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12.1 Introduction

The techniques for analyzing tolerance stacks that were introduced in Chapter 9 were demonstrated using
a one-dimensional example. By one-dimensional, we mean that all the vectors representing the component
dimensions can be laid out along a single coordinate axis. In many analyses, the contributing dimensions
are not all along a single coordinate axis. One example is the Geneva mechanism shown in Fig. 12-1. The
tolerances on the C, R, S, and L will all affect the proper function of the mechanism.  Analyses like we
showed in Chapters 9 and 11 are insufficient to determine the effects of each of these tolerances. In this
chapter, we’ll demonstrate two methods that can be used to evaluate these kinds of problems.
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The following sections describe a systematic procedure for modeling and analyzing manufacturing
variation within 2-D and 3-D assemblies. The key features of this system are:
1. A critical assembly dimension is represented by a vector loop, which is analogous to the loop diagram

in 1-D analysis.
2. An explicit expression is derived for the critical assembly feature in terms of the contributing compo-

nent dimensions.

3. The resulting expression is used to calculate tolerance sensitivities, either by partial differentiation or
numerical methods.
A key benefit is that, once the expression is derived, this method easily solves for new nominal values

directly as the design changes.

12.2 Determining Sensitivity

Recall the equations for worst case and RSS tolerance analysis equation from Chapter 9 (Eqs. 9.2 and 9.11).
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The technique we’ll demonstrate for multidimensional tolerance analysis uses these same equations
but we’ll need to develop another way to determine the value of the sensitivity, ai, in Eqs. (12.1) and (12.2)
above. We noted in Chapter 9 that sensitivity is an indicator of the effect of a dimension on the stack. In

Figure 12-1  Geneva mechanism
showing a few of the relevant dimensions
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one-dimensional stacks, the sensitivity is almost always either +1 or -1 so it is often left out of the one-
dimensional tolerance equations. For the Geneva mechanism in Fig. 12-1, an increase in the distance L
between the centers of rotation of the crank and the wheel require a change in the diameter, C, of the
bearing, the width of the slot, S, and the length, R, of the crank. However, it won’t be a one-to-one
relationship like we usually have with a one-dimensional problem, so we need a different way to find
sensitivity.

To see how we’re going to determine sensitivity, let’s start by looking at Fig. 12-2. If we know the
derivative (slope) of the curve at point A, we can estimate the value of the function at points B and C as
follows:

( ) ( )
dx
dyxAFBF ∆+≈

and

( ) ( )
dx
dyxAFCF ∆−≈

We’ll use the same concept for multidimensional tolerance analysis. We can think of the tolerance as
∆x, and use the sensitivity to estimate the value of the function at the tolerance extremes. As long as the
tolerance is small compared to the slope of the curve, this provides a very good estimate of the effects of
tolerances on the gap.

With multidimensional tolerance analysis, we usually have several variables that will affect the gap.
Our function is an n-space surface instead of a curve, and the sensitivities are found by taking partial
derivatives with respect to each variable. For example, if we have a function Θ( y1,y2,…yn), the sensitivity
of Θ  with respect to y1 is
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Figure 12-2  Linearized approximation to a curve
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Therefore we evaluate the partial derivative at the nominal values of each of the variables. Remember
that the nominal value for each variable is the center of the tolerance range, or the value of the dimension
when the tolerances are equal bilateral.  Once we find the values of all the sensitivities, we can use any of
the tolerance analysis or allocation techniques in Chapters 9 and 11.

Establish gap coordinate system

Establish component coordinate systems

Define relationships between coordinate systems

Draw vector loop diagram

Convert all vectors into gap coordinate system

Generate gap equation

Calculate sensitivities

Perform tolerance analysis or allocation

Define requirement of interest

Write vectors in terms of
component coordinate systems

12.3 A Technique for Developing
Gap Equations

Developing a gap equation is the key to per-
forming a multidimensional tolerance analysis.
We’ll show one method to demonstrate the
technique. While we’re using this method as
an example, any technique that will lead to an
accurate gap equation is acceptable. Once we
develop the gap equation, we’ll calculate the
sensitivities using differential calculus and
complete the problem using any tolerance
analysis or allocation technique desired. A flow
chart listing the steps is shown in Fig. 12-3.

We’ll solve the problem shown in Fig.
12-4. While this problem is unlikely to occur
during the design process, its use demonstrates
techniques that are helpful when developing
gap equations.

Step 1. Define requirement of interest

The first thing we need to do with any toler-
ance analysis or allocation is to define the re-
quirement that we are trying to satisfy. In this
case, we want to be able to install the two
blocks into the frame. We conducted a study
of the expected assembly process, and decided
that we need to have a minimum clearance of
.005 in. between the top left corner of Block 2
and the Frame. We will perform a worst case
analysis using the dimensions and tolerances
in Table 12-1. The variable names in the table
correspond to the variables shown in Fig.
12-4.

Step 2. Establish gap coordinate system

Our second step is establishing a coordinate
system at the gap. We know that the shortest
distance that will define the gap is a straight
line, so we want to locate the coordinate sys-

Figure 12-3  Multidimensional tolerancing flow chart
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Figure 12-4  Stacked blocks we will use for an example problem

Table 12-1   Dimensions and tolerances corresponding to the variable names in Fig. 12-4

Variable Name Mean Dimension  (in.) Tolerance (in.)

A   .875 .010
B 1.625 .020
C 1.700 .012
D   .875 .010
E 2.625 .020
F 7.875 .030
G 4.125 .010
H 1.125 .020
J 3.625 .015
K 5.125 .020
M 1.000 .010
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tem along that line. We set the origin at one side of the gap and one of the axes will point to the other side,
along the shortest direction. It’s not important which side of the gap we choose for the origin. Coordinate
system {u1,u2}is shown in Fig. 12-5 and represents a set of unit vectors.

Figure 12-5  Gap coordinate system
{u

1
,u

2
}

Step 3. Draw vector loop diagram

Now we’ll have to draw a vector loop diagram similar to the dimension loop diagram constructed in section
9.2.2. Just like we did with the one-dimensional loop diagram, we’ll start at one side of the gap and work our
way around to the other. Anytime we go from one part to another, it must be through a point or surface of
contact. When we’ve completed our analysis, we want a positive result to represent a clearance and a
negative result to represent an interference. If we start our vector loop at the origin of the gap coordinate
system, we’ll finish at a more positive location on the axis, and we’ll achieve the desired result.

For our example problem, there are several different vector loops we can chose. Two possibilities are
shown in Fig. 12-6. The solution to the problem will be the same regardless of which vector loop we
choose, but some may be more difficult to analyze than others. It’s generally best to choose a loop that has
a minimum number of vectors that need the length calculated. In Loop T, vectors T2 and T3 need the length
calculated while Loop S has five vectors with undefined lengths. We can find lengths of the vectors S5 and
S6 through simple one-dimension analysis, but S2, S4, and S6 will require more work. So it appears that Loop
T may provide easier calculations.
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T3, S7

T1

T2

Figure 12-6 Possible vector loops to evaluate the gap of interest
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As an alternative, look at the vector loop in Fig. 12-7. It has only three vectors with unknown length,
one of which (x9) is a linear combination of other dimensions. For vectors x2 and x10, we can calculate the
length relatively easily. This is the loop we will use to analyze the problem.

Step 4. Establish component coordinate systems

The next step is establishing component coordinate systems. The number needed will depend on the
configuration of the assembly. The idea is to have a coordinate system that will align with every compo-
nent dimension and vector that will contribute to the stack. One additional coordinate system is needed
and is shown in Fig. 12-8.

Coordinate system {v1,v2} is needed for the vectors on Block 2. The dimensions on the frame align
with {u1,u2} so an additional coordinate system is not needed for them. Dimensions J and H on Block 1 do
not contribute directly to a vector length so they do not need a coordinate system.

Figure 12-8  Additional coordinate system
needed for the vectors on Block 2
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Figure 12-7  Vector loop we will use to analyze the gap. It presents easier calculations of unknown vector lengths.

v1

v2

α

β Block 2

Block 1



12-8     Chapter Twelve

Step 5. Write vectors in terms of component coordinate systems

The vectors in Fig. 12-7 are listed below in terms of their coordinate systems, angle β, and the dimensional
variables in Table 12-1.
x1 = -Mv2

12 vx 






 −−−−
−=

β
β

cos
sinMEBCF

K

 x3 = -Eu1
 x4 = -Au2
 x5 = -Bu1
 x6 = -Du2
 x7 = -Cu1
 x8 = Fu1
 x9 = Gu2
 x10 = Kcosβ u1

Angle β  is not known yet, so we’ll have to calculate it. Angle α  contributes to the value of β , and is
also needed. The equations for angles α  and β  are shown below..
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Step 6. Define relationships between coordinate systems

In order to relate the vectors in Step 5 to the gap, we will have to transform them into the same coordinate system as
the gap. Thus, we’ll have to convert vectors x1 and x2 into coordinate system {u1,u2}. One method follows.
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v2

β
u1

u2

v1
Figure 12-9  Relationship between
coordinate systems {u

1
,u

2
} and {v

1
,v

2
}

Fig. 12-9 shows the {u1,u2} and {v1,v2} coordinate systems and the angle β
between them. To build a transformation between the two coordinate systems,
we’ll find the components of v1 and v2 in the directions of the unit vectors u1
and u2. For example, the component of v1 in the u1  direction is cos β.  The

component of v1 in the u2 direction is -sin β. The sign of the sine is negative because the component is
pointing in the opposite direction as the positive u2 axis. The table is completed by performing a similar
analysis with vector v2.

A matrix, Z, can be defined as follows:


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 −
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ββ
ββ

cossin
sincos

Z

Multiplying Z by and {u1,u2}
T will give us a transformation matrix that we can use to convert any

vector in the {v1,v2} coordinate system to the {u1,u2} coordinate system.
Let Q = Z{u1,u2}

T
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Now we can transform any vector in the {v1,v2} coordinate system to the {u1,u2} coordinate system
by multiplying it by Q.

Let’s see how this works by transforming the vector 2v1 + v2 to the {u1,u2}coordinate system. We start
by representing the vector as a matrix [2 1].
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Step 7. Convert all vectors into gap coordinate system

For our problem, we need all the vectors xi that we found in Step 5 to be represented in the {u1,u2}
coordinate system. The only ones that need converting are x1 and x2.

u1 u2
v1 cosβ -sinβ
v2 sinβ cosβ
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Step 8. Generate gap equation

To generate the gap equation now is very easy. We only need to observe that no components in the u1
direction affect the gap. Thus, all we need to do is take the components in the u2 direction and add them
together.

( ) GDA
MEBCF
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Now we have to insert the nominal values of each of the dimensions along with the values of the sinβ
and cosβ  into Eq. (12.3).
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This is the nominal value of the gap.

Step 9. Calculate sensitivities

Next we need to calculate the sensitivities, which we’ll find by evaluating the partial derivatives at the
nominal value for each of the dimensions. As an example to the approach, we’ll find the sensitivity for
variable E, and provide tabulated results for the other variables.

Since β  is a function of E, we’ll have to apply the chain rule for partial derivatives.  Let’s start by
redefining the gap as a function of β  and E, say Gap = Ψ(β ,E). All the other terms will be treated as
constants. Then,

EdE
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Solving for each of the terms,
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Table 12-2 contains the sensitivities of the remaining variables. While calculating sensitivities manu-
ally is difficult for many gap equations, there are many software tools that can calculate them for us,
simplifying the task considerably.
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Table 12-2   Dimensions, tolerances, and sensitivities for the stacked block assembly

Variable Name Mean Dimension (in.) Tolerance (in.) Sensitivity

A .875 .010 -.5146
B 1.625 .020 .1567
C 1.700 .012 .4180
D .875 .010 -1.0000
E 2.625 .020 -.0540
F 7.875 .030 .4372
G 4.125 .010 1.0000
H 1.125 .020 -.9956
J 3.625 .015 -.7530
K 5.125 .020 -.4006
M 1.000 .010 -1.0914

Step 10.    Perform tolerance analysis or allocation

Now that we have calculated a nominal gap (.0719 in.) and all the sensitivities, we can use any of the
analysis or allocation methods in Chapters 9 and 11. In Step 1, we decided to perform a worst case
analysis. Using  Eq. (12.1),

( ) ( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( ) ( )( ) ( )( )
( )( ) ( )( ) ( ) ( )
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.0101.020.4006.015.7530
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=
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+−+++−

+−+++−=wct

The minimum gap expected at worst case will be .0719 - .0967 = -.0248 in.
The negative number indicates that we can have an interference at worst case, and we do not satisfy

our assembly requirement of a minimum clearance of .005 in.

12.4 Utilizing Sensitivity Information to Optimize Tolerances

Since we don’t meet our assembly requirement, we need to consider some alterations to the design. We
can use the sensitivities to help us make decisions about what we should target for change. For example,
dimensions B and E have small sensitivities, so changing the tolerance on them will have little effect on the
gap. To reduce the magnitude of the worst case tolerance stack, we would target the dimensions with the
largest sensitivity first.

Also, the sensitivities help us decide which dimension we should consider changing to increase the
gap. It takes a large change in a dimension with a small sensitivity to make a significant change in the gap.
For example, making Dimension E .018 in. smaller will make the gap only about .001 in. larger. Conversely,
making Dimension M .001 in. smaller will make the gap slightly more than .001 in. larger. If our goal is to
correct the problem of assembly fit without changing the design any more than necessary, working with
the dimensions with the largest sensitivities will be advantageous.

The simplest solution would be to increase the opening in the frame, Dimension G, from 4.125 in. to
4.160 in. which will provide the clearance we need. However, if we assume the thickness of the top of the
frame can’t change, that will cause us to increase the size of the frame. That could be a problem. So instead,
we’ll change one of the internal dimensions on the frame, making Dimension A equal to .815 in. With this

Joe Sulton
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change, the nominal gap will be .1044 in., worst case tolerance stack is .0980 in. and the minimum clearance
is .0064 in.

The worst case tolerance stack increased because many of the sensitivities changed when A was
changed. This is because we evaluate the partial derivatives at the nominal value of the dimensions, so
when the nominal value of A was changed, we changed the calculated result. Another way to think of it is
that we moved to a different point in our design space when we changed Dimension A, so the slope
changed in several different directions.

The final dimensions, tolerances and sensitivities are shown in Table 12-3.

Table 12-3   Final dimensions, tolerances and sensitivities of the stacked block assembly

Variable Name Mean Dimension (in.) Tolerance
(in.)

Sensitivity

A .815 .010 -.5605
B 1.625 .020 .1642
C 1.700 .012 .3846
D .875 .010 -1.0000
E 2.625 .020 -.0552
F 7.875 .030 .4488
G 4.125 .010 1.0000
H 1.125 .020 -.9811
J 3.625 .015 -.7450
K 5.125 .020 -.4094
M 1.000 .010 -1.0961

12.5 Summary

In this section, we’ve demonstrated a technique for analyzing tolerances for multi-dimensional problems.
While this is an approximate method, the results are very good as long as tolerances are not too large
compared to the curvature of the n-space surface represented by the gap equation. It’s good to remember
that once we have found the gap equation and calculated the sensitivities, we can use any of the analysis
or allocation techniques discussed in Chapters 9 and 11.

An important point to reiterate is that we show one method for developing a gap equation. While this
will give accurate results, it may be more cumbersome at times than deriving the equation directly from the
geometry of the problem. In general, the more complicated problems will be easier to solve using the
technique shown here because it helps break the problem into smaller pieces that are more convenient to
evaluate.

In this section, we evaluated an assembly that is not similar to ones found during the design process,
but the technique works equally well on typical design problems. In fact, one thing very powerful about
this technique is that it is not limited to traditional tolerance stacks. For example, we can use it to evaluate
the effect of tolerances on the magnitude of the maximum stress in a loaded, cantilevered beam. Once we
have developed the stress equation, we can calculate the sensitivities and determine the effect of things
like the length, width and thickness of the beam, location of the load, and material properties such as the
modulus of elasticity and yield strength. It even works well for electrical problems, such as evaluating the
range of current we’ll see in a circuit due to tolerances on the electrical components.
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