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7.1 Introduction

This chapter describes a relatively new item on the dimensioning and tolerancing standards scene: math-
ematically based definitions of geometric tolerances. You will learn how and why such definitions came to
be, how to apply them, what they have accomplished for us, and where these definitions may take us in the
not-too-distant future.

7.2 Why Mathematical Tolerance Definitions?

After reading this chapter, I hope and trust that you will be asking the reverse question: Why not
mathematical definitions of tolerances? As you will see, a number of interesting events combined to open
the door for their creation. In short, though, mechanical tolerancing is a much more complex discipline
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than most people realize, and it requires a similar level of treatment as has proven to be necessary for the
nominal geometric design discipline (CAD/solid modeling).

Although the seeds for mathematical tolerance definitions were planted well before the early 1980s, a
special event of that era indirectly helped trigger a realization of their need. The arrival of the personal
computer quite suddenly and dramatically decreased the cost of computing power. As a result, vendors of
metrology equipment, predominantly coordinate measuring machines (CMMs) began offering affordably
priced measurement systems with integrated personal computers. Also, a number of individuals devel-
oped homegrown systems for their companies (as did this author) by pairing an older measuring system
that they already owned with a newly purchased personal computer. Just as personal computers have
affected us in countless other ways, they also contributed to the resurgence of the coordinate measuring
machine.

Another device also contributed to the resurgence of coordinate measuring machines: the touch
trigger probe, originally developed in the U.K. by Renishaw. Prior to this invention, conventional coordi-
nate measuring machines used a “hard” probe (a steel sphere) for establishing contact with part features.
Not only were hard probes slow to use, but they also were capable of disturbing the part, and even
damaging it if the inspector failed to exercise sufficient care. Touch probes improved this state of affairs by
enabling the coordinate measuring machine to significantly overtravel after the part feature was triggered
upon initial contact. Productivity and accuracy were both improved with touch probes.

The advent of touch probe technology and the availability of relatively inexpensive computing
power through new microprocessors enabled quick and sophisticated collection, processing, and display
of measurement data. That was the good news of the early 1980s. The bad news? The many instances of
software applications developed for metrology equipment did not interpret geometric dimensioning and
tolerancing uniformly. Although the personal computer helped us recognize a number of underlying
problems with tolerancing and metrology (and hence, for much of manufacturing), other key events
helped us further diagnose problems and even chart out plans for resolving them. Writing and using
mathematical tolerance definitions were among the suggested corrective actions.

7.2.1 Metrology Crisis (The GIDEP Alert)

In September of 1988, Mr. Richard Walker of Westinghouse Corp. issued a GIDEP Alert1  against the data
reduction software from five unnamed CMM vendors. Himself aware of inconsistency problems with
CMM software for some time through painful experience, Mr. Walker sought to bring this serious state of
affairs to public light by issuing the GIDEP Alert. Typically, GIDEP issues alerts against specific
manufacturer’s product lines or production lots with quality concerns. In this case, the problem was not
attributable to just one CMM vendor; this was an industry-wide problem and was not confined to the
metrology industry. It was a serious symptom of a larger problem.  First, though, let’s deal with the subject
of the GIDEP Alert.

Ideally, and not unreasonably, we expect that a measurement process for a given part (say flatness as
measured by a CMM) will yield repeatable results. The degree of repeatability depends on many factors
such as the number of points sampled, point sampling strategy, stability of the part, and probing force.
Each of these factors comes into play on measurements performed on a single, given CMM.

1 GIDEP (Government-Industry Data Exchange Program, http://www.gidep.corona.navy.mil) is an organization of gov-
ernment and industry participants who share technical information with each other regarding product research, design,
development, and production. One function of GIDEP is to issue alerts to its members that pertain to nonconforming
parts, processes, etc. In this case, the subjects of the alert were nonconforming software algorithms.
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But what about the repeatability of measurements of the same part as performed by CMMs from
different manufacturers? Potential contributors to repeatability in this context are the differences in me-
chanical stability between the CMMs and the software algorithms used to process the sampled point
coordinate data. It’s the latter with which Mr. Walker’s GIDEP Alert dealt. Suspicious of inconsistencies
between measurement results obtained by different CMMs, Mr. Walker crafted ingeniously simple, but
strategically chosen sets of point coordinate data to test the performance of CMM software algorithms for
calculating measured values of flatness, parallelism, straightness, and perpendicularity. A data set that
could be solved graphically without any algorithms was strategically selected. So not only did Mr. Walker
check for consistency between the five CMMs tested, but he also checked for correctness.

The results were rather shocking. The worst offending algorithm in one case reported results that
were 37% worse than the actual results; in other words, the algorithm indicated that the part feature was
worse than it actually was. In another case, the worst offending algorithm reported results that were 50%
better than the actual results, indicating that the part feature was better than it actually was. These results
led to the realization that many CMM software algorithms were unreliable. Coupling this fact with an
increasingly wide awareness that different measurement techniques applied to the same parameter yielded
different results, a true metrology crisis was in effect.

In true Ralph Nader spirit, Mr. Walker acted on behalf of the customers of metrology equipment
vendors. Rather than letting the potential impact on the CMM vendors determine how he handled this
discovery, he publicized this information to educate and warn CMM users and the customers of their
results. He resisted those that preferred him to keep silent while these problems were solved behind
closed doors.  Instead, the GIDEP Alert served as a beacon to those who experienced similar problems and
had the motivation and technical ability to do something about it. Mr. Walker was criticized by many for
his actions—a sure sign that he was on to something.

7.2.2 Specification Crisis

The GIDEP Alert convincingly illustrated the unstable situation with metrology software. However, it is
crucial to recognize that the metrology crisis was actually a symptom of the true problem. The inherent
ambiguity in the text-based definitions of mechanical tolerances enabled the writing of varied and incor-
rect computer algorithms for processing inspection data. Though text-based definitions seem to have
served engineering well for many years, the robustness and rigor required by computerization has re-
vealed a number of underlying problems. Without the ability to unambiguously specify and assign toler-
ance controls to mechanical parts, we cannot expect to be able to uniformly verify the adherence of actual
parts to those specifications. Thus, one could accurately say that the specification crisis spawned the
metrology crisis.

7.2.3 National Science Foundation Tolerancing Workshop

Under a grant from the National Science Foundation, the ASME Board on Research and Development
conducted a workshop with invited guests of varied manufacturing backgrounds from a number of do-
mestic and international companies. Held soon after release of the GIDEP Alert, this workshop sought to
identify research opportunities in the field of tolerancing of mechanical parts. These research opportuni-
ties were determined on the basis of unsolved problems or technological gaps hampering the effective-
ness of various engineering disciplines. Among the recommendations generated by the workshop was
that mathematically based definitions of mechanical tolerances should be written in order to remove
ambiguities and reduce misuse. This recommendation paved the way for the establishment of a body
whose sole purpose was to meet that goal.
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7.2.4 A New National Standard

In January of 1989 the Y14.5.1 “ad hoc” subcommittee on mathematization of geometric tolerances held its
inaugural meeting in Longboat Key, Florida. In approximately fifteen meetings held over five years’ time,
Chairman Richard Walker led an inspired group of volunteers to the publication of a new national stan-
dard, ASME Y14.5.1M-1994 - Mathematical Definition of Dimensioning and Tolerancing Principles.  The
continually surprising degree of effort that was necessary to write this document provided constant
confirmation that the document was truly needed. Some ambiguities were known before mathematization
efforts began, but many other subtle problems were revealed as the subcommittee members took on the
challenge of unequivocally specifying what was previously conveyed through written word and figures
drawn from specific examples.

7.3 What Are Mathematical Tolerance Definitions?

7.3.1 Parallel, Equivalent, Unambiguous Expression

Mathematical tolerance definitions are a reiteration of the tolerance definitions that appear in textual form
in the Y14.5 standard. In many cases, actual mathematical expressions describe geometric constraints on
regions of points in space yielding a mathematical/geometrical description of the tolerance zone for each
tolerance type.  However, tolerance types are only part of the story. The Y14.5.1 standard handles the
crucial subject of datum reference frame construction not with mathematical equations, but with math-
ematical formulations that are expressed textually with supporting tables and logical expressions. In any
case, the contents of the Y14.5.1 standard have a direct tracing to an unambiguous mathematical basis.
The unfortunate tradeoff is that they are not readily assimilated by human beings, but they are easily
converted into programming code.

7.3.2 Metrology Independent

The developers of the Y14.5.1 mathematical standard diligently maintained at arm’s length (or farther!)
any influences from current measurement techniques and technology on the mathematical tolerance
definitions. There was a frequent tendency to think in terms of inspection procedures when trying to
mathematically describe some characteristic of a geometric tolerance, but it was resisted. Measurability
was never a criterion that prevailed during the deliberations of the Y14.5.1 subcommittee. The reason
was simple: tolerancing is a design function, and it must not be encumbered by metrology, a downstream
activity in the product life cycle. Today’s state-of-the-art in measurement technology eventually be-
comes yesterday’s obsolescence. Desired features and capabilities for dimensioning and tolerancing
that enable precise specification of part functionality and producibility should drive technology devel-
opment in metrology. To have specified mathematical tolerance definitions in terms of industry-accepted
measurement techniques would surely have made the definitions more recognizable, but generality
would have been sacrificed.

7.4 Detailed Descriptions of Mathematical Tolerance Definitions

7.4.1 Introduction

This section contains introductory material necessary to read and understand mathematical tolerance
definitions as they appear in the Y14.5.1 standard. Those readers with a physics and/or mathematics
background may bypass the section on vectors that follows. Section  7.4.3 presents some key terms and
concepts specific to the Y14.5.1 standard. The remaining sections cover a selection of actual mathematical
tolerance definitions. Note that not all aspects of the Y14.5.1 standard are covered here, and that this
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chapter is designed to provide the reader with enough background to enable him/her to make effective use
of the standard.

7.4.2 Vectors

This section contains a brief overview of vectors and the manner in which they are handled in mathemati-
cal expressions. Those readers with a physics and/or mathematics background will not find it necessary
to read further. The material is included, however, because not all users of geometric dimensioning and
tolerancing have had exposure to it, and it is the basis of the definitions that follow.

Vectors are abstract geometric entities that describe direction and magnitude (length). A position
vector can describe every point in space, which is simply a line drawn from the origin to the point. Vectors
also exist between points in space. The magnitude of a vector is its length as measured from its starting
point to its end point. A vector of arbitrary length is typically designated by a letter with an arrow (

v
A) over

it.  Graphically, vectors are shown as a line with an arrow at one end; the length of the line represents the
vector’s magnitude, while the arrow represents its direction. See Fig. 7-1.

D
v

A
v

N̂

Figure 7-1  Vectors and unit vectors

A special type of vector is the unit vector which, not surprisingly, is of unit length. Unit vectors are
often used to define or specify the direction of an axis or the direction of a plane’s normal; a unit vector is
appropriate for such purposes because it is the direction and not the magnitude that is important. A unit
vector is typically designated by a letter with a hat, or carat, ( $T ) over it.

7.4.2.1 Vector Addition and Subtraction

Vectors may be added and subtracted to create other vectors. Two vectors are added by overlapping the
starting point of one vector on the end point of the other vector. The resultant vector, or sum vector, is that
vector that extends from the starting point of the first vector to the end point of the second vector. See Fig.
7-2.
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Figure 7-2  Vector addition

Vector subtraction is performed analogously. In Fig. 7-3, the vector RC
vv

−  is obtained by adding the
negative of vector R

v
 (which simply points in the opposite direction as R

v
) to vector C

v
.
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Vectors may be translated in space without affecting their behavior in mathematical expressions, so
long as their length and direction are preserved. For instance, it is common to draw a difference vector as
starting at the end point of the “subtrahend” vector (R

v
 in Fig. 7-3) and ending at the end point of the

“minuend” vector ( C
v

 in Fig. 7-3).

7.4.2.2 Vector Dot Products

Vectors may be multiplied in two different ways: by dot product and by cross product.  Rules for vector
products are different than for products between numbers. Dot products and cross products always
involve two vectors. Cross products are discussed in the next section.

The result of a dot product is always a scalar, which is just a fancy term for a number. A dot product
is equal to the product of the numerical magnitude of the vectors, which in turn is multiplied by the cosine
of the angle between the vectors. The mathematical expression for the dot product between vectors A

v

and B
v

 is 
v v
A B• . Naturally, for two unit vectors that are 45° apart, their dot product is (1)(1)cos(45) = 0.707.

Also, when two vectors have a dot product that equals 0, they must be perpendicular, regardless of their
magnitude, because the cosine of 90° is 0. And when two unit vectors have a dot product equal to 1, they
must be parallel because the cosine of 0° is 1. Two unit vectors that point in opposite directions yield a dot
product of –1 because the cosine of 180° is –1.

When a vector is multiplied with a unit vector via a dot product, the result equals the length of the
component of the original vector that is pointing in the direction of the unit vector. The mathematical
definitions of geometric tolerances make use of these dot product characteristics.

7.4.2.3 Vector Cross Products

Unlike a vector dot product which yields a number, the result of a vector cross product is always another
vector. The mathematical expression for the cross product between vectors A

v
 and B

v
 is 

v v
A B× , the result

of which we will express as C
v

. By definition, vector C
v

 is perpendicular to the plane defined by the first two
vectors. The magnitude of the vector C

v
 is equal to the product of the magnitudes of the vectors A

v
 and

B
v

, which in turn is multiplied by the sine of the angle between A
v

 and B
v

. So when two unit vectors are
perpendicular, their cross product is another unit vector that is perpendicular to the first two unit vectors;

Figure 7-3  Vector subtraction

C
v
R
v−

RC
vv

−

R
v
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this because the sine of 90° is 1. And when any two vectors are parallel (or antiparallel), their cross product
is a vector of length 0 because the sine of 0°and 180° is 0. The mathematical definitions of geometric
tolerances make use of these properties of vector cross products.

7.4.3 Actual Value/Measured Value

A subtle but important distinction exists between the actual value and the measured value of a quantity.
Soon after beginning its work program, the Y14.5.1 subcommittee quickly recognized the need to clearly
draw this distinction. An actual value of a measured quantity is the inherently true value. It is the value
that would be obtained by a measurement process that is perfect in every way; that is, a measurement
process that has no measurement error or uncertainty associated with it, and which makes use of all of the
information that is contained in the item being measured (i.e., the infinite number of data points that a
surface consists of). In less esoteric terms, it is the value that we always hope to obtain, but never really
can. The actual value can never be obtained because every measurement process has some degree of
error and uncertainty associated with it, however small. Moreover, discrete measurement techniques
operate on a relatively small subset of the infinite number of points of which a surface is comprised.  Even
though we can never obtain the actual value, it is important to have a concrete definition of it as well as an
understanding of the reasons for its elusiveness.

The measured value of a quantity is self-explanatory. Quite simply, it is the value generated by a
measurement process. A measured value is an estimate of the actual value; it has an uncertainty associ-
ated with it. The goal of any measurement process is to obtain a measured value that approximates the
actual value within some tolerable level of uncertainty. The uncertainty associated with a measurement
process depends on many factors such as the quantity of data sampled, the data sampling strategy,
environmental effects, and so on. This uncertainty is never zero, and the degree to which it is minimized
amounts to an economic decision based on the time required to conduct the measurement and the expense
of the personnel and equipment employed.

It is not uncommon for the distinction between the measured value and the actual value to become
blurred, and this may occasionally contribute to miscommunications between design engineers and me-
trologists. Early on, the Y14.5.1 subcommittee wrestled with these notions and decided that the scope of
its work concerned itself solely with actual values and not with measured values. (The issues surrounding
measured values were to be taken up by another subcommittee.) That is not to say that mathematical
definitions somehow enable us to obtain actual values. Rather, the mathematical definitions presented in
the Y14.5.1 standard focus on the geometric controls that the various tolerance types exert on part
features. Further, the tolerance types operate not only on actual, tangible part features, but also more
importantly on conceptual models of those part features that exist only on drawings or CAD/solid model
representations. The genesis of a manufactured product is a representation of the product that is repeat-
edly modified, typically involving tradeoffs, in response to various constraints upon it. Allowable geo-
metric variation of the product is one constraint, and the intent of the Y14.5.1 subcommittee was to create
mathematical definitions of tolerance types that would be applicable to this conceptual design stage of
product development.  Accordingly, the notion of an actual value is appropriate.

In fact, in writing mathematical definitions it was crucial to maintain this “separation of church and
state” as it were. The potential difficulty in obtaining a reliable measured value of a tolerance was of little
or no concern during the development of the Y14.5.1 standard. The philosophy is that it is more important
to arm a design engineer with flexible tools to uniquely specify a tolerance design rather than to compro-
mise that ability in favor of easing the eventual measurements required to prove conformance of an actual
part to those tolerances. It is inappropriate to standardize tolerances around the state-of-the-art in
 metrology because it is continually changing.
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7.4.4 Datums

7.4.4.1 Candidate Datums/Datum Reference Frames

Datums are geometric entities of perfect form that are derived from datum features specified on a drawing.
The configuration of one or more datums as specified in a feature control frame results in a datum
reference frame. A datum reference frame essentially amounts to a coordinate system that is located and
oriented on the datum features of the part, and from which the location and orientation of other part
features are controlled.

For two reasons, a given datum feature may yield more than one datum. Most easy to visualize is the
situation whereby a primary datum feature of size is referenced at maximum material condition (MMC) and
is manufactured at a size between its maximum material size and its least material size. By the rules of Y14.5,
the datum may assume any size, location, and orientation between the datum feature and its MMC limit.
These potentially numerous datums form a candidate datum set.

Another reason why a set of candidate datums may result from a given datum feature has to do with
the fact that actual datum features, like all actual features, necessarily have form error. Form error often
undermines the effectiveness of the rules that Y14.5 specifies in section 4.4.1 for associating perfect form
datums to imperfect form datum features. These rules are ideally intended to isolate a single datum from a
datum feature, but in practice they reduce the size of the candidate datum set, hopefully to a reasonable
extent. For instance, consider a nominal flat surface specified as a primary datum, an actual instance of
which has form error consisting of small raised areas scattered all over the surface in such a way that a
conceptual, perfect form datum feature (a perfectly flat plane) does not engage the actual surface in just
one, unique orientation. In fact, there are multiple sets of three raised areas that provide stable engage-
ment. Each results in a potentially valid datum, and they collectively form the candidate datum set.

Thus, we say in general that a datum feature results in a set of candidate datums. Since each datum in
a datum reference frame has (or may have) multiple candidate datums, there are potentially a multitude of
candidate datum reference frames. What are we to do with all of these candidates? It is reasonable to
conclude that one has the freedom to search among the candidate datum reference frame set for a datum
reference frame that yields acceptable evaluations of all tolerances. One could also search for a datum
reference frame that collectively minimizes (in some unspecified sense) the departure of all of the features
controlled with respect to the datum reference frame. Regardless, if a datum reference frame can be found
that yields acceptable evaluations of all tolerances, then the part is considered to be acceptable.

7.4.4.2 Degrees of Freedom

The balance of the discussion on datums will focus on degrees of freedom. A datum reference frame can
be thought of as a coordinate system that is fixed to datum features on the part according to rules of
association and precedence. If we think of a coordinate system as being represented by three mutually
perpendicular axes, then the process of establishing a datum reference frame amounts to a series of
positioning and orienting operations of these axes relative to datum features on the part. These position-
ing and orienting operations take place with respect to a fixed “world” coordinate system.

A datum reference frame has three positional degrees of freedom, and three orientational degrees of
freedom within the world coordinate system. In other words, the origin of a datum reference frame may be
independently located along three world coordinate system axes. Similarly, the three planes formed by the
three pairs of datum reference frame axes have angular relationships to the three planes formed by pairs of
world coordinate system axes. The establishment of a datum reference frame equates to a systematic
reduction of its available degrees of freedom within the world coordinate system. A datum reference frame
that has no available degrees of freedom is said to be fully constrained.
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Note that it is not always necessary to fully constrain a datum reference frame. Consider a part that
only has an orientation tolerance applied to a feature with respect to another datum feature. One can see
that it is not necessary or productive to position the datum reference frame in any manner because the
orientation of the feature with respect to the datum is not affected by location of the datum nor of the
feature.

The rules of datum precedence embodied in Y14.5 can be expressed in terms of degrees of freedom. A
primary datum may arrest one or more of the original six degrees of freedom. A secondary datum may
arrest one or more additional available degrees of freedom; that is, a secondary datum may not arrest or
modify any degrees of freedom that the primary datum arrested. A tertiary datum may also arrest any
available degrees of freedom, though there may be none after the primary and secondary datums have
done their job; in such a case, a tertiary datum is superfluous and can only add confusion.

The Y14.5.1 standard contains several tables that capture the finite number of ways that datum
reference frames may be constructed using the geometric entities points, lines, and planes. Included are
conditions between the primary, secondary, and tertiary datums for each case.

7.4.5 Form Tolerances

Form tolerances are characterized by the fact that the tolerance zones are not referenced to a datum
reference frame. Form tolerances do not control the form of a feature with respect to another feature, nor
with respect to a coordinate system established by other features. Form tolerances are often used to refine
the inherent form control imparted by a size tolerance, but not always. Therefore, the mathematical defini-
tions presented in this section reflect the independent application of form tolerances. The mathematical
description of the net effect of simultaneously applied multiple tolerance types to a feature is not covered
in this chapter.

Although form tolerances are conceptually simple, too many users of geometric dimensioning and
tolerancing seem to attribute erroneous characteristics to them, most notably that the orientation and/or
location of the tolerance zone are related to a part feature. As stated in the prior paragraph, form tolerances
are independent of part features or datum reference frames. The mathematical definitions that appear
below describe in vector form the geometric elements of the tolerance zones associated with form toler-
ances; these geometric elements are axes, planes, points, and curves in space.  The description of these
geometric elements must not be misconstrued to mean that they are specified up front as part of the
application of a form tolerance to a nominal feature; they are not. The geometric elements of form
tolerances are dependent only on the characteristics of the toleranced feature itself, and this is informa-
tion that cannot be known until the feature actually exists and is measured.

7.4.5.1 Circularity

A circularity tolerance controls the form error of a sphere or any other feature that has nominally circular cross
sections (there are some exceptions). The cross sections are taken in a plane that is perpendicular to some
spine, which is a term for a curve in space that has continuous first derivative (or tangent). The circularity
tolerance zone for a particular cross-section is an annular area on the cross-section plane, which is centered
on the spine. Because circularity is a form tolerance, the tolerance zone is not related to a datum reference
frame, nor is the spine specified as part of the tolerance application.  Note that the circularity definition
described here is consistent with the ANSI/ASME Y14.5M-1994 definition, but is not entirely consistent with
the 1982 version of the standard. See the end of this section for a fuller explanation.

The mathematical definition of a circularity tolerance consists of equations that put constraints on a
set of points denoted by P

v
 such that these points are in the circularity tolerance zone, and no others.
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Consider on Fig. 7-4 a point A
v

 on a spine, and a unit vector $T  which points in the direction of the tangent
to the spine at A

v
.

The set of points P
v

 on the cross-section that passes through A
v

 is defined by Eq. (7.1) as follows.

0)(ˆ =−• APT
vv

(7.1)

The zero dot product between the vectors $T  and )( AP
vv

−  indicates that these vectors are perpendicu-
lar to one another. Since we know that $T  is perpendicular to the spine at A

v
, and AP

vv
−  is a vector that

points from A
v

 to P
v

, then the points P
v

 must be on a plane that contains A
v

 and that is perpendicular to $T .
Thus, we have defined all of the points that are on the cross section. Next, we need to restrict this set of
points to be only those in the circularity tolerance zone.

As was stated above, the circularity tolerance zone consists of an annular area, or the area between
two concentric circles that are centered on the spine. The difference in radius between these circles is the
circularity tolerance t .

2
t

rAP ≤−−
vv

(7.2)

Eq. (7.2) says that there is a reference circle at a distance r  from the spine, and that the points P
v

 must
be no farther than half of the circularity tolerance from it, either toward or away from the spine. This
equation completes the mathematical description of the circularity tolerance zone for a particular cross
section.

To verify that a measured feature conforms to a circularity tolerance, one must establish that the
measured points meet the restrictions imposed by Eqs. (7.1) and (7.2). In geometric terms, one must find a
spine that has the circularity tolerance zones that are created according to Eqs. (7.1) and (7.2), containing
all of the measured points. The reader will likely find this definition of circularity foreign, so some explana-
tion is in order.

As was stated earlier in this section, the details of circularity that are discussed here correspond to
the ANSI/ASME Y14.5M-1994 standard, which contains some changes from the 1982 version. The 1982
version of the standard, as written, required that cross sections be taken perpendicular to a straight axis,
and that the circularity tolerance zones be centered on that straight axis, thereby effectively limiting the
application of circularity to surfaces of revolution. In order to expand the applicability of circularity
tolerances to other features that have circular cross sections, such as tail pipes and waveguides, the

Figure 7-4  Circularity tolerance zone
definition

t

A
v
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P
v

spine

AP
vv

−r



Mathematical Definition of Dimensioning and Tolerancing Principles     7-11

definition of circularity was modified such that circularity controls form error with respect to a curved
“axis” (a spine) rather than a straight axis. The 1994 standard preserves the centering of the circularity
tolerance zone on the spine.

Unfortunately, the popular interpretation of circularity does not correspond to either the 1982 or the
1994 versions of Y14.5M. Rather, a metrology standard (B89.3.1-1972, Measurement of Out of Roundness)
seems to have implicitly provided an alternative definition of circularity by virtue of the measurement
techniques that it describes. The main difference between the B89 metrology standard and the Y14.5M
tolerance definition standard is that the B89 standard does not require the circularity tolerance zone to be
centered on the axis. Instead, various fitting criteria are provided for obtaining the “best” center of the
tolerance zone for a given cross section. Without delving into the details of the B89.3.1-1972 standard,
suffice it to say that the four criteria are least squares circle (LSC), minimum radial separation (MRS),
maximum inscribed circle (MIC), and minimum circumscribed circle (MCC).

There is a rather serious geometrical ramification to allowing the circularity tolerance zone to “float.”
Consider in Fig.7-5 a three-dimensional figure known as an elliptical cylinder which is created by translat-
ing or extruding an ellipse perpendicular to the plane in which it lies. Obviously, such a figure has elliptical
cross sections, but it also has perfectly circular cross sections if taken perpendicular to a properly titled
axis.

Figure 7-5  Illustration of an elliptical
cylinder

Thus, a perfectly formed elliptical cylinder (even one with high eccentricity) would have no circularity
error as measured according to the B89.3.1-1972 standard. Of course, any sensible, well-trained metrolo-
gist would intuitively select an axis for evaluating circularity that closely matches the axis of symmetry of
the feature, and would thus find significant circularity error. However, as tolerancing and metrology
progress toward computer-automated approaches (as the design and solid modeling disciplines already
have), we must depend less and less on subjective judgment and intuition. It is for this reason that the
relevant standards committees have recognized these issues with circularity tolerances and measure-
ments, and they are working toward their resolution.

Creation of a mathematical definition of circularity revealed the inconsistency between the Y14.5M-
1982 definition of circularity and common measurement practice as described in B89.3.1-1972, and also
revealed subtle but potentially significant problems with the latter. This example illustrates the value that
mathematical definitions have brought to the tolerancing and metrology disciplines.

Circular cross-section

Elliptical cross-section

“Extrusion” axis

Circularity
evaluation axis
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7.4.5.2 Cylindricity

A cylindricity tolerance controls the form error of cylindrically shaped features. The cylindricity tolerance
zone consists of a set of points between a pair of coaxial cylinders.  The axis of the cylinders has no pre-
defined orientation or location with respect to the toleranced feature, nor with respect to any datum
reference frame. Also, the cylinders have no predefined size, although their difference in radii equals the
cylindricity tolerance t.

We mathematically define a cylindricity tolerance zone as follows. A cylindricity axis is defined by a
unit vector $T  and a position vector A

v
 as illustrated in Fig. 7-6.

Figure 7-6  Cylindricity tolerance
definition

t

A
v

T̂

P
v

AP
vv

−

r

)(ˆ APT
vv

−×

If we consider the unit vector $T , which points parallel to the cylindricity axis, to be anchored at the
end of the vector A

v
, one can see from Fig. 7-6 that the distance from the cylindricity axis to point P

v
 is

obtained by multiplying the length of the unit vector $T  (equal to one by definition) by the length of the
vector AP

vv
− , and by the sine of the angle between $T  and AP

vv
− . The mathematical operations just

described are those of the vector cross product. Thus, the distance from the axis to a point P
v

 is expressed
mathematically as )(ˆ APT

vv
−× . To generate a cylindricity tolerance zone, the points P

v
 must be re-

stricted to be between two coaxial cylinders whose radii differ by the cylindricity tolerance t .

Eq. (7.3) constrains the points P
v

 such that their distance from the surface of an imaginary cylinder of
radius r is less than half of the cylindricity tolerance.

2
)(ˆ t

rAPT ≤−−×
vv

(7.3)
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If, when assessing a feature for conformance to a cylindricity tolerance, we can find an axis whose
direction and location in space are defined by $T   and A

v
 , and a radius r  such that all of the points of the

actual feature consist of a subset of these points P
v

, then the feature meets the cylindricity tolerance.

7.4.5.3 Flatness

A flatness tolerance zone controls the form error of a nominally flat feature. Quite simply, the toleranced
surface is required to be contained between two parallel planes that are separated by the flatness toler-
ance. See Fig. 7-7.

To express a flatness tolerance mathematically, we define a reference plane by an arbitrary locating
point A

v
 on the plane and a unit direction $T  that points in a direction normal to the plane. The quantity

Figure 7-7  Flatness tolerance definition

AP
vv

−  is the vector distance from the reference plane’s locating point to any other point P
v

. Of more
interest though is the component of that distance in the direction normal to the reference plane. This is
obtained by taking the dot product of  AP

vv
−  and $T .

2
)(ˆ t

APT ≤−•
vv

(7.4)

Eq. (7.4) requires that the points P
v

 be within a distance equal to half of the flatness tolerance from the
reference plane.

In mathematical terms, to determine conformance of a measured feature to a flatness tolerance, we
must find a reference plane from which the distances to the farthest measured point to each side of the
reference plane are less than half of the flatness tolerance.

Note that Eq. (7.4) is not as general as it could be. The true requirement for flatness is that the sum of
the normal distances of the most extreme points of the feature to each side of the reference plane be no
more than the flatness tolerance. Stated differently, although Eq. (7.4) is not incorrect, there is no require-
ment that the reference plane equally straddle the most extreme points to either side. In fact, many
coordinate measuring machine software algorithms for flatness will calculate a least squares plane through
the measured data points and assess the distances to the most extreme points to each side of this plane.
In general, the least squares plane will not equally straddle the extreme points, but it may serve as an
adequate reference plane nevertheless.

T̂

A
v

P
v

2
t

2
t
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7.5 Where Do We Go from Here?

Release of the Y14.5.1 standard in 1994 addressed one of the major recommendations that emanated from
the NSF Tolerancing Workshop. However, the work of the Y14.5.1 subcommittee is not complete. The
Y14.5.1 standard represents an important first step in increasing the formalism of geometric tolerancing,
but many other things must happen before we can claim to have resolved the metrology crisis. The good
news is that things are happening. Research efforts related to tolerancing and metrology have accelerated
over the time frame since the GIDEP Alert, and we are moving forward.

7.5.1 ASME Standards Committees

Though five years have passed since the release of the Y14.5.1 standard, it is difficult to discern the impact
that it has had on the practitioners of geometric tolerancing. However, the impact that it has had on the
standards development scene is easier to measure. Advances in standards work are greatly facilitated
when standards developers have a minimal dependence on subjective interpretations of the standardized
materials. Indeed, it is the specific duty and responsibility of standards developers to define their subject
matter in objectively interpretable terms; otherwise standardization is not achieved. The Y14.5.1 standard,
and the philosophy that it embodies, provides a means for ensuring a lack of ambiguity in standardized
definitions of tolerances.

Despite the alphanumeric subcommittee designation (Y14.5.1), which suggests that it sit below the
Y14.5 subcommittee, the Y14.5.1 subcommittee has the same reporting relationship to the Y14 main com-
mittee, as does the Y14.5 subcommittee. The new Y14.5.1 effort was truly a parallel effort to that of Y14.5
(though certainly not entirely independent). Its value has been sufficiently demonstrated within the
subcommittees to the extent that the leaders of each group are establishing a much closer degree of
collaboration. The result will undoubtedly be better standards, better tools for specifying allowable part
variation, less disagreement between suppliers and customers regarding acceptability of parts, and better
and cheaper products.

7.5.2 International Standards Efforts

The impact of the Y14.5.1 standard extends to the international standards scene as well.  Over the past few
years, the International Organization for Standardization (ISO) has been engaged in a bold effort to
integrate international standards development across the disciplines from design through inspection. As
a participating member body to this effort, the United States has made its share of contributions. Among
these contributions are mathematical definitions of form tolerances. These definitions are closely derived
from the Y14.5.1 versions, but customized to reflect the particular detailed differences, where they exist,
between the Y14.5 definitions and the ISO definitions. As other ISO standards are developed or revised,
additional mathematical tolerance definitions will be part of the package.

7.5.3 CAE Software Developers

Aside from standards developers, computer aided engineering (CAE) software developers should be the
key group of users of mathematical tolerance definitions. Recalling the lack of uniformity and correctness
in CMM software as brought to light by the GIDEP Alert, it should not be difficult to see the need for
programmers of CAE systems (including design, tolerancing, and metrology) to know the detailed aspects
of the tolerance types and code their software accordingly. In some cases, this can be achieved by coding
the mathematical expressions from the Y14.5.1 standard directly into their software.

We are not yet aware of the actual extent of usage of the mathematical tolerance definitions from the
Y14.5.1 standard among CAE software developers. Where vendors of such software claim compliance to
US dimensioning and tolerancing standards, customers should rightly expect that the vendor owns a
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copy of the Y14.5.1 standard and has ensured that its algorithms are consistent with its requirements. It
might be reasonable to assume that this is not the case across the board, and it would be a worthy
endeavor to determine the extent of any such lack of compliance. As of this writing, ten years have passed
since the GIDEP Alert, and perhaps the time is right to see whether the situation has improved with
metrology software.
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