J.-l' A 7T AV A .'
Programming

Perl

By Larry Wall, Tom Christiansen, & Randal Schwartz; 1-56592-149-6, 646 pages.
2nd Edition, September 1996

Table of Contents
Preface
Chapter 1: An Overview of Perl
Chapter 2: The Gory Details
Chapter 3: Functions
Chapter 4. References and Nested DataStructures
Chapter 5. Packages, Modules,and Object Classes
Chapter 6: Social Engineering
Chapter 7: The SandardPer| Library
Chapter 8. Other Oddments
Chapter 9: Diagnostic Messages

Glossary
Index

Examples - War ning: this directory includes long filenames which may confuse some older
operating systems (notably Windows 3.1).

Search the text of Programming Perl.

& A oo M W W

Library HTML Gl JavaScript | WebMaster
Home The Dafinitive Guide | Programming | The Dafinitive Gulde in a Nueshel!

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

http://www.oreilly.com/catalog/pperl2/
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/perl/examples/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/psrch.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/copyrght.htm

Programming

Perl

Preface MEXT &

Preface

Contents:
Perl in a Nutshell
The Rest of This Book

Additional Resources

How to Get Perl

Conventions Used in This Book
Acknowledgments

Wed Liketo Hear from You

Perl in a Nutshell

Perl is alanguage for getting your job done.

Of course, if your job is programming, you can get your job done with any "complete" computer
language, theoretically speaking. But we know from experience that computer languages differ not so
much in what they make possible, but in what they make easy. At one extreme, the so-called "fourth
generation languages' make it easy to do some things, but nearly impossible to do other things. At the
other extreme, certain well known, "industrial-strength" languages make it equally difficult to do
almost everything.

Perl is different. In anutshell, Perl is designed to make the easy jobs easy, without making the hard
jobs impossible.

And what are these "easy jobs' that ought to be easy? The ones you do every day, of course. Y ou
want alanguage that makes it easy to manipulate numbers and text, files and directories, computers
and networks, and especially programs. It should be easy to run external programs and scan their
output for interesting tidbits. It should be easy to send those same tidbits off to other programs that
can do special things with them. It should be easy to develop, modify, and debug your own programs
too. And, of course, it should be easy to compile and run your programs, and do it portably, on any
modern operating system.

Perl does all that, and awhole lot more.

Initially designed as a glue language for the UNIX operating system (or any of its myriad variants),
Perl aso runs on numerous other systems, including MS-DOS, VMS, OS2, Plan 9, Macintosh, and
any variety of Windows you care to mention. It is one of the most portable programming languages

available today. To program C portably, you have to put in all those strange #i f def markings for
different operating systems. And to program a shell portably, you have to remember the syntax for
each operating system's version of each command, and somehow find the least common denominator
that (you hope) works everywhere. Perl happily avoids both of these problems, while retaining many
of the benefits of both C and shell programming, with some additional magic of its own. Much of the
explosive growth of Perl has been fueled by the hankerings of former UNIX programmers who
wanted to take along with them as much of the "old country" as they could. For them, Perl isthe
portable distillation of UNIX culture, an oasisin the wilderness of "can't get there from here". On the
other hand, it worksin the other direction, too: Web programmers are often delighted to discover that
they can take their scripts from a Windows machine and run them unchanged on their UNIX servers.

Although Perl is especially popular with systems programmers and Web devel opers, it also appeals to
amuch broader audience. The hitherto well-kept secret is now out: Perl isno longer just for text
processing. It has grown into a sophisticated, general-purpose programming language with arich
software development environment complete with debuggers, profilers, cross-referencers, compilers,
interpreters, libraries, syntax-directed editors, and all the rest of the trappings of a"real" programming
language. (But don't let that scare you: nothing requires you to go tinkering under the hood.) Perl is
being used daily in every imaginable field, from aerospace engineering to molecular biology, from
computer-assisted design/computer-assisted manufacturing (CAD/CAM) to document processing,
from database manipulation to client-server network management. Perl is used by people who are
desperate to analyze or convert lots of data quickly, whether you're talking DNA sequences, Web
pages, or pork belly futures. Indeed, one of the jokes in the Perl community is that the next big stock
market crash will probably be triggered by a bug in a Perl script. (On the brighter side, any
unemployed stock analysts will still have a marketable skill, so to speak.)

There are many reasons for the success of Perl. It certainly helps that Perl isfreely available, and
freely redistributable. But that's not enough to explain the Perl phenomenon, since many freeware
packages fail to thrive. Perl isnot just free; it's also fun. People feel like they can be creative in Perl,
because they have freedom of expression: they get to choose what to optimize for, whether that's
computer speed or programmer speed, verbosity or conciseness, readability or maintainability or
reusability or portability or learnability or teachability. Y ou can even optimize for obscurity, if you're
entering an Obfuscated Perl contest.

Perl can give you all these degrees of freedom because it's essentially alanguage with a split
personality. It's both avery ssimple language and a very rich language. It has taken good ideas from
nearly everywhere, and installed them into an easy-to-use mental framework. To those who merely
like it, Perl isthe Practical Extraction and Report Language. To those who love it, Perl isthe
Pathologically Eclectic Rubbish Lister. And to the minimalists in the crowd, Perl seemslike a
pointless exercise in redundancy. But that's okay. The world needs a few reductionists (mainly as
physicists). Reductionists like to take things apart. The rest of us are just trying to get it together.

Perl isin many ways a simple language. Y ou don't have to know many special incantations to compile
a Perl program--you can just execute it like a shell script. The types and structures used by Perl are
easy to use and understand. Perl doesn't impose arbitrary limitations on your data--your strings and
arrays can grow as large asthey like (so long as you have memory), and they're designed to scale well
as they grow. Instead of forcing you to learn new syntax and semantics, Perl borrows heavily from
other languages you may already be familiar with (such as C, and sed, and awk, and English, and
Greek). In fact, just about any programmer can read a well-written piece of Perl code and have some
idea of what it does.

Most important, you don't have to know everything there is to know about Perl before you can write
useful programs. Y ou can learn Perl "small end first". Y ou can program in Perl Baby-Talk, and we
promise not to laugh. Or more precisely, we promise not to laugh any more than we'd giggle at a
child's creative way of putting things. Many of the ideas in Perl are borrowed from natural language,
and one of the best ideas isthat it's okay to use a subset of the language as long as you get your point
across. Any level of language proficiency is acceptable in Perl culture. We won't send the language
police after you. A Perl script is"correct” if it gets the job done before your boss fires you.

Though simple in many ways, Perl is also arich language, and there is much to be learned about it.
That's the price of making hard things possible. Although it will take some time for you to absorb all
that Perl can do, you will be glad that you have access to the extensive capabilities of Perl when the
time comes that you need them. We noted above that Perl borrows many capabilities from the shells
and C, but Perl also possesses a strict superset of sed and awk capabilities. There are, in fact,
trandlators supplied with Perl to turn your old sed and awk scripts into Perl scripts, so you can see how
the features you may already be familiar with correspond to those of Perl.

Because of that heritage, Perl was arich language even when it was "just" a data-reduction language,
designed for navigating files, scanning large amounts of text, creating and obtaining dynamic data,
and printing easily formatted reports based on that data. But somewhere along the line, Perl started to
blossom. It also became alanguage for filesystem manipulation, process management, database
administration, client-server programming, secure programming, Web-based information
management, and even for object-oriented and functional programming. These capabilities were not
just slapped onto the side of Perl--each new capability works synergistically with the others, because
Perl was designed to be a glue language from the start.

But Perl can glue together more than its own features. Perl is designed to be modularly extensible.
Perl allows you to rapidly design, program, debug, and deploy applications, but it also allows you to
easily extend the functionality of these applications as the need arises. Y ou can embed Perl in other
languages, and you can embed other languages in Perl. Through the module importation mechanism,
you can use these external definitions asif they were built-in features of Perl. Object-oriented external
libraries retain their object-orientedness in Perl.

Perl helps you in other ways too. Unlike a strictly interpreted language such as the shell, which
compiles and executes a script one command at atime, Perl first compiles your whole program
quickly into an intermediate format. Like any other compiler, it performs various optimizations, and
gives you instant feedback on everything from syntax and semantic errors to library binding mishaps.
Once Perl's compiler frontend is happy with your program, it passes off the intermediate code to the
interpreter to execute (or optionally to any of several modular back ends that can emit C or bytecode.)
This all sounds complicated, but the compiler and interpreter are quite efficient, and most of usfind
that the typical compile-run-fix cycle is measured in mere seconds. Together with Perl's many fail-soft
characteristics, this quick turnaround capability makes Perl alanguage in which you really can do
rapid prototyping. Then later, as your program matures, you can tighten the screws on yourself, and
make yourself program with less flair but more discipline. Perl helps you with that too, if you ask
nicely.

Perl aso helps you to write programs more securely. While running in privileged mode, you can
temporarily switch your identity to something innocuous before accessing system resources. Perl also
guards against accidental security errors through a data tracing mechanism that automatically
determines which data was derived from insecure sources and prevents dangerous operations before
they can happen. Finally, Perl lets you set up specially protected compartments in which you can
safely execute Perl code of dubious lineage, masking out dangerous operations. System administrators

and CGlI programmers will particularly welcome these features.

But, paradoxically, the way in which Perl helps you the most has amost nothing to do with Perl, and
everything to do with the people who use Perl. Perl folks are, frankly, some of the most helpful folks
on earth. If there's areligious quality to the Perl movement, then thisis at the heart of it. Larry wanted
the Perl community to function like alittle bit of heaven, and he seems to have gotten hiswish, so far.
Please do your part to keep it that way.

Whether you are learning Perl because you want to save the world, or just because you are curious, or
because your boss told you to, this handbook will lead you through both the basics and the intricacies.
And although we don't intend to teach you how to program, the perceptive reader will pick up some of
the art, and alittle of the science, of programming. We will encourage you to develop the three great
virtues of a programmer: laziness, impatience, and hubris. Along the way, we hope you find the book
mildly amusing in some spots (and wildly amusing in others). And if none of thisis enough to keep
you awake, just keep reminding yourself that learning Perl will increase the value of your resume. So
keep reading.

HOME MEXT
BOOK INDEX The Rest of This Book

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Programming

41 PREVIOUS Chapter 1 MEXT %

1. An Overview of Perl

Contents:

Getting Started

Natural and Artificial Languages

A Grade Example

Filehandles

Operators

Control Structures

Regular Expressions

List Processing

What You Don't Know Won't Hurt Y ou (Much)

1.1 Getting Started

We think that Perl is an easy language to learn and use, and we hope to convince you that we're right.
One thing that's easy about Perl isthat you don't have to say much before you say what you want to
say. In many programming languages, you have to declare the types, variables, and subroutines you
are going to use before you can write the first statement of executable code. And for complex
problems demanding complex data structures, thisis agood idea. But for many simple, everyday
problems, you would like a programming language in which you can simply say:

print "Howdy, world!\n";
and expect the program to do just that.

Perl is such alanguage. In fact, the example is a complete program,[1] and if you feed it to the Perl
interpreter, it will print "Howdy, wor | d!" on your screen.

[1] Or script, or application, or executable, or doohickey. Whatever.

And that's that. Y ou don't have to say much after you say what you want to say, either. Unlike many
languages, Per| thinks that falling off the end of your program is just a normal way to exit the
program. Y ou certainly may call the exit function explicitly if you wish, just as you may declare some
of your variables and subroutines, or even force yourself to declare all your variables and subroutines.
But it's your choice. With Perl you're free to do The Right Thing, however you care to defineit.

There are many other reasons why Perl is easy to use, but it would be pointless to list them all here,
because that's what the rest of the book isfor. The devil may be in the details, as they say, but Perl
tries to help you out down there in the hot place too. At every level, Perl is about helping you get from
here to there with minimum fuss and maximum enjoyment. That's why so many Perl programmers go
around with a silly grin on their face.

This chapter is an overview of Perl, so we're not trying to present Perl to the rational side of your
brain. Nor are we trying to be complete, or logical. That's what the next chapter isfor.[2] This chapter
presents Perl to the other side of your brain, whether you prefer to cal it associative, artistic,
passionate, or merely spongy. To that end, we'll be presenting various views of Per| that will
hopefully give you as clear a picture of Perl as the blind men had of the elephant. Well, okay, maybe
we can do better than that. We're dealing with a camel here. Hopefully, at least one of these views of
Perl will help get you over the hump.

[2] Vulcans (and like-minded humans) should skip this overview and go straight to
Chapter 2, The Gory Details, for maximum information density. If, on the other hand,

you're looking for a carefully paced tutorial, you should probably get Randal's nice book,
Learning Per| (published by O'Reilly & Associates). But don't throw out this book just

yet.
41 PREVIOUS HOME MHEXT &
We'd Liketo Hear from Y ou EOOK INDEX Natural and Artificial

L anguages

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Programming

41 PREVIOUS Chapter 2 MEXT %

2. The Gory Detalls

Contents:

Lexical Texture

Built-in Data Types

Terms

Pattern Matching

Operators

Statements and Declarations
Subroutines

Formats

Specia Variables

This chapter describes in detail the syntax and semantics of a Perl program. Individual Perl functions
are described in Chapter 3, Functions, and certain specialized topics such as References and Objects

are deferred to later chapters.

For the most part, this chapter is organized from small to large. That is, we take a bottom-up
approach. The disadvantage is that you don't necessarily get the Big Picture before getting lost in a
welter of details. But the advantage is that you can understand the examples as we go along. (If you're
atop-down person, just turn the book over and read the chapter backward.)

2.1 Lexical Texture

Perl is, for the most part, afree-form language. The main exceptions to this are format declarations

and quoted strings, because these are in some senses literals. Comments are indicated by the #
character and extend to the end of theline.

Perl is defined in terms of the ASCII character set. However, string literals may contain characters
outside of the ASCII character set, and the delimiters you choose for various quoting mechanisms
may be any non-al phanumeric, non-whitespace character.

Whitespace is required only between tokens that would otherwise be confused as a single token. Al
whitespace is equivalent for this purpose. A comment counts as whitespace. Newlines are
distinguished from spaces only within quoted strings, and in formats and certain line-oriented forms
of quoting.

One other lexical oddity isthat if aline beginswith = in a place where a statement would be legal,
Perl ignores everything from that line down to the next line that says=cut . Theignored text is
assumed to be POD, or plain old documentation. (The Perl distribution has programs that will turn
POD commentary into manpages, LaTeX, or HTML documents.)

48 PREVIOUS HOME HEXT 5
What Y ou Don't Know Won't BOOK INDEX Built-in Data Types
Hurt Y ou (Much)

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Programming

4 PREVIOUS Chapter 3 MEXT &

3. Functions

Contents:
Perl Functions by Category
Perl Functionsin Alphabetical Order

This chapter describes each of the Perl functions. They're presented one by one in alphabetical order.
(Well, actually, some related functions are presented in pairs, or even threes or fours. Thisisusualy
the case when the Perl functions simply make UNIX system calls or C library calls. In such cases, the
presentation of the Perl function matches up with the corresponding UNIX manpage organization.)

Each function description begins with a brief presentation of the syntax for that function. Parameters
in ALL_ CAPS represent placeholders for actual expressions, as described in the body of the function
description. Some parameters are optional; the text describes the default values used when the
parameter is not included.

The functions described in this chapter can serve astermsin an expression, along with literals and
variables. (Or you can think of them as prefix operators. We call them operators half the time
anyway.) Some of these operators, er, functionstakea Ll ST as an argument. Such alist can consist of
any combination of scalar and list values, but any list values are interpolated as a sequence of scalar
values; that is, the overall argument L1 ST remains a single-dimensional list value. (To interpolate an
array as asingle element, you must explicitly create and interpolate a reference to the array instead.)
Elements of the LI ST should be separated by commas (or by =>, which isjust afunny kind of
comma). Each element of the LI ST isevaluated in alist context.

The functions described in this chapter may be used either with or without parentheses around their
arguments. (The syntax descriptions omit the parentheses.) If you use the parentheses, the smple (but
occasionally surprising) ruleisthis: if it lookslike afunction, it is afunction, and precedence doesn't
matter. Otherwise it's alist operator or unary operator, and precedence does matter. And whitespace
between the function and its left parenthesis doesn't count--so you need to be careful sometimes:

print 1+2+3; # Prints 6.
print(1+2) + 3; # Prints 3.
print (1+2)+3; # Also prints 3!
print +(1+2)+3; # Prints 6.

print ((1+2)+3); # Prints 6.

If you run Perl with the -w switch it can warn you about this. For example, the third line above
produces:

print (...) interpreted as function at - |line 3.
Usel ess use of integer addition in void context at - line 3.

Some of the LI ST operators impose special semantic significance on the first element or two of the
list. For example, the chmod function requires that the first element of the list be the new permission

to apply to thefiles listed in the remaining elements. Syntactically, however, the argument to chmod
isreally just aLl ST, and you could say:

unshift @rray, 0644;
chnmod @rr ay;

which is the same as:

chnod 0644, @array;

In these cases, the syntax summary at the top of the section mentions only the bare L1 ST, and any
special initial arguments are documented in the description.

On the other hand, if the syntax summary lists any arguments before the L1 ST, those arguments are
syntactically distinguished (not just semantically distinguished), and may impose syntactic constraints
on the actual arguments you pass to the function when you call it. For instance, the first argument to
the push function must be an array name. (Y ou may also put such syntactic constraints on your own

subroutine declarations by the use of prototypes. See "Prototypes’ in Chapter 2, The Gory Details.)

Many of these operations are based directly on the C library's functions. If so, we do not attempt to
duplicate the UNIX system documentation for that function, but refer you directly to the manual page.
Such references look like this: " See getlogin (3)." The number in parentheses tells you which section
of the UNIX manual normally contains the given entry. If you can't find a manual page (manpage for
short) for aparticular C function on your system, it's likely that the corresponding Perl function is
unimplemented. For example, not all systems implement socket (2) calls. If you're running in the
MS-DOS world, you may have socket calls, but you won't have fork (2). (Y ou probably won't have
manpages either, come to think of it.)

Occasionaly you'll find that the documented C function has more arguments than the corresponding
Perl function. The missing arguments are aimost always things that Perl already knows, such asthe
length of the previous argument, so you needn't supply them in Perl. Any remaining disparities are
due to different ways Perl and C specify their filehandles and their success/failure values.

For functions that can be used in either scalar or list context, non-abortive failure is generally
indicated in ascalar context by returning the undefined value, and in alist context by returning the
null list. Successful execution is generally indicated by returning a value that will evaluate to true (in
context).

Remember the following rule: thereis no general rule for converting a list into a scalar!

Many operators can return alist in list context. Each such operator knows whether it is being called in
scalar or list context, and in scalar context returns whichever sort of value it would be most
appropriate to return. Some operators return the length of the list that would have been returned in list
context. Some operators return the first value in the list. Some operators return the last value in the
list. Some operators return the "other" value, when something can be looked up either by number or

by name. Some operators return a count of successful operations. In general, Perl operators do exactly
what you want, unless you want consistency.

3.1 Perl Functions by Category

Here are Perl's functions and function-like keywords, arranged by category. Some functions appear
under more than one heading.

Scalar manipulation

chomp, chop, chr, crypt, hex, index, Ic, Icfirst, length, oct, ord, pack, q//, qq//, reverse, rindex,
sprintf, substr, tr///, uc, ucfirst, y/i/

Regular expressions and pattern matching

m//, pos, quotemeta, s///, split, study

Numeric functions

abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Array processing

pop, push, shift, splice, unshift

List processing

arep, join, map, qw//, reverse, sort, unpack

Hash processing
delete, each, exists, keys, values

Input and output

binmode, close, closedir, dbmclose, domopen, die, eof, fileno, flock, format, getc, print, printf,
read, readdir, rewinddir, seek, seekdir, select (ready file descriptors), syscal, sysread, syswrite,
tell, telldir, truncate, warn, write

Fixed-length data and records
pack, read, syscall, sysread, syswrite, unpack, vec

Filehandles, files, and directories

chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, Istat, mkdir, open, opendir, readlink,
rename, rmdir, stat, symlink, sysopen, umask, unlink, utime

Flow of program control

caler, continue, die, do, dump, eval, exit, goto, last, next, redo, return, sub, wantarray
Scoping

caller, import, local, my, package, use

Miscellaneous

defined, dump, eval, formline, local, my, reset, scalar, undef, wantarray

Processes and process groups

alarm, exec, fork, getparp, getppid, getpriority, kill, pipe, gx//, setparp, setpriority, sleep,
system, times, wait, waitpid

Library modules

do, import, no, package, require, use

Classes and objects

bless, dbmclose, domopen, package, ref, tie, tied, untie, use

Low-level socket access

accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv, send, setsockopt,
shutdown, socket, socketpair

System V interprocess communication

msgctl, msgget, msgrev, msgsnd, semctl, semget, semop, shmctl, shmget, shmread, shmwrite

Fetching user and group information

endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam, getlogin, getpwent,
getpwnam, getpwuid, setgrent, setpwent

Fetching network information

endprotoent, endser vent, gethostbyaddr, gethostbyname, gethostent, getnetbyaddr,
getnetbyname, getnetent, getprotobyname, getprotobynumber, getprotoent, getservbyname,
getservbyport, getservent, sethostent, setnetent, setprotoent, setser vent

Time

gmtime, localtime, time, times

41 PREVIOUS HOME MEXT =&
Specia Variables BOOK INDEX Perl Functions in Alphabetical
Order

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Programming

41 PREVIOUS Chapter 4 MEXT %

4. References and Nested Data
Structures

Contents:
What Is a Reference?
Creating Hard References

Using Hard References

Symbolic References

Braces, Brackets, and Quoting

A Brief Tutorial: Manipulating Lists of Lists
Data Structure Code Examples

For both practical and philosophical reasons, Perl has always been biased in favor of flat, linear data
structures. And for many problems, thisis exactly what you want. But occasionally you need to set up
something just alittle more complicated and hierarchical. Under older versions of Perl you could
construct complex data structures indirectly by using eval or typeglobs.

Suppose you wanted to build a simple table (two-dimensional array) showing vital statistics--say, age,
eye color, and weight--for a group of people. You could do this by first creating an array for each
individual:

@ ohn = (47, "brown", 186);
@muary = (23, "hazel", 128);
@ill = (35, "blue", 157);

and then constructing a single, additional array consisting of the names of the other arrays:

@itals = ("john', "mary', 'bill");

Unfortunately, actually using this table as a two-dimensional data structure is cumbersome. To change
John's eyesto "red" after anight on the town, you'd have to say something like:

$vitals = $vital s[O0];

eval "\$${vitals}[1] = "red ";

A much more efficient (but not more readable) way to do the same thing is to use atypeglob
assignment to temporarily alias one symbol table entry to another:

| ocal (*array) = $vitals[O0]; # Alias *array to *john.
$array[1l] = 'red'; # Actually sets $john[1].

Alternatively, you could avoid the symbol table altogether by doing everything with a set of parallel
hash arrays, emulating pointers symbolically by doing key lookups in the appropriate hash. Finally,
you could define all your structures operationally, using pack and unpack, or join and split.

So even though you could use a variety of techniques to emulate pointers and data structures, all of
them could get to be unwieldy. To be sure, Perl still supports these older mechanisms, since they
remain quite useful for smple problems. But now Perl aso supports references.

4.1 What Is a Reference?

In the preceding example using eval, $vi t al s[0] had thevalue' j ohn' . Thatis, it happened to
contain a string that was also the name for another variable. You could say that the first variable
referred to the second. We will speak of this sort of reference as a symbolic reference. Y ou can think
of it as analogous to symbolic linksin UNIX filesystems. Perl now provides some simplified
mechanisms for using symbolic references; in particular, the need for an eval or atypeglob

assignment in our example disappears. See "Symbolic References’ later in this chapter.

The other kind of reference isthe hard reference.[1] A hard reference refers not to the name of
another variable (which isjust a container for avalue) but rather to an actual value, someinternal glob
of data, which we will call a"thingy", in honor of that thingy that hangs down in the back of your
throat. (You may also call it a"referent”, if you prefer to live a joyless existence.) Suppose, for
example, that you create a hard reference to the thingy contained in the variable @r r ay. This hard
reference and the thingy it refersto will continue to exist even after @r r ay goes out of scope. Only
when the reference count of the thingy itself goesto zero is the thingy actually destroyed.

[1] If you like, you can think of hard references as real references, and symbolic
references as fake references. It's like the difference between real friendship and mere
name-dropping.

To put it another way, a Perl variable livesin a symbol table and holds one hard reference to its
underlying thingy (which may be a simple thingy like a number, or acomplex thingy like an array or
hash, but there's still only one reference from the variable to the value). There may be other hard
references to the same thingy, but if so, the variable doesn't know (or care) about them. A symbolic
reference names another variable, so there's aways a named location involved, but a hard reference
just points to athingy. It doesn't know (or care) whether there are any other references to the thingy,
or whether any of those references are through variables. Hence, a hard reference can refer to an
anonymous thingy. All such anonymous thingies are accessed through hard references. But the
converse is not necessarily true--just because something has a hard reference to it doesn't necessarily
mean it's anonymous. It might have another reference through a named variable. (It can even have
more than one name, if it is aliased with typeglobs.)

To reference avariable, in the terminology of this chapter, isto create a hard reference to the thingy
underlying the variable. (There's a special operator to do this creative act.) The hard reference so
created issimply a scalar value, which behavesin all familiar contexts just like any other scalar value
should. To dereference this scalar value isto useit to refer back to the original thingy, as you must do
when reading or writing to the thingy. Both referencing and dereferencing occur only when you

invoke certain explicit mechanisms; no implicit referencing or dereferencing occursin Perl.[2][3]

[2] Actualy, afunction with a prototype can use implicit pass-by-reference if explicitly
declared that way. If so, then the caller of the function doesn't need to know he's passing
areference, but you still have to dereference it explicitly within the function. See Chapter

2, The Gory Details.

[3] Actualy, to be perfectly honest, there's also some mystical automatic dereferencing
when you use certain kinds of filehandles, but that's for backward compatibility, and is
transparent to the casual user.

Any scalar may hold a hard reference, and such areference may point to any data structure. Since
arrays and hashes contain scalars, you can build arrays of arrays, arrays of hashes, hashes of arrays,
arrays of hashes and functions, and so on.

Keep in mind, though, that Perl arrays and hashes are internally one-dimensional. They can only hold
scalar values (strings, numbers, and references). When we use a phrase like "array of arrays', we
really mean "array of referencesto arrays'. But since that's the only way to implement an array of
arraysin Perl, it follows that the shorter, less accurate phrase is not so inaccurate as to be false, and
therefore should not be totally despised, unless you're into that sort of thing.

41 PREVIOUS HOME NEXT
Perl Functionsin Alphabetical BOOK INDEX Creating Hard References
Order

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Programming

4 PREVIOUS Chapter 5 MEXT &

5. Packages, Modules, and Object
Classes

Contents:

Packages

Modules

Objects

Using Tied Variables

Some Hints About Object Design

This chapter, more than any other in this book, is about Laziness, |mpatience, and Hubris--because
this chapter is about good software design.

We've dl falen into the trap of using cut-and-paste when we should have chosen to define a
higher-level abstraction, if only just aloop or subroutine.[1] To be sure, some folks have gone to the
opposite extreme of defining ever-growing mounds of higher-level abstractions when they should
have used cut-and-paste.[2] Generally, though, most of us need to think about using more abstraction
rather than less.

[1] Thisisaform of False Laziness.
[2] Thisisaform of False Hubris.

(Caught somewhere in the middle are the people who have a balanced view of how much abstraction
Is good, but who jump the gun on writing their own abstractions when they should be reusing existing
code.)[3]

[3] You guessed it, thisis False Impatience. But if you're determined to reinvent the
wheel, at least try to invent a better one.

Whenever you're tempted to do any of these things, you need to sit back and think about what will do
the most good for you and your neighbor over the long haul. If you're going to pour your creative
energiesinto alump of code, why not make the world a better place while you're at it? (Even if you're
only aiming for the program to succeed, you need to make sure it fitsits ecological niche.)

Thefirst step toward ecologically sustainable programming is ssimply: don't litter in the park. When
you write a chunk of code, think about giving the code its own namespace, so that your variables and
functions don't clobber anyone else's, or vice versa. A namespace is a bit like your home, where you're
allowed to be as messy as you like, aslong as you keep your external interface to other citizens

moderately civil. In Perl, anamespace is called a package. Packages provide the fundamental building
block upon which the higher-level concepts of modules and classes are constructed.

Like the notion of "home", the notion of "package” is abit nebulous. Packages are independent of
files. You can have many packagesin asinglefile, or asingle package that spans several files, just as
your home could be one part of alarger building, if you live in an apartment, or could comprise
severa buildings, if your name happens to be Queen Elizabeth. But the usual size of ahomeisone
building, and the usual size of a package isonefile. Perl has some specia help for people who want to
put one package in onefile, aslong as you're willing to name the file with the same name as the
package and give your file an extension of ".pm", which is short for "perl module". The moduleisthe
unit of reusability in Perl. Indeed, the way you use a module is with the use command, whichisa
compiler directive that controls the importation of functions and variables from a module. Every
example of use you've seen until now has been an example of module reuse.

Object classes are another concept built on the package concept. The concept of classes therefore cuts
across the concepts of files and modules. But the typical classis nevertheless implemented with a
module. (If you're starting to get the feeling that much of Perl culture is governed by mere convention,
then you're starting to get the right feeling, civilly speaking. The trend over the last 20 years or so has
been to design computer languages that enforce a state of paranoia. Y ou're expected to program every
module asif it were in a state of siege. Certainly there are some feudal cultures where thisis
appropriate, but not al cultures are like this. In Perl culture, by contrast, you're expected to stay out of
someone's home because you weren't invited in, not because there are barg 4] on the windows.)

[4] But Perl provides some bars if you want them, too. See the Safe module in Chapter 7,
The Sandard Perl Library, for instance.

Anyway, back to classes. When you use a modul e that implements a class, you're benefiting from the
direct reuse of the software that implements that module. But with object classes you can get the
additional benefits of indirect software reuse when the class you're using turns around and reuses
other classes that it gets some characteristics from. But thisis not primarily a book about
object-oriented methodology, and we're not here to convert you into a raving object-oriented zeal ot,
even if you want to be converted. There are already plenty of books out there for that. Perl's
philosophy of object-oriented design fits right in with Perl's philosophy of everything else: use
object-oriented design where it makes sense, and avoid it where it doesn't. Y our call.

Aswe mentioned in the previous chapter, object-oriented programming in Perl is accomplished
through use of references that happen to refer to thingies that know which class they're associated
with. In fact, now that you know about references, you know almost everything hard about objects.
Therest of it just "lays under the fingers', as aviolinist would say. Y ou will need to practice alittle,
though.

In this chapter we will discuss creation and use of packages, modules, and classes. Then we will
review some of the essentials of object-oriented programming, explain how references become
objects, and illustrate how these objects are manipulated as members of one or more classes. Welll
also tell you how to tie ordinary variables into object classes to turn them into magical variables.

5.1 Packages

Perl provides a mechanism to protect different sections of code from inadvertently tampering with
each other's variables. In fact, apart from certain magical variables, there's really no such thing asa
global variable in Perl. Code is always compiled in the current package. Theinitial current packageis
package main, but at any time you can switch the current package to another one using the package

declaration. The current package determines which symbol table is used for name lookups (for names
that aren't otherwise package-qualified). The notion of "current package" is both a compile-time and
run-time concept. Most name lookups happen at compile-time, but run-time lookups happen when
symbolic references are dereferenced, and also when new bits of code are parsed under eval. In

particular, eval operations know which package they were invoked in, and propagate that package

inward as the current package of the evaluated code. (Y ou can always switch to a different package
within the eval string, of course, since an eval string counts as a block, as does afile loaded in with

do, require, or use.)

The scope of a package declaration is from the declaration itself through the end of the innermost
enclosing block (or until another package declaration at the same level, which hides the earlier one).
All subsequent identifiers (except those declared with my, or those qualified with a different package
name) will be placed in the symbol table belonging to the package. Typically, you would put a
package declaration as the first declaration in afile to be included by require or use. But again, that's
by convention. Y ou can put a package declaration anywhere you can put a statement. Y ou could even
put it at the end of ablock, in which case it would have no effect whatsoever. Y ou can switch into a
package in more than one place; it merely influences which symbol table is used by the compiler for
the rest of that block. (Thisis how a given package can span more than onefile.)

Y ou can refer to identifierg 5] in other packages by prefixing ("qualifying”) the identifier with the
package name and a double colon: $Package: : Vari abl e. If the package nameis null, the main
packageisassumed. That is, $: : sai | isequivalentto $nai n: : sai | .[6] (The old package
delimiter was a single quote, which produced thingslike $rmai n' sai | and $' sai | . But adouble
colon is now the preferred delimiter, in part because it's more readable to humans, and in part because
it's more readable to emacs macros. It also gives C++ programmers awarm feeling.)

[5] By identifiers, we mean the names used as symbol table keys to access scalar
variables, array variables, hash variables, functions, file or directory handles, and
formats. Syntactically speaking, labels are also identifiers, but they aren't put into a
particular symbol table; rather, they are attached directly to the statementsin your
program. Labels may not be package qualified.

[6] To clear up another bit of potential confusion, in a variable name like

$mai n: : sai | , weusetheterm "identifier" to talk about mai n and sai | , but not
mai n: : sai | . Wecall that avariable name instead, because an identifier may not
contain a colon. The definition of an identifier islexical, in that an identifier is atoken
that matchesthe pattern/ [A-Za-z][A-Za-z _0-9]*$/.

Packages may be nested inside other packages: $OUTER: : | NNER: : var . Thisimplies nothing
about the order of name lookups, however. There are no fallback symbol tables. All undeclared
symbols are either local to the current package, or must be fully qualified from the outer package
name down. For instance, there is nowhere within package OUTER that $| NNER: : var refersto
$OUTER: : | NNER: : var . It would treat package | NNER as a totally separate global package.

Similarly, every package declaration must declare a complete package name. No package name ever
assumes any kind of implied "prefix", even if (seemingly) declared within the scope of some other
package declaration.

Only identifiers (names starting with letters or underscore) are stored in the current package's symbol
table. All other symbols are kept in package main, including all the magica punctuation-only
variableslike $! and $. In addition, theidentifiers STDI N, STDOUT, STDERR, ARGV, ARGVOUT,
ENV, I NC, and SI Gare forced to be in package main even when used for purposes other than their
built-in ones. Furthermore, if you have a package caled m s, y, or t r , then you can't use the
qualified form of an identifier as afilehandle because it will be interpreted instead as a pattern match,
a substitution, or atranglation. Using uppercase package names avoids this problem.

Assignment of astring to % SI G assumes the signal handler specified isin the main package, if the
name assigned is unqualified. Qualify the signal handler name if you want to have asignal handler in
a package, or don't use astring at all: assign atypeglob or afunction reference instead:

$SIG QU T} = "quit_catcher"; # inplies "main::quit_catcher"
$SIGQUI T} = *quit_catcher; # forces current package's sub
$SIG QUI T} = \&quit catcher; # forces current package's sub
$SIGQU T} = sub { print "Caught SIGQUI T\n" }; # anonynous sub

See my and local in Chapter 3, Functions, for other scoping issues. See the "Signals' section in
Chapter 6, Social Engineering, for more on signal handlers.

Symbol Tables

The symbol table for a package happens to be stored in a hash whose name is the same as the package
name with two colons appended. The main symbol table's nameisthus %rai n: : , or % : for short,
since package main isthe default. Likewise, the symbol table for the nested package we mentioned
earlier isnamed YOUTER: : | NNER: : . Asit happens, the main symbol table contains all other
top-level symbol tables, including itself, so “OUTER: : | NNER: : isaso

%rai n: : OUTER : | NNER: : .

When we say that a symbol table "contains' another symbol table, we mean that it contains a
reference to the other symbol table. Since package main is atop-level package, it contains areference
to itself, with the result that %rai n: : isthe sameas%mai n: : mai n: : , and

%rai n: : mai n: : mai n: :, and soon, ad infinitum. It's important to check for this special caseif
you write code to traverse al symbol tables.

The keys in asymbol table hash are the identifiers of the symbolsin the symbol table. The valuesin a
symbol table hash are the corresponding typeglob values. So when you use the * nanme typeglob
notation, you're really just accessing a value in the hash that holds the current package's symbol table.
In fact, the following have the same effect, although the first is potentially more efficient because it
does the symbol table lookup at compile time:

| ocal *sonmesym = *main::variabl e;
| ocal *sonesym = $nmin::{"variable"};

Since a package is a hash, you can look up the keys of the package, and hence al the variables of the
package. Try this:

foreach $symane (sort keys %min::) {
| ocal *sym = $main:: {$symane};
print "\$$symane is defined\n" if defined $sym
print "\ @symane is defined\n" if defined @ym
print "\%symane is defined\n" if defined %ym

}

Since all packages are accessible (directly or indirectly) through package main, you can visit every
package variable in the program, using code written in Perl. The Perl debugger does precisely that
when you ask it to dump all your variables.

Assignment to atypeglob performs an aliasing operation; that is,

*dick = *richard;

causes everything accessible viathe identifier r i char d to also be accessible viathe symbol di ck.
If you only want to alias a particular variable or subroutine, assign a reference instead:

*dick = \'$richard;

Thismakes $ri char d and $di ck the same variable, but leaves @ i char d and @li ck as separate
arrays. Tricky, eh?

This mechanism may be used to pass and return cheap references into or from subroutinesif you don't
want to copy the whole thing:

%sonme_hash
*sone_hash
sub fn {

| ocal *hashsym = shift;

now use %hashsym normal ly, and you

wll affect the caller's %anot her hash

ny %hash = (); # populate this hash at w |

return \ %hash;

();
fn(\%not her _hash);

}

On return, the reference will overwrite the hash slot in the symbol table specified by the
*sone_hash typeglob. Thisis asomewhat sneaky way of passing around references cheaply when
you don't want to have to remember to dereference variables explicitly. It only works on package
variables though, which iswhy we had to use local there instead of my.

Another use of symbol tablesisfor making "constant" scalars:

*Pl = \3.14159265358979;
Now you cannot alter $PI , which is probably a good thing, all in al.

When you do that assignment, you're just replacing one reference within the typeglob. If you think
about it sideways, the typeglob itself can be viewed as a kind of hash, with entries for the different
variabletypesinit. In this case, the keys are fixed, since atypeglob can contain exactly one scalar,

one array, one hash, and so on. But you can pull out the individual references, like this:

*pkg: : syn{ SCALAR}
*pkg: : syn{ ARRAY}
*pkg: : syn{ HASH}

*pkg: : syn{ CODE}

*pkg: : syn{ GLOB}

*pkg: : syn{ FI LEHANDLE}
*pkg: : syn{ NAME}

*pkg: : syn{ PACKAGE}

same as \$pkg::sym

same as \ @kg: :sym

same as \ %pkg::sym

same as \&pkg::sym

sane as *pkg::sym

internal filehandle, no direct equival ent
"sym' (not a reference)

"pkg" (not a reference)

HHHFHFEHHHFH

Thisis primarily used to get at the internal filehandle reference, since the other internal references are
already accessible in other ways. But we thought we'd generalize it because it looks kind of pretty.
Sort of. Y ou probably don't need to remember all this unless you're planning to write a Perl debugger.
S0 let's get back to the topic of writing good software.

Package Constructors and Destructors: BEGIN and END

Two special subroutine definitions that function as package constructors and destructorg[7] are the
BEG Nand END routines. The sub is optional for these routines.

[7] Strictly speaking, these aren't constructors and destructors, but initializers and
finalizers. And strictly speaking, packages aren't objects. But strictly speaking, we don't
speak strictly around here too often.

A BEGQ N subroutine is executed as soon as possible, that is, the moment it is completely defined,
even before the rest of the containing fileis parsed. Y ou may have multiple BEA N blocks within a
file--they will execute in order of definition. Because a BEG N block executes immediately, it can
pull in definitions of subroutines and such from other filesin time to be visible during compilation of
the rest of thefile. Thisisimportant because subroutine declarations change how the rest of thefile
will be parsed. At the very least, declaring a subroutine allows it to be used as a list operator, without
parentheses. And if the subroutine is declared with a prototype, then calls to that subroutine may be
parsed like any of several built-in functions (depending on which prototype is used).

An END subroutine, by contrast, is executed as |late as possible, that is, when the interpreter is being
exited, even if it isexiting as aresult of adie function, or from an internally generated exception such
asyou'd get when you try to call an undefined function. (But not if it'sis being blown out of the water
by a signal--you have to trap that yourself (if you can).)[8] Y ou may have multiple END blocks within
afile--they will execute in reverse order of definition; that is: last in, first out (LIFO). That is so that
related BEG Nsand ENDs will nest the way you'd expect, if you pair them up.

[8] See the sigtrap pragmatic module described in Chapter 7, The Sandard Per| Library

for an easy way to do this. For general information on signal handling, see "Signals' in
Chapter 6, Social Engineering.

When you use the -n and -p switches to Perl, BEG N and END work just asthey do in awk (1), asa
degenerate case. For example, the output order of colorsif you run the following program is red,
green, and blue:

die "green\n";

END { print "blue\n" }
BEGN{ print "red\n" }

Just as eval provides away to get compilation behavior during run-time, so too BEG N provides a
way to get run-time behavior during compilation. But note that the compiler must execute BEG N
blocks even if you're just checking syntax with the -c switch. By symmetry, END blocks are also
executed when syntax checking. Y our END blocks should not assume that any or all of your main
code ran. (They shouldn't do thisin any event, since the interpreter might exit early from an
exception.) Thisisnot a bad problem in general. At worst, it means you should test the " definedness®
of avariable before doing anything rash with it. In particular, before saying something like:

system"rm-rf "$dir'"

you should always check that $di r contains something meaningful, whether or not you're doing it in
an END block. Cavesat destructor.

Autoloading

Normally you can't call a subroutine that isn't defined. However, if there is a subroutine named
AUTOLOAD in the undefined subroutine's package (or in the case of an object method, in the package
of any of the object's base classes), then the AUTOLOAD subroutine is called with the same arguments
as would have been passed to the original subroutine. The fully qualified name of the original
subroutine magically appears in the package-global $AUTCOL OAD variable, in the same package as the
AUTOLOAD routine.

Most AUTOLOAD routines will load a definition for the undefined subroutine in question using eval or
require, then execute that subroutine using a special form of goto that erases the stack frame of the
AUTOLOAD routine without atrace.

The standard AutoSplit module is atool used by module writersto help split their modules into
separate files (with filenames ending in .al), each holding one routine. The files are placed in the auto/
directory of the Perl library. These files can then be loaded on demand by the standard AutoL cader
module. A similar approach is taken by the SelfL oader module, except that it autoloads functions
from the file's own DATA area (which is less efficient in some ways and more efficient in others).
Autoloading of Perl functionsis analogous to dynamic loading of compiled C functions, except that
autoloading (as practiced by AutoL oader and SelfL oader) is done at the granularity of the function
call, whereas dynamic loading (as practiced by the Dynal.oader module) is done at the granularity of
the complete module, and will usually link in many C or C++ functions all at once. (See also the
AutolL oader, SelfL oader, and Dynaloader modulesin Chapter 7, The Sandard Per| Library.)

But an AUTOLQAD routine can also just emulate the routine and never defineit. For example, let's
pretend that any function that isn't defined should just call system with its arguments. All you'd do is

this:

sub AUTOLQAD ({
ny $program = $AUTOLOAD;
$program =~ s/.*:://; # trim package nane
system($program @);

date();
who('am, "i');
Is(C'-1");

In fact, if you predeclare the functions you want to call that way, you don't even need the parentheses:

use subs gw(date who |s);

dat e;

who "ant, "i";

ls "-1";

A more complete example of thisis the standard Shell module described in Chapter 7, The Standard
Per| Library, which can treat undefined subroutine calls as calls to programs.

41 PREVIQUS HOME MEXT
Data Structure Code BOOK INDEX Modules
Examples

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Programming

4 PREVIOUS Chapter 6 MEXT &

6. Social Engineering

Contents:
Cooperating with Command I nterpreters
Cooperating with Other Processes

Cooperating with Strangers
Cooperating with Other Lanquages

Languages have different personalities. Y ou can classify computer languages by how introverted or
extroverted they are; for instance, Icon and Lisp are stay-at-home languages, while Tcl and the
various shells are party animals. Self-sufficient languages prefer to compete with other languages,
while social languages prefer to cooperate with other languages. As usual, Perl tries to do both.

So this chapter is about relationships. Until now we've looked inward at the competitive nature of
Perl, but now we need to look outward and see the cooperative nature of Perl. If we really mean what
we say about Perl being a glue language, then we can't just talk about glue; we have to talk about the
various kinds of things you can glue together. A glob of glue by itself isn't very interesting.

Perl doesn't just glue together other computer languages. It also glues together command line
interpreters, operating systems, processes, machines, devices, networks, databases, institutions,
cultures, Web pages, GUIs, peers, servers, and clients, not to mention people like system
administrators, users, and of course, hackers, both naughty and nice. In fact, Perl is rather competitive
about being cooperative.

So this chapter is about Perl's relationship with everything in the world. Obviously, we can't talk about
everything in the world, but welll try.

6.1 Cooperating with Command Interpreters

It isfortunate that Perl grew up in the UNIX world--that means its invocation syntax works pretty
well under the command interpreters of other operating systems too. Most command interpreters
know how to deal with alist of words as arguments, and don't care if an argument starts with a minus
sign. There are, of course, some sticky spots where you'll get fouled up if you move from one system
to another. Y ou can't use single quotes under MS-DOS as you do under UNIX, for instance. And on
systemslike VM S, some wrapper code has to jump through hoops to emulate UNIX 1/O redirection.
Once you get past those issues, however, Perl treats its switches and arguments much the same on any
operating system.

Even when you don't have a command interpreter, per se, it's easy to execute a Perl script from
another program, such as the inet daemon or a CGI server. Not only can such a server pass arguments
in the ordinary way, but it can also passin information via environment variables and (under UNIX at
least) inherited file descriptors. Even more exotic argument-passing mechanisms may be encapsulated
in amodule that can be brought into the Perl script viaa simple use directive.

Command Processing

Perl parses command-line switches in the standard fashion.[1] That is, it expects any switches (words
beginning with a minus) to come first on the command line. After that comes the name of the script
(usually), followed by any additional arguments (often filenames) to be passed into the script. Some
of these additional arguments may be switches, but if so, they must be processed by the script, since
Perl gives up parsing switches as soon as it sees a non-switch, or the special "- -" switch that
terminates switch processing.

[1] Presuming you agree that UNIX is both standard and fashionable.

Perl gives you some flexibility in how you supply your program. For small, quick-and-dirty jobs, you
can program Perl entirely from the command line. For larger, more permanent jobs, you can supply a
Per| script as a separate file. Perl looks for the script to be specified in one of three ways:

1. Specified line by line via -e switches on the command line.

2. Contained in the file specified by the first filename on the command line. (Note that systems
supporting the #! shebang notation invoke interpreters this way on your behalf.)

3. Passed in implicitly via standard input. This only works if there are no filename arguments; to

pass arguments to a standard-input script you must explicitly specify a"-" for the script name.
For example, under UNIX:

echo "print "Hello, world"" | perl -

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless you've
specified a-x switch, in which case it scans for the first line starting with #! and containing the
word "per | ", and starts there instead. Thisis useful for running a script embedded in alarger
message. (In this case you might indicate the end of the script usingthe_ _END_ _ token.)

Whether or not you use -x, the #! lineis always examined for switches astheline is being parsed.
Thus, if you're on a machine that only alows one argument with the #! line, or worse, doesn't even
recognize the #! line as special, you still can get consistent switch behavior regardless of how Perl
was invoked, even if -x was used to find the beginning of the script.

WARNING:

Because many versions of UNIX silently chop off kernel interpretation of the #! line after 32
characters, some switches may be passed in on the command line, and some may not; you could even
get a"- " without itsletter, if you're not careful. Y ou probably want to make sure that al your
switches fall either before or after that 32-character boundary. Most switches don't actually care if
they're processed redundantly, but getting a"- " instead of a complete switch could cause Perl to try to
execute standard input instead of your script. And apartial -1 switch could also cause odd results. Of
course, if you're not on a UNIX system, you're guaranteed not to have this problem.

Parsing of the switcheson the #! line starts wherever "per | " is mentioned in the line. The sequences

“-*"and"- " arespecifically ignored for the benefit of emacs users, so that, if you're so inclined,
you can say:

#!/bin/sh -- # -*- perl -*- -p
eval 'exec perl -S $0 ${1+"$@}’
i f O;
and Perl will see only the -p switch. Thefancy "-*- per| -*-"gizmotellsemacsto start upin
Perl mode; you don't need it if you don't use emacs. The -S messis explained below.

If the#! line does not contain the word "per | ", the program named after the #! is executed instead
of the Perl interpreter. For example, suppose you have an ordinary Bourne shell script out there that

says:

#!/ bin/sh
echo "I ama shell script”

If you feed that file to Perl, then Perl will run /bin/sh for you. Thisis dightly bizarre, but it helps
people on machines that don't recognize #! , because--by setting their SHELL environmental
variable--they can tell a program (such as amailer) that their shell is/usr/bin/perl, and Perl will then
dispatch the program to the correct interpreter for them, even though their kernel istoo stupid to do
so. Classify it as a strange form of cooperation.

But back to Perl scriptsthat arereally Perl scripts. After locating your script, Perl compiles the entire
script to an internal form. If any compilation errors arise, execution of the script is not attempted

(unlike the typical shell script, which might run partway through before finding a syntax error). If the
script is syntactically correct, it is executed. If the script runs off the end without hitting an exit or die

operator, an implicit exi t (0) is provided to indicate successful completion.

Switches

A single-character switch with no argument may be combined (bundled) with the following switch, if
any.

#! [usr/ bin/perl -spi.bak # sane as -s -p -i.bak

Switches are also known as options, or flags. Perl recognizes these switches:

Terminates switch processing, even if the next argument starts with aminus. It has no other
effect.

-0[octnum]
Specifies the record separator ($/) as an octal number. If octnumis not present, the null
character is the separator. Other switches may precede or follow the octal number. For example,

if you have aversion of find (1) that can print filenames terminated by the null character, you
can say this:

find . -nanme '*.bak' -printO | perl -nOe unlink

The special value 00 will cause Perl to slurp files in paragraph mode, equivalent to setting the
$/ variableto " " . The value 0777 will cause Perl to slurp files whole since thereisno legal
ASCII character with that value. Thisis equivalent to undefining the $/ variable.

Turns on autosplit mode when used with a-n or -p. Animplicit split command to the @F array
is done as the first thing inside the implicit while loop produced by the -n or -p. So:

perl -ane 'print pop(@), "\n";'

Is equivalent to:

while (<>) {
@ = split(" ");
print pop(@), "\n";
}

A different field delimiter may be specified using -F.

Causes Perl to check the syntax of the script and then exit without executing it. Actualy, it will
execute any BEG N blocks and use directives, since these are considered to occur before the
execution of your program. It also executes any END blocks, in case they need to clean up
something that happened in a corresponding BEG N block. The switch is more or less
equivalent to having an exi t (0) asthefirst statement in your program.

Runs the script under the Perl debugger. See "The Perl Debugger” in Chapter 8, Other
Oddments.

-d:foo

Runs the script under the control of a debugging or tracing module installed in the Perl library
as Devel::foo. For example, - d: DPr of executes the script using the Devel::DProf profiler. See
also the debugging section in Chapter 8, Other Oddments.

-Dnumber

-Dlist

Sets debugging flags. (This only works if debugging is compiled into your version of Perl via
the -DDEBUGGING C compiler switch.) You may specify either a number that is the sum of
the bits you want, or alist of letters. To watch how it executes your script, for instance, use
- D14 or - Dsl t . Another nice valueis- D1024 or - Dx, which lists your compiled syntax tree.
And - D512 or - Dr displays compiled regular expressions. The numeric value is available
internally as the special variable $*D. Here are the assigned bit values:
Bit Letter Meaning
p Tokenizing and parsing

Stack snapshots
I Label stack processing

t Trace execution

oo~ DN

16 0 Object method L ookup

32 C String/numeric conversions

64 P Print preprocessor command for -P

128 m Memory allocation

256 f Format processing

512 r Regular expression processing

1,024 x Syntax tree dump

2,048 u Tainting checks

4,096 L Memory leaks (not supported any more)
8,192 H Hash dump - - usurps values()

16,384 X Scratchpad allocation
32,768 D Cleaning up

-e commandline

May be used to enter one or more lines of script. If -eis used, Perl will not look for a script
filename in the argument list. The -e argument istreated asif it ends with a newline, so multiple
-e commands may be given to build up a multi-line script. (Make sure to use semicolons where
you would in anormal program.) Just because -e supplies a newline on each argument doesn't
mean you have to use multiple -e switches--if your shell supports multi-line quoting, you may
pass a multi-line script as one -e argument, just as awk (1) scripts are typically passed.

-Fpattern

Specifies the pattern to split on if -aisalso in effect. The pattern may be surrounded by //," "
or' ' ,otherwiseit will be put in single quotes. (Remember that to pass quotes through a
shell, you have to quote the quotes.)

-h

Prints a summary of Perl's command-line options.
-i[extension]

Specifies that files processed by the < > construct are to be edited in-place. It does this by
renaming the input file, opening the output file by the original name, and selecting that output
file as the default for print statements. The extension, if supplied, is added to the name of the

old file to make a backup copy. If no extension is supplied, no backup is made. From the shell,
saying:

$ perl -p -i.bak -e "s/foo/bar/; ... "

IS the same as using the script:

#! [usr/ bin/perl -pi.bak

s/ fool bar/;

which is equivalent to:

#! [usr/ bi n/ per|
while (<>) {

i f ($ARGV ne $ol dargv) {
rename($ARGY, $ARGV . '.bak');
open(ARGVOUT, ">$ARGV");
sel ect (ARGVQUT) ;
$ol dargv = $ARGVY;

}

s/ fool bar/;
}
conti nue {

print; # this prints to original filenane
}

sel ect (STDOUT) ;

except that the -i form doesn't need to compare $ARGV to $ol dar gv to know when the
filename has changed. It does, however, use ARGVOUT for the selected filehandle. Note that
STDOUT isrestored as the default output filehandle after the loop. Y ou can use eof without
parentheses to locate the end of each input file, in case you want to append to each file, or reset
line numbering (see the examples of eof in Chapter 3, Functions).

-l directory

Directories specified by -1 are prepended to @I NC, which holds the search path for modules. -I
also tellsthe C preprocessor where to search for include files. The C preprocessor isinvoked
with -P; by default it searches /usr/include and /usr/lib/perl. Unless you're going to be using the
C preprocessor (and almost no one does any more), you're better off usingtheuse i b
directive within your script.

-I[octnum]

Enables automatic line-end processing. It has two effects: first, it automatically chompsthe line

terminator when used with -n or -p, and second, it sets $\ to the value of octnum so any print
statements will have aline terminator of ASCII value octnum added back on. If octnumis
omitted, sets $\ to the current value of $/, typically newline. So, to trim lines to 80 columns, say
this:

perl -lpe 'substr($_, 80) = ""'

Note that the assignment $\ = $/ isdone when the switch is processed, so the input record
separator can be different from the output record separator if the -1 switch isfollowed by a-0
switch:

gnufind / -print0O | perl -InOe "print "found $ " if -p'

This sets $\ to newline and later sets $/ to the null character. (Note that 0 would have been
interpreted as part of the -| switch had it followed the - directly. That's why we bundled the -n
switch between them.)

-m[-]module

-M[-]module

-M[-]" module...'
-[mM][-]module=arg [,arg] ...

-mmodule

Executes use module() before executing your script.

-Mmodule

Executes use module before executing your script. The command isformed by mere
interpolation, so you can use guotes to add extra code after the module name, for example,

- M nodul e gwm(foo bar) ' .If thefirst character after the -M or -m isaminus (-), then the
useis replaced with no.

A little built-in syntactic sugar means you can also say - nmodul e=f oo, bar or

- Mmodul e=f 0o, bar asashortcut for - M nodul e gwm f oo bar)' . Thisavoidsthe need
to use quotes when importing symbols. The actual code generated by - Mrodul e=f oo, bar

IS

use nodule split(/,/, q{foo, bar})

Note that the = form removes the distinction between - mand - M

Causes Perl to assume the following loop around your script, which makes it iterate over
filename arguments rather as sed -n or awk do:

LI NE:
while (<) {

}

Note that the lines are not printed by default. See -p to have lines printed. Here is an efficient
way to delete all files older than aweek, assuming you're on UNIX:

your script goes here

find . -ntinme +7 -print | perl -nle unlink

Thisisfaster than using the -exec switch of find (1) because you don't have to start a process on
every filename found. By an amazing coincidence, BEG N and END blocks may be used to
capture control before or after the implicit loop, just asin awk.

Causes Perl to assume the following loop around your script, which makes it iterate over
filename arguments rather as sed does:

LI NE:

while (<>) {

- # your script goes here

} continue {
print;

}

Note that the lines are printed automatically. To suppress printing use the -n switch. A -p
overrides a-n switch. By yet another amazing coincidence, BEG N and END blocks may be

used to capture control before or after the implicit loop, just asin awk.

Causes your script to be run through the C preprocessor before compilation by Perl. (Since both
comments and cpp (1) directives begin with the # character, you should avoid starting

comments with any words recognized by the C preprocessor suchas"i f ", "el se" or
"defi ne"))

Enables some rudimentary switch parsing for switches on the command line after the script
name but before any filename arguments or "- -" switch terminator. Any switch found thereis
removed from @ARGV, and a variable of the same name as the switch is set in the Perl script.
No switch bundling is allowed, since multi-character switches are allowed. The following script
prints"t r ue" if and only if the script isinvoked with a- xyz switch.

#!/usr/bin/perl -s
if ($xyz) { print "true\n"; }

If the switch in question is followed by an equals sign, the variable is set to whatever follows
the equals sign in that argument. The following script prints "t r ue" if and only if the script is
invoked with a- xyz=abc switch.

#!/usr/ bin/perl -s
i f ($xyz eq "abc’') { print "true\n"; }

Makes Perl use the PATH environment variable to search for the script (unless the name of the
script starts with aslash). Typically thisisused to emulate #! startup on machines that don't
support #! , in the following manner:

#! [usr/ bi n/ per|
eval "exec /usr/bin/perl -S $0 $*"
i f $runni ng_under _sone_shel | ;

The system ignores the first line and feeds the script to /bin/sh, which proceeds to try to execute
the Perl script as a shell script. The shell executes the second line as a normal shell command,
and thus starts up the Perl interpreter. On some systems $0 doesn't always contain the full
pathname, so -Stells Perl to search for the script if necessary. After Perl locates the script, it
parses the lines and ignores them because the variable $r unni ng_under _sone_shel | is
never true. A better construct than $* would be ${ 1+ $@ } , which handles embedded spaces
and such in the filenames, but doesn't work if the script is being interpreted by csh. In order to
start up sh rather than csh, some systems have to replace the #! line with aline containing just
acolon, which Perl will politely ignore. Other systems can't control that, and need atotally
devious construct that will work under any of csh, sh, or perl, such as the following:

eval '(exit $?0)' && eval 'exec /usr/bin/perl -S $0 ${1+"$@}’
& eval 'exec /usr/bin/perl -S $0 $argv: g’
i f O;

-V

Yes, it'sugly, but so are the systems that work[2] this way.
[2] We use the term advisedly.

Forces "taint" checks to be turned on so you can test them. Ordinarily these checks are done
only when running setuid or setgid. It's agood ideato turn them on explicitly for programs run
on another's behalf, such as CGI programs. See "Cooperating with Strangers' later in this
chapter.

Causes Perl to dump core after compiling your script. Y ou can then take this core dump and
turn it into an executable file by using the undump program (not supplied). This speeds startup
at the expense of some disk space (which you can minimize by stripping the executable). If you
want to execute a portion of your script before dumping, use Perl's dump operator instead.
Note: availability of undump is platform specific; it may not be available for a specific port of
Perl.

Allows Perl to do unsafe operations. Currently the only "unsafe" operations are the unlinking of
directories while running as superuser, and running setuid programs with fatal taint checks
turned into warnings.

Prints the version and patchlevel of your Perl executable.

Prints a summary of the major Perl configuration values and the current value of @INC.

-V:name

Prints to STDOUT the value of the named configuration variable.

Prints warnings about identifiers that are mentioned only once, and scalar variables that are
used before being set. Also warns about redefined subroutines, and references to undefined
filehandles or filehandles opened read-only that you are attempting to write on. Also warns you
if you use a non-number as though it were a number, or if you use an array as though it were a
scalar, or if your subroutines recurse more than 100 deep, and innumerable other things. See
every entry labeled (W) in Chapter 9, Diagnostic Messages.

-xdirectory

Tells Perl to extract a script that is embedded in a message. L eading garbage will be discarded
until thefirst line that startswith #! and contains the string "per | ". Any meaningful switches
on that line after the word "per | " will be applied. If adirectory nameis specified, Perl will
switch to that directory before running the script. The -x switch only controls the disposal of
leading garbage. The script must beterminatedwith . END or _ _DATA _ if thereis
trailing garbage to be ignored. (The script can process any or al of thetrailing garbage viathe
DATA filehandleif desired.)

41 PREVIOUS HOME NEXT
Some Hints About Object BOOK INDEX Cooperating with Other
Design Processes

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Programming

4 PREVIOUS Chapter 7 MEXT &

/. The Standard Perl Library

Contents:
Beyond the Standard Library
Library Modules

This chapter describes the collection of Perl code that comes along with the Perl distribution. If you
use this library and then share your program with others, they will not have to take specia stepsto
execute the program, because the same library is available to Perl programs everywhere.

You'll save sometime if you make the effort to get familiar with the standard library. There's no point
in reinventing the wheel. Y ou should be aware, however, that the library contains a wide range of
material. While some modules may be extremely helpful, others may be completely irrelevant to your
needs. For example, some are useful only if you are creating extensions to Perl. We offer below a
rough classification of the library modulesto aid you in browsing.

First, however, let's untangle some terminol ogy:
package
A package is a simple namespace management device, allowing two different parts of a Perl

program to have a (different) variable named $f r ed. These namespaces are managed with the
package declaration, described in Chapter 5, Packages, Modules, and Object Classes.

library

A libraryisaset of subroutinesfor a particular purpose. Often the library declaresitself a
separate package so that related variables and subroutines can be kept together, and so that they
won't interfere with other variables in your program. Generally, alibrary is placed in a separate
file, often ending in".pl ", and then pulled into the main program viarequire. (This mechanism
has largely been superseded by the module mechanism, so nowadays we often use the term
“library" to talk about the whole system of modules that come with Perl. See the title of this
chapter, for instance.)

module

A moduleisalibrary that conformsto specific conventions, alowing the file to be brought in
with a use directive at compile time. Module filenames end in ".pm", because the use directive

insists on that. (It also trandates the subpackage delimiter : : to whatever your subdirectory
delimiter is; itis/ on UNIX.) Chapter 5, Packages, Modules, and Object Classes describes Perl

modulesin greater detail.

pragma

A pragma is amodule that affects the compilation phase of your program as well as the
execution phase. Think of them as hints to the compiler. Unlike modules, pragmas often (but
not always) limit the scope of their effects to the innermost enclosing block of your program.

The names of pragmas are by convention all lowercase.

For easy reference, this chapter is arranged alphabetically. If you wish to look something up by
functional grouping, Tables 7-1 through 7-11 display an (admittedly arbitrary) listing of the modules

and pragmas described in this chapter.

Table 7.1: General Programming: Miscellaneous

Module Function
Benchmark |Check and compare running times of code
Config Access Perl configuration information
Env Import environment variables
English Use English or awk names for punctuation variables
Getopt::Long |Extended processing of command-line options
Getopt::Std |Process single-character switches with switch clustering
lib Manipulate @ NC at compiletime
Shell Run shell commands transparently within Perl
strict Restrict unsafe constructs
Symbol Generate anonymous globs; qualify variable names
subs Predeclare subroutine names
vars Predeclare global variable names
Table 7.2: General Programming: Error Handling and
Logging

Module |Function
Carp Generate error messages
diagnostics |Force verbose warning diagnostics
sigtrap Enable stack backtrace on unexpected signals
Sys.:Syslog |Perl interface to UNIX syslog (3) calls

Table 7.3: General Programming: File Access and Handling
Module Function
Cwd Get pathname of current working directory
DirHandle Supply object methods for directory handles

File::Basename

Parse file specifications

File::CheckTree

Run many tests on a collection of files

File::Copy

Copy files or filehandles

File::Find

Traverse afiletree

File::Path Create or remove a series of directories

FileCache Keep more files open than the system permits

FileHandle Supply object methods for filehandles

SelectSaver Save and restore selected filehandle

Table 7.4: General Programming: Text Processing and Screen

Interfaces
Module Function
Pod:: Text Convert POD datato formatted ASCI|I text
Search::Dict Search for key in dictionary file
Term::Cap Terminal capabilitiesinterface

Term::Complete (Word completion module

Text::Abbrev Create an abbreviation table from alist

Text::ParseWords |Parse text into alist of tokens

Text::Soundex [The Soundex Algorithm described by Knuth

Text::Tabs Expand and unexpand tabs

Text::Wrap Wrap text into a paragraph

Table 7.5: Database Interfaces

Module Function
AnyDBM _File|Provide framework for multiple DBMs
DB_File Tied accessto Berkeley DB

GDBM _File [Tied accessto GDBM library

NDBM File |Tied accessto NDBM files

ODBM File |Tied accessto ODBM files

SDBM File |Tied accessto SDBM files

Table 7.6: Mathematics
Module Function

integer Do arithmetic in integer instead of double
Math::BigFloat |Arbitrary-length floating-point math package
Math::Bigint |Arbitrary-length integer math package
Math::Complex |Complex numbers package

Table 7.7: Networking and I nterprocess Communication
Module Function
IPC::Open2 |Open aprocess for both reading and writing
IPC::Open3 |Open a process for reading, writing, and error handling

Net::Ping Check whether ahost is online

Socket

L oad the C socket.h defines and structure manipulators

Sys.:Hostname|[Try every conceivable way to get hosthame

Table 7.8: Time and Locale

M odule

Function

Time:Loca

Efficiently compute time from local and GMT time

[18N::Collate

Compare 8-bit scalar data according to the current locale

Table 7.9: For Developers: Autoloading and Dynamic Loading

Module Function
AutoL oader L oad functions only on demand
AutoSplit Split amodule for autoloading

Devel::Self Stubber (Generate stubs for a SelfL oading module

Dynal oader Automatic dynamic loading of Perl modules
SelfLoader L oad functions only on demand
Table 7.10: For Developers: Language Extensions and Platform Devel opment
Support
Module Function
ExtUtils::Install Install files from here to there
ExtUtils::Liblist Determine libraries to use and how to use them

ExtUtils::MakeMaker [Create a Makefile for a Perl extension

ExtUtils:;:Manifest Utilities to write and check a MANIFEST file

ExtUtils::Miniperl Write the C code for perlmain.c

ExtUtils::Mkbootstrap |Make a bootstrap file for use by Dynal_oader

ExtUtils::Mksymlists |Write linker option files for dynamic extension

ExtUtils:MM_0OS2 [Methodsto override UNIX behavior in ExtUtils::MakeM aker

ExtUtils::MM_Unix |Methods used by ExtUtils::MakeM aker

ExtUtils:MM_VMS [Methodsto override UNIX behavior in ExtUtils::MakeMaker

Fentl Load the C fcntl.h defines

POSIX Interface to IEEE Std 1003.1

Safe Create safe namespaces for evaluating Perl code
Test::Harness Run Perl standard test scripts with statistics

Table 7.11: For Developers: Object-Oriented Programming

Support
Module Function
Exporter Default import method for modules
overload Overload Perl's mathematical operations

Tie::Hash Base class definitions for tied hashes

Tie::Scalar Base class definitions for tied scalars

Tie::StdHash [Base class definitions for tied hashes

Tie::StdScalar [Base class definitions for tied scalars

Tie::SubstrHash |Fixed-table-size, fixed-key-length hashing

7.1 Beyond the Standard Library

If you don't find an entry in the standard library that fits your needs, it's still quite possible that
someone has written code that will be useful to you. There are many superb library modules that are
not included in the standard distribution, for various practical, political, and pathetic reasons. To find
out what is available, you can look at the Comprehensive Perl Archive Network (CPAN). See the
discussion of CPAN in the Preface.

Here are the major categories of modules available from CPAN:

Archiving and Compression

Authentication, Security and Encryption

Control Flow Utilities (callbacks, exceptions, and so on)

Data Types and Data Type Utilities

Database Interfaces

Development Support

Filehandle and Input/Output Stream Utilities

File Names, File Systems and File L ocking

Images, Pixmap and Bitmap Manipulation, Drawing and Graphing
Interfaces to/Emulations of Other Programming Languages
Internationalization and Locale

L anguage Extensions and Documentation Tools

Mail and Usenet News

Miscellaneous Modules

Networking, Device Control (modems) and Inter-process Communication
Operating System Interfaces

Option, Argument, Parameter and Configuration File Processing
Server and Daemon Utilities

String Processing, Language Text Processing, Parsing and Searching
User Interfaces

World Wide Web, HTML, HTTP, CGI, MIME

Allow us again to reiterate once more that these things are in a state of flux, and you will certainly
find more and better stuff on CPAN than we can possibly describe here. The Perl of Great Price has
outgrown its oyster, so to speak, because Perl istruly acommunity effort these days--see John 14:12.

41 PREVIOUS HOME HEXT
Cooperating with Other BOOK INDEX Library Modules
Languages

HTML | CGI PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Programming

41 PREVIOUS Chapter 8 HEXT &

8. Other Oddments

Contents:
The Perl Debugger
Common Goofs for Novices

Efficiency
Programming with Style
Distribution and | nstallation

Per| Poetry
History Made Practical

Did you ever have ajunk drawer? Y ou know, one of those drawers where you put everything
important enough to keep (like the spare key to the back door), but not important enough to have a
place of its own (like the back door itself).

WEell, this chapter is the junk drawer of the book. We stuffed many important (and afew
not-so-important) thingsin this chapter. Read on.

8.1 The Perl Debugger

First of all, have you tried using the -w switch?

If you invoke Perl with the -d switch, your script runs under the Perl debugger. Thisworks like an
interactive Perl environment, prompting for debugger commands that let you examine source code, set
breakpoints, dump out your function-call stack, change the values of variables, and so on. Any
command not recognized by the debugger[1] is directly executed (eval'd) as Perl code in the current
package.[2] Thisis so wonderfully convenient that you often fire up the debugger all by itself just to
test out Perl constructs interactively to see what they do. Here's acommon way to get that:

[1] Leading whitespace before a command would cause the debugger to think it's not a
command for it, but rather for Perl, so be careful not to do that.

[2] The debugger uses the DB package for its own state information.

perl -d -e 42

In Perl, the debugger is not a separate program asit usually isin atypical programming environment.
Instead, the -d flag tells the compiler to insert source information into the parse treesit's about to hand

off to the interpreter. That means your code must first compile correctly for the debugger to work onit.
Then when the interpreter starts up, it pre-loads a Perl library file containing the debugger itself.

Debugger Commands

The debugger understands the following commands:
h [command]

Prints out a help message.

If you supply another debugger command as an argument to the h command, it prints out the
description for just that command. The command "h h" produces a more compact help listing
designed to fit on one screen. If the output of the h command (or any command, for that matter)
scrolls past your screen, just precede the command with aleading pipe symbol so it's run

through your pager:
DB<1> | h
p expr

Sameas"print DB:: OQUT expr" inthe current package. In particular, sincethisisjust Perl's
own print function, this means that nested data structures and objects are not dumped, unlike

with the x command. The DB: : OUT handle is opened to /dev/tty (or perhaps an editor window)
no matter where standard output may have been redirected to.

X expr
Evalsits expression in alist context and dumps out the result in a pretty-printed fashion. Nested
data structures are printed out recursively, unlike with the print command above.

V [pkg [var s]]

Display all (or some) variables in package (defaulting to the main package) using a data
pretty-printer. (Hashes show their keys and values so you see what's what, control characters are

made printable, nested data structures print out in a legible fashion, and so on.) Make sure you
type the identifiers without a type specifier such as$ or @ like this:

V DB filename |ine

In place of avariable name, you can use ~patternor! patt ern toprint existing variables
whose names either match or don't match the specified regular expression.

X[var s]

SameasV cur r ent package [var s].

Produce a stack backtrace. See below for details on its output.
s [expr]
Single step. Executes until it reaches the beginning of another statement, descending into

subroutine calls. If an expression is supplied that includes function calls, it, too, will be
single-stepped.

Next. Executes over subroutine calls, until it reaches the beginning of the next statement at this
same level.

<CR>

Repeat last n or s command.
c[line]

Continue, optionally inserting a one-time-only breakpoint at the specified line.

List next few lines.
| m n+i ncr

Listi ncr +1 linesstarting at m n.
| m n- max

List [inesm n through max.
I 1ine

Listasingleline.
| subnane

List first few lines from subroutine.

List previous few lines.
w(l i ne]

List window (afew lines) around the given | i ne, or the current oneif nol i ne issupplied.

Return debugger pointer to the last-executed line and print it out.
f filenane

Switch to viewing a different file.
/pat t ern/

Search forward for pat t er n; final / is optional.
Ppattern?

Search backward for pat t er n; final ?isoptional.

List al breakpoints and actions for the current file.
S[[!] pattern]

List subroutine names matching (or not matching with "!1") pat t er n. If no pat t er n isgiven,
all subroutines are listed.

Toggle trace mode.

t expr

Trace through execution of expr .

b[line][condition]

Set abreakpoint at | i ne. If | i ne isomitted, set a breakpoint on the line that is about to be
executed. condi ti on, if given, is evaluated each time the statement is reached, and a
breakpoint istaken only if condi t i on istrue. Breakpoints may only be set on lines that begin
an executabl e statement. Conditions don't useiif:

b 237 $x > 30
b 33 /pattern/i

b subnane [condi ti on]

Set a (possibly conditional) breakpoint at the first line of the named subroutine.

d[line]

Delete abreakpoint at the specified | i ne. If | i ne is omitted, deletes the breakpoint on the line
that is about to be executed.

Delete all installed breakpoints.

a[l i ne] coonmand

A

Set an action to be done beforethel i ne is executed. The sequence of steps taken by the
debugger is.

0 Check for abreakpoint at thisline.

o Print thelineif necessary (tracing).

o Do any actions associated with that line.

o Prompt the user if at abreakpoint or in single-step.
o Evauatetheline.

For example, thiswill print out $f 0o every timeline 53 is passed:

a 53 print "DB FOUND $f oo\ n"

Delete all installed actions.

O [opt[=val]]

Set or query values of options. val defaultsto 1. opt can be abbreviated to the shortest unique
string, which is why some options are uppercase and others are lowercase. Options are:

Option Value

The characters used to recall command or spawn shell. By

recal | Command Shel | Bang default, these are both set to "!" (see below).

Program to use for output of pager-piped commands (those

pager beginning with a| character). By default, SENV{ PAGER}
will be used.
Pri nt Ret Enables printing of return value after r command.
; Enables printing messages on entry and exit from
rame :
subroutines.

The following options affect what happens with V, X, and x commands:

Option Value
arrayDept h hashDepth Print only to depthn (" for all).
conpact Dunp ver yConpact Change style of array and hash dump.
gl obPri nt Whether to print contents of globs.
DunpDBFi | es Dump arrays holding debugged files.
DunpPackages Dump symbol tables of packages.
quot e Hi ghBit undefPrint Change style of string dump.

. Run Tk while prompting (with
tkRunni ng ReadLine).[l]p Ping
si gnal Level warnLevel dielLevel Level of verbosity.
Footnotes:

[1] A Perl application is usually frozen when sitting at the debugger prompt. Tk
support keeps the event loop of Tk running while reading the prompt.

During startup, options are initialized from $ENV{ PERLDB_OPTS} . Y ou can put additional
initialization options TTY, noTTY, ReadLi ne, and NonSt op there. Here's an example using
the SENV{ PERLDB_OPTS} variable:

$ PERLDB OPTS="N f=2" perl -d nyprogram
Thiswill run the script my pr ogr amwithout human intervention, printing out the call tree with
entry and exit points. Note that "N f =2" isequivalent to "NonSt op=1 frane=2".
<conmand
Set an action to happen before every debugger prompt. A multi-line command may be entered
by backslashing the newlines. conmand should be Perl code.
> conmand
Set an action to happen after the prompt when you've just given a command to return to

executing the script. A multi-line conmmand may be entered by backslashing the newlines.
comrand should be Perl code.

I nunber

Redo a previous command (defaults to previous command).
I -nunber

Redo nunmber 'th-to-last command.
I'pattern

Redo last command that started with pat t er n. See"O r ecal | Conmand”, too.
I cnd

Run cnd in asubprocess (which will read from DB: : | N, writeto DB: : OUT). See"O
shel | Bang", too.

H - nunber

Display last nunber commands. Only commands longer than one character are listed. If
nunber isomitted, liststhem all.

gor”~D
Quit. ("qui t " doesn't quite work for this.)

Restart the debugger by execing a new session. It tries to maintain your history across this, but
internal settings and command line options may be lost.

ldbcnd

Run debugger command, piping DB: : OUT to $ENV{ PAGER} .
|[dbcnd

Same as [dbcnd but DB: : OUT istemporarily selected as well. Often used with commands that
would otherwise produce long output, such as
| V mai n

= [alias val ue]

Define acommand alias, or list current aliases.
command

Execute command as a Perl statement. A semicolon is not needed at the end.

Using the Debugger

If you have any compile-time executabl e statements (code within aBEG N block or ause statement),
they will not be stopped by the debugger, athough requires will.

The debugger prompt is something like:

DB<8>

or even.

DB<<17>>

where that number is the command number. A csh-like history mechanism allows you to access
previous commands by number. For example, ! 17 would repeat command number 17. The number of
angle brackets indicates the depth of the debugger. Y ou get more than one set of brackets, for example,
if you're already at a breakpoint and then print out the result of afunction call that itself also hasa
breakpoint.

If you want to enter a multi-line command, such as a subroutine definition with several statements, you
may escape the newline that would normally end the debugger command with a backslash. Here's an
example:

DB<1> for (1..4) { \
cont : print "ok\n"; \
cont: }
ok
ok
ok
ok

Note that this business of escaping a newlineis specific to interactive commands typed into the
debugger.

Let's say you want to fire up the debugger on alittle program of yours (let's call it camel_flea), and
stop it as soon as it gets down to afunction named i nf est ed. Here's how you'd do that:

shell pronpt% perl -d canel flea
Stack dunp during die enabl ed outside of evals.
Loadi ng DB routines from perl 5db. pl patch |level 0.94
Emacs support avail abl e.
Enter h or "h h' for help.
mai n:: (canmel flea: 3): $a = 1;
DB<1>

The debugger halts your program right before the first run-time executable statement (but see above
regarding compile-time statements) and asks you to enter acommand. Contrary to popular
expectations, whenever the debugger stops to show you aline of code, it displays the lineit's about to
execute, not the one it just executed.

Now, you'd like to stop as soon as your program getsto thei nf est ed function, so you enter a
breakpoint there like so:

DB<1> b infested

DB<2> ¢

The debugger now continues until it hits that function, at which point it doesthis:

mai n: ;i nfested(canel flea:12): ny bugs;

It might be nice to look at a window of source code around the breakpoint, so you use the w command:

DB<2> w

9: }

10:

11: sub infested {
12==>b ny $bugs;
13: return 3.5;

14. }

DB<2>
Asyou see, your current lineisline 12, and it has a breakpoint on it.

Now, you'd like to see who called whom, so you ask for a stack backtrace:

DB<2> T

$ = min::infested called fromfile "Anbulation.pm line 10

@= Anbul ation::legs(1l, 2, 3, 4) called fromfile "canel flea' line 7
$ = main::pests(' bactrian', 4) called fromfile "canel _flea l|line 4

The left-hand character up there ($ or @ tells whether the function was called in a scalar or list context
(we bet you can tell which iswhich). There are three lines because you were three functions deep when
you ran the stack backtrace. Here's what each line means:

« Line number one saysyou werein the function mai n: : i nf est ed when you ran the stack
dump. It tells you the function was called in a scalar context from line 10 of thefile
Ambulation.pm. It also shows that it was called without any arguments whatsoever, meaning it
was called as & nf est ed.

 Line number two shows that the function Anbul ati on: : | egs wascaled in alist context
from the camel_flea file with four arguments.

o Line number three showsthat mai n: : pest s wascalled in ascalar context, also from
camel_flea, but from line 4.

Limited control over the Perl debugger can also be managed from within your Perl script itself. You
might do this, for example, to set an automatic breakpoint at a certain subroutine whenever a particular
program is run under the debugger. Setting $DB: : si ngl e to 1 will stop at the next statement as
though you'd used the debugger's s command. If you set $DB: : si ngl e to 2, it's equivalent to having
just typed the n command. The $DB: : t r ace variable can be set to 1 to simulate having typed the t
command.

Debugger Customization

To modify the debugger, copy perl5db.pl from the Perl library to another file and modify it as
necessary. You'll also want to set your PERL5DB environment variable to say something like this:

BEG N { require "nyperl 5db. pl" }

Y ou can do some customization by setting up a .perldb file with initialization code. For instance, you
could make aliases like these (the last one is one people expect to be there):

$DB::alias{'len'}
$DB: :alias{'stop'}
$DB: :alias{' ps'}

$DB::alias{'quit'}

‘s/™en(.*)/p length($1)/";
‘s/”stop (at]|in)/bl";
s/ ps\b/p scalar /';
"s/hquit\b.*/exit/';

Readline Support

As shipped, the only command-line history mechanism supplied is a simplistic one that checks for
leading exclamation points. Thisisfine for casual use. However, if you install the Term::ReadKey and
Term::ReadLine modules from CPAN, you will have full editing capabilities much like GNU readline
(3) provides. Look for these in the modules/by-module/Term directory on CPAN.

Editor Support for Debugging

If you have GNU emacs installed on your system, it can interact with the Perl debugger to provide an
integrated software development environment reminiscent of its interactions with C debuggers.

Perl is aso delivered with a start file for making emacs act like a syntax-directed editor that
understands (some of) Perl's syntax. Look in the emacs/ directory of the Perl source distribution.

(Historically, asimilar setup for interacting with vi and the X 11 window system had also been
available, but at the time of thiswriting, no debugger support for vi currently exists.)

Debugger Internals

When you call the caller function from package DB, Perl setsthe @B: : ar gs array to the arguments
that stack frame was called with. It also maintains other magical internal variables, such as

@DB: : dbl i ne, an array of the source code lines for the currently selected (with the debugger's f
command) file. Perl effectively inserts a call to the function DB: : DB(l i nenum) in front of every
place that can have a breakpoint. Instead of a subroutine call it callsDB: : sub, setting $DB: : sub to
the name of the called subroutine. It dsoinsertsaBEG N {requi re ' perl 5db. pl '} beforethe
first line, since no subroutine call is possible until &DB: : sub is defined (for subroutines defined
outside thisfile). In fact, the sameistrueif $DB: : deep (how many levels of recursion deep into the
debugger you are) is not defined.

At the start, the debugger reads your config file (. /.perldb or ~/.perldb under UNIX), which can set
important options. This file may define asubroutine &af t eri ni t to be executed after the debugger
isinitialized.

After the config file is processed, the debugger consults the environment variable PERLDB_OPTS and
parsesit as argumentsto the Oopt =val debugger command.

The following options can only be specified at startup. To set them in your config file, call
&par se_options(opt=val).
TTY

The TTY to use for debugging I/0.
nolTY
If set, goesin NonSt op mode. On aninterrupt, if TTY isnot set, it usesthe value of noTTY or

/tmp/perldbtty$$ to find TTY using Ter m : Rendezvous. The current variant isto have the
nameof TTY inthisfile.

ReadLine

If false, adummy ReadLineis used so that you can debug ReadL ine applications.
NonStop

If true, no interaction is performed until an interrupt.
Linelnfo

File or pipe to print line number info to. If it's a pipe, then a short, emacs-like message is used.
Example config file:

&par se_options(" NonSt op=1 Li nel nfo=db. out");

sub afterinit { $trace = 1; }

The script will run without human intervention, putting trace information into the file db.out. (If
you interrupt it, you had better reset Li nel nf o to something "interactive"!)

Debugger Bugs

If your program exits or dies, so too does the debugger.

Y ou cannot get the stack frame information or otherwise debug functions that were not compiled by
Perl, such as C or C++ extensions.

If you alter your @ _ arguments in a subroutine (such as with shift or pop), the stack backtrace will not
show the original values.

Alternative Debuggers: The Perl Profiler

If you wish to supply an alternative debugger for Perl to run, just invoke your script with the

- d: module switch. One of the most popular alternative debuggers for Perl is DProf, the Perl profiler.
As of thiswriting, DProf was not included with the standard Perl distribution, but it is expected to be
included "real soon now."

Meanwhile, you can fetch the Devel::DProf module from CPAN. Assuming it's properly installed on
your system, you can use it to profile the Perl program in mycode.pl by typing:

perl -d:DProf nycode. pl

When the script terminates, the profiler will dump the profile information to afile called tmon.out. A
tool like dprofpp (also supplied with the Devel::DProf package) interprets the profile.

Other Debugging Resources

You did try the -w switch, didn't you?

4 PREVIOUS HOME MEXT 5
Library Modules BOOK INDEX Common Goofs for Novices

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A MUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Programming

4 PREVIOUS Chapter 9 MEXT &

9. Diagnostic Messages

These messages are classified as follows (listed in increasing order of desperation):

ClassMeaning

(W) A warning (optional)

(D) A deprecation (optional)

(S) A severewarning (mandatory)

(F) A fatal error (trappable)

(P) Aninterna error (panic) that you should never see (trappable)
(X) A very fatal error (non-trappable)

(A) Anadlien error message (not generated by Perl)

Optional warnings are enabled by using the -w switch. Warnings may be captured by setting $SI ¢ _
_WARN } toareferenceto aroutine that will be called on each warning before printing it.
Trappable errors may be trapped using eval. Y ou can also capture control before atrappable error
"dies' by setting $SI G~ DI E_ _} toasubroutine reference, but if you don't call die within that

handler, the fatal exception is still thrown when you return from it. In other words, you're not allowed
to "de-fatalize" an exception that way. Y ou must use an eval wrapper for that.

In the following messages %os stands for an interpolated string that is determined only when the
message is generated. (Similarly, %d stands for an interpolated number--think printf formats, but we
use %d to mean a number in any base here.) Note that some messages begin with %s --which means
that listing them alphabetically is problematical. Y ou should search among these messagesif the one
you are looking for does not appear in the expected place. The symbols” % - ? @sort before
alphabetic characters, while[and\ sort after.

References of the form, " See unpack,” refer to entries in Chapter 3, Functions.

If you decide abug is a Perl bug and not your bug, you should try to reduce it to a minimal test case
and then report it with the perlbug program that comes with Perl.

"ny variable %s can't be in a package

(F) Lexically scoped variables aren't in a package, so it doesn't make sense to try to declare one
with a package qualifier on the front. Use |ocal if you want to localize a package variable.

"no not allowed in expression

(F) The no keyword is recognized and executed at compile time, and returns no useful value.

"use not allowed in expression

(F) The use keyword is recognized and executed at compile time, and returns no useful value.

% may only be used in unpack

%0s

%0s

%s

06s

VS

VS

%0s

%0s

00s

00s:

(F) You can't pack astring by supplying a checksum, since the checksumming process loses
information, and you can't go the other way. See unpack.

(...) interpreted as function

(W) You've run afoul of the rule that says that any list operator followed by parentheses turns
into afunction, with al the list operator's arguments found inside the parens. See the section
"Terms and List Operators (Leftward)" in Chapter 2, The Gory Details.

argunment is not a HASH el enent

(F) The argument to delete or exists must be a hash element, such as

$f oo{ $bar}
$ref->[12]->{"susie"}

did not return a true val ue

(F) A required (or used) file must return atrue value to indicate that it compiled correctly and

ran itsinitialization code correctly. It's traditional to end such afilewitha™"1; ", though any
true value would do. Seerequire.

found where operator expected

(S) The Perl lexer knows whether to expect aterm or an operator. If it seeswhat it knows to be
aterm when it was expecting to see an operator, it gives you thiswarning. Usually it indicates
that an operator or delimiter was omitted, such as a semicolon.

had conpil ation errors.

(F) Thefinal summary message when a perl -c command fails.

has too many errors.
(F) The parser has given up trying to parse the program after 10 errors. Further error messages
would likely be uninformative.

mat ches null string many tines
(W) The pattern you've specified would be an infinite loop if the regular expression engine
didn't specifically check for that.

never i ntroduced

(S) The symbol in question was declared but somehow went out of scope before it could
possibly have been used.

syntax OK

(F) Thefina summary message when a perl -c command succeeds.
Command not found.

(A) You've accidentally run your script through csh instead of perl. Check the#! line, or
manually feed your script into perl yourself.

%s. Expression syntax.
(A) You've accidentally run your script through csh instead of perl. Check the#! line, or
manually feed your script into perl yourself.

%s. Undefined vari abl e.
(A) You've accidentally run your script through csh instead of perl. Check the#! line, or
manually feed your script into perl yourself.

%s. not found
(A) You've accidentally run your script through the Bourne shell instead of perl. Check the #!
line, or manually feed your script into perl yourself.

-P not allowed for setuid/setgid script

(F) The script would have to be opened by the C preprocessor by name, which provides arace
condition that breaks security.

-T and -B not inplenented on fil ehandl es

(F) Perl can't peek at the st di o buffer of filehandles when it doesn't know about your kind of
st di 0. You'll have to use afilename instead.

500 Server error

See Server error.
?+* follows nothing in regexp
(F) You started a regular expression with a quantifier. Backslash it if you meant it literally.
@outside of string
(F) You had a pack template that specified an absolute position outside the string being
unpacked. See pack.
accept() on closed fd
(W) You tried to do an accept on a closed socket. Did you forget to check the return value of
your socket call? See accept.
Al |l ocation too | arge: %d

(F) You can't allocate more than 64K on an MS-DOS machine.
Arg too short for nsgsnd

(F) msgsnd requires astring at least aslong assi zeof (| ong) .
Anbi guous use of %s resol ved as %s

(W)(S) You said something that may not be interpreted the way you thought. Normally it's
pretty easy to disambiguate it by supplying a missing quote, operator, pair of parentheses, or
declaration.

Args nmust match #! |ine

(F) The setuid emulator requires that the switches perl was invoked with match the switches

specified on the #! line.
Argument " %s isn't nuneric
(W) Theindicated string was fed as an argument to an operator that expected a numeric value
instead. If you're fortunate the message will identify which operator was so unfortunate.
Array @b6s mssing the @in argunent %d of %s()

(D) Readlly old Perl let you omit the @on array names in some spots. Thisis now heavily
deprecated.

assertion botched: %s

(P) The malloc (3) package that comes with Perl had an internal failure.
Assertion failed: file ~%s

(P) A general assertion failed. The file in question must be examined.
Assignnment to both a |list and a scal ar

(F) If you assign to a conditional operator, the second and third arguments must either both be
scalars or both be lists. Otherwise Perl won't know which context to supply to the right side.

Attenpt to free non-arena SV: %d

(P) All SV objects are supposed to be allocated from arenas that will be garbage collected upon
exit. An SV was discovered to be outside any of those arenas. This probably means that
someone screwed up in a C extension module.

Attenpt to free tenp prematurely

(W) Mortalized values are supposed to be freed by theinternal f r ee_t nps() routine. This
indicates that something else isfreeing the SV beforethef r ee_t nps() routine getsa
chance, which meansthat thef r ee_t nps() routinewill be freeing an unreferenced scalar
when it doestry to freeit.

Attenpt to free unreferenced gl ob pointers

(P) The reference counts got screwed up on symbol aliases.
Attenpt to free unreferenced scal ar

(W) Perl went to decrement the reference count of a scalar to seeif it would go to O, and
discovered that it had already goneto O earlier, and should have been freed, and in fact,
probably was freed. This could indicate that SYREFCNT _dec() was called too many times, or
that SYREFCNT _i nc() wascalled too few times, or that the SV was mortalized when it
shouldn't have been, or that memory has been corrupted. In any event, it's likely a problem with
the C extension module you're devel oping.

Bad arg length for %s, is %d, should be %d

(F) You passed a buffer of the wrong size to one of msgctl, semctl or shmctl. In C parlance, the

correct sizesaresi zeof (struct nsqgid ds *),sizeof (struct semd ds *)
andsi zeof (struct shm d_ds *), respectively.

Bad associ ative array

(P) One of the internal hash routines was passed a null HV pointer.

Bad fil ehandl e: %s

(F) A symbol was passed to something wanting a filehandle, but the symbol has no filehandle
associated with it. Perhaps you didn't do an open, or did it in another package.

Bad free() ignored
(S) Aninternal routine called free (3) on something that had never been malloc (3)ed in the first
place.

Bad nane after %s: :

(F) You started to name a symbol by using a package prefix, and then didn't finish the symbol.
In particular, you can't interpolate outside of quotes, so

$var = 'nyvar';

$sym = nypack: : $var;

IS not the same as

$var = 'nyvar';

$sym = "nypack: : $var";

Bad synbol for array
(P) Aninternal request asked to add an array entry to something that wasn't a symbol table
entry.

Bad synbol for fil ehandle
(P) Aninternal request asked to add a filehandle entry to something that wasn't a symbol table
entry.

Bad synbol for hash

(P) Aninternal request asked to add a hash entry to something that wasn't a symbol table entry.
Badly placed ()'s
(A) You've accidentally run your script through csh instead of perl. Check the #! line, or
manually feed your script into perl yourself.
BEGA N fail ed- -conpilation aborted
(F) An untrapped exception was raised while executing a BEGIN subroutine. Compilation stops
immediately and the interpreter is exited.
bi nd() on closed fd
(W) You tried to do abind on a closed socket. Did you forget to check the return value of your
socket call? See bind.
Bi zarre copy of %s in %s

(P) Perl detected an attempt to copy an internal value that is not copiable.
Cal | back called exit

(F) A subroutine invoked from an external packageviaper| cal | _sv() exited by calling
exit.

Can't "|ast outside a bl ock

(F) A last statement was executed to break out of the current block, except that there's thisitty
bitty problem called there isn't a current block. See note on the next entry.

Can't "next outside a block

(F) A next statement was executed to reiterate the current block, but there isn't a current block.

Note that an if or else block doesn't count as a"loopish” block. Y ou can usually double the
curly brackets to get the same effect though, since the inner brackets will be considered a block
that loops once. See last.

Can't ‘redo outside a bl ock

(F) A redo statement was executed to restart the current block, but there isn't a current block.
See note on the previous entry.

Can't bl ess non-reference val ue

(F) Only hard references may be blessed. Thisis how Perl "enforces' encapsulation of objects.
Can't break at that |ine

(S) A debugger warning indicating the line number specified wasn't the location of a statement
that could be stopped at.

Can't call method " %s in enpty package ~ %s
(F) You called amethod correctly, and it correctly indicated a package functioning as a class,
but that package doesn't have anything at all defined in it, let a one methods.

Can't call nethod " %s on unbl essed reference

(F) A method call must know what package it's supposed to run in. It ordinarily finds this out
from the object reference you supply, but you didn't supply an object reference in this case. A
reference isn't an object reference until it has been blessed.

Can't call nmethod " %s w thout a package or object reference

(F) You used the syntax of a method call, but the slot filled by the object reference or package
name contains an expression that returns neither an object reference nor a package name.
(Perhaps it's null?) Something like this will reproduce the error:

$BADREF = undef;
process $BADREF 1, 2, 3;
$BADREF- >pr ocess(1, 2, 3);

Can't chdir to %s

(F) Youcaledper| -x/f oo/ bar, but/foo/bar isnot adirectory that you can chdir (2) to,
possibly because it doesn't exist.

Can't coerce %sto integer in %s

(F) Certain types of SVs, in particular real symbol table entries (type GLOB), can't be forced to
stop being what they are. So you can't say things like:

*foo += 1, # ERROR

Y ou can say

$f oo = *foo; # make a "fake" gl ob val ue
$foo += 1;
but then $f 0o no longer contains a glob.

Can't coerce %s to nunber in %s

(F) Certain types of SVs, in particular real symbol table entries (type GLOB), can't be forced to
stop being what they are. See preceding entry.
Can't coerce %sto string in %s

(F) Certain types of SVs, in particular real symbol table entries (type GLOB), can't be forced to
stop being what they are. See previous two entries.

Can't create pipe nail box
(P) An error peculiar to VMS. The process is suffering from exhausted quotas or other
plumbing problems.

Can't declare %s in ny
(F) Only scalar, array and hash variables may be declared as lexical variables. They must have
ordinary identifiers as names, since lexical variables don't live in a symbol table, and can't be
package qualified.

Can't do inplace edit on %s %s

(S) The creation of the new file failed for the indicated reason.
Can't do inplace edit w thout backup

(F) You're on asystem such as MS-DOS that gets confused if you try reading from a deleted
(but still opened) file. You have to use the switch, - i . bak, or some such.

Can't do inplace edit: %s > 14 characters

(S) Thereisn't enough room in the filename to make a backup name for the file. Perhaps you
should get a system with longer filenames. : -)

Can't do inplace edit: %sis not a regular file

(S) You tried to use the -i switch on a special file, such asafilein/dev, or aFIFO. Thefile was
ignored.

Can't do setegid!

(P) Theset egi d() call failed for some reason in the setuid emulator of suidperl.
Can't do seteuid!

(P) The setuid emulator of suidperl failed for some reason.
Can't do setuid

(F) Thistypically meansthat ordinary perl tried to exec suidper| to do setuid emulation, but
couldn't exec it. If you're running /usr/local/bin/per15.003, it looks for a corresponding
/usr/local/bin/sper15.003. (Note the "s".) If thefile is there, check the execute permissions. If it
Isn't, ask your sysadmin why he and/or she removed it.

Can't do waitpid wth flags

(F) This machine doesn't have either waitpid (2) or wait4 (2), so only waitpid without flagsis
emul ated.

Can't do {n,m} with n > m
(F) Minimamust be less than or equal to maxima. If you really want your regular expression to
match something O times, just put { 0} .

Can't enulate -%s on #! |line

(F) The#! line specifies a switch that doesn't make sense at this point. For example, it'd be
kind of silly to put a-x onthe#! line.

Can't exec " %s : %s

(W) A system, exec or piped open call could not execute the named program for the indicated

reason. Typical reasons include: the permissions were wrong on the file, the file wasn't found in
$ENV{ PATH} , the executable in question was compiled for another architecture, or the #! line
in a script points to an interpreter that can't be run for similar reasons. (Or maybe your system
doesn't support #! at all.)

Can't exec %s

(F) Perl wastrying to execute the indicated program for you because that's what the #! line
said. If that's not what you wanted, you may need to mention "per | " onthe#! line
somewhere.

Can't execute %s

(F) You used the -S switch, but the script to execute could not be found in the PATH, or at least
not with the correct permissions.

Can't find | abel %s

(F) You said to goto alabel that isn't mentioned anywhere that it's possible for usto go to. See
goto.
Can't find string term nator %s anywhere before EOF

(F) Perl strings can stretch over multiple lines. This message means that the closing delimiter
was omitted. Since bracketed quotes count nesting levels, the following is missing its final
parenthesis:

print gq(The character '(' starts a s(n)ide comment.)
Can't fork

(F) A fatal error occurred while trying to fork while opening a pipeline.
Can't get filespec - stale stat buffer?

(S) A warning peculiar to VMS. This arises because of the difference between access checks
under VM S and under the UNIX model Perl assumes. Under VM, access checks are done by
filename, rather than by bitsin the stat buffer, so that ACLs and other protections can be taken
into account. Unfortunately, Perl assumes that the stat buffer contains all the necessary
information, and passesit, instead of the filespec, to the access-checking routine. 1t will try to

retrieve the filespec using the device name and FID present in the stat buffer, but this works
only if you haven't made a subsequent call to the CRTL st at routine, since the device nameis
overwritten with each call. If this warning appears, the name lookup failed, and the
access-checking routine gave up and returned FAL SE, just to be conservative. (Note: The
access-checking routine knows about the Perl stat operator and file tests, so you shouldn't ever

see thiswarning in response to a Perl command,; it arises only if some internal code takes stat
bufferslightly.)

Can't get pipe nmailbox device nane

(P) An error peculiar to VMS. After creating a mailbox to act as a pipe, Perl can't retrieve its
name for later use.

Can't get SYSGEN paraneter val ue for MAXBUF

(P) An error peculiar to VMS. Perl asked $GETSYI how big you want your mailbox buffersto
be, and didn't get an answer.

Can't goto subroutine outside a subroutine

(F) The deeply magical got o SUBRCOUTI NE call can only replace one subroutine call for
another. It can't manufacture one out of whole cloth. In general you should only be calling it out
of an AUTOLOAD routine anyway. See goto.

Can't localize a reference

(F) You said something likel ocal $$r ef , which is not allowed because the compiler can't
determine whether $r ef will end up pointing to anything with a symbol table entry, and a
symbol table entry is necessary to do alocal.

Can't localize |l exical variable %s

(F) You used local on avariable name that was previous declared as alexical variable using
my. Thisisnot allowed. If you want to localize a package variable of the same name, qualify it
with the package name.

Can't locate %s in @NC

(F) You said to use (or require, or do) afile that couldn't be found in any of the libraries
mentioned in @ NC. Perhaps you need to set the PERL5LI B environment variable to say where
the extralibrary is, or maybe the script needs to add the library name to @ NC with theuse

| i b directive. Or maybe you just misspelled the name of the file. See require.

Can't | ocate object method " %s via package ~ %s

(F) You called amethod correctly, and it correctly indicated a package functioning as a class,
but the package doesn't define that method name, nor do any of its base classes (which is why
the message says "via' rather than "in").

Can't | ocate package %s for @eos. : 1 SA

(W) The @ SA array contained the name of another package that doesn't seem to exist.
Can't nktenp()

(F) The nkt enp routine failed for some reason while trying to process a -e switch. Maybe your
/tmp partition isfull, or clobbered.

Can't nodify %s in %s

(F) You aren't allowed to assign to the item indicated, or otherwise try to change it, such as with
an autoincrement.

Can't nodify non-existent substring

(P) The internal routine that does assignment to a substr was handed a NULL pointer.
Can't nsgrcv to readonly var

(F) Thetarget of amsgrcv must be modifiable in order to be used as areceive buffer.
Can't open %s. %s
(S) Aninplace edit couldn't open the original file for the indicated reason. Usually thisis
because you don't have read permission for thefile.
Can't open bidirectional pipe
(W) You tried to say open(CVD, | cnd| "), which is not supported. Y ou can try any of

several modulesin the Perl library to do this, such as Open2. Alternately, direct the pipe's
output to afileusing ">", and then read it in under a different filehandle.

Can't open error file %s as stderr
(F) An error peculiar to VMS. Perl does its own command-line redirection, and couldn't open
for writing the file specified after 2> or 2>> on the command line.

Can't open input file %s as stdin
(F) An error peculiar to VMS. Perl does its own command-line redirection, and couldn't open
for reading the file specified after < on the command line.

Can't open output file %s as stdout

(F) An error peculiar to VMS. Perl does its own command-line redirection, and couldn't open
for writing the file specified after > or >> on the command line.

Can't open out put pipe (nanme: %s)
(P) An error peculiar to VMS. Perl does its own command-line redirection, and couldn't open
the pipe into which to send data destined for STDOUT.

Can't open perl script "~%s : %s

(F) The script you specified can't be opened for the indicated reason.

Can't renanme %s to %s %s, skipping file
(S) The rename done by the -i switch failed for some reason, probably because you don't have
write permission to the directory.

Can't reopen input pipe (nanme: %s) in binary node
(P) Anerror peculiar to VMS. Perl thought STDI N was a pipe, and tried to reopen it to accept
binary data. Alas, it failed.

Can't reswap uid and euid

(P) The setreuid call failed for some reason in the setuid emulator of suidperl.
Can't return outside a subroutine

(F) The return statement was executed in mainline code, that is, where there was no subroutine
call to return out of.

Can't stat script ~%s

(P) For some reason you can't fstat (2) the script even though you have it open already. Bizarre.
Can't swap uid and euid

(P) The setreuid call failed for some reason in the setuid emulator of suidperl.
Can't take |log of %d

(F) Logarithms are only defined on positive real numbers.
Can't take sqgqrt of %d

(F) For ordinary real numbers, you can't take the square root of a negative number. There'sa
Complex module available for Perl, though, if you really want to do that.

Can't undef active subroutine

(F) You can't undefine a routine that's currently running. Y ou can, however, redefine it while
it's running, and you can even undef the redefined subroutine while the old routine is running.

Go figure.
Can't unshift

(F) You tried to unshift an "unreal" array that can't be unshifted, such as the main Perl stack.
Can't upgrade that kind of scalar

(P) Theinternal sv_upgr ade() routine adds "members' to an SV, making it into amore
specialized kind of SV. Thetop several SV types are so specialized, however, that they cannot
be interconverted. This message indicates that such a conversion was attempted.

Can't upgrade to undef
(P) The undefined SV is the bottom of the totem pole, in the scheme of upgradability.
Upgrading to undef indicates an error in the code calling sv_upgr ade() .

Can't use nmy %s in sort conparison
(F) The global variables $a and $b are reserved for sort comparisons. Y ou mentioned $a or $b
in the same line as the <=> or cmp operator, and the variable had earlier been declared as a

lexical variable. Either qualify the sort variable with the package name, or rename the lexical
variable.

Can't use %s for |oop variable

(F) Only asimple scalar variable may be used as aloop variable on afor each.
Can't use %s ref as %s ref
(F) You've mixed up your reference types. Y ou have to dereference areference of the type
needed. Y ou can use the ref function to test the type of the reference, if need be.
Can't use \1 to nean $1 in expression
(W) In an ordinary expression, backslash is a unary operator that creates areferenceto its

argument. The use of backslash to indicate a backreference to a matched substring is only valid
as part of aregular expression pattern. Trying to do thisin ordinary Perl code produces avalue

that prints out looking like SCALAR(Oxdecaf) . Use the $1 form instead.

Can't use string (%s) as %s ref while “strict refs in use
(F) Only hard references are allowed by use strict refs.Symbolicreferencesare
disallowed.

Can't use an undefined value as %s reference
(F) A value used as either a hard reference or a symbolic reference must be a defined value.
This helpsto de-lurk some insidious errors.

Can't use global %s in "ny
(F) You tried to declare a magical variable asalexical variable. Thisis not allowed, because the

magic can only be tied to one location (namely the global variable) and it would be incredibly
confusing to have variablesin your program that looked like magical variables but weren't.

Can't use subscript on %s
(F) The compiler tried to interpret a bracketed expression as a subscript, but to the left of the

brackets was an expression that didn't ook like an array reference, or anything else
subscriptable.

Can't wite to tenp file for -e: %s

(F) Thewrite (2) routine failed for some reason while trying to process a -e switch. Maybe your
/tmp partition isfull, or clobbered.

Can't x= to readonly val ue
(F) You tried to repeat a constant value (perhaps the undefined value) with an assignment

operator, which implies modifying the value itself. Perhaps you need to copy the valueto a
temporary, and repeat that.

Cannot open tenporary file

(F) Thecreat (2) routine failed for some reason while trying to process a -e switch. Maybe your
/tmp partition isfull, or clobbered.

chnod: node argunent is mssing initial O

(W) A novice will sometimes say

chnod 777, $fil enane

not realizing that 777 will be interpreted as a decimal number, equivalent to 01411. Octal
constants are introduced with aleading O in Perl, asin C.

Cl ose on unopened fil e %s

(W) You tried to close afilehandle that was never opened.
connect () on closed fd

(W) You tried to do a connect on a closed socket. Did you forget to check the return value of
your socket call”? See connect.

Corrupt malloc ptr %d at %d
(P) The malloc (3) package that comes with Perl had an internal failure.

corrupted regexp pointers

(P) Theregular expression engine got confused by what the regular expression compiler gaveit.
corrupted regexp program
(P) The regular expression engine got passed a regular expression program without a valid
magic number.
Deep recursion on subroutine " %s

(W) This subroutine has called itself (directly or indirectly) 100 more times than it has returned.
This probably indicates an infinite recursion, unless you're writing strange benchmark
programs, in which case it indicates something else.

Did you nean &%s i nstead?

(W) You probably referred to an imported subroutine &F0O0 as $FOO or some such.
Did you nean $ or @i nstead of %

(W) You probably said %hash{ $key} when you meant $hash{ $key} or
@ash{ @eys} . On the other hand, maybe you just meant %hash and got carried away.

Do you need to predecl are %s?

(S) Thisisan educated guess made in conjunction with the message "%sf ound wher e

oper at or expect ed". It often means a subroutine or module name is being referenced that
hasn't been declared yet. This may be because of ordering problemsin your file, or because of a
missing sub, package, require, or use statement. If you're referencing something that isn't
defined yet, you don't actually have to define the subroutine or package before the current
location. You can use an empty sub f 0o; or package FQOO, toenter a"forward"
declaration.

Don't know how to handl e magi c of type ' %s

(P) The internal handling of magical variables has been cursed.
do_study: out of nenory

(P) This should have been caught by saf enmal | oc() instead.
Duplicate free() ignored

(S) Aninternal routine hascalled f r ee() on something that had already been freed.
el seif should be elsif

(S) Thereisno keyword elseif in Perl because Larry thinksit's ugly. Y our code will be
interpreted as an attempt to call amethod named el sei f () for the class returned by the
following block. Thisisunlikely to do what you want.

END fail ed- -cleanup aborted
(F) An untrapped exception was raised while executing an END subroutine. The interpreter is
immediately exited.

Error converting file specification %s

(F) An error peculiar to VMS. Since Perl may have to deal with file specificationsin either
VMS or UNIX syntax, it converts them to a single form when it must operate on them directly.

Either you've passed an invalid file specification to Perl, or you've found a case the conversion
routines don't handle. Drat.

Execution of %s aborted due to conpilation errors.

(F) Thefinal summary message when a Perl compilation fails.

Exiting eval via %s
(W) You are exiting an eval by unconventional means, such as a goto, or aloop control
statement.

Exi ting subroutine via %s

(W) You are exiting a subroutine by unconventional means, such as a goto, or aloop control
statement.

Exiting substitution via %s

(W) You are exiting a substitution by unconventional means, such as areturn, agoto, or aloop
control statement.

Fatal VMS error at %s, |ine %d

(P) An error peculiar to VM S. Something untoward happened in aVMS system service or RTL
routine; Perl's exit status should provide more details. The filename in %s and the line number
in %d tell you which section of the Perl source code is distressed.

fcntl is not inplenented

(F) Y our machine apparently doesn't implement fentl (2). What isthis, a PDP-11 or something?
Fi | ehandl e %s never opened

(W) An 1/O operation was attempted on afilehandle that was never initialized. Y ou need to do
an open or asocket call, or call a constructor from the FileHandl e package.

Fi | ehandl e %s opened only for input

(W) You tried to write on aread-only filehandle. If you intended it to be a read-write filehandle,
you needed to open it with +< or +> or +>> instead of with < or nothing. If you only intended
to write thefile, use > or >>. See open.

Fil ehandl e only opened for input

(W) You tried to write on aread-only filehandle. If you intended it to be a read-write filehandle,
you needed to open it with +< or +> or +>> instead of with < or nothing. If you only intended
to write thefile, use > or >>. See open.

Final $ should be \'$ or $nane

(F) You must now decide whether the final $ in a string was meant to be aliteral dollar sign, or
was meant to introduce a variable name that happens to be missing. So you have to add either
the backslash or the name.

Final @should be \ @or @ane
(F) Y ou must now decide whether the final @in a string was meant to be aliteral "at" sign, or

was meant to introduce a variable name that happens to be missing. So you have to add either
the backslash or the name.

Format %s r edefi ned

(W) You redefined aformat. To suppress this warning, say

{

| ocal $"W = 0;

eval "format NAME =...";
}

Format not term nated

(F) A format must be terminated by aline with a solitary dot. Perl got to the end of your file
without finding such aline. If you think you have such aline, make sure there are no spaces or
tabs on either side of the dot.

Found = in conditional, should be ==

(W) You said

if ($foo = 123)

when you meant

if ($foo == 123)

(or something like that).
gdbm store returned %d, errno %d, key " %s

(S) A warning from the GDBM _File extension module that ast or e() failed.
get hostent not i npl enent ed
(F) Your C library apparently doesn't implement gethostent (3), probably because if it did, it'd

feel morally obligated to return every hostname on the Internet. DNS tends to give machines a
sense of grandeur.

get { sock, peer}nane() on closed fd

(W) You tried to get a socket or peer socket name on a closed socket. Did you forget to check
the return value of your socket call?

getpwnamreturned invalid UC %d for user ~%s

(S) A warning peculiar to VMS. The call to sys$get uai underlying the getpwnam function
returned an invalid UIC.

d ob not term nated

(F) The lexer saw aleft angle bracket in a place where it was expecting aterm, so it's looking
for the corresponding right angle bracket, and not finding it. Chances are you left out some
needed parentheses earlier in the line, and you really meant a"less than".

G obal synbol “%s requires explicit package nane

(F) You'vesaiduse strict vars,whichindicatesthat all variables must either be
lexically scoped (using my), or explicitly qualified to say which package the global variable is
in(using: :).

got o nust have | abel

(F) Unlike next or last, you're not alowed to goto an unspecified destination, the opinions of
Elizabethans nothwithstanding. Go to goto.

Had to create %s unexpectedly

(S) A routine asked for a symbol from a symbol table that ought to have existed already, but for
some reason it didn't, and had to be created on an emergency basis to prevent a core dump. This
probably indicates atypo in an extension module.

Hash 9%%6s m ssing the % in argunent %d of %s()

(D) Redlly old Perl let you omit the %0on hash names in some spots. Thisis now heavily
deprecated.

Il egal division by zero

(F) You tried to divide a number by 0. Either something was wrong in your logic, or you need
to put a conditional in to guard against meaningless input. Maybe both.

|1l egal nodul us zero

(F) You tried to divide a number by O to get the remainder. Most numbers don't take to this
kindly.

|1l egal octal digit

(F) You used an 8 or 9 in aoctal number.
|1l egal octal digit ignored

(W) You may havetried to use an 8 or 9 in aoctal number. Interpretation of the octal number
stopped before the 8 or 9.

| nsecure dependency in %s

(F) You tried to do something that the tainting mechanism didn't like. The tainting mechanism
Is turned on when you're running setuid or setgid, or when you specify -T to turn it on
explicitly. The tainting mechanism labels all datathat's derived directly or indirectly from the
user, who is considered to be unworthy of your trust. If any such datais used in a"dangerous’
operation, you get this error.

| nsecure directory in %s

(F) You can't use system, exec, or a piped open in asetuid or setgid script if SENV{ PATH}
contains adirectory that is writable by the world.
| nsecure PATH

(F) You can't use system, exec, or a piped open in asetuid or setgid script if SENV{ PATH} is
derived from data supplied (or potentially supplied) by the user. The script must set the path to
aknown value, using trustworthy data.

I nternal inconsistency in tracking vforks

(S) A warning peculiar to VMS. Perl keeps track of the number of times you've called fork and
exec, in order to determine whether the current call to exec should affect the current script or a
subprocess (see exec). Somehow, this count has become scrambled, so Perl is making a guess

and treating this exec as a request to terminate the Perl script and execute the specified
command.

i nternal disaster in regexp

(P) Something went badly wrong in the regular expression parser.
internal urp in regexp at [/ %s

(P) Something went badly awry in the regular expression parser.

invalid [] range in regexp
(F) The range specified in a character class had a minimum character greater than the maximum
character.

loctl is not inplenented
(F) Y our machine apparently doesn't implement ioctl (2), which is pretty strange for a machine
that supports C.

junk on end of regexp

(P) Theregular expression parser is confused.
Label not found for “|last %s

(F) You named aloop to break out of, but you're not currently in aloop of that name, not even
iIf you count where you were called from. See |ast.

Label not found for "~next %s
(F) Y ou named aloop to continue, but you're not currently in aloop of that name, not even if
you count where you were called from. See |ast.

Label not found for "redo %s
(F) You named aloop to restart, but you're not currently in aloop of that name, not even if you
count where you were called from. See |ast.

|isten() on closed fd
(W) You tried to do alisten on a closed socket. Did you forget to check the return value of your
socket call? See listen.

Literal @6s now requires backsl ash
(F) It used to be that Perl would try to guess whether you wanted an array interpolated or a
literal @ It did this when the string was first used at run-time. Now strings are parsed at compile
time, and ambiguous instances of @must be disambiguated, either by putting a backslash to

indicate aliteral, or by declaring (or using) the array within the program before the string
(lexicaly). (Someday it will ssmply assume that any unbackslashed @interpolates an array.)

Met hod for operation %s not found in package %s during bl essing

(F) An attempt was made to specify an entry in an overloading table that somehow doesn't point
to avalid method.

M ght be a runaway nmulti-line %s string starting on line %d

(S) Thisisan advisory indicating that the previously reported error may have been caused by a

missing delimiter on a string or pattern, because it eventually ended earlier on the current line.
M spl aced _ in nunber

(W) An underlinein adecimal constant wasn't on athree-digit boundary.

M ssing $ on | oop variable
(F) Apparently you've been programming in csh too much. Scalar variables are always
introduced with a$ in Perl, unlike in the shells, where it can vary from one line to the next.

M ssing comma after first argunent to %s function
(F) While certain functions allow you to specify afilehandle or an "indirect object" before the
argument list, thisain't one of ‘em.

M ssi ng operator before %s?
(S) Thisisan educated guess made in conjunction with the message "%sf ound wher e
oper at or expect ed". Often the missing operator is a comma.

M ssing right bracket
(F) The lexer counted more opening curly brackets (braces) than closing ones. Hint: you'll find
the missing one near the place you were last editing.

M ssing sem col on on previous |ine?
(S) Thisisan educated guess made in conjunction with the message "%sf ound wher e

oper at or expect ed". Don't automatically put a semicolon on the previous line just
because you saw this message.

Modi fication of a read-only val ue attenpted

(F) You tried, directly or indirectly, to change the value of a constant. Y ou didn't, of course, try
2 = 1, sincethe compiler catches that. But an easy way to do the samething is.

sub nod { $_[0] =1}
nmod(2) ;
Another way isto assign to a substr that's off the end of the string.
Modi fication of non-creatable array val ue attenpted, subscript %d

(F) You tried to make an array value spring into existence, and the subscript was probably
negative, even counting from end of the array backwards.

Modi fication of non-creatable hash value attenpted, subscript ~%s
(F) You tried to make a hash value spring into existence, and it couldn't be created for some
peculiar reason.

Modul e nane nust be const ant

(F) Only a bare module name is allowed as the first argument to a use. If you want to get
fancier than that, call require within aBEA N block.

nmsg%s not i npl enent ed

(F) You don't have System V message | PC on your system.

Mul ti di nensi onal syntax %s not supported
(W) Multidimensional arrays aren't written like $f oo[1, 2, 3] . They're written like
$f 00[1][2][3], asin C.
Negative | ength
(F) You tried to do a read/write/send/recv operation with a buffer length that islessthan 0. This
is difficult to imagine.
nested *?+ in regexp

(F) You can't quantify a quantifier without intervening parens. So thingslike** or +* or ?*
areillegal, because you can't match things as many times as you want.

Note, however, that the minimal matching quantifiers, * ?, +?, and ??, appear to be nested
quantifiers, but aren't.

No #! |ine
(F) The setuid emulator requires that scripts have awell-formed #! line even on machines that
don't support the#! construct.

No %s al |l owed whil e running setuid

(F) Certain operations are deemed to be too insecure for a setuid or setgid script to even be
allowed to attempt. Generally speaking there will be another way to do what you want that is, if
not secure, at least securable.

No -e allowed in setuid scripts

(F) A setuid script can't be specified by the user.
No commma al | owed after %s

(F) A list operator that has a filehandle or "indirect object” is not allowed to have a comma
between that and the following arguments. Otherwise it'd be just another one of the arguments.

No command into which to pipe on command |ine

(F) An error peculiar to VMS. Perl handles its own command-line redirection, and found a | at
the end of the command line, so it doesn't know whither to pipe the output from this command.

No DB:: DB routine defined

(F) The currently executing code was compiled with the -d switch, but for some reason the
perl5db.pl file (or some facsimile thereof) didn't define aroutine to be called at the beginning of
each statement. Which is odd, because the file should have been required automatically, and

should have blown up the requireiif it didn't parse right.
No dbm on this nmachi ne
(P) Thisis counted as an internal error, because every machine should supply dom nowadays,
since Perl comes with SDBM.
No DBsub routine
(F) The currently executing code was compiled with the -d switch, but for some reason the

perl5db.pl file (or some facsimile thereof) didn't define aDB: : sub routine to be called at the
beginning of each ordinary subroutine call.

No error file after 2> or 2>> on command |i ne

(F) An error peculiar to VMS. Perl handles its own command-line redirection, and found a 2>
or a2>> on the command line, but can't find the name of the file to which to write data
destined for STDERR.

No input file after < on conmand |ine

(F) Anerror peculiar to VMS. Perl handles its own command-line redirection, and found a< on
the command line, but can't find the name of the file from which to read data for STDI N.

No output file after > on command |ine

(F) An error peculiar to VMS. Perl handles its own command-line redirection, and found alone
> at the end of the command line, so it doesn't know whither you wanted to redirect STDOUT.

No output file after > or >> on command |ine

(F) Anerror peculiar to VMS. Perl handles its own command-line redirection, and found a> or
a>> on the command line, but can't find the name of the file to which to write data destined for
STDOUT.

No Perl script found in input

(F) Youcalled per | - x, but no linewas found in the file beginning with #! and containing
theword "per | ",

No setregid avail abl e

(F) Configure didn't find anything resembling the setregid (2) call for your system.
No setreuid avail able

(F) Configure didn't find anything resembling the setreuid (2) call for your system.
No space allowed after -I

(F) The argument to -1 must follow the -1 immediately with no intervening space.
No such pi pe open
(P) An error peculiar to VMS. Theinternal routineny _pcl ose() tried to close apipe that

hadn't been opened. This should have been caught earlier as an attempt to close an unopened
filehandle.

No such signal: SI Ghs

(W) You specified asignal name as a subscript to % SI G that was not recognized. Say ki | |
- | inyour shell to see the valid signal names on your system.

Not a CODE reference

(F) Perl wastrying to evaluate areference to a code value (that is, a subroutine), but found a
reference to something else instead. Y ou can use the ref function to find out what kind of

referenceit really was.

Not a format reference
(F) I'm not sure how you managed to generate a reference to an anonymous format, but this
indicates you did, and that it didn't exist.

Not a G.OB reference

Not

Not

Not

Not

Not

Not

Not

Not

Nul |

(F) Perl wastrying to evaluate areference to atypeglob (that is, a symbol table entry that looks
like* f 00), but found areference to something else instead. Y ou can use the ref function to

find out what kind of referenceit really was.
a HASH reference

(F) Perl wastrying to evaluate areference to a hash value, but found a reference to something
elseinstead. Y ou can use the ref function to find out what kind of reference it really was.

a perl script

(F) The setuid emulator requires that scripts have awell-formed #! line even on machines that
don't support the#! construct. The line must mention "per | ".

a SCALAR reference

(F) Perl wastrying to evaluate areference to a scalar value, but found a reference to something
elseinstead. Y ou can use the ref function to find out what kind of reference it really was.

a subroutine reference

(F) Perl wastrying to evaluate areference to a code value (that is, a subroutine), but found a
reference to something else instead. Y ou can use the ref function to find out what kind of

referenceit really was.

a subroutine reference in %VERLOAD

(F) An attempt was made to specify an entry in an overloading table that somehow doesn't point
to avalid subroutine.

an ARRAY reference

(F) Perl wastrying to evaluate areference to an array value, but found a reference to something
elseinstead. You can use the ref function to find out what kind of reference it really was.

enough argunents for %s

(F) The function requires more arguments than you specified.
enough format argunents

(W) A format specified more picture fields than the subsequent values line supplied.
filenane used

(F) You can't require the null filename, especially since on many machines that means the
current directory! Seerequire.

NULL OP I N RUN

Nul |

(P) Some internal routine called r un() with anull opcode pointer.
real | oc

(P) An attempt was made to realloc (3) NULL.

NULL regexp argunent

(P) Theinternal pattern-matching routines blew it bigtime.

NULL regexp paraneter

(P) The internal pattern-matching routines are out of their gourd.
Qdd nunber of elenents in hash |ist

(S) You specified an odd number of elementsto a hash list, which is odd, since hash lists come
in key/value pairs.

00psS: OOpsAV
(S) Aninternal warning that the grammar is screwed up.
oops: oopsHV

(S) Aninternal warning that the grammar is screwed up.
Qperation " %s %s. no met hod found

(F) An attempt was made to use an entry in an overloading table that somehow no longer points
to avalid method.

Operator or sem colon m ssing before %s

(S) You used avariable or subroutine call where the parser was expecting an operator. The
parser has assumed you really meant to use an operator, but thisis highly unlikely to be correct.
For example, if yousay *f oo *f oo it will beinterpreted asif yousaid*foo * 'foo'.

Qut of nenory for yacc stack

(F) The byacc parser wanted to grow its stack so it could continue parsing, but realloc (3)
wouldn't give it more memory, virtual or otherwise.

Qut of nenory!

(X) malloc (3) returned 0, indicating there was insufficient remaining memory (or virtual
memory) to satisfy the request.

page overfl ow

(W) A single call to write produced more lines than can fit on a page.
pani c: ck_grep

(P) Failed an internal consistency check trying to compile agrep.
panic: ck _split

(P) Failed an internal consistency check trying to compile a split.
pani c: corrupt saved stack index

(P) The savestack was requested to restore more localized values than there are in the savestack.
pani c: die %s

(P) We popped the context stack to an eval context, and then discovered it wasn't an eva
context.

pani c: do_match

(P) Theinternal pp_mat ch() routine was called with invalid operational data.
pani c: do_split

(P) Something terrible went wrong in setting up for the split.

pani c: do_subst

(P) Theinternal pp_subst () routine was called with invalid operational data.
pani c: do_trans

(P) Theinternal do_t r ans() routine was called with invalid operational data.

pani c: goto
(P) We popped the context stack to a context with the specified label, and then discovered it
wasn't a context we know how to do agoto in.

pani c: | NTERPCASEMOD

(P) The lexer got into a bad state at a character case modifier like\ u.
pani c: | NTERPCONCAT

(P) The lexer got into a bad state parsing a string with brackets.
pani c: | ast

(P) We popped the context stack to a block context, and then discovered it wasn't a block
context.

pani c: | eave_scope cl earsv

(P) A writable lexical variable became read-only somehow within the scope.
pani c: | eave_scope inconsi stency

(P) The savestack probably got out of sync. At any rate, there was an invalid enum on the top of
it.
pani c: mall oc

(P) Something requested a negative number of bytes of malloc (3).
pani c: mapstart

(P) The compiler is screwed up with respect to the map function.
panic: null array

(P) One of theinternal array routines was passed a null AV pointer.
pani c: pad_all oc

(P) The compiler got confused about which scratchpad it was allocating and freeing temporaries
and lexicals from.

pani c: pad_free curpad
(P) The compiler got confused about which scratchpad it was allocating and freeing temporaries
and lexicals from.

pani c: pad_free po
(P) Aninvalid scratchpad offset was detected internally.

pani c: pad_reset curpad

(P) The compiler got confused about which scratchpad it was allocating and freeing temporaries

and lexicals from.
pani c: pad_sv po

(P) Aninvalid scratchpad offset was detected internally.
pani c: pad_sw pe curpad

(P) The compiler got confused about which scratchpad it was allocating and freeing temporaries
and lexicals from.

pani c: pad_sw pe po

(P) Aninvalid scratchpad offset was detected internally.
panic: pp_iter

(P) Theforeach iterator got called in a non-loop context frame.
panic: realloc

(P) Something requested a negative number of bytes of realloc (3).
pani c: restartop

(P) Some internal routine requested a goto (or something likeit), and didn't supply the
destination.

pani c: return

(P) We popped the context stack to a subroutine or eval context, and then discovered it wasn't a
subroutine or eval context.

pani c: scan_num

(P) scan_nunt() got caled on something that wasn't a number.
pani c: sv_insert

(P) Thesv_i nsert () routinewas told to remove more string than there was string.
pani c: top_env

(P) The compiler attempted to do a goto, or something weird like that.
pani c: yyl ex

(P) The lexer got into a bad state while processing a character case modifier like\ u.
Parens m ssing around "~ %s |i st

(W) You said something like

my $foo, $bar = @;

when you meant

ny (foo, Sbar) = @;

Remember that my and local bind closer than comma.
Perl %s required- -this is only version %s, stopped

(F) The module in question uses features of a version of Perl more recent than the currently
running version. How long has it been since you upgraded, anyway? See require.

Per m ssi on deni ed

(F) The setuid emulator in suidper| decided you were up to no good.
pid %d not a child

(W) A warning peculiar to VMS. waitpid was asked to wait for a processwhich isn't a

subprocess of the current process. While thisisfine from VMS's perspective, it's probably not
what you intended.

POSI X getpgrp can't take an argunent
(F) Your C compiler uses POSIX getpgrp (2), which takes no argument, unlike the BSD
version, which takes a pid.

Possi bl e nenory corruption: %s overfl owed 3rd argunent
(F) Anioctl (2) or fentl (2) returned more than Perl was bargaining for. Perl guesses a
reasonable buffer size, but puts a sentinel byte at the end of the buffer just in case. This sentinel

byte got clobbered, and Perl assumes that memory is now corrupted. You can try to trap this
with eval, but remember your malloc arena may have been clobbered. Expect your program to

dump core soon. If you're lucky, it won't set fire to the laser printer first. Seeioctl.
Precedence problem open %s should be open(%s)

(S) Theold irregular construct

open FOO || die;

Isnow misinterpreted as

open(FQO || die);

because of the strict regularization of Perl 5's grammar into unary and list operators. (The old
open was alittle of both.) Y ou must put parens around the filehandle, or use the new or

operator instead of | | .

print on closed filehandl e %s
(W) Thefilehandle you're printing on got itself closed sometime before now. Check your logic
flow. It may have flowed away.

printf on closed fil ehandl e %s
(W) Thefilehandle you're writing to got itself closed sometime before now. Check your logic
flow. See previous joke.

Pr obabl e precedence probl em on %s

(W) The compiler found a bare word where it expected a conditional, which often indicates that
an| | or & was parsed as part of the last argument of the previous construct, for example:

open FOO || die;
Prototype m smatch: (%s) vs (%s)

(S) The subroutine being defined had a predeclared (forward) declaration with a different
function prototype. The prototypes must match.

Read on cl osed fil ehandl e <%s>

(W) Thefilehandle you're reading from got itself closed sometime before now. Check your
logic flow. Don't see the previous joke.

Real | ocation too | arge: %d

(F) You can't allocate more than 64K on an MS-DOS machine.
Reconpile perl with -DDEBUGE NG to use -D switch

(F) You can't use the -D option unless the code to produce the desired output is compiled into
perl, which entails some overhead, which iswhy it's currently left out of your copy.

Recur si ve i nheritance detected

(F) More than 100 levels of inheritance were used. Probably indicates an unintended loop in
your inheritance hierarchy. Use - Do to trace object method lookups. (But see previous entry.)

Ref erence m scount in sv_replace()

(W) Theinternal sv_r epl ace() function was handed anew SV with areference count of
other than 1.

regexp menory corruption

(P) The regular expression engine got confused by what the regular expression compiler gave it.
regexp out of space

(P) A "can't happen" error, because saf emal | oc() should have caught it earlier. If it didn't,
your Perl is misconfigured.

regexp too big

(F) The current implementation of regular expression uses 16-hit shorts as address offsets
within astring. Unfortunately this means that if the regular expression compilesto longer than
32767 bytes, it'll blow up. Usually when you want aregular expression this big, there is a better
way to do it with multiple statements.

Rever sed %s= oper at or

(W) Y ou wrote your assignment operator backward. The = must always come last, to avoid
ambiguity with subsequent unary operators.

Runaway f or mat

(F) Your format contained the ~~ repeat-until-blank sequence, but it produced 200 lines at
once, and the 200th line looked exactly like the 199th line. Apparently you didn't arrange for
the arguments to exhaust themselves, either by using ” instead of @(for scalar variables), or by
shifting or popping (for array variables).

Scal ar value @6y %s] better witten as $%9 %s]
(W) You've used an array slice (indicated by @) to select asingle value of an array. Generally

it's better to ask for ascalar value (indicated by $). The difference isthat $f oo[&bar] aways
behaves like a scalar, both when assigning to it and when evaluating its argument, while

@ oo[&bar] behaveslike alist when you assign to it, and provides alist context to its
subscript, which can do weird things if you're only expecting one subscript. On the other hand,
If you were actually hoping to treat the array element as alist, you need to look into how
references work, since Perl will not magically convert between scalars and lists for you.

Script is not setuid/setgid in suidperl
(F) Oddly, the suidper| program was invoked on a script with its setuid or setgid bit unset. This
doesn't make much sense.

Search pattern not term nated
(F) The lexer couldn't find the final delimiter of a// or n{} construct. Remember that
bracketing delimiters count nesting level.

seek() on unopened file

(W) You tried to use the seek function on a filehandle that was either never opened or has been
closed since.

sel ect not i npl enent ed

(F) This machine doesn't implement the select (2) system call.
senfos not i npl enent ed

(F) You don't have System V semaphore |PC on your system.

sem -panic. attenpt to dup freed string
(S) Theinternal newSVsv() routine was called to duplicate a scalar that had previously been
marked as free.

Sem col on seens to be m ssing

(W) A nearby syntax error was probably caused by a missing semicolon, or possibly some other
missing operator, such as acomma

Send on cl osed socket
(W) Thefilehandle you're sending to got itself closed sometime before now. Check your logic
flow.

Sequence (?#... not term nated

(F) A regular expression comment must be terminated by a closing parenthesis. Embedded
parentheses aren't allowed. But with the /x modifier you can use an ordinary comment starting
with #, which doesn't care.

Sequence (?%s...) not inplenented
(F) A proposed regular expression extension has the character reserved but has not yet been
written.

Sequence (?%s...) not recogni zed

(F) You used aregular expression extension that doesn't make sense.
Server error

(A) Also known as"500 Server error". ThisisaCGl error, not aPerl error. You need to
make sure your script is executable, is accessible by the user CGlI is running the script under

(which is probably not the user account you tested it under), does not rely on any environment
variables (like PATH) from the user it isn't running under, and isn't in alocation where the CGI
server can't find it, basically, more or less.

setegid() not inplenented
(F) You tried to assign to $), and your operating system doesn't support the setegid (2) system
call (or equivalent), or at least Configure didn't think so.

seteui d() not inplenented
(F) You tried to assign to $>, and your operating system doesn't support the seteuid (2) system
call (or equivalent), or at least Configure didn't think so.

setrgid() not inplenented
(F) You tried to assign to $(, and your operating system doesn't support the setrgid (2) system
call (or equivalent), or at least Configure didn't think so.

setruid() not inplenented
(F) You tried to assign to $<, and your operating system doesn't support the setruid (2) system
call (or equivalent), or at least Configure didn't think so.

Setuid/gid script is witable by world
(F) The setuid emulator won't run a script that is writable by the world, because the world might
have written on it already.

shnfes not i npl enent ed

(F) You don't have System V shared memory |PC on your system.
shut down() on cl osed fd

(W) You tried to do a shutdown on a closed socket. Seems a bit superfluous.
SI G%s handl er "~ %s not defi ned.

(W) The signal handler named in % SI G doesn't, in fact, exist. Perhaps you put it into the
wrong package?

sort is now a reserved word
(F) An ancient error message that almost nobody ever runs into anymore. But before sort was a
keyword, people sometimes used it as afilehandle.

Sort subroutine didn't return a numeric val ue
(F) A sort comparison routine must return a number. Y ou probably blew it by not using <=> or
cmp, or by not using them correctly. See sort.

Sort subroutine didn't return single value
(F) A sort comparison subroutine may not return alist value with more or less than one
element. See sort.

Split |oop

(P) The split was looping infinitely. (Obviously, a split shouldn't iterate more times than there
are characters of input, which iswhat happened.) See split.

Stat on unopened file %s

(W) You tried to use the stat function (or an equivaent file test) on afilehandle that was either
never opened or has been closed since.

Statenent unlikely to be reached

(W) You did an exec with some statement after it other than adie. Thisisamost always an
error, because exec never returns unless there was afailure. Y ou probably wanted to use system
instead, which does return. To suppress this warning, put the exec in ablock by itself. Or put a
die after it.

Subr outi ne %s redefi ned

(W) Y ou redefined a subroutine. To suppress this warning, say

{
| ocal $"W = 0;
eval "sub name { ... }";

}

Substitution | oop

(P) The substitution was looping infinitely. (Obviously, a substitution shouldn't iterate more
times than there are characters of input, which is what happened.) See the discussion of
substitution in the section "Pattern-Matching Operators' in Chapter 2, The Gory Details.

Substitution pattern not term nated

(F) The lexer couldn't find the interior delimiter of ans/ // ors{}{} construct. Remember
that bracketing delimiters count nesting level.

Substitution replacenment not term nated
(F) The lexer couldn't find the final delimiter of ans/// ors{}{} construct. Remember that
bracketing delimiters count nesting level.

substr outside of string

(W) You tried to reference a substr that pointed outside of astring. That is, the absolute value of
the offset was larger than the length of the string. See substr.

sui dperl is no | onger needed since...

(F) Your perl was compiled with - DSETUI D_SCRI PTS_ARE_SECURE_NOW but aversion
of the setuid emulator somehow got run anyway.

syntax error

(F) Probably means you had a syntax error. Common reasons include:
o A keyword is misspelled.
o A semicolon is missing.
0 A commaismissing.
0 Anopening or closing parenthesisis missing.
0 Anopening or closing brace is missing.

o A closing quote is missing.

Often there will be another error message associated with the syntax error giving more
information. (Sometimes it helps to turn on -w.) The error message itself often tells you where
it wasin the line when it decided to give up. Sometimes the actual error is several tokens before
this, since Perl is good at understanding random input. Occasionally the line number may be
misleading, and once in a blue moon the only way to figure out what's triggering the error isto
call perl -c repeatedly, chopping away half the program each time to seeif the error went away.
Sort of the cybernetic version of 20 Questions.

syntax error at line %d:. ~%s unexpected

(A) You've accidentally run your script through the Bourne shell instead of perl. Check the #!
line, or manually feed your script into perl yourself.

SystemV IPCis not inplenented on this nachine

(F) You tried to do something with a function beginning with sem, shm or msg. See semctl, for
example.

Syswite on closed fil ehandle
(W) Thefilehandle you're writing to got itself closed sometime before now. Check your logic
flow. If you're tired of that, check someone else's.

tell () on unopened file

(W) You tried to use the tell function on afilehandle that was either never opened or has been
closed since.

Test on unopened file %s

(W) You tried to invoke afile test operator on a filehandle that isn't open. Check your logic.
That use of $[is unsupported

(F) Assignment to $[is now strictly circumscribed, and interpreted as a compiler directive. You

may only say one of
$[= O
$[= 1;
local $[= O
| ocal $[= 1;

Thisisto prevent the problem of one module changing the array base out from under another
modul e inadvertently. See the section on $[in Chapter 2, The Gory Details.

The %s function i s uninpl enented

(F) The function indicated isn't implemented on this architecture, according to the probings of
Configure.

The crypt () function is uninplenented due to excessive paranoi a.

(F) Configure couldn't find the crypt (3) function on your machine, probably because your
vendor didn't supply it, probably because they think the U.S. government thinks it's a secret, or

at least that they will continue to pretend that it is. And if you quote me on that, | will deny it.
The stat preceding -1 _ wasn't an | stat

(F) It makes no sense to test the current stat buffer for symbolic linkhood if the last stat that

wrote to the stat buffer already went past the symlink to get to the red file. Use an actual
filename instead.

ti mes not inplenented

(F) Your version of the C library apparently doesn't do times (3). | suspect you're not running
on UNIX.

Too few args to syscall

(F) There has to be at least one argument to syscall to specify the system call to call, silly dilly.
Too many ('s
Too many)'s
(A) You've accidentally run your script through csh instead of perl. Check the#! line, or
manually feed your script into perl yourself.
Too many args to syscall

(F) Perl supports a maximum of 14 argsto syscall.
Too many argunents for %s

(F) The function requires fewer arguments than you specified.
trailing \ in regexp

(F) Theregular expression ends with an unbackslashed backslash. Backslash it.
Transl ation pattern not term nated

(F) The lexer couldn't find the interior delimiterof atr/// ortr[][] construct.
Transl ati on replacenent not term nated

(F) The lexer couldn't find the final delimiter of atr/// ortr[][] construct.
truncate not inplenented

(F) Y our machine doesn't implement a file truncation mechanism that Configure knows about.
Type of arg %d to %s nmust be %s (not %s)
(F) Thisfunction requires the argument in that position to be of a certain type. Arrays must be

@NAVE or @ EXPR} . Hashes must be “NAVE or %4 EXPR} . No implicit dereferencing is
allowed--use the { EXPR} forms as an explicit dereference.

umask: argunent is mssing initial O
(W) A umask of 222 isincorrect. It should be 0222, since octal literals always start with 0 in
Perl, asin C.

Unabl e to create sub naned " %s

(F) You attempted to create or access a subroutine with an illegal name.
Unbal anced context: %d nore PUSHes than POPs

(W) The exit code detected an internal inconsistency in how many execution contexts were
entered and |eft.

Unbal anced saves: %d npore saves than restores

(W) The exit code detected an internal inconsistency in how many values were temporarily
localized.

Unbal anced scopes: %d nore ENTERs than LEAVES

(W) The exit code detected an internal inconsistency in how many blocks were entered and | eft.
Unbal anced tnps: %d nore allocs than frees

(W) The exit code detected an internal inconsistency in how many mortal scalars were alocated
and freed.

Undefined format ~%s call ed

(F) The format indicated doesn't seem to exist. Perhapsit'sreally in another package?
Undefined sort subroutine " %s called
(F) The sort comparison routine specified doesn't seem to exist. Perhapsit'sin a different
package? See sort.
Undefi ned subroutine &%s call ed

(F) The subroutine indicated hasn't been defined, or if it was, it has since been undefined.
Undefi ned subroutine called

(F) The anonymous subroutine you're trying to call hasn't been defined, or if it was, it has since
been undefined.

Undefi ned subroutine in sort
(F) The sort comparison routine specified is declared but doesn't seem to have been defined yet.
See sort.

Undefined top format ~%s call ed

(F) The format indicated doesn't seem to exist. Perhapsit'sreally in another package?
unexec of %s into %s failed!
(F) Theunexec() routinefailed for some reason. See your local FSF representative, who
probably put it there in the first place.
Unknown BYTEORDER

(F) There are no byteswapping functions for a machine with this byte order.

unmat ched () in regexp
(F) Unbackslashed parentheses must always be balanced in regular expressions. If you're a vi
user, the %key is valuable for finding the matching parenthesis.

Unmat ched ri ght bracket

(F) The lexer counted more closing curly brackets (braces) than opening ones, so you're
probably missing an opening bracket. As ageneral rule, you'll find the missing one (so to

speak) near the place you were last editing.
unmat ched [] i n regexp

(F) The brackets around a character class must match. If you wish to include a closing bracket
in a character class, backslash it or put it first.

Unquoted string %s may clash with future reserved word

(W) You used a bareword that might someday be claimed as a reserved word. It's best to put
such aword in quotes, or capitalize it somehow, or insert an underbar into it. Y ou might also
declare it as a subroutine.

Unr ecogni zed character \%d i gnored
(S) A garbage character was found in the input, and ignored, in case it'saweird control
character on an EBCDIC machine, or some such.

Unr ecogni zed signal nanme " %s

(F) You specified asignal nameto the kill function that was not recognized. Say ki | | -1 in
your shell to see the valid signal names on your system.

Unrecogni zed switch: -%s
(F) You specified anillegal option to perl. Don't do that. (If you think you didn't do that, check
the#! lineto seeif it's supplying the bad switch on your behalf.)

Unsuccessful %s on fil enanme containing newine
(W) A file operation was attempted on a filename, and that operation failed, probably because
the filename contained a newline, probably because you forgot to chop or chomp it off. See

chop.
Unsupported directory function " %s called

(F) Y our machine doesn't support opendir (3) and readdir (3).

Unsupported function %s
(F) This machine doesn't implement the indicated function, apparently. At least, Configure
doesn't think so.

Unsupported socket function " %s called

(F) Y our machine doesn't support the Berkeley socket mechanism, or at least that's what
Configure thought.

Unt er m nat ed <> operat or
(F) The lexer saw aleft angle bracket in a place where it was expecting aterm, so it's looking

for the corresponding right angle bracket, and not finding it. Chances are you left out some
needed parentheses earlier in the line, and you really meant a"less than".

Use of $# is deprecated

(D) Thiswas anill-advised attempt to emulate a poorly defined awk feature. Use an explicit
printf or sprintf instead.

Use of $* is deprecated
(D) Thisvariable magically turned on multiline pattern matching, both for you and for any

Usel

luckless subroutine that you happen to call. Y ou should use the new /m and /s modifiers now to
do that without the dangerous action-at-a-distance effects of $*.

of %sin printf format not supported

(F) Y ou attempted to use afeature of printf that is accessible only from C. This usually means
there's a better way to do it in Perl.

of %s is deprecated

(D) The construct indicated is no longer recommended for use, generally because there'sa
better way to do it, and also because the old way has bad side effects.

of bare << to nean << is deprecated

(D) You are now encouraged to use the explicitly quoted form if you wish to use ablank line as
the terminator of the here-document.

of inplicit split to @ is deprecated

(D) It makes alot of work for the compiler when you clobber a subroutine's argument list, so
it's better if you assign the results of a split explicitly to an array (or list).

of uninitialized val ue

(W) An undefined value was used as if it were already defined. It was interpreted asa" " or a

0, but maybe it was a mistake. To suppress this warning, assign an initial value to your
variables,

ess use of %s in void context

(W) You did something without a side effect in a context that does nothing with the return
value, such as a statement that doesn't return a value from a block, or the left side of a scalar
comma operator. Very often this points not to stupidity on your part, but afailure of Perl to
parse your program the way you thought it would. For example, you'd get thisif you mixed up
your C precedence with Python precedence and said

$one, $two = 1, 2;

when you meant to say

($one, $two) = (1, 2);

Another common error isto use ordinary parentheses to construct alist reference when you
should be using square or curly brackets, for example, if you say

$array = (1, 2);

when you should have said

$array = [1, 2];

The square brackets explicitly turn alist value into a scalar value, while parentheses do not. So
when a parenthesized list is evaluated in a scalar context, the commaiistreated like C's comma
operator, which throws away the left argument, which is not what you want.

Variable " %s is not exported

(F) Whileuse stri ct ineffect, you referred to aglobal variable that you thought was
imported from another module, because something else of the same name (usually a subroutine)
Is exported by that module. It usually means you put the wrong funny character on the front of
your variable.

Vari abl e nane " %s. : %s used only once: possible typo

(W) Typographical errors often show up as unique names. If you had a good reason for having
aunique name, then just mention it again somehow to suppress the message. Y ou might
consider declaring the variable withuse vars.

Vari abl e synt ax.

(A) You've accidentally run your script through csh instead of perl. Check the#! line, or
manually feed your script into perl yourself.

Warni ng: unable to close filehandl e %s properly.

(S) Theimplicit close done by an open got an error indication on the close. This usually
indicates your filesystem ran out of disk space.
Warni ng: Use of "~ %s w thout parens is anbi guous

(S) You wrote aunary operator followed by something that looks like a binary operator that
could also have been interpreted as aterm or unary operator. For instance, if you know that the
rand function has a default argument of 1.0, and you write

rand + 5;

you may think you wrote the same thing as

rand() + 5;

but in actual fact, you got

rand(+5) ;

S0 put in parentheses to say what you really mean.
Wite on closed fil ehandl e

(W) Thefilehandle you're writing to got itself closed sometime before now. Check your logic
flow.

X outside of string
(F) You had a pack template that specified arelative position before the beginning of the string
being unpacked. See pack.

X outside of string
(F) You had a pack template that specified arelative position after the end of the string being
unpacked. See pack.

Xsub "%s called in sort

(F) The use of an external subroutine as a sort comparison is not yet supported.

Xsub called in sort

(F) The use of an external subroutine as a sort comparison is not yet supported.

You can't use -1 on a fil ehandl e

(F) A filehandle represents an opened file, and when you opened the file it already went past
any symlink you are presumably trying to look for. Use afilename instead.

YOU HAVEN T DI SABLED SET-1D SCRI PTS | N THE KERNEL YET!

(F) And you probably never will, since you probably don't have the sources to your kernel, and
your vendor probably doesn't give arip about what you want. Y our best bet isto use the
wrapsuid script in the eg/ directory to put a setuid C wrapper around your script.

You need to quote " %s

(W) You assigned a bareword as asignal handler name. Unfortunately, you already have a
subroutine of that name declared, which means that Perl 5 will try to call the subroutine when
the assignment is executed, which is probably not what you want. (If it IS what you want, put
an &in front.)

[gs] et sockopt () on closed fd

(W) You tried to get or set a socket option on a closed socket. Did you forget to check the
return value of your socket call? See getsockopt.

\1l better witten as $1

(W) Outside of patterns, backreferences live on as variables. The use of backslashesis
grandfathered on the righthand side of a substitution, but stylistically it's better to use the
variable form because other Perl programmers will expect it, and it works better if there are
more than nine backreferences.

and '<' may not both be specified on command |ine

(F) An error peculiar to VMS. Perl does its own command-line redirection, and found that
STDI Nwas a pipe, and that you also tried to redirect STDI Nusing <. Only one STDI N stream
to a customer, please.

and '>'" may not both be specified on command |ine

(F) Anerror peculiar to VMS. Perl does its own command-line redirection, and thinks you tried
to redirect STDOUT both to afile and into a pipe to another command. Y ou need to choose one
or the other, though nothing's stopping you from piping into a program or Perl script which
"splits" output into two streams, such as

open(QUT, ">$ARGV[0] ") or die "Can't wite to $SARGV[O]: $!";
whil e (<STDI N>) {

print STDOUT,

print OUT;

}
cl ose QUT;

4 PREVIOUS HOME MEXT
History Made Practical BOOK INDEX Glossary

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Programming

41 PREVIOUS Glossary

Glossary

actual arguments

The scalar values that you supply to afunction or subroutine when you call it. For instance,
when you cal pi gl ati n(" bi ngo™), thestring " bi ngo" isthe actual argument. See also
argument [1] and formal arguments.

[1] When we italicize aword or phrase in here, it usually means you can find it
defined elsewhere in the Glossary. Think of them as hyperlinks.

address operator

A language construct for manipulating the actual location of an object in your computer's
memory. Strictly speaking, there are no such operatorsin Perl, since it handles all that for you
automatically. You tell Perl that you want a new thingy, and Perl worries about creating,

moving, and destroying the thingy for you. Not so strictly speaking, the backslash operator
returns a reference to a thingy, which works much like an address. See also network address.

adternatives

A list of possible choices from which you may select only one, asin "Would you like door A,
B, or C?" Alternativesin regular expressions are separated with avertical bar: | . Alternativesin
normal Perl expressions are separated with adouble vertical bar: | | . Y ou might say there are
two aternatives for alternatives. (Then again, you might not. Y our choice.)

anonymous

Used to describe a thingy that is not directly accessible through a named variable. Such athingy
must be indirectly accessible through at |east one hard reference. When the last hard reference
goes away, the anonymous thingy is destroyed without pity.

architecture

The kind of computer you're working on, where one "kind" of computer means all those
computers that can run the same binary program. Since Perl scripts are text files, not binaries, a
Per| script is much less sensitive to the architecture it's running on than programs in other
languages (such as C) that are compiled into machine code. See also operating system.

argument

A piece of data supplied as input to a program, subroutine, or function when it isinvoked to tell
it what it's supposed to do. Also called a"parameter”.

ARGV

The name of the array containing the argument "vector" from the command line. If you use the
empty <> operator, ARGV is both the name of the filehandle used to traverse the arguments,
and of the scalar containing the name of the current input file. It's also what you say to your
dentist when the Novocaine isn't working.

arithmetic operator

A symbol such as+ or ** that tells Perl to do arithmetic. In addition, see operator.
array

A named list of values, each of which has a unique key to identify it. In anormal array, the key
Is numeric (an integer, in fact). In ahash (an associative array), the key is a string.

array context

A quaint, archaic expression used by people who have read the first edition of this book.
Nowadays called list context.

array litera
Strictly, acomma-separated, parenthesized LI ST of scalar literals. Used loosely to refer to any
parenthesized LI ST even if it contains variables or expressions.

array value

Another archaic phrase. Seelist value.

array variable
A named list that may be processed by functions such as shift and splice that require an array
name as the first argument.

ASCII

Used roughly to mean the American Standard Code for Information Interchange (a 7-bit
character set), and any international extensions based on it.

assignment
An operation whose mission in life is to change the value of a variable.
assignment operator

A compound operator composed of an ordinary assignment together with some other operator,
that changes the value of avariable in place, that is, relative to its old value. For example, $a
+= 2 adds?2 to $a.

associative array
See hash.
associativity
Determines whether you do the left operator first or the right operator first, when you have "A

operator B operator C", if the two operators are of the same precedence. Operatorslike + are
left associative, while operatorslike * * are right associative. See the section "Operators” in

Chapter 2, The Gory Details, for alist of associativity.

autoincrement

To add one to something automatically. Usually used to describe the ++ operator.
autosplit

To split astring automatically on whitespace, such as the -a switch does in order to emulate

awk.

AV
Short for "array value", which refers to one of Perl'sinternal datatypes. (Not to be confused
with array value, by which people usually mean list value.) An AV isakind of SV.

awk
Descriptive editing term--short for "awkward". Also coincidentally refers to a venerable text
processing language from which Perl derived some of itsideas.

backtracking

The practice of saying, "If | had to do it all over, I'd do it differently," and then actually going
back and doing it all over differently. Mathematically speaking, it's returning from an
unsuccessful recursion on atree of possibilities. Backtracking happensin Perl when it attempts
to match patterns with aregular expression, and its earlier guesses don't pan out.

base class

A generic object class from which other more specific classes are derived genetically by
inheritance. Also called a"superclass' by people who respect their ancestors.

BASIC/PLUS
Another ancient language, from which Perl derived exactly one idea. OK, maybe two.[2]

[2] BASIC/PLUS isaregistered trademark of Digital Equipment Corporation. And
the answers are: statement modifiers and maybe formats.

big-endian
From Swift: someone who eats boiled eggs big end first. Also used of computers that store the
most significant byte of aword at alower byte address than the least significant byte. Often

considered superior to little-endian machines. See also little-endian.

binary
Having to do with numbers represented in base two. That means there are basically two
numbers, zero and one. Some people think in binary, as shown by the kinds of questions they

ask: "Should we all use Perl or Java?' Also used to describe a non-text file, presumably because
such afile makes full use of al the binary bitsin its bytes.

bit
A very small piece of litter. Also a number in the range zero to one, inclusive.
bit shift

The movement of bits left or right in a computer word, which has the effect of multiplying or

dividing by a power of two.
bless

In corporate life, to grant official approval to athing, asin, "The VP of Engineering has blessed
our WebCruncher project.” Similarly in Perl, to grant official approval to athingy so that it can

function as a WebCruncher object. See the bless function in Chapter 3, Functions.
block

What a process does when it has to wait for something: "My process blocked waiting for the

disk." Asan unrelated noun, it refers to alarge chunk of data, of a size that the operating system
likes to deal with (normally a power of two suchas512 or 8192). Typically refersto a chunk
of datathat's coming from or going to adisk file.

BLOCK

A syntactic construct consisting of a sequence of Perl statements bounded by braces. The if and
while statements are defined in terms of BLOCKs. Sometimes we also say "block” to mean a

sequence of statements that act like a BLOCK, such as within an eval or afile, even though the
statements aren't bounded by braces.

block buffering

A method of making input and output efficient by doing it a block at atime. By default, Perl
does block buffering to disk files. See buffer and command buffering.

Boolean context

A special kind of scalar context in which the program is expecting to decide whether the scalar
value returned by an expression is true or false. See context.

breakpoint

A spot in your program where you've told the debugger to stop execution so you can poke
around and see whether anything iswrong yet.

BSD

A psychoactive drug, popular in the 80s, probably developed at U. C. Berkeley or thereabouts.
Similar in many ways to the prescription-only medication called " System V", but infinitely
more useful. (Or, at least, more fun.) The full chemical nameis "Berkeley Standard
Distribution".

buffer

A temporary holding location for data. Block buffering means that the datais passed on to its
destination whenever the buffer is full. Line buffering means that it's passed on whenever a
complete lineis received. Command buffering means that it's passed on after every pri nt

command. If your output is unbuffered, every byte is transmitted separately, without passing
through a holding area.

byte

A piece of data worth eight bits in most places.
bytecode

A pidgin-like language spoken among 'droids when they don't wish to reveal their orientation
(see endian). Named after some similar languages spoken (for similar reasons) between

compilers and interpretersin the late twentieth century. These languages are characterized by
representing everything as a non-architecture-dependent sequence of bytes.

A language beloved by many for its inside-out type definitions, inscrutable precedence rules,
and heavy overloading of the function-call mechanism. (Well, actually, people first switched to

C because they found lower-case identifiers easier to read than upper.) The Perl interpreter is
written in C, so it's not surprising that Perl borrowed afew ideas fromit.

C preprocessor
Thetypical C compiler'sfirst pass, which processes lines beginning with # for conditional

compilation and macro definition, and does various manipulations of the program text based on
the current definitions. Also known as cpp (1).

call by reference

An argument-passing mechanism in which the formal arguments refer directly to the actual
arguments, and the subroutine can change the actual arguments by changing the formal
arguments. See aso call by value.

call by value

An argument-passing mechanism in which the formal arguments refer to a copy of the actual
arguments, and the subroutine cannot change the actual arguments by changing the formal
arguments. (See also call by reference).

character

A small pattern of bits (usually seven, eight, or sixteen in number) that is the machine's
representation of a unit of orthography. Americans typically confuse characters with bytes. So
does Perl.

character class

A square-bracketed list of charactersused in aregular expression to indicate that any character
of the set may occur at this point.

class

A package that either defines methods (subroutines) that deal with objects of your class, or that

derives methods from other packages that know how to deal with objects of your class. (Or
think they know how.) See also inheritance.

class method

A method that treats the whole class as an object. One sort of class method is a constructor. (A
class method is also known as a"static" method in C++ terminology.)

client

In networking, a process that initiates contact with a server processin order to exchange data
with it and perhaps receive a service.

closure

An anonymous subroutine that, when generated at run-time, keeps track of the identities of

externally visible lexical variables even after those lexical variables have supposedly gone out
of scope. They're called "closures' because this sort of behavior gives mathematicians a sense
of closure.

CODE

Theword "CODE" isreturned by the ref function when you apply ittoaCV. See CV.
collating sequence

The order that characters sort into. Thisis used by string comparison routines to decide, for
example, where in this glossary to put "collating sequence”.

command

In shell programming, the syntactic combination of a program name with its arguments. More

loosely, anything you type to a shell (a command interpreter) that starts it doing something. In
Perl programming, a statement, which might start with alabel, and typically ends with a
semicolon.

command buffering

An option in Perl that lets you store up the output of each Perl command and then flush it out as
asingle request to the operating system. It's enabled by setting the $| variable to a non-zero

value. It's used when you don't want data sitting around not going where it's supposed to, which
may happen because the default on afile or pipe isto use block buffering. See also buffering.

command-line arguments

The values you supply along with a program name when you tell a shell to execute a command.
These values are passed to a Perl script through @ARGV.

command name

The name of the program currently executing, as typed on the command line. In C the
command name is passed to the program as the first command-line argument. In Perl, it comes
in separately as $0.

comment

A remark that doesn't affect the meaning of the program. In Perl, acomment isintroduced by a
character and continues to the end of the line.

compile-time

The time when Perl is trying to make sense of your program, as opposed to when it thinks it
knows what your program means and is merely trying to do what it thinks your program says to
do. See aso run-time.

compiler

Strictly speaking, a program that munches up another program and spits out yet another file
containing the program in a more executable form, typically containing native machine
instructions. The perl program is not a compiler by this definition, but it does contain a
compiler that takes a program and turns it into a more executable form (syntax trees) within the
perl processitself, which the interpreter then interprets. There are, however, extension modules

to get Perl to act more like areal compiler.
composer

A "constructor” for athingy that isn't really an object, like an array or a hash. For example, a

pair of braces acts as a composer for a hash, and a pair of brackets acts as a composer for an
array. See "Creating Hard References” in Chapter 4, References and Nested Data Structures.

concatenation

The process of gluing one cat's hose to another cat'stail. Also, asimilar operation on two
strings.

conditional
Something "iffy".

connection
In telephony, the temporary electrical circuit between the caller's and the callee's phone. In
networking, the same kind of temporary circuit between aclient and a server.

construct
Asanoun, apiece of syntax made up of smaller pieces. As atransitive verb, to create an object
using a constructor.

constructor

A special class method that constructs an object and returns it. Sometimes we use the term
loosely to mean a composer.

context

The surroundings, or environment. The context given by the surrounding code determines what
kind of data a particular expression is expected to return. The two primary contexts are list

context and scalar context. Scalar context is sometimes subdivided into Boolean context,
numeric context, and string context. There's also a“don't care” context (which isdealt within
Chapter 2, The Gory Details, if you care).

continuation

The treatment of more than one physical line asasingle logical line. Makefile lines are
continued by putting a backslash before the newline. Internet message headers are continued by

putting a space or tab after the newline. Perl lines do not need any form of continuation mark,
because whitespace (including newline) is gleefully ignored. Usually.

core dump

The corpse of a process, in the form of afileleft in the working directory of the process,
usually as aresult of certain kinds of fatal error.

CPAN

Comprehensive Perl Archive Network. (See the Preface for more details.)
current package

Which package the current statement is compiled in. Scan backward in the text of your program

until you find a package declaration at the same block level, or in an enclosing block. That's
your current package name.

current working directory

See working directory.

currently selected output channel

The last filehandle that was designated with sel ect (FI LEHANDLE) ; the default is STDOUT,
if no filehandle has been selected.

CcVv

Aninterna "code value" typedef. A CV isakind of SV.
dangling statement

A bare, single statement, without any braces, hanging off an if or while conditional. C alows
them. Perl doesn't.

dataflow

What your program looks like from the perspective of a particular piece of datafrom the time it
enters your program to the time it leaves or is combined with some other data to make new
data.

data reduction

The process of extracting only the most interesting tidbits because the boss can't read fast
enough.

data structure

How your various pieces of datarelate to each other, and what shape they make when you put
them all together, asin arectangular table, or atriangular-shaped tree.

datatype

A set of possible values, together with all the operations that know how to deal with those
values. For example, a numeric data type has a certain set of numbers that you can work with,
and it has various mathematical operations you can do on the numbers that would make little
sense on, say, astring suchas" Ki | r oy" . Strings have their own operations, such as
concatenation. Compound types made of a number of smaller pieces generally have operations
to compose and decompose them, and perhaps to rearrange them. Objects that model thingsin
the real world often have operations that correspond to real activities. For instance, if you
model an elevator, your elevator object might have an open_door () method.

DBM

Stands for "Data Base Management" routines, a set of routines that emulate an associative
array using disk files. The routines use a dynamic hashing scheme to locate any entry with only
two disk accesses. DBM files allow a Perl script to keep a persistent hash across multiple
invocations. Y ou can tie your hash variables to various DBM implementations--see Chapter 5,
Packages, Modules, and Object Classes.

declaration

An assertion you make that something exists and perhaps what it's like, without any
commitment as to how or where you'll useit. A declaration is like the part of your recipe that
says, "two cups flour, one large egg, four or five tadpoles...." See statement for its opposite.

Note that some declarations also function as statements.
decrement

To subtract one from something.
default

A valuethat is chosen for you if you don't supply avalue of your own.
defined

Having a meaning. Perl thinks that some of the things people try to do are devoid of meaning;
in particular, making use of variables that have never been given avalue, and performing

certain operations on data that isn't there. For example, if you try to read data past the end of a
file, Perl will hand you back an undefined value. See also false.

delimiter

Some character or string that sets bounds to an arbitrarily-sized textual object.

dereference
A fancy computer science term meaning "to follow areference to what it pointsto”. The "de"
part of it refersto the fact that you're taking away one level of indirection.

derived class

A classthat defines some of its methods in terms of a more generic class, called a base class.

Note that classes aren't classified exclusively into base classes or derived classes: a class can
function as both a derived class and a base class simultaneously.

destroy

To deallocate the memory of athingy.
destructor

A special method that is called when an object is thinking about destroying itself.
device

A whiz-bang hardware gizmo (like adisk or tape drive) attached to your computer that the
operating systemtries to make look like afile (or a bunch of files). Under UNIX, these fake

filestend to live in the /dev directory.
directory

A place where you find files, and perhaps other directories. Some operating systems call these
"folders’, "drawers", or "catalogs".

directory handle

A name that represents a particular instance of opening a directory to read it, until you closeit.
dump

A Perl statement that is one of the many ways to get a Perl program to produce a core dump.

Most of the others are undocumented.
dynamic scoping

Making variables visible throughout the rest of the block in which they are first used, aswell as

within any subroutines that are called by the rest of the block. Dynamically scoped variables
can have their values temporarily changed (and implicitly restored later) by alocal statement.

Compare Lexical Scoping. Used more loosely to mean how a subroutine that isin the middle of
calling another subroutine "contains' that subroutine at run-time.

eclectic

Derived from many sources. Some would say too many.
element

A basic building block. When you're talking about an array, it's one of the items that make up
the array.

endian

See little-endian and big-endian.

environment

The collective set of environment variables your process inherits from its parent. Accessed via
%ENV.

environment variable

A mechanism by which some high-level agent such as a user can passits preferences down to
child processes, grandchild processes, greatgrandchild processes, and so on. Each environment
variable is a key/value pair, like one element of a hash.

EOF

End of File. Sometimes used metaphorically as the trailing delimiter of a here document.
errno

The error number returned by a UNIX system call when it fails. Perl refersto the error by the
name $! (or $OS_ERRORf you use the English module).

exception
A fancy term for an error. See fatal error.
exception handling

The way a program responds to an error. The exception handling mechanism in Perl isthe eval
construct.

executablefile

A filethat is specially marked to tell the operating systemthat it's OK to run thisfileasa
program. Abbreviated to "executable".

execute

To run aprogram or subroutine. (Has nothing to do with the kill command, unless you're trying

to run asignal handler.)

execute bit

The special mark that tells the operating system it can run this program. There are actually three
execute bits under UNIX, and which bit gets used depends on whether you own the file
singularly, collectively, or not at all.

exit status

See status.

exponent
The part of afloating-point number that says where to put the decimal point in the other part.
See mantissa.

export

To make symbols from your module available for import by other modules.
expression

Anything you can legally say in a spot where avalue is required. Typically composed of
literals, variables, operators, functions, and subroutine calls.

false

In Perl, any value that would look like" " or " 0" if evaluated in a string context. Since
undefined values evaluateto " " , all undefined values are false, but not all false values are
undefined.

fatal error

An error that causes termination of the process after printing a nasty message on your standard
error stream. "Fatal" errors that happen inside an eval aren't fatal to the whole program, just to
that particular eval. The nasty message then shows up in the $@ variable. Y ou can cause a fatal
error with the die operator. Thisis also known as throwing or raising an exception.

field
A single piece of numeric or string data that is part of alonger string, record, or line.
Variable-width fields are usually separated by delimiters (so use split to extract the fields),
while fixed-width fields are usually at fixed positions (so use unpack).

file
A named collection of data, usually stored on adisk in adirectory. Roughly like a document, if
you're into office metaphors. In some operating systems like UNIX, you can actually give afile
more than one name.

file descriptor

The little number the operating system uses to keep track of which opened file you're talking
about. Perl hides the file descriptor inside a standard I/O stream, and then attaches the stream to
afilehandle.

fileglob

A "wildcard" match on filenames.
file test operator

A built-in Perl operator that you use to determine whether something is true about afile, such
as whether you could open it if you tried.

filehandle

What you pick up afilewith. Or, aname (not necessarily related to the real name of afile) that
represents a particular instance of opening afile until you close it. Thusif you're going to open
and close several different filesin succession, it's possible to open each of them with the same
filehandle, so you don't have to write out separate code to process each file. It's like the game
show host calling someone " Contestant #1" so that he doesn't have to remember too many
names from day to day.

filename

The namefor afile. Thisnameislisted in adirectory, and you can use it in an open statement
to tell the operating system exactly which file you want to open.

filesystem

A set of directories and files residing on a partition of the disk. Y ou can move afile around
from directory to directory within afilesystem without actually moving the file itself, at least
under UNIX.

floating point

A method of storing numbers in scientific notation, such that the precision of the number is
independent of its magnitude (the decimal point "floats"). Perl does its numeric work with
floating-point numbers, when it can't get away with using integers.

flush

The act of emptying a buffer, often beforeit'sfull.
fork

To create achild process identical to the parent process, at least until it getsideas of its own.
formal arguments

Generic names a subroutine knows its arguments by. In many languages, formal arguments are

aways given individual names, but in Perl they are passed viaarrays. The formal argumentsto
a Perl program are $ARGV[0] , $ARGV[1] , and so on. The formal argumentsto a Perl
subroutineare$ [0] ,$ [1], and so on. You may give the arguments individual names by
assigning the valuesto alocal or my list.

format

A specification of how many spaces and digits and things to put somewhere so that whatever
you're printing comes out nice and pretty.

freely available

Means you don't have to pay money to get it, but the copyright on it may still belong to
someone else (like Larry).

freely redistributable

Means you're not in trouble if you give a bootleg copy of it to your friends (hint).
function

Mathematically, a mapping of each of a set of input values to a particular output value. In
computers, refers to a subroutine or operation that returns avalue. It may or may not have input
values (called arguments).

garbage collection

A misnamed feature of some programming languages--it should be called "expecting your
mother to pick up after you". Strictly speaking, Perl doesn't do this, but relies on areference
counting mechanism to keep thingstidy. However, when your interpreter thread exits, a kind of
garbage collector runs to make sure everything is cleaned up if you've been messy with circular
references and such.

GID

Group ID--in UNIX, the numeric group ID that the operating system uses to identify you and
members of your group.

glob

Strictly, the shell's* character, which will match a"glob" of characters when you're trying to
generate alist of filenames. Loosely, the act of using globs and similar symbols to do pattern
matching.

global

Something you can see from anywhere, usually used of variables and subroutines that are
visible everywhere in your program. In Perl, only certain special variables are truly
global--most variables (and all subroutines) are local to the current package.

group

A set of usersthat you're a member of. In some operating systems (like UNIX), you can give
certain file access permissions to other members of your group.

GV

Aninterna "glob value", meaning atypeglob. A GV isakind of SV.
hard reference

A scalar value containing the actual address of athingy, such that the thingy's reference count
accounts for it. (Some hard references are held internally, such as the implicit reference from
one of atypeglob's variable slots to its corresponding thingy.) A hard reference is different from
a symbolic reference.

has-a

A relationship between two objects that is more tenuous than an is-a relationship, and that can

be modeled by containment of one object in another (which in Perl means containment of a
reference to the contained object.) Y ou generally don't want to use inheritance to model the

has-a relationship because methods that make sense on the contained object probably don't
make sense on the object as awhole. Just because your car has-a brake pedal doesn't mean you
should stomp on your car.

hash

A named list of key/value pairs, arranged such that you can easily use any key to find its

associated value; abinary relation, to database users. This glossary islike a hash, where the
word to be defined is the key, and the definition is the value. A hash is also sometimes called an
"associative array". (Which is agood reason for calling it a hash instead.)

hash table

A method used internally by Perl for implementing associative arrays (hashes) efficiently.
header file

A file containing certain required definitions that you must include "ahead" of the rest of your
program to do certain obscure operations. A C header file has a .h extension. A Perl header file
has a .ph extension. See the require operator in Chapter 3, Functions. (Header files have been

superseded by the module mechanism.)

here document

So called because of asimilar construct in shells which pretends that the lines "right here"
following the command are a separate file to be fed to the command, up to some trailing

delimiter string. In Perl, however, it'sjust a fancy form of quoting.

hexadecimal
A number in base sixteen, "hex" for short. The digits for ten through sixteen are customarily
represented by the letters a through f . Hexadecimal constants in Per| start with Ox.

home directory
The directory you are placed into when you log in. On aUNIX system, the name is often placed
into $ENV{ HOVE} or SENV{ LOGDI R} by thelogin program, but you can also find it with
(get pwui d($<))[7] .

host

The computer on which a program or other data resides.
hubris
Excessive pride, the sort of thing Zeus zaps you for. Also the quality that makes you write (and

maintain) programs that other people won't want to say bad things about. Hence, the third great
virtue of a programmer. See also laziness and impatience.

HV

Short for "hash value," which refers to one of Perl'sinternal datatypes. An AV isakind of SV.
identifier
A legally formed name for most anything in which a computer program might be interested.

Many languages (including Perl) allow identifiers that start with aletter and contain letters and
digits. Perl also counts the underscore character asavalid letter.

impatience

The anger you feel when the computer is being lazy. This makes you write programs that don't
just react to your needs, but actually anticipate them. Or at least that pretend to. Hence, the

second great virtue of a programmer. See aso |laziness and hubris.

import
Gain access to symbols that are exported from another module. See the use operator in Chapter
3, Functions.

Increment

To add one to something.

indexing
Formerly, the act of looking up a key in an index (like the phone book), but now merely the act
of using any kind of key or position to find the corresponding value, even if no index is
involved. Things have degenerated to the point that Perl's index function merely locates the
position (index) of one string in another.

indirect object

In English grammar, a short noun phrase between a verb and its direct object indicating the
beneficiary or recipient of the action. In Perl, pri nt STDOUT "~ $f oo\ n ; canbe
understood asver b i ndirect-object object where STDOUT isthe recipient of the
pri nt action, and" $f 00" isthe object being printed. Similarly, when invoking a class
method, you might say:

% per |
sub Bob::give { shift; print
"Thanks for the @!\n"; }
gi ve Bob nenories
"D
Thanks for the nenories!
indirection
When Randal says, "I don't know the answer... go ask Larry." Similarly, if somethingin a
program isn't the answer, but indicates where the answer is, that's indirection. This can be done
with symbolic or hard references.

inheritance
What you get from your ancestors, genetically or otherwise. If you happen to be a class, your

ancestors are called base classes and your descendants are called derived classes. See single
inheritance and multiple inheritance.

integer
Number with no fractional part; whole number.
interpolation

The insertion of one piece of text somewhere in the middle of another piece of text. The
inserted piece may derive from avariable or other indirect source.

interpreter
Strictly speaking, a program that reads a second program and does what the second program

says directly without turning the program into a different form first, which is what compilers
do. Perl isnot an interpreter by this definition, because it contains a kind of compiler that takes
aprogram and turns it into a more executable form (syntax trees) within the Perl processitself,
which the Perl run-time system then interprets.

invocation

The act of calling up a program, subroutine, or function to do what it's supposed to do.
IPC

Short for Inter-Process Communication. Sometimes a process just needs to talk to some other
process.

Is-a
A relationship between two objects in which one object is considered to be a more specific
version of the other generic object: "A camel isamammal." Since the generic object really only

existsin a platonic sense, we usually add alittle abstraction to the notion of objects and think of
the relationship as being between a generic base class and a specific derived class. Oddly

enough, platonic classes don't always have platonic relationships--see inheritance.

iteration

Doing something again and again and again and again and again and.... Usually thisis done
until you're loopy, which iswhy they call them loops.[3]

[3] Wed put in the usual joke referring you back to Iteration, but that trick has

been iterated too often already, and is no longer funny. Look for the joke under
Loop instead. Also look for asimilar joke under Recursion, which is still funny at

some level or other.
iterator

A special programming gizmo that keeps track for you of where you are in something that
you'retrying to iterate over. The foreach loop in Perl contains an iterator.

key
A specia kind of data, such asyour Socia Security number, that can be used to locate other
data. The other data may be considered the val ue associated with the key.

keyword

See reserved word.
label

A kind of key you can give to a statement so that you can talk about that statement elsewhere in
the program.
|aziness

The quality that makes you go to great effort to reduce overall energy expenditure. It makes you
write labor-saving programs that other people will find useful, and document what you wrote so
you don't have to answer so many questions about it. Hence, the first great virtue of a
programmer. Also hence, this book. See also impatience and hubris.

|eft shift

A bit shift that multiplies the number by some power of two.
lexical scoping

Looking at your Oxford English Dictionary through a microscope. (Also known as static

scoping, because dictionaries don't change very fast.) Similarly, looking at variables that are
stored in a private dictionary for each subroutine, which are visible only from their point of
declaration down to the end of the block in which they are declared. --Syn. static scoping.

--Ant. dynamic scoping. [< GK]
library

A collection of procedures. In ancient days, referred to a collection of subroutinesin a.pl file.
In modern times, refers often to the entire collection of Perl modules on your system.

line
In UNIX, a sequence of zero or more non-newline characters terminated with a newline

character. On non-UNIX machines, thisis emulated even if the underlying operating system has
different ideas.

line buffering

Used by a standard I/O output stream that flushes its buffer after every newline. Many standard
I/O libraries automatically set this up on output that is going to the terminal.

line number

The number of linesread prior to this one, plus 1. Perl keeps a separate line number for each
script or input file it opens. The current script line number isrepresented by = LI NE_
The current input line number (for the file that was most recently read from via<>) is
represented by the $. variable. Many error messages report both values, if available.

link

In UNIX, anamein adirectory, representing afile. A given file can have multiple linksto it.
It's like having the same phone number listed in the phone directory under different names.

list
An ordered set of values.

LIST
A syntactic construct representing a commarseparated list of expressions, evaluated to produce
alist value. Each expressioninall ST isevaluated in alist context.

list context
The situation in which an expression is expected by its surroundings (the code calling it) to
return alist of values rather than a single value. Functions that want aLl ST of arguments tell
those arguments that they should produce alist value. See also context.

list operator

Generally, an operator that does something with alist of values. Specifically, those operators
(such as print, unlink, and system) that do not require parentheses around their argument list.

list value

An unnamed list of scalar values that may be passed around within a program and passed to any
function that provides a list context.

litera

Often means "figurative", asin "I'm literally scared to death." More literally, asymbol in a
programming language like a number or string that gives you an actual value instead of merely

representing possible values like a variable.
little-endian

From Swift: someone who eats boiled eggs little end first. Also used of computers that store the
least significant byte of aword at alower byte address than the most significant byte. Often

considered superior to big-endian machines. See also big-endian.
local

Not meaning the same thing everywhere. A variable in Perl can be localized inside ablock or a

package. See scope.
logical operator

Symbols representing the concepts "and", "or", and "not".
loop

A construct that performs something repeatedly, like aroller coaster. (Go to the next entry if
you're tired of riding this one.) See loop.

loop control statement

Any statement within the body of aloop that can make aloop stop looping or skip an iteration.

See the middle sentence of the previous entry. Generally you shouldn't try this on roller coasters
without a parachute.

loop |abel
A kind of key or name attached to aloop so that loop control statements can talk about which
loop they want to control.

lvalue

Term used by language-lawyers for alocation you can assign a new value to, such asavariable
or an element of an array. The"I" is short for "left”, asin the left side of an assignment, a
typical place for lvalues.

magical increment

An increment operator that knows how to add 1 to alphanumeric strings as well as to numbers.
magical variables

Specia variables that have side effects when you access them or assign to them. For example,
in Perl, changing elements of the % ENV array also changes the corresponding environment
variables that subprocesses will use. Reading the $! variable gives you the current UNIX error
number or message.

manpage

A "page" from the UNIX manuals, typically accessed online viathe man (1) command. A
manpage contains a synopsis, a description, alist of bugs, and so on, and is typically longer
than a page. There are manpages documenting commands, system calls, library functions,
devices, protocols, files, and such.

mantissa

The part of afloating-point number that gives the digits of the number without saying where the
decimal point really belongs. See exponent.

matching
See pattern matching.

metacharacter

A character that is not supposed to be treated normally. Which characters are to be treated
specially as metacharacters varies greatly from context to context. Y our shell will have certain

metacharacters, double-quoted Perl strings have other metacharacters, and patterns have all the
double-quote metacharacters plus some extra ones. In addition, people sometimes use this term
to describe characters that have the eighth bit set.

method

A kind of action that an object can takeif you direct it to.

minimalism
The belief that "small is beautiful." Paradoxically, if you say something in asmall language, it
turns out big, and if you say it in abig language, it turns out small. Go figure.

mode
In the context of the stat (2) system call, refers to the word holding the permissions and the type
of thefile.

modifier
A conditional or |oop that you put after the statement instead of before, if you know what |
mean.

module

A file that defines a package of (almost) the same name, which can either export symbols or
function as an object class. The unit of reusability in Perl. See the use operator.

modulus

A divisor, when you're interested in the remainder instead of the quotient.
multi-dimensional array

An array with multiple subscripts for finding a single element. Perl does them with
references--see Chapter 4, References and Nested Data Structures.

multiple inheritance

The features you got from your mother and father, mixed together unpredictably. (See aso
inheritance, and single inheritance.) In computer languages (including Perl), the notion that a

given class may have multiple direct ancestors or base classes.

namespace

A domain of names. Y ou needn't worry whether the names in one such domain have been used
In another. See package.

network address

The most important attribute of a socket, like your telephone's telephone number.
newline

A single character that represents the end of aline, with the ASCII value of 012 octal under
UNIX (but 015 on aMac), and represented by \ n in Perl strings. For certain physical devices
like terminals, this gets trandated to aline feed and a carriage return.

null character

A character with the ASCII value of zero. It'sused by C and some UNIX system callsto
terminate strings, but Perl allows strings to contain a null.

null list
A list value with zero elements, represented in Perl by () .
null string

A string not containing any characters, not to be confused with a string containing a null
character, which has a positive length.

numeric context

The situation in which an expression is expected by its surroundings (the code calling it) to
return a number. See also context and string context.

nybble

Half a byte, equivalent to one hexadecimal digit.
object
Something that "knows" what kind of thing it is, and what it can do because of what kind of

thing it is. Your program can request an object to do things, but the object getsto decide
whether it wants to do it or not.

octal
A number in base eight. Only the digits zero through seven are allowed. Octal constantsin Perl
start with zero, asin 013.

offset
How many things you have to skip over when moving from the beginning of a string or array to

a specific position within it. Thus, the minimum offset is zero, not one, because you don't skip
anything to get to the first item.

operand

Y ou, after you dial the operator on your phone. Or, an expression that gives a value that an
operator operates on. See also precedence.

operating system

A special program that runs on the bare machine and hides the gory details of managing
processes and devices. It isusually used in alooser sense to indicate a particular culture of
programming. The loose sense can be used at varying levels of specificity. At one extreme, you
might say that all versions of UNIX and UNIX-lookalikes are the same operating system
(upsetting many people, especially some lawyers). At the other extreme, this particular version
of this particular vendor's operating system is different than any other version of this or any
other vendor's operating system. Perl is much more portable across operating systems than
many other languages. See also architecture.

operator

A function, generally one that is built into alanguage, often with a special syntax or symbol. A
given operator may have specific expectations about what types of datayou give asits
arguments (operands) and what type of data you want back from it.

operator overloading

A kind of overloading that you can do on the built-in operators to make them work

(syntactically) on objects as if they were ordinary scalar values, but with the actual semantics
supplied by the object class. Thisis set up with the overload pragma--see Chapter 7, The

Sandard Perl Library.
options

See switches.
overloading

Giving additional meanings to a symbol or construct. Actually, all languages do overloading to
one extent or another, since people are good at figuring out things from context. If you look in

your dictionary, you will find that the meaning of the word "single" is not single.
overriding

Hiding or invalidating some other definition of the same name. (Not to be confused with
overloading, which only adds definitions.) To confuse the issue further, we use the word with

two overloaded definitions: to describe how you can define your own subroutine that hides a
built-in function of the same name, and also to describe how you can define a replacement
method in aderived class that hides a base class 's method of the same name. Y ou'll find both
of these usagesin Chapter 5, Packages, Modules, and Object Classes.

owner

The one user (apart from the superuser) who has absolute control over afile. A file may also
have a group of usersthat may exercise joint ownership if the real owner permits them. See
permission flags.

package

A guantity of code that valuesits privacy, and tries to keep other code from trespassing upon its
namespace by fencing all of its private belongings (variables and subroutines) into its own

area. A variable or subroutine mentioned in the package belongs only to that package, even if
there's another variable or subroutine with an identical name in some other package.

package local

A variable or subroutine belonging to a package and not visible to anyone else. At least, not
without peeking. See namespace.

parameter

See argument.
parsing
The subtle but sometimes brutal art of attempting to turn your possibly malformed program into

avalid syntax tree.
PATH

Thelist of directories the system looks in to find a program you want to execute. Thelistis
stored as one of your environment variables, accessible in Perl as $SENV{ PATH} .

pathname
A fully qualified filename such as /usr/bin/perl or C:\my_apps\perl.exe. Sometimes confused
with PATH.

pattern matching

Taking a pattern, expressed as aregular expression, and trying the pattern various ways on a
string to seeif there's any way to make it fit. Often used to pick interesting tidbits out of afile.

permission flags

Bits that the owner of afile sets or unsetsin order to allow or disallow access to other people.
These flags are part of the mode word returned by the stat operator when you ask about afile.
On UNIX systems you can check the Is (1) manpage for more information about the permission
flags.

Pern

What you get when you do Perl++ twice. Increment it only once, and your hair curls. Increment
it three times, and you get atasty beverage that isn't Java. See also dlice.

pipe
A direct connection that carries the output of one process to the input of another without the

necessity of an intermediate temporary file. Once the pipeis set up, the two processesin
question can mostly read and write as if they were talking to anormal file.

pipeline
A series of processes all in arow, linked by pipes, where each passes its output to the next.
pointer

A variable in alanguage like C that contains the exact memory location of some other item.

Perl handles pointersinternally so you don't have to worry about them. Instead, you just use
symbolic pointersin the form of keys and variable names, or hard references, which aren't

pointers (but act like pointers, and do in fact contain pointers).
port

The part of the address of a TCP or UDP socket that directs packets to the correct process after
finding the right machine, something like the phone extension number you give when you reach

the company operator.
pragma
A library module whose practical hints and suggestions are received (and possibly ignored) by
the compiler. [< Gr]
precedence
The rules of conduct that, in the absence of other guidance, determine what should happen first
(i.e., in the absence of parentheses, you always do multiplication before addition).
preprocessing
What some other helper process did to transform the incoming data into aform more suitable
for the current process. Often done with an incoming pipe. See also C preprocessor.

procedure

A subroutine.
process

An instance of arunning program. Under multi-tasking systems like UNIX, two or more
separate processes could be running the same program independently at the same time--in fact,
the fork function is designed to bring about this happy state of affairs. Under other operating

systems processes are sometimes called "tasks' or "jobs".

protocol
In networking, an agreed-upon way of sending messages back and forth so that neither
correspondent will get too confused.

pseudo literal

An operator that looks something like aliteral, such as the output-grabbing operator,
“command” .

pseudo terminal

A thing that looks like an ordinary terminal to the computer, but instead of being attached to a
real terminal, isreally attached to another computer program, which is doing the pseudotyping.

public domain

Something not owned by anybody. Perl is copyrighted, and is thus not in the public domain--it's
just freely available and freely redistributable.

P\/
A "pointer value", which is Perl Internals Talk for achar *.

qualified
Possessing an explicit package name. The symbol $ex: : | oser isqudified; $I oser is
ungualified.

readable

With regard to files, one that has the proper permission bit set to let you access the file. With
regard to computer programs, one that's well enough written that someone can come back later

and have a chance of figuring out what it's trying to do. Who knows, you might even have to
come back and figure out your own program.

record

A set of related datavaluesin afile or stream, often associated with aunique key field. In
UNIX, often commensurate with aline, or a blank-line-delimited set of lines (a"paragraph").

Each line of the /etc/passwd fileis arecord, keyed on login name, containing information about
that user.

recursion

The art of defining something (at least partly) in terms of itself by means of recursion, whichis
a naughty no-no in dictionaries.

reference

A place you look to find a pointer to information stored somewhere else. (See indirection.)
References come in two flavors, symbolic references, and hard references.
regular expression

A single entity with various interpretations, like an elephant. To a computer scientist, it'sa
grammar for alittle language in which some strings are legal and others aren't. To normal
people, it's a pattern that you can use to find what you're looking for when it varies from case to
case. Example of aregular expression:

[Ch s.*t./

This pattern will match stringslike” Gh say can you see by the dawn's early
light, and Ch sit! . Seethesection"Regular Expressions' in Chapter 2, The Gory
Details.

regular file

A file that's not adirectory, a device, a named pipe or socket, or a symbolic link. Perl usesthe
- f filetest operator to identify regular files.

relation

Jargon used by relational database folks to mean afile--albeit a particular sort of file, tabular in

form, in which all the tuples (records) are of the same kind, each containing the same domains
(keys) and ranges (fields). The UNIX /etc/passwd fileis arelation keyed on login name. It's
called arelation because it relates keys and fields in much the same way as an hash associates
keys and values.

relational operator

An operator that says whether a particular ordering relationship is true about a pair of operands.
Perl has both numeric and string relational operators. See collating sequence.

reserved words

A word with a specific, built-in meaning to a compiler, such asif or delete. In many languages
(not Perl) it'sillegal to use reserved words to name anything else. (Which iswhy they're
reserved, after al.) In Perl, you just can't use them to name labels or filehandles. Also called

"keywords".
return value

The value produced by a subroutine or expression when evaluated. In Perl, areturn value may
be either alist or ascalar value. The subroutine call pi gl ati n(' bi ngo') returnsthe value
"I ngobay".

right shift

A bit shift that divides a number by some power of two.
run-time

The time when Perl is actually doing what your script says to do, as opposed to the earlier
period of time when it was trying to figure out whether what you said made any sense
whatsoever. See also compile-time.

run-time pattern

A pattern that contains one or more variables to be interpolated before parsing the pattern as a
regular expression, and that therefore cannot be analyzed at compile time, but must be

re-analyzed each time the pattern match operator is evaluated. Run-time patterns are useful but
expensive.

rvalue

A value that you might find on the right side of an assignment. See also lvalue.
scalar

A simple value, such as a number or string.
scalar context

The situation in which an expression is expected by its surroundings (the code calling it) to
return asingle value rather than alist of values. See also context and list context. A scalar
context sometimes imposes additional constraints on the return value--see string context and
numeric context. Sometimes we talk about a Boolean context inside conditionals, but this
Imposes no additional constraints, since any scalar value, whether numeric or string, is already
true or false.

scaar literal

A number or quoted string--an actual value in the text of your program, as opposed to a
variable.

scalar value

A value that happens to be a scalar as opposed to alist.
scalar variable

A variable prefixed with $ that holds a single value.
scope

How far away you can see a variable from, looking through one. Perl has two visibility
mechanisms: it does dynamic scoping of local variables, meaning that the rest of the block, and

any subroutines that are called by the rest of the block, can see the variables that are local to the
block. Perl does lexical scoping of my variables, meaning that the rest of the block can seethe

variable, but other subroutines called by the block cannot see the variable.
script

A text file that is a program intended to be executed directly rather than compiled to another
form of file before execution.

sed

A venerable stream editor from which Perl derives some of its ideas.
server

In networking, a process that either advertises a service or just hangs around at a known
location and waits for clients who need service to get in touch with it,

service

Something you do for someone else to make them happy, like giving them the time of day (or
of their life). On some UNIX machines, well-known services are listed by the getservent

function.
setgid

Same as setuid, only having to do with giving away group privileges.
setuid

Said of a program that runs with the privileges of its owner rather than (asis usually the case)

the privileges of whoever isrunning it. Also describes the bit in the mode word (permission
flags) that implements the feature. This bit must be explicitly set by the owner to implement
this feature, and the program must be written not to give away more privileges than it ought.

shell

A command-line interpreter. The program that interactively gives you a prompt, accepts one or

more lines of input, and executes the programs you mentioned, feeding each of them their
proper arguments and input data. Shells can also execute scripts containing such commands.
Under the UNIX operating system, typical shells are the Bourne shell (/bin/sh), the C shell

(/bin/csh), and the Korn shell (/bin/ksh). Perl is not strictly a shell because it's not interactive
(although Perl programs can be interactive).

side effects

Something extra that happens when you eval uate an expression. Nowadays it can refer to
amost anything. For example, evaluating a simple assignment statement typically hasthe "side
effect" of assigning avalueto avariable. (And you thought assigning the value was your
primary intent in the first place!) Likewise, assigning a value to the special variable $| hasthe
side effect of forcing aflush after every write or print on the currently selected filehandle.

signal handler

A subroutine that, instead of being content to be called in the normal fashion, sits around
waiting for a bolt out of the blue before it will deign to execute. Under UNIX, bolts out of the
blue are called signals, and you send them with akill command.

single inheritance

The features you got from your mother, if she told you you don't have afather. (See al'so
inheritance, and multiple inheritance.) In computer languages, the notion that classes reproduce

asexually, so that a given class can only have one direct ancestor or base class. Perl enforces no
such restriction.

dice

A selection of array elements.
socket

An endpoint for network communication between two processes, that works much like a
telephone. The most important thing about a socket is its network address (like a phone

number). Different kinds of sockets have different kinds of addresses--some ook like
filenames, and some don't.

soft reference

See symbolic reference.

standard error

The default output stream for making nasty remarks that don't belong in standard output.
Represented within a Perl program by the filehandle STDERR. Y ou can use this stream
explicitly, but the operators die and warn write to your standard error stream automatically.

standard 1/O

A standard C library for doing buffered input and output to the operating system. (The
"standard" of standard I/O is only marginally related to the "standard" of standard input and
output.) In general, Perl relies on whatever implementation of standard 1/0 a given operating
system supplies, so the buffering characteristics of a Perl program on one machine may not
exactly match those on another machine. Normally this only influences efficiency, not
semantics. If your standard 1/O package is doing block buffering and you want it to flush the

buffer more often, just set the $| variable to a nonzero value.
standard input

The default input stream for your program, which if possible shouldn't care whereitsdatais
coming from. Represented within a Perl program by the filehandle STDI N.

standard output
The default output stream for your program, which if possible shouldn't care where its datais
going. Represented within a Perl program by the filehandle STDOUT.

stat structure

A specia internal buffer in which Perl keeps the information about the last file you requested
information on.

statement

A command to the computer about what to do next, like astep in arecipe: "Add marmalade to
batter and mix until mixed." Not to be confused with a declaration, which doesn't tell the

computer to do anything, but just to learn something.

static
Varying slowly, compared to something else. (Unfortunately, everything isrelatively stable
compared to something else, except for certain elementary particles, and we're not so sure about

them.) In computers, where things are supposed to vary rapidly, "static" has a derogatory
connotation, indicating a slightly dysfunctional variable, subroutine, or method. In Perl culture,

the word is considered to be politically incorrect.
static method

See class method.
static scoping

Same as lexical scoping.
status

The value returned to the parent process when one of its child processes dies. Thisvalueis

placed in the specia variable $?. Its upper eight bits are the exit status of the defunct process,
and itslower eight bitsidentify the signal (if any) that the process died from. On UNIX
systems, this status value is the same as the status word returned by wait (2). See system in

Chapter 3, Functions.
STDERR

See standard error.
STDIN

See standard inpuit.
STDIO

See standard 1/0.
STDOUT

See standard output.
string

A sequence of characters such as"He said ! @#* & % @#* ?\n." A string does not have to be
entirely printable.

string context

The situation in which an expression is expected by its surroundings (the code calling it) to
return a string. See also context and numeric context.

struct

C keyword introducing a structure definition or name.
structure

See data structure.
subclass

See derived class.
subroutine

A named piece of program that can be invoked from elsewhere in the program in order to
accomplish some sub-goal of the program. A subroutine is often parameterized to accomplish
different but related things depending on its input arguments. If the subroutine returns a
meaningful value, it is aso called afunction.

subscript

A value that indicates the position of a particular array element in an array.
substring

A portion of astring, starting at a certain character position (offset), and proceeding for a
certain number of characters.

superclass

See base class.
superuser

The person whom the operating system will let do amost anything. Typically your system
administrator or someone pretending to be your system administrator. On UNIX systems, the

root user.

SV
Short for "scalar value". But within the Perl interpreter every thingy is treated as a kind of SV,
In an object-oriented sort of way. Every value inside Perl is passed around as an SV* pointer in
C. The SV struct knows its own "thingy type", and the code is smart enough (we hope) not to
try to call a hash function on a subroutine.

switch

An option you give on acommand line to influence the way your program works. In UNIX,
these are usually introduced with aminus sign. Theword is also used as a nickname for a
switch statement.

switch clustering

The combining of multiple command line switches -a -b -c into one switch -abc. In Perl, any
switch with an additional argument must be the last switch in acluster.

switch statement

A program construct that lets you evaluate an expression and, based on the expression's value,
do amulti-way branch to the appropriate piece of code for that value. Also called a"case
structure”, after the ssimilar Pascal construct.

symbol table

Where a compiler remembers symbols. A program like Perl must somehow remember all the

names of all the variables, filehandles, and subroutines you've used. It does this by placing the
names in a symbol table, which isimplemented in Perl using a hash table. There is a separate

symbol table for each package, to give each package its own namespace.

symbolic debugger

A program that lets you step through the execution of your program, stopping or printing things
out here and there to see if anything has gone wrong, and if so, what. The "symbolic" part just
means that you can talk to the debugger using the same symbols in which your program is
written.

symbolic link

An dternate filename that pointsto the real filename. Whenever the operating systemistrying
to parse a pathname containing a symbolic link, it merely substitutes the real name and
continues parsing.

symbolic reference

A variable whose value is the name of another variable or subroutine. By dereferencing the first
variable, you can get at the second one.

syntax

From Greek, "with-arrangement”. How things (particularly symbols) are put together with each
other.

syntax tree

Aninterna representation of your program wherein lower-level constructs dangle off the
higher-level constructs enclosing them.

system call

A subroutine call directly to the operating system. Many of the important subroutines and
functions you use aren't direct system calls, but are built up in one or more layers above the
system call level. In general, Perl users don't need to worry about the distinction.

tainted

Said of data that might be derived from the grubby hands of a user, and thus unsafe for a secure
program to rely on. Perl does taint checksif you run a setuid program or use the -T switch.

TCP
Short for Transmission Control Protocol. A protocol wrapped around the Internet Protocol to

make an unreliable packet transmission mechanism appear to the application program to be a
reliable stream of bytes. (Well, usually.)

text
Normally, astring or file containing primarily printable characters. The word has been usurped
in some UNIX circles to mean the portion of your process that contains machine code to be
executed.

thingy

Something sort of like an object, that you may or may not know the name of, but that you can
refer to with circumlocutions like "that hangy-down thingy that dangles in the back of your
throat". Similarly in Perl, avalue that is sort of like an object, that you may or may not know
the name of, but that you can refer to via references from which the thingy dangles,
metaphorically speaking. Specifically, the sort of value that your reference points to when you

create areference to a variable. See anonymous, hard reference, and object, not necessarily in
that order.

thread

An instance of running a program, but lighter weight than a process, in that a process could
have multiple threads running around in it, all sharing the same process's resources. (If you're a
dragonrider, see Pern.)

tie
The bond between a magical variable and its implementation class. See the tie function in
Chapters 3 and 5.

tokenizing

Splitting up a program text into its separate words and symbols, each of which is called a token.
Also known as"lexing", in which case you get "lexemes" instead of tokens.

toolbox approach
The notion that, with a complete set of simple tools that work well together, you can build
almost anything you want. Which isfine if you're assembling atricycle, but if you're building a

defranishizing comboflux, you really want your own machine shop to build special toolsin.
Perl is sort of a machine shop.

true

Seefalse. (And hold it up to amirror for the secret message.)
tuple

In the lingo of relational databases, arecord or line containing fields. See relation.

type

See data type.
type casting

Converting data explicitly from one type to another. C permits this. Perl does not need it.
typeglob

Used of asingle identifier, prefaced with * (for example, * nane), to stand for any or all of
$nane, @ane, Y%mane, &ane, or just name. How you use it determines whether it is
interpreted as al of those, or only one of them. See "Typeglobs and Filehandles' in Chapter 2,

The Gory Details.

uiD

A User ID. Often used in the context of file ownership.
unary operator

An operator with only one operand, like! or chdir. Unary operators are usually prefix
operators, that is, they precede their operand. The ++ and - - operators can be either prefix or
postfix. (Of course, that does change their meaning.)

undefined

Nobody has ever given this a reasonable definition. See aso defined.
UNIX

A very large and constantly evolving language with severa aternate and largely incompatible
syntaxes, in which anyone can define anything any way they choose, and usually do. Speakers
of thislanguage think it's easy to learn because it's so easily twisted to one's own ends, but
dialectical differences make tribal intercommunication nearly impossible, and travelers are
often reduced to a pidgin-like subset of the language. To be universally understood, a UNIX
shell programmer must spend years of study in the art. Many have abandoned this discipline
and now communicate via an Esperanto-like language called Perl. In ancient times UNIX was
also used to refer to some code that a couple of people at Bell Labs wrote to make use of a
PDP-7 computer that wasn't doing much of anything else at the time.

unqualified

See qualified.
value
Thisis hard to define. It's something like real data--the actual numbers and strings that wander

around in your program. But we don't really need to defineit. If you didn't know avalue when
you see it, you wouldn't have this book. : -)

variable

A named storage location that can hold any of various values, as your program sees fit.
variable interpolation

See interpolation.

vector

Mathematical jargon for alist of scalar values.
warning

A message printed to the STDERR stream to the effect that something might be wrong but it
isn't worth blowing up over. See the warn operator in Chapter 3, Functions.

whitespace

A character that moves your cursor around but doesn't otherwise put anything on your screen.

Typically refersto any of the following: space, tab, line feed, carriage return, form feed, or
vertical tab.

word

In normal "computerese”, the piece of data of the size most efficiently dealt with by your
computer, typically 32 bitsor so, give or take afew powers of two. In UNIX culture, it more
often refers to an aphanumeric identifier, or to a string of non-whitespace characters bounded
by whitespace or line boundaries.

working directory

Y our current directory, from which relative pathnames are interpreted by the operating system.
The operating system knows your current directory because you told it with achdir, or because
you started out in the same place where your parent process was when you were born.

wrapper

A program that runs some other program for you, modifying some of itsinput or output to
better suit your purposes. More generally, just about anything that wraps things up. And that
just about wraps things up, except for the excess.

XS

An extraordinarily exported, expeditiously excellent, expressly eXternal Subroutine, executed
in existing C or C++, or in an exciting new extension language called (exasperatingly) XS.
Examine Chapter 6, Social Engineering, for the exact explanation. Exeunt.

41 PREVIOUS HOME
Diagnostic Messages BOOK INDEX

HTML | <Gl PROGRAMMING | JAVASCRIPT | PROGRAMMING PERL | 'WEBMASTER IN A NUTSHELL

file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/webnut/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/jscript/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/cgi/index.htm
file:///C|/My Intranet/online-books_ora_mod-bin_books/online-books.ora.com/mod-bin/books.mod/webref/html/index.htm

Index

Symbols and Numbers

-0 switch, perl : Switches
& (ampersand) : Named Unary and File Test Operators

address-of operator (in C) : C Operators Missing from Per|

bitwise AND operator : Bitwise Operators

in filenames : open
prototype character : Prototypes

for subroutine names
Variables

Subroutines
& & (AND) operator : C-style Logical (Short Circuit) Operators
& & = (assignment) operator : Assignment Operators

&= (assignment) operator : Assignment Operators
* (asterisk) : Named Unary and File Test Operators
dereference operator (in C) : C Operators Missing from Per|

multiplicative operator : Multiplicative Operators

prototype character : Prototypes
quantifier
Quantifiers

The rules of regular expression matching

for typeglob names
Typeglobs and Filehandles

Passing Symbol Table Entries (Typeglobs)

** (exponentiation) operator : Exponentiation

** = (assignment) operator : Assignment Operators

*= (assignment) operator : Assignment Operators

@ (at sign) : Previous Perl Traps

for array names : Variables
in debugger : Using the Debugger

in picture lines : Formats

prototype character : Prototypes

@_array

Subroutines

English--Use English or awk Names for Punctuation Variables

Debugger Bugs

\ (backslash)
to escape metacharacters : The regular expression bestiary

for multiline commands : Using the Debugger

guotemeta function for : quotemeta
reference operator

| deographic Unary Operators

The Backslash Operator

" (backtick) : Anonymous pipes

emulating : Cleaning up your path

operator
Command input (backtick) operator

Shell Traps

Programming with Style

I (bang)

for argument specifiers : Getopt::L ong--Extended Processing of Command-Line Options

debugger command : Debugger Commands
inimport list : Specialized import lists

logical negation operator : |deographic Unary Operators

I debugger command : Debugger Commands
I= (not equal to) operator
Equality Operators

Universal Blunders

I~ (binding) operator : Binding Operators
{ } (braces)
Braces, Brackets, and Quoting

Universal Blunders

Programming with Style

inawk : Awk Traps

for statement blocks : Compound Statements
hash composer : The Anonymous Hash Composer

identifiersin : String literals

quantifier
Quantifiers
The rules of regular expression matching

[] (brackets)
array composer : The Anonymous Array Composer

to match characters : The rules of regular expression matching
" (caret)

assertion : Quantifiers

bitwise XOR operator

Bitwise Operators

AwkK Traps

line boundary
Nailing Things Down

The rules of regular expression matching

Thefine print

matching : The rules of regular expression matching

in picture lines : Formats

A= (assignment) operator : Assignment Operators
: (colon)

inimport list : Specialized import lists

.- for package identifiers
Packages
Previous Perl Traps

, (comma) : Universal Blunders

delimiting list values : List Values and Arrays

key/value pairs and : Hashes (Associative Arrays)

large numbers and : Numeric literals

operator
Comma Operators

AwkK Traps
$ (dollar sign)
for backreferences (see backreferences)

in debugger : Using the Debugger

line boundary
The rules of regular expression matching

Thefine print

prototype character : Prototypes

for scalar variable names : Variables
word boundary : Nailing Things Down
$# prefix : List Values and Arrays

$ variables
$0 ($PROGRAM_NAME)
Global Special Variables

English--Use English or awk Names for Punctuation V ariables
$1, $2, $3... (see backreferences)

$& (SMATCH)
Thefine print

Reqular Expression Specia Variables
azp
English--Use English or awk Names for Punctuation Variables

Time Efficiency

$ (SPOSTMATCH)
Thefine print

Regular Expression Special Variables

azp

English--Use English or awk Names for Punctuation Variables

Time Efficiency

$* (SMULTILINE_MATCHING) : Regular Expression Special Variables

$@ ($EVAL_ERROR)
Global Special Variables

English--Use English or awk Names for Punctuation V ariables

$\ (JOUTPUT_RECORD_SEPARATOR)
Global Special Variables

Switches
English--Use English or awk Names for Punctuation Variables

$ ($PREMATCH)
Thefine print

Reqular Expression Specia Variables
azp
English--Use English or awk Names for Punctuation Variables

Time Efficiency

$ ($0S_ERROR)

Global Specia Variables

English--Use English or awk Names for Punctuation Variables
$[: Global Special Variables

$] ($PERL_VERSION)

Global Special Variables

English--Use English or awk Names for Punctuation V ariables

$" (FORMAT_TOP_NAME)
Format Variables

Per-Filehandle Special Variables
English--Use English or awk Names for Punctuation V ariables

Universal Blunders

$A (JACCUMULATOR)
Accessing Formatting Internals

Global Specia Variables
English--Use English or awk Names for Punctuation V ariables

formline function : formline

$'D ($DEBUGGING)

Global Special Variables

Switches

English--Use English or awk Names for Punctuation Variables
$'F ($SYSTEM_FD_MAX)

Global Special Variables

English--Use English or awk Names for Punctuation Variables
$"H : Global Special Variables

$" (SINPLACE_EDIT)
Global Special Variables

English--Use English or awk Names for Punctuation V ariables

$'L (FORMAT _LINEFEED)
Format Variables

Global Specia Variables

English--Use English or awk Names for Punctuation Variables
$O ($OSNAME)

Global Special Variables

English--Use English or awk Names for Punctuation Variables
$'P ($PERLDB)

Global Special Variables

English--Use English or awk Names for Punctuation Variables
$'T ($BASETIME)

Named Unary and File Test Operators

Global Specia Variables

English--Use English or awk Names for Punctuation Variables

$'W (SWARNING)
Global Special Variables

English--Use English or awk Names for Punctuation V ariables

$'X ($EXECUTABLE_NAME)
Global Special Variables

English--Use English or awk Names for Punctuation Variables
$: (SFORMAT _LINE BREAK CHARACTERS)

Global Specia Variables

English--Use English or awk Names for Punctuation Variables

$, (BOUTPUT_FIELD SEPARATOR)

Global Special Variables

English--Use English or awk Names for Punctuation Variables
3 ($PROCESS 1D)

Global Special Variables

English--Use English or awk Names for Punctuation Variables
$. (BINPUT_LINE_NUMBER)

Global Special Variables

English--Use English or awk Names for Punctuation Variables
resetting with close function : close

$= ($FORMAT _LINES PER PAGE)
Format Variables

Per-Filehandle Special Variables
English--Use English or awk Names for Punctuation V ariables

$- (FORMAT _LINES LEFT)
Per-Filehandle Special Variables

English--Use English or awk Names for Punctuation Variables
$< ($REAL_USER 1D)

Global Special Variables

English--Use English or awk Names for Punctuation Variables
$((FREAL_GROUP_ID)

Global Special Variables
English--Use English or awk Names for Punctuation V ariables

$) (SEFFECTIVE_GROUP _ID)
Global Special Variables

English--Use English or awk Names for Punctuation Variables

$% ($FORMAT_PAGE_NUMBER)
Format Variables

Per-Filehandle Special Variables
English--Use English or awk Names for Punctuation V ariables

$+ ($LAST_PAREN_MATCH)
The fine print

Regular Expression Special Variables

English--Use English or awk Names for Punctuation Variables
$? (3CHILD_ERROR)

Global Special Variables

English--Use English or awk Names for Punctuation Variables

backtick operator and : Command input (backtick) operator

close function and : close
$" ($LIST_SEPARATOR) : English--Use English or awk Names for Punctuation Variables

$> ($EFFECTIVE_USER _ID)
Global Special Variables

English--Use English or awk Names for Punctuation V ariables

$; ($SUBSCRIPT_SEPARATOR)
Global Special Variables

English--Use English or awk Names for Punctuation Variables
$# ($OFMT) : Global Special Variables

$/ ($INPUT_RECORD_ SEPARATOR)

Global Special Variables

Switches
English--Use English or awk Names for Punctuation V ariables

$~ (SFORMAT_NAME)
Format Variables

Per-Filehandle Special Variables
English--Use English or awk Names for Punctuation Variables

$ ($ARG)
Thefine print

Global Special Variables
English--Use English or awk Names for Punctuation V ariables

angle operator and : Line input (angle) operator

forearch statement and : Foreach loops

glob function with : Filename globbing operator

grep function and : grep
map function and : map

$| (FOUTPUT_AUTOFLUSH)
Format Variables

Per-Filehandle Special Variables
English--Use English or awk Names for Punctuation Variables
. (dot) : Named Unary and File Test Operators

character wildcard
Regular Expressions

The rules of regular expression matching

Thefine print

concatenation operator
String Operators
Additive Operators
Time Efficiency

debugger command : Debugger Commands

.. (range) operator : Range Operator

.= (assignment) operator : Assignment Operators
= (equal sign)

assignment operator

Assignment Operators

Assignment Operators

copy constructor : Copy constructor

debugger command : Debugger Commands

sortas=" @equalright">=> (corresponds to) operator : Comma Operators

= = (equal to) operator
Equality Operators

Universal Blunders

=> (corresponds to) operator
with key/value pairs : Hashes (Associative Arrays)

with named parameters : Hashes (Associative Arrays)

=~ (binding) operator : Binding Operators

- (hyphen)

The rules of regular expression matching

Named Unary and File Test Operators

arithmetic negation operator : |deographic Unary Operators

debugger command : Debugger Commands

subtractive operator : Additive Operators

-*- for Emacs : Command Processing

-= (assignment) operator : Assignment Operators

- - (autodecrement) operator
Autoincrement and Autodecrement Operators

Autoincrement and Autodecrement
Switches
Overloadabl e operations

-> (arrow) operator
The Arrow Operator

Using the Arrow Operator

Object-Oriented Scaling Tips

-| piping pseudo-command : Talking to yourself
< (left angle bracket)

debugger command : Debugger Commands

for filename globbing operator : Filename globbing operator

in filenames : open
for left justification : Format Variables
less than operator : Relational Operators

for line input operator : Line input (angle) operator

<= (lessthan or equal) operator : Relational Operators

<=> (comparison) operator
Equality Operators
sort

<< for here documents
"Here" documents

Shift Operators
<<= (assignment) operator : Assignment Operators

< > construct (see angle operator)

Non-option callback routine

<FH> operator : Frequently Ignored Advice

() (parentheses)
The reqular expression bestiary

Operators
Terms and List Operators (L eftward)

Programming with Style

for backreferences : Backreferences

in functions : Functions
grouping operator : The rules of regular expression matching

for list values: List Values and Arrays

(?!) assertion : Regular expression extensions

(?1...) assertion : The rules of regular expression matching

(?) for grouping : Regular expression extensions

(?...) assertion : The rules of regular expression matching

(?=) assertion : Regular expression extensions

() modifier : Regular expression extensions

(?#) for comments : Regular expression extensions

% (percent sign) : Named Unary and File Test Operators

for checksums : unpack
for hash names : Variables
modulus operator : Multiplicative Operators

prototype character : Prototypes

%= (assignment) operator : Assignment Operators
+ (plus) : Named Unary and File Test Operators
additive operator : Additive Operators

in filenames : open
quantifier
Regular Expressions

The rules of reqgular expression matching

unary operator : Ideographic Unary Operators

+= (assignment) operator : Assignment Operators

++ (autoincrement) operator
Autoincrement and Autodecrement Operators

Autoincrement and Autodecrement

Overloadable operations
? (question mark) : Named Unary and File Test Operators

debugger command : Debugger Commands

quantifier
Quantifiers

The rules of reqgular expression matching

?. (conditional) operator : Conditional Operator

?? operator (see m?? operator)

' (single quotes) : String literals
" (double quotes)

String literals

The regular expression bestiary

in formline arguments : formline

> (right angle bracket)
debugger command : Debugger Commands

for filename globbing operator : Filename globbing operator

in filenames : open
greater than operator : Relational Operators

for line input operator : Line input (angle) operator

for right justification : Format Variables

>= (greater than or equal) operator : Relational Operators
>> (right-shift) operator : Shift Operators
>>= (assignment) operator : Assignment Operators

; (semicolon)
Simple Statements

Universal Blunders
(sharp)
for comments : Pattern Matching

in formats : Formats

#! (shebang) notation
How to Do It

Command Processing

Security bugs

/ (slash) : Named Unary and File Test Operators
debugger command : Debugger Commands

division operator : Multiplicative Operators

inimport list : Specialized import lists

root directory : chroot

/= (assignment) operator : Assignment Operators

// operator (see match operator)

~ (tilde)

bitwise negation operator : |deographic Unary Operators

complement operator : Awk Traps
to supress blank lines : Formats

_ (underscore)
Variables

Previous Perl Traps
global filehandle : Global Special Filehandles
large numbers and : Numeric literals

in variable names : Programming with Style

| (vertical bar)
for alternation : The regular expression bestiary

bitwise OR operator : Bitwise Operators
for centering : Format Variables
debugger command : Debugger Commands

in filenames : open
for option speficiers : Aliases and abbreviations
|= (assignment) operator : Assignment Operators

|- piping pseudo-command : Talking to yourself
|| (OR) operator : C-style Logical (Short Circuit) Operators
debugger command : Debugger Commands

||= (assignment) operator : Assignment Operators

Explanatory note

Copyright © 1997 O'Reilly & Associates, Inc. All Rights Reserved.

Programming

4 PREVIOUS Chapter 7 HEXT o
The Standard Perl Library

7.2 Library Modules

As mentioned earlier, the following library modules are arranged in alphabetical order, for easy reference.

AnyDBM_File--Provide Framework for Multiple DBMs

use AnyDBM Fi |l e;

Thismoduleisa"pure virtual base class'--it has nothing of its own. It's just there to inherit from the various DBM
packages. By default it inherits from NDBM _File for compatibility with earlier versions of Perl. If it doesn't find
NDBM File, it looksfor DB_File, GDBM_File, SDBM_File (which is always there--it comes with Perl), and finally
ODBM _File.

Perl's domopen function (which now exists only for backward compatibility) actually just callstieto bind a hash to
AnyDBM _File. The effect is to bind the hash to one of the specific DBM classes that AnyDBM _File inherits from.

Y ou can override the defaults and determine which class domopen will tie to. Do this by redefining @I SA:

@\nyDBM File::1SA = gmM DB File GDBM File NDBM Fil e);

Note, however, that an explicit use takes priority over the ordering of @I SA, so that:

use GDBM Fil e;
will cause the next dbmopen to tie your hash to GDBM _File.

Y ou can tie hash variables directly to the desired class yourself, without using domopen or AnyDBM _File. For
example, by using multiple DBM implementations, you can copy a database from one format to another:

use Fcntl; # for O * val ues

use NDBM Fil e;

use DB Fil e;

tie %Il dhash, "NDBM File", $old filenane, O RDWR;

tie %ewhash, "DB File", $new fil ename, O RDWR O CREAT| O EXCL, 0644;
whi l e (($key, $val) each %l dhash) {

$newhash{ $key} $val ;

}

DBM comparisons

Here's atable of the features that the different DBMish packages offer:

Feature OoDBM NDBM SDBM GDBM BSD-DB
Linkage comes with Perl Yes Yes Yes Yes Yes
Source bundled with Perl No No Yes No No

Source redistributable No No Yes GPL Yes

Often comes with UNIX Yes Yeqg1l] No No No

Builds OK on UNIX N/A N/A Yes Yes YeqZ2]
Code size Varieq 3] Varieg[3] Small Big Big
Disk usage Varieg3] Varieq 3] Small Big OK[4]
Speed Varieq 3] Varieg 3] Slow OK Fast
FTPable No No Yes Yes Yes
Easy to build N/A N/A Yes Yes OKJ[5]
Block size limits 1k 4k 1k[6] None None
Byte-order independent No No No No Yes
User-defined sort order No No No No Yes
Wildcard lookups No No No No Yes
Footnotes:

[1] On mixed-universe machines, may be in the BSD compatibility library, which is often
shunned.

[2] Providing you have an ANSI C compiler.

[3] Depends on how much your vendor has "tweaked" it.

[4] Can be trimmed if you compile for one access method.

[5] Seethe DB_Filelibrary module. Requires symbolic links.

[6] By default, but can be redefined (at the expense of compatibility with older files).

See also

Relevant library modulesinclude: DB_File, GDBM_File, NDBM_File, ODBM _File, and SDBM_File. Related
manpages. dbm (3), ndbm (3). Tied variables are discussed extensively in Chapter 5, Packages, Modules, and Object

Classes, and the dbmopen entry in Chapter 3, Functions, may also be helpful. Y ou can pick up the unbundled modules

from the src/misc/ directory on your nearest CPAN site. Here are the most popular ones, but note that their version
numbers may have changed by the time you read this:

http://ww.perl.com CPAN/ src/ msc/db.1.85.tar. gz
http://ww.perl.com CPAN src/ msc/gdbm1.7.3.tar.gz

AutoLoader--Load Functions Only on Demand

package GoodSt uff;

use Exporter;

use Aut oLoader;

@ SA = g Exporter AutolLoader);

The AutolL oader module provides a standard mechanism for delayed loading of functions stored in separate files on
disk. Each file has the same name as the function (plus a .al), and comes from a directory named after the package
(with the auto/ directory). For example, the function named GoodSt uf f : : what ever () would be loaded from the
file auto/ GoodStuff/whatever.al.

A module using the AutoL oader should have the special marker ~ END__ prior to the actual subroutine
declarations. All code before this marker is loaded and compiled when the module is used. At the marker, Perl stops
parsing thefile.

When a subroutine not yet in memory is called, the AUTOLOAD function attempts to locate it in adirectory relative to
the location of the module fileitself. As an example, assume POS X.pmislocated in /usr/local/lib/per|5/POS X.pm.
The AutoL oader will look for the corresponding subroutines for this package in /usr/ local/lib/per|5/auto/POS X/* .al.

http://www.perl.com/CPAN/src/misc/db.1.85.tar.gz
http://www.perl.com/CPAN/src/misc/gdbm-1.7.3.tar.gz

Lexicals declared with my in the main block of a package using the AutoL oader will not be visible to autol oaded
functions, because the given lexical scopeendsatthe . END marker. A module using such variables as
file-scoped globals will not work properly under the AutoL oader. Package globals must be used instead. When running
under use strict,theuse vars pragmamay be employed in such situations as an alternative to explicitly
qualifying all globals with the package name. Package variables predeclared with this pragma will be accessible to any
autol oaded routines, but of course will not be invisible outside the modulefile.

The AutoL oader is a counterpart to the SelfLoader module. Both delay the loading of subroutines, but the SelfL oader
accomplishes this by storing the subroutines right there in the modul e file rather than in separate files el sewhere. While
this avoids the use of a hierarchy of disk files and the associated 1/0 for each routine loaded, the SelfLoader suffers a
disadvantage in the one-time parsing of thelinesafter _ _DATA _ _, after which routines are cached. The SelfL oader
can also handle multiple packagesin afile.

AutoL oader, on the other hand, only reads code as it is requested, and in many cases should be faster. But it requires a
mechanism like AutoSplit to be used to create the individual files.

On systems with restrictions on file name length, the file corresponding to a subroutine may have a shorter name than
the routine itself. This can lead to conflicting filenames. The AutoSplit module will warn of these potential conflicts
when used to split amodule.

See the discussion of autoloading in Chapter 5, Packages, Modules, and Object Classes. Also see the AutoSplit module,
a utility that automatically splits amodule into a collection of files for autoloading.

AutoSplit--Split a Module for Autoloading

froma program

use AutoSplit;

aut ospl it _nodul es(GARGV)

or fromthe comand |ine

perl -MAutoSplit -e "autosplit(FILE, DR KEEP, CHECK, MODTIME)'
anot her interface

perl -MAutoSplit -e "autosplit_|ib_nodul es(@G\RGV)'

This function splits up your program or module into files that the AutoL oader module can handle. It is mainly used to
build autoloading Perl library modules, especially complex ones like POSIX. It is used by both the standard Perl
libraries and by the MakeMaker module to automatically configure libraries for autoloading.

Theaut ospl it () interface splitsthe specified FI LE into a hierarchy rooted at the directory DI R. It creates
directories as needed to reflect class hierarchy. It then creates the file autosplit.ix, which acts as both a forward
declaration for al package routines and also as a timestamp for when the hierarchy was last updated.

The remaining three argumentsto aut ospl i t () govern other options to the autosplitter. If the third argument, KEEP,
isfalse, then any pre-existing .al filesin the autoload directory are removed if they are no longer part of the module
(obsoleted functions). The fourth argument, CHECK, instructs aut ospl i t () to check the module currently being split
to ensure that it really does include a use specification for the AutoL oader module, and skips the module if AutoL cader
is not detected. Lastly, the MODTI ME argument specifiesthat aut ospl i t () isto check the modification time of the
module against that of the autosplit.ix file, and only split the module if it is newer.

Here's atypical use of AutoSplit by the MakeMaker utility viathe command line:

perl -MAutoSplit -e '"autosplit($ARGV[O0], $ARGV 1], O, 1, 1)°

MakeMaker defines this as a make macro, and it isinvoked with file and directory arguments. Theaut ospl it ()
function splits the named file into the given directory and deletes obsolete .al files, after checking first that the module
does use the AutolL oader and ensuring that the module isn't already split in its current form.

Theaut ospl it _I|ib_nodul es() formisusedinthebuilding of Perl. It takes as input alist of files (modules) that
are assumed to reside in adirectory lib/ relative to the current directory. Each file is sent to the autosplitter one at a
time, to be split into the directory lib/auto/.

In both usages of the autosplitter, only subroutines defined following the Perl special marker — END__ are split out
into separate files. Routines placed prior to this marker are not autosplit, but are forced to load when the moduleis first
required.

Currently, AutoSplit cannot handle multiple package specifications within onefile.

AutoSplit will inform the user if it is necessary to create the top-level directory specified in the invocation. It's better if
the script or installation process that invokes AutoSplit has created the full directory path ahead of time. Thiswarning
may indicate that the module is being split into an incorrect path.

AutoSplit will also warn the user of subroutines whose names cause potential naming conflicts on machines with
severely limited (eight characters or less) filename length. Since the subroutine name is used as the filename, these
warnings can aid in portability to such systems.

Warnings are issued and the file skipped if AutoSplit cannot locate either the _ _END_ _ marker or a specification of
theform package Nane; . AutoSplit will also complain if it can't create directories or files.

Benchmark--Check and Compare Running Times of Code

use Benchmark;
tineit(): run $count iterations of the given Perl code, and tine it
$t = tineit($count, 'CODE); # $t is now a Benchmark object
timestr(): convert Benchmark tinmes to printable strings
print "$count |oops of 'CODE took:", tinestr($t), "\n";
tinmediff(): calculate the difference between two tines
$t = tinmediff($tl - $t2);
timethis(): run "code" $count times with tineit(); also, print out a
header saying "tinmethis $count: "
$t = tinethis($count, "CODE");
tinmethese(): run tinmethis() on nmultiple chunks of code
@ = tinethese($count, {
"Nanel =>"'...CODEL...",
"Nane2' =>"'...CODE2...",
1)
new method: return the current tine
$t 0 = new Benchmark;
... your CODE here ..
$t1 = new Benchnark;
$td = tinedi ff($tl, $t0);
print "the code took: ", tinmestr($td), "\n";
debug nethod: enable or disable debugging
Benchmar k- >debug (1);
$t = tineit(10, ' 5 ** $d obal ');
Benchmar k- >debug(0) ;

The Benchmark module encapsulates a number of routines to help you figure out how long it takes to execute some
code a given number of times within aloop.

For thet i nei t () routing, $count isthe number of timesto run the loop. CODE is a string containing the code to
run.tinmeit () runsanull loop with $count iterations, and then runs the same loop with your code inserted. It
reports the difference between the times of execution.

Forti met hese(), aloop of $count iterationsis run on each code chunk separately, and the results are reported
separately. The code to runis given as a hash with keys that are names and valuesthat are code. t i met hese() is
handy for quick tests to determine which way of doing something isfaster. For example:

$ perl -MBenchmark -M nteger
ti met hese(100000, { add => '$i += 2', inc => '$i++; $i++ });
_ _END_ _

Benchmark: timng 1000000 iterations of add, inc...
add: 4 secs (4.52 usr 0.00 sys 4.52 cpu)
inc: 6 secs (5.32 usr 0.00 sys 5.32 cpu)

The following routines are exported into your namespace if you use the Benchmark module:

timeit()
timethis()
ti met hese()
timedi ff()
timestr()

The following routines will be exported into your namespace if you specifically ask that they be imported:
cl earcache() # clear just the cache el ement indexed by $key
clearall cache() # clear the entire cache

di sabl ecache() # do not use the cache
enabl ecache() # resune caching

Notes

Code is executed in the caller's package.

The null loop times are cached, the key being the number of iterations. Y ou can control caching with calls like these:

cl ear cache($key) ;
cl earal | cache();
di sabl ecache();
enabl ecache();

Benchmark inherits only from the Exporter class.

The elapsed time is measured using time (2) and the granularity is therefore only one second. Times are givenin
seconds for the whole loop (not divided by the number of iterations). Short tests may produce negative figures because
Perl can appear to take longer to execute the empty loop than a short test.

The user and system CPU time is measured to millisecond accuracy using times (3). In general, you should pay more
attention to the CPU time than to elapsed time, especially if other processes are running on the system. Also, elapsed
times of five seconds or more are needed for reasonable accuracy.

Because you pass in a string to be evaled instead of a closure to be executed, lexical variables declared with my outside
of the eval are not visible.

Carp--Generate Error Messages

use Carp;

carp "Be careful!"; # warn of errors (from perspective of caller)
croak "We're outta here!"; # die of errors (from perspective of caller)
confess "Bye!"; # die of errors with stack backtrace

carp() andcr oak() behavelikewarn and die, respectively, except that they report the error as occurring not at the

line of code where they are invoked, but at aline in one of the calling routines. Suppose, for example, that you have a
routinegoo() containing an invocation of car p() . In that case--and assuming that the current stack shows no callers
from a package other than the current one--car p() will report the error as occurring where goo() wascalled. If, on
the other hand, callers from different packages are found on the stack, then the error is reported as occurring in the
package immediately preceding the package in which thecar p() invocation occurs. Theintent isto let library
modules act alittle more like built-in functions, which always report errors where you call them from.

conf ess() islikedieexcept that it prints out a stack backtrace. The error is reported at the line where conf ess()

isinvoked, not at aline in one of the calling routines.

Config--Access Perl Configuration Information

use Confi g;

if ($Config{cc} =~ /gcc/) {
print "built by gcc\n";

}

use Config gwnyconfig config sh config _vars);

print myconfig();
print config_sh();

confi g_vars(gw osnanme archnane));

The Config module contains all the information that the Configure script had to figure out at Perl build time (over 450
values).[1]

[1] Perl was written in C, not because it's a portable language, but because it's a ubiquitous language. A
bare C program is about as portable as Chuck Y eager on foot.

Shell variables from the config.sh file (written by Configure) are stored in areadonly hash, %Conf i g, indexed by their
names. Values set to the string " undef " in config.sh are returned as undefined values. The Perl exists function should

be used to check whether a named variable exists.
myconfi g

Returns atextual summary of the major Perl configuration values. See also the explanation of Perl's -V
command-line switch in Chapter 6, Social Engineering.

config_sh

Returns the entire Perl configuration information in the form of the original config.sh shell variable assignment
script.

confi g _vars(@anes)

Prints to STDOUT the values of the named configuration variables. Each is printed on a separate line in the form:

name='val ue' ;
Names that are unknown are output as nane=" UNKNO/N ; .

Here's a more sophisticated example using %Conf i g:

use Confi g;
defi ned $Config{sig nane} or die "No sigs?";
foreach $nane (split(' ', $Config{sig_nane})) {

$si gno{ $nane} = $i;

$signane[$i] = $nane;

$i ++;
}
print "signal #17 = $signane[17]\n";
if ($signo{ALRM) {

print "SIGALRM is $signo{ALRM\n";
}

Because configuration information is not stored within the Perl executable itself, it is possible (but unlikely) that the
information might not relate to the actual Perl binary that is being used to access it. The Config module checks the Perl
version number when loaded to try to prevent gross mismatches, but can't detect subsequent rebuilds of the same
version.

Cwd--Get Pathname of Current Working Directory

use Owd;

$dir = cwd(); # get current working directory safest way
$dir = getcwd(); # |like getcwd(3) or getwd(3)

$dir = fastcwd(); # faster and nore dangerous

use Owd 'chdir’; # override chdir; keep PW up to date
chdir "/tnmp";

print $ENV{PWD}; # prints "/tnp"

cwd() getsthe current working directory using the most natural and safest form for the current architecture. For most
systemsitisidentical to " pwd™ (but without the trailing line terminator).

get cwd() doesthe same thing by re-implementing getcwd (3) or getwd (3) in Perl.

fast cwd() looksthe sameasget cwd() , but runsfaster. It's a'so more dangerous because you might chdir out of a
directory that you can't chdir back into.

It is recommended that one of these functions be used in all code to ensure portability because the pwd program
probably only exists on UNIX systems.

If you consistently override your chdir built-in function in all packages of your program, then your PVD environment

variable will automatically be kept up to date. Otherwise, you shouldn't rely on it. (Which means you probably shouldn't
rely onit.)

DB_File--Access to Berkeley DB

use DB Fil e;

brackets in follow ng code indicate optional argunents

[$X =] tie Y%ash, "DB File", $filenane [, $flags, $node, $DB HASH|;
[$X =] tie Y%ash, "DB File", $filenane, $flags, $node, $DB BTREE;
[$X =] tie @rray, "DB File", $filenane, $flags, $npde, $DB_RECNQ

$status = $X->del ($key [, $flags]);

$status = $X->put ($key, S$value [, $flags]);
$status = $X- >get ($key, S$value [, $flags]);
$status = $X->seq(Pkey, $value [, $flags]);
$status = $X->sync([$fl ags]);

$status = $X->fd;

unti e %ash;
untie @rray;

DB_Fileisthe most flexible of the DBM-style tie modules. It allows Perl programs to make use of the facilities
provided by Berkeley DB (not included). If you intend to use this module you should really have a copy of the Berkeley
DB manual page at hand. The interface defined here mirrors the Berkeley DB interface closaly.

Berkeley DB isaC library that provides a consistent interface to a number of database formats. DB_File provides an
interface to all three of the database (file) types currently supported by Berkeley DB.

Thefiletypesare:
DB_HASH

Allows arbitrary key/data pairs to be stored in datafiles. Thisis equivaent to the functionality provided by other
hashing packages like DBM, NDBM, ODBM, GDBM, and SDBM. Remember, though, the files created using
DB _HASH are not binary compatible with any of the other packages mentioned. A default hashing agorithm that
will be adequate for most applicationsis built into Berkeley DB. If you do need to use your own hashing
algorithm, it's possible to write your own and have DB_File useit instead.

DB_BTREE

The btree format allows arbitrary key/data pairs to be stored in a sorted, balanced binary tree. It is possible to
provide a user-defined Perl routine to perform the comparison of keys. By default, though, the keys are stored in
lexical order. Thisisuseful for providing an ordering for your hash keys, and may be used on hashes that are only
in memory and never go to disk.

DB_RECNO

DB_RECNOallows both fixed-length and variable-length flat text files to be manipulated using the same
key/value pair interface asin DB_ HASH and DB_BTREE. In this case the key will consist of arecord (line)
number.

How does DB_File interface to Berkeley DB?

DB_File gives access to Berkeley DB files using Perl'stie function. Thisallows DB_File to access Berkeley DB files
using either a hash (for DB_HASH and DB_BTREE file types) or an ordinary array (for the DB_ RECNOfile type).

In addition to the tie interface, it is also possible to use most of the functions provided in the Berkeley DB API.

Differences from Berkeley DB

Berkeley DB uses the function dbopen (3) to open or create a database. Below isthe C prototype for dbopen (3).

DB *
dbopen (const char *file, int flags, int node,
DBTYPE type, const void *openinfo)

Thet ype parameter is an enumeration selecting one of the three interface methods, DB_HASH, DB_BTREE or
DB _RECNO. Depending on which of these is actually chosen, the final parameter, openi nf o, points to a data structure
that allows tailoring of the specific interface method.

Thisinterface is handled dlightly differently in DB_File. Hereis an equivalent call using DB_File.

tie Yarray, "DB File", $filenane, $flags, $npde, $DB HASH

Thefil enane, f | ags, and node parameters are the direct equivaent of their dbopen (3) counterparts. The final
parameter $DB_HASH performs the function of both thet ype and openi nf o parametersin dbopen (3).

In the example above $DB_HASH is actually a reference to a hash object. DB_File has three of these predefined
references. Apart from $DB_HASH, there are dlso $DB_BTREE and $DB_ RECNO.

The keys alowed in each of these predefined references are limited to the names used in the equivalent C structure. So,
for example, the $DB_HASH reference will only alow keys called bsi ze, cachesi ze, f fact or, hash, | or der,
and nel em

To change one of these elements, just assignto it like this:

$DB_HASH- >{ cachesi ze} = 10_000;
Array offsets

In order to make RECNO more compatible with Perl, the array offset for all RECNOarrays begins at O rather than 1 asin
Berkeley DB.

In-memory databases

Berkeley DB allows the creation of in-memory databases by using NULL (that is, a(char *) 0 inC) in place of the
filename. DB_Fi | e usesundef instead of NULL to provide this functionality.

use strict;
use Fcntl;
use DB Fil e;

ny ($k, $v, %ash);

tie(%ash, 'DB File', undef, O RDWR O CREAT, 0, $DB BTREE)
or die "can't tie DB File: $!":

foreach $k (keys %ENV) {
$hash{ $k} = $ENV{ $k};

}

this will now conme out in sorted |exical order
wi thout the overhead of sorting the keys
while ((%k,$v) = each %ash) {

print "$k=$v\n";
}

Using the Berkeley DB interface directly

In addition to accessing Berkeley DB using atied hash or array, you can also make direct use of most functions defined
in the Berkeley DB documentation.

To do thisyou need to remember the return value from tie, or use the tied function to get at it yourself later on.

$db = tie %ash, "DB File", "filenane";

Once you have done that, you can access the Berkeley DB API functions directly.

$db- >put ($key, $val ue, R NOOVERWRI TE); # invoke the DB "put" function

All the functions defined in the dbopen (3) manpage are available except for cl ose() and dbopen() itself. The
DB_Fileinterface to these functions mirrors the way Berkeley DB works. In particular, note that all these functions
return only a status value. Whenever a Berkeley DB function returns data via one of its parameters, the DB_File
equivalent does exactly the same thing.

All the constants defined in the dbopen manpage are also available.

Below isalist of the functions available. (The comments only tell you the differences from the C version.)
get

The $f | ags parameter is optional. The value associated with the key you request is returned in the $val ue
parameter.

put

Asusua thef | ags parameter isoptional. If you use either the R_| AFTER or R_| BEFORE flags, the $key
parameter will be set to the record number of the inserted key/value pair.

del

The $f | ags parameter is optional.
fd

No differences encountered.
seq

The $f | ags parameter is optional. Both the $key and $val ue parameters will be set.
sync

The $f | ags parameter is optional.
Examples

Here are afew examples. First, using $DB_HASH:

use DB Fil e;
use Fcntl;

tie %, "DB File", "hashed", O RDWR O CREAT, 0644, $DB HASH
Add a key/value pair to the file

$h{appl e} = "orange";

Check for value of a key

print "No, we have sone bananas.\n" if $h{banana};

Del ete

del ete $h{"appl e"};

untie %,;

Hereisan example using $DB_BTREE. Just to make life more interesting, the default comparison function is not used.
Instead, a Perl subroutine, Conpar e() , does a case-insensitive comparison.

use DB Fil e;
use Fcntl;
sub Conpare {
ny ($keyl, $key2) = @;
"\ L$keyl" cnp "\L$key2";
}
$DB_BTREE- >{ conpare} = ' Conpare';
tie %, 'DB File', "tree", O RDW O CREAT, 0644, $DB BTREE;
Add a key/value pair to the file

$h{vwall} = 'Larry';
$h{Sm th} = 'John';
$h{nouse} = 'nickey';
$h{duck} = 'donald';
Delete

del ete $h{duck};
Cycle through the keys printing themin order.
Note it is not necessary to sort the keys as

the btree will have kept themin order autonmatically.
while ($key = each %) { print "$key\n" }
untie %,

The preceding code yields this output:

nouse
Smith
Val |

Next, an example using $DB_RECNO. Y ou may access aregular textfile as an array of lines. But the first line of the text
fileisthe zeroth element of the array, and so on. This provides a clean way to seek to a particular linein atext file.

ny(@ine, $nunber);

$nunber = 10;
use Fcntl;
use DB Fil e;

tie(@ine, "DB File", "/tnp/text", O RDWR O CREAT, 0644, $DB_RECNO
or die "can't tie file: $!'";
$l i ne[$nunber - 1] = "this is a new |ine $nunber”;

Here's an example of updating afilein place:

use Fcntl;

use DB Fil e;

tie(@ile, '"DB File', "/tnp/sanple”, O RDWR 0644, $DB_RECNO
or die "can't update /tnp/sanple: $'";

print "line #3 was ", $file[2], "\n";

$file[2] = "date’;

untie @il e;

Note that the tied array interface isincomplete, causing some operations on the resulting array to fail in strange ways.
See the discussion of tied arrays in Chapter 5, Packages, Modules, and Object Classes. Some object methods are

provided to avoid this. Here's an example of reading afile backward:

use DB Fil e;
use Fcntl;
$H=tie(@, "DB File", $file, O RDWR 0640, $DB _RECNO
or die "Cannot open file $file: $!'\n";
print the records in reverse order
for ($i = $H>length - 1; $i >=0; --$i) {
print "$i: $h[$i]\n";
}

untie @,
Locking databases

Concurrent access of aread-write database by several parties requires that each use some kind of locking. Here's an
example that usesthef d() method to get the file descriptor, and then a careful open to give something Perl will flock
for you. Run this repeatedly in the background to watch the locks granted in proper order. You haveto cal thesync()
method to ensure that the writes make it to disk between access, or else the library would normally hold some in its own
cache.

use Fcntl;
use DB Fil e;

use strict;

sub LOCK SH {
sub LOCK EX {
sub LOCK NB {
sub LOCK UN {

ny($ol dval , $fd, $db_obj, %b_hash, $val ue, $key);

$key = shift || 'default';

$value = shift || '"magic';

$value .= " $%$";

$db_obj = tie(%b_hash, 'DB File', '/tnp/foo.db', O CREAT| O RDWR, 0644)

or die "dbcreat /tnp/foo.db $!";
$fd = $db_obj - >f d;
print "$$: db fd is $fd\n";
open(DB_FH, "+<&=%$fd") or die "fdopen $!'";

unl ess (flock (DB_FH, LOCK SH | LOCK NB)) {
print "$$: CONTENTION, can't read during wite update!
Waiting for read lock ($')";
unl ess (flock (DB _FH, LOCK SH)) { die "flock: $!'" }

}
print "$$: Read | ock granted\n";

$ol dval = $db_hash{$key};

print "$$: Ad value was $ol dval\n";
flock(DB_FH, LOCK UN);

unl ess (flock (DB_FH, LOCK EX | LOCK NB)) {
print "$$: CONTENTI ON; nust have excl usive | ock!
Waiting for wite lock ($!')";
unl ess (flock (DB FH, LOCK EX)) { die "flock: $!'" }
}

print "$$: Wite | ock granted\n";
$db_hash{ $key} = $val ue;
sl eep 10;

$db_obj - >sync(); # to flush

fl ock(DB_FH, LOCK UN);

unti e %lb_hash;

undef $db_obj ; # renmoving the last reference to the DB
closes it. Cosing DB FHis inplicit.

print "$$: Updated db to $key=$val ue\ n";

See also

Related manpages: dbopen (3), hash (3), recno (3), btree (3).

Berkeley DB is available from these locations:
« ftp://ftp.cs.berkeley.edu/uch/4bsd/db.1.85.tar.gz
« http://mww.perl.comVCPAN/src/misc/db.1.85.tar.gz

Devel::SelfStubber--Generate Stubs for a SelfLoading Module

use Devel :: Sel f St ubber;

$nodul ename = "Mystuff::Gok"; # no .pmsuffix or slashes

$lib dir =""; # defaults to current directory
Devel : : Sel f St ubber - >st ub($nodul enane, $lib_dir); # stubs only
to generate the whole nodule with stubs inserted correctly
use Devel :: Sel f St ubber;

$Devel : : Sel f St ubber: : JUST_STUBS = 0;

Devel : : Sel f St ubber - >st ub($nodul enane, $lib_dir);

Devel::Self Stubber supports inherited, autoloaded methods by printing the stubs you need to put in your module before
the DATA_ _ token. A subroutine stub lookslike this:

sub noo;
The stub ensures that if amethod is called, it will get loaded. Thisis best explained using the following example:

Assume four classes, A, B, C, and D. A istheroot class, B isasubclass of A, Cisasubclass of B, and D is another
subclass of A.

A
[\
B D
/
C

If D calls an autoloaded method noo() whichisdefined in class A, then the method isloaded into class A, and
executed. If C then calls method noo() , and that method was reimplemented in class B, but set to be autoloaded, then

http://www.perl.com/CPAN/src/misc/db.1.85.tar.gz

the lookup mechanism never gets to the AUTOL QAD mechanism in B because it first findsthe moo() method already
loaded in A, and so erroneously uses that. If the method noo() had been stubbed in B, then the lookup mechanism
would have found the stub, and correctly loaded and used the subroutine from B.

o, to get autoloading to work right with classes and subclasses, you need to make sure the stubs are loaded.

The SelfLoader can load stubs automatically at module initialization with:

Sel f Loader - >| oad_st ubs();

But you may wish to avoid having the stub-loading overhead associated with your initialization.[2] In this case, you can
put the subroutine stubs beforethe ~ DATA __ token. This can be done manually, by inserting the output of the first
call tothest ub() method above. But the module also alows automatic insertion of the stubs. By default the st ub()
method just prints the stubs, but you can set the global $Devel : : Sel f St ubber: : JUST_STUBS to 0 and it will
print out the entire module with the stubs positioned correctly, asin the second call to st ub() .

[2] Although note that thel oad_st ubs() method will be called sooner or later, at latest when the first
subroutine is being autol oaded--which may be too late, if you're trying to noo() .

At the very least, thismodule is useful for seeing what the SelfL oader thinks are stubs; in order to ensure that future
versions of the SelfStubber remain in step with the SelfLoader, the SelfStubber actually uses the SelfL oader to
determine which stubs are needed.

diagnostics--Force Verbose Warning Diagnostics

As a pragna:

use di agnosti cs;

use di agnostics -verbose;
enabl e di agnosti cs;

di sabl e di agnosti cs;

As a program

$ perl program 2>di ag. out

$ splain [-v] [-p] diag.out

The diagnostics module extends the terse diagnostics normally emitted by both the Perl compiler and the Perl
interpreter, augmenting them with the more explicative and endearing descriptions found in Chapter 9, Diagnostic

Messages. It affects the compilation phase of your program rather than merely the execution phase.

To usein your program as a pragma, merely say:

use di agnosti cs;

at the start (or near the start) of your program. (Note that this enables Perl's -w flag.) Y our whole compilation will then
be subject to the enhanced diagnostics. These are still issued to STDERR.

Due to the interaction between run-time and compile-time issues, and because it's probably not a very good idea
anyway, you may not use:
no di agnostics

to turn diagnostics off at compile time. However, you can turn diagnostics on or off at run-time by invoking
di agnosti cs: : enabl e() anddi agnosti cs: : di sabl e(), respectively.

The- ver bose argument first prints out the perldiag (1) manpage introduction before any other diagnostics. The
$di agnosti cs: : PRETTY variable, if setinaBEQ N block, resultsin nicer escape sequences for pagers:

BEG N { $di agnostics::PRETTY = 1 }

The standalone program

While apparently awhole other program, splain is actually nothing more than alink to the (executable) diagnostics.pm
module. It acts upon the standard error output of a Perl program, which you may have treasured up in afile, or piped
directly to splain.

The -v flag has the same effect as:

use di agnostics -verbose

The -p flag sets $di agnosti cs: : PRETTY to true. Since you're post-processing with splain, there'sno sensein
being ableto enabl e() or di sabl e() diagnostics.

Output from splain (unlike the pragma) is directed to STDOUT.
Examples

The following fileis certain to trigger afew errors at both run-time and compile-time:

use di agnosti cs;

print NOMHERE "not hi ng\ n";

print STDERR "\n\tThis nessage shoul d be unadorned.\n";
warn "\tThis is a user warning";

print "\ nDl AGNOSTI C TESTER: Pl ease enter a <CR> here: ";
ny $a, $b = scal ar <STDI N>;

print "\n";

print $x/ $y;

If you prefer to run your program first and look at its problems afterward, do this while talking to a Bourne-like shell:

perl -w test.pl 2>test.out
.Isplain < test. out

If you don't want to modify your source code, but still want on-the-fly warnings, do this:

perl -w -Mliagnostics test. pl

If you want to control warnings on the fly, do something like this. (Make sure the use comesfirst, or you won't be able
to get a theenabl e() ordi sabl e() methods.)

use di agnostics; # checks entire conpilation phase
print "\ntime for 1lst bogus diags: SQUAWKI NGS\ n";
print BOGUSL 'nada';

print "done with 1st bogus\n";

di sabl e di agnostics; # only turns off run-time warnings
print "\ntime for 2nd bogus: (squel ched)\n";

print BOGUS2 ' nada';

print "done with 2nd bogus\n";

enabl e di agnostics; # turns back on run-tine warnings
print "\ntinme for 3rd bogus: SQUAWKI NGS\ n";

print BOGUS3 ' nada';

print "done with 3rd bogus\n";

di sabl e di agnosti cs;

print "\ntime for 4th bogus: (squel ched)\n";

print BOGUS4 ' nada';

print "done with 4th bogus\n";

DirHandle--Supply Object Methods for Directory Handles

use DirHandl e;
ny $d = new DirHandle "."; # open the current directory
if (defined $d) {
while (defined($_
$d- >rewi nd;
while (defined($_

$d->read)) { sonething($_); }

$d->read)) { sonething else($); }
}

DirHandle provides an aternative interface to Perl's opendir, closedir, readdir, and rewinddir functions.

The only objective benefit to using DirHandle is that it avoids name-space pollution by creating anonymous globs to
hold directory handles. Well, and it also closes the DirHandle automatically when the last reference goes out of scope.
But since most people only keep a directory handle open long enough to slurp in al the filenames, thisis of dubious
value. But hey, it's object-oriented.

Dynaloader--Automatic Dynamic Loading of Perl Modules

package Your Modul e;

requi re DynalLoader;

@SA = gWM ... DynalLoader ...);
boot strap Your Modul e;

This modul e defines the standard Perl interface to the dynamic linking mechanisms available on many platforms. A
common theme throughout the module system is that using a module should be easy, even if the module itself (or the
installation of the module) is more complicated as aresult. This applies particularly to the Dynal oader. To useitin
your own module, all you need are the incantations listed above in the synopsis. Thiswill work whether YourModuleis
statically or dynamically linked into Perl. (Thisis a Configure option for each module.) Theboot st r ap() method
will either call YourModul€e's bootstrap routine directly if YourModuleis statically linked into Perl, or if not,

Y ourModule will inherit theboot st r ap() method from Dynal oader, which will do everything necessary to load in
your module, and then call YourModulesboot st rap() method for you, asif it were there all the time and you
caled it yourself. Piece of cake, of the have-it-and-eat-it-too variety.

Therest of this description talks about the Dynal_oader from the viewpoint of someone who wants to extend the
Dynal oader module to a new architecture. The Configure process selects which kind of dynamic loading to use by
choosing to link in one of several C implementations, which must be linked into perl statically. (Thisis unlike other C
extensions, which provide a single implementation, which may be linked in either statically or dynamically.)

The Dynal_oader is designed to be avery ssimple, high-level interface that is sufficiently general to cover the
requirements of SUNOS, HP-UX, NeXT, Linux, VMS, Win-32, and other platforms. By itself, though, Dynal_oader is
practically useless for accessing non-Perl libraries because it provides almost no Perl-to-C "glue”. Thereis, for example,
no mechanism for calling a C library function or supplying its arguments in any sort of portable form. Thisjobis
delegated to the other extension modules that you may load in by using Dynal_oader.

Internal interface summary

Vari abl es:
@l library _path
@Il _resol ve_usi ng
@Il _require_synbol s
$dl _debug

Subr outi nes:
boot st rap($nodul enane) ;
@ilepaths = dl _findfil e(@anes);

$filepath = dl _expandspec($spec);

$libref = dl _load file($filenane),;

$synmref = dl _find_synbol ($libref, $synbol);
@ynbol s = dl _undef _synbol s();

dl _install _xsub($nane, $synref [, $filenane]);
$message = dl _error;

Theboot strap() anddl _findfil e() routinesare standard across al platforms, and so are defined in
DynalLoader.pm. The rest of the functions are supplied by the particular .xs file that supplies the implementation for the
platform. (Y ou can examine the existing implementations in the ext/Dynal.oader/ * .xs filesin the Perl source directory.
Y ou should also read Dynaloader.pm, of course.) These implementations may also tweak the default values of the
variables listed below.

@ll _library_path

The default list of directoriesinwhichdl _fi ndfi |l e() will search for libraries. Directories are searched in the
order they are given in this array variable, beginning with subscript 0. @l _| i brary_pat hisinitialized to
hold the list of "normal” directories (/usr/lib and so on) determined by the Perl installation script, Configure, and
givenby $Confi g{' | i bpt h' }. Thisisto ensure portability across awide range of platforms.

@Il _I'i brary_pat h should also be initialized with any other directories that can be determined from the
environment at run-time (such asLD_LI BRARY _PATH for SunOS). After initialization, @Il _| i brary_path
can be manipulated by an application using push and unshift before callingdl _fi ndfi | e() . unshift can be
used to add directories to the front of the search order either to save search time or to override standard libraries
with the same name. Theload functionthat dl _| oad _fi | e() calls might require an absolute pathname. The
dl _findfile() functionand @l _| i brary_pat h can be used to search for and return the absolute
pathname for the library/object that you wish to load.

@Il _resol ve_usi ng

A list of additional libraries or other shared objects that can be used to resolve any undefined symbols that might
be generated by alater call todl | oad_fil e(). Thisisonly required on some platforms that do not handle
dependent libraries automatically. For example, the Socket extension shared library (auto/Socket/Socket.so)
contains references to many socket functions that need to be resolved when it's loaded. Most platforms will
automatically know where to find the "dependent"” library (for example, /usr/lib/libsocket.s0). A few platforms
need to be told the location of the dependent library explicitly. Use @ _r esol ve_usi ng for this. Example:

@Il _resolve_using = dl _findfile('-1socket');
@ll _require_synbol s

A list of one or more symbol names that are in the library/object file to be dynamically loaded. Thisis only
required on some platforms.

dl _error

$nessage = dl _error();

Error message text from the last failed Dynal oader function. Note that, smilar to er r no in UNIX, a successful
function call does not reset this message. |mplementations should detect the error as soon asiit occursin any of
the other functions and save the corresponding message for later retrieval. Thiswill avoid problems on some
platforms (such as SunOS) where the error message is very temporary (see, for example, dlerror (3)).

$dl _debug

Internal debugging messages are enabled when $dI _debug is set true. Currently, setting $dl _debug only
affects the Perl side of the Dynal_oader. These messages should help an application developer to resolve any
Dynal oader usage problems. $dl _debug isset to SENV{ ' PERL_DL_DEBUG } if defined. For the
Dynal oader developer and porter thereis a similar debugging variable added to the C code (see dlutils.c) and
enabled if Perl was built with the - DDEBUGGE NGflag. This can also be set viathe PERL_DL_DEBUG
environment variable. Set to 1 for minimal information or higher for more.

dl _findfile

@ilepaths = dl _findfil e(@anes)

Determines the full paths (including file suffix) of one or more loadable files, given their generic names and
optionally one or more directories. Searches directoriesin @l _| i brary_pat h by default and returns an
empty list if no files were found. Names can be specified in avariety of platform-independent forms. Any names
intheform - | name are converted into libname.*, where .* is an appropriate suffix for the platform. If aname
does not aready have a suitable prefix or suffix, then the corresponding file will be sought by trying prefix and
suffix combinations appropriate to the platform: $name.o, lib$nhame.* and $name. If any directories are included
in @anes, they are searched before @Il _| i br ary_pat h. Directories may be specified as- Ldi r . Any other
names are treated as filenames to be searched for. Using arguments of theform - Ldi r and - | nane is
recommended. Example:

@Il _resolve_using = dl _findfile(gw(-L/usr/5lib -1 posix));
dl _expandspec

$filepath = dl _expandspec($spec)

Some unusual systems such as VMS require specia filename handling in order to deal with symbolic names for
files (that is, VM S's Logical Names). To support these systemsadl _expandspec() function can be
implemented either in the dl_* .xsfile or code can be added to the autoloadable dl _expandspec() functionin
DynaLoader.pm.

dl _load file

$libref = dl _load file($filenane)

Dynamically load $f i | enane, which must be the path to a shared object or library. An opaque "library
reference” isreturned as a handle for the loaded object. dl | oad_fi | e() returnsthe undefined value on error.
(On systems that provide a handle for the loaded object such as SunOS and HP-UX, the returned handle will be
$l i br ef . On other systems $1 i br ef will typically be $f i | enane or a pointer to a buffer containing

$f i | enamne. The application should not examine or ater $I i br ef inany way.) Below are some of the
functions that do the real work. Such functions should use the current valuesof @Il _r equi re_synbol s and
@ll _resol ve_usi ng if required.

SunCS: dl open($fil enane)
HP- UX: shl _I| oad($fi | enamne)
Li nux: dld create reference(@l _require_synbols); did_|ink($filenane)
NeXT: rid_|oad($fil enane, @Il _resol ve_using)
VIVE: i b$find i mage_synbol ($fil enane, $dl require_synbol s[0])
dl _find_synbol

$symref = dl _find_synbol ($libref, $synbol)

Returns the address of the symbol $synbol , or the undefined value if not found. If the target system has
separate functions to search for symbols of different types, thendl _fi nd_synbol () should search for
function symbols first and then search for other types. The exact manner in which the addressis returned in
$synr ef isnot currently defined. The only initial requirement isthat $synr ef can be passed to, and
understood by, dI _i nstal | _xsub() . Here are some current implementations:

SunCS: dl sym($libref, $synbol)
HP- UX: shl _findsym($libref, $synbol)
Li nux: dld_get_func($synbol) and/or dl d_get_synbol ($synbol)
Ne XT: rid_I ookup("_$synbol ")
VIVE: i b$find_i mage_synbol ($libref, $synbol)
dl _undef_synbol s

@ynbol s = dl _undef synbol s()

Returns alist of symbol names which remain undefined after dI _|1 oad_fil e() . Itreturns() if these names
are not known. Don't worry if your platform does not provide a mechanism for this. Most platforms do not need it
and hence do not provide it; they just return an empty list.

dl install_xsub

dl _install _xsub($perl_nane, $synref [, $fil enane])

Creates anew Perl external subroutine named $per | _nane using $synr ef asapointer to the function that
implements the routine. Thisis simply adirect call to newXSUB() . It returns areference to theinstalled
function. The $f i | enane parameter is used by Perl to identify the source file for the function if required by die,

caler, or the debugger. If $f i | enane isnot defined, then DynalLoader will be used.

boot strap()

boot st rap($nodul e) ;

Thisisthe normal entry point for automatic dynamic loading in Perl.

It performs the following actions:

O

| N

o o o o O

L ocates an auto/$modul e directory by searching @ NC
Usesdl findfile() todeterminethe filenameto load
Sets@Il _require_synbol sto(boot $nodul e’)

Executes an auto/$module/$module.bsfileif it exists (typically used to add to @Il _r esol ve_usi ng
any files that are required to load the module on the current platform)

Calsdl | oad _file() toloadthefile

Cdlsdl _undef _synbol s() and warnsif any symbols are undefined
Calsdl _find_synbol () for"boot $nodul e"

Callsdl _i nstal | _xsub() toinstall itas${ nodul e}: : boot strap

Calls&{ " ${ nodul e} : : boot st rap"} to bootstrap the module (actually it uses the function reference
returned by dl _i nstal | _xsub() for speed)

English--Use English or awk Names for Punctuation Variables

use Engli sh;

i f ($ERRNO =~ /denied/) { ... }

This module provides aliases for the built-in "punctuation” variables. Variables with side effects that get triggered
merely by accessing them (like $0) will still have the same effects under the aiases.

For those variables that have an awk (1) version, both long and short English alternatives are provided. For example, the
$/ variable can bereferred to either as $RS or as $| NPUT_RECORD_SEPARATORif you are using the English

module.

Hereisthelist of variables along with their English alternatives:

Perl English Perl English

@_ @\RG $? $CHI LD ERRCR
$_ $ARG $ $OS_ERRCOR

$& $MATCH $ $ERRNO

$ $PREMVATCH $@ $EVAL_ERROR
$ S$POSTMVATCH $$ $PROCESS | D
$+ SLAST_PAREN NMATCH $ $PID

$. $I NPUT_LI NE_NUMBER $< S$REAL_USER ID
$ SNR $< $UD

$ $I NPUT_RECORD SEPARATOR $> $EFFECTI VE_USER | D
$ $RS $ S$EUID

$| $OUTPUT_AUTOFLUSH $($REAL_GROUP_ID

$, $OUTPUT FI ELD SEPARATOR $ $GAD

$, $OFS $) $EFFECTI VE_GROUP_ID
$\ $OUTPUT_RECORD SEPARATOR $) $EGD

$ $ORS $0 $PROGRAM NANE

$" $LI ST_SEPARATOR $] $PERL_VERSI ON

$; $SUBSCRI PT_SEPARATOR $' A $ACCUMULATOR

$, $SUBSEP $'D $DEBUGG NG

$% $FORVAT PAGE NUMBER $'F $SYSTEM FD MAX

$= $FORMAT LI NES_PER PAGE $'1 $I NPLACE EDI T

$ $FORVAT LI NES LEFT $'P $PERLDB

$~ $FORVAT_NANVE $\T $BASETI ME

$ $FORMAT_TOP_NAME $ W $VWARNI NG

$ $FORVAT LI NE_BREAK_CHARACTERS $"X $EXECUTABLE NANE
$'L $FORMVAT LI NEFEED $'0 $OSNAME

Env--Import Environment Variables

use Env; # inport all possible variables
use Env gw(PATH HOVE TERM; # inport only specified variabl es

Perl maintains environment variables in a pseudo-associative array named YENV. Since this access method is
sometimes inconvenient, the Env module allows environment variables to be treated as smple variables.

TheEnv: : i nmport () routineties environment variables to global Perl variables with the same names. By default it
ties suitable, existing environment variables (that is, variables yielded by keys %ENV). An environmental variableis
considered suitableif its name begins with an aphabetic character, and if it consists of nothing but alphanumeric
characters plus underscore.

If you supply arguments when invoking use Env, they are taken to be alist of environment variablesto tie. It's OK if
the variables don't yet exist.

After an environment variable istied, you can useit like anormal variable. Y ou may accessits value:

@ath = split(/:/, $PATH);

or modify it any way you like:

$PATH .= ":.";

To remove atied environment variable from the environment, make it the undefined value:

undef $PATH,;
Note that the corresponding operation performed directly against €NV is not undef, but delete:

del et e $ENV{ PATH} ;

Exporter--Default Import Method for Modules

in nodul e Your Modul e. pm
package Your Modul e;

use Exporter ();
@ SA = g Exporter);
@EXPORT = gWM...); Synbols to export by default.
@EXPORT K = gWM...); Synbols to export on request.
YEXPORT_TAGS = (tag => [...]); Define nanes for sets of synbols.

in other files that wish to use Your Mdul e:

T HHF

use Your Modul e; # Inmport default synbols into ny package.
use Your Module gw...); # Inmport listed synbols into nmy package.
use Your Module (); # Do not inport any synbol s!

Any module may define a class method called i nport () . Perl automatically callsamodul€si nport () method
when processing the use statement for the module. The module itself doesn't have to definethei nport () method,

though. The Exporter module implements adefault i mpor t () method that many modules choose to inherit instead.
The Exporter module supplies the customary import semantics, and any other i nport () methods will tend to deviate
from the normal import semantics in various (hopefully documented) ways. Now we'll talk about the normal import
semantics.

Specialized import lists

Ignoring the class name, which is always the first argument to a class method, the arguments that are passed into the

i mport () method are known as an import list. Usually the import list is nothing more than alist of subroutine or
variable names, but occasionally you may want to get fancy. If the first entry in an import list beginswith ! ,: ,or/ , the
list istreated as a series of specifications that either add to or delete from the list of names to import. They are processed
left to right. Specifications are in the form:

Symbol M eaning

[!] nane Thisname only

[!]:DEFAULT All namesin @EXPORT

[']:tag All namesin $EXPORT_TAGS{ t ag} anonymous list

[!]/ pattern/ All namesin @XPORT and @EXPORT_OK that match pat t ern

A leading ! indicates that matching names should be deleted from the list of names to import. If the first specification is
adeletion, it istreated as though preceded by : DEFAULT. If you just want to import extra names in addition to the
default set, you will still need to include : DEFAULT explicitly.

For example, suppose that Your Module.pm says:

@XPORT qW AL A2 A3 A4 A5):
@XPORT_OK gqw(Bl B2 B3 B4 B5):
YEXPORT_TAGS = (

T1 => [gqW AL A2 Bl B2)],

T2 => [qW(Al A2 B3 B4)]

),

Individual namesin EXPORT_TAGS must also appear in @EXPORT or @EXPORT_OK. Note that you cannot use the
tags directly within either @EXPORT or @EXPORT _OK (though you could preprocess tags into either of those arrays,
andinfact, theexport tags() andexport ok tags() functionsbelow do precisely that).

An application using Y ourModule can then say something like this:

use Your Modul e gw(: DEFAULT : T2 ! B3 A3);

The: DEFAULT addsin Al, A2, A3, A4, and A5. The: T2 addsin only B3 and B4, since A1 and A2 were already
added. The! B3 then deletes B3, and the A3 does nothing because A3 was aready included. Other examplesinclude:
use Socket gw(!/"[AP]F_/ ! SOVAXCONN ! SOL_SOCKET) ;

use POSI X gw(:errno_h :termos_h ! TCSADRAIN !/ "EXI T/);

Remember that most patterns (using / /) will need to be anchored with aleading ~, for example, / “"EXI T/ rather than

[EXIT/.
Y ou can say:

BEA N { $Exporter:: Verbose=1 }

in order to see how the specifications are being processed and what is actually being imported into modules.
Module version checking

The Exporter module will convert an attempt to import a number from amodule into a call to

$nodul e_nane- >requi re_ver si on($val ue) . This can be used to validate that the version of the module
being used is greater than or equal to the required version. The Exporter module also supplies a default
require_versi on() method, which checks the value of $VERSI ON in the exporting module.

Sincethedefault r equi re_ver si on() method treats the $VERSI ON number as a simple numeric value, it will
regard version 1.10 as lower than 1.9. For this reason it is strongly recommended that the module devel oper use
numbers with at |east two decimal places; for example, 1.09.

Prior to release 5.004 or so of Perl, this only worked with modules that use the Exporter module; in particular, this
means that you can't check the version of a class module that doesn't require the Exporter module.

Managing unknown symbols

In some situations you may want to prevent certain symbols from being exported. Typically this applies to extensions
with functions or constants that may not exist on some systems.

The names of any symbols that cannot be exported should be listed in the @EXPORT _FAI L array.

If amodule attempts to import any of these symbols, the Exporter will give the module an opportunity to handle the
situation before generating an error. The Exporter will call anexport _fai |l () method with alist of the failed
symbols:

@ ai |l ed_synbol s = $nodul e_nane->export fail (@ail ed_synbol s);

If theexport fail () method returnsan empty list, then no error is recorded and all requested symbols are
exported. If the returned list is not empty, then an error is generated for each symbol and the export fails. The Exporter
provides adefault export _fail () method that ssmply returns the list unchanged.

Usesfor theexport fail () method include giving better error messages for some symbols and performing lazy
architectural checks. Put more symbolsinto @XPORT _FAI L by default and then take them out if someone actually
tries to use them and an expensive check shows that they are usable on that platform.

Tag handling utility functions

Since the symbols listed within YEXPORT_TAGS must also appear in either @EXPORT or @EXPORT_OK, two utility
functions are provided that allow you to easily add tagged sets of symbolsto @EXPORT or @EXPORT_OK:

YEXPORT_TAGS = (Bactrian => [gwWmaa bb cc)], Dronedary => [gw(aa cc dd)]);
Exporter::export_tags(' Bactrian'); # add aa, bb and cc to @EXPORT

Exporter::export_ok tags('Dronedary'); # add aa, cc and dd to @EXPORT_CK

Any names that are not tags are added to @XPORT or @EXPORT _OK unchanged, but will trigger awarning (with -w)
to avoid misspelt tag names being silently added to @EXPORT or @EXPORT _OK. Future versions may regard thisasa
fatal error.

ExtUtils::Install--Install Files from Here to There

use ExtUtils::Install;
instal | ($hashref, $verbose, $nonono);
uni nstal | ($packlistfile, $verbose, $nonono);

install () anduni nstal | () arespecific to the way ExtUtils::MakeMaker handles the platform-dependent
installation and deinstallation of Perl extensions. They are not designed as general-purpose tools. If you're reading this
chapter straight through (brave soul), you probably want to take a glance at the MakeMaker entry first. (Or just skip
over everything in the ExtUtils package until you start writing an Ext.)

i nstall () takesthree arguments: areference to a hash, a verbose switch, and a don't-really-do-it switch. The hash
reference contains a mapping of directories; each key/value pair is a combination of directoriesto be copied. The key is
adirectory to copy from, and the value is a directory to copy to. The whole tree below the "from" directory will be
copied, preserving timestamps and permissions.

There are two keys with a special meaninginthehash: " read”™ and " writ e . After the copying isdone, install will
write the list of target files to the file named by $hashr ef - >{ wr i t e} . If there is another file named by

$hashr ef - >{r ead}, the contents of thisfile will be merged into the written file. The read and the written file may
be identical, but on the Andrew File System (AFS) it isfairly likely that people are installing to a different directory
than the one where the files later appear.

uni nst al | () takesasfirst argument afile containing filenames to be unlinked. The second argument is a verbose
switch, the third is a no-don't-really-do-it-now switch (useful to know what will happen without actually doing it).

ExtUtils::Liblist--Determine Libraries to Use and How to Use Them

require ExtUtils::Liblist;
ExtUtils::Liblist::ext($potential _|ibs, $Verbose);

This utility takesalist of librariesintheform-11i bl -11i b2 -11i b3 and returnslinessuitable for inclusionina

Perl extension Makefile on the current platform. Extra library paths may be included with the form
- L/ anot her/ pat h. Thiswill affect the searches for all subsequent libraries.

ExtUtils::Liblist::ext() returnsalist of four scaar values, which Makemaker will eventually use in
constructing a Makefile, among other things. The values are:

EXTRALI BS
List of libraries that need to be linked with Id (1) when linking a Perl binary that includes a static extension. Only
those libraries that actually exist are included.

LDLOADLI BS

List of those libraries that can or must be linked when creating a shared library using Id (1). These may be static
or dynamic libraries.

LD _RUN_PATH

A colon-separated list of the directoriesin LDLOADLI BS. It is passed as an environment variable to the process
that links the shared library.

BSLOADLI BS

List of those libraries that are needed but can be linked in dynamically with the Dynal.oader at run-time on this
platform. Thislist isused to create a .bs (bootstrap) file. SunOS/Solaris does not need this because Id (1) records
the information (from LDLQADLI BS) into the object file.

Portability

This module deals with alot of system dependencies and has quite a few architecture-specific ifsin the code.

ExtUtils::MakeMaker--Create a Makefile for a Perl Extension

use Ext Uil s:: MakeMaker;

WiteMakefil e(ATTRIBUTE => VALUE, ...);
which internally is really nore like...
%att = (ATTRIBUTE => VALUE, ...);

MM >new(\ %at t) - >f | ush;

When you build an extension to Perl, you need to have an appropriate Makefile[3] in the extension's source directory.
And while you could conceivably write one by hand, this would be rather tedious. So you'd like a program to write it
for you.

[3] If you don't know what a Makefileis, or what the make (1) program does with one, you really shouldn't
be reading this section. We will be assuming that you know what happens when you type a command like
make foo.

Originally, this was done using a shell script (actually, one for each extension) called Makefile.SH, much like the one
that writes the Makefile for Perl itself. But somewhere along the line, it occurred to the perl5-porters that, by the time
you want to compile your extensions, there's already a bare-bones version of the Perl executable called miniperl, if not a
fully installed perl. And for some strange reason, Perl programmers prefer programming in Perl to programming in
shell. So they wrote MakeMaker, just so that you can write Makefile.PL instead of Makefile.SH.

MakeMaker isn't a program; it'samodule (or it wouldn't be in this chapter). The module provides the routines you

need; you just need to use the module, and then call the routines. As with any programming job, there are many degrees
of freedom; but your typical Makefile.PL is pretty simple. For example, here's ext/POS X/Makefile.PL from the Perl
distribution's POSI X extension (which isby no means atrivia extension):

use Ext Uil s:: MakeMaker;
WiteMakefil e(

NANVE => ' PCSI X',

LI BS => ["-Im-I|posix -Ilcposix"],

MAN3PQODS ="' ' # Pods wll be built by install man.
XSPROTOARG => ' -noprototypes', # XXX renove | ater?

VERSI ON_FROM => ' POSI X. pni ,
)

Several things are apparent from this example, but the most important isthat the W i t eMakef i | e() function uses
named parameters. This means that you can pass many potential parameters, but you're only required to pass the ones
you want to be different from the default values. (And when we say "many", we mean "many"--there are about 75 of
them. See the Attributes section later.)

Asthe synopsis above indicates, the W i t eMakef i | e() function actually constructs an object. This object has
attributes that are set from various sources, including the parameters you pass to the function. It's this object that
actually writes your Makefile, meshing together the demands of your extension with the demands of the architecture on
which the extension is being installed. Like many craftily crafted objects, this MakeMaker object del egates as much of
itswork as possible to various other subroutines and methods. Many of these may be overridden in your Makefile.PL if
you need to do some fine tuning. (Generally you don't.)

But let's not lose track of the goal, which isto write a Makefile that will know how to do anything to your extension that
needs doing. Now as you can imagine, the Makefile that MakeMaker writes is quite, er, full-featured. It's easy to get lost
in al the details. If you look at the POSIX Makefile generated by the bit of code above, you will find afile containing
about 122 macros and 77 targets. Y ou will want to go off into a corner and curl up into alittle ball, saying, "Never
mind, | didn't really want to know."

WEell, the fact of the matter is, you really don't want to know, nor do you have to. Most of these items take care of
themselves--that's what MakeMaker isthere for, after all. We'll lay out the various attributes and targets for you, but
you can just pick and choose, like in a cafeteria. We'll talk about the make targets first, because they're the actions you
eventually want to perform, and then work backward to the macros and attributes that feed the targets.

But before we do that, you need to know just afew more architectural features of MakeM aker to make sense of some of
the things we'll say. The targets at the end of your Makefile depend on the macro definitions that are interpolated into
them. Those macro definitions in turn come from any of several places. Depending on how you count, there are about
five sources of information for these attributes. Ordered by increasing precedence and (more or less) decreasing
permanence, they are:

« Platform-specific valuesin Perl's Config module, provided by the Configure program that was run when Perl was
installed on this machine.

« TheWiteMakefil e() function call argumentsin Makefile.Pl, supplied by the extension writer. (Y ou saw
some of those above.)

« Platform-specific hintsin the extension's hints/ directory, also provided by extension writer. We'll talk about
those | ater.

« Overriding values from the command line for Makefile.PL script, supplied by the person who runs the script.
These look like KEY=VALUE.

o Overriding values from the command line for make itself, supplied by the person who runs the make. These also
look like KEY=VALUE.

The first four of these turn into attributes of the object we mentioned, and are eventually written out as macro
definitions in your Makefile. In most cases, the names of the values are consistent from beginning to end. (Except that
the Config database keeps the names in lowercase, as they come from Perl's config.sh file. The names are translated to
uppercase when they become attributes of the object.) In any case, we'll tend to use the term attributes to mean both
attributes and the Makefile macros derived from them.

The Makefile.PL and the hints may also provide overriding methods for the object, if merely changing an attribute isn't
good enough.

The hints files are expected to be named like their counterparts in PERL_SRC/hints, but with a.pl filename extension
(for example, next_3 2.pl), because the file consists of Perl code to be evaluated. Apart from that, the rules governing
which hintsfile is chosen are the same as in Configure. The hintsfile is evaled within a routine that is a method of our

MakeMaker object, so if you want to override or create an attribute, you would say something like:

$sel f->{LIBS} = ['-ldbm-lucb -1c'];

By and large, if your Makefile isn't doing what you want, you just trace back the name of the misbehaving attribute to
its source, and either change it there or override it downstream.

Extensions may be built using the contents of either the Perl source directory tree or the installed Perl library. The
recommended way is to build extensions after you have run make install on Perl itself. Y ou can then build your
extension in any directory on your hard disk that is not below the Perl source tree. The support for extensions below the
ext/ directory of the Perl distribution is only good for the standard extensions that come with Perl.

If an extension is being built below the ext/ directory of the Perl source, then MakeMaker will set PERL _SRC
automatically (usually to. . /. .). If PERL_SRCis defined and the extension is recognized as a standard extension,
then other variables default to the following:

PERL_I NC = PERL_SRC
PERL LI B = PERL_SRC/lib
PERL_ARCHLIB = PERL_SRC/lib
I NST LI B = PERL_LIB
| NST_ARCHLI B = PERL_ARCHLI B

If an extension is being built away from the Perl source, then MakeMaker will leave PERL_SRC undefined and default
to using the installed copy of the Perl library. The other variables default to the following:

PERL | NC = $archl i bexp/ CORE
PERL_LIB = $privlibexp
PERL_ARCHLI B = $archli bexp

| NST_LI B = ./blib/lib

I NST_ARCHLIB = ./blib/arch

If Perl has not yet been installed, then PERL_ SRC can be defined as an override on the command line.
Targets

Far and away the most commonly used make targets are those used by the installer to install the extension. So we aim to
make the normal installation very easy:

perl Makefile.PL # generate the Makefile

make # conpil e the extension
make test # test the extension
make i nstall # install the extension

This assumes that the installer has dynamic linking available. If not, a couple of additional commands are also
necessary:

make per| # link a new perl statically with this extension
make inst_per| # install that new perl appropriately

Other interesting targets in the generated Makefile are:

make config # check whether the Makefile is up-to-date

make cl ean # delete local tenp files (Makefile gets renaned)
make real cl ean # delete derived files (including ./blib)

make ci # check in all files in the MANI FEST file

make di st # see the "Distribution Support” section bel ow

Now wel'll talk about some of these commands, and how each of them is related to MakeMaker. So we'll not only be
talking about things that happen when you invoke the make target, but also about what MakeMaker has to do to
generate that make target. So brace yourself for some temporal whiplash.

Running MakeMaker

This command is the one most closely related to MakeMaker because it's the one in which you actually run
MakeMaker. No temporal whiplash here. As we mentioned earlier, some of the default attribute values may be
overridden by adding arguments of the form KEY=VALUE. For example:

perl Makefile.PL PREFI X=/tnp/ nyperl5
To get amore detailed view of what MakeMaker is doing, say:

perl Makefile.PL verbose
Making whatever is needed

A make command without arguments performs any compilation needed and puts any generated files into staging
directories that are named by the attributes | NST_LI B, | NST_ARCHLI B, | NST_EXE, | NST_MAN1DI R, and

I NST_MAN3DI R. These directories default to something below . /blib if you are not building below the Perl source
directory. If you are building below the Perl source, | NST_LI Band | NST_ARCHLI B default to .. /.. /lib, and

| NST_EXE is not defined.

Running tests

The goal of this command isto run any regression tests supplied with the extension, so MakeMaker checks for the
existence of afile named test.pl in the current directory and, if it exists, adds commandsto thet est target of the
Makefile that will execute the script with the proper set of Perl -I options (since the files haven't been installed into their
final location yet).

MakeMaker also checks for any filesmatching gl ob("t/ *.t ") . It will add commandsto thet est target that
execute all matching files viathe Test::Harness module with the -1 switches set correctly. If you pass

TEST_VERBCOSE=1, thet est target will run the tests verbosely.
Installing files

Oncetheinstaler has tested the extension, the various generated files need to get put into their final resting places. The
i nst al | target copies the files found below each of the | NST_* directoriesto their | NSTALL* counterparts.

I NST_LI B ->| NSTALLPRI VLI B[1Jor | NSTALLSI TELI B[2]
| NST_ARCHLI B->1 NSTALLARCHLI B[1]or | NSTALLSI TEARCH[2]
| NST_EXE ->| NSTALLBI N

| NST_MAN1DI R->1 NSTALLMANLDI R
I NST_MAN3DI R->1 NSTALLMAN3DI R
Footnotes:

[1] if | NSTALLDI RS set to "per | "
[2] if | NSTALLDI RS set to "si t e"

Thel NSTALL* attributesin turn default to their %Conf i g counterparts, $Conf i g{i nstal | pri vl i b},
$Config{installarchlib},andsoon.

If you don't set | NSTALLARCHLI B or | NSTALLSI TEARCH, MakeM aker will assume you want them to be
subdirectoriesof | NSTALLPRI VLI Band | NSTALLSI TELI B, respectively. The exact relationship is determined by
Configure. But you can usually just go with the defaults for all these attributes.

The PREFI X attribute can be used to redirect al thel NSTALL* attributesin one go. Here's the quickest way to install
amodule in a nonstandard place:

per|l Makefile.PL PREFI X=~

The value you specify for PREFI X replaces one or more leading pathname componentsin all | NSTALL* attributes.
The prefix to be replaced is determined by the value of $Conf i g{ pr ef i x}, which typically has avalue like /usr.
(Note that the tilde expansion above is done by MakeMaker, not by perl or make.)

If the user has superuser privileges and is not working under the Andrew File System (AFS) or relatives, then the
defaultsfor | NSTALLPRI VLI B, | NSTALLARCHLI B, | NSTALLBI N, and so on should be appropriate.

By default, make install writes some documentation of what has been done into the file given by
$(1 NSTALLARCHLI B) / per | | ocal . pod. Thisfeature can be bypassed by calling make pure_install.

If you are using AFS, you must specify the installation directories, since these most probably have changed since Perl
itself wasinstalled. Do this by issuing these commands:

perl Makefile.PL | NSTALLSI TELI B=/ af s/ her e/t oday
| NSTALLBI N=/ af s/ t her e/ now | NSTALLMAN3DI R=/ af s/ f or / manpages
make

Be careful to repeat this procedure every time you recompile an extension, unless you are sure the AFS installation
directories are still valid.

Static linking of a new Perl binary

The steps above are sufficient on a system supporting dynamic loading. On systems that do not support dynamic
loading, however, the extension has to be linked together statically with everything else you might want in your perl
executable. MakeM aker supports the linking process by creating appropriate targets in the Makefile. If you say:

make per|

it will produce a new perl binary in the current directory with all extensionslinked in that can be found in
| NST_ARCHLI B, SI TELI BEXP, and PERL_ARCHLI B. To do that, MakeMaker writes a new Makefile ; on UNIX it
is called Makefile.aperl, but the name may be system-dependent. When you want to force the creation of anew perl, we

recommend that you del ete this Makefile.aper| so the directories are searched for linkable libraries again.

The binary can be installed in the directory where Perl normally resides on your machine with:

make inst_per|

To produce a Perl binary with a different filename than perl, either say:

perl Makefile. PL MAP_TARGET=nyper |

make nyper|
make inst_perl
or say:

perl Makefile.PL
make nyperl MAP_TARCGET=nyper|
make inst_perl MAP_TARCGET=nyper |

In either case, you will be asked to confirm the invocation of thei nst _per | target, sincethisinvocationislikely to
overwrite your existing Perl binary in | NSTALLBI N.

By default make inst_per| documents what has been done in the file given by
$(1 NSTALLARCHLI B) / per | | ocal . pod. This behavior can be bypassed by calling make pure_inst_perl.

Sometimes you might want to build a statically linked Perl even though your system supports dynamic loading. In this
case you may explicitly set the linktype:

perl Makefile.PL LINKTYPE=static
Attributes you can set

The following attributes can be specified as argumentsto Wi t eMakef i | e() or asNAME=VALUE pairs on the
command line. We give examples below in the form they would appear in your Makefile.PL, that is, as though passed as
anamed parameter to Wi t eMakef i | e() (including the commathat comes after it).

C

A reference to an array of *.c filenames. It'sinitialized by doing a directory scan and by derivation from the
values of the XS attribute hash. Thisis not currently used by MakeMaker but may be handy in Makefile.PLs.

CONFI G

An array reference containing alist of attributes to fetch from %Conf i g. For example:

CONFI G => [gWM ar chnane manext)],
defines ARCHNANE and MANEXT from config.sh. MakeMaker will automatically add the following values to

CONFI G
ar dl ext | df | ags ranlib
cc dl src libc sitelibexp
cccdl fl ags l d lib_ext si tear chexp
ccdl fl ags | ddl f 1 ags obj _ext SO

CONFI GURE

A reference to a subroutine returning a hash reference. The hash may contain further attributes, for example,
{LIBS => ...}, that have to be determined by some evaluation method. Be careful, because any attributes
defined thisway will override hintsand Wi t eMakef i | e() parameters (but not command-line arguments).

DEFI NE
An attribute containing additional defines, such as- DHAVE_UNI STD_H.

D R

A reference to an array of subdirectories containing Makefile.PLs. For example, SDBM_FILE has:

DIR => ['sdbni],

MakeMaker will automatically do recursive MakeMaking if subdirectories contain Makefile.PL files. A separate
MakeMaker classis generated for each subdirectory, so each MakeMaker object can override methods using the
fake MY: : class (see below) without interfering with other MakeM aker objects. Y ou don't even need a
Makefile.PL in the top level directory if you passoneinvia-M and -€:

perl -MextUtils::MakeMaker -e 'WiteMakefile()'
DI STNAME

Y our name for distributing the package (by tar file). This defaults to NAVE below.
DL_FUNCS

A reference to a hash of symbol names for routines to be made available as universal symbols. Each key/value
pair consists of the package name and an array of routine names in that package. This attribute is used only under
AlX (export lists) and VMS (linker options) at present. The routine names supplied will be expanded in the same
way as XSUB names are expanded by the XS attribute.

The default key/value pair looks like this:

"$PKG' => ["boot $PKG']
For apair of packages named RPC and NetconfigPtr, you might, for example, set it to this:

DL_FUNCS => {
RPC => [gqw(boot _rpcb rpcb_gettime getnetconfigent)],
Net configPtr => [' DESTROY'],

b,
DL_VARS

An array of symbol names for variables to be made available as universal symbols. It's used only under AIX
(export lists) and VMS (linker options) at present. Defaultsto[] . A typica value might look like this:

DL_VARS => [gWm Foo_version Foo_nunstreans Foo tree)],
EXE_FI LES

A reference to an array of executable files. The files will be copied to the | NST _EXE directory. A make
realclean command will delete them from there again.

FI RST_MAKEFI LE

The name of the Makefile to be produced. Defaults to the contents of MAKEFI LE, but can be overridden. Thisis
used for the second Makefile that will be produced for the MAP_ TARGET.

FULLPERL

A Perl binary able to run this extension.

A reference to an array of *.h filenames. Similar to C.
I NC

Directories containing includefiles, in -I form. For example:

INC => "-1/usr/5include -1/path/to/inc",
| NSTALLARCHLI B

Used by make install, which copiesfilesfrom | NST_ARCHLI B to thisdirectory if | NSTALLDI RSis set to
"perl".

| NSTALLBI N

Used by make install, which copies filesfrom | NST_EXE to this directory.
| NSTALLDI RS

Determines which of the two sets of installation directories to choose: installpriviib and installarchlib versus
installsitelib and installsitearch. Thefirst pair is chosen with | NSTALLDI RS=per | , the second with
| NSTALLDI RS=si t e. Thedefaultis"si t e".

| NSTALLMANLDI R

This directory gets the command manpages at make install time. It defaultsto $Confi g{i nstal | manldir}.
| NSTALLMAN3DI R

This directory gets the library manpages at make install time. It defaultsto $Conf i g{i nstal | man3dir}.
| NSTALLPRI VLI B

Used by make install, which copies filesfrom | NST_LI Btothisdirectory if | NSTALLDI RS isset to "per| ".
| NSTALLSI TELI B
Used by make install, which copiesfilesfrom | NST_LI Bto thisdirectory if | NSTALLDI RSissetto"sit e"
(default).
| NSTALLSI TEARCH
Used by make install, which copies filesfrom | NST_ARCHLI B to thisdirectory if | NSTALLDI RS is set to
"si t e" (default).
| NST_ARCHLI B

Sameas| NST_LI B, but for architecture-dependent files.
| NST_EXE

Directory where executabl e scripts should be staged during running of make. Defaultsto . / bl i b/ bi n, just to
have a dummy location during testing. make install will copy thefilesin| NST_EXE to | NSTALLBI N.

I NST_LIB

Directory where we put library files of this extension while building it.
I NST_MAN1DI R

Directory to hold the command manpages at make time.
| NST_MAN3DI R

Directory to hold the library manpages at make time
L DFROM

Defaultsto $(OBJECT) and isused in the ld (1) command to specify what files to link/load from. (Also see
dynam c_| i b later for how to specify Id flags.)

LI BPERL_A

The filename of the Perl library that will be used together with this extension. Defaults to libperl.a.
LI BS

An anonymous array of alternative library specifications to be searched for (in order) until at least onelibrary is
found.

For example:

LIBS => ["-lgdbnt, "-1dbm-Ifoo", "-L/path -l1dbmnfs"],

Note that any element of the array contains a complete set of arguments for the Id command. So do not specify:

LIBS =>["-Itcl™, "-1tk", "-1X11"],
See NDBM_File/Makefile.PL for an example where an array is needed. If you specify ascalar asin:

LIBS => "-Itcl -ltk -1X11",

MakeMaker will turn it into an array with one element.
LI NKTYPE

"static"or"dynam c" (thelatter isthe default unlessused| =undef in config.sh). Should only be used to
force static linking. (Also seel i nkext , later in this chapter).

MAKEAPERL

Boolean that tells MakeMaker to include the rules for making a Perl binary. Thisis handled automatically asa
switch by MakeMaker. The user normally does not need it.

MAKEFI LE

The name of the Makefile to be produced.
MAN1PODS

A reference to a hash of POD-containing files. MakeMaker will default thisto all EXE_FI LES files that include
POD directives. Thefiles listed here will be converted to manpages and installed as requested at Configure time.

MAN3 PCDS

A reference to a hash of .pmand .pod files. MakeMaker will default thisto all .pod and any .pm files that include
POD directives. Thefiles listed here will be converted to manpages and installed as requested at Configure time.

MAP_TARGET

If it isintended that a new Perl binary be produced, this variable holds the name for that binary. Defaults to perl.
MYEXTLI B

If the extension linksto alibrary that it builds, set this to the name of the library (see SDBM _File).
NAVE

Perl module name for this extension (for example, DBD: : Or acl e). Thiswill default to the directory name, but
should really be explicitly defined in the Makefile.PL.

NEEDS_LI NKI NG

MakeMaker will figure out whether an extension contains linkable code anywhere down the directory tree, and
will set this variable accordingly. But you can speed it up avery little bit if you define this Boolean variable
yourself.

NCECHO

Governs make 's @(echoing) feature. By setting NOECHOto an empty string, you can generate a Makefile that
echos al commands. Mainly used in debugging MakeMaker itself.

NORECURS

A Boolean that inhibits the automatic descent into subdirectories (see DI R above). For example:

NORECURS => 1,

OBJECT
A string containing alist of object files, defaulting to $(BASEEXT) $(OBJ_EXT) . But it can be along string
containing all object files. For example:

OBJECT => "tkpBind.o tkpButton.o tkpCanvas. o",
PERL

Perl binary for tasks that can be done by miniperl.
PERLMAI NCC

The command line that is able to compile perlmain.c. Defaultsto $(CC) .
PERL_ARCHLI B

Same as PERL _ LI B for architecture-dependent files.
PERL_LI B

The directory containing the Perl library to use.
PERL_SRC

The directory containing the Perl source code. Use of this should be avoided, since it may be undefined.
PL_FI LES

A reference to hash of files to be processed as Perl programs. By default MakeMaker will turn the names of any
*.PL filesit finds (except Makefile.PL) into keys, and use the basenames of these files as values. For example:
PL_FILES => {'whatever.PL' => 'whatever'},

Thisturnsinto a Makefile entry resembling:

all :: whatever

what ever :: whatever.PL

$(PERL) -1 $(1 NST_ARCHLIB) -1$(INST_LIB) \
-1 $(PERL_ARCHLI B) -1 $(PERL_LI B) whatever. PL

You'll note that there's no I/O redirection into whatever there. The *.PL files are expected to produce output to
the target files themselves.

PM
A reference to ahash of .pmfilesand .pl filesto be installed. For example:
PM => {'nane_of file.pm =>"$(INST_LIBD R)/install_as.pmn},
By default thisincludes*.pmand *.pl. If alib/ subdirectory exists and is not listed in DI R (above) then any *.pm
and *.pl filesit contains will also be included by default. Defining PMin the Makefile.PL will override
PM.I BDI RS.

PM.I BDI RS
A reference to an array of subdirectories that contain library files. Defaults to:
PMLIBDIRS => ['lib', '$(BASEEXT)'],
The directories will be scanned and any files they contain will be installed in the corresponding location in the
library. Al i bscan() method may be used to alter the behavior. Defining PMin the Makefile.PL will override
PM.I BDI RS.

PREFI X
May be used to set thethree | NSTALL* attributes in one go (except for probably | NSTALLMANLDI Rif it isnot
below PREFI X according to %Conf i g). They will have PREFI X as a common directory node and will branch
fromthat nodeintol i b/, 1 i b/ ARCHNAME or whatever Configure decided at the build time of your Perl (unless
you override one of them, of course).

PREREQ

A placeholder, not yet implemented. Will eventually be a hash reference: the keys of the hash are n