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PREFACE

This solution manual is prepared to aid the instructor in discussing the solutions
to assigned problems in Chapters 1 through 14 from the book, An Introduction to
the Finite Element Method, Third Edition, McGraw—Hill, New York, 2006. Computer
solutions to certain problems of Chapter 8 (see Chapter 13 problems) are also included

at the end of Chapter 8.

The instructor should make an effort to review the problems before assigning them.
This allows the instructor to make comments and suggestions on the approach to be
taken and nature of the answers expected. The instructor may wish to generate
additional problems from those given in this book, especially when taught time
and again from the same book. Suggestions for new problems are also included
at pertinent places in this manual. Additional examples and problems can be found
in the following books of the author:

1. J. N. Reddy and M. L. Rasmussen, Advanced Engineering Analysis, John Wiley, New York, 1982;
reprinted and marketed currently by Krieger Publishing Company, Melbourne, Florida, 1990 (see
Section 3.6).

2. J. N. Reddy, Energy and Variational Methods in Applied Mechanics, John Wiley, New York, 1984
(see Chapters 2 and 3).

3. J. N. Reddy, Applied Functional Analysis and Variational Methods in Engineering, McGraw-Hill,
New York, 1986; reprinted and marketed currently by Krieger Publishing Company, Melbourne,
Florida, 1991 (see Chapters 4, 6 and 7).

4. J. N. Reddy, Theory and Analysis of Elastic Plates, Taylor and Francis, Philadelphia, 1997.

5. J. N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, Second Edition,
John Wiley, New York, 2002 (see Chapters 4 through 7 and Chapter 10).

6. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC
Press, Second Edition, Boca Raton, FL, 2004.

7. J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis, Oxford University Press,
Oxford, UK, 2004.

The computer problems FEM1D and FEM2D can be readily modified to solve
new types of field problems. The programs can be easily extended to finite element
models formulated in an advanced course and/or in research. The Fortran sources of
FEMI1D and FEM2D are available from the author for a price of $200.

The author appreciates receiving comments on the book and a list of errors found
in the book and this solutions manual.

J. N. Reddy
All that is not given is lost.



PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.

iv



Chapter 1
INTRODUCTION

Problem 1.1: Newton’s second law can be expressed as
F =ma (1)

where F is the net force acting on the body, m mass of the body, and a the
acceleration of the body in the direction of the net force. Use Eq. (1) to determine
the mathematical model, i.e., governing equation of a free-falling body. Consider
only the forces due to gravity and the air resistance. Assume that the air resistance
is linearly proportional to the velocity of the falling body.

Fy=cv

Solution: From the free-body-diagram it follows that

dv
mE:Fg—Fd, Fy=mg, Fj=cv
where v is the downward velocity (m/s) of the body, Fy is the downward force (N or
kg m/s?) due to gravity, Fy is the upward drag force, m is the mass (kg) of the body,
g the acceleration (m/s?) due to gravity, and c is the proportionality constant (drag
coefficient, kg/s). The equation of motion is

v c
— tav = a=—
dt 9> m

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



2 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Problem 1.2: A cylindrical storage tank of diameter D contains a liquid at depth
(or head) h(z,t). Liquid is supplied to the tank at a rate of ¢; (m?/day) and drained
at a rate of gy (m?®/day). Use the principle of conservation of mass to arrive at the
governing equation of the flow problem.

Solution: The conservation of mass requires
time rate of change in mass = mass inflow - mass outflow

The above equation for the problem at hand becomes

d(Ah)
dt

d
— (pAh) = pgi — pgo  or

dt =dqi — 4o

where A is the area of cross section of the tank (A = 7D?/4) and p is the mass density
of the liquid.

Problem 1.3: Consider the simple pendulum of Example 1.3.1. Write a computer
program to numerically solve the nonlinear equation (1.2.3) using the Euler method.
Tabulate the numerical results for two different time steps At = 0.05 and At = 0.025
along with the exact linear solution.

Solution: In order to use the finite difference scheme of Eq. (1.3.3), we rewrite
(1.2.3) as a pair of first-order equations

do dv 9 .
prialll E__A sin 6

Applying the scheme of Eq. (1.3.3) to the two equations at hand, we obtain
91’—1—1 = 91 + At Vi; Vi+1 = U — At )\2 sin 92

The above equations can be programmed to solve for (6;,v;). Table P1.3 contains
representative numerical results.

Problem 1.4: An improvement of Euler’s method is provided by Heun’s method,
which uses the average of the derivatives at the two ends of the interval to estimate
the slope. Applied to the equation

du
— 1
= f(tw) (1)
Heun’s scheme has the form
Uikl = Ui+ [f(tz', wi) + f(tis1, Ui+1)} Uiy = ui + A f(t,u) (2)

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



SOLUTIONS MANUAL 3

Table P1.3: Comparison of various approximate solutions of the equation
(d?0/dt?) + A\?sin @ = 0 with its exact linear solution.

Exact Approx. solution 6 Exact Approx. solution v
t 0 At =.05 At =.025 v At = .05 At =.025
0.00 0.78540 0.78540 0.78540 -0.00000 -0.00000 -0.00000
0.05 0.76965 0.78540 0.77828 -0.62801 -0.56922 -0.56922
0.10 0.72302 0.75694 0.74276 -1.23083 -1.13844 -1.13027
0.15 0.64739 0.70002 0.67944 -1.78428 -1.69123 -1.66622
0.20 0.54578 0.58980 0.56482 -2.26615 -2.20984 -2.15879
0.25 0.42229 0.50496 0.47627 -2.65711 -2.67459 -2.58816
0.30 0.28185 0.37123 0.34225 -2.94148 -3.06403 -2.93371
0.35 0.13011 0.21803 0.19218 -3.10785 -3.35605 -3.17573
0.40 -0.02685 0.05023 0.03148 -3.14955 -3.53018 -3.29791
0.45 -0.18274 -0.12628 -0.13374 -3.06491 -3.57060 -3.29007
0.50 -0.33129 -0.30481 -0.29690 -2.85732 -3.46921 -3.15014
0.60 -0.58310 -0.63965 -0.59131 -2.11119 -2.85712 -2.50787
0.80 -0.78356 -1.05068 -0.91171 0.21536 -0.50399 -0.28356
1.00 -0.50591 -0.94062 -0.74672 2.41051 2.29398 2.19765

In books on numerical analysis, the second equation in (2) is called the predictor
equation and the first equation is called the corrector equation. Apply Heun’s method
to Egs. (1.3.4) and obtain the numerical solution for At = 0.05.

Solution: Heun’s method applied to the pair

do dv 9 .
Efv, Ef—)\ sin 6

yields the following discrete equations:
00,1 = 0; + At v;
At
Vi+1 = Vi — )\27 (Sin 01 + sin 9,?+1)

At
Oiy1 = 0; + 5 (vi + vit1)

The numereical results obtained with the Heun’s method and Euler’s method are
presented in Table P1.4.

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



4 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Table P1.4: Numerical solutions of the nonlinear equation d6/dt> + A\?sinf = 0
along with the exact solution of the linear equation d26/dt?>+ \20 = 0.

Exact Approx. solution 6 Exact Approx. solution v

t 0 Euler’s Heun’s v Euler’s Heun’s
0.00 0.785398 0.785398 0.785398 -0.000000 -0.000000 -0.000000
0.05 0.769645 0.785398 0.771168 -0.628013 -0.569221 -0.569221
0.10 0.723017 0.756937 0.728680 -1.230833 -1.138442 -1.121957
0.20 0.545784 0.615453 0.564818 -2.266146 -2.209838 -1.121957
0.40 -0.026852 0.050228 0.015246 -3.149552 -3.530178 -3.073095
0.60 -0.583104 -0.639652 -0.544352 -2.111190 -2.857121 -2.194398
0.80 -0.783562 -1.050679 -0.787095 0.215362 -0.503993 -0.114453
1.00 -0.505912 -0.940622 -0.587339 2.410506 2.293983 2.023807

4 )
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SOLUTIONS MANUAL D

Chapter 2

MATHEMATICAL PRELIMINARIES,
INTEGRAL FORMULATIONS, AND
VARIATIONAL METHODS

In Problem 2.1-2.5, construct the weak form and, whenever possible, quadratic
functionals.

Problem 2.1: A nonlinear equation:

d du
dm( d>+f—0 for 0<ax<L

(Udu>
dx
Solution: Following the three-step procedure, we write the weak form:
1 d , du
— (== 1
0= / [ d:p(ud)ij} (1)
1
—/ { _dv_du+ f] dr — [v(u—ji)}o (2)

Using the boundary conditions, v(1) = 0 (because u is specified at * = 1) and
(du/dx) =0 at x = 0, we obtain

=0 u(l)=v2

z=0

For this problem, the weak form does not contain an expression that is linear in both
u and v; the expression is linear in v but not linear in u. Therefore, a quadratic
functional does not exist for this case. The expressions for B(-,-) and ¢(-) are given

B(v,u) = | u———dz (not linear in v and not symmetric in « and v)

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



6 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

& New Problem 2.1:

The instructor may assign the following problem:

d d
0 [(1 + 21‘2)&} +u = 2> (la)

w(0) =1, <%)z—1 _9 (1b)

The answer is

1 v du
B(v,u) = /0 {(1 + 2x2)j—m% + vu] dx (symmetric)
1
((v) = /0 v 22 do + 6v(1) 2)

Problem 2.2: The Euler-Bernoulli-von Kdrman nonlinear beam theory [7]:
d du 1 (dw\?
—— S FA|—+=(— =f f L
dx{ ldm+2<dm>]} f for O0<x<
d? dPw\ d dw [du | 1 (dw\?
S [ 5) gty I 5 Rl Rl (i -
dﬂ:2< d:r2> daz{ dz [dm+2<daz>]} q

d?w
=0; El—
=0 ( dilf2 >

where FA, EI, f, and ¢q are functions of z, and Mj is a constant. Here u denotes the
axial displacement and w the transverse deflection of the beam.

u=w=0 at =0, L; (d_w)
r=L

dx

Solution: The first step of the formulation is to multiply each equation with a weight
function, say vy for the first equation and wve for the second equation, and integrate
over the interval (0, L). In the second step, carry out the integration-by-parts once
in the first equation, twice in the first term of the second equation, and once in the
second part of the second equation. Then use the fact that v1(0) = v1(L) = 0 (because
u is specified there), v2(0) = v2(L) = 0 (because w is specified), and (dva/dz)(0) = 0

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



SOLUTIONS MANUAL 7

(because dw/dz is specified at = 0). In addition, we have EI(d*w/dxz?) = My at
x = L. The final weak forms are given by

dvy [du 1 [dw\?
= FA— |— 4+ = | — — 1
0 /0 { dx ldw+2<dw>] Ulf}d:r (la)
L d?vy d?w dvs dw | du dw
0= ElI— FA— — d
/0 { i dr i dz |dz T2 (dx> R
_ (@)
dx
Note that for this case the weak form is not linear in u or w. However, a functional
can be constructed for this using the potential operator theory (see: J. T. Oden and

J. N. Reddy, Variational Methods in Theoretical Mechanics, 2nd ed., Springer-Verlag,
Berlin, 1983 and Reddy [3]). The functional is given by

) = [ EA [(0" o (duy” 1 )] B :
U W)= 0 2 dz dr \ dz 2 \ dzx 2 \ da?

d
+uf+wq}dx— o
dx

My (1b)
L

My
L

Problem 2.3: A second-order equation:

—g( Ou | @)_Q( C 8“>+f—o in 0
ar \""oz al?@y oy Yox a228y N

ou ou ou ou
u=1ug on I, a11%+a128—y Ng + a21%+a228_y ny =tg on I'

where a;; = aj; (1,7 = 1,2) and f are given functions of position (z,y) in a two-
dimensional domain €2, and ug and ¢y are known functions on portions I'y and I's of
the boundary I': I'; + Ty =T

Solution: Multiplying with the weight function v and integrating by parts, we obtain

the weak
ov ou ou v ou ou
0—/Q p <a118 —HL128 > ay <a218 +a228 )+Uf} dxdy

— ]{ v Kan@ +a12@> Ng + <a21@ +a22@> n. } ds
T or oy) " or oy) Y
ov ou ou ov ou ou
= Jo Lz (g oy ) + 5y (amgy +amgy )+ s

- / vty ds
>

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.




8 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

where v = 0 on I'y. The bilinear form (symmetric only if aj2 = ag1) and linear form
are:

B(v u)—/(a @@—Fa @@%—a @@%—a @@)d:cd
’ Uorar oz oy T Poyoxr T oy oy Y

E(v):—/vfd:rdy+/ vty ds
Q Ty

The quadratic functional, when a9 = a1, is given by

1 ou\ 2 ou 0 ou\?
[(u) = 5/9 lan <8—;L> +2alga—za—z =+ a9 <8_Z> ] dmdy

—/ufdwdy+/ w to ds
Q Ty

Problem 2.4: Navier-Stokes equations for two-dimensional flow of viscous,
incompressible fluids:

Ox oy  pox 0x?  0y?

ov ov 10P v 0% .

i = __ -2 I in 1
uax—H)By p Oy +V<8m2+8y2> @)

ou o0 _,

or Oy

u=1uy, v=v9 on I} (2)
ou ou 1 R

V(@U ov } on Iy (3)

+ ) Lpn, =i
=N N — LNy =
ox z 8?/ Y 0 Y Y

Solution: For this set of three differential equations in two dimensions (see Chapter
10 and Reddy [7] for the physics behind the equations), we follow exactly the same
procedure as before: use the three-step procedure for each equation. In the second
step of the formulation, we must integrate by parts the terms involving P, u, and
v, because these terms are required as a part of the natural boundary conditions
given in Eq. (3). We do not integrate by parts the nonlinear terms in the first two
equations, and no integration by parts is used in the third equation, because the
boundary terms resulting from such integration-by-parts do not constitute physical

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



SOLUTIONS MANUAL 9

variables. We have

0= / [wl (u% + v@> 1 awlP +v (811)1 Ou + — dwn 8u>] dxdy
Q

oz dy p Ox Oor O0xr Oy O
— wityds
T2
B ov ov 1 Qwa Owg Ov  Ows Ov
0—/Q {wg (uaw+vay> _p 3y —P+v <8:p 8x+ 9y @ >]d:cdy
- t,d
I, wo y S

ou Ov
07/ (69& a)da:dy

where (w1, w2, ws) are weight functions.

Problem 2.5: Two-dimensional flow of viscous, incompressible fluids (stream
function-vorticity formulation):

V- (=0
—V2¢ 8_1&%_8_1/}% =0 in @
Oxr dy Oy dx

Assume that all essential boundary conditions are specified to be zero.

Solution: First, we note the the identity
—wV?p = —wV - Vi) = =V - (wVe) + Vw - Vi
and then use the Green—Gauss theorem to obtain
— /Q wV2y dedy = /Q [~V - (wV) + Vw - V)] dedy

—%wﬁ-vwds—l—/Vw‘V@bdxdy
T Q

Multiplying the first equation with w; and the second equation with ws and
integrating over the domain € and using the above identity we obtain (the boundary
integrals vanish because w; = 0 and we = 0 on the boundary I)

0= [ (Vur- Vo~ wic) dady (1)
:/Q {ng‘vg—i-w (g—wg—;—g—j%)] dxdy (2)

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



10 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Problem 2.6: Compute the coefficient matrix and the right-hand side of the N-
parameter Ritz approximation of the equation

d
—— {(1+x)d—ﬂ =0 for 0<z<1

w(0) =0, u(l)=1

Use algebraic polynomials for the approximation functions. Specialize your result for
N =2 and compute the Ritz coefficients.

Solution: The weak form for this problem is given by

1 dv du

The variational problem is given by Eqgs. (2.5.4a) and (2.5.4b), where [¢(¢;) = 0
because there is no source term],

! do; do;
By = B(oso)) = [ (1+0) 5t Tda (10)
! do; doo

Fy = —=B(¢s, ¢0) = —/0 (1 +a2)————de (10)

The approximation functions ¢g and ¢; should be chosen such that
¢0(O) = Oa ¢0(1) =1 ; ¢2(0) = ¢2(1) = O? (Z = 1727 ?n) (2)

The following algebraic polynomials satisfy the above requirements:
o=z, ¢i=a'(l—x) (3)

Substitution of Eq.(3) into Egs.(1a,b) and evaluating the integrals, we obtain
ij ig+i+g 1—1j i1+ 1)(+1

By=—4 __4titj, 1oy  GHDG+D (4a)

t+7—1 1+ t+j+1 t+7+2

1

FF=— (4b)

(1+4)(2419)
For the two-parameter (N = 2) case, we have

1 17 7 1
Bii==. Bip=By=—  By——a F== F=—
11 27 12 21 607 22 30’ 1 67 2

and the parameters c¢; and ¢y are given by

55 20
R E TR R T

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



soLuTIONS MANUAL 11

The two-parameter Ritz solution becomes

u(r) = ¢o + c1¢1 + c202

B 55 9 3
s ot @) - gyt )
1
=131 — (1862 — 7522 4 202°)
The exact solution is given by
log (1+x)
Ueract = — 7 o
log 2

Problem 2.7: Use trigonometric functions for the two-parameter approximation of
the equation in Problem 2.6, and obtain the Ritz coefficients.

Solution: The following trigonometric functions satisfy the requirements in Eq.(2)

of Problem 2.6: .
¢ = sin; , ¢; =sininx

For two-parameter case, we have

1 dbr d 1
Bi = / (1+2)— 01 do1 dx = 7r2/ (14 x)cosmx cosma dx
0 0

dr dv
! d¢1 dgs 2 !
Bz = | (1 x =2 1 2nx dr = B
12 /0( +T )dm Iz ™ /O( + ) cos T cos 27w dx 21
1 dédo d 1
B22:/ (1+ )d¢2 jz :472/0 (1 4+ z) cos 2mx cos 2mrx dx
2 1
I =- /(1+ )(?Slci;bo dfl?:—% A (1+a:)cos7m:cos% dx
1 ddo d 1
I = _/ (1+ )d¢2 jo dr = —772/ (1+:1:)<30527T3:COS7r—2ch dx
0 0

Using the following trigonometric identities,

COS ML COSNAL = [cos(m + n)mx 4+ cos(m — n)mx]

1
cos®> mmx = 5(1 + cos 2mmz)

l s ] () - {igm- o)
—20 32| le 95 T 15

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.
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12 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

and the solution is

: . . T
Ua(z) = ¢y sinmx + co sin 2wz + sin -

= —0.12407sin 7z + 0.02919 sin 27x + sin W—;

Problem 2.8 A steel rod of diameter d = 2 c¢m, length L = 25 cm, and thermal
conductivity £ = 50 W/(m °C) is exposed to ambient air T, = 20°C with a
heat-transfer coefficient 3 = 64 W/(m? °C). Given that the left end of the rod is
maintained at a temperature of Ty = 120°C and the other end is exposed to the
ambient temperature, determine the temperature distribution in the rod using a
two-parameter Ritz approximation with polynomial approximation functions. The
equation governing the problem is given by

d?0

—w+0020 for 0<x<25cm

where 0 =T — T\, T is the temperature, and c is given by

pp _ prnD _ 4f 2
= — = = — = 2
‘T Ak Igpzm kD 0™

P being the perimeter and A the cross sectional area of the rod. The boundary
conditions are

de
0(0) = T(0) — To = 100°C, (k— + 59) ~0
dx =L
Solution: The weak form of the equation is given by
o—/L <@ﬁ+ 9)d + eo(L)O(L) (1)
= | \Grdz cvl | dx + cv
where ¢ = (%) We have
L rdg; de,; .
By = Bloudy) = [ (S + cody ) do+ con(L)oy (L) (20)
0 dr dx

L rde; d .
Fi=~Blowon) =~ [ ({2504 coun ) do— asi(Lion(L) ()

We choose the following functions
¢o=0(0) =100, ¢; ==a"

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



SOLUTIONS MANUAL 13
From the values of the parameters given, we compute: L = 0.25m, ¢ = 256, and
¢ = (%) = 64/50. The coefficients are evaluated to be

499 133 91 424
o Blo=DBa=-2 Bp=-— F=-832, Fp=
3000 DL 21= 759 B2=T5 b1 832, Fy 5

499 133
300 200 C1 —832
133 91 c _ 424
400 1200 2 3

The solution of these equations is

B =

or

c1 = —1,033.3859 , co =2,667.2635
The two-parameter Ritz solution is given by
0(z) = 100 — 1033.3859z + 2667.26352>

0(0.125) = 12.503°C , 6(0.25) = 8.3575°C

Problem 2.9: Set up the equations for the N-parameter Ritz approximation of
the following equations associated with a simply supported beam and subjected to a
uniform transverse load ¢ = qo:

d? ( d>w

@ w)zqo for O<z<L

d*w
w=FKI—=0 at =0, L
dz?
(a) Use algebraic polynomials.
(b) Use trigonometric functions.
Compare the two-parameter Ritz solutions with the exact solution.

Solution: (a) Choose ¢9 = 0 and ¢; = z*(L — x), which satisfy the geometric
conditions w(0) = w(L) = 0. The coefficients are given by

Bi; — EI ij(L)™! (-1DG-1 206 -1  (@+1HG+1)
g / itj—3  i+j-2  i+j-1
qO(L)iJrZ

EHED

P =

Note that the expression given above for B;; is not valid when ¢ = 1 and j =
1,2,---, N; we have,

By =4FIL, Byj = Bj1 =2FIL7, (j>1)

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



14 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

For N = 1 the Ritz coefficient is given by ¢; = Fi/Bi11 = qoL?/24EI; and for N = 2,
the coefficients are: ¢; = qoL?/(24EI) , c2 = 0. Hence, the one-parameter and
two-parameter solution is the same

(Loay= DL 2y
Yo A YY) A

W1 =Wa(x) = c191 =

(b) Choose ¢p = 0 and ¢; = sin % The coefficients are given by

EIL [ir\*
20l
Fy=28% it iisodd; F,=0 ifiis even
17
Hence,
F A <L>5_4q0L4<1)5
“=B, FEIL\ix) ~ "EI \ir

Hence, the solution becomes

4q0L4 . T N 4qOL4 . 3mx
———sin — sin
ElIxd L 243FEIxd L

wa(x) = c1¢1 + c3¢3 =

Problem 2.10: Repeat Problem 2.9 for ¢ = g sin(7z/L).
Solution: (a) We have (a = 7/L),

L .
F; :/ (gosinaz) z'(L —x) dx
0
Lt i rLo
=qoL [— + 1/ 2 L cosax da:}
a alo

Litl 41 (L .
—qo l— +° + / x' cosax da:]
a a Jo

For N = 1 we have Fy = 4qoL3/73, and ¢; = qoL?/(EI73). For N = 2 the coefficients
are Fy = F1L = 4qoL3 /73 and the solution is ¢; = coL = 2qoL?/(3EI73).

(b) Choose ¢9 = 0 and ¢; = sin % The coefficients B;; are the same as in Problem
2.9(b). The coefficients F; are given by Fy; = foL/2 and F; = 0 for i # 1. The Ritz
coefficients are given by

L4
= - —0ifi£1
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The Ritz solution coincides with the exact solution,

qoL* sin Y
w = ———sin —
Elr* L

Problem 2.11: Repeat Problem 2.9 for ¢ = Qo6(z — 3L), where §(z) is the Dirac
delta function (i.e., a point load @ is applied at the center of the beam).

Solution: The coefficients F; are given by
L i+1
@ F=-a(3)
(b) F;=Qo(—1)"!for iodd,and F; =0 for i even

Note that co = 0 in both cases.

Problem 2.12: Develop the N-parameter Ritz solution for a simply supported
beam under uniform transverse load using Timoshenko beam theory. The governing
equations are given in Eqgs. (2.4.32a, b). Use Trigonometric functions to approximate
w and W.

Solution: Assume solution of (w, ¥) in the form,

M M ] a S jnz

. T ™

wM:ij¢jEijSIHJT ; ‘PN:ZCjijZCjCOSJL o
=1 j=1 j=1 =1

Substitution of Eq. (1) into the weak forms (S = GAK and D = EI)

L d d
O:/ [GAKﬂ (—w—i-\ll) —i—kvlw—vlq} dx (2a)
0 dr \ dx
L dvg d¥ dw
= El—— AK — 4+ V)| d 2b
0 /0[ i dar ¢ ”2<dx+ ﬂm (26)

we obtain following system of algebraic equations,
k] e} {6} = { )} ®

where

L . . L
K= / (GAKd¢Z%+k¢i¢j> do, K} = / GAK
0 0

do;
dz dz b ¥j de

d

L . L ) )
K = /O GAK«/)Z-% dv, K77 = /O <E1d¢l% +GAK Wz}j> der  (4a)

dr dx
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16 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

L
:/0 piqdr, F2=0 (4b)

Substituting ¢; = sin(imx/L) and v; = cos(imx/L) into the above equations and
evaluating the integrals, we obtain

Kl = GAKL <L> (”) AL k2~ gakt (L> K21

L 2 Je
k2L [GAK—}—EI( ) (”ﬂ (5a)
K L L
for i = j, and
aB ey
K7 =0, ifi#j (5b)
2qoL
Fl=— PO= for i = odd and F! =0 fori=-even (5¢)
im

& New Problem 2.2:

A number of other problems associated with the Timoshenko beam theory. (1)
The same problem as above, with algebraic polynomials; (2) a cantilever beam,
clamped at the left end (x = 0) and subjected to an end moment, My at © = L.
The latter can be assigned with (a) algebraic or (b) trigonometric approximation
functions. For example, for Problem 2a, we have the following (M, N)-parameter
Ritz solution with algebraic polynomials,

N

M M ) N )
Wy = ijqu = ij.’L‘] y \IJN = chwj = ZCJ':LJ (1)
Jj=1

j=1 j=1 j=1

The matrix equations are of the form as given in Eq.(3) of Problem 2.12, and the
coefficient matrices are the same as given in Eq. (4a) of Problem 2.12; with the
following definition of the right-hand vectors,

L
= "o de . FE = —Movi(L) (2)

For the choice of approximation functions, ¢; = v; = !, the coefficients can be
evaluated as,

K}l = GAKi(L)”j*I, K[} = GAK (L)
i4+5—1 z+j
K2 = GAK Iyt gt 90y p2 o ey 3
+,]( ) ) 7 ’L+1( ) ) 7 0( ) ()
K2 — pr—Y (VL QAR —— (L)
i o BT GAR T (1)
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For M = N =1, we have

b — qL? < 3EL 1) L Mol
'~ 6CEI \GAKL? 2CET n
1 (qolL? GAK L2
= M, 7= =
“l C’EI<4+O>’C<+EI 12
For M =2 and N =1, we obtain
gL 1 [qL?
b= GAK T 9T TCEI ( g Mo 5
_ @l? (1_ 6EI ) Mo
27 T12FI GAKIL?) " 2FI

Note that the Timoshenko beam theory does not behave well for M = N =1
due to numerical locking. However, it behaves well when the number of terms are
increased. One can use one more term for w than for ¥ (i.e., M = N 4 1). Indeed,
for M =4 and N = 3, one obtains the exact solution,

w(x) = 24EI<6L 4Lm+x)+2GAK(2L T) + SE ©
Qo 9 2 Moz
U(z) = 6EI( 3L° +3Lx —z%) — =T

Problem 2.13: Solve the Poisson equation governing heat conduction in a square
region:

—kV2T = go
T=0 onsides x=1 and y=1 (1)
oT : .
o= 0 (insulated) on sides =0 and y=0 (2)
n

using a one-parameter Ritz approximation of the form

Ty(a,y) = (1 —22)(1 - 3?) (3)

Solution: The weak form of the equation is given by

ovoT OvoT
0= // { (axax 2y 0y >_”90} dwdy @)
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18 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

The coefficients By; and £} are given by

o= [ [+(28 35

= / / k 43:2(1 — )2+ 4971 — 2?) } drdy = 6—k (5a)
0 Jo 45
1,1

Fi= [ [ gon dady

0o Jo
1 r1 9 9 4

:/ / go(1 —2°)(1 — y*) dedy = =go (5b)
0 Jo 9

and the parameter c; is given by
_ F1 5g0
T By 16k (6)

Problem 2.14: Determine ¢; for a two-parameter Galerkin approximation with
algebraic approximation functions for Problem 2.8.

Solution: We must choose ¢ such that it satisfies all specified boundary conditions:

00(0) = 00) . |2+ =0 (1)

and ¢; must be selected such that it satisfies the homogeneous form of all specified
boundary conditions:
60 =0, | o] =0 2)
=L
To construct these functions, we begin with ¢g = a+ bz, and determine the constants
a and b such that ¢g satisfies the conditions in Eq. (1). We obtain,

¢
=100 |1 —
bo { 1+ éLx}
Similarly, we begin with ¢; = a + bz + cx? (we must have one more parameters
than the number of conditions) and determine a,b and ¢ such that ¢, satisfies the
conditions in Eq. (2). We obtain,

1+cLlz
—pl1 - ===
o=z [ 2+ L L}
The next function should be higher order than ¢;; and there are two choices:
¢2 = a + bz + cx® and ¢g = a + bx? + cx®. For the first choice, we obtain,

1+¢L x ]

@Zﬂ FETAYR
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It is clear that the Galerkin and other weighted residual methods involve
cumbersome algebra and result in complicated expressions for the approximation
functions.

Problem 2.15: Consider the (Neumann) boundary value problem

d2
—d—;;:f for 0<ax<L

(@)].= (&)

Find a two-parameter Galerkin approximation of the problem using trigonometric
approximation functions, when (a) f = focos(rz/L) and (b) f = fo.

=0
z=L

Solution: For this problem, we can choose ¢y = 0 or a constant (i.e., the solution
can be determined only within a constant) and ¢; = cosimx/L. The residual is given
by
N 2
d“¢;
R=— Cci—J _
L

The weighted-residual statements are given by

L qx oL L T
0—/0 coszdx—(z) 501—/0 fcosf dx

L omx 2m o L L 21T
07/0 COSTRdZ'—(f) —co — ; fcosT dx

For (a) f = focos ¥, we obtain ¢; = fSrQQ and ca = 0. When (b) f = fo, we obtain
Cl = Cy = 0.

& Part (b) solution indicates that the Neumann problem does not have a solution for
the case in which the forcing function is a constant (because the solvability conditions
are not satisfied by the data, f). For additional discussion on this, the reader may
consult the book by Reddy [3].

Problem 2.16: Find a one-parameter approximate solution of the nonlinear equation

d?u du\ ?
—2u—— — | =4 f 1
ud:p2+<dw> or O<z<

subject to the boundary conditions u(0) = 1 and u(1l) = 0, and compare it with
the exact solution ug = 1 — 22, Use (a) the Galerkin method, (b) the least-squares
method, and (c) the Petrov-Galerkin method with weight function w = 1.
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20 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Solution: We must choose ¢ such that it satisfies all specified boundary conditions:

$0(0) =1, ¢o(1) =0 (1)

and ¢; must be selected such that it satisfies the homogeneous form of all specified
boundary conditions:

$i(0) =0, ¢(1) =0 (2)
Obviously, the following choice would meet the requirements,
po=1—2, ¢pr=2(1 —2x) (3)
The residual is given by
d*¢ dp1 | dgo .o
-9 = 2P, DY0y2  y
R c1(c1¢1 + ¢o) e + (a1 I + dr )

= 2|1 —2) +ei(w— 2| (=201) + [-1 + er(1 - 22)* — 4
= —3+2c1 + (c1)? (4)

(a) The weighted-residual statement for the Galerkin method is given by

[—3 + 2¢1 + (61)2}

=

1
0:/ (z — 2®)R dx =
0

which gives two solutions, (c1);1 = 1 and (¢1)2 = —3. We choose ¢; = 1 on the basis of
the criterion that fol R dz is a minimum. For ¢; = 1, the Galerkin solution coincides

with the exact solution, u(z) =1 — 22.

(b) The least-squares statement is given by

1 dR 1
0=/ —Rdr= / 2(1+¢c1) {—3 +2¢1 + (01)2} dx
0 do 0
which gives three solutions, (¢1); = 1, (c1)2 = —3, and (¢1)3 = —1. Once again, we

choose ¢ = 1.

Problem 2.17: Give a one-parameter Galerkin solution of the equation
~V?u=1 in Q (= unit square)

u=0 on T

Use (a) algebraic and (b) trigonometric approximation functions.
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Solution: For this problem, all of the boundary conditions are of the essential type.
Hence, the difference between the Ritz and Galerkin methods disappears. In both
methods, we must choose ¢g and ¢; such that

po=0, ;=0 onT (1)
We choose the approximation in the form,

uy = c¢11 sinwr sinmy (2)
and compute the residual,

R= [2011772 sinmx sinmy — 1} (3)

The Galerkin integral yields the result,

0 :/ R sinmz sinwy dxdy
0

1,1
= / / {20117r2 sin? 7z sin? 7y — sin7z sin wy} dxdy
0 Jo
1 4
= 261171'2 <Z> ) (4)

™

from which we obtain, ¢11 = 7%.

Problem 2.18: Repeat Problem 2.17(a) for an equilateral triangular domain. Hint:
Use the product of equations of the lines representing the sides of the triangle for the

approximation function. Answer: ¢ = —%.

Solution: For the coordinate system shown in the figure, the equations of the
boundary segments AB, BC, and CA are, respectively:

2 2 1
:p—\/3y—§a:0, :L‘+\/3y—§a:0, :L‘+§a:O

Therefore, a suitable choice of ¢1 (¢g = 0) is

01 = (55 ) (= V3y = 30+ V3y - 5a)(a+ 30)

because ¢; would be zero on any of the three line segments (i.e. boundary), satisfying
the requirement, ¢1 = 0 on I'. The multiplicative constant added in the definition of
¢1 is for only normalization purpose. The residual becomes,

R=-Vu—-1=—-V%p —1=—2¢; -1
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Since the residual is a constant, the coefficient c;, in any weighted—residual method
is given by ¢; = —1/2.

Problem 2.19: Consider the differential equation

d?u
—cmosmc for O0<a<1
T

subject to the following three sets of boundary conditions:
(1) w(0)=0, u(l)=0

(2) u(0) =0, (%) =0

r=1

=1
Determine a three-parameter solution, with trigonometric functions, using (a) the
Ritz method, (b) the least-squares method, and (c) collocation at = = %, %, and %,

and compare with the exact solutions:
(1) up = 7 2(cosma + 2z — 1)
(2) up =7 2(cosmx — 1)

(3) ug = 7 2cosmx

Solution: This problem has three sets of boundary conditions and three different
methods are to be used to determine the solution. Hence, it is advised that the
instructor should assign only one of the many combinations: (i) Solve the problem
for Set 1 boundary conditions with any one of the methods (three problems); (ii)
solve Set 2 boundary conditions with any one of the methods (three problems); and
(iii) solve Set 3 boundary conditions with any one of the methods (three problems).
Solutions for all cases are included here.

Set 1: u(0) =u(1) =0.
Ritz method. The bilinear and linear forms are given by

L du dv

1
B(u,v) = | T dr T, E(v):/o vcos mxdx

We use ¢g9 = 0 and ¢; = sinimx. We obtain

1 e
B;; = / (im)? cosimx cos jmx dr = {?;ﬂg lffﬁéz} . (1)
0 5 1 j=i
_Jo, if 5 is odd
Iy = {ﬁ if 4 1s even}' (2)
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The solution is given by

4 1
¢ = F—z(ﬁ ) for 7 even 3)

Weighted-residual methods. The residual is given by

U i
7 2N —cosTx = ch(jw)2 sin jrx — cosmz , and —— = (im)%sinimz (4)
x

R= 80,-

=1

The least-squares method requires

1 N
0= / (im)?sin iz (Z c;j(jm)?sin jmz — cos 7133) dx
0

=1

The multiplicative factor (im)? can be deleted. Then, it is clear that the least squares
method and the Galerkin method give the same equations. Furthermore, the solution
of the Galerkin and least squares methods would be the same as that of the Ritz
method.

For the collocation method, we have

0=R(zx= i) = gcj(jW)Q sin‘jz7r - COS%
— o (m)? (%) Fes(2m)2 + c3(3m)? (%) - %
0=R(z= %) = gcj(jw)2 sin%r - cosg
=c1(m)* +c2-0—c3(3m)% — 0
0=R(zx= Z) = jzi:lcj(jﬂ)Q sin% - cos?jT7T

1

=am? (75) — e +aen? () + 2 (5)

V2

which gives ¢; = c¢3 = 0 and ¢y = /2/872.

Set 2: u(0) = %£(1) = 0. For the Ritz method, we use ¢g =0, ¢ =z, ¢ = sin7z
and ¢3 = sin 2wx. This choice makes the variational solution not vanish at x = 1. For

convenience, we denote the new set by {(ﬁo =z, (%1 = sin7z, (%2 = sin2zx}. For the
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Ritz method, we need to evaluate only By;,j = 0,1,2 and Fp. All other coefficients
are the same as in Egs.(1) and (2). We have,

By =1, Boi=DBp2 =0, Fy= ) (6)

and the parameters ¢;,i = 1,2,3 are the same as in Eq. (3), and ¢y is given by
co = —%. Thus the solution of Set 2 boundary conditions differs from that of Set 1
by the term, (—2x/72).

For the weighted-residual methods, the above set of approximation functions is
not admissible, because {¢0 =z ngl = sin7z, gz§2 = sin 27z} does not satisfy the

natural boundary condition, u(0) = 2£(1) = 0. We select an alternative set,

UN*ZCJ(Z)] )+¢0=0, ¢o=0, ¢j(a:):1—cosj7m: (7)

The residual is given by

N
OR
R=— Z ¢j(jm)? cos jmx — cosmx , and e —(im)? cos imx (8)
; c
j=1 '
Clearly, weighted-integral statements for the Galerkin and least-squares methods
differ by a multiplicative constant (—(im)?), and hence give the same equations for

the undetermined parameters. We obtain,

: N2
B;; = —(];) when ¢ = j ; B;; =0 when i # j
1 .
F1:§, F;=0 wheni# 1 (9)
The solution is given by
1 .
c=-3, ¢i=0 wheni#1 (10)

The variational solution coincides with the exact solution
(z) ! ( 1)
u(zr) = —=(cosmx —
2

The collocation method gives the following algebraic equations

3 .
- ch(jﬂ)2 cos 2L — cos =

0=R(z= ' 1 1
7=1

1
D=
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1 1
= —cy(m)? <—) co 0+03(37T)< )——
V2 vV2) V2
3 .
g 7
0=R ch 005?—0055
7=1
-0+62(27T)2—03-0—0
3
0=R z:: 5 (g) COS3{T7T—COS%T7T
=¢( )2<—)—c 0+ c3(3m)? < )+L (10)
=ci(m 72 2 3(oT 72 72
which gives ¢; :—# and cg = c3 = 0.

Set 3: 2(0) = 2¥(1) = 0 Here we select the following approximation for all methods,

UN*ZC](% +¢0:0 ¢o =0, d)j(m):cosjmc (11)

The residual is given by
al R
R = Z cj(jm)? cos jmx — cosmx , and e = (im)? cos iz (12)
j=1 i
which differs from that given in Eq. (7) by only the sign in front of the parameter,
c¢;j. Hence, we expect to obtain the negative of the solution in Eq.(10) in all methods:
c1 = Tr—12 and ¢; = 0 for all ¢ # 1. Thus, the variational solutions coincide with the

exact solution,
COS T

u(x) - 2

Problem 2.20: Consider a cantilever beam of variable flexural rigidity, EI =
ao[2 — (/L)% and carrying a distributed load, ¢ = qo[1 — (2/L)]. Find a three-
parameter solution using the collocation method.

Solution: Let W3(x) = c122 4 c22> + c32* and compute the residual,

d? 22 dPw x
R=0 [“0(2_ﬁ>ﬁ1 — (“z)

_ __3612_“’+(2_x_2)6l4_w _ <1_£>
0N T2 2 L2’ dxt 90 L

2 2 x
= qap L2 (201 + 6cox + 1203$ ) + (2 - ﬁ)2403] —qo (1 — —)

[ x? 4 x x
= Qg 48(1 — ﬁ)C:g - ﬁcl — 12ECQ‘| —qo (1 — z)
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We take the collocation points at x = %, %, and % and obtain

L 4 3 3
R(Z) = Qg <_ﬁ01 — ECQ +45Cg> — ZQO = O

L 4 6 1
R(g) = Qg <—ﬁ01 — ECQ + 3603) — 5(]() =0

3L 4 9 1
R(Z) = Qg <—ﬁ01 — ECQ + 2103) — Zqo =0

The solution of these equations is

_qL? oy = D0L
4(10 ’ 2 12(10 ’

c = and c3 =0

Problem 2.21: Consider the problem of finding the fundamental frequency of
a circular membrane of radius a, fixed at its edge. The governing equation for
axisymmetric vibration is

1d(du

)—)\u:() O<r<a
rdr

where A is the frequency parameter and v is the deflection of the membrane. (a)
Determine the trigonometric approximation functions for the Galerkin method, (b)
use one-parameter Galerkin approximation to determine A, and (c) use two-parameter
Galerkin approximation to determine A.

Solution: (a) The approximation functions that satisfy the boundary condition v = 0
at = a (and du/dr =0 at r = 0) are

r 3rr 5nr

¢1(r) = cos o ¢a2(r) = cos 50 P3(r) = cos 5 - ...

(b) For one-parameter approximation u(r) ~ Uj(r) = ¢j cos(nr/2a), the Galerkin

integral is
alld
/0 {;% {r% <— sin g—;)} c1 + Acq cos g—;} cos —g; rdr =0

from which we obtain

T
4

[N}
VR
N | —

_l’_
>\M|l\;
N———
|
p
N
N =
[
>1M ')
N———
|
o

It follows that \ = 5.832/a?.
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(c) For a two-parameter Ritz approximation Us(r) = ¢; cos(nr/2a) + ¢ cos(37r/2a),
we obtain

(1.7337 — 0.29736a?)c; + (0.20264Xa® — 1.5)co = 0
(0.20264\a* — 1.5)c; + (11.603 — 0.47748\a*)cy = 0

Setting the determinant of the above equations to zero, we obtain a quadratic
equation in A

0.10092)* — 3.6701A + 17.866 = 0, A = Aa®
The smaller root of the equation is A = 5.792/a%. The exact value is A = 5.779/a.

Problem 2.22: Find the first two eigenvalues associated with the differential
equation
d*u
_W = )\’LL, O<ze<l1
uw(0) =0, u(l)+4(1)=0
Use the least squares method. Use the operator definition to be A = —(d?/dz?) to
avoid increasing the degree of the characteristic polynomial for A.

Solution: For this problem, the choice of the operator A is crucial. If we use the
definition A = —d?/dx? — X\, we obtain the result

o= | L AR di = Z [ / A6 A(5) dw} &

NP d2¢
= 3 d2¢l d2¢ d2¢ d2¢z 2
_]2_; {/0 dz? d:r; <¢Z F + da2 ¢> +A qzﬁzng]] daz} ¢ (1)

which is a quadratic (matrix) eigenvalue problem, and it is more difficult (but not
impossible) to solve.

Alternatively, we identify the operator A of the problem to be A = —d?/dz? so
that it does not include the unknown, A (not consistent with the definition of the
method). Then

1

0:/0 AR dz =Y {/ A(60) [A(6;) — ] d:r}
d?¢; d2¢> d?¢;

Uo (dx2 & ¢]> dx] ?

(Kz'j — )‘Mlj) Cj (28“)

M= 10

<
Il
-
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where

1 d2¢i d2¢j I

K= [ A@)A@) do= [

dx? dx?
1 1 d2¢i
M;; :/ A(¢i)¢j dox = — Wqu dx (2b)
0 0o dx

Using the approximation functions ¢1 = 3z — 222 and ¢9 = 422 — 323, we have
A(¢p1) =4 and A(p2) = —4 + 12z, and

K11 =16, K2 =Ko =8, Ky =16,
10 8 8 38
Mn—?, ]\412—§7 M21f§, M22—1—5 (3)

The characteristic polynomial and its roots are

4.1
48 — %/\ + §A2 =0 giving A\ = 4.212, Ay = 34.188 (4)

Problem 2.23: Repeat Problem 2.22 using the Ritz method.

Solution: A two-parameter Ritz approximation with

¢0 = 07 ¢1 =, ¢2 = $2 (1)
yields S A 9
‘ 9 _ X1 _al=0 (2)
i 375
or
1502 — 640\ 4+ 2400 =0 — A\ = 4.1545, Ay = 38.512 (3)
The exact values are
A =4.116, Ay = 24.139 (4)

The weighted-residual solutions are more accurate than the Ritz solution because
they use higher-order polynomials that satisfy all boundary conditions.

Problem 2.24: Consider the Laplace equation
—V2u=0, 0<z<l1l, 0<y<oo

u(0,y) =u(l,y) =0 for y>0

u(z,0) =2(l —x), wu(r,00)=0, 0<zx<l1
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Assuming an approximation of the form
Ui(z,y) = ei(y)z(l — )

find the differential equation for ¢1(y) and solve it exactly.

Solution: Substituting U; = ¢;1(y)(z — 2?) into the differential equation, we obtain

d2
R = —Wc;(x — %) + 2¢;
Using the Galerkin method, we obtain
1 1d% 1
0= [ Rz —2Vde = ——=— + =
/0 (v —a)de = =557 + 30
or )
% —10c1 =0or ¢ = Ae~V10y + BeV10y
Y

The condition
2

u(z,0) =z —=x
imples that ¢;(0) = 1. Also, the condition
u(z,00) =0 — c1(00) =0

These conditions give B =0 and A = 1, and the solution becomes

Ur(z,y) = e V1% (2 — 2?)
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Chapter 3

SECOND-ORDER
DIFFERENTIAL EQUATIONS
IN ONE DIMENSION:
FINITE ELEMENT MODELS

For Problems 3.1-3.4, carry out the following tasks:

(a) Develop the weak forms of the given differential equation(s) over a typical finite
element, which is a geometric subdomain located between x = x, and = = zp.
Note that there are no “specified” boundary conditions at the element level.
Therefore, in going from Step 2 to Step 3 of the weak-form development, one
must identify the secondary variable(s) at the two ends of the domain by some
symbols (like Qf and Q% for the first problem) and complete the weak form.

(b) Assume an approximation(s) of the form
n
u(w) =) u§ys(z) (4)
j=1

where u is a primary variable of the formulation and 1/1]6(:13) are the interpolation
functions, and uf are the values of the primary variable(s) at the jth node of the
element. Substitute the expression in (i) for the primary variable and ¢ for the
weight function into the weak form(s) and derive the finite element model. Be
sure to define all coefficients of the model in terms of the problem data and 5.

Problem 3.1: Develop the weak form and the finite element model of the following
differential equation over an element:

_i<a@>+d—2 bd2—u +eu=f for zo<z<2
dr \ dx dz? \  da? N ¢ ’

where a, b, ¢, and f are known functions of position x. Ensure that the element
coefficient matrix [K¢] is symmetric. What is the nature of the interpolation functions
for the problem?

Solution: The second term must be integrated twice by parts while the first term
once by parts to distribute the differentiation equally between the weight function w;
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and the solution uy so that the resulting expression would be symmetric in w; and up,.
The integration-by-parts gives rise to two pairs of primary and secondary variables.

We have
Tb d duh d? d2uh
@ [dw; ( dup\ dw; d [, dPup,
- /xa dr ( dx ) dx dz (b dz? > +ewgti — wif} du
[ duh Tb d d2uh o
+ _—wz- (a%ﬂ% + [wz Iz (b )|
(% ldw; ( dup dw; d d?up,
_/xa - ( ) T da (bd2>+cwzuh—wzf]dx
duh d2uh i

duy, d2wZ d?uy,
a— ) 72 (b 722 + cw;up, — w; f | dz

duy | d () dup T Tdw P |
A il il : 2
+{w1 [ad dx<bdm2>” ke (2b)

Za Za

From the boundary expressions of the last equation, we identify the primary and
secondary variables. The secondary variables are the expressions next to the weight
functions in the boundary terms:

2 2
Secondary variables: [—a% + d%c (b dd;h>] and bd—;h (2¢)

The primary variables are identified by first listing the cofficients in the boundary
expressions

dwi
dx

and then replace w; with the variable of the differential equation u. Thus the primary
variables

w; and

(2d)

Primary variables: wu; and % (2e)

Next, we denote the secondary variables at the ends of the element by some
symbols. We shall define these quantities such that they all have the negative sign:

duh d dQ’U,h duh d d2uh
. l “dr +dm< dx? )L ’ b [ “dr +dw dxz? o
dQ’U,h d2uh
0=l o= i 20
Ta Ty
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Finally, the weak form is given by Eq. (2b), with the definitions in Eq. (2d). We
have

[® o dw;duy, d?w; d%uy,
_/xa (adm%+bdx2 72 + cwiup, —w; f | dx

~ Pai(ra) — Pri(y) — Qa1 (2a) — Qo' a1) )

The primary variables include the dependent variable w and its derivative duy, /dz.
As a rule, the primary variables must be continuous across elements. Therefore, the
finite element interpolation be such that both of the variables are treated as nodal
variables so that the continuity conditions can be used during the assembly elements.
Thus an element with two nodes (which is the minimum) will have four unknowns (u
and du/dz at each of the two ends of the element), requiring a four-term polynomial
- a cubic
up(z) = ¢1 + ez + 32 + cqa® (4)

The constants ¢; through ¢4 can be expressed in terms of the nodal degrees of freedom

duy,

d
up(zq) = A, (E) = Ao, up(xp) = As, (%) = Ay (5)
Ta Ty

Thus we will have
uh(az) =c1 +cx + C3$2 + C4$3

= A1d1(x) + Dodo(x) + Azds(w) + Asga(z)
4
=D _Ajoj(x) (6)
j=1
Note that A; and Az denote the values of the function u at the two nodes while Aq
and A4 denote the values of derivative of v at the two nodes. The linear combination
(6) of functions that interpolate both the function and its derivative(s) are known

as the Hermite interpolation functions, and ¢;(x) are known as the Hermite cubic
interpolation functions. See Chapter 5 for additional details.

The finite element model is obtained by substituting
u(x) = up () =) u5es(z) (7)
j=1

into the weak form (3). We obtain
[KNu} ={F°} or Ku®=F* (8)
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where

e [ doide; . d’¢;d>¢;
K¢ = /x a <a D0 LSS gy ) da (9a)
¢ do;

Tp d i
Fi= [ fouds + Pudi(ra) + Pots(an) + Qg (ea) + Q' m) ()

Problem 3.2: Construct the weak form and the finite element model of the
differential equation

d du du
—%(a%>—b%—f for 0<zxz<L

over a typical element Q. = (x4, xp). Here a, b, and f are known functions of z, and
u is the dependent variable. The natural boundary condition should not involve the
function b(x). What type of interpolation functions may be used for u?

Solution: The weak form over an element interval (x4, xp) is given by

T ( dw d d
0= /xa (ad—id—z — bwd—z - wf> dr — Quw(za) — Qpw(ap) (1)

where the term involving b is not integrated by parts because it does not reduce the
differentiability required of the approximation functions. The finite element model is

given by
[KHu} = {F} (2a)

where

K= [ (GG b ) as

K . dx dx dx

Fe= [ F badn + Qutbs(wa) + Quiba(s) (26)

T

and ; are the Lagrange interpolation functions. Note that the coefficient matrix is
not symmetric.

Problem 3.3: Develop the weak forms of the following pair of coupled second-order
differential equations over a typical element (x4, xp):

_% {a(m) <u + %)} = f(=) (1a)

—% (b(m)%) +a <u + %) = q(x) (1b)

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



SOLUTIONS MANUAL 35

where u and v are the dependent varibales, a,b, f and g are known functions of z.
Also identify the primary and secondary variables of the formulation.

Solution: Following the three-step procedure for each equation, we arrive at
Lo d dv
0= g (e )] o
T [ dw; dv dv\ 1%
—/ma [a%<u+%>—w1f}daz—{w1-a(u+%)]xa

= /: [a% (u + 3—1) — wlf} dr — wi(zq) Py — w1 () Po (2a)

necboe ) aobeed),

Similarly, we have
o d du dv
A e o R G R

B ) ]
Ja dr dz P\ T @ i 7 -

where

_l’_

o [ dwsy du dv
- /za [bd_;% tawz (u+ dr ) q} dr — wa(2q)Q1 — wa(xp) Q2 (3a)
where ; ]
U U
Q1=— [ba]xa , Q2= {b%]xb (3b)

New Problem 3.1: Consider the following differential equations governing bending
of a beam using the Euler—Bernoulli beam theory:

dw M d>M
_W_E_O’ —W—q (1)
where w denotes the transverse deflection, M the bending moment and ¢ the
distributed transverse load. Develop the weak forms of the above pair of coupled
second-order differential equations over a typical element (z4,2p). Also identify the
primary and secondary variables of the formulation. Caution: Do not eliminate M
from the equations; treat both w and M as independent unknowns.

Solution: Following the three-step procedure of developing weak forms, we obtain

[ dvy dM _ B

0= /xa < dr dr Ulq) dz — v1(za)Q1 — v1(2p)Q2, (2a)
%o dvg dw M

= /x <d_m2d_xo - UQE> dx — v3(74)O1 — va(2p)O2 (2b)
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where (v1,v2) are the weight functions (that have the interpretation of virtual
deflection dwp and virtual moment § M, respectively), and

@) (&), s

_ dwy . dwg
91_< d:r>w_ma’ 92_( dm)Hb (3b)

Problem 3.4: Consider the following weak forms of a pair of coupled differential
equations:

%o dwy dv

Ozéaﬁaﬂg—wﬁ>m—RwM%%4%muw (1a)
%o dwy du

= /:ra <d_:v2% tew - w2q> dr — Qawa(xa) — Quwa(ws) (1b)

where ¢(z) is a known function, w; and w9 are weight functions, v and v are dependent
variables (primary variables), and P, Py, @4, and @y are the secondary variables of
the formulation. Use the finite element approximations of the form

u(z) =Y ufyf(z) , v(z) =Y vies(@) (2)
j=1 j=1

and w; = v¥; and wa = ¢; and derive the finite element equations from the weak
forms. The finite element equations should be in the form

0= Kjui+) K- F} (3a)
j=1 =1

0=> KJus+> K7vi—F] (3b)
j=1 J=1

Define the coefficients Kiljl, Kil]?, Kizjl, K%Q, F}, and F? in terms of the interpolation

functions, known data, and secondary variables.

Solution: Substitution of the finite element approximation (2) into the weak forms

/mb
Ta

n
= > Afyes — ¥ (4a)
j=1

dx I dx

dip; ( ) vj d(pj) - %’f] dz — Povi(za) — Potbi(zs)
=
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where
. 2 di; dip, e [T ' '
A= [ . Fe = / S de o+ Ptila) + Ptia) (40
and
dp; [ &
O—/ [ Pi (Z x)+cgpz (ZU gpj) qui] dx
Ta — 7j=1
— Qapi(Ta) — Qupi(wp)
- ZBU U Z (5a)
h
where e " dgy diy e
Bi=) ar dx 7
Ci; :/ cpip; dx (50)

xp,
Gi = / qpi dz + Qapi(a) + Qupi(ap)
Za
Comparing with the given expressions in (3a,b), it is clear that

Cij = K7 Fy = Filv Gi = Fi2 (6)

Kz;ljl — 0, Ae K12 Be K21 2,

5 5

New Problem 3.2: Develop the weighted-residual finite element model (not weak-
form finite element model) of the following pair of equations:

d>wy M d*M
 da? _E:O’ T 1 @

Assume the following approximations of the form

4 4
~ > ApV(@), M)~y Mgl (@), (2)
=1 i=1

The finite element equations should be in the form

0= Y KA+ KA — F} (3a)
j=1 J=1
m n
0=> KjAj+> KjAj—F (3b)
j=1 j=
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(a) Define the coefficients Kiljl, K}f, Kfjl, Kfjg, F!, and F? in terms of the
interpolation functions, known data, and secondary variables, and (b) comment on

the choice of the interpolation functions (what type, Lagrange or Hermite, and why).

Solution: The weighted-residual statements of Eqs. (1) are

Zb d2w0 M Zb d2M
0= /% U1 <_—d:r2 - E) dr, 0= /:Ca ) (——de —q|dx (4)

where (v1,v2) are the weight functions. A close examination of the above statements

indicate that v; ~ M and va ~ wy (i.e., vago must be work done; therefore, vy must be
(2)

like wp). Using approximations (1), we obtain the following Galerkin (i.e. v; ~ ¢;

(1)

;) finite element model:

0] [A]] f{A [/}

[[B@] [Dﬂ] {{Ae}}‘{ {0} } 5)
where (K] = [0, [K'2] = [A], [K2] = [B], [K?] = [C], {F'} = {f}, and
(F?} = {0})

and vy ~ ¢

2, (2)

e _ [ 1Y e (™ )
AU _/za Pi ) dil?, fz - v qy; dx
(1)
. To (g d2g0. . To () (2
Bij:/ P, )d—gfg dx, D¢j=/ o, )w§)dw (6)
Tq Ta

Note that Hermite cubic interpolations of both wg and M are implied by Eq. (4a,b),
( (2

and @il) = ;. The coefficient matrix in Eq. (5) is not symmetric.

New Problem 3.3: Suppose that the 1-D Lagrange cubic element with equally
spaced nodes has a source of f(x) = fox/h. Compute its contribution to node 2.

Solution: The contribution can be calculated using the equation

h
f5 = /0 F@)() do

Thus, first we need to determine 12 of the element. Since 12 must vanish at x = 0,
x =2h/3, and x = h, we can write

Us(a) = Cle = 0)( — 2w — h), ¥5(/3) = 1 gives C = =1
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Then

f5 =227—£/0hx2 (x—%) (z — h)dx

_27f0 h 4 9, 3 222)
—2h4/0<x 3hx +3h:p dx

_(27fo\ B° 3
_<2h4)@_4of°h

Problem 3.5: Derive the Lagrange cubic interpolation functions for a four-
node (one-dimensional) element (with equally spaced nodes) using the alternative
procedure based on interpolation properties (3.2.18a,b). Use the local coordinate
for simplicity.

Solution: The Lagrange interpolation function for node 1 of a cubic element with
equally-spaced nodes should be of the form, because it must vanish at & = h/3,
T = 2h/3 and T = h, where T is the local coordinate with the origin at node 1,

_ _ h,,_ 2h,_
(@) =l - )@ - )@ - ) (1)
where c; is an arbitrary constant, which can be determined by requiring that ; take
the value of unity at node 1, i.e., T = 0:

D) =11 = )

o= (- 2) (-2 (-3

Similarly, the Lagrange interpolation function for node 2 of a cubic element with
equally-spaced nodes should be of the form, because it must vanish at z = 0, z = 2h/3
and T = h, where 7 is the local coordinate with the origin at node 1,

Thus we have

2h

Ya(T) = co( — 0) (2 3

) —=h) (4)

The constant cp is determined from the condition that 12(h/3) = 1: co = % Thus,

we have . 9% (1 ) 2_;3) <1 ) %) 5

Other functions can be derived in a similar fashion.
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Problem 3.6: Evaluate the element matrices [K!1], [K12], and [K??] for the linear
interpolation of u(z) and v(z) in Problem 3.4.

Solution: By inspection and the results available in the book for linear interpolation
functions (p;(x) = ¥;x)), we have [K1!] = [0] and

R R S B

Problem 3.7: Evaluate the following coefficient matrices and source vector using
the linear Lagrange interpolation functions:

zp d¢fd ¢
Kfj:/za (a§ + afx) - dwjd:r

Tp
Mg = [+ dapsusda
Za

ﬁ—Lﬁﬁ+ﬁmwm

where af, af, c§, cf, f§, and f{ are constants.

Solution: We have

ag 1 -1 af (xq + xp 1 -1
R B Rt G | R
he | —1 1 he 2 -1 1
er . Cohe [2 1 cThe 4 2 1 1
=g [1 o)+ (w2 ] eneh )

1=} 2 (2} o 2)

Problem 3.8: (Heat transfer in a rod) The governing differential equation and
convection boundary condition are of the form:

d*0
- L 1
dm2+c9 0, 0<z< (1)
do
0(0) = Ty — T, [k— + ﬁe} —0 )
dx =L

where 0 = T — T, c = BP/(Ak), ( is the heat transfer coefficient, P is the perimeter,
A is the area of cross section, and k is the conductivity. For a mesh of two linear
elements (of equal length), give (a) the boundary conditions on the nodal variables
(primary as well as secondary variables) and (b) the final condensed finite element
equations for the unknowns (both primary and secondary nodal variables). Use the
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following data: Tp = 120° C, T, = 20° C, L = 0.25 m, ¢ = 256, § = 64, and k = 50
(with proper units).

Solution: For two linear elements, we have (h = L/2)

([ -1 0 2 10 Ui Q3
T A R D Us p =< Qi+ Q?
0 -1 1 01 2 Us Q3

with
Ur =100, Q3+ Q% =0, Q%z—%Ug

Hence, the condensed equations are

GIo el [ R ={ ")
Q%z(%+%)m+<—%+%)w

Problem 3.9: (Azial deformation of a bar) The governing differential equation is of
the form (EF and A are constant):

d [ du
dx

EA%}—O, O<z<lL (1)

For the minimum number of linear elements, give (a) the boundary conditions on the
nodal variables (primary as well as secondary variables) and (b) the final condensed
finite element equations for the unknowns.

5 . .
d= 4 in. dz2.5in. =2 in.
200 kips

Steel Aluminum « Steel 500 kips

12in— P sin P 10 in."‘

Steel, E, =30 x 10° psi
Aluminum, E, = 10 x 10 psi

Figure P3.9
Solution: For three linear elements, we have (Fy = F3 = Es and Fy = E)

B A _ EB.A 0 0

Ba B B E,A U1 o
__LsA] sA1] a1 __LaA2 1 2
B 1 +A ha ke OA Uy | Q% + Q%
_E 2 E 2 EsAs3 _E 3 -
0 s Eal i | ) Us Q3 + Q4
0 0 _%1 %& Us Q3
3 3
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with
4)? 2.5)2 2)?
hi =12, hy—=8. hy—10, A= "4 Ay = T2 A=)
4 4 4
Ur=0, Q+Qi=0, Q3+Qf=-200, Q=500
Hence, the condensed equations are
EsA EoA E.A
hll}jAzhzz EA_ hz};A EOA U2 0
— gt aflz Bl _Bfa| 0 = ¢ 200
0 _ EsAj EsAs Uy 500
hs hs
E A
Q1 =- 5 Uy
1

Problem 3.10: Re-solve the problem in Example 3.2.1 using the uniform mesh of
three linear finite elements.

Solution: The coefficient matrix is defined by

e o dwze d¢; e, e
KZ] - /xa (dl’ dl‘ wlw‘] d‘IB

fi=f " (—a?ygt do (1)

The element coefficient matrix (for any element) is given by Eq. (3.2.39), with
ae =1, cc = —1, he:%:

K9 =15 | 2)

52 —55]
18

—-55 92

The coefficients f; are evaluated as

Evaluating f; for each element, we obtain

Element 1 (h; = %, Tqa=0,7p = h1 = %)

3

— = -0.0092
55q = —0-00926

1
1 _ _——_— = — 1 =
fi= 91 0.003086, f,
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Element 2 (hy = 1, 2 = h1 = 1, 2y = h1 + hy = 2):

11 ) 17
= —op = 003395, ff =~ = —0.05247

Ll V)

f

Element3(h3:%, xa:h1+h2:%, xpy = h1+ hg + hg =1):

33 43
3 3
=——" =_0.101 = —— = —0.13272
fi 293 = 010185, f3 293 = 01827
The assembled set of equations are
52 —55 0 0 Uy 0.00308 Q1
1 | —55 104 —55 0 Up | __ ) 004321 QI+ Q32 @)
18| 0 =55 104 —55|)Us( ) 0.15432 Q5+ Q3
0 0 —55 521 (U, 0.13272 Q3

Since U; = 0 and Uy = 0, the condensed equations are obtained by omitting the first
and fourth row and column of the assembled equations. The condensed equations are

i 104 —55 U _  [0.04321 (5)
18 | =55 104 Us [ 0.15432
The solution is

Up = 0.0, Uy = —0.02999, Uz = —0.04257, Us = 0.0

The secondary variables can be computed using either the definition or from the
element equations. We have

du U, — U-

1 — ol ~ 1 2 _
(Q1)des = (a dfc)‘x_o - 0.08998
d Us — U

(Q3)de = (ad—Z) ~ 222 012771

=1
(QDequit = KLU + K1y Us — fi = 0.09164
(Q%)equil = K§1U3 + K§2U4 — f; = 0.26280 (6)

Problem 3.11: Solve the differential equation in Example 3.2.1 for the mixed

boundary conditions
du
0)=0 —
a0 =0, (%)

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.

=1

=1




44 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Use the uniform mesh of three linear elements. The exact solution is

cos(l —x) —sinz 4
—9 )
u(z) cos(1) +x

Solution: Use the calculations of Problem 3.10. The boundary conditions are U; = 0
and Q3 = 1. Hence, the condensed equations are obtained by omitting the first row

and column of the assembled equations
U, —0.04321
Us » = ¢ —0.15432
Uy 0.86728

Ui = 0.0, Uy = 0.4134, Us = 0.7958, Uy = 1.1420

—-55 104 —55
0 =55 52

1 104 =55 0
18

The solution is given by

The secondary variables can be computed using either the definition or from the
element equations. We have

U — U
(Q%)def:_ 2h !

(QV) equit = 2.8889U; — 3.0555U3 + 0.00308 = —1.2662

= —1.2402

Problem 3.12: Solve the differential equation in Example 3.2.1 for the natural (or
Neumann) boundary conditions
- (&)
x=0 dx

(@)
dx
Use the uniform mesh of three linear finite elements to solve the problem. Verify your
solution with the analytical solution

=0

z=1

cos(l —xz) +2cosx

2
—9
sin(1) .

u(zx) =

Solution: Use the results of Example 3.2.1. The boundary conditions are Q1 = —1
and Q3 = 0. The assembled matrix equations (4) of Problem 3.10 are solved for the
four nodal values

52 —55 0 0 U, 1.00308
1 |-55 104 —55 0 Us | 0.04321
18| 0 =55 104 =55 Us (] 0.15432

0 0 —55 52| Uy 0.13272
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We obtain (with the help of a computer)

U; =1.0280, Us = 1.3002, Us = 1.4447, Uy = 1.4821

Problem 3.13: Solve the problem described by the following equations

d?u
g =cosmr, 0<z <1 u(0)=0, u(l)=0

Use the uniform mesh of three linear elements to solve the problem and compare
against the exact solution

1
= — (cosmx + 2z — 1
u(z) 5 (cosmr + 22 — 1)

Solution: The main part of the problem is to compute the source vector for an
element. We have

Tp
i :/ cosmx 5 dx
Ta

Ty _
ffz/ COS T (xb x> dx
Tp he

s (e ane) |
= — |—sinmx — | — cosmx + —sin7x
he | m 2 T -
= L )
= ——sin — —— (cos — cos
—sin7z, T COS Xy — COS Mg
Tp _
ée:/ CoS T (x hl“a) dx
Taq e
= = (cos mxp — cosmx,) + = sin
The element equations are
3 =31 fus _ (£, [
-3 3] lug f5 Q5
with the element source terms are given as follows.
Element 1 (xq =0 and xp = h = 0.333333):
1 3
1_ _ _
fl = _W (COSﬂh — 1) = m = 0.15198
1 1. 3 V3
fa= 73 (cosmh — 1) + = sinh = ~5.3 + o = 0.12368
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Element 2 (x4 = h and xp = 2h):

o V3.3
fi= oy + == 0.02830
3 V3
2
=——+—=-0.02
f3 — + o 0.02830
Element 3 (x4 = 2h and xp = 3h = 1):
3 V3 3 3 3
=—— 4+ — = —0.12368 =——— =-0.15198
hi 2 + 272 » J2 272
The assembled set of equations are
3 -3 0 0 Uy 0.15198 Q3
-3 6 -3 O Uy | 0.15198 n 0
0 -3 6 —3 Us (] —0.15198 0
0 0 -3 3 Uy —0.15198 Q3

and the condensed equations are
6 —3|[U\ _ 0.15198
-3 6] Us) |—-0.15198

Uy =0.016887, Us = —0.016887

whose solution is

The exact solution is the same as the finite element solution at the nodes.

Problem 3.14: Solve the differential equation in Problem 3.13 using the mixed

boundary conditions
du
0)=0 —
w0 =0, (F)

Use the uniform mesh of three linear elements to solve the problem and compare
against the exact solution

=0

=1

u(z) = % (cosmx —1)

Solution: The boundary conditions require U3 = 0 and Q3 = 0. Hence, the

condensed equations are
U, 0.15198
Us ; =4¢ —0.15198
Uy —0.15198

6 -3 0
-3 6 -3
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whose solution is
Us = —0.05066, Us = —0.15198, Us = —0.20264

Again, the exact solution is the same as the finite element solution at the nodes.

Problem 3.15: Solve the differential equation in Problem 3.13 using the Neumann

boundary conditions
( du > < du >
dz ) |z—o ’ dz

Use the uniform mesh of three linear elements to solve the problem and compare
against the exact solution

=0

z=1

COS T

u(zx) = —

Solution: For this case, the boundary conditions require @ = 0 and Q3 = 0. SInce
none of the Uy are specified, the condensed equations are the same as the assembled
equations. However, the coefficient matrix of the assembled equations is singular and
the solution can be determined by specifying one of the U;. Let U; = 1/7% (dictated
by the known exact solution) and obtain the condensed equations

6 -3 O Us 0.15198 + 0.30396
-3 6 -3 Us » = —0.15198

0 -3 3 Uy —0.15198

Hence, the solution is
U; =0.10132, U; =0.05066, Us = —0.05066, Us = —0.10132

which coincides with the exact solution at the nodes.

If we choose Uy = 0, the solution we obtain is the same as that of Problem 3.14,
and both problems have the same solution gradient, du/dz, as indicated by the exact
solutions of the two problems.
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Chapter 4

SECOND-ORDER
DIFFERENTIAL EQUATIONS
IN ONE DIMENSION:
APPLICATIONS

Discrete Elements

Problem 4.1: Consider the system of linear elastic springs shown in Fig. P4.1.
Assemble the element equations to obtain the force-displacement relations for the
entire system. Use the boundary conditions to write the condensed equations for the
unknown displacements and forces.

o @ RN
k, =80 Ib/in RN

ks= 120 Ib/in

2 =2 1001bs. |3 | AANA
ky = 60 Ib/in _@\/VV\,_ ® A

ks = 180 Ib/in

ks = 50 Ib/in . — 5
’ @.\ - 80 Ibs.
N k, =150 Ib/in N
Fig. P4.1
Solution: The assembled matrix is
1 2 3 4 5
k1 —k1 0 0 011
ki+ ko + ks + ky —ko — k3 —ky 0 2
[K] = ko + ks + k5 —ks 0 3
kg + ks +ke —kg| 4
symm. kel
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60 —60 0 0 0

340 —180 —150 0

= 300 —270 0
270 —180
symm. 180

The condensed equations for the unknown primary variables are

Us 100
U3 p=4¢ 0
Uy 80

and unknown secondary variables are Q1 = —k;Us and QS = —kgUs.

—-180 300 -270

340 —180 —150
—-150 =270 270

Problem 4.2: Repeat Problem 4.1 for the system of linear springs shown in Fig.
P4.2.

o Y ) AR

ks

Fig. P4.2

Solution: The assembled stiffness matrix is

k1 —k1 0 0 0
—k1 ki+ke+ks+kse —k3 —k2 —k4
[K] = 0 —ks ks + ks —ks 0
0 —ko —ks kot ks+ke —ke
0 —ky 0 —kg ks + kg

The boundary conditions are: U; = 0, Q$ + Q3 = P, and the equilibrium requires
that the sums of all QQ’s be zero. Hence, the condensed set of equations is

k14 ko + ks + Ky —k3 —ko —ky Us 0
—k3 ks + ks —ks 0 Us| _J O
—ko —ks  ko+ks+ke —ke U )0
—ky 0 —kg ks + kg Us P
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Problem 4.3: Consider the direct current electric network shown in Fig. P4.3.
We wish to determine the voltages V' and currents I in the network using the finite
element method. Set up the algebraic equations (i.e. condensed equations) for the
unknown voltages and currents.

R=30Q 2 R=35Q

ol V,=10volts

0 6 Vg=200 volts
4R=150 ° R=50Q

Fig. P4.3
Solution: The assembled coefficient matrix is
- 1 1 -
T AT T g .
mowrmEIn o, I -
(K] = X X %JFTFE 1_51 _? X
X 01 1 5 +11_5 L1 P 01
0 ~10 —7 5 wtitits 3
L 0 0 0 0 —3 : |
The condensed equations are
1,1 1 1 1
srtamte | op o 7 NS
B owhis s e
0 - T iz
1 ? L T R I V4 200
~10 —7 “i5 o tTTiTS 5 5
i =V Vs — Ve
n=2-"2 g _%5"%
35 5

Problem 4.4: Repeat Problem 4.3 for the direct current electric network shown in
Fig. P4.4.
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R=5Q & R=0Q

8
R=20Q
: 3
R=5Q
1 7
Q 4R=500
V,;=110 volts V; =40 volts
Fig. P4.4
Solution: The assembled coefficient matrix is
- 1 1 1
5 +12_0 1 _15 1 01 -2 O1
5 5Ts5tw T 0 —3
O1 % %5 1 (1) 1 O1
K] = - 01 0 %+1_01+50 1 _1E 1
0 —5 0 10 571010
0 0 —% 01 —16
.0 0 0 il 0
0 0
0 0
1
~1 01
01 —=5
1 _11_0 1 01
R R
~15 5 T 50
The condensed equations are
9 1 1
I O T N i
S i 107 O1 K Vs 110 0 40
01 0 @ —21—0 01 VZL - 20 + 50
5 01 10 31 1 _1ﬁ 1 x‘j? ‘EJ
0 -5 0 -5 5+t 6 15
Vi—-Vo V1=V, Vi=Ve Vi—=Vy
I — I =
! 5 "0 0 T 5 50
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Problem 4.5: Write the condensed equations for the unknown pressures and flows
(use the minimum number of elements) for the hydraulic pipe network shown in Fig.
P4.5.

R1:2a R4=2a

@ given
a constant

Fig. P4.5

Solution: The assembled system of equations for the pipe network are given by

ek o & |(n
55 Gets:ts)  —(3+s) 0 Py
0 ~(ats) Gatsgts) Py
~%a 0 ~55 (55 +5q) ] \ 1
Qe
Q%+Q%+Q}1
Q3+ Q3 + Qf
Q3+ Q3

The boundary conditions are: Q1 + Q3 = @ , Py = P, and equilibrium requires that
the sums of @)’s be zero:

QI+ 4+ Q3 =0, Qi+Q3+Qi=0

The condensed equations are obtained by condensing variable P, out:

([ 4 =3 0](hA Q w-P
SERIHRBR I
Py 0 > P

— -3 8 =5
6al o 5 s
where P = 0. The solution of these equations is

39 12 15
1 14Qaa 2 7Qaa 3 14Qa
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Problem 4.6: Consider the hydraulic pipe network (the flow is assumed to be
laminar) shown in Fig. P4.6. Write the condensed equations for the unknown
pressures and flows (use the minimum number of elements.)

. . 128uh
Q=5x10"m3s Pipe resistance, R, = —”d%e
e
\1 Ple Pze
$5—> Q;

Fig. P4.6

Solution: The assembled equations are

- 1 1 -
R_ﬁ 1 _f{_l 1 O1 01 0 0 Py
T mTERTR TR R 01 0 Py
0 T mtwm 0 TR 0 1 )P
! _R_S Ol R_3+1R_5 1 _lR_5 1 01 54
0 0 T "R O mtmTR R |p
L 0 0 0 0 — 7 o0
5x 1074
0
B 0
- 0
0
5x 10~%
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In order to eliminate the “rigid body” mode, we must set P = 0 and solve the
condensed equations obtained by deleting the last row and column of the assembled
system.

Problem 4.7: Determine the maximum shear stresses in the solid steel (G5 = 12
msi) and aluminum (G, = 4 msi) shafts shown in Fig. P4.7.

d<15in T =200 Ib.ft d=1in

AN  Steel (¢B [ Aluninum |

25ft 1ft 2 ft

Fig. P4.7

Solution: The assembled system of equations for the three-element mesh is

ki —hk 0 07 (6 T}

—k1 k14 ko —ko 0 0 B T21 + T12
0 —ko ko + ks —k3 03 T22 + T13
0 0 ks ks ) Lo T3

where k; are the shear stiffnesses k; = G;J;/h; and hy = 30 in, he = 12 in., and
hs = 24 in. We have

_ em(15)t 1 .

k1 = (12 x 10%) TR 198,804 1b-in
1.5)* 1

~ 2 x 1092 L ez 010 1b

ky = (12 x 10°) 32 13 97,010 Ib-in
™ 1

ks = (4 x 10%)— = 16, 362 1b-i
3= X105 5513 ’ m

The boundary conditions are
01 =0, Ty +T2=200x121b-in, T3+ T2 =0, 6,=0

The condensed equations are obtained by deleting the first equation and the last
equation of the assembled system

103 695.814 —497.010} {92 } . {2,400}

—497.010  513.372| 03 0
Solving for the rotations 2 and 63, we obtain

02 = 0.011181 rad, 63 = 0.010825 rad
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The torques at the fixed ends are calculated from the first and last equations of the
assembled system

Ty =T! = k16 = —(198,804)(0.011181) = —2222.83 Ib-in
Tp = Ty = —ksf3 = —(16,362)(0.010825) = —177.12 1b-in

The maximum stresses in the steel and aluminum shafts are

 Tur, | 2222.83 x 0.75

_ — 5.591 psi
Ts =T, 0.497 ek
Tpre 177.12% 05 ,

a — = — 2
Ta =77 0.0982 902 psi

Problem 4.8: A steel (G5 = 77 GPa) shaft and an aluminum (G, = 27 GPa) tube
are connected to a fixed support and to a rigid disk, as shown in Fig. P4.8. If the
torque applied at the end is equal to T' = 6,325 N-m, determine the shear stresses in
the steel shaft and aluminum tube.

8 mmiAluminum tube

76 mE[ ] "50 mm | Steel shaft

l¢——— 500 mm ———»

AN

Fig. P4.8

Solution: The assembled system of equations for the two-element mesh is

[ k1 + ko —(k1+k2)}{91}:{Tf+Tf}
— (k1 + k2) k1 + ko ) T21 +T22

where k; are the shear stiffnesses k; = G;J;/h; and h; = hy = 500 x 1073 m. We have

7 ((76)* — (60)*) 1012 1
32 500 x 103

7(50)% x 10712 1
32 500 x 10-3

kp = (27 x 10%) = 108,161 N-m

ko = (77 x 10%) = 94,493 N-m

The boundary conditions are
61 =0, Ty +T%=6,325 N-m
The condensed equations are

(108,161 + 94,493) 6 = 6,325; Ty, = — (108, 161 + 94, 493) 6, = —6,325
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Solving for the rotation #s of the right end relative to the left end, we obtain
0> = 0.0312 rad

The stresses in the steel and aluminum shafts are

Try 6,325 x 25 x 1073
T8 T T T 613,592 x 1012
Tre 6,325 x 38 x 1073
Jo 2,002,979 x 1012

= 257.7 MPa

=120 MPa

Ta =

Heat Transfer

New Problem 4.1: One-dimensional heat conduction/convection:

d d
——<a—u)+cu—q for 0<zx<L
dx

d
EBC: specify u, NBC: specify nmad—u + B(u—us) = Q
T
where n, = —1 at x =z, and n, = 1 at x = xp.

Solution: The three steps for the construction of weak form over an element are

Step 1: 0:/ bw {—i (ad—u> +cu—q} dx
Ta dz \ dzx

Step 2: 0= / ' (aj—w@ + cwu — wq) — w(zy) {—ad—u}
T

Za dx dx Ta
%o / dw du
= /% (a%% + cwu — wq> —w(za) [Q1 — Blu — uso)l,,

— w(ap) [Q2 — Bu — tso)],,

Step 3: 0:/

Za

o ( dw du i
(a%% + cwu) dx — /za wqdr — w(Ta)Q1 — w(7p)Q2

+w(a)Br, [u(za) — ul| +w(ws)Br [ulwy) — ull]
Substituting the approximation
n
u(w) =Y u§ys(x)
j=1
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for v and ; for w, we obtain

- dii dip;
+ ey | do + Bri(va)Vj(wa) + Brpi(ws)Y)
0= 3 [ (oG b evee) o Bty (an) + i)

- /:b wq dr — ﬂLugo%(ﬂ?a) - 5Rufo¢i(irb) - %’(%)Ql - %(%)QQ (4@)

0="> Kfju§—Ff (4b)
j=1

where

2 [ dif; d
Kg = /wa ( dw dl/h + qmbj) dz + Brii(xa);(xa) + Bribi(zp) V) (2p)
- /% wqdz + Bruli(za) + Brub vi(xh) + ¥i(2a)Q1 + i) Q2 (4¢)

For example, for element-wise constant material and geometric properties and
linear interpolation, we obtain

(12 e [ D)
STARTAREEY

Problem 4.9: Consider heat transfer in a plane wall of total thickness L. The
left surface is maintained at temperature Ty and the right surface is exposed to
ambient temperature T, with heat transfer coeflicient 3. Determine the temperature
distribution in the wall and heat input at the left surface of the wall for the following
data: L =0.1m, k = 0.01 W/(m °C), 8 = 25 W/(m? “C), Ty = 50°C, and T, = 5°C.
Solve for nodal temperatures and the heat at the left wall using (a) two linear finite
elements and (b) one quadratic element.

Solution: (a) For a mesh of two linear finite elements (h = h; = hy = L/2), the
assembled system of equations is

L[ -1 0 (T Q1
P e e
0 -1 1 T3 Q2

The boundary conditions are

Ti=Typ, Q+Q7i=0, Q3+8(T3—Tx)=0
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The condensed equations are
[ 0.4 —0.2] {Tg} _ { 10}
—0.2 25.2 T3 125
Solving for the nodal temperatures To and T3, we obtain
Ty =27.59° C, T3=5.18°C

The heat at the left end is calculated from the first equation of the assembled system

k
Q1 = 5 (To—T3) = 448 W

(a) For a mesh of one quadratic finite element (h = L), the system of equations
2 7 -8 171 (T Qi
1
Tr ¢ =4 @3
13 Q3

— | -8 16 -8
3h
Ti=Ty Q3=0, Q3+ 3(Ts—Tw)=0

is

1 -8 7

The boundary conditions are

The condensed equations are

0.53333 —0.26667| [To | [ 13.3333
—0.26667 25.23333 T3 | | 126.6667

Solving for the nodal temperatures 75 and T3, we obtain
Ty =27.66° C, T3=15.31°C

The heat at the left end is calculated from the first equation of the system

Q=X

1= 30 (TTo — 8To + T3) = 44T W

Problem 4.10: An insulating wall is constructed of three homogeneous layers with
conductivities k1, ko, and k3 in intimate contact (see Fig. P4.10). Under steady-
state conditions, the temperatures of the media in contact at the left and right
surfaces of the wall are at ambient temperatures of T2 and T2, respectively, and film
coefficients B, and (g, respectively. Determine the temperatures when the ambient
temperatures Ty and 75 and the (surface) are known. Assume that there is no internal
heat generation and that the heat flow is one-dimensional (07"/0y = 0).
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Air at temperature, T =35°C

Film coefficient, Bz = 15 W/(m?. °K)
k,= 50 W/(m. °C)
k,= 30 W/(m. °C)
ky= 70 W/(m. °C)

TL=100°C
A= 10 W/(m2. °K)

h,=50 mm
h,= 35 mm
hy= 25 mm
Fig. P4.10
Solution: The assembled set of equations are:
k k
B0 )y (L
wokk koo el fore
0 -2 24 21U Q3 +3Q1
0 0 ko k| Uy Q3
3 3

The values of k. and h are: k1 = 50, ko = 30, k3 = 70, h; = 0.05, hy = 0.035, and
hs = 0.025. The boundary conditions are

Qt =0 (Ui —TE), Qb+QI=0, Q3+Qi=0, Qf =8 (Us—TE)

where B, = 10, TL = 100, 8z = 15 and T2 = 35. Thus we have

k k

wt e mw 0 0 100 BLTL
0 “hs  hs Ths s Us 0
0 0 —ks kg Uy BrTS

The unknown nodal temperatures can be determined from the above equations.
Substituting all the numerical values, we obtain

1.010 —-1.000  0.000 0.000 Ur 1,000
103 —1.000 1.857 —0.857  0.000 Uz | _ 0

0.000 —-0.857  3.657 —2.800 Us 0

0.000  0.000 —2.800 2.815 Us 525

and the solution is U; = 61.582, Us = 61.198°C, Us = 60.749°C, and Uy = 60.612°C.
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New Problem 4.2: Determine the nodal temperature field in a composite wall
(see Figure P4.10 but with different data). Use the minimum number of linear finite
elements to solve the problem. What is the heat flux at node 1?7 The governing
differential equation and convection boundary condition are of the form:

_ 4 (k£> o, k%Jr/J’(T—TOO):O

Air at temperature, T =35°C
Film coefficient, Bz = 15 W/(m?. °K)
k,= 50 W/(m. °C)
k,= 30 W/(m. °C)
ky= 70 W/(m. °C)
h,=50 mm
h,= 35 mm
h;=25 mm

T,=100°C

Solution: From the figure it is clear that we should use three linear elements. The
element equation is given by

E 1 =17 [u§ _ QS

he [=1 1] ug Q3
Note that there is no internal heat generation (f = 0). The assembled equations of
the three-element mesh are given by

k _k
"ok [:c ! U1 Qi
ki kL ke _ko 1 2
h]_ h]_ + ho h2 0 U2 — QZ + Ql
N A R T A
0 0 _ kg ks Uy Q3
ha ha

The values of k. and h. are given as follows:
k1 =50, ks =30, k3 =70, hy =5, hog = 3.5, hg =2.5
The boundary conditions are
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where 8 = 15 and T, = 35. Thus we have

i 0 0 100 Q!
_% % —; % k _%k (L 52 = 0
0 _ko ka y k3 _ ks 0
0 02 2_—;_ ’ k3 +3ﬁ Ui BT
hs hs

The unknown nodal temperatures can be determined from the condensed equations

k k k
At +kh—§ ) ——ik (L Uy 100 (f2)
“hs —”;h% k—h% Us ¢ = 0
0 —g5 ki) (U BT

Substituting all the numerical values, we obtain

10 +8.571  —8.571 0 Us 1000
—-8.571  8.571+28  —28 Us » = 0
0 —28 28415 Us 525

and the solution is Us = 79.63°C, Uz = 55.86°C, and Uy = 48.58°C. The heat at node
Lis given by [(Q%)def = (Q%)equil]

Q1 = (100 — Uz) 10 = 203.7W/cm”

New Problem 4.3: The energy equation for heat conduction in a circular disc of
radius R is given by (an azisymmetric, one-dimensional problem)

1d [/ df
and the boundary conditions are
do do
r%—Oatr—O and 7‘%—1—9—1&““—1 (2)

where 0 is the non-dimensional temperature, r is the radial coordinate, and R = 1
is the radius of the disc. Use two linear finite elements of equal length to determine
the unknown temperatures. It is sufficient to give the condensed equations for the
unknown nodal temperatures.

Solution: The finite element model of the equation is given by

(KO0 = {7} +{Q°} (3)
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where

e Ty dwlﬁ e_/rb .
K —/Ta T dr, fi= . 2r; dr (4)

For the choice of linear interpolation, we note that (see the formula sheet for the
interpolation functions)

/”brdr:ﬁ?—ri_(rbwa)he dn 1 dyy 1

2 2 " dr he dr  he
he 7
fi=2 (ra—i-r)(l—h—) dr
2 he B2\ he
”(“’h‘f* 2 ‘Ta?‘?) =7 Brathe)

Hence, we have (for any element)

e TotTe [ 1 —1 ey _ he [ 3rq+he
K== {—1 1]’ {f}_s{sra+2he} 5)

Thus element 1 and 2 coefficient matrices are given by (h = 1/2)

KO- 55 0s) u=5{00)
[K@)]_[_}:g —1?} {f@)}_é{g:g} (6)

The assembled equations are given by

Uh Qi 1 0.5
{UQ}Z{Q5+Q%}+—{1.0+2.0} (7)
Us Q3 6 2.5

The boundary conditions are: Q1 = 0, Q3 + @ = 0, and Q3 + U3 = 1. The final
equations for the unknown temperatures (i.e., the condensed equations) are

Ui 1 0.5
Uy by ==1¢30 (8)
{ Us } 0 { 8.5 }

which is to be solved for the three temperatures.

-0.5 05415 -1.5

0.5 -0.5 0
0 —1.5 1.5

-0.5 20 -1.5

05 =05 0
0 -1.5 2.5
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New Problem 4.4: Consider the differential equation (corresponds to heat transfer
in a rod, in nondimensional form)

d?u
——— +400u=0 for 0<xz <L =0.05
dx?

with the boundary conditions

du
w(0) = 300, (% + 2u> ez = 0

Use two linear finite elements to determine the temperatures at = L/2 and = = L.
You must at least set up the final condensed equations for the nodal unknowns.

Solution: For a mesh of two linear elements (hy = hg = h = L/2 = 0.025 m), the

assembled equations are
U1 Q1
Uy p =4 Q3+ Q3
Us Q3

1 -1 0 2 10
A R AL
0 —1 1 0 1 2
The boundary conditions require U; = 300, Q3+ Q% = 0, and Q3 = —2U3. Hence,

we have
40 —40 0 wof2 10 Up Q3
—40 80 —40|+— 1|1 4 1 Uy p = 0
0 —40 40 01 2 Us —2U3

and the condensed equations are

[ 86.667  —38.333 } {UQ}

38.333 x 300
—38.333 43.333+2| | Us

0

Problem 4.11: Rectangular fins are used to remove heat from the surface of a body
by conduction along the fins and convection from the surface of the fins into the
surroundings. The fins are 100 mm long, 5 mm wide and 1 mm thick, and made
of aluminum with thermal conductivity & = 170 W/(m.K). The natural convection
heat transfer coefficient associated with the surrounding air is 3 = 35 W/(m? K)
and the ambient temperature is T, = 20° C. Assuming that the heat transfer is
one dimensional along the length of the fins and that the heat transfer in each fin is
independent of the others, determine the temperature distribution along the fins, and
the heat removed from each fin by convection. Use (a) four linear elements, and (b)
two quadratic elements. Set up only the condensed equations for the unknown nodal
temperatures and heats.
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Solution: This problem differs from that of Example 4.3.2 only in the data specified
(only the values of k and ( differ). The data of the problem is

k=170 W/m-°C, =35 W/m?-°C, Tp=100°C, Ts = 20°C
L=100 mm, ¢t=1mm, b=>5mm
(a) For the mesh of four linear elements, we have

EA 170 x5 x 107°

————— =0.034
h 25 x 103 0.03
-3 -3
ﬂgh_35><12><106><25><10 — 0.00175

BPTsh =35 x 12 x 1073 x 20 x 25 x 1072 = 0.21

BATs =35 x5 x 107% x 20 = 0.0035
A 6 x5

=05 = Tax2s

The condensed equations for the unknown nodal temperatures become

0.7500 —0.3225  0.0000  0.0000 Us 3.4350
10~ —-0.3225  0.7500 —-0.3225  0.0000 Us | _ J 0.2100
0.0000 —-0.3225  0.7500 —0.3225 Ua 0.2100
0.0000  0.0000 -—0.3225  0.3768 Us 0.1085

The solution of these equations is (in °C)
Up =100.0, Uz =66.573, Us=48.310, Uz = 39.264, Us = 36.490
The heat input at node 1 (the total heat loss from the surface of the fin) is

Q1 =1.1365 W

(b) The condensed equations are (h = 0.05 m)

16 -8 0 0 16 2 0 0 71\ (U
kA|-8 14 -8 1| fBPhl2 8 2 -1 Us
3| 0 -8 16 -8 30 |0 2 16 2 Uy
0 1 -8 7 0 -1 2 4+al) \Us

B 0 BPTsh | 2

B 0 % 4

BAT, 1
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where a = 3A/(8Ph/30) = 30A/Ph. We have

1.0187 —-0.4393  0.0000  0.0000 Us 4.6733
10-1 —0.4393  0.8493 —-0.4393  0.0497 Us | _ ) —0.3567
0.0000 —0.4393 1.0187 —0.4393 Us 0.2800
0.0000  0.0497 —-0.4393  0.4264 Us 0.0735

The solution of these equations is (in °C)
Uy =100.0, Uz =66.939, Us =48.836, Us = 39.775, Us = 37.015

The total heat loss by convection through the fin surface is calculated from
(BPh =0.021)

Qtotal = Q(l) + Q(Q)
0021 [(100—!—4 X 666939+48.836 _20)
48. 4 . .01
+< 8.836 + ><329775+370 5 _20>}

=14754 W

The finite element solutions obtained with various meshes of linear and quadratic
finite elements are compared in Table P4.11. The convergence of the finite element
solutions with A (refined mesh of the same order element) and p (mesh of higher-order
element) refinements is clear from the results.

Table P4.11: Comparison of the finite element solutions of Problem 4.11.

zt No. of linear elements No. of quadratic elements

n=2 n=4 n=2_§8 n=1 n=2 n=4
0.125 - - 81.045 - - 81.103
0.250 - 66.573 66.864 - 66.939 66.960
0.375 - - 56.348 - - 56.460
0.500 46.692 48.310 48.675 48.676 48.836 48.797
0.625 - - 43.246 - - 43.368
0.750 - 39.264 39.634 - 39.775 39.757
0.875 - - 37.557 - - 37.678
1.000 34.906 36.490 36.854 37.769 37.015 36.976
1% = z/L.
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Problem 4.12: Find the heat transfer per unit area through the composite wall
shown in Fig. P4.12. Assume one-dimensional heat flow.

hy h, hs
===y k=150 W/(m. °C)
ST k= 30 Wi, °C)
K L k= 70 WY(m. °C)
; S k=50 Wi(m. °C)
| nezm
Do hersw
| hesom
— 2700 e —fRe
Tourface= 370°C ks ‘%‘ k, ﬁ Tourface= 66 C
e
[t et oo ]
[ T T T
—
kg

Fig. P4.12

Solution: The assembled system of equations is

Sy

B 0 0

>

_Ilc bRtk ke k U1 Q1

“h o mtmTE Tmom 0 || ) Qi+Qi+Q3
0 -k_k Bi&kik kiU Q3 +Q;+Qi
0 0 _}% }% Uy Q5

with

kl -3 I{:Q -3 k3 -3 k4 -3
— =6x10 — =0.4x10 — =0.9333 x 10 — =10
o Ty " o r

The boundary conditions are
T1=370°C, Ty=66°C, Q3+Q@>+Q3=0, Q2+Q3+Q}=0
Hence, the condensed equations are
7.3333 —1.3333] {U2} _ {370,%} _ {2,220}
—1.3333 23333 | Us 6642 66
whose solution is Uy = 343.57° C and Us = 224.61° C. The heats at left and right

walls, respectively, are

k
Q! = " (U, — Uy) = 158.6 W, Q4= h_j, (Uy — Us) = —158.6 W
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Problem 4.13: A steel rod of diameter D = 2 c¢m, length L. =5 cm, and thermal
conductivity k = 50 W/(m -°C) is exposed to ambient air at T, = 20°C with a heat
transfer coefficient 3 = 100 W/(m?° C). If the left end of the rod is maintained at
temperature Ty = 320°C, determine the temperatures at distances 25 mm and 50
mm from the left end, and the heat at the left end. The governing equation of the
problem is

d%0 9

——+m0=0 for 0<zx<lL
dx?

where 0 = T —T,, T is the temperature, and m? = 3P/Ak. The boundary conditions

are d0
0(0) = T(0) — T = 300°C, (% + ée)

’ =0

=L

Use (a) two linear elements and (b) one quadratic element to solve the problem by
the finite element method. Compare the finite element nodal temperatures against
the exact values.

Solution: (a) For the mesh of two linear elements, the condensed equations are
(U1 = 300, Q3 = =(8/k)Us = —2U3),

86.667 —38.333 Uz _ [11,500
—38.333 43.3334+2.0] | UsJ | 1,800

The solution for the primary and secondary variables is given by
Uy = 300, Up = 211.97, Us = 179.24; (Q1)aes = 3521.1, (Q1)equir = 4,874.48
(b) For one quadratic element mesh we have (U; = 300, Q3 = —(8/k)Us = —2U3),

117.33 —52.00 Uz | _ [ 15,600
—52.00 49.3334+2.0] \Us [ 0

and the solution is given by Uy = 300, Uy = 213.07, Us = 180.77, (Q1)aes = 4569.9.
The exact solution for the second set of boundary conditions is

cosh N(L —x) + (8/Nk)sinh N(L — z)

0(z) = 0(0) cosh NL + (3/Nk)sinh NL

At the nodes we have 0(0.025) = 213.07, 6(0.05) = 180.77, Q1 = —(df/dx)o = 4569.9.

Problem 4.14: Find the temperature distribution in the tapered fin shown in Fig.
P4.14. Assume that the temperature at the root of the fin is 250°F, the conductivity
k = 120 Btu/(h ft °F), and the film coefficient 3 = 15 Btu/(h ft2°F), and use
three linear elements. The ambient temperature at the top and bottom of the fin is
To = 75°F.
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250° F
0.25in.

Fig. P4.14

Solution: The governing differential equation for this problem can be derived by
making the following assumptions: The fin thickness at the base x = L = 3 is small
enough so that the temperature is uniform in the transverse direction (i.e., y-direction)
to the fin; the heat transfer from the fin edges (see the cross hatched part) may be
neglected in comparison to that from the top surface of the fin (into the plane of the
paper); and there is no temperature variation along the z-direction (into the plane
of the paper). Then the equation governing the one—dimensional heat transfer in the
fin is given by

d ar

dx <x dx
where N2 = (8/k)[1 + (L/Y)?)°®. The boundary conditions are: (xdT/dx)(0) = 0
and T(L) = Tp. Here we have L=3 in., Y=0.125 in., k= 120 BTu/(hr.ft.°F), and
B=15 BTu/(hr.ft2.°F). Hence, N? = (15/120)+/1 + (3/0.125)% = 3.0026. Therefore,

we have o s
K¢ — L2 N2y,
K /ra (ZC dr dz + Ny ) du

>+N2(T—Too):0

e __ o 2 .
fi= N T ot); dx

The element coeflicient matrix needed here is already evaluated and recorded in
Eq.(3.2.35), page 122 (set @ = 1 and ¢ = N?). The assembled coefficient matrix
for three-element mesh is

1 -1 0 0 2 1 0 0
1|/-1 4 -3 0| N?h|1 410
Kl=351 0 3 s 5|7 % lo1 41
0 0 -5 5 00 1 2

The assembled source vector is given by

N2T h
{F}=—=

— NN
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The assembed equations of the three linear element mesh (he = 1/12 ft., T, = 75)
are

0.58341  —0.45830 0 0 Uy
—0.45830  2.1668  —1.4583 0 Us
0 —1.4583  4.1668 —2.4583 | | Us
0 0 —2.4583  2.5834 U,
9.3831 Q1
_J 18766 { QI+ Q3
~ ) 18.766 Q3+ Q3
9.3831 Q3

Using the boundary conditions, Q1 = 0 and Uy = 250, we obtain the solution,

Ty (tip) = 166.23°F, Ty = 191.14°F, Ty = 218.89°F, (Q3)ae; = 93.329BTU /hr.

Problem 4.15: Consider steady heat conduction in a wire of circular cross-section
with an electrical heat source. Suppose that the radius of the wire is Ry, its electrical
conductivity is K, (27!/cm), and it is carrying an electric current density of I (A/cm
). During the transmission of an electric current, some of the electrical energy is
converted into thermal energy. The rate of heat production per unit volume is given
by g = I?/K.. Assume that the temperature rise in the wire is sufficiently small
that the dependence of the thermal or electric conductivity on temperature can be
neglected. The governing equations of the problem are

1d dT dT
T <7’k dr> ge for 0<r <Ry, (rk’ dr>

=0, T(Ry)=Tp
r=0
Determine the distribution of temperature in the wire using (a) two linear elements
and (b) one quadratic element, and compare the finite element solution at eight equal
intervals with the exact solution

T(r) =Ty + qﬁg l1 - (RLO)T

Also, determine the heat flow Q = —27wRok(dT/dr)|gr, at the surface using (i) the
temperature field and (ii) the balance equations.

Solution: The finite element model is the same as in Eqs. (3.4.5a) and (3.4.50) on
page 148 with @ = kr and f = q. = I?/K.. The element equations are given by
(3.4.7) and (3.4.8) for linear and quadratic elements, respectively.

(a) The assembled equations of the mesh of two linear elements is (h = 0.5Ry)

1.0 -1.0 07 (U rquh? 1.0 Q!
k| —-1.0 1.0+3.0 -30|<Us = g’ 2.0+4.0 p +< Q3+ Q?
0 —-3.0 3.0 Us 5.0 Q2
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The boundary conditions are
Q=0 @+Qi=0, Us=T
Hence, the condensed equations are
k[ 1.0 —1.0} {Ul}_ qeRg{ 1.0}
—-1.0 4.0 Us 12 1 6.0+ aTp

where o = 36k/(g.R2). Solving for the nodal values of the temperature, we obtain

U, = 18k + Ty, Us = 30k + To
The heat at node 3 is
2
Q3 = 3mk(Us — Uz) — —57“11;}20 = —7q.Rj

(b) The finite equations of the mesh of one quadratic element is (h = Rp)

3.0 —4.0 1.07 (Uh 2 (0.0 1
k R 1
% 4.0 160 —120|4 U b = ”qg 0220%+{Q}
1.0 —12.0 11.0 Us 1.0 i

The boundary conditions are
Q1=0, @3=0, Us=Tp

Hence, the condensed equations are

3.0 —4.0 Ui\ _ 2 —aTp
K [—4.0 16.0 ] { Uy } = 4eflo { 2.0+ 8Ty }
where o = k/(qeR3) and 8 = 12k/(q.R3). Solving for the nodal values of the
temperature, we obtain

de R(2) _ 3qe R%

Ui = 16k

+Th

which coicides with the exact solution at the nodes. The heat at node 3 is

k R2
Qt = Uy — 120, + 11U3) — meeFo

3 = —7rqeR(2J

which also coincides with the exact value.
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Problem 4.16: Consider a nuclear fuel element of spherical form, consisting of
a sphere of “fissionable” material surrounded by a spherical shell of aluminum
“cladding” as shown in Fig. P4.16. Nuclear fission is a source of thermal energy,
which varies non-uniformly from the center of the sphere to the interface of the fuel
element and the cladding. We wish to determine the temperature distribution in the
nuclear fuel element and the aluminum cladding.

The governing equations for the two regions are the same, with the exception
that there is no heat source term for the aluminum cladding. We have

1d dT
- (Tled—l):q for 0<r<Rp
r

dr

where subscripts 1 and 2 refer to the nuclear fuel element and cladding, respectively.
The heat generation in the nuclear fuel element is assumed to be of the form

1d dT:
— 2 (r2k52—2> =0 for Rp <r<Rg

o\ 2
f— 1 —
Q1 = qo +C(RF)

where qg and c are constants depending on the nuclear material. The boundary
conditions are

kr2@20 at r=0

dr
Ty=T» at r=Rp, and To =Ty at r = R¢

Aluminum
cladding

Fissionable
material

Coolant

Fig. P4.16
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(a) Develop the finite element model, (b) give the form of the assembled equations,
and (c) indicate the specified primary and secondary variables at the nodes. Use
two linear elements to determine the finite element solution for the temperature
distribution, and compare the nodal temperatures with the exact solution

ot ()] 2 (2
Ty —Ty = 1—(— —cl1-(—
p 6k1{[ rr) | "0 " \Er

2
L (1 _ ﬁ)

3ko 5} Re

qoR% 3 (RF RF)

Ty — Ty = 14 2¢) (2£ - 2E
2T =5 059 (7~ &g

Solution: This problem is designed to test the student’s understanding of the finite
element modeling of dissimilar material problems.

(a) The element coefficients are,

K¢ = (27r)2/ " W%% dr

Tp
FE = (2r)? / qer?i dr + QS

a

The assembled equations are of the form,

K K, 0 U Q1
K3 K+ Kf K Uy p =< Q3+ Q3
0 K3, K3, ] \Us Q3

The specified primary and secondary variables are:

Qi=0, uy=ui=Us, Q3+Q1=0, u3=Us =Ty

Fluid Mechanics

Problem 4.17: Consider the flow of a Newtonian viscous fluid on an inclined flat
surface, as shown in Fig. P4.17. Examples of such flow can be found in wetted-wall
towers and the application of coatings to wallpaper rolls. The momentum equation,
for a fully developed steady laminar flow along the z coordinate, is given by

d?w
—Hw = pgcos B

where w is the z component of the velocity, p is the viscosity of the fluid, p is the
density, g is the acceleration due to gravity, and ( is the angle between the inclined
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surface and the vertical. The boundary conditions associated with the problem are
that the shear stress is zero at * = 0 and the velocity is zero at x = L:

(&)
dx
Use (a) two linear finite elements of equal length and (b) one quadratic finite element

in the domain (0, L) to solve the problem and compare the two finite element solutions
at four points z = 0, %L, %L, and %L of the domain with the exact solution

B pgL? cos 3 1 (£>2
We = 20 L

Evaluate the shear stress (7,, = —p dw/dzx) at the wall using (i) the velocity fields
and (ii) the equilibrium equations, and compare with the exact value.

=0 w(L)=0
=0

Velocity distribution w(x)

Direction of gravity

Fig. P4.17
Solution: (a) The assembled equations of the mesh of two linear elements is given
by (h=L/2)
1 -1 0] (U 1 Qi
El-1 2 -1 {UQ}:W{2}+{Q5+Q%}
0 -1 1] \Us 1 Q3

The boundary conditions are:
_ 1_ 1 2
U3_07 Ql_oa Q2+Q1_0
Solving the condensed equations (i.e. the first two equations), we obtain

~ foL? ~ 3foL?

o U2 8 (fo = pgcos B)

Ui
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The secondary variable is given by (7., = —Q3%)

(Qg)def = _ZfOLa (Q%)equil = _fOL

(b) The equations of the mesh of one quadratic element is given by (h = L)

7 -8 11(Uy 1 Q1
SR e U
Us 1 Q3

— | -8 16 -8
Sl s 7
Solving the condensed equations (i.e. the first two equations), we obtain

L? L?
Uy = fo Uy = 3fo
2u Su

(fo = pg cos B)

The secondary variable is given by (7., = —Q3%)
(Qili)def = (Qil’,)equil = _fOL

The solution obtained by both meshes is exact at the nodes; but at points other
than the nodes the solution differs slightly from the exact solution.

Problem 4.18: Consider the steady laminar flow of a viscous fluid through a long
circular cylindrical tube. The governing equation is

1d< dw)_Po—PL

o\ T

= fo

where w is the axial (i.e. z) component of velocity, u is the viscosity, and fy is
the gradient of pressure (which includes the combined effect of static pressure and
gravitational force). The boundary conditions are

(&)

Using the symmetry and (a) two linear elements, (b) one quadratic element, determine
the velocity field and compare with the exact solution at the nodes:

=B (),

Solution: (a) For the two element mesh of linear elements, the solution is the same
as given in Example 4.3.4. The finite element and exact values at the nodes are:
5 7 1 3

_ — _ — = — 2 —_
U 1804, Us 36a, u(0) 4a, u(Rp/2) 1604

=0 w(Ry) =0
r=0
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where a = foR2/u.

(b) The equations of the mesh of one quadratic element is given by (h = Rp)

_ 1
o - {g)
Us 1 Q3

3 -4 16 —12
1 —12 11
The condensed equations are obtained by deleting the last equation, and the solution
given by these equations coincide with the exact solution at the nodes:
1 3

UIZZOC; U2:1—6a

where a = foR3/ .

Problem 4.19: In the problem of the flow of a viscous fluid through a circular
cylinder (Problem 4.18), assume that the fluid slips at the cylinder wall; i.e. instead
of assuming that w = 0 at » = Ry, use the boundary condition that

dw

Kar

in which k is the “coefficient of sliding friction.” Solve the problem with two linear
elements.

kw = at r= Ry

Solution: This problem differs from that in Example 4.3.4 only in the boundary
conditions. Here we have
Ur=0, Q5=—kRoUs

For the mesh of two linear elements we have,

1 -1 07 (U 5 (1 Q1
R
77#[—1 4 -3 {U2}:%{6}+{Q%+Q%}
Us 5 —kRoUs

0 -3 3
The solution can be obtained by Cramer’s rule:

TH

Up=(c+ %)a, Uy = (c+ 3—76)04, Us =ca, ¢ = "R

where a = foR%/u. Note that in the limit ¢ approaches zero, we obtain the solution
to Problem 3.24.

Problem 4.20: Consider the steady laminar flow of a Newtonian fluid with constant
density in a long annular region between two coaxial cylinders of radii R; and Ry (see
Fig. P4.20). The differential equation for this case is given by

1 d ( dw) Pl—PQ
g r:ud_ = EfO
T

rdr L
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where w is the velocity along the cylinders (i.e., the z component of velocity), p is
the viscosity, L is the length of the region along the cylinders in which the flow is
fully developed, and P; and P» are the pressures at z = 0 and z = L, respectively
(P and P» represent the combined effect of static pressure and gravitational force).
The boundary conditions are

w=0 at r=Ry and R;

Solve the problem using (a) two linear elements and (b) one quadratic element, and
compare the finite element solutions with the exact solution at the nodes:

we(r) = ﬁil—? [1 - (RLO)Q + 111(_1/1{:1;) . (RLoﬂ

where k = R;/Ry. Determine the shear stress 7, = —u dw/dr at the walls using
(i) the velocity field and (ii) the equilibrium equations, and compare with the exact
values. (Note that the steady laminar flow of a viscous fluid through a long cylinder
or a circular tube can be obtained as a limiting case of k& — 0.)

Velocity
distribution

AN

Fig. P4.20

Solution: (a) For the mesh of two linear elements we have

a —« 0 Uy S5R; + Ry Q1
W—; —a a+p —p {U2}_W{;L{G(Ri"‘RO)}"'{Q%"i_lQ%}
o -8 8]lwu R; +5Rg Q3

where L = (Rg — R;),a« = (3R; + Ry) and 8 = (R; + 3Rp). The boundary conditions
are: U; = U3z = 0. Hence we have the solution,

1 fL?

Us 1

s (Tr2)def(Ri) = —%foL, (Tr2)def (Ro) = %foL
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(b) For the mesh of one quadratic element we have

T 3Ry + 11R; —4Ro — 12R; Ro + R; Uy
3—5 —4Ry— 12R; 16(Ro+ R;) —12Ro—4R; |{ s
Ry + R; —12Ry — 4R; 11Ry + 3R; Us
R; Q!
L i !
- 7”;? {2R,~+2Rg}+{%}
Ro Q3

The solution is (L = Ry — R;),

_lfoL2
=5 ,

Uy - (redaes (Bi) = =5 oL, (res)acs (Ro) = 3ol

Problem 4.21: Consider the steady laminar flow of two immiscible incompressible
fluids in a region between two parallel stationary plates under the influence of a
pressure gradient. The fluid rates are adjusted such that the lower half of the region
is filled with Fluid I (the denser and more viscous fluid) and the upper half is filled
with Fluid II (the less dense and less viscous fluid), as shown in Fig. P4.21. We
wish to determine the velocity distributions in each region using the finite element
method.
The governing equations for the two fluids are
2 2
_ﬂl% = fo, ﬂ@% = fo

where fo = (Py — Pr)/2b is the pressure gradient. The boundary conditions are
ui(—b) =0 wu2(b) =0, wu1(0)=u2(0)

Solve the problem using four linear elements, and compare the finite element solutions
with the exact solution at the nodes

V| 2u — 2
_Jfo pi |t Mzg_<g>] (i=1,9)

U2 | tpe g2 b b

P2 Less dense and_
y 1 ] less viscous fluid
2
X > Interface

>

P1
M| Denser and
more viscous fluid
Fig. P4.21

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



SOLUTIONS MANUAL 79

Solution: The assembled finite element equations are (h = b/2)

gy —ps 0 0 0 U Q1 fi

Ll 2 —p 0 0 | |0 Q3+ Q1 fa+ f1

7 0 —ps pe+pwr —p1 O Us = Q3+Q3% p +< f2+ 13
0 0 —m  2m -m||Us Q3+ Q1 f3+ fi
0 0 0 —m m ) \Us Q3 /3

After imposing the boundary conditions, we obtain the following condensed equations:

o [ 202 —p2 0 Us fob 1
U3 — 7 1
Uy 1

b —p2 2t p1 —

0 —p1 2
Solving for (Us, Us, Uy), we obtain

U2 2
b
U, o (per + p)

(2p2 + p1)pn 2papio [11 142 1
2401 o Apiy pro 241 pho ] { 1 }
1 fi2 2u1pe (p2 + 2p1) 2 1
fob? Suapiz + p
B 8pu1pa(p1 + p2) SHai2 2
Spapz + w3

which coincides with the exact solution at the nodes.

Problem 4.22: The governing equation for an unconfined aquifer with flow in the
radial direction is given by the differential equation

1d du
v (%T) =/

where k is the coefficient of permeability, f the recharge, and u the piezometric head.
Pumping is considered to be a negative recharge. Consider the following problem.
A well penetrates an aquifer and pumping is performed at » = 0 at a rate Q = 150
m?/h. The permeability of the aquifer is & = 25 m3/h. A constant head ug = 50
m exists at a radial distance L = 200 m. Determine the piezometric head at radial
distances of 0, 10, 20, 40, 80, and 140 m (see Fig. P4.22). You are required to set up
the finite element equations for the unknowns using a nonuniform mesh of six linear
elements.

123 4 5 6 7
> T ~—o—o v v
L
> L
Fig. P4.22
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Solution: This equation is a special case of Eqs. (3.4.1) with a(r) = kr and f =0
(no distributed source in the problem). Hence, the element equations are given by
Egs. (3.4.5a,b); the coefficient matrix for the linear element is given by Eq. (3.4.7)
with a. = k:

[Kl]:wk{_i _H [KQ]ZWIC{_:; ‘§]
[Ki”]:m[_z _g’] [K“]:W’f[_z ‘§]
w20 ) -

All element vectors {f¢} = {0}. The assembly of the element equations is
straightforward. The boundary conditions require the sums of all ()’s be zero and
Q1 = —150 m?/hr and U7 = up = 50m. The solution (solved using FEM1D) is,

Uy = 45.322, U, = 47.232, Us = 47.869, U, = 48.505
Us = 49.142, U = 49.663, Uy = 50.000

Ur — U,
(Qg)equil = 149-9857 (Qg)def = 27kr <%> = 176.45
The exact solution is given by (which has a singularity at r = 0)

u(r) = ?Qk: log <%) +

where Q = —150, k = 25, ug = 50, L = 200.

Problem 4.23: Consider a slow, laminar flow of a viscous substance (for example,
glycerin solution) through a narrow channel under controlled pressure drop of 150
Pa/m. The channel is 5 m long (flow direction), 10 cm high, and 50 cm wide. The
upper wall of the channel is maintained at 50°C while the lower wall is maintained
at 25°C. The viscosity and density of the substance are temperature dependent, as
given in Table P4.33. Assuming that the flow is essentially one dimensional (justified
by the dimensions of the channel), determine the velocity field and mass flow rate of
the fluid through the channel.

Solution: The material properties given in Table P4.23(a) suggest that we use a
five element mesh of linear elements to analyze the problem. In reality, the property
variation is continuous, u = p(7) and p = p(T). Since we only have the point data,
we can use the data to either generate a continuous functions u(7") and p(7T) using
regression /interpolation or just assume element-wise constant properties. In view of
the mild variation of the properties with the temperature, we shall use element-wise
constant properties in the analysis. The element-wise constant properties are listed
in Table P4.23(b).
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Table P4.23(a): Properties of the viscous substance of Problem 4.23.

Y Temp. Viscosity Density
(m) (°C) [kg/(m- s)] (kg/m?)
0.00 50 0.10 1233
0.02 45 0.12 1238
0.04 40 0.20 1243
0.06 35 0.28 1247
0.08 30 0.40 1250
0.10 25 0.65 1253

Table P4.23(b): Element-wise constant properties of the viscous substance of
Problem 4.23.

Element Viscosity Density
[kg/(m- s)] (kg/m3)

5 0.110 1236

4 0.160 1241

3 0.240 1245

2 0.340 1249

1 0.525 1252

The governing equation of the problem is

d du dp
(=) = 22 1
dy (Md,y> dx (1)

where u = u(y) is the horizontal velocity and —dp/dx is the pressure drop across the
channel. The boundary conditions on u are provided by the requirement that fluid,
being viscous, does not slip past the fixed wall, i.e.,

w(0)=0,  u(0.1)=0 (2)

Clearly, the governing equation is a special case of the model equation. Hence, we
have all the needed finite element equations to solve the problem. In particular, the
element equations associated with a linear finite element for the problem are

& 1 -1 U% o fehe 1 Q(i

HEREIL I SRR b ¥

where f. = 120 Pa/m, he = 0.02m, and values of p. are given in Table P4.23(b).
The assembled equations are given by

26.25 —26.25 0.00 0.00  0.00  0.00 U1
—-26.25  43.25 —-17.00 0.00  0.00  0.00 Uy
0.00 -17.00 29.00 -12.00  0.00  0.00 Us
0.00 0.00 —-12.00 20.00 -8.00  0.00 Uy
0.00 0.00 0.00 —8.0 13.5 —=5.50 Us
0.00 0.00 0.00 0.00 —=5.50  5.50 Us
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Q1
) QY+ QY
) 2 3
_ )24 n é ) + QS ) (4)
2.4 (3) (4)
" Q24 + Q15
| Q5" + Q"
Q5

Solid and Structural Mechanics

Problem 4.24: The equation governing the axial deformation of an elastic bar in
the presence of applied mechanical loads f and P and a temperature change T’ is

_a {EA(d—u—aTﬂ —f for O<z<L
dx dx

where « is the thermal expansion coefficient, £ the modulus of elasticity, and A
the cross-sectional area. Using three linear finite elements, determine the axial
displacements in a nonuniform rod of length 30 in., fixed at the left end and subjected
to an axial force P = 400 [b and a temperature change of 60°F. Take A(z) = 6— liox
in?, E =30 x 10° 1b/in%, and a = 12 x 1075 /(in °F).

Solution: The weak form leads to the following definition of element coefficients,

w v dv
K = EA —Z
*J /xa dx dz dz
€T

Fe = [+ BAT) da + Q5

For three linear element mesh, the condensed equations (U; = 0,Q3 = P = 400) are

given by (f=0 and h=10 in.)
Us 1.080 0
Us $ =100 0864 3 +< 0
Uy 0.360 P

Uy = 0.139661in., Us = 0.23036in., Uy = 0.26468 in.

—-13.5 24.0 —-10.5

[ 300 —135 0
106
0 -105 105

The solution of these equations is

Problem 4.25: Find the stresses and compressions in each section of the composite
member shown in Fig. P4.25. Use E; = 30 x 10° psi, E, = 107 psi, E, = 15 x 106
psi, and the minimum number of linear elements.
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Steel (A,.=8 in?)
Brass (4,=4 in?)

2000 1b
Fig. P4.25

Aluminum (4,=6 in2)

Solution: The three element coefficient matrices are

_8><30><106{ 1 _1]

6x10x105T7 1 —1
(1) _ 2 x WX AU

: (2)

[K(g)]:4x15x106{ 1 —1}

16 1 1

The assembly of three elements of equal length h1 = hy = hy = 16 in, we obtain

24 24 0 0] (U PV
_ ] |
107 |—24 2446 -6 o] )| PP +P?
16 0 —6 6+6 —6| ) Us PP 4+ p®
0 0 -6 6] \Us

Py

The boundary conditions are Uy = 0.0, PZ(I) + P1(2) = 5,000, P2(2) + P1(3) = 0, and
P2(3) = —2,000 lb. The condensed equations become

107 [ 30 =6 0 Us 5,000
0 -6 6 U —2,000

whose solution is Uy = 0.2 x 1073 in., Uz = —0.3333 x 1073 in., Uy = —0.8667 x 1073
in. Thus, the steel bar has an elongation of 0.0002 in, the aluminum has a compression
of 0.0005333 in, and the brass has compression of 0.0005333 in. The forces in each

member can be computed from the element equations:
PY =3,0001b, P =—20001b, P =-20001

Hence, the stresses are

3000 2000 2000
05 =g~ = 3T5psl, 0a=——p— =—33333psi, o, = ——— = —500psi
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Problem 4.26: Find the three-element finite element solution to the stepped-bar
problem. See Fig. P4.26 for the geometry and data. Hint: Solve the problem to see
if the end displacement exceeds the gap. If it does, resolve the problem with modified
boundary condition at x = 24 in.

e d=4in. d=2in.
"'f 100 kips ‘
100 kips
.4 Y9 02in

Steel, E; = 30 x 106 psi, Aluminum, E, = 10 x 108 psi
Fig. P4.26
Solution: We note the following data first:
Ay =4w, Ao =m, A3= Ay, E1=E,, Eh=FE, E3=F, =3E,

The assembled equations are

8 -8 0 0 Uh Q1
7B, | -8 843 -3 0 U | _ ) Q3+ @3
24 |0 -3 3418 —18|\Us( ) Q3+Q3

0 0 —-18 18 Uy Q3

The balance relations and boundary conditions are:
Ur=0, Q3 +Qi=2P, @3+ Qi =0, Q3=0

The condensed equations are

11 =3 07 (U 2P
b,
’24 ~3 921 -18 {L@}::{ 0 }
o —18 18] U, 0

The solution is given by (E, = 107, P = 10%)

Uy=Us=Uy =

6P .
= = 0.0191in., (Q})egit = —2P, (Q1)aes = —2P

a

The displacement is less than the gap, and hence the end does not touch the rigid
wall.

Problem 4.27: Analyze the stepped bar with its right end supported by a linear
axial spring (see Fig. P4.27). The boundary condition at x = 24 in is

EAd—u +ku=0
dx
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d=4in.

100 Kips / ﬁ

12 in. . <>
8in. 4in. k =10 Ibfin.

Steel, E, = 30 x 108 psi, Aluminum, E, = 10 x 10 psi

Fig. P4.27

Solution: The stepped bar is the same as that in Problem 4.24. Hence, The
assembled equations are

8 -8 0 0 Uy Q!
By | -8 8+3 -3 0 Uy | ) Qs+ @3
24 |0 =3 3418 —18|\Us( | Q3+Q3
0 0 —18 18 Uy Q3

The balance relations and boundary conditions are:

The condensed equations are

11 -3 0 Uy _9P
E,
”2 Sl -3 o 8 Us $ =1 0
0 -18 18+4c| Uy 0

where ¢ = 225 The solution is given by
wHq

_ —24P(18 + 7¢) _ —24P(18 4 ¢) . 43P
2T TEL(12+37c)" 0T mEL(T2+37c) ' wEL(T2+ 37¢)

Substituting £ = 10'%, £, = 10" and P = 10°, we obtain

Us = —0.014454, Us = —0.002069, U, = —0.4863 x 107°

Problem 4.28: A solid circular brass cylinder Ej, = 15 x 10° psi, ds = 0.25 in.)
is encased in a hollow circular steel (Es = 30 x 10° psi, ds = 0.21 in). A load of
P = 1,330 1b compresses the assembly, as shown in Fig. P4.28. Determine (a)
the compression, and (b) compressive forces and stresses in the steel shell and brass
cylinder. Use the minimum number of linear finite elements. Assume that the Poisson
effect is negligible.
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P=1,330 lbt Brass Steel

VYRR Ry

\
1
!

—

!
|
\

Fig. P4.28

Solution: The problem can be considered as two members in parallel. The element

equations are
EA [ 1 —1]fu\ _ [PY W
he L-1 1S T\ RO

The two element assembly is given by

EyA, | E.As _ (EpA, | E.A, s
Ry hs ( Ty hs ) {Ul}:{PliZ;wLPl ;} @)
E,A Ay E,A A s) (-
N ( hy Ehs ) _ZbJ + Ehs Us B+ B

where
hy = hy = 4.0 in, Ap = 0.04909 in?, A, = 0.03464 in%.

Using the boundary conditions
Uy=0, PP +pP¥=_p
we obtain the compression

P 1330 x 10~
Uy = = a — —0.002996 ~ 0.003 in.

B g BA 01841402508

The element forces Pi(b) and Pi(s) are obtained from Eq. (1):

E,A o _ Beds
P = 2200, — 55159 1b, P =
h s

Uy = —778.411b

The stresses in steel and brass are

0s = 2247 ksi (compressive), op = 11.24 ksi (compressive).
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Problem 4.29: A rectangular steel bar (E; = 30 x 10® psi) of length 24 in. has a slot
in the middle half of its length, as shown in Fig. 4.29. Determine the displacement
of the ends due to the axial loads P = 2,000 lb. Use the minimum number of linear
elements.

Fig. P4.29

Solution: The bar can be modeled, due to symmetry, using two elements, with
lengths hq = 6in and hg = 6 in, and areas A; = 0.9 in® and Ay = 1.2in?. Thus, the
assembled matrix is given by

A A
B o i
1 2
e i AR R AR
o - 2]\ p|

or, in view of P2(1) + P1(2) =0 and P1(2) = P = 2,000, we have

U rY
U » = 0 .
Us 2000

The displacements are Uz = 0.4444 in and Uz = 1.9444 in.

0.9 —0.9 0
5x 10| —-09 21 —-1.2
0 —-12 1.2

Problem 4.30: Repeat Problem 4.29 for the steel bar shown in Fig. P4.30.

Plate thickness =
~025in.
3in. A,

in. (all three)
A2

(a) Actual plate (b) Idealized plate
Fig. P4.30
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Solution: The assembled equations are

A _A
MLoa (1)4 ! Uy Q1
_A A A _ 1 2
E,| M M —; P Py /(1] i Q% N Q%
_ Ay Ay AL A
0 ha ha + h1 h1 U3 Q2 +3Q1
0 0 _ A A Uy Q5
h1 h1

where 41 = 3 in?, Ay = 2.25 in%, hy = 3 in., and hy = 10in. The balance relations
and boundary conditions are:

U1 =0, Q3+ QF =0, Q3+ QF =0, Q3 =800

The condensed equations are
U, 0
U3 p=¢ 0
Uy 800

1.225 —0.225 0
30x10%| —0.225 1.225 —1.0
Uy = 26.667 x 107 %in., Us = 145.185 x 10~ %in., Us = 171.852 x 10~ % in.

0 -1.0 1.0

The solution is given by

Problem 4.31: The aluminum and steel pipes shown in Fig. P4.31 are fastened to
rigid supports at ends A and B and to a rigid plate C at their junction. Determine
the displacement of point C and stresses in the aluminum and steel pipes. Use the
minimum number of linear finite elements.

1
Steel (E,= 200 GPa, —

A=60 mm?) \ Element 1

i

y

*P1+Ocm

P=50 kN*

ofl . 1>

T

I Aluminum (E,= 70 GPa,
— % A,= 600 mm?) T
20 em Element 2

3
—

Fig. P4.31

Solution: Using two linear elements (steel being element 1), we obtain

EsAs Es A 1
]I:}‘IA E A_ hlE A E(‘)A 1 1Q§) 2
Bl il R RN G KAl

2

0 E s AR D Q5
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with EsAs = 12 x 106 Pa-m, E, A, = 42 x 108 Pa-m, h; = 0.1 m, and hy = 0.2 m.

Using the boundary conditions

U =Us=0, Q% +@QP =2P=100,000 N

we obtain
2P 100 x 1073 1

E. A, | EoA, -
EA | Bada = 120+210 3300

Uy =

m = 0.3 mm.

The forces and stresses in steel and aluminum pipes are

(W _ ESAS> _ 120 x10% _ ey _ N
ot < ) Ur = g = 30304 kN, o = 606.06 MPa,

2 _ _ E“A“> Uy = 210X 10° o ca6 kN, oy — —106.06 MP
@ < hy )2 3300 ' > Ta ' &

Note that le) = —Qél) and Q?) = —Qg). Hence, the force equilibrium is satisfied:
Q" + QY +2P =0.

Problem 4.32: A steel bar ABC is pin-supported at its upper end A to an immovable
wall and loaded by a force Fj at its lower end C, as shown in Fig. P4.32 A rigid
horizontal beam BDE is pinned to the vertical bar at B, supported at point D, and
carries a load F3 at end E. Determine the displacements up and u¢ at points B and

A,=0.4 in2.
E=30x10¢ psi.
30 in. »le 25 in. 'l
° D 21 E

5,000 lbs

Element 1

—L. T

30 in. Rigid member Element 2

A,=0.25in2.  F,=6,0001b

F,=2,000 1b
Q22 = _kU3+ F,
Fig. P4.32
Solution: First we must find the force acting at point B. Taking moments about point

D of the free-body-diagram of member BDE gives a load of 6000(25/30) = 5000 1b
upward at point B.
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For the two-element mesh, we have (positive x is taken downward with origin at
node 1)

A A
PSR AR
1 2
El-at ata —a | = +or
0 s 2] (Us QY

with A;/h; = 0.02 in. and As/hy = 0.025/3 in.
The boundary conditions are

Uy =0, QP +QP®=pr=-50001, QP =2 0001,

The condensed equations are

30 x 106 0.02 4+ 0.0083 —0.0083} { Us } _ { —5,000}

—0.0083 0.0083 Us 2,000

whose solution is

Us =up = —0.005 in., Us = uc = 0.003 in.

Problem 4.33: Repeat Problem 4.32 when point C is supported vertically by a
spring (k = 1,000 lb/in).

Solution: The assembled equations are the same as given in the solution to Problem
4.31. The boundary conditions for the present problem are

U, =0, QP +QP =-50001, QP +kUs=F.

Hence, the condensed equations for the displacements become

30 % 10° 0.0240.0083  —0.0083 } { U } o { -9, 000}

—0.0083 0.0083 + % Us 2,000

and for the forces

EA
Q) =-==0s QY = F1 — s

Problem 4.34: Consider the steel column (a typical column in a multi-storey
building structure) shown in Fig. P4.34. The loads shown are due to the loads
of different floors. The modulus of elasticity is £ = 30 x 10% psi and cross-sectional
area of the column is A = 40 in?. Determine the vertical displacements and axial
stresses in the column at various floor-column connection points.
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8 -8 0 0 07 (Ui Q!
-8 16 -8 0 0|y QI+ Q32
10/ 0 =8 16 =8 0| Usp=¢Q5+Q3
0 0 -8 16 -8| |Us Q3+ Q1

0o 0o 0 -8 8] lU; Q4

Using the boundary condition Us = 0 and balance of forces,
Q1 =50,000, Qi+ Q?=060,000, Q32+ Q3=064,000, Q3+ Q}="70,000

we obtain the following condensed equations:

8 =8 0 0 Uy 50
6| —8 16 -8 0 U | ,.3) 60
10 0 -8 16 -8 Us 10 64
0 0 -8 16 Uy 70
The displacements are (in inches)
U; =0.122, Us =0.0915, Us =0.061, Ug=0.0305
and the reaction force at node 5 is
Q5 = —244,000 1b
Load
* * 25,000 Ibs* *
© J° = Yy
\VAVAVAS M| =a VAVAVA® 30,000 1bs ]| 2 4
* * L o l1251
(Vavaves Mli-awvavavie) ° 'y
* * 32,000 Ibs | || 2 125§
° ||’ —%
\AA/; ;\AA/ ©) 35,000 Ibs* 3 5
° Floor < : -

Fig. P4.34
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Problem 4.35: The bending moment (M) and transverse deflection (w) in a beam
according to the Euler—Bernoulli beam theory are related by

d*>w
—FEl— = M(x
For statically determinate beams, one can readily obtain the expression for the
bending moment in terms of the applied loads. Thus, M (x) is a known function of
x. Determine the maximum deflection of the simply supported beam under uniform
load (see Fig. P4.35) using the finite element method.

0

Y \L\ \L \L Y \E \L YYYVYY

L

EI=constant

Fig. P4.35

Solution: Clearly, the element equations are given by
[KHw} = {f} +{Q°}

with . M
o= [ @ e f@) =

o dis di
K& = '}
Y 2, dr dx dr

i-(z), %=(&),

where 1); are the Lagrange interpolation functions. For the problem at hand, it is
sufficient to model half beam (by symmetry) with one element. The bending moment
is

EI

M(x) = q—20 (Lx - :L‘2>

Hence, the “source vector” becomes (h = L/2)

=2 h<1—f> (L:L’—:UQ)dm—qo—hS

L= 9oFRT Jo h T 8EI
h 3
1_ 90 £ 02 _ 5qoh
2 =357 J, h(L‘” ‘7“")‘““*24]31
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Thus, the one-element model (in half beam) gives

il ) g 5] {8

Using the boundary conditions

we obtain the condensed equation

5(]()]14 5q0L4
U =w(l/2) = 5157 = 30aET

which coincides with the exact value. The slope at the left end is given by

1 dw Uy qoh? qoL3
Q= e = =
T ) z=0

h  8EI  24EI

which also coincides with the exact value.

Problem 4.36: Repeat Problem 4.35 for the cantilever beam shown in Fig. P4.36.

q, 1b/ft
q)
=
X |
L g
z‘,’w EI=constant

Fig. P4.36

Solution: We can use one element model to determine the maximum deflection.
Taking, for convenience, the z-axis to the left from the free end of the beam, we can
write

M1 qox3
@) =57 = "Ef 6L
Then . 3
1 qo X 3 goL
= _ 1-= - _
h 6EIL/0 < L> v = =0 ET
L 3
1 qo T 3 qoL
= — Z3de = —
=581z )y % ®~ "30E1
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The one-element model gives
t[ e s i+ {E)
L|-1 1J\Uxf  120EI |4 Q5

The boundary conditions of the problem are (note the unsual situation of both
primary and secondary variable being specified at the same point)

dw
w(L) = Uy =0, <%> _L:ngo

Consequently, we have

ta a0} e ()

from which we obtain

qL? @L®  qlL?
30EI ' 120EI 24EI

L4
U = w(()) - L

1 _
" 30EI’ @1 =

which coincide with the exact values.

Problem 4.37: Turbine disks are often thick near their hub and taper down to
a smaller thickness at the periphery. The equation governing a variable-thickness
t = t(r) disk is

d
E(rtar) —tog + tpw?r? =0

where w? is the angular speed of the disk and

(du u) (u du) F
or=c|l—+v—), og=c|l—4v—|, c=——
dr T T 1—v?

(a) Construct the weak integral form of the governing equation such that the bi-
linear form is symmetric and the natural boundary condition involves specifying
the quantity tro,.

(b) Develop the finite element model associated with the weak form derived in part
(a).

Solution: (a) The weak form is given by

T 1d t
0= / "w [———(tra,«) + 20 fo} rdrdf
o rdr r

=27 /: <trccll—l:ar + wtog — wfo?“) dr — Qaw(ra) — Qpw(ry) (M)
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where
fo =tpw?r, Q. = 2r(—troy)a, Qp =27 (tro,)p (1b)

(b) The finite element model is given by
[KHu®} ={F°} or K°u®=F¢° (2a)

where

K=o [ et [rdjﬁ (% + 2 ) v (0 + V%)] dr

Ff =2r /rb fowbi rdr 4+ Qai(ra) + Qutbi(rp) (2b)

Problems 4.38-4.44: For the plane truss structures shown in Figs. P4.38-P4.44,
give (a) the transformed element matrices, (b) the assembled element matrices, and
(c) the condensed matrix equations for the unknown displacements and forces.

' a, =90+tan"'(1/2) =116.565°

15 ft

Figure P4.38

Solution of Problem 4.38: The element matrices [K'] and [K?] for the two
elements are given by Eq. (4.6.9) by substituting (sin6; = cosf; = 1/v/2) for element
1 and (sinfy = 0.8944, cos 3 = —0.4472) for element 2. We have

[ 0.26516  0.265616 —0.26516 —0.265167

[Kl] — 106 0.26516  0.26516 —0.26516 —0.26516
—0.26516 —0.26516  0.26516 0.26516

| —0.26516 —0.265616  0.26516 0.26516 |
[ 0.17887 —0.35775 —0.17887  0.357757

[Kg] — 108 —0.35775 0.71550  0.35775 —0.71550
—0.17887  0.35775 0.17887 —0.35775
0.35775 —0.71550 —0.35775 0.71550 |
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The assembled stiffness matrix is given by

K Kl  Ki Kiy 0 0
Ky Ky  Ki K3y 0 0
K3 Kz K+ Ky Ky +Kiy Kiz Ki
Ky Kiy Kiz+K3 Ki+Ks Ki3 Ki

0 0 K3 K% o K3 K
0 0 K# K Kiy Ki
r 0.265616  0.26516 —0.26516 —0.26516 0 0 T
0.26516  0.26516 —0.26516 —0.26516 0 0
10 —0.26516 —0.26516 0.44403 —0.09259 —0.17887  0.35775
—0.26516 —0.26516 —0.09259 0.98066  0.35775 —0.71550
0 0 —0.17887  0.35775  0.17887 —0.35775
0 0 0.35775 —0.71550 —0.35775 0.71550 J

The force vector is given by (Q3 + Q% = P and Q} + Q3 = 0)
Qj
Q3
P
Q3
Q7

The condensed equations are,

10 0.44403 —-0.09259| (Us | | P
—0.09259  0.98066 | \Usf 10

The solution of these equations is given by (P = 10%),
Us = 0.022973 in., Uy = 0.002169 in.

The reactions at the supports (along the axis of the members) can be computed from
the equations,

FF=qQ1 —0.26516 —0.26516 —6,667
=5 ( _ 106 | ~0-26516  —0.26516 | [Us\ _ ) —6,667
F§ = Q3 —0.17887  0.35775 | | Us —3,333
FY = Q3 0.35775 —0.71550 6,667

Note that these are the components of forces in the global coordinate system (i.e.,
horizontal and vertical components) at global nodes 1 and 2. When resolved along the
axis of the member, these would give the member axial forces (in element coordinates):

Q1 = —9,428 bs., Q3% = —7,453 Ibs.
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The forces transverse to each member (i.e., Q3 and Q%) would be zero (as they should
for any truss element). The nodal forces at the other node of each element are equal

and opposite to the values given above.

20 kips

2 121 30 ft s

= gl

Figure P4.39
Solution of Problem 4.39: First we note that
h1 =19.21 ft, he =30 ft, hg = 23.43 ft

1
cost = 1021 =0.6247, sinf; = TZI =0.7809, cosfy =1, sinfy =0
18 15
= ——— = 0.7682, sinf3=—— = 0.6402
cos 03 RWE 0.7682, sinfs 5343 0.640

The element stiffness matrices are

[ 0.7618 0.9523 —0.7618 —0.9523

[Kl] — 106 0.9523 1.1904 -0.9523 —1.1904
—0.7618 —0.9523 0.7618 0.9523

| —0.9523 —1.1904 0.9523 1.1904

[ 1.6667 0.0000 —-1.6667 0.0000

[K?) = 10° 0.0000 0.0000  0.0000 0.0000
—1.6667 0.0000 1.6667 0.0000

L 0.0000 0.0000  0.0000 0.0000

[ 0.9445 —-0.7871 —0.9445  0.7871

(K3 = 10° —-0.7871  0.6560  0.7871 —0.6560
—-0.9445  0.7871  0.9445 -0.7871

0.7871 —-0.6560 —0.7871  0.6560

The assembled stiffness matrix is
M 2.4285 0.9523 —0.7618 —0.9523 —1.6667 0.000017
0.9523 1.1904 —-0.9523 —1.1904 0.0000 0.0000
K] = 106 —0.7618 —0.9523 1.7063 0.1652 —0.9445 0.7871
—0.9523 —1.1904 0.1652 1.8463 0.7871 —0.6560
—1.6667 0.0000 —0.9445 0.7871 2.6111 —0.7871
0.0000 0.0000 0.7871 —0.6560 —0.7871 0.6560 |
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The boundary conditions are

Ui=Us=Us=0, Q3+Q}=0, Qi+ Q3=—20,000

Us 0
Us $ =4 —20,000
Us 0

Us = 0.0045 in, Ug = —0.0137 in, Us = 0.0058 in
QI+@Q2=01b, Q)+Q2=12,0001b, Q%+ Q3 =8,000Ib
Q1 =15,3701b, Q? = —9,6001b, Q3 =12,5001b

The condensed equations are

1.7063 0.1652 —0.9445
10| 0.1652 1.8463  0.7871
—0.9445 0.7871  2.6111

The solution is

All members:

8Kips £ =30 x 106 psi

8 kips
®
A=3in?
@\

o 2
le— 10 ft. —sle—10 ﬂ.%
Figure P4.40

Solution of Problem 4.40: This problem involves 5 members and it is hard to be
solved by hand. The main point should be to give the specified displacements and
forces on the structure. We have

U1 = U2 = Ug = 0, F5 = 8,000 1bs. s F@ = —8,000 1bs.
The connectivity of the elements is defined by the matrix

3

] =

SN N~
=W N

3

The angle of orientation of each member are (CCW):
61 =45°, 6, =0°, 03 =90°, 64 =0°, 05 = 315°
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The element stiffness matrices are

T 0.2652  0.2652 —0.2652 —0.2652
K= 108 | 02052 02652 02652 —0.2652
~0.2652 —0.2652  0.2652  0.2652
| —0.2652 —0.2652  0.2652  0.2652

T 0.7500 0.0000 —0.7500 0.0000 7
K| = 106 | 0-0000 0.0000  0.0000 0.0000
—0.7500 0.0000  0.7500 0.0000

| 0.0000 0.0000  0.0000 0.0000 |

0.0000  0.0000 0.0000  0.00007
(9] = 106 | 00000 0.7500 0.0000  ~0.7500
0.0000  0.0000 0.0000  0.0000

10.0000 —0.7500 0.0000  0.7500 |

T 0.7500 0.0000 —0.7500 0.0000 7
4] = 106 | 0-0000 0.0000  0.0000 0.0000
—0.7500 0.0000  0.7500 0.0000

| 0.0000 0.0000  0.0000 0.0000 |
T 0.2652 —0.2652 —0.2652  0.2652
K] = 108 | ~02652  0.2652 02652 —0.2652
—0.2652  0.2652  0.2652 —0.2652
0.2652 —0.2652 —0.2652  0.2652

The generalized displacements calculated using FEM1D are

Uz = 0.0107in., Uy = —0.02571in., Us = 0.0257 in.
Us = —0.02571n., U7 = 0.02131in.

The axial forces in the members are (subscripts denote the global node numbers; i.e.,
F;j denotes the tensile force in the member connecting global nodes i and j):

Fio = 8 kips, Fi3 = 0 kips, Fbs = 0 kips, Fby = —8 kips, Fzs = v/2 x 8 kips

These can be easily verified using the “method of sections” for this determinate
structure.

Solution of Problem 4.41: The angle of orientation of each member are (CCW):

01 = 0°, 05 = 90°, O3 = 45°
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The element stiffness matrices are

T 1.0 0.0 —1.0 0.07
[Kl]:E_A 0.0 0.0 0.0 0.0
L |-1.0 00 1.0 0.0
| 0.0 00 0.0 0.0]
0.0 00 00 0.0]
[KQ]:E_A 00 1.0 00 —-1.0
L |00 00 00 00
00 —-1.0 00 1.0]
T 0.3536  0.3536 —0.3536 —0.3536
[Kg]:E_A 0.3536  0.3536 —0.3536 —0.3536
L | -0.3536 —0.3536  0.3536  0.3536
| —0.3536 —0.3536  0.3536  0.3536

All members:
EA = constant

Figure P4.41

The assembled stiffness matrix is

1.3536  0.3536 —1.0 0.0 —-0.3536 —0.3536

0.3536  0.3536 0.0 0.0 —-0.3536 —0.3536

K] — EA | —1.0000 0.0000 1.0 0.0 0.0000  0.0000
L 0.0000  0.0000 0.0 1.0 0.0000 -1.0000
—-0.3536 —0.3536 0.0 0.0 03536  0.3536

—0.3536 —0.3536 0.0 —-1.0 0.3536 1.3536

The boundary conditions are
U1=U2:U3:U4ZO, F5:Pkips, F6:—2Pkips

The generalized displacements calculated using FEM1D are (in inches)

U =588 —— U =302
5 5.828 , Usg 3.0
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The reaction forces at the supports in the - and y-directions are (superscripts refer
to global node numbers)

Fy = —Pkips, F, =—Pkips, F; =0Kkips, F, =3P kips

|<_ 10 ft.—>|<—10 ft.

Ay =15 in?

All members:
E =29 x 10° Ib/in?

16 kips

Figure P4.42
Solution of Problem 4.42: The angle of orientation of each member are (CCW):
61 =135°, 0 =90°, O3 = 45°

The element stiffness matrices are

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc.

1.7675 —1.7675 —1.7675  1.7675
K] = FA | -1.7675  1.7675  1.7675 —1.7675
10L | —1.7675  1.7675  1.7675 —1.7675
1.7675 —1.7675 —1.7675  1.7675
00 00 00 0.0
[Kz]:E_A 0.0 1.0 00 -1.0
L [00 0.0 00 00
0.0 -1.0 0.0 1.0
5.3025  5.3025 —5.3025 —5.3025
K3 = FEA | 53025 53025 —5.3025 —5.3025
10L | —5.3025 —5.3025  5.3025  5.3025
—5.3025 —5.3025  5.3025  5.3025
The assembled stiffness matrix is (symmetric)
[0.707 0.353 -0.177  0.177 0.000  0.000 —-0.530 —0.5307
1.707 0.177 -0.177 0.000 -1.000 -0.530 —0.530
0.177 -0.177 0.000  0.000  0.000  0.000
K] = E_A 0.177 0.000 0.000 0.000 0.000
L 0.000  0.000  0.000  0.000
1.000  0.000  0.000
0.530 0.530
L 0.530 |

All rights reserved.
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The boundary conditions are
Us=Uy=Us =Us =U; =Ug =0, F; = P =16 kips , F5 =0 kips

The generalized displacements calculated using FEM1D are (in inches)

PL PL
U; = 1.5778 A Us = —0.3267 A

The member axial forces are (superscripts refer to element numbers; -ve is
compressive)

F! =7.616 kips, F? =5.228 kips, F® = —15.01 kips

Problem 4.43: Determine the forces and displacements of points B and C of the
structure shown in Fig. P4.43.

For all members:
E = 207 GPa,
A=5cm?

P=1,000 kN

Figure P4.43

Solution of Problem 4.43: We wish to express the global displacements at node
2 in terms of the local displacements so that we can readily impose the boundary
conditions on the local displacement components. Then the transformed equations
are given by

KU=F
where
K=TKT', F=TF, U=T'U
and 1 [0 [0
cos 60 sin 60
[T] = [0] [A] [O] ’ [A] ~ | —sin CcoS
o o] 1 -
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The element stiffness matrices are

[ 0.1035 0.0000 —0.1035 0.0000
(K] = 10° 0.0000 0.0000  0.0000 0.0000
—0.1035 0.0000  0.1035 0.0000
L 0.0000 0.0000  0.0000 0.0000
(0.0 0.0000 0.0  0.0000
2 9100 01035 0.0 —-0.1035
(K] =10 0.0 0.0000 0.0  0.0000
010.0 —0.1035 0.0  0.1035
[ 0.3659  0.3659 —0.3659 —0.3659
(K3 = 10° 0.3659  0.3659 —0.3659 —0.3659
—0.3659 —0.3659  0.3659  0.3659
| —0.3659 —0.3659  0.3659  0.3659

The transformed global stiffness matrix is

1.4009 0.3659 —0.5175 0.8963 —0.3659 0.3659
0.3659 0.0000 0.0000 —0.3659 —0.3659
1.0350 0.0000  0.0000 —0.8963

1.0350 0.0000 —0.5175

0.3659 0.3659

1.4009

108

The boundary conditions are
Ur=U1=0, Up=Us=0, Upy =Us=0, Us=Us =0, Us=Us=0
Fop = F3 = 0.866 x 10°
The solution of the condensed equation is

~ 0.866 x 106

= Upy =~ = 0. 1072
Us = Une = oo —05 = 0-8367 x 1072 m

Problem 4.44: Determine the forces and elongations of each bar in the structure
shown in Fig. P4.44.

Solution of Problem 4.44: The element stiffness matrices are the same as in
Problem 4.41. The transformed global stiffness matrix is

1.4009 0.3659 —1.0350 0.0000 —0.5175  0.0000
0.3659  0.0000 0.0000 -—0.5175  0.0000
1.0350 0.0000  0.0000  0.0000

1.0350 —-0.7319 —-0.7319

1.2493  0.5175

0.5175

108
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For all members:
E =207 GPa,
A =5x10"*m?

P =1,000 kN

Figure P4.44
The boundary conditions are
Ur=U1=0, Up=Uy=0, Us=Us=0, Usy =Us=0
Fy=Fy=1.0x10°
The solution of the condensed equations is

Us=Us=1649 x 1072 m, Us = Usy = 0.966 x 1072 m

Problem 4.45: Determine the forces, elongations and stresses in each bar in the
structure shown in Fig. P4.45. Also, determine the vertical displacements of points
A and D.

5 5 ft 7 |<5_ﬂ,|<5_ﬁ,|47_ﬁ,|
A|<—’|

D A C D
[ B2 Clrla— 7] ke : 2 -
. 1 2
Rigid bar
P, =90 ki § P, =80 kips
P=90kips || hos || [B™ P.=80kips 1%0kes Fpp - For ’
TN 9 Free-body diagram
4 Acp =16.8 in
App =19.5 in? Fldv
El3 A
L)

e

E =29x10° psi

Figure P4.45
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Solution: This is a statically determinate problem; that is, the forces at points B
and C can be readily determined from statics. Using the free-body-diagram of the
rigid bar ABCD, we obtain

> Mp=0: 90x5+ Fop x5—80x12=0— Fop =102 kips
> Mg=0: 90x10—Fppx5—80x7=0— Fpg = 68 kips

If we use two linear finite elements to represent the bars CF and BE, the assembled
matrix of the structure is given by

1 2 3 4

17 k 0 =k 0 Ux 1
210 ky 0 —ko| )Us| ) @3
3 |-k 0 k0 Us [ ) Q3
400 -k 0 kol LUy 2

where

_ EApgp (29 x10°)(19.5)

k =4.7125 x 10°® 1b/i
1 h 120 7125 x 10 /1n
EA 29 x 106)(16.8
by = EAcr _ (29X 10)(168) _ o 12 106 1b/in
ha 96
The assembled equations are

4.7125 0 —4.7125 0 Ui 1
106 0 5.0750 0 —5.0750 | J Us | _ 2
—4.7125 0 4.7125 0 Us :
0 —5.0750 0 5.0750 | (U, 2

The boundary conditions of the problem are
Us=Us=0; QI=Fpp=63x1031b, Q%= Fcpr=102x1031b

Hence, the condensed equations are given by

6[47125 0 U\ .3 68
S 5.0750]{(]2}10 {102}

whose solution is (compressions of the bars)

Uy = 0.01443 (in), Uz = 0.02010 (in)
By similarity of triangles, we can determine the displacement of points A and D. We
have

Uy =U; — (Uz — U;p) =0.00876 in. downward
Up =Us + %(Ug — Up) = 0.0280 (in) downward
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The stresses in bars BE and CF are

Fpp 68 x 103

_ _ — 3.487.2 psi
9BE = 4 19.5 ’ DSt
Forp 102 x 103 .
- - —6,071.4
9CF = Aon 16.8 ’ pst

Problem 4.46: Determine the forces and elongations of each bar in the structure
shown in Fig. P4.45 when end A is pinned to a rigid wall (and P; is removed).

Solution: From Problem 4.45, the assembled equations are

4.7125 0 —4.7125 0 Uy 1

105 0 5.0750 0 —5.0750 | JUs | _ ) QF
—4.7125 0 4.7125 0 Us :

0 —5.0750 0 5.0750 | (U, 2

The boundary and constraint conditions of the problem are
U3 =U;=0;, U —05U;=0

The transformation equation between (Uy, Uz, Us,Uy) and (Usa,Us,Uy)is (M =
4, m=1, n=3)

Uy 0.5 00 007
Uy | |10 0.0 00 U2
Us (100 1.0 0.0 U3
Us 0.0 0.0 1.0 4

The transformed set of equations are

6.253 —2.356 —5.0757 ( Us 0.5Q1 + Q3
108 | —2.356  4.713 0.0 {Ug} = { Q3 }

—5.075 0.0  5.075 Uy Q3
From the free-body diagram of the bar ABCD (see Figure P4.46), we find that
0.5Fpp + Fop = 1.7P; therefore, we have 0.5Q1 + Q? = 1.7P, = 136 kips and
the condensed equation for the unknown U, is

136 x 103

6.253U2 = & oes 106"

Us = 0.02175 (in), U; = 0.5U3 = 0.01087 (in)
The forces in the bars AC and BD are

Qi 106 [47125 0 U\ _ g6 f0.051225

Q?f 0 5.0750 | Uz | — 0.110381
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The stresses in bars BE and CF are

Fpp _ 51.225 x 10°

o = = = 2,626.9 psi
BE = App 19.5 ’ P
Feorp  110.381 x 103
OCF = = =6,570.3 psi
“F = Ao 16.8 ’ P
Rigid bar 5 ft 5 ft 7t
5ft 5 ft 7ft l‘—ﬂ‘_’k'—’l
e e T, A AT
g B(¥ Cra2— 1 r \ 2 ’
steel bars _—1 T A R Fp Fop P, = 80 kips
E=29x10° psi 1ot P =80 kivs Free-body diagram
) 4 ™A =16.8 in?
App =19.5in F.. A | 5 ft 5t 7
E|3 s A < > > >
ol ,
Figure P4.46

This Manual is being provided only to authorized professors and instructors for use
in preparing for the classes using the affiliated textbook. No other use or
distribution of this Manual is permitted. This Manual may not be sold and may not
be distributed to or used by any student or other third party. No part of this
Manual may be reproduced, displayed or distributed in any form or by any means,
electronic or otherwise, without the prior written permission of the McGraw-Hlill.
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Chapter 5
BEAMS AND FRAMES

Problem 5.1: The natural vibration of a beam under applied axial compressive load
Ny is governed by the differential equation

(Ef ) N

where w denotes nondimensional frequency of natural vibration, ET is the bending
stiffness, and pA is the mass (mass density times cross-sectional area) of the beam.
Develop (a) the weak form and (b) finite element model of the equation.

d2
dx?

d2
d2

d2

) = pAwiw

Solution: This problem is useful for the material covered in Chapter 6.
(a) The weak form is given by

v dPw dv dw
Oz/xa (EIdeQ_ U pvaw)da:

2 Tp
+{ [d (Eldw>+Nodw )EI ]

dx dx? d
where v is the weight function. The primary variables of the formulation are

dw

dx
and the secondary variables are

<Ef )+No

Define the secondary variables [see Eq. (5.2.3)] as
[ (EI

o
dx?

dv

I

dx

w,

o
dx?

d?w
dz2

d
dx

dw

—_ EI
dz’

Noy——
+ 0z

d

d?w
dx2
d?w
dr2

d
dx

d
dx

T=xq

dzx

T=x}

e

d?w
A2

] = QQ, [ FI—

d2w |

d2

dz=zy
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The weak form becomes
b d*v d*w dv dw 9
0= /‘ra (EIWW - N()%% —pAw vw) dx
—v(2q)Q1 — v(xp) Q3 — 0(x0) Q2 — O(x1) Qs
where 0 = —(dw/dzx).

(b) The finite element model of the equation is obtained by substituting Eq. (5.2.10)
into the weak form. We obtain

([K°] = A[M®] — No[G°]) {A} = {Q°}
where A\ = w? and
o dg; doj
- %d—; dx

Ty d2¢' d2¢)' p
K = /x El——5—— dv, Mjj= /x pAdig; dx, Gf; =
and {A°} and {Q°} are the usual nodal displacement and force vectors. Here [K*¢]
denotes the stiffness matrix, [M€] the mass matrix, and [G¢] the geometric stiffness
matrix.

Problem 5.2: The differential equation governing axisymmetric bending of circular
plates on elastic foundation is given by

1d/[d
—;E |:E (T’Mrr) — M99:| + kw = q(T)

where k is the modulus of the elastic foundation, ¢ is the transverse distributed load,

and ) )
d“w 1 dw d“w 1ldw
MTT——D (W‘Fl/;%) 5 Mgg——D (VW—F;%)

Develop (a) the weak form and identify the primary and secondary variables, and (b)
the finite element model. Note that the shear force is defined by

17d
r= — |5 Mrr - M
Q [ = (rMir) 99}

Solution: Since this is an axisymmetric problem associated with a circular plate,
the elemental volume is dV = dr - rdf - dz. The integration with respect to 6 and z
yields (because all quantities are independent of 6 and z) a factor 27t, where ¢ is the
thickness of the plate. Dividing out by this factor, we have

b 1 d? 1 dMyg
0= Aa [ [—;W(TMTT)+; d +k¢vfw—q] rdr

,
| du 1dv
= /Ta [_WMTT — ;JMQQ + kvw — Uq] rdr
dv dv
— o) @ = om)Qs — (<57) Q= (-5) (1)
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where v is the weight function and

Q1 =— % (TM'M') - MGG] . , Q3= I:% (TMTT‘) — Mpqg "
Q2= — [err]ra , Qa= [TMrr]rb (2)

To develop the finite element model, we assume finite element interpolation of
w(r) (like in the beam bending)

n=4
w(r) ~wh(r) =Y A5¢5(r) (3)
i=1

Substituting for v = ¢; (to obtain the ith algebraic equation of the system) and
w = wj, from Eq. (3), we arrive at the result

[KHA = {¢°} +{Q} (4)

where

r2 dr dr

v (26 d26; v (dosdPo;  Pide;\ 1 des do;
K¢ — D v J 4 2t J (ot} vt
Y /ra ldﬂ dr? + r \ dr dr? + dr? dr + rdr

b
qf=/ q¢; rdr (5)

Problem 5.3: The differential equations governing axisymmetric bending of circular
plates according to the shear deformation plate theory are

—% [d% (rM,) — Mae} +Qr=0 (2)

where

Mrr:D<d_\II+VE>, M99:D<I/d—\p—|—g)
dr r dr r

Q, = K,GH (xp n d—w>
dr

D = EH3/[12(1 — v?)] and H is the plate thickness. Develop
(a) the weak form of the equations over an element; and
(b) the finite element model of the equations.
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Solution: (a) The weak forms of the equations are obtained as follows:

Tb 1d
0= /Ta (1 {—;5 (rQr) —Q} rdr

— / [C;m Qr_q} rdr + oy - (—r Q)%

- [i}” Q= a] rdr — 1)1 — 11 ()5 (1)

b 17d
0= / Vg {—— [— (rMy,) — M99:| + QT} rdr
ra r Ldr

d
- / [ de (rMyr) + vaMgg + vlrQr] dr + [va - (— TMW)]:Z

= / [Cg;? (rMyr) + vaMgg + verr] dr — va(re) Q2 — va(rp) Qa (2)

where

Ql = - [TQT]TG s Q3 = [TQr]rb s QZ = - [TMrr]ra 5 Q4 = [TMTT]Tb (3)

(b) The finite element model is given by seeking approximation of w and ¥ as
e 0 e ?)
= wi (r),  (r) = U5 =) Wiy (r) (4)
i=1 i=1

Substituting the above expressions along with v; = 1/11(1) and vy = 1/11-(2) into the weak
forms, we obtain

[ Gl Lo} = {1 ©

where
K = —rdr, Kj = / KGH 1/1 rdr = K3}
d dr
(2) (2) 2)
o 7 [P d” v [ de” A o)) 1) )
K” _/ra b dr dr +7’ vi dr * dr wj +r2¢i %‘ rdr
+ / 'K GHYP W rdr
Tb
= [l rdr 4 0 )@+ 9 (10)Qs
— P (ra) Q2 + ¥ (1) Qu (6)
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New Problem 5.1: Consider the following pair of differential equations:

2 2 2
d(du bd_w>zo’ _d_(bdu dw)_fzo

Tdz \"dr U da? 22 \"dz ~ “da?

where v and w are the dependent unknowns, a, b, c and f are given functions of .

(a) Develop the weak forms of the equations over a typical element and identify the
primary and secondary variables of the formulation. Make sure that the bilinear
form is symmetric (so that the element coefficient matrix is symmetric).

(b) Develop the finite element model by assuming approximation of the form

) = S ugtia) + wle) = 3 w0

Hint: The weight functions v; and vs used for the two equations are like u and w,
respectively.

(c) Comment on the type of interpolation functions 1; and ¢; (i.e., Lagrange type or
Hermite type) and the minimum degree of approximation functions that can be
used in this problem.

Solution: The weak forms are

Y PR PR P PR N
e, dx ad:v dx? . U1 adZL‘ dx?

Za

= /xa — (a% — bm> dx — v1(xq) Py — v1(2p) Py (1)
0= :b U2 [—dd—; (b% —c%) — f} dz
:/: [_% (b% —C%> —v2f] dz
~ y(a) Py — o) Py (%) jo (%)mb Py 2)
where P; are the secondary variables

du d?w du d?w
Pli [_ (aa_bw>‘|w 7 P27 l(a%_bw>‘|xb (3)
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p [ (e ] [ (e "
ST dr \da dz? . T e \de dz? o

du d2w du d?w

The primary variables are u, w, and dw/dzx.

(b) Substituting v1 = ¥, va = ¢;, and the above approximation into the weak forms
we obtain the finite element model

e o )= 1)+ Lty ©

where
™ dYidiy dyp; d*¢;
A”_/ Yiz dz d, Bij=-— / bdw da? dr
o o d2¢z d¢g o o d2¢z d2¢j
C’U_—/ b2 DU—/% S0
fi = / féi du (6)
Za
and
Py
Py
m={nl Q=1 (7
Py

Clearly, The coefficient matrix is symmetric because Cj; = B;j or [C]T = [B].

(c) It is clear from the weak forms that i; must be the Lagrange interpolation
functions (minimum linear) and ¢; are the Hermite interpolation functions (minimum
cubic).

New Problem 5.2: The principle of minimum total potential energy for
axisymmetric bending of polar orthotropic plates according to the first-order shear
deformation theory requires 6I1(wg, ¢) = 0, where

dv dé\lf 1 dv )\
OI1 (w \If = 2/ [(Dll_ + D12—> —_— <D12_ +D22_) o

d dr d
+ Ass <\If + c(ii_w) (6\11 + dj_w) - qéw] rdr (1)

where b is the inner radius and a the outer radius of the radial element. Derive
the displacement finite element model of the equations. In particular, show that the
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finite element model is of the form (i.e., define the matrix coefficients of the following
equation)

KN [K2)] f )\ _ [ (FY o)
(K20 (K22 ] | {v} {F?}

Solution: Clearly, the given variational statement is equivalent to the following weak
forms:

déw dw
A U+ — ) —
/ 55 [ o ( + dr) qéw] rdr (3)
déw dv g 1 av g
0= / <D11— + D12_) + =W <D12— + D22—)
b dr d r d
dw
+ As50¥ <\Il + %ﬂ rdr (4)

The variations déw = v; and §¥ = vy are the weight functions of the weak forms.
Assuming approximation of the form

wipMN (), W) =0 =S Uy (5)

=1

HMS

in (3) and (4), we obtain the finite element model in Eq. (2), with the matrix
coefficients

. M) g - 1)
Kz-ljl = / ’ Ass dwz i rdr, Kilj2 = / ’ Ass dz[l}l w](?) rdr
Ta ra r

dr
(2) 2)
22 [ 1/’ dw 1 @ 4Y; dip”  (2)

1
+ﬁmﬂ9@”+&w9@ﬂnh

E:/%%WW+%WWQ+%WM%
F? =2 (ra) Qs + 02 (1) Q4 (6)

These coefficients reduce to those in Problem 5.3 for the isotropic case.

Problem 5.4: Consider the fourth-order equation (5.2.1) and its weak form (5.2.4).
Suppose that a two-node element is employed, with three primary variables at each
node: (w, 0, and k), where § = dw/dxr and k = d*w/dz?. Show that the associated
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Hermite interpolation functions are given by

z3 1z _ 2

72 z 2 73 74 TP
¢3§<1_3E+3ﬁ_ﬁ>’ d1= 105 — 157 + 6,

[ 72 z3 4 2 (z 2
¢5:‘$<4ﬁ‘7ﬁ+3ﬁ I N VAR e

where 7 is the element coordinate with the origin at node 1 (see the figure below).

1Q
e __ e e __ e
Generalized displacements wy =4, wy = Ay
6 = 4, o5 =
Ky =A% Ky =A%

Solution: Let w(Z) &~ ¢1+caZ+c372+c473+c57*+c62° where 7 is the local coordinate

with the origin at node 1 (i.e., x = Z + 2. where z is the global coordinate and z§
is the global coordinate of the first node of element e). Evaluating w,0 = %7 and
K= CfT%’ at nodes 1 and 2 (i.e., at £ = 0 and Z = h), we obtain

w1 1 0 O 0 0 0 7 (ca
01 01 0 0 0 0 C2
kil o0 2 0 0 0 c3 .
wye (|1 h K2 A3 h* h? c4 (1)
92 0 1 2h 3h2 4h3 5h4 Cy
K9 L0 0 2 6h 12h% 20h%] \cg

Inverting the equations, we obtain

e T 2h° 0 0 0 0 0 7 (w
o 0 2h° 0 0 0 0 0,
C3 o 1 0 0 h5 0 0 0 K1 9
ca [ 2m5 | —20n% —12h% —3h* 20h% —8h® At W (2)
s 30h 16h2  3h3  —30h 14h* —2m3 0y
6 | —12 —6h  —h? 12 —6h K% ] Uky

Substituting the above expression for ¢; into the approximation, we obtain

6
w(Z) & c1 + e + e + 4T + e5T 4 c6T° = D ¢i(T) A (3)
=1

where ¢; are the required Hermite polynomials of degree 5.

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



SOLUTIONS MANUAL 117

New Problem 5.3: Compute element stiffness, mass matrices and force vector (for
uniform load) for the beam element of Problem 5.4.

Solution: The element stiffness matrix [K], mass matrix [M], and force vector {f}
are obtained by substituting for ¢; into

hd2¢id2¢j h h
Ky = BI [ SO o My =pA [ 610 dn, fi=ao [ 6 do

The stiffness matrix is

1200  600h  30R? —1200 600h  —30h2

600h  384R>  22h* —600h 216R> —8h3

K] = EI | 30n* 22n*  6h* —30hn* 8K? ht
70h3 | —1200 —600h —30h% 1200 —600h  30h?
600h  216R>  8h3  —600h 384h> —22R3

—30n% —8h3 h* 30n2 —22h%  6Rt

and the mass matrix is

21720  3732h  281h%2 6000 —1812h 181h2

3732h  832h%  69R3 1812k  —532h%  52h3

~ pAh | 281h%  69R3 6h*  181n%2  —52r%  5R4

[ ]_55440 6000 1812h  181h% 21720 —3732h 281h2
—1812h —532h? —52h® —3732h  832h%  —69R3

181h2 52h3 5h* 2812  —69h%  6h*

The force vector is given by

h
{f}T—‘%O{GO 12h h% 60 —12h h2}.

These element matrices are calculated using program Maple.

Problem 5.5: Consider the weak form (5.2.4) of the Euler-Bernoulli beam element.
Use a three-node element with two degrees of freedom (w, ), where § = —dw/dx.
Derive the Hermite interpolation functions for the element. Compute the element
stiffness matrix and force vector.

2
1 QEEEOEETRD 3

Generalized displacements wf = Ael w; = Aeg wg = Ae5

o =n, 0=, 05=A,

Solution: Let w(Z) =~ c¢; + 2% + c3T2 4 4T3 + c5T* + cz° where T is the local

coordinate with the origin at node 1. Evaluating w and 6 = —% at nodes 1, 2, and
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3 (i.e., at =0, Z = h/2, and T = h), we obtain

wy (10 0 0 0 0 c1
01 0 -1 0 0 0 0 o
1 bR I h* h®
= ? ! gh? 146h3 352h4 o
) 0 -1 —-h -3 -0 C4
w3 1 h R? h34 hZ§ h%’ Cs
03 0 -1 —2h —-3h%2 —4h® —5h*] lcg

Inverting the equations, we obtain

c hb 0 0 0 0 0 w1
o 0 —h° 0 0 0 0 01
es | 1 |-23»% 6m*  16R® 8Kt 7h3 h* wa
ea [ B3| 66R2  —13h3 —32n2 —32h3 —34h%2 —5h3 0s
s —68h  12h2 16h  40h? 52h 8h2 ws
o 24 —4h 0 —16h =24  —4h 05

The resulting interpolation functions (Hermite polynomials of degree 5) are

72 3 74 5

xT
d1=1- 235 +66h 68h4+24h

2 j3 74
P2 = — (1—6h+13h h3+4h>

—2 =\ 2
b3 = 16$ (1-%)

"
st
¢5 = (72

—4 =5
- z2 73 74

z3 T
— 34 73 + 52ﬁ - 24ﬁ>
where 7 is the element coordinate with the origin at node 1 (i.e., x = T 4+ x§. where
x is the global coordinate and x{ is the global coordinate of the first node of element

e).

New Problem 5.4: Compute element stiffness and mass matrices and force vector
(for uniform load) for the beam element of Problem 5.5.

Solution: The stiffness and mass matrices and force vector are obtained by
substituting ¢§(x) into the definitions (see the solution to New Problem 5.3). The
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stiffness matrix is

5092  —1138h —3584 —1920h —1508 —242h

—1138h 332h%2  896h  320h%  242h  38h?

K] = EI | —3584  896h 7168 0 —3584 —896h
35h3 | —1920h  320h2 0 1280h2  1920h  320Ah2
—1508  242h  —3584 1920h 5092  1138h

—242h  38h%?  —896h 320h® 1138h  332h2

The mass matrix is

2092 —114h 880  160h 262 20h

—114h  8h?  —88h —12h* —29h  —3h?

_ pAh 880  —88h 5632 0 880  —88h

[ ]_13860 160h  —12h2 0 128h%2 —160h —12h2
262 —29h 880 —160h 2092  114h

29h —3h%2 —88h —12h% 1l14h 8h?

The force vector is given by

foh

{f}T:W{M —h 32 0 14 h}

Problems 5.6-5.20: Use the minimum number of Euler-Bernoulli beam finite
elements to analyze the beam problems shown in Figs. P5.6-P5.20. In particular,
give:
(a) the assembled stiffness matrix and force vector;
(b) the specified global displacements and forces, and the equilibrium conditions;
(c) the condensed matrix equations for the primary unknowns (i.e., generalized
forces) separately.
Exploit symmetries, if any, in analyzing the problems. The instructor may also ask
the students to compute the secondary variables at points other than the nodes.

Solution to Problem 5.6: Divide the structure into a vertical part AB and
horizontal part BC, as shown in the figure. Then use one finite element in each
part. Note that part AB has both transverse and axial loads (i.e. bending and
extensional deformation), while part BC' has only bending deformation. We consider
each part separately.
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P z —07 ¢
B Y 1/ }c_"
- C . ]
IE— i s
v
_o¢
b r)x ?
? 5?—) X
f z
y out of the paper
Figure P5.6

Member AB. For bending deformation we have

6 —-3b —6 —3b] (U, O
2ET | =3b 202 3b b2 U2 | ) Q2 .
B | -6 3 6 3b Us [~ 0 (1)
—-3b b2 3 22 Uy —Pc

Using Uy = Uz = 0 (at the fixed end) we obtain

2ET 6 3b Us| 0 B B_Pcb2 B Pecb

For extensional deformation of member AB, we obtain (using one linear element)

EATL —11(U8\ _ [P (3)
b |1 1] \Us [ | P
Using U{ = 0 (at the fixed end) and P, = —P, we obtain U§ = —uf = —Pb/FA.

Member BC. For bending deformation we have

2ET [ 6 3¢ U3\ [P _ Bc_P03 — pBC _ pc?
3 [30 202]{U4}_{0} - W=Ewt =gpn =67 =g ()

Thus, the vertical and horizontal deflections and rotation at point C are

Pb P Pc?

¢c_,B, BC_ B . _

uy =uy +u 0, -c EA+3EI+ 7 (down)
Pcb? .
uf =ub = 5B (to the right)
Pcb  Pc?

C B BC e

0, =0, +06,~ = 5T~ 2BI (CW) (5)
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Solution to Problem 5.7: Two-element mesh is used, with

hi =96 in., hg =48 in, EI =6 x 10® Ib-in®, ¢y = 400/12 Ib/in.

1,000 1b
600 lb/ft

YYYYYYYYY Y
VAN [@ N

le—— 8 ft. —ple—s ft—>|

EI=6 x 108 1b-in2.

Figure P5.7

The boundary conditions and equilibrium of internal forces require:
Ui=Us=0, Q" =0, Q" +Q¥ =0, @ =10001b, Q=0 (1)

The assembled equations are

0.814 —-39.063 —0.814 —39.063 0 0 Ui
2500  39.063 1250 0 0 Us

7324 -11719 -6.510 —156.25 Us

7500 156.25 2500 Us

6.510  156.25 Us

104

5000] \ Us
(1)
Q%l) 0.240
02 —3.840
+ 0.240
=G T bt SR @
Q4 +Q2 ’
o 0.000
&) 0.000

4
The solution is

Uy = —0.003099, Uy = 0.003125, Us = —0.15002 in., Us = 0.003125

Solution to Problem 5.8: (a) For this problem, we have [K!] = [K?] and
{f?} = {0}. The assembled equations are given by

T 6 —=3h —6 —3h 0 071 (U

—3h  2h? 3h h? 0 0 Us

2EI | =6 3h 6+6 3h—3h —6 —3h| ]| Us
3 | =3h  h? 3h—3h 2h2+2KZ 3h h2 Uy
0 0 —6 3h 6 3h Us
0 0 —3h h2 3h  2h% ] \Ug
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6 Q1
—h Q3
T 12 | h+0 Qi+ Q3
0 Q3
0 Qi
90

EI=constant

YYVYY

h

4#*—4

Figure P5.8
(b) The specified generalized displacements and forces are
Uy =Us=Us=Us=0; Q3+Qi=0, Qi+Q3=0 (2)

(c) The condensed equations for the generalized displacements are,

2E1 712 0 Us\ _ @h [6 (3)
3 |0 4h?|\Usf 12 | A
For this problem the number of the unknown generalized displacements is two, and
hence Eqn. (3) can be solved easily:

_ qoh? _ qh?
Us=RE1 U~ 96T (4)

The condensed equations for the generalized forces (i.e., reactions at the clamped
ends) are given by

Qh 2EI 13

Q% = - (6Us + 3hU4)? = —1_6(]0h
1 _QOh2 2 2BT — E 2
Q5 = ETE + (3hU3 +h U4) e 48f0h
2FET 3
Q% = — = (—6Us + 3hU1) = —=aoh
2FT 5
Q2 = _F(_?’W?’ + h2Uy) = _4_8q0h2 (5)
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The bending moment from the definition is given by
d?w 4 d? ¢}
M= —El—|s—o5n = EIY  u}——|,—
dx2| =0.5h ;UZ ) |z=0.5h

d>p} d*¢}
=—-FEI (UP’W + U4W le=0.5h

_ qoh?

Solution to Problem 5.9: We can exploit the symmetry about the middle of the
beam and use two beam elements to analyze the problem. We have

hi=4in., (EI);=30x 10 x 614(1.5)4 = 7.455 x 10° Ib-in.
hy =6 in., (EI)s=30x 10° x 614(2)4 = 23.562 x 108 Ib-in?

and the element stiffness matrix is given by

6  —3he —6 —3h
2EB.I. | —3h. 2h%Z 3h. h?
h3 —6  3he 6 3he
—3he h%Z  3h. 2h2

The force vector on the element is zero, and on the second element it is

Py =D 6 —he 6 )"

Steel members (E,= 30%10¢ psi)

200 1b/in.
1.5 in. dia. y 1.5 in dia.
2 in dia.

41in

et Pple— 12 in —ple ]

L 200 Ib/in.

U, =
| Ty -o
Cl: t <I:_ﬁ,] U, =0
Q; I"4 in 6 in sz U1 ~0 U3 U5

Figure P5.9
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Thus, we have the assembled equations

1.398 —2.796 —1.398 —2.796 0 0 Uy
7455  2.796  3.728 0 0 U,
106 2.707 —-1.131 —-1.309 -—-3.927 Us
23.16  3.927  7.854 Uy
symm. 1.309 3.927 Us
15.71 Us
1
% :
@) 0
_Jey+oR L) 6w W
= | B .
o o [T o
Q(2) 600
) 600
Q4
The boundary conditions are
dw
w(0) =0— Uy =0, %(0):0—>U2:0
dw dM (2)
dx(o) 0—Us =0, dx(o) 0— Q3 0

The equilibrium of internal forces require

© =0 0+ =0

Thus, the unknown displacements Uz, Uy and Us can be determined from equations
3 through 5 of (1). The generalized displacements are

Uz = 0.00252 in., Uy = —0.00083, Us = 0.00546 in.

The reaction force and bending moment at the left support and internal bending
moment at the center of the beam can be determined from equations 1, 2, and 6 of

(1).

Solution to Problem 5.10: We must use two elements, with

hi =0.12m, (EI); =200 x 109(0.03)461 = 7.952 x 103 N-m?,

hy =0.12 m, (EI)s =200 x 109(0.02)4614 = 1.571 x 10®> N-m?
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1 kN Steel members
(E,=200 GPa)
200 N/m

1011

—pjle— —|

12 cm 12 cm

Figure P5.10

The boundary conditions are

dwo
dx
M(24) = My — QP = My = —5 x 103 N-m

UJQ(O):O—>U1:0, (0):0—>U2:0, w0(24):0—>U5:0

Equilibrium of the internal forces require

PP =R =10°N, Q"+ =0
The assembled equations are

[5.5222 —0.3313 —5.5222 —0.3313 0 0 7 (U
0.0265  0.3313  0.0133 0 0 Us

6.6132  0.2659 —1.0910 —0.0655 Us

0.0317  0.0655  0.0026 Uy

1.0910  0.0655 Us

107

i 0.0052] | Ug
Q) 1o
(1)
Q5 —24
)oY+ L)
Q4 + o 2
2) 0
% 0
Q4

The solution is

Uz = —0.3002 cm, Uy = 0.03767, Us = —0.15184

Solution to Problem 5.11: The beam can be modeled with two elements of length
h=5m. We have [K!] = [K?] and {f'} = {f?}.

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



126 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

o =400 N/m

YYVYVYYYY

——

h=5m h=5m
El=4x10°* N-m

YYYY

Figure P5.11
(a) The assembled equations are

-6 —3h —6 —3h 0 01 (0

—3h  2h2 3h h2 0 0 Us
2EI | -6 3h 6+6 3h—3h —6 —3h| | Us
3 | =3h K% 3h—3h 2h24+2r2 3h h2 Uy

0 0 —6 3h 6 3h Us
L 0 0 —3h h? 3h 2r% ] \Us
6 Q1
~h Q3
qoh ) 646 Q3 + Q3
== 1
12 Y h—h () Ql+q2 1)
6 Q3
h Qj
(b) The specified generalized displacements and forces are:
Ui=Up=Us=0; Qi+Q5=0, Q5=0,Q1=0 (2)

(c¢) The condensed equations for the unknown generalized displacements are (delete

the first, second and third rows and columns from the assembled equations in Eqn
(1))

4h? 3h K27 (Us h—h
% 3h 6 3h|{Us :% 6 (3)
h? 3h 2n?) | Us h

The equations for the unknown generalized forces are

Q} o [3h 0 0 Uy 6
PR T A e P
Qi+ Q3 0 6 —-3h| (Us 12

For the following values of the parameters, h = 5m, gy = 400 N/m, and
ET = 4 x 105 N-m?2, solution of equations (3) gives

Us = —0.0013021, Us = 0.014323m, Us = —0.0033854 (5)
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The bending moment at = 7.5 m or Z = 2.5m is given by (note that Us = 0)

d2 4

. w
M® = —Bl—— o5 =F Z !m 75
d2¢2 d2 2 d2¢3 d2¢)421
= FI — B _
<U3 2 T Uy— = 2+ Us—2 2 T Us 122 |2=7.5
d2 ¢2 d2 ¢2 d2 ¢3 d2 ¢Z
—FEI U322 k)
<U3 g2 T Uy—— g2 T Us R Us 72 |z=2.5
= —1,666.67 N-m (6)
Solution to Problem 5.12: The assembled equations of the two-element mesh are
T 6 —3h —6 —3h 0 07 (U1
—3h  2h? 3h h? 0 0 Us

2ET | -6 3h 646 3h—3h —6 -3h||Us
h3 | —=3h h%2 3h—3h 2h2+4+2h2 3h A2 U,

0 0 -6 3h 6 3h | |Us
L0 0 -3k n2 o 3h 202 ] U
Q) 0
Q3 0

)i+ q@h ) 0+6

V10l Q2 (T2 0-n
Q3 6
Qi h

The boundary and balance conditions are

Uy =0, Qq=aFy, Us=0, Qi+Q3=0, Q3=-F, Qj=0

F, a F,
|<_/ - 9 A

EI = constant WWW m_) xm ¢ * * ¢ Y

-
-
-
-

h

Figure P5.12
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Hence, the condensed equations are

22 K2 0 0 Us aFy 0
2BL | b 4h® 3ho h? ) Us{ ) 0 aoh ) —h
h3 0 3 6 3h Us () -F1 12 ) 6

0 h%2 3h 2Ah? Us 0 h

Us

Qf \ _2BI[-3n -3 0 0 1)Us| ah (0
Qy+Q2f " W [3h 0 —6 =3k \Us( 12 16
Us

Solution to Problem 5.13: The primary objective of this problem is to compute the
force vector for element 1. The distributed force is given by ¢(x) = go(z/h) = 100z.
The components of force vector due to the distributed load are given by

o_ ("o _ @ [t
q; 7/0 q(z)pi(x) do = n s x¢;(z) dx

where the interpolation functions in Eq. (9.58) are used (with £ = z). We obtain
(go = 500 and h = 5)

9 375.00

{q(l)} _ @ —2h _ —416.67
60 21 875.00

3h 625.00

The boundary and balance conditions for the three-element mesh are
Ul = 07 U7 = 07 le) = 07 Q:(Sl) + Qgg) =0

PP =0, QY +@P =100, QP +Q¥ =0, ¥ =o0.

aly

X ]

q,= 500 N/m> F,=1,000 N
A

5 m 5m 5 m

EI=constant

Figure P5.13
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The solution is given by

Uy = —0.24826, Us = 0.99537, Uy = —0.11111, Us = 0.98380
Us = 0.11806, U = 0.23611,
where U; = U;(ET x 1079)

Solution to Problem 5.14: (a) The assembled equations are

12 —6h —12 —6h 0 0 Uy

—6h 4h? 6h 2h2 0 0 Us
2E1 | -12 6h 1246 6h—3h —6 —3h| | Us
13 | —6h 2h2 6h —3h 4h2+2h2 3h  R2 Uy

0 0 -6 3h 6 3h | |Us
0 0  -3n n2 o 3h 202 ] LU
Q) 6
Q3 —h

QL+ Q2 qoh | 640
QL+ (T 12 Y h+o
Q3 0
Q3 0

(b) The boundary and balance conditions are

Up=0, Up=0, Q3+Qi=F, Qi+Q3=—-d F,, Q3=—kUs, Q=0

F, ,d

—_—Rigid loading frame
h=4m, EI=50 MN-m? k=1 MPa

(a) | F,=5kN, f,=1kPa,d=0.5m
h %.} Linear elastic
' spring, k
1 2
Qg +Q1 =—M0=—d FO
1 @ @ 3
1 1 2
f+ QY ¢ B e —
(b) 2EI El
1 1 = > >
h +Q y h Y oY
1
Yz fo + FO Qg = —kUy

Figure P5.14
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The condensed equations are

18 3h —6 —3h] (Us Fy 6
2B | 8h 6n?  3h 0 | ) U\ _ ) -dFo | ah ) h
| -6 3hn 6+a 3h Us [~ 0 1210
—3h h2  3h  2K2 Us 0 0
Qi _2BI[-12 —6h|[Us\| @h [ 6
Q) 3 | 6h 21|\ U, 12 | —h
where
 kR?
CT oI

Solution to Problem 5.15: (a) For this problem, we have [K!] = [K?] and
{f?} = {0}. The assembled set of equations are

6 —3L —6 —3L 0 0 Uy

—3L 272 3L L? 0 0 Us

2FI | —6 3L 6+ 6 3L—3L -6 -3L| | Us
I3 |-3L L[? 3L-3L 2L?+2L? 3L L? Uy

0 0 —6 3L 6 3L Us
0 0 —3L L? 3L 2L? Us
Q) 6
Q3 —L
Qi+ Q3 gL ) 6+0 ]
Ql+Q3 (T2 Y L+0 M)
7 o
o o

where L =5 m, EI =2 x 105 N-m? and ¢g = 1,000 N/m.

1,000 N/m ~ 2P00N
_ 1,250 N-
=y *****V%f“\/ " Linear spring,
7 N k=10 EI (N/m)

llll

|<—5m—%5m m;

EI=20%x10"Nm?

Figure P5.15
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(b) The specified generalized displacements and forces are
Ur=Uy=Us=0; Qj+Q5=—My, Q3=F —kUs, Qj=0 (2)

(c) The condensed equations for the generalized displacements are,

AL? 3L 127 (Ua L ~ Mo
2E1 L
S8l 6 3L |{Us = —(110—2 0$+! R —kUs (3)
L? 3L 2L?] \Us 0 0
A2 3L L2 (Us L ~ My
2BT L
3L 64+p BL|{Us o= ‘110—2 0p+{ F (4)
L? 3L 2L?] \Us 0 0

where = kL3/2EI. Using the given values of the parameters
L =5, go=1,000, My =—1,250, Fy = 2,500, EI =2 x 10° k=10"1EI
we obtain the solution,
Uy = —0.7237 x 107%, Us = 0.0879 x 10~%2m, Ug = —0.2275 x 1073 (5)

The condensed equations for the generalized forces are given by

Q1 3L 0 0 Uy 6
{ Q! 2531 2 0o 0 |{Us —% L (6)
Qi+ Q? 0 -6 —3L| |Us 6

The bending moment at a point, for example at © = 7.5 m or £ = 2.5m, can be
computed from (note that Us = 0)

d*w N
Me EIdQ\xm EIZQdCbQ\xm

d22 d2 d2 d2
—EI<U3—¢+U4 ¢2+U ¢3+U ¢4>Ix 7.5

dx? dx? dx? dz?

d2 ¢)2 d2 ¢2 d2 ¢3 d2 ¢4
EI(Ud—+U4d +Us——3 + Us—— | la=2s
— 6,206 N-m (7)

Solution to Problem 5.16: This problem can be modeled with four elements with
h1 = hy = hg = hy = 5 ft. The main objective here is to represent the applied
loads appropriately. The global node 2 will have a downward load of 1,000 lbs. and
bending moment of —1,000 ft-lbs (CCW). The total size of the assembled global
stiffness matrix is 10 x 10. This problem may be solved by FEM1D. The main steps
are outlined here.

The boundary and balance conditions are

Ui =0, Q3=0, Q5+ QF =1,000, Q} +Q3=1,000, Us =0, Q3+ Q3 =0
QI+ Q3=0, Q3+ Q}=unknown, QI +Q3=0, Q4=0, Q1 =0
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1000 lbs| 1 ft.

Rigid
member 500 lb/ft.

4%”—*—*—7’%%4

Pin joint

EI = constant

Figure P5.16

(a) The condensed equations for the unknown generalized displacements is
given by deleting the rows and columns corresponding to the specified generalized
displacements. Thus, by deleting rows and columns 1 and 7, one obtains a 8 x 8
matrix equation.

(b) The unknown generalized forces Q1 and Q3 + Qf can be computed from
equations 1 and 7 of the assembled set.

(c) The bending moment at x = 2.5 ft is given by

. d*w 1 A2}
M :EIW|QC:25 EIZ lld 2’1 =0.5h

d2¢2 d2¢3 d*¢j
dn2 + Us a2 + Uy 02 ’J; 2.5

_ k1 <U
The generalized displacements are given by

Uy = —1.2187, Us = 4.5660 ft., Uy = —0.3021, Us = 3.2986 ft.

Us = 0.6979, Ug = —0.01042, Ug = 3.9583 ft., Ujp = —1.0521

where U; = U;(ET x 10~%). The deflection, rotation, bending moment and shear force
at x = 2.5 ft. are given by

w, = 2.8559 x 10*/EI in, 6. = —0.9895 x 10*/ET

M€= —1833.33 Ib-ft, V¢ = —733.33 lbs
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Solution to Problem 5.17: (a) The assembled stiffness matrix of the beam
structure (the displacement degrees of freedom associated with the fixed end are
set to zero) is 8 x &:

r12+12 —6L—6L -12 —6L 0 0 -12 6L
—6L—6L 4L2+4L? 6L 412 0 0 6L 2L2
~12 6L 124+12 6L-6L -12 —6L O 0
EI —6L 212 6L —6L A4L2+4+4L%2 6L 2L?2 0 0
3 0 0 —12 6L 12 6L 0 0
0 0 —6L 212 6L 4L? 0 0
—-12 6L 0 0 0 0 12 6L
—6L 2L2 0 0 0 0 6L 4L2]
0 Ql+Q3 0+6
0 QI +Qs 0-L
Uy QI+ Q7 0+0
WAZA Qi+ Q3 n gL }J 0+0
Us Qg 12 0
Uy Q% 0
Us Qg 6
Us Q; L

Using the free-body-diagram of the springs, we can write

Q3+ QF = k1(Us — Un),

Hence, the condensed equations become

Q}l + Q% = _k2U37

(24482 o 12 6L B o]
0 8L2 6L 2L 0 0
Erl -12 6L 12+%- 6L 0 0
L3 —6L 217 6L 4L2 o 0
s 0 0 0 12+4° 6L
.0 0 0 0 6L 412
U, U,
] k(U5 -Uy)
% © A @ i
0 wo E- L.
U e 31
@ Qo ¢ l
L L
k(U =Uy)

Qé +Q12 =k (U;-Uy),

Figure P5.17

Ux
Us
Us
Us
Us
Us

ks U,

ks U,

Q3 = —ke(Us — Un)

12

Noocoocoo

Qg = _kl(U5 -Uy), Q32 = _szs
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Solution to Problem 5.18: The problem can be represented by two elements:
h1 = 8 ft. and hy = 6 ft. The main objective of this problem is to be able to compute
the force vector for element 1:

i = [ o) do = [t baate) dr

0

where a = qo,b = —qo/h?,q0 = 1,000 Ib/ft and h; = 8 ft. The components of force
vector due to the distributed load can be computed using the above formula

26 3,466.7
{ (1)} _ C]o_hl —4h, _ —4,266.7
60 14 1,866.7

3h 3,200.0

o= 1,000 Ib/ft

Y gx)=a+ b x2
m FO:LOOO 1b
v N Y

————— > ¥

s o e

2,W,

EI= constant
Figure P5.18
The specified boundary conditions and balance of secondary variables are
Ur=Us=0; Q3+Q7=0, Qi+Q5=0, Q3=1,000, Qf=0.
The solution is (in ft and radians)
Us =0.3868, Uy = —0.6613, Us = 0.7836, Us = —0.6613
where U; = U;(EI x 107%). The bending moment and shear force at x = 3 ft., for
example, are M¢ = 11,133 ft-Ib. and V¢ = —2,866.7 1b. The values at x = 0 are:

M(0) = 19,733 ft-1bs. and V(0) = —2,866.7 lbs, which are quite a bit in error. The
values obtained from equilibrium are M (0) = 24, 000 ft-1bs. and V' (0) = —6, 333.3 lbs

Solution to Problem 5.19: The beam ABC (see Fig. P5.19) rests on simple
supports at points A and B and is supported by a cable at point C'. The beam has
total length 2L and supports a uniform load of intensity q. Prior to the application
of the uniform load, there is no force in the cable nor is there any slack in the cable.
When the uniform load is applied, the beam deflects downward at point C' and a
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tensile force T develops in the cable. We are required to determine the magnitude of
force T' using the finite element method.

YYYYYYYYYYYY YYYYYYYVYYYYYY C

Figure P5.19

From Fig. P5.19, we have (using two elements) the following global system of
assembled equations:

6 -3L  —6 —3L 0 01(lhh
—3L 272 3L L2 0 0 Us
2EI | -6 3L 6+6 3L—3L —6 —3L| | Us
I3 | -3L L? 3L-3L 2L2+2L? 3L L2 Uy

0 0 —6 3L 6 3L Us
L O 0 —3L L? 3L 2L% | \Us
Qi 6
Q3 —L
_ ) Q3+Qi [ _dL ) 6+6 (1)
QL+ Q3 12)L-L
Q3 6
Qi L

The boundary conditions of the problem are
U1=0, Us=0, Q=0, Q3=T, Qj=0 (2)
and the balance conditions are
Q4 + Q3 = unknown reaction, Q)+ Q3% =0 (3)
We know that the elongation in the cable is Us that causes the tension 7"

_ E.A,
D)

E.A.

T Us = hUs, k==5 (4)
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Thus the condensed equations are

2I% I? 0 0 Us —L
2B1 | L? 41?2 3L L | JUs|_ 4L ) O 5
I3 | 0 3L 6+a 3L Us(~ 12) 6 (5)
0 L* 3L 2L? Us L

where a = % Upon solving the equations, we obtain Us; then tension 7' in the

cable can be determined from the first equation in (4):

L4 E A,
3q T

Us = A(BET + 2kL3)’ h

Us (6)

Solution to New Problem 5.5: Using the symmetry at « = L/2 the problem can
be modeled by one element. The main objective of this problem should be to make
the student compute the force vector:

hl hl
fi1 = f(x)di(z) dox = /0 o sin W—;qﬁz(x) dx

0

The following integrals are useful:

. 1. x
rsinar dr = — sinar — — cos ax
a a
9 . 2z . a’z? — 2
r”sinar dr = —5 sinax — —5—— cosax
a ad
3 . 3a2x? — 6 . a’z® — 6z
r'sinaxr dv = —————sinar — ———5—— cosax
a a

For example, we have
h
fy= qg/ sinﬂqﬁg(m) dx
0 L

b onx x2 28 8qoL? 3
:_qo/o Smf<x_2f+ﬁ> dr = — 3 <1—;)

o nx
f:)} = qg/o sin T¢3(m) dx

h qx [ 22 x3 24qoL (4
:qo/o SIHT<3ﬁ—2ﬁ> d.%': 7_(_3 (}—1)

where qg is the magnitude of the transverse load acting downwards.
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0

e — i ]

EI=constant

Figure NP5.5

The specified boundary conditions are
Ui=Us=0, Q3=0, Q3=0

The condensed equations for the generalized displacements are

1
2E1 [2h2 3h] {UQ}_ {f2 }
h3 | 3h 6 Us |
’ f3
The solution is,

Uy = 5= (27— 1f1), Vs = 6% (2n1} = 313)

Solution to Problem 5.20: We use a two-element mesh, with element 1 having
the hinge at its node 2, while element 2 is the usual beam element. The assembled

system of equations is

A
3 3 3
2 a az o 0 0 01
pr| - & ArE -p B p| =
0 0 _6 £ 6 2 02
b ph ¢k b
o 0 % g ¥ P 93
6 2 6 4
| 0 0 2 7 2 b 2
1 0
J 0
Qi+ Q? qob | 6
_ Qo 1
Qi+ Q3 METR R (1)
Q3 6
2 b
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Figure P5.20
Using the boundary conditions

wi =0, 01 =0, w3=0, 03=0, Q3+QI=F, Qi+Q3=0
we obtain the condensed equations
3, 12 6 1 2
= +35 —3 Wy = W qb [ 6 Fy
a3 b3 b2 2 1 _ 17
er[ = e -5 {5 {0

and the solution is given by

1 vt Fyb? 3
0 = w2 _<q0 N 0) a

“EI\ 8 3 ) a®+ 053
02— 1 qo(8a® — b?) n Fya? b
L™ EBI 48 20 | a3+ 03

(2)

(3)

Problem 5.21: Analyze Problem 5.8 using the reduced-integration Timoshenko
beam finite element (RIE). Use a value of % for the shear correction factor and

v = 0.25.

Solution: (a) The assembled equations are given by

-4 —2h —4 —2h 0 0 71(Uy
—2h h+a 2h h? — « 0 0 U,y
GAK, —4 2h 444  2h—2h —4 —2h Us
( 4h ) —2h h?—a 2h—2h 2(h®+a) 2h REP-a| U,
0 0 —4 2h 4 2h Us
L 0 0 —2h W2—a 2 R2+al (U
1 Q7
0 Q3
_qh J1+0 Qi+ Q? _ 4EI
= + it 20, Q=
2 0 Qi+ Q3 GAK,
0 Q3
0 Qi

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



SOLUTIONS MANUAL 139

9o

EI=constant

YYVYY

h

44*—4

Figure P5.21
(b) The specified generalized displacements and forces are
Up=Us=Us=Us=0; Q3+Qf=0, Qi+Q3=0 (2)

(¢) The condensed equations for the generalized displacements are

(E 1 ol {0t -2{0) 3)

Solving Eqn. (3), we obtain (for v = 0.25, A = 12]/H? and K, =5/6 — a = H* H
being the height of the beam)

@l q@h* (H\? _
(%4GAK;MEI(h)’[QO (4)

which is clearly not a good solution; the Euler-Bernoulli beam solution is

_ qoh? _ qh?
Us= RE1 U~ 96ET

An increased number of elements will improve the result.

The condensed equations for the generalized forces (i.e., reactions at the clamped
ends) are given by

1 _M B GAK, B _§
Ql = 5 (u@+2mh)4h =W
Q% = [2hU3 + (h2 — a)Uy] Gi}f{s = éqoh2
GAK, 1
Q% = (—4Us + 2hUy) o :—Z%h
GAK, 1
QF = [220Us + (W — a)Us] == = —gaoh” (5)
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Problem 5.22: Analyze Problem 5.8 using the consistent interpolation (quadratic
w and linear ¥) Timoshenko beam element (CIE-1). Use a value of 2 for the shear
correction factor and v = 0.25.

Solution: This problem differs from Problem 5.21 only in the load vector. (a) The
assembled equations are given by

4 —2h —4 —2h 0 0 Ui
—2h h*4+a  2h —a 0 0 Us
GAK; —4 2h 444 2h—2h -4  —=2h Us
4h —2h h?—a 2h—2h 2(h®+a) 2h R?—a Uy
0 0 —4 2h 4 2h Us
0 0 —2h W—a 20 h+al \Us
6 Q)
—h Q3
Qoh | 6+0 Q3+ Q3
- 1
2] b (T)Ql+q2 )
0 Q3
0 Qi
(b) The specified generalized displacements and forces are
U1=Uy=Us =Us =0; Q3+Q1=0, Qi+Q3=0 (2)
(¢) The condensed equations for the generalized displacements are
T [ R
4h 0 2(h%+a)| \Usf ~ 12 \hJ’ =~ GAK,
Solving Eqn. (3), we obtain, using the data v = 0.25, A = 12I/H?, K, = 5/6 and
a= H?
h2 h3 K3 hN2] T
g oy q0 _ 1+<_) (4)
4GAK;, 6(GAKsh? +4FEI) 24FEI H

The condensed equations for the generalized forces (i.e., reactions at the clamped
ends) are given by

Q! = —% — (4U3 + 2hU4)Gf]f(s = —gﬁ)h ~ 0 io};/hg)
i s T+
- s Gl L

Qi = [-2hUs + (h* — a)Uy] fo == —q‘f : 1 ;j§Z§ q°6h : (5)
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Problem 5.23: Analyze Problem 5.8 using the consistent interpolation (cubic w
and quadratic ¥) Timoshenko beam element (CIE-2). Use a value of % for the shear
correction factor and v = 0.25.

Solution: The element matrix for the IIE (CIE-2) element is given by

6 —3h. -6 —3h, w§ qf Q1
2EcLe\ | ~3he 2028 3he 2O | [Pl _Jas |, ) Q5
pehd) | =6 3he 6 3he | Jw§( s Q5

—3he  h2O©. 3he 2hZ%.] | S5 as Q4
where
A—ng =14+12A,, O.=1—6A,, X.=1+3A
© T GuAdh2 0 M T o T '

(a) The assembled equations are given by

6 —3» -6 -3 0 O Uy
—3h 20*Y 3k K*© 0 0 Us
(2EI) —6 3h 12 0 —6 —3h|])Us

i3 ) | —3h Rh2© 0 4R 3h 2O | | Ul

0 0 —6 3h 6 3h Us

0 0 —3h h?2© 3h 2h2% Us
6 Q1
—h Q3

_q@h | 6 QY+ Q3

"2y R (T ol+ 0 (1)
0 Q3
0 Q3

(b) The specified generalized displacements and forces are
Ur=Uy=Us =Us =0; Q3+Q1=0, Qi+Q3=0 (2)
(¢) The condensed equations for the generalized displacements are
2EIN\[12 0 Us qh [ 6
Ga) [0 ] {un} =32 00 ®
The generalized displacements are given by

_ pgoh* 2 ol _ _pgoh? _( 1 +3s° ) ot

 48ET

Us (1+3s

48ET’ YT 96EIY  \1+0.75s2 ) 96E1
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where s = H/h is the element height-to-length ratio. The condensed equations for
the generalized forces (i.e., reactions at the clamped ends) are given by

2E] _3q0h_< 1 )qoh

h
Qb = -2 _ (6U; + 30Uy =

9 h3 4 1+0.75s82) 16
Q= qi—fj + [3hUs + h*6U] ﬁ:{ - 5?12 (114:01.%55852> QZZQ
Q2 = (—6Us3 + 3hU4)% = —% (ﬁ) %
Q% = (=3hUs + h29U4)% == _qoéﬂ + (114:01.558322> qzlj (5)

Compare these values against those of the Euler—Bernoulli beam solutions from
Problem 5.8:

_ qoh* U, — qoh®
37 U8ETD’ 17 96ET
13 11
1_ 1_ 2
Q1 = 16(10717 Q2 48f0h
3 5qoh?
2 2
= —"qgoh = — 6
QS 16q0 y Q4 48 ( )

Clearly, the Euler—Bernoulli beam solution is obtained by setting s = 0 in Egs. (4)
and (5).

Problem 5.24: Analyze the problem in Figure P5.24 using the consistent
interpolation (quadratic w and linear W) Timoshenko beam element (CIE-1). Use
a value of % for the shear correction factor and v = 0.25.

Y YYYYYYYYYYYY

AAAA
v

|<— h —>le—— h—>|

Figure P5.24

Solution: (a) The assembled equations are given by

T4 —2h —4 —2h 0 0 1 (U1

—2h R’ +a 2h h? -« 0 0 Us

GAK, —4 2h  4+4  2h—2h —4 —2h Us
( 4h ) —2h h?—a 2h—2h 2(h*+a) 2h K —al||Us
0 0 —4 2h 4 2h Us

L 0 0 —2h hW2—a 2 R2+al U
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6 Q}
—h Q3
_wh ) 6+6( ) Qb +Q
T 12 ) h—h Qi+ Q3
6 Q3
h Qi

(b) The specified generalized displacements and forces are
Ur=Uy=Us =Us =0; Q3+Qi=—kUs, Qi+Q5=0

(¢) The condensed equations for the generalized displacements are

26K 1 0 Us 1 AET
h = qoh a =
0 (h? + a)8ks | | Uy 0/’ GAK,
Solving Eqn. (3), we obtain
qoh?
Us=—"— Uy=0
T 2GAK, + kb *

143

(4)

The condensed equations for the generalized forces (i.e., reactions at the clamped

ends) are given by

Ql— _Bh  GAKs,  aoh _ wh
! 2 hoo? 2 2(1+0.5sp)
0l = qoh? GAKSU _ qoh? qoh?
27 12 2 7 12 41+ 0.5sp)
o_ _wh GAKs, = qh _ qh
@=-7 T 2(1 + 0.5s,)
QQ _ _QO_hQ . GAKSU _ _QOh2 _ QOh2
4 12 2 ° 12 4(1+0.5s)

where s = kh/GAKs.

()

Problem 5.25: Analyze the problem in Figure P5.24 using the consistent
interpolation (cubic w and quadratic W) Timoshenko beam element (CIE-2). Use

a value of % for the shear correction factor and v = 0.25.
Solution: (a) The assembled equations are given by

6 -3 -6 —-3h 0 0 U1

—3h 2hr2Y 3h KO 0 0 Us

2EI\ | —6 3h 12 0 -6 -3h|]Us
(W) —3h K20 0 4h®% 3h R?© |\ U,
0 0 -6 3 6 3h Us

0 0 —3h h?20 3h 2n°%] \Us
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6 Q}
—h Q3
qoh | 6+6 Qi+ Q?
_ Qo 1
2 Yh—n(" Qi+ Q3 (1)
6 Q3
h Q3
where
A—i =14+12A,, ©.=1—-6A., X.=1+3A
e — GeAeKshg ,  MHe = e e — e e — e

(b) The specified generalized displacements and forces are
Ur=Up=Us =Us =0; Q3+Qi=—kUs, Qi+Q3=0 (2)

(¢) The condensed equations for the generalized displacements are

UEI
222 4k 0 U. 1
[Mho 8E12]{Ui}:qoh{o} (3)

uh

The generalized displacements are given by

pqoh* qoh* ( p )
g = = 4
Us = Simr + jn® — 2487 15 pspye ) U470 )

where sy = kh3/4EI. The condensed equations for the generalized forces (i.e.,
reactions at the clamped ends) are given by

le_M_HEfU:_M_M( >
1 2 3 P 2 2 1—1—,usk/6
2 2 2
1 qh”  6EI _  qoh qoh ( )
@2 =75 +Mh2U3_ 2 Tt 1+usk/6
Q2 _ _@ _ 12E1 _ _qoh qgh( >
3 2 a3 ? 2 1+ psy/6
2 2 2
o Qh” G6EI . qh®  qbh ( 1 >
@i=—7 2 2T T Tt (T megs 5)

Problem 5.26: Consider a thin isotropic circular plate of radius Ry and suppose
that the plate is clamped at r = Ry. If two finite elements (see Problem 5.2) are
used in the domain (0 < r < Ryp), give the boundary conditions on the primary and
secondary variables of the mesh if the plate is subjected to (a) a uniformly distributed
transverse load of intensity gg, and (b) point load (g at the center.
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Solution: The geometric boundary conditions of the problem require vanishing of
the slope dw/dr at r = 0 and r = Ry, and deflection w at r = Ry irrespective of the
load. Thus, we have

(a) Uh=Us=Us=0; Q1=0, Q3+Q1=0, Q;+Q3=0
(b) Us=Us=Us=0; Ql=Qo, Q3+Q3=0, Qi+Q3=0

Problem 5.27: Repeat the circular plate problem of Problem 5.26 when a two-
element mesh of Timoshenko elements is used.

Solution: The geometric boundary conditions of the problem require vanishing of
the rotation ¥ at r = 0 and r = Ry, and deflection w at r = Ry irrespective of the
load. Thus, we have

(a) Uh=Us=Us=0; Q1 =0, Q3+QI=0, Q1 +Q3=0
(b) Ua=Us=Us=0; Qil=Qo, Q3+Qi=0, Qi+Q3=0

Problems 5.28-5.35: For frame problems shown in Figs. P5.28-P5.35, give (a) the
transformed element matrices; (b) the assembled element matrices; (c) the condensed
matrix equations for the unknown generalized displacements and forces.

Solution to Problem 5.28: This is the same structure that was analyzed in Problem
5.6 using superposition. Here we wish to solve it as a frame problem. First note that
01 = —90° and 05 = 0°. The element stiffness matrices are

[ 0.0002 0.0000 —-0.0125 —0.0002 0.0000 —0.01257
0.0000 0.2500 0.0000 0.0000 —0.2500 0.0000
—0.0125 0.0000 1.0000 0.0125 0.0000 0.5000

(K] =10®
—0.0002  0.0000 0.0125  0.0002  0.0000 0.0125
0.0000 —0.2500  0.0000  0.0000  0.2500  0.0000
[ —0.0125  0.0000  0.5000 0.0125  0.0000  1.0000 ]
T 03125 0.0000  0.0000 —0.3125  0.0000  0.00007
0.0000  0.0004 —0.0195  0.0000 —0.0004 —0.0195
K% =108 | 00000 —0.0195 12500  0.0000  0.0195  0.6250

—-0.3125  0.0000  0.0000  0.3125  0.0000  0.0000
0.0000 —-0.0004  0.0195  0.0000  0.0004  0.0195
0.0000 —-0.0195  0.6250  0.0000  0.0195 1.2500 J
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The assembled stiffness matrix is

0.0002 0.0000 —0.0125 —0.0002 0.0000 —0.0125

0.0000 0.2500 0.0000 0.0000 —0.2500 0.0000
—0.0125 0.0000 1.0000 0.0125 0.0000 0.5000
—0.0002 0.0000 0.0125 0.3127 0.0000 0.0125
(K] = 108 0.0000 —0.2500 0.0000 0.0000 0.2504 —0.0195
0.0125 0.0000 0.5000 0.0125 —0.0195 2.2500
0.0000 0.0000 0.0000 —0.3125 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 —0.0004 0.0195
0.0000 0.0000 0.0000 0.0000 —0.0195 0.6250

0.0000  0.0000  0.0000]
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
—0.3125 0.0000  0.0000
0.0000 —0.0004 —0.0195
0.0000  0.0195 0.6250
0.3125 0.0000  0.0000
0.0000  0.0004  0.0195
0.0000  0.0195 1.2500 |

The boundary conditions are
Uy =U;=U3=0
Qi+0QT=0, Q3+Q3=0, Qs+Q3=0, Q1=0, Q2=P, Q5=0

The condensed equations are obtained by deleting the first three rows and columns.
The solution is given by (using program FEM1D)

Us(=ull) = 02304, Us(=ul)=4x10"" Us(=0,)=—0.00384
Ur(=uS) = 02304, Us(=uS) =0.46698, Uy(=0S) = —0.005376

[b:lOﬂ, c=8ft, P=10°1b, A=10%in?, I =10 in*, E = 30x10° psi ]

uB —quc
P ) y xlé ;
,B @ sy X P C
B ¢ T @ 3 i I
e T T —— T | "uf
Voo | Nt
@ z i
@] |6: =90 : )
A A %
) 1L 5 5 Jyoutofthe paper

Figure 5.28
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Solution to Problem 5.29: For this frame problem, member 1 has the axial stiffness
of EA and bending stiffness 2K 1 and member 2 has EA and EI, where the values of
EA and EI are the same for both members. The point loads may be distributed to
the element nodes by the formula (5.2.20), ff = Fyé$(zo), where Fp is the intensity
of the point load and =z is the distance along the member, measured from node 1 to
the point of load application.

The boundary conditions are:

Ui =Us=U3=U; =Ug =Ug=0

Uy 0.784
Us » = 10*¢ 0.400
Us 5.640

The displacements (U; = U; x 1074) are (in inches or radians):

The condensed equations are

2.5042  0.0000  0.0250
108 | 0.0000  0.2502 —0.0125
0.0250 -0.0125  3.0000

Uy =2.9448, Us =1.6917, Ug = 1.8625
The reactions (in 1bs or Ib-in) in member coordinates are:
Q1 =4,229, Q) =-2,638, QL=94,960, Q)= —4,229

QF = 7,362, Qf=—138,400, QI =7,362, Q3=—4,229
Q3% = 138,400, QF =—7,362, Q% =—3,771, Q% = —110,900

E =30x10¢ Ib/in%, v=0.3 8 kips

=102in2 T= 102 in4 —
A=102in2, I=1021n —Q41:4.229kips

B fi ¢ ft  Clais _ .
= ? . 1[:,:'-: ﬁ%— Q. =17.362 kips
st o @ Ayl Kip-i
10 kips —» 10 kips = Qs =110.9 kip-in
©,
10 f
7t 0ft
2EI -
<« 10ft > Q. = 94.96 kip-in
Y - v %\j{— Q) = 2.638 kips
IR TR e T TN _*
R < Q) = 4.229 kips

Figure 5.29
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Solution to Problem 5.30: First note that #; = —45° and 65 = 0°.

1,000 1b/ft.

Yyyyvy

A

Figure 5.30

The boundary conditions are:

Up=Us=Us3=U;=Us=Ug=0

0
=10° 20
—1,600

The condensed equations are

0.09198 —0.02945
108 | —0.02945  0.02951
0.00491 —0.00290

The displacements are (in inches or radians):

©
-« 401, —>

E = 30x10° 1b/in?,
A=10%1in2., I=10%1in%

3

- Q4 =381.5 kip-in

0.00491
—0.00290
4.85700

- Q4 =1769.5 kips

N Q. =26.86 kips
- Q2 =2.26 kips

B Q) =2.26 kips
Q! = 26.86 kips

Us = 0.003295, Us = 0.009742, Us = —0.003292

The reactions (in kips or kip-in) in member coordinates are:

Q1 =26.86, Q3 =226, Q3= —3815 Qi=—26.86

Qs =-2.26, Qf

769.5, Q2 =20.59, Q3= -17.4

Q% =1769.5, Q%= —-20.59, Q= —-22.60, Q3= —2,019

Solution to Problem 5.31: This frame is the same as that in Problem 5.29, except

that end A is hinged. The boundary conditions are:

Up=U=U;=Us=Ug=0
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The displacements (U; = U; x 1073) are (in inches or radians):

Us = —0.5702, Uy =0.3325, Us =0.1786, Us = 0.3760
The reactions (in kips or kip-in) in member coordinates are:

Q1 =4.466, Q= -1.689, Qi=0, Q= —4.466
Qf = 8311, Qf=—1574, QI =8311, Q3= —4.466
Q% =157.4, Q%= -8311, Q= —3.534, Q2 = —101.4

8 kips
B Sft ¢ i’ ft CE:'_-' EI, EA are the same
st | B @ o for the two members
10 kips == E =30%10° 1b/in%, v = 0.3
@ A=10%1in2, I=10%in*
7 10 ft
E ot %
- >
A i A
A

LR T

Figure P5.31

Solution to Problem 5.32: This structure has three members with orientations
01 = —90°, 85 = 0° and 603 = 90°. The boundary conditions are

Uio=U11=U12=0

10 kips
8ft |
Y
B4 55 @ ¢
g [ M|ar 21
3 -
S = 16t @| E=30x10° bin?,
o > A=100in2, I=200 in*

B
—— 20 ft —»‘
Figure P5.32
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For the choice of the data, the generalized displacements of the nodes of the
cantilevered frame are (solved using FEM1D)

Ur =4.8421, U =6.9311, Uz =0.0354, Us = —1.8180

Us =6.9311, Us = 3.2640, U, = —1.8186, Uz = 0.00064, Uy = 0.0230

The reactions at the fixed end are (in the global coordinates)

Fio=Q3%=8,0001b, Fi; =Q3=—-10,0001b, Fi» = Q3 = —672,000 Ib-in

Solution to Problem 5.33: This is the same frame structure as in Problem 5.32,
except that end A is now on a roller support. Thus, the boundary conditions are

Up=Uypg=U11=U12=0

10 kips
8 ft
~B 4 57 ¢
& [ s 21
£ =
S > 16t G| E=30x10° biin?,
o > A=100in2, I=200in*
| 20 ft———»
>lAay D|
il T
Figure P5.33 el

The generalized displacements of the nodes of the frame are (solved using FEM1D)
U =1.2780, Us = 0.0044, Uz = 0.5581, Us = 0.0004

Us = 0.0017, U7 =0.53575, Ug = 0.0002, Ug = —0.0017

The reactions at the fixed end are (in the global coordinates)

Fio=Q3%=8,0001b, Fi; =Q3=-3,5541b, Fip = Q3 = 874,900 Ib-in

Solution to Problem 5.34: The displacement boundary conditions are
Up=Uy=Us=Up=U11=U12=0
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and the non-zero force boundary conditions are

QL + Q2% =10,000, Q%+ Q3=5,000

10 kips .

2

b ® N 5000 1b-in,

@ E = 30%10° 1b/in2,
e [@ A=102in2, I, = 200 in*.

Iz = 102 in4., IS =200 in4.

Figure P5.34
The generalized displacements of the nodes of the frame are (solved using FEM1D)
Uy = 2114, Us =0.0015, Us = —0.0015
U7 = 0.2094, Ug = 0.0015, Ug = —0.0015
The reactions at the fixed ends are (in the global coordinates)

Fy =Q)=-4,9921b, F,=Q]=—3,7031b, F3=Q} = 375,800 Ib-in
Fio=Q3%=5,0081b, Fi; =Q3=—-3,7031b, Fi» = Q3 = 374,800 Ib-in

Solution to Problem 5.35: This is the same frame structure as in Problem 5.33,
except for the uniformly distributed load on member 2. The displacement and force
boundary conditions remain the same before.

The generalized displacements of the nodes of the frame are (solved using FEM1D)

Us = 0.21375, Us = 0.02252, Us = —0.00635

Uz = 0.20697, Us = 0.02548, Uy = 0.00334

The reactions at the fixed ends are (in the global coordinates)

Fi =Q}=6,9681b, F, =Q1="56,3001b, F;=Qi=—100,600 Ib-in
Fio=Q32=16,9701b, Fj; = Q3= —63,7001b, Fiy = Q3 = 851,200 Ib-in
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1,000 Ib/ft
p
s Y YYYYYY VYV
B @ C | 5,000 Ib-in.
E = 30%x10° 1b/in?,
10 ft @ @ A=102in2, I, = 200 in*.
I,=10%in*, I, =200 in*
A D
P e e
<« 10ft ——>»

Figure P5.35
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Chapter 6

EIGENVALUE AND
TIME-DEPENDENT
PROBLEMS

Problem 6.1: Determine the first two eigenvalues associated with the heat transfer
problem, whose governing equations and boundary conditions are given by

0 ou ou
~ (a%)jubEJrcu—O for0<ax <L

u(0) = 0, @? 4 ﬂu)

T

=0

=L

where a, b, ¢, and 3 are constants. Use (a) two linear finite elements, and (b) one
quadratic element in the domain to solve the problem.

¢c=pP a=FkA

=)

Fin’s lateral surface as well as
the end x = L are exposed to
ambient temperature

u(0) =0

Figure P6.1

Solution: Note that the problem at hand is a parabolic equation. Hence, the solution
is taken to be u(x,t) = U(x) exp(At); where, \ is the eigenvalue.

(a) For the mesh of two linear elements, the assembled equations of the eigenvalue

problem are (see Section 6.1.4):
1 -1 0 210 2 10 U1
(%—1 2 -1 141—)\%141)@
0 -1 1 01 2 0 1 2 Us

Qi
={ @+ Qf
@3
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where h = L/2. The boundary conditions are: U; = 0, Q1+ Q? = 0, and Q3 = —3Us.
It is clear that the term BUs, when taken to the left side, should add to the second
diagonal term of the stiffness matrix (because BUs does not contain A in order to add
it to the mass matrix). The condensed equations are given by

AN A A A
ha a h + - A
(% i) (2 4] 2[5 L){E)-(5)

Setting the determinant of the coefficient matrix to zero, we obtain the characteristic
polyniomial in A.

(b) For the mesh of one quadratic element, the equations of the eigenvalue problem

are:
7 -8 1 4 2 -1 4 2 -1 o]
(% 8 16 -8 +% 2 16 2 )-A% 2 16 2) Us
-1 2 4 -1 2 4 Us

1 -8 7
{Ql}
=< Q3
1
3

where h = L. The boundary conditions are: U; = 0, Q3 = 0, and Q3 = —kUs. The
condensed equations are given by

16a 8a 16ch @ 16bh  2bh U 0
|:3gba :| |:26h :|_>\|:26h 43(:91:| { 2}:{ }
D + s & 5 s0d) (Us 0
Setting the determinant of the coefficient matrix to zero, we obtain the characteristic
polyniomial.

Problem 6.2: Determine the first two longitudinal frequencies of a rod (E, A, L)
fixed at one end and spring-supported at the other:

0%u 0%u

u(0) = 0, (EAdu + ku> ~0

d

z=L

Use (a) two linear finite elements and (b) one quadratic element.
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Figure P6.2

Solution: Note that the problem at hand is a hyperbolic equation. Hence, the
eigenvalue is the square of the natural frequency of axial vibration, w.

(a) For the mesh of two linear elements, the assembled equations of the eigenvalue
problem are (see Section 6.1.4):

1 -1 0 2 1 0 Ui Q1
<ETA 12 —1}—(‘12@ 14 1 ){Uz}z{Q%JrQ%}
0 -1 1 01 2 Us Q3

where h = L/2. The boundary conditions are: U; = 0 and Q% = —kUs. It is clear
that the term kUs, when taken to the left side, should add to the second diagonal
term of the stiffness matrix (because kUs does not contain A in order to add it to the
mass matrix). The condensed equations are given by

EAT 2 17 ,pAh[4 1 Uyl _ [0

hol-1 14c¢| %76 [1 2])\Usf 710
where ¢ = %. Setting the determinant of the coefficient matrix to zero, we obtain
the characteristic polyniomial,

32 3 s _ ph? 2

TA* — (10 +4c)A+ (1 +2¢) =0, Where)\ZG—E'w

This gives two roots, which are the two eigenvalues. The natural frequncies are

obtained from _
1 [6EN;, .
W; = E 6 P , 1= 1, 2

(b) For the mesh of one quadratic element, the equations of the eigenvalue problem

are:
7 -8 1 4 2 -1 Up Q1
EA Ah !
(3_h 8 16 -8 —w2'03—0 2 16 ) Us ¢ =4 Q)
1 -8 7 -1 2 4 Us Q3
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where h = L. The boundary conditions are: U; = 0 and Q% = —kUs. The condensed
equations are given by

(A1 2] ) (- {5

where ¢ = %. Setting the determinant of the coefficient matrix to zero, we obtain

the characteristic polyniomial,
<9 _ _ ph2 9
15)\% — (52+4C>)\+(12+4C) =0, where A= 10_E - W

This gives two roots, and the natural frequncies are obtained from

w; = 1,/10}3)"', i=1,2.
h p

Problem 6.3: Determine the smallest natural frequency of a beam with clamped
ends, and of constant cross-sectional area A, moment of inertia I, and length L. Use
the symmetry and two Euler—Bernoulli beam elements in the half beam.

Solution: Note that the beam problem is a hyperbolic equation, hence the eigenvalue
is the square of the natural frequency of flexural vibration, w. For a mesh of two
Euler-Bernoulli elements in a half beam (i.e., h = L/4), the assembled equations are
given by
6 —3h —6 —3h 0 0
—3h  2h? 3h h? 0 0
2ET | -6 3h 646 3h—3h —6 —-3h
h3 | -3h h? 3h—3h 2h*+2h% 3h K2

0 0 —6 3h 6 3h
0 0 —3h h? 3h 2h%
156  —22h 54 13h 0 0 U,
—22h  4h? —13h —3h? 0 0 Us
opAh | 54 —13h 156+ 156 22h —22h 54 13h Us
Y00 | 13k —3R2 220 —22h AR2 +4R2 —13h  —3h2 Uy
0 0 54 —13h 156 22h Us
0 0 13h —3h? 22h  4h? Us
Q}
Q3
Q3 + Q7
Qi+ Q3
Q3
Q3
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The boundary conditions are: U; = Uy = Ug = 0 and Q% = 0. The condensed

equations are given by
Us 0
) b= to
Us 0

opr [ 120 61 L an
W3 )
2

0 4r* 3h

6 3h 6 420
The determinant of the coefficient matrix yields a cubic polynomial in w?. Note
that by considering the half beam we restricted the natural frequencies to those of
symmetric modes. The antisymmetric modes (only) can be obtained by using Us = 0
instead of Ug = 0.

312 0 54
0 8hZ —13h
54 —13h 156

Problem 6.4: Re-solve the above problem with two reduced-integration Timoshenko
beam (RIE) elements in the half-beam.

Solution: The assembled equations are given by

4 —2h —4 —2h 0 0
—2h h*+a  2h R2—a 0 0
GAKs; | -4 2h 4+4  2n—2h —4 —2h
4h | —2h B2 —a 2n—2h 2(h*+a) 2h h®—a
0 0 —4 2h 4 2h
0 0 —2h h2—a 2h h+a
24 0 A 0 0 0 Uy Q3
0 2I 0 I 0 0 Us Q3
_oh A 0 24424 0 A 0 Us | _ ) Q3+ Q7
0 I 0 2I+2I 0 I Us () Qi+ Q3
0 0 A 0 24 0 Us Q3
0 0 0 I 0 2 Us Q3

where a = GZLALIQ. Using the boundary conditions, U = Uy = Ug = 0, we write the

eigenvalue problem,

8 0 —4 44 0 A Us 0
(fos 0 2(h®+a) 2h —w2g 0 41 0 ) Uy p =40
—4 2h 4 A 0 24 Us 0

Problem 6.5: Consider a beam (of Young’s modulus F, shear modulus G, area of
cross section A, second moment area about the axis of bending I, and length L) with
its left end (x = 0) clamped and its right end (x = L) is supported vertically by a
linear elastic spring (see Figure P6.5). Determine the fundamental natural frequency
using (a) one Euler-Bernoulli beam element and (b) one Timoshenko beam (IIE)
element (use the same mass matrix in both elements).
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/E, G A I

k
D —

AAAA
wy

%I

Figure P6.5

Solution: One-element mesh is used. The boundary conditions are: U; = Uy = 0
and Q;l,, = —kUs. The eigenvalue problems are formulated below.

(a) Euler—Bernoulli Beam Element

2BI[6+c 3h]_ ,pAh[156 2201\ [Us) _ [0
h3 | 3h  2h? 420 [22h  4h? Usf 10
where ¢ = kh®/2FE1.
(b) Timoshenko Beam Element (RIE) (the same procedure applies to the CIE

element)
GAK, [4+c 20 | _ oh[24 01\fUs\ _fO
ah | 2k RP4a) Y60 20]) Ui T 0

where ¢ = c;lALI@S' The characteristic polynomial is given by

14002 — (204 4 4e)A + (3 +2¢) = 0

pAht 9o

where \ = SIO0ETY "

Problem 6.6: Determine the critical buckling load of a cantilever beam (A, I, L, E)
using (a) one Euler—Bernoulli beam element and (b) one Timoshenko beam element
(RIE).

Solution: One element mesh is used. The boundary conditions are: U; = Uy = 0.
The eigenvalue problems are formulated below.

(a) Euler—Bernoulli Beam Element

E63h_PL363h Ul [0
K3 |3h 2h2 30k | 3 4h? U 10

where P, denotes the critical buckling load.
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(b) Timoshenko Beam Element

GAK,[4  2h |, 1[1 0]\ fUs) _ [0
4h  |2h RZ 4+« Th10 1 Usf 10

_ _4EI
where o = GAR: -

Problem 6.7: Consider a simply supported beam (of Young’s modulus F, mass
density p, area of cross section A, second moment of area about the axis of bending
I, and length L) with an elastic support at the center of the beam (see Figure P6.7).
Determine the fundamental natural frequency using the minimum number of Fuler-
Bernoulli beam elements.

A, E Pinned here

Problem 6.7

Solution: One element mesh is used. The boundary conditions are: U; =0, Uy =0
and Q3 = —0.5kUs. Hence, we eliminate the first row and column and the last row
and column and obtain the eigenvalue problem

2EI [2h*  3h _WQpAh 4h?  —13h Ul [0
R3 | 3h 6+c 420 | —13h 156 Us[ 10

where ¢ = kh3 /AEI, k = A.E./h., and h = L/2. The frequency equation is obtained
by setting the coefficient matrix to zero:

’2EI {2h2 3h }_ L, pAh [ 412 —13hH_0

B | 3h 6+c| Y 420 |—-13h 156
2n  3h ] [ 4R? —13h])| _ _ 2. PAN
3h 64c “13h 156 ||~ T Y S10ET

The characteristic polynomial is

4550% — 2(129 4+ c)A +3 +2c =0
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Problem 6.8: The natural vibration of a beam under applied axial compressive load
N is governed by the differential equation
d*w o d?w
EId:z:4 + N 12 = \w
where A denotes nondimensional frequency of natural vibration, and ET is the flexural
stiffness of the beam. (a) Determine the fundamental (i.e., smallest) natural frequency
w of a cantilever beam (i.e., fixed at one end and free at the other end) of length L
with axial compressive load Ny using one beam element. (b) What is the buckling
load of the beam? You are required to give the final characteristic equation in each
case.

Solution: The finite element model of the equation is
(Ke — \M°¢ — NOGe) AC — Qe
where

w  d*¢; ¢, “ * d¢i do;
K= [ BIga gt do M= [ oo oy= [TRG @
and A€ and Q€ are the usual nodal displacement and force vectors. Here K€ is the
stiffness matrix, M€ is the mass matrix and G€ is the geometric stiffness matrix are
given for the Euler—Bernoulli element as

6 —3h —6 —3h

ke 2BL | =3h 2n* 3h B2
| =6 3h 6 3h

—3h  h® 3h 2h?

156 —22h 54 13h
e ch | =22h 4h? —13h —3h?
420 | 54 —13h 156 22h
13h  —3h%® 22h  4h?
36 —3h —36 —3h
e 1 | =3n 4n?* 3h —h?
T 30n | —36 3h 36 3h
—3h —h? 3h 4h?

Using one element mesh in the beam, we obtain

6 —3L —6 -3L 156 —22L 54 13L
2EI | —3L 2I? 3L I?2 ) L | —22L 41?2 —13L —-3IL2
I3 | -6 3L 6 3L | “420| 54 —13L 156  22L
—-3L L? 3L 2L? 13L —3L? 22 4I2

36 —3L —-36 —3L %%} O

N® | -3 41?> 3L -I? 0 | )@

T 30L | -36 3L 36 3L Wo [~ ) Qs

—-3L —L? 3L 4I? O, Q4
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The boundary conditions are W7 = 0,01 = 0,3 = 0 and @4 = 0. Hence, the
condensed equations are

26176 3L] | L [156 22L] N°[36 3L W _ [0

L3 3L 2L2 420 |22L 4L?|  30L | 3L 4L? O/ 10
Setting the determinant to zero and solving for the smaller root of the quadratic
equation in A, we obtain the required fundamental frequency. The buckling load

Ny is calculated by setting A = 0. For example, consider the case in which A = 0
(A= (L?/60EI)Ny)

12L2(1 — 6A)(1 — 2X) — 9L%(=X\)? =0
from which we obtain the lowest buckling load (A\; = 0.0414)

EI
(NO)in = 2.486—

The critical buckling load as per the Euler-Bernoulli beam-column analysis is

2
T BT El
Ncrit - Zﬁ == 2467?

(less than 0.8% error!).

Problem 6.9: Determine the fundamental natural frequency of the truss shown in
Fig. P6.9 (you are required only to formulate the problem).

E =30 msi
A, =3in?
A,=4in?

Figure P6.9
Solution: Analogous to the global stiffness matrix, the element mass matrix in the

global coordinate system is given by

peAe he
6

[M€] = [T]"[Me)[T<), [M€] =

O = O N
OO OO
SO O =
SO OO
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cosa  sina 0 0
= |~ sina  cosa 0 0
0 0 cosa  sSina
0 0 —sina  cosa
We obtain,
2 cos? o 2 cos asin o cos? a cos ¢ Sin o
(M°] = 2cosasina 2sin? o cos asin o sin? o
cos? a cos asin o 2 cos? a 2 cos v sin «
Cos o Sin av sin? o 2cosasin o 2sin? o

For the present problem (see the solution to Problem 4.38), we have a; = 45° and

as = tan~!(2). The eigenvalue problem becomes
M}, + M3, Usf 10

Problem 6.10: Determine the fundamental natural frequency of the truss shown in
Fig. P6.10 (you are required only to formulate the problem).

([K§3 + K

: ! K:%4+K122}_ 2{M3}3+M121
Ky + K3 Ky + K3

Mjs + M3,

B CRs:

| x

- E =30x10¢ 1b/in2, v=0.3
A=10%21in2, I=102in*

R
.'-39>
=
.-.-1

]
Lt
. .

Figure P6.10

Solution: The element mass matrix in the global coordinate is given by

[M€] = [Te]" [Me)[T]

r140 0 0 70 0 0 1

0 156 —22h O 54 13h

[37°] peAehe | 0 —22h 4k 0 —13h —3h?
420 70 0 0 140 0 0

0 54  —13h 0 156  22h

L 0 13h —3R%2 0 22h  4h% |
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and [T°] is defined in Eqn. (4.53a). The eigenvalue problem becomes,

(

Kiy+ K} Kis+Kf Kig+ K
Ki + K3 Kiy+ K3 Kig+ K3y
Kgy+ K3 Kgs+ K3 Kig+ K33

M+ M7 Mg+ M7, Mg+ Mis
Mgy + Mg, Mgs+ M3, Mg+ M,
Mgy + M3, Mgs+ M3, Mgg + M3,

JEiRH

Problem 6.11: Determine the first two longitudinal natural frequencies of a rod
(A, E, L, m), fixed at one end and with an attached mass mg at the other. Use
two linear elements. Hint: Note that the boundary conditions for the problem are
u(0) = 0 and (EA du/0x + mg 0*u/0t?)|p—r, = 0.

Solution: For the mesh of two linear elements, the assembled equations of the
eigenvalue problem are:

1 -1 0 2 1 0 Uy Q1
(ETA -1 2 —1]_w2pih 1 4 ){U2}—{Q;+Q%
0 -1 1 0 1 2 Us Q3

where h = L/2. The boundary conditions are: U; = 0 and Q% = mow?Us. It is clear
that the term mow?, when taken to the left side, should add to the second diagonal
term of the mass matrix (because kUs does not contain \ in order to add it to the
stiffness matrix). The condensed equations are given by

(543 - ) () -10)

where ¢ = %. Setting the determinant of the coefficient matrix to zero, we obtain

the characteristic polynomial.

Problem 6.12: The equation governing torsional vibration of a circular rod is

0%¢ 8¢
-GJ— J— =0
o2 T
where ¢ is the angular displacement, J the moment of inertia, G the shear modulus,
and m the density. Determine the fundamental torsional frequency of a rod with disk
(J1) attached at each end. Use the symmetry and (a) two linear elements, (b) one
quadratic element.

Solution: Note that the problem at hand is a hyperbolic equation, hence the
eigenvalue is the square of the natural frequency of torsional vibration, w.
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(a) For the mesh of two linear elements, the assembled equations of the eigenvalue

problem are:
U1 Qi
g )t
Us Q3

where h = L/4. The boundary conditions are: Q1 = mjJiw? and Uz = 0. The
condensed equations are given by

(S0 2= -1

6m1J1
mJh *

(b) For the mesh of one quadratic element, the equations of the eigenvalue problem

are:
GJ Uy Q1
e U ¢ =14 Q3
Us Q3
where h = L/2. The condensed equations are given by
GJ[ 7 =8] 2 mJh [4+c¢ 2 Uil _ [0
3h |—8 16 30 2 16 Us | 10

30m1Jy
mJh

-1 2 -1 4 1
0 -1 1 01 2

—

1 -1 O] ,mJh [2 1 0
_w—

where ¢ =

7 -8 1 4 2 -1
8 16 —8]—w2m3—{)h{2 16 2

1 -8 7 -1 2 4

where ¢ =

Problem 6.13: The equations governing the motion of a beam according to the
Timoshenko beam theory can be reduced to the single equation

4 2 4 2, 94
207w 07w b2(1+E)88w bm@wzo

ot T o kG ) 9702 T kG o
where a? = EI/mA and b?> = I/A. Here E is the Young’s modulus, G is the shear
modulus, m is the mass per unit length, A is the area of cross sectin, and [ is the
moment of inertia. Assuming that (b*>m/kG) << 1 (i.e., neglect the last term in the
governing equation), formulate the finite element model of the (a) eigenvalue problem
for the determination of natural frequencies, and (b) fully discretized problem for the
determination of the transient response.

Solution: (a) This is a fourth-order hyperbolic differential equation. Let
w(x,t) = W(x)e
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and reduce the given equation to

d*W E\ W
2 2 272
_ 14— =
a7 wW—i—wb(—i—kG) 722 0
The weak form of the equation is given by
zp o AW 9 o d2W
O—/ v[a iy (W—c 72 dx
o d*v d®W 2 o dv dW
—/ l T2 a2 —w <UW+C%%> dx
dv dv
—o(e)Q — (@) — (-5) Q= (=) @
where v is the weight function, ¢? = b? (1 + %), and

d3 aw
w 2 2 ] ,ng—[aQ——Huc—
" x

_ 2 -
Ql_[a B Y a3 dz
&2 42
Q2 = [GQ dVg] : Qu=— lGQ dVg]
T 1 a " 1B

The finite element model is given by

([K°) = [M{A%} = {Q°}

where

4
W(x) Y ASp()
7j=1

and

Tp dQQO dzgp .
K¢ — 22 Ay
Y /% @ dx? dx? v

xp )
ij:/% {%’%‘*‘b <1+ﬁ

and ¢; are the Hermite family of interpolation functions.
(b) The semidiscrete weak form (neglecting the term involving the fourth-order

dp; d@j]
> dx dx dr

derivative with respect to t) is given by
o tw 0w E 0*w
0= 4 0 (1 _) g
/xa v l“ a1 o "G ) aa7or

/ l 2P0Pw | Pw | pdv Pw ]d

92922 Vo T 4z oo

0@ - @@ - (- ) @ (-
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wehere

PPw PBPw PPw PPw
|2 2 N 2
1= la 023~ © axaﬁ] e [a oz~ © axaﬁL

2 2
Q= [cﬂg—f] , Qi=- [an—ﬂ
T 1A 1B
The finite element model is given by
[KNHAY + [M{A} = {Q°}

where Kfj and M;; are the same as defined earlier.

The fully discretized finite element model can be obtained as discussed in Section
6.2.

Problem 6.14: Use the finite element model of Problem 6.13 to determine the
fundamental frequency of a simply supported beam.

Solution: This problem requires the evaluation of the element matrices [K€] and
[M¢€] defined in Problem 6.10. These can be easily identified with the matrices already
given in the book when ¢; are the Hermite cubic interpolation functions: the stiffness
matrix is the same as that given in Eqn. (4.15); the mass matrix contains two parts,
and they are given by the matrices in Eqns. (6.26a) and (6.26b), respectively. We

have
6 —-3h —6 —3h
2a% | —3h 2n2 3h K2

KT=551 6 3 6 3n (1)
—3h  h® 3h 2h2
156 —22h 54 13h 36 —3h —36 —3h

] — ho|=22h 4?13k —3h%| | < | =3h 4h®  3h  —h? @)
T 420 | 54 —13h 156  22h 30h | =36 3h 36  3h
13h  —3h%2  22h  2K2 —3h —h%2 3h 4h?

We use the symmetry to model one—half of the simply—supported beam with one
element to determine the fundamental frequency. We have

6 —3h —6 —3h 156 —22h 54 13k
2a® | —3h 2n2 3h K2 o h | —=22h  4h? —13h —3hK2
| -6 3n 6 3n| “u0| 54 —13h 156 22h
—3h  h®  3h 2h? 13h  —3h%? 22h  2h2

36 —3h —36 —3h Uy 1

2. | =3k 4h? 3h - ) v | )@l 3
30h | —36 3h 36 3h Us (] Q)
—3h —h? 3h 4h? Uy I
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The boundary conditions are: U; = Uy = 0. The eigenvalue problem becomes,
2a® [20% 3h]_ of b [ 4h®  —13h]_ ¢ [4h® 3K U2) _ [0
3 | 3h 6 420 | —13h 156 30n | 3h 36 UsJ 10

Problem 6.15: Find the critical buckling load Pcr by determining the eigenvalues
of the equation

d*w d*w
El— + Per——=
+ Fer dn2

e =0 forO<z<L

d*w
= | El—=
=0 ( de’2 >

Use one Euler-Bernoulli element in the half-beam.

=0
z=L

d*w
w(0) = w(L) =0, (EIW>

Solution: The finite element model of the equation is of the form,
KR us} = Por[GHu} = {Q°}

where [K€] is the stiffness matrix of the beam [see eqn. (4.15)], and [G€] is given by
Eqn. (6.26b). We have

6 —-3h —6 -3h 36 —3h —36 —3h Uy
2EI | =3h  2h®> 3h R _p 1 | -3hn 4h?>  3h —h? Us
h3 -6 3h 6 3h “30n | —36 3h 36 3h Us

—3h  h? 3h 2R —3h —h?> 3h  4h? Uy
1
1
% 1)
=\ o (
Qj
In view of the boundary conditions, U; = Uy = 0, the eigenvalue problem becomes,
2E1 [2h* 3h] _,, 1 [4h* 3h U\ _ JO @)
h3 [ 3h 6 “"30h | 3h 36 Usf 10

The characteristic polynomial is obtained by setting the determinant of the coefficient
matrix to zero:

h2
2 4p2 _ _ _ 2 _ =
(2h* — 4h*X)(6 — 36)\) — (3h — 3hA)” =0, where A 60EIPCT
or
13+ +v124
45)\2 — 26\ + 1= 0, or /\1’2 = ST 9 /\2 = 0.041433
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Thus, P, is given by the smallest eigenvalue:

EI 2U0ET EI
_ S0ETA; _ 240512z _ 9.9439—

PCT h2 L2

Problem 6.16: Consider the partial differential equation arising in connection with
unsteady heat transfer in an insulated rod:

ou 0 ou

E—%(a%>:f fOI‘O<iU<L

=0

w(0,0) =0, ulz,0) = up, [@ + Bl o) + ]
=L

ox

Following the procedure outlined in Section 6.2, derive the semidiscrete variational
form, the semidiscrete finite element model, and the fully discretized finite element
equations for a typical element.

Solution: The weak form is given by (see Problem 3.3)

U’E adx ox
+ [Baudw(za) — Beubw(zy)] — q(zp)w (@) + ¢(ze)w(zq) (1)

0= /:b < R wf) dx + [Bpw(zp)u(zs) — Baw(ra)u(za)]

and the semidiscrete finite element model is

(M} + [KNu} = {F°} (2)

Tp d zd .
5= /xa (a dli}; % + C¢ﬂ/}j> dz + [Bei(wp)Yj(wp) — Batbi(za)Vj(za)]

F; = /:b Fbida + q(ap)Pi(zp) — q(va)Vi(xa) + [Bpul vi(xp) — Bauibii(z,)]

The fully discretized finite element model is the same as in Eqn. (6.41).

Problem 6.17: Using a two-element (linear) model and the semidiscrete finite
element equations derived in Problem 6.16, determine the nodal temperatures as
functions of time for the case in which a = 1, f = 0, ug = 1, and § = 0. Use
the Laplace transform technique [see Reddy (1986)] to solve the ordinary differential
equations in time.
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Solution: The boundary condition at x = 0 is u(0,¢) = 0 and the initial condition
is u(z,0) = up. For the mesh of two linear elements, the semidiscrete finite element
model is given by

L2 107 (i) {1 -1 0](Wh Qi
G114 (Gt -1 2“1 300 =1Qi+QF (1)
01 2] \Us 0 -1 1]\Us Q3

where h = L/2. The boundary conditions are: U; = 0, Q3 + Q? = 0, and
Q3 = —B(Usz — us). The initial conditions are Uy = 0,Uy = Uz = 1 at t = 0.
The condensed equations become,

hfa 11f0) 172 -1 U\ _ [ 0 @)
6|11 2| 1\U; hl—=1 1+Bh|\Us| | Pus

& Using the Laplace transform method, one can obtain the solution of these
equations. The Laplace transform of a function wu(¢) is defined by

Llu(t) = a— / e~ Stu(t)dt (3)
0
where s is the Laplace transform coordinate. The Laplace transform of 4(t) is
L(a(t)) = su —u(0) (4)
The Laplace transform of a constant is 1/s. The Laplace transform of Eqn. (2) is
_ _ 1
siM]{u} — [M{u(0)} + [K{a} = —{F}

where [M],[K] and {F'} are obvious from Eqn. (2). We have

%s—l—% %S_% QZ _1 0 —I—ﬁ 5 (3)
he— 1 %s—i—(H—hﬁh) UsJ s | Buo 613

Solving the equations, we obtain

_ s+c+ 2 cl s C2
U= — = + +
$24cgs+eg (s—ar)(s—ag) (s—ai)(s—a2) s(s—a1)(s—ag)
_ stdi+2 d d
Us = s = . + > + 2
s2+e3s+c (s—ar)(s—az) (s—ar)(s—a2)  s(s—ai)(s—az)
where
A28k 360ue 60+ 246k
7 e 7 R A 77
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36+ 7208h 66 + 24Bhuc _ T20ux
Tt T
The inverse transform can be computed using the identities

: <(S + al)l(s + 0‘2)) T i ai (7 — )

—1 S _ 1 —oy —og
E ((S+O¢1)(S+O&2)) - a1 — Q9 (0416 a2¢ )

£t (%) =1

Note that a7 and a9 are the roots of the equation

12 36
2 _— _ e
5% =g (54 26h)s + —r (14 26h) = 0

ca , di

Problem 6.18: Consider a uniform bar of cross-sectional area A, modulus of
elasticity F/, mass density m, and length L. The axial displacement under the action
of time-dependent axial forces is governed by the wave equation

—_— =0 —
ot? 0x?’

a =
m

Pu 0% (E)W

Determine the transient response [i.e., find u(z,t)] of the bar when the end = = 0 is
fixed and the end x = L is subjected to a force Py. Assume zero initial conditions.
Use one linear element to approximate the spatial variation of the solution, and solve
the resulting ordinary differential equation in time exactly to obtain

Py L
ug(x,t) = AO—E%(l —cosat), a= \/§%

Solution: We have (h = L)

EA[1 1] [t mAh[2 1 Ui\ _ [ Qi

hol-1 1)\Us 6 (1 2])\0) Qb
The boundary conditions are: U; = 0 and Q3 = Py. The condensed equation and the
initial conditions are,

.. 3P
at) + a?U(t) = -0

where aw = \/3E/mh?. The solution is of the form,

L.C.: Up(0) = 0, U(0) =0

Us(t) = Acosat + Bsinat + C
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Using the initial conditions and the governing equation, we obtain A+ C =0,B =0,
and C = Pyh/EA. The final solution is

2
u(z,t) = Z Ui(t)i(x) = (Acosat + C)ia(x)
i=1

Poh
= ﬂ(l —cosat) -

=8

Problem 6.19: Re-solve Problem 6.18 with a mesh of two linear elements. Use the
Laplace transform method to solve the two ordinary differential equations in time.

Solution: For the two element mesh, the condensed equations are (h = L/2)

EA[ 2 -1][Up) mAh[4 1 U1 _ [0

hol-1 1]\Us 6 [1 2 Usf | P
Taking the Laplace transform of the equations and using the homogeneous initial
conditions, we obtain

e e ) -{a)

s

where o« = 2EA/L and 8 = mAL/12. The solution of the equations is

-~ Pya—pBs? - 2P(a+28s?)
TS+ @) 0 s(s24p2)(s2+ ¢?)

where p? and ¢? are the roots of the equation,

54+3V224E  , 5-—3y224F

2.4 2 _ 2 _ 2 _
768°s* +10aBs” —a” =0, p* = o = —

The solution for Us and Us can be expressed as (partial fractions),

_ A Bys Cis _ As Bss Csys
0, = 22 Uy = 22
2 s+52+p2+s2+q2 3 s+52+p2+52+q2
where ) )
A — Py l:Po(OéJrﬁp) CIZPo(aJrﬂfJ)
P’ (p* —p?¢®) "’ (¢* —p¢?)
2P« 2Py (o — 26p?) 2Py (o — 24?)
Ay =2 g, = Cy =

— ; 2= T A4 9 o\ 2 = T 1 o9 o~
p?q? (p* —p?2¢?) (¢* — p%¢?)
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The Laplace inversion gives the solution,
Us(t) = A1 + Bicospt + C1 cosqt, Us(t) = Az + By cos pt + Ca cos gt

The two element finite element solution is

2x L
= — <x< —
U(z,t) Ug(t)L, for 0 << 5
2 2 L
Uz, t) = Us(t)(2 — f"”) + Ug(t)(% ~1), for S <<l

Problem 6.20: Solve Problem 6.18 when the right end is subjected to an axial force
Fy and supported by an axial spring of stiffness k.

Solution: The procedure is the same as in Problem 6.18, except for the boundary
condition, Q3 = Fy — kUs. The solution for Us(t) is given by (see Problem 6.18)

B _ 3F _[3E(1+ £
Us(t) = ¢(1 — cos fBt), c= AL’ 8= — 3

and u(z,t) = Ua(t)(z/h).

Problem 6.21: A bar of length L moving with velocity v strikes a spring of stiffness
k. Determine the motion u(x,t) from the instant when the end z = 0 strikes the
spring. Use one linear element.

Solution: Assume that the bar is moving at a velocity vg to the right and impacts
the spring (see Figure P6.21). We consider the motion from the instant when the
bar impacts on the spring till it leaves the spring. Thus the boundary and initial
conditions for the problem are:
EA@:(]atx:O, EA@%—ku:Oatx:L
ox Ox

u(z,0) =0, u(x,0)=wvg

/E,A k

> X, U, £

— L —

Figure P6.21
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The one linear element mesh gives the equations

EA[1 1]t  mAL[2 1 Ui\ _f 0
L -1 1 Us (8 1 2 U, o —kU,
Using the Laplace transform method once again, we obtain
a+28s> —a+3s? Ui\ _ 360 1
—a+8s2 1+a+282 |10 791
where a = kL/EA and 3 = mL?/6E. The solution of these equations is

3Bv0(2 + Bs?)

O, — 382+ a+ Bs?)
(82 +p?)(s? + %)

- Uy =
(2 +p3)(s2+¢2) 7

or

— Al By — A2 B
U = y U —
1 52+p2+82+q2 2 52+p2+32+q2

where p? and ¢? are the roots of the equation,
36%s1 +26(3 4+ a)s* + a =0,
s B4+a)—vat+3a+9 5, B+a)+Vvati+3a+9

and
3Bvo(—2 + Bp® — a) 3Bvo(2 — Bg® + )
A= 2 2 ;» Br= 2 2
pb®—q p°—q
Ay — 3Buvo(Bp* — 2) B, 3Bv0(2 — B¢°)
2= 2 2 » P2 = 2 2
P —q pT—q

The Laplace inversion gives the result
A B A B
Ui(t) = L sinpt + = singt, Us(t) = ZZsinpt + 2 singt
p q p q

and the finite element solution becomes,

Ulz,t) = U (t)(1 — %) + Ug(t)%, for 0<z<L

Problem 6.22: A uniform rod of length L and mass m is fixed at = 0 and loaded
with a mass M at x = L. Determine the motion u(zx,t) of the system when the mass
M is subjected to a force Py. Use one linear element. Answer:

Pl a (3M -1
ug(t) = ¢(1l —cos At), c= Vo A= \/§Z (E +m)
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Solution: The boundary conditions are: U; = 0 and Q% =-M Ug + Py. The solution
is given by

@, )\:\/§E M

AE AT

Us(t) = ¢(1 — cos At), ¢ = AN

Problem 6.23: The flow of liquid in a pipe, subjected to a surge-of-pressure wave
(i.e., a water hammer), experiences a surge pressure p, which is governed by the
equation
ot? Ox? m \ k + bE

where m is the mass density and K the bulk modulus of the fluid, D is the diameter
and b the thickness of the pipe, and E is the modulus of elasticity of the pipe
material. Determine the pressure p(x,t) using one linear finite element, for the
following boundary and initial conditions:

0%p 28_2])_0 2_1(1 D)l

0 i
p(o,t) = 07 8_§(L7t) = Oa p({L‘,O) = Po;, p(fL‘,O) =0

Solution: The boundary conditions should read p(0,t) = 0, % L,t) = 0, and the
initial conditions should read p(x,0) = po, p(x,0) = 0. We have (h = L)

Ar1 -1 Ui} k2 1[0 _[Q)

hl—-1 1]\Usf " 6[1 2]\ Uf 1@
The boundary conditions are: U; = 0 and Q3 = 0. The condensed equation and the
initial conditions are,

Us(t) + a®Us(t) = 0, LC.: Uz(0) = po, U(0) =0
where a = v/3 ¢/h. The solution is of the form,
Us(t) = Acosat + Bsinat + C
Using the initial conditions of the governing equation, we obtain A + C = py, B = 0,

and C' = 0. The final solution is

2

u(z,t) =Y Ui(t)i(x) = Acos atyy(z)

=1

" X
=pocosat - —
Do h
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Problem 6.24: Consider the problem of determining the temperature distribution
of a solid cylinder, initially at a uniform temperature Ty and cooled in a medium of
zero temperature (i.e., Too = 0). The governing equation of the problem is

o010 (40,
'Ocat ror " or )

The boundary conditions are

9T 0.4 =0, (rka—T + /5T)

or or =0

r=R

The initial condition is T'(r,t) = Tp. Determine the temperature distribution 7'(r,t)
using one linear element. Take R = 2.5 cm, Tp = 130°C, k = 215 W/(m °C), § = 525
W/(m °C), p = 2700 kg/m?, and ¢ = 0.9 kJ/(kg°C). What is the heat loss at the
surface? Formulate the problem.

Solution: We will not solve the problem but only formulate it. The finite element
model is given by

[MNa} + [KNu} = {Q°} (2)
where 5 i d
K :277/ rk d‘ff% dr

B
M = 27r/ perip; dr
T

A

The matrix [K€] for a linear element is given at the bottom of page 104 of the text
book. We need to evaluate [M€]. For a linear element, we obtain

(M€ = 2mpch [h+4rqa h4+2ra
12 h+2rg 3h+4ry
The boundary conditions are: @} = 0 and Q3 = —273Us. The one element mesh

(h = R) gives the equations (r4 = 0 for Element 1)

(o5 ol {5 ={0)

The equations can be solved using the Laplace transform method.

1 -1

7”“[—1 1420

Problem 6.25: Determine the nondimensional temperature 6(r,t) in the region
bounded by two long cylindrical surfaces of radii R; and Ry. The dimensionless heat

conduction equation is
LD (00 0
ror \" ar ot
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with boundary and initial conditions

%(Rm)—o, O(Ra,t) =1, 0(r,0)=0

Solution: The boundary conditions are: Q1 = 0 and Uz = 1. The one element mesh
(h = R2 — Ry) gives the equations (r4 = Ry for Element 1; see Problem 6.21)

T(Ri+Ry) [ 1 —17fUi\ 20 [h+4R h+2R Ui\ _ [ O
h -1 1 Us 12 |h+ 2Ry 3h+4R; Uy | Q%

The condensed equation is

m(R1 + Ra) Uy + 27t (h +4R1)U1 _ m(Ry + R2)

h 12 h

The solution to the equation is of the form, U; = Ae™* + B, where a = [7(R; +
Ry)/h]/[12m(h + 4R1)/12], and A and B are constants to be determined from the
initial condition and the governing equation for U;. We obtain, A + B = 0 and
B = 1. The solution becomes,

u(r,t) = Ur(t)a(r) + Ua(t)a(r) = (1 - eﬂt) (1 - %) + %

Problem 6.26: Show that (6.2.28a,b) and (6.2.29a,b) can be expressed in the
alternative form to Eq. (6.2.38)

[H{ii}s1 = {F}om
and define [H] and {F}s1.
Solution: Consider the equations (6.44) and (6.45),

[M{i} + [K{u} = {F} (1)

(At)?
2

Premultiplying Eq. (2) with [K]sy;1 and substituting for [Ks11{u}s+1 from Eq. (1),
we obtain the result,

{utser = {u}s + At{u}s + [(1=26){i}s + 26{i}s11] (2)

[H]5+1{ﬂ}5+1 = {F}S-H - [K]S-&-l{b}s (3)
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Problem 6.27: A uniform cantilever beam of length L, moment of inertia I, modulus
of elasticity E, and mass m begins to vibrate with initial displacement

w(z,0) = woz?/L?

and zero initial velocity. Find its displacement at the free end at any subsequent
time. Use one Euler-Bernoulli beam element to determine the solution. Solve the
resulting differential equations in time using the Laplace transform method.

Solution: Euler—Bernoulli Beam Element. For one element mesh (h = L), we have

6 —3h —6 —3h] (Uy
2ET | —3h 2h2 3h h2 Us
| -6 3h 6 3k Us

—3h  h® 3h 2h? Uy

156 —22h 54 13h | (U1 !
L PAR | —22h 4h*  —13h =3h*| ) U | _ | Q5 (1)
420 | 54 —13h 156 22h | | Us [ | Q3

13h  —3n%2  22h 2R Uy i

The boundary conditions require Uy = Uz = 0, Q3 = QL = 0. The initial conditions
are Us = wg, Uy = 2wy/L,Us = 0 and Uy = 0. The condensed equations are:

28116 3h]fUs) , mAR[156 22h] (U] _ [0 @)
h3 |3h 22|\ Usf " 420 |22h 2R2 |\ Usf 10

which can be solved using the Laplace transform method.

Problem 6.28: Re-solve Problem 6.27 using one Timoshenko beam element.

Solution: For one element mesh, the condensed equations are

GAKs[4  2h Us)  mh[24 0] fUs) _ [0
4h  [2h KP4+ o] | Us 6 L0 2| Usf 10

_ _4AEI
where a = ALK
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Chapter 7

COMPUTER
IMPLEMENTATION

In Problems 7.1-7.4, compute the matrix coefficients using (a) the Newton—Cotes
integration formula and (b) the Gauss—Legendre quadrature. Use the appropriate
number of integration points, and verify the results with those obtained by the exact
integration.

Problem 7.1: Evaluate the integrals in Example 7.1.1 using the Newton—Cotes and
Gauss quadratures when ); are the quadratic interpolation functions

= (1- =) (12— ) - g1 -9)

Ty — Tq Ty — Xq

et (G ) —oe

v = (1220 ) Ze14 g

Ty — Xq Th — Lg

Solution: Note that the integrand F'(x) in the integral of K2 is a cubic polynomial
(i.e., the degree is r = 3). Hence, we expect the three-point Newtone—Cotes or two-
point Gauss quadrature to yield the exact value. On the other hand, the integrand
of G2 is a fifth-order polynomial (i.e., the degree is 7 = 5). Hence, we expect the
five-point Newtone—Cotes or three-point Gauss quadrature to yield the exact value.
The exact values are

Ty — Xg
15

Ky = — (4xo + 3xq +2p), Gi2= (zo + 2a)

3(xp — 4)

For convenience of using the Gauss quadrature, we write the given integrals in
terms of the normalized coordinate ¢:

dy ds 2 / ! dipr dipo

Km:/% (o +2) G e = = [ o +2(€) G G de

=2 [ oo+ aa+ 250+ )] (6-267) e

Tp — Xq J-1
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Ty _ 1
Gy — / (w0 + )ty dw = 222 L Lo+ 2@ (O)va(€) de

:_%/t [xo+xa+xb;xa(1+§)] (6-¢) (1-¢2)as

(a) Newton—Cotes Quadrature: We evaluate Kio using r = 3; we have § = —1,
52:0.0’ 53:1’ w1:w3:%,w2:%,and

2 1 4 1
Kio=2- -3 -—4+0.-=— —
12 pP—— [ (:L“o +£Ea)6 + 6 (ZEO +J}b)6]

2
— (4w +3z,
3(%_%)(9004- To + Tp)

We evaluate G5 using r = 5; we have & = —1, & = —0.5, & = 0.0, & = 0.5,

7 32 12
& = 1.0, w1 = w5 = 55, w2 = wy = G5, w3 = g5, and

Tp — Tq 7 Ty — Tq 1 1 1, 32
—_9. . . )1 =2Y). 22
G2 1 0 90+(m0+xa+ 5 (0.5))( 5 4)( 4) %
12 Ty — Xq 1 1 1, 32 7
+0%+($0+l‘a+ 9 (15))(5—1)(1—1)%"‘0%
Tp — Tq
(b) Gauss—Legendre Quadrature: To evaluate Kjo, we use r = 2; we have & =

—0.57735 = —%, £ = 0.57735 = %, w; = w3 = 1 and

2 Ty — Xq 1 1 2
K12:xb_%{[:t0+xa+ 62 (1_ﬁ)](_ﬁ_§)

Zb — Ta 1](

—i—[wo—i-xa—i- 5 1+—=)

2
T (dwo+3u,
3($b_xa)($o+ Tq + Tp)

To evaluate G2 we use r = 3; we have & = —0.77459 = — %, & = 0.0, & =
0.77459 = /2, wy = w3 = 0.55555 = 2, wy = 0.88888, and

Ty — Xq
4

G2 = — {[:L‘o—i—xa—l—%(l—a)](—a—a2)(1—a2)-w+0-w2

+ {xo + x4 + %(1 +a)] (a—a®)(1 —a?)- w}

- %am — a?) (20 + 24) W
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where a = \/g and w = g. Substitution of these values gives the result (which is

equal to the exact value).

Problem 7.2: Use Newton—Cotes integration formulas to evaluate

2
Ty d2¢1 Ty 9
Kn :/:ra (W) dz, an/ma (¢1)° dx
where ¢; are the Hermite cubic interpolation functions [see Eq. (5.2.12) and

(5.2.13a,b)].
Solution: From Egs. (5.2.12) and (5.2.13b) we have

7\2 T\  d?¢% 6 T
o 3(he> * <h> © Iz h?( he>

e
Then for r =1 (Z1 = he/2, w1 = 1) we have

he d2 2 _ .2
KH:/ CoN gz =0, (1—2£> —0
0 dx he he/ | ocosn.

he 7\2 7\3 2
Gll = / (¢1)2 dz = he 1-3 (-) + 2 <_> = O25he
0 he he 7=0.5he

In the same way we can evaluate the integrals for different number of integration
points. The values of the coefficients as evaluated for different number (r) of
integration points are:

he
r=1: Kj; =0.0, Gllzz

12
r=2: Kll:h_g’

r=3: GH = 0~37he

(exact) , G = 0.398148h,

13he
35

r=4: G =0.371429h.[= —<] (exact)

Problem 7.3: Use Gauss quadrature to evaluate the integrals of Problem 7.2 for the
case in which the interpolation functions ¢; are the fifth-order Hermite polynomials
of Problem 5.4.

Solution: First note that [z = (1 + &)h/2]

z3 z 7° 5 3 15 4 3 5
o1 =1-1075 + 1557 — 615 =121+ + £ (1+8" = =(1+¢)
¢ 4 dP¢; Aoy 15 45 , 15 3
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We have

2 a2\
Ki = — S
11 hg /;1 <d€2 g
2 /H 15 45 15
=/

——(1 1
(1+8+ 20+ -
Thus, K11 is a sixth-order polynomial of £&. Hence, it can be evaluated exactly by

2
- T+07] e
using N = [(6 +1)/2] = 4

R 15 45 15 2
Kiz =35> Wi |- (+&)+ (1 +&)" - (1+&)°
12 h§’ & I[ 2 I 4 I 4 I ]
Similarly,
G = = 1 1 3a d

which is a tenth degree polynomial in &; hence, N = [(10 + 1)/2] = 6. We have

h 6
G11=7

2
Z{1——1+£1) 12( +&)t —%(1+§1)]

The values obtained (with the help of Maple or Matlab programs) using the Gauss
quadrature are (exact)

120 181h,

K = — =
11 T 11 162

Problem 7.4: Repeat Problem 7.3 for the case in which the interpolation functions
¢; are the fifth-order Hermite polynomials of Problem 5.5.

Solution: The interpolation function ¢; and its second derivative are [z = (14-£)h/2]

—2 3 ,f4 5
=1- 2L
¢ h2+66h 68h4+ s
2 >, 83 17 L3 ;

Pé1 23 99 ) ,
@ 2" — (1+€) =511 +&)" +15(1 +¢)
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We have
+1 2
Ky = h%'/_l —2—23 + 9—29(1 +&) =511+ &)+ 15(1 +§)3} d¢
4 2
= % > Wi {—? + %(1 + &) = 5L(1+&1)% + 15(1 + 51)3}
e J=1
Similarly,
2
Gu=te [Th-Baregr+Zarer-Tarer+20+er] a
he & 23 33 7 3 2
=3 12—21 [1 -4 +&)% + S +ér)° - 1Z(l +&n)' + 7+ 51)5]

The values obtained using the Gauss quadrature are (exact)

5092 523k,
" 35K3 " 73465

11

Problem 7.5: Solve the problem

4 <kd_T) _
de \dz ) ~ 0

(—kj—i)x_o - Qo [kj—f +B(T ~ T°°)L_L =0

using two and four linear elements. Compare the results with the exact solution. Use
the following data: L = 0.02 m, k = 20 W/(m °C), go = 105 W/m?, Qo = 10°W,
Too = 50°C, =500 W/(m °)C.

Solution: For this problem, we have MODEL = 1, NTYPE = 0, and ITEM = 0
(for a steady-state solution). Since a = k, ¢ = 0 and f = go are the same for all
elements, we set ICONT = 1, AX0 = 20.0, and FX0=1.0E6. All other coefficients
are zero for this problem. For a uniform mesh of two linear elements (NEM = 2,
IELEM = 1), the increments DX(I) are [DX(1) is always the z-coordinate of node 1;
h=1L/2=0.02/2=0.01]:

{DX} = {0.0, 0.01, 0.01}
The boundary conditions of the problem are

Q1 =Qo, Q3=-0(Ts—Tx)
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There are no specified boundary conditions on the primary variable (NSPV=0) and
one specified non-zero boundary condition on the secondary variable (NSSV=1)
and the specified value is VSSV(1)=100. There is one mixed boundary condition
(NNBC=1) and the specified values are VNBC(1) (=3)=500 and TINF=50.0. The
complete input data required to analyze the problem using FEM1D are presented
in Box P7.5.1 and the output file is presented in Box 7.5.2. Input data and partial
output for the same problem for a mesh of four linear elements are presented in Box

P7.5.3.

Box P7.5.1: Input file from FEM1D for Problem 7.5.

Prob 7.5(a):

=
=N O

.01 0.01

[cNeoNeoNeoNe]
[eNeoNeoNe)

0.0

1 1.0E2

1 500.0 50.0

OWrRrRFRPRFPORPROOOOLR

Heat transfer problem with mixed boundary condition

MODEL, NTYPE,
IELEM, NEM
ICONT, NPRNT
DX(1)=X0; DX(2), DX(3)= Ele.
AXO, AX1

BX0, BX1

CX0, CX1

FX0, FX1, FX2

NSPV

NSSV
1SSV(1,1),
NNBC
INBC(1,1), INBC(1,2), VNBC(1),TINF
NMPC

ITEM

lengths

I1SSV(1,2), VSSV(1)

Box P7.5.2: Edited output from FEM1D for Problem 7.5.

SOLUTION (values of PVs) at the NODES:

0.10030E+03 0.97750E+02 0.90200E+02

X P. Variable S. Variable
0.00000E+00 0.10030E+03 -0.51000E+04
0.25000E-02 0.99662E+02 -0.51000E+04
0.50000E-02 0.99025E+02 -0.51000E+04
0.75000E-02 0.98388E+02 -0.51000E+04
0.10000E-01 0.97750E+02 -0.51000E+04
0.10000E-01 0.97750E+02 -0.15100E+05
0.12500E-01 0.95862E+02 -0.15100E+05
0.15000E-01 0.93975E+02 -0.15100E+05
0.17500E-01 0.92088E+02 -0.15100E+05
0.20000E-01 0.90200E+02 -0.15100E+05
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Box P7.5.3: Input and partial output for 4 linear elements.

185

Prob
1
1

0
0
0
0
1.
0
1
1
1
5
0

0.

7.5(b): Heat transfer problem with mixed boundary condition

MODEL, NTYPE, ITEM
IELEM, NEM

ICONT, NPRNT

005
AXO,
BXO,
CX0,
FXO0,
NSPV
NSSV
I1SSV(1,1),
NNBC
INBC(1,1), INBC(1,2), VNBC(1),TINF
NMPC

DX(1)
AX1
BX1
cx1

0 FX1, FX2

I1SSV(1,2), VSSV(1)

50.0

the NODES:

SOLUTION (values of PVs) at

0.10030E+03 0.99650E+02 O.

97750E+02 0.94600E+02 0.90200E+02

X P. Variable S. Variable
0.00000E+00 0.10030E+03 -0.26000E+04
0.25000E-02 0.99975E+02 -0.26000E+04
0.50000E-02 0.99650E+02 -0.26000E+04
0.50000E-02 0.99650E+02 -0.76000E+04
0.75000E-02 0.98700E+02 -0.76000E+04
0.10000E-01 0.97750E+02 -0.76000E+04
0.10000E-01 0.97750E+02 -0.12600E+05
0.12500E-01 0.96175E+02 -0.12600E+05
0.15000E-01 0.94600E+02 -0.12600E+05
0.15000E-01 0.94600E+02 -0.17600E+05
0.17500E-01 0.92400E+02 -0.17600E+05
0.20000E-01 0.90200E+02 -0.17600E+05

The nodal values of temperature coincide with the exact solution

golL? 2k 22 qoL< k x)
T(z) = LA I (SR
(z) 2k<+ﬁL )T \Uter )"
T
4 = gz + ao
e

However, the flux values coincide with the exact only at the center of the elements.
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Problem 7.6: Solve Problem 7.5 using two quadratic elements.

Solution: For a uniform mesh of two quadratic elements (NEM = 2, IELEM = 2),
the increments DX(I) are {DX} = {0.0, 0.01, 0.01}. All other data remain the same.
The complete input data and partial output for the problem are presented in Box
P7.6. Note that the temperatures as well as the flux coincide with the exact solution

at the nodes.

Box P7.6: Input and partial output for 2 quadratic elements.

0

RN O

o

o
[eNeoNeNeN =

[cNeoNeoNeoNe]
[eNeoNoNoNe]

m
()}

=

1.0E2

[N

500.0

OURPRFRPPFRPORPROOOORNER

0.

0

50.0

Prob 7.6: Heat transfer problem with mixed boundary condition

MODEL, NTYPE, ITEM

IELEM, NEM
ICONT, NPRNT
DX(1)

AX0, AX1
BX0, BX1
CX0, CX1

FXO, FX1, FX2
NSPV

NSSV

ISSV(1,1), ISSV(1,2), VSSV(1)
NNBC

INBC(1,1), INBC(1,2), VNBC(1),TINF
NMPC

SOLUTION (values of PVs) at

the NODES:

0.10030E+03 0.99650E+02 0.97750E+02 0.94600E+02 0.90200E+02

X P. Variable S. Variable
0.00000E+00 0.10030E+03 -0.10000E+03
0.12500E-02 0.10025E+03 -0.13500E+04
0.25000E-02 0.10013E+03 -0.26000E+04
0.37500E-02 0.99930E+02 -0.38500E+04
0.50000E-02 0.99650E+02 -0.51000E+04
0.62500E-02 0.99292E+02 -0.63500E+04
0.75000E-02 0.98856E+02 -0.76000E+04
0.87500E-02 0.98342E+02 -0.88500E+04
0.10000E-01 0.97750E+02 -0.10100E+05
0.10000E-01 0.97750E+02 -0.10100E+05
0.11250E-01 0.97080E+02 -0.11350E+05
0.12500E-01 0.96331E+02 -0.12600E+05
0.13750E-01 0.95505E+02 -0.13850E+05
0.15000E-01 0.94600E+02 -0.15100E+05
0.16250E-01 0.93617E+02 -0.16350E+05
0.17500E-01 0.92556E+02 -0.17600E+05
0.18750E-01 0.91417E+02 -0.18850E+05
0.20000E-01 0.90200E+02 -0.20100E+05
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Problem 7.7: Solve the heat transfer problem in Example 4.3.3 (set 1), using (a)
four linear elements and (b) two quadratic elements (see Table 4.3.1).

Solution: For this problem, we have MODEL = 1, NTYPE = 0, and ITEM = 0.
Since @ = k =1, c = m? and f = 0 are the same for all elements, we set ICONT = 1,
AX0 = 1.0, and CX0=1.0E6. All other coefficients are zero for this problem. For a
uniform mesh of four linear elements (NEM = 4, IELEM = 1), the increments DX(I)
are (h =L/4=0.05/4 =0.0125): {DX} = {0.0, 0.0125, 0.0125, 0.0125, 0.0125}.

The boundary conditions of the problem are U; = 300, Q3 = 0. There is
one specified boundary condition on primry variables (NSPV=1) and no specified
boundary conditions on the secondary variable with non-zero values (NSSV=0).
There are no mixed boundary conditions (NNBC=0). The input data and partial
output for a mesh of two quadratic elements are presented in Box P7.7. The finite
element solution coincides with the exact solution at the nodes.

Box P7.7: Input and partial output for 2 quadratic elements.

-
-
o
(op

7.7: Heat transfer problem of Example 4.3.3
0 O MODEL, NTYPE, ITEM
2 IELEM, NEM
0 ICONT, NPRNT
5 0.025 DX(D)
AX0, AX1
BX0, BX1
CX0, CX1
0.0 FX0, FX1, FX2
NSPV
1 3.0E2 ISPV(1,1), ISPV(1,2), VSPV(1)
NSSV
NNBC
NMPC

0.0

IN
o
OO0OOFrRPRPFPOOORFROFRLNLEPR
[eNeoNoNeoNe]
OO OON

[eNeoNeoNe]

SOLUTION (values of PVs) at the NODES:
0.30000E+03 0.25170E+03 0.21923E+03 0.20052E+03 0.19442E+03

X P. Variable S. Variable
0.00000E+00 0.30000E+03 -0.44971E+04
0.12500E-01 0.25170E+03 -0.32306E+04
0.25000E-01 0.21923E+03 -0.19642E+04
0.25000E-01 0.21923E+03 -0.20014E+04
0.37500E-01 0.20052E+03 -0.99245E+03
0.50000E-01 0.19442E+03 0.16472E+02
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Problem 7.8: Solve the axisymmetric problem in Example 4.3.4 using four quadratic
elements and compare the solution with that obtained using eight linear elements and
the exact solution of Table 4.3.2.

Solution: For this problem, we have MODEL = 1, NTYPE = 0, and ITEM =
0. We note that for axisymmetric problems, the whole equation is multiplied with
r. Therefore, a = k-7, and f = go - r for all elements. Thus, we set ICONT =
1, AX1 = k, and FX1= go. All other coefficients are zero. For a uniform mesh
of four quadratic elements (NEM = 4, IELEM = 2), the increments DX(I) are
(h=L/4=0.01/4 =0.0025): {DX} = {0.0, 0.0025, 0.0025, 0.0025, 0.0025}.

The boundary conditions of the problem are Uy = 100, Qi = 0. There is
one specified boundary condition on primry variables (NSPV=1) and no specified
boundary conditions on the secondary variable with non-zero values (NSSV=0); there
are no mixed boundary conditions (NNBC=0). The input data and partial output
for a mesh of two quadratic elements are presented in Box P7.8. The finite element
solution coincides with the exact solution (see Table 4.3.2) at the nodes.

Box P7.8: Input and partial output for 4 quadratic elements.

Prob 7.8: Axisymmetric problem of Example 4.3.4
0 MODEL, NTYPE, ITEM
IELEM, NEM
ICONT, NPRNT
0.0025 0.0025 0.0025 0.0025 DX(I)
20.0 AX0, AX1
0 BX0, BX1
0
0]

o h~O

CX0, CX1
E8 0.0 FX0, FX1, FX2
NSPV
1 100.0 ISPV(1,1), ISPV(1,2),VSPV(1)
NSSV
NNBC
NMPC

SOLUTION (values of PVs) at the NODES:
0.35000E+03 0.34609E+03 0.33437E+03 0.31484E+03 0.28750E+03
0.25234E+03 0.20937E+03 0.15859E+03 0.10000E+03

[eNeNeoNeoNe]

0
0
0
0
2

QOO0 WRFRPROOOOORFRNEPE

X P. Variable S. Variable
0.00000E+00 0.35000E+03 0.00000E+00
0.25000E-02 0.33437E+03 -0.62500E+03
0.25000E-02 0.33437E+03 -0.62500E+03
0.50000E-02 0.28750E+03 -0.25000E+04
0.50000E-02 0.28750E+03 -0.25000E+04
0.75000E-02 0.20937E+03 -0.56250E+04
0.75000E-02 0.20937E+03 -0.56250E+04
0.10000E-01 0.10000E+03 -0.10000E+05
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Problem 7.9: Solve the one-dimensional flow problem of Example 4.4.1 (Set 1),
for dP/dx = —24, using eight linear elements (see Figure 4.4.1). Compare the finite
element results with the exact solution (4.4.20);.

Solution: For this problem, we have MODEL = 1, NTYPE = 0, and ITEM = 0.
Since a = p = 1 and f = —dP/dx are the same for all elements, we set ICONT
=1, AX0 = u, and FX0=24. All other coefficients are zero for this problem. For
a uniform mesh of four linear elements (NEM = 8, IELEM = 1), the increments
(note that the discretization along the y-axis) DX(I) are (h = 2L/8 = 0.25):
{DX} = {-1.0, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25}.

The boundary conditions of the problem are U3 = 0, Uy = 0. Thus, there are
two specified boundary conditions on primry variables (NSPV=2) and no specified
boundary conditions on the secondary variable (NSSV=0); also, there are no mixed
boundary conditions (NNBC=0). The input data and partial output for a mesh of
four linear elements are presented in Box P7.9. The finite element solution coincides
with the exact solution at the nodes.

Box P7.9: Input and partial output for 8 linear elements.

Prob 7.9: The flow problem of Example 4.4.1, set 1
1 0 O MODEL, NTYPE, ITEM
1 8 IELEM, NEM

1 0 ICONT, NPRNT
-1.

o

0.25 0.
0.25 0. .25 0.25  DX(I)
.0 AX0, AX1
0
0
0

BX0, BX1
CX0, CX1
0.0 FX0, FX1, FX2

N
COoOO0OOVWFrNMOOLR
ol oNeNe
=
()
0
<

0.0 ISPV(1,1), ISPV(1,2),VSPV(1)
0.0 ISPV(2,1), ISPV(2,2),VSPV(2)
NSSV
NNBC
NMPC

=

SOLUTION (values of PVs) at the NODES:

0.00O0O0OOE+00 0.52500E+01 0.90000E+01 0.11250E+02 0.12000E+02
0.11250E+02 0.90000E+01 0.52500E+01 0.0000OE+00
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Problem 7.10: Solve the Couette flow problem in Example 4.4.1 (Set 2) using four
quadratic elements. Compare the finite element solution with the exact solution
(4.4.20)5.

Solution: For this problem, we have MODEL = 1, NTYPE = 0, ITEM = 0,
ICONT =1, AX0 = p and f = —dP/dx . All other coefficients are zero for this
problem. For a uniform mesh of four quadratic elements (NEM = 4, IELEM = 2), the
increments (note that the discretization along the y-axis) DX(I) are (h = 2L /4 = 0.5):
{DX} ={-1.0, 0.5, 0.5, 0.5, 0.5}.

The boundary conditions of the problem are Uy =0, Us = Uy. Thus, there are
two specified boundary conditions on primry variables (NSPV=2) and no specified
boundary conditions on the secondary variable (NSSV=0); also, there are no mixed
boundary conditions (NNBC=0). The input data and partial output for a mesh of
four linear elements are presented in Box P7.10. The finite element solution coincides
with the exact solution at the nodes.

Box P7.10: Input and partial output for 4 quadratic elements.

Prob 7.10: The flow problem of Example 4.4.1, set 2

0O O MODEL, NTYPE, ITEM

4 IELEM, NEM

0] ICONT, NPRNT

0.5 0.5 0.5 0.5 DX(I)

AXO0, AX1
BX0, BX1
CX0, CX1

0.0 FX0, FX1, FX2
NSPV
ISPV(1,1),I1SPV(1,2),VSPV(1)
ISPV(2,1),1SPV(2,2),VSPV(2)
NSSV
NNBC

0 NMPC

SOLUTION (values of PVs) at the NODES:

0
0
-0
0
0

[eNeoNoNe]
[eNeoNoNe]

=
= O
[eNe)

OO OFRLNPMPOOFRLREFPENEE
=

0.00000E+00 0.53750E+01 0.92500E+01 0.11625E+02 0.12500E+02
0.11875E+02 0.97500E+01 0.61250E+01 0.10000E+01

X

o

Variable S. Variable

-0.10000E+01 0.00000CE+00 0.24500E+02
-0.50000E+00 0.92500E+01 0.12500E+02
0.00000E+00 0.12500E+02 0.50000E+00
0.50000E+00 0.97500E+01 -0.11500E+02
0.10000E+01 0.10000E+01 -0.23500E+02
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Problem 7.11: Solve Problem 4.10 (heat flow in a composite wall) using the
minimum number linear finite elements.

Solution: For this problem, we have MODEL = 1, NTYPE = 0, and ITEM =
0. However, due to the discontinuous data (conductivities vary piece-wise), we have
ICONT = 0. For a non-uniform mesh of three elements (NEM = 3, IELEM = 1),
the element sizes DX(I) are: {DX} = {0.005, 0.0035, 0.0025}.

The boundary conditions of the problem are Q1 = —8.(U; — TL) and Q3 =
—Br(Us—TE). Thus, there are two specified mixed boundary conditions (NNBC=2)
and no other boundary conditions. The input data and partial output for a mesh of
three linear elements are presented in Box P7.11.1.

Box P7.11: Input and partial output for three linear elements.

Prob 7.11: Heat transfer in a composite wall (Prob 4.10)
1 0 O MODEL, NTYPE, ITEM
1 3 IELEM, NEM
0O 2 ICONT, NPRNT
4 NNM
1 2 0.05 NOD(1,J), GLX(1)
50.0 0.0 AXO0, AX1 Data for
0.0 0.0 BX0, BX1 Element 1
0.0 0.0 CX0, CX1
0.0 0.0 0.0 FX0,FX1,FX2
2 3 0.035 NOD(2,J), GLX(2)
30.0 0.0 AXO0, AX1 Data for
0.0 0.0 BX0, BX1 Element 2
0.0 0.0 CX0, CX1
0.0 0.0 0.0 FX0,FX1,FX2
3 4 0.025 NOD(3,J), GLX(3)
70.0 0.0 AXO, AX1 Data for
0.0 0.0 BX0, BX1 Element 3
0.0 0.0 CX0, CX1
0.0 0.0 0.0 FX0,FX1,FX2
0 NSPV
0 NSSV
2 NNBC (with transv. spring)
1 1 10.0 100.0 INBC(1,1), INBC(1,2),VNBC(1),UREF(1)
4 1 15.0 35.0 INBC(2,1), INBC(2,2),VNBC(1),UREF(2)
0 NMPC
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(Box P7.11) is continued from the previous page.

OUTPUT from program FEM1DV2.5 by J. N. REDDY
Prob 7.11: Heat transfer in a composite wall (Prob 4.10)

*** ANALYSIS OF MODEL 1, AND TYPE O PROBLEM ***
(see the code below)

MODEL=1,NTYPE=0:
MODEL=1,NTYPE=1:
MODEL=1,NTYPE>1:
MODEL=2,NTYPE=0:
MODEL=2,NTYPE=1:
MODEL=2,NTYPE=2:
MODEL=2,NTYPE>2:
MODEL=3,NTYPE=0:
MODEL=3,NTYPE>0:
MODEL=4 ,NTYPE=0:
MODEL=4 ,NTYPE=1:
MODEL=4 ,NTYPE=2:

A problem described by MODEL EQ. 1
A circular DISK (PLANE STRESS)

A circular DISK (PLANE STRAIN)

A Timoshenko BEAM (RIE) problem
A Timoshenko PLATE (RIE) problem
A Timoshenko BEAM (CIE) problem
A Timoshenko PLATE (CIE) problem
A Euler-Bernoulli BEAM problem
A Euler-Bernoulli Circular plate
A plane TRUSS problem

A Euler-Bernoulli FRAME problem
A Timoshenko (CIE) FRAME problem

Boundary information on mixed boundary cond.:

1 1 0.10000E+02 0.10000E+03
4 1 0.15000E+02 0.35000E+02

Element coefficient matrix, [ELK-1]:
0.10000E+04 -0.10000E+04
-0.10000E+04 0.10000E+04

Element coefficient matrix, [ELK-2]:
0.85714E+03 -0.85714E+03
-0.85714E+03 0.85714E+03

Element coefficient matrix, [ELK-3]:
0.28000E+04 -0.28000E+04
-0.28000E+04 0.28000E+04

Global coefficient matrix, [GLK-banded]:
0.10100E+04 -0.10000E+04
0.18571E+04 -0.85714E+03
0.36571E+04 -0.28000E+04
sym. 0.28150E+04

SOLUTION (values of PVs) at the NODES:
0.61582E+02 0.61198E+02 0.60749E+02 0.60612E+02
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Problem 7.12: Solve Problem 4.22 (axisymmetric problem of unconfined aquifer)
using the minimum number of linear finite elements.

Solution: For this problem, we have MODEL = 1, NTYPE = 0, and ITEM
= 0. For this axisymmetric problem, we have a = k -r (ICONT = 1,
AX1 = k). All other coefficients are zero. For the non-uniform mesh of six
linear elements (NEM = 6, IELEM = 1), the increments DX(I) are: {DX} =
{0.0, 10.0, 10.0, 20.0, 40.0, 60.0, 60.0}.

The boundary conditions of the problem are U; = 50, Q1 = —150. There is
one specified boundary condition on primry variables (NSPV=1) and one specified
boundary condition on the secondary variable with non-zero values (NSSV=1); there
are no mixed boundary conditions (NNBC=0). The input data and partial output
for a mesh of two quadratic elements are presented in Box P7.12.1.

Box P7.12: Input and partial output for six linear elements.

Prob 7.12: Axisymmetric unconfined aquifer (Prob 4.22)
0 0 MODEL, NTYPE, ITEM

6 IELEM, NEM
0 ICONT, NPRNT
10.0 20.0 40.0 60.0 60.0 DX(I)
AXO0, AX1

BX0, BX1

CX0, CX1

FX0, FX1, FX2

NSPV
ISPV(1,1),1SPV(1,2),VSPV(1)
NSSV
1SSV(1,1),1SSV(1,2),VSSV(1)
NNBC

NMPC

[eNeoNeoNoNe]
[eNeoNeN¢ Ne)
(el oNoNe)

(AN

50.

(@]

1 -150.0

OO0OFRPPFPNPFPOOOOORREF

SOLUTION (values of PVs) at the NODES:
0.20610E+02 0.32610E+02 0.36610E+02 0.40610E+02 0.44610E+02
0.47882E+02 0.50000E+02

X P. Variable S. Variable
0.00000E+00 0.20610E+02 0.00000E+00
0.10000E+02 0.32610E+02 0.30000E+03
0.10000E+02 0.32610E+02 0.10000E+03
0.20000E+02 0.36610E+02 0.20000E+03
0.20000E+02 0.36610E+02 0.10000E+03
0.40000E+02 0.40610E+02 0.20000E+03
0.40000E+02 0.40610E+02 0.10000E+03
0.80000E+02 0.44610E+02 0.20000E+03
0.80000E+02 0.44610E+02 0.10909E+03
0.14000E+03 0.47882E+02 0.19091E+03
0.14000E+03 0.47882E+02 0.12353E+03
0.20000E+03 0.50000E+02 0.17647E+03
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Problem 7.13: Solve Problem 4.25.

Solution: The input data and edited output for the stepped composite bar of Figure
P7.13 are presented in Box P7.13.

E, =30x10°psi
E, =10x10°psi
E, =15x10°psi

Figure P7.13

yi
}" 16 1n_’El7

Steel (4,= 8 in?)
Brass (4,= 4 in?)
2500 1b

2500 1b

16 in. >

Aluminum (4, = 6 in2)

Box P7.13: Input and partial output for Problem 7.13.

1 0 O

1 3
0 1
4

1 2 16.0
24 _0E7 0.0
0.0 0.0
0.0 0.0
0.0 0.0
2 3 16.0
6.0E7 0.0
0.0 0.0
0.0 0.0
0.0 0.0
3 4 16.0
6.0E7 0.0
0.0 0.0
0.0 0.0
0.0 0.0

1

11 0.0

2

21 5.0E3

4 1 -2.0E3

0

0

0.0

0.0

0.0

0.00000E+00 0.20000E-03 -0.33333E-03

Problem 7.13: Stepped composite bar

MODEL, NTYPE,
1ELEM, NEM
ICONT, NPRNT
NNM

ITEM

NOD(1,J),GLX(1)
AX0, AX1

BXO, BX1

CX0, CX1
FX0,FX1,FX2

Data for
Element 1

NOD(2,J) ,GLX(2)
AX0, AX1

BXO, BX1

CX0, CX1
FXO0,FX1,FX2

Data for
Element 2

NOD(3,J) ,GLX(3)
AX0, AX1

BXO, BX1

CX0, CX1
FX0,FX1,FX2

Data for
Element 3

NSPV
ISPV(1,1), I1SPV(1,2),VSPV(1)
NSSV

I1SSV(1,1), 1SSV(1,2),VSSV(1)
1SSV(2,1), 1SSV(2,2),VSSV(2)

NNBC
NMPC

SOLUTION (values of PVs) at the NODES:
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Problem 7.14: Solve Problem 4.27.

Solution: The input data and edited output for the stepped composite bar of Figure
P7.14 are presented in Box P7.14.

e
7 100 kips d=2in.
Aluminum [ Aluminum
~&— 100 kips 4
Ja«——lzm.——>4—— ——ﬂ<——4

gin. ' 4in. ' k=10"lbfin
Steel, E; = 30 x 10%psi, Aluminum, E, = 10 x 10° psi

Figure P7.14
Box P7.14: Input and partial output for Problem 7.14.

Problem 7.14: Spring-supported composite bar
1 0 O MODEL, NTYPE, ITEM
1 3 IELEM, NEM
0O 1 ICONT, NPRNT
4 NNM
1 2 12.0 NOD(1,J),GLX(2)
125.6637E6 0.0 AX0, AX1 Data for
0.0 0.0 BX0, BX1 Element 1
0.0 0.0 CX0, CX1
0.0 0.0 0.0 FXO0,FX1,FX2
2 3 8.0 NOD(2,J) ,GLX(2)
31.4159E6 0.0 AX0, AX1 Data for
0.0 0.0 BX0, BX1 Element 2
0.0 0.0 CX0, CX1
0.0 0.0 0.0 FXO0,FX1,FX2
3 4 4.0 NOD(3,J),GLX(3)
94_.2478E6 0.0 AX0, AX1 Data for
0.0 0.0 BX0, BX1 Element 3
0.0 0.0 CX0, CX1
0.0 0.0 0.0 FXO0,FX1,FX2
1 NSPV
11 0.0 ISPV(1,1),ISPV(1,2),VSPV(1)
1 NSSV
21 -2.0E5 ISSV(1,1),1SSV(1,2),VSSV(1)
1 NNBC
4 1 1.0E10 0.0 INBC(1,1),INBC(1,2),VNBC(1),UREF(D)
0 NMPC
SOLUTION (values of PVs) at the NODES:
0.00000E+00 -0.14454E-01 -0.20690E-02 -0.48636E-05
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Problem 7.15: Solve Problem 4.35 using two linear elements.

Solution: The input data and edited output for the simply supported beam of Figure
P7.15 are presented in Box P7.15. Two linear elements are used. Note that a = 1

and
flx) = % (Lx - x2)

In the interest of non-dimensionalizing the solution, we have used L =1, EI =1 and
q = 1.

99

V\L\ %\LV\E¢\(V YY)

L

il

EI=constant

Figure P7.15
Box P7.15: Input and partial output for Problem 7.15.

Problem 7.15: Simply-supported beam using the bar element
1 0 O MODEL, NTYPE, ITEM
2 IELEM, NEM
1 ICONT, NPRNT
0.5 0.5 DX(I)
0.0 AX0, AX1
0.0 BX0, BX1
0.0
0.5

O OO oo

CX0, CX1
-0.5 FX0, FX1, FX2
NSPV
ISPV(1,1), ISPV(1,2), VSPV(1)
ISPV(2,1), ISPV(2,2), VSPV(2)
NSSV
NNBC
NMPC

OO O WEFRPNOOOFROREPEF
N
o O

SOLUTION (values of PVs) at the NODES:

0.00000E+00 0.13021E-01 0.00000E+00
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Problem 7.16: Determine the forces and elongations in the wires AB and CD shown
in Figure P7.16. Each wire has a cross-sectional area of A = 0.03 in? and modulus of

elasticity £ = 30 x 10° psi.

Figure P7.16

Solution: This problem is similar to Examples 4.6.3 and 7.3.6.
conditions are
Uy % _Us

5 = 2bf%—>3U2—U5:0, 1.5U4—Us =0

The constraint

The input data and modified output are presented in Box P7.16. The forces are found
to be Fap = 420 lbs and Fop = 840 lbs, and the elongations are 645 = 0.037334 in.

and 6op = 0.074666 in., while the point E deflects by 6 = 0.112 in.

and edited output are presented in Box P7.16.

The input data

Box P7.16: Input and partial output for Problem 7.16.

0O O MODEL, NTYPE, ITEM
3 IELEM, NEM

ICONT, NPRNT

NNM

gOorpkr
=

w

0.4 NOD(1,J)

E6 0.0 AXO, AX1 Data for
BX0, BX1 Element 1
CX0, CX1

0.0 FXO0,FX1,FX2

A OOO
[eNeoNe]

0.8 NOD(2,J)

E6 0.0 AXO0, AX1 Data for
BX0, BX1 Element 2
CX0, CX1

0.0 FX0,FX1,FX2

OQOOWN OO0OOoOWr

[eNeNe]
[eNeNe]

Problem 7.16: DEFORMATION OF A CONSTRAINED STRUCTURE
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(Box P7.16 is continued from the previous page)

1 5 1.6 NOD(3,J)
0.0 0.0 AXO, AX1 Data for
0.0 0.0 BX0, BX1 Element 3
0.0 0.0 CX0, CX1
0.0 0.0 0.0 FX0,FX1,FX2
2 NSPV
31 0.0 ISPV(1,1),ISPV(1,2),VSPV(1)
4 1 0.0 1SpV(2,1),1SpV(2,2),VSpV(2)
0 NSSV
0 NNBC
2 NMPC
11 51 3.2 -1.0 0.0 0.0 IMC1(1,J), IMC2(1,Jd)
21 51 1.33333 -1.0 0.0 970.0 VMPC(1, 1)

SOLUTION (values of PVs) at the NODES:
0.10000E-03 0.24000E-03 0.00000E+00 0.0000OE+00 0.32001E-03
REACTION FORCES:

0.80001E+03 0.95999E+03

Problem 7.17: Solve the problem of axisymmetric deformation of a rotating circular
disk using four linear elements (see Example 7.3.5).

All radial lines experience the same deformation

A typical radial line
1\ 2 3 4 5

o000

Mesh of four linear elements

Figure P7.17

Solution: The input data and edited output for the circular disk problem are
presented in Box P7.17.

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



SOLUTIONS MANUAL 199

Box P7.17: Input and partial output for Problem 7.17.

Example 7.3.5: Deformation of a circular disk (4 linear elements)
1 1 0 MODEL, NTYPE, ITEM
1 4 IELEM, NEM
1 1 ICONT, NPRNT
0.0 5 0.25 0.25 0.25 DX(I)
1.0 AX0, AX1
1.0 BX0, BX1
0.0 CX0, CX1
1.0 0.0 FX0, FX1, FX2
NSPV
0.0 ISPV(1,1), ISPV(1,2), VSPV(1)
NSSV
NNBC
NMPC

OQOORrEr

OUTPUT from program FEM1D by J. N. REDDY

Example 7.3.5: Deformation of a circular disk (4 linear elements)
*** ANALYSIS OF MODEL 1, AND TYPE 1 PROBLEM ***

MODEL=1,NTYPE=0: A problem described by MODEL EQ. 1
MODEL=1,NTYPE=1: A circular DISK (PLANE STRESS)
MODEL=1,NTYPE>1: A circular DISK (PLANE STRAIN)

Element type (0O, Hermite,>0, Lagrange)..
No. of deg. of freedom per node, NDF....
No. of elements in the mesh, NEM........
No. of total DOF in the model, NEQ......
Half bandwidth of the matrix, NHBW......
No. of specified primary DOF, NSPV......
No. of specified secondary DOF, NSSV....
No. of specified Newton B. C.: NNBC.....

L I [ VI V|
OQOFRNUBRRLE

SOLUTION (values of PVs) at the NODES:
0.00000E+00 0.71696E-01 0.13141E+00 0.16935E+00 0.17500E+00

X Displacemnt Radial Strs Hoop Stress
0.00000E+00 0.00000E+00 0.28678E+00
0.31250E-01 0.89620E-02 0.40969E+00 0.40969E+00
0.12500E+00 0.35848E-01 0.40969E+00 0.40969E+00
0.25000E+00 0.71696E-01 0.40969E+00 0.40969E+00
0.25000E+00 0.71696E-01 0.35703E+00 0.39389E+00
0.37500E+00 0.10155E+00 0.35176E+00 0.37634E+00
0.50000E+00 0.13141E+00 0.34913E+00 0.36756E+00
0.50000E+00 0.13141E+00 0.25341E+00 0.33884E+00
0.75000E+00 0.16935E+00 0.24121E+00 0.29816E+00
0.75000E+00 0.16935E+00 0.99275E-01 0.25558E+00
0.87500E+00 0.17218E+00 0.89705E-01 0.22368E+00
0.10000E+01 0.17500E+00 0.82527E-01 0.19976E+00
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7.18-7.25 Solve Problems 5.7-5.14 using the minimum number of Euler-Bernoulli
beam elements (Note: Numerous other beam problems can be found in
books on mechanics of deformable solids).

Solutions: For each of the beam problems, the figure of the beam structure, input
data file and edited output are listed. Note that the bending moment and shear force
computed in the postcomputation will not be accurate. The frame element will give
the correct element forces and moments.

Problem 7.18:

1,000 1b

50 Ib/in. Positive sign convention
M(x)
EI=6x10%1b-inz. YYYYYYYYY Y .
. — —0 I ——+—¢
Z

| —— 96 in.—>les in.—>| Vi)

Figure P7.18

Box P7.18a: Input and partial output for Problem 7.18.

PROBLEM 5.7: BEAM PROBLEM
3 00 MODEL, NTYPE, ITEM
0 2 IELEM, NEM
1 ICONT, NPRNT
3 NNM
NOD(1,J) ,GLX(1)
AX0, AX1
BXO, BX1
CX0, CX1
0.0 FX0,FX1,FX2
NOD(1,J) ,GLX(2)
AX0, AX1
BXO, BX1
CX0, CX1
0.0 FX0,FX1,FX2
NSPV
0.0 ISPV(1,1), ISPV(1,2),VSPV(1)
1 0.0 ISPV(2,1), ISPV(2,2),VSPV(2)
NSSV
1 1000.0 I1SSV(1,1), I1SSV(1,2),VSSV(1)
NNBC
NMPC

OCOOONOOO®OR
w
IS
OO0OO0OO0OMWMOOOOO®
[eNeNoNoNoNeoNolNoNoNe)

QOO WEFRLDNEN

SOLUTION (values of PVs) at the NODES:
0.00000E+00 -0.17920E-02 0.00000E+00 0.51200E-03 0.36864E-01
-0.14080E-02
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1900 1b

Figure P7.18

A

i«—— 96 in—pe—48 in—>|
3900 Ib

4800 1b
1,000 Ib olb-in ¢ -48,000 1b-in
(YVV) Element 1
0 =90°
Y ~1900 1b ~2900 Ib
] X
1000 1b
48,000 1b - in 01b-in
Element 2
Y
—-1000 1b 01b

Box P7.18b: Input and partial output for Problem 7.18 using the frame element.

PROBLEM 5.7: BEAM PROBLEM USING FRAME ELEMENT

4 1 O

0 2

0 1

3

0.3 6.0E8 96.0 1.0
0.0 50.0 0.0 0.0

1 2
0.3 6.0E8 48.0 1.0
0.0 0.0 1.E3 48.0

2 3

0

3

1 1 0.0

1 2 0.0

2 2 0.0

0

0

0

o P

o

[eNe)

o o

MODEL, NTYPE, ITEM
IELEM, NEM
ICONT, NPRNT
NNM
0.0 PR, SE, SL, SA, SI, CS, SN
HF, VF, PF, XB, CST, SNT
NOD

NCON
NSPV
ISPV(1,1), ISPV(1,2),VSPV(L)
ISPV(1,1), ISPV(1,2),VSPV(1)
ISPV(2,1), ISPV(2,2),VSPV(2)
NSSV
NNBC
NMPC

SOLUTION (values of PVs) at the NODES:

0.00000E+00 0.0000OE+00 -0.17920E-02 0.00000E+00 0.00OOOE+00
0.51200E-03 0.0000OE+00 0.36864E-01 -0.14080E-02

Generalized forces in the element coordinates
(second line gives the results in the global coordinates)

Ele Force, Hl

Force, V1

Moment, M1 Force, H2 Force, V2 Moment, M2

1 0.0000E+00
0.0000E+00
2 0.0000E+00
0.0000E+00

-0.1900E+04
-0.1900E+04
-0.1000E+04
-0.1000E+04

0.0000E+00 0.0000E+00 -0.2900E+04 -0.4800E+05
0.0000E+00 0.0000E+00 -0.2900E+04 -0.4800E+05
0.4800E+05 0.0000E+00 0.000OCE+00 0.00OOE+00
0.4800E+05 0.0000E+00 0.000OCE+00 0.000OE+00
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Problem 7.19: Here we use h = 1.0, gg = 1 and EI = 1, but understand that the
deflection is a multiple of goh*/EI and rotation is a multiple of goh3/E1.

Y\

EI=constant

Yy

Figure P7.19

h

4————ﬁ————ﬂ<—————————4

Box P7.19: Input and partial output for Problem 7.19.

PROBLEM 5.8: BEAM PROBLEM

0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00

0 qoh3
0.20833E-01 —Zﬁf 0.10417E-01

3 0 O MODEL, NTYPE, ITEM
0 2 IELEM, NEM
0 1 ICONT, NPRNT

3 NNM

1 2 1.0 NOD(1,J),GLX(1)

0.0 0.0 AXO0, AX1

1.0E0 0.0 BX0, BX1

0.0 0.0 CX0, CX1

1.0 0.0 0.0 FX0,FX1,FX2

2 3 1.0 NOD(1,J) ,GLX(2)

0.0 0.0 AXO0, AX1

1.0E0 0.0 BX0, BX1

0.0 0.0 CX0, CX1

0.0 0.0 0.0 FX0,FX1,FX2
4 NSPV
11 0.0 ISPV(1,1),ISPV(1,2),VSPV(1)
1 2 0.0 ISPV(2,1),ISPV(2,2),VSPV(2)
3 1 0.0 ISPV(3,1),ISPV(3,2),VSPV(3)
3 2 0.0 ISPV(4,1),ISPV(4,2),VSPV(4)
0 NSSV
(0] NNBC
0 NMPC

SOLUTION (values of PVs) at the NODES:

g,

EI

X Deflect.

Rotation

B. Moment Shear Force

0.10000E+01 0.20833E-01
0.00000E+00 0.20833E-01

0.10417E-01 -0.16667E+00 -0.31250E+00
0.10417E-01 -0.83333E-01 0.18750E+00
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Problem 7.20: We can exploit the symmetry of the problem and use half-beam
model with dw/dz = 0 at the line of symmetry.

1.5 in. dia. y 1.5 in dia.
2 in dia.

e

Figure P7.20

Box P7.20: Input and partial output for Problem 7.20.

Steel members (E,= 30x106 psi)
200 1b/in.

41in

N 12in —ble

w
[eNeoNeoNelNoNeoNeNeNoliN
eNeolNoNoNeoNoNeoNeoNoNe]

PROBLEM 5.9: BEAM PROBLEM (Half-beam model)

MODEL, NTYPE,
IELEM, NEM
ICONT, NPRNT
NNM
NOD(1,J),GLX(1)
AX0, AX1

BXO, BX1

CX0, CX1
FX0,FX1,FX2
NOD(1,J),GLX(2)
AX0, AX1

BXO, BX1

CX0, CX1
FX0,FX1,FX2
NSPV

ITEM

0.0

0.0

eNeoNoNeNeoNe]

NN P

[eNeoNe)
[eNeoNe)

ISPV(1,1), ISPV(1,2),VSPV(1)
ISPV(2,1), ISPV(2,2),VSPV(2)
ISPV(3,1), ISPV(3,2),VSPV(3)

QOO WRPFPWN

OOOO0O0E+00

X

-00000E+00
-20000E+01
-40000E+01
-00000E+00
-30000E+01
-60000E+01

SOLUTION (values of PVs)

0.00000E+00 0.00000E+00
0.

X is the global coord.
Deflect.

-0O0000E+00 O.
-84370E-03
-25163E-02
-25163E-02
-46105E-02
-54614E-02 O.

eNeoNoNeoNeoNe]

NSSV
NNBC
NMPC

at the NODES:

if ICONT=1 and it is the

Rotation B. Moment

OOOOOE+00 0.39449E+04
-0.73639E-03 0.15449E+04
-0.82891E-03 -0.85512E+03
-0.82891E-03 -0.14551E+04
-0.52905E-03 -0.32551E+04
0O0OOOE+00 -0.50551E+04

local

coord.

0.25163E-02 -0.82891E-03 0.54614E-02

Shear Force

-0.
-0.
-0.
-0.
-0.
-0.

12000E+04
12000E+04
12000E+04
60000E+03
60000E+03
60000E+03

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc.
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Problem 7.21:

1 kN Steel members

(E,= 200 GPa)
200 N/m
YYYYYYYyY SkN-m
3 cm. dia. 2 cm dia.

e, e —»]

Figure P7.21

12 cm

12 cm

Box P7.21: Input and partial output for Problem 7.21.

MODEL, NTYPE,
IELEM, NEM
ICONT, NPRNT
NNM
NOD(1,J),GLX(1)
AX0, AX1

BXO, BX1
CX0, CX1
FX0,FX1,FX2
NOD(1,J),GLX(2)
AX0, AX1
BXO, BX1
CX0, CX1

ITEM

FX0,FX1,FX2
NSPV
ISPV(1,1), ISPV(1,2),VSPV(1)
ISPV(2,1), I1SPV(2,2),VSPV(2)
ISPV(3.1), ISPV(3,2),VSPV(3)
NSSV
ISPV(1,1), I1SPV(1,2),VSPV(1)
ISPV(2,1), I1SPV(2,2),VSPV(2)
NNBC
NMPC

0.00000E+00 0.0000OE+00 -0.30022E-02 0.37671E-01 0.000OOE+00

PROBLEM 5.10: BEAM PROBLEM
3 0 O
0 2
0 2
3
1 2 0.12
0.0 0.0
7.952E3 0.0
0.0 0.0
200.0 0.0 0.0
2 3 0.12
0.0 0.0
1.571E3 0.0
0.0 0.0
0.0 0.0 0.0
3
11 0.0
1 2 0.0
3 1 0.0
2
2 1 1.0E3
3 2 -5_0E3
0
0
SOLUTION (values of PVs) at the NODES:
-0.15184E+00
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Problem 7.22:

Figure P7.22

g, =400 N/m

SOLUTIONS MANUAL

Y Y

YYYVYYY

Y

YY

h

——

EI=4x10°*N-m

=5m h=5m

Box P7.22: Input and partial output for Problem 7.22.
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N O

-0OE6

[eNeoNoNeoNe]

N

IAN
o
OQCOONRFPPFRPWOOMOORFRLROW
-

0

[eNeoNeNeNd)|
[eNeoNoNeoNe)

[eNeoNe}
[eNeoNe)

0.0

SOLUTION (values of PVs)

MODEL, NTYPE, ITEM
IELEM, NEM
ICONT, NPRNT

DX(1)

AX0, AX1
BXO, BX1
CX0, CX1

FXO0,FX1,FX2

NSPV

PROBLEM 5.11: BENDING OF A BEAM (Euler-Bernoulli)

ISPV(1,1), ISPV(1,2),VSPV(1)
ISPV(2,1), ISPV(2,2),VSPV(2)
ISPV(3,1), ISPV(3,2),VSPV(3)

NSSV
NNBC
NMPC

at the NODES:

0.00000E+00 0.00000E+00 0.00000E+00 -0.13021E-02 0.14323E-01
-0.33854E-02

X Deflect. Rotation B. Moment Shear Force
0.00000E+00 0.00000E+00 0.00000E+00 -0.20833E+04 0.12500E+04
0.25000E+01 -0.81380E-03 0.32552E-03 0.10417E+04 0.12500E+04
0.50000E+01 0.00000E+00 -0.13021E-02 0.41667E+04 0.12500E+04
0.50000E+01 0.00000E+00 -0.13021E-02 0.41667E+04 -0.10000E+04
0.75000E+01 0.58594E-02 -0.31250E-02 0.16667E+04 -0.10000E+04
0.10000E+02 0.14323E-01 -0.33854E-02 -0.83333E+03 -0.10000E+04
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Problem 7.23:

h:4nLEH:5OXHWN—an%:5kN

F

Figure P7.23

F, =2kN, ¢, =10°N/m, a =0.1m

" A

F

EI= constant W »&W ‘10‘# w

h h )

Box P7.23: Input and partial output for Problem 7.23.

3 0 O
0 2
0 2

3
1 2 4.0
0.0 0.0
5.0E7 0.0
0.0 0.0
0.0 0.0 0.0
2 3 4.0
0.0 0.0
5.0E7 0.0
0.0 0.0
1.0E3 0.0 0.0
2
1 1 0.0
2 1 0.0
2
1 2 0.5E3
3 1 -2.0E3
0
0

SOLUTION (values of PVs)
0.00000E+00 0.13333E-04
0.10000E-03

PROBLEM 5.12: BENDING OF A BEAM (Euler-Bernoulli)

MODEL, NTYPE, ITEM
IELEM, NEM

ICONT, NPRNT

NNM

NOD(1,J) ,GLX(1)

AX0, AX1

BXO, BX1

CX0, CX1

FX0,FX1,FX2

NOD(1,J) ,GLX(2)

AX0, AX1

BXO, BX1

CX0, CX1

FX0,FX1,FX2

NSPV

ISPV(1,1), ISPV(1,2),VSPV(1)
ISPV(2,1), ISPV(2,2),VSPV(2)
NSSV

ISPV(1,1), ISPV(1,2),VSPV(1)
ISPV(2,1), ISPV(2,2),VSPV(2)
NNBC

NMPC

at the NODES:

0.00000E+00

-0.66667E-05

-0.18667E-03

X Deflect.

Rotation

B. Moment

Shear Force

.00000E+00
.20000E+01
-40000E+01
-00000E+00
-20000E+01
-40000E+01

0.00000E+00
-0.10000E-04
0.00000E+00
0.00000E+00
-0.40000E-04
-0.18667E-03

[cNeoNeoNoNoNe]

0.13333E-04
-0.16667E-05
-0.66667E-05
-0.66667E-05
0.46667E-04
0.10000E-03

0.50000E+03
0.25000E+03
0.37436E-06
-0.13333E+04
-0.13333E+04
-0.13333E+04

-0.12500E+03
-0.12500E+03
-0.12500E+03
0.50822E-12
0.50822E-12
0.50822E-12
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Problem 7.24:

EI =10°N-m”

Figure P7.24

v

SOLUTIONS MANUAL

g,=500 N/m F,=1,000 N
]D l

X ]

<

/

Z,W,

0

" 5m ) 5 m 5m

EI=constant

Box P7.24: Input and partial output for Problem 7.24.
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3 0 O

0
0 1
4

OCOFRPOWOOFRPONOORrROLR

o

m

(&}
OCO0OO0OO0OUIOO0OO0OO0OUIOOOOou
eNeoNoNoNeooNoNolNoNoNoNoNoNoNe]

[oNe]
[oNe]

1 1000.0

OCOoOWRLAEDN

PROBLEM 5.13: BENDING OF A BEAM (Euler-Bernoulli)

MODEL, NTYPE, ITEM

IELEM, NEM

ICONT, NPRNT

NNM

NOD(1,J), GLX(1)

AX0, AX1

BXO, BX1

CX0, CX1

FX0, FX1, FX2

NOD(1,J), GLX(2)

AX0, AX1

BX0, BX1

CX0, CX1

FX0, FX1, FX2

NOD(1,J), GLX(3)

AX0, AX1

BXO, BX1

CX0, CX1

FX0, FX1, FX2

NSPV
ISPV(1,1),VSPV(1,2),VSPV(1)
ISPV(2,1),VSPV(2,2),VSPV(2)
NSSV
I1SSV(1,1),VSSV(1,2),VSSV(L)
NNBC

NMPC

SOLUTION (values of PVs) at the NODES:
0.00000E+00 -0.24826E+00 0.99537E+00 -0.11111E+00 0.98380E+00
0.11806E+00 0.00000E+00 0.23611E+00
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Problem 7.25:

F, ,d
h=4m, EI =50x10°N-m?, £ =10°N/m
q > 3
EAN F, =5kN, q, =10°N/m, d =0.5m
Rigid loading frame

- _— g g
ZAYY Y VY

2E1 EI <<

-
h h %} Linear elastic

spring, k

Figure P7.25
Box P7.25: Input and partial output for Problem 7.25.

PROBLEM 5.14: BENDING OF A BEAM (Euler-Bernoulli)

3 00 MODEL, NTYPE, ITEM
0 2 IELEM, NEM
0 1 ICONT, NPRNT
3 NNM

1 2 4.0 NOD(1,J), GLX(1)

0.0 0.0 AX0, AX1

1.0E8 0.0 BXO, BX1

0.0 0.0 CX0, CX1

1.0E3 0.0 0.0 FX0, FX1, FX2

2 3 4.0 NOD(1,J), GLX(2)

0.0 0.0 AX0, AX1

5.0E7 0.0 BX0, BX1

0.0 0.0 CX0, CX1

0.0 0.0 0.0 FX0, FX1, FX2
2 NSPV
1 1 0.0 ISPV(1,1),VSPV(1,2),VSPV(1)
1 2 0.0 ISPV(2,1),VSPV(2,2),VSPV(2)
2 NSSV
2 1  5.0E3 I1SSV(1,1),VSSV(1,2),VSSV(L)
2 2 -2.5E3 I1SSV(1,1),VSSV(1,2),VSSV(1)
1 NNBC
3 1 1.0E6 0.0 INBC(1,1), INBC(1,2),VNBC(L),UREF(1)
0 NMPC

SOLUTION (values of PVs) at the NODES:

0.00000E+00 0.0000OCE+00 0.85364E-03 -0.27680E-03 0.13744E-02
-0.56895E-04
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Problem 7.26: Analyze Problem 7.22 (same as Problem 5.11) using the RIE
Timoshenko element. Assume v = 0.25, K; = 5/6 and H = 0.1 m (beam height).
Use 2,4 and 8 elements to see the convergence characteristics of the RIE element
(two-element model may yield results very far off from the Euler-Bernoulli beam
solution).

Solution: First, we calculate GAK

5 E BH® 125 4FEI
i 6 2(1+0.25) 12 H26  H?

Thus, GAK, = 1.6 x 10® N. A typical input file and deflection and rotations obtained
at © = L = 10m by the three meshes are tabulated in Box P7.26.

Box P7.26: Input and partial output for Problem 7.26.

PROBLEM 5.11: BENDING OF A BEAM (RIE Timoshenko element)
2 0 O MODEL, NTYPE, ITEM
1 8 IELEM, NEM
1 1 ICONT, NPRNT
0.0 1.25 1.25 1.25 1.25
1.25 1.25 1.25 1.25 DX(D)
16.0E8 0.0 AX0, AX1
4_0E6 0.0 BX0, BX1
0.0 0.0 CX0, CX1
400.0 0.0 0.0 FX0,FX1,FX2
3 NSPV
1 1 0.0 1SPV(1,1),ISPV(1,2),VSPV(1)
1 2 0.0 I1SPV(2,1),ISPV(2,2),VSPV(2)
5 1 0.0 ISPV(3,1),ISPV(3,2),VSPV(3)
0 NSSV
0 NNBC
0 NMPC
SOLUTION:
No. of
Elements w(L) #(L)
Timoshenko (RIE) element
2 0.78281E-02 -0.31275E-02
4 0.13291E-01 -0.34389E-02
8 0.14100E-01 -0.34052E-02
Euler-Bernoulli (EBE) element
2 0.14323E-01 -0.33854E-02
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Problem 7.27: Repeat Problem 7.26 using the CIE Timoshenko element.
Solution: The input data file and the results are summarized in Box P7.27.

Box P7.27: Input and summary of the results for Problem 7.27.

PROBLEM 5.11: BENDING OF A BEAM (CIE Timoshenko element)
2 2 0 MODEL, NTYPE, ITEM
1 4 IELEM, NEM
1 1 ICONT, NPRNT
0.0 2.5 2.5 2.5 2.5 DX(D)
16.0E8 0.0 AXO, AX1
4.0E6 0.0 BX0, BX1
0.0 0.0 CX0, CX1
400.0 0.0 0.0 FX0,FX1,FX2
3 NSPV
1 1 ) ISPV(1,1),1SPV(1,2),VSPV(1)
1 2 0.0 I1SPV(2,1),ISPV(2,2),VSPV(2)
3 1 0.0 ISPV(3,1), I1SPV(3,2),VSPV(3)
0 NSSV
0 NNBC
0 NMPC
Qo = 400 N/m
EI =4x10° N -
:E(; m Y YVYYYYVVYY
= = +
GAK 5 H=0.1 h—Bm h—Bm
No. of Ele w(L) ¢(L)
Timoshenko (CIE) element
L2 0.52219E-02 -0.20854E-02
L4 0.12380E-01 -0.31263E-02
L8 0.13859E-01 -0.33246E-02
Euler-Bernoulli (EBE) element
2 0.14323E-01 -0.33854E-02
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Note: Numerous other circular plate problems can be assigned using a variation of
loads and boundary conditions as well as the type of element used.

Problem 7.28: Analyze a clamped circular plate under a uniformly distributed
transverse load using the Euler-Bernoulli plate element. Investigate the convergence
using 2, 4 and 8 elements by comparing with the exact solution (from Reddy, 2002)

wt =2 [y ()]
64D a
where D = EH3/12(1 —1v?), qp is the intensity of the distributed load, a is the radius

of the plate, H is its thickness, and v is Poisson’s ratio (v = 0.25). Tabulate the
center deflection.

Solution: The input data file and the results are summarized in Box P7.28. Note
that the slope at 7 = 0 need not be specified (to be zero); the results show that it is
indeed zero. The exact center deflection is w(0) = 0.17578 (times goa*/D).

Box P7.28: Input and partial output for Problem 7.28.

PROBLEM 7.28: BENDING OF A CLAMPED CIRCULAR PLATE (EBE)
3 0 MODEL, NTYPE, ITEM
IELEM, NEM
ICONT, NPRNT
.25 0.25 0.25 0.25 DX(ID)
AXO(E1), AX1(E2) (E1=E2=E)
BX0(v), BX1(H) (H=thickness)
CX0, CX1
0.0 FX0,FX1,FX2
NSPV
ISPV(1,1),ISPV(1,2),VSPV(1)
ISPV(2,1),1SPV(2,2),VSPV(2)
NSSV
NNBC
NMPC

N
ol
[ N
OOoORrR RO
oOooo

OO0 UUINFLPOORFLRLRORrO
[eNe]
o o

SOLUTION (values of PVs) at the NODES:

N=2

0.17613E+00 -0.61141E-02 0.99182E-01 0.26295E+00 0.0000OE+00
0.00000E+00

N=4

0.17581E+00 -0.76427E-03 0.15453E+00 0.16468E+00 0.98897E-01
0.26362E+00 0.33656E-01 0.23069E+00 0.00000E+00 0O.000OOOE+00
N =28

0.17578E+00 -0.95533E-04 0.17033E+00 0.86502E-01 0.15450E+00
0.16479E+00 0.12982E+00 0.22659E+00 0.98878E-01 0.26367E+00
0.65275E-01 0.26779E+00 0.33646E-01 0.23071E+00 0.96563E-02
0.14419E+00 0.0000OCE+00 0.0OOOOE+00
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Problem 7.29: Repeat Problem 7.28 with the RIE Timoshenko plate elements for
a/H = 10. Use 4 and 8 linear elements and 2 and 4 quadratic elements and tabulate
the center deflection. Take F = 107, v = 0.25 and K, = 5/6. The exact solution is
(see page 403 of Reddy, 2002)

=25 [1- ()] om0

Solution: We have G = 0.4x107. The input data file and the results are summarized
in Box P7.29. The exact center deflection is w(0) = 0.18328 x 10~* (the contribution
due to shear is 0.0075 x 1074).

Box P7.29: Typical input file and summary of results for Problem 7.29.

PROBLEM 7.29: BENDING OF A CLAMPED CIRCULAR POLATE (RIE)

2 1 0 MODEL, NTYPE, ITEM

2 2 I1ELEM, NEM

1 1 ICONT, NPRNT

0.0 0.5 0.5 DX(1)

1.0E7 1.0E7 AXO(E1), AX1(E2) (E1 = E2 = E)
0.25 0.1 BX0 (nu), BX1(H) (H = thickness)
0.0 0.0 CX0, CX1

1.0 0.0 0-333333E7 FX0,FX1,FX2(G) (G = shear modulus)
2 NSPV

5 1 0.0 ISPV(1,1),1SPV(1,2),VSPV(1)

5 2 0.0 ISPV(2,1),1SPV(2,2),VSPV(2)

0 NSSV

0 NNBC

0 NMPC

SOLUTION at the NODES (Only first row is listed):

N = 4L
0.18549E-04 0.83705E-06 0.16092E-04 0.18316E-04 0.10136E-04

N = 20
0.18462E-04 -0.13787E-05 0.16268E-04 0.17021E-04 0.10529E-04
N = 8L
0.18382E-04 0.10463E-06 0.17798E-04 0.89928E-05 0.16141E-04
N = 4Q
0.18339E-04 -0.17233E-06 0.17782E-04 0.87171E-05 0.16161E-04
N = 8Q

0.18329E-04 -0.21542E-07 0.18189E-04 0.43855E-05 0.17772E-04
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7.30 Repeat Problem 7.29 with the Timoshenko plate element (CIE) (and linear
elements) for a/H = 10.

Solution: The input data files and the results for the generalized displacements are
presented in Box P7.30.

Box P7.30: Input files and solutions for Problem 7.30.

PROBLEM 7.30: BENDING OF A CLAMPED CIRCULAR POLATE (CIE)

2 3 0 MODEL, NTYPE, ITEM

1 4 IELEM, NEM

1 1 ICONT, NPRNT

0.0 0.25 0.25 0.25 0.25 DX(I)

1.0E7 1.0E7 AXO(E1l), AX1(E2) (E1l = E2 = E)
0.25 0.1 BXO (nu), BX1(H) (H = thickness)
0.0 0.0 CX0, CX1

1.0 0.0 0.333333E7 FX0,FX1,FX2(G) (G = shear modulus)
2 NSPV

5 1 0.0 I1SPV(1,1),ISPV(1,2),VSPV(1)

5 2 0.0 I1SPV(2,1),ISPV(2,2),VSPV(2)

0 NSSV

0 NNBC

0 NMPC

SOLUTION (values of PVs) at the NODES:
0.17820E-04 0.41853E-06 0.15546E-04 0.17274E-04 0.98484E-05
0.27143E-04 0.32742E-05 0.23551E-04 0.00000E+00 0.00000E+00

PROBLEM 7.30: BENDING OF A CLAMPED CIRCULAR POLATE (CIE)

2 3 0 MODEL, NTYPE, ITEM
1 8 IELEM, NEM
1 1 ICONT, NPRNT
0.0 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 DX(D)
1.0E7 1.0E7 AXO(E1), AX1(E2) (E1l = E2 = E)
0.25 0.1 BX0 (nu), BX1(H) (H = thickness)
0.0 0.0 CX0, Cx1
1.0 0.0 0.333333E7 FX0,FX1,FX2(G) (G = shear modulus)
2 NSPV
9 1 0.0 ISPV(1,1),1SPV(1,2),VSPV(1)
9 2 0.0 1SPV(2,1),ISPV(2,2),VSPV(2)
0 NSSV
0 NNBC
0 NMPC

SOLUTION (values of PVs) at the NODES:
0.18200E-04 0.52316E-07 0.17631E-04 0.87989E-05 0.16002E-04
0.16672E-04 0.13472E-04 0.22863E-04 0.10301E-04 0.26558E-04
0.68510E-05 0.26941E-04 0.35886E-05 0.23190E-04 0.10813E-05
0.14484E-04 0.00000E+00 0.0000OE+00
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Problem 7.31: Consider an annular plate of outer radius @ and an inner radius b,
and thickness H. If the plate is simply supported at the outer edge and subjected
to a uniformly distributed load g (see Fig. P7.31), analyze the problem using the
Euler—Bernoulli plate element. Compare the four-element solution with the analytical
solution (from Reddy, 2002)

goa* 4 2a1 2 4 3? r
:64—13{‘“< 1 [ ]‘1_y1°g<a)}
o =B+v)(1-p8% -4+ K, =B+v)+4(1+v)k
g b EH3
T osl F=0 D= a—s

where E is the modulus of elasticity, H the thickness and v Poisson’s ratio. Take
E =107, v =0.3 and b/a = 0.25.

qO b b qO

- o
- -

H yyeLyvy Yyvy
Figure P7.31 1
PR S —

z, w(r)

Solution: The input data files and the results for the generalized displacements are
presented in Box P7.31. The exact displacement is w(b) = 0.83(qoa*/EH?3).

Box P7.31: Input files and solutions for Problem 7.31.

PROBLEM 7.31: BENDING OF A SIMPLY SUPPORTED ANNULAR PLATE (EBE)
3 1 O MODEL, NTYPE, ITEM
0 4 IELEM, NEM
1 1 ICONT, NPRNT
0.25 0.1875 0.1875 0.1875 0.1875 DX(D)
1.0E7 1.0E7 AXO(E1), AX1(E2) (E1=E2=E)
0.3 0.1 BXO(nu), BX1(H)
0.0 0.0 CX0, CX1
1.0 0.0 0.0 FX0,FX1,FX2
1 NSPV
5 1 0.0 ISPV(1,1),1SPV(1,2),VSPV(1)
0 NSSV
0 NNBC
0 NMPC
SOLUTION (values of PVs) at the NODES:
0.82921E-04 0.10390E-03 0.64116E-04 0.10140E-03 0.44172E-04
0.11162E-03 0.22433E-04 0.11923E-03 0.00000E+00 0.11826E-03
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Problem 7.32: Repeat Problem 7.31 with (a) four linear elements and (b) two
quadratic Timoshenko (RIE) elements for a/H = 10.

Solution: The input data files and the results for the generalized displacements are
presented in Box P7.32.

Box P7.32: Input files and solutions for Problem 7.32.

PROBLEM 7.32: BENDING OF A SIMPLY SUPPORTED ANNULAR PLATE (TBT)

2 10 MODEL, NTYPE, ITEM
1 4 IELEM, NEM

1 1 ICONT, NPRNT

0.25 0.1875 0.1875 0.1875 0.1875  DX(I)

1.0E7 1.0E7 AXO(EL), AX1(E2) (E1=E2=E)
0.3 0.1 BXO(nu), BX1(H)

0.0 0.0 CX0, CX1

1.0 0.0 0.3205E7 FXO,FX1,FX2

1 NSPV

5 1 0.0 ISPV(1,1), ISPV(1,2),VSPV(1)
0 NSSV

0 NNBC

0 NMPC

SOLUTION (values of PVs) at the NODES:

0.83203E-04 0.10260E-03 0.64048E-04 0.10118E-03 0.44010E-04
0.11126E-03 0.22294E-04 0.11840E-03 0.00000E+00 0.11678E-03

PROBLEM 7.32: BENDING OF A SIMPLY SUPPORTED ANNULAR PLATE (TBT)
2 10 MODEL, NTYPE, ITEM
2 IELEM, NEM
1 ICONT, NPRNT
75 0.375  DX(I)
E7 AXO(E1), AX1(E2) (E1=E2=E)
BXO(v), BXL(H)
CX0, CX1
0.3205E7  FX0,FX1,FX2
NSPV
1 0.0 ISPV(1,1), ISPV(1,2),VSPV(1)
NSSV
NNBC
NMPC

OCOFrOoOw

OO0OQOUIRPRFPOORFROERLN
o

SOLUTION (values of PVs) at the NODES:

0.83278E-04 0.10253E-03 0.64321E-04 0.10110E-03 0.44482E-04
0.11114E-03 0.22589E-04 0.11895E-03 0.00000E+00 0.11792E-03
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Problems 7.33—7.47: Analyze the truss problems in Figures P4.38-P4.44 and frame
problems in Figures P5.28-P5.35.

Solution to Problem 7.33: We have (sinf; = cos6; = 1/v/2) for element 1 and
(sinfy = 0.8944, cos 03 = —0.4472) for element 2. The input data file and the edited
output are presented in Box P7.33.

0,
3
0, =90 +tan"'(1/2) =116.565°
Figure P7.33
Box P7.33: Input files and solutions for Problem 7.33.
Problem 4.38: ANALYSIS OF A PLANE TRUSS
4 0 O MODEL, NTYPE, ITEM
0 2 I1ELEM, NEM
0 1 ICONT, NPRNT
3 NNM
30.E6 169.70563 3.0 0.7071 0.7071 0.0 SE, SL, SA, CS, SN, HF
1 2 NOD(1,1) - Element 1
30.E6 134.16408 4.0 -0.4472 0.8944 0.0 Element 2
3 2
4 NSPV
1 1 0.0
1 2 0.0 ISPV, VSPV
3 1 0.0
3 2 0.0
1 NSSV
2 1 10.0E3 1SSV, VSSV
0 NNBC
0 NMPC

SOLUTION (values of PVs) at the NODES:
0.00000E+00 0.00000E+00 0.22973E-01 0.21690E-02 0.00000E+00
0.00000E+00

Generalized forces in the element coordinates
(second line gives the results in the global coordinates)

Ele Force, Hil Force, V1 Force, H2 Force, V2

1 -0.9428E+04 0.0000E+00 0.9428E+04 0.000OE+00
-0.6667E+04 -0.6667E+04 0.6667E+04 0.6667E+04
2 0.7453E+04 0.0000E+00 -0.7453E+04 0.0000E+00
-0.3333E+04 0.6667E+04 0.3333E+04 -0.6667E+04
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Solution to Problem 7.34: The input data file and the edited output are presented
in Box P7.34.

20 kips

0=51.34", 0,=0°, 0,=129.81"

Figure P7.34
Box P7.34: Input files and solutions for Problem 7.34.

Problem 4.39: ANALYSIS OF A PLANE TRUSS

4 0 0 MODEL, NTYPE, ITEM
0 3 IELEM, NEM
0 2 ICONT, NPRNT
3 NNM
30.E6 230.5125 15.0 0.6247 0.78087 0.0 SE,SL,SA,CS,SN,HF
1 2 NOD(1, 1)
30.E6 360.0 20.0 1.0 0.0 0.0
1 3
30.E6 281.169 15.0 -0.7682 0.6402 0.0
3 2
3 NSPV
1 1 0.0
1 2 0.0 ISPV, VSPV
3 2 0.0
1 NSSV
2 2 -20.0E3 1SSV, VSSV
0 NNBC
0 NMPC

SOLUTION (values of PVs) at the NODES:
0.00000OE+00 0.00000E+00 0.45136E-02 -0.13692E-01 0.57599E-02
0.00000E+00

Generalized forces in the element coordinates
(second line gives the results in the global coordinates)

Ele Force, H1l Force, V1 Force, H2 Force, V2

1 0.1537E+05 -0.1819E-11 -0.1537E+05 0.1819E-11
0.9600E+04 0.1200E+05 -0.9600E+04 -0.1200E+05
2 -0.9600E+04 0.000OE+00 0.9600E+04 0.0000E+00
-0.9600E+04 0.0000E+00 0.9600E+04 0.0000E+00
3 0.1250E+05 0.0000E+00 -0.1250E+05 0.0000E+00
-0.9600E+04 0.8000E+04 0.9600E+04 -0.8000E+04
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Solution to Problem 7.35: The input data file and the edited output are presented
in Box P7.35.

8 kips

8 kips
®
A=3in?
@ \a4

All members:
E =30 x 106 psi

2 2
) 2
Figure P7.35 e— 10 ft. —sfe—101t

Box P7.35: Input files and solutions for Problem 7.35.

Problem 4.40: ANALYSIS OF A PLANE TRUSS
4 0 O MODEL, NTYPE, ITEM
1 5 1ELEM, NEM
0 1 ICONT, NPRNT
4 NNM
30.E6 169.70563 3.0 0.7071 0.7071 0.0 SE,SL,SA,CS,SN,HF
1 3 NOD(1, 1)
30.E6 120.00 3.0 1.0 0.0 0.0
1 2
30.E6 120.00 3.0 0.0 1.0 0.0
2 3
30.E6 120.00 3.0 1.0 0.0 0.0
2 4
30.E6 169.70563 3.0 0.7071 -0.7071 0.0
3 4 NOD(1, 1)
3 NSPV
1 1 0.0
1 2 0.0 ISPV, VSPV
4 2 0.0
2 NSSV
3 1 8.0E3 1SSV, VSSV
3 2 -8.0E3 1SSV, VSSV
0 NNBC
0 NMPC
SOLUTION (values of PVs) at the NODES:
0.00000E+00 0.00000E+00 0.10667E-01 -0.25752E-01 0.25752E-01
-0.25752E-01 0.21333E-01 0.00000E+00
Ele Force, H1l Force, V1 Force, H2 Force, V2
2 -0.8000E+04 0.0000E+00 0.8000E+04 0.0000E+00
-0.8000E+04 0.0000E+00 0.8000E+04 0.0000E+00
4 -0.8000E+04 0.0000E+00 0.8000E+04 0.0000E+00
-0.8000E+04 0.0000E+00 0.8000E+04 0.0000E+00
5 0.1131E+05 0.0000E+00 -0.1131E+05 0.0000E+00
0.8000E+04 -0.8000E+04 -0.8000E+04 0.8000E+04
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Solution to Problem 7.36: The input data file and the edited output are presented
in Box P7.36.

All members:

6, =0, 6,=90°, 6, =45
EA = constant

Figure P7.36

Box P7.36: Input files and solutions for Problem 7.36.
Problem 4.41: ANALYSIS OF A PLANE TRUSS

4 0 0 MODEL, NTYPE, ITEM
1 3 IELEM, NEM
0 1 ICONT, NPRNT
3 NNM
10.E6 1.0 1.0 1.0 0.0 0.0 SE,SL,SA,CS,SN,HF
1 2 NOD(1, 1)
10.E6 1.0 1.0 0.0 1.0 0.0
2 3
10.E6 1.414 1.0 0.707 0.707 0.0
1 3
4 NSPV
1 1 0.0
1 2 0.0 ISPV, VSPV
2 1 0.0
2 2 0.0
2 NSSV
3 1  1.0E3 ISSV, VSSV
3 2 -2.0E3 1SSV, VSSV
0 NNBC
0 NMPC

SOLUTION (values of PVs) at the NODES:

0.00000E+00 0.0000OOE+00 0.0O0O00OE+00 0.0000OE+00 0.58289E-03
-0.30000E-03

Ele Force, Hl Force, V1 Force, H2 Force, V2

1 0.0000E+00 0.0000E+00 0.000OCE+00 0.000OE+00
0.0000E+00 0.0000E+00 0.000OE+00 0.000OE+00
2 0.3000E+04 0.0000E+00 -0.3000E+04 0.0000E+00
0.0000E+00 0.3000E+04 0.0000CE+00 -0.3000E+04
3 -0.1414E+04 0.0000E+00 0.1414E+04 0.0000E+00
-0.1000E+04 -0.1000E+04 0.1000E+04 0.1000E+04
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Solution to Problem 7.37: The input data file and the edited output are presented
in Box P7.37.

/o)
4 All members:

E =29 x 106 Ib/in?
@ Al =05 in2
A,=1.0in2

A;=15in?

16 kips
Figure P7.37

Box P7.37: Input files and solutions for Problem 7.37.

Problem 4.42: ANALYSIS OF A PLANE TRUSS

4 0 0 MODEL, NTYPE, ITEM
1 3 IELEM, NEM
0 1 ICONT, NPRNT
4 NNM
10.E6 1.414 0.5 -0.707 0.707 0.0 SE,SL,SA,CS,SN,HF
1 2 NOD(1, 1)
10.E6 1.0 1.0 0.0 1.0 0.0
1 3
10.E6 1.414 1.5 0.707 0.707 0.0
1 4
6 NSPV
2 1 0.0
2 2 0.0 ISPV, VSPV
3 1 0.0
3 2 0.0
4 1 0.0
4 2 0.0
1 NSSV
1 1 1.6E4 1SSV, VSSV
0 NNBC
0 NMPC

SOLUTION (values of PVs) at the NODES:

0.25245E-02 -0.52279E-03 0.00000E+00 0.00000E+00 0.0000OE+00
0.00000E+00 0.00000E+00 0.00000E+00

Ele Force, H1 Force, V1 Force, H2 Force, V2

1 -0.7616E+04 0.0000E+00 0.7616E+04 0.00OOE+00
0.5386E+04 -0.5386E+04 -0.5386E+04 0.5386E+04
2 -0.5228E+04 0.0000E+00 0.5228E+04 0.0000E+00
0.0000E+00 -0.5228E+04 0.0000E+00 0.5228E+04
3 0.1501E+05 0.0000E+00 -0.1501E+05 0.0000E+00
0.1061E+05 0.1061E+05 -0.1061E+05 -0.1061E+05

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



SOLUTIONS MANUAL 221

Solution to Problem 7.38: The input data file and the edited output are presented
in Box P7.38.

For all members:
E =207 GPa,
A=5cm?

Note that subroutine CONSTRNT transforms the
global degrees of freedom at global node 2 to the
local degrees of freedom. Hence, the 2nd local
degrees of freedom (u, = 0) is known to be zero.

P=1,000 kN

Figure P7.38

Box P7.38: Input files and solutions for Problem 7.38.
Problem 4.43: ANALYSIS OF A PLANE TRUSS WITH INCLINED SUPPORT
4 0 O MODEL, NTYPE, ITEM
1 3 1ELEM, NEM
0 2 ICONT, NPRNT
3 NNM
207.0E9 1.0 0.5E-03 1.0 0.0 0.0 SE, SL, SA, CS, SN, HF
1 2 NOD(1, 1)
207.0E9 1.0 0.5E-03 0.0 1.0 0.0 SE, SL, SA, CS, SN, HF
2 3 NOD(2, 1)
207.0E9 1.4142 0.5E-03 0.7071 0.7071 0.0 SE, SL, SA, CS, SN, HF
1 3 NOD(3, 1)
1 NCON
2 60.0 ICON(1), VCON(1)
5 NSPV
1 1 0.0 ISPV(1,1), ISPV(1,2),VSPV(1)
1 2 0.0 ISPV(2,1), ISPV(2,2),VSPV(2)
2 2 0.0 ISPV(3,1), ISPV(3,2).,VSPV(3)
3 1 0.0 ISPV(4,1), ISPV(4,2),VSPV(4)
3 2 0.0 ISPV(5,1), ISPV(5,2),VSPV(5)
1 NSSV
2 1  0.866E6 1SSV(1,1), 1SSV(1,2),VSSV(L)
0 NNBC
0 NMPC
SOLUTION (values of PVs) at the NODES:
0.00000OE+00 0.0O0OOOOE+00 0.83671E-02 0.00000E+00 0.00000OE+00
0.00000E+00
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Solution to Problem 7.39: The input data file and the edited output are presented

in Box P7.39.

Figure P7.39

45°
For all members:
E =207 GPa,
A =5x10“4m?
L=1m m
X
P =1,000 kN

Box P7.39: Input files and solutions for Problem 7.39.

4 0 O
1 3
0O 2
3
207.0E9 1.0
1 2
207.0E9 1.0
2 3
207.0E9 1.4142
3

45.0

NEFENPRP

OONPFPWNRPRERPMNWERPER
N
=

0.00000E+00

cNeoNoNe]
ol oNoNe]

0.5E-3 1.0

0.5E-3 0.0

0.5E-3 0.7071 0.7071 0.0 SE, SL, SA, CS, SN, HF

-OE6

Problem 4.44: ANALYSIS OF A PLANE TRUSS WITH INCLINED SUPPORT

0.0

1.0

SOLUTION (values of PVs) at the NODES:

0.00000E+00 0.0000OE+00 0.00000E+00 0.16494E-01 0.96619E-02

MODEL, NTYPE, ITEM
IELEM, NEM
ICONT, NPRNT
NNM

0.0 SE, SL, SA, CS, SN, HF
NOD(1, 1)

0.0 SE, SL, SA, CS, SN, HF
NOD(2, 1)

NOD(1, 1)

NCON

ICON(1), VCON(1)

NSPV
ISPV(1,1), ISPV(1,2),VSPV(1)
ISPV(2,1), ISPV(2,2),VSPV(2)
ISPV(3.,1), ISPV(3,2),VSPV(3)
ISPV(4,1), ISPV(4,2),VSPV(4)

NSSV
I1SSV(1,1), 1SSV(1,2),VSSV(1)

NNBC

NMPC
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Solution to Problem 7.40: The input data file and the edited output are presented
in Box P7.40.

[b:loft, c=8ft, P=10%1b, A=10% in%, I =10% in*, E = 30x10° psi ]

B —quc
P }L, g
B
22 @ sy x " VB 1/0
— ]
—° 1, 5 T,
|‘4’| I — S -
7 0, =0’ ___gc
® z ’

z
>3 ’ y out of the paper

Figure P7.40
Box P7.40: Input files and solutions for Problem 7.40.

Problem 5.28: ANALYSIS OF A PLANE FRAME of Prob 5.6 (E-B element)
4 1 0 MODEL, NTYPE, ITEM
0 2 IELEM, NEM
0 2 ICONT, NPRNT
3 NNM
0.3 3.0E7 120.0 1.0E2 1.0E2 0.0 -1.0 PR,SE,SL,SA,SI,CS,SN
0.0 0.0 0.0 0.0 0.0 0.0 HF,VF,PF,XB,CST,SNT
1 2 NOD(1,J)
0.3 3.0E7 96.0 1.0E2 1.0E2 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 Element 2
2 3
0 NCON
3 NSPV
1 1 0.0 ISPV(1,J3), VSPV(1)
1 2 0.0 ISPV(2,J), VSPV(2)
1 3 0.0 ISPV(3,J), VSPV(3)
1 NSSV
3 2 1.0E3 I1SSV(1,J3), VSSV(1)
0 NNBC
0 NMPC
SOLUTION (values of PVs) at the NODES:
0.00000E+00 0.0000OOE+00 0.00000E+00 0.23040E+00 0.40000E-04
-0.38400E-02 0.23040E+00 0.46698E+00 -0.53760E-02
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Solution to Problem 7.41: The input data file and the edited output are presented
in Box P7.41.

E=30x10¢1b/inz, v=0.3 8 kips

A=1021n2, I=1021n4 — A
0> in?, 0%1n ~ Q) =4.229 kips

ok ¢ ? it CE:-EE (Y - @) =7.362 kips

3 ft El @ L bl ey

10 kips — 10 kips =@Qs =110.9 kip-in
—

71t

Q) =94.96 kip-in
9 @, =2.638 kips
[~ Q! =4.229 kips

.':3 >
i
|¢
Y
e
%

Figure P7.41
Box P7.41: Input files and solutions for Problem 7.41.

Problem 5.29: ANALYSIS OF A PLANE FRAME (E-B element)
4 1 0 MODEL, NTYPE, ITEM
0 2 IELEM, NEM
0 2 ICONT, NPRNT
3 NNM
0.3 3.0E7 120.0 1.0E2 2.0E2 0.0 -1.0 PR,SE,SL,SA,SI,CS,SN
0.0 0.0 1.0E4 84.0 0.0 1.0 HF, VF, PF, XB, CST, SNT
1 2 NOD(1,J)
0.3 3.0E7 120.0 1.0E2 1.0E2 1.0 0.0
0.0 0.0 8.E3 60.0 0.0 1.0 Element 2
0 NCON
2 3
6 NSPV
1 1 0.0
1 2 0.0 ISPV(1,J), VSPV(l)
1 3 0.0
3 1 0.0
3 2 0.0
3 3 0.0
0 NSSV
0 NNBC
(0] NMPC
SOLUTION (values of PVs) at the NODES:
0.00000OE+00 0.00000E+00 0.0000OCE+00 0.29448E-03 0.16917E-03
0.18625E-03 0.00000E+00 0.0000OCE+00 0.00000E+00
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Solution to Problem 7.42: The input data file and the edited output are presented
in Box P7.42.

1,000 1b/ft.

YYYYYY) [ C - Q4 =1769.5 kips

©)
R

N ~Q/ =26.86 kips
- Q) =2.26 kips

-« q0ft. —>

E = 30x10° 1b/in?,
A=10%1in2., I=10%1in%

-Q4 =381.5kip-in

B Q) =2.26 kips
Q! =26.86 kips

Figure P7.42
Box P7.42: Input files and solutions for Problem 7.42.

Problem 5.30: ANALYSIS OF A PLANE FRAME (E-B element)
4 1 0 MODEL, NTYPE, ITEM

0 2 IELEM, NEM

0 1 ICONT, NPRNT

3 NNM

0.3 3.0E7 509.117 1.0E2 1.0E3 0.7071 -0.7071 PR,SE,SL,SA,SI,CS,SN
0.0 0.0 0.0 0.0 0.0 0.0 HF, VF, PF, XB, CST, SNT
1 2 NOD(1,J)

0.3 3.0E7 480.0 1.0E2 1.0E3 1.0 0.0

0.0 83.33333 0.0 0.0 0.0 0.0 Element 2

2 3 NOD(2,J)

0 NCON

6 NSPV

1 1 0.0 ISPV(1,J), VSPV(1)

1 2 0.0 ISPV(2,J), VSPV(2)

1 3 0.0 ISPV(3,J), VSPV(3)

3 1 0.0 ISPV(4,J), VSPV(4)

3 2 0.0 ISPV(5,J), VSPV(5)

3 3 0.0 ISPV(6,J), VSPV(6)

0 NSSV

0 NNBC

0 NMPC

SOLUTION (values of PVs) at the NODES:
0.00000E+00 0.00000E+00 0.00000E+00 0.32950E-02 0.97423E-02
-0.32917E-02 0.00000E+00 0.00000E+00 0.00000E+00
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Solution to Problem 7.43: The input data file and the edited output are presented
in Box P7.43.

8 kips
B 21t ¢ ? ft CE:'_-' EI, EA are the same
3ft | E @ oo for the two members
10 kips ——m= E =30x10°8 1b/in?, v= 0.3
@ A=10%1in2, I=10%in*
10 fi
7t 0ft
L 1ot _
A v
LER T TN

Figure P7.43
Box P7.43: Input files and solutions for Problem 7.43.

Problem 5.31: ANALYSIS OF A PLANE FRAME (E-B element)

4 1 O MODEL, NTYPE, ITEM

0 2 1ELEM, NEM

0 1 ICONT, NPRNT

3 NNM

0.3 3.0E7 120.0 1.0E2 2.0E2 0.0 -1.0 PR,SE,SL,SA,SI,CS,SN
0.0 0.0 1.0E4 84.0 0.0 1.0 HF,VF,PF,XB,CST,SNT
1 2 NOD(1,Jd)

0.3 3.0E7 120.0 1.0E2 1.0E2 1.0 0.0

0.0 0.0 8.E3 60.0 0.0 1.0 Element 2

2 3

0 NCON

5 NSPV

1 1 0.0

1 2 0.0 ISPV(l1,J), VSPV(I)

3 1 0.0

3 2 0.0

3 3 0.0

0 NSSV

0 NNBC

0 NMPC

SOLUTION (values of PVs) at the NODES:

0.00000E+00 0.00000E+00 -0.57017E-03 0.33246E-03 0.17865E-03
0.37603E-03 0.00000E+00 0.00000E+00 0.00000E+00
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Solution to Problem 7.44: The input data file and the edited output are presented

in Box P7.44.

10 kips

SOLUTION (values of PVs)

0.48421E+01 0.69311E+01
0.32640E-01 -0.18186E+01
0.00000E+00 0.00000E+00

at the NODES:

0.35371E-01 -0.18180E+01 0.69311E+01
0.64000E-03 0.23040E-01 0.0000OE+00

8 ft |
B4 57 @ c
& [ sr 2
e -
S > 161t @| #=30x10° /in?,
10 > A=1001in2., I=200in*
- ®l
Ay D]
> o=
— 20ft ——»
Figure P7.44
Box P7.44: Input files and solutions for Problem 7.44.
Problem 5.32: ANALYSIS OF A PLANE FRAME (E-B element)
4 1 O MODEL, NTYPE, ITEM
0 3 IELEM, NEM
0 1 ICONT, NPRNT
4 NNM
0.3 30.0E6 192.0 100.0EO 600.0EO 0.0 -1.0 PR,SE,SL,SA,SI1,CS,SN
0.0 41 .6667 0.0 0.0 0.0 1.0 HF, VF, PF, XB, CST, SNT
1 2 NOD(1,J)
0.3 30.0E6 240.0 100.0EO 1000.0E0 1.0 0.0
0.0 0.0 1.0E4 96.0 0.0 1.0 Element 2
2 3
0.3 30.0E6 192.0 100.0EO 400.0E0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 Element 3
3 4
0 NCON
3 NSPV
4 1 0.0 ISPV(1,J), VSPV(I)
4 2 0.0 ISPV(1,J), VSPV(D)
4 3 0.0 ISPV(1,J). VSPV(I)
0 NSSV
0 NNBC
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Solution to Problem 7.45: The input data file and the edited output are presented
in Box P7.45.

10 kips
8t
Y

»|B 51 @ C
& >l 21
= -
S >1 16 ft @ E = 30x10°¢ 1b/in?,
e > A=100in2., I=200 in*

" |- 20 ft———»|

1A Y Dl

R
e

Figure P7.45
Box P7.45: Input files and solutions for Problem 7.45.

Problem 5.33: ANALYSIS OF A PLANE FRAME (E-B element)

4 1 0 MODEL, NTYPE, ITEM

0 3 IELEM, NEM

0 1 ICONT, NPRNT

4 NNM

0.3 30.0E6 192.0  100.0E0 600.0E0 0.0 -1.0 PR,SE,SL,SA,SI,CS,SN
0.0 41.6667 0.0 0.0 0.0 1.0 HF, VF, PF, XB, CST, SNT
1 2 NOD(1,J)

0.3 30.0E6 240.0  100.0E0 1000.0EO 1.0 0.0

0.0 0.0 1.0E4 96.0 0.0 1.0 Element 2
2 3

0.3 30.0E6 192.0  100.0E0 400.0E0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 Element 3
3 4

0 NCON

4 NSPV

1 2 0.0 ISPV(1,J), VSPV(I)

4 1 0.0 ISPV(1,J), VSPV(I)

4 2 0.0 ISPV(1,J), VSPV(I)

4 3 0.0 ISPV(1,J), VSPV(I)

0 NSSV

0 NNBC

0 NMPC

SOLUTION (values of PVs) at the NODES:

0.12780E+01 0.00000E+00 0.44321E-02 0.55810E+00 0.41251E-03
0.17014E-02 0.55746E+00 0.22749E-03 -0.17109E-02 0.00000E+00
0.00000E+00 0.00000E+00
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Solution to Problem 7.46: The input data file and the edited output are presented
in Box P7.46.

10 kips S
B @ \C 5,000 lb-in.
@ E = 30%x10° 1b/in2,
wr |O A=10%in%, I, =200 in*.
I,=10%in%, I, =200 in*.
A D
LIS e
+— 10ft —»

Figure P7.46
Box P7.46: Input files and solutions for Problem 7.46.

Problem 5.34: ANALYSIS OF A PLANE FRAME (E-B element)

4 1 0 MODEL, NTYPE, ITEM

0 3 IELEM, NEM

0 1 ICONT, NPRNT

4 NNM

0.3 30.0E6 120.0 10.0EO 200.0EO 0.0 -1.0 PR,SE,SL,SA,SI,CS,SN

0.0 0.0 0.0 0.0 0.0 0.0 HF, VF, PF, XB, CST, SNT

1 2 NOD(1,J)

0.3 30.0E6 120.0 10.0E0 100.0EO 1.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 Element 2

2 3

0.3 30.0E6 120.0 10.0EO0 200.0EO 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 Element 3

3 4

0 NCON

6 NSPV

1 1 0.0 ISPV(l,J), VSPV(D)

1 2 0.0 ISPV(l,J), VSPV(D)

1 3 0.0 ISPV(l,J), VSPV(D)

4 1 0.0 ISPV(1,J), VSPV(I)

4 2 0.0 ISPV(l,J), VSPV(D)

4 3 0.0 ISPV(l,J), VSPV(D)

2 NSSV

2 1 1.0E4 ISPV(l,J), VSPV(D)

3 3 5.0E3 ISPV(1,J), VSPV(I)

0 NNBC

0 NMPC

SOLUTION (values of PVs) at the NODES:
0.00000E+00 0.00000E+00 0.00000E+00 0.21136E+00 -0.14813E-02
-0.15260E-02 0.20936E+00 0.14813E-02 -0.14860E-02 0.00000E+00
0.00000E+00 0.00000E+00
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Solution to Problem 7.47: The input data file and the edited output are presented
in Box P7.47.

1,000 Tb/ft
]
0ibe__SYYYYYYYYYYE
B ® ¢ | 5,000 -in.
® E =30%10° 1b/in?,
i[O A=10%in, I, =200 in.
I,=10%in, I, =200 in%.
A D
T e

:— 10 ft —»I

Figure P7.47
Box P7.47: Input files and solutions for Problem 7.47.

Problem 5.35: ANALYSIS OF A PLANE FRAME (E-B element)

4 1 O MODEL, NTYPE, ITEM

0 3 IELEM, NEM

0 1 ICONT, NPRNT

4 NNM

0.3 30.0E6 120.0 10.0EO 200.0EO 0.0 -1.0 PR,SE,SL,SA,SI,CS,SN

0.0 0.0 0.0 0.0 0.0 0.0 HF, VF, PF, XB, CST, SNT

1 2 NOD(1,J)

0.3 30.0E6 120.0 10.0EO 100.0EO0 1.0 0.0

0.0 1.0E3 0.0 0.0 0.0 1.0 Element 2

2 3

0.3 30.0E6 120.0 10.0EO 200.0EO0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 Element 3

3 4

0 NCON

6 NSPV

1 1 0.0 ISPV(1,J), VSPV(l)

1 2 0.0 ISPV(1,J), VSPV(l)

1 3 0.0 ISPV(1,J), VSPV(l)

4 1 0.0 ISPV(1,J), VSPV(l)

4 2 0.0 ISPV(l1,J), VSPV(I)

4 3 0.0 ISPV(1,J), VSPV(l)

2 NSSV

2 1 1.0E4 ISPV(1,J), VSPV(l)

3 3 5.0E3 ISPV(1,J), VSPV(l)

0 NNBC

0 NMPC

SOLUTION (values of PVs) at the NODES:
0.00000E+00 0.00000E+00 0.00000E+00 0.21375E+00 0.22519E-01
-0.63500E-02 0.20697E+00 0.25481E-01 0.33379E-02 0.00000E+00
0.00000E+00 0.00000E+00
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Problem 7.48: Consider the axial motion of an elastic bar, governed by the second-
order equation
0? 0?
U _,acl
Ox? o2

2

with the following data: length of bar L. = 500 mm, cross-sectional area A = 1 mm~,
modulus of elasticity £ = 20,000 N/mm?, density p = 0.008 N s?/mm?*, boundary
conditions 5

u

0,t) =0, FA—(L,t)=1

u(0,6) =0, BAZL(L,1)
and zero initial conditions. Using 20 linear elements and At = 0.002 s, determine the
axial displacement and plot the displacement as a function of position along the bar
for t = 0.8 s.

FA for0<z< L

Solution: The input file and edited output (axial displacements at various selected
times) are given in Box P7.48. Note that the program prints the displacements,
velocities, and accelerations for hyperbolic equations.

Box P7.48: Input files and solutions for Problem 7.48.

Problem 7.48: Transient response of an elastic bar

1 0 2 MODEL ,NTYPE, ITEM
1 20 IELEM,NEM
1 0 I1CONT ,NPRNT

0.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
25.0 25.0 25.0 25.0 DX(I)

2.0E4 0.0 AX0,AX1
0.0 0.0 BX0,BX1
0.0 0.0 CX0,CX1
0.0 0.0 0.0 FX0,FX1,FX2
1 NSPV
1 1 0.0 ISPV(1,1),1SPV(1,2),VSPV(1)
1 NSSV
21 1 1.0 1SSV(1,1),1SSV(1,2),VSSV(1)
0 NNBC
0 NMPC
8.0E-3 0.0 CTO0,CT1
2_.0E-3 0.5 0.5 DT ,ALFA, GAMA
0 500 100 INCOND,NTIME, INTVL
TIME = 0.2000E+00 Time step number =100

SOLUTION (values of PVs) at the NODES:

0.00000E+00 0.54697E-04 -0.11854E-03 0.54311E-04 0.23066E-03

-0.27094E-03 -0.35672E-03 0.90447E-04 0.92344E-03 0.21507E-02
0.32665E-02 0.46103E-02 0.57717E-02 0.70923E-02 0.82894E-02
0.95755E-02 0.10804E-01 0.12064E-01 0.13312E-01 0.14558E-01
0.15815E-01
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(Box P7.48 is continued from the previous page)

TIME = 0.4000E+00 Time step number =200
SOLUTION (values of PVs) at the NODES:
0.00000E+00 0.25152E-02 0.49542E-02 0.75113E-02 0.98158E-02
0.12230E-01 0.14123E-01 0.15857E-01 0.16947E-01 0.17861E-01
0.18926E-01 0.20205E-01 0.21843E-01 0.22921E-01 0.23977E-01
0.25404E-01 0.26695E-01 0.27797E-01 0.29160E-01 0.30362E-01
0.31627E-01
TIME = 0.6000E+00 Time step number =300
SOLUTION (values of PVs) at the NODES:
0.00000E+00 0.24959E-02 0.50120E-02 0.74687E-02 0.10062E-01
0.12422E-01 0.15041E-01 0.17537E-01 0.19948E-01 0.22424E-01
0.25204E-01 0.27415E-01 0.29841E-01 0.32590E-01 0.35123E-01
0.37533E-01 0.39684E-01 0.42012E-01 0.44590E-01 0.46702E-01
0.48523E-01
TIME = 0.8000E+00 Time step number =400
SOLUTION (values of PVs) at the NODES:
0.00000E+00 0.27337E-02 0.50497E-02 0.72729E-02 0.96550E-02
0.12536E-01 0.15603E-01 0.18000E-01 0.20246E-01 0.22282E-01
0.23973E-01 0.25203E-01 0.26784E-01 0.27938E-01 0.29259E-01
0.30492E-01 0.31760E-01 0.33008E-01 0.34236E-01 0.35533E-01
0.36722E-01
TIME = 0.1000E+01 Time step number =500
SOLUTION (values of PVs) at the NODES:
0.00000E+00 0.83400E-04 0.27476E-03 0.48860E-03 0.10348E-02
0.17282E-02 0.28598E-02 0.42818E-02 0.58028E-02 0.74425E-02
0.87185E-02 0.98499E-02 0.10740E-01 0.12112E-01 0.13345E-01
0.14705E-01 0.16259E-01 0.17082E-01 0.18217E-01 0.19728E-01
0.21149E-01
0.04 1111‘1111‘1111‘1111‘1111
7 Time, ¢ =0.8s B
| ——-Time, t=1.0s i
~ 0.03 — —
3 A L
S A L
s A L
g 0.02 — e
E ] T
B 0.01 — - —
0.00 H'TTTHIWHHMHWHH
0 100 200 300 400 500
Coordinate, x
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Problem 7.49: Consider the following nondimensionalized differential equation
governing the plane wall transient:

O*’T  OT
—erE:o for0<z <1
with boundary conditions 7'(0,¢) = 1 and T'(1,¢) = 0, and initial condition T'(x,0) =
0. Solve the problem using eight linear elements. Determine the critical time step;
solve the problem using the Crank-Nicholson method and At = 0.002 s.

Solution: The critical time step can be determined by solving the associated
eigenvalue problem. The input file and edited output for the eigenvalue problem
is presented here. The maximum eigenvalue is A4 = 686.512. Hence, the critical
time step is Aterip = 2.9 x 1073, The input data file and selective output for the
transient analysis with At = 2.0 x 1072 are also presented. The exact solution is
given by

Box P7.49: Input files and solutions for Problem 7.49.

Problem 7_.49a: Eigenvalue analysis of the heat transfer problem

1 0 3 MODEL, NTYPE, ITEM

1 8 IELEM, NEM

1 0 ICONT, NPRNT

0.0 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 DX(I)
1.0 0.0 AX0, AX1

0.0 0.0 BX0, BX1

0.0 0.0 CX0, CX1

2 NSPV

1 1 ISPV(1,1), ISPV(1,2)

9 1 ISPV(2,1), ISPV(2,2)

0 NNBC

0 NMPC

1.0 0.0 CTO, CT1
EIGENVALUE(C 1) = 0.686512E+03 SQRT(EGNVAL) = 0.26201E+02
EIGENVALUE( 2) = 0.328291E+03 SQRT(EGNVAL) =  0.18119E+02
EIGENVALUE( 3) = 0.999708E+01 SQRT(EGNVAL) = 0.31618E+01
EIGENVALUE( 4) = 0.192000E+03 SQRT(EGNVAL) = 0.13856E+02
EIGENVALUE( 5) = 0.507025E+03 SQRT(EGNVAL) = 0.22517E+02
EIGENVALUE( 6) = 0.415466E+02 SQRT(EGNVAL) =  0.64457E+01
EIGENVALUE(C 7) = 0.994885E+02 SQRT(EGNVAL) =  0.99744E+01
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(Box P7.49 is continued from the previous page)

Problem 7.49b: TRANSIENT HEAT CONDUCTION

IN A PLANE WALL

1 0 1 MODEL, NTYPE, ITEM
1 8 IELEM, NEM
1 1 ICONT, NPRNT
0.0 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 DX(I)
1.0 0.0 AXO0, AX1
0.0 0.0 BX0, BX1
0.0 0.0 CX0, CX1
0.0 0.0 0.0 FX0,FX1,FX2
2 NSPV
1 1 1.0 ISPV(1,J), VSPV(1)
9 1 0.0 ISPV(2,J3), VSPV(2)
0 NSSV
0] NNBC
(0] NMPC
1.0 0.0 CTO, CT1
0.002 0.5 0.0 DT, ALFA, GAMA
0 200 10 INCOND, NTIME, INTVL
TIME = 0.2000E-01 Time step number = 10
SOLUTION (values of PVs) at the NODES:
0.10000E+01 0.52569E+00 0.19606E+00 0.43344E-01 0.20180E-02
-0.12904E-02 -0.83545E-04 0.63020E-04 0.00000E+00
TIME = 0.4000E-01 Time step number = 20
SOLUTION (values of PVs) at the NODES:
0.10000E+01 0.65658E+00 0.37170E+00 0.17678E+00 0.68208E-01

0.20148E-01 0.40103E-02 O.

TIME = 0.6000E-01 Time
SOLUTION (values of PVs) at
0.10000E+01 0.71722E+00 O.
0.65341E-01 0.25560E-01 O.

TIME = 0.8000E-01 Time
SOLUTION (values of PVs) at
0.10000E+01 0.75404E+00 O.
0.11348E+00 0.55508E-01 O.

TIME = 0.1000E+00 Time
SOLUTION (values of PVs) at
0.10000E+01 0.77941E+00 O.
0.15745E+00 0.85990E-01 O.

TIME = 0.2000E+00 Time
SOLUTION (values of PVs) at
0.10000E+01 0.84119E+00 O.
0.29359E+00 0.18773E+00 O.

33287E-03 0.00000E+00

step number = 30

the NODES:

46795E+00 0.27461E+00
79606E-02 0.00000E+00

step number = 40

the NODES:

53042E+00 0.34574E+00
21775E-01 0.00000E+00

step number = 50

the NODES:

57507E+00 0.39973E+00
37138E-01 0.00000E+00

step number =100

the NODES:

68756E+00 0.54346E+00
91312E-01 0.00000E+00

0.14317E+00

0.20739E+00

0.26035E+00

0.41181E+00
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Note: Modify program FEM1D to solve Problems 7.50-7.52 (solutions to these
problems are not presented here for obvious reasons).

Problem 7.50: Consider a simply supported beam of length L subjected to a point

load
Pgsm“t for0<t<r

P(t)_{o for ¢ > 7

at a distance ¢ from the left end of the beam (assumed to be at rest at t = 0). The
transverse deflection w(z,t) is given by [see Harris and Crede (1961), p. 8-53]

w(z,t) =
2R L3 ime imx 1 nt _ T; .
T Yoy q sin 47° sin 47+ 72757 (sm e 51nwzt)} , 0<t<r
2P L3 00 imc iTx % COS% : 1 >
2ol 520 & sin &€ sin £2 TR sinw;(t — 57) |, t>7
7

where

T'_27r_2L2 Ap T
Y ow,  i2n\ BT 42

Use the data Py = 1000 Ib, 7 = 20 x 1076 s, L = 30 in, £ = 30 x 105 1b/in?,
p =733 x 1079 Ib/in®, At = 1079 s, and assume that the beam is of square cross-
section of 0.5 in by 0.5 in. Using five Euler-Bernoulli beam elements in the half-beam,
obtain the finite element solution and compare with the series solution at midspan
for the case ¢ = %

Problem 7.51: Repeat Problem 7.50 for ¢ = %L and eight elements in the full span.

Problem 7.52: Repeat Problem 7.50 for P(t) = Py at midspan and eight elements
in the full span.

Problem 7.53: Consider a cantilevered beam with a point load Py at the free end.
Using the data of Problem 7.50, find the finite element solution for the transverse
deflection using eight Euler—Bernoulli beam elements.

Solution: We have the following data:

1
ET = (30 x 106)@ = 0.15625 x 10° Ib-in?
pA = (733 x 1079)(0.25) = 1.8325 x 104 Ib/in

The input file and edited output (generalized displacements at various selected times)
are presented in Box P7.51.

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



236 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Box P7.53: Input files and solutions for Problem 7.53.

Problem 7.53: TRANSIENT RESPONSE OF A CANTILEVER BEAM (EBT)

3 0 2
0O 8
1 0

ORRPOOORRE

TIME = 0.5000E-05 Time
SOLUTION (values of PVs) at

0.00000E+00 0.00000CE+00 O.
0.90666E-07 0.10261E-06 -0.
0.13275E-05 -0.42823E-05 O.
0.58685E-04 0.24767E-03 -0.

TIME = 0.1000E-04 Time
SOLUTION (values of PVs) at

0.00000E+00 0.0000CE+00 O.
-0.21496E-06 0.27807E-06 -0.
0.41341E-05 -0.12706E-04 O.
-0.19940E-03 0.94584E-03 -0.

TIME = 0.2000E-04 Time
SOLUTION (values of PVs) at

0.00000E+00 0.00000E+00 -0.
0.56664E-06 -0.32366E-06 O.
0.21294E-05 0.71834E-06 O.
-0.33932E-03 0.31820E-02 -0.

TIME = 0.4000E-04 Time
SOLUTION (values of PVs) at

0.00000E+00 0.00000CE+00 O.
-0.19349E-05 -0.10556E-05 -0.
-0.46654E-04 0.11630E-03 -0.

0.15506E-02 0.80131E-02 -0.

step number

the NODES:
91461E-08
33033E-06
48128E-05
42301E-03

step number

the NODES:

MODEL, NTYPE, ITEM
1ELEM, NEM
ICONT, NPRNT

DX(1)
AX0, AX1

BXO, BX1

CX0, CX1

FX0, FX1, FX2

NSPV

ISPV(1,J). VSPV(1)
ISPV(2,J), VSPV(2)
NSSV

I1SSV(1,J), VSSV(1)
NNBC

NMPC

CTO, CT1

DT, ALFA, GAMA
INCOND, NTIME, INTVL

-0.21328E-07 0.28851E-07
0.36887E-06 -0.11899E-05
-0.15451E-04 0.19895E-04

20758E-07 -0.47220E-07 0.72149E-07
84731E-06 0.10743E-05 -0.32909E-05
15977E-04 -0.48987E-04 0.70903E-04

15764E-02

step number = 20

the NODES:

64801E-07 0.16003E-06 -0.14930E-06
14920E-05 -0.33649E-06 0.29516E-05
21526E-04 -0.37938E-04 0.16598E-03

47640E-02

step number = 40

the NODES:

28465E-06 -0.77774E-06
10096E-05 -0.94392E-05
17115E-03 0.51888E-03 -

73833E-02

-25473E-06
-16657E-04
-30740E-03

[cNeoNe)
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(Box P7.53 is continued from the previous page)

TIME = 0.5000E-04 Time step number = 50

SOLUTION (values of PVs) at the NODES:

0.00000OE+00 0.00000E+00 0.10765E-05 -0.25410E-05 0.29062E-05
-0.10006E-04 0.70989E-05 -0.29359E-04 0.10348E-04 -0.65956E-04
-0.20299E-04 -0.64495E-04 -0.23771E-03 0.36648E-03 -0.85340E-03
0.24843E-02 0.10930E-01 -0.81801E-02

1.20E-2 IIII|IIII|IIII|IIIIIIII

k) E

1.00E-2

8.00E-3

6.00E-3

4.00E-3

Displacement, u(x,t)

2.00E-3

0.00E+0

-2.00E-3 TTT T[T T T[T T [TT T[T TTT]
0 5 10 15 20 25 30

Coordinate, x

Problem 7.54: Repeat Problem 7.53 for a clamped beam with the load at the
midspan.

Solution: The input file and edited output (generalized displacements at various
selected times) are presented in Box P7.54. Half-beam model is used because of the
symmetry about the center of the beam.
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Box P7.54: Input files and solutions for Problem 7.54.

Problem 7.54: TRANSIENT RESPONSE OF A CLAMPED BEAM (EBT)

3 0 2 MODEL, NTYPE, ITEM
0 4 IELEM, NEM
1 0 ICONT, NPRNT

0.0 3.75 3.75 3.75 3.75 DX(D)

0.0 0.0 AX0, AX1

0.15625E6 0.0 BX0, BX1

0.0 0.0 CX0, CX1

0.0 0.0 0.0 FX0, FX1, FX2

3 NSPV
1 1 0.0 I1SPV(1,J), VSPV(1)
1 2 0.0 ISPV(2,J), VSPV(2)
5 2 0.0 ISPV(2,J), VSPV(2)
1 NSSV
5 1 0.5E3 1SSV(1,J), VSSV(1)
0 NNBC
0 NMPC
1.8325E-4 0.0 CTO, CT1
1.0E-6 0.5 0.5 DT, ALFA, GAMA
0 51 5 INCOND, NTIME, INTVL

TIME = 0.5000E-05 Time step number = 5

SOLUTION (values of PVs) at the NODES:
0.00000E+00 0.00000E+00 -0.45624E-06 0.10645E-05 -0.14270E-05
0.45087E-05 -0.43840E-05 0.15584E-04 0.30854E-04 0.00000E+00

TIME = 0.1000E-04 Time step number = 10

SOLUTION (values of PVs) at the NODES:

0.00000OE+00 0.00000E+00 -0.16363E-05 0.37590E-05 -0.54434E-05
0.16620E-04 -0.17606E-04 0.60291E-04 0.12258E-03 0.00000E+00

TIME = 0.2000E-04 Time step number = 20

SOLUTION (values of PVs) at the NODES:

0.00000OE+00 0.00000E+00 -0.38667E-05 0.80521E-05 -0.17751E-04
0.46017E-04 -0.71250E-04 0.21054E-03 0.47758E-03 0.00000E+00

TIME = 0.4000E-04 Time step number = 40

SOLUTION (values of PVs) at the NODES:

0.00000OE+00 0.00000E+00 0.98896E-05 -0.28949E-04 -0.18782E-04
-0.29683E-04 -0.28350E-03 0.46693E-03 0.17445E-02 0.00000E+00

TIME = 0.5000E-04 Time step number = 50

SOLUTION (values of PVs) at the NODES:

0.00000OE+00 0.00000E+00 0.25132E-04 -0.60873E-04 0.15157E-04
-0.16284E-03 -0.42440E-03 0.43318E-03 0.25796E-02 0.00000E+00
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Problem 7.55: Repeat Problem 7.54 using four linear Timoshenko beam elements.
Use v =0.3.

Solution: The input file and edited output (generalized displacements at various
selected times) are presented in Box P7.55.

Box P7.55: Input files and solutions for Problem 7.55.

Problem 7.55: TRANSIENT RESPONSE OF A CLAMPED BEAM (TBT)

2 0 2 MODEL, NTYPE, ITEM
1 4 IELEM, NEM
1 0 ICONT, NPRNT
0.0 3.75 3.75 3.75 3.75 DX(1)
2.40385E6 0.0 AXO(GAK), AX1
0.15625E6 0.0 BXO, BX1
0.0 0.0 CX0, CX1
0.0 0.0 0.0 FX0, FX1, FX2
3 NSPV
1 1 0.0 ISPV(1,J), VSPV(1)
1 2 0.0 ISPV(2,J), VSPV(2)
5 2 0.0 ISPV(2,J), VSPV(2)
1 NSSV
5 1 0.5E3 ISSV(1,J), VSSV(1)
0 NNBC
0 NMPC
1.8325E-4  7.6354E-6 CTO, CT1
1.0E-6 0.5 0.5 DT, ALFA, GAMA
0 51 5 INCOND, NTIME, INTVL

SOLUTION (values of PVs) at the NODES:

TIME = 0.5000E-05 Time step number = 5
0.00000E+00 0.00000E+00 -0.51238E-06 -0.94728E-06 0.21183E-05
0.23337E-05 -0.81641E-05 -0.39176E-05 0.31142E-04 0.00000E+00

TIME = 0.1000E-04 Time step number = 10
0.00000E+00 0.00000E+00 -0.12760E-05 -0.12829E-04 0.68885E-05
0.27880E-04 -0.30044E-04 -0.38862E-04 0.12140E-03 0.00000E+00

TIME = 0.4000E-04 Time step number = 40
0.00000E+00 0.0000OE+00 0.21639E-03 -0.18854E-03 -0.22104E-03
0.51142E-03 -0.91370E-04 -0.70396E-03 0.15301E-02 0.00000E+00

TIME = 0.5000E-04 Time step number = 50
0.00000OE+00 0.00000E+00 0.41820E-03 -0.22313E-03 -0.46789E-03
0.71807E-03 0.14228E-04 -0.10481E-02 0.22187E-02 0.0000OE+00
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Problem 7.56: Repeat Problem 7.55 using two quadratic Timoshenko beam
elements.

Solution: The input file and edited output (generalized displacements at various
selected times) are presented in Box P7.56.

Box P7.56: Input files and solutions for Problem 7.56.

Problem 7.56: TRANSIENT RESPONSE OF A CLAMPED BEAM (TBT)

2 0 2 MODEL, NTYPE, ITEM
2 2 IELEM, NEM
1 0 ICONT, NPRNT
0.0 7.5 7.5 DX(1)
2.40385E6 0.0 AXO(GAK), AX1
0.15625E6 0.0 BXO, BX1
0.0 0.0 CX0, CX1
0.0 0.0 0.0 FXO, FX1, FX2
3 NSPV
1 1 0.0 ISPV(1,J), VSPV(1)
1 2 0.0 ISPV(2,J), VSPV(2)
5 2 0.0 ISPV(2,J), VSPV(2)
1 NSSV
5 1 0.5E3 I1SSV(1,J), VSSV(1)
0 NNBC
0 NMPC
1.8325E-4  7.6354E-6 CTO, CT1
1.0E-6 0.5 0.5 DT, ALFA, GAMA
0 51 5 INCOND, NTIME, INTVL

SOLUTION (values of PVs) at the NODES:

TIME = 0.5000E-05 Time step number = 5
0.00000OE+00 0.00000E+00 -0.73758E-06 -0.11769E-05 0.61462E-05
0.39837E-05 -0.53779E-05 -0.34758E-05 0.37961E-04 0.00000E+00

TIME = 0.1000E-04 Time step number = 10
0.00000E+00 0.00000E+00 -0.20092E-05 -0.12355E-04 0.21609E-04
0.38725E-04 -0.19337E-04 -0.31665E-04 0.14708E-03 0.00000E+00

TIME = 0.2000E-04 Time step number = 20
0.00000OE+00 0.00000E+00 0.88225E-05 -0.47017E-04 0.45225E-04
0.15869E-03 -0.52794E-04 -0.13197E-03 0.53852E-03 0.00000E+00

TIME = 0.4000E-04 Time step number = 40
0.0000O0OE+00 0.00000E+00 0.19414E-03 -0.79225E-04 -0.20923E-03
0.50082E-03 0.22882E-04 -0.49078E-03 0.16785E-02 0.00000E+00

TIME = 0.5000E-04 Time step number = 50
0.0000O0OE+00 0.00000E+00 0.37179E-03 -0.64309E-04 -0.50744E-03
0.69514E-03 0.15055E-03 -0.73498E-03 0.23851E-02 0.00000E+00
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Chapter 8

SINGLE-VARIABLE
PROBLEMS
IN TWO DIMENSIONS

Note: Most of the problems given here require hand calculations only. When four or
more simultaneous algebraic equations are to be solved, they should be left in matrix
form. New problems can be created by mere change of data and meshes.

Problem 8.1: For a linear triangular element, show that

3 3 3
daf =24, Y Bi=0, > =0
i=1 i=1 i=1
2
ai + G52 +iy° = gAe for any ¢

where

and (z§,yf) are the coordinates of the ith node of the element (i = 1,2, 3).

Solution: First recall that (element label is omitted)

1 1 w»n
2Ae =1 T2 Y2
1 x3 ys3

=1 (voyz — x3y2) — 1 (x1y3 — x3y1) + 1 - (x1y2 — 2291)
= (z1y2 — way1) + (w2y3 — T3y2) + (x3y1 — T1Y3)

Then we have
3
> af = (zays — w3y2) + (z3y1 — 21y3) + (T1y2 — 22y1) = 24,
i=1

3
S8 = (g2 —y3) + (g3 — y1) + (31 — y2) =0
=1
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3
> 46 = (a2 — ) — (2 — 1) — (1~ 22) =0

ai + G52 + 779 = (z2ys — w3y2) + (Y2 — y3)(21 + 22 + 73)
— (z2 — 23)(y1 + y2 + y3)
= (22y3 — w3y2) + (Y21 — Y122) + (T3Y1 — Y371)
+ 2(y273 — y322)

Problem 8.2: Consider the partial differential equation over a typical element €2
with boundary I’

0
—V2u+cu=0 in Q, with 8_u 4+ 0u=g¢q, onl,
n

Develop the weak form and finite element model of the equation over an element €.

Solution: Note that the operators V2 and d/dn in two dimensions are

0? 0? 0 0 0

2_ O 00 O _ O 9
v_8x2+8y2’ on nm8x+ny8y

Following the three-step procedure, the weak form is obtained as

Oowou Owodu ‘
0= /Qe (%% + By 0y + cwu) dxdy + i Bwuds — jie wands (1)

where w is the weight function. The finite element model is
[KHu} ={Q%} (i)

where

e _ [ (O%idv;  OvidY; . "
Kij _/Qe (63; oz * oy Oy +C¢1¢J> dxdy+f}e Biv;ds

Qf = . viands (i)

Here g, denotes the flux normal to the element boundary. The problem is one of
convective heat transfer type (with £ = 1, uso = 0 and g = 0).

Problem 8.3: Assuming that ¢ and [ are constant in Problem 8.2, write the element
coefficient matrix and source vector for a linear (a) rectangular element and (b)
triangular element.
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Solution: (a) Linear Rectangular Element. The element coefficient matrix is given
by [K¢] = [SM] + [S?2] + ¢[S] + B[H] where the matrices [S*?] for a, 3 = 0,1,2 are
defined in Egs. (8.2.52) and (8.5.10a). The source vector is zero.

(b) Linear Triangular Element. The element coefficient matrix is given by
[K€] = [K] + c[S%)¢ + B[H®] where [K] is defined by Eq. (8.2.47), [H€] is given
by Eq. (8.5.8a), and [S%] is defined as

S = | sy dody

For linear triangular element, the coefficients are given by

1
SZOJO = a2 [ + (aiBj + o Bi) o + (aiyy + ovi)Tor + BiB120

+(Bivj + Bivi)Iin + vivilo2]
where I;; are defined in Eqn. (8.2.40). For a right-angle triangle, [S%] is given by

2 1 1
[SOO]—a—b[1 2 1]

2400 1 9

Problem 8.4: Calculate the linear interpolation functions for the linear triangular
and rectangular elements shown in Fig. P8.4.

YA (25.) A

(1,3.5) (45,35)
7 3

(4,1.5)

(1,1) 11)

N

(4.5,1)

(@) (b)

Figure P8.4

Solution: (a) Triangular Element: The coefficients «;, 3; and 7; for the element
shown are:

a1 = 1225, a9 = —1.5, a3 = —2.5, ﬁl = —2.5, ﬁg = 30
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B3 =—0.5, 1 =—1.5, 72 =—-15, 13=3.0

The interpolation functions become (24 = a3 + ag + ag)

1 1
Un = gop (1225 = 250 — Lby), ¢ = oox (~1.5+ 32— Lby)

1

(b) Rectangular Element: The interpolation functions can be written directly in
terms of the local coordinates (Z,y) using the interpolation property

Vi(Z4,75) = 6ij

For example, consider 11 (Z, 7). It must vanish at nodes 2, 3, and 4. Also, since v is
a linear function that vanishes at nodes 2 and 3, it should necessarily be zero along
the line, & = 3.5, connecting nodes 2 and 3. Similary, it should be zero along the line
9y = 2.5; Thus we have

1 (Z,9) = ¢(3.5—%)(2.5 —7)

Since v is unity at node 1: Z = 0 and y = 0, we obtain ¢ = 1/(3.5)(2.5). Thus we
have

Similarly, we obtain

V2= 3% < 2.5> V3= 3E55r Y ( 3.5) 2.5

Problem 8.5: The nodal values of a triangular element in the finite element analysis
of a field problem, —V?u = f; are:

up = 389.79, wug =337.19, wuz = 395.08

The interpolation functions of the element are given by

1
Py = 12.25 — 2,50 — Lby) , 4 = o= (—1.5+ 32— Lby)

1
8.25 (
s = —— (=25 — 0.5z + 3y)
37 gop T E T T
(a) Find the component of the flux in the direction of the vector 4i + 3j at z = 3
and y = 2. (b) A point source of magnitude Qg is located at point (x¢,y0)=(3,2)
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inside the triangular element. Determine the contribution of the point source to the
element source vector. Express your answer in terms of (Jp.

Solution: (a) The finite element solution uy, and its gradient Vuy, are given by

up(z,y) = w1ty + ugthy + uzis3
B 20U 0y 20U 0Yn 203 :3¢3>
Vi = <1 ox +) oy > T+ <1 ox . oy ) T us <1 ox +J oy
B 389.79 337.19

= o (-2.5% - 1.53) +or (3.0§ - 1.53)

395.08 s . .
+ o5 (—0.51 + .0j) = —19.451 + 11.49]

where i andj are the unit base vectors along the - and y-coordinates. Note that the
gradient of the solution is a constant for a linear triangular element.

(b) The contribution of point source Qg to the nodal source vector is

fi = Qoi(wo,y0) = Qovi(3,2);  f1=1.75Q0, fo=45Q0, f3=2Q0

Problem 8.6: The nodal values of an element in the finite-element analysis of a
field problem —V?u = fy are u; = 389.79, up = 337.19, and u3z = 395.08 (see Fig.
P8.6). (a) Find the gradient of the solution, and (b) Determine where the 392 isoline
intersects the boundary of the element in Fig. P8.6.

<

A ,35L9)

10 12
(35.,1) 4,1)
. X

-

Figure P8.6

Solution: (a) The gradient of u(x,y) is given by

= oYj oY
Vu=> u; <%é1+aiy]é2>

Jj=1
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where €; and és are the unit vectors along the z and y axes, respectively. Thus we
need to find the interpolation functions for the element at hand. We have

a1 = 2.5, Qg = —1.75, a3 = —0.5, ﬂl = —0.5, ﬂg =0.5

B3 =0.0,71 = —=0.5, 2 =0.0, v3=0.5

The interpolation functions become (24 = a1 + as + ag = 0.25)

Y1 =(10 =2z — 2y), P = (=T+22), 3= (-2+2y)

M1 _ _, O, W2,
Ox T Oy " Oz
Oa  — OY3z  OYz
oy =0 Ox =0, 8y_2

Thus we have (u; = 389.79, us = 395.08, us = 337.19)
Vu = 2[(—389.79 + 395.08)81 + (—389.79 + 337.19)8,] = 10.588; — 105.208,

For the element at hand the result can be obtained directly as

Vu = ey 4 e = 10,5881 — 105.208

(b) The w = 392 line intersects the horizontal line at a distance of x¢ from node 1,

392 — 389.79
—05 — 0.2089
0 395.08 — 389.79

and it intersects the diagonal line at a distance sg from node 3,

1 392 -337.19

= = 0.6694
V2 395.08 — 337.19

S0

Thus, the global coordinates of the point where the 392 isotherm intersects the line
connecting global nodes 10 and 11 is (z, y)=(3.7089,1); it intersects the line connecting
global nodes 11 and 12 at the point (z,y)=(3.9734,1.0266).

Problem 8.7: If the nodal values of the elements shown in Fig. P8.7 are u; = 0.2645,
uo = 0.2172, ug = 0.1800 for the triangular element and u; = 0.2173, ug = 0.1870,
ug = uyg = 0.2232 for the rectangular element, compute u, Ou/0x and du/dy at the
point (z,y) = (0.375, 0.375).
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YA
3
0.5
1 2 > X
f———»
0.5
Figure P8.7(a) Figure P8.7(b)

Solution: The function u(x,y) and its derivatives in the finite element method are
given by (for any element)

" ou < O Ou & O
j=1 j=1 j=1

Clearly, the derivatives for the linear triangular element are element-wise constant;
for rectangular element Ou/0x is linear in y and du/0y is linear in z.

First, we must determine the interpolation functions for each of the elements to
find the values of v and its derivatives at = 0.375 and y = 0.375.
(a) Triangular Element: We have

a1 =0.25, ap =0.0, a3 =0.0, p1 = —0.5, B2 =0.5
B3 =0.0,71 = 0.0, 2 = —0.5, 73 =0.5
The interpolation functions become (24 = a1 + ag + a3z = 0.25)
Y1 =(1-2z), va=2(x—y), ¥3=2y
and the required value of u and its derivatives are

1(0.375,0.375) = 0.2645 x 0.25 + 0.1800 x 0.75 = 0.2011

)
8—;‘ = u1(—2.0) + u2(2.0) + 0 = —0.0946
ou

(b) Rectangular Element: The interpolation functions are
Y1 =(1—-22)(1 = 2y), ¢ =2x(1 - 2y), ¢3 =4dzy, Y4 = (1-22)2y
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and the values of v and its derivatives are

(0.375,0.375) = u1(0.25)(0.25) + u5(0.75)(0.25) + u3(0.375)(0.375)
+u4(0.25)(0.75) = 0.2025

% — u1(—2)(0.25) + ua(2)(0.25) + 4ug(0.375) + wa(—2)(0.75)
— _0.05135

g—;‘ — 0y (=2)(0.25) + ua(=2)(0.75) + ug(1.5) + ua(2)(0.25)
= —0.05135

Problem 8.8: Compute the contribution of the Pump 2 discharge to the nodes of
element 43 in the groundwater flow problem of Example 8.5.4.

Solution: Pump 2 is located at (z,y) = (600,1900) (see Fig. 8.5.6). The nodal
coordinates of the element in which Pump 2 is located are

(z1,1) = (375,1687.5), (w2,y2) = (750,1875), (z3,y3) = (375,2125)

In local coordinates (Z,y), where & = x — 375 and § = y — 1687.5, the element nodes

are
(£17g1) = (07 0)7 (52,332) = (3757 1875)7 (j37g3) = (074375)

Then the rate of pumping is

Q2 = —2,4008(% — 225, — 212.5)m3/day/m

41
y
42
43 |1500m

44

% ¥ (375,187.5)

10 15 20 25 30 35 40 45
[ j >

3000
2000m "l 250m
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The interpolation functions of the element are

Vi(z,7y) = i(ai + Bz +vy), (1=1,2,3)

2A =375 x 4375, a3 =375 x437.5, as =0, a3=0
B1 = —250, (2 =437.5, (3= —187.5, 71 =—-375, 72 =0, 73 =375
Hence, the contributions of Pump 2 to the global nodes 27, 28 and 32 are

Fyr = —2,40011 (225, 212.5) = —411.429
Fyg = —2,400109(225,212.5) = —1, 440
F3p = —2,4001)3(225,212.5) = —548.571

Problem 8.9: Find the coefficient matrix associated with the Laplace operator when
the rectangular element in Fig. P8.9(a)is divided into two triangles by joining node
1 to node 3 [see Fig. P8.9(b)]. Compare the resulting matrix that of the rectangular
element in Eq. (8.2.54).

y y
4 3 4 3
f 4 3 T 1 35
b b @ @
; i 2 X i 24 1 «
lle—a—» 2 ll¢e—a—»2
(a) (b) Figure P8.9

Solution: The coefficient matrix associated with the assembly of two triangular
elements is given by [see Fig. 8.2.10(a) and Eq. (8.2.49)]

K33+ K3, K3 Kip+ K3 K3

K= | o P e
Ko +2K32 Ky Ky 4‘2K33 K?é1
K1y 0 Kis K1
Using the coefficient matrix from Eq. (8.2.49) with k. = 1, we obtain
a?+bv* —a? 0 —b?
(K] = 1| —a® a4 b 0
~ 2ab 0 2 a?+b?  —a?
—b? 0 —a*  a®+0?

Compare this result that in Eq. (8.2.54) for k. = 1 (they are not the same).
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Problem 8.10: Compute the element matrices

a b dips a b dips
S9! :/ / G2 gy 4y, S0 :/ / 625 g dy
0 Jo dx o Jo dy

where 1;(z,y) are the linear interpolation functions of a rectangular element with
sides a and b.

Solution: The coefficients S?jl are given by

SU = / / " %d:pdy

where 9; for the rectangular element are given by Eqn. (8.2.32a). Using the following
integral values,

o= [ (=) e (- 8) o

and similar values for integrals over (0, b), we obtain

-2 2 1 -1
b |—2 2 1 -1

o1 _ Y
[S]_u -1 1 2 =2
-1 1 2 =2

Similary, we have

2 -1 1 2
o @ | -1 -2 2 1
=5 22 2

—2 -1 1 2

Problem 8.11: Give the assembled coefficient matrix for the finite element meshes
shown in Figs. P8.11(a) and P8.11(b). Assume 1 degree of freedom per node, and let
[K€] denote the element coefficient matrix for the eth element. Your answer should
be in terms of element matrices K.

Solution: Typical coefficients of the assembled matrices are given by

(a) Ku=Kjy, Kip=Kjy, Ki3=0, Kia=Kjy, Ki5=Kj3
Kig=0, Ki7=0, Kig =0, Koo = K}, + K%, Ko5 = K}3 + K},

(b) K11 = K&, Kio = Ka3, K13 =0, K14 = K3;, K15 = K3,
Kig=0, K17 =0, Kl(lO) =0, Ky7= K§’3 + Kill + K252
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3 8 ‘ 3
® |3 ® | @
2 ; 8 gdl 1 5]1 5
7
® & ®
1 L E 1
1 4 7
Figure P8.11(a) Figure P8.11(b)

Problem 8.12: Repeat Problem 8.11 for the mesh shown in Fig. P8.12.

Solution: Typical assembled coefficients are

Ky = K}y, Kia = K3, Ki3 =K}y, K14 =0, K;5=0

Kig = K33, K17 = K35, Kis = K}y, Ko = Kgs, Kos =0

Koo = K33 + K3p + Ky, Kot = Ki5 + K35, Kes = Kip + K3y
Keo12) = Koy, Koo = Kig, Koy = K6, Ko(14) = Kgs

Kq2) =0, K75 =0, Ky0) =0, Kr7 = K25 + K25, Ko10) = Kgg

13 14 15 16
12¢ L 4 7 3 L5
6 4
99 @O 19 @ ju 8D :e l
adl 17 8 1 5 2 1

5 6
@ 3 Element node numbers
2N\u
1

Fig. P8.12

Problem 8.13: Compute the global source vector corresponding to the non-zero
specified boundary flux for the finite element meshes of linear elements shown in Fig.
P8.13.
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15
ql lcm
o 1
% @ s cm
7
> 3 ® |; plylemis 2
< |
>, 6 11 17 20
- o | ® |
> 5 10 16 @19

2cm 2cm 2cm 2cm

Figure P8.13

Solution: We use the node numbers shown in Fig. P8.13. The nodal contributions
are denoted by @7, where I denotes the global node number. We have

qoh1
=2 _0.75 2 22 _ 15
Q1= 5 qo, Q2 5 + 5 qo0

21
Q3 = 0.75¢0 + 0.5y = 1.25g9, Q4 = 0.5¢o + 0.5(0.5¢1/5) + 55(0.5ql\/3)

) P
Qo = 5(0.25ql\/5) +0.25¢:V/5 + 5(0-25611\/5)

Q15 = %(025Q1 V)

Problem 8.14: Repeat Problem 8.13 for the finite element mesh of quadratic
elements shown in Fig. P8.14.

Figure P8.14
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Solution: The elements are quadratic, and therefore we must use the 1-D quadratic
interpolation functions

e (12) (1 5) vt (1 5) v 5 (12)

The flux is given by ¢, = goz/h and h = 5cm. Evaluating the boundary integral for
a typical quadratic element we obtain,

e h T x2

Similarly, we obtain

qoh qQoh
=T G=Tg
Hence, the contribution to the global nodes is
h h h
@1 = 0.0, Q2:q077 Qszzq%, Q4:Q2:qo?, Q5 =0

Problem 8.15: A line source of intensity g is located across the triangular element
shown in Fig. P8.15. Compute the element source vector.

Figure P8.15

Solution: The line source of uniform intensity ¢o along the line AB is distributed to
the points A: (3,3) and B: (5,4) as Q4 = @B = qoh/2, where h is the length of the
line AB: h = v/5. Now we can use the procedure of Problem 8.5(b) to distribute the
point sources @4 and ()p to the element nodes:

_Qa QB _ Qa  2Qp
Q1= 5 Q2 = 3 Q3 = 5 T3 (i)
o h h b qoh
_ 4on _ P _ P 40
Q1= 1 Q2 5 Q3 e +—3 (i)

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



254 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Problem 8.16: Repeat Problem 8.15 when the line source has varying source,
q(s) = qos/L, where s is the coordinate along the line-source.

Solution: Assume that the origin of the coordinate s is at the point A : (3,3) and
directed to point B (see the Figure of Problem 8.15). The contribution of the linearly
varying force to the points A and B is:

_ 1 (qh qoh ,
QA—3<2)aQB (2) (i)
Next we use Eq. (i) of Problem 8.15 above to compute the nodal contribution.
2 g
Q1=%7 szﬁ, Q3—%+@ (i2)
2 3 3
. h h b 2q0h
_wh , _wh a2
Nh="Tg Q=75 B="T7+— (iid)

Problem 8.17: Consider the following partial differential equation governing the

variable wu: 5 5 9 9 9
u u u
a‘%<a) oy (ba) fo=0

where ¢, a, b, and fy are constants. Assume approximation of the form

up(z,y,t) = (1 — z)yua (t) + z(1 — y)ua(t)

where u; and ug are nodal values of u at time ¢. (a) Develop the fully discretized
finite element model of the equation. (b) evaluate the element coefficient matrices
and source vector for a square element of dimension 1 unit by 1 unit (so that the
evaluation of the integrals is made easy). Note: You should not be concerned with
this non-conventional approximation of the dependent unknown but just use it as
given to answer the question.

Solution: (a) The semidiscretized finite element model is given by
> (Mijiy + Kiug) = F; or [M{i} + [K){u} = {F}
j=1

where

M / / Vi dady
om0 8
= /0 /0 Vifo dady
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The fully discretized model is given by

[K]{u}s—i-l = {F}s,s—‘rl

where

[Klst1 = [M] + a1[K]s+1
{F} = At(a{FYor + (1= a){F}s) + ([M] — az[K]) {u}s
a; = aAt, az = (1—a)At

(b) The interpolation functions are ¥1(z,y) = (1 — x)y, 2 = (1 — y)x. Obviously,
the 2D element has just 2 nodes (diagonally opposite sides of the unit square)

O B I RNV RS X

YA
1

Problem 8.18: Solve the Laplace equation

Pu 0%u i
—<@+a—y2>—0 in

on a rectangle, when u(0,y) = u(a,y) = u(x,0) = 0 and u(x,b) = wup(x). Use the
symmetry and (a) a mesh of 2 x 2 triangular elements and (b) a mesh of 2 x 2
rectangular elements (see Fig. P8.18). Compare the finite element solution with the
exact solution

u(z,y) = nZ::l Ay, sin nT:rx sinh %
where 5
e nTT
. in L
" asinh(nmb/a) /0 uo () sin a

Take a = b = 1, and up(z) = sin 7z in the computations. For this case, the exact

solution becomes ) ]
sin mx sinh 7wy

u(z,y) = sinh 7
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yA u(x,b) = ug(x) y u(x,b) = sinz(x + 0.5a)
8

9 7 8 9

A

u=0

-vuu=0 4

Figure P8.18

Solution:

(a) Mesh of triangles: The only unknown nodal values are Uy and Us. Hence, we
must consider only the equations associated with nodes 4 and 5. We have

9
Y KpUy=F, for I=1,2,---,9 (1)
J=1

Since only Uy and Us are unknown, and among the knowns only U; and Ug are
nonzero (and K57 = 0), we have

Ky4Uy + Ku5Us = Fy — (K47U7 + KygUsg + Kq9Uy)

KysUy + Ks5Us = F5 — KsgUs — Ks9Uy (4i)
The element nodes are numbered as indicated in Fig. 8.2.10(a) (i.e., node 1 is at the
right-angle, with side 1-2 being of length a = 0.5 and side 1-3 of length b = 0.25).
With this choice of local node numbering, all elements of the mesh will have the same
element matrices, namely
1 25 —-05 =2
[K¢] = 3 -05 05 0
-20 00 2
Ky = K121 + K353 + K262 =25, K45 = K123 + K351 =-2.0
Kig =0, Ky7 = K§ = —0.25, K3 = K5 + K33 =0, K49 =0
Ks5 = K3y + K33 + Kiy + K{y + K3 + K3, = 5.0
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Ks7 =0, Ksg = Ky 4+ K5 = —0.5, K59 = Koy + K55 =0 (i47)

where U7 = 1.0, Ug = 0.707 and Uy = 0. Note that since K49 and Ksg are zero, it
does not matter what value of Ug we use. Substituting the values of Kj; from Eq.
(iii) into Eq. (ii), we obtain

1 [ 5 —4] {U4} _ _{K§1U7+(K§3+K§2)U8}
21—4 10|\ Us (K, + K3)Us

25 20| fUs\ _ 1105
—2.0 50]UsJ 210.707
The solution of these equations is

U, =0.23025, Us = 0.16281
The exact solution at these nodes is: ug = 0.19927, us = 0.16280.

Y u(x,b) = sinz(x +0.5a)
7 8\ 9

or

A
® | @
u=0
ou 1 1
= _-04 6
@ |
1 1 \
1
u=0— 2 3& X
|«—0.50 —»

(b) Mesh of rectangles: For the rectangular element mesh we have a = 0.25,b =
0.5,a = 2.0 and 8 = 0.5 (see Fig. 8.2.12 for the node numbers); the element matrix
is given by
5.0 —3.5 —-25 1.0
e 11-35 5.0 1.0 —25
KT=%1-25 10 50 -35
1.0 —25 =35 5.0

The global coefficients K can be written in terms of the element stiffnesses K;; as
follows:

10 7 1

K44:Ki4+K131:E7 K45:Ki3+K§2:_67 K47:K§4:g

2.5 20

K48 = Kf’g = _?; K49 = 07 K55 = K§3 + KZ4 +K232 + Kill - F
2.5 2.5

2
Ksr = K3, = 5 Ksg = Kj3 + Ky = 5’ Ksg = Ki3 = 5
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The condensed equations are
1710 =7]fUs) _ 1f 1x1-25x0.707
6|—=7 20 Us | 61—-25x1+2x0.707

10 7] (Usf [0.7675
-7 20 |\ Us\ ~ )| 1.086

The solution of these equations is

or

Uy = 0.1520, Us = 0.1075

Problem 8.19: Solve Problem 8.18 when ug(x) = 1. The analytical solution is given
by

4 X sin(2n + 1) sinh(2n + 1)y
™= (2n+1)sinh(2n + L)

Solution: The only unknown nodal values are Uy and Us. Hence, we must consider
only the two equations associated with nodes 4 and 5. We have

9
> KpUy=Fy, for I=1,2,---,9 (i)
J=1

Among the knowns, only Uz, Us, and (possibly) Uy are nonzero. Hence, we have

Ky4Uy + Ku5Us = Fy — (K47Ur + KygUs + Ka9Uy)
Kys5Uy + K55Us = F5 — K5gUg — K59Ug (4i)

(a) Mesh of triangles: The element nodes are numbered as indicated in Figure P8.6
on page 387 (i.e. node 1 is at the right-angle, with side 1-2 being of length a = 0.5 and
side 1-3 of length b = 0.25). With this choice of local node numbering, all elements
of the mesh will have the same element matrices, namely

L[ 25 05 —20
[K]==|-05 05 00

21 20 00 20

The global coefficients K can be written in terms of the element stiffnesses K;; as
follows:

Ky =K} + K33 + KS =25, Kys = K5+ K5 = —2.0

Ky =0, K7 = K§, = —0.25, Ky3 = K3 + K33 =0, K49 =0

Kss = Kpp + K33 + Kiy + K7y + Ki3 + K3 = 5.0

Ks7 =0, Ksg = Kiy + K8 = 0.5, K59 = Kiy + K8, =0 (444)
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Note that since K49 and Ksg are zero, it does not matter what value of Uy we use.
Substituting the values of Ky from Eq. (iii) into Eq. (ii), we obtain

25 —2.07(Us) _ [0.25
—20  5.0]\UsJ ~ 10.50

The solution of these equations is

Uy =0.26471, Us = 0.20588

b) Mesh of rectangles: For the rectangular element mesh we have a = 0.25,b =
0.5, = 2.0 and 8 = 0.5; the element matrix is given by

50 —35 —25 1.0
e 1|=35 50 1.0 —25
[K]_E 25 1.0 50 -35

1.0 —25 -35 5.0

The global coefficients K7y can be written in terms of the element stiffnesses KZ as
follows:

10 7 1
Ku =K+ K} = 5 Kis = Kz + Kiy = 5 Ky = Kjy = G
3 2.5 1 2 3 4 _ 20
Kyg = Kig = ——~, K49 =0, Ks5 = Kgg + Kjy + Kpp + Ky =
2.5 2 2.5
Ks7 = K3, = R Ksg = K33+ Kiy = 6 Ky = Ki3 = 6

The condensed equations are

1710 =7]fUs) _ 1 1x1-25x1-0xU
6| -7 20 Us | 6|1 —-25x1+2x1-25xUqg

Taking Ug = 0.0, we have
1.6667 —1.1667| [Us| _ [ 0.25
—1.1667  3.3333]| | UsJ 10.0833
The solution of these equations is
Uy = 0.22185, Us = 0.10265
If we take Ug = 1.0, we obtain
1.6667 —1.1667] [Us| _ [ 0.25
—1.1667  3.3333| | UsJ 10.50
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The solution of these equations is

Us =0.33775, Us = 0.26821

Problem 8.20: Solve Problem 8.18 when ug(z) = 4(x — 22).

Solution: The specified primary degrees of freedom are: U; = u(0.5) = 1.0,Us =
©(0.75) = 0.75 and Ug = u(1) = 0.0
(a) The condensed equations are

25 —2.0]fUs\ _ 1050
—2.0 50 |\ Usf 21075

The solution of these equations is
U, =0.2353, Us =0.1691

(b) The condensed equations are
1710 =7]fUs) _ 1 1x1-25x0.75
61—7 20]\Us) 61—-25x14+2x1+2x0.75

10 =7 [Us)| _ [0.875
-7 20 Us | 11.000

The solution of these equations is

or

Uy =0.16225, Us = 0.10679

Problem 8.21: Solve the Laplace equation for the unit square domain and boundary
conditions given in Fig. P8.21. Use one rectangular element.

Oy
3% W
ou 1.0 ou
Lo _v2 2
x V=0 x 0
< o >
1ol Y 22 > x
Figure P8.21 u=1
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Solution: For the one square element mesh we have

4 -1 -2 —-171(U; O
1]-1 4 -1 =2 U | ) Q2
6|—-2 —1 4 1| Us( @3

-1 =2 -1 4] \Us Qq

The boundary conditions are: U; = 1.0 and Uy = 1.0, and

Q3 = /01 ¢3($, 1)(2 — u)d:p = /011' [2 - $U3 - (1 - x)U4] dzx
=2(0.5) — (é)U3 - (é)Uz;,
1
/ Uale, )@ —wde = [ (1=2) 2= als = (1 - )] do
1 1

= 2(0.5) — (6)U3 - (g)U4

b et ={i)

The solution of these equations is

Hence we have

Us =15, U;=15

Problem 8.22: Use two triangular elements to solve the problem in Fig. P8.21. Use
the mesh obtained by joining points (1,0) and (0,1).

y
A Z—u +u=2
Y
I 14 I
-V2u=0 a_uzo ﬂ—o 1.0
ox @ Ox '
3
1 2NJ2 \
l'<u_1 1.0———» >

Solution: For the mesh of two triangular elements, we have

2 -1 -1 0] (U Q1
11-1 2 0 1)U, | JQi+@3
20-1 0 2 —1[\Us( )Qi+Q3

0 -1 -1 2] U, Q?
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The boundary conditions are: Uy = 1.0, Us = 1.0, Q3 = Q3 + Q% =1 —Us/3 — U4 /6,
and Q4 = Q3 =1 — U3 /6 — Us/3. Hence, we have

178 —2](Us| _[15
6|—2 8| Uz 115
The solution of these equations is

Us3=15, Uyg=15

Problem 8.23: Consider the steady-state heat transfer (or other phenomenon) in a
square region shown in Figure P8.23. The governing equation is given by

0 ou 0 ou
(k=) 2 (k=) =
5 ()~ 3y (k) = 1o
The boundary conditions for the problem are:
u(O,y):y2,u(x,O):xZ,u(l,y)zl—y,u(x,l):1—33

Assuming k£ = 1 and fy = 2, determine the unknown nodal value of u using the
uniform 2 x 2 mesh of rectangular elements.

yA u(xl)=1-x

7 8 9
] o
wON=y"| gy |°|HL=1-y 5 ]
< 0y >
e O
X 1 2 3
u(x,0) = x*

Figure P8.23

Solution: For the 2 x 2 mesh of rectangular elements, the only unknown is Us; other
nodal values are known as: U; = 0.0,Us = 0.25,U3 = 1.0,Uy = 0.25,Ug = 0.5, U7 =
1.0,Us = 0.5, U9 = 0.0. We have the equation

%U5:—%(—2x0—2x0.25—2><1—2><O.25—2><0.5
—2><1—2><0.5)+4<f07fl)

where fo = 2 and A = 0.25; the solution of this equation is Us = 0.625.
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Problem 8.24: Solve Prob. 8.23 using the mesh of a rectangle and two triangles, as
shown in Fig. P8.24.

yA u(xl)=1-x

)
1.0
wO,0)=y"| g2,y
h 0y
u(x,0) = x*

Figure P8.24

Solution: For the mesh given in Figure P8.24, the only unknown nodal value is Us.
The equation is

K33Us = F3 — (K31U1 + K32Us + K34Uy + K35Us + K3Us)

where U1 = O, UQ e 0.25, U4 e 1.0, U5 = 0.5, U6 = 0.0 and

11
K31:K§2:0,K32:K§1+K211:—§—6
4 1 1 2
K33:K212+K§3+K232:6+5+§,K34:K214:—6
11 A A
K352K213+K§1:—6—§,K36=K§’3=0,F3:0+2f03T+f04R

where fo =2, Ap = 0.125 and Ar = 0.25. We obtain
9 1 1 9 1 1
S 1) Us=—|—=—=|(025) = |=2] (1.0) = == — =] (0.5
(3+>3 [2 6}()[6](){6 2}()

_1+2+2+7_27
6 6 6 24 24

or U3 = 0.675.

Problem 8.25: Solve the Poisson equation —V2u = 2 in Q, u = 0 on I'y, du/0n = 0
on I'y, where € is the first quadrant bounded by the parabola y = 1 — 22 and the
coordinate axes (see Fig. P8.25), and I'; and I'y are the boundaries shown in Fig.
P8&.25.
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Figure P8.25

Solution: The coefficient matrix associated with the Laplace operator over a right-
angle triangle is given in Eq. ( 8.2.9) with k. = 1. The element coefficent matrices
and source vectors for each element are listed below. (Li2 = a, L1z =b):

Elements 1 and 2: (a =0.6, b=10.64, f=a/b=0.9375, a = b/a = 1.06667)

1.0021 —0.5333 —0.4688 0.128
(K'Y =[K?* =|-05333 05333  0.0000|; {f'}={f*}=1{0.128
—0.4688  0.0000  0.4688 0.128

Element 3: (a =0.4, b=0.64, §=a/b=0.625, « =b/a = 1.6)

1.1125 —0.800 —0.3125 0.0853
[K3] = | —0.8000  0.800  0.0000 | ; {f3} =< 0.0853

—0.3125 0.000  0.3125 0.0853

Element 4: (¢ = 0.6, b=0.36, § =a/b=1.6667, o =b/a = 0.6)
1.1333 —0.3000 —0.8333 0.072
(K4 = [—0.3000 0.3000 0.0000] - {f) = {0.072}
—0.8333 0.0000 0.8333 0.072
The coefficients of the assembled coefficient matrix are (K75 = K r)
K=K}, Kig=K{y, K13=0, Kj4=Kis, K15=0, Ki5=0
Kay = Koy + K33 + K7y, Kog = Kiy, Koy = Kg3 + K3,
Kos = K2 + K3, Kog =0, K33 = Koy, K34 =0, K35 = Ko, K36 =0
K= K33+ K3 + K1y, Kus = Ky + Kiy, Ku = K
Kss = Ki) + K33 + Ko, Ksg = Koy, Kes = K33
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The coefficients of the assembled source vector are (F; = f; + Q)
R =F, Bhb=F +F}+F, Fs=F;, Fy=F;+F} +F}
Fs=F} +F}+ Fy, Fo=Fj

For a constant source, f = f§, over an element, the source vector components are
f& = f§A°/3, where A° is the area of the e—th linear triangular element. Note that
1§ = 2 for all elements.

For the mesh of triangular elements shown in Figure P8.34, the boundary
conditions on the primary variables are: Uz = 0,Us = 0, Ug = 0. Hence, the unknown
primary nodal variables are: Uy, Us, and Uy. The known secondary variables are:

Qi=0Q1=0 Q=01+ +Q}=0, u=Q5+Q3+Q1=0

The condensed equations are given by
Ky Ko Kul| (U fi
Ky Koy Koy |{Usp =1 fo+f3+ [}
Uy fs+ 3+ 11
1.0021 —0.5333 —0.4688 Uy 0.1280
Uy p = ¢ 0.3413
Uy 0.3280

Ky Ky Ku
—0.5333  2.1146  0.0000
—0.4688  0.0000  2.1354
The solution of these equations is (obtained with the help of a computer)
Uy =0.37413, Uy = 0.25578, Uy = 0.23573

Problem 8.26: Solve the axisymmetric field problem shown in Fig. 8.26 for the
mesh shown there. Note that the problem has symmetry about any z = constant
line. Hence, the problem is essentially one-dimensional. You are only required to
determine the element matrix and source vector for element 1 and give the known
boundary conditions on the primary and secondary variables.

z
A kr =k, =Kk, constant

R Insulated (to,
/&7& (top) k =20W/(m °C)
—/
—

o =107 W/m¥(internal heat generation)
T(Ry,2)=T, \ To=100°C,Ry=002m

L Y4 7
7 8 9 10
6 )

o - > r 1.0
Insulated— r
(bottom) 1 2 3 4 5

[ ———>
R

Figure P8.26
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Solution: The internal heat generation is go = 107 (W/m?3). The specified nodal
values are Us = Ujg = 100, and the secondary variable is zero at nodes 1 and 6
(because of symmetry). The solution is only a function of r, and it does not depend
on z (becuase any z = constant is a symmetry plane). In principle, both quantities,
k and gg, should be multiplied by 27; since the factor 27 cancels on both sides of
the equation, it is not necessary to include the factor in the data. We can take, for
convenience, the length of the domain in the z-direction as the same as the element
length in the r-direction.

For the mesh of rectangular elements shown in Figure P8.26, the coefficient
matrices for this axisymmetric problem can be obtained as described in Section 8.2.6
but make note of the dependence on 7: aj; = kr or 411 = k in Eq. (8.2.74b), etc. For
example, we have

9 —2 -1 1 1 1 -1 -1
2 9 2 1 —1 1 3 -3 -1

1 K |2 2
K= 121 1 2 2| T% |1 3 3 1
1 -1 -2 2 1 -1 11

where k = 20, a = 0.005 and b = 1. The source vector is given by

) 1 20.833

1, _ abgo ) 2| _ | 41.667

= 12 )2 ( ) 41.667

1 20.833

The condensed system of equations is

20.833
3.3334 —3.3333 0.0000 ... Uy 125.00
—3.3333 13.3338 —9.9999 ... Us _ J 950.00
0.0000 —9.9999 26.6667 ... Us (— '

3875.0

The solution is given by
Uy = 151.75, Uy = 147.58, Us = 137.86, Uy = 122.02

The exact solution is given by

B gRy [,
T(@) = T+ £ (1 2

and at the nodes we have
T(0) = 150.0, Ty = 146.875, T5 = 137.50, T4 = 121.875

The four-element mesh gives a very accurate solution.
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Problem 8.27: Formulate the axisymmetric field problem shown in Fig. P8.27 for
the mesh shown. You are only required to give the known boundary conditions on
the primary and secondary variables and compute the secondary variable at r = Ry/2
using equilibrium and the definition. Use the element at the left of the node.

z
A T(r,L)=Ty k, =k, =k, constant

Ro
T TN k =20W/(mC)
N | go =107 W/m*(internal heat generation)

T(Ro2)=T, \ To=100°C, Ry=002m,L=0.04m

L - z
A
7 g 2
P Y R . 4——16| L/2=0.02m
T(r0)=Tg~ >r
(bottom) P

—>
Figure P8.27  R.=002m

Solution: The finite element formulation of the problem is the same as discussed in
Section 8.2.6. This problem differs from the one in Problem 8.26 in that the solution
depends on the coordinate z. The problem has a symmetry about » = 0 line as
well as about the z = L/2 line. For the mesh shown in Figure P8.27, the specified
nodal values are: Uy = Uy = Us = Ug = Ug = Ty. The following values of various
parameters is suggested: L = 2Ry = 0.04m, Ty = 100° C, and k = 20 W/(m.°C).
The element matrix is given in Problem 8.26 (with a = b = 0.01).

The specified nodal values of the primary variables are Uy = Us = Us = Ug =
U; = Ug = Ug = 100. The only unknowns are Uy and Us. The condensed system of
equations is

0.1000 —-0.0333| [Us )| _ [ 8.333
—0.0333  0.5333| | UsJ ] 60.000

The solution is Uy = 123.40° C and Us = 120.21° C. The secondary variable (heat)
at node 2 is given by

(Q%)equil = K3 Uy + K3Us + K213U5 + K3 Us — f5
—U1 +5Uy — 2U5 — 2U4) —1.667 = -3.120 W

— ka <U2 ; U5> — 92021 W

:@<

oT
1 — — R
(Qh)aes = —hr

z2=0,r=a

Problem 8.28: A series of heating cables have been placed in a conducting medium,
as shown in Fig. P8.28. The medium has conductivities of k; = 10 W/(cm°C) and
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ky = 15 W/(cm°C), the upper surface is exposed to a temperature of —5°C, and
the lower surface is bounded by an insulating medium. Assume that each cable is a
point source of 250 W /cm. Take the convection coefficient between the medium and
the upper surface to be 3 = 5 W/(cm? K). Use a 8 x 8 mesh of linear rectangular
(or triangular) elements in the computational domain (use symmetry available in
the problem), and formulate the problem (i.e., give element matrices for a typical
element, give boundary conditions on primary and secondary variables, and compute
convection boundary contributions).

Convection [T, =-5°C, #=5Wi/(cm® °C)] N
; —1 73 81
) 2cm 64 72
—-— o—-—-—-—-—- = B A 55 63
o ¥ Pl |3 A
. 1 B 46 54
Electric cables (Qp =250 W/cm)t = | §
S R s
= 1
P8 1 |6cm 28 36
ky =10W/(cm °C), k, =15W/(cm °C) : %— : 19 27
1 O 1
i | 10 18
1 A / 1 9y

Insulation

Figure P8.28

Solution: Using symmetry of the problem, we can reduce the computational domain
to that shown in the figure. The heat input at the node where the cable is located
is 125 W/cm. The element matrices for rectangular or triangular elements are given
below:

(KT = ko [S™] + ky[S%], K= o1 kaBiB; + ky i)
The boundary conditions at the upper boundary is that of convective type, at the
right and left boundaries the heat flux is zero (because of symmetry), and at the
lower boundary the heat flux is zero because of the insulation. The contribution due
to the convective boundary condition to the element was discussed in Section 8.5.1.
For a 8 x 8 uniform mesh of linear triangular or rectangular elements, with the
origin of the coordinate system taken at the lower left corner. The sides 1-2 of the
last 8 elements (elements 57-64) are exposed to ambient temperature. There are no
specified boundary conditions on the primary variables. The source 125W (per half
the domain) is located at node 63.
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Problem 8.29: Formulate the finite element analysis information to determine the
temperature distribution in the molded asbestos insulation shown in Fig. P8.29. Use
the symmetry to identify a computational domain and give the specified boundary
conditions at the nodes of the mesh. What is the connectivity of matrix for the mesh
shown?

k=0.1BrN(ILF)
i in
[ﬂwbj Insulatedzhlf—ﬂ

Figure P8.29

Solution: The computational domain is shown in Figure P8.29 (the finite element
mesh part). The heat flux is zero along the insulated boundary and line of symmetry.
Nodes 5, 10, 15, 20, and 25 have a specified temperature of 100°F, and nodes 1, 6, 11,
16, and 21 have a specified temperature of 500° F. The assembled coefficient matrix
is of order 25 x 25, and the condensed coefficient matrix is of order 15 x 15. The
connectivity matrix is given by

1 3 13 2 8 7
3 5 16 4 10 9
1 13 11 6 7 12

3 15 13 8 9 14
11 13 23 12 18 17
13 156 25 14 20 19
11 23 21 17 22 16
13 25 23 19 24 18]

Problem 8.30: Consider steady-state heat conduction in a square region of side
2a. Assume that the medium has conductivity of £ (in W/(m°C) and uniform heat
(energy) generation of fo (in W/m?). For the boundary conditions and mesh shown
in Fig. P8.30, write the finite element algebraic equations for nodes 1, 3, and 7.

Solution: The algebraic equations associated with nodes 1, 3, and 7 are:
KT + K121 + K14Ty + K515 = Fy
K3oTh + K33T3 + K355 + Ksgls = F3
Kr4Ty + Krs5T5 + K717 + KTy = Fy
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where T3 = T6 = T[) and

1 qoa
Kll :}-(117 K12—K12, K14—K147 K15*K137 Fl 4 9
2 2
K39 = K5, K33 = K3y, K35 = K24> K3 = K237 Fy = + Q2
3 3
K74 = K41, K75 = K42, K77 = K44 + H44a K78 = K43 + H43
2
goa qoa 3
F —+ —+P
7= 4 ) 4
il
A
Heat supply, Prescribed k=30WI/(m°C), g= 60W/(m °C)
do (W/m?) [, emPeratre Tol 7 —0°C, T, =100°C, a=1cm
Qo = 2x10° Wim?, go =107 W/m?
) Yo

Figure P8.30

Note that the equation associated with node 3 will be used to compute Q3. The
coefficients Hf; and P are defined in Eqgs. (8.5.10a, b):

af3 af _ a8
H, = —, HS. = , Pf
We have

4 k 2 k
Ki = =k, Kig = —. Ki3= 2k, K= ——. Kop—~
11 Gk’ 12 5 s 6k 14 5 K22 6k
k 2 4 k 4
Kog = ——, Koy = k‘ Kz ==k, Kyy=—=, Kyy =~
23 5 K= 83 = 34 5 Bu=¢

For a = 0.0lm, & = 30 W/(m-°C), 3 = 60 W/(m?2.°C), T, = 0.0, Ty = 100°C,
go =2 x 10> W/m?, and gop = 10" W/m?, the nodal values are:

Ty =297.06, To =214.58, Ty =295.98, T5 = 213.83
T7 =292.15, Ty = 210.88

Problem 8.31: For the convection heat transfer problem shown in Fig. P8.31, write
the four finite element equations for the unknown temperatures. Assume that the
thermal conductivity of the material is k =5 W/(m°C), the convection heat transfer
coefficient on the left surface is 3 = 28 W/(m?°C), and the internal heat generation
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is zero. Compute the heats at nodes 2, 4 and 9 using (a) element equations (i.e.,
equilibrium), and (b) definition (use the temperature field of elements 1 and 2).

Insulated
y 3 )
k=5W/(m°C), =28 W/(m? °C) Convection Prescribed
T —0°C. T.=T. =T = 40°C £, T, Temperature
0 > 3 6 9 ’ ] za
T7,=T,=10°C, a=0.15m
Y x

Prescribed Temperature

Figure P8.31

Solution: There are four algebraic equations associated with nodal unknowns
T4,T5,T7 and Tg:

(Kis+ Ky + Hig + H{) Ty + (Kgg + Ki9)Ts + (K + Hig)Tr 4+ KisTx

= (K4 + Hy)Th — KppTh (4)
(K34 + Ko)Ta + (Kzz + K3y + K3y + Kao)Ts + Koy Ty + (Kgs + K7 Tx

= —Ki3Ty — K3y — (Kgp + K§))To — KipTs — (Kis + K3)) T (i)
(Kiy + Hij) Ty + Ko Ts + (Kiy + Hiyy) Ty + KijzTg = 0 (ddi)
Ky Ty + (Ksp + KG)Ts + Ksg Ty + (Ki3 + Kiy) Ty

= —K3,Ts — K33Ty (iv)

The heat at node 2 is given from the assembled equation associated with node 2:
2
a
Qa = K5\ Ty + (Kgp + Kiy)To + Ki5Ts + K3y Ty + (K33 + K74 Ts + K756 — QOT
Note that go = 0 in this problem. By definition,

a 9T o ,9T®
_ Nl 2 __ 1 2
ngQQJrQlfk:/O gy dx+k/0 vig, d

Similar equations can be written for heats at nodes 4 and 9.

Problem 8.32: Write the finite element equations for the unknown temperatures of
the problem shown in Fig. P8.32.
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Al ' ® k =10 W/(m °C)
Im o
1 12 go=0wW/(m*°C)
T =150°C T =50°C
@

Figure P8.32

Solution: There are four algebraic equations associated with nodal unknowns (7's
used in place of Us) Tg, T7, Tho and Ti1:

(K33 + K3y + Koy + KT + (K3 + K75)Tr + (K3 + K7y)Tio + K511
= —K3T1 — (K3y + K;))To — K3 Ts — (Kgy + K3,)T5 — K3,Tp

Similar equations can be written for nodes 7, 10 and 11.

Problem 8.33: Write the finite element equations for the heats at nodes 1 and 13 of
Problem 8.32. The answer should be in terms of the nodal temperatures 11, T5,. ..,
Tie-

Solution: We have

Qi = (KHT1 + K1, Ty + Ki3Ts + K1,T5)
Qi = (KLTh + KfpTio + K{sTia)

Problem 8.34: Write the finite element equations associated with nodes 13, 16, and
19 for the problem shown in Fig. P8.34.

7X
yA /T =Ty cosa

_ 25 .
A [® k =10W/(m °C)
w7 20 g, = ow/(m? °C) : ;
. 13 k=25W/(m°C), gg=0W/m
o> 15
Insulatéd 6@ T _oc a=1m, T, =100 °C
10
vOp |5 |® S X
4 togc

Figure P8.34
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Solution: This is a straight forward problem. Here equation for node 13 is given.
The equation for node 13 will have contributions from elements 6, 7, 10 and 11 (and
nodes 7, 8, 9, 12, 13, 14, 17, 18, and 19):

K§1U7 + (K$ + K{1)Us + KUy + (K34 + K37) U

+ (K33 + Kiy + K3 + K1) Uiz + (K3 + Ki3) Ul

+ K39Urr + (K39 + KiH)Uis + K{aUpg = 0
Similarly, the equation for node 16 will have contributions from elements 9 and 13
(nodes 11, 12, 16, 17, 21 and 22), and temperature at nodes 21 and 22 are known.
The equation for node 19 will have contributions from elements 11, 12, 15 and 16

(nodes 13, 14, 15, 18, 19, 20, 23, 24 and 25), and temperatures at nodes 15, 20, 23,
24, and 25 are known.

Problem 8.35: The fin shown in Fig. P8.35 has its base maintained at 300°C and
exposed to convection on its remaining boundary. Write the finite element equations
at nodes 7 and 10.

y Convection g, T,

11 12 13 14 15

A k =5W/(m °C)
e le o | w0
8 =2cm o

= @ @ l @ 10 Convection 1= =20°C

I @ T BiTe  Ty=300°C,a=8cm
2

1 3 A =7cm X
[ !

a=8cm

Convection 3, T,

Figure P8.35

Solution: The equations for node 7 is given by
(Kso + K31)Uz + K§yUs + (K3 + K1o)Us + (K353 + K74) Uiz + K13Uss
= —K3Ur — (K34 + K3,)Us — K5,Uni

where Uy = Ug = U1 = Tp. The equation for node 10 involves convection terms. We
have

K§,Us + (K33 + Hip)Us + (K34 + K3)Ug + (K33 + K3y + His + Hy)Usg
+ K§, Uy + (K5 + HS) U5 = Py + PS

The element coefficients Kf;, H; and Pf are given by Egs. (8.2.54), (8.5.10a) and
(8.5.10b), respectively. For example, HS, from Eq. (8.5.10a) is 353h53/6 whereas H$,
is 2353h5,/6. Note that Hg; contribution comes, in the present problem, from the

side connecting local nodes 2 and 3.

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



274 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Problem 8.36: Compute the heat loss at nodes 10 and 13 of Problem 8.35.

Solution: The heats at nodes 10 and 13 can be computed from the definition:

Qw—k/ Uy hdy+k/ i) 2k dy

a@ &Qd

ng—k/ W (a d+k/ e

where T} is replaced by the finite element interpolation Ty = > TFy5(x, y).

The formulative effort for Problems 37-42 involves mesh generation. The
boundary conditions are very apparent from the problem data. For computer solution
of these problems, see Chapter 13 solutions. Here we only make some comments on
each problem.

Problem 8.37: Consider the problem of the flow of groundwater beneath a coffer
dam. Formulate the problem using the velocity potential for finite element analysis.
The geometry and boundary conditions are shown in Fig. P8.37.

$=2m Impermeable sheet pile
.G F. o
.; SIS
Impermeable, :: E: / ..

o} :1: Cl=

ik Ay B

on = Iz om =
D [b=4cm
: Impermeable
A B B

Impermeé)le 0 a=16cm

Figure P8.37

Solution: On boundary segments AB, BC, EF and AG, natural boundary conditions
are specified to be zero. On GF, EC and ED boundary conditions on the primary
variable ¢ are specified.

Problem 8.38: Formulate the groundwater flow problem of the domain shown in
Fig. P8.38 for finite element analysis. The pump is located at (x,y) = (550,400) m
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o
Impermeable, o 0 a;; =1.75 m/day, a,, =1 m/day

>l'.‘\.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: '.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.'
: 400m A
= $=100m
Impermeable, :;: 2\ Pump *® (550,4%0) s
%:0 fff Q =200m>/m®/day b=600m
on Stream
=0.5m°/m/da
a Y 200 m
Y
............................................................................................. —-—> X
................ / R R
Impermeéble, % _o a=100m
n

Figure P8.38

Solution: This problem is similar to the one in Example 8.5.4. Primary variable is
specified at nodes on = = 1050 m line. The specified nonzero secondary variables are
at the nodes along the river and at the pump. The values can be determined once
the mesh is selected.

Problem 8.39: Repeat Prob. 8.38 for the domain shown in Fig. P8.39.

$=100m
ole d ay; =1.75 m/day Im%(;rmeable
Impermeable,:;: Whole omain{ _ o _
o4 / a,, =1 m/day an =0
IR ~
s ¢=200m Stream, q =0.5m%/m/day 3r5m
= b=750m
I‘ ............ //' ..... a:1500m‘|

Impermeable, 9 _ 0
on

Figure P8.39

Solution: The primary variable is specified at nodes on the top boundary and also at
one node on the left boundary. Non-zero specified secondary variables are at nodes
along the river.

Problem 8.40: Consider the steady confined flow through the foundation soil of
a dam (see Fig. P8.40). Assuming that the soil is isotropic (k; = k), formulate
the problem for finite element analysis (identify the specified primary and secondary
variables and their contribution to the nodes). In particular, write the finite element
equations at nodes 8 and 11. Write the finite element equations for the horizontal
velocity component in 5th and 10th elements.
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24m

Structure

28

5m k =3m/day

A
A/
\

/
\ 5m k =1m/day

Impermeable ‘?—qﬁ =0
on

Figure P8.40

Solution: For this problem, the primary variable is specified at nodes 1, 20, 39, 58
and 77-81 (¢.) and 19, 38, 57, 76 and 91-95 (¢1). There are no specified non-zero
secondary variables.

Problem 8.41: Formulate the problem of the flow about an elliptical cylinder using
the (a) stream function and (b) velocity potential. The geometry and boundary
conditions are shown in Fig. P8.41.

Fixed wall (no flow)

A

YYYYYYYY

PR Ay ffffffff.ﬂgffffffffffffffffffffffff ..-
e a=ocCm ]

Fixed wall (no flow)

Figure P8.41
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Solution: This problem is similar to that in Example 8.5.5.

(a) Stream function formulation On the left boundary, the primary variable () is
specified to be ¥ = yug on the left boundary, ¢ = 2ug on the top wall, and ¥ = 0 on
the bottom wall as well as on the elliptical boundary.

(b) Velocity potential formulation On the left boundary, the primary variable (¢) is
specified to be ¢ = 0 on the right boundary. The secondary variable % is specified to
be zero at the top and bottom walls as well as on the elliptical boundary; it is equal
to —ug on the left boundary.

Problem 8.42: Repeat Problem 8.41 for the domain shown in Fig. P8.42.

Rigid wall (no flow)

1 = 1.5cm
u, = > f—>|
0 > 1 b=4cm u, =1
> 2cm
> 7 7
i Z a=12cm o
Rigid wall (no flow)

Figure P8.42

Solution: By symmetry, only one half of the domain needs to be modeled.

(a) Stream function formulation On the left boundary, the primary variable (¢) is
specified to be 1 = yug on the left boundary, ¥ = 4ug on the top wall, and ¥ = 0 on
the bottom wall as well as on the rectangular boundary.

(b) Velocity potential formulation On the left boundary, the primary variable (¢) is
specified to be ¢ = 0 on the right boundary. The secondary variable % is specified
to be zero at the top and bottom walls as well as on the rectangular boundary; it is
equal to —ug on the left boundary.

Problem 8.43: The Prandtl theory of torsion of a cylindrical member leads to
—V2u=2G0 in & u=0 onl

where (2 is the cross section of the cylindrical member being twisted, I" is the boundary
of Q, G is the shear modulus of the material of the member, @ is the angle of twist,
and w is the stress function. Solve the equation for the case in which € is a circular
section (see Fig. P8.43) using the mesh of linear triangular elements. Compare the
finite-element solution with the exact solution (valid for elliptical sections with axes
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GOa’b? 22 P
u=——(1-= - L
a? + b? a2 b2

Usea=1,b=1, and fy = 2G0 = 10.

a and b):

y By symmetry, any sector can be
used as the computational domain
a=1, 2G=10

Figure P8.43

Solution: For the mesh shown in a quadrant, the specified degrees of freedom are:
Us = Us = Ug = 0, and the values at nodes 1, 2 and 4 are to be determined. The

condensed equations are

KUy + K12Us + K14Uy = Fy
Ko1U1 + KoUs + KogUy = 5
KU + KgoUs + KgaUy = Fy
where 1 1 1 1 2 3
K11 = Kiy, K12 = Kiy, K14 = Kis, Koo = Koy + Kij + Ki;
Koy = Kgg + Kis, Kuy = K33+ K35 + K{y
A
_Jfo LR = Jo fo
3 3 3
and A; is the area of the ith element and fo = 2G6 = 10. The condensed equations

are given by
Uy 0.2946
Us » =< 0.9567
Uy 0.9567

The solution of these equations is: U; = 2.6292, Uy = 1.9179, Uy = 1.9179. The
exact solution at these is given by u; = 2.5, ug = 1.875, ug = 1.875.

Fy (A1 + A+ A3), Fy= (A1 + A3+ Ay)

0.4142 —-0.2071 —-0.2071
—0.2071 1.8969 —1.1141
—-0.2071 -1.1141 1.8969

Problem 8.44: Repeat Problem 8.43 for an elliptical section member (see Fig.
P8.44). Usea=1 and b= 1.5.
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YA By symmetry, a quadrantcan be
.7 - T 7S \8 used as the computational domain
‘ . a=1,b=15, 2G0=10

6
1 ydic
0.5
| 140 1[0 —5> Xa
\

1 2 3

Figure P8.44

Solution: Use the mesh shown in Fig. P8.44 and note that the nodes 6, 7, and 8 lie
on the parabola; the specified degrees of freedom are: Us = Ug = U7 = Ug = 0, and
the values at nodes 1, 2, 4, and 5 are to be determined. The condensed equations are

where

K11U1 + K12Us + K14Uy + K15Us = Fy
K21Uy + KUz + KosUs = I
KUy + KygUy + Ky5Us = Fy
K51U1 + K52Us + K54Uy + K55Us = Fj

Kn =K, + K}y, Kio=Kly, Kiu=Kj3, Ki5=K{3+ K}
Koy = K3y + K3 + Kfy, Ky = K§3 + K7+ KDy, Kys = Kiy + KDy

Kss = Kig + Koy + Kgs + Koy + K{,, Fy = %(Al + Ay)

Fy = %(Al + A3+ Ay), Fy = ?0(A2 + As + Ag)
F5—§<A1+A2+A4+A5+A7)

and A; is the area of the ith element and fy = 2GO = 10. The solution of the
condensed equations yield Uy = 3.6389, Us = 2.5448, Uy = 3.0663, Us = 2.0565. The
exact solution at these nodes is u; = 3.4615, uo = 2.5961, uy = 3.0769, us = 2.2115.

Problem 8.45: Repeat Prob. 8.43 for the case in which € is an equilateral triangle
(see Fig. P8.45). The exact solution is given by

u=—G0 B (x2 + y2) — %a (x?’ — 3xy2) — 237@2]
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Take a = 1 and fy = 2G6 = 10. Give the finite element equation for node 5.

.2a Y5 =0.5y5, Y5 =3
xg =0.2667a

@@@@ X x9=xg+0.2a

a %l 10 MO X9 =xg +0.4a
"3 _i Use the smallest node as the first node
N "t of the element to write the connectivity

Figure P8.45

Solution: The coordinate y can be computed from the equation

0= % (mz + y2> - %a (x3 — 33:y2> — 237&2

for any given x. The known primary degrees of freedom are
Ui=Us=Us=Us=Us =U10=Un1 =0

The condensed system of equations is 5 x 5 for the unknowns Us, Uz, Ug and Ug. The
finite element equation for node is

K55Us + K57U7 + K5gUg = Fj
where
Kss = Ki3 + K3, + Ki + Ky + K9 + Kiy, Kz = Kiy+ Ky

Ksg = K9 + K1, F5_%(A2+A3+A4+A5+A6+A7)

Problem 8.46: Consider the torsion of a hollow square cross section member. The
stress function V¥ is required to satisfy the Poisson equation (8.5.60) and the following
boundary conditions:

U =0 on the outer boundary; ¥ =2r?> on the inner boundary

where r is the ratio of the outside dimension to the inside dimension, r = 6a/2a.
Formulate the problem for finite element analysis using the mesh shown in Fig. P8.46.
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YA y 9
F'y A 2%
a
7, 8Ly
A
2a > X a
@ %8 I (b) PZACE 6, ¥
< y
> .
\ 4 11® ® 3 V> X
« 6a > “ara

Figure P8.46

Solution: The ratio of outside to inside dimensions is 3. Hence, ¥ = 18. The value
of ¥ at nodes 3, 6, 8 and 9 is zero, and at nodes 1 and 4 it is 18. Thus the unknown
values are at nodes 2, 5, and 7. We have

KooUs + KosUs = —Ko1Uy — KoyUy
KsUs + K55Us + K57U7r = —K51Uy — K54Uy
Kr5Us + K7iUr = —K74Uy

where
Ko = K5, Ko = Kt + K, Koy = K§, Kos = K3 + K}

K51 = KB, Ksy= KR + KL, Kss = KE + KR+ KE + KL, K57 = KR + KL

and the coefficient matrices associated with rectangular (R) and triangular (T)
elements are

4 -1 -2 -1
1 -1 0
1 1|-1 4 -1 -2
™ _ | _ _ Ry _
[K]_2[é_? i]’[K]_G -2 -1 4 -1
-1 -2 -1 4

are the element matrices associated with the triangular element (right-angle is
numbered as node 2) and rectangular element. The source coefficients for these
elements are (a = b):
2ab
R
fi =— [fi'= e
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a
5 6] ¥
4 X
2 a
141 4 3 A AN X
AP Y

Figure P8.46(b)

Solution: For the case of the mesh of triangles, all element matrices are the same and
equal to [KT] of Problem 8.46. The finite element equations associated with nodes

2, 5 and 7 are
Ka2Us + KosUs = — K21 Uy

K5oUs + K55Us + K57U7r = —K51U1 — K54Uy
Kq75Us + Kr7U7 = —K74Uy

with
Ko = K3, Koo = Ky + K + KL, Koz = KL + K1,

K51=K£+K§1, K54:K,1112+Kgl
Kss = 2 (K{) + K33+ K3,) . Ks7 = KJ; + Kf

Us 1.0 1.0
Us ; = 00 ,+420
Uy 18.0 1.0

The solution of these equations is: Uy = 9.25, Us = 8.5, U; = 4.75.

The condensed equations are given by

—-1.0 4.0 -1.0

20 -1.0 0.0
0.0 —-1.0 0.5

Problem 8.48: The membrane shown in Fig. P8.48 is subjected to uniformly
distributed load of intensity fo = 1 N/m2. Write the condensed equations for the
unknown displacements.

YA u=010-x)x

[,

u=0

8cm

Figure P8.48 10ecm uw=0
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Solution: For 2 x 2 mesh of linear rectangular elements, the only unknown nodal
values are Us and Ug. All elements are identical, with the same element cofficient
matrix. The equations governing the unknown nodal values are:

ab
Ks55Us + K56Ug = 4fOT — (Ks5s8Us 4+ Ks9Uy)

ab
K56Us + KegUs = 2f0T — (KesUs + KggUy)

where Ug = 0.1875 m and Ug = 0.25 m. Using the element matrix in Eq. (8.2.54)
(a =10.025 m and b = 0.04 m), we can write the above equations as

2.9667 —0.8583 ] [ Us — 102 0.10 n 0.07083 | _ [ 0.07183
—0.8583 14833 \Us | 0.05 0.05495 [ ] 0.05545

The solution of these equations is Us = 4.2072 cm and Ug = 6.1726 cm.

Problem 8.49: The circular membrane shown in Fig. P8.49 is subjected to uniformly
distributed load of intensity fo (in N/m?). Write the condensed equations for the
unknown displacements.

By symmetry, any sector can be
used as the computational domain

u =0 on the boundary
a=10cm,f; =1

Figure P8.49

Solution: This problem is similar to that solved in Problem 8.43. For the mesh shown
in a quadrant, the specified degrees of freedom are: Us = Us = Ug = 0, and the values
at nodes 1, 2 and 4 are to be determined. The condensed equations are

KU + K12Us + K14Uy = By
Ko1Uy + Ko2Us + KoqUy = Fo
K41Ur + KgUs + K44Uy = Fy
where
K = K{y, Kia = Ky, Kia = K{3, Kz = Kj,+ K} + K}
Koy = K3 + K3, Ku = K33+ K33 + Ki
_ JoAs

F = 3 F2:§0(A1+A2+A3), F4:?(A1+A3+A4)
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and A; is the area of the ith element.
The condensed equations are given by

0.4142 —-0.2071 —-0.2071

284 AN INTRODUCTION TO THE FINITE ELEMENT METHOD
Ui 0.2946
—0.2071  1.8968 —1.1141 | { Us p =1073f,{ 0.9567
—0.2071 -—-1.1141 1.8969 Uy 0.9567

The solution of these equations is: U; = 0.2629 x 1072 fy m, Uy = 0.1918 x 1072 f,
m, Uy = Us.

Problem 8.50: Determine the critical time step for the transient analysis (with
a < 1) of the problem

%—v%:l in Q wu=0 in Qat t=0

by determining the maximum eigenvalue of the problem
—Vu=Mu in & u=0 onl

The domain is a square of 1 unit. Use (a) one triangular element in the octant,
(b) 4 linear elements in the octanta, and (c) a 2 x 2 mesh of linear rectangular
elements in a quadrant (see Fig. P8.50). Determine the critical time step for the
forward difference scheme.

YA
YA U _g u=0

> . @) o
RN ‘IR
u:O// ANEE i
2
YA YA
- 7 8 o~ =
ou 6 u=0 0.5f——1——=9 =0
o | a2 o e el
ou O6) ou_ [ @@
-~ =0 1. q 4 A | N CIRRERE RN
Ay 1 2 05 ° B e 3> *

Figure P8.50

(a) The finite element equations of a right-angle triangular element of sides a and b
for the given equation are (a = b = 0.5; see Example 8.6.1)

L2 1 110 (1 -1 0] (s o)
|l 2 Lqleaptrg|-L 2 11l =10Qs
1 1 2 Us 0 -1 1 Us Q3
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The boundary conditions are: Uy = Us = 0 and @)1 = 0. The eigenvlue problem
associated with this equation is

NERE 1 -1 0 U, 0
(--121+——1 2—1) 0 5=00,
Bl 1 9 0 -1 1 0 O3

The condensed equation —\/48 + 1/2 = 0 gives A = 24. The critical time step is
At = 2/ = 0.0833.

(b) Using the mesh of linear triangular elements shown in Fig. P8.50(b), we obtain

the following condensed equations (a = b = 0.25)
Uy 0
) vy =10
Us 0

2 1 1 1 -1 0
(—ill 6 2 —i—l[—l 4 =2
Bl 2 6 0 -2 4
The roots of the resulting characterstic polynomial are (obtained using an eigenvalue
solver): A\ = 21.6582, Ao = 152.793, A3 = 305.549. Hence, the critical time
step for conditionally stable scheme like the forward difference scheme (o = 0.0)
is Ater = y2— = 6.5456 x 1073,

azx

(c) Using the 2 x 2 mesh of linear rectangular elements (each element is a square of
side a = 0.25) shown in Fig. P8.50(c), we obtain the following assembled equations

42 2 1 4 -1 -1 -2 U, 0
Al2 81 2| 1]-1 8 2 -1 n| o
“swl2 18 2|T6l-1 2 8 -1 U (=)0
1 2 2 16 2 -1 -1 16] |ws 0

The roots of the resulting characterstic polynomial are: A; = 38.607, A2 = 82.286,
A3 = 126.279, and Ny = 236.815. Hence, the critical time step for the forward
difference scheme is At = ﬁ = 8.445 x 1073.

Problem 8.51: Write the condensed equations for the transient problem in Prob.
8.50 for the a-family of approximation. Use the mesh shown in Fig. P8.50(b).

Solution: Using the mesh shown in Figure 8.12b of page 325, we obtain the following
condensed equations for the time-dependent case:

L2117 (y (1 -1 0] (Uh 0.041667
|t 6 2| leptg |l 42U =012
1 2 6] (U4 0 -2 4] (U, 0.125

The a-family of approximation results in Eqgs. (8.6.10a, b), where [M] and [K] are
obvious from the above equation.
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Problem 8.52: Write the condensed equations for the time-dependent analysis of
the circular membrane in Problem 8.49.

Solution: For the mesh given in Fig. P8.60, the condensed equations are given by (the
mass matrix coefficients are to be computed for each element to obtain the condensed

mass matrix)
U 1 Ur
Uy ¢ + Uz
U4 U4

0.02946

= ¢ 0.09567
0.09567

The Newmark family of approximation results in Eqgs. (8.6.20a, b), where [M] and

[K] are clear from the above equation.

0.4142 —-0.2071 —-0.2071
—0.2071 1.8969 —1.1141
—-0.2071 -1.1141 1.8969

0.736 4.784 1.595

1.473 0.736 0.736
1074
0.736 1.595 4.784

Problem 8.53: Determine the fundamental natural frequency of the rectangular
membrane in Problem 8.48.

Solution: For 2 x 2 mesh of linear rectangular elements shown in Fig. P8.48, the only
unknown nodal values are Us and Ug. All other nodal values as well as the loads are
zero for a natural vibration analysis (and the problem becomes one in Example 8.6.3)
The eigenvalue problem for natural frequencies becomes:

([ ]+ [ wD{e) -{o}

Megs  Mee Kgs Koo Us 0

where A = w?, square of the natural frequency, w. Numerical form of the above
equation is

1073\ 0.4444 0.1111 n 2.9667 —0.8583 Us\ [0
0.1111 0.4444 —0.8583 1.4833 UsJ 10
The eigenvalues (square of the frequencies) are A\ = 2,913.66, and Ay = 14, 550.6.

Thus, the fundamental frequency is w; = 53.978. The exact value from Example 8.6.3
is 50.290.

Problem 8.54: Determine the critical time step based on the forward difference
scheme for the time-dependent analysis of the circular membrane in Problem 8.49.

Solution: Using the results of Problem 8.52; we obtain the following eigenvalue

problem:
Ux
Us
Uy

1.473 0.736 0.736 0.4142 —-0.2071 —-0.2071
—107*X | 0.736  4.784 1.595
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i)

The eigenvalues (square of the frequencies) are Ay = 611.90, Ay = 4,688.72 and
A3 = 9,441.68. Hence, the critical time step for the forward difference scheme is
At = v2— =0.212 x 1073,

)\ma:c

Problem 8.55: (Central difference method) Consider the following matrix differential
equation in time:

[M{U} + [CH{U} + [K{U} = {F}
where the superposed dot indicates differentiation with respect to time. Assume

1
(At)?

(U}, = @({U}nﬂ —{U}a)

{Un = {Urn-1 = 2{U}n +{U}n+1)

and derive the algebraic equations for the solution of {U},41 in the form

[A{U}n1 = {F}n = [B{U}n — [D{U}n

Define [A], [B], and [D] in terms of [M], [C], and [K].

Solution: Premultiply the first equation (of the approximation) by [M], and the
second one by [C],, and add the resulting equations. Then substitute for {U},, and
{U}, from the given equation of motion. Collecting the coefficients, the derived
equation is obtained with,

(4= (30 + 550 )
B = (1K)n ~ 330000

D)= (@M~ 557(Cln)

Problem 8.56: Consider the first-order differential equation in time

Using linear approximation, u(t) = u1t1(t) +ugte(t), 11 = 1 —t/At, and ¥y = t/At,
derive the associated algebraic equation and compare with that obtained using the
a-family of approximation.
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Solution: The weighted-integral statement is given by

At du
0—/0 w(aE—l—bu—f)dt

Substituting the interpolation for u = u,¥yn + Upt1¥n4+1 and taking w = ¥ = Yy,
and w = 12 = Y41, we obtain the equations for the time interval [ty t,11]:

s ) et =500
21-1 1 6 |1 2 Upt1 6 L1 2] | fanr
where f is also interpolated as f = fp¥n + fanr1¥n+1. Now we assume that the

solution at time ¢, is known and we wish to determine that at ¢,,+;. Thus we solve
the second of the two equations for u,1 in terms of wuy,t,, and t,41:

2 1 A
(a + gbAt) U1 = (a _ gbAt) = gt (o + 2fns1) (i)
Next let us apply the a-family of approximation to the equation. We obtain
(@ + aAth) upt1 = [a — (1 — @) Atb] uy, + At [(1 — @) fr, + @ frnt1] (i1)

Comparing Eq. (i) with Eq. (ii), we note that they are the same for a = 2/3. Thus,
the Galerkin method is a subset of the a-family of approximation.

Problem 8.57: (Space-time element) Consider the differential equation

ou 8<3u

= <t<
‘5 " 92 ) f for O0<z<L, 0<t<T
with
w(0,t) =u(L,t) =0 for 0<t<T w(x,0)=wup(z) for 0<z<L

where ¢ = ¢(x), a = a(z), f = f(z,t), and uy are given functions. Consider the
rectangular domain defined by

Q={(z,t):0<zx <L, 0<t<T}

A finite-element discretization of {2 by rectangles is a time-space rectangular element
(with y replaced by t). Give a finite-element formulation of the equation over a
time-space element, and discuss the mathematical/practical limitations of such a
formulation. Compute the element matrices for a linear element.
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Solution: The finite element model over a rectangular element is given by [K|{u} =
{F}, where
At raxp . . .
K= / / <c i a%%> dudt (4)
0 Tq ot 0

z Ox
At ou
F; _/0 (a%%’)

For the case in which a and c are constant, and 1; are the linear interpolation functions
of a (time-space) rectangular element,

0 (- 2) (&) 2 0-4)

@bgzii, Yy = (1—A%>Ait (i)

T=xy zp AR
dt + / b dudt (id)
- 0

T=Tq Za

the element matrix can be readily evaluated. Indeed, we have
(K] = a[S"] + c[S™] (iv)

where [S1!] is given in Eq. (8.2.52) and [S%2] is given in the soolution to Problem
8.10. We have

2 -2 -1 1 -2 -1 1 2
At -2 2 1 -1 Az | -1 -2 2 1
el __ —_
KT=0saz 121 1 2 —2| T2 -1 —2 2 1
1 -1 -2 2 -2 -1 1 2
or
—2c+4ar —c—4ar c—2ar 2c+ 2ar
[K]—H —c—4ar —2c+4ar 2c+2ar c¢—2ar ()
12 | —¢e—2ar —2c+2ar 2c+4ar c—4ar

—2c+2ar —c—2ar c—4ar 2c+ 4dar
where r = At/(Ax)?2.

Problem 8.58: (Space-time finite element) Consider the time-dependent problem

9%u

922 for0<ax<1, t>0

_

~ o
ou

u(0,t) =0, B_x(l’t) =1, u(z,0)=x

Use linear rectangular elements in the (z,t)-plane to model the problem. Note that
the finite-element model is given by [K¢|{u®} = {Q°}, where

Atz e e .
Kfj:/ /b<awz Y] +C¢ia¢]> dz dt
0 Tg

Oox Oz ot
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. At Ay . AN
Ql - <_ 0 % dt) x:xa7 Q2 - ( 0 % dt)

Solution: For one space-time element mesh, we have the equations

T=Tp

—2c+4r —c—4r c¢—2r 2¢c+2r U Q1
Az | —c—4r —2c+4r 2c+2r c—2r U | ) Q2 (1)
12 | —¢c—2r —2¢+2r 2c+4r c—4r Us [ ) Q3

—2c+2r —c—2r c—4r 2c+4r Uy on

The “boundary conditions” are: Uy = 0, Us = Az, Uy = 0, Q3 = At. Note that we
have no condition given at ¢ = At¢. This amounts to assuming that du/0t = 0. The
value at the node 3 (i.e., Us = u(Az, At)) can be determined easily from Eq. (1),

% [(—20 + 27‘)U2 + (20 + 47“)U3] == Qg

or
At At
2 4——-o | U3 = 14— 4+ 2cA
20t <Aw>2] 2T Ry TR
For ¢ = ¢gr, we have the result,

. 14 + 200

= A
3 4+200 .

The a-family of approximation yields the equation
cAx {2 1]+0¢At [ 1 —1} {U1n+1}
6 1 2 Azx | —1 1 U2n+1

(e [ ) {2

6 [1 2 Ax -1 1

Using Uy =0,Q2 =1 and Ug‘“ = Az, we obtain

Az AN 1 At Az

For ¢ = ¢gr, we have the result, U3 = Az.

While the two results differ quite a bit, it should not be taken seriously in view
of the coarse mesh taken and the special boundary and initial conditions used. In
general, the space-time finite elements have a natural drawback in redefining the
initial-boundary value problem as an equivalent boundary value problem.
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Problem 8.59: The collocation time approximation methods are defined by the
following relations:

{itnia = (1 — a){ii}n + ofifni1
{itn+a = {i}n + (1 = y){i}n + y{i}n+al

(At)?

{utnya = {utn + aAt{i}, + aT[(l —28){i}n + zﬁ{ﬁ}wra]

The collocation scheme contains two of the well-known schemes: « = 1 gives the

Newmark’s scheme; § = % and v = % gives the Wilson scheme. The collocation

scheme is unconditionally stable, second-order accurate for the following values of
the parameters:

-1 1 LIS 202 — 1
Y= 7T 90+ TV T 423 1)

Formulate the algebraic equations associated with the matrix differential equation
[M{i} + [Cl{a} + [K]{u} = {F}

using the collocation scheme.

Solution: Consider the equation

[M{i} + [CHa} + [K{u} = {F} (1)

and the equations of the collocation scheme

{i}ssa = (1 = )itk +afiidos @
{ubsia = {i}ts + aAt[(1 = y){i}ts + y{i}s+al (3)
(e = (ke + adtfi, + B (- 28) i+ 280ika) (1)

Like in Problem 6.23, we formulate the final equation for the acceleration vector. This
is done by writing Eq. (1) for ¢ = 54, and substituting for the acceleration, velocity,
and displacement at sy, from Egs. (2), (3), and (4), respectively. In using Eqgs. (3)
and (4), the acceleration at ts44 is replaced by Eq. (2). We obtain

~

[ﬁ]era{il}erl = {F}Ha - [M]s+a{d}s - [é]s+a{u}s - [K]s+a{u}s (5)

where

~

[H]sta = a([M]sta + c1[Clsta + c2[K]sta)
[M]8+a = ((1 = a)[M]s1a + c3[Clsta + ca[K]s1a)
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~

[Cls+a = [Clsta + aAt[K]s+a, {F}s+a =1 —a){F}s+a{F}st1
c1 = ayAt, ¢y = aB(At)?, 3 = a(l — ay)At, (0.5 — af)a(At)? (6)

Once the acceleration is known, Egs. (3) and (4) can be used to compute the velocity
and displacement at time ts41.

Problem 8.60: Consider the following pair of coupled partial differential equations:

0 ou 0 ou  Ov ou
2 (o)~ PG )|+ 5 .

0 ou Ov 0 ( Ov ov
—— b=+ = )| — = (= — —f,=0 2
5 (G 5)] 3 () + 3 ®
where u and v are the dependent variables (unknown functions), a, b and ¢ are known
functions of x and y, and f;, and f, are known functions of position (x,y) and time ¢.
(a) Use the three-step procedure on each equation with a different weight function for

each equation (say, w; and ws) to develop the (semidiscrete) weak form.
(b) Assume finite element approximation of (u,v) in the following form

u(az,y) = ij(x7y)Uj(t) ) v(x,y) = ij(xvy)vj(t) (3)
j=1 j=1
and develop the (semidiscrete) finite element model in the form
n . n n
0=> MJU;+> KU +> KZV; - F}
j=1 j=1 j=1
0= MPV;+> KIU;+> K}V, - F? (4)
j=1 j=1 j=1

You must define the algebraic form of the element coefficients K}jl, Kilf, F} etc.
(c) Give the fully discretized finite element model of the model (in the standard form;
you are not required to derive it).

Solution:
(a) The weak forms are given by

0 ou 0 ou Ov ou
0—/ew1{‘a—x (“%)‘a—y[b(a—y%)]*a‘fﬂ”}m
B Oowi Ou  Ow; ou Ov ou
_/Qe{a 52 5n By [b(8y+8m>}+w16t wlfm}dxdy

—i—% wity ds (5)
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ou  Ov 0 [ Ov v
0= [ {5 G 3| -5 (5) + 5~ pasa
B Ows ou Ov Ows v ov
AT LG )+ Tn g thmy
—i—% waty ds (6)

where
t —a%n +[b(@+@ﬂn ty = [b<%+@)]n +c@n (7)
T o " oy Ox v oy Ox T oy Y

(b) The finite element model is given by Eq. (4) with the following coefficients:

MY = /Q ity dady
M2 = /Q ity dady

O O, O Oy
11 _ G5 | i YYs
K / ( Oxr Ox +b8y 8y>dxdy
i Oy
oy Ox

OV OY; | O Oy
2 _ j )
K / (83: I oy Oy )dd

5@hmww+ﬁmww
- /ﬂ fyts dudy + ]g gt ds (8)

dady = K3}

K7 = b

(c) The pair of equations in (4) can be written in matrix form as
"o e {171+ [fe] e {62 - {651}

[MH{A} + [K){A} = {F} (9)

which is in the standard form of a parabolic equation [see Eq. (8.6.6b)]. Hence, the
fully discretized finite element model is given by Egs. (8.6.10a) and (8.6.10b).

or
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Chapter 9

INTERPOLATION FUNCTIONS,
NUMERICAL INTEGRATION,
AND MODELING CONSIDERATIONS

Problem 9.1: Show that the interpolation functions for the three-node equilateral
triangular element given in Fig. P9.1 are

1 1

1/11—5(1—5—%77)7 ¢2—%(1+§—%U)7 1#3:%77

n

77=«/§<1+6>1 n=31-¢)

V3

— 11—
Figure P9.1

Solution: Since 11 must vanish on line connecting nodes 2 and 3, it must be of the
form

Gr(&m) = [n—v3(1-¢)
Since 11 (—1,0) = 1, we obtain ¢; = —1/2v/3. Thus, we have
1 1
e =a-vi1-g] =5 (1-¢- )
Similarly, 19 should be of the form 2(&,n) = c2 [77 —V3(1+ E)} and it should be
equal to unity at node 2, giving co = —1/ 21/3. Hence, we have

va(en) = ex [n= VB0 +9)] = 5 (146 = —zn)

Finally, we know that 3 must vanish on line = 0. Hence, it is of the form

V3(&,m) =can  —  Y3(&,n) = %
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Problem 9.2: Show that the interpolation functions that involve the term &2 + n?
for the five-node rectangular element shown in Fig. P9.2 are given by

1 = 0.25(—¢ — 1+ £&n) +0.125(8% + n?)
Py = 0.25(6 —n — &) +0.125(8% + )
Y3 = 0.25(€ + 1+ &n) + 0.125(&% + n?)
Yy = 0.25(—€ +n — €n) + 0.125(62 + 1?)
s =1—0.5(6% +17)

n
1z 3
2 : | >
1 2
[————>
2

Figure P9.2
Solution: The interpolation functions are of the form
i(€,m) = ai + b€ + em + dikn + €,(€2 + 1)

For example, using the interpolation property of i1, we obtain five sets of algebraic
relations, which can be expressed in matrix form as

1 0 0 0 0 a1 0
1 -1 -1 1 2 b1 1
1 1 -1 -1 2 c1 p=40
1 1 1 1 2 dy 0
1 -1 1 -1 2 e1 0

The determinant of this matrix is 32. Using Cramer’s rule, we can solve the matrix
equations for the constants: a; = 0,b; = —8/32 = —0.25,¢; = —0.25,d; = 0.25, and
e1 = 0.125. Thus we have

P1(&,m) = 0.25(—€ — n+£&n) + 0.125(¢% + n?)

Similarly, the other functions can be determined.

Problem 9.3: Calculate the interpolation functions v;(x,y) for the quadratic
triangular element shown in Fig. P9.3. Hint: Use Eq. (9.2.16), where L; are given
by Eq. (8.2.25).
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Figure P9.3
Solution: Using the procedure described in Example 9.2.1, we obtain
Y1 =L1(2L1 — 1), Yo = Lo(2L2 — 1), ¢p3 = L3(2L3 — 1)

Yy =4L1Lo, 5 =4LoL3, 6 =4L1L3

where L; (i = 1,2,3) are the linear interpolation functions v; of Eq. (8.2.25). The
coefficients «;, 3; and ~y; for the element shown are

a; =150 — (—=30) =180, ap =0, ag =0, 1 = —13, B2 =10
B3=3, m=-5 72=-10,13=15

The interpolation functions become (24 = a1 + as + a3)

1 1 1
L= 180 (180 — 13z — by), Lo = 180 (10x — 10y), L3 = 180 (3z + 15y)

Hence, the quadratic function ) for node 1 of the given element is

1(x,y) = L1(2L1 — 1) = (180 — 13z — 5y) (90 — 13z — 5y)

180 x 90
Similarly, we obtain
1
Lo(2L9 — 1 — _
Ya(z,y) = Lo(2L2 = 1) = 705 (2 = y) (-9 + & — )
Ys3(w,y) = L3(2L3 — 1) = 1300 (z +5y) (=30 + z + 5y)

1/14(x, y) = 4L1L2 = (180 — 13$ — 5y) ($ — y)

810
1
Ys(z,y) = 4LaL3 = 1080 (x —y) (x + 5y)
Ye(x,y) = 4L3L1 = 10800 (180 — 13z — 5y) (x + 5y)
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Problem 9.4: Determine the interpolation function 14 in terms of the area
coordinates, L; for the quartic triangular element shown in Fig. P9.4.

Solution: Using Eq. (9.2.14), we obtain the 4th degree polynomial (kK = 5 and
n = 15). First, note that 114 must vanish along lines L1 =0, Ly = 0 and Lg = 0. It
must also vanish on line Ly = 1/4. Thus

L1 —0Ly—0Ls—0Ly—13
pry= 2 T A 390 LyLg(4Ly — 1)
10 3-03-07%—4
Figure P9.4

Problem 9.5: Derive the interpolation function of a corner node in a cubic
serendipity element.

Figure P9.5

Solution: First we note that the polynomials used for rectangular serendipity elements
should not contain terms under the cone of Figure 9.2.5. For the element under
consideration, the polynomial form is given in Eq. (9.2.32). Now consider node 1 of
Figure 9.2.8. The function v; must vanish on lines £ = 1 and n = 1. In addition, it
should vanish at nodes 2, 3, 5 and 7. For any corner node, the interpolation function
is of the form
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where (&;,7;) denote the local coordinates of the corner nodes. For node 1, we have
&1 = —1 and m = —1, and 1 has the form

D1(&m) = (1= &1 = n)(ar + b€ + e1n?)
We must determine the constants ai, b1, and c¢; using the conditions,

1

DL -1 =1, i(-3,-1) =0, ¢1(~1,~5) =0

These conditions give the relations

1 b c
a1+bl+61:Z, a1+§1+61:0, (I1+b1+§1:0

whose solution is: a3 = —10/32,b1 = ¢; = 9/32, and the interpolation function 1,
becomes

Y16 = 351 = 1~ )[-10 +9(& + )

For a node intermediate to the corner nodes, the interpolation functions take a
different form. For nodes 2 and 3, for example, 1 must vanish at £ = —1, £ = 1 and

n=1:
Pi(&n) = (1 =&)L —n)(ai+b&), i=2or3

and for nodes 5 and 7, ¥ must vanish at ¢ =1, n=—1and n = 1.
vi(€n) = (1= —n?)(a; +bm), i=50r7

The constants a; and b; are to be determined using the interpolation property. As an
example, consider node 2. We have

Pa(€,m) = (1= €3)(1 —n)(az + bs€)
The as and by are to be determined from the conditions,

Ya(—5,-1) =1, ¥a(3,~1) =0

which give ag = —be/3 = 9/32. Hence,

YalEn) = 55 (1= €)1 = n)(1 - 3¢)

Problem 9.6: Consider the five-node element shown in Fig. P9.6. Using the basic
linear and quadratic interpolations along the coordinate directions £ and 7, derive
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the interpolation functions for the element. Note that the element can be used as a
transition element connecting four-node elements to eight- or nine-node elements.

n
i 3

2 [ >
1 2
[———>}

Figure P9.6

Solution: First, we construct the interpolation function associated with node 5. It
should vanish at £ =1, £ = —1, and n = —1. Hence, it should be of the form

¥5(&m) = es(1 =1 +&)(1+n)

The constant ¢5 is determined from the condition 5(0,1) = 1. We have ¢5 = 1/2.

Ys(E,m) = 51— €)1 +1)

For any corner node of the bilinear element, the interpolation function is of the
form

i(€,m) = (L+&E) (1 +min)

where (&;,7;) denote the local coordinates of the corner nodes:

(5177]1) = (_L _1)a (5277]2) = (17 _1)7 (5377]3) = (17 1)7 (547774) = (_17 1)

These should be corrected to vanish at node 5: (&5,7m5) = (0,1). The bilinear
functions ¢, and s already satisfy this property [i.e., vanish at point (0,1)]. Thus,

P = wl, Yo = wg, and we need to correct only 1/13 and ¢4 so that they vanish at the
point (0,1). These functions take a value of 0.5 at node 5, while 5 takes a value of

unity. Therefore, 0.5 x 15 should be subtracted from 1&3 and 1&4 to obtain the required
functions. The final result is

Yr= 71 = )1 =0, ¢ = 11+ 61~ )

Yo = 70+ +E va=—70 -0 +mE 5= 5(1-)(1+7)
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Problem 9.7: (Nodeless variables) Consider the four-node rectangular element with
interpolation of the form

4 4
wy uihi+ Y cii
i1 i=1

where u; are the nodal values and ¢; are arbitrary constants. Determine the form of
1; and ¢; for the element.

Solution: Since u; is the value of u at the i—th node of the element, the second
part should be identically zero at the nodes. This implies, for non—zero values of
the parameters (ci, c2, c3, ¢4, that (¢1, P2, 3, ¢4) should take the value of zero at the
i—th node, and be linearly independent. Thus, v5, (i = 1,2,3,4) are the linear
interpolation functions of the four-node rectangular element, and ¢; are the lowest
order polynomials that satisfy the requirement, ¢;(&;,7;) = 0 for any i and j. The
following functions satisfy the requirement

pr=(1-8), da=(1-1n%), ¢p3=1—-En, ¢4 =E&(1—1n?)

Problems 9.8-9.10: Determine the Jacobian matrix and the transformation
equations for the elements given in Fig. P9.8-P9.10.

y
10 in. T 1043 o ?

>

1 10 in. 2

Figure P9.8
Solution to Problem 9.8: The transformation equations are

4 4

= xap=13.66+ 5 +8.66n, y=> yii=>5(1+n)
=1 =1

The Jacobian matrix can be computed using the definition or using Eq. (9.3.11b):

. » X . T N
oz Oy 01 Oy O3 OYa
[J]=|% 9| _ | % % % T2 Y2
9z Dy Oy by s | | T3 Y3

In on on On an T4 U
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0.0 0.0
:1[—(1—77) (I=m) (1+n) —(+n)]|10.0 00
1-(1-¢ —(1+& (1+¢& (1-¢]|2732 100
17.32 10.0
~[50 00
[8.66 5.0}

Thus, the Jacobian is a positive number, J = 25.

Figure P9.9

Solution to Problem 9.9: The coordinates of the element nodes are:

0.0 0.0
5.0 0.0
6.5 7.0
0.0 5.0

The transformation equations are

4 4
v =Y mi = {1+ L5+ 150), y= Dy = {(1+n)(12+2)
=1 =1

The Jacobian matrix is given by

= % 9| _[287540375n 0.5+ 0.5y
ge o | [0.3754 03756 3.0+0.5¢

The Jacobian is

1
J = (6754757 + 10)

which is positive for any (£, 7n) such that —1 < ¢ <1land —1<n<1.
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K pr=-2A-HA-MA+E+7)
s e B R L )
) J  w=-tarna-ma-é+n
[ ] ;6":

pi=$0-50-1), vs=1a+oH0-7")
pe=-10-HA+nA+E-7n)

yr =311 +n)
ps=-1A+HA+nA-£-7)

[ 1)
%)

Figure P9.10

Solution to Problem 9.10: Note that the node numbering used in Figure P9.10 is
the same as that used for the (master) element in Figure 9.2.8. The matrix of nodal
coordinates is given by

[ 0.0 0.0]
3.0 0.0
6.0 0.0
0.0 3.0
6.5 1.5
0.0 6.0
5.0 6.0

1 10.0 6.0 |

The transformation equations are
8 ~
x = zihi(&,n) = 3.25 + 3.25¢ + 1 + &n + 0.750% + 0.75¢n?
i=1

8
y = yahi(&,m) = 2.25 — 0.75¢ + 3 + 0.75n + 0.75¢n”
=1

The Jacobian matrix becomes

1] = [g_? %] _ [3-25+n+0.75772 —0.75 + 0.751°

oz g_g] (14+159)(1+€) 3.0+ 1591 +¢)

The Jacobian is
J =10.5 + 0.75¢ + 91 + 6¢n + 302 + 0.75¢n>

A plot of the Jacobian shows that J =0at { =1 and n = —1 and J > 0 everywhere
else.
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Problem 9.11: Using the Gauss quadrature, determine the contribution of a

constant distributed source to nodal points of the four-node finite element in Fig.
P9.9.

Solution: The integral to be evaluated is

1 1
gi= | gty dedy= [ [ jov(e ) dedn

Note that the integrand is quadratic in £ and 7. Hence, a 2 x 2 Gauss rule would
evaluate the integrand exactly. For example, we have (see Problem 9.9 for the
Jacobian)

fe= //fo (1-&1—n )8(67.5+7.577+1O§)d§d77

1 10
32 /7 (I—-mn) [(1 — ﬁ)(675 + 7.5n + ﬁ)

b4 \}_)(67 54 7.5n — ;%) dn
~fo [t 10
=0 [ (675 + 750 - ) dn
f 75 10 1 75 10
& [(1_ﬁ)(675 ) T e T )
_ o (675~ 735 ?)
185

= 5 fo="7.70833

Similarly, the remaining three components can be computed:

fe=T.7083f0, f5=85417fy, fS=09.1667fy, f{=8.3333f,

Problem 9.12: For a 12-node serendipity (cubic) element, as illustrated in Fig.
P9.12, show that the Jacobian J = Jq1 is

J = 0.4375 4+ 0.84375(b — a) 4 0.5625n — 0.84375(b — a)n
+ 1.125¢ — 0.5625(a + b)E — 1.125n€ + 0.5625(a + b)né
+ 1.687562 — 2.53125(b — a)€? — 1.6875mE2 + 2.53125(b — a)né>

What can you conclude from the requirement J > 07
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Square element

Equally spaced
Nodes, except
for these nodes

(a,0) (b,0)

Figure P9.12
Solution: We have (after a lengthy algebra using Maple)

x = 0.4375 + 0.28125(a 4 b) + 0.4375¢ + 0.5625n + 0.84375(b — a)&
—0.28125(a + b)n 4 0.5625¢n + 0.84375(a — b)én
+ 0.562562 — 0.28125(a + b)&2 — 0.56250€2 + 0.28125(a + b)nE>
+0.562563 4+ 0.84375(a — b)&® — 0.56251E2 + 0.84375(b — a)ne®
y=1+n

Hence, the Jacobian is J = Ji; because Ji2 = 0 and Jag = 1

J = Ji1 = 0.4375 + 0.84375(b — a) + 0.56251 — 0.84375(b — a)n
+ 1.125¢ — 0.5625(a + b)E — 1.125n¢ + 0.5625(a + b)né
+ 1.687562 — 2.53125(b — a)€? — 1.6875mE% + 2.53125(b — a)né>

Note that

J(&n=—1)=—0.125+ 1.6875(b — a) + 2.25¢ — 1.125(a + b)¢
+3.375¢2 — 5.0625(b — a)&?
J(En=41)=1.0

Thus J = J11 > 0 ensures a unique transformation and preservation of the sense of
the coordinate system in the master rectangular element, provided a and b are such
that

5.5 —1.125(a +b) — 3.375(b —a) > 0 and 1.0+ 1.125(a +b) — 3.375(b—a) >0

The above inequalities place a restriction on the values of a and b. Clearly, for
a > 0.666667 and b = 1.333333 (the usual location of the midside nodes), the
inequalities are met (i.e., J = 1 > 0). A plot of the Jacobian shows, for example,
that J = 0 when (i) @ = 0.27777 = 5/18 and (ii) b = 1 and J < 0 for a = 0.27777
and any b < 0.4745.
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Problem 9.13: Determine Jacobian of the eight-node rectangular element of Fig.
P9.13 in terms of the parameter a.

¥ 1 pr=—20-HA-MA+&+n)
! 7“ ' o =$1-H0-1)
. 4y . vy =T+ HA-NA-E+n)
> ya=51-O0-7"), y5=50+OA-7n")
12 3 Yo =-+1-OHA+mA+E-n)
< pr =3 A-)1+n)

yg=—FA+HA+mMA-&—1)

Figure P9.13

Solution: Using the coordinate system (x,y), which coincides with the natural
coordinate system (&, 7), we obtain

a
r=¢=5(1=)-m, y=1
The Jacobian is given by J = Ji1 (J12 =0 and Jog = 1)

J=1.04+a(l—n)¢

which is zero at (i) (§,7) = (—1,—1) when a = 0.5 (left quarter point) and (ii)
(&,m) = (1,—1) when a = —0.5 (right quarter point). The Jacobian is negative when
the node is placed inside a quarter point and the nearest corner node.

Problem 9.14: Determine the conditions on the location of node 3 of the
quadrilateral element shown in Fig. P9.14. Show that the transformation equations
are given by

v %(1 +6) 21— n) + a(1+1)]

y=70+mRA-6+(1+8)

o (a, b)

Figure P9.14
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Solution: The transformation equations are
x—zwzwz— 14+&)[2(1 =n) +a(l+n)
y—zyzd}z— (T+n)[2(1 =& +b(1+¢)]

The Jacobian matrix is

[—(1—77) (1-n) (@Q+n) —(1+n)]
-(1-8 -1+ 1+ (@1-9

o NO
N OO

1 [2(1—17)+a(1+77) (b—2)(1+mn) ]
4

4 (@=-2)1+¢8  20-&+d1+¢)

The Jacobian is given by

J=—la(l+n)+b(1+&) —2(6+n)]

N

For positive Jacobian at the point (§,7)=(1,1), it follows that a+b > 2. In particular,
J =0 when a = 0.5, b= 1.5 and £ =7 = 1.0.

Problem 9.15: Determine the global derivatives of the interpolation functions for
node 3 of the element shown in Fig. P9.9.

Solution: The inverse of the Jacobian matrix is given by

g1 1 3+ 0.5¢ —0.5(1+n)
J | —0.375(1+ &) 2.875+ 0.375n
Hence, the global derivatives of the interpolation functions for node 3 of the element

in Figure P9.9 are R A
Os _5(1+mn) 0O¢s 514§

or 8 7 0y 8J
where .J = (135 + 157 + 20¢)/16.

Problem 9.16: Let the transformation between the global coordinates (z,y) and
local normalized coordinates (£, 7n) in a Lagrange element 2. be

x:Zxﬂﬂi(f,n), yzzyﬂﬂz’(fﬂ?)

i=1 =1
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where (zf,y¢) denote the global coordinates of the element nodes. The differential
lengths in the two coordinates are related by

Oz Oz, Oy Oye
dre = o€ d§ + n O,  dye= 8§£+ 877d77
or Oze  Oze
dye Fe | ldn dr

In the finite element literature the transpose of [7] is called the Jacobian matrix,
[J]. Show that the derivatives of the interpolation function §(&,n) with respect to
the global coordinates (z,y) are related to their derivatives with respect to the local
coordinates (£, n) by

oY op;
oz \ 1) 9¢
{ o0 } 1] { oue }
dy on
824¢ (Bme)2 (aye)2 0 0ze Dl -1
Ox? o0& o€ 0§ 0¢
o%ype | _ 5. \ 2 uo \ 2 5
- (= (_ff@) (_L) 9 0ze Oye
. on n on On
M Oxe Oxe Oye Oye Oz OYe + Oz OYe
0z0y o0& 0On o0& On on 0O¢ o0& On
azwie 62(Eg 8226
o o e | our
oYy \ | 9%z 8%y ox
X an? on? 61]25 oY
%yg %z, Dye dy
BEDN 6 on  0&on

Problem 9.17: (Continuation of Problem 9.16) Show that the Jacobian can be
computed from the equation

xe e

oy Bye ous \ | e ‘Zé

[J] = { ¢ o 3 } 2 J2
oy 9Yg ovy : :

on on on i p

':L"rb yn

Solution of Problems 16 and 17: Part of the Problem 9.16 and all of Problem 9.17
is already discussed in the problem statement. The same procedure as that used
for the first derivatives can be used (i.e. chain rule of differentiation) for the second
derivatives and arrive at the required result. For example, we have

i _ 9y 0x O Oy O i Oy

oy v _ v
o6 Oz 06 Oy 06’ On  Ox On Oy On
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and

%1 _2(3¢i@+8¢i@>
082 0 \ 0x 06 Oy O¢
0 (8¢Z> ox 8% 8233 0 (8¢Z> 8y 8’@% 82y
= R L L
06\ Ox ) 06  0Ox 062 9¢E \ Oy ) 9 Oy 0€2
R EVC I O
- 0x2 \O¢ Oxdy 06 0 ~ Ox OE2
0% <6y)2 L O Ondy i 0y

ay? \o¢ dxdy OE D€ ' Dy €2

_l’_

Similarly, the second derivative with respect to n and the mixed derivative can be
evaluated:

821/)1' 82¢2 ox 2 82¢1 ox 8y 8&1 8216 81@ 82y 82¢2 8y 2
a7 = (o) *2mmyoant oeor oy o o (o)
0%, B 0%; Ox 0 0%Y; (Ox 0y Oz Oy 0%; Oy Oy
ondE 0z 9E Dy Dwdy (0_778_5 8_58_77> dy? 0¢ In

oY; 0%x n oY 0%y
Ox Onod¢ Oy Ono&

Since we need to write the global derivatives in terms of the local derivatives, set up
the equations for the global derivatives from the above three equations. This will
yield the required equations.

Problem 9.18: Find the Jacobian matrix for the nine-node quadrilateral element
shown in Fig. P9.18. What is the determinant of the Jacobian matrix?

- 2" —ple— 2" Dl

Figure P9.18

Solution: This problem is similar to one in Problem 9.10 (see Figure P9.10), except
that it is a nine-node element used here. Once again we note that the node numbering
used in Figure P9.14 is different from that used for the master element in Figure 9.6.
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The matrix of nodal coordinates is

0.0 0.0
2.0 0.0
4.0 0.0
0.0 2.0
25 2.0
45 1.0
00 4.0
3.0 4.0
6.0 4.0]

The transformation equations are

9
v =Y widi(m) = 1 [10+ €00 — €~ 66) + 20(1 ~ 2)  5672(1 + )

=1

9
y=3 edil€n) = 50+ )[4~ €01 +E)(1 + )

i=1
The Jacobian matrix becomes
oz Oy
_ | 9¢ o¢
7] = [@ Qy]
on On

1 {9 —dn—26(1+6n) —5n*(1+28)  —2(1+428)(1+n)?
4 2(14+&)(1 — 3§ — 5¢n) 8 —4£(1+&)(1+1n)

The Jacobian is

J = 4.75 — 3.25¢6 — 1.51 — 8.5¢n — 3.56% — 2.25n2 — 5.25¢n? — Hne?
— & —28% — 1587 — &P

Problem 9.19: For the eight-node element shown in Fig. P9.19, show that the
x-coordinate along the side 1-2 is related to the £-coordinate by the relation

7= —46(1 - &)af + §6(1 + Oas + (1 - )as

and that the relations

B x\ /2 83:_ 1/2
§—2<5) -1, a—g—(fm)
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hold. Also, show that

Oun
ox

___EE%ﬂE{%[3—4(2)”11&4—%[—1+4(2>szé
+2[1-2(§>1m]u§}

~1/2

(2,0)

Thus, Jup/J0x grows at a rate of (za) as x approaches zero along the side 1-2.
In other words, we have a z—/2 singularity at node 1. Such elements are used to
fracture mechanics problems.

0.75a

0.25a 0.75a

Figure P9.19

Solution: The transformation equation for x is given by

1 1
CUZSL"1'1(1—5)(1—77)(—1—5—77)4'565'5(1—52)(1—77)
1
Far g O =M (-1+E—n)lp =1
Substituting 1 = 0,29 = a, 5 = a/4, we obtain

RS N
m—4ﬂ §)+2&1+®

The roots of the above equation are

() = 2@ —1, (9= _2@ 1

The second root is not admissible here. Differentiating £ with respect to x, we obtain

0¢/0x =1/ /ax.

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



SOLUTIONS MANUAL 313

New Problem 9.1: Determine the interpolation functions for the rectangular
element shown in Fig. NP9.1. Hint: Make use of the one-dimensional interpolation
functions and the interpolation properties.

p5($)

Figure NP.1

Solution: First, note the following interpolation functions associated with nodes 5, 6,
and T:

ps() = (1= 1P), mo© = ST -€) (5+¢), () = 21— (5-¢)

Then the interpolation functions associated with nodes 5, 6, and 7 can be written as

vs€om =ps |50 +9] . wel&m) =po(@) |50+ )], vrem) =pe(©) [0+ m)]

The interpolation functions associated with the corner nodes can be constructed as
follows:

—_

(e = T0 O +n). walEm) = 11 +E(1—n) — s(En)

4
Us(Em) = 3(1 - €)1 —n) — 2s(E,1) — oabo(€,m) — 3e(E )
9a(Em) = 70— O+ 1) — 306(&,m) — 2n(E,n)

4 3 3
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Chapter 10

FLOWS OF VISCOUS
INCOMPRESSIBLE FLUIDS

Problem 10.1: Consider Egs. (10.1) and (10.2) in cylindrical coordinates (r, 0, z).
For axisymmetric flows of viscous incompressible fluids (i.e., flow field is independent
of 6 coordinate), we have

ou 10 ogg OO0y, )
pE r or (rowr) = + 0z I ®
ow 10 00, ..
Par = ;E(ﬂjm) + 5, + f2 (ii)
10 ow
;E(TU) + E = 0 (lll)
where 9
opp = —P+ 2”8_1;’ ogg = —P +2u—

e o2 2 .

Ozz = 1% 9z Orz = 0z or

Develop the semidiscrete finite element model of the equation by the pressure-velocity
formulation.

Solution:
Weak Forms The weak forms of the three equations are

- ou 1 0 000 0oy,
0 —277/ w1 { T (royr) + e P fr] rdrdz (la)
B ou Ow op Owq
—27r/ W1 — En + — o or + ’w17 + Earz — wlfr] rdrdz
- 277?4 wityr ds, tp = 0pNy + Opany (1b)
ow 190 00,
0 f27r/ wa { TR (roys) — P fz] rdrdz (2a)
B ow 8w2 Ows
_277/ [pwg 5 + — 87‘ rz 5, 0y — wgfz] rdrdz
— 27?7( wal,r ds, t, = OpyNyp + 0zany (2b)
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10 ow
0 :277/6 w3 {—;E (ru) — 82} rdrdz (3a)
0 ow
=27 /Qe [—wgg (ru) — rws— o ] drdz (3b)

Semi-Discrete Finite Element Model For the interpolation of the form

rz) = Zuj@bj(r, z), w(r,z)= ij@bj(r, z), P(r,z)= ZijZ)j(r, 2) (4)
j=1 j=1

Jj=1

the finite element model is given by

(MY o (0] {a} K] (KK ()
o) (M=) o] {i} o+ [ (K27 (K22 [K%] )4 {v}
o [0) [P U{P} (KB [K2]T (K] ] (P}

{F'}
= {{Fz}} ()
{F°}

Miljl :Mi2j2 =92 /Qe pYib; rdrdz

oY Oy i OY; O

11 _ J J J

K =2m Qeu [2 ( r or + )—i— 9 s } rdrdz
Kilf =27 uad}i —&Z)j rdrdz

0z 8
K3 = —on /( ¢]+¢z¢g>drdz

OY; O 31/% o
2 _ ; ]
I ( or Or +2 0z 0z

0
K%?’ =— 27r/ Vi qu rdrdz, Ki?’f’ =0, F}=0
Qe

> rdrdz

Fil :277/ frib; rdrdz + 2%74 Pty rds
Qe re

Fi2 :277/ [0 rdrdz + 2%% Yit, rds (5)
Qe re

Fully-Discretized Finite Element Model Equation (5) is of the general form

[MI{A} + [K){A} = {F} (7a)
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where
{u}
{A}= { {v} } (76)
{P}
Then it follows that [see Eqgs. (11.32)—(11.33b)]:
(KA o1 = {Fhssi1 (8)
where
[{%]Z[M]Jral[K] (9)
{F} = (IM] = ag[K]) {A}s + a1{F}s11 + az2{F}s
a; = alAt, az=(1—a)At (10)

Problem 10.2: Develop the semidiscrete finite element model of the equations in
Problem 10.1 using the penalty function formulation.

Solution: For the finite element model, we begin with the weak forms of the first
equation. Adding Egs. (1b) and (2b)

B ou ow; 0u  wiu ow; [Ou Ow
O—27T/ {pwlat—FZ (8 8r+ )—i— rr (a—i-a)—wlfr]rdrdz

ow  Ows [Ou ow 8w2 ow
—|—27r/ ['OuaE—FW(%jLMa >+2 2, 92 waz] rdrdz

8’[1}1 w1 8w2
—27 }ée (wity + wat,) rds — /Qe (W +— " + 9% ) P rdrdz (1)

Since wi and wy satisfy the incompressibility constraint

we can set

8101 w1 8102 - 18 8 -
/Qe(ar—i-r—i-az)Prdrdz /g)€|:T8T< )+a ]Prdrdz 0 (3)

Next we add the following expression due to the constraint (2) to Eq. (1):

owy wi Ows ou u Ow
(G T (G i) s W

This amounts to replacing P with
ou u Ow
P=——+—-—4+— 5
" <8r + r * 82) (5)
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The finite element model based on Eq. (1)+Eq. (4) is the same as that in Eq. (11.30)
of the textbook with the coefficients

= 0 i\ (O Yy
11 _ 11 Vi ]
K;; K’3+27W/Qe(8r + 7‘)(87“ + -

R =Kl +2m) [ (3%’ + ﬂ) 995 v drdz

) rdrdz

or r) 0z
_ 0p; O ;
K22 |22 4 9 99%j
i ij T2y 5, rdrdz (6)

Problem 10.3: Write the fully discretized finite element equations of the finite
element models in Problems 10.1 and 10.2. Use the a-family of approximation.

Solution: The fully discretized models readily follow from Eqgs. (10.5.30)—(10.5.32).

Problem 10.4: The equations governing unsteady slow flow of viscous,
incompressible fluids in the (x,y) plane can be expressed in terms of vorticity (
and stream function :

¢
P ot
Develop the semidiscrete finite element model of the equations. Discuss the meaning

of the secondary variables. Use a-family of approximation to reduce the ordinary
differential equations to algebraic equations.

—uV3 =0, —-20-V* =0

Solution: The weak forms of the equations are given by

0 :/Qe wi <p% - MV2C> dv (a)

:/Qe <Pw1% + Vwy - VC) dv — f} wlu%ds (1b)

0= /Q w (g - v%) dv (2q)

:/ (w2 4+ Vws - Vap) dv — wza—wds (2b)
Qe re ~On

Suppose that w{j(z) and ¢*(z) are approximated as
()~ Y @i(X)uj , Y(x) =Y i) (3)
j=1 Jj=1

where u; are the nodal values of ¢ and v; are nodal values of ¢. The finite element
model is given by

ool L el o= Lol @
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where

M;; :/Qe ppip; dv, A = /QE uVe; - V; dv

Bi; :/ Yip; dv ,  Cyj :/ Vi - Vap; dv
Qe Qe

P, = 74 gloids, Qi= f G2y ds (5)
I'e I'e
oC oY
1 _ 2 _

Problems 10.5-10.7 For the viscous flow problems given in Figs. P10.5-P10.7, give
the specified primary and secondary degrees of freedom and their values.

General comments The specified primary and secondary variables are clearly
indicated in the figures, and therefore they are obvious. In general, both velocity
components are zero on fixed walls, and shear stress is zero along the line of symmetry
(see the discussion in the text). Nodes on the inlet have zero vertical velocities and
specified horizontal velocities.

Fixed wall
>.35 42
i27 34 U, =0
v, = ;19 b =
ty = >l 16 17L—"18
>16 10 v, =0, v,=0

Figure P10.5

Solution of Problem 10.5: Horizontal velocity v, is known as unity at nodes 1, 6,
11, 19 and 27; vertical velocity v, is zero at nodes 1, 2, 3, 4, and 5, 10, 16, 17, 18
and 35 through 42; horizontal velocity is zero at nodes 5, 10, 16, 17, 18, 26, 34 and
42. The specified secondary variables are all zero: F, = 0 at nodes 1, 6, 11, 19, 27,
F, =0 at nodes 1, 2, 3, 4, 26 and 34.

Solution of Problem 10.6: Horizontal velocity v, is known as zero at nodes 1-8,
15, 22, 29, 36, and 43-49; vertical velocity v, is zero at nodes 1-7 and it is v, = —1 at
nodes 43 through 49; The specified secondary variables are all zero: Fy = 0 at nodes
1, 8, 15, 22, 29 and 36; F, = Fy, = 0 at nodes 7, 14, 21, 28, 35 and 42.
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v, =0, v, =-1
v, =0 t,=0
t, = - t, =0
1 2 3 4 S 6 7
R R
v, =0, v, =0
Figure P10.6
. Fixed wall
Uniform flow
— t,=t,=0
y4
L
|« = » ~Line of symmetry
—=20
L

Figure P10.7

Solution of Problem 10.7: Vertical velocity component v, and horizontal stress ¢,
must be zero along the horizontal line of symmetry. Rest of the boundary conditions
are obvious.

Problem 10.8: Consider the flow of a viscous incompressible fluid in a square cavity
(Fig. P10.8). The flow is induced by the movement of the top wall (or lid) with
a velocity v, = sinwx. For a 5 x 4 mesh of linear elements, give the primary and
secondary degrees of freedom.

U, =slnmx, v, = 0

\Fixed walls

Figure P10.8
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Solution: All boundary conditions are on the primary variables. Except for the top,
all velocity componenst aloing the fixed walls are zero; along the top wall, v, = 0 and
v (x) = sin .

Problem 10.9: Consider the flow of a viscous incompressible fluid in a 90° plane
tee. Using the symmetry and the mesh shown in Fig. P10.9. Write the specified
primary and secondary variables for the computational domain.

v, =0, ¢y, = 0
8in. .
10in.

s

z

Fixed walls E

y 6; \ W =

? in.
>
v, =1>
v, = g
= Y.,

Figure P10.9

Solution: Vertical velocity component v, and horizontal stress ¢, must be zero along
the horizontal line of symmetry. Rest of the boundary conditions are obvious from
the figure (e.g., both velocity components are zero along the fixed wall).

Problem 10.10: Repeat Problem 10.9 for the geometry shown in Fig. P10.10.

Solution: Both velocity components are zero along the fixed wall; The velocities at
the left boundary are specified to be v, = 1 and v, = 0 (fully-developed flow); The
velocity vy, = 0 at the right boundary. All specified secondary variables are zero
(Fy = 0 at the right boundary).
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Fixed walls

=
YYVYVVY

7

Figure P10.10

New Problem 10.1: Consider the problem of (linear) bending of beams according
to the Euler—Bernoulli beam theory. The principle of minimum total potential energy
states that if the beam is in equilibrium then the total potential energy associated with
the equilibrium configuration is the minimum; i.e., the equilibrium displacements are
those which make the total potential energy a minimum. Thus, solving the equations
governing the equilibrium of the Euler-Bernoulli beam is equivalent to minimizing
the total potential energy

wIEA (dug\2 EI {d®wo)\’
Tp
—/ (qu+qw0) dx (1)

where ug and wyg are the axial and transverse displacements. The necessary condition
for the minimum of a functional is that its first variation be zero: 611 = 0, which
yields the governing equations of equilibrium. As you know, the statement 6II = 0
is the same as the weak forms of the governing equations of the Euler—Bernoulli
beam theory. The weak form requires Hermite cubic interpolation of the transverse
deflection wy. Now suppose that we wish to relax the continuity required of the
interpolation used for wy(x) by introducing the relation
dw,

2 = () 2)

Then the total potential energy functional takes the form

w[BA (dug\®  EI (dp\?
I =) 2 ) T @
(UO?QUO)SO) /Lta |: 2 (dm) + 2 (dl’) :| dx

— [ (uo -+ quo) da (3)
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Since the functional now contains only the first derivative of ug and ¢, Lagrange
(minimum, linear) interpolation can be used. Thus the original problem is replaced
with the following mathematical problem: & Minimize II(ug,wo,¢) in Eq. (3)

subjected to the constraint

W o) =0 (W

Develop the penalty function formulation of the constrained problem by deriving (a)
the weak form and (b) the finite element model.

Note: Much of the above discussion provides a background for the problem. The
statements beginning with the symbol & are all that you need to answer.

Solution: The penalty functional is given by
@[ EA (dug\?> EI (dp\?
Ip(ug, wo, ¢) = /ma {T <%> + <@> ] dx
dwo 2
[T v qu) w3 [ (T @) A 9)

The weak forms are given by setting 6,1 = 0, 6,/ = 0 and 641 = 0:

N d(5u0 duo

0= /x a <EA otk féuo) (6a)
- Zb dwg dbwy

0—/% [ <dm cp) - qéwo} dx (6b)
B dyp dbp dwy

0= /:ra [Eldx T ’y( T cp) 64 dx (6¢)

where (8ug, dwp, 6p) can be viewed as the weight functins (wy, we, w3).
The finite element model is given by setting

uo(x) ~ i j@ZJ ( ),  wy = dug = 1111(1)
=
wo(x) ~ i wj¢§-2) (x), wa=dwy= ¢§2)
j=1
o) =Y. X (@), ws=o6p =y (7)
j=1
We have KKK ({a)) ((FY)
(K27 (K22 [K23]] { {w} } = { (F2} } 8)
(KBS (k2T (k3] | (X} (F3}
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where

KU = beAd%’ U ge, K2—0, K¥—0

ij = —W T, ij — U ij

(2 )
22 " dl/’ ) dy); 23 _ _ /mb% (3)
Kij —’Y/xa Cdr da: o By = 2, dx vy dr
d
Kf}?”:/ ( KL 7 w(?’))d:v
Tq de  dr

F= [l de, 2= [T qu e, B =0 )

p
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Chapter 11
PLANE ELASTICITY

Problems 11.1-11.3: Compute the contribution of the surface forces to the global
force degrees of freedom in the plane elasticity problems given in Figs. P11.1-P11.3.
Give nonzero forces for at least two global nodes.

Problems 11.4-11.6: Give the connectivity matrices and the specified primary
degrees of freedom for the plane elasticity problems given in Figs. P11.1-P11.3. Give
only the first three rows of the connectivity matrix.

General Note: A pin-type connection implies that both components u, and wu,
displacement are zero, whereas a roller support indicates the displacement u,, normal
to the wall is zero. In the following problems U; and V; denote the horizontal and
vertical displacements, respectively, at the global ith node of the mesh, and F;* and
F? denotes the horizontal and vertical forces, respectively, at the global ith node of
the mesh.

Plane stress (h =5cm)
YA E =204 GPa,v=0.29,G=79 GPa

) 43 2 p&
36 4z—t\
29 35—
bsem Age =1
I5 H—>
l 3 14—2’\
1 2 3 4 5 6 7—t\
“ X 12
[¢—a=6cm ——p]|

Figure P11.1

Solution to Problems 11.1 and 11.4: The specified primary degrees of freedom
(i.e., displacements) are:

Ur=V1 =0, Uz =Vy3=0, Ug =0, Uj5=0, Usa =0, Ug =0, Uzg =0
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The specified secondary degrees of freedom (i.e., forces) with zero magnitudes are:
F§=F)=0, F§=F) =0, F{=F/ =0, FF =F/ =0, F§f =F =0

F%/:O, FZ:4:F}1J4:0’ F41‘5:F4:1g5:0’ FZ:GZFiJ(S:O
Ff7:F4y7:0’ Féf8:Fi/8:Ov Fi/QZO

The nonzero (horizontal) forces at nodes 7, 14, 21, 28, 35, 42 and 49 can be computed
as follows. The procedure to calculate the nodal forces is the same as that used for
the calculation of nodal sources in Chapter 8 for single-variable problems, except
that the nodal values must be decomposed into the x and y components. Since the
distributed force is along the x coordinate, all nodal computed nodal forces are along
the = coordinate. Assume that pg and p; have the units of N/m (if they are taken as
N/m?2, the final nodal values should be multiplied with the factor h =5 x 10~2m).
Note that a linearly varying force g of the type

S
q(s) = g + (g5 — 4D (1)
e
over an element ‘e’ of length L., acting perpendicular to the length of the element,
results in the nodal values of

¢Le  (¢5—qf)Le 1 qfLe g5Le
FE = X — =
! 5 2 3 5 6
qfLe  (¢5—qf)Le 2 qfLe  q5Le
F¢ = Z_
2 =T T *3 +

e e e S
= —+ — —_—
q(s) = q; +(q; Q1)L

e

1 e 1 e
EQZLe+§q2Le

q;
ol _ 1

|— »! | 4|
e L —> e L >

The above result can be used to find the nodal forces of the problem at hand.
First note that the variation of q(s) is q(s) = p1 + (po — p1)s/3, which can be used to
determine ¢f and ¢§ of each line element (L. = 0.5). For example, the element between

global nodes 7 and 14 has the values: qgl) = p; and qél) = 5p1/6+po/6. Similarly, the
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next element has the values: q( ) = qé ) = = 5p1/6+po/6 and q( ) = q-fl ) = = 2p1/3+po/3.
Hence, the horizontal forces at nodes 7 and 14, for example, are

p1 . 9p1+po  17p1+po
FZZI = — =
=% T T 72
P1 |, 9p1+po o5p1+po | 2p1+po\ _ 5p1+po
Fiy = — |t =

12 36 36 * 36 12

Similarly, other values can be calculated
Alternatively, the nonzero (horizontal) forces at nodes 7, 14, 21, etc. can be
computed using the definition

Ya

Q= [ talw)vsty) dy
Yo
where ) denotes the nodal force at node 7 of the element ‘e’, 1§ denote the
interpolation functions of the element, and y is the global coordinate (with origin
at node 7). In the global coordinate system, with origin at node 7, the interpolation
functions are given by

vi) = P usly) = S

First, we note that the horizontal traction ¢, for the problem at hand is given by
q(y) = p1 + (po — p1)y/3. Then we have

0.5 0.5
T T bo—Dp
F=Qi = [ awel W dy= [ o By (- 2) dy
_p1 po—p1_ 17p1+po

4;5 2
Fi= Qi |t <>w;><>dy+/, () dy
_/05[]9 + 22 }(2y dy+/ [p1+p0;p1 }2(1—9)6@
-4 +p03—6p1+{111+2(p01—8p1>} :5]911-5170

etc.
The connectivity matrix is given by (all that matters is the counterclockwise local
node numbering; the elements are numbered as in FEM2D mesh generator)

1 2 9 38
2 3 10 9
Bl={3 4 11 10
8 9 16 15
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Plane strain

f—10"—»
D, =200 lbs/in.
AAALAALA DS
3 30 @ i 32
4 75 29,15"
Quadratic @ ! @ 24
curve 17 21 (O'Dr =0, o, = ())
(0.=0.0,=0— D 1@) T6 20"
9 . . 13
6
{' ZC? Z} @ }j AL(%:O, u, =0)

[¢—10"—»le—10"—>
Line of symmetry(u, =0, o, =0)

Figure P11.2
Solution to Problems 11.2 and 11.5: The specified displacements are:

Ui=Vi=0,U=Vo=0,U3=V3=0, Uy=Vy =0, Us=V5=0

The specified nonzero forces are:

4 3
Fi = gF0 =800 lbs. Fi = —5F0 = 600 1bs.

_4p0h FY — pOh

poh 4poh 2poh
F3y3:_?v F§4:_—6 ) F§l5:_—6 ) F?,yG: 6 3T T g
The connectivity matrix is given by
13 11 9 2 7 10 6
1B] — 3 5 13 11 4 8 12 7
19 11 19 17 10 15 18 14
Plane stress E; =E, =69GPa, v=0.333, G=26GPa,h=1cm N
V,--"‘ 12 13 14 15 16 to=3 kN/c\m2>| |<—
2cm 8 @ %) @ b 10 @
11
1 2 3 4 S 6 3
* . . 7
4cm—><——4cm——><——4cm——l

Figure P11.3
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Solution to Problems 11.3 and 11.6: The specified displacements are
Up=V1=0, Ug=Vg=0, Ui2=Vi2=0

The nonzero specified forces are (a = 2v/5, cosa = 4/5 and sina = 3/5)

toh toh 450
Fy = 0 s a, FY = 06asina, FY :hTacosoz
450 tn0 tn0
FY =" sina, FfG:hTacosa, Fly()-:hTasina

The connectivity matrix is given by

1 3 14 12 2 9 13 8
[Bl]=|3 5 16 14 4 10 15 9
5 7 16 6 11 10 x x

Problem 11.7: Consider the cantilevered beam of length 6 cm, height 2 cm, thickness
1 cm, and material properties £ = 3 x 10 N/cm? and v = 0.3, and subjected to
a bending moment of 600 N cm at the free end, (as shown in P11.7). Replace the
moment by an equivalent distributed force at z = 6 cm, and model the domain by
a nonuniform 10 x 4 mesh of linear rectangular elements and quadratic rectangular
elements. Identify the special displacements and global forces.

Plane stress E =3x10" N/ecm?, v=0.3

L 45 h=1lcm, M,=600N -cm

55
T 44
2cm 33
l 22
11 MO
|
1

»
»

Figure P11.7
Solution: The specified displacements are:
Up=0,Us=Vsg=0, U1 =0

The specified nonzero forces are at nodes 11, 22, 33, 44 and 55. To calculate the
magnitude, assume that the force causing the moment is linear with y:

2y
Ogx = 00—

b
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where the origin of the (z,y) coordinate system is taken at node 23, with x coordinate
horizontal and y coordinate vertical, and b = 2cm is the dimension along the
y—coordinate. Then we have

MOZ/ szydy:T

_b
2

Hence ¢ = 840 — 900N /cm?. Then we can calculate the forces at nodes

b2
—b/4 b/4 500b
F% = / Opetldy = —/ aa(1+ dy/b)dy = — 222 — _187.50N
—b/2 —b/2 48
x —b/4 0 O'()b O’ob
Iy = / Oz (4y/b+ 2)dy — / e (4y/b)dy = 12 " s —225 N
_ —b/
0 b/4 b
F§3:/ am(4y/b+1)dy+/ 0z2(1 —4y/b)dy = LN
—b/4 0 48 48
By antisymmetry, we have F{j = —F3, and Fg5 = —F}.

Problem 11.8: Consider the (“transition”) element shown in Fig. P11.8. Define
the generalized displacement vector of the element by

{U} = {u17 U1, @17 uz,v2, U3, /U3}T
and represent the displacement components v and v by
b
u = Yrur + Poug + P3uz + 57771)191, v = 1v1 + Pov2 + P3v3

where 1 is the interpolation function for the beam, and 19 and 3 are the
interpolation functions for nodes 2 and 3:

pi=30-8), Ya=70+01-n), ds=10+O1+n)

Derive the stiffness matrix for the element.

Transition element A

|
|

—h—

Beam element Plane stress element

Figure P11.8
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Solution: The individual beam and plane elasticity (plane stress) element are shown
in the figure below. Both the plan stress and beam elements have the same height b
(not depicted in the figure below). Let us introduce the following nodal displacement
vector:

A = {u1 V1 = w2 (92 = @1 U2 U2 ug Ug}T

> 8
D
3
> &
S

Beam element —» X

—h— u,

Plane stress element

The interpolation functions associated with nodes 2 and 3 are those of the plane
stress element and they are

1+ -n), dsEm =70+ +n) (1)

= =

7;[}2(577]) =

Node 3 of Fig. P11.8 is a beam node that is connected to the plane stress element.

Its interpolation function is
1
¢1(£777) = 5 (1 - 5)

The finite element approximation of the displacements (u., uy) of the transition
element are of the form

b
U =ty + onY1O1 + ugthy +usys, uy = Vi + vty + vsYs (2)
Then ¥ of Eq. (11.4.2) becomes

w_ ¥ 0 050y ¢ O 93 0
0 0 0 o 0 3 (3)

A={u vi O1 uz v2 us vg}T

The coordinate transformation is given by the usual expression, with the coordinates
r1=x4=0,29=23=h,y1 =y2=0,and y3 =ys = b:

N o

4 4
v=Y =5 (148, y=Y =31 +n) @)
i=1 =1

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



332 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Note that the Jacobian matrix and its inverse are

oz Oy h

g_lo¢ @& _[z O 31

“loz | T |g bl =
on  On

S >
S O
| I

2

and the transformation between (z,y) and (§,n) is given by

Ape 6(;1;;3 2 a(;p;?
(B} (E)-00E e
Oy on b an

Finally, matrix B required to evaluate the stiffness matrix in (11.4.9) can be
computed using Eq. (11.4.4):

el
2
ox
0 05bpyys s 0 w3 0
B=D¥=|0 2 [‘Z’l 1 }
o FlLo 0 0 o 0 13
oy Oz
-2 0
noe O
| o 22 V}l 0 0.5y 2 0 o3 0}
2o 25 | L0 % 0 0 2 0 3
Lbay ROE
50— (1) 0 o5 (1 +n) o
=10 o 0 0 L1+ 0 L1+¢)
L0 =g 3-8 5048 50— H1+& 50+n)

Problem 11.9: Consider a square, isotropic, elastic body of thickness h shown in
Fig. P11.9. Suppose that the displacements are approximated by

ua(w,y) = (1= 2)yuy + (1 —yhuz,  uy(r,y) =0

Assuming that the body is in a plane state of stress, derive the 2 x 2 stiffness matrix

for the unit square )
Uy o F1
=i

—>

S
Il
—

h
—a=1—pip [
Figure P11.9
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Solution: The interpolation functions are ¥i(z,y) = (1 — 2)y, 2 = (1 — y)z.
Obviously, the 2D element has just 2 nodes (diagonally opposite sides of the unit
square) The element stiffness matrix is given by

[K]:M[2 —1]7 E E

6 12 T T4 AT oy

Problems 11.10-11.14: For the plane elasticity problems shown in Figs. P11.10-
11.16, give the boundary degrees of freedom and compute the contribution of the
specified forces to the nodes.

Solution to Problem 11.10: Note that the element is a quadratic element. The
distributed force per unit length (along the y—axis) is 79 = 3h kN /cm, where thickness
of the body is h = 1 cm. The specified non-zero nodal loads are (height b = 2 cm)

479b b
=T 1 000N, B = T = 4,000N, Ry =" = 1,000

The specified nodal displacements are

Ur=Vi=Us=Vyg=Ui2=Vi2=0

Plane stress E; =E, =69GPa, v=0.333, G=26GPa,hi=1cm h

s N) 13 14 15 16 17 18*.

[~

Figure P11.10

Solution to Problem 11.11: This has two parts. For (a), u, = 0 along the vertical
line of symmetry and u, = 0 along the horizontal line of symmetry. The specified
nonzero forces are computed using the formula

poh

Fy = — Fj = —poh

where [ is an end node, J is an interior node, and h is the element length along the
force.
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Y

@  25inx15in (b) = 0
27

34

Line of
P 19 26 Symmetry

17—18

11 16
6 10]

A
—
ot
¥
A 4

4( YYYYYY
)
=
AAAAAAA
YYVYY

A 4

Quadrant of
the domain

Y Y

Plane stress E =3x10" psi, v=0.3 1 2\3 4 5
h =1in, p, =2001b/ft Line of symmetry

Figure P11.11

For (b), uy = 0 along the vertical line of symmetry (i.e., nodes 18, 26, 34 and
42) and u, = 0 along the horizontal line of symmetry (i.e., nodes 1 through 5). The
specified nonzero forces are computed using the formula

h
Ff = -5, F§=—poh
where [ is an end node (I =1 and 35), J is an interior node (J = 6, 11, 19 and 27),

and h is the element length along the force.

Solution to Problem 11.12: The specified displacements are obvious from the

figure (U; = Vi =--- = Ug = Vo = 0). The nonzero specified forces are (h = 0.75 m)
0.75
FY = —Tpo = —375 kN, FY = —75 kN, F¥ = —75 kN
FY, = —75 kN, F¥, = —37.5 kN
P 100kN/m”
37V YYVYY 45
T 28 36
4m 19 27
10 18
L 9 l<h_:/lcrn
o —l
e

Plane strain E =40 GPa, v=0.15
Figure P11.12
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Solution to Problem 11.13: By symmetry, the displacement component u, on
x = 0 is zero and the displacement component u, on y = 0 is zero. Hence, the known
displacements are

Vi=Vo=V3=Vy=0, Upyu=Ui5=U15=0

The non-zero known forces are

Fx _ pohb Fx _ pohb Fx _ Po hb
4 4 8 9 19 4
s A |

_ 16 17 4 10
- 152 ®10 9 ® | Do (PSD)
- © /135 1I\7 84 o
- 14 -
- 12 95 D1 @ 1 @ - -

One quadrant of the domain is used in the finite

element analysis (isotropic plate of thickness /)

Figure P11.13
. T
l, =—D, SINn—
A X/T Planestrain E =3x10" psi, v=0.3

h =1in, p, =2001b/ft

a= 5in, b= 41in,c=31n

Rigid walls

i

A
> —»
h

¢
Figure P11.14
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Solution to Problem 11.14: The horizontal displacement w, along the line of
symmetry must be zero. Both displacement components are zero along the fixed
walls. The only nonzero forces are at the five nodes under the sinusoidal load. They
can be computed using

Sb
Fy; :/ ty(s)Yi(s) ds
Sa
where 9§ are the 1-D interpolation functions

Sp— S 5 — Sq

Pi(s) = () = P

The following integrals are useful
. 1 . . s
sinas ds = —— cosas, ssinas ds = — sinas — — cos as
a a a

We obtain (a = 7/2c)

e po [ . po [ S I s 5
=7 sinas (sp — 8) ds = ——— | —— cosas — — sinas + — cos as
he Jsq he a a a Su
p[_ 4 sin % sin T + 2c Sp COS % Sq COS T%a
= —-— —— _— —_— b _— —_—
he | w2 2c 2¢c s 2¢c . 2c
2csy TSp TSq
— —— | cos — — cos
s 2c 2c
e po [ . po[1 . s Sq o
v = —7— sinas (s — sq) ds = === | 5 sinas — — cosas + — cos as
he Js, he La a a Sa
po [4¢% /. 7sp . TSq 2c TSp TSq
=——|—[sin— —sin— | — — [ spcos — — 84 COS
he | 72 2c 2c T 2c N 2c

2cs,, ( TSp TSq ) ]
+ COS — — COS ——
T 2c 2c

The global forces are obtained as

Fy1:F11y7 F92:F21y+F12y7
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Chapter 12

BENDING OF
ELASTIC PLATES

Problem 12.1: Investigate the displacement and slope compatibility of the
nonconforming rectangular element CPT(N). Hint: Use the edge connecting nodes 1
and 2 and check if the displacement w and slopes dw/0x and dw/dy are continuous.

Solution: Consider the interface 1-2 between element A and element B (see the figure
below). The displacement w and slopes 6, = Jw/0x and 0, = Ow/dy along this edge
are [from Eq. (12.2.24)]

w(zx,0) = a1 + agr + a5z’ + agx®

0
(_w) = az + 2a5x + 3agx2
8£U y=0

ow 9 3
—_— =a3+ a4 + a7xr” + a11x
8:[/ y=0

Since there are four degrees of freedom, (w,6,) at each node, along the edge 1-2, w
is uniquely determined by the four conditions from both elements and therefore it is
continuous across the interface. Thus, a1, as,as and ag are uniquely determined in
terms of wi, wa, 0,1 and O,o. This also implies that 6, is also uniquely defined along
the interface. This cannot be said about 6, since the expression for ¢, contains 4
constants that are not determined by the four degrees of freedom (w1, 0,1, w2, 0y2).
There are only two other conditions, namely (61, 6,2), available at the two nodes on
the interface 1-2, whereas there are 4 constants. Thus, the slope ¢, normal to the
edge 1-2 is not uniquely defined along the edge 1-2.

From element A

Hx2

® G =

From
Oy
wlf wy O f element B
1 2 > X

1 2 1 2

Displacement Normal slope
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Problems 12.2-12.10: For the plate bending problems (CPT and SDT) given in
Figs. P12.2-P12.10, give the specified primary and secondary degrees of freedom and
their values for the meshes shown. The dashed lines in the figures indicate simply
supported boundary conditions Use E, v, h, a, and b in formulating the data. You
are required to give values of the loads for at least a couple of representative loads.

Data for all problems :
E =107 psi, v=0.33, p =3 x 1072 slugs/in3

] . Fixed end
h =0.21n, gy = 600 Ib/in
e ______ 9o _____ Py =T X

/13

s
7 Yz

90 y 10in
y / v
YV oY YV ¥ X Y Y ¥
]
/47— 5in %41 5in—»/

Figure P12.2 g

Solution to Problem 12.2: For CPT, use g—’;’ in place of ¢, and ‘?9—1; in place of ¢,,.

Use symmetry about = = 0 line. All primary degrees of freedom are zero along the
y = 0 line (fixed edge); w = 0 and %—7“; or ¢, = 0 along the symmetry line (i.e., z =0
line). Nodal forces at the y = 10 in. line for FSDT are given by % at the outside
nodes and goh at the inner nodes, h is the element length parallel to the z-axis).
Thus, we have Fy = Fyg = 750 1b and Fg = 1,500 lb.

For CPT(N) we have (using the load vector of the Euler-Bernoulli beam element)
F; = Fy = 750 b, Fg = 1,500 Ib, M,7 = —312.5 lb-in., Myg = 0 Ib-in., and
Mg = 312.5 1b-in.

- \
A1
YA
Simply supported at x = ta/2 —a/2de—a/2 25

Foloit

q(x,y) =q,

and under uniform load
11

Use 2x2 mesh for CPT(C)

Figure P12.3
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Solution to Problem 12.3: The specified displacement degrees of freedom are
wg = we =wy = wg = wg = 0; Oz1 = 04 = 07 = 08 = 0z9 =0
Oy1 = Oyo = 0y3 = Oyg = 0yg = 0, Ory1 =0
For SDT, use ¢, in place of 0, = ‘g—"‘;’ and ¢, in place of 0, = %—Z in place of ¢,.
In SDT, the load vector of uniformly loaded nine-node element can be obtained

from the tensor product of the load vectors of 1-D quadratic elements. The load
vector of a 1-D quadratic element of length h, with uniform load qq is

1
QOéLx 4
1

Hence the load vector for a nine-node quadratic element with uniform load is

1 I 1 4 1
q°6h"” 4 % 4 :q‘)};’éhy 4 16 4
1 1 1 4 1

Thus, for the SDT, the loads at different nodes are (h, = a/4 and hy, = b/4)

_ qoab _ 4qoadb _ 2qoab _ 4qoadb _ qoab
Y7576 2T B T 5160 YT 5760 T 576
o 4qoab _ 16qoadb o 8qoab _ 16qoadb o 4qoab
S~ m6 7T 516 " "% 5760 "? 576 ' 07 576
oo 2qoab ~ 8qoab ~ 4qoad ~ 8qoab ~ 2qoab
=576 "127 576 0 T 5760 "M 516 0 TP 576

etc.

For the CPT(C) element, the given mesh must be interpreted as a 2 X 2 mesh
of four-node elements (a total of nine nodes). The load vector of uniformly loaded
four-node element (of sides h, and hy) can be obtained from the tensor product of
the load vectors of 1-D Euler-Bernoulli beam elements. The load vector of an Euler—
Bernoulli beam element of length h, with uniform load qg is (the rotations used in
plate bending do not include the negative sign)

6
QOhx hm
12 6
—hy
Hence, the load vector for a four-node Hermite cubic element with uniform load is
6 6 7" 36  6h, 36  —6h,
qoha ) he \hy ) Ry _ qohzhy | 6hy hahy 6hy  —hzhy
12 6 (12] 6 144 36 6hy 36 —6h,
—hyg —hy —6hy —hghy —6hy  hzhy
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The 2 x 2 submatrix of coefficients (there are four such submatrices) correspoind to
the four degrees (Qn, My, My, My,) of freedom at the node. Thus, at node 1 we have
(hz = a/4 and hy = b/4)

__qoab qoa’b qoab? qoa’b?

— — Mo, = 2077
64 " T Gax24 VT Gax24 Wl T 956 % 144

o)

At node 2 we have

T2q0ab 12gpab®

16x 1400 Maz =0 My =—w=mn Moz =0

Q2

At node 5, we have

4 x 36qpab

Q5* 16 x 144 ° Mx5207 My5:07 M:z:y5:0

and so on.

qx,y) = qo[fj
a

Simply supported at y = +b/2
and under linearly varying load

Figure P12.4

Solution to Problem 12.4: The specified primary degrees of freedom in CPT(C)
are

wy =we =w11 =0, Oy1 =0y =0y11 = Oy12 = O0y13 = Oy14 = 015 =0

H:rl = 9a:2 = 0z3 = 0:54 - 0955 - 0&76 = Hxll =0

For SDT replace 0, with ¢, and 6, with ¢,.
As for the load vector, we have a load that varies linearly with the z-ccordinate.
On a typical element, the load varies in the natural coordinate system as (see the

figure below)

(&) = @ (©) + ain(€), (€)= 5(1-), ¥ale) = 3(148)
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Thus, the load vector components at nodes 1 and 2 of the SDT element are (Ff = Ff

and F§ = Ff)

pr =ty (e (a5 — qf)hw) Sl (dlhe il

2 2 6 3 6
hy (q5he  2(¢5 — qf)ha hy (qihz = q5he
e Iy (41 2 1 _ (4 2
F2_2<2+ 6 >2<6+3>
For example, we have
QOhy hmhz> qoab
1= 058 = Fn 2<6a 384
qohy hxhz> qohy <hxhx hzhz> qoab
Fy=05F = Fs = _
2 =058 = I 2<3a+2 30 | 3a 64
B . qohy (hahy thhx> qohy <2hmhgc 3hxhz)
Fy =05k =Fiz == <6a T 3e )T 3¢ 6a
__qoab
32
y
RN 3
............... .
QI\
X
1 2

For the CPT(N) element, the load vector can be computed using the load vector

of a Euler—Bernoulli beam element foir linearly varying load (see Example 5.2.1). We

have
9he + 3024 6 )T
qohz he(2hs +524) \ by y
a 21h, + 302, 12 6
—ha(3he + 52a) “hy

6(9he +30za)  —hy(9he + 30z4)
—6ho(2he +52a)  hyho(2ha + 5z4)
—hy(21ha + 3024)
—hyhs(3he + 5z4)

6(9hs 4 30z,)  hy(9he + 30z,)
_ qohahy | 6he(2hs +524)  hyhe(2he 4 51,)
T T12a | 6(21he +30z4)  hy(21he 4+ 30z4)  6(21hg + 302,)
6hs (3he + 5Ta)  hyha(3he + 524)  6hy(3he 4 524)

Hence, the loads at node 1, for example, are

9qpab qoa’b 3qoab® qoa’b
@1="gp M =g Mu="g— M =555

2
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Solution to Problem 12.5: The boundary conditions on the primary variables are
wgzwﬁzwgzo, 9y1:9y2:9y3:0, 9m7:9yg:9y920

The tangential moment M,9 = 0 can be prescribed only as a multipoint constraint
(between M,, and Mj).

The specified forces in SDT are

_ QoL

B 5

L L L
Qo 14+Q0 a7 F7:QO a7

F pu—
) 4 2 2 ) 2

where L;; denote the distance between node 7 and node j of the mesh. The loads
for the CPT(N) can be computed using the load vector of the Euler-Bernoulli beam
element, where L;; replaces the element length.

Simply supported atr = a
and under lineload atr =b

Figure P12.5

90
T T

Simply supported at r = a

Figure P12.6 and under uniform load
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Solution to Problem 12.6: The boundary conditions on the primary variables are
(same as in Problem 12.5)

w3 =we=wg =0, Oy1 =0p=0;3=0, 0,7=>0;8=>0,9=0

The tangential moment M,y = 0 can be prescribed only as multipoint constraints
(between M, and Mj).

The specified forces in SDT are

A A A A A+ A+ A3+ A
_ Qo4 F2:(I0 1+QO 2 F3:QO 2 F5:q°( 1+ As + A3+ Ay)

4’ 4 4 7’ 4’ 4

Fy

and so on. Here A; denote the areas of the quadrilateral elements. The loads for the
CPT(N) can be computed using the load vector definition and they must be evaluated
only numerically.

q(x,y) =q,

Simply supported along the slant edge

and under uniform load

Figure P12.7
Solution to Problem 12.7: The boundary conditions on the primary variables are
(0 :0“- :Hyi :0, for i = 1,2,...,5 and i:21,22,...,25

The tangential moment M,; = 0 along the slant edges can be prescribed only as
multipoint constraints.

The specified forces in SDT can be obatined by first noting that

A
q = q04 . where A; is the areaf the ith element
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Then the forces can be easily obtained by inspection of the mesh; for example, we
have

Fi=q, B=g+d, F=d+a+d+d8

and so on. The loads for the CPT(N) can be computed using the load vector definition
and they must be evaluated only numerically.

Solution to Problem 12.8: The boundary conditions on the primary variables are

wi:Gm:Gyi:O, fOI‘i:S,G,Q; 0y1:9y2:0
011:9304:9:107:9308:0; wy =wg =0

q(x,y)=q,

/
LLLLLILL]

E, =30x10° psi, E, =0.75x10° psi,
vy, =0.25,G,, = 0.375x10° psi
h=21in,q, =100 lb/in

Figure P12.8

The specified forces at the nodes in CPT(N) can be determined as in Problem
12.2. For SDT, they are

I =

40 hm hy F2 _ 40 hz hy F4 _ 40 hz hy

4 ) 2 ’ 2 ’ Fl = q()h:l:hy

where h, =5 in. and hy = 3.75 in.
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—>|
—>

il
74 EI\x
gjl 2 isl:’

14

Simply supported at y = +a/2

and under uniform load

Figure P12.9

Solution to Problem 12.10: The boundary conditions on the primary variables

are
Wy = 9m = Hyi = 0, for 1 = 1,7, 14,21

Oy1 = Oy2 = O3 = Oys = Oy5 = Oy5 = 0

The specified forces at the nodes in SDT and CPT(N) can be determined as in
Problem 12.8.

0]
O o o o A O

12cm x8cm hole

il 97
14 20
7 18 o /Tt [li2 13
24
3 W - 6
l 20cm—>| 12im
[¢———40cm———p|

Under uniform load
E =200 GPa, v=0.3
h=1cm, g, =60kN/m*

Figure P12.10
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Chapter 13

COMPUTER IMPLEMENTATION OF
TWO-DIMENSIONAL PROBLEMS

Note that most of the problems may be analyzed using FEM2D. The results obtained
from the program should be evaluated for their accuracy in the light of analytical
solutions for qualitative understanding of the solution of the problem. New problems
can be generated from those given here by changing the problem data, mesh, type of
element, etc. For time-dependent problems, the time step and number of time steps
should be chosen such that the solution pattern is established or a steady state is
reached. When specific material properties are not given, use values such that the
solution can be interpreted as the nondimensional solution of the problem.

Additional Note: Solutions to only selected problems are included here for two
reasons: (1) it will take lot of space to include the computer input data and output
files for each of the problem; (2) many problems are similar and there is only a change
of data.

Problems 13.1 and 13.2: Investigate the convergence of solutions to Problem 8.18
using 2 X 2, 4 x 4, and 8 x 8 meshes of linear triangular elements, and compare the
results (in graphical or tabular form) with the analytical solution.

Solution: Input file for the 8 X 8 mesh of triangles is presented in Box 13.1 and the
results are summarized in Table 13.1.

Table 13.1: Comparison of the finite element solutions «(0, y) with the analytical
solution.

Triangular elem. Rectangular elem. Analytical
y Mesh T2 Mesh T4 Mesh T8 Mesh R2 Mesh R4 Mesh R8  Solution

0.125 —— —— 0.0355 —— —— 0.0343 0.0351
0.250 —— 0.0797 0.0764 —— 0.0703 0.0740 0.0757

0.375 —— —— 0.1291 —— —— 0.1255 0.1280
0.500 0.2303 0.2080 0.2015 0.1520 0.1895 0.1969 0.2002
0.625 —— —— 0.3050 —— —— 0.2996 0.3034
0.750 —— 0.4630 0.4554 —— 0.4410 0.4499 0.4538
0.875 —— —— 0.6758 —— —— 0.6716 0.6746
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y u(x,b) = sinz(x + 0.5a)
7 8 9 21 222324 25 73 81
1 1 A
C) C’ 72
20 63
u=0
54
—=0211 1
X @ @ b 36
10 27
@|/® 18
1 1 1y
u=0—— 2 7> X 12345 1 9
|«—0.5a —»]
2x2 Mesh 4 x4 Mesh 8x 8 Mesh

Box 13.1: Input data for program FEM2D (shown only for 8 x 8 mesh of

triangles).

Prob 13.1: Laplace equation on a square (Problem 8.18: 8 by 8 mesh)
0O 2 0 O ITYPE, IGRAD, ITEM,NEIGN
0O 3 1 o0 IELTYP,NPE,MESH,NPRNT
8 8 NX,NY
0.0 0.0625 0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0.0625 X0,DX(I)
0.0 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 YO,DY(I)
25 NSPV
11 21 31 4 1 51 61 71
81 91 18 1 27 1 36 1 45 1 54 1
63 1 72 1 73 1 74 1 75 1 76 1 77 1
78 1 79 1 80 1 81 1 ISPV(l,J)
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.98079 0.92388 0.83147 0.7071
0.55557 0.38268 0.19510 0.0 VSPV(I)
0 NSSV
1.0 0.0 0.0 A10, A1X, AlY
1.0 0.0 0.0 A20, A2X, A2Y
0.0 AOO
0 1CONV
0.0 0.0 0.0 FO, FX, FY

It is clear that meshes of triangular elements give more accurate results for the
number of nodes. This is due to the fact that there are two triangles per a rectangle,
thereby provides greater flexibility in approximating the solution. Also, note that
the solution predicted by triangles converges from the top while that provided by
the rectangular elements converges from the bottom. This means that the triangle
underestimates the “stiffness” while the rectangular element overestimates it.
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Problem 13.5: Investigate the convergence of the solution to Problem 8.23 using
2x 2,4 x4, and 8 x 8 meshes of linear triangular elements and equivalent meshes of
quadratic triangular elements.

Solution: If FEM2D is to generate the mesh, we must use the total domain. If the
mesh can be read in, then one can exploit the diagonal symmetry of the problem.
Here we use the option to generate the mesh by the program FEM2D. The input
data and partial output for 4 x 4 mesh of quadratic triangular elements is presented
in Box 13.5.

Box 13.5: Input data and partial output for program FEM2D (shown only for
4 x 4 mesh of quadratic triangles).

Prob. 13.5 Laplace equation on a square (Problem 8.18: 4 by 4 T6 mesh)
0O 2 0 O ITYPE, IGRAD, ITEM,NEIGN
0O 6 1 O IELTYP,NPE,MESH,NPRNT
4 4 NX,NY
0.0 0.25 0.25 0.25 0.25 X0,DX(I)

0.0 0.25 0.25 0.25 0.25 YO,DY(l)
32 NSPV

11 21 31 4 1 51 61 71
81 91 10 1 18 1 19 1 27 1 28 1

36 1 37 1 45 1 46 1 54 1 55 1 63 1

64 1 72 1 73 1 74 1 75 1 76 1 77 1

78 1 79 1 80 1 81 1 I1SPV(l,J)

0.0 0.015625 0.0625 0.140625 0.25 0.390625
0.5625 0.765625 1.0 0.015625 0.875 0.0625
0.75 0.140625 0.625 0.25 0.5 0.390625
0.375 0.5625 0.25 0.765625 0.125 1.0
0.875 0.75 0.625 0.5 0.375 0.25
0.125 0.0 VSPV(I)
0 NSSV
1.0 0.0 0.0 A10, A1X, AlY
1.0 0.0 0.0 A20, A2X, A2Y
0.0 A0O
0 1CONV
2.0 0.0 0.0 FO, FX, FY
Node X y u(x,y)
11  0.12500E+00 0.12500E+00  0.11449E+00
12  0.25000E+00 0.12500E+00  0.19773E+00
13 0.37500E+00 0.12500E+00  0.28288E+00
14 0.50000E+00 0.12500E+00  0.37869E+00
15 0.62500E+00 0.12500E+00  0.48802E+00
16 0.75000E+00 0.12500E+00 0.61111E+00
17 0.87500E+00 0.12500E+00  0.74359E+00
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Problem 13.6: Repeat Problem 13.5 using rectangular elements.

Solution: The input data and partial output for 4 x 4 mesh of quadratic rectagular
elements is presented in Box 13.6.

Box 13.6: Input data and partial output for program FEM2D (shown only for
4 x 4 mesh of quadratic rectangles).

Prob. 13.6 Laplace equation on a square (Problem 8.18: 4 by 4 Q9 mesh)
0O 2 0 O ITYPE, IGRAD, ITEM,NEIGN
2 9 1 o0 IELTYP,NPE,MESH,NPRNT
4 4 NX,NY
0.0 0.25 0.25 0.25 0.25 X0,DX(I)

0.0 0.25 0.25 0.25 0.25 YO,DY(l)
32 NSPV
11 21 31 4 1 51 6 1 71
81 91 10 1 18 1 19 1 27 1 28 1

36 1 37 1 45 1 46 1 54 1 55 1 63 1

64 1 72 1 73 1 74 1 75 1 76 1 77 1

78 1 79 1 80 1 811 ISPV(I,J)

0.0 0.015625 0.0625 0.140625 0.25 0.390625
0.5625 0.765625 1.0 0.015625 0.875 0.0625
0.75 0.140625 0.625 0.25 0.5 0.390625
0.375 0.5625 0.25 0.765625 0.125 1.0
0.875 0.75 0.625 0.5 0.375 0.25
0.125 0.0 VSPV(I)
0 NSSV
1.0 0.0 0.0 A10, A1X, AlY
1.0 0.0 0.0 A20, A2X, A2Y
0.0 AOO
0 1CONV
2.0 0.0 0.0 FO, FX, FY
Node X y u(x,y)
11  0.12500E+00 0.12500E+00 0.11646E+00
12 0.25000E+00 0.12500E+00  0.19820E+00
13 0.37500E+00 0.12500E+00  0.28335E+00
14  0.50000E+00  0.12500E+00  0.37888E+00
15 0.62500E+00 0.12500E+00  0.48838E+00
16 0.75000E+00 0.12500E+00 0.61144E+00
17 0.87500E+00 0.12500E+00  0.74492E+00
20 0.12500E+00  0.25000E+00  0.19820E+00
21 0.25000E+00  0.25000E+00  0.29914E+00
22 0.37500E+00 0.25000E+00  0.38343E+00
23 0.50000E+00  0.25000E+00  0.46224E+00
24  0.62500E+00 0.25000E+00  0.54055E+00
25 0.75000E+00 0.25000E+00 0.61861E+00
26 0.87500E+00 0.25000E+00 0.69170E+00

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



351

SOLUTIONS MANUAL

Problem 13.7: Analyze the axisymmetric problem in Problem 8.26 using 4 x 1 and
8 x 1 linear rectangular elements, and compare the solution with the exact solution.

Solution: The input data and partial output for the two meshes are presented in
Boxes 13.7(a) and 13.7(b). The exact solution is in the solution to Problem 8.26.
The exact values at » = 0.0,0.005,0.01,0.015, and 0.02 are 77 = 150.0, T = 146.875,
T3 = 137.50, and T, = 121.875.

Box 13.7(a): Input data and partial output for program FEM2D for 4 x 1 mesh of
rectangles.

Prob 13.7: An axisymmetric problem (4x1 mesh of rectangles)
O 2 0 O ITYPE, IGRAD, ITEM,NEIGN
1 4 1 1 IELTYP,NPE,MESH,NPRNT
4 1 NX, NY
0.0 0.005 0.005 0.005 0.005 X0, DX(I)

0.0 1.0 Y0, DY(1)
2 NSPV
51 10 1 ISPV(l,J)
100.0 100.0 VSPV(I)
0 NSSV
0.0 20.0 0.0 Al10, A1X, AlY
0.0 20.0 0.0 A20, A2X, A2Y
0.0 AO0O
0 1CONV
0.0 1.0E07 0.0 FO, FX, FY
Node X-coord. y-coord. Primary DOF
1 0.00000E+00 0.00000E+00  0.15175E+03
2 0.50000E-02 0.00000E+00 0.14758E+03
3 0.10000E-01 0.00000E+00  0.13786E+03
4  0.15000E-01 0.00000E+00  0.12202E+03
5 0.20000E-01 0.00000E+00  0.10000E+03
6 0.00000E+00 0.10000E+01  0.15175E+03
7 0.50000E-02 0.10000E+01  0.14758E+03
8 0.10000E-01 0.10000E+01  0.13786E+03
9 0.15000E-01 0-.10000E+01  0.12202E+03
10 0.20000E-01 0.10000E+01  0.10000E+03
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Box 13.7(b): Input data and partial output for program FEM2D for 8 x 1 mesh of

Prob 13.7:

An axisymmetric problem (8x1 mesh of rectangles)

O 2 0 O ITYPE, IGRAD, ITEM,NEIGN
1 4 1 2 IELTYP,NPE,MESH,NPRNT
8 1 NX, NY
0.0 0.0025 0.0025 0.0025 0.0025
0.0025 0.0025 0.0025 0.0025 X0, DX(I)
0.0 1.0 YO, DY(1)
2 NSPV
91 18 1 I1SPV(l,Jd)
100.0 100.0 VSPV(I)
0 NSSV
0.0 20.0 0.0 A10, A1X, AlY
0.0 20.0 0.0 A20, A2X, A2Y
0.0 AOO
0 1CONV
0.0 1.0E07 0.0 FO, FX, FY
Node X-coord. y-coord. Primary DOF
1 0.00000E+00 0.00000E+00  0.15053E+03
2 0.25000E-02 0.00000E+00  0.14948E+03
3 0.50000E-02 0.00000E+00  0.14705E+03
4  0.75000E-02 0.0000CE+00 0-.14310E+03
5 0.10000E-01 0.00000E+00  0.13759E+03
6 0.12500E-01 0.00000E+00  0.13053E+03
7 0.15000E-01 0.00000E+00 0.12191E+03
8 0.17500E-01 0.00000E+00  0.11174E+03
9 0.20000E-01 0.00000E+00  0-10000E+03
10 0.0000OE+00 0.10000E+01  0.15053E+03
11  0.25000E-02 0.10000E+01  0.14948E+03
12 0.50000E-02 0.10000E+01  0.14705E+03
13 0.75000E-02 0.10000E+01  0.14310E+03
14 0.10000E-01 0.10000E+01  0.13759E+03
15 0.12500E-01 0.10000E+01  0.13053E+03
16 0.15000E-01 0.10000E+01  0.12191E+03
17 0.17500E-01 0.10000E+01 0.11174E+03
18 0.20000E-01 0.10000E+01  0.10000E+03
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Problem 13.9: Analyze Problem 8.18 for eigenvalues (take ¢ = 1.0), using a 4 x 4
uniform mesh of triangular elements. Calculate the critical time step for a parabolic
equation.

Solution: The input data file and edited output for the problem are presented in Box
13.9. The critical time step is Ate, = 2/920.9 = 2.172 X 1073.

Box 13.9: Input data and edited output for 4 x 4 mesh of triangles (eigenvalue

problem).
Prob 13.9: Eigenvalues of a Laplace equation (4by4 T3 mesh)
o 2 1 1 ITYPE, IGRAD, ITEM,NEIGN
12 1 NVALU, NVCTR
O 3 1 o0 IELTYP,NPE,MESH,NPRNT
4 4 NX,NY
0.0 0.125 0.125 0.125 0.125 X0,DX(1)
0.0 0.25 0.25 0.25 0.25 YO,DY(1)
13 NSPV
11 21 31 41 51 101 151
201 211221 231241 251 ISPV(l,Jd)
1.0 0.0 0.0 A10, A1X, AlY
1.0 0.0 0.0 A20, A2X, A2Y
0.0 AOO
0 1CONV
1.0 0.0 0.0 co, CX, CY
SOLUTION :
Number of Jacobi iterations ..... NROT = 217
EIGENVALUE(C 1) = 0.920904E+03
EIGENVALUEC(C 2) = 0.869250E+03
EIGENVALUEQ(C 3) = 0.742104E+03
EIGENVALUEC(C 4) = 0.626822E+03
EIGENVALUE(C 5 = 0.496488E+03
EIGENVALUE(C 6) = 0.372089E+03
EIGENVALUEC(C 7) = 0.323778E+03
EIGENVALUE(C 8 = 0.198632E+03
EIGENVALUEQ(C 9 = 0.147678E+03
EIGENVALUE (C10) = 0.122005E+03
EIGENVALUE (C11) = 0.634863E+02
EIGENVALUE(C12) = 0.216955E+02
EIGENVECTOR:
0.21660E+01 0.19704E+01 0.14881E+01 0.79420E+00 0.30128E+01
0.27839E+01 0.21305E+01 0.11526E+01 0.20937E+01 0.19650E+01
0.15239E+01 0.83579E+00
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Problem 13.10: Analyze Problem 8.18 using a 4 x 4 mesh of triangles for transient
response. Assume zero initial conditions. Use @ = 0.5 and At = 0.001. Investigate
the stability of the solution when o = 0.0 and At = 0.0025. The number of time
steps should be such that the solution reaches its peak value or a steady state.

Solution: From Problem 13.9, it is clear that for 4 x 4 mesh of linear triangles,
the critical time step for conditionally stable schemes is At = 0.00217. So, we
may wish to investigate the instability of the forward difference scheme (o = 0) using
At = 0.0025. The results of the forward difference scheme and Crank-Nicolson scheme
are included in Figs. 13.10(a) and 13.10(b).

1'07\\\\‘\\\\‘\\\\‘\\\\‘\\\\\\\\
0.84 a=0.0, At=0.0025
0.6 7
0.4 4
0.2
0.0 ]
-0.2 7
-0.4 1
-0.6 1
-0.8 1 -
-1.0:““\““\““:
0.000 0.010 0.020 0.030

u(0,0.75,t)

(a)

0.50 -
0.40 1
0.30 1
0.20 - @=0.5, At=0.001 -
0.10 - -
0.00 * Steady-state is reached *
_0.105 att=0.21 a
-0.20 - -
-0.30 -
'0.40:\““\““\““\““\““:

0.00 0.05 0.10 0.15 0.20 0.25

Time, ¢

(b)

u(0,0.75,1)

Fig. 13.10: (a) Transient response showing instability of the forward difference
scheme. (b) Transient response reaching steady state with Crank-
Nicolson scheme.
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Problem 13.13: Analyze the heat transfer problem in Problem 8.28 using an 8 x 16
mesh of linear triangular elements and an equivalent mesh of linear rectangular
elements.

Solution: Using the symmetry considerations, we model the 2 x 8 cm domain with
8 x 16 mesh of linear triangles as well as rectangles. The problem has no specified
primary variables, one nonzero specified secondary variable at node 117 of heat
@117 = 125 W, and eight elements at the top row have convection boundary. The
input files and modified outputs are presented in Boxes 13.13a and 13.13b.

4 3
242 244 256
Element node numbers
1 2 241 Mesh of triangles
- _ o _ 30 y
Convection [T, =-5°C, #=5W/(cm® °C)] A Element 121
P i
i 1 A 177. -
! 2¢cm 127 135
L -~ - I A 109 117
y\ V\ /V [ A
_ 5 ! s
Electric cables (Qu =250 W/cm)t = | %
2 B roHH
! § . |ecm 55 63
ke =10Wi(em °C), ky =15W/(em°C) 1 3 1 37 45
1 O |
i 1 19 27
1

! M J 1 9— X

Box 13.13a: Input data and edited output for 8 x 16 mesh of triangles.

Prob 8.28: Heat transfer in a medium with cables (triangles)

0 2 0 O ITYPE, IGRAD, ITEM,NEIGN
0 3 1 0 IELTYP,NPE,MESH, NPRNT
8 16 NX, NY
0.0 0.25 0.25 0.25 0.25 0.25 0.25
0.25 0.25 X0, DX(I1)
0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 YO, DY(l)
0 NSPV
1 NSSV
117 1 ISSV(1,1), ISSV(1,2)
125.0 VSSV(1)
10.0 0.0 0.0 A10, A1X, AlY
15.0 0.0 0.0 A20, A2X, A2Y
0.0 AOO
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(Table 13.13a continued from the previous page)

1 1CONV
8 NBE
242 2 3 5.0 -5.0
244 2 3 5.0 -5.0
246 2 3 5.0 -5.0
248 2 3 5.0 -5.0
250 2 3 5.0 -5.0
252 2 3 5.0 -5.0
254 2 3 5.0 -5.0
256 2 3 5.0 -5.0 IBE, INOD, BETA, TINF
0.0 0.0 0.0 FO, FX, FY
Node X-coord. y-coord. Primary DOF
1  0.00000E+00  0.00000E+00  0.15830E+02
9 0.20000E+01 0.00000E+00 0.15837E+02
18 0.20000E+01 0.50000E+00 0.15837E+02
90 0.20000E+01  0.45000E+01 0.16361E+02
117 0.20000E+01 0.60000E+01  0.23163E+02
126 0.20000E+01 0.65000E+01 0.16247E+02
145 0.00000E+00 0.80000E+01 0.71123E+01
153  0.20000E+01  0.80000E+01  0.79344E+01

Box 13.13b: Partial input data and edited output for 8 x 16 mesh of rectangles.

Prob 8.28: Heat transfer in a medium with cables (rectangles)
0O 2 0 O ITYPE, IGRAD, ITEM,NEIGN
1 4 1 O IELTYP,NPE,MESH,NPRNT
8 16 NX, NY
1 1CONV
8 NBE
121 4 3 5.0 -5.0
122 4 3 5.0 -5.0
123 4 3 5.0 -5.0
124 4 3 5.0 -5.0
125 4 3 5.0 -5.0
126 4 3 5.0 -5.0
127 4 3 5.0 -5.0
128 4 3 5.0 -5.0 IBE, INOD, BETA, TINF
0.0 0.0 0.0 FO, FX, FY
Node X-coord. y-coord. Primary DOF
1 0.00000E+00 0.000OOOCE+00  0.15831E+02
9 0.20000E+01  0.00OOOE+00  0.15836E+02
18 0.20000E+01  0.50000E+00  0.15836E+02
90 0.20000E+01  0.45000E+01 0.16301E+02
117 0.20000E+01 0.60000E+01  0.24932E+02
126  0.20000E+01  0.65000E+01  0.15532E+02
145 0.00000E+00  0.80000E+01  0.71346E+01
153 0.20000E+01 0.80000E+01 0.78876E+01
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Problem 13.15: Analyze Problem 8.30 for nodal temperatures and heat flow across
the boundaries. Use the following data: k = 30 W/(m °C), 3 = 60 W/(m? ° C),
Ts = 0°C, Ty = 100°C, qg = 2 x 10> W/m?, go = 10"’ W/m 3, and a = 1 cm.

Solution: The input data and partial output are included in Box 13.15.

Box 13.15: Input data and edited output for Prob. 8.30.

Prob 8.30: Heat transfer in a square region (rectangles)
O 2 0 O ITYPE, IGRAD, ITEM,NEIGN
1 4 1 2 IELTYP,NPE,MESH,NPRNT
2 2 NX, NY
0.0 0.01 o0.01 X0, DX(I)
0.0 0.01 o0.01 YO, DY(l)
3 NSPV
31 61 91 I1SPV(l,J)
100.0 100.0 100.0 VSPV(I)
3 NSSV
11 41 71 1Ssv(l,J)
1.0E3 2.0E3 1.0E3 VSSv(l)
30.0 0.0 0.0 A10, A1X, AlY
30.0 0.0 0.0 A20, A2X, A2Y
0.0 AOO
1 1CONV
2 NBE
3 3 4 60.0 0.0
4 3 4 60.0 0.0 IBE, INOD, BETA, TINF
1.0E07 0.0 0.0 FO, FX, FY
Node X-coord. y-coord. Primary DOF
1 0.00000E+00 0.00OOOE+00  0.29706E+03
2 0.10000E-01 0.0000OCE+00  0.21458E+03
3 0.20000E-01 0.00000E+00  0-10000E+03
4  0.00000E+00 0.10000E-01  0.29598E+03
5 0.10000E-01 0.10000E-01  0.21383E+03
6 0.20000E-01 0.10000E-01  0-10000E+03
7 0.00000E+00 0.20000E-01  0.29215E+03
8 0.10000E-01 0.20000E-01  0-21088E+03
9 0.20000E-01  0.20000E-01  0.10000E+03
X-coord. y-coord. a22(du/dy) -all(du/dx) Flux Mgntd Orientation
0.5000E-02 0.5000E-02 -0.2749E+04 0.2469E+06 0.2469E+06 90.64
0.1500E-01 O0.5000E-02 -0.1128E+04 0.3426E+06 0.3426E+06 90.19
0.5000E-02 0.1500E-01 -0.1016E+05 0.2451E+06 0.2453E+06 92.37
0.1500E-01 0.1500E-01 -0.4424E+04 0.3371E+06 0.3371E+06 90.75
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Problem 13.17: Analyze Problem 8.35 for nodal temperature and heat flows across

the boundary . Take k=5 W/(m °C).

Solution: The input data and partial output are included in Box 13.17.

Box 13.17: Input data and edited output for Prob. 8.35.

Prob 8.35: Heat transfer in a square region (rectangles)
O 2 0 O ITYPE, IGRAD, ITEM,NEIGN
1 4 1 2 IELTYP,NPE,MESH,NPRNT
4 2 NX, NY
0.0 0.02 0.02 0.02 0.02 X0, DX(I)

0.0 0.01 0.01 YO, DY(I)
3 NSPV
11 61 111 I1SPV(1,Jd)
300.0 300.0 300.0 VSPV(I)
0 NSSV
5.0 0.0 0.0 Al10, A1X, ALY
5.0 0.0 0.0 A20, A2X, A2Y
0.0 AO0O
1 1CONV
10 NBE
1 1 2 40.0 20.0
2 1 2 40.0 20.0
3 1 2 40.0 20.0
4 1 2 40.0 20.0
4 2 3 40.0 20.0
5 3 4 40.0 20.0
6 3 4 40.0 20.0
7 3 4 40.0 20.0
8 3 4 40.0 20.0
8 3 4 40.0 20.0 IBE, INOD, BETA, TINF
0.0 0.0 0.0 FO, FX, FY
Node X-coord. y-coord. Primary DOF
1 0.00000E+00 0.00000OE+00  0.30000E+03
2 0.20000E-01 0.00000E+00  0.17544E+03
3 0.40000E-01 0.00000E+00 0.11089E+03
4 0.60000E-01 0.00000E+00  0.75481E+02
5 0.80000E-01 0.00000E+00 0.61251E+02
6 0.00000E+00 0.10000E-01  0.30000E+03
7 0.20000E-01 0.10000E-01 0.18415E+03
8 0.40000E-01 0.10000E-01 0.11403E+03
9 0.60000E-01 0-.10000E-01 0.77269E+02
10 0.80000E-01 0.10000E-01  0.63053E+02
11  0.00000E+00  0.20000E-01  0.30000E+03
12 0.20000E-01 0.20000E-01  0.17542E+03
13 0.40000E-01 0.20000E-01 0.11112E+03
14 0.60000E-01 0-20000E-01  0.73434E+02
15 0.80000E-01 0.20000E-01  0.59596E+02
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Problem 13.18: Consider heat transfer in a rectangular domain with a central
heated circular cylinder (see Fig. P13.19 for the geometry). Analyze the problem
using the mesh of linear quadrilateral elements shown in Fig. 13.4.2(b).

Solution: The input data and partial output are included in Box 13.18.

Box 13.18: Input data and edited output for Problem 13.18.

Problem 13.18: Heat transfer from a circular cylinder
0O 2 0 O ITYPE, IGRAD, ITEM,NEIGN
1 4 2 0 IELTYP,NPE,MESH,NPRNT
16 25 NEM, NNM
5 NRECL
1 5 1 0.0 0.0 0.03 0.0 6.0 NOD1,NODL,NODINC, ...
6 10 1 0.0 0.01 0.0307612 0.0038268 6.0
11 15 1 0.0 0.02 0.0329289 0.007071 6.0
16 20 1 0.02 0.02 0.0361732 0.0092388 6.0
21 25 1 0.04 0.02 0.04 0.01 6.0
4 NRECEL
1 4 1 1 4 1 2 7 6 NEL1,NELL, IELINC, NODINC
5 8 1 1 4 6 7 12 11
9 12 1 1 4 11 12 17 16
13 16 1 1 4 16 17 22 21
3 NSPV
11 6 1 11 1 ISPV(l,J)
300.0 300.0 300.0 VSPV(I)
0 NSSV
10.0 0.0 0.0 A10, A1X, A1Y
10.0 0.0 0.0 A20, A2X, A2Y
0.0 AOO
1 1CONV
4 NBE
4 2 3 40.0 20.0
8 2 3 40.0 20.0
12 2 3 40.0 20.0
16 2 3 40.0 20.0 IBE, INOD, BETA, TINF
0.0 0.0 0.0 FO, FX, FY
Node X-coord. y-coord. Primary DOF
2 0.12857E-01 0.000OOE+00  0.28987E+03
3 0.22143E-01 0.0000OCE+00  0.28229E+03
4 0.27857E-01 0.00000E+00 0.27717E+03
5 0.30000E-01 0.0000OCE+00 0.27506E+03
8 0.22705E-01 0.54436E-02 0.28200E+03
9 0.28564E-01 0.42677E-02 0.27678E+03
10 0.30761E-01 0.38268E-02 0.27456E+03
15 0.32929E-01 0.70710E-02  0.27334E+03
20 0.36173E-01  0.92388E-02 0.27190E+03
21 0.40000E-01 0.20000E-01 0.27365E+03
22 0.40000E-01 0.15714E-01 0.27354E+03
23 0.40000E-01 0.12619E-01 0.27255E+03
24  0.40000E-01 0.10714E-01 0.27141E+03
25 0.40000E-01 0.10000E-01 0.27084E+03
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Problem 13.19: Analyze the heat transfer problem in Fig. P8.31 with (a) 2 x 2 and
(b) 4 x 4 meshes of linear rectangular elements.

Solution: The input data and partial output are included in Box 13.19.

Box 13.19: Input data and edited output for Problem 13.19.

Prob 8.31: Heat transfer in a square region (rectangles)

0 2 0 ITYPE, IGRAD, ITEM,NEIGN

1 4 2 IELTYP,NPE,MESH,NPRNT

2 2 NX, NY

0.0 0.15 0.15 X0, DX(I)

0.0 0.15 0.15 YO, DY(I)

5 NSPV

11 2 31 61 91 ISPV(1,J)
10.0 10. 40.0 40.0 40.0 VSPV(I)

0 NSSV

5.0 0. 0.0 A10, A1X, AlY

5.0 O. 0.0 A20, A2X, A2Y

0.0 A0O

1 1CONV

2 NBE

1 1 4 28.0 0.0

3 1 4 28.0 0.0 IBE, INOD, BETA, TINF

0.0 0.0 0.0 FO, FX, FY
SOLUTTION - k:5W/(m uC), ,B:ZSW/(mZ OC)

T =0°C, T, =T, =T, =40"C,

Node X-coord. y-coord. Primary DOF T =T,=10°C, a=0.15m

1  0.00000E+00  0.00000E+00  0.10000E+02 -

2 0.15000E+00  0.00000E+00  0.10000E+02 y i

3 0.30000E+00 0.00000E+00 0.40000E+02

4  0.00000E+00 0.15000E+00  0.10681E+02

5 0.15000E+00 0.15000E+00 0.23618E+02

6 0.30000E+00 0.15000E+00 0.40000E+02

7  0.00000E+00  0.30000E+00  0.13055E+02

8 0.15000E+00 0.30000E+00 0.25207E+02

9 0.30000E+00 0.30000E+00  0.40000E+02

The orientation of gradient vector is measured fromthe positive x-axis

X-coord. y-coord. a22(du/dy) -ali(du/dx) Flux Mgntd Orientation
0.7500E-01 0.7500E-01 0.2383E+03 -0.2156E+03 0.3214E+03 -42.14
0.2250E+00 0.7500E-01 0.2270E+03 -0.7730E+03 0.8057E+03 -73.64
0.7500E-01 0.2250E+00 0.6604E+02 -0.4181E+03 0.4233E+03 -81.02
0.2250E+00 0.2250E+00 0.2648E+02 -0.5196E+03 0.5203E+03 -87.08
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Problem 13.21: Analyze the problem in Fig. P8.32 with (a) 3 x 3, and (b) 6 x 6
meshes of linear rectangular elements. Take £ =10 W/(m °C).

Solution: The input data and partial output are included in Box 13.21.

Box 13.21: Input data and edited output for Problem 13.21.

Prob 8.32: Heat transfer in a square region (rectangles)
0 2 0 0 ITYPE, IGRAD, ITEM,NEIGN
1 4 1 2 IELTYP,NPE,MESH,NPRNT
3 3 NX, NY
0.0 0.333333 0.333333 0.333333 X0, DX(I)
0.0 0.333333 0.333333 0.333333 YO, DY(I)
12 NSPV
11 21 31 4 1 51 81
91 121 131 141 151 161 YN 1-oc 16
250.0 250.0 250.0 250.0 150.0 50.0 1
150.0 50.0 150.0 0.0 0.0 50.0
0 Im
10.0 0.0 0.0
10.0 0.0 0.0 T =150°C gl T=90°C
0-0 k=10 W/(m °C)
0.0 0.0 0.0 g=0Wm’ ¥ —
Node X-coord. y-coord. Primary DOF
6 0.33333E+00 0.33333E+00 0.17222E+03
7 0.66667E+00 0.33333E+00 0.15000E+03
8 0.10000E+01 0.33333E+00 0.50000E+02
9 0.00000E+00 0.66667E+00 0.15000E+03
10 0.33333E+00 0.66667E+00 0.10556E+03
11 0.66667E+00 0.66667E+00 0.72222E+02
12 0.10000E+01 0.66667E+00  0.50000E+02
13 0.00000E+00  0.10000E+01  0.15000E+03
14 0.33333E+00 0.10000E+01  0.0000OE+00
15 0.66667E+00 0.10000E+01  0.00000OE+00
16 0.10000E+01 0.10000E+01 0.50000E+02
X-coord. y-coord. a22(du/dy) -ali(du/dx) Flux Mgntd Orientation
0.1667E+00 0.1667E+00 -0.2667E+04 -0.3333E+03 0.2687E+04 -172.87
0.5000E+00 0.1667E+00 -0.2667E+04 0.3333E+03 0.2687E+04 172.87
0.8333E+00 0.1667E+00 -0.4500E+04 0.1500E+04 0.4743E+04 161.57
0.1667E+00 0.5000E+00 -0.1000E+04  0.3333E+03 0.1054E+04 161.57
0.5000E+00  0.5000E+00 -0.2167E+04  0.8333E+03 0.2321E+04 158.96
0.8333E+00 0.5000E+00 -0.1167E+04 0.1833E+04 0.2173E+04 122 .47
0.1667E+00 0.8333E+00 -0.1583E+04 0.2917E+04 0.3319E+04 118.50
0.5000E+00 0.8333E+00 -0.2667E+04 0.5000E+03 0.2713E+04 169.38
0.8333E+00 0.8333E+00 -0.1083E+04 -0.4167E+03 0.1161E+04 -158.96
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13.24 Analyze the problem in Fig. P8.35 for transient response using (a) a = 0 and
(b) @« =0.5. Use ¢ = pc, = 1.0.

Solution: In order to determine the critical time step, first we find the eigenvalues of
the problem. The input data files and partial output for the eigenvalue and transient
analysis are included in Boxes 13.24a and 13.24b.

Box 13.24a: Input data and edited output for the eigenvalue analysis of Problem

13.24.
Prob 8.35a: Eigenvalues of Problem 8.35 (rectangles)
o 2 1 1 ITYPE, IGRAD, ITEM,NEIGN
12 O NVALU, NVCTR
1 4 1 2 IELTYP,NPE,MESH,NPRNT
4 2 NX, NY
0.0 0.02 0.02 0.02 0.02 X0, DX(I)
0.0 0.01 0.01 YO, DY(l)
3 NSPV
11 61 111 ISPV(l,J)
5.0 0.0 0.0 A10, A1X, AlY
5.0 0.0 0.0 A20, A2X, A2Y
0.0 AOO
1 1CONV
10 NBE
1 1 2 40.0 20.0 .
2 1 2 40.0 20.0 Convection g, T,,
3 1 2 40.0 20.0 2 1 12 13 14
4 1 2 40.0 20.0 = © ] ® I @ 1
4 2 3 40.0 20.0 [ ' ” ”
5 3 4 40.0 20.0 211 ©) ]2 @ 13 ©
6 3 4 40.0 20.0 Convection ", T,
7 3 4 40.0 20.0
8 3 4 40.0 20.0
8 3 4 40.0 20.0 IBE, INOD, BETA, TINF
1.0 0.0 0.0 co, CX, Cy
2 -6
SOLUTION: Atcr:T:2'67X10
Number of Jacobi iterations ..... NROT = 178
EIGENVALUE(C 1) = 0.750377E+06
EITGENVALUE(C 2) = 0.678560E+06
EITGENVALUE(C 3) = 0.634478E+06
EITGENVALUE(C 4) = 0.616934E+06
EITGENVALUEC(C 5 = 0.300201E+06
EITGENVALUE(C 6) = 0.228506E+06
EITGENVALUEC(C 7) = 0.184303E+06
EITGENVALUE(C 8 = 0.166798E+06
EITGENVALUEC(C 9 = 0.140265E+06
EI1TGENVALUE(C10) = 0.694258E+05
EITGENVALUE (11) = 0.246351E+05
EITGENVALUE (12) = 0.716251E+04
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Box 13.24b: Input data and edited output for the transient analysis of Problem

13.24.
Prob 8.35b: Transient analysis of Problem 8.35 (rectangles)

0 2 1 0 ITYPE, IGRAD, ITEM,NEIGN

1 4 1 0 IELTYP,NPE,MESH,NPRNT

4 2 NX, NY

0.0 0.02 0.02 0.02 0.02 X0, DX(I)

0.0 0.01 0.01 YO, DY(l)

3 NSPV

11 6 1 11 1 ISPV(1,d)
300.0 300.0 300.0 VSPV(1)

0 NSSV

5.0 0.0 0.0 A10, A1X, AlY

5.0 0.0 0.0 A20, A2X, A2Y

0.0 AOO

1 1CONV

10 NBE

1 1 2 40.0 20.0 .

2 1 2 40 i 0 20 ) O Convection g, T,

3 1 2 40.0 20.0 3 12 13 14 5]A
4 1 2 40.0 20.0 =g ©® ] ® I @ I Lem
4 2 3 40.0 20.0 = ' - ” 10 T
5 3 4 40.0 20.0 1 @ ]2 @ L ® L ’
¢ 34 200 200 o

8 3 4 40.0 20.0

8 3 4 40.0 20.0 IBE, INOD, BETA, TINF

0.0 0.0 0.0 FO, FX, FY

1.0 0.0 0.0 co, CX, CY

500 501 10 0 NTIME,NSTP, INTVL, INTIAL
1.0E-06 0.0 0.5 1.0E-4 DT,ALFA,GAMA,EPSLN

*TIME* = 0.10000E-05

Node

2

4

5
10
15

*TIME* = 0.10000E-04

QO WNE

[

X-coord.

0.00000E+00
0.20000E-01
0.40000E-01
0.60000E-01
0.80000E-01
0.80000E-01
0.80000E-01

0.00000E+00
0.20000E-01
0.40000E-01
0.60000E-01
0.80000E-01
0.80000E-01
0.80000E-01

[elelololoNoNa]

[elelololoNoNa]

Time Step Number 1

y-coord. Primary DOF
-O0000E+00 0.30000E+03
-O0000E+00 -0.80008E+02
-0O0000E+00 0.21954E+02
-O0000E+00 -0.58868E+01
-00000E+00 0.36334E+01
-10000E-01 0.29023E+01
.20000E-01  0.37299E+01

Time Step Number 10

-O0O0O00E+00  0.30000E+03
-O0O000E+00 -0.74458E+01
-O0O000E+00 -0.63061E+01
-O0O0O00E+00  0.39980E+01
-00000E+00  0.62873E+00
-10000E-01 -0.38760E+00
.20000E-01 0.11335E+01
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(Box 13.24b is continued from the previous page; a = 0)

*TIME* = 0.40000E-04 Time Step Number = 40

1 0.00000E+00 0.0000CE+00  0.30000E+03

2 0.20000E-01 0.00000E+00  0.86300E+02

3 0.40000E-01 0.00000E+00 0.74688E+01

4 0.60000E-01 0.00000E+00 0.72856E+00

5 0.80000E-01 0.00000E+00 0.55114E+01

10 0.80000E-01 0.10000E-01 0.48108E+01

15 0.80000E-01 0.20000E-01 0.60875E+01
*TIME* = 0.10000E-03 Time Step Number =100

1 0.00000E+00 0.0000CE+00  0.30000E+03

2 0.20000E-01 0.00000E+00  0.13695E+03

3 0.40000E-01 0.00000E+00 0.52757E+02

4 0.60000E-01 0.00000E+00 0.17355E+02

5 0.80000E-01 0.00000E+00 0.10216E+02

10 0.80000E-01 0.10000E-01 0.96855E+01

15 0.80000E-01 0.20000E-01 0.10433E+02
*TIME* = 0.20000E-03 Time Step Number =200

1 0.00000E+00 0.0000OCE+00  0.30000E+03

2 0.20000E-01 0.00000E+00  0.16020E+03

3 0.40000E-01 0.00000E+00  0.84988E+02

4 0.60000E-01 0.00000E+00 0.45326E+02

5 0.80000E-01 0.00000E+00 0.32576E+02

10 0.80000E-01 0.10000E-01 0.33055E+02

15 0.80000E-01 0.20000E-01 0.31928E+02
*TIME* = 0.30000E-03 Time Step Number =300

1 0.00000E+00 0.0000OCE+00  0.30000E+03

2 0.20000E-01 0.00000E+00  0.16830E+03

3 0.40000E-01 0.00000E+00  0.98472E+02

4 0.60000E-01 0.00000E+00 0.60636E+02

5 0.80000E-01 0.00000E+00 0.46961E+02

10 0.80000E-01 0.10000E-01 0.48102E+02

15 0.80000E-01 0.20000E-01 0.45804E+02
*TIME* = 0.40000E-03 Time Step Number =400

1 0.00000E+00 0.0000OCE+00  0.30000E+03

2 0.20000E-01 0.0000OCE+00  0.17199E+03

3 0.40000E-01 0.00000E+00  0.10486E+03

4 0.60000E-01 0.00000E+00  0.68234E+02

5 0.80000E-01 0.00000E+00 0.54261E+02

10 0.80000E-01 0.10000E-01 0.55740E+02

15 0.80000E-01 0.20000E-01 0.52850E+02
*TIME* = 0.50000E-03 Time Step Number =500

1 0.00000E+00 0.0000OCE+00  0.30000E+03

2 0.20000E-01 0.0000OCE+00 0.17376E+03

3 0.40000E-01 0.00000E+00  0.10795E+03

4 0.60000E-01 0.00000E+00  0.71948E+02

5 0.80000E-01 0.00000E+00 0.57842E+02

10 0.80000E-01 0.10000E-01 0.59487E+02

15 0.80000E-01 0.20000E-01 0.56307E+02
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(Box 13.24b is continued from the previous two pages; a = 0.5)

*TIME* = 0.10000E-05 Time Step Number = 1

1 0.00000E+00 0.00000E+00  0.30000E+03
2 0.20000E-01 0.00000E+00 -0.75048E+02
3 0.40000E-01 0.00000E+00  0.19257E+02
4  0.60000E-01 0.00000E+00 -0.48145E+01
5 0.80000E-01 0.00000E+00  0.28232E+01
10 0.80000E-01 0.10000E-01 0.22798E+01
15 0.80000E-01 0.20000E-01 0.29189E+01

*TIME* = 0.10000E-04

1 0.00000E+00 0.0000OCE+00  0.30000E+03
2 0.20000E-01 0.00000E+00 -0.61555E+01
3 0.40000E-01 0.00000E+00 -0.56611E+01
4 0.60000E-01 0.00000E+00 0.35382E+01
5 0.80000E-01 0.00000E+00 0.90864E+00
10 0.80000E-01 0.10000E-01 -0.10142E+00
15 0.80000E-01 0.20000E-01 0.13939E+01
*TIME* = 0.10000E-03 Time Step Number =100
1 0.00000E+00 0.0000CE+00  0.30000E+03
2 0.20000E-01 0.0000OE+00 0.13679E+03
3 0.40000E-01 0.00000E+00 0.52687E+02
4 0.60000E-01 0.00000E+00 0.17478E+02
5 0.80000E-01 0.00000E+00 0.10408E+02
10 0.80000E-01 0.10000E-01 0.98865E+01
15 0.80000E-01 0.20000E-01 0.10619E+02

*TIME* = 0.20000E-03

Time Step Number = 10

Time Step Number =200

1 0.00000E+00  0.0000OE+00  0.30000E+03
2 0.20000E-01 0.0OOOOOE+00  0.16014E+03
3 0.40000E-01 0.0OOOOOE+00  0.84912E+02
4 0.60000E-01 0.00000E+00  0.45283E+02
5 0.80000E-01 0.0OOOOE+00  0.32556E+02
10 0.80000E-01 0.10000E-01  0.33034E+02
15 0.80000E-01 0.20000E-01  0.31909E+02

*TIME* = 0.30000E-03

1 0.00000E+00 0.000OOOCE+00  0.30000E+03
2 0.20000E-01 0.0OOOOOE+00  0.16826E+03
3 0.40000E-01 0.0OOOOOE+00  0.98412E+02
4 0.60000E-01 0.00000E+00 0.60570E+02
5 0.80000E-01 0.00OOOOE+00  0.46900E+02
10 0.80000E-01 0.10000E-01  0.48039E+02
15 0.80000E-01 0.20000E-01  0.45746E+02
*TIME* = 0.50000E-03 Time Step Number =500
1 0.00000E+00 0.00OOO0OE+00  0.30000E+03
2 0.20000E-01 0.OOOOOE+00  0.17374E+03
3 0.40000E-01 0.0OOOOOE+00  0.10793E+03
4 0.60000E-01 0.00000E+00  0.71914E+02
5 0.80000E-01 0.0OOOOE+00  0.57809E+02
10 0.80000E-01  0.10000E-01  0.59452E+02
15 0.80000E-01 0.20000E-01  0.56275E+02

Time Step Number =300
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13.25 Analyze the axisymmetric problem in Fig. P8.26 using the Crank—Nicolson
method. Use an 8 x 1 mesh of linear rectangular elements and ¢ = pc, = 3.6 X 10°
J/(m3-K).

Solution: The eigenvalue analysis gives Ate, = 0.1698. Input data and partial output
are included in Boxes 13.25a and 13.25b.

Box 13.25a: Input data and edited output for the eigenvalue analysis of Problem

13.25.

Prob 8.26a Eigenvalue of an axisymmetric problem

o 2 1 1 ITYPE, IGRAD, ITEM,NEIGN

16 O

1 4 1 2 IELTYP,NPE,MESH,NPRNT

8 1 NX, NY

0.0 0.0025 0.0025 0.0025 0.0025

0.0025 0.0025 0.0025 0.0025 X0, DX(I)

0.0 1.0 YO, DY(1)

2 NSPV

91 18 1 I1SPV(l,Jd)

0.0 20.0 0.0 A10, A1X, AlY

0.0 20.0 0.0 A20, A2X, A2Y

0.0 AOO

0 1CONV

0. 3.6E06 0.0 co, CX, CY

SOLUTION :
Number of Jacobi iterations ..... NROT = 225
EIGENVALUEQ(C 1) = 0.117769E+02
EIGENVALUEQ(C 2) = 0.117768E+02
EIGENVALUE(C 3) = 0.893008E+01
EIGENVALUE(C 4) = 0.389702E+01
EIGENVALUE(C 5 = 0.620594E+01
EIGENVALUE(C 6) = 0.893014E+01
EIGENVALUEQ (C 7) = 0.620601E+01
EIGENVALUE(C 8 = 0.389696E+01
EIGENVALUEC(C 9 = 0.112116E+01
EIGENVALUE(C10) = 0.223250E+01
EIGENVALUE (C11) = 0.223256E+01
E1GENVALUE (C12) = 0.434475E+00
EIGENVALUE (C13) = 0.112109E+01
E1TGENVALUE (C14) = 0.434542E+00
EIGENVALUE(15) = 0.804288E-01
E1IGENVALUE (C16) = 0.804954E-01

2

At, =———=0.1698
11.7769
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Box 13.25b: Input data and edited output for the transient analysis of Problem

Prob 8.26b Transient analysis of an axisymmetric problem

2 1 O
4 1 O
1

o O

1 18 1
00.0 100.0

20.0 0.0
20.0 0.0

1.0E07 0.0
3.6E06 0.0

501 10 0
0.5 0.5 1.0E-5

.0
-0
.0
.0
.0

0

0
.2

CQUOO0OO0OO0OO0OOORrLrWONO Qwr o

*TIME* = 0.10000E+02

Node X-coord.

.00000E+00
.25000E-02
.50000E-02
.75000E-02
.10000E-01
.12500E-01
.15000E-01
.17500E-01
.20000E-01

OCO~NOORAWNE
[elelololoNoloNoNa)

0.90000E+02

*
—
=
=]

*

1

0.00000E+00
0.25000E-02
0.50000E-02
0.75000E-02
0.10000E-01
0.12500E-01
0.15000E-01
0.17500E-01
0.20000E-01

OCoO~NOORAWNE

0.0025 0.0025 0.0025 0.0025
0.0025 0.0025 0.0025 0.0025
1.0

NTIME,NSTP, INTVL, INTIAL
DT,ALFA,GAMA,EPSLN

Time Step Number = 50

y-coord.

-0O0000E+00
-0O0000E+00
-00000E+00
-00000E+00
-0O0000E+00
-0O0000E+00
-0O0000E+00
-00000E+00
-00000E+00

[elelololoNooNoNa]

Time Step

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

Reached steady-state at this time

ITYPE, IGRAD, ITEM,NEIGN
IELTYP,NPE,MESH, NPRNT
NX, NY

X0, DX(1)

YO, DY(1)
NSPV
ISPV(I,J)
VSPV(1)

NSSV

A10, A1X, AlY
A20, A2X, A2Y

AOO

1CONV

FO, FX, FY
co, CX, Cy

Primary DOF

0.53769E+02
0.55406E+02
0.59123E+02
0.64867E+02
0.72184E+02
0.80371E+02
0.88488E+02
0.95424E+02
0.10000E+03

Number =450

0.15037E+03
0.14933E+03
0.14691E+03
0.14297E+03
0.13749E+03
0.13045E+03
0.12186E+03
0.11171E+03
0.10000E+03
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Problem 13.27: Repeat Problem 13.26 with
shown in Fig. 8.3.8.

Solution: Input data and partial output are
respectively.

the mesh of linear triangular elements

included in Boxes 13.27a and 13.27b,

Box 13.27a: Input data for the ground water flow problem of Problem 13.27.

Problem 13.27: Ground water flow prob
O 1 0 O
O 3 2 1

64 45

9

1 5 1 0.0 0.0 600.0
6 10 1 0.0 87.5 600.0
11 15 1 0.0 175.0 600.0
16 20 1 0.0 262.5 600.0
21 25 1 0.0 350.0 600.0
26 30 1 0.0 525.0 600.0
31 35 1 0.0 700.0 600.0
36 40 1 0.0 875.0 600.0
41 45 1 0.0 1050.0 600.0
16

1 7 2 1 3 1 2

2 8 2 1 3 2 7

9 15 2 1 3 6 7
10 16 2 1 3 7 12
17 23 2 1 3 11 12
18 24 2 1 3 12 17
25 31 2 1 3 16 17
26 32 2 1 3 17 22
33 39 2 1 3 21 22
34 40 2 1 3 22 27
41 47 2 1 3 26 27
42 48 2 1 3 27 32
49 55 2 1 3 31 32
50 56 2 1 3 32 37
57 63 2 1 3 36 37
58 64 2 1 3 37 42
5

41 1 42 1 431 441 451
100.0 100.0 100.0 100.0 100.0
6
221 221 231 241 251
45.069 90.139 90.139 90.139 45.069 -
1.75 0.0 0.0
1.0 0.0 0.0
0.0
0
0.0 0.0 0.0

lem (triangles)
ITYPE, IGRAD, ITEM,NEIGN

IELTYP,NPE,MESH,NPRNT
NEM, NNM
NRECL
0.0 1.0 NOD1,NODL, ...
175.0 1.0
350.0 1.0
525.0 1.0
700.0 1.0
787.5 1.0
875.0 1.0
962.5 1.0
1050.0 1.0
NRECEL

6 NEL1,NELL, IELINC,NODINC, ..

NSPV
ISPV
VSPV
NSSV
33 1 1SSV(l,J)
200.0 VSSV(I)
A10, A1X, AlY
A20, A2X, A2Y
AOO
1CONV
FO, FX, FY
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0
Impermeable, a—fj= @y, =1.75 m*/day/m?, asy =1 m®/day/m>
""""""""""""""""""""""" —‘?
i $=100m
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op —4 pump (390, 7679
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on . Stream @ =200m°/day
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y
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Box 13.27b: Edited output for the ground water flow problem of Problem 13.27.

Node X-coord. y-coord. Primary DOF
1 0.00000E+00  0.0000OE+00  0.33097E+03
2 0.15000E+03  0.000OOE+00  0.32998E+03
3 0.30000E+03  0.00000E+00 0.32788E+03
4  0.45000E+03 0.00000E+00  0.32598E+03
5 0.60000E+03 0.00000E+00  0.32523E+03

10 0.60000E+03 0.17500E+03  0.32330E+03
15 0.60000E+03  0.35000E+03  0.31538E+03
20 0.60000E+03  0.52500E+03  0.29556E+03
21  0.00000E+00  0.35000E+03  0.35206E+03
22  0.15000E+03  0.43750E+03  0.33574E+03
23  0.30000E+03  0.52500E+03  0.31120E+03
24  0.45000E+03 0.61250E+03  0.28367E+03
25 0.60000E+03  0.70000E+03  0.25282E+03
26  0.00000E+00  0.52500E+03  0.29531E+03
27 0.15000E+03  0.59063E+03  0.26855E+03
28 0.30000E+03  0.65625E+03  0.23939E+03
29 0.45000E+03 0.72188E+03  0.21890E+03
30 0.60000E+03 0.78750E+03  0.19783E+03
31 0.00000E+00  0.70000E+03  0.21492E+03
32 0.15000E+03  0.74375E+03  0.19083E+03
33 0.30000E+03  0.78750E+03  0.14004E+03
34  0.45000E+03  0.83125E+03 0.16513E+03
35 0.60000E+03  0.87500E+03  0.15799E+03
36 0.00000E+00  0.87500E+03  0.14902E+03
37 0.15000E+03  0.89688E+03  0.13931E+03
38 0.30000E+03  0.91875E+03  0.13034E+03
39 0.45000E+03  0.94063E+03  0.13121E+03
40 0.60000E+03  0.96250E+03  0.12729E+03
41  0.00000E+00  0.10500E+04  0.10000E+03
42  0.15000E+03  0.10500E+04  0.10000E+03
43  0.30000E+03  0.10500E+04  0.10000E+03
44  0.45000E+03  0.10500E+04  0.10000E+03
45 0.60000E+03 0.10500E+04  0.10000E+03
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Problem 13.31: Analyze the flow around cylinder of elliptical cross-section (see
Fig. P8.41). Use the symmetry and an appropriate mesh of linear triangular elements.

Use the stream function approach.

Solution: Here we use the mesh of linear triangles from Fig. 8.5.10. Input data and
partial output are included in Boxes 13.31a and 13.31b, respectively.

Box 13.31a: Input data for the flow around an elliptic cylinder of Problem 13.31.

0]
(0]
60
7
1
7
13
19
25
31

OQOOrFrRONOO

o OO0 OO0o0Oo

2
3

42

6
12
18
24
30
36
42

RPRRRRRR
ANFRPOOOO
OCOWOOOO
NNNNR OO

OOO0OOWOO

NMNNMNNNNNNNNONNN
RPRRPRRPRRRRRRRRR
W W W W LWL WWWWWW

61 121 1
131 191 2

e

0.6667 1.3333

N OO N b

[eNeNe]

Prob 13.31: Flow around an elliptic cylinder (Stream function-Triangles)

ITYPE, IGRAD, ITEM,NEIGN
IELTYP,NPE,MESH,NPRNT
NEM, NNM
NRECL
0.3164 NOD1,NODL, ...
0.3164
0.3164
0.3164
0.3164
0.3164
0.3164
NRECEL
NEL1,NELL, IELINC,NODINC

NSPV

ISPV(1,J)

VSPV(1)

NSSV

A10, A1X, AlY
A20, A2X, A2Y
AOO

1CONV

FO, FX, FY
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Fixed wall (no flow)

A

YYYYYYYY

Fixed wall (no flow)

Box 13.31b: Edited output for the flow around an elliptic cylinder of Problem
13.31.

SOLUTI1ION :

Node

X-coord.

y-coord.

Primary DOF

0.00000E+00
0.29170E+00
0.74096E+00
0.13478E+01
0.21121E+01
0.0000O0E+00
0.30130E+00
0.76535E+00
0.13921E+01
0.21817E+01
0.0000O0E+00
0.31658E+00
0.80416E+00
0.14627E+01
0.22923E+01
0.15416E+01
0.18624E+01
0.22958E+01
0.28416E+01
0.27700E+01
0.29291E+01
0.31440E+01
0.34147E+01
0.40000E+01
0.40000E+01
0.40000E+01
0.40000E+01

0.66670E+00
0.61504E+00
0.53549E+00
0.42803E+00
0.29267E+00
0.13333E+01
0.12292E+01
0.10687E+01
0.85209E+00
0.57917E+00
0.20000E+01
0.18417E+01
0.15979E+01
0.12686E+01
0.85384E+00
0.18493E+01
0.16173E+01
0.13039E+01
0.90915E+00
0.18542E+01
0.16295E+01
0.13261E+01
0.94393E+00
0.18558E+01
0.16337E+01
0.13337E+01
0.95579E+00

0.66670E+00
0.61367E+00
0.53175E+00
0.41956E+00
0.27278E+00
0.13333E+01
0.12276E+01
0.10635E+01
0.83773E+00
0.53821E+00
0.20000E+01
0.18415E+01
0.15949E+01
0.12537E+01
0.79541E+00
0.18450E+01
0.16001E+01
0.12524E+01
0.74952E+00
0.18330E+01
0.15691E+01
0.11951E+01
0.68802E+00
0.18217E+01
0.15440E+01
0.11610E+01
0.65865E+00
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Problem 13.33: Analyze the torsion of a member of circular cross-section (see
Fig. P8.43) for the state of shear stress distribution. Investigate the accuracy with
mesh refinements (by subdividing the mesh in Fig. P8.43 with horizontal and vertical
lines).

Solution: Here we use the mesh of linear triangles from Fig. P8.43. Input data and
partial output are included in Boxes 13.33a and 13.33b, respectively.

Box 13.33a: Input data for the circular cross-section bar of Problem 13.33.

Prob 8.43: Torsion of a circular cross-section bar (triangles)

0 ITYPE, IGRAD, ITEM,NEIGN

2 IELTYP,NPE,MESH,NPRNT
NEM, NNM

NOD(I,J)
0 1.0 0.0 0.35355 0.35355
8 0.7071 0.7071 GLXY(1,J)
NSPV
51 61 ISPV(1,J)
0.0 0.0 0.0 VSPV(1)
0 NSSV
1.0 0.0 0.0 A10, A1X, A1Y
1.0 0.0 0.0 A20, A2X, A2Y
0.0 AOO
0 1CONV
10.0 0.0 0.0 FO, FX, FY

WOUITUTWNOOWN

N
0
(00]

WwWwoohr~NNEFL, AMOO
© O

By symmetry, any sector can be
used as the computational domain
y a=1, 2G0=10

Mesh of 4 linear triangles Mesh of 4 quadratic triangles
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Box 13.33b: Edited output for the circular cross-section bar of Problem 13.33 for
two different meshes.

SOLUTI ON (for the 4 linear element mesh):

Node X-coord. y-coord. Primary DOF
1 0.00000E+00 0.00000E+00 0.26292E+01
2 0.50000E+00 0.00000E+00 0.19179E+01
3 0.10000E+01 0.00000E+00 0.00000E+00
4 0.35355E+00 0.35355E+00 0.19179E+01
5 0.92388E+00 0.38268E+00 0.00000E+00
6 0.70710E+00 0.70710E+00 0.0OOOOE+00

The orientation of

gradient vector is measured from the positive x-axis

X-coord. y-coord. a22(du/dy) -ali(du/dx) Flux Mgntd Orientation
0.2845E+00 0.1179E+00 -0.5892E+00 0.1423E+01 0.1540E+01 112.50
0.8080E+00 0.1276E+00 -0.7630E+00 0.3836E+01 0.3911E+01 101.25
0.5925E+00 0.2454E+00 -0.1364E+01 0.3293E+01 0.3565E+01 112 .50
0.6615E+00 0.4811E+00 -0.2173E+01 0.3252E+01 0.3911E+01 123.75

SOLUTION (for the 4 quadratic element mesh):

Node X-coord. y-coord. Primary DOF
1 0.00000E+00  0.00000E+00  0.24893E+01 1 310 2 7 6
2  0.25000E+00  0.00000E+00  0.23481E+01 312 10 8 11 7
3 0.50000E+00 0.00000E+00  0.18618E+01 [B]=
4  0.75000E+00  0.00000E+00  0.10959E+01 3 512 4 9 8
5 0.10000E+01  0.00OOOE+00  0.00000E+00 10 12 15 11 14 13
6 0.17677E+00 0.17677E+00 0.23481E+01
7 0.46194E+00 0.19134E+00 0.18811E+01
8 0.73559E+00 0.14632E+00 0.10960E+01
9 0.98078E+00 0.19509E+00 0.00000E+00

10 0.35355E+00 0.35355E+00 0.18618E+01

11 0.62360E+00 0.41668E+00 0.10960E+01

12 0.92388E+00 0.38268E+00 0.00000E+00

13 0.53033E+00 0.53033E+00 0.10959E+01

14 0.83147E+00 0.55557E+00 0.00000E+00

15 0.70711E+00 0.70711E+00 0.00000E+00

X-coord. y-coord. a22(du/dy) -all(du/dx) Flux Mgntd Orientation
0.3001E+00 0.1243E+00 -0.6209E+00 0.1499E+01 0.1623E+01 112 .50
0.6119E+00 0.2535E+00 -0.1293E+01 0.3122E+01 0.3379E+01 112 .50
0.8268E+00 0.1092E+00 -0.5720E+00 0.4143E+01 0.4182E+01 97 .86
0.6619E+00 0.5074E+00 -0.2525E+01 0.3334E+01 0.4182E+01 127.14
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Problem 13.36: Analyze the rectangular membrane problem in Fig. P8.48 with
4 x 4 and 8 x 8 meshes of linear rectangular elements in the computational domain.
Take a11 = agse =1 and fy = 1.

Solution: Input data and partial output are included in Box 13.36.

Box 13.36: Input data and edited output for the 4 x 4 mesh of linear rectangular

elements.

Prob 13.36: Deflections of the membrane of Problem 8.48 (rectangles)

0 2 0 O ITYPE, IGRAD, ITEM,NEIGN
1 4 1 2 IELTYP,NPE,MESH,NPRNT
4 4 NX, NY
0.0 0.0125 0.0125 0.0125 0.0125 DX(1)
0.0 0.02 0.02 0.02 0.02 DY(1)
13 NSPV
11 21 31 41 51 61 111
161 211 221 231 241 251 ISPV(1,J)
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.109375 0.1875 0.234375 0.25 VSPV(I)
0 NSSV
1.0 0.0 0.0 A10, A1X, ALY
1.0 0.0 0.0 A20, A2X, A2Y
0.0 AQO
0 1CONV
1.0 0.0 0.0 FO, FX, FY
Node X-coord. y-coord. Primary DOF
7  0.12500E-01 0.20000E-01  0.10669E-01
8 0.25000E-01 0.20000E-01  0.19647E-01 YA u=(10-x)x (x isincm)
9 0.37500E-01 0.20000E-01  0.25612E-01 < 5em
10  0.50000E-01 0.20000E-01 0.27705E-01 . -
12 0.12500E-01 0.40000E-01 0.25698E-01
13 0.25000E-01 0.40000E-01 0.47286E-01 u =0 20
14 0.37500E-01 0.40000E-01 0.61702E-01
15 0.50000E-01 0.40000E-01 0.66745E-01 8Cm = U=
17  0.12500E-01 0.60000E-01 0.51737E-01 6 10
18  0.25000E-01 0.60000E-01  0.95449E-01
19  0.37500E-01 0.60000E-01  0.12351E+00 1 5 «
20 0.50000E-01 0.60000E-01 0.13312E+00 =
22 0.12500E-01 0.80000E-01  0.10938E+00 0cm uZ0
23 0.25000E-01 0.80000E-01 0.18750E+00 _ _
24  0.37500E-01  0.80000E-01  0.23438E+00 IS LA
25  0.50000E-01 0.80000E-01  0.25000E+00 Ay=2cm=0.02m
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Problem 13.37: Repeat Problem 13.36 with equivalent meshes of quadratic
elements.

Solution: Input data and partial output are included in Box 13.37.

Box 13.37: Input data and edited output for the 2 x 2 mesh of nine-node
rectangular elements.

Prob 13.37: Deflections of the membrane of Problem 8.48 (rectangles)

0 2 0 O ITYPE, IGRAD, ITEM,NEIGN
1 4 1 2 IELTYP,NPE,MESH,NPRNT
4 4 NX, NY
0.0 0.025 0.025 DX(1)
0.0 0.04 0.04 DY(1)
13 NSPV
11 21 31 41 51 61 111
161 211 221 231 241 251 ISPV(1,J)
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.109375 0.1875 0.234375 0.25 VSPV(I)
0 NSSV
1.0 0.0 0.0 A10, A1X, ALY
1.0 0.0 0.0 A20, A2X, A2Y
0.0 AOO
0 1CONV
1.0 0.0 0.0 FO, FX, FY
Node X-coord. y-coord. Primary DOF
7  0.12500E-01 0.20000E-01  0.11083E-01
8 0.25000E-01 0.20000E-01  0.20366E-01 YA u=(10-x)x (x isincm)
9 0.37500E-01 0.20000E-01  0.26477E-01 <« 5cm
10  0.50000E-01 0.20000E-01 0.28619E-01 ———t5
12 0.12500E-01 0.40000E-01 0.26859E-01
13 0.25000E-01 0.40000E-01 0.48751E-01 u =0 LN BCIR P
14 0.37500E-01 0.40000E-01 0.63252E-01 |
15 0.50000E-01 0.40000E-01 0.68306E-01 8Cm SRt /}t=0
17  0.12500E-01 0.60000E-01  0.53199E-01 6o b o bi0
18  0.25000E-01 0.60000E-01 0.97014E-01
19  0.37500E-01 0.60000E-01  0.12487E+00 1.l |5 .
20 0.50000E-01 0.60000E-01  0.13443E+00 : Sri
22 0.12500E-01 0.80000E-01  0.10938E+00 0cm 20
23 0.25000E-01 0.80000E-01 0.18750E+00 _ _
24  0.37500E-01  0.80000E-01  0.23438E+00 A7 =S 250 G SO
25  0.50000E-01 0.80000E-01  0.25000E+00 Ay=4cm=0.04m
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Problem 13.38: Determine the eigenvalues of the rectangular membrane in
Fig. P8.48 using a 4 x 4 mesh of linear rectangular elements in the half-domain.
Use c = 1.0.

Solution: Input data and partial output are included in Box 13.38.

Box 13.38: Input data and edited output for the 4 x 4 mesh of linear rectangular

elements.

Prob 8.48: Frequencies of a square membrane (rectangles)

o 2 2 1 ITYPE, IGRAD, ITEM,NEIGN

12 0 NVALU, NVCTR

1 4 1 2 IELTYP,NPE ,MESH,NPRNT

4 4 NX, NY

0.0 0.0125 0.0125 0.0125 0.0125 DX(D)

0.0 0.02 0.02 0.02 0.02 DY(D)

13 NSPV

11 21 31 41 51 61 111

161 211 221 231 241 251 ISPV(1,J)

1.0 0.0 0.0 A10, A1X, AlY

1.0 0.0 0.0 A20, A2X, A2Y

0.0 AOO

0] 1CONV

1.0 0.0 0.0 co, CX, Cy

SOLUTION :
Number of Jacobi iterations ..... NROT = 150
Eigenvalue( 1) = 0.884549E+05 Frequency = 0.29741E+03
Eigenvalue( 2) = 0.761512E+05 Frequency = 0.27596E+03
Eigenvalue( 3) = 0.702742E+05 Frequency = 0.26509E+03
Eigenvalue( 4) = 0.526383E+05 Frequency = 0.22943E+03
Eigenvalue( 5) = 0.297534E+05 Frequency = 0.17249E+03
Eigenvalue( 6) = 0.403291E+05 Frequency = 0.20082E+03
Eigenvalue( 7) = 0.344521E+05 Frequency = 0.18561E+03
Eigenvalue( 8) = 0.208052E+05 Frequency = 0.14424E+03
Eigenvalue( 9) = 0.174488E+05 Frequency = 0.13209E+03
Eigenvalue( 10) = 0.115714E+05 Frequency = 0.10757E+03
Eigenvalue( 11) = 0.849973E+04 Frequency = 0.92194E+02
Eigenvalue( 12) = 0.262268E+04 Frequency = 0.51212E+02
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Problem 13.39: Determine the eigenvalues of the circular membrane problem in
Fig. P8.49 with a mesh of four quadratic triangular elements. Use ¢ = 1.0.

Solution: Input data and partial output are included in Box 13.39.

Box 13.39: Input data and edited output for the mesh of four quadratic elements.

Prob 13.39: Vibrations of a circular membrane (quadratic triangles)

o 2 2 1 ITYPE, IGRAD, ITEM,NEIGN
10 1
0O 6 0 O IELTYP,NPE,MESH,NPRNT
4 15 NEM, NNM
1 3 10 2 7 6
3 12 10 8 11 7
3 5 12 4 9 8
10 12 15 11 14 13 NOD(1,J)
0.0 0.0 0.25 0.0 0.5 0.0
0.75 0.0 1.0 0.0 0.17677 0.17677
0.46194 0.19134 0.73559 0.14632 0.98078 0.19509
0.35355 0.35355 0.62360 0.41668 0.92388 0.38268
0.53033 0.53033 0.83147 0.55557 0.70711 0.70711 GLXY(l,J)
5 NSPV
51 91 121 141 151 ISPV(l,J)
1.0 0.0 0.0 A10, A1X, ALY
1.0 0.0 0.0 A20, A2X, A2Y
0.0 AO0O
0 1CONV
1.0 0.0 0.0 co, CX, CY
Eigenvalue( 1) = 0.587824E+03 Frequency = 0.24245E+02
Eigenvalue( 2) = 0.554397E+03 Frequency = 0.23546E+02
Eigenvalue( 3) = 0.489670E+03 Frequency = 0.22128E+02
Eigenvalue( 4) = 0.280291E+03 Frequency = 0.16742E+02
Eigenvalue( 9) = 0.313889E+02 Frequency = 0.56026E+01
Eigenvalue( 10) = 0.579571E+01 Frequency = 0.24074E+01
\\\\‘\\\\‘\\\\‘\\\\‘\\\\
3.00 — =
2.00 =
1.00 =
= 0.00 3 =
g E 3
s -1.00 —
o 3 E
] 2007 £
-3.00 — e =
4.00 — ,/ E
5.00 3 =
7\\\\‘\\\\‘\\\\‘\\\\‘\\\\7

0.00 0.20 0.40 0.60 0.80 1.00

Radial distance, x
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Problem 13.40: Determine the transient response of the problem in Fig. P8.49 (see
Problem 13.39). Assume zero initial conditions, ¢ =1 and fy = 1. Use a = vy = 0.5,
At = 0.05, and plot the center deflection versus time ¢ for ¢ = 0 to t = 2.4.

Solution: Input data and partial output are included in Boxes 13.40a and 13.40b.

Box 13.40a: Input data for the transient response of a circular membrane (mesh
of four quadratic elements is used).

Prob 13.40: Transient analysis of a circular membrane (quadr tri)

0]
0]

2
6
15
3 1
12 1
5 1
12 151

-0 0.0

.75 0.0

-46194 0.19134

-3

-5

2
0]
0]
0] 1
2

=
R RhON
rOPFP N

OCQOUIUIOO0OO0OO0OO0OO0OWWrLMOO

1

5355 0.35355
3033 0.53033

1 91 12 1
.0 0.0 0.0

e
oo
oo
oo
oo
oo

OO
o

5 0.0
0.0
3559 0.14632

2360 0.41668
0.83147 0.55557

6
7
8
13
0.2
1.0
0.7
0.6

141 151
0.0

0.0

1.0E-5

ITYPE, IGRAD, ITEM,NEIGN
IELTYP,NPE,MESH,NPRNT
NEM, NNM

NoD(1 ,J)
0.5 0.0
0.17677 0.17677
0.98078 0.19509
0.92388 0.38268
0.70711 0.70711
NSPV
ISPV(1,J)
VSPV(1)
NSSV
A10, A1X, AlY
A20, A2X, A2Y

GLXY(1,J)

AOO

1CONV

FO, FX, FY

co, CX, CY
NTIME,NSTP, INTVL, INTIAL
DT,ALFA,GAMA,EPSLN

Mesh of 4 quadratic triangles

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.




SOLUTIONS MANUAL

379

Box 13.40b: Edited output for the transient response of a circular membrane
(mesh of four quadratic elements is used).

AP WNE

O WNPE

*TIME* = 0.50000E-01

*TIME* = 0.50000E+00

0.00000E+00
0.25000E+00
0.50000E+00
0.75000E+00
0.10000E+01

*TIME* = 0.10000E+01

0.00000E+00
0.25000E+00
0.50000E+00
0.75000E+00
0.10000E+01

*TIME* = 0.20000E+01

Time Step Number = 1

Node X-coord. y-coord. Primary DOF
1 0.00000E+00 0.00000E+00 0.50716E-03
2 0.25000E+00 0.00000E+00 0.63430E-03
3 0.50000E+00 0.00000E+00 0.41805E-03
4 0.75000E+00 0.00000E+00 0.82401E-03
5 0.10000E+01 0.000OOCE+00  0.00O000E+00

Time Step Number = 10

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

0.10904E+00
0.11163E+00
0.11476E+00
0.83341E-01
0.00000E+00

Time Step Number = 20

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

0.48343E+00
0.42507E+00
0.30774E+00
0.16717E+00
0.00000E+00

Time Step Number = 40

1 0.00000E+00 0.00000E+00 0.22552E+00
2 0.25000E+00 0.00000E+00 0.22546E+00
3 0.50000E+00 0.00000E+00 0.18105E+00
4 0.75000E+00 0.00000E+00 0.10533E+00
5 0.10000E+01 0.00000E+00 0.00000E+00
1.00 e b b b b
0.80 5 At=0.05, =0.5, y=0.5 -
~ 0.60 — —
Q: . C
S - c
\§ 0.40 ? ;
el - E
.8 0.20 — —
3 - =
% 0.00 - —
Q — -
-0.20 — —
-0.40 — —
T [TTT T[T T T T[T T T [TTTT B

0.00 0.50 1.00 1.50 2.00 2.50

Time, ¢
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Problem 13.41: Analyze the viscous flow problem in Problem 10.8 using an 8 x 8
mesh of linear rectangular elements. Plot the horizontal velocity «(0.5,y) versus y,
and the pressure along the top surface of the cavity. Investigate the effect of the
penalty parameter on the solution (see Fig. P10.8).

Solution: Input data and partial output are included in Boxe 13.41. Also, see Fig.
13.41 for plots of the velocity v;(0.5,y) versus y and P(x,0.9375) versus z.

Box 13.41: Input data and partial output for the lid-driven cavity problem
(uniform mesh of 8 x 8 rectangular elements is used).

Prob. 13.41: Steady flow of viscous incompressible fluid in a cavity

1 1 0 0 O ITYPE, ISTRS, ITEM,NEIGN
1 4 1 O IEL, NPE, MESH, NPRNT
8 8 NX, NY
0.0 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 X0, DX(I)
0.0 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 YO, DY(Il)
64 NSPV
11 12 21 22 31 32 4 1 4 2 51 52
6 1 6 2 71 7 2 81 8 2 91 92 101 102
181 182 191 192 271 272 281 281 361 362
37 1 372 451 452 461 462 541 542 551 552
631 632 641 642 721 722 731 732 741 742
751 752 761 762 771 772 781 782 791 792
801 802 811 812
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.38268 0.0
0.7071 0.0 0.92388 0.0 1.0 0.0 0.92388 0.0 0.7071 0.0
0.38268 0.0 0.0 0.0
0 NSSV
1.0 1.0E2 AMU, PENLTY
0.0 0.0 0.0 FO, FX, FY
Node X-coord. y-coord. Value of u Value of v
5 0.50000E+00 0.00000E+00 0.00000E+00 0.00000E+00
14  0.50000E+00 0.12500E+00 -0.56878E-01  0.29798E-02
23 0.50000E+00 0.25000E+00 -0.10743E+00 -0.58367E-02
32 0.50000E+00 0.37500E+00 -0.13835E+00 0.69427E-03
41  0.50000E+00 0.50000E+00 -0.18925E+00 -0.57231E-02
50 0.50000E+00 0.62500E+00 -0.16489E+00 0.95842E-03
59 0.50000E+00 0.75000E+00 -0.61431E-01 -0.27417E-02
68 0.50000E+00 0.87500E+00 0.29025E+00 0.14788E-02
77 0.50000E+00 0.10000E+01 0.10000E+01  0.00000E+00
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Figure 13.41: Plots of (a) velocity v,(0.5,y) versus y and (b) P(x,0.9375) versus x
for the lid-driven cavity (uniform mesh of 8 x 8 rectangular elements
is used).
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Problem 13.46: Analyze the cavity problem in Problem 13.41 for its transient
solution. Use p = 1.0, zero initial conditions, penalty parameter v = 102, time
parameter « = 0.5, and a time step of At = 0.005 to capture the evolution of
v2(0.5,y) with time.

Solution: Input data and partial output are included in Box 13.46.

Box 13.46: Input data and partial output for the transient analysis of the lid-
driven cavity problem (uniform mesh of 8 x 8 rectangular elements).

Prob. 13.46: Transient analysis of the lid-driven cavity problem
1 1 1 0 ITYPE,ISTRS, ITEM,NEIGN
1 4 1 0 IEL, NPE, MESH, NPRNT
8 8 NX, NY
0.0 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 X0, DX(I)
0.0 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 YO, DY(I)
64 NSPV
11 12 21 2 2 31 32 4 1 4 2 51 52
61 6 2 71 7 2 81 8 2 91 9 2 10 1 10 2
18 1 18 2 19 1 19 2 27 1 27 2 28 1 28 1 36 1 36 2
37 1 37 2 45 1 45 2 46 1 46 2 54 1 54 2 55 1 55 2
63 1 63 2 64 1 64 2 72 1 72 2 73 1 73 2 74 1 74 2
75 1 75 2 76 1 76 2 77 1 77 2 78 1 78 2 79 1 79 2
80 1 80 2 81 1 81 2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.38268 0.0
0.7071 0.0 0.92388 0.0 1.0 0.0 0.92388 0.0 0.7071 0.0
0.38268 0.0 0.0 0.0
0 NSSV
1.0 1.0ES8 AMU, PENLTY
0.0 0.0 0.0 FO, FX, FY
1.0 0.0 0.0 Co, CX, CYy
20 21 1 0 NTIME,NSTP, INTVL, INTIAL
0.005 0.5 0.5 1.0E-3 DT,ALFA,GAMA,EPSLN
1.00 oo b b b b b B
0.80 — —
2 0607 A $=0.02 C
2 ] ® £=0.03 C
> 040 ] ° t=0.05 -
i ® Steady —state (¢ =0.085) [
0.20 —| —
0.00 T[T TR T T[T T[T T TITI[TTTT
-04 -02 0.0 02 04 06 08 1.0
Distance, y
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Problem 13.48: Analyze the plane elasticity problem in Fig. P11.7 using 10 x 4
mesh of linear rectangular elements. Evaluate the results (i.e., displacements and
stresses) qualitatively. Use the plane stress assumption.

Solution: The loads at nodes 11, 22, 44 and 55 were calculated in the solution to
Problem 11.7. The input data and partial output are included in Boxes 13.48a
through 13.48c. Note that the vertical deflection as per the classical beam theory
is (for a beam fixed at the left end and subjected to pure bending moment at the
right end)
Moyax? hb® 2

uy () = — 2%1 where I = =3
Hence, the vertical deflection at node 11 or 55 as per the beam theory is uy(6) =
—0.54 x 107 3cm. The elasticity solution predicted with the chosen mesh is u,(6,0) =
—0.5144 x 10~3cm. Of course, the boundary conditions of elasticity are not quite the
same as the “fixed” boundary condition used in arriving at the beam deflection.

Box 13.48a: Input data for the static analysis of the plane stress problem in Fig.
P11.7 (nonuniform mesh of 10 x 4 rectangular elements is used).

Problem 13.48: Bending of a cantilever plate using elasticity egs

2 1 0 o0 ITYPE, IGRAD, ITEM,NEIGN

1 4 1 o0 IELTYP,NPE,MESH, NPRNT

10 4 NX, NY

0.0 0.125 0.125 0.25 0.25 0.5 0.75 0.75

1.0 1.0 1.25 X0,DX(1)

0.0 0.5 0.5 0.5 0.5 YO,DY(1)

6 NSPV

1 1 121 231 232 341 451 ISPV

0.0 0.0 00 00 0.0 0.0 VSPV

4 NSSV

11 1 22 1 44 1 55 1 1SSV

-187.5 -225.0 225.0 187.5 VSSV

1 LNSTRS

30.0E06 30.0E06 0.3 11.53846E06 1.0 E1,E2,ANU12,G12,THKNS
0.0 0.0 0.0 FO, FX, FY

Plane stress E =3x10" N/cm?, v=0.3
h=1lcm, M,=600N -cm
55

44

J .
l

45

° 22
o A{Eu u_/ﬁ

¢ 6cm >
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Box 13.48b: Deflections of the plane stress problem in Fig.

mesh of 10 x 4 rectangular elements is used).

P11.7 (nonuniform

Node

X-coord.

y-coord.

Value of u

Value of v

OCO~NOAAWNE

0.00000E+00
0.12500E+00
0.25000E+00
0.50000E+00
0.75000E+00
0.12500E+01
0.20000E+01
0.27500E+01
0.37500E+01
0.47500E+01
0.60000E+01
0.00000E+00
0.12500E+00
0.25000E+00
0.50000E+00
0.75000E+00
0.12500E+01
0.20000E+01
0.27500E+01
0.37500E+01
0.47500E+01
0.60000E+01
0.12500E+00
0.25000E+00
0.50000E+00
0.75000E+00
0.12500E+01
0.20000E+01
0.27500E+01
0.37500E+01
0.47500E+01
0.60000E+01
0.0000O0E+00
0.12500E+00
0.25000E+00
0.50000E+00
0.75000E+00
0.12500E+01
0.20000E+01
0.27500E+01
0.37500E+01
0.47500E+01
0.60000E+01

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.50000E+00
0.50000E+00
0.50000E+00
0.50000E+00
0.50000E+00
0.50000E+00
0.50000E+00
0.50000E+00
0.50000E+00
0.50000E+00
0.50000E+00
0.15000E+01
0.15000E+01
0.15000E+01
0.15000E+01
0.15000E+01
0.15000E+01
0.15000E+01
0.15000E+01
0.15000E+01
0.15000E+01
0.20000E+01
0.20000E+01
0.20000E+01
0.20000E+01
0.20000E+01
0.20000E+01
0.20000E+01
0.20000E+01
0.20000E+01
0.20000E+01
0.20000E+01

0.00000E+00

-0.37352E-05
-0.74728E-05
-0.14897E-04
-0.22359E-04
-0.36942E-04
-0.58041E-04
-0.79386E-04
-0.10646E-03
-0.13396E-03
-0.16520E-03

0.00000E+00

-0.18461E-05
-0.36899E-05
-0.73777E-05
-0.11029E-04
-0.18282E-04
-0.29024E-04
-0.39502E-04
-0.53253E-04
-0.66617E-04
-0.84050E-04

0.18461E-05
0.36899E-05
0.73777E-05
0.11029E-04
0.18282E-04
0.29024E-04
0.39502E-04
0.53253E-04
0.66617E-04
0.84050E-04
0.00000E+00
0.37352E-05
0.74728E-05
0.14897E-04
0.22359E-04
0.36942E-04
0.58041E-04
0.79386E-04
0.10646E-03
0.13396E-03
0.16520E-03

-0.44216E-05
-0.46542E-05
-0.53515E-05
-0.81369E-05
-0.12776E-04
-0.27563E-04
-0.63135E-04
-0.11462E-03
-0.20746E-03
-0.32777E-03
-0.51440E-03
-0.10905E-05
-0.13241E-05
-0.20262E-05
-0.48223E-05
-0.94826E-05
-0.24330E-04
-0.59949E-04
-0.11150E-03
-0.20443E-03
-0.32466E-03
-0.51167E-03
-0.13241E-05
-0.20262E-05
-0.48223E-05
-0.94826E-05
-0.24330E-04
-0.59949E-04
-0.11150E-03
-0.20443E-03
-0.32466E-03
-0.51167E-03
-0.44216E-05
-0.46542E-05
-0.53515E-05
-0.81369E-05
-0.12776E-04
-0.27563E-04
-0.63135E-04
-0.11462E-03
-0.20746E-03
-0.32777E-03
-0.51440E-03
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of 10 x 4 rectangular elements is used).

385

Box 13.48c: Stresses in the plane stress problem in Fig. P11.7 (nonuniform mesh

X-coord. y-coord. sigma-x sigma-y sigma-xy
0.6250E-01 0.2500E+00 -0.6701E+03 -0.1195E+01  0.2801E+00
0.1875E+00 0.2500E+00 -0.6702E+03 -0.1392E+01 0.8576E+00
0.3750E+00 0.2500E+00 -0.6670E+03 -0.8944E+00 0.1599E+01
0.6250E+00 0.2500E+00 -0.6674E+03 -0.1988E+01 0.2901E+01
0.1000E+01  0.2500E+00 -0.6553E+03 -0.8439E+00 0.4113E+01
0.1625E+01  0.2500E+00 -0.6363E+03 0.1668E+01  0.2497E+01
0.2375E+01  0.2500E+00 -0.6370E+03 -0.1882E+01 0.2429E+01
0.3250E+01 0.2500E+00 -0.6121E+03 0.1002E+01 0.2420E+01
0.4250E+01 0.2500E+00 -0.6127E+03  0.5985E+00 0.3200E+01
0.5375E+01  0.2500E+00 -0.5842E+03 0.2066E-01 -0.1109E+02
0.6250E-01 0.7500E+00 -0.2219E+03 -0.1148E+01 -0.2801E+00
0.1875E+00 0.7500E+00 -0.2216E+03 -0.1015E+01 -0.8576E+00
0.3750E+00 0.7500E+00 -0.2217E+03 -0.1320E+01 -0.1599E+01
0.6250E+00 0.7500E+00 -0.2194E+03 -0.1218E+01 -0.2901E+01
0.1000E+01  0.7500E+00 -0.2176E+03 -0.6825E-01 -0.4113E+01
0.1625E+01  0.7500E+00 -0.2148E+03  0.2441E+00 -0.2497E+01
0.2375E+01  0.7500E+00 -0.2094E+03 0.3678E+00 -0.2429E+01
0.3250E+01 0.7500E+00 -0.2066E+03 -0.1173E+01 -0.2420E+01
0.4250E+01 0.7500E+00 -0.1993E+03 0.3700E+01 -0.3200E+01
0.5375E+01  0.7500E+00 -0.2097E+03 -0.1637E+01 0.1109E+02
0.6250E-01 0.1250E+01 0.2219E+03 0.1148E+01 -0.2801E+00
0.1875E+00 0.1250E+01 0.2216E+03  0.1015E+01 -0.8576E+00
0.3750E+00 0.1250E+01 0.2217E+03  0.1320E+01 -0.1599E+01
0.6250E+00 0.1250E+01 0.2194E+03 0.1218E+01 -0.2901E+01
0.1000E+01 0.1250E+01 0.2176E+03 0.6825E-01 -0.4113E+01
0.1625E+01  0.1250E+01  0.2148E+03 -0.2441E+00 -0.2497E+01
0.2375E+01  0.1250E+01  0.2094E+03 -0.3678E+00 -0.2429E+01
0.3250E+01 0.1250E+01 0.2066E+03 0.1173E+01 -0.2420E+01
0.4250E+01 0.1250E+01  0.1993E+03 -0.3700E+01 -0.3200E+01
0.5375E+01 0.1250E+01 0.2097E+03  0.1637E+01 0.1109E+02
0.6250E-01 0.1750E+01 0.6701E+03 0.1195E+01  0.2801E+00
0.1875E+00 0.1750E+01 0.6702E+03  0.1392E+01 0.8576E+00
0.3750E+00 0.1750E+01 0.6670E+03  0.8944E+00 0.1599E+01
0.6250E+00 0.1750E+01 0.6674E+03  0.1988E+01 0.2901E+01
0.1000E+01 0.1750E+01  0.6553E+03  0.8439E+00 0.4113E+01
0.1625E+01 0.1750E+01 0.6363E+03 -0.1668E+01 0.2497E+01
0.2375E+01 0.1750E+01 0.6370E+03  0.1882E+01 0.2429E+01
0.3250E+01 0.1750E+01 0.6121E+03 -0.1002E+01 0.2420E+01
0.4250E+01 0.1750E+01 0.6127E+03 -0.5985E+00 0.3200E+01
0.5375E+01 0.1750E+01 0.5842E+03 -0.2066E-01 -0.1109E+02

YA
b 55
T 44
2cm 33
l 22
11 P x
| 6cm »|
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Problem 13.60: Analyze the plane elasticity problem in Fig. P11.7 for natural
frequencies. Use a density of p = 0.0088 kg/cm?.

Solution: The input data and partial output are included in Box 13.60.
Box 13.60: Input data and partial output for the vibration analysis of the plane

stress problem in Fig. P11.7 (nonuniform mesh of 10 x 4 rectangular
elements is used).

Problem 13.60: Vibration of a cantilever plate using plane stress element

2 1 2 1 ITYPE, IGRAD, ITEM,NEIGN
10 0 NVALU, NVCTR
1 4 1 0 IELTYP,NPE ,MESH, NPRNT
10 4 NX, NY
0.0 0.125 0.125 0.25 0.25 0.5 0.75 0.75
1.01.0 1.25 X0,DX(1)
0.0 0.5 0.5 0.5 0.5 Y0,DY(1)
6 NSPV
1 1 121 231 232 341 451 ISPV
1 LNSTRS
30.0E06 30.0E06 0.3 11.53846E06 1.0 E1,E2,ANU12,G12, THKNS
0.0088 0.0 0.0 CO, CX, CY

OUTPUT from program *** FEM2D *** by J. N. REDDY

MATERIAL PROPERTIES OF THE SOLID ANALYZED:

Eigenvalue(
Eigenvalue(
Eigenvalue(
Eigenvalue(
Eigenvalue(
Eigenvalue(
Eigenvalue(
Eigenvalue(
Eigenvalue(
Eigenvalue( 10)

0.126100E+13 Frequency =
0.123934E+13 Frequency =
0.121864E+13 Frequency =
0.120075E+13 Frequency =
0.119229E+13 Frequency =
0.887367E+12 Frequency =
0.875914E+12 Frequency =
0.774362E+12 Frequency =
0.773088E+12 Frequency =
0.531354E+12 Frequency =

(Only ten frequencies were requested - these are the

Thickness of the body, THKNS ..._.._.._...... = 0.1000E+01
Modulus of elasticity, E1 ___.__._..__.__.__. = 0.3000E+08
Modulus of elasticity, E2 ____.____.__.__.__. = 0.3000E+08
Poisson s ratio, ANU12 ... . ... ... . o...... = 0.3000E+00
Shear modulus, G12 .. ... ... i eeannn- = 0.1154E+08
PARAMETERS OF THE DYNAMIC ANALYSIS:
Coefficient, CO ... ... ... .. e acanann = (0.8800E-02
Coefficient, CX ... ... ..o ieeaeaaans = 0.0000E+00
Coefficient, CY ... ... .. i eeeaans = 0.0000E+00

highest ten)

0.11229E+07
0.11133E+07
0.11039E+07
0.10958E+07
0.10919E+07
0.94200E+06
0.93590E+06
0.87998E+06
0.87925E+06
0.72894E+06
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Problem 13.67: Analyze the plate problem in Fig. P12.2 using (a) 2x 4 and (b) 4% 8
meshes of CPT(N) elements in the half-plate, and compare the maximum deflections
and stresses. Use £ = 107 psi, v = 0.25, h = 0.25 in. and gy = 10 1b/in.

Solution: Note that a plate strip of unit width along the xz-axis may be modeled. The
input data and partial output are included in Boxes 13.67a and 13.67b.

Box 13.67a: Input data and partial output for the plate problem in Fig. P12.2

(uniform mesh of 2 x 4 elements is used).

Problem 13.67a: Bending of a cantilever plate--CPT(N)

4 1 0 O ITYPE, IGRAD, ITEM,NEIGN

1 4 1 O IEL, NPE, MESH, NPRNT

2 4 NX, NY

0.0 2.5 2.5 X0, DX(I)

0.0 2.5 2.5 2.5 2.5 YO, DY(Il)

9 NSPV

11 1 2 1 3 2 1 2 2 2 3

31 3 2 3 3 ISPV(I,J)

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 VSPV(I)

3 NSSV

13 1 14 1 15 1 I1SSvV(l1,J)

12.5 25.0 12.5 VSSV(I)

1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25 E1,E2,ANU12,G12,...

0.0 0.0 0.0 FO, FX, FY

Node X-coord. y-coord. deflec. w X-rotation y-rotation
4  0.00000E+00 0.25000E+01  0.19679E-01  0.31193E-02 0.19671E-01
5 0.25000E+01  0.25000E+01 0.22091E-01 0.75123E-16 0.20484E-01
6 0.50000E+01  0.25000E+01 0.19679E-01 -0.31193E-02 0.19671E-01
7 0.00000E+00 0.50000E+01  0.75492E-01  0.26409E-02  0.34988E-01
8 0.25000E+01 0.50000E+01 0.78068E-01 0.16786E-15 0.34732E-01
9 0.50000E+01 0.50000E+01  0.75492E-01 -0.26409E-02 0.34988E-01
10 0.00000E+00  0.75000E+01  0.15559E+00 0.16643E-02 0.44033E-01
11  0.25000E+01  0.75000E+01 0.15731E+00 0.27205E-15 0.43639E-01
12 0.50000E+01  0.75000E+01  0.15559E+00 -0.16643E-02 0.44033E-01
13 0.00000E+00 0.10000E+02 0.24768E+00 0.91430E-03 0.47094E-01
14  0.25000E+01  0.10000E+02 0.24878E+00 0.20634E-15 0.46846E-01
15 0.50000E+01  0.10000E+02  0.24768E+00 -0.91430E-03 0.47094E-01
X-coord. y-coord. sigma-x sigma-y sigma-xy

0.5283E+00 0.5283E+00 -0.1789E+04 -0.8624E+04 -0.1198E+04

0.5283E+00 0.1972E+01 -0.5910E+03 -0.7845E+04 -0.1498E+04

0.1972E+01  0.5283E+00 -0.2230E+04 -0.9562E+04 -0.4551E+02

0.1972E+01  0.1972E+01 -0.1294E+04 -0.7569E+04 -0.3459E+03
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Box 13.67b: Input data and partial output for the plate problem in Fig. P12.2
(uniform mesh of 4 x 8 CPT(N) elements is used).

Problem 13.67b: Bending of a cantilever plate--CPT(N)

4 1 0 0 ITYPE, IGRAD, ITEM,NEIGN
1 4 1 0 IEL, NPE, MESH, NPRNT
4 8 NX, NY
0.0 1.25 1.25 1.25 1.25 X0, DX(I)
0.0 1.25 1.25 1.25 1.25
1.25 1.25 1.25 1.25 YO, DY(l)
15 NSPV
1 1 1 2 1 3 2 1 2 2 2 3
3 1 3 2 3 3 4 1 4 2 4 3
5 1 5 2 5 3 I1SPV(I1,J)
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 VSPV(I)
5 NSSV
41 1 42 1 43 1 44 1 45 1 1SSV(1,J)
6.25 12.5 12.5 12.5 6.25 VSSV(l)
1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25 E1,E2,ANU12,G12, ...
0.0 0.0 0.0 FO, FX, FY
Node X-coord. y-coord. deflec. w X-rotation y-rotation
6 0.00000E+00 0.12500E+01  0.45692E-02 0.10728E-02 0.48607E-02
7 0.12500E+01 0.12500E+01 0.56632E-02 0.22657E-03 0.54417E-02
8 0.25000E+01 0.12500E+01  0.58457E-02 -0.34104E-15 0.56179E-02
9 0.37500E+01 0.12500E+01 0.56632E-02 -0.22657E-03 0.54417E-02
10 0.50000E+01 0.12500E+01 0.45692E-02 -0.10728E-02 0.48607E-02
15 0.50000E+01 0.25000E+01 0.19435E-01 -0.14134E-02 0.98734E-02
20 0.50000E+01 0.37500E+01 0.43563E-01 -0.14550E-02 0.14111E-01
25 0.50000E+01 0.50000E+01 0.75357E-01 -0.13065E-02 0.17546E-01
30 0.50000E+01 0.62500E+01  0.11323E+00 -0.10749E-02 0.20196E-01
35 0.50000E+01 0.75000E+01  0.15563E+00 -0.82104E-03 0.22069E-01
40 0.50000E+01 0.87500E+01  0.20100E+00 -0.59641E-03 0.23171E-01
41  0.00000E+00 0.10000E+02  0.24783E+00 0.46503E-03 0.23543E-01
42 0.12500E+01 0.10000E+02 0.24863E+00 0.30049E-03 0.23485E-01
43 0.25000E+01 0.10000E+02 0.24894E+00 -0.65314E-14 0.23473E-01
44 0.37500E+01 0.10000E+02 0.24863E+00 -0.30049E-03 0.23485E-01
45 0.50000E+01 0.10000E+02 0.24783E+00 -0.46503E-03 0.23543E-01
X-coord. y-coord. sigma-x sigma-y sigma-xy
0.2642E+00 0.2642E+00 -0.1557E+04 -0.7856E+04 -0.1596E+04
0.2642E+00 0.9858E+00 -0.6436E+03 -0.8642E+04 -0.2455E+04
0.9858E+00 0.2642E+00 -0.2176E+04 -0.9368E+04 -0.3455E+03
0.9858E+00 0.9858E+00 -0.1526E+04 -0.8578E+04 -0.1204E+04
1 ! ! —7>
2 B e e
! ! ! !
3 | | | |
I S S -
| | | |
5 | | | |
10 15 45
Y x
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Problem 13.69: Repeat Problem 13.67 with an 4 x 8 mesh of linear plate elements
and a 2 x 4 mesh of nine-node quadratic plate elements based on the first-order plate

theory.

Solution: The input data and partial output are included in Boxes 13.69a and 13.69b.

Box 13.69a: Input data and partial output for the plate problem in Fig. P12.2
(uniform mesh of 4 x 8 of Q4 elements is used).

Problem 13.69a: Bending of a cantilever plate--SDT

3 1 0 0 ITYPE, IGRAD, ITEM,NEIGN
1 4 1 0 IEL, NPE, MESH, NPRNT
4 8 NX, NY
0.0 1.25 1.25 1.25 1.25 X0, DX(I)
0.0 1.25 1.25 1.25 1.25
1.25 1.25 1.25 1.25 YO, DY(l)
15 NSPV
1 1 1 2 1 3 2 1 2 2 2 3
3 1 3 2 3 3 4 1 4 2 4 3
5 1 5 2 5 3 ISPV(l,J)
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 VSPV(I)
5 NSSV
41 1 42 1 43 1 44 1 45 1 ISSvV(l,J)
6.25 12.5 12.5 12.5 6.25 VSSV(I)
1.0E7 1.0E7 0.25 0.4E7 O0.4E7 0.4E7 0.25 E1,E2,ANU12,G12, ...
0.0 0.0 0.0 FO, FX, FY
Node X-coord. y-coord. deflec. w X-rotation y-rotation
10 0.50000E+01 0.12500E+01 0.44671E-02 0.17611E-02 -0.78276E-02
15 0.50000E+01 0.25000E+01 0.19099E-01 0.23954E-02 -0.15928E-01
20 0.50000E+01 0.37500E+01 0.43181E-01 0.24843E-02 -0.22636E-01
25 0.50000E+01 0.50000E+01 0.74983E-01 0.21559E-02 -0.28075E-01
30 0.50000E+01 0.62500E+01 0.11286E+00 0.17640E-02 -0.32297E-01
41  0.00000E+00  0.10000E+02  0.24742E+00 -0.68934E-03 -0.37657E-01
42  0.12500E+01 0.10000E+02 0.24815E+00 -0.47107E-03 -0.37669E-01
43  0.25000E+01 0.10000E+02  0.24845E+00 -0.18010E-14 -0.37563E-01
44  0.37500E+01 0.10000E+02 0.24815E+00 0.47107E-03 -0.37669E-01
45 0.50000E+01 0.10000E+02 0.24742E+00 0.68934E-03 -0.37657E-01
X-coord. y-coord. sigma-x sigma-y sigma-xy
sigma-xz sigma-yz
0.6250E+00 0.6250E+00 -0.1319E+04 -0.8449E+04 -0.5037E+03
-0.7114E+02 -0.7884E+02
0.1875E+01 0.6250E+00 -0.2301E+04 -0.9551E+04 -0.2611E+03
-0.7114E+02 0.1748E+03
0.3125E+01 0.6250E+00 -0.2301E+04 -0.9551E+04 0.2611E+03
0.7114E+02 0.1748E+03
0.4375E+01 0.6250E+00 -0.1319E+04 -0.8449E+04 0.5037E+03
0.7114E+02 -0.7884E+02
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Box 13.69b: Input data and partial output for the plate problem in Fig. P12.2
(uniform mesh of 2 x 4 of Q9 elements is used).

Problem 13.69b: Bending of a cantilever plate--FSDT

3 1 0 ITYPE, IGRAD, ITEM,NEIGN
2 9 1 IEL, NPE, MESH, NPRNT
2 4 NX, NY
0.0 2.5 2.5 X0, DX(I)
0.0 2.5 25 2.5 2.5 YO, DY(l)
15 NSPV
11 12 13 21 2 2 2 3
31 3 2 3 3 4 1 4 2 4 3
51 5 2 5 3 I1SPV(l,J)
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 VSPV(I)
5 NSSV
41 1 42 43 1 44 1 45 1 1SSV(l1,J)
6.25 12.5 12.5 12.5 6.25 VSSV(I)
1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25 E1,E2,ANU12,G12,...
0.0 0.0 0.0 FO, FX, FY
Node X-coord. y-coord. deflec. w X-rotation y-rotation
10 0.50000E+01  0.12500E+01  0.44331E-02 0.18711E-02 -0.80203E-02
15 0.50000E+01  0.25000E+01  0.19219E-01 0.24401E-02 -0.16063E-01
20 0.50000E+01  0.37500E+01  0.43537E-01 0.24463E-02 -0.22652E-01
25 0.50000E+01  0.50000E+01  0.75537E-01 0.21228E-02 -0.28099E-01
30 0.50000E+01  0.62500E+01  0.11358E+00 0.17336E-02 -0.32312E-01
40 0.50000E+01 0.87500E+01 0.20176E+00 0.85669E-03 -0.37089E-01
41  0.00000E+00 0.10000E+02  0.24885E+00 -0.32113E-03 -0.37601E-01
42  0.12500E+01 0.10000E+02  0.24934E+00 -0.41224E-03 -0.37695E-01
43  0.25000E+01 0.10000E+02  0.24972E+00 -0.30984E-13 -0.37504E-01
44  0.37500E+01 0.10000E+02  0.24934E+00 0.41224E-03 -0.37695E-01
45 0.50000E+01 0.10000E+02  0.24885E+00 0.32113E-03 -0.37601E-01
X-coord. y-coord. sigma-x sigma-y sigma-xy
sigma-xz sigma-yz
0.5283E+00 0.5283E+00 -0.1224E+04 -0.8471E+04 -0.5521E+03
-0.5876E+02 -0.5962E+02
0.5283E+00 0.1972E+01 -0.2164E+03 -0.7983E+04 -0.3795E+03
-0.3272E+02  0.3187E+02
0.1972E+01  0.5283E+00 -0.2372E+04 -0.9714E+04 -0.2572E+03
-0.8276E+02  0.1556E+03
0.1972E+01  0.1972E+01 -0.1279E+04 -0.7431E+04 -0.4473E+03
-0.8725E+01  0.6413E+02
1 ! ! —1> ¥
e e e e o
, , , ,
3 | | | |
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| | | |
5 | | | |
10 15 45
Y x
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Problem 13.70: Analyze the plate bending problem in Fig. P12.3 with the CPT
(C) elements. Use the mesh shown in the figure, and take E = 107 psi, v = 0.25,
h = 0.25 in. and go = 10 1b/in?.

YA
7|¢—5"—>»i9
| .L
I If
ow _, i sp—4-54 5 %—wzo
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Y/ 1) .
i 12 \13
2
 w i w_
: 0x0y : oy
|

Solution: The input data and partial output are included in Box 13.70 for 2 x 2 mesh
of CPT(C) elements. We take a = b = 10 in.

Box 13.70: Input data and partial output for the plate problem of Fig. P12.3.

Problem 13.70: Bending of a square plate (Prob 12.3)--CPT(C)

5 1 0 O ITYPE, IGRAD, ITEM,NEIGN

1 4 1 O IEL, NPE, MESH, NPRNT

2 2 NX, NY

0.0 2.5 2.5 X0, DX(I)

0.0 2.5 2.5 YO, DY(l)

12 NSPV

12 1 3 1 4 2 3 3 1 3 3

4 2 6 1 6 3 7 2 9 1 9 3 I1SPV(I1,J)

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

(0] NSSV

1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25 E1,E2,ANU12,G12,..,THKNS

10.0 0.0 0.0 FO, FX, FY

Node X-coord. y-coord. deflec. w X-rotation y-rotation
1 0.00000E+00 0.000OOOE+00  0.10189E+00 0.00000E+00  0.0000OE+00
2 0.25000E+01 0.00O0OOCE+00 0.71852E-01 -0.28389E-01 0.00000E+00
3 0.50000E+01 0.00000E+00  0.0000OE+00 -0.40707E-01  0.0O0OOOE+00
4  0.00000E+00 0.25000E+01 0.10507E+00 0.00000E+00  0.24985E-02
5 0.25000E+01 0.25000E+01 0.73270E-01 -0.28671E-01  0.14430E-02
6 0.50000E+01 0.25000E+01 0.00000E+00 -0.40833E-01 0.00000E+00
7 0.00000E+00 0.50000E+01  0.11635E+00 0.000OOE+00  0.73965E-04
8 0.25000E+01 0.50000E+01  0.79587E-01 -0.30646E-01  0.43428E-02
9 0.50000E+01 0.50000E+01  0.00000E+00 -0.44033E-01 0.00000E+00
X-coord. y-coord. sigma-x sigma-y sigma-xy
0.5283E+00 0.5283E+00 0.1284E+05 0.2055E+04  0.8893E+03
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Problem 13.71: Analyze the plate bending problem in Fig. P12.4 with the CPT
(C) elements. Use the mesh shown in the figure, and take E = 107 psi, v = 0.25,
h = 0.25 in. and go = 10 1b/in?.
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q(x,y) =q, (2)
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Solution: The input data and partial output are included in Box 13.71 for 4 x 2 mesh
of CPT(C) elements. We take a = 10 in. and b =5 in.

Box 13.71: Input data and partial output for the plate problem of Fig. P12.4.

ITYPE, IGRAD, ITEM,NEIGN
IEL, NPE, MESH, NPRNT
NX, NY

X0, DX(1)

YO, DY(1)

NSPV

ISPV(1,J)

VSPV(1)

NSSV
E1,E2,ANU12,G12, ...
FO, FX, FY

-0.4638E+03
0.2797E+04
0.3101E+03

X-rotation

0.00000E+00
0.43387E-02
0.49391E-02
0.43107E-02
0.27373E-02

sigma-y

Problem 13.71: Bending of a rectangular plate--CPT(C)
5 1 0 O
1 4 1 O
4 2
0.0 2.5 2.5 2.5 2.5
0.0 2.5 2.5
24
11 1 2 1 3 1 4 2 3 3 3
4 3 53 6 1 6 2 6 3 6 4
111 11 2 11 3 11 4 12 1 12 2
131 13 2 14 1 14 2 15 1 15 2
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0
1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25
0.0 0.5 0.0
Node X-coord. y-coord. deflec. w
1 0.00000E+00 0.0000OE+00  0.00000E+00
2 0.25000E+01 0.00OOOE+00  0.48452E-02
3 0.50000E+01 0.0000OCE+00 0.13736E-01
4  0.75000E+01 0.00000E+00  0.22636E-01
5 0.10000E+02  0.00000E+00  0.31321E-01
X-coord. y-coord. sigma-x
0.5283E+00 0.5283E+00 -0.2276E+04
0.9472E+01 0.1972E+01  0.5033E+03
0.4472E+01 0.4472E+01  0.8189E+02

y-rotation

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

sigma-xy
-0.8866E+02
0.1672E+04
0.2266E+04
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Problem 13.72: Analyze the plate bending problem in Fig. P12.8 with the CPT
(C) elements. Use the data shown in the figure.

E, =30x10° psi, E, =0.75x10° psi,
v, =0.25,G,, = 0.375x10° psi
h=21in, q, =100 lb/in

b=151in

|¢——a =20in ——»

Solution: The input data and partial output are included in Box 13.72 for 2 x 2 mesh
of CPT(C) elements.

Box 13.72: Input data and partial output for the plate problem of Fig. P12.8.

Node

abhWN P

[

OCQOO0OOOCOVWOWRLRNOONEFU

1
4
2

0
1

0
0

w o

(o) e]
w ol

OO0 O0OO~NWE ao

NAWN
Wk AW

QOO0
QOO0

30.0E6 0.75E6
2.0
100.0 0.0

X-coord.
0.00000E+00
0.50000E+01
0.10000E+02
0.00000E+00
0.50000E+01

X-coord.
0.8943E+01
0.1057E+01
0.6057E+01

~N O
al

1
4
7
9
0.
0.
0.
0.
0.

ADNN D
000 WON
00O

PR W

0
0
0
0
2

0.0

y-coord.
0.00000E+00
0.00000E+00
0.00000E+00
0.37500E+01
0.37500E+01

y-coord.
0.7925E+00
0.6708E+01
0.6708E+01

Problem 13.72: Bending of a rectangular plate (Prob 12.8)--CPT(C)

ITYPE, IGRAD, ITEM,NEIGN
IEL, NPE, MESH, NPRNT
NX, NY

X0, DX(1)

YO, DY(D)

NSPV

NN P
P WN

ISPV(1,J)

[eNele] 0 O W
[eNeoNe] O o w

VSPV(1)
NSSV

5 0.375E6 0.375E6 0.375E6

E1,E2,ANU12,G12,G13,G23, THKNS

FO, FX, FY
deflec. w X-rotation y-rotation
0.24556E-02 0.0000OCE+00  0.0OOOOE+00
0.13258E-02 -0.93499E-03 0.00000E+00
0.00000E+00  0.000OOE+00  0.0OO00E+00
0.22172E-02 0.00000E+00 -0.79161E-03
0.12060E-02 -0.82624E-03 -0.18107E-03
sigma-x sigma-y sigma-xy
-0.3918E+04 -0.2247E+02 0.2886E+01
-0.1055E+04  0.1729E+03 -0.1011E+03
-0.2332E+01 0.3950E+02 -0.1784E+03
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Problem 13.73: Analyze the plate bending problem in Fig. P12.3 with the SDT
elements. Use the mesh shown in the figure, and take E = 107 psi, v = 0.25, h = 0.25
in. and gop = 10 1b/in?.
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Solution: The input data and partial output are included in Box 13.73 for 2 x 2 mesh
of quadratic SDT elements. We take a = b = 10 in.

nNe o o

Box 13.73: Input data and partial output for the plate problem of Fig. P12.3.

Node X-coord. y-coord. deflec. w X-rotation y-rotation
1 0.00000E+00 0.00OOOCE+00 0.93767E-01  0.0000OOCE+00  0.0OOOOE+00
2 0.12500E+01 0.0OOOOOE+00 0.86732E-01 0.10873E-01  0.00000E+00
3 0.25000E+01 0.0OOOOOE+00 0.66813E-01 0.20349E-01  0.00000E+00
4 0.37500E+01 0.00000E+00 0.36340E-01 0.27044E-01  0.0000OE+00
5 0.50000E+01 0.0OOOOE+00 0.00000E+00  0.29577E-01  0.00000E+00
6 0.00000E+00 0.12500E+01  0.94247E-01  0.00OOOE+00 -0.81810E-03

10 0.50000E+01 0.12500E+01 0.00000E+00 0.30301E-01  0.00000E+00
11  0.00000E+00 0.25000E+01 0.95918E-01 0.00000E+00 -0.18977E-02
15 0.50000E+01 0.25000E+01 0.0000OE+00 0.30226E-01  0.00000E+00
16 0.00000E+00 0.37500E+01 0.99196E-01 0.00000E+00 -0.35244E-02
20 0.50000E+01  0.37500E+01 0.00000E+00 0.31893E-01 0.00000E+00
21 0.00000E+00  0.50000E+01 0-10514E+00 0.000OOE+00 -0.61704E-02
22 0.12500E+01 O0.50000E+01 0.97256E-01 0.12163E-01 -0.56916E-02
23 0.25000E+01 0.50000E+01  0.74931E-01 0.22775E-01 -0.44741E-02
24 0.37500E+01 0.50000E+01 0.40758E-01 0.30276E-01 -0.24484E-02
25 0.50000E+01 0.50000E+01 0.00000E+00 0.33118E-01 0.00000E+00
X-coord. y-coord. sigma-x sigma-y sigma-xy
sigma-xz sigma-yz

0.5283E+00 0.5283E+00 0.1165E+05 0.2126E+04  0.5444E+02
-0.2085E+02 -0.6056E+01

0.4472E+01 0.4472E+01 0.2475E+04  0.1225E+03 0.1252E+04
-0.3055E+03 -0.1762E+01
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Problem 13.76: Analyze the annular plate in Fig. P12.5 using a four element mesh
of CPT(C) elements. Use E = 107 psi, v = 0.25, a = 10 in., b = 5 in., h = 0.25 in.
and Qo =1 1b/in.

Solution: The input data and partial output are included in Box 13.76. There seems
to be a problem with the CPT element as applied to circular plates. It
does not even preserve the symmetry expected (e.g., w3 = wr, wy = wg, etc.) and
the maximum deflection is only 60% of that predicted by the SDT element (see the
solution to Problem 13.77).

Box 13.76: Input data and partial output for the annular plate problem of Fig.

P12.5.
Prob 13.76: Bending of a an annular plate under an edge load -- CPT(C)
5 1 0 O
1 4 0 O
4 9
1 2 5 4 Qor 4@
2 3 6 5
4 5 8 7
5 6 9 8
5.0 0.0 7.5 0.0 10.0 0.0
3.5355 3.5355 5.3033 5.3033 7.07107 7.07107
0.0 5.0 0.0 7.5 0.0 10.0
9
13 23 31 33 61 72 82 91 92
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3
11 41 71
1.9635 3.927 1.9635
1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25
0.0 0.0 0.0
Node X-coord. y-coord. deflec. w X-rotation y-rotation
1 0.50000E+01 0.0000OE+00 0.61415E-02 -0.15437E-02 0.00000E+00
2 0.75000E+01 0.00OOOE+00  0.30838E-02 -0.15670E-02  0.00000E+00
3 0.10000E+02 0.0OOOOE+00 0.00000E+00 -0.15629E-02  0.00000E+00
4 0.35355E+01 0.35355E+01 0.50665E-02 -0.12687E-02 -0.87643E-03
5 0.53033E+01 0.53033E+01 0.25292E-02 -0.12284E-02 -0.32587E-03
6 0.70711E+01 0.70711E+01 0.00000E+00 -0.12307E-02 0.86927E-04
7 0.00000E+00 0.50000E+01  0.22195E-02 0.000OOE+00 -0.10787E-02
8 0.00000E+00 0.75000E+01 0.10317E-02 0.0000OE+00 -0.61397E-03
9 0.00000E+00 0.10000E+02  0.0000OOE+00 0.0OOOOOE+00  0.23336E-03
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Problem 13.77: Analyze the annular plate in Fig. P12.5 using a four element mesh
of four-node SDT elements. Use E = 107 psi, v = 0.25, a = 10 in., b = 5in., h = 0.25
in. and Qo =1 1b/in.

Solution: The input data and partial output are included in Box 13.77.

Box 13.77: Input data and partial output for the annular plate problem of Fig.
P12.5.

Prob 13.77: Bending of a an annular plate under an edge load (SDT)

3 1 0 O ITYPE, IGRAD, ITEM,NEIGN
1 4 0 O IELTYP,NPE,MESH,NPRNT
4 9 NEM, NNM
1 2 5 4
2 3 6 5
4 5 8 7
5 6 9 8 NOD(l,J)
5.0 0.0 7.5 0.0 10.0 0.
3.5355 3.5355 5.3033 5.3033 7.07107 7.07107
0.0 5.0 0.0 7.5 0.0 10.0 GLXY(1,J3)
9 NSPV
13 23 31 33 61 72 82 91 92 ISPV(l,d)
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 VSPV(D
3 NSSV
11 41 71 1SSV
1.9635 3.927 1.9635 VSSV
1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25 E1,E2,...
0.0 0.0 0.0 FO, FX, FY
Node X-coord. y-coord. deflec. w X-rotation y-rotation
1 0.50000E+01 0.0000OE+00 0.10636E-01  0.26574E-02  0.00000OE+00
2 0.75000E+01 0.0OOOOOE+00 0.51550E-02 0.24775E-02 0.00000E+00
3 0.10000E+02 0.00OOOCE+00 0-000O00E+00  0.23526E-02 0.00000E+00
4 0.35355E+01 0.35355E+01 0.10636E-01 0.18791E-02 0.18791E-02
5 0.53033E+01 0.53033E+01 0.51550E-02 0.17518E-02 0.17518E-02
6 0.70711E+01 0.70711E+01 0.000OOOE+00  0.16635E-02 0.16635E-02
7 0.00000E+00 0.50000E+01 0.10636E-01  0.0000OE+00  0.26574E-02
8 0.00000E+00 0.75000E+01 0.51550E-02 0.00000E+00  0.24775E-02
9 0.00000E+00  0.10000E+02  0.0OOOOE+00 0.0O0OOOE+00 0.23526E-02
X-coord. y-coord. sigma-x sigma-y sigma-xy
sigma-xz sigma-yz
0.5335E+01 0.2210E+01 0.1117E+03  0.4530E+03 -0.1707E+03
-0.3641E+01 -0.1508E+01
0.7469E+01 0.3094E+01 0.7314E+02 0.3036E+03 -0.1152E+03
-0.2600E+01 -0.1077E+01
0.2210E+01  0.5335E+01  0.4530E+03 0.1117E+03 -0.1707E+03
-0.1508E+01 -0.3641E+01
0.3094E+01 0.7469E+01 0.3036E+03 0.7314E+02 -0.1152E+03
-0.1077E+01 -0.2600E+01

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.




SOLUTIONS MANUAL 397

Problem 13.78: Analyze the plate problem in Fig. P12.2 for its transient response.
Use a mesh of 2 x 4 CPT(N) elements and £ = 107 psi, v = 0.25, p = 1 1b/in?,
h =0.25 in., go = 10 Ib/in., At = 0.05 and o =y = 0.5.

Solution: The input data and partial output are included in Box 13.78. Plot of

w(5,10,t) = wy5(t) versus t is presented in the figure.

Box 13.78: Input data file for the transient analysis of the plate problem of Fig.

P12.2 (using the CPT(N) element).

Deflection, w

Problem 13.78: Bending of a cantilever plate--CPT(N)

[oNe)
=

OUFRPRORPFPFPWOOWRWOOONRE M
o
=

1 2 0
4 1 0
4
2.5 2.5
2.5 2.5 2.5 2.5
1 2 1 3 2 1 2 2
3 2 3 3
0.0 0.0 0.0 0.0
0.0 0.0
1 14 1 15 1
25.0 12.5
7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25
0.0 0.0
0.0 0.0
51 1 0
0.5 0.5 1.0E-5

0.250 —

ITYPE, IGRAD, ITEM,NEIGN
IEL, NPE, MESH, NPRNT
NX, NY

X0, DX(1)

Yo, DY(D)

NSPV

ISPV(1,J)

VSPV(1)

NSSV

1Ssv(1,J)

vssV(l)
E1,E2,ANU12,G12, ...
FO, FX, FY

CO, CX, CY

NTIME,NSTP, INTVL, INTIAL
DT,ALFA,GAMA, EPSLN

Deflection at
this point is
plotted as a
function of t

7 10\13;

N

NYII‘IIIY{IIYI{N{II‘YIIYk

0.00  0.50 1.00 1.50 2.00 2.50

Time, ¢

I

9 12 15
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Problem 13.80: Determine the transient response of the annular plate in Fig. P12.5
using four SDT elements, At = 0.05, p = 1.0 and a = v = 0.5. Plot the deflection at
node 1 as a function of time for at least two periods.

Solution: The input data and partial output are included in Box 13.80. Plot of
w(5,0,t) versus t is presented in the figure.

Box 13.80: Input data file for the transient analysis of annular plate problem of

Fig. P12.5.
Prob 13.80: Transient analysis of an annular plate (SDT)
3 1 2 O ITYPE, IGRAD, ITEM,NEIGN
1 4 0 O IELTYP,NPE,MESH,NPRNT
4 9 NEM, NNM
1 2 5 4

2 3 6 5
4 5 8 7
5 6 9 8 NOD(1,J)
5.0 0.0 7.5 0.0 10.0 0.0
3.5355 3.5355 5.3033 5.3033 7.07107 7.07107
0.0 5.0 0.0 7.5 0.0 10.0 GLXY(1,J3)
9 NSPV
13 23 31 33 61 72 82 91 92 ISPV(,d)
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 VSPV(D)
3 NSSV
11 41 71 1SSV
1.9635 3.927 1.9635 VSSV
1.0E7 1.0E7 0.25 0.4E7 0.4E7 0.4E7 0.25 E1l,E2,.
0.0 0.0 0.0 FO, FX, FY
1.0 0.0 0.0 co, CX, cCYy
50 51 1 0 NTIME,NSTP, INTVL, INTIAL
0.05 0.5 0.5 1.0E-5 DT,ALFA,GAMA,EPSLN

0.03 NN NS NN NN N

Deflection, w

0.00 I L L I A R R

0.00 0.20 0.40 0.60 0.80 1.00

Time, ¢
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Chapter 14

PRELUDE TO
ADVANCED TOPICS

Problem 14.1: Consider the second-order equation

(o) =1 (1)

and rewrite it as a pair of first-order equations

duv P dP

27y = f = 2
d:L‘+a 0, dz F=0 2)

Construct the weighted-residual finite element model of the equations, and specialize
it to the Galerkin model. Assume interpolation in the form

m n
u=Y ui(zx), P=) Po;x) (3)
j=1 J=1

and use the equations in (2) in a sequence that yields symmetric element equations:
KM R () ) f(FY) )
(KT [K%2]] | {P} {F?}

The model can also be called a mixed model because (u, P) are of different kinds.

Solution: The element coefficients are

" Aidy;

11 _ 21 _ 12 12 _

i

1 (=
K= — | wwpy de, F? = Pbi(aa) + Poti(a)
Tp
Fl= [ foi do+ Q1vi(za) + Qotbi(ws)
— _ = — P - — P = 75
Ql dx w:wa’ Q2 dx :c:xb’ ' dx Z‘:J»‘a’ ? dx T=Tp
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Problem 14.2: Evaluate the coefficient matrices [K*?] in Problem 14.1 for a =
constant and column vectors {F*} for f = constant. Assume that 1); = ¢; are the
linear interpolation functions. Eliminate {P} from the two sets of equations (iv) to
obtain an equation of the form

[K{u} = {F}

Compare the coefficient matrix [K] and vector {F'} with those obtained with the
weak form finite element model of (a). What conclusions can you draw?

Solution: The finite-element equations associated with Eq. (b) of Problem 14.1 are

given by 1{ 1 _1]{ple}_fehe{1}+{Q(f}
5|1 1]\ Pg 2 1 Q3

171 17 fuf)| _ he [2 17 [Pf
21-1 1] \u5) 6a.|l 2|\ FP§
Problem 14.3: Develop the least-squares finite element model of (2) in Problem

14.1, and compute element coefficient matrices and vectors when v; = ¢; are the
linear interpolation functions.

Solution: The least-squares functional of the two equations in (2) is
xp P 2 P 2
T T
Ta der  a dx
Setting 6,1 = 0 and 6pI = 0, we obtain the integral statements
o [ dou du P
(SUI_Q/:L.G [—%<—%+E>:|d$—o (1)

w [§P ( du P\ doP (dP
5P12/% [7(—£+5)+%<E+f)]dx0 2)

Substituting the approximations

uw=">Y ujpi(x), P=Y Pjo;(x) (3)
j=1 j=1
into Egs. (1) and (2), we obtain the finite element model
(K] (K2 ({up ) _ [P}
e i | {49} ) = { e ) W
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where the element coefficients are

o s db,
Kiljl = . %% dx
k= j” T = K3
Kz [ 50i0+ %%} da
Fl=0, F?=-— : Ciqiif (z) da (5)

For the choice of linear interpolation functions for v¢; and ¢; and elementwise
constant value of a, the element coefficients in (5) are

Kn:i[ 1 —1] izl [ 1 1}

he | -1 1 T2, | -1 —1 ©)
K22 . E 2 1 +i 1 -1
C6a2 |1 2] he|-1 1

Problem 14.4: Solve the problem in Example 3.2.1 using two elements of the least-
squares model developed in Problem 14.3. Compare the results with the exact solution
and those of the weak form finite element model.

Solution: The governing equation of Example 3.2.1 is slightly more general than Eq.
(1) of Problem 14.1. Hence, we consider the more general equation

—a% (a%) +eu=f (1)

d P dP
——u—i-—:O, ——4cu—f=0 (2)
dr a

The least-squares functional becomes

T 2 2
I:/b <—@+£> +(—£+cu—f) dx
Tq dx a dx

Setting 6,1 = 0 and 6pl = 0, we obtain the integral statements

T [ dbu du P dP
Oul =2 5 {—% (—%—i-;) + cou (—E—i-cu—f)]dmo (3)
T [6P du P déP dP
I=2 e EL o) (L - - 4
op /za {a < dx+a> dx ( dx+cu f)]d:v 0 (4)
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For this more general case, the finite element model (4) of Problem 14.3 is still

valid with
di; d
iljl / (a;l} dwj 2%%) dx

1 dy; do
Kiljzz_/w <a dx ¢j + i ]) :szil

- [ oo -]

T 2 _
F; = cif(x) de, Ff =
Za

o do;

z, dT

f(x) d (5)

For the choice of linear interpolation functions for v; and ¢; and elementwise
constant values of a, ¢ and f, the element coefficients in (5) are

1 1 -1 h 2 1
11 . —
S R
1 1 1
K12: _e
Ll s
he [2 1 1 1 -1
22 _ e
S A IR M

For the problem in Example 3.2.1, we have a = 1, ¢ = —1 and f(x) = —22. Hence,
the source vector is given by

1] (6)

B (xp —al) — 3z —x3)
Vi(—2?) de — Fl=_— { 3 470, e }
/ ' he —%“(xi’ —:r2> +3(7h — 23)
Ty d¢) fE3 o 133 1
F2=_ “(—22) d F2—_2b a { }
i L g ) dr = 3he -1
The element equations become
1 he 1 he
A T F 1Oh et T 11 ] (w Fl
10 ) it 1—1h “ntE|)hl_ Fli
-tk 1—1 . wtF 1 0 ;672 ?22
1 e + N 0 e + = 2 2
Using h1 = hg = 0.5, the element equations become
26 0 —-23 127 (w Fl
1 0 26 —-12 -23| )P | _ ) F?
12 |-23 —-12 26 O Jua [ ) F¥
12 -23 0 26] (P F3
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The assembled equations of the two-element mesh is

26 0 —23 12 0 07 (U 1
0 2 —-12 -23 0 0| | U, -8
1 |-23 —12 52 0 —23 12| )JUs| 1 14
12| 12 -23 0 52 —12 —23|YUs( 96 ) —48
0 0 —23 —12 26 ol | Us 17
0 0 12 -23 0 261 \Us 56

Using the boundary conditions U; = Us = 0, we obtain the condensed equations

26 —12 —23 07 (Us —1.00
1 |-12 52 0 121)us| 1 1.75
12 | —23 0 52 —23|\Us( 12 —6.00

0 12 -23 26| | Us 7.00

whose solution is
Us = —0.11453, Us = —0.04746, U, = —0.06122, Ug = 0.23698

The two-element weak form solution for Us is Us = —0.03977. The exact value is
u(0.5) = 0.04076.

Problem 14.5: Show that the mixed finite element model of the Euler-Bernoulli
beam theory, (14.2.47a), is the same as that in Eq. (5.2.18) for the choice of linear
interpolation of w and M.

Solution: For linear interpolation of w and M and element-wise constant values of
EI, the element matrices in (14.2.47a) become

e R R AR

KOG KT = 125516 L] e = (e )

Hence, we have from Eq. (14.2.47a) the result

6 —3he —6 —3h. wy qf
2E.I. | —3h. 2h% 3h. h2 orl_Jol, )as
h3 —6 3he 6 3he ws q5 3
~3he  h?  3h. 2h2 05 0
Interestingly, the stiffness matrix of the mixed finite element model with linear
interpolation of both w and M is the same as that of the displacement finite element
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model derived in Chapter 5 using the C'! (Hermite cubic) interpolation. However, the
load vector differs in the sense that the mixed model does not contain contributions
of distributed load ¢(z) to the nodal moment components.

Problem 14.6: Consider the pair of equations
Vu—q/k=0, V-q+f=0 in Q

where v and q are the dependent variables, and k and f are given functions of position
(z,y) in a two-dimensional domain 2. Derive the finite element formulation of the
equations in the form

(KM (K2 KE({u) {F}

(K22 [K%] | { {d'} o = {F?}
symmetric [K33] {¢*} {F3}

Caution: Do not eliminate the variable v from the given equations.

Solution: The weak form is

O:/ (gradw-q—wf)dmdy—/ wqy, ds =0
Qe T

1
O:/ V- (gradu—%q> dxdy =0

where v = (v1,v2) and w are test functions (or, variations in q and u, respectively),
and ¢, =1n-q.
For the case when u, ¢1, g2 are interpolated by same v;, we have

0, o,
11 12 13 _
KZ] = 0, KZ] = /Qe am"¢] d.’L’dy> Kzg = /Qe ayz¢] dl‘dy

1
K2 = K12, K2 = /Q iy dudy, K2 =0

31 _ 713 32 33 _ 7-22
K =K, Kij =0, Kjj =K

F} :/ Vign ds, FP =0, Ff=0
Te

Problem 14.7: Compute the element coefficient matrices [K*?] and vectors {F®}
of Problem 14.6 using linear triangular elements for all variables. Assume that k is a
constant.

Solution: The matrices K can be expressed in terms of S* introduced in Eq.

(8.2.39). We have

K!2_gl0  gl3_g20 g22_ __g00

k
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where Sf‘jﬁ are given in Eq. (8.2.44) for a linear triangular element.

Problem 14.8: Repeat Problem 14.7 with linear rectangular elements.

Solution: The matrices K® can be expressed in terms of S* introduced in Eq.
(8.2.39). We have

K2 —gl0 KI3_g20 g22_ 1

SOO
k

where Sf‘j’g are given in Eq. (8.2.52) for a linear rectangular element, except that
S10 = (ST and 820 = (S"2)T are given in the solution to Problem 8.10.

Problem 14.9: Consider the following form of the governing equations of the
classical plate theory:

> Mgy tw  PMy,
—( 2 4 Dgg D120 + oy2 )=4 (a)
0? - D
8_:;5 = — (D22Mgyy + D12 My,) ,
0? 2 D
8—;; = — (DlZMajw + D11Myy) (b)

where My, and My, are the bending moments, w is the transverse deflection, ¢ is the
distributed load, v is the Poisson ratio, and

B D:.
D;; = DZ;’

Do = D11 Dgs — D,

(a) Gove the weak form of the equations, and (b) assume approximation of the form
4 2 2
w = Zwiwily My = Z Mmﬂbf, Myy = Z Myzw?
i=1 i=1 i=1
to develop the (mixed) finite element model in the form
(K] (K% (K {w} {F}
[K22] [K2) | § {Ma} ¢ =4 {F2}
symm. w3 | gt | L)
Comment on the choice of the functions ¢§* for a = 1,2, 3.
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Solution: The weak forms of Eqgs. (a) and (b) over a typical element Q. are

08w OMyy | 05w OMy, 026w 0w
- ADgt 2
" /Qe ( or or dy 0Oy e O0xdy Oxdy qow | dwdy
. [pwQ. 2D TS,y + 0,m,)] d ©
. wn 668$8y xTy Nz s c
0w 06 My _ -
Te
ow 06 M, _ -
0= /Qe {a_y 3yyy — 6Myy (D11 My, — D12Mm)] dxdy
_ % §Myy0,ny ds o
Te

The primary and secondary variables of the formulation are

w, Mz, Myyy (f)
ow ow
Vi, Ozng = or Ng, ayny = 8y Ny, (g)

where V,, is the effective shear force (Kirchhoff free edge condition)

8Mns

Vn:n )
Q+8s

Qn = anw + Qyny (h)

The finite element model of Eq. (d) and (e) is obtained by substituting the
approximations of the form

T S p
w=Swit", Myp =3 Moo, My, =3 My (i)
=1 i=1

i=1
where 1/J§a), (o =1,2,3,4) are appropriate interpolation functions. We obtain
(KM (K] [KP] (0 {w) {F'}
[ [K%2] [K23]] { {M} } = { {F?} } ()
symm. w= ) Ly ) L

where

2,1 92,1

KM =4D
* 66 Q. 0xdy 0xdy

xdy, i,5=1,2,...,71,
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oL o2
K2 = Z = dad L i=1,2.....r j=12...
1) o 31“ 33: ray, 2,7 )< T3 )< S,
ol O3
K’I}73: djz —]dxdy’ i7j:1727“"r; j:]"Q"“?p’

Q. Oy 0Oy
Kfﬁ:/ﬂ (—=Da)yi} dady, i,j=1,2,...,s,

K%?’z/ﬂ(—Du)w?W dedy, i=1,2,...,8 j=1,2,....p,
Kg?”:/ﬂ (=D1) Y33 daedy, i, =1,2,...,p,

Fil :/Q qwil dwdy—i—jﬁ Vnwil ds, 1=1,2,...,71,

Ff :ﬁ Hxnxi/il? ds, i=1,2,...,s,

F? :ﬁ Oynyb3 ds, i=1,2,...,p, (k)

An examination of the weak forms (d) and (e) show that the minimum continuity
conditions of the interpolation functions ¢ (a = 1,2, 3) are

1

i

2 = linear in  and constant in y (0)
i

S’ = linear in y and constant in x

4

7

= linear in x and linear in y

= linear in x and linear in y
Problem 14.10: Use the interpolation

4 2 2
w = sz'@bil, Mgy, = Z Mmﬂl’fa My, = Z Myzd’?
=1

=1 i=1

<

x x Yy
w%zl__a d)gzga 1/’?:1—57 71’%:—

for a rectangular element with sides @ and b to evaluate the matrices [K*%](a, 8 =
1,2,3) in Problem 14.9.
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Solution: We can select either

Y Y
3 ¢%:1_Ea ¢§’:g (a)
and v} to be the bilinear interpolation functions, or

1/11-1 = w? = 1/}? = w;l = bilinear functions of a rectangular element (b)

The corresponding rectangular elements are shown in Figure P14.10.

o
4 3 4 ? 3 4 3
wo, M, M, wo, M, M, w, at four
at each node 8 at each node © My corner nodes M.
5
1 1 o 1 o
vyl
(a) Mixed model A (b) Mixed model B (c) Mixed model C

Figure P14.10: Mixed rectangular plate bending elements based on CPT. (a) Model
A. (b) Model B. (c) Model C.

The numerical form of element matrices is

1 -1 1 -1 1 -1
4D, -1 1 -1 1 b | —1 1
117 _ 66 127 _ 7 _ 211T
[K ]_ ab 1 -1 1 -1 ) [K ] 24 -1 1 [K ]
-1 1 -1 1 1 -1
1 —17
13 311T a’ 1 -1 29 D22ab 2 1
1 1]
Digab [1 1] D1y
K23 K32T 7 K33 K22
(K] = [K¥]T = —— | 1 (K] = D22[ ]

Problem 14.11: Repeat Problem 14.10 for the case in which ¢} = ¢? = ;.

Solution: [K'1] is the same as in Problem 14.10. Also, we have

[K12] — [K21]T — [Sll] [K13] [K31] [522]
[K%] = —Dp[S™], [K%] = [K¥]T = D15[$%), [K3) = —Dyy[S™]
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where [S11], [S?2] and [SY] are defined in Eq. (8.2.52).

Problem 14.12: Evaluate the element matrices in (14.4.60) by assuming that the
nonlinear parts in the element coefficients are element-wise-constant.

Solution: We have

EAT 1 -1 EAT 1 0 -1 0
117 _ &4 12 21
R B R R
6 —3L —6 -3L 36 —3L —36 —3L
[Kzz]_2EI -3L 2L* 3L IL? N | -3h 4L* 3L -L?
S 3| -6 3L 6 3L 30L | —36 3L 36 3L
-3L L* 3L 2I? -3L —-L* 3L 4I?

where L is the length of the element and N = 0.5(dw/dz.

Problem 14.13: Give the finite element formulation of the following nonlinear
equation over an element (x4, xp) :

d du
—%( da:)+1 0 for O0<z<l1

(z)

Solution: The weak form is same as in the linear equation except that we have
a(z) = u(x): [K(u)[{u} = {F} with [see Reddy (2004b)]

xp n d¢e
K¢ = / (Z uidi) i
K Ta E—1 d dl’

n Tp dwe
=S i [ (@)
= Ta dx da:

Tp
_—/ i dr + Q4

=0, u(l)=+v2

z=0

For example, for linear approximation (n = 2) of u(x), we have
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or

ELUES T @

Further, the assembled equations associated with a mesh of two linear elements of
equal length are (Uy, Us, Us are the global nodal values)

1 (Ur 4+ Us) — (U1 + Us) 0 U,
oh —(U1+Uz) (U +2U2+Us) —(Uz+Us) Us
0 —(Uz + Us) (Uz + Us) Us
fl(l) le)
S0 Ll g op o
(2) (2)
f2 Q3

Problem 14.14: Compute the tangent coefficient matrix for the nonlinear problems
in Problem 14.13. What restriction(s) should be placed on the initial guess vector?

Solution: By definition (14.4.17), we have [see Reddy (2004b)]

(KT) % (Z im m - )

J m=1
" (OK¢ aK e
—_ Z ( im , e +K7,em m) Z Z_im, e —|—K€ (G)
m=1 g
For the problem at hand, we have
" OK§
(Kr)ig = > Sima, + K
m=1 J
"9 o dypf dips
= i Tm e 4 K¢
2 3 </m “"ae da df”) tm By
m=1 J @
o Qup, dipf [ & dy
— 7 e m K@
Ta Buj dx (mz_:l Um dx T By
o duh d/(/DZ e — e (S :
:/m TRTLys do + Kf = K§ + K (i)

a

where the identity
Z": e dLy, _ duy
"™ dr  dx

m=1

is used in arriving at the last line. We have,

i = [t g, s
Wy, dr dx 2 Ta

’w] dx
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or

Thus, the tangent matrix becomes
(af + a3) [ 1 —1} . (a§ — af) [—1 —1}

2he -1 1 2he 1 1
where @§ denote the nodal values known from the previous iteration. Note that the
tangent coefficient matrix is not symmetric. Also, the initial guess should not be
that all U; = 0. Since the boundary condition at x = 1 is nonzero, the initial guess
should be one that satisfies the boundary condition. If the boundary condition is
homogeneous, then at least one of the nodal values should be nonzero so that the
tangent coefficient matrix is non-zero.

K$ =K+ K=

Problem 14.15: Compute the tangent stiffness matrix K in (14.4.17) for the Euler—
Bernoulli beam element in (14.4.6a).

Solution: The coefficients of the element tangent stiffness matrix K% = T* can be
computed using the definition in (14.4.17). In terms of the components defined in
Eq. (14.4.6a), we can write [see Reddy (2004b)]

SRS (r—1)
“ (aAf.) (@

for o, 3 = 1,2. The components of the residual vector can be expressed as

Z > KGAY -

y=1p=1
4
= Z Kot AL + Y KEAL — FY
p=1 P=1
2 4
=Y Kilupy+ Y KFAp — Ff (b)
p=1 P=1

Note that the range of p is dictated by the size of the matrix [K*?]. We have

o DR o
7= (aM) on? (ZZ Koy’ = )

y=1p=1
| 0Ky
= A7
ZZ( i
4
o _
=K K2 u K83)A
ey om () Sk (R

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.



412 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

Then the tangent stiffness matrix coefficients Tz‘;‘ﬂ can be computed as follows:

> oKl oK1
Tll Kll 5 p ) + Z 5 zPA
=1 9% p=1 9Uj

2 4
=K' +) 0-up+ > 0-Ap

Since
oK’

8uk

=0 for all o, 3,%,5 and k

()

the coefficients [T1!] and [T2'] of the tangent stiffness matrix are the same as those

of the direct stiffness matrix:
[TH] = [K"Y] , [T%] = [K*"]

Next consider

11 4 12
K]
1= 3 (G52 ) o E( i) o
P=
9 dwzdng A
+O+Zl/ BN (dx) dr dx dm]AP
A o1 0 (i dox\ dyidop | ]+
_ prl2 + ‘v K 1 P
_K“+PZ_:1[% 2 oA, (ZA da:) do dz xlAP

4 T
K2+ Z [ b 1A by iy dop dm] Ap
Ta

dr dr dx
d¢z d¢J d¢P
+/ 2 mdw dr (Pldw P) du

1 dyi ddy
_ 12
K”+/xa (2A”da:) dr dz

= K7+ K}} =2K}} = K7
K2 4 22
OK7p\ =«
= —= | A
=i 5 () w3 () &

w0 (R dox dordi,
[y (;A dx>%adm ty
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| 0 d¢1d¢p ~
+Z[wa 2 maAJ<daz) dr dr dm]AP

dordos (= diy
+/ Amd dx (_ dmup du

o[ () St (3 a0

P=1
29 Tb dug  dw dw) dqf)[ d¢]
”Jr/ma A“‘”(d twde) de dw ™ (h)

Problem 14.16: Develop the nonlinear finite element model of the Timoshenko
beam theory. Equations (14.56) are valid for this case, with the following changes.
In place of (d?/dz?)(b d*w/dx?) use —(d/dx)(b d¥/dx) + GAk(dw/dx + ¥) and add
the following additional equation for w:

- e (G v)] =

See Section 4.4 for additional details.

Solution: The equations of equilibrium of the Timoshenko beam theory for the

nonlinear case are
d [du 1 (dw\?]

_%{Amm -%+§<%> _}—f (a)

d dw

- xzr \ 7 \P

dx {S <dx * ﬂ
P [N
dx " dx _da: 2 \ dx |

d dw dw
—— | Dgo— —+ U
dx( xwdx)+5’xx(dx+ )

where Ay, = FA, Sy = KsGA and D, = EI.
The weaks forms of the three equations are

Tp déu du dw
— Qféu(z,) — Q45u($b) (d)
o dow | . [dw . dw | du dw

0/% o {S <d—+\I/>+Amd [daz+ (dx>]6wq}dm
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— Q30w(za) — Q56w(as) (e)
wr o dsUdv dw
— Q509 (zq) — Q5 6V (xs) (f)

where du, dw, and 6V are the virtual displacements. The Qf have the same physical
meaning as in the Euler-Bernoulli beam element, and their relationship to the
horizontal displacement u, transverse deflection wg, and rotation W, is

Q(f = _N:m:(xa)y QZ = N:m:(«Tb)

dw dw
Qe = - |:Qw + Nww_:| s Qe = |:Q:c + N:c:c_:|
? dx T=Tq i dx T=xy
Q§ = _Mx:c(xa)y Qg = Mww(xb) (g)
Suppose that the displacements are approximated as
m n p
e 1 e 2 e 3
u(@) =Y usel, w) =Y win®, W) = sy (h)
j=1 j=1 j=1

where ¢](-a) (x) (a = 1,2,3) are Lagrange interpolation functions of degree (m — 1),
(n —1), and (p — 1), respectively. At the moment, the values of m, n, and p are
arbitrary, that is, arbitrary degree of polynomial approximations of ug, wg, and ¥
may be used. Substitution of (h) for u, w, and ¥, and éu = 1111(1), bw = wi(Q), and
ov = 1111(3) into Egs. (d)—(f) yields the finite element model

m n p
0=> Kjilus+ Y Kfu§+> Kisi—F! (4)
= j=1 j=1
m n p
0=> KZu$+> KZuws+> K2s¢— F} ()
= j=1 j=1
m n p
0= 3K+ 0 K + Y K — 0
= j=1 j=1

where

(1) ) 4,,(2)
v gyt di; 1 (@ dwodiy ! d;
4 e dr d T Ry Ty ve  Udr dr dx v

T (2) d (1)
21 _ [ dwo dyp;” dib; 13 _ 31
K’U = La wa dr  dr dr d.f[f, KZ] = 0, K’U =0
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x @) gop@ o 2 1 (2) gy
ng_/bsmdwz @b_gdﬁl beJC(dwo) dy;” dvy”
2 Ja, dx dr dx

23 (3) 32
K / Sez 1/1 dz = K3;
Ty d '()Z)
K3 = / (Dm Zx —L + Sy’ ) dz
Za

= [Tl de+ Qe @) + Qi @)

F2 = [ 0P dw+ Q50 @) + Qs (@)
FP = Q50 (wa) + Qgui” (w1) ()

The element equations (i)—(k) can be expressed in matrix form as

(K] [ (K] {u) {F}
[[K21] [K%2] [K23]] {{w}} = {{FQ} } (m)
(K3 [ [KF] ] s} {F°}

The choice of the approximation functions ¢Z(a) dictates different finite element
models. The choice of linear polynomials 1/}1(1) = 1/11-(2) is known to yield a stiffness
matrix that is nearly singular. This will be discussed further in the next section.
When %(1) are quadratic and 1/1§2) are linear, the stiffness matrix is 5 x 5. It is
possible to eliminate the interior degree of freedom for wg and obtain 4 x 4 stiffness
matrix. This element behaves well. When 1111(1) are cubic and wi@) are quadratic, the
stiffness matrix is 7 x 7. If the interior nodal degrees of freedom are eliminated, one
obtains 4 x 4 stiffness matrix that is known to yield the exact solution at the nodes
in the linear case when the shear stiffness and bending stiffnesses are element-wise

constant. More details of various Timoshenko beam elements can be found in Reddy
(2004b)

Problem 14.17: Compute the tangent stiffness matrix for the Timoshenko beam
element in Problem 14.16.

Solution: The tangent matrix coefficients are defined by (see Problem 14.15)

OO o) e

—5 (K A (@)
zk:
y=1k= 16Agﬂ

In particular, we have
11 11
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(2)
TI2 = K12 4 1 be duwo dip") di);
“ 2 Tdr dxr dx
13 _ 13 _
T = K13 =0
21 _ 721 | g2l
T3 = K2 +0= K2,

2) 7.,(2)
T = Kij +/wa Ao | " T i dr dr @

dr = 2K}f

TP =K7?+0=K7?
T3 =Kl +0=K}}
T = K7 +0= K7
T = K7 +0=K; (b)

where the direct stiffness coefficients Kiajﬁ are defined by Eq. (¢) of Problem 14.16.

Problem 14.18: (Natural convection in flow between heated vertical plates) Consider
the flow of a viscous incompressible fluid in the presence of a temperature gradient
between two stationary long vertical plates. Assuming zero pressure gradient between
the plates, we can write v, = v(y), vy =0, T'= T'(y), and

d%x d*T dvg
0= T—-T,)+ , 0=k—+
where T}, = %(T() +1T1) is the mean temperature of the two plates, g the gravitational
acceleration, p the density, 3 the coefficient of thermal expansion, p the viscosity,
and k the thermal conductivity of the fluid. Give a finite element formulation of the
equations and discuss the solution strategy for the computational scheme.

Solution: The finite element model is given by

K’v, - GT =F!, K'T=F? (a,b)
where
Yo dip; dipy T / Wi A / ve
KY = dy, K;. = dy, Gi; = bad
ij /y dy dy ij dy dy ij ) pgﬁ¢z¢] Yy
dvg dvg
Fl = —/ pBgYi dy + P;, P1 = —p (—> s Pa=p <—) (c)
Ya ay / y, dy /.y,

Yo dvg dT drl
B [ (%) vy n @i= k(D) L =k (D)
a Y Y7 ya Y7y

Solution strategy: Solve the assembled equations corresponding to Eq. (b) for T,
subject to boundary conditions and initial values of v, = 0. Use the temperatures
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thus obtained in the assembled equations associated with Eq. (a) and solve for v,.
Then resolve Eq. (b) with the updated F? (because of the newly computed v,).
Iterate the procedure until v, and 1" obtained in two consecutive iterations differ by,
say, one percent.

Problem 14.19: Derive the interpolation functions 11, 15, and g for the eight-node
prism element using the alternative procedure described in Section 8.2 for rectangular
elements.

Solution: This is straightforward. Since (&, 7n,() must vanish on the faces { = 1,
n=1and ¢ =1, it is of the form (see Fig. 14.3.2)

pi=al - -n1-0, di(-L-L-)=1 - a=g

Similarly, we obtain .
Y1 = g(l -1 -n1-0)
Y5 = 51— 90 -1+

g5 = (1= )1 +0)(1+0)

Problem 14.20: Evaluate the source vector components f and coefficients Kf; over

a master prism element when f is a constant, fo, and k; = ko = k3 = constant in
(14.3.5b).

Solution: For a cube of sides a x b x ¢, the coordinate transformation become

a b c
p=301+8, y=30+n, z=301+(
ZA g
a/ (-1,-1,1) 5 T 8(—1, 1,1)
’ |(1 1,1)
[} s Ly
(1»_15 1) 6 i 7
I
(-1-1-1) S e e
c §/
l >y o A(-1.1-1)
b—’/ (17_17_1) 2 3 (17 15_1)
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and the Jacobian matrix and its inverse are

o o ot $ 00 1%20

_ |9z 0Oy Oz | __ b —1 __

Tlena Tl Tleb e
aC o 2 0.0 2

Then the derivatives of the interpolation functions with respect to the global
coordinates can be expressed in terms of the interpolation functions with respect
to the natural coordinates as

e oyg 20Y;
ﬁe_ 86& a aé-e
abe \ g ) ove | ) o0
oy on b On
ovt out 2 00t
0z o¢ c OC

Hence, the coefficients K7; can be expressed as

WEOYS | oY oY . Oyf OYf
///< 8:10 8x+ky8y 8y+k 0z 0z dx

_ 11 22 33

where Sf‘jﬁ are defined as

1 0y; V5
si= [ e andoa

22 @Zh’e %
Sii / / / 3y Oy dzr dydz

Oe O

33 1/% _ ")
= [ e andva

The matrices Siajﬂ can now be evaluated using the Gauss quadrature:

o[ [ 5% £ [ [ ] 55
S = /// aqfa;; dedydz= 2 ///1 aazf;a@lfy de dn g
S“///gfww%—//f¥¥%W<

PROPRIETARY MATERIAL. @The McGraw-Hill Companies, Inc. All rights reserved.




SoLUTIONS MANUAL 419

The coefficients Sf‘jﬁ can be evaluated using the interpolation functions listed in Eq.
(14.3.31)

4 —4 -2 2 2 -2 -1 1
-4 4 2 -2 -2 2 1 -1
-2 2 4 -4 -1 1 2 -2
_be 2 -2 4 4 1 -1 -2 2
T 36| 2 -2 -1 1 4 -4 -2 2
-2 2 1 -1 -4 4 2 -2
-1 1 2 -2 -2 2 4 —4
1 -1 -2 2 2 -2 —4 4]
4 2 -2 —4 2 1 -1 -2
2 4 -4 -2 1 2 -2 -1
-2 -4 4 2 -1 -2 2 1
g_ e |-4 -2 2 4 -2 -1 1 2

36b| 2 1 -1 -2 4 2 -2 —4
1 2 -2 -1 2 4 —4 =2
-1 -2 2 1 -2 -4 4 2

Sll

-2 -1 1 2 —4 -2 2 4
4 02 1 2 —4 -2 -1 -2]
2 4 2 1 -2 -4 -2 -1
1 2 4 2 -1 -2 -4 -2

Similarly, the source vector £f¢ can be computed

5|

4]

|
g S g gy
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