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inception. He also served on an NSF select panel for evaluating tolerance analysis research needs. In
1984, he founded the ADCATS consortiumfor the devel opment of CAD-based toolsfor tolerance analy-
sis of mechanical assemblies. More than 30 sponsored graduate theses have been devoted to the devel -
opment of the tolerance technology contained in the CATS software. Several faculty and students are
currently involved in a broad spectrum of research projects and industry case studies on statistical
variation analysis. Past and current sponsorsinclude Allied Sgnal, Boeing, Cummins, FMC, Ford, GE,
HP, Hughes, IBM, Motorola, Sandia Labs, Texas | nstruments, and the US Navy.

13.1 Introduction

In this chapter, an alternative method to the one described in Chapter 12 is presented. This method is

based on vector loop assembly models, but with the following distinct differences:

1. A setof rulesisprovided to assure avalid set of vector loopsis obtained. Theloopsinclude only those
controlled dimensionsthat contribute to assembly variation. All dimensions are datum referenced.

2. A set of kinematic modeling elementsisintroduced to assist in identifying the adjustable dimensions
within the assembly that change to accommodate dimensional variations.
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3. In addition to describing variation in assembly gaps, a comprehensive set of assembly tolerance
requirementsisintroduced, which are useful to designers as performance requirements.

4. Algebraic manipulation to derive an explicit expression for the assembly feature is eliminated. This
method operates equally well onimplicit assembly equations. Theloop equations are solved the same
way every time, so it iswell suited for computer automation.

Thischapter distinguishesitself from Chapter 12 by replacing differentiation of acomplicated assem-
bly expression with asingle matrix operation, which determinesall necessary tolerance sensitivitiessimul-
taneously. Since the matrix only contains sines and cosines, derivations are simple. Aswith the method
shownin Chapter 12, thismethod may al so include other sources of variation, such as position tolerance,
paralelism error, or profile variations.

13.2 Three Sources of Variation in Assemblies

There are three main sources of variation, which must be accounted for in mechanical assemblies:
1. Dimensional variations (lengths and angles)

2. Geometric form and feature variations (position, roundness, angularity, etc.)
3. Kinematic variations (small adjustments between mating parts)

Dimensional and form variations are the result of variations in the manufacturing processes or raw
materials used in production. Kinematic variations occur at assembly time, whenever small adjustments
between mating parts are required to accommodate dimensional or form variations.

The two-component assembly shown in Figs. 13-1 and 13-2 demonstrates the relationship between
dimensional and form variationsin an assembly and the small kinematic adjustmentsthat occur at assem-
bly time. The parts are assembled by inserting the cylinder into the groove until it makes contact on the
two sides of the groove. For each set of parts, the distanceU will adjust to accommodatethe current value
of dimensionsA, R, and q. The assembly resultantU representsthe nominal position of thecylinder, while
U + DU represents the position of the cylinder when the variations DA, DR, and Dqg are present. This
adjustability of the assembly describes a kinematic constraint, or a closure constraint on the assembly.
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It isimportant to distinguish between component and assembly dimensionsin Fig. 13-1. WhereasA,
R, andqg arecomponent dimensions, subject to random process variations, distanceU isnot acomponent
dimension. It isaresultant assembly dimension. U isnot amanufacturing processvariable, itisakinematic
assembly variable. Variationsin U can only be measured after the partsare assembled. A, R, and g arethe
independent random sources of variation in thisassembly. They aretheinputs. U isadependent assem-
bly variable. It isthe output.

Fig. 13-2 illustratesthe same assembly with exaggerated geometric feature variations. For production
parts, the contact surfacesarenot really flat and the cylinder isnot perfectly round. The pattern of surface
wavinesswill differ from one part to the next. I n thisassembly, the cylinder makes contact on apeak of the
lower contact surface, while the next assembly may make contact inavalley. Similarly, thelower surfaceis
in contact with alobe of the cylinder, while the next assembly may make contact between lobes.

Local surface variations such as these can propagate through an assembly and accumulate just as
size variations do. Thus, in acomplete assembly model all three sources of variation must be accounted
for to assure realistic and accurate results.

13.3 Example 2-D Assembly — Stacked Blocks

The assembly in Fig. 13-3 illustrates the tolerance modeling process. It consists of three parts: a Block,
resting on a Frame, is used to position a Cylinder, as shown. There are four different mating surface
conditions that must be modeled. The gapG, between thetop of the Cylinder and the Frame, isthe critical
assembly feature we wish to control. Dimensionsa through f, r, R, and q are dimensions of component
features that contribute to assembly variation. Tolerances are estimates of the manufacturing process
variations. Dimension g isautility dimension used in locating gap G.

A 5 = 9 —L a 10.00 mm | £0.3 mm
o b 3000 |+03
7 c |30 |:03
o d |15.00 +0.3
VU e [5500 |03
f :”'/ ff f |7500 |+05
,;,;\ ot g |1000 |20
- e a4 r |1000 |01
4 7 R 40.00 +0.3
B e g |17.0deg |+1.0 deg

Figure 13-3 Stacked blocks assembly
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13.4  Steps in Creating an Assembly Tolerance Model

Stepl. Createan assembly graph

An assembly graph is a simplified diagram representing an assembly. All geometry and dimensions are
removed. Only the mating conditions between the parts are shown. Each part is shown asaballoon. The

& Figure 13-4 Assembly graph of the
stacked blocks assembly

contacts or joints between mating parts are shown as arcs or edges joining the corresponding parts.
Fig. 13-4 shows the assembly graph for the sample problem.

Theassembly graph letsyou seetherel ationship between the partsin the assembly. It also revealsby
inspection how many loops (dimension chains) will be required to build the tolerance model. Loops 1 and
2 are closed loop assembly constraints, which locate the Block and Cylinder relative to the Frame. Loop 3
is an open loop describing the assembly performance requirement. A systematic procedure for defining
the loopsisillustrated in the steps that follow.

Symbols have been added to each edge identifying the type of contact between the mating surfaces.
Between the Block and Frame there are two contacts: plane-to-plane and edge-to-plane. These are called
Planar and Edge Slider joints, respectively, after their kinematic counterparts.

Only six kinematic joint types are required to describe the mating part contacts occurring in most 2-D
assemblies, as shown in Fig. 13-5. Arrows indicate the degrees of freedom for each joint, which permit
relative motion between the mating surfaces. Also shown are two datum systems described in the next
section.
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Planar Cylinder Edge Revolute
Slider Slider
Parallel Rigid Rectangular  Center Figure 13-5 2-D kinematic joint and

Cylinders Datum Datum datum types
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Step2. Locatethedatum referenceframefor each part

Creating thetolerance model beginswith an assembly drawing, preferably drawn to scale. Elements of the
tolerance model are added to the assembly drawing as an overlay. The first elements added are a set of
local coordinate systems, called Datum Reference Frames, or DRFs. Each part must have its own DRF.
TheDRFisusedtolocatefeaturesonapart. Y ou probably will choosethe datum planesused to definethe
parts. But, feel freeto experiment. Asyou perform thetolerance analysis, you may find adifferent dimen-
sioning scheme that reduces the number of variation sourcesor isless sensitiveto variation. I dentifying
such effects and recommending appropriate design changes is one of the goals of tolerance analysis.

InFig. 13-6, the Frame and Block both have rectangular DRFslocated at their lower |eft corners, with
axesoriented along orthogonal surfaces. The Cylinder hasacylindrical DRF system at itscenter. A second
center datum hasbeen used to locate the center of thelargearc onthe Block. Thisiscalled afeaturedatum
and it is used to locate a single feature on a part. It represents a virtual point on the Block and must be
located relative to the Block DRF.
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variables

Also showninFig. 13-6 arethe assembly variables occurring within thisassembly. U, ,U,, andU, are
adjustable dimensions determined by the sliding contacts between the parts. f,, f,, and f, define the
adjustable rotations that occur in response to dimensional variations. Each of the adjustable dimensions
is associated with a kinematic joint. DimensionG isthe gap whose variation must be controlled by setting
appropriate tolerances on the component dimensions.

Step 3. Locate kinematic jointsand create datum paths

In Fig. 13-7, the four kinematic joints in the assembly are located at points of contact and oriented such
that the joint axes align with the adjustable assembly dimensions (called the joint degrees of freedom).
Thisis done by inspection of the contact surfaces. There are simple modeling rules for each joint type.
Joint 1 isan edge slider. It represents an edge contacting aplanar surface. It has two degrees of freedom:
it can slide along the contact plane (U,) and rotate relative to the contact point (f,). Of course, it is
constrained not to slide or rotate by contact with mating parts, but achangein dimensionsa, b, ¢, d,or q
will cause U, and f, to adjust accordingly.
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]

Figure 13-7 Datum paths for Joints 1
and 2

Joint 2isaplanar joint describing sliding contact between two planes. U, locatesareference point on
the contacting surface relative to the Block DRF. U, is constrained by the corner of the Block resting

against the vertical wall of the Frame.

InFig. 13-8, Joint 3 locatesthe contact point between the Cylinder and the Frame. A cylinder slider has
two degrees of freedom: U, isin the sliding plane andf, is measured at the center datum of the Cylinder.
Joint 4 represents contact between two parallel cylinders. The point of contact on the Cylinder islocated
by f,; on the Block, by f,. Joints 3 and 4 are similarly constrained. However, changes in component
dimensions cause adjustments in the points of contact from one assembly to the next.
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Figure 13-8 Datum paths for Joints 3
and 4
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The vectors overlaid on Figs. 13-7 and 13-8 are called the datum paths A datum path is a chain of
dimensionsthat |ocatesthe point of contact at ajoint with respect to apart DRF. For example, Joint 2inFig.
13-7 joins the Block to the Frame. The point of contact must be defined from both the Frame and Block
DRFs. There are two vector paths that leave Joint 2. U, lies on the sliding plane and points to the Block
DRF. Vectorsc and b point to the Frame DRF. Thetwo datum pathsfor Joint 1 are: vectorsU, and aleading
to the Frame DRF, and arc radiusR and vector e, leading to the Block DRF. In Fig. 13-8, Joint 3 islocated
by radiusr pointing to the Cylinder DRF, and U, and a defining the path to the Frame DRF. The contact
point for Joint 4 islocated by asecond radiusr pointing to the Cylinder DRF and arc radiusR andeleading
to the Block DRF.

M odeling rules define the path avector loop must follow to crossajoint. Fig. 13-9 showsthe correct
vector pathsfor crossing four 2-D joints. The rule states that the loop must enter and exit ajoint through
thelocal joint datums. For the Planar and Edge Slider joints, avector U (either incoming or outgoing) must
lieinthe sliding plane. Local Datum 2 represents a reference point on the sliding plane, from which the
contact point islocated. For the Cylindrical Slider joint, theincoming vector passesthrough center datum
of the cylinder, follows a radius vector to the contact point and leaves through a vector in the sliding
plane. The path through the parallel cylinder joint passes from the center datum of one cylinder to the
center datum of the other, passing through the contact point and two colinear radii in between.

from from

Datum 2

Edge Slider Planar

Cylindrical Slider Parallel Cylinders

Figure 13-9 2-D vector path through the joint contact point

As we created the two datum paths from each joint, we were in fact creating the incoming and
outgoing vectors for each joint. Although they were both drawn as outgoing vector paths, when we
combinethem to form the vector loops, one of the datum pathswill bereversed in direction to correspond
to the vector loop direction.

Each joint introduces kinematic variables into the assembly, which must be included in the vector
model. The rules assure that the kinematic variables introduced by each joint are included in the loop,
namely, the vector U in each sliding plane, and therelative anglef.
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Each datum path must follow controlled engineering dimensions or adjustable assembly dimensions.
Thisisacritical task, asit determineswhich dimensionswill beincludedinthetoleranceanalysis. All joint
degrees of freedom must also be included in the datum paths. They are the unknown variations in the
assembly tolerance analysis.

Step4. Createvector loops

V ector |oops define the assembly constraints that locate the parts of the assembly relative to each other.
The vectors represent the dimensions that contribute to tolerance stackup in the assembly. The vectors
are joined tip-to-tail, forming a chain, passing through each part in the assembly in succession.

A vector loop must obey certain modeling rules asit passes through a part. It must:
* Enter through ajoint
* Follow the datum path to the DRF
* Follow asecond datum path |eading to another joint, and

* Exit to the next adjacent part in the assembly

Thisisillustrated schematically in Fig. 13-10. Thus, vector loops are created by simply linking to-
gether the datum paths. By so doing, al the dimensions will be datum referenced.

Outgoing
Joint

Incoming
Joint

Figure 13-10 2-D vector path across a
part

Additional modeling rulesfor vector loops include:

* Loops must pass through every part and every joint in the assembly.
* A singlevector loop may not pass through the same part or the samejoint twice, but it may start and
end in the same part.
If a vector loop includes the exact same dimension twice, in opposite directions, the dimension is
redundant and must be omitted.
* Theremust be enough loopsto solvefor all of the kinematic variables (joint degrees of freedom). Y ou

will need one loop for each of the three variables.

Two closedloopsarerequired for the example assembly, aswesaw intheassembly graph of Fig. 13-4. The
resulting loopsareshowninFigs. 13-11 and 13-12. Noticehow similar theloopsareto thedatum pathsof Figs.
13-7 and 13-8. Also, notice that some of the vectorsin the datum paths were reversed to keep all the vectors
in each loop going in the samedirection.
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Figure 13-11 Assembly Loop 1
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Step5. Add geometric variations

Geometric variations of form, orientation, and location can introduce variation into an assembly. Such
variations can accumul ate statistically and propagate kinematically the same as size variations. The man-
ner in which geometric variation propagates across mating surfaces depends on the nature of the contact.
Fig. 13-13 illustrates this concept.

Nominal Tolerance
circle zone

- /‘ Rotational variation

Translational Tolerance Tolerance
variation zone ]{Zone
................ e + =
Cylinder on a plane surface Block on a plane surface

Figure 13-13 Propagation of 2-D translational and rotational variation due to surface waviness

Consider a cylinder on a plane, both of which are subject to surface waviness, represented by a
tolerance zone. Asthetwo parts are brought together to be assembled, the cylinder could rest on the top
of ahill or downin avalley of asurface wave. Thus, for this case, the center of the cylinder will exhibit
tranglational variation from assembly-to-assembly in adirection normal to the surface. Similarly, the cylin-
der could be lobed, as shown in the figure, resulting in an additional vertical translation, depending on
whether the part rests on alobe or in between.

In contrast to the cylinder/plane joint, the block on a plane shown in Fig. 13-13 exhibits rotational
variation. In the extreme case, one corner of the block could rest on awaviness peak, while the opposite
corner could be at the bottom of the valley. The magnitude of rotation would vary from assembly-to-
assembly. Waviness on the surface of the block would have a similar effect.

Ingeneral, for two mating surfaces, wewould have two independent surface variationsthat introduce
variation into the assembly. How it propagates depends on the nature of the contact, that is, the type of
kinematic joint. While there islittle or no published data on typical surface variations for manufacturing
processes, it is still instructive to insert estimates of variations and calculate the magnitude of their
possible contribution. Fig. 13-14 illustrates several estimated geometric variations added to the sample
assembly model. Only one variation is defined at each joint, since both mating surfaces have the same
sensitivity. Examining the percent contribution to the gap variation will enable us to determine which
surfaces should have a GD& T tolerance control.

Step 6. Define performance requirements

Performance requirements are engineering design requirements. They apply to assemblies of parts. In
tolerance analysis, they are the specified limits of variation of the assembly features that are critical to
product performance, sometimes called the key characteristics or critical feature tolerances. Several
examples were illustrated in Chapter 9 for an electric motor assembly. Simple fits between a bearing and
shaft, or abearing and housing, would only involvetwo parts, whiletheradial and axial clearance between
the armature and housing would involve atolerance stackup of several parts and dimensions.
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Component tolerancesare set asaresult of analyzing tolerance stackup in an assembly and determin-
ing how each component dimension contributes to assembly variation. Processes and tooling are se-
lected to meet the required component tolerances. Inspection and gaging equipment and procedures are
also determined by the resulting component tolerances. Thus, we see that the performance requirements
have a pervasive influence on the entire manufacturing enterprise. It is the designer’ stask to transform
each performance requirement into assembly tolerances and corresponding component tol erances.

There are several assembly features that commonly arise in product design. A fairly comprehensive
set can be devel oped by examining geometric dimensioning and tolerancing feature controls and forming
a corresponding set for assemblies. Fig. 13-15 shows a basic set that can apply to a wide range of
assemblies.

Note that when applied to an assembly feature, parallelism applies to two surfaces on two different
parts, while GD& T standards only control parallelism between two surfaces on the same part. The same
can be said about the other assembly controls, with the exception of position. Positiontolerancein GD& T
relates assemblies of two parts, while the position tolerancein Fig. 13-15 could involve awhole chain of
intermediate parts contributing variation to the position of mating features on the two end parts. An
example of the application of assembly tolerance controls is the alignment regquirements in a car door
assembly. The gap between the edge of the door and the door frame must be uniform and flush (parallel in
two planes). The door striker must line up with the door lock mechanism (position).

Each assembly feature, such asagap or parallelism, requires an open loop to describe the variation.
Y ou can have any humber of open loopsin an assembly tolerance model, one per critical feature. Closed
loops, on the other hand, are limited to the number of loops required to locate all of the parts in the
assembly. It isaunique number determined by the number of parts and joints in the assembly.

L=J-P+1
where L is the required number of loops, J is the number of joints, and P is the number of parts. For the
example problem:

L=4-3+1=2
which isthe number we determined by inspection of the assembly graph.
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The example assembly has a specified gap tolerance between a cylindrical surface and a plane, as
shownin Fig. 13-6. The vector loop describing the gap isshown in Fig. 13-16. It beginswith vector g, on
one side of the gap, proceeds from part-to-part, and ends at the top of the cylinder, on the opposite side
of the gap. Note that vector a, at the DRF of the Frame, appears twice in the same loop in opposite
directions. It istherefore redundant and both vectors must be eliminated. V ector r also appearstwicein
the cylinder; however, the two vectors are not in opposite directions, so they must both beincluded in
the loop.

Vector g, incidentally, isnot amanufactured dimension. It isreally akinematic variable, which adjusts
to locate the point on the gap opposite the highest point on the cylinder. It was given zero tolerance,
because it does not contribute to the variation of the gap.

The steps illustrated above describe a comprehensive system for creating assembly models for
toleranceanalysis. With just afew basic elements, awide variety of assemblies may be represented. Next,
wewill illustrate the stepsin performing avariational analysis of an assembly model.

13.5 Steps in Analyzing an Assembly Tolerance Model

Ina2-D or 3-D assembly, component dimensions can contribute to assembly variation in more than one
direction. The magnitude of the component contributionsto the variationin acritical assembly featureis
determined by the product of the process variation and the tol erance sensitivity, summed by worst case
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or Root Sum Squared (RSS). If the assembly isin production, actual process capability data may be used
to predict assembly variation. If production has not yet begun, the process variation is approximated by
substituting the specified tolerances for the dimensions, as described earlier.

The tolerance sensitivities may be obtained numerically from an explicit assembly function, asillus-
tratedin Chapter 12. Analternative procedurewill bedemonstrated, which doesnot requirethederivation
of an explicit assembly function. It is a systematic method, which may be applied to any vector loop
assembly model.

Stepl. Generate assembly equationsfrom vector loops

Thefirst step in an analysisis to generate the assembly equations from the vector loops. Three scalar
equations describe each closed vector loop. They are derived by summing the vector componentsin the
x and y directions, and summing the vector rotations as you trace the loop. For closed loops, the compo-
nents sum to zero. For open, they sum to anonzero gap or angle.

The equations describing the stacked bl ock assembly are shown below. For Closed Loops1and 2,h,,
h,, and h, arethe sums of thex, y, and rotation components, respectively. See Egs. (13.1) and (13.2). Both
loops start at the lower left corner, with vector a. For Open Loop 3, only one scalar equation (Eq. (13.6)) is
needed, since the gap has only avertical component. Open loops start at one side of the gap and end at
the opposite side.

Closed Loop 1

h,=a cos(0) + U, cos(90) + Rcos(90 +f,) + e cos(90 + f, - 180) + U, cos(q)
+ ¢ cos(- 90)+ b cos(- 180) =0

h,=asin(0) + U,sin(90) + Rsin(90 +f ) + esin(90 + f, - 180) + U, sin(q) (13.2)
+csin(-90) + b sin(- 180) =0

h,=0+90+f,-180 +90- q- 90-90+180=0
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Closed Loop 2
h,=acos(0) + U, cos(90) + r cos(0) +r cos(- f,) + Rcos(- f,+180) + ecos(- f,- f,)
+ U, cos(q) + ¢ cos(—90) + b cos(—180) =0
h,=asin(0) + U, sin(90) +r sin(0) +r sin(- f,) +Rsin(- f, +180) +esin(- f - f,)
+U, sin(q) +csin(-90) + bsin(- 180)=0 (13.2)
h,=0+90-90—f,+180—f,-180 + 90-q—-90-90+180=0

Open Loop 3
Gap =r sin(—90) + r sin(180) + U, sin(—90) + fsin(90) + g sin(0) (13.3)

The loop equations relate the assembly variables: U,, U,, U, f , f,,f5, and Gap to the component
dimensions: a,b, ¢, e, f,g,r, R, and q. Weare concerned with the effect of small changesin the component
variables on the variation in the assembly variables.

Note the uniformity of the equations. All h, components are in terms of the cosine of the angle the
vector makes with the x-axis. All h, are in terms of the sine. In fact, just replace the cosines in the h,
equation with sines to get the h, equation. The loop equations always have this form. This makes the
equations very easy to derive. In a CAD implementation, equation generation may be automated.

The h, equations are the sum of relative rotations from one vector to the next asyou proceed around
theloop. Counterclockwiserotationsare positive. Fig. 13-17 tracestherelativerotationsfor Loop 1. A final
rotation of 180 is added to bring the rotations to closure.

Whilethe arguments of the sinesand cosinesintheh, and h, equationsrepresent the absoluteangle
fromthe x-axis, the anglesare expressed asthe sum of relativerotationsup to that point in theloop. Using
relative rotations is critical to the correct assembly model behavior. It alows rotational variations to
propagate correctly through the assembly.

|

-180°

Relative rotations
hg=0+90+f;-180 +90
—q—90-90+180=0

+180°\ 5 b | -
-90° Figure 13-17 Relative rotations for

Loop 1
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A shortcut was used for the arguments for vectors U,, ¢, and b. The sum of relative rotations was
replaced with their known absolute directions. The sum of relative anglesfor U, is (- q,- g,+ 90), but it
must align with the angled plane of the frame (q). Similarly, vectors b and ¢ will always be vertical and
horizontal, respectively, regardless of the preceding rotational variationsintheloop. Replacing theangles
for U, C, and b isequivalent to solving theh, equation for g and substituting in the argumentsto eliminate
some of the angle variables. If you try it both ways, you will see that you get the same results for the
predicted variations. The results are also independent of the starting point of the loop. We could have
started with any vector in the loop.

Step2. Calculatederivativesand form matrix equations

Theloop equations are nonlinear and implicit. They contain products and trigonometric functions of the
variables. To solve for the assembly variables in this system of equations would require a nonlinear
equation solver. Fortunately, weare only interested in the changein assembly variablesfor small changes
in the components. This is readily accomplished by linearizing the equations by a first-order Taylor’'s
series expansion.

Eq. (13.4) showsthe linearized equations for Loop 1.

ﬂhx ﬂhx ﬂhx ﬂhx ﬂhx ﬂhx 1-IhX

dh, = da + db + dc + de + dr + dR + (00
fa b fc Te 1 1R fiq
LThy o Thy LT Thy , Th, , T,
d,+2Xd,+-2d du du du
B TP T T VA T VP
Th Th Th Th Th Th h
dhy = — da+—>-db + —-dc + —-de + —-dr + —-dR + —d
fa b Tc Te qr 1R Tq
Th LT Th Th Th Th
+— —d, +—Ld 5 +—LdU, + ydu2 Y du,
", 'ITf 1t 5 U, wu us (134)
dh, = h, da + h, db + Th, dc + Th, de + Th, dr + ﬂhz dR + fh, oy
fa b Tic Te qr 1R [
+ ﬂhz + ﬂh—zd 2 + &d 3+t —ﬂhz dUl ﬂh —=du 2 ﬂh
T 4 i 5 I3 U, U, 'nu

where
dh represents asmall change in dimension a, and so on.

Note that the terms have been rearranged, grouping the component variablesa, b, c, e, r, R, and q
together and assembly variablesU,, U,, U, f,, f,, and f, together. The Loop 2 and L oop 3 equations may
be expressed similarly.

Performing the partial differentiation of the respective h,, h,, and h, equationsyieldsthe coefficients
of the linear system of equations. The partials are easy to perform because there are only sines and
cosinesto deal with. Eg. (13.5) shows the partials of the Loop 1 h, equation.
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Component Variables Assembly Variables
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Each partial isevaluated at the nominal value of all dimensions. The nominal component dimensions
are known from the engineering drawings or CAD model. The nominal assembly values may be obtained
by querying the CAD model.

The partial derivatives above are not the tolerance sensitivities we seek, but they can be used to
obtain them.

Step 3. Solvefor assembly tolerance sensitivities

The linearized loop equations may be written in matrix form and solved for the tolerance sensitivities by
matrix algebra. The six closed loop scalar equations can be expressed in matrix form as follows:
[Al{dx} +[B{dJ} ={C}

where:

[A] isthe matrix of partial derivativeswith respect to the component variables,

[B] isthe matrix of partial derivatives with respect to the assembly variables,

{dX} isthe vector of small variationsin the component dimensions, and

{dJ} isthevector of corresponding closed |loop assembly variations.

We can solvefor the closed loop assembly variationsin terms of the component variations by matrix
algebra:

{aJ} =-[B*A|{dx} (13.6)

The matrix [B*A] is the matrix of tolerance sensitivities for the closed loop assembly variables.
Performing the inverse of the matrix [B] and multiplying [B-*A] may be carried out using a spreadsheet or
other math utility program on a desktop computer or programmable cal culator.
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{dJ} =-[B*Al{dX} (13.7)
idau
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Estimates for variation of the assembly performance requirements are obtained by linearizing the
open loop equations by aprocedure similar to the closed loop equations. 1ngeneral, therewill beasystem
of nonlinear scalar equations which may be linearized by Taylor’s series expansion. Grouping terms as
before, we can express the linearized equations in matrix form:

{av} =[C[{ax} +[E]{dJ} (138)

where
{av} isthe vector of variationsin the assembly performance requirements,
[C] isthe matrix of partial derivativeswith respect to the component variables,
[E] isthe matrix of partial derivativeswith respect to the assembly variables,
{dX} isthe vector of small variationsin the component dimensions, and
{dJ} isthe vector of corresponding closed |oop assembly variations.

We can solve for the open loop assembly variationsin terms of the component variations by matrix
algebra, by substituting the results of the closed loop solution. Substituting for {dJ}:

{av} =[C{dX} - [E][B*A[{dX}
=[C- EBA{dX}

Thematrix [C- EBA] isthematrix of tolerance sensitivitiesfor the openloop assembly variables. The
B-1A terms come from the closed loop constraints on the assembly. The B-'A termsrepresent the effect of
small internal kinematic adjustments occurring at assembly time in response to dimensional variations.
Theinternal adjustments affect the { dv} aswell asthe{dJ}.

Itisimportant to note that you cannot simply solvefor thevalues of { dJ} in Eq. (13.6) and substitute
them directly into Eq. (13.8), asthough { dU} were just another component variation. If you do, you are
treating { dJ} asthough it is independent of {dX}. But {dJ} depends on {dX} through the closed loop
constraints. Y ou must evaluatethe full matrix [ C- E B'A] to obtainthetol erancesensitivities. Allowingthe
B-1A termsto interact with C and E is necessary to determine the effect of the kinematic adjustments on
{av}. Treating them separately issimilar to taking the absol ute val ue of each term, then summing for Worst
Case, rather than summing like terms before taking the absolute value. The sameistruefor RSSanalysis.
Itissimilar to squaring each term, then summing, rather than summing like terms before squaring.

For the example assembly, the equation for {dv} reduces to a single scalar equation for the Gap
variable.
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dGap = [sin(- 90)+sin(180)] o + sin(90) of + sin(0) dy + sin(- 90)dJ,
=-d +d-dU,

Substituting for U, from the closed loop results (Eq. (13.7)) and grouping terms:

dGap=- o + - (:3057ca - .3057ch+ ck +1.0457ck + 249490 - 1.23110R +11.2825¢)  (13.9)
= - .3057ca +.3057ch - dc - 1.0457ce - 3.49490 + 1.23110R - 11.2825a

While Eq. (13.9) expresses the assembly variationdGap in terms of the component variationsdxitis
not an estimate of the tolerance accumulation. To estimate accumulation, you must use amodel, such as
Worst Case or Root Sum Squares.

Step4. Form Worst Caseand RSS expressions

As has been shown earlier, estimates of tolerance accumulation for dJ or dv may be calculated by sum-
ming the products of the tolerance sensitivities and component variations:

Worst Case RSS
. 2
worav=S |5l d Worav=+4(Sdy )

S; isthe tolerance sensitivities of assembly features to component variations. If the assembly vari-
ableof interestisaclosed loop variabledJ;, S;isobtained from the appropriate row of theB*Amatrix. If v,
is wanted, S; comes from the [C-E B*A] matrix. If measured variation data are available, dx is the +3s
processvariation. If production of parts has not begun, dx; is usually taken to be equal to the +3s design
tolerances on the components.

In the example assembly, length U, is a closed loop assembly variable. U, determines the location of
the contact point between the Cylinder and the Frame. To estimate the variation inU,, we would multiply
thefirst row of [B2A] with {dX} and sum by Worst Case or RSS.

Worst Case:

dJ, =[Sy|da+ [S,|db + [l + [S|de+ [Syld + [S|dR+ |S,|dy
= |.3057] 0.3 + |- .3057| 0.3+ |1 0.3 + [1.0457] 0.3 + [24949| 0.1 + |- 1.2311] 0.3 + |11.2825| 0.01745
=+ 1.6129mm
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RSS:
U, =[(S,08) + (S,,d)? + (S} + (S,,06)° + (St )2 + (S,,0R + (S, I °
=[(.3057 x0.3)? + (- .3057x0.3)? + (1 x0.3)? + (1.0457 x0.3)> + (2.4949 x0.1)? + (- 1.2311 x0.3)*+
(11.2825 x0.01745)?]- 5
=+0.6653mm

Note that the tolerance onq has been converted to + 0.01745 radians since the sensitivity is cal cul ated
per radian.

For thevariationin the Gap, wewould multiply thefirst row of [ C-EB-*A] with{ dX} and sum by Worst
Caseor RSS. Vector {dX} isextended to include of and dg.

Worst Case:
dGap =|Syfda+ [Sy|d + [S|dc + [Sylde+ |Syld + [S[dR+ [S,[dg+ [Sgldf + [S|dy

=} 30573 0.3+ |.:30573) 0.3 + |- 1] 0.3+ 1.04569| 0.3+ |-3.4949| 0.1+ [1.2311] 0.3
+|- 11.2825/0.01745 + |1] 05 + 0] 0

=+22129mm
RSS:
dGap = [(Syda)” + (S,d)? + (S,tk)* + (S,d.) + (Ssth)* + (S dR)* + (S,dh) + (St + (S )7 -°
=[(- .30573 x0.3)? + (.30573 x0.3)? +(- 1x0.3)? + (- 1.04569 x0.3)* + (- 3.4949 x0.1)> + (1.2311 x0.3)?
+ (- 11.2825 x0.01745)? + (1 x0.5)% + (0 x0)? |5
=+0.8675mm

By forming similar expressions, we may obtain estimates for all the assembly variables (Table 13-1).

Table 13-1 Estimated variation in open and closed loop assembly features

Assembly M ean or WC RSS

Variable Nominal *dy *dy
U1 59.0026 mm 16129 mm 0.6653 mm
(§)) 41.4708 mm 1.5089 mm 0.6344 mm
ua 16.3279 mm 0.9855 mm 0.4941 mm
fq 43.6838° 2.68° 1.94°
f, 29.3162° 1.68° 1.04°
fq 17.0000° 1.00° 1.00°
Gap 5.9974 mm 2.2129 mm 0.8675 mm

Step 5. Evaluation and design iteration

Theresultsof thevariation analysisare evaluated by comparing the predicted variation with the specified
design requirement. If the variation is greater or less than the specified assembly tolerance, the expres-
sions can be used to hel p decide which tolerances to tighten or loosen.

13.5.5.1 Percent Rejects

The percent rejects may be estimated from Standard Normal tables by cal culating the number of standard
deviations from the mean to the upper and lower limits (UL and LL).
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The only assembly feature with a performance requirement is the Gap. The acceptable range for
proper performanceis: Gap = 6.00 £1.00 mm. Calculating the distance from themean Gapto UL and LL in
units equal to the standard deviation of the Gap:

_UL- My, _ 7.000 - 5.9974

=3.467s = 263 ppm
LT S e 0.2802 o
L= LL - Meqp _ 5.000 - 5.9974 — 34195 R, =281 ppm
S Gap 0.2892

Thetotal predicted rejects are 544 ppm.

13.5.5.2 Percent Contribution Charts

The percent contribution chart tells the designer how each dimension contributes to the total Gap varia-
tion. The contribution includes the effect of both the sensitivity and the tolerance. The calculation is
different for Worst Case or RSS variation estimates.

Worst Case RSS
G o’
fGap . éﬂ x| %
ﬂXj ! %C _ ﬂXJ ﬁ
% Cont = “Cont = o =
[1620 5 om0
1% g xi @

Itiscommon practiceto present theresultsasabar chart, sorted according to magnitude. Theresults
for the sample assembly are shown in Fig. 13-18.

f 33.22
R 18.13 |
r 16.23 |
e 13.08 |
c 11.96 |
fy IS—

5.5
b :|1.12
a 1.12
0.00 500 10.00 15.00 20.00 25.00 30.00 35.00

% Contribution Figure 13-18 Percent contribution
chart for the sample assembly
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It isclear that the outside dimension of the Gap, f, isthe principal contributor, followed by the radius
R. This plot shows the designer where to focus design modification efforts.

Simply changing the tolerances on afew dimensions can change the chart dramatically. Supposewe
tighten thetolerance onf, sinceitisrelatively easy to control, and |oosen the tolerances onR and e, since
they are more difficult to locate and machine with precision. Wewill say the Cylinder is vendor-supplied,
so it cannot be modified. Table 13-2 shows the new tol erances.

Table 13-2 Modified dimensional tolerance specifications

Dimension +Tolerance
Original M odified
a 0.3 mm 0.3 mm
b 0.3 mm 0.3 mm
C 0.3 mm 0.3 mm
e 0.3 mm 0.4 mm
r 0.1 mm 0.1 mm
R 0.3 mm 0.4 mm
| 1.0° 10°
f 0.5 mm 0.4 mm

Now, R and e are the leading contributors, while f has dropped to third. Of course, changing the
tolerances requires modification of the processes. See Fig. 13-19. Tightening the tolerance on f, for ex-
ample, might require changing the feed or speed or number of finish passes on amill.

Sinceit isthe product of the sensitivity timesthe tolerance that determines the percent contribution,
the sensitivity isalso an important variation evaluation aid.

R 28.69
e 20.70 |

f ~ 18.03 ‘ |

. 1445 |

q 10.65

c | 4.59

b ':|1.oo

a | |1.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 Figure 13-19 Percent contribution chart
% Contribution for the sample assembly with modified
tolerances
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13.5.5.3 Sensitivity Analysis

Thetolerance sensitivitiestell how the arrangement of the parts and the geometry contribute to assembly
variation. We can learn agreat deal about the role played by each dimension by examining the sensitivi-
ties. For the sample assembly, Table 13-3 shows the calculated Gap sensitivities.

Table 13-3 Calculated sensitivities for the Gap

Dimension Sensitivity

a -0.3057
b 0.3057

C -1.0

e -1.0457

r -3.4949
R 1.2311

q -11.2825
f 1.0

Note that the sensitivity of q iscalculated per radian.

For a1.0 mm changeina or b, the Gap will change by 0.3057 mm. The negative sign for a meansthe
Gap will decrease as a increases. For each mm increase in ¢, the Gap decreases an equal amount. This
behavior becomes clear on examining Fig. 13-12. As a increases 1.0 mm, the Block is pushed up the
inclined plane, raising the Block and Cylinder by the tan(17°) or 0.3057 and decreasing the Gap. As b
increases 1.0 mm, the plane is pushed out from under the Block, causing it to lower the same amount.
Increasing ¢ 1.0 mm, causes everything to slide straight up, decreasing the Gap.

Dimensionse, r, R, and g are more complex because several adjustments occur simultaneously. Asr
increases, the Cylinder grows, causing it to slide up the wall, while maintaining contact with the concave
surface of the Block. Asthe Cylinder rises, the Gap decreases. AsRincreases, the concave surface moves
deeper into the block, causing the Cylinder to drop, which increases the Gap. Increasing e causes the
Block to thicken, forcing the front corner up thewall and pushing the Block up the plane. The net effectis
to raise the concave surface, decreasing the Gap. Increasing g causes the Block to rotate about the front
edge of the inclined plane, while the front corner slides down the wall. The wedge angle between the
concave surface and the wall decreases, squeezing the Cylinder upward and decreasing the Gap. The
large sensitivitiesfor r and g are offset by their small corresponding tolerances.

13.5.5.4 Modifying Geometry

The most common geometry modification isto change the nominal values of one or more dimensions to
center the nominal value of a gap between its UL and LL. For example, if we wanted to change the Gap
specificationsto be 5.00 +1.000 mm, we could simply increase the nominal value of ¢ by 1.00 mm. Sincethe
sensitivity of the Gap to c is—1.0, the Gap will decrease by 1.0 mm.

Similarly, the sensitivities may be modified by changing the geometry. Since the sensitivities are
partial derivatives, which are eval uated at the nominal values of the component dimensions, they can only
be changed by changing the nominal values. An interesting exercise is to modify the geometry of the
example assembly to make the Gap insensitive to variationinq; that is, to make the sensitivity of qgoto
zero. You will need nonlinear equation solver software to solve the original loop equations (Egs. (13-4),
(13-5), and (13-6)), for anew set of nominal assembly values. Solve for the kinematic assembly variables:
u,, U, U, f,, f,, andf,, corresponding to your new nominal dimensions: a, b, ¢, e, r, R, g, f, and Gap.
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The sensitivity of q will decrease to nearly zero if weincrease b to avalue of 40 mm. We must also

increase ¢ to 35 mm to reduce the nominal Gap back to 6.00 mm. The[A], [B], [C], and [E] matriceswill all
need to be re-evaluated and solved for the variations. The modified results are shown in Table 13-4.

Table 13-4 Calculated sensitivities for the Gap after modifying geometry

Dimension | Nominal | £Tolerance | Sensitivity

a 10 mm 0.3 -0.3057
b 40 mm 0.3 0.3057
c 35mm 0.3 -1.0

e 55 mm 04 -1.0457
r 10 mm 0.1 -3.4949
R 40 mm 04 1.2311
q 17° 1.0° -0.3478
f 75 mm 0.4 1.0

Noticethat the only sensitivity to change wasq (per radian). Thisisdueto thelack of coupling of b
and c with the other variables. The calculated variations are shown in Table 13-5.

Table 13-5 Variation results for modified nominal geometry

Assembly Mean or WC RSS

Variable Nominal +dy +dy
Uq 59.0453 mm 1.6497 mm 0.7659 mm
Uo 41.5135 mm 1.9088 mm 0.8401 mm
U3 26.7848 mm 0.9909 mm 0.4908 mm
fq 43.6838° 2.80° 1.97°
fs 29.3162° 1.80° 1.08°
fq 17° 1.00° 1.00°
Gap 5.9547 mm 2.1497 mm 0.8980 mm

The new percent contribution chart is shown in Fig. 13-20. Based on the low sensitivity, you could

now increase the tolerance on g without affecting the Gap variation.

Step 6. Report resultsand document changes

Thefinal stepintheassembly tolerance analysis procedureisto preparethefinal report. Figures, graphs,
and tables are preferred. Comparison tables and graphs will help to justify design decisions. If you have
several iterations, it is wise to adopt a case numbering scheme to identify each table and graph with its
corresponding case. A list of case numberswith aconcise summary of the distinguishing feature for each
would be appreciated by the reader.
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R 30.07
o | ' 2169 '
] — 1082

r 1515 '
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% Contribution Figure 13-20 Modified geometry yields

zero g contribution

13.6 Summary

The preceding sections have presented a systematic procedure for modeling and analyzing assembly
variation. Some of the advantages of the modeling system include:

The three main sources of variation may be included: dimensions; geometric form, location, and
orientation; and kinematic adjustments.

Assembly models are constructed of vectors and kinematic joints, elements with which most design-
ersarefamiliar.

A variety of assembly configurations may be represented with afew basic elements.

Modeling rules guide the designer and assist in the creation of valid models.

It can be automated and integrated with a CAD system to achieve fully graphical model creation.

Advantages of the analysis system include;

The assembly functions are readily derived from the graphical model.

Nonlinear, implicit systems of equations are readily converted to alinear system. Tolerance sensitivi-
ties are determined by asingle, standard, matrix algebra operation.

Statistical algorithms estimate tolerance stackup accurately and efficiently without requiring repeated
simulations.

Once expressions for the variation in assembly features have been derived, they may be used for
tolerance allocation or “what-if?" studies without repeating the assembly analysis.

Variation parameters useful for evaluation and design are easily obtained, such as: the mean and

standard deviation of critical assembly features, sensitivity and percent contribution of each compo-
nent dimension and geometric form variation, percent rejects, and quality level.

Tolerance analysis models combine design requirements with process capabilities to foster open
communi cation between design and manufacturing and reasoned, quantitative decisions.

It can be automated to totally eliminate manual derivation of equations or equation typing.
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A CAD-based tolerance analysis system based on the procedures demonstrated previously hasbeen
developed. The basic organization of the Computer-Aided Tolerancing System (CATS) is shown sche-
matically inFig. 13-21. The system has been integrated with acommercia 3-D CAD system, soitlooksand
feelslikethedesigner’sown system. Many of the manual tasks of modeling and analysisdescribed above
have been converted to graphical functions or automated.

3-D CAD System

CATS Application Interface

CATS
Analyzer

Mfg
Process
Database Figure 13-21 The CATS System

CAD
Database

Tolerance analysis has become a mature engineering design tool. It isaquantitative tool for concur-
rent engineering. Powerful statistical algorithms have been combined with graphical modeling and evalu-
ation aids to assist designers by bringing manufacturing considerations into their design decisions.
Process sel ection, tooling, and inspection requirements may be determined early in the product devel op-
ment cycle. Performing tolerance analysis on the CAD model creates a virtual prototype for identifying
variation problemsbefore partsare produced. Designers can be much more effective by designing assem-
blies that work in spite of manufacturing process variations. Costly design changes to accommodate
manufacturing can be reduced. Product quality and customer satisfaction can be increased. Tolerance
analysis could become a key factor in maintaining competitivenessin today’ s international markets.
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