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Dr. Chase has taught mechanical engineering at the Brigham Young University since 1968. An advo-
cate of computer technology, he has served as a consultant to industry on numerous projectsinvolving
engineering software applications. He served as a reviewer of the Motorola Six Sgma Program at its
inception. He also served on an NSF select panel for evaluating tolerance analysis research needs. In
1984, he founded the ADCATS consortiumfor the devel opment of CAD-based toolsfor tolerance analy-
sis of mechanical assemblies. More than 30 sponsored graduate theses have been devoted to the devel -
opment of the tolerance technology contained in the CATS software. Several faculty and students are
currently involved in a broad spectrum of research projects and industry case studies on statistical
variation analysis. Past and current sponsorsinclude Allied Sgnal, Boeing, Cummins, FMC, Ford, GE,
HP, Hughes, IBM, Motorola, Sandia Labs, Texas I nstruments, and the US Navy.

14.1  Tolerance Allocation Using Least Cost Optimization

A promising method of tolerance all ocation uses optimizati on techni ques to assign component tol erances
that minimize the cost of production of an assembly. This is accomplished by defining a cost-versus-
tolerance curve for each component part in the assembly. An optimization algorithm varies the tolerance
for each component and searches systematically for the combination of tolerancesthat minimizethe cost.

14.2 1-D Tolerance Allocation

Fig. 14-1 illustrates the concept simply for a three component assembly. Three cost-versus-tolerance
curves are shown. Threetolerances (T, T,, T, ) areinitially selected. The corresponding cost of produc-
tionisC, + C,+C,. The optimization algorithm triesto increase the tol erancesto reduce cost; however, the
specified assembly tolerancelimitsthe tolerance size. If tolerance T, isincreased, thentolerance T, or T,
must decrease to keep from violating the assembly tolerance constraint. Itisdifficult totell by inspection
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which combination will be optimum, but you can see from the figure that a decrease in T, results in a
significant increasein cost, while acorresponding decrease in T, resultsin asmaller increasein cost. In
thismanner, one could manually adjust tolerances until no further cost reduction isachieved. The optimi-
zation algorithm is designed to find the minimum cost automatically. Note that the values of the set of
optimum tolerances will be different when the tolerances are summed statistically than when they are
summed by worst case.

4 -
Cost _' c3
- C1 Cc2 ‘\
T1 - Tolerance
T2 >
T3
Total Cost: Constraint:
Ciot = G +C 2 +C 4 Tiot =T1 +T2 +T 3 [Worst Case]

Figure 14-1 Optimal tolerance
=\ T21 +T 22+T 23 [Statistical] allocation for minimum cost

A necessary factor in optimum tolerance allocation is the specification of cost-versus-tolerance
functions. Several algebraic functions have been proposed, as summarized in Table 14-1. The Reciprocal
Power function: C = A + B/tolkincludesthe Reciprocal and Reciprocal Squared rulesfor integer powers of
k. The constant coefficient A representsfixed costs. It may include setup cost, tooling, material, and prior
operations. The B term determines the cost of producing a single component dimension to a specified
tolerance and includes the charge rate of the machine. Costs are calculated on a per-part basis. When
tighter tolerances are called for, speeds and feeds may be reduced and the number of passes increased,
requiring more time and higher costs. The exponent k describes how sensitive the process cost is to
changes in tolerance specifications.

Table 14-1 Proposed cost-of-tolerance models

Cost Model Function Author Ref

Reciprocal Squared A+ B/tol? Spotts Spotts 1973
(Reference 11)

Reciprocal A+ B/tol Chase & Greenwood | Chase 1988
(Reference 3)

Reciprocal Power A+ Bltol K Chaseet al. Chase 1989
(Reference 4)

Exponential A e-B(tol) Speckhart Speckhart 1972
(Reference 10)
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Little has been done to verify the form of these curves. Manufacturing cost data are not published
since they are so site-dependent. Even companies using the same machines would have different costs
for labor, materials, tooling, and overhead.

A study of cost versus tolerance was made for the metal removal processes over the full range of
nominal dimensions. This data has been curve fit to obtain empirical functions. The form wasfound to
follow the reciprocal power law. The results are presented in the Appendix to this chapter. The original
cost study is decades old and may not apply to modern numerical controlled (N/C) machines.

A closed-form solution for the least-cost component tol erances was devel oped by Spotts. (Reference
11) He used the method of Lagrange Multipliers, assuming a cost function of the form C=A+B/tol?.
Chase extended thisto cost functions of the form C=A+B/tolk asfollows. (Reference4)

T (Cost _ function) +1 T (Constraint) =0 (i=1,...n)
L 1.

L o A a0 o
— A +B /T [+l — (A T - Tign/=0 (i=1,..n)
T|Ti a ] J J ﬂT| (a ] asm)
| = ki Bi .
—Ei(m)- (I—l,...n)
Eliminating | by expressing it in terms of T, (arbitrarily selected):
L(k+2
B, 0 (k+2) (k1+2)/(K+2) (14.)
glelQ l .
Substituting for each of the T, in the assembly tolerance sum:
2/(|<1 +2)
o &;B 0 + +
TAZSIVI :T12 a le(kl 2Wl+2) (14.2)
lem

Theonly unknown in Eq. (14.2) isT,. Oneonly needsto iterate the value of T, until both sides of Eq.
(14.2) are equal to obtain the minimum cost tolerances. A similar derivation based on aworst case assem-
bly tolerance sum yields:

/(i +1)

g BB O )

élel P

A graphical interpretation of this method is shown in Fig. 14-2 for a two-part assembly. Various
combinations of the two tolerances may be selected and summed statistically or by worst case. By
summing the cost corresponding to any T, and T,, contours of constant cost may be plotted. Y ou can see
that cost decreases as T, and T, are increased. The limiting condition occurs when the tolerance sum
egualsthe assembly requirement T,,,. Theworst caselimit describesastraight line. The statistical limitis
anellipse. T, and T, values must not be outside the limit line. Note that as the method of Lagrange
Multipliers assumes, the minimum cost tolerance valueislocated wherethe constant cost curveistangent
to the tolerance limit curve.

Taav =T TQ (14.3)

14.3  1-D Example: Shaft and Housing Assembly

The following example is based on the shaft and housing assembly shown in Fig. 14-3. Two bearing
sleeves maintain the spacing of the bearings to match that of the shaft. Accumulation of variation in the
assembly resultsin variation in the end clearance. Positive clearanceisrequired.
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Figure 14-3 Shaft and housing
assembly

Initial tolerances for parts B, D, E, and F are selected from tolerance guidelines such as those illus-
trated in Fig. 14-4. The bar chart showsthe typical range of tolerance for several common processes. The
numerical values appear in the table above the bar chart. Each row of the numerical table correspondsto
adifferent nominal size range. For example, aturned part having anominal dimension of .750 inch can be
produced to atolerance ranging from £.001 to £.006 inch, depending on the number of passes, rigidity of
the machine, and fixtures. Tolerances are chosen initially from the middle of the range for each dimension
and process, then adjusted to match the design limits and reduce production costs.

Table 14-2 showsthe problem data. Theretaining ring (A) and the two bearings (C and G) supporting
the shaft are vendor-supplied, hence their tolerances are fixed and must not be altered by the allocation
process. The remaining dimensionsare all turned in-house. Initial tolerancevaluesfor B, D, E, and F were
selected from Fig. 14-4, assuming amidrange tolerance. Thecritical clearanceisthe shaft end-play, which
is determined by tolerance accumulation in the assembly. The vector diagram overlaid onthefigureisthe
assembly loop that models the end-play.
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RANGE OF SIZES
TOLERANCES %35
FROM THROUGH
0.000 0.599 0.00015 0.0002 0.0003 0.0005 0.0008 0.0012 0.002 0.003 0.005
0.600 0.999 0.00015 0.00025 0.0004 0.0006 0.001 0.0015 0.0025 0.004 0.006
1.000 1.499 0.0002 0.0003 0.0005 0.0008 0.0012 0.002 0.003 0.005 0.008
1.500 2.799 0.00025 0.0004 0.0006 0.001 0.0015 0.0025 0.004 0.006 0.010
2.800 4.499 0.0003 0.0005 0.0008 0.0012 0.002 0.003 0.005 0.008 0.012
4.500 7.799 0.0004 0.0006 0.001 0.0015 0.0025 0.004 0.006 0.010 0.015
7.800 13.599 0.0005 0.0008 0.0012 0.002 0.003 0.005 0.008 0.012 0.020
13.600 20.999 0.0006 0.001 0.0015 0.0025 0.004 0.006 0.010 0.015 0.025
LAPPING & HONING
DIAMOND TURNING
& GRINDING
BROACHING
REAMING

MILLING
DRILLING

TURNING, BORING, SLOT.
PLANING, & SHAPING

TING

The average clearance is the vector sum of the average part dimensionsin the loop:
Required Clearance
Average Clearance

Figure 14-4 Tolerance range of machining processes (Reference 12)

Table 14-2 Initial Tolerance Specifications

Initial Process Tolerance Limits

Dimension Nominal Tolerance Min Tol Max Tol

A .0505 .0015% * *

B 8.000 .008 .003 012

C 5093 .0025% * *

D 400 .002 .0005 .0012

E 7711 .006 .0025 .010

F 400 .002 .0005 0012

G 5093 .0025% * *

* Fixed tolerances

= 020+ 015
=—A+B-C+D-E+F-G

=—.0505 + 8.000 —.5093 + .400 — 7.711 + .400 — .5093
=.020
The worst case clearance tolerance is obtained by summing the component tolerances:
Toum STa+Tg+Tc +Tp +Tg +Tp +Tg
=+.0015 +.008 +.0025 +.002 +.006 +.002 +.0025
=.0245 (toolarge)
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To apply the minimum cost algorithm, we must set Ty, = (T, - fixed tolerances) and substitute for
T, Te, and T interms of T, asin Eq. (14.3).

oK p B 1/(kp +1)
Tasm - Ta-Tc-Tg =Tg + g D 2 TékBﬂ)/(kD R

kBBB P

aKeBE ke ) (kg +1)/ (kg +1) ad<|:BF+( F+)

ngBBg Te ngBBQ)

Inserting values into the equation yields:

TékB +1)/ (kg +1)

.1/(1.46823
015 - 0015 - .0025 - .0025 =T +85(46823 )(. ;Z:gi ) 0 Té1.43899)/(1.46823 .
o 46537 )(. 12576 ) /(14053 )T (1.43899)/ (1.46537) 6'3( 46823 )(.07202 ) 6 o (14682 QT (1.43899)/ (146823
B

(43899 (15997 ) 5 B € 238990 )(.15997 )

The values of k and B for each nominal dimension were obtained from the fitted cost-tolerance
functions for the turning process listed in the Appendix of this chapter. Using a spreadsheet program,
calculator with a*“ Solve” function, or other math utility, the value of T satisfying the above expression
can be found. T, can then be substituted into the individual expressions to obtain the corresponding
valuesof T, T, and T, and the predicted cost.

Tg =.0025
1/ (146823
To =T¢ :?(@;E%g; Tél.43899)/(146823) 0017
- :§I46537 ;E 12576; /(14653 )Té1.43899)/(1.46537) 005
43899 )(.15997

C=Ag +Bg(Tg)"® +Ap +Bp (T )*0 +Ag +Bg (Tg ) E + A +B (T )'F =s1107

Numerical results for the example assembly are shown in Table 14-3.

The setup cost is coefficient A in the cost function. Setup cost does not affect the optimization. For
this example, the setup costswere all chosen as equal, so they would not mask the effect of the tolerance
allocation. In this case, they merely added $4.00 to the assembly cost for each case.

Parts A, C, and G are vendor-supplied. Since their tolerances are fixed, their cost cannot be changed
by reallocation, so no cost dataisincluded in the table.

The statistical tolerance allocation results were obtained by a similar procedure, using Eq. (14.2).

Notethat in thisexamplethe assembly cost increased when worst case all ocation was performed. The
original tolerances, when summed by worst case, give an assembly variation of .0245 inch. This exceeds
the specified assembly tolerance limit of .015 inch. Thus, the component tolerances had to be tightened,
driving up the cost. When summed statistically, however, the assembly variation was only .0011 inch.
Thiswaslessthan the spec limit. The allocation algorithm increased the component tolerances, decreas-
ing the cost. A graphical comparison isshownin Fig. 14-5. It isclear from the graph that tolerancesfor B
and E were tightened in the Worst Case Model, while D and F were loosened in the Statistical Model.
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Table 14-3 Minimum cost tolerance allocation
Tolerance Cost Data Allocated Tolerances
Dimension | Setup Coefficient  Exponent Original Worst Stat.
A B k Tolerance Case 35
A * * .0015* .0015* .0015*
B $1.00 15997 43899 .008 00254 .0081
C * * .0025* .0025* .0025*
D 100 07202 46823 .002 001736 .00637
E 1.00 12576 46537 .006 .002498 .00792
F 1.00 07202 46823 .002 001736 .00637
G * * .0025* .0025* .0025*
Assembly Variation 0245(WC) | .0150(WC)  .0150(RSS)
O111(RSS)
Assembly Cost $9.34 $11.07 $8.06
Acceptance Fraction 1.000 9973
“True Cost” $11.07 $3.08

*Fixed tolerances

Min Cost Allocation Results

Original Tol $9.34 B
)
Min Cost: WC E
2
Min Cost: RSS $8.06
0.000 0002 0004 0006 0008  0.010
Tolerance cost allocation results

14.4  Advantages/Disadvantages of the Lagrange Multiplier Method

The advantages are:

* |t eliminatesthe need for multiple-parameter iterative solutions.
* It can handle either worst case or statistical assembly models.
* |t allows alternative cost-tolerance models.

The limitations are:

Figure 14-5 Comparison of minimum
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* Tolerancelimits cannot beimposed on the processes. M ost processes are only capable of a specified
rangeof tolerance. The designer must check theresulting component tolerancesto make surethey are
within the range of the process.

® Itcannot readily treat the problem of simultaneously optimizing interdependent design specifications.
That is, when an assembly has more than one design specification, with common component dimen-
sions contributing to each spec, someiterationisrequired to find aset of shared tolerances satisfying
each of the engineering requirements.

Problems exhibiting multiple assembly requirements may be optimized using nonlinear programming
techniques. Manual optimization may be performed by optimizing tolerances for one assembly spec at a
time, then choosing the lowest set of shared component tolerance values required to satisfy all assembly
specs simultaneously.

14.5 True Cost and Optimum Acceptance Fraction

The “True Cost” in Table 14-4 is defined as the total cost of an assembly divided by the acceptance
fraction or yield. Thus, thetotal cost isadjusted to include ashare of the cost of the rejected assemblies.
It does not include, however, any parts that might be saved by rework or the cost of rejecting individual
component parts.

Aninteresting exerciseisto calculate the optimum acceptance fraction; that is, the rejection rate that
would result in the minimum True Cost. This requires an iterative solution. For the example problem, the
results are shown in Table 14-4:

Table 14-4 Minimum True Cost

Cost Modd SA Z ssembly Optimum Acceptance Fraction True Cost
A+ BftolK $4.00 203 9576 $7.67
A+ BltolK $8.00 225 9756 $11.82

The resultsindicate that |oosening up the tolerances will save money on production costs, but will
increase the cost of rejects. By iterating on the acceptance fraction, it is possible to find the value that
mi nimizes the combined cost of production and rejects. Note, however, that the setup costs were set very
low. If setup costs were doubled, as shown in the second row of the table, the cost of rejects would be
higher, requiring a higher acceptance level.

Inthevery probable case whereindividual process cost-versus-tolerance curvesare not available, an
optimum acceptance fraction for the assembly could be based instead on more available cost-per-reject
data. The optimum acceptance fraction could then be used in conjunction with allocation by proportional
scaling or weight factors to provide a meaningful cost-related alternative to allocation by least cost
optimization.

14.6 2-D and 3-D Tolerance Allocation

Tolerance allocation may be applied to 2-D and 3-D assemblies as readily as 1-D. The only differenceis
that each component tolerance must be multiplied by itstolerance sensitivity, derived from the geometry
asdescribedin Chapters9, 11, and 12. The proportionality factors, weight factors, and cost factorsarestill
obtained as described above, with sensitivitiesinserted appropriately.
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14.7  2-D Example: One-way Clutch Assembly

The application of tolerance allocation to a 2-D assembly will be demonstrated on the one-way clutch
assembly showninFig. 14-6. Theclutch consistsof four different parts: ahub, aring, four rollers, and four
springs. Only a quarter section is shown because of symmetry. During operation, the springs push the
rollersinto the wedge-shaped space between the ring and the hub. If the hub isturned counterclockwise,
therollersbind, causing the ring to turn with the hub. When the hub is turned clockwise, therollersslip,
S0 torque is not transmitted to the ring. A common application for the clutch is a lawn mower starter.
(Reference5)

Vector Loop

Figure 14-6 Clutch assembly with vector
loop

The contact anglef betweentheroller andtheringiscritical to the performanceof theclutch. Variable
b, isthelocation of contact between the roller and the hub. Both the angle f and Iength b are dependent
assembly variables. The magnitude of f and b will vary from one assembly to the next dueto the variations
of the component dimensionsa, ¢, and e. Dimensiona isthe width of the hub;c and e/2 aretheradii of the
roller and ring, respectively. A complex assembly function determines how much each dimension contrib-
utesto the variation of angle f. The nominal contact angle, when all of the independent variables are at
their mean values, is 7.0 degrees. For proper performance, the angle must not vary more than 1.0 degree
from nominal. These are the engineering design limits.

The objective of variation analysisfor the clutch assembly isto determinethe variation of the contact
anglerelative to the design limits. Table 14-5 below shows the nominal value and tolerance for the three
independent dimensions that contribute to tolerance stackup in the assembly. Each of the independent
variables is assumed to be statistically independent (not correlated with each other) and a normally
distributed random variable. The tolerances are assumed to be £3s.

Table 14-5 Independent dimensions for the clutch assembly

Dimension Nominal Tolerance
Hub width - a 2.1768in. .004in.
Roller radius- ¢ A50in. .0004 in.
Ring diameter - e 4.000in. .0008 in.
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14.7.1 Vector Loop Model and Assembly Function for the Clutch

The vector loop method (Reference 2) usesthe assembly drawing asthe starting point. Vectorsare drawn
from part-to-part in the assembly, passing through the points of contact. The vectors represent the
independent and dependent dimensions that contribute to tolerance stackup in the assembly. Fig. 14-6
shows the resulting vector loop for a quarter section of the clutch assembly.

The vectors pass through the points of contact between the three parts in the assembly. Since the
roller istangent to the ring, both theroller radiusc and the ring radiuse are collinear. Once the vector loop
isdefined, theimplicit equationsfor the assembly can easily be extracted. Egs. (14.4) and (14.5) showsthe
set of scalar equations for the clutch assembly derived from the vector loop. h, and hy are the sum of
vector componentsin the x and y directions. A third equation, hq, isthe sum of relative angles between
consecutive vectors, but it vanishesidentically.

hy=0=b+ csn(f)-esn(f) (14.4)
hy=0=a+c+ ccos(f ) - ecos(f) (14.5)
Egs. (14.4) and (14.5) may be solved for f explicitly:
f =cos 1 &Eg
ge_ Cy (14.6)

The sensitivity matrix [S] can be calculated from Eq. (14.6) by differentiation or by finite difference:
ar oo \
gﬂa T '”eg:g 26469 -10.5483 26272y
[S=§fb Tb Tbi™§-103.43 - 44060 104.213
egfa Tc fTed

Thetolerance sensitivitiesfor df areinthetop row of [S]. Assembly variationsaccumulate or stackup
statistically by root-sum-squares:

d = 5((Sijdxj))2

= \/(Sllda)z +(Sp2dc)? +(S;ade)?
= (- 26469 )(.004))2 +((- 10.5483 )(:0004))2 +((2.6272 ) (.0008 ))?

=.01159 radians = .664 degrees
where df isthe predicted 3S variation, de isthe set of 3S component variations.
By worst case:

d =a|s;|dx;
=[Sufda +[Sizfdc +|Sde
= (2.6469)(.004) + (10.5483 )(.0004 ) + (2.6272)(.0008)

=.01691 radians = .9688 degrees
where df isthe predicted extreme variation.

14.8  Allocation by Scaling, Weight Factors

Once you have RSS and worst case expressions for the predicted variation df, you may begin applying
various allocation algorithmsto search for a better set of design tolerances. Aswe try various combina-
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tions, wemust be careful not to exceed thetol erancerange of the sel ected processes. Table 14-6 showsthe
selected processes for dimensions a, ¢, and e and the maximum and minimum tolerances obtainable by
each, as extracted from the Appendix for the corresponding nominal size.

Table 14-6 Process tolerance limits for the clutch assembly

Part Dimension Process | Nominal | Sensitivity | Minimum Maximum
(inch) Tolerance Tolerance
Hub a Mill 21768 | -2.6469 0025 .006
Roller c Lap 9000 | -10.548 .00025 .00045
Ring e Grind 4.0000 262721 .0005 .0012

14.8.1 Proportional Scaling by Worst Case

Sincetherollers are vendor-supplied, only tolerances on dimensionsa and e may be atered. The propor-
tionality factor P is applied to da and de, while d is set to the maximum tolerance of +.017453 radians
(£2°).
d =a|S;|dx;
017453 = | Sy; | Pda+| Sy, |dc+| Sy | Pde
017453 = (2.6469 ) P(.004 ) +(10.5483 )(.0004 ) + (2.6272) P(.0008 )
Solving for P:
P = 10429
Oa = (1.0429)(.004)=.00417 in.
Oe = (1.0429)(.0008)=.00083in.

14.8.2 Proportional Scaling by Root-Sum-Squares

d a[éHSijdxj ”2
017453 =+/(S1Pda)? + (S;,dc)? +(S;3Pde)?2
017453 = /(- 2.6469)P(.004))2 + ((- 10.5483)(.0004))2 +((2.6272 )P (.0008 ))2
Solving for P:
P = 156893
Oa = (1.56893)(.004)=.00628 in.
de= (1.56893)(.0008)=.00126 in.

Both of these new tolerances exceed the processlimitsfor their respective processes, but by lessthan
.001in each. Y ou could round them off to .006 and .0012. The process limits are not that precise.

14.8.3 Allocation by Weight Factors

Grinding thering is the more costly process of the two. We would like to loosen the tolerance on dimen-
sion e. Asalfirst try, let the weight factors be w, = 10, w, = 20. This will change the ratio of the two
tolerances and scalethem to match the 1.0 degreelimit. Theoriginal toleranceshad aratio of 5:1. Thefinal
ratio will be the product of 1:2 and 5:1, or 2.5:1. The sensitivities do not affect theratio.
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o :1/é‘(S|JdXJ )2)

017453 = ,/(S14P(10/30)da)? +(S;.0c)? +(S13P(20/30)ce)2

017453= (- 26469) P(10/ 30) .

Solving for P:

Evaluating the results, we see that da iswithin the .006in limit, but de iswell beyond the .0012 inch
processlimit. Since ca isso closetoitslimit, we cannot change the weight factors much without causing
dato goout of bounds. After several trial's, the best design seemed to be equal weight factors, whichisthe
same as proportional scaling. Wewill present aplot later that will makeit clear why it turned out thisway.

From the preceding examples, we see that the allocation algorithms work the same for 2-D and 3-D
assemblies as for 1-D. We simply insert the tolerance sensitivities into the accumulation formulas and

P =4.460

004))

da = (4.460)(10/30)(.004)=.00595 in.
de = (4.460)(20/30)(.0008)=.00238 in.

+((- 10.5483)(.0004))?

carry them through the cal culations as constant factors.

14.9

The minimum cost allocation applies equally well to 2-D and 3-D assemblies. If sensitivities are included

Allocation by Cost Minimization

in the derivation presented in Section 14.1, Egs. (14.1) through (14.3) become:

+((2.6272) P(20/30)(.0008) )2

Table 14-7 Expressions for minimum cost tolerances in 2-D and 3-D assemblies

Worst Case RSS
ll(ki +1) BS Ol/(k i+2)
T 1)k 42) T = &k B S (ks +2)/ (ki +2)
élels P ! glelsz' a '
Tasw = STy 25'\" = Slsz
2850”7y kBS54 8 " e
1l 1+ s 2(k, +2)/ (k; +2
*AsgEss *a S e o

The cost data for computing process cost is shown in Table 14-8:

Table 14-8 Process tolerance cost data for the clutch assembly

Part [Dimension [Process| Nominal| Sensitivity B k Minimum | Maximum
(inch) Tolerance | Tolerance
Hub a Mill 2.1768 -2.6469 |.1018696 | .45008 0025 .006
Roller c Lap 9000 | -10.548 000528 | 1.130204 | .00025 .00045
Ring e Grind | 4.0000 262721 |.0149227 | .79093 .0005 .0012
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14.9.1 Minimum Cost Tolerances by Worst Case

To perform tolerance allocation using aWorst Case Stackup Model, let T, =da, and T, = ce, then S, =S,
k,=k,, andB, =B, etc.

Tasv =| Sualda+|Syoldc+| Sy 5lde

ll(ke"'l)
aKeBeSy1 0 (ka+1)/(ke1)
=| Sp|dat|Spp|deH Sl 5= = datka*bilike
| Suldlrt{Sfde|Spafgy =75~
1/(1.79093)
017453= 2.6460 da+ 10,5483 (.0004) + 2.6272 89(79093)('0149227)(2'6469) 2 dla(145008)/ (1.79093

&(145008){0.1018696)(2.6272)

The only unknown isda, which may befound by iteration. d@ may then be found once ca isknown.
Solving for da and ce:
da =.00198in.

(70008 )( 0140227 )(2.6469) ¢+ "% (1450081 (179099 - s in

g(.45008 )(0.10186% )(2.6272 )

de =

The cost corresponding to holding these tolerances would be reduced from C= $5.42 to C= $3.14.

Comparing these values to the process limitsin Table 14-6, we see that da is below its|ower process
limit (.0025< da <.006), whiledeismuch larger than the upper processlimit (.0005< de <.0012). If we decrease
ce to the upper processlimit, da can beincreased until T,,, equalsthe speclimit. Theresulting valuesand
cost are then:

da=.0038in. e =.0012in. C=$30

Therelationship between the resulting three pairs of tolerancesisvery clear when they are plotted as
shownin Fig. 14-7. Tol e and Tol a are plotted as points in 2-D tolerance space. The feasible region is
bounded by abox formed by the upper and lower process limits, which is cut off by the Worst Case limit
curve. Theoriginal tolerances of (.004, .0008) lie within the feasible region, nearly touching the WC Limit.
Extending a line through the original tolerances to the WC Limit yields the proportional scaling results
found in section 14.2 (.00417, .00083), which is not much improvement over the original tolerances. The
minimum cost tol erances (OptWC) were asignificant change, but moved outside the feasible region. The
feasible point of lowest cost (Mod WC) resulted at the intersection of the upper limit for Tol eand the WC
Limit (.0038, .0012).

0.005
0.004 —— Original
0.003 — optwec
Tole —® ModWC
0.002
—%—— WC Limit
0.001

Feasible Region

0 0.002 0.004 Figure 14-7 Tolerance allocation

Tola results for a Worst Case Model
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Thistype of plot really clarifiesthe relationship between the three results. Unfortunately, itislimited
toa2-D graph, soitisonly applicable to an assembly with two design tolerances.

14.9.2 Minimum Cost Tolerances by RSS

Repeating the minimum cost tolerance allocation using the RSS Stackup Model:
2 _ 2 2 2
Tasw = (S110a)” +(Spode)” +(Syade)

2/ (ke+2)
= (Sy0a)? +(Sy00)? + (S13)2 FaeBeSL & (ka2 (ke 2)

kaBa813E
(017453 )% = (2.6469 da)? + ((10.5483)(.0004))>
+ 26072 85(-79093)(-0149227)(2-6459)92/(2'79093 a 2(2.45008 / (2.79093

< (45008 )(10186% )(2.6272 )
Solving for da by iteration and de as before:
da =.00409in.

o o 79003 )(.0149227 )(2.6469 )91/(2'79093) (.00409 )(2.45008)/(2.79093)

g(.45008 )(1018696 )(2.6272)

=.00495in.

The cost corresponding to holding these tolerances would be reduced from C= $5.42 to C= $2.20.

Comparing these values to the process limits in Table 14-6, we see that da is now safely within its
processlimits (.0025< da <.006), whiledeis still much larger than the upper processlimit (.0005< de<.0012).
If we again decrease ce to the upper process limit as before, da can beincreased until it equals the upper
process limit. The resulting values and cost are then:

da=.006in. de=.0012in. CcC=%407

The plot in Fig. 14-8 shows the three pairs of tolerances. The box containing the feasible region is
entirely withinthe RSSLimit curve. Theoriginal tolerancesof (.004, .0008) lie near the center of thefeasible
region. Extending aline through the original tolerances to the RSS Limit yields the proportional scaling
results found in section 14.2 (.00628, .00126), both of which lie just outside the feasible region. The

0.007
0.006
—%— Original
0.005
Tol e 0.004 T OptRss

0.003 —®%— ModRSS
0.002 —®%— RSS Limit
0.001

0

o 4

0.002 0.004 0.006 Feasible Region Figure 14-8 Tolerance allocation
Tol a results for the RSS Model
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minimum cost tolerances (OptRSS) were a significant change, but moved far outside the feasible region.
Thefeasible point of lowest cost (ModRSS) resulted at the upper limit corner of the feasibleregion (.006,
.0012).

Comparing Figs. 14-7 and 14-8, we see that the RSS Limit curve intersects the horizontal and vertical
axes at values greater than .006 inch, while the WC Limit curve intersects near .005 inch tolerance. The
intersections are found by letting Tol a or Tol e go to zero in the equation for T,q,, and solving for the
remaining tolerance. The RSS and WC Limit curves do not converge to the same point because the fixed
tolerance oc is subtracted from T, differently for WC than RSS.

14.10 Tolerance Allocation with Process Selection

Examining Fig. 14-7 further, the feasible region appears very small. There is not much room for tolerance
design. The optimization preferred to drive Tol e to amuch larger value. One way to enlarge the feasible
region isto select an alternate processfor dimensione. I nstead of grinding, suppose we consider turning.
The processlimits changeto (.002< de <.008), with B, =.118048 k_=-.45747. Table 14-9 showstherevised
data.

Table 14-9 Revised process tolerance cost data for the clutch assembly

Part |Dimension|Process | Nominal | Sensitivity B k Minimunm Maximum
(inch) Tolerance| Tolerance
Hub a Mill 2.1768 -26469 | .1018696 | .45008 .0025 .006
Roller c Lap .9000 -10.548 000528 | 1.130204] .00025 .00045
Ring e Turn 4.0000 262721 | .118048 A5747 002 .008

Milling and turning are processes with nearly the same precision. Thus, B, and B, are nearly equal as

arek, and k_. Theresulting RSS allocated tolerances and cost are:
da=.00434in. d&=.00474in. C=%$254

The new optimization resultsareshownin Fig. 14-9. Thefeasibleregionisclearly much larger and the
minimum cost point (Mod Proc) isonthe RSS Limit curve on theregion boundary. The new optimum point
has also changed from the previous result (Opt RSS) because of the change in B, and k for the new
process.

Theresulting WC allocated tolerances and cost are;

da=.00240in. de=.00262in. C=%333
0.007
o I

0.006 Original
0.005 = Opt RSS
0.004 —

Tol e Mod RSS
0.003 0 Mod Proc

0.002
& RSS Limit

0.001

Feasible Region
Figure 14-9 Tolerance allocation results
for the modified RSS Model
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Tola



14-16 Chapter Fourteen

The modified optimization results are shownin Fig. 14-10. Thefeasibleregion isthe smallest yet due

to thetight Worst Case (WC) Limit. The minimum cost point (Mod Proc) ison the WC Limit curve on the
region boundary.

0.005 1 easible Region
0.004 ° Original
— & OptWC
0.003
R - W
Tol e Mod WC
0.002
Mod Proc
0.001 —®—— WC Limit
0 ¢
0 0.002 0.004 Figure 14-10 Tolerance allocation
Tol a results for the modified WC Model

Cost reductions can be achieved by comparing cost functionsfor alternate processes. If cost-versus-
tolerance dataareavailablefor afull range of processes, process sel ection can even be automated. A very
systematic and efficient search technique, which automates this task, has been published. (Reference 4)
It compares several methods for including process selection in tolerance allocation and gives a detailed
description of the one found to be most efficient.

1411 Summary

Theresults of WC and RSS cost allocation of tolerances are summarized in thetwo bar charts, Figs. 14-11

and 14-12. The changes in magnitude of the tolerances are readily apparent. Costs have been added for
comparison.

WC Cost Allocation Results

Mod WC

Mod Proc

0 0.002 0.004 ) ]
Figure 14-11 Tolerance allocation
Tolerance results for the WC Model
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RSS Cost Allocation Results

Original
a
Opt RSS
[
Mod RSS
Mod Proc

0 0.002 0.004 0.006 Figure 14-12 Tolerance allocation results
Tolerance for the RSS Model

Summarizing, the original tolerancesfor both WC and RSS were safely within tolerance constraints,
but the costs were high. Optimization reduced the cost dramatically; however, the resulting tolerances
exceeded the recommended process limits. The modified WC and RSS tol erances were adjusted to con-
form to the process limits, resulting in a moderate decrease in cost, about 20%. Finaly, the effect of
changing processeswasillustrated, which resulted in acost reduction near thefirst optimization. Only the
allocated tolerances remained in the new feasible region.

A designer would probably not attempt all of these casesin areal design problem. Hewould bewise
to rely on the RSS solution, possibly trying WC analysisfor a case or two for comparison. Note that the
clutch assembly only had three dimensions contributing to the tolerance stack. If there had been six or
eight, the difference between WC and RSS would have been much more significant.

It should be noted that tolerances specified at the process limit may not be desirable. If the process
isnot well controlled, it may bedifficult to hold it at thelimit. Insuch cases, the designer may want to back
off from the limitsto allow for process uncertainties.
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14.13 Appendix
Cost-Tolerance Functions for Metal Removal Processes

Although it iswell known that tightening tolerances increases cost, adjusting the tolerances on several
components in an assembly and observing its effect on cost is an impossible task. Until you have a
mathematical model, you cannot effectively optimize the allocation of tolerance in an assembly. Elegant
tools for minimum cost tolerance allocation have been developed over several decades. However, they
require empirical functions describing the relationship between tolerance and cost.

Cost-versus-tolerance dataisvery scarce. Very few companies or agencies have attempted to gather
such data. Companieswho do, consider it proprietary, soitisnot published. The dataissite and machine-
specific and subject to obsol escence dueto inflation. In addition, not all processes are capabl e of continu-
ously adjustable precision.

Metal removal processes have the capability to tighten or loosen tolerances by changing feeds,
speeds, and depth of cut or by modifying tooling fixtures, cutting tools and coolants. The workpiece may
a so be modified, switching to amore machinable alloy or modifying geometry to achieve greater rigidity.

A noteworthy study by the US Army in the 1940s experimentally determined the natural tolerance
range for the most common metal removal processes. (Reference 13) They also compared the cost of the
various processesand therelative cost of tightening tolerances. Relative costswere used to eliminatethe
effects of inflation. Theresulting chart, Table 14A-1, appearsin References 7 and 8. Least squares curve
fitswere performed at Brigham Y oung University and are presented herefor thefirst time. The Reciprocal
Power equation, C = A + B/TX presented in Chapter 14, was used as the empirical function. Fig. 14A-1
shows a typical plot of the original data and the fitted data. The curve fit procedure was a standard
nonlinear method described in Reference 9, which uses weighted logarithms of the datato convert to a
linear regression problem. Results are tabulated in Table 14A-2 and plotted in Figs. 14A-2 and 14A-3.

Turn
2.5
2 LN -
—a—Sjze 4: Data
—aA—Size 4: Fitted
@ 13 % —=—Size 5: Data
@]
8 . -
1 \ —»—Size 5: Fitted
—a—Size 6: Data
05 —A—Size 6: Fitted
0
0 0.002 0.004 0.006 0.008 0.01 0.012

Tolerance

Figure 14A-1 Plot of cost-versus-tolerance for fitted and raw data for the turning process
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Table 14A-2 Cost-tolerance functions for metal removal processes

Size Range [A [B [k | MinTol MaxTol
Lap/Hone
0.000-0.599 0.00189378 [0.9508781 | 0.0002 0.0004
0.600-0.999 0.00052816 [1.1302036 | 0.00025 |0.00045
1.000-1.499 0.00220173 [0.9808618 | 0.0003 0.0005
1.500-2.799 0.00033129 |1.2590875 0.0004 0.0006
2.800-4.499 0.00026156 [1.3269297 | 0.0005 0.0008
4.500-7.799 0.00038119 |1.3073528 0.0006 0.001
7.800-13.599 0.00059824 [1.2716314 | 0.0007 0.0012
13.600-20.999 0.00427422 11.0221757 0.0008 0.0015
Grind / Diamond turn
0.000-0.599 0.02484363 [0.6465727 | 0.0002 0.0005
0.600-0.999 0.01525616 |0.7221989 0.00025 [0.0006
1.000-1.499 0.0205072  [0.7039047 | 0.0003 0.0008
1.500-2.799 0.0133561 0.7827624 0.0004 0.001
2.800-4.499 0.01492268 {0.790932 0.0005 0.0012
4.500-7.799 0.02467047 10.7413291 0.0006 0.0015
7.800-13.599 0.05119944 |0.6548091 0.0007 0.002
13.600-20.999 0.08317908 10.6017646 | 0.0008 0.0025
Broach
0.000-0.599 0.0438552  {0.548619 0.00025 |0.0008
0.600-0.999 0.04670538 |0.55230115 | 0.0003 0.001
1.000-1.499 0.04071362 [0.58686634 | 0.0004 [0.0012
1.500-2.799 0.048524 0.579761 0.0005 0.0015
2.800-4.499 0.0637591  {0.559608 0.0006 0.002
4.500-7.799 0.0922923 0.521758 0.0007 0.0025
7.800-13.599 0.144046 0.46957 0.0008 0.003
13.600-20.999 0.171785 0.45907 0.001 0.004
Ream
0.000-0.599 0.03245261 [0.6000163  |0.0005 0.0012
0.600-0.999 0.04682158 |0.565492 0.0006 0.0015
1.000-1.499 0.04204992 (0.6021191 |0.0008 0.002
1.500-2.799 0.04809684 (0.6021191 0.001 0.0025
2.800-4.499 0.06929088 (0.565492 0.0012 0.003
4.500-7.799 0.09203907 (0.5409254 0.0015 0.004
Turn/bore/ shape
0.000-0.599 0.07201641 [0.46822793 |0.0008 0.003
0.600-0.999 0.085969502 (0.45747142 ]0.001 0.004
1.000-1.499 0.101233386 (0.44723008 |0.0012 0.005
1.500-2.799 0.11800302 0.4389869 0.0015 0.006
2.800-4.499 0.11804756  [0.45747142 |0.002 0.008
4.500-7.799 0.12576137 |0.46536684 ]0.0025 0.01
7.800-13.599 0.15997103 [0.4389869 0.003 0.012
13.600-20.999 0.15300611 10.46822793 10.004 0.015
Mill
0.000-0.599 0.0862308  [0.4259173 |0.0012 0.003
0.600-0.999 0.10878812 0.4044547 0.0015 0.004
1.000-1.499 0.09544417 (0.4431399  |0.002 0.005
1.500-2.799 0.10186958 0.4500798 0.0025 0.006
2.800-4.499 0.14399071 [0.4044547  |0.003 0.008
4.500-7.799 0.12976209 (0.4431399  |0.004 0.01
7.800-13.599 0.13916564 [0.4500798 0.005 0.012
13 600-20 999 017114563 1042590173 0006 0015
Drill
0.000-0.599 0.00301435 [1.0955124  |0.003 0.005
0.600-0.999 0.00085791 |1.3801824 0.004 0.006
1.000-1.499 0.00318631 [1.1906627  |0.005 0.008
1.500-2.799 0.00644133 |1.0955124 0.006 0.01
2.800-4,499 0.00223316 11.3801824  10.008 0.012
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Figure 14A-2 Plot of fitted cost versus tolerance functions
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B k
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Figure 14A-3 Plot of coefficients versus size for cost-tolerance functions
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Figure 14A-3 continued Plot of coefficients versus size for cost-tolerance functions
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