PostgreSQL 8.4.1 Documentation

The PostgreSQL Global Development Group



PostgreSQL 8.4.1 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2009 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2009 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.



Table of Contents

Preface xlv
1. What iS POStZIESQLT ...ccuuiiiiiiiiiieeceeteeet ettt st xlv
2. A Brief History of POStreSQLu........coicuiiiiiiiieiiieiieiieeteeeceteste ettt sve e beesnesne e xlvi

2.1. The Berkeley POSTGRES Project .......ccoccveeiiiiiieniienieiieenieenee e sve e x1vi
2.2, POSEEIESOS ..ottt ettt ettt ettt st sttt st et e tae st e enbeebee s xlvi
2.3, POSEEIESQLou. ittt st ettt st e e st e sanesnteen xlvii
3. CONVENTIONS ...ttt sttt ettt ettt st et e b e sttt e b eat e saeeateaesbeesse bt eatenaesueeneesueennens xlvii
4. Further INfOrmation........c.ccovueriiriiriiniiniec ittt ettt ettt et nesiees xlviii
5. Bug Reporting GUIEIINES........ccuieiierieriieiieriieeie ettt ettt sttt st et e e s xlviii
5.1, Tdentifying BugS .......cooieriiiiiiiieiece ettt st xlix
5.2, WAL £ TEPOT..ccuueiiuiiiiieiieiie ettt sttt ettt ettt sit e sbe bt e s bt e st e beesbeesateenbeebeens xlix
5.3. WheEre tO TEPOTE DUZS ...eevueiriiiiiieniieeiie ettt ettt ettt sttt e st st e b e saae st s li
I. Tutorial 1
1. GEttING STATTEA ....eeeniiiieieieeiieeee ettt st e 1
1.1 INSEALIALION ..ottt et sttt st sttt et en 1
1.2. Architectural Fundamentals............ccoceriiriiriiiniiiieiieeceeceee e 1
1.3. Creating a Database ...........cecueiuieieriieiieerie ettt ettt ettt et saeesaesbeeneens 2
1.4. Accessing @ Database ........cooeeriiriiiriiiiiiieetee ettt 3
2. The SQL LaNGUAZE .....covveiriiiiiieieenite ettt ettt st sa e st sttt e sbe e saneesbeenbee e 5
2.1, INEEOAUCTION 1ttt ettt et sttt e bttt et e e st e st e s be et e beeaeenes 5
2.2, COMCEPLS .uveeneeeiieeieeieeeite ettt e et st e b e bt e sat e e bt e sbtesate e bt e s bt esaeesabe e bt esbeesabeenbeesaeesaneen 5
2.3. Creating @ NeW Table ......cccoviiiiiiiieieeee ettt 5
2.4. Populating a Table With ROWS .......cccoeiiiiiiiiiiiiiiieeeecee e 6
2.5. QUErying @ TaDIE ....cc.coiiiiiiiiiiiiiee et st 7
2.6. Joins Between Tables........cocoviiiiiiiiiiiiieeeceereeesest et 9
2.7. Aggregate FUNCHIONS......ccccoviiiiiiieeteteeitete ettt sttt 11
2.8 UPAALES ..ottt sttt et sttt ettt b ettt et sa e bbbt ettt eae e 12
2.9, DCIETIONS ...conveeeenieieeiteteettete sttt ettt sttt sttt b ettt ebt et st sbe et et ebeenees 13
3. AdVANCEd FRATUIES ...c..eeiiiiiiiiiieiietceitctee ettt ettt ettt ettt s ennens 14
3.1 INTOAUCTION «.nveiiiiiiieiieitete ettt ettt ettt ettt eb s 14
3.2 VIBWS ittt ettt sttt ettt et sttt ettt na e sttt et eae e 14
3.3, FOTEIZN KEYS...uiiiiiiiiiiiieeie ettt ettt sttt ettt e bt e sbeeseneenbeenbeesene 14
3.4, TTANSACHIONS ..c.eevveniieiieteeitete sttt ettt ettt et sttt e st e e sbtebeesaesaeesbesbeeesemteeaeenees 15
3.5. WIndow FUNCHONS ......ccuiiiiriiiiiiinieiececeteeceteste ettt st 17
3.6. INNETILANCE ...c.eeiiiiiiiciiecc ettt sttt 20
3.7 CONCIUSION ...ttt ettt ettt ettt sa et esae st e bt eneeaeemnes 21

I1. The SQL Language 22

4. SQL SYNEAX .eontiiieiieiieiete ettt ettt ettt ettt et e ae st h e n et ae e e nesreeanenee 24

4.1, LeXiCal SIUCLUTE. .......eivuiiiiiiiieteeitt ettt ettt ettt st sbe et e st e sbeesaee st ens 24
4.1.1. Identifiers and Key Words.........ccccceeveeriiiiniiniiniineeeeneeeieeeeiee e 24
1.2, CONSLANLS .e.uveeutieiteeieetee sttt ettt et st e bt e bt e st e e bt e bt e sbeesbe e bt enbeesanesaeeenbeas 26
4.1.2.1. String CONSLANES .....eeouervereietierieieeeeeeenteeeeete et eee et eesee s eeeseeeneenes 26

4.1.2.2. String Constants with C-Style Escapes ........c.cccccevirreereneeneneennnn 26

4.1.2.3. String Constants with Unicode Escapes.......c..ccccoecvrreenereenenennnnne. 27

4.1.2.4. Dollar-Quoted String CONSLANTS ........cevereeerieriieieniieiene e 28

4.1.2.5. Bit-String CONSTANLS ...c..eveureuirierienrerereteeterenieneeeeeee e 29

4.1.2.6. NUMEIIC CONSLANLS .....overeieniietieienieeieniesiteie ettt sttt sbe e 29

4.1.2.7. Constants of Other TYPES ......cccevereerererienenieieneeee e 30

iii



1.3, OPCTALOTS ....eeuvieiieeieeiiesite et et e sitesteeabte bt e satesabeesbeesasesateebeesseesssesnseeseenaees 30

4.1.4. SPecial CharaClers........cevueruersiieriieriestiesieeste st et esiteseesbeesbeesbeesaresnseenbeas 31
4.1.5. COMMENLS ....oueiieiiiiieiietteteteste ettt ettt sttt sae et sre et e aesaeesne b eenenee 31
4.1.6. Lexical PreCedence .......c..cocevverieieniieieniinieieneeteeeeereeeceeese st 32

4.2, Value EXPIESSIONS......eiiuiiriiiiiieiienite ettt ettt ettt sttt et e st e bt e st e sateesbeesaeesaeeens 33
4.2.1. Column References..........coceoerieieriinieninieneneeieeeeeteeee et 34
4.2.2. Positional Parameters.........cceevueerierieriiiinienienieeieeitesee et 34
4.2.3. SUDSCIIPLS ..ottt ettt et 34
4.2.4. Field SEIECHON .....ooueiiiiiiieiieiieeiteetee ettt st 35
4.2.5. Operator INVOCAtIONS ......c..coueevuiriiiiiiieiieie et 35
4.2.6. FUNCHON CallS .....eoiiiiiiiiiiieeiietete ettt s 36
4.2.77. Aggregate EXPreSSIONS. .....cccueiviiiiiirieriierieentenite ettt st 36
4.2.8. Window Function Calls...........cceeruiririeninierieieeeeeeee e 37
4.2.9. TYPE CaSS .. s 38
4.2.10. Scalar SUDQUETIES........cocerverueieieiniinereeeeet ettt 39
4.2.11. Array COnSLIUCTOTS ......ccuiiuiiiiiiiiiiii ettt 39
4.2.12. ROW CONSIIUCLOTS ...cuveeiieeuierteenieenitenteenieesiee st et esreesieesseeneesseesmresaneenees 41
4.2.13. Expression Evaluation RuUles ...........ccccocovvivininiininiieeeccee 42

5. Datad DEfINItION ...coueetiiiieiietieieeicetere ettt sttt bbbt ettt st be bt ae et e 44
5.1, TabIE BASICS ..uveiuiitiiiieieeieete ettt ettt sttt 44
5.2. Default ValUES .....cc.eoieriiriiiiiiiieieieeteeet ettt st st 45
5.3, CONSIIAINES ...ttt ettt ettt ettt sb et s bt ettt ebe e b sbe et e s bt entebeeaeenees 46
5.3.1. Check CONSLIAINES ....coveiereieiinieeienieeiteie ettt sttt st sreeaeeaes 46
5.3.2. NOt-NUIL CONSIIAINES ....cneeienriieeiiinieeiienienieetenteeieete sttt ereeees 48
5.3.3. UnNiqUeE CONSLIAINES. ..cuveereeiieriienieeiiesteeteeieesiresteeteesseessessseeseesssessseensens 49
5.3.4. Primary KEYS....ouiovuieiiiieiiieieeitesteete ettt st 49
5.3.5. FOT@IN KEYS ..coiuiiiiieiiiiieiiecieeteste ettt sttt st ettt ae e 50

5.4, SStem COIUMMNS ...c..veiiieriieiiieiierte sttt sttt et st e bt esttesabeebeesbeesaneeseenseesane 53
5.5. MOAIfying TabIES......cccueerieriiiiieiieiit ettt ettt sttt ettt sbe e s b e b seee 54
5.5.1. Adding @ COIUMN.....cc.eeriiiiiiiiieeieeieert ettt ettt 54
5.5.2. Removing @ COIUM ....cc.ueiiieriiinieiiieniteeteeieeit ettt et et 55
5.5.3. Adding @ CONSIIAINE .....ccueritierierieriienieete ettt ettt s eaeas 55
5.5.4. Removing @ CONSLIAINT ...oeveerierieriiieniieeieeieesit ettt ebees 56
5.5.5. Changing a Column’s Default Value...........ccccccoeceevinienininieninicicnieeenne. 56
5.5.6. Changing a Column’s Data Type ........cccccoeeieniiniiininiicnccceeecceeeenee. 56
5.5.7. Renaming @ COIUMN .......cocoooiiiiiiiiiniiiieienietcece e 57
5.5.8. Renaming a Table ........c..cocoeoiiiiiiiniiiiicece e 57

5.6 PLIVIIEEES ..o s 57
5.7, SCREIMAS ..ttt ettt sttt st 58
5.7.1. Creating @ SChemMa .......cocueeiiiiiiiriiiiette e 58
5.7.2. The PUBIiC SCheMA .....ooiuiiiiiiiieiiit e 59
5.7.3. The Schema Search Path...........cccccooiiiiiiiiiiiiieccceen 59
5.7.4. Schemas and Privileges..........ccceevuiririenenieiesieee e 61
5.7.5. The System Catalog SChema ..........cccceviiieiiniiieieeeeee e 61
5.7.6. USAZE PALEINS....cc.eeveiuieiieiieieeiceteee ettt sttt 61
5.7.7. POTtability ..ottt e 62

5.8, INHGTILANCE ...ttt sttt s 62
581 CAVRALS ...ttt sttt sttt sttt ettt 65

5.9, PArtItIONINE ...cveeutetieiieiieiiete ettt ettt sttt sb ettt ebt e bt st e e s bt est et sbeenees 65
591, OVEIVIEBW ..ttt ettt sttt et st besae e 65

5.9.2. Implementing Partitioning .........c.ccocceveerereeiieneniienineeieneeeeneseeree e 66
5.9.3. Managing Partitions ........c...coeeeevienerienenieienieeeetesceeene et 69

v



5.9.4. Partitioning and Constraint EXCIUSION .......ccccevvirvieniiiinienieeieeiiesieeieeeen 70

5.9.5. Alternative Partitioning Methods..........ccecueeviiiniinieniiiinieriecceeesee e 71
5.9.60. CAVEALS ...ttt ettt ettt ettt sttt st n e 72

5.10. Other Database ODJECES .......cevveeruieritiriieriienieeieesite sttt ettt e it e saeeesseenbeesaee 73
5.11. Dependency TraCKing..........coceereeriiiiiienienieeieete sttt sttt 73
6. Data Manipulation.........cceevecierieieniiieieneeteeee ettt st e 75
6.1. INSErting DAta ......cc.eoieiiiiiiiiieieceeetece et 75
6.2. Updating Data......c..cocoeviiriiiiiieieiieieieeeeeee ettt st 76
6.3. Deleting Data.......c..cocueiiriiiiiieiesceieeeceee et 77
0 1S o 1o SRR 78
T 1. OVEIVIEW ettt sttt ettt ettt s ittt et e st st e bt e bt e sateenbeesbtesateenbeesaeesateens 78
7.2. TabIe EXPIESSIONS ....cueevieieiietieieeteete ettt ettt et ettt e st et e sttt esaesneesesbeeneenes 78
7.2.1. The FROM ClaUSE......cccuerieriieniienieeieeniteete ettt ettt sttt erees 79
7.2.1.1. JOIN@d TADIES ..ot 79

7.2.1.2. Table and Column AIASeS.........ccceeuererieriinieieneeeee e 82

7.2.1.3. SUDQUETIES ...ttt 83

7.2.1.4. Table FUNCHONS .....ooouiiiieiiiiiiieierieeieee et 84

7.2.2. The WHERE ClaUSE......ceeuiriiriirieieieiiniietistentereeeiteie st seesene e sae s sneneeneen 84
7.2.3. The GROUP BY and HAVING ClaUSES........ccceeveeruirerenieniereinieneesienieeeneenens 85
7.2.4. Window Function Processing ..........cccceoereerienieniienineenenenieneneeeenieeeenees 88

7.3 SLECT LISES. ..ttt ettt ettt sttt st e b 88
7.3.1. Select-LiSt TtEIMS ...c.eeieieiiieiiriieienieeteesiee ettt 88
7.3.2. Column Labels ......c..cooueririiiiniiiiniiieieneeeetee et 89

733 DISTINCT tuiuiiireienieieeteeie ettt sttt ettt sae e nee 89

7.4, COMDINING QUETIES ....ceuvererieiieriierieeteeritesteeteesteestesbeesseesseessseesseesseessseesseesseessseens 90
7.5, SOTtING ROWS ittt ettt st ettt se e esbeesatesabeebeesaeesaseens 90
7.6. LIMIT ANd OFFSET.cuiiiiiiiiieiiiiietiieiet ettt sttt es e st 91
7.7 VALUES LISES vttt s 92
T8 WITH QUETICS ..uvveeeuiiieeirieeireeeieeeeteeesbeeesibeeestreeebsaeassseesssseessseeaassesesssasessesansseesssens 93
8. DALA TYPES . ettt ettt ettt ettt et e b e st e bt bt e st e et e et e bt e s ab e st e e bt e s atesabe e beenaaesateen 97
8.1 INUMETIC TYPES.ueeeiiieniieiieniie ettt sttt ettt ettt et st e s bt e st e s be e beesabeeaeeenbeas 98
811, INtEZET TYPES .eeuutieuiietieriieeit ettt ettt ettt st sttt et st e sbeesaee s ens 99

8.1.2. Arbitrary Precision NUMDETS .......ccceiviiirieniiiiiiieiieniecieetetese e 99
8.1.3. Floating-Point TYPES .......ccccrerieriirieiinieienieceerenieereete e 100

814, Serial TYPES . ..covetieuiiiiriieierieeteteete ettt 101

8.2. MONELATY TYPES ettt e 102
8.3, Character TYPES .....coeevuiriieieiieeeeeeeeee ettt e 103
8.4. BINary Data TYPES .....coueruieiiiiiiieiieieceieeeee ettt e 105
8.5. Date/Time TYPES.....c.eeruiriiiiiiiiieiieit ettt 107
8.5.1. Date/Time INPUL.....ccceeriiiiiiiiiieictec et 108
T TN B TR B 1 1< SUSR RSP 109

8.5 1.2 TIMES .ttt ettt et et st ae s nte e ene 109

8.5.1.3. TIME SEAMPS ..euvieuieieeiieieetiete ettt ettt ee s eee e e 110

8.5.1.4. Special ValUes .......ccccoieiiiriieiiniieiee et 111

8.5.2. Date/Time OULPUL ....c.eruieiiriieiieitietieieett ettt ettt sbe e e e 112
8.5.3. TIME ZIOMES ...ttt sttt sttt ettt et sae st sbeesee e eae 112
8.5.4. Interval INPUL.....cc.eiiiiiiiiiiieeeee et 114

8.5.5. INterval OULPUL ..c..eeueiiiiiieiirieiieteetteeeeete ettt 116

8.5.6. INLEINALS......eiuiiiiiiiiiiiieee ettt 116

8.6. BOOLCAN TYPEL..c.uviiiiiiniiiiiiieieeiteeettete ettt sttt 117
8.7. ENUMETAted TYPES .e.eeevireiiniiiiiiieiieitetentcetete ettt ettt 117
8.7.1. Declaration of Enumerated TYPeS.......cceevveerverriierienieeiienienieeieenieeseee e 118



8. 7.2, OTAETING ..ottt ettt st ettt st e bt e st e st e ebeesaeesaees 118

8. 7.3 TYPE SALELY .ottt et 119
8.7.4. Implementation Details.........cceevveriiiiiiinieniiiiieeeeceeee e 119

8.8. GEOMELIIC TYPES .ceuueiruriiiieriieiiieiterte sttt ettt ettt sbe e st sbeesbeesatesaneenee 119
881 POINLS ... s 120
8.8.2. LINe SEZMENLS.......eoueiiiriieiirieeieieeieeteecet ettt 120
883, BOXES ettt ettt st 120
884 PathS .t 121
8.8.5. POLYZOMNS. ...ttt 121
8.8.0. CIICIES ..ottt sttt st e 121

8.9. Network Address TYPES. ......coeeieiiiiiiiiiiiicieeeeeie e e 122
8L0. 1L AT ittt e 122
8102 LA AT ittt e s 122
LR G T o T I e oSSR 123
8.9.4. MACAAAT wvteeiiieeiie ettt ettt ettt st e et e et e et e et eeenteeenaeas 123

8.10. Bit StrNG TYPES ..ttt ettt et sttt st nee e 124
811, TeXt SEATCH TYPES ..cuveeteeriiiiiieiteterteeee ettt ettt sttt e 124
LT B B e =Y ot e 3 PSRRI 124
Bl 2 S UETY teitttieeetiee ettt ettt ettt e e e e et e et e e et e e ate e et e e eeateeeaaaas 126

812, UUID TYPE ..ttt sttt ettt s st 127
813, XIML TYPE vttt s sttt e 127
8.13.1. Creating XML ValUes ......c..cocuerierieniinieieniiienienieeesieetenee st 128
8.13.2. Encoding Handling ..........coccevvererieniininnieneiieienteiesieetenee e 128
8.13.3. Accessing XML ValUues.......ccccoerieviinieriinenienienieieneetenie e 129

BLL4. ATTAYS .eeeeiieiiieiteeitt ettt ettt ettt et e st e e et e e sate et e e beesabeesbeenbeesbaesabeenseebeesanesnbeente 129
8.14.1. Declaration of Array TYPES....ccceecvierieerieriieeiiereeeieeieente st 129
8.14.2. Array Value INPUL.....cocieriiiiieieeieeeeteee ettt 130
8.14.3. ACCESSING ATTAYS .eeuveeereeurieiieniieeteeieesitestesteesseesitesteesseesssessseenseesseesnns 132
8.14.4. MOAIfYING ATTAYS....ueereeeieeiieniienieeitesteete et esitesiteebeesttesitesateenaeesaeesaeas 133
8.14.5. Searching in ATTAYS.......cccuieriierieriieiierteeie ettt ettt et e e 136
8.14.6. Array Input and OUtPUL SYNEAX ..cc.eeeruierieriieriiieniienie ettt e 136

8.15. COMPOSILE TYPES ..veuveeneieiieriieitenite ettt sttt ettt e sbee st sbeesbeesaaesaneenne 138
8.15.1. Declaration of CompoSite TYPES......ceeveeriuerriienienienieenienieeie e 138
8.15.2. Composite Value INput.........cccoeeieviinieiiniiiiiinieieeecceeeeseereieee 139
8.15.3. Accessing Composite TYPES ...c..cocvevuiruierieririenienieieneeeee e 140
8.15.4. Modifying Composite TYPES......cecuevuiruieruererieieniieienieeeenie e 140
8.15.5. Composite Type Input and Output Syntax.........cccceceeeeveeneneeneneecnennene 141

8.16. Object Identifier TYPES ......cceeveiirieiiiiieicieneeeee e 141
817, PSEUAO-TYPES ...t 143
9. Functions and OPETALOLS ..........ccceiuiiiiiiiiiiieiieieie sttt 145
9.1. LOZICAl OPETALOTS .....eovevirienieiieiiiitriintetetenteneettete st sttt sue et s e eeeseeneeuesaesaennen 145
9.2. COmMPATISON OPETALOTS ....c.veuvuruiruertietitetententettetesreseetenteatesesse s ssesseseeseeseesesaesaennes 145
9.3. Mathematical Functions and OPerators............cccceveverueveieeninenieneeneeeneneneneennes 147
9.4. String Functions and OPErators..........cccoueveerirerenuenierieteenessesseseeeeeeessesaesaennes 150
9.5. Binary String Functions and Operators ..............cceveverueueirenininenieneeenineneseenne 162
9.6. Bit String Functions and OPerators .............ccoeeeerererienienienienieeteseseeniesieeeenieeae 164
0.7. Pattern MatChiNg ........couiiuiiiiiiiieitiiete ettt s 165
0.7 1. LIKE ittt 165
9.7.2. SIMILAR TO Regular EXpPressions ......c..ccceeeevienerieneneeienenienenceeennens 166
9.7.3. POSIX Regular EXPressions ......c..ceeevereeiereeieneneeneneeienieeeeneeseeeeennens 167
9.7.3.1. Regular Expression Details ........c.cccoceeveevireeneneniienenieencneeienen. 170

9.7.3.2. Bracket EXPIeSSIONS ......cccververrieerieenieeieenieenieesieesieenieesveeseeneeens 172

Vi



9.7.3.3. Regular Expression ESCapes.......cccccevveriernieeniinieeieeniesieeieeeene 173

9.7.3.4. Regular Expression MetasyntaX..........ceceereeneerieenieeneeneeeneenneens 175

9.7.3.5. Regular Expression Matching Rules...........ccocevviiiniiniinienncnnnenn. 177

9.7.3.6. Limits and Compatibility .........cccecceeriervierreenienieeieeneesieeieeieene 178

9.7.3.7. Basic Regular EXPressions .........cocceeveervierseeneeniensieenieesieesieeiens 179

9.8. Data Type Formatting FUNCHONS ........ccceeriiniiiiiiiienieeieeteec e 179
9.9. Date/Time Functions and OPErators.............coeeeeruereeruenieneereneeeeneeeenreseenenneens 185
9.9.1. EXTRACT, QAT E_PATE tttiiteiiieeeeeiirreeeeeeireeeeeeeteeeeeeeireeeeeeeteeeeeeesreeeeeennnnes 189
R G N S oY o o 8 o o ORI 193
9.9.3. AT TIME ZONE..cccisiiiitirieientieienteeeeresieeeesteeeesae st enesaeesnesseeneesaesaeennesnees 193
9.9.4. Current Date/Time .......cocueeviieriiiieiiieniteete ettt 194
9.9.5. Delaying EXECUtION.......c.cetririinieieieieiietieenteeeeeiteit et 196

9.10. Enum Support FUNCHONS .......ccoeiririirieieieininineneeeeteteese et 196
9.11. Geometric Functions and OPErators..........c.ceceeerereriereieenenrenreneeeeeeesessenaennes 197
9.12. Network Address Functions and OpPerators..........c.cceueeveeeerenenreneeneeenenerenuenne 201
9.13. Text Search Functions and OPerators..........c.ceceveruerveeeieeneneneneeneeeeeneneeneennes 203
0.14. XML FUNCHONS ....evteuiiiieientieiienie ettt ettt sttt ettt eatesae st esaesbeensenaeeae 208
9.14.1. Producing XML CONENt..........cccerierierierieniieienieniieienieete e eiee e sieas 208
9.14.1.1. XIMLCOMMENT 1veervrerurieieerieenireeteesteensaeesseesseesseesseesseesseesssesssesnseens 208

0.14.1.2. XINLCONCAL teveertreriiieieesieestieereesteessteeteesseesseesseenseenseessseeseenseens 208

9.14.1.3. XINLELEMENT wveertreriieieeiieniieeieerteeseeeteesteesseesseenseenseessseenseenseens 209

0.14.1.4. XINLEOTESE tevveerireriieieerieesiteeieesteesttesteesseesteesseesseeseesnseeseenseens 210

014, 1.5, XINLP I weetiriieieieeiteie ettt sttt sttt 211

9.14.1.6. XINLT OO terurieiieieeriieeieerieesiteeteesteestaesbeesseesbaesebeebeensaesnseenseenseens 211

0.14.1.7. XINLAGG tttiiiiiirieeeeeireeeeeeeireeeeeetiareeeeeetreeeeeenareeeeeesareeeeesiareeeeeens 212

9.14.1.8. XML Predicates. ......cccccoireerienerieniinienicneeienieerenieeieeneeseeeeeniees 212

9.14.2. ProcessSing XML ........cocuiiiiierienieiiienieeieeieesitestesieesitesteseeesbeesnessneenne 212
9.14.3. Mapping Tables to XML.....c.ccceceriiiinienieiiiieniieeieeieesite e 213

9.15. Sequence Manipulation FUNCHONS .......ccccveviiiiiiinieniiiieeiieec et 216
9.16. Conditional EXPIeSSIONS ......cccueeruieriiiriieniienieeieenitesiteeteesieesiee bt esseesseeseeenseenaeens 218
9.16.1. CASE ottt e 218
9.16.2. COALESCE .. uiiuiiiiiiiiieiiitieie sttt st 220
9.160.3. NULLIF ittt sttt st 220
9.16.4. GREATEST aNd LEAST ...ciuiiiiiiiiiiiiiiiiiitiiereeeeeieenc st 220

9.17. Array Functions and OPEIators ...........coeecueruieieruereeienieneerenieeeesreeeessesieenenneens 221
9.18. Aggregate FUNCHONS.........ccoiiiieiiiieieieeice ettt 223
9.19. WIndOwW FUNCHONS ......eevuiiiiiiiiiiieiieeeetete ettt st 226
9.20. Subquery EXPIessions ........c.ccoceiiiiiieniiiiiiiee ettt 228
9.20. 1. EXISTS uieiieuieienieeieetee ettt ettt sttt et st e st e a e s 228
9.200. 2. TN 11ttt ettt ettt ettt et a e e a et e bt e e bt eneenteeneeneeaean 229
9.20.3. NOT  INuuiiuiiiiiieiiiiiieiee ettt ettt sttt st s e s 229
9.20.4. ANY/SOME ...cuiiuiiiiiiiiiieiieieete ettt s s 230
9.20.5. AL it e e 230
9.20.6. ROW-Wise COMPATISOMN .....couerverierenrenieiierinienieteeenteieniesaesseseeeeeresressesaens 231

9.21. Row and Array COMPATISOIS .....cc.eeveruerereieuinierienieteeenteensessessesseeeseesessessessenees 231
0. 2110 TN ettt et b ettt et e st bt e b s 231
9.21.2. NOT  INutuiiuieuieiiieieeeeeieetes ettt ettt ettt ettt s st eue b b saens 231
9.21.3. ANY/SOME (AITAY) «.vveverreenrenteeienierstentenieetenteestestesseesesseessensesseessesseensensens 232
9.21.4. ALL (AITAY) tveervererireienteeieeteeteniesitete st ettt ebtesaesbtebesbeesbenbeebeenaesbeenaenbeas 232
9.21.5. ROW-WiS€ COMPATISON .....eeveruiiiiriieieniietenteeitenienieetenieeerenteeieeneesbeeneenueas 233

0.22. Set Returning FUNCHONS .....c..cocueruirieiieniinieiiniceenieeteseetete sttt 233
9.23. System Information FUNCIONS .......c.coceerieriiriiieniienie et eie e 236

Vii



9.24. System Administration FUNCHONS ........covvieriiiiiienieniiiiecitesec e 245

0.25. Trig@er FUNCHONS ...ccueiiiiiiiiiiieiieiie ettt ettt sttt et st ebe e 251
1O. TYPE CONVETSION. ...cuueiruiieiieriieeieettesite et et e stteete et esbtesabesbeesbeesabessseesbaesasesaseenbeesssesnseenne 252
LO.1. OVEIVIEW ettt 252
1O.2. OPETALOTS ...eueveeutieiiieeieetee st et et e st et et e sbtesbe e bt e sbtesabeebeesbeesabeebeenbeesaseeseeseens 253
10.3. FUNCHONS ..eeoiiiiiiieiteieceteeeete ettt s 256
10.4. ValUe StOTAZE......cverueeriiieieiieiieteetteteste ettt ettt sr e sae s ne e 258
10.5. UNION, CASE, and Related CONSITUCES. ......uuveveeiiiiieieieeeeeeiiiieieeeeeeeeeeeee e e eeeeennnnes 259
L1 TRAEXES vttt ettt ettt sttt st e s bt e s st e s bt e s bt e sabe et e e bt e sabesaneenne 262
11,1, INEOAUCTION ...ttt ettt ettt e et st e b e b s 262
112, TNACX TYPES ittt ettt ettt sttt et st e see e st st e b e naee s 263
11.3. Multicolumn INAEXES .......ccveiueeuieiieiieie ettt ettt 264
11.4. Indexes and ORDER BY ....icoueiieieriiriieierieetentesseetesteeeesseeseentesseensasseeneessesaeensesnens 265
11.5. Combining Multiple INAEXES .........ceceeriiririerieriieieeeeeere et 266
11.6. UNIQUe INAEXES .....eeveeiiiieiieieeiteie ettt ettt ettt et saeas 267
11.7. Indexes on EXPreSSIONS .......cceeieriirierieriiieieeiieie sttt et 267
11.8. Partial INAEXES .....c.ooueeriiieiiieieeiieeee ettt s 268
11.9. Operator Classes and Operator Families ...........cccovveeveninienenieicninencceeee 270
11.10. Examining INdeX USAZE........cecueviiruieriinirienieniteienieetenie sttt 271
12. Full TEXt SEATCH «....ooviiiiiiiieiiiiiiteeeee ettt st s 273
12,1, INETOAUCLION ...ttt s 273
12.1.1. What Is @ DOCUMENt?.......cccoouiiiiiiiiiiiiiiieiciceecese e 274
12.1.2. Basic Text MatChing .........coceeveririenienieienieeieniesteeseeteeeeeee e 274
12.1.3. CONAIGUIATIONS ...uvievieiieeiieeiienite et et esiteseteebeesteeseaesebeesseesaeesnseeseesseennnes 275

12.2. Tables and INAEXES.........ccoviruiviiiiiiiiiiiiieicce e 276
12.2.1. Searching a Table........cccocuiiiierienieiieeeete e 276
12.2.2. Creating INAEXES ......ccoveriiiiieniienie ettt sttt sttt st 277

12.3. Controlling TeXt SEarch.......ccceiviiriiiiieierieeeeeere et e 278
12.3.1. Parsing DOCUMENLS .......ccceeruiirieeniieiieiiieieeite sttt 278
12.3.2. Parsing QUETIES .....cc.ueeveerueeriieiieeieenitesteeieeieesiteeteebeesitestesateenbeesanesaeas 279
12.3.3. Ranking Search Results .........cccceevieriiiiiiiiiiniienieeieceeeeeeeeie e 281
12.3.4. Highlighting ReSUILS .....ccceeviiiiiiiiiiiiieceeceeeeeete e 283

12.4. Additional FEatures ...........ccoeiiiiiiiiiiiiiiiiiiciceeeee e 284
12.4.1. Manipulating DOCUMENLS.........ccceovuerrerieieniieieieneeieneerere e e 284
12.4.2. Manipulating QUETIES........cc.eecveruirienieniieietieeeie ettt 285
12.4.2.1. Query REWTItNG ......cc.coieviiriiiieiiiieieeeeeeeeeeese e 286

12.4.3. Triggers for Automatic Updates ..........cccoeievenirienenenienieecieseeneeee 287
12.4.4. Gathering Document StatiStiCs ..........ccceevueruieiienieieenieneeieieeeie e 289

12,5, PATSEIS ettt ettt st ettt st sttt st e ae e s 289
12.6. DICHIONATIES. ....ceeeueieeieeeetieteste et ettt ettt et et s et e ae et esae et ebe e b e et e beeneeseesneesesnean 291
12.6.1. StOP WOTAS ...ttt sttt 292
12.6.2. Simple DICtIONATY ....c.coceviririinieieieinieieseseeeeeeee ettt 293
12.6.3. Synonym DIiCHONATY ........ccccoerueieieinieiinienieieeeteese ettt 294
12.6.4. Thesaurus DIiCONATY ..........coceevecueieiriniinenieieeeteene et 295
12.6.4.1. Thesaurus Configuration ............cceeeveevereeeeenieneneennereenenesrennenne 295

12.6.4.2. Thesaurus EXample .........cccocovieneiiiiininiinineecceesceeee 296

12.6.5. ISpell DICHONAIY ......cueitieiiiieiieriiiieiestteee ettt s 297
12.6.6. SNOWDAILl DICHONATY ..c.veeuviiieiiiniiniieienieeiesteetenee ettt 298

12.7. Configuration EXample...........coceevireeniininiininieieneeeenesteesiteteee et 298
12.8. Testing and Debugging Text Search ..........ccoceevevineriieniniincnieceeencceeeeee 300
12.8.1. Configuration TeStING........ccceevueruirienieriieienieetene et 300
12.8.2. Parser TeSTING .....covervireeienieriteiesieeteeteete ettt ettt s 302

viii



12.8.3. Dictionary TeSNZ......cceereerieiiieeniienie sttt steete et et sresbeenbeesaeesaees 303

12.9. GiST and GIN INEX TYPES .cuverrveeruiieiieiieniieeieeitesite et eieestte st eeeesieesebeeaeenaee s 304
12.10. PSL SUPPOTL.c.nviiiiieniiiiieiie ettt ettt ettt et sttt e st e sabeebeesbeesabeebeeseens 305
12,11, LAMIEALIONS ...eeteieiieeieeiee ittt sttt sttt sbt e st e e e sbeesabeebeesbeesabeebeeseens 308
12.12. Migration from Pre-8.3 Text Search.......ccccooveiviiniiiiiniiiiiiieeeeeeee 308
13. ConcurrenCy CONIOL......cc.eeiiiiriiiiriieieeee ettt sttt et enene e 310
13,1, INtFOAUCHION ...evieiiiieeiiie et cteeeeiee et et e e te e e a e e et eeentaeessseaessseeesssaeessseaesseeannns 310
13.2. Transaction ISOIAtION .........ccccviiieeiiriiiieeriie ettt e et e e eeeeesre e e ereeenene 310
13.2.1. Read Committed Isolation Level .........c.ccccceeeeiiieiiieniiieeieeceeeee e, 311
13.2.2. Serializable Isolation Level.........cccoveviieeriieeciie e 312
13.2.2.1. Serializable Isolation versus True Serializability ........................ 313

13.3. EXPLCIt LOCKING ..ot 314
13.3.1. Table-Level LOCKS......ccciiiiiieeiie ettt e 314
13.3.2. ROW-Level LOCKS .....cooiiiiiiiieeeiie ettt 316
13.3.3. DeAdIOCKS.....cciuiieeieeiieiieeieeiie ettt ettt et e st eeaeebe e tbeebeenbe e baesnaeeneas 317
13.3.4. AdVISOIY LOCKS ...cuiiiiiieieii e 318

13.4. Data Consistency Checks at the Application Level.........c.cccccevievininiininienennen. 318
13.5. Locking and INAEXES........cccouevueieieininiinieieieieese ettt s 319
14, Performance TIPS .......cooereeierienieienieeerieet ettt ettt ettt ettt sbe bt e b sbeenne b eae 321
14.1. USING EXPLATN .eeitirutetenteeitenteettetesteetestesstentesteestesueestensesseesesbeensensesseensesueensessens 321
14.2. Statistics Used by the Planner ..........cccccoevienirieiiiniiiiinenieeneceeeee e 325
14.3. Controlling the Planner with Explicit JOIN Clauses.......c..ccocceveevvenereencrcenennen. 327
14.4. Populating @ Database .........ccceceeviireinienerienienieieneetene ettt 329
14.4.1. Disable AUtOCOMIMIL .....ccvirrtieriierieeieerieeeteeteesieesteereesteeseeseseenseenseesnnes 329
14.4.2. USE COPY ittt sttt sttt sttt st sttt ettt st e e sbeeaesbeeanenteene 329
14.4.3. ReEMOVE INAEXES ...ccuveeiiiiiieiieiieeie ettt ettt sttt 329
14.4.4. Remove Foreign Key COnstraints ..........coeceeevveeneeniescieeneeneesieenieeneennnes 330
14.4.5. Increase maint €Nance WOTK_ IMEM et eeeeeeeeeeeereeeeeeeeeeeeseeeeeeeeeeeneennnnanns 330
14.4.6. Increase checkpoint__SEgmMENTS .ovvvviieeeiiiveeeeeerrreeeeeeereeeeeeeeareeeeeennnnes 330
14.4.7. Turn off arChive MO woviiiueeeeeeeeee e e e e e e e e e e e e eeeeeeae s 330
14.4.8. Run ANALYZE Afterwards........ccccoceevveririieniinieeneneenieneererceeeie e 330
14.4.9. Some Notes AbOUL PE_AUMP ....eeeviiriiiriiiiiiiienieeieeieeree et 331

II1. Server Administration 332
15. Installation from SOUrCe COAE ........cccueeeeeuireiiieeiie ettt ereesree e e eere e e seseeeebeeenens 334
15.1. SHOTt VEISION ..eeiiiiiieiiieiiieeciieeeieeestte et e et et e e et eeeseaeessaeaessseeesssaeesnseaesseennnns 334
15.2. REQUITEIMENES ..c..veeneiiiiiiieeieerite ettt ettt ettt et et sit e st esbeesaeesateebeenaee s 334
15.3. Getting The SOUICE.......oiuiiiiiieiiee ettt s ae e 336
15,4, UPGLAQING . .eovienieiieeieeeieee ettt ettt ettt ettt ettt ettt eneesaesaeeaesnean 336
15.5. Installation ProCedUre........cc.ecvieiiieriieiieeieeieeceeete ettt ee e seeesaeesebeeaeesnee s 337
15.6. Post-InStallation SELUP.......c.ccueeieriirieriirieeiesieet ettt s 346
15.6.1. Shared LiDIaries ..........ccueeveriieiieenieniesrieieeiee e eaeeveeseeeaeeveesaessneennas 346
15.6.2. Environment Variables...........cccverierieiiiienieeniesieeieeiee e eee e see e ennas 347

15.7. Supported PlatfOrms ..........ccoiuieieriiiieieieetee ettt 348
15.8. Platform-Specific NOLES. ......ccueruieiiiriiiiirieeteert ettt 348
I5.8.1. ALK ettt sttt et e b e enbe e baennaeeneas 349
15.8.1.1. GCC ISSULS c.uvveereeurieiienireeiieeteesieesstesaveeseesseesssessaesseesseesssesssennes 349

15.8.1.2. Unix-domain socKets broKen..........cceecveevueeneenieenieenieenienieeneenns 349

15.8.1.3. Internet address 1SSUES .....ecveecreereerierieerieeneesteesieeseeesieesveesseenne 350

15.8.1.4. Memory Mmanagement...........ccccevuereeruerreneenienieeseenseneenueneesuenenne 350

References and reSOUICES. .....cuueviirvieriieniienieeieeieesee e sene e 351

15.8.2. CYZWIN..etieuiiiiieeiiieieeeiee ettt ettt sttt et st esatesabe e beesaeesabeenseessnesnnas 351

ix



I5.8.3. HP-UX ... 352

15,84 TRIX .ottt et sttt 353
15.8.5. MINGW/Native WINAOWS .....ccccoereerierieieniieienieneeieneerenreeeeenaeseeenenneen 354
15.8.6. SCO OpenServer and SCO UnixWare.........ccccevvvervuerrieenieniiensieenieeneenae 354
15.8.6.1. SKUNKWATIE ......ccvimiiiiiiiiiiiiiice e 354

15.8.6.2. GNU MAKE ..ottt 354

15.8.6.3. REAAINE.....c.eeveuieiieiiriiieiciceetscr ettt 355

15.8.6.4. Using the UDK on OpenServer..........c..coceeeeievencrieneneeceennene 355

15.8.6.5. Reading the PostgreSQL man pages .........ccccoceeeeerereenuenencuennenne 355

15.8.6.6. C99 Issues with the 7.1.1b Feature Supplement ......................... 355

15.8.6.7. ——enable-thread-safety and UnixWare ..........c.cccccvvveunnne 355

15.8.7. SOLATIS ...ttt ettt ettt sttt et e s aeeneas 356
15.8.7.1. Required tOOLS .......cccerueruieieriieiieieeicee et 356

15.8.7.2. Problems with OpenSSL ........cccoooiiiiiininieierieeeeee e 356

15.8.7.3. configure complains about a failed test program...............cc........ 356

15.8.7.4. 64-bit build sometimes crashes ..........ccoceeeeveriereniesencneeenen. 357

15.8.7.5. Compiling for optimal performance...........c.cceceeveveeveenercenuennen. 357

15.8.7.6. Using DTrace for tracing PostgreSQL .........cccoceviriinininienene 357

16. Installation from Source Code on WINdOWS ........cc.cceuririniinienienieininenieneeieeee e 359
16.1. Building with Visual CH+4 2005.........ccooveiieiiiiiiiininiiieieieeeteieeeeeeee e 359
16.1.1. REQUITEIMENLS ...cuvevieniitieiieniieiteniesitetesteeite e eite e st e e st ebee e saee e b 359
16.1.2. BUIIAING ..voviiiiiieicieiie ettt 360
16.1.3. Cleaning and inStalling ........cccccoereeriereeiienenieneneeieneeteeeeeie e 361
16.1.4. Running the reZreSSion TESES ..e.uerrierieereerieeieereenteeieesieeneesreenseenseesnnes 361
16.1.5. Building the dOCUMENtAtioN ......cevviriieriiriiieieeeenee et 362

16.2. Building libpq with Visual C++ or Borland CH+.......cocvevviiiiiiiiiiiieiciieeiceee 362
16.2.1. Generated files ........ccooveiiiiiiiniiiiiiiiic 363

17. Server Setup and OPETALION .........c.eeveeriuieriierieeieeieeste et eieesttesteeteesbeesresseesbeesasesseenne 364
17.1. The PostgreSQL USEr ACCOUNL ........eevuirruiiriieeieeiieniieeieeitesiee st eieesieesbeeieenaee s 364
17.2. Creating a Database CIUSLET ........ccouirierriierieiieeieerite ettt 364
17.2.1. Network File SYStemS .....c.covviivieiriiinieiiieieeieesieeieeteeste et 365

17.3. Starting the Database SETVET.........cccueevueeriiniiiiieiiienite ettt 365
17.3.1. Server Start-up Failures .........c.ccoeeeviiiiinieiiiinieeeceeeeeeeeeee e 367
17.3.2. Client Connection Problems ...........c..cccceceeieiiniiiineninicieecicnceeeee 367

17.4. Managing Kernel ReSOUICES..........cccceceririiiiiniiiiniccccccceerceeeee e 368
17.4.1. Shared Memory and Semaphores ..........ccccoceecevirienieneniienieeeieneenennees 368
17.4.2. ResoUICe LIMILS ....cccueeiiiiriiiniiiieeieeie ettt 373
17.4.3. Linux Memory OVErCOMMIL..........cccueiuirieriieiienieiieieneeeere e 374

17.5. Shutting Down the SEIVeT...........cccooviiiiiiiiiiiiiiii e 375
17.6. Preventing Server SPOOfING ........ccirieriiiirierieeiieie ettt 376
17.7. ENCIyPtioN OPLIONS. ..cc.vevieuieiietieieeiteie st eteste et cete st eeesteeseestesbeeneesteeneeseesaeenaesneas 376
17.8. Secure TCP/IP Connections wWith SSL ........cccooiiiiiiiiiniieeeeeeee e 378
17.8.1. Using client CertifiCates..........cueririererierieniieiene st 378
17.8.2. SSL Server File USage ......cceeoueririenieniieienieeienee st 378
17.8.3. Creating a Self-Signed Certificate ..........coccevevvecerirerenenienieieieeseneeens 379

17.9. Secure TCP/IP Connections with SSH Tunnels ..........ccocceceveniiieniniencncenennen. 379
18. Server CONfIGUIATION ......eiuiruiiiiriieiesieeiet ettt ettt st b ettt et esbesbtesaesbeennenbeene 381
18.1. Setting Parameters ........c..cevererieriirieienieeteest ettt s 381
18.2. File LOCAtIONS ...ttt sttt s s 382
18.3. Connections and Authentication.............cccovecveiririniinieieieinieeieeeeeeee e 383
18.3.1. CoNNECHION SELHINES ...eveeuveririieniiriieienieetenteetente sttt ettt saeeee i 383
18.3.2. Security and AuthentiCatioN.........c.coceereerierrieeneenieeieeneeseesreeseeeseeesnnes 385



18.4. ReSoUrce CONSUMPLION....cuuiriierieeriieeieerieenitesteesteenitesbeeteesseesaseesseesseesssesssessseens 386

L84, 1. IMBIMOTY ..ottt ettt sttt st ettt st sttt e st st st e baesanesaees 386
18.4.2. Kernel Resource USage..........cocueerueerieriieniiiniienieeieeieeseeeee et eniee e 387
18.4.3. Cost-Based Vacuum Delay ........ccccceveiiiiiiiiniiniiniieiieieeeeeieeeeee e 388
18.4.4. Background WIILeT........cccueviiiieiriieniieiieeieeiee ettt 389
18.4.5. Asynchronous Behavior...........ccccocveveiieiiinieiiniiieenecrceeeceeceee e 390

18.5. Write Ahead LOZ ..c..coviiiiiiiiicieeeeeee e 390
I8.5. 1. SENS......eenvieiieieiiieieettetee ettt st s 390
18.5.2. CheCKPOINLS.....couiiieiieiiiiiiieeete ettt s 393
18.5.3. ArChIVING ..o e 393

18.6. Query PIANNING .........cooiiiiiiiiiiiiiiiet e e 394
18.6.1. Planner Method Configuration..........cc.ceceeeruereeeeinicrenenienieeeeeeseneneene 394
18.6.2. Planner Cost CONSLANLS ........cecveruereerientieienieeienieeiteie st eeesee e neesaeeeesneas 395
18.6.3. Genetic QUErY OPHIMIZET .......cc.ccveveiruierinienieieeeieene ettt eresrenaens 396
18.6.4. Other Planner OPLiONS.........c.eevecvereiruinrinenieneeeeeneneseeteteneeeresressenaens 397

18.7. Error Reporting and LOZZING ......cccecevimirieniiiiiiineniccieieeeteeeieeeeeeee e 398
18.7.1. Where T LOZ ....coveeeieiieiiiineicceteiteeeeeeeeee ettt 398
18.7.2. WHen TO Lo ..couveiiiiiiieieeetet ettt s 400
18.7.3. What TO LOE ..ottt 402
18.7.4. Using CSV-Format Log Output .........ccceecueririienenienenenieieeeee e 405

18.8. RUN-TIME SEALISTICS ..ceuvevirireiiniieiirieeterieeitetest ettt ettt et 406
18.8.1. Query and Index Statistics COIlECtOr ........cc.eecuerereereneriiniinieicrceeene 406
18.8.2. Statistics MONIOTING ... ceververeieriiriieieniieienieeitenee ettt siea 407

18.9. AUtOMALIC VACUUIMINZ ....veeueieeieeieeiieniieeieeieesieesteeteebeesatestaesabeesseesseessseenseenseens 407
18.10. Client Connection Defaults .........cccooeririininiiiiniiiiineiiccnceceeeesc e 409
18.10.1. Statement BEhavior........c..cocuevverieiiniriiineiienieniicieneeecne et 409
18.10.2. Locale and FOrmatting ...........cceecueevieeneenieiieenieniesieeneesee e eieesiee e 411
18.10.3. Other Defaults .......cccoeeiiririiniiieienicieeetee e 413
18.11. LOCK MaANaemEeNL ........ccvuieiieiieniieeieeieenitesteeteesieesteeieesteesateeseenseessseeseenaeens 414
18.12. Version and Platform Compatibility ..........cceeveeveenieriienniienieiieeeesee e 415
18.12.1. Previous PostgreSQL Versions .........c.ccceceeveeriensiersieenienieesieenieeseenanes 415
18.12.2. Platform and Client Compatibility........c.ccceoceeriervieriiienienienieeeeneeaee, 416
18.13. PreSet OPLiONS. ..cccueeruiieieierieeniieeieeieenite et ettt e site sttt e st e st sabeesbeesaeessbeenbeenaee s 417
18.14. Customized OPLIONS .......cccevuieuieriiriieierieereienieeteete ettt ne e 418
18.15. DeVElOPEr OPLIONS .....cevieuieiiiieitinieetenieerete ettt sttt esae s ene e 419
18.16. ShOTt OPHONS....cceiiieiiiieiieieeeete ettt ettt ettt e s ne s 421
19. Client AUtheNtICALION «...cc.eevuierieiiieniteete ettt ettt ettt ebe st e st st e sbeesatesateesbeesanesaneenne 423
19.1. The pg_hba . conf fil ..ottt e e e 423
19.2. USEINAME MAPS ....ooviemiiiiiiieiieiieiieie ettt sttt e s st eae st e s eaeesae s nesnees 428
19.3. Authentication MEthOdS ........cc.ueiviiiriiiriiiriireeteeeee et 429
19.3.1. Trust authentiCAtION. .......ecueevteeereieieie et eee ettt 429
19.3.2. Password authentication..............ceceeruerueeienieeienie e 430
19.3.3. GSSAPI authentication ...........cccceeeerueruiesienieeienie et 430
19.3.4. SSPI authentiCation ........ccueeueeieriiieientieiee et 430
19.3.5. Kerberos authentication ...........c.cceceevereerienieeieneiieie e 431
19.3.6. Ident-based authentiCation .............ceceveeieneeiienenieneneeeeecee e 433
19.3.6.1. Ident Authentication over TCP/IP.........cccccccviivininienininienene 433

19.3.6.2. Ident Authentication over Local Sockets ........c..ccoceeveereneeniencnne 433

19.3.7. LDAP authentiCation.........ccccecueririenienieeieniieieniesieeiesieetenieeieeee e 433
19.3.8. Certificate authentication .........c..coceevuereerieneriieneneeeneeteeeeeee e 434
19.3.9. PAM authentiCation........cc.ceueeterereenienieeienieetenie ettt eieenieseeeee e 434

19.4. Authentication ProODIEINS ........c.eevuieriieriieriieeiieenienie et et e steeresbeeseeeseeesebeesseenaeens 435

Xi



20. Database Roles and PrivilE@es .........ccceevueerieriiriieiienieeieeieesite ettt et sbe e 437

20.1. Database ROIES ........cccccivuiiiiiiiiiiiiiciccice e 437
20.2. ROl AIDULES. .....c.eeviiiiiiiiiiiiiciicccce e 438
20.3. PLAVIIEEES ...eeuvieiieiiiieiteite ettt sttt ettt st ettt st be e bt st e b b 439
20.4. ROIE MEMDETSHIP ...couveeiiiriiiiiiiiieeie ettt ettt 439
20.5. Functions and TIIZEETS ........eevveereeriirriieniienieeieesite sttt et e sttt esbeesteebeeniee s 441
21. Managing Databases .........ccocueerueeriiiriiriieiiie ettt ettt ste e bt e bt e st s e e b e sabesbe e 442
211 OVEIVIBW ..ottt ettt sttt ettt ettt e sht e st e bt e s bt e sabe e bt e bt e sabeenbeebeens 442
21.2. Creating a Database.........cc.coeeeeriiiieiiniiiieie et 442
21.3. Template Databases .........ccccoceeieriiiiiiiniiiieice et 443
21.4. Database CONfIGUIALION .........cecueiueruieiertieienie ettt ettt sae e see s ensenaeene 444
21.5. Destroying a Database .........ccccceveeiiiiiiinieniieeeeeste ettt 445
21.6. TaDIESPACES ...eenneiniieiieiteeitee ettt ettt st ettt et st e aee s 445
2P e Yoz 1 1121 i o) FO OO RS URSRURPRRR 447
22.1. LOCALE SUPPOIT....cotiiiiiriiiiiieieitenite ettt sttt ettt st sttt e beesbeesareebeeree s 447
22.1. 1. OVEIVIEW ..ottt ettt ettt ettt ettt et sae st s be et e st et e ntesaeeneeaneas 447
22.1.2. BERAVIOT ..ottt st 448
22.1.3. PIODICINS ..ouviinieiiiiieieetteesie ettt sttt et st 449

22.2. Character SEt SUPPOIT......cc.evuiruieriirieientieiienie ettt st ete sttt steetestesieenaesbeeseenieene 449
22.2.1. Supported Character SELS........cocereererierieneeienieneenienieetenieeee e sieeeesieas 449
22.2.2. Setting the Character Sel.........ccoceeeererierienieiienieneeienieeteneeiee e 452
22.2.3. Automatic Character Set Conversion Between Server and Client........... 453
22.2.4. Further REading .........cocceviiviiiiininiiiiniiiicneetenecceeseeee et 455

23. Routine Database Maintenance Tasks...........ceceverieneniriiininiienenieeneeteeeceee e 456
23.1. ROUING VACUUIMING ....eoviieiiieiieiieeiieeieesiteeeteeteesieesiresbeesaeesseesabeeseenseesnseensesnseens 456
23.1.1. Vacuuming BasiCS.......ceecuirriirrieniiiiierieeie ettt ettt 456
23.1.2. Recovering DisK SPace .......ccevueriieiiiinieniiieieeeeeeeeeeit e 457
23.1.3. Updating Planner StatiStiCS .......ceevveerieriieriieenienieniieeniiesieeieesieesresneenne 458
23.1.4. Preventing Transaction ID Wraparound Failures...........c.cccecceevieriennunnnne 459
23.1.5. The Autovacuum Daemon ..........ccceeeveecienirieenerieneneereneeeene e 461

23.2. ROUting REINAEXING ....cccueiruiiiiiiiieriiieiieriterie ettt ettt ettt e 462
23.3. Log File Maintenance..........coceereerieeriienienieeieeitesite st esieesiee e et esiee st eseeniee s 463
24. Backup and RESTOTE ......ceiuiiriiiiiiiiiiiieeieeiee sttt ettt ettt et st bee st e eane e 464
24.1. SQL DUMIP ...ttt ettt sttt s s 464
24.1.1. Restoring the dump ........ccccoceevveriiieiinieieieceeceeeee e e 464
24.1.2. Using pg_dumpall..........cccooiiiiiniiiiiinieienieece e 465
24.1.3. Handling large databases ...........coceeerieiiinieiieniiieienecreeeeeee e 466

24.2. File System Level BaCkup.........ccccoviiiiiiiiiiiiiiiicceceeeece e 467
24.3. Continuous Archiving and Point-In-Time Recovery (PITR) ..........cccccocieiinee 468
24.3.1. Setting up WAL archiving.........ccccceeeririnenenienieinineneneeeeeeeeeeeneneene 469
24.3.2. Making a Base BaCKUD ......cooueeiiriiiiniiiiiiiieiceeeeeeeeeeeee e 471
24.3.3. Recovering using a Continuous Archive Backup .........ccccoooeeeininennnn. 473
24.3.3.1. RECOVEIY SENZS ....eoueeeeruieieitieiieieeiieneeeeeeee st eeee e eiee e seeeee e 474

24.3.4. TIMELIINES . ..c.veeeieieiieieetete ettt ettt sb ettt e e e eee b 475
24.3.5. Tips and EXamples ........ccceveeiiininieniinieeneetere e e 476
24.3.5.1. Standalone hot backups .........cceeverierieneriinenieeieneeeenc e 476

24.3.5.2. archive_command SCIIPLS ...ccerrerierieriereeienieetenieeieeneeseeeeenaeas 477

24.3.6. CAVEALS ....uevivirenieieeeiieiee ettt ettt s st 477

24.4. Warm Standby Servers for High Availability .........cccccovevieiininniniinieneniiienene 478
24.4. 1. PIANNING «..viveinieieeiieieeiteteeeetese ettt ettt ettt ettt 479
24.4.2. IMPLEMENTATION «..cuvventiiieiiiieeiienieeiteiesie ettt ettt eet et ebeeseesveenee b 480
2443, FAlOVET ..ottt sttt 481

Xii



24.4.4. Record-based Lo Shipping........cccceevierieiiiienienienieeniiesieeieesiee e eieenne 481

24.4.5. Incrementally Updated Backups.........cecveevieenienieniiienienieeieesieesieeieene 482

24.5. Migration Between Releases ........cccvvvieriiniiiiieenienieeieeieesec ettt 482

25. High Availability, Load Balancing, and Replication.........c...cccceeevuervieinieniensieenienieeieene 484
26. Monitoring Database ACHVILY ....ccc.eevuerrieeriierieeieetee st ettt et ete et e sbtesatesreesbeesaaesareenne 488
26.1. Standard UnixX TOOIS .......ccceririininieiiiieeei et 488

26.2. The StatiStics COIECIOT........eiruiiiiiriieieeterte ettt ettt st 488
26.2.1. Statistics Collection CONfIGUIAtioN ........cc.coeeceeruirierieriereniieeeie e 489

26.2.2. Viewing Collected StatiStiCs .........ccecuerievuerieiiererieieneeree e 489

26.3. VIEWINZ LOCKS ...ttt 497

26.4. DynamicC TraCINg ......cc.coiiiiiriiiiiiiiicieieeieie ettt 497
26.4.1. Compiling for Dynamic Tracing..........ccccecevverveveeenerenenenneieenesenennens 498

26.4.2. BUilt-in PrODES ....ceeiiiiieiieieeeee et 498

26.4.3. USING PrODES ..ottt 506

26.4.4. Defining New Probes ..........ccoccoviiiiiiiieiiinieee e 507

27. Monitoring Disk USAZE......cccccveiririirieieieiniinenicteeeeet ettt e 509
27.1. Determining Disk USAZE .......ccoeceririirieieieiniininienicieieieeseesreseeeeee e 509

27.2. Disk Full Failure.......cc.coieiiiiiiiiiiieiesicetee ettt 510

28. Reliability and the Write-Ahead Log.........cccervieririiniiniiiiniciee et 511
28.1. REIIADIIILY ..eoveiiieniiiieieiceteeeee ettt st st 511

28.2. Write-Ahead Log@ing (WAL) ......cocooiiiiiiiiieeneeteeeteeseetese et 512

28.3. ASynchronous COMMIUL..........cecueruerierienierientinteieneetenie ettt esteseesreesaesbeesnenieene 512

28.4. WAL CONfIGUIALION ...uveuveiiiiiiniienieniietenieeiteie ettt sttt ettt sttt et sbeesnenieene 514

28.5. WAL INEEINALS ...ouveiieiiiiieienieeiteiesieetestcetete et sttt ettt sae s eae 515

20, REZIESSION TOSS ....eeuvietieriiiiiieieeitie st et esteesteebeebeesiteeseebeesseessseesseessaesssesnseesaesssessesnne 517
29.1. RUNNING the TESES ...eevviiriieriieiieniiesiteiteste ettt eteesitesitesteesie e st e sbeeseesseesebeenseenseens 517

29.2. Test EVAlUALION ..c..eouviiiriiiiiniiiieieneetet ettt ettt 518
29.2.1. Error message differences.......cocvvviierierieiiiienienienieeriieeie ettt 518

29.2.2. Locale differences ..........oceeerviinerienienieiinieeeeneeeeteseeresie et 519

29.2.3. Date and time differences ........c..coceeerievienieiiencnieneneeeneeeene e 519

29.2.4. Floating-point differences ........ccceeveerierieisiienienieeieeniteeeeee e 519

29.2.5. Row ordering differences........cocceevueerierieiiiienienienieesiteeeeee et 520

29.2.6. Insufficient stack depth ..........cocueeviiiniiniiiiiiiieeeeee e 520

29.2.7. The “Tandom’” tESt......cccuerrrierierierieeniteeteeteestteete et et este et e sbeesresae e 520

29.3. Variant Comparison FIles ..........ccccoceiiiiiiiiiiiiiiiiieceeece e 520

29.4. Test Coverage EXamination..........c.cccceeieieriirieneneeiienieneeresie e eeeaesieenenneene 521

IV. Client Interfaces 523
30. IDPQG = € LIDIATY ettt ettt ettt ettt et esbe s st e aesbeeneeneeene 525
30.1. Database Connection Control FUnctions .............cooceevuererieieneenieneeiesesceieene 525

30.2. Connection Status FUNCHONS ........coiiiiiiiiiiiiiiieie e 532

30.3. Command Execution FUNCHONS .........ccceeiiriiiieniiiieieieceeceese e 536
30.3.1. Main FUNCHONS .....coouiiiieieiiieieieeiteieet ettt 536

30.3.2. Retrieving Query Result Information ............cccceeeevenenrienencenenenenene 542

30.3.3. Retrieving Result Information for Other Commands ............ccoceveevennene 546

30.3.4. Escaping Strings for Inclusion in SQL Commands .........c.cceccevereeuennenne 547

30.3.5. Escaping Binary Strings for Inclusion in SQL Commands ..............c...... 548

30.4. Asynchronous Command Processing.........c..ceccevererienienienienennienenieneneeienenne 549

30.5. Cancelling QUueries in PrOZIESS .......cccccveriiriirienenenienieniteiesieetesee st 553

30.6. The Fast-Path INterface..........cccceverieiiininiiniiiiienceteeeteeseete et 554

30.7. Asynchronous NOtHICAION ......eeruieriirriienieeieeieete sttt sre e steeaeeeee s 555

30.8. Functions Associated with the COPY Command .........cc.ceceeeverereeneneencnennrenene 556

xiii



30.8.1. Functions for Sending COPY Data.......cccceecuerviienienienieenienienieeieeneeeees 557

30.8.2. Functions for Receiving COPY Data........ccccevvveevienieriieenienienieeeeseeee, 558
30.8.3. Obsolete Functions for COPY .....ccceciirievienerienienieieneeeenieeeeese e 558

30.9. Control FUNCHONS ......ccciuiiiiiiiiiiiiicicicciee e 560
30.10. Miscellaneous FUNCHIONS .........cceiierieriirieniinieienecreieeeetesie et 561
30.11. NOtICE PIOCESSING .....vevieuriiiriieiiniieieniieieete ettt ne s nneeae 563
30.12. EVENE SYSIBIM ...cuiiiiiiiiieiienieeietese ettt ettt s neeae 565
30.12. 1. EVENE TYPLS ..ottt ettt s 565
30.12.2. Event Callback Procedure............ccccevieriiiiiiiiniinieniienienieeieeeeeee 567
30.12.3. Event Support FUNCHONS.......c..cociviiiiiiiiiicieicieecece e 567
30.12.4. Event EXample .........cccociiiiiiiiiiiiiiiiiiccceee e 568
30.13. Environment Variables ..........ccccceviiriiiriiniiiiiiieiiceeeecneceeeeee e 571
30.14. The PassWord File .........cccooieiiiiiieieiieiee ettt 572
30.15. The Connection Service File .........ccccoviiiiiiiieiiiieeeeeeee e 572
30.16. LDAP Lookup of Connection Parameters............ccecueveriereneenienenienenceienene 573
30.17. SSL SUPPOIT.c..eitiiieiietieieste ettt ettt st ettt et sbe et e sbe st enbesbeeneenaeens 574
30.17.1. Certificate VerifiCation...........c.ceeeruerieriereeienieniieiese et 574
30.17.2. Client CErtifICaLES .....o.eeruiruerieiieiieieeieeie ettt ettt s 574
30.17.3. Protection provided in different modes.........c.cceceevuereevienenienencnnenenne 575
30.17.4. SSL File USAZE ....coverueeieriiriieiiniieieeieete ettt st 577
30.17.5. SSL library initialiZation..........cecvevuereerienerienieneeieneeeene e 577
30.18. Behavior in Threaded Programs...........c.cccoeeeevinerieninieienieieneneeneneevenene 578
30.19. Building libpgq Programs..........c.ccoceecuereriininienenenienieneeiesieeeenie st 578
30.20. EXample Programs........cccccoeeiererieieninienieneente ettt sttt ene 579
31, LarZ8 ODJECLS ..eeuveeiieeieeieeiite ettt et e te ettt e st e et e esbeessaeesbessbeesaaesssesabeenseensnesnseenseensnennsas 589
311 INErOQUCTION ..ttt s 589
31.2. Implementation FEAtUIES ..........cccveviiiriieniienieiieeteste ettt st 589
31.3. Client INterfaces.........cccovueviiiiiiiiiiiiiiiicicicce e 589
31.3.1. Creating a Large ODJECT........cevueriiiriienienieeiteniteete ettt 589
31.3.2. Importing a Large ODJECT.......ccuevuirriierienierieeiteete ettt 590
31.3.3. Exporting a Large ObJECt.......cccuevuirriiinienierieeniierieeieesitesite e 590
31.3.4. Opening an Existing Large Object.........ccecerviierieniiriiienienienieeeeneeeene 590
31.3.5. Writing Data to a Large Object.........ccovievviiriiienienieniieienieeieeeeeeee 591
31.3.6. Reading Data from a Large Object .........cocceceevienieiiinincicninicicnecienene 591
31.3.7. Seeking in a Large ObJect.......c..cocuevuirieiiiniiienienieieieeceeeeeseereieee 591
31.3.8. Obtaining the Seek Position of a Large Object.........ccccevervienenincennenne 592
31.3.9. Truncating a Large ObJect .........cccecirieiiiniiieiiinicieeeeee e 592
31.3.10. Closing a Large Object DeSCIIPLOr ........c.cecverueriieciiniieieneeeeieneeieieene 592
31.3.11. Removing a Large ODbJect .........cccciviiiiniiiiiiiiiiiiiceceecescceee 592

31.4. Server-Side FUNCHONS. ........coieiiiiiieiesteeee ettt 592
31.5. Example Program ............ccocoooiiiiiiiiiiiiiicc e 593
32. ECPG - Embedded SQL N C.....oveuiiiiiiriiiiieieieietne ettt 599
32.1. The CONCEPL......oouiiiiiiiiiiiiti e e s 599
32.2. Connecting to the Database SEIVET.........ccccceivirererieieiiinineneseeeeeeee e 599
32.3. CloSing @ CONNECHION ....eeueereiriieieitieienteeiteteeetete e eeteste et et sbeesteseesatenbesbeensenaeeas 600
32.4. Running SQL ComMmandS..........ccceeeeruerierieniinienienieetesieeitete sttt sieeeenieeae 601
32.5. ChooSING @ CONNECIION. ......oruiruieiiriieienieeiiete et ste ettt st estestesitentesbeessenieene 602
32.6. Using HOSt Variables ..........cccevieriiieieniiieieiceie ettt 602
32.6. 1. OVEIVIEW ..cuiiiiiiieiceeeetteee ettt st e 602
32.6.2. Declare SECHOMNS. .....ccueveuiiuieiirierieicieiee ettt 603
32.6.3. Different types of host variables ..........cccccoceevienenieniininiininieneneeienene 603
32.6.4. SELECT INTO and FETCH INTO .eccevirririsienieieienierinienieeeeeneenesnesnenenns 604

Xiv



32.0.5. INAICALOTS. ... .vvvieeeeiireeeeeeeieeeeeeeetreeeeeetre e e e eeetaeeeeeesareeeeeeaaeeeeeenareeeeeennnres 605

32.7. Dynamic SQL .....cocuiiiiiiiiiiieitete ettt sttt st e be e 606
32.8. PELYPES LIDTATY ..ottt et sttt st e be e 607
32.8.1. The NUIMETIC LYPE .eeuveeeeeruiiiiieiieniieeieenite et ettt ettt sate st e b e saee e 607
32.8.2. The date LYPE....eecveerrieriieriiieitenite ettt ettt ettt et sttt et st esbeesaee e 610
32.8.3. The timeStamP tYPC.....eeruverrieeriierieeiieniteeteeieerttesite et e st e st st e nbeesaeesaees 613
32.8.4. The INterval LYPE ....ccverueeviirieieiieieieeceeesee ettt 617
32.8.5. The decimal tyPe.......ccccevverieeieiiinieiieieiere ettt 617
32.8.6. errno values of pgtypeslib.......ccccocoviiiiiiniiiiiee 618
32.8.7. Special constants of pgtypeslib.........cccocoviiiiiiiiiiiiniiiccee 618

32.9. Informix compatibility MOde...........ccceiiiiiiiiiiiiiiiiiiiec e 619
32.9.1. Additional embedded SQL Statements............cccoverveerreerresreecreeseeseenenes 619
32.9.2. Additional fUnCHONS. .........cc.oeeeiiiiciieeeie e et 619
32.9.3. Additional CONSLANES.........cccueeeeiiierieeeiieeeeieeeeeteeeetee e e e e eeeaaeeeeaeas 628
32.10. Using SQL DeSCIIPLOr ATEAS.......coververeremerririirierieteienteeniessessesseseeseeressessessennes 629
32.11. Error HAnAINg ....cc.coouiiiieiiieeeeee ettt 631
32.11.1. Setting CallDaCKS .......cooerueeieriieiieiieieeteseeteest et 631
32112, SQLCA .ttt st 632
32.11.3. SQLSTATE VS SQLCODE c..testtesreerreerrersresressseesseessuessseesseessesssesssessseessses 633
32.12. Preprocessor Qir@CHIVES ........ceueruirieieniirienteniteiesie et sttt st et seesiee st sbeessenieeae 636
32.12.1. INCIUdING fIl@S...c..eeviriieiiniiiieieeiteteeceese ettt 636
32.12.2. The #define and #undef dir€Ctives ........cccceevvierierieeiiienieeieeieeeeseeeene 636
32.12.3. ifdef, ifndef, else, elif and endif dir€Ctives .........ccoovvvvvvviivviieieeeeeeeeenn. 637
32.13. Processing Embedded SQL Programs............cccccoeevienenieiienennieneneeneneeienene 637
32.14. Library FUNCHONS .....cociiiiieiieiieniieeiterite st eieesitesiresteesieeseeesbeeieesaeesabeenseenseens 638
32,15, INLETNALS ...ttt ettt ettt et e st st eesbeesaaesabeenseebeesabeenbaenbeens 639
33. The Information SCREMA.........c.eevuiiriiirieriieiieete ettt ettt et et st beesaaesaeas 642
33.1. The SCHEMIA ...ccueeiiiiieiieiieeeeeee ettt ettt st sbee st ebeebee s 642
33.2. DAta TYPES .eeuvteuieintieiiente ettt ettt et e st et e bt esatesabe e bt e satesabeesbeebeesabeebeebeens 642
33.3. information_schema_catalog NAME .ueieeerireeeeeiiireeeeeiireeeeeensreeeeenereeeees 642
33.4. administrable role aUthOTrizZationS . eeieeeeeeeeeeeeeeeeereeeeeeeeeeeees 643
R TN o) R R o B =Y o o Y K=Y TR U U U PR UTRRRRRTT 643
I I T ol o o ) o1 o =Y =TSSR 644
33.7. check_constraint_roULiNe_USAGTE .ccvivieeiiiirieeeeeeitreeeeeeereeeeeeerreeeeeeerree s 646
33.8. CheCK _CONSETAINES tiiiiiiiiiiiiieiicieeeie e e e e e e e et e e e e eeeeeeesesssssnsarsseeeeees 647
33.9. COLUMN_AOMAIN_TUSATE turrieeierriieeeieiirreeeeeeitreeeeeeireeeeeeetreeeeeeeraeeeeeesreeeeeeenseeeeas 647
33.10. COlUMN_PTivVileges cimiieeiiieeiieesitieeeiteeesireeesseeessseesssseeassreesssseessseessseesssses 648
33,11, COLUMN UL _USAG ciiiitiiieeieettieeeeeeitreeeeeeetteeeeeeetteeeeeeetreeeeeeessaeeeeeensreeeeeaensraeeas 649
33,12, COLUIMNS ciitieieeitttieeeeeeeeeee e e e e e e e e e e eeeeeeeeeeeeeeeeeesasasssssaareeeeeseeeeeeseseenssrsssrnneeees 649
33.13. constraint_COLUMN_USAGTE wiireiieirrereeereirreeeeeeireeeeeeerrereeeeesraeeeeeesreeeeeesssseeens 654
33.14. constraint_table USAGE i iiieeeiiiieeeeeeiiteeeeeeetreeeeeeetraeeeeeerreeeeeenseeeeas 654
33,15, data LYPEe PrivVileges i iciiiieeecceeeeeeetee e e et e e e etrae e e e eearre e e e e enaaaea s 655
33,16, AOMAIN, CONSETAINTS teeteeeeetiteeee e e e e e et e e e e e e e e e e e e e e e e e e e eeaaaaaaaaaaes 656
33.17. AOMaAIN_ UL _USAGC e iiiituiieeeeeriieeeeeittteeeeeetareeeeetteeeeesestaeseesssraseeeesnsseseeeaansraeens 656
R RN B e e} =T R o ¥ T RRRURURORRRRRROY 657
33,10, E1EMENt_ L YPES tertitiiiieeiieeesiteeeite e ettt et e et e et e et esbb e e e b e e e s bt e et e et e eaneas 659
33,20, ENIAD L A, T Ol S et ee e e a e e e et ——————————— 662
33.21. foreign_data_WrappPer_OPtiONS e eereeeeeeeeeieeeeeteeeeereeeereeeeveeeeaneas 662
33,22, fOreign_data_WIaPDETS cerrieeeiieeeiteeeeieeeeeireeeereeeeseeeeseeeessseessssesssesensesenssens 663
33,23, foreign_Server _OPLiONS e iiiieeiteeeiireeeereeeereeeeteeeesteeeeseeeeseeeearesenaneas 663
R I S oY o=k e s o N =1= Y o 14 = of - DRSSPSR 664
33,25, Ky COLUMN_USATC ciittturieeierrereeeieirreeeeieitereeeeesreeeeeeestreeseessrareeeensareeeeennsreeees 664

XV



33,20, P AT AMEE T S uuiiiiieiirieeeeeiieeeeeeette e e e eeete e e e ee e e e e eeera e e e e eetraeeeeearareeeeatraeeeeenrraaeas 665

33.27. referential CONSTIAINTS weeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeareeaeaaaaaees 668
33.28. r0le_COLUMN__ GIANTS tirieeierirreeeeeeiirreeeeiiireeeeeeeireeeeeeessreesesssreseeeesssseeeeessssseeens 669
33.29. role_roULANE _GrantS aiieeeeeeiireieeeeeireeeeeeereeeeeeetreeeeeeeraeeeeesareeeeeeerreeees 669
33.30. £0le_ L ale_GLants wirieeieeieeeeeeeiirreeeeeeetreeeeeeiteeeeeeeitreeeeeeereeeeeeesreeeeeeerreeees 670
33.3]. £Ole_USAGE_GTANES witeerciieerriesireesireeesiteeesreeessreesssseesssseesssseesssseessseessssesssssees 671
33,32, rOULINE_PTrivVileges ciiiiiieiiieeeriieeeiieeerreeesreeesereestaeeesreessseessseeessseessssens 671
33,33, L OU L ANIE S ceetriiee ettt ettt eeeee e ettt e e e e e et e e e et e e e e e abar e e e eetreeeeeenraaeeas 672
33,3, SR EMAT A ceetriiei ittt et e e e e e et e e e e e bar e e e eetreeeeeearaaaaas 678
I TR o T =Ye b 1Y oY =Y F SRS 678
33.30. Sl _fEALUTES wireeciiieeiieeiiieerieeetteestteeeteeesbeeesabeesssseesssaeeansseesnsseessseaennseesnnsens 679
33.37. sql_implementation_INFO vt e et et e et e eearaee s 680
33,38, SAL_LANGUAGES ceurreeeeeirireeeeeeiteeeeeeittteeeeeeteeeeeeeesteseeesesreseeasassaseeeaasreseeeaasssaeens 680
33.30. SOl _PACKAGES tteeerireiiieeiiieeitieeseiteeeteeeeteeesteeesbeesaabeeasaeeasbeeesaeeanbeeennraeenaeas 681
33140, SOl DA Suuttiieeieiiiieeeeeiireeeeeete e e e ee it e e e e eetae e e e e et taeaeeeetaaaaeeaataeaeeeantraaeeeanrraaaas 682
33141, SOl S1 ZANGuutiiiiiiiiiee et e e e e e e e et e e e e e et ae e e e entbaeeeeaaraaaeas 682
33,42, 5l _SizZing_PrOfileS ciiieiiiiiieeeeeiieeeeeeiteee e e et e e e star e e e eare e e e e aaaaaea s 683
3343, LA e COMSETAITITES teeteeeeeeeteeeee e ettt e e e e e e e e e e e e e e e eee e eaaaaaaaaaaes 683
3344, LAl e PTivVilEgeS i eiiieectieeeiee et et e e et et e e e e ta e e te e e eteeeeareas 684
33 LA LS tiiiitie ettt ettt ettt e e e et e et e et e e e ta e e eteeeetae e e teeenareeeareas 685
3340, £ i ggOT S cetuiieeiieeeiieeete e e ettt e et e et e e e te e e eae e et a e e e b e e eeateeetaeeetteeeaaeeeabaeenareeeareas 685
3347, USAGE _PTiVILEGES ciiiiiiiiieetiieciteeetteeetee et e e et eeeateeeetaeeete e e etae e s be e e areeeaneas 687
33.48. USer_MaPPiNGg _OPEIONS iiiiriiiieeieiteieee et eeeeertreee e e eetre e e eeeataeeeeeeaaeeeeeenaaeeeees 687
RIS R TET=S ol (1= o) o3 o Lo 1= SRR 688
33.50. VieW_COLUMN_USAGE tirrurieeierrereeeeeitrreeeeiiitereeeenireeeeeeessseesesisseseeeesssseeeeesnsseeees 688
33,51, VieW _FOULINE_ USEGE tiriiiieeiiiieeieieeeeeeeetee e e eeete e e e eetre e e e e eearaeeeeeeareeeeeenarreeees 689
R R Vo RS o=t o B =Y Y= T- N [= FOU ORI 690
3303, VA @WS tttrtieriteite ettt ettt ettt sttt ettt e b et hb e bt ea e at e st e e bt ebeesabeebeebeens 690
V. Server Programming 692
34, EXtending SQL.....c.eooieiiiiieeeeteite ettt ettt et st b e saeesaees 694
34.1. How EXtensibility WOTKS.........coociiriiiiiinieniiiieeteste ettt 694
34.2. The PostgreSQL Type SYSteM......cccccueriiriiriinieiineeienieeeereste et 694
34.2.1. BASE TYPES ..ceveniiiierieiieiesieeeeteee ettt st 694
34.2.2. COMPOSILE TYPES....ccuviuiererierieiieiieteeie ettt sttt 694
34.2.3. DOMAINS ..eeuvvieeeiieeiieesiieeesieeeeteeeereeseteessaeesseeessseeeessaeessseeessseeesssessnsses 695
34.2.4. PSEUAO-TYPES ..ottt 695
34.2.5. PolymorphiC TYPES ......ccouiririiiiiiiieiiiieeenie ettt 695

34.3. User-Defined FUNCHONS ........cccieiiiiiieiieeiecie ettt ettt eve e e s veeaaenee s 696
34.4. Query Language (SQL) FUNCHONS ......ooviriiriiiiieieiieiesieeieeee e 696
34.4.1. SQL Functions on Base TYPeS .......ccccceveririnienieenininenenieiereeseseenenne 697
34.4.2. SQL Functions on Composite TYPES .......ccccevvevveeeerenenenieieinenenrenenns 699
34.4.3. SQL Functions with Output Parameters ............cecceeeveeeeenenieneneeenene 701
34.4.4. SQL Functions with Variable Numbers of Arguments...........cc.cccceeeuennene 702
34.4.5. SQL Functions with Default Values for Arguments ...........cccceeeveeuennene 703
34.4.6. SQL Functions as Table SOUICES ........cc.ccovvieeiiieeeiiiieeiee e 704
34.4.7. SQL Functions Returning Sets .........cccceocererierienienienenieneneeneneeieniene 704
34.4.8. SQL Functions Returning TABLE ......c.cecceverierienierieneneeneseeneesieeeeniene 706
34.4.9. Polymorphic SQL FUnctions .........c.ccecceeeririenenienienenieneneeneneeeniene 706

34.5. Function OVerloading.........c.cceceverieieniriiniinienieneetesiesitetesieeee et nieeae 708
34.6. Function Volatility Cate@OIies ......c.eevverreruieruireenienienienienieetenieeeeseesieesiesieerenieene 709
34.7. Procedural Language FUNCHONS .......cooeerieriiiiiieiienie ettt s eie e 710

xvi



34.8. Internal FUNCHONS .......ccooiiiiiee ettt e eetre e e e e e e e eetreeeeeearaeee s 710

34.9. C-Language FUNCHONS. ........cooiiriiriieiieniteniie ettt sttt et esiee st ebeebee s 711
34.9.1. Dynamic Loading.........cceceevueerieriiiniieniienieeieesiteste ettt 711
34.9.2. Base Types in C-Language Functions.........c..cceeceevvieriieenieniiensieeneeneennne. 712
34.9.3. Version 0 Calling CONVENLIONS ......eeveerererueriiieriienienieeniteseeseeenieeseeenanes 715
34.9.4. Version 1 Calling CONVENLIONS ......eeveeruierierrieeniienienieenieeseeseeenieesaeenanes 717
34.9.5. WIiting COde......coueioiirieiiiiieieiieieteeceere ettt s 719
34.9.6. Compiling and Linking Dynamically-Loaded Functions......................... 720
34.9.7. Extension Building Infrastructure............c..ccccceevieiininiininieniniienene 722
34.9.8. Composite-Type ATZUMENLS .......c.cccevierieririeieniieietieeene e 724
34.9.9. Returning Rows (Composite TYPes) ......cccoeevieriririieniiiieniiicciccieene 726
34.9.10. REMUINING SELS....eveveureuierieterierieteteiteienteereteteneeneere e see et ee s srenenee 728
34.9.11. Polymorphic Arguments and Return Types.........c.ccccevererveveeeerennennenn 732
34.9.12. Shared Memory and LWLOCKS .......ccccccvivirienieninininenencceeeneeeeenne 734

34.10. User-Defined AZEIEZaes .......ccoeruieieriirienieeiienie ettt ettt st saesbeeee e ene 734

34.11. USer-Defined TYPES ....c.eecueririerieiiieienieeiieie ettt ettt sttt ee e eae 736

34.12. User-Defined OPErators...........coeeeeueriieieniereenienieetenieeiteiesteeeeseesee e sieesenaeene 740

34.13. Operator Optimization Information..........c.cceceevererienenieneneeiese et 741
34.13.1. COMMUTATOR cevevirentenrenterietesiesseseneeateuestessesesenteneeses e saesaesneasenesaessenenne 741
34.13.2. NEGATOR weeeuiuiiiieniententeneetesiesteeessest et sttt st st esesbesaesaesensenesuesnenenne 742
34.13.3. RESTRICT weoutruiiiieienrenietietesiesteeeseeie st st st sen et eneese e s sae et saesnenenne 742
341314, TOTIN ettt ettt sttt st e 743
34.13.5. HASHES ittt sttt sttt s s st 743
34.13.0. MERGES .ottt sttt sttt s s 744

34.14. Interfacing Extensions To INAEXES.......cccvervirriienieniiriieeniienie et 745
34.14.1. Index Methods and Operator CIaSSES ........ccceereereeerieenieeniesieenieeneennnes 745
34.14.2. Index Method Strateies ......cccueeeverrieerieriieriieniienieeieeseeseesreesieeseeeseees 746
34.14.3. Index Method Support ROULINES .......ccceevcveriierienieniierierieeieeeeseeeen 747
34.14.4. AN EXAMPIE ...ouviiiiiiiiiiiiieeteec ettt 749
34.14.5. Operator Classes and Operator Families...........ccoccevveenieniieniiieneeneennne. 751
34.14.6. System Dependencies on Operator CIasses ..........ccecvereereerieenieeneennne. 754
34.14.7. Special Features of Operator Classes........coceerveerieriieenienieensieenieeneennnes 754

35 TIIZEETS -eeeuteeneeeieeeite ettt ettt ettt b e st e e e bt e st e et e bt e s st e sab e eabeesbtesbbesabeenbeesaeesateenbeenaeesaees 756

35.1. Overview of Trigger BEhavior..........ccccoievieviiiieiiniiiiinicieceecre e 756

35.2. Visibility of Data Changes.........c..cocecevieiiriiiienineeieieeecreeeeeese e 757

35.3. Writing Trigger Functions in C ........c..cccooiiiiiiiiiiniiiiineeeeeeese e 758

35.4. A Complete EXamPIE .......c.coieiiiiiiiiiiiiiiiceceneceee e 760

36. The RUle SYSIEIM ....coiiiiiiiiiiicieice et e s 764

36.1. The QUETY TTEE.......eeiuieriiiiieiteite ettt ettt ettt sttt e eiee s 764

36.2. Views and the RUle SYStem .......ccooiiiiiiiiiiiiee e 766
36.2.1. How SELECT Rules WOrk ........ccoocieiiiiiiiiieeeeeeeee e 766
36.2.2. View Rules in Non-SELECT Statements .........ccceeeevereeeeneseeneneeeeneens 771
36.2.3. The Power of Views in PostgreSQL ........c.ccccoiiiiiiininiinieeesceeee 772
36.2.4. UPAating @ VIEW.....couiiuieiiiiieiesieeiieie ettt ettt st eae 772

36.3. Rules on INSERT, UPDATE, ANA DELETE ..eeveettteteeeeieeeeeeeeeereeeeeeeseseesesesssnenseeeees 772
36.3.1. How Update Rules WOrk ........ccccoceeiiriiiiniiiiiniceeeececeeseeeeee 773

36.3.1.1. A First Rule Step by Step......ccceeoveririieniiiienieeieeec e 774
36.3.2. Cooperation With VIEWS.......ccccoerieiiiniiniiniiieienieeeetee e 777

36.4. Rules and Privil@Zes ........cccooerieriiieiieniiiiiieccee ettt 783

36.5. Rules and Command StatUs...........cccecueeveieirininenenieieieeneseeeee e 783

36.6. Rules VErsus TIIZEETS ..cc.cocueririeniinieienieeieieecete ettt ettt 784

37. Procedural LangUAaZES .......ccveevieriiiriieeieeieeitieeteeteeteesitesetessbeesasesssesaseesaaesseesnseenseensnesnnas 787

XVii



37.1. Installing Procedural Languages ..........ccccevverrieenienienieeeenec et 787
38. PL/pgSQL - SQL Procedural Language .........c.cceecueeviierienieniiienienieeieenieesiee e eiee e 789
38.1. OVEIVIBW ..ottt ettt sttt b st sbe et sae s enesaeeanenneeae 789
38.1.1. Advantages of Using PL/PESQL .......coocieviiiiiiiiiiieeeteeeeeeeeee, 789
38.1.2. Supported Argument and Result Data Types......ccccceevveeveenieniieeneeneennne. 789

38.2. Structure of PL/PZSQL.......ooiiiiiiiieiiiee ettt 790
38.3. DECIATALIONS ..ottt sttt ettt ettt sttt e s bt sttt e sbeesatesbeebee s 791
38.3.1. Aliases for Function Parameters ............ccecervieenienieniiiinienienieeeceeee, 792
38.3.2. COPYING TYPES ..ottt 794
38.3.3. ROW TYPES. ..ttt s 795
38.3.4. RECOTA TYPES ..ttt 795
38.3.5. RENAME ..ottt et st et ete et ettt be s e b et sae st aesreeanenene 796

38.4. EXPIESSIONS....ccuviuiruinrinieteieiteitett ettt tentent et et st seeaene et et sae et b e e e st ebeebesaesaennen 796
38.5. BASIC StAtEIMEILS...c..eeutietieuiirteeiieieeiiete sttt et et esaeete st e ebe e e sbe et eseeeaeebesbeensenaeene 797
38.5.1. ASSIZIMENL ...veviviriienieiieiieiere ettt sttt ettt st s sn e 797
38.5.2. Executing a Command With No Result..........ccccccocevininininninnnnennnn. 797
38.5.3. Executing a Query with a Single-Row Result ...........c.ccoccoeeiiinnininnn. 798
38.5.4. Executing Dynamic Commands ..........ccccoveeierienienienenieneneeneneeeneene 800
38.5.5. Obtaining the Result Status........cccceverierieniiienenieereeeeeeee e 802
38.5.6. Doing Nothing At All ......cocceieiiirieiinieieneeteeeeeeetese e 803

38.6. CONLIOL SIUCLUIES.....cuviteeiieiieiieieiieetent ettt sttt ettt ettt e b b eane i eae 803
38.6.1. Returning From a FUncCtion...........cccceceeviiniiiinininiicninicncececsceeee 804
38.0.1.1. RETURN ..ottt ettt sttt s 804

38.6.1.2. RETURN NEXT and RETURN QUERY ....ccceceriruinuenienieneenenenienuennen 804

38.60.2. Conditionals .......coceevuireeniiriiieniinieicecetereete ettt 805
38.0.2.1. IF—THEN .eouistiieiieiieitetiteteeee ettt st s 806

38.6.2.2. IF—THEN=ELSE ..ecttiruirieieieieiieesie sttt st s 806

38.6.2.3. IF—THEN=ELSTIF cceoiruirriieieieiieieniesieteieeeie st s 806

38.6.2.4. STMPIE CASE c.veviieriiieieeiiesiieeieeieeste et eieesbeesteesieesbeesateeseenaee s 807

38.6.2.5. Searched CASE....c.coireeririeienieereieeeete sttt 808

38.6.3. SIMPIE LOOPS -.eerevieiieiieiiieieeriteete ettt sttt st et 809
38.60.3.1. LOOP vttt s 809

38.0.3.2. EXIT oottt sttt s 809

38.6.3.3. CONTINUE ...ceivtiuiimiiiiitiiteieieeeiieic sttt s 810

38.0.3.4  WHILE .eoiiiieieiieieetieieete sttt et et e e s ene s n e ene s ene e 810

38.6.3.5. FOR (INLEZET VATIANL)....cccueerurerureeieeniieeieeieeniee e eieenieesateeeeeniee 810

38.6.4. Looping Through Query Results ..........cccoceeoiiiiniiiininiicenecieene 811
38.6.5. Trapping EITOTS ......cc.ooiiiiiiiiiiiieiciiecere e 812

387 CUISOTS . ..ueeueeeuteeuieete ettt ettt sat et e st e s bt e bt et esbt e st e e bt e sbtesabe e bt ebeesabeenbeebeens 814
38.7.1. Declaring Cursor Variables............cccoeiererieienenieeeieeiese e 814
38.7.2. OPening CUISOLS ....ccuerueeriirueeieiteetieieeteeeesteetestesseetesteeneesaesaeessesbeeneeneeens 815
38.7.2.1. OPEN FOR QUEL Y eeturrreeeeirrereeeeiureeeeeaiseseesesssessesssssesssessssessesans 815

38.7.2.2. OPEN FOR EXECUTE .ecouiruiiieiiiiiiaiieiieie e s ene s 815

38.7.2.3. Opening a Bound CUrSOr..........cccevieieniieeneniieiesieecee e 816

38.7.3. USING CUISOIS. ....euieneieiieiesieeitenteettete st eteseeetebe st este bt eseesaesaeenaesbeenneneeene 816
3873 1 FETCH cutotirieteteteteie ettt sttt st s 816

38.7.3.2. MOVE vttt ettt ettt sttt st s 817

38.7.3.3. UPDATE/DELETE WHERE CURRENT OF ..cccevvirerienrereerenrennennennes 817

38.7.3.4. CLOSE ettt sttt s 818

38.7.3.5. Returning CUISOLS ......cccereeierierieniiniienienieeienieeirenieeieeneesieeneenieas 818

38.7.4. Looping Through a Cursor’s Result.........c.cceceverieniininnininieneneiienene 819

38.8. Errors and MeESSAZES........cocuerueruieniiniieienienitenieeitentenieeitente sttt eaeesaeseeesaesbeesnenieene 820

XViii



38.9. Trig@er PrOCEAUIES .....ccoueiiuiiiiiiiieiiteieeteete ettt ettt sttt st e 821

38.10. PL/pgSQL Under the HOOG ........coutiiiiniiiniiiiieiienie ettt 826
38.10.1. Variable SubStitUtioN .........ccccoereeriirieiieneeieieneeteeeeeeee et 826
38.10.2. Plan CaChing ......coceevuieriiiiiieieeieeieesteeee ettt 828

38.11. Tips for Developing in PL/PESQL......cccciiiiiiiiiiiiiiiieieeneceeeeeiee e 830
38.11.1. Handling of Quotation Marks ..........ccccceevierrieenieniieniieenieneenieeieeseeeee 831

38.12. Porting from Oracle PL/SQL.........ccccoiiiiiiiiiiniiieieeeeceee e 832
38.12.1. Porting EXamPIEs ........cccoeriiiiirieiinieienieeicieeieeee e 833
38.12.2. Other Things to Watch FOr...........cccoociiiiiiiiiiiiiiceccecee 838

38.12.2.1. Implicit Rollback after Exceptions..........cccccoceecveeiieiienineennennen. 838

38.12.2.2. EXECUTE .ttruteeteeieeniteeteeieesiteeteeteesbeesasesateenbeesasesaneenbeesanesaseenne 839

38.12.2.3. Optimizing PL/pgSQL Functions.........c.ccccevevverveneeerenvcnennennee 839

38.12.3. APPENAIX ..ottt e e 839

39. PL/Tcl - Tcl Procedural Language............c.cocveiiiiiiiiiiiiiiiiicicncccie e 842

3. 1. OVEIVIEW ..veiuvieiiieiieiieeeiteeteesteesteeesteesseesseessseaseesseessseasseesseesssesssaeseesseessseesseensenns 842

39.2. PL/Tcl Functions and ATZUMENLS........cc.ccueeruirirerienieieieenensenseseeeeseerensesuesuennes 842

39.3. Data Values in PL/TCl......cccviiiiieiiieeetecee ettt ettt 843

39.4. Global Data in PL/TCL ....cccuoiiiiiiiiieieieeee ettt 844

39.5. Database Access fTom PL/TCL ......coooiiiiiiiniiiiieiineeeeeeetese et 844

39.6. Trigger Procedures in PL/TCL .......cocoooiiiiiiiniiiiiiicneeeeeeeeese e 846

39.7. Modules and the unknown COMMANd.........ccereerererieninieieneetene e 848

39.8. Tcl Procedure NAMES .........ccceeeerierierienieniieieniceie ettt ettt seesite e sbeesnenieene 848

40. PL/Perl - Perl Procedural Language...........cccccoereeienienieniineeieneeicnesieetesieeeesee e 849

40.1. PL/Perl Functions and ATrgUMENTS........c..cecueruereerieneeeenenienenieerenieeeeneesseensennens 849

40.2. Database Access from PL/Per] .........ccccooeiiiniiniiiiniiiiciiencneccceeeeceeeee 852

40.3. Data Values in PL/Perl.........cccoocieiiiiininiiiiiniciccccctecseeteeeeeee e 855

40.4. Global Values in PL/Per] ........cccccoiriininiiiiiniiniiiinciccteeseeeeeeeec e 855

40.5. Trusted and Untrusted PL/Perl] .........cccccoceeiiiniiniiiiiniiiineiicncneccnceeeee e 856

40.6. PL/PETT TTIZZEIS ..eeveeiieeiieiienteeiit ettt ettt sit e sttt esitesabeesbeesaeesateenbeesaaesaeas 857

40.7. Limitations and Missing FEatures .........cccccoevueerieniiiriienienieeieerieenee e 858

41. PL/Python - Python Procedural Language...........cccovevieenieeniiinieeiieniesieeieeiee e 859

41.1. PL/Python FUNCHONS ....cc.coiiiiiiiiiiiiiieitenite ettt sttt st e 859

41.2. Trig@er FUNCLIONS ....eoouiiiiiiiiieiieniieeieete sttt ettt ettt st e 863

41.3. DAtabase ACCESS ..ccuveeruieruiiriieniieniieeitente sttt et e st st e sbe e st esate e bt e sbeesateebeesaaesaees 863

42. Server Programming INterface ............ocevuivieiiiieiieniniiiieccnceceeeeeee e 865

42.1. Interface FUNCHONS .......ccccviiiiiiieeiiieciiee sttt ere e et e e san e e seaaeessbeeenens 865
N &4 BeT0) 111 (= AR 865
SPLAINISR ..ottt 867
SPIPUSH .ttt et 868
SPL_POP e e e e 869
SPI _EXECULE.....ccceeiiiiieeeeeeeee et e e e e e e e e e e et et e e e eeseeeeaaereessssanaanaas 870
P KO e it e ettt ———————————aaaaetataa————— 873
SPI_eXecute_With_args .......ccceceeriirieieitieiieieeeete ettt 874
SPL_PIEPATE ......eeutetieiieteeetee ettt ettt b et be et e ettt sbe et neeeae 876
SPI_PIEPAIE_CUISOT .. ..ottt ettt ettt et sttt ettt e sbe e 878
SPI_ZELATZCOUNL ...c..teeiieriieiieeiieeieet ettt ettt sttt ettt e e b e 879
SPL_getargtyPeid.....ccueruieieriiiieieieeteteet ettt 880
SPI_iS_CUISOT_PIAN ..ottt 881
SPI_eXECULE_PIAN....eiuiiiieiiiiiriieieieete ettt 882
SPI_EXECP ettt ettt ettt sttt b ettt sae st a e et nae e 884
SPL_CUISOT_OPCIL..c.eitiniiiieiirieeie sttt ettt ettt et ettt ettt et sae st eae b eane e eae 885
SPI_cursor_Open_wWith_args .......cccoovuerierciieriienienie ettt ste e see e eaeeseee e 887

Xix



SPI_cCUIrSOr_fINd.....cuvviiiiieiiiie e et e e e e e eeare e e e e enannes 889

SPI_CUISOT_fELCH ... iiiiiiiieiie e e e v e e eeaneas 890
SPI_CUISOT_INOVE .....iiiiiiieiiieeiieeeiteeeeiteeeiteeetteeetaeesbaeeesseeesssaeesssaaessseeesseeenssens 891
SPI_Scroll_cursor_fetCh........ccciiieciiieiie et e 892
SPI_SCIOIl_CUISOT_IMOVE ....eveieuiiieeiiieeireeeieeeeiieeeteeesteeesreeesssaeessseeessseeensseesssens 893
SPI_CUISOT_ClOSC......eeeeiieeirieeiiee et e et e ette e ettt e et e e s beeesbeeeessaeessseeessseeesseesnsnens 894
SPI_SAVEPIAN ...ttt et sttt 895

42.2. Interface Support FUNCHONS .......ccoovieiiiiiiiiiiiiieieeecccceece e 896
N &4 ' o T 896

N 54 I 1100001 <) OO 897
SPI_ZELVALUE ...c.eiiiieiieeeee ettt 898
SPL_gethinval .......cc.oeiiiieieieee e 899
SPI_GELEYPE ... e e 900
SPI_ZEEYPEIA ...ttt st 901
SPI_gELreINAIME ...c.veeiiiiiiieiieciieeceee ettt ettt 902
SPI_ZENSPNAIMNE. ... .eeeueeriiieiieeiieeteetee ettt ettt st ettt e esree e 903

42.3. Memory Management ..........coeeeruirieenienieeieenitenieeereesieesiee st esveesiee st ereesmeesaees 904
SPI_PALLOC ...ttt sttt ettt sttt eae 904
SPL_1EPallOC ... ittt s 906
SPL_PITEE. .ottt st 907
SPI_COPYLUPLE ...ttt ettt eae 908
SPL_ICTUIMTUPLE ..ottt ettt 909
SPIL_MOAIfYTUPLE ...ttt 910

N o I 6 ESTS1 117 ) (OSSPSR 912
SPI_fretUPtable.......ccveeiiiiieeieeieeeee ettt et e 913
SPI_IEePIaN....cctiiiiieieeiieeeee ettt st 914

42.4. Visibility of Data Changes...........cccevueerieriiiiiienienieeieeneeste et esiee e steeveessaeseees 915
42.5. EXAMPIES ...eeoniiiieiieiieiieeie ettt ettt sttt et sttt e st st sba e bt e st enbeenaaesaees 915
VI. Reference 919
L. SQL COMMANGS....cutiiiiiiiiiiieeiiieeeiee et eeieeeetteeseteeesreeesbeeetbeeesseessseesssesesssseessseeesssesnnsns 921
ABORT ...ttt e et eesb e e et e e e tae e e tbeeetaeeebeeeansaeensbaeensseeennns 922
ALTER AGGREGATE......c..oiitietieeeett ettt ettt e svaestae v evaeeaae e 924
ALTER CONVERSION ... e e eneeeenns 926
ALTER DATABASE ...t eeae e e enee e 928
ALTER DOMAIN ...ttt e et e eeaee e enneeeneeeenns 930
ALTER FOREIGN DATA WRAPPER ........oooiviiiiiieeee e 933
ALTER FUNCTION .....ooiiiiiiee et eeae e e e e eenns 935
ALTER GROUP ...t eaeeeeans 938
ALTER INDEX ...t et e et e e e e e eaeeeenns 940
ALTER LANGUAGE . ...ttt 942
ALTER OPERATOR ...ttt ean e e 943
ALTER OPERATOR CLASS ...ttt eae e e 945
ALTER OPERATOR FAMILY .....ooiiiiiiiieeeee ettt e 946
ALTER ROLE ... ettt e et e e et e et e e eaveeeaes 950
ALTER SCHEMA ...t ettt et e et e e eaee e eaveeeens 953
ALTER SEQUENCE ...ttt ettt e et e e aee e eavee e 954
ALTER SERVER ...t ettt e et e e e e e ete e e eaveeeens 957
ALTER TABLE ...ttt et e e et e e e ve e e e aee e saaaeesaveeenens 959
ALTER TABLESPACE .......ooioie et ettt e savee e 968
ALTER TEXT SEARCH CONFIGURATION .......ccoocoiiiiiieieeeieeeee et 970
ALTER TEXT SEARCH DICTIONARY ......oooiiiiitiiiieeieeieeeteeeee ettt eve e 972

XX



ALTER TEXT SEARCH PARSER ........ccccociiiiiiiiiiiiiiciccccccce s 974

ALTER TEXT SEARCH TEMPLATE .........ccccccoiiiniiiiiiiiiiicccce 975
ALTER TRIGGER ......coociiiiiiiiiiiiiiiiiici s 976
ALTER TYPE.....ccoiiiiiiic s 978
ALTER USER ....coioiiiiiiiiiiiiii s 980
ALTER USER MAPPING ......cccoiiiiiiiiiiiiii s 981
ALTER VIEW ...ttt ettt 983
ANALYZE ...ttt ettt ettt et et 985
BEGIN ...ttt 987
CHECKPOINT ...ttt sttt s s 989
CLOSE ...t sttt 990
CLUSTER ... e et 992
COMMENT ... ettt st s 995
COMMIT ... et st 998
COMMIT PREPARED......c.ooiiiiiiiiiiiiiee e 999
COPY e e 1000
CREATE AGGREGATE .......ccoooiiiiiiiiiiiiic e 1008
CREATE CAST ... 1011
CREATE CONSTRAINT TRIGGER .......ccccceoiiiiiiiniiniiieicieecteeseieeeeeeeese s 1015
CREATE CONVERSION .....ooiiiiiiiiiiiiiteteeeteesie ettt ettt 1017
CREATE DATABASE ...ttt ettt 1019
CREATE DOMAIN......coiiiiiiiiiieietnt sttt sttt sttt 1022
CREATE FOREIGN DATA WRAPPER.........ccccccooiiiiiniiiiiiiiiciciecceceeee e 1024
CREATE FUNCTION.......coooiiiiiiiiiiiiitieeeteteeese ettt 1026
CREATE GROUP........coooiiiiiiiiiiiicisieeeteteee ettt 1033
CREATE INDEX.....coooiiiiiiiiiiieiiieit ettt 1034
CREATE LANGUAGE .......ccooiiiiiiiiiiiicicci e 1040
CREATE OPERATOR ......cooiiiiiiiiiiiiiniiiccte ettt 1043
CREATE OPERATOR CLASS ..ottt 1046
CREATE OPERATOR FAMILY ......cccoooiiiiiiiiiiiiiiiiiicictcicceeeeeeeceeee s 1049
CREATE ROLE.......ccoooiiiiiiiiiiiiiiiirnitceee et 1051
CREATE RULE.......ccociiiiiiiiiiiiiceec et 1056
CREATE SCHEMA .....cciiiiiiiiiiiiiiinticeeeei e 1059
CREATE SEQUENCE .......cccooiiiiiiiiiiiiiiiiciccc et 1061
CREATE SERVER .....c.ooiiiiiiiteeeeeee ettt 1065
CREATE TABLE ..ottt s 1067
CREATE TABLE AS ...ttt s 1079
CREATE TABLESPACE .........cooioiiiiiiiiieee et 1082
CREATE TEXT SEARCH CONFIGURATION.........cccccoiiiiiiiiiniiiencieceeeeee 1084
CREATE TEXT SEARCH DICTIONARY ......cccooiiiiiiiiiiieececeeeeeeeeee 1086
CREATE TEXT SEARCH PARSER ..o 1088
CREATE TEXT SEARCH TEMPLATE ..ot 1090
CREATE TRIGGER.......ccooiiiiiiiiiie e 1092
CREATE TYPE ... e 1095
CREATE USER ... .o e 1103
CREATE USER MAPPING........cocoooiiiiiiiiiiiiic e 1104
CREATE VIEW ..ot s 1106
DEALLOCATE .......ooiiiiiiiie ettt sttt s 1109
DECLARE ...ttt sttt s 1110
DELETE ..ottt 1114
DISCARD. ..ottt sttt s 1117
DROP AGGREGATE.......coooiiiiiiiiiieicicieseete sttt 1118

xxi



DROP CAST ..ottt 1120

DROP CONVERSION .....c.oooiiiiiiiiiiiiiiiiecteeec e 1122
DROP DATABASE ..ottt 1123
DROP DOMAIN ..ottt 1124
DROP FOREIGN DATA WRAPPER ........ccccooiiiiiiiiiiiiiiicccecece 1125
DROP FUNCTION ....coooiiiiiiiiiiiiiiicicciee st 1126
DROP GROUP ..ottt ettt et s 1128
DROP INDEX ...ttt ettt sttt st s ne s 1129
DROP LANGUAGE .......cccooiiiiiiiieeeteeee ettt st s 1130
DROP OPERATOR .....cocoiiiiiiiiiiieeeteeese ettt s 1131
DROP OPERATOR CLASS ...t 1133
DROP OPERATOR FAMILY .....oooiiiiiiiiiiiiciteet et 1135
DROP OWNED .......oiiiiiiiiiiiie et e s 1137
DROP ROLE ...ttt 1138
DROP RULE ...t s 1140
DROP SCHEMA ... 1142
DROP SEQUENCE.......cociiiiiiiiiiiiicie e s 1144
DROP SERVER.......oooiiiiiiii e 1145
DROP TABLE ...ttt s 1146
DROP TABLESPACE ......ccooiiiiiiiieieietcteeeteeeeet ettt s 1148
DROP TEXT SEARCH CONFIGURATION .......cccovviiiniiiiiieieinenieeeeeeese s 1150
DROP TEXT SEARCH DICTIONARY ......occiiiiiiiiiiiiiiniinicieieteeeieseeeeeeeeee s 1152
DROP TEXT SEARCH PARSER .........cccciiiiiiiiiiiiiiiecceceseeeeeeeeeee s 1153
DROP TEXT SEARCH TEMPLATE ........ccccooiiiiiiiiiiiiiiiciciciceeeieeeeeeeeee s 1154
DROP TRIGGER ......ccuiiiiiiiiiiiiiiiiiicicceeeeetee sttt 1155
DROP TYPE......ooiiiiiiiiiieee ettt s 1157
DROP USER ...ttt 1158
DROP USER MAPPING ......cccoiiiiiiiiiiiiiiieicccn st 1159
DROP VIEW ..ottt 1161
END oo 1162
EXECUTE ..ottt 1163
EXPLAIN ..ottt 1165
FETCH ... 1168
GRANT Lo 1172
INSERT ..ottt ettt et e sae e nesae e 1178
LISTEN ..ottt sttt et et st et sae e nesieas 1181
LIOAD ..ttt s 1183
LIOCK ..ottt et sttt s 1184
MOVE. ...ttt et sttt s 1187
INOTIFY ..ot ettt st s ne s 1189
PREPARE ... s 1191
PREPARE TRANSACTION .....ccooiiiiiiiiiiiiiiceee e 1193
REASSIGN OWNED ..o 1195
REINDEX ... .o e s 1196
RELEASE SAVEPOINT .......ooiii e 1199
RESET ... e e 1201
REVOKE ... e 1203
ROLLBACK ..ottt ettt sttt et s 1207
ROLLBACK PREPARED ........cociiiiiiiiiiitintieececeeitee sttt 1208
ROLLBACK TO SAVEPOINT ......ccooiiiiiiiiiieiceeieeee sttt 1209
SAVEPOINT ..ottt ettt s 1211
SELECT ...ttt sttt et 1213

XXii



S T ettt ettt et sttt b e st e bt e s a b e et e e be e s et e saneeates 1231

SET CONSTRAINTS ...ttt st sttt st st e st s s 1234

SET ROLE ...ttt ettt ettt sttt e st st e e et e sane et 1235

SET SESSION AUTHORIZATION.......ccooiieieiteieieeeeteie ettt nee e 1237

SET TRANSACTION ......ooiieieiteiee sttt ettt sttt te et eessessaessesseensenseenes 1239

Y = (0 ) SRR 1241
START TRANSACTION ..ottt ettt ettt sae e se s eneesaeens 1243
TRUNCATE ...ttt ettt ettt ettt et ae st e be e st et e s seeneesseeneensesneens 1244
UNLISTEN ...ttt ettt ettt a et esae et e beebeenteeseeneenaesneensenseens 1247
UPDATE ...ttt ettt ettt et s beebe e tae s abeesbeesbaessbaenseenseesssassseenseenes 1249
VACUUM ...ttt ettt ettt e bt e tae s veebe e taessbeesseessaesssaenseeseesssaesseenseenes 1253
VALUES ...ttt ettt te ettt e s beesbe e baessbeesbeesseessbesnseeseesssaenseeseenes 1256

I1. PostgreSQL Client APPLCALIONS .......cc.eoueeeuieuirenierieieietnitetesreteteeeieee et saenes 1259
CIUSEEIAD ..ttt ettt e ve e bt e s tee st e esbe e teessbeenseenseesssaesseenseenes 1260

1&] (T2 (16 Lo TR PRSPPIt 1263
CIEALELAIIZ ...ttt ettt ettt et et eb ettt e e s ae s bt et e s b e entesbeeatenbesbeebenbens 1266
CTRALEUSET . .eeenetieeauteeeiteeesuteeeauteesuteeentteeaasteesaseeeanbeesansaeeanseeasseessseesaseeeansaeessaeesnseeenn 1269
AEOPAD .ttt ettt sttt et sae st sbeea 1273
ATOPLANEZ ..ottt ettt ettt et et st e b s bt et e st ebtenaesbeeaesbeens 1276
ATOPUSET ...ttt ettt ettt et et b et s b et e bt bt et sb e e st e sbeebtenaesbeeaenbeens 1279

BCOPE e eueereemtenteett et et et s bt e st e s bt e bt et e bt e a e bt e st bt e bt et eh e st eb e e bt e bt e bt et eh e ea b bt ebeenae s bt ebenbeea 1282
PECOMIIZ coeeniiteiet ettt ettt b et sttt st b ettt ebe e et st nae b eas 1284
PEQUITID ettt ettt ettt sb et sb e ebee e bt eae b ea 1287
PE_AUMPALL....iiiiiiieiiiiie ettt sttt st et st ebeebeesabeenbeebee e 1296
PE_TESTOTE .eeeveeutieeieeite et et e st et esteestteeabeebeessaesaseeseeteesabeensaensaesssesnseenseesasesnseenseenes 1301

PSGL ettt e et st b et st e et e e btesabeenbeebeesabeenbeebeees 1308
TEINAEXAD 1.ttt sttt st ettt st e ebe e bt e satesbeebee e 1334
VACUUINIAD. ...ttt ettt st ettt bt e st e et e bt e sabesabeenbeesabesabeenbeesasesanesnnes 1337

III. PostgreSQL Server APPLICAtIONS .......cevcveeriierierierieeniteete et enieesee st enreesieesatessbeesaeesaees 1340
INTEAD .ttt sttt st et b e st st e bt e st e sbeebee e 1341
PE_CONLIOIAALA ..ottt ettt ettt st st e bt e st ebeebee e 1344
PECL ettt sttt e b e sttt e bt st st e be e st e ebeenbee e 1345
PETESEEXIOR ..ttt s 1350
POSEGLES .ttt ettt et st st st saa e e ne e 1352
POSTIMIASTET ...ttt s s s e 1359

VII. Internals 1360
43. Overview of PostgreSQL INternals ...........cccocoiieiieiiniinieiee e 1362
43.1. The Path of @ QUETY ...cc.eeuiiiiiieieeiieeeee et 1362
43.2. How Connections are Established .............ccccoooeeiiiiiiiiiiiiiceicceeceeeee e 1362

43.3. The Parser STAZE ......coceeriirniiieiiieieeteite ettt 1363
B33, 1. PaSET ..ottt ettt e e eeaae e eaeaean 1363

43.3.2. Transformation PrOCESS.......cccueeiiuiiiecuiiieiie ettt 1364

43.4. The PostgreSQL Rule SyStem .......cccccverieriiniiiiinieienerteiesitetenee e 1364
43.5. Planner/OPtimiZer......c..covetirierieniieierieeiteteettete sttt st e ettt eaeesaeseeenaesbeens 1364
43.5.1. Generating Possible Plans............ccccoceviiiininiiininiinniencneeee 1365

43.6. EXECULOL ...cuitieiieitieiteteeite ettt ettt ettt et sb et sa et esae st enaesbeens 1366

44, SYSEM CAtALOZS ....enveveeneiriieientieitetteterte sttt ettt ettt et sttt ettt sbe et nae st e b sieenn 1368
AA.T. OVEIVIBW ..ttt ettt sttt et sttt b et sttt e aesbt et e sb e et e sbeebeenaesbeenaesbeeas 1368

Vi Vi S0 Yo =Ye [o b ot =Ye = L it = SRR U TP PPRN 1369
¥ T oY H- 1 AP RSP UUUOPPPRN 1370

XXiil



¥ oY H=11Te) < J TR TSP P PPN 1372

Vi Vi S T oY fE=V 11k b e Yo RUUUUUN O USSP U RO P PPN 1372
Vi ¥i 3 S oY H=N ok o e L= PO USROS UEUUUU PP 1373
Vi ¥i R B Yo H= N o o o o X ot =SOSR UP PPN 1373
A4 8. PG AUE NI it iiiiiiiii ettt e e e e e e e et e e e e era e e e e eetraeaeeas 1376
44.9. DG AUL N _MEMDE TS ceeitriieeieiirieeeeeiireeeeeeiteeeeeeeireeeeeeeareeeeeeireeeeeesiareeeeeeesreeeeeans 1377
G410, PG_CASE ttrrercrrrerreeerrteesireeesteeastreesssreessteesseeesssaeessseeassseeassseeasseeassseesssseesseeens 1378
T B o Yo B 1= Y= = S USSR 1379
VYIS0 R oTe BieTo Y s =R uliar= 1 o X N USSP 1382
V2Yi0 1 T oTo B eTo s Ta = af = oY o WSS 1384
Y W oTe B e Yo=Y o Y- =1 USSR 1385
44,15, PG _AEPENA ccitiiiee ettt ettt e e et e e e e et e e e e e eta e e e e e aaraeaeeeerraaaaaas 1387
V2 ¥ U W oYe fle [=Y-Teb ok o) o K o) s WU RN USROS 1388
44,177 PG _EINUM atttiitiieiiiieesieeeeteeeeitee ettt e eeteestteesnteeeensaeesaseeassseesasseesnsaeeansseesseeesnseeenn 1389
44.18. pg_foreign_data_WIADDET eeecieerciieeeieeeneeeeaeeeenteessseessseeesssseessssessnseeens 1389
44.19. PG_fOTEIGN_S@IVET teettteiiieeitieeeiiteeeiteeeteeeetteesteeessteessateessaeessseesseaesnseeens 1390
Vi) ) R eTe B Yo 1= D S U P PR USRR 1391
4421, PG _INNETIES toierierieiiieieesteste et e steesteete et estaesbeebe e taessbeesbeeseesnbeenbaenseenns 1393
4422, DG _LANGUAGE teeteeeetreeeeeeeeeeeeeetteeeitteeeeteeeeeteeeeseeeesseeetseseesseseetsseessseseessaeanreeeas 1394
44,23, PG L AT GEOD JECT tettiiieiieeeiieeeete e e et e e et e e eteeeeteeeeaeeeetreeeeateeetaeeeeteeeeraaeereeans 1395
Q424 DG LA STENET tittieeeieeeeiee ettt e ettt e et e e et e e ettt e e eteeeeaeeeetbeeeeaaeeetteeetteeeaaeeearaeans 1395
44,25, DY _NAMESPACE erreeeereeeetreeeeiteeeetreeeitreeeeteeeeiteeeeseeesseeeetseseessesessseeeasseeeasseesreeans 1396
¥ ) W o Ye He) < Yo R =X =T TSRO 1396
ViV 30 B o Yo He) o 1 o= o e} RO PRPRN 1397
Vi ViR T oYe Me) < a1 11 KL I VO RPN 1398
V¥ B oY B oY A o= 1) I X o = O RSP PPN 1398
¥R T I oY B o3 e YRR PPRN 1399
ViR B R oY B =3 5 o Iy ol = SO SO UURUU PPN 1403
Vi ViR YR oY BT oTe [=) o 1= o Lo NNUUUUU U USSP P PPN 1404
ViV R o I oY MY oTe [T oh okl oY ull Kol o PORNURUUNNN U USSP PPN 1406
V¥ RQ Vi oYe B R uf= N o = o I < BT RO SRR P PPN 1406
V¥ S0 oI oYe B =Y M =Y o T Y= WU TSROSO PPN 1408
ViV SR T YA oYe M ol ol Ko fo 1% oBNNNN OO USROS TP PP 1408
ViV R 1R Yo B ok -Jil of o o B s e HUUUUUUNN U TS USROS UUUUUUOPPPTN 1410
ViV BC T I oYo Hk ot =T eTo Yo Bifh Ko HD (L= < JHUUU USSR 1410
Vi 1® I oYo B ot =T e i ) cH PRSI 1411
44,40, DGt S_PATSET sereeerreeerreeerreeastreesisreesaseeeaseeeasseeessseesssseessssessssseesssseesssseessseeens 1411
VAYi Y W oTo B o= T o= 11} = = USSR 1412
V2T oTo B o oY= WSS 1412
44,43, PG _USET_MAPPING cttiteiieiitrieeeeeiitteeeeeeitteeeeeeireeeeeeetreeeeesesseeeeeeasreeeeeeasreeaeeans 1420
44,44, SYSLEIM VIEWS ..eoviiuiiiieiieiiettete et ete st ette et et e steetesaesat e tesbeeneeseeeneesaesaeensesseens 1420
QA A, PO CUT SO S tttiieeeeiittieeeeeiitteeeeeestreeeeeaetteeeaeeabraeeseaassreeeeeaassssaeesasraseeeeansreseaaas 1421
QA A, DO gL OUD eeieutieieiteeeeeeeeeeeee et e ettt e e et e e et e e eteeeetee e eaeeeetaeeeeateeeeteeeeeteeeeeaaaeereeean 1422
ViR Yo H I oL [0 4= Y= TN U OO USSP PP PPN 1422
Q4 48, PG _LOCKS teeieectrreeeeeiittieeeeestreeeeeesureeeeeatteeeeeeatraeeeeaassraaeeeaastaeaeeeasraeseeaanrreeeaans 1423
44,49, pg_prepared_StaftemMeNE S i iieeeeeiiieeeeeeiireeeeesirrreeeeesrreeeeeeesreeaenns 1426
44.50. PY_PTePATEA_XACES tirieiiiireeitrieeitreeeiteeeeiteeeeiaeeeeiaeeeeteseesseeeetseeeetseeeeseeeareeeas 1426
QA 5 ] DG T 0L @S tiitiiieeiie et ettt e ettt e e et e e e et e e eeat e e ettaeetteeetaaeearaeaas 1427
A5 DO TULES tiietiieeiiieeeiee et e ettt e et e et e e et e e ettt e e eaae e eabe e e tbeeeeateeetaeeetreeetaaeearaeans 1428
4,53, PG SEELINGS tirtieeiieeeeieeeeiee ettt e et e e et e e ettt e eetee e ebee e treeeeareeetaeeeteeeeraeeearaeens 1429
Y Y N oY BT o 1= Ve Lo ) SUU RPN 1430
¥ T TR o Ye R o= N = U OO PPPRN 1431

XXV



Y T Y oY B =1 M = - DO S USSP 1434

44,57, PG L iMEZONE_ADITEVS tirtriieieeiirieeeeeirreeeeesireeeeeeeirreeeeeeirreeeeesireeeeeeeirreeeeeans 1434
44.58. Pg_LiMEZONE_NAMES tiiirrirreeeeeeirreeeeeeirreeeeesireeeeeesitreeeeeeirreeeeesiareeeeeeesrreeeeeans 1435
.50, DG UST wriiiieeitrieee ettt eeee e ee et e e et e e e e e e e e e e e e e e aeraaeeeearaaeeeenrraaaeaaas 1435
44.60. PG _USE T _MAPPIIIGS ttteiiiiitrieeeeeiirreeeeeeiirreeeeesireeeeeesireeeeesiirreeeeesireeeeeeeisreeeeeans 1436
O Y B oTe B =3 2= SRS 1436
45. Frontend/Backend ProtoCOL..........cocueiieiiiiiiiiieiieeiteeieeecteeteee et 1438
A5. 1. OVEIVIEW ..ttt ettt et ettt sttt b e st et e bt e st sabeesbeesateeaseebee e 1438
45.1.1. Messaging OVEIVIEW..........cccceueeuiriieienienieienieeeere oo 1438
45.1.2. Extended QUEry OVEIVIEW ........cc.couieieriirienieniiiieiieeeee e 1439
45.1.3. Formats and Format Codes ..........cccceeeuerieenienienieinieenienieeieeneeeeeee 1439

45.2. MESSAZE FIOW .....iiiiiiiiiiiiieeeet ettt sttt 1440
45.2.1. StAt-UP ...ttt sttt sttt 1440
45.2.2. SIMPIE QUETY ...ttt ettt sttt sttt et sbe st saeene 1442
45.2.3. EXtended QUETY ......cecueruirierientieieeieeie ettt 1443
45.2.4. FUNCtion Call........cccoeiiiiiiiiiiiieieieeee et 1446
45.2.5. COPY OPECIALIONS ......corueruieientieiieniieiientesieeiesteetesteeaeeeeseeeeesbesseeneesseens 1447
45.2.6. Asynchronous OPErations............ceeeeeruereerieruerieneneenieseeeeesiesseniesseens 1448
45.2.7. Cancelling Requests in Progress.........c.ccocceveverieninienenceneneniencneene 1449
45.2.8. TeIMINAtION ..c.vevvenrniiiiiriieteteeeeet ettt sttt s 1449
45.2.9. SSL Session ENCryption........ccccecueveeierireenenieienenienie et 1450

45.3. MesSage Data TYPES ..c..eeueeuiiriieiiniiiienieniteesttet ettt sttt 1450
45.4. MeSSaZE FOIMALS .......ocuevuiiiiniiiiiniciieierteeet ettt ettt 1451
45.5. Error and Notice Message Fields ......c.ccocueveriiiiininienicnienienieicncceenceeeienens 1466
45.6. Summary of Changes since Protocol 2.0........cccceeveeriienieenienieeieeneesveeieeieens 1467
46. PostgreSQL Coding CONVENTIONS ....cccueerveerirerierrieenienieeieenteesseesseesieessessessseesssesssesnses 1469
46.1. FOTMALING ..covviiirieiieriienieeieenitesiteeteesitestteste e bt esteesbeebeebeesebesnseeseesasesnseenseenns 1469
46.2. Reporting Errors Within the Server.......c.ccoocevvieiiiiiiieiieieieeieeee e 1469
46.3. Error Message Style GUIAE........ccueeieeriiiniiiiieitenie et 1471
46.3.1. What 0€8 WRETE......cceeviiiiiiiiiiiiieitesteee ettt s 1472
46.3.2. FOTMANG .....viiiieiieeieeieeriteet ettt sttt ettt ste bt e st e st enbeesaaesanesanes 1472
46.3.3. QUOtAtiON MATKS.....ccciieeirieeiiieiiieeetieeeieeesreeesreeeebeeetaeeeebeessseesereeens 1472
46.3.4. USE Of QUOLES.....veivieeiiiiiieiteete ettt ettt sttt ettt saae s e 1473
46.3.5. Grammar and PUNCLUALION. .......eecuterrierierieeriienie et eieeste st esee e 1473
46.3.6. Upper case VS. JOWET CASE .....cc.eeveruieieriirieeienieeieieeeete e 1473
46.3.7. AVOid PASSIVE VOICE.....ccuerueeririieiriiieiiete et see e 1473
46.3.8. Present VS Past tENSE.......coveuerueeiiriieiertesieenesie et 1473
46.3.9. Type of the ObJECE.....c..couiiiiiiiiiiiiiiec e 1474
46.3.10. BIaCKELS. ..ceoueiriieiieeiieeieeieeeteete ettt ettt 1474
46.3.11. Assembling error MESSAZES. .......eeueeueerterueereerreeeenteeeeneeeeeeeesseseeseesseens 1474
46.3.12. REASONS fOI @ITOIS ....eovveiieieitieieieeie sttt eiee et eeene 1474
46.3.13. FUNCLION NAMES .....eoveeeiiieieetieieeteeee e te st eeee st etee e e eeesbeeeteneeseeens 1475
46.3.14. Tricky words t0 avoid .........ccceeiuerieiieniiieeseee e 1475
46.3.15. Proper SPEIling ..........coceeierieriieiiniieiesie ettt 1476
46.3.16. LOCAlIZATION. c..cueetieiieiieiieieet ettt 1476

47. Native Language SUPPOIT.......cc.eeieriirierenieienieetenteettete sttt eitetestee e et estesaesieensesseens 1477
47.1. For the Translator ..........c.occoirierieiieiiiniieiceceere ettt 1477
47.1.1. REQUITEIMENLS «..cuvitiiiiiieiieientietesteeite sttt et see et e b siee i sbeens 1477

AT 1.2, CONCEPLS..c..eentetienietietente ettt sttt ettt ettt et bt ettt et et sbeeseesbesbnenaenbeens 1477
47.1.3. Creating and maintaining message catalogs ........c..ceceevveverreenervenenene 1478
47.1.4. Editing the PO fIleS .....co.ooiiiiiiiiiiiieniciceeeeeceeeceese st 1479

47.2. FOr the Programmer..........c..coccevuireiiienenienienieiesecetesie sttt 1479

XXV



VIII.

AT7.2.1. MIECHAIICS ..eeeeeeivvieeeeeiieeee ettt eeetee e eeeve e eeetre e e e eetre e e e e eetraeeeeeeanreeeas 1480

47.2.2. Message-writing guidelines ..........occeeveeriieniienieniiienieniesieeeenee e 1481

48. Writing A Procedural Language Handler .........c..ccooieriiiiiiiniiniiniiiienieeceeeseeeee e 1483
49. Genetic QUETY OPUIMIZET ....cccueeuierieeieeiieniteeteeieestteete et et eesateste e bt e sabesateebeessaesanesnses 1485
49.1. Query Handling as a Complex Optimization Problem.............cccceveeriiriennenne 1485

49.2. Genetic AIZOTItRIMS ...c..coiiiiiieiiieieeeeceeeeeec ettt 1485

49.3. Genetic Query Optimization (GEQO) in PostgreSQL ........cc.ccoeveriiiniinnenneene 1486
49.3.1. Generating Possible Plans with GEQO............cccccceviiviniiiinineinee 1487

49.3.2. Future Implementation Tasks for PostgreSQL GEQO ............c.c.cc.c...... 1487

49.4. Further Reading.........c.ccooiiiiiiiiiiiiiiiiiceeeee e 1488

50. Index Access Method Interface Definition ..........cccoeceeverieiienieienieeeee e 1489
50.1. Catalog Entries for INAEXES .......ccocerviruirienierininininencieieeeeteteeereeeeeeee e 1489

50.2. Index Access Method FUNCHIONS..........ccueririerieiieieieeieeeeee e 1490

50.3. INAEX SCANMING ....covervirririeieieiietitteteetetetet ettt ettt ettt be b e e eneenesaenaens 1493

50.4. Index Locking Considerations.............coeevereeieeneruenienseeeenieressensenseeeneeenensens 1495

50.5. Index Uniqueness CheCKS.........ccviririiieieininincneicieeeeeeeeresterereeeneee e 1495

50.6. Index Cost Estimation FUNCHONS.........ccceeririirieninieieeeeeeee e 1496

51, GIST INACKES ....eeneeeieiteieeieee ettt ettt et et b ettt e b et sbe et e bt et e b s bt et e seeeae 1499
511 TNEPOAUCTION ...ttt sttt st ettt see e 1499

51.2. EXEENSIDIIIEY . ..ceuvetiiiieiieiieie sttt ettt 1499

51.3. IMPIeMENTALION .....eoutiiiriieiiriieierteeitet ettt ettt ettt st 1499

51,4 EXAMPLES .ottt ettt ettt sttt 1505

51.5. Crash RECOVETY.....coueriiriiiiriiiienieetceetete sttt 1506

52, GIN INAEXES ..eveeneiieriieieniieteeieetest ettt ettt sttt et et sbt et sbe et e sbe e bt ebe s bt ennenaeene 1507
52.1. TAEOAUCHION ...ttt sttt 1507

52.2. EXIENSIDIIILY ...couveiieitiiieiieicnieetesicetet ettt 1507

52.3. IMPIEMENTALION......eiiiieiiiiieeieette ettt ettt et et eesbe et e e bt e sabesabeenbeesaeesanesnss 1508
52.3.1. GIN fast update teChNiqQUE ........cccecveerieriiiiiieieese e 1508

52.3.2. Partial match algorithm..........cccccoevieniiniiiniiieeeeee e 1509

52.4. GIN tips and trICKS. ..cueeruiiriiiiieiierie ettt et 1509

52.5. LIMITAtIONS ..c.ueeuieiieiretieieete sttt ettt eteete et een et st esesaeeseesaesanenesbeennesneene 1510

52.6. EXAMPIES ...ecuvieiiiiiiiiieiie sttt ettt ettt sttt sttt st e st 1510

53. Database PhySical STOTQZE .....cccueervieriiriiiiieniieeieeieete ettt ettt et 1512
53.1. Database File Layout..........c.cccoeiieiiniiniieniinieieneeeereeeereeeeeese e 1512

R 7 L0 7N SRS 1513

53.3. Free SPace Map .....c..ooieiiiiiiiieniieicieeeete ettt 1515

53.4. VISIDIIEY MAD ...eetieiieiieiieie ettt ettt ettt es e nse s enes 1516

53.5. Database Page Layout ...........ccccoiiiiiiiiiiiiiiieeeceeeeeee e 1516

54. BKI Backend INErface. ......cocueeuiiiiiiiiiniiiiieteeteeeeteteee ettt 1520
54.1. BKI File FOIMAL .......ccuieiiiiiiieieitieieieee ettt 1520

54.2. BKI COMMANGS ......eeveiiiiniiinieeieeniteeteeteesit ettt sttt ettt 1520

54.3. Structure of the Bootstrap BKI File.........cccooceeiiiiiiiiiiieiieeeeeeceee 1521

54,4, EXAMPLL ...oeiiiiiitieiietieie ettt sttt et b et be et be et b et nae s 1522

55. How the Planner USes StatiStiCS.......ecuerirueeieriirienieeiceriesieeie ettt st 1523
55.1. Row Estimation EXamples.........ccccecueririeniniinieninieeeeeseete et 1523
Appendixes 1529
A. PoStgreSQL Error COAES .....c.uivuiiiiiiiieieniieienieetenie sttt ettt 1530
B. Date/Time SUPPOIT ...c.eeruiriiiiiniiiteteeteteete ettt sttt ettt ettt et sbe et it et esbe s b e e b eae 1539
B.1. Date/Time Input INterpretation ..........coeeeerierierienerieneneenieneetenee et seenienieens 1539

B.2. Date/Time Key WOTdS........cocvveruiiiiiiiieiierieeieesitesite sttt st eveesieesre e eniee e 1540

B.3. Date/Time Configuration Files ..........ccccceeviiiiiienieniiiieeieeie e 1541

XXVi



B.4. HiStOTy Of UNILS ...eovvuieiiiiiiiiieiiesite ettt sttt sttt st et e satesbeenbee e 1542

C. SQL KEY WOTAS.....eeiuieiiieiieriieeit ettt ettt st st et e st e st e sbeesatesabeebeesaeesasesbeenseensnens 1544
D. SQL CONTOIMANCE ....ccuvviiiiiiieiiieeiieeiee ettt et e stte e et e esaaeesbeeeseveeeaseeesseesssseesssseessseaans 1568
D.1. SUppOrted FEATUIES ....c.covuiiiiiiiieiieiieeiterite ettt sttt st 1569
D.2. Unsupported FEAtUIes .........cceevuiiiiiiiiiiieiieiieeiteite sttt 1583
E. REIEASE NOLES ..ottt st 1598
E 1 REIEASE 8.4.1 .ottt sttt s 1598
E.1.1. Migration to Version 8.4.1........cccccoiriiiiiiiiiniiiinieeeeneeeeeeeeeeeee 1598

E 1.2 Changes ......oouieieiiiieieeeeeeeeeese ettt 1598

E.2. REIEASE 8.4 ...ttt ettt sttt sttt st et 1600
E.2. 1. OVETVIBW ..ottt ettt sttt st 1600
E.2.2. Migration to Version 8.4..........ccccceririeiirieiieeieeiene et 1601
E.2.2.1. GENETAL.....coitiiiiiiieiieieceeeee ettt et e 1601

E.2.2.2. Server SetNES .......ccoerueeierieeieieeieeie sttt 1601

E.2.2.3. QUETIES ...uveeeeeieeeeee ettt et e et eeaae e eevee e 1601

E.2.2.4. Functions and OPerators .............cecceeerereenieneenieneeneenieseenienneens 1602

E.2.2.4.1. Temporal Functions and Operators ...........c.cccoceeeeruenncene 1603

E.2.3. CRANGES ..ceveniiiieieieeetee ettt sttt 1603
E.2.3.1. Performance ..........cceoevueeienienienieneeienieeteeeicee et 1603

EL.2.3.2. SEIVET ..ttt 1604

E.2.3.2.1. SEtNZS ..coveiienieniieienieetesieetereseteesie ettt 1604

E.2.3.2.2. Authentication and SECUIItY..........cccceeevuererreenereenennens 1604

E.2.3.2.3. pg_hba. CONT ittt ettt 1605

E.2.3.2.4. Continuous Archiving .......cc.ccoceeveeveneevienienseeneneeneneens 1605

E.2.3.2.5. MONITOTING..ccvteruiiriieiieniienieeieeniiesreeieenieesenesbeenaeesanes 1606

E.2.3.3. QUETICS ...uveieeiieeiiieeiee ettt e et e et e et e et eeetveeesaveeeeseeetaeesareeennns 1606

E.2.3.3.1. TRUNCATE .c.ceiiuiriiieieieiieiieiesieteeee st 1607

E.2.3.3.2. EXPLATIN ottt 1607

E.2.3.3.3. LIMIT/OFFSET cueouiiiieieiieiieienieieieeee st 1608

E.2.3.4. Object Manipulation ...........cecueevueerieeniensieenieenieeieesiee e eieesieenns 1608

E.2.3.4.1 ALTER cioiiiiiiiiicicceeee e 1608

E.2.3.4.2. Database Manipulation............ccceceevuirnieeneennennieeneennnen. 1609

E.2.3.5. Utility OPErations ......c.cccecveerierrueenieerieniieenieeseeerreesieesieeeseeenieenns 1609

E.2.3.5. 1. INA@XES....ovieiieniiiieiiiiceceeeeeeeeeeee e 1609

E.2.3.5.2. Full Text INdeXes .......ccceveeruimiernieniieiienieenieeieeieeeaeenn 1609

E.2.3.5.3. VACUUM .ciitiiiiiiiieieieeee ettt 1610

E.2.3.6. Data TYPES ...ccueeiiriieieiieieieeeete sttt 1610

E.2.3.6.1. Temporal Data TYpes.........ccccceereevuerircenieieneieerenenne 1610

E.2.3.6.2. AITaYS ..c.oooiiiiiiiiicieeeeee e 1611

E.2.3.6.3. Wide-Value Storage (TOAST) ....ccocevievinieienieieeeee 1611

E.2.3.7. FUNCHONS ...c..eiuiiiiiiieiesieee ettt et 1612

E.2.3.7.1. Object Information Functions ............cccceeceeveenerienuenncne 1612

E.2.3.7.2. Function Creation..........ccoceeeererienieneenienieeeeneeeeeeenneens 1613

E.2.3.7.3. PL/PgSQL Server-Side Language...........cccccevereeruenncnse 1613

E.2.3.8. Client ApPliCations ........ccceeeeeriereenienenieieniteie et sie e 1614

E.2.3.8.1. DSl 1614

E.2.3.8.2. psql \d* commands.........cccceceererienenienienenienenieenene 1614

E.2.3.8.3. pg_dump...ccoeeiiiiiiiiieieeeeeesteeee e 1615

E.2.3.9. Programming TOOIS.......ccccocerieriinernenenieienieicneetenieneeiesieene 1616

E.2.3.9. 1. IIDPQacciiiciiiiiiiiiiccceeeceee e 1616

E.2.3.9.2. libpq SSL (Secure Sockets Layer) support .............c...... 1616

E.2.3.0.3. @CPE weveetiiiiieienteereee ettt 1617

XXVii



E.2.3.9.4. Server Programming Interface (SPI)......c..cccccovvveneennen. 1617

E.2.3.10. BUild OPtionS......ccecueeiueeriierieeieenieesieeieeiee st eieesieeseeeieeniee e 1617

E.2.3.11. Source Code........ccoeiviiniiiiiiiiiniiniiiciciccccee e 1618

E.2.3.12. CONtIID ... 1619
E.3.Release 8.3.8 ... 1620
E.3.1. Migration to Version 8.3.8.........ccccoiriiiririeieninieineeenecrereeeeeeee e 1620
E.3.2.0 Changes ....coovieiieiiiieieieeecteeeese ettt st 1620

B4, REIEASE 8.3.7 ettt ettt ettt st ettt st 1622
E.4.1. Migration to Version 8.3.7........cccoiriininiiiiiiniiiiene e 1622
E.4.2. Changes ......couooieiiiiiieieeeeee et 1622
E.5.REIEASE 8.3.6 ..ttt ettt 1623
E.5.1. Migration to Version 8.3.0........ccccoviriiiiiieiinieeieie e 1623
E.5.2. CRANZES ..cneeiieiieieeieee ettt sttt et 1624

E.0. Release 8.3.5 ...ttt sttt ettt 1625
E.6.1. Migration to Version 8.3.5.....ccccooiiiiiiiiiieieeeee e 1625
E.0.2. CRANZES ..c..eetieiieieeieetet ettt ettt 1626
E.7.REICASE 8.3.4 ..ottt et 1627
E.7.1. Migration to Version 8.3.4........ccccoirieniiiiiieniinienie et 1627
E.7.2. CRANZES ..ceteiieiieieeieete ettt sttt 1627

E.8. ReIEase 8.3.3 ..ottt 1629
E.8.1. Migration to Version 8.3.3........ccccoviriiniriiiiiniene e 1629
E.8.2. CRANZES ..cvteniiiiienieiieeieieeiteee ettt e ettt 1629

E.9. ReIEASE 8.3.2 ..o 1630
E.9.1. Migration to Version 8.3.2........cccceveriininienieninienieneeieneerenieseeee e 1630
ELO.2. CRANEES ..uveeeieeiiieieesiteeit ettt ettt ettt et e sate et esaeesabeebaenseesnee s 1630

E.10. Release 8.3.1 ..o 1632
E.10.1. Migration to Version 8.3.1......cccceeviiiriiniiniiieiienienieeieesee st 1632
E.10.2. ChANES ...eovuveeiiieiieiieeie ettt ettt st ettt sttt e esatesbeenaeesaee s 1632

E. 1T RElease 8.3 ..o 1634
E 111 OVEIVIBW ..t e 1634
E.11.2. Migration to Version 8.3.........cccccevviiirieniieniiiiniienienieeieesee st 1635
E.11.2.1. General.......cccooiiiiiiiiiiiiiiiccce e 1635

E.11.2.2. Configuration Parameters..........cccceevvueerueenieenieniienneenienieenieenne 1637

E.11.2.3. Character Encodings ..........ccccccerieveneniieniiniieniinieicncneeneneens 1637

E 1130 Changes ....c.ooeeiiiieiiiieieieeecesteeeee ettt 1638

E. 11.3.1. Performance .........coceecueerieriernieeiieiieeieeieeseeie et 1638

Eil1.3.2. SEIVET oottt 1640

E.11.3.3. MONITOTING ..ottt 1640

E.11.3.4. AUthentiCation..........ccceevuiirierrieeniiinieeieeieesteee et 1641

E.11.3.5. Write-Ahead Log (WAL) and Continuous Archiving .............. 1642

E.11.3.6. QUETIES ..ot 1642

E.11.3.7. Object Manipulation ...........ccceccereerienerienienieieneeeesee e 1643

E.11.3.8. Utility Commands...........cccceceeriereenieneeieiesieiesieeee e 1643

E.11.3.9. Data TYPES ....cocuiiiiiiiiiiiieiiiicest e 1644

E.11.3.10. FUNCHONS.....coitiiiieieiieeiieieeiee sttt 1645

E.11.3.11. PL/PgSQL Server-Side Language ...........cccceeeveevienereenennenns 1645

E.11.3.12. Other Server-Side Languages ..........cocevereerieneerieneneenenenns 1646

Bl L3003 PSALauiiiiiiieeeeee et 1646

E. 113,14, pE_duimp ..ooceeiiiiiiiieieieeeeesceeseeteeste et 1647

E.11.3.15. Other Client AppliCations ..........cecerereerieneerueneereeneneenenens 1647

E.11.3.16. 1IDPQ e 1647

Bl L3007, @OPE ettt ettt st 1648

XXVili



E.11.3.18. WINdOWS POIt......cccuvvviiiiiiiiieeeieeee e 1648

E.11.3.19. Server Programming Interface (SPI) .......cccccoeveviiinivniennennns 1648

E.11.3.20. Build Options......cccoeeieriirieniineeieneeeeieneeeesreeeenieeeenenaens 1648

E.11.3.21. Source Code.......ccccevueeieniinieniinieienieeieieneerenieeeenee e 1649

E.11.3.22. CONMIID ettt 1649
E.12.Release 8.2.14 ....ouiuiiiiieieeeeeeeeeteeet ettt s 1650
E.12.1. Migration to Version 8.2.14........c..cccceoiririiininiiniiieneneerereeeeeeeeeee 1650
E.12.2. Changes ....c..ooceevuiiiieieiieieieeeceeneeeee ettt 1650

E.13. Release 8.2.13 ..ottt sttt ettt ettt 1651
E.13.1. Migration to Version 8.2.13........ccccoceiiiiiiiiiiiiiiece e 1652
E.13.2. Changes ....cceeeueeieenienieeieeiteeite ettt ettt ettt st n 1652

E.14. Release 8.2.12 ...ccuciiuiiiiiiiiieeeieeetetetesetetee ettt ettt e 1653
E.14.1. Migration to Version 8.2.12.......cccceerieririerienieeienie e 1653
E.14.2. CHANEES ...eovieiieieeieeieeteee ettt st sttt 1653
E.15.RelEaSE 8.2.11 ettt ettt et 1654
E.15.1. Migration to Version 8.2.11.....cccccceviiiiiiiiiiiiiieeeeee e 1654

E 152, ChANEES ..ooviiieieeieeiesieee ettt st st 1654

E.16. Release 8.2.10 ....oouiiiiiiiiieiiiieieee ettt sttt et st 1655
E.16.1. Migration to Version 8.2.10.......cccceevieririeiieninienieneeie et 1655
E.16.2. ChaNEES ...cooviivieniiiieiieieeiteeecee sttt st 1656
E.17.Release 8.2.9 .....oouiiiiiiiiiieeeceeeete st 1657
E.17.1. Migration to Version 8.2.9......cccccoceviiririeniininienineeneneeteeseeesenee 1657
E.17.2. ChanEes ....coveeueeiiiiiiieieeiteeeieeteseetee sttt st 1657

E.18. Release 8.2.8 ..ottt 1657
E.18.1. Migration to Version 8.2.8........ccceccverieriiriiieniienienieerieeseeseeeveesiee s 1658
E.18.2. CHANGZES ...eevveeiiieiiieiieeie ettt ettt et ettt e st et esaeesateebeenseesaee s 1658

E.19. Release 8.2.7 ....oouiiiiiiiiiiiiicicicetecce s 1659
E.19.1. Migration to Version 8.2.7........cccecverieriiiriiienienienieenieeneeseeereesieesieen 1659
E.19.2. ChanGEs ...cccueeeiiiiieniieeieeieeitesite ettt st ettt et ettt e st st esaeesaee s 1659

E.20. Release 8.2.6 .....ccccouiiiiiiiiiiiiiiiiciciect e 1661
E.20.1. Migration to Version 8.2.0.........ccecueevierieriiieniienienieenieeneeseeereesiee s 1661
E.20.2. ChAn@ES ...coouveeuiiiiieniieeiieeieesiteete ettt sttt ettt ettt s e s e saee s 1661

E.21. RelASE 8.2.5 ..ottt et s 1663
E.21.1. Migration to Version 8.2.5.......ccccocivieriirieiiininienineeieneeresreeeeeeeee e 1663
E.21.2. Changes ....cc.cocvevuiiiiieniieieiieeeeeste ettt st s 1663

E.22. RIS 8.2.4 ..ottt ettt et st 1664
E.22.1. Migration to Version 8.2.4..........cccocveviririiiniiiiniieeeneeeeeee e 1664
E.22.2. Changes ....c.ooeeiiiiiiiiiieieieeee ettt 1664

E.23. Release 8.2.3 ...ttt ettt 1665
E.23.1. Migration to Version 8.2.3........cccoceriiiirieiieniieiene e 1665
E.23.2. CHANEZES ..ottt sttt sttt et 1665

E.24. RelCaSE 8.2.2 ..ttt ettt st 1665
E.24.1. Migration to Version 8.2.2.......ccccocerieiirierieniieienie e 1665
E.24.2. CHANEZES ..ottt sttt et 1665
E.25.RelaSE 8.2.1 ..ottt st 1666
E.25.1. Migration to Version 8.2.1.......cccoerieririeiieniinienie et 1666
E.25.2. CHANEES ..ottt sttt 1666

E.26. RElICASE 8.2 ..ottt 1667
E.260.1. OVEIVIEW ..uiiiiiiiiciiciiciiiie ettt st 1667
E.26.2. Migration to Version 8.2.........cccccverienirienienienieniinceeneeeenieseeee e 1668
E.26.3. ChaNEES ..cooverueiiiiieiieieeiteteeieete sttt sttt 1670
E.26.3.1. Performance Improvements .............cceeeveerveenveesieeneenvessueeneenns 1670

XXIX



E.27.

E.28.

E.29.

E.30.

E.31.

E.32.

E.33.

E.34.

E.35.

E.36.

E.37.

E.38.

E.26.3.2. Server Changes .........ccccevuerieerieenieenieeieenieesteesieesieesieesaeenieenns 1671

E.26.3.3. QUery Changes.........cocceeruierierrieeniienieeieeieesiteeieesiee e eieeniee e 1672

E.26.3.4. Object Manipulation Changes ...........cccceeveerieriierneeniensieeneenns 1673

E.26.3.5. Utility Command Changes............ccocueevueerieenieniierneeneesnieeneenns 1674

E.26.3.6. Date/Time Changes..........ccocceevueerieerieniieenienieeieesiee e eieeieenne 1675

E.26.3.7. Other Data Type and Function Changes...........c.ccccceeervennennnnns 1675

E.26.3.8. PL/PgSQL Server-Side Language Changes............c.ccoceeuennens 1676

E.26.3.9. PL/Perl Server-Side Language Changes...........c.cccccceereenennnns 1676

E.26.3.10. PL/Python Server-Side Language Changes............c.cccccccuenee. 1677

E.26.3.11. psql Changes ..........ccccecueviieiiiiinieieniceeesecece e 1677

E.26.3.12. pg_dump Changes............ccceeuirieiininieiiiniieeecicieeeeieeee 1678

E.26.3.13. libpq Changes .........ccecuerueeienenieieseeieieeiceee et 1678

E.26.3.14. €cpg Changes ......cccccueeeenieeieieeiieieseeieeeice et 1678

E.26.3.15. Windows POrt.........cccoooiiiiiiiiiiieeeeeee e 1678

E.26.3.16. Source Code Changes ...........ccceceevevverveieenenenenieneeneeneenenes 1679

E.26.3.17. Contrib Changes .........cccoceeeeriereenieneeieieniceiesieete e 1680
ReIEaSE 8.1.18 ...ttt 1681
E.27.1. Migration to Version 8.1.18.......cccccoviiriiiiiininieni e 1681
E.27.2. CHANEZES ..ottt sttt 1681
ReEIEASE 8.1.17 .ottt 1682
E.28.1. Migration to Version 8.1.17.......cccccvvieririeiiininienineenieneeeesieeieee e 1682
E.28.2. CHANEES ..ottt sttt 1682
ReElEaSE 8.1.16 ..ot 1683
E.29.1. Migration to Version 8.1.10........cccevueririeieniniinineenieneeieieeeeeeeenee 1683
E.29.2. CHANZES ...eevvveeiiieiieiieeie ettt ettt ettt e bee st e sateebeesaaesaseenbeenseesnne s 1683
Release 8.1.15 ..o 1684
E.30.1. Migration to Version 8.1.15....cccceciiriiriiiniiiiiieie et 1684
E.30.2. ChanGEs ....ccueeevieiieniieeieeieesite sttt ettt ettt e sate et e aee st sbeenaeesaee s 1684
Release 8.1.14 ..o 1685
E.31.1. Migration to Version 8.1.14.......cccceeviiriiriiiiiieienieeieeseeeee e 1685
E.31.2. Changes ....cceeeiieiieniieeieeieeiteete ettt sttt ettt ettt et st esaee s 1685
Release 8.1.13 ..o 1686
E.32.1. Migration to Version 8.1.13......cccociiiiiriiiniiiieienieeiteeeeee e 1687
E.32.2. Changes ....cc.oeceeiiriieieiieieieeieeeeste ettt 1687
REICASE 8.1.12 .ttt sttt 1687
E.33.1. Migration to Version 8.1.12........ccccoceiiiiiiininieiieeneeeeeeeeeeeee 1687
E.33.2. Changes ....c..coceeiiiiiiiiieiciieeeeese et 1687
REIASE 8. 1. 11 .ottt ettt 1689
E.34.1. Migration to Version 8.1.11........cccociiiiiiiiiiiiiiieeeeee 1689
E.34.2. Changes ........ccooouiiiiiiiiiiciecere e 1689
REICASE 8.1.10 ittt 1691
E.35.1. Migration to Version 8.1.10......ccccccecvinininenenieininenesreieeeeeneerenene 1691
E.35.2. Changes .......oocoouiiiiiiiiicice e 1691
REIEASE 8.1.9 ..t 1691
E.36.1. Migration to Version 8.1.9.....c..cccccevirinininineieiinereceeeeeeeeene 1692
E.360.2. ChaEES ....coveruiiiieieieiieiiniertestetet ettt sttt 1692
ReElEaSE 8.1.8 ... 1692
E.37.1. Migration to Version 8.1.8......cccccocerieririeniininieneieee et 1692
E.37.2. ChaNEES ..ottt sttt 1692
REIEASE 8. 1.7 .. 1693
E.38.1. Migration to Version 8.1.7......cccccocerieririrriinenienineenieneerenieseeeeseeenee 1693
E.38.2. CHANZES ...eoovveeiiieiieriieeiie ettt ettt ettt te et esete et e s saesabesnbaenseesnne s 1693

XXX



E.39. RelaSE 8.1.0 ..couiiiiiiiiiiiiieiieeeteeceteseet ettt et 1693
E.39.1. Migration to Version 8.1.0.......ccccecueevieriiriiieniieienieeieeseeeie e 1694
E.39.2. Changes ....cceeeuiiiiiniieeiieieesiteste ettt ettt st ettt et st esaee s 1694

E.40. Release 8.1.5 ...cuouiiiiiiiieiieieteeteeecteeetete ettt e 1694
E.40.1. Migration to Version 8.1.5......ccccoeiiiiiiriiniiiiiieienieeieeeeeee e 1695
E.40.2. Changes ....c..coceeruirieieniieieiineeeesie ettt st 1695

E41. Release 8. 1.4 ..ottt ettt ettt 1696
E.41.1. Migration to Version 8.1.4.......cc.ccccocieiiiiiiiniiieiieeeecreeeeeeeeeee 1696
E.41.2. Changes ....c..ccceeouiriiieiieieieeeeesee ettt s 1696

E42. Release 8.1.3 ..ottt sttt sttt st et be e 1697
E.42.1. Migration to Version 8.1.3........cccocooiiiiiiiiiiiiiiceneeeeeeeee 1697
E.42.2. Changes ........ccccouiiiiiiiiiiiciieese e 1698

Ei43. RIS 8. 1.2 ..ottt ettt sttt st 1698
E.43.1. Migration to Version 8.1.2........cccccevririnineneieininenestereeeeeneenennene 1699
E.43.2. Changes ........ccooouiiiiiiiiiiieiiceece e 1699

E.44. Release 8.1.1 ..oouiiiiiiiieiieieee ettt st 1700
E.44.1. Migration to Version 8.1.1......ccccoviriiriiiiiiniiieneeeee e 1700
E.44.2. CHANEZES ...eovievieniiiiieieiee ettt sttt 1700

E 45  RelCASE 8.1 ..ottt ettt 1701
EL45. 1. OVEIVIEW ..outiiiiniiiiiiesieeiteeetee ettt et sttt 1701
E.45.2. Migration to Version 8.1 .......c.coceverieniiieiieninieneneeie et 1702
E.45.3. Additional Changes ..........cccceceeviererienienieienieetenieseeee et 1705

E.45.3.1. Performance Improvements.........c..ccocceeverveneenieneenieneneenenenns 1705
E.45.3.2. Server Changes ........c..cecuevereeniineenienenieienieeeesieeeeniesieeiesieens 1706
E.45.3.3. QUery Changes.........cccceerueerieerieeniienieeieenieesieesieesieesaesueenseenes 1707
E.45.3.4. Object Manipulation Changes ...........cccceeveerveenieeneenieenieeneenns 1707
E.45.3.5. Utility Command Changes............ccocueevueerieenieenieeneenveesieeneenns 1708
E.45.3.6. Data Type and Function Changes ..........ccccceveueeveeneeniensieeneenns 1708
E.45.3.7. Encoding and Locale Changes..........ccecceeveerieerieeneeniessieenieenns 1710
E.45.3.8. General Server-Side Language Changes.........ccccceeveevveevieenieenne 1711
E.45.3.9. PL/PgSQL Server-Side Language Changes............cccceevueeueenne 1711
E.45.3.10. PL/Perl Server-Side Language Changes...........ccccevvervueeueenne 1712
E.45.3.11. pSQlL Changes .....ccouveriiiiieeieeiieieeeiteeeeee et 1712
E.45.3.12. pg_dump Changes.........c..ceceeuerievuenereenienieienceeeneeeenenieens 1713
E.45.3.13. libpq Changes ........c..ccceeueeeeriirienenenieieneeeeeeeeesie e 1713
E.45.3.14. Source Code Changes ..........ccccoceeveerereeieneeceenieeeneneenenneens 1713
E.45.3.15. Contrib Changes ...........cccceceeeuerienenenieieneeeeseeeesie e 1714

E.46. Release 8.0.22 ...c.cuiiiiiiiiiiiieicieceeetesteretetei sttt ettt e 1715
E.46.1. Migration to Version 8.0.22........c..cccooiiiiiiiiiiiniiiccieceeeeeeeee 1715
E.46.2. CHANEZES ...eovieeieieeieeeeteee ettt ettt et eae e 1715

E.47. Release 8.0.21 ...ccucoiiiiiiiiiiiiieiceeteieetenertetete sttt ettt e 1716
E.47.1. Migration to Version 8.0.21.......ccccooiiiiiiiiiiniiee e 1716
E.47.2. CHANEZES ..ottt st sttt st 1716

E.48. Release 8.0.20 .....c.cooiiiiiiieiieiieieeetete ettt ettt st 1716
E.48.1. Migration to Version 8.0.20........ccccecueririiiieniinienieneee et 1717
E.48.2. CHANEES ..ottt sttt s 1717

E.49. Release 8.0.19 ....oouiiiiiiiieiiieeeeeeeet ettt s 1717
E.49.1. Migration to Version 8.0.19........ccccooieviiiiiininiinineeeneeeeeeeeee 1717
E.49.2. ChanEES ....coveeuieiirieeieieeiteeette sttt st sttt 1717

E.50. Release 8.0.18 ....cuiiiiiiiiiiiiieieeeetesestees sttt st 1718
E.50.1. Migration to Version 8.0.18........ccccocueviririiininienineeneneeieeeeeeene 1718
E.50.2. CHANZES ...eevvveeniieiieniieeieeieeite sttt et e st e st tae st e sateebeessaesssesnbaeseessnes 1718

XXXI



E.51.RelEaSE 8.0.17 oottt ettt et s 1719
E.51.1. Migration to Version 8.0.17......ccceceevieriiniiiiniinienieeieeneesee e 1719
E.51.2. ChanGes ...cccueeeuiieiieniieeiteieeiteste ettt sttt ettt st saee e s 1719

E.52. Release 8.0.16 ....c..cooueiiiiiiiiieiiieeeeetetesitetestt ettt 1720
E.52.1. Migration to Version 8.0.16........ccceevieriiriiiiniinieniieieeeeeie e 1720
E.52.2. Changes ....cc.ooceeuiriieiiiieieiieeetenteeeeee ettt 1720

E.53. Release 8.0.15 ..ottt 1721
E.53.1. Migration to Version 8.0.15........ccccoceiiiiiiininiiniiececeeeeeeeee 1721
E.53.2. Changes ....c..oocoeoiiiiiiiiieieiieeeeseeeee et 1722

E.54. Release 8.0.14 ...c.ciiiiiiiiiiiieicte ettt sttt ettt e 1723
E.54.1. Migration to Version 8.0.14........c..ccooiiiiiiiiiiiiicceeeeeeeee 1723
E.54.2. Changes ....cc.ccocuieiierieiiieieesiteete ettt ettt ettt 1723

E.55. Release 8.0.13 ...c.oiiiiiiiiiieiceeete ettt 1724
E.55.1. Migration to Version 8.0.13.......cccceriiiiiiiiiiieere e 1724
E.55.2. CRANEES ..ottt sttt 1724

E.56. Release 8.0.12 ....ouoiuiiiiiieiieiee ettt ettt st 1724
E.56.1. Migration to Version 8.0.12........ccccecieriiiiiiininieneieee e 1724
E.56.2. CHANEES ..ottt ettt 1725

E.57. Release 8.0.11 ...ccuciiiiiiiiiiiiieieieeteteeeeee ettt 1725
E.57.1. Migration to Version 8.0.11.....c.cccccovieniiiiiininiiiniiiencneeeeeeeeeee 1725
E.57.2. ChANEES ..ottt sttt 1725

E.58. Release 8.0.10 ...c..couciiiiiiiiiiiiieicieieeeeee ettt 1725
E.58.1. Migration to Version 8.0.10........ccccecuereririieniniienincenieneeiencseeeeeene 1726
E.58.2. CHANGZES ...eecvveeiiieiiieiieeie ettt ettt ettt et e sete et e aaesabeenbaenaeesnee s 1726

E.59. Release 8.0.9 .....ccooiiiiiiiiiiiciciccce e 1726
E.59.1. Migration to Version 8.0.9........cccecvvriiriiriiiiniinienieeieereeeve e 1726
E.59.2. ChaNGES ...coouveeuiiiiieiieeie ettt ettt sttt sttt e e st ebeenaeesane s 1726

E.60. Release 8.0.8 ..o 1727
E.60.1. Migration to Version 8.0.8.........ccecveviiriiniiiiniiiiesieeieeeeete e 1727
E.60.2. ChanGESs ....cc.eevviiiieriieniieieeitesite ettt st ettt e sttt e sieesatesbeesaeesaee s 1727

E.O1. ReleaSse 8.0.7 ..coueiiieiiiiiieiieieietetereetet ettt sttt et 1728
E.61.1. Migration to Version 8.0.7......c.ccceceevieriiiriiiinienienieerieesee st 1728
E.61.2. Chang@es .......coocuieiuienieniieieeiteete ettt ettt st ettt et st e i s 1729

E.62. Release 8.0.0 ......couieiiiiiiiiiieieeceseee ettt e 1729
E.62.1. Migration to Version 8.0.6.......c..ccccocvevirieiiiniiniieninieieneeeereeeeeeeeeee 1730
E.02.2. Changes ....c..ccceevuiriieieiieieiieectesteeeeee sttt 1730

E.63. Release 8.0.5 ..couuiiiiiiiiieeeeet ettt st st 1730
E.63.1. Migration to Version 8.0.5.......ccccoceoiiiiiiiiiniiiiieeeeeeeeeeeee 1731
E.63.2. ChanEs ....cc.eeeuiriiiniienieiieeiteete ettt sttt ettt ettt st saee s 1731

E.64. Release 8.0.4 ..ottt st 1731
E.64.1. Migration to Version 8.0.4.........cccceviiiirieiinieee e 1732
E.04.2. CHANEES ....ovieiieieeiieieeteee ettt et sttt et 1732

E.05. Release 8.0.3 ..ottt ettt st 1733
E.65.1. Migration to Version 8.0.3.......cccooiriiiiiiiiinieiee e 1733
E.05.2. CHANEES ..ottt st sttt 1733

E.06. Release 8.0.2 .....oouiiiiiiiieiieiieesete ettt ettt sttt et st 1734
E.66.1. Migration to Version 8.0.2.........ccocevieriiiinieninieneieee et 1734
E.06.2. CHANEES ..ottt sttt 1735

E.07. Release 8.0.1 ...c.cooiiiiiiiiiiiicicieeteeeeet sttt 1736
E.67.1. Migration to Version 8.0.1......cccccocevieriiinniininienineenieneetereseeeeeee 1736
E.07.2. CHANEES ...eovieieiiiieeieieeiteteetee ettt sttt 1736

E.08. Release 8.0 ......c.coeviiiiiiiiiiiieicictcecce e 1737

XXXIT



E.68.2. Migration to Version 8.0........ccccceeviierieniiriiiiniienienieeieesee st 1738
E.68.3. Deprecated FEatUres ..........cooievieriieniienieniieieenieesie ettt 1740
E.68.4. ChaNES ...ccouvevuiiiiieiieniieeieeiteete ettt st ettt sttt ettt st esaee s 1740
E.68.4.1. Performance Improvements ...........c.cceecueevueeniensienneeniensienneenne 1740

E.68.4.2. Server Changes ........c.ccceoeerierrieinieenieeieenieesteeieesieesiee e niee e 1742

E.68.4.3. Query Changes.........c.ccecueeveeeeriinienienenieieneeeeeeeeesre e 1743

E.68.4.4. Object Manipulation Changes .........c..ccccecvevveeveniecencneennenens 1744

E.68.4.5. Utility Command Changes............ccccoceeeveciiriecienieicneneenenees 1745

E.68.4.6. Data Type and Function Changes .............ccccecevieviencniiencnens 1746

E.68.4.7. Server-Side Language Changes ..........c..ccccceceevinieicncnicccnnens 1748

E.68.4.8. PSQl Changes .......c.cocceueruerieieuinirinienieieeeeeiesesee e enenes 1749

E.68.4.9. pg_dump Changes...........cccceceeviiiiiiiniiiiiiiiecee e 1749

E.68.4.10. libpq Changes .........cccecuerueeienierieieneeieieeicee et 1750

E.68.4.11. Source Code Changes ..........ccceeeevuererienienienienieeienieseenienieene 1750

E.68.4.12. Contrib Changes .........cccoeeeeriereenienenieieeiceie et 1751

E.09. REICASE 7.4.20 ...ttt ettt sttt et st 1752
E.69.1. Migration to Version 7.4.20.........cccccvvirininenienieninienenesienereeeneenesnene 1752
E.09.2. CHANEES ...eouviiuieniiiiieieieeieeet ettt sttt 1752

E.70. RElEASE T.4.25 .ottt sttt s 1752
E.70.1. Migration to Version 7.4.25.......cccceveririeiiniinienineene et 1753
E.70.2. CHANEZES ..ottt st sttt 1753
E.7T1.RElEASE T.4.24 .ottt 1753
E.71.1. Migration to Version 7.4.24........ccccocererienienennienineeneneerenieseeeeseeenee 1753
E.71.2. CHANZES ...eevveeeiieiieriieeie ettt ettt ettt sate et e saaesabesnbaenseesnne s 1754
E.72.Release 7.4.23 ..o 1754
E.72.1. Migration to Version 7.4.23.......cccccevieriieriienienienieeieeneesieenveesieesene s 1754
E.72.2. CHANZES ...eevieiiiiiieiieeit ettt sttt sttt sttt et e st esatesbeenaeesaee s 1754
E.73.Release 7.4.22 ...ccoviiiiiiiiiiiciciccece e 1755
E.73.1. Migration to Version 7.4.22.......cccccevieriiiroiienienienieenieeneeseeesveesieenanenn 1755
E.73.2. CHANZES ...eevveiiiiiieiieete ettt ettt sttt st e be et st esaee s 1755

E.74. Release 7.4.21 ..ot 1755
E.74.1. Migration to Version 7.4.21 ......cccoceiviiriiniiinieniesieeieeeeeeee e 1755
E.74.2. ChanEes ....ceoeeeiiriieieiieieiieitetente ettt et 1755

E.75. RelEaSE 7.4.20 c..cveiiieiieiirieeieeteeeeetet ettt ettt 1756
E.75.1. Migration to Version 7.4.20........c.ccoccevirieiieninieninieeneereeeeeeeeeenee 1756
E.75.2. Changes ....c..coceeuiiieiiiieieieeeeseeeee et 1756

E.76. RElCASE 7.4.19 ..ottt sttt ettt e 1757
E.76.1. Migration to Version 7.4.19........cccoceiiiiiiiiiiiiniiiccneceeeeceee 1757
E.76.2. CHANEZES ...eovieeieieeieeieeteee ettt ettt et 1757
E.77.REICASE T.4.18 .ottt sttt ettt 1758
E.77.1. Migration to Version 7.4. 18 .......cccceoeiirieiinieiene e 1758
E.77.2. CHANZES ...eeveeiiiiiieieeeit ettt ettt ettt s 1758

E.78. ReICASE 7.4 17 ettt et s st sben 1759
E.78.1. Migration to Version 7.4.17 ......ccccccecevirininenenieiininenesierereeeneenennene 1759
E.78.2. CHANGES ..ottt ettt 1759

E.79. RElASE T.4.16 ..ottt sttt ettt 1759
E.79.1. Migration to Version 7.4.10.......ccccevueririrnieninieniineene et 1759
E.79.2. CHANEES ..ottt st ettt 1760

E.80. RelEaSse 7.4.15 ..ottt 1760
E.80.1. Migration to Version 7.4.15....cccccoccevuiririrnininienineeneneeteneeeeeeeeenee 1760
E.80.2. CHANZES ...ceouveeuiieiieiieeieeiteriteste ettt e st e st e tae et e sabeebeesaaesnsesnbaenseesnnes 1760

XXXI11



E.81. RelCASE 7.4.14 ..ottt sttt ettt 1761
E.81.1. Migration to Version 7.4.14 ......ccccccverieriiiniiinienienieeieesee st 1761
E.81.2. ChaNGES ...cooueeeuiiiiieiieeiteeieeteste ettt ettt st ettt st saee e s 1761

E.82. Release 7.4.13 ..o 1761
E.82.1. Migration to Version 7.4.13......ccociiiiiniiniiiientesieeieeeeeee e 1761
E.82.2. Changes ....cceeeceeiiriieieiieieieeeeteneetee ettt 1762

E.83. RelCaSE 7.4.12 ..ottt sttt ettt 1762
E.83.1. Migration to Version 7.4.12........ccccoceviririiininieniieeeneereeeeeeeeeeee 1763
E.83.2. Changes ....c..ccceeoiiiiiiiiieieiieeceeseeeeee e 1763

E.84. RelCaSE 7 4. 11 .ottt ettt ettt e 1763
E.84.1. Migration to Version 7.4. 11 ...cccccoveiiiiniiiniiiiinieiiieieeeeneceeeeeeeee 1763
E.84.2. CHANGES ....ovieuieieeiieieteee ettt sttt e e 1763

E.85. ReleaSE 7.4.10 ...couiiiiieiieieeeee ettt ettt st enen 1764
E.85.1. Migration to Version 7.4.10.......cccceeieririeiienieiene e 1764
E.85.2. Changes ....cc.eeeuuiiiiirieniieieeteeteee ettt ettt ettt e 1764

E.86. ReICASE 7.4.9 ..ottt et s st 1765
E.86.1. Migration to Version 7.4.9........cccccevrininineneieininenesrereeeeeeeenee 1765
E.86.2. CHANEZES ....oviiieniiiiieiieieeieeete ettt sttt st 1765

E.87. REICASE T.4.8 ...ttt sttt 1766
E.87.1. Migration to Version 7.4.8 .......ccccoerieririeieninienieneenie ettt 1766
E.87.2. CHANEES ..ottt st sttt 1767

E.88. REICASE 7.4.7 ..ttt 1768
E.88.1. Migration to Version 7.4.7 ......cccccoeevuererienienenienieneenie et 1768
E.88.2. CHANGZES ...ceovveeuiieiiieniieeie ettt sttt st e te et eseteebeesaaesabeenbaenseesnee s 1768

E.89. RElASE 7.4.6 ..ottt 1769
E.89.1. Migration to VErsion 7.4.6......ccccoeceerierieriiieniieniesieenieeseeseeesveesieesenes 1769
E.89.2. CHANGES ...coovveeuiieiieiieeie ettt ettt ettt ettt st et et satesbeenaeesaee s 1769

E.90. RElEaSE 7.4.5 ..coiiiiiiiiiiiiiicicceee e 1770
E.90.1. Migration to VErsion 7.4.5......ccccovviirieniieniiiiiieniesieenieeseesteeieesiee s 1770
E.90.2. ChaNGES ...cecvveruiiiiieniieeitieieeitesite ettt st ettt ettt et e st s beesaeesaee s 1770

E.OT.Release 7.4.4 .....ccoviiiiiiiiiiiieiiccc e 1770
E.91.1. Migration to Version 7.4.4......cccceceirieniiniiienienienie ettt 1770
E.O1.2. Changes ....cc.ceeuieiieniieeieeieeiteete ettt sttt ettt ettt st s e i s 1771

E.92. RelCASE T.4.3 ..ottt ettt et s s 1771
E.92.1. Migration to Version 7.4.3 ......ccccoceeveririeneniniene e 1771
E.92.2. Changes .......ccceevuiiiiiiiieieieeeeteseeeeee ettt 1771

E.O3. REICASE Ti4.2 ..ottt ettt sttt sttt st 1772
E.93.1. Migration to Version 7.4.2........cccoccoceriririiniiiniieee e 1772
E.93.2. Changes ........ccocouiiiiiiiiiieiieecesecee e 1773

E.O4. RELASE T4 1 ettt ettt st st 1774
E.94.1. Migration to Version 7.4.1......c.cccceevrinininenenieinenesesreeeeeeeneenenie e 1774
E.94.2. Changes ........cccouiiiiiiiiiiieices e 1774

ELO5. REICASE 7.4 ...ttt sttt b ettt sae st naen 1775
ELO5. 1. OVEIVIEW vttt ettt sttt et 1776
E.95.2. Migration to Version 7.4 ........cccccererienenienienieeienie et 1777
E.95.3. ChANEES ..ottt sttt et 1778

E.95.3.1. Server Operation Changes ...........ccccevveeeerienienieneenieneneeneneans 1778
E.95.3.2. Performance Improvements .........c..ccoceeeeerienienieneenieneneenenenns 1779
E.95.3.3. Server Configuration Changes .........c..cecuevueveevueneenieneneenenenns 1780
E.95.3.4. Query Changes.........ccccecuerierienieneenienienieieniteeesieeee e sieenienieens 1782
E.95.3.5. Object Manipulation Changes .........c..coceevveveerueneereeneneeneneens 1782
E.95.3.6. Utility Command Changes............ccecueerueerieerreeseeneeniessieeneenns 1783

XXXIV



E.95.3.7. Data Type and Function Changes ..........cccccevevervieeneeniensieeneenne 1784

E.95.3.8. Server-Side Language Changes .........ccccceeeerieerieeneenvensieenieenns 1786

E.95.3.9. PSQl Changes .......ccocuerveeiiierieeiieieerieeeeeiee ettt 1786

E.95.3.10. pg_dump Changes..........ccecueeueerieerienieeenieenieerieesiee e eieenieenns 1787

E.95.3.11. libpq CRanges ........cccceerueerierriiiiiienieeieeiee st 1787

E.95.3.12. JDBC Changes.......c..ccceeueeeeruemienienenrereneerenieerenreseesnenaeens 1788

E.95.3.13. Miscellaneous Interface Changes ...........cccceceveeciencreennenncnns 1788

E.95.3.14. Source Code Changes ..........ccccoceevverereeienieceenieeeneneenenneens 1788

E.95.3.15. Contrib Changes ...........cccceceeeuerienienenieieneeeeneeeese e 1789

E.960. RElCASE 7.3.21 ..ottt sttt ettt e 1790
E.96.1. Migration to Version 7.3.21......cccocoiiiiiiiiiiiiiiiicceeeeeeeee 1790
E.90.2. ChaNEES ....coveruiriiiieieiieiineseestetetetet ettt sttt 1790

E.O7. ReleaSE 7.3.20 c..coueieuieiieiiiierieteteteteiteteste ettt sttt ettt s 1791
E.97.1. Migration to Version 7.3.20......cccccceeuririninenenieieenenesrerereeeneenennene 1791
E.97.2. Changes ........cccouiiiiiiiiiiiciices e 1791

E.98. RelCASE 7.3.19 ..ottt et st 1791
E.98.1. Migration to Version 7.3.19......ccccccecurininineneieiiincneieereeeneeeiene 1792
E.98.2. ChANZES ....eovtruiiiieieieiieiinie sttt st e 1792

E.99. Release 7.3.18 ...ccciiiiiiieiiieiceeeteteeeeet sttt s 1792
E.99.1. Migration to Version 7.3.18.......cccceevieririinieninienineee et 1792
E.99.2. ChanEes ....ccueeueeiiriiiiiiieiteieeteete sttt ettt 1792
E.100. Release 7.3.17 .c..cuciiiiiiiiiiieieicteiteteeteeeet sttt s 1793
E.100.1. Migration to Version 7.3.17 ......ccccoceriririininienineencneerenieeeeeenee 1793
E.100.2. CRANGES ....veoveenviieeiieieeiteeeieete ettt ettt 1793

E. 101, RelEaSE 7.3.10 ..oouiiiiiiiiiiiiiiciciceeteeeeee ettt 1793
E.101.1. Migration to Version 7.3.16......cccceveeriiriiienienienieeieenee et 1793
E.TOT.2. CRANEES .ooueveeiiieiieiieeie ettt ettt ettt et e ieesatesbeenaeesaee s 1793
E.102. Release 7.3.15 ..ot 1794
E.102.1. Migration to Version 7.3.15....cccecverieriiniiiiieneesieeieeree et 1794
E.102.2. CRANEES ..cuvveeiiieiiieiieeiieeieeteste ettt sttt ettt et st s e saeesaee s 1794
E.103. Release 7.3.14 ..o 1795
E.103.1. Migration to Version 7.3. 14 ......ccccooviiriiniiiniienienieeieeree et 1795
E.103.2. CRANEES .eoveeiiieiiieiieeie ettt st ettt st e i s 1795
E.104. Release 7.3.13 ...ttt ettt et 1795
E.104.1. Migration to Version 7.3.13......c.cccccoiiiiiiiininiiiiieneneceeeeeeeee 1796
E.104.2. Changes .......ccoeiieieniieieiieecienieeeeee et 1796
E.105. ReIEASE 7.3.12 .ottt sttt ettt ettt e 1796
E.105.1. Migration to Version 7.3.12......c..ccccooiiiiiiiniiiiniiiceneceeeeeeeeee 1796
E.105.2. Changes ........ccoiiiiiiiiiiiiiiceneeece e 1797
E.106. Release 7.3.11 .ouciiieiiiiiiieieteeeeeitetestesteeeteie sttt ettt 1797
E.106.1. Migration to Version 7.3.11....cc.cccccvvininiinenenieiininenenierereeenceennene 1797
E.106.2. CRANEES .....oovieveienieiieiieiieiesiestetetetee ettt sttt 1797
E.107. Release 7.3.10 ..ottt sttt ettt e 1798
E.107.1. Migration to Version 7.3.10.......ccccceviriminienenieniniinenienrerereeeeereniene 1798
E.107.2. CRANEES «..veviienieieiciieiteereteetet ettt st e 1799
E.108. ReIEASE 7.3.9 ..ottt 1799
E.108.1. Migration to Version 7.3.9.......ccccceciiriiiiiininienincee et 1799
E.108.2. CRANGES .....eveenieieeiiesieeiteeeee sttt sttt 1800
E.100. RelEaSE 7.3.8 ..ottt 1800
E.109.1. Migration to Version 7.3.8........ccccovueviririienenienineeieneetenieeeee e 1800
E.109.2. CRANGES ...veoveeniiieiieieeiteieeieete sttt 1800
E.110. REIEASE 7.3.7 .ottt s 1801

XXXV



E.110.1. Migration to Version 7.3.7 ....cccceceerieriieniiieniieniesieeieesee st siee s 1801

E.110.2. CRANEES ..ouvveiiieiieiieeieeieeiteste ettt sttt et ettt s e s e saee s 1801
E.TT1. REICASE 7.3.6 .ottt ettt et ne e 1801
E.111.1. Migration to Version 7.3.6....c.ccceceerieriiniiieniienienieeieesee st 1801
E.TT1.2. CRANEES .ottt ettt st ettt st n 1801
E.T12.ReIEASE T.3.5 .ottt ettt et et s 1802
E.112.1. Migration to Version 7.3.5.....ccccoceceniriirieninienineeene e 1802
E.112.2. Changes ......ccooueiiiiiiiieieiieeeesieeeeeee e 1802

E. 113, REICASE 7.3.4 ..ottt ettt et ettt et saeeneenaesneens 1803
E.113.1. Migration to Version 7.3.4........c.ccoceiiiiiiiniieniieeeneeeeieeeeeeeee e 1803
E.113.2. Changes ......ccoouiiuiiiiiiiieiiecere e 1803

E. 114, ReIEaSE 7.3.3 ..ottt sttt ettt et sae e naesrens 1804
E.114.1. Migration to Version 7.3.3......cccocriiiirieineeere e 1804
E.114.2. ChAnEes ..c.eeouiiiiiiiieeieeeeteete ettt ettt 1804

E 115, ReICASE 7.3.2 .ottt sttt sttt et st saens 1806
E.115.1. Migration to Version 7.3.2.......ccoceeieriiieniinieienie e 1806

E 1152, ChanGES .....ooueeieiiieieieei ettt sttt 1806
E.T16. REIEASE 7.3.1 .ottt ettt sttt 1807
E.116.1. Migration to Version 7.3.1.....ccccocvviiniiiinininieneneeie et 1807
E.116.2. ChANGES .....ooveeniiiieiieiieiteeeeee ettt sttt 1807
E.T17.REICASE 7.3 ...ttt sttt ettt sbe e 1808
E.LT7.1. OVEIVIEW ..ottt st 1808
E.117.2. Migration to Version 7.3 .......cccccoverieninienenienienieneenieneerenieeieeee e 1809
E.117.3. ChAn@ES ..c.veoveeiiieeiieieeiteieeicetesteeteest ettt sttt 1810
E.117.3.1. Server OPeration .........cccueecveevueerieerieenueenieesiessseesieeseessuessseenns 1810

E.117.3.2. Performance ........c.ccoceecveriereenieneenienenieieniceeeseeneeniesieenieniens 1810

E.117.3.3. PriVIIEZES...eeteeiieeieeiieiee ettt sttt sttt 1810

E.117.3.4. Server Configuration...........ceceerveerueerueenieenieesieeseeseessieenieenns 1811

E.117.3.5. QUETIES ..ccuvviieiiieeiiee ettt ettt e eeive e e siv e eer e e ebaeesabaeeens 1811

E.117.3.6. Object Manipulation ...........cceceerveerieerieenieenieeieeniee e sieesieenns 1812

E.117.3.7. Utility Commands...........coceevueerieeriennieeniienieerieeseeseessieenieenns 1813

E.117.3.8. Data Types and FUNCHONS .......ccceerieriieiniienienieceenieeieeieee 1814

E.117.3.9. Internationalization ..........c..cccceveevieneriienieneecieneeeeneneenenieens 1815

E.117.3.10. Server-side Languages ..........cccceeueevueerieenienseeneeniesieenieenne 1815

L I T 1 R T | TP 1815

B 117312, 1IDPQ ceeeeieeieie ettt 1816
E.117.3.13. JDBC ..ttt 1816
E.117.3.14. Miscellaneous Interfaces...........ceeeveeveeevieenienienseeniensennieenns 1816

E.117.3.15. Source Code.........cocueiniirierieiiiiiieeieeieesteeieesiee st 1817
E.117.3.16. CONLLID ...ttt 1818

E.T18. ReICASE 7.2.8 ..ottt ettt ettt sttt et st naesnens 1819
E.118.1. Migration to Version 7.2.8.......c.cccccevirimeneniereerinenenentereeeeeneenennene 1819
E.118.2. CRANGES ....veviverenienicieeiteie sttt st 1819

E 119, REICASE 7.2.7 .ottt sttt sttt et sae st saens 1820
E.119.1. Migration to Version 7.2.7.......cccccccvviriminenieneerininenesrerereeeneenennene 1820
E.119.2. CRANGES ..ottt ettt 1820
E.120. REICASE 7.2.60 ..ottt sttt sttt et st 1820
E.120.1. Migration to Version 7.2.0.......cccceeuererienienienienineenieneetesieseeee e 1820
E.120.2. Chan@ES .....ooveeviriieieieeiteeeeete sttt st sttt 1821

E. 121, ReICASE T.2.5 oottt ettt ettt 1821
E.121.1. Migration to Version 7.2.5.....c.ccocceveririenienennienineenieneetenieseeeenieenee 1821

E 1212, ChanGES ..c.veoveeieieeieieeiteeecete ettt 1821

XXXVI



E 122, REIEASE 7. 2.4 ..ottt eeaa e e e et e e eare e e e e eeareeeeens 1822

E.122.1. Migration to Version 7.2.4.......ccccceerieriiniiieniienienieeieesee st esveesiee s 1822
E.122.2. CRANEES .eouvveeiiieiieiteeteeiteteste ettt sttt et ettt st e e s 1822
E.123. ReIEaSE T.2.3 ..ottt ettt et s 1822
E.123.1. Migration to Version 7.2.3......cccoceiriiriiniieieneesie ettt 1822
E.123.2. Changes .....cccceoueriieiiiieieiieeeeeseeteee ettt 1822

E 124 REICASE 7.2.2 .ottt sttt ettt 1823
E.124.1. Migration to Version 7.2.2........cccecevirieiieninnienineeneneereieeeeeeeeeenee 1823
E.124.2. Changes ......cccooiiieiiiiieieiieeeeseeeeee et 1823

E 125  REICASE 7.2.1 ettt sttt ettt s 1823
E.125.1. Migration to Version 7.2.1........cccociiiiiiiiiiiiiiiiiciccceeeeeeee 1824

E 1252, Changes ..c.ccoueeiienieniieieeteete ettt ettt 1824
E.126. REICASE 7.2 ..ottt ettt sttt sttt ettt enens 1824
E.126.1. OVEIVIEW ...ttt et sttt 1824
E.126.2. Migration to VErsion 7.2 ........ccccoceeieririenienieeienie et 1825
E.126.3. CRANGES ....eeoveeneeiieeiieieeeee ettt sttt 1826
E.126.3.1. Server Operation ..........ccccceeevuereenienerienienceienieeee e seeniesieans 1826

E.126.3.2. Performance ..........ccoceecverierienieneenienenieiesicete et 1826

E.126.3.3. Privil@@es.....ceovirueiiiiieiieiieiieie ettt 1827

E.126.3.4. Client AuthentiCation...........ecceevuerverreieininenienieeereeeeerenes 1827

E.126.3.5. Server Configuration........c..ceceveeveererienienienieneeienieneenieniens 1827

E.126.3.6. QUETIES .....uveieiiiieiiee ettt et et eaae e evee e 1827

E.126.3.7. Schema Manipulation ..........c..cocceeererienienieniencenieneneenieneens 1828

E.126.3.8. Utility Commands...........cccceevueereerueenieeniienieesieeseeseeesieenieenns 1828

E.126.3.9. Data Types and FUNCHONS .......cocverieeriieniieiieeieeieesie e 1829
E.126.3.10. InternationaliZation ............cccceveevuerervenieneenieneeeeneneenieneens 1830

E.126.3.11. PL/PESQL ..ottt 1830
E.126.3.12. PL/PETL ...ttt 1830
E.126.3.13. PL/TCL ..ot 1831
E.126.3.14. PL/PYthON ..cceoruiiiiiiiiiiinieienceeeneetccsteee et 1831
E.126.3.15. PSAL.ueiiiiiiiiiiiiiiiicc e 1831
E.126.3.16. 1IDPQ ..voviiiiiciiiiiiiicic e 1831
E.126.3.17. JDBC ...ttt 1831
E.126.3.18. ODBC ...ttt 1832
E.126.3.19. ECPG ..ottt 1832
E.126.3.20. Misc. INterfaces........cccouerierrieiiieinieeieiieenieeeesieesee e 1833
E.126.3.21. Build and Install.........ccccccecuvvirinininennnncncnceeececeecne 1833
E.126.3.22. S0Urce COde.....cc.eeriuiiiiiiniinieeieenieeieeieesteeee et 1833
E.126.3.23. CONLIID .ouiiiiiiiiercctceceteeeteeeiee e 1834

E.127. RelEaSE 7.1.3 oottt sttt ettt ettt e 1834
E.127.1. Migration to Version 7.1.3 . ....cccocriiiiiiiiieee e 1834
E.127.2. ChAnEes ..cveeeuiiiiiiiieeieeeeteete ettt ettt 1834

E 128 ReILASE 7. 1.2 .ttt sttt ettt s 1835
E.128.1. Migration to Version 7.1.2.......ccccvoieririiiininieni e 1835
E.128.2. CRANGES ....veveenieieeieieee ettt 1835
E.129. RelEaSE 7. 1.1 oottt sttt s 1835
E.129.1. Migration to Version 7.1.1....ccccoceviiiniiiininiiieninceeneeteeeeeeeee 1835
E.129.2. ChaNGES .....ooueenieiieieieeiteiee ettt e ettt 1836
E.130. REIEASE 7.1 .ottt s 1836
E.130.1. Migration to Version 7.1 .......ccccvervienenienenenieniencenieneerenieseeeeseeenee 1837
E.130.2. ChANGES .....ooveenieiieieieeiteieeieete ettt 1837
E.131. Release 7.0.3 ..ot 1840

XXXVii



E.131.1. Migration to Version 7.0.3......ccccccieriiriiiniiiiniienienieeieesee st 1840

E.131.2. CRANEES .oeuvteviiieiiieiieeteeieeite sttt sttt sttt ettt st esaeesaee s 1841
E.132.Release 7.0.2 ..o 1841
E.132.1. Migration to Version 7.0.2.......ccccceeviiriiiriiienienienieeieesee st 1842
E.132.2. CRANEES .eouvveeiiieiieiieeiieeieet ettt ettt st ettt st e i s 1842
E.133. Release 7.0.1 ..ottt 1842
E.133.1. Migration to Version 7.0.1.....c..c.ccoceiiiiiiiininiiniiiececceeeceeee 1842
E.133.2. Changes ......cccooueiiiiiiiiiieiieeeeeneeeeee et 1842

E 134, REIEASE 7.0 ..eoiiiiiiiiiiie ettt ettt sttt st 1843
E.134.1. Migration to Version 7.0........ccccoccecieriiieiiininiiniiieeneeeeeeeeeeeeeeee 1843
E.134.2. CRAnEes ..c.eeeuiieiiiiieeieeteeteete ettt ettt e 1844
E.135. Release 0.5.3 ...ttt ettt ettt et s 1849
E.135.1. Migration to Version 6.5.3........ccceoeiiiieiinieiene e 1850
E.135.2. Changes ..c.coovieiiiiieeiieieeteete ettt ettt 1850
E.136. RelEaS@ 0.5.2 ...coneiiiiieeiieeeee ettt et st 1850
E.136.1. Migration to Version 6.5.2........cccceceririeiieninienineee e 1850
E.136.2. ChanGES .....coueeieiiieieieeiteiee ettt sttt 1850

E 137, ReIEASE 0.5.1 .ottt sttt s st 1851
E.137.1. Migration to Version 6.5.1.......ccccooeriiiiiininiieniiieneneeeeiceeeeee 1851
E.137.2. CRANGES ....veveenieieeiieieeiee ettt sttt 1851
E.138. REICASE 6.5 ...ttt 1852
E.138.1. Migration to Version 6.5.......cc.ccocevvueririenienenienineenieneetesieeieeeeseeenee 1853
E.138.1.1. Multiversion Concurrency Control ..........c..cecceveeveencneenenenns 1853

E.138.2. CRANGES ....veoveeniiieeiieieeitcteeicete ettt ettt 1853
E.139. Release 6.4.2 ..c..cvcuiiiiiiiiiiiiieiciccieeetceee sttt 1856
E.139.1. Migration to Version 6.4.2.........ccceveerieriiienieenienieenieeneesreesveenieesenes 1857
E.130.2. CRANEES ..cuvveeiiiiiieiieete ettt ettt st ettt et ettt e st ebeesaeesane s 1857
E.140. Release 6.4.1 .....coociiuiiiiiiiiiiiiiiiciiicceesc et 1857
E.140.1. Migration to Version 6.4.1........cccceevieriiriiieniienienieeieenee st 1857
E.140.2. CRANEES ..ouvveviiieiieiieeie ettt sttt be et s beesaeesaee s 1857
E.141. ReleaSE 6.4 ... 1858
E.141.1. Migration to VErSion 6.4.......cccccocueevieriiriiieiienienie ettt 1859
E.141.2. CRANEES .eouvteeiiieiieiteete ettt ettt st ettt et st e i s 1859
E.142.Release 6.3.2 ....c.ooiiiiiiiiiiieieeteteeeeeteet ettt st 1862
E.142.1. Changes ......cccooueiieiiiieieiieeeteneeeeeet et 1863
E.143. RelEaSE 6.3.1 ..ottt sttt ettt ettt e 1863
E.143.1. Changes ......cccooueiiiiiiiieieiieeceseeeeee et 1864

E. 144, REIEASE 6.3 ..ottt ettt sttt sttt et 1864
E.144.1. Migration to Version 6.3...........cccceceiiiiiiiiniiiiniieeeneeeeeeeeeeeee 1866
E.144.2. CRANGES -...veoveeieeieeieieee ettt et sttt et 1866
E.145. ReIEASE 0.2.1 .ottt ettt et s st aesaens 1869
E.145.1. Migration from version 6.2 to version 6.2.1........c.coccoevevvecveenenennenn 1869
E.145.2. ChANEES ....veoviveieieieieeiteestestetetet ettt st 1869
E.146. REIEASE 0.2 ...ttt ettt et st 1870
E.146.1. Migration from version 6.1 to version 6.2.........cccccevereruenieneeniennenne. 1870
E.146.2. Migration from version 1.x to version 6.2 ..........cccceeceverveneneenienenne. 1870
E.146.3. ChanGES .....coueeiiiiieieiieiteeeeee sttt sttt 1870
E.147. Release 6. 1.1 c..ccooiiiiiiiiiiiiiieieiceiteteeeeeee sttt e 1872
E.147.1. Migration from version 6.1 to version 6.1.1.......ccccooceneriinininncncnne. 1872
E.147.2. CRANZES ....veoveeniiieeiieieeeteeeee sttt ettt 1872
E.148. REIEASE 6.1 ...ttt 1873
E.148.1. Migration to Version 6.1 .......cc.ccoceevuenerienienenienineenenenrenieneeeeseeenee 1873

XXXVIii



E.148.2. CRANEES ..cuvveviiiiiieiieeie ettt ettt ettt st e b ettt saeesaee s 1874

E.149. Release 6.0 ....c..coieiiriiiiiiiiieienteteneeteteeitete ettt sttt 1875
E.149.1. Migration from version 1.09 to version 6.0........c.cccoeeevveeriivrneeneennnen. 1876
E.149.2. Migration from pre-1.09 to version 6.0 .........cccccevveeveenienierneeneennnenn 1876
E.149.3. CRANEES ..cuveeiiiiiieiieeie ettt sttt st ettt st 1876

E.150. Release 1.0 .....c.ooiiiiiiiiieieeeeceeteeteeet ettt 1878

E 151 ReIEASE 1.02 .ottt ettt ettt 1878
E.151.1. Migration from version 1.02 to version 1.02.1........c.c.ccoceiinincnnnnne. 1878
E.151.2. Dump/Reload Procedure ............cocooiiiiiiiniiiiniiiecneceeeeeeeee 1879
E.151.3. Changes ......c.cooviiiiiiiiiieiicereeeeee e 1879

E.152. Release 1.01 .oc.eiouieiiiieeieeeeee ettt st 1880
E.152.1. Migration from version 1.0 to version 1.01.........ccccooininiieiininnnnenne. 1880
E.152.2. Changes ..c..coeiieiiiiieeiieieeteete ettt ettt 1881

E.153. ReIEASE 1.0 c..eouiiiieiieieeieeeee ettt et s st 1882
E 1531, CRANGES -..uveeeenieieeiieieeeee ettt 1882

E.154. Postgres95 Release 0.03.......coouiiiiieiinieieeeese ettt 1883
E 1541, CRANGES ....vevienieieeieieee ettt sttt 1883

E.155. Postgres95 Release 0.02.......coouiviiieierieiinieienieetesie ettt 1885
E.155.1. CRANGES ....veveenieieeiieieee ettt 1885

E.156. Postgres95 Release 0.01.....c.cocuiviiiiiiiiiiiiniiinceereseeesteese et 1886

F. Additional Supplied MOdUIES .........ccerieriiiiieniieieieeiteteseete ettt 1887

FoL. admMinpack......coceviiriiiiiniiicieeeeesceteseetee sttt ettt 1887
F.1.1. Functions implemented.............cocceverieninienienienieniencenienieerenieeeeee e 1887

F.2. QUL0_@XPlAIN.ccitiiiiiiiieiieiie ettt sttt sttt s teenbeebeesabeebeebee e 1888
F.2.1. Configuration Parameters..........cecueerveereereerreenieeneenieesseeseessesssessseesseens 1888
F.2.2. EXAMPIE ..eveeiieeiiieieeieete ettt sttt ste et st st enaeesane s 1889
F2.30 AULNOT ettt 1889

FL3. DO _IN ittt sttt sttt st ettt ebee e 1890
F.3.1. EXQAMPIE USAZE ..vevuvieiieiieiiieiieeiie ettt st iee st sete bt e st e st sbeesaeesaee s 1890
F3.20 AUNOTLS ...ttt st 1890

Fid. DLIEE_ISE .ottt ettt sttt st ettt st st et st ebeebee e 1890
Fi4.1. EXQMPIE USAZE ...eeeuveeiieiiiiiieiierite ettt ettt ettt st be ettt e s e saee s 1890
Fid. 2. AUNOTLS ..ottt 1891

FLS. ChKPASS ..ottt sttt e e 1891
FS 1 AUNOT .ttt e 1892

FLB. CIEEXE 1ottt ettt sttt ettt e bt e st et e bee e 1892
F.6.1. RAtiONALL ....couviiiiiiiiiiiieiceeetee ettt 1892
F.6.2. HOW tO USE Lttt 1892
F.6.3. String Comparison Behavior............cccccccooiiiiiiiiiniiininicceceee 1893
F.6.4. LIMItAtiONS ..c..eouieieieieiieitieiieieete ettt ettt e 1893
FlB.5. AUNOT «.ouiiiiiee et et 1894

BT CUDC .ttt sttt st 1894
FI7 1 SYNEAX Lo 1894
FL7. 2. PIrECISION. ....citiiiieieeieetet ettt st st 1894
F7.30USAZE...ooiiii 1895
F7.4. DEfaults ...c.ooouiiieiiiieieie ettt et 1896
7.5 INOEES .ottt s et 1897
F7.6. Credits ..oeieiiiiiieieeeetee ettt 1897

FL8L dBIINK .ttt 1898
ADIINK _ COMMECT ...vviiiiiiieiiee ettt e e et e et et e eeeeeessessesessnasasaaasees 1898
ADIINK _ COMMECE_Uiiiiiiiiiiiieiiiieeeeeeteeee et e et e e et e e et e eeeeeeeesessssessnsssssseeees 1901
ADINK_AISCOMMECT ..oevviiiiiiiiieeieeeeee ettt ettt ettt e e e e e e e e e e ssesesnsnasaaseees 1902

XXXIX



ADINK L. e 1903

ADINK_@XEC ..ttt st st 1906
ADIINK_OPCI. ...ttt ettt sttt et et st et e b e saee s 1908
ABHNK_fEtCh ..o 1910
ADINK_CLOSE ...oniiieiiieieeeeceec ettt 1912
dblink et _CONNECHIONS .....eouveiiriieiiiiieienieeteeee ettt 1914
ADIINK_EITOT_MESSAZE ...cuveevieiiieiieiienite ettt ettt ettt ettt e st e beesaeesaee s 1915
ABIINK_SENA_QUETY ...eeitiiiiieiieeiieeieeeteete ettt sttt s 1916
ADINK_IS_DUSY vttt ettt ettt et 1917
ADINK_ @Ot TESUIL..cneiiiiiiiiiiieeie ettt 1918
dblinK_CanCel_qUETY .....cooueeruiiiiiiiieiieeteeeet ettt 1920
ABINK_ZEE PKEY ...evevirtitiieieteiieiteertertetetet ettt ettt ettt 1921
dblink_build_SQI_iNSeIT......ceoueiuieiieiieiieiesie et 1922
dblink_build_sql_delete.........ccoeieiiiriiiirieieeeee e 1924
dblink_build_sql_update.........ceeieiiiriiiirieieeeeeee e 1926
FLO. dICE_INE ettt et st 1928
FO.1. Configuration ..........ccccueieinerinienieieieeetisesieseeeeeee et 1928
FLO.2. USAZE..c.uiiiiiiiieet ettt 1928
FLLO. QIO _XSYI. ittt sttt st sb et s b e et e sae s bt eaesbeens 1928
F.10.1. CONfIGUIALION ..eovviniiiiiiiiiieiieiceie sttt 1928
FiL0.2. USAZE..cuuieiiiiiiiieieeieeteteetee ettt s st 1929
Fo11. @arthdiStance ..........coouevueriiiiniieiinicetecetetest ettt s 1929
F.11.1. Cube-based earth diStances .........c.ccecuevereevienienienineenenenieneneeeeeenee 1930
F.11.2. Point-based earth diStances ...........cceeveerierciieneenienieenieeneeseeereeneesenens 1931
Fo12. fUZZYSIMALCR.......eiiiiiiiiiiicieetee ettt sttt e st e ebee e 1931
FoI12.1. SOUNAEX. ..ottt sttt 1932
Fo12.2. LeVenshtein ......c.cocceoueririeiiinieienenteniesieeteteeteee et 1932
Fi12.3. MEtapPRONe. ....cc.cevvieiieiiieiteitecte ettt ettt ettt st s n 1933
F.12.4. Double Metaphone.........ccceevuieriiriiieniienieeieeieeniee sttt st 1933
FLI3LRSEOTE .ottt sttt et sa et s 1934
F.13.1. hstore External Representation .........cc.ccoecveevveeneeniienieeneenieenieeseenenenn 1934
F.13.2. hstore Operators and FUNCHIONS ........ccccevvierniiinieniiiiiienieniceieeieeneen 1934
FiI3.3 TNACXES ..ottt st 1935
FiI3.4. EXAMPIES ...c.eioiiiiiiiiiiiieiieieeteteseeteeee ettt 1936
O B T 11 Y 1P 1936
Fo13.6. AULNOTS....oiiiiiiiiiie ettt e et e e e et e e et eeensaeesnsaaenes 1937
FolA INTAZE oottt et st s 1937
Fo14.1. FUNCHONS ...ttt ettt ettt ettt et eeeseeesnteeeabaesnsaeesnsaeennns 1937
F.14.2. Sample USES.....cc.coiiiiiiiiieiieiieienieeeeiene et 1937
FUIS. INTAITAY ..ot 1938
F.15.1. intarray Functions and Operators..........c.ccoeeueceeereruenrenreneeeneeennene 1938
FI5.2. INdeX SUPPOIT...cceiiiiiiiiiiiiiiiiciere e 1940
F15.30 EXAMPIE ..ottt 1940
Fo15.4. Benchmark ........cccveeieeiiiiiieciecie ettt 1941
Fo15.5. AUTNOTS....tieeieeiiieiiectecte ettt ettt sbeebeesreeesbeebaenseennne s 1941
FLLO. STttt sttt b et et sbe st aenbeen 1941
FoI10.1. DAta Y PES..c..ecueeieriieieiieiieteeieete sttt ettt st st 1941
FiI0.2. CaSES cuentieitiiieieee ettt st et 1942
F.16.3. Functions and OPErators .........cc.ccveeeeruereenienienienieneenieniesseniesieeeesieenee 1942
Fo160.4. EXAMPIES...cviiiiiiniiiiiieeiteieeicete sttt sttt 1943
F.16.5. BibliOraphy.....cc.coceevieriirieiiniiienicnteiestetc e 1944
FoI16.6. AUNOT ...ttt e 1944

xl



F.17.

F.18.

F.19.

F.20.

F21.

F22.

F.23.

L0 e ettt 1944
FoI17.1. RAIONALE ..ottt 1944
FI7.2. HOW to USE It ..coniiiiiiiiieiiciieicicncccccececeteee e 1945
Fo17.3. LIMITAtIONS «..eveeniiiieiteieeiieieeicetesie ettt ettt st sae e 1945
FoI7.4 AUTNOT ...ttt 1945
JEEEE e e 1946
Fo18. 1. DefiNitionS . ...ceouviiiiiiiiiiieieeiteeteee ettt ettt 1946
F.18.2. Operators and FUNCHONS ..........ccccoirieniiiieiiiniiiieicneeeeeeeeeeeeeeeee 1947
FLI8 3. INAEXES ettt ettt 1950
FI8.4. EXAMPIE ..ot 1950
FL18.5. AUNOTS .. .eeiiiiiiieieete ettt ettt 1952
OLAZNAIMIE ..ottt et et s ittt sbe e sat e st e e bt e sbeesbteeabeenee e 1952
FL1O. 1. OVEIVIEW ..ttt ettt 1953
FI19.2. EXAMPIES....oiiiiiiiiiiiiiiicecc e 1953
Fo19.3. LIMItAtIONS ...eeeenieiieiieiteei ettt ettt st s 1956
FiI19.4. AUNOT ... et 1956
PAZEINSPECT ettt ettt ettt ettt te e b et e s bt et e s bt st e b e sbeesbesbe et enbesbeetenbens 1956
F.20.1. FUNCHOMNS ...ttt et sttt 1956
PEDENICH. ...ttt 1958
F21.1. OVEIVIBW ..oniiienieiiteteieeieeee ettt st sttt 1958
F.21.2. What is the “transaction” actually performed in pgbench?.................... 1961
F.21.3. CUStOM SCIIPLS c.nvenveiitiiiniieiieieeiesie ettt sttt 1961
F.21.4. Per-transaction loZgINg ........cc.cccceverieneririienenienincenieneerenieseeee e 1962
F.21.5. GOOd PractiCes .......ceoverueruieiineiiinieniienicniteteiceteee ettt 1963
PE_DUITEICACHE. .....ei it 1963
F.22.1. The pg_bufferCache VIEW ...cocveeeeeiiureeeeeeeireeeeeeeieeeeeeeeiveeeeeeenneeeeeens 1963
F.22.2. Sample OULPUL ...oouvieiieiiieieeiiesie ettt sttt sttt st e esaee s 1964
F.22.3. AUTNOTS..c..oiiiiiiiiiicic ettt 1965
PECTYPLO ettt ettt sttt ettt e st e et et esabesabeeabe e btesabesateenbeesatesateenbeesnenanenn 1965
F.23.1. General hashing functions...........c.ccceeceeriiriiienienieniieeereesic e 1965
F23.1.1. AigeSt () coreeveerereeienieereieeieete ettt ne s 1965
F23.1.2. MAC () teverieieieneeeeneeteteee ettt 1965
F.23.2. Password hashing functions ............ccccceeceerviiinieniiniinnieneeneceeeeeen 1966
FL23.2.1. CTYDE () teercrieeriieeitee et e et ett e et eesre e eeaeeeeveeesbeesssaaesasaeennns 1966
F23.2.2. Gen_S81E () toereeeeieiiieee ettt et 1966
F.23.3. PGP encryption functions ...........c.cceceeeriecieniinienineeneneereeseeeeeeeeeee 1968
F.23.3.1. DGP_SYM_ENCTYDE () rreeerrreririreniieesreeesreeesreeessseesseeesnseeennns 1968
F.23.3.2. pgp_sSyM_d@CTYPE () eeeeererrerieeeriieeesieeesseeenreesssreessreesseeennns 1969
F.23.3.3. DgP_PUD_ENCTYPE () rreeerrieririeeniieesieeenreeesreesnereesseeesseeennns 1969
F.23.3.4. pgp_pub_deCTYPE () eeeeercreereieerieeesieeesieeenreeesreesseeesseeennns 1969
F.23.3.5. DgP_KeY_ 1A () creeeriieeieeeiie et e siteeeiee et e et e seae e siee e 1969
F.23.3.6. armor (), AEATMOTL () teeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeens 1970
F.23.3.7. Options for PGP functions ........c..cecceeeveceeveeenienencnvecneenennennen 1970
F.23.3.7.1. CIPher-algo ........cccceevevveininenenieicieeeeseeeeeeeeeiee 1970

F.23.3.7.2. cOmPress-algo ........coceeveiriennieeneenienneeneeneeeieeseeeneeenn 1970

F.23.3.7.3. compress-1eVel ..........cccovervieninienenieieneeieneeeeiesiee 1970

F.23.3.7.4. convert-Crlf.........ccooiiiiininiiniiieeeeceee e 1971

F.23.3.7.5. disable-mdC........cccueveeiiniriiniinieenieeeeee e 1971

F.23.3.7.6. enable-session-Key ........cccocererienienieniinenienenieienene 1971

F.23.3.7.7. S2K-MOdE......coueriiiiiiiiiniinieienteeseece et 1971

F.23.3.7.8. s2k-digest-algo.......cccevuereriinenieienieicnceeencceeeee 1971

F.23.3.7.9. s2k-cipher-algo ......cccceccevereinenieniinieicnceeencncceee 1972

xli



F.24.

F.25.

F.26.

F27.

F.28.

F.29.

F.30.

F31.

F.23.3.7.10. unicode-mode.............coevvrireieeirrieeeeereeeee e 1972

F.23.3.8. Generating PGP keys with GnuPG.........cccccoooiriiiiiinniiiinenns 1972

F.23.3.9. Limitations of PGP code ........cc.cocceviniriienininninieicncrecicneee 1973
F.23.4. Raw encryption funCtions ..........cceceeveerieniiienienienieeieeneesee e 1973
F.23.5. Random-data fUNCHONS ........ccccecuererieniinieiiiieieie e 1974
F23.0. INOTES ..ttt ettt st s 1974

F.23.6.1. Configuration............ccccecuevuirieniinienienenieieneeeeeeeeese e 1974

F.23.6.2. NULL handling ........ccccoceueeieinininenienienieeneneneneeeeeeeeneenenes 1975

F.23.6.3. Security limitations..........cccceceevuirieneniniieiinieieneeeeeeeeneeeee 1975

F.23.6.4. Useful reading ..........ccccocveviiiiiiiniiiiniiiccnceeececie e 1975

F.23.6.5. Technical references ..........cocueevueevieirienieineenieeieeseeneeeieeeee 1975
F23.7. ATNOT ..ottt e 1976
PE_ITEESPACEINAP ...vevirentenieieiieiiee sttt st 1976
F.24. 1. FUNCHONS ...ttt st 1976
F.24.2. Sample OUPUL .....cc.oooiiiiiiiiiiciecc e 1977
F24.3. AUNOT ..ottt e 1977
PEIOWIOCKS ...ttt ettt st b et sb e et esbe bt aesbens 1978
F25.1. OVEIVIBW ..oniiieniiiiteteieee ettt sttt st 1978
F.25.2. Sample OULPUL .....ovueemiiiiiiieiieeeteseetee ettt 1979
F25.30 AUNOT ..o e 1979
PE_STANADY ..ttt 1979
FL20.1. USAZE..c.ueouiiiieiieiesieetet ettt st et 1979
F.260.2. EXAMPIES ...cuviiiiiiiiiiiiiieiteiiecetesteeteestt ettt 1981
F.26.3. SUPPOTted SEIVET VETSIONS ..eevverereeiieiieniieriieieeniresteesseenseesssessseesseessnens 1982
F26.4. AUNOT ..ot 1982
PE_StAL_SEALEINENES ....eeuvieneieeereeieetee st eteeteestteeteeabeesteesabesateesbeesaeesaseenseensaensnens 1983
F27.1. The pg_stat_statements VIEW ....cccueeeeeeeiveeeeeiiireeeeeesinreeeeeensneeeeenns 1983
F27.2. FUNCHOMNS ...ttt ettt 1984
F.27.3. Configuration Parameters..........ceerveerueereerrieenieeneeseeenseeseesseenseesseesnens 1984
F.27.4. Sample OULPUL ...ccveeriieiiieieeiteeieee ettt sttt st e n 1984
F27.5. AUhOr ... 1985
PESTALLUPIE....eenieiie ittt ettt et e sbt e st st e be e st e st e beesaeesaee s 1985
F28.1. FUNCHONS ...ttt 1985
F28.2. AUNOTIS......ooiiiiiiiiieieeecc e 1987
PELTEIMh ittt 1987
F.29.1. Trigram (or Trigraph) CONCePLs.......ccoeveereriirieniirieeneereieseeeeeeenee 1987
F.29.2. Functions and OPErators ..........c.ccoceeceerierieiueniieienieneeeeseeeeneseeeeene e 1987
F.29.3. INAEX SUPPOIT...c.oiiiiiiiiiiiiiiieieneee et 1988
F.29.4. Text Search INteZration ...........ccccoceeieiiiieiiiniiiei e 1989
F.29.5. REfEIONCES ....oueeeiiieiieieei ettt 1989
F.29.6. AUNOTS ..ottt 1990
BB ettt s a e b 1990
F.30.1. RAtIONALE ...ttt 1990
F30.2. SYNEAX .o 1991
F.30.3. PreCiSION ..ottt st 1992
F30.4. USAZE....oiiiiiiiiii s 1992
FL30.5. NOLES ...oviieiiititeiceetcee ettt ettt st 1993
F.30.6. CIedits ...oouveuiiiiiiieieieiieiteeresteeet ettt st 1993
S d ettt ettt ettt b bbbt bt et b e e bttt e h et s be bt e b bt et bt entenaeeaean 1993
F.31.1. refint.c — functions for implementing referential integrity................... 1993
F.31.2. timetravel.c — functions for implementing time travel..........c..cc..c....... 1994
F.31.3. autoinc.c — functions for autoincrementing fields..........cccccoeveeeenncnne. 1995

xlii



F.31.4. insert_username.c — functions for tracking who changed a table ........ 1995

F.31.5. moddatetime.c — functions for tracking last modification time ........... 1995

FL320 SSIHNTO. ..ttt s 1995
F.32.1. Functions Provided ...........cccooccevininiieninieiininicicceenccreeeeeeeeeeeee 1996
F32.2  AUTNOT ..ot 1997
F.33.tablefUunC .....ooueiiiiiee et 1997
F.33.1. Functions Provided ...........cccoveeoiiieiiiiciiecie st 1997
F.33.1.1. NOTMAl_TANA tiiiiiiiiiiiiiieeeeeeeeeeeeee e e e e e e 1998

FL33. 1.2, CroSStal (EOXE) eeeieeeeeeeeeeeeeeeeeeeeeee e e e et eeeeeeeaaes 1999

F.33.1.3. CroSStablN (£EXE) aoreeeeeiiiieeiiiieeeeeeeeeee e e e e et eeeseaeaees 2000

F33.1.4. crosstab (£eXt, TeXE) wieeeeeeeeeeeeeeeeeeeeereeee e e s eeaeees 2002

F.33.1.5. CONNE DY ittt 2004

F33.20 AUNOT ..o 2006

FL34 1St PATSET ..ttt ettt ettt sttt et sttt e b e s ne e 2007
FL34. 1. USAZE. ..ttt ettt sttt st 2007

FL35. tSCAICRZ ...ttt ettt e et et st eebeete e sabeebeebee e 2008
F.35.1. Portability ISSUES .....cveiuiruieiiniieienieeteiest ettt 2008
F.35.2. Converting a pre-8.3 Installation..........cccoeevueriecieinineninieieieceeeenene 2009
F.35.3. REfEIONCES ....cueeniiiieiieiieie ettt 2009

FL30. UUIA-0SSP . euveteentestteteteet ettt sttt st sb et s b et esae st eaesbeeas 2009
F.36.1. uuid—05sp FUNCHONS ....oocouiiiiiiiiciiiccecce e 2010
F30.2. AUTNOT ..ottt 2011

Fo37. VACUUMIO. ...ttt ettt et s 2011
F37. 1. USAZE .ttt ettt sttt 2011
F37.2. MEthOd ..ottt 2012
F37.3. AUTNOT ..o 2012

FL380 XIMIZ ettt sttt sttt ettt 2012
F.38.1. Deprecation NOLICE .......c.eeveerierieeieeniienieeieenieesieesteeieeseeseteebeesaeesanes 2012
F.38.2. Description Of fUNCHONS.....ccoteriiriieiierieeieeieeee ettt 2012

| SRR T T T oY ol s W o= o B I = F USROS UPTTN 2013
F.38.3.1. Multivalued reSults .........cocceveeviimieneneriienienieienceieneeeeenieens 2015

F.38.4. XSLT fUNCHONS «..c.veeitiiieiieiieiieieneeeeeee ettt 2016
F.38.4. 1. XS 1t _PrOCESS tiiiiiiitieee ettt ettt eetre e e e eeree e e e 2016

FL38.5. AULNOT ..ottt ettt st e 2016

G. EXternal ProJECtS ...c..cocueiiiiiiiieieceeeeeeeeet sttt 2017
G.1. Client INtETTaCeS.....ccccvvieeieeeiieeiie ettt ettt e e ere e e ae e et e e e s e e snnaaesnneeennns 2017
G.2. Procedural Languages.............ccceeueeieriieieniinieienieereteeeeeeee e 2018
(€ 2 T 5 <] 1 15 101 USSP 2018
H. The CVS REPOSILOTY ..cuveeiiiriiiiiiiiieniteeieeitestt ettt ettt ettt ettt e be e bt e st et e saeesaee s 2020
H.1. Getting The Source Via Anonymous CVS ........ccociiiiiiiiininieeeeere e 2020
H.2. CVS Tree OrganizZation ...........ccceeeeeeereriesieneieneeeeeetesiestesiesseeeeseeeeesaesseessesseens 2021
H.3. Getting The SOUIrce Via ISYINC....c.ccieriererieiieiieienie ettt 2022
H.4. Getting The Source Via CVSUP......cooiiiiiiiiiieiseeere et 2023
H.4.1. Preparing A CVSup Client SYStem........cceevueruieienireenenenieneeeeeeseenes 2023
H.4.2. Running a CVSup CHENL ...c..ooeiiiiririiiiiieieieetee e 2023

L. DOCUMENTATION ... eeviieiieeiieittecieeteettesteete et e st e eteebeesteeesaessseesseessaessseensaesssessseenseenseenssens 2026
L1 DOCBOOK ...ttt et st 2026
LL2. TOOL SEES ..ttt ettt sttt st sb et sbe et e naesbeenaesbeens 2026
[.2.1. Linux RPM Installation ..........ccccecemeriineninniininienenceenccteieeeeeeeee 2027

[.2.2. FreeBSD Installation ...........cccceceevienerienenieienienienieecee et 2027

[.2.3. Debian Packages........cccverieriireiiiininienieneeieieeeteie ettt 2028

[.2.4. Manual Installation from SOUICE ..........coceeeeienierienineeneneeieereeeene 2028

xliii



1.2.4.1. Installing OpenJade..........c.ceoveriiriiiinienienieieere e 2028

1.2.4.2. Installing the DocBook DTD Kit........ccecevciiiniinieniiiiiieniennenne, 2029

1.2.4.3. Installing the DocBook DSSSL Style Sheets........cccccecvevvennennne. 2029

1.2.4.4. Installing JadeTeX........cccoceeniiriiniiinieieeieceeeeeee e 2030

1.2.5. Detection Y CONEigUTE .iviirierieriieitenite ettt sttt st 2030

1.3. Building The DOCUmMENtation...........cccererieiinieiiinieieneeeereseeresee e 2031

L30T HTML ettt sttt e 2031

L3.2. MANPAZES.....cvieiiiniiiieieieeietteeeete sttt s e 2031

1.3.3. Print Output via JadeTeX ........ccccccooiriiniiiiiiiiie e 2032

1.3.4. Print Output via RTF ... 2032

1.3.5. Plain TeXt FIleS ....coouiiriiiiiiiieieieeeteteeeeetee ettt 2034

L.3.6. Syntax ChecK .......coouiiiiiiiiiiieieieeetetceetet et 2034

L4. Documentation AUthOTING.........cecuiriiiieieeieieetieie ettt ettt seens 2034

L4.1. EMAcS/PSGML .....c.coiiiiiiiiiiiiietcieteteteesteseeeeeee et 2034

[.4.2. Other EMAcs MOAES ......cc.eeueeriiriiiiiniieieieeitee et 2035

L5, SEYIE GUIAC. ...ttt ettt ettt et st saen 2036

L.5.1. Reference Pages. .......ccocovueeieiiinieiiniieeteeeeee et 2036

Jo ACTONYIMIS ...ttt ettt et sttt sa e st e e satesate et e e sbaesaeeeane 2038
Bibliography 2043
Index 2045

xliv



Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL devel-
opers and other volunteers in parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been orga-
nized in several parts. Each part is targeted at a different class of users, or at users in different stages
of their PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part II documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

+ Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

. views

« transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

« functions

+ operators

« aggregate functions
« index methods

1. http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/postgres.html

xly



Preface

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available any-
where.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial con-
cepts for the system were presented in The design of POSTGRES , and the definition of the initial
data model appeared in The POSTGRES data model . The design of the rule system at that time was
described in The design of the POSTGRES rules system. The rationale and architecture of the storage
manager were detailed in The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES , was released to a few external users in June 1989. In response to
a critique of the first rule system ( A commentary on the POSTGRES rules system ), the rule system
was redesigned ( On Rules, Procedures, Caching and Views in Database Systems ), and Version 2
was released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support
for multiple storage managers, an improved query executor, and a rewritten rule system. For the most
part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Infor-
mation Technologies (later merged into Informix?, which is now owned by IBM?) picked up the code
and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
2000 scientific computing project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2. http://www.informix.com/

3.

http://www.ibm.com/

4. http://meteora.ucsd.edu/s2k/s2k_home.html

xlvi



Preface

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a
new name, Postgres95 was subsequently released to the web to find its own way in the world as an
open-source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregate functions were re-implemented. Support for the GROUP BY
query clause was also added.

+ A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

« The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasized in italics. Everything that represents

xlvii



Preface

input or output of the computer, in particular commands, program code, and screen output, is shown
in a monospaced font (example). Within such passages, italics (example) indicate placeholders;
you must insert an actual value instead of the placeholder. On occasion, parts of program code are
emphasized in bold face (example), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: brackets ([ and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)
Braces ({ and }) and vertical lines (| ) indicate that you must choose one alternative. Dots (. . .) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

Wiki
The PostgreSQL wiki® contains the project’s FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.
Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part

PN

http://wiki.postgresql.org
http://wiki.postgresql.org/wiki/Frequently_Asked_Questions
http://wiki.postgresql.org/wiki/Todo
http://www.postgresql.org

xIviii



Preface

of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

« A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

+ A program produces the wrong output for any given input.
+ A program refuses to accept valid input (as defined in the documentation).

« A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

+ PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

xlix



Preface

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/ .psqglrc start-up file.)
An easy way to create this file is to use pg_dump to dump out the table declarations and data
needed to set the scene, then add the problem query. You are encouraged to minimize the size of
your example, but this is not absolutely necessary. If the bug is reproducible, we will find it either
way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

« The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to verbose so that all de-
tails are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

+ Anything you did at all differently from the installation instructions.

« The PostgreSQL version. You can run the command SELECT version () ; to find out the version
of the server you are connected to. Most executable programs also support a ——version option; at
least postgres —--versionand psql —--version should work. If the function or the options do



Preface

not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a CVS snapshot, mention that, including its date and time.

If your version is older than 8.4.1 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL; if you require more than we can provide, consider
acquiring a commercial support contract.

« Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on i386s. If you have
installation problems then information about the toolchain on your machine (compiler, make, and
so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an
article’ that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the back-
end server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend server
process is quite different from crash of the parent “postgres” process; please don’t say “the server
crashed” when you mean a single backend process went down, nor vice versa. Also, client programs
such as the interactive frontend “psql” are completely separate from the backend. Please try to be
specific about whether the problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing list at <pgsgl-bugs@postgresqgl.org>. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site'’. Entering a
bug report this way causes it to be mailed to the <pgsgql-bugs@postgresqgl.org> mailing list.

If your bug report has security implications and you’d prefer that it not become immediately vis-
ible in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsql-sgl@postgresql.org>
or <pgsgl-general@postgresqgl.org>. These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list
<pgsgl-hackers@postgresqgl.org>. This list is for discussing the development of PostgreSQL,

9. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10. http://www.postgresql.org/

li



Preface

and it would be nice if we could keep the bug reports separate. We might choose to take up a
discussion about your bug report on pgsgl-hackers, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresqgl . org>. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@postgresqgl.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug-report web form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail. For more information send mail to <majordomo@postgresql .org> with the single word
help in the body of the message.

lii



l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple in-
troduction to PostgreSQL, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers.
No particular Unix or programming experience is required. This part is mainly intended to give you
some hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applica-
tions for PostgreSQL. Those who set up and manage their own server should also read Part III.






Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 15 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

+ A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
is called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this
it starts (“forks™) a new process for each connection. From that point on, the client and the new



Chapter 1. Getting Started

server process communicate without intervention by the original postgres process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next
section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell’s search
path was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such f
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "Jjoe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 20 for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usually postgres) to
create the first user account. It could also be that you were assigned a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the —U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:



Chapter 1. Getting Started

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
characters in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, simply type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

» Running the PostgreSQL interactive terminal program, called psqgl, which allows you to interac-
tively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

« Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further in Part IV.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When
you connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same
name as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the
same name as the operating system user that started the server, and it also happens that that user always has permission to
create databases. Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user
name to connect as.



Chapter 1. Getting Started

psgl (8.4.1)
Type "help" for help.

mydb=>
The last line could also be:
mydb=+#

That would mean you are a database superuser, which is most likely the case if you installed Post-
greSQL yourself. Being a superuser means that you are not subject to access controls. For the purposes
of this tutorial that is not important.

If you encounter problems starting psqgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that
you can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 8.4.1 on i586-pc-linux-gnu, compiled by GCC 2.96, 32-bit
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;

?column?

The psqgl program has a number of internal commands that are not SQL commands. They begin
with the backslash character, “\”. Some of these commands were listed in the welcome message. For
example, you can get help on the syntax of various PostgreSQL SQL commands by typing:

mydb=> \h

To get out of psql, type:
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \ 2 at
the psql prompt.) The full capabilities of psgl are documented in psql. If PostgreSQL is installed
correctly you can also type man psqgl at the operating system shell prompt to see the documentation.
In this tutorial we will not use these features explicitly, but you can use them yourself when it is
helpful.



Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL, including Understanding the New SQL and A Guide to the
SQL Standard. You should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. To use those files, first change to that directory and run make:

$ ed ..../src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. (If you
installed a pre-packaged version of PostgreSQL rather than building from source, look for a directory
named tutorial within the PostgreSQL distribution. The “make” part should already have been
done for you.) Then, to start the tutorial, do the following:

$ ed ..../tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \ i command reads in commands from the specified file. psql’s —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for zable. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.



Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you
can type the command aligned differently than above, or even all on one line. Two dashes (“--") in-
troduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not
done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in
length. int is the normal integer type. real is a type for storing single precision floating-point num-
bers. date should be self-explanatory. (Yes, the column of type date is also named date. This might
be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision,
char (N), varchar (N), date, time, timestamp, and interval, as well as other types of general
utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary number of
user-defined data types. Consequently, type names are not key words in the syntax, except where
required to support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");



Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.

Please enter all the commands shown above so you have some data to work with in the following
sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually
faster because the COPY command is optimized for this application while allowing less flexibility than
INSERT. An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more about the CopY command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT % FROM weather;
Here = is a shorthand for “all columns”. ' So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

1. While SELECT =« is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a
column to the table would change the results.



Chapter 2. The SQL Language

San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:
city | temp_avg | date
_______________ e
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the &S clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression
is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification.
For example, the following retrieves the weather of San Francisco on rainy days:

SELECT % FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:
city | temp_lo | temp_hi | prcp | date
——————————————— B e At
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
777777777777777 -t
Hayward \ 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in
either order. But you’d always get the results shown above if you do:

SELECT » FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:



SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Chapter 2. The SQL Language

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT

and ORDER BY together:

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called
a join query. As an example, say you wish to list all the weather records together with the location
of the associated city. To do that, we need to compare the city column of each row of the weather
table with the name column of all rows in the cities table, and select the pairs of rows where these

values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner
than actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT «
FROM weather, cities
WHERE city = name;
city | temp_lo
_______________ [P
San Francisco | 46
San Francisco | 43

(2 rows)

Observe two things about the result set:

1994-11-27
1994-11-29

San Francisco
San Francisco

(-194,53)
(-194,53)

+ There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

2.

In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders

the rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not
guarantee that DISTINCT causes the rows to be ordered.



Chapter 2. The SQL Language

« There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using »:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to.
If there were duplicate column names in the two tables you’d need to gualify the column names to
show which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t
fail if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT «
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan the weather table and for each row to find the matching cities row(s). If no matching
row is found we want some “empty values” to be substituted for the cities table’s columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT «
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— B E e e bt Tt e
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to
find all the weather records that are in the temperature range of other weather records. So we need to
compare the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi
columns of all other weather rows. We can do this with the following query:

10



Chapter 2. The SQL Language

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather Wl, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— s et e e Atk
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT «
FROM weather w, cities c¢
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max (temp_lo) FROM weather);

San Francisco
(1 row)

11



Chapter 2. The SQL Language

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, I
Hayward | 37

San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | max
_________ b
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_1lo values below 40. Finally, if
we only care about cities whose names begin with “S”, we might do:

SELECT city, max(temp_1lo)
FROM weather
WHERE city LIKE ’'S%'@®
GROUP BY city
HAVING max (temp_lo) < 40;

© The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING
clauses. The fundamental difference between WHERE and HAVING is this: WHERE selects input rows
before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereas HAVING selects group rows after groups and aggregates are computed. Thus, the
WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate to
determine which rows will be inputs to the aggregates. On the other hand, the HAVING clause al-
ways contains aggregate functions. (Strictly speaking, you are allowed to write a HAVING clause that
doesn’t use aggregates, but it’s seldom useful. The same condition could be used more efficiently at
the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

12



Chapter 2. The SQL Language

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B et B et T T e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward \ 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B i B e et T T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

13



Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql in the tutorial directory. This file also contains some sample data to load, which is
not repeated here. (Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which might change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want
to make sure that no one can insert rows in the weather table that do not have a matching entry
in the cities table. This is called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at all) by first looking at the cities table to check
if a matching record exists, and then inserting or rejecting the new weather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
location point

14



Chapter 3. Advanced Features

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint "weather_cit
DETAIL: Key (city)=(Berkeley) 1is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from
Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into a transaction gives us this guarantee. A transaction is said to
be atomic: from the point of view of other transactions, it either happens completely or not at all.

15



Chapter 3. Advanced Features

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN and COMMIT commands. So our banking transaction would actually look like:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful)
coMMIT wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes
called a transaction block.

Note: Some client libraries issue BEcTN and comutT commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction’s database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
a savepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to
other sessions, while the rolled-back actions never become visible at all.

16



Chapter 3. Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s
account, only to find later that we should have credited Wally’s account. We could do it using save-
points like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’"Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transac-
tion block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.
But unlike regular aggregate functions, use of a window function does not cause rows to become
grouped into a single output row — the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee’s salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— -t
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 4800 | 4866.6666666666666667
sales | 1] 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed
across an appropriate set of rows.)

17



Chapter 3. Advanced Features

A window function call always contains an OVER clause following the window function’s name and
argument(s). This is what syntactically distinguishes it from a regular function or aggregate function.
The OVER clause determines exactly how the rows of the query are split up for processing by the
window function. The PARTITION BY list within OVER specifies dividing the rows into groups, or
partitions, that share the same values of the PARTITION BY expression(s). For each row, the window
function is computed across the rows that fall into the same partition as the current row.

Although avg will produce the same result no matter what order it processes the partition’s rows in,
this is not true of all window functions. When needed, you can control that order using ORDER BY
within OVER. Here is an example:

SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC)

depname | empno | salary | rank
——————————— e e
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 4200 | 5
personnel | 2 3900 | 1
personnel | 5 3500 | 2
sales | 1 5000 | 1
sales | 4 | 4800 | 2
sales | 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank within the current row’s partition for
each distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query’s
FROM clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways by means of different
OVER clauses, but they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTITION BY, in which case there is just one partition containing all the rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Many (but not all) window functions act only on
the rows of the window frame, rather than of the whole partition. By default, if ORDER BY is supplied
then the frame consists of all rows from the start of the partition up through the current row, plus any
following rows that are equal to the current row according to the ORDER BY clause. When ORDER BY
is omitted the default frame consists of all rows in the partition. ' Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

salary | sum
________ b
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100

1. There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for

details.

18

F



47100
47100
47100
47100
47100
47100

Chapter 3. Advanced Features

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get
very different results:

SELECT sa

lary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

Here the sum is taken from the first (lowest) salary up through the current one, including any dupli-
cates of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after regular
aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname,

FROM
(SELECT

FROM
) AS ss
WHERE pos

empno,

salary, enroll_date

depname, empno, salary, enroll_date,

rank () OVER
empsalary
< 3;

(PARTITION BY depname ORDER BY salary DESC,

The above query only shows the rows from the inner query having rank less than 3.

empno)

AS pos

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
several functions. Instead, each windowing behavior can be named in a WINDOW clause and then
referenced in OVER. For example:

SELECT sum(salary)

FROM empsalary

OVER w, avg(salary) OVER w

19



Chapter 3. Advanced Features

WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 7.2.4, and the SELECT
reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you’re really clever you
might invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
altitude int, -— (in ft)
state char (2)
)

CREATE TABLE non_capitals (
name text,
population real,
altitude int -— (in ft)
)i

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

name text,

population real,

altitude int —— (in ft)
)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL,
a table can inherit from zero or more other tables.

20



Chapter 3. Advanced Features

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude of 500 feet or higher:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
,,,,,,,,,,, [P
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and
not tables below cities in the inheritance hierarchy. Many of the commands that we have already
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints
or foreign keys, which limits its usefulness. See Section 5.8 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to
more resources.

2. http://www.postgresql.org

21



Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL
commands. The rest treats several aspects that are important for tuning a database for optimal perfor-
mance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.






Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
6,9

terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT = FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’'hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the UPDATE command always requires a SET token to appear in a certain position, and this
particular variation of INSERT also requires a VALUES in order to be complete. The precise syntax
rules for each command are described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are exam-
ples of identifiers. They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be
letters, underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers
according to the letter of the SQL standard, so their use might render applications less portable. The

24



Chapter 4. SQL Syntax

SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant

in src/include/pg_config_manual.h.

Identifier and key word names are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by en-
closing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an
identifier, never a key word. So "select" could be used to refer to a column or table named “select”,
whereas an unquoted select would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with Us (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example Us"foo". (Note that this
creates an ambiguity with the operator &. Use spaces around the operator to avoid this problem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backslash followed by
the four-digit hexadecimal code point number or alternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier "data" could be
written as

Us"d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&"d!0061t!+000061" UESCAPE ' !’

25



Chapter 4. SQL Syntax

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FoO" are different from these three and each other. (The folding of unquoted names to
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the
standard. If you want to write portable applications you are advised to always quote a particular name
or never quote it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (), for
example ' This is a string’. To include a single-quote character within a string constant, write
two adjacent single quotes, e.g., ' Dianne”s horse’. Note that this is not the same as a double-quote
character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT '’ foo’
"bar’;

is equivalent to:

SELECT ' foobar’;

but:

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-Style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E’ foo’. (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a

26



Chapter 4. SQL Syntax

C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shown in Table 4-1.

Table 4-1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (0=0-7) octal byte value

\xh, \xhh (h=0-9,A-F) hexadecimal byte value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in
addition to the normal way of ”.

It is your responsibility that the byte sequences you create are valid characters in the server charac-
ter set encoding. When the server encoding is UTF-8, then the alternative Unicode escape syntax,
explained in Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8
encoding by hand and writing out the bytes, which would be very cumbersome.)

Caution

If the configuration parameter standard_conforming_strings is off, then
PostgreSQL recognizes backslash escapes in both regular and escape
string constants. This is for backward compatibility with the historical
behavior, where backslash escapes were always recognized. Although
standard_conforming_strings currently defaults to off, the default
will change to on in a future release for improved standards compliance.
Applications are therefore encouraged to migrate away from using backslash
escapes. If you need to use a backslash escape to represent a special
character, write the string constant with an £ to be sure it will be handled the
same way in future releases.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes
in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with Us (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example Us’ foo’ . (Note that this creates an ambiguity with the operator &. Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point

27



Chapter 4. SQL Syntax

number. For example, the string * data’ could be written as

Us&’d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us’\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&’d!0061t!+000061" UESCAPE ’!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified.

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne’s horse”
using dollar quoting:

$S$Dianne’s horse$s$
S$SomeTag$Dianne’s horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always writ-
ten literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
This is most commonly used in writing function definitions. For example:

$function$
BEGIN
RETURN ($1 ~ $gSI\t\r\n\v\\1sqg$);
END;
Sfunction$

28



Chapter 4. SQL Syntax

Here, the sequence $gs [\t\r\n\v\\1s$g$ represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $function$, it is just some more characters within
the constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, 0 Stag$String contentS$tag$ is correct,
but $TAGSString content$tags$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write com-
plicated string literals than the standard-compliant single quote syntax. It is particularly useful when
representing string constants inside other constants, as is often needed in procedural function defini-
tions. With single-quote syntax, each backslash in the above example would have to be written as four
backslashes, which would be reduced to two backslashes in parsing the original string constant, and
then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B’ 1001’ . The only characters allowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper
or lower case), e.g., X’ 1LFF’. This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. [digits] [e[+-]1digits]
[digits] .digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (0 through 9). At least one digit must be before or
after the decimal point, if one is used. At least one digit must follow the exponent marker (e), if one
is present. There cannot be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925¢-3

29



Chapter 4. SQL Syntax

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint
if its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that
contain decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a numeric value to be treated as type real (float4)
by writing:

REAL ’1.23" —-- string style

1.23::REAL —-— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
! string’ ::type
CAST ( ’'string’” AS type )

The string constant’s text is passed to the input conversion routine for the type called ¢ ype. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename ( ' string’ )

but not all type names can be used in this way; see Section 4.2.9 for details.

The : :, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type ’ string’
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type
" string’ syntax is that it does not work for array types; use : : or CAST () to specify the type of an
array constant.

The caAST () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the follow-
ing list:

+-F/<>=~1@# D &I ?

30



Chapter 4. SQL Syntax

There are a few restrictions on operator names, however:

« —-and /« cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

+ A multiple-character operator name cannot end in + or —, unless the name also contains at least one
of these characters:

~1@#EDPN&I?

For example, @- is an allowed operator name, but «- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named @, you cannot write Xx@Y; you must write X+ @Y to ensure that PostgreSQL reads it as two
operator names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

« A dollar sign (s) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

« Parentheses ( () ) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([ 1) are used to select the elements of an array. See Section 8.14 for more information on
arrays.

« Commas (, ) are used in some syntactical constructs to separate the elements of a list.

+ The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

« The colon (:) is used to select “slices” from arrays. (See Section 8.14.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

» The asterisk () is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

+ The period (.) is used in numeric constants, and to separate schema, table, and column names.

31



Chapter 4. SQL Syntax

4.1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

—— This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
+ with nesting: /* nested block comment =/
x/

where the comment begins with /» and extends to the matching occurrence of « /. These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Lexical Precedence

Table 4-2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is
hard-wired into the parser. This can lead to non-intuitive behavior; for example the Boolean operators
< and > have a different precedence than the Boolean operators <= and >=. Also, you will sometimes
need to add parentheses when using combinations of binary and unary operators. For instance:

SELECT 5 ! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4-2. Operator Precedence (decreasing)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast
[ left array element selection
right unary minus
» left exponentiation
x /% left multiplication, division,
modulo
+ - left addition, subtraction

32




Chapter 4. SQL Syntax

Operator/Element Associativity Description

Is IS TRUE, IS FALSE, IS
UNKNOWN, IS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN range containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-2 for “any other”
operator. This is true no matter which specific operator appears inside OPERATOR () .

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

« A constant or literal value

+ A column reference

+ A positional parameter reference, in the body of a function definition or prepared statement
+ A subscripted expression

A field selection expression

« An operator invocation

« A function call

33




Chapter 4. SQL Syntax

« An aggregate expression
« A window function call
- A type cast

» A scalar subquery

« An array constructor

» A row constructor

+ Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References

A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause, or one of the key words NEW or OLD. (NEW and OLD can only appear
in rewrite rules, while other correlation names can be used in any SQL statement.) The correlation
name and separating dot can be omitted if the column name is unique across all the tables being used
in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:
CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the s1 references the value of the first function argument whenever the function is invoked.

34



Chapter 4. SQL Syntax

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expression|subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper_subscript]

(Here, the brackets [ ] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:
mytable.arraycolumn[4]

mytable.two_d_column[17] [34]

$1[10:42]

(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.14 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn

(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name,
or that mytable is a table name not a schema name in the second case.

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)

35



Chapter 4. SQL Syntax

operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_name ([expression [, expression ... ]] )

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [ , ... ] )

aggregate_name (ALL expression [ , ... 1 )

(
(

aggregate_name (DISTINCT expression)
(

aggregate_name * )

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name),
and expression is any value expression that does not itself contain an aggregate expression or a
window function call.

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression(s) yield non-null values. (Actually, it is up to the aggregate function whether to ignore null
values or not — but all the standard ones do.) The second form is the same as the first, since ALL is
the default. The third form invokes the aggregate for all distinct non-null values of the expressions
found in the input rows. The last form invokes the aggregate once for each input row regardless of
null or non-null values; since no particular input value is specified, it is generally only useful for the
count () aggregate function.

For example, count () yields the total number of input rows; count (£1) yields the number of input
rows in which £1 is non-null; count (distinct £1) yields the number of distinct non-null values
of £1.

36



Chapter 4. SQL Syntax

The predefined aggregate functions are described in Section 9.18. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.10 and Section 9.20), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s
arguments contain only outer-level variables: the aggregate then belongs to the nearest such outer
level, and is evaluated over the rows of that query. The aggregate expression as a whole is then an
outer reference for the subquery it appears in, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result list or HAVING clause applies with respect
to the query level that the aggregate belongs to.

Note: PostgreSQL currently does not support prsTINcT with more than one input expression.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row’s group according to
the grouping specification (PARTITION BY list) of the window function call. The syntax of a window

function call is one of the following:
[expression [, expression ... ]]) OVER ( window_definition )

function_name

* ) OVER ( window_definition )
* ) OVER window_name

(

function_name ([expression [, expression ... ]]) OVER window_name
function_name (
(

function_name
where window_definition has the syntax

[ existing_window_name ]

[ PARTITION BY expression [, ...] 1]

[ ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST | LAST } 1 [,
[

frame_clause ]
and the optional frame_clause can be one of

RANGE UNBOUNDED PRECEDING

RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
ROWS UNBOUNDED PRECEDING

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

Here, expression represents any value expression that does not itself contain window function
calls. The PARTITION BY and ORDER BY lists have essentially the same syntax and semantics as
GROUP BY and ORDER BY clauses of the whole query, except that their expressions are always just
expressions and cannot be output-column names or numbers. window_name is a reference to a named
window specification defined in the query’s WINDOW clause. Named window specifications are usually
referenced with just OVER window_name, but it is also possible to write a window name inside the

37



Chapter 4. SQL Syntax

parentheses and then optionally supply an ordering clause and/or frame clause (the referenced win-
dow must lack these clauses, if they are supplied here). This latter syntax follows the same rules as
modifying an existing window name within the WINDOW clause; see the SELECT reference page for
details.

The frame_clause specifies the set of rows constituting the window frame, for those window
functions that act on the frame instead of the whole partition. The default framing option is RANGE
UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW; it selects rows up through the current row’s last peer in the ORDER BY ordering
(which means all rows if there is no ORDER BY). The options RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING and ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING are also equivalent: they always select all rows in the partition.
Lastly, ROWS UNBOUNDED PRECEDING or its verbose equivalent ROWS BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW select all rows up through the current row (regardless of
duplicates). Beware that this option can produce implementation-dependent results if the ORDER BY
ordering does not order the rows uniquely.

The built-in window functions are described in Table 9-44. Other window functions can be added by
the user. Also, any built-in or user-defined aggregate function can be used as a window function.

The syntaxes using = are used for calling parameter-less aggregate functions as window functions, for
example count () OVER (PARTITION BY x ORDER BY y). * is customarily not used for non-
aggregate window functions. Aggregate window functions, unlike normal aggregate functions, do not
allow DISTINCT to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5 and Section 7.2.4.

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST ( expression AS type )

expression: :type

The casT syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this is
subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data

type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:

typename ( expression )

38



Chapter 4. SQL Syntax

However, this only works for types whose names are also valid as function names. For example,
double precision cannot be used this way, but the equivalent float8 can. Also, the names
interval, time, and t imestamp can only be used in this fashion if they are double-quoted, because
of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and
should probably be avoided.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function to
perform the conversion. By convention, these conversion functions have the same name as their
output type, and thus the “function-like syntax” is nothing more than a direct invocation of the
underlying conversion function. Obviously, this is not something that a portable application should
rely on. For further details see CREATE CAST.

4.2.10. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.20 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.11. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example:

SELECT ARRAY[1,2,3+4];

By default, the array element type is the common type of the member expressions, determined using
the same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}
(1 row)

39



Chapter 4. SQL Syntax

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors,
the key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2]1,13,411;

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must pro-
duce sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl int[], f£2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]1, ARRAY[[5,6]1,[7,81]1);

SELECT ARRAY[fl, f2, ’'{{9,10},{11,12}}"::int[]] FROM arr;
array

{({{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];

It is also possible to construct an array from the results of a subquery. In this form, the array construc-
tor is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);
?column?

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}
(1 row)

40



Chapter 4. SQL Syntax

The subquery must return a single column. The resulting one-dimensional array will have an element
for each row in the subquery result, with an element type matching that of the subquery’s output
column.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.14.

4.2.12. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using
values for its member fields. A row constructor consists of the key word Row, a left parenthesis, zero
or more expressions (separated by commas) for the row field values, and finally a right parenthesis.
For example:

SELECT ROW(1,2.5,"this is a test’);

The key word ROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue. «, which will be expanded to a list of the ele-
ments of the row value, just as occurs when the . » syntax is used at the top level of a SELECT list. For
example, if table t has columns £1 and £2, these are the same:

SELECT ROW (t.x, 42) FROM t;
SELECT ROW(t.fl, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the .« syntax was not expanded, so that writing rRow (t .+, 42)
created a two-field row whose first field was another row value. The new behavior is usually more
useful. If you need the old behavior of nested row values, write the inner row value without . «, for
instance row (t, 42).

By default, the value created by a ROw expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable (fl int, £2 float, £3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;

—— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,"this is a test’));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (f1 int, f2 text, £3 numeric);
CREATE FUNCTION getfl (myrowtype) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;
—-— Now we need a cast to indicate which function to call:

SELECT getfl (ROW(1,2.5,"this is a test’));
ERROR: function getfl (record) is not unique

41



Chapter 4. SQL Syntax

SELECT getfl(ROW(1,2.5,"this is a test’)::mytable);
getfl

getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,"this is a test’) = ROW(1l, 3, ’"not the same’);
SELECT ROW (table.*) IS NULL FROM table; —— detect all-null rows

For more detail see Section 9.21. Row constructors can also be used in connection with subqueries,
as discussed in Section 9.20.

4.2.13. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.16) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

42



Chapter 4. SQL Syntax
A cASE construct used in this fashion will defeat optimization attempts, so it should only be done

when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5*x instead.)

43



Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable — it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in random order,
unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation to Chapter 8. Some of the frequently used data types are integer for whole
numbers, numeric for possibly fractional numbers, text for character strings, date for dates, t ime
for time-of-day values, and t imestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and
the type integer. The table and column names follow the identifier syntax explained in Section
4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of data they store. So let’s look at a more realistic example:

CREATE TABLE products (

44



Chapter 5. Data Definition

product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS
variant to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a t imestamp column to have a default of

45



Chapter 5. Data Definition

CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)

where the nextval () function supplies successive values from a sequence object (see Section 9.15).
This arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue is that you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)i

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

46



Chapter 5. Data Definition

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed
by the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a
name for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be writ-
ten as table constraints, while the reverse is not necessarily possible, since a column constraint is
supposed to refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you
should follow it if you want your table definitions to work with other database systems.) The above
example could also be written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)i

or even:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

47



Chapter 5. Data Definition

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)i

and then insert the NOT key word where desired.

48



Chapter 5. Data Definition

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with
respect to all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)i
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole
table, though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

In general, a unique constraint is violated when there is more than one row in the table where the
values of all of the columns included in the constraint are equal. However, two null values are not
considered equal in this comparison. That means even in the presence of a unique constraint it is
possible to store duplicate rows that contain a null value in at least one of the constrained columns.
This behavior conforms to the SQL standard, but we have heard that other SQL databases might not
follow this rule. So be careful when developing applications that are intended to be portable.

49



Chapter 5. Data Definition

5.3.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null
constraint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

A primary key indicates that a column or group of columns can be used as a unique identifier for
rows in the table. (This is a direct consequence of the definition of a primary key. Note that a unique
constraint does not, by itself, provide a unique identifier because it does not exclude null values.) This
is useful both for documentation purposes and for client applications. For example, a GUI application
that allows modifying row values probably needs to know the primary key of a table to be able to
identify rows uniquely.

A table can have at most one primary key. (There can be any number of unique and not-null con-
straints, which are functionally the same thing, but only one can be identified as the primary key.)
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by PostgreSQL, but it is usually best to follow it.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

50



Chapter 5. Data Definition

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with product_no entries that do not appear in the products
table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)i

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can contain more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)
CREATE TABLE orders (

order_id integer PRIMARY KEY,
shipping_address text,

51



Chapter 5. Data Definition

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

« Disallow deleting a referenced product
+ Delete the orders as well
» Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of
a referenced row. NO ACTION means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTION allows the check to be deferred until later
in the transaction, whereas RESTRICT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing columns to be set to nulls or default
values, respectively, when the referenced row is deleted. Note that these do not excuse you from
observing any constraints. For example, if an action specifies SET DEFAULT but the default value
would not satisfy the foreign key, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same.

52



Chapter 5. Data Definition

More information about updating and deleting data is in Chapter 6.

Finally, we should mention that a foreign key must reference columns that either are a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documenta-
tion for CREATE TABLE.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns; just know they exist.

oid
The object identifier (object ID) of a row. This column is only present if the table was created
using WITH OIDs, or if the default_with_oids configuration variable was set at the time. This

column is of type oid (same name as the column); see Section 8.16 for more information about
the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that
select from inheritance hierarchies (see Section 5.8), since without it, it’s difficult to tell which
individual table a row came from. The tableoid can be joined against the oid column of
pg_class to obtain the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is
an individual state of a row; each update of a row creates a new row version for the same logical
row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

Cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be
used to locate the row version very quickly, a row’s ct id will change if it is updated or moved
by vacuuM FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in

53



Chapter 5. Data Definition

a table, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that a few additional precautions are taken:

+ A unique constraint should be created on the OID column of each table for which the OID will
be used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if
the table contains fewer than 2*? (4 billion) rows, and in practice the table size had better be much
less than that, or performance might suffer.)

+ OIDs should never be assumed to be unique across tables; use the combination of tableoid and
row OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH OIDS. As of PostgreSQL 8.1, WITHOUT
01DS is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter
23 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2*? (4 billion) SQL com-
mands within a single transaction. In practice this limit is not a problem — note that the limit is on
the number of SQL commands, not the number of rows processed. Also, as of PostgreSQL 8.3, only
commands that actually modify the database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the appli-
cation change, you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
to existing tables. Note that this is conceptually distinct from altering the data contained in the table:
here we are interested in altering the definition, or structure, of the table.

You can:

« Add columns

« Remove columns

« Add constraints

« Remove constraints

+ Change default values

« Change column data types
« Rename columns

« Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

54



Chapter 5. Data Definition

5.5.1. Adding a Column

To add a column, use a command like:

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a
DEFAULT clause).

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> ");

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new
column value). However, if no default is specified, PostgreSQL is able to avoid the physical update.
So if you intend to fill the column with mostly nondefault values, it's best to add the column with
no default, insert the correct values using upDATE, and then add any desired default as described
below.

5.5.2. Removing a Column

To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint
To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

55



Chapter 5. Data Definition

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command
is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If a more complex conversion is needed, you can add a USING clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising

56



Chapter 5. Data Definition

results. It’s often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When you create a database object, you become its owner. By default, only the owner of an object
can do anything with the object. In order to allow other users to use it, privileges must be granted.
(However, users that have the superuser attribute can always access any object.)

There are several different privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES,
TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a par-
ticular object vary depending on the object’s type (table, function, etc). For complete information on
the different types of privileges supported by PostgreSQL, refer to the GRANT reference page. The
following sections and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLE command.
There are corresponding ALTER commands for other object types.

To assign privileges, the GRANT command is used. For example, if joe is an existing user, and
accounts is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLIC can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

57



Chapter 5. Data Definition

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. How-
ever, it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant
it in turn to others. If the grant option is subsequently revoked then all who received the privilege from
that recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT
and REVOKE reference pages.

5.7. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client con-
nection to the server can access only the data in a single database, the one specified in the connection
request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschema can
contain tables named myt able. Unlike databases, schemas are not rigidly separated: a user can access
objects in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

« To allow many users to use one database without interfering with each other.
« To organize database objects into logical groups to make them more manageable.

 Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.7.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

58



Chapter 5. Data Definition
schema.table

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

)i

To drop a schema if it’s empty (all objects in it have been dropped), use:

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:
DROP SCHEMA myschema CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schemaname AUTHORIZATION username;

You can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.7.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.7.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public”’. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products ( ... );
and:

CREATE TABLE public.products ( ... );

59



Chapter 5. Data Definition

5.7.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, which is
a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser",public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the Suser here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.
We could also have written:

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.23 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)

60



Chapter 5. Data Definition

This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.7.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schema public. This allows all users that are able to connect to a given database to
create objects in its public schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.7.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema,
which contains the system tables and all the built-in data types, functions, and operators. pg_catalog
is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searched before searching the path’s schemas. This ensures that built-in names will always be findable.
However, you can explicitly place pg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

In PostgreSQL versions before 7.3, table names beginning with pg_ were reserved. This is no longer
true: you can create such a table name if you wish, in any non-system schema. However, it’s best
to continue to avoid such names, to ensure that you won’t suffer a conflict if some future version
defines a system table named the same as your table. (With the default search path, an unqualified
reference to your table name would then be resolved as the system table instead.) System tables will
continue to follow the convention of having names beginning with pg_, so that they will not conflict
with unqualified user-table names so long as users avoid the pg__ prefix.

5.7.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are
recommended and are easily supported by the default configuration:

« If you do not create any schemas then all users access the public schema implicitly. This simu-
lates the situation where schemas are not available at all. This setup is mainly recommended when
there is only a single user or a few cooperating users in a database. This setup also allows smooth
transition from the non-schema-aware world.

61



Chapter 5. Data Definition

« You can create a schema for each user with the same name as that user. Recall that the default
search path starts with Suser, which resolves to the user name. Therefore, if each user has a
separate schema, they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it
altogether), so users are truly constrained to their own schemas.

« To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the
names with a schema name, or they can put the additional schemas into their search path, as they
choose.

5.7.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consist of username.tablename. This is how PostgreSQL
will effectively behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to
the standard, you should not use (perhaps even remove) the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.8. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define a type inheritance feature, which differs in many respects from the
features described here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about a city, regardless of whether it
is a capital or not? The inheritance feature can help to resolve this problem. We define the capitals
table so that it inherits from cities:

CREATE TABLE cities (

name text,
population float,
altitude int —-— in feet

)
CREATE TABLE capitals (

state char (2)
) INHERITS (cities);

62



Chapter 5. Data Definition

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals
also have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
,,,,,,,,,,, S,
Las Vegas | 2174
Mariposa | 1953

Here the oNLY keyword indicates that the query should apply only to cities, and not any tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:
tableoid | name | altitude
__________ +___________+__________
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude

63



Chapter 5. Data Definition

FROM cities ¢, pg_class p
WHERE c.altitude > 500 AND c.tableoid = p.oid;

which returns:

relname | name | altitude
,,,,,,,,,, gy
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in
the inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES (’New York’, NULL, NULL, ’'NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not
happen: INSERT always inserts into exactly the table specified. In some cases it is possible to redirect
the insertion using a rule (see Chapter 36). However that does not help for the above case because the
cities table does not contain the column state, and so the command will be rejected before the
rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren. Other types of constraints (unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table’s definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child’s
definition, then these columns are “merged” so that there is only one such column in the child table.
To be merged, columns must have the same data types, else an error is raised. The merged column
will have copies of all the check constraints coming from any one of the column definitions it came
from, and will be marked not-null if any of them are.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this the
new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant
of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when
the inheritance relationship is being used for table partitioning (see Section 5.9).

One convenient way to create a compatible table that will later be made a new child is to use the
LIKE clause in CREATE TABLE. This creates a new table with the same columns as the source table. If
there are any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to
LIKE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible

64



Chapter 5. Data Definition

when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging
and rejection that apply during CREATE TABLE.

5.8.1. Caveats

Table access permissions are not automatically inherited. Therefore, a user attempting to access a
parent table must either have permissions to do the same operation on all its child tables as well, or
must use the ONLY notation. When adding a new child table to an existing inheritance hierarchy, be
careful to grant all the needed permissions on it.

More generally, note that not all SQL commands are able to work on inheritance hierarchies.
Commands that are used for data querying, data modification, or schema modification (e.g.,
SELECT, UPDATE, DELETE, most variants of ALTER TABLE, but not INSERT and ALTER TABLE

RENAME) typically default to including child tables and support the ONLY notation to exclude
them. Commands that do database maintenance and tuning (e.g., REINDEX, VACUUM) typically only
work on individual, physical tables and do no support recursing over inheritance hierarchies. The
respective behavior of each individual command is documented in the reference part (Reference I,
SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and for-
eign key constraints only apply to single tables, not to their inheritance children. This is true on both
the referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above ex-
ample:

« If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

- Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

+ Specifying that another table’s column REFERENCES cities (name) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable
care is needed in deciding whether inheritance is useful for your application.

Deprecated: In releases of PostgreSQL prior to 7.1, the default behavior was not to include child
tables in queries. This was found to be error prone and also in violation of the SQL standard. You
can get the pre-7.1 behavior by turning off the sqgl_inheritance configuration option.

5.9. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement par-
titioning as part of your database design.

65



Chapter 5. Data Definition

5.9.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partition-
ing can provide several benefits:

» Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be im-
proved by taking advantage of sequential scan of that partition instead of using an index and random
access reads scattered across the whole table.

+ Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement
is planned into the partitioning design. ALTER TABLE is far faster than a bulk operation. It also
entirely avoids the vACUUM overhead caused by a bulk DELETE.

+ Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of
thumb is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.8) before attempting to set
up partitioning.

The following forms of partitioning can be implemented in PostgreSQL:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by
date ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

5.9.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you
intend them to be applied equally to all partitions. There is no point in defining any indexes or
unique constraints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will
not add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL
tables.

66



Chapter 5. Data Definition

3. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK ( x =1 )

CHECK ( county IN ( 'Oxfordshire’, ’Buckinghamshire’, ’'Warwickshire’ ))
CHECK ( outletID >= 100 AND outletID < 200 )

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK ( outletID BETWEEN 100 AND 200 )
CHECK ( outletID BETWEEN 200 AND 300 )

This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are
descriptive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might
want. (The key index is not strictly necessary, but in most scenarios it is helpful. If you intend
the key values to be unique then you should always create a unique or primary-key constraint for
each partition.)

5. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate
partition.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in
postgresqgl.conf. If it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company
measures peak temperatures every day as well as ice cream sales in each region. Conceptually, we
want a table like:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main
use of this table will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning
of each month we will remove the oldest month’s data.

In this situation we can use partitioning to help us meet all of our different requirements for the
measurements table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 ( ) INHERITS (measurement);
CREATE TABLE measurement_y2006m03 ( ) INHERITS (measurement);
CREATE TABLE measurement_y2007mll ( ) INHERITS (measurement);
CREATE TABLE measurement_y2007ml12 ( ) INHERITS (measurement);
CREATE TABLE measurement_y2008m0l1 ( ) INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from
the measurement table.

67



Chapter 5. Data Definition

This solves one of our problems: deleting old data. Each month, all we will need to do is perform
a DROP TABLE on the oldest child table and create a new child table for the new month’s data.

. We must provide non-overlapping table constraints. Rather than just creating the partition tables
as above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (

CHECK ( logdate >= DATE ’2006-02-01" AND logdate < DATE ’2006-03-01" )
) INHERITS (measurement);
CREATE TABLE measurement_y2006m03 (

CHECK ( logdate >= DATE ’'2006-03-01’ AND logdate < DATE ’'2006-04-01" )
) INHERITS (measurement);

CREATE TABLE measurement_y2007mll (

CHECK ( logdate >= DATE ’2007-11-01’ AND logdate < DATE ’2007-12-01" )
) INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 (

CHECK ( logdate >= DATE ’'2007-12-01’ AND logdate < DATE ’2008-01-01'" )
) INHERITS (measurement);
CREATE TABLE measurement_y2008m01 (

CHECK ( logdate >= DATE ’2008-01-01" AND logdate < DATE ’2008-02-01" )
) INHERITS (measurement);
. We probably need indexes on the key columns too:

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);

CREATE INDEX measurement_y2007mll_logdate ON measurement_y2007mll (logdate);
CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml2 (logdate);
CREATE INDEX measurement_y2008m0l1_logdate ON measurement_y2008m0l (logdate);

We choose not to add further indexes at this time.

. We want our application to be able to say INSERT INTO measurement ... and have the data
be redirected into the appropriate partition table. We can arrange that by attaching a suitable
trigger function to the master table. If data will be added only to the latest partition, we can use a
very simple trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

RETURNS TRIGGER AS $$

BEGIN
INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);
RETURN NULL;

END;

$S

LANGUAGE plpgsql;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

BEFORE INSERT ON measurement

FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();
We must redefine the trigger function each month so that it always points to the current partition.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF ( NEW.logdate >= DATE ’'2006-02-01" AND
NEW.logdate < DATE ’2006-03-01" ) THEN

68



Chapter 5. Data Definition

INSERT INTO measurement_y2006m02 VALUES (NEW.x);
ELSIF ( NEW.logdate >= DATE '2006-03-01" AND
NEW.logdate < DATE ’"2006-04-01" ) THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.x);

ELSIF ( NEW.logdate >= DATE ’2008-01-01" AND
NEW.logdate < DATE ’2008-02-01" ) THEN
INSERT INTO measurement_y2008m01 VALUES (NEW.x);

ELSE
RAISE EXCEPTION ’Date out of range. Fix the measurement_insert_trigger () fur
END IF;
RETURN NULL;
END;
$$

LANGUAGE plpgsql;
The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn’t need to be updated as
often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into
that partition. For simplicity we have shown the trigger’s tests in the same order as in other
parts of this example.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the
above example we would be creating a new partition each month, so it might be wise to write a script
that generates the required DDL automatically.

5.9.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions
for new data. One of the most important advantages of partitioning is precisely that it allows this
otherwise painful task to be executed nearly instantaneously by manipulating the partition structure,
rather than physically moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:

DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every
record.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

69



Chapter 5. Data Definition

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using copy, pg_dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK ( logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01" )
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition struc-
ture, and make it a proper partition later. This allows the data to be loaded, checked, and transformed
prior to it appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK ( logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01" );
\copy measurement_y2008m02 from ’'measurement_y2008m02’
—-— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.9.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned
tables defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count () FROM measurement WHERE logdate >= DATE ’2008-01-01'";

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition
and try to prove that the partition need not be scanned because it could not contain any rows meeting
the query’s WHERE clause. When the planner can prove this, it excludes the partition from the query
plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical unoptimized plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01";

QUERY PLAN
Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2006m02 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= 72008-01-01’::date)
-> Seq Scan on measurement_y2006m03 measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

70



Chapter 5. Data Definition

-> Seq Scan on measurement_y2007ml2 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
constraint exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constraint_exclusion = on;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01';
QUERY PLAN

Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’72008-01-01’::date)
-> Seqg Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Therefore it isn’t necessary to define indexes on the key columns. Whether an index needs to be
created for a given partition depends on whether you expect that queries that scan the partition will
generally scan a large part of the partition or just a small part. An index will be helpful in the latter
case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor of £, but an
intermediate setting called partition, which causes the technique to be applied only to queries that
are likely to be working on partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

5.9.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

( logdate >= DATE ’'2006-02-01’ AND logdate < DATE ’'2006-03-01" )
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.x);

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

( logdate >= DATE ’2008-01-01" AND logdate < DATE ’2008-02-01" )
DO INSTEAD

INSERT INTO measurement_y2008m01 VALUES (NEW.x);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

71



Chapter 5. Data Definition

Be aware that copY ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. Copy does fire triggers, so you can use it normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT x FROM measurement_y2006m02
UNION ALL SELECT % FROM measurement_y2006m03

UNION ALL SELECT % FROM measurement_y2007mll
UNION ALL SELECT % FROM measurement_y2007ml2
UNION ALL SELECT % FROM measurement_y2008m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions
of the data set. In practice this method has little to recommend it compared to using inheritance.

5.9.6. Caveats

The following caveats apply to partitioned tables:

» There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than to
write each by hand.

+ The schemes shown here assume that the partition key column(s) of a row never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts
to do that will fail because of the CHECK constraints. If you need to handle such cases, you can
put suitable update triggers on the partition tables, but it makes management of the structure much
more complicated.

« If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;
will only process the master table.

The following caveats apply to constraint exclusion:

 Constraint exclusion only works when the query’s WHERE clause contains constants. A parameter-
ized query will not be optimized, since the planner cannot know which partitions the parameter
value might select at run time. For the same reason, “stable” functions such as CURRENT_DATE
must be avoided.

« Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests for
range partitioning, as illustrated in the preceding examples. A good rule of thumb is that partitioning
constraints should contain only comparisons of the partitioning column(s) to constants using B-
tree-indexable operators.

« All constraints on all partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning

72



Chapter 5. Data Definition

using these techniques will work well with up to perhaps a hundred partitions; don’t try to use
many thousands of partitions.

5.10. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

+ Views

» Functions and operators

« Data types and domains

» Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.11. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
such as this:

DROP TABLE products;

NOTICE: constraint orders_product_no_fkey on table orders depends on table products
ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent
objects individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check what DrROP ... cASCADE will do, run
DROP without CASCADE and read the NOTICE messages.)

All drop commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to
get the default behavior, which is to prevent the dropping of objects that other objects depend on.

73



Chapter 5. Data Definition

Note: According to the SQL standard, specifying either RESTRICT or cascapk is required. No
database system actually enforces that rule, but whether the default behavior is REsTRICT or
CASCADE varies across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL
versions prior to 7.3 are not maintained or created during the upgrade process. All other depen-
dency types will be properly created during an upgrade from a pre-7.3 database.

74



Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We
also introduce ways to effect automatic data changes when certain events occur: triggers and rewrite
rules. The chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column
values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

75



Chapter 6. Data Manipulation

INSERT INTO products (product_no, name, price) VALUES
(1, "Cheese’, 9.99),
(2, ’"Bread’, 1.99),
(3, 'Milk’", 2.99);

Tip: When inserting a lot of data at the same time, considering using the COPY command. It
is not as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more
information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it
is not always possible to directly specify which row to update. Instead, you specify which conditions
a row must meet in order to be updated. Only if you have a primary key in the table (independent of
whether you declared it or not) can you reliably address individual rows by choosing a condition that
matches the primary key. Graphical database access tools rely on this fact to allow you to update rows
individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price  1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also
left out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is
present, only those rows that match the WHERE condition are updated. Note that the equals sign in
the SET clause is an assignment while the one in the WHERE clause is a comparison, but this does not
create any ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other
operators are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

76



Chapter 6. Data Manipulation

You can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we explained that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command.
For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

77



Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all columns
from tablel. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to
extract individual values from the query result.) The select list specification » means all columns that
the table expression happens to provide. A select list can also select a subset of the available columns
or make calculations using the columns. For example, if tablel has columns named a, b, and c (and
perhaps others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel isasimple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table
expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FrROM clause. All these transforma-

78



Chapter 7. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a sub-
query, a table join, or complex combinations of these. If more than one table reference is listed in the
FROM clause they are cross-joined (see below) to form the intermediate virtual table that can then be
subject to transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of
the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types

Cross join
T1 CROSS JOIN T2
For every possible combination of rows from 71 and 72 (i.e., a Cartesian product), the joined

table will contain a row consisting of all columns in 71 followed by all columns in T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM 71, 72. It is also equivalent to FROM T1
INNER JOIN T2 ON TRUE (see below).

Qualified joins

71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING ( join column list )
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and
FULL imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The oN clause is the most general kind of join condition: it takes a Boolean value expression
of the same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the on
expression evaluates to true for them.

USING is a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs

79



Chapter 7. Queries

of columns. Furthermore, the output of JOIN USING has one column for each of the equated
pairs of input columns, followed by the remaining columns from each table. Thus, USING (a,
b, c)isequivalenttoON (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) withthe
exception that if on is used there will be two columns a, b, and c in the result, whereas with
USING there will be only one of each (and they will appear first if SELECT « is used).

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column
names that appear in both input tables. As with USING, these columns appear only once in the
output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Also, for each row of T2 that does not satisfy the join condition with any row in T1, a
joined row with null values in the columns of T1 is added.

Joins of all types can be chained together or nested: either or both 71 and T2 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have tables t 1:

m | name
PR
11 a

2 | b

3 ] ¢

t2:

m | value
__+ _______
1 | xxx

3 1 yyy

5 | zzz

then we get the following results for the various joins:

=>

SELECT * FROM tl CROSS JOIN t2;

num | name | num | value

80



Chapter 7. Queries

| xXxx
| yyy
| zzz
| xXxx
| yyy
| zzz
| xxx
|

|

YYy
2227

g w kR U WwEF 0o wkRE

W w w NN

=> SELECT % FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— ot
11 a \ 1 | xxx
3 c 31 yyy
(2 rows)

=> SELECT * FROM tl INNER JOIN t2 USING (num);

num | name | value
_____ e
1] a | xxx
31 c | yyy
(2 rows)

=> SELECT * FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ o
1] a | xxx
31 ¢ | yyy
(2 rows)

=> SELECT » FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— ot
11 a \ 1 | xxx
2 1 Db \ |
3 1 ¢ \ 3 | yyy
(3 rows)

=> SELECT x FROM tl LEFT JOIN t2 USING (num);

num | name | value
_____ e

11 a | xxx

2 1 Db \

31 ¢ | yyy
(3 rows)

=> SELECT % FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— ot
11 a \ 1 | xxx
31 ¢ \ 3 1 yyy
| | 5] zzz
(3 rows)

81



Chapter 7. Queries

=> SELECT x FROM tl FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— Bt it
1] a | 1 | xxx
2 1 b \ |
3| c \ 3 1 yyy
| 5 1| zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value = ’'xxx’;

num | name | num | value
_____ T
11 a | 1 | xxx
2 1 Db \ |
3 c \ |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = ’'xxx’;
num | name | num | value
————— B Rt e
1] a | 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias

or
FROM table reference alias

The As key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join

clauses readable. For example:

SELECT x= FROM some_very_long_table_name s JOIN another_fairly long_name a ON s.id = a.nu

The alias becomes the new name of the table reference for the current query — it is no longer possible
to refer to the table by the original name. Thus:

SELECT x FROM my_table AS m WHERE my_table.a > 5;

82



Chapter 7. Queries

is not valid according to the SQL standard. In PostgreSQL this will draw an error, assuming the
add_missing_from configuration variable is of £ (as it is by default). If it is on, an implicit table
reference will be added to the FROM clause, so the query is processed as if it were written as:

SELECT % FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

That will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.:

SELECT x= FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT = FROM my_table AS a CROSS JOIN my_table AS b
SELECT % FROM (my_table AS a CROSS JOIN my_table) AS b

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias ( columnl [, column2 [, ...]]1 )

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but:
SELECT a.x FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name. (See Section 7.2.1.2.) For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’'smith’), (‘bob’, ’jones’), (’Jjoe’, ’'blow’))
AS names (first, last)

83



Chapter 7. Queries

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like a table, view, or subquery in the FROM
clause of a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE
clauses in the same manner as a table, view, or subquery column.

If a table function returns a base data type, the single result column name matches the function name.
If the function returns a composite type, the result columns get the same names as the individual
attributes of the type.

A table function can be aliased in the FROM clause, but it also can be left unaliased. If a function is
used in the FROM clause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo (int) RETURNS SETOF foo AS $$
SELECT % FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT = FROM getfoo(l) AS t1;

SELECT x FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z
WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT » FROM getfoo(l);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record. When such a function is used in a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. Consider this example:

SELECT =«
FROM dblink (' dbname=mydb’, ’SELECT proname, prosrc FROM pg_proc’)
AS tl(proname name, prosrc text)
WHERE proname LIKE ’bytea%’;

The dblink function executes a remote query (see contrib/dblink). It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in
the calling query so that the parser knows, for example, what » should expand to.

84



Chapter 7. Queries

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is
WHERE search condition

where search condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e., if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROM clause; this is not required, but otherwise the
WHERE clause will be fairly useless.

Note: The join condition of an inner join can be written either in the wrERE clause or in the JoIn
clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The Jo1n syntax in the Frou clause is
probably not as portable to other SQL database management systems, even though it is in the
SQL standard. For outer joins there is no choice: they must be done in the From clause. The ox
or UsING clause of an outer join is not equivalent to a wHERE condition, because it results in the
addition of rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

SELECT ... FROM fdt WHERE cl IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)
SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl +
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced
in the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the
derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner
queries.

85

10)

AND 100



Chapter 7. Queries

7.2.3. The crourP BY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVING clause.

SELECT select_list
FROM
[WHERE ...]
GROUP BY grouping_column_reference [, grouping_column_reference] ...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows having common values into one group row that represents all rows in the group. This
is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:

=> SELECT * FROM testl;
X

a
c
b
a
4

(

(3 rows)

In the second query, we could not have written SELECT » FROM testl GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum

Here sum is an aggregate function that computes a single value over the entire group. More informa-
tion about the available aggregate functions can be found in Section 9.18.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the prsTINCT clause (see Section 7.3.3).

86



Chapter 7. Queries

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause
since they are referenced in the query select list. (Depending on how the products table is set up, name
and price might be fully dependent on the product ID, so the additional groupings could theoretically
be unnecessary, though this is not implemented.) The column s.units does not have to be in the
GROUP BY list since it is only used in an aggregate expression (sum (. . .)), which represents the
sales of a product. For each product, the query returns a summary row about all sales of the product.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c’;
X | sum

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’'4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price = s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expres-
sion is only true for sales during the last four weeks), while the HAVING clause restricts the output to
groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The

87



Chapter 7. Queries

same is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY
clause.

7.2.4. Window Function Processing

If the query contains any window functions (see Section 3.5 and Section 4.2.8), these functions are
evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if the query
uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are the
group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated
in a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY
does not uniquely determine an ordering. However, no guarantees are made about the evaluation of
functions having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is
typically required between the passes of window function evaluations, and the sort is not guaranteed
to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions’ PARTITION BY/ORDER BY clauses. It is not
recommendable to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
is finally passed on to processing by the select list. The select list determines which columns of the
intermediate table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is = which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be a list of column names:

SELECT a, b, ¢ FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbl2.a, tbll.b FROM

When working with multiple tables, it can also be useful to ask for all the columns of a particular
table:

SELECT tbll.x, tbl2.a FROM

88



Chapter 7. Queries

(See also Section 7.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of
the function. For complex expressions, the system will generate a generic name.

The As keyword is optional, but only if the new column name does not match any PostgreSQL key-
word (see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column
name. For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM
but this does:
SELECT a "value", b + ¢ AS sum FROM

For protection against possible future keyword additions, it is recommended that you always either
write AS or double-quote the output column name.

Note: The naming of output columns here is different from that done in the From clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all
TOWS.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression ...]) select_list

89



Chapter 7. Queries

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON
processing occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqueries in FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query?2
queryl EXCEPT [ALL] query2

queryl and query2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNION query2 UNION query3
which is executed as:

(queryl UNION query2) UNION query3

UNION effectively appends the result of query?2 to the result of query1 (although there is no guaran-
tee that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate
rows from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of guery1 and in the result of query2. Dupli-
cate rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query but not in the result of query2. (This is some-
times called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not be relied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

90



Chapter 7. Queries

SELECT select_1list
FROM table_expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example
is:

SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional ASC or DEsC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. '

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null values in the sort ordering. By default, null values sort as if larger than any non-null
value; that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC,
y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum + cC; —-— wWrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use AS to rename an
output column to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this
case it is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_list
FROM table_expression
[ ORDER BY ... ]
[ LIMIT { number | ALL } ] [ OFFSET number ]

1. Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering
for asc and DEsc. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but
a user-defined data type’s designer could choose to do something different.

91



Chapter 7. Queries

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rows). LIMIT ALL is the same as omitting the LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as
omitting the OFFSET clause, and LIMIT NULL is the same as omitting the LIMIT clause. If both
OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LIMIT and
OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets of a query result will
give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This is not
a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. vALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES ( expression [, ...]1 ) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, ’'one’), (2, 'two’), (3, "three’);
will return a table of two columns and three rows. It’s effectively equivalent to:

SELECT 1 AS columnl, ’one’ AS column2
UNION ALL

SELECT 2, ’"two’

UNION ALL

SELECT 3, ’'three’;

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, so it’s usually better to override the default names with a table alias list.

Syntactically, VALUES followed by expression lists is treated as equivalent to:

SELECT select_list FROM table_expression

92



Chapter 7. Queries

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used
as the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. wITH Queries

WITH provides a way to write subqueries for use in a larger SELECT query. The subqueries can be
thought of as defining temporary tables that exist just for this query. One use of this feature is to break
down complicated queries into simpler parts. An example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. This example could have been
written without WITH, but we’d have needed two levels of nested sub-SELECTSs. It’s a bit easier to
follow this way.

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature
that accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query
can refer to its own output. A very simple example is this query to sum the integers from 1 through
100:

WITH RECURSIVE t (n) AS (
VALUES (1)
UNION ALL
SELECT n+l FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION
ALL), then a recursive term, where only the recursive term can contain a reference to the query’s own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. In-
clude all remaining rows in the result of the recursive query, and also place them in a temporary
working table.

93



Chapter 7. Queries
2. So long as the working table is not empty, repeat these steps:

a.  Evaluate the recursive term, substituting the current contents of the working table for
the recursive self-reference. For UNION (but not UNION ALL), discard duplicate rows
and rows that duplicate any previous result row. Include all remaining rows in the result
of the recursive query, and also place them in a temporary intermediate table.

b.  Replace the contents of the working table with the contents of the intermediate table,
then empty the intermediate table.

Note: Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology
chosen by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = ’'our_product’
UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNTON instead
of UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or a few fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
the following query that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT x FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output,
just changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize

94



Chapter 7. Queries

whether we have reached the same row again while following a particular path of links. We add two
columns path and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [g.1id],
false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.1id = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT  FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [ROW (g.f1l, g.f2)],

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.fl, g.f2),
ROW(g.fl, g.f2) = ANY (path)

FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM search_graph;

Tip: Omit the row () syntax in the common case where only one field needs to be checked to
recognize a cycle. This allows a simple array rather than a composite-type array to be used,
gaining efficiency.

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order.
You can display the results in depth-first search order by making the outer query orDER BY a
“path” column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in
the parent query. For example, this query would loop forever without the L,ITMIT:

WITH RECURSIVE t (n) AS (
SELECT 1
UNION ALL
SELECT n+1 FROM t

95



Chapter 7. Queries

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL’s implementation evaluates only as many rows of a WITH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won’t work if you make the outer query sort the
recursive query’s results or join them to some other table.

A useful property of WITH queries is that they are evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling WITH queries. Thus,
expensive calculations that are needed in multiple places can be placed within a WITH query to avoid
redundant work. Another possible application is to prevent unwanted multiple evaluations of func-
tions with side-effects. However, the other side of this coin is that the optimizer is less able to push
restrictions from the parent query down into a WITH query than an ordinary sub-query. The wITH
query will generally be evaluated as stated, without suppression of rows that the parent query might
discard afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to the
query demand only a limited number of rows.)

96



Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to Post-
greSQL using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in
the “Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [ (n) ] fixed-length bit string

bit varying [ (n) ] varbit variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character varying [ (n) |varchar [ (n) ] variable-length character string

]

character [ (n) ] char [ (n) ] fixed-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month,
day)

double precision float8 double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [ fields ] [ time span

(p) ]

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [ (p, s) ] decimal [ (p, s) ] exact numeric of selectable
precision

path geometric path on a plane

point geometric point on a plane

polygon closed geometric path on a
plane

real float4 single precision floating-point
number (4 bytes)

97



Chapter 8. Data Types

Name Aliases Description

smallint int2 signed two-byte integer

serial serial4 autoincrementing four-byte
integer

text variable-length character string

time [ (p) ] [ without time of day (no time zone)

time zone ]

time [ (p) ] with time |timetz time of day, including time

zone zone

timestamp [ (p) 1 [ date and time (no time zone)

without time zone ]

timestamp [ (p) ] with

time zone

timestamptz

date and time, including time
zone

tsquery

text search query

tsvector

text search document

txid_snapshot

user-level transaction ID

snapshot
uuid universally unique identifier
xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (With or without time zone),
timestamp (with or without time zone), xm1.

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as geometric paths, or have several possible formats, such as the date and time types.
Some of the input and output functions are not invertible, i.e., the result of an output function might

lose accuracy when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Name Storage Size Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes typical choice for -2147483648 to
integer +2147483647

98




Chapter 8. Data Types

Name Storage Size Description Range

bigint 8 bytes large-range integer -
9223372036854775808
to
9223372036854775807

decimal variable user-specified no limit

precision, exact

numeric variable user-specified no limit
precision, exact

real 4 bytes variable-precision, 6 decimal digits
inexact precision

double precision |8 bytes variable-precision, 15 decimal digits
inexact precision

serial 4 bytes autoincrementing 1 to 2147483647
integer

bigserial 8 bytes large autoincrementing | 1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint
type should only be used if the integer range is insufficient, because the latter is definitely faster.

On very minimal operating systems the bigint type might not function correctly, because it relies
on compiler support for eight-byte integers. On such machines, bigint acts the same as integer,
but still takes up eight bytes of storage. (We are not aware of any modern platform where this is the
case.)

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names
int2, int4, and int8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with up to 1000 digits of precision and perform calculations
exactly. It is especially recommended for storing monetary amounts and other quantities where exact-
ness is required. However, arithmetic on numeric values is very slow compared to the integer types,
or to the floating-point types described in the next section.

We use the following terms below: The scale of a numeric is the count of decimal digits in the
fractional part, to the right of the decimal point. The precision of a numeric is the total count of

99



Chapter 8. Data Types

significant digits in the whole number, that is, the number of digits to both sides of the decimal point.
So the number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a
scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To
declare a column of type numeric use the syntax:

NUMERIC (precision, scale)

The precision must be positive, the scale zero or positive. Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce
input values to any particular scale, whereas numeric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you’re concerned about portability, always specify the precision and scale
explicitly.)

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type
is more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each
group of four decimal digits, plus five to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning
“not-a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in
an SQL command, you must put quotes around it, for example UPDATE table SET x = ’NaN’.
On input, the string NaN is recognized in a case-insensitive manner.

Note: In most implementations of the “not-a-number” concept, Nan is not considered equal to any
other numeric value (including Nan). In order to allow numeric values to be sorted and used in
tree-based indexes, PostgreSQL treats nan values as equal, and greater than all non-nan values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as ap-
proximations, so that storing and retrieving a value might show slight discrepancies. Managing these

100



Chapter 8. Data Types

errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the numeric
type instead.

« If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

« Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are
not representable as distinct from zero will cause an underflow error.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

LEINNT3

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, re-
spectively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values
will probably not work as expected.) When writing these values as constants in an SQL command,
you must put quotes around them, for example UPDATE table SET x = 'Infinity’. On input,
these strings are recognized in a case-insensitive manner.

Note: IEEE754 specifies that nan should not compare equal to any other floating-point value
(including nan). In order to allow floating-point values to be sorted and used in tree-based indexes,
PostgreSQL treats nan values as equal, and greater than all non-nan values.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL
accepts float (1) to float (24) as selecting the real type, while f1loat (25) to float (53) select
double precision. Values of p outside the allowed range draw an error. £1oat with no precision
specified is taken to mean double precision.

Note: Prior to PostgreSQL 7.4, the precision in float (p) was taken to mean so many decimal
digits. This has been corrected to match the SQL standard, which specifies that the precision is
measured in binary digits. The assumption that real and double precision have exactly 24 and
53 bits in the mantissa respectively is correct for IEEE-standard floating point implementations.
On non-IEEE platforms it might be off a little, but for simplicity the same ranges of p are used on
all platforms.

101



Chapter 8. Data Types

8.1.4. Serial Types

The data types serial and bigserial are not true types, but merely a notational convenience for
creating unique identifier columns (similar to the AUTO_INCREMENT property supported by some
other databases). In the current implementation, specifying:

CREATE TABLE tablename (
colname SERIAL

)i
is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval (' tablename_colname_seq’)
)i
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a se-
quence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted. (In
most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note: Prior to PostgreSQL 7.3, serial implied un1Que. This is no longer automatic. If you wish a
serial column to have a unique constraint or be a primary key, it must now be specified, just like
any other data type.

To insert the next value of the sequence into the serial column, specify that the serial column
should be assigned its default value. This can be done either by excluding the column from the list of
columns in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create abigint column. bigserial
should be used if you anticipate the use of more than 2*' identifiers over the lifetime of the table.

The sequence created for a serial column is automatically dropped when the owning column is
dropped. You can drop the sequence without dropping the column, but this will force removal of the
column default expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. The frac-
tional precision is determined by the database’s lc_monetary setting. Input is accepted in a variety of
formats, including integer and floating-point literals, as well as typical currency formatting, such as
7$1,000.00”. Output is generally in the latter form but depends on the locale. Non-quoted numeric
values can be converted to money by casting the numeric value to text and then money, for example:

SELECT 1234::text::money;

102



Chapter 8. Data Types

There is no simple way of doing the reverse in a locale-independent manner, namely casting a money
value to a numeric type. If you know the currency symbol and thousands separator you can use

regexp_replace():

SELECT regexp_replace (’52093.89’ ::money::text, "[$,1', ”, 'g’)::numeric;

Since the output of this data type is locale-sensitive, it might not work to load money data into a
database that has a different setting of 1c_monetary. To avoid problems, before restoring a dump
into a new database make sure 1c_monetary has the same or equivalent value as in the database that
was dumped.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 8 bytes currency amount -
92233720368547758.08
to
+92233720368547758.0

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar (n) variable-length with limit
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where n
is a positive integer. Both of these types can store strings up to n characters (not bytes) in length.
An attempt to store a longer string into a column of these types will result in an error, unless the
excess characters are all spaces, in which case the string will be truncated to the maximum length.
(This somewhat bizarre exception is required by the SQL standard.) If the string to be stored is shorter
than the declared length, values of type character will be space-padded; values of type character
varying will simply store the shorter string.

If one explicitly casts a value to character varying(n) or character (n), then an over-length
value will be truncated to n characters without raising an error. (This too is required by the SQL
standard.)

The notations varchar (n) and char(n) are aliases for character varying(n) and
character (n), respectively. character without length specifier is equivalent to character (1).
If character varying is used without length specifier, the type accepts strings of any size. The
latter is a PostgreSQL extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the
type text is not in the SQL standard, several other SQL database management systems have it as

103



Chapter 8. Data Types

well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, the padding spaces are treated as semantically insignificant. Trailing
spaces are disregarded when comparing two values of type character, and they will be removed
when converting a character value to one of the other string types. Note that trailing spaces are
semantically significant in character varying and text values.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of character. Longer strings have 4 bytes of overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with
rapid access to shorter column values. In any case, the longest possible character string that can be
stored is about 1 GB. (The maximum value that will be allowed for n in the data type declaration
is less than that. It wouldn’t be useful to change this because with multibyte character encodings
the number of characters and bytes can be quite different. If you desire to store long strings with no
specific upper limit, use text or character varying without a length specifier, rather than making
up an arbitrary length limit.)

Tip: There is no performance difference among these three types, apart from increased storage
space when using the blank-padded type, and a few extra CPU cycles to check the length when
storing into a length-constrained column. While character (n) has performance advantages in
some other database systems, there is no such advantage in PostgreSQL; in fact character (n)
is usually the slowest of the three because of its additional storage costs. In most situations text
Or character varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for infor-
mation about available operators and functions. The database character set determines the character
set used to store textual values; for more information on character set support, refer to Section 22.2.

Example 8-1. Using the character types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES (’ok’);

SELECT a, char_length(a) FROM testl; —- ©
a | char_length

______ e

ok | 2

CREATE TABLE test2 (b varchar(5));

INSERT INTO test2 VALUES ('ok’);

INSERT INTO test2 VALUES (’good ")

INSERT INTO test2 VALUES (’too long’);

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
,,,,,,, o
ok | 2
good | 5
too 1 | 5

©® The char_length function is discussed in Section 9.4.

104



Chapter 8. Data Types

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but
should be referenced using the constant NAMEDATALEN in C source code. The length is set at compile
time (and is therefore adjustable for special uses); the default maximum length might change in a
future release. The type "char" (note the quotes) is different from char (1) in that it only uses one
byte of storage. It is internally used in the system catalogs as a simplistic enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual variable-length binary string
binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
strings in two ways: First, binary strings specifically allow storing octets of value zero and other “non-
printable” octets (usually, octets outside the range 32 to 126). Character strings disallow zero octets,
and also disallow any other octet values and sequences of octet values that are invalid according to
the database’s selected character set encoding. Second, operations on binary strings process the actual
bytes, whereas the processing of character strings depends on locale settings. In short, binary strings
are appropriate for storing data that the programmer thinks of as “raw bytes”, whereas character
strings are appropriate for storing text.

When entering bytea values, octets of certain values must be escaped (but all octet values can be
escaped) when used as part of a string literal in an SQL statement. In general, to escape an octet,
convert it into its three-digit octal value and precede it by two backslashes. Table 8-7 shows the
characters that must be escaped, and gives the alternative escape sequences where applicable.

Table 8-7. bytea Literal Escaped Octets

Decimal Octet | Description Escaped Input | Example Output
Value Representation Representation
0 zero octet E’\\00O0" SELECT \000

E’\\000’ : :bytea;

39 single quote 77 or E/'\\047’ |SELECT ’
E’\”::bytea;

105



Chapter 8. Data Types

Decimal Octet | Description Escaped Input | Example Output
Value Representation Representation
92 backslash E’\\\\" or SELECT A\
E’\\134’ E’\\\\’ : :bytea
0to 31 and 127 to | “non-printable” E’\\xxx’ (octal |SELECT \001
255 octets value) E’\\001’ : :bytea;

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped. Note that the result in each of the examples in Table
8-7 was exactly one octet in length, even though the output representation is sometimes more than
one character.

The reason multiple backslashes are required, as shown in Table 8-7, is that an input string written
as a string literal must pass through two parse phases in the PostgreSQL server. The first backslash
of each pair is interpreted as an escape character by the string-literal parser (assuming escape string
syntax is used) and is therefore consumed, leaving the second backslash of the pair. (Dollar-quoted
strings can be used to avoid this level of escaping.) The remaining backslash is then recognized by
the bytea input function as starting either a three digit octal value or escaping another backslash. For
example, a string literal passed to the server as E’ \\001’ becomes \001 after passing through the
escape string parser. The \001 is then sent to the bytea input function, where it is converted to a
single octet with a decimal value of 1. Note that the single-quote character is not treated specially by
bytea, so it follows the normal rules for string literals. (See also Section 4.1.2.1.)

Bytea octets are sometimes escaped when output. In general, each “non-printable” octet is converted
into its equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are
represented by their standard representation in the client character set. The octet with decimal value
92 (backslash) is doubled in the output. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

Decimal Octet | Description Escaped Example Output Result
Value Output

Representation
92 backslash AN\ SELECT AN\

E’\\134’ : :bytea;

0to 31 and 127 to | “non-printable” \xxx (octal value) | SELECT \001
255 octets E’\\001’ : :bytea;
3210 126 “printable” octets | client character SELECT ~

set representation |E’\\176’ : :bytea;

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT.
The input format is different from bytea, but the provided functions and operators are mostly the

106



Chapter 8. Data Types

same.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations
available on these data types are described in Section 9.9.

Table 8-9. Date/Time Types

Name Storage Size | Description |Low Value High Value |Resolution
timestamp [ |8 bytes both date and |4713 BC 294276 AD 1 microsecond
(p) 1 I time (no time / 14 digits
without zone)

time zone ]

timestamp [ |8 bytes both date and | 4713 BC 294276 AD 1 microsecond
(p) 1 with time, with time / 14 digits
time zone zone
date 4 bytes date (no time |4713 BC 5874897 AD |1 day

of day)
time [ (p) 8 bytes time of day (no | 00:00:00 24:00:00 1 microsecond
] [ without date) / 14 digits

time zone ]

time [ (p) |12 bytes times of day 00:00:00+1459 | 24:00:00-1459 | 1 microsecond
] with time only, with time / 14 digits
zone zone

interval [ |12 bytes time interval | -178000000 178000000 1 microsecond
fields 1 [ years years / 14 digits

(p) ]

Note: Prior to PostgreSQL 7.3, writing just t imestamp was equivalent to t imestamp with time
zone. This was changed for SQL compliance.

time, timestamp, and interval accept an optional precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range of p is from O to 6 for the t imestamp and interval types.

Note: When t imestamp values are stored as eight-byte integers (currently the default), microsec-
ond precision is available over the full range of values. When timestamp values are stored as
double precision floating-point numbers instead (a deprecated compile-time option), the effective
limit of precision might be less than 6. timestamp values are stored as seconds before or after
midnight 2000-01-01. When timestamp values are implemented using floating-point numbers,
microsecond precision is achieved for dates within a few years of 2000-01-01, but the precision
degrades for dates further away. Note that using floating-point datetimes allows a larger range of
timestamp values to be represented than shown above: from 4713 BC up to 5874897 AD.

107



Chapter 8. Data Types

The same compile-time option also determines whether time and interval values are stored
as floating-point numbers or eight-byte integers. In the floating-point case, large interval values
degrade in precision as the size of the interval increases.

For the time types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or
from O to 10 when floating-point storage is used.

The interval type has an additional option, which is to restrict the set of stored fields by writing
one of these phrases:

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision
applies only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combination of date, time,
timestamp without time zone, and timestamp with time zone should provide a
complete range of date/time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are dis-
couraged from using these types in applications; these internal types might disappear in a future
release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601,
SQL-compatible, traditional POSTGRES, and others. For some formats, ordering of day, month, and
year in date input is ambiguous and there is support for specifying the expected ordering of these
fields. Set the DateStyle parameter to MDY to select month-day-year interpretation, DMY to select
day-month-year interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Ap-
pendix B for the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [ (p) ] 'value’

where p is an optional precision specification giving the number of fractional digits in the seconds
field. Precision can be specified for t ime, t imestamp, and interval types. The allowed values are

108



Chapter 8. Data Types

mentioned above. If no precision is specified in a constant specification, it defaults to the precision of
the literal value.

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description
1999-01-08 ISO 8601; January 8 in any mode
(recommended format)
January 8, 1999 unambiguous in any datestyle input mode
1/8/1999 January 8 in MDY mode; August 1 in DMY mode
1/18/1999 January 18 in MDY mode; rejected in other modes
01/02/03 January 2, 2003 in MDY mode; February 1, 2003
in DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode
990108 ISO 8601; January 8, 1999 in any mode
1999.008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 BC
8.5.1.2. Times
The time-of-day types are time [ (p) ] without time zoneandtime [ (p) ] with time

zone. time alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, itis silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves a daylight-savings rule, such as America/New_York. In this case specifying the date
is required in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset is recorded in the time with time zone value.

Table 8-11. Time Input

Example Description
04:05:06.789 ISO 8601
04:05:06 ISO 8601

109



Chapter 8. Data Types

Example Description

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation
2003-04-12 04:05:06 America/New_York |time zone specified by full name

Table 8-12. Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)
America/New_York Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the
time zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:
January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates t imestamp without time zone and timestamp with time
zone literals by the presence of a “+” or “-” symbol and time zone offset after the time. Hence,
according to the standard,

TIMESTAMP ’'2004-10-19 10:23:54'

110



Chapter 8. Data Types

isatimestamp without time zone, while
TIMESTAMP ’'2004-10-19 10:23:54+02’

isatimestamp with time zone.PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as t imestamp without time zone.
To ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02'

In a literal that has been determined to be timestamp without time zone, PostgreSQL will
silently ignore any time zone indication. That is, the resulting value is derived from the date/time
fields in the input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordi-
nated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit
time zone specified is converted to UTC using the appropriate offset for that time zone. If no time
zone is stated in the input string, then it is assumed to be in the time zone indicated by the system’s
timezone parameter, and is converted to UTC using the offset for the t imezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the
current timezone zone, and displayed as local time in that zone. To see the time in another time
zone, either change t imezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone
normally assume that the timestamp without time zone value should be taken or given as
timezone local time. A different time zone can be specified for the conversion using AT TIME
ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table §-13.
The values infinity and -infinity are specially represented inside the system and will be dis-
played unchanged; but the others are simply notational shorthands that will be converted to ordinary
date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used as
constants in SQL commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

—infinity date, timestamp earlier than all other time
stamps

now date, time, timestamp current transaction’s start time

today date, timestamp midnight today

tomorrow date, timestamp midnight tomorrow

yesterday date, timestamp midnight yesterday

allballs time 00:00:00.00 UTC

111



Chapter 8. Data Types

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LOCALTIMESTAMP. The latter four accept an optional subsecond precision specification. (See
Section 9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL
standard requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical
accident.) Table 8-14 shows examples of each output style. The output of the date and t ime types is
of course only the date or time part in accordance with the given examples.

Table 8-14. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST

POSTGRES original style Wed Dec 17 07:37:16 1997
PST

German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects inter-
pretation of input values.) Table 8-15 shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/monthlyear 17/12/1997 15:37:16.00 CET

SQL, MDY month/daylyear 12/17/1997 07:37:16.00 PST

Postgres, DMY day/monthlyear Wed 17 Dec 07:37:16 1997
PST

The date/time styles can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresqgl.conf configuration file, or the PGDATESTYLE environment variable
on the server or client. The formatting function to_char (see Section 9.8) is also available as a more
flexible way to format date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used zoneinfo time zone database for information about historical time zone rules. For times
in the future, the assumption is that the latest known rules for a given time zone will continue to be
observed indefinitely far into the future.

112



Chapter 8. Data Types

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

+ Although the date type cannot have an associated time zone, the t ime type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can
vary through the year with daylight-saving time boundaries.

 The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We do not recommend using the type time with time zone (though it
is supported by PostgreSQL for legacy applications and for compliance with the SQL standard).
PostgreSQL assumes your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in
the zone specified by the timezone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

« A full time zone name, for example America/New_York. The recognized time zone names are
listed in the pg_timezone_names view (see Section 44.58). PostgreSQL uses the widely-used
zoneinfo time zone data for this purpose, so the same names are also recognized by much other
software.

« A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition-
date rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view
(see Section 44.57). You cannot set the configuration parameters timezone or log_timezone to a
time zone abbreviation, but you can use abbreviations in date/time input values and with the AT
TIME ZONE operator.

+ In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time
zone specifications of the form STDoffset or STDoffsetDST, where STD is a zone abbreviation,
offset is a numeric offset in hours west from UTC, and DST is an optional daylight-savings zone
abbreviation, assumed to stand for one hour ahead of the given offset. For example, if ESTSEDT
were not already a recognized zone name, it would be accepted and would be functionally equiva-
lent to United States East Coast time. When a daylight-savings zone name is present, it is assumed
to be used according to the same daylight-savings transition rules used in the zoneinfo time zone
database’s posixrules entry. In a standard PostgreSQL installation, posixrules is the same as
US/Eastern, so that POSIX-style time zone specifications follow USA daylight-savings rules. If
needed, you can adjust this behavior by replacing the posixrules file.

In short, this is the difference between abbreviations and full names: abbreviations always represent a
fixed offset from UTC, whereas most of the full names imply a local daylight-savings time rule, and
so have two possible UTC offsets.

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE
TO FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for UTC.
Another issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations
west of Greenwich. Everywhere else, PostgreSQL follows the ISO-8601 convention that positive
timezone offsets are east of Greenwich.

113



Chapter 8. Data Types

In all cases, timezone names are recognized case-insensitively. (This is a change from PostgreSQL
versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither full names nor abbreviations are hard-wired into the server; they are obtained from configura-
tion files stored under . . . /share/timezone/and . ../share/timezonesets/ of the installation
directory (see Section B.3).

The timezone configuration parameter can be set in the file postgresgl . conf, or in any of the other
standard ways described in Chapter 18. There are also several special ways to set it:

« If timezone is not specified in postgresqgl.conf or as a server command-line option, the server
attempts to use the value of the Tz environment variable as the default time zone. If TZ is not
defined or is not any of the time zone names known to PostgreSQL, the server attempts to deter-
mine the operating system’s default time zone by checking the behavior of the C library function
localtime (). The default time zone is selected as the closest match among PostgreSQL’s known
time zones. (These rules are also used to choose the default value of log_timezone, if not specified.)

« The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative
spelling of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

- The pPGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to
the server upon connection.

8.5.4. Interval Input

interval values can be written using the following verbose syntax:
[@Q] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plu-
rals of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts
of the different units are implicitly added with appropriate sign accounting. ago negates all the fields.
This syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, 1 12:59:10’ isread the same as '1 day 12 hours 59 min 10 sec’. Also, a com-
bination of years and months can be specified with a dash; for example ' 200-10" is read the same
as 200 years 10 months’. (These shorter forms are in fact the only ones allowed by the SQL
standard, and are used for output when IntervalStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designa-
tors” of the standard’s section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [ quantity unit ...] [ T [ quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8-16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of M depends on whether
it is before or after T.

Table 8-16. ISO 8601 interval unit abbreviations

114



Chapter 8. Data Types

Abbreviation Meaning

Years

Months (in the date part)

Weeks

Days

Hours

Minutes (in the time part)

©wiZz|m|o|= (|

Seconds

In the alternative format:
P [ years—months—days ] [ T hours:minutes:seconds |

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

When writing an interval constant with a fields specification, or when assigning a string to an in-
terval column that was defined with a £ields specification, the interpretation of unmarked quantities
depends on the fields. For example INTERVAL ’1’ YEAR is read as 1 year, whereas INTERVAL
71’ means 1 second. Also, field values “to the right” of the least significant field allowed by the
fields specification are silently discarded. For example, writing INTERVAL ’1 day 2:03:04'
HOUR TO MINUTE results in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign applies to all fields; for example the negative sign in the interval literal * -1 2:03:04"
applies to both the days and hour/minute/second parts. PostgreSQL allows the fields to have differ-
ent signs, and traditionally treats each field in the textual representation as independently signed, so
that the hour/minute/second part is considered positive in this example. If IntervalStyle is set
to sql_standard then a leading sign is considered to apply to all fields (but only if no additional
signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it’s
recommended to attach an explicit sign to each field if any field is negative.

Internally interval values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is
involved. The months and days fields are integers while the seconds field can store fractions. Because
intervals are usually created from constant strings or timestamp subtraction, this storage method
works well in most cases. Functions justify_days and justify_hours are available for adjusting
days and hours that overflow their normal ranges.

In the verbose input format, and in some fields of the more compact input formats, field values can
have fractional parts; for example ' 1.5 week’ or 701:02:03.45’. Such input is converted to the
appropriate number of months, days, and seconds for storage. When this would result in a fractional
number of months or days, the fraction is added to the lower-order fields using the conversion factors
1 month = 30 days and 1 day = 24 hours. For example, ' 1.5 month’ becomes 1 month and 15 days.
Only seconds will ever be shown as fractional on output.

Table 8-17 shows some examples of valid interval input.

Table 8-17. Interval Input

Example Description
1-2 SQL standard format: 1 year 2 months

115



Chapter 8. Data Types

Example Description

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes

6 seconds

1 year 2 months 3 days 4 hours 5 minutes 6
seconds

P1Y2M3DT4H5M6S

Traditional Postgres format: 1 year 2 months 3
days 4 hours 5 minutes 6 seconds

ISO 8601 “format with designators™: same
meaning as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as

above

8.5.5. Interval Output

The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, Or iso_8601, using the command SET intervalstyle. The default is the
postgres format. Table 8-18 shows examples of each output style.

The sqgl_standard style produces output that conforms to the SQL standard’s specification for
interval literal strings, if the interval value meets the standard’s restrictions (either year-month only or
day-time only, with no mixing of positive and negative components). Otherwise the output looks like
a standard year-month literal string followed by a day-time literal string, with explicit signs added to
disambiguate mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to ISO.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4
when the DateStyle parameter was set to non-ISO output.

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2
of the ISO 8601 standard.

Table 8-18. Interval Output Style Examples

Style Specification

Year-Month Interval

Day-Time Interval

Mixed Interval

sgl_standard

1-2

3 4:05:06

-1-2 +3 -4:05:06

postgres

1 year 2 mons

3 days 04:05:06

-1 year -2 mons +3
days -04:05:06

postgres_verbose

@ 1 year 2 mons

@ 3 days 4 hours 5

@ 1 year 2 mons -3

mins 6 secs days 4 hours 5 mins 6
secs ago
iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-

6S

8.5.6. Internals

PostgreSQL uses Julian dates for all date/time calculations. This has the useful property of correctly
calculating dates from 4713 BC to far into the future, using the assumption that the length of the year
is 365.2425 days.

116



Chapter 8. Data Types

Date conventions before the 19th century make for interesting reading, but are not consistent enough
to warrant coding into a date/time handler.

8.6. Boolean Type

PostgreSQL provides the standard SQL type boolean. boolean can have one of only two states:
“true” or “false”. A third state, “unknown”, is represented by the SQL null value.

Valid literal values for the “true” state are:

TRUE
Itl
"true’
Iyl
Iyesl
’Ol’l’
Ill

For the “false” state, the following values can be used:

FALSE
4 f ’
"false’
4 n 4
’ no 4
"off’
’ O 4
Leading or trailing whitespace is ignored, and case does not matter. The key words TRUE and FALSE

are the preferred (SQL-compliant) usage.

Example 8-2. Using the boolean type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, ’sic est’);
INSERT INTO testl VALUES (FALSE, 'non est’);
SELECT x= FROM testl;

Example 8-2 shows that boolean values are output using the letters t and £.

boolean uses 1 byte of storage.

117



Chapter 8. Data Types

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equiv-
alent to the enum types supported in a number of programming languages. An example of an enum
type might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM (’sad’, ’ok’, ’'happy’);

Once created, the enum type can be used in table and function definitions much like any other type:

Example 8-3. Basic Enum Usage

CREATE TYPE mood AS ENUM (’sad’, ’'ok’, ’"happy’);
CREATE TABLE person (
name text,
current_mood mood
)i
INSERT INTO person VALUES (’Moe’, "happy’);
SELECT % FROM person WHERE current_mood = "happy’;

name current_mood

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the
type was created. All standard comparison operators and related aggregate functions are supported
for enums. For example:

Example 8-4. Enum Ordering

INSERT INTO person VALUES (’'Larry’, ’'sad’);
INSERT INTO person VALUES (’Curly’, ’ok’);
SELECT x FROM person WHERE current_mood > ’'sad’;
name | current_mood

SELECT % FROM person WHERE current_mood > ’sad’ ORDER BY current_mood;

name | current_mood
_______ e
Curly | ok

Moe | happy

(2 rows)

SELECT name

118



Chapter 8. Data Types

FROM person
WHERE current_mood = (SELECT MIN (current_mood) FROM person);
name

8.7.3. Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types.

Example 8-5. Lack of Casting

CREATE TYPE happiness AS ENUM (’'happy’, ’'very happy’, ’ecstatic’);
CREATE TABLE holidays (

num_weeks integer,

happiness happiness
)i
INSERT INTO holidays (num_weeks, happiness) VALUES (4, "happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (6, ’very happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (8, ’'ecstatic’);
INSERT INTO holidays (num_weeks,happiness) VALUES (2, ’'sad’);
ERROR: invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays

WHERE person.current_mood = holidays.happiness;

ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit
casts to your query:

Example 8-6. Comparing Different Enums by Casting to Text

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood::text = holidays.happiness::text;
name | num_weeks

8.7.4. Implementation Details

An enum value occupies four bytes on disk. The length of an enum value’s textual label is limited by
the NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

Enum labels are case sensitive, so  happy’ is not the same as ' HAPPY’. White space in the labels is
significant too.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

119



Chapter 8. Data Types

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8-19 shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other

types.

Table 8-19. Geometric Types

Name Storage Size Representation Description

point 16 bytes Point on a plane x,y)

line 32 bytes Infinite line (not fully | ((x1,y1),(x2,y2))
implemented)

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to | ((x1,yl),...)
polygon)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to (xLyl),...)
closed path)

circle 24 bytes Circle <(x,y),r> (center point

and radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using the following syntax:

(x, yv)
X,y

where x and y are the respective coordinates, as floating-point numbers.

8.8.2. Line Segments

Line segments (1seq) are represented by pairs of points. Values of type 1seg are specified using the
following syntax:

( (x1, y1), (x2, y2))
(x1, y1) , (x2, y2)

x1 , vyl , x2 4, y2

where (x1, y1) and (x2, y2) are the end points of the line segment.

120



Chapter 8. Data Types

8.8.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using the following syntax:

( (x1, y1) , (x2, y2) )
(x1, y1) , (x2, y2)
x1 , vyl , x2 , y2

where (x1,y1) and (x2, y2) are any two opposite corners of the box.

Boxes are output using the first syntax. Any two opposite corners can be supplied on input, but the
values will be reordered as needed to store the upper right and lower left corners.

8.8.4. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points
in the list are considered not connected, or closed, where the first and last points are considered
connected.

Values of type path are specified using the following syntax:

( (x1, y1) , «.. , ( xn , yn ) )
[ ( x1 , y1) , «.. , ( xn , yn ) 1]
(x1 , y1 ) , .. , ( xn , yn)

( x1 , yl ;e xn , yn )
x1 , vyl PR xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([ 1)
indicate an open path, while parentheses ( () ) indicate a closed path.

Paths are output using the first or second syntax, as appropriate.

8.8.5. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using the following syntax:

( (x1, y1) , «.. , (xn , yn) )
(x1 , v1i) , «.. , ( xn , yn)
( x1 , yl ;e xn , yn )
x1 , yl ;e g xXxn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.6. Circles

Circles are represented by a center point and radius. Values of type circle are specified using the
following syntax:

< (x,vyv), r>

121



Chapter 8. Data Types

((x, v), )
(x, v ), r
X 7 Y r T

where (x, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-20. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8-20. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, in-
cluding IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The sub-
net is represented by the number of network address bits present in the host address (the “netmask”).
If the netmask is 32 and the address is [Pv4, then the value does not indicate a subnet, only a single
host. In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you
want to accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y portion is missing, the netmask is 32 for [Pv4 and 128 for
IPv6, so the value represents just a single host. On display, the /y portion is suppressed if the netmask
specifies a single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Class-
less Internet Domain Routing conventions. The format for specifying networks is address/y where
address is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the
netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering
system, except it will be at least large enough to include all of the octets written in the input. It is an
error to specify a network address that has bits set to the right of the specified netmask.

Table 8-21 shows some examples.

122



Table 8-21. cidr Type Input Examples

Chapter 8. Data Types

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:418:3:ba::/64

2001:4f8:3:ba::/64

2001:4f8:3:ba::/64

2001:418:3:ba:2e0:81ff:fe22:d1f

DI :4£8:3:ba:2e0:811f:fe22:d1f

DBl :4£8:3:ba:2e0:811f:fe22:d1f

:offff:1.2.3.0/120

=ffff:1.2.3.0/120

ffff:1.2.3/120

=ffff:1.2.3.0/128

=ffff:1.2.3.0/128

=ffff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero
bits to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions nost, text, and

abbrev.

8.9.4. macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following

formats:

708:00:2b:01:02:03"
"08-00-2b-01-02-03"
708002b:010203"
708002b-010203"
70800.2b01.0203"
708002b010203"

These examples would all specify the same address. Upper and lower case is accepted for the digits a
through £. Output is always in the first of the forms shown.

123



Chapter 8. Data Types

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifies the first form (with colons) as the bit-reversed notation, so that 08-00-2b-01-
02-03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is only relevant for
obsolete network protocols (such as Token Ring). PostgreSQL makes no provisions for bit reversal,
and all accepted formats use the canonical LSB order.

The remaining four input formats are not part of any standard.

8.10. Bit String Types

Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two
SQL bit types: bit (n) and bit varying (n), where nis a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalenttobit (1), whilebit varying without a length
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
tobit varying (n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8-7. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’007);

INSERT INTO test VALUES (B’10’, B’"1017);

ERROR: Dbit string length 2 does not match type bit (3)
INSERT INTO test VALUES (B’10’::bit(3), B’101");
SELECT * FROM test;

a | b
_____ b
101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section
8.3 for character strings).

8.11. Text Search Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a
query. The tsvector type represents a document in a form optimized for text search; the t squery
type similarly represents a text query. Chapter 12 provides a detailed explanation of this facility, and
Section 9.13 summarizes the related functions and operators.

124



Chapter 8. Data Types

8.11.1. tsvector

A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized
to merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-
elimination are done automatically during input, as shown in this example:

SELECT ’"a fat cat sat on a mat and ate a fat rat’::tsvector;
tsvector

"a’ "and’ 'ate’ ’cat’ ’fat’ ’'mat’ ’'on’ ’'rat’ ’sat’

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the lexeme ' ! contains spaces$$::tsvector;
tsvector
! ' ’contains’ ’lexeme’ ’spaces’ ’the’

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $S$the lexeme ’'Joe”s’ contains a quote$$::tsvector;
tsvector

s’ "a’ ’"contains’ ’lexeme’ ’‘quote’ ’the’
Optionally, integer positions can be attached to lexemes:

SELECT ’a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12’
tsvector

"a’:1,6,10 "and’ :8 "ate’:9 ’cat’:3 ’'fat’:2,11 'mat’:7 ’'on’:5 ’'rat’:12 ’'sat’:

A position normally indicates the source word’s location in the document. Positional information can
be used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently
set to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be a, B, C, or D. D is the
default and hence is not shown on output:

SELECT ’"a:1A fat:2B,4C cat:5D’::tsvector;
tsvector

"a’ :1A ’'cat’:5 ’fat’ :2B,4C

Weights are typically used to reflect document structure, for example by marking title words differ-
ently from body words. Text search ranking functions can assign different priorities to the different
weight markers.

It is important to understand that the tsvector type itself does not perform any normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

select ’'The Fat Rats’::tsvector;
tsvector

"Fat’ ’'Rats’ ’'The’

125

::tsvector;



Chapter 8. Data Types

For most English-text-searching applications the above words would be considered non-normalized,
but tsvector doesn’t care. Raw document text should usually be passed through to_tsvector to
normalize the words appropriately for searching:

SELECT to_tsvector (’english’, ’'The Fat Rats’);
to_tsvector

Again, see Chapter 12 for more detail.

8.11.2. tsquery

A tsquery value stores lexemes that are to be searched for, and combines them honoring the boolean
operators & (AND), | (OR), and ! (NOT). Parentheses can be used to enforce grouping of the opera-
tors:

SELECT ’fat & rat’::tsquery;
tsquery

SELECT "fat & (rat | cat)’::tsquery;
tsquery

SELECT "fat & rat & ! cat’::tsquery;
tsquery

"fat’” & ’'rat’ & !’cat’

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND) binds more tightly than |
(OR).

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts
them to match only t svector lexemes with matching weights:

SELECT ’fat:ab & cat’::tsquery;
tsquery

"fat’ :AB & 'cat’

Also, lexemes in a t squery can be labeled with « to specify prefix matching:

SELECT ’super:*’::tsquery;
tsquery

This query will match any word in a t svector that begins with “super”.

Quoting rules for lexemes are the same as described previously for lexemes in t svector; and, as with
tsvector, any required normalization of words must be done before converting to the t squery type.
The to_tsquery function is convenient for performing such normalization:

126



Chapter 8. Data Types

SELECT to_tsquery ('Fat:ab & Cats’);
to_tsquery

"fat’ :AB & ’'cat’

8.12. UUID Type

The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identi-
fier, or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen
to make it very unlikely that the same identifier will be generated by anyone else in the known uni-
verse using the same algorithm. Therefore, for distributed systems, these identifiers provide a better
uniqueness guarantee than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically a group of 8§ digits followed by three groups of 4 digits followed by a group of
12 digits, for a total of 32 digits representing the 128 bits. An example of a UUID in this standard
form is:

aleebc99-9c0b-4ef8-bb6d-6bbo9bd380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the stan-
dard format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of
four digits. Examples are:

AQOEEBC99-9C0B-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380all}
al0eebc999c0b4ef8bb6d6bb90d380all
alee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0all
{aleebc99-9c0bdef8-bbodobb9-bd380all}

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not
include any function for generating UUIDs, because no single algorithm is well suited for every
application. The contrib module contrib/uuid-ossp provides functions that implement several
standard algorithms. Alternatively, UUIDs could be generated by client applications or other libraries
invoked through a server-side function.

8.13. XML Type

The xm1 data type can be used to store XML data. Its advantage over storing XML data in a text
field is that it checks the input values for well-formedness, and there are support functions to perform
type-safe operations on it; see Section 9.14. Use of this data type requires the installation to have been
built with configure —-with-libxml.

The xm1 type can store well-formed “documents”, as defined by the XML standard, as well as “con-
tent” fragments, which are defined by the production xMLDecl? content in the XML standard.
Roughly, this means that content fragments can have more than one top-level element or character

127



Chapter 8. Data Types

node. The expression xmlvalue IS DOCUMENT can be used to evaluate whether a particular xml
value is a full document or only a content fragment.

8.13.1. Creating XML Values

To produce a value of type xm1 from character data, use the function xmlparse:

XMLPARSE ( { DOCUMENT | CONTENT } value)

Examples:

XMLPARSE (DOCUMENT ’<?xml version="1.0"?><book><title>Manual</title><chapter>...</chapte
XMLPARSE (CONTENT ’abc<foo>bar</foo><bar>foo</bar>’)

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml ’<foo>bar</foo>’
'<foo>bar</foo>’ ::xml
can also be used.

The xm1 type does not validate input values against a document type declaration (DTD), even when
the input value specifies a DTD.

The inverse operation, producing a character string value from xm1, uses the function xmlserialize:

XMLSERIALIZE ( { DOCUMENT | CONTENT } value AS type )

type can be character, character varying, or text (or an alias for one of those). Again,
according to the SQL standard, this is the only way to convert between type xm1 and character types,
but PostgreSQL also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };
or the more PostgreSQL-like syntax

SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in
the XML data passed through them. When using the text mode to pass queries to the server and
query results to the client (which is the normal mode), PostgreSQL converts all character data passed
between the client and the server and vice versa to the character encoding of the respective end; see
Section 22.2. This includes string representations of XML values, such as in the above examples.
This would ordinarily mean that encoding declarations contained in XML data can become invalid as
the character data is converted to other encodings while travelling between client and server, because
the embedded encoding declaration is not changed. To cope with this behavior, encoding declarations

128



Chapter 8. Data Types

contained in character strings presented for input to the xm1 type are ignored, and content is assumed
to be in the current server encoding. Consequently, for correct processing, character strings of XML
data must be sent from the client in the current client encoding. It is the responsibility of the client
to either convert documents to the current client encoding before sending them to the server, or to
adjust the client encoding appropriately. On output, values of type xm1 will not have an encoding
declaration, and clients should assume all data is in the current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
character set conversion is performed, so the situation is different. In this case, an encoding declaration
in the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as
required by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will
have an encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in
which case it will be omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient
if the XML data encoding, client encoding, and server encoding are the same. Since XML data is
internally processed in UTF-8, computations will be most efficient if the server encoding is also
UTF-8.

Caution

Some XML-related functions may not work at all on non-ASCII data when the
server encoding is not UTF-8. This is known to be an issue for xpath () in
particular.

8.13.3. Accessing XML Values

The xml data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence
of this is that you cannot retrieve rows by comparing an xml column against a search value. XML
values should therefore typically be accompanied by a separate key field such as an ID. An alternative
solution for comparing XML values is to convert them to character strings first, but note that character
string comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm1 data type, it is not possible to create an index
directly on a column of this type. If speedy searches in XML data are desired, possible workarounds
include casting the expression to a character string type and indexing that, or indexing an XPath
expression. Of course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches
of XML data. The necessary preprocessing support is, however, not yet available in the PostgreSQL
distribution.

8.14. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of
domains are not yet supported.

129



Chapter 8. Data Types

8.14.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_qgquarter integer|[],
schedule text[][]
)i

As shown, an array data type is named by appending square brackets ([ 1) to the data type name of
the array elements. The above command will create a table named sal_emp with a column of type
text (name), a one-dimensional array of type integer (pay_by_quarter), which represents the
employee’s salary by quarter, and a two-dimensional array of text (schedule), which represents
the employee’s weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]
)i

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of
a particular element type are all considered to be of the same type, regardless of size or number
of dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used
for one-dimensional arrays. pay_by_quarter could have been defined as:

pay_by_quarter integer ARRAY[4],
Or, if no array size is to be specified:
pay_by_qgquarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.14.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and
separate them by commas. (If you know C, this is not unlike the C syntax for initializing structures.)
You can put double quotes around any element value, and must do so if it contains commas or curly
braces. (More details appear below.) Thus, the general format of an array constant is the following:

"{ vall delim val2 delim ... }’

where delim is the delimiter character for the type, as recorded in its pg_type entry. Among the
standard data types provided in the PostgreSQL distribution, all use a comma (, ), except for type box
which uses a semicolon (; ). Each va1 is either a constant of the array element type, or a subarray. An
example of an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}’

130



Chapter 8. Data Types

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or
lower-case variant of NULL will do.) If you want an actual string value “NULL”, you must put double
quotes around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
VALUES (’Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES (’Carol’,
{20000, 25000, 25000, 25000}",
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

The result of the previous two inserts looks like this:

SELECT * FROM sal_emp;

name | pay_by_qguarter | schedule

_______ T
Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting, lunch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

INSERT INTO sal_emp
VALUES (’Bill’,
/{10000, 10000, 10000, 10000}7",
"{{"meeting", "lunch"}, {"meeting"}}’');
ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
VALUES (’'Bill’,
ARRAY[10000, 10000, 10000, 100007,
ARRAY [ ['meeting’, "lunch’], [’'training’, ’'presentation’]]);

INSERT INTO sal_emp
VALUES ('Carol’,
ARRAY [20000, 25000, 25000, 250007,
ARRAY [ ["breakfast’, ’consulting’], [’'meeting’, ’lunch’]1]);

131



Chapter 8. Data Types

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.11.

8.14.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_qguarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array [n].

This query retrieves the third quarter pay of all employees:
SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing Iower-bound: upper-bound for one or more array dimensions. For example, this query
retrieves the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices.
Any dimension that has only a single number (no colon) is treated as being from 1 to the number
specified. For example, [2] is treated as [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

To avoid confusion with the non-slice case, it’s best to use slice syntax for all dimensions, e.g.,
[1:2][1:1],n0t [2][1:1].

132



Chapter 8. Data Types

An array subscript expression will return null if either the array itself or any of the subscript expres-
sions are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise
an error). For example, if schedule currently has the dimensions [1:3][1:2] then referencing
schedule[3] [3] yields NULL. Similarly, an array reference with the wrong number of subscripts
yields a null rather than an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current
array bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does
not match non-slice behavior and is done for historical reasons.) If the requested slice partially over-
laps the array bounds, then it is silently reduced to just the overlapping region instead of returning
null.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

[1:2][1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return
the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = ’'Carol’;

array_upper

(1 row)
array_length will return the length of a specified array dimension:
SELECT array_length(schedule, 1) FROM sal_emp WHERE name = ’'Carol’;

array_length

8.14.4. Modifying Arrays
An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ’{25000,25000,27000,27000}"
WHERE name = ’'Carol’;

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

133



Chapter 8. Data Types

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = 'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1l:2] = 7 {27000,27000}"
WHERE name = ’'Carol’;

A stored array value can be enlarged by assigning to elements not already present. Any positions be-
tween those previously present and the newly assigned elements will be filled with nulls. For example,
if array myarray currently has 4 elements, it will have six elements after an update that assigns to
myarray[6]; myarray[5] will contain null. Currently, enlargement in this fashion is only allowed
for one-dimensional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign to myarray[—-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, | | :

SELECT ARRAY[1,2] || ARRAY([3,4];
?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY([[1,2]1,1[3,4]11;
?column?

{{5,6},{1,2},1{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a
one-dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-
dimensional array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the
result is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims (1 || "[0:1]={2,3}" ::int[]);
array_dims

[0:2]
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

134



Chapter 8. Data Types

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand’s outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]
(1 row)

SELECT array_dims (ARRAY[[1,2],[3,4]1] || ARRAY[[5,6],17,81,19,011);
array_dims

[1:5][1:2]
(1 row)

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the
result is analogous to the element-array case above. Each N-dimensional sub-array is essentially an
element of the n+1-dimensional array’s outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4]1,[5,611);
array_dims

[1:3][1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over
direct use of these functions. In fact, these functions primarily exist for use in implementing the
concatenation operator. However, they might be directly useful in the creation of user-defined
aggregates. Some examples:

SELECT array_prepend(l, ARRAY[2,31]);
array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}
(1 row)

SELECT array_cat (ARRAY[[1,2], 3,411, ARRAY[5,61]);
array_cat

135



Chapter 8. Data Types

{{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],1[3,411);
array_cat

{{5,6},{1,2},{3,4}}

8.14.5. Searching in Arrays

To search for a value in an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT x FROM sal_emp WHERE pay_by_quarter[1l] = 10000 OR
pay_by_quarter[2] = 10000 OR
pay_by_qgquarter[3] = 10000 OR
pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.21. The above query could be replaced by:

SELECT x FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

In addition, you can find rows where the array has all values equal to 10000 with:

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT % FROM
(SELECT pay_by_quarter,
generate_subscripts (pay_by_quarter, 1) AS s
FROM sal_emp) AS foo
WHERE pay_by_quarter([s] = 10000;

This function is described in Table 9-46.

Tip: Arrays are not sets; searching for specific array elements can be a sign of database misde-
sign. Consider using a separate table with a row for each item that would be an array element.
This will be easier to search, and is likely to scale better for a large number of elements.

8.14.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually a comma (, ) but can be something else:
it is determined by the typdelim setting for the array’s element type. Among the standard data

136



Chapter 8. Data Types

types provided in the PostgreSQL distribution, all use a comma, except for type box, which uses a
semicolon (; ). In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level
of curly braces, and delimiters must be written between adjacent curly-braced entities of the same
level.

The array output routine will put double quotes around element values if they are empty strings,
contain curly braces, delimiter characters, double quotes, backslashes, or white space, or match the
word NULL. Double quotes and backslashes embedded in element values will be backslash-escaped.
For numeric data types it is safe to assume that double quotes will never appear, but for textual data
types one should be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array’s dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly before writing the array
contents. This decoration consists of square brackets ([]) around each array dimension’s lower and
upper bounds, with a colon (:) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT f1[1]1[-2]1[3] AS el, f1[1]1[-1]1[5] AS e2
FROM (SELECT ‘" [1:1]([-2:-1]1[3:51={{{1,2,3},{4,5,6}}}"::int[] AS f1) AS ss;

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL” to
be entered. Also, for backwards compatibility with pre-8.2 versions of PostgreSQL, the array_nulls
configuration parameter can be turned of £ to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser.
For example, elements containing curly braces, commas (or the data type’s delimiter character), dou-
ble quotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and
strings matching the word NULL must be quoted, too. To put a double quote or backslash in a quoted
array element value, use escape string syntax and precede it with a backslash. Alternatively, you can
avoid quotes and use backslash-escaping to protect all data characters that would otherwise be taken
as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before
or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as an array. This doubles the number of backslashes you need. For example, to
insert a text array value containing a backslash and a double quote, you'd need to write:

INSERT ... VALUES (E’ {"\\\\","\\""}");

The escape string processor removes one level of backslashes, so that what arrives at the array-
value parser looks like {"\\", "\""}. In turn, the strings fed to the text data type’s input routine
become \ and " respectively. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the

137



Chapter 8. Data Types

command to get one backslash into the stored array element.) Dollar quoting (see Section 4.1.2.4)
can be used to avoid the need to double backslashes.

Tip: The arRrAY constructor syntax (see Section 4.2.11) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In arraY, individual element values
are written the same way they would be written when not members of an array.

8.15. Composite Types

A composite type represents the structure of a row or record; it is essentially just a list of field names
and their data types. PostgreSQL allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of a table can be declared to be of a composite type.

8.15.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision
)i

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)i

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will
get odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer

)i

INSERT INTO on_hand VALUES (ROW(’fuzzy dice’, 42, 1.99), 1000);

or functions:

CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS ’SELECT $l.price * $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

138



Chapter 8. Data Types

Whenever you create a table, a composite type is also automatically created, with the same name as
the table, to represent the table’s row type. For example, had we said:

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)

then the same inventory_item composite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition
do not apply to values of the composite type outside the table. (A partial workaround is to use domain
types as members of composite types.)

8.15.2. Composite Value Input

To write a composite value as a literal constant, enclose the field values within parentheses and sepa-
rate them by commas. You can put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of a composite constant
is the following:

'( vall , valz , ... )’
An example is:
" ("fuzzy dice",42,1.99)'

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third
field:

" ("fuzzy dice",42,)’
If you want an empty string rather than NULL, write double quotes:
r ("ll,42, ) 4

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section
4.1.2.7. The constant is initially treated as a string and passed to the composite-type input conversion
routine. An explicit type specification might be necessary.)

The ROW expression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don’t have to worry about multiple
layers of quoting. We already used this method above:

ROW (' fuzzy dice’, 42, 1.99)
ROW (”, 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can simplify to:

(" fuzzy dice’, 42, 1.99)

139



Chapter 8. Data Types
(", 42, NULL)

The rOW expression syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields
from our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand,
per SQL syntax rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item).price > 9.99;
or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to
select just one field from the result of a function that returns a composite value, you’d need to write
something like:

SELECT (my_func(...)).field FROM

Without the extra parentheses, this will generate a syntax error.

8.15.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));
UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name
appearing just after SET, but we do need parentheses when referencing the same column in the ex-
pression to the right of the equal sign.

And we can specify subfields as targets for INSERT, too:

INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(1l.1l, 2.2);

140



Chapter 8. Data Types

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

8.15.5. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ( ( and ) ) around the whole value, plus commas (, )
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it
is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

r 42y’

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any in-
dividual field value. You must do so if the field value would otherwise confuse the composite-value
parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put a double quote or backslash in a quoted composite field value, precede it with
a backslash. (Also, a pair of double quotes within a double-quoted field value is taken to represent a
double quote character, analogously to the rules for single quotes in SQL literal strings.) Alternatively,
you can avoid quoting and use backslash-escaping to protect all data characters that would otherwise
be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents
a NULL. To write a value that is an empty string rather than NULL, write " ".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as a composite. This doubles the number of backslashes you need (assuming
escape string syntax is used). For example, to insert a text field containing a double quote and
a backslash in a composite value, you'd need to write:

INSERT ... VALUES (E’ ("\\"\\\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\"\\"). In turn, the string fed to the text data type’s input
routine becomes "\. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored composite field.) Dollar quoting (see Section
4.1.2.4) can be used to avoid the need to double backslashes.

Tip: The row constructor syntax is usually easier to work with than the composite-literal syntax
when writing composite values in SQL commands. In row, individual field values are written the
same way they would be written when not members of a composite.

141



Chapter 8. Data Types

8.16. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH 01IDS is specified when the table is created,
or the default_with_oids configuration variable is enabled. Type oid represents an object identifier.
There are also several alias types for oid: regproc, regprocedure, regoper, regoperator,
regclass, regtype, regconfig, and regdictionary. Table 8-22 shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for
objects. For example, to examine the pg_attribute rows related to a table mytable, one could
write:

SELECT * FROM pg_attribute WHERE attrelid = ’'mytable’::regclass;
rather than:

SELECT »= FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = 'mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-
select would be needed to select the right OID if there are multiple tables named mytable in differ-
ent schemas. The regclass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting a table’s OID to regclass
is handy for symbolic display of a numeric OID.

Table 8-22. Object Identifier Types

Name References Description Value Example
oid any numeric object 564182
identifier
regproc Pg_proc function name sum
regprocedure pPg_proc function with argument | sum (int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument | « (integer, integer)
types or — (NONE, integer)
regclass pg_class relation name pPg_type
regtype pg_type data type name integer
regconfig pg_ts_config text search english
configuration
regdictionary pg_ts_dict text search dictionary |simple

142




Chapter 8. Data Types

All of the OID alias types accept schema-qualified names, and will display schema-qualified names
on output if the object would not be found in the current search path without being qualified. The
regproc and regoper alias types will only accept input names that are unique (not overloaded), so
they are of limited use; for most uses regprocedure or regoperator are more appropriate. For
regoperator, unary operators are identified by writing NONE for the unused operand.

An additional property of the OID alias types is the creation of dependencies. If a constant of one
of these types appears in a stored expression (such as a column default expression or view), it
creates a dependency on the referenced object. For example, if a column has a default expression
nextval (my_seq’ : :regclass), PostgreSQL understands that the default expression depends on
the sequence my_seq; the system will not let the sequence be dropped without first removing the
default expression.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is
the data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the
system columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data
type of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that
identifies the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.17. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8-23 lists the existing pseudo-types.

Table 8-23. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyarray Indicates that a function accepts any array data
type (see Section 34.2.5).

anyelement Indicates that a function accepts any data type
(see Section 34.2.5).

anyenum Indicates that a function accepts any enum data

type (see Section 34.2.5 and Section 8.7).

anynonarray Indicates that a function accepts any non-array
data type (see Section 34.2.5).

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

143



Chapter 8. Data Types

Name Description

language_handler A procedural language call handler is declared to
return language_handler.

record Identifies a function returning an unspecified
row type.

trigger A trigger function is declared to return
trigger.

void Indicates that a function returns no value.

opaque An obsolete type name that formerly served all

the above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo data types. It is up to the function author to ensure that the function will behave safely
when a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementa-
tion languages. At present the procedural languages all forbid use of a pseudo-type as argument type,
and allow only void and record as a result type (plus t rigger when the function is used as a trig-
ger). Some also support polymorphic functions using the types anyarray, anyelement, anyenum,

and anynonarray.

The internal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in an SQL query. If a function has at least one
internal-type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to
return internal unless it has at least one internal argument.

144




Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in Part V. The psql commands \df and

\do can be used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended function-
ality is present in other SQL database management systems, and in many cases this functionality is
compatible and consistent between the various implementations. This chapter is also not exhaustive;

additional functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the

following truth tables:

a b a AND b aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.13 for more information about the order of evaluation of

subexpressions.

9.2. Comparison Operators

The usual comparison operators are available, shown in Table 9-1.

145




Chapter 9. Functions and Operators

Table 9-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<>or!l= not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement =
and <> operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary
operators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because
there is no < operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available:
a BETWEEN x AND y

is equivalent to

a >= x AND a <=y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the
opposite comparison:

a NOT BETWEEN x AND y
is equivalent to
a< x OR a >y

BETWEEN SYMMETRIC is the same as BETWEEN except there is no requirement that the argument to
the left of AND be less than or equal to the argument on the right. If it is not, those two arguments are
automatically swapped, so that a nonempty range is always implied.

To check whether a value is or is not null, use the constructs:

expression IS NULL
expression 1S NOT NULL

or the equivalent, but nonstandard, constructs:

expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.) This behavior conforms
to the SQL standard.

146




Chapter 9. Functions and Operators

Tip: Some applications might expect that expression = NULL returns true if expression evalu-
ates to the null value. It is highly recommended that these applications be modified to comply
with the SQL standard. However, if that cannot be done the transform_null_equals configuration
variable is available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL.

Note: If the expression is row-valued, then 1s NULL is true when the row expression itself is null
or when all the row’s fields are null, while 1s noT NULL is true when the row expression itself is
non-null and all the row’s fields are non-null. Because of this behavior, 1s nULL and Is NOT NULL
do not always return inverse results for row-valued expressions, i.e., a row-valued expression that
contains both NULL and non-null values will return false for both tests. This definition conforms
to the SQL standard, and is a change from the inconsistent behavior exhibited by PostgreSQL
versions prior to 8.2.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input
is null. For example, 7 = NULL yields null. When this behavior is not suitable, use the IS [ NOT ]
DISTINCT FROM constructs:

expression IS DISTINCT FROM expression
expression IS NOT DISTINCT FROM expression

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are
null it returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM
is identical to = for non-null inputs, but it returns true when both inputs are null, and false when only
one input is null. Thus, these constructs effectively act as though null were a normal data value, rather
than “unknown”.

Boolean values can also be tested using the constructs

expression IS TRUE
expression 1S NOT TRUE
expression 1S FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null
input is treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are
effectively the same as Is NULL and IS NOT NULL, respectively, except that the input expression
must be of Boolean type.

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard mathe-
matical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9-2 shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result

147



Chapter 9. Functions and Operators

Operator Description Example Result
+ addition 2 + 3 5
- subtraction 2 -3 -1
* multiplication 2 % 3 6
/ division (integer 4/ 2 2
division truncates the
result)
S modulo (remainder) 5% 4 1
0 exponentiation 2.0 ~ 3.0 8
|/ square root |/ 25.0 5
|1/ cube root |/ 27.0 3
! factorial 5 ! 120
! factorial (prefix 15 120
operator)
@ absolute value @ -5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
# bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric

data types. The bitwise operators are also available for the bit string types bit and bit varying, as

shown in Table 9-10.

Table 9-3 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions work-
ing with double precision data are mostly implemented on top of the host system’s C library;
accuracy and behavior in boundary cases can therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function Return Type Description Example Result
abs (x) (same as input) absolute value abs (-17.4) 17.4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil (dp or (same as input) smallest integer ceil (-42.8) -42
numeric) not less than

argument
ceiling (dp or |(same as input) smallest integer ceiling(-95.3) |-95

numeric)

not less than
argument (alias
for ceil)

degrees (dp)

dp

radians to degrees

degrees (0.5)

28.64788975654

| 2

148



Chapter 9. Functions and Operators

Function Return Type Description Example Result
div (y numeric, |numeric integer quotient of | div (9, 4) 2
X numeric) y/x
exp (dp or (same as input) exponential exp (1.0) 2.71828182845905
numeric)
floor (dp or (same as input) largest integer not | floor (-42.8) -43
numeric) greater than
argument
1n(dp or (same as input) natural logarithm | 1n(2.0) 0.693147180559945
numeric)
log (dp or (same as input) base 10 logarithm | 1og (100.0) 2
numeric)
log (b numeric, |numeric logarithm to base | log (2.0, 6.0000000000
X numeric) b 64.0)
mod (y, x) (same as argument | remainder of y/x | mod (9, 4) 1
types)
pi () dp “m” constant pi() 3.14159265358979
power (a dp, b |dp a raised to the power (9.0, 729
dp) power of b 3.0)
power (a numeric a raised to the power (9.0, 729
numeric, b powerofb 3.0)
numeric)
radians (dp) dp degrees to radians | radians (45.0) [0.785398163397448
random () dp random value in random ()
the range 0.0 <=
x < 1.0
round (dp or (same as input) round to nearest round (42.4) 42
numeric) hueger
round (v numeric round to s round (42.4382,|42.44
numeric, s decimal places 2)
int)
setseed (dp) void set seed for setseed (0.54823)
subsequent
random () calls
(value between
-1.0 and 1.0,
inclusive)
sign(dp or (same as input) sign of the sign(-8.4) -1
numeric) argument (-1, 0,
+1)
sqrt (dp or (same as input) square root sqrt (2.0) 1.4142135623731

numeric)

trunc (dp or

numeric)

(same as input)

truncate toward
ZEero

trunc (42.8)

42

149



Chapter 9. Functions and Operators

in an equidepth
histogram with
count buckets, in
the range b1l to b2

Function Return Type Description Example Result
trunc (v numeric truncate to s trunc(42.4382,|42.43
numeric, s decimal places 2)
int)
width_bucket (op |int return the bucket |width_bucket (5}35,
numeric, bl to which operand | 0.024, 10.06,
numeric, b2 would be assigned | 5)
numeric, count in an equidepth
int) histogram with

count buckets, in

the range b1 to b2
width_bucket (op | int return the bucket |width_bucket (5} 35,
dp, bl dp, b2 to which operand|0.024, 10.06,
dp, count int) would be assigned | 5)

Finally, Table 9-4 shows the available trigonometric functions. All trigonometric functions take argu-
ments and return values of type double precision.

Table 9-4. Trigonometric Functions

Function Description
acos (x) inverse cosine
asin (x) inverse sine
atan (x) inverse tangent

atan2 (y, x)

inverse tangent of y/x

cos (x) cosine
cot (x) cotangent
sin (x) sine

tan (x) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of the types character, character varying, and text. Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of poten-
tial effects of automatic space-padding when using the character type. Some functions also exist
natively for the bit-string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9-5. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9-6).

150




Chapter 9. Functions and Operators

Note: Before PostgreSQL 8.3, these functions would silently accept values of several non-string
data types as well, due to the presence of implicit coercions from those data types to text. Those
coercions have been removed because they frequently caused surprising behaviors. However,
the string concatenation operator (| |) still accepts non-string input, so long as at least one input
is of a string type, as shown in Table 9-5. For other cases, insert an explicit coercion to text if

you need to duplicate the previous behavior.

Table 9-5. SQL String Functions and Operators

Function Return Type Description Example Result
string || text String "Post’ || PostgreSQL
string concatenation "greSQL’
string || text String "Value: 7 || Value: 42
non-string Or concatenation 42
non-string || with one
string non-string input
bit_length (string)nt Number of bits in |bit_length (' jo$82)
string
char_length (strijngdt Number of char_length (' jpde’)
or characters in
character_length|(string) string
lower (string) text Convert string to | lower (* TOM' ) tom
lower case
octet_length (striimyt) Number of bytes |octet_length(’ fjdse’)
in string
overlay (string |text Replace substring | overlay (' TxxxxaEhomas
placing string placing ’"hom’
from int [for from 2 for 4)
int])
position (substrijngnt Location of position(’om’ |3
in string) specified substring | in ’ Thomas’)
substring (string text Extract substring | substring (’ Thomhsth
[from int] from 2 for 3)
[for int])
substring (string text Extract substring | substring (' Thommas
from pattern) matching POSIX |from 7...$")
regular
expression. See
Section 9.7 for
more information
on pattern
matching.

151




Chapter 9. Functions and Operators

Function Return Type Description Example Result
substring (string text Extract substring | substring (' Thomema
from pattern matching SQL from
for escape) regular "S#"o_a#"_’
expression. See for "#7)
Section 9.7 for
more information
on pattern
matching.
trim([leading |text Remove the trim(both ’x’ |Tom
| trailing | longest string from
both] containing only " xTomxx"' )
[characters] the characters
from string) (a space by
default) from the
start/end/both
ends of the
string
upper (string) text Convensnﬂngto upper (" tom’) TOM
uppercase

Additional string manipulation functions are available and are listed in Table 9-6. Some of them are
used internally to implement the SQL-standard string functions listed in Table 9-5.

Table 9-6. Other String Functions

Function

Return Type

Description

Example

Result

ascii (string)

int

ASCII code of
the first character
of the argument.
For UTFS returns
the Unicode code
point of the
character. For
other multibyte
encodings, the
argument must be
an ASCII
character.

ascii(’'x")

120

btrim(string
text [,
characters

text])

text

Remove the
longest string
consisting only of
characters in
characters (a
space by default)
from the start and
end of string

btrim(’xyxtrimy

"xy’)

yExin

152




Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

chr (int)

text

Character with
the given code.
For UTFS the
argument is
treated as a
Unicode code
point. For other
multibyte
encodings the
argument must
designate an
ASCII character.
The NULL (0)
character is not
allowed because
text data types
cannot store such
bytes.

chr (65)

A

convert (string
bytea,
src_encoding
name,
dest_encoding

name)

bytea

Convert string to
dest_encoding.
The original
encoding is
specified by
src_encoding.
The string must
be valid in this
encoding.
Conversions can
be defined by
CREATE
CONVERSTION.
Also there are
some predefined
conversions. See
Table 9-7 for
available
conversions.

convert (' text_
"UTF8’,
"LATIN1")

ihextf&h,utf8
represented in
Latin-1 encoding
(ISO 8859-1)

convert_from (str

bytea,
src_encoding

name)

text

ing

Convert string to
the database
encoding. The
original encoding
is specified by
src_encoding.
The string must
be valid in this
encoding.

convert_from (’f{
"UTEF8")

reggtinnutf&s,
represented in the
current database
encoding

153




Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

convert_to (strin
text,
dest_encoding

name)

bytea
g

Convert string to

dest_encoding.

convert_to (’soj
text’,
"UTF8’")

neome text
represented in the
UTF8 encoding

decode (string
text, type

text)

bytea

Decode binary
data from string
previously
encoded with
encode.
Parameter type is
same as in

encode.

decode (' MTIzAA}R
"base64d’)

££23\000\001

encode (data
bytea, type

text)

text

Encode binary
data to different
representation.
Supported types
are: base64, hex,
escape. Escape
merely outputs
null bytes as \000
and doubles
backslashes.

encode (E’ 123\\
"baseb64d’)

MUY XBRAEE,

initcap (string)

text

Convert the first
letter of each
word to uppercase
and the rest to
lowercase. Words
are sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap(’hi
THOMAS' )

Hi Thomas

length (string)

int

Number of
characters in

string

length (' jose’)

length (stringbyt]

encoding name )

eint

Number of
characters in
stringin the
given encoding.
The string must
be valid in this
encoding.

length (’ jose’,
"UTF8’)

154




Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

lpad (string
text, length
int [, fill

text])

text

Fill up the
string to length
length by
prepending the
characters fil1 (a
space by default).
If the stringis
already longer
than 1length then
it is truncated (on
the right).

lpad("hi’,
"xy'")

5,

xyxhi

ltrim(string
text [,
characters

text])

text

Remove the
longest string
containing only
characters from
characters (a
space by default)
from the start of

string

ltrim (/" zzzytriy

Ixyzl)

trim

md5 (string)

text

Calculates the
MD)5 hash of
string, returning
the result in
hexadecimal

md5 (" abc’)

900150983cd24f
d6963£7d28el7f

b0
V2

pg_client_encodi]

nyahe

Current client
encoding name

pg_client_enco

H$0% (ASCIT

quote_ident (stri]

text)

roext

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled. See also
Example 38-1.

quote_ident ('F

bar’)

p&Foo bar"

155



Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_literal (st
text)

rtiegt

Return the given
string suitably
quoted to be used
as a string literal
in an SQL
statement string.
Embedded
single-quotes and
backslashes are
properly doubled.
Note that
quote_literal
returns null on
null input; if the
argument might
be null,
quote_nullable
is often more
suitable. See also
Example 38-1.

quote_literal (

O8"Reilly’)

quote_literal (v

anyelement)

Ihext

Coerce the given
value to text and
then quote it as a
literal. Embedded
single-quotes and
backslashes are
properly doubled.

quote_literal (

1243) 5"

quote_nullable (
text)

slthraxt

Return the given
string suitably
quoted to be used
as a string literal
in an SQL
statement string;
or, if the argument
is null, return
NULL. Embedded
single-quotes and
backslashes are
properly doubled.
See also Example
38-1.

quote_nullable

(NULL)

156




Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_nullable (v

anyelement)

Alext

Coerce the given
value to text and
then quote it as a
literal; or, if the
argument is null,
return NULL.
Embedded
single-quotes and
backslashes are
properly doubled.

quote_nullable

(4225p'

regexp_matches (
text, pattern
text [, flags

text])

stxahgf text[]

Return all
captured
substrings
resulting from
matching a
POSIX regular
expression against
the string. See
Section 9.7.3 for
more information.

regexp_matches

" (bar) (beque)’

({Peohbebagleba

regexp_replace (
text, pattern
text,
replacement
text [,

text])

flags

Sthréxty

Replace
substring(s)
matching a
POSIX regular
expression. See
Section 9.7.3 for
more information.

regexp_replace
. [mN]a.’,
IMI)

(TEMomas’,

regexp_split_to_larexy (dtring

text, pattern
text [, flags
text ])

Split string
using a POSIX
regular expression
as the delimiter.
See Section 9.7.3
for more
information.

regexp_split_t
world’,
E’\\s+’)

p{bhetdyp (Wheldd

regexp_split_to_ftadte fsteiy Split string regexp_split_toheabdeerhdl(@®
text, pattern using a POSIX world’, rows)
text [, flags regular expression |E’ \\s+")
text]) as the delimiter.
See Section 9.7.3
for more
information.
repeat (string text Repeat string repeat (' Pg’, PgPgPgPg
text, number the specified 4)
int) number of times

157

~



Chapter 9. Functions and Operators

Function Return Type Description Example Result
replace (string |text Replace all replace (' abcdefabgdefapXXef
text, from occurrences in rcd’, "XX')
text, to text) string of

substring from

with substring to
rpad (string text Fill up the rpad(’hi’, 5, |hixyx
text, length stringtolength |’xy’)
int [, fill length by
text]) appending the

characters £il1l (a

space by default).

If the stringis

already longer

than length then

it is truncated.
rtrim(string text Remove the rtrim(/ trimxxxktrim
text [, longest string rx")
characters containing only
text]) characters from

characters (a

space by default)

from the end of

string
split_part (strindext Split stringon |split_part (' abgd@fdef~Q@~ghi’,
text, delimiter delimiter and f~@~", 2)
text, field return the given
int) field (counting

from one)
strpos (string, |int Location of strpos (high’, |2
substring) specified substring | 7 ig’)

(same as

position (substring

in string), but

note the reversed

argument order)
substr (string, |text Extract substring | substr (/ alphabgph,
from [, (same as 3, 2)
count]) substring (string

from from for

count))
to_ascii (string |text Convert string |to_ascii (’KarelKarel

text [,

encoding text])

to ASCII from
another encoding
(only supports
conversion from
LATINI, LATIN2,
LATINO, and
WIN1250

encodings)

158




Chapter 9. Functions and Operators

Function Return Type Description Example Result
to_hex (number text Convert number to_hex (214748363Fffffff
int or bigint) to its equivalent

hexadecimal

representation

text Any characterin |translate (’1234823x5

translate (string string that r147, "ax’)
text, from matches a
text, to text) character in the

from set is
replaced by the
corresponding
character in the to

set

Table 9-7. Built-in Conversions

Conversion Name a

Source Encoding

Destination Encoding

ascii_to_mic SQL_ASCIT MULE_INTERNAL
ascii_to_utfs8 SQL_ASCII UTF8
bigb_to_euc_tw BIGS EUC_TW
big5_to_mic BIGS MULE_INTERNAL
bigb_to_utf8 BIGS UTF8
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf8 EUC_CN UTF'8
euc_jp_to_mic EUC_JP MULE_INTERNAL
euc_Jjp_to_sijis EUC_JP SJIS
euc_Jjp_to_utfs8 EUC_JpP UTF8
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf8 EUC_KR UTF8
euc_tw_to_bigh EUC_TW BIGSH
euc_tw_to_mic EUC_TwW MULE_INTERNAL
euc_tw_to_utf8 EUC_TW UTF8
gb18030_to_utf8 GB18030 UTF8
gbk_to_utf8 GBK UTF8
iso0_8859_10_to_utf8 LATING UTF8

iso_8859 13 to_utf8 LATIN7 UTF8
iso_8859_14_to_utf8 LATINS UTF8
iso_8859_15 to_utf8 LATINY UTF8
iso_8859_16_to_utf8 LATIN1O UTFEF8
1is0_8859_1_to_mic LATIN1 MULE_INTERNAL
iso_8859_1_to_utfs LATIN1 UTF8
iso_8859_ 2 to_mic LATIN2 MULE_INTERNAL
iso_8859_2_to_utfs8 LATIN2 UTF8

159




Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

is0_8859_2 to_windows_12

bOATINZ2

WIN1250

1is0_8859_3_to_mic LATIN3 MULE_INTERNAL
iso_8859_3_to_utfs LATIN3 UTF8
iso_8859_4 to_mic LATIN4A MULE_INTERNAL
iso_8859_4_to_utfs8 LATIN4 UTF8
iso_8859_5 to_koi8_ r IS0_8859_5 KOI8R
iso0_8859_5_to_mic I150_8859_5 MULE_INTERNAL
is0_8859_5_to_utf8 IS0O_8859_5 UTF8
iso_8859_5_to_windows_125150_8859_5 WIN1251
is0_8859_5_to_windows_866ISO_8859_5 WIN866
iso_8859_6_to_utfs8 ISO_8859_6 UTF38
iso0_8859_7_to_utf8 IS0O_8859_7 UTF38
iso0_8859_8_to_utf8 ISO_8859_8 UTF8
iso_8859_9 to_utfs8 LATINS UTF8
johab_to_utf8 JOHAB UTF8
koi8_r_to_iso_8859_5 KOI8R IS0_8859_5
koi8_r_to_mic KOI8R MULE_INTERNAL
koi8_r_to_utf8 KOI8R UTF8

koi8_r_ to_windows_1251 KOI8R WIN1251
koi8_r_to_windows_866 KOI8R WIN866
koi8_u_to_utf8 KOI8U UTF8
mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_bigh MULE_INTERNAL BIGS
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859_1 MULE_INTERNAL LATINL
mic_to_iso_8859_2 MULE_INTERNAL LATIN2
mic_to_iso_8859_3 MULE_INTERNAL LATIN3
mic_to_iso_8859_4 MULE_INTERNAL LATIN4
mic_to_1iso_8859_5 MULE_INTERNAL IS0O_8859_5
mic_to_koi8_r MULE_INTERNAL KOI8R
mic_to_sijis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN1251
mic_to_windows_866 MULE_INTERNAL WIN866
sjis_to_euc_jp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL

160




Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
sjis_to_utfs8 SJIS UTF8
tcvn_to_utf8 WIN1258 UTFEF8
uhc_to_utf8 UHC UTF8
utf8_to_ascii UTF8 SQL_ASCII
utf8_to_bigh UTF8 BIGS
utf8_to_euc_cn UTF8 EUC_CN
utf8_to_euc_ijp UTF8 EUC_JP
utf8_to_euc_kr UTF8 EUC_KR
utf8_to_euc_tw UTFE8 EUC_TW
utf8_to_gbl8030 UTF8 GB18030
ut£8_to_gbk UTF'8 GBK
utf8_to_iso_8859_1 UTF8 LATIN1
utf8_to_iso_8859_10 UTF8 LATING
utf8_to_iso_8859_ 13 UTF8 LATIN7
utf8_to_iso_8859_ 14 UTFES8 LATINS
utf8_to_iso_8859_15 UTF8 LATINOS
utf8_to_iso_8859_16 UTF8 LATINIO
utf8_to_iso_8859_2 UTF8 LATIN2
utf8_ _to_iso_8859_3 UTFE8 LATIN3
utf8_to_iso_8859_4 UTF8 LATIN4
utf8_to_iso_8859_5 UTF8 IS0O_8859_5
utf8_to_iso_8859_6 UTF8 IS0O_8859_6
utf8_to_iso_8859_7 UTF8 IS0_8859_7
utf8_to_iso_8859_8 UTF8 IS0O_8859_8
utf8_to_iso_8859_9 UTF8 LATINS
ut£8_to_johab UTF8 JOHAB
utf8_to_koi8_r UTFES8 KOI8R
utf8_to_koi8_u UTFE8 KOI8U
utf8_to_sjis UTF8 SJIS
utf8_to_tcvn UTF8 WIN1258
utf8_to_uhc UTF8 UHC
utf8_to_windows_1250 UTFS8 WIN1250
utf8_to_windows_1251 UTF8 WIN1251
utf8_to_windows_1252 UTFE8 WIN1252
utf8_to_windows_1253 UTF8 WIN1253
utf8_to_windows_1254 UTF8 WIN1254
utf8_to_windows_1255 UTF8 WIN1255
utf8_to_windows_1256 UTF8 WIN1256
utf8_to_windows_1257 UTFS8 WIN1257
utf8_to_windows_866 UTFES8 WINB66
utf8_to_windows_874 UTF8 WIN874

161




Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
windows_1250_to_iso_8859|WIN1250 LATINZ2
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf8 WIN1250 UTF8
windows_1251_to_iso_8859|®BIN1251 IS0_8859_5
windows_1251 to_koi8_r WIN1251 KOI8R
windows_1251_to_mic WIN1251 MULE_INTERNAL
windows_1251_to_utf8 WIN1251 UTF8
windows_1251_to_windows_8WEN1251 WIN866
windows_1252_to_utf8 WIN1252 UTF8
windows_1256_to_utf8 WIN1256 UTF8
windows_866_to_iso_8859 bBWIN8G66 ISO_8859_5
windows_866_to_koi8_r WIN866 KOI8R
windows_866_to_mic WINB66 MULE_INTERNAL
windows_866_to_utf8 WIN866 UTF8
windows_866_to_windows_1PWINB66 WIN
windows_874_to_utfs8 WIN874 UTF8
euc_7jis_2004_to_utfs8 EUC_JIS_2004 UTF8
ut8_to_euc_jis_2004 UTF8 EUC_JIS_2004
shift_jis_2004_to_utfs SHIFT_JIS_2004 UTF8
ut8_to_shift_jis_2004 UTF8 SHIFT_JIS_2004
euc_7jis_2004_to_shift_jisEWQ04IS_2004 SHIFT_JIS_2004
shift_Jjis_2004_to_euc_JjisSRUBDE_JIS_2004 EUC_JIS_2004

Notes:

a. The conversion names follow a standard naming scheme: The official name of the source
encoding with all non-alphanumeric characters replaced by underscores, followed by _to_,
followed by the similarly processed destination encoding name. Therefore, the names might
deviate from the customary encoding names.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9-8. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9-9).

162



Table 9-8. SQL Binary String Functions and Operators

Chapter 9. Functions and Operators

bytes from

string)

longest string
containing only
the bytes in
bytes from the
start and end of

string

from

E’\\000Tom\\000’ : :bytea)

Function Return Type Description Example Result
string || bytea String E’\\\\Post’ : :byk&Rost’ gres\00
string concatenation |

E’\\047gres\\000"’ : :bytea
get_bit(string,|int Extract bit from |get_bit (E’ Th\\QQ0omas’ : :bytea
offset) string 45)
get_byte(string,int Extract byte from | get_byte (E’ Th\)\000omas’ : :bytea,
offset) string 4)
octet_length (stritm Number of bytes |octet_length(E{50\\000se’ ::bytea)

in binary string

position (substrijngnt Location of position (E’\\0QBom’ : :bytea
in string) specified substring | in

E’Th\\00Oomas’ | :bytea)
set_bit(string,|bytea Set bit in string set_bit (E’ Th\\Q0haNABbmAbytea
offset, 45, 0)
newvalue)
set_byte(stringbytea Set byte in string | set_byte (E’ Th\)\0hQ6MasRasbytea,
offset, 4, 64)
newvalue)
substring (string bytea Extract substring | substring (E’ Th\RR006mas’ : :bytea
[from int] from 2 for 3)
[for int])
trim([both] bytea Remove the trim(E’\\00OQ’ : | Bymea

Additional binary string manipulation functions are available and are listed in Table 9-9. Some of
them are used internally to implement the SQL-standard string functions listed in Table 9-8.

Table 9-9. Other Binary String Functions

Function Return Type Description Example Result
btrim(string bytea Remove the btrim(E’\\000tritmi®n000’ : :bytea,
bytea, bytes longest string E’\\000’ : :bytea)

bytea) consisting only of

bytes in bytes
from the start and
end of string

163



Chapter 9. Functions and Operators

Function Return Type Description Example Result

decode (string |bytea Decode binary decode (E’ 123\\00235600456
text, type string from "escape’)

text) string
previously
encoded with
encode.
Parameter type is
same as in

encode.

encode (string text Encode binary encode (E’ 123\\002356004bgtea,
bytea, type string to "escape’)
text) ASClII-only
representation.
Supported types
are: base64, hex,

escape.

length (string) |int Length of binary |length (E’ jo\\00Bse’ : :bytea)
string

md5 (string) text Calculates the md5 (E’ Th\\000om&8abh2cdBygBE8Paaf]s
MD)5 hash of b4958c334c82d8hl
string, returning
the result in
hexadecimal

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is
values of the types bit and bit varying. Aside from the usual comparison operators, the operators
shown in Table 9-10 can be used. Bit string operands of &, |, and # must be of equal length. When bit
shifting, the original length of the string is preserved, as shown in the examples.

Table 9-10. Bit String Operators

Operator Description Example Result

I concatenation B’ 10001’ || 10001011
B/ 011’

& bitwise AND B’10001’ & 00001
B’ 01101

bitwise OR B’10001" | 11101

B’01101"'

# bitwise XOR B’10001" # 11100
B’01101"'

~ bitwise NOT ~ B’10001’ 01110

<< bitwise shift left B’10001" << 3 01000

>> bitwise shift right B’10001" >> 2 00100

164



Chapter 9. Functions and Operators

The following SQL-standard functions work on bit strings as well as character strings: length,
bit_length, octet_length, position, substring.

In addition, it is possible to cast integral values to and from type bit. Some examples:

44::pit (10) 0000101100
44::pbit (3) 100

cast (44 as bit(12)) 111111010100
71110’ : :bit (4) : :integer 14

Note that casting to just “bit” means casting to bit (1), and so will deliver only the least significant
bit of the integer.

Note: Prior to PostgreSQL 8.0, casting an integer to bit (n) would copy the leftmost n bits of the
integer, whereas now it copies the rightmost n bits. Also, casting an integer to a bit string width
wider than the integer itself will sign-extend on the left.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional
SQL LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style
regular expressions. Aside from the basic “does this string match this pattern?” operators, functions
are available to extract or replace matching substrings and to split a string at matching locations.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LIKE expression returns true if the string matches the supplied pattern. (As expected, the
NOT LIKE expression returns false if LIKE returns true, and vice versa. An equivalent expression is
NOT (string LIKE pattern) )

If pattern does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for
(matches) any single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:

"abc’ LIKE ’"abc’ true
"abc’ LIKE "a%’ true
"abc’ LIKE '_b_ ' true
"abc’ LIKE ’c’ false

LIKE pattern matching always covers the entire string. Therefore, to match a sequence anywhere
within a string, the pattern must start and end with a percent sign.

165



Chapter 9. Functions and Operators

To match a literal underscore or percent sign without matching other characters, the respective char-
acter in pattern must be preceded by the escape character. The default escape character is the back-
slash but a different one can be selected by using the ESCAPE clause. To match the escape character
itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in an SQL statement (assuming escape string
syntax is used, see Section 4.1.2.1). Thus, writing a pattern that actually matches a literal backslash
means writing four backslashes in the statement. You can avoid this by selecting a different escape
character with ESCAPE; then a backslash is not special to LIKE anymore. (But backslash is still special
to the string literal parser, so you still need two of them to match a backslash.)

It’s also possible to select no escape character by writing ESCAPE ”. This effectively disables the
escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signs in the pattern.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to
the active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LIKE, and ~~ corresponds to ILIKE. There are also !~~ and
I ~~x operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are
PostgreSQL-specific.

9.7.2. stMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is similar to LIKE, except that it interprets the pattern using the SQL standard’s definition of a
regular expression. SQL regular expressions are a curious cross between LIKE notation and common
regular expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression behavior where the pattern can match any part of the string. Also
like LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any
string, respectively (these are comparable to . and . » in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

+ | denotes alternation (either of two alternatives).

« * denotes repetition of the previous item zero or more times.

+ + denotes repetition of the previous item one or more times.

» Parentheses () can be used to group items into a single logical item.

« A bracket expression [ .. .] specifies a character class, just as in POSIX regular expressions.

Notice that bounded repetition operators (? and { . . . }) are not provided, though they exist in POSIX.
Also, the period (.) is not a metacharacter.

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

Some examples:

166



Chapter 9. Functions and Operators

"abc’ SIMILAR TO ’abc’ true
"abc’ SIMILAR TO ’a’ false
"abc’ SIMILAR TO ’'%(bld)%’ true
"abc’ SIMILAR TO ' (blc)%’ false

The substring function with three parameters, substring(string from pattern for
escape-character), provides extraction of a substring that matches an SQL regular expression
pattern. As with SIMILAR TO, the specified pattern must match the entire data string, or else the
function fails and returns null. To indicate the part of the pattern that should be returned on success,
the pattern must contain two occurrences of the escape character followed by a double quote ("). The
text matching the portion of the pattern between these markers is returned.

Some examples, with #" delimiting the return string:

substring (' foobar’ from ’%$#"o_b#"%’ for ’'#’) oob
substring (' foobar’ from '#"o_b#"%’ for ’"#') NULL

9.7.3. POSIX Regular Expressions

Table 9-11 lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

Operator Description Example
~ Matches regular expression, "thomas’ ~ ' .xthomas.x’
case sensitive
~x Matches regular expression, "thomas’ ~x
case insensitive ’ .xThomas. '
I~ Does not match regular "thomas’ !~
expression, case sensitive " .xThomas. x’
[ Does not match regular ’thomas’ !~=
expression, case insensitive " .xvadim. x’

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular set). A string is said to match a regular expression if it is a member of the regular set described
by the regular expression. As with LIKE, pattern characters match string characters exactly unless
they are special characters in the regular expression language — but regular expressions use different
special characters than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

"abc’ ~ ’abc’ true
"abc’ ~ ’"a’ true
rabe’ ~ " (b|d)’ true

167




Chapter 9. Functions and Operators

rabc’ ~ """ (blc)’ false

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring (string from pattern), provides ex-
traction of a substring that matches a POSIX regular expression pattern. It returns null if there is no
match, otherwise the portion of the text that matched the pattern. But if the pattern contains any paren-
theses, the portion of the text that matched the first parenthesized subexpression (the one whose left
parenthesis comes first) is returned. You can put parentheses around the whole expression if you want
to use parentheses within it without triggering this exception. If you need parentheses in the pattern
before the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring (' foobar’ from ’"o0.b’) oob
substring (’ foobar’ from ’'o(.)b’) )

The regexp_replace function provides substitution of new text for substrings that match POSIX
regular expression patterns. It has the syntax regexp_replace(source, pattern, replacement
[, f1ags ]). The source string is returned unchanged if there is no match to the pattern. If there
is a match, the source string is returned with the replacement string substituted for the matching
substring. The replacement string can contain \ n, where n is 1 through 9, to indicate that the source
substring matching the n’th parenthesized subexpression of the pattern should be inserted, and it can
contain \ & to indicate that the substring matching the entire pattern should be inserted. Write \\ if you
need to put a literal backslash in the replacement text. (As always, remember to double backslashes
written in literal constant strings, assuming escape string syntax is used.) The f1ags parameter is an
optional text string containing zero or more single-letter flags that change the function’s behavior. Flag
i specifies case-insensitive matching, while flag g specifies replacement of each matching substring
rather than only the first one. Other supported flags are described in Table 9-19.

Some examples:

regexp_replace ('’ foobarbaz’, 'b..’, 'X’)

fooXbaz
regexp_replace (' foobarbaz’, 'b..’, X', 'g’)

fooXX
regexp_replace (' foobarbaz’, 'b(..)’, E’X\\1Y’, ’'g’)

fooXarYXazY

The regexp_matches function returns all of the captured substrings resulting from matching a
POSIX regular expression pattern. It has the syntax regexp_matches(string, pattern [, flags
]). If there is no match to the pattern, the function returns no rows. If there is a match, the function
returns a text array whose n’th element is the substring matching the n’th parenthesized subexpression
of the pattern (not counting “non-capturing” parentheses; see below for details). If the pattern does
not contain any parenthesized subexpressions, then the result is a single-element text array containing
the substring matching the whole pattern. The f1ags parameter is an optional text string containing
zero or more single-letter flags that change the function’s behavior. Flag g causes the function to find
each match in the string, not only the first one, and return a row for each such match. Other supported
flags are described in Table 9-19.

Some examples:

168



Chapter 9. Functions and Operators

SELECT regexp_matches (' foobarbequebaz’, ’ (bar) (beque)’);
regexp_matches

{bar, beque}
(1 row)

SELECT regexp_matches (' foobarbequebazilbarfbonk’, ' (b["bl+) (b["b]l+)’", 'g’);
regexp_matches

{bar,beque}
{bazil, barf}
(2 rows)

SELECT regexp_matches (’ foobarbequebaz’, ’"barbeque’);
regexp_matches

{barbeque}
(1 row)

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as
a delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags ]). If there is
no match to the pattern, the function returns the string. If there is at least one match, for each
match it returns the text from the end of the last match (or the beginning of the string) to the beginning
of the match. When there are no more matches, it returns the text from the end of the last match to the
end of the string. The f1ags parameter is an optional text string containing zero or more single-letter
flags that change the function’s behavior. regexp_split_to_table supports the flags described in
Table 9-19.

The regexp_split_to_array function behaves the same as regexp_split_to_table,
except that regexp_split_to_array returns its result as an array of text. It has the syntax
regexp_split_to_array(string, pattern [, flags ]). The parameters are the same as for
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table(’the quick brown fox jumped over the lazy dog’, E’
foo

quick
brown
fox
Jjumped
over
the
lazy
dog

(9 rows)

SELECT regexp_split_to_array(’the quick brown fox Jjumped over the lazy dog’, E’\\s+’);
regexp_split_to_array

{the, quick, brown, fox, jumped, over, the, lazy, dog}
(1 row)

SELECT foo FROM regexp_split_to_table(’the quick brown fox’, E’\\s*’) AS foo;

169



Chapter 9. Functions and Operators

6 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur
at the start or end of the string or immediately after a previous match. This is contrary to the strict
definition of regexp matching that is implemented by regexp_matches, but is usually the most
convenient behavior in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

PostgreSQL’s regular expressions are implemented using a software package written by Henry
Spencer. Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become
widely used due to their availability in programming languages such as Perl and Tcl. REs using these
non-POSIX extensions are called advanced REs or AREs in this documentation. AREs are almost an
exact superset of EREs, but BREs have several notational incompatibilities (as well as being much
more limited). We first describe the ARE and ERE forms, noting features that apply only to AREs,
and then describe how BREs differ.

Note: The form of regular expressions accepted by PostgreSQL can be chosen by setting the
regex_flavor run-time parameter. The usual setting is advanced, but one might choose extended
for backwards compatibility with pre-7.4 releases of PostgreSQL.

A regular expression is defined as one or more branches, separated by |. It matches anything that
matches one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the
first, followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches
a match for the atom. With a quantifier, it can match some number of matches of the atom. An atom
can be any of the possibilities shown in Table 9-12. The possible quantifiers and their meanings are
shown in Table 9-13.

170



Chapter 9. Functions and Operators

A constraint matches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it cannot be followed by a quantifier. The simple
constraints are shown in Table 9-14; some more constraints are described later.

Table 9-12. Regular Expression Atoms

Atom

Description

(re)

(where re is any regular expression) matches a
match for re, with the match noted for possible
reporting

(?:re)

as above, but the match is not noted for
reporting (a “non-capturing” set of parentheses)
(AREs only)

matches any single character

[chars]

a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

\k

(where k is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.g., \\ matches a backslash character

where c is alphanumeric (possibly followed by
other characters) is an escape, see Section
9.7.3.3 (AREs only; in EREs and BREs, this
matches c)

when followed by a character other than a digit,
matches the left-brace character {; when
followed by a digit, it is the beginning of a
bound (see below)

where x is a single character with no other

significance, matches that character

An RE cannot end with \.

Note: Remember that the backslash (\) already has a special meaning in PostgreSQL string
literals. To write a pattern constant that contains a backslash, you must write two backslashes in
the statement, assuming escape string syntax is used (see Section 4.1.2.1).

Table 9-13. Regular Expression Quantifiers

Quantifier

Matches

*

a sequence of 0 or more matches of the atom

+

a sequence of 1 or more matches of the atom

?

a sequence of 0 or 1 matches of the atom

{m}

a sequence of exactly m matches of the atom

{m, }

a sequence of m or more matches of the atom

{m, n}

a sequence of m through n (inclusive) matches
of the atom; m cannot exceed n

171



Chapter 9. Functions and Operators

Quantifier Matches

*? non-greedy version of x

+2 non-greedy version of +

?? non-greedy version of ?

{m}? non-greedy version of {m}

{m, }? non-greedy version of {m, }

{m, n}? non-greedy version of {m, n}

The forms using { ...} are known as bounds. The numbers m and n within a bound are unsigned

decimal integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their correspond-
ing normal (greedy) counterparts, but prefer the smallest number rather than the largest number of
matches. See Section 9.7.3.5 for more detail.

Note: A quantifier cannot immediately follow another quantifier, e.g., =« is invalid. A quantifier
cannot begin an expression or subexpression or follow ~ or |.

Table 9-14. Regular Expression Constraints

Constraint Description
~ matches at the beginning of the string
$ matches at the end of the string
(?=re) positive lookahead matches at any point where

a substring matching re begins (AREs only)

(?!re) negative lookahead matches at any point where
no substring matching re begins (AREs only)

Lookahead constraints cannot contain back references (see Section 9.7.3.3), and all parentheses within
them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character
from the list (but see below). If the list begins with ~, it matches any single character not from the
rest of the list. If two characters in the list are separated by -, this is shorthand for the full range
of characters between those two (inclusive) in the collating sequence, e.g., [0-9] in ASCII matches
any decimal digit. It is illegal for two ranges to share an endpoint, e.g., a—c—e. Ranges are very
collating-sequence-dependent, so portable programs should avoid relying on them.

To include a literal ] in the list, make it the first character (after ~, if that is used). To include a
literal —, make it the first or last character, or the second endpoint of a range. To use a literal - as
the first endpoint of a range, enclose it in [. and .] to make it a collating element (see below).
With the exception of these characters, some combinations using [ (see next paragraphs), and escapes
(AREs only), all other special characters lose their special significance within a bracket expression.
In particular, \ is not special when following ERE or BRE rules, though it is special (as introducing
an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that col-

172




Chapter 9. Functions and Operators

lates as if it were a single character, or a collating-sequence name for either) enclosed in [. and . ]
stands for the sequence of characters of that collating element. The sequence is treated as a single ele-
ment of the bracket expression’s list. This allows a bracket expression containing a multiple-character
collating element to match more than one character, e.g., if the collating sequence includes a ch
collating element, then the RE [ [.ch.]]*c matches the first five characters of chchcec.

Note: PostgreSQL currently does not support multi-character collating elements. This information
describes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, stand-
ing for the sequences of characters of all collating elements equivalent to that one, including itself. (If
there are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [ .
and . ].) For example, if o and ~ are the members of an equivalence class, then [ [=0=]1, [[="=]],
and [o~] are all synonymous. An equivalence class cannot be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list
of all characters belonging to that class. Standard character class names are: alnum, alpha, blank,
cntrl,digit, graph, lower, print, punct, space, upper, xdigit. These stand for the character
classes defined in ctype. A locale can provide others. A character class cannot be used as an endpoint
of a range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]1] and [[:>:]]
are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word characters that is neither preceded nor followed by word characters.
A word character is an alnum character (as defined by ctype) or an underscore. This is an extension,
compatible with but not specified by POSIX 1003.2, and should be used with caution in software in-
tended to be portable to other systems. The constraint escapes described below are usually preferable;
they are no more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes
come in several varieties: character entry, class shorthands, constraint escapes, and back references.
A\ followed by an alphanumeric character but not constituting a valid escape is illegal in AREs. In
EREs, there are no escapes: outside a bracket expression, a \ followed by an alphanumeric character
merely stands for that character as an ordinary character, and inside a bracket expression, \ is an
ordinary character. (The latter is the one actual incompatibility between EREs and ARE:s.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient char-
acters in REs. They are shown in Table 9-15.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9-16.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written
as an escape. They are shown in Table 9-17.

A back reference (\ n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9-18). For example, ([bc])\1 matches bb or cc but not bc
or cb. The subexpression must entirely precede the back reference in the RE. Subexpressions are
numbered in the order of their leading parentheses. Non-capturing parentheses do not define subex-
pressions.

173



Chapter 9. Functions and Operators

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern
as an SQL string constant. For example:

71237 ~ E’"\\d{3}’ true

Table 9-15. Regular Expression Character-Entry Escapes

Escape Description
\a alert (bell) character, as in C
\b backspace, as in C
\B synonym for backslash (\) to help reduce the
need for backslash doubling
\cX (where Xx is any character) the character whose
low-order 5 bits are the same as those of x, and
whose other bits are all zero
\e the character whose collating-sequence name is
ESC, or failing that, the character with octal
value 033
\f form feed, as in C
\n newline, as in C
\r carriage return, as in C
\t horizontal tab, as in C
\uwxyz (where wxyz is exactly four hexadecimal digits)
the UTF16 (Unicode, 16-bit) character U+wxyz
in the local byte ordering
\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal
digits) reserved for a hypothetical Unicode
extension to 32 bits
\v vertical tab, as in C
\xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
Oxhhh (a single character no matter how many
hexadecimal digits are used)
N¢ the character whose value is 0 (the null byte)
\xy (where xy is exactly two octal digits, and is not
a back reference) the character whose octal value
1S Oxy
\xyz (where xyz is exactly three octal digits, and is
not a back reference) the character whose octal
value is Oxyz

Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.

The character-entry escapes are always taken as ordinary characters. For example, \135 is ] in ASCII,
but \ 135 does not terminate a bracket expression.

174



Chapter 9. Functions and Operators

Table 9-16. Regular Expression Class-Shorthand Escapes

Escape Description

\d [[:digit:]]

\'s [[:space:]]

\w [[:alnum:]_] (note underscore is included)
\D [*[:digit:]]

\S [*[:space:]]

\W [~ [:alnum:]_] (note underscore is included)

Within bracket expressions, \d, \'s, and \w lose their outer brackets, and \D, \'s, and \w are illegal.
(So, for example, [a-c\d] is equivalent to [a-c[:digit:]]. Also, [a-c\D], which is equivalent

to [a-c”[:digit:]],isillegal.)

Table 9-17. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from )

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning
or end of a word

\2Z matches only at the end of the string (see
Section 9.7.3.5 for how this differs from $)

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are

illegal within bracket expressions.

Table 9-18. Regular Expression Back References

Escape Description

\m (where m is a nonzero digit) a back reference to
the m’th subexpression

\mnn (where m is a nonzero digit, and nn is some

more digits, and the decimal value mnn is not
greater than the number of closing capturing
parentheses seen so far) a back reference to the
mnn’th subexpression

Note: There is an inherent ambiguity between octal character-entry escapes and back references,
which is resolved by the following heuristics, as hinted at above. A leading zero always indicates
an octal escape. A single non-zero digit, not followed by another digit, is always taken as a back
reference. A multi-digit sequence not starting with a zero is taken as a back reference if it comes
after a suitable subexpression (i.e., the number is in the legal range for a back reference), and

otherwise is taken as octal.

175




Chapter 9. Functions and Operators

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syn-
tactic facilities available.

Normally the flavor of RE being used is determined by regex_flavor. However, this can be overrid-
den by a director prefix. If an RE begins with »xx :, the rest of the RE is taken as an ARE regardless
of regex_flavor. If an RE begins with =, the rest of the RE is taken to be a literal string, with
all characters considered ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously de-
termined options (including both the RE flavor and case sensitivity). The available option letters are
shown in Table 9-19.

Table 9-19. ARE Embedded-Option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator
type)

e rest of RE is an ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see Section
9.7.3.5)

a rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

W inverse partial newline-sensitive (“weird”)

matching (see Section 9.7.3.5)

x expanded syntax (see below)

Embedded options take effect at the ) terminating the sequence. They can appear only at the start of
an ARE (after the »»: director if any).

In addition to the usual (#ight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters
in the RE are ignored, as are all characters between a # and the following newline (or the end of the
RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that
basic rule:

« a white-space character or # preceded by \ is retained
« white space or # within a bracket expression is retained
« white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the

176



Chapter 9. Functions and Operators

space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (where ttt is any text not
containing a ) ) is a comment, completely ignored. Again, this is not allowed between the characters of
multi-character symbols, like (?:. Such comments are more a historical artifact than a useful facility,
and their use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial » » == director has specified that the user’s
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

« Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

+ Adding parentheses around an RE does not change its greediness.

« A quantified atom with a fixed-repetition quantifier ({m} or {m} ?) has the same greediness (possi-
bly none) as the atom itself.

+ A quantified atom with other normal quantifiers (including {m, n} with m equal to n) is greedy
(prefers longest match).

+ A quantified atom with a non-greedy quantifier (including {m, n} ? with m equal to n) is non-greedy
(prefers shortest match).

« A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

« An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done
in such a way that the branch, or whole RE, matches the longest or shortest possible substring as
a whole. Once the length of the entire match is determined, the part of it that matches any particu-
lar subexpression is determined on the basis of the greediness attribute of that subexpression, with
subexpressions starting earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRING (’XY12347Z’, 'Y= ([0-91{1,3})");
Result: 123

SELECT SUBSTRING (’/XY12347’, '"Yx?2([0-9]1{1,3})");
Result: 1

In the first case, the RE as a whole is greedy because v~ is greedy. It can match beginning at the v,
and it matches the longest possible string starting there, i.e., Y123. The output is the parenthesized
part of that, or 123. In the second case, the RE as a whole is non-greedy because Y2 is non-greedy.
It can match beginning at the v, and it matches the shortest possible string starting there, i.e., Y1. The

177



Chapter 9. Functions and Operators

subexpression [0-9] {1, 3} is greedy but it cannot change the decision as to the overall match length;
so it is forced to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed to
“eat” relative to each other.

The quantifiers {1,1} and {1, 1}? can be used to force greediness or non-greediness, respectively,
on a subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For example: bb* matches the three middle characters of abbbc;
(week |wee) (night |knights) matches all ten characters of weeknights; when (.«*).x is
matched against abc the parenthesized subexpression matches all three characters; and when (a«) *
is matched against bc both the whole RE and the parenthesized subexpression match an empty
string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.g., x becomes [xxX]. When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, e.g., [x] becomes [xx] and [~x] becomes [*xX].

If newline-sensitive matching is specified, . and bracket expressions using ~ will never match the
newline character (so that matches will never cross newlines unless the RE explicitly arranges it) and
~and $ will match the empty string after and before a newline respectively, in addition to matching at
beginning and end of string respectively. But the ARE escapes \a and \ z continue to match beginning
or end of string only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with
newline-sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, this affects ~ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn’t very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs in-
tended to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREs; the «x+ syntax of directors likewise is outside
the POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them
up, and a few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of
special treatment for a trailing newline, the addition of complemented bracket expressions to the
things affected by newline-sensitive matching, the restrictions on parentheses and back references in
lookahead constraints, and the longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4
releases of PostgreSQL:

178



Chapter 9. Functions and Operators

» In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

« In AREs, \ remains a special character within [], so a literal \ within a bracket expression must
be written \\.

While these differences are unlikely to create a problem for most applications, you can avoid them if
necessary by setting regex_flavor to extended.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, |, +, and 2 are ordinary characters and there
is no equivalent for their functionality. The delimiters for bounds are \ { and \}, with { and } by
themselves ordinary characters. The parentheses for nested subexpressions are \ ( and \), with ( and
) by themselves ordinary characters. ~ is an ordinary character except at the beginning of the RE or
the beginning of a parenthesized subexpression, $ is an ordinary character except at the end of the
RE or the end of a parenthesized subexpression, and « is an ordinary character if it appears at the
beginning of the RE or the beginning of a parenthesized subexpression (after a possible leading *).
Finally, single-digit back references are available, and \< and \> are synonyms for [[:<:]] and
[[:>:]] respectively; no other escapes are available in BREs.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. Table 9-20 lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that
defines the output or input format.

A single-argument to_t imestamp function is also available; it accepts a double precision argu-
ment and converts from Unix epoch (seconds since 1970-01-01 00:00:00+00) to t imestamp with
time zone. (Integer Unix epochs are implicitly cast to double precision.)

Table 9-20. Formatting Functions

Function Return Type Description Example
to_char (timestamp, text convert time stamp to to_char (current_timestamp,
text) string "HH12:MI:SS’)
to_char (interval, text convert interval to to_char (interval
text) string ’15h 2m 12s’,
"HH24 :MI:SS’)
to_char (int, text) |text convert integer to string | to_char (125,
79997)
to_char (double text convert real/double to_char(125.8::reall,
precision, text) precision to string "999D9")
to_char (numeric, text convert numeric to to_char (-125.8,
text) string 7999D99s")

179



Chapter 9. Functions and Operators

Function Return Type Description Example
to_date (text, text) |date convert string to date to_date (05 Dec 20007,
DD Mon YYYY')
to_number (text, numeric convert String to to_number ('12,454.8-",
text) numeric 799G999D9S")
to_timestamp (text, |timestamp with convert string to time to_timestamp (' 05 Dec 2000',
text) time zone stamp DD Mon YYYY')
to_timestamp (double |timestamp with convert Unix epochto |to_timestamp (1284352323)

precision) time zone

time stamp

In a to_char output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data based on the given value. Any text that is not a template pattern is simply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns
identify the values to be supplied by the input data string.

Table 9-21 shows the template patterns available for formatting date and time values.

Table 9-21. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

MS millisecond (000-999)

Us microsecond (000000-999999)
SSSS seconds past midnight (0-86399)

AM, am, PM Or pm

meridiem indicator (without periods)

A.M.,a.m.,P.M. Orp.m.

meridiem indicator (with periods)

Y,YYY year (4 and more digits) with comma
YYYY year (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

IYYY ISO year (4 and more digits)

IYY last 3 digits of ISO year

1Y last 2 digits of ISO year

I last digit of ISO year

BC, bc, AD Or ad

era indicator (without periods)

B.C.,b.c.,A.D.Ora.d.

era indicator (with periods)

MONTH full uppercase month name (blank-padded to 9
chars)
Month full capitalized month name (blank-padded to 9

chars)

180



Chapter 9. Functions and Operators

Pattern Description

month full lowercase month name (blank-padded to 9
chars)

MON abbreviated uppercase month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

mon abbreviated lowercase month name (3 chars in
English, localized lengths vary)

MM month number (01-12)

DAY full uppercase day name (blank-padded to 9
chars)

Day full capitalized day name (blank-padded to 9
chars)

day full lowercase day name (blank-padded to 9
chars)

DY abbreviated uppercase day name (3 chars in
English, localized lengths vary)

Dy abbreviated capitalized day name (3 chars in
English, localized lengths vary)

dy abbreviated lowercase day name (3 chars in
English, localized lengths vary)

DDD day of year (001-366)

IDDD ISO day of year (001-371; day 1 of the year is
Monday of the first ISO week.)

DD day of month (01-31)

D day of the week, Sunday(1) to Saturday(7)

ID ISO day of the week, Monday(1) to Sunday(7)

W week of month (1-5) (The first week starts on the
first day of the month.)

WW week number of year (1-53) (The first week
starts on the first day of the year.)

Iw ISO week number of year (01 - 53; the first
Thursday of the new year is in week 1.)

cc century (2 digits) (The twenty-first century starts
on 2001-01-01.)

J Julian Day (days since November 24, 4714 BC
at midnight)

Q quarter

RM month in uppercase Roman numerals (I-XII;
I=January)

rm month in lowercase Roman numerals (i-xii;
i=January)

TZ uppercase time-zone name

tz lowercase time-zone name

181




Chapter 9. Functions and Operators

Modifiers can be applied to any template pattern to alter its behavior. For example, FMMonth is the
Month pattern with the FM modifier. Table 9-22 shows the modifier patterns for date/time formatting.

Table 9-22. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example
FM prefix fill mode (suppress padding FMMonth
blanks and zeroes)
TH suffix uppercase ordinal number DDTH, e.g., 12TH
suffix
th suffix lowercase ordinal number suffix | DDth, e.g., 12th
FX prefix fixed format global option (see |FX Month DD Day

usage notes)

TM prefix translation mode (print TMMonth
localized day and month names
based on Ic_time)

SP suffix spell mode (not implemented) |DDSP

Usage notes for date/time formatting:

« FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output
of a pattern be fixed-width.

« TM does not include trailing blanks.

+ to_timestamp and to_date skip multiple blank spaces in the input string unless the Fx
option is used. For example, to_timestamp (2000 JUN’, 'YYYY MON’) works, but
to_timestamp (2000 JUN’, 'FXYYYY MON’) returns an error because to_timestamp
expects one space only. Fx must be specified as the first item in the template.

+ Ordinary text is allowed in to_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For
example, in ' "Hello Year "YYYY’,the YYYY will be replaced by the year data, but the single v
in Year will not be.

«+ If you want to have a double quote in the output you must precede it with a backslash, for exam-
ple E/\\"YYYY Month\\"’. (Two backslashes are necessary because the backslash has special
meaning when using the escape string syntax.)

« The vvYY conversion from string to timestamp or date has a restriction when processing
years with more than 4 digits. You must use some non-digit character or template after vYvy,
otherwise the year is always interpreted as 4 digits. For example (with the year 20000):
to_date (200001131”, ’YYyymvmpD’) will be interpreted as a 4-digit year; instead use
a non-digit separator after the year, like to_date(’20000-1131’, ’YYYY-MMDD’) oOr
to_date (Y 20000Nov31l’, ’"YYYYMonDD’).

+ In conversions from string to timestamp or date, the CC (century) field is ignored if there is a
YYY,YYYYOry,yyy field. If ccis used with YY or Y then the year is computed as (CC-1) x100+YY.

+ An ISO week date (as distinct from a Gregorian date) can be specified to to_timestamp and
to_date in one of two ways:

182



Chapter 9. Functions and Operators

+ Year, week, and weekday: for example to_date (1 2006-42-4’, ’IYYY-IW-ID’) returns the
date 2006-10-19. If you omit the weekday it is assumed to be 1 (Monday).

« Year and day of year: for example to_date(’2006-291’, 'IYYY-IDDD’) also returns
2006-10-19.

Attempting to construct a date using a mixture of ISO week and Gregorian date fields is nonsensical,
and will cause an error. In the context of an ISO year, the concept of a “month” or “day of month”
has no meaning. In the context of a Gregorian year, the ISO week has no meaning. Users should
avoid mixing Gregorian and ISO date specifications.

+ In a conversion from string to t imestamp, millisecond (MS) or microsecond (Us) values are used
as the seconds digits after the decimal point. For example to_timestamp (’12:37, ’SS:MS’)
is not 3 milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means
for the format ss:Ms, the input values 12:3, 12:30, and 12:300 specify the same number of
milliseconds. To get three milliseconds, one must use 12 : 003, which the conversion counts as 12
+0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp(’15:12:02.020.0012307,
"HH:MI:SS.MS.US’) is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.

+ to_char(..., "ID’")’s day of the week numbering matches the extract (* isodow’, ...)
function, but to_char (..., ’D’)’sdoes not match extract (“dow’, ...)’s day numbering.

+ to_char (interval) formats HH and HH12 as hours in a single day, while HH24 can output hours
exceeding a single day, e.g., >24.

Table 9-23 shows the template patterns available for formatting numeric values.

Table 9-23. Template Patterns for Numeric Formatting

Pattern Description

9 value with the specified number of digits

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number < 0)
PL plus sign in specified position (if number > 0)
SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)
THoOr th ordinal number suffix

\Y% shift specified number of digits (see notes)
EEEE scientific notation (not implemented)

Usage notes for numeric formatting:

183



Chapter 9. Functions and Operators

A sign formatted using SG, PL, or MI is not anchored to the number; for example, to_char (-12,
"MI9999’) produces ‘- 12’ but to_char(-12, ’59999’) produces © -12’. The Oracle
implementation does not allow the use of MI before 9, but rather requires that 9 precede MI.

9 results in a value with the same number of digits as there are 9s. If a digit is not available it
outputs a space.

TH does not convert values less than zero and does not convert fractional numbers.
PL, SG, and TH are PostgreSQL extensions.

v effectively multiplies the input values by 10~n, where n is the number of digits following v.
to_char does not support the use of v combined with a decimal point (e.g., 99.9vV99 is not
allowed).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FM9999 is
the 9999 pattern with the FM modifier. Table 9-24 shows the modifier patterns for numeric formatting.

Table 9-24. Template Pattern Modifiers for Numeric Formatting

Modifier Description Example

FM prefix fill mode (suppress padding FM9999
blanks and zeroes)

TH suffix uppercase ordinal number 999TH
suffix

th suffix lowercase ordinal number suffix | 999th

Table 9-25 shows some examples of the use of the to_char function.

Table 9-25. to_char Examples

Expression Result

to_char (current_timestamp, "Tuesday , 06 05:39:18’
"Day, DD HH12:MI:SS’)

to_char (current_timestamp, "Tuesday, 6 05:39:18"
"FMDay, FMDD HH12:MI:SS’)

to_char(-0.1, 799.99") ’ -.10"

to_char(-0.1, "FM9.99") r—.1r

to_char (0.1, 70.97) 0.1’

to_char (12, "9990999.9") ! 0012.0"

to_char (12, ’'FM9990999.9") r0012.7

to_char (485, ’79997") ! 485’

to_char (-485, 7999") ! -485'

to_char (485, 79 9 9') " 4 8 57

to_char (1485, '9,999") ' 1,485

to_char (1485, "9G999') 1 485’
to_char(148.5, 7999.999") 7 148.500"
to_char(148.5, 'FM999.999") 7148.57

184




Chapter 9. Functions and Operators

Expression Result
to_char(148.5, ’FM999.990") 148.500’
to_char (148.5, ’999D999’) 148,500

to_char(3148.5,

"9G999D999")

" 3 148,500’

to_char (=485, '999s’) " 485~

to_char (=485, "999MI’) " 485~

to_char (485, 7999MI’) "485

to_char (485, "FM999MI’) ' 4857

to_char (485, ’'PL999’) '+4857

to_char (485, ’SG999") " +485"

to_char (-485, 7SG999") " -485'

to_char (=485, ’9SG99') " 4-85"

to_char (-485, "999PR’) ! <485>

to_char (485, ’'L999") DM 485

to_char (485, ’'RN’) ’ CDLXXXV'
to_char (485, ’'FMRN’) " CDLXXXV'

to_char (5.2, ’'FMRN’) rv’

to_char (482, 7999th’) " 482nd’

to_char (485, ’'"Good number:"999’) "Good number: 4857
to_char (485.8, "Pre: 485 Post: .800’
""Pre:"999" Post:" .9997)

to_char (12, 799v999") r 120007
to_char(12.4, "99v999') r 12400
to_char(12.45, ’"99V9’) r 1257

9.9. Date/Time Functions and Operators

Table 9-27 shows the available functions for date/time value processing, with details appearing in
the following subsections. Table 9-26 illustrates the behaviors of the basic arithmetic operators (+,
+, etc.). For formatting functions, refer to Section 9.8. You should be familiar with the background
information on date/time data types from Section 8.5.

All the functions and operators described below that take t ime or t imestamp inputs actually come
in two variants: one that takes time with time zone or timestamp with time zone, and one
that takes time without time zone Or timestamp without time zone. For brevity, these
variants are not shown separately. Also, the + and » operators come in commutative pairs (for ex-
ample both date + integer and integer + date); we show only one of each such pair.

Table 9-26. Date/Time Operators

Operator Example Result

+ date 72001-09-28" + date ’2001-10-05"
integer 7’

+ date 72001-09-28" + timestamp "2001-09-28
interval ’1 hour’ 01:00:00"

185




Chapter 9. Functions and Operators

Operator Example Result

+ date 72001-09-28" + timestamp "2001-09-28
time 703:00’ 03:00:00"

+ interval 'l day’ + interval ’'1 day
interval ’1 hour’ 01:00:00"

+ timestamp "2001-09-28 timestamp "2001-09-29
01:00" + interval ’23 00:00:00"
hours’

+ time ’01:00’" + interval |time "04:00:00"
"3 hours’

- - interval ’23 hours’ interval "-23:00:00"

- date ’2001-10-01" - integer '3’ (days)
date "2001-09-28"

- date "2001-10-01" - date 72001-09-24"
integer "7’

- date 72001-09-28" - timestamp "2001-09-27
interval '1 hour’ 23:00:00"

- time ’05:00’ - time interval "02:00:00"
03:00"

- time ’05:00" - interval |time ’"03:00:00'
"2 hours’

- timestamp ’2001-09-28 timestamp ’2001-09-28
23:00” - interval ’23 00:00:00"
hours’

- interval '1 day’ - interval ’'1 day
interval ’1 hour’ -01:00:00"

- timestamp "2001-09-29 interval ’'1 day
03:00" - timestamp 15:00:00"
72001-09-27 12:00"

* 900 » interval 1 interval "00:15:00”
second’

* 21 = interval ’'1 day’ interval 721 days’

* double precision ’3.5’ interval 703:30:00'
* interval ’1 hour’

/ interval ’1 hour’ / interval "00:40:00"

double precision 1.5’

Table 9-27. Date/Time Functions

Function Return Type Description Example Result

age (timestamp, Subtract age (timestamp |43 years 9

timestamp) arguments, r2001-04-10", mons 27 days
producing a timestamp

that uses years
and months

“symbolic” result |’1957-06-13")

186




Chapter 9. Functions and Operators

Function Return Type Description Example Result
age (timestamp) |interval Subtract from age (timestamp |43 years 8
current_date r1957-06-13") mons 3 days
(at midnight)
clock_timestamp ()t imestamp Current date and
with time time (changes
zone during statement
execution); see
Section 9.9.4
current_date date Current date; see
Section 9.9.4
current_time time with Current time of
time zone day; see Section

9.94

current_timestampt imestamp

with time

Current date and
time (start of

zone current
transaction); see
Section 9.9.4
date_part (text, |double Get subfield date_part (" hour29
timestamp) precision (equivalent to timestamp
extract); see r2001-02-16
Section 9.9.1 20:38:40")
date_part (text, |double Get subfield date_part (' montRB’,
interval) precision (equivalent to interval ’2
extract); see years 3
Section 9.9.1 months”’)
date_trunc (text,|timestamp Truncate to date_trunc (' hou20p1-02-16
timestamp) speciﬁed timestamp 20:00:00
precision; see also | Y 2001-02-16
Section 9.9.2 20:38:40")
extract (field double Get subfield; see |extract (hour 20
from precision Section 9.9.1 from
timestamp) timestamp
72001-02-16
20:38:40")
extract (field double Get subfield; see |extract (month |3
from interval) |precision Section 9.9.1 from interval
"2 years 3
months’)
isfinite (date) boolean Test for finite date | isfinite (date |true

(not +/-infinity)

72001-02-16")

isfinite (timestagnpjolean

Test for finite time
stamp (not
+/-infinity)

isfinite (timestéampe

72001-02-16
21:28:30")

isfinite (intervaljoolean

Test for finite
interval

isfinite (intervyatue

"4 hours’)

187




Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

Jjustify_days (int]

einvbéyval

Adjust interval so
30-day time
periods are
represented as
months

Justify_days (i

35 days’)

ntemwvalb days

Justify_hours (in

tiertvetyal

Adjust interval so
24-hour time
periods are
represented as
days

justify_hours (

27 hours’)

ihtdayal
03:00:00

justify_interval

(imtervall)

Adjust interval
using
Justify_days
and
justify_hours,
with additional
sign adjustments

Jjustify_interv
"1l mon -1

hour’)

n29idagsval
23:00:00

localtime

time

Current time of
day; see Section
994

localtimestamp

timestamp

Current date and
time (start of
current
transaction); see
Section 9.9.4

now ()

timestamp

with time

Current date and
time (start of

with time

zone

zone current
transaction); see
Section 9.9.4
statement_timestlmpni¢stamp Current date and

time (start of
current
statement); see
Section 9.9.4

timeofday ()

text

Current date and
time (like
clock_timestamj
but as a text
string); see

Section 9.9.4

transaction_time

stamp $f amp
with time

zone

Current date and
time (start of
current
transaction); see

Section 9.9.4

In addition to these functions, the SQL OVERLAPS operator is supported:

188




Chapter 9. Functions and Operators

(startl, endl) OVERLAPS (start2, end2)
(startl, lengthl) OVERLAPS (start2, length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when
they do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a
date, time, or time stamp followed by an interval.

SELECT (DATE ’2001-02-16’, DATE ’2001-12-21") OVERLAPS
(DATE "2001-10-30", DATE ’2002-10-307");

Result: true

SELECT (DATE ’2001-02-16’, INTERVAL ’100 days’) OVERLAPS
(DATE "2001-10-30’, DATE ’'2002-10-30");

Result: false

When adding an interval value to (or subtracting an interval value from) a timestamp with
time zone value, the days component advances (or decrements) the date of the timestamp with
time zone by the indicated number of days. Across daylight saving time changes (with the
session time zone set to a time zone that recognizes DST), this means interval 1 day’ does
not necessarily equal interval ‘24 hours’. For example, with the session time zone set to
CST7CDT, timestamp with time zone ’2005-04-02 12:00-07’ + interval ’'1 day’
will produce t imestamp with time zone ’2005-04-03 12:00-06’, while adding interval
’24 hours’ to the same initial timestamp with time zone produces timestamp with time
zone ’2005-04-03 13:00-06", as there is a change in daylight saving time at 2005-04-03
02:00 in time zone CST7CDT.

Note there can be ambiguity in the months returned by age because different months have a different
number of days. PostgreSQL’s approach uses the month from the earlier of the two dates when cal-
culating partial months. For example, age (1 2004-06-01’, "2004-04-30") uses April to yield 1
mon 1 day, while using May would yield 1 mon 2 days because May has 31 days, while April
has only 30.

9.9.1. EXTRACT, date_part

EXTRACT (field FROM source)

The extract function retrieves subfields such as year or hour from date/time values. source must
be a value expression of type t imestamp, time, or interval. (Expressions of type date are cast to
timestamp and can therefore be used as well.) field is an identifier or string that selects what field
to extract from the source value. The extract function returns values of type double precision.
The following are valid field names:

century

The century

SELECT EXTRACT (CENTURY FROM TIMESTAMP ’'2000-12-16 12:21:13");
Result: 20
SELECT EXTRACT (CENTURY FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time.
This definition applies to all Gregorian calendar countries. There is no century number 0, you
go from -1 century to 1 century. If you disagree with this, please write your complaint to: Pope,
Cathedral Saint-Peter of Roma, Vatican.

189



Chapter 9. Functions and Operators
PostgreSQL releases before 8.0 did not follow the conventional numbering of centuries, but just
returned the year field divided by 100.
day
The day (of the month) field (1 - 31)

SELECT EXTRACT (DAY FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 16

decade
The year field divided by 10

SELECT EXTRACT (DECADE FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 200

dow
The day of the week as Sunday(0) to Saturday(6)

SELECT EXTRACT (DOW FROM TIMESTAMP ’2001-02-16 20:38:40");

Result: 5
Note that extract’s day of the week numbering differs from that of the to_char (..., ’D’)
function.

doy
The day of the year (1 - 365/366)

SELECT EXTRACT (DOY FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 47

epoch

For date and timestamp values, the number of seconds since 1970-01-01 00:00:00 UTC (can
be negative); for interval values, the total number of seconds in the interval

SELECT EXTRACT (EPOCH FROM TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-08');

Result: 982384720

SELECT EXTRACT (EPOCH FROM INTERVAL ’5 days 3 hours’);

Result: 442800

Here is how you can convert an epoch value back to a time stamp:

SELECT TIMESTAMP WITH TIME ZONE ’epoch’ + 982384720 x INTERVAL ’1 second’;
hour

The hour field (0 - 23)

SELECT EXTRACT (HOUR FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 20

isodow

The day of the week as Monday(1) to Sunday(7)

SELECT EXTRACT (ISODOW FROM TIMESTAMP ’'2001-02-18 20:38:40");
Result: 7

This is identical to dow except for Sunday. This matches the ISO 8601 day of the week number-
ing.

190



Chapter 9. Functions and Operators

isoyear
The ISO 8601 year that the date falls in (not applicable to intervals)

SELECT EXTRACT (ISOYEAR FROM DATE ’'2006-01-01");
Result: 2005
SELECT EXTRACT (ISOYEAR FROM DATE ’'2006-01-02");
Result: 2006

Each ISO year begins with the Monday of the week containing the 4th of January, so in early
January or late December the ISO year may be different from the Gregorian year. See the week
field for more information.

This field is not available in PostgreSQL releases prior to 8.3.
microseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full
seconds

SELECT EXTRACT (MICROSECONDS FROM TIME "17:12:28.5");
Result: 28500000

millennium
The millennium

SELECT EXTRACT (MILLENNIUM FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 3

Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.

PostgreSQL releases before 8.0 did not follow the conventional numbering of millennia, but just
returned the year field divided by 1000.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full
seconds.

SELECT EXTRACT (MILLISECONDS FROM TIME "17:12:28.5");
Result: 28500

minute
The minutes field (0 - 59)

SELECT EXTRACT (MINUTE FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 38

month

For t imestamp values, the number of the month within the year (1 - 12) ; for interval values
the number of months, modulo 12 (0 - 11)

SELECT EXTRACT (MONTH FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 2

SELECT EXTRACT (MONTH FROM INTERVAL ’2 years 3 months’);
Result: 3

SELECT EXTRACT (MONTH FROM INTERVAL ’2 years 13 months’);
Result: 1

191



Chapter 9. Functions and Operators

quarter

The quarter of the year (1 - 4) that the date is in

SELECT EXTRACT (QUARTER FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 1

second
The seconds field, including fractional parts (0 - 59")
SELECT EXTRACT (SECOND FROM TIMESTAMP ’2001-02-16 20:38:407);
Result: 40
SELECT EXTRACT (SECOND FROM TIME '17:12:28.5");
Result: 28.5

timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones
east of UTC, negative values to zones west of UTC.

timezone_hour

The hour component of the time zone offset
timezone_minute

The minute component of the time zone offset
week

The number of the week of the year that the day is in. By definition (ISO 8601), the first week of
a year contains January 4 of that year. (The ISO-8601 week starts on Monday.) In other words,
the first Thursday of a year is in week 1 of that year.

Because of this, it is possible for early January dates to be part of the 52nd or 53rd week
of the previous year. For example, 2005-01-01 is part of the 53rd week of year 2004, and
2006-01-01 is part of the 52nd week of year 2005.

SELECT EXTRACT (WEEK FROM TIMESTAMP ’2001-02-16 20:38:407);
Result: 7

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be
done with care.

SELECT EXTRACT (YEAR FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 2001

The extract function is primarily intended for computational processing. For formatting date/time
values for display, see Section 9.8.

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract:

date_part (' field’, source)

Note that here the field parameter needs to be a string value, not a name. The valid field names for
date_part are the same as for extract.

SELECT date_part (‘day’, TIMESTAMP ’2001-02-16 20:38:40");

60 if leap seconds are implemented by the operating system

192



Chapter 9. Functions and Operators
Result: 16

SELECT date_part ("hour’, INTERVAL "4 hours 3 minutes’);
Result: 4

9.9.2. date_trunc

The function date_trunc is conceptually similar to the t runc function for numbers.

date_trunc ('’ field’, source)

source is a value expression of type t imestamp or interval. (Values of type date and time are
cast automatically to timestamp or interval, respectively.) field selects to which precision to
truncate the input value. The return value is of type t imestamp or interval with all fields that are
less significant than the selected one set to zero (or one, for day and month).

Valid values for field are:

microseconds
milliseconds
second
minute

hour

day

week

month
quarter

year

decade
century

millennium

Examples:

SELECT date_trunc (’hour’, TIMESTAMP ’'2001-02-16 20:38:40");
Result: 2001-02-16 20:00:00

SELECT date_trunc(’year’, TIMESTAMP ’'2001-02-16 20:38:40");
Result: 2001-01-01 00:00:00

9.9.3. AT TIME ZONE

The AT TIME ZONE construct allows conversions of time stamps to different time zones. Table 9-28
shows its variants.

193



Chapter 9. Functions and Operators

Expression Return Type Description

Table 9-28. AT TIME ZONE Variants

Expression Return Type Description
timestamp without time timestamp with time Treat given time stamp without
zone AT TIME ZONE zone zone time zone as located in the

specified time zone

timestamp with time zone |timestamp without time |Convert given time stamp with
AT TIME ZONE zone zone time zone to the new time zone,
with no time zone designation

time with time zone AT time with time zone Convert given time with time
TIME ZONE zone zone to the new time zone

In these expressions, the desired time zone zone can be specified either as a text string (e.g., ' PST’ )
or as an interval (e.g., INTERVAL ’-08:00"). In the text case, a time zone name can be specified in
any of the ways described in Section 8.5.3.

Examples (assuming the local time zone is PST8PDT):

SELECT TIMESTAMP ’'2001-02-16 20:38:40’ AT TIME ZONE ’'MST’;
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-05" AT TIME ZONE ’MST’;
Result: 2001-02-16 18:38:40

The first example takes a time stamp without time zone and interprets it as MST time (UTC-7), which
is then converted to PST (UTC-8) for display. The second example takes a time stamp specified in
EST (UTC-5) and converts it to local time in MST (UTC-7).

The function timezone (zone, timestamp) is equivalent to the SQL-conforming construct
timestamp AT TIME ZONE zone.

9.9.4. Current Date/Time

PostgreSQL provides a number of functions that return values related to the current date and time.
These SQL-standard functions all return values based on the start time of the current transaction:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP (precision)
LOCALTIME

LOCALTIMESTAMP

LOCALTIME (precision)
LOCALTIMESTAMP (precision)

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and
LOCALTIMESTAMP deliver values without time zone.

194



Chapter 9. Functions and Operators

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally take a
precision parameter, which causes the result to be rounded to that many fractional digits in the seconds
field. Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP (2) ;
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. This is considered a feature: the intent is to allow a single transaction to have a
consistent notion of the “current” time, so that multiple modifications within the same transaction
bear the same time stamp.

Note: Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the
actual current time at the instant the function is called. The complete list of non-SQL-standard time
functions is:

transaction_timestamp ()
statement_timestamp ()
clock_timestamp ()
timeofday ()

now ()

transaction_timestamp() 1S equivalent to CURRENT_TIMESTAMP, but is named to
clearly reflect what it returns. statement_timestamp () returns the start time of the current
statement (more specifically, the time of receipt of the latest command message from the
client). statement_timestamp () and transaction_timestamp () return the same value
during the first command of a transaction, but might differ during subsequent commands.
clock_timestamp () returns the actual current time, and therefore its value changes even
within a single SQL command. timeofday () is a historical PostgreSQL function. Like
clock_timestamp (), it returns the actual current time, but as a formatted text string rather
than a timestamp with time zone value. now() is a traditional PostgreSQL equivalent to
transaction_timestamp ().

All the date/time data types also accept the special literal value now to specify the current date and
time (again, interpreted as the transaction start time). Thus, the following three all return the same
result:

195



Chapter 9. Functions and Operators

SELECT CURRENT_TIMESTAMP;
SELECT now () ;
SELECT TIMESTAMP ’'now’; —-- incorrect for use with DEFAULT

Tip: You do not want to use the third form when specifying a pErauLT clause while creating a
table. The system will convert now to a timestamp as soon as the constant is parsed, so that
when the default value is needed, the time of the table creation would be used! The first two
forms will not be evaluated until the default value is used, because they are function calls. Thus
they will give the desired behavior of defaulting to the time of row insertion.

9.9.5. Delaying Execution

The following function is available to delay execution of the server process:
pg_sleep (seconds)

pg_sleep makes the current session’s process sleep until seconds seconds have elapsed. seconds
is a value of type double precision, so fractional-second delays can be specified. For example:

SELECT pg_sleep(l.5);

Note: The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common
value. The sleep delay will be at least as long as specified. It might be longer depending on factors
such as server load.

Warning

Make sure that your session does not hold more locks than necessary when
calling pg_s1leep. Otherwise other sessions might have to wait for your sleeping
process, slowing down the entire system.

9.10. Enum Support Functions

For enum types (described in Section 8.7), there are several functions that allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9-29. The examples
assume an enum type created as:

CREATE TYPE rainbow AS ENUM (’red’, ’orange’, ’yellow’, ’green’, ’blue’, ’'purple’);

Table 9-29. Enum Support Functions

196



Chapter 9. Functions and Operators

Function

Description

Example

Example Result

enum_first (anyenum

)Returns the first value
of the input enum type

enum_first (null::r

pratow)

enum_last (anyenum)

Returns the last value
of the input enum type

enum_last (null::ra

yoioop) e

enum_range (anyenum

)Returns all values of
the input enum type in
an ordered array

enum_range (null::r

pinddwdrange, yellow

ygreen,blue, p

enum_range (anyenum

anyenum)

, Returns the range
between the two given
enum values, as an
ordered array. The
values must be from
the same enum type. If
the first parameter is
null, the result will
start with the first value
of the enum type. If the
second parameter is
null, the result will end
with the last value of
the enum type.

enum_range (' orange

"green’ : :rainbow)

! foradgdowellow, gre

en}

enum_range (NULL,

"green’ : :rainbow)

{red, orange, yellow

, green}

enum_range (' orange
NULL)

" foradgdowellow, gre

en,blue, purpl

Notice that except for the two-argument form of enum_range, these functions disregard the specific
value passed to them; they care only about its declared data type. Either null or a specific value of
the type can be passed, with the same result. It is more common to apply these functions to a table
column or function argument than to a hardwired type name as suggested by the examples.

9.11. Geometric Functions and Operators

The geometric types point, box, 1seq, line, path, polygon, and circle have alarge set of native
support functions and operators, shown in Table 9-30, Table 9-31, and Table 9-32.

Caution

Note that the “same as” operator, ~=, represents the usual notion of equality for
the point, box, polygon, and circle types. Some of these types also have an
= operator, but = compares for equal areas only. The other scalar comparison
operators (<= and so on) likewise compare areas for these types.

Table 9-30. Geometric Operators

Operator Description Example

+ Translation box ’ ((0,0), (1,1))" +
point ' (2.0,0)"

- Translation box 7 ((0,0), (1,1))" -
point " (2.0,0)"

197



Chapter 9. Functions and Operators

Operator Description Example

* Scaling/rotation box ' ((0,0),(1,1))" =
point " (2.0,0)’

/ Scaling/rotation box ' ((0,0),(2,2))" /
point " (2.0,0)’

# Point or box of intersection T((1,-1), (-1,1))" #
T((1,1), (-1,-1))"

# Number of points in path or #

Ixﬂygon "((1,0),(0,1),(-1,0))"

e-@ Length or circumference @-@ path
" ((0,0),(1,0))"

ee Center @@ circle ' ((0,0),10)"

## Closest point to first operand on | point ' (0,0)’ ## lseg

second operand " ((2,0),(0,2))"

<-> Distance between circle 7 ((0,0),1)" <->
circle 7 ((5,0),1)"

&6& Overlaps? box 7 ((0,0), (1,1))’ s&&
box " ((0,0), (2,2))"

<< Is strictly left of? circle 7 ((0,0),1)" <<
circle ' ((5,0),1)"

>> Is strictly right of? circle 7 ((5,0),1)" >>
circle 7 ((0,0),1)"

&< Does not extend to the right of? |box ’ ((0,0), (1,1))" &<
box " ((0,0), (2,2))"

&> Does not extend to the left of? |box ’ ((0,0), (3,3))’ &>
box ' ((0,0),(2,2))’

<< | Is strictly below? box ' ((0,0),(3,3))" <<|
box " ((3,4), (5,5))"

[ >> Is strictly above? box ' ((3,4),(5,5))" |>>
box " ((0,0), (3,3))’

&< | Does not extend above? box ' ((0,0), (1,1))’" &<|
box " ((0,0), (2,2))"

| &> Does not extend below? box ' ((0,0),(3,3))" |&>
box " ((0,0), (2,2))"

< Is below (allows touching)? circle 7 ((0,0),1)" <»
circle ’ ((0,5),1)"

>n Is above (allows touching)? circle 7 ((0,5),1)" >~
circle ' ((0,0),1)’

24 Intersects? lseg " ((=1,0),(1,0))"

?# box
" ((=2,-2),(2,2))"

Is horizontal?

?— lseg
" ((=1,0),(1,0))"

Are horizontally aligned?

point ' (1,0)’ 7?- point
' (0,0)

?

Is vertical?

?| lseg
" ((=1,0),(1,0))"

198




Chapter 9. Functions and Operators

Operator Description Example

2 Are vertically aligned? point ' (0,1)’ ?| point
' (0,0)"

- Is perpendicular? lseg ' ((0,0), (0,1))"
?-| lseg
" ((0,0),(1,0))"

21 | Are parallel? lseg ' ((=1,0),(1,0))"
211 lseg
f((=1,2),(1,2))"

@> Contains? circle 7 ((0,0),2)" @>
point " (1,1)’

<@ Contained in or on? point ' (1,1)’ <@ circle

" ((0,0),2)"

Same as?

polygon ’ ((0,0), (1,1))"
~= polygon

" ((1,1),(0,0))"

Note: Before PostgreSQL 8.2, the containment operators @> and <e were respectively called ~
and e. These names are still available, but are deprecated and will eventually be removed.

Table 9-31. Geometric Functions

Function Return Type Description Example
area (object) double precision area area (box

" ((0,0),(1,1))")
center (object) point center center (box

" ((0,0),(1,2))")

diameter (circle)

double precision

diameter of circle

diameter (circle
" ((0,0),2.0)")

height (box)

double precision

vertical size of box

height (box
" ((0,0),(1,1))")

isclosed (path) boolean a closed path? isclosed (path
" ((0,0),(1,1),(2,0
isopen (path) boolean an open path? isopen (path

"1(0,0),(1,1),(2,0

) 17)

length (object)

double precision

length

length (path
"((=1,0),(1,0))")

) 17)

npoints (path) int number of points npoints (path
"[(0,0),(1,1), (2,0
npoints (polygon) int number of points npoints (polygon

"((1,1),(0,0))")

199



Chapter 9. Functions and Operators

) 17)

Function Return Type Description Example

pclose (path) path convert path to closed |pclose (path
"[(0,0),(1,1),(2,0

popen (path) path convertpaﬂ1u>0pen popen (path

" ((0,0),(1,1),(2,0

) ")

radius (circle)

double precision

radius of circle

radius (circle
"((0,0),2.0)")

width (box)

double precision

horizontal size of box

width (box
" ((0,0),(1,1))")

Table 9-32. Geometric Type Conversion Functions

) ")

) ")

D)) ")

Function Return Type Description Example
box (circle) box circle to box box (circle
"((0,0),2.0)")
box (point, point) box points to box box (point
"(0,0)’, point
"(1,1)")
box (polygon) box polygon to box box (polygon
"((0,0),(1,1),(2,0
circle (box) circle box to circle circle (box
" ((0,0),(1,1))")
circle (point, circle center and radius to circle (point
double precision) circle "(0,0)", 2.0)
circle (polygon) circle polygon to circle circle (polygon
"((0,0),(1,1), (2,0
1seg (box) lseg box diagonal to line lseg (box
segment " ((=1,0),(1,0)0)")
lseg (point, point) |lseg points to line segment | l1seg (point
"(-1,0)", point
'(1,0)")
path (polygon) point polygon to path path (polygon
"((0,0),(1,1), (2,0
point (double point construct point point (23.4,
precision, double -44.5)
precision)
point (box) point center of box point (box
" ((-1,0),(1,0))")
point (circle) point center of circle point (circle
" ((0,0),2.0)")
point (1seg) point center of line segment |point (lseg

"((=1,0),(1,0))")

200



Chapter 9. Functions and Operators

Function Return Type Description Example

point (polygon) point center of polygon point (polygon
"((0,0),(1,1),(2,0))")

polygon (box) polygon box to 4-point polygon |polygon (box
" ((0,0),(1,1))")
polygon (circle) polygon circle to 12-point polygon (circle
polygon 7((0,0),2.0)")
polygon (npts, polygon circle to npts-point polygon (12,
circle) polygon circle

" ((0,0),2.0)")

polygon (path) polygon path to polygon polygon (path
" ((0,0),(1,1),(2,0))")

It is possible to access the two component numbers of a point as though the point were an array with
indexes 0 and 1. For example, if t . p iS a point column then SELECT p[0] FROM t retrieves the X
coordinate and UPDATE t SET p[l1] = ... changesthe Y coordinate. In the same way, a value of
type box or 1seg can be treated as an array of two point values.

The area function works for the types box, circle, and path. The area function only
works on the path data type if the points in the path are non-intersecting. For example,
the path "((0,0),(0,1),(2,1),(2,2),(1,2),(1,0), (0,0))" ::PATH
will not work; however, the following visually identical path
7 ((0,0),(0,1),(1,1),(1,2),(2,2),(2,1),(1,1),(1,0), (0,0))”::PATH will work. If
the concept of an intersecting versus non-intersecting path is confusing, draw both of the above
paths side by side on a piece of graph paper.

9.12. Network Address Functions and Operators

Table 9-33 shows the operators available for the cidr and inet types. The operators <<, <<=,
>>, and >>= test for subnet inclusion. They consider only the network parts of the two addresses
(ignoring any host part) and determine whether one network is identical to or a subnet of the other.

Table 9-33. cidr and inet Operators

Operator Description Example

< is less than inet 7192.168.1.5" <
inet 7192.168.1.6'

<= is less than or equal inet 7192.168.1.5" <=
inet 7192.168.1.5"

= equals inet 7192.168.1.5" =
inet 7192.168.1.5"

>= is greater or equal inet 7192.168.1.5" >=
inet 7192.168.1.5'

> is greater than inet 7192.168.1.5" >
inet 7192.168.1.4'

201



Chapter 9. Functions and Operators

Operator Description Example

<> is not equal inet 7192.168.1.5" <>
inet 7192.168.1.4"

<< is contained within inet 7192.168.1.5" <<
inet 7192.168.1/24'

<<= is contained within or equals inet 7192.168.1/24" <<=
inet 7192.168.1/24'

>> contains inet 7192.168.1/247 >>
inet 7192.168.1.5'

>>= contains or equals inet 7192.168.1/24" >>=
inet 7192.168.1/24’

~ bitwise NOT ~ inet 7192.168.1.6’

& bitwise AND inet 7192.168.1.6" &
inet 70.0.0.255"

bitwise OR inet 7192.168.1.6" |

inet 70.0.0.255"

+ addition inet 7192.168.1.6" + 25

- subtraction inet 7192.168.1.43" -
36

- subtraction inet 7192.168.1.43" -
inet 7192.168.1.19'

Table 9-34 shows the functions available for use with the cidr and inet types. The abbrev, host,
and text functions are primarily intended to offer alternative display formats.

Table 9-34. cidr and inet Functions

P4

Function Return Type Description Example Result

abbrev (inet) text abbreviated abbrev (inet 10.1.0.0/16
display formatas |’10.1.0.0/16")
text

abbrev (cidr) text abbreviated abbrev (cidr 10.1/16
display formatas |710.1.0.0/16")
text

broadcast (inet) |inet broadcast address |broadcast (1192,168.168/24255/}
for network

family (inet) int extract family of |family(’::1") |6
address; 4 for
IPv4, 6 for IPv6

host (inet) text extract IP address |host (7192.168.11922468.1.5
as text

hostmask (inet) inet construct host hostmask (7192.168028.30/30")
mask for network

masklen (inet) int extract netmask masklen (/192.16841.5/24")
length

netmask (inet) inet construct netmask | netmask (/192.16855.3%24255.0

for network

202



Chapter 9. Functions and Operators

Function Return Type Description Example Result

network (inet) cidr extract network network (192.16892.5%56841)0/24
part of address

set_masklen (inet|,inet set netmask length | set_masklen (’ 192926868.%5/3416%
int) for inet value 16)
set_masklen (cidd,cidr set netmask length | set_masklen(’192926868.0/R416;cidr,
int) for cidr value 16)
text (inet) text extract IP address |text (inet 192.168.1.5/32
and netmask 7192.168.1.5")

length as text

Any cidr value can be cast to inet implicitly or explicitly; therefore, the functions shown above
as operating on inet also work on cidr values. (Where there are separate functions for inet and
cidr, it is because the behavior should be different for the two cases.) Also, it is permitted to cast
an inet value to cidr. When this is done, any bits to the right of the netmask are silently zeroed to
create a valid cidr value. In addition, you can cast a text value to inet or cidr using normal casting
syntax: for example, inet (expression) O colname: :cidr.

Table 9-35 shows the functions available for use with the macaddr type. The function
trunc (macaddr) returns a MAC address with the last 3 bytes set to zero. This can be used to
associate the remaining prefix with a manufacturer.

Table 9-35. macaddr Functions

Function Return Type Description Example Result
trunc (macaddr) |macaddr set last 3 bytes to | trunc (macaddr |[12:34:56:00:00:00
Zero "12:34:56:78:90:ab")

The macaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical
ordering.

9.13. Text Search Functions and Operators

Table 9-36, Table 9-37 and Table 9-38 summarize the functions and operators that are provided for
full text searching. See Chapter 12 for a detailed explanation of PostgreSQL’s text search facility.

Table 9-36. Text Search Operators

Operator Description Example Result
Q@ tsvector matches to_tsvector (’ fat t
tsquery ? cats ate rats’)
Qe

to_tsquery (' cat &
rat’)

203



Chapter 9. Functions and Operators

in ?

"cat &

rat’ ::tsquery

Operator Description Example Result
eee deprecated synonym to_tsvector (' fat |t
for @@ cats ate rats’)
@Qea@
to_tsquery (' cat &
rat’)
| concatenate ra:l ra’:1 'b’":2,5
tsvectors b:2"::tsvector || |'c’:3 'd’':4
"c:l d:2
b:3" ::tsvector
&8 AND tsquerys "fat | ( "fat’ | ’'rat’ )
together rat’ ::tsquery &é& & 'cat’
"cat’ ::tsquery
| OR tsquerys together |’ fat | ( "fat’ | ’"rat’ )
rat’ ::tsquery || | "cat’
"cat’ ::tsquery
[y negate a tsquery 'l 7cat’::tsquery |!’cat’
@> tsquery contains "cat’ ::tsquery @> | f
another ? "cat &
rat’ ::tsquery
<@ tsquery is contained |’cat’::tsquery <@ |t

Note: The tsquery containment operators consider only the lexemes listed in the two queries,
ignoring the combining operators.

In addition to the operators shown in the table, the ordinary B-tree comparison operators (=, <, etc)

are defined for types t svector and tsquery. These are not very useful for text searching but allow,

for example, unique indexes to be built on columns of these types.

Table 9-37. Text Search Functions

Function Return Type Description Example Result
to_tsvector ([ tsvector reduce document |to_tsvector (' engEash*
config textto tsvector |’The Fat "rat’:3
regconfig , | Rats’)
document text)
length (tsvector)| integer number of length (' fat:2,43
lexemes in cat:3
tsvector rat:5A’ ::tsvector)
setweight (tsvectldxsvector asﬂgn\vdghtu) setweight (' fatt2¢dt’ :3A
"char") each element of cat:3 " fat’ :2A, 4A
tsvector rat:5B’ ::tsvectbrat’ : 5A
TAr)

204




Chapter 9. Functions and Operators

Function Return Type Description Example Result
strip (tsvector) |tsvector remove positions |strip(’fat:2,4|’cat’ ’fat’
and weights from |cat:3 "rat’
tsvector rat:5A’ : :tsvector)
to_tsquery ([ tsquery normalize words |to_tsquery(’englfah’, & ’rat’
config and convert to "The & Fat &
regconfig , ] tsquery Rats’)
query text)
plainto_tsquery ([tsquery produce tsquery |plainto_tsquery(fehg§lishrat’
config ignoring "The Fat
regconfig , | punctuation Rats’)
query text)
numnode (tsquery)| integer number of 5
lexemes plus numnode (’ (fat
operators in & rat) |
tsquery cat’ ::tsquery)
querytree (query | text get indexable part | querytree (' foo|’ foo’
tsquery) of a tsquery & !
bar’ ::tsquery)
ts_rank ([ floatd rank document for | ts_rank (textseafcB}l8
weights query query)
floatd[], ]
vector
tsvector, query
tsquery [,
normalization
integer 1])
ts_rank_cd ([ float4 rank document for | ts_rank_cd(’ {0}2,01317
weights query using cover (0.2, 0.4,
float4[], ] density 1.0}/,
vector textsearch,
tsvector, query query)
tsquery [,
normalization
integer 1)
ts_headline ([ text display a query ts_headline ('x|x y <b>z</b>
config match y z',
regconfig, ] "z'"::tsquery)

document text,
query tsquery
[, options

text ])

205




Chapter 9. Functions and Operators

Function Return Type Description Example Result
ts_rewrite (query tsquery replace target with | ts_rewrite (‘a |’b’ & ( ’foo’
tsquery, target substitute within & | "bar’ )
tsquery, query b’ ::tsquery,
substitute "a’ ::tsquery,
tsquery) "fool|bar’ ::tsquery)
ts_rewrite (query tsquery replace using SELECT b’ & ( "foo’
tsquery, select targets and ts_rewrite(’a || ’'bar’ )
text) substitutes from a | &
SELECT command | b’ : :tsquery,
"SELECT t,s
FROM
aliases’)
get_current_ts_clon€ggonfig get default text get_current_ts|engfigh)
search
configuration

tsvector_update_[trrggget) Uiggerfuncﬁon CREATE
for automatic TRIGGER
tsvector tsvector_update_trigger (tsvcol,
column update 'pg_catalog.swedish’,
title, body)
tsvector_update_[trrgggercolumn () Ujggerfuncﬁon CREATE
for automatic TRIGGER
tsvector tsvector_update_trigger_column (tsvcol,
column update configcol,
title, body)

Note: All the text search functions that accept an optional regconfig argument will use the con-
figuration specified by default_text_search_config when that argument is omitted.

The functions in Table 9-38 are listed separately because they are not usually used in everyday text
searching operations. They are helpful for development and debugging of new text search configura-

tions.

Table 9-38. Text Search Debugging Functions

Function

Return Type

Description

Example

Result

206




Chapter 9. Functions and Operators

Function Return Type Description Example Result
ts_debug ([ setof record test a ts_debug (’englighs¢iiword, "Wot
config configuration " The all

regconfig, ]
document text,
OUT alias
text, OUT
description
OuUT
token text,

ouT

text,

dictionaries
regdictionaryl([],
OUT dictionary
regdictionary,
OUT lexemes

text[])

Brightest

supernovaes’)

ASCII", The, {en

rd,

lish_stem}, er

ts_lexize (dict
regdictionary,

token text)

text []

test a dictionary

ts_lexize (’eng

"stars’)

lishastem’,

ts_parse (parser.|
text, document
text, OUT
tokid integer,
OUT token

text)

remateof record

test a parser

ts_parse ('defa

"foo - bar’)

1t7 foo)

ts_parse (parser.|
document
ouT
tokid integer,
OUT token
text)

oid,

text,

aietof record

test a parser

ts_parse (3722,

"foo - bar’)

(1, foo)

ts_token_type (p4
text, OUT
tokid integer,
OUT alias
text, OUT
description

text)

rsetroflamecord

get token types
defined by parser

ts_token_type (

défarnctivord, "|
all ASCII")

Nord,

ts_token_type (p4g
oid, OUT tokid
integer, OUT
alias text,
ouT
description

text)

rsetrobidecord

get token types
defined by parser

ts_token_type (

Bl122asciiword, "
all ASCII")

Nord,

207



Chapter 9. Functions and Operators

Function Return Type Description Example Result
ts_stat (sqlquery setof record |getstatisticsofa |ts_stat (' SELECT (foo,10,15)
text, [ tsvector vector from

weights text, column apod’)

] OUT word

text, OUT ndoc
integer, OUT

nentry integer)

9.14. XML Functions

The functions and function-like expressions described in this section operate on values of type xml.
Check Section 8.13 for information about the xm1 type. The function-like expressions xmlparse and
xmlserialize for converting to and from type xml are not repeated here. Use of many of these
functions requires the installation to have been built with configure --with-libxml.

9.14.1. Producing XML Content

A set of functions and function-like expressions are available for producing XML content from SQL
data. As such, they are particularly suitable for formatting query results into XML documents for
processing in client applications.

9.14.1.1. xmlcomment

xmlcomment (text)

The function xmlcomment creates an XML value containing an XML comment with the specified
text as content. The text cannot contain “-~-"" or end with a “-” so that the resulting construct is a valid
XML comment. If the argument is null, the result is null.

Example:

SELECT xmlcomment ("hello’);
xmlcomment

<!--hello-——->

9.14.1.2. xmlconcat

xmlconcat (xmI[, ...])

The function xmlconcat concatenates a list of individual XML values to create a single value con-
taining an XML content fragment. Null values are omitted; the result is only null if there are no
nonnull arguments.

208




Chapter 9. Functions and Operators

Example:

SELECT xmlconcat (' <abc/>", ’'<bar>foo</bar>’);

xmlconcat

<abc/><bar>foo</bar>

XML declarations, if present, are combined as follows. If all argument values have the same XML
version declaration, that version is used in the result, else no version is used. If all argument values
have the standalone declaration value “yes”, then that value is used in the result. If all argument
values have a standalone declaration value and at least one is “no”, then that is used in the result.
Else the result will have no standalone declaration. If the result is determined to require a standalone
declaration but no version declaration, a version declaration with version 1.0 will be used because
XML requires an XML declaration to contain a version declaration. Encoding declarations are ignored
and removed in all cases.

Example:
SELECT xmlconcat (’/<?xml version="1.1"?><foo/>’, ’'<?xml version="1.1" standalone="no"?><b
xmlconcat

<?xml version="1.1"?><foo/><bar/>

9.14.1.3. xmlelement

xmlelement (name name [, xmlattributes (value [AS attname]l [, ... 1)1 [, content, ...])

The xmlelement expression produces an XML element with the given name, attributes, and content.

Examples:

SELECT xmlelement (name foo);
xmlelement
SELECT xmlelement (name foo, xmlattributes(’xyz’ as bar));
xmlelement
<foo bar-"xyzt/>
SELECT xmlelement (name foo, xmlattributes (current_date as bar), ’'cont’, ’'ent’);
xmlelement

<foo bar="2007-01-26">content</foo>

209



Chapter 9. Functions and Operators

Element and attribute names that are not valid XML names are escaped by replacing the offending
characters by the sequence _xHHHH_, where HHHH is the character’s Unicode codepoint in hexadeci-
mal notation. For example:

SELECT xmlelement (name "fooS$bar", xmlattributes (’xyz’ as "a&b"));

xmlelement

<foo_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which
case the column’s name will be used as the attribute name by default. In other cases, the attribute must
be given an explicit name. So this example is valid:

CREATE TABLE test (a xml, b xml);
SELECT xmlelement (name test, xmlattributes(a, b)) FROM test;

But these are not:

SELECT xmlelement (name test, xmlattributes(’constant’), a, b) FROM test;
SELECT xmlelement (name test, xmlattributes (func(a, b))) FROM test;

Element content, if specified, will be formatted according to its data type. If the content is itself of
type xm1, complex XML documents can be constructed. For example:

SELECT xmlelement (name foo, xmlattributes(’xyz’ as bar),
xmlelement (name abc),
xmlcomment (' test’),
xmlelement (name xyz));

xmlelement

<foo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular
that the characters <, >, and & will be converted to entities. Binary data (data type bytea) will
be represented in base64 or hex encoding, depending on the setting of the configuration parameter
xmlbinary. The particular behavior for individual data types is expected to evolve in order to align the
SQL and PostgreSQL data types with the XML Schema specification, at which point a more precise
description will appear.

9.14.1.4. xmlforest

xmlforest (content [AS name] [, ...])

The xm1forest expression produces an XML forest (sequence) of elements using the given names
and content.

Examples:

SELECT xmlforest ("abc’ AS foo, 123 AS bar);

210



Chapter 9. Functions and Operators

xmlforest

<foo>abc</foo><bar>123</bar>

SELECT xmlforest (table_name, column_name)
FROM information_schema.columns
WHERE table_schema = ’"pg_catalog’;

xmlforest

<table_name>pg_authid</table_name><column_name>rolname</column_name>
<table_name>pg_authid</table_name><column_name>rolsuper</column_name>

As seen in the second example, the element name can be omitted if the content value is a column
reference, in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xmlelement above. Simi-
larly, content data is escaped to make valid XML content, unless it is already of type xm1.

Note that XML forests are not valid XML documents if they consist of more than one element, so it
might be useful to wrap xm1forest expressions in xmlelement.

9.14.1.5. xmlpi

xmlpi (name target [, content])

The xm1pi expression creates an XML processing instruction. The content, if present, must not con-
tain the character sequence ?>.

Example:

SELECT xmlpi (name php, ’"echo "hello world";’);

<?php echo "hello world";?>

9.14.1.6. xmlroot

xmlroot (xml, version text | no value [, standalone yes|no|no value])

The xmlroot expression alters the properties of the root node of an XML value. If a version is spec-
ified, it replaces the value in the root node’s version declaration; if a standalone setting is specified, it
replaces the value in the root node’s standalone declaration.

SELECT xmlroot (xmlparse (document ’<?xml version="1.1"?><content>abc</content>’),
version ’1.0’, standalone yes);

xmlroot

211



Chapter 9. Functions and Operators

<?xml version="1.0" standalone="yes"?>
<content>abc</content>

9.14.1.7. xmlagg

xmlagg (xml)

The function xmlagg is, unlike the other functions described here, an aggregate function. It con-
catenates the input values to the aggregate function call, like xmlconcat does. See Section 9.18 for
additional information about aggregate functions.

Example:

CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, ’'<foo>abc</foo>');
INSERT INTO test VALUES (2, ’'<bar/>');
SELECT xmlagg(x) FROM test;
xmlagg

<foo>abc</foo><bar/>

To determine the order of the concatenation, something like the following approach can be used:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;
xmlagg

<bar/><foo>abc</foo>

Again, see Section 9.18 for additional information.

9.14.1.8. XML Predicates

xml IS DOCUMENT

The expression IS DOCUMENT returns true if the argument XML value is a proper XML document,
false if it is not (that is, it is a content fragment), or null if the argument is null. See Section 8.13 about
the difference between documents and content fragments.

9.14.2. Processing XML

To process values of data type xm1, PostgreSQL offers the function xpath, which evaluates XPath
1.0 expressions.

xpath (xpath, xml[, nsarray])

The function xpath evaluates the XPath expression xpath against the XML value xm1. It returns an
array of XML values corresponding to the node set produced by the XPath expression.

212



Chapter 9. Functions and Operators

The second argument must be a well formed XML document. In particular, it must have a single root
node element.

The third argument of the function is an array of namespace mappings. This array should be a two-
dimensional array with the length of the second axis being equal to 2 (i.e., it should be an array of
arrays, each of which consists of exactly 2 elements). The first element of each array entry is the
namespace name, the second the namespace URI.

Example:

SELECT xpath(’//my:a/text()’, ’'<my:a xmlns:my="http://example.com">test</my:a>’,
ARRAY [ARRAY ['my’, ’'http://example.com’]]);

9.14.3. Mapping Tables to XML

The following functions map the contents of relational tables to XML values. They can be thought of
as XML export functionality:

table_to_xml (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xml (query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xml (cursor refcursor, count int, nulls boolean,

tableforest boolean, targetns text)

The return type of each function is xm1.

table_to_xml maps the content of the named table, passed as parameter tbl. The regclass type
accepts strings identifying tables using the usual notation, including optional schema qualifications
and double quotes. query_to_xml executes the query whose text is passed as parameter query and
maps the result set. cursor_to_xml fetches the indicated number of rows from the cursor specified
by the parameter cursor. This variant is recommended if large tables have to be mapped, because
the result value is built up in memory by each function.

If tableforest is false, then the resulting XML document looks like this:
<tablename>
<row>
<columnnamel>data</columnnamel>
<columnname2>data</columnname?2>
</row>
<row>
</row>
</tablename>

If tableforest is true, the result is an XML content fragment that looks like this:

<tablename>

213



Chapter 9. Functions and Operators

<columnnamel>data</columnnamel>
<columnname2>data</columnname?2>
</tablename>

<tablename>

</tablename>

If no table name is available, that is, when mapping a query or a cursor, the string table is used in
the first format, row in the second format.

The choice between these formats is up to the user. The first format is a proper XML document,
which will be important in many applications. The second format tends to be more useful in the
cursor_to_xml function if the result values are to be reassembled into one document later on. The
functions for producing XML content discussed above, in particular xmlelement, can be used to
alter the results to taste.

The data values are mapped in the same way as described for the function xmlelement above.
The parameter nulls determines whether null values should be included in the output. If true, null
values in columns are represented as:

<columnname xsi:nil="true"/>

where xsi is the XML namespace prefix for XML Schema Instance. An appropriate namespace
declaration will be added to the result value. If false, columns containing null values are simply
omitted from the output.

The parameter targetns specifies the desired XML namespace of the result. If no particular names-
pace is wanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the
corresponding functions above:

table_to_xmlschema (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xmlschema (query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xmlschema (cursor refcursor, nulls boolean, tableforest boolean, targetns text)

It is essential that the same parameters are passed in order to obtain matching XML data mappings
and XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one
document (or forest), linked together. They can be useful where self-contained and self-describing
results are wanted:

table_to_xml_and_xmlschema (tbl regclass, nulls boolean, tableforest boolean, targetns te
query_to_xml_and_xmlschema (query text, nulls boolean, tableforest boolean, targetns text

In addition, the following functions are available to produce analogous mappings of entire schemas
or the entire current database:

schema_to_xml (schema name, nulls boolean, tableforest boolean, targetns text)
schema_to_xmlschema (schema name, nulls boolean, tableforest boolean, targetns text)

schema_to_xml_and_xmlschema (schema name, nulls boolean, tableforest boolean, targetns te

database_to_xml (nulls boolean, tableforest boolean, targetns text)

214



Chapter 9. Functions and Operators

database_to_xmlschema (nulls boolean, tableforest boolean, targetns text)
database_to_xml_and_xmlschema (nulls boolean, tableforest boolean, targetns text)

Note that these potentially produce a lot of data, which needs to be built up in memory. When request-
ing content mappings of large schemas or databases, it might be worthwhile to consider mapping the
tables separately instead, possibly even through a cursor.

The result of a schema content mapping looks like this:
<schemaname>
tablel-mapping

table2-mapping

</schemaname>

where the format of a table mapping depends on the tableforest parameter as explained above.

The result of a database content mapping looks like this:

<dbname>
<schemalname>
</;;£ema1name>
<schema2name>

</schema2name>

</dbname>

where the schema mapping is as above.

As an example of using the output produced by these functions, Figure 9-1 shows an XSLT stylesheet
that converts the output of table_to_xml_and_xmlschema to an HTML document containing a
tabular rendition of the table data. In a similar manner, the results from these functions can be con-
verted into other XML-based formats.

Figure 9-1. XSLT stylesheet for converting SQL/XML output to HTML

<?xml version="1.0"7?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.w3.0rg/1999/xhtml"

<xsl:output method="xml"
doctype-system="http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-strict.dtd"
doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
indent="yes"/>

215



Chapter 9. Functions and Operators

<xsl:template match="/+">
<xsl:variable name="schema" select="//xsd:schema"/>
<xsl:variable name="tabletypename"
select="$schema/xsd:element [@name=name (current ())]/Qtype"/>
<xsl:variable name="rowtypename"
select="$schema/xsd:complexType [@name=Stabletypename] /xsd:sequence/xsd

<html>
<head>
<title><xsl:value-of select="name (current ())"/></title>
</head>
<body>
<table>
<tr>
<xsl:for-each select="S$schema/xsd:complexType[@name=Srowtypename]/xsd:sequen
<th><xsl:value-of select="."/></th>
</xsl:for-each>
</tr>

<xsl:for-each select="row">
<tr>
<xsl:for-each select="x">
<td><xsl:value-of select="."/></td>
</xsl:for-each>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

9.15. Sequence Manipulation Functions

This section describes PostgreSQL’s functions for operating on sequence objects. Sequence objects
(also called sequence generators or just sequences) are special single-row tables created with CREATE
SEQUENCE. A sequence object is usually used to generate unique identifiers for rows of a table.
The sequence functions, listed in Table 9-39, provide simple, multiuser-safe methods for obtaining
successive sequence values from sequence objects.

Table 9-39. Sequence Functions

Function Return Type Description

currval (regclass) bigint Return value most recently
obtained with nextval for
specified sequence

lastval () bigint Return value most recently
obtained with nextval for any
sequence

216



Chapter 9. Functions and Operators

Function Return Type Description

nextval (regclass) bigint Advance sequence and return
new value

setval (regclass, bigint) bigint Set sequence’s current value

setval (regclass, bigint, bigint Set sequence’s current value

boolean) and is_called flag

The sequence to be operated on by a sequence function is specified by a regclass argument, which is
simply the OID of the sequence in the pg_class system catalog. You do not have to look up the OID
by hand, however, since the regclass data type’s input converter will do the work for you. Just write
the sequence name enclosed in single quotes so that it looks like a literal constant. For compatibility
with the handling of ordinary SQL names, the string will be converted to lowercase unless it contains
double quotes around the sequence name. Thus:

nextval (' foo’) operates on sequence foo
nextval (" FOO’) operates on sequence foo
nextval (' "Foo"') operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval ('myschema.foo’) operates on myschema.foo
nextval (! "myschema".foo’) same as above
nextval (' foo’) searches search path for foo

See Section 8.16 for more information about regclass.

Note: Before PostgreSQL 8.1, the arguments of the sequence functions were of type text, not
regclass, and the above-described conversion from a text string to an OID value would happen
at run time during each call. For backwards compatibility, this facility still exists, but internally it is
now handled as an implicit coercion from text to regclass before the function is invoked.

When you write the argument of a sequence function as an unadorned literal string, it becomes
a constant of type regclass. Since this is really just an OID, it will track the originally identified
sequence despite later renaming, schema reassignment, etc. This “early binding” behavior is
usually desirable for sequence references in column defaults and views. But sometimes you might
want “late binding” where the sequence reference is resolved at run time. To get late-binding
behavior, force the constant to be stored as a text constant instead of regclass:

nextval (' foo’ ::text) foo 1is looked up at runtime

Note that late binding was the only behavior supported in PostgreSQL releases before 8.1, so you
might need to do this to preserve the semantics of old applications.

Of course, the argument of a sequence function can be an expression as well as a constant. If it
is a text expression then the implicit coercion will result in a run-time lookup.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even
if multiple sessions execute nextval concurrently, each will safely receive a distinct sequence
value.

217



Chapter 9. Functions and Operators

currval

Return the value most recently obtained by nextval for this sequence in the current session. (An
error is reported if nextval has never been called for this sequence in this session.) Because this
is returning a session-local value, it gives a predictable answer whether or not other sessions have
executed nextval since the current session did.

lastval

Return the value most recently returned by nextval in the current session. This function is
identical to currval, except that instead of taking the sequence name as an argument it fetches
the value of the last sequence used by nextval in the current session. It is an error to call
lastval if nextval has not yet been called in the current session.

setval

Reset the sequence object’s counter value. The two-parameter form sets the sequence’s
last_value field to the specified value and sets its is_called field to true, meaning that
the next nextval will advance the sequence before returning a value. The value reported by
currval is also set to the specified value. In the three-parameter form, is_called can be set
to either true or false. true has the same effect as the two-parameter form. If it is set to
false, the next nextval will return exactly the specified value, and sequence advancement
commences with the following nextval. Furthermore, the value reported by currval is not
changed in this case (this is a change from pre-8.3 behavior). For example,

SELECT setval ('’ foo’, 42); Next nextval will return 43
SELECT setval (' foo’, 42, true); Same as above
SELECT setval(’foo’, 42, false); Next nextval will return 42

The result returned by setval is just the value of its second argument.

If a sequence object has been created with default parameters, successive nextval calls will return
successive values beginning with 1. Other behaviors can be obtained by using special parameters in
the CREATE SEQUENCE command; see its command reference page for more information.

Important: To avoid blocking concurrent transactions that obtain numbers from the same se-
quence, a nextval operation is never rolled back; that is, once a value has been fetched it is con-
sidered used, even if the transaction that did the nextval later aborts. This means that aborted
transactions might leave unused “holes” in the sequence of assigned values. setval operations
are never rolled back, either.

9.16. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions, you might want to
consider writing a stored procedure in a more expressive programming language.

218



Chapter 9. Functions and Operators

9.16.1. cASE

The SQL cASE expression is a generic conditional expression, similar to if/else statements in other
programming languages:

CASE WHEN condition THEN result
[WHEN ...]
[ELSE result]

END

CASE clauses can be used wherever an expression is valid. Each condition is an expression that
returns a boolean result. If the condition’s result is true, the value of the CASE expression is the
result that follows the condition, and the remainder of the CASE expression is not processed. If the
condition’s result is not true, any subsequent WHEN clauses are examined in the same manner. If no
WHEN condition yields true, the value of the CASE expression is the result of the ELSE clause. If
the ELSE clause is omitted and no condition is true, the result is null.

An example:

SELECT x FROM test;

a
1
2
3
SELECT a,
CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN ’two’
ELSE ’other’
END
FROM test;
a | case
I
1 | one
2 | two
3 | other

The data types of all the result expressions must be convertible to a single output type. See Section
10.5 for more details.

There is a “simple” form of CASE expression that is a variant of the general form above:

CASE expression
WHEN value THEN result
[WHEN ...]
[ELSE result]

END

The first expression is computed, then compared to each of the value expressions in the WHEN
clauses until one is found that is equal to it. If no match is found, the result of the ELSE clause (or
a null value) is returned. This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:

219



Chapter 9. Functions and Operators

SELECT a,
CASE a WHEN 1 THEN ’one’
WHEN 2 THEN 'two’
ELSE ’other’

END
FROM test;
a | case
e
1 | one
2 | two
3 | other

A CASE expression does not evaluate any subexpressions that are not needed to determine the result.
For example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

9.16.2. COALESCE
COALESCE (value [, ...])

The COALESCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. It is often used to substitute a default value for null values when data is retrieved
for display, for example:

SELECT COALESCE (description, short_description, ’ (none)’)

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the
result; that is, arguments to the right of the first non-null argument are not evaluated. This SQL-
standard function provides capabilities similar to NVL and IFNULL, which are used in some other
database systems.

9.16.3. NULLIF
NULLIF (valuel, valueZ2)

The NULLIF function returns a null value if valuel equals value2; otherwise it returns valuel.
This can be used to perform the inverse operation of the COALESCE example given above:

SELECT NULLIF (value, ’ (none)’)

If valuelis (none), return a null, otherwise return valuel.

220



Chapter 9. Functions and Operators

9.16.4. GREATEST and LEAST
GREATEST (value [, ...])

LEAST (value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of
expressions. The expressions must all be convertible to a common data type, which will be the type of
the result (see Section 10.5 for details). NULL values in the list are ignored. The result will be NULL
only if all the expressions evaluate to NULL.

Note that GREATEST and LEAST are not in the SQL standard, but are a common extension. Some other
databases make them return NULL if any argument is NULL, rather than only when all are NULL.

9.17. Array Functions and Operators

Table 9-40 shows the operators available for array types.

Table 9-40. Array Operators

Operator Description Example Result
= equal ARRAY[1.1,2.1,3.1]|tint[]
= ARRAY[1,2,3]
<> not equal ARRAY[1,2,3] <> t
ARRAY[1,2,4]
< less than ARRAY[1,2,3] < t
ARRAY[1,2,4]
> greater than ARRAY[1,4,3] > t
ARRAY[1,2,4]
<= less than or equal ARRAY[1,2,3] <= t
ARRAY[1,2, 3]
>= greater than or equal ARRAY[1,4,3] >= t
ARRAY[1, 4, 3]
@> contains ARRAY[1,4,3] @> t
ARRAY[3,1]
<@ is contained by ARRAY[2,7] <@ t
ARRAY[1,7,4,2,6]
&& overlap (have elements | ARRAY[1,4,3] && t
in common) ARRAY[2, 1]
[ array-to-array ARRAY[1,2,3] || (1,2,3,4,5,6}
concatenation ARRAY[4,5, 6]
I array-to-array ARRAY[1,2,3] || {{1,2,3},1{4,5,6},1{[7,8,9}}
concatenation ARRAY[[4,5,6]1,17,8},91]
| element-to-array 3 || ARRAY[4,5,6] |{3,4,5,6}
concatenation
| array—to—element ARRAY [4,5,6] || 7 |{4,5,6,7}
concatenation

221



Chapter 9. Functions and Operators

Array comparisons compare the array contents element-by-element, using the default B-Tree com-
parison function for the element data type. In multidimensional arrays the elements are visited in
row-major order (last subscript varies most rapidly). If the contents of two arrays are equal but the
dimensionality is different, the first difference in the dimensionality information determines the sort
order. (This is a change from versions of PostgreSQL prior to 8.2: older versions would claim that
two arrays with the same contents were equal, even if the number of dimensions or subscript ranges

were different.)

See Section 8.14 for more details about array operator behavior.

Table 9-41 shows the functions available for use with array types. See Section 8.14 for more informa-
tion and examples of the use of these functions.

Table 9-41. Array Functions

int[],

array_prepend (an

anyarray)

yelement,

to the beginning
of an array

ARRAY[2, 3])

Function Return Type Description Example Result
anyarray appendan array_append (ARRAY2]1321,
array_append (anyarray, element to the end | 3)
anyelement) of an array
anyarray concatenate two array_cat (ARRAY{1,2,3]4,5}
array_cat (anyarray, arrays ARRAY [4,5])
anyarray)
int returns the array_ndims (ARRRY[[1,2,3],
array_ndims (anygrray) number of [4,5,611])
dimensions of the
array
text returns a text array_dims (ARRAYI{2]2133])
array_dims (anyarnray) representation of | [4,5,611)
array’s
dimensions
anyarray returns an array array_fill (7, [2:41={7,7,7}
array_fill (anyellement, initialized with ARRAY [3],
int[1, [, supplied value and | ARRAY [2])
int[11) dimensions,
optionally with
lower bounds
other than 1
int returns the length |array_length(ardayll,2, 31,
array_length (anyarray, of the requested 1)
int) array dimension
int returns lower array_lower (' [002]={1,2,3}" ::]
array_lower (anydrray, bound of the 1)
int) requested array
dimension
anyarray append an element | array_prepend (1{1,2, 3}

array_to_string(

text)

text

anyarray,

concatenates array
elements using
supplied delimiter

array_to_strin
2/ 31! ’NAN,)

yIARRAY 113

222



Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

int
array_upper (anyagrray

int)

returns upper

, bound of the 1)

requested array
dimension

array_upper (ARRAY[1,2,3,4],

string_to_array (text
text)

text []

splits string into

, array elements B

using supplied
delimiter

string_to_array{kxxy9yry¥y¥t+" ~zz

~

set

unnest (anyarray)| anyelement

of expand an array to

a set of rows

unnest (ARRAY[1

22) (2 rows)

See also Section 9.18 about the aggregate function array_agg for use with arrays.

9.18. Aggregate Functions

Aggregate functions compute a single result from a set of input values. The built-in aggregate func-

tions are listed in Table 9-42 and Table 9-43. The special syntax considerations for aggregate functions

are explained in Section 4.2.7. Consult Section 2.7 for additional introductory information.

Table 9-42. General-Purpose Aggregate Functions

Function

Argument Type

Return Type

Description

array_agg (expressio

any

n)

array of the argument
type

input values
concatenated into an
array

avg (expression)

smallint, int,

bigint, real,

numeric for any
integer-type argument,

the average (arithmetic
mean) of all input

bit_and (expression)

double precision, |double precision |values
numeric, Or for a floating-point
interval argument, otherwise
the same as the
argument data type
smallint, int, same as argument data | the bitwise AND of all

bigint,orbit

type

non-null input values,
or null if none

bit_or (expression)

smallint, int,
bigint,orbit

same as argument data
type

the bitwise OR of all
non-null input values,
or null if none

bool_and(expression

bool
)

bool

true if all input values
are true, otherwise
false

bool_or (expression)

bool

bool

true if at least one input
value is true, otherwise
false

count ()

bigint

number of input rows

223



Chapter 9. Functions and Operators

Function Argument Type Return Type Description
count (expression) |any bigint number of input rows
for which the value of
expression is not
null
every (expression) | bool bool equivalent to

bool_and

max (expression)

any array, numeric,
string, or date/time

type

same as argument type

maximum value of
expression across all
input values

min (expression)

any array, numeric,
string, or date/time

type

same as argument type

minimum value of
expression across all
input values

sum (expression)

smallint, int,
bigint, real,
double precision,
numeric, or

interval

bigint for smallint
or int arguments,
numeric for bigint
arguments, double
precision for
floating-point
arguments, otherwise
the same as the
argument data type

sum of expression
across all input values

xmlagg (expression)

xml

xml

concatenation of XML
values (see also Section
9.14.1.7)

It should be noted that except for count, these functions return a null value when no rows are selected.
In particular, sum of no rows returns null, not zero as one might expect, and array_agg returns null
rather than an empty array when there are no input rows. The coalesce function can be used to
substitute zero or an empty array for null when necessary.

Note: Boolean aggregates bool_and and bool_or correspond to standard SQL aggregates
every and any or some. As for any and some, it seems that there is an ambiguity built into the
standard syntax:

SELECT bl = ANY ((SELECT b2 FROM t2 ...)) FROM tl ...;

Here any can be considered either as introducing a subquery, or as being an aggregate function,
if the sub-select returns one row with a boolean value. Thus the standard name cannot be given
to these aggregates.

Note: Users accustomed to working with other SQL database management systems might be
disappointed by the performance of the count aggregate when it is applied to the entire table. A
query like:

SELECT count (*) FROM sometable;

will be executed by PostgreSQL using a sequential scan of the entire table.

224



Chapter 9. Functions and Operators

The aggregate functions array_agg and xmlagg, as well as similar user-defined aggregate functions,
produce meaningfully different result values depending on the order of the input values. In the current
implementation, the order of the input is in principle unspecified. Supplying the input values from a
sorted subquery will usually work, however. For example:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

But this syntax is not allowed in the SQL standard, and is not portable to other database systems.
A future version of PostgreSQL might provide an additional feature to control the order in a better-
defined way (xmlagg (expr ORDER BY expr, expr, ...)).

Table 9-43 shows aggregate functions typically used in statistical analysis. (These are separated out
merely to avoid cluttering the listing of more-commonly-used aggregates.) Where the description
mentions N, it means the number of input rows for which all the input expressions are non-null. In all
cases, null is returned if the computation is meaningless, for example when ¥ is zero.

Table 9-43. Aggregate Functions for Statistics

Function Argument Type Return Type Description
corr (Y, X) double precision | double precision |correlation coefficient
covar_pop (Y, X) double precision | double precision |population covariance

covar_samp (Y, X) double precision double precision sample covariance

regr_avgx (Y, X) double precision | double precision |average of the
independent variable
(sum (x) /N)

regr_avgy (Y, X) double precision double precision |average of the
dependent variable
(sum (Y) /N)

regr_count (Y, X) double precision | bigint number of input rows
in which both
expressions are nonnull

double precision | double precision |y-intercept of the
regr_intercept (v, least-squares-fit linear
X) equation determined by
the (X, v) pairs

regr_r2 (Y, X) double precision | double precision [square of the
correlation coefficient

regr_slope (Y, X) | double precision double precision |[slope of the
least-squares-fit linear
equation determined by
the (X, Y) pairs

regr_sxx (Y, X) double precision double precision sum(xX~2) -

sum (x) ~2/nN (“sum of
squares” of the
independent variable)

225



Chapter 9. Functions and Operators

Function Argument Type Return Type Description

regr_sxy (Y, X) double precision double precision sum(X*xY) — sum(X)
x sum(Y) /N (“sum of
products” of
independent times
dependent variable)

regr_syy (Y, X) double precision double precision sum(y~2) -

sum (v) ~2/n (“sum of
squares” of the
dependent variable)

smallint, int, double precision |historical alias for
stddev (expression) |bigint, real, for ﬂoating-point stddev_samp
double precision, |arguments, otherwise

Oor numeric numeric

smallint, int, double precision |population standard
stddev_pop (expressidmgint, real, for floating-point deviation of the input

double precision, |arguments, otherwise |values

Oor numeric numeric

smallint, int, double precision |sample standard
stddev_samp (expresgimnyint, real, for floating-point deviation of the input

double precision, |arguments, otherwise | values

Oor numeric numeric

smallint, int, double precision |historical alias for
variance(expressionpigint, real, for floating-point var_samp

double precision, |arguments, otherwise

or numeric numeric
smallint, int, double precision |population variance of
var_pop(expression)bigint, real, for floating-point the input values (square
double precision, |arguments, otherwise |of the population
or numeric numeric standard deviation)
smallint, int, double precision |sample variance of the
var_samp(expressionpigint, real, for floating-point input values (square of
double precision, |arguments, otherwise |the sample standard
or numeric numeric deviation)

9.19. Window Functions
Window functions provide the ability to perform calculations across sets of rows that are related to the
current query row. See Section 3.5 for an introduction to this feature.

The built-in window functions are listed in Table 9-44. Note that these functions must be invoked
using window function syntax; that is an OVER clause is required.

In addition to these functions, any built-in or user-defined aggregate function can be used as a window
function (see Section 9.18 for a list of the built-in aggregates). Aggregate functions act as window
functions only when an OVER clause follows the call; otherwise they act as regular aggregates.

Table 9-44. General-Purpose Window Functions

226



Chapter 9. Functions and Operators

Function Return Type Description

row_number () bigint number of the current row
within its partition, counting
from 1

rank () bigint rank of the current row with
gaps; same as row_number of
its first peer

dense_rank () bigint rank of the current row without

gaps; this function counts peer
groups

percent_rank ()

double precision

relative rank of the current row:
(rank - 1)/ (total rows - 1)

cume_dist ()

double precision

relative rank of the current row:
(number of rows preceding or
peer with current row) / (total
TOWS)

ntile (num_buckets

integer)

integer

integer ranging from 1 to the
argument value, dividing the
partition as equally as possible

lag(value any [, offset
integer [, default any
11)

same type as value

returns value evaluated at the
row that is offset rows before
the current row within the
partition; if there is no such
row, instead return default.
Both offset and default are
evaluated with respect to the
current row. If omitted, offset
defaults to 1 and default to
null

lead(value any [,
offset integer [, default
any 11])

same type as value

returns value evaluated at the
row that is offset rows after
the current row within the
partition; if there is no such
row, instead return default.
Both offset and default are
evaluated with respect to the
current row. If omitted, offset
defaults to 1 and default to
null

first_value (value any)

same type as value

returns value evaluated at the
row that is the first row of the
window frame

last_value (value any)

same type as value

returns value evaluated at the
row that is the last row of the
window frame

nth_value (value any,

nth integer)

same type as value

returns value evaluated at the
row that is the nth row of the
window frame (counting from
1); null if no such row

227




Chapter 9. Functions and Operators

All of the functions listed in Table 9-44 depend on the sort ordering specified by the ORDER BY clause
of the associated window definition. Rows that are not distinct in the ORDER BY ordering are said to
be peers; the four ranking functions are defined so that they give the same answer for any two peer
TOWS.

Note that first_value, last_value, and nth_value consider only the rows within the “window
frame”, which by default contains the rows from the start of the partition through the last peer of the
current row. This is likely to give unhelpful results for nth_value and particularly last_value.
You can redefine the frame as being the whole partition by adding ROWS BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING to the OVER clause. See Section 4.2.8 for more infor-
mation.

When an aggregate function is used as a window function, it aggregates over the rows within the
current row’s window frame. To obtain aggregation over the whole partition, omit ORDER BY or use
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING. An aggregate used with
ORDER BY and the default window frame definition produces a “running sum” type of behavior, which
may or may not be what’s wanted.

Note: The SQL standard defines a RESPECT NULLS Or IGNORE NULLS option for 1lead, lag,
first_value, last_value, and nth_value. This is not implemented in PostgreSQL: the
behavior is always the same as the standard’'s default, namely rRespECT NULLS. Likewise, the
standard’s FROM FIRST OfF FROM LAST option for nth_value is not implemented: only the default
FROM FIRST behavior is supported. (You can achieve the result of FrRoM LAST by reversing the
ORDER BY ordering.)

9.20. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the
expression forms documented in this section return Boolean (true/false) results.

9.20.1. EXISTS

EXISTS (subquery)

The argument of EXISTS is an arbitrary SELECT statement, or subguery. The subquery is evaluated
to determine whether it returns any rows. If it returns at least one row, the result of EXISTS is “true”;
if the subquery returns no rows, the result of EXISTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during
any one evaluation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has side effects (such as
calling sequence functions); whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those
rows, the output list of the subquery is normally unimportant. A common coding convention is to
write all EXISTS tests in the form EXISTS (SELECT 1 WHERE ...). There are exceptions to this
rule however, such as subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each
tabl row, even if there are several matching tab2 rows:

228



Chapter 9. Functions and Operators

SELECT coll
FROM tabl
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

9.20.2. IN

expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of 1IN is “true”
if any equal subquery row is found. The result is “false” if no equal row is found (including the case
where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at
least one right-hand row yields null, the result of the IN construct will be null, not false. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.
row_constructor IN (subquery)

The left-hand side of this form of IN is a row constructor, as described in Section 4.2.12. The right-
hand side is a parenthesized subquery, which must return exactly as many columns as there are ex-
pressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The result of IN is “true” if any equal subquery row is found. The
result is “false” if no equal row is found (including the case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the per-row results are either unequal or null, with at least one
null, then the result of IN is null.

9.20.3. NOT IN

expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-
hand expression is evaluated and compared to each row of the subquery result. The result of NOT IN
is “true” if only unequal subquery rows are found (including the case where the subquery returns no
rows). The result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of the NOT 1N construct will be null, not true. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.
row_constructor NOT IN (subquery)

The left-hand side of this form of NOT IN is a row constructor, as described in Section 4.2.12. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are

229



Chapter 9. Functions and Operators

expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The result of NOT IN is “true” if only unequal subquery rows are
found (including the case where the subquery returns no rows). The result is “false” if any equal row
is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the per-row results are either unequal or null, with at least one
null, then the result of NOT 1IN is null.

9.20.4. ANY/SOME

expression operator ANY (subquery)

expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result
is “false” if no true result is found (including the case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of the ANY construct will be null, not false. This is in accordance with SQL’s normal rules
for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)

row_constructor operator SOME (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.12. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there
are expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise
to each row of the subquery result, using the given operator. The result of ANY is “true” if the
comparison returns true for any subquery row. The result is “false” if the comparison returns false for
every subquery row (including the case where the subquery returns no rows). The result is NULL if
the comparison does not return true for any row, and it returns NULL for at least one row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.20.5. ALL

expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ALL is “true” if all rows yield true (including the case
where the subquery returns no rows). The result is “false” if any false result is found. The result is
NULL if the comparison does not return false for any row, and it returns NULL for at least one row.

NOT 1IN isequivalentto <> ALL.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

230



Chapter 9. Functions and Operators

row_constructor operator ALL (subquery)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.12. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there
are expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise
to each row of the subquery result, using the given operator. The result of ALL is “true” if the
comparison returns true for all subquery rows (including the case where the subquery returns no
rows). The result is “false” if the comparison returns false for any subquery row. The result is NULL
if the comparison does not return false for any subquery row, and it returns NULL for at least one row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.20.6. Row-wise Comparison

row_constructor operator (subquery)

The left-hand side is a row constructor, as described in Section 4.2.12. The right-hand side is a paren-
thesized subquery, which must return exactly as many columns as there are expressions in the left-
hand row. Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the
result is taken to be null.) The left-hand side is evaluated and compared row-wise to the single sub-
query result row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.21. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest
are SQL-compliant. All of the expression forms documented in this section return Boolean (true/false)
results.

9.21.1. IN

expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression’s result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = valuel
OR
expression = value2
OR

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of the 1N construct will be null, not false. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

231



Chapter 9. Functions and Operators

9.21.2. NOT IN

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression’s result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> valuel
AND
expression <> value2
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of the NOT IN construct will be null, not true as one
might naively expect. This is in accordance with SQL’s normal rules for Boolean combinations of null
values.

Tip: x NOT IN yisequivalenttoNoT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with not 1N than when working with 1n. It is best to
express your condition positively if possible.

9.21.3. ANY/SOME (array)

expression operator ANY (array expression)

expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the given operator, which
must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the case where the array has zero elements).

If the array expression yields a null array, the result of ANY will be null. If the left-hand expression
yields null, the result of ANY is ordinarily null (though a non-strict comparison operator could possibly
yield a different result). Also, if the right-hand array contains any null elements and no true compar-
ison result is obtained, the result of ANY will be null, not false (again, assuming a strict comparison
operator). This is in accordance with SQL’s normal rules for Boolean combinations of null values.

SOME is a synonym for ANY.

9.21.4. aLL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the given operator, which
must yield a Boolean result. The result of ALL is “true” if all comparisons yield true (including the
case where the array has zero elements). The result is “false” if any false result is found.

232



Chapter 9. Functions and Operators

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression
yields null, the result of ALL is ordinarily null (though a non-strict comparison operator could possibly
yield a different result). Also, if the right-hand array contains any null elements and no false compar-
ison result is obtained, the result of ALL will be null, not true (again, assuming a strict comparison
operator). This is in accordance with SQL’s normal rules for Boolean combinations of null values.

9.21.5. Row-wise Comparison

row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.12. The two row values must have the
same number of fields. Each side is evaluated and they are compared row-wise. Row comparisons are
allowed when the operatoris =, <>, <, <=, > or >=, or has semantics similar to one of these. (To
be specific, an operator can be a row comparison operator if it is a member of a B-Tree operator class,
or is the negator of the = member of a B-Tree operator class.)

The = and <> cases work slightly differently from the others. Two rows are considered equal if
all their corresponding members are non-null and equal; the rows are unequal if any corresponding
members are non-null and unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared left-to-right, stopping as soon as
an unequal or null pair of elements is found. If either of this pair of elements is null, the result of
the row comparison is unknown (null); otherwise comparison of this pair of elements determines the
result. For example, ROW (1, 2, NULL) < ROW (1,3, 0) yields true, not null, because the third pair of
elements are not considered.

Note: Prior to PostgreSQL 8.2, the <, <=, > and >= cases were not handled per SQL specifica-
tion. A comparison like Row (a,b) < ROW(c,d) was implementedasa < ¢ aND b < dwhereas
the correct behavior is equivalenttoa < ¢ OR (a = ¢ AND b < d).

row_constructor IS DISTINCT FROM row_ constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead,
any null value is considered unequal to (distinct from) any non-null value, and any two nulls are
considered equal (not distinct). Thus the result will either be true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead,
any null value is considered unequal to (distinct from) any non-null value, and any two nulls are
considered equal (not distinct). Thus the result will always be either true or false, never null.

Note: The SQL specification requires row-wise comparison to return NULL if the result depends
on comparing two NULL values or a NULL and a non-NULL. PostgreSQL does this only when
comparing the results of two row constructors or comparing a row constructor to the output of a
subquery (as in Section 9.20). In other contexts where two composite-type values are compared,
two NULL field values are considered equal, and a NULL is considered larger than a non-NULL.
This is necessary in order to have consistent sorting and indexing behavior for composite types.

233



Chapter 9. Functions and Operators

9.22. Set Returning Functions

This section describes functions that possibly return more than one row. Currently the only functions
in this class are series generating functions, as detailed in Table 9-45 and Table 9-46.

Table 9-45. Series Generating Functions

Function Argument Type Return Type Description
generate_series (starftint or bigint setof int or setof | Generate a series of
stop) bigint (same as values, from start to
argument type) stop with a step size
of one
generate_series (starftint or bigint setof int or setof Generate a series of
stop, step) bigint (same as values, from start to
argument type) stop with a step size
of step
generate_series (starftybimestamp Or setof timestamp or | Generate a series of
stop, step timestamp with setof timestamp values, from start to
interval) time zone with time zone stop with a step size
(same as argument of step
type)

When step is positive, zero rows are returned if start is greater than st op. Conversely, when step
is negative, zero rows are returned if start is less than stop. Zero rows are also returned for NULL
inputs. It is an error for step to be zero. Some examples follow:

SELECT * FROM generate_series(2,4);
generate_series

(3 rows)

SELECT x= FROM generate_series(5,1,-2);
generate_series

(3 rows)

SELECT * FROM generate_series (4, 3);
generate_series

—— this example relies on the date-plus-integer operator

SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);
dates

2004-02-05

2004-02-12

2004-02-19

234



Chapter 9. Functions and Operators
(3 rows)

SELECT % FROM generate_series(/2008-03-01 00:00’ ::timestamp,
72008-03-04 12:00”, ’10 hours’);
generate_series
2008-03-01 00:00:00
2008-03-01 10:00:00
2008-03-01 20:00:00
2008-03-02 06:00:00
2008-03-02 16:00:00
2008-03-03 02:00:00
2008-03-03 12:00:00
2008-03-03 22:00:00
2008-03-04 08:00:00
(9 rows)

Table 9-46. Subscript Generating Functions

Function Return Type Description

generate_subscripts (array |setof int Generate a series comprising

anyarray, dim int) the given array’s subscripts.

generate_subscripts (array |setof int Generate a series comprising

anyarray, dim int, the given array’s subscripts.

reverse boolean) When reverse is true, the
series is returned in reverse
order.

generate_subscripts is a convenience function that generates the set of valid subscripts for the
specified dimension of the given array. Zero rows are returned for arrays that do not have the requested
dimension, or for NULL arrays (but valid subscripts are returned for NULL array elements). Some
examples follow:

-— basic usage
select generate_subscripts(’ {NULL,1,NULL,2}"::int[], 1) as s;

4
(4 rows)

—-— presenting an array, the subscript and the subscripted
—-— value requires a subquery
select * from arrays;

{(-1,-2}
{100,200}

(2 rows)

select a as array, s as subscript, als] as value

235



Chapter 9. Functions and Operators

from (select generate_subscripts(a, 1) as s, a from arrays) foo;

array | subscript | value
___________ O T
{-1,-2} | 1] -1
{-1,-2} | 2 -2
{100,200} | 1| 100
{100,200} | 2| 200
(4 rows)

—-— unnest a 2D array
create or replace function unnest2 (anyarray)
returns setof anyelement as $$
select $1[1i][]]
from generate_subscripts($1,1) gl (i),
generate_subscripts($1,2) g2 (J);
$$ language sql immutable;
CREATE FUNCTION
postgres=# select * from unnest2 (array[I[1,2]1,1[3,411);
unnest2

9.23. System Information Functions

Table 9-47 shows several functions that extract session and system information.

In addition to the functions listed in this section, there are a number of functions related to the statistics
system that also provide system information. See Section 26.2.2 for more information.

Table 9-47. Session Information Functions

Name Return Type Description
current_catalog name name of current database
(called “catalog” in the SQL
standard)
current_database () name name of current database
current_schemal () ] name name of current schema
current_schemas (boolean) name [ ] names of schemas in search

path optionally including
implicit schemas

current_user name user name of current execution
context
current_query text text of the currently executing

query, as submitted by the
client (might contain more than
one statement)

236



Chapter 9. Functions and Operators

Name Return Type Description

pg_backend_pid () int Process ID of the server
process attached to the current
session

inet_client_addr () inet address of the remote
connection

inet_client_port () int port of the remote connection

inet_server_addr () inet address of the local connection

inet_server_port () int port of the local connection

pg_my_temp_schema () oid OID of session’s temporary

schema, or O if none

pg_is_other_temp_schema (oid)boolean is schema another session’s
temporary schema?

pg_postmaster_start_time () |timestamp with time server start time
zone
pg_conf_load_time () timestamp with time configuration load time
zone
session_user name session user name
user name equivalent to current_user
version () text PostgreSQL version
information

The session_user is normally the user who initiated the current database connection; but supe-
rusers can change this setting with SET SESSION AUTHORIZATION. The current_user is the
user identifier that is applicable for permission checking. Normally it is equal to the session user, but
it can be changed with SET ROLE. It also changes during the execution of functions with the attribute
SECURITY DEFINER. In Unix parlance, the session user is the “real user” and the current user is the
“effective user”.

Note: current_catalog, current_schema, current_user, session_user, and user have spe-
cial syntactic status in SQL: they must be called without trailing parentheses (optional in Post-
greSQL in the case of current_schema).

current_schema returns the name of the schema that is first in the search path (or a null value if the
search path is empty). This is the schema that will be used for any tables or other named objects that
are created without specifying a target schema. current_schemas (boolean) returns an array of
the names of all schemas presently in the search path. The Boolean option determines whether or not
implicitly included system schemas such as pg_catalog are included in the returned search path.

Note: The search path can be altered at run time. The command is:

SET search_path TO schema [, schema, ...]

inet_client_addr returns the IP address of the current client, and inet_client_port returns
the port number. inet_server_addr returns the IP address on which the server accepted the current

237




Chapter 9. Functions and Operators

connection, and inet_server_port returns the port number. All these functions return NULL if the
current connection is via a Unix-domain socket.

pg_my_temp_schema returns the OID of the current session’s temporary schema, or zero if it has
none (because it has not created any temporary tables). pg_is_other_temp_schema returns true if
the given OID is the OID of another session’s temporary schema. (This can be useful, for example, to
exclude other sessions’ temporary tables from a catalog display.)

pPg_postmaster_start_time returns the timestamp with time zone when the server started.

pg_conf_load_time returns the timestamp with time zone when the server configuration
files were last loaded. (If the current session was alive at the time, this will be the time when the
session itself re-read the configuration files, so the reading will vary a little in different sessions.
Otherwise it is the time when the postmaster process re-read the configuration files.)

version returns a string describing the PostgreSQL server’s version.

Table 9-48 lists functions that allow the user to query object access privileges programmatically. See
Section 5.6 for more information about privileges.

Table 9-48. Access Privilege Inquiry Functions

Name Return Type Description
has_any_column_privilege (usdagolean does user have privilege for any
table, privilege) column of table
has_any_column_privilege (talddeplean does current user have privilege
privilege) for any column of table
has_column_privilege (user, |boolean does user have privilege for
table, column, privilege) column
has_column_privilege (table,|boolean does current user have privilege
column, privilege) for column
has_database_privilege (user,boolean does user have privilege for
database, privilege) database
has_database_privilege (datadeselean does current user have privilege
privilege) for database
has_foreign_data_wrapper_prjilvodégatuser, does user have priVilege for
fdw, privilege) foreign-data wrapper
has_foreign_data_wrapper_prlilvadeégahfdw, does current user have privilege
privilege) for foreign-data wrapper
has_function_privilege (user,boolean does user have privilege for
function, privilege) function
has_function_privilege (functbhoa}lean does current user have privilege
privilege) for function
has_language_privilege (user,boolean does user have privilege for
language, privilege) language
has_language_privilege (langdagelean does current user have privilege
privilege) for language
has_schema_privilege (user, |boolean does user have privilege for
schema, privilege) schema
has_schema_privilege (schema,boolean does current user have privilege
privilege) for schema

238



Chapter 9. Functions and Operators

Name Return Type Description
has_server_privilege (user, |boolean doesuserhavepﬁvﬂegefbr
server, privilege) foreign server
has_server_privilege (server,boolean does current user have privilege
privilege) for foreign server
has_table_privilege (user, |boolean does user have privilege for
table, privilege) table

has_table_privilege (table, |boolean does current user have privilege
privilege) for table
has_tablespace_privilege (usdrgolean doesuserhave;nivﬂegefor
tablespace, privilege) tabkmpace
has_tablespace_privilege (tadiespeas, does current user have privilege
privilege) for tablespace

pg_has_role (user, role, boolean does user have privilege for role
privilege)

pg_has_role (role, boolean does current user have privilege
privilege) for role

has_table_privilege checks whether a user can access a table in a particular way. The user can
be specified by name or by OID (pg_authid.oid), or if the argument is omitted current_user
is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege, which can be distinguished by the number and types of their arguments.)
When specifying by name, the name can be schema-qualified if necessary. The desired access priv-
ilege type is specified by a text string, which must evaluate to one of the values SELECT, INSERT,
UPDATE, DELETE, TRUNCATE, REFERENCES, or TRIGGER. Optionally, WITH GRANT OPTION can be
added to a privilege type to test whether the privilege is held with grant option. Also, multiple privi-
lege types can be listed separated by commas, in which case the result will be t rue if any of the listed
privileges is held. (Case of the privilege string is not significant, and extra whitespace is allowed
between but not within privilege names.) Some examples:

SELECT has_table_privilege ('myschema.mytable’, ’'select’);
SELECT has_table_privilege (’ joe’, ’'mytable’, ’INSERT, SELECT WITH GRANT OPTION’);

has_any_column_privilege checks whether a user can access any column of a table in a particular
way. Its argument possibilities are analogous to has_table_privilege, except that the desired ac-
cess privilege type must evaluate to some combination of SELECT, INSERT, UPDATE, or REFERENCES.
Note that having any of these privileges at the table level implicitly grants it for each column of the
table, so has_any_column_privilege will always return true if has_table_privilege does
for the same arguments. But has_any_column_privilege also succeeds if there is a column-level
grant of the privilege for at least one column.

has_column_privilege checks whether a user can access a column in a particular way. Its argu-
ment possibilities are analogous to has_table_privilege, with the addition that the column can be
specified either by name or attribute number. The desired access privilege type must evaluate to some
combination of SELECT, INSERT, UPDATE, or REFERENCES. Note that having any of these privileges
at the table level implicitly grants it for each column of the table.

has_database_privilege checks whether a user can access a database in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type
must evaluate to some combination of CREATE, CONNECT, TEMPORARY, or TEMP (which is equivalent

239



Chapter 9. Functions and Operators

to TEMPORARY).

has_function_privilege checks whether a user can access a function in a particular way. Its
argument possibilities are analogous to has_table_privilege. When specifying a function by a
text string rather than by OID, the allowed input is the same as for the regprocedure data type (see
Section 8.16). The desired access privilege type must eval