
Chapter 7 
 
 
7-1 (a) DE-Gerber, Eq. (7-10): 
 

        2 2 2 2
4 3 4 (2.2)(70) 3 (1.8)(45) 338.4 N mf a fs aA K M K T       

        2 2 2 2
4 3 4 (2.2)(55) 3 (1.8)(35) 265.5 N mf m fs mB K M K T       
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                     

 

 d = 25.85 (103) m = 25.85 mm      Ans. 
 
 (b) DE-elliptic, Eq. (7-12) can be shown to be 
 

 
 

  
 

  
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1/3 2 22 2
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338.4 265.516 16(2)

210 10 560 10e y

n A B
d

S S 

                      

 

 d = 25.77 (103) m = 25.77 mm      Ans. 
 
 (c) DE-Soderberg, Eq. (7-14) can be shown to be 
 

 
   

1/31/3

6 6

16 16(2) 338.4 265.5

210 10 560 10e y

n A B
d

S S 

    
                 

 

 d = 27.70 (103) m = 27.70 mm      Ans. 
 
 (d) DE-Goodman: Eq. (7-8) can be shown to be 
 

 
   

1/31/3

6 6

16 16(2) 338.4 265.5

210 10 700 10e ut

n A B
d

S S 

                     
 

 d = 27.27 (103) m = 27.27 mm      Ans. 
________________________________________________________________________ 
Criterion  d (mm)    Compared to DE-Gerber   
DE-Gerber  25.85 
DE-Elliptic  25.77   0.31% Lower  Less conservative 
DE-Soderberg  27.70   7.2% Higher  More conservative 
DE-Goodman  27.27   5.5% Higher  More conservative  

______________________________________________________________________________ 
 
7-2 This problem has to be done by successive trials, since Se is a function of shaft size. The 

material is SAE 2340 for which Sut = 175 kpsi, Sy = 160 kpsi, and HB ≥ 370.  
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 Eq. (6-19), p. 287:  0.2652.70(175) 0.69ak  
 
 Trial #1: Choose dr = 0.75 in 
 
 Eq. (6-20), p. 288:  

0.1070.879(0.75) 0.91bk  

 Eq. (6-8), p.282:   0.5 0.5 175 87.5 kpsie utS S   
 Eq. (6-18), p. 287: Se = 0.69 (0.91)(87.5) = 54.9 kpsi 
 
    2 0.75 2 / 20 0.65rd d r D D D    

   
0.75

1.15 in
0.65 0.65

rd
D     

  
1.15

0.058 in
20 20

D
r     

 
 Fig. A-15-14: 

   2 0.75 2(0.058) 0.808 inrd d r    

  
0.808

1.08
0.75r

d

d
   

  
0.058

0.077
0.75r

r

d
   

  Kt = 1.9  
 Fig. 6-20, p. 295: r = 0.058 in, q = 0.90 
 Eq. (6-32), p. 295: Kf  = 1 + 0.90 (1.9 – 1) = 1.81 
 Fig. A-15-15:  Kts = 1.5 
 Fig. 6-21, p. 296: r = 0.058 in, qs = 0.92 
 Eq. (6-32), p. 295: Kfs  = 1 + 0.92 (1.5 – 1) = 1.46 
 
 We select the DE-ASME Elliptic failure criteria, Eq. (7-12), with d as dr, and  
 Mm = Ta = 0, 

  
   

1/31/22 2

3 3

16(2.5) 1.81(600) 1.46(400)
4 3

54.9 10 160 10
rd



                       

 

  dr = 0.799 in 
  

Trial #2: Choose dr = 0.799 in. 
 
    0.1070.879(0.799) 0.90bk  

   Se = 0.69 (0.90)(0.5)(175) = 54.3 kpsi 

  
0.799

1.23 in
0.65 0.65

rd
D   

 
  r = D / 20 = 1.23/20 = 0.062 in 
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  Figs. A-15-14 and A-15-15: 

   2 0.799 2(0.062) 0.923 inrd d r    

  
0.923

1.16
0.799r

d

d
   

  
0.062

0.078
0.799r

r

d
   

  
With these ratios only slightly different from the previous iteration, we are at the limit of 
readability of the figures. We will keep the same values as before. 

 
   1.9, 1.5, 0.90, 0.92t ts sK K q q   
  1.81, 1.46f fsK K    

Using Eq. (7-12) produces dr = 0.802 in. Further iteration produces no change.  With  
dr = 0.802 in, 

  
0.802

1.23 in
0.65

0.75(1.23) 0.92 in

D

d

 

 
 

 
A look at a bearing catalog finds that the next available bore diameter is 0.9375 in.  In 
nominal sizes, we select d = 0.94 in, D = 1.25 in, r = 0.0625 in     Ans. 

______________________________________________________________________________ 
 
7-3 F cos 20(d / 2) = TA,  F = 2 TA / ( d cos 20) = 2(340) / (0.150 cos 20) = 4824 N. 

The maximum bending moment will be at point C, with MC  = 4824(0.100) = 482.4 N·m.  
Due to the rotation, the bending is completely reversed, while the torsion is constant.   
Thus, Ma = 482.4 N·m, Tm = 340 N·m, Mm = Ta = 0.  

 
For sharp fillet radii at the shoulders, from Table 7-1, Kt = 2.7, and Kts = 2.2.  Examining 
Figs. 6-20 and 6-21 (pp. 295 and 296 respectively) with 560 MPa,utS  conservatively 

estimate q = 0.8 and  These estimates can be checked once a specific fillet radius 

is determined. 

0.9.sq 

 
 Eq. (6-32):   1 0.8(2.7 1) 2.4fK    

         1 0.9(2.2 1) 2.1fsK    
 

(a) We will choose to include fatigue stress concentration factors even for the static 
analysis to avoid localized yielding. 

 Eq. (7-15): 

1/22 2

max 3 3

32 16
3f a fs mK M K T

d d


 

    
      

     
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 Eq. (7-16):     
3 1/22 2

max

4 3
16

y y
f a fs m

S d S
n K M K






T     
 

 Solving for d, 

  

       

1/3
1/22 2

1/3
1/22 2

6

16
4( ) 3( )

16(2.5)
4 (2.4)(482.4) 3 (2.1)(340)

420 10

f a fs a
y

n
d K M K T

S



      
  

 
  
 
 

 

 
      d = 0.0430 m = 43.0 mm                Ans.   

 
 (b)    0.2654.51(560) 0.84ak  
 

Assume kb = 0.85 for now.  Check later once a diameter is known. 
 
  Se = 0.84(0.85)(0.5)(560) = 200 MPa 
 

 Selecting the DE-ASME Elliptic criteria, use Eq. (7-12) with 0.m aM T   

  

   

1/31/22 2

6 6

16(2.5) 2.4(482.4) 2.1(340)
4 3

200 10 420 10

0.0534 m 53.4 mm

d


                       
   

   
With this diameter, we can refine our estimates for kb and q. 

 

 Eq. (6-20): 
   0.1570.1571.51 1.51 53.4 0.81bk d

  
  

Assuming a sharp fillet radius, from Table 7-1,  r = 0.02d = 0.02 (53.4) = 1.07 mm. 
 
Fig. (6-20): q = 0.72 
Fig. (6-21): qs = 0.77 
 
Iterating with these new estimates, 
 

 Eq. (6-32):  Kf = 1 + 0.72 (2.7 – 1) = 2.2 
   Kfs = 1 + 0.77 (2.2 – 1) = 1.9 

Eq. (6-18): Se = 0.84(0.81)(0.5)(560) = 191 MPa 
Eq. (7-12): d = 53 mm  Ans. 

 
 Further iteration does not change the results. 
_____________________________________________________________________________ 
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7-4  We have a design task of identifying bending moment and torsion diagrams which are 
preliminary to an industrial roller shaft design. Let point C represent the center of the 
span of the roller. 

 

 
 
 
 
 
 

30(8) 240 lbfy
CF    

0.4(240) 96 lbfz
CF    

(2) 96(2) 192 lbf inz
CT F     

192
128 lbf

1.5 1.5
z

B

T
F   

 
tan 20 128 tan 20 46.6 lbfy z

B BF F     

 
 (a)   xy-plane 
 

 
240(5.75) (11.5) 46.6(14.25) 0y

O AM F    
240(5.75) 46.6(14.25)

62.3 lbf
11.5

y
AF


   

(11.5) 46.6(2.75) 240(5.75) 0y
A OM F      

240(5.75) 46.6(2.75)
131.1 lbf

11.5
y

OF


 
 

 
 Bending moment diagram: 
 

 
 

xz-plane 

Chapter 7 - Rev. A, Page 5/45 



 
 

0 96(5.75) (11.5) 128(14.25)z
O AM F      

 
96(5.75) 128(14.25)

206.6 lbf
11.5

z
AF


   

0 (11.5) 128(2.75) 96(5.75)z
A OM F      

96(5.75) 128(2.75)
17.4 lbf

11.5
z

OF


 
 

 
Bending moment diagram: 

 
2 2100 ( 754) 761  lbf inCM       

2 2( 128) ( 352) 375 lbf inAM        
  

Torque:  The torque is constant from C to B, with a magnitude previously obtained of 192 
lbf·in. 

 
 (b)   xy-plane 

     
2 2

131.1 15 1.75 15 9.75 62.3 11.5xyM x x x x        1

 
 
Bending moment diagram: 
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 Mmax = –516 lbf · in and occurs at 6.12 in. 
 

2131.1(5.75) 15(5.75 1.75) 514 lbf inCM       

 
This is reduced from 754 lbf · in found in part (a).   The maximum occurs 
at rather than C, but it is close enough. 6.12 inx 
 

 xz-plane 
 

 
 

 
2 2

17.4 6 1.75 6 9.75 206.6 11.5xzM x x x x       1
 

 
Bending moment diagram: 
     

   
 
 
 

 Let 2 2
net xy xzM M M   

     
  Plot Mnet(x),  1.75 ≤ x ≤ 11.5 in 

  
 Mmax = 516 lbf · in at x = 6.25 in 
      
Torque: The torque rises from 0 to 192 lbf·in linearly across the roller, then is constant to 
B.     Ans. 

______________________________________________________________________________ 
 
7-5 This is a design problem, which can have many acceptable designs. See the solution for 

Prob. 7-17 for an example of the design process. 
______________________________________________________________________________ 
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7-6 If students have access to finite element or beam analysis software, have them model the 
shaft to check deflections. If not, solve a simpler version of shaft for deflection. The 1 in 
diameter sections will not affect the deflection results much, so model the 1 in diameter 
as 1.25 in. Also, ignore the step in AB.  

 

 
 From Prob. 7-4, integrate Mxy and Mxz.  
 
 xy plane, with dy/dx = y' 
 

  3 32
1

131.1 62.3
5 1.75 5 9.75 11.5

2 2

2
EIy x x x x C            (1) 

  4 4 33
1 2

131.1 5 5 62.3
1.75 9.75 11.5

6 4 4 6
EIy x x x x C x C           

 

   20 at 0     0y x C   

   
3

10 at 11.5 1908.4 lbf iny x C    
From (1), x = 0:  EIy' = 1908.4 
  x = 11.5: EIy' = –2153.1 

 
 xz plane (treating ) z  
 

  3 32
3

17.4 206.6
2 1.75 2 9.75 11.5

2 2

2
EIz x x x x C           (2) 

  4 4 33
3 4

17.4 1 1 206.6
1.75 9.75 11.5

6 2 2 6
EIz x x x x C x C          

 
    40 at 0    0z x C   

    3
30 at 11.5 8.975 lbf inz x C    

From (2), x = 0:  EIz' = 8.975 
   x = 11.5: EIz' = –683.5 
   

 At O:  2 21908.4 8.975 1908.4 lbf inEI    3  

Chapter 7 - Rev. A, Page 8/45 



 At A:  2 2( 2153.1) ( 683.5) 2259.0 lbf inEI       3  (dictates size)   

   
   6 4

2259
0.000 628 rad

30 10 / 64 1.25



   

   
0.001

1.59
0.000 628

n   

 
 At gear mesh, B 
 xy plane 

 
 With 1I I  in section OCA,  

  12153.1/Ay EI    

 
 Since y'B/A is a cantilever, from Table A-9-1, with 2I I  in section AB 

/ 2
2 2

( 2 ) 46.6
(2.75)[2.75 2(2.75)] 176.2 /

2 2B A

Fx x l
y E

EI EI

      I  

       / 6 4 6

2153.1 176.2

30 10 / 64 1.25 30 10 / 64 0.875
B A B Ay y y

 
  

4
       

 

   

         = –0.000 803 rad   (magnitude greater than 0.0005 rad) 

 
xz plane 

 
 

 2

/
1 2

128 2.75683.5 484
,

2A B Az z
2EI EI

      
EI

 

       6 4 6 4

683.5 484
0.000 751 rad

30 10 / 64 1.25 30 10 / 64 0.875
Bz

 
       

2 2( 0.000 803) ( 0.000 751) 0.00110 radB       

 
 Crowned teeth must be used. 
 

Finite element results:  Error in simplified model 
45.47(10 ) radO

       3.0% 
47.09(10 ) radA

     11.4% 
31.10(10 ) radB

       0.0% 
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 The simplified model yielded reasonable results. 
  

Strength  72 kpsi, 39.5 kpsiut yS S 
 

 
 At the shoulder at A,  From Prob. 7-4, 10.75 in.x 

   
209.3 lbf in,   293.0 lbf in,   192 lbf inxy xzM M T       

 

  
2 2( 209.3) ( 293) 360.0 lbf inM        

   0.5(72) 36 kpsieS   

   0.2652.70(72) 0.869ak  

  

0.107
1

0.879
0.3bk


   
 

 

  
 1c d e fk k k k   

   0.869(0.879)(36) 27.5 kpsieS  
   D / d = 1.25, r / d = 0.03 
 Fig. A-15-8: Kts = 1.8 
 Fig. A-15-9: Kt = 2.3 
 Fig. 6-20: q = 0.65 
 Fig. 6-21: qs = 0.70 
 Eq. (6-32):  1 0.65(2.3 1) 1.85fK    

          1 0.70(1.8 1) 1.56fsK    

 Using DE-ASME Elliptic, Eq. (7-11) with 0,m aM T   

 

1/22 2

3

1 16 1.85(360) 1.56(192)
4 3

27 500 39 5001n 

          
     

 

 

n = 3.91 

 
 Perform a similar analysis at the profile keyway under the gear. 
 

The main problem with the design is the undersized shaft overhang with excessive slope 
at the gear. The use of crowned-teeth in the gears will eliminate this problem. 

______________________________________________________________________________ 
 
7-7 through 7-16  

These are design problems, which can have many acceptable designs. See the solution for 
Prob. 7-17 for an example of the design process. 

______________________________________________________________________________ 
 
7-17 (a) One possible shaft layout is shown in part (e). Both bearings and the gear will be 

located against shoulders. The gear and the motor will transmit the torque through the 
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keys. The bearings can be lightly pressed onto the shaft. The left bearing will locate the 
shaft in the housing, while the right bearing will float in the housing. 

 
 (b) From summing moments around the shaft axis, the tangential transmitted load 

through the gear will be 
 

   / ( / 2) 2500 / (4 / 2) 1250 lbftW T d  
 The radial component of gear force is related by the pressure angle. 

 

   tan 1250 tan 20 455 lbfr tW W   

     1/2 1/22 2 2 2455 1250 1330 lbfr tW W W      

Reactions  and ,A BR R and the load W are all in the same plane. From force and moment 

balance, 

   1330(2 /11) 242 lbfAR  

   1330(9 /11) 1088 lbfBR  

   max (9) 242(9) 2178 lbf inAM R   
 
 Shear force, bending moment, and torque diagrams can now be obtained. 
 

 
 (c) Potential critical locations occur at each stress concentration (shoulders and keyways). 

To be thorough, the stress at each potentially critical location should be evaluated. For 
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now, we will choose the most likely critical location, by observation of the loading 
situation, to be in the keyway for the gear. At this point there is a large stress 
concentration, a large bending moment, and the torque is present. The other locations 
either have small bending moments, or no torque. The stress concentration for the 
keyway is highest at the ends. For simplicity, and to be conservative, we will use the 
maximum bending moment, even though it will have dropped off a little at the end of the 
keyway. 

 
 (d) At the gear keyway, approximately 9 in from the left end of the shaft, the bending is 

completely reversed and the torque is steady. 
 

2178 lbf in 2500 lbf in 0a m mM T M     aT   

From Table 7-1, estimate stress concentrations for the end-milled keyseat to be Kt = 2.14 
and Kts = 3.0.  For the relatively low strength steel specified (AISI 1020 CD), roughly 
estimate notch sensitivities of q = 0.75 and qs = 0.80, obtained by observation of Figs. 6-
20 and 6-21, assuming a typical radius at the bottom of the keyseat of r / d = 0.02 (p. 
373), and a shaft diameter of up to 3 inches. 

 
 Eq. (6-32):  1 0.75(2.14 1) 1.9fK    

    1 0.8(3.0 1) 2.6fsK    

 Eq. (6-19):  0.2652.70(68) 0.883ak  
   For estimating , guess 2 in.bk d   

 Eq. (6-20)  0.107(2 / 0.3) 0.816bk  
 Eq. (6-18)  0.883(0.816)(0.5)(68) 24.5 kpsieS  
 
 Selecting the DE-Goodman criteria for a conservative first design, 
 

 Eq. (7-8): 
   

1/3
1/2 1/22 2

4 316 f a fs m

e ut

K M K Tn
d

S S

                 
  

    

 

 

   
   

1/3
1/2 1/22 2

4 1.9 2178 3 2.6 250016(1.5)

24 500 68 000
d



              
    

 

 
    1.57 in     .d A ns
  

With this diameter, the estimates for notch sensitivity and size factor were conservative, 
but close enough for a first iteration until deflections are checked.  Check yielding with 
this diameter. 
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Eq. (7-15): 

1/22 2

max 3 3

32 16
3f a fs mK M K T

d d


 

    
      

     
 

   
 

 

1/22 2

max 3 3

32(1.9)(2178) 16(2.6)(2500)
3 18389 psi 18.4 kpsi

(1.57) (1.57)


 

            
     

 

 max/ 57 /18.4 3.1 .y yn S Ans     

 
 (e) Now estimate other diameters to provide typical shoulder supports for the gear and 

bearings (p. 372). Also, estimate the gear and bearing widths.   
 

 
 (f) Entering this shaft geometry into beam analysis software (or Finite Element software), 

the following deflections are determined: 
Left bearing slope:    0.000 532 rad 
Right bearing slope:             0.000 850 rad 
Gear slope:              0.000 545 rad 
Right end of shaft slope:             0.000 850 rad 
Gear deflection:              0.001 45 in 
Right end of shaft deflection:      0.005 10 in 

Comparing these deflections to the recommendations in Table 7-2, everything is within 
typical range except the gear slope is a little high for an uncrowned gear. 

 
(g) To use a non-crowned gear, the gear slope is recommended to be less than 0.0005 rad. 
Since all other deflections are acceptable, we will target an increase in diameter only for 
the long section between the left bearing and the gear. Increasing this diameter from the 
proposed 1.56 in to 1.75 in, produces a gear slope of  0.000 401 rad. All other 
deflections are improved as well. 

______________________________________________________________________________ 
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7-18 
(a) Use the distortion-energy elliptic failure locus. The torque and moment loadings on 
the shaft are shown in the solution to Prob. 7-17. 
 
Candidate critical locations for strength: 

 Left seat keyway 
 Right bearing shoulder 
 Right keyway 

 
Table A-20 for 1030 HR:  68 kpsi, 37.5 kpsi, 137ut y BS S H    

Eq. (6-8): 0.5(68) 34.0 kpsieS     

Eq. (6-19):  0.2652.70(68) 0.883ak  
 1c d ek k k    

Left keyway 
See Table 7-1 for keyway stress concentration factors, 

 
 

2.14
Profile keyway

3.0
t

ts

K

K

 
 

 
For an end-mill profile keyway cutter of 0.010 in radius, estimate notch sensitivities. 
 

 Fig. 6-20:         0.51q   

 Fig. 6-21:         0.57sq   

 Eq. (6-32):        1 ( 1) 1 0.57(3.0 1) 2.1fs s tsK q K        

          1 0.51(2.14 1) 1.6fK      

 Eq. (6-20):         
0.107

1.875
0.822

0.30bk


   
 

 

 Eq. (6-18):         0.883(0.822)(34.0) 24.7 kpsieS    

 Eq. (7-11):         

1
2 2 2

3

1 16 1.6(2178) 2.1(2500)
4 3

(1.875 ) 24 700 37 500fn 

          
     

 

           nf = 3.5  Ans. 

 
 Right bearing shoulder 

The text does not give minimum and maximum shoulder diameters for 03-series bearings 
(roller). Use D = 1.75 in. 

 

0.030 1.75
0.019, 1.11

1.574 1.574

r D

d d
     

 
Fig. A-15-9: 2.4tK   

Fig. A-15-8: 1.6tsK   
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Fig. 6-20:  0.65q 
Fig. 6-21: 0.70sq   

Eq. (6-32): 1 0.65(2.4 1) 1.91fK      

 
1 0.70(1.6 1) 1.42fsK      

 
0.453

2178 493 lbf in
2

M
    
 

 

Eq. (7-11): 

1/22 2

3

1 16 1.91(493) 1.42(2500)
4 3

(1.574 ) 24 700 37 500fn 

    
     
       

              nf = 4.2  Ans. 
 
 Right keyway 

Use the same stress concentration factors as for the left keyway.  There is no bending 
moment, thus Eq. (7-11) reduces to: 

 
 3 3

16 31 16 3(2.1)(2500)

1.5 (37 500)
fs m

f y

K T

n d S 
   

 nf = 2.7  Ans. 
 
 Yielding 

Check for yielding at the left keyway, where the completely reversed bending is 
maximum, and the steady torque is present.  Using Eq. (7-15), with Mm = Ta = 0, 
 

 

  
 

  
 

1/22 2

max 3 3

1/22 2

3 3

32 16
3

32 1.6 2178 16 2.1 2500
3

1.875 1.875

8791 psi 8.79 kpsi

f a fs mK M K T

d d


 

 

    
      

     

    
    
  


     

 

 

 
max

37.5
4.3

8.79
y

y

S
n


  


  Ans. 

Check in smaller diameter at right end of shaft where only steady torsion exists. 

 

  
 

1/22

max 3

1/22

3

16
3

16 2.1 2500
3

1.5

13 722 psi 13.7 kpsi

fs mK T

d






  
    

   

  
  
    

 
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max

37.5
2.7

13.7
y

y

S
n


  


  Ans. 

 
 (b) One could take pains to model this shaft exactly, using finite element software. 

However, for the bearings and the gear, the shaft is basically of uniform diameter, 1.875 
in. The reductions in diameter at the bearings will change the results insignificantly. Use 
E = 30 Mpsi for steel. 

 
 To the left of the load, from Table A-9, case 6, p. 1015, 
 

2 2 2
2 2 2

6 4

6 2

1449(2)(3 2 11 )
(3 )

6 6(30)(10 )( / 64)(1.875 )(11)

2.4124(10 )(3 117)

AB
AB

d y Fb x
x b l

dx EIl

x






 
    

 

 

 At x = 0 in:  42.823(10 ) rad  
 At x = 9 in:  43.040(10 ) rad 
 To the right of the load, from Table A-9, case 6, p. 1015, 
 

  2 23 6 2
6

BC
BC

d y Fa 2x xl l a
dx EIl

        

At x = l = 11 in:

  
2 2

2 2 4
6 4

1449(9)(11 9 )
4.342(10 ) rad

6 6(30)(10 )( / 64)(1.875 )(11)

Fa
l a

EIl





     

      

 
Obtain allowable slopes from Table 7-2. 

  
 Left bearing: 

 

Allowable slope 0.001
3.5       .

Actual slope 0.000 282 3fsn Ans    

 
 Right bearing: 

 

0.0008
1.8                  .

0.000 434 2fsn Ans   

 
 Gear mesh slope: 

Table 7-2 recommends a minimum relative slope of 0.0005 rad. While we don’t know the 
slope on the next shaft, we know that it will need to have a larger diameter and be stiffer. 
At the moment we can say 
 

 

0.0005
1.6                  .

0.000 304fsn Ans   

______________________________________________________________________________ 
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7-19 The most likely critical locations for fatigue are at locations where the bending moment is 
high, the cross section is small, stress concentration exists, and torque exists. The two-
plane bending moment diagrams, shown in the solution to Prob. 3-72, indicate decreasing 
moments in both planes to the left of A  and to the right of C, with combined values at A 
and C of MA = 5324 lbf·in and MC = 6750 lbf·in.   The torque is constant between A and 
B, with T = 2819 lbf·in.  The most likely critical locations are at the stress concentrations 
near A and C.  The two shoulders near A can be eliminated since the shoulders near C 
have the same geometry but a higher bending moment.  We will consider the following 
potentially critical locations:   

 keyway at A 
 shoulder to the left of C 
 shoulder to the right of C 

 
 
Table A-20: Sut = 64 kpsi, Sy = 54 kpsi 
Eq. (6-8):  0.5(64) 32.0 kpsieS   

Eq. (6-19):  0.2652.70(64) 0.897ak  
  1c d ek k k  
Keyway at A 
Assuming r / d = 0.02 for typical end-milled keyway cutter (p. 373), with d = 1.75 in,   
r = 0.02d = 0.035 in.   
Table 7-1: Kt = 2.14, Kts = 3.0 
Fig. 6-20: q = 0.65 
Fig. 6-21: qs = 0.71 
Eq. (6-32): 

 
 

 1 1 1 0.65(2.14 1) 1.7f tK q K      

1 ( 1) 1 0.71(3.0 1) 2.4fs s tsK q K      

Eq. (6-20): 
0.107

1.75
0.828

0.30bk


   
 

 

Eq. (6-18):  0.897(0.828)(32) 23.8 kpsieS  
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We will choose the DE-Gerber criteria since this is an analysis problem in which we 
would like to evaluate typical expectations.   

sing Eq. (7-9) with M  = T  = 0, 

 

U m a

    

    

2 2

2 2

4 4 1.7 5324 18102 lbf in 18.10 kip in

3 3 2.4 2819 11 718 lbf in 11.72 kip in

f a

fs m

A K M

B K T

      

      

 




 

 
  

   
  

1/22

3

1/22

3

21 8
1 1

8 18.10 2 11.72 23.8
1 1

18.10 6475 .8

e

e ut

BSA

n d S AS

         
     

    
1. 23

          

 

  

oulder to the left of C 
625 / 1.75 = 0.036,  D / d = 2.5 / 1.75 = 1.43  

: 
: 

q = 0.71 
Fig. 6-21: q  = 0.76 

q. (6-32): 

 n = 1.3  
 

 Sh
  r / d = 0.0
  
Fig. A-15-9 Kt = 2.2 
Fig. A-15-8 Kts = 1.8 
Fig. 6-20: 

E
s

 1 1 1 0.71(2.2 1) 1.9f tK q K      

1 ( 1) 1 .76(1.8 1) 1.6fs s tsK q K        
 

0
0.107

1.75
0.828

0.30bk


   
 

 Eq. (6-20): 

Eq. (6-18): 0.897(0.828)(32) 23.8 kpsieS    

 
For convenience, we will use the full value of the bending moment at C, even though it 
will be slightly less at the shoulder.  Using Eq. (7-9) with Mm = Ta = 0,  

 

 

    

    

2 2

2 2

4 4 1.9 6750 25 650 lbf in 25.65 kip in

3 3 1.6 2819 7812 lbf in 7.812 kip in

f a

fs m

A K M

B K T

      

      

 




 

 
  

  
  

1/22

3

1/22

21 8
1 1

8 25.65 2 7.812 23.8
1 1

25.65 643.8

e

e ut

BSA

n d S AS

         
     

    
31.75 2

          
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 n = 0.96           

oulder to the right of C 
625 / 1.3 = 0.048,  D / d = 1.75 / 1.3 = 1.35 

: 
: 

q = 0.71 
Fig. 6-21: qs = 0.76 

q. (6-32): 

 
Sh
  r / d = 0.0
  
Fig. A-15-9 Kt = 2.0 
Fig. A-15-8 Kts = 1.7 
Fig. 6-20: 

E  1 1 1 0.71(2.0 1) 1.7f tK q K      

1 ( 1) 1 .76(1.7 1) 1.5fs s tsK q K        
 

0
0.107

1.3
0.855Eq. (6-20): 

0.30 
Eq. (6-18): 0.897(0.855)(32) 24.5 kpsieS    

bk


     

or convenience, we will use the full value of the bending moment at C, even though it 
will be slightly less at the shoulder.  Using Eq. (7-9) with Mm = Ta = 0,  

 

F

 

    

    

2 2

2 2

4 4 1.7 6750 22 950 lbf in 22.95 kip in

3 3 1.5 2819 7324 lbf in 7.324 kip in

f a

fs m

A K M

B K T

      

      

 




 

 
  

  
  

1/22

3

1/22

21 8
1 1

8 22.95 2 7.324 24.5
1 1

22.95 6424.5

e

e ut

BSA

n d S AS

         
     

    
31.3

           

 

  
The critical location is at the shoulder to the right of C, where n = 0.45 and finite life is 

 
plicitly called for in the problem statement, a static check for yielding is 

especially warranted with such a low fatigue factor of safety.  Using Eq. (7-15), with  
Mm = Ta = 0,

 

 n = 0.45   
       

predicted.      Ans. 

Though not ex

  
 

  
 

1/22 2

max 3 3

1/22 2

3 3

32 16
3

32 1.7 6750 16 1.5 2819
3 55 845 psi 55.8 kpsi

1.3

f a fs mK M K T

d d


 

 

    
      

     

    
       
      

 

1.3 
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max

0.97
55.8

yn


  


  

 
his indicates localized yielding is predicted at the stress-concentr

54S

ation, though after 
o be 

f 
static, 

 
7-20 

te the deflections.  Entering 
the geometry from the shaft as defined in - loading as defined in Prob. 
3-72, the following defle itude te

 
D

T
localized cold-working it may not be a problem.  The finite fatigue life is still likely t
the failure mode that will dictate whether this shaft is acceptable. 
 
It is interesting to note the impact of stress concentration on the acceptability of the 
proposed design.  This problem is linked with several previous problems (see Table 1-1, 
p. 24) in which the shaft was considered to have a constant diameter of 1.25 in. In each o
the previous problems, the 1.25 in diameter was more than adequate for deflection, 
and fatigue considerations.  In this problem, even though practically the entire shaft has 
diameters larger than 1.25 in, the stress concentrations significantly reduce the 
anticipated fatigue life. 

______________________________________________________________________________ 

For a shaft with significantly varying diameters over its length, we will choose to use 
shaft analysis software or finite element software to calcula

 Prob. 7
e

19, and the 
rmined: ction magn s are d

Location Slope 
(rad) 

eflection
(in) 

Left bearing O 0.00640 0.00000 
Right bearing C 0.00434 0.00000 
Left Gear A 0.00260 0.04839 
Right Gear B 0.01078 0.07517 

 
Comparing these values to the recommended limits in Table 7-2, we find that they are all
out of the desired range.  This is not unexpected since the stress analysis of Prob. 7-19 
also indicated the shaft is undersized for infinite life.  The sl

 

ope at the right gear is the 
ost excessive, so we will attempt to increase all diameters to bring it into compliance.  
sing Eq. (7-18) at the right gear,  

m
U

 
 

1/4 1/4

new old

old all

2.15
slope 0.0005d

     
/ (1)(0.01078)dn dy dxd

Multiplying all diameter e ob  fo lections: 
 

D

 
s by 2.15, w tain the llowing def

Location Slope 
(rad) 

eflection
(in) 

Left bearing O 0.00030 0.00000 
Right bearing C 0.00020 0.00000 
Left Gear A 0.00012 0.00225 
Right Gear B 0.00050 0.00350 
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This brings the slope at the right gear just to the limit for an uncrowned gear, and all 
other slopes well below the recommended limits.  For the gear deflections, the values are 

______________________________________________________________________________ 
 
7-21 is 

o-

 with the keyway at B, the 
rimary difference between the two is the stress concentration, since they both have 

eyway at A 
d-milled keyway cutter (p. 373), with d = 50 mm,   

Kt = 2.14, Kts = 3.0 
Fig. 6-20: q = 0.66 

ig. 6-21: qs = 0.72 

e
50 = 0.04,  D / d = 75 / 50 = 1.5  

: 

below recommended limits as long as the diametral pitch is less than 20. 

The most likely critical locations for fatigue are at locations where the bending moment 
high, the cross section is small, stress concentration exists, and torque exists. The tw
plane bending moment diagrams, shown in the solution to Prob. 3-73, indicate both 
planes have a maximum bending moment at B.  At this location, the combined bending 
moment from both planes is M = 4097 N·m, and the torque is T = 3101 N·m.  The 
shoulder to the right of B will be eliminated since its diameter is only slightly smaller, 
and there is no torque.  Comparing the shoulder to the left of B
p
essentially the same bending moment, torque, and size. We will check the stress 
concentration factors for both to determine which is critical.  
 

 
Table A-20: Sut = 440 MPa, Sy = 370 MPa 
 
K
Assuming r / d = 0.02 for typical en
r = 0.02d = 1 mm.  
 
Table 7-1: 

F
Eq. (6-32): 1fK q  1 1 0.66(2.14 1) 1.8tK      

 
1 ( 1) 1 0.72(3.0 1) 2.4fs s tsK q K      

 
 
Shoulder to th  left of B 
  r / d = 2 / 
  
Fig. A-15-9 Kt = 2.2 
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Fig. A-15-8:

F

 Kts = 1.8 
Fig. 6-20: q = 0.73 

ig. 6-21: q  = 0.78 

n of the stress concentration f ctors indicates the keyway will be the critical 

Eq. (6-19): 

s

 1 1 1 0.73(2.2 1) 1.9

fs s tsK q K      

Eq. (6-32): f tK q K      

 
1 ( 1) 1 0.78(1.8 1) 1.6  

 
Examinatio a
location. 
 

0.5(440) 220 MPaeS     Eq. (6-8): 
0.2654.51(440) 0.899ak    

0.107

Eq. (6-20): 
50

0.818
7.62bk


   
 

 

We will choose the DE-Gerber criteria since this is an analysis problem in which we 
ould like to evaluate typical expectations.  Using Eq. (7-9) with Mm a = 0, 

 

 1c d ek k k    

Eq. (6-18): 0.899(0.818)(220) 162 MPaeS    

 

w  = T
 

    

    

2 2

2 2

4 4 1.8 4097 14 750 N m

3 3 2.4 3101 12 890 N m

f a

fs m

A K M

B K T

    

    

 




 

 
   

   
   

1/22

3

1/22
6

3 6 6

21 8
1 1

08 14

0.050 162 10 14 750 440 10

e

e ut

BSA

n d S AS



         
     

2 12 890 162 1750
1 1

               
 n = 0.25 Infinite life is not predicted.       Ans.   

 

Though not explicitly called for in the problem statement, a static check for yielding is 
especially warranted with such a low fatigue factor of safety.  Using Eq. (7-15), with  
Mm = Ta = 0, 

 

     
  

 

1/22 2

max 3 3

1/22 2

8
3 3

32 16
3

32 1.8 4097 16 2.4 3101
3 7.98 10  Pa 798 MPa

050 0.050

f a fs mK M K T

d d


 

    
      

     

    
 


    

 

0. 
     
   
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max

370
0.46

798
yS

n


  


  

 
This indicates localized yielding is predicted at the stress-concentration.  Even without 
the stress concentration effects, the static factor of safety turns out to be 0.93. Static 
failure is predicted, rendering this proposed shaft design unacceptable. 
 
This problem is linked with several previous problems (see Table 1-1, p. 24) in which 
shaft was considered to have a constant diameter of 50 mm. The results here ar

the 
e 

______________________________________________________________________________ 
 
-22 th, we will choose to use 

shaft analysis software o ment s  t e deflections.  Entering 
the geometry from the shaft as defined in -2 ading as defined in Prob. 
3-73, the following itud erm

 
De n 

consistent with the previous problems, in which the 50 mm diameter was found to 
slightly undersized for static, and significantly undersized for fatigue.  Though in the 
current problem much of the shaft has larger than 50 mm diameter, the added 
contribution of stress concentration limits the fatigue life.   

For a shaft with significantly varying diameters over its leng7
r finite ele oftware

 7
o calculate th
1, and the lo

i
Prob. 

deflection magn es are det ned: 

Location Slope 
(rad) 

flectio
(mm) 

Left bearing O 0.01445 0.000 
Right bearing C 0.01843 0.000 
Left Gear A 0.00358 3.761 
Right Gear B 0.00366 3.676 

 
Comparing these values to the recommended limits in Table 7-2, we find that they are all 
well out of the desired range.  This is not unexpected since the stress analysis in Prob.  

-21 also indicated the shaft is undersize7
the lef

d for infinite life.  The transverse deflection at 
t gear is the most excessive, so we will attempt to increase all diameters to bring it 

to compliance.  Using Eq. (7-17) at the left gear, assuming from Table 7-2 an allowable 
 yall = 0.01 in = 0.254 mm, 

in
deflection of
 

1/4 1/4

new old (1)(3.761)
1.96dd n y

     
old alld y

 
Multiplying all diam btai wi : 
 

De n 

0.254

eters by 2, we o n the follo ng deflections

Location Slope 
(rad) 

flectio
(mm) 

Left bearing O 0.00090 0.000 
Right bearing C 0.00115 0.000 
Left Gear A 0.00022 0.235 
Right Gear B 0.00023 0.230 
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This brings the deflection at the gears just within the limit for a spur gear (assuming P < 

______________________________________________________________________________ 
 
7-23 , 

 

 

stress element will be completely reversed, while the torsional stress will be steady.  
Since we do not have any information about the fan, we will ignore any axial load that it 
would introduce.  It would not likely contribute much compared to the bending anyway.   

 

10 teeth/in), and all other deflections well below the recommended limits. 

(a)  Label the approximate locations of the effective centers of the bearings as A and B
the fan as C, and the gear as D, with axial dimensions as shown.  Since there is only one 
gear, we can combine the radial and tangential gear forces into a single resultant force
with an accompanying torque, and handle the statics problem in a single plane.  From 
statics, the resultant reactions at the bearings can be found to be RA = 209.9 lbf and RB =
464.5 lbf.  The bending moment and torque diagrams are shown, with the maximum 
bending moment at D of MD = 209.9(6.98) = 1459 lbf·in and a torque transmitted from D 
to C of T = 633 (8/2) = 2532 lbf·in.  Due to the shaft rotation, the bending stress on any 

 
Potentially critical locations are identified as follows: 
 Keyway at C, where the torque is high, the diameter is small, and the keyway creates 

a stress concentration. 
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 Keyway at D, where the bending moment is maximum, the torque is high, and the
keyway creates a stress concentration. 

 

. 
eter is smaller than at D or E, the bending moment is 

 The shoulder to the left of D can be eliminated since the change in diameter is very 
ill undoubtedly be much less than at D. 

 
 Sut = 68 kpsi, Sy = 57 kpsi

ince there is only steady torsion here, only a static check needs to be performed.  We’ll 
aximum shear stress theory. 

 

 Groove at E, where the diameter is smaller than at D, the bending moment is still 
high, and the groove creates a stress concentration.  There is no torque here, though

 Shoulder at F, where the diam
still moderate, and the shoulder creates a stress concentration.  There is no torque 
here, though. 

slight, so that the stress concentration w

Table A-20:  
q. (6-8): 0.5(68) 34.0 kpsieS     E

0.2652.70(68) 0.883ak    Eq. (6-19): 

 
Keyway at C 
S
use the m
 

 
 4

2532 1.00 / 2
12.9 kpsi

1.00 / 32

Tr

J



    

/ 2 57 / 2
2.21

12.9
y

y

S
nEq. (5-3): 


    

ssuming r / d = 0.02 for typical end-milled keyway cutter (p. 373), with d = 1.75 in,   

Kts = 3.0 
q = 0.66 

Fig. 6-21: qs = 0.72 
q. (6-32): 

 
A

 
Keyway at D 

r = 0.02d = 0.035 in.  
  
Table 7-1: Kt = 2.14, 
Fig. 6-20: 

E  1 1 1 0.66(2.14 1) 1.8f tK q K      

1 ( 1) 1 .72(3.0 1) 2.4fs s tsK q K        
 

0
0.107

1.75
0.828

0.30bk


   
 

 Eq. (6-20): 

Eq. (6-18): 0.883(0.828)(34.0) 24.9 kpsieS    

 
We will choose the DE-Gerber criteria since this is an analysis problem in which we 

ould like to evaluate typical expectations.   
Using Eq. (7-9) with Mm = Ta = 0, 
w
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    

    

2 2

2 2

4 4 1.8 1459 5252 lbf in 5.252 kip in

3 3 2.4 2532 10 525 lbf in 10.53 kip in

f a

fs m

A K M

B K T

      

      

 



 

 
  

  
  

1/22

3

1/22

3

21 8
1 1

8 5.252 2 10.53 24.9
1 1

5.252 681.75 24.9

e

e ut

BSA

n d S AS



         
     

            

 

    
 n = 3.59  Ans.   
 

 

roove at E 
he right of the 

w and will likely not allow the stress flow to fully develop. (See 
 the  concept.)   

  r / d = 0.1 / 1.55 = 0.065,       D / d = 1.75 / 1.55 = 1.13 
: Kt = 2.1 

Fig. 6-20: q = 0.76 

G
We will assume Figs. A-15-14 is applicable since the 2 in diameter to t
groove is relatively narro
Fig.7-9 for  stress flow
 

Fig. A-15-14

Eq. (6-32): ) 1 1 1 0.76(2.1 1 1.8f tK q K        
0.107

1.55
0.839

0.30bk
     Eq. (6-20): 



 

Using Eq. (7-9) with Mm = Ta = Tm = 0, 

 

0.883(0.839)(34) 25.2 kpsieS    Eq. (6-18): 

 

 

    2 2
4 4 1.8 1115 4122 lbf in 4.122 kip inf aA K M       

 
B = 0  

 
 

  
  

1/22

3

1/22

31.55 25.2

21 8
1 1

8 4.122
1 1 0

e

e u

BSA

A

         
   tn d S S   

    

 

 Ans. 

F 
  r / d = 0.125 / 1.40 = 0.089,       D / d = 2.0 / 1.40 = 1.43 

 Kt = 1.7 
Fig. 6-20: q = 0.78 

 n = 4.47  
 
Shoulder at 

Fig. A-15-9:
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Eq. (6-32): ) 1 1 1 0.78(1.7 1 1.5f tK q K        
0.107

1.40
0.848

0.30bk
   
 

 Eq. (6-20): 


Eq. (6-18): 

Using Eq. (7-9) with Mm = Ta = Tm = 0, 

0.883(0.848)(34) 25.5 kpsieS    

 

 

    2 2
4 4 1.5 845 2535 lbf in 2.535 kip inf aA K M       

 
B = 0  

 

 
 

  
  1/22

3

2.53
1 1 0

1.40 25.5

1/22

3

21 8
1 1 e

e ut

BSA

AS

         
  

n d S  

8 5     

 n = 5.42 Ans.  
        

 

 
(b) The deflection will not be much affected by the details of fillet radii, grooves, and 
keyways, so these can be  A g
narrow 2.0 in diameter section, can be cted.  ill model the shaft with the 
following three sections: 

 
Section Diameter

(in) 
Length

(in) 

 
ignored. lso, the sli ht diameter changes, as well as the 

negle We w

1 1.00 2.90 
2 1.70 7.77 
3 1.40 2.20 

 
The deflection problem can readily (though tediously) be solved with singularity 
functions.  For example -7, p.  the solution to Prob. 7-24.  Alternatively, 
shaft analysis software or finite element software may be used.  Using any of the 
methods, the results low

 
ation D

 
 

s, see Ex. 4 159, or

should be as fol s: 

Loc Slope 
(rad) 

eflection
(in) 

Left bearing A 0.000290 0.000000 
Right bearing B 0.000400 0.000000 
Fan C 0.000290 0.000404 
Gear D 0.000146 0.000928 
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Comparing these values to the recommended limits in Table 7-2, we find that they
within the r

 are all 
ecommended range.   

______________________________________________________________________________ 
 
7-24 

ill ignore the steps near the bearings where the bending moments 
w  mm dia. be 35 mm. Secondly, the 55 mm dia. is very thin, 10 
Th tresses will not develop at the outer fibers so full stiffness will not 

iameter be 45 mm. 

tatics: L ort

             R r

 

 
 100 140 210 275 315 

Shaft analysis software or finite element software can be utilized if available. Here we 
will demonstrate how the problem can be simplified and solved using singularity 
functions. 
 
Deflection: First we w
are lo . Thus let the 30
mm. e full bending s
develop either. Thus, ignore this step and let the d
 
S eft supp : R1 15 140) / 315 889   7(3 3. kN  

ight suppo t: 2 7(14 0R ) / 315  3.111 kN  

Determine the bending moment at each step. 

x(mm) 0 40
M(N · m) 0 155.56 388.89 544.44 326.67 124.44 0 

 
I35 = (/64)(0.0354) = 366(10 ) m4, I 0 = 1.257(1 , I45 = 2. -7) m4 

 
Plot M/I nction

 
) M N/m3) Step 

 7. -8
4 0-7) m4 013(10

as a fu  of x. 

x(m /I (109  Slope Slope 
0 0   52.8  
0.04 2.112    
0.04 1.2375 0.8745 21.86 

4 
 1.162 11.617 

05 0 15.457 34.78 
0.21 1.623    
0.21 2.6   0.977 -24.769 -9.312 
0.275 0.99    
0.275 1.6894   0.6994 -42.235 -17.47 
0.315 0    

–  30.942 –
0.1 3.09    
0.1 1.932 –  19.325 –
0.14 2.705    
0.14 2.7   – –
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The steps and the change of slopes are evaluated in the table. From these, the function 
M/I can be generated: 

 
0 1

1 1 0

1 0 9

/ 52.8 0.8745 0.04 21.86 0.04 1.162 0.1

11.617 0.1 34.78 0.14 0.977 0.21

9.312 0.21 0.6994 0.275 17.47 0.275 10

M I x x x x

x x x

x x x

      
     

      

 

0

1

 
Integrate twice: 
 

1 2226.4 0.8745 0.04 10.93 0.04 1.162x x x x      
1

3 2

0.1

0.04 0.581 0.1

7

E
dx

x

x

  

dy

2 2 1

2 1 2 9
1

23

5.81 0.1 17.39 0.14 0.977 0.21

4.655 0.21 0.6994 0.275 8.735 0.275 10  (1)

8.8 0.4373 0.04 3.643

x x x

x x x C

Ey x x x

     

       
   

 

1.93 3 3 2

3 9

0.1 0.14 0.21

52 0. 0.2 0.275 10

x

x x x

   

  

Boundary conditions:  y yields C2 
 y = 0 at x = 0.315 m yields C1 = –0.295 25 N/m2. 

 

3  2  1 2C x C 

5.797 0.4885 x

1.5 21 0.3497 75 2.912  

= 0 at x = 0 = 0; 

 
Equation (1) with C1 = –0.295 25 provides the slopes at the bearings and gear. The 
following table gives the results in the second column. The third column gives the results
from a similar finite element model. The fourth column gives the results of a full model 
which models the 35 and 55 mm diameter steps. 
 

x (mm)  (rad) F.E. Model Full F.E. Model
0 –0.001 4260 –0.001 4270 –0.001 4160

140 –0.000 1466 –0.000 1467 –0.000 1646
315 0.001 3120 0.001 3280 0.001 3150
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The main discrepancy between the results is at the gear location (x = 140 mm). The larger 
value in the full model is caused by the stiffer 55 mm diameter step. As was stated 
arlier, this step is not as stiff as modeling implicates, so the exact answer is somewhere 

between the full model and the simplified model which in any event is a small value. As 
xpected, modeling the 30 mm dia. as 35 mm does not affect the results much. 

     
 can be seen that the allowable slopes at the bearings are exceeded. Thus, either the load 

ed or the shaft “beefed” up. If the allowable slope is 0.001 rad, then the 
aximum load should be Fmax = (0.001/0.001 426)7 = 4.91 kN. With a design factor this 

would be reduced further. 
      
To increase the stiffness of th , E 8  f  deflection (at 
 = 0) to determine a multiplier to be used for all diameters.   

 

e

e

It
has to be reduc
m

e shaft  apply q. (7-1 ) to the most o fending
x
 

 
 

1/4 1/4

new old

old

/ (1)(0.0014260)
1.093

n dy dxd

d
   

 
orm a table: 

all
slope 0.001

d 

F
 

Old d, mm 20.00 30.00 35.00 40.00 45.00 55.00 
New ideal d, mm 21.86 32.79 38.26 43.72 49.19 60.12 
Rounded up d, mm 22.00 34.00 40.00 44.00 50.00 62.00 

 
Repeating the full finite element mo lts in del resu

x  9
40 :   –1  1  

5   .
 

stress concentrations and reduced shaft diameters, there are a number of 
 at. A table of nominal stresses is given below. Note that torsion is only 

f the 7 kN load. Using   = 32 (d3) and   = 16T/(d3), 
 

0  275 300 330 

 
 = 0:    = – .30  10-4 rad 

x = 1  mm   = .09  0-4 rad
-4x = 31  mm:   = 8 65  10  rad 

This is well within our goal. Have the students try a goal of 0.0005 rad at the gears. 
 

Strength: Due to 
 looklocations to

to the right o M/

x (mm) 15 40 100 110 140 210
 (MPa) 0 39.6   17.6     0 

    0     6     8.5   12.7   20.2   68.1
22.0 37.0   61.9   47.8   60.9   52.0   

  (MPa) 0   0   0     0 
(MPa)  0 22.0 37.0   61.9   47.8   61.8   53.1   45.3   39.2 118.0

 
 for Sy = 390 MPa 

 

Eq. (6-19): 

Table A-20  AISI 1020 CD steel:   Sut = 470 MPa,   

At x = 210 mm: 
0.2654.51(470) 0.883ak    
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Eq. (6-20): 0.107(40 / 7.62) 0.837bk    

Eq. (6-18): Se = 0.883 (0.837)(0.5)(470) = 174 MPa 
 D / d = 45 / 40 = 1.125,    r / d = 2 / 40 = 0.05 
Fig. A-15-8:  Kts = 1.4  
Fig. A-15-9:  Kt = 1.9  
Fig q = 0.75 
Fig qs = 0.79 

 = 1 + 0.75(1.9 –1) = 1.68 

ld check, from Eq. (7-11), with 

. 6-20:  

. 6-21: 
Eq. (6-32): Kf

K  f s = 1 + 0.79(1.4 – 1) = 1.32 
 

Choosing DE-ASME Elliptic to inherently include the yie
Mm = Ta = 0,  

  
     

1/22 2

6

1.32(107)
3

390 103 6

1.68(326.67)
4

0.04 174 10n 

    1 16      
       

 

  
 
 At 

The von Mises stress is the highest but it comes from the steady torque only. 

Fig. 6-21: qs = 0.79 
.42 – 1) = 1.33 

1.98n   

x = 330 mm: 

 
 D / d = 30 / 20 = 1.5,    r / d = 2 / 20 = 0.1 
Fig. A-15-9: Kts = 1.42 

Eq. (6-32): Kf s = 1 + 0.79(1
Eq. (7-11):  

      
1 16 1.33(107)

3 6390 10n 
3
 
 

      
 n = 2.49

 
Note that since there is only a steady torque, Eq. (7-11) reduces to essentially the 
equivalent of the distortion energy failure theory. 

 

 s at x = 210 mm, the changes discussed for the slope criterion will 

______________________________________________________________________________ 

7-2 se design tasks each student will travel different paths and almost all 

 The student gets a blank piece of paper, a statement of function, and some constraints 

Check the other locations. 
 

If worse-case i
 improve the strength issue. 

 
5 and 7-26  With the

details will differ. The important points are 

– explicit and implied. At this point in the course, this is a good experience. 
 It is a good preparation for the capstone design course. 
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 The adequacy of their design must be demonstrated and possibly include a designer’s 
notebook. 

 Many of the fundaments of the course, based on this text and this course, are useful. 
. 

 Don’t let the students create a time sink for themselves. Tell them how far you want 

______________________________________________________________________________ 
 
7-27 oblem.  This problem is a learning experience. 

ollowing the task statement, the following guidance was added. 

ting the temptation of putting pencil to paper, and decide 
what the problem really is. 

ld implement it. 

The students’ initial reaction is that he/she does not know much from the problem 
lowly the realization sets in that they do know some important things 

that the designer did not. They knew how it failed, where it failed, and that the design 
wasn’t good enough; it was close, though. 

Also, a fix at the bearing seat lead-in could transfer the problem to the shoulder fillet, and 
the problem may not be 
 

tudents’ credit, they chose to keep the shaft geometry, and selected a new 
material to realize about 

______________________________________________________________________________ 

-28 

The student will find them useful and notice that he/she is doing it


them to go. 

This task was once given as a final exam pr
F

 
 Take the first half hour, resis

 Take another twenty minutes to list several possible remedies. 
 Pick one, and show your instructor how you wou
 

statement. Then, s

 

solved. 

To many s
twice the Brinell hardness. 

 
7 In Eq. (7-22) set 

4 2d d
,

64 4
I A

 
   

 to obtain 
2

4l
 d gE


   

 

    
   

 (1) 

or 
2

2 gE

4l
d

 
  (2) 

 (a) From Eq. (1) and Table A-5 
 




 

 
2 90.025 9.81(207)(10 )

.A
3

883 rad/s     
0.6 4 76.5 10

ns
          

   
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(b) From Eq. (1), we observe that the critical speed is linearly proportional to the 
diameter.  Thus, to double the critical speed, we should double the diameter to d = 50 
mm.        Ans. 

   
 (c) From Eq. (2), 
 

2 d g
l


4

E

l 
  

 
 Since d / l is the same regardless of the scale, 
 

constant 0.6(883) 529.8l     
529.8

1766 rad/s     .A
0.3

ns    

 Thus the first critical speed doubles. 
______________________________________________________________________________ 
 
7-29 From Prob. 7-28,

 

883 rad/s   
 

     4 2 8 4 44.909 10  m , 1.917 10 m , 7.65 10  N/mA I      3

   9 4 4207(10 ) Pa,     4.909 10 7.65 10 (0.6) 22.53 NE A l    w  

  
 One element: 
 
 Eq. (7-24): 

 
     

2 2 2

6
11 9 8

0.3(0.3) 0.6 0.3 0.3
1.134 10 m/N

6(207) 10 (1.917) 10 (0.6)
 



 
   

 

   6 5
1 1 11 22.53(1.134) 10 2.555 10  my     w  

 2 1
1 6.528 10y   0

   5 422.53(2.555) 10 5.756 10y    w  

   2 1022.53(6.528) 10 1.471 10y    w  8

 

 
 

4

1 2 8

5.756 10
9.81 620 rad/s

1.471 10

y
g

y







  


w
w

     (30% low) 

 
 Two elements: 
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 
     

2 2 2

7
11 22 9 8

0.45(0.15) 0.6 0.45 0.15
6.379 10  m/N

6(207) 10 (1.917) 10 (0.6)
  



 
    

     
2 2 2

7
12 21 9 8

0.15(0.15)(0.6 0.15 0.15 )
4.961 10  m/N

6(207) 10 (1.917) 10 (0.6)
  



 
    

 

     7 7
1 2 1 11 2 12 11.265(6.379) 10 11.265(4.961) 10 1.277 10 my y         w w  5

 2 2 102 10  1 2 1.63y y 

   5 42(11.265)(1.277) 10 2.877 10y    w  

   2 102(11.265)(1.632) 10 3.677 10y    w  9

 

 
 

4

1 9

2.877 10
9.81 876 rad/s

3.677 10






 
  
  

 (0.8% low) 

 
 Three elements: 

 
 

     
2 2 2

7
11 33 9 8

0.5(0.1) 0.6 0.5 0.1
3.500 10  m/N

6(207) 10 (1.917) 10 (0.6)
  



 
    

 
     

2 2 2

6
22 9 8

0.3(0.3) 0.6 0.3 0.3
1.134 10  m/N

6(207) 10 (1.917) 10 (0.6)
 



 
   

 
     

2 2 2

7
12 32 9 8

0.3(0.1) 0.6 0.3 0.1
5.460 10  m/N

6(207) 10 (1.917) 10 (0.6)
  



 
    

 
     

2 2 2

7
13 9 8

0.1(0.1) 0.6 0.1 0.1
2.380 10  m/N

6(207) 10 (1.917) 10 (0.6)
 



 
   

 

       7 7 7
1 7.51 3.500 10 5.460 10 2.380 10 8.516 10         6y

       7 6 7
2 7.51 5.460 10 1.134 10 10 1.672 10y          55.460

       7 7 7
3 7.51 2.380 10 5.460 10 3.500 10 8.516 10y          6

       6 5 6 47.51 8.516 10 1.672 10 8.516 10 2.535 10y          w  

        2 2 2
2 6 5 6 97.51 8.516 10 1.672 10 8.516 10 3.189 10y                  w  
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 
 

42.535 10
9.81 883 ra

 
  1 93.189 10  

d/s  

7-28.  The point was to show that convergence is rapid 
using a static deflection beam equation. The method works because: 

 If a deflection curve is chosen which meets the boundary conditions of moment-
free and deflection-free ends, as in this problem, the strain energy is not very 
sensitive to the equation used. 

ation is available, and meets the moment-free and 
deflection-free ends, it works. 

______________________________________________________________________________ 
 
7-30 (a) For two bodies, Eq. (7-26) is 

 
The result is the same as in Prob. 

 Since the static bending equ

 
2

1 11( 1/ )
0

m   2 12

2
1 21 2 22( 1/ )

m

m m



  



 
 Expanding the determinant yields, 

 

 
2

1 
1 11 2 22 1 2 11 22 12 212 2

1

1
( ) ( ) 0m m m m     

 
 

      
   

 (1) 

 
 Eq. (1) has two roots 2 2

1 21 /  and 1 / .   Thus 

 

2 2 2 2
1 2

1 1 1 1  
0

   
    

  
 

 
 or, 
 

2
1 1 

2

2 2 2 2 2
1 2 1 2

1 1 1 1
0

     
              

       
   (2) 

 
Equate the third terms of Eqs. (1) and (2), which must be identical.  

 
2

1 2 11 22 12 21 1 1 2 11 22 12 212 2 2

1 1 1
( ) ( )m m m m

1 2 2

        
  

    
 

 
 and it follows that 
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2

2
1 1 11 22 12

.
( )

Ans
   


w w

 
2 21

1 g



(b) In Ex. 7-5, part (b), the first critical speed of the two-disk shaft (w1 = 35 lbf,  
w 2 = 55 lbf) is 1 = 124.8 rad/s.  From part (a), using influence coefficients, 

 

 

 
2

2 2 8

1 386
466 rad/s .

124.8 35(55) 2.061(3.534) 2.234 10
Ans


 

  
 

______________________________________________________________________________ 
 

7-31 In Eq. (7-22), for 1, the term /I A appears. For a hollow uniform diameter shaft, 
 

 
 

  4 2 2 2 2

2 2o o i o id d d d dI
d d




 
     

4

1 2 22 2

/ 64 1 1

16 4/ 4

i

o i
o io i

d

A d dd d






 
This means that when a solid shaft is hollowed out, the critical speed increases beyond 

 solid shaft of the same size. By how much? that of the
 

22 2

2
1

(1/ 4)

o i i

oo
dd

   
 

 

The possible values of  are 0 ,i i od d d

(1/ 4) d d d  

 
   so the range of the critical speeds is 

 

1 1 0   to about 1 1 1   

 

 or from 1 1to 2 . .Ans  

______________________________________________________________________________ 
 
7-32 All steps w  b g t t pr s et.  Programming 

both loads will enable the user to first set the left load to 1, the right load to 0 and 
calculate 11 and 21. Then set the left load to 0 and the right to 1 to get 12 and 22. The 
spreadsheet shows the 11 and 21 calculation. A table for M / I  vs. x is easy to make. 
First, draw the bending-moment diagram as shown with the data. 

 
x 0 1 2 3 4 5 6 7 8 



ill e modeled using sin ulari y func ions with a s ead he

M 0 0.875 1.75 1.625 1.5 1.375 1.25 1.125 1 

 

x 9 10 11 12 13 14 15 16   

M 0.875 0.75 0.625 0.5 0.375 0.25 0.125 0   
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 The second-area moments are: 
 
   4 4

10 1 in and 15 16 in, 2 / 64 0.7854 inx x I        

   
 
 

4 4
2

4 4
3

1 9 in , 2.472 / 64 1.833 in

9 15 in , 2.763 / 64 2.861 in

x I

x I





   

   

 
 Divide M by I at the key points x = 0, 1, 2, 9, 14, 15, and 16 in and plot 
  

x 0 1 1 2 2 3 4 5 6 7 8 

M/I 0 1.1141 0.4774 0.9547 0.9547 0.8865 0.8183 0.7501 0.6819 0.6137 0.5456

            

x 9 9 10 11 12 13 14 14 15 15 16 

M/I 0.4774 0.3058 0.2621 0.2185 0.1748 0.1311 0.0874 0.0874 0.0437 0.1592 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 From this diagram, one can see where changes in value (steps) and slope occur. Using a 

spreadsheet, one can form a table of these changes. An example of a step is, at x = 1 in, 
M/I goes from 0.875/0.7854 = 1.1141 lbf/in3 to 0.875/1.833 = 0.4774 lbf/in3, a step 
change of 0.4774  1.1141 =  0.6367 lbf/in3. A slope change also occurs at at x = 1 in. 
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The slope for 0  x  1 in is 1.1141/1 = 1.1141 lbf/in2, which changes to (0.9547  
0.4774)/1 = 0.4774 lbf/in2, a change of  0.4774  1.1141 =  0.6367 lbf/in2. Following 
this approach, a table is made of all the changes. The table shown indicates the column 
letters and row numbers for the spreadsheet. 

 
  A B C D E F 

1 x M M/I step Slope  Slope 

2 1a 0.875 1.114085 0.000000 1.114085 0.000000 

3 1b 0.875 0.477358 -0.636727 0.477358 -0.636727 

4 2 1.75 0.954716 0.000000 0.477358 0.000000 

5 2 1.75 0.954716 0.000000 -0.068194 -0.545552 

6 9a 0.875 0.477358 0.000000 -0.068194 0.000000 

7 9b 0.875 0.305854 -0.171504 -0.043693 0.024501 

8 14 0.25 0.087387 0.000000 -0.043693 0.000000 

9 14 0.25 0.087387 0.000000 -0.043693 0.000000 

10 15a 0.125 0.043693 0.000000 -0.043693 0.000000 

11 15b 0.125 0.159155 0.115461 -0.159155 -0.115461 

12 16 0 0.000000 0.000000 -0.159155 0.000000 
 
 The equation for M / I in terms of the spreadsheet cell locations is: 
 

    

0 1 1

0 1 0

/ E2 ( ) D3 1 F3 1 F5 2

D7 9 F7 9 D11 15 F11 15

M I x x x x

x x x x

      

        1

5

5





 

 
 Integrating twice gives the equation for Ey. Assume the shaft is steel. Boundary 

conditions y = 0 at x = 0 and at x = 16 inches provide integration constants (C1 =  4.906  
lbf/in and C2 = 0). Substitution back into the deflection equation at x = 2 and 14 in 
provides the  ’s. The results are: 11 = 2.917(10–7) and 12 = 1.627(10–7).  Repeat for  

 F1 = 0 and F2 = 1, resulting in 21 = 1.627(10–7) and 22 = 2.231(10–7). This can be 
verified by finite element analysis. 

 
7 7

1
7 7

2
2 10 2 10
1 2

4 2 9

18(2.917)(10 ) 32(1.627)(10 ) 1.046(10 )

18(1.627)(10 ) 32(2.231)(10 ) 1.007(10 )

1.093(10 ),    1.014(10 )

5.105(10 ),    5.212(10 )

y

y

y y

y y

 

 

 

 

  
  
 
  w w

 

 
 Neglecting the shaft, Eq. (7-23) gives 
 

4

1 9

5.105(10 )
386 6149 rad/s   or   58 720 rev/min     .

5.212(10 )
Ans



 
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Without the loads, we will model the shaft using 2 elements, one between 0  x  9 in, 
and one between 0  x  16 in. As an approximation, we will place their weights at  
x = 9/2 = 4.5 in, and x = 9 + (16  9)/2 = 12.5 in. From Table A-5, the weight density of 
steel is   = 0.282 lbf/in3. The weight of the left element is  

     2 2 2
1 0.282 2 1 2.472 8 11.7 lbf

4 4
d l

            
w  

The right element is 

     2 2
2 0.282 2.763 6 2 1 11.0 lbf

4

         
w  

 
 
 

 
 
 
 
 
The spreadsheet can be easily modified to give 

 
       7 7

11 12 21 229.605 10 , 5.718 10 , 5.472 10        7  

      5 5
1 21.753 10 , 1.271 10y y    

      2 10 2
1 23.072 10 , 1.615 10y y   10  

      4 23.449 10 , 5.371 10y y   w w 9  

   
 
 

4

1 9

3.449 10
386 4980 rad/s

5.371 10






 
  
  

 

 
A finite element model of the exact shaft gives 1 = 5340 rad/s. The simple model is 
6.8% low. 
 
Combination:   Using Dunkerley’s equation, Eq. (7-32): 
 

  12 2 2
1

1 1 1
3870 rad/s .

6149 4980
Ans


    

______________________________________________________________________________ 
 
7-33 We must not let the basis of the stress concentration factor, as presented, impose a view-

point on the designer. Table A-16 shows Kts as a decreasing monotonic as a function of 
a/D. All is not what it seems.  Let us change the basis for data presentation to the full 
section rather than the net section. 

 

0 0ts tsK K      
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3 3

32 32
ts ts

T T
K K

AD D 
    
 

 

 
 Therefore 
 

ts
ts

K
K

A
   

 
 Form a table: 
 

  
tsK  has the following attributes: 

 It exhibits a minimum; 
 It changes little over a wide range; 
 Its minimum is a stationary point minimum at a / D  0.100; 

 Our knowledge of the minima location is 
 
0.075 ( / ) 0.125a D   

We can form a design rule: In torsion, the pin diameter should be about 1/10 of the shaft 
diameter, for greatest shaft capacity. However, it is not catastrophic if one forgets the 
rule. 

______________________________________________________________________________ 
 
7-34 From the solution to Prob. 3-72, the torque to be transmitted through the key from the 

gear to the shaft is T = 2819 lbf·in.  From Prob. 7-19, the nominal shaft diameter 
supporting the gear is 1.00 in.  From Table 7-6, a 0.25 in square key is appropriate for a 
1.00 in shaft diameter.  The force applied to the key is  

 

  
2819

5638 lbf
1.00 / 2

T
F

r
    

 
Selecting 1020 CD steel for the key, with Sy = 57 kpsi, and using the distortion-energy 
theory, Ssy = 0.577 Sy = (0.577)(57) = 32.9 kpsi.   
 
Failure by shear across the key: 
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Failure by crushing: 
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F F

A t l
  

 
  
  3

2 5638 1.12
          0.870 in

2 / 0.25 57 10
y y

y

S S Fn
n l

F tl tS
       

 
Select ¼-in square key, 7/8 in long, 1020 CD steel.    Ans. 

______________________________________________________________________________ 
 
7-35 From the solution to Prob. 3-73, the torque to be transmitted through the key from the 

gear to the shaft is T = 3101 N·m.  From Prob. 7-21, the nominal shaft diameter 
supporting the gear is 50 mm.  To determine an appropriate key size for the shaft 
diameter, we can either convert to inches and use Table 7-6, or we can look up standard 
metric key sizes from the internet or a machine design handbook.  It turns out that the 
recommended metric key for a 50 mm shaft is 14 x 9 mm.  Since the problem statement 
specifies a square key, we will use a 14 x 14 mm key.  For comparison, using Table 7-6 
as a guide, for d = 50 mm = 1.97 in, a 0.5 in square key is appropriate. This is equivalent 
to 12.7 mm.  A 14 x 14 mm size is conservative, but reasonable after rounding up to 
standard sizes. 

 
 The force applied to the key is  
 

   33101
124 10  N

0.050 / 2

T
F

r
    

 
Selecting 1020 CD steel for the key, with Sy = 390 MPa, and using the distortion-energy 
theory, Ssy = 0.577 Sy = 0.577(390) = 225 MPa.   
 
Failure by shear across the key: 
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Failure by crushing: 
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        

 Select 14 mm square key, 50 mm long, 1020 CD steel.    Ans. 
______________________________________________________________________________ 
 
7-36 Choose basic size D = d = 15 mm. From Table 7-9, a locational clearance fit is 

designated as 15H7/h6. From Table A-11, the tolerance grades are D = 0.018 mm and 
d = 0.011 mm.   From Table A-12, the fundamental deviation is F = 0 mm. 
 
Hole:  
Eq. (7-36): Dmax = D + D = 15 + 0.018 = 15.018 mm  Ans. 
 Dmin = D = 15.000 mm    Ans. 

 
Shaft:  
Eq. (7-37): dmax = d + F = 15.000 + 0 = 15.000 mm  Ans. 
  dmin = d + F – d = 15.000 + 0 – 0.011 = 14.989 mm Ans. 

______________________________________________________________________________ 
7-37 Choose basic size D = d = 1.75 in. From Table 7-9, a medium drive fit is designated as 

H7/s6. From Table A-13, the tolerance grades are D = 0.0010 in and d = 0.0006 in.   
From Table A-14, the fundamental deviation is F = 0.0017 in. 
 
Hole:  
Eq. (7-36): Dmax = D + D = 1.75 + 0.0010 = 1.7510 in  Ans. 
 Dmin = D = 1.7500 in     Ans. 

 
Shaft:  
Eq. (7-38): dmin = d + F = 1.75 + 0.0017 = 1.7517 in  Ans. 
  dmax = d + F + d = 1.75 + 0.0017 + 0.0006 = 1.7523 in Ans. 

______________________________________________________________________________ 
 
7-38 Choose basic size D = d = 45 mm. From Table 7-9, a sliding fit is designated as H7/g6. 

From Table A-11, the tolerance grades are D = 0.025 mm and d = 0.016 mm.   From 
Table A-12, the fundamental deviation is F = –0.009 mm. 
 
Hole:  
Eq. (7-36): Dmax = D + D = 45 + 0.025 = 45.025 mm  Ans. 
 Dmin = D = 45.000 mm    Ans. 

 
Shaft:  
Eq. (7-37): dmax = d + F = 45.000 + (–0.009) = 44.991 mm  Ans. 
  dmin = d + F – d = 45.000 + (–0.009) – 0.016 = 44.975 mm Ans. 

______________________________________________________________________________ 
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7-39 Choose basic size D = d = 1.250 in. From Table 7-9, a close running fit is designated as 
H8/f7. From Table A-13, the tolerance grades are D = 0.0015 in and d = 0.0010 in.   
From Table A-14, the fundamental deviation is F = –0.0010 in. 
 
Hole:  
Eq. (7-36): Dmax = D + D = 1.250 + 0.0015 = 1.2515 in Ans. 
 Dmin = D = 1.2500 in     Ans. 

 
Shaft:  
Eq. (7-37): dmax = d + F = 1.250 + (–0.0010) = 1.2490 in Ans. 
  dmin = d + F – d = 1.250 + (–0.0010) – 0.0010 = 1.2480 in Ans. 

______________________________________________________________________________ 
 
7-40 Choose basic size D = d = 35 mm. From Table 7-9, a locational interference fit is 

designated as H7/p6. From Table A-11, the tolerance grades are D = 0.025 mm and  
 d = 0.016 mm.   From Table A-12, the fundamental deviation is F = 0.026 mm. 

 
Hole:  
Eq. (7-36): Dmax = D + D = 35 + 0.025 = 35.025 mm   
 Dmin = D = 35.000 mm     
 
The bearing bore specifications are within the hole specifications for a locational 
interference fit.  Now find the necessary shaft sizes. 
 
Shaft:  
Eq. (7-38): dmin = d + F = 35 + 0.026 = 35.026 mm  Ans. 
  dmax = d + F + d = 35 + 0.026 + 0.016 = 35.042 mm Ans. 

______________________________________________________________________________ 
 
7-41 Choose basic size D = d = 1.5 in. From Table 7-9, a locational interference fit is 

designated as H7/p6. From Table A-13, the tolerance grades are D = 0.0010 in and  
 d = 0.0006 in.   From Table A-14, the fundamental deviation is F = 0.0010 in. 

 
Hole:  
Eq. (7-36): Dmax = D + D = 1.5000 + 0.0010 = 1.5010 in  
 Dmin = D = 1.5000 in      

  
The bearing bore specifications exactly match the requirements for a locational 
interference fit.  Now check the shaft. 
 
Shaft:  
Eq. (7-38): dmin = d + F = 1.5000 + 0.0010 = 1.5010 in   
  dmax = d + F + d = 1.5000 + 0.0010 + 0.0006 = 1.5016 in   
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The shaft diameter of 1.5020 in is greater than the maximum allowable diameter of 
1.5016 in, and therefore does not meet the specifications for the locational interference 
fit.     Ans. 

______________________________________________________________________________ 
 
7-42 (a) Basic size is D = d = 35 mm. 

Table 7-9: H7/s6 is specified for medium drive fit. 
Table A-11: Tolerance grades are D = 0.025 mm and d = 0.016 mm. 
Table A-12: Fundamental deviation is 0.043 mm.F    

Eq. (7-36): Dmax = D + D = 35 + 0.025 = 35.025 mm   
 Dmin = D = 35.000 mm     
Eq. (7-38): dmin = d + F = 35 + 0.043 = 35.043 mm  Ans. 
  dmax = d + F + d = 35 + 0.043 + 0.016 = 35.059 mm Ans. 

 
(b)  
Eq. (7-42): min min max 35.043 35.025 0.018 mmd D       

Eq. (7-43): max max min 35.059 35.000 0.059 mmd D       

Eq. (7-40): 
  2 2 2 2

max
max 3 2 22

o i

o i

d d d dE
p

d d d

   
 

  
 

  
 

  9 2 2 2

23

207 10 0.059 60 35 35 0
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60 02 35
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  
 

   

 
  2 2 2 2

min
min 3 2 22

o i

o i

d d d dE
p

d d d

   
 

  
 

  
 

  9 2 2 2

23

207 10 0.018 60 35 35 0
35.1 MPa .

60 02 35
Ans

  
  

  
 

(c) For the shaft: 
Eq. (7-44): ,shaft 115 MPat p      

Eq. (7-46): ,shaft 115 MPar p      

Eq. (5-13):   1/22 2
1 1 2 2       

       
1/22 2( 115) ( 115)( 115) ( 115) 115 MPa         

 
/ 390 /115 3.4 .yn S Ans   

 
 For the hub: 

Eq. (7-45): 
2 2 2 2

,hub 2 2 2 2

60 35
115 234 MPa

60 35
o

t
o

d d
p

d d


  
     

 

Eq. (7-46): ,hub 115 MPar p      
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Eq. (5-13):   1/22 2
1 1 2 2       

  
1/22 2(234) (234)( 115) ( 115) 308 MPa       

    
 / 600 / 308 1.9 .yn S Ans     

(d) A value for the static coefficient of friction for steel to steel can be obtained online or 
from a physics textbook as approximately f = 0.8. 
Eq. (7-49) 2

min( / 2)T f p ld  

  6 2( / 2)(0.8)(35.1) 10 (0.050)(0.035) 2700 N m .Ans  
 

______________________________________________________________________________ 
 

Chapter 7 - Rev. A, Page 45/45 


