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Traditional Approaches to Analyzing
Mechanical Tolerance Stacks

Paul Drake

9.1 Introduction

Tolerance analysis is the process of taking known tolerances and analyzing the combination of these
tolerances at an assembly level. This chapter will define the process for analyzing tolerance stacks. It will
show how to set up a loop diagram to determine a nominal performance/assembly value and four tech-
niques to calculate variation from nominal.

The most important goal of this chapter is for the reader to understand the assumptions and risks that
go along with each tolerance analysis method.

9.2 Analyzing Tolerance Stacks

Fig. 9-1 describes the tolerance analysis process.

9.2.1 Establishing Performance/Assembly Requirements

The first step in the process is to identify the requirements for the system. These are usually requirements
that determine the “performance” and/or “assembly” of the system. The system requirements will, either
directly, or indirectly, flow down requirements to the mechanical subassemblies. These requirements
usually determine what needs to be analyzed. In general, a requirement that applies for most mechanical
subassemblies is that parts must fit together. Fig. 9-2 shows a cross section of a motor assembly. In this
example, there are several requirements.
• Requirement 1. The gap between the shaft and the inner bearing cap must always be greater than zero

to ensure that the rotor is clamped and the bearings are preloaded.
• Requirement 2. The gap between the housing cap and the housing must always be greater than zero to

ensure that the stator is clamped.
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• Requirement 3. The mounting surfaces of the rotor and stator must be within ±.005 for the motor to
operate.

• Requirement 4. The bearing outer race must always protrude beyond the main housing, so that the
bearing stays clamped.

• Requirement 5. The thread of the bearing cap screw must have a minimum thread engagement of .200
inches.

• Requirement 6. The bottom of the bearing cap screw thread must never touch the bottom of the female
thread on the shaft.

• Requirement 7. The rotor and stator must never touch. The maximum radial distance between the rotor
and stator is .020.

Other examples of performance/assembly requirements are:
• Thermal requirements, such as contact between a thermal plane and a heat sink,
• Amount of “squeeze” on an o-ring
• Amount of “preload” on bearings
• Sufficient “material” for subsequent machining processes

• Aerodynamic requirements
• Interference requirements, such as when pressing pins into holes
• Structural requirements
• Optical requirements, such as alignment of optical elements

The second part of Step 1 is to convert each requirement into an assembly gap requirement. We would
convert each of the previous requirements to the following.
• Requirement 1.  Gap 1 ≥ 0

• Requirement 2.  Gap 2 ≥ 0

1. Establish the Performance Requirements

2. Draw a Loop Diagram

3. Convert All Dimensions to Mean Dimension with an Equal Bilateral Tolerance

4. Calculate the Mean Value for the Performance Requirement

5. Determine the Method of Analysis

6. Calculate the Variation for the Performance Requirement

Figure 9-1  Tolerance analysis process
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• Requirement 3.  Gap 3 ≥ .005
• Requirement 4.  Gap 4 ≥ 0
• Requirement 5.  Gap 5 ≥ .200
• Requirement 6.  Gap 6 ≥ 0
• Requirement 7.  Gap 7 ≥ 0 and ≤ .020

9.2.2 Loop Diagram

The loop diagram is a graphical representation of each analysis. Each requirement requires a separate loop
diagram. Simple loop diagrams are usually horizontal or vertical. For simple analyses, vertical loop dia-
grams will graphically represent the dimensional contributors for vertical “gaps.” Likewise, horizontal

Figure 9-2  Motor assembly



9-4     Chapter Nine

loop diagrams graphically represent dimensional contributors for horizontal “gaps.” The steps for draw-
ing the loop diagram follow.

1. For horizontal dimension loops, start at the surface on the left of the gap. Follow a complete dimension
loop, to the surface on the right. For vertical dimension loops, start at the surface on the bottom of the
gap. Follow a complete dimension loop, to the surface on the top.

2. Using vectors, create a “closed” loop diagram from the starting surface to the ending surface. Do not
include gaps when selecting the path for the dimension loop. Each vector in the loop diagram repre-
sents a dimension.

3. Use an arrow to show the direction of each “vector” in the dimension loop. Identify each vector as
positive (+), or negative (–), using the following convention.

For horizontal dimensions:
Use a + sign for dimensions followed from left to right.
Use a – sign for dimensions followed from right to left.

For vertical dimensions:
Use a + sign for dimensions followed from bottom to top.
Use a – sign for dimensions followed from top to bottom.

4. Assign a variable name to each dimension in the loop. (For example, the first dimension is assigned the
variable name A, the second, B.)

Fig. 9-3 shows a horizontal loop diagram for Requirement 6.

5. Record sensitivities for each dimension. The magnitude of the sensitivity is the value that the gap
changes, when the dimension changes 1 unit. For example, if the gap changes .001 when the dimen-
sion changes .001, then the magnitude of the sensitivity is 1 (.001/.001). On the other hand, if the gap
changes .0005 for a .001 change in the dimension, then the sensitivity is .5 (.0005/.001).

If the dimension vector is positive (pointing to the right for horizontal loops, or up for vertical
loops), enter a positive sensitivity. If a dimension with a positive sensitivity increases, the gap will
also increase.

If the vector is negative (pointing to the left for horizontal loops, or down for vertical loops),
enter a negative sensitivity. If a dimension with a negative sensitivity increases, the gap will decrease.
Note, in Fig. 9-3, all of the sensitivities are equal to ±1.

Figure 9-3  Horizontal loop diagram for
Requirement 6
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6. Determine whether each dimension is “fixed” or “variable.” A fixed dimension is one in which we have
no control, such as a vendor part dimension. A variable dimension is one that we can change to
influence the outcome of the tolerance stack. (This will become important later, because we will be able
to “adjust” or “resize” the variable dimensions and tolerances to achieve a desired assembly perfor-
mance. We are not able to resize fixed dimensions or tolerances.)

9.2.3 Converting Dimensions to Equal Bilateral Tolerances

In Fig. 9-2, there were several dimensions that were toleranced using unilateral tolerances
(such as .375 +.000/-.031,  3.019 +.012/-.000 and .438 +.000/-.015) or unequal bilateral tolerances (such
as +1.500 +.010/-.004 ). If we look at the length of the shaft, we see that there are several different ways we
could have applied the tolerances. Fig. 9-4 shows several ways we can dimension and tolerance the length
of the shaft to achieve the same upper and lower tolerance limits (3.031/3.019). From a design perspective,
all of these methods perform the same function. They give a boundary within which the dimension is
acceptable.

Figure 9-4  Methods to dimension the
length of a shaft

The designer might think that changing the nominal dimension has an effect on the assembly. For
example, a designer may dimension the part length as 3.019 +.012/-.000. In doing so, the designer may
falsely think that this will help minimize the gap for Requirement 1. A drawing, however, doesn’t give
preference to any dimension within the tolerance range.

Fig. 9-5 shows what happens to the manufacturing yield if the manufacturer “aims” for the dimension
stated on the drawing and the process follows the normal distribution. In this example, if the manufacturer
aimed for 3.019, half of the parts would be outside of the tolerance zone. Since manufacturing shops want
to maximize the yield of each dimension, they will aim for the nominal that yields the largest number of
good parts. This helps them minimize their costs. In this example, the manufacturer would aim for 3.025.
This allows them the highest probability of making good parts. If they aimed for 3.019 or 3.031, half of the
manufactured parts would be outside the tolerance limits.

As in the previous example, many manufacturing processes are normally distributed. Therefore, if we
put any unilateral, or unequal bilateral tolerances on dimensions, the manufacturer would convert them to
a mean dimension with an equal bilateral tolerance. The steps for converting to an equal bilateral tolerance
follow.
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1. Convert the dimension with tolerances to an upper limit and a lower limit. (For example, 3.028 +.003/
-.009 has an upper limit of 3.031 and a lower limit of 3.019.)

2. Subtract the lower limit from the upper limit to get the total tolerance band. (3.031-3.019=.012)
3. Divide the tolerance band by two to get an equal bilateral tolerance. (.012/2=.006)

4. Add the equal bilateral tolerance to the lower limit to get the mean dimension. (3.019 +.006=3.025).
Alternately, you could subtract the equal bilateral tolerance from the upper limit. (3.031-.006=3.025)

As a rule, designers should use equal bilateral tolerances. Sometimes, using equal bilateral tolerances
may force manufacturing to use nonstandard tools.  In these cases, we should not use equal bilateral
tolerances.  For example, we would not want to convert a drilled hole diameter from ∅.125 +.005/-.001 to
∅.127 ±.003. In this case, we want the manufacturer to use a standard ∅.125 drill. If the manufacturer sees
∅.127 on a drawing, he may think he needs to build a special tool. In the case of drilled holes, we would
also want to use an unequal bilateral tolerance because the mean of the drilling process is usually larger
than the standard drill size. These dimensions should have a larger plus tolerance than minus tolerance.

As we will see later, when we convert dimensions to equal bilateral tolerances, we don’t need to keep
track of which tolerances are “positive” and which tolerances are “negative” because the positive toler-
ances are equal to the negative tolerances. This makes the analysis easier. Table 9-1 converts the neces-
sary dimensions and tolerances to mean dimensions with equal bilateral tolerances.

Figure 9-5  Methods of centering
manufacturing processes
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9.2.4 Calculating the Mean Value (Gap) for the Requirement

The first step in calculating the variation at the gap is to calculate the mean value of the requirement. The
mean value at the gap is:

∑
=

=
n

i
iig dad

1
(9.1)

where
dg = the mean value at the gap. If dg is positive, the mean “gap” has clearance, and if dg is

negative, the mean “gap” has interference.
n = the number of independent variables (dimensions) in the stackup
ai = sensitivity factor that defines the direction and magnitude for the ith dimension. In a one-

dimensional stackup, this value is usually +1 or –1. Sometimes, in a one-dimensional stackup,
this value may be +.5 or -.5 if a radius is the contributing factor for a diameter callout on a drawing.

di = the mean value of the ith dimension in the loop diagram.

Table 9-2 shows the dimensions that are important to determine the mean gap for Requirement 6. We
have assigned Variable Name to each dimension so that we can write a loop equation. We have also added

               +/- Equal
             Variable         Mean         Fixed/            Bilateral

Description Name    Dimension     Sensitivity       Variable         Tolerance

Screw thread length A .3595 -1 Fixed .0155

Washer length B .0320 1 Fixed .0020

Inner bearing cap C .0600 1 Variable .0030
turned length

Bearing length D .4305 1 Fixed .0075

Spacer turned length E .1200 1 Variable .0050

Rotor length F 1.5030 1 Fixed .0070

Spacer turned length G .1200 1 Variable .0050

Bearing length H .4305 1 Fixed .0075

Pulley casting length I .4500 1 Variable .0070

Shaft turned length J 3.0250 -1 Variable .0060

Tapped hole depth K .3000 1 Variable .0300

Mean Dimension with
Original Dimension/Tolerance Equal Bilateral Tolerance

.375 +.000/-.031 .3595 +/- .0155

.438 +.000/-.015 .4305 +/- .0075

1.500 +.010/-.004 1.503 +/- .007

3.019 +.012/-.000 3.025 +/- .006

Table 9-1  Converting to mean dimensions with equal bilateral tolerances

Table 9-2  Dimensions and tolerances used in Requirement 6
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a column titled Fixed/Variable. This identifies which dimensions and tolerances are “fixed” in the analysis,
and which ones are allowed to vary (variable). Typically, we have no control over vendor items, so we treat
these dimensions as fixed. As we make adjustments to dimensions and tolerances, we will only change the
“variable” dimensions and tolerances.

The mean for Gap 6 is:

Gap 6 = a1d1 + a2d2 +a3d3 +a4d4 +a5d5 +a6d6 +a7d7 +a8d8 +a9d9 +a10d10 + a11d11

Gap 6 = (-1)A +(1)B +(1)C +(1)D +(1)E +(1)F +(1)G +(1)H+(1)I +(–1)J +(1)K

Gap 6 = (-1).3595+(1).0320+(1).0600+(1).4305+(1).1200+(1)1.5030+(1).1200+
(1).4305+(1).4500+(-1)3.0250+(1).0300

Gap 6 = .0615

9.2.5 Determine the Method of Analysis

Eq. (9.1) only calculates the nominal value for the gap. The next step is to analyze the variation at the gap.
Historically, mechanical engineers have used two types of tolerancing models to analyze these variations:
1) a “worst case” (WC) model, and 2) a “statistical” model. Each approach offers tradeoffs between
piecepart tolerances and assembly “quality.” In Chapters 11 and 14, we will see that there are other
methods based on the optimization of piecepart and assembly quality and the optimization of total cost.

Fig. 9-6 shows how the assumptions about the pieceparts affect the requirements (gaps), using the
worst case and statistical methods.  In this figure, the horizontal axis represents the manufactured dimen-
sion. The vertical axis represents the number of parts that are manufactured at a particular dimension on
the horizontal axis.

Figure 9-6  Combining piecepart
variations using worst case and statistical
methods
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In the Worst Case Model, we verify that the parts will perform their intended function 100 percent of
the time. This is oftentimes a conservative approach. In the statistical modeling approach, we assume that
most of the manufactured parts are centered on the mean dimension. This is usually less conservative
than a worst case approach, but it offers several benefits which we will discuss later. There are two
traditional statistical methods;  the Root Sum of the Squares (RSS) Model, and the Modified Root Sum of
the Squares (MRSS) Model.

9.2.6 Calculating the Variation for the Requirement

During the design process, the design engineer makes tradeoffs using one of the three classic models.
Typically, the designer analyzes the requirements using worst case tolerances. If the worst case toler-
ances met the required assembly performance, the designer would stop there. On the other hand, if this
model did not meet the requirements, the designer increased the piecepart tolerances (to make the parts
more manufacturable) at the risk of nonconformance at the assembly level. The designer would make
trades, using the RSS and MRSS models.

The following sections discuss the traditional Worst Case, RSS, and MRSS models. Additionally, we
discuss the Estimated Mean Shift Model that includes Worst Case and RSS models as extreme cases.

9.2.6.1 Worst Case Tolerancing Model

The Worst Case Model, sometimes referred to as the “Method of Extremes,” is the simplest and most
conservative of the traditional approaches. In this approach, the tolerance at the interface is simply the
sum of the individual tolerances.

The following equation calculates the expected variation at the gap.

∑
=

=
n

i
iiwc tat

1
(9.2)

where
twc

 
=  maximum expected variation (equal bilateral) using the Worst Case Model.

ti   =  equal bilateral tolerance of the i
th
 component in the stackup.

The variation at the gap for Requirement 6 is:
twc =|(-1).0155|+|(1).0030|+|(1).0050|+|(1).0075|+|(1).0050|+|(1).0070|+|(1).0050|

+|(1).0075|+|(1).0070|+|(-1).0060|+|(1).0300|
twc = .0955

Using the Worst Case Model, the minimum gap is equal to the mean value minus the “worst case”
variation at the gap. The maximum gap is equal to the mean value plus the “worst case” variation at the
gap.

Minimum gap = dg - twc

Maximum gap = dg + twc

The maximum and minimum assembly gaps for Requirement 6 are:

Minimum Gap 6 = dg - twc = .0615 - .0955 = -.0340
Maximum Gap 6 = dg + twc = .0615 + .0955 =  .1570
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The requirement for Gap 6 is that the minimum gap must be greater than 0. Therefore, we must increase
the minimum gap by .0340 to meet the minimum gap requirement. One way to increase the minimum gap is
to modify the dimensions (di’s) to increase the nominal gap.  Doing this will also increase the maximum gap
of the assembly by .0340. Sometimes, we can’t do this because the maximum requirement may not allow it,
or other requirements (such as Requirement 5) won’t allow it. Another option is to reduce the tolerance
values (ti’s) in the stackup.

Resizing Tolerances in the Worst Case Model

There are two ways to reduce the tolerances in the stackup.
1. The designer could randomly change the tolerances and analyze the new numbers, or
2. If the original numbers were “weighted” the same, then all variable tolerances (those under the control

of the designer) could be multiplied by a “resize” factor to yield the minimum assembly gap. This is the
correct approach if the designer assigned original tolerances that were equally producible.

Resizing is a method of allocating tolerances.  (See Chapters 11 and 14 for further discussion on tolerance
allocation.) In allocation, we start with a desired assembly performance and determine the piecepart tolerances
that will meet this requirement. The resize factor, Fwc  , scales the original worst case tolerances up or down to
achieve the desired assembly performance. Since the designer has no control over tolerances on purchased
parts (fixed tolerances), the scaling factor only applies to variable tolerances.  Eq. (9.2) becomes:

∑ ∑
= =

+=
p

j

q

k
kfkjfjwc tatat

1 1

where,
aj = sensitivity factor for the j

th
, fixed component in the stackup

ak= sensitivity factor for the k
th
, variable component in the stackup

tjf = equal bilateral tolerance of the j
th
, fixed component in the stackup

tkv= equal bilateral tolerance of the k
th
, variable component in the stackup

p = number of independent, fixed dimensions in the stackup
q = number of independent, variable dimensions in the stackup

The resize factor for the Worst Case Model is:

∑
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where
gm = minimum value at the (assembly) gap. This value is zero if no interference or clearance is allowed.

The new variable tolerances (tkv,wc, resized  ) are the old tolerances multiplied by the factor Fwc.

tkv,wc,resized = Fwc tkv

tkv,wc,resized = equal bilateral tolerance of the k th, variable component in the stackup after resizing using the
Worst Case Model.
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Fig. 9-7 shows the relationship between the piecepart tolerances and the assembly tolerance before
and after resizing.

Figure 9-7  Graph of piecepart tolerances versus assembly tolerance before and after resizing
using the Worst Case Model

The resize factor for Requirement 6 equals .3929. (For example, .0030 is resized to .3929*.0030 = .0012.)
Table 9-3 shows the new (resized) tolerances that would give a minimum gap of zero.

Table 9-3  Resized tolerances using the Worst Case Model
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As a check, we can show that the new maximum expected assembly gap for Requirement 6, using the
resized tolerances, is:

t
wc,resized

  =  .0155+.0020+.0012+.0075+.0020+.0070+.0020+.0075+.0027+.0024+.0118

t
wc,resized

=  .0616

The variation at the gap is:

Minimum Gap 6 = d
g
 - t

wc,resized
 = .0615 - .0616 = -.0001

Maximum Gap 6 = d
g
 + t

wc,resized
 = .0615 + .0616 =  .1231

Assumptions and Risks of Using the Worst Case Model

In the worst case approach, the designer does not make any assumptions about how the individual piecepart
dimensions are distributed within the tolerance ranges. The only assumption is that all pieceparts are
within the tolerance limits. While this may not always be true, the method is so conservative that parts will
probably still fit. This is the method’s major advantage.

The major disadvantage of the Worst Case Model is when there are a large number of components or
a small “gap” (as in the previous example). In such applications, the Worst Case Model yields small
tolerances, which will be costly.

9.2.6.2 RSS Model

If designers cannot achieve producible piecepart tolerances for a given requirement, they can take advan-
tage of probability theory to increase them. This theory is known as the Root Sum of the Squares (RSS)
Model.

The RSS Model is based on the premise that it is more likely for parts to be manufactured near the
center of the tolerance range than at the ends. Experience in manufacturing indicates that small errors are
usually more numerous than large errors. The deviations are bunched around the mean of the dimension
and are fewer at points farther from the mean dimension. The number of manufactured pieces with large
deviations from the mean, positive or negative, may approach zero as the deviations from the mean
increase.

The RSS Model assumes that the manufactured dimensions fit a statistical distribution called a
normal curve. This model also assumes that it is unlikely that parts in an assembly will be randomly
chosen in such a way that the worst case conditions analyzed earlier will occur.

Derivation of the RSS Equation*

We’ll derive the RSS equation based on statistical principles of combinations of standard deviations. To
make our derivation as generic as possible, let’s start with a function of independent variables such as
y=f(x1,x2,…,xn). From this function, we need to be able to calculate the standard deviation of y, or σy. But
how do we find σy if all we have is information about the components xi? Let’s start with the definition of
σy.

( )
r

y
r

i
yi

y

∑
=

−

= 1

2

2

µ

σ

*Derived by Dale Van Wyk and reprinted by permission of Raytheon Systems Company
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where,
µy = the mean of the random variable y
r = the total number of measurements in the population of interest

Let ∆y = yi-µy

If ∆y is small, which is usually the case, n
n

y dx
x
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Using the results of Eq. (9.5) and inserting into Eq. (9.4)
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Now, let’s apply this statistical principle to tolerance analysis.  We’ll consider each of the variables xi
to be a dimension, Di, with a tolerance, Ti.  If the nominal dimension, Di, is the same as the mean of a normal
distribution, we can use the definition of a standard normal variable, Zi, as follows. (See Chapters 10 and
11 for further discussions on Z.)
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If the pieceparts are randomly selected, this relationship applies for the function y as well as for each Ti.
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If all of the dimensions are equally producible, for example if all are exactly 3σ tolerances, or all are 6σ
tolerances, Zy=Z1=Z2=…=Zn. In addition, let a1=a2=…=an=+/-1.

Eq. (9.9) will then reduce to 22
2

2
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2
ny T...TTT +++=

or  22
2

2
1 ny T...TTT +++=                                                                         (9.10)

which is the classical RSS equation.
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Let’s review the assumptions that went into the derivation of this equation.
• All the dimensions Di are statistically independent.
• The mean value of Di is large compared to s i. The recommendation is that Di /σi should be greater than

five.
• The nominal value is truly the mean of Di.

• The distributions of the dimensions are Gaussian, or normal.
• The pieceparts are randomly assembled.
• Each of the dimensions is equally producible.
• Each of the sensitivities has a magnitude of 1.
• Zi equations assume equal bilateral tolerances.

The validity of each of these assumptions will impact how well the RSS prediction matches the reality
of production.

Note that while Eq. (9.10) is the classical RSS equation, we should generally write it as follows so that
we don’t lose sensitivities.
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(9.11)

Historically, Eq. (9.11) assumed that all of the component tolerances (ti  ) represent a 3σi value for their
manufacturing processes. Thus, if all the component distributions are assumed to be normal, then the
probability that a dimension is between ±ti is 99.73%. If this is true, then the assembly gap distribution is
normal and the probability that it is ±trss between is 99.73%.

Although most people have assumed a value of ±3σ for piecepart tolerances, the RSS equation works
for “equal σ” values. If the designer assumed that the input tolerances were ±4σ values for the piecepart
manufacturing processes, then the probability that the assembly is between ±trss is 99.9937 (4σ).

The 3σ process limits using the RSS Model are similar to the Worst Case Model. The minimum gap is
equal to the mean value minus the RSS variation at the gap. The maximum gap is equal to the mean value
plus the RSS variation at the gap.

Minimum 3σ process limit = dg - trss

Maximum 3σ process limit = dg + trss

Using the original tolerances for Requirement 6, trss is:
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The three sigma variation at the gap is:
Minimum 3σ process variation for Gap 6 = dg – t rss = .0615 - .0381 = .0234
Maximum 3σ process variation for Gap 6 = dg + trss = .0615 + .0381 =  .0996
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Resizing Tolerances in the RSS Model

Using the RSS Model, the minimum gap is greater than the requirement. As in the Worst Case Model, we
can resize the variable tolerances to achieve the desired assembly performance. As before, the scaling
factor only applies to variable tolerances.

The resize factor, Frss, for the RSS Model is:
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The new variable tolerances (tkv,rss, resized) are the old tolerances multiplied by the factor Frss.

tkv,rss,resized = Frss tkv

tkv,rss,resized = equal bilateral tolerance of the k th, variable component in the stackup after resizing using the
RSS Model.

Fig. 9-8 shows the relationship between the piecepart tolerances and the assembly tolerance before
and after resizing.

Figure 9-8  Graph of piecepart tolerances versus assembly tolerance before and after resizing using the RSS Model

The new variable tolerances are the old tolerances multiplied by the factor Frss.
The resize factor for Requirement 6 is 1.7984. (For example, .0030 is resized to 1.7984*.0030 = .0054.)
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As a check, we can show that the new maximum expected assembly gap for Requirement 6, using the
resized tolerances, is:
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trss,resized      =  .0615

The variation at the gap is:

Minimum 3σ  process variation for Gap 6 = dg – t rss,resized = .0615 - .0615 = 0
Maximum 3σ  process variation for Gap 6 = dg + trss,resized = .0615 + .0615 =  .1230

Assumptions and Risks of Using the RSS Model

The RSS Model yields larger piecepart tolerances for a given assembly gap, but the risk of defects at
assembly is higher. The RSS Model assumes:
a) Piecepart tolerances are tied to process capabilities. This model assumes that when the designer

changes a tolerance, the process capabilities will also change.
b) All process distributions are centered on the midpoint of the dimension. It does not allow for mean

shifts (tool wear, etc.) or for purposeful decentering.

c) All piecepart dimensions are independent (covariance equals zero).

Table 9-4  Resized tolerances using the RSS Model

Table 9-4 shows the new tolerances that would give a minimum gap of zero.

Variable
Name

Mean Dimension Fixed/
Variable

Original
+/- Equal
Bilateral

Tolerance

Resized +/-
Equal Bilateral

Tolerance
(tiv,rss,resized)

A   .3595 Fixed .0155

B   .0320 Fixed .0020

C   .0600 Variable .0030 .0054

D   .4305 Fixed .0075

E   .1200 Variable .0050 .0090

F 1.5030 Fixed .0070

G   .1200 Variable .0050 .0090

H   .4305 Fixed .0075

I   .4500 Variable .0070 .0126

J 3.0250 Variable .0060 .0108

K   .3000 Variable .0300 .0540

Joe Sulton


Joe Sulton
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d) The bad parts are thrown in with the good in the assembly. The RSS Model does not take into account
part screening (inspection).

e) The parts included in any assembly have been thoroughly mixed and the components included in any
assembly have been selected at random.

f) The RSS derivation assumes equal bilateral tolerances.
Remember that by deriving the RSS equation, we made the assumption that all tolerances (ti’s) were

equally producible. This is usually not the case. The only way to know if a tolerance is producible is by
understanding the process capability for each dimension. The traditional assumption is that the tolerance
(ti) is equal to 3σ, and the probability of a defect at the gap will be about .27%. In reality, it is very unlikely
to be a 3σ value, but rather some unknown number.

The RSS Model is better than the Worst Case Model because it accounts for the tendency of
pieceparts to be centered on a mean dimension. In general, the RSS Model is not used if there are less than
four dimensions in the stackup.

9.2.6.3 Modified Root Sum of the Squares Tolerancing Model

In reality, the probability of a worst case assembly is very low. At the other extreme, empirical studies have
shown that the RSS Model does not accurately predict what is manufactured because some (or all) of the
RSS assumptions are not valid. Therefore, an option designers can use is the RSS Model with a “correc-
tion” factor. This model is called the Modified Root Sum of the Squares Method.
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where
Cf = correction factor used in the MRSS equation.
tmrss = expected variation (equal bilateral) using the MRSS model.

Several experts have suggested correction factors (Cf) in the range of 1.4 to 1.8 (References 1,4,5
and 6). Historically, the most common factor is 1.5.

The variation at the gap is:

Minimum gap = dg - tmrss

Maximum gap = dg + tmrss

In our example, we will use the correction factor suggested in Reference 2.
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Using the original tolerances for Requirement 6, tmrss is:
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The variation at the gap is:

Minimum Gap 6 = dg - tmrss = .0615 - .0505 = .0110
Maximum Gap 6 = dg tmrss = .0615 + .0505 = .1120

Resizing Tolerances in the RSS Model

Similar to the RSS Model, the minimum gap using the MRSS Model is greater than the requirement.
Like the other models, we can resize the variable tolerances to achieve the desired assembly performance.
The equation for the resize factor, Fmrss, is much more complex for this model. The value of Fmrss is a root of
the following quadratic equation.

aFmrss
2 + bFmrss + c = 0
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Fig. 9-9 shows the relationship between the piecepart tolerances and the assembly tolerance before
and after resizing.

The new variable tolerances (tkv,mrss, resized) are the old tolerances multiplied by the factor Fmrss.

tkv,mrss,resized = Fmrss tkv

tkv,mrss,resized = equal bilateral tolerance of the k th, variable component in the stackup after resizing using the
MRSS Model.

The resize factor for Requirement 6 is 1.3209. (For example, .0030 is resized to 1.3209*.0030 = .0040.)
Table 9-5 shows the new tolerances that would give a minimum gap of zero.

Table 9-5  Resized tolerances using the MRSS Model

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600
0.

04
71

0.
05

05

0.
05

39

0.
05

73

0.
06

08

0.
06

43

0.
06

78

0.
07

14

0.
07

50

0.
07

85

Assembly Tolerance

P
ie

ce
p

ar
t 

T
o

le
ra

n
ce

Original 
Tolerance

Resized 
Tolerances

K

J
I

E & G

C

Figure 9-9  Graph of piecepart tolerances versus assembly tolerance before and after resizing using the MRSS Model

Variable
Name

Mean Dimension Fixed/
Variable

Original
+/- Equal
Bilateral

Tolerance

Resized +/-
Equal Bilateral

Tolerance
(tiv,mrss,resized)

A   .3595 Fixed .0155

B   .0320 Fixed .0020

C   .0600 Variable .0030 .0040

D   .4305 Fixed .0075

E   .1200 Variable .0050 .0066

F 1.5030 Fixed .0070

G   .1200 Variable .0050 .0066

H   .4305 Fixed .0075

I   .4500 Variable .0070 .0092

J 3.0250 Variable .0060 .0079

K   .3000 Variable .0300 .0396

Joe Sulton
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As a check, we show the following calculations for the resized tolerances.

twc, resized  =.0155+.0020+.0040+.0075+.0066+.0070+.0066+.0075+.0092+.0079+.0396

twc, resized = .1134
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As a check, we can show that the expected assembly gap for Requirement 6, using the resized
tolerances, is:

Minimum Gap 6 = dg – tmrss,resized = .0615 - .0615 = .0000
Maximum Gap 6 = dg + tmrss,resized = .0615 + .0615 =  .1230

Assumptions and Risks of Using the MRSS Model

The uncertainty associated with the MRSS Model is that there is no mathematical reason for the factor Cf.
The correction factor can be thought of as a “safety” factor. The more the RSS assumptions depart from
reality, the higher the safety factor should be.

The MRSS Model also has other problems.
a) It applies the same “safety” factor to all the tolerances, even though they don’t deviate from the RSS

assumptions equally.
b) If fixed correction factors proposed in the literature are used, the MRSS tolerance can be larger than

the worst case stackup. This problem is eliminated with the use of the calculated Cf shown here.
c) If the tolerances are equal and there are only two of them, the MRSS assembly tolerance will always be

larger than the worst case assembly tolerance when using the calculated correction factor.

The MRSS Model is generally considered better than the RSS and Worst Case models because it tries
to model what has been measured in the real world.
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             Tolerance Analysis

  Dim.   Worst Case          RSS         MRSS

Mean Dim.    Sens.   Type Original Resized Original Resized Original Resized

.3595 -1.0000 Variable .0155 .0155 .0155

.0320 1.0000 Fixed .0020 .0020 .0020

.0600 1.0000 Variable .0030 .0012 .0030 .0054 .0030 .0040

.4305 1.0000 Fixed .0075 .0075 .0075

.1200 1.0000 Variable .0050 .0020 .0050 .0090 .0050 .0066

1.5030 1.0000 Fixed .0070 .0070 .0070

.1200 1.0000 Variable .0050 .0020 .0050 .0090 .0050 .0066

.4305 1.0000 Fixed .0075 .0075 .0075

.4500 1.0000 Variable .0070 .0027 .0070 .0126 .0070 .0092

3.0250 -1.0000 Variable .0060 .0024 .0060 .0108 .0060 .0079

.3000 1.0000 Variable .0300 .0118 .0300 .0540 .0300 .0396

Nominal Gap .0615 .0615 .0615 .0615 .0615 .0615

Minimum Gap -.0340 .0001 .0234 .0000 .0110 .0000

Expected Variation .0955 .0616 .0381 .0615 .0505 .0615

Table 9-6    Comparison of results using the Worst Case, RSS, and MRSS models

Table 9-7 summarizes the tradeoffs for the three models. All the models have different degrees of risk
of defects. The worst case tolerances have the least amount of risk (i.e. largest number of assemblies
within the expected assembly requirements). Because of the tight tolerances we will reject more pieceparts.
Worst case also implies that we are doing 100% inspection. Since we have to tighten up the tolerances to
meet the assembly specification, the number of rejected pieceparts increases. Therefore, this model has
the highest costs associated with it. The RSS tolerances will yield the least piecepart cost at the expense
of a lower probability of assembly conformance. The MRSS Model tries to take the best of both of these
models. It gives a higher probability of assembly conformance than the RSS Model, and lower piecepart
costs than the Worst Case Model.

Within their limitations, the traditional tolerancing models have worked in the past. The design
engineer, however, could not quantify how well they worked. He also could not quantify how cost
effective the tolerance values were. Obviously, these methods cannot consistently achieve quality goals.
One way to achieve quality goals is to eliminate the assumptions that go along with the classical toleranc-
ing models. By doing so, we can quantify (sigma level, defects per million opportunities (dpmo)) the
tolerances and optimize tolerances for maximum producibility. These issues are discussed in Chapter 11,
Predicting Assembly Quality.

9.2.6.4 Comparison of Variation Models

Table 9-6 summarizes the Worst Case, RSS, and MRSS models for Requirement 6. The “Resized” columns
show the tolerances that will give a minimum expected gap value of zero, and a maximum expected gap
value of .1230 inch. As expected, the worst case tolerance values are the smallest.  In this example, the re-
sized RSS tolerance values are approximately three times greater than the worst case tolerances. It is
obvious that the RSS tolerances will yield more pieceparts. The MRSS resized tolerance values fall be-
tween the worst case (most conservative) and RSS (most risk of assembly defects) values.
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Worst Case
Consideration Model RSS Model MRSS Model

Risk of Defect Lowest Highest Middle

Cost Highest Lowest Middle

Assumptions about None The process follows a The process follows
component normal distribution. The a normal distribution.
processes mean of the process is The mean of the process

equal to the nominal distribution is not
dimension. Processes necessarily equal to the
are independent. nominal dimension.

Assumptions about Dimensions The tolerance is related The tolerance is related
drawing tolerances outside the to a manufacturing to a manufacturing

tolerance range process capability. process capability.
are screened Usually the tolerance Usually the tolerance
out. range is assumed to be range is assumed to be

the +/- 3 sigma limit the +/- 3 sigma limit
of the process. of the process.

Assumptions about 100% of the The assembly 99.73% of the assemblies
expected assembly parts are within distribution is normal. will be between the
variation the maximum Depending on the minimum and maximum

and minimum piecepart assumptions, gap. The correction
performance a percentage of  the factor (Cf ) is a safety
range. assemblies will be factor.

between the minimum
and maximum gap.
Historically, this has
been 99.73%. Some
out of specification
parts reach assembly.

Table 9-7    Comparison of analysis models

9.2.6.5 Estimated Mean Shift Model

Generally, if we don’t have knowledge about the processes for manufacturing a part, such as a vendor
part, we are more inclined to use the Worst Case Model. On the other hand, if we have knowledge about
the processes that make the part, we are more inclined to use a statistical model. Chase and Greenwood
proposed a tolerancing model that blends the Worst Case and RSS models. (Reference 6) This Estimated
Mean Shift Model is:
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mi = the mean shift factor for the ith component
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In this model, the mean shift factor is a number between 0 and 1.0 and represents the amount that the
midpoint is estimated to shift as a fraction of the tolerance range. If a process were closely controlled, we
would use a small mean shift, such as .2. If we know less about the process, we would use higher mean
shift factors.

Using a mean shift factor of .2 for the variable components and .8 for the fixed components, the
expected variation for Requirement 6 is:
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The first part of the Estimated Mean Shift Model is the sum of the mean shifts and is similar to the
Worst Case Model. Notice if we set the mean shift factor to 1.0 for all the components, tems is equal to .0955,
which is the same as twc. The second part of the model is the sum of the statistical components. Notice if

we used a mean shift factor of zero for all of the components, tems is equal to .0381, which is the same as trss.
The two major advantages of the Estimated Mean Shift Model are:

• It allows flexibility in the design. Some components may be modeled like worst case, and some may be
modeled statistically.

• The model can be used to estimate designs (using conservative shift factors), or it can accept manufac-
turing data (if it is available).

9.3 Analyzing Geometric Tolerances

The previous discussions have only included tolerances associated with dimensions in the tolerance
analysis. We have not yet addressed how to model geometric tolerances in the loop diagram.

Generally, geometric controls will restrain one or several of the following attributes:
• Location of the feature
• Orientation of the feature
• Form of the feature

The most difficult task when modeling geometric tolerances is determining which of the geometric
controls contribute to the requirement and how these controls should be modeled in the loop diagram.
Because the geometric controls are interrelated, there are no hard and fast rules that tell us how to include
geometric controls in tolerance analyses. Since there are several modeling methods, sometimes we include
GD&T in the model, and sometimes we do not.

Generally, however, if a feature is controlled with geometric tolerances, the following apply.
• If there is a location control on a feature in the loop diagram, we will usually include it in the analysis.

• If there is an orientation control on a feature in the loop diagram, we may include it in the analysis as
long as the location of the feature is not a contributor to the requirement.
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• If there is a form control on a feature in the loop diagram, we may include it in the analysis as long as
the location, orientation, or size of the feature is not a contributor to the requirement. Any time parts
come together, however, we have surface variations that introduce variations in the model.

• Geometric form and orientation controls on datum features are usually not included in loop diagrams.
Since datums are the “starting points” for measurements, and are defined as the geometric counter-
parts (high points) of the datum feature, the variations in the datum features usually don’t contribute
to the variation analysis.

There is a difference between a GD&T control (such as a form control) and a feature variation (such
as form variation). If we add a GD&T control to a stack, we add to the output. Therefore, we should only
include the GD&T controls that add to the output.

GD&T controls are generally used only in worst case analyses. Previously we said that the Worst
Case Model assumes 100% inspection.  Since GD&T controls are the specification limits for inspection, it
makes sense to use them in this type of analysis. In a statistical analysis, however, we either make
assumptions about the manufacturing processes (as shown previously), or use real data from the manu-
facturing processes (as shown in Chapter 11). Since the manufacturing processes are sources of variation,
they should be inputs to the statistical analyses. Since GD&T controls are not sources of variation, they
should not be used in a statistical analysis.

The following sections show examples of how to model geometric tolerances. The examples are single
part stacks, but the concepts can be applied to stacks with multiple components.

9.3.1 Form Controls

Form controls should seldom be included in a variation analysis. For nonsize features, the location, or
orientation tolerance usually controls the extent of the variation of the feature. The form tolerance is
typically a refinement of one of these controls. If a form control is applied to a size feature (and the
Individual Feature of Size Rule applies from ASME Y14.5), the size tolerance is usually included in the
variation analysis. In these cases, the form tolerance boundary is inside the size tolerance boundary, the
location tolerance boundary, or the orientation tolerance boundary, so the form control is not modeled.

If form tolerances are used in the loop diagram, they are modeled with a nominal dimension equal to
zero, and an equal bilateral tolerance equal to the form tolerance. (Depending on the application, some-
times the equal bilateral tolerance is equal to half the form tolerance.)

Fig. 9-10 shows an assembly with four parts. In this example, the requirement is for the Gap to be
greater than zero. For this requirement, the following applies to the form controls.
• Flatness of .001 on the substrate is not included in the loop diagram because it is a datum.
• Flatness of .002 on the heatsink is included in the loop diagram.
• Flatness of .002 on the housing is not included in the loop diagram because it is a refinement of the

location tolerance.
• Flatness of .004 on the housing is not included in the loop diagram because it is a datum.
• Flatness of .006 on the housing is not included in the loop diagram because it is a refinement of the

location.
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9.3.2 Orientation Controls

Like form controls, we do not often include orientation controls in a variation analysis. Typically we
determine the feature’s worst-case tolerance boundary using the location or size tolerance.

If orientation tolerances are used in the loop diagram, they are modeled like form tolerances. They
have a nominal dimension equal to zero, and an equal bilateral tolerance equal to the orientation
tolerance. (Depending on the application, sometimes the equal bilateral tolerance is equal to half the
orientation tolerance.)

In Fig. 9-10, the following describes the application of the orientation controls to the Gap analysis.
• Parallelism of .004 to datum A on the Substrate is not included in the loop diagram because it is a

refinement of the size dimension (.040 ±.003).
• Parallelism of .004 to datum A on the Housing is not included in the loop diagram because it is a

refinement of the location tolerance.
• Parallelism of .004 to datum A on the Window is included in the loop diagram.

Figure 9-10  Substrate package
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Figure 9-11   Position at RFS

Therefore, the equation for the Gap in Fig. 9-10 is:   Gap = -A+B-C+D+E
where

A = .040 ±.003
B = 0 ±.002
C = .125 ±.005

D = .185 ±.008
E = 0 ±.004

9.3.3 Position

There are several ways to model a position geometric constraint. When we use position at regardless of
feature size (RFS), the size of the feature, and the location of the feature are treated independently. When
we use position at maximum material condition (MMC) or at least material condition (LMC), the size and
location dimensions cannot be treated independently. The following sections show how to analyze these
situations.

9.3.3.1 Position at RFS

Fig. 9-11 shows a hole positioned at RFS.

The equation for the Gap in Fig. 9-11 is: Gap = –A/2+B
where

A = .0625 ±.0001
B = .2250 ±.0011

9.3.3.2 Position at MMC or LMC

As stated earlier, when we use position at MMC or LMC, the size and location dimensions should be
combined into one component in the loop diagram. We can do this using the following method.

1) Calculate the largest “outer” boundary allowed by the dimensions and tolerances.
2) Calculate the smallest “inner” boundary allowed by the dimensions and tolerances.
3) Convert the inner and outer boundary into a nominal diameter with an equal bilateral tolerance.
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9.3.3.3 Virtual and Resultant Conditions

When calculating the internal and external boundaries for features of size, it is helpful to understand the
following definitions from ASME Y14.5M-1994.

Virtual Condition: A constant boundary generated by the collective effects of a size feature’s speci-
fied MMC or LMC and the geometric tolerance for that material condition.
• The virtual condition (outer boundary) of an external feature, called out at MMC, is equal to its

maximum material condition plus its tolerance at maximum material condition.
• The virtual condition (inner boundary) of an internal feature, called out at MMC, is equal to its

maximum material condition minus its tolerance at maximum material condition.
• The virtual condition (inner boundary) of an external feature, called out at LMC, is equal to its least

material condition minus its tolerance at least material condition.
• The virtual condition (outer boundary) of an internal feature, called out at LMC, is equal to its least

material condition plus its tolerance at least material condition.

Resultant Condition: The variable boundary generated by the collective effects of a size feature’s
specified MMC or LMC, the geometric tolerance for that material condition, the size tolerance, and the
additional geometric tolerance derived from its specified material condition.
• The smallest resultant condition (inner boundary) of an external feature, called out at MMC, is equal to

its least material condition minus its tolerance at least material condition.
• The largest resultant condition (outer boundary) of an internal feature, called out at MMC, is equal to

its least material condition plus its tolerance at least material condition.
• The largest resultant condition (outer boundary) of an external feature, called out at LMC, is equal to

its maximum material condition plus its tolerance at maximum material condition.
• The smallest resultant condition (inner boundary) of an internal feature, called out at LMC, is equal to

its maximum material condition minus its tolerance at maximum material condition.

9.3.3.4 Equations

We can use the following equations to calculate the inner and outer boundaries.
For an external feature at MMC

outer boundary = VC = MMC + Geometric Tolerance at MMC
inner boundary = (smallest) RC = LMC – Tolerance at LMC

For an internal feature at MMC
inner boundary = VC = MMC - Geometric Tolerance at MMC
outer boundary = (largest) RC = LMC + Tolerance at LMC

For an external feature at LMC
inner boundary = VC = LMC - Geometric Tolerance at LMC
 outer boundary = (largest) RC = MMC + Tolerance at MMC

For an internal feature at LMC
outer boundary = VC = LMC + Geometric Tolerance at LMC
inner boundary = (smallest) RC = MMC – Tolerance at MMC
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Figure 9-12  Position at MMC—internal
feature

Converting an Internal Feature at MMC to a Nominal Value with an Equal Bilateral
Tolerance

Fig. 9-12 shows a hole that is positioned at MMC.

The value for B in the loop diagram is:
• Largest outer boundary = ∅.145 + ∅.020 = ∅.165
• Smallest inner boundary = ∅.139 – ∅.014 = ∅.125
• Nominal diameter = (∅.165 + ∅.125)/2= ∅.145

Equal bilateral tolerance = ∅.020

For position at MMC, an easier way to convert this is:
LMC ± (total size tolerance + tolerance in the feature control frame)
= ∅.145 ± (.006+.014) = .145±.020

The equation for the Gap in Fig. 9-12 is: Gap = A-B/2
where

A = .312 ±0  and B = .145 ±.020
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Converting an External Feature at MMC to a Nominal Value with an Equal Bilateral
Tolerance

Fig. 9-13 shows a pin positioned at MMC.

The value for B in the loop diagram is:
• Largest outer boundary = ∅.0626 + ∅.0022 = ∅.0648
• Smallest inner boundary = ∅.0624 – ∅.0024 = ∅.0600
• Nominal diameter = (∅.0648 + ∅.0600)/2 = ∅.0624

Equal bilateral tolerance = ∅.0024

As shown earlier, the easier conversion for position at MMC, is:
LMC ±(total size tolerance + tolerance in the feature control frame)
= ∅.0624 ±(.0002+.0022) = .0624+/-.0024

The equation for the Gap in Fig. 9-13 is: Gap = -A/2+B
where

A = .0624 ±.0024
B = .2250 ±0

Converting an Internal Feature at LMC to a Nominal Value with an Equal Bilateral
Tolerance

Fig. 9-14 shows a hole that is positioned at LMC.

The value for B in the loop diagram is:
• Largest outer boundary = ∅.52+∅.03 = ∅.55
• Smallest inner boundary = ∅.48-∅.07 = ∅.41
• Nominal diameter = (∅.55+∅.41)/2= ∅.48

Equal bilateral tolerance = ∅.07

Figure 9-13  Position at MMC—
external feature
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Figure 9-14  Position at LMC—
internal feature

Figure 9-15  Position at LMC—external
feature

For position at LMC, an easier way to convert this is:
MMC ±(total size tolerance + tolerance in the feature control frame)
= ∅.48 ± (04+.03) = .48 ±.07

The equation for the Gap in Fig. 9-14 is: Gap = A – B/2
where

A = .70 ±0

B = .48 ±.07

Converting an External Feature at LMC to a Nominal Value with an Equal Bilateral
Tolerance

Fig. 9-15 shows a “boss” that is positioned at LMC.

The value for B in the loop diagram is:
• Largest outer boundary = ∅1.03 + ∅.10 = ∅1.13
• Smallest inner boundary = ∅.97 – ∅.04 = ∅.93
• Nominal diameter = (∅1.13 + ∅.93)/2 = ∅1.03

Equal bilateral tolerance = ∅.10



9-32     Chapter Nine

As shown earlier, the easier conversion for position at LMC is:
MMC ±(total size tolerance + tolerance in the feature control frame)
= ∅1.03 ±(.06+.04) = 1.03 +/-.10

The equation for the Gap in Fig. 9-15 is: Gap = A-B/2
where

A = .70 ± 0

B = 1.03 ±.10

9.3.3.5 Composite Position

Fig. 9-16 shows an example of composite positional tolerancing.

Composite positional tolerancing introduces a unique element to the variation analysis; an under-
standing of which tolerance to use. If a requirement only includes the pattern of features and nothing
else on the part, we use the tolerance in the lower segment of the feature control frame. Since Gap 1 in
Fig. 9-16 is controlled by two features within the pattern, we use the tolerance of ∅.014 to calculate the
variation for Gap 1.

Gap 2, however, includes variations of the features back to the datum reference frame. In this situa-
tion, we use the tolerance in the upper segment of the feature control frame (∅.050) to calculate the
variation for Gap 2.

Figure 9-16  Composite position and composite profile
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9.3.4 Runout

Analyzing runout controls in tolerance stacks is similar to analyzing position at RFS. Since runout is
always RFS, we can treat the size and location of the feature independently. We analyze total runout the
same as circular runout, because the worst-case boundary is the same for both controls.

Fig. 9-17  shows a hole that is positioned using runout.

Figure 9-18  Concentricity

We model the runout tolerance with a nominal dimension equal to zero, and an equal bilateral toler-
ance equal to half the runout tolerance.

The equation for the Gap in Fig. 9-17 is: Gap = + A/2 + B – C/2
where

A = .125 ±.008
B = 0 ±.003
C = .062 ±.005

9.3.5 Concentricity/Symmetry

Analyzing concentricity and symmetry controls in tolerance stacks is similar to analyzing position at RFS
and runout.

Fig. 9-18 is similar to Fig. 9-17, except that a concentricity tolerance is used to control the ∅.062
feature to datum A.

Figure 9-17  Circular and total runout
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The loop diagram for this gap is the same as for runout. The equation for the Gap in Fig. 9-18 is:
Gap = + A/2 + B – C/2
where

A = .125 ±.008
B = 0 ±.003
C = .062 ±.005

Symmetry is analogous to concentricity, except that it is applied to planar features. A loop diagram for
symmetry would be similar to concentricity.

9.3.6 Profile

Profile tolerances have a basic dimension locating the true profile. The tolerance is depicted either equal
bilaterally, unilaterally, or unequal bilaterally. For equal bilateral tolerance zones, the profile component is
entered as a nominal value. The component is equal to the basic dimension, with an equal bilateral
tolerance that is half the tolerance in the feature control frame.

9.3.6.1 Profile Tolerancing with an Equal Bilateral Tolerance Zone

Fig. 9-19 shows an application of profile tolerancing with an equal bilateral tolerance zone.

The equation for the Gap in Fig. 9-19 is: Gap = -A+B
where

A = 1.255 ±.003
B = 1.755 ±.003

Figure 9-19 Equal bilateral tolerance profile
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9.3.6.2 Profile Tolerancing with a Unilateral Tolerance Zone

Fig. 9-20 shows a figure similar to Fig. 9-19 except the equal bilateral tolerance was changed to a unilateral
tolerance zone.

The equation for the Gap is the same as Fig. 9-19: Gap = – A + B

In this example, however, we need to change the basic dimensions and unilateral tolerances to mean
dimensions and equal bilateral tolerances.
Therefore,

A = 1.258 ±.003
B = 1.758 ±.003

9.3.6.3 Profile Tolerancing with an Unequal Bilateral Tolerance Zone

Fig. 9-21 shows a figure similar to Fig. 9-19 except the equal bilateral tolerance was changed to an unequal
bilateral tolerance zone.

The equation for the Gap is the same as Fig. 9-19:  Gap = – A + B

Figure 9-20  Unilateral tolerance profile

Figure 9-21  Unequal bilateral tolerance
profile
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Figure 9-22  Size datum

As we did in Fig. 9-20, we need to change the basic dimensions and unequal bilateral tolerances to
mean dimensions and equal bilateral tolerances.
Therefore,

A = 1.254 ±.003
B = 1.754 ±.003

9.3.6.4 Composite Profile

Composite profile is similar to composite position. If a requirement only includes features within the
profile, we use the tolerance in the lower segment of the feature control frame. If the requirement includes
variations of the profile back to the datum reference frame, we use the tolerance in the upper segment of
the feature control frame.

Fig. 9-16 shows an example of composite profile tolerancing. Gap 3 is controlled by features within the
profile, so we would use the tolerance in the lower segment of the profile feature control frame (∅.008) to
calculate the variation for Gap 3.

Gap 4, however, includes variations of the profiled features back to the datum reference frame.  In this
situation, we would use the tolerance in the upper segment of the profile feature control frame (∅.040) to
calculate the variation for Gap 4.

9.3.7 Size Datums

Fig. 9-22 shows an example of a pattern of features controlled  to a secondary datum that is a feature of size.

In this example, ASME Y14.5 states that the datum feature applies at its virtual condition, even
though it is referenced in its feature control frame at MMC. (Note, this argument also applies for second-
ary and tertiary datums invoked at LMC.) In the tolerance stack, this means that we will get an additional
“shifting” of the datum that we need to include in the loop diagram.

The way we handle this in the loop diagram is the same way we handled features controlled with
position at MMC or LMC. We calculate the virtual and resultant conditions, and convert these bound-
aries into a nominal value with an equal bilateral tolerance.
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 The value for A in the loop diagram is:
• Largest outer boundary = ∅.503 + ∅.011 = ∅.514
• Smallest inner boundary = ∅.497 – ∅.005 = ∅.492
• Nominal diameter = (∅.514 + ∅.492)/2 = ∅.503

• Equal bilateral tolerance = ∅.011

An easier way to convert to this radial value is:
LMC ±(total size tolerance + tolerance in the feature control frame)
= ∅.503 ±(.006+.005) = .503±.011

The value for C in the loop diagram is:
• Largest outer boundary = ∅.145 + ∅.020 = ∅.165
• Smallest inner boundary = ∅139 – ∅.014 = ∅.125

• Nominal diameter = (∅.165 + ∅.125)/2 = ∅.145
• Equal bilateral tolerance = ∅.020

An easier way to convert to this radial value is:
LMC ±(total size tolerance + tolerance in the feature control frame)
= ∅.145 ±(.006+.014) = .145 ±.020

The equation for the Gap in Fig. 9-22 is: Gap = – A/2 + B/2 – C/2
where

A = .503 ±.011

B = .750 ±0
C = .145 ±.020

9.4 Abbreviations

Variable Definition

ai sensitivity factor that defines the direction and magnitude for the ith  dimension. In a
one-dimensional stackup, this value is usually +1 or -1. Sometimes, in a one-dimensional
stackup, this value may be +.5 or -.5 if a radius is the contributing factor for a diameter
callout on a drawing.

aj sensitivity factor for the jth, fixed component in the stackup

ak sensitivity factor for the k th, variable component in the stackup

Cf correction factor used in the MRSS equation

Cf,resized correction factor used in the MRSS equation, using resized tolerances

ix

f

∂

∂
partial derivative of function y with respect to xi

dg the mean value at the gap. If dg is positive, the mean “gap” has clearance, and if dg is
negative, the mean “gap” has interference

di the mean value of the ith dimension in the loop diagram
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Di dimension associated with ith random variable xi

Fwc resize factor that is multiplied by the original tolerances to achieve a desired assembly
performance using the Worst Case Model

Fmrss resize factor that is multiplied by the original tolerances to achieve a desired assembly
performance using the MRSS Model

Frss resize factor that is multiplied by the original tolerances to achieve a desired assembly
performance using the RSS Model

gm minimum value at the (assembly) gap. This value is zero if no interference or clearance is
allowed.

µy mean of random variable y

n number of independent variables (dimensions) in the equation (stackup)

p number of independent, fixed dimensions in the stackup

q number of independent, variable dimensions in the stackup

r the total number of measurements in the population of interest

σy standard deviation of function y

ti equal bilateral tolerance of the ith component in the stackup

Ti tolerance associated with ith random variable xi

tjf equal bilateral tolerance of the jth, fixed component in the stackup

tkv equal bilateral tolerance of the k th, variable component in the stackup

tkv,wc,resized equal bilateral tolerance of the k th, variable component in the stackup after resizing, using
the Worst Case Model

tkv,rss,resized equal bilateral tolerance of the k th, variable component in the stackup after resizing, using
the RSS Model

tkv,mrss,resized equal bilateral tolerance of the k th, variable component in the stackup after resizing,
using the MRSS Model

tmrss expected assembly gap variation (equal bilateral) using the MRSS Model

tmrss,resized the expected variation (equal bilateral) using the MRSS Model and resized tolerances

trss the expected variation (equal bilateral) using the RSS Model

trss,resized the expected variation (equal bilateral) using the RSS Model and resized tolerances

twc maximum expected variation (equal bilateral) using the Worst Case Model

twc,resized maximum expected variation (equal bilateral) using the Worst Case Model and resized
tolerances

USLi upper specification limit of the ith dimension

xi ith independent variable

y function consisting of n independent variables (x1,…,xn)

Zi standard normal transform of ith dimension

Zy standard normal transform of y
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9.5 Terminology

MMC = Maximum Material Condition: The condition in which a feature of size contains the maximum
amount of material within the stated limits of size.

LMC = Least Material Condition: The condition in which a feature of size contains the least amount of
material within the stated limits of size.

VC  = Virtual Condition: A constant boundary generated by the collective effects of a size feature’s
specified MMC or LMC material condition and the geometric tolerance for that material condition.

RC = Resultant Condition: The variable boundary generated by the collective effects of a size feature’s
specified MMC or LMC material condition, the geometric tolerance for that material condition,
the size tolerance, and the additional geometric tolerance derived from the feature’s departure
from its specified material condition.
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