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8.1 Introduction

Statistical tolerancing is an alternative to worst-case tolerancing. In worst-case tolerancing, the designer
aims for 100% interchangeability of parts in an assembly. In statistical tolerancing, the designer abandons
this lofty goal and accepts at the outset some small percentage of failures of the assembly.

Statistical tolerancing is used to specify a population of parts as opposed to specifying a single part.
Statistical tolerances are usually, but not always, specified on parts that are components of an assembly.
By specifying part tolerances statistically the designer can take advantage of cancellation of geometrical
errors in the component parts of an assembly — a luxury he does not enjoy in worst-case tolerancing.
This results in economic production of parts, which then explains why statistical tolerancing is popular
in industry that relies on mass production.

In addition to gain in economy, statistical tolerancing is important for an integrated approach to
statistical quality control. It is the first of three major steps - specification, production, and inspection - in
any quality control process. While national and international standards exist for the use of statistical
methods in production and inspection, none exists for product specification. For example, ASME Y14.5M-
1994  focuses mainly on the worst-case tolerancing. By using statistical tolerancing, an integrated statis-
tical approach to specification, production, and inspection can be realized.
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Since 1995, ISO (International Organization for Standardization) has been working on developing
standards for statistical tolerancing of mechanical parts. Several leading industrial nations, including the
US, Japan, and Germany are actively participating in this work which is still in progress. This chapter
explains what ISO has accomplished thus far toward standardizing statistical tolerancing. The reader is
cautioned that everything reported in this chapter is subject to modification, review, and voting by ISO,
and should not be taken as the final standard on statistical tolerancing.

8.2 Specification of Statistical Tolerancing

Statistical tolerancing is a language that has syntax (a symbol structure with rules of usage) and semantics
(explanation of what the symbol structure means). This section describes the syntax and semantics of
statistical tolerancing.

Statistical tolerancing is specified as an extension to the current geometrical dimensioning and toler-
ancing (GD&T) language. This extension consists of a statistical tolerance symbol and a statistical toler-
ance frame, as described in the next two paragraphs. Any geometrical characteristic or condition (such as
size, distance, radius, angle, form, location, orientation, or runout, including MMC, LMC, and envelope
requirement) of a feature may be statistically toleranced. This is accomplished by assigning an actual
value to a chosen geometrical characteristic in each part of a population. Actual values are defined in
ASME Y14.5.1M-1994. (See Chapter 7 for details about the Y14.5.1M-1994 standard that provides math-
ematical definitions of dimensioning and tolerancing principles.) Some experts think that statistically
toleranced features should be produced by a manufacturing process that is in a state of statistical control
for the statistically toleranced geometrical characteristic; this issue is still being debated.

The statistical tolerance symbol first appeared in ASME Y14.5M-1994. It consists of the letters ST
enclosed within a hexagonal frame as shown, for example, in Fig. 8-1. For size, distance, radius, and angle
characteristics the ST symbol is placed after the tolerances specified according to ASME Y14.5M-1994 or
ISO 129. For geometrical tolerances (such as form, location, orientation, and runout) the ST symbol is
placed after the geometrical tolerance frame specified according to ASME Y14.5M-1994 or ISO 1101. See
Figs. 8-2 and 8-3 for further examples.

The statistical tolerance frame is a rectangular frame, which is divided into one or more compartments.
It is placed after the ST symbol as shown in Figs. 8-1, 8-2, and 8-3. Statistical tolerance requirements can
be indicated in the ST frame in one of the three ways defined in sections 8.2.1, 8.2.2, and 8.2.3.

8.2.1 Using Process Capability Indices

Three sets of process capability indices are defined as follows.

• Cp =
U L−

6σ ,

• Cpk = min(Cpl,Cpu), where Cpl = 
µ

σ
− L

3  and  Cpu = 
U − µ

σ3 , and

• Cc = max(Ccl,Ccu) where Ccl = 
τ µ
τ

−
− L  and Ccu = 

µ τ
τ

−
−U .

In these definitions L is the lower specification limit, U is the upper specification limit, τ  is the target
value, µ  is the population mean, and σ is the population standard deviation.
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The process capability indices are nondimensional parameters involving the mean and the standard
deviation of the population. The nondimensionality is achieved using the upper and lower specification
limits. Cp is a measure of the spread of the population about the average. Cc is a measure of the location
of the average of the population from the target value. Cpk is a measure of both the location and the spread
of the population.

All of these five indices need not be used at the same time. Numerical lower limits for Cp, Cpk (or Cpu,
Cpl) and numerical upper limit for Cc (or Ccu, Ccl) are indicated as shown in Fig. 8-1 using the ≥  and ≤
symbols. Cpu and Ccu are used instead of Cpk and Cc, respectively, for all geometrical tolerances (form,
location, orientation, and runout) specified at RFS (Regardless of Feature Size). The requirement here is
that the mean and the standard deviation of the population of actual values should be such that all the
specified indices are within the indicated limits.

For the example illustrated in Fig. 8-1, the population of actual values for the specified size should
have its Cp value at or above 1.5, Cpk value at or above 1.0, and Cc value at or below 0.5. For the
indicated parallelism, the population of out-of-parallelism values (that is, the actual values for parallelism)
should have its Cpu value at or above 1.0, and its Ccu value at or below 0.3.

Limits on the process capability indices also imply limits on the mean and the standard deviation of
the population of actual values through the formulas shown at the beginning of this section. Such limits
on µ and σ can be visualized as zones in the µ−σ  plane, as described in section 8.3.1. To derive the limits
on µ and σ , values of L, U, and τ  should be obtained from the specification. For the example illustrated in
Fig. 8-1, consider the size first. From the size specification, the lower specification limit L = 9.95, the upper
specification limit U = 10.05, and the target value τ  = 10.00 because it is the midpoint of the allowable size
variation. Next consider the specified parallelism, from which it can be inferred that L = 0.00, U = 0.01, and
τ  = 0.00 because zero is the intended target value.

Using Cpl, Cpu, or Cpk in the ST tolerance frame implies only that these values should be within the
limits indicated. Caution must be exercised in any further interpretation, such as the fraction of population
lying outside the L and/or U limits, because it requires further assumption about the type of distribution,
such as normality, of the population. Note that such additional assumptions are not part of the specifica-
tion, and their invocation, if any, should be separately justified.

Figure 8-1  Statistical tolerancing using process capability indices
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Process capability indices are used quite extensively in industrial production, both in the US and
abroad, to quantify manufacturing process capability and process potential. Their use in product specifi-
cation may seem to be in conflict with the time-honored “process independence” principle of the ASME
Y14.5. This apparent conflict is false; the process capability indices do not dictate what manufacturing
process should be used — they place demand only on some statistical characteristics of whatever pro-
cess that is chosen.

Issues raised in the last two paragraphs have led to some rethinking of the use of the phrase “process
capability indices” in statistical tolerancing. We will come back to this point in section 8.5, after the
introduction of a powerful concept called population parameter zones in section 8.3.1.

8.2.2 Using RMS Deviation Index

 RMS (root-mean-square) deviation index is defined as Cpm = 
U L−

+ −6 2 2σ µ τ( )
. A numerical lower limit for

Cpm is indicated as shown in Fig. 8-2 using the ≥  symbol. The requirement here is that the mean and
standard deviation of the population of actual values should be such that the Cpm index is within the
specified limit.

For the example illustrated in Fig. 8-2, the population of actual values for the size should have a
Cpm value that is greater than or equal to 2.0. For the specified parallelism, the population of out-of-
parallelism values (that is, the actual values for parallelism) should have a Cpm value that is greater than
or equal to 1.0.

Cpm is called the RMS deviation index because σ µ τ2 2+ −( )  is the square root of the mean of

the square of the deviation of actual values from the target value τ .  Limiting Cpm also limits the mean and
the standard deviation, and this can be visualized as a zone in the µ−σ plane. Section 8.3.1 describes such
zones. To derive the limits on µ and σ, values for L, U, and τ should be obtained from the specification of
Fig. 8-2 as explained in section 8.2.1.

Cpm is closely related to Taguchi’s quadratic cost function, which states that the total cost to society
of producing a part whose actual value deviates from a specified target value increases quadratically with
the deviation. Specifying an upper limit for Cpm is equivalent to specifying an upper limit to the average

Figure 8-2  Statistical tolerancing using
RMS deviation index
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cost of parts according to the quadratic cost function. This methodology is popular in some Japanese
industries.

8.2.3 Using Percent Containment

A tolerance interval or upper limit followed by the P symbol and a numerical value of the percent ending
with a % symbol is indicated as shown in Fig. 8-3. The tolerance range indicated inside the ST frame
should be smaller than the tolerance range indicated outside the ST frame before the ST symbol. The
requirement here is that the entire population of actual values should be contained within the limits
indicated before the ST symbol; the percentage following the P symbol inside the ST frame indicates the
minimum percentage of the population of actual values that should be contained within the limits indi-
cated within the ST frame before the ST symbol; the remaining population should be contained in the
remaining tolerance range proportionately.

In the example illustrated in Fig. 8-3 for the specified size, the entire population should be contained
within 10 ± 0.09; at least 50% of the population should be contained within 10 ± 0.03; no more than 25%

should be contained within 10 −
−

0 09
0 03

.

.  and no more than 25% should be contained within 10 +
+

0 03
0 09

.

. . For the
specified parallelism, the entire population of out-of-parallelism values (that is, the actual values for the
parallelism) should be less than 0.01 and at least 75% of this population of values should be less than
0.005.

Percent containment statements are best visualized using distribution functions. A distribution func-
tion, denoted Pr[X ≤ x], is the probability that the random variable X is less than or equal to a value x.
Distribution functions are also known as cumulative distribution functions in some engineering litera-
ture. A distribution function is a nondecreasing function of x, and it varies between 0 and 1. It is possible
to visually represent the percent containment requirements as zones that contain acceptable distribution
functions, as shown in section 8.3.2.

Using percent containment is popular in some German industries. It is a simple but powerful way to
indicate directly the percentage of populations that should lie within certain intervals.

8.3 Statistical Tolerance Zones

Statistical tolerance zone is a useful tool to visualize what is being specified and to compare different
types of specifications. It is also a powerful concept that unifies several seemingly disparate practices of
statistical tolerancing in industry today. A statistical tolerance zone can be either a population parameter

Figure 8-3  Statistical tolerancing using
percent containment
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zone (PPZ) or distribution function zone (DFZ). PPZs are based on parametric statistics, and DFZs are
based on nonparametric statistics.

8.3.1 Population Parameter Zones

A PPZ is a region in the mean - standard deviation plane, as shown in Fig. 8-4. In this example, the shaded
PPZ on the left is the zone that corresponds to the statistical specification of  size in Fig. 8-1, and the
shaded PPZ on the right is the zone that corresponds to the statistical specification of parallelism in Fig.
8-1. Vertical lines that limit the PPZ arise from limits on Cc, Ccu or Ccl because they limit only the mean; the
top horizontal line comes from limiting Cp because it limits only the standard deviation; the slanted lines
are due to limits on Cpk, Cpu or Cpl because they limit both the mean and the standard deviation. If the
(µ,σ ) point for a given population of geometrical characteristics lies within the PPZ, then the population
is acceptable; otherwise it is rejected.

Figure 8-4  Population parameter zones for the specifications in Fig. 8.1

Figure 8-5  Population parameter zones for the specifications in Fig. 8.2
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PPZs can be defined for specifications that use the RMS deviation index as well. Fig. 8-5 illustrates
the PPZs for the specifications in Fig. 8-2. Here the zones are bounded by circular arcs. Again, the
interpretation is that all (µ,σ ) points that lie inside the zone correspond to acceptable populations, and
points that lie outside the zone correspond to populations that are not acceptable per specification.

8.3.2 Distribution Function Zones

A DFZ is a region that lies between an upper and a lower distribution function, as shown in Fig. 8-6.
Any population whose distribution function lies within the shaded zone is acceptable; if not, it is rejected.

8.4 Additional Illustrations

Figs. 8-7 through 8-10 illustrate valid uses of statistical tolerancing in several examples. Though not
exhaustive, these illustrations help in understanding valid specifications of statistical tolerancing.

Figure 8-7  Additional illustration of
specifying percent containment

Figure 8-6  Population parameter zones for the specifications in Fig. 8.3
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Figure 8-8   Illustration specifying process capability indices

Figure 8-9  Additional illustration specifying process capability indices
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8.5 Summary and Concluding Remarks

This chapter dealt with the language of statistical tolerancing of mechanical parts. Statistical tolerancing
is applicable when parts are produced in large quantities and assumptions about statistical composition
of part deviations while assembling products can be justified. The economic case for statistical tolerancing
can indeed be very compelling. In this chapter, three ways of indicating statistical tolerancing were
described, and the associated statistical tolerance zones were illustrated. Population parameter zone
(PPZ) and distribution function zone (DFZ) are the two most relevant new concepts that are driving the
design of the ISO statistical tolerancing language.

Statistical tolerancing is deliberately designed as an extension to the current GD&T language. This
has some disadvantages. It might be, for example, a better idea to indicate the statistical tolerance zones
directly in the specifications. However, acceptance of statistical tolerancing by industry is greatly en-
hanced if it is designed as an extension to an existing popular language.

It was indicated earlier that some believe that statistically controlled parts should be produced by a
manufacturing process that is in a state of statistical control. Strictly speaking, this is not a necessary
condition for the success of statistical tolerancing. However, it is a good practice to insist on a state of
statistical control, which can be achieved by the use of statistical process control methodologies for the
manufacturing process. This is particularly true if a company has implemented just-in-time delivery, a
practice in which one may not have the luxury of drawing a part at random from an existing bin full of parts.
As mentioned in the body of this chapter, this issue is still being debated within ISO.

Similarly, there is a vigorous debate within ISO on the use of the phrase “process capability indices”
indicated symbolically by Cp, Cpl, Cpu, Cpk, Ccl, Ccu, Cc, and Cpm. This debate is fueled by a current lack
of ISO standardized interpretation of the meaning of these indices. To circumvent this controversy, these
symbols may be replaced by Fp, Fpl, Fpu, Fpk, Fcl, Fcu, Fc, and Fpm, respectively, but without changing
their functional relationship to L, U, µ, σ,  and τ. The intent is to preserve the powerful notion of population
parameter zones, which is an important concept for statistical tolerancing, while avoiding the use of the
nonstandard phrase “process capability indices.” This move may also open up the syntax to accept any
user-defined function of population parameters.

A typical design problem is a tolerance allocation (also known as tolerance synthesis) problem. Here,
given a tolerable variation in an assembly-level characteristic, the designer decides what are the tolerable

Figure 8-10  Illustration of statistical
tolerancing under MMC
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variations in part-level geometrical characteristics. In general, this is a difficult problem. A more tractable
problem is that of tolerance analysis, wherein given part-level geometrical variations the designer predicts
what is the variation in an assembly-level characteristic. These are the types of problems that  a designer
faces in industry everyday.  Both analytical and numerical (e.g., Monte-Carlo simulations) methods have
been developed to solve the statistical tolerance analysis problem. Discussion of statistical tolerance
analysis or synthesis is, however, beyond the scope of this chapter.

Acknowledgment and a Disclaimer

The author would like to express his deep gratitude to numerous colleagues who participated, and con-
tinue to participate, in the ASME and ISO standardization efforts. Standardization is a truly community
affair, and he has merely reported their collective effort. Although the work described in this chapter draws
heavily from the ongoing ISO efforts in standardization of statistical tolerancing, opinions expressed here
are his own and not that of ISO or any of its member bodies.

8.6 References

1. Duncan, A.J. 1986. Quality Control and Industrial Statistics. Homewood, IL: Richard B.Irwin, Inc.
2. Kane, V.E. 1986. Process Capability Indices. Journal of Quality Technology, 18 (1), pp. 41-52.
3. Kotz, S. and N.L. Johnson. 1993. Process Capability Indices. London: Chapman & Hall.
4. Srinivasan, V. 1997. ISO Deliberates Statistical Tolerancing. Paper presented at 5th CIRP Seminar on Com-

puter-Aided Tolerancing, April 1997, Toronto, Canada.


	Table of Contents
	Chapter 8: Statistical Tolerancing
	8.1 Introduction 
	8.2 Specification of Statistical Tolerancing 
	8.2.1 Using Process Capability Indices 
	8.2.2 Using RMS Deviation Index 
	8.2.3 Using Percent Containment 

	8.3 Statistical Tolerance Zones 
	8.3.1 Population Parameter Zones 
	8.3.2 Distribution Function Zones 

	8.4 Additional Illustrations 
	8.5 Summary and Concluding Remarks 
	8.6 References 


