 11.11).

It should be noted that, at this point, we do not know the loca-
tion of the neutral surface, nor the maximum value sm of the stress. 
Both can be found if we recall the relations (11.1) and (11.3) which 
were obtained earlier from statics. Substituting first for sx from 
(11.12) into (11.1), we write

#sx  dA 5 #a2  

y
c

  smb dA 5 2  

sm

c
 #y dA 5 0

from which it follows that

 #y dA 5 0 (11.13)

This equation shows that the first moment of the cross section about 
its neutral axis must be zero. In other words, for a member subjected 
to pure bending, and as long as the stresses remain in the elastic range, 
the neutral axis passes through the centroid of the section.

We now recall Eq. (11.3), which was derived in Sec. 11.2 with 
respect to an arbitrary horizontal z axis,

 # 12ysx dA 2 5 M (11.3)

Specifying that the z axis should coincide with the neutral axis of 
the cross section, we substitute for sx from (11.12) into (11.3) and 
write

# 12y 2 a2
y
c

 smb
 
 dA 5 M

y

c

m�

x�
Neutral surface

Fig. 11.11

11.4 Stresses and Deformations
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452  Pure Bending or

 
sm

c
 #y2

 dA 5 M (11.14)

Recalling that in the case of pure bending the neutral axis passes through 
the centroid of the cross section, we note that I is the moment of inertia, 
or second moment, of the cross section with respect to a centroidal axis 
perpendicular to the plane of the couple M. Solving (11.14) for sm, we 
write therefore†

 sm 5
Mc
I

 (11.15)

Substituting for sm from (11.15) into (11.12), we obtain the 
normal stress sx at any distance y from the neutral axis:

 sx 5 2  

My

I
 (11.16)

Equations (11.15) and (11.16) are called the elastic flexure formulas, 
and the normal stress sx caused by the bending or “flexing” of the 
member is often referred to as the flexural stress. We verify that the 
stress is compressive (sx , 0) above the neutral axis (y . 0) when 
the bending moment M is positive, and tensile (sx . 0) when M is 
negative.

Returning to Eq. (11.15), we note that the ratio Iyc depends 
only upon the geometry of the cross section. This ratio is called the 
elastic section modulus and is denoted by S. We have

 Elastic section modulus 5 S 5
I
c
 (11.17)

Substituting S for Iyc into Eq. (11.15), we write this equation in the 
alternative form

 sm 5
M
S

 (11.18)

Since the maximum stress sm is inversely proportional to the elastic 
section modulus S, it is clear that beams should be designed with 
as large a value of S as practicable. For example, in the case of a 
wooden beam with a rectangular cross section of width b and depth 
h, we have

 S 5
I
c

5
1

12 bh3

hy2
5 1

6 bh2 5 1
6 Ah (11.19)

where A is the cross-sectional area of the beam. This shows that, of 
two beams with the same cross-sectional area A (Fig. 11.12), the beam 
with the larger depth h will have the larger section modulus and, thus, 
will be the more effective in resisting bending.‡

†We recall that the bending moment was assumed to be positive. If the bending 
moment is negative, M should be replaced in Eq. (11.15) by its absolute value 0M 0 .
‡However, large values of the ratio hyb could result in lateral instability of the beam.

h � 6 in. h � 8 in.

b � 4 in.
b � 3 in.

A � 24 in2

Fig. 11.12
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453In the case of structural steel, American standard beams (S-
beams) and wide-flange beams (W-beams), Photo 11.3, are preferred 

to other shapes because a large portion of their cross section is 
located far from the neutral axis (Fig. 11.13). Thus, for a given cross-
sectional area and a given depth, their design provides large values 
of I and, consequently, of S. Values of the elastic section modulus of 
commonly manufactured beams can be obtained from tables listing 
the various geometric properties of such beams. To determine the 
maximum stress sm in a given section of a standard beam, the engi-
neer needs only to read the value of the elastic section modulus S 
in a table and divide the bending moment M in the section by S.

The deformation of the member caused by the bending mo-
ment M is measured by the curvature of the neutral surface. The 
curvature is defined as the reciprocal of the radius of curvature r, 
and can be obtained by solving Eq. (11.9) for 1yr:

 
1
r

5
Pm

c
 (11.20)

But, in the elastic range, we have Pm 5 sm yE. Substituting for Pm into 
(11.20), and recalling (11.15), we write

1
r

5
sm

Ec
5

1
Ec

 
Mc
I

or

 
1
r

5
M
EI

 (11.21)

Photo 11.3 Wide-flange steel beams form the 
frame of many buildings.

c

c

(a) S-beam (b) W-beam

N. A.

Fig. 11.13

11.4 Stresses and Deformations
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454  Pure Bending EXAMPLE 11.1 A steel bar of 0.8 3 2.5-in. rectangular cross section is 
subjected to two equal and opposite couples acting in the vertical plane of 
symmetry of the bar (Fig. 11.14). Determine the value of the bending 
moment M that causes the bar to yield. Assume sY 5 36 ksi.

M' M

0.8 in.

2.5 in.

Fig. 11.14

1.25 in.

0.8 in.

N. A.

C
2.5 in.

Fig. 11.15

r � 12 mm

Fig. 11.16

N. A.
c

y
C

Fig. 11.17

 Since the neutral axis must pass through the centroid C of the cross 
section, we have c 5 1.25 in. (Fig. 11.15). On the other hand, the centroidal 
moment of inertia of the rectangular cross section is

I 5 1
12 bh3 5 1

12  10.8 in.2 12.5 in.23 5 1.042 in4

Solving Eq. (11.15) for M, and substituting the above data, we have

 M 5
I
c
sm 5

1.042 in4

1.25 in.
136 ksi2

M 5 30 kip ? in. ◾

EXAMPLE 11.2 An aluminum rod with a semicircular cross section of 
radius r 5 12 mm (Fig. 11.16) is bent into the shape of a circular arc of 
mean radius r 5 2.5 m. Knowing that the flat face of the rod is turned 
toward the center of curvature of the arc, determine the maximum tensile 
and compressive stress in the rod. Use E 5 70 GPa.

 We could use Eq. (11.21) to determine the bending moment M cor-
responding to the given radius of curvature r, and then Eq. (11.15) to 
determine sm. However, it is simpler to use Eq. (11.9) to determine Pm and 
Hooke’s law to obtain sm.
 The ordinate y of the centroid C of the semicircular cross section is

y 5
4r
3p

5
4 112 mm 2

3p
5 5.093 mm

The neutral axis passes through C (Fig. 11.17) and the distance c to the 
point of the cross section farthest away from the neutral axis is

c 5 r 2 y 5 12 mm 2 5.093 mm 5 6.907 mm

Using Eq. (11.9), we write

Pm 5
c
r

5
6.907 3 1023 m

2.5 m
5 2.763 3 1023

and, applying Hooke’s law,

sm 5 EPm 5 170 3 109 Pa2 12.763 3 10232 5 193.4 MPa

Since this side of the rod faces away from the center of curvature, the stress 
obtained is a tensile stress. The maximum compressive stress occurs on the 
flat side of the rod. Using the fact that the stress is proportional to the dis-
tance from the neutral axis, we write

 scomp 5 2
y

c
 sm 5 2

5.093 mm
6.907 mm

1193.4 MPa2
5 2142.6 MPa ◾
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455

SAMPLE PROBLEM 11.1

The rectangular tube shown is extruded from an aluminum alloy for which 
sY 5 40 ksi, sU 5 60 ksi, and E 5 10.6 3 106 psi. Neglecting the effect 
of fillets, determine (a) the bending moment M for which the factor of 
safety will be 3.00, (b) the corresponding radius of curvature of the tube.

5 in. C

t

t

t

t � 0.25 in.
3.25 in.

t

x

M

x

SOLUTION

Moment of Inertia. Considering the cross-sectional area of the tube as the 
difference between the two rectangles shown and recalling the formula for 
the centroidal moment of inertia of a rectangle, we write

I 5 1
12 13.25 2 15 23 2 1

12 12.75 2 14.5 23    I 5 12.97 in4

Allowable Stress. For a factor of safety of 3.00 and an ultimate stress of 
60 ksi, we have

sall 5
sU

F.S.
5

60 ksi
3.00

5 20 ksi

Since sall , sY, the tube remains in the elastic range and we can apply the 
results of Sec. 11.4.

a. Bending Moment. With c 5 1
2 15 in.2 5 2.5 in., we write

 
sall 5

Mc
I
  M 5

I
c
sall 5

12.97 in4

2.5 in.
 120 ksi2 M 5 103.8 kip ? in. ◀

b. Radius of Curvature.  Recalling that E 5 10.6 3 106 psi, we substitute 
this value and the values obtained for I and M into Eq. (11.21) and find

1
r

5
M
EI

5
103.8 3 103 lb ? in.

110.6 3 106 psi2 112.97 in42 5 0.755 3 1023 in21

 r 5 1325 in. r 5 110.4 ft ◀

Alternative Solution. Since we know that the maximum stress is sall 5 
20 ksi, we can determine the maximum strain Pm and then use Eq. (11.9),

Pm 5
sall

E
5

20 ksi
10.6 3 106 psi

5 1.887 3 1023 in./in.

Pm 5
c
r    r 5

c
Pm

5
2.5 in.

1.887 3 1023 in./in.
 r 5 1325 in. r 5 110.4 ft ◀

C

3.25 in.

5 in. 4.5 in.x

2.75 in.

= −

O

M

c

c

�
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456

SAMPLE PROBLEM 11.2

A cast-iron machine part is acted upon by the 3 kN ? m couple shown. Know-
ing that E 5 165 GPa and neglecting the effect of fillets, determine (a) the 
maximum tensile and compressive stresses in the casting, (b) the radius of 
curvature of the casting.

90 mm

30 mm

20 mm

40 mm M � 3 kN · m

SOLUTION

Centroid. We divide the T-shaped cross section into the two rectangles 
shown and write

 Area, mm2 y, mm yA, mm3

1 1202 1902 5 1800 50         90 3 103 Y©A 5 ©yA
2 1402 1302 5 1200 20         24 3 103 Y 130002 5 114 3 106

     ©A 5 3000  ©yA 5 114 3 103 Y 5 38 mm

Centroidal Moment of Inertia.  The parallel-axis theorem is used to deter-
mine the moment of inertia of each rectangle with respect to the axis x9 
that passes through the centroid of the composite section. Adding the 
moments of inertia of the rectangles, we write

 Ix¿ 5 © 1I 1 Ad 
22 5 © 1 1

12 bh3 1 Ad 
22

 5 1
12 190 2 120 23 1 190 3 20 2 112 22 1 1

12 130 2 140 23 1 130 3 40 2 118 22
 5 868 3 103 mm4

 I 5 868 3 1029 m4

a. Maximum Tensile Stress.  Since the applied couple bends the casting 
downward, the center of curvature is located below the cross section. The 
maximum tensile stress occurs at point A, which is farthest from the center 
of curvature.

 
sA 5

McA

I
5
13 kN ? m 2 10.022 m 2

868 3 1029 m4   sA 5 176.0 MPa  b

Maximum Compressive Stress.  This occurs at point B; we have

 
sB 5 2

McB

I
5 2

13 kN ? m 2 10.038 m 2
868 3 1029 m4   sB 5 2131.3 MPa  b

b. Radius of Curvature.  From Eq. (11.21), we have

 
1
r

5
M
EI

5
3 kN ? m

1165 GPa2 1868 3 1029 m42
  5 20.95 3 1023 m21   r 5 47.7 m  b

90 mm

y1 � 50 mm

y2 � 20 mm

40 mm
2

1

30 mm

20 mm

�

x'

x

C

12 mm

18 mm

22 mm

� 38 mm�

x'

2

1
C

cA � 0.022 m
A

B�

C

Center of curvature

cB � 0.038 m
x'
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PROBLEMS

457

 11.1 and 11.2 Knowing that the couple shown acts in a vertical 
plane, determine the stress at (a) point A, (b) point B.

Fig. P11.1

30 mm

40 mm

A

M � 500 N · m
B

11.3 Using an allowable stress of 155 MPa, determine the largest bend-
ing moment Mx that can be applied to the wide-flange beam shown. 
Neglect the effect of the fillets.

2 in.

2 in.

1.5 in.

2 in.

2 in.2 in.

A

B

M � 25 kip · in.

Fig. P11.2

12 mm

12 mm

220 mm

200 mm

8 mm

y

x
C

Mx

Fig. P11.3

11.4 Solve Prob. 11.3, assuming that the wide-flange beam is bent about 
the y axis by a couple of moment My.

11.5 A nylon spacing bar has the cross section shown. Knowing that the 
allowable stress for the grade of nylon used is 24 MPa, determine 
the largest couple Mz that can be applied to the bar.

Mz

100 mm

80 mmz C

r � 25 mm

y

Fig. P11.5
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458 Pure Bending

 11.7 and 11.8 Two W4 3 13 rolled sections are welded together as 
shown. Knowing that for the steel alloy used sY 5 36 ksi and sU 5 
58 ksi and using a factor of safety of 3.0, determine the largest couple 
that can be applied when the assembly is bent about the z axis.

M2

M1

0.1 in.

0.2 in.

0.5 in.

0.5 in.

(a)

(b)

Fig. P11.6

y

z
C

Fig. P11.7

y

z C

Fig. P11.8

 11.9 through 11.11 Two vertical forces are applied to the beam of 
the cross section shown. Determine the maximum tensile and com-
pressive stresses in portion BC of the beam.

DCBA

6 in.

2 in.

3 in.3 in.

15 kips 15 kips

3 in.

40 in. 40 in.
60 in.

Fig. P11.9

CBA

300 mm 300 mm

25 mm

25 mm

4 kN4 kN

Fig. P11.10

DCBA

25 kips 25 kips

20 in. 20 in.
60 in.

4 in.

1 in.

1 in.

1 in.

6 in.

8 in.

Fig. P11.11

 11.6 Using an allowable stress of 16 ksi, determine the largest couple 
that can be applied to each pipe.
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459Problems

 11.13 Knowing that a beam of the cross section shown is bent about a 
horizontal axis and that the bending moment is 3.5 kip ? in., deter-
mine the total force acting on the shaded portion of the beam.

 11.14 Solve Prob. 11.13 assuming that the beam is bent about a vertical 
axis and that the bending moment is 6 kip ? in.

 11.15 Knowing that a beam of the cross section shown is bent about a 
horizontal axis and that the bending moment is 8 kN ? m, deter-
mine the total force acting on the top flange.

 11.16 Knowing that a beam of the cross section shown is bent about a 
vertical axis and that the bending moment is 4 kN ? m, determine 
the total force acting on the shaded portion of the lower flange.

 11.12 Two equal and opposite couples of magnitude M 5 15 kN ? m are 
applied to the channel-shaped beam AB. Observing that the cou-
ples cause the beam to bend in a horizontal plane, determine the 
stress (a) at point C, (b) at point D, (c) at point E.

D

E

B

A

C
24 mm

30 mm

24 mm

100 mm

150 mm

M'

M

Fig. P11.12
0.4 in.

0.8 in. 0.8 in. 0.8 in.

0.4 in.

0.6 in.C  

y

z

Fig. P11.13

 11.17 Knowing that for the extruded beam shown the allowable stress is 
120 MPa in tension and 150 MPa in compression, determine the 
largest couple M that can be applied.

75 mm

15 mm

15 mm

45 mm
15 mm

z C

y

Fig. P11.15 and P11.16

48 mm

48 mm36 mm

36 mm

48 mm

M

Fig. P11.17
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460 Pure Bending  11.18 Knowing that for the extruded beam shown the allowable stress is 
12 ksi in tension and 16 ksi in compression, determine the largest 
couple M that can be applied.

 11.19 For the casting shown, determine the largest couple M that can 
be applied without exceeding either of the following allowable 
stresses: sall 5 16 ksi and sall 5 215 ksi.

M

1.5 in.

0.5 in.

1.5 in. 1.5 in.

0.5 in. 0.5 in.

0.5 in.

Fig. P11.18

 11.20 The beam shown is made of a nylon for which the allowable stress 
is 24 MPa in tension and 30 MPa in compression. Determine the 
largest couple M that can be applied to the beam.

 11.21 Solve Prob. 11.20 assuming that d 5 80 mm.

 11.22 Knowing that for the beam shown the allowable stress is 12 ksi in 
tension and 16 ksi in compression, determine the largest couple M 
that can be applied.

0.5 in.

0.5 in.

4 in.

2 in.

M

Fig. P11.19

 11.23 Straight rods of 0.30-in. diameter and 200-ft length are sometimes 
used to clear underground conduits of obstructions or to thread 
wires through a new conduit. The rods are made of high-strength 
steel and, for storage and transportation, are wrapped on spools of 
5-ft diameter. Assuming that the yield strength is not exceeded, 
determine (a) the maximum stress in a rod, when the rod, which 
was initially straight, is wrapped on the spool, (b) the correspond-
ing bending moment in the rod. Use E 5 29 3 106 psi.

M

30 mm

d � 60 mm

40 mm

80 mm

Fig. P11.20
0.8 in.

0.5 in.

1.6 in.

M

Fig. P11.22

5 ft

Fig. P11.23
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11.5   BENDING OF MEMBERS MADE OF SEVERAL 
MATERIALS

The derivations given in Sec. 11.4 were based on the assumption of 
a homogeneous material with a given modulus of elasticity E. If the 
member subjected to pure bending is made of two or more materials 
with different moduli of elasticity, our approach to the determination 
of the stresses in the member must be modified.

Consider, for instance, a bar consisting of two portions of differ-
ent materials bonded together as shown in cross section in Fig. 11.18. 
This composite bar will deform as described in Sec. 11.3, since its 
cross section remains the same throughout its entire length and since 
no assumption was made in Sec. 11.3 regarding the stress-strain rela-
tionship of the material or materials involved. Thus, the normal strain 
Px still varies linearly with the distance y from the neutral axis of the 
section (Fig. 11.19a and b), and formula (11.8) holds:

 Px 5 2  

y
r  (11.8)

 11.24 A 24 kN ? m couple is applied to the W200 3 46.1 rolled-steel 
beam shown. (a) Assuming that the couple is applied about the 
z axis as shown, determine the maximum stress and the radius of 
curvature of the beam. (b) Solve part a assuming that the couple 
is applied about the y axis. Use E 5 200 GPa.

z

24 kN · m

y

C

Fig. P11.24

1

2

N. A.

x � – — 

x

�

� x�

�
y

2 � – —– � �
E2y

1 � – —– � �
E1y

y y

(a) (b) (c)

Fig. 11.19 Strain and stress distribution in bar made of two materials.

M

1

2

Fig. 11.18

11.5 Bending of Members Made 
of Several Materials 461
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462  Pure Bending

However, we cannot assume that the neutral axis passes through the 
centroid of the composite section, and one of the goals of the present 
analysis will be to determine the location of this axis.

Since the moduli of elasticity E1 and E2 of the two materials 
are different, the expressions obtained for the normal stress in each 
material will also be different. We write

 s1 5 E1Px 5 2  

E1y
r

 
 s2 5 E2Px 5 2  

E2y
r  

(11.22)

and obtain a stress-distribution curve consisting of two segments of 
straight line (Fig. 11.19c). It follows from Eqs. (11.22) that the force 
dF1 exerted on an element of area dA of the upper portion of the 
cross section is

 dF1 5 s1 dA 5 2  

E1y
r  dA (11.23)

while the force dF2 exerted on an element of the same area dA of 
the lower portion is

 dF2 5 s2 dA 5 2  

E2y
r  dA (11.24)

But, denoting by n the ratio E2yE1 of the two moduli of elasticity, we 
can express dF2 as

 dF2 5 2  

1nE12y
r  dA 5 2  

E1y
r  1n dA 2 (11.25)

Comparing Eqs. (11.23) and (11.25), we note that the same force dF2 
would be exerted on an element of area n dA of the first material. In 
other words, the resistance to bending of the bar would remain the 
same if both portions were made of the first material, provided that 
the width of each element of the lower portion were multiplied by the 
factor n. Note that this widening (if n . 1), or narrowing (if n , 1), 
must be effected in a direction parallel to the neutral axis of the sec-
tion, since it is essential that the distance y of each element from the 

1

2

N. A.

x � – — 

x

�

� x�

�
y

2 � – —– � �
E2y

1 � – —– � �
E1y

y y

(a) (b) (c)

Fig. 11.19 (repeated ) Strain and stress distribution in bar made of two 
materials.
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463neutral axis remain the same. The new cross section obtained in this 
way is called the transformed section of the member (Fig. 11.20).

Since the transformed section represents the cross section of a 
member made of a homogeneous material with a modulus of elastic-
ity E1, the method described in Sec. 11.4 can be used to determine 
the neutral axis of the section and the normal stress at various points 
of the section. The neutral axis will be drawn through the centroid 
of the transformed section (Fig. 11.21), and the stress sx at any point 

b

dA ndA

nbb

b

=

Fig. 11.20 Transformed section for 
composite bar.

C
N. A.

x � – —– �
My
I

yy

�x

Fig. 11.21 Distribution of stresses in 
transformed section.

of the corresponding fictitious homogeneous member will be obtained 
from Eq. (11.16)

 sx 5 2  

My

I
 (11.16)

where y is the distance from the neutral surface, and I the moment of 
inertia of the transformed section with respect to its centroidal axis.

To obtain the stress s1 at a point located in the upper portion 
of the cross section of the original composite bar, we simply compute 
the stress sx at the corresponding point of the transformed section. 
However, to obtain the stress s2 at a point in the lower portion of 
the cross section, we must multiply by n the stress sx computed at 
the corresponding point of the transformed section. Indeed, as we 
saw earlier, the same elementary force dF2 is applied to an element 
of area n dA of the transformed section and to an element of area 
dA of the original section. Thus, the stress s2 at a point of the origi-
nal section must be n times larger than the stress at the correspond-
ing point of the transformed section.

The deformations of a composite member can also be deter-
mined by using the transformed section. We recall that the trans-
formed section represents the cross section of a member, made of a 
homogeneous material of modulus E1, which deforms in the same 
manner as the composite member. Therefore, using Eq. (11.21), we 
write that the curvature of the composite member is

1
r

5
M

E1I

where I is the moment of inertia of the transformed section with 
respect to its neutral axis.

11.5 Bending of Members Made 
of Several Materials
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464  Pure Bending EXAMPLE 11.3 A bar obtained by bonding together pieces of steel (Es 5 
29 3 106 psi) and brass (Eb 5 15 3 106 psi) has the cross section shown 
(Fig. 11.22). Determine the maximum stress in the steel and in the brass 
when the bar is in pure bending with a bending moment M 5 40 kip ? in.

1.45 in.

2.25 in.

0.4 in. 0.4 in.

3 in.

c � 1.5 in.

All brass

N. A.

Fig. 11.23

0.75 in.
0.4 in. 0.4 in.

3 in.

Steel

Brass Brass

Fig. 11.22

 The transformed section corresponding to an equivalent bar made 
entirely of brass is shown in Fig. 11.23. Since

n 5
Es

Eb
5

29 3 106 psi

15 3 106 psi
5 1.933

the width of the central portion of brass, which replaces the original steel 
portion, is obtained by multiplying the original width by 1.933, we have

10.75 in.2 11.933 2 5 1.45 in.

Note that this change in dimension occurs in a direction parallel to the 
neutral axis. The moment of inertia of the transformed section about its 
centroidal axis is

I 5 1
12 bh3 5 1

12 12.25 in.2 13 in.23 5 5.063 in4

and the maximum distance from the neutral axis is c 5 1.5 in. Using Eq. 
(11.15), we find the maximum stress in the transformed section:

sm 5
Mc

I
5
140 kip ? in.2 11.5 in.2

5.063 in4 5 11.85 ksi

The value obtained also represents the maximum stress in the brass portion 
of the original composite bar. The maximum stress in the steel portion, 
however, will be larger than the value obtained for the transformed section, 
since the area of the central portion must be reduced by the factor n 5 
1.933 when we return from the transformed section to the original one. We 
thus conclude that

 1sbrass2max 5 11.85 ksi
 1ssteel2max 5 11.933 2 111.85 ksi2 5 22.9 ksi ◾

An important example of structural members made of two 
different materials is furnished by reinforced concrete beams 
(Photo 11.4). These beams, when subjected to positive bending Photo 11.4
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465moments, are reinforced by steel rods placed a short distance 
above their lower face (Fig. 11.24a). Since concrete is very weak 
in tension, it will crack below the neutral surface and the steel 
rods will carry the entire tensile load, while the upper part of the 
concrete beam will carry the compressive load.

To obtain the transformed section of a reinforced concrete 
beam, we replace the total cross-sectional area As of the steel bars 
by an equivalent area nAs, where n is the ratio EsyEc of the moduli 
of elasticity of steel and concrete (Fig. 11.24b). On the other hand, 
since the concrete in the beam acts effectively only in compression, 
only the portion of the cross section located above the neutral axis 
should be used in the transformed section.

bb

d

1
2 x

x

N. A.

d – x

C

nAs Fs

�

(a) (b) (c)

Fig. 11.24

The position of the neutral axis is obtained by determining the 
distance x from the upper face of the beam to the centroid C of the 
transformed section. Denoting by b the width of the beam, and by 
d the distance from the upper face to the center line of the steel 
rods, we write that the first moment of the transformed section with 
respect to the neutral axis must be zero. Since the first moment of 
each of the two portions of the transformed section is obtained by 
multiplying its area by the distance of its own centroid from the 
neutral axis, we have

1bx2  x
2

2 nAs 1d 2 x2 5 0

or

 
1
2

 bx2 1 nAs x 2 nAsd 5 0 (11.26)

Solving this quadratic equation for x, we obtain both the position of 
the neutral axis in the beam, and the portion of the cross section of 
the concrete beam which is effectively used.

The determination of the stresses in the transformed section is 
carried out as explained earlier in this section (see Sample Prob. 
11.4). The distribution of the compressive stresses in the concrete 
and the resultant Fs of the tensile forces in the steel rods are shown 
in Fig. 11.24c.

11.5 Bending of Members Made 
of Several Materials
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466

SAMPLE PROBLEM 11.3

Two steel plates have been welded together to form a beam in the shape 
of a T that has been strengthened by securely bolting to it the two oak 
timbers shown. The modulus of elasticity is 12.5 GPa for the wood and 200 
GPa for the steel. Knowing that a bending moment M 5 50 kN ? m is 
applied to the composite beam, determine (a) the maximum stress in the 
wood, (b) the stress in the steel along the top edge.

200 mm

20 mm

300 mm

20 mm
75 mm75 mm

SOLUTION

Transformed Section.  We first compute the ratio

n 5
Es

Ew
5

200 GPa
12.5 GPa

5 16

Multiplying the horizontal dimensions of the steel portion of the section by 
n 5 16, we obtain a transformed section made entirely of wood.

Neutral Axis.  The neutral axis passes through the centroid of the trans-
formed section. Since the section consists of two rectangles, we have

Y 5
©yA

©A
5

10.160 m 2 13.2 m 3 0.020 m 2 1 0

3.2 m 3 0.020 m 1 0.470 m 3 0.300 m
5 0.050 m

Centroidal Moment of Inertia.  Using the parallel-axis theorem:

 I 5 1
12 10.470 2 10.300 23 1 10.470 3 0.300 2 10.050 22

 1 1
12 13.2 2 10.020 23 1 13.2 3 0.020 2 10.160 2 0.050 22

 I 5 2.19 3 1023 m4

a. Maximum Stress in Wood.  The wood farthest from the neutral axis is 
located along the bottom edge, where c2 5 0.200 m.

sw 5
Mc2

I
5
150 3 103 N ? m 2 10.200 m 2

2.19 3 1023 m4

 sw 5 4.57 MPa  b

b. Stress in Steel.  Along the top edge c1 5 0.120 m. From the transformed 
section we obtain an equivalent stress in wood, which must be multiplied 
by n to obtain the stress in steel.

ss 5 n 

Mc1

I
5 116 2  150 3 103 N ? m 2 10.120 m 2

2.19 3 1023 m4  

 ss 5 43.8 MPa  b 

16(0.200 m) � 3.2 m

0.150 m

0.150 m

0.020 m y

Y
C

O

0.160 m

16(0.020 m) � 0.32 m
0.075 m0.075 m

z

N. A.

0.050 m

y

C

O

c1 � 0.120 m

c2 � 0.200 m
z
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467

SOLUTION

Transformed Section.  We consider a portion of the slab 12 in. wide, in 
which there are two 5

8-in.-diameter rods having a total cross-sectional area

As 5 2 c p
4

 a5
8

 in.b2 d 5 0.614 in2

Since concrete acts only in compression, all the tensile forces are carried by 
the steel rods, and the transformed section consists of the two areas shown. 
One is the portion of concrete in compression (located above the neutral 
axis), and the other is the transformed steel area nAs. We have

 n 5
Es

Ec
5

29 3 106 psi

3.6 3 106 psi
5 8.06

 nAs 5 8.06 10.614 in22 5 4.95 in2

Neutral Axis.  The neutral axis of the slab passes through the centroid of 
the transformed section. Summing moments of the transformed area about 
the neutral axis, we write

12xa x
2
b 2 4.95 14 2 x2 5 0    x 5 1.450 in.

Moment of Inertia.  The centroidal moment of inertia of the transformed 
area is

I 5 1
3 112 2 11.450 23 1 4.95 14 2 1.450 22 5 44.4 in4

a. Maximum Stress in Concrete.  At the top of the slab, we have 
c1 5 1.450 in. and

 
sc 5

Mc1

I
5
140 kip ? in.2 11.450 in.2

44.4 in4   
sc 5 1.306 ksi  b

b. Stress in Steel.  For the steel, we have c2 5 2.55 in., n 5 8.06 and

 
ss 5 n 

Mc2

I
5 8.06 

140 kip ? in.2 12.55 in.2
44.4 in4   

ss 5 18.52 ksi  b

SAMPLE PROBLEM 11.4

A concrete floor slab is reinforced by 5
8-in.-diameter steel rods placed 1.5 in. 

above the lower face of the slab and spaced 6 in. on centers. The modulus 
of elasticity is 3.6 3 106 psi for the concrete used and 29 3 106 psi for the 
steel. Knowing that a bending moment of 40 kip ? in. is applied to each 1-ft 
width of the slab, determine (a) the maximum stress in the concrete, (b) the 
stress in the steel.

6 in.

6 in.
6 in.

6 in.

5.5 in.

4 in.

nAs � 4.95 in2

4 in.

12 in.

N. A.

4 � x

x
C

4.95 in2

4 in.

12 in.

c2 � 4 � x � 2.55 in.

c1 � x � 1.450 in.

�c � 1.306 ksi

�s � 18.52 ksi
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PROBLEMS

468

 11.25 and 11.26 A bar having the cross section shown has been 
formed by securely bonding brass and aluminum stock. Using the 
data given below, determine the largest permissible bending 
moment when the composite bar is bent about a horizontal axis.

30 mm

30 mm

6 mm

6 mm

Aluminum

Brass

Fig. P11.25

 11.27 and 11.28 For the composite bar indicated, determine the larg-
est permissible bending moment when the bar is bent about a 
vertical axis.

   11.27 Bar of Prob. 11.25.
   11.28 Bar of Prob. 11.26.

 11.29 through 11.31 Wooden beams and steel plates are securely 
bolted together to form the composite member shown. Using the 
data given below, determine the largest permissible bending moment 
when the composite member is bent about a horizontal axis.

11.32 For the composite member of Prob. 11.31, determine the largest 
permissible bending moment when the member is bent about a 
vertical axis.

32 mm

32 mm
8 mm 8 mm

8 mm

8 mm

AluminumBrass

Fig. P11.26

 Aluminum Brass

Modulus of elasticity  70 GPa 105 GPa
Allowable stress 100 MPa 160 MPa

Fig. P11.29

10 in.

6 in.

 in.1
25 


 in.1
25 
 2 in. 2 in. 2 in.

10 in.

in.1
4

Fig. P11.31Fig. P11.30

10 in.

3 in.

 in.

3 in.
1
2

 Wood Steel

Modulus of elasticity 2 3 106 psi 30 3 106 psi
Allowable stress 2000 psi 22 ksi
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469Problems 11.33 and 11.34 A copper strip (Ec 5 105 GPa) and an aluminum 
strip (Ea 5 75 GPa) are bonded together to form the composite 
bar shown. Knowing that the bar is bent about a horizontal axis by 
a couple of moment 35 N ? m, determine the maximum stress in 
(a) the aluminum strip, (b) the copper strip.

Copper

Aluminum

24 mm

6 mm

6 mm

Fig. P11.33

Copper

Aluminum

24 mm

3 mm

9 mm

Fig. P11.34

 11.35 and 11.36 The 6 3 12-in. timber beam has been strengthened 
by bolting to it the steel reinforcement shown. The modulus of 
elasticity for wood is 1.8 3 106 psi and for steel 29 3 106 psi. 
Knowing that the beam is bent about a horizontal axis by a couple 
of moment 450 kip ? in., determine the maximum stress in (a) the 
wood, (b) the steel.

Fig. P11.35

6 in.

12 in.

C8 
 11.5

M

in.5 
 1
2

6 in.

12 in.M

Fig. P11.36

 11.37 and 11.38 For the composite bar indicated, determine the 
radius of curvature caused by the couple of moment 35 N ? m.

   11.37 Bar of Prob. 11.33.
   11.38 Bar of Prob. 11.34.

 11.39 and 11.40 For the composite bar indicated, determine the 
radius of curvature caused by the couple of moment 450 kip ? in.

   11.39 Bar of Prob. 11.35.
   11.40 Bar of Prob. 11.36.

 11.41 The reinforced concrete beam shown is subjected to a positive 
bending moment of 175 kN ? m. Knowing that the modulus of 
elasticity is 25 GPa for the concrete and 200 GPa for the steel, 
determine (a) the stress in the steel, (b) the maximum stress in the 
concrete.

 11.42 Solve Prob. 11.41 assuming that the 450-mm depth of the beam is 
increased to 500 mm.

250 mm

450 mm

50 mm

22-mm 
diameter

Fig. P11.41
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470 Pure Bending  11.43 A concrete slab is reinforced by 16-mm-diameter steel rods placed 
on 180-mm centers as shown. The modulus of elasticity is 20 GPa 
for the concrete and 200 GPa for the steel. Using an allowable 
stress of 9 MPa for the concrete and 120 MPa for the steel, deter-
mine the largest allowable positive bending moment in a portion 
of the slab 1 m wide.

180 mm

140 mm

16-mm diameter

100 mm

Fig. P11.43

 11.44 Solve Prob. 11.43 assuming that the spacing of the 16-mm-diameter 
rods is increased to 225 mm on centers.

 11.45 Knowing that the bending moment in the reinforced concrete 
beam is 1150 kip ? ft and that the modulus of elasticity is 3.75 3 
106 psi for the concrete and 30 3 106 psi for the steel, determine 
(a) the stress in the steel, (b) the maximum stress in the 
concrete.

 11.46 A concrete beam is reinforced by three steel rods placed as shown. 
The modulus of elasticity is 3 3 106 psi for the concrete and 30 3 
106 psi for the steel. Using an allowable stress of 1350 psi for the 
concrete and 20 ksi for the steel, determine the largest permissible 
positive bending moment in the beam.

 11.47 and 11.48 Five metal strips, each of 0.5 3 1.5-in. cross section, 
are bonded together to form the composite beam shown. The 
modulus of elasticity is 30 3 106 psi for the steel, 15 3 106 psi 
for the brass, and 10 3 106 psi for the aluminum. Knowing that 
the beam is bent about a horizontal axis by a couple of moment 
12 kip ? in., determine (a) the maximum stress in each of the three 
metals, (b) the radius of curvature of the composite beam.

12 in.

2.5 in.

24 in.

5 in.30 in.

1-in. 
diameter

Fig. P11.45

Fig. P11.46

8 in.

2 in.

16 in. -in. diameter7
8

Aluminum

Brass

Steel

Brass

Aluminum

1.5 in.

0.5 in.

0.5 in.

0.5 in.

0.5 in.

0.5 in.

Fig. P11.47

Steel

Aluminum

Aluminum

Brass

Steel

1.5 in.

0.5 in.

0.5 in.

0.5 in.

0.5 in.

0.5 in.

Fig. P11.48
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47111.6  ECCENTRIC AXIAL LOADING IN A PLANE 
OF SYMMETRY

We saw in Sec. 8.3 that the distribution of stresses in the cross sec-
tion of a member under axial loading can be assumed to be uniform 
only if the line of action of the loads P and P9 passes through the 
centroid of the cross section. Such a loading is said to be centric. Let 
us now analyze the distribution of stresses when the line of action of 
the loads does not pass through the centroid of the cross section, i.e., 
when the loading is eccentric.

Two examples of an eccentric loading are shown in Photos 11.5 
and 11.6. In the case of the highway light, the weight of the lamp 
causes an eccentric loading on the post. Likewise, the vertical forces 
exerted on the press cause an eccentric loading on the back column 
of the press.

Photo 11.5 Photo 11.6

In this section, our analysis will be limited to members which 
possess a plane of symmetry, and it will be assumed that the loads 
are applied in the plane of symmetry of the member (Fig. 11.25a). 
The internal forces acting on a given cross section may then be rep-
resented by a force F applied at the centroid C of the section and 
a couple M acting in the plane of symmetry of the member (Fig. 
11.25b). The conditions of equilibrium of the free body AC require 
that the force F be equal and opposite to P9 and that the moment 
of the couple M be equal and opposite to the moment of P9 about 
C. Denoting by d the distance from the centroid C to the line of 
action AB of the forces P and P9, we have

 F 5 P  and  M 5 Pd  (11.27)

We now observe that the internal forces in the section would 
have been represented by the same force and couple if the straight 
portion DE of member AB had been detached from AB and sub-
jected simultaneously to the centric loads P and P9 and to the bend-
ing couples M and M9 (Fig. 11.26). Thus, the stress distribution due 

d

d

D E
C

PP'

A B(a)

D
C

F
M

P'

A
(b)

Fig. 11.25

D E
C

P

(a)

P'

M' M

D
C

F � P

(b)

P'

M' M

Fig. 11.26

11.6 Eccentric Axial Loading in a 
Plane of Symmetry
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472  Pure Bending to the original eccentric loading can be obtained by superposing the 
uniform stress distribution corresponding to the centric loads P and 
P9 and the linear distribution corresponding to the bending couples 
M and M9 (Fig. 11.27). We write 

sx 5 1sx2centric 1 1sx2bending

y y y

C C C
x� x� x�+ =

Fig. 11.27

or, recalling Eqs. (8.1) and (11.16):

 
sx 5

P
A

2
My

I  
(11.28)

where A is the area of the cross section and I its centroidal moment 
of inertia, and where y is measured from the centroidal axis of the 
cross section. The relation obtained shows that the distribution of 
stresses across the section is linear but not uniform. Depending upon 
the geometry of the cross section and the eccentricity of the load, the 
combined stresses may all have the same sign, as shown in Fig. 11.27, 
or some may be positive and others negative, as shown in Fig. 11.28. 
In the latter case, there will be a line in the section, along which 
sx 5 0. This line represents the neutral axis of the section. We note 
that the neutral axis does not coincide with the centroidal axis of the 
section, since sx fi 0 for y 5 0.

y

C C

y

x� x� C

N.A.

y

x�+ =
Fig. 11.28

The results obtained are valid only to the extent that the condi-
tions of applicability of the superposition principle (Sec. 9.11) and of 
Saint-Venant’s principle (Sec. 9.14) are met. This means that the 
stresses involved must not exceed the proportional limit of the mate-
rial, that the deformations due to bending must not appreciably 
affect the distance d in Fig. 11.25, and that the cross section where 
the stresses are computed must not be too close to points D or E in 
the same figure. 

EXAMPLE 11.4 An open-link chain is obtained by bending low-carbon 
steel rods of 0.5-in. diameter into the shape shown (Fig. 11.29). Knowing 
that the chain carries a load of 160 lb, determine (a) the largest tensile and 
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473compressive stresses in the straight portion of a link, (b) the distance 
between the centroidal and the neutral axis of a cross section.

(a) Largest Tensile and Compressive Stresses. The internal forces in 
the cross section are equivalent to a centric force P and a bending couple 
M (Fig. 11.30) of magnitudes 

P 5 160 lb
M 5 Pd 5 1160 lb 2 10.65 in.2 5 104 lb ? in.

The corresponding stress distributions are shown in parts a and b of Fig. 
11.31. The distribution due to the centric force P is uniform and equal to 
s0 5 PyA. We have

 A 5 pc2 5 p 10.25 in.22 5 0.1963 in2

 s0 5
P
A

5
160 lb

0.1963 in2 5 815 psi

The distribution due to the bending couple M is linear with a maximum 
stress sm 5 McyI. We write

 I 5 1
4pc4 5 1

4p 10.25 in.24 5 3.068 3 1023 in4

 sm 5
Mc
I

5
1104 lb ? in.2 10.25 in.2

3.068 3 1023 in4 5 8475 psi

Superposing the two distributions, we obtain the stress distribution corre-
sponding to the given eccentric loading (Fig. 11.31c). The largest tensile 
and compressive stresses in the section are found to be, respectively,

 st 5 s0 1 sm 5 815 1 8475 5 9290 psi
 sc 5 s0 2 sm 5 815 2 8475 5 27660 psi

160 lb

M

Pd � 0.65 in.

C

Fig. 11.30

160 lb

160 lb

0.5 in.

0.65 in.

Fig. 11.29

8475 psi

–8475 psi
–7660 psi

N.A.

815 psi

x

C y C y C y

9290 psi� x� x�

(a) (b) (c)

+ =

Fig. 11.31

(b) Distance Between Centroidal and Neutral Axes. The distance y0 
from the centroidal to the neutral axis of the section is obtained by setting 
sx 5 0 in Eq. (11.28) and solving for y0:

0 5
P
A

2
My0

I

y0 5 a P
A
ba I

M
b 5 1815 psi2  

3.068 3 1023 in4

104 lb ? in.
y0 5 0.0240 in. ◾

11.6 Eccentric Axial Loading in a 
Plane of Symmetry
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474

SAMPLE PROBLEM 11.5

Knowing that for the cast iron link shown the allowable stresses are 30 MPa 
in tension and 120 MPa in compression, determine the largest force P which 
can be applied to the link. (Note: The T-shaped cross section of the link has 
previously been considered in Sample Prob. 11.2.)

A

B

D

10 mm

a

a

P'P

SOLUTION

Properties of Cross Section.  From Sample Prob. 11.2, we have

A 5 3000 mm2 5 3 3 1023 m2    Y 5 38 mm 5 0.038 m
I 5 868 3 1029 m4

We now write:  d 5 (0.038 m) 2 (0.010 m) 5 0.028 m

Force and Couple at C.  We replace P by an equivalent force-couple sys-
tem at the centroid C.

P 5 P  M 5 P(d) 5 P(0.028 m) 5 0.028P

The force P acting at the centroid causes a uniform stress distribution 
(Fig. 1). The bending couple M causes a linear stress distribution (Fig. 2).

 s0 5
P
A

5
P

3 3 1023 5 333P     1Compression 2
 s1 5

McA

I
5
10.028P 2 10.022 2

868 3 1029 5 710P     1Tension 2
 s2 5

McB

I
5
10.028P 2 10.038 2

868 3 1029 5 1226P     1Compression 2
Superposition.  The total stress distribution (Fig. 3) is found by superposing 
the stress distributions caused by the centric force P and by the couple M. 
Since tension is positive, and compression negative, we have

 sA 5 2  

P
A

1
McA

I
5 2333P 1 710P 5 1377P     1Tension 2

 sB 5 2  

P
A

2
McB

I
5 2333P 2 1226P 5 21559P     1Compression 2

Largest Allowable Force.  The magnitude of P for which the tensile stress 
at point A is equal to the allowable tensile stress of 30 MPa is found by 
writing

 sA 5 377P 5 30 MPa P 5 79.6 kN ◀

We also determine the magnitude of P for which the stress at B is equal to 
the allowable compressive stress of 120 MPa.

 sB 5 21559P 5 2120 MPa P 5 77.0 kN ◀

The magnitude of the largest force P that can be applied without exceeding 
either of the allowable stresses is the smaller of the two values we have found.

 P 5 77.0 kN ◀

90 mm

20 mm

40 mm
10 mm

30 mm
Section a–a

A

B

C

D�

cA � 0.022 m

cB � 0.038 m

0.010 m

A

d

B

C

D

A

C

D

B
P

d

A

C

B

P

M

C

B

A 0 A
�

McA

I

C

B

A

C

B

�
A�

B�

1�

�
McB

I2�

(1) (2) (3)
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PROBLEMS

475

11.49 Two forces P can be applied separately or at the same time to a 
plate that is welded to a solid circular bar of radius r. Determine 
the largest compressive stress in the circular bar (a) when both 
forces are applied, (b) when only one of the forces is applied.

11.50 As many as three axial loads each of magnitude P 5 10 kips can 
be applied to the end of a W8 3 21 rolled-steel shape. Determine 
the stress at point A (a) for the loading shown, (b) if loads are 
applied at points 1 and 2 only.

r r
P P

Fig. P11.49

C

3.5 in.

3.5 in.

P

P

P
3

2

1

A

Fig. P11.50 and P11.51

11.51 As many as three axial loads each of magnitude P 5 10 kips can 
be applied to the end of a W8 3 21 rolled-steel shape. Determine 
the stress at point A (a) for the loading shown, (b) if loads are 
applied at points 2 and 3 only.

 11.52 Knowing that the magnitude of the horizontal force P is 8 kN, 
determine the stress at (a) point A, (b) point B.

11.53 The vertical portion of the press shown consists of a rectangular 
tube having a wall thickness t 5 1

2 in. Knowing that the press has 
been tightened on wooden planks being glued together until P 5
6 kips, determine the stress (a) at point A, (b) point B.

45 mm

30 mm

24 mm

15 mm

A
D

B

P

Fig. P11.52

P'

P
a a

t

t

4 in.

3 in.

Section a-a

A B

10 in.
4 in.

Fig. P11.53

11.54 Solve Prob. 11.53 assuming that t 5 3
8 in.
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476 Pure Bending  11.55 Determine the stress at points A and B (a) for the loading shown, 
(b) if the 60-kN loads are applied at points 1 and 2 only.

 11.56 Determine the stress at points A and B (a) for the loading shown, 
(b) if the 60-kN loads applied at points 2 and 3 are removed.

 11.57 An offset h must be introduced into a solid circular rod of diameter 
d. Knowing that the maximum stress after the offset is introduced 
must not exceed four times the stress in the rod when it was 
straight, determine the largest offset that can be used.

60 kN

150 mm

A

B

1

3

60 kN
60 kN

2 150 mm

90 mm120 mm
120 mm

Fig. P11.55 and P11.56 P'

P'

P

P

d

d

h

Fig. P11.57 and P11.58

 11.58 An offset h must be introduced into a metal tube of 18-mm outer 
diameter and 2-mm wall thickness. Knowing that the maximum 
stress after the offset is introduced must not exceed four times the 
stress in the tube when it was straight, determine the largest offset 
that can be used.

 11.59 A short column is made by nailing two 1 3 4-in. planks to a 2 3 
4-in. timber. Determine the largest compressive stress created in 
the column by a 12-kip load applied as shown at the center of the 
top section of the timber if (a) the column is as described, (b) plank 
1 is removed, (c) both planks are removed.

 11.60 Knowing that the allowable stress in section ABD is 10 ksi, deter-
mine the largest force P that can be applied to the bracket 
shown.

12 kips

Fig. P11.59

A D

0.9 in.
2 in.

0.6 in.
0.6 in.

P

B

Fig. P11.60
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477Problems 11.61 A milling operation was used to remove a portion of a solid bar of 
square cross section. Knowing that a 5 1.2 in., d 5 0.8 in., and 
sall 5 8 ksi, determine the magnitude P of the largest forces that 
can be safely applied at the centers of the ends of the bar.

 11.62 A milling operation was used to remove a portion of a solid bar of 
square cross section. Forces of magnitude P 5 4 kips are applied 
at the center of the ends of the bar. Knowing that a 5 1.2 in. and 
sall 5 8 ksi, determine the smallest allowable depth d of the milled 
portion of the rod.

 11.63 The two forces shown are applied to a rigid plate supported by a 
steel pipe of 140-mm outer diameter and 120-mm inner diameter. 
Knowing that the allowable compressive stress is 100 MPa, deter-
mine the range of allowable values of P.

a

a
d

P'

P

Fig. P11.61 and P11.62

 11.64 The two forces shown are applied to a rigid plate supported by a 
steel pipe of 140-mm outer diameter and 120-mm inner diameter. 
Determine the range of allowable values of P for which all stresses 
in the pipe are compressive and less than 100 MPa.

 11.65 The shape shown was formed by bending a thin steel plate. 
Assuming that the thickness t is small compared to the length 
a of a side of the shape, determine the stress (a) at A, (b) at B, 
(c) at C.

150 kN 90 mm 90 mm P

Fig. P11.63 and P11.64

P'

P

A

B

C

a a

t

90�

Fig. P11.65
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478 Pure Bending  11.66 Knowing that the allowable stress in section a-a of the hydraulic 
press shown is 40 MPa in tension and 80 MPa in compression, 
determine the largest force P that can be exerted by the press.

 11.67 A vertical force P of magnitude 20 kips is applied at a point C 
located on the axis of symmetry of the cross section of a short col-
umn. Knowing that y 5 5 in., determine (a) the stress at point A, 
(b) the stress at point B, (c) the location of the neutral axis.

aa

25 mm 250 mm

250 mm 25 mm

Section a-a300

P'

P

Dimensions in mm

Fig. P11.66

(a) (b)

y

y

y x

x

A

A

B
B

C

3 in.3 in.

4 in.

2 in.

2 in. 2 in.

1 in.

P

Fig. P11.67 and P11.68

 11.68 A vertical force P is applied at a point C located on the axis of 
symmetry of the cross section of a short column. Determine the 
range of values of y for which tensile stresses do not occur in the 
column.

 11.69 The C-shaped steel bar is used as a dynamometer to determine the 
magnitude P of the forces shown. Knowing that the cross section 
of the bar is a square of side 40 mm and that the strain on the inner 
edge was measured and found to be 450 m, determine the magni-
tude P of the forces. Use E 5 200 GPa.

40 mm
80 mm

P'

P

Fig. P11.69
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 11.70 A short length of a rolled-steel column supports a rigid plate on 
which two loads P and Q are applied as shown. The strains at two 
points A and B on the center lines of the outer faces of the flanges 
have been measured and found to be PA 5 2400 3 1026 in./in. 
and PB 5 2300 3 1026 in./in. Knowing that E 5 29 3 106 psi, 
determine the magnitude of each load.

 11.71 Solve Prob. 11.70 assuming that the measured strains are PA 5 
2350 3 1026 in./in. and PB 5 250 3 1026 in./in.

 11.72 An eccentric force P is applied as shown to a steel bar of 25 3 
90-mm cross section. The strains at A and B have been measured 
and found to be PA 5 1350 m and PB 5 270 m. Knowing that 
E 5 200 GPa, determine (a) the distance d, (b) the magnitude of 
the force P.

y

z
z

B A

A A � 10.0 in2

Iz  � 273 in4

x

x

6 in.
6 in. 10 in.

P

Q

Fig. P11.70

30 mm

45 mm

15 mm

90 mm

25 mm

d

A

B P

Fig. P11.72

11.7 UNSYMMETRIC BENDING
Our analysis of pure bending has been limited so far to members pos-
sessing at least one plane of symmetry and subjected to couples acting 
in that plane. Because of the symmetry of such members and of their 
loadings, we concluded that the members would remain symmetric 
with respect to the plane of the couples and thus bend in that plane 

11.7 Unsymmetric Bending 479
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480  Pure Bending (Sec. 11.3). This is illustrated in Fig. 11.32; part a shows the cross 
section of a member possessing two planes of symmetry, one vertical 
and one horizontal, and part b the cross section of a member with a 
single, vertical plane of symmetry. In both cases the couple exerted on 
the section acts in the vertical plane of symmetry of the member and 
is represented by the horizontal couple vector M, and in both cases 
the neutral axis of the cross section is found to coincide with the axis 
of the couple.

Let us now consider situations where the bending couples do 
not act in a plane of symmetry of the member, either because they 
act in a different plane, or because the member does not possess any 
plane of symmetry. In such situations, we cannot assume that the 
member will bend in the plane of the couples. This is illustrated in 
Fig. 11.33. In each part of the figure, the couple exerted on the sec-
tion has again been assumed to act in a vertical plane and has been 
represented by a horizontal couple vector M. However, since the 
vertical plane is not a plane of symmetry, we cannot expect the mem-
ber to bend in that plane or the neutral axis of the section to coincide 
with the axis of the couple.

z
N.A.

C

dA

x
	y

y

z

x� z

C

x

y

M
=

Fig. 11.34

Mz

y

N.A. C

(a)

(b)

Mz

y

N.A.
C

Fig. 11.32

(a)

Mz

y

N.A.
C

Fig. 11.33

(b)

M
z

y

N.A.
C

(c)

Mz

y

N.A.
C

We propose to determine the precise conditions under which 
the neutral axis of a cross section of arbitrary shape coincides with 
the axis of the couple M representing the forces acting on that sec-
tion. Such a section is shown in Fig. 11.34, and both the couple 
vector M and the neutral axis have been assumed to be directed 
along the z axis. We recall from Sec. 11.2 that, if we then express 
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481that the elementary internal forces sxdA form a system equivalent 
to the couple M, we obtain

 x components: esxdA 5 0  (11.1)

 moments about y axis: ezsxdA 5 0 (11.2)

 moments about z axis: e(2ysxdA) 5 M (11.3)

As we saw earlier, when all the stresses are within the proportional 
limit, the first of these equations leads to the requirement that the 
neutral axis be a centroidal axis, and the last to the fundamental 
relation sx 5 2MyyI. Since we had assumed in Sec. 11.2 that the 
cross section was symmetric with respect to the y axis, Eq. (11.2) 
was dismissed as trivial at that time. Now that we are considering 
a cross section of arbitrary shape, Eq. (11.2) becomes highly sig-
nificant. Assuming the stresses to remain within the proportional 
limit of the material, we can substitute sx 5 2smyyc into Eq. (11.2) 
and write

 # z a2  

sm y
c
b  dA 5 0    or    eyz dA 5 0 (11.29)

The integral eyzdA represents the product of inertia Iyz of the cross 
section with respect to the y and z axes, and will be zero if these axes 
are the principal centroidal axes of the cross section.† We thus con-
clude that the neutral axis of the cross section will coincide with the 
axis of the couple M representing the forces acting on that section if, 
and only if, the couple vector M is directed along one of the principal 
centroidal axes of the cross section.

We note that the cross sections shown in Fig. 11.32 are sym-
metric with respect to at least one of the coordinate axes. It follows 
that, in each case, the y and z axes are the principal centroidal axes 
of the section. Since the couple vector M is directed along one of 
the principal centroidal axes, we verify that the neutral axis will coin-
cide with the axis of the couple. We also note that, if the cross sec-
tions are rotated through 908 (Fig. 11.35), the couple vector M will 
still be directed along a principal centroidal axis, and the neutral axis 
will again coincide with the axis of the couple, even though in case 
b the couple does not act in a plane of symmetry of the member.

In Fig. 11.33, on the other hand, neither of the coordinate axes 
is an axis of symmetry for the sections shown, and the coordinate 
axes are not principal axes. Thus, the couple vector M is not directed 
along a principal centroidal axis, and the neutral axis does not coin-
cide with the axis of the couple. However, any given section possesses 
principal centroidal axes, even if it is unsymmetric, as in the section 
shown in Fig. 11.33c. If the couple vector M is directed along one 
of the principal centroidal axes of the section, the neutral axis will 
coincide with the axis of the couple (Fig. 11.36) and the equations 
derived in Secs. 11.3 and 11.4 for symmetric members can be used 
to determine the stresses in this case as well.

†See Ferdinand P. Beer, E. Russell Johnston, Jr., David F. Mazurek, and Elliot R. 
Eisenberg, Vector Mechanics for Engineers, 9th ed., McGraw-Hill, New York, 2010, 
secs. 9.8–9.10.

(a)

(b)

M

N.A.

N.A.

z

y

C

Mz

y

C

Fig. 11.35

N.A.

(a)

Mz

y

C

N.A.

(b)

Mz

y

C

Fig. 11.36

11.7 Unsymmetric Bending
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482  Pure Bending As you will see presently, the principle of superposition can be 
used to determine stresses in the most general case of unsymmetric 
bending. Consider first a member with a vertical plane of symmetry, 
which is subjected to bending couples M and M9 acting in a plane 
forming an angle u with the vertical plane (Fig. 11.37). The couple 
vector M representing the forces acting on a given cross section will 

�

M My

Mz

y

z C

Fig. 11.38

M'z

z

y

Mz

x

y

Fig. 11.39

M'y
z

z

My

x

y

Fig. 11.40

M

x

z

�
y

M'

Fig. 11.37

form the same angle u with the horizontal z axis (Fig. 11.38). Resolv-
ing the vector M into component vectors Mz and My along the z and 
y axes, respectively, we write

 Mz 5 M cos u      My 5 M sin u (11.30)

Since the y and z axes are the principal centroidal axes of the cross 
section, we can use Eq. (11.16) to determine the stresses resulting 
from the application of either of the couples represented by Mz and 
My. The couple Mz acts in a vertical plane and bends the member in 
that plane (Fig. 11.39). The resulting stresses are

 sx 5 2  

Mz y

Iz
 (11.31)

where Iz is the moment of inertia of the section about the principal 
centroidal z axis. The negative sign is due to the fact that we have 
compression above the xz plane (y . 0) and tension below (y , 0). 
On the other hand, the couple My acts in a horizontal plane and 
bends the member in that plane (Fig. 11.40). The resulting stresses 
are found to be

 sx 5 1
My z

Iy
 (11.32)

where Iy is the moment of inertia of the section about the principal 
centroidal y axis, and where the positive sign is due to the fact that we 
have tension to the left of the vertical xy plane (z . 0) and compres-
sion to its right (z , 0). The distribution of the stresses caused by the 
original couple M is obtained by superposing the stress distributions 
defined by Eqs. (11.31) and (11.32), respectively. We have

 sx 5 2  

Mz y

Iz
1

My z

Iy
 (11.33)
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483We note that the expression obtained can also be used to com-
pute the stresses in an unsymmetric section, such as the one shown 
in Fig. 11.41, once the principal centroidal y and z axes have been 
determined. On the other hand, Eq. (11.33) is valid only if the condi-
tions of applicability of the principle of superposition are met. In 
other words, it should not be used if the combined stresses exceed 
the proportional limit of the material, or if the deformations caused 
by one of the component couples appreciably affect the distribution 
of the stresses due to the other.

Equation (11.33) shows that the distribution of stresses caused 
by unsymmetric bending is linear. However, as we have indicated 
earlier in this section, the neutral axis of the cross section will not, 
in general, coincide with the axis of the bending couple. Since the 
normal stress is zero at any point of the neutral axis, the equation 
defining that axis can be obtained by setting sx 5 0 in Eq. (11.33). 
We write

2  

Mz  y

Iz
1

Myz

Iy
5 0

or, solving for y and substituting for Mz and My from Eqs. (11.30),

 y 5 a Iz

Iy
 tan ub z (11.34)

The equation obtained is that of a straight line of slope m 5 (IzyIy) 
tan u. Thus, the angle f that the neutral axis forms with the z axis 
(Fig. 11.42) is defined by the relation

 tan f 5
Iz

Iy
 tan u (11.35)

where u is the angle that the couple vector M forms with the same 
axis. Since Iz and Iy are both positive, f and u have the same sign. 
Furthermore, we note that f . u when Iz . Iy, and f , u when 
Iz , Iy. Thus, the neutral axis is always located between the couple 
vector M and the principal axis corresponding to the minimum mo-
ment of inertia.

C

y

z

Fig. 11.41

M N
. A.

C

y

z

� �

Fig. 11.42

11.7 Unsymmetric Bending
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484  Pure Bending EXAMPLE 11.5 A 1600-lb ? in. couple is applied to a wooden beam, of 
rectangular cross section 1.5 by 3.5 in., in a plane forming an angle of 308 
with the vertical (Fig. 11.43). Determine (a) the maximum stress in the beam, 
(b) the angle that the neutral surface forms with the horizontal plane.

D

E

B

�1062 psi

1062 psi

N
eutral axis

A

C

Fig. 11.46

C

30�

3.5 in.

1.5 in.

1600 lb · in.

Fig. 11.43

N
. A

.
E

C

D

A B

y

z

�

Fig. 11.45

Mz

ED

C

A B

y

z

� � 30� 1.75 in.

0.75 in.

1600 lb · in.

Fig. 11.44

(a) Maximum Stress. The components Mz and My of the couple vector 
are first determined (Fig. 11.44):

 Mz 5 11600 lb ? in.2 cos 30° 5 1386 lb ? in.
 My 5 11600 lb ? in.2 sin 30° 5 800 lb ? in.

 We also compute the moments of inertia of the cross section with 
respect to the z and y axes:

 Iz 5 1
12 11.5 in.2  13.5 in.23 5 5.359 in4

 Iy 5 1
12 13.5 in.2  11.5 in.23 5 0.9844 in4

The largest tensile stress due to Mz occurs along AB and is

s1 5
Mzy

Iz
5
11386 lb ? in.2  11.75 in.2

5.359 in4 5 452.6 psi

The largest tensile stress due to My occurs along AD and is

s2 5
Myz

Iy
5
1800 lb ? in.2  10.75 in.2

0.9844 in4 5 609.5 psi

The largest tensile stress due to the combined loading, therefore, occurs at 
A and is

smax 5 s1 1 s2 5 452.6 1 609.5 5 1062 psi

The largest compressive stress has the same magnitude and occurs at E.

(b) Angle of Neutral Surface with Horizontal Plane. The angle f that 
the neutral surface forms with the horizontal plane (Fig. 11.45) is obtained 
from Eq. (11.35):

 tan f 5
Iz

Iy
 tan u 5

5.359 in4

0.9844 in4 tan 30° 5 3.143

 f 5 72.4°

The distribution of the stresses across the section is shown in Fig. 11.46. ◾
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48511.8 GENERAL CASE OF ECCENTRIC AXIAL LOADING
In Sec. 11.6 you analyzed the stresses produced in a member by an 
eccentric axial load applied in a plane of symmetry of the member. 
You will now study the more general case when the axial load is not 
applied in a plane of symmetry.

Consider a straight member AB subjected to equal and oppo-
site eccentric axial forces P and P9 (Fig. 11.47a), and let a and b 
denote the distances from the line of action of the forces to the 
principal centroidal axes of the cross section of the member. The 
eccentric force P is statically equivalent to the system consisting of 
a centric force P and of the two couples My and Mz of moments 
My 5 Pa and Mz 5 Pb represented in Fig. 11.47b. Similarly, the 
eccentric force P9 is equivalent to the centric force P9 and the cou-
ples M9y and M9z.

By virtue of Saint-Venant’s principle (Sec. 9.14), we can replace 
the original loading of Fig. 11.47a by the statically equivalent loading 
of Fig. 11.47b in order to determine the distribution of stresses in a 
section S of the member, as long as that section is not too close to 
either end of the member. Furthermore, the stresses due to the 
loading of Fig. 11.47b can be obtained by superposing the stresses 
corresponding to the centric axial load P and to the bending couples 
My and Mz, as long as the conditions of applicability of the principle 
of superposition are satisfied (Sec. 9.11). The stresses due to the 
centric load P are given by Eq. (8.1), and the stresses due to the 
bending couples by Eq. (11.33), since the corresponding couple vec-
tors are directed along the principal centroidal axes of the section. 
We write, therefore,

 sx 5
P
A

2
Mz y

Iz
1

My z

Iy
 (11.36)

where y and z are measured from the principal centroidal axes of the 
section. The relation obtained shows that the distribution of stresses 
across the section is linear.

In computing the combined stress sx from Eq. (11.36), care 
should be taken to correctly determine the sign of each of the three 
terms in the right-hand member, since each of these terms can be 
positive or negative, depending upon the sense of the loads P and 
P9 and the location of their line of action with respect to the principal 
centroidal axes of the cross section. Depending upon the geometry 
of the cross section and the location of the line of action of P and 
P9, the combined stresses sx obtained from Eq. (11.36) at various 
points of the section may all have the same sign, or some may be 
positive and others negative. In the latter case, there will be a line 
in the section, along which the stresses are zero. Setting sx 5 0 in 
Eq. (11.36), we obtain the equation of a straight line, which repre-
sents the neutral axis of the section:

Mz

Iz
 y 2

My

Iy
 z 5

P
A

B

A

S

x

C

abz

y

P'

P

P'

(a)

B

A

S

x

y

C

z

M'z
Mz

M'y

My

P

(b)

Fig. 11.47

11.8 General Case of Eccentric Axial Loading
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486  Pure Bending EXAMPLE 11.6 A vertical 4.80-kN load is applied as shown on a wooden 
post of rectangular cross section, 80 by 120 mm (Fig. 11.48). (a) Determine 
the stress at points A, B, C, and D. (b) Locate the neutral axis of the cross 
section.

(a) Stresses. The given eccentric load is replaced by an equivalent system 
consisting of a centric load P and two couples Mx and Mz represented by 

4.80 kN

35 mm

120 mm 80 mm

D

C

B

A

y

z x

Fig. 11.48

P � 4.80 kN

Mz � 12
192 N · m

y

x

Fig. 11.49

vectors directed along the principal centroidal axes of the section (Fig. 11.49). 
We have

 Mx 5 14.80 kN 2 140 mm 2 5 192 N ? m
 Mz 5 14.80 kN 2 160 mm 2 35 mm 2 5 120 N ? m

We also compute the area and the centroidal moments of inertia of the cross 
section:

 A 5 10.080 m 2 10.120 m 2 5 9.60 3 1023 m2

 Ix 5 1
12 10.120 m 2 10.080 m 23 5 5.12 3 1026 m4

 Iz 5 1
12 10.080 m 2 10.120 m 23 5 11.52 3 1026 m4

The stress s0 due to the centric load P is negative and uniform across the 
section. We have

s0 5
P
A

5
24.80 kN

9.60 3 1023 m2 5 20.5 MPa

The stresses due to the bending couples Mx and Mz are linearly distributed 
across the section, with maximum values equal, respectively, to

 s1 5
Mxzmax

Ix
5
1192 N ? m 2 140 mm 2

5.12 3 1026 m4 5 1.5 MPa

 s2 5
Mzxmax

Iz
5
1120 N ? m 2 160 mm 2

11.52 3 1026 m4 5 0.625 MPa

The stresses at the corners of the section are

sy 5 s0 6 s1 6 s2
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487where the signs must be determined from Fig. 11.49. Noting that the 
stresses due to Mx are positive at C and D, and negative at A and B, and 
that the stresses due to Mz are positive at B and C, and negative at A and 
D, we obtain

 sA 5 20.5 2 1.5 2 0.625 5 22.625 MPa
 sB 5 20.5 2 1.5 1 0.625 5 21.375 MPa
 sC 5 20.5 1 1.5 1 0.625 5 11.625 MPa
 sD 5 20.5 1 1.5 2 0.625 5 10.375 MPa

(b) Neutral Axis. We note that the stress will be zero at a point G 
between B and C, and at a point H between D and A (Fig. 11.50). Since 
the stress distribution is linear, we write

 
BG

80 mm
5

1.375
1.625 1 1.375

      BG 5 36.7 mm

 
HA

80 mm
5

2.625
2.625 1 0.375

      HA 5 70 mm

The neutral axis can be drawn through points G and H (Fig. 11.51).

80 mm

80 mm

0.375 MPa

1.625 MPa

	1.375 MPa

	2.625 MPa

C A
D

HGB

(a) (b)

Fig. 11.50

C

A

D

H

G
x

z

O

B

Neutral axis

Fig. 11.51

C

H

B
A


0.375 MPa

	2.625 MPa

Neutralaxis


1.625 MPa

	1.375 MPa

G

Fig. 11.52

The distribution of the stresses across the section is shown in Fig. 11.52. ◾

11.8 General Case of Eccentric Axial Loading
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488

SAMPLE PROBLEM 11.6

A horizontal load P is applied as shown to a short section of an S10 3 25.4 
rolled-steel member. Knowing that the compressive stress in the member 
is not to exceed 12 ksi, determine the largest permissible load P.

4.75 in.

1.5 in.

C

S10 � 25.4 P

SOLUTION

Properties of Cross Section. The following data are taken from Appendix B.

Area: A 5 7.45 in2

Section moduli: Sx 5 24.6 in3   Sy 5 2.89 in3

Force and Couple at C. We replace P by an equivalent force-couple sys-
tem at the centroid C of the cross section.

Mx 5 14.75 in.2P    My 5 11.5 in.2P
Note that the couple vectors Mx and My are directed along the principal 
axes of the cross section.

Normal Stresses. The absolute values of the stresses at points A, B, D, and 
E due, respectively, to the centric load P and to the couples Mx and My are

 s1 5
P
A

5
P

7.45 in2 5 0.1342P

 s2 5
Mx

Sx
5

4.75P

24.6 in3 5 0.1931P

 s3 5
My

Sy
5

1.5P

2.89 in3 5 0.5190P

Superposition. The total stress at each point is found by superposing the 
stresses due to P, Mx, and My. We determine the sign of each stress by 
carefully examining the sketch of the force-couple system.

sA 5 2s1 1 s2 1 s3 5 20.1342P 1 0.1931P 1 0.5190P 5 10.578P
sB 5 2s1 1 s2 2 s3 5 20.1342P 1 0.1931P 2 0.5190P 5 20.460P
sD 5 2s1 2 s2 1 s3 5 20.1342P 2 0.1931P 1 0.5190P 5 10.192P
sE 5 2s1 2 s2 2 s3 5 20.1342P 2 0.1931P 2 0.5190P 5 20.846P

Largest Permissible Load. The maximum compressive stress occurs at 
point E. Recalling that sall 5 212 ksi, we write

 sall 5 sE    212 ksi 5 20.846P  P 5 14.18 kips  b

C

y

x

4.66 in.

10 in.

y

xA

B

C

P

Mx

My

D

E
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PROBLEMS

489

 11.73 through 11.78 The couple M is applied to a beam of the cross 
section shown in a plane forming an angle b with the vertical. 
Determine the stress at (a) point A, (b) point B, (c) point D.

A

� � 30�

B

z

y

C

0.6 in.

0.4 in.

M � 400 lb · in.

D

0.6 in.

Fig. P11.73

A

� � 60�

B

z

y

16 mm

16 mm

40 mm 40 mm

M � 300 N · m

D
C

Fig. P11.74

A B

10 in.

0.3 in.

0.5 in.

0.5 in.

8 in.

C
M � 250 kip · in.

� � 30�

D

y

z

Fig. P11.75

A B

4 in.

1.6 in.2.4 in.

4.8 in.

C

M � 75 kip · in.

� � 75�

D

y

z

Fig. P11.76

A

y

z

B
3 in.

2 in.

2 in. 4 in.

3 in.

C

M � 10 kip · in.

� � 20�

D

Fig. P11.77

� � 30�

y

z

M � 100 N · m

A

B

r � 20 mm

C

D

Fig. P11.78
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490 Pure Bending  11.79 through 11.84 The couple M acts in a vertical plane and is 
applied to a beam oriented as shown. Determine (a) the angle that 
the neutral axis forms with the horizontal plane, (b) the maximum 
tensile stress in the beam.

84.6 mm

152 mm

20�

M � 1.5 kN · m

S150 
 18.6

A

E

BC

D

Fig. P11.79

165 mm

310 mm

15�

M � 16 kN · m

W310 
 38.7

A

B

C

D
E

Fig. P11.80

A

B

20�

0.572 in.

C8 
 11.5

8 in.

2.26 in.
C

M � 25 kip · in.

D

E

Fig. P11.81

A

B

C
M � 400 N · m

30�

D

E

5 mm

5 mm

18.57 mm

50 mm

50 mm

5 mm

z'

y'

Iy' � 281 
 103 mm4

Iz' � 176.9 
 103 mm4

Fig. P11.82

A

B

 in.

4 in.
4 in.

4 in.

0.859 in.

45�

C

M � 25 kip · in.

D
1
2

y'

z'

Iy' � 6.74 in4

Iz' � 21.4 in4

Fig. P11.83

A B
30 mm

30 mm

60 mm

23.33 mm

60 mm

25�

C D

E

F

y'

z'

M � 4 kN · m

Fig. P11.84
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491Problems 11.85 For the loading shown, determine (a) the stress at points A and B, 
(b) the point where the neutral axis intersects line ABD.

H

E

A

G

D

250 lb

500 lb

150 lb

4 in.

B

F
1.8 in.

Fig. P11.85

3 in.

5 in.
6 kips

6 kips

3 kips

A

D

B G

H

E

F

Fig. P11.87

a

75 mm

C

P

Fig. P11.89

 11.86 Solve Prob. 11.85 assuming that the magnitude of the force applied 
at G is increased from 250 lb to 400 lb.

 11.87 The tube shown has a uniform wall thickness of 0.5 in. For the 
given loading, determine (a) the stress at points A and B, (b) the 
point where the neutral axis intersects line ABD.

 11.88 Solve Prob. 11.87 assuming that the 6-kip force at point E is 
removed.

 11.89 An axial load P of magnitude 50 kN is applied as shown to a short 
section of a W150 3 24 rolled-steel member. Determine the larg-
est distance a for which the maximum compressive stress does not 
exceed 90 MPa.
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492 Pure Bending  11.90 An axial load P of magnitude 30 kN is applied as shown to a short 
section of a C150 3 12.2 rolled-steel channel. Determine the larg-
est distance a for which the maximum compressive stress does not 
exceed 60 MPa.

C

a
P � 30 kN

Fig. P11.90

 11.91 A horizontal load P is applied to the beam shown. Knowing that 
a 5 20 mm and that the tensile stress in the beam is not to exceed 
75 MPa, determine the largest permissible load P.

20

20

20
60

20

a

O

y

z
xP

Dimensions in mm

Fig. P11.91 and P11.92

 11.92 A horizontal load P of magnitude 100 kN is applied to the beam 
shown. Determine the largest distance a for which the maximum 
tensile stress in the beam does not exceed 75 MPa.
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493

REVIEW AND SUMMARY

This chapter was devoted to the analysis of members in pure bend-
ing. That is, we considered the stresses and deformation in members 
subjected to equal and opposite couples M and M9 acting in the 
same longitudinal plane (Fig. 11.53).

We first studied members possessing a plane of symmetry and sub-
jected to couples acting in that plane. Considering possible deforma-
tions of the member, we proved that transverse sections remain plane 
as a member is deformed [Sec. 11.3]. We then noted that a member 
in pure bending has a neutral surface along which normal strains and 
stresses are zero and that the longitudinal normal strain Px varies 
linearly with the distance y from the neutral surface:

 Px 5 2  

y
r

 (11.8)

where r is the radius of curvature of the neutral surface (Fig. 11.54). 
The intersection of the neutral surface with a transverse section is 
known as the neutral axis of the section.

For members made of a material that follows Hooke’s law [Sec. 11.4], 
we found that the normal stress sx varies linearly with the distance 
from the neutral axis (Fig. 11.55). Denoting by sm the maximum 
stress, we wrote

 sx 5 2  

y
c
sm (11.12)

where c is the largest distance from the neutral axis to a point in the 
section.

By setting the sum of the elementary forces, sxdA, equal to zero, we 
proved that the neutral axis passes through the centroid of the cross 
section of a member in pure bending. Then by setting the sum of 
the moments of the elementary forces equal to the bending moment, 
we derived the elastic flexure formula for the maximum normal 
stress

 sm 5
Mc
I

 (11.15)

where I is the moment of inertia of the cross section with respect to 
the neutral axis. We also obtained the normal stress at any distance 
y from the neutral axis:

 sx 5 2  

My

I
 (11.16)

Normal strain in bendingNormal strain in bending

A

B

M

M'

Fig. 11.53

y

y

 – y

A
J

D

O

C

B
K

E
xA� B�

�

� �

Fig. 11.54

Normal stress in elastic range

y

c

m�

x�
Neutral surface

Fig. 11.55

Elastic flexure formula
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494  Pure Bending Noting that I and c depend only on the geometry of the cross sec-
tion, we introduced the elastic section modulus

 S 5
I
c
 (11.17)

and then used the section modulus to write an alternative expression 
for the maximum normal stress:

 sm 5
M
S

 (11.18)

Recalling that the curvature of a member is the reciprocal of its 
radius of curvature, we expressed the curvature of the member as

 
1
r

5
M
EI

 (11.21)

Next we considered the bending of members made of several materi-
als with different moduli of elasticity [Sec. 11.5]. While transverse 
sections remain plane, we found that, in general, the neutral axis 
does not pass through the centroid of the composite cross section 
(Fig. 11.56). Using the ratio of the moduli of elasticity of the  materials, 

1

2

N. A.

x � – — 

x

�

� x�

�
y

2 � – —– � �
E2y

1 � – —– � �
E1y

y y

(a) (b) (c)

Fig. 11.56

C
N. A.

x � – —– �
My
I

yy

�x

Fig. 11.57

we obtained a transformed section corresponding to an equivalent 
member made entirely of one material. We then used the methods 
previously developed to determine the stresses in this equivalent 
homogeneous member (Fig. 11.57) and then again used the ratio of 
the moduli of elasticity to determine the stresses in the composite 
beam [Sample Probs. 11.3 and 11.4].

Elastic section modulus

Curvature of member

Members made of several materials
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495Review and SummaryIn Sec. 11.6, we studied the stresses in members loaded eccentrically 
in a plane of symmetry. Our analysis made use of methods developed 
earlier. We replaced the eccentric load by a force-couple system 
located at the centroid of the cross section (Fig. 11.58) and then 
superposed stresses due to the centric load and the bending couple 
(Fig. 11.59):

 sx 5
P
A

2
My

I
 (11.28)

Fig. 11.58

d

D
C

F
M

P'

A

y

C C

y

x� x� C

N.A.

y

x�+ =
Fig. 11.59

The bending of members of unsymmetric cross section was consid-
ered next [Sec. 11.7]. We found that the flexure formula may be 
used, provided that the couple vector M is directed along one of the 
principal centroidal axes of the cross section. When necessary we 
resolved M into components along the principal axes and superposed 
the stresses due to the component couples (Figs. 11.60 and 11.61).

 sx 5 2  

Mz y

Iz
1

My z

Iy
 (11.33)

M

x

z

�
y

M'

Fig. 11.60

 For the couple M shown in Fig. 11.62, we determined the 
orientation of the neutral axis by writing

 tan f 5
Iz

Iy
 tan u (11.35)

The general case of eccentric axial loading was considered in Sec. 11.8, 
where we again replaced the load by a force-couple system located at 
the centroid. We then superposed the stresses due to the centric load 
and two component couples directed along the principal axes:

 sx 5
P
A

2
Mz y

Iz
1

My z

Iy
 (11.36)

�

M My

Mz

y

z C

Fig. 11.61

M N
. A.

C

y

z

� �

Fig. 11.62

Eccentric axial loading

Unsymmetric bending

General eccentric axial loading
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496

REVIEW PROBLEMS

 11.93 Knowing that the hollow beam shown has a uniform wall thickness 
of 0.25 in., determine (a) the largest couple that can be applied 
without exceeding the allowable stress of 20 ksi, (b) the correspond-
ing radius of curvature of the beam. Use E 5 10.6 3 106 psi.

 11.94 (a) Using an allowable stress of 120 MPa, determine the largest 
couple M that can be applied to a beam of the cross section shown. 
(b) Solve part a assuming that the cross section of the beam is an 
80-mm square.

3.25 in.

3.25 in.

5 in.

M

Fig. P11.93

80 mm

80 mm

10 mm

10 mm

5 mm5 mm

M
C

Fig. P11.94

8 mm

8 mm

8 mm

 24 mm

Steel

Aluminum

Fig. P11.95

11.95 A steel bar (Es 5 210 GPa) and an aluminum bar (Ea 5 70 GPa) 
are bonded together to form the composite bar shown. Determine 
the maximum stress in (a) the aluminum and (b) the steel when 
the bar is bent about a horizontal axis with M 5 60 N ? m.
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497Review Problems 11.96 A single vertical force P is applied to a short steel post as shown. 
Gages located at A, B, and C indicate the following strains: PA 5
2500 m, PB 5 21000 m, and PC 5 2200 m. Knowing that E 5
29 3 106 psi, determine (a) the magnitude of P, (b) the line of 
action of P, (c) the corresponding strain at the hidden edge of the 
post, where x 5 22.5 in. and z 5 21.5 in.

P

C

B

A

y

z x

3 in.
5 in.

Fig. P11.96

11.98 In order to increase corrosion resistance, a 0.08-in.-thick cladding 
of aluminum has been added to a steel bar as shown. The modulus 
of elasticity is E 5 29 3 106 psi for steel and E 5 10.4 3 106 psi 
for aluminum. For a bending moment of 12 kip ? in., determine 
(a) the maximum stress in the steel, (b) the maximum stress in the 
aluminum, (c) the radius of curvature of the bar.

10 mm 10 mm

50 mm

10 mm

150 mm 150 mm

A D

B C

10 kN 10 kN

250 mm
50 mm

Fig. P11.97

1.84 in.
2 in.

M

1.5 in.
1.34 in.

Fig. P11.98

 11.97 Two vertical forces are applied to a beam of the cross section 
shown. Determine the maximum tensile and compressive stresses 
in portion BC of the beam.
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498 Pure Bending

 11.100 The four forces shown are applied to a rigid plate supported by a 
solid steel post of radius a. Determine the maximum stress in the 
post when (a) all four forces are applied, (b) the force at D is 
removed, (c) the forces at C and D are removed.

E
D

M � 8 kN · m

y'

z'

W200 
 19.3

5�

A
B

C

Fig. P11.101

 11.101 A couple M of moment 8 kN ? m acting in a vertical plane is 
applied to a W200 3 19.3 rolled-steel beam as shown. Determine 
(a) the angle that the neutral axis forms with the horizontal plane, 
(b) the maximum stress in the beam.

10 in.

6 in.

 in.3
82 


 in.3
82 


Fig. P11.99

x

y

z

PP

P P

A
C

B

D
a

Fig. P11.100

 11.99 A 6 3 10-in. timber beam has been strengthened by bolting to it the 
steel straps shown. The modulus of elasticity is E 5 1.5 3 106 psi for 
the wood and E 5 30 3 106 psi for the steel. Knowing that the beam 
is bent about a horizontal axis by a couple of moment 200 kip ? in., 
determine the maximum stress in (a) the wood, (b) the steel.
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499Review Problems

10 mm

20 mm

20 mm

10 mm

M � 300 N · m

�

A

B

y

z

Fig. P11.102 and P11.103

b

d

M'
M

Fig. P11.104

 11.103 The couple M is applied to a beam of the cross section shown in 
a plane forming an angle b 5 158 with the vertical. Determine (a) 
the stress at point A, (b) the stress at point B, (c) the angle that 
the neutral axis forms with the horizontal.

 11.104 A couple M will be applied to a beam of rectangular cross section 
that is to be sawed from a log of circular cross section. Determine 
the ratio dyb for which (a) the maximum stress sm will be as 
small as possible, (b) the radius of curvature of the beam will be 
maximum.

 11.102 The couple M, which acts in a vertical plane (b 5 0), is applied 
to an aluminum beam of the cross section shown. Determine (a) 
the stress at point A, (b) the stress at point B, (c) the radius of 
curvature of the beam. Use E 5 72 GPa.

bee80156_ch11_442-499.indd Page 499  10/8/09  4:32:31 AM user-s173bee80156_ch11_442-499.indd Page 499  10/8/09  4:32:31 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-11/Volumes/MHDQ-New/MHDQ152/MHDQ152-11



The beams supporting the multiple 

overhead cranes system shown in this 

picture are subjected to transverse loads 

causing the beams to bend. The normal 

stresses resulting from such loadings will 

be determined in this chapter.
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12.1  INTRODUCTION
This chapter and most of the next one will be devoted to the analysis 
and the design of beams, i.e., structural members supporting loads 
applied at various points along the member. Beams are usually long, 
straight prismatic members, as shown in the photo on the previous 
page. Steel and aluminum beams play an important part in both struc-
tural and mechanical engineering. Timber beams are widely used in 
home construction (Photo 12.1). In most cases, the loads are perpen-
dicular to the axis of the beam. Such a transverse loading causes only 
bending and shear in the beam. When the loads are not at a right 
angle to the beam, they also produce axial forces in the beam.

 Chapter 12 Analysis and Design 
of Beams for Bending

 12.1 Introduction
 12.2 Shear and Bending-Moment 

Diagrams
 12.3 Relations among Load, Shear, 

and Bending Moment
 12.4 Design of Prismatic Beams for 

Bending

 The transverse loading of a beam may consist of concentrated 
loads P1, P2, . . . , expressed in newtons, pounds, or their multiples, 
kilonewtons and kips (Fig. 12.1a), of a distributed load w, expressed in 
N/m, kN/m, lb/ft, or kips/ft (Fig. 12.1b), or of a combination of both. 
When the load w per unit length has a constant value over part of the 
beam (as between A and B in Fig. 12.1b), the load is said to be uni-
formly distributed over that part of the beam.
 Beams are classified according to the way in which they are sup-
ported. Several types of beams frequently used are shown in Fig. 12.2. The 
distance L shown in the various parts of the figure is called the span. Note 
that the reactions at the supports of the beams in parts a, b, and c of the 

Photo 12.1

CB

P1

(a) Concentrated loads

w

P2

A D

(b) Distributed load

A
B

C

Fig. 12.1

L

(a) Simply supported beam

Statically
Determinate
Beams

Statically
Indeterminate
Beams

L2L1

(d) Continuous beam

L

(b) Overhanging beam

L

Beam fixed at one end
and simply supported

at the other end

(e) 

L

(c) Cantilever beam

L

( f ) Fixed beam

Fig. 12.2
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503figure involve a total of only three unknowns and, therefore, can be deter-
mined by the methods of statics. Such beams are said to be statically deter-
minate and will be discussed in this chapter and the next. On the other 
hand, the reactions at the supports of the beams in parts d, e, and f of Fig. 
12.2 involve more than three unknowns and cannot be determined by the 
methods of statics alone. The properties of the beams with regard to their 
resistance to deformations must be taken into consideration. Such beams 
are said to be statically indeterminate and their analysis will be postponed 
until Chap. 15, where deformations of beams will be discussed.
 Sometimes two or more beams are connected by hinges to form a 
single continuous structure. Two examples of beams hinged at a point H 
are shown in Fig. 12.3. It will be noted that the reactions at the supports 
involve four unknowns and cannot be determined from the free-body 
diagram of the two-beam system. They can be determined, however, by 
considering the free-body diagram of each beam separately; six unknowns 
are involved (including two force components at the hinge), and six 
equations are  available.

12.1 Introduction

B
H

(a)

A

C
B

H

(b)

A

Fig. 12.3

B

C

A

w

a

P1 P2

(a)

B
C

C

A

w
P1

RA RB

P2

(b)

A

wa
P1

V

M

RA
(c)

Fig. 12.4

 It was shown in Sec. 11.1 that if we pass a section through a 
point C of a cantilever beam supporting a concentrated load P at its 
end (Fig. 11.4), the internal forces in the section are found to consist 
of a shear force P9 equal and opposite to the load P and a bending 
couple M of moment equal to the moment of P about C. A similar situ-
ation prevails for other types of supports and loadings. Consider, for 
example, a simply supported beam AB carrying two concentrated loads 
and a uniformly distributed load (Fig. 12.4a). To determine the internal 
forces in a section through point C, we first draw the free-body diagram 
of the entire beam to obtain the reactions at the supports (Fig. 12.4b). 
Passing a section through C, we then draw the free-body diagram of 
AC (Fig. 12.4c), from which we determine the shear force V and the 
bending couple M.
 The bending couple M creates normal stresses in the cross section, 
while the shear force V creates shearing stresses in that section. In most 
cases the dominant criterion in the design of a beam for strength is the 
maximum value of the normal stress in the beam. The determination of 
the normal stresses in a beam will be the subject of this chapter, while 
shearing stresses will be discussed in Chap. 13.
 Since the distribution of the normal stresses in a given section 
depends only upon the value of the bending moment M in that section 
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504  Analysis and Design of Beams for Bending and the geometry of the section,† the elastic flexure formulas derived 
in Sec. 11.4 can be used to determine the maximum stress, as well as 
the stress at any given point, in the section. We write‡

 
sm 5

0M 0 c
I

    sx 5 2
My

I
 (12.1, 12.2)

where I is the moment of inertia of the cross section with respect to 
a centroidal axis perpendicular to the plane of the couple, y is the 
distance from the neutral surface, and c is the maximum value of that 
distance (Fig. 11.11). We also recall from Sec. 11.4 that, introducing 
the  elastic section modulus S 5 Iyc of the beam, the maximum value 
sm of the normal stress in the section can be expressed as

 
sm 5

0M 0
S

 (12.3)

The fact that sm is inversely proportional to S underlines the importance 
of selecting beams with a large section modulus. Section moduli of vari-
ous rolled-steel shapes are given in App. B, while the section modulus 
of a rectangular shape can be expressed, as shown in Sec. 11.4, as

 S 5 1
6 bh2 (12.4) 

where b and h are, respectively, the width and the depth of the cross 
section.
 Equation (12.3) also shows that, for a beam of uniform cross sec-
tion, sm is proportional to |M|: Thus, the maximum value of the normal 
stress in the beam occurs in the section where |M| is largest. It follows 
that one of the most important parts of the design of a beam for a given 
loading condition is the determination of the location and magnitude of 
the largest bending moment.
 This task is made easier if a bending-moment diagram is drawn, 
i.e., if the value of the bending moment M is determined at various 
points of the beam and plotted against the distance x measured from 
one end of the beam. It is further facilitated if a shear diagram is drawn 
at the same time by plotting the shear V against x.
 The sign convention to be used to record the values of the shear and 
bending moment will be discussed in Sec. 12.2. The values of V and M 
will then be obtained at various points of the beam by drawing free-body 
diagrams of successive portions of the beam. In Sec. 12.3 relations among 
load, shear, and bending moment will be derived and used to obtain the 
shear and bending-moment diagrams. This approach facilitates the deter-
mination of the largest absolute value of the bending moment and, thus, 
the determination of the maximum normal stress in the beam.
 In Sec. 12.4 you will learn to design a beam for bending, i.e., so 
that the maximum normal stress in the beam will not exceed its allow-
able value. As indicated earlier, this is the dominant criterion in the 
design of a beam.

†It is assumed that the distribution of the normal stresses in a given cross section is not 
affected by the deformations caused by the shearing stresses.
‡We recall from Sec. 11.2 that M can be positive or negative, depending upon whether the 
concavity of the beam at the point considered faces upward or downward. Thus, in the case 
considered here of a transverse loading, the sign of M can vary along the beam. On the 
other hand, since sm is a positive quantity, the absolute value of M is used in Eq. (12.1).
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50512.2  SHEAR AND BENDING-MOMENT DIAGRAMS
As indicated in Sec. 12.1, the determination of the maximum abso-
lute values of the shear and of the bending moment in a beam are 
greatly facilitated if V and M are plotted against the distance x mea-
sured from one end of the beam. Besides, as you will see in Chap. 15, 
the knowledge of M as a function of x is essential to the determina-
tion of the deflection of a beam.
 In the examples and sample problems of this section, the shear 
and bending-moment diagrams will be obtained by determining the 
values of V and M at selected points of the beam. These values will 
be found in the usual way, i.e., by passing a section through the point 
where they are to be determined (Fig. 12.5a) and considering the 
equilibrium of the portion of beam located on either side of the sec-
tion (Fig. 12.5b). Since the shear forces V and V9 have opposite 
senses, recording the shear at point C with an up or down arrow 
would be meaningless, unless we indicated at the same time which 
of the free bodies AC and CB we are considering. For this reason, 
the shear V will be recorded with a sign: a plus sign if the shearing 
forces are directed as shown in Fig. 12.5b, and a minus sign other-
wise. A similar convention will apply for the bending moment M. It 
will be considered as positive if the bending couples are directed as 
shown in that figure, and negative otherwise.† Summarizing the sign 
conventions we have presented, we state:
 The shear V and the bending moment M at a given point of a 
beam are said to be positive when the internal forces and couples act-
ing on each portion of the beam are directed as shown in Fig. 12.6a.
 These conventions can be more easily remembered if we 
note that

 1.  The shear at any given point of a beam is positive when the 
external forces (loads and reactions) acting on the beam tend 
to shear off the beam at that point as indicated in Fig. 12.6b.

 2.  The bending moment at any given point of a beam is positive 
when the external forces acting on the beam tend to bend the 
beam at that point as indicated in Fig. 12.6c.

 It is also of help to note that the situation described in Fig. 12.6, 
in which the values of the shear and of the bending moment are 
positive, is precisely the situation that occurs in the left half of a 
simply supported beam carrying a single concentrated load at its mid-
point. This particular case is fully discussed in the next example.

B
C

A

w

x

P1 P2

(a)

C

B

C

A

wP1

RA

(b)V

M

P2

RB

M'

V'

Fig. 12.5

V

M

M'

V'

(a)  Internal forces
(positive shear and positive bending moment)

(b)  Effect of external forces
(positive shear)

(c)  Effect of external forces
(positive bending moment)

Fig. 12.6

†Note that this convention is the same that we used earlier in Sec. 11.2.

12.2 Shear and Bending-Moment Diagrams

bee80156_ch12_500-535.indd Page 505  10/8/09  4:35:19 AM user-s173bee80156_ch12_500-535.indd Page 505  10/8/09  4:35:19 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-12/Volumes/MHDQ-New/MHDQ152/MHDQ152-12



506  Analysis and Design of Beams for Bending EXAMPLE 12.1 Draw the shear and bending-moment diagrams for a 
simply supported beam AB of span L subjected to a single concentrated 
load P at it midpoint C (Fig. 12.7).

B
C

A

P

L1
2 L1

2

Fig. 12.7

 We first determine the reactions at the supports from the free-body 
diagram of the entire beam (Fig. 12.8a); we find that the magnitude of each 
reaction is equal to Py2.
 Next we cut the beam at a point D between A and C and draw the 
free-body diagrams of AD and DB (Fig. 12.8b). Assuming that shear and 
bending moment are positive, we direct the internal forces V and V¿ and 
the internal couples M and M¿ as indicated in Fig. 12.6a. Considering 
the free body AD and writing that the sum of the vertical components 
and the sum of the moments about D of the forces acting on the free 
body are zero, we find V 5 1Py2 and M 5 1Pxy2. Both the shear and 
the bending moment are therefore positive; this may be checked by 
observing that the reaction at A tends to shear off and to bend the beam 
at D as indicated in Figs. 12.6b and c. We now plot V and M between A 
and C (Figs. 12.8d and e); the shear has a constant value V 5 Py2, while 
the bending moment increases linearly from M 5 0 at x 5 0 to M 5 PLy4 
at x 5 Ly2.
 Cutting, now, the beam at a point E between C and B and considering 
the free body EB (Fig. 12.8c), we write that the sum of the vertical com-
ponents and the sum of the moments about E of the forces acting on the 
free body are zero. We obtain V 5 2Py2 and M 5 P 1L 2 x2y2. The shear 
is therefore negative and the bending moment positive; this can be checked 
by observing that the reaction at B bends the beam at E as indicated in Fig. 
12.6c but tends to shear it off in a manner opposite to that shown in Fig. 12.6b. 
We can complete, now, the shear and bending-moment diagrams of Figs. 
12.8d and e; the shear has a constant value V 5 2Py2 between C and B, 
while the bending moment decreases linearly from M 5 PLy4 at x 5 Ly2 
to M 5 0 at x 5 L. ◾

 We note from the foregoing example that, when a beam is 
subjected only to concentrated loads, the shear is constant between 
loads and the bending moment varies linearly between loads. In 
such situations, therefore, the shear and bending-moment dia-
grams can easily be drawn, once the values of V and M have been 
obtained at sections selected just to the left and just to the right 
of the points where the loads and reactions are applied (see Sam-
ple Prob. 12.1).
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507EXAMPLE 12.2 Draw the shear and bending-moment diagrams for a 
 cantilever beam AB of span L supporting a uniformly distributed load w 
(Fig. 12.9).
 We cut the beam at a point C between A and B and draw the free-
body diagram of AC (Fig. 12.10a), directing V and M as indicated in Fig. 
12.6a. Denoting by x the distance from A to C and replacing the distributed 
load over AC by its resultant wx applied at the midpoint of AC, we write

 1x©Fy 5 0 :       2wx 2 V 5 0      V 5 2wx

 1l oMC 5 0:     wx a x
2
b 1 M 5 0     M 5 2

1
2

 wx2

We note that the shear diagram is represented by an oblique straight line 
(Fig. 12.10b) and the bending-moment diagram by a parabola (Fig. 12.10c). 
The maximum values of V and M both occur at B, where we have

VB 5 2wL    MB 5 21
2 wL2 ◾

L

A B

w

Fig. 12.9

12.2 Shear and Bending-Moment Diagrams
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SAMPLE PROBLEM 12.1

For the timber beam and loading shown, draw the shear and bending-moment 
diagrams and determine the maximum normal stress due to bending.

SOLUTION

Reactions. Considering the entire beam as a free body, we find

RB 5 46  kN x    RD 5 14  kN x

Shear and Bending-Moment Diagrams. We first determine the internal 
forces just to the right of the 20-kN load at A. Considering the stub of beam 
to the left of section 1 as a free body and assuming V and M to be positive 
(according to the standard convention), we write

 1x©Fy 5 0 :   220 kN 2 V1 5 0    V1 5 220 kN
 1l©M1 5 0 :   120 kN 2 10 m 2 1 M1 5 0     M1 5 0

 We next consider as a free body the portion of beam to the left of 
section 2 and write

 1x©Fy 5 0 :   220 kN 2 V2 5 0    V2 5 220 kN
 1l©M2 5 0 :   120 kN 2 12.5 m 2 1 M2 5 0     M2 5 250 kN ? m

 The shear and bending moment at sections 3, 4, 5, and 6 are deter-
mined in a similar way from the free-body diagrams shown. We obtain

 V3 5 126 kN     M3 5 250 kN ? m
 V4 5 126 kN     M4 5 128 kN ? m
 V5 5 214 kN     M5 5 128 kN ? m
 V6 5 214 kN     M6 5 0

For several of the latter sections, the results may be more easily obtained by 
considering as a free body the portion of the beam to the right of the section. 
For example, for the portion of the beam to the right of section 4, we have

 1x©Fy 5 0 :   V4 2 40 kN 1 14 kN 5 0      V4 5 126 kN
 1l©M4 5 0 :   2M4 1 114 kN 2 12 m 2 5 0     M4 5 128 kN ? m

 We can now plot the six points shown on the shear and bending-
moment diagrams. As indicated earlier in this section, the shear is of constant 
value between concentrated loads, and the bending moment varies linearly; 
we obtain therefore the shear and bending-moment diagrams shown.

Maximum Normal Stress. It occurs at B, where |M| is largest. We use 
Eq. (12.4) to determine the section modulus of the beam:

S 5 1
6 bh2 5 1

6 10.080 m 2 10.250 m 22 5 833.33 3 1026  m3

Substituting this value and 0M 0 5 0MB 0 5 50 3 103 N ? m into Eq. (12.3):

sm 5
0MB 0

S
5
150 3 103 N ? m 2

833.33 3 1026 5 60.00 3 106 Pa

Maximum normal stress in the beam 5 60.0 MPa ◀
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509

SAMPLE PROBLEM 12.2

The structure shown consists of a W10 3 112 rolled-steel beam AB and 
of two short members welded together and to the beam. (a) Draw the 
shear and bending-moment diagrams for the beam and the given loading. 
(b) Determine the maximum normal stress in sections just to the left and 
just to the right of point D.

SOLUTION

Equivalent Loading of Beam. The 10-kip load is replaced by an equivalent 
force-couple system at D. The reaction at B is determined by considering 
the beam as a free body.

a. Shear and Bending-Moment Diagrams
From A to C. We determine the internal forces at a distance x from point 
A by considering the portion of beam to the left of section 1. That part of 
the distributed load acting on the free body is replaced by its resultant, and 
we write

 1x©Fy 5 0 :   23 x 2 V 5 0    V 5 23 x kips
 1l©M1 5 0 :   3 x112 x2 1 M 5 0     M 5 21.5 x2 kip ? ft

Since the free-body diagram shown can be used for all values of x smaller 
than 8 ft, the expressions obtained for V and M are valid in the region 0 , 
x , 8 ft.

From C to D. Considering the portion of beam to the left of section 2 
and again replacing the distributed load by its resultant, we obtain

 1x©Fy 5 0 :     224 2 V 5 0    V 5 224 kips
 1l©M2 5 0 :      24 1x 2 4 2 1 M 5 0     M 5 96 2 24 x    kip ? ft

These expressions are valid in the region 8 ft , x , 11 ft.

From D to B. Using the position of beam to the left of section 3, we 
obtain for the region 11 ft , x , 16 ft

V 5 234 kips    M 5 226 2 34 x    kip ? ft

The shear and bending-moment diagrams for the entire beam can now be 
plotted. We note that the couple of moment 20 kip ? ft applied at point D 
introduces a discontinuity into the bending-moment diagram.

b. Maximum Normal Stress to the Left and Right of Point D. From App. B 
we find that for the W10 3 112 rolled-steel shape, S 5 126 in3 about the 
X-X axis.

To the left of D: We have 0M 0 5 168 kip ? ft 5 2016 kip ? in. Substitut-
ing for 0M 0  and S into Eq. (12.3), we write

 
sm 5

0M 0
S

5
2016 kip ? in.

126 in3 5 16.00 ksi sm 5 16.00 ksi ◀

To the right of D: We have 0M 0 5 148 kip ? ft 5 1776 kip ? in. Substi-
tuting for 0M 0  and S into Eq. (12.3), we write

 
sm 5

0M 0
S

5
1776 kip ? in.

126 in3 5 14.10 ksi sm 5 14.10 ksi ◀
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PROBLEMS

510

 12.1 through 12.4 For the beam and loading shown, (a) draw the 
shear and bending-moment diagrams, (b) determine the equations 
of the shear and bending-moment curves.

12.5 and 12.6 Draw the shear and bending-moment diagrams for 
the beam and loading shown, and determine the maximum abso-
lute value (a) of the shear, (b) of the bending moment.

12.7 and 12.8 Draw the shear and bending-moment diagrams for 
the beam and loading shown, and determine the maximum abso-
lute value (a) of the shear, (b) of the bending moment.
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Fig. P12.5

BA C D E

200 N 200 N 200 N500 N

300 300225 225

Dimensions in mm

Fig. P12.6

BA
C

3 kips/ft 30 kips

3 ft6 ft

Fig. P12.7

B
A

C D

4 ft 4 ft 4 ft

2 kips/ft 15 kips

Fig. P12.8
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511Problems

 12.11 and 12.12 Assuming the upward reaction of the ground to be 
uniformly distributed, draw the shear and bending-moment dia-
grams for the beam AB and determine the maximum absolute 
value (a) of the shear, (b) of the bending moment.

 12.13 and 12.14 For the beam and loading shown, determine the maxi-
mum normal stress due to bending on a transverse section at C.

 12.15 For the beam and loading shown, determine the maximum normal 
stress due to bending on section a-a.

 12.9 and 12.10 Draw the shear and bending-moment diagrams for 
the beam and loading shown, and determine the maximum abso-
lute value (a) of the shear, (b) of the bending moment.

BA
C D E

300 200 200 300
Dimensions in mm

3 kN

450 N · m

3 kN

Fig. P12.9

400 lb 1600 lb 400 lb

12 in. 12 in. 12 in. 12 in.

8 in.

8 in.
C

A
D E F

G

B

Fig. P12.10

B
C D E

10 kN/m36 kN

A

0.9 m 0.9 m 0.9 m 0.9 m

10 kN/m

Fig. P12.11

BA
C D

3 kips3 kips

4.5 ft
1.5 ft1.5 ft

Fig. P12.12

750 lb 900 lb
1.5 in.

9.5 in.

3 ft

A
C D

B

4 ft
2 ft

Fig. P12.13

B
A

C

3 kN/m

1.5 m 1.5 m 2.2 m

100 mm

200 mm

10 kN

Fig. P12.14

BA
a

a

30 kN 50 kN 50 kN 30 kN

2 m

5 @ 0.8 m � 4 m

W250 � 67

Fig. P12.15
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512  Analysis and Design of Beams for Bending  12.16 For the beam and loading shown, determine the maximum normal 
stress due to bending on a transverse section at C.

 12.17 and 12.18 For the beam and loading shown, determine the maxi-
mum normal stress due to bending on a transverse section at C.

 12.19 and 12.20 Draw the shear and bending-moment diagrams for 
the beam and loading shown, and determine the maximum normal 
stress due to bending.

 12.21 and 12.22 Draw the shear and bending-moment diagrams for 
the beam and loading shown, and determine the maximum normal 
stress due to bending.

BA
C

30 kips
6 kips/ft

D E

2.5 ft

2.5 ft2.5 ft
7.5 ft

W18 � 76

30 kips

Fig. P12.16

BA
C D E F G

25
kN

25
kN

10
kN

10
kN

10
kN

6 @ 0.375 m � 2.25 m

S200 � 27.4

Fig. P12.17

BA
C

8 kN

1.5 m 2.1 m

W310 � 60

3 kN/m

Fig. P12.18

BA
C D E

25 kips 25 kips 25 kips

2 ft1 ft 2 ft
6 ft

S12 � 35

Fig. P12.19

150 kN

A B
C D E

150 kN
90 kN/m

W460 � 113

0.8 m 0.8 m
0.8 m

2.4 m

Fig. P12.20

BA
C D

5 ft 5 ft8 ft

W14 � 22

10 kips5 kips

Fig. P12.21

9 kN/m
30 kN · m

BA
C D

2 m 2 m 2 m

W200 � 22.5

Fig. P12.22
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513Problems 12.23 Draw the shear and bending-moment diagrams for the beam and 
loading shown, and determine the maximum normal stress due to 
bending.

 12.27 Determine (a) the distance a for which the maximum absolute 
value of the bending moment in the beam is as small as possible, 
(b) the corresponding maximum normal stress due to bending. 
(See hint of Prob. 12.25.)

 12.24 Knowing that W 5 3 kips, draw the shear and bending-moment 
diagrams for beam AB and determine the maximum normal stress 
due to bending.

 12.25 Determine (a) the distance a for which the maximum absolute value 
of the bending moment in the beam is as small as possible, (b) the 
corresponding maximum normal stress due to bending. (Hint: Draw 
the bending-moment diagram, and equate the absolute values of the 
largest positive and negative bending moments obtained.)

 12.26 Determine (a) the distance a for which the maximum absolute 
value of the bending moment in the beam is as small as possible, 
(b) the corresponding maximum normal stress due to bending. 
(See hint of Prob. 12.25.)

 12.28 A solid steel rod of diameter d is supported as shown. Knowing 
that for steel g 5 490 lb/ft3, determine the smallest diameter d 
that can be used if the normal stress due to bending is not to 
exceed 4 ksi.

Hinge

8 ft

2 ft

5 ft 5 ft

CB
A E

D

4.8 kips/ft 32 kips

W12 � 40

Fig. P12.23

B
C D E  

A

2 kips2 kips

W12 � 16

3 ft 3 ft 3 ft 3 ft

W

Fig. P12.24

BA

a

C D

20 kN 40 kN

W360 � 64

2.4 m
1.6 m

Fig. P12.25

BA

a

C D

500 kN 500 kN 12 mm

18 mm

500 mm500 mm

Fig. P12.26

BA

a 1.5 ft 1.2 ft 0.9 ft

C D E

1.2 kips
1.2 kips0.8 kips

S3 � 5.7

Fig. P12.27 B

d

A

L � 10 ft

Fig. P12.28
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514  Analysis and Design of Beams for Bending 12.3  RELATIONS AMONG LOAD, SHEAR, 
AND BENDING MOMENT

When a beam carries more than two or three concentrated loads, or 
when it carries distributed loads, the method outlined in Sec. 12.2 
for plotting shear and bending moment can prove quite cumber-
some. The construction of the shear diagram and, especially, of the 
bending-moment diagram will be greatly facilitated if certain rela-
tions existing among load, shear, and bending moment are taken into 
consideration.
 Let us consider a simply supported beam AB carrying a distrib-
uted load w per unit length (Fig. 12.11a), and let C and C9 be two 
points of the beam at a distance ¢x from each other. The shear and 
bending moment at C will be denoted by V and M, respectively, and 
will be assumed positive; the shear and bending moment at C ¿ will 
be denoted by V 1 ¢V and M 1 ¢M.
 We now detach the portion of beam CC9 and draw its free-
body diagram (Fig. 12.11b). The forces exerted on the free body 
include a load of magnitude w ¢x and internal forces and couples 
at C and C9. Since shear and bending moment have been assumed 
positive, the forces and couples will be directed as shown in the 
figure.

Relations between Load and Shear. Writing that the sum of 
the vertical components of the forces acting on the free body CC ¿ 
is zero, we have

1x©Fy 5 0 :  V 2 1V 1 ¢V 2 2 w ¢x 5 0
 ¢V 5 2w ¢x

Dividing both members of the equation by ¢x and then letting ¢x 
approach zero, we obtain

 
dV
dx

5 2w (12.5) 

�x

�x

w �x

w

C C'

(b)

1
2

V

M M � �M

V � �V
BA

C

w

D

�x

C'

x

(a)

Fig. 12.11
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51512.3 Relations among Load, Shear, and 
Bending Moment

Equation (12.5) indicates that, for a beam loaded as shown in Fig. 
12.11a, the slope d Vydx of the shear curve is negative; the numerical 
value of the slope at any point is equal to the load per unit length 
at that point.
 Integrating (12.5) between points C and D, we write

 
VD 2 VC 5 2 #

xD

xC

w dx (12.6) 

 VD 2 VC 5 2 1area under load curve between C and D 2 (12.69)

Note that this result could also have been obtained by considering 
the equilibrium of the portion of beam CD, since the area under the 
load curve represents the total load applied between C and D.
 It should be observed that Eq. (12.5) is not valid at a point 
where a concentrated load is applied; the shear curve is discontinu-
ous at such a point, as seen in Sec. 12.2. Similarly, Eqs. (12.6) and 
(12.69) cease to be valid when concentrated loads are applied 
between C and D, since they do not take into account the sudden 
change in shear caused by a concentrated load. Equations (12.6) 
and (12.69), therefore, should be applied only between successive 
concentrated loads.

Relations between Shear and Bending Moment. Returning 
to the free-body diagram of Fig. 12.11b, and writing now that the 
sum of the moments about C9 is zero, we have

1loMC¿ 5 0 :   1M 1 ¢M 2 2 M 2 V ¢x 1 w ¢x 
¢x
2

5 0

 
¢M 5 V ¢x 2

1
2

 w 1¢x22
Dividing both members of the equation by Dx and then letting Dx 
approach zero, we obtain

 
dM
dx

5 V (12.7) 

Equation (12.7) indicates that the slope dMydx of the bending-
moment curve is equal to the value of the shear. This is true at any 
point where the shear has a well-defined value, i.e., at any point 
where no concentrated load is applied. Equation (12.7) also shows 
that V 5 0 at points where M is maximum. This property facilitates 
the determination of the points where the beam is likely to fail under 
bending.
 Integrating (12.7) between points C and D, we write

 
MD 2 MC 5 #

xD

xC

V dx (12.8)

 MD 2 MC 5 area under shear curve between C and D  (12.89)
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516  Analysis and Design of Beams for Bending Note that the area under the shear curve should be considered posi-
tive where the shear is positive and negative where the shear is nega-
tive. Equations (12.8) and (12.89) are valid even when concentrated 
loads are applied between C and D, as long as the shear curve has 
been correctly drawn. The equations cease to be valid, however, if a 
couple is applied at a point between C and D, since they do not take 
into account the sudden change in bending moment caused by a 
couple (see Sample Prob. 12.6).

EXAMPLE 12.3 Draw the shear and bending-moment diagrams for the 
simply supported beam shown in Fig. 12.12 and determine the maximum 
value of the bending moment.

B

w

A

L

B

w

A

RB� wL1
2RA� wL1

2

Fig. 12.12

 From the free-body diagram of the entire beam, we determine the 
magnitude of the reactions at the supports.

RA 5 RB 5 1
2wL

Next, we draw the shear diagram. Close to the end A of the beam, the shear 
is equal to RA, that is, to 1

2wL, as we can check by considering as a free 
body a very small portion of the beam. Using Eq. (12.6), we then determine 
the shear V at any distance x from A; we write

V 2 VA 5 2 #
x

0

w dx 5 2wx

V 5 VA 2 wx 5 1
2 wL 2 wx 5 w 112L 2 x2

The shear curve is thus an oblique straight line which crosses the x axis at 
x 5 Ly2 (Fig. 12.13a). Considering, now, the bending moment, we first 
observe that MA 5 0. The value M of the bending moment at any distance 
x from A may then be obtained from Eq. (12.8); we have

M 2 MA 5 #
x

0

V dx

M 5 #
x

0

w 112L 2 x2  dx 5 1
2  

w 1L x 2 x22
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51712.3 Relations among Load, Shear, and 
Bending Moment

The bending-moment curve is a parabola. The maximum value of the bend-
ing moment occurs when x 5 Ly2, since V (and thus dMydx) is zero for 
that value of x. Substituting x 5 Ly2 in the last equation, we obtain 
Mmax 5 wL2y8 (Fig. 12.13b). ◾

 In most engineering applications, one needs to know the 
value of the bending moment only at a few specific points. Once 
the shear diagram has been drawn, and after M has been deter-
mined at one of the ends of the beam, the value of the bending 
moment can then be obtained at any given point by computing the 
area under the shear curve and using Eq. (12.89). For instance, 
since MA 5 0 for the beam of Example 12.3, the maximum value 
of the bending moment for that beam can be obtained simply by 
measuring the area of the shaded triangle in the shear diagram of 
Fig. 12.13a. We have

Mmax 5
1
2

 
L
2

 
wL
2

5
wL2

8

 We note that, in this example, the load curve is a horizontal 
straight line, the shear curve an oblique straight line, and the  bending-
moment curve a parabola. If the load curve had been an oblique 
straight line (first degree), the shear curve would have been a parab-
ola (second degree) and the bending-moment curve a cubic (third 
degree). The shear and bending-moment curves will always be, 
respectively, one and two degrees higher than the load curve. With 
this in mind, we should be able to sketch the shear and bending-
moment diagrams without actually determining the functions V(x) 
and M(x), once a few values of the shear and bending moment have 
been computed. The sketches obtained will be more accurate if we 
make use of the fact that, at any point where the curves are continu-
ous, the slope of the shear curve is equal to 2w and the slope of 
the bending-moment curve is equal to V.

� wL1
2

wL1
2

wL21
8

L L1
2

L1
2

x

V

M (a)

(b)

L

x

Fig. 12.13
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518

SAMPLE PROBLEM 12.3

Draw the shear and bending-moment diagrams for the beam and loading 
shown.EA

B C

6 ft

20 kips 12 kips 1.5 kips/ft

8 ft 8 ft10 ft

D

SOLUTION

Reactions. Considering the entire beam as a free body, we write

1l oMA 5 0:
D 124 ft2 2 120 kips2 16 ft2 2 112 kips2 114 ft2 2 112 kips2 128 ft2 5 0

 D 5 126 kips  D 5 26 kips x

1x oFy 5 0: Ay 2 20 kips 2 12 kips 1 26 kips 2 12 kips 5 0
 Ay 5 118 kips  A  y 5 18 kips x

y
1 oFx 5 0: Ax 5 0  A x 5 0

We also note that at both A and E the bending moment is zero; thus, two 
points (indicated by dots) are obtained on the bending-moment diagram.

Shear Diagram. Since dVydx 5 2w, we find that between concentrated 
loads and reactions the slope of the shear diagram is zero (i.e., the shear is 
constant). The shear at any point is determined by dividing the beam into two 
parts and considering either part as a free body. For example, using the por-
tion of beam to the left of section 1, we obtain the shear between B and C:

1xoFy 5 0: 118 kips 2 20 kips 2 V 5 0 V 5 22 kips

We also find that the shear is 112 kips just to the right of D and zero at 
end E. Since the slope dVydx 5 2w is constant between D and E, the shear 
diagram between these two points is a straight line.

Bending-Moment Diagram. We recall that the area under the shear curve 
between two points is equal to the change in bending moment between the 
same two points. For convenience, the area of each portion of the shear 
diagram is computed and is indicated in parentheses on the diagram. Since 
the bending moment MA at the left end is known to be zero, we write

 MB 2 MA 5 1108     MB 5 1108 kip ? ft
 MC 2 MB 5 216      MC 5 192 kip ? ft
 MD 2 MC 5 2140     MD 5 248 kip ? ft
 ME 2 MD 5 148      ME 5 0

Since ME is known to be zero, a check of the computations is obtained.
 Between the concentrated loads and reactions, the shear is constant; 
thus, the slope dMydx is constant, and the bending-moment diagram is 
drawn by connecting the known points with straight lines. Between D and 
E where the shear diagram is an oblique straight line, the bending-moment 
diagram is a parabola.
 From the V and M diagrams we note that Vmax 5 18 kips and Mmax 5 
108 kip ? ft.

E

E

A

A

Ax

Ay

B C

6 ft

4 ft

20 kips 12 kips

20 kips

20 kips

12 kips

26 kips18 kips

18 kips

V (kips)

M (kip · ft)

x

x

�18
(�108)

�108

�92

�48

(�48)

(�140)

�12

(�16)

�2

�14

15 kips/ft

12 kips

8 ft 8 ft10 ft

D

B 1 C D

D

M

V
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519

SAMPLE PROBLEM 12.4

The W360 3 79 rolled-steel beam AC is simply supported and carries the 
uniformly distributed load shown. Draw the shear and bending-moment 
diagrams for the beam and determine the location and magnitude of the 
maximum normal stress due to bending.

SOLUTION

Reactions. Considering the entire beam as a free body, we find

RA 5 80 kN  x    RC 5 40 kN  x

Shear Diagram.  The shear just to the right of A is VA 5 180 kN. Since 
the change in shear between two points is equal to minus the area under 
the load curve between the same two points, we obtain VB by writing

 VB 2 VA 5 2 120 kN/m 2 16 m 2 5 2120 kN
 VB 5 2120 1 VA 5 2120 1 80 5 240 kN

The slope dVydx 5 2w being constant between A and B, the shear diagram 
between these two points is represented by a straight line. Between B and C, 
the area under the load curve is zero; therefore,

VC 2 VB 5 0    VC 5 VB 5 240 kN

and the shear is constant between B and C.

Bending-Moment Diagram. We note that the bending moment at each 
end of the beam is zero. In order to determine the maximum bending 
moment, we locate the section D of the beam where V 5 0. We write

VD 2 VA 5 2wx
0 2 80 kN 5 2 120 kN/m 2  x

and, solving for x: x 5 4 m ◀
 

The maximum bending moment occurs at point D, where we have 
dMydx 5 V 5 0. The areas of the various portions of the shear diagram are 
computed and are given (in parentheses) on the diagram. Since the area of 
the shear diagram between two points is equal to the change in bending 
moment between the same two points, we write

 MD 2 MA 5 1 160 kN ? m     MD 5  1160 kN ? m
 MB 2 MD 5 2  40 kN ? m      MB 5  1120 kN ? m
 MC 2 MB 5 2  120 kN ? m      MC 5 0

The bending-moment diagram consists of an arc of parabola followed by a 
segment of straight line; the slope of the parabola at A is equal to the value 
of V at that point.

Maximum Normal Stress.  It occurs at D, where |M| is largest. From App. B 
we find that for a W360 3 79 rolled-steel shape, S 5 1270 mm3 about a 
horizontal axis. Substituting this value and |M| 5 |MD| 5 160 3 103 N ? m 
into Eq. (12.3), we write

sm 5
0MD 0

S
5

160 3 103 N ? m
1270 3 1026 m3 5 126.0 3 106 Pa

Maximum normal stress in the beam 5 126.0 MPa  b

C
B

A

20 kN/m

6 m 3 m

C

C

B

w

A

V

D B

b

a

A

20 kN/m

80 kN

80 kN

(�160)

(�120)

40 kN

�40 kN(�40)

6 m

x � 4m
160 kN · m

120 kN · m

x

M

A

x

x
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520

SAMPLE PROBLEM 12.5

Sketch the shear and bending-moment diagrams for the cantilever beam 
shown.

CB

w0

A

V

M

a

L

 � w0a21
3  � w0a(L � a)1

2

 � w0a1
2

 � w0a21
3

 � w0a(3L � a)1
6

 � w0a

x

x

1
2

SOLUTION

Shear Diagram. At the free end of the beam, we find VA 5 0. Between 
A and B, the area under the load curve is 1

2 w0 
a; we find VB by writing

VB 2 VA 5 21
2 w0 

a    VB 5 21
2 w0 

a

Between B and C, the beam is not loaded; thus VC 5 VB. At A, we have 
w 5 w0 and, according to Eq. (12.5), the slope of the shear curve is 
dVydx 5 2w0, while at B the slope is dVydx 5 0. Between A and B, the 
loading decreases linearly, and the shear diagram is parabolic. Between B 
and C, w 5 0, and the shear diagram is a horizontal line.

Bending-Moment Diagram. The bending moment MA at the free end of 
the beam is zero. We compute the area under the shear curve and write

 MB 2 MA 5 21
3 w0 

a2    MB 5 21
3 w0 

a2

 MC 2 MB 5 21
2 w0 

a 1L 2 a 2
 MC 5 21

6 w0 
a 13L 2 a 2

The sketch of the bending-moment diagram is completed by recalling that 
dMydx 5 V. We find that between A and B the diagram is represented by a 
cubic curve with zero slope at A, and between B and C by a straight line.

SAMPLE PROBLEM 12.6

The simple beam AC is loaded by a couple of moment T applied at point B. 
Draw the shear and bending-moment diagrams of the beam.

SOLUTION

The entire beam is taken as a free body, and we obtain

RA 5
T
L
x    RC 5

T
L
w

The shear at any section is constant and equal to TyL. Since a couple is 
applied at B, the bending-moment diagram is discontinuous at B; it is rep-
resented by two oblique straight lines and decreases suddenly at B by an 
amount equal to T.

C
B

A

V

M

�T(1 � )

L

x

x

T
a

T
L

a
L

T a
L
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PROBLEMS

521

12.29 Using the method of Sec. 12.3, solve Prob. 12.1a.

 12.30 Using the method of Sec. 12.3, solve Prob. 12.2a.

 12.31 Using the method of Sec. 12.3, solve Prob. 12.3a.

 12.32 Using the method of Sec. 12.3, solve Prob. 12.4a.

 12.33 Using the method of Sec. 12.3, solve Prob. 12.5.

 12.34 Using the method of Sec. 12.3, solve Prob. 12.6.

 12.35 Using the method of Sec. 12.3, solve Prob. 12.7.

 12.36 Using the method of Sec. 12.3, solve Prob. 12.8.

 12.37 through 12.40 Draw the shear and bending-moment diagrams 
for the beam and loading shown, and determine the maximum 
absolute value (a) of the shear, (b) of the bending moment.

BA

15 ft

200 lb/ft
6 kip · ft 1.5 kip · ft

Fig. P12.37

A

1.5 m 0.9 m

3 kN

3.5 kN/m

0.6 m

E
D

C
B

Fig. P12.39

BA

12 ft
2 ft 2 ft

40 lb/ft 800 lb

Fig. P12.38

300 N 300 N

CA D

E
F

B

200 mm

75 mm

200 mm 200 mm

Fig. P12.40

12.41 Using the method of Sec. 12.3, solve Prob. 12.13.

12.42 Using the method of Sec. 12.3, solve Prob. 12.14.

12.43 Using the method of Sec. 12.3, solve Prob. 12.15.

12.44 Using the method of Sec. 12.3, solve Prob. 12.16.
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522  Analysis and Design of Beams for Bending  12.45 and 12.46 Determine (a) the equations of the shear and  bending-
moment curves for the beam and loading shown, (b) the maximum 
absolute value of the bending moment in the beam.

 12.47 Determine (a) the equations of the shear and bending-moment 
curves for the beam and loading shown, (b) the maximum absolute 
value of the bending moment in the beam.

B
x

w w � w0 sin

A

L

� x
L

Fig. P12.45

w

A

L

B
x

w � w0 cos� x
2L

Fig. P12.46

B
x

w

w � w0   l –( (

A

L

x
L

Fig. P12.47

x

w

w0

– kw0
L

Fig. P12.48

C
A B

0.9 m
3 m

12 kN/m
9 kN

W200 � 19.3

Fig. P12.49

A B

16 kN/m

1 m1.5 m

S150 � 18.6

Fig. P12.50

 12.48 For the beam and loading shown, determine the equations of the 
shear and bending-moment curves and the maximum absolute 
value of the bending moment in the beam, knowing that (a) k 5 1, 
(b) k 5 0.5.

 12.49 and 12.50 Draw the shear and bending-moment diagrams for 
the beam and loading shown, and determine the maximum normal 
stress due to bending.
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523Problems 12.51 and 12.52 Draw the shear and bending-moment diagrams for 
the beam and loading shown, and determine the maximum normal 
stress due to bending.

 12.53 and 12.54 Draw the shear and bending-moment diagrams for 
the beam and loading shown, and determine the maximum normal 
stress due to bending.

 12.55 and 12.56 Draw the shear and bending-moment diagrams for 
the beam and loading shown, and determine the maximum normal 
stress due to bending.

C
A B 10 in.

8 ft 4 ft
3 in.

3 kips/ft
12 kip · ft

Fig. P12.51

C D
A B

6 ft 6 ft
2 ft

2 kips/ft
6 kips

W8 � 31

Fig. P12.52

C
A B

3 ft
12 ft 8 in.

7 in.1.2 kips/ft

2.4 kips

Fig. P12.53

B

CA

8 in.
20 in.

3 in.

800 lb/in.

2    in.1
2

1    in.1
4

Fig. P12.54

BDC

250 kN 150 kN

A

2 m 2 m 2 m

W410 � 114

Fig. P12.55

A
B

4 kN/m

2 kN

C

600 mm
400 mm

S100 � 11.5

Fig. P12.56
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524  Analysis and Design of Beams for Bending 12.4  DESIGN OF PRISMATIC BEAMS FOR BENDING
As indicated in Sec. 12.1, the design of a beam is usually controlled 
by the maximum absolute value |M|max of the bending moment that 
will occur in the beam. The largest normal stress sm in the beam is 
found at the surface of the beam in the critical section where |M|max 
occurs and can be obtained by substituting |M|max for |M| in Eq. 
(12.1) or Eq. (12.3).† We write

 sm 5
0M 0max c

I
    sm 5

0M 0max

S
 (12.19, 12.39)

A safe design requires that sm # sall, where sall is the allowable 
stress for the material used. Substituting sall for sm in (12.39) and 
solving for S yields the minimum allowable value of the section mod-
ulus for the beam being designed:

 Smin 5
0M 0max

sall
 (12.9)

 The design of common types of beams, such as timber beams of 
rectangular cross section and rolled-steel beams of various cross-
 sectional shapes, will be considered in this section. A proper procedure 
should lead to the most economical design. This means that, among 
beams of the same type and the same material, and other things being 
equal, the beam with the smallest weight per unit length—and, thus, 
the smallest cross-sectional area—should be selected, since this beam 
will be the least expensive.
The design procedure will include the following steps‡:

 1.  First determine the value of sall for the material selected from 
a table of properties of materials or from design specifications. 
You can also compute this value by dividing the ultimate strength 
sU of the material by an appropriate factor of safety (Sec. 8.10). 
Assuming for the time being that the value of sall is the same 
in tension and in compression, proceed as follows.

 2.  Draw the shear and bending-moment diagrams corresponding 
to the specified loading conditions, and determine the maximum 
absolute value |M|max of the bending moment in the beam.

 3.  Determine from Eq. (12.9) the minimum allowable value Smin 
of the section modulus of the beam.

 4.  For a timber beam, the depth h of the beam, its width b, or 
the ratio hyb characterizing the shape of its cross section will 
probably have been specified. The unknown dimensions may 
then be selected by recalling from Eq. (11.19) of Sec. 11.4 that 
b and h must satisfy the relation 1

6 bh2 5 S $ Smin.
 5.  For a rolled-steel beam, consult the appropriate table in App. B. 

Of the available beam sections, consider only those with a section 

†For beams that are not symmetrical with respect to their neutral surface, the largest of 
the distances from the neutral surface to the surfaces of the beam should be used for c 
in Eq. (12.1) and in the computation of the section modulus S 5 I/c.

‡We assume that all beams considered in this chapter are adequately braced to prevent 
lateral buckling and that bearing plates are provided under concentrated loads applied 
to rolled-steel beams to prevent local buckling (crippling) of the web.
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52512.4 Design of Prismatic Beams for Bendingmodulus S $ Smin and select from this group the section with 
the smallest weight per unit length. This is the most economical 
of the sections for which S $ Smin. Note that this is not neces-
sarily the section with the smallest value of S (see Example 12.4). 
In some cases, the selection of a section may be limited by other 
considerations, such as the allowable depth of the cross section, 
or the allowable deflection of the beam (cf. Chap. 15).

 The foregoing discussion was limited to materials for which sall 
is the same in tension and in compression. If sall is different in tension 
and in compression, you should make sure to select the beam section 
in such a way that sm # sall for both tensile and compressive stresses. 
If the cross section is not symmetric about its neutral axis, the largest 
tensile and the largest compressive stresses will not necessarily occur 
in the section where |M| is maximum. One may occur where M is 
maximum and the other where M is minimum. Thus, step 2 should 
include the determination of both Mmax and Mmin, and step 3 should be 
modified to take into account both tensile and compressive stresses.
 Finally, keep in mind that the design procedure described in 
this section takes into account only the normal stresses occurring on 
the surface of the beam. Short beams, especially those made of tim-
ber, may fail in shear under a transverse loading. The determination 
of shearing stresses in beams will be discussed in Chap. 13.

EXAMPLE 12.4 Select a wide-flange beam to support the 15-kip load as 
shown in Fig. 12.14. The allowable normal stress for the steel used is 24 ksi.

 1. The allowable normal stress is given: sall 5 24 ksi.
 2.  The shear is constant and equal to 15 kips. The bending moment is 

maximum at B. We have

0M 0max 5 115 kips2 18 ft2 5 120 kip ? ft 5 1440 kip ? in.

 3.  The minimum allowable section modulus is

Smin 5
0M 0max

sall
5

1440 kip ? in.

24 ksi
5 60.0 in3

 4.  Referring to the table of Properties of Rolled-Steel Shapes in App. B, we 
note that the shapes are arranged in groups of the same depth and that 
in each group they are listed in order of decreasing weight. We choose 
in each group the lightest beam having a section modulus S 5 Iyc at 
least as large as Smin and record the results in the following table.

 Shape S, in3

W21 3 44 81.6
W18 3 50 88.9
W16 3 40 64.7
W14 3 43 62.6
W12 3 50 64.2
W10 3 54 60.0

 The most economical is the W16 3 40 shape since it weighs only 40 lb/ft, 
even though it has a larger section modulus than two of the other shapes. 
We also note that the total weight of the beam will be (8 ft) 3 (40 lb) 5 
320 lb. This weight is small compared to the 15,000-1b load and can be 
neglected in our analysis. ◾

15 kips
8 ft

A B

Fig. 12.14
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SAMPLE PROBLEM 12.7

A 12-ft-long overhanging timber beam AC with an 8-ft span AB is to be 
designed to support the distributed and concentrated loads shown. Knowing 
that timber of 4-in. nominal width (3.5-in. actual width) with a 1.75-ksi 
allowable stress is to be used, determine the minimum required depth h of 
the beam.

B
A C h

8 ft 4 ft

3.5 in.400 lb/ft 4.5 kips

SOLUTION

Reactions.  Considering the entire beam as a free body, we write

1l oMA 5 0: B 18 ft2 2 13.2 kips2 14 ft2 2 14.5 kips2 112 ft2 5 0
 B 5 8.35 kips  B 5 8.35 kipsx
1
y

oFx 5 0: Ax 5 0

1xoFy 5 0: Ay 1 8.35 kips 2 3.2 kips 2 4.5 kips 5 0
 Ay 5 20.65 kips    A 5 0.65 kips w

Shear Diagram.  The shear just to the right of A is VA 5 Ay 5 20.65 kips. 
Since the change in shear between A and B is equal to minus the area under 
the load curve between these two points, we obtain VB by writing

 VB 2 VA 5 2 1400 lb/ft2 18 ft2 5 23200 lb 5 23.20 kips
 VB 5 VA 2 3.20 kips 5 20.65 kips 2 3.20 kips 5 23.85 kips.

The reaction at B produces a sudden increase of 8.35 kips in V, resulting 
in a value of the shear equal to 4.50 kips to the right of B. Since no load is 
applied between B and C, the shear remains constant between these two 
points.

Determination of |M|max.  We first observe that the bending moment is 
equal to zero at both ends of the beam: MA 5 MC 5 0. Between A and B 
the bending moment decreases by an amount equal to the area under the 
shear curve, and between B and C it increases by a corresponding amount. 
Thus, the maximum absolute value of the bending moment is |M|max 5 

18.00 kip ? ft.

Minimum Allowable Section Modulus.  Substituting into Eq. (12.9) the 
given value of  sall and the value of |M|max that we have found, we write

Smin 5
0M 0max

sall
5
118 kip ? ft2 112 in./ft2

1.75 ksi
5 123.43 in3

Minimum Required Depth of Beam.  Recalling the formula developed in 
part 4 of the design procedure described in Sec. 12.4 and substituting the 
values of b and Smin, we have

1
6 bh2 $ Smin    1

6 13.5 in.2h2 $ 123.43 in3    h $ 14.546 in.

The minimum required depth of the beam is h 5 14.55 in.  b

B
A

V

A

Ax
Ay

B

C

8 ft 4 ft

3.2 kips
4.5 kips

(�18)

(�18)

4.50
kips

�3.85 kips

�0.65
kips

CB x
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SAMPLE PROBLEM 12.8

A 5-m-long, simply supported steel beam AD is to carry the distributed and 
concentrated loads shown. Knowing that the allowable normal stress for the 
grade of steel to be used is 160 MPa, select the wide-flange shape that 
should be used.

SOLUTION

Reactions.  Considering the entire beam as a free body, we write

1loMA 5 0: D 15 m 2 2 160 kN 2 11.5 m 2 2 150 kN 2 14 m 2 5 0
D 5 58.0 kN    D 5 58.0 kNx

1
y

oFx 5 0: Ax 5 0

1xoFy 5 0: Ay 1 58.0 kN 2 60 kN 2 50 kN 5 0
Ay 5 52.0 kN    A 5 52.0 kNx

Shear Diagram.  The shear just to the right of A is VA  5  Ay 5 1 52.0 kN. 
Since the change in shear between A and B is equal to minus the area under 
the load curve between these two points, we have

VB 5 52.0 kN 2 60 kN 5 28 kN

The shear remains constant between B and C, where it drops to 258 kN, 
and keeps this value between C and D. We locate the section E of the beam 
where V 5 0 by writing

VE 2 VA 5 2wx
0 2 52.0 kN 5 2 120 kN/m 2  x

Solving for x, we find x 5 2.60 m.

Determination of |M|max.  The bending moment is maximum at E, where 
V 5 0. Since M is zero at the support A, its maximum value at E is equal 
to the area under the shear curve between A and E. We have, therefore,  
|M|max 5 ME 5 67.6 kN ? m.

Minimum Allowable Section Modulus.  Substituting into Eq. (12.9) the 
given value of sall and the value of |M|max that we have found, we write

Smin 5
0M 0max

sall
5

67.6 kN ? m
160 MPa

5 422.5 3 1026 m3 5 422.5 3 103 mm3

Selection of Wide-Flange Shape.  From App. B we compile a list of 
shapes that have a section modulus larger than Smin and are also the lightest 
shape in a given depth group.

 Shape S, mm3

W410 3 38.8 629
W360 3 32.9 475
W310 3 38.7 547
W250 3 44.8 531
W200 3 46.1 451

We select the lightest shape available, namely W360 3 32.9  b

CB D

1.5 m

52 kN

x � 2.6 m

�58 kN

�8 kN

(67.6)

1.5 m
1 m 1 m

50 kN

D

A

V

A
E B C D

x

Ax
Ay

60 kN

B

A

C D

3 m
1 m 1 m

20 kN
50 kN
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PROBLEMS

528

 12.57 and 12.58 For the beam and loading shown, design the cross 
section of the beam knowing that the grade of timber used has an 
allowable normal stress of 12 MPa.

12.59 and 12.60 For the beam and loading shown, design the cross 
section of the beam knowing that the grade of timber used has an 
allowable normal stress of 1750 psi.

12.61 For the beam and loading shown, design the cross section of the 
beam knowing that the grade of timber used has an allowable nor-
mal stress of 12 MPa.

12.62 For the beam and loading shown, design the cross section of the 
beam knowing that the grade of timber used has an allowable nor-
mal stress of 1750 psi.

1.8 kN 3.6 kN

CB
A D h

0.8 m 0.8 m 0.8 m

40 mm

Fig. P12.57

10 kN/m

A B h

5 m

120 mm

Fig. P12.58

A
B 2b

b

5 ft

200 lb/ft

Fig. P12.59

4.8 kips 4.8 kips
2 kips 2 kips

F

b

A

2 ft 2 ft 3 ft 2 ft 2 ft

9.5 in.

B C D E

Fig. P12.60

A
B

150 mm

b3 kN/m

C

2.4 m 1.2 m

Fig. P12.61

1.2 kips/ft

6 ft
a

a
B

A

Fig. P12.62
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529Problems 12.63 and 12.64 Knowing that the allowable normal stress for the 
steel used is 24 ksi, select the most economical wide-flange beam 
to support the loading shown.

 12.65 and 12.66 Knowing that the allowable normal stress for the 
steel used is 160 MPa, select the most economical wide-flange 
beam to support the loading shown.

 12.67 and 12.68 Knowing that the allowable normal stress for the 
steel used is 160 MPa, select the most economical S-shape beam 
to support the loading shown.

 12.69 and 12.70 Knowing that the allowable normal stress for the 
steel used is 24 ksi, select the most economical S-shape beam to 
support the loading shown.

2.75 kips/ft

24 kips

B
A C

9 ft 15 ft

Fig. P12.63

0.5 kip/ft

1.5 kips/ft

18 ft

A
B

Fig. P12.64

C D
EA

B

0.6 m
0.6 m

0.6 m
1.8 m

90 kN
90 kN90 kN

Fig. P12.65

C
DA

B

0.8 m 0.8 m
2.4 m

50 kN/m

Fig. P12.66

40 kN/m

75 kN

A D
CB

0.9 m
3.6 m

1.8 m

Fig. P12.67

100 kN/m

80 kN

A C
B

0.8 m 1.6 m

Fig. P12.68

3 kips/ft

18 kips

A
DCB

6 ft 6 ft
3 ft

Fig. P12.69

48 kips 48 kips 48 kips

A
D

E
CB

6 ft
2 ft2 ft2 ft

Fig. P12.70
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530  Analysis and Design of Beams for Bending  12.71 Two metric rolled-steel channels are to be welded back to back 
and used to support the loading shown. Knowing that the allowable 
normal stress for the steel used is 200 MPa, determine the most 
economical channels that can be used.

 12.72 Two metric rolled-steel channels are to be welded along their 
edges and used to support the loading shown. Knowing that the 
allowable normal stress for the steel used is 150 MPa, determine 
the most economical channels that can be used.

 12.73 Two L4 3 3 rolled-steel angles are bolted together and used to 
support the loading shown. Knowing that the allowable normal 
stress for the steel used is 24 ksi, determine the minimum angle 
thickness that can be used.

 12.74 A steel pipe of 4-in. diameter is to support the loading shown. 
Knowing that the stock of pipes available has thicknesses varying 
from 1

4 in. to 1 in. in 1
8-in. increments and that the allowable normal 

stress for the steel used is 24 ksi, determine the minimum wall 
thickness t that can be used.

 12.75 Assuming the upward reaction of the ground to be uniformly dis-
tributed and knowing that the allowable normal stress for the steel 
used is 170 MPa, select the most economical wide-flange beam to 
support the loading shown.

 12.76 Assuming the upward reaction of the ground to be uniformly dis-
tributed and knowing that the allowable normal stress for the steel 
used is 24 ksi, select the most economical S-shape beam to support 
the loading shown.

E
B

A
C D

20 kN 20 kN 20 kN

4 @ 0.675 m � 2.7 m

Fig. P12.72

B

30 kN/m

80 kN

A
C

D

3.6 m
0.9 m

1.8 m

Fig. P12.71

B

300 lb/ft

2000 lb

A C

3 ft3 ft

6 in.

4 in.

Fig. P12.73

C
A

B

4 ft
4 in.

t

500 lb 500 lb

4 ft

Fig. P12.74

B C

Total load � 2 MN

A D

0.75 m 0.75 m
1 m

D

Fig. P12.75B C

240 kips 240 kips

A DD

4 ft4 ft 4 ft

Fig. P12.76
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531

REVIEW AND SUMMARY

 This chapter was devoted to the analysis and design of beams under 
transverse loadings. Such loadings can consist of concentrated loads or 
distributed loads and the beams themselves are classified according to 
the way they are supported (Fig. 12.15). Only statically determinate 
beams were considered in this chapter, the analysis of statically inde-
terminate beams being postponed until Chap. 15.

While transverse loadings cause both bending and shear in a beam, the 
normal stresses caused by bending are the dominant criterion in the 
design of a beam for strength [Sec. 12.1]. Therefore, this chapter dealt 
only with the determination of the normal stresses in a beam, the effect 
of shearing stresses being examined in the next one.
 We recalled from Sec. 11.4 the flexure formula for the deter-
mination of the maximum value sm of the normal stress in a given 
section of the beam,

sm 5
0M 0 c

I
 (12.1)

where I is the moment of inertia of the cross section with respect to 
a centroidal axis perpendicular to the plane of the bending couple 
M and c is the maximum distance from the neutral surface (Fig. 
12.16). We also recalled from Sec. 11.4 that, introducing the elastic 
section modulus S 5 Iyc of the beam, the maximum value sm of the 
normal stress in the section can be expressed as

sm 5
0M 0
S

 (12.3)

It follows from Eq. (12.1) that the maximum normal stress occurs in 
the section where |M| is largest, at the point farthest from the neutral 
axis. The determination of the maximum value of |M| and of the critical 
section of the beam in which it occurs is greatly simplified if we draw 

L

(a) Simply supported beam

Statically
Determinate
Beams

Statically
Indeterminate
Beams

L2L1

(d) Continuous beam

L

(b) Overhanging beam

L

Beam fixed at one end
and simply supported

at the other end

(e) 

L

(c) Cantilever beam

L

( f ) Fixed beam

Fig. 12.15

y

c

m�

x�
Neutral surface

Fig. 12.16

Considerations for the design of 
prismatic beams

Normal stresses due to bending

Shear and bending-moment 
diagrams
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532  Analysis and Design of Beams for Bending a shear diagram and a bending-moment diagram. These diagrams rep-
resent, respectively, the variation of the shear and of the bending 
moment along the beam and were obtained by determining the values 
of V and M at selected points of the beam [Sec. 12.2]. These values 
were found by passing a section through the point where they were to 
be determined and drawing the free-body diagram of either of the por-
tions of beam obtained in this fashion. To avoid any confusion regarding 
the sense of the shearing force V and of the bending couple M (which 
act in opposite sense on the two portions of the beam), we followed the 
sign convention adopted earlier in the text and illustrated in Fig. 12.17 
[Examples 12.1 and 12.2, and Sample Probs. 12.1 and 12.2].

The construction of the shear and bending-moment  diagrams is 
facilitated if the following relations are taken into account [Sec. 12.3]. 
Denoting by w the distributed load per unit length (assumed positive 
if directed downward), we wrote

 
dV
dx

5 2w    dM
dx

5 V (12.5, 12.7)

or, in integrated form,

 VD 2 VC 5 2 1area under load curve between C and D 2 (12.69)
 MD 2 MC 5 area under shear curve between C and D  (12.89)

Equation (12.69) makes it possible to draw the shear diagram of a 
beam from the curve representing the distributed load on that beam 
and the value of V at one end of the beam. Similarly, Eq. (12.89) 
makes it possible to draw the bending-moment diagram from the 
shear diagram and the value of M at one end of the beam. However, 
concentrated loads introduce discontinuities in the shear diagram 
and concentrated couples in the bending-moment diagram, none of 
which is accounted for in these equations [Sample Probs. 12.3 and 
12.6]. Finally, we noted from Eq. (12.7) that the points of the beam 
where the bending moment is maximum or minimum are also the 
points where the shear is zero [Sample Prob. 12.4].

A proper procedure for the design of a prismatic beam was described 
in Sec. 12.4 and is summarized here:
 Having determined sall for the material used and assuming that 
the design of the beam is controlled by the maximum normal stress in the 
beam, compute the minimum allowable value of the section modulus:

 
Smin 5

0M 0max

sall
 (12.9)

 For a timber beam of rectangular cross section, S 5 1
6 bh2, 

where b is the width of the beam and h its depth. The dimensions 
of the section, therefore, must be selected so that 1

6 bh2 $ Smin. 
 For a rolled-steel beam, consult the appropriate table in App. B. 
Of the available beam sections, consider only those with a section modu-
lus S $ Smin and select from this group the section with the smallest 
weight per unit length. This is the most economical of the sections for 
which S $ Smin.

Relations among load, shear, 
and bending moment

Relations among load, shear, 
and bending moment

Design of prismatic beamsDesign of prismatic beams

V

M

M'

V'

(a)  Internal forces
(positive shear and positive bending moment)

Fig. 12.17
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REVIEW PROBLEMS

 12.77 and 12.78 Draw the shear and bending-moment diagrams for 
the beam and loading shown, and determine the maximum abso-
lute value (a) of the shear, (b) of the bending moment.

12.79 Determine (a) the equations of the shear and bending-moment 
curves for the beam and loading shown, (b) the maximum absolute 
value of the bending moment in the beam.

 12.80 For the beam and loading shown, determine the maximum normal 
stress due to bending on a transverse section at the center of the 
beam.

 12.81 Draw the shear and bending-moment diagrams for the beam and 
loading shown, and determine the maximum normal stress due to 
bending.

 12.82 Determine (a) the distance a for which the maximum absolute value 
of the bending moment in the beam is as small as possible, (b) the 
corresponding maximum normal stress due to bending. (Hint: Draw 
the bending-moment diagram, and equate the absolute values of the 
largest positive and negative bending moments obtained.)

B

2.5 kips/ft 15 kips

A
C D

6 ft6 ft
3 ft

Fig. P12.77

B

FE

A
DC

240 mm 240 mm 240 mm

60 mm60 mm

120 N 120 N

Fig. P12.78

B
x

w
w � w0 (      )1/2

A

L

x/L

Fig. P12.79

750 lb

BA
C D

150 lb/ft

750 lb

3 in.

12 in.

4 ft 4 ft 4 ft

Fig. P12.80

60 kN 60 kN 120 kN

A
C D E

B

W250 � 49.1

0.8 m
1.4 m

0.4 m

 

Fig. P12.81

20 in. 20 in.

A
C D

a

B

0.75 in.

0.5 in.120 lb 120 lb

Fig. P12.82
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534 Analysis and Design of Beams for Bending  12.83 Beam AB, of length L and square cross section of side a, is sup-
ported by a pivot at C and loaded as shown. (a) Check that the 
beam is in equilibrium. (b) Show that the maximum stress due to 
bending occurs at C and is equal to w0L

2y(1.5a)3.

 12.85 For the beam and loading shown, design the cross section of the 
beam knowing that the grade of timber used has an allowable nor-
mal stress of 1750 psi.

B

a

aA

2 L
3

C

w0

L
3

Fig. P12.83

BA

1.2 ft 1.2 ft

C

w0 � 50 lb/ft

T

w0

3
4 in.

Fig. P12.84

A B
C d

3.5 ft 3.5 ft

5.0 in.
1.5 kips/ft

Fig. P12.85

25 kN/m
1
2 d

d
B A

2.5 m

Fig. P12.86

 12.84 Knowing that rod AB is in equilibrium under the loading shown, 
draw the shear and bending-moment diagrams and determine the 
maximum normal stress due to bending.

 12.86 For the beam and loading shown, design the cross section of the 
beam knowing that the grade of timber used has an allowable nor-
mal stress of 12 MPa.
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535Review Problems 12.87 Knowing that the allowable normal stress for the steel used is 
160 MPa, select the most economical wide-flange beam to support 
the loading shown.

 12.88 Knowing that the allowable normal stress for the steel used is 
24 ksi, select the most economical wide-flange beam to support 
the loading shown.

4.5 m 2.7 m

40 kN
2.2 kN/m

CA
B

Fig. P12.87

2 ft
6 ft

2 ft2 ft 2 ft

20 kips20 kips 11 kips/ft

FA
B E

DC

Fig. P12.88
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A reinforced concrete deck will be 

attached to each of the steel sections 

shown to form a composite box girder 

bridge. In this chapter the shearing 

stresses will be determined in various 

types of beams and girders.
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Shearing Stresses in Beams and
Thin-Walled Members

C H A P T E R
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13.1 INTRODUCTION
You saw in Sec. 12.1 that a transverse loading applied to a beam will 
result in normal and shearing stresses in any given transverse section 
of the beam. The normal stresses are created by the bending couple 
M in that section and the shearing stresses by the shear V. Since the 
dominant criterion in the design of a beam for strength is the maxi-
mum value of the normal stress in the beam, our analysis was limited 
in Chap. 12 to the determination of the normal stresses. Shearing 
stresses, however, can be important, particularly in the design of 
short, stubby beams, and their analysis will be the subject of the first 
part of this chapter.

Chapter 13 Shearing Stresses in 
Beams and Thin-Walled Members

 13.1 Introduction
 13.2 Shear on the Horizontal Face of 

a Beam Element
 13.3 Determination of the Shearing 

Stresses in a Beam
 13.4 Shearing Stresses txy in Common 

Types of Beams
 13.5 Longitudinal Shear on a Beam 

Element of Arbitrary Shape
 13.6 Shearing Stresses in Thin-Walled 

Members

 Figure 13.1 expresses graphically that the elementary normal 
and shearing forces exerted on a given transverse section of a pris-
matic beam with a vertical plane of symmetry are equivalent to the 
bending couple M and the shearing force V. Six equations can be 
written to express that fact. Three of these equations involve only 
the normal forces sx dA and have already been discussed in Sec. 
11.2; they are Eqs. (11.1), (11.2), and (11.3), which express that the 
sum of the normal forces is zero and that the sums of their moments 
about the y and z axes are equal to zero and M, respectively. Three 
more equations involving the shearing forces txy dA and txz dA can 
now be written. One of them expresses that the sum of the moments 
of the shearing forces about the x axis is zero and can be dismissed 
as trivial in view of the symmetry of the beam with respect to the 
xy plane. The other two involve the y and z components of the ele-
mentary forces and are

 y components:     etxy 
dA 5 2V (13.1)

 z components:     etxz dA 5 0  (13.2)

The first of these equations shows that vertical shearing stresses must 
exist in a transverse section of a beam under transverse loading. The 
second equation indicates that the average horizontal shearing stress 
in any section is zero. However, this does not mean that the shearing 
stress txz is zero everywhere.
 Let us now consider a small cubic element located in the verti-
cal plane of symmetry of the beam (where we know that txz must be 
zero) and examine the stresses exerted on its faces (Fig. 13.2). As we 

�xydA

�xzdA �xdA

x

z

y

x

z

y

M

V=

Fig. 13.1

�yx

�xy

�x

Fig. 13.2
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539have just seen, a normal stress sx and a shearing stress txy are exerted 
on each of the two faces perpendicular to the x axis. But we know 
from Chap. 8 that, when shearing stresses txy are exerted on the 
vertical faces of an element, equal stresses must be exerted on the 
horizontal faces of the same element. We thus conclude that longi-
tudinal shearing stresses must exist in any member subjected to a 
transverse loading. This can be verified by considering a cantilever 
beam made of separate planks clamped together at one end (Fig. 
13.3a). When a transverse load P is applied to the free end of this 
composite beam, the planks are observed to slide with respect to 
each other (Fig. 13.3b). In contrast, if a couple M is applied to the 
free end of the same composite beam (Fig. 13.3c), the various planks 
will bend into concentric arcs of circle and will not slide with respect 
to each other, thus verifying the fact that shear does not occur in a 
beam subjected to pure bending (cf. Sec. 11.3).
 While sliding does not actually take place when a transverse 
load P is applied to a beam made of a homogeneous and cohesive 
material such as steel, the tendency to slide does exist, showing 
that stresses occur on horizontal longitudinal planes as well as on 
vertical transverse planes. In the case of timber beams, whose 
resistance to shear is weaker between fibers, failure due to shear 
will occur along a longitudinal plane rather than a transverse plane 
(Photo 13.1).
 In Sec. 13.2, a beam element of length Dx bounded by two 
transverse planes and a horizontal one will be considered and the 
shearing force DH exerted on its horizontal face will be determined, 
as well as the shear per unit length, q, also known as shear flow. A 
formula for the shearing stress in a beam with a vertical plane of 
symmetry will be derived in Sec. 13.3 and used in Sec. 13.4 to deter-
mine the shearing stresses in common types of beams.
 The derivation given in Sec. 13.2 will be extended in Sec. 
13.5 to cover the case of a beam element bounded by two trans-
verse planes and a curved surface. This will allow us in Sec. 13.6 
to determine the shearing stresses at any point of a symmetric 
thin-walled member, such as the flanges of wide-flange beams and 
box beams.

13.1 Introduction

(a)

(b)

P

M

(c)

Fig. 13.3

Photo 13.1
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540  Shearing Stresses in Beams and 
Thin-Walled Members 13.2  SHEAR ON THE HORIZONTAL FACE 

OF A BEAM ELEMENT

B

P1 P2 w

A

x

C

y

z

Fig. 13.4

Consider a prismatic beam AB with a vertical plane of symmetry that 
supports various concentrated and distributed loads (Fig. 13.4). At a 
distance x from end A we detach from the beam an element CDD9C9 
of length Dx extending across the width of the beam from the upper 
surface of the beam to a horizontal plane located at a distance y1 from 
the neutral axis (Fig. 13.5). The forces exerted on this element consist 

y1 y1

�x
C

c

x

D

C'
N.A.

D'

y

z

Fig. 13.5

of vertical shearing forces V9C and V9D, a horizontal shearing force DH 
exerted on the lower face of the element, elementary horizontal nor-
mal forces sC dA and sD dA, and possibly a load w Dx (Fig. 13.6). 
We write the equilibrium equation

y
1 oFx 5 0:

 
¢H 1 #

A

1sD 2 sC 2  dA 5 0

where the integral extends over the shaded area A of the section 
located above the line y 5 y1. Solving this equation for DH and using 
Eq. (12.2) of Sec. 12.1, s 5 MyyI, to express the normal stresses in 

V�C V�D

�H

x

C D
�  dAD�  dAC

w

Fig. 13.6
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541

terms of the bending moments at C and D, we have

 ¢H 5
MD 2 MC

I #
A

y dA (13.3)

The integral in (13.3) represents the first moment with respect to 
the neutral axis of the portion A of the cross section of the beam that 
is located above the line y 5 y1 and will be denoted by Q. On the 
other hand, recalling Eq. (12.7) of Sec. 12.3, we can express the 
increment MD – MC of the bending moment as

MD 2 MC 5 ¢M 5 1dMydx2 ¢x 5 V ¢x

Substituting into (13.3), we obtain the following expression for the 
horizontal shear exerted on the beam element

 ¢H 5
VQ

I
 ¢x (13.4)

 The same result would have been obtained if we had used as 
a free body the lower element C9D9D0C0, rather than the upper 
element CDD9C9 (Fig. 13.7), since the shearing forces DH and DH9 
exerted by the two elements on each other are equal and opposite. 
This leads us to observe that the first moment Q of the portion A of 
the cross section located below the line y 5 y1 (Fig. 13.7) is equal 
in magnitude and opposite in sign to the first moment of the portion 
A located above that line (Fig. 13.5). Indeed, the sum of these two 
moments is equal to the moment of the area of the entire cross sec-
tion with respect to its centroidal axis and, thus, must be zero. This 
property can sometimes be used to simplify the computation of Q. 
We also note that Q is maximum for y1 5 0, since the elements of 
the cross section located above the neutral axis contribute positively 
to the integral in (13.3) that defines Q, while the elements located 
below that axis contribute negatively.
 The horizontal shear per unit length, which will be denoted by the 
letter q, is obtained by dividing both members of Eq. (13.4) by Dx:

 q 5
¢H
¢x

5
VQ

I
 (13.5)

We recall that Q is the first moment with respect to the neutral axis 
of the portion of the cross section located either above or below the 
point at which q is being computed, and that I is the centroidal 
moment of inertia of the entire cross-sectional area. For a reason 
that will become apparent later (Sec. 13.6), the horizontal shear per 
unit length q is also referred to as the shear flow.

y1

�x

c

x

C' D'

C" D"

y

z N.A.

'

y1

Fig. 13.7

13.2 Shear on the Horizontal Face 
of a Beam Element
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542  Shearing Stresses in Beams and 
Thin-Walled Members

EXAMPLE 13.1 A beam is made of three planks, 20 by 100 mm in cross 
section, nailed together (Fig. 13.8). Knowing that the spacing between nails 
is 25 mm and that the vertical shear in the beam is V 5 500 N, determine 
the shearing force in each nail.

 We first determine the horizontal force per unit length, q, exerted on 
the lower face of the upper plank. We use Eq. (13.5), where Q represents 
the first moment with respect to the neutral axis of the shaded area A shown 
in Fig. 13.9a, and where I is the moment of inertia about the same axis of 
the entire cross-sectional area (Fig. 13.9b). Recalling that the first moment 
of an area with respect to a given axis is equal to the product of the area 
and of the distance from its centroid to the axis,† we have

 Q 5 A  y 5 10.020 m 3 0.100 m 2 10.060 m 2
 5 120 3 1026 m3

 I 5 1
12 10.020 m 2 10.100 m 23

 12 3 1
12 10.100 m 2 10.020 m 23

 1 10.020 m 3 0.100 m 2 10.060 m 22 4
 5 1.667 3 1026 1 2 10.0667 1 7.2 21026

 5 16.20 3 1026 m4

Substituting into Eq. (13.5), we write

q 5
VQ

I
5
1500 N 2 1120 3 1026 m32

16.20 3 1026 m4 5 3704 N/m

Since the spacing between the nails is 25 mm, the shearing force in each 
nail is

F 5 10.025 m 2q 5 10.025 m 2 13704 N/m 2 5 92.6 N ◾

13.3  DETERMINATION OF THE SHEARING 
STRESSES IN A BEAM

Consider again a beam with a vertical plane of symmetry, subjected 
to various concentrated or distributed loads applied in that plane. We 
saw in the preceding section that if, through two vertical cuts and one 
horizontal cut, we detach from the beam an element of length Dx 
(Fig. 13.10), the magnitude DH of the shearing force exerted on the 
horizontal face of the element can be obtained from Eq. (13.4). The 
average shearing stress tave on that face of the element is obtained 
by dividing DH by the area DA of the face. Observing that DA 5 
t Dx, where t is the width of the element at the cut, we write

tave 5
¢H
¢A

5
VQ

I
 

¢x
t ¢x

0.100 m

0.020 m

N.A.

y � 0.060 m

C'

0.100 m

N.A.
0.100 m

0.020 m

(a) (b)

A

Fig. 13.9

†See Sec. 5.4.
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�H'
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�x

D''2
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C''2
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D'1
D'
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Fig. 13.10

100 mm

20 mm

100 mm
20 mm

20 mm

Fig. 13.8
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543or

 tave 5
VQ

It
 (13.6)

We note that, since the shearing stresses txy and tyx exerted respec-
tively on a transverse and a horizontal plane through D9 are equal, 
the expression obtained also represents the average value of txy along 
the line D91 D92 (Fig. 13.11).
 We observe that tyx 5 0 on the upper and lower faces of the 
beam, since no forces are exerted on these faces. It follows that 
txy 5 0 along the upper and lower edges of the transverse section 
(Fig. 13.12). We also note that, while Q is maximum for y 5 0 
(see Sec. 13.2), we cannot conclude that tave will be maximum 
along the neutral axis, since tave depends upon the width t of the 
section as well as upon Q.
 As long as the width of the beam cross section remains small 
compared to its depth, the shearing stress varies only slightly along 
the line D91 D92 (Fig. 13.11) and Eq. (13.6) can be used to compute 
txy at any point along D91 D92. Actually, txy is larger at points D91 and 
D92 than at D9, but the theory of elasticity shows† that, for a beam of 
rectangular section of width b and depth h, and as long as b # hy4, 
the value of the shearing stress at points C1 and C2 (Fig. 13.13) does 
not exceed by more than 0.8% the average value of the stress com-
puted along the neutral axis.‡

13.4  SHEARING STRESSES txy IN COMMON 
TYPES OF BEAMS

We saw in the preceding section that, for a narrow rectangular beam, 
i.e., for a beam of rectangular section of width b and depth h with 
b # 1

4h, the variation of the shearing stress txy across the width of 
the beam is less than 0.8% of tave. We can, therefore, use Eq. (13.6) 
in practical applications to determine the shearing stress at any point 
of the cross section of a narrow rectangular beam and write

 txy 5
VQ

It
 (13.7)

where t is equal to the width b of the beam, and where Q is the 
first moment with respect to the neutral axis of the shaded area A 
(Fig. 13.14).

†See S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New 
York, 3d ed., 1970, sec. 124.
‡On the other hand, for large values of byh, the value tmax of the stress at C1 and C2 
may be many times larger then the average value tave computed along the neutral axis, 
as we may see from the following table:
 b/h 0.25 0.5 1 2 4 6 10 20 50

tmaxytave 1.008 1.033 1.126 1.396 1.988 2.582 3.770 6.740 15.65
tminytave 0.996 0.983 0.940 0.856 0.805 0.800 0.800 0.800 0.800
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Fig. 13.11
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13.4 Shearing Stresses txy in Common 
Types of Beams
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544  Shearing Stresses in Beams and 
Thin-Walled Members

 Observing that the distance from the neutral axis to the centroid 
C9 of A is y 5 1

2 1c 1 y 2 and recalling that Q 5 A y, we write

 Q 5 A y 5 b 1c 2 y 2  12 1c 1 y 2 5 1
2 b 1c2 2 y22 (13.8)

Recalling, on the other hand, that I 5 bh3y12 5 2
3 bc3, we have

txy 5
VQ

Ib
5

3
4

 
c2 2 y2

bc3  V

or, noting that the cross-sectional area of the beam is A 5 2bc,

 txy 5
3
2

 
V
A

 a1 2
y2

c2 b (13.9)

 Equation (13.9) shows that the distribution of shearing stresses 
in a transverse section of a rectangular beam is parabolic (Fig. 13.15). 
As we have already observed in the preceding section, the shearing 
stresses are zero at the top and bottom of the cross section (y 5 6c). 
Making y 5 0 in Eq. (13.9), we obtain the value of the maximum 
shearing stress in a given section of a narrow rectangular beam:

 tmax 5
3
2

 

V
A

 (13.10)

The relation obtained shows that the maximum value of the shearing 
stress in a beam of rectangular cross section is 50% larger than the 
value VyA that would be obtained by wrongly assuming a uniform 
stress distribution across the entire cross section.
 In the case of an American standard beam (S-beam) or a wide-
flange beam (W-beam), Eq. (13.6) can be used to determine the aver-
age value of the shearing stress txy over a section aa9or bb9 of the 
transverse cross section of the beam (Figs. 13.16a and b). We write

 tave 5
VQ

It
 (13.6)

where V is the vertical shear, t the width of the section at the eleva-
tion considered, Q the first moment of the shaded area with respect 
to the neutral axis cc9, and I the moment of inertia of the entire 
cross-sectional area about cc9. Plotting tave against the vertical dis-
tance y, we obtain the curve shown in Fig. 13.16c. We note the 
discontinuities existing in this curve, which reflect the difference 
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545between the values of t corresponding respectively to the flanges 
ABGD and A9B9G9D9 and to the web EFF9E9.
 In the case of the web, the shearing stress txy varies only very 
slightly across the section bb9 and can be assumed equal to its aver-
age value tave. This is not true, however, for the flanges. For example, 
considering the horizontal line DEFG, we note that txy is zero 
between D and E and between F and G, since these two segments 
are part of the free surface of the beam. On the other hand the value 
of txy between E and F can be obtained by making t 5 EF in Eq. 
(13.6). In practice, one usually assumes that the entire shear load is 
carried by the web, and that a good approximation of the maximum 
value of the shearing stress in the cross section can be obtained by 
dividing V by the cross-sectional area of the web.

 tmax 5
V

Aweb
 (13.11)

We should note, however, that while the vertical component txy of the 
shearing stress in the flanges can be neglected, its horizontal compo-
nent txz has a significant value that will be determined in Sec. 13.6.

EXAMPLE 13.2 Knowing that the allowable shearing stress for the tim-
ber beam of Sample Prob. 12.7 is tall 5 0.250 ksi, check that the design 
obtained in that sample problem is acceptable from the point of view of the 
shearing stresses.

 We recall from the shear diagram of Sample Prob. 12.7 that Vmax 5 
4.50 kips. The actual width of the beam was given as b 5 3.5 in. and the 
value obtained for its depth was h 5 14.55 in. Using Eq. (13.10) for the 
maximum shearing stress in a narrow rectangular beam, we write

tmax 5
3
2

 
V
A

5
3
2

 
V
bh

5
3 14.50 kips2

2 13.5 in.2 114.55 in.2 5 0.1325 ksi

Since tmax , tall, the design obtained in Sample Prob. 12.7 is acceptable. ◾

EXAMPLE 13.3 Knowing that the allowable shearing stress for the steel 
beam of Sample Prob. 12.8 is tall 5 90 MPa, check that the W360 3 32.9 
shape obtained in that sample problem is acceptable from the point of view 
of the shearing stresses.

 We recall from the shear diagram of Sample Prob. 12.8 that the maxi-
mum absolute value of the shear in the beam is 0V 0max 5 58 kN. As we saw 
in this section it may be assumed in practice that the entire shear load is 
carried by the web and that the maximum value of the shearing stress in 
the beam can be obtained from Eq. (13.11). From App. B we find that for 
a W360 3 32.9 shape the depth of the beam and the thickness of its web 
are, respectively, d 5 348 mm and tw 5 5.84 mm. We thus have

Aweb 5 d tw 5 1348 mm 2 15.84 mm 2 5 2032 mm2

Substituting the values of 0V 0max and Aweb into Eq. (13.11), we obtain

tmax 5
0V 0max

Aweb
5

58 kN
2032 mm2 5 28.5 MPa

Since tmax , tall, the design obtained in Sample Prob. 12.8 is acceptable. ◾

13.4 Shearing Stresses txy in Common 
Types of Beams
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546

SAMPLE PROBLEM 13.1

Beam AB is made of three planks glued together and is subjected, in its 
plane of symmetry, to the loading shown. Knowing that the width of each 
glued joint is 20 mm, determine the average shearing stress in each joint 
at section n-n of the beam. The location of the centroid of the section is 
given in the sketch and the centroidal moment of inertia is known to be 
I 5 8.63 3 1026 m4.

SOLUTION

Vertical Shear at Section n-n. Since the beam and loading are both sym-
metric with respect to the center of the beam, we have A 5 B 5 1.5 kN c.

Considering the portion of the beam to the left of section n-n as a free body, 
we write

1xg  Fy 5 0: 1.5 kN 2 V 5 0    V 5 1.5 kN

Shearing Stress in Joint a. We pass the section a-a through the glued 
joint and separate the cross-sectional area into two parts. We choose to 
determine Q by computing the first moment with respect to the neutral axis 
of the area above section a-a.

Q 5 A  y1 5 3 10.100 m 2 10.020 m 2 4 10.0417 m 2 5 83.4 3 1026 m3

Recalling that the width of the glued joint is t 5 0.020 m, we use Eq. (13.7) 
to determine the average shearing stress in the joint.

tave 5
VQ

It
5
11500 N 2 183.4 3 1026 m32
18.63 3 1026 m42 10.020 m 2   tave 5 725 kPa  b

Shearing Stress in Joint b. We now pass section b-b and compute Q by 
using the area below the section.

Q 5 A  y2 5 3 10.060 m 2 10.020 m 2 4 10.0583 m 2 5 70.0 3 1026 m3

 tave 5
VQ

It
5
11500 N 2 170.0 3 1026 m32
18.63 3 1026 m42 10.020 m 2  tave 5 608 kPa  b

B

0.4 m 0.4 m
0.2 m

1.5 kN1.5 kN

A n

n

B

1.5 kN

M

V

A � 1.5 kN B � 1.5 kN A � 1.5 kN

1.5 kN

A n

n

0.100 m

0.020 m

Neutral axis
y1 � 0.0417 m

x'
a a

Neutral axis

0.020 m

0.060 m

y2 � 0.0583 m

x'
C

b b

100 mm

68.3 mm

Joint a

Joint b

C

60 mm

20 mm

20 mm

20 mm

80 mm
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SAMPLE PROBLEM 13.2

A timber beam AB of span 10 ft and nominal width 4 in. (actual width 5 
3.5 in.) is to support the three concentrated loads shown. Knowing that for 
the grade of timber used sall 5 1800 psi and tall 5 120 psi, determine the 
minimum required depth d of the beam.

2.5 kips 1 kip 2.5 kips

2 ft 2 ft

3.5 in.

3 ft

A B
d

10 ft

3 ft

SOLUTION

Maximum Shear and Bending Moment. After drawing the shear and 
bending-moment diagrams, we note that

 Mmax 5 7.5 kip ? ft 5 90 kip ? in.
 Vmax 5 3 kips

Design Based on Allowable Normal Stress. We first express the elastic 
section modulus S in terms of the depth d. We have

I 5
1

12
 bd 3    S 5

1
c

5
1
6

 bd 2 5
1
6

 13.5 2d 2 5 0.5833d 2

For Mmax 5 90 kip ? in. and sall 5 1800 psi, we write

 S 5
Mmax

sall
     0.5833d2 5

90 3 103 lb ? in.
1800 psi

 d2 5 85.7    d 5 9.26 in.

We have satisfied the requirement that sm # 1800 psi.

Check Shearing Stress. For Vmax 5 3 kips and d 5 9.26 in., we find

tm 5
3
2

 
Vmax

A
5

3
2

 
3000 lb

13.5 in.2 19.26 in.2    tm 5 138.8 psi

Since tall 5 120 psi, the depth d 5 9.26 in. is not acceptable and we must 
redesign the beam on the basis of the requirement that tm # 120 psi.

Design Based on Allowable Shearing Stress. Since we now know that 
the allowable shearing stress controls the design, we write

tm 5 tall 5
3
2

 
Vmax

A
    120 psi 5

3
2

 
3000 lb
13.5 in.2d

d 5 10.71 in.  b

The normal stress is, of course, less than sall 5 1800 psi, and the depth of 
10.71 in. is fully acceptable.

Comment. Since timber is normally available in depth increments of 
2 in., a 4 3 12-in. nominal size timber should be used. The actual cross 
section would then be 3.5 3 11.25 in.

A BC D E

2.5 kips 1 kip 2.5 kips

3 kips

3 kips

6 kip · ft
6 kip · ft

7.5 kip · ft

3 kips

�3 kips

0.5 kip

�0.5 kip

2 ft

V

M

x

x

2 ft3 ft

(1.5)

(�1.5)

(6)

(�6)

3 ft

b � 3.5 in.

c � 
d

d
2

3.5 in.

11.25 in.

4 in. � 12 in.
Nominal size
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PROBLEMS

548

 13.1 Three full-size 50 3 100-mm boards are nailed together to form 
a beam that is subjected to a vertical shear of 1500 N. Knowing 
that the allowable shearing force in each nail is 400 N, determine 
the largest longitudinal spacing s that can be used between each 
pair of nails.

13.2 For the built-up beam of Prob. 13.1, determine the allowable shear 
if the spacing between each pair of nails is s 5 45 mm.

 13.3 A square box beam is made of two 3
4 3 3.5-in. planks and two 3

4 3 
5-in. planks nailed together as shown. Knowing that the spacing 
between nails is s 5 1.25 in. and that the vertical shear in the beam 
is V 5 250 lb, determine (a) the shearing force in each nail, (b) 
the maximum shearing stress in the beam.

50 mm

s
s

50 mm

50 mm

100 mm

Fig. P13.1

s
s

s

in.

5 in.

3
4

in.3
4

3.5 in.

Fig. P13.3 and P13.4

13.4 A square box beam is made of two 3
4 3 3.5-in. planks and two 3

4 3
5-in. planks nailed together as shown. Knowing that the spacing 
between nails is s 5 2 in. and that the allowable shearing force in 
each nail is 75 lb, determine (a) the largest allowable vertical shear 
in the beam, (b) the corresponding maximum shearing stress in the 
beam.

 13.5 The American Standard rolled-steel beam shown has been rein-
forced by attaching to it two 16 3 200-mm plates using 18-mm-
diameter bolts spaced longitudinally every 120 mm. Knowing that 
the average allowable shearing stress in the bolts is 90 MPa, deter-
mine the largest permissible vertical shearing force.

16 � 200 mm

S310 � 52

Fig. P13.5
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549Problems 13.6 Solve Prob. 13.5 assuming that the reinforcing plates are only 
12 mm thick.

 13.7 and 13.8 A column is fabricated by connecting the rolled-steel 
members shown by bolts of 3

4-in. diameter spaced longitudinally 
every 5 in. Determine the average shearing stress in the bolts 
caused by a shearing force of 30 kips parallel to the y axis.

 13.9 through 13.12 For the beam and loading shown, consider sec-
tion n-n and determine (a) the largest shearing stress in that 
 section, (b) the shearing stress at point a.

C10 � 25

14 in. � in.

C
z

y
3
8

Fig. P13.7

S10 � 25.4

C8 � 13.7

Cz

y

Fig. P13.8

1 ft

2 ft 2 ft 2 ft 2 ft

0.375 in.

1 in.

0.6 in.

a

0.6 in.

10 in.

10 in.

n

15 kips 20 kips 15 kips

n

Fig. P13.9

8 in.

16 in. 12 in. 16 in.

4 in.

4 in.

n

10 kips 10 kips

n

a

in.1
2

in.1
2

Fig. P13.10

1.5 m

100 mm

200 mm

40 mm

12 mm

12 mm
150 mm

0.3 m

10 kN
n

a

n

Fig. P13.11

600 mm

450 mm
72 mm a

t

t � 6 mm

t
t

72 mm

72 mm

192 mm

125 kN

n

n

Fig. P13.12
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550  Shearing Stresses in Beams and 
Thin-Walled Members

 13.13 For the beam and loading shown, determine the minimum required 
depth h knowing that for the grade of timber used sall 5 1750 psi 
and tall 5 130 psi.

16 ft

5 in.

A B
h

750 lb/ft

Fig. P13.13

 13.14 For the beam and loading shown, determine the minimum required 
width b knowing that for the grade of timber used sall 5 12 MPa 
and tall 5 825 kPa.

 13.15 For the wide-flange beam with the loading shown, determine the 
largest load P that can be applied knowing that the maximum nor-
mal stress is 24 ksi and the largest shearing stress using the approxi-
mation tm 5 VyAweb is 14.5 ksi.

2.4 kN 4.8 kN

1 m 1 m 1 m

150 mmA D

b

B C

Fig. P13.14

6 ft

A C
B

9 ft

W24 � 104

P

Fig. P13.15

0.6 m 0.6 m
0.6 m

1.8 m

A E
B C D

W360 � 122

PPP

Fig. P13.16

 13.16 For the wide-flange beam with the loading shown, determine the 
largest load P that can be applied knowing that the maximum nor-
mal stress is 160 MPa and the largest shearing stress using the 
approximation tm 5 VyAweb is 100 MPa.
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551Problems 13.17 and 13.18 For the beam and loading shown, consider section 
n-n and determine the shearing stress at (a) point a, (b) point b.

 13.19 and 13.20 For the beam and loading shown, determine the 
largest shearing stress in section n-n.

 13.21 through 13.24 A beam having the cross section shown is sub-
jected to a vertical shear V. Determine (a) the horizontal line along 
which the shearing stress is maximum, (b) the constant k in the 
following expression for the maximum shearing stress

tmax 5 k 

V
A

  where A is the cross-sectional area of the beam.

B

a

b
A

n

1.2 m
0.75 m 0.75 m

50 mm

50 mm 150 mm

50 mm

75 mm 75 mm 75 mm

200 kN 200 kN

n

Fig. P13.17 and P13.19

B b
a

A

10 in.
20 in. 20 in.

25 kips 25 kips

n
7.25 in.

in.

1.5 in.
1.5 in.

3
4

8 in.

in.3
4

in.3
4

n

Fig. P13.18 and P13.20

c

Fig. P13.21

rm

tm

Fig. P13.22

h

h

b

Fig. P13.23

b

h

Fig. P13.24
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552  Shearing Stresses in Beams and 
Thin-Walled Members 13.5  LONGITUDINAL SHEAR ON A BEAM ELEMENT

OF ARBITRARY SHAPE
Consider a box beam obtained by nailing together four planks, as 
shown in Fig. 13.17a. You learned in Sec. 13.2 how to determine the 
shear per unit length, q, on the horizontal surfaces along which the 
planks are joined. But could you determine q if the planks had been 
joined along vertical surfaces, as shown in Fig. 13.17b? We examined 
in Sec. 13.4 the distribution of the vertical components txy of the 
stresses on a transverse section of a W-beam or an S-beam and found 
that these stresses had a fairly constant value in the web of the beam 
and were negligible in its flanges. But what about the horizontal 
components txz of the stresses in the flanges?
 To answer these questions we must extend the procedure 
developed in Sec. 13.2 for the determination of the shear per unit 
length, q, so that it will apply to the cases just described.

(a) (b)

Fig. 13.17

B

P1 P2 w

A

x

C

y

z

Fig. 13.4 (repeated )

 Consider the prismatic beam AB of Fig. 13.4, which has a verti-
cal plane of symmetry and supports the loads shown. At a distance 
x from end A we detach again an element CDD9C9 of length Dx. 
This element, however, will now extend from two sides of the beam 
to an arbitrary curved surface (Fig. 13.18). The forces exerted on the 

�x
C

c

x

D

C' D'

y

N.A.
z

Fig. 13.18

element include vertical shearing forces V9C and V9D, elementary hori-
zontal normal forces sC dA and sD dA, possibly a load w Dx, and a 
longitudinal shearing force DH representing the resultant of the 
elementary longitudinal shearing forces exerted on the curved sur-
face (Fig. 13.19). We write the equilibrium equation

1
ygFx 5 0:

 
¢H 1 #

A

 1sD 2 sC 2 dA 5 0

V�C V�D

�H

x

C D
�  dAD�  dAC

w

Fig. 13.19
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553where the integral is to be computed over the shaded area A of the 
section. We observe that the equation obtained is the same as the 
one we obtained in Sec. 13.2, but that the shaded area A over which 
the integral is to be computed now extends to the curved surface.
 The remainder of the derivation is the same as in Sec. 13.2. We 
find that the longitudinal shear exerted on the beam element is

 ¢H 5
VQ

I
 ¢x (13.4)

where I is the centroidal moment of inertia of the entire section, Q 
the first moment of the shaded area A with respect to the neutral 
axis, and V the vertical shear in the section. Dividing both members 
of Eq. (13.4) by Dx, we obtain the horizontal shear per unit length, 
or shear flow:

 q 5
¢H
¢x

5
VQ

I
 (13.5)

EXAMPLE 13.4 A square box beam is made of two 0.75 3 3-in. planks 
and two 0.75 3 4.5-in. planks, nailed together as shown (Fig. 13.20). Know-
ing that the spacing between nails is 1.75 in. and that the beam is subjected 
to a vertical shear of magnitude V 5 600 lb, determine the shearing force 
in each nail.
 We isolate the upper plank and consider the total force per unit 
length, q, exerted on its two edges. We use Eq. (13.5), where Q repre-
sents the first moment with respect to the neutral axis of the shaded area 
A9 shown in Fig. 13.21a, and where I is the moment of inertia about the 
same axis of the entire cross-sectional area of the box beam (Fig. 13.21b). 
We have

Q 5 A¿y 5 10.75 in.2 13 in.2 11.875 in.2 5 4.22 in3

Recalling that the moment of inertia of a square of side a about a centroidal 
axis is I 5 1

12 a4, we write

I 5 1
12 14.5 in.24 2 1

12 13 in.24 5 27.42 in4

Substituting into Eq. (13.5), we obtain

q 5
VQ

I
5
1600 lb 2 14.22 in32

27.42 in4 5 92.3 lb/in.

0.75 in. 0.75 in.

0.75 in.

4.5 in.

3 in.

Fig. 13.20

0.75 in.

y � 1.875 in.

N.A. 4.5 in.

4.5 in.

3 in.

3 in.

3 in.

(a) (b)

A'

Fig. 13.21

13.5 Longitudinal Shear on a Beam Element
of Arbitrary Shape
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554  Shearing Stresses in Beams and 
Thin-Walled Members

Because both the beam and the upper plank are symmetric with respect 
to the vertical plane of loading, equal forces are exerted on both edges of 
the plank. The force per unit length on each of these edges is thus 
1
2q 5 1

2 192.3 2 5 46.15 lb/in. Since the spacing between nails is 1.75 in., the 
shearing force in each nail is

F 5 11.75 in.2 146.15 lb/in.2 5 80.8 lb ◾

13.6  SHEARING STRESSES IN THIN-WALLED MEMBERS
We saw in the preceding section that Eq. (13.4) may be used to 
determine the longitudinal shear DH exerted on the walls of a 
beam element of arbitrary shape and Eq. (13.5) to determine the 
corresponding shear flow q. These equations will be used in this 
section to calculate both the shear flow and the average shearing 
stress in thin-walled members such as the flanges of wide-flange 
beams (Photo 13.2) and box beams, or the walls of structural tubes 
(Photo 13.3).

Photo 13.3Photo 13.2

 Consider, for instance, a segment of length Dx of a wide-flange 
beam (Fig. 13.22a) and let V be the vertical shear in the transverse 
section shown. Let us detach an element ABB9A9 of the upper flange 
(Fig. 13.22b). The longitudinal shear DH exerted on that element 
can be obtained from Eq. (13.4):

 ¢H 5
VQ

I
  ¢x (13.4)

Dividing DH by the area DA 5 t Dx of the cut, we obtain for the 
average shearing stress exerted on the element the same expression 
that we had obtained in Sec. 13.3 in the case of a horizontal cut:

 tave 5
VQ

It
 (13.6)

Note that tave now represents the average value of the shearing 
stress tzx over a vertical cut, but since the thickness t of the flange 

y

B' B'
B B

�H

V

�x

�x

A
A

A' A't

xz

(a)

(b)

Fig. 13.22
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555

is small, there is very little variation of tzx across the cut. Recalling 
that txz 5 tzx (Fig. 13.23), we conclude that the horizontal compo-
nent txz of the shearing stress at any point of a transverse section 
of the flange can be obtained from Eq. (13.6), where Q is the first 
moment of the shaded area about the neutral axis (Fig. 13.24a). We 
recall that a similar result was obtained in Sec. 13.4 for the vertical 
component txy of the shearing stress in the web (Fig. 13.24b). Equa-
tion (13.6) can be used to determine shearing stresses in box beams 
(Fig. 13.25), half pipes (Fig. 13.26), and other thin-walled members, 
as long as the loads are applied in a plane of symmetry of the mem-
ber. In each case, the cut must be perpendicular to the surface of 
the member, and Eq. (13.6) will yield the component of the shear-
ing stress in the direction of the tangent to that surface. (The other 
component may be assumed equal to zero, in view of the proximity 
of the two free surfaces.)

N.A. N.A.

xy�

xz� xz�

xy�

t

t

z z

yy

(a) (b)

Fig. 13.25

N.A.
z

y

t

C

�

Fig. 13.26

 Comparing Eqs. (13.5) and (13.6), we note that the product of 
the shearing stress t at a given point of the section and of the thick-
ness t of the section at that point is equal to q. Since V and I are 
constant in any given section, q depends only upon the first moment 
Q and, thus, can easily be sketched on the section. In the case of a 

N.A.

xz�

y
t

z

(a)

N.A.

xy�

y

t

z

(b)

Fig. 13.24

y

zx� xz�

x

z

Fig. 13.23

13.6 Shearing Stresses in 
Thin-Walled Members
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556  Shearing Stresses in Beams and 
Thin-Walled Members

box beam, for example (Fig. 13.27), we note that q grows smoothly 
from zero at A to a maximum value at C and C9 on the neutral axis, 
and then decreases back to zero as E is reached. We also note that 
there is no sudden variation in the magnitude of q as we pass a cor-
ner at B, D, B9, or D9, and that the sense of q in the horizontal por-
tions of the section may be easily obtained from its sense in the 
vertical portions (which is the same as the sense of the shear V). In 
the case of a wide-flange section (Fig. 13.28), the values of q in por-
tions AB and A9B of the upper flange are distributed symmetrically. 
As we turn at B into the web, the values of q corresponding to the 
two halves of the flange must be combined to obtain the value of q 
at the top of the web. After reaching a maximum value at C on the 
neutral axis, q decreases, and at D splits into two equal parts corre-
sponding to the two halves of the lower flange. The term shear flow 
commonly used to refer to the shear per unit length, q, reflects the 
similarity between the properties of q that we have just described 
and some of the characteristics of a fluid flow through an open 
channel or pipe.
 So far we have assumed that all the loads were applied in a 
plane of symmetry of the member. In the case of members possess-
ing two planes of symmetry, such as the wide-flange beam of Fig. 
13.24 or the box beam of Fig. 13.25, any load applied through the 
centroid of a given cross section can be resolved into components 
along the two axes of symmetry of the section. Each component will 
cause the member to bend in a plane of symmetry, and the corre-
sponding shearing stresses can be obtained from Eq. (13.6). The 
principle of superposition can then be used to determine the result-
ing stresses.
 However, if the member considered possesses no plane of sym-
metry, or if it possesses a single plane of symmetry and is subjected 
to a load that is not contained in that plane, the member is observed 
to bend and twist at the same time, except when the load is applied 
at a specific point, called the shear center.† Note that the shear center 
generally does not coincide with the centroid of the cross section. 

B

N.A.

A

q q

C C'

B'

D E D'

V

Fig. 13.27 Variation of 
q in box-beam section.

N.A.

q1

q

q � q1 � q2

q2

q1 q2

A

D

B

C

A'

E'E

V

Fig. 13.28 Variation of q 
in wide-flange beam section.

†See Ferdinand P. Beer, E. Russell Johnston, Jr., John T. DeWolf, and David F. Mazurek, 
Mechanics of Materials, 5th ed., McGraw-Hill, New York, 2009, sec. 6.9.

bee80156_ch13_536-569.indd Page 556  9/23/09  3:40:22 PM user-s191bee80156_ch13_536-569.indd Page 556  9/23/09  3:40:22 PM user-s191 /Users/user-s191/Desktop/MHBR071a/Users/user-s191/Desktop/MHBR071a



557

SAMPLE PROBLEM 13.3

Knowing that the vertical shear is 50 kips in a W10 3 68 rolled-steel beam, 
determine the horizontal shearing stress in the top flange at a point a located 
4.31 in. from the edge of the beam. The dimensions and other geometric 
data of the rolled-steel section are given in App. B.

SOLUTION

We isolate the shaded portion of the flange by cutting along the dashed line 
that passes through point a.

Q 5 14.31 in.2 10.770 in.2 14.815 in.2 5 15.98 in3

 t 5
VQ

It
5
150 kips2 115.98 in32
1394 in42 10.770 in 2  t 5 2.63 ksi  b

� 4.815 in.5.2 �5.2 in.

tf � 0.770 in.

Ix � 394 in4

a

C

0.770

4.31 in.

10.4 in.

2

SAMPLE PROBLEM 13.4

Solve Sample Prob. 13.3, assuming that 0.75 3 12-in. plates have been attached 
to the flanges of the W10 3 68 beam by continuous fillet welds as shown.

SOLUTION

For the composite beam the centroidal moment of inertia is

 I 5 394 in4 1 2 3 1
12 112 in.2 10.75 in.23 1 112 in.2 10.75 in.2 15.575 in.22 4

 I 5 954 in4

Since the top plate and the flange are connected only at the welds, we find the 
shearing stress at a by passing a section through the flange at a, between the 
plate and the flange, and again through the flange at the symmetric point a9.

For the shaded area that we have isolated, we have

 t 5 2tf 5 2 10.770 in.2 5 1.540 in.
 Q 5 2 3 14.31 in.2 10.770 in.2 14.815 in.2 4 1 112 in.2 10.75 in.2 15.575 in.2
 Q 5 82.1 in3

  t 5
VQ

It
5
150 kips2 182.1 in32
1954 in42 11.540 in.2  t 5 2.79 ksi  b

C

12 in.

5.2 in.
5.575 in.

0.375 in.

10.4 in.

0.75 in.

0.75 in.

12 in.

5.2 in.

0.75 in.

0.770 in.
4.31 in. 4.31 in.4.815 in.

5.575 in.

a' a

C

a

Welds

0.75 in. � 12 in.

4.31 in.
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SAMPLE PROBLEM 13.5

The thin-walled extruded beam shown is made of aluminum and has a uni-
form 3-mm wall thickness. Knowing that the shear in the beam is 5 kN, 
determine (a) the shearing stress at point A, (b) the maximum shearing 
stress in the beam. Note: The dimensions given are to lines midway between 
the outer and inner surfaces of the beam.

SOLUTION

Centroid. We note that AB 5 AD 5 65 mm.

 Y 5
o  y A

o  A
5

2 3 165 mm 2 13 mm 2 130 mm 2 4
2 3 165 mm 2 13 mm 2 4 1 150 mm 2 13 mm 2

 Y 5 21.67 mm

Centroidal Moment of Inertia. Each side of the thin-walled beam can be 
considered as a parallelogram, and we recall that for the case shown Inn 5 
bh3y12 where b is measured parallel to the axis nn.

 b 5 13 mm 2ycos b 5 13 mm 2y 112y13 2 5 3.25 mm
 I 5 o 1I 1 Ad22 5 2 3 1

12 13.25 mm 2 160 mm 23
 1 13.25 mm 2 160 mm 2 18.33 mm 22 4 1 3 1

12 150 mm 2 13 mm 23
 1 150 mm 2 13 mm 2 121.67 mm 22 4

 I 5 214.6 3 103 mm4    I 5 0.2146 3 1026 m4

a. Shearing Stress at A. If a shearing stress tA occurs at A, the shear flow 
will be qA 5 tAt and must be directed in one of the two ways shown. But 
the cross section and the loading are symmetric about a vertical line through 
A, and thus the shear flow must also be symmetric. Since neither of the 
possible shear flows is symmetric, we conclude that tA 5 0  b

b. Maximum Shearing Stress. Since the wall thickness is constant, the 
maximum shearing stress occurs at the neutral axis, where Q is maximum. 
Since we know that the shearing stress at A is zero, we cut the section along 
the dashed line shown and isolate the shaded portion of the beam. In order 
to obtain the largest shearing stress, the cut at the neutral axis is made 
perpendicular to the sides and is of length t 5 3 mm.

Q 5 3 13.25 mm 2 138.33 mm 2 4  a38.33 mm
2

b 5 2387 mm3

Q 5 2.387 3 1026 m3

tE 5
VQ

It
5

15 kN 2 12.387 3 1026 m32
10.2146 3 1026 m42 10.003 m 2  tmax 5 tE 5 18.54 MPa  b

D B

A

60 mm
65 mm

cos 12
13�

13
12

5
y

	 	

	

30 mm

25 mm 25 mm

h h

b b

n n n n

3 mm

	

	

3.25 mm

D

C

B

A

30 mm

21.67 mm3 mm

8.33 mm	 	

30 mm

30 mm

25 mm 25 mm

qA qA qA qA

OR

b � 3.25 mm

t � 3 mmC

A

ENeutral axis

38.33 mm

5 kN

D B

A

60 mm

25 mm 25 mm
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PROBLEMS

559

 13.25 The built-up timber beam is subjected to a 6-kN vertical shear. 
Knowing that the longitudinal spacing of the nails is s 5 60 mm 
and that each nail is 90 mm long, determine the shearing force in 
each nail.

100 mm

100 mm

50 mm 50 mm
50 mm

50 mm

150 mm 100 mm

50 mm

Fig. P13.25

 13.26 The built-up timber beam is subjected to a vertical shear of 1200 lb. 
Knowing that the allowable shearing force in the nails is 75 lb, 
determine the largest permissible spacing s of the nails.

2 in.

2 in.

2 in.

2 in.

10 in.

s s s

Fig. P13.26

 13.27 The built-up beam was made by gluing together several wooden 
planks. Knowing that the beam is subjected to a 1200-lb vertical 
shear, determine the average shearing stress in the glued joint (a) 
at A, (b) at B.

 13.28 Knowing that a W360 3 122 rolled-steel beam is subjected to a 
250-kN vertical shear, determine the shearing stress (a) at point a, 
(b) at the centroid C of the section.

1.5 1.50.8 0.8

0.8

0.8

3.2

4

Dimensions in inches

A B

Fig. P13.27

a

C

105 mm

Fig. P13.28
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560  Shearing Stresses in Beams and 
Thin-Walled Members

 13.29 and 13.30 An extruded aluminum beam has the cross section 
shown. Knowing that the vertical shear in the beam is 150 kN, 
determine the shearing stress at (a) point a, (b) point b.

b

1212

40

80

150

Dimensions in mm

6

6
a

Fig. P13.29

b

1212

40

80

80
Dimensions in mm

6

6

a

Fig. P13.30

 13.31 and 13.32 The extruded beam shown has a uniform wall thick-
ness of 1

8 in. Knowing that the vertical shear in the beam is 2 kips, 
determine the shearing stress at each of the five points indicated.

1.25 in.

1.25 in.

1.25 in. 1.25 in.

bc

ae

d

Fig. P13.31

1.25 in.

1.25 in.

1.25 in. 1.25 in.

bc

ae

d

Fig. P13.32

 13.33 Knowing that a given vertical shear V causes a maximum shearing 
stress of 75 MPa in the hat-shaped extrusion shown, determine the 
corresponding shearing stress at (a) point a, (b) point b.

 13.34 Knowing that a given vertical shear V causes a maximum shearing 
stress of 50 MPa in a thin-walled member having the cross section 
shown, determine the corresponding shearing stress at (a) point a, 
(b) point b, (c) point c.

60 mm

20 mm 28 mm 20 mm

4 mm

4 mm

14 mm

6 mm 6 mm

b

a

40 mm

Fig. P13.33

40 mm

30 mm

50 mm

30 mm

10 mm

10 mm

12 mm40 mm

b
c

a

Fig. P13.34
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561Problems 13.35 The vertical shear is 1200 lb in a beam having the cross section 
shown. Knowing that d 5 4 in., determine the shearing stress at 
(a) point a, (b) point b.

5 in.

8 in.

0.5 in.

0.5 in. d d

4 in.

a

b

Fig. P13.35 and P13.36

 13.36 The vertical shear is 1200 lb in a beam having the cross section 
shown. Determine (a) the distance d for which ta 5 tb, (b) the 
corresponding shearing stress at points a and b.

 13.37 A beam consists of three planks connected by steel bolts with a 
longitudinal spacing of 225 mm. Knowing that the shear in the 
beam is vertical and equal to 6 kN and that the allowable average 
shearing stress in each bolt is 60 MPa, determine the smallest 
permissible bolt diameter that can be used.

 13.38 Four L102 3 102 3 9.5 steel angle shapes and a 12 3 400-mm 
steel plate are bolted together to form a beam with the cross sec-
tion shown. The bolts are of 22-mm diameter and are spaced lon-
gitudinally every 120 mm. Knowing that the beam is subjected to 
a vertical shear of 240 kN, determine the average shearing stress 
in each bolt.

100 mm

100 mm

50 mm100 mm50 mm

25 mm
25 mm

Fig. P13.37

400 mm 12 mm

Fig. P13.38

2 in.
6 in.

6 in.
2 in. 2 in.

Fig. P13.39

6 in.

1 in.
1 in.

Fig. P13.40

 13.39 A beam consists of three planks connected as shown by 3
8-in.-

diameter bolts spaced every 12 in. along the longitudinal axis of 
the beam. Knowing that the beam is subjected to a 2500-lb verti-
cal shear, determine the average shearing stress in the bolts.

 13.40 A beam consists of five planks of 1.5 3 6-in. cross section con-
nected by steel bolts with a longitudinal spacing of 9 in. Knowing 
that the shear in the beam is vertical and equal to 2000 lb and that 
the allowable average shearing stress in each bolt is 7500 psi, deter-
mine the smallest permissible bolt diameter that can be used.
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562  Shearing Stresses in Beams and 
Thin-Walled Members

 13.41 Three plates, each 12 mm thick, are welded together to form the 
section shown. For a vertical shear of 100 kN, determine the shear 
flow through the welded surfaces, and sketch the shear flow in the 
cross section.

200 mm

100 mm

50 mm

100 mm

Fig. P13.41

 13.42 A plate of 2-mm thickness is bent as shown and then used as a 
beam. For a vertical shear of 5 kN, determine the shearing stress 
at the five points indicated, and sketch the shear flow in the cross 
section.

 13.43 A plate of 1
4-in. thickness is corrugated as shown and then used as 

a beam. For a vertical shear of 1.2 kips, determine (a) the maxi-
mum shearing stress in the section, (b) the shearing stress at point B. 
Also sketch the shear flow in the cross section.

da

e

b c

50 mm

10 mm 10 mm

22 mm

Fig. P13.42

1.6 in.

2 in. 2 in.
1.2 in. 1.2 in.

A B

D

E F

Fig. P13.43

 13.44 A plate of thickness t is bent as shown and then used as a beam. 
For a vertical shear of 600 lb, determine (a) the thickness t for 
which the maximum shearing stress is 300 psi, (b) the correspond-
ing shearing stress at point E. Also sketch the shear flow in the 
cross section.

4.8 in.

6 in.

3 in. 3 in.
2 in.

B G

ED

FA

Fig. P13.44
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563Problems 13.45 For a beam made of two or more materials with different moduli 
of elasticity, show that Eq. (13.6)

tave 5
VQ

It

  remains valid provided that both Q and I are computed by using the 
transformed section of the beam (see Sec. 11.5) and provided further 
that t is the actual width of the beam where tave is computed.

 13.46 A composite beam is made by attaching the timber and steel por-
tions shown with bolts of 12-mm diameter spaced longitudinally 
every 200 mm. The modulus of elasticity is 10 GPa for the wood 
and 200 GPa for the steel. For a vertical shear of 4 kN, determine 
(a) the average shearing stress in the bolts, (b) the shearing stress 
at the center of the cross section. (Hint: Use the method indicated 
in Prob. 13.45.)

 13.47 A composite beam is made by attaching the timber and steel por-
tions shown with bolts of 5

8-in. diameter spaced longitudinally every 
8 in. The modulus of elasticity is 1.9 3 106 psi for the wood and 
29 3 106 psi for the steel. For a vertical shear of 4000 lb, deter-
mine (a) the average shearing stress in the bolts, (b) the shearing 
stress at the center of the cross section. (Hint: Use the method 
indicated in Prob. 13.45.)

 13.48 A steel bar and an aluminum bar are bonded together as shown to 
form a composite beam. Knowing that the vertical shear in the 
beam is 6 kN and that the modulus of elasticity is 210 GPa for the 
steel and 70 GPa for the aluminum, determine (a) the average 
stress at the bonded surface, (b) the maximum shearing stress in 
the beam. (Hint: Use the method indicated in Prob. 13.45.)

150 mm

12 mm

250 mm

12 mm

Fig. P13.46

in.1
2

3 in. 3 in.

4 in.

4 in.

4 in.

Fig. P13.47
8 mm

8 mm

Steel

Aluminum

24 mm

Fig. P13.48

2 in.

1 in.

1.5 in.

Steel

Aluminum

Fig. P13.49

 13.49 A steel bar and an aluminum bar are bonded together as shown to 
form a composite beam. Knowing that the vertical shear in the beam 
is 4 kips and that the modulus of elasticity is 29 3 106 psi for the 
steel and 10.6 3 106 psi for the aluminum, determine (a) the average 
stress at the bonded surface, (b) the maximum shearing stress in the 
beam. (Hint: Use the method indicated in Prob. 13.45.)
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564

REVIEW AND SUMMARY

This chapter was devoted to the analysis of beams and thin-walled 
members under transverse loadings.

In Sec. 13.1 we considered a small element located in the vertical 
plane of symmetry of a beam under a transverse loading (Fig. 13.29) 
and found that normal stresses sx and shearing stresses txy were 
exerted on the transverse faces of that element, while shearing stresses 
tyx, equal in magnitude to txy, were exerted on its horizontal faces.
 In Sec. 13.2 we considered a prismatic beam AB with a vertical 
plane of symmetry supporting various concentrated and distributed 
loads (Fig. 13.30). At a distance x from end A we detached from the 

�yx

�xy

�x

Fig. 13.29

Stresses on a beam element

B

P1 P2 w

A

x

C

y

z

Fig. 13.30

beam an element CDD9C9 of length Dx extending across the width 
of the beam from the upper surface of the beam to a horizontal plane 
located at a distance y1 from the neutral axis (Fig. 13.31). We found 

y1 y1

�x
C

c

x

D

C'
N.A.

D'

y

z

Fig. 13.31

that the magnitude of the shearing force DH exerted on the lower 
face of the beam element was

 ¢H 5
VQ

I
 ¢x (13.4)

where V 5 vertical shear in the given transverse section
 Q 5  first moment with respect to the neutral axis of 

the shaded portion A of the section
I 5  centroidal moment of inertia of the entire cross-

sectional area

Horizontal shear in a beam
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565The horizontal shear per unit length, or shear flow, which was 
denoted by the letter q, was obtained by dividing both members of 
Eq. (13.4) by Dx:

 q 5
¢H
¢x

5
VQ

I
 (13.5)

Dividing both members of Eq. (13.4) by the area DA of the horizon-
tal face of the element and observing that DA 5 t Dx, where t is the 
width of the element at the cut, we obtained in Sec. 13.3 the follow-
ing expression for the average shearing stress on the horizontal face 
of the element

 tave 5
VQ

It
 (13.6)

We further noted that, since the shearing stresses txy and tyx exerted, 
respectively, on a transverse and a horizontal plane through D9 are 
equal, the expression in (13.6) also represents the average value of 
txy along the line D91 D92 (Fig. 13.32).

In Sec. 13.4 we analyzed the shearing stresses in a beam of rectan-
gular cross section. We found that the distribution of stresses is para-
bolic and that the maximum stress, which occurs at the center of the 
section, is

 tmax 5
3
2

 
V
A

 (13.10)

where A is the area of the rectangular section. For wide-flange 
beams, we found that a good approximation of the maximum shear-
ing stress can be obtained by dividing the shear V by the cross-
 sectional area of the web.

In Sec. 13.5 we showed that Eqs. (13.4) and (13.5) could still be 
used to determine, respectively, the longitudinal shearing force  
DH and the shear flow q exerted on a beam element if the element 
was bounded by an arbitrary curved surface instead of a horizontal 
plane (Fig. 13.33). This made it possible for us in Sec. 13.6 to 
extend the use of Eq. (13.6) to the determination of the average 
shearing stress in thin-walled members such as wide-flange beams 
and box beams, in the flanges of such members, and in their webs 
(Fig. 13.34).

�yx

�ave

�ave

�xy

D'

D'

D''2
C''1

D''1

1

2D'

Fig. 13.32

�x
C

c

x

D

C' D'

y

N.A.
z

Fig. 13.33

N.A.

xz�

y
t

z

(a)

N.A.

xy�

y

t

z

(b)

Fig. 13.34

Shear flow

Shearing stresses in a beam

Shearing stresses in a beam 
of rectangular cross section

Longitudinal shear on curved 
surface

Shearing stresses in thin-walled 
members

Review and Summary
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566

REVIEW PROBLEMS

13.50 Three boards are nailed together to form the beam shown, which 
is subjected to a vertical shear. Knowing that the spacing between 
the nails is s 5 75 mm and that the allowable shearing force in 
each nail is 400 N, determine the allowable shear.

60 mm

200 mm

120 mm

s
s

s

60 mm

60 mm

Fig. P13.50

30 in.
4 in.

24 in.

0.3 in.

0.3 in.
6 in.

8 kips

n

a

n

Fig. P13.51

13.52 For the beam and loading shown, consider section n-n and deter-
mine (a) the largest shearing stress in that section, (b) the shearing 
stress at point a.

180

12 16

16

a

n

n
80

0.6 m

0.9 m

Dimensions in mm

0.9 m

160 kN

80

100

Fig. P13.52

13.51 For the beam and loading shown, consider section n-n and deter-
mine (a) the largest shearing stress in that section, (b) the shearing 
stress at point a.
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567Review Problems

13.54 For the beam and loading shown, consider section n-n and deter-
mine the shearing stress at (a) point a, (b) point b.

13.53 A timber beam AB of length L and rectangular cross section carries 
a uniformly distributed load w and is supported as shown. (a) Show 
that the ratio tmysm of the maximum values of the shearing and 
normal stresses in the beam is equal to 2hyL, where h and L are, 
respectively, the depth and the length of the beam. (b) Determine 
the depth h and the width b of the beam, knowing that L 5 5 m, 
w 5 8 kNym, tm 5 1.08 MPa, and sm 5 12 MPa.

B

b

hA

C D

w

L/2
L/4L/4

Fig. P13.53

B

a
bA

n

25 in. 25 in.

4 in.

4 in.

2 in.

1 in.
1 in.

1 in.24 kips

n

Fig. P13.54

13.55 Two W8 3 31 rolled sections can be welded at A and B in either 
of the two ways shown in order to form a composite beam. Know-
ing that for each weld the allowable horizontal shearing force is 
3000 lb per inch of weld, determine the maximum allowable verti-
cal shear in the composite beam for each of the two arrangements 
shown.

A AB B

(a) (b)

Fig. P13.55

bee80156_ch13_536-569.indd Page 567  9/23/09  3:42:50 PM user-s191bee80156_ch13_536-569.indd Page 567  9/23/09  3:42:50 PM user-s191 /Users/user-s191/Desktop/MHBR071a/Users/user-s191/Desktop/MHBR071a



568 Shearing Stresses in Beams and 
Thin-Walled Members

 13.56 The built-up wooden beam shown is subjected to a vertical shear 
of 8 kN. Knowing that the nails are spaced longitudinally every 
60 mm at A and every 25 mm at B, determine the shearing force 
in the nails (a) at A, (b) at B. (Given: Ix 5 1.504 3 109 mm4.)

300

100

200

400

50

50

50

50

B

B

A

x

AA

A

C

Dimensions in mm

Fig. P13.56

2 in.

4 in.

2 in.

2 in.5 in. 5 in.

Fig. P13.57

1.5 in.

d

c a
b

0.6 in.

0.6 in.

0.6 in.

0.6 in.

0.6 in.

1.5 in.

Fig. P13.58

 13.57 The built-up beam shown is made up by gluing together five 
planks. Knowing that the allowable average shearing stress in the 
glued joints is 60 psi, determine the largest permissible vertical 
shear in the beam.

 13.58 An extruded beam has the cross section shown and a uniform wall 
thickness of 0.20 in. Knowing that a given vertical shear V causes 
a maximum shearing stress t 5 9 ksi, determine the shearing stress 
at the four points indicated.

 13.59 Solve Prob. 13.58 assuming that the beam is subjected to a hori-
zontal shear V.
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569Review Problems

C
20 mm

20 mm

20 mm

450 mm

450 mmx

Fig. P13.60

60 mm
A

30 mm

16 mm16 mm
28 mm

Fig. P13.61

 13.60 Three 20 3 450-mm steel plates are bolted to four L152 3 152 3 
19.0 angles to form a beam with the cross section shown. The bolts 
have a 22-mm diameter and are spaced longitudinally every 125 
mm. Knowing that the allowable average shearing stress in the 
bolts is 90 MPa, determine the largest permissible vertical shear 
in the beam. (Given: Ix 5 1901 3 106 mm4.)

 13.61 An extruded beam has the cross section shown and a uniform wall 
thickness of 3 mm. For a vertical shear of 10 kN, determine 
(a) the shearing stress at point A, (b) the maximum shearing stress 
in the beam. Also sketch the shear flow in the cross section.
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The plane shown is being tested to 

determine how the forces due to lift 

would be distributed over the wing. 

This chapter deals with stresses and 

strains in structures and machine 

 components.
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572

Chapter 14 Transformation 
of Stress

 14.1 Introduction
 14.2 Transformation of Plane Stress
 14.3 Principal Stresses. Maximum 

Shearing Stress
 14.4 Mohr’s Circle for Plane Stress
 14.5 Stresses in Thin-Walled Pressure 

Vessels

14.1 INTRODUCTION
We saw in Sec. 8.9 that the most general state of stress at a given point 
Q may be represented by six components. Three of these components, 
sx, sy, and sz, define the normal stresses exerted on the faces of a 
small cubic element centered at Q and of the same orientation as the 
coordinate axes (Fig. 14.1a), and the other three, txy, tyz, and tzx,† the 
components of the shearing stresses on the same element. As we 
remarked at the time, the same state of stress will be represented by 
a different set of components if the coordinate axes are rotated (Fig. 
14.1b). We propose in the first part of this chapter to determine how 
the components of stress are transformed under a rotation of the coor-
dinate axes. 

�yz
�yx

�xy

�xz
�zx

�zy

�y

�y'z'

�y'x'

�x'z'

�z'x'

�z'y'

�x'y'

�y'

�x'

�z

�x
Q

O

z

y

x

(a)

O

z
z'

y'
y

x

x'

(b)

�z'

Q

Fig. 14.1

 Our discussion of the transformation of stress will deal mainly 
with plane stress, i.e., with a situation in which two of the faces of the 
cubic element are free of any stress. If the z axis is chosen perpendicu-
lar to these faces, we have sz 5 tzx 5 tzy 5 0, and the only remaining 
stress components are sx, sy, and txy (Fig. 14.2). Such a situation occurs 
in a thin plate subjected to forces acting in the midplane of the plate 
(Fig. 14.3). It also occurs on the free surface of a structural element or 
machine component, i.e., at any point of the surface of that element or 
component that is not subjected to an external force (Fig. 14.4).

�yx

�xy

�y

�x

Fig. 14.2

F1

F2

F3

F4

F5

F6

Fig. 14.3

F1

F2

Fig. 14.4

†We recall that tyx 5 txy, tzy 5 tyz, and txz 5 tzx.
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573 Considering in Sec. 14.2 a state of plane stress at a given point Q 
characterized by the stress components sx, sy, and txy associated with 
the element shown in Fig. 14.5a, you will learn to determine the com-
ponents sx9, sy9, and tx9y9 associated with that element after it has been 
rotated through an angle u about the z axis (Fig. 14.5b). In Sec. 14.3, 
you will determine the value up of u for which the stresses sx9 and sy9 
are, respectively, maximum and minimum; these values of the normal 
stress are the principal stresses at point Q, and the faces of the corre-
sponding element define the principal planes of stress at that point. You 
will also determine the value us of the angle of rotation for which the 
shearing stress is maximum, as well as the value of that stress.

14.1 Introduction

 In Sec. 14.4, an alternative method for the solution of problems 
involving the transformation of plane stress, based on the use of 
Mohr’s circle, will be presented.
 Thin-walled pressure vessels provide an important application of 
the analysis of plane stress. In Sec. 14.5, we will discuss stresses in both 
cylindrical and spherical pressure vessels (Photos 14.1 and 14.2).

�xy

�x'y'

�y �y'

�x

�x'Q Q

z

x x

x'

y y'

z' � z

y
�

�

(a) (b)

Fig. 14.5

Photo 14.1 Photo 14.2
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574 Transformation of Stress 14.2 TRANSFORMATION OF PLANE STRESS
Let us assume that a state of plane stress exists at point Q (with 
sz 5 tzx 5 tzy 5 0), and that it is defined by the stress components 
sx, sy, and txy associated with the element shown in Fig. 14.5a. 
We propose to determine the stress components sx9, sy9, and tx9y9 
associated with the element after it has been rotated through an 
angle u about the z axis (Fig. 14.5b) and to express these compo-
nents in terms of sx, sy, txy, and u.

�xy

�x'y'

�y �y'

�x

�x'Q Q

z

x x

x'

y y'

z' � z

y
�

�

(a) (b)

Fig. 14.5 (repeated)

 In order to determine the normal stress sx9 and the shearing 
stress tx9y9 exerted on the face perpendicular to the x9 axis, we con-
sider a prismatic element with faces respectively perpendicular to 
the x, y, and x9 axes (Fig. 14.6a). We observe that, if the area of the 
oblique face is denoted by DA, the areas of the vertical and horizon-
tal faces are respectively equal to DA cos u and DA sin u. It follows 
that the forces exerted on the three faces are as shown in Fig. 14.6b. 

(No forces are exerted on the triangular faces of the element, since 
the corresponding normal and shearing stresses have all been assumed 
equal to zero.) Using components along the x9 and y9 axes, we write 
the following equilibrium equations:

 gFx¿ 5 0:  sx¿ 
¢A 2 sx1¢A cos u 2 cos u 2 txy1¢A cos u 2 sin u
2sy1¢A sin u 2 sin u 2 txy1¢A sin u 2 cos u 5 0

z

x

x'

y' y

(a)

�A cos � �
�

�A sin �

�A

x

x'

y' y

(b)

(�A cos )�

(�A cos )�

�

�x'y' �A

�xy

(�A sin )��xy

�x' �A
�x

(�A sin )��y

Fig. 14.6
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575 gFy¿ 5 0:  tx¿y¿ ¢A 1 sx1¢A cos u 2 sin u 2 txy1¢A cos u 2 cos u
2sy1¢A sin u 2 cos u 1 txy1¢A sin u 2 sin u 5 0

Solving the first equation for sx9 and the second for tx9y9, we have

  sx¿ 5 sx cos2 u 1 sy sin2 u 1 2txy sin u cos u (14.1)

  tx¿y¿ 5 2 1sx 2 sy2 sin u cos u 1 txy1cos2 u 2 sin2 u 2 (14.2)

Recalling the trigonometric relations

 sin 2u 5 2 sin u cos u    cos 2u 5 cos2 u 2 sin2 u (14.3)

and

 
cos2 u 5

1 1 cos 2u
2

    sin2 u 5
1 2 cos 2u

2  
(14.4)

we write Eq. (14.1) as follows:

 sx¿ 5 sx 
1 1 cos 2u

2
1 sy 

1 2 cos 2u
2

1 txy sin 2u

or

 
sx¿ 5

sx 1 sy

2  1
sx 2 sy

2
 cos 2u 1 txy sin 2u

 
(14.5)

Using the relations (14.3), we write Eq. (14.2) as

 
tx¿y¿ 5 2

sx 2 sy

2
 sin 2u 1 txy cos 2u

 
(14.6)

The expression for the normal stress sy9 is obtained by replacing 
u in Eq. (14.5) by the angle u 1 908 that the y9 axis forms with 
the x axis. Since cos (2u 11808) 5 2cos 2u and sin (2u 11808) 5 
2sin 2u, we have

 
sy¿ 5

sx 1 sy

2
2
sx 2 sy

2
 cos 2u 2 txy sin 2u

 
(14.7)

 Adding Eqs. (14.5) and (14.7) member to member, we obtain

 sx¿ 1 sy¿ 5 sx 1 sy (14.8)

Since sz 5 sz9 5 0, we thus verify in the case of plane stress that 
the sum of the normal stresses exerted on a cubic element of mate-
rial is independent of the orientation of that element.

14.3  PRINCIPAL STRESSES. MAXIMUM 
SHEARING STRESS

The equations (14.5) and (14.6) obtained in the preceding section are 
the parametric equations of a circle. This means that, if we choose a 
set of rectangular axes and plot a point M of abscissa sx9 and ordinate 
tx9y9 for any given value of the parameter u, all the points thus obtained 

14.3 Principal Stresses. Maximum 
Shearing Stress
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576 Transformation of Stress will lie on a circle. To establish this property we eliminate u from Eqs. 
(14.5) and (14.6); this is done by first transposing (sx 1 sy)y2 in Eq. 
(14.5) and squaring both members of the equation, then squaring 
both members of Eq. (14.6), and finally adding member to member 
the two equations obtained in this fashion. We have

 
asx¿ 2

sx 1 sy

2
b2

1 tx¿y¿
2 5 asx 2 sy

2
b2

1 txy
2

 
(14.9)

Setting

save 5
sx 1 sy

2
 and R 5

B
asx 2 sy

2
b2

1 txy
2

 
(14.10)

we write the identity (14.7) in the form

 1sx¿ 2 save22 1 tx¿y¿
2 5 R2 (14.11)

which is the equation of a circle of radius R centered at the point C 
of abscissa save and ordinate 0 (Fig. 14.7). It can be observed that, 
due to the symmetry of the circle about the horizontal axis, the same 
result would have been obtained if, instead of plotting M, we had 
plotted a point N of abscissa sx9 and ordinate 2tx9y9 (Fig. 14.8). This 
property will be used in Sec. 14.4.
 The two points A and B where the circle of Fig. 14.7 intersects 
the horizontal axis are of special interest: Point A corresponds to the 
maximum value of the normal stress sx9, while point B corresponds 
to its minimum value. Besides, both points correspond to a zero value 
of the shearing stress tx9y9. Thus, the values up of the parameter u 
which correspond to points A and B can be obtained by setting tx9y9 
5 0 in Eq. (14.6). We write†

 
tan 2up 5

2txy

sx 2 sy 
(14.12)

This equation defines two values 2up that are 1808 apart, and thus two 
values up that are 908 apart. Either of these values can be used to 
determine the orientation of the corresponding element (Fig. 14.9). 
The planes containing the faces of the element obtained in this way 
are called the principal planes of stress at point Q, and the correspond-
ing values smax and smin of the normal stress exerted on these planes 
are called the principal stresses at Q. Since the two values up defined 
by Eq. (14.12) were obtained by setting tx9y9 5 0 in Eq. (14.6), it is 
clear that no shearing stress is exerted on the principal planes.
 We observe from Fig. 14.7 that

 smax 5 save 1 R   and   smin 5 save 2 R (14.13)

�x'y'

�x'y'�

�x'

�x'

�ave

C
O

R
N

Fig. 14.8

†This relation can also be obtained by differentiating sx9 in Eq. (14.5) and setting the 
derivative equal to zero: dsx9ydu 5 0.
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�p

�p
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Q x
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Fig. 14.9

Fig. 14.7
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577Substituting for save and R from Eq. (14.10), we write

 
smax, min 5

sx 1 sy

2
6
B
asx 2 sy

2
b2

1 txy
2

 
(14.14)

Unless it is possible to tell by inspection which of the two principal 
planes is subjected to smax and which is subjected to smin, it is neces-
sary to substitute one of the values up into Eq. (14.5) in order to 
determine which of the two corresponds to the maximum value of 
the normal stress.
 Referring again to the circle of Fig. 14.7, we note that the points 
D and E located on the vertical diameter of the circle correspond to 
the largest numerical value of the shearing stress tx9y9. Since the abscissa 
of points D and E is save 5 (sx 1 sy)y2, the values us of the parameter 
u  corresponding to these points are obtained by setting 
sx9 5 (sx 1 sy )y2 in Eq. (14.5). It follows that the sum of the last two 
terms in that equation must be zero. Thus, for u 5 us, we write†

sx 2 sy

2
 cos 2us 1 txy sin 2us 5 0

or

 tan 2us 5 2  

sx 2 sy

2txy
 (14.15)

This equation defines two values 2us that are 1808 apart, and thus 
two values us that are 908 apart. Either of these values can be used 
to determine the orientation of the element corresponding to the 
maximum shearing stress (Fig. 14.10). Observing from Fig. 14.7 that 
the maximum value of the shearing stress is equal to the radius R 
of the circle and recalling the second of Eqs. (14.10), we write

 
tmax 5

B
asx 2 sy

2
b2

1 txy
2

 
(14.16)

As observed earlier, the normal stress corresponding to the condition 
of maximum shearing stress is

 
s ¿ 5 save 5

sx 1 sy

2  
(14.17)

 Comparing Eqs. (14.12) and (14.15), we note that tan 2us is the 
negative reciprocal of tan 2up. This means that the angles 2us and 
2up are 908 apart and, therefore, that the angles us and up are 458 
apart. We thus conclude that the planes of maximum shearing stress 
are at 458 to the principal planes. This confirms the results obtained 
earlier in Sec. 8.9 in the case of a centric axial loading (Fig. 8.37) 
and in Sec. 10.4 in the case of a torsional loading (Fig. 10.19.)

†This relation may also be obtained by differentiating tx9y9 in Eq. (14.6) and setting the 
derivative equal to zero: dtx9y9ydu 5 0.

�max
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�

�s
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Fig. 14.10

14.3 Principal Stresses. Maximum 
Shearing Stress
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578 Transformation of Stress  We should be aware that our analysis of the transformation of 
plane stress has been limited to rotations in the plane of stress. If the 
cubic element of Fig. 14.5 is rotated about an axis other than the z 
axis, its faces may be subjected to shearing stresses larger than the 
stress defined by Eq. (14.16). In such cases, the value given by 
Eq. (14.16) is referred to as the maximum in-plane shearing stress.

EXAMPLE 14.1 For the state of plane stress shown in Fig. 14.11, deter-
mine (a) the principal planes, (b) the principal stresses, (c) the maximum 
shearing stress and the corresponding normal stress.

(a) Principal Planes. Following the usual sign convention, we write the 
stress components as

sx 5 150 MPa    sy 5 210 MPa    txy 5 140 MPa

Substituting into Eq. (14.12), we have

 tan 2up 5
2txy

sx 2 sy
5

2 1140 2
50 2 1210 2 5

80
60

 2up 5 53.1°    and    180° 1 53.1° 5 233.1°
  up 5 26.6°    and    116.6°

(b) Principal Stresses. Formula (14.14) yields

 smax, min 5
sx 1 sy

2
6
B
asx 2 sy

2
b2

1 txy
2

 5 20 6 2 130 22 1 140 22
 smax 5 20 1 50 5 70 MPa
 smin 5 20 2 50 5 230 MPa

The principal planes and principal stresses are sketched in Fig. 14.12. Mak-
ing u 5 26.68 in Eq. (14.5), we check that the normal stress exerted on face 
BC of the element is the maximum stress:

 sx¿ 5
50 2 10

2
1

50 1 10
2

 cos 53.1° 1 40 sin 53.1°

 5 20 1 30 cos 53.1° 1 40 sin 53.1° 5 70 MPa 5 smax

(c) Maximum Shearing Stress. Formula (14.16) yields

tmax 5
B
asx 2 sy

2
b2

1 txy
2 5 2 130 22 1 140 22 5 50 MPa

 Since smax and smin have opposite signs, the value obtained for tmax actu-
ally represents the maximum value of the shearing stress at the point consid-
ered. The orientation of the planes of maximum shearing stress and the sense 
of the shearing stresses are best determined by passing a section along the 
diagonal plane AC of the element of Fig. 14.12. Since the faces AB and BC of 
the element are contained in the principal planes, the diagonal plane AC must 
be one of the planes of maximum shearing stress (Fig. 14.13). Furthermore, 
the equilibrium conditions for the prismatic element ABC require that the 
shearing stress exerted on AC be directed as shown. The cubic element corre-
sponding to the maximum shearing stress is shown in Fig. 14.14. The normal 
stress on each of the four faces of the element is given by Eq. (14.17):

s ¿ 5 save 5
sx 1 sy

2
5

50 2 10
2

5 20 MPa ◾

10 MPa

40 MPa

50 MPa

Fig. 14.11

�min � 30 MPa

�max � 70 MPa

 �p
x

� 26.6�A

B

C

Fig. 14.12

�

�

min

�max

'

�max

 �p � 26.6�

�s �p� �� 45�

45�

�18.4�

A

C

B

Fig. 14.13

'�

�max

x
�p � �18.4�

� 20 MPa

'� � 20 MPa

� 50 MPa

Fig. 14.14
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579

SAMPLE PROBLEM 14.1

A single horizontal force P of magnitude 150 lb is applied to end D of lever 
ABD. Knowing that portion AB of the lever has a diameter of 1.2 in., deter-
mine (a) the normal and shearing stresses on an element located at point H 
and having sides parallel to the x and y axes, (b) the principal planes and the 
principal stresses at point H.

SOLUTION

Force-Couple System. We replace the force P by an equivalent force-
couple system at the center C of the transverse section containing point H:

 P 5 150 lb    T 5 1150 lb 2 118 in.2 5 2.7 kip ? in.
 Mx 5 1150 lb 2 110 in.2 5 1.5 kip ? in.

a. Stresses Sx, Sy, Txy at Point H. Using the sign convention shown in 
Fig. 14.2, we determine the sense and the sign of each stress component 
by carefully examining the sketch of the force-couple system at point C:

sx 5 0   sy 5 1
Mc
I

5 1
11.5 kip ? in.2 10.6 in.2

1
4p 10.6 in.24   sy 5 18.84 ksi  b

 
 txy 5 1

Tc
J

5 1
12.7 kip ? in.2 10.6 in.2

1
2p 10.6 in.24      txy 5 17.96 ksi  b

We note that the shearing force P does not cause any shearing stress at 
point H.

b. Principal Planes and Principal Stresses. Substituting the values of the 
stress components into Eq. (14.12), we determine the orientation of the 
principal planes:

 tan 2up 5
2txy

sx 2 sy
5

2 17.96 2
0 2 8.84

5 21.80

 2up 5 261.0°    and    180° 2 61.0° 5 1119°
up 5 230.5°    and    159.5°  b

Substituting into Eq. (14.14), we determine the magnitudes of the principal 
stresses:

 smax, min 5
sx 1 sy

2
6
B
asx 2 sy

2
b2

1 txy
2

 5
0 1 8.84

2
6
B
a0 2 8.84

2
b2

1 17.96 22 5 14.42 6 9.10

smax 5 113.52 ksi  b

smin 5 24.68 ksi  b

Considering face ab of the element shown, we make up 5 230.58 in Eq. 
(14.5) and find sx9 5 24.68 ksi. We conclude that the principal stresses are 
as shown.

Mx � 1.5 kip · in.

T � 2.7 kip · in.

H

xz

y

C

P � 150 lb

�y

�x

�xy

�xy � 7.96 ksi

�y � 8.84 ksi

�x � 0

�p � � 30.5�

�max � 13.52 ksi

�min � 4.68 ksi

H
a

b

18 in.

1.2 in.
H

A

D

B

y

z

x

10 in.

4 in. P
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PROBLEMS

580

14.1 through 14.4 For the given state of stress, determine the 
 normal and shearing stresses exerted on the oblique face of the 
shaded triangular element shown. Use a method of analysis based 
on the equilibrium of that element as was done in the derivations 
of Sec. 14.2.

80 MPa

40 MPa

55�

Fig. P14.1

60 MPa

90 MPa

60�

Fig. P14.2

4 ksi

3 ksi

70�

8 ksi

Fig. P14.3

10 ksi

6 ksi75�

4 ksi

Fig. P14.4

14.5 through 14.8 For the given state of stress, determine (a) the 
principal planes, (b) the principal stresses.

 14.9 through 14.12 For the given state of stress, determine (a) the 
orientation of the planes of maximum in-plane shearing stress, 
(b) the maximum in-plane shearing stress, (c) the corresponding 
normal stress.

40 MPa

35 MPa

60 MPa

12 ksi

8 ksi

18 ksi

10 ksi

2 ksi

3 ksi

48 MPa

60 MPa

16 MPa

Fig. P14.5 and P14.9 Fig. P14.7 and P14.11 Fig. P14.8 and P14.12Fig. P14.6 and P14.10

14.13 through 14.16 For the given state of stress, determine the 
normal and shearing stresses after the element shown has been 
rotated through (a) 258 clockwise, (b) 108 counterclockwise.

16 ksi

10 ksi

Fig. P14.13

80 MPa

50 MPa

Fig. P14.15

60 MPa

20 MPa

40 MPa

Fig. P14.16

12 ksi

6 ksi

8 ksi

Fig. P14.14
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581Problems 14.17 and 14.18 The grain of a wooden member forms an angle of 
158 with the vertical. For the state of stress shown, determine (a) 
the in-plane shearing stress parallel to the grain, (b) the normal 
stress perpendicular to the grain.

 14.19 Two plates of uniform cross section 10 3 80 mm are welded 
together as shown. Knowing that centric 100-kN forces are 
applied to the welded plates and that the in-plane shearing stress 
parallel to the weld is 30 MPa, determine (a) the angle b, (b) the 
corresponding normal stress perpendicular to the weld.

400 psi

15�

Fig. P14.18

1.8 MPa

3 MPa

15�

Fig. P14.17

100 kN 	

100 kN

80 mm

Fig. P14.19

P

a

	
a

Fig. P14.20

 14.20 The centric force P is applied to a short post as shown. Knowing 
that the stresses on plane a-a are s 5 215 ksi and T 5 5 ksi, 
determine (a) the angle b that plane a-a forms with the horizontal, 
(b) the maximum compressive stress in the post.

6 in.

2 in.
D

A

B
H

C

400 lb

Fig. P14.21

 14.21 A 400-lb vertical force is applied at D to a gear attached to the 
solid 1-in. diameter shaft AB. Determine the principal stresses and 
the maximum shearing stress at point H located as shown on top 
of the shaft.
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 14.22 A mechanic uses a crowfoot wrench to loosen a bolt at E. Knowing 
that the mechanic applies a vertical 24-lb force at A, determine the 
principal stresses and the maximum shearing stress at point H 
located as shown on top of the 3

4-in. diameter shaft.

 14.23 The steel pipe AB has a 102-mm outer diameter and a 6-mm wall 
thickness. Knowing that arm CD is rigidly attached to the pipe, 
determine the principal stresses and the maximum shearing stress 
at point H.

 14.24 The steel pipe AB has a 102-mm outer diameter and a 6-mm wall 
thickness. Knowing that arm CD is rigidly attached to the pipe, 
determine the principal stresses and the maximum shearing stress 
at point K.

24 lb

10 in.

6 in.E

B

A

H

Fig. P14.22

200 mm

6 mm

150 mm

51 mm

z x

T

A

y

D

KH

10 kN

A

B

C

Fig. P14.23 and P14.24

14.4 MOHR’S CIRCLE FOR PLANE STRESS
The circle used in the preceding section to derive some of the basic 
formulas relating to the transformation of plane stress was first intro-
duced by the German engineer Otto Mohr (1835–1918) and is known 
as Mohr’s circle for plane stress. As you will see presently, this circle 
can be used to obtain an alternative method for the solution of the 
various problems considered in Secs. 14.2 and 14.3. This method is 
based on simple geometric considerations and does not require the 
use of specialized formulas. While originally designed for graphical 
solutions, it lends itself well to the use of a calculator.
 Consider a square element of a material subjected to plane 
stress (Fig. 14.15a), and let sx, sy, and txy be the components of the 

582 Transformation of Stress
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583stress exerted on the element. We plot a point X of coordinates sx 
and 2txy, and a point Y of coordinates sy and 1txy (Fig. 14.15b). If 
txy is positive, as assumed in Fig. 14.15a, point X is located below 
the s axis and point Y is located above, as shown in Fig. 14.15b. If 
txy is negative, X is located above the s axis and Y is located below. 
Joining X and Y by a straight line, we define the point C of intersec-
tion of line XY with the s axis and draw the circle of center C and 
diameter XY. Noting that the abscissa of C and the radius of the 
circle are respectively equal to the quantities save and R defined by 
Eqs. (14.10), we conclude that the circle obtained is Mohr’s circle 
for plane stress. Thus the abscissas of points A and B where the circle 
intersects the s axis represent respectively the principal stresses smax  
and smin at the point considered.

�max

�min

�

�

x �y

(b)

O
B A

Y ,

C

�( )

�y �xy
( 

2�p

)

X ,�x �xy

�

�

xy

�( )

1
2

�p

�y �max �max

�min

�min�x

�xy

O x

a

b

y

(a)

Fig. 14.15

 We also note that, since tan (XCA) 5 2txyy(sx 2 sy), the angle 
XCA is equal in magnitude to one of the angles 2up that satisfy Eq. 
(14.12). Thus, the angle up that defines in Fig. 14.15a the orientation 
of the principal plane corresponding to point A in Fig. 14.15b can 
be obtained by dividing in half the angle XCA measured on Mohr’s 
circle. We further observe that if sx . sy and txy . 0, as in the case 
considered here, the rotation that brings CX into CA is counterclock-
wise. But, in that case, the angle up obtained from Eq. (14.12) and 
defining the  direction of the normal Oa to the principal plane is 
positive; thus, the  rotation bringing Ox into Oa is also counterclock-
wise. We conclude that the senses of rotation in both parts of Fig. 
14.15 are the same; if a counterclockwise rotation through 2up is 
required to bring CX into CA on Mohr’s circle, a counterclockwise 
rotation through up will bring Ox into Oa in Fig. 14.15a.†
 Since Mohr’s circle is uniquely defined, the same circle can be 
obtained by considering the stress components sx9, sy9, and tx9y9, 

14.4 Mohr’s Circle for Plane Stress

†This is due to the fact that we are using the circle of Fig 14.8 rather than the circle of 
Fig. 14.7 as Mohr’s circle.

bee80156_ch14_570-603.indd Page 583  10/9/09  4:04:35 AM user-s173bee80156_ch14_570-603.indd Page 583  10/9/09  4:04:35 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-14/Volumes/MHDQ-New/MHDQ152/MHDQ152-14



584 Transformation of Stress  corresponding to the x9 and y9 axes shown in Fig. 14.16a. The point 
X9 of coordinates sx9 and 2tx9y9, and the point Y9 of coordinates sy9 

and 1tx9y9, are therefore located on Mohr’s circle, and the angle X9CA 
in Fig. 14.16b must be equal to twice the angle x9Oa in Fig. 14.16a. 
Since, as noted before, the angle XCA is twice the angle xOa, it follows 
that the angle XCX9 in Fig. 14.16b is twice the angle xO x9 in Fig. 
14.16a. Thus the diameter X9Y9 defining the normal and shearing 
stresses sx9, sy9, and tx9y9 can be obtained by rotating the diameter XY 
through an angle equal to twice the angle u formed by the x9 and x 
axes in Fig. 14.16a. We note that the rotation that brings the diameter 
XY into the diameter X9Y9 in Fig. 14.16b has the same sense as the 
rotation that brings the xy axes into the x9y9 axes in Fig. 14.16a.

 The property we have just indicated can be used to verify the fact 
that the planes of maximum shearing stress are at 458 to the principal 
planes. Indeed, we recall that points D and E on Mohr’s circle corre-
spond to the planes of maximum shearing stress, while A and B corre-
spond to the principal planes (Fig. 14.17b). Since the diameters AB and 
DE of Mohr’s circle are at 908 to each other, it follows that the faces of 
the corresponding elements are at 458 to each other (Fig. 14.17a).

�y

�x

�xy

O

�
��y'

�x'

y'

x'

�max

�min

�

�

x'y'

x

2

a

b

y

(a) (b)

Y'

X

ABO C

Y

,�

�

y' �x'y
( ')

X' ,�x' �x'y�( ')

Fig. 14.16

�ave� '
� '

�

�

'

(a) (b)

O

O

B C A

D

E

�max

�min

�

�

max

�max

45�
90�

�

b

d

a

e

Fig. 14.17
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585 The construction of Mohr’s circle for plane stress is greatly simpli-
fied if we consider separately each face of the element used to define 
the stress components. From Figs. 14.15 and 14.16 we observe that, 
when the shearing stress exerted on a given face tends to rotate the 
element clockwise, the point on Mohr’s circle corresponding to that face 
is located above the s axis. When the shearing stress on a given face 
tends to rotate the element counterclockwise, the point corresponding 
to that face is located below the s axis (Fig. 14.18).† As far as the normal 
stresses are concerned, the usual convention holds, i.e., a tensile stress 
is considered as positive and is plotted to the right, while a compressive 
stress is considered as negative and is plotted to the left.

†The following jingle is helpful in remembering this convention. “In the kitchen, the 
clock is above, and the counter is below.”

�

�

�

�

�

�

(a) Clockwise Above

(b) Counterclockwise Below

��

Fig. 14.18

O x

y

B
G

Y

C F A (MPa)

(MPa)

O

R

X

(b)

10 MPa
40 MPa

50 MPa

40

20

10

50

40

�

�

�

(a)

Fig. 14.19

14.4 Mohr’s Circle for Plane Stress

EXAMPLE 14.2 For the state of plane stress already considered in Example 
14.1, (a) construct Mohr’s circle, (b) determine the principal stresses, (c) deter-
mine the maximum shearing stress and the corresponding normal stress.

(a) Construction of Mohr’s Circle. We note from Fig. 14.19a that the 
normal stress exerted on the face oriented toward the x axis is tensile  (positive) 

and that the shearing stress exerted on that face tends to rotate the element 
counterclockwise. Point X of Mohr’s circle, therefore, will be plotted to the 
right of the vertical axis and below the horizontal axis (Fig. 14.19b). A similar 
inspection of the normal stress and shearing stress exerted on the upper face 
of the element shows that point Y should be plotted to the left of the vertical 
axis and above the horizontal axis. Drawing the line XY, we obtain the center 
C of Mohr’s circle; its abscissa is

save 5
sx 1 sy

2
5

50 1 1210 2
2

5 20 MPa
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586 Transformation of Stress Since the sides of the shaded triangle are

CF 5 50 2 20 5 30 MPa    and    FX 5 40 MPa

the radius of the circle is

R 5 CX 5 2 130 22 1 140 22 5 50 MPa

(b) Principal Planes and Principal Stresses. The principal stresses are

 smax 5 OA 5 OC 1 CA 5 20 1 50 5 70 MPa  

 smin 5 OB 5 OC 2 BC 5 20 2 50 5 230 MPa

Recalling that the angle ACX represents 2up (Fig. 14.19b), we write

tan 2 up 5
FX
CF

5
40
30

2 up 5 53.1°    up 5 26.6°

Since the rotation which brings CX into CA in Fig. 14.20b is counterclock-
wise, the rotation that brings Ox into the axis Oa corresponding to smax in 
Fig. 14.20a is also counterclockwise.

(c) Maximum Shearing Stress. Since a further rotation of 908 counterclock-
wise brings CA into CD in Fig. 14.20b, a further rotation of 458  counterclockwise 

O

B

Y

C

D

A
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(MPa)

O

X

(b)

max

�

�

�

�

� 50

p� � 53.1°2

90�

R � 50E

�  70max�
�  � 30min �

  �   ave � 20'� � 
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45�

� 70 MPamax�

�  50 MPamax�

�  30 MPamin�
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x

y

b

a

(a)

e

d

Fig. 14.20

Fig. 14.19b (repeated)

B
G

Y

C F A (MPa)

(MPa)

O

R

X

(b)

40

20

10

50

40

�

�

�

will bring the axis Oa into the axis Od corresponding to the maximum shearing 
stress in Fig. 14.20a. We note from Fig. 14.20b that tmax 5 R 5  50 MPa 
and that the corresponding normal stress is s9 5 save 5 20 MPa. Since point 
D is located above the s axis in Fig. 14.20b, the shearing stresses exerted on 
the faces perpendicular to Od in Fig. 14.20a must be directed so that they 
will tend to rotate the element clockwise. ◾
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587 Mohr’s circle provides a convenient way of checking the results 
obtained earlier for stresses under a centric axial loading (Sec. 8.9) and 
under a torsional loading (Sec. 10.4). In the first case (Fig. 14.21a), 
we have sx 5 PyA, sy 5 0, and txy 5 0. The corresponding points X 
and Y define a circle of radius R 5 Py2A that passes through the origin 
of coordinates (Fig. 14.21b). Points D and E yield the orientation of 
the planes of maximum shearing stress (Fig. 14.21c), as well as the 
values of tmax and of the corresponding normal stresses s9: 

 
tmax 5 s ¿ 5 R 5

P
2 A  

(14.18)

P'

x � P/A

D

E

C
Y

x

y e d

X
R

�

�x�

(b)(a) (c)

�

PP' '� 

max�

P

Fig. 14.21 Mohr’s circle for centric axial loading.

 In the case of torsion (Fig. 14.22a), we have sx 5 sy 5 0 and 
txy 5 tmax  5 TcyJ. Points X and Y, therefore, are located on the t 
axis, and Mohr’s circle is a circle of radius R 5 TcyJ centered at the 
origin (Fig. 14.22b). Points A and B define the principal planes (Fig. 
14.22c) and the principal stresses:

 
smax, min 5 6 R 5 6  

Tc
J  

(14.19)

T'

T

y

x

T'

T

b a
Y

X

CB A

R
�max

max

�
max�

�

�

min�

Tc
J

(a) (b) (c)

�

Fig. 14.22 Mohr’s circle for torsional loading.

14.4 Mohr’s Circle for Plane Stress
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588588

SAMPLE PROBLEM 14.2

For the state of plane stress shown, determine (a) the principal planes and 
the principal stresses, (b) the stress components exerted on the element 
obtained by rotating the given element counterclockwise through 308.

SOLUTION

Construction of Mohr’s Circle. We note that on a face perpendicular to the 
x axis, the normal stress is tensile and the shearing stress tends to rotate 
the element clockwise; thus, we plot X at a point 100 units to the right of the 
vertical axis and 48 units above the horizontal axis. In a similar fashion, we 
examine the stress components on the upper face and plot point Y (60, 248). 
Joining points X and Y by a straight line, we define the center C of Mohr’s cir-
cle. The abscissa of C, which represents save, and the radius R of the circle 
can be measured directly or calculated as follows:

save 5 OC 5 1
2 1sx 1 sy2 5 1

2 1100 1 60 2 5 80 MPa

R 5 2 1CF 22 1 1FX 22 5 2 120 22 1 148 22 5 52 MPa

a. Principal Planes and Principal Stresses. We rotate the diameter XY 
clockwise through 2up until it coincides with the diameter AB. We have

tan 2up 5
XF
CF

5
48
20

5 2.4  2up 5 67.4° i  up 5 33.7° i  b

The principal stresses are represented by the abscissas of points A and B:

 smax 5 OA 5 OC 1 CA 5 80 1 52 smax 5 1132 MPa  b

 smin 5 OB 5 OC 2 BC 5 80 2 52 smin 5 1 28 MPa  b

Since the rotation that brings XY into AB is clockwise, the rotation that 
brings Ox into the axis Oa corresponding to smax is also clockwise; we obtain 
the orientation shown for the principal planes.

b. Stress Components on Element Rotated 308 l. Points X9 and Y9 on 
Mohr’s circle that correspond to the stress components on the rotated 
element are obtained by rotating X Y counterclockwise through 2u 5 608. 
We find

 f 5 180° 2 60° 2 67.4° f 5 52.6°  b

 sx¿ 5 OK 5 OC 2 KC 5 80 2 52 cos 52.6° sx¿ 5 1 48.4 MPa  b

 sy¿ 5 OL 5 OC 1 CL 5 80 1 52 cos 52.6° sy¿ 5 1111.6 MPa  b

 tx¿y¿ 5 K  X ¿ 5 52 sin 52.6° tx¿y¿ 5 41.3 MPa  b

Since X9 is located above the horizontal axis, the shearing stress on the face 
perpendicular to O x9 tends to rotate the element clockwise.

xO
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min � 28 MPa�

max � 132 MPa
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�

O B
K

X

LC A

Y
Y'

�  (MPa)

 � 180� � 60� � 67.4� �

�

�

 � 52.6��

�
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589

SAMPLE PROBLEM 14.3

A state of plane stress consists of a tensile stress s0 5 8 ksi exerted on verti-
cal surfaces and of unknown shearing stresses. Determine (a) the magnitude 
of the shearing stress t0 for which the largest normal stress is 10 ksi, (b) the 
corresponding maximum shearing stress.

SOLUTION

Construction of Mohr’s Circle. We assume that the shearing stresses act in 
the senses shown. Thus, the shearing stress t0 on a face perpendicular to the 
x axis tends to rotate the element clockwise, and we plot the point X of 
coordinates 8 ksi and t0 above the horizontal axis. Considering a horizontal 
face of the element, we observe that sy 5 0 and that t0 tends to rotate the 
element counterclockwise; thus, we plot point Y at a distance t0 below O.
 We note that the abscissa of the center C of Mohr’s circle is

save 5 1
2 1sx 1 sy2 5 1

2 18 1 0 2 5 4 ksi

The radius R of the circle is determined by observing that the maximum 
normal stress, smax 5 10 ksi, is represented by the abscissa of point A 
and writing

 smax 5 save 1 R
 10 ksi 5 4 ksi 1 R    R 5 6 ksi

a. Shearing Stress t0. Considering the right triangle CFX, we find

cos 2 up 5
CF
CX

5
CF
R

5
4 ksi
6 ksi

  2 up 5 48.2° i   up 5 24.1° i

 t0 5 FX 5 R sin 2 up 5 16 ksi2 sin 48.2° t0 5 4.47 ksi  b

b. Maximum Shearing Stress. The coordinates of point D of Mohr’s circle 
represent the maximum shearing stress and the corresponding normal 
stress.

 tmax 5 R 5 6 ksi  tmax 5 6 ksi  b

 2 us 5 90° 2 2 up 5 90° 2 48.2° 5 41.8° l    ux 5 20.9° l

The maximum shearing stress is exerted on an element that is oriented as 
shown in Fig. a. (The element upon which the principal stresses are exerted 
is also shown.)

Note. If our original assumption regarding the sense of t0 was reversed, 
we would obtain the same circle and the same answers, but the orientation 
of the elements would be as shown in Fig. b.
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PROBLEMS

590

14.25 Solve Probs. 14.5 and 14.9, using Mohr’s circle.

14.26 Solve Probs. 14.6 and 14.10, using Mohr’s circle.

14.27 Solve Prob. 14.11, using Mohr’s circle.

14.28 Solve Prob. 14.12, using Mohr’s circle.

14.29 Solve Prob. 14.13, using Mohr’s circle.

14.30 Solve Prob. 14.14, using Mohr’s circle

14.31 Solve Prob. 14.15, using Mohr’s circle.

14.32 Solve Prob. 14.16, using Mohr’s circle.

 14.33 Solve Prob. 14.17, using Mohr’s circle.

 14.34 Solve Prob. 14.18, using Mohr’s circle.

 14.35 Solve Prob. 14.19, using Mohr’s circle.

 14.36 Solve Prob. 14.20, using Mohr’s circle.

14.37 Solve Prob. 14.21, using Mohr’s circle.

 14.38 Solve Prob. 14.22, using Mohr’s circle.

14.39 Solve Prob. 14.23, using Mohr’s circle.

 14.40 Solve Prob. 14.24, using Mohr’s circle.

 14.41 For the state of plane stress shown, use Mohr’s circle to determine 
(a) the largest value of txy for which the maximum in-plane shear-
ing stress is equal to or less than 12 ksi, (b) the corresponding 
principal stresses.

�xy

8 ksi

10 ksi

Fig. P14.41

�y

20 MPa

60 MPa

Fig. P14.42

14.42 For the state of plane stress shown, use Mohr’s circle to determine 
the largest value of sy for which the maximum in-plane shearing 
stress is equal to or less than 75 MPa.
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Problems 14.43  For the state of plane stress shown, use Mohr’s circle to determine 
(a) the value of txy for which the in-plane shearing stress parallel 
to the weld is zero, (b) the corresponding principal stresses.

 14.44 Solve Prob. 14.43 assuming that the weld forms an angle of 608 
with the horizontal.

 14.45 through 14.48 Determine the principal planes and the prin-
cipal stresses for the state of plane stress resulting from the super-
position of the two states of stress shown.

�xy

12 MPa

2 MPa

75�

Fig. P14.43
7 ksi

4 ksi

6 ksi

4 ksi

45�

+

Fig. P14.45

25 MPa
40 MPa

35 MPa
30�

+

Fig. P14.46

�0

�0

30�

+

Fig. P14.47

�

�0

�0 +
Fig. P14.48
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592 Transformation of Stress 14.5 STRESSES IN THIN-WALLED PRESSURE VESSELS
Thin-walled pressure vessels provide an important application of the 
analysis of plane stress. Since their walls offer little resistance to 
bending, it can be assumed that the internal forces exerted on a given 
portion of wall are tangent to the surface of the vessel (Fig. 14.23). 
The resulting stresses on an element of wall will thus be contained 
in a plane tangent to the surface of the vessel.
 Our analysis of stresses in thin-walled pressure vessels will be 
limited to the two types of vessels most frequently encountered: cylin-
drical pressure vessels and spherical pressure vessels (Photos 14.3 
and 14.4).

Photo 14.3 Photo 14.4

 Consider a cylindrical vessel of inner radius r and wall thickness 
t containing a fluid under pressure (Fig. 14.24). We propose to deter-
mine the stresses exerted on a small element of wall with sides 
respectively parallel and perpendicular to the axis of the cylinder. 
Because of the axisymmetry of the vessel and its contents, it is clear 
that no shearing stress is exerted on the element. The normal stresses 
s1 and s2 shown in Fig. 14.24 are therefore principal stresses. The 
stress s1 is known as the hoop stress, because it is the type of stress 
found in hoops used to hold together the various slats of a wooden 
barrel, and the stress s2 is called the longitudinal stress.
 In order to determine the hoop stress s1, we detach a portion 
of the vessel and its contents bounded by the xy plane and by two 
planes parallel to the yz plane at a distance Dx from each other (Fig. 
14.25). The forces parallel to the z axis acting on the free body defined 
in this fashion consist of the elementary internal forces s1 dA on the 
wall sections, and of the elementary pressure forces p dA exerted on 
the portion of fluid included in the free body. Note that p denotes 
the gage pressure of the fluid, i.e., the excess of the inside pressure 
over the outside atmo spheric pressure. The resultant of the internal 
forces s1 dA is equal to the product of s1 and of the cross-sectional 
area 2t Dx of the wall, while the resultant of the pressure forces p dA 
is equal to the product of p and of the area 2r Dx.  Writing the equi-
librium equation SFz 5 0, we have

©Fz 5 0: s112t ¢x2 2 p 12r ¢x2 5 0

Fig. 14.23

z

1�

1�

2�
2�

y

x

t

r

Fig. 14.24

Fig. 14.25

r

r

1�

x

dA

p dA

1� dA

t

t

z

y

x

�
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593and, solving for the hoop stress s1,

 
s1 5

pr

t  
(14.20)

 To determine the longitudinal stress s2, we now pass a section 
perpendicular to the x axis and consider the free body consisting of 
the portion of the vessel and its contents located to the left of the 
section (Fig. 14.26). The forces acting on this free body are the ele-
mentary internal forces s2 dA on the wall section and the elementary 
pressure forces p dA exerted on the portion of fluid included in the 
free body. Noting that the area of the fluid section is pr2 and that 
the area of the wall section can be obtained by multiplying the cir-
cumference 2pr of the cylinder by its wall thickness t, we write the 
equilibrium equation:†

oFx 5 0: s212prt2 2 p 1pr 
22 5 0

and, solving for the longitudinal stress s2, 

 
s2 5

pr

2 t  
(14.21)

We note from Eqs. (14.20) and (14.21) that the hoop stress s1 is 
twice as large as the longitudinal stress s2:

 s1 5 2s2 (14.22)

 We now consider a spherical vessel of inner radius r and wall 
thickness t containing a fluid under a gage pressure p. For reasons 
of symmetry, the stresses exerted on the four faces of a small element 
of wall must be equal (Fig. 14.27). We have

 s1 5 s2 (14.23)

To determine the value of the stress, we pass a section through the 
center C of the vessel and consider the free body consisting of the 
portion of the vessel and its contents located to the left of the section 
(Fig. 14.28). The equation of equilibrium for this free body is the 
same as for the free body of Fig. 14.26. We thus conclude that, for 
a spherical vessel,

 
s1 5 s2 5

pr

2 t  
(14.24)

2�

y

z x

dA

r

t

p dA

Fig. 14.26

1�

2�

1�
2� 1��

2�

r

x

p dA

dA

t

C

Fig. 14.27

Fig. 14.28

†Using the mean radius of the wall section, rm 5 r 1 1
2 t, in computing the resultant of 

the forces on that section, we would obtain a more accurate value of the longitudinal 
stress, namely,

 

s2 5
pr

2 t
 

1

1 1
t

2 r  
(14.219) 

However, for a thin-walled pressure vessel, the term ty2r is sufficiently small to allow 
the use of Eq. (14.21) for engineering design and analysis. If a pressure vessel is not 
thin-walled (i.e., if ty2r is not small), the stresses s1 and s2 vary across the wall and 
must be determined by the methods of the theory of elasticity.

14.5 Stresses in Thin-Walled Pressure Vessels
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SAMPLE PROBLEM 14.4

A compressed-air tank is supported by two cradles as shown; one of the 
cradles is designed so that it does not exert any longitudinal force on the 
tank. The cylindrical body of the tank has a 30-in. outer diameter and is 
fabricated from a 3

8-in. steel plate by butt welding along a helix that forms 
an angle of 258 with a transverse plane. The end caps are spherical and have 
a uniform wall thickness of 5

16 in. For an internal gage pressure of 180 psi, 
determine (a) the normal stress in the spherical caps, (b) the stresses in 
directions perpendicular and parallel to the helical weld.

SOLUTION

a. Spherical Cap. Using Eq. (14.24), we write

p 5 180 psi, t 5 5
16 in. 5 0.3125 in., r 5 15 2 0.3125 5 14.688 in.

 s1 5 s2 5
pr

2 t
5
1180 psi2 114.688 in.2

2 10.3125 in.2  s 5 4230 psi  b

b. Cylindrical Body of the Tank. We first determine the hoop stress s1 
and the longitudinal stress s2. Using Eqs. (14.20) and (14.22), we write

p 5 180 psi, t 5 3
8 in. 5 0.375 in., r 5 15 2 0.375 5 14.625 in.

s1 5
pr

t
5
1180 psi2 114.625 in.2

0.375 in.
5 7020 psi    s2 5 1

2s1 5 3510 psi

save 5 1
2 1s1 1 s22 5 5265 psi    R 5 1

2 1s1 2 s22 5 1755 psi

Stresses at the Weld. Noting that both the hoop stress and the longitudinal 
stress are principal stresses, we draw Mohr’s circle as shown.
 An element having a face parallel to the weld is obtained by rotating 
the face perpendicular to the axis Ob counterclockwise through 258. 
Therefore, on Mohr’s circle we locate the point X9 corresponding to the 
stress components on the weld by rotating radius CB counterclockwise 
through 2u 5 508.

sw 5 save 2 R cos 50° 5 5265 2 1755 cos 50°    sw 5 14140 psi  b

tw 5 R sin 50° 5 1755 sin 50° tw 5   1344 psi  b

Since X9 is below the horizontal axis, tw tends to rotate the element 
 counterclockwise.

8 ft

30 in.

25°

1�

2�
� � 0

a

b

b

1�

1�

2�

2� � 3510 psi

� 7020 psi

a

O

1� � 7020 psi

ave�  � 5265 psi

2�

w�

� 3510 psi

� 1755 psi

�

X'

�
2 � 50°

ACBO

R

R w��

x'

w� � 4140 psi

w� � 1344 psi

Weld
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PROBLEMS

595

14.49 Determine the normal stress in a basketball of 9.5-in. outer diam-
eter and 0.125-in. wall thickness that is inflated to a gage pressure 
of 9 psi.

 14.50 A spherical gas container made of steel has an 18-ft outer diameter 
and a wall thickness of 3

8 in. Knowing that the internal pressure is 
60 psi, determine the maximum normal stress in the container.

 14.51 The maximum gage pressure is known to be 8 MPa in a spherical 
steel pressure vessel having a 250-mm outer diameter and a 6-mm 
wall thickness. Knowing that the ultimate stress in the steel used 
is sU 5 400 MPa, determine the factor of safety with respect to 
tensile failure.

 14.52 A spherical gas container having an outer diameter of 15 ft and a 
wall thickness of 0.90 in. is made of a steel for which E 5 29 3
106 psi and n 5 0.29. Knowing that the gage pressure in the con-
tainer is increased from zero to 250 psi, determine (a) the maxi-
mum normal stress in the container, (b) the increase in the diameter 
of the container.

 14.53 A spherical pressure vessel has an outer diameter of 3 m and a wall 
thickness of 12 mm.  Knowing that for the steel used sall 5 80 MPa, 
E 5 200 GPa, and n 5 0.29, determine (a) the allowable gage pres-
sure, (b) the corresponding increase in the diameter of the vessel.

 14.54 A spherical pressure vessel of 750-mm outer diameter is to be 
fabricated from a steel having an ultimate stress sU 5 400 MPa. 
Knowing that a factor of safety of 4.0 is desired and that the gage 
pressure can reach 4.2 MPa, determine the smallest wall thickness 
that should be used.

 14.55 When filled to capacity, the unpressurized storage tank shown 
contains water to a height of 15.5 m above its base. Knowing that 
the lower portion of the tank has a wall thickness of 16 mm, 
determine the maximum normal stress in the tank. (Density of 
water 5 1000 kg/m3.)

8 m

16 m

Fig. P14.55
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 14.56 Determine the largest internal pressure that can be applied to a 
cylindrical tank of 1.75-m outer diameter and 16-mm wall thick-
ness if the ultimate normal stress of the steel used is 450 MPa and 
a factor of safety of 5.0 is desired.

 14.57 The storage tank shown contains liquefied propane under a pres-
sure of 210 psi at a temperature of 1008F. Knowing that the tank 
has an outer diameter of 12.6 in. and a wall thickness of 0.11 in., 
determine the maximum normal stress in the tank.

 14.58 The bulk storage tank shown in Photo 14.3 has an outer diameter 
of 3.3 m and a wall thickness of 18 mm. At a time when the internal 
pressure of the tank is 1.5 MPa, determine the maximum normal 
stress in the tank.

 14.59 A steel penstock has a 36-in. outer diameter and a 0.5-in. wall 
thickness, and connects a reservoir at A with a generating station 
at B. Knowing that the specific weight of water is 62.4 lb/ft3, deter-
mine the maximum normal stress in the penstock under static 
conditions.

Fig. P14.57

 14.60 A steel penstock has a 36-in. outer diameter and connects a reser-
voir at A with a generating station at B. Knowing that the specific 
weight of water is 62.4 lb/ft3 and that the allowable normal stress 
in the steel is 12.5 ksi, determine the smallest wall thickness that 
can be used for the penstock.

 14.61 The cylindrical portion of the compressed air tank shown is fabri-
cated of 6-mm-thick plate welded along a helix forming an angle 
b 5 308 with the horizontal. Knowing that the allowable stress 
normal to the weld is 75 MPa, determine the largest gage pressure 
that can be used in the tank.

 14.62 The cylindrical portion of the compressed air tank shown is fabri-
cated of 6-mm-thick plate welded along a helix forming an angle 
b 5 308 with the horizontal. Determine the gage pressure that will 
cause a shearing stress parallel to the weld of 30 MPa.

A

B

36 in.

500 ft

Fig. P14.59 and P14.60

500 mm

	

1.5 m

Fig. P14.61 and P14.62

596 Transformation of Stress
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597Problems 14.63 The pressure tank shown has a 3
8-in. wall thickness and butt welded 

seams forming an angle b 5 208  with a transverse plane. For a 
gage pressure of 85 psi, determine (a) the normal stress perpen-
dicular to the weld, (b) the shearing stress parallel to the weld.

15 ft

5 ft

	

Fig. P14.63 and P14.64

 14.64 The pressure tank shown has a 3
8-in. wall thickness and butt welded 

seams forming an angle b 5 258 with a transverse plane. Deter-
mine the largest allowable gage pressure knowing that the allow-
able normal stress perpendicular to the weld is 18 ksi and the 
allowable shearing stress parallel to the weld is 10 ksi.

 14.65 The pipe shown was fabricated by welding strips of plate along a 
helix forming an angle b with a transverse plane. Determine the 
largest value of b that can be used if the normal stress perpendicu-
lar to the weld is not to be larger than 85 percent of the maximum 
stress in the pipe.

	

Fig. P14.65 and P14.66

D

A

Ba

b750 mm

500 mm

750 mm

5 kN

Fig. P14.67

 14.66 The pipe shown has an outer diameter of 600 mm and was fabri-
cated by welding strips of 10-mm-thick plate along a helix forming 
an angle b 5 258 with a transverse plane. Knowing that the ulti-
mate normal stress perpendicular to the weld is 450 MPa and that 
a factor of safety of 6.0 is desired, determine the largest allowable 
gage pressure that can be used.

 14.67 The compressed-air tank AB has an inner diameter of 450 mm and 
a uniform wall thickness of 6 mm. Knowing that the gage pressure 
inside the tank is 1.2 MPa, determine the maximum normal stress 
and the maximum in-plane shearing stress at point a on the top of 
the tank.

 14.68 For the compressed-air tank and loading of Prob. 14.67, determine 
the maximum normal stress and the maximum in-plane shearing 
stress at point b on the top of the tank.

bee80156_ch14_570-603.indd Page 597  10/9/09  4:05:24 AM user-s173bee80156_ch14_570-603.indd Page 597  10/9/09  4:05:24 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-14/Volumes/MHDQ-New/MHDQ152/MHDQ152-14



 14.69 A pressure vessel of 10-in. inner diameter and 0.25-in. wall thick-
ness is fabricated from a 4-ft section of spirally welded pipe AB 
and is equipped with two rigid end plates. The gage pressure 
inside the vessel is 300 psi, and 10-kip centric axial forces P and 
P9 are applied to the end plates. Determine (a) the normal stress 
perpendicular to the weld, (b) the shearing stress parallel to the 
weld.

4 ft

P

P'

35�
B

A

Fig. P14.69

 14.70 Solve Prob. 14.69 assuming that the magnitude of P of the two 
forces is increased to 30 kips.

 14.71 The cylindrical tank AB has an 8-in. inner diameter and a 0.32-in. 
wall thickness. Knowing that the pressure inside the tank is 600 psi, 
determine the maximum normal stress and the maximum in-plane 
shearing stress at point K.

15 in.

10 in.

9 kips

D

A

B
K

Fig. P14.71

 14.72 Solve Prob. 14.71 assuming that the 9-kip force applied at point D 
is directed vertically downward.

598 Transformation of Stress
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599

REVIEW AND SUMMARY

The first part of this chapter was devoted to a study of the transfor-
mation of stress under a rotation of axes and to its application to the 
solution of engineering problems. 

Transformation of plane stress

�xy

�x'y'

�y �y'

�x

�x'Q Q

z

x x

x'

y y'

z' � z

y
�

�

(a) (b)

Fig. 14.29

Considering first a state of plane stress at a given point Q [Sec. 14.2] 
and denoting by sx, sy, and txy the stress components associated with 
the element shown in Fig. 14.29a, we derived the following formulas 
defining the components sx9, sy´, and tx9y9 associated with that ele-
ment after it had been rotated through an angle u about the z axis 
(Fig. 14.29b):

 sx¿ 5
sx 1 sy

2
1
sx 2 sy

2
 cos 2u 1 txy sin 2u

 
(14.5) 

 sy¿ 5
sx 1 sy

2
2
sx 2 sy

2
 cos 2u 2 txy sin 2u

 
(14.7) 

 tx¿y¿ 5 2  

sx 2 sy

2
 sin 2u 1 txy cos 2u

 
(14.6) 

 In Sec. 14.3, we determined the values up of the angle of rota-
tion which correspond to the maximum and minimum values of the 
normal stress at point Q. We wrote

tan 2up 5
2txy

sx 2 sy 
(14.12)

The two values obtained for up are 908 apart (Fig. 14.30) and define 
the principal planes of stress at point Q. The corresponding values of 
the normal stress are called the principal stresses at Q; we  obtained

 
smax, min 5

sx 1 sy

2
6
B
asx 2 sy

2
b2

1 t2
xy 

(14.14) 

�min

�min

�max

�max

�p

�p

y

Q x

y'

x'

Fig. 14.30

Principal planes. Principal stresses
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We also noted that the corresponding value of the shearing stress is 
zero. Next, we determined the values us of the angle u for which the 
largest value of the shearing stress occurs. We wrote

 
tan 2us 5 2

sx 2 sy

2txy  (14.15) 

The two values obtained for us are 908 apart (Fig. 14.31). We also 
noted that the planes of maximum shearing stress are at 458 to the 
principal planes. The maximum value of the shearing stress for a 
rotation in the plane of stress is

 
tmax 5

B
asx 2 sy

2
b2

1 t2
xy 

(14.16) 

and the corresponding value of the normal stresses is

 
s ¿ 5 save 5

sx 1 sy

2  
(14.17) 

We saw in Sec. 14.4 that Mohr’s circle provides an alternative method, 
based on simple geometric considerations, for the analysis of the 
transformation of plane stress. Given the state of stress shown in 
black in Fig. 14.32a, we plot point X of coordinates sx, 2 txy and 
point Y of coordinates sy, 1 txy (Fig. 14.32b). Drawing the circle of 

�max

�max

�

�s

�s

y

Q x

x'

y'

'
� '

� '

� '

Fig. 14.31

�max

�min

�

�

x �y

(b)

O
B A

Y ,

C

�( )

�y �xy
( 

2�p

)

X ,�x �xy

�

�

xy

�( )

1
2

�p

�y �max �max

�min

�min�x

�xy

O x

a

b

y

(a)

Fig. 14.32

Maximum in-plane shearing stress

Mohr’s circle for stress

diameter XY, we obtain Mohr’s circle. The abscissas of the points of 
intersection A and B of the circle with the horizontal axis represent 
the principal stresses, and the angle of rotation bringing the diameter 
XY into AB is twice the angle up defining the principal planes in Fig. 
14.32a, with both angles having the same sense. We also noted that 
diameter DE defines the maximum shearing stress and the orienta-
tion of the corresponding plane (Fig. 14.33) [Example 14.2, Sample 
Probs. 14.2 and 14.3].

600 Transformation of Stress
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�max
90�

�

Fig. 14.33
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Fig. 14.34

1�

2�

1�
2� 1��

Fig. 14.35

Cylindrical pressure vessels

Spherical pressure vessels

Review and Summary

In the case of a spherical vessel of inside radius r and thickness t 
(Fig. 14.35), we found that the two principal stresses are equal:

 
s1 5 s2 5

pr

2t  
(14.24) 

In Sec. 14.5, we discussed the stresses in thin-walled pressure vessels 
and derived formulas relating the stresses in the walls of the vessels 
and the gage pressure p in the fluid they contain. In the case of a 
cylindrical vessel of inside radius r and thickness t (Fig. 14.34), we 
obtained the following expressions for the hoop stress s1 and the 
longitudinal stress s2:

 
s1 5

pr

t
    s2 5

pr

2t  
(14.20, 14.21)
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REVIEW PROBLEMS

 14.73 Two members of uniform cross section 50 3 80 mm are glued 
together along plane a-a that forms an angle of 258 with the hori-
zontal. Knowing that the allowable stresses for the glued joint are 
s 5 800 kPa and t 5 600 kPa, determine the largest axial load P
that can be applied.

 14.74 Determine the largest internal pressure that can be applied to a 
cylindrical tank of 5.5-ft outer diameter and 5

8-in. wall thickness if 
the ultimate normal stress of the steel used is 65 ksi and a factor 
of safety of 5.0 is desired.

 14.75 A spherical pressure tank has a 1.2-m outer diameter and a uniform 
wall thickness of 10 mm. Knowing that the gage pressure is 1.25 
MPa in the tank, determine the maximum normal stress. (Use E 5
200 GPa and n 5 0.30.)

 14.76 For a state of plane stress it is known that the normal and shearing 
stresses are directed as shown and that sx 5 5 ksi, sy 5 12 ksi, and 
smax 5 18 ksi. Determine (a) the orientation of the principal 
planes, (b) the maximum in-plane shearing stress.

P

a 25�

50 mm

a

Fig. P14.73

�y

�x

�xy

Fig. P14.76

10 ksi

8 ksi

4 ksi

Fig. P14.77

1.2 MPa

3.0 MPa

0.375 MPa

15�

Fig. P14.78

 14.78 The grain of a wooden member forms an angle of 158 with the 
vertical. For the state of plane stress shown, determine (a) the in-
plane shearing stress parallel to the grain, (b) the normal stress 
perpendicular to the grain.

14.77 For the state of plane stress shown, determine (a) the principal 
planes, (b) the principal stresses, (c) the maximum shearing stress.
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603 14.79 A cylindrical steel pressure tank has a 26-in. inner diameter and a 
uniform 1

4-in. wall thickness. Knowing that the ultimate stress of 
the steel used is 65 ksi, determine the maximum allowable gage 
pressure if a factor of safety of 5.0 must be maintained.

14.80 Two wooden members of 80 3 120-mm uniform rectangular cross 
section are joined by the simple glued scarf splice shown. Knowing 
that b 5 228 and that the maximum allowable stresses in the joint 
are, respectively, 400 kPa in tension (perpendicular to the splice) 
and 600 kPa in shear (parallel to the splice), determine the largest 
centric load P that can be applied.

 14.81 Two wooden members of 80 3 120-mm uniform rectangular cross 
section are joined by the simple glued scarf splice shown. Knowing 
that b 5 258 and that the centric loads of magnitude P 5 10 kN 
are applied to the member as shown, determine (a) the in-plane 
shearing stress parallel to the splice, (b) the normal stress perpen-
dicular to the splice.

 14.82 The axle of an automobile is acted upon by the forces and couple 
shown. Knowing that the diameter of the solid axle is 1.25 in., deter-
mine (a) the principal planes and principal stresses at point H
located on top of the axle, (b) the maximum shearing stress at the 
same point.

14.83 Square plates, each of 0.5-in. thickness, can be bent and welded 
together in either of the two ways shown to form the cylindrical 
portion of the compressed air tank. Knowing that the allowable 
normal stress perpendicular to the weld is 12 ksi, determine the 
largest allowable gage pressure in each case.

Review Problems

P'

P

80 mm 	

120 mm

Fig. P14.80 and P14.81

600 lb

600 lb

2500 lb · in.

6 in.
H

8 in.

Fig. P14.82

20 ft

12 ft 12 ft

45�

(a) (b)

Fig. P14.83

T

Fig. P14.84

 14.84 A torque of magnitude T 5 12 kN ? m is applied to the end of a 
tank containing compressed air under a pressure of 8 MPa. Know-
ing that the tank has a 180-mm inner diameter and a 12-mm wall 
thickness, determine the maximum normal stress and the maxi-
mum in-plane shearing stress in the tank.
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The photo shows a multiple-girder 

bridge during construction. The design 

of the steel girders is based on both 

strength considerations and deflection 

evaluations.
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15.1 INTRODUCTION
In the preceding chapter we learned to design beams for strength. 
In this chapter we will be concerned with another aspect in the 
design of beams, namely, the determination of the deflection. Of 
particular interest is the determination of the maximum deflection of 
a beam under a given loading, since the design specifications of a 
beam will generally include a maximum allowable value for its deflec-
tion. Also of interest is that a knowledge of the deflections is required 
to analyze indeterminate beams. These are beams in which the num-
ber of reactions at the supports exceeds the number of equilibrium 
equations available to determine these unknowns.
 We saw in Sec. 11.4 that a prismatic beam subjected to pure 
bending is bent into an arc of circle and that, within the elastic range, 
the curvature of the neutral surface can be expressed as

 
1
r

5
M
EI

 (11.21)

where M is the bending moment, E the modulus of elasticity, and I 
the moment of inertia of the cross section about its neutral axis.
 When a beam is subjected to a transverse loading, Eq. (11.21) 
remains valid for any given transverse section, provided that Saint-
Venant’s principle applies. However, both the bending moment and 
the curvature of the neutral surface will vary from section to section. 
Denoting by x the distance of the section from the left end of the 
beam, we write

 
1
r

5
M 1x2
EI

 (15.1)

The knowledge of the curvature at various points of the beam will 
enable us to draw some general conclusions regarding the deforma-
tion of the beam under loading (Sec. 15.2).
 To determine the slope and deflection of the beam at any given 
point, we first derive the following second-order linear differential 
equation, which governs the elastic curve characterizing the shape of 
the  deformed beam (Sec. 15.3):

d 2y

dx2 5
M 1x2
EI

 If the bending moment can be represented for all values of 
x by a single function M(x), as in the case of the beams and load-
ings shown in Fig. 15.1, the slope u 5 dyydx and the deflection y 
at any point of the beam may be obtained through two successive 
integrations. The two constants of integration introduced in the 
process will be determined from the boundary conditions indicated 
in the figure.
 However, if different analytical functions are required to rep-
resent the bending moment in various portions of the beam, differ-
ent differential equations will also be required, leading to different 

Chapter 15 Deflection of Beams
 15.1 Introduction
 15.2 Deformation of a Beam under 

Transverse Loading
 15.3 Equation of the Elastic Curve
 15.4 Direct Determination of the 

Elastic Curve from the Load 
Distribution

 15.5 Statically Indeterminate Beams
 15.6 Method of Superposition
 15.7 Application of Superposition to 

Statically Indeterminate Beams

B
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A

y

y

(a) Cantilever beam

(b) Simply supported beam

[ yA�0 ] [ yB�0 ]

x

[ yA�0]
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Fig. 15.1
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60715.2 Deformation of a Beam under 
Transverse Loading

BA

D

y

[x � 0, y1 � 0]
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x

x �     L,  1 � 2
1
4[ [  

x �     L, y1 � y2
1
4[ [

x �  L, y2 �  0[ [
P

Fig. 15.2

B
A x

A� �

(a)

P

L

A

(b)

P

�

�

B�

B

Fig. 15.3

functions defining the elastic curve in the various portions of the 
beam. In the case of the beam and loading of Fig. 15.2, for example, 
two differential equations are required, one for the portion of beam 
AD and the other for the portion DB. The first equation yields the 
functions u1 and y1, and the second the functions u2 and y2. Alto-
gether, four constants of  integration must be determined; two will 
be obtained by writing that the deflection is zero at A and B, and 
the other two by expressing that the portions of beam AD and DB 
have the same slope and the same  deflection at D.
 You will observe in Sec. 15.4 that in the case of a beam sup-
porting a distributed load w(x), the elastic curve can be obtained 
directly from w(x) through four successive integrations. The con-
stants introduced in this process will be determined from the bound-
ary values of V, M, u, and y.
 In Sec. 15.5, we will discuss statically indeterminate beams where 
the reactions at the supports involve four or more unknowns. The 
three equilibrium equations must be supplemented with equations 
obtained from the boundary conditions imposed by the supports.
 The next part of the chapter (Secs. 15.6 and 15.7) is devoted 
to the method of superposition, which consists of determining sepa-
rately, and then adding, the slope and deflection caused by the vari-
ous loads applied to a beam. This procedure can be facilitated by 
the use of the table in App. C, which gives the slopes and deflections 
of beams for various loadings and types of support.

15.2  DEFORMATION OF A BEAM UNDER 
TRANSVERSE LOADING

At the beginning of this chapter, we recalled Eq. (11.21) of Sec. 
11.4, which relates the curvature of the neutral surface and the 
bending moment in a beam in pure bending. We pointed out that 
this equation remains valid for any given transverse section of a 
beam subjected to a transverse loading provided that Saint-Venant’s 
principle applies. However, both the bending moment and the cur-
vature of the neutral surface will vary from section to section. 
Denoting by x the distance of the section from the left end of the 
beam, we write

 
1
r

5
M 1x2
EI

 (15.1)

 Consider, for example, a cantilever beam AB of length L sub-
jected to a concentrated load P at its free end A (Fig. 15.3a). We 
have M(x) 5 2Px and, substituting into (15.1),

1
r

5 2  

Px
EI

which shows that the curvature of the neutral surface varies linearly 
with x, from zero at A, where rA itself is infinite, to 2PLyEI at B, where 0rB 0 5 EIyPL (Fig. 15.3b).

bee80156_ch15_604-639.indd Page 607  10/9/09  4:10:40 AM user-s173bee80156_ch15_604-639.indd Page 607  10/9/09  4:10:40 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-15/Volumes/MHDQ-New/MHDQ152/MHDQ152-15



608  Defl ection of Beams  Consider now the overhanging beam AD of Fig. 15.4a that 
supports two concentrated loads as shown. From the free-body 
diagram of the beam (Fig. 15.4b), we find that the reactions at the 
supports are RA 5 1 kN and RC 5 5 kN, respectively, and draw 
the corresponding bending-moment diagram (Fig. 15.5a). We note 
from the diagram that M, and thus the curvature of the beam, are 
both zero at each end of the beam, and also at a point E located 
at x 5 4 m. Between A and E the bending moment is positive and 
the beam is concave upward; between E and D the bending moment 
is negative and the beam is concave downward (Fig. 15.5b). We 
also note that the largest value of the curvature (i.e., the smallest 
value of the radius of curvature) occurs at the support C, where 0M 0  is maximum.
 From the information obtained on its curvature, we get a fairly 
good idea of the shape of the deformed beam. However, the analysis 
and design of a beam usually require more precise information on 
the deflection and the slope of the beam at various points. Of par-
ticular importance is the knowledge of the maximum deflection of 
the beam. In the next section Eq. (15.1) will be used to obtain a 
relation between the  deflection y measured at a given point Q on 
the axis of the beam and the distance x of that point from some fixed 
origin (Fig. 15.6). The relation obtained is the equation of the elastic 
curve, i.e., the equation of the curve into which the axis of the beam 
is transformed under the given loading (Fig. 15.6b).†

15.3 EQUATION OF THE ELASTIC CURVE
We first recall from elementary calculus that the curvature of a plane 
curve at a point Q(x,y) of the curve can be expressed as

 
1
r

5

d2y

dx 2

c 1 1 ady

dx
b2 d 3y2 (15.2)

where dyydx and d2yydx2 are the first and second derivatives of the 
function y(x) represented by that curve. But, in the case of the elastic 
curve of a beam, the slope dyydx is very small, and its square is 
negligible compared to unity. We write, therefore,

 
1
r

5
d2y

dx2  (15.3)

Substituting for 1yr from (15.3) into (15.1), we have

 
d2y

dx2 5
M 1x2
EI

 (15.4)

M

A
B

E C

C

D

D

4 m

3 kN · m

4 kN 2 kN

�6 kN · m

B E

A

x

(a)

(b)

Fig. 15.5

D
CQ

A

(a)

(b)

C
y

x

y

A
D

Q

x

Elastic 
curve

P2P1

Fig. 15.6

†It should be noted that, in this chapter, y represents a vertical displacement, while it 
was used in previous chapters to represent the distance of a given point in a transverse 
section from the neutral axis of that section.

D
B C

A

(a)

4 kN 2 kN

3 m 3 m 3 m

Fig. 15.4

(b)

DA
B C    

4 kN 2 kN

 RC � 5 kNRA � 1 kN

3 m 3 m 3 m

bee80156_ch15_604-639.indd Page 608  10/9/09  4:10:43 AM user-s173bee80156_ch15_604-639.indd Page 608  10/9/09  4:10:43 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-15/Volumes/MHDQ-New/MHDQ152/MHDQ152-15



609

y

y(x) (x)

x

O

Q
�

x

Fig. 15.7

P

P

BA

y

y

y

(a) Simply supported beam

yA� 0 yB� 0

x

yA� 0

B

B

xA

A x

(c) Cantilever beam

(b) Overhanging beam

yA� 0

A� 0�

yB� 0

Fig. 15.8 Boundary conditions for statically 
determinate beams.

15.3 Equation of the Elastic CurveThe equation obtained is a second-order linear differential equation; 
it is the governing differential equation for the elastic curve.
 The product EI is known as the flexural rigidity and, if it varies 
along the beam, as in the case of a beam of varying depth, we must 
express it as a function of x before proceeding to integrate Eq. (15.4). 
However, in the case of a prismatic beam, which is the case consid-
ered here, the flexural rigidity is constant. We may thus multiply both 
members of Eq. (15.4) by EI and integrate in x. We write

 EI 

dy

dx
5 #

x

0

 M 1x2 dx 1 C1 (15.5)

where C1 is a constant of integration. Denoting by u(x) the angle, 
measured in radians, that the tangent to the elastic curve at Q forms 
with the horizontal (Fig. 15.7), and recalling that this angle is very 
small, we have

dy

dx
5 tan u . u 1x2

Thus, we write Eq. (15.5) in the alternative form

 EI u 1x2 5 #
x

0

 M 1x2 dx 1 C1 (15.59)

 Integrating both members of Eq. (15.5) in x, we have

 EI y 5 #
x

0

 c #
x

0

 M 1x2 dx 1 C1 d
 

dx 1 C2

  EI y 5 #
x

0

 dx #
x

0

 M 1x2 dx 1 C1x 1 C2 (15.6)

where C2 is a second constant, and where the first term in the right-
hand member represents the function of x obtained by integrating 
twice in x the bending moment M(x). If it were not for the fact that 
the constants C1 and C2 are as yet undetermined, Eq. (15.6) would 
define the deflection of the beam at any given point Q, and Eq. 
(15.5) or (15.59) would similarly define the slope of the beam at Q.
 The constants C1 and C2 are determined from the boundary 
conditions or, more precisely, from the conditions imposed on the 
beam by its supports. Limiting our analysis in this section to statically 
determinate beams, i.e., to beams supported in such a way that the 
reactions at the supports can be obtained by the methods of statics, 
we note that only three types of beams need to be considered here 
(Fig. 15.8): (a) the simply supported beam, (b) the overhanging 
beam, and (c) the cantilever beam.
 In the first two cases, the supports consist of a pin and bracket 
at A and of a roller at B, and require that the deflection be zero at 
each of these points. Letting first x 5 xA, y 5 yA 5 0 in Eq. (15.6), 
and then x 5 xB, y 5 yB 5 0 in the same equation, we obtain two 
equations that can be solved for C1 and C2. In the case of the canti-
lever beam (Fig. 15.8c), we note that both the deflection and the 
slope at A must be zero. Letting x 5 xA, y 5 yA 5 0 in Eq. (15.6), 
and x 5 xA, u 5 uA 5 0 in Eq. (15.5 ¿), we obtain again two equa-
tions which can be solved for C1 and C2.
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610  Defl ection of Beams EXAMPLE 15.1 The cantilever beam AB is of uniform cross section and 
carries a load P at its free end A (Fig. 15.9). Determine the equation of the 
elastic curve and the deflection and slope at A.

L

P

BA

Fig. 15.9

P

V

MA

x

C

Fig. 15.10

BO

y

yA

A
L

x

[x � L,    � 0]�

[x � L, y � 0]

Fig. 15.11

 Using the free-body diagram of the portion AC of the beam (Fig. 15.10), 
where C is located at a distance x from end A, we find

 M 5 2Px (15.7)

Substituting for M into Eq. (15.4) and multiplying both members by the 
constant EI, we write

EI   

d 2y

dx2 5 2Px

Integrating in x, we obtain

 EI   

dy

dx
5 2  

1
2 Px2 1 C1 (15.8)

We now observe that at the fixed end B we have x 5 L and u 5 dyydx 5 0 
(Fig. 15.11). Substituting these values into (15.8) and solving for C1, we have

C1 5 1
2 PL2

which we carry back into (15.8):

 EI   

dy

dx
5 2 1

2 Px2 1 1
2 PL2 (15.9)

Integrating both members of Eq. (15.9), we write

 EI y 5 2 16Px3 1 1
2PL2x 1 C2 (15.10)

But, at B we have x 5 L, y 5 0. Substituting into (15.10), we have

0 5 2 16 PL3 1 1
2 PL3 1 C2

C2 5 2 13 PL3

Carrying the value of C2 back into Eq. (15.10), we obtain the equation of 
the elastic curve:

EI y 5 2 16 Px3 1 1
2 PL2x 2 1

3 PL3

or

 y 5
P

6EI
 12x3 1 3L2x 2 2L32 (15.11)

 The deflection and slope at A are obtained by letting x 5 0 in Eqs. 
(15.11) and (15.9). We find

yA 5 2
PL3

3EI
    and    uA 5 ady

dx
b

A
5

PL2

2EI
 ◾
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611EXAMPLE 15.2 The simply supported prismatic beam AB carries a uni-
formly distributed load w per unit length (Fig. 15.12). Determine the equa-
tion of the elastic curve and the maximum deflection of the beam.
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Fig. 15.12
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Fig. 15.13
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 x �0, y � 0 x �  L, y �  0[[ [[

Fig. 15.14

B

C

L/2

A

y

x

Fig. 15.15

 Drawing the free-body diagram of the portion AD of the beam (Fig. 
15.13) and taking moments about D, we find that

 M 5 1
2 wL  x 2 1

2 wx2 (15.12)

Substituting for M into Eq. (15.4) and multiplying both members of this 
equation by the constant EI, we write

 EI  

d 2y

dx2 5 2 
1
2

  wx2 1
1
2

  wL  x (15.13)

 Integrating twice in x, we have

 EI  

dy

dx
5 2 

1
6

  wx3 1
1
4

  wL  x2 1 C1 (15.14)

 EI y 5 2 
1

24
  wx4 1

1
12

  wL  x3 1 C1x 1 C2 (15.15)

Observing that y 5 0 at both ends of the beam (Fig. 15.14), we first let 
x 5 0 and y 5 0 in Eq. (15.15) and obtain C2 5 0. We then make x 5 L 
and y 5 0 in the same equation and write

0 5 2 1
24  wL4 1 1

12  wL4 1 C1L
C1 5 2 1

24 wL3

Carrying the values of C1 and C2 back into Eq. (15.15), we obtain the equa-
tion of the elastic curve:

EI y 5 2 1
24 wx4 1 1

12 wL  x3 2 1
24 wL3x

or

 y 5
w

24EI
  12x4 1 2Lx3 2 L3x2 (15.16)

 Substituting into Eq. (15.14) the value obtained for C1, we check that 
the slope of the beam is zero for x 5 Ly2 and that the elastic curve has a 
minimum at the midpoint C of the beam (Fig. 15.15). Letting x 5 Ly2 in 
Eq. (15.16), we have

yC 5
w

24EI
  a2 

L4

16
1 2L  

L3

8
2 L3

 

L
2
b 5 2 

5wL4

384EI

The maximum deflection or, more precisely, the maximum absolute value 
of the deflection, is thus

0y 0max 5
5wL4

384EI
 ◾

15.3 Equation of the Elastic Curve
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612  Defl ection of Beams  In each of the two examples considered so far, only one free-
body diagram was required to determine the bending moment in the 
beam. As a result, a single function of x was used to represent M 
throughout the beam. This, however, is not generally the case. Con-
centrated loads, reactions at supports, or discontinuities in a distrib-
uted load will make it necessary to divide the beam into several 
portions and to represent the bending moment by a different function 
M(x) in each of these portions of beam (Photo 15.1). Each of the 
functions M(x) will then lead to a different expression for the slope 
u(x) and for the deflection y(x). Since each of the expressions obtained 
for the deflection must contain two constants of integration, a large 
number of constants will have to be determined. As you will see in 
the next example, the required additional boundary conditions can be 
obtained by observing that, while the shear and bending moment can 
be discontinuous at several points in a beam, the deflection and the 
slope of the beam cannot be discontinuous at any point.

EXAMPLE 15.3 For the prismatic beam and the loading shown (Fig. 15.16), 
determine the slope and deflection at point D.

Photo 15.1 A different function M(x) 
is required in each portion of the 
cantilever arms.

P

B
D

A

3L/4
L/4

Fig. 15.16

 We must divide the beam into two portions, AD and DB, and determine 
the function y(x) which defines the elastic curve for each of these portions.

1. From A to D (x , L/4). We draw the free-body  diagram of a portion of 
beam AE of length x , Ly4 (Fig. 15.17). Taking moments about E, we have

 M1 5
3P
4

 x (15.17)

or, recalling Eq. (15.4),

 EI  

d 2 y1

dx2 5
3
4

 Px (15.18)

where y1(x) is the function which defines the elastic curve for portion AD 
of the beam. Integrating in x, we write

 EI  u1 5 EI  

dy1

dx
5

3
8

 Px2 1 C1 (15.19)

 EI y1 5
1
8

 Px3 1 C1x 1 C2 (15.20)

2. From D to B (x . L/4). We now draw the free-body diagram of a 
portion of beam AE of length x . Ly4 (Fig. 15.18) and write

 M2 5
3P
4

 x 2 P ax 2
L
4
b (15.21)
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Fig. 15.17
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Fig. 15.18

bee80156_ch15_604-639.indd Page 612  10/9/09  4:10:55 AM user-s173bee80156_ch15_604-639.indd Page 612  10/9/09  4:10:55 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-15/Volumes/MHDQ-New/MHDQ152/MHDQ152-15



613or, recalling Eq. (15.4) and rearranging terms,

 EI  

d 2y2

dx2 5 2 
1
4

 Px 1
1
4

 PL (15.22)

where y2(x) is the function which defines the elastic curve for portion DB 
of the beam. Integrating in x, we write

 EI u2 5 EI  

dy2

dx
5 2 

1
8

 Px2 1
1
4

 PL  x 1 C3 (15.23)

 EI y2 5 2 
1

24
 Px3 1

1
8

 PL  x2 1 C3x 1 C4 (15.24)

Determination of the Constants of Integration. The conditions that 
must be satisfied by the constants of integration have been summarized 
in Fig. 15.19. At the support A, where the deflection is defined by Eq. 
(15.20), we must have x 5 0 and y1 5 0. At the support B, where the 
deflection is defined by Eq. (15.24), we must have x 5 L and y2 5 0. 
Also, the fact that there can be no sudden change in deflection or in slope 
at point D requires that y1 5 y2 and u1 = u2 when x 5 Ly4. We have 
therefore:

3x 5 0, y1 5 0 4 , Eq. 115.20 2:     0 5 C2 (15.25)

3x 5 L, y2 5 0 4 , Eq. 115.24 2:    0 5
1

12
 PL3 1 C3L 1 C4 (15.26)

3x 5 Ly4, u1 5 u2 4 , Eqs. 115.19 2 and 115.23 2:
 

3
128

 PL2 1 C1 5
7

128
 PL2 1 C3 (15.27)

3x 5 Ly4, y1 5 y2 4 , Eqs. 115.20 2 and 115.24 2:
 

PL3

512
1 C1 

L
4

5
11PL3

1536
1 C3 

L
4

1 C4 (15.28)

Solving these equations simultaneously, we find

C1 5 2 
7PL2

128
, C2 5 0, C3 5 2 

11PL2

128
, C4 5

PL3

384

Substituting for C1 and C2 into Eqs. (15.19) and (15.20), we write that for 
x # Ly4,

 EI u1 5
3
8

 Px2 2
7PL2

128
 (15.29)

 EI y1 5
1
8

 Px3 2
7PL2

128
 x (15.30)

Letting x 5 Ly4 in each of these equations, we find that the slope and 
deflection at point D are, respectively,

uD 5 2 
PL2

32EI
    and    yD 5 2 

3PL3

256EI

We note that, since uD fi 0, the deflection at D is not the maximum deflec-
tion of the beam. ◾
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Fig. 15.19

15.3 Equation of the Elastic Curve
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614  Defl ection of Beams 15.4  DIRECT DETERMINATION OF THE ELASTIC CURVE 
FROM THE LOAD DISTRIBUTION

We saw in Sec. 15.3 that the equation of the elastic curve can be 
obtained by integrating twice the differential equation

 
d2y

dx2 5
M 1x2
EI

 (15.4)   

where M(x) is the bending moment in the beam. We now recall from 
Sec. 12.3 that, when a beam supports a distributed load w(x), we 
have dMydx 5 V and dVydx 5 2w at any point of the beam. Dif-
ferentiating both members of Eq. (15.4) with respect to x and assum-
ing EI to be constant, we have therefore

 
d3y

dx3 5
1

EI
 

dM
dx

5
V 1x2
EI

 (15.31)

and, differentiating again,

d 4y

dx4 5
1

EI
 

dV
dx

5 2 
w 1x2
EI

We conclude that, when a prismatic beam supports a distributed load 
w(x), its elastic curve is governed by the fourth-order linear differ-
ential equation

 
d 4y

dx4 5 2 
w 1x2
EI

 (15.32)

 Multiplying both members of Eq. (15.32) by the constant EI 
and integrating four times, we write

 EI 

d 4y

dx4 5 2w 1x2

 EI 

d 
3y

dx 
3 5 V 1x2 5 2#w 1x2 dx 1 C1

 EI  

d2y

dx2 5 M 1x2 5 2# dx #w 1x2 dx 1 C1x 1 C2 (15.33)

 EI  

dy

dx
5 EI u 1x2 5 2# dx #dx #w 1x2 dx 1

1
2

  C
1
x2

1 C
2
x 1 C

3

 EI y 1x2 5 2# dx #dx # dx # w 1x2 dx 1
1
6

 C1x
3 1

1
2

 C2x
2 1 C3x 1 C4

The four constants of integration can be determined from the 
boundary conditions. These conditions include (a) the conditions 
imposed on the deflection or slope of the beam by its supports (cf. 
Sec. 15.3), and (b) the condition that V and M be zero at the free 
end of a cantilever beam or that M be zero at both ends of a simply 
supported beam (cf. Sec. 12.3). This has been illustrated in 
Fig. 15.20.

B

B

xA

A

y

y

(a) Cantilever beam

(b) Simply supported beam

[ yA� 0]

x

[ yA� 0]
[  A�  0]�

[VB � 0]
[MB � 0]

[ yB� 0]

[MB� 0][MA� 0]

�

Fig. 15.20 Boundary conditions for 
beams carrying a distributed load.
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615 The method presented here can be used effectively with 
 cantilever or simply supported beams carrying a distributed load. In 
the case of overhanging beams, however, the reactions at the sup-
ports will cause discontinuities in the shear, i.e., in the third deriva-
tive of y, and different functions would be required to define the 
elastic curve over the entire beam.

EXAMPLE 15.4 The simply supported prismatic beam AB carries a uni-
formly distributed load w per unit length (Fig. 15.21). Determine the equa-
tion of the elastic curve and the maximum deflection of the beam. (This is 
the same beam and loading as in Example 15.2.)
 Since w 5 constant, the first three of Eqs. (15.33) yield

 EI  

d 4y

dx4 5 2w

 EI  

d 3y

dx3 5 V 1x2 5 2wx 1 C1

  EI  

d 2y

dx2 5 M 1x2 5 2
1
2

  wx2 1 C1x 1 C2 (15.34)

Noting that the boundary conditions require that M 5 0 at both ends of 
the beam (Fig. 15.22), we first let x 5 0 and M 5 0 in Eq. (15.34) and 
obtain C2 5 0. We then make x 5 L and M 5 0 in the same equation and 
obtain C1 5 1

2 
wL.

 Carrying the values of C1 and C2 back into Eq. (15.34), and integrating 
twice, we write

 
 EI  

d 2y

dx2 5 2
1
2

  wx2 1
1
2

  wL  x

 
 EI  

dy

dx
5 2

1
6

 wx3 1
1
4

 wL  x2 1 C3

 EI y 5 2
1

24
 wx4 1

1
12

 wL  x3 1 C3 
x 1 C4 (15.35)

But the boundary conditions also require that y 5 0 at both ends of the 
beam. Letting x 5 0 and y 5 0 in Eq. (15.35), we obtain C4 5 0; letting 
x 5 L and y 5 0 in the same equation, we write

0 5 2 1
24 wL4 1 1

12 wL4 1 C3L
C3 5 2 1

24  wL3

Carrying the values of C3 and C4 back into Eq. (15.35) and  dividing both 
members by EI, we obtain the equation of the elastic curve:

 y 5
w

24EI
 12x4 1 2L  x3 2 L3x2 (15.36)

 The value of the maximum deflection is obtained by making x 5 Ly2 
in Eq. (15.36). We have

0y 0max 5
5wL4

384EI 
◾

BA

L

w

Fig. 15.21

w
L

BA

y

x � 0, M � 0

x

[ ] x � L, M � 0[ ]
x � L, y � 0[ ]x � 0, y � 0[ ]

Fig. 15.22

15.4 Direct Determination of the Elastic Curve 
from the Load Distribution
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616  Defl ection of Beams 15.5 STATICALLY INDETERMINATE BEAMS
In the preceding sections, our analysis was limited to statically deter-
minate beams. Consider now the prismatic beam AB (Fig. 15.23a), 
which has a fixed end at A and is supported by a roller at B. Drawing 
the free-body diagram of the beam (Fig. 15.23b), we note that the 
reactions involve four unknowns, while only three equilibrium equa-
tions are available, namely

 oFx 5 0   oFy 5 0   oMA 5 0 (15.37)

Since only Ax can be determined from these equations, we conclude 
that the beam is statically indeterminate.

BA
A

L

(a)

B

wL

Ax

Ay
L

L/2

(b)

MA

B

w

Fig. 15.23

w

B
x

x � 0,    � 0[ ]
x � L, y � 0[ ]

x � 0, y � 0[ ]

A

�

y

Fig. 15.24

 However, we recall from Chaps. 9 and 10 that, in a statically 
indeterminate problem, the reactions can be obtained by considering 
the deformations of the structure involved. We should, therefore, 
proceed with the computation of the slope and deformation along 
the beam. Following the method used in Sec. 15.3, we first express 
the bending moment M(x) at any given point of AB in terms of the 
distance x from A, the given load, and the unknown reactions. Inte-
grating in x, we obtain expressions for u and y which contain two 
additional unknowns, namely the constants of integration C1 and C2. 
But altogether six equations are available to determine the reactions 
and the constants C1 and C2; they are the three equilibrium equa-
tions (15.37) and the three equations expressing that the boundary 
conditions are satisfied, i.e., that the slope and deflection at A are 
zero and that the deflection at B is zero (Fig. 15.24). Thus, the reac-
tions at the supports can be determined, and the equation of the 
elastic curve can be obtained.
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617EXAMPLE 15.5 Determine the reactions at the supports for the prismatic 
beam of Fig. 15.23a.

Equilibrium Equations. From the free-body diagram of Fig. 15.23b we 
write

 1y gFx 5 0:    Ax 5 0
 1xgFy 5 0:    Ay 1 B 2 wL 5 0  (15.38)

 1lgMA 5 0:    MA 1 BL 2 1
2  

wL2 5 0

Equation of Elastic Curve. Drawing the free-body diagram of a portion 
of beam AC (Fig. 15.25), we write

1lgMC 5 0:    M 1 1
2  

wx2 1 MA 2 Ay  
x 5 0 (15.39)

Solving Eq. (15.39) for M and carrying into Eq. (15.4), we write

EI 
d 

2y

dx2 5 2 
1
2

 wx2 1 Ay  
x 2 MA

Integrating in x, we have

 EI u 5 EI 
dy

dx
5 2 

1
6

  wx3 1
1
2

 Ay  
x2 2 MAx 1 C1 (15.40)

 EI y 5 2 
1

24
  wx4 1

1
6

 Ay  
x3 2

1
2

 MAx2 1 C1x 1 C2 (15.41)

Referring to the boundary conditions indicated in Fig. 15.24, we make 
x 5 0, u 5 0 in Eq. (15.40), x 5 0, y 5 0 in Eq. (15.41), and conclude that 
C1 5 C2 5 0. Thus, we rewrite Eq. (15.41) as follows:

 EI  y 5 2 1
24 

 
wx4 1 1

6 Ay  x3 2 1
2MA x2 (15.42)

But the third boundary condition requires that y 5 0 for x 5 L. Carrying 
these values into (15.42), we write

0 5 2 1
24 

 
wL4 1 1

6 Ay  
L3 2 1

2 MAL2

or

 3MA 2 Ay  
L 1 1

4 wL2 5 0 (15.43)

Solving this equation simultaneously with the three equilibrium equations 
(15.38), we obtain the reactions at the supports:

Ax 5 0    Ay 5 5
8 wL    MA 5 1

8 wL2    B 5 3
8 wL ◾

 In the example we have just considered, there was one redun-
dant reaction, i.e., there was one more reaction than could be deter-
mined from the equilibrium equations alone. The corresponding 
beam is said to be statically indeterminate to the first degree. Another 
example of a beam indeterminate to the first degree is provided in 
Sample Prob. 15.3. If the beam supports are such that two reactions 
are redundant (Fig. 15.26a), the beam is said to be indeterminate to 
the second degree. While there are now five unknown reactions (Fig. 
15.26b), we find that four equations may be obtained from the 
boundary conditions (Fig. 15.26c). Thus, altogether seven equations 
are available to determine the five  reactions and the two constants 
of integration.

A
MA

x/2

C
M

V

wx

Ay

Ax

x

Fig. 15.25

L

L

w

w

w

MB

MA

y

x

A

A

B

B

A
B

Ax

Ay B
(b)

(a)

(c)

Fixed end
Frictionless

surface

x � 0,    � 0[ ] x � L,    � 0[ ]
x � L, y � 0[ ]x � 0, y � 0[ ]

� �

Fig. 15.26

15.5 Statically Indeterminate Beams

bee80156_ch15_604-639.indd Page 617  10/9/09  4:11:07 AM user-s173bee80156_ch15_604-639.indd Page 617  10/9/09  4:11:07 AM user-s173 /Volumes/MHDQ-New/MHDQ152/MHDQ152-15/Volumes/MHDQ-New/MHDQ152/MHDQ152-15



618

SAMPLE PROBLEM 15.1

The overhanging steel beam ABC carries a concentrated load P at end C. For 
portion AB of the beam, (a) derive the equation of the elastic curve, (b) deter-
mine the maximum deflection, (c) evaluate ymax for the following data:

W14 3 68      I 5 723 in4      E 5 29 3 106 psi
P 5 50 kips     L 5 15 ft 5 180 in.     a 5 4 ft 5 48 in.

SOLUTION

Free-Body Diagrams.  Reactions: RA 5 PayLw RB 5 P 11 1 ayL 2x
Using the free-body diagram of the portion of beam AD of length x, we find

M 5 2P  

a
L

  x     10 , x , L 2
Differential Equation of the Elastic Curve.  We use Eq. (15.4) and write

EI  

d 2y

dx2 5 2P 

a
L

  x

Noting that the flexural rigidity EI is constant, we integrate twice and find

  EI  

dy

dx
5 2

1
2

 P  

a
L

  x2 1 C1 (1)

  EI y 5 2
1
6

 P  

a
L

  x3 1 C1x 1 C2 (2)

Determination of Constants.  For the boundary conditions shown, we have
[x 5 0, y 5 0]:    From Eq. (2), we find    C2 5 0
[x 5 L, y 5 0]:    Again using Eq. (2), we write

EI10 2 5 2
1
6

 P  

a
L

 L3 1 C1L    C1 5 1
1
6

 PaL

a. Equation of the Elastic Curve.  Substituting for C1 and C2 into Eqs. (1) 
and (2), we have

 EI 

dy

dx
5 2

1
2

 P  

a
L

  x2 1
1
6

 PaL   
dy

dx
5

PaL
6EI

 c 1 2 3a x
L
b2 d  (3)

EI y 5 2
1
6

 P  

a
L

 x3 1
1
6

 PaL  x   y 5
PaL2

6EI
 c x

L
2 a x

L
b3 d  14 2  b

b. Maximum Deflection in Portion AB.  The maximum deflection ymax 
occurs at point E where the slope of the elastic curve is zero. Setting 
dyydx 5 0  in Eq. (3), we determine the abscissa xm of point E:

0 5
PaL
6EI
c 1 2 3axm

L
b2 d     xm 5

L

23
5 0.577L

We substitute xmyL 5 0.577 into Eq. (4) and have

 
ymax 5

PaL2

6EI
 3 10.577 2 2 10.577 23 4

 
ymax 5 0.0642 

PaL2

EI
  b

c. Evaluation of ymax. For the data given, the value of ymax is

 ymax 5 0.0642 

150 kips2 148 in.2 1180 in.22
129 3 106 psi2 1723 in42  ymax 5 0.238 in.  b

B
C

x

L a

A

y

[x � 0, y � 0] [x � L, y � 0]

C

x

xm

ymax

A
B

E

y

RA � P
V

B

D

y

P

M

RA RB

C

x

L a

A

A

L
a

B

P

C
A

L a
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619

SAMPLE PROBLEM 15.2

For the beam and loading shown, determine (a) the equation of the elastic 
curve, (b) the slope at end A, (c) the maximum deflection.

SOLUTION

Differential Equation of the Elastic Curve.   From Eq. (15.32),

 EI  

d 
4y

dx4 5 2w 1x2 5 2w0 sin 
px
L

 (1)

Integrate Eq. (1) twice:

 EI  

d 3y

dx3 5 V 5 1w0
L
p

 cos 
px
L

1 C1 (2)

 EI  

d 
2y

dx2 5 M 5 1w0
L2

p2 sin 
px
L

1 C1x 1 C2 (3)

Boundary Conditions:

[x 5 0, M 5 0]:    From Eq. (3), we find    C2 = 0
[x 5 L, M = 0]:    Again using Eq. (3), we write

0 5 w0
L2

p2 sin p 1 C1L  C1 5 0

Thus:

 
EI  

d 2y

dx2 5 1w0
L2

p2 sin 
px
L  (4)

Integrate Eq. (4) twice:

  EI  

dy

dx
5 EI u 5 2w0

L3

p3 cos 
px
L

1 C3 (5)

  EI y 5 2w0 
L4

p4  sin 
px
L

1 C3x 1 C4 (6)

Boundary Conditions:

[x 5 0, y 5 0]:    Using Eq. (6), we find    C4 5 0
[x 5 L, y 5 0]:    Again using Eq. (6), we find C3 5 0

a. Equation of Elastic Curve EIy 5 2w0 

L4

p4 sin 
px
L
  b

b. Slope at End A.  For x 5 0, we have

 
EI uA 5 2w0

L3

p3 cos 0
 

uA 5
w0L

3

p3EI
 c b

c. Maximum Deflection.  For x 5 1
2 L

 
ELymax 5 2w0 

L4

p4 sin 
p

2  
ymax 5

w0L
4

p4EI
 w b

B
x

L

A

y

[x � 0, M � 0]
[x � 0, y � 0]

[x � L, M � 0]
[x � L, y � 0]

L/2 L/2

A B

y

x

ymaxA�

B

w � w0 sin

A

x
L

x

y
�

L
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620

SAMPLE PROBLEM 15.3

For the uniform beam AB, (a) determine the reaction at A, (b) derive the 
equation of the elastic curve, (c) determine the slope at A. (Note that the 
beam is statically indeterminate to the first degree.)

SOLUTION

Bending Moment.  Using the free body shown, we write

1igMD 5 0:    RAx 2
1
2

 aw0 
x2

L
b 

x
3

2 M 5 0    M 5 RAx 2
w0 

x3

6L

Differential Equation of the Elastic Curve.  We use Eq. (15.4) and write

EI  
d 

2y

dx2 5 RAx 2
w0 

x3

6L

Noting that the flexural rigidity EI is constant, we integrate twice and find

  EI 
dy

dx
5 EI u 5

1
2

 RAx2 2
w0 

x4

24L
1 C1 (1)

  EI y 5
1
6

 RAx 
3 2

w0x5

120L
1 C1x 1 C2 (2)

Boundary Conditions.  The three boundary conditions that must be satis-
fied are shown on the sketch

3x 5 0, y 5 0 4 : C2 5 0 (3)

3x 5 L, u 5 0 4 : 1
2

 RAL2 2
w0L

3

24
1 C1 5 0 (4)

3x 5 L, y 5 0 4 : 1
6

 RAL3 2
w0L

4

120
1 C1L 1 C2 5 0 (5)

a. Reaction at A.  Multiplying Eq. (4) by L, subtracting Eq. (5) member 
by member from the equation obtained, and noting that C2 5 0, we have

 1
3 RAL3 2 1

30 
 
w0L

4 5 0 RA 5 1
10 

 
w0Lx  b

We note that the reaction is independent of E and I. Substituting RA 5 1
10 w0L 

into Eq. (4), we have
1
2 1 1

10 w0L 2L2 2 1
24 

 
w0L

3 1 C1 5 0    C1 5 2 1
120 w0L

3

b. Equation of the Elastic Curve.  Substituting for RA, C1, and C2 into 
Eq. (2), we have

EI y 5
1
6

 a 1
10

  w0Lb x3 2
w0x5

120L
2 a 1

120
  w0L

3b x

y 5
w0

120EIL
 12x5 1 2L2x3 2 L4x2  b

c. Slope at A.  We differentiate the above equation with respect to x:

u 5
dy

dx
5

w0

120EIL
 125x4 1 6L2x2 2 L42

Making x 5 0, we have uA 5 2
w0L

3

120EI 
uA 5

w0L
3

120EI
 c b

x

y

[x � 0, y � 0]
[x � L, y � 0]

[x � L,    � 0]�

A B

A

L

B
x

�A

A B

L

w0

A

w � w0

x
L(w0    ) x1

2
x1

3 x
L

D
x

M

V
RA
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PROBLEMS

621

In the following problems assume that the flexural rigidity 
EI of each beam is constant.

 15.1 through 15.4 For the loading shown, determine (a) the equa-
tion of the elastic curve for the cantilever beam AB, (b) the deflec-
tion at the free end, (c) the slope at the free end.

Fig. P15.1

B

A

y

L

P

x

M0

B

A

y

L

x

Fig. P15.2

w0

L

x
B

A

y

L

Fig. P15.3 Fig. P15.4

B
A

y

w

L

x

15.5 and 15.6 For the cantilever beam and loading shown, deter-
mine (a) the equation of the elastic curve for portion AB of the 
beam, (b) the deflection at B, (c) the slope at B.

y

A

w

B

L a

C x

MC �
wL2

6

Fig. P15.5

C

A B

y

w

w
L/2 L/2

x

Fig. P15.6

15.7 For the beam and loading shown, determine (a) the equation of 
the elastic curve for portion AB of the beam, (b) the slope at A, 
(c) the slope at B.

B C

w

A

L L/2

x

y

Fig. P15.7
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622  Defl ection of Beams  15.8 For the beam and loading shown, determine (a) the equation of 
the elastic curve for portion BC of the beam, (b) the deflection at 
midspan, (c) the slope at B.

B
x

y

C

w

wL
5P �

A

LL/2

Fig. P15.8

 15.9 Knowing that beam AB is a W130 3 23.8 rolled shape and that 
P 5 50 kN, L 5 1.25 m, and E 5 200 GPa, determine (a) the 
slope at A, (b) the deflection at C.

 15.10 Knowing that beam AB is an S8 3 18.4 rolled shape and that 
w0 5 4 kips/ft, L 5 9 ft, and E 5 29 3 106 psi, determine (a) the 
slope at A, (b) the deflection at C.

y

A

L/2L/2

x
BC

P

W

Fig. P15.9

A
C

xB

y
w0

S

L/2 L/2

Fig. P15.10

 15.11 (a) Determine the location and magnitude of the maximum deflec-
tion of beam AB. (b) Assuming that beam AB is a W360 3 64, 
L 5 3.5 m, and E 5 200 GPa, calculate the maximum allowable 
value of the applied moment M0 if the maximum deflection is not 
to exceed 1 mm.

x

y

A

L

B

M0

Fig. P15.11

x

y

A

L

B

w0

Fig. P15.12

 15.12 For the beam and loading shown, (a) express the magnitude and 
location of the maximum deflection in terms of w0, L, E, and I. 
(b) Calculate the value of the maximum deflection, assuming that 
beam AB is a W18 3 50 rolled shape and that w0 5 4.5 kips/ft, 
L 5 18 ft, and E 5 29 3 106 psi.
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623Problems 15.13 and 15.14 For the beam and loading shown, determine the 
deflection at point C. Use E 5 200 GPa.

 15.16 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the deflection at the free end.

 15.17 through 15.20 For the beam and loading shown, determine 
the reaction at the roller support.

x

y

A

L � 3 m

W150 � 18

a � 1 m

BC

P � 20 kN

Fig. P15.14

x

y

A

L � 3.2 m

W100 � 19.3

a � 0.8 m

B

C

M0 � 38 kN · m

Fig. P15.13

 15.15 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the slope at end A, (c) the deflection at the 
midpoint of the span.

x

y

A

L

B

w � 4w0[ ]�
x
L

x2

L2

Fig. P15.15

w � w0 [1 � 4(   ) � 3(   )2]x
L

x
L

y

A
x

L

B

Fig. P15.16

B
A

w0

L

Fig. P15.19

B
A

w0

L

Fig. P15.20

B
A

w

L

Fig. P15.17

A

L

B

M0

Fig. P15.18
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 15.21 and 15.22 Determine the reaction at the roller support, and 
draw the bending moment diagram for the beam and loading 
shown.

P

A C
B

L/2 L/2

Fig. P15.21

A

L/2 L/2

C B

w

Fig. P15.22

 15.23 and 15.24 Determine the reaction at the roller support and the 
deflection at point D if a is equal to Ly3.

B
A D

a

L

P

Fig. P15.23

B
A

a

D

L

M0

Fig. P15.24

 15.25 and 15.26 Determine the reaction at A, and draw the bending 
moment diagram for the beam and loading shown.

BA C

P

L/2 L/2

Fig. P15.25

BA C

L/2 L/2

w0

Fig. P15.26

15.6 METHOD OF SUPERPOSITION
When a beam is subjected to several concentrated or distributed 
loads, it is often found convenient to compute separately the slope 
and deflection caused by each of the given loads. The slope and 
deflection due to the combined loads are then obtained by applying 
the principle of superposition (Sec. 9.11) and adding the values of 
the slope or deflection corresponding to the various loads. 

EXAMPLE 15.6 Determine the slope and deflection at D for the beam 
and loading shown (Fig. 15.27) knowing that the flexural rigidity of the beam 
is EI 5 100 MN ? m2.

A
D

B

150 kN

20 kN/m
2 m

8 m

Fig. 15.27

624  Defl ection of Beams
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625 The slope and deflection at any point of the beam can be obtained 
by superposing the slopes and deflections caused respectively by the con-
centrated load and by the distributed load (Fig. 15.28).
 Since the concentrated load in Fig. 15.28b is applied at quarter span, 
we can use the results obtained for the beam and loading of Example 15.3 
and write

1uD 2P 5 2
PL2

32EI
5 2

1150 3 1032 18 22
32 1100 3 1062 5 23 3 1023 rad

1yD 2P 5 2
3PL3

256EI
5 2

3 1150 3 1032 18 23
256 1100 3 1062 5 29 3 1023 m

 5 29 mm

On the other hand, recalling the equation of the elastic curve obtained for 
a uniformly distributed load in Example 15.2, we express the deflection in 
Fig. 15.28c as

 y 5
w

24EI
12x4 1 2L  x3 2 L3x2 (15.44)

and, differentiating with respect to x,

 u 5
dy

dx
5

w
24EI

 124x3 1 6L  x2 2 L32 (15.45)

Making w 5 20 kN/m, x 5 2 m, and L 5 8 m in Eqs. (15.45) and (15.44), 
we obtain

 1uD 2w 5
20 3 103

24 1100 3 1062  12352 2 5 22.93 3 1023 rad

 1yD 2w 5
20 3 103

24 1100 3 1062  12912 2 5 27.60 3 1023 m

   5 27.60 mm

Combining the slopes and deflections produced by the concentrated and 
the distributed loads, we have

  uD 5 1uD 2P 1 1uD 2w 5 23 3 1023 2 2.93 3 1023

  5 25.93 3 1023 rad
 yD 5 1yD 2P 1 1yD 2w 5 29 mm 2 7.60 mm 5 216.60 mm ◾

 To facilitate the task of practicing engineers, most structural and 
mechanical engineering handbooks include tables giving the deflec-
tions and slopes of beams for various loadings and types of support. 
Such a table will be found in App. C. We note that the slope and 
deflection of the beam of Fig. 15.27 could have been determined from 
that table. Indeed, using the information given under cases 5 and 6, 
we could have expressed the deflection of the beam for any value 
x # Ly4. Taking the derivative of the expression obtained in this way 
would have yielded the slope of the beam over the same interval. We 
also note that the slope at both ends of the beam can be obtained 
by simply adding the  corresponding values given in the table. How-
ever, the maximum  deflection of the beam of Fig. 15.27 cannot be 
obtained by adding the maximum deflections of cases 5 and 6, since 
these deflections occur at different points of the beam.†

D

20 kN/m

2 m

150 kN

BA

D

BA

D

x � 2 m

L � 8 m

L � 8 m

P � 150 kN

(b)

(a)

(c)

BA

w � 20 kN/m

Fig. 15.28

15.6 Method of Superposition

†An approximate value of the maximum deflection of the beam can be obtained by 
 plotting the values of y corresponding to various values of x. The determination of the 
exact location and magnitude of the maximum deflection would require setting equal to 
zero the expression obtained for the slope of the beam and solving this equation for x.
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626  Defl ection of Beams 15.7  APPLICATION OF SUPERPOSITION TO 
STATICALLY INDETERMINATE BEAMS

We often find it convenient to use the method of superposition to 
determine the reactions at the supports of a statically indeterminate 
beam. Considering first the case of a beam indeterminate to the first 
degree (cf. Sec. 15.5), such as the beam shown in Photo 15.2, we 
follow the approach described in Sec. 9.8. We designate one of the 
reactions as redundant and eliminate or modify accordingly the cor-
responding support. The redundant reaction is then treated as an 
unknown load that, together with the other loads, must produce 
deformations that are  compatible with the original supports. The 
slope or deflection at the point where the support has been modified 
or eliminated is obtained by computing separately the deformations 
caused by the given loads and by the redundant reaction, and by 
superposing the results obtained. Once the reactions at the supports 
have been found, the slope and deflection can be determined in the 
usual way at any other point of the beam.

EXAMPLE 15.7 Determine the reactions at the supports for the pris-
matic beam and loading shown in Fig. 15.29. (This is the same beam and 
loading as in Example 15.5 of Sec. 15.5.)

 We consider the reaction at B as redundant and release the beam 
from the support. The reaction RB is now considered as an unknown load 
(Fig. 15.30a) and will be determined from the condition that the deflection 
of the beam at B must be zero. The solution is carried out by considering 
separately the deflection (yB)w caused at B by the uniformly distributed load 
w (Fig. 15.30b) and the deflection (yB)R produced at the same point by the 
redundant reaction RB (Fig. 15.30c).
 From the table of App. C (cases 2 and 1), we find that

1yB 2w 5 2 
wL4

8EI
     1yB 2R 5 1 

RBL3

3EI

Writing that the deflection at B is the sum of these two quantities and that 
it must be zero, we have

 yB 5 1yB 2w 1 1yB 2R 5 0

 yB 5 2 
wL4

8EI
1

RBL3

3EI
5 0

and, solving for RB,  RB 5 3
8 wL   RB 5 3

8 wL x

Photo 15.2 The continuous beams supporting 
this highway overpass have three supports and 
are thus indeterminate.

BA

L

w

Fig. 15.29

B

(yB)R

RB

w w

B

A A
B

yB � 0

(yB)wRB

A

(a) (b) (c)

Fig. 15.30
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627 Drawing the free-body diagram of the beam (Fig. 15.31) and writing 
the corresponding equilibrium equations, we have

1xg Fy 5 0:   RA 1 RB 2 wL 5 0 (15.46)
  RA 5 wL 2 RB 5 wL 2 3

8 wL 5 5
8 wL

  RA 5 5
8 wL x

1lgMA 5 0:  MA 1 RBL 2 1wL 2 112L 2 5 0 (15.47)
  MA 5 1

2 wL2 2 RBL 5 1
2 wL2 2 3

8 wL2 5 1
8 wL2

 MA 5 1
8 wL2  

l

Alternative Solution. We may consider the couple exerted at the fixed 
end A as redundant and replace the fixed end by a pin-and-bracket support. 
The couple MA is now considered as an unknown load (Fig. 15.32a) and 
will be determined from the condition that the slope of the beam at A must 
be zero. The solution is carried out by considering separately the slope 1uA 2w 
caused at A by the uniformity distributed load w (Fig. 15.32b) and the 
slope 1uA 2M produced at the same point by the unknown couple MA 
(Fig. 15.32c).

BA

wMA

MA

w

BA

(a) (b)
(c)

A � 0� ( A)w�

( A)M�

BA

Fig. 15.32

B

wL

MA

RA RB

A

L

L/2

Fig. 15.31

 Using the table of App. C (cases 6 and 7), and noting that in case 7, 
A and B must be interchanged, we find that

1uA 2w 5 2 
wL3

24EI
    1uA 2M 5

MAL
3EI

Writing that the slope at A is the sum of these two quantities and that it 
must be zero, we have

uA 5 1uA 2w 1 1uA 2M 5 0

uA 5 2 
wL3

25EI
1

MAL
3EI

5 0

and, solving for MA,

MA 5 1
8 wL2    MA 5 1

8 wL2 
l

The values of RA and RB may then be found from the equilibrium equations 
(15.46) and (15.47). ◾

 The beam considered in the preceding example was indetermi-
nate to the first degree. In the case of a beam indeterminate to the 
second degree (cf. Sec. 15.5), two reactions must be designated as 
redundant, and the corresponding supports must be eliminated or 
modified accordingly. The redundant reactions are then treated as 
unknown loads which, simultaneously and together with the other 
loads, must produce deformations which are compatible with the 
original supports. (See Sample Prob. 15.6.)

15.7 Application of Superposition to Statically 
Indeterminate Beams
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628

SAMPLE PROBLEM 15.4

For the beam and loading shown, determine the slope and deflection at 
point B.

SOLUTION

Principle of Superposition.  The given loading can be obtained by 
 superposing the loadings shown in the following “picture equation.” The 
beam AB is, of course, the same in each part of the figure.

B
C

w

A

L/2 L/2

B
C

w

A

y

L/2 L/2

B

x

yBA

B

w

Loading I Loading II

A

L

B
C

w

A

L/2 L/2

�B

y

B

A

B

x
x(yB)I

(  B)I

A

y

�

(  B)II�

(yB)II

w

B

w

Loading I

Loading II

A

L
y

B

x

(yB)I

(  B)I

A

�

�

BC

w

A

L/2 L/2

A C

B

x

y (  B)II�(  C)II

(yB)II

(yC)II

For each of the loadings I and II, we now determine the slope and deflec-
tion at B by using the table of Beam Deflections and Slopes in App. C.

Loading I

1uB 2I 5 2 
wL3

6EI  
1yB 2I 5 2 

wL4

8EI

Loading II

1uC 2II 5 1 
w 1Ly2 23

6EI
5 1 

wL3

48EI 
1yC 2II 5 1 

w 1Ly2 24
8EI

5 1 
wL4

128EI

In portion CB, the bending moment for loading II is zero and thus the 
elastic curve is a straight line.

1uB 2II 5 1uC 2II 5 1 
wL3

48EI 
1yB 2II 5 1yC 2II 1 1uC 2II aL

2
b

 
5

wL4

128EI
1

wL3

48EI
 aL

2
b 5 1 

7wL4

384EI

Slope at Point B

uB 5 1uB 2I 1 1uB 2II 5 2 
wL3

6EI
1

wL3

48EI
5 2 

7wL3

48EI  
uB 5

7wL3

48EI
 c  b

Deflection at B

yB 5 1yB 2I 1 1yB 2II 5 2  

wL4

8EI
1

7wL4

384EI
5 2

41wL4

384EI  
yB 5

41wL4

384EI
 w >
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629

SAMPLE PROBLEM 15.5

For the uniform beam and loading shown, determine (a) the reaction at 
each support, (b) the slope at end A.

SOLUTION

Principle of Superposition.  The reaction RB is designated as redundant and 
considered as an unknown load. The deflections due to the distributed load 
and to the reaction RB are considered separately as shown below.

B

B

w

A

A

y

C

xC

2L/3 L/3
RB RB

B

w

A C

2L/3 L/3

BA C

2L/3 L/3

[yB � 0]
B

A

y

xC

(yB)w(  A)w�

B

A

y

xC

(yB)R(  A)R�

= +

+=

B

w

A C

RA � 0.271 wL RB � 0.688 wL

RC � 0.0413 wL

For each loading the deflection at point B is found by using the table of 
Beam Deflections and Slopes in App. C.
Distributed Loading.  We use case 6, App. C.

y 5 2  

w
24EI

 1x4 2 2L  x3 1 L3x2
At point B, x 5 2

3 L:

1yB 2w 5 2 
w

24EI
 c a2

3
 Lb4

2 2L  a2
3

 Lb3

1 L3a2
3

 Lb d 5 20.01132 

wL4

EI
Redundant Reaction Loading.  From case 5, App. C, with a 5 2

3 L and 
b 5 1

3 L, we have

1yB 2R 5 2 
Pa2b2

3EIL
5 1 

RB

3EIL
 a2

3
 Lb2aL

3
b2

5 0.01646 

RBL3

EI
a. Reactions at Supports.  Recalling that yB 5 0, we write
 yB 5 1yB 2w 1 1yB 2R
 

0 5 20.01132 

wL4

EI
1 0.01646 

RBL3

EI  
RB 5 0.688wLx b

Since the reaction RB is now known, we may use the methods of statics to 
 determine the other reactions: RA 5 0.271wL x  RC 5 0.0413wLx >
b. Slope at End A.  Referring again to App. C, we have

Distributed Loading.
  
1uA 2w 5 2  

wL3

24EI
5 20.04167 

wL3

EI
Redundant Reaction Loading.  For P 5 2RB 5 20.688wL and b 5 1

3 L

1uA 2R 5 2 
Pb 1L2 2 b22

6EIL
5 1 

0.688wL
6EIL

 aL
3
b cL2 2 aL

3
b2 d

 
1uA 2R 5 0.03398 

wL3

EI

Finally, uA 5 1uA 2w 1 1uA 2R
uA 5 20.04167 

wL3

EI
1 0.03398 

wL3

EI
5 20.00769 

wL3

EI  
uA 5 0.00769 

wL3

EI
 c  b

B

w

A C

2L/3

L

L/3
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630

SAMPLE PROBLEM 15.6

For the beam and loading shown, determine the reaction at the fixed support C.

SOLUTION

Principle of Superposition.  Assuming the axial force in the beam to be 
zero, the beam ABC is indeterminate to the second degree and we choose 
two reaction components as redundant, namely, the vertical force RC and 
the couple MC. The deformations caused by the given load P, the force RC , 
and the couple MC will be considered separately as shown.

For each load, the slope and deflection at point C will be found by using 
the table of Beam Deflections and Slopes in App. C.

Load P.  We note that, for this loading, portion BC of the beam is straight.

 
 1uC 2P 5 1uB 2P 5 2 

Pa2

2EI
    1yC 2P 5 1yB 2P 1 1uB 2p b

 5 2 
Pa3

3EI
2

Pa2

2EI
 b 5 2 

Pa2

6EI
 12a 1 3b 2

Force RC

 
1uC 2R 5 1 

RC L2

2EI    
1yC 2R 5 1 

RC L3

3EI

Couple MC 
1uC 2M 5 1 

MC  
L

EI    
1yC 2M 5 1 

MC L2

2EI
Boundary Conditions.  At end C the slope and deflection must be zero:
3x 5 L, uC 5 0 4 :  uC 5 1uC 2P 1 1uC 2R 1 1uC 2M
 

0 5 2 
Pa2

2EI
1

RC L2

2EI
1

MC L
EI  

(1)

3x 5 L, yC 5 0 4 :  yC 5 1yC 2P 1 1yC 2R 1 1yC 2M
                

0 5 2 
Pa2

6EI
 12a 1 3b 2 1

RC L3

3EI
1

MC L2

2EI  
(2)

Reaction Components at C.  Solving simultaneously Eqs. (1) and (2), we 
find after reductions

 
RC 5 1 

Pa2

L3  1a 1 3b 2
 

RC 5
Pa2

L3  1a 1 3b 2 x >

 
MC 5 2 

Pa2b

L2  
MC 5

Pa2b

L2  i b

Using the methods of statics, we can now determine the reaction at A.

B

P

C

C

a b

ABA

PMC MC

RC RC
a b

C

C

L

A

C

C

A

A

L

BB
C

C

A

A A
(  C)M�

(yC)M

�
�

(  C)P

�(  C)R

�(  B)P

(yC)P

(yC)R

(yB)P

[  B� 0]

[yB� 0]

L

a bRA RC     

Pa2b
L2MC �

PPab2

L2MA �

Pb2

L3RA � (3a � b)
Pa2

L3RC � (a � 3b)

B

P

C

L

a b

A
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PROBLEMS

631

Use the method of superposition to solve the following 
problems and assume that the flexural rigidity EI of each 
beam is constant.

 15.27 through 15.30 For the beam and loading shown, determine 
(a) the deflection at point C, (b) the slope at end A.

 15.31 and 15.32 For the cantilever beam and loading shown, deter-
mine the slope and deflection at the free end.

B
C

P

A

L/3 2L/3

MB � P L
3

Fig. P15.27

D

C

B

P

P

A

L/3 L/3 L/3

Fig. P15.28

B

w

A
C

L

wL2

12MA �

Fig. P15.29

DCB

P P P

A E

a a aa

Fig. P15.30

CA B

P 2P

L/2 L/2

Fig. P15.31

B
A

C

L/2 L/2

M � PL
P

Fig. P15.32

15.33 and 15.34 For the cantilever beam and loading shown, deter-
mine the slope and deflection at point C.

B
C

w �

L/2 L/2

A

P

P
L

Fig. P15.33

CBA

w wL2

24M �

L/2 L/2

Fig. P15.34
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632  Defl ection of Beams  15.35 For the cantilever beam and loading shown, determine the slope 
and deflection at end C. Use E 5 29 3 106 psi.

 15.36 For the cantilever beam and loading shown, determine the slope 
and deflection at point B. Use E 5 29 3 106 psi.

 15.37 and 15.38 For the beam and loading shown, determine (a) the 
slope at end A, (b) the deflection at point C. Use E 5 200 GPa.

 15.39 and 15.40 For the uniform beam shown, determine (a) the 
reaction at A, (b) the reaction at B.

1.75 in.

30 in. 10 in.

B
C

A

125 lb
15 lb/in.

Fig. P15.35 and P15.36

BC

140 kN
80 kN · m80 kN · m

2.5 m 2.5 m

A

W410 � 46.1

Fig. P15.37

W150 � 24

20 kN/m

30 kN

1.6 m
0.8 m

A B
C

Fig. P15.38

L/2 L/2

C
A

B

w

Fig. P15.39

A

B

C D

P P

L/3 L/3 L/3

Fig. P15.40

 15.41 and 15.42 For the uniform beam shown, determine the reac-
tion at each of the three supports.

A B
C

2L
3

L
3

M0

Fig. P15.41

A
B

P

C
D

L/3 L/3 L/3

Fig. P15.42
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633Problems 15.43 and 15.44 For the beam shown, determine the reaction at B.

 15.45 The two beams shown have the same cross section and are joined 
by a hinge at C. For the loading shown, determine (a) the slope 
at point A, (b) the deflection at point B. Use E 5 29 3 106 psi.

 15.46 A central beam BD is joined by hinges to two cantilever beams AB 
and DE. All beams have the cross section shown. For the loading 
shown, determine the largest w so that the deflection at C does 
not exceed 3 mm. Use E 5 200 GPa.

 15.47 For the loading shown, and knowing that beams AB and DE have 
the same flexural rigidity, determine the reaction (a) at B, (b) at E.

 15.48 Knowing that the rod ABC and the cable BD are both made of 
steel, determine (a) the deflection at B, (b) the reaction at A. Use 
E 5 200 GPa.

 15.49 A 5
8-in.-diameter rod ABC has been bent into the shape shown. 

Determine the deflection of end C after the 30-lb force is applied. 
Use E 5 29 3 106 psi and G 5 11.2 3 106 psi.

 15.50 Two 24-mm-diameter aluminum rods are welded together to form 
the T-shaped hanger shown. Knowing that E 5 70 GPa and G 5 
26 GPa, determine the deflection at (a) end A, (b) end B.

B

A C

L/2 L/2

w

Fig. P15.43

BA

C

L/2 L/2

M0

Fig. P15.44

A BCB

12 in.12 in.
6 in.

Hinge

D

800 lb

1.25 in.

1.25 in.

Fig. P15.45

A CB

0.4 m 0.4 m 0.4 m 0.4 m

HingeHinge
D E

24 mm

12 mm

w

Fig. P15.46

P � 6 kips
a � 4 ft

a � 4 ft

b � 5 ft
D

A C

E

B

b � 5 ft

Fig. P15.47

C

D

0.18 m 0.18 m

A
B

0.2 m

40-mm
diameter

4-mm diameter
1.6 kN/m

Fig. P15.48

L � 9 in. L � 9 in.

30 lb

B

C

A

Fig. P15.49

B

a � 0.5 m

b � 0.4 m

a � 0.5 m180 N

A

C

D

Fig. P15.50
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REVIEW AND SUMMARY

This chapter was devoted to the determination of slopes and deflec-
tions of beams under transverse loadings. We used a mathematical 
method based on the method of integration of a differential equation 
to get the slopes and deflections at any point along the beam. We 
also applied this method for determining deflections to the analysis 
of indeterminate beams, those in which the number of reactions at 
the supports exceeds the number of equilibrium equations available 
to determine these unknowns.

We noted in Sec. 15.2 that Eq. (11.21) of Sec. 11.4, which relates 
the curvature 1yr of the neutral surface and the bending moment 
M in a prismatic beam in pure bending, can be applied to a beam 
under a transverse loading, but that both M and 1yr will vary from 
section to section. Denoting by x the distance from the left end of 
the beam, we wrote

 
1
r

5
M 1x2
EI  

(15.1)

This equation enabled us to determine the radius of curvature of the 
neutral surface for any value of x and to draw some general conclu-
sions regarding the shape of the deformed beam.
 In Sec. 15.3, we discussed how to obtain a relation between the 
deflection y of a beam, measured at a given point Q, and the distance 
x of that point from some fixed origin (Fig. 15.33). Such a relation 
defines the elastic curve of a beam. Expressing the curvature 1yr in 
terms of the derivatives of the function y(x) and substituting into (15.1), 
we obtained the following second-order linear differential equation:

 

d  

2y

dx2 5
M 1x2
EI  

(15.4)

Integrating this equation twice, we obtained the following expres-
sions defining the slope u 1x2 5 dyydx  and the deflection y(x), 
 respectively:

 
EI 

dy

dx
5 #

x

0

M 1x2 dx 1 C1  
(15.5)

 
 EI y 5 #

x

0

dx #
x

0

M 1x2 dx 1 C1x 1 C2 
(15.6)

The product EI is known as the flexural rigidity of the beam; C1 and 
C2 are two constants of integration that can be determined from the 
boundary conditions imposed on the beam by its supports (Fig. 
15.34) [Example 15.1]. The maximum deflection can then be obtained 
by determining the value of x for which the slope is zero and the 
corresponding value of y [Example 15.2 and Sample Prob. 15.1].

Deformation of a beam under 
transverse loading

Boundary conditions

C
y

x

y

A
D

Q

x

Elastic 
curve

P2P1

Fig. 15.33

Fig. 15.34 Boundary conditions for 
statically determinate beams.
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(a) Simply supported beam
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B

B
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(c) Cantilever beam

(b) Overhanging beam

yA� 0

A� 0�

yB� 0
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635Review and SummaryWhen the loading is such that different analytical functions are 
required to represent the bending moment in various portions of the 
beam, then different differential equations are also required, leading 
to different functions representing the slope u 1x2  and the deflection 
y(x) in the various portions of the beam. In the case of the beam 
and loading considered in Example 15.3 (Fig. 15.35), two differential 
equations were required, one for the portion of beam AD and the 
other for the portion DB. The first equation yielded the functions u1 
and y1, and the second the functions u2 and y2. Altogether, four 
constants of integration had to be determined; two were obtained by 
writing that the deflections at A and B were zero, and the other two 
by expressing that the portions of beam AD and DB had the same 
slope and the same deflection at D.
 We observed in Sec. 15.4 that in the case of a beam support-
ing a distributed load w(x), the elastic curve can be determined 
directly from w(x) through four successive integrations yielding V, 
M, u, and y in that order. For the cantilever beam of Fig. 15.36a 
and the simply supported beam of Fig. 15.36b, the resulting four 
constants of integration can be determined from the four boundary 
conditions indicated in each part of the figure [Example 15.4 and 
Sample Prob. 15.2].

Elastic curve defined by 
different function

D

BA

y

x x � 0, y1 � 0 

x �  L, y2�  0[
[

[
[

� �x �     L,  1 �1
4[ [  

x �     L, y1 � y2

2
1
4[ [

P

Fig. 15.35

In Sec. 15.5, we discussed statically indeterminate beams, i.e., beams 
supported in such a way that the reactions at the supports involved 
four or more unknowns. Since only three equilibrium equations are 
available to determine these unknowns, the equilibrium equations 
had to be supplemented by equations obtained from the boundary 
conditions imposed by the supports. In the case of the beam of Fig. 
15.37, we noted that the reactions at the supports involved four 

Statically indeterminate beams 

B

xA

y

(a) Cantilever beam

[ yA� 0]
[  A�  0]�

[VB � 0]
[MB � 0]�

BA

y

(b) Simply supported beam

[ yA� 0]

x

[ yB� 0]

[MB� 0][MA� 0]

Fig. 15.36 Boundary conditions for beams carrying a distributed load.
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Fig. 15.37
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636  Defl ection of Beams

unknowns, namely, MA, Ax, Ay, and B. Such a beam is said to be 
indeterminate to the first degree. (If five unknowns were involved, 
the beam would be indeterminate to the second degree.) Expressing 
the bending moment M(x) in terms of the four unknowns and inte-
grating twice [Example 15.5], we determined the slope u 1x2  and the 
deflection y(x) in terms of the same unknowns and the constants of 
integration C1 and C2. The six unknowns involved in this computation 
were obtained by solving simultaneously the three equilibrium equa-
tions for the free body of Fig. 15.37b and the three equations express-
ing that u 5 0, y 5 0 for x 5 0, and that y 5 0 for x 5 L (Fig. 
15.38) [see also Sample Prob. 15.3].

The next section was devoted to the method of superposition, which 
consists of determining separately, and then adding, the slope and 
deflection caused by the various loads applied to a beam [Sec. 15.6]. 
This procedure was facilitated by the use of the table of App. C, 
which gives the slopes and deflections of beams for various loadings 
and types of support [Example 15.6 and Sample Prob. 15.4].

The method of superposition can be used effectively with statically 
indeterminate beams [Sec. 15.7]. In the case of the beam of Example 15.7 
(Fig. 15.39), which involves four unknown reactions and is thus inde-
terminate to the first degree, the reaction at B was considered as 
redundant and the beam was released from that support. Treating 
the reaction RB as an unknown load and considering separately the 
deflections caused at B by the given distributed load and by RB, we 
wrote that the sum of these deflections was zero (Fig. 15.40). The 
equation obtained was solved for RB [see also Sample Prob. 15.5]. 
In the case of a beam indeterminate to the second degree, i.e., with 
reactions at the supports involving five unknowns, two reactions must 
be designated as redundant, and the corresponding supports must 
be eliminated or modified accordingly [Sample Prob. 15.6].

Method of superposition

w

B
x

x � 0,    � 0[ ]
x � L, y � 0[ ]

x � 0, y � 0[ ]

A

�

y

Fig. 15.38

BA

L

w

Fig. 15.39

B

(yB)R

RB

w w

B

A A
B

yB � 0

(yB)wRB

A

(a) (b) (c)

Fig. 15.40

Statically indeterminate beams 
by superposition
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637

REVIEW PROBLEMS

15.51 For the beam and loading shown, determine (a) the equation of 
the elastic curve for portion AB of the beam, (b) the slope at A, 
(c) the slope at B.

y

A
C

B

L L/2

w

x

2w

Fig. P15.51

y

x

M0
M0

BA

L

Fig. P15.52

15.53 Knowing that beam AE is an S200 3 27.4 rolled shape and that 
P 5 17.5 kN, L 5 2.5 m, a 5 0.8 m, and E 5 200 GPa, determine 
(a) the equation of the elastic curve for portion BD, (b) the deflec-
tion at the center C of the beam.

 15.54 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the slope at the free end, (c) the deflection 
at the free end.

y

E xA

a a

B C D

L/2L/2

P P

Fig. P15.53

B
A

y

L

w � w0 cos
  x�
2L

x

Fig. P15.54

 15.55 For the beam shown, determine the reaction at the roller support 
when w0 5 6 kips/ft.

B

L � 12 ft

w � w0 (x/L)2

A

w0

Fig. P15.55

 15.52 (a) Determine the location and magnitude of the maximum abso-
lute deflection in AB between A and the center of the beam. 
(b) Assuming that beam AB is a W460 3 113, M0 5 224 kN ? m, 
and E 5 200 GPa, determine the maximum allowable length L
so that the maximum deflection does not exceed 1.2 mm.
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638 Defl ection of Beams

 15.57 For the cantilever beam and loading shown, determine the slope 
and deflection at point B.

A

a

w w

a a

B C D

Fig. P15.57

 15.58 For the beam and loading shown, determine (a) the deflection at 
point C, (b) the slope at end A.

C
A B

MA � M0 MB � M0

L/2 L/2

Fig. P15.58

3 kN 3 kN

C

B

A

0.75 m 0.5 m
S100 � 11.5

Fig. P15.59

A EDCB

P 2P

L/2 L/2 L/2 L/2

Fig. P15.60

 15.59 For the cantilever beam and loading shown, determine the slope 
and deflection at point B. Use E 5 200 GPa.

 15.60 For the uniform beam shown, determine the reaction at each of 
the three supports.

B
A

L/2

C

L

M0

Fig. P15.56

 15.56 Determine the reaction at the roller support and draw the bending 
moment diagram for the beam and loading shown.
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639Review Problems

 15.62 A 7
8-in.-diameter rod BC is attached to the lever AB and to the 

fixed support at C. Lever AB has a uniform cross section 3
8 in. thick 

and 1 in. deep. For the loading shown, determine the deflection 
of point A. Use E 5 29 3 106 psi and G 5 11.2 3 106 psi.

W410 � 46.1
6 m

A � 255 mm2

3 m 20 kN/m

C
B

A

Fig. P15.61

20 in.

C

B

80 lb

10 in.

A

Fig. P15.62

 15.61 The cantilever beam BC is attached to the steel cable AB as shown. 
Knowing that the cable is initially taut, determine the tension in the 
cable caused by the distributed load shown. Use E 5 200 GPa.
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The curved pedestrian bridge is 

supported by a series of columns. 

The analysis and design of members 

supporting axial compressive loads will 

be discussed in this chapter.

640
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 Columns
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16.1 INTRODUCTION
In the preceding chapters, we had two primary concerns: (1) the 
strength of the structure, i.e., its ability to support a specified load 
without experiencing excessive stress; (2) the ability of the structure 
to support a specified load without undergoing unacceptable defor-
mations. In this chapter, our concern will be with the stability of the 
structure, i.e., with its ability to support a given load without experi-
encing a sudden change in its configuration. Our discussion will 
relate chiefly to columns, i.e., to the analysis and design of vertical 
prismatic members supporting axial loads.
 In Sec. 16.2, the stability of a simplified model of a column, 
consisting of two rigid rods connected by a pin and a spring and 
supporting a load P, will first be considered. You will observe that if 
its equilibrium is disturbed, this system will return to its original 
equilibrium position as long as P does not exceed a certain value Pcr, 
called the critical load. However, if P . Pcr, the system will move 
away from its original position and settle in a new position of equi-
librium. In the first case, the system is said to be stable, and in the 
second case, it is said to be unstable.
 In Sec. 16.3, you will begin the study of the stability of elastic 
columns by considering a pin-ended column subjected to a centric 
axial load. Euler’s formula for the critical load of the column will be 
derived and from that formula the corresponding critical normal 
stress in the column will be determined. By applying a factor of 
safety to the critical load, you will be able to determine the allowable 
load that can be applied to a pin-ended column.
 In Sec. 16.4, the analysis of the stability of columns with differ-
ent end conditions will be considered. You will simplify these analyses 
by learning how to determine the effective length of a column, i.e., 
the length of a pin-ended column having the same critical load.
 In the first sections of the chapter, each column is initially 
assumed to be a straight homogeneous prism. In the last part of the 
chapter, you will consider real columns which are designed and ana-
lyzed using empirical formulas set forth by professional organiza-
tions. In Sec. 16.5, formulas will be presented for the allowable stress 
in columns made of steel, aluminum, or wood and subjected to a 
centric axial load.

16.2 STABILITY OF STRUCTURES
Suppose we are to design a column AB of length L to support a 
given load P (Fig. 16.1). The column will be pin-connected at both 
ends and we assume that P is a centric axial load. If the cross-
 sectional area A of the column is selected so that the value s 5 PyA 
of the stress on a transverse section is less than the allowable stress 
sall for the material used, and if the deformation d 5 PLyAE falls 
within the given specifications, we might conclude that the column 
has been properly designed. However, it may happen that, as the 
load is applied, the column will buckle; instead of remaining straight, 
it will suddenly become sharply curved (Fig. 16.2). Photo 16.1 shows 
a column that has been loaded so that it is no longer straight; the 

Chapter 16 Columns
 16.1 Introduction
 16.2 Stability of Structures
 16.3 Euler’s Formula for Pin-Ended 

Columns
 16.4 Extension of Euler’s Formula to 

Columns with Other End 
Conditions

 16.5 Design of Columns under a 
Centric Load

L

B

P

A

Fig. 16.1

B

A

P

Fig. 16.2
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643

column has buckled. Clearly, a column that buckles under the load 
it is to support is not properly designed.
 Before getting into the actual discussion of the stability of elastic 
columns, some insight will be gained on the problem by considering 
a simplified model consisting of two rigid rods AC and BC connected 
at C by a pin and a torsional spring of constant K (Fig. 16.3).
 If the two rods and the two forces P and P9 are perfectly 
aligned, the system will remain in the position of equilibrium shown 
in Fig. 16.4a as long as it is not disturbed. But suppose that we move 
C slightly to the right, so that each rod now forms a small angle ¢u 
with the vertical (Fig. 16.4b). Will the system return to its original 
equilibrium position, or will it move further away from that position? 
In the first case, the system is said to be stable, and in the second 
case, it is said to be unstable.
 To determine whether the two-rod system is stable or unstable, 
we consider the forces acting on rod AC (Fig. 16.5). These forces 
consist of two couples, namely the couple formed by P and P9, of 
moment P 1Ly2 2 sin ¢u, which tends to move the rod away from the 
vertical, and the couple M exerted by the spring, which tends to bring 
the rod back into its original vertical position. Since the angle of deflec-
tion of the spring is 2 ¢u, the moment of the couple M is M 5 K 12 ¢u 2. 

16.2 Stability of Structures

Photo 16.1 Test column that has buckled

L/2

L/2

C

B

A

constant K

P

Fig. 16.3

C C

BB

A A

2

(a) (b)

��

��

P'

��

P P

P'

Fig. 16.4

C

L/2

A

M

P'

��

P

Fig. 16.5
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644  Columns If the moment of the second couple is larger than the moment of the 
first couple, the system tends to return to its original equilibrium posi-
tion; the system is stable. If the moment of the first couple is larger 
than the moment of the second couple, the system tends to move away 
from its original equilibrium position; the system is unstable. The value 
of the load for which the two couples balance each other is called the 
critical load and is denoted by Pcr. We have

 Pcr1Ly2 2 sin ¢u 5 K 12 ¢u 2 (16.1)

or, since sin ¢u < ¢u,

 Pcr 5 4KyL (16.2)

Clearly, the system is stable for P , Pcr, that is, for values of the 
load smaller than the critical value, and unstable for P . Pcr.
 Let us assume that a load P . Pcr has been applied to the two 
rods of Fig. 16.3 and that the system has been disturbed. Since 
P . Pcr, the system will move further away from the vertical and, 
after some  oscillations, will settle into a new equilibrium position 
(Fig. 16.6a). Considering the equilibrium of the free body AC (Fig. 
16.6b), we obtain an equation similar to Eq. (16.1), but involving the 
finite angle u, namely

P 1Ly2 2 sin u 5 K 12u 2
or

 
PL
4K

5
u

sin u  
(16.3)

 The value of u corresponding to the equilibrium position repre-
sented in Fig. 16.6 is obtained by solving Eq. (16.3) by trial and error. 
But we observe that, for any positive value of u, we have sin u , u. 
Thus, Eq. (16.3) yields a value of u different from zero only when 
the left-hand member of the equation is larger than one. Recalling 
Eq. (16.2), we note that this is indeed the case here, since we have 
assumed P . Pcr. But, if we had assumed P , Pcr, the second equi-
librium position shown in Fig. 16.6 would not exist and the only 
possible equilibrium position would be the position corresponding to 
u 5 0. We thus check that, for P , Pcr, the position u 5 0 must be 
stable.
 This observation applies to structures and mechanical systems 
in general, and will be used in the next section where the stability 
of elastic columns will be discussed.

16.3 EULER’S FORMULA FOR PIN-ENDED COLUMNS
Returning to the column AB considered in the preceding section 
(Fig. 16.1), we propose to determine the critical value of the load P, 
i.e., the value Pcr of the load for which the position shown in Fig. 
16.1 ceases to be stable. If P . Pcr, the slightest misalignment or 
disturbance will cause the column to buckle, i.e., to assume a curved 
shape as shown in Fig. 16.2.
 Our approach will be to determine the conditions under which 
the configuration of Fig. 16.2 is possible. Since a column can be 
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B

A

(b)(a)

P
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M
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Fig. 16.6

L

B

P

A

Fig. 16.1 
(repeated)

B

A

P

Fig. 16.2 
(repeated)
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645considered as a beam placed in a vertical position and subjected to 
an axial load, we proceed as in Chap. 15 and denote by x the distance 
from end A of the column to a given point Q of its elastic curve, and 
by y the deflection of that point (Fig. 16.7a). It follows that the 
x axis will be vertical and directed downward, and the y axis hori-
zontal and  directed to the right. Considering the equilibrium of the 
free body AQ (Fig. 16.7b), we find that the bending moment at Q 
is M 5 2Py.  Substituting this value for M in Eq. (15.4) of Sec. 15.3, 
we write

 

d 2
 y

dx2 5
M
EI

5 2
P
EI

 y
 

(16.4)

or, transposing the last term,

 

d 2
 y

dx 2 1
P
EI

 y 5 0
 

(16.5)

This equation is a linear, homogeneous differential equation of the 
second order with constant coefficients. Setting

 
p 2 5

P
EI

 (16.6)

we write Eq. (16.5) in the form

 

d2y

dx2 1 p2y 5 0 (16.7)

which is the same as that of the differential equation for simple  harmonic 
motion except, of course, that the independent variable is now the 
 distance x instead of the time t. The general solution of Eq. (16.7) is

 y 5 A sin px 1 B cos px (16.8)

as we easily check by computing d2
 yydx2 and substituting for y and 

d 2
 yydx 2 into Eq. (16.7).

 Recalling the boundary conditions that must be satisfied at 
ends A and B of the column (Fig. 16.7a), we first make x 5 0, y 5 0 
in Eq. (16.8) and find that B 5 0. Substituting next x 5 L, y 5 0, 
we  obtain

 A sin pL 5 0 (16.9)

This equation is satisfied either if A 5 0, or if sin pL 5 0. If the 
first of these conditions is satisfied, Eq. (16.8) reduces to y 5 0 and 
the  column is straight (Fig. 16.1). For the second condition to be 
satisfied, we must have pL 5 np or, substituting for p from 
Eq. (16.6) and solving for P,

 
P 5

n2
 p2EI

L2  (16.10)

The smallest of the values of P defined by Eq. (16.10) is that cor-
responding to n 5 1. We thus have

 
Pcr 5

p2EI

L2  (16.11)

L

Q Q

B

A
A

x

y

y

x

x

y

P'

P'

M

y
[ x � 0, y � 0]  

[ x � L, y � 0]  

(a) (b)

P P

Fig. 16.7 

16.3 Euler’s Formula for Pin-Ended Columns
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646  Columns  The expression obtained is known as Euler’s formula, after the 
Swiss mathematician Leonhard Euler (1707 – 1783). Substituting this 
expression for P into Eq. (16.6) and the value obtained for p into 
Eq. (16.8), and recalling that B 5 0, we write

 
y 5 A sin 

px
L

 (16.12)

which is the equation of the elastic curve after the column has buck-
led (Fig. 16.2). We note that the value of the maximum deflection, 
ym 5 A, is indeterminate. This is due to the fact that the differential 
equation (16.5) is a linearized approximation of the actual governing 
differential equation for the elastic curve.†
 If P , Pcr, the condition sin pL 5 0 cannot be satisfied, and 
the solution given by Eq. (16.12) does not exist. We must then have 
A 5 0, and the only possible configuration for the column is a 
straight one. Thus, for P , Pcr the straight configuration of Fig. 16.1 
is stable.
 In the case of a column with a circular or square cross section, 
the moment of inertia I of the cross section is the same about any 
centroidal axis, and the column is as likely to buckle in one plane as 
another, except for the restraints that can be imposed by the end 
connections. For other shapes of cross section, the critical load 
should be computed by making I 5 Imin in Eq. (16.11); if buckling 
occurs, it will take place in a plane perpendicular to the correspond-
ing principal axis of inertia.
 The value of the stress corresponding to the critical load is 
called the critical stress and is denoted by scr. Recalling Eq. (16.11) 
and setting I 5 Ar 2, where A is the cross-sectional area and r its 
radius of gyration, we have

scr 5
Pcr

A
5
p2EAr 2

AL2

or

 
scr 5

p2E

1Lyr22 (16.13)

The quantity Lyr is called the slenderness ratio of the column. It is 
clear, in view of the remark of the preceding paragraph, that the mini-
mum value of the radius of gyration r should be used in computing 
the slenderness ratio and the critical stress in a column.
 Equation (16.13) shows that the critical stress is proportional 
to the modulus of elasticity of the material, and inversely propor-
tional to the square of the slenderness ratio of the column. The plot 
of scr versus Lyr is shown in Fig. 16.8 for structural steel, assuming 
E 5 200 GPa and sY 5 250 MPa. We should keep in mind that no 
factor of safety has been used in plotting scr. We also note that, if the 

†We recall that the equation d 2yydx2 5 MyEI was obtained in Sec. 15.3 by assuming 
that the slope dyydx of the beam could be neglected and that the exact expression 
given in Eq. (15.3) for the curvature of the beam could be replaced by 1yr 5 d2yydx2.

100

0 10089 200

200

250

300

(MPa)

Y � 250 MPa

E � 200 GPa

2E
(L/r)2

L/r

�

�

cr �� �

Fig. 16.8
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647value obtained for scr from Eq. (16.13) or from the curve of Fig. 16.8 
is larger than the yield strength sY, this value is of no interest to us, 
since the column will yield in compression and cease to be elastic 
before it has a chance to buckle.

EXAMPLE 16.1 A 2-m-long pin-ended column of square cross section 
is to be made of wood. Assuming E 5 13 GPa, sall 5 12 MPa, and using 
a factor of safety of 2.5 in computing Euler’s critical load for buckling, 
determine the size of the cross section if the column is to safely support 
(a) a 100-kN load, (b) a 200-kN load.

(a) For the 100-kN Load. Using the given factor of safety, we make

Pcr 5 2.51100 kN2 5 250 kN    L 5 2 m    E 5 13 GPa

in Euler’s formula (16.11) and solve for I. We have

I 5
Pcr L2

p2E
5
1250 3 103 N 2 12 m 22
p2113 3 109 Pa2 5 7.794 3 1026 m4

Recalling that, for a square of side a, we have I 5 a4y12, we write

a4

12
5 7.794 3 1026 m4    a 5 98.3 mm < 100 mm

We check the value of the normal stress in the column:

s 5
P
A

5
100 kN
10.100 m 22 5 10 MPa

Since s is smaller than the allowable stress, a 100 3 100-mm cross section 
is acceptable.

(b) For the 200-kN Load. Solving again Eq. (16.11) for I, but making 
now Pcr 5 2.5 1200 2 5 500 kN, we have

I 5 15.588 3 1026 m4

a4

12
5 15.588 3 1026    a 5 116.95 mm

The value of the normal stress is

s 5
P
A

5
200 kN

10.11695 m 22 5 14.62 MPa

Since this value is larger than the allowable stress, the dimension obtained 
is not acceptable, and we must select the cross section on the basis of its 
resistance to compression. We write

 A 5  
P
sall

5
200 kN
12 MPa

5 16.67 3 1023 m2

 a2 5 16.67 3 1023 m2    a 5 129.1 mm

A 130 3 130-mm cross section is acceptable. ◾

16.3 Euler’s Formula for Pin-Ended Columns
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648  Columns 16.4  EXTENSION OF EULER’S FORMULA TO 
COLUMNS WITH OTHER END CONDITIONS

Euler’s formula (16.11) was derived in the preceding section for a 
column that was pin-connected at both ends. Now the critical load Pcr 
will be determined for columns with different end conditions.
 In the case of a column with one free end A supporting a load P 
and one fixed end B (Fig. 16.9a), we observe that the column will 
 behave as the upper half of a pin-connected column (Fig. 16.9b). 
The critical load for the column of Fig. 16.9a is thus the same as for 
the pin-ended column of Fig. 16.9b and can be obtained from Euler’s 

L C

B

A

P

Fig. 16.10

L

AA

BB
Le � 2L

P'

(b)(a)

A'

P P

Fig. 16.9

 formula (16.11) by using a column length equal to twice the actual 
length L of the given column. We say that the effective length Le of 
the column of Fig. 16.9 is equal to 2L and substitute Le 5 2L in 
Euler’s  formula:

 
Pcr 5

p2EI

L2
e  

(16.119)

The critical stress is found in a similar way from the formula

 
scr 5

p2E

1Le yr22 
(16.139)

The quantity Le yr is referred to as the effective slenderness ratio of 
the column and, in the case considered here, is equal to 2Lyr.

 Consider next a column with two fixed ends A and B supporting 
a load P (Fig. 16.10). The symmetry of the supports and of the load-
ing about a horizontal axis through the midpoint C requires that the 
shear at C and the horizontal components of the reactions at A and 
B be zero (Fig. 16.11). It follows that the restraints imposed upon 
the upper half AC of the column by the support at A and by the 
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649lower half CB are identical (Fig. 16.12). Portion AC must thus be 
symmetric about its midpoint D, and this point must be a point of 
inflection, where the bending moment is zero. A similar reasoning 
shows that the bending  moment at the midpoint E of the lower half 
of the column must also be zero (Fig. 16.13a). Since the bending 
moment at the ends of a pin-ended column is zero, it follows that 
the portion DE of the column of Fig. 16.13a must behave as a pin-
ended column (Fig. 16.13b). We thus  conclude that the effective 
length of a column with two fixed ends is Le 5 Ly2.

L C

D D

E E

B

A

L1
2 LLe � 1

2

(a) (b)

P

P

Fig. 16.13

M'

P'

B

L

L/2

C

A

M

P

Fig. 16.11

L/4

C

A

D

L/4

M'

P'

M

P

Fig. 16.12

B

A

L

P

Fig. 16.14

B

x

A
y

L

V'

V [ x � 0, y � 0]

[ x � L, y � 0]
[ x � L, dy/dx � 0]

P

MB

P'

Fig. 16.15

V'

A

Q

y

y

x

x

V

M

P'

P

Fig. 16.16

16.4 Extension of Euler’s Formula to Columns 
with Other End Conditions

 In the case of a column with one fixed end B and one pin-
 connected end A supporting a load P (Fig. 16.14), we must write and 
solve the differential equation of the elastic curve to determine the 
effective length of the column. From the free-body diagram of the 
entire column (Fig. 16.15), we first note that a transverse force V is 
exerted at end A, in addition to the axial load P, and that V is statically 
indeterminate. Considering now the free-body diagram of a portion AQ 
of the column (Fig. 16.16), we find that the bending moment at Q is

M 5 2Py 2 Vx
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650  Columns Substituting this value into Eq. (15.4) of Sec. 15.3, we write

d 2y

dx2 5
M
EI

5 2 
P
EI

 y 2
V
EI

 x

Transposing the term containing y and setting

 
p2 5

P
EI

 (16.6)

as we did in Sec. 16.3, we write

 

d2y

dx2 1 p2y 5 2 
V
EI

 x (16.14)

This equation is a linear, nonhomogeneous differential equation of 
the second order with constant coefficients. Observing that the left-
hand members of Eqs. (16.7) and (16.14) are identical, we conclude 
that the general solution of Eq. (16.14) can be obtained by adding a 
particular solution of Eq. (16.14) to the solution (16.8) obtained for 
Eq. (16.7). Such a particular solution is easily seen to be

y 5 2 
V

p2EI
 x

or, recalling Eq. (16.6),

 
y 5 2 

V
P

 x (16.15)

Adding the solutions to Eqs. (16.8) and (16.15), we write the general 
solution of Eq. (16.14) as

 
y 5 A sin px 1 B cos px 2

V
P

 x (16.16)

 The constants A and B, and the magnitude V of the unknown 
transverse force V are obtained from the boundary conditions indi-
cated in Fig. (16.15). Making first x 5 0, y 5 0 in Eq. (16.16), we 
find that B 5 0. Making next x 5 L, y 5 0, we obtain

 
A sin pL 5

V
P

 L (16.17)

Finally, computing

dy

dx
5 Ap cos px 2

V
P

and making x 5 L, dyydx 5 0, we have

 
Ap cos pL 5

V
P

 (16.18)

B

x

A
y

L

V'

V [ x � 0, y � 0]

[ x � L, y � 0]
[ x � L, dy/dx � 0]

P

MB

P'

Fig. 16.15 (repeated)
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651

C

B

A A
A

Le � 0.7L 

Le � 0.5L Le � 2L Le � L 

L 

B 

B B 

A 

(c) One fixed end,
     one pinned end

(d) Both ends
      fixed

(b) Both ends
      pinned

(a) One fixed end,
     one free end

P P P
P

Fig. 16.17 Effective length of column for various end conditions.

Dividing Eq. (16.17) by Eq. (16.18) member by member, we conclude 
that a solution of the form for Eq. (16.16) can exist only if

 tan pL 5 pL (16.19)

Solving this equation by trial and error, we find that the smallest value 
of pL which satisfies Eq. (16.19) is

 pL 5 4.4934 (16.20)

Carrying the value of p defined by Eq. (16.20) into Eq. (16.6) and solv-
ing for P, we obtain the critical load for the column of Fig. 16.14

 
Pcr 5

20.19EI

L2  (16.21)

 The effective length of the column is obtained by equating the 
right-hand members of Eqs. (16.119) and (16.21):

p2EI

L2
e

5
20.19EI

L2

Solving for Le, we find that the effective length of a column with one 
fixed end and one pin-connected end is Le 5 0.699L < 0.7L. 
 The effective lengths corresponding to the various end condi-
tions considered in this section are shown in Fig. 16.17.

16.4 Extension of Euler’s Formula to Columns 
with Other End Conditions
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652

SAMPLE PROBLEM 16.1

An aluminum column of length L and rectangular cross section has a fixed 
end B and supports a centric load at A. Two smooth and rounded fixed 
plates restrain end A from moving in one of the vertical planes of symmetry 
of the column but allow it to move in the other plane. (a) Determine the 
ratio ayb of the two sides of the cross section corresponding to the most 
efficient design against buckling. (b) Design the most efficient cross section 
for the column knowing that L 5 20 in., E 5 10.1 3 106 psi, P 5 5 kips, 
and that a factor of safety of 2.5 is required.

SOLUTION

Buckling in xy Plane. Referring to Fig. 16.17, we note that the effective 
length of the column with respect to buckling in this plane is Le 5 0.7L. 
The radius of gyration rz of the cross section is obtained by writing

Ix 5 1
12 ba3  A 5 ab

and, since Iz 5 Ar 2
z ,

  
r 2

z 5
Iz

A
5

1
12ba3

ab
5

a2

12
    rz 5 ay112

The effective slenderness ratio of the column with respect to buckling in 
the xy plane is

 
Le

rz
5

0.7L
ay112 

(1)

Buckling in xz Plane. The effective length of the column with respect to 
buckling in this plane is Le 5 2L, and the corresponding radius of gyration 
is ry 5 by112. Thus,

 
Le

ry
5

2L
by112 

(2)

a. Most Efficient Design. The most efficient design is that for which the 
critical stresses corresponding to the two possible modes of buckling are equal. 
Referring to Eq. 116.13¿ 2, we note that this will be the case if the two values 
obtained above for the effective slenderness ratio are equal. We write

0.7L
ay112

5
2L

by112

and, solving for the ratio ayb,           
a
b

5
0.7
2

         
a
b

5 0.35   >

b. Design for Given Data. Since F.S. 5 2.5 is required,
Pcr 5 1F.S.2P 5 12.52 15 kips2 5 12.5 kips

Using a 5 0.35b, we have A 5 ab 5 0.35b2 and

scr 5
Pcr

A
5

12,500 lb

0.35b2

Making L 5 20 in. in Eq. (2), we have Leyry 5 138.6yb. Substituting for 
E, Le yr, and scr into Eq. 116.13¿ 2, we write

scr 5
p2E

1Le yr22 
12,500 lb

0.35b2 5
p2110.1 3 106 psi2
1138.6yb22

b 5 1.620 in.    a 5 0.35b 5 0.567 in.  >

B

x

L

y

a

A

b

z

P
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PROBLEMS

653

16.1 Knowing that the spring at A is of constant k and that the bar AB 
is rigid, determine the critical load Pcr.

P

kA

B

L

Fig. P16.1

K

A

B

L

P

Fig. P16.2

16.2 Knowing that the torsional spring at B is of constant K and that 
the bar AB is rigid, determine the critical load Pcr.

16.3 Two rigid bars AC and BC are connected as shown to a spring of 
constant k. Knowing that the spring can act in either tension or 
compression, determine the critical load Pcr for the system.

C

A

B

L1
2

L1
2

k

P

Fig. P16.3

C

A

B

L1
2

L1
2

K

P

Fig. P16.4

16.4 Two rigid bars AC and BC are connected by a pin at C as shown. 
Knowing that the torsional spring at B is of constant K, determine 
the critical load Pcr for the system.

16.5 The rigid rod AB is attached to a hinge at A and to two springs, 
each of constant k 5 2 kips/in., that can act in either tension or 
compression. Knowing that h 5 2 ft, determine the critical load.

k C

B

D

A
h

h

2h

k

P

Fig. P16.5
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654  Columns  16.6 If m 5 125 kg, h 5 700 mm, and the constant in each spring is 
k 5 2.8 kN/m, determine the range of values of the distance d for 
which the equilibrium of rod AB is stable in the position shown. 
Each spring can act in either tension or compression.

 16.7 Determine the critical load of a round wooden dowel that is 48 in. 
long and has a diameter of (a) 0.375 in., (b) 0.5 in. Use E 5 1.6 3 
106 psi.

 16.8 Determine the critical load of an aluminum tube that is 1.5 m long 
and has a 16-mm outer diameter and a 1.25-mm wall thickness. 
Use E 5 70 GPa.

d

h
k

B

A

k

m

Fig. P16.6 16 mm

1.25 mm

Fig. P16.8

1.0 in. 1.0 in.

0.5 in.

Fig. P16.9

 16.9 A compression member of 20-in. effective length consists of a solid 
1-in.-diameter aluminum rod. In order to reduce the weight of the 
member by 25%, the solid rod is replaced by a hollow rod of the 
cross section shown. Determine (a) the percent reduction in the criti-
cal load, (b) the value of the critical load for the hollow rod. Use 
E 5 10.6 3 106 psi.

 16.10 Two brass rods used as compression members, each of 3-m effec-
tive length, have the cross sections shown. (a) Determine the wall 
thickness of the hollow square rod for which the rods have the 
same cross-sectional area. (b) Using E 5 105 GPa, determine the 
critical load of each rod.

 16.11 Determine the radius of the round strut so that the round and 
square struts have the same cross-sectional area and compute the 
critical load for each. Use E 5 200 GPa.

60 mm

60 mm40 mm

Fig. P16.10

25 mm

C

A

B

D

1 m

1 m

P

P

Fig. P16.11
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655Problems 16.12 A column of effective length L can be made by gluing together 
identical planks in either of the arrangements shown. Determine 
the ratio of the critical load using the arrangement a to the critical 
load using the arrangement b.

d

d/3

(a) (b)

Fig. P16.12

8.00 in.

1.81 in.

x

y

C

Fig. P16.14

 16.13 A compression member of 7-m effective length is made by welding 
together two L152 3 102 3 12.7 angles as shown. Using E 5 200 
GPa, determine the allowable centric load for the member if a 
factor of safety of 2.2 is required.

 16.14 A column of 26-ft effective length is made from half a W16 3 40 
rolled-steel shape. Knowing that the centroid of the cross section 
is located as shown, determine the factor of safety if the allowable 
centric load is 20 kips. Use E 5 29 3 106 psi.

102 mm

152 mm

102 mm

Fig. P16.13

 16.15 A column of 22-ft effective length is to be made by welding two 9 3 
0.5-in. plates to a W8 3 35 as shown. Determine the allowable cen-
tric load if a factor of safety 2.3 is required. Use E 5 29 3 106 psi.

 16.16 A column of 3-m effective length is to be made by welding together 
two C130 3 13 rolled-steel channels. Using E 5 200 GPa, deter-
mine for each arrangement shown the allowable centric load if a 
factor of safety of 2.4 is required.

4.5 in.

4.5 in.

y

x

Fig. P16.15

(a) (b)

Fig. P16.16
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656  Columns  16.17 Knowing that P 5 5.2 kN, determine the factor of safety for the 
structure shown. Use E 5 200 GPa and consider only buckling in 
the plane of the structure.

1.2 m

1.2 m

P

70�

22-mm diameter

18-mm
diameter

B

A
C

Fig. P16.17

2.25 m

A D

C
B

3.5 m

Fig. P16.18

 16.19 A 25-mm-square aluminum strut is maintained in the position 
shown by a pin support at A and by sets of rollers at B and C that 
prevent rotation of the strut in the plane of the figure. Knowing 
that LAB 5 1.0 m, LBC 5 1.25 m, and LCD 5 0.5 m, determine 
the allowable load P using a factor of safety with respect to buck-
ling of 2.8. Consider only buckling in the plane of the figure and 
use E 5 75 GPa.

 16.20 A 32-mm-square aluminum strut is maintained in the position 
shown by a pin support at A and by sets of rollers at B and C that 
prevent rotation of the strut in the plane of the figure. Knowing 
that LAB 5 1.4 m, determine (a) the largest values of LBC and LCD 
that can be used if the allowable load P is to be as large as possible, 
(b) the magnitude of the corresponding allowable load if the factor 
of safety is to be 2.8. Consider only buckling in the plane of the 
figure and use E 5 72 GPa.Fig. P16.19 and P16.20

D

C

B

A

LAB

LBC

LCD

P

 16.18 Members AB and CD are 30-mm-diameter steel rods, and members 
BC and AD are 22-mm-diameter steel rods. When the turnbuckle 
is tightened, the diagonal member AC is put in tension. Knowing 
that a factor of safety with respect to buckling of 2.75 is required, 
determine the largest allowable tension in AC. Use E 5 200 GPa 
and consider only buckling in the plane of the structure.
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657Problems 16.21 The aluminum column ABC has a uniform rectangular cross section 
and is braced in the xz plane at its midpoint C. (a) Determine the 
ratio byd for which the factor of safety is the same with respect to 
buckling in the xz and yz planes. (b) Using the ratio found in part a, 
design the cross section of the column so that the factor of safety will 
be 2.7 when P 5 1.2 kips, L 5 24 in., and E 5 10.6 3 106 psi.

 16.22 The aluminum column ABC has a uniform rectangular cross sec-
tion with b 5 1

2 in. and d 5 7
8 in. The column is braced in the xz 

plane at its midpoint C and carries a centric load P of magnitude 
1.1 kips. Knowing that a factor of safety of 2.5 is required, deter-
mine the largest allowable length L. Use E 5 10.6 3 106 psi.

 16.23 A W8 3 21 rolled-steel shape is used with the support and cable 
arrangement shown. Cables BC and BD are taut and prevent 
motion of point B in the xz plane. Knowing that L 5 24 ft, deter-
mine the allowable centric load P if a factor of safety of 2.2 is 
required. Use E 5 29 3 106 psi.

 16.24 Two columns are used to support a block weighing 3.25 kips in 
each of the four ways shown. (a) Knowing that the column of Fig. 
(1) is made of steel with a 1.25-in. diameter, determine the factor 
of safety with respect to buckling for the loading shown. (b) Deter-
mine the diameter of each of the other columns for which the 
factor of safety is the same as the factor of safety obtained in part a. 
Use E 5 29 3 106 psi.

L

A

B

y

x

L

b
d

C

z

P

Fig. P16.21 and P16.22

C

A D

L

B

P

y

z

x

W8 � 21

Fig. P16.23

8 ft

(1) (2) (3) (4)

Fig. P16.24
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658  Columns *16.5  DESIGN OF COLUMNS UNDER A 
CENTRIC LOAD

In the preceding sections, we have determined the critical load of 
a column by using Euler’s formula. We assumed that all stresses 
remained below the proportional limit and that the column was 
initially a straight homogeneous prism. Real columns fall short of 
such an idealization, and in practice the design of columns is based 
on empirical formulas that reflect the results of numerous labora-
tory tests.
 Over the last century, many steel columns have been tested 
by applying to them a centric axial load and increasing the load 
until failure occurred. The results of such tests are represented in 
Fig. 16.18 where, for each of many tests, a point has been plotted 
with its ordinate equal to the normal stress scr at failure, and its 
abscissa equal to the corresponding value of the effective slender-
ness ratio, Leyr. Although there is considerable scatter in the test 
results, regions corresponding to three types of failure can be 
observed. For long columns, where Leyr is large, failure is closely 
predicted by Euler’s formula, and the value of scr is observed to 
depend on the modulus of elasticity E of the steel used, but not 
on its yield strength sY. For very short columns and compression 
blocks, failure occurs essentially as a result of yield, and we have 
scr < sY. Columns of intermediate length comprise those cases 
where failure is dependent on both sY and E. In this range, col-
umn failure is an extremely complex phenomenon, and test data 
have been used extensively to guide the development of specifica-
tions and design formulas.

Short
columns

Intermediate columns Long columns

Euler’s critical stress

2E
(Le /r)2

Le/r

cr ��
Y�

�

cr�

Fig. 16.18

 Empirical formulas that express an allowable stress or critical 
stress in terms of the effective slenderness ratio were first introduced 
over a century ago and since then have undergone a continuous 
process of refinement and improvement. Typical empirical formulas 
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65916.5 Design of Columns under a 
Centric Load

previously used to approximate test data are shown in Fig. 16.19. It 
is not always feasible to use a single formula for all values of Leyr. 
Most design specifications use different formulas, each with a defi-
nite range of applicability. In each case we must check that the 
 formula we propose to use is applicable for the value of Leyr for the 
column involved. Furthermore, we must determine whether the 
 formula provides the value of the critical stress for the column, in 
which case we must apply the appropriate factor of safety, or whether 
it provides directly an allowable stress.
 Specific formulas for the design of steel, aluminum, and wood 
columns under centric loading will now be considered. Photo 16.2 
shows examples of columns that would be designed using these 
 formulas. The design for the three different materials using Allow-
able Stress Design is shown in this section.†

Gordon-Rankine formula:

1	

Parabola:

Straight line:

k2

Le /r

cr�

cr �� 2 
         �

�

(  )2

k3

k1 r
Le

cr ��

cr ��

1 
�

3 

r
Le

(  )2
r
Le

Fig. 16.19

Photo 16.2 The water tank in (a) is supported by steel columns and the 
building in construction in (b) is framed with wood columns.

(a) (b)

†In specific design formulas, the letter L will always refer to the effective length of the 
column.
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660  Columns

0 50 100 150 200
L/r

all�

Fig. 16.21

Structural Steel. The formulas most widely used for the allowable 
stress design of steel columns under a centric load are found in the 
Specification for Structural Steel Buildings of the American Institute 
of Steel Construction (AISC).† As we shall see, an exponential expres-
sion is used to predict sall for columns of short and intermediate 
lengths, and an Euler-based relation is used for long columns. The 
design relations are developed in two steps:

 1. First a curve representing the variation of scr with Lyr is 
obtained (Fig. 16.20). It is important to note that this curve does not 
incorporate any factor of safety.‡ The portion AB of this curve is 
defined by the equation

 scr 5  30.6581sYyse2 4sY (16.22)

where

 
se 5

p2E

1Lyr22 
(16.23)

The portion BC is defined by the equation

 scr 5 0.877se (16.24)

We note that when Lyr 5 0, scr 5 sY in Eq. (16.22). At point B, Eq. 
(16.22) joins Eq. (16.24). The value of slenderness Lyr at the  junction 
between the two equations is

 
L
r

5 4.71 
A

E
sY 

(16.25)

If Lyr is smaller than the value in Eq. (16.25), scr is determined from 
Eq. (16.22), and if Lyr is greater, scr is determined from Eq. (16.24). 
At the value of the slenderness Lyr specified in Eq. (16.25), the stress 
se 5 0.44 sY. Using Eq. (16.24), scr 5 0.877 (0.44 sY) 5 0.39 sY.

 2. A factor of safety must be introduced to obtain the final 
AISC design formulas. The factor of safety specified by the specifica-
tion is 1.67. Thus,

 
sall 5

scr

1.67 
(16.26)

The formulas obtained can be used with SI or U.S. customary units.
 We observe that, by using Eqs. (16.22), (16.24), (16.25), and 
(16.26), we can determine the allowable axial stress for a given grade 
of steel and any given value of Lyr. The procedure is to first compute 
the value of Lyr at the intersection between the two equations from 
Eq. (16.25). For given values of Lyr smaller than that in Eq. (16.25), 
we use Eqs. (16.22) and (16.26) to calculate sall, and for values greater 
than that in Eq. (16.25), we use Eqs. (16.24) and (16.26) to calculate 
sall. Figure 16.21 provides a general illustration of how se varies as a 
function of Lyr for different grades of structural steel.

0

A

B

C

0.39

E4.71 L/r

cr

Y

�

�

�

Y

�Y

Fig. 16.20

†Manual of Steel Construction, 13th ed., American Institute of Steel Construction, 
 Chicago, 2005.
‡In the Specification for Structural Steel for Buildings, the symbol F is used for stresses.
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661EXAMPLE 16.2 Determine the longest unsupported length L for which 
the S100 3 11.5 rolled-steel compression member AB can safely carry the 
centric load shown (Fig. 16.22). Assume sY 5 250 MPa and E 5 200 GPa.

From App. C we find that, for an S100 3 11.5 shape,

A 5 1460 mm2  rx 5 41.7 mm  ry 5 14.6 mm

If the 60-kN load is to be safely supported, we must have

sall 5
P
A

5
60 3 103 N

1460 3 102 6 m2 5 41.1 3 106 Pa

We must compute the critical stress scr. Assuming Lyr is larger than the 
slenderness specified by Eq. (16.25), we use Eq. (16.24) with (16.23) and 
write

 scr 5 0.877 se 5 0.877 
p2E

1Lyr22

 5 0.877 
p21200 3 109 Pa2

1Lyr22 5
1.731 3 1012 Pa

1Lyr22
Using this expression in Eq. (16.26) for sall, we write

sall 5
scr

1.67
5

1.037 3 1012 Pa
1Lyr22

Equating this expression to the required value of sall, we write

1.037 3 1012
 Pa

1Lyr22 5 1.41 3 106
 Pa  Lyr 5 158.8

The slenderness ratio from Eq. (16.25) is

L
r

5 4.71 
B

200 3 109

250 3 106 5 133.2

Our assumption that Lyr is greater than this slenderness ratio was correct. 
Choosing the smaller of the two radii of gyration, we have

L
ry

5
L

14.6 3 1023 m
5 158.8   L 5 2.32 m ◾

Aluminum. Many aluminum alloys are available for use in struc-
tural and machine construction. For most columns the specifications 
of the Aluminum Association† provide two formulas for the allow-
able stress in columns under centric loading. The variation of sall 
with Lyr defined by these formulas is shown in Fig. 16.23. We note 
that for short columns a linear relation between sall with Lyr is used 
and for long columns an Euler-type formula is used. Specific formu-
las for use in the design of buildings and similar structures are given 
below in both SI and U.S. customary units for two commonly used 
alloys.

16.5 Design of Columns under a 
Centric Load

†Specifications and Guidelines for Aluminum Structures, Aluminum Association, Inc., 
Washington D.C., 2005.

B

L

A

P � 60 kN

Fig. 16.22

L
r

L/r

all � C1 
 C2�

all�

C3

(L/r)2all ��

Fig. 16.23
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662  Columns  Alloy 6061-T6:

 Lyr , 66:    sall 5 320.2 2 0.126 1Lyr2 4  ksi (16.27)
  5 3139 2 0.868 1Lyr2 4  MPa (16.279)

 
Lyr $ 66:

    
sall 5

51,000 ksi
1Lyr22 5

351 3 103 MPa
1Lyr22  

(16.28)

 Alloy 2014-T6:

 Lyr , 55:    sall 5 330.7 2 0.23 1Lyr2 4  ksi  (16.29)
 5 3212 2 1.585 1Lyr2 4  MPa (16.299)

 Lyr $ 55:    sall 5
54,000 ksi
1Lyr22 5

372 3 103 MPa
1Lyr22  

(16.30)

Wood. For the design of wood columns the specifications of the 
 American Forest & Paper Association† provides a single equation 
that can be used to obtain the allowable stress for short, intermedi-
ate, and long columns under centric loading.  For a column with a 
rectangular cross section of sides b and d, where d , b, the variation 
of sall with Lyd is shown in Fig. 16.24.
 For solid columns made from a single piece of wood or made 
by gluing laminations together, the allowable stress sall is

 sall 5 sC CP (16.31)

where sC is the adjusted allowable stress for compression parallel to 
the grain.‡ Adjustments used to obtain sC are included in the specifi-
cations to account for different variations, such as in the load duration.  
The column stability factor CP accounts for the column length and is 
defined by the following equation:

CP 5
1 1 1sCE ysC 2

2c
2
B
c 1 1 1sCE ysC 2

2c
d 2 2

sCE ysC

c  
(16.32)

The parameter c accounts for the type of column, and it is equal to 
0.8 for sawn lumber columns and 0.90 for glued laminated wood 
columns. The value of sCE is defined as

 
sCE 5

0.822E

1Lyd 22  
(16.33)

Where E is an adjusted modulus of elasticity for column buckling. 
Columns in which Lyd exceeds 50 are not permitted by the National 
Design Specification for Wood  Construction.

L/d
500

all�

C�

Fig. 16.24

†National Design Specification for Wood Construction, American Forest & Paper Asso-
ciation, American Wood Council, Washington, D.C., 2005.
‡In the National Design Specification for Wood Construction, the symbol F is used for 
stresses.
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66316.5 Design of Columns under a 
Centric Load

EXAMPLE 16.3 Knowing that column AB (Fig. 16.25) has an effective 
length of 14 ft, and that it must safely carry a 32-kip load, design the column 
using a square glued laminated cross section. The  adjusted modulus of elas-
ticity for the wood is E 5 800 3 103 psi, and the adjusted allowable stress 
for compression parallel to the grain is sC 5 1060 psi.

 CP 5
1 1 1sCE  ysC 2

2c
2
B
c 1 1 1sCE  ysC 2

2c
d 2 2

sCE  ysC

c

 5
1 1 21.98 3 1023 d 2

2 10.90 2 2
B
c 1 1 21.98 3 1023 d 

2

2 10.90 2 d 2 2
21.98 3 1023 d 

2

0.90

Since the column must carry 32 kips, which is equal to sCd2, we use Eq. 
(16.31) to write

sall 5
32 kips

d2 5 sCCP 5 1.060CP

Solving this equation for CP and substituting the value obtained into the 
previous equation, we write

A

B

d
d

14 ft

P � 32 kips

Fig. 16.25

 We note that c 5 0.90 for glued laminated wood columns. We must 
compute the value of sCE. Using Eq. (16.33) we write

sCE 5
0.822E

1Lyd 22 5
0.822 1800 3 103 psi2

1168 in.yd 22 5 23.299d2 psi

We then use Eq. (16.32) to express the column stability factor in terms of 
d, with (sCEysC) 5 (23.299d2y1.060 3 103) 5 21.98 3 1023 d2,

30.19
d2 5

1 1 21.98 3 1023 d2

2 10.90 2 2
B
c 1 1 21.98 3 1023 d 

2

2 10.90 2 d 2 2
21.98 3 1023 d 

2

0.90

Solving for d by trial and error yields d 5 6.45 in. ◾

Note: The design formulas presented in this section are intended 
to provide examples of different design approaches. These for-
mulas do not provide all the requirements that are needed for 
many designs, and the student should refer to the appropriate 
design specifications before attempting actual designs.
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664

SAMPLE PROBLEM 16.2

Column AB consists of a W10 3 39 rolled-steel shape made of a grade of 
steel for which sY 5 36 ksi and E 5 29 3 106 psi. Determine the allowable 
centric load P (a) if the effective length of the column is 24 ft in all direc-
tions, (b) if bracing is provided to prevent the movement of the midpoint C 
in the xz plane. (Assume that the movement of point C in the yz plane is 
not affected by the bracing.)

SOLUTION

We first compute the value of the slenderness ratio from Eq. 16.25 corre-
sponding to the given yield strength sY 5 36 ksi.

L
r

5 4.71 
B

29 3 106

36 3 103 5 133.7

a. Effective Length 5 24 ft. Since ry , rx, buckling will take place in the 
xz plane. For L 5 24 ft and r 5 ry 5 1.98 in., the slenderness ratio is

L
ry

5
124 3 12 2 in.

1.98 in.
5

288 in.
1.98 in.

5 145.5

Since Lyr . 133.7, we use Eq. (16.23) in Eq. (16.24) to determine scr

scr 5 0.877 se 5 0.877 
p2E

1Lyr22 5 0.877 
p2129 3 103 ksi2
1145.5 22 5 11.86 ksi

The allowable stress, determined using Eq. (16.26), and Pall are

 sall 5  
scr

1.67
5

11.86 ksi
1.67

5 7.10 ksi

  Pall 5 sall A 5 17.10 ksi2 111.5 in22 5 81.7 kips >

b. Bracing at Midpoint C. Since bracing prevents movement of point C in 
the xz plane but not in the yz plane, we must compute the slenderness ratio 
corresponding to buckling in each plane and determine which is larger.

xz Plane:  Effective length 5 12 ft 5 144 in., r 5 ry 5 1.98 in.
Lyr 5 (144 in.)y(1.98 in.) 5 72.7

yz Plane:  Effective length 5 24 ft 5 288 in., r 5 rx 5 4.27 in.
Lyr 5 (288 in.)y(4.27 in.) 5 67.4

Since the larger slenderness ratio corresponds to a smaller allowable load, 
we choose Lyr 5 72.7. Since this is smaller than Lyr 5 145.5, we use Eqs. 
(16.23) and (16.22) to determine scr

 se 5
p2E

1Lyr22 5
p2129 3 103 ksi2

172.7 22 5 54.1 ksi

 scr 5 30.6581sYyse2 4  FY 5 30.658136 ksiy54.1 ksi2 4  36 ksi 5 27.3 ksi

We now calculate the allowable stress using Eq. (16.26) and the allowable 
load.

 
 sall 5

scr

1.67
5

27.3 ksi
1.67

5 16.32 ksi

 Pall 5 sall A 5 116.32 ksi2 111.5 in22 Pall 5 187.7 ksi  >

y

x

W10 � 39
A � 11.5 in2

rx � 4.27 in.
ry � 1.98 in.

y

B

24 ft

z

x

A

y

B

24 ft

z

x

A

y

B

12 ft

12 ft

z

x

A

C

Buckling in xz plane Buckling in yz plane

y

A

B

24 ft

z

P

x

(a)

y

A

C

B

12 ft

12 ft

z

x

(b)

P
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665

SAMPLE PROBLEM 16.3

Using the aluminum alloy 2014-T6, determine the smallest diameter rod 
which can be used to support the centric load P 5 60 kN if (a) L 5 750 mm, 
(b) L 5 300 mm.

SOLUTION

For the cross section of a solid circular rod, we have

I 5
p

4
 c4    A 5 pc2    r 5

B
I
A

5
B
pc4y4

pc2 5
c
2

a. Length of 750 mm. Since the diameter of the rod is not known, a value 
of Lyr must be assumed; we assume that Lyr . 55 and use Eq. (16.30). 
For the centric load P, we have s 5 PyA and write

 
P
A

5 sall 5
372 3 103 MPa

1Lyr22
 
60 3 103 N
pc2 5

372 3 109 Pa

a0.750 m
cy2

b2

 c4 5 115.5 3 1029 m4    c 5 18.44 mm

For c 5 18.44 mm, the slenderness ratio is

L
r

5
L

cy2
5

750 mm
118.44 mm 2y2

5 81.3 . 55

Our assumption is correct, and for L 5 750 mm, the required diameter is

 d 5 2c 5 2 118.44 mm 2 d 5 36.9 mm  >

b. Length of 300 mm. We again assume that Lyr . 55. Using Eq. (16.30), 
and following the procedure used in part a, we find that c 5 11.66 mm and 
Lyr 5 51.5. Since Lyr is less than 55, our assumption is wrong; we now 
assume that Lyr , 55 and use Eq. (16.299) for the design of this rod.

 
P
A

5 sall 5 c 212 2 1.585 aL
r
b d  MPa

 
60 3 103 N
pc2 5 c 212 2 1.585 a0.3 m

cy2
b d  106 Pa

 c 5 12.00 mm

For c 5 12.00 mm, the slenderness ratio is

L
r

5
L

cy2
5

300 mm
112.00 mm 2y2

5 50

Our second assumption that Lyr , 55 is correct. For L 5 300 mm, the 
required diameter is

 d 5 2c 5 2 112.00 mm 2 d 5 24.0 mm  >

d

c

A

d

B

L

P � 60 kN
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PROBLEMS

666

16.25 A steel pipe having the cross section shown is used as a column. 
Using the AISC allowable stress design formulas, determine the 
allowable centric load if the effective length of the column is (a) 6 m, 
(b) 4 m. Use sY 5 250 MPa and E 5 200 GPa.

 16.26 A column with the cross section shown has a 13.5-ft effective 
length. Using AISC allowable stress design, determine the largest 
centric load that can be applied to the column. Use sY 5 36 ksi 
and E 5 29 3 106 psi.

t � 6 mm

125 mm

Fig. P16.25

10 in.

6 in.

in.1
4

in.1
2

in.1
2

Fig. P16.26

P

B

A

85 mm

30 mm
10 mm

Fig. P16.31

 16.27 Using allowable stress design, determine the allowable centric load 
for a column of 6-m effective length that is made from the follow-
ing rolled-steel shape: (a) W200 3 35.9, (b) W200 3 86. Use sY 5 
250 MPa and E 5 200 GPa.

 16.28 A W8 3 31 rolled-steel shape is used for a column of 21-ft effec-
tive length. Using allowable stress design, determine the allowable 
centric load if the yield strength of the grade of steel used is 
(a) sY 5 36 ksi, (b) sY 5 50 ksi. Use E 5 29 3 106 psi.

 16.29 A column having a 3.5-m effective length is made of sawn lumber 
with a 114 3 140-mm cross section. Knowing that for the grade 
of wood used the adjusted allowable stress for compression paral-
lel to the grain is sC 5 7.6 MPa and the adjusted modulus E 5 
2.8 GPa, determine the maximum allowable centric load for the 
column.

 16.30 A sawn lumber column with a 7.5 3 5.5-in. cross section has an 
18-ft effective length. Knowing that for the grade of wood used 
the adjusted allowable stress for compression parallel to the 
grain is sC 5 1200 psi and that the adjusted modulus E 5 470 3 
103 psi, determine the maximum allowable centric load for the 
column.

 16.31 Bar AB is free at its end A and fixed at its base B. Determine 
the allowable centric load P if the aluminum alloy is (a) 6061-T6, 
(b) 2014-T6.
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667Problems 16.32 A compression member has the cross section shown and an effective 
length of 5 ft. Knowing that the aluminum alloy used is 6061-T6, 
determine the allowable centric load.

 16.33 and 16.34 A compression member of 9-m effective length is 
obtained by welding two 10-mm-thick steel plates to a W250 3 80 
rolled-steel shape as shown. Knowing that sY 5 345 MPa and 
E 5 200 GPa and using allowable stress design, determine the 
allowable centric load for the compression member.

4 in.

4 in.

0.4 in.

0.6 in.

0.6 in.

Fig. P16.32

Fig. P16.33 Fig. P16.34

 16.35 A compression member of 2.3-m effective length is obtained by 
bolting together two L127 3 76 3 12.7-mm steel angles as shown. 
Using allowable stress design, determine the allowable centric load 
for the column. Use sY 5 250 MPa and E 5 200 GPa.

 16.36 A column of 21-ft effective length is obtained by connecting two 
C10 3 20 steel channels with lacing bars as shown. Using allowable 
stress design, determine the allowable centric load for the column. 
Use sY 5 36 ksi and E 5 29 3 106 psi.

 16.37 A rectangular column with a 4.4-m effective length is made of 
glued laminated wood. Knowing that for the grade of wood used 
the adjusted allowable stress for compression parallel to the grain 
is sC 5 8.3 MPa and the adjusted modulus E 5 4.6 GPa, deter-
mine the maximum allowable centric load for the column.

 16.38 An aluminum structural tube is reinforced by bolting two plates to 
it as shown for use as a column of 5.6-ft effective length. Knowing 
that all the material is aluminum alloy 2014-T6, determine the 
maximum allowable centric load.

Fig. P16.35

7.0 in.

Fig. P16.36

216 mm

140 mm

Fig. P16.37

2 in.

in.3
8

in.1
4 in.1

4

in.1 1
4

in.3
8 in.3

8

in.3
8

Fig. P16.38
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668  Columns  16.39 An 18-kip centric load is applied to a rectangular sawn lumber 
column of 22-ft effective length. Using sawn lumber for which the 
adjusted allowable stress for compression parallel to the grain is 
sC 5 1050 psi and the adjusted modulus is E 5 440 3 103 psi, 
determine the smallest cross section that can be used. Use b 5 2d.

 16.40 A column of 2.1-m effective length is to be made by gluing together 
laminated wood pieces of 25 3 150-mm cross section. Knowing 
that for the grade of wood used the adjusted allowable stress for 
compression parallel to the grain is sC 5 7.7 MPa and the adjusted 
modulus is E 5 5.4 GPa, determine the number of wood pieces 
that must be used to support the concentric load shown when 
(a) P 5 52 kN, (b) P 5 108 kN.

b d

P

Fig. P16.39
A

B

150 mm

25 mm
25 mm
25 mm

P

Fig. P16.40

 16.41 A 16-kip centric load must be supported by an aluminum column 
as shown. Using the aluminum alloy 6061-T6, determine the mini-
mum dimension b that can be used.

A

B

2b b

18 in.

P

Fig. P16.41

A

B

2.25 m 90-mm outside
diameter

120 kN

Fig. P16.42

 16.42 An aluminum tube of 90-mm outer diameter is used to carry a 
centric load of 120 kN. Knowing that the stock of tubes available 
for use are made of alloy 2014-T6 and with wall thicknesses in 
increments of 3 mm from 6 mm to 15 mm, determine the lightest 
tube that can be used.
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669Problems 16.43 A centric load P must be supported by the steel bar AB. Using 
allowable stress design, determine the smallest dimension d of the 
cross section that can be used when (a) P 5 24 kips, (b) P 5 36 kips. 
Use sY 5 36 ksi and E 5 29 3 106 psi.

A

B

3 d 5.2 ftd

P

Fig. P16.43

6 in.

6 in.

Fig. P16.47

2 in.1
2 2 in.1

2

3 in.1
2

Fig. P16.48

 16.44 A column of 4.5-m effective length must carry a centric load of 
900 kN. Knowing that sY 5 345 MPa and E 5 200 GPa, use 
allowable stress design to select the steel wide-flange shape of 250-
mm nominal depth that should be used.

 16.45 A column of 22.5-ft effective length must carry a centric load of 
288 kips. Using allowable stress design, select the steel wide-flange 
shape of 14-in. nominal depth that should be used. Use sY 5 50 ksi 
and E 5 29 3 106 psi.

 16.46 A column of 4.6-m effective length must carry a centric load of 
525 kN. Knowing that sY 5 345 MPa and E 5 200 GPa, use 
allowable stress design to select the steel wide-flange shape of 
200-mm nominal depth that should be used.

 16.47 A square steel tube having the cross section shown is used as a 
column of 26-ft effective length to carry a centric load of 65 kips. 
Knowing that the tubes available for use are made with wall thick-
nesses ranging from 1

4 to 3
4 in. in increments of 1

16 in., use allowable 
stress design to determine the lightest tube that can be used. Use 
sY 5 36 ksi and E 5 29 3 106 psi.

 16.48 Two 31
2 3 21

2-in. steel angles are bolted together as shown for use 
as a column of 6-ft effective length to carry a centric load of 
54 kips. Knowing that the angles available have thicknesses of 1

4, 3
8, 

and 1
2 in., use allowable stress design to determine the lightest angles 

that can be used. Use sY 5 36 ksi and E 5 29 3 106 psi.
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670

This chapter was devoted to the design and analysis of columns, i.e., 
prismatic members supporting axial loads. In order to gain insight 
into the behavior of columns, we first considered in Sec. 16.2 the 
equilibrium of a simple model and found that for values of the load 
P exceeding a certain value Pcr, called the critical load, two equilib-
rium positions of the model were possible: the original position with 
zero transverse deflections and a second position involving deflections 
that could be quite large. This led us to conclude that the first equi-
librium position was unstable for P . Pcr, and stable for P , Pcr, since 
in the latter case it was the only possible equilibrium position.

In Sec. 16.3, we considered a pin-ended column of length L and of 
constant flexural rigidity EI subjected to an axial centric load P.
Assuming that the column had buckled (Fig. 16.26), we noted that 
the bending moment at point Q was equal to 2Py and wrote

d 2y

dx 2 5
M
EI

5 2 
P
EI

 y (16.4)

Solving this differential equation, subject to the boundary conditions 
corresponding to a pin-ended column, we determined the smallest 
load P for which buckling can take place. This load, known as the 
critical load and denoted by Pcr, is given by Euler’s formula:

Pcr 5
p 2EI

L2  (16.11)

where L is the length of the column. For this load or any larger load, 
the equilibrium of the column is unstable and transverse deflections 
will occur.

L

Q Q

B

A
A

x

y

y

x

x

y

P'

P'

M

y
[ x � 0, y � 0]  

[ x � L, y � 0]  

(a) (b)

P P

Fig. 16.26

Critical load

Euler’s formula

REVIEW AND SUMMARY
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100

0 10089 200

200

250

300

(MPa)

Y � 250 MPa

E � 200 GPa

2E
(L/r)2

L/r

�

�

cr �� �

Fig. 16.27

Slenderness ratio

Denoting the cross-sectional area of the column by A and its radius 
of gyration by r, we determined the critical stress scr corresponding 
to the critical load Pcr:

 scr 5
p2E

1Lyr22 (16.13)

The quantity Lyr is called the slenderness ratio and we plotted scr 
as a function of Lyr (Fig. 16.27). Since our analysis was based on 
stresses remaining below the yield strength of the material, we noted 
that the column would fail by yielding when scr . sY.

Design of real columns

Centrically loaded columns

Effective length

In Sec. 16.4, we discussed the critical load of columns with various 
end conditions and wrote

 Pcr 5
p 2EI

L2
e

 (16.119)

where Le is the effective length of the column, i.e., the length of 
an equivalent pin-ended column. The effective lengths of several 
columns with various end conditions were calculated and shown in 
Fig. 16.17 on page 651.

In the first part of the chapter we considered each column as a 
straight homogeneous prism. Since imperfections exist in all real col-
umns, the design of real columns is done by using empirical formulas 
based on laboratory tests and set forth in specifications and codes 
issued by professional organizations. In Sec. 16.5, we discussed the 
design of centrically loaded columns made of steel, aluminum, and 
wood. For each material, the design of the column was based on 
formulas expressing the allowable stress as a function of the slender-
ness ratio Lyr of the column.

Review and Summary
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REVIEW PROBLEMS

 16.49 A column of 3.5-m effective length is made by welding together 
two L89 3 64 3 6.4-mm angles as shown. Using Euler’s formula 
with E 5 200 GPa, determine the allowable centric load if a factor 
of safety of 2.8 is required.

89 mm

64 mm
6.4 mm

Fig. P16.49

B

l

AP C

a

D P'

Fig. P16.50

 16.50 A rigid bar AD is attached to two springs of constant k and is in 
equilibrium in the position shown. Knowing that the equal and 
opposite loads P and P9 remain horizontal, determine the magni-
tude Pcr of the critical load for the system.

16.51 The steel rod BC is attached to the rigid bar AB and to the fixed 
support at C. Knowing that G 5 11.2 3 106 psi, determine the 
critical load Pcr of the system when d 5 1

2 in.

15 in.

A

C

B

d

20 in.

P

Fig. P16.51 and P16.52

 16.52 The steel rod BC is attached to the rigid bar AB and to the fixed 
support at C. Knowing that G 5 11.2 3 106 psi, determine the 
diameter of the rod BC for which the critical Pcr of the system is 
80 lb.
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673Review Problems 16.53 Supports A and B of the pin-ended column shown are at a fixed 
distance L from each other. Knowing that at a temperature T0 the 
force in the column is zero and that buckling occurs when the 
temperature is T1 5 T0 1 DT, express DT in terms of b, L, and 
the coefficient of thermal expansion a.

 16.54 Member AB consists of a single C130 3 10.4 steel channel of length 
2.5 m. Knowing that the pins at A and B pass through the centroid 
of the cross section of the channel, determine the factor of safety 
for the load shown with respect to buckling in the plane of the fig-
ure when u 5 308. Use Euler’s formula with E 5 200 GPa.

A

B

L
bb

Fig. P16.53
C

B

A 6.8 kN
�

2.5 m

Fig. P16.54

16.55 (a) Considering only buckling in the plane of the structure shown 
and using Euler’s formula, determine the value of u between 0 
and 908 for which the allowable magnitude of the load P is maxi-
mum. (b) Determine the corresponding maximum value of P
knowing that a factor of safety of 3.2 is required. Use E 5 29 3
106 psi.

P

A

C

B

θ

-in. diameter3
4

-in. diameter5
8

3 ft

2 ft

Fig. P16.55

 16.56 Knowing that a factor of safety of 2.6 is required, determine the 
largest load P that can be applied to the structure shown using 
Euler’s formula. Use E 5 200 GPa and consider only buckling in 
the plane of the structure.

C
A

0.5 m

0.5 m

B

P

15-mm diameter

20-mm diameter

1 m

Fig. P16.56
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674 Columns  16.57 Determine (a) the critical load for the brass strut, (b) the dimen-
sion d for which the aluminum strut will have the same critical 
load, (c) the weight of the aluminum strut as a percent of the 
weight of the brass strut.

A

B

1.1 m

20 mm

C

D

d d
1.1 m

Brass
   E � 120 GPa
      � 8740 kg/m3�

Aluminum
   E � 70 GPa
      � 2710 kg/m3�

P

P

Fig. P16.57

 16.58 A compression member has the cross section shown and an effec-
tive length of 5 ft. Knowing that the aluminum alloy used is 2014-
T6, use Sec. 16.5 to determine the allowable centric load.

4.0 in.

4.0 in.

t � 0.375 in.

Fig. P16.58

y

C x

A � 13.75 � 103 mm2

Ix � 26.0 � 106 mm4

Iy � 141.0 � 106 mm4

Fig. P16.59

 16.59 A column is made from half of a W360 3 216 rolled-steel shape 
with the geometric properties as shown. Using allowable stress 
design in Sec. 16.5, determine the allowable centric load if the 
effective length of the column is (a) 4.0 m, (b) 6.5 m. Use sY 5 
345 MPa and E 5 200 GPa.

 16.60 A column of 17-ft effective length must carry a centric load of 
235 kips. Using allowable stress design in Sec. 16.5, select the 
steel wide-flange shape of 10-in. nominal depth that should be 
used. Use sY 5 36 ksi and E 5 29 3 106 psi.
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APPENDIX A  Typical Properties of Selected Materials 
Used in Engineering 676

APPENDIX B Properties of Rolled-Steel Shapes† 680

APPENDIX C Beam Deflections and Slopes 692

Appendices

†Courtesy of the American Institute of Steel Construction, Chicago, Illinois.
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 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
 Specific  Compres-    of of of Thermal Percent
 Weight, Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation

Material lb/in3 ksi ksi ksi ksi ksi 106 psi 106 psi 1026/8F in 2 in.

Steel
  Structural (ASTM-A36) 0.284 58   36 21 29 11.2 6.5 21
  High-strength-low-alloy
    ASTM-A709 Grade 50 0.284 65   50  29 11.2 6.5 21
    ASTM-A913 Grade 65 0.284 80   65  29 11.2 6.5 17
    ASTM-A992 Grade 50 0.284 65   50  29 11.2 6.5 21
  Quenched & tempered
    ASTM-A709 Grade 100 0.284 110   100  29 11.2 6.5 18
  Stainless, AISI 302
    Cold-rolled 0.286 125   75  28 10.8 9.6 12
    Annealed 0.286 95   38 22 28 10.8 9.6 50
  Reinforcing Steel
    Medium strength 0.283 70   40  29 11 6.5
    High strength 0.283 90   60  29 11 6.5

Cast Iron
  Gray Cast Iron
    4.5% C, ASTM A-48 0.260 25 95 35   10 4.1 6.7 0.5
  Malleable Cast Iron
    2% C, 1% Si, 
      ASTM A-47 0.264 50 90 48 33  24 9.3 6.7 10

Aluminum
  Alloy 1100-H14 
      (99% Al) 0.098 16  10 14 8 10.1 3.7 13.1 9
  Alloy 2014-T6 0.101 66  40 58 33 10.9 3.9 12.8 13
  Alloy 2024-T4 0.101 68  41 47  10.6  12.9 19
  Alloy 5456-H116 0.095 46  27 33 19 10.4  13.3 16
  Alloy 6061-T6 0.098 38  24 35 20 10.1 3.7 13.1 17
  Alloy 7075-T6 0.101 83  48 73  10.4 4 13.1 11

Copper
  Oxygen-free copper
      (99.9% Cu)
    Annealed 0.322 32  22 10  17 6.4 9.4 45
    Hard-drawn 0.322 57  29 53  17 6.4 9.4 4
  Yellow Brass
      (65% Cu, 35% Zn)
    Cold-rolled 0.306 74  43 60 36 15 5.6 11.6 8
    Annealed 0.306 46  32 15 9 15 5.6 11.6 65
  Red Brass
      (85% Cu, 15% Zn)
    Cold-rolled 0.316 85  46 63  17 6.4 10.4 3
    Annealed 0.316 39  31 10  17 6.4 10.4 48
  Tin bronze 0.318 45   21  14  10 30
    (88 Cu, 8Sn, 4Zn)
  Manganese bronze 0.302 95   48  15  12 20
    (63 Cu, 25 Zn, 6 Al, 3 Mn, 3 Fe)
  Aluminum bronze 0.301 90 130  40  16 6.1 9 6
    (81 Cu, 4 Ni, 4 Fe, 11 Al)

(Table continued on page 678)

APPENDIX A Typical Properties of Selected Materials Used in Engineering1,5

 (U.S. Customary Units)
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 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
   Compres-    of of of Thermal Percent
 Density Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation
Material kg/m3 MPa MPa MPa MPa MPa GPa GPa 1026/8C in 50 mm

Steel
  Structural (ASTM-A36) 7860 400   250 145 200 77.2 11.7 21
  High-strength-low-alloy
    ASTM-A709 Grade 345 7860 450   345  200 77.2 11.7 21
    ASTM-A913 Grade 450 7860 550   450  200 77.2 11.7 17
    ASTM-A992 Grade 345 7860 450   345  200 77.2 11.7 21
  Quenched & tempered
    ASTM-A709 Grade 690 7860 760   690  200 77.2 11.7 18
  Stainless, AISI 302
    Cold-rolled 7920 860   520  190 75 17.3 12
    Annealed 7920 655   260 150 190 75 17.3 50
  Reinforcing Steel
    Medium strength 7860 480   275  200 77 11.7
    High strength 7860 620   415  200 77 11.7

Cast Iron
  Gray Cast Iron
    4.5% C, ASTM A-48 7200 170 655 240   69 28 12.1 0.5
  Malleable Cast Iron
    2% C, 1% Si, 
    ASTM A-47 7300 345 620 330 230  165 65 12.1 10

Aluminum
  Alloy 1100-H14
     (99% Al) 2710 110  70 95 55 70 26 23.6 9
  Alloy 2014-T6 2800 455  275 400 230 75 27 23.0 13
  Alloy-2024-T4 2800 470  280 325  73  23.2 19
  Alloy-5456-H116 2630 315  185 230 130 72  23.9 16
  Alloy 6061-T6 2710 260  165 240 140 70 26 23.6 17
  Alloy 7075-T6 2800 570  330 500  72 28 23.6 11

Copper
  Oxygen-free copper
      (99.9% Cu)
    Annealed 8910 220  150 70  120 44 16.9 45
    Hard-drawn 8910 390  200 265  120 44 16.9 4
  Yellow-Brass
      (65% Cu, 35% Zn)
    Cold-rolled 8470 510  300 410 250 105 39 20.9 8
    Annealed 8470 320  220 100 60 105 39 20.9 65
  Red Brass 
      (85% Cu, 15% Zn)
    Cold-rolled 8740 585  320 435  120 44 18.7 3
    Annealed 8740 270  210 70  120 44 18.7 48
  Tin bronze 8800 310   145  95  18.0 30
    (88 Cu, 8Sn, 4Zn)
  Manganese bronze 8360 655   330  105  21.6 20
    (63 Cu, 25 Zn, 6 Al, 3 Mn, 3 Fe)
  Aluminum bronze 8330 620 900  275  110 42 16.2 6
    (81 Cu, 4 Ni, 4 Fe, 11 Al)

(Table continued on page 679)

APPENDIX A Typical Properties of Selected Materials Used in Engineering1,5

  (SI Units)
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 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
 Specific  Compres-    of of of Thermal Percent
 Weight, Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation

Material lb/in3 ksi ksi ksi ksi ksi 106 psi 106 psi 1026/8F in 2 in.

Magnesium Alloys
  Alloy AZ80 (Forging) 0.065 50  23 36  6.5 2.4 14 6
  Alloy AZ31 (Extrusion) 0.064 37  19 29  6.5 2.4 14 12

Titanium
  Alloy (6% Al, 4% V) 0.161 130   120  16.5  5.3 10

Monel Alloy 400(Ni-Cu)
  Cold-worked 0.319 98   85 50 26  7.7 22
  Annealed 0.319 80   32 18 26  7.7 46

Cupronickel
    (90% Cu, 10% Ni)
  Annealed 0.323 53   16  20 7.5 9.5 35
  Cold-worked 0.323 85   79  20 7.5 9.5 3

Timber, air dry
  Douglas fir 0.017 15 7.2 1.1   1.9 .1 Varies
  Spruce, Sitka 0.015 8.6 5.6 1.1   1.5 .07 1.7 to 2.5
  Shortleaf pine 0.018  7.3 1.4   1.7
  Western white pine 0.014  5.0 1.0   1.5
  Ponderosa pine 0.015 8.4 5.3 1.1   1.3
  White oak 0.025  7.4 2.0   1.8
  Red oak 0.024  6.8 1.8   1.8
  Western hemlock 0.016 13 7.2 1.3   1.6
  Shagbark hickory 0.026  9.2 2.4   2.2
  Redwood 0.015 9.4 6.1 0.9   1.3

Concrete
  Medium strength 0.084  4.0    3.6  5.5
  High strength 0.084  6.0    4.5  5.5

Plastics
  Nylon, type 6/6,  0.0412 11 14  6.5  0.4  80 50
    (molding compound)
  Polycarbonate 0.0433 9.5 12.5  9  0.35  68 110
  Polyester, PBT 0.0484 8 11  8  0.35  75 150
    (thermoplastic)
  Polyester elastomer 0.0433 6.5  5.5   0.03   500
  Polystyrene 0.0374 8 13  8  0.45  70 2
  Vinyl, rigid PVC 0.0520 6 10  6.5  0.45  75 40
Rubber 0.033 2       90 600
Granite (Avg. values) 0.100 3 35 5   10 4 4
Marble (Avg. values) 0.100 2 18 4   8 3 6
Sandstone (Avg. values) 0.083 1 12 2   6 2 5
Glass, 98% silica 0.079  7    9.6 4.1 44

1Properties of metals vary widely as a result of variations in composition, heat treatment, and mechanical working.
2For ductile metals the compression strength is generally assumed to be equal to the tension strength.
3Offset of 0.2 percent.
4Timber properties are for loading parallel to the grain.
5See also Marks’ Mechanical Engineering Handbook, 10th ed., McGraw-Hill, New York, 1996; Annual Book of ASTM, American Society for Testing Materials, 
Philadelphia, Pa.; Metals Handbook, American Society for Metals, Metals Park, Ohio; and Aluminum Design Manual, The Aluminum Association, Washington, DC.

APPENDIX A Typical Properties of Selected Materials Used in Engineering1,5

 (U.S. Customary Units)
Continued from page 676
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 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
   Compres-    of of of Thermal Percent
 Density Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation
Material kg/m3 MPa MPa MPa MPa MPa GPa GPa 1026/8C in 50 mm

Magnesium Alloys
  Alloy AZ80 (Forging) 1800 345  160 250  45 16 25.2 6
  Alloy AZ31 (Extrusion) 1770 255  130 200  45 16 25.2 12

Titanium
  Alloy (6% Al, 4% V) 4730 900   830  115  9.5 10

Monel Alloy 400(Ni-Cu)
  Cold-worked 8830 675   585 345 180  13.9 22
  Annealed 8830 550   220 125 180  13.9 46

Cupronickel
    (90% Cu, 10% Ni)
  Annealed 8940 365   110  140 52 17.1 35
  Cold-worked 8940 585   545  140 52 17.1 3

Timber, air dry
  Douglas fir 470 100 50 7.6   13 0.7 Varies
  Spruce, Sitka 415 60 39 7.6   10 0.5 3.0 to 4.5
  Shortleaf pine 500  50 9.7   12
  Western white pine 390  34 7.0   10
  Ponderosa pine 415 55 36 7.6   9
  White oak 690  51 13.8   12
  Red oak 660  47 12.4   12
  Western hemlock 440 90 50 10.0   11
  Shagbark hickory 720  63 16.5   15
  Redwood 415 65 42 6.2   9

Concrete
  Medium strength 2320  28    25  9.9
  High strength 2320  40    30  9.9

Plastics
  Nylon, type 6/6,  1140 75 95  45  2.8  144 50
    (molding compound)
  Polycarbonate 1200 65 85  35  2.4  122 110
  Polyester, PBT 1340 55 75  55  2.4  135 150
    (thermoplastic)
  Polyester elastomer 1200 45  40   0.2   500
  Polystyrene 1030 55 90  55  3.1  125 2
  Vinyl, rigid PVC 1440 40 70  45  3.1  135 40
Rubber 910 15       162 600
Granite (Avg. values) 2770 20 240 35   70 4 7.2
Marble (Avg. values) 2770 15 125 28   55 3 10.8
Sandstone (Avg. values) 2300 7 85 14   40 2 9.0
Glass, 98% silica 2190  50    65 4.1 80

1Properties of metals very widely as a result of variations in composition, heat treatment, and mechanical working.
2For ductile metals the compression strength is generally assumed to be equal to the tension strength.
3Offset of 0.2 percent.
4Timber properties are for loading parallel to the grain.
5See also Marks’ Mechanical Engineering Handbook, 10th ed., McGraw-Hill, New York, 1996; Annual Book of ASTM, American Society for Testing Materials, 
Philadelphia, Pa.; Metals Handbook, American Society of Metals, Metals Park, Ohio; and Aluminum Design Manual, The Aluminum Association, Washington, DC.

APPENDIX A Typical Properties of Selected Materials Used in Engineering1,5

 (SI Units)
Continued from page 677
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APPENDIX B Properties of Rolled-Steel Shapes
       (U.S. Customary Units)

W Shapes
(Wide-Flange Shapes)

Y

Y

X
tw

tf

bf

d X

 Flange
 Web
 Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in4 Sx, in3 rx, in. Iy, in4 Sy, in3 ry, in.

 W36 3 302 88.8 37.3 16.7 1.68 0.945 21100 1130 15.4 1300 156 3.82
 135 39.7 35.6 12.0 0.790 0.600 7800 439 14.0 225 37.7 2.38

 W33 3 201 59.2 33.7 15.7 1.15 0.715 11600 686 14.0 749 95.2 3.56
 118 34.7 32.9 11.5 0.740 0.550 5900 359 13.0 187 32.6 2.32

 W30 3 173 51.0 30.4 15.0 1.07 0.655 8230 541 12.7 598 79.8 3.42
 99 29.1 29.7 10.50 0.670 0.520 3990 269 11.7 128 24.5 2.10

 W27 3 146 43.1 27.4 14.0 0.975 0.605 5660 414 11.5 443 63.5 3.20
 84 24.8 26.70 10.0 0.640 0.460 2850 213 10.7 106 21.2 2.07

 W24 3 104 30.6 24.1 12.8 0.750 0.500 3100 258 10.1 259 40.7 2.91
 68 20.1 23.7 8.97 0.585 0.415 1830 154 9.55 70.4 15.7 1.87

 W21 3 101 29.8 21.4 12.3 0.800 0.500 2420 227 9.02 248 40.3 2.89
 62 18.3 21.0 8.24 0.615 0.400 1330 127 8.54 57.5 14.0 1.77
 44 13.0 20.7 6.50 0.450 0.350 843 81.6 8.06 20.7 6.37 1.26

 W18 3 106 31.1 18.7 11.2 0.940 0.590 1910 204 7.84 220 39.4 2.66
 76 22.3 18.2 11.0 0.680 0.425 1330 146 7.73 152 27.6 2.61
 50 14.7 18.0 7.50 0.570 0.355 800 88.9 7.38 40.1 10.7 1.65
 35 10.3 17.7 6.00 0.425 0.300 510 57.6 7.04 15.3 5.12 1.22

 W16 3 77 22.6 16.5 10.3 0.76 0.455 1110 134 7.00 138 26.9 2.47
 57 16.8 16.4 7.12 0.715 0.430 758 92.2 6.72 43.1 12.1 1.60
 40 11.8 16.0 7.00 0.505 0.305 518 64.7 6.63 28.9 8.25 1.57
 31 9.13 15.9 5.53 0.440 0.275 375 47.2 6.41 12.4 4.49 1.17
 26 7.68 15.7 5.50 0.345 0.250 301 38.4 6.26 9.59 3.49 1.12

 W14 3 370 109 17.9 16.5 2.66 1.66 5440 607 7.07 1990 241 4.27
 145 42.7 14.8 15.5 1.09 0.680 1710 232 6.33 677 87.3 3.98
 82 24.0 14.3 10.1 0.855 0.510 881 123 6.05 148 29.3 2.48
 68 20.0 14.0 10.0 0.720 0.415 722 103 6.01 121 24.2 2.46
 53 15.6 13.9 8.06 0.660 0.370 541 77.8 5.89 57.7 14.3 1.92
 43 12.6 13.7 8.00 0.530 0.305 428 62.6 5.82 45.2 11.3 1.89
 38 11.2 14.1 6.77 0.515 0.310 385 54.6 5.87 26.7 7.88 1.55
 30 8.85 13.8 6.73 0.385 0.270 291 42.0 5.73 19.6 5.82 1.49
 26 7.69 13.9 5.03 0.420 0.255 245 35.3 5.65 8.91 3.55 1.08
 22 6.49 13.7 5.00 0.335 0.230 199 29.0 5.54 7.00 2.80 1.04

(Table continued on page 682)

†A wide-flange shape is designated by the letter W followed by the nominal depth in inches and the weight in pounds per foot.
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681

APPENDIX B Properties of Rolled-Steel Shapes
     (SI Units)

W Shapes
(Wide-Flange Shapes)

 Flange
 Web Axis X-X Axis Y-Y
 Thick- Thick-
 Area Depth Width ness ness Ix  Sx rx Iy Sy ry
Designation† A, mm2 d, mm bf, mm tf, mm tw, mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

 W920 3 449 57300 947 424 42.7 24.0 8780 18500 391 541 2560 97.0
 201 25600 904 305 20.1 15.2 3250 7190 356 93.7 618 60.5

 W840 3 299 38200 856 399 29.2 18.2 4830 11200 356 312 1560 90.4
 176 22400 836 292 18.8 14.0 2460 5880 330 77.8 534 58.9

 W760 3 257 32900 772 381 27.2 16.6 3430 8870 323 249 1310 86.9
 147 18800 754 267 17.0 13.2 1660 4410 297 53.3 401 53.3

 W690 3 217 27800 696 356 24.8 15.4 2360 6780 292 184 1040 81.3
 125 16000 678 254 16.3 11.7 1190 3490 272 44.1 347 52.6

 W610 3 155 19700 612 325 19.1 12.7 1290 4230 257 108 667 73.9
 101 13000 602 228 14.9 10.5 762 2520 243 29.3 257 47.5

 W530 3 150 19200 544 312 20.3 12.7 1010 3720 229 103 660 73.4
 92 11800 533 209 15.6 10.2 554 2080 217 23.9 229 45.0
 66 8390 526 165 11.4 8.89 351 1340 205 8.62 104 32.0

 W460 3 158 20100 475 284 23.9 15.0 795 3340 199 91.6 646 67.6
 113 14400 462 279 17.3 10.8 554 2390 196 63.3 452 66.3
 74 9480 457 191 14.5 9.02 333 1460 187 16.7 175 41.9
 52 6650 450 152 10.8 7.62 212 944 179 6.37 83.9 31.0

 W410 3 114 14600 419 262 19.3 11.6 462 2200 178 57.4 441 62.7
 85 10800 417 181 18.2 10.9 316 1510 171 17.9 198 40.6
 60 7610 406 178 12.8 7.75 216 1060 168 12.0 135 39.9
 46.1 5890 404 140 11.2 6.99 156 773 163 5.16 73.6 29.7
 38.8 4950 399 140 8.76 6.35 125 629 159 3.99 57.2 28.4

 W360 3 551 70300 455 419 67.6 42.2 2260 9950 180 828 3950 108
 216 27500 376 394 27.7 17.3 712 3800 161 282 1430 101
 122 15500 363 257 21.7 13.0 367 2020 154 61.6 480 63.0
 101 12900 356 254 18.3 10.5 301 1690 153 50.4 397 62.5
 79 10100 353 205 16.8 9.40 225 1270 150 24.0 234 48.8
 64 8130 348 203 13.5 7.75 178 1030 148 18.8 185 48.0
 57.8 7230 358 172 13.1 7.87 160 895 149 11.1 129 39.4
 44 5710 351 171 9.78 6.86 121 688 146 8.16 95.4 37.8
 39 4960 353 128 10.7 6.48 102 578 144 3.71 58.2 27.4
 32.9 4190 348 127 8.51 5.84 82.8 475 141 2.91 45.9 26.4

(Table continued on page 683)

†A wide-flange shape is designated by the letter W followed by the nominal depth in millimeters and the mass in kilograms per meter.
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682

APPENDIX B Properties of Rolled-Steel Shapes
       (U.S. Customary Units)

       Continued from page 680
W Shapes
(Wide-Flange Shapes)

 Flange
     Web
    Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in4 Sx, in3 rx, in. Iy, in4 Sy, in3 ry, in.

 W12 3 96 28.2 12.7 12.2 0.900 0.550 833 131 5.44 270 44.4 3.09
 72 21.1 12.3 12.0 0.670 0.430 597 97.4 5.31 195 32.4 3.04
 50 14.6 12.2 8.08 0.640 0.370 391 64.2 5.18 56.3 13.9 1.96
 40 11.7 11.9 8.01 0.515 0.295 307 51.5 5.13 44.1 11.0 1.94
 35 10.3 12.5 6.56 0.520 0.300 285 45.6 5.25 24.5 7.47 1.54
 30 8.79 12.3 6.52 0.440 0.260 238 38.6 5.21 20.3 6.24 1.52
 26 7.65 12.2 6.49 0.380 0.230 204 33.4 5.17 17.3 5.34 1.51
 22 6.48 12.3 4.03 0.425 0.260 156 25.4 4.91 4.66 2.31 0.848
 16 4.71 12.0 3.99 0.265 0.220 103 17.1 4.67 2.82 1.41 0.773

 W10 3 112 32.9 11.4 10.4 1.25 0.755 716 126 4.66 236 45.3 2.68
 68 20.0 10.4 10.1 0.770 0.470 394 75.7 4.44 134 26.4 2.59
 54 15.8 10.1 10.0 0.615 0.370 303 60.0 4.37 103 20.6 2.56
 45 13.3 10.1 8.02 0.620 0.350 248 49.1 4.32 53.4 13.3 2.01
 39 11.5 9.92 7.99 0.530 0.315 209 42.1 4.27 45.0 11.3 1.98
 33 9.71 9.73 7.96 0.435 0.290 171 35.0 4.19 36.6 9.20 1.94
 30 8.84 10.5 5.81 0.510 0.300 170 32.4 4.38 16.7 5.75 1.37
 22 6.49 10.2 5.75 0.360 0.240 118 23.2 4.27 11.4 3.97 1.33
 19 5.62 10.2 4.02 0.395 0.250 96.3 18.8 4.14 4.29 2.14 0.874
 15 4.41 10.0 4.00 0.270 0.230 68.9 13.8 3.95 2.89 1.45 0.810

 W8 3 58 17.1 8.75 8.22 0.810 0.510 228 52.0 3.65 75.1 18.3 2.10
 48 14.1 8.50 8.11 0.685 0.400 184 43.2 3.61 60.9 15.0 2.08
 40 11.7 8.25 8.07 0.560 0.360 146 35.5 3.53 49.1 12.2 2.04
 35 10.3 8.12 8.02 0.495 0.310 127 31.2 3.51 42.6 10.6 2.03
 31 9.12 8.00 8.00 0.435 0.285 110 27.5 3.47 37.1 9.27 2.02
 28 8.24 8.06 6.54 0.465 0.285 98.0 24.3 3.45 21.7 6.63 1.62
 24 7.08 7.93 6.50 0.400 0.245 82.7 20.9 3.42 18.3 5.63 1.61
 21 6.16 8.28 5.27 0.400 0.250 75.3 18.2 3.49 9.77 3.71 1.26
 18 5.26 8.14 5.25 0.330 0.230 61.9 15.2 3.43 7.97 3.04 1.23
 15 4.44 8.11 4.01 0.315 0.245 48.0 11.8 3.29 3.41 1.70 0.876
 13 3.84 7.99 4.00 0.255 0.230 39.6 9.91 3.21 2.73 1.37 0.843

 W6 3 25 7.34 6.38 6.08 0.455 0.320 53.4 16.7 2.70 17.1 5.61 1.52
 20 5.87 6.20 6.02 0.365 0.260 41.4 13.4 2.66 13.3 4.41 1.50
 16 4.74 6.28 4.03 0.405 0.260 32.1 10.2 2.60 4.43 2.20 0.967
 12 3.55 6.03 4.00 0.280 0.230 22.1 7.31 2.49 2.99 1.50 0.918
 9 2.68 5.90 3.94 0.215 0.170 16.4 5.56 2.47 2.20 1.11 0.905

 W5 3 19 5.56 5.15 5.03 0.430 0.270 26.3 10.2 2.17 9.13 3.63 1.28
 16 4.71 5.01 5.00 0.360 0.240 21.4 8.55 2.13 7.51 3.00 1.26

 W4 3 13 3.83 4.16 4.06 0.345 0.280 11.3 5.46 1.72 3.86 1.90 1.00

 

†A wide-flange shape is designated by the letter W followed by the nominal depth in inches and the weight in pounds per foot.
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683

APPENDIX B Properties of Rolled-Steel Shapes
        (SI Units)

        Continued from page 681
W Shapes
(Wide-Flange Shapes)

 Flange
 Web Axis X-X Axis Y-Y
 Thick- Thick-
 Area Depth Width ness ness Ix Sx rx Iy Sy ry
Designation† A, mm2 d, mm bf, mm tf, mm tw, mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

 W310 3 143 18200 323 310 22.9 14.0 347 2150 138 112 728 78.5
 107 13600 312 305 17.0 10.9 248 1600 135 81.2 531 77.2
 74 9420 310 205 16.3 9.40 163 1050 132 23.4 228 49.8
 60 7550 302 203 13.1 7.49 128 844 130 18.4 180 49.3
 52 6650 318 167 13.2 7.62 119 747 133 10.2 122 39.1
 44.5 5670 312 166 11.2 6.60 99.1 633 132 8.45 102 38.6
 38.7 4940 310 165 9.65 5.84 84.9 547 131 7.20 87.5 38.4
 32.7 4180 312 102 10.8 6.60 64.9 416 125 1.94 37.9 21.5
 23.8 3040 305 101 6.73 5.59 42.9 280 119 1.17 23.1 19.6

 W250 3 167 21200 290 264 31.8 19.2 298 2060 118 98.2 742 68.1
 101 12900 264 257 19.6 11.9 164 1240 113 55.8 433 65.8
 80 10200 257 254 15.6 9.4 126 983 111 42.9 338 65.0
 67 8580 257 204 15.7 8.89 103 805 110 22.2 218 51.1
 58 7420 252 203 13.5 8.00 87.0 690 108 18.7 185 50.3
 49.1 6260 247 202 11.0 7.37 71.2 574 106 15.2 151 49.3
 44.8 5700 267 148 13.0 7.62 70.8 531 111 6.95 94.2 34.8
 32.7 4190 259 146 9.14 6.10 49.1 380 108 4.75 65.1 33.8
 28.4 3630 259 102 10.0 6.35 40.1 308 105 1.79 35.1 22.2
 22.3 2850 254 102 6.86 5.84 28.7 226 100 1.20 23.8 20.6

 W200 3 86 11000 222 209 20.6 13.0 94.9 852 92.7 31.3 300 53.3
 71 9100 216 206 17.4 10.2 76.6 708 91.7 25.3 246 52.8
 59 7550 210 205 14.2 9.14 60.8 582 89.7 20.4 200 51.8
 52 6650 206 204 12.6 7.87 52.9 511 89.2 17.7 174 51.6
 46.1 5880 203 203 11.0 7.24 45.8 451 88.1 15.4 152 51.3
 41.7 5320 205 166 11.8 7.24 40.8 398 87.6 9.03 109 41.1
 35.9 4570 201 165 10.2 6.22 34.4 342 86.9 7.62 92.3 40.9
 31.3 3970 210 134 10.2 6.35 31.3 298 88.6 4.07 60.8 32.0
 26.6 3390 207 133 8.38 5.84 25.8 249 87.1 3.32 49.8 31.2
 22.5 2860 206 102 8.00 6.22 20.0 193 83.6 1.42 27.9 22.3
 19.3 2480 203 102 6.48 5.84 16.5 162 81.5 1.14 22.5 21.4

 W150 3 37.1 4740 162 154 11.6 8.13 22.2 274 68.6 7.12 91.9 38.6
 29.8 3790 157 153 9.27 6.60 17.2 220 67.6 5.54 72.3 38.1
 24 3060 160 102 10.3 6.60 13.4 167 66.0 1.84 36.1 24.6
 18 2290 153 102 7.11 5.84 9.20 120 63.2 1.24 24.6 23.3
 13.5 1730 150 100 5.46 4.32 6.83 91.1 62.7 0.916 18.2 23.0

 W130 3 28.1 3590 131 128 10.9 6.86 10.9 167 55.1 3.80 59.5 32.5
 23.8 3040 127 127 9.14 6.10 8.91 140 54.1 3.13 49.2 32.0

 W100 3 19.3 2470 106 103 8.76 7.11 4.70 89.5 43.7 1.61 31.1 25.4

 

†A wide-flange shape is designated by the letter W followed by the nominal depth in millimeters and the mass in kilograms per meter.
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APPENDIX B Properties of Rolled-Steel Shapes
    (U.S. Customary Units)

S Shapes
(American Standard Shapes)

Y

Y

X
tw
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   Flange
     Web 

    Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in4 Sx, in3 rx, in. Iy, in4 Sy, in3 ry, in.

 S24 3 121 35.5 24.5 8.05 1.09 0.800 3160 258 9.43 83.0 20.6 1.53
 106 31.1 24.5 7.87 1.09 0.620 2940 240 9.71 76.8 19.5 1.57
 100 29.3 24.0 7.25 0.870 0.745 2380 199 9.01 47.4 13.1 1.27
 90 26.5 24.0 7.13 0.870 0.625 2250 187 9.21 44.7 12.5 1.30
 80 23.5 24.0 7.00 0.870 0.500 2100 175 9.47 42.0 12.0 1.34

 S20 3 96 28.2 20.3 7.20 0.920 0.800 1670 165 7.71 49.9 13.9 1.33
 86 25.3 20.3 7.06 0.920 0.660 1570 155 7.89 46.6 13.2 1.36
 75 22.0 20.0 6.39 0.795 0.635 1280 128 7.62 29.5 9.25 1.16
 66 19.4 20.0 6.26 0.795 0.505 1190 119 7.83 27.5 8.78 1.19

 S18 3 70 20.5 18.0 6.25 0.691 0.711 923 103 6.70 24.0 7.69 1.08
 54.7 16.0 18.0 6.00 0.691 0.461 801 89.0 7.07 20.7 6.91 1.14

 S15 3 50 14.7 15.0 5.64 0.622 0.550 485 64.7 5.75 15.6 5.53 1.03
 42.9 12.6 15.0 5.50 0.622 0.411 446 59.4 5.95 14.3 5.19 1.06

 S12 3 50 14.6 12.0 5.48 0.659 0.687 303 50.6 4.55 15.6 5.69 1.03
 40.8 11.9 12.0 5.25 0.659 0.462 270 45.1 4.76 13.5 5.13 1.06
 35 10.2 12.0 5.08 0.544 0.428 228 38.1 4.72 9.84 3.88 0.980
 31.8 9.31 12.0 5.00 0.544 0.350 217 36.2 4.83 9.33 3.73 1.00

 S10 3 35 10.3 10.0 4.94 0.491 0.594 147 29.4 3.78 8.30 3.36 0.899
 25.4 7.45 10.0 4.66 0.491 0.311 123 24.6 4.07 6.73 2.89 0.950

 S8 3 23 6.76 8.00 4.17 0.425 0.441 64.7 16.2 3.09 4.27 2.05 0.795
 18.4 5.40 8.00 4.00 0.425 0.271 57.5 14.4 3.26 3.69 1.84 0.827

 S6 3 17.2 5.06 6.00 3.57 0.359 0.465 26.2 8.74 2.28 2.29 1.28 0.673
 12.5 3.66 6.00 3.33 0.359 0.232 22.0 7.34 2.45 1.80 1.08 0.702

 S5 3 10 2.93 5.00 3.00 0.326 0.214 12.3 4.90 2.05 1.19 0.795 0.638

 S4 3 9.5 2.79 4.00 2.80 0.293 0.326 6.76 3.38 1.56 0.887 0.635 0.564
 7.7 2.26 4.00 2.66 0.293 0.193 6.05 3.03 1.64 0.748 0.562 0.576

 S3 3 7.5 2.20 3.00 2.51 0.260 0.349 2.91 1.94 1.15 0.578 0.461 0.513
 5.7 1.66 3.00 2.33 0.260 0.170 2.50 1.67 1.23 0.447 0.383 0.518

†An American Standard Beam is designated by the letter S followed by the nominal depth in inches and the weight in pounds per foot.
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APPENDIX B Properties of Rolled-Steel Shapes
               (SI Units)
S Shapes
(American Standard Shapes)

Y
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 Flange
     Web Axis X-X Axis Y-Y

    Thick- Thick-
 Area Depth Width ness ness Ix Sx rx Iy Sy ry

Designation† A, mm2 d, mm bf, mm tf, mm tw, mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

 S610 3 180 22900 622 204 27.7 20.3 1320 4230 240 34.5 338 38.9
 158 20100 622 200 27.7 15.7 1220 3930 247 32.0 320 39.9
 149 18900 610 184 22.1 18.9 991 3260 229 19.7 215 32.3
 134 17100 610 181 22.1 15.9 937 3060 234 18.6 205 33.0
 119 15200 610 178 22.1 12.7 874 2870 241 17.5 197 34.0

 S510 3 143 18200 516 183 23.4 20.3 695 2700 196 20.8 228 33.8
 128 16300 516 179 23.4 16.8 653 2540 200 19.4 216 34.5
 112 14200 508 162 20.2 16.1 533 2100 194 12.3 152 29.5
 98.2 12500 508 159 20.2 12.8 495 1950 199 11.4 144 30.2

 S460 3 104 13200 457 159 17.6 18.1 384 1690 170 10.0 126 27.4
 81.4 10300 457 152 17.6 11.7 333 1460 180 8.62 113 29.0

 S380 3 74 9480 381 143 15.8 14.0 202 1060 146 6.49 90.6 26.2
 64 8130 381 140 15.8 10.4 186 973 151 5.95 85.0 26.9

 S310 3 74 9420 305 139 16.7 17.4 126 829 116 6.49 93.2 26.2
 60.7 7680 305 133 16.7 11.7 112 739 121 5.62 84.1 26.9
 52 6580 305 129 13.8 10.9 94.9 624 120 4.10 63.6 24.9
 47.3 6010 305 127 13.8 8.89 90.3 593 123 3.88 61.1 25.4

 S250 3 52 6650 254 125 12.5 15.1 61.2 482 96.0 3.45 55.1 22.8
 37.8 4810 254 118 12.5 7.90 51.2 403 103 2.80 47.4 24.1

 S200 3 34 4360 203 106 10.8 11.2 26.9 265 78.5 1.78 33.6 20.2
 27.4 3480 203 102 10.8 6.88 23.9 236 82.8 1.54 30.2 21.0

 S150 3 25.7 3260 152 90.7 9.12 11.8 10.9 143 57.9 0.953 21.0 17.1
 18.6 2360 152 84.6 9.12 5.89 9.16 120 62.2 0.749 17.7 17.8

 S130 3 15 1890 127 76.2 8.28 5.44 5.12 80.3 52.1 0.495 13.0 16.2

 S100 3 14.1 1800 102 71.1 7.44 8.28 2.81 55.4 39.6 0.369 10.4 14.3
 11.5 1460 102 67.6 7.44 4.90 2.52 49.7 41.7 0.311 9.21 14.6

 S75 3 11.2 1420 76.2 63.8 6.60 8.86 1.21 31.8 29.2 0.241 7.55 13.0
 8.5 1070 76.2 59.2 6.60 4.32 1.04 27.4 31.2 0.186 6.28 13.2

†An American Standard Beam is designated by the letter S followed by the nominal depth in millimeters and the mass in kilograms per meter.
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APPENDIX B Properties of Rolled-Steel Shapes
    (U.S. Customary Units)

C Shapes
(American Standard Channels)

X X
tw

tf

Y

Y

bf

d

x

 

   Flange
     Web
    Thick- Thick- Axis X-X Axis Y-Y

 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in4 Sx, in3 rx, in. Iy, in4 Sy, in3 ry, in. x, in.

 C15 3 50 14.7 15.0 3.72 0.650 0.716 404 53.8 5.24 11.0 3.77 0.865 0.799
 40 11.8 15.0 3.52 0.650 0.520 348 46.5 5.45 9.17 3.34 0.883 0.778
 33.9 10.0 15.0 3.40 0.650 0.400 315 42.0 5.62 8.07 3.09 0.901 0.788

 C12 3 30 8.81 12.0 3.17 0.501 0.510 162 27.0 4.29 5.12 2.05 0.762 0.674
 25 7.34 12.0 3.05 0.501 0.387 144 24.0 4.43 4.45 1.87 0.779 0.674
 20.7 6.08 12.0 2.94 0.501 0.282 129 21.5 4.61 3.86 1.72 0.797 0.698

 C10 3 30 8.81 10.0 3.03 0.436 0.673 103 20.7 3.42 3.93 1.65 0.668 0.649
 25 7.34 10.0 2.89 0.436 0.526 91.1 18.2 3.52 3.34 1.47 0.675 0.617
 20 5.87 10.0 2.74 0.436 0.379 78.9 15.8 3.66 2.80 1.31 0.690 0.606
 15.3 4.48 10.0 2.60 0.436 0.240 67.3 13.5 3.87 2.27 1.15 0.711 0.634

 C9 3 20 5.87 9.00 2.65 0.413 0.448 60.9 13.5 3.22 2.41 1.17 0.640 0.583
 15 4.41 9.00 2.49 0.413 0.285 51.0 11.3 3.40 1.91 1.01 0.659 0.586
 13.4 3.94 9.00 2.43 0.413 0.233 47.8 10.6 3.49 1.75 0.954 0.666 0.601

 C8 3 18.7 5.51 8.00 2.53 0.390 0.487 43.9 11.0 2.82 1.97 1.01 0.598 0.565
 13.7 4.04 8.00 2.34 0.390 0.303 36.1 9.02 2.99 1.52 0.848 0.613 0.554
 11.5 3.37 8.00 2.26 0.390 0.220 32.5 8.14 3.11 1.31 0.775 0.623 0.572

 C7 3 12.2 3.60 7.00 2.19 0.366 0.314 24.2 6.92 2.60 1.16 0.696 0.568 0.525
 9.8 2.87 7.00 2.09 0.366 0.210 21.2 6.07 2.72 0.957 0.617 0.578 0.541

 C6 3 13 3.81 6.00 2.16 0.343 0.437 17.3 5.78 2.13 1.05 0.638 0.524 0.514
 10.5 3.08 6.00 2.03 0.343 0.314 15.1 5.04 2.22 0.860 0.561 0.529 0.500
 8.2 2.39 6.00 1.92 0.343 0.200 13.1 4.35 2.34 0.687 0.488 0.536 0.512

 C5 3 9 2.64 5.00 1.89 0.320 0.325 8.89 3.56 1.83 0.624 0.444 0.486 0.478
 6.7 1.97 5.00 1.75 0.320 0.190 7.48 2.99 1.95 0.470 0.372 0.489 0.484

 C4 3 7.2 2.13 4.00 1.72 0.296 0.321 4.58 2.29 1.47 0.425 0.337 0.447 0.459
 5.4 1.58 4.00 1.58 0.296 0.184 3.85 1.92 1.56 0.312 0.277 0.444 0.457

 C3 3 6 1.76 3.00 1.60 0.273 0.356 2.07 1.38 1.08 0.300 0.263 0.413 0.455
 5 1.47 3.00 1.50 0.273 0.258 1.85 1.23 1.12 0.241 0.228 0.405 0.439
 4.1 1.20 3.00 1.41 0.273 0.170 1.65 1.10 1.17 0.191 0.196 0.398 0.437

†An American Standard Channel is designated by the letter C followed by the nominal depth in inches and the weight in pounds per foot.
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APPENDIX B Properties of Rolled-Steel Shapes
     (SI Units)

C Shapes
(American Standard Channels)

X X
tw

tf

Y

Y

bf

d

x

 Flange
     Web  Axis X-X Axis Y-Y
    Thick- Thick-
 Area Depth Width ness ness Ix Sx rx Iy Sy ry x

Designation† A, mm2 d, mm bf, mm tf, mm tw, mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm mm

 C380 3 74 9480 381 94.5 16.5 18.2 168 882 133 4.58 61.8 22.0 20.3
 60 7610 381 89.4 16.5 13.2 145 762 138 3.82 54.7 22.4 19.8
 50.4 6450 381 86.4 16.5 10.2 131 688 143 3.36 50.6 22.9 20.0

 C310 3 45 5680 305 80.5 12.7 13.0 67.4 442 109 2.13 33.6 19.4 17.1
 37 4740 305 77.5 12.7 9.83 59.9 393 113 1.85 30.6 19.8 17.1
 30.8 3920 305 74.7 12.7 7.16 53.7 352 117 1.61 28.2 20.2 17.7

 C250 3 45 5680 254 77.0 11.1 17.1 42.9 339 86.9 1.64 27.0 17.0 16.5
 37 4740 254 73.4 11.1 13.4 37.9 298 89.4 1.39 24.1 17.1 15.7
 30 3790 254 69.6 11.1 9.63 32.8 259 93.0 1.17 21.5 17.5 15.4
 22.8 2890 254 66.0 11.1 6.10 28.0 221 98.3 0.945 18.8 18.1 16.1

 C230 3 30 3790 229 67.3 10.5 11.4 25.3 221 81.8 1.00 19.2 16.3 14.8
 22 2850 229 63.2 10.5 7.24 21.2 185 86.4 0.795 16.6 16.7 14.9
 19.9 2540 229 61.7 10.5 5.92 19.9 174 88.6 0.728 15.6 16.9 15.3

 C200 3 27.9 3550 203 64.3 9.91 12.4 18.3 180 71.6 0.820 16.6 15.2 14.4
 20.5 2610 203 59.4 9.91 7.70 15.0 148 75.9 0.633 13.9 15.6 14.1
 17.1 2170 203 57.4 9.91 5.59 13.5 133 79.0 0.545 12.7 15.8 14.5

 C180 3 18.2 2320 178 55.6 9.30 7.98 10.1 113 66.0 0.483 11.4 14.4 13.3
 14.6 1850 178 53.1 9.30 5.33 8.82 100 69.1 0.398 10.1 14.7 13.7

 C150 3 19.3 2460 152 54.9 8.71 11.1 7.20 94.7 54.1 0.437 10.5 13.3 13.1
 15.6 1990 152 51.6 8.71 7.98 6.29 82.6 56.4 0.358 9.19 13.4 12.7
 12.2 1540 152 48.8 8.71 5.08 5.45 71.3 59.4 0.286 8.00 13.6 13.0

 C130 3 13 1700 127 48.0 8.13 8.26 3.70 58.3 46.5 0.260 7.28 12.3 12.1
 10.4 1270 127 44.5 8.13 4.83 3.11 49.0 49.5 0.196 6.10 12.4 12.3

 C100 3 10.8 1370 102 43.7 7.52 8.15 1.91 37.5 37.3 0.177 5.52 11.4 11.7
 8 1020 102 40.1 7.52 4.67 1.60 31.5 39.6 0.130 4.54 11.3 11.6

 C75 3 8.9 1140 76.2 40.6 6.93 9.04 0.862 22.6 27.4 0.125 4.31 10.5 11.6
 7.4 948 76.2 38.1 6.93 6.55 0.770 20.2 28.4 0.100 3.74 10.3 11.2
 6.1 774 76.2 35.8 6.93 4.32 0.687 18.0 29.7 0.0795 3.21 10.1 11.1

†An American Standard Channel is designated by the letter C followed by the nominal depth in millimeters and the mass in kilograms per meter.
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APPENDIX B Properties of Rolled-Steel Shapes
            (U.S. Customary Units)
Angles
Equal Legs

XX

x

y

Y

Y

Z

Z

 

 Axis X-X and Axis Y-Y Axis
 Weight per      Z-Z

Size and Thickness, in. Foot, lb/ft Area, in2 I, in4 S, in3 r, in. x or y, in. rz, in.

 L8 3 8 3 1 51.0 15.0 89.1 15.8 2.43 2.36 1.56
 3⁄4 38.9 11.4 69.9 12.2 2.46 2.26 1.57
 1⁄2 26.4 7.75 48.8 8.36 2.49 2.17 1.59

 L6 3 6 3 1 37.4 11.0 35.4 8.55 1.79 1.86 1.17
 3⁄4 28.7 8.46 28.1 6.64 1.82 1.77 1.17
 5⁄8 24.2 7.13 24.1 5.64 1.84 1.72 1.17
 1⁄2 19.6 5.77 19.9 4.59 1.86 1.67 1.18
 3⁄8 14.9 4.38 15.4 3.51 1.87 1.62 1.19

 L5 3 5 3 3⁄4 23.6 6.94 15.7 4.52 1.50 1.52 0.972
 5⁄8 20.0 5.86 13.6 3.85 1.52 1.47 0.975
 1⁄2 16.2 4.75 11.3 3.15 1.53 1.42 0.980
 3⁄8 12.3 3.61 8.76 2.41 1.55 1.37 0.986

 L4 3 4 3 3⁄4 18.5 5.44 7.62 2.79 1.18 1.27 0.774
 5⁄8 15.7 4.61 6.62 2.38 1.20 1.22 0.774
 1⁄2 12.8 3.75 5.52 1.96 1.21 1.18 0.776
 3⁄8 9.80 2.86 4.32 1.50 1.23 1.13 0.779
 1⁄4 6.60 1.94 3.00 1.03 1.25 1.08 0.783

 L31
2 3 31

2 3 1⁄2 11.1 3.25 3.63 1.48 1.05 1.05 0.679
 3⁄8 8.50 2.48 2.86 1.15 1.07 1.00 0.683
 1⁄4 5.80 1.69 2.00 0.787 1.09 0.954 0.688

 L3 3 3 3 1⁄2 9.40 2.75 2.20 1.06 0.895 0.929 0.580
 3⁄8 7.20 2.11 1.75 0.825 0.910 0.884 0.581
 1⁄4 4.90 1.44 1.23 0.569 0.926 0.836 0.585

 L21
2 3 21

2 3 ½ 7.70 2.25 1.22 0.716 0.735 0.803 0.481
 3⁄8 5.90 1.73 0.972 0.558 0.749 0.758 0.481
 1⁄4 4.10 1.19 0.692 0.387 0.764 0.711 0.482
 3⁄16 3.07 0.900 0.535 0.295 0.771 0.687 0.482

 L2 3 2 3 3⁄8 4.70 1.36 0.476 0.348 0.591 0.632 0.386
 1⁄4 3.19 0.938 0.346 0.244 0.605 0.586 0.387
 1⁄8 1.65 0.484 0.189 0.129 0.620 0.534 0.391
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APPENDIX B Properties of Rolled-Steel Shapes
               (SI Units)
Angles
Equal Legs

XX

x

y

Y

Y

Z

Z

 Axis X-X Axis
  Z-Z
 Mass per  I S r x or y rz
Size and Thickness, mm Meter, kg/m Area, mm2 106 mm4 103 mm3 mm mm mm

 L203 3 203 3 25.4 75.9 9680 37.1 259 61.7 59.9 39.6
 19 57.9 7350 29.1 200 62.5 57.4 39.9
 12.7 39.3 5000 20.3 137 63.2 55.1 40.4

 L152 3 152 3 25.4 55.7 7100 14.7 140 45.5 47.2 29.7
 19 42.7 5460 11.7 109 46.2 45.0 29.7
 15.9 36.0 4600 10.0 92.4 46.7 43.7 29.7
 12.7 29.2 3720 8.28 75.2 47.2 42.4 30.0
 9.5 22.2 2830 6.41 57.5 47.5 41.1 30.2

 L127 3 127 3 19 35.1 4480 6.53 74.1 38.1 38.6 24.7
 15.9 29.8 3780 5.66 63.1 38.6 37.3 24.8
 12.7 24.1 3060 4.70 51.6 38.9 36.1 24.9
 9.5 18.3 2330 3.65 39.5 39.4 34.8 25.0

 L102 3 102 3 19 27.5 3510 3.17 45.7 30.0 32.3 19.7
 15.9 23.4 2970 2.76 39.0 30.5 31.0 19.7
 12.7 19.0 2420 2.30 32.1 30.7 30.0 19.7
 9.5 14.6 1850 1.80 24.6 31.2 28.7 19.8
 6.4 9.80 1250 1.25 16.9 31.8 27.4 19.9

 L89 3 89 3 12.7 16.5 2100 1.51 24.3 26.7 26.7 17.2
 9.5 12.6 1600 1.19 18.8 27.2 25.4 17.3
 6.4 8.60 1090 0.832 12.9 27.7 24.2 17.5

 L76 3 76 3 12.7 14.0 1770 0.916 17.4 22.7 23.6 14.7
 9.5 10.7 1360 0.728 13.5 23.1 22.5 14.8
 6.4 7.30 929 0.512 9.32 23.5 21.2 14.9

 L64 3 64 3 12.7 11.4 1450 0.508 11.7 18.7 20.4 12.2
 9.5 8.70 1120 0.405 9.14 19.0 19.3 12.2
 6.4 6.10 768 0.288 6.34 19.4 18.1 12.2
 4.8 4.60 581 0.223 4.83 19.6 17.4 12.2

 L51 3 51 3 9.5 7.00 877 0.198 5.70 15.0 16.1 9.80
 6.4 4.70 605 0.144 4.00 15.4 14.9 9.83
 3.2 2.40 312 0.0787 2.11 15.7 13.6 9.93
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APPENDIX B Properties of Rolled-Steel Shapes
            (U.S. Customary Units)
Angles
Unequal Legs XX

x

y

Y

Y

�

Z

Z

 Axis X-X Axis Y-Y Axis Z-Z
Size and Weight per
Thickness, in. Foot, lb/ft Area, in2 Ix, in4 Sx, in3 rx, in. y, in. Iy, in4 Sy, in3 ry, in. x, in. rz, in. tan a

 L8 3 6 3 1 44.2 13.0 80.9 15.1 2.49 2.65 38.8 8.92 1.72 1.65 1.28 0.542
 3⁄4 33.8 9.94 63.5 11.7 2.52 2.55 30.8 6.92 1.75 1.56 1.29 0.550
 1⁄2 23.0 6.75 44.4 8.01 2.55 2.46 21.7 4.79 1.79 1.46 1.30 0.557

 L6 3 4 3 3⁄4 23.6 6.94 24.5 6.23 1.88 2.07 8.63 2.95 1.12 1.07 0.856 0.428
 1⁄2 16.2 4.75 17.3 4.31 1.91 1.98 6.22 2.06 1.14 0.981 0.864 0.440
 3⁄8 12.3 3.61 13.4 3.30 1.93 1.93 4.86 1.58 1.16 0.933 0.870 0.446

 L5 3 3 3 1⁄2 12.8 3.75 9.43 2.89 1.58 1.74 2.55 1.13 0.824 0.746 0.642 0.357
 3⁄8 9.80 2.86 7.35 2.22 1.60 1.69 2.01 0.874 0.838 0.698 0.646 0.364
 1⁄4 6.60 1.94 5.09 1.51 1.62 1.64 1.41 0.600 0.853 0.648 0.652 0.371

 L4 3 3 3 1⁄2 11.1 3.25 5.02 1.87 1.24 1.32 2.40 1.10 0.858 0.822 0.633 0.542
 3⁄8 8.50 2.48 3.94 1.44 1.26 1.27 1.89 0.851 0.873 0.775 0.636 0.551
 1⁄4 5.80 1.69 2.75 0.988 1.27 1.22 1.33 0.585 0.887 0.725 0.639 0.558

 L31
2 3 21

2 3 1⁄2 9.40 2.75 3.24 1.41 1.08 1.20 1.36 0.756 0.701 0.701 0.532 0.485
 3⁄8 7.20 2.11 2.56 1.09 1.10 1.15 1.09 0.589 0.716 0.655 0.535 0.495
 1⁄4 4.90 1.44 1.81 0.753 1.12 1.10 0.775 0.410 0.731 0.607 0.541 0.504

 L3 3 2 3 1⁄2 7.70 2.25 1.92 1.00 0.922 1.08 0.667 0.470 0.543 0.580 0.425 0.413
 3⁄8 5.90 1.73 1.54 0.779 0.937 1.03 0.539 0.368 0.555 0.535 0.426 0.426
 1⁄4 4.10 1.19 1.09 0.541 0.953 0.980 0.390 0.258 0.569 0.487 0.431 0.437

 L21
2 3 2 3 3⁄8 5.30 1.55 0.914 0.546 0.766 0.826 0.513 0.361 0.574 0.578 0.419 0.612

 1⁄4 3.62 1.06 0.656 0.381 0.782 0.779 0.372 0.253 0.589 0.532 0.423 0.624
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APPENDIX B Properties of Rolled-Steel Shapes
               (SI Units)
Angles
Unequal Legs

XX

x

y

Y

Y

�

Z

Z

 Axis X-X Axis Y-Y Axis Z-Z

 Size and Mass per
 Thickness, Meter Area Ix Sx rx y Iy Sy ry x rz
 mm kg/m mm2 106 mm4 103 mm3 mm mm 106 mm4 103 mm3 mm mm mm tan a

 L203 3 152 3 25.4 65.5 8390 33.7 247 63.2 67.3 16.1 146 43.7 41.9 32.5 0.542
 19 50.1 6410 26.4 192 64.0 64.8 12.8 113 44.5 39.6 32.8 0.550
 12.7 34.1 4350 18.5 131 64.8 62.5 9.03 78.5 45.5 37.1 33.0 0.557

 L152 3 102 3 19 35.0 4480 10.2 102 47.8 52.6 3.59 48.3 28.4 27.2 21.7 0.428
 12.7 24.0 3060 7.20 70.6 48.5 50.3 2.59 33.8 29.0 24.9 21.9 0.440
 9.5 18.2 2330 5.58 54.1 49.0 49.0 2.02 25.9 29.5 23.7 22.1 0.446

 L127 3 76 3 12.7 19.0 2420 3.93 47.4 40.1 44.2 1.06 18.5 20.9 18.9 16.3 0.357
 9.5 14.5 1850 3.06 36.4 40.6 42.9 0.837 14.3 21.3 17.7 16.4 0.364
 6.4 9.80 1250 2.12 24.7 41.1 41.7 0.587 9.83 21.7 16.5 16.6 0.371

 L102 3 76 3 12.7 16.4 2100 2.09 30.6 31.5 33.5 0.999 18.0 21.8 20.9 16.1 0.542
 9.5 12.6 1600 1.64 23.6 32.0 32.3 0.787 13.9 22.2 19.7 16.2 0.551
 6.4 8.60 1090 1.14 16.2 32.3 31.0 0.554 9.59 22.5 18.4 16.2 0.558

 L89 3 64 3 12.7 13.9 1770 1.35 23.1 27.4 30.5 0.566 12.4 17.8 17.8 13.5 0.485
 9.5 10.7 1360 1.07 17.9 27.9 29.2 0.454 9.65 18.2 16.6 13.6 0.495
 6.4 7.30 929 0.753 12.3 28.4 27.9 0.323 6.72 18.6 15.4 13.7 0.504

 L76 3 51 3 12.7 11.5 1450 0.799 16.4 23.4 27.4 0.278 7.70 13.8 14.7 10.8 0.413
 9.5 8.80 1120 0.641 12.8 23.8 26.2 0.224 6.03 14.1 13.6 10.8 0.426
 6.4 6.10 768 0.454 8.87 24.2 24.9 0.162 4.23 14.5 12.4 10.9 0.437

 L64 3 51 3 9.5 7.90 1000 0.380 8.95 19.5 21.0 0.214 5.92 14.6 14.7 10.6 0.612
 6.4 5.40 684 0.273 6.24 19.9 19.8 0.155 4.15 15.0 13.5 10.7 0.624
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A
absolute system of units, 5–8
abstract science, 2
accelerations, 17
actions on free-bodies, 133
actual deformation, 381, 383
addition

of concurrent forces in space, 46–48
of couples, 97
of forces by summing x and y 

components, 29–30
parallelogram law of, 68
of vectors, 18–20

AISC design, 660
algebraic expression, 34
algebraic sum of angle of twist, 438
allowable load, 302, 337
allowable normal stress, 547
allowable shearing stress, 547
allowable stress, 325, 662
allowable stress design, 326, 659
aluminum

Alloy 2014-T6, 661
Alloy 6061-T6, 661
columns, 661–662
stress and strain, 349

American standard beam (S-beam), 544
analysis and design of beams for 

bending, 501
about generally, 502–504
design of prismatic beams for bending, 

514–527
load, shear and bending moment, 

514–520
review problems, 533–535
shear and bending-moment diagrams, 

505–509
summary, 531–532

analysis of structures
about generally, 228–229
analysis of a frame, 248–249
analysis of trusses by the method of 

joints, 232–234
analysis of trusses by the method of 

sections, 240–241
definition of a truss, 229–230

analysis of structures—Cont.
frames which cease to be rigid when 

detached from their supports, 
249–254

joints under special loading 
conditions, 234–240

machines, 260–263
possessing statically indeterminate 

reactions, 138
review problems, 274–275
simple trusses, 231
structures containing multiforce 

members, 248
summary, 271–273
trusses made of several simple trusses, 

241–244
analysis of trusses, 271
angle formed by two given vectors, 85
angle of friction, 170–171, 181
angle of kinetic friction, 170, 182
angle of neutral surface with horizontal 

plane, 484
angle of repose, 170
angle of static friction, 170
angle of twist, 411, 423–427, 438
anisotropic materials, 351
applied forces

direction of, 172
magnitude of, 172

applied science, 2
arbitrary horizontal axis, 451
Archimedes, 2
area of surface of revolution, 204
Aristotle, 2
associative property, 71, 84
associative vector addition, 20
average shearing stress, 313, 542, 565
average stress, 335
average value of stress, 303
axial loading, 335, 344–405
axisymmetric shafts, 411
axisymmetric vessels, 592

B
Baltimore trusses, 231
basic concepts, 2–3

Index

695

basic units, 5
Baushinger effect, 353
beams

carrying a distributed load, 635
deformations of, under transverse 

loading, 634
elastic flexure formula, 452
minimum required depth of, 526
reverse loading, 502

bearing shear, 336
bearing stresses, 302, 307, 311, 313, 336
bearing surfaces, 306, 336
bending, 493. See also pure bending
bending and twisting, 556
bending-moment, 446, 506

maximum, 527
maximum absolute value of, 526

bending-moment curve, 517
bending-moment diagrams, 504, 

518–520, 531, 532
bending of members made of several 

materials, 461–467
body of revolution, 203
boundary conditions, 609, 634
bound vector, 17
box beam, 556
breaking strength, 348
brittle materials, 344, 348, 397
brittle state, 349
buckling, 392, 642, 652
building codes, 327

C
cantilever beams, 606, 607–608, 609, 

634, 635
center of gravity

of composite body, 222, 223
defined, 67
force of gravity on, 188
of homogeneous wire of uniform cross 

section, 221
of three-dimensional body, 

213–214, 223
of two-dimensional body, 188–189, 221

centimeter (cm), 7
centric axial loading, 335

Appendices showing properties of materials, shapes and beam deflections begin on page 675.
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centric loads, 445, 471
centroidal axis, 287
centroidal moment of inertia, 558
centroidal polar moment of inertia, 437
centroid(s)

of an area, 188, 190, 221
of areas and lines, 190–191
of common shapes and volumes, 215
of common shapes of areas, 193, 194
determination of, by integration, 222
of a line, 191, 221
of three-dimensional shapes, 223
of transformed sections, 463
of a volume, 213–214, 218–220, 223

centroids and center of gravity
about generally, 188
center of gravity of a three-

dimensional body, 213–214
center of gravity of a two-dimensional 

body, 188–189
centroid of a volume, 213–214, 218–220
centroids of areas and lines, 190–191
composite bodies, 214–217
composite plates and wires, 194–198
determination of centroids by 

integration, 201–203
distributed loads on beams, 210–212
first moments of areas and lines, 

191–194
review problems, 224–225
summary, 221–223
theorems of Pappus-Guldinus, 

203–207
circular hole, 394, 401
circular permutation, 87
circular shafts

deformation in, 437
distribution of shearing strains, 409
shearing strain in, 437
shearing stresses in, 437
in torsion, 408

clockwise rotation of force, 585
coefficient of kinetic friction, 168, 181
coefficient of static friction, 168, 181

for dry surfaces, 169
value of, 172

coefficient of thermal expansion, 368, 399
coefficients of friction, 167–169
collars on frictionless rods, 134
column failure phenomena, 658
columns

about generally, 641
aluminum, 661–662
critically loaded, 671
design of columns under a centric 

load, 641

columns—Cont.
 effective length of, 642, 648
effective slenderness length of, 648
Euler’s formula for pin-ended 

columns, 641
Euler’s formula with other end 

conditions, 641
intermediate height, 658
long, 658
most efficient design, 652
rectangular cross section, 662
review problems, 672–674
short, 658
slenderness ratio in, 646
stability of structures, 641
structural steel, 660
summary, 670–671
wood, 662–663

column stability factor, 662
commutative property, 70

scalar products, 84, 87
commutative vector addition, 18
completely constrained rigid bodies, 138
completely constrained trusses, 242, 272
components, 21, 58
components of a force, 58
components of area, 196
composite area moments of inertia, 296
composite bodies, 214–217
composite materials, 461
composite members, 446
composite plates and wires, 194–198
compound trusses, 242, 272
compressible fluids, 2
compression, 69, 271–272, 449
computation errors, 13
concentrated loads, 410, 502, 515
concrete, 350, 397
concurrent forces, 75, 110, 180
concurrent reactions, 139
connections, 134
connections for a two-dimensional 

structure, 134–135
constant of gravitation, 4
constants of integration, 613, 614
continuity, 612
conversion of units, 10–11
coplanar forces, 59, 111
coplanar vectors, 20
Coulomb friction, 167
counterclockwise rotation, 73
counterclockwise rotation of force, 585
couple(s). See also force-couple systems

addition of, 97
defined, 66
equivalent, 95–97, 125

couple(s)—Cont.
moment of, 94
represented by vectors, 97–98

couple vectors, 98, 111, 125
creep, 352
critical load, 642, 670. See also Euler’s 

formula
critically loaded columns, 671
critical stress, 646
cross product, 70
cross section, 481
cross-section properties, 474, 488
cubic meter, 7
current line of action, 150
curvature of a member, 494
curvature of neutral surface, 452
curved surface, 565
cylindrical body of a tank, 594
cylindrical pressure vessels, 601

D
d’Alembert, Jean, 2
dead load, 327
decimeter (dm), 7
deflection

maximum, 618
slope and, 624–625

deflection of beams
about generally, 606–607
application of superposition to 

statically indeterminate beams, 
626–630

deformation of a beam under 
transverse loading, 607–608

direct determination of the elastic 
curve from the load distribution, 
614–615

equation of the elastic curve, 608–613
method of superposition, 624–625
review problems, 637–639
statically indeterminate beams, 616–620
summary, 634–636

deformable structures, 344
deformation

about generally, 5
of a beam under transverse loading, 634
in circular shafts, 410, 411–413, 437
indeterminate forces and, 391, 447
and internal forces, 69
of members under axial loading, 

355–356
statically indeterminate forces, 616
and stresses, 302
in a symmetric member in pure 

bending, 448–450
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deformation per unit length, 344, 345, 397
derived units, 5
design, 336
design load, 325
design of columns under a centric 

load, 641
design of prismatic beams, 532
design of prismatic beams for bending, 

514–527
design of steel columns, 671
design specifications, 327
deterioration, 326
determinants, 72, 123
determination of centroids by 

integration, 201–203
determination of the moment of inertia of 

an area by integration, 279–281
determination of the shearing stresses in 

a beam, 542–543
diagonal, 17
dimensionless quantity, 346
direct determination of the elastic 

curve from the load distribution, 
614–615

direction, 16, 58
direction cosines, 43, 59
direction of applied forces, 172
discontinuity, 393
displacements, 17
distance between centroidal and neutral 

axes, 473
distributed forces, 187–225

moments of inertia of areas, 275–299
distributed loads, 210–212, 223, 502, 635
distribution of shear strains in circular 

shafts, 409
distribution of shear stresses, 565
distribution of shear stresses in circular 

shafts, 409
distribution of stresses, 410, 437, 485
distributive property, 70, 84
dot products, 84
double integration, 201
double shear, 306, 336
dry friction, 167, 181
ductile materials, 344, 348, 397
ductile state, 349
dynamics, 2

E
eccentrically loaded members, 304
eccentric axial loading, 335, 445–446, 

471–474, 485–488, 495
eccentric loading, 471
eccentric loads, 445

effective length of columns, 642, 648, 671
effective slenderness length of 

columns, 648
Einstein, Albert, 2
elastic behavior, 398
elastic columns, 642
elastic curve

of a beam, 634
defined by different function, 635
differential equation of, 618
equation of, 608
functions defining, 607, 612

elastic deformation under axial 
loading, 398

elastic flexure formula, 452, 493
elastic limit, 352, 398
elastic range

moment of cross-section, 451
neutral stress in, 493
shearing stresses in, 437

elastic section modeling, 504
elastic section modulus, 452, 494
elastic torsion formulas, 409, 414, 437
elastic vs. plastic behavior of a material, 

352–354
empiricism, 2
endurance limit, 355, 398
energy, 17
engineering forces, 20
equal and opposite vectors, 18
equation of the elastic curve, 608–613
equations of equilibrium, 35
equation writing, 12
equilibrium. See also equilibrium of 

rigid bodies
defined, 132
force required for, 171
under more than three forces, 35
of a particle, 34–37, 60
of a particle, defined, 33–34
of a particle in space, 52–53
of a rigid body in three dimensions, 155
of a rigid body in two dimensions, 

136–137
in space, 60
state of, 16
of a three-force body, 150–152
of a two-force body, 149–150

equilibrium equations, 35, 179, 617
equilibrium of rigid bodies

about generally, 132
angles of friction, 170–171
coefficients of friction, 167–169
conditions for, 250
connections for a two-dimensional 

structure, 134–135

equilibrium of rigid bodies—Cont.
free-body diagram, 133
friction forces, 167
laws of dry friction, 167–169
problems involving dry friction, 

171–175
reactions at supports and connections 

for a three-dimensional structure, 
155–161

review problems, 183–185
statically indeterminate reactions, 

138–143
summary, 179–182
in three dimensions, 155
three-force body, 150–152
in two dimensions, 136–137
two-force body, 149–150

equilibrium of three-dimensional 
bodies, 180

equilibrium of two-dimensional 
structures, 132, 179

equipollent systems of vectors, 110
equivalent couples, 95–97
equivalent force-couple system acting at 

a point, 108
equivalent forces, 60, 68
equivalent loading of a beam, 509
equivalent systems of forces, 109–110, 

122, 126. See also rigid bodies
Euler, Leonhard, 646
Euler’s formula

to columns with other end 
conditions, 641

for pin-ended columns, 641, 645, 
646, 670

external and internal forces, 66–67
external forces, 66, 67, 122, 133, 505

F
factor of safety, 302, 325, 326, 337, 660
failure types, 326
fatigue, 344, 354–355, 398
fatigue failure, 354
fatigue limit, 355
fiber-reinforced composite materials, 

351, 398
fillets, 394, 401
Fink trusses, 231
first degree, statically indeterminate 

to, 617
first moment(s)

of the area, 191, 221
of the area or volume, 279
of areas and lines, 191–194
concept, 188
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first moment(s)—Cont.
with respect to neutral axis, 541
of the volume, 214

fixed supports, 134
fixed vector, 17
flexural rigidity, 609, 634
flexural stress, 452
fluid friction, 167
foot (ft), 8
force and couple, 488
force components, 21
force-couple systems, 66, 99, 125
force(s), 10, 302

of action and reaction between bodies 
in contact, 228

defined by its magnitude and two 
points on its line of action, 45–46

of gravity, 6
in the member, 231
of opposite members, 234
on particle, 16–17
in space, 59
on three faces, 574
units of, 5

force triangle, 35, 60
frames

analysis of, 248–249, 273
dismemberment of, 273
as free body, 273
multiforce members, 229
rigid, 273
statically determinate, 273
which cease to be rigid when detached 

from their supports, 249–254
free body, 273
free-body diagrams

about generally, 12
external forces shown in, 67
problems using, 34–37
use of, 60, 132, 133, 179, 307

free vectors, 18, 125
friction forces, 167, 181
frictionless pins, 134
frictionless surfaces, 134, 167
fundamental concepts and principles

of mechanics of deformable bodies, 5
of mechanics of rigid bodies, 2–5

fundamental principles, 12
further discussion of deformations under 

axial loading, 385–387

G
gage length, 347
gage pressure, 592, 601
general eccentric axial loading, 495

generalized Hooke’s law
for homogeneous isotropic 

material, 384
for multiaxial loading, 380–382, 400

general loading stresses, 337
geometric instability, 138
gram (g), 6
graphical analysis, 234
graphical expression, 34
graphical solution, 29
gravitational system of units, 9
gravity, 188
Guldinus, 203

H
Hamilton, 2
hinges, 134
homogeneous flat plate of uniform 

thickness, 221
homogeneous materials, 371, 463
Hooke, Robert, 351
Hooke’s law

angle of twist, 423
deformation of member under axial 

loading, 355
of modulus of elasticity, 351–352, 398
for shearing and stress, 383, 401, 409
for shearing stress and strain, 413, 437
for uniaxial strain, 451

hoop stress, 592
horizontal component to stresses, 547
horizontal shear in a beam, 564
horizontal shear per unit length (shear 

flow). See shear flow
hour (h), 7
hydraulics, 2

I
impending motion, 169, 182
improperly constrained bodies, 139, 180
improperly constrained rigid bodies, 155
inch (in), 9
incompressible fluids, 2
indeterminate beams

deflections to analyze, 634
to the first degree, 636
four or more unknowns, 606
to the second degree, 636

in-plane shearing stress, 578
input forces, 260, 273
integration of centroid coordinates, 222
intermediate height columns, 658
internal forces, 67, 69, 122, 228, 273

internal torque, 425
International System of Units 

(SI Units), 5–6
isotropic materials, 371, 398

J
joints under special loading conditions, 

234–240, 272

K
kilogram (kg), 6
kilometer (km), 6
kilonewton (kN), 6
kilopound (kip), 9
kinetic friction, 181
kinetic-friction force, 168
kinetic units, 5
known external forces, 133

L
Lagrange, Joseph Louis, 2
lamina, 351
laminate, 352
largest allowable force, 474
largest permissible load, 488
largest tensile and compressive 

stresses, 473
lateral strain, 371, 400
law of cosines, 22
law of sines, 22, 35
laws of dry friction, 167–169
length units, 5, 10
linear distribution of stresses, 485
linear nonuniform stress, 472
line of action, 16, 74, 150
liter (L), 8
live load, 327
load, shear and bending moment 

relationship, 514–520, 532
load and resistance factor design 

(LRFD), 327, 337
load and shear, 514
load curve, 517
load factors, 327
loading, 326
loading cycles, 355
long columns, 658
longitudinal normal stress, 449
longitudinal shear

on beam element of arbitrary shape, 
552–554

in curved surface, 565
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longitudinal stress, 592, 593, 601
low-carbon steel, 355
lower yield point, 349
lubricated mechanisms, 167

M
machines, 229, 248, 260–263

analysis of, 273
magnitude, 16, 58

of friction forces, 172
of sense of moment, 74

margin of safety, 325
mass, 17
mass units, 5, 11
matrix, 351
maximum absolute value of bending-

moment, 526
maximum absolute value of stress, 451
maximum bending-moment, 527
maximum deflection, 606, 618
maximum in-plane shearing stress, 600
maximum normal stress, 519
maximum shearing stress, 558, 575–579, 

586, 589
maximum stress, 484
maximum value of normal stress, 

504, 508
maximum value of strain, 449
maximum value of stress, 394
Maxwell’s diagram, 234
mechanics, defined, 2
mechanics of deformable bodies, 5
mechanics of materials, 5
mechanics of rigid bodies, 2–5
megagram (Mg), 6
members made of several materials, 494
meter (m), 6
method of joints, 271
method of problem solution, 11–13
method of sections, 272
method of superposition. See 

superposition method
metric ton, 6
mild steel, 353
mile (mi), 9
minimum allowable section modulus, 

526, 527
minimum required depth of beams, 526
minute (min), 7
mixed triple products of three vectors, 

86–87, 124
modulus of elasticity, 344, 351–352, 

398, 494
modulus of rigidity, 344, 383, 400–401
Mohr, Otto, 582

Mohr’s circle
as alternate solution method, 573
for centric axis loading, 587
construction of, 585, 588, 589
for plane stress, 582–589
for stress, 600
for torsional loading, 587

momenta, 17
moment resultant, 108
moments

of couple, 94
of force about an axis, 66, 87–91, 124
of force about a point, 66, 69, 

73–74, 123
magnitude of sense of, 74
rectangular components of, 123

moments of inertia
of an area, 278–279
of common geometric shapes, 289
of composite area, 288–291, 296
of a given area, 291
of half circles, 291
of rectangles, 291
of rectangular area, 280
with respect to diameter, 283
of transformed sections, 463

moments of inertia of areas
about generally, 278
determination of the moment of 

inertia of an area by integration, 
279–281

moment of inertia of an area, 
278–279

moments of inertia of composite areas, 
288–291

parallel-axis theorem, 287–288
polar moment of inertia, 281
radius of gyration of an area, 282–284
review problems, 297–298
second moment of an area, 278–279
summary, 295–296

more unknowns than equations, 138
multiaxial loading, 380–382, 400
multiforce members, 273

N
narrow rectangular beam, 543, 544
National Design Specification for Wood 

Construction (American Forest & 
Paper Association), 662

necessary conditions vs. sufficient 
conditions, 250

necking, 348
negative shearing strain, 382
negative vectors, 18

neutral axis
in composite materials, 494
defined, 449, 493
in eccentric axial loading, 485, 487
forces on, 279
moment of inertia, 288, 493
normal stress and, 493
through the centroid of the section, 451
transformed sections, 462–463

neutral strain in bending, 493
neutral stress in elastic range, 493
neutral surface, 449
neutral surface curvature, 452
Newton, Isaac, 2
Newtonian mechanics, 2
Newton’s laws, 3

first law, 3, 34, 68
of gravitation, 4
second law, 4
third law, 4, 228, 250

nonlubricated surfaces, 167, 181
nonrigid structure, 250
nonrigid trusses, 242
normal force, 168
normal strain, 344, 345–346, 397, 493
normal stresses

about generally, 302–303
axial loading, 304–305, 335–336
bending couple and, 503
calculation of, 488
determination of, 309, 503
distribution of, 451
due to bending, 531
in elastic range, 493
fundamental equations for, 446
maximum value of, 504, 508

numerical accuracy, 13

O
oblique components, 26
oblique parallelepiped, 382
oblique plane, 302
oblique section, 336
offset method, 349
output forces, 260, 273
overhanging beams, 608, 609, 634
overrigid trusses, 242

P
Pappus, 203
Pappus-Guldinus theorems, 

203–207, 222
parabolic distribution, 544
parallel-axis theorem, 287–288, 296
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parallel forces, 112, 180
parallel line of action, 150
parallelogram law

of addition, 3, 29, 58
vs. polygon rule, 20
and principle of transmissibility, 68
vs. triangle rule, 20
vector addition, 17

parallel reactions, 139
partially constrained rigid bodies, 155, 

180, 181
particle, defined, 3
passing a section, 240, 272
percent elongation, 349
percent reduction in area, 350
permanent set, 344, 352, 398
pin and roller system, 242
pins, 271
plane of stress, 578
plane of symmetry, 214, 223
planes of maximum shearing stress, 

577, 584
plane strain, 390
plane stress

Mohr’s circle for, 582–589
normal stress levels, 390
transformation of, 574–575, 599
transformation of stress and, 572

plastic deformation, 344, 352, 398
point of application, 16, 58, 67
Poisson, Siméon Denis, 371
Poisson’s ratio, 344, 379–380, 400
polar moment of inertia, 278, 281, 295, 

414, 429
polygon rule, 20, 34
position vectors, 73, 108
positive shearing strain, 382
positive vector, 76
pound (lb), 8
pound mass, 11
principal centroidal axis of 

cross-section, 481
principal planes

angle of planes of maximum shearing 
stress to, 577, 584

determination of, 578, 579
and principal stresses, 586, 

599–600
principal planes of stress, 573, 

576, 599
principal SI units, 8
principal stresses, 575–579, 

586, 599
principle of superposition, 381
principle of transmissibility, 3, 66, 

67–69, 122

problems
involving dry friction, 171–175
involving temperature changes, 

368–370
solution methodology, 11–13

production of a scalar and a vector, 20
projection of a vector on an axis, 

85, 124
properties

of cross-sections, 288, 474, 488
geometric, 453
of materials, 344, 351
of rolled-steel shapes, 525
of symmetry, 221

property variations, 326
proportional limit, 351, 398, 481
pure bending

about generally, 278, 444–446
bending of members made of several 

materials, 461–467
deformations in a symmetric member 

in pure bending, 448–450
eccentric axial loading in a plane of 

symmetry, 471–474
general case of eccentric axial loading, 

485–488
review problems, 496–499
stresses and deformations, 451–456
summary, 493–495
symmetric member in pure bending, 

446–447
unsymmetric bending, 479–484

pure science, 2
Pythagorean theorem, 27, 42, 58

Q
quantity per degree, 368

R
radians, 438
radius of curvature, 446, 493
radius of gyration, 296
radius of gyration of an area, 282–284
reactions

concurrent, 139
equivalent to a force and a 

couple, 134
equivalent to force of unknown 

direction and magnitude, 134
equivalent to force with known line of 

action, 134
of machines, 261
parallel, 139
statically indeterminate, 138

reactions—Cont.
of supports and connections, 132, 133, 

135, 157
at supports and connections for a 

three-dimensional structure, 
155–161

reasoning, 13
rectangle, 26
rectangular components

of force, 26–28
of force in space, 42–45
of moment, 123
of moment of force, 75–79
and unit vectors, 26, 58
of vector product, 122

rectangular cross section
columns, 662
shearing stresses in beams with, 565

rectangular moments of inertia, 280, 295
rectangular parallelepiped, 380
reduction

of a system of forces, additional, 
110–116, 126

of a system of forces to a force couple 
system, 125

of system of forces to one force and 
one couple, 108–109

redundant members, 242
redundant reactions, 365
reinforced concrete beams, 464
relative displacement, 357
relative motion, 172, 182
relativistic mechanics, 3
repeated loadings, 354–355
resistance factor, 327
resolution of a force into 

components, 21–23
resolution of given force into force and 

couple, 98–101
resolving force components, 21
resultant

of forces in space, 60
of several concurrent forces, 20–21
of several of coplanar forces, 59
of the system, 66
of two forces, 16–17, 58

resultant couple, 66, 110
reverse loading, 502
right-handed triad, 69, 122
right-hand rule, 69, 71
rigid bodies

about generally, 66
addition of couples, 97
completely constrained, 138
couples can be represented by 

vectors, 97–98
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rigid bodies—Cont.
defined, 66
equipollent systems of vectors, 110
equivalent couples, 95–97
equivalent forces, 60
equivalent systems of forces, 109–110
external and internal forces, 66–67
external forces on, 67
finite rotation of, 18–19
further reduction of a system of forces, 

110–116
improperly constrained, 155
mechanics of, 2
mixed triple product of three vectors, 

86–87
moment of a couple, 94
moment of a force about a given axis, 

87–*91
moment of a force about a point, 

73–74
partially constrained, 155
principle of transmissibility, 67–69
rectangular components of the 

moment of a force, 75–79
reduction of a system of forces to one 

force and one couple, 108–109
resolution of a given force into a force 

at O and a couple, 98–101
review problems, 127–129
scalar product of two vectors, 84–86
summary, 122–126
Varignon’s theorem, 75
vector product of two vectors, 69–71
vector products in terms of 

rectangular components, 71–72
rigid body

defined, 3
equilibrium of, 250
forces acting at only three points, 150
forces acting at only two points, 150

rigid frames, 250, 273
rigid structures, 344
rigid trusses, 231, 242, 271, 272
rockers, 134
rolled-steel beams, 524, 532
rolled-steel shape properties, 525
rollers, 134
rotation of the coordinate axis, 572
rotation reactions, 155
rough surfaces, 134, 167

S
Saint-Venant, Adhémar Barré de, 393
Saint-Venant’s principle, 391–393, 401, 

412, 472, 485, 606

scalar components, 27, 58
scalar product(s)

associative property, 84
commutative property, 84, 87
distributive property, 84
of two vectors, 84–86, 123

scalars, 17
second (s), 6, 8
second degree, 617
second moment, 279
second moment of an area, 278–279
section modulus, 526
sense, 16–17
sense of friction force, 172
shear, 305
shear and bending-moment diagrams, 

505–509
shear and bending-moment 

relationship, 515
shear center, 556
shear curve, 516, 517
shear diagrams, 504, 518, 520, 526, 527, 

531, 532
shear flow, 539, 541, 556, 565
shearing forces, 305
shearing moments, 506
shearing strains

in circular shafts, 413, 437
deformations, 382–384, 400
distribution of, in circular shafts, 

409, 412
negative, 382
positive, 382

shearing stresses. See also Hooke’s law; 
maximum shearing stress

about generally, 302
allowable, 547
average, 313, 542, 565
in beams, 565
calculation of, 431
in circular shafts, 437
in common types of beams, 546–547
concept of, 305–306
determination of, 310
determination of, in a beam, 542–543
in elastic range, 437
examples of, 336
forces creating, 304–305
in-plane, 578
maximum, 417
minimum, 415, 417
in pins, 313
in shaft, 414
and shear flow, 558
shear force and bending couple 

effects, 503

shearing stresses—Cont.
in thin-walled members, 

554–558, 565
and transverse forces, 335–336

shearing stresses in beams and thin-
walled members

about generally, 538–540
common types of beams, 546–547
determination of the shearing stresses 

in a beam, 542–543
longitudinal shear on a beam element 

of arbitrary shape, 552–554
review problems, 566–569
shear on the horizontal face of beam 

element, 540–542
summary, 564–565
thin-walled members, 554–558

shear modulus, 383
shear on the horizontal face of a beam 

element, 540–542
shear stress distribution, 565
short columns, 658
short links and cables, 134
SI equivalents, 12
simple trusses, 231, 271
simply supported beams, 606, 609, 

634, 635
single concentrated loads, 210
single integral, 222
single shear, 306, 336
six unknowns, 155
skew axis, 124
slenderness ratio, 671
slenderness ratio in columns, 646
sliding vectors, 18, 68
slip, 352
slope

of beams, 608, 612
and deflection, 624–625

slug, 9, 11
space diagram, 34
Specification for Structural Steel 

Buildings of the American 
Institute of Steel Construction 
(AISC), 660

spherical cap, 594
spherical pressure vessels, 601
square meter, 7
stability

of elastic columns, 642
failures of, 326
of members in compression, 312
of structures, 641

stable bodies, 138
stable system, 642–643
standard pound, 9
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statement of a problem, 12
statically determinate beams, 502–503, 

531, 609
statically determinate frames, 250, 273
statically determinate reactions, 138
statically determinate structures, 5
statically determinate trusses, 242, 272
statically equivalent loading, 393
statically indeterminate beams

boundary conditions for, 609, 634
deflection of, 616–620
of the first degree, 635–636
loading of, 502–503, 531
by superposition, 636

statically indeterminate condition, 
344, 447

statically indeterminate distribution of 
stresses, 304, 410, 437

statically indeterminate problems, 
364–367, 399

statically indeterminate reactions, 
138–143, 180, 181

analysis of structures possessing, 138
reactions, 155

statically indeterminate shafts, 409, 
427–431, 438

statically indeterminate structures, 
5, 250

statically indeterminate to the first 
degree, 617

statically indeterminate to the second 
degree, 617

statically indeterminate trusses, 242
static friction, 181
static-friction force, 168
statics, 2
statics of particles

about generally, 16
addition of concurrent forces in 

space, 46–48
addition of forces by summing x and y 

components, 29–30
addition of vectors, 18–20
equilibrium of a particle, 33–34
equilibrium of a particle in space, 

52–53
force defined by its magnitude and 

two points on its line of 
action, 45–46

force on particle, 16–17
free-body diagrams, 34–37
Newton’s first law of motion, 34
problems involving the equilibrium of 

a particle, 34–37
rectangular components of a force, 

26–28

statics of particles—Cont.
rectangular components of a force in 

space, 42–45
resolution of a force into components, 

21–23
resultant of several concurrent forces, 

20–21
resultant of two forces, 16–17
review problems, 61–63
summary, 58–60
unit vectors, 42–45
vectors, 17–18

steel. See also structural steel
design of columns, 671
low-carbon steel, 355
mild steel, 353
properties of rolled-steel shapes, 525
rolled-steel beams, 524, 532

strain. See also Hooke’s law; normal 
strain; shearing strains; stress and 
strain; stress-strain diagram

about generally, 345, 397
distribution of, 392
lateral, 371, 400
maximum value of, 449
plane, 390
thermal, 368
uniaxial, 451

strain-hardening property, 349, 354
stress and strain, 397, 402–405

about generally, 344–345
deformations of members under axial 

loading, 355–356
distribution under axial loading, 

391–393
elastic versus plastic behavior of a 

material, 352–354
fatigue, 354–355
further discussion of deformations 

under axial loading, 385–387
generalized Hooke’s law, 380–382
Hooke’s law, 351–352
modulus of elasticity, 351–352
multiaxial loading, 380–382
normal strain under axial loading, 

345–346
Poisson’s ratio, 379–380
problems involving temperature 

changes, 368–370
repeated loadings, 354–355
Saint-Venant’s principle, 391–393
shearing strain, 382–384
statically indeterminate problems, 

364–367
stress and strain distribution under 

axial loading, 391–393

stress and strain—Cont.
stress concentrations, 393–395
stress-strain diagram, 346–350
summary, 397–401

stress components, 337
stress-concentration factor, 394, 401
stress concentrations, 345, 393–395, 401
stress concept

about generally, 302
application to the analysis of a simple 

structure, 307–312
axial loading, 303–305
bearing stress in connections, 306–307
components of stress, 321–324
design, 312–319
design considerations, 324–329
normal stress, 303–305
review problems, 338–343
shearing stress, 305–306
stresses in the members of a structure, 

302–303
stress on an oblique plane under axial 

loading, 320–321
stress under general loading, 321–324
summary, 335–337

stress(es). See also bearing stresses; 
Hooke’s law; normal stresses; 
principal stresses; shearing 
stresses; stress and strain; stress 
concept; transformation of stress

about generally, 5, 302
allowable, 325, 662
allowable normal, 547
allowable shearing, 547
allowable stress design, 326, 659
average, 303, 335
average shearing, 313, 542, 565
on a beam element, 564
and deformations, 451–456
due to bending couples, 485
due to centric load, 485
flexural, 452
under general loading, 337
hoop, 592
largest tensile and compressive, 473
linear distribution of, 485
linear nonuniform, 472
longitudinal, 449, 592
maximum absolute value of, 451
maximum value of, 394
neutral, 493
on oblique section, 336
principal planes of, 573, 576, 599
in a shaft, 409–410
statically indeterminate distribution 

of, 304, 410, 437
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stress(es)—Cont.
in thin-walled pressure vessels, 

592–594
torsion, 409–410, 413–418
ultimate, 337
ultimate normal, 325
ultimate shearing, 325
uniform distribution of, 304
in welds, 594

stress-strain diagram, 344, 346–350, 397
structural steel, 349

columns, allowable stress design, 660
design specifications, 327
endurance limit, 355
percent reduction in area, 350
S and wide flange beams, 453
stress and strain, 349

structures containing multiforce 
members, 248

subscript definition, 322
subtraction of vectors, 19
sum of three or more vectors, 19
superposition application to statically 

indeterminate beams, 626–630
superposition method, 365, 607, 

624–625, 636
superposition principle, 381, 472, 474, 

482, 483, 485, 488
supports. See also frames; reactions; 

simply supported beams
frictionless pins, 134
frictionless surfaces, 134, 167

surface of revolution, 203
symmetric member in pure bending, 

446–447
symmetry

plane of, 214, 223
properties of, 221
with respect to a center, 192
with respect to an axis, 192

systems of units
basic units, 5
consistent system of units, 5
conversion from one to another, 10–11
derived units, 5
International System of Units 

(SI Units), 5
kinetic units, 5–10

T
temperature change, 399
tensile test, 346
tension, 69, 272, 449
theory of relativity, 2
thermal strain, 368

thin-walled member shearing stress, 565
thin-walled pressure vessels, 573
three coplanar forces, 60
three-dimensional body center of 

gravity, 223
three-dimensional space, 59, 60
three equations for three unknowns, 136
three-force body, 150, 180
three unknowns, 138
timber beams, 524, 532, 539
time units, 5
tip-to-tail fashion, 19
ton, 9
torque

about generally, 408
and angle of twist, 423
largest permissible, 415

torsion
about generally, 408–409
angle of twist, 423–427
circular shafts in, 408
deformations in a circular shaft, 

411–413
review problems, 439–441
statically indeterminate shafts, 

427–431
stresses, 413–418
stresses in a shaft, 409–410
summary, 437–438

torsion shafts, 408
torsion testing machine, 423
total deformation, 371
transformation of plane stress, 

574–575, 599
transformation of stress

about generally, 572–576
maximum shearing stress, 575–579
Mohr’s circle for plane stress, 582–589
principal stresses, 575–579
review problems, 602–603
under rotation of axes, 599
stresses in thin-walled pressure 

vessels, 592–594
summary, 599–601
transformation of plane stress, 574–575

transformed sections
about generally, 446
calculation of, 466
centroids of, 463
members made of several materials, 494
moments of inertia of, 463

translation, 67
translation reactions, 155
transmissibility principle, 67–69
transverse forces, 335
transverse loading, 445, 502, 564, 606

transverse loads, 445
transverse sections, 446, 493
triangle rule, 19
trigonometric solution, 29
trusses

analysis of, 271
completely constrained, 242, 272
definition, 229–230
made of several simple trusses, 

241–244
method of joints analysis of, 232–234
method of sections analysis of, 240–241
nonrigid, 242
rigid, 242, 272
simple, 231, 271
statically determinate, 242, 272
statically indeterminate, 242

0.2 percent rule, 13
two-dimensional body center of 

gravity, 221
two dimension problems, 74, 76, 123
two distinct rigid parts, 250
two-force body, 149, 180
two-force members, 229, 271
two vectors, scalar product(s) of, 

84–86, 123

U
ultimate load, 325, 327, 337
ultimate normal stress, 325
ultimate shearing stress, 325
ultimate strength, 302, 324, 337, 348
ultimate strength in shear, 325
ultimate strength in tension, 325
ultimate stress, 337
undeformable structures, 344
uniaxial forces, 449
uniaxial strain, 451
uniform distributed loads, 502
uniform distribution of stresses, 304
uniform loading, 335
units

of area and volume, 7
conversion of, 10–11
of force, 10
of length, 10
U.S. customary, 8–10, 12

unit vectors, 27, 42–45, 58, 71
unknown external forces, 133
unknown loads, 365
unrestrained rod, 399
unstable bodies, 138
unstable system, 642–643
unsymmetric bending, 479–484
unsymmetric cross-sections, 495
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unsymmetric loading, 446
upper yield point, 349
U.S. customary units, 8–10, 12

V
Varignon, Pierre, 75
Varignon’s theorem, 75
vector addition

associative, 20
commutative, 18

vector components, 27
vector product(s)

rectangular components of, 122
in terms of rectangular components, 

71–72
of two vectors, 69–71, 122
for unit vector pairs, 72

vector quantities, 58
vectors

addition of, 18
defined, 17
subtraction of, 19
sum of three or more, 19

velocities, 17
volume

of body of revolution, 204
centroids of, 223
of three-dimensional shapes, 223
vector representation of, 17

W
weight, 4, 6, 9, 11, 67, 133, 221
weld stresses, 594
wide-flange beams, 452, 544

wood
columns, 662–663
timber beams, 524, 532, 539
timber design, 327

working load, 325

Y
yield strength, 348, 349, 397
yield/yielding, 348, 397
Young, Thomas, 351
Young’s modulus, 351 

Z
zero-force members, 234–235
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Answers to problems with a number set in straight type are given on this and the following pages. Answers to problems set 
in italic are not listed.

CHAPTER 2
 2.1 1391 N a 47.88.
 2.2 906 lb a 26.68.
 2.3 14.3 kN a 19.98.
 2.4 4000 lb a 9.28.
 2.5 32.48.
 2.7 (a) 3660 N. (b) 3730 N.
 2.9 P 5 14.73 lb; R 5 30.2 lb.
 2.10 TAC 5 666 lb; a 5 34.38.
 2.12 43.6 lb a 78.48.
 2.13 1391 N a 47.88.
 2.14 4000 N a 9.28.
 2.16 350-N force: Fx 5 317 N, Fy 5 147.9 N; 

800-N force: Fx 5 274 N, Fy 5 752 N; 
600-N force: Fx 5 2300 N, Fy 5 520 N.

 2.17 80-lb force: Fx 5 69.3 lb, Fy 5 240.0 lb; 
120-lb force: Fx 5 31.1 lb, Fy 5 2115.9 lb; 
150-lb force: Fx 5 2114.9 lb, Fy 5 296.4 lb.

 2.18 145-lb force: Fx 5 100 lb, Fy 5 105 lb; 
200-lb force: Fx 5 192 lb, Fy 5 256 lb.

 2.19 255-N force: Fx 5 225 N, Fy 5 120 N; 
340-N force: Fx 5 2160 N, Fy 5 300 N.

 2.20 Ax 5 25 lb y, Ay 5 60 lb w.
 2.23 (a) 2109 N. (b) 2060 N b 308.
 2.24 1391 N a 47.88.
 2.25 906 lb a 26.68.
 2.26 253 lb d 86.78.
 2.27 425 N a 81.28.
 2.29 (a) 177.9 lb. (b) 410 lb.
 2.31 (a) 48.28. (b) impossible.
 2.32 TAC 5 530 N, TBC 5 350 N.
 2.33 TAC 5 326 lb, TBC 5 265 lb.
 2.34 TAC 5 586 N, TBC 5 2190 N.
 2.35 TAC 5 2860 lb, TBC 5 1460 lb.
 2.36 TAC 5 305 N, TBC 5 514 N.
 2.38 TB 5 16.73 kips, TD 5 14.00 kips.
 2.40 65.2 lb , P , 150 lb.
 2.41 (a) 784 N. (b) 71.08.
 2.42 F 5 2.87 kN a 758.
 2.43 (a) 308. (b) TAC 5 300 lb, TBC 5 520 lb.
 2.45 (a) 358; TAC 5 4.91 kN, TBC 5 3.44 kN.
  (b) 558; TAC 5 TBC 5 3.66 kN.
 2.46 36.0 in.
 2.47 913 N c 82.58.
 2.48 41.98.
 2.49 (a) 2.45 kN. (b) 1.839 kN.
 2.50 50.0 in.
 2.51 (a) 1226 N. (b) 1226 N. (c) 817 N. (d) 817 N. (e) 613 N.
 2.54 75.6 mm.
 2.55 (a) 18.00 lb. (b) 24.0 lb.

 2.56 (a) Fx 5 113.3 N, Fy 5 217 N, Fz 5 252.8 N.
  (b) ux 5 63.18, uy 5 30.08, uz 5 102.28.
 2.57 (a) Fx 5 65.9 N, Fy 5 230 N, Fz 5 181.2 N.
  (b) ux 5 77.38, uy 5 40.08, uz 5 52.88.
 2.58 (a) Fx 5 278.6 lb, Fy 5 282 lb, Fz 5 266.0 lb.
  (b) ux 5 105.28, uy 5 20.08, uz 5 102.78.
 2.59 (a) Fx 5 78.6 lb, Fy 5 282 lb, Fz 5 266.0 N.
  (b) ux 5 74.88, uy 5 20.08, uz 5 102.78.
 2.60 (a) Fx 5 224 N, Fy 5 2459 N, Fz 5 615 N.
  (b) ux 5 73.78, uy 5 125.08, uz 5 39.88.
 2.62 F 5 721 lb; ux 5 109.48, uy 5 116.38, uz 5 33.78.
 2.63 F 5 950 lb; ux 5 43.48, uy 5 71.68, uz 5 127.68.
 2.64 F 5 48.4 N; ux 5 34.38.
 2.65 uz 5 61.08; Fx 5 105.7 lb, Fy 5 191.5 lb, Fz 5 121.0 lb.
 2.66 (a) Fx 5 199.6 lb, Fz 5 2395 lb; F 5 584 lb.
  (b) uy 5 46.78.
 2.67 (a) Fy 5 654 N, Fz 5 1186 N; F 5 1549 N.
  (b) ux 5 119.08.
 2.69 Cx 5 2300 N, Cy 5 300 N, Cz 5 150 N.
 2.71 (TCA)x 5 2270 lb, (TCA)y 5 180 lb, (TCA)z 5 2276 lb.
 2.72 R 5 940 lb; ux 5 65.78, uy 5 28.38, uz 5 16.48.
 2.73 R 5 623 lb; ux 5 37.48, uy 5 122.08, uz 5 72.68.
 2.75 (a) 54.78 and 125.38. (b) 608 and 1208.
 2.76 TAC 5 21.0 kN, TAD 5 64.3 kN.
 2.77 TAB 5 52.0 kN, TAD 5 85.7 kN.
 2.79 548 N.
 2.80 13.98 kN.
 2.81 9.71 kN.
 2.82 TAB 5 4.00 kN, TAC 5 3.67 kN, TAD 5 4.13 kN.
 2.83 2775 lb.
 2.84 888 lb.
 2.86 TDA 5 119.7 lb, TDB 5 TDC 5 98.4 lb.
 2.87 TDA 5 7.21 lb, TDB 5 TDC 5 6.50 lb.
 2.89 (a) P 5 2(25.2 kN) i.
  (b) TAB 5 2.25 kN, TAC 5 16.65 kN.
 2.90 TAB 5 30.8 lb, TAC 5 62.5 lb.
 2.91 TAB 5 81.3 lb, TAC 5 22.2 lb.
 2.92 (a) P 5 120.0 N.
  (b) TAB 5 234 N, TAC 5 174.0 N.
 2.93 (a) P 5 135.0 N.
  (b) TAB 5 156.0 N, TAC 5 261 N.
 2.95 1372 N.
 2.97 (a) P 5 305 lb.
  (b) TAD 5 40.9 lb, TBAC 5 117.0 lb.
 2.98 TDA 5 103.7 N, TDB 5 51.8 N, TDC 5 89.8 N.
 2.99 (a) 6.30 lb. (b) 7.20 lb.
 2.101 TCA 5 1192 lb, TCB 5 898 lb.
 2.103 320 mm.
 2.104 (a) 2450 N. (b) 2220 N.
 2.105 168.3 lb d 13.58. 

Answers to Problems
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 2.106 52.2 lb # P # 176.3 lb.
 2.108 TAC 5 134.6 lb, TBC 5 110.4 lb.
 2.110 1210 N.
 2.112 uz 5 61.08; Fx 5 507 N, Fy 5 919 N, Fz 5 581 N.
 2.113 R 5 1171 N; ux 5 89.58, uy 5 36.28, uz 5 126.28.
 2.115 TDA 5 14.33 lb, TDB 5 TDC 5 12.92 lb.

CHAPTER 3
 3.1 115.6 lb ? in i.
 3.2 23.28.
 3.3 P 5 400 N; a 5 22.68.
 3.5 (a) 88.8 N ? m i. (b) 237 N d 53.18.
 3.6 (a) 88.8 N ? m i. (b) 395 N z. (c) 279 N d 458.
 3.7 (a), (b), and (c) 167.0 lb ? in l.
 3.9 140.0 N ? m l.
 3.10 61.6 N ? m l.
 3.12 520 lb.
 3.14 (a) 223i 2 11j 1 2k. (b) 230j 1 18k. (c) 0.
 3.15 (a) and (b) 2(2160 lb ? in)i 1 (4320 lb ? in)j 1 (360 lb ? in)k.
 3.16 (36 N ? m)i 1 (24 N ? m)j 1 (32 N ? m)k.
 3.17 (a) 2(7200 lb ? ft)i 2 (1600 lb ? ft)j 1 (3200 lb ? ft)k.
  (b) (5600 lb ? ft)j 1 (3200 lb ? ft)k.
 3.18 (a) 2(1200 lb ? ft)j 1 (2400 lb ? ft)k.
  (b) (5400 lb ? ft)i 1 (4200 lb ? ft)j 1 (2400 lb ? ft)k.
 3.19 (7.50 N ? m)i 2 (6.00 N ? m)j 2 (10.39 N ? m)k.
 3.20 (492 lb ? ft)i 1 (144 lb ? ft)j 2 (372 lb ? ft)k.
 3.23 4.86 ft.
 3.24 207 mm.
 3.25 P ? Q 5 0; P ? S 5 211; Q ? S 5 2.
 3.27 (a) 59.08. (b) 720 N.
 3.28 (a) 70.58. (b) 300 N.
 3.29 63.68.
 3.31 (a) and (b) 26.88.
 3.33 P ? (Q 3 S) 5 21; (P 3 Q) ? S 5 21; (S 3 Q) ? P 5 1.
 3.34 26.
 3.35 Mx 5 24.0 kN ? m, My 5 216.00 kN ? m, 

Mz 5 238.4 kN ? m.
 3.39 Mx 5 21598 N ? m, My 5 959 N ? m, Mz 5 0.
 3.40 Mx 5 21283 N ? m, My 5 770 N ? m, Mz 5 1824 N ? m.
 3.41 61.5 lb.
 3.42 6.23 ft.
 3.43 (a) 2299 lb ? in. (b) 212 lb ? in.
 3.44 (a) 144.0 lb ? in. (b) 127.1 lb ? in.
 3.46 124.2 N ? m.
 3.48 2176.6 lb ? ft.
 3.49 (a) 271 N. (b) 390 N. (c) 250 N.
 3.50 280 lb ? in i.
 3.51 (a) 7.33 N ? m l. (b) 91.6 mm.
 3.52 (a) 26.7 N. (b) 50.0 N. (c) 23.5 N.
 3.53 (a) 1170 lb ? in l.
  (b)  With pegs A and D: d 53.18 at A, a 53.18 at D; 

with pegs B and C: c 53.18 at B, b 53.18 at C.
  (c) 70.9 lb.
 3.54 d 5 1.125 in.
 3.56 M 5 13.00 lb ? ft; ux 5 67.48, uy 5 90.08, uz 5 22.68.
 3.57 M 5 3.22 N ? m; ux 5 90.08, uy 5 53.18, uz 5 36.98.
 3.58 M 5 2.72 N ? m; ux 5 134.98, uy 5 58.08, uz 5 61.98.
 3.59 M 5 2150 lb ? ft; ux 5 113.08, uy 5 92.78, uz 5 23.28.
 3.61 (a) 60.0 lb w, 450 lb ? in l.
  (b) B 5 100.0 lb z; C 5 100.0 lb y.

 3.63 (a) 960 N a 608, 28.9 mm to the right of O.
  (b) 960 N a 608, 50.0 mm below O.
 3.65 (a) 300 N d 308, 75.0 N ? m l.
  (b) B 5 800 N d 308, C 5 500 N a 308.
 3.66 (a) P 5 60.0 lb a 508; 3.24 in. from A.
  (b) P 5 60.0 lb a 508; 3.87 in. below A.
 3.67 2(250 kN)j; (15.00 kN ? m)i 1 (7.50 kN ? m)k.
 3.68 (4.00 kips)i; 2(3.18 kip ? in)j 2 (16.00 kip ? in)k.
 3.71 F 5 2(2.40 kips)j 1 (1.000 kip)k, M 5 (15.00 kip ? ft)i 2 

(10.00 kip ? ft)j 2 (24.0 kip ? ft)k.
 3.72 F 5 2(173.2 N)j 1 (100.0 N)k, M 5 (7.50 N ? m)i 2 

(6.00 N ? m)j 2 (10.39 N ? m)k.
 3.73 Loadings c and f.
 3.74 Loading e.
 3.75 (a) 2.00 m from front axle.
  (b) 50.0 kN located 2.80 m from front axle.
 3.76 1300 lb w at 8.69 ft to the right of A.
 3.77 (a) 0.600 m. (b) 1.000 m. (c) 1.800 m.
 3.80 (a) 1562 N b 50.28, 300 N ? m l.
  (b) 250 mm to the right of C and 300 mm above C.
 3.81 (a) 29.9 lb b 23.08.
  (b) 1.70 in. to the right of A and 3.64 in. above C.
 3.82 (a) 100.0 lb c 36.98; at A.
  (b) 100.0 lb c 36.98; 8.00 in. to the right of B on BC.
  (c) 100.0 lb c 36.98; 3.00 in. below C on CD.
 3.83 (a) 3.80 kN y; 22.8 kN ? m l.
  (b) 3.80 kN y; 6.00 m below DE.
 3.84 329 kN c 61.78; 6.82 m to the right of A.
 3.85 2(100 lb)i 2 (900 lb)j 2 (200 lb)k; 2(1200 lb ? ft)i 2 

(600 lb ? ft)k.
 3.87 R 5 385 N; ux 5 141.28, uy 5 128.68, uz 5 86.38.
  M 5 16.50 N ? m; ux 5 100.58, uy 5 35.18, uz 5 56.98.
 3.89 (a) 608. (b) (20.0 lb)i 2 (34.6 lb)j; (520 lb ? in)i.
 3.90 R 5 (20.0 lb)i 2 (34.6 lb)j; MD

R 5 (520 lb ? in)i 2 
(500 lb ? in)k.

  (a) neither loosen nor tighten. (b) tighten.
 3.91 500 kN w; 2.56 m from AD and 2.00 m from DC.
 3.92 70.0 kips w; at x 5 2.50 ft, z 5 20.619 ft.
 3.95 200 N at y 5 63.4 mm, z 5 200 mm.
 3.96 72.2 N.
 3.97 (a) 2(1200 lb ? in)i 1 (4800 lb ? in)j 1 (7200 lb ? in)k.
  (b) 3090 lb ? in.
 3.99 Mx 5 78.9 kN ? m, My 5 13.15 kN ? m, 

Mz 5 29.86 kN ? m.
 3.101 23.0 N ? m.
 3.102 (a) 20.0 lb. (b) 16.00 lb. (c) 12.00 lb.
 3.103 (a) 500 N c 608; 86.2 N ? m i.
  (b) A 5 689 N x, B 5 1150 N c 77.48.
 3.105 (a) 2(75 lb)j. (b) x 5 23.20 in., z 5 0.640 in.
 3.106 12.00 kips w at 17.33 ft to the right of A.
 3.108 P 5 72.1 kN w at x 5 4.16 m, z 5 2.77 m.

CHAPTER 4
 4.1 A 5 200 lb w, B 5 200 lb x.
 4.2 (a) 15.21 kN x, (b) 5.89 kN x.
 4.3 8.40 lb x.
 4.5 1.25 kN # Q # 27.5 kN.
 4.6 1.50 kN # Q # 9.00 kN.
 4.7 60 lb # P # 560 lb.
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 4.9 T 5 29.9 kips, A 5 33.0 kips a 31.58.
 4.10 (a) W cos uycos u2. (b) 11.74 lb.
 4.12 (a) 400 N. (b) 458 N a 49.18.
 4.14 (a) 125 lb w. (b) 325 lb a 22.68.
 4.15 600 lb.
 4.16 (a) A 5 4.27 kN d 20.68; B 5 4.50 kN x.
  (b) A 5 1.50 kN w; B 5 6.02 kN b 48.48.
  (c) A 5 2.05 kN d 47.08; B 5 5.20 kN b 608.
 4.17 TBE 5 196.2 N, A 5 73.6 N y, D 5 73.6 N z.
 4.18 (a) B 5 920 N d 53.18, C 5 80 N d 53.18, D 5 600 N x.
  (b) rollers 1 and 3.
 4.19 (a) 128.0 lb. (b) A 5 80.0 lb x, B 5 64.0 lb y.
 4.20 11.06 in.
 4.23 (a) 11.20 kips. (b) |ME| 5 28.8 kip ? ft.
 4.24 (a) A 5 5540 N a 87.38, C 5 683 N d 67.48.
  (b) A 5 4900 N x, MA 5 1890 N ? m l.
  (c)  A 5 6740 N a 83.68, MA 5 3510 N ? m i, C 5 1950 N 

a 67.48.
 4.25 (a)  1, 3, 4, 7, and 8 are completely constrained. 

2, and 5 are improperly constrained. 
6 is partially constrained.

  (b)  Reactions for 1, 3, 6, and 7 are statically determinate.
Reactions for 2, 4, 5, and 8 are statically indeterminate.

  (c)  Equilibrium maintained for any loading for 1, 3, 4, 7, 8.
Equilibrium maintained for given loading for 6. 
No equilibrium for 2 and 5.

 4.26 (a)  1, 2, 3, 5, and 9 are completely constrained. 
4 and 6 are partially constrained. 
7 and 8 are improperly constrained.

  (b)  Reactions for 1, 2, 4 and 5 are statically determinate.
Reactions for 6 are determined from dynamics.
Reactions for 3, 7, 8, and 9 are statically indeterminate.

  (c)  Equilibrium maintained for any loading for 1, 2, 3, 5, and 
9. Equilibrium maintained for given loading for 4.
No equilibrium for 6, 7, and 8.

 4.27 B 5 501 N b 56.38; C 5 324 N c 31.08.
 4.28 A 5 2230 N b 7.78; B 5 2210 N y.
 4.29 A 5 124.8 lb a 15.98; T 5 147.5 lb.
 4.31 A 5 185.3 N a 62.48; T 5 92.8 N.
 4.32 (a) 400 N. (b) 458 N a 49.18.
 4.33 A 5 346 N a 60.68; B 5 196.2 N b 308.
 4.34 (a) 125 lb w. (b) 325 lb a 22.68.
 4.37 (a) 36.98. (b) A 5 400 N x, E 5 300 N z.
 4.38 A 5 97.6 lb a 50.28; B 5 62.5 lb z.
 4.40 (a) 59.28. (b) TAB 5 0.596 W, TCD 5 1.164 W.
 4.42 A 5 170.0 lb a 28.18; B 5 150.0 lb z.
 4.43 10.00 in.
 4.44 A 5 170.0 N b 33.98; C 5 160.0 N a 28.18.
 4.45 A 5 170.0 N d 56.18; C 5 300 N a 28.18.
 4.46 a 5 73.98; TA 5 4160 lb, TB 5 2310 lb.
 4.47 A 5 7.07 lb y; B 5 40.6 lb b 80.08.
 4.48 A 5 225 N a 308; T 5 225 N.
 4.50 (a) 4P 2 3Q. (b) 30.0 lb.
 4.51 A 5 (120.0 N)j 1 (133.3 N)k; D 5 (60.0 N)j 1 (166.7 N)k.
 4.52 A 5 (125.3 N)j 1 (137.8 N)k; D 5 (62.7 N)j 

1 (172.2 N)k.
 4.53 A 5 (24.0 lb)j 2 (2.31 lb)k; B 5 (16.00 lb)j 2 (9.24 lb)k; 

C 5 (11.55 lb)k.
 4.54 (a) 96.0 lb. (b) A 5 (2.4 lb)j; B 5 (214 lb)j.
 4.56 (a)  1039 N. (b) C 5 (346 N)i 1 (1200 N)j; D 5 2(1386 N)i 2 

(480 N)j.

 4.57 TA 5 30.0 lb, TB 5 10.00 lb, TC 5 40.0 lb.
 4.59 TA 5 24.5 N. TB 5 73.6 N, TC 5 98.1 N.
 4.61 (a) TBC 5 975 lb, TBD 5 700 lb.
  (b) A 5 (1500 lb)i 1 (425 lb)j.
 4.62 (a) TBC 5 1950 lb, TBD 5 1400 lb.
  (b) A 5 (3000 lb)i.
 4.64 (a) TDE 5 TDF 5 1.284 kN.
  (b) A 5 2(3.93 kN)i 1 (7.57 kN)j.
 4.65 A 5 2(56.3 lb)i; B 5 2(56.3 lb)i 1 (150.0 lb)j 2 (75.0 lb)k 

FCE 5 202 lb compression.
 4.66 (a) 2.40 kN. (b) 20.600 kN.
 4.67 T 5 37.5 lb; A 5 (36.3 lb)i 1 (65.6 lb)j; B 5 (75.0 lb)j.
 4.70 P 5 118.9 N; A 5 (42.9 N)i 2 (69.9 N)k; B 5 (61.1 N)i 1 

(196.2 N)j 1 (84.7 N)k.
 4.71 FCE 5 202 lb compression;
  B 5 2(112.5 lb)i 1 (150.0 lb)j 2 (75.0 lb)k; 

MB 5 2(225 lb ? ft)j.
 4.72 FCD 5 19.62 N compression; B 5 2(19.22 N)i 1 (94.2 N)j; 

MB 5 2(40.6 N ? m)i 2 (17.30 N ? m)j.
 4.73 TBD 5 780 lb, TBE 5 650 lb, TCF 5 650 lb; A 5 (1920 lb)i 2 

(300 lb)k.
 4.74 A 5 (600 N)j 2 (750 N)k; B 5 (900 N)i 1 (750 N)k; 

C 5 2(900 N)i 1 (600 N)j.
 4.75 Equilibrium; 172.6 N c 25.08.
 4.76 Moves down; 279 N b 30.08.
 4.77 Moves up; 36.1 lb c 30.08.
 4.78 Equilibrium; 36.3 lb c 30.08.
 4.80 5.77 lb.
 4.81 P 5 W sin(a 1 fs); u 5 a 1 fs.
 4.82 (a) 116.2 N a 36.38. (b) 46.5 N a 13.78.
 4.83 (a) 403 N. (b) 229 N.
 4.85 (a) 206 N y. (b) 177.6 N y. (c) 72.5 N y.
 4.87 (a) 58.18. (b) 166.4 N.
 4.88 (a) 138.6 N. (b) Slide.
 4.90 40.0 lb y.
 4.91 0.955 lb.
 4.93 (a) 33.48. (b) 0.287 W.
 4.94 Equilibrium; 0.250 W y.
 4.95 No equilibrium.
 4.97 Wr ms (1 1 ms)y(1 1 ms

2)
 4.98 (a) 0.400 Wr. (b) 0.464 Wr.
 4.99 30.0 kN # P # 210 kN.
 4.101 (a) A 5 60.0 lb x, B 5 136.1 lb y, C 5 32.2 lb z.
  (b) A 5 0, B 5 120 lb z, C 5 240 lb y.
 4.102 (a) 600 N. (b) A 5 4.00 kN z; B 5 4.00 kN y.
 4.104 (a) 1500 N d 308. (b) 593 N b 308.
 4.105 (a) TB 5 24.0 lb, TB¿ 5 12.00 lb.
  (b)  Ay 5 55.2 lb, Az 5 212.49 lb; Ey 5 33.4 lb, Ez 5 22.50 lb. 

Ax and Ex are indeterminate.
 4.107 (a) A 5 0.745 P b 63.48; D 5 0.471 P a 458.
  (b) A 5 P y; D 5 1.414 P b 458.
  (c) A 5 0.471 P a 458; D 5 0.745 P b 63.48.
  (d) A 5 0.707 P a 458; C 5 0.707 P d 458; D 5 P x.
 4.109 (a) 36.3 N T. (b) 29.7 N z.
 4.110 (a) 8.00 lb. (b) 12.00 lb.

CHAPTER 5
 5.1 x 5 55.4 mm, y 5 93.8 mm.
 5.2 x 5 3.27 in., y 5 2.82 in.
 5.3 x 5 1.045 in., y 5 3.59 in.
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 5.5 x 5 y 5 8.09 in.
 5.6 x 5 y 5 16.75 mm.
 5.7 x 5 262.4 mm, y 5 0.
 5.9 x 5 120.0 mm, y 5 60.0 mm.
 5.10 x 5 10.11 in., y 5 3.87 in.
 5.11 x 5 0, y 5 4.57 ft.
 5.12 x 5 386 mm, y 5 66.4 mm.
 5.13 42.25 3 103 mm3 for A1, 242.25 3 103 mm3 for A2.
 5.14 0.2352 in3 for A1, 20.2352 in3 for A2.
 5.17 x 5 53.0 mm, y 5 91.5 mm.
 5.18 x 5 3.38 in., y 5 2.93 mm.
 5.19 x 5 172.5 mm, y 5 97.5 mm.
 5.20 x 5 3.19 in., y 5 6.00 in.
 5.21 300 mm.
 5.23 (a) 5.09 lb. (b) 9.48 lb b 57.58.
 5.25 x 5 2b/3, y 5 hy3.
 5.26 x 5 2a/5, y 5 3by7.
 5.29 x 5 1n 1 12ay1n 1 22, y 5 1n 1 12hy14n 1 22.
 5.30 x 5 4ay3p, y 5 4by3p.
 5.31 x 5 0, y 5 4r/3p.
 5.32 x 5 3a/8, y 5 3h/5.
 5.33 x 5 0.300 a.
 5.34 y 5 0.310 h.
 5.35 x 5 y 5 1.027 in.
 5.36 x 5 y 5 12a2 2 12/2a11 1 2 ln a2.
 5.37 (a) 584 in3. (b) 679 in3.
 5.39 (a) pa2hy2. (b) 8pah2y15.
 5.41 (a) 0.226 m3. (b) 131.2 kg.
 5.42 1.508 m2.
 5.43 314 in2.
 5.44 V 5 655 in3; W 5 23.6 lb.
 5.45 V 5 3.96 in3; W 5 1.211 lb.
 5.48 300 3 103 mm3.
 5.49 R 5 9.45 kN w, x 5 2.57 m; A 5 4.05 kN x, 

B 5 5.40 kN x.
 5.51 A 5 1260 lb x, MA 5 14040 lb ? in l.
 5.53 B 5 1200 N x, MB 5 800 N ? m l.
 5.54 A 5 10800 lb x, B 5 3600 lb x.
 5.55 A 5 2860 lb x, B 5 740 lb x.
 5.56 A 5 105 N x, B 5 270 N x.
 5.57 21 hy16 above the vertex of the cone.
 5.58 (a) 0.448 h. (b) 0.425 h.
 5.59 0.707.
 5.60 x 5 0, y 5 20.608 h , z 5 0.
 5.61 0.610 in.
 5.63 40.3 mm.
 5.65 x 5 105.2 mm, y 5 175.8 mm, z 5 105.2 mm.
 5.66 x 5 0.0729 in., y 5 21.573 in., z 5 0.
 5.69 x 5 205 mm, y 5 255 mm, z 5 75 mm.
 5.70 x 5 0, y 5 10.05 in., z 5 5.15 in.
 5.71 x 5 0, y 5 3.44 in., z 5 0.
 5.72 On center axis, 27.6 mm above base.
 5.73 x 5 105.0 mm, y 5 90.0 mm.
 5.75 x 5 105.6 mm, y 5 97.6 mm.
 5.76 (a) 1.427 r. (b) 2.113 r.
 5.77 x 5 1.607 a, y 5 0.332 h .
 5.78 0.611 L.
 5.79 275 3 103 mm3.
 5.81 B 5 5657 lb x, C 5 643 lb x.
 5.83 x 5 3.79 in., y 5 0.923 in., z 5 3.00 in.
 5.84 On vertical symmetry axis 81.8 mm above the base.

CHAPTER 6
 6.1 FAB 5 1600 lb C, FAC 5 2000 lb T, FBC 5 1709 lb T.
 6.2 FAB 5 52.0 kN T, FAC 5 64.0 kN T, FBC 5 80.0 kN C.
 6.3 FAB 5 1080 lb T, FBC 5 1170 lb C, FAC 5 1800 lb C.
 6.4 FAD 5 125.0 kN T, FCD 5 120.0 kN C, 

FAB 5 175.0 kN T, FAC 5 84.0 kN C, FBC 5 120.0 kN C.
 6.6 FBA 5 3900 N T, FBC 5 3600 N C, FCA 5 4500 N C.
 6.8 FAB 5 0, FAD 5 5.00 kN C, FBD 5 34.0 kN C, FDE 5 

30.0 kN T, FBE 5 12.00 kN T.
 6.9 FBD 5 0, FAB 5 12.00 kips C, FAC 5 5.00 kips C, FAD 5 

13.00 kips T, FCD 5 30.0 kips C, FDF 5 5.00 kips T, FCF 5 
32.5 kips T, FCE 5 17.5 kips C, FEF 5 0.

 6.10 FBE 5 5.00 kN T, FDE 5 4.00 kN C, FAB 5 4.00 kN T, 
FBD 5 9.00 kN C, FAD 5 15.00 kN T, FCD 5 16.00 kN C.

 6.11 FAD 5 260 lb C, FDC 5 125.0 lb T, FBE 5 832 lb C, FCE 5 
400 lb T, FAC 5 400 lb T, FBC 5 125.0 lb T, FAB 5 420 lb C.

 6.12 FDA 5 41.2 kips T, FDC 5 40.0 kips C, FCA 5 22.4 kips T, 
FCB 5 60.0 kips C, FBA 5 0.

 6.13 FEC 5 360 lb T, FED 5 390 lb C, FDB 5 360 lb C, FDC 5 
150.0 lb T, FCA 5 390 lb T, FCB 5 0.

 6.15 FCD 5 24.0 kips T, FDH 5 26.0 kips C, FCH 5 0, FGH 5 
26.0 kips C, FCG 5 0, FBC 5 24.0 kips T, FBG 5 0, FFG 5 
26.0 kips C, FBF 5 0, FAB 5 24.0 kips T, FAF 5 30.0 kips C, 
FAE 5 38.4 kips, FEF 5 24.0 kips C.

 6.17 FAB 5 15.00 kN T, FAD 5 17.00 kN C, FBC 5 15.00 kN T, 
FCE 5 8.00 kN T, FEF 5 8.00 kN T, FDF 5 17.00 kN C, 
FBE 5 0, FBD 5 0, FDE 5 0.

 6.18 FAB 5 FDE 5 8.00 kN C, FAF 5 FHE 5 6.93 kN T, FFG 5 
FGH 5 6.93 kN T, FBF 5 FDH 5 4.00 kN T, FBC 5 FCD 5 
4.00 kN C, FBG 5 FDG 5 4.00 kN C, FCG 5 4.00 kN T.

 6.19 6.17 and 6.21 are simple trusses.
  6.23 is not a simple truss.
 6.20 6.12, 6.14, and 6.24 are simple trusses.
  6.22 is not a simple truss.
 6.21 EI, BE, FG, GH, IJ, HI.
 6.24 FJ, EJ, EB, BD, DH, AH, AG.
 6.25 FBD 5 36.0 kips C, FCD 5 45.0 kips C.
 6.26 FDF 5 60.0 kips C, FDG 5 15.00 kips C.
 6.27 FFG 5 70.0 kN C, FFH 5 240 kN T.
 6.28 FEF 5 69.5 kN T, FEG 5 250 kN C.
 6.29 FDE 5 25.0 kips T, FDF 5 13.00 kips C.
 6.31 FDF 5 91.4 kN T, FDE 5 38.6 kN C.
 6.33 FBD 5 37.5 kN T, FDE 5 22.5 kN T.
 6.34 FFH 5 12.50 kN T, FDH 5 90.0 kN T.
 6.35 FFH 5 16.97 kips T, FGH 5 12.00 kips C, 

FGI 5 18.00 kips C.
 6.37 FCE 5 40.0 kN C, FDE 5 16.00 kN C, FDF 5 40 kN T.
 6.39 FAD 5 3.38 kips C, FCD 5 0, FCE 5 14.03 kips T.
 6.40 FDG 5 18.75 kips C, FFG 5 14.03 kips T, FFH 5 

17.43 kips T.
 6.41 22.5 kN C.
 6.42 FAB 5 0.833 P(T), FKL 5 1.167 P(T).
 6.44 FBE 5 10.00 kips T, FEF 5 5.00 kips T, FDE 5 0.
 6.45 FBE 5 12.50 kips T, FEF 5 2.50 kips T, FDE 5 0.
 6.47 (a) Completely constrained and indeterminate.
  (b) Completely constrained and determinate.
  (c) Partially constrained.
 6.48 (a) Partially constrained.
  (b) Completely constrained and determinate.
  (c) Completely constrained and indeterminate.
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 6.49 FBD 5 1750 N C; Cx 5 1400 N z, Cy 5 700 N w.
 6.50 FBD 5 300 lb T; Cx 5 150.0 lb z, Cy 5 180.0 lb x.
 6.51 FBD 5 375 N C; Cx 5 205 N z, Cy 5 360 N w.
 6.52 Ax 5 120.0 lb y, Ay 5 30.0 lb x; Bx 5 120.0 lb z, 

By 5 80.0 lb w; C 5 30.0 lb w, D 5 80.0 lb x.
 6.53 A 5 150.0 lb y; Bx 5 150.0 lb z, By 5 60.0 lb x; 

C 5 20.0 lb x; D 5 80.0 lb w.
 6.55 (a) 2.44 kN c 8.48. (b) 1.930 kN c 51.38 on each arm.
 6.57 B 5 152.0 lb w; Cx 5 60.0 lb z, Cy 5 200 lb x; Dx 5 

60.0 lb y, Dy 5 42.0 lb x.
 6.58 (a) 1465 kN T. (b) 1105 kN C. (c) 1663 kN a 62.08.
 6.59 (a)  Dx 5 750 N y, Dy 5 250 N w; Ex 5 750 N z, Ey 5 

250 N x. (b) Dx 5 375 N y, Dy 5 250 N w; Ex 5 
375 N z, Ey 5 250 N x.

 6.61 (a)  A 5 78.0 lb d 22.68, C 5 144.0 lb y. G 5 72.0 lb z, 
I 5 30.0 lb x.

  (b)  A 5 78.0 lb d 22.68, C 5 72.0 lb y, G 5 0, 
I 5 30.0 lb x.

 6.62 (a)  A 5 78.0 lb d 22.68, C 5 144.0 lb y, G 5 72.0 lb z, 
I 5 30.0 lb x.

  (b)  A 5 78.0 lb d 22.68, C 5 120.0 lb y, G 5 96.0 lb z, 
I 5 30.0 lb x.

 6.64 (a) 828 N T. (b) 1197 N a 86.28.
 6.65 Ax 5 250 lb z, Ay 5 600 lb x; Cx 5 250 lb y, 

Cy 5 600 lb x; Bx 5 790 lb z, By 5 0.
 6.66 (a) Ex 5 960 lb z, Ey 5 1280 lb x.
  (b) Cx 5 2640 lb z, Cy 5 3520 lb x.
 6.67 Dx 5 13.60 kN y, Dy 5 7.50 kN x; Ex 5 13.60 kN z, 

Ey 5 2.70 kN w.
 6.69 (a) A: 15.76 kips x, B: 26.2 kips x (each wheel)
  (b) C 5 34.6 kips z; Dx 5 34.6 kips y, Dy 5 2.48 kips w.
 6.71 (a) A: 117.5 kN x, B: 176.9 kN x (each wheel)
  (b) C 5 8.28 kN y, Dx 5 8.28 kN z, Dy 5 256 kN w.
 6.72 (a) A: 3980 N x, B: 4170 N x, C: 2890 N x
  (b) B: 1326 N, C: 2398 N. (each wheel).
 6.73 (a) 1200 N y. (b) 1230 N b 12.78.
 6.74 (a) 103.6 lb z. (b) 114.7 lb T.
 6.75 (a) 2860 N w. (b) 2700 N d 68.58.
 6.76 TDE 5 18.00 lb; B 5 48.0 lb w.
 6.78 C 5 4.65 kips y; E 5 6.14 kips d 40.78.
 6.80 Ax 5 210 N z, Ay 5 2400 N w; B 5 2720 N a 61.98; 

C 5 1070 N z.
 6.81 (a) 252 N ? m i. (b) 108.0 N ? m i.
 6.82 (a) 3.00 kN w. (b) 7.00 kN w.
 6.83 (a) 1261 lb ? in. l. (b) Cx 5 54.3 lb z, Cy 5 21.7 lb x.
 6.85 (a) 2500 N. (b) 2760 N c 63.18.
 6.86 14 800 lb.
 6.88 720 lb.
 6.89 18.75 lb.
 6.91 140.0 N.
 6.92 260 N.
 6.94 EF: 9.61 kips C; CD: 4.27 kips T; AB: 18.97 kips C.
 6.95 AB: 1.051 kN C; DE: 40.8 kN T; FI: 4.74 kN C.
 6.96 (a) 3000 lb T. (b) Hx 5 2400 lb z, Hy 5 4800 lb w.
 6.97 FAC 5 80.0 kN T, FCE 5 45.0 kN T, FDE 5 51.0 kN C, 

FBD 5 51.0 kN C, FCD 5 48.0 kN T, FBC 5 19.00 kN C.
 6.99 FEF 5 2400 lb T, FFG 5 1500 lb C, FGI 5 2600 lb C.
 6.100 FCE 5 4690 lb T, FCD 5 3600 lb C, FCB 5 0.
 6.101 7.36 kN C.
 6.103 Ax 5 3.32 kN z, Ay 5 14.26 kN w; 

Cx 5 3.72 kN y, Cy 5 14.26 kN x.

 6.104 28.6 lb.
 6.106 Fs 5 1611 lb C; A 5 500 lb z; 

Dx 5 500 lb y, Dy 5 861 lb w.
 6.108 Case (1) (a) Ax 5 0, Ay 5 7.85 kN x, MA 5 15.70 kN ? m l.
  (b) D 5 22.2 kN d 458.
  Case (2) (a) Ax 5 0, Ay 5 3.92 kN x, MA 5 8.34 kN ? m l.
  (b) D 5 11.10 kN d 458.
  Case (3) (a) Ax 5 0, Ay 5 3.92 kN x, MA 5 8.34 kN ? m l.
  (b) D 5 18.95 kN d 458

  Case (4) (a) Ax 5 3.92 kN y, Ay 5 3.92 kN x, MA 5 
2.35 kN ? m i.

  (b) D 5 11.10 kN d 458.

CHAPTER 7
 7.1 a3 (h1 1 3h2)y12.
 7.2 2a3by7.
 7.3 ha3y5.
 7.4 a3by20.
 7.5 a1h1

2 1 h2
22 (h1 1 h2)y12.

 7.6 2ab3y15.
 7.9 Ix 5 ab3y30; rx 5 0.365 b.
 7.10 Ix 5 pab3y8; rx 5 0.500 b.
 7.11 Ix 5 ab3y9; rx 5 0.430 b.
 7.12 Ix 5 3ab3y35; rx 5 0.507 b.
 7.13 Iy 5 a3by6; ry 5 0.816 a.
 7.14 Iy 5 pa3by8; ry 5 0.500 a.
 7.17 (a) JO 5 4a4y3; rO 5 0.816 a.
  (b) JO 5 17a4y6; rO 5 1.190 a.
 7.18 JO 5 10a4y3; rO 5 1.291 a.
 7.20 JO 5 pab(a2 1 b2)y8; rO 5 0.5002a2 1 b2.
 7.21 (a) JO 5 p(R2

4 2 R1
4)y2; Ix 5 p(R2

4 2 R1
4)y4.

 7.23 4a3y9.
 7.24 0.935 a.
 7.25 Ix 5 614 3 103 mm4; rx 5 19.01 mm.
 7.26 Ix 5 28.0 in4; rx 5 2.25 in.
 7.27 Ix 5 501 3 106 mm4; rx 5 149.4 mm.
 7.30 Iy 5 6.99 in4; ry 5 1.127 in4.
 7.31 Iy 5 150.3 3 106 mm4; ry 5 81.9 mm.
 7.32 Iy 5 185.4 in4; ry 5 2.81 in.
 7.33 A 5 3000 mm2; I 5 325 3 103 mm4.
 7.35 Ix 5 204 in4; Iy 5 135.0 in4.
 7.36 Ix 5 2.08 3 106 mm4; Iy 5 2.08 3 106mm4.
 7.38 Jc 5 379 in4.
 7.39 (a) 11.57 3 106 mm4. (b) 7.81 3 106 mm4.
 7.40 (a) 129.2 in4. (b) 25.8 in4.
 7.41 (a) 512 in4; (b) 5 366 in4.
 7.43 Ix 5 186.7 3 106 mm4; rx 5 118.6 mm; 

Iy 5 167.7 3 106 mm4; ry 5 112.4 mm.
 7.44 227 mm.
 7.45 Ix 5 325 in4; Iy 5 41.8 in4.
 7.46 Ix 5 9.54 in4; Iy 5 104.5 in4.
 7.47 Ix 5 7.04 3 106 mm4; Iy 5 63.9 3 106 mm4.
 7.48 Ix 5 7.32 3 106 mm4; Iy 5 101.3 3 106 mm4.
 7.49 a3by28.
 7.51 Ix 5 0.0945 ah3; rx 5 0.402 h.
 7.53 JO 5 0.1804 a4; rO 5 0.645 a.
 7.54 Ix 5 1.268 3 106 mm4; Iy 5 339 3 103 mm4.
 7.55 (a) Ix 5 174.7 in4; Iy 5 1851 in4. (b) 22.4 in.
 7.56 3.78 3 106 mm4.
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 7.58 Jc 5 25.1 in4; rc 5 1.606 a.
 7.59 (a) 185.9 in4. (b) 154.0 in4.
 7.60 Ix 5 6120 in4; rx 5 7.90 in.; Iy 5 1360 in4; 

ry 5 3.73 in.

CHAPTER 8
 8.1 (a) 35.7 MPa. (b) 42.4 MPa.
 8.2 d1 5 25.2 mm, d2 5 16.52 mm.
 8.3 (a) 12.73 ksi. (b) 22.83 ksi.
 8.4 18.46 kips.
 8.6 62.7 kN.
 8.7 1.084 ksi.
 8.8 (a) 14.64 ksi. (b) 29.96 ksi.
 8.9 8.52 ksi.
 8.10 4.29 in2.
 8.11 (a) 17.86 kN. (b) 241.4 MPa.
 8.12 (a) 12.73 MPa. (b) 24.77 MPa.
 8.14 43.4 mm.
 8.16 12.57 kips.
 8.17 321 mm.
 8.18 178.6 mm.
 8.20 (a) 1.030 in. (b) 38.8 ksi.
 8.21 (a) 7.28 ksi. (b) 18.30 ksi.
 8.22 (a) 10.84 ksi. (b) 5.11 ksi.
 8.24 8.31 kN.
 8.25 s 5 55.1 psi, t 5 65.7 psi.
 8.26 (a) 3290 lb. (b) 75.5 psi.
 8.27 s 5 565 kPa, t 5 206 kPa.
 8.28 (a) 5.31 kN. (b) 182.0 kPa.
 8.30 (a) 180.0 kips. (b) 458. (c) 22.5 ksi. (d) 25 ksi.
 8.31 s 5 237.1 MPa, t 5 17.28 MPa.
 8.33 168.1 mm2.
 8.34 3.64.
 8.35 4.55 kips.
 8.36 (a) 13.47 mm. (b) 14.61 mm.
 8.38 1.800.
 8.39 4.49 kips.
 8.41 (a) 1.550 in. (b) 8.05 in.
 8.42 3.47.
 8.44 3.97 kN.
 8.46 283 lb.
 8.47 2.42.
 8.48 2.05.
 8.49 (a) 3.33 MPa. (b) 525 mm.
 8.51 0.408 in.
 8.53 (a) 2640 psi. (b) 2320 psi.
 8.54 9.22 kN.
 8.55 (a) 9.94 ksi. (b) 6.25 ksi.
 8.57 15.08 kN.
 8.58 3.49.
 8.60 21.38 # u # 32.38.

CHAPTER 9
 9.1 (a) 0.0303 in. (b) 15.28 ksi.
 9.2 (a) 81.8 MPa. (b) 1.712.
 9.3 (a) 0.01819 in. (b) 7.70 ksi.
 9.4 (a) 11.31 kN. (b) 400 MPa.
 9.6 (a) 0.1784 in. (b) 58.6 in.
 9.8 (a) 17.25 MPa. (b) 2.82 mm.

 9.9 48.4 kips.
 9.11 1.988 kN.
 9.12 0.429 in.
 9.13 (a) 9.53 kips. (b) 1.254 3 1023 in.
 9.14 (a) 32.8 kN. (b) 0.0728 mm.
 9.15 (a) 0.01819 mm. (b) 20.0909 mm.
 9.17 (a) 5.62 3 1023 in. (b) 8.52 3 1023 in. ↓. (c) 16.30 ksi.
 9.18 (a) 2.95 mm. (b) 5.29 mm.
 9.19 50.4 kN.
 9.20 SAB 5 20.0753 in., SAD 5 0.0780 in.
 9.21 (a) 0.1727 in. (b) 0.1304 in.
 9.23 0.1095 mm.
 9.25 (a) 47.5 MPa. (b) 0.1132 mm.
 9.26 (a) 75.9 kN. (b) 120 MPa.
 9.27 steel: 28.34 ksi; concrete: 21.208 ksi.
 9.28 695 kips.
 9.30 (a) 62.8 kN ← at A; 37.2 kN ← at E. 

(b) 46.3 mm →.
 9.32 (a) 11.92 kips ← at A; 20.08 kips ← at D.
  (b) 3.34 3 1023 in.
 9.33 177.4 lb.
 9.35 A: 0.525 P; B: 0.200 P; C: 0.275 P.
 9.36 A: 0.1 P; B: 0.2 P; C: 0.3 P; D: 0.4 P.
 9.37 75.4 8C.
 9.39 steel: 21883 psi; concrete: 53.6 psi.
 9.40 (a) 217.91 ksi. (b) 22.42 ksi.
 9.41 (a) AB: 244.4 MPa; BC: 2100.0 MPa.
  (b) 0.500 mm ↓.
 9.42 (a) AB: 221.1 ksi; BC: 26.50 ksi.
  (b) 0.00364 in. ↑.
 9.44 (a) 217 kN. (b) 0.2425 mm.
 9.46 (a) 222.1 ksi. (b) 0.01441 in.
 9.47 (a) 27.55 ksi. (b) 10.00467 in.
 9.48 (a) 21.48C. (b) 3.68 MPa.
 9.50 E 5 216 MPa, n 5 0.451, G 5 74.5 MPa.
 9.52 422 kN.
 9.53 1.99551:1.
 9.54 (a) 1.324 3 1023 in. (b) 299.3 3 1026 in.
  (c) 212.41 3 1026 in. (d) 212.41 3 1026 in2.
 9.55 (a) 5.13 3 1023 in. (b) 20.570 3 1023 in.
 9.56 (a) 7630 lb compression. (b) 4580 lb compression.
 9.57 20.0518%.
 9.58 (a) 0.0754 mm. (b) 0.1028 mm. (c) 0.1220 mm.
 9.61 1.091 mm ↓.
 9.63 105.6 3 103 lb/in.
 9.64 (a) 262 mm. (b) 21.4 mm.
 9.65 (a) 13.31 ksi. (b) 18.72 ksi.
 9.67 (a) 58.3 kN. (b) 64.3 kN.
 9.68 (a) 87.0 MPa. (b) 75.2 MPa. (c) 73.9 MPa.
 9.70 58.1 kN.
 9.71 (a) 0.475 in. (b) 7.50 kips.
 9.72 0.866 in.
 9.73 1.219 in.
 9.75 x 5 92.6 mm.
 9.76 0.0455 in. at f 5 8.518.
 9.77 A: 0.237 mm ←; B: 0.296 mm →; C: 2.43 mm →.
 9.80 (a) 14.72 kips → at A; 12.72 kips ← at D.
  (b) 21.574 3 1023 in.
 9.82 a 5 0.818 in., b 5 2.42 in.
 9.83 (a) 9 mm. (b) 62 kN.
 9.84 (a) 134.7 MPa. (b) 135.3 MPa.
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CHAPTER 10
 10.1 641 N ? m.
 10.2 87.3 MPa.
 10.3 (a) 9.92 ksi. (b) 2.23 in.
 10.4 (a) 7.63 kip ? ft. (b) 16.19 kip ? ft.
 10.6 (a) 828 lb ? in. (b) 1196 lb ? in.
 10.7 (a) 75.5 MPa. (b) 63.7 MPa.
 10.9 (a) BC. (b) 8.15 ksi.
 10.10 (a) AB. (b) 8.49 ksi.
 10.12 42.8 mm.
 10.13 9.16 kip ? in.
 10.15 3.37 kN ? m.
 10.16 (a) 50.3 mm. (b) 63.4 mm.
 10.17 AB: 42.0 mm; BC: 33.3 mm.
 10.18 AB: 52.9 mm; BC: 33.3 mm.
 10.20 (a) 0.602 in. (b) 0.835 in.
 10.21 (a) 72.5 MPa. (b) 68.7 MPa.
 10.23 (a) 1.442 in. (b) 1.233 in.
 10.24 4.30 kip ? in.
 10.25 (a) 2.83 kip ? in. (b) 13.008.
 10.26 (a) 3.628. (b) 4.518.
 10.27 11.91 mm.
 10.28 9.38 ksi.
 10.30 (a) 8.548. (b) 2.118.
 10.32 (a) 0.7418. (b) 1.5738.
 10.33 7.948.
 10.34 4.528.
 10.36 1.9148.
 10.37 36.1 mm.
 10.39 2.05 in.
 10.40 3.078.
 10.41 (a) 8.93 ksi. (b) 4.14 ksi. (c) 3.908.
 10.42 3.718.
 10.44 7.378.
 10.45 (a) A: 1105 N ? m; C: 295 N ? m.
  (b) 45.0 MPa. (c) 27.4 MPa.
 10.47 (a) 47.1 MPa. (b) 0.7798.
 10.48 (a) 70.7 MPa. (b) 1.1698.
 10.49 12.44 ksi.
 10.50 4.12 kip ? in.
 10.52 (a) 19.21 kip ? in. (b) 2.01 in.
 10.53 (a) 10.74 kN ? m. (b) 22.8 kN ? m.
 10.55 6.028.
 10.56 127.8 kip ? in.
 10.58 3.798.
 10.60 12.24 MPa.

CHAPTER 11
 11.1 (a) 2116.4 MPa. (b) 287.3 MPa.
 11.2 (a) 22.38 ksi. (b) 20.650 ksi.
 11.3 80.2 kN ? m.
 11.4 24.8 kN ? m.
 11.6 (a) 1.405 kip ? in. (b) 3.19 kip ? in.
 11.7 259 kip ? in.
 11.9 top: 214.71 ksi; bottom: 8.82 ksi.
 11.10 top: 281.8 MPa; bottom: 67.8 MPa.
 11.12 (a) 83.7 MPa. (b) 2146.4 MPa. (c) 14.67 MPa.
 11.13 2.22 kips.
 11.14 2.05 kips.

 11.16 37.9 kN.
 11.17 7.67 kN ? m.
 11.18 20.4 kip ? in.
 11.19 7.39 kip ? in.
 11.20 849 N ? m.
 11.22 1.372 kip ? in.
 11.24 (a) 53.2 MPa; 382 m. (b) 157.9 MPa; 128.3 m.
 11.25 1.240 kN ? m.
 11.26 887 N ? m.
 11.27 720 N ? m.
 11.29 330 kip ? in.
 11.30 685 kip ? in.
 11.31 330 kip ? in.
 11.33 (a) 256.0 MPa. (b) 66.4 MPa.
 11.34 (a) 256.0 MPa. (b) 68.4 MPa.
 11.35 (a) 2.03 ksi. (b) 214.68 ksi.
 11.36 (a) 21.979 ksi. (b) 16.48 ksi.
 11.38 8.59 m.
 11.40 625 ft.
 11.41 (a) 330 MPa. (b) 226.0 MPa.
 11.42 (a) 292 MPa. (b) 221.3 MPa.
 11.44 9.50 kN ? m.
 11.45 (a) 29.0 ksi. (b) 21.163 ksi.
 11.46 32.4 kip ? ft.
 11.48 (a)  steel: 8.96 ksi; aluminum: 1.792 ksi; 

brass: 0.896 ksi. (b) 349 ft.
 11.49 (a) 22Pypr2. (b) 25Pypr2.
 11.50 (a) 4.87 ksi. (b) 5.17 ksi.
 11.51 (a) 4.87 ksi. (b) 1.322 ksi.
 11.52 (a) 2102.8 MPa. (b) 80.6 MPa.
 11.54 (a) 16.34 ksi. (b) 213.78 ksi.
 11.56 (a) 28.33 MPa. (b) A: 213.19 MPa; B: 7.64 MPa.
 11.57 0.375 d.
 11.58 10.83 mm.
 11.59 (a) 20.750 ksi. (b) 22.00 ksi. (c) 21.500 ksi.
 11.60 623 lb.
 11.62 0.877 in.
 11.64 94.8 kN # P # 177.3 kN.
 11.65 (a) 2Py2at. (b) 2Pyat. (c) 2Py2at.
 11.66 96.0 kN.
 11.68 2.485 in. , y , 4.561 in.
 11.70 P 5 44.2 kips, Q 5 57.3 kips.
 11.71 P 5 9.21 kips, Q 5 48.8 kips.
 11.72 (a) 30.0 mm. (b) 94.5 kN.
 11.73 (a) 9.86 ksi. (b) 22.64 ksi. (c) 29.86 ksi.
 11.74 (a) 23.37 MPa. (b) 218.60 MPa. (c) 3.37 MPa.
 11.75 (a) 217.16 ksi. (b) 6.27 ksi. (c) 17.16 ksi.
 11.76 (a) 7.20 ksi. (b) 218.39 ksi. (c) 27.20 ksi.
 11.77 (a) 0.321 ksi. (b) 20.107 ksi. (c) 0.427 ksi.
 11.78 (a) 57.8 MPa. (b) 256.8 MPa. (c) 25.9 MPa.
 11.80 (a) 57.48. (b) 75.7 MPa.
 11.81 (a) 19.168. (b) 11.31 ksi.
 11.82 (a) 10.038. (b) 54.2 MPa.
 11.83 (a) 27.58. (b) 8.44 ksi.
 11.84 (a) 19.528. (b) 95.0 MPa.
 11.85 (a) 41.7 psi at A, 292 psi at B.
  (b)  Intersects AB at 0.500 in. from A.

Intersects BD at 0.750 in. from D.
 11.87 (a) 4.09 ksi at A; 21.376 ksi at B.
  (b) Intersects AB at 3.741 in. above A.
 11.89 37.0 mm.
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 11.91 91.3 kN.
 11.93 71.8 ft.
 11.94 (a) 9.17 kN ? m. (b) 10.24 kN ? m.
 11.96 (a) 152.25 kips. (b) x 5 0.595 in., z 5 0.571 in. (c) 8.70 ksi.
 11.97 73.2 MPa; 2102.4 MPa.
 11.99 (a) 21.526 ksi. (b) 17.67 ksi.
 11.101 (a) 46.78. (b) 80.2 MPa.
 11.102 (a) 270.9 MPa. (b) 214.17 MPa. (c) 25.4 m.
 11.104 (a) 1.414. (b) 1.732.

CHAPTER 12
 12.1 (a) Vmax 5 PLyL, Vmin 5 2PayL; Mmax 5 PabyL, Mmin 5 0.
  (b) 0 # x , a: V 5 PbyL; M 5 PbxyL; 

a # x , L: V 5 2PayL; M 5 Pa(L 2 x)yL.
 12.2 (a) Vmax 5 wLy2, Vmin 5 2wLy2; Mmax 5 wL2y8.
  (b) V 5 w(Ly2 2 x); M 5 wx(L 2 x)y2.
 12.3 (a) |V|max 5 w0Ly2; |M|max 5 w0L2y6.
  (b) V 5 2wox2y2L; M 5 2wox3y6L.
 12.4 (a) |V|max 5 w(L 2 2a)y2; |M|max 5 w(L2y8 2 a2y2).
  (b) 0 # x # a: V 5 w(L 2 2a)/2; M 5 w (L 2 2a)xy2; 

a # x # L 2 a: V 5 w(Ly2 2 x); M 5 w[x(L 2 x) 2 a2]y2. 
L 2 a # x # L: V 5 2w(L 2 2a)y2; M 5 w(L 2 2a)(L 2 x)y2.

 12.5 (a) 68.0 kN. (b) 60.0 kN ? m.
 12.7 (a) 30.0 kips. (b) 90.0 kip ? ft.
 12.9 (a) 3.45 kN. (b) 1125 N ? m.
 12.10 (a) 2000 lb. (b) 19200 lb ? in.
 12.11 (a) 18.00 kN. (b) 12.15 kN ? m.
 12.12 (a) 1.800 kips. (b) 1.125 kip ? ft.
 12.13 1.117 ksi.
 12.14 10.89 MPa.
 12.15 129.0 MPa.
 12.16 11.56 ksi.
 12.18 27.7 MPa.
 12.19 |V|max 5 27.5 kips; |M|max 5 45.0 kip ? ft; s 5 14.17 ksi.
 12.20 |V|max 5 279 kN; |M|max 5 326 kN ? m; s 5 136.6 MPa.
 12.23 |V|max 5 28.8 kips; |M|max 5 56.0 kip ? ft; s 5 13.05 ksi.
 12.24 |V|max 5 1.500 kips; |M|max 5 3.00 kip ? ft; s 5 2.11 ksi.
 12.25 (a) 1.371 m. (b) 26.6 MPa.
 12.26 (a) 866 mm. (b) 5.74 MPa.
 12.27 (a) 1.260 ft. (b) 7.24 ksi.
 12.29 See Prob. 12.1.
 12.30 See Prob. 12.2.
 12.31 See Prob. 12.3.
 12.32 See Prob. 12.4.
 12.33 See Prob. 12.5.
 12.34 See Prob. 12.6.
 12.35 See Prob. 12.7.
 12.36 (a) 23.0 kips. (b) 140.0 kip ? ft.
 12.37 (a) 1.800 kips. (b) 6.00 kip ? ft.
 12.38 (a) 880 lb. (b) 2000 lb ? ft.
 12.39 (a) 6.75 kN. (b) 6.51 kN ? m.
 12.40 (a) 600 N. (b) 180.0 N ? m.
 12.41 1.117 ksi.
 12.42 10.89 MPa.
 12.43 129.2 MPa.
 12.44 11.56 MPa.
 12.45 (a) V 5 (w0Lyp) cos (pxyL); M 5 (w0L2yp2) sin (pxyL).
  (b) w0L2yp2.
 12.47 (a) V 5 w0 (Ly3 1 x2y2L 2 x); M 5 w0 (Lxy3 1 x3y6L 2 

x2y2). (b) 0.06415 w0L2.
 12.49 |V|max 5 20.7 kN; |M|max 5 9.75 kN ? m; s 5 60.2 MPa.

 12.50 |V|max 5 16.80 kN; |M|max 5 8.82 kN ? m; s 5 73.5 MPa.
 12.51 |V|max 5 15.00 kips; |M|max 5 37.5 kip ? ft; s 5 9.00 ksi.
 12.52 |V|max 5 8.00 kips; |M|max 5 16.00 kip ? ft; s 5 6.98 ksi.
 12.54 |V|max 5 9.28 kips; |M|max 5 28.2 kip ? in; s 5 11.58 ksi.
 12.55 |V|max 5 150 kN; |M|max 5 300 kN ? m; s 5 136.4 MPa.
 12.57 h 5 173.2 mm.
 12.58 h 5 361 mm.
 12.60 b 5 6.20 in.
 12.62 a 5 6.67 in.
 12.63 W27 3 84.
 12.64 W18 3 50.
 12.65 W410 3 60.
 12.66 W250 3 28.4.
 12.67 S310 3 47.3.
 12.69 S12 3 31.8.
 12.71 C230 3 19.9.
 12.72 C180 3 14.4.
 12.73 3y8 in.
 12.74 3y8 in.
 12.76 S24 3 80.
 12.77 (a) 18.00 kips. (b) 72.0 kip ? ft.
 12.78 (a) 140 N. (b) 33.6 kN ? m.
 12.80 950 psi.
 12.81 |V|max 5 128 kN; |M|max 5 89.6 kN ? m; s 5 156.1 MPa.
 12.84 |V|max 5 30 lb; |M|max 5 24 lb ? ft; s 5 6.95 ksi.
 12.85 d 5 15.06 in.
 12.87 W310 3 38.7.

CHAPTER 13
 13.1 60.0 mm.
 13.2 2.00 kN.
 13.3 (a) 31.5 lb. (b) 43.2 psi.
 13.4 (a) 372 lb. (b) 64.4 psi.
 13.5 193.2 kN.
 13.7 9.95 ksi.
 13.9 (a) 7.40 ksi. (b) 6.70 ksi.
 13.10 (a) 3.17 ksi. (b) 2.40 ksi.
 13.11 (a) 920 kPa. (b) 765 kPa.
 13.12 (a) 114.1 MPa. (b) 96.9 MPa.
 13.13 14.05 in.
 13.14 88.9 mm.
 13.17 (a) 12.55 MPa. (b) 18.82 MPa.
 13.18 (a) 1.745 ksi. (b) 2.82 ksi.
 13.19 19.61 MPa.
 13.20 3.21 ksi.
 13.22 2.00.
 13.23 1.125.
 13.24 1.500.
 13.25 728 N.
 13.26 1.672 in.
 13.27 (a) 59.9 psi. (b) 79.8 psi.
 13.28 (a) 12.21 MPa. (b) 58.6 MPa.
 13.29 (a) 95.2 MPa. (b) 112.9 MPa.
 13.31 3.93 ksi at a, 2.67 ksi at b, 0.63 ksi at c, 1.02 ksi at d, 0 at e.
 13.33 (a) 41.4 MPa. (b) 41.4 MPa.
 13.34 (a) 18.23 MPa. (b) 14.59 MPa. (c) 46.2 MPa.
 13.35 (a) 40.5 psi. (b) 55.2 psi.
 13.36 (a) 2.67 in. (b) 41.6 psi.
 13.37 9.05 mm.
 13.39 20.1 ksi.
 13.41 266 kNym.
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 13.42 10.76 MPa at a, 0 at b, 11.21 MPa at c, 22.0 MPa at d, 
9.35 MPa at e.

 13.43 (a) 2.025 ksi. (b) 1.800 ksi.
 13.46 (a) 23.3 MPa. (b) 109.7 kPa.
 13.47 (a) 2.59 ksi. (b) 0.967 ksi.
 13.49 (a) 0.888 ksi. (b) 1.453 ksi.
 13.50 738 N.
 13.51 (a) 2.73 ksi. (b) 1.665 ksi.
 13.53 (b) h 5 225 mm, b 5 61.7 mm.
 13.55 (a) 84.2 kips. (b) 60.2 kips.
 13.56 (a) 239 N. (b) 549 N.
 13.57 1835 lb.
 13.58 1.167 ksi at a, 0.513 ksi at b, 4.03 ksi at c, 8.40 ksi at d.
 13.59 2.50 ksi at a, 2.50 ksi at b, 9.00 ksi at c, 0 at d.
 13.60 255 kN.
 13.61 (a) 50.9 MPa. (b) 36.0 MPa.

CHAPTER 14
 14.1 s 5 20.521 MPa, t 5 56.4 MPa.
 14.2 s 5 32.9 MPa, t 5 71.0 MPa.
 14.3 s 5 9.46 ksi, t 5 1.013 ksi.
 14.4 s 5 10.93 ksi, t 5 0.536 ksi.
 14.5 (a) 237.08, 53.08. (b) 213.60 MPa, 286.4 MPa.
 14.7 (a) 14.08, 104.08. (b) 20.0 ksi, 214.00 ksi.
 14.9 (a) 8.08, 98.08. (b) 36.4 MPa. (c) 250.0 MPa.
 14.10 (a) 14.08, 104.08. (b) 68.0 MPa. (c) 216.00 MPa.
 14.12 (a) 226.68, 63.48. (b) 5.00 ksi. (c) 6.00 ksi.
 14.13 (a) sx9 5 24.80 ksi, tx9y9 5 0.30 ksi, sy9 5 20.8 ksi.
  (b) sx9 5 3.90 ksi, tx9y9 5 12.13 ksi, sy9 5 12.10 ksi.
 14.14 (a) sx9 5 9.02 ksi, tx9y9 5 3.80 ksi, sy9 5 213.02 ksi.
  (b) sx9 5 5.34 ksi, tx9y9 5 29.06 ksi, sy9 5 29.34 ksi.
 14.16 (a) sx9 5 237.5 MPa, tx9y9 5 225.4 MPa, sy9 5 57.5 MPa.
  (b) sx9 5 230.1 MPa, tx9y9 5 35.9 MPa, sy9 5 50.1 MPa.
 14.17 (a) 20.300 MPa. (b) 22.92 MPa.
 14.18 (a) 346 psi. (b) 2200 psi.
 14.19 (a) 14.38. (b) 117.3 MPa.
 14.20 (a) 18.48. (b) 16.67 ksi.
 14.22 sa 5 5.12 ksi, sb 5 21.64 ksi, tmax 5 3.38 ksi.
 14.24 sa 5 12.18 MPa, sb 5 248.7 MPa, tmax 5 30.5 MPa.
 14.25 See 14.5 and 14.9.
 14.26 See 14.6 and 14.10.
 14.28 See 14.12.
 14.29 See 14.13.
 14.30 See 14.14.
 14.32 See 14.16.
 14.33 See 14.17.
 14.34 See 14.18.
 14.35 See 14.19.
 14.36 See 14.20.
 14.38 See 14.22.
 14.40 See 14.24.
 14.41 (a) 7.94 ksi. (b) 13.00 ksi, 211.00 ksi.
 14.43 (a) 22.89 MPa. (b) 12.77 MPa, 1.23 MPa.
 14.44 (a) 28.66 MPa. (b) 17.00 MPa, 23.00 MPa.
 14.46 24.68, 114.68; 72.9 MPa, 27.1 MPa.
 14.47 608, 2308; 1.732 t0, 21.732 t0.
 14.48 1

2u, 
1
2u 1 90°; s0 (1 1 cos u), s0 (1 2 cos u).

 14.49 166.5 psi.
 14.50 8.61 ksi.
 14.51 5.04.
 14.52 (a) 12.38 ksi. (b) 0.0545 in.

 14.53 (a) 1.290 MPa. (b) 0.0852 mm.
 14.54 7.71 mm.
 14.56 1.676 MPa.
 14.58 136.0 MPa.
 14.59 7.58 ksi.
 14.60 0.307 in.
 14.61 2.95 MPa.
 14.62 3.41 MPa.
 14.64 387 psi.
 14.65 56.88.
 14.66 2.84 MPa.
 14.68 smax 5 45.1 MPa, tmax(in-plane) 5 7.49 MPa.
 14.69 (a) 3.15 ksi. (b) 1.993 ksi.
 14.71 8.48 ksi, 2.85 ksi.
 14.72 13.09 ksi, 3.44 ksi.
 14.73 3.90 kN.
 14.74 251 psi.
 14.76 (a) 234.28, 55.88. (b) 9.50 ksi.
 14.78 (a) 0.775 MPa. (b) 22.69 MPa.
 14.79 250 psi.
 14.81 (a) 399 kPa. (b) 186.0 kPa.
 14.82 (a) 27.18 i, 62.98 l. (b) 220.8 ksi, 2.04 ksi.
  (c) 11.43 ksi.
 14.84 smax 5 68.6 MPa, tmax(in-plane) 5 23.6 MPa.

CHAPTER 15
 15.1 (a) y 5 2Px2(3L 2 x)y6EI.
  (b) PL3y3EI ↓. (c) PL2y2EI c.
 15.2 (a) y 5 M0x2y2EI. (b) M0L2y2EI ↑. (c) M0LyEI a.
 15.3 (a) y 5 2w0(x

5 2 5L4 x 1 4L5)y120 EIL.
  (b) W0L4y30 EI ↓. (c) W0L3y24 EI a.
 15.4 (a) y 5 2w(x4 2 4L3x 1 3L4)y24 EI.
  (b) wL4y8 EI ↓. (c) wL3y6 EI a.
 15.6 (a) y 5 w(L2x2y8 2 x4/24)yEI.
  (b) 11 wL4y384 EI ↑. (c) 5 wL3y48 EI a.
 15.7 (a) y 5 w(Lx3y16 2 x4y24 2 L3xy48)yEI.
  (b) wL3y48 EI a. (c) 0.
 15.9 (a) 2.74 3 1023 rad c. (b) 1.142 mm ↓.
 15.10 (a) 6.56 3 1023 rad c. (b) 0.227 in ↓.
 15.11 (a) xm 5 0.423 L, ym 5 0.06415 M0L2yEI ↑.
  (b) 45.3 kN ? m.
 15.12 (a) xm 5 0.519 L, ym 5 0.00652 w0L4yEI ↓.
  (b) 0.229 in.
 15.13 12.94 mm ↑.
 15.15 (a) y 5 w0(x

6y90 2 Lx5y30 1 L3x3y18 2 L5xy30)yEIL2.
  (b) w0L3y30 EI c. (c) 61 w0L4y5760 EI ↓.
 15.17 3 wLy8 ↑.
 15.18 3 M0y2L ↑.
 15.20 11 w0Ly40 ↑.
 15.21 RA 5 11Py16 ↑, MA 5 3PLy16 l, RB 5 5Py16 ↑, MB 5 0; 

M 5 23PLy16 at A, M 5 5PLy32 at C, M 5 0 at B.
 15.22 RA 5 41 wLy128 ↑, MA 5 0, RB 5 23 wLy128 ↑, MB 5 

7 wL2y128 i; M 5 0 at A, M 5 0.0513 wL2 at x 5 0.320 L, 
M 5 0.01351 wL2 at C, M 5 20.0547 wL2 at B.

 15.23 RB 5 4Py27 ↑, yD 5 11 PL3y2187 EI ↓.
 15.25 RA 5 1

2 P ↑, MA 5 PLy8 l; M 5 2PLy8 at A, M 5 PLy8 at 
C, M 5 2PLy8 at B.

 15.26 RA 5 w0Ly4 ↑, MA 5 5w0L2y96 l; M 5 25 w0 L
2y96 at A, 

M 5 w0L2y32 at C, M 5 25 w0L2y96 at B.
 15.27 (a) 8PL3y243 ↓. (b) 19 PL2y162 EI c.
 15.28 (a) PL3y486 EI ↑. (b) PL2y81 EI c.
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 15.29 (a) wL4y128 EI ↓. (b) wL3y72 EI c.
 15.30 (a) 19 Pa3y6 EI ↓. (b) 5 Pa2y2 EI c.
 15.31 3 PL2y4 EI a, 13 PL3y24 EI ↓.
 15.32 PL2yEI a, 17PL3y24 EI ↓.
 15.35 12.55 3 1023 rad c, 0.364 in. ↓.
 15.36 12.08 3 1023 rad c, 0.240 in. ↓.
 15.37 (a) 0.601 3 1023 rad c, (b) 3.67 mm ↓.
 15.39 (a) 7 wLy128. (b) 57 wLy128 ↑, 9 wL2y128 i.
 15.40 (a) 4Py3 ↑, PLy3 l. (b) 2Py3 ↑.
 15.42 3Py8 ↑ at A, 7Py8 ↑ at C, Py4 ↓ at D.
 15.43 13 wLy32 ↑, 11 wL2y192 i.
 15.45 (a) 5.06 3 1023 rad c. (b) 47.7 3 1023 in. ↓.
 15.46  121.5 Nym.
 15.48 (a) 0.00937 mm ↓. (b) 229 N.
 15.49 0.1975 in.
 15.50 (a) 31.2 mm. (b) 17.89 mm ↑.
 15.52 (a) 0.211 L, 0.1604 M0L2yEI ↓. (b) 6.08 m.
 15.54 (a) y 5 2w0L

4 [28 cos (pxy2L) 2 p2x2/L2 1 2p (p 2 2)xyL 1 
p(4 2 p)]yp4EI. (b) 0.1473 w0L3yEI a.

  (c) 0.1089 w0L4yEI ↓.
 15.55 3.00 kips.
 15.56 9M0/8L ↑; M0yL at A, 27M0y16 just to the left of C, 9M0y16 

just to the right of C, 0 at B.
 15.57 13 wa3y6 EI c, 29 wa3y24 EI ↓.
 15.59 5.58 3 1023 rad c, 2.51 mm ↓.
 15.60 7Py32 ↑ at A, 23P/32 ↑ at B, 33 Py16 ↑ at C.
 15.61 43.9 kN.

CHAPTER 16
 16.1 kL.
 16.2 KyL.
 16.3 kLy4.
 16.4 KyL.
 16.5 120 kips.
 16.7 (a) 6.65 lb. (b) 21.0 lb.
 16.9 (a) 6.25%. (b) 12.04 kips.

 16.10 (a) 7.48 mm. (b) 58.8 kN for round, 84.8 kN for square.
 16.12 1.421.
 16.13 168.4 kN.
 16.14 2.125.
 16.16 (a) 93.0 kN. (b) 448 kN.
 16.17 2.27.
 16.18 2.77 kN.
 16.20 (a) LBC 5 1.960 m, LCD 5 0.490 m. (b) 23.1 kN.
 16.22 16.29 in.
 16.23 29.5 kips.
 16.24 (a) 2.29. (b) 1.768 in. for (2), 1.250 in. for (3), 1.046 in. for (4).
 16.25 (a) 114.7 kN. (b) 208 kN.
 16.26 95.5 kips.
 16.27 (a) 220 kN. (b) 841 kN.
 16.28 (a) 86.6 kips. (b) 88.1 kips.
 16.31 (a) 26.4 kN. (b) 32.2 kN.
 16.32 76.6 kips.
 16.33 1598 kN.
 16.34 903 kN.
 16.36 173.8 kips.
 16.37 107.7 kN.
 16.39 6.53 in.
 16.40 (a) 3. (b) 5.
 16.41 0.884 in.
 16.42 9 mm.
 16.43 (a) 1.256 in. (b) 1.390 in.
 16.44 W250 3 67.
 16.47 3y8 in.
 16.48 L .
 16.49 79.0 kN.
 16.50 ka2/2l.
 16.52 0.384 in.
 16.53 p2b2y12L2a.
 16.56 4.00 kN.
 16.58 116.5 kips.
 16.59 (a) 1531 kN. (b) 638 kN.
 16.60 W10 3 54.
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Support or Connection Reaction Number of
Unknowns

Rollers Rocker Frictionless
surface

Force with known
line of action

Force with known
line of action

Force with known
line of action

1

1

1

Short cable Short link

Collar on
frictionless rod Frictionless pin in slot

90º

Frictionless pin
or hinge

Rough surface Force of unknown
direction

or

or

2

Fixed support Force and couple

3

a

a

Reactions at Supports and Connections for a Two-Dimensional Structure

The first step in the solution of any problem concerning the 
equilibrium of a rigid body is to construct an appropriate free-body 
diagram of the body. As part of that process, it is necessary to show 
on the diagram the reactions through which the ground and other 
bodies oppose a possible motion of the body. The figures on this 
and the facing page summarize the possible reactions exerted on 
two- and three-dimensional bodies.
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Hinge and bearing supporting radial load only
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Reactions at Supports and Connections for a Three-Dimensional Structure
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Moments of Inertia of Common Geometric Shapes
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