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28.1 INTRODUCTION
The purpose of a control system is to produce a desired output. This output is usually specified by
the command input, and is often a function of time. For simple applications in well-structured situ-
ations, sequencing devices like timers can be used as the control system. But most systems are not
that easy to control, and the controller must have the capability of reacting to disturbances, changes
in its environment, and new input commands. The key element that allows a control system to do
this is feedback, which is the process by which a system's output is used to influence its behavior.
Feedback in the form of the room-temperature measurement is used to control the furnace in a
thermostatically controlled heating system. Figure 28.1 shows the feedback loop in the system's block
diagram, which is a graphical representation of the system's control structure and logic. Another
commonly found control system is the pressure regulator shown in Fig. 28.2.

Feedback has several useful properties. A system whose individual elements are nonlinear can
often be modeled as a linear one over a wider range of its variables with the proper use of feedback.
This is because feedback tends to keep the system near its reference operation condition. Systems
that can maintain the output near its desired value despite changes in the environment are said to
have good disturbance rejection. Often we do not have accurate values for some system parameter,
or these values might change with age. Feedback can be used to minimize the effects of parameter
changes and uncertainties. A system that has both good disturbance rejection and low sensitivity to
parameter variation is robust. The application that resulted in the general understanding of the prop-
erties of feedback is shown in Fig. 28.3. The electronic amplifier gain A is large, but we are uncertain
of its exact value. We use the resistors Rl and R2 to create a feedback loop around the amplifier, and
pick Rl and R2 to create a feedback loop around the amplifier, and pick Rl and R2 so that AR2/Rl
» 1. Then the input-output relation becomes e0 « R^e^R^^ which is independent of A as long as
A remains large. If Rl and R2 are known accurately, then the system gain is now reliable.

Figure 28.4 shows the block diagram of a closed-loop system, which is a system with feedback.
An open-loop system, such as a timer, has no feedback. Figure 28.4 serves as a focus for outlining
the prerequisites for this chapter. The reader should be familiar with the transfer-function concept
based on the Laplace transform, the pulse-transfer function based on the z-transform, for digital
control, and the differential equation modeling techniques needed to obtain them. It is also necessary
to understand block-diagram algebra, characteristic roots, the final-value theorem, and their use in
evaluating system response for common inputs like the step function. Also required are stability
analysis techniques such as the Routh criterion, and transient performance specifications, such as the
damping ratio £, natural frequency a)n, dominant time constant r, maximum overshoot, settling time,
and bandwidth. The above material is reviewed in the previous chapter. Treatment in depth is given
in Refs. 1, 2, and 3.

Fig. 28.1 Block diagram of the thermostat system for temperature control.1
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Fig. 28.2 Pressure regulator: (a) cutaway view; (b) block diagram.1

28.2 CONTROL SYSTEM STRUCTURE
The electromechanical position control system shown in Fig. 28.5 illustrates the structure of a typical
control system. A load with an inertia / is to be positioned at some desired angle 6r. A dc motor is
provided for this purpose. The system contains viscous damping, and a disturbance torque Td acts
on the load, in addition to the motor torque T. Because of the disturbance, the angular position 6 of
the load will not necessarily equal the desired value 6r. For this reason, a potentiometer, or some
other sensor such as an encoder, is used to measure the displacement 6. The potentiometer voltage
representing the controlled position 0 is compared to the voltage generated by the command poten-
tiometer. This device enables the operator to dial in the desired angle dr. The amplifier sees the
difference e between the two potentiometer voltages. The basic function of the amplifier is to increase
the small error voltage e up to the voltage level required by the motor and to supply enough current
required by the motor to drive the load. In addition, the amplifier may shape the voltage signal in
certain ways to improve the performance of the system.

The control system is seen to provide two basic functions: (1) to respond to a command input
that specifies a new desired value for the controlled variable, and (2) to keep the controlled variable
near the desired value in spite of disturbances. The presence of the feedback loop is vital to both

Fig. 28.3 A closed-loop system.



Fig. 28.4 Feedback compensation of an amplifier.

functions. A block diagram of this system is shown in Fig. 28.6. The power supplies required for
the potentiometers and the amplifier are not shown in block diagrams of control system logic because
they do not contribute to the control logic.

28.2.1 A Standard Diagram
The electromechanical positioning system fits the general structure of a control system (Fig. 28.7).
This figure also gives some standard terminology. Not all systems can be forced into this format, but
it serves as a reference for discussion.

The controller is generally thought of as a logic element that compares the command with the
measurement of the output, and decides what should be done. The input and feedback elements are
transducers for converting one type of signal into another type. This allows the error detector directly
to compare two signals of the same type (e.g., two voltages). Not all functions show up as separate
physical elements. The error detector in Fig. 28.5 is simply the input terminals of the amplifier.

The control logic elements produce the control signal, which is sent to the final control elements.
These are the devices that develop enough torque, pressure, heat, and so on to influence the elements
under control. Thus, the final control elements are the "muscle" of the system, while the control
logic elements are the "brain." Here we are primarily concerned with the design of the logic to be
used by this brain.

The object to be controlled is the plant. The manipulated variable is generated by the final control
elements for this purpose. The disturbance input also acts on the plant. This is an input over which
the designer has no influence, and perhaps for which little information is available as to the magnitude,
functional form, or time of occurrence. The disturbance can be a random input, such as wind gust
on a radar antenna, or deterministic, such as Coulomb friction effects. In the latter case, we can
include the friction force in the system model by using a nominal value for the coefficient of friction.
The disturbance input would then be the deviation of the friction force from this estimated value and
would represent the uncertainty in our estimate.

Several control system classifications can be made with reference to Fig. 28.7. A regulator is a
control system in which the controlled variable is to be kept constant in spite of disturbances. The
command input for a regulator is its set point. A follow-up system is supposed to keep the control
variable near a command value that is changing with time. An example of a follow-up system is a
machine tool in which a cutting head must trace a specific path in order to shape the product properly.
This is also an example of a servomechanism, which is a control system whose controlled variable
is a mechanical position, velocity, or acceleration. A thermostat system is not a servomechanism, but
a process-control system, where the controlled variable describes a thermodynamic process. Typically,
such variables are temperature, pressure, flow rate, liquid level, chemical concentration, and so on.

28.2.2 Transfer Functions
A transfer function is defined for each input-output pair of the system. A specific transfer function
is found by setting all other inputs to zero and reducing the block diagram. The primary or command
transfer function for Fig. 28.7 is

Fig. 28.5 Position-control system using a dc motor.1



Fig. 28.6 Block diagram of the position-control system shown in Fig. 28.5.1

0£) = A(s)Ga(s)Gm(s)Gp(S)
V(s) 1 + Ga(s)Gm(s)Gp(s)H(S) ' }

The disturbance transfer function is

C(s) = ~Q(s)Gp(s)
D(s) 1 + Ga(s)Gm(s)Gp(s)H(s) V ' ;

The transfer functions of a given system all have the same denominator.

28.2.3 System-Type Number and Error Coefficients
The error signal in Fig. 28.4 is related to the input as

E(s) = * R(s) (28.3)
1 + G(s)H(s)

If the final value theorem can be applied, the steady-state error is

Elements Signals

A(s) Input elements B(s) Feedback signal
Ga(s) Control logic elements C(s) Controlled variable or output
Gm(s) Final control elements D(s) Disturbance input
Gp(s) Plant elements E(s) Error or actuating signal
H(s) Feedback elements F(s) Control signal
Q(s) Disturbance elements M(s) Manipulated variable

R(s) Reference input
V(s) Command input

Fig. 28.7 Terminology and basic structure of a feedback-control system.1



'--Sfr̂ fe (28-4)

The static error coefficient ct is defined as

c, = lim slG(s}H(s} (28.5)
s-»0

A system is of type n if G(s)H(s) can be written as snF(s). Table 28.1 relates the steady-state error
to the system type for three common inputs, and can be used to design systems for minimum error.
The higher the system type, the better the system is able to follow a rapidly changing input. But
higher-type systems are more difficult to stabilize, so a compromise must be made in the design. The
coefficients c0, cl9 and c2 are called the position, velocity, and acceleration error coefficients.

28.3 TRANSDUCERS AND ERROR DETECTORS
The control system structure shown in Fig. 28.7 indicates a need for physical devices to perform
several types of functions. Here we present a brief overview of some available transducers and error
detectors. Actuators and devices used to implement the control logic are discussed in Sections 28.4
and 28.5.

28.3.1 Displacement and Velocity Transducers
A transducer is a device that converts one type of signal into another type. An example is the
potentiometer, which converts displacement into voltage, as in Fig. 28.8. In addition to this conver-
sion, the transducer can be used to make measurements. In such applications, the term sensor is more
appropriate. Displacement can also be measured electrically with a linear variable differential trans-
former (LVDT) or a synchro. An LVDT measures the linear displacement of a movable magnetic
core through a primary winding and two secondary windings (Fig. 28.9). An ac voltage is applied
to the primary. The secondaries are connected together and also to a detector that measures the
voltage and phase difference. A phase difference of 0° corresponds to a positive core displacement,
while 180° indicates a negative displacement. The amount of displacement is indicated by the am-
plitude of the ac voltage in the secondary. The detector converts this information into a dc voltage
e0, such that e0 = Kx. The LVDT is sensitive to small displacements. Two of them can be wired
together to form an error detector.

A synchro is a rotary differential transformer, with angular displacement as either the input or
output. They are often used in paris (a transmitter and a receiver) where a remote indication of
angular displacement is needed. When a transmitter is used with a synchro control transformer, two
angular displacements can be measured and compared (Fig. 28.10). The output voltage e0 is approx-
imately linear with angular difference within ±70°, so that e0 = ̂ (̂  - 02).

Displacement measurements can be used to obtain forces and accelerations. For example, the
displacement of a calibrated spring indicates the applied force. The accelerometer is another example.
Still another is the strain gage used for force measurement. It is based on the fact that the resistance
of a fine wire changes as it is stretched. The change in resistance is detected by a circuit that can be
calibrated to indicate the applied force. Sensors utilizing piezoelectric elements are also available.

Velocity measurements in control systems are most commonly obtained with a tachometer. This .
is essentially a dc generator (the reverse of a dc motor). The input is mechanical (a velocity). The
output is a generated voltage proportional to the velocity. Translational velocity can be measured by
converting it to angular velocity with gears, for example. Tachometers using ac signals are also
available.

Table 28.1 Steady-State Error ess for Different
System-Type Numbers

System Type Number n

R(s) 0 1 2 3

Step 1 / 5 0 0 0
1 + CQ

Ramp 1/s2 oo — 0 0
Q

Parabola 1/s3 oo oo — 0
Q



Fig. 28.8 Rotary potentiometer.1

Other velocity transducers include a magnetic pickup that generates a pulse every time a gear
tooth passes. If the number of gear teeth is known, a pulse counter and timer can be used to compute
the angular velocity. This principle is also employed in turbine flowmeters.

A similar principle is employed by optical encoders, which are especially suitable for digital
control purposes. These devices use a rotating disk with alternating transparent and opaque elements
whose passage is sensed by light beams and a photo-sensor array, which generates a binary (on-off)
train of pulses. There are two basic types: the absolute encoder and the incremental encoder. By
counting the number of pulses in a given time interval, the incremental encoder can measure the
rotational speed of the disk. By using multiple tracks of elements, the absolute encoder can produce
a binary digit that indicates the amount of rotation. Hence, it can be used as a position sensor.

Most encoders generate a train of TTL voltage level pulses for each channel. The incremental
encoder output contains two channels that each produce N pulses every revolution. The encoder is
mechanically constructed so that pulses from one channel are shifted relative to the other channel by
a quarter of a pulse width. Thus, each pulse pair can be divided into four segments called quadratures.
The encoder output consists of 4N quadrature counts per revolution. The pulse shift also allows the

Fig. 28.9 Linear variable differential transformer (LVDT).1



Fig. 28.10 Synchro transmitter-control transformer.1

direction of rotation to be determined by detecting which channel leads the other. The encoder might
contain a third channel, known as the zero, index, or marker channel, that produces a pulse once per
revolution. This is used for initialization.

The gain of such an incremental encoder is 4NI2ir. Thus, an encoder with 1000 pulses per channel
per revolution has a gain of 636 counts per radian. If an absolute encoder produces a binary signal
with n bits, the maximum number of positions it can represent is 2n, and its gain is 2"/27r. Thus, a
16-bit absolute encoder has a gain of 216/27r = 10,435 counts per radian.

28.3.2 Temperature Transducers
When two wires of dissimilar metals are joined together, a voltage is generated if the junctions are
at different temperatures. If the reference junction is kept at a fixed, known temperature, the ther-
mocouple can be calibrated to indicate the temperature at the other junction in terms of the voltage
v, Electrical resistance changes with temperature. Platinum gives a linear relation between resistance
and temperature, while nickel is less expensive and gives a large resistance change for a given
temperature change. Seminconductors designed with this property are called thermistors. Different
metals expand at different rates when the temperature is increased. This fact is used in the bimetallic
strip transducer found in most home thermostats. Two dissimilar metals are bonded together to form
the strip. As the temperature rises, the strip curls, breaking contact and shutting off the furnace. The
temperature gap can be adjusted by changing the distance between the contacts. The motion also
moves a pointer on the temperature scale of the thermostat. Finally, the pressure of a fluid inside a
bulb will change as its temperature changes. If the bulb fluid is air, the device is suitable for use in
pneumatic temperature controllers.

28.3.3 Flow Transducers
A flow rate q can be measured by introducing a flow restriction, such as an orifice plate, and mea-
suring the pressure drop Ap across the restriction. The relation is Ap = Rq2, where R can be found
from calibration of the device. The pressure drop can be sensed by converting it into the motion of
a diaphragm. Figure 28.11 illustrates a related technique. The Venturi-type flowmeter measures the
static pressures in the constricted and unconstricted flow regions. Bernoulli's principle relates the
pressure difference to the flow rate. This pressure difference produces the diaphragm displacement.
Other types of flowmeters are available, such as turbine meters.

28.3.4 Error Detectors

The error detector is simply a device for finding the difference between two signals. This function
is sometimes an integral feature of sensors, such as with the synchro transmitter-transformer com-
bination. This concept is used with the diaphragm element shown in Fig. 28.11. A detector for voltage
difference can be obtained, as with the position-control system shown in Fig. 28.5. An amplifier
intended for this purpose is a differential amplifier. Its output is proportional to the difference between
the two inputs. In order to detect differences in other types of signals, such as temperature, they are
usually converted to a displacement or pressure. One of the detectors mentioned previously can then
be used.



Fig. 28.11 Venturi-type flowmeter. The diaphragm displacement indicates the flow rate.1

28.3.5 Dynamic Response of Sensors
The usual transducer and detector models are static models, and as such imply that the components
respond instantaneously to the variable being sensed. Of course, any real component has a dynamic
response of some sort, and this response time must be considered in relation to the controlled process
when a sensor is selected. If the controlled process has a time constant at least 10 times greater than
that of the sensor, we often would be justified in using a static sensor model.

28.4 ACTUATORS
An actuator is the final control element that operates on the low-level control signal to produce a
signal containing enough power to drive the plant for the intended purpose. The armature-controlled
dc motor, the hydraulic servomotor, and the pneumatic diaphragm and piston are common examples
of actuators.

28.4.1 Electromechanical Actuators
Figure 28.12 shows an electromechanical system consisting of an armature-controlled dc motor driv-
ing a load inertia. The rotating armature consists of a wire conductor wrapped around an iron core.

Fig. 28.12 Armature-controlled dc motor with a load, and the system's block diagram,1



This winding has an inductance L. The resistance R represents the lumped value of the armature
resistance and any external resistance deliberately introduced to change the motor's behavior. The
armature is surrounded by a magnetic field. The reaction of this field with the armature current
produces a torque that causes the armature to rotate. If the armature voltage v is used to control the
motor, the motor is said to be armature-controlled. In this case, the field is produced by an electro-
magnet supplied with a constant voltage or by a permanent magnet. This motor type produces a
torque T that is proportional to the armature current ia:

T = KTia (28.6)

The torque constant KT depends on the strength of the field and other details of the motor's construc-
tion. The motion of a current-carrying conductor in a field produces a voltage in the conductor that
opposes the current. This voltage is called the back emf (electromotive force). Its magnitude is
proportional to the speed and is given by

eb = Kea> (28.7)

The transfer function for the armature-controlled dc motor is

OW = KT
V(s) LIs2 + (RI + cL)s + cR + KeKT ^ ' )

Another motor configuration is the field-controlled dc motor. In this case, the armature current is
kept constant and the field voltage v is used to control the motor. The transfer function is

Q(') _ KT (2o9}
V(s) (Ls + R)(Is + c)

where R and L are the resistance and inductance of the field circuit, and KT is the torque constant.
No back emf exists in this motor to act as a self-braking mechanism.

Two-phase ac motors can be used to provide a low-power, variable-speed actuator. This motor
type can accept the ac signals directly from LVDTs and synchros without demodulation. However,
it is difficult to design ac amplifier circuitry to do other than proportional action. For this reason, the
ac motor is not found in control systems as often as dc motors. The transfer function for this type
is of the form of Eq. (28.9).

An actuator especially suitable for digital systems is the stepper motor, a special dc motor that
takes a train of electrical input pulses and converts each pulse into an angular displacement of a
fixed amount. Motors are available with resolutions ranging from about 4 steps per revolution to
more than 800 steps per revolution. For 36 steps per revolution, the motor will rotate by 10° for each
pulse received. When not being pulsed, the motors lock in place. Thus, they are excellent for precise
positioning applications, such as required with printers and computer tape drives. A disadvantage is
that they are low-torque devices. If the input pulse frequency is not near the resonant frequency of
the motor, we can take the output rotation to be directly related to the number of input pulses and
use that description as the motor model.

28.4.2 Hydraulic Actuators
Machine tools are one application of the hydraulic system shown in Fig. 28.13. The applied force /
is supplied by the servomotor. The mass m represents that of a cutting tool and the power piston,
while k represents the combined effects of the elasticity naturally present in the structure and that
introduced by the designer to achieve proper performance. A similar statement applies to the damping
c. The valve displacement z is generated by another control system in order to move the tool through
its prescribed motion. The spool valve shown in Fig. 28.13 had two lands. If the width of the land
is greater than the port width, the valve is said to be overlapped. In this case, a dead zone exists in
which a slight change in the displacement z produces no power piston motion. Such dead zones
create control difficulties and are avoided by designing the valve to be underlapped (the land width
is less the port width). For such valves there will be a small flow opening even when the valve is in
the neutral position at z = 0. This gives it a higher sensitivity than an overlapped valve.

The variables z and A/? = p2 - pl determine the volume flow rate, as

q = /feAp)

For the reference equilibrium condition (z = 0, Ap = 0, q — 0), a linearization gives

q = Clz- C2A/7 (28.10)



Modeled as f rictionless
Fig. 28.13 Hydraulic servomotor with a load.1

The linearization constants are available from theoretical and experimental results.4 The transfer
function for the system is1'2

™-H-C*n_(c£+\ C* (28-U>
—- s2 + (-— + A)s + —-
A \ A / A

The development of the steam engine led to the requirement for a speed-control device to maintain
constant speed in the presence of changes in load torque or steam pressure. In 1788, James Watt of
Glasgow developed his now-famous flyball governor for this purpose (Fig. 28.14). Watt took the
principle of sensing speed with the centrifugal pendulum of Thomas Mead and used it in a feedback
loop on a steam engine. As the motor speed increases, the flyballs move outward and pull the slider

Fig. 28.14 James Watt's flyball governor for speed control of a steam engine.1



Fig. 28.15 Electrohydraulic system for translation.1

upward. The upward motion of the slider closes the steam valve, thus causing the engine to slow
down. If the engine speed is too slow, the spring force overcomes that due to the flyballs, and the
slider moves down to open the steam valve. The desired speed can be set by moving the plate to
change the compression in the spring. The principle of the flyball governor is still used for speed-
control applications. Typically, the pilot valve of a hydraulic servomotor is connected to the slider
to provide the high forces required to move large supply valves.

Many hydraulic servomotors use multistage valves to obtain finer control and higher forces. A
two-stage valve has a slave value, similar to the pilot valve, but situated between the pilot valve and
the power piston.

Rotational motion can be obtained with a hydraulic motor, which is, in principle, a pump acting
in reverse (fluid input and mechanical rotation output). Such motors can achieve higher torque levels
than electric motors. A hydraulic pump driving a hydraulic motor constitutes a hydraulic transmission.

A popular actuator choice is the electrohydraulic system, which uses an electric actuator to control
a hydraulic servomotor or transmission by moving the pilot valve or the swash-plate angle of the
pump. Such systems combine the power of hydraulics with the advantages of electrical systems.
Figure 28.15 shows a hydraulic motor whose pilot valve motion is caused by an armature-controlled
dc motor. The transfer function between the motor voltage and the piston displacement is

X(s) KlK2Cl
W) = Aŝ rs + 1) (28'12)

If the rotational inertia of the electric motor is small, then r ~ 0.

28.4.3 Pneumatic Actuators
Pneumatic actuators are commonly used because they are simple to maintain and use a readily
available working medium. Compressed air supplies with the pressures required are commonly avail-
able in factories and laboratories. No flammable fluids or electrical sparks are present, so these devices
are considered the safest to use with chemical processes. Their power output is less than that of
hydraulic systems, but greater than that of electric motors.

A device for converting pneumatic pressure into displacement is the bellows shown in Fig. 28.16.
The transfer function for a linearized model of the bellows is of the form

^ = -*- (28.13)
P(s) rs + 1

where x and p are deviations of the bellows displacement and input pressure from nominal values.
In many control applications, a device is needed to convert small displacements into relatively

large pressure changes. The nozzle-flapper serves this purpose (Fig. 28.17a). The input displacement
y moves the flapper, with little effort required. This changes the opening at the nozzle orifice. For a

Fig. 28.16 Pneumatic bellows.1



Fig. 28.17 Pneumatic nozzle-flapper amplifier and its characteristic curve.1

large enough opening, the nozzle back pressure is approximately the same as atmospheric pressure
pa. At the other extreme position with the flapper completely blocking the orifice, the back pressure
equals the supply pressure ps. This variation is shown in Fig. 28.176. Typical supply pressures are
between 30 and 100 psia. The orifice diameter is approximately 0.01 in. Flapper displacement is
usually less than one orifice diameter.

The nozzle-flapper is operated in the linear portion of the back pressure curve. The linearized
back pressure relation is

p = -Kjx (28.14)

where -Kf is the slope of the curve and is a very large number. From the geometry of similar
triangles, we have

P--j±y (2,15)

In its operating region, the nozzle-flapper's back pressure is well below the supply pressure.
The output pressure from a pneumatic device can be used to drive a final control element like

the pneumatic actuating valve shown in Fig. 28.18. The pneumatic pressure acts on the upper side
of the diaphragm and is opposed by the return spring.

Formerly, many control systems utilized pneumatic devices to implement the control law in analog
form. Although the overall, or higher-level, control algorithm is now usually implemented in digital
form, pneumatic devices are still frequently used for final control corrections at the actuator level,

Fig. 28.18 Pneumatic flow-control valve.1



where the control action must eventually be supplied by a mechanical device. An example of this is
the electro-pneumatic valve positioner used in Valtek valves, and illustrated in Fig. 28.19. The heart
of the unit is a pilot valve capsule that moves up and down according to the pressure difference
across its two supporting diaphragms. The capsule has a plunger at its top and at its bottom. Each
plunger has an exhaust seat at one end and a supply seat at the other. When the capsule is in its
equilibrium position, no air is supplied to or exhausted from the valve cylinder, so the valve does
not move.

The process controller commands a change in the valve stem position by sending the 4-20 ma
dc input signal to the positioner. Increasing this signal causes the electromagnetic actuator to rotate
the lever counterclockwise about the pivot. This increases the air gap between the nozzle and flapper.
This decreases the back pressure on top of the upper diaphragm and causes the capsule to move up.
This motion lifts the upper plunger from its supply seat and allows the supply air to flow to the
bottom of the valve cylinder. The lower plunger's exhaust seat is uncovered, thus decreasing the air
pressure on top of the valve piston, and the valve stem moves upward. This motion causes the lever
arm to rotate, increasing the tension in the feedback spring and decreasing the nozzle-flapper gap.
The valve continues to move upward until the tension in the feedback spring counteracts the force
produced by the electromagnetic actuator, thus returning the capsule to its equilibrium position.

A decrease in the dc input signal causes the opposite actions to occur, and the valve moves
downward.

28.5 CONTROL LAWS
The control logic elements are designed to act on the error signal to produce the control signal. The
algorithm that is used for this purpose is called the control law, the control action, or the control
algorithm. A nonzero error signal results from either a change in command or a disturbance. The
general function of the controller is to keep the controlled variable near its desired value when these
occur. More specifically, the control objectives might be stated as follows:

1. Minimize the steady-state error.
2. Minimize the settling time.
3. Achieve other transient specifications, such as minimizing the overshoot.

Fig. 28.19 An electro-pneumatic valve positioner.



In practice, the design specifications for a controller are more detailed. For example, the bandwidth
might also be specified along with a safety margin for stability. We never know the numerical values
of the system's parameters with true certainty, and some controller designs can be more sensitive to
such parameter uncertainties than other designs. So a parameter sensitivity specification might also
be included.

The following control laws form the basis of most control systems.

28.5.1 Proportional Control
Two-position control is the most familiar type, perhaps because of its use in home thermostats. The
control output takes on one of two values. With the on-off controller, the controller output is either
on or off (e.g., fully open or fully closed). Two-position control is acceptable for many applications
in which the requirements are not too severe. However, many situations require finer control.

Consider a liquid-level system in which the input flowrate is controlled by a valve. We might try
setting the control valve manually to achieve a flow rate that balances the system at the desired level.
We might then added a controller that adjusts this setting in proportion to the deviation of the level
from the desired value. This is proportional control, the algorithm in which the change in the control
signal is proportional to the error. Block diagrams for controllers are often drawn in terms of the
deviations from a zero-error equilibrium condition. Applying this convention to the general termi-
nology of Fig. 28.6, we see that proportional control is described by

F(s) = KPE(s)

where F(s) is the deviation in the control signal and KP is the proportional gain. If the total valve
displacement is y(t) and the manually created displacement is jc, then

y(f) = Kpe(t) + x

The percent change in error needed to move the valve full scale is the proportional band. It is related
to the gain as

K 10°
p band%

The zero-error valve displacement x is the manual reset.

Proportional Control of a First-Order System
To investigate the behavior of proportional control, consider the speed-control system shown in Fig.
28.20; it is identical to the position controller shown in Fig. 28.6, except that a tachometer replaces
the feedback potentiometer. We can combine the amplifier gains into one, denoted KP. The system
is thus seen to have proportional control. We assume the motor is field-controlled and has a negligible
electrical time constant. The disturbance is a torque Td, for example, resulting from friction. Choose
the reference equilibrium condition to be Td = T = 0 and ct>r = w = 0. The block diagram is shown
in Fig. 28.21. For a meaningful error signal to be generated, Kv and K2 should be chosen to be equal.
With this simplification the diagram becomes that shown in Fig. 28.22, where G(s) = K — K1KP
KTIR. A change in desired speed can be simulated by a unit step input for o>r. For £lr(s) =1/5, the
velocity approaches the steady-state value coss = Kl(c + K) < 1. Thus, the final value is less than
the desired value of 1, but it might be close enough if the damping c is small. The time required to

Fig. 28.20 Velocity-control system using a dc motor.1



Fig. 28.21 Block diagram of the velocity-control system of Fig. 28.20.1

reach this value is approximately four time constants, or 4r = 4//(c + K}. A sudden change in load
torque can also be modeled by a unit step function Td(s) = l/s. The steady-state response due solely
to the disturbance is — l/(c + K}. If (c + K} is large, this error will be small.

The performance of the proportional control law thus far can be summarized as follows. For a
first-order plant with step function inputs:

1. The output never reaches its desired value if damping is present (c ̂  0), although it can be
made arbitrarily close by choosing the gain K large enough. This is called offset error.

2. The output approaches its final value without oscillation. The time to reach this value is
inversely proportional to K.

3. The output deviation due to the disturbance at steady state is inversely proportional to the
gain K. This error is present even in the absence of damping (c = 0).

As the gain K is increased, the time constant becomes smaller and the response faster. Thus, the
chief disadvantage of proportional control is that it results in steady-state errors and can only be used
when the gain can be selected large enough to reduce the effect of the largest expected disturbance.
Since proportional control gives zero error only for one load condition (the reference equilibrium),
the operator must change the manual reset by hand (hence the name). An advantage to proportional
control is that the control signal responds to the error instantaneously (in theory at least). It is used
in applications requiring rapid action. Processes with time constants too small for the use of two-
position control are likely candidates for proportional control. The results of this analysis can be
applied to any type of first-order system (e.g., liquid-level, thermal, etc.) having the form in Fig.
28.22.

Proportional Control of a Second-Order System
Proportional control of a neutrally stable second-order plant is represented by the position controller
of Fig. 28.6 if the amplifier transfer function is a constant Ga(s) = Ka. Let the motor transfer function
be Gm(s) = KTIR, as before. The modified block diagram is given in Fig. 28.23 with G(s) = K =
KlKaKT/R. The closed-loop system is stable if 7, c, and K are positive. For no damping (c = 0), the
closed-loop system is neutrally stable. With no disturbance and a unit step command, ®r(s) = 1/5,
the steady-state output is coss = 1. The offset error is thus zero if the system is stable (c > 0, K >
0). The steady-state output deviation due to a unit step disturbance is —l/K. This deviation can be
reduced by choosing K large. The transient behavior is indicated by the damping ratio, £ = cl
2VlK.

For slight damping, the response to a step input will be very oscillatory and the overshoot large.
The situation is aggravated if the gain K is made large to reduce the deviation due to the disturbance.
We conclude, therefore, that proportional control of this type of second-order plant is not a good
choice unless the damping constant c is large. We will see shortly how to improve the design.

Fig. 28.22 Simplified form of Fig. 28.21 for the case K, = K2.



Fig. 28.23 Position servo.

28.5.2 Integral Control
The offset error that occurs with proportional control is a result of the system reaching an equilibrium
in which the control signal no longer changes. This allows a constant error to exist. If the controller
is modified to produce an increasing signal as long as the error is nonzero, the offset might be
eliminated. This is the principle of integral control. In this mode the change in the control signal is
proportional to the integral of the error. In the terminology of Fig. 28.7, this gives

KIF(s) = —E(s} (28.16)

where F(s) is the deviation in the control signal and Kj is the integral gain. In the time domain, the
relation is

f(t) = K, £ e(t) dt (28.17)

if /(O) = 0. In this form, it can be seen that the integration cannot continue indefinitely because it
would theoretically produce an infinite value of f(t) if e(t) does not change sign. This implies that
special care must be taken to reinitialize a controller that uses integral action.

Integral Control of a First-Order System
Integral control of the velocity in the system of Fig. 28.20 has the block diagram shown in Fig.
28.22, where G(s) = K/s, K = K̂ K̂ IR. The integrating action of the amplifier is physically
obtained by the techniques to be presented in Section 28.6, or by the digital methods presented in
Section 28.10. The control system is stable if 7, c, and K are positive. For a unit step command input,
a)ss = 1; so the offset error is zero. For a unit step disturbance, the steady-state deviation is zero if
the system is stable. Thus, the steady-state performance using integral control is excellent for this
plant with step inputs. The damping ratio is £ = c/2v7JK. For slight damping, the response will be
oscillatory rather than exponential as with proportional control. Improved steady-state performance
has thus been obtained at the expense of degraded transient performance. The conflict between steady-
state and transient specifications is a common theme in control system design. As long as the system
is underdamped, the time constant is r = 211 c and is not affected by the gain K, which only influences
the oscillation frequency in this case. It might by physically possible to make K small enough so
that £ » 1, and the nonoscillatory feature of proportional control recovered, but the response would
tend to be sluggish. Transient specifications for fast response generally require that £ < I. The
difficulty with using £ < 1 is that r is fixed by c and /. If c and / are such that £ < 1, then r is large
if /» c.

Integral Control of a Second-Order System
Proportional control of the position servomechanism in Fig. 28.23 gives a nonzero steady-state de-
viation due to the disturbance. Integral control [G(s) = K/s] applied to this system results in the
command transfer function

»(*) _ K
ex*) ~ ft3 + cs* + K (28'18)

With the Routh criterion, we immediately see that the system is not stable because of the missing s
term. Integral control is useful in improving steady-state performance, but in general it does not
improve and may even degrade transient performance. Improperly applied, it can produce an unstable
control system. It is best used in conjunction with other control modes.



28.5.3 Proportional-Plus-lntegral Control
Integral control raised the order of the system by one in the preceding examples, but did not give a
characteristic equation with enough flexibility to achieve acceptable transient behavior. The instan-
taneous response of proportional control action might introduce enough variability into the coeffi-
cients of the characteristic equation to allow both steady-state and transient specifications to be
satisfied. This is the basis for using proportional-plus-integral control (PI control). The algorithm for
this two-mode control is

Kj
F(s) = KPE(s} + — E(s) (28.19)

The integral action provides an automatic, not manual, reset of the controller in the presence of a
disturbance. For this reason, it is often called reset action.

The algorithm is sometimes expressed as

F(s) = KP(l+^-} E(s) (28.20)
\ 1is/

where Tl is the reset time. The reset time is the time required for the integral action signal to equal
that of the proportional term, if a constant error exists (a hypothetical situation). The reciprocal of
reset time is expressed as repeats per minute and is the frequency with which the integral action
repeats the proportional correction signal.

The proportional control gain must be reduced when used with integral action. The integral term
does not react instantaneously to a zero-error signal but continues to correct, which tends to cause
oscillations if the designer does not take this effect into account.

PI Control of a First-Order System
PI action applied to the speed controller of Fig. 28.20 gives the diagram shown in Fig. 28.21 with
G(s) = KP + Kjls. The gains KP and Kt are related to the component gains, as before. The system
is stable for positive values of KP and Kr For £lr(s) = \ls, a)ss = 1, and the offset error is zero, as
with integral action only. Similarly, the deviation due to a unit step disturbance is zero at steady
state. The damping ratio is £ = (c + KP)/2̂ /LKI. The presence of KP allows the damping ratio to
be selected without fixing the value of the dominant time constant. For example, if the system is
underdamped (f < 1), the time constant is r = 2/7 (c + KP). The gain KP can be picked to obtain
the desired time constant, while Kt used to set, the damping ratio. A similar flexibility exists if £ =
1. Complete description of the transient response requires that the numerator dynamics present in the
transfer functions be accounted for.1'2

PI Control of a Second-Order System
Integral control for the position servomechanism of Fig. 28.23 resulted in a third-order system that
is unstable. With proportional action, the diagram becomes that of Fig. 28.22, with G(s) = KP +
Kjls. The steady-state performance is acceptable, as before, if the system is assumed to be stable.
This is true if the Routh criterion is satisfied; that is, if /, c, KP, and Kt are positive and cKP — IKt
> 0. The difficulty here occurs when the damping is slight. For small c, the gain KP must be large
in order to satisfy the last condition, and this can be difficult to implement physically. Such a condition
can also result in an unsatisfactory time constant. The root-locus method of Section 28.9 provides
the tools for analyzing this design further.

28.5.4 Derivative Control
Integral action tends to produce a control signal even after the error has vanished, which suggests
that the controller be made aware that the error is approaching zero. One way to accomplish this is
to design the controller to react to the derivative of the error with derivative control action, which is

F(s) = KDsE(s} (28.21)

where KD is the derivative gain. This algorithm is also called rate action. It is used to damp out
oscillations. Since it depends only on the error rate, derivative control should never be used alone.
When used with proportional action, the following PD-control algorithm results:

F(s) = (KP + KDs}E(s} = KP(l + TDs)E(s) (28.22)

where TD is the rate time or derivative time. With integral action included, the proportional-plus-
integral-plus-derivative (PID) control law is obtained.



F(s) = (KP + - + K̂ \ E(s) (28.23)
\ s /

This is called a three-mode controller.

PD Control of a Second-Order System
The presence of integral action reduces steady-state error, but tends to make the system less stable.
There are applications of the position servomechanism in which a nonzero derivation resulting from
the disturbance can be tolerated, but an improvement in transient response over the proportional
control result is desired. Integral action would not be required, but rate action can be added to improve
the transient response. Application of PD control to this system gives the block diagram of Fig. 28.23
with GO) = KP + K̂ .

The system is stable for positive values of KD and KP. The presence of rate action does not affect
the steady-state response, and the steady-state results are identical to those with P control; namely,
zero offset error and a deviation of —\"lKP, due to the disturbance. The damping ratio is f = (c +
KD)/2̂ IKP. For P control, £ = c/2̂ /IKP. Introduction of rate action allows the proportional gain
KP to be selected large to reduce the steady-state deviation, while KD can be used to achieve an
acceptable damping ratio. The rate action also helps to stabilize the system by adding damping (if
c = 0 the system with P control is not stable).

The equivalent of derivative action can be obtained by using a tachometer to measure the angular
velocity of the load. The block diagram is shown in Fig. 28.24. The gain of the amplifier-
motor-potentiometer combination is Kl, and K2 is the tachometer gain. The advantage of this system
is that it does not require signal differentiation, which is difficult to implement if signal noise is
present. The gains î  and K2 can be chosen to yield the desired damping ratio and steady-state
deviation, as was done with KP and Kr.

28.5.5 PID Control
The position servomechanism design with PI control is not completely satisfactory because of the
difficulties encountered when the damping c is small. This problem can be solved by the use of the
full PID-control law, as shown in Fig. 28.23 with G(s) = KP + KpS + Kfls.

A stable system results if all gains are positive and if (c + KD)KP - !Kt > 0. The presence of
KD relaxes somewhat the requirement that KP be large to achieve stability. The steady-state errors
are zero, and the transient response can be improved because three of the coefficients of the char-
acteristic equation can be selected. To make further statements requires the root locus technique
presented in Section 28.9.

Proportional, integral, and derivative actions and their various combinations are not the only
control laws possible, but they are the most common. PID controllers will remain for some time the
standard against which any new designs must compete.

The conclusions reached concerning the performance of the various control laws are strictly true
only for the plant model forms considered. These are the first-order model without numerator dy-
namics and the second-order model with a root at 5 = 0 and no numerator zeros. The analysis of a
control law for any other linear system follows the preceding pattern. The overall system transfer
functions are obtained, and all of the linear system analysis techniques can be applied to predict the
system's performance. If the performance is unsatisfactory, a new control law is tried and the process
repeated. When this process fails to achieve an acceptable design, more systematic methods of altering
the system's structure are needed; they are discussed in later sections. We have used step functions
as the test signals because they are the most common and perhaps represent the severest test of
system performance. Impulse, ramp, and sinusoidal test signals are also employed. The type to use
should be made clear in the design specifications.

Fig. 28.24 Tachometer feedback arrangement to replace PD control for the position servo.1



28.6 CONTROLLER HARDWARE
The control law must be implemented by a physical device before the control engineer's task is
complete. The earliest devices were purely kinematic and were mechanical elements such as gears,
levers, and diaphragms that usually obtained their power from the controlled variable. Most controllers
now are analog electronic, hydraulic, pneumatic, or digital electronic devices. We now consider the
analog type. Digital controllers are covered starting in Section 28.10.

28.6.1 Feedback Compensation and Controller Design
Most controllers that implement versions of the PID algorithm are based on the following feedback
principle. Consider the single-loop system shown in Fig. 28.1. If the open-loop transfer function is
large enough that \G(s)H(s)\ » 1, the closed-loop transfer function is approximately given by

T™ = Ĝ  „ Ĝ  = _L (2*24}
^ } 1 + G(s)H(s) G(s)H(s) H(s) V '

The principle states that a power unit G(s) can be used with a feedback element H(s) to create a
desired transfer function T(s). The power unit must have a gain high enough that \G(s)H(s)\ » 1,
and the feedback elements must be selected so that H(s) = \IT(s). This principle was used in Section
28.1 to explain the design of a feedback amplifier.

28.6.2 Electronic Controllers
The operational amplifier (op amp) is a high-gain amplifier with a high input impedance. A diagram
of an op amp with feedback and input elements with impedances Tf(s) and Tt(s) is shown in Fig.
28.25. An approximate relation is

E0(s) = Tf(s)
E£s) T£s)

The various control modes can be obtained by proper selection of the impedances. A proportional
controller can be constructed with a multiplier, which uses two resistors, as shown in Fig. 28.26. An
inverter is a multiplier circuit with Rf = Rf. It is sometimes needed because of the sign reversal
property of the op amp. The multiplier circuit can be modified to act as an adder (Fig. 28.27).

PI control can be implemented with the circuit of Fig. 28.28. Figure. 28.29 shows a complete
system using op amps for PI control. The inverter is needed to create an error detector. Many industrial
controllers provide the operator with a choice of control modes, and the operator can switch from
one mode to another when the process characteristics or control objectives change. When a switch
occurs, it is necessary to provide any integrators with the proper initial voltages, or else undesirable
transients will occur when the integrator is switched into the system. Commercially available con-
trollers usually have built-in circuits for this purpose.

In theory, a differentiator can be created by interchanging the resistance and capacitance in the
integrating op amp. The difficulty with this design is that no electrical signal is "pure." Contamination
always exists as a result of voltage spikes, ripple, and other transients generally categorized as
"noise." These high-frequency signals have large slopes compared with the more slowly varying
primary signal, and thus they will dominate the output of the differentiator. In practice, this problem
is solved by filtering out high-frequency signals, either with a low-pass filter inserted in cascade with
the differentiator, or by using a redesigned differentiator such as the one shown in Fig. 28.30. For
the ideal PD controller, Rl = 0. The attenuation curve for the ideal controller breaks upward at a> =
l/R2C with a slope of 20 db/decade. The curve for the practical controller does the same but then
becomes flat for a)> (R{ + R2)/R1R2C. This provides the required limiting effect at high frequencies.

PID control can be implemented by joining the PI and PD controllers in parallel, but this is
expensive because of the number of op amps and power supplies required. Instead, the usual imple-
mentation is that shown in Fig. 28.31. The circuit limits the effect of frequencies above co = II

Fig. 28.25 Operational amplifier (op amp).1



Fig. 28.26 Op-amp implementation of proportional control.1

/3/̂ Q. When /̂  = 0, ideal PID control results. This is sometimes called the noninteractive algorithm
because the effect of each of the three modes is additive, and they do not interfere with one another.
The form given for Rv + 0 is the real or interactive algorithm. This name results from the fact that
historically it was difficult to implement noninteractive PID control with mechanical or pneumatic
devices.

28.6.3 Pneumatic Controllers
The nozzle-flapper introduced in Section 28.4 is a high-gain device that is difficult to use without
modification. The gain Kf is known only imprecisely and is sensitive to changes induced by tem-
perature and other environmental factors. Also, the linear region over which Eq. (28.14) applies is
very small. However, the device can be made useful by compensating it with feedback elements, as
was illustrated with the electropneumatic valve positioner shown in Fig. 28.19.

28.6.4 Hydraulic Controllers
The basic unit for synthesis of hydraulic controllers is the hydraulic servomotor. The nozzle-flapper
concept is also used in hydraulic controllers.4 A PI controller is shown in Fig. 28.32. It can be
modified for P-action. Derivative action has not seen much use in hydraulic controllers. This action
supplies damping to the system, but hydraulic systems are usually highly damped intrinsically because
of the viscous working fluid. PI control is the algorithm most commonly implemented with
hydraulics.

28.7 FURTHER CRITERIA FOR GAIN SELECTION
Once the form of the control law has been selected, the gains must be computed in light of the
performance specifications. In the examples of the PID family of control laws in Section 28.5, the
damping ratio, dominant time constant, and steady-state error were taken to be the primary indicators
of system performance in the interest of simplicity. In practice, the criteria are usually more detailed.
For example, the rise time and maximum overshoot, as well as the other transient response specifi-
cations of the previous chapter, may be encountered. Requirements can also be stated in terms of

Fig. 28.27 Op-amp adder circuit.1



Fig. 28.28 Op-amp implementation of PI control.1

frequency response characteristics, such as bandwidth, resonant frequency, and peak amplitude. What-
ever specific form they take, a complete set of specifications for control system performance generally
should include the following considerations, for given forms of the command and disturbance inputs:

1. Equilibrium specifications
(a) Stability
(b) Steady-state error

2. Transient specifications
(a) Speed of response
(b) Form of response

3. Sensitivity specifications
(a) Sensitivity to parameter variations
(b) Sensitivity to model inaccuracies
(c) Noise rejection (bandwidth, etc.)

Fig. 28.29 Implementation of a Pi-controller using op amps, (a) Diagram of the system, (b) Di-
agram showing how the op amps are connected.2



Fig. 28.30 Practical op-amp implementation of PD control.1

In addition to these performance stipulations, the usual engineering considerations of initial cost,
weight, maintainability, and so on must be taken into account. The considerations are highly specific
to the chosen hardware, and it is difficult to deal with such issues in a general way.

Two approaches exist for designing the controller. The proper one depends on the quality of the
analytical description of the plant to be controlled. If an accurate model of the plant is easily devel-
oped, we can design a specialized controller for the particular application. The range of adjustment
of controller gains in this case can usually be made small because the accurate plant model allows
the gains to be precomputed with confidence. This technique reduces the cost of the controller and
can often be applied to electromechanical systems.

The second approach is used when the plant is relatively difficult to model, which is often the
case in process control. A standard controller with several control modes and wide ranges of gains
is used, and the proper mode and gain settings are obtained by testing the controller on the process
in the field. This approach should be considered when the cost of developing an accurate plant model
might exceed the cost of controller tuning in the field. Of course, the plant must be available for
testing for this approach to be feasible.

28.7.1 Performance Indices
The performance criteria encountered thus far require a set of conditions to be specified—for example,
one for steady-state error, one for damping ratio, and one for the dominant time constant. If there

Fig. 28.31 Practical op-amp implementation of PID control.1



Fig. 28.32 Hydraulic implementation of PI control.1

are many such conditions, and if the system is of high order with several gains to be selected, the
design process can get quite complicated because transient and steady-state criteria tend to drive the
design in different directions. An alternative approach is to specify the system's desired performance
by means of one analytical expression called a performance index. Powerful analytical and numerical
methods are available that allow the gains to be systematically computed by minimizing (or maxi-
mizing) this index.

To be useful, a performance index must be selective. The index must have a sharply defined
extremum in the vicinity of the gain values that give the desired performance. If the numerical value
of the index does not change very much for large changes in the gains from their optimal values,
the index will not be selective.

Any practical choice of a performance index must be easily computed, either analytically, nu-
merically, or experimentally. Four common choices for an index are the following:

J= I \e(t)\dt (IAE Index) (28.25)
Jo

J= I t\e(i)\dt (ITAE Index) (28.26)
Jo

J= I [e(t)]2dt (ISE Index) (28.27)
Jo

J = \ t[e(f)}2dt (ITSE Index) (28.28)
Jo

where e(t) is the system error. This error usually is the difference between the desired and the actual
values of the output. However, if e(t) does not approach zero as t —> <», the preceding indices will
not have finite values. In this case, e(t) can be defined as e(i) = c(o°) - c(i), where c(t) is the output
variable. If the index is to be computed numerically or experimentally, the infinite upper limit can
be replaced by a time tf large enough that e(t) is negligible for t > tf.

The integral absolute-error (IAE) criterion (28.25) expresses mathematically that the designer is
not concerned with the sign of the error, only its magnitude. In some applications, the IAE criterion
describes the fuel consumption of the system. The index says nothing about the relative importance
of an error occurring late in the response versus an error occurring early. Because of this, the index
is not as selective as the integral-of-time-multiplied absolute-error (ITAE) criterion (28.26). Since the
multiplier t is small in the early stages of the response, this index weights early errors less heavily
than later errors. This makes sense physically. No system can respond instantaneously, and the index
is lenient accordingly, while penalizing any design that allows a nonzero error to remain for a long
time. Neither criterion allows highly underdamped or highly overdamped systems to be optimum.
The ITAE criterion usually results in a system whose step response has a slight overshoot and well-
damped oscillations.

The integral squared-error (ISE) and integral-of-time-multiplied squared-error (ITSE) criteria are
analogous to the IAE and ITAE criteria, except that the square of the error is employed, for three
reasons: (1) in some applications, the squared error represents the system's power consumption; (2)
squaring the error weights large errors much more heavily than small errors; (3) the squared error is



much easier to handle analytically. The derivative of a squared term is easier to compute than that
of an absolute value and does not have a discontinuity at e = 0. These differences are important
when the system is of high order with multiple error terms.

The closed-form solution for the response is not required to evaluate a performance index. For a
given set of parameter values, the response and the resulting index value can be computed numeri-
cally. The optimum solution can be obtained using systematic computer search procedures; this makes
this approach suitable for use with nonlinear systems.

28.7.2 Optimal Control Methods
Optimal control theory includes a number of algorithms for systematic design of a control law to
minimize a performance index, such as the following generalization of the ISE index, called the
quadratic index:

J=\ (xTQx + uTRu) dt (28.29)JO

where x and u are the deviations of the state and control vectors from the desired reference values.
For example, in a servomechanism, the state vector might consist of the position and velocity, and
the control vector might be a scalar—the force or torque produced by the actuator. The matrices Q
and R are chosen by the designer to provide relative weighting for the elements of x and u. If the
plant can be described by the linear state-variable model

x - Ax + Bu (28.30)
y = Cx + Du (28.31)

where y is the vector of outputs—for example, position and velocity—then the solution of this linear-
quadratic control problem is the linear control law:

u = Ky (28.32)

where K is a matrix of gains that can be found by several algorithms.1'5'6 A valid solution is
guaranteed to yield a stable closed-loop system, a major benefit of this method.

Even if it is possible to formulate the control problem in this way, several practical difficulties
arise. Some of the terms in (28.29) might be beyond the influence of the control vector u; the system
is then uncontrollable. Also, there might not be enough information in the output equation (28.31)
to achieve control, and the system is then unobservable. Several tests are available to check con-
trollability and observability. Not all of the necessary state variables might be available for feedback,
or the feedback measurements might be noisy or biased. Algorithms known as observers, state
reconstructors, estimators, and digital filters are available to compensate for the missing information.
Another source of error is the uncertainty in the values of the coefficient matrices A, B, C, and D.
Identification schemes can be used to compare the predicted and the actual system performance, and
to adjust the coefficient values "on-line."

28.7.3 The Ziegler-Nichols Rules
The difficulty of obtaining accurate transfer function models for some processes has led to the
development of empirically based rules of thumb for computing the optimum gain values for a
controller. Commonly used guidelines are the Ziegler-Nichols rules, which have proved so helpful
that they are still in use 50 years after their development. The rules actually consist of two separate
methods. The first method requires the open-loop step response of the plant, while the second uses
the results of experiments performed with the controller already installed. While primarily intended
for use with systems for which no analytical model is available, the rules are also helpful even when
a model can be developed.

Ziegler and Nichols developed their rules from experiments and analysis of various industrial
processes. Using the IAE criterion with a unit step response, they found that controllers adjusted
according to the following rules usually had a step response that was oscillatory but with enough
damping so that the second overshoot was less than 25% of the first (peak) overshoot. This is the
quarter-decay criterion and is sometimes used as a specification.

The first method is the process-reaction method and relies on the fact that many processes have
an open-loop step response like that shown in Fig. 28.33. This is the process signature and is
characterized by two parameters, R and L. R is the slope of a line tangent to the steepest part of the
response curve, and L is the time at which this line intersects the time axis. First- and second-order
linear systems do not yield positive values for L, and so the method cannot be applied to such



Fig. 28.33 Process signature for a unit step input.1

systems. However, third- and higher-order linear systems with sufficient damping do yield such a
response. If so, the Zielger-Nichols rules recommend the controller settings given in Table 28.2.

The ultimate-cycle method uses experiments with the controller in place. All control modes except
proportional are turned off, and the process is started with the proportional gain KP set at a low value.
The gain is slowly increased until the process begins to exhibit sustained oscillations. Denote the
period of this oscillation by Pu and the corresponding ultimate gain by KPu. The Ziegler-Nichols
recommendations are given in Table 28.2 in terms of these parameters. The proportional gain is lower
for PI control than for P control, and is higher for PID control because I action increases the order
of the system and thus tends to destabilize it; thus, a lower gain is needed. On the other hand, D
action tends to stabilize the system; hence, the proportional gain can be increased without degrading
the stability characteristics. Because the rules were developed for a typical case out of many types
of processes, final tuning of the gains in the field is usually necessary.

28.7.4 Nonlinearities and Controller Performance
All physical systems have nonlinear characteristics of some sort, although they can often be modeled
as linear systems provided the deviations from the linearization reference condition are not too great.
Under certain conditions, however, the nonlinearities have significant effects on the system's per-
formance. One such situation can occur during the start-up of a controller if the initial conditions
are much different from the reference condition for linearization. The linearized model is then not
accurate, and nonlinearities govern the behavior. If the nonlinearities are mild, there might not be
much of a problem. Where the nonlinearities are severe, such as in process control, special consid-
eration must be given to start-up. Usually, in such cases, the control signal sent to the final control
elements is manually adjusted until the system variables are within the linear range of the controller.

Table 28.2 The Ziegler-Nichols Rules

Controller transfer function G(s) = Kp I 1 + — + TDs \
\ ' is /

Control Mode Process-Reaction Method Ultimate-Cycle Method

P control Kp = ̂  Kp = 0.5Kpu

PI control Kp = §7 Kp = OA5Kpu
KL

T, = 3.3L TJ = 0.83PM

PID control Kp = — Kp = 0.6̂ M

Tj = 2L r7 = 0.5PM
TD = 0.5L TD = 0.125PM



Then the system is switched into automatic mode. Digital computers are often used to replace the
manual adjustment process because they can be readily coded to produce complicated functions for
the start-up signals. Care must also be taken when switching from manual to automatic. For example,
the integrators in electronic controllers must be provided with the proper initial conditions.

28.7.5 Reset Windup
In practice, all actuators and final control elements have a limited operating range. For example, a
motor-amplifier combination can produce a torque proportional to the input voltage over only a
limited range. No amplifier can supply an infinite current; there is a maximum current and thus a
maximum torque that the system can produce. The final control elements are said to be overdriven
when they are commanded by the controller to do something they cannot do. Since the limitations
of the final control elements are ultimately due to the limited rate at which they can supply energy,
it is important that all system performance specifications and controller designs be consistent with
the energy-delivery capabilities of the elements to be used.

Controllers using integral action can exhibit the phenomenon called reset windup or integrator
buildup when overdriven, if they are not properly designed. For a step change in set point, the
proportional term responds instantly and saturates immediately if the set-point change is large enough.
On the other hand, the integral term does not respond as fast, It integrates the error signal and saturates
some time later if the error remains large for a long enough time. As the error decreases, the pro-
portional term no longer causes saturation. However, the integral term continues to increase as long
as the error has not changed sign, and thus the manipulated variable remains saturated. Even though
the output is very near its desired value, the manipulated variable remains saturated until after the
error has reversed sign. The result can be an undesirable overshoot in the response of the controlled
variable.

Limits on the controller prevent the voltages from exceeding the value required to saturate the
actuator, and thus protect the actuator, but they do not prevent the integral build-up that causes the
overshoot. One way to prevent integrator build-up is to select the gains so that saturation will never
occur. This requires knowledge of the maximum input magnitude that the system will encounter.
General algorithms for doing this are not available; some methods for low-order systems are presented
in Ref. 1, Chap. 7, and Ref. 2, Chap. 7. Integrator build-up is easier to prevent when using digital
control; this is discussed in Section 28.10.

28.8 COMPENSATION AND ALTERNATIVE CONTROL STRUCTURES
A common design technique is to insert a compensator into the system when the PID control algo-
rithm can be made to satisfy most but not all of the design specifications. A compensator is a device
that alters the response of the controller so that the overall system will have satisfactory performance.
The three categories of compensation techniques generally recognized are series compensation, par-
allel (or feedback) compensation, and feedforward compensation. The three structures are loosely
illustrated in Fig. 28.34, where we assume the final control elements have a unity transfer function.
The transfer function of the controller is G}(s). The feedback elements are represented by H(s), and
the compensator by Gc(s). We assume that the plant is unalterable, as is usually the case in control
system design. The choice of compensation structure depends on what type of specifications must
be satisfied. The physical devices used as compensators are similar to the pneumatic, hydraulic, and
electrical devices treated previously. Compensators can be implemented in software for digital control
applications.

28.8.1 Series Compensation
The most commonly used series compensators are the lead, the lag, and the lead-lag compensators.
Electrical implementations of these are shown in Fig. 28.35. Other physical implementations are
available. Generally, the lead compensator improves the speed of response; the lag compensator
decreases the steady-state error; and the lead-lag affects both. Graphical aids, such as the root locus
and frequency response plots, are usually needed to design these compensators (Ref. 1, Chap. 8; Ref.
2, Chap. 9).

28.8.2 Feedback Compensation and Cascade Control
The use of a tachometer to obtain velocity feedback, as in Fig. 28.24, is a case of feedback com-
pensation. The feedback-compensation principle of Fig. 28.3 is another. Another form is cascade
control, in which another controller is inserted within the loop of the original control system (Fig.
28.36). The new controller can be used to achieve better control of variables within the forward path
of the system. Its set point is manipulated by the first controller.

Cascade control is frequently used when the plant cannot be satisfactorily approximated with a
model of second order or lower. This is because the difficulty of analysis and control increases rapidly
with system order. The characteristic roots of a second-order system can easily be expressed in
analytical form. This is not so for third order or higher, and few general design rules are available.
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