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40.1 DEFINITION OF A FLUID

A solid generally has a definite shape; a fluid has a shape determined by its container. Fluids include
liquids, gases, and vapors, or mixtures of these. A fluid continuously deforms when shear stresses
are present; it cannot sustain shear stresses at rest. This is characteristic of all real fluids, which are
viscous. Ideal fluids are nonviscous (and nonexistent), but have been studied in great detail because
in many instances viscous effects in real fluids are very small and the fluid acts essentially as a
nonviscous fluid. Shear stresses are set up as a result of relative motion between a fluid and its
boundaries or between adjacent layers of fluid.

40.2 IMPORTANT FLUID PROPERTIES

Density p and surface tension or are the most important fluid properties for liquids at rest. Density
and viscosity JJL are significant for all fluids in motion; surface tension and vapor pressure are sig-
nificant for cavitating liquids; and bulk elastic modulus K is significant for compressible gases at
high subsonic, sonic, and supersonic speeds.

Sonic speed in fluids is c = VtfVp. Thus, for water at 15°C, c = V2.18 X 109/999 = 1480 m/
sec. For a mixture of a liquid and gas bubbles at nonresonant frequencies, cm = VATm/pw, where m
refers to the mixture. This becomes

c - / P*K> Ĥ
m V № + (1 - x)pg][xp8 + (1 - JC)P/]

where the subscript / is for the liquid phase and g is for the gas phase. Thus, for water at 20°C
containing 0.1% gas nuclei by volume at atmospheric pressure, cm = 312 m/sec. For a gas or a
mixture of gases (such as air), c = VkRT, where k = cp/cv, R is the gas constant, and T is the
absolute temperature. For air at 15°C, c = V(1.4)(287.1)(288) = 340 m/sec. This sonic property is
thus a combination of two properties, density and elastic modulus.

Kinematic viscosity is the ratio of dynamic viscosity and density. In a Newtonian fluid, simple
laminar flow in a direction x at a speed of w, the shearing stress parallel to x is TL — jji(du/dy) =
pv(du/dy), the product of dynamic viscosity and velocity gradient. In the more general case, TL —
IJi(du/dy + dv/dx) when there is also a y component of velocity v. In turbulent flows the shear stress
resulting from lateral mixing is TT = —pu'v', a Reynolds stress, where u' and v' are instantaneous
and simultaneous departures from mean values u and iJ. This is also written as TT = pe(du/dy), where
e is called the turbulent eddy viscosity or diffusivity, an indirectly measurable flow parameter and
not a fluid property. The eddy viscosity may be orders of magnitude larger than the kinematic
viscosity. The total shear stress in a turbulent flow is the sum of that from laminar and from turbulent
motion: T = TL + TT = p(v + e)du/dy after Boussinesq.

40.3 FLUID STATICS

The differential equation relating pressure changes dp with elevation changes dz (positive upward
parallel to gravity) is dp = -pg dz. For a constant-density liquid, this integrates to p2 ~ P\ = ~pg
(z2 - Zi) or A/? = y/z, where y is in N/m3 and h is in m. Also (pi/y) + Zi = (p2/7) + Z2; a constant
piezometric head exists in a homogeneous liquid at rest, and sincep1/y — p2ly = z2 ~ Zi, a change
in pressure head equals the change in potential head. Thus, horizontal planes are at constant pressure
when body forces due to gravity act. If body forces are due to uniform linear accelerations or to
centrifugal effects in rigid-body rotations, points equidistant below the free liquid surface are all at
the same pressure. Dashed lines in Figs. 40.1 and 40.2 are lines of constant pressure.

Pressure differences are the same whether all pressures are expressed as gage pressure or as
absolute pressure.

Fig. 40.1 Constant linear acceleration. Fig. 40.2 Constant centrifugal acceleration.



Fig. 40.3 Barometer. Fig. 40.4 Open manometer.

40.3.1 Manometers
Pressure differences measured by barometers and manometers may be determined from the relation
Ap = yh. In a barometer, Fig. 40.3, hb — (pa - pv)/yb m.

An open manometer, Fig. 40.4, indicates the inlet pressure for a pump by pinlet = -ymhm — yy
Pa gage. A differential manometer, Fig. 40.5, indicates the pressure drop across an orifice, for ex-
ample, by pl - p2 = hm(ym - y0) Pa.

Manometers shown in Figs. 40.3 and 40.4 are a type used to measure medium or large pressure
differences with relatively small manometer deflections. Micromanometers can be designed to pro-
duce relatively large manometer deflections for very small pressure differences. The relation Ap =
ykh may be applied to the many commercial instruments available to obtain pressure differences
from the manometer deflections.

40.3.2 Liquid Forces on Submerged Surfaces
The liquid force on any flat surface submerged in the liquid equals the product of the gage pressure
at the centroid of the surface and the surface area, or F = pA. The force F is not applied at the
centroid for an inclined surface, but is always below it by an amount that diminishes with depth.
Measured parallel to the inclined surface, y is the distance from 0 in Fig. 40.6 to the centroid and
yF = y + ICG/Ay, where ICG is the moment of inertia of the flat surface with respect to its centroid.
Values for some surfaces are listed in Table 40.1.

For curved surfaces, the horizontal component of the force is equal in magnitude and point of
application to the force on a projection of the curved surface on a vertical plane, determined as above.
The vertical component of force equals the weight of liquid above the curved surface and is applied
at the centroid of this liquid, as in Fig. 40.7. The liquid forces on opposite sides of a submerged
surface are equal in magnitude but opposite in direction. These statements for curved surfaces are
also valid for flat surfaces.

Buoyancy is the resultant of the surface forces on a submerged body and equals the weight of
fluid (liquid or gas) displaced.

Fig. 40.5 Differential manometer. Fig. 40.6 Flat inclined surface submerged in
a liquid.



Table 40.1 Moments of Inertia for Various Plane Surfaces about Their Center of
Gravity

Surface ICG

Fig. 40.7 Curved surfaces submerged in a liquid.
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40.3.3 Aerostatics
The U.S. standard atmosphere is considered to be dry air and to be a perfect gas. It is defined in
terms of the temperature variation with altitude (Fig. 40.8), and consists of isothermal regions and
polytropic regions in which the polytropic exponent n depends on the lapse rate (temperature
gradient).

Conditions at an upper altitude z2 and at a lower one zl in an isothermal atmosphere are obtained
by integrating the expression dp — -pg dz to get

P2 -gfe ~ fr)
P̂ ^̂ T-

In a polytropic atmosphere where plpl = (p/p̂ ",

?! = \i _ ("- *) fe ~ fr)]"'01"1*
Pi L 8 n RT, \

from which the lapse rate is (T2 — Tl)/(z2 — Zi) — —g(n — l)/nR and thus n is obtained from
l/n = 1 + (R/g)(dt/dz). Defining properties of the U.S. standard atmosphere are listed in Table
40.2.

The U.S. standard atmosphere is used in measuring altitudes with altimeters (pressure gages) and,
because the altimeters themselves do not account for variations in the air temperature beneath an
aircraft, they read too high in cold weather and too low in warm weather.

40.3.4 Static Stability
For the atmosphere at rest, if an air mass moves very slowly vertically and remains there, the
atmosphere is neutral. If vertical motion continues, it is unstable; if the air mass moves to return to
its initial position, it is stable. It can be shown that atmospheric stability may be defined in terms of
the polytropic exponent. If n < k, the atmosphere is stable (see Table 40.2); if n = k, it is neutral
(adiabatic); and if n > k, it is unstable.

The stability of a body submerged in a fluid at rest depends on its response to forces which tend
to tip it. If it returns to its original position, it is stable; if it continues to tip, it is unstable; and if it
remains at rest in its tipped position, it is neutral. In Fig. 40.9 G is the center of gravity and B is
the center of buoyancy. If the body in (a) is tipped to the position in (b), a couple Wd restores the
body toward position (a) and thus the body is stable. If B were below G and the body displaced, it
would move until B becomes above G. Thus stability requires that G is below B.

Fig. 40.8 U.S. standard atmosphere.



Floating bodies may be stable even though the center of buoyancy B is below the center of gravity
G. The center of buoyancy generally changes position when a floating body tips because of the
changing shape of the displaced liquid. The floating body is in equilibrium in Fig. 40.100. In Fig.
40.10& file center of buoyancy is at B19 and the restoring couple rotates the body toward its initial
position in Fig. 40.10a. The intersection of BG is extended and a vertical line through Bl is at M,
the metacenter, and GM is the metacentric height. The body is stable if M is above G. Thus, the
position of B relative to G determines stability of a submerged body, and the position of M relative
to G determines the stability of floating bodies.

40.4 FLUID KINEMATICS
Fluid flows are classified in many ways. Flow is steady if conditions at a point do not vary with
time, or for turbulent flow, if mean flow parameters do not vary with time. Otherwise the flow is
unsteady. Flow is considered one dimensional if flow parameters are considered constant throughout
a cross section, and variations occur only in the flow direction. Two-dimensional flow is the same in
parallel planes and is not one dimensional. In three-dimensional flow gradients of flow parameters
exist in three mutually perpendicular directions (x, v, and z). Flow may be rotational or irrotational,
depending on whether the fluid particles rotate about their own centers or not. Flow is uniform if the
velocity does not change in the direction of flow. If it does, the flow is nonuniform. Laminar flow
exists when there are no lateral motions superimposed on the mean flow. When there are, the flow
is turbulent. Flow may be intermittently laminar and turbulent; this is called flow in transition. Flow
is considered incompressible if the density is constant, or in the case of gas flows, if the density

Fig. 40.9 Stability of a submerged body. Fig. 40.10 Floating body.

Table 40.2 Defining Properties of the U.S. Standard Atmosphere

Altitude
(m)

0

11,000

20,000

32,000

47,000

52,000

61,000

79,000

88,743

Temperature
(°C)

15.0

-56.5

-56.5

-44.5

-2.5

-2.5

-20.5

-92.5

-92.5

Type of
Atmosphere

Polytropic

Isothermal

Polytropic

Polytropic

Isothermal

Polytropic

Polytropic

Isothermal

Lapse
Rate
PC/km)

-6.5

0.0

+ 1.0

+2.8

0.0

-2.0

-4.0

0.0

9
(m/s2)

9.790

9.759

9.727

9.685

9.654

9.633

9.592

9.549

n

1.235

0.972

0.924

1.063

1.136

Pressure
p(Pa)

1.013 x 105

2.263 x 104

5.475 x 103

8.680 x 102

1.109 x 102

5.900 x 101

1.821 X 101

1.038

1.644 X 10-1

Density
P(kg/m3)

1.225

3.639 x 10-1

8.804 x 10~2

1.323 x 10~2

1.427 X 10-3

7.594 x 10~4

2.511 x 10-4

2.001 x 10~5

3.170 X 10-6



variation is below a specified amount throughout the flow, 2-3%, for example. Low-speed gas flows
may be considered essentially incompressible. Gas flows may be considered as subsonic, transonic,
sonic, supersonic, or hypersonic depending on the gas speed compared with the speed of sound in
the gas. Open-channel water flows may be designated as subcritical, critical, or supercritical de-
pending on whether the flow is less than, equal to, or greater than the speed of an elementary surface
wave.

40.4.1 Velocity and Acceleration
In Cartesian coordinates, velocity components are u, v, and w in the jc, y, and z directions, respectively.
These may vary with position and time, such that, for example, u = dxldt = u(x, y, z, t). Then

du , du , du , du ,
du = — dx + — dy + — dz + — dt

dx dy dz dt

and

_ du _ du dx du dy du dz du
dt dx dt dy dt dz dt dt
Du dU dU dU dU

= — = u \- v Hw 1
Dt dx dy dz dt

The first three terms on the right hand side are the connective acceleration, which is zero for uniform
flow, and the last term is the local acceleration, which is zero for steady flow.

In natural coordinates (streamline direction s, normal direction «, and meridional direction m
normal to the plane of s and ri), the velocity V is always in the streamline direction. Thus, V = V(s,t)
and

dv = wds + ™dt
ds dt

dV dV dV
a, = — = V 1

dt ds dt

where the first term on the right-hand side is the connective acceleration and the last is the local
acceleration. Thus, if the fluid velocity changes as the fluid moves throughout space, there is a
convective acceleration, and if the velocity at a point changes with time, there is a local acceleration.

40.4.2 Streamlines
A streamline is a line to which, at each instant, velocity vectors are tangent. A pathline is the path
of a particle as it moves in the fluid, and for steady flow it coincides with a streamline.

The equations of streamlines are described by stream functions ̂ , from which the velocity com-
ponents in two-dimensional flow are u — —dif/fdy and v = +difs/dx. Streamlines are lines of constant
stream function. In polar coordinates

1 dtp dijj
vr = and ve = H—

r dO e dr

Some streamline patterns are shown in Figs. 40.11, 40.12, and 40.13. The lines at right angles to
the streamlines are potential lines.

40.4.3 Deformation of a Fluid Element
Four types of deformation or movement may occur as a result of spatial variations of velocity:
translation, linear deformation, angular deformation, and rotation. These may occur singly or in
combination. Motion of the face (in the x-y plane) of an elemental cube of sides 8x, 5y, and 8z in a
time dt is shown in Fig. 40.14. Both translation and rotation involve motion or deformation without
a change in shape of the fluid element. Linear and angular deformations, however, do involve a
change in shape of the fluid element. Only through these linear and angular deformations are heat
generated and mechanical energy dissipated as a result of viscous action in a fluid.

For linear deformation the relative change in volume is at a rate of

(̂ ,-̂ o)/̂  = r + r + ? = divVdx dy dz



Fig. 40.11 Flow around a corner in a duct. Fig. 40.12 Flow around a corner into a duct.

which is zero for an incompressible fluid, and thus is an expression for the continuity equation.
Rotation of the face of the cube shown in Fig. 40.14J is the average of the rotations of the bottom
and left edges, which is

1 fdv du\ ,
] dt2\dx dyj

The rate of rotation is the angular velocity and is

1 fdv du\ , . . ,
a)z = - I I about the z axis in the x-y plane

1 idw diA , , . . ,
MX = ̂  I ) about the x axis in the y-z plane

2 \By dz/

and

1 fdu dw\ , , . . ,
o)y = - I I about the y axis in the x-z plane

2 \ dz dx I

These are the components of the angular velocity vector H,

i J k

fl = x/2 curl V = - — — — = coA + o)vj + o)zk
2 dx dy dz y

U V W

If the flow is irrotational, these quantities are zero.

Fig. 40.13 Inviscid flow past a cylinder.



Fig. 40.14 Movements of the face of an elemental cube in the x-y plane: (a) translation;
(b) linear deformation; (c) angular deformation; (d) rotation.

40.4.4 Vorticity and Circulation

Vorticity is defined as twice the angular velocity, and thus is also zero for irrotational flow. Circulation
is defined as the line integral of the velocity component along a closed curve and equals the total
strength of all vertex filaments that pass through the curve. Thus, the vorticity at a point within the
curve is the circulation per unit area enclosed by the curve. These statements are expressed by

I L r
Y = <fV-di = <f(udx + vdy + wdz) and £A = lim -

J J A-~0 A

Circulation—the product of vorticity and area—is the counterpart of volumetric flow rate as the
product of velocity and area. These are shown in Fig. 40.15.

Physically, fluid rotation at a point in a fluid is the instantaneous average rotation of two mutually
perpendicular infinitesimal line segments. In Fig. 40.16 the line 8x rotates positively and 8y rotates

Fig. 40.15 Similarity between a stream filament and a vortex filament.



Fig. 40.16 Rotation of two line segments in a fluid.

negatively. Then cox = (dv/dx - du/dy)/2. In natural coordinates (the n direction is opposite to the
radius of curvature r) the angular velocity in the s-n plane is

- I _L - I (Y. _ ?Y\ - I (Y. <!Y\
(°~ 28A~ 2\r dn) ~ 2\r + dr)

This shows that for irrotational motion VIr = dV/dn and thus the peripheral velocity V increases
toward the center of curvature of streamlines. In an irrotational vortex, Vr = C and in a solid-body-
type or rotational vortex, V = a>r.

A combined vortex has a solid-body-type rotation at the core and an irrotational vortex beyond
it. This is typical of a tornado (which has an inward sink flow superimposed on the vortex motion)
and eddies in turbulent motion.

40.4.5 Continuity Equations
Conservation of mass for a fluid requires that in a material volume, the mass remains constant. In a
control volume the net rate of influx of mass into the control volume is equal to the rate of change
of mass in the control volume. Fluid may flow into a control volume either through the control
surface or from internal sources. Likewise, fluid may flow out through the control surface or into
internal sinks. The various forms of the continuity equations listed in Table 40.3 do not include
sources and sinks; if they exist, they must be included.

The most commonly used forms for duct flow are m = VAp in kg/sec where V is the average
flow velocity in m/sec, A is the duct area in m3, and p is the fluid density in kg/m3. In differential
form this is dV/V + dA/A + dpi p - 0, which indicates that all three quantities may not increase
nor all decrease in the direction of flow. For incompressible duct flow Q = VA m3/sec where V and
A are as above. When the velocity varies throughout a cross section, the average velocity is

V4/^4J><

where u is a velocity at a point, and ut are point velocities measured at the centroid of n equal areas.
For example, if the velocity is M at a distance y from the wall of a pipe of radius R and the centerline
velocity is um, u = um(ylR)in and the average velocity is V = 4%o um.

40.5 FLUID MOMENTUM
The momentum theorem states that the net external force acting on the fluid within a control volume
equals the time rate of change of momentum of the fluid plus the net rate of momentum flux or
transport out of the control volume through its surface. This is one form of the Reynolds transport
theorem, which expresses the conservation laws of physics for fixed mass systems to expressions for
a control volume:

SF-£ / PV*V
material
volume

= - [ pV d-Y + [ PV(V • ds)
dt J Jcontrol control

volume surface



40.5.1 The Momentum Theorem
For steady flow the first term on the right-hand side of the preceding equation is zero. Forces include
normal forces due to pressure and tangential forces due to viscous shear over the surface S of the
control volume, and body forces due to gravity and centrifugal effects, for example. In scalar form
the net force equals the total momentum flux leaving the control volume minus the total momentum
flux entering the control volume. In the x direction

F̂x = (mVJfcavings - (mVgentering5

or when the same fluid enters and leaves,

F̂x = m(Vxleaving5 - Vxentering 5)

with similar expressions for the y and z directions.
For one-dimensional flow mVx represents momentum flux passing a section and Vx is the average

velocity. If the velocity varies across a duct section, the true momentum flux is fA (updA)u, and the
ratio of this value to that based upon average velocity is the momentum correction factor /3,

f u2 dAJA
^̂ -̂

1 V 2
~̂ |"<

Table 40.3 Continuity Equations

General

Unsteady, compressible

Steady, compressible

Incompressible

Steady or unsteady

dp Dp
— + V-pV = 0 or -f + pV-V = 0
df Dt r Vector

dp d(pu) d(pv) d(pw) ^ Cartesian
dt dx By dz

dp d(pvr) 1 d(pve) d(pvz) pvr n Cylindrical
T~ 1 1 T~ (j

dt dr r d6 dz r

d(pA) d Duct
-̂  + -(pV-A) = 0

dt dS

V-pV = 0 Vector

d(pu) d(pv) d(pw) ^ Cartesian
dx dy dz

d(pvr) 1 d(pve) d(pvz) pvr _ Cylindrical
dr r d6 dz r

pV-A - m

V • V - 0 Vector

du dv dw Cartesian
— + — + — — u
dJC dy dz

dvr I dve dvz vr Cylindrical
dr r d6 dz r ~

V • A = Q Duct



For laminar flow in a circular tube, j3 = 4/3; for laminar flow between parallel plates, /3 = 1.20; and
for turbulent flow in a circular tube, ft is about 1.02 - 1.03.

40.5.2 Equations of Motion
For steady irrotational flow of an incompressible nonviscous fluid, Newton's second law gives the
Euler equation of motion. Along a streamline it is

v*M* + ,*-ods p ds dS

and normal to a streamline it is

£ + I* + ,*-o
r p dn dn

When integrated, these show that the sum of the kinetic, displacement, and potential energies is a
constant along streamlines as well as across streamlines. The result is known as the Bernoulli
equation:

V2 P
— H 1- gz = constant energy per unit mass
2 p

pV\ PV2
——!-/?! + pgZi = ——I- Pi + pgz2 = constant total pressure

and

V\ p, VI p2
1 HZ, = 1 h z2 = constant total head

2g 8P 2g gp

For a reversible adiabatic compressible gas flow with no external work, the Euler equation integrates
to

V\ ̂  k /PA ̂  VI k /p2\
T + r^rU + ̂  = T + ̂TUJ + ̂

which is valid whether the flow is reversible or not, and corresponds to the steady-flow energy
equation for adiabatic no-work gas flow.

Newton's second law written normal to streamlines shows that in horizontal planes dpldr =
pV2/r, and thus dpldr is positive for both rotational and irrotational flow. The pressure increases
away from the center of curvature and decreases toward the center of curvature of curvilinear stream-
lines. The radius of curvature r of straight lines is infinite, and thus no pressure gradient occurs
across these.

For a liquid rotating as a solid body

-Y1 + EL+ -Jl + ?i +
2g pg Zl 2g Pg l2

The negative sign balances the increase in velocity and pressure with radius.
The differential equations of motion for a viscous fluid are known as the Navier-Stokes equations.

For incompressible flow the jc-component equation is

du du du du 1 dp id2u S2u 82u\
— + u— + v — + w— = X + u — + —r + —-}
dt dx dy dz p dx \dx2 dy2 dz2/

with similar expressions for the y and z directions. X is the body force per unit mass. Reynolds
developed a modified form of these equations for turbulent flow by expressing each velocity as an
average value plus a fluctuating component (u = u + u' and so on). These modified equations indicate
shear stresses from turbulence (rr = - pu'v'', for example) known as the Reynolds stresses, which
have been useful in the study of turbulent flow.



40.6 FLUID ENERGY

The Reynolds transport theorem for fluid passing through a control volume states that the heat added
to the fluid less any work done by the fluid increases the energy content of the fluid in the control
volume or changes the energy content of the fluid as it passes through the control surface. This is

Q ~ ̂done = J f (ep) d̂  + f epW-dS)
VI J control ^ control

volume surface

and represents the first law of thermodynamics for control volume. The energy content includes
kinetic, internal, potential, and displacement energies. Thus, mechanical and thermal energies are
included, and there are no restrictions on the direction of interchange from one form to the other
implied in the first law. The second law of thermodynamics governs this.

40.6.1 Energy Equations
With reference to Fig. 40.17, the steady flow energy equation is

V\ VI
«i y + P&i + gzi + M, + q - w = a2 — + p2vz + gz2 + u2

in terms of energy per unit mass, and where a is the kinetic energy correction factor:

I u3 dA

a=JW~vfelii?a=i

For laminar flow in a pipe, a = 2; for turbulent flow in a pipe, a = 1.05 - 1.06; and if one-
dimensional flow is assumed, a = 1.

For one-dimensional flow of compressible gases, the general expression is

y2 y2
Y + hi + szi + 0 ~ w = Y + h2 + 8̂ 2

For adiabatic flow, q = 0; for no external work, w = 0; and in most instances changes in elevation
z are very small compared with changes in other parameters and can be neglected. Then the equation
becomes

V\ VI-J. + hi=-2 + h2 = hQ

where h0 is the stagnation enthalpy. The stagnation temperature is then T0 = 7\ 4- V\l2cp in terms
of the temperature and velocity at some point 1. The gas velocity in terms of the stagnation and
static temperatures, respectively, is V1 = \/2cp(TQ - 7\). An increase in velocity is accompanied by
a decrease in temperature, and vice versa.

Fig. 40.17 Control volume for steady-flow energy equation.



For one-dimensional flow of liquids and constant-density (low-velocity) gases, the energy equation
generally is written in terms of energy per unit weight as

V\ Pl VI p2
— + - + z1-w = — + - + z +hL
2g y 2g y

where the first three terms are velocity, pressure, and potential heads, respectively. The head loss
hL — (U2 ~ u\ ~ <f)lg and represents the mechanical energy dissipated into thermal energy irreversibly
(the heat transfer q is assumed zero here). It is a positive quantity and increases in the direction of
flow.

Irreversibility in compressible gas flows results in an entropy increase. In Fig. 40.18 reversible
flow between pressures p' and p is from a to b or from b to a. Irreversible flow from p' to p is from
b to d, and from p to p' it is from a to c. Thus, frictional duct flow from one pressure to another
results in a higher final temperature, and a lower final velocity, in both instances. For frictional flow
between given temperatures (Ta and Tb, for example), the resulting pressures are lower than for
frictionless flow (pc is lower than pa and pf is lower than pb).

40.6.2 Work and Power

Power is the rate at which work is done, and is the work done per unit mass times the mass flow
rate, or the work done per unit weight times the weight flow rate.

Power represented by the work term in the energy equation is P = w(VAy) = w(VApjW.
Power in a jet at a velocity V is P = (V2/2)(VAp) = (V2/2g)(VAy)W.
Power loss resulting from head loss is P = hL(VAy)W.
Power to overcome a drag force is P = FVW.
Power available in a hydroelectric power plant when water flows from a headwater elevation zt

to a tailwater elevation z2 is P = fe — z2)(2y)W, where Q is the volumetric flow rate.

40.6.3 Viscous Dissipation

Dissipation effects resulting from viscosity account for entropy increases in adiabatic gas flows and
the heat loss term for flows of liquids. They can be expressed in terms of the rate at which work is
done—the product of the viscous shear force on the surface of an elemental fluid volume and the
corresponding component of velocity parallel to the force. Results for a cube of sides dx, dy, and dz
give the dissipation function <I>:

Fig. 40.18 Reversible and irreversible adiabatic flows.



Fig. 40.19 Geometry of two-dimensional jets.
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The last term is zero for an incompressible fluid. The first term in brackets is the linear deformation,
and the second term in brackets is the angular deformation and in only these two forms of deformation
is there heat generated as a result of viscous shear within the fluid. The second law of thermodynamics
precludes the recovery of this heat to increase the mechanical energy of the fluid.

40.7 CONTRACTION COEFFICIENTS FROM POTENTIAL FLOW THEORY
Useful engineering results of a conformal mapping technique were obtained by von Mises for the
contraction coefficients of two-dimensional jets for nonviscous incompressible fluids in the absence
of gravity. The ratio of the resulting cross-sectional area of the jet to the area of the boundary opening
is called the coefficient of contraction, Cc. For flow geometries shown in Fig. 40.19, von Mises
calculated the values of Cc listed in Table 40.4. The values agree well with measurements for low-
viscosity liquids. The results tabulated for two-dimensional flow may be used for axisymmetric jets
if Cc is defined by Cc = b}&Jb — (d-̂ ldf and if d and D are diameters equivalent to widths b and

Table 40.4 Coefficients of Contraction for Two-
Dimensional Jets

b/B

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cc
0 = 45°

0.746
0.747
0.747
0.748
0.749
0.752
0.758
0.768
0.789
0.829
1.000

Cc
9 = 90°

0.611
0.612
0.616
0.622
0.631
0.644
0.662
0.687
0.722
0.781
1.000

Cc
0 = 135°

0.537
0.546
0.555
0.566
0.580
0.599
0.620
0.652
0.698
0.761
1.000

Cc
0 = 180°

0.500
0.513
0.528
0.544
0.564
0.586
0.613
0.646
0.691
0.760
1.000



B, respectively. Thus, if a small round hole of diameter d in a large tank (dID « 0), the jet diameter
would be (0.611)1/2 - 0.782 times the hole diameter, since 6 = 90°.

40.8 DIMENSIONLESS NUMBERS AND DYNAMIC SIMILARITY
Dimensionless numbers are commonly used to plot experimental data to make the results more
universal. Some are also used in designing experiments to ensure dynamic similarity between the
flow of interest and the flow being studied in the laboratory.

40.8.1 Dimensionless Numbers
Dimensionless numbers or groups may be obtained from force ratios, by a dimensional analysis using
the Buckingham Pi theorem, for example, or by writing the differential equations of motion and
energy in dimensionless form. Dynamic similarity between two geometrically similar systems exists
when the appropriate dimensionless groups are the same for the two systems. This is the basis on
which model studies are made, and results measured for one flow may be applied to similar flows.

The dimensions of some parameters used in fluid mechanics are listed in Table 40.5. The
mass-length-time (MLT) and the force-length-time (FLT) systems are related by F = Ma =
MLIT2 and M = FT2/L.

Force ratios are expressed as

inertia force pL2V2 pLV
= = , the Reynolds number Re

viscous force jjuVL p,
inertia force pL2V2 V2 V
:— = —-— = — or —7=, the Froude number Fr

gravity force pUg Lg VLg
pressure force ApL2 Ap A/?

:— = -7777; = -77; or ., . the pressure coefficient C_
inertia force pL2V2 pV2 pV2/2 p

inertia force pL2V2 V2 V , „, , u w
— ; = —7— = —— or , the Weber number We
surface tension force crL crl pL Va/pL

inertia force pL2V2 V2 V
= — = or , , the Mach number M

compressibility force KL2 Kl p vKI p

If a system includes n quantities with m dimensions, there will be at least n — m independent
dimensionless groups, each containing m repeating variables. Repeating variables (1) must include
all the m dimensions, (2) should include a geometrical characteristic, a fluid property, and a flow
characteristic and (3) should not include the dependent variable.

Thus, if the pressure gradient A/7/L for flow in a pipe is judged to depend on the pipe diameter
D and roughness k, the average flow velocity V, and the fluid density p, the fluid viscosity p,, and
compressibility K (for gas flow), then Ap/L = /(/), k, V, p, p-, K) or in dimensions, F/L3 = jf(L, L,
LIT, FT2/L4, FTIL2, F/L2}, where n = 1 and m = 3. Then there are n - m = 4 independent groups
to be sought. If Z), p, and V are the repeating variables, the results are

Ap _ /DVp k_ V \
PV2/2~ f\ v ' D'VKTp)

or that the friction factor will depend on the Reynolds number of the flow, the relative roughness,
and the Mach number. The actual relationship between them is determined experimentally. Results
may be determined analytically for laminar flow. The seven original variables are thus expressed as
four dimensionless variables, and the Moody diagram of Fig. 40.32 shows the result of analysis and
experiment. Experiments show that the pressure gradient does depend on the Mach number, but the
friction factor does not.

The Navier-Stokes equations are made dimensionless by dividing each length by a characteristic
length L and each velocity by a characteristic velocity U. For a body force X due to gravity, X =
gx = g(dz/dx). Then x' = x/L, etc., t' = t(L/U), u' = u/U, etc., and p' = p/pU2. Then the
Navier-Stokes equation (x component) is

du' , du' du' du'
U h V H W 1

dx dy' dz df
_ gL dp' (Ji /d2u' d2u' d2u'\
~ 7J2 ~ a? + ~pUL \dx72 + ~dy2 + 'dz'2)

- _L _ ?EL JL (̂ u> L̂ dV\
~ Fr2 ~ dx' + R^ \dx'2 + a/2 + dz'2)



"Density, viscosity, elastic modulus, and surface tension depend
upon temperature, and therefore temperature will not be consid-
ered a property in the sense used here.

Thus for incompressible flow, similarity of flow in similar situations exists when the Reynolds and
the Froude numbers are the same.

For compressible flow, normalizing the differential energy equation in terms of temperatures,
pressure, and velocities gives the Reynolds, Mach, and Prandtl numbers as the governing parameters.

40.8.2 Dynamic Similitude
Flow systems are considered to be dynamically similar if the appropriate dimensionless numbers are
the same. Model tests of aircraft, missiles, rivers, harbors, breakwaters, pumps, turbines, and so forth
are made on this basis. Many practical problems exist, however, and it is not always possible to
achieve complete dynamic similarity. When viscous forces govern the flow, the Reynolds number
should be the same for model and prototype, the length in the Reynolds number being some char-
acteristic length. When gravity forces govern the flow, the Froude number should be the same. When
surface tension forces are significant, the Weber number is used. For compressible gas flow, the Mach
number is used; different gases may be used for the model and prototype. The pressure coefficient
Cp = Ap/(pV2/2), the drag coefficient CD = drag/(pV2/2)A, and the lift coefficient CL = lift/(pV2/
2)A will be the same for model and prototype when the appropriate Reynolds, Froude, or Mach
number is the same. A cavitation number is used in cavitation studies, crv = (p - pv)/(pV2/2) if
vapor pressure pv is the reference pressure or crc = (p - pc)/(pV2/2) if a cavity pressure is the
reference pressure.

Modeling ratios for conducting tests are listed in Table 40.6. Distorted models are often used for
rivers in which the vertical scale ratio might be 1/40 and the horizontal scale ratio 1/100, for
example, to avoid surface tension effects and laminar flow in models too shallow.

Incomplete similarity often exists in Froude-Reynolds models since both contain a length param-
eter. Ship models are tested with the Froude number parameter, and viscous effects are calculated
for both model and prototype.

The specific speed of pumps and turbines results from combining groups in a dimensional analysis
of rotary systems. That for pumps is Ns(pump) = N̂ Q/e3/4 and for turbines it is A^(tuibines) =
NVpower/p1/2e5/4, where N is the rotational speed in rad/sec, Q is the volumetric flow rate in m3/

Table 40.5 Dimensions of Fluid and Flow Parameters

Geometrical characteristics
Length (diameter, height, breadth,
chord, span, etc.)

Angle
Area
Volume

Fluid properties*
Mass
Density (p)
Specific weight (y)
Kinematic viscosity (v)
Dynamic viscosity (//,)
Elastic modulus (K)
Surface tension (cr)

Flow characteristics
Velocity (V)
Angular velocity (<w)
Acceleration (a)
Pressure (Ap)
Force (drag, lift, shear)
Shear stress (r)
Pressure gradient (A/?/L)
Flow rate (Q)
Mass flow rate (ra)
Work or energy
Work or energy per unit weight
Torque and moment
Work or energy per unit mass

FLT

L
None
L2
L3

FT2/L
FT2/L4
FIL3
L2/T
FTIL2
FIL2
FIL

LIT
l/T
LIT2
FIL2
F

FIL2
FIL3
L3/T
FTIL
FL
L
FL
L2IT2

MLT

L
None
L2
L3

M
MIL3
MIL2T2
L2IT
MILT
MILT2
MIT2

LIT
l/T
LIT2
MILT2
MLIT2
MILT2
MIL2T2
L3IT
MIT

ML2IT2
L

ML2IT2
L2IT2



"Subscript m indicates model, subscript p indicates prototype.
fcFor the same value of gravitational acceleration for model and prototype.
cOf little importance.
êre 6 refers to temperature.

sec, and e is the energy in J/kg. North American practice uses N in rpm, Q in gal/min, e as energy
per unit weight (head in ft), power as brake horsepower rather than watts, and omits the density term
in the specific speed for turbines. The numerical value of specific speed indicates the type of pump
or turbine for a given installation. These are shown for pumps in North America in Fig. 40.20.
Typical values for North American turbines are about 5 for impulse turbines, about 20-100 for Francis
turbines, and 100-200 for propeller turbines. Slight corrections in performance for higher efficiency
of large pumps and turbines are made when testing small laboratory units.

Fig. 40.20 Pump characteristics and specific speed for pump impellers.
(Courtesy Worthington Corporation)
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40.9 VISCOUS FLOW AND INCOMPRESSIBLE BOUNDARY LAYERS
In viscous flows, adjacent layers of fluid transmit both normal forces and tangential shear forces, as
a result of relative motion between the layers. There is no relative motion, however, between the
fluid and a solid boundary along which it flows. The fluid velocity varies from zero at the boundary
to a maximum or free stream value some distance away from it. This region of retarded flow is called
the boundary layer.

40.9.1 Laminar and Turbulent Flow

Viscous fluids flow in a laminar or in a turbulent state. There are, however, transition regimes between
them where the flow is intermittently laminar and turbulent. Laminar flow is smooth, quiet flow
without lateral motions. Turbulent flow has lateral motions as a result of eddies superimposed on the
main flow, which results in random or irregular fluctuations of velocity, pressure, and, possibly,
temperature. Smoke rising from a cigarette held at rest in still air has a straight threadlike appearance
for a few centimeters; this indicates a laminar flow. Above that the smoke is wavy and finally irregular
lateral motions indicate a turbulent flow. Low velocities and high viscous forces are associated with
laminar flow and low Reynolds numbers. High speeds and low viscous forces are associated with
turbulent flow and high Reynolds numbers. Turbulence is a characteristic of flows, not of fluids.
Typical fluctuations of velocity in a turbulent flow are shown in Fig. 40.21.

The axes of eddies in turbulent flow are generally distributed in all directions. In isotropic tur-
bulence they are distributed equally. In flows of low turbulence, the fluctuations are small; in highly
turbulent flows, they are large. The turbulence level may be defined as (as a percentage)

V(w'2 + v'2 + w'2)/3
T = = x 100

u

where u', v', and w' are instantaneous fluctuations from mean values and u is the average velocity
in the main flow direction (x, in this instance).

Shear stresses in turbulent flows are much greater than in laminar flows for the same velocity
gradient and fluid.

40.9.2 Boundary Layers

The growth of a boundary layer along a flat plate in a uniform external flow is shown in Fig. 40.22.
The region of retarded flow, 6, thickens in the direction of flow, and thus the velocity changes from
zero at the plate surface to the free stream value us in an increasingly larger distance 8 normal to the
plate. Thus, the velocity gradient at the boundary, and hence the shear stress as well, decreases as
the flow progresses downstream, as shown. As the laminar boundary thickens, instabilities set in and
the boundary layer becomes turbulent. The transition from the laminar boundary layer to a turbulent
boundary layer does not occur at a well-defined location; the flow is intermittently laminar and
turbulent with a larger portion of the flow being turbulent as the flow passes downstream. Finally,
the flow is completely turbulent, and the boundary layer is much thicker and the boundary shear
greater in the turbulent region than if the flow were to continue laminar. A viscous sublayer exists
within the turbulent boundary layer along the boundary surface. The shape of the velocity profile
also changes when the boundary layer becomes turbulent, as shown in Fig. 40.22. Boundary surface
roughness, high turbulence level in the outer flow, or a decelerating free stream causes transition to
occur nearer the leading edge of the plate. A surface is considered rough if the roughness elements
have an effect outside the viscous sublayer, and smooth if they do not. Whether a surface is rough
or smooth depends not only on the surface itself but also on the character of the flow passing it.

A boundary layer will separate from a continuous boundary if the fluid within it is caused to slow
down such that the velocity gradient duldy becomes zero at the boundary. An adverse pressure
gradient will cause this.

Fig. 40.21 Velocity at a point in steady turbulent flow.



Fig. 40.22 Boundary layer development along a flat plate.

One parameter of interest is the boundary layer thickness 6, the distance from the boundary in
which the flow is retarded, or the distance to the point where the velocity is 99% of the free stream
velocity (Fig. 40.23). The displacement thickness is the distance the boundary is displaced such that
the boundary layer flow is the same as one-dimensional flow past the displaced boundary. It is given
by (see Fig. 40.23)

«i =- \* (u,-u)dy= f(l ~-}dyusJo Jo \ uj

A momentum thickness is the distance from the boundary such that the momentum flux of the free
stream within this distance is the deficit of momentum of the boundary layer flow. It is given by (see
Fig. 40.23)

W6(i--)£̂Jo \ uj us

Also of interest is the viscous shear drag D = Cj(pu2J2}A, where Cf is the average skin friction
drag coefficient and A is the area sheared.

These parameters are listed in Table 40.7 as functions of the Reynolds number Re., = uspxl>,
where x is based on the distance from the leading edge. For Reynolds numbers between 1.8 X 105
and 4.5 x 107, Cf = 0.045/Rey6, and for Rê  between 2.9 X 107 and 5 x 108, Cf = 0.0305/
ReJ/7. These results for turbulent boundary layers are obtained from pipe flow friction measurements
for smooth pipes, by assuming the pipe radius equivalent to the boundary layer thickness, the cen-
terline pipe velocity equivalent to the free stream boundary layer flow, and appropriate velocity
profiles. Results agree with measurements.

When a turbulent boundary layer is preceded by a laminar boundary layer, the drag coefficient is
given by the Prandtl-Schlichting equation:

Fig. 40.23 Definition of boundary layer thickness: (a) displacement thickness;
(b) momentum thickness.



0.455 A
f ~ Oog,0 ReJ2-58 Re,

where A depends on the Reynolds number Rec at which transition occurs. Values of A for various
values of Rec = usxclv are

Rec 3 x 105 5 X 105 9 x 105 1.5 X 106
A 1035 1700 3000 4880

Some results are shown in Fig. 40.24 for transition at these Reynolds numbers for completely laminar
boundary layers, for completely turbulent boundary layers, and for a typical ship hull. (The other
curves are applicable for smooth model ship hulls.) Drag coefficients for flat plates may be used for
other shapes that approximate flat plates.

The thickness of the viscous sublayer 8b in terms of the boundary layer thickness is approximately

Fig. 40.24 Drag coefficients for smooth plane surfaces parallel to flow.

Table 40.7 Boundary Layer Parameters

Parameter

8
X

£1
X

h
X
cf

Rex range

Laminar
Boundary
Layer

4.91
Re*/2
1.73
Rê /2
0.664
Rei/2
1.328
Rei/2
Generally not

over 106

Turbulent
Boundary
Layer

0.382
Re*/5
0.048
Rê /5
0.037
Re]'5
0.074
Re*75
Less than 107



h. = 8Q
5 ~ (Re,)7/1°

At Re,, = 106, V5 = 0.0050 and when Rê  = 107, 8b/8 = 0.001, and thus the viscous sublayer is
very thin.

Experiments show that the boundary layer thickness and local drag coefficient for a turbulent
boundary layer preceded by a laminar boundary layer at a given location are the same as though the
boundary layer were turbulent from the beginning of the plate or surface along which the boundary
layer grows.

40.10 GAS DYNAMICS
In gas flows where density variations are appreciable, large variations in velocity and temperature
may also occur and then thermodynamic effects are important.

40.10.1 Adiabatic and Isentropic Flow
In adiabatic flow of a gas with no external work and with changes in elevation negligible, the steady-
flow energy equation is

VI VI
1- hl — 1- h2 = h0 = constant

for flow from point 1 to point 2, where V is velocity and h is enthalpy. Subscript 0 refers to a
stagnation condition where the velocity is zero.

The speed of sound is c = V(d/?/ds)isentropic VK/~p = Vkp/p = VkRT. For air, c = 20.04VT
m/sec, where T is in degrees kelvin. A local Mach number is then M = Vic = V/VkRT.

A gas at rest may be accelerated adiabatically to any speed, including sonic (M = 1) and theo-
retically to its maximum speed when the temperature reduces to absolute zero. Then,

T/2 w* 2 T/2
p T _ r T , _ L _ _ r T * + L max
CP 1o - CP J- + 2 ~ P 2 ~ 2

where the asterisk (*) refers to a sonic state where the Mach number is unity.
The stagnation temperature T0 is T0 = T + V2/2c_, or in terms of the Mach number [c = Rkf

(k - 1)]

j = 1 + ̂—-̂ - M2 = 1 + 0.2M2 for air

The stagnation temperature is reached adiabatically from any velocity V where the Mach number is
M and the temperature T. The temperature T* in terms of the stagnation temperature T0 is r*/T0 =
21 (k + 1) - 5/6 for air.

The stagnation pressure is reached reversibly and is thus the isentropic stagnation pressure. It is
also called the reservoir pressure, since for any flow a reservoir (stagnation) pressure may be imagined
from which the flow proceeds isentropically to a pressure p at a Mach number M. The stagnation
pressure p0 is a constant in isentropic flow; if nonisentropic, but adiabatic, p0 decreases:

n /T\ki(k-\) / fr_ i \ */(*-!)
£2 = p) = f i + ~ M2) = (1 + 0.2M2)35 for air
P \T/ \ 2 /

Expansion of this expression gives

*-'*£H"*̂ -*ŝ fi«H

where the term in brackets is the compressibility factor. It ranges from 1 at very low Mach numbers
to a maximum of 1.27 at M = 1, and shows the effect of increasing gas density as it is brought to
a stagnation condition at increasingly higher initial Mach numbers. The equations are valid to or
from a stagnation state for subsonic flow, and from a stagnation state for supersonic flow at M2 less
than 21 (k - 1), or M less than V5 for air.



40.10.2 Duct Flow
Adiabatic flow in short ducts may be considered reversible, and thus the relation between velocity
and area changes is dA/dV = (A/V)(M2 — 1). For subsonic flow, dA/dV is negative and velocity
changes relate to area changes in the same way as for incompressible flow. At supersonic speed,
dA/dV is positive and an expanding area is accompanied by an increasing velocity; a contracting
area is accompanied by a decreasing velocity, the opposite of incompressible flow behavior. Sonic
flow in a duct (at M = 1) can exist only when the duct area is constant (dA/dV = 0), in the throat
of a nozzle or in a pipe. It can also be shown that velocity and Mach numbers always increase or
decrease together, that temperature and Mach numbers change in opposite directions, and that pressure
and Mach numbers also change in opposite directions.

Isentropic gas flow tables give pressure ratios p/p0, temperature ratios T/T0, density ratios
p/Po, area ratios A /A*, and velocity ratios V/V* as functions of the upstream Mach number Mx and
the specific heat ratio k for gases.

The mass flow rate through a converging nozzle from a reservoir with the gas at a pressure p0
and temperature T0 is calculated in terms of the pressure at the nozzle exit from the equation m =
(VAp)exit, where pe = peIRTe and the exit temperature is Te = T0(pe/p0)(k~1)/k and the exit velocity is

/ F fPe\(k~l)/k̂
v< - ̂  v - Ci) J

The mass flow rate is maximum when the exit velocity is sonic. This requires the exit pressure to
be critical, and the receiver pressure to be critical or below. Supersonic flow in the nozzle is impos-
sible. If the receiver pressure is below critical, flow is not affected in the nozzle, and the exit flow
remains sonic. For air at this condition, the maximum flow rate is m = 0.0404A1p0/V% kg/sec.

Flow through a converging-diverging nozzle (Fig. 40.25) is subsonic throughout if the throat
pressure is above critical (dashed lines in Fig. 40.25). When the receiver pressure is at A, the exit
pressure is also, and sonic flow exists at the throat, but is subsonic elsewhere. Only at B is there
sonic flow in the throat with isentropic expansion in the diverging part of the nozzle. The flow rate
is the same whether the exit pressure is at A or B. Receiver pressures below B do not affect the flow
in the nozzle. Below A (at C, for example) a shock forms as shown and then the flow is isentropic
to the shock, and beyond it, but not through it. When the throat flow is sonic, the mass flow rate is
given by the same equation as for a converging nozzle with sonic exit flow. The pressures at A and
B in terms of the reservoir pressure p0 are given in isentropic flow tables as a function of the ratio
of exit area to throat area, AC/A*.

40.10.3 Normal Shocks
The plane of a normal shock is at right angles to the flow streamlines. These shocks may occur in
the diverging part of a nozzle, the diffuser of a supersonic wind tunnel, in pipes and forward of blunt-
nosed bodies. In all instances the flow is supersonic upstream and subsonic downstream of the shock.
Flow through a shock is not isentropic, although nearly so for very weak shocks. The abrupt changes
in gas density across a shock allow for optical detection. The interferometer responds to density
changes, the Schlieren method to density gradients, and the spark shadowgraph to the rate of change
of density gradient. Density ratios across normal shocks in air are 2 at M = 1.58, 3 at M = 2.24,
and 4 at M = 3.16 to a maximum value of 6.

Changes in fluid and flow parameters across normal shocks are obtained from the continuity,
energy, and momentum equations for adiabatic flow. They are expressed in terms of upstream Mach
numbers with upstream conditions designated with subscript x and downstream with subscript y.
Mach numbers Mx and My are related by

Fig. 40.25 Gas flow through converging-diverging nozzle.



Fig. 40.26 Mach numbers across a normal shock, k = 1.4.

1 + kM2x _ 1 + kM2y
7T^~\ v71 = 7 T̂ ~\ V71 = ̂M̂
î + *—LM;J A^i+^M'J

which is plotted in Fig. 40.26. The requirement for an entropy increase through the shock indicates
Mx to be greater than My. Thus, the higher the upstream Mach number, the lower the downstream
Mach number, and vice versa. For normal shocks, values of downstream Mach number My; temper-
ature ratios TyITx\ pressure ratios py/px, pQylpx, and P0y/Pox', and density ratios py/px depend only
on the upstream Mach number Mx and the specific heat ratio k of the gas. These values are tabulated
in books on gas dynamics and in books of gas tables.

The density ratio across the shock is given by the Rankine-Hugoniot equation

HĜ i)H/IK̂ )]

and is plotted in Fig. 40.27, which shows that weak shocks are nearly isentropic, and that the density
ratio approaches a limit of 6 for gases with k = 1.4.

Fig. 40.27 Rankine-Hugoniot curve, k = 1.4.



Gas tables show that at an upstream Mach number of 2 for air, My = 0.577, the pressure ratio is
Pylpx = 4.50, the density ratio is py/px = 2.66, the temperature ratio is Ty/Tx = 1.68, and the
stagnation pressure ratio is p0y/pQx = 0.72, which indicates an entropy increase of sy - sx = -R
ln(/VA*) = 94 J/kg.

40.10.4 Oblique Shocks

Oblique shocks are inclined from a direction normal to the approaching streamlines. Figure 40.28
shows that the normal velocity components are related by the normal shock relations. From a mo-
mentum analysis, the tangential velocity components are unchanged through oblique shocks. The
upstream Mach number Ml is given in terms of the deflection angle 6, the shock angle /3, and the
specific heat ratio k for the gas as

J_ _ .2 (k + 1) sin j8 sin 6
M? - sin /3 - 2 cos(̂  _ e)

The geometry is shown in Fig. 40.29, and the variables in this equation are illustrated in Fig. 40.30.
For each Ml there is the possibility of two wave angles /3 for a given deflection angle 6. The larger
wave angle is for strong shocks, with subsonic downstream flow. The smaller wave angle is for weak
shocks, generally with supersonic downstream flow at a Mach number less than Ml.

Normal shock tables are used for oblique shocks if Mx is used for Ml sin (3. Then My = M2
sin(/3 - 6) and other ratios of property values (pressure, temperature, and density) are the same as
for normal shocks.

40.11 VISCOUS FLUID FLOW IN DUCTS
The development of flow in the entrance of a pipe with the development of the boundary layer is
shown in Fig. 40.31. Wall shear stress is very large at the entrance, and generally decreases in the
flow direction to a constant value, as does the pressure gradient dp/dx. The velocity profile also

Fig. 40.28 Oblique shock relations from normal shock; (a) normal shock; (b) oblique shock;
(c) oblique shock angles.



Fig. 40.29 Supersonic flow past a wedge and an inside corner.

changes and becomes adjusted to a fixed shape. When these have reached constant conditions, the
flow is called fully developed flow.

The momentum equation for a pipe of diameter D gives the pressure gradient as

dp 4 d(3 dV
-i = D^ + ov2i + w-̂

which shows that a pressure gradient overcomes wall shear and increases momentum of the fluid
either as a result of changing the shape of the velocity profile (dfi/dx) or by changing the mean
velocity along the pipe (dV/dx is not zero for gas flows).

For fully developed incompressible flow

_dp = Ap = 4rb
dx ~ L ~ D

and a pressure drop simply overcomes wall shear.
For developing flow in the entrance, /3 = 1 initially and increases to a constant value downstream.

Thus, the pressure gradient overcomes wall shear and also increases the flow momentum according
to

_* = l?o + py2^
dx D P dx

For fully developed flow, /3 = 4/s for laminar flow and /3 « 1.03 for turbulent flow in round pipes.
For compressible gas flow beyond the entrance, the velocity profile becomes essentially fixed in

shape, but the velocity changes because of thermodynamic effects that change the density. Thus, the
pressure gradient is

Fig. 40.30 Oblique shock relations, k= 1.4.



Fig. 40.31 Growth of boundary layers in a pipe: (a) laminar flow; (b) turbulent flow.

* 4r°+«T/rfV
-̂  = ~D + ftpV^

Here /3 is essentially constant but dVldx may be significant.

40.11.1 Fully Developed Incompressible Flow

The pressure drop is A/? = (fL/D)(pV2/2) Pa, where / is the Darcy friction factor. The Fanning
friction factor /' = f/4 and then A/? = (4/'/D)(pV2/2), and the head loss from pipe friction is

*•-*->№-«"№ •

The shear stress varies linearly with radial position, r = (Ap/L)(r/2), so that the wall shear is
T0 = (Ap/L)(D/4), which may then be written TO - fpV2/S = fpV2/2.

A shear velocity is defined as v • = Vr0/p = VV//8 = VV/72 and is used as a normalizing
parameter.

For noncircular ducts the diameter D is replaced by the hydraulic or equivalent diameter Dh =
4.4IP, where A is the flow cross section and P is the wetted perimeter. Thus, an annulus between
pipes of diameter D± and D2, Dl being larger, the hydraulic diameter is D2 — Dl.

40.11.2 Fully Developed Laminar Flow in Ducts

The velocity profile in circular tubes is that of a parabola, and the centerline velocity is

Ap (R2\

u- = T fej

and the velocity profile is

— i-f1)2"max W

where r is the radial location in a pipe of radius R. The average velocity is one-half the maximum
velocity, V = umaK/2.

The pressure gradient is

A/? 128/̂ 2

~L ~ TrD4



which indicates a linear increase with increasing velocity or flow rate. The friction factor for circular
ducts is / = 64/ReD or /' = 16/ReD and applies to both smooth as well as rough pipes, for Reynolds
numbers up to about 2000.

For noncircular ducts the value of the friction factor is / = C/Re and depends on the duct
geometry. Values of / Re = C are listed in Table 40.8.

40.11.3 Fully Developed Turbulent Flow in Ducts
Knowledge of turbulent flow in ducts is based on physical models and experiments. Physical models
describe lateral transport of fluid as a result of mixing due to eddies. Prandtl and von Karman both
derived expressions for shear stresses in turbulent flow based on the Reynolds stress (r = -pu'v')
and obtained velocity defect equations for pipe flow. Prandtl's equation is

«™^ = <w^ = 251n*
Vr0/p v' y

Table 40.8 Friction Factors for Laminar Flow

ri/r2

0.0001
0.001
0.01
0.05
0.10
0.20
0.40
0.60
0.80
1.00

/Re

71.78
74.68
80.11
86.27
89.37
92.35
94.71
95.59
95.92
96.00

a/b

0
1/20
1/10
1/8
1/6
1/4
2/5
1/2
3/4
1

/Re

96.00
89.91
84.68
82.34
78.81
72.93
65.47
62.19
57.89
56.91

X

0
10
20
30
40
60
90
120
150
180

/Re

62.2
62.2
62.3
62.4
62.5
62.8
63.1
63.3
63.7
64.0

a

0
10
20
30
40
50
60
70
80
90

/Re

48.0
51.8
54.5
56.7
58.4
59.7
60.8
61.7
62.5
63.1

/Re

48.0
51.6
52.9
53.3
52.9
52.0
51.1
49.5
48.3
48.0

/Re

48.0
49.9
51.2
52.0
52.4
52.4
52.0
51.2
49.9
48.0



where wmax is the centerline velocity and u is the velocity a distance y from the pipe wall, von
Karman's equation is

Mmax ~ M = "max ~ «
VvV ~ v

-4M-fD*,R]

In both, K is an experimentally determined constant equal to 0.4 (some experiments show better
agreement when K = 0.36). Similar expressions apply to external boundary layer flow when the pipe
radius R is replaced by the boundary layer thickness 8. Friction factors for smooth pipes have been
developed from these results. One is the Blasius equation for ReD = 105 and is / = 0.316/Re]/4
obtained by using a power-law velocity profile u/umax = (y/R)l/J. The value 7 here increases to 10
at higher Reynolds numbers. The use of a logarithmic form of velocity profile gives the Prandtl law
of pipe friction for smooth pipes:

=̂ = 2 log(ReD Vf) - 0.8

which agrees well with experimental values. A more explicit formula by Colebrook is 1/V/ =1.8
log(Re£>/6.9), which is within 1% of the Prandtl equation over the entire range of turbulent Reynolds
numbers.

The logarithmic velocity defect profiles apply for rough pipes as well as for smooth pipes, since
the velocity defect (wmax - u) decreases linearly with the shear velocity v % keeping the ratio of the
two constant.

A relation between the centerline velocity and the average velocity is wmax/V = 1 + 133Vf,
which may be used to estimate the average velocity from a single centerline measurement.

The Colebrook-White equation encompasses all turbulent flow regimes, for both smooth and
rough pipes:

—̂"-(!̂ )
and this is plotted in Fig. 40.32, where k is the equivalent sand-grain roughness. A simpler equation
by Haaland is

±r-̂ (H*(Ml

which is explicit in / and is within 1.5% of the Colebrook-White equation in the range 4000 ̂
ReD ̂  108 and 0 ̂ k/D ̂  0.05.

Three types of problems may be solved:

1. The Pressure Drop or Head Loss. The Reynolds number and relative roughness are deter-
mined and calculations are made directly.

2. The Flow Rate for Given Fluid and Pressure Drops or Head Loss. Assume a friction factor,
based on a high ReD for a rough pipe, and determine the velocity from the Darcy equation.
Calculate a ReD, get a better /, and repeat until successive velocities are the same. A second
method is to assume a flow rate and calculate the pressure drop or head loss. Repeat until
results agree with the given pressure drop or head loss. A plot of Q versus hL, for example,
for a few trials may be used.

3. A Pipe Size. Assume a pipe size and calculate the pressure drop or head loss. Compare with
given values: Repeat until agreement is reached. A plot of D versus hL, for example, for a
few trials may be used. A second method is to assume a reasonable friction factor and get a
first estimate of the diameter from

rg/lfi'T"

D~l^\



Fig. 40.32 Friction factors for commercial pipe. [From L. F. Moody, "Friction Factors for Pipe Flow," Trans. ASME, 66 (1944). Courtesy of
The American Society of Mechanical Engineers.]



From the first estimate of D, calculate the Re^ and kID to get a better value of /. Repeat
until successive values of D agree. This is a rapid method.

Results for circular pipes may be applied to noncircular ducts if the hydraulic diameter is used
in place of the diameter of a circular pipe. Then the relative roughness is klDh and the Reynolds
number is Re = VDh/v. Results are reasonably good for square ducts, rectangular ducts of aspect
ratio up to about 8, equilateral ducts, hexagonal ducts, and concentric annular ducts of diameter ratio
to about 0.75. In eccentric annular ducts where the pipes touch or nearly touch, and in tall narrow
triangular ducts, both laminar and turbulent flow may exist at a section. Analyses mentioned here do
not apply to these geometries.

40.11.4 Steady Incompressible Flow in Entrances of Ducts
The increased pressure drop in the entrance region of ducts as compared with that for the same length
of fully developed flow is generally included in a correction term called a loss coefficient, kL. Then,

Pi-p fL
PV>/2 Dh + kL

where pl is the pressure at the duct inlet and p is the pressure a distance L from the inlet. The value
of kL depends on L but becomes a constant in the fully developed region, and this constant value is
of greatest interest.

For laminar flow the pressure drop in the entrance length Le is obtained from the Bernoulli
equation written along the duct axis where there is no shear in the core flow. This is

p«L* pv2 |7«wY Jpv2
Pl-p. = — - — = [(—) -l\ —

for any duct for which «max/V is known. When both friction factor and kL are known, the entrance
length is

£• _ i [Y2=y _ x _ t ]
Dk-f[(v) l kL\

For a circular duct, experiments and analyses indicate that kL « 1.30. Thus, for a circular duct,
LJD = (Rez?/64)(22 - 1 - 1.30) = 0.027Rê . The pressure drop for fully developed flow in a
length Le is A/? = 1.70pV2/2 and thus the pressure drop in the entrance is 3/1.70 = 1.76 times that
in an equal length for fully developed flow. Entrance effects are important for short ducts.

Some values of kL and (Le/Dh)RQ for laminar flow in various ducts are listed in Table 40.9.
For turbulent flow, loss coefficients are determined experimentally. Results are shown in Fig.

40.33. Flow separation accounts for the high loss coefficients for the square and reentrant shapes for
circular tubes and concentric annuli. For a rounded entrance, a radius of curvature of D/7 or more
precludes separation. The boundary layer starts laminar then changes to turbulent, and the pressure
drop does not significantly exceed the corresponding value for fully developed flow in the same
length. (It may even be less with the laminar boundary layer—a trip or slight roughness may force
a turbulent boundary layer to exist at the entrance.)

Entrance lengths for circular ducts and concentric annuli are defined as the distance required for
the pressure gradient to become within a specified percentage of the fully developed value (5%, for
example). On this basis LeIDh is about 30 or less.

40.11.5 Local Losses in Contractions, Expansions, and Pipe Fittings; Turbulent Flow
Calculations of local head losses generally are approximate at best unless experimental data for given
fittings are provided by the manufacturer.

Losses in contractions are given by hL = kLV2/2g. Loss coefficients for a sudden contraction are
shown in Fig. 40.34. For gradually contracting sections kL may be as low as 0.03 for D2/D1 of 0.5
or less.

Losses in expansions are given by hL = kL(Vv — V2)2/2g, section 1 being upstream. For a sudden
expansion, kL = 1, and for gradually expanding sections with divergence angles of 7° or 8°, kL may
be as low as 0.14 or even 0.06 for diffusers for low-speed wind tunnels or cavitation-testing water
tunnels with curved inlets to avoid separation.

Losses in pipe fittings are given in the form hL = kLV2/2g or in terms of an equivalent pipe
length by pipe-fitting manufacturers. Typical values for various fittings are given in Table 40.10.



Table 40.9 Entrance Effects, Laminar Flow (See Table 40.8 for Symbols)

n/r2 kL a/b kL Lc Dh Re x kL
0.0001 U3 0 069 0.0059 0 L74
0.001 1.07 1/8 0.88 0.0094 10 1.73
0.01 0.97 1/5 1.00 0.0123 20 1.72
0.05 0.86 1/4 1.08 0.0146 30 1.69
0.10 0.81 1/2 1.38 0.0254 40 1.65
0.20 0.75 3/4 1.52 0.0311 60 1.57
0.40 0.71 1 L55 0.0324 90 1.46
0.60 0.69 120 1.39
0.80 0.69 150 1.34
1.00 0.69 180 1.33

Circular Isosceles Right
Sector Triangle Triangle

« k|_ k|̂  k[̂
0 197 197 197
10 2.06 2.14 2.40
20 1.71 1.85 2.09
30 1.58 1.79 1.94
40 1.53 1.83 1.88
50 1.50 1.95 1.88
60 1.49 2.14 1.94
70 1.48 2.38 2.09
80 1.47 172 2.40
90 1.46 2.97 2.97

40.11.6 Flow of Compressible Gases in Pipes with Friction
Subsonic gas flow in pipes involves a decrease in gas density and an increase in gas velocity in the
direction of flow. The momentum equation for this flow may be written as

^ + /^ + 2^0
PV2/2 J D V

For isothermal flow the first term is (21PiV\p̂ p dp, where the subscript 1 refers to an upstream
section where all conditions are known. For L — x2 — xl, integration gives

rf-^ = PiV?/»,(/|-21n^

or, in terms of the initial Mach number,

rf-p| = Mf?rf(/|j-21n^

The downstream pressure p2 at a distance L from section 1 may be obtained by trial by neglecting

Fig. 40.33 Pipe entrance flows: (a) square entrance; (b) round entrance; (c) reentrant inlet.



Fig. 40.34 Loss coefficients for abrupt contract in pipes.

the term 2 In(p2/pl) initially to get a p2, then including it for an improved value. The distance L is
a section where the pressure is p2 is obtained from

'5-=i[-fe)l-"£

A limiting condition (designated by an asterisk) at a length L* is obtained from an expression
dp/dx to get

Table 40.10 Typical Loss Coefficients for Valves and Fittings

Valve or Fitting

Globe valve, wide open :
Screwed
Flanged

Gate valve, wide open :
Screwed
Flanged

Foot valve, wide open
Swing check valve, wide open
Screwed
Flanged

Angle valve, wide open :
Screwed
Flanged

Regular elbow, 90°
Screwed
Flanged

Long-radius elbow, 90°
Screwed
Flanged

Nominal Diameter, CM

2.5 5 10 15 20 25

9 7 5.5
12 9 6 6 5.5 5.5

0.24 0.18 0.13
0.35 0.16 0.11 0.08 0.06

0.80 for all sizes

3.0 2.3 2.1
2.0 for all sizes

4.5 2.1 1.0
2.4 2.1 2.1 2.1 2.1

1.5 1.0 0.65
0.42 0.37 0.31 0.28 0.26 0.25

0.75 0.4 0.25
0.3 0.22 0.18 0.15 0.14

Note: The kL values listed may be expressed in terms of an equivalent pipe length for a given
installation and flow by equating kL = fLc/D so that Le = kLDlf.
SOURCE: Reproduced, with permission, from Engineering Data Book: Pipe Friction Manual
(Cleveland: Hydraulic Institute, 1979).



dp = pf/2D = (f/D)(pV2/2)

Jjc ~ 1 - p/pV2 ~ kM2 - 1

For a low subsonic flow at an upstream section (as from a compressor discharge) the pressure gradient
increases in the flow direction with an infinite value when M* = 1/Vfc = 0.845 for k = 1.4 (air,
for example). For M approaching zero, this equation is the Darcy equation for incompressible flow.
The limiting pressure is p* = plMlVk, and the limiting length is given by

f— = -L.- J_
D kM\ kM\

Since the gas at any two locations 1 and 2 in a long pipe has the same limiting condition, the distance
L between them is

f_L = //L*\ _ //L*\

D \D)MI \D )M2

Conditions along a pipe for various initial Mach numbers are shown in Fig. 40.35.
For adiabatic flow the limiting Mach number is M* = 1. This is from an expression for dp/dx

for adiabatic flow:

dp = _fkp_ \\ + (k- 1)M21 = _f_ P\̂  h + (k- 1)M21

dx 2D [ 1 - M2 J D 2 [ 1 - M2 J

The limiting pressure is

p* /2[1 + V2(k - 1W2]

?: = MiV—rn—

and the limiting length is

/L* = 1 - M2 J^+ 1 (fc + 1)M2

D ~ ^M2 + 2k n 2[1 + !/2№ ~ 1)M2]

Except for subsonic flow at high Mach numbers, isothermal and adiabatic flow do not differ
appreciably. Thus, since flow near the limiting condition is not recommended in gas transmission

Fig. 40.35 Isothermal gas flow in a pipe for various initial Mach numbers, k = 1.4.



pipelines because of the excessive pressure drop, and since purely isothermal or purely adiabatic flow
is unlikely, either adiabatic or isothermal flow may be assumed in making engineering calculations.
For example, for methane from a compressor at 2000 kPa absolute pressure, 60°C temperature and
15 m/sec velocity (Ml = 0.032) in a 30-cm commercial steel pipe, the limiting pressure is 72 kPa
absolute at L* = 16.9 km for isothermal flow, and 59 kPa at L* = 17.0 km for adiabatic flow. A
pressure of 500 kPa absolute would exist at 16.0 km for either type of flow.
40.12 DYNAMIC DRAG AND LIFT
Two types of forces act on a body past which a fluid flows: a pressure force normal to any infinitesimal
area of the body and a shear force tangential to this area. The components of these two forces integrate
over the entire body in a direction parallel to the approach flow is the drag force, and in a direction
normal to it is the lift force. Induced drag is associated with a lift force on finite airfoils or blank
elements as a result of down wash from tip vortices. Surface waves set up by ships or hydrofoils, and
compression waves in gases such as Mach cones are the source of wave drag.
40.12.1 Drag
A drag force is D = C (pu2s!2}A, where C is the drag coefficient, puj/2 is the dynamic pressure of
the free stream, and A is an appropriate area. For pure viscous shear drag C is Cf, the skin friction
drag coefficient of Section 40.9.2 and A is the area sheared. In general, C is designated CD, the drag
coefficient for drag other than that from viscous shear only, and A is the chord area for lifting vanes
or the projected frontal area for other shapes.

The drag coefficient for incompressible flow with pure pressure drag (a flat plate normal to a
flow, for example) or for combined skin friction and pressure drag, which is called profile drag,
depends on the body shape, the Reynolds number, and, usually, the location of boundary layer
transition.

Drag coefficients for spheres and for flow normal to infinite circular cylinders are shown in Fig.
40.36. For spheres at ReD < 0.1, CD = 24/ReD and for ReD < 100, CD = (24/ReD)(l + 3 ReD/
16)1/2. The boundary layer for both shapes up to and including the flat portion of the curves before
the rather abrupt drop in the neighborhood of ReD = 105 is laminar. This is called the subcritical
region; beyond that is the supercritical region. Table 40.11 lists typical drag coefficients for two-
dimensional shapes, and Table 40.12 lists them for three-dimensional shapes.

The drag of spheres, circular cylinders, and streamlined shapes is affected by boundary layer
separation, which, in turn, depends on surface roughness, the Reynolds number, and free stream
turbulence. These factors contribute to uncertainties in the value of the drag coefficient.
40.12.2 Lift

Lift in a nonviscous fluid may be produced by prescribing a circulation around a cylinder or lifting
vane. In a viscous fluid this may be produced by spinning a ping-pong ball, a golf ball, or a baseball,
for example, Circulation around a lifting vane in a viscous fluid results from the bound vortex or
countercirculation that is equal and opposite to the starting vortex, which peels off the trailing edge
of the vane. The lift is calculated from L = CL(pu2sl2)A, where CL is the lift coefficient, pu2J2 is the

Fig. 40.36 Drag coefficients for infinite circular cylinders and spheres: (1) Lamb's solution for
cylinder; (2) Stokes' solution for sphere; (3) Oseen's solution for sphere.



Table 40.11 Drag Coefficients for Two-Dimensional Shapes at Re =
105 Based on Frontal Projected Area (Flow is from Left to Right)

Shape CD Shape CD

Plate 2.0 Rectangle
1:1 1.18

Open tube 1.2 5:1 1.2
2.3 10:1 1.3

20:1 1.5
Half cylinder 1.16 Elliptical Below Above

1.7 Cylinder Rec Rec
2=1 0.6 0.20

Square cylinder 2.05 4:1 °-36 ai°
M y 155 8:1 0.26 0.10

Equilateral 2.0
triangle 1.6

dynamic pressure of the free stream, and A is the chord area of the lifting vane. Typical values of
CL as well as CD are shown in Fig. 40.37. The induced drag and the profile drag are shown. The
profile drag is the difference between the dashed and solid curves. The induced drag is zero at zero
lift.

40.13 FLOW MEASUREMENTS
Fluid flow measurements generally involve determining static pressures, local and average velocities,
and volumetric or mass flow rates.

40.13.1 Pressure Measurements
Static pressures are measured by means of a small hole in a boundary surface connected to a
sensor—a manometer, a mechanical pressure gage, or an electrical transducer. The surface may be
a duct wall or the outer surface of a tube, such as those shown in Fig. 40.38. In any case, the surface
past which the fluid flows must be smooth, and the tapped holes must be at right angles to the surface.

Table 40.12 Drag Coefficients for
Three-Dimensional Shapes Re
between 104 and 106 (Flow is from
Left to Right)

Shape CD

Disk 1.17

Open hemisphere 0.38
1.42

Solid hemisphere 0.42
1.17

Cube 1.05°
0.80°

Cone, 60° 0.50

"Mounted on a boundary wall.



Fig. 40.37 Typical polar diagram showing lift-drag characteristics for an airfoil of finite span.

Total or stagnation pressures are easily measured accurately with an open-ended tube facing into
the flow, as shown in Fig. 40.38.

40.13.2 Velocity Measurements
A combined pitot tube (Fig. 40.38) measures or detects the difference between the total or stagnation
pressure p0 and the static pressure p. For an incompressible fluid the velocity being measured is
V = V2(/?0 - p)l p. For subsonic gas flow the velocity of a stream at a temperature T and pressure
p in

l2kRT r/A.y*-'" ~]

V-t-iLw J

and the corresponding Mach number is

Fig. 40.38 Combined pitot tubes: (a) Brabbee's design; (b) Prandtl's design—accurate over a
greater range of yaw angles.
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For supersonic flow the stagnation pressure p^ is downstream of a shock, which is detached and
ahead of the open stagnation tube, and the static pressure px is upstream of the shock. In a wind
tunnel the static pressure could be measured with a pressure tap in the tunnel wall. The Mach number
M of the flow is

/v A + vr'-'Y k̂ *-iy«'-»
7~l~ / UT7M ~TT\)

which is tabulated in gas tables.
In a mixture of gas bubbles and a liquid for gas concentrations C no more than 0.6 by volume,

the velocity of the mixture with the pitot tube and manometer free of bubbles is

J2(Po-Pl) I 2ghm / ym ~~T

mixture Vd-OPMd Vd-QW, /

where hm is the manometer deflection in meters for a manometer liquid of specific weight ym. The
error in this equation from neglecting compressible effects for the gas bubbles is shown in Fig. 40.39.
A more correct equation based on the gas-liquid mixture reaching a stagnation pressure isentropically
is

V\ = Po-Pi C (Pi\\_k_ fa}™" 1 /Ml
2 Pa(l - O 1-CVpJU-lW fc-1 WJ

but is cumbersome to use. As indicated in Fig. 40.39 the error in using the first equation is very
small for high concentrations of gas bubbles at low speeds and for low concentrations at high speeds.

If n velocity readings are taken at the centroid of n subareas in a duct, the average velocity V
from the point velocity readings ut is

v%J><

In a circular duct, readings should be taken at (r/R)2 = 0.055, 0.15, 0.25, . . . , 0.95. Velocities
measured at other radial positions may be plotted versus (r/R)2, and the area under the curve may
be integrated numerically to obtain the average velocity.

Other methods of measuring fluid velocities include length-time measurements with floats or
neutral-buoyancy particles, rotating instruments such as anemometers and current meters, hot-wire
and hot-film anemometers, and laser-doppler anemometers.

40.13.3 Volumetric and Mass Flow Fluid Measurements
Liquid flow rates in pipes are commonly measured with commercial water meters; with rotameters;
and with venturi, nozzle, and orifice meters. These latter types provide an obstruction in the flow
and make use of the resulting pressure change to indicate the flow rate.

Fig. 40.39 Error in neglecting compressibility of air in measuring velocity of air-water mixture
with a combined pitot tube.



Fig. 40.40 Pipe flow meters: (a) venturi; (b) nozzle; (c) concentric orifice.

The continuity and Bernoulli equations for liquid flow applied between sections 1 and 2 in Fig.
40.40 give the ideal volumetric flow rate as

A2V2g M

adeal = Vl - (A2/Arf

where A/i is the change in piezometric head. A form of this equation generally used is

Q-K(*£)̂ R

where K is the flow coefficient, which depends on the type of meter, the diameter ratio dID, and the
viscous effects given in terms of the Reynolds number. This is based on the length parameter d and
the velocity V through the hole of diameter d. Approximate flow coefficients are given in Fig. 40.41.
The relation between the flow coefficient K and this Reynolds number is

Fig. 40.41 Approximate flow coefficients for pipe meters.



Vd Qd d\/2g A/z
Rerf = — = i/ ,2 = ̂y l/47rd2v v

The dimensionless parameter dV2g A/i/u can be calculated, and the intersection of the appropriate
line for this parameter and the appropriate meter curve gives an approximation to the flow coefficient
K. The lower values of K for the orifice result from the contraction of the jet beyond the orifice
where pressure taps may be located. Meter throat pressures should not be so low as to create cavi-
tation. Meters should be calibrated in place or purchased from a manufacturer and installed according
to instructions.

Elbow meters may be calibrated in place to serve as metering devices, by measuring the difference
in pressure between the inner and outer radii of the elbow as a function of flow rate.

For compressible gas flows, isentropic flow is assumed for flow between sections 1 and 2 in Fig.
40.40. The mass flow rate is m = KYA2V2pl(pl - /?2), where K is as shown in Fig. 40.41 and Y =
Y(k, p2lp\, dID) and is the expansion factor shown in Fig. 40.42. For nozzles and venturi tubes

№i-(ri-(g)']

"V [-(M'-W']

and for orifice meters

'-ih *-$'](-*)

These are the basic principles of fluid flow measurements. Utmost care must be taken when
accurate measurements are necessary, and reference to meter manufacturers' pamphlets or measure-
ments handbooks should be made.

Fig. 40.42 Expansion factors for pipe meters, k = 1.4.
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