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Chapter

Traditional Approaches to Analyzing
Mechanical Tolerance Stacks

Paul Drake

9.1 Introduction

Tolerance analysis is the process of taking known tolerances and analyzing the combination of these
tolerances at an assembly level. This chapter will define the process for analyzing tolerance stacks. It will
show how to set up aloop diagram to determine a nominal performance/assembly value and four tech-
niques to calculate variation from nominal.

Themost important goal of thischapter isfor the reader to understand theassumptionsandrisksthat
go along with each tolerance analysis method.

9.2 Analyzing Tolerance Stacks

Fig. 9-1 describes the tolerance analysis process.

9.2.1 Establishing Performance/Assembly Requirements

Thefirst stepinthe processistoidentify the requirementsfor the system. These are usually requirements

that determine the “ performance” and/or “assembly” of the system. The system requirements will, either

directly, or indirectly, flow down requirements to the mechanical subassemblies. These requirements

usually determine what needs to be analyzed. In general, a requirement that applies for most mechanical

subassembliesis that parts must fit together. Fig. 9-2 shows a cross section of a motor assembly. In this

example, there are several requirements.

* Requirement 1. The gap between the shaft and the inner bearing cap must always be greater than zero
to ensure that the rotor is clamped and the bearings are preloaded.

* Requirement 2. The gap between the housing cap and the housing must always be greater than zero to
ensure that the stator is clamped.
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Figure 9-1 Tolerance analysis process

Reguirement 3. The mounting surfaces of the rotor and stator must be within £.005 for the motor to

operate.

Requirement 4. The bearing outer race must always protrude beyond the main housing, so that the

bearing stays clamped.

Requirement 5. The thread of the bearing cap screw must have a minimum thread engagement of .200

inches.

Requirement 6. The bottom of the bearing cap screw thread must never touch the bottom of thefemale

thread on the shaft.
Requirement 7. Therotor and stator must never to
and stator is.020.

uch. The maximum radial distance between therotor

Other examples of performance/assembly requirements are:
Thermal requirements, such as contact between athermal plane and a heat sink,

The second part of Step 1 isto convert each requirement into an assembly gap requirement. We would

Amount of “squeeze” on an o-ring
Amount of “preload” on bearings

Sufficient “material” for subsequent machining processes

Aerodynamic requirements

Interference requirements, such as when pressing pinsinto holes

Structural requirements

Optical requirements, such as alignment of optical elements

convert each of the previous requirements to the following.

Requirement 1. Gap 12 0
Requirement 2. Gap22 0
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Figure 9-2 Motor assembly

* Requirement 7. Gap73 0and£ .020

9.2.2 Loop Diagram
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Theloop diagramisagraphical representation of each analysis. Each requirement requires aseparateloop
diagram. Simple loop diagrams are usually horizontal or vertical. For ssmple analyses, vertical loop dia-
grams will graphically represent the dimensional contributors for vertical “gaps.” Likewise, horizontal
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loop diagrams graphically represent dimensional contributors for horizontal “gaps.” The steps for draw-
ing the loop diagram follow.

1

4.

For horizontal dimension loops, start at the surface on theleft of the gap. Follow acompletedimension
loop, to the surface on theright. For vertical dimensionloops, start at the surface on the bottom of the
gap. Follow a complete dimension loop, to the surface on the top.
Using vectors, create a“closed” loop diagram from the starting surface to the ending surface. Do not
include gaps when selecting the path for the dimension loop. Each vector in the loop diagram repre-
sents adimension.
Use an arrow to show the direction of each “vector” in the dimension loop. Identify each vector as
positive (+), or negative (-), using the following convention.
For horizontal dimensions:
Usea+ sign for dimensions followed from left to right.
Use a—sign for dimensions followed from right to left.
For vertical dimensions:
Use a+ sign for dimensions followed from bottom to top.
Use a—sign for dimensions followed from top to bottom.
Assign avariable nameto each dimension in theloop. (For example, thefirst dimensionisassigned the
variablename A, the second, B.)

Fig. 9-3 shows a horizontal loop diagram for Requirement 6.

» Performance
Reqguirement 6
A (-.375) . Gap >
R (+ 032
C (+.060) @ |
D (+.438) ¢
E (+120) |t —
F %-H .500) .
G (+.120) f——
H (+.438) -
| (+.450) 1
J (=3.019)
K (+.300) Figure 9-3 Horizontal loop diagram for

Regquirement 6

5. Record sensitivities for each dimension. The magnitude of the sensitivity is the value that the gap

changes, when the dimension changes 1 unit. For example, if the gap changes .001 when the dimen-
sion changes .001, then the magnitude of the sensitivity is 1 (.001/.001). On the other hand, if the gap
changes .0005 for a.001 change in the dimension, then the sensitivity is .5 (.0005/.001).

If the dimension vector is positive (pointing to the right for horizontal loops, or up for vertical
loops), enter a positive sensitivity. If a dimension with a positive sensitivity increases, the gap will
also increase.

If the vector is negative (pointing to the left for horizontal loops, or down for vertical 1oops),
enter anegative sensitivity. If adimension with anegative sensitivity increases, the gap will decrease.
Note, in Fig. 9-3, dl of the sengitivities are equal to*1.
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6. Determinewhether each dimensionis“fixed” or “variable.” A fixed dimensionisoneinwhichwehave
no control, such as a vendor part dimension. A variable dimension is one that we can change to
influence the outcome of thetolerance stack. (Thiswill becomeimportant | ater, becausewewill beable
to “adjust” or “resize” the variable dimensions and tolerances to achieve a desired assembly perfor-
mance. We are not able to resize fixed dimensions or tolerances.)

9.2.3 Converting Dimensions to Equal Bilateral Tolerances

In Fig. 9-2, there were several dimensions that were toleranced using unilateral tolerances
(such as .375 +.000/-.031, 3.019 +.012/-.000 and .438 +.000/-.015) or unequal bilateral tolerances (such
as+1.500 +.010/-.004). If welook at the length of the shaft, we seethat there are several different wayswe
could have applied thetol erances. Fig. 9-4 shows several wayswe can dimension and tolerancethelength
of the shaft to achieve the same upper and lower tolerancelimits (3.031/3.019). From adesign perspective,
all of these methods perform the same function. They give a boundary within which the dimension is
acceptable.

: ]
+.012
3.019 7805

+.000
3.031 7375

+.003
3.0281-893

3.025x.006

3.022 igg% Figure 9-4 Methods to dimension the

length of a shaft

The designer might think that changing the nominal dimension has an effect on the assembly. For
example, a designer may dimension the part length as 3.019 +.012/-.000. In doing so, the designer may
falsely think that this will help minimize the gap for Requirement 1. A drawing, however, doesn’t give
preference to any dimension within the tolerance range.

Fig. 9-5 showswhat happensto the manufacturing yieldif the manufacturer “aims” for the dimension
stated on the drawing and the processfollowsthe normal distribution. Inthisexample, if the manufacturer
aimed for 3.019, half of the partswould be outside of the tolerance zone. Since manufacturing shopswant
to maximize the yield of each dimension, they will aim for the nominal that yields the largest number of
good parts. This helps them minimize their costs. In this example, the manufacturer would aim for 3.025.
Thisallowsthem the highest probability of making good parts. If they aimed for 3.019 or 3.031, half of the
manufactured parts would be outside the tolerance limits.

Asinthe previous example, many manufacturing processes are normally distributed. Therefore, if we
put any unilateral, or unequal bilateral tolerances on dimensions, the manufacturer would convert themto
amean dimension with an equal bilateral tolerance. The stepsfor convertingto an equal bilateral tolerance
follow.
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L

!
3.028

!
3,025

3 0'22 Figure 9-5 Methods of centering
3.019 3.031 manufacturing processes

1. Convert the dimension with tolerances to an upper limit and alower limit. (For example, 3.028 +.003/
-.009 has an upper limit of 3.031 and alower limit of 3.019.)

2. Subtract the lower limit from the upper limit to get the total tolerance band. (3.031-3.019=.012)
3. Dividethetolerance band by two to get an equal bilateral tolerance. (.012/2=.006)

4. Add the equa hilateral tolerance to the lower limit to get the mean dimension. (3.019 +.006=3.025).
Alternately, you could subtract the equal bilateral tolerance from the upper limit. (3.031-.006=3.025)

Asarule, designersshould use equal bilateral tolerances. Sometimes, using equal bilateral tolerances
may force manufacturing to use nonstandard tools. In these cases, we should not use equal bilateral
tolerances. For example, we would not want to convert adrilled hole diameter from A125 +.005/-.001 to
AE.127 £.003. In this case, we want the manufacturer to use astandard 125 drill. If the manufacturer sees
AE127 on adrawing, he may think he needs to build a special tool. In the case of drilled holes, we would
also want to use an unequal bilateral tolerance because the mean of the drilling processis usually larger
than the standard drill size. These dimensions should have alarger plus tol erance than minus tolerance.

Aswewill seelater, when we convert dimensionsto equal bilateral tolerances, we don't need to keep
track of which tolerances are “ positive” and which tolerances are “ negative”’ because the positive toler-
ances are equal to the negative tolerances. This makes the analysis easier. Table 9-1 converts the neces-
sary dimensions and tolerances to mean dimensions with equal bilateral tolerances.
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Table 9-1 Converting to mean dimensions with equal bilateral tolerances

M ean Dimension with
Original Dimension/Tolerance| Equal Bilateral Tolerance
.375 +.000/-.031 .3595 +/- .0155
438 +.000/-.015 4305 +/- .0075
1.500 +.010/-.004 1.503 +/- .007
3.019 +.012/-.000 3.025 +/- .006

9.2.4 Calculating the Mean Value (Gap) for the Requirement

Thefirst step in calculating the variation at the gap isto cal cul ate the mean value of the requirement. The
mean value at the gapis:

n
o]
dg =a adi ©.1)
i=1
where
ds = themean valueat thegap. If dgispositive, the mean “gap” has clearance, and if dois
negative, the mean “gap” has interference.
n = thenumber of independent variables (dimensions) in the stackup
a, = sengtivity factor that defines the direction and magnitude for the ith dimension. In a one-

dimensiond stackup, this valueis usudly +1 or —1. Sometimes, in a one-dimensiona stackup,
thisvauemay be+.5 or - 5if aradiusisthe contributing factor for adiameter callout onadrawing.
d. = themean value of theith dimension in the loop diagram.

Table 9-2 showsthe dimensions that areimportant to determine the mean gap for Requirement 6. We
have assigned V ariable Nameto each dimension so that we can write aloop equation. We have al so added

Table 9-2 Dimensions and tolerances used in Requirement 6

+- Equal

Variable Mean Fixed/ Bilateral
Description Name Dimension | Sensitivity | Variable Tolerance
Screw thread length A 3595 -1 Fixed .0155
Washer length B 0320 1 Fixed .0020
Inner bearing cap C .0600 1 Vaiable .0030
turned length
Bearing length D 4305 1 Fixed .0075
Spacer turned length E 1200 1 Vaiadble .0050
Rotor length F 1.5030 1 Fixed .0070
Spacer turned length G 1200 1 Vaiable .0050
Bearing length H 4305 1 Fixed .0075
Pulley casting length | 4500 1 Vaidble .0070
Shaft turned length J 3.0250 -1 Vaiadble .0060
Tapped hole depth K .3000 1 Vaiade .0300
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acolumntitled Fixed/V ariable. Thisidentifieswhich dimensionsand tolerancesare “fixed” intheanalysis,
andwhichonesareallowedtovary (variable). Typically, wehave no control over vendor items, so wetreat
these dimensionsasfixed. Aswemake adjustmentsto dimensions and tol erances, wewill only changethe
“variable” dimensions and tolerances.

Themeanfor Gap6is:

Ga) 6 = aldl + aZdZ +a3d3 +a4d4 +a5d5 +a6d6 +a7d7 +a8d8 +39d9 +a10d10 + alldll
Gap 6 = (-1)A +(1)B +(1)C +(1)D +(1)E +(1)F DG +DH+D)! +=1)J+D)K

Gap 6 = (-1).3595+(1).0320+(1).0600+(1).4305+(1). 1200+(1) 1.5030+(1). 1200+
(1).4305+(1).4500+(-1)3.0250+(1).0300

Gap 6= 0615

9.2.5 Determine the Method of Analysis

Eq. (9.1) only calculatesthe nominal valuefor the gap. The next step isto analyze the variation at the gap.
Historically, mechanical engineershave used two typesof tolerancing modelsto analyze thesevariations:
1) a“worst case” (WC) model, and 2) a “statistical” model. Each approach offers tradeoffs between
piecepart tolerances and assembly “quality.” In Chapters 11 and 14, we will see that there are other
methods based on the optimization of piecepart and assembly quality and the optimization of total cost.

Fig. 9-6 shows how the assumptions about the pieceparts affect the requirements (gaps), using the
worst case and statistical methods. In thisfigure, the horizontal axisrepresentsthe manufactured dimen-
sion. The vertical axis represents the number of partsthat are manufactured at a particular dimension on
the horizontal axis.

Worst Case Statistical

_J Dimension 1 *{/\\*

Mo

_J omension 4+ /TN
| I\

Dimension

Worst Case

Assembly
' . Figure 9-6 Combining piecepart
ﬁgusg rsécm}c/:l f/—‘\ variations using worst case and statistical

methods
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Inthe Worst Case Model, we verify that the partswill perform their intended function 100 percent of
thetime. Thisisoftentimesaconservative approach. In the statistical modeling approach, we assumethat
most of the manufactured parts are centered on the mean dimension. Thisis usually less conservative
than a worst case approach, but it offers several benefits which we will discuss later. There are two
traditional statistical methods; the Root Sum of the Squares (RSS) Model, and the M odified Root Sum of
the Squares (MRSS) Model.

9.2.6 Calculating the Variation for the Requirement

During the design process, the design engineer makes tradeoffs using one of the three classic models.
Typically, the designer analyzes the requirements using worst case tolerances. If the worst case toler-
ances met the required assembly performance, the designer would stop there. On the other hand, if this
model did not meet the requirements, the designer increased the piecepart tolerances (to make the parts
more manufacturable) at the risk of nonconformance at the assembly level. The designer would make
trades, using the RSS and MRSS models.

Thefollowing sections discussthetraditional Worst Case, RSS, and MRSS models. Additionally, we
discuss the Estimated Mean Shift Model that includes Worst Case and RSS model s as extreme cases.

9.2.6.1 Worst Case Tolerancing Model

The Worst Case Model, sometimes referred to as the “Method of Extremes,” is the simplest and most
conservative of the traditional approaches. In this approach, the tolerance at the interface is simply the
sum of the individual tolerances.

The following equation cal cul ates the expected variation at the gap.

J
te =Q |ati] 9.2)
i=1

where
t,. = Maximum expected variation (e%ual bilateral) using the Worst Case Model.
t; = equal bilateral tolerance of thei component in the stackup.

The variation at the gap for Reguirement 6 is:

t,. =I(-1).0155}+|(1).0030}+{(1).0050}+|(1).0075}+{(1).0050}+|(1).0070}+(1).0050]
+|(1).0075}+|(1).0070}+|(-1).0060}+|(1).0300|

t,. =-0955

Using the Worst Case Model, the minimum gap is equal to the mean value minus the “worst case”
variation at the gap. The maximum gap is equal to the mean value plus the “worst case” variation at the
gap.

Minimum gap =d, - t,.

Maximumgap=d,+t

The maximum and minimum assembly gaps for Requirement 6 are:

Minimum Gap 6 = d, - t,,. = .0615 - .0955 = -.0340
Maximum Gap 6 =d, + t,,. =.0615+.0955= .1570



9-10 Chapter Nine

Therequirement for Gap 6 isthat the minimum gap must be greater than 0. Therefore, wemust increase
the minimum gap by .0340 to meet the minimum gap requirement. Oneway to increasetheminimumgap is
to modify the dimensions (d.’ s) toincreasethe nominal gap. Doing thiswill also increasethe maximum gap
of the assembly by .0340. Sometimes, we can’t do this because the maximum requirement may not allow it,
or other requirements (such as Requirement 5) won't allow it. Another option isto reduce the tolerance
values (t.'s) in the stackup.

Resizing Tolerances in the Worst Case Model

There are two ways to reduce the tolerances in the stackup.
1. Thedesigner could randomly change the tolerances and analyze the new numbers, or

2. Iftheorigina numberswere*“weighted” the same, then all variabletol erances (those under the control
of thedesigner) could bemultiplied by a“resize” factor toyield the minimum assembly gap. Thisisthe
correct approach if the designer assigned original tolerances that were equally producible.

Resizingisamethod of allocating tolerances. (See Chapters11 and 14 for further discussion ontolerance
alocation.) Inalocation, we start with adesired assembly performance and determine the piecepart tolerances
that will meet this requirement. Theresizefactor, F, . , scalestheoriginal worst casetolerances up or down to
achieve the desired assembly performance. Since the designer has no control over tolerances on purchased
parts (fixed tolerances), the scaling factor only appliesto variabletolerances. Eq. (9.2) becomes:

| aty|+8at

where,
a; = sensitivity factor for the] fixed component in the stackup
ak: sensitivity factor for the k var| able component in the stackup
= equal bilateral tolerance of the| J " fixed component in the stackup
tkv equal bilateral tolerance of the k variable component in the stackup
p = number of independent, fixed dimensions in the stackup
g = number of independent, variable dimensionsin the stackup

The resize factor for the Worst Case Model is:

d, - a|a] ]f|

Alatd
k=1

where
Or = minimum value at the (assembly) gap. Thisvalueiszeroif nointerference or clearanceisallowed.

The new variable tolerances(t,, .. .4 ) @€ the old tolerances multiplied by the factor F .

t =F,.ty

kv,we,resized

= equal bilateral tolerance of thek™, variable component in the stackup after resizing using the
Worst Case Model.

kv,we,resized
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Fig. 9-7 shows the relationship between the piecepart tolerances and the assembly tolerance before

and after resizing.

K
0.0400 1 Original
0.0350 A Tolerances

8 0.0300 _

S Resized

E 0.0250 A Tolerances

o
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o o o o o o o o o o

Assembly Tolerance

Figure 9-7 Graph of piecepart tolerances versus assembly tolerance before and after resizing
using the Worst Case Model

Theresizefactor for Requirement 6 equals.3929. (For example, .0030isresized to.3929*.0030 =.0012.)
Table 9-3 shows the new (resized) tol erances that would give a minimum gap of zero.

Table 9-3 Resized tolerances using the Worst Case Model

Variable | Mean Dimension | Fixed/ | +/- Equal Resized +/-
Name Variable | Bilateral | Equal Bilateral
Tolerance| Tolerance
(bvweresize )
A .3595 Fixed .0155
B .0320 Fixed .0020
C .0600 Variable .0030 .0012
D .4305 Fixed .0075
E .1200 Variable .0050 .0020
F 1.5030 Fixed .0070
G .1200 Variable .0050 .0020
H .4305 Fixed .0075
I .4500 Variable .0070 .0027
J 3.0250 Variable .0060 .0024
K .3000 Variable .0300 .0118
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Asacheck, we can show that the new maximum expected assembly gap for Requirement 6, using the
resized tolerances, is:
t = .0155+.0020+.0012+.0075+.0020+.0070+.0020+.0075+.0027+.0024+.0118

we,resized

t = .0616

we,resized
Thevariation atthegapis:
Minimum Gap6:dg-t =.0615-.0616 =-.0001

we,resized

Maximum Gap 6 = dg +t =.0615+.0616 = .1231

wc,resized
Assumptions and Risks of Using the Worst Case Model

Intheworst case approach, the designer does not make any assumptionsabout how theindividual piecepart
dimensions are distributed within the tolerance ranges. The only assumption is that all pieceparts are
within thetolerancelimits. Whilethismay not alwaysbetrue, the method isso conservativethat partswill
probably still fit. Thisisthe method’ s major advantage.

Themagjor disadvantage of the Worst Case M odel iswhen there are alarge number of components or
asmall “gap” (asin the previous example). In such applications, the Worst Case Model yields small
tolerances, which will be costly.

9.2.6.2 RSS Model

If designers cannot achieve producible piecepart tol erancesfor agiven requirement, they can take advan-
tage of probability theory to increase them. Thistheory is known as the Root Sum of the Squares (RSS)
Model.

The RSS Model is based on the premise that it is more likely for parts to be manufactured near the
center of the tolerance range than at the ends. Experience in manufacturing indicatesthat small errorsare
usually more numerous than large errors. The deviations are bunched around the mean of the dimension
and are fewer at points farther from the mean dimension. The number of manufactured pieces with large
deviations from the mean, positive or negative, may approach zero as the deviations from the mean
increase.

The RSS Model assumes that the manufactured dimensions fit a statistical distribution called a
normal curve. This model also assumes that it is unlikely that parts in an assembly will be randomly
chosen in such away that the worst case conditions analyzed earlier will occur.

Derivation of the RSS Equation*

We'll derive the RSS equation based on statistical principles of combinations of standard deviations. To
make our derivation as generic as possible, let’s start with a function of independent variables such as

y=f(x,%,,....x,). Fromthis function, we need to be able to calculate the standard deviationof y, or S . But
how do wefindS if all we haveisinformation about the componentsx,? L et’s start with the definition of
S,

Yy

av-mp
s 2=zl r

*Derived by Dale Van Wyk and reprinted by permission of Raytheon Systems Company
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where,
m
r

Let Dy =y-m

the mean of the random variabley
the total number of measurements in the population of interest

1if
- ichi Dy »dy=—-dx, +——dx, +..+—d
If D, issmall, whichisusually the case, Py > & T X oo e * Xn (9.3

a v’
Therefore, s § ==17 (94)

r
[o]
|

From Eg. (9.3),

d Gaem Ceeqf

+ g— dx dx
el kal éﬂx e g( k

n n@é =
If all the variablesx, areindependent, § & é_r ! 2ox; Jax )i =0

The same would hold truefor all similar terms. Asaresult,

r .2 .2 u

g § St o @ff 0, v, eeff &, LY
dy; dx )°+ T (dx )+ + * (dx,)?U

a (dy)* = %gﬂxlg( %5 ﬂng( 2) mfz( ) ¥

i=1

Each partial derivativeis evaluated at its mean value, which is chosen asthe nominal. Thus,

fix
where C, is a constant for each x,
é_ (ay, )2 = &M Qzé’r[ (dx )2 +ae§—ﬂf Qzé’r[ (ch, )2 +.. + &N 925 (dx,, )2
)2 = i 3 ) I o )+ I - 9.5
i=1 I ﬂxl!Zl i=1 I ﬂXZIZJ i=1 I gﬂxnﬁ i=1 " ( )
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Using the results of Eq. (9.5) and inserting into Eq. (9.4)

2 2 2
aeﬂfcsé( 2 2T § 8 2, ®f 04 2
I dx )i +H—= (dx )i +..+ I (dx )i
, s &\ 5 A0 G 5 A
Sy = -
o 2 S
oa (o i 2 a (dx, ) 2a (dx, )
s? :aalg i=1 -l e g i=1 (9.6)
™ g g'ﬂng r ™n & r
. 2
Siz?lgsuglgsz Al
ﬂxlﬂ ' 'ﬂxzfa : ﬂxnﬁ

Now, let’ sapply thisstatistical principleto tolerance analysis. We'll consider each of the variablesx,
tobeadimension, D,, with atolerance, T.. If thenominal dimension, D,, isthe same asthe mean of anormal
distribution, we can use the definition of a standard normal variable, Z, asfollows. (See Chapters 10 and
11 for further discussionson Z.)

7 2USi-Di T
S| S,

s, =0

=5 ©7

If the pieceparts are randomly selected, this relationship applies for the functiony aswell asfor each T.
n

[}
For one-dimensional tolerance stacks, Y= @ &Di where each a, represents the sensitivity.
i=1

y _
In this case, ™ 8 and Eq. (9.6) becomes
1

2

s;=als; +ajs) +.+as] (9.8)

£I'

.2
BT 0 &,T,0 el 0
When you combine Eq. (9.7) and Eq. (9.8), g H g“**' 22' +. +gznf
VA n g

Z, 99)

If al of the dimensions are equally producible, for example if al are exactly 3s tolerances, or al are 6s
tolerances, Z=7,=7=..=Z . In addition, leta,=a,=...=a =+/-1

Eq. (9.9) will thenreduceto Ty =Ty? +T7 + .. +T7

o T, = \[le +TZ+ .. +T72 (9.10)

which isthe classical RSS equation.
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Let’ sreview the assumptions that went into the derivation of this equation.
* All the dimensionsD, are statistically independent.
* Themean value of D,islarge compared tos,. The recommendation isthat D, /s, should be greater than
five.
* Thenominal valueistruly the mean of D..
* Thedistributions of the dimensions are Gaussian, or normal.
* The pieceparts are randomly assembled.
¢ Each of thedimensionsisequally producible.
* Each of the sensitivities has a magnitude of 1.
* Z equations assume equal bilateral tolerances.

Thevalidity of each of these assumptionswill impact how well the RSS prediction matchesthereality
of production.

Notethat while Eq. (9.10) isthe classical RSS equation, we should generally writeit asfollows so that
wedon’t lose sensitivities.

tres = \/alt1 +a2 2 +..+alt? (9.11)

Historically, Eq. (9.11) assumed that all of the component tolerances(t; ) represent a3s, valuefor their
manufacturing processes. Thus, if all the component distributions are assumed to be normal, then the

probability that a dimension is between=t; is99.73%. If thisistrue, then the assembly gap distributionis
normal and the probability that it isxt, between is 99.73%.

Although most peopl e have assumed aval ue of £3s for piecepart tol erances, the RSS equation works
for “equal s” values. If the designer assumed that the input tolerances were *4s valuesfor the piecepart
manufacturing processes, then the probability that the assembly is between %t is99.9937 (4s).

The 3s processlimitsusing the RSS Model are similar to the Worst Case Model. Theminimum gapis

equal to the mean value minus the RSS variation at the gap. The maximum gap isequal to the mean value
plusthe RSS variation at the gap.

Minimum 3s process limit =d - t,
Maximum 3s processlimit = d, + t,

Using the original tolerances for Requirement 6, t,is:

N =

e( 1)2 01552 . (1) 2 2 4(1)2.0030 2 +(1) 2.0075 2 + (1) 2.0050 2 + (1) 2 .0070 2 +U
g(l) 0050 2 +(1) 2.0075 2 +(1) 2.0070 2 + (- 1)2.0060 2 + (1) 2.0300 2

,_,,
[eox¥ enY e

= .0381

Thethree sigmavariation at thegap is:
Minimum 3s process variation for Gap 6 = d, -t =.0615- .0381 = .0234
Maximum 3s process variation for Gap 6 =d, + t  =.0615+.0381 = .099%6
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Resizing Tolerances in the RSS Model

Using the RSS Model, the minimum gap is greater than the requirement. Asin the Worst Case Model, we
can resize the variable tolerances to achieve the desired assembly performance. As before, the scaling
factor only appliesto variable tolerances.

Treres z2fada’ F _, for the RSSModel is:

rss?

(dy- 0) - & 2yt )2
Frss: =

(ayti)?

=~

) mo_o

1

The new variable tolerances (t,,, . e,c0) &€ the old tolerances multiplied by the factor F .

F .t

tkv,rss,resized_ rss kv

b rssresieg — €0UAl bilateral tolerance of the k™, variable component in the stackup after resizing using the
RSS Modé!.

Fig. 9-8 shows the relationship between the piecepart tolerances and the assembly tolerance before
and after resizing.

Resized K
Tolerances \
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Original | —
0.0500 4 Tolerances
S
c
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o
o
- 0.0300 1 I
;3;_ J
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2 ; ,
a
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0.0000 t } } } } t t t i
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0 [ee] o [32] [{e] o [3\] 19} o - <
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Assembly Tolerance

Figure 9-8 Graph of piecepart tolerances versus assembly tolerance before and after resizing using the RSS Model

The new variable tolerances are the old tolerances multiplied by the factor F, .
Theresize factor for Requirement 6 is 1.7984. (For example, .0030 isresized to 1.7984*.0030 = .0054.)
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Table 9-4 shows the new tolerances that would give a minimum gap of zero.

Table 9-4 Resized tolerances using the RSS Model

Variable | Mean Dimension | Fixed/ Original Resized +/-
Name Variable | +/- Equal | Equal Bilateral
Bilateral Tolerance
Tolerance (tivrssresized)
A .3595 Fixed .0155
B .0320 Fixed .0020
C .0600 Variable .0030 .0054
D 4305 Fixed .0075
E .1200 Variable .0050 .0090
F 1.5030 Fixed .0070
G .1200 Variable .0050 .0090
H 4305 Fixed .0075
| .4500 Variable .0070 .0126
J 3.0250 Variable .0060 .0108
K .3000 Variable .0300 .0540

Asacheck, we can show that the new maximum expected assembly gap for Requirement 6, using the
resized tolerances, is:

1
g(-1)2.01552 +(1)2.0020 2 + (1)2.0054 2 + (1)2.00752 + (1)2 .0090 2 +(1)2 .00702 +82
£(1)2.00902 +(1)2.0075 2 +(1)2.0126 % +(- 1)%.01082 + (1) 2 .0540 H

trs,s,resized -

= .0615

trss,resized

Thevariation at thegapis:

=.0615-.0615=0
=.0615+.0615= .1230

Minimum 3s process variation for Gap 6 = d; —t oz
Maximum3s  process variation for Gap 6 =d; + t o e

Assumptions and Risks of Using the RSS Model

The RSS Model yields larger piecepart tolerances for a given assembly gap, but the risk of defects at

assembly is higher. The RSS Model assumes:

a) Piecepart tolerances are tied to process capabilities. This model assumes that when the designer
changes atolerance, the process capabilities will also change.

b) All process distributions are centered on the midpoint of the dimension. It does not allow for mean
shifts (tool wear, etc.) or for purposeful decentering.

c) All piecepart dimensions are independent (covariance equals zero).
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d) Thebad partsarethrowninwiththegoodintheassembly. The RSSModel does not takeinto account
part screening (inspection).

e) Thepartsincluded inany assembly have been thoroughly mixed and the componentsincludedin any
assembly have been selected at random.

f) TheRSS derivation assumes equal bilateral tolerances.

Remember that by deriving the RSS equation, we made the assumption that all tolerances (t;'s) were
equally producible. Thisisusually not the case. The only way to know if atoleranceis producibleis by
understanding the process capability for each dimension. Thetraditional assumptionisthat thetolerance
(t,) isequal to 3s, and the probability of adefect at the gap will be about .27%. Inreality, it isvery unlikely
to be a 3s value, but rather some unknown number.

The RSS Model is better than the Worst Case Model because it accounts for the tendency of
piecepartsto be centered on amean dimension. In general, the RSSModel isnot usedif therearelessthan
four dimensionsin the stackup.

9.2.6.3 Modified Root Sum of the Squares Tolerancing Model

Inreality, the probability of aworst caseassembly isvery low. At theother extreme, empirical studieshave
shown that the RSS M odel does not accurately predict what is manufactured because some (or all) of the
RSS assumptions are not valid. Therefore, an option designers can use isthe RSS Model with a“correc-
tion” factor. Thismodel is called the Modified Root Sum of the Squares Method.

twrss = Cp @2t2 +a2t2 +...+a3t2

where
C; = correction factor used in the MRSS equation.
e = €xpected variation (equal bilateral) using the MRSS model.

Several experts have suggested correction factors (C;) in the range of 1.4 to 1.8 (References 1,4,5
and 6). Historically, the most common factor is 1.5.
Thevariation atthegapis:

Minimum gap = d; -ty
Maximum gap= d, + t_
In our example, we will use the correction factor suggested in Reference 2.
- 0'5(twc - trs.s)
trss ('\/H' 1)
This correction factor will alwaysgiveat valuethat islessthant . Inour example, C;is:
_ 0.5(.0955 - .0381)

0381 (Vi1 - 1)
=13252

C; +1

f +1

C

f
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Using the original tolerances for Requirement 6,t_ _is
1

e( 1)2.01552 +(1)2.00202 +(1)?.0030% +(1)2.00752 +(1)2.0050 2 +(1)? .00702 +u2
trss =1.32526

£(1)2.00502 + (1)2.00752 + (1) 2.0070 % + (- 1) % .0060 2 +(1)2.03002 g
t - =.0505

nmrss

Thevariation at thegapiis:

Minimum Gap6=d, - =.0615-.0505=.0110
Maximum Gap 6 = dt =.0615+.0505=.1120

g ‘mrss

Resizing Tolerances in the RSS Model

Similar to the RSS Model, the minimum gap using the MRSS Model is greater than the requirement.
Likethe other models, we can resize the variabl e tolerances to achieve the desired assembly performance.
Theequation for theresizefactor, F ,_, ismuch more complex for thismodel. Thevalueof F_,  isaroot of
the following quadratic equation.

nrss’

aF, 2+ bF  +c=0

mrss
where
& & q q
a=0-25§éaktkv_ - 2258 (ayti)* +3/n & (aktkv) - né(adi)’
k=l g k=1 k=1 k=1

q o - -
bzosé(aktkv) é— ( jtjf )"ééaktkvgdg - gm)' \/ﬁ éaaktkvgdg - gm)

k=1 k=1 7] k=1 [}

2 "
c= 025§aat +(dg - gm)? -2Jﬁ(dg_gm)2+n(dg-gm)2+§%ajtjf 14, - on)
ﬂ = (%]

2 - 2, 2
*/?‘éa a;tif gdg gm) 2258 (aJ Jf) + na(aJtJf) 'na(aJtJf)
i1 g El =L Et
Therefore,

-b - +/b? - 4ac

2a

Fmrss =
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Fig. 9-9 shows the relationship between the piecepart tolerances and the assembly tolerance before
and after resizing.

The new variable tolerances(t s aretheold tolerances multiplied by the factor F .
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Figure 9-9 Graph of piecepart tolerances versus assembly tolerance before and after resizing using the MRSS Model

tkv,n‘lrss,r&sized = Fmrss tkv
b mrssreszeg = €QUA bilateral tolerance of the k™, variable component in the stackup after resizing using the
MRSS Model.

The resize factor for Requirement 6 is 1.3209. (For example, .0030 isresized to 1.3209*.0030 = .0040.)
Table 9-5 shows the new tolerances that would give a minimum gap of zero.

Table 9-5 Resized tolerances using the MRSS Model

Variable | Mean Dimension | Fixed/ Original Resized +/-
Name Variable | +/- Equal | Equal Bilateral
Bilateral Tolerance
Tolerance (tivmrssresized)
A .3595 Fixed .0155
B .0320 Fixed .0020
C .0600 Variable .0030 .0040
D .4305 Fixed .0075
E .1200 Variable .0050 .0066
F 1.5030 Fixed .0070
G .1200 Variable .0050 .0066
H .4305 Fixed .0075
I .4500 Variable .0070 .0092
J 3.0250 Variable .0060 .0079
K .3000 Variable .0300 .0396
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As acheck, we show the following calculations for the resized tolerances.

t =.0155+.0020+.0040+.0075+.0066+.0070+.0066+.0075+.0092+.0079+.0396

we, resized
twc, resized =.1134

1
g(-1)2.01552+(1)2.00202 +(1)2.00402 +(1)2 00752 +(1)% .0066 2 + (1)2 .0070? +32

trss, resized =€ p
£(1)2.00662 +(1)2.00752 +(1)%.00922 + (- 1)2.0079 2 +(1)?.039%6 2 4
trss, resized =.0472
0.5(.1134 - .0472)
Cf, resized = +1
TEET e (J1L- 1)
Cf, resized =13032

1
€(- 1)2.01552 + (1)2.00202 + (1) 2.00402 +(1) 2.00752 +(1) 2 .00662 + (1)2 .00702 +32

Errrss resized =1.30328 v
8(1)2.00662 +(1) 2 .00752 + (1) .00922 + (- 1)2.00792 + (1) 203962 H

tmrss, resized = 0615

As a check, we can show that the expected assembly gap for Requirement 6, using the resized
tolerances, is:
Minimum Gap 6 =d,—t =.0615 - .0615 =.0000

mrssresized

Maximum Gap6=d, + t =.0615+.0615= .1230

nrss,resized
Assumptions and Risks of Using the MRSS Model

The uncertainty associated with the MRSS Model isthat thereisno mathematical reason for the factor C..
The correction factor can be thought of asa“ safety” factor. The more the RSS assumptions depart from
reality, the higher the safety factor should be.
The MRSS Model also has other problems.
a) Itappliesthe same*“safety” factor to all thetolerances, even though they don’t deviate from the RSS
assumptions equally.
b) If fixed correction factors proposed in the literature are used, the MRSS tolerance can be larger than
the worst case stackup. This problem is eliminated with the use of the cal culated C; shown here.

c) Ifthetolerancesareequal andthereareonly two of them, the MRSS assembly tolerancewill alwaysbe
larger than the worst case assembly tolerance when using the calculated correction factor.

The MRSSModel isgenerally considered better than the RSS and Worst Case model sbecauseit tries
to model what has been measured in the real world.
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9.2.6.4 Comparison of Variation Models

Table 9-6 summarizesthe Worst Case, RSS, and MRSS modelsfor Requirement 6. The“Resized” columns
show the tolerances that will give a minimum expected gap value of zero, and a maximum expected gap
value of .1230 inch. Asexpected, theworst case tolerance values are the smallest. Inthisexample, there-
sized RSS tolerance values are approximately three times greater than the worst case tolerances. It is
obvious that the RSS tolerances will yield more pieceparts. The MRSS resized tolerance values fall be-
tween the worst case (most conservative) and RSS (most risk of assembly defects) values.

Table 9-6 Comparison of results using the Worst Case, RSS, and MRSS models

Tolerance Analysis
Dim. Worst Case RSS MRSS

Mean Dim.| Sens. | Type |Origina | Resized| Origina | Resized | Original | Resized

.3595 -1.0000 | Variable| .0155 .0155 .0155

.0320 1.0000 | Fixed | .0020 .0020 .0020

.0600 1.0000 | Variable| .0030 | .0012 | .0030 .0054 | .0030 | .0040

.4305 1.0000 | Fixed | .0075 .0075 .0075

.1200 1.0000 | Variable| .0050 | .0020 | .0050 .0090 [ .0050 [ .0066
1.5030 1.0000 | Fixed | .0070 .0070 .0070

.1200 1.0000 | Variable| .0050 | .0020 | .0050 .0090 | .0050 | .0066

.4305 1.0000( Fixed | .0075 .0075 .0075

.4500 1.0000 | Variable| .0070 | .0027 | .0070 .0126 | .0070 | .0092
3.0250 -1.0000 | Variable| .0060 | .0024 | .0060 .0108 | .0060 | .0079

.3000 1.0000 | Variable| .0300 | .0118 | .0300 .0540 | .0300 | .0396

Nominal Gap .0615 | .0615 | .0615 .0615 | .0615 | .0615
Minimum Gap -.0340 | .0001 | .0234 .0000 | .0110 | .0000
Expected Variation .0955 | .0616 | .0381 .0615 | .0505 | .0615

Table 9-7 summarizesthe tradeoffsfor thethree models. All the models have different degrees of risk
of defects. The worst case tolerances have the least amount of risk (i.e. largest number of assemblies
within the expected assembly requirements). Because of thetight toleranceswewill reject more pieceparts.
Worst case also impliesthat we are doing 100% inspection. Since we haveto tighten up thetolerancesto
meet the assembly specification, the number of rejected pieceparts increases. Therefore, this model has
the highest costs associated with it. The RSStoleranceswill yield the |east piecepart cost at the expense
of alower probability of assembly conformance. The MRSS Model triesto take the best of both of these
models. It gives ahigher probability of assembly conformance than the RSS Model, and lower piecepart
costs than the Worst Case Model.

Within their limitations, the traditional tolerancing models have worked in the past. The design
engineer, however, could not quantify how well they worked. He also could not quantify how cost
effectivethetolerance valueswere. Obviously, these methods cannot consistently achieve quality goals.
Oneway to achieve quality goalsisto eliminate the assumptionsthat go along with the classical toleranc-
ing models. By doing so, we can quantify (sigma level, defects per million opportunities (dpmo)) the
tolerances and optimize tolerances for maximum producibility. Theseissues are discussed in Chapter 11,
Predicting Assembly Quality.
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Table 9-7 Comparison of analysis models

Worst Case
Consideration Modd RSSMode MRSSMode
Risk of Defect L owest Highest Middle
Cost Highest L owest Middle
Assumptionsabout | None The processfollows a The process follows
component normal distribution. The | anormal distribution.
processes mean of the processis The mean of the process
equal to the nominal distribution is not
dimension. Processes necessarily equal to the
are independent. nominal dimension.
Assumptionsabout | Dimensions Thetoleranceisrelated | Thetoleranceisrelated
drawingtolerances | outsidethe to amanufacturing to amanufacturing
tolerancerange| process capability. process capability.
are screened Usually the tolerance Usually the tolerance
out. rangeisassumedtobe | rangeisassumed to be
the +/- 3 sigmalimit the +/- 3 sigmalimit
of the process. of the process.
Assumptionsabout | 100% of the The assembly 99.73% of the assemblies
expected assembly | partsarewithin | distribution isnormal. will be between the
variation the maximum Depending on the minimum and maximum
and minimum piecepart assumptions, | gap. The correction
performance apercentage of the factor (C,) isasafety
range. assemblieswill be factor.
between the minimum
and maximum gap.
Historically, this has
been 99.73%. Some
out of specification
parts reach assembly.

9.2.6.5 Estimated Mean Shift Model

9-23

Generally, if we don’t have knowledge about the processes for manufacturing a part, such as a vendor
part, we are more inclined to use the Worst Case Model. On the other hand, if we have knowledge about
the processes that make the part, we are more inclined to use a statistical model. Chase and Greenwood
proposed atolerancing model that blends the Worst Case and RSS models. (Reference 6) ThisEstimated
Mean Shift Model is:

tems = én- Imait, |+én. ((1 m )° aiztiz)
i=1 i=1

where
m = the mean shift factor for theith component
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Inthismodel, the mean shift factor isanumber between 0 and 1.0 and represents the amount that the
midpoint is estimated to shift asafraction of the tolerance range. If aprocesswere closely controlled, we
would use a small mean shift, such as.2. If we know less about the process, we would use higher mean
shift factors.

Using a mean shift factor of .2 for the variable components and .8 for the fixed components, the
expected variation for Requirement 6is:

tems =|-8(- 1).0155| +|.8(1).0020| +|.2(1).0030 | +|.8(1).0075| +|.2(1).0080 | +
|8(1).0070| +|.2(1).0050 | +|.8(1).0075| +| .2(1).0070| +| .2(- 1).0060| +.2(1).0300| +
1
é2(-1).0155) +{ .22 (1)2.00202)+ 82 (1)2.2)+ .22(1)2.00752)+ U,

€ u
8.8 (1)2.0050% | +(.2% (1)*.0070° +(.82(1)2.oo5o2 +(.22 (1)2.00752)+g
€| u
3.82 (1)?.0070? |+ .82(—1)2.00602)+(.82(1)2.03002) g

tome = 0690

Thefirst part of the Estimated Mean Shift Model is the sum of the mean shifts and is similar to the
Worst Case Model. Noticeif we set the mean shift factor to 1.0 for all the components, tems isequal to .0955,
which is the same ast,,.. The second part of the mode! isthe sum of the statistical components. Notice if
we used amean shift factor of zero for all of the components, tems isequal to .0381, whichisthe same ast, .

Thetwo major advantages of the Estimated Mean Shift Model are:

* |talowsflexibility inthe design. Some components may be modeled like worst case, and some may be
modeled statistically.

* Themodel can beused to estimate designs (using conservative shift factors), or it can accept manufac-
turing data (if it isavailable).

9.3 Analyzing Geometric Tolerances

The previous discussions have only included tolerances associated with dimensions in the tolerance
analysis. We have not yet addressed how to model geometric tolerancesin the loop diagram.
Generally, geometric controls will restrain one or several of the following attributes:
* Location of the feature
* Orientation of the feature
* Form of the feature

The most difficult task when modeling geometric tolerances is determining which of the geometric
controls contribute to the requirement and how these controls should be modeled in the loop diagram.
Because the geometric controlsareinterrelated, there are no hard and fast rulesthat tell ushow toinclude
geometric controlsintolerance analyses. Sincethere are several modeling methods, sometimesweinclude
GD&T inthe model, and sometimes we do not.

Generally, however, if afeature is controlled with geometric tolerances, the following apply.

* If thereisalocation control on afeature in the loop diagram, we will usually includeit in the analysis.

¢ |f thereisan orientation control on afeature in the loop diagram, we may includeit in the analysis as
long as the location of the feature is not a contributor to the requirement.
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* |f thereisaform control on afeaturein theloop diagram, we may includeit in the analysisaslong as
the location, orientation, or size of the feature is not a contributor to the requirement. Any time parts
come together, however, we have surface variations that introduce variations in the model.

* Geometric form and orientation controls on datum features are usually not included in loop diagrams.
Since datums are the “ starting points’ for measurements, and are defined as the geometric counter-
parts (high points) of the datum feature, the variationsin the datum features usually don’t contribute
tothevariation analysis.

Thereisadifference between aGD& T control (such asaform control) and afeature variation (such
asformvariation). If weadd aGD&T control to astack, we add to the output. Therefore, we should only
includethe GD&T controlsthat add to the output.

GD&T controls are generally used only in worst case analyses. Previously we said that the Worst
Case Model assumes 100% inspection. Since GD& T controls are the specification limitsfor inspection, it
makes sense to use them in this type of analysis. In a statistical analysis, however, we either make
assumptions about the manufacturing processes (as shown previously), or use real datafrom the manu-
facturing processes (as shownin Chapter 11). Sincethe manufacturing processes are sources of variation,
they should be inputsto the statistical analyses. Since GD& T controls are not sources of variation, they
should not be used in a statistical analysis.

Thefollowing sections show examples of how to model geometric tolerances. The examplesaresingle
part stacks, but the concepts can be applied to stacks with multiple components.

9.3.1 Form Controls

Form controls should seldom be included in a variation analysis. For nonsize features, the location, or
orientation tolerance usually controls the extent of the variation of the feature. The form tolerance is
typically a refinement of one of these controls. If a form control is applied to a size feature (and the
Individual Feature of Size Rule applies from ASME Y 14.5), the size tolerance is usually included in the
variation analysis. In these cases, the form tolerance boundary isinside the size tolerance boundary, the
location tolerance boundary, or the orientation tolerance boundary, so the form control is not modeled.
If form tolerances are used in the loop diagram, they are modeled with anominal dimension equal to
zero, and an equal bilateral tolerance equal to the form tolerance. (Depending on the application, some-
timesthe equal bilateral toleranceis equal to half the form tolerance.)
Fig. 9-10 shows an assembly with four parts. In this example, the requirement is for the Gap to be
greater than zero. For this requirement, the following applies to the form controls.
* Flatness of .001 on the substrate is not included in the loop diagram because it is a datum.
* Flatnessof .002 on the heatsink isincluded in the loop diagram.
* Flatness of .002 on the housing is not included in the loop diagram because it is a refinement of the
location tolerance.
* Flatness of .004 on the housing is not included in the loop diagram because it is adatum.

* Flatness of .006 on the housing is not included in the loop diagram because it is a refinement of the
location.
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9.3.2 Orientation Controls

Like form controls, we do not often include orientation controls in a variation analysis. Typicaly we
determine the feature’ s worst-case tol erance boundary using the location or size tolerance.

If orientation tolerances are used in the loop diagram, they are modeled like form tolerances. They
have a nominal dimension equal to zero, and an equal bilateral tolerance equal to the orientation
tolerance. (Depending on the application, sometimes the equal bilateral tolerance is equal to half the
orientation tolerance.)

In Fig. 9-10, the following describes the application of the orientation controls to the Gap analysis.
¢ Parallelism of .004 to datum A on the Substrate is not included in the loop diagram because it is a

refinement of the size dimension (.040 .003).

* Paralelism of .004 to datum A on the Housing is not included in the loop diagram because it is a
refinement of the location tolerance.
* Parallelism of .004 to datum A on the Window isincluded in the loop diagram.
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Therefore, the equation for the Gap in Fig. 9-10is:. Gap =-A+B-C+D+E

where
A= 040 £.003
B=0 +.002
C= 125 =+.005
D= .18 =.008
E=0 +.004

9.3.3 Position

There are several ways to model a position geometric constraint. When we use position at regardless of
feature size (RFS), the size of the feature, and the location of the feature are treated independently. When
we use position at maximum material condition (MMC) or at |east material condition (LMC), the size and
location dimensions cannot be treated independently. The following sections show how to analyze these
situations.

9.3.3.1 Position at RFS

Fig. 9-11 shows a hole positioned at RFS.

— 2.0625%.0001
[ 0022]A]B[C]

~=— Gap

—A/2

— ¢ —+B Figure 9-11 Position at RFS

The equation for the Gapin Fig. 9-11is. Gap=-A/2+B
where

A=.0625 +.0001

B=.2250 +.0011

9.3.3.2 Position at MMC or LMC

As stated earlier, when we use position at MMC or LMC, the size and location dimensions should be
combined into one component in the loop diagram. We can do this using the following method.

1) Calculatethelargest “outer” boundary allowed by the dimensions and tolerances.
2) Cadculatethesmallest “inner” boundary allowed by the dimensions and tolerances.
3) Convert theinner and outer boundary into anominal diameter with an equal bilateral tolerance.
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9.3.3.3 Virtual and Resultant Conditions

When calculating the internal and external boundaries for features of size, it is helpful to understand the
following definitionsfrom ASME Y 14.5M-1994.

Virtual Condition: A constant boundary generated by the collective effects of a size feature’ s speci-

fied MMC or LMC and the geometric tolerance for that material condition.

The virtual condition (outer boundary) of an external feature, called out at MMC, is equal to its
maximum material condition plus its tolerance at maximum material condition.

The virtual condition (inner boundary) of an internal feature, called out at MMC, is equal to its
maximum material condition minusits tolerance at maximum material condition.

The virtual condition (inner boundary) of an external feature, called out at LMC, is equal to its |least
material condition minusitstolerance at least material condition.

The virtual condition (outer boundary) of an internal feature, called out at LMC, isequal to itsleast
material condition plusitstolerance at least material condition.

Resultant Condition: The variable boundary generated by the collective effects of a size feature's

specified MMC or LMC, the geometric tolerance for that material condition, the size tolerance, and the
additional geometric tolerance derived from its specified material condition.

The smallest resultant condition (inner boundary) of an external feature, called out at MMC, isequal to
itsleast material condition minusitstolerance at least material condition.

Thelargest resultant condition (outer boundary) of aninternal feature, called out at MMC, isequal to
its least material condition plusitstolerance at |east material condition.

Thelargest resultant condition (outer boundary) of an external feature, called out at LMC, isequal to
its maximum material condition plusitstolerance at maximum material condition.

The smallest resultant condition (inner boundary) of an internal feature, called out at LMC, isequal to
its maximum material condition minusits tolerance at maximum material condition.

9.3.3.4 Equations

We can use the following equations to cal culate the inner and outer boundaries.

For an external featureat MMC
outer boundary = VC = MMC + Geometric Toleranceat MMC
inner boundary = (smallest) RC=LMC —Toleranceat LMC
For an internal featureat MMC
inner boundary = VC = MMC - Geometric Toleranceat MMC
outer boundary = (largest) RC=LMC + Toleranceat LMC
For an external featureat LMC
inner boundary =VC = LMC - Geometric Toleranceat LMC
outer boundary = (largest) RC = MMC + Toleranceat MMC
For aninternal featureat LMC
outer boundary = VC = LMC + Geometric Toleranceat LMC
inner boundary = (smallest) RC = MMC — Toleranceat MMC
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Converting an Internal Feature at MMC to a Nominal Value with an Equal Bilateral
Tolerance

Fig. 9-12 shows a hole that is positioned at MMC.
+.005
3X 2.140 Zga7

©12.014@]AB(C]

$.139 Hole
@.014

Tolerance Zone

Smallest Inner
Boundary
(Virtual Condition)

$.145 Hola

7.020
Tolerance Zone

A

\

S - Largest Outer
— Boundary Figure 9-12 Position at MM C—internal
(Resultant Condition) feature

Thevaluefor B intheloop diagramiis:
* Largest outer boundary = A£145 + A£020= A£165
e Smallest inner boundary = A£139 -A014= A£125
* Nominal diameter = (£165+ A125)/2= A£145
Equal bilateral tolerance = £020

For position at MMC, an easier way to convert thisis:
LMC % (total sizetolerance + tolerance in the feature control frame)
= /145 * (.006+.014) = .145%.020
The equation for the Gap in Fig. 9-12is. Gap=A-B/2
where
A =.312+0 andB=.145%.020
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Converting an External Feature at MMC to a Nominal Value with an Equal Bilateral
Tolerance

Fig. 9-13 shows apin positioned at MMC.

.2250]

— (.0625+.0001)
[&@.0022M)|AB[C|

~=— Gap

—A/2

Figure 9-13 Position at MMC—
+B external feature

Thevaluefor B intheloop diagramis:
* Largest outer boundary = A£0626 + A0022 = A.0648
* Smallest inner boundary = A20624 — A.0024 = /£.0600
¢ Nomina diameter = (420648 + A20600)/2 = A£0624
Equal bilateral tolerance = A20024

Asshown earlier, the easier conversion for position at MMC, is:
LMC *(total sizetolerance + tolerance in the feature control frame)
= /E0624 £(.0002+.0022) = .0624+/-.0024
The equation for the Gap in Fig. 9-13 is: Gap=-A/2+B
where
A=.0624 *£.0024
B=.2250 0

Converting an Internal Feature at LMC to a Nominal Value with an Equal Bilateral
Tolerance

Fig. 9-14 shows a hole that is positioned at LMC.

Thevaluefor B intheloop diagramis:
* Largest outer boundary = A£52+/A03=A55
e Smallestinner boundary = A£48-/07 = A£41
*  Nomind diameter = (A55+/A41)/2= A48
Equal bilateral tolerance = A£07
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?.50+.02
[@12.030ABIC]
+A
| ff —B/2
L Figure 9-14 Position at LMC—
GGP internal feature

For position at LMC, an easier way to convert thisis:
MMC %(total sizetolerance + tolerancein the feature control frame)
= /E48 + (04+.03) =.48+.07

The equation for the Gap in Fig. 9-14is: Gap=A —B/2

where
A=.70 +0
B=.48 +.07

Converting an External Feature at LMC to a Nominal Value with an Equal Bilateral
Tolerance

Fig. 9-15 showsa*“boss” that is positioned at LM C.
@1.00+.03
KB.04DJAB

&

L Gap Figure 9-15 Position at LMC—external
feature

Thevaluefor B intheloop diagramiis:
* Largest outer boundary = A1.03 + A£10=/A1.13
¢  Smallest inner boundary = A£97 —A£04= /93
*  Nominal diameter = (A£1.13 + £93)/2= A1.03
Equal bilateral tolerance= A£10

|7+A 8/
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Asshown earlier, the easier conversion for positionat LMC is:
MMC *(total sizetolerance + tolerancein the feature control frame)
= /E1.03+(.06+.04) =1.03+-.10

The equation for the Gap in Fig. 9-15is. Gap=A-B/2

where
A=70 =0
B=103 .10

9.3.3.5 Composite Position

Fig. 9-16 shows an example of composite positional tolerancing.

»_E Gap 4 —= ——
. ~— Gap 3 —w
— & 5 ) 14x 140 +809
T S & ]2-050@IAB[C]
Gap 1 0 .01 40(A|
iR \
® X @ @)
,?\
r_&) @
Gap 2 L J)
| S ®@ \ O ® @
L \ .040|A[B]C]
el S o08|A

Figure 9-16 Composite position and composite profile

Composite positional tolerancing introduces a unique element to the variation analysis; an under-
standing of which tolerance to use. If a requirement only includes the pattern of features and nothing
€lse on the part, we use the tolerance in the lower segment of the feature control frame. Since Gap 1 in
Fig. 9-16 is controlled by two features within the pattern, we use the tolerance of /014 to calculate the
variation for Gap 1.

Gap 2, however, includes variations of the features back to the datum reference frame. In this situa-
tion, we use the tolerance in the upper segment of the feature control frame (4£050) to calculate the
variation for Gap 2.
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9.3.4 Runout

Analyzing runout controls in tolerance stacks is similar to analyzing position at RFS. Since runout is
always RFS, we can treat the size and location of the feature independently. We analyze total runout the
same as circular runout, because the worst-case boundary is the same for both controls.

Fig. 9-17 showsaholethat is positioned using runout.

#.125+.008 ¢h062+.005

—C/2

Figure 9-17 Circular and total runout

We model the runout tolerance with anominal dimension equal to zero, and an equal bilateral toler-
ance equal to half the runout tolerance.
The equation for the Gap in Fig. 9-17is: Gap=+A/2+B-C/2

where
A=.125 =008
B=0 +.003
C=.062 .005

9.3.5 Concentricity/Symmetry

Analyzing concentricity and symmetry controlsin tolerance stacksissimilar to analyzing position at RFS
and runout.

Fig. 9-18 is similar to Fig. 9-17, except that a concentricity tolerance is used to control the A£062
featureto datumA.

©.062%.005

Q¢.006|A|

2.125+.008

Figure 9-18 Concentricity
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The loop diagram for this gap is the same as for runout. The equation for the Gap in Fig. 9-18is:
Gap=+A/2+B-CJ2

where
A=.125 =008
B=0 +.003
C=.062 =+.005

Symmetry isanal ogousto concentricity, except that it isapplied to planar features. A loop diagram for
symmetry would be similar to concentricity.
9.3.6 Profile

Profile tolerances have a basic dimension locating the true profile. The tolerance is depicted either equal
bilaterally, unilaterally, or unegqual bilaterally. For equal bilateral tolerance zones, the profile component is
entered as a nominal value. The component is equal to the basic dimension, with an equal bilateral
tolerance that is half the tolerance in the feature control frame.

9.3.6.1 Profile Tolerancing with an Equal Bilateral Tolerance Zone

Fig. 9-19 shows an application of profile tolerancing with an equal bilateral tolerance zone.
X p[.006]A[B|
1.275 ey — Gap

/ rY
/ |

[1.758]

The equation for the Gap in Fig. 9-19is; Gap =-A+B
where

A=1255 +.003

B=1755 +£.003

Figure 9-19 Equal bilateral tolerance profile
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9.3.6.2 Profile Tolerancing with a Unilateral Tolerance Zone

Fig. 9-20 showsafiguresimilar to Fig. 9-19 except the equal bilateral tolerance was changed to aunilateral
tolerance zone.
The equation for the Gap isthe same asFig. 9-19: Gagp=—A +B

X 1.275] /_m ~ Gap

=t

|

Figure 9-20 Unilateral tolerance profile

In this example, however, we need to change the basic dimensions and unilateral tolerancesto mean
dimensions and equal bilateral tolerances.
Therefore,

A=1258 +.003
B=1758 =£.003

9.3.6.3 Profile Tolerancing with an Unequal Bilateral Tolerance Zone

Fig. 9-21 showsafiguresimilar to Fig. 9-19 except the equal bilateral tolerance was changed to an unequal
bilateral tolerance zone.
The equation for the Gap isthe same asFig. 9-19: Gap=—A +B

x

— Gap

|

T

[255) (1505 —A

|

Figure 9-21 Unegual bilateral tolerance
profile




9-36 Chapter Nine

Aswedid in Fig. 9-20, we need to change the basic dimensions and unequal bilateral tolerancesto
mean dimensions and equal bilateral tolerances.
Therefore,

A=1254 +.003

B=1754 =+.003

9.3.6.4 Composite Profile

Composite profile is similar to composite position. If a requirement only includes features within the
profile, we use thetolerancein the lower segment of the feature control frame. If the requirement includes
variations of the profile back to the datum reference frame, we use the tolerance in the upper segment of
the feature control frame.

Fig. 9-16 shows an exampl e of composite profiletolerancing. Gap 3iscontrolled by featureswithinthe
profile, so wewould use thetolerancein the lower segment of the profile feature control frame (4£.008) to
calculate the variation for Gap 3.

Gap 4, however, includes variations of the profiled features back to the datum referenceframe. Inthis
situation, we would use the tolerance in the upper segment of the profile feature control frame (4040) to
calculate the variation for Gap 4.

9.3.7 Size Datums

Fig. 9-22 shows an exampl e of apattern of features controlled to asecondary datum that is afeature of size.
+.005
4X B.140 753

[]@.0140D]ABW]

?.5004.00
_| @3.005MI|A

Gap I ’<~
-A/2

+B/2
-C/2 —>|f_ Figure 9-22 Sizedatum

In this example, ASME Y 14.5 states that the datum feature applies at its virtual condition, even
though it isreferenced initsfeature control frame at MM C. (Note, this argument also appliesfor second-
ary and tertiary datumsinvoked at LMC.) Inthetolerance stack, this means that we will get an additional
“shifting” of the datum that we need to include in the loop diagram.

The way we handle this in the loop diagram is the same way we handled features controlled with
position at MM C or LMC. We calculate the virtual and resultant conditions, and convert these bound-
ariesinto anominal value with an equal bilateral tolerance.
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Thevaluefor A intheloop diagramis:
* Largest outer boundary = A£503 + A£011 = /514
*  Smallest inner boundary = A£497 — 005 = 492
*  Nomina diameter = (££514 + £492)/2 = A£503
* Equal bilateral tolerance = A£011

An easier way to convert to thisradial valueis:
LMC %(total sizetolerance + tolerancein the feature control frame)
= /E503 +(.006+.005) = .503+.011
Thevaluefor Cintheloop diagramis:
* Largest outer boundary = A145 + A£020= A£165
*  Smallest inner boundary = A139 - A£014 = A£125
*  Nomina diameter = (£165 + A£125)/2= A£145
* Equa bilateral tolerance = A£020

An easier way to convert to thisradial valueis:
LMC %(total sizetolerance + tolerancein the feature control frame)
= /E145 +(.006+.014) = .145+.020

The equation for the Gap in Fig. 9-22is. Gap=—-A/2+B/2-C/2

where
A=.503
B =.750
C=.145

+.011
0
+.020

9.4 Abbreviations

Variable

a,

Definition

sensitivity factor that defines the direction and magnitude for theith dimension. Ina
one-dimensional stackup, thisvalueisusually +1 or -1. Sometimes, in a one-dimensional
stackup, thisvalue may be +.5 or -.5if aradiusisthe contributing factor for a diameter
callout on adrawing.

sensitivity factor for the jth, fixed component in the stackup
sensitivity factor for the kth, variable component in the stackup
correction factor used in the MRSS equation

correction factor used in the MRSS equation, using resized tolerances

partial derivative of functiony with respect to x;

the mean value at the gap. If d, is positive, the mean “gap” has clearance, and if d, is
negative, the mean “gap” hasinterference

the mean value of the ith dimension in the loop diagram
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“_0'538

n

tkv,wc,raﬂ'zed
tkv,rss,resized

tkv,rws:;,resizev:i

mrss,resized

~ ~ o~ o~ o~

dimension associated with it random variable x;

resize factor that is multiplied by the original tolerances to achieve a desired assembly
performance using the Worst Case Model

resize factor that is multiplied by the original tolerances to achieve a desired assembly
performance using the MRSS Model

resize factor that is multiplied by the original tolerances to achieve a desired assembly
performance using the RSS Model

minimum value at the (assembly) gap. Thisvalueis zero if no interference or clearanceis
allowed.

mean of random variabley

number of independent variables (dimensions) in the equation (stackup)
number of independent, fixed dimensionsin the stackup

number of independent, variable dimensionsin the stackup

the total number of measurementsin the population of interest

standard deviation of functiony

equal bilateral tolerance of the ith component in the stackup

tolerance associated with ith random variable x;

equal bilateral tolerance of the jth, fixed component in the stackup

equal bilateral tolerance of the kth, variable component in the stackup

equal bilateral tolerance of the kth, variable component in the stackup after resizing, using
the Worst Case Model

equal bilateral tolerance of thekth, variable component in the stackup after resizing, using
the RSS Model

egual bilateral tolerance of the kth, variable component in the stackup after resizing,
using the MRSS Model

expected assembly gap variation (equal bilateral) using the MRSS Model

the expected variation (equal bilateral) using the MRSS Model and resized tolerances
the expected variation (equal bilateral) using the RSS Model

the expected variation (equal bilateral) using the RSS Model and resized tolerances
maximum expected variation (equal bilateral) using the Worst Case Model

maximum expected variation (equal bilateral) using the Worst Case Model and resized
tolerances

upper specification limit of theith dimension

ith independent variable

function consisting of n independent variables (X,,...,X,)
standard normal transform of ith dimension

standard normal transform of y
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9.5 Terminology

MMC = Maximum Material Condition: The condition in which afeature of size contains the maximum
amount of material within the stated limits of size.

LMC= Least Material Condition: The conditioninwhich afeature of size containstheleast amount of
material within the stated limits of size.

VC = Virtua Condition: A constant boundary generated by the collective effects of a size feature's
specified MMC or LMC material condition and the geometric tolerancefor that material condition.

RC=  Resultant Condition: The variable boundary generated by the collectiveeffectsof asizefeature's
specified MM C or LMC material condition, the geometric tolerance for that material condition,
the size tolerance, and the additional geometric tolerance derived from the feature' s departure
from its specified material condition.

9.6 References

1. Bender, A. May 1968. Statistical Tolerancing as it Relates to Quality Control and the Designer. Society of
Automotive Engineers, SAE paper No. 680490.

2. Braun, Chuck, Chris Cuba, and Richard Johnson. 1992. Managing Tolerance Accumulation in Mechanical
Assemblies. Texas Instruments Technical Journal. May-June: 79-86.

3. Drake, Paul and Dde Van Wyk. 1995. Classicad Mechanical Tolerancing (Part | of 11). Texas Instruments
Technical Journal. Jan.-Feb: 39-46.

4. Gilson, J. 1951. A New Approach to Engineering Tolerances. New York, NY: Industrial Press.

5. Gladman, C.A. 1980. Applying Probability in Tolerance Technology: Trans. Inst. Eng. Australia. Mechanical
Engineering ME5(2): 82.

6. Greenwood, W.H., and K. W. Chase. May 1987. A New Tolerance Analysis Method for Designers and
Manufacturers. Transactions of the ASVIE Journal of Engineering for Industry. 109. 112-116.

7. Hines, William, and Douglas Montgomery.1990. Probability and Satistics in Engineering and Management
Sciences. New York, New Y ork: John Wiley and Sons.

8. Kennedy, John B., and Adam M. Neville. 1976. Basic Satistical Methods for Engineers and Scientists. New
York, NY: Harper and Row.

9. TheAmerican Society of Mechanical Engineers. 1995. ASME Y14.5M-1994, Dimensioning and Tolerancing.
New York, NY: The American Society of Mechanical Engineers.

10. Van Wyk, Dae and Paul Drake. 1995. Mechanical Tolerancing for Six Sigma (Part I1). Texas Instruments
Technical Journal. Jan-Feb: 47-54.



	Table of Contents
	Part 3  Design
	Chapter 9: Traditional Approaches to Analyzing Mechanical Tolerance Stacks
	9.1 Introduction 
	9.2 Analyzing Tolerance Stacks 
	9.2.1 Establishing Performance/ Assembly Requirements 
	9.2.2 Loop Diagram 
	9.2.3 Converting Dimensions to Equal Bilateral Tolerances 
	9.2.4 Calculating the Mean Value (Gap) for the Requirement 
	9.2.5 Determine the Method of Analysis 
	9.2.6 Calculating the Variation for the Requirement 
	9.2.6.1 Worst Case Tolerancing Model 
	9.2.6.2 RSS Model
	9.2.6.3 Modified Root Sum of the Squares Tolerancing Model
	9.2.6.4 Comparison of Variation Models 
	9.2.6.5 Estimated Mean Shift Model 


	9.3 Analyzing Geometric Tolerances 
	9.3.1 Form Controls 
	9.3.2 Orientation Controls 
	9.3.3 Position 
	9.3.3.1 Position at RFS 
	9.3.3.2 Position at MMC or LMC 
	9.3.3.3 Virtual and Resultant Conditions 
	9.3.3.4 Equations 
	9.3.3.5 Composite Position 

	9.3.4 Runout 
	9.3.5 Concentricity/ Symmetry
	9.3.6 Profile 
	9.3.6.1 Profile Tolerancing with an Equal Bilateral Tolerance Zone 
	9.3.6.2 Profile Tolerancing with a Unilateral Tolerance Zone 
	9.3.6.3 Profile Tolerancing with an Unequal Bilateral Tolerance Zone 
	9.3.6.4 Composite Profile 

	9.3.7 Size Datums 

	9.4 Abbreviations 
	9.5 Terminology 
	9.6 References 



