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12.1 Introduction

Thetechniquesfor analyzing tolerance stacksthat wereintroduced in Chapter 9 were demonstrated using
aone-dimensional example. By one-dimensional, we mean that all the vectorsrepresenting the component
dimensions can belaid out along asingle coordinate axis. |n many analyses, the contributing dimensions
are not all along a single coordinate axis. One example is the Geneva mechanism shown in Fig. 12-1. The
toleranceson the C, R, S, and L will all affect the proper function of the mechanism. Analyses like we
showed in Chapters 9 and 11 are insufficient to determine the effects of each of these tolerances. In this
chapter, we'll demonstrate two methods that can be used to eval uate these kinds of problems.
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Figure 12-1 Geneva mechanism
showing a few of the relevant dimensions

L

The following sections describe a systematic procedure for modeling and analyzing manufacturing

variation within 2-D and 3-D assemblies. The key features of this system are:

1. A critical assembly dimensionisrepresented by avector |loop, whichisanal ogousto theloop diagram
in 1-D analysis.

2. Anexplicit expression isderived for the critical assembly featurein terms of the contributing compo-
nent dimensions.

3. Theresulting expressionisused to cal cul ate tolerance sensitivities, either by partial differentiation or
numerical methods.

A key benefitisthat, oncethe expressionisderived, thismethod easily solvesfor new nominal values
directly asthe design changes.

12.2  Determining Sensitivity

Recall the equationsfor worst case and RSStol erance analysiseguation from Chapter 9 (Egs. 9.2and 9.11).

te = |aiti| (12.2)

i=1l

L= 1/ a(at)’ (12.2)
i=1

Thetechnique we'll demonstrate for multidimensional tolerance analysis uses these same equations
but we' Il need to devel op another way to determine the value of the sensitivity, a,, in Egs. (12.1) and (12.2)
above. We noted in Chapter 9 that sensitivity is an indicator of the effect of a dimension on the stack. In
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one-dimensional stacks, the sensitivity is almost always either +1 or -1 so it is often left out of the one-
dimensional tolerance equations. For the Geneva mechanism in Fig. 12-1, an increase in the distance L
between the centers of rotation of the crank and the wheel require a change in the diameter, C, of the
bearing, the width of the slot, S, and the length, R, of the crank. However, it won't be a one-to-one
relationship like we usually have with a one-dimensional problem, so we need a different way to find
sensitivity.

To see how we're going to determine sensitivity, let’s start by looking at Fig. 12-2. If we know the
derivative (slope) of the curve at point A, we can estimate the value of the function at points B and C as
follows:

F(B)» F(A)+Dx Y
dx

and

F(C)» F(A)- Dx%

Figure 12-2 Linearized approximation to a curve

WEe'll use the same concept for multidimensional tolerance analysis. We can think of thetolerance as
Dx, and use the sensitivity to estimate the value of the function at the tolerance extremes. Aslong asthe
toleranceissmall compared to the slope of the curve, this provides avery good estimate of the effects of
tolerances on the gap.

With multidimensional tolerance analysis, we usually have several variables that will affect the gap.
Our function is an n-space surface instead of a curve, and the sensitivities are found by taking partial
derivatives with respect to each variable. For example, if we have afunctionQ(y,.y,....y,), the sensitivity
of Q with respect toy, is

210
fiya Nominal Values
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Thereforewe evaluate the partial derivative at the nominal values of each of the variables. Remember
that the nominal valuefor each variableisthe center of the tolerance range, or the value of the dimension
when thetolerances are equal bilateral. Oncewefind thevalues of all the sensitivities, we can use any of
the tolerance analysis or allocation techniquesin Chapters 9 and 11.

12.3 A Technique for Developing
Gap Equations

Developing a gap equation is the key to per-
formingamultidimensional toleranceanalysis.
We'll show one method to demonstrate the
technique. While we' re using this method as
an example, any technique that will lead to an
accurate gap equation is acceptable. Once we
develop the gap equation, we'll calculate the
sensitivities using differential calculus and
complete the problem using any tolerance
analysisor allocationtechniquedesired. A flow
chart listing the stepsis shownin Fig. 12-3.
We'll solve the problem shown in Fig.
12-4. While this problem is unlikely to occur
during the design process, itsuse demonstrates
techniques that are helpful when developing

gap equations.

Stepl. Definerequirement of interest

The first thing we need to do with any toler-
ance analysisor allocation isto define there-
quirement that we are trying to satisfy. Inthis
case, we want to be able to install the two
blocks into the frame. We conducted a study
of the expected assembly process, and decided
that we need to have a minimum clearance of
.005 in. between the top left corner of Block 2
and the Frame. We will perform aworst case
analysis using the dimensions and tol erances
inTable 12-1. Thevariablenamesin thetable
correspond to the variables shown in Fig.
12-4.

Step 2. Establish gap coordinate system

Our second step is establishing a coordinate
system at the gap. We know that the shortest
distance that will define the gap is a straight
line, so we want to locate the coordinate sys-

Define requirement of interest

v

Establish gap coordinate system

v

Draw vector loop diagram

v

Establish component coordinate systems

v

Write vectorsin terms of
component coordinate systems

v

Define relationships between coordinate systems

v

Convert all vectorsinto gap coordinate system

v

Generate gap equation

v

Calculate sensitivities

v

Perform tolerance analysis or alocation

Figure 12-3 Multidimensional tolerancing flow chart
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Figure 12-4 Stacked blocks we will use for an example problem

Frame

Table 12-1 Dimensions and tolerances corresponding to the variable names in Fig. 12-4

VariableName | Mean Dimension (in.) | Tolerance(in.)
A .875 .010
B 1.625 .020
C 1.700 .012
D .875 .010
E 2.625 .020
E 7.875 .030
G 4.125 .010
H 1.125 .020
J 3.625 .015
K 5.125 .020
M 1.000 .010
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tem along that line. We set the origin at one side of the gap and one of the axeswill point to the other side,
along the shortest direction. It’ s not important which side of the gap we choosefor the origin. Coordinate
system{u,,u,}isshownin Fig. 12-5 and represents a set of unit vectors.

Frame

TU?

th Block 2

Figure 12-5 Gap coordinate system
{u,u}

Step 3. Draw vector loop diagram

Now we' Il haveto draw avector loop diagram similar to the dimension loop diagram constructed in section
9.2.2. Just likewe did with the one-dimensional |oop diagram, we' |l start at one side of the gap and work our
way around to the other. Anytimewe go from one part to another, it must be through a point or surface of
contact. When we’ ve completed our analysis, we want a positive result to represent a clearance and a
negative result to represent an interference. If we start our vector |oop at the origin of the gap coordinate
system, we'll finish at amore positive location on the axis, and we' Il achieve the desired resullt.

For our example problem, there are several different vector loopswe can chose. Two possibilitiesare
shown in Fig. 12-6. The solution to the problem will be the same regardless of which vector loop we
choose, but some may be moredifficult to analyzethan others. It sgenerally best to choosealoop that has
aminimum number of vectorsthat need thelength calculated. In Loop T, vectorsT, and T, need thelength
calculated while Loop S hasfive vectorswith undefined lengths. We can find lengths of the vectorsS, and
S; through simple one-dimension analysis, butS,, S, and S, will requiremorework. Soit appearsthat L oop
T may provide easier calculations.

Finish
J T3 &
N 4
Start S T, / Loop T
Loop S S T2
Ss

S S

—>

S

Figure 12-6 Possible vector loops to evaluate the gap of interest
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Asan alternative, look at the vector loop in Fig. 12-7. It hasonly three vectors with unknown length,
one of which (x,) isalinear combination of other dimensions. For vectorsx, and x,,, we can cal cul ate the
length relatively easily. Thisisthe loop wewill useto analyze the problem.

Finish

Xg

>

Figure 12-7 Vector loop we will use to analyze the gap. It presents easier calculations of unknown vector lengths

Step 4. Establish component coordinate systems

The next step is establishing component coordinate systems. The number needed will depend on the
configuration of the assembly. Theideaisto have a coordinate system that will align with every compo-
nent dimension and vector that will contribute to the stack. One additional coordinate system is needed
andisshowninFig. 12-8.

Coordinate system {v,,v,} is needed for the vectors on Block 2. The dimensions on the frame align
with {u,,u,} soan additional coordinate systemis not needed for them. DimensionsJ andH on Block 1 do
not contribute directly to avector length so they do not need a coordinate system.

—
T

\/-

Block 2

Block 1

; Figure 12-8 Additional coordinate system
needed for the vectors on Block 2
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Step 5. Writevectorsin termsof component coor dinate systems

Thevectorsin Fig. 12-7 arelisted below intermsof their coordinate systems, angleb, and the dimensional
variablesin Table 12-1.
X, =-My,

ai F-C-B-E-Msnbd
Xy = - TV,
cosb a

Angleb isnot knownyet, sowe'll haveto calculateit. Angle a contributestothevalueof b, andis
also needed. The equationsfor anglesa andb are shown below.

& 0
a = arctan Gﬁ:
Bo
g5 9
= arctan —_
€1625 &
= 28.30°
8. % VA2 +82 %ina+Heoma ©
b= arctang < _ 2 N
E-&. LM a2, B2 %o+ Hsina
g e cosa o 2}
@ 1700 - 1.125 (4741 ; 8
g Bexs-1® 5(4741) V82 +16252 Yam) =
¢  +1125(8805) N
= arctang 1.700 - 1.125 (4741 ) 0 =
2605 - Bpos . 20O g752 116252 ga05) -
¢ : 8805
e : a +
%+1.125 (4741) 2
= 2362°

Step 6. Definerelationships between coor dinate systems

Inorder torelatethevectorsin Step 5to the gap, wewill haveto transform them into the same coordinate syssemas
thegap. Thus, we'll haveto convert vectorsx, andx, into coordinate system {u, u,} . One method follows.
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u, v,
b
u
\> '
K v Figure 12-9 Relationship between
1

coordinate systems {u,,u,} and {v v}

u u Fig. 12-9 showsthe{u,,u,} and{v,,v,} coordinate systemsand the angleb
v coslb r21b between them. To build atransformation between the two coordinate systems,
1 -Sl Do . . . .

b D we'll find the components of v, and v, in the directions of the unit vectors u,

Vo | S co ) N
and u,. For example, the component of v, inthe u, direction iscosb. The

component of v, in the u, direction is-sin b. The sign of the sine is negative because the component is
pointing in the opposite direction as the positive u, axis. The table is completed by performing asimilar
analysis with vector v,
A matrix, Z, can be defined asfollows:

écosb -sinbuy
—e. u
gsnb cod
Multiplying Z by and {u,,u,} ™ will give us atransformation matrix that we can use to convert any

vector inthe{v,,v,} coordinate system to the{u,,u,} coordinate system.
LetQ=Z{u,u,}"

Q_g’cosb - snbuéu; u
Esnb  cosb H&u,

Q_écoslo u;-sinbu,u
%inb u; +cosb UZH
Now we can transform any vector inthe{v,,v,} coordinate systemto the{u,,u,} coordinate system

by multiplying it by Q.
Let’ ssee how thisworks by transforming the vector 2v, +v, tothe{ u,,u,} coordinate system. Westart
by representing the vector asamatrix [2 1].

écosb u; - snbus U
2v1+v2:[2 1]@_S Ui- 9 uzg
gsnbug+cosbus g
:2(cosbu1-sinbu2)+sinbu1+cosbu2

=(2cosb +sinb )uy +(cosb - 2sinb )u,

Step7. Convert all vectorsinto gap coordinate system

For our problem, we need all the vectors x; that we found in Step 5 to be represented in the {u,,u,}
coordinate system. The only ones that need converting are x, and X,
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X1 =-Mvy

écos u; - sinbu, 0
%nbu +codb UZH
=- M(sinb u1+cosbu2)

=-M[0 1]z

Similarly,

Vq

F-C-B- E-Msnb g
X2_§< cosb p

écosb u; - sinb uzu

a? F-C-B-E- Msmb_[1 0]
cosb esmbu1+cosbu2u
g F-C-BE Msmb—(cosbul snbu,)
cosb P

Step 8. Generategap equation

To generate the gap equation now is very easy. We only need to observe that no componentsin the u,
direction affect the gap. Thus, all we need to do istake the componentsin the u, direction and add them
together.

F-C-B- E- Msnbo, .
cosb ﬂ( sinb)- A- D+G (123)

Now we haveto insert the nominal values of each of the dimensionsalong with thevaluesof thesinb
and cosb into Eq. (12.3).

Gap=-M cosb+§(

Gap = - 1000(9162) + 8,105 1875~ 1.700 - 1625 - 2.625- 1.00(.4007)9(_ 2007)
& 9162 P
- 875- 875+4.125
=.0719

Thisisthe nominal value of the gap.
Step 9. Calculate sensitivities

Next we need to calculate the sensitivities, which we'll find by evaluating the partial derivatives at the
nominal value for each of the dimensions. As an example to the approach, we'll find the sensitivity for
variable E, and provide tabulated results for the other variables.

Sinceb isafunction of E, we'll have to apply the chain rule for partial derivatives. Let’s start by
redefining the gap as afunction of b and E, say Gap = Y (b ,E). All the other terms will be treated as
constants. Then,

ﬂGap w de ‘ITY ﬂb
fE E dE b E
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Solving for each of the terms,

I

— =- tanb
E

=-.4373
& _
dE

1Y _F-C-B-E-Msinb - K(cosb)®
fib (cosb)2
_ 7.875-1.700 - 1.625 - 2.625- 1.000(.4007 )- 5.125(.9162 )

(.9162)2

=-2.879

-E;E:']-C'|_|ﬂ-\lA2+B2 %ina - H cos
e

fb _ cosa o
E ¢ " 52 U
ggeE- & L HIna [x2 482 Qom + Hsina 2 u
& & cosa o 5 U
¢ . . 2 U
g+§%%-—c_Hsna-\lA2+Bzgsina+Hcosag 3
& ée coxa 2 g 0
8 o5 LT00- L125(4741) A 8752 +1.625% Y 4741)- 1.125( 8805
_ é 8805 2
€x 1.700- 1.125(.4741) 5 56 g?u
9%2.625- £3.625- = VAR 8752 +1.6252 2(8805)+1.125( 4741)2 G
é é .8805 I u
e u
& .. .2 -
g+§%.625- L700- 1025(4741) | [ 77 7 on? & gomn)er1os(oo0s)? 4
=-.1331
iGap _

=- 4373 (1)+(- 287% ) (- .1331)

=-.0540

Table 12-2 containsthe sensitivities of the remaining variables. While cal culating sensitivities manu-
aly is difficult for many gap equations, there are many software tools that can calculate them for us,
simplifying the task considerably.
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Table 12-2 Dimensions, tolerances, and sensitivities for the stacked block assembly

Variable Name | Mean Dimension (in.) | Tolerance (in.) Sensitivity
A 875 010 -.5146
B 1.625 020 1567
C 1.700 012 4180
D .875 .010 -1.0000
E 2.625 .020 -.0540
F 7.875 030 4372
G 4,125 010 1.0000
H 1.125 020 -.9956
J 3.625 .015 -.7530
K 5.125 020 -.4006
M 1.000 010 -1.0914

Step 10. Perform tolerance analysisor allocation

Now that we have calculated anominal gap (.0719in.) and all the sensitivities, we can use any of the
analysis or allocation methods in Chapters 9 and 11. In Step 1, we decided to perform aworst case
analysis. Using Eq. (12.1),

tue =| (- 5146)(010)| +|(.2567)(.020) | +|(4180)(.012) | +| (- 2)(.010) |+
|(- .0540)(.020) | +|(:4372) (.030) | +| (1) .020) | +| (- .9986)(.020)| +
|(- .7530)(.015) | +|(- .4008)(.020) | +| (1) (<020))|
=097

The minimum gap expected at worst case will be .0719 - .0967 = -.0248 in.
The negative number indicates that we can have an interference at worst case, and we do not satisfy
our assembly requirement of aminimum clearance of .005in.

12.4  Utilizing Sensitivity Information to Optimize Tolerances

Since we don’'t meet our assembly requirement, we need to consider some alterations to the design. We
can use the sensitivities to help us make decisions about what we should target for change. For example,
dimensions B and E have small sensitivities, so changing thetolerance onthemwill havelittle effect onthe
gap. To reduce the magnitude of the worst case tolerance stack, we would target the dimensions with the
largest sensitivity first.

Also, the sensitivities hel p us decide which dimension we should consider changing to increase the
gap. It takesalarge changein adimension with asmall sensitivity to make asignificant changein the gap.
For example, making Dimension E .018 in. smaller will make the gap only about .001 in. larger. Conversely,
making Dimension M .001 in. smaller will make the gap slightly more than .001 in. larger. If our goal isto
correct the problem of assembly fit without changing the design any more than necessary, working with
the dimensions with the largest sensitivities will be advantageous.

The simplest solution would be to increase the opening in the frame, Dimension G, from 4.125 in. to
4.160 in. which will provide the clearance we need. However, if we assume the thickness of the top of the
framecan’t change, that will cause ustoincreasethesize of theframe. That could be aproblem. Soinstead,
we'll change one of the internal dimensions on the frame, making Dimension A equal to .815 in. With this
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change, thenominal gap will be.1044 in., worst casetolerance stack is.0980 in. and the minimum clearance
is.0064 in.

The worst case tolerance stack increased because many of the sensitivities changed when A was
changed. Thisis because we evaluate the partial derivatives at the nominal value of the dimensions, so
when the nominal value of Awaschanged, we changed the cal culated result. Another way to think of itis
that we moved to a different point in our design space when we changed Dimension A, so the slope
changed in several different directions.

The final dimensions, tolerances and sensitivities are shown in Table 12-3.

Table 12-3 Final dimensions, tolerances and sensitivities of the stacked block assembly

VariableName | Mean Dimension (in.) Tolerance Sensitivity
(in.)
A .815 .010 -.5605
B 1.625 .020 .1642
C 1.700 .012 .3846
D 875 010 -1.0000
E 2.625 .020 -.0552
F 7.875 .030 .4488
G 4.125 .010 1.0000
H 1.125 020 -.9811
J 3.625 015 -.7450
K 5.125 .020 -.4094
M 1.000 .010 -1.0961

12.5 Summary

In this section, we' ve demonstrated a technique for analyzing tolerances for multi-dimensional problems.
While this is an approximate method, the results are very good as long as tolerances are not too large
compared to the curvature of the n-space surface represented by the gap equation. It’ sgood to remember
that once we have found the gap equation and cal culated the sensitivities, we can use any of theanalysis
or allocation techniques discussed in Chapters 9 and 11.

Animportant point toreiterateisthat we show one method for devel oping agap equation. Whilethis
will giveaccurateresults, it may be more cumbersome at timesthan deriving the equation directly from the
geometry of the problem. In general, the more complicated problems will be easier to solve using the
technique shown here because it hel ps break the problem into smaller piecesthat are more convenient to
evaluate.

Inthissection, we eval uated an assembly that isnot similar to onesfound during the design process,
but the technique works equally well on typical design problems. In fact, one thing very powerful about
thistechniqueisthat itisnot limited to traditional tolerance stacks. For example, we can useit to evaluate
the effect of tolerances on the magnitude of the maximum stressin aloaded, cantilevered beam. Once we
have devel oped the stress equation, we can cal cul ate the sensitivities and determine the effect of things
like the length, width and thickness of the beam, location of the load, and material properties such asthe
modulus of elasticity and yield strength. It even workswell for electrical problems, such asevaluating the
range of current we'll seein acircuit due to tolerances on the electrical components.
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