Oracle8 i

Administrator’'s Guide

Release 2 (8.1.6)

December 1999
Part No. A76956-01

ORrRACLE

Administrator’s Guide, Release 2 (8.1.6)

Part No. A76956-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.
Primary Authors: Ruth Baylis, Joyce Fee

Contributors: Alex Tsukerman, Andre Kruglikov, Ann Rhee, Ashwini Surpur, Bhaskar Himatsingka,
Harvey Eneman, Jags Srinivasan, Lois Price, Robert Jenkins, Sophia Yeung, Vinay Srihari, Wei Huang,
Jonathan Klein, Mike Hartstein, Bill Lee, Diana Lorentz, Lance Ashdown, Phil Locke, Ekrem Soylemez,
Connie Dialaris, Steven Wertheimer, Val Kane, Mary Rhodes, Archna Kalra, Nina Lewis, Mary Ann
Davidson, Sujatha Muthulingam, Carolyn Gray

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Net8, Oracle Call Interface, Oracle7, Oracle8, Oracle8i, Oracle
Designer, Oracle Enterprise Manager, Oracle Forms, Oracle Parallel Server, Oracle Server Manager,
Oracle SQL*Loader, LogMiner, PL/SQL, Pro*C, SQL*Net and SQL*Plus, and Trusted Oracle are
trademarks or registered trademarks of Oracle Corporation. All other company or product names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

Contents

Y=g (o WO ET o 10 SO0] 1 110 01=1 01 £ XXi

o (=) =01 < U XXiii

Part | Basic Database Administration

1

The Oracle Database Administrator

TYPES OF OraCIe USEIS.....oiiiiiiie ittt bbb e e ettt b et e st bbb e 1-2
Database AdMINISTIATOrS..........cvviiiiiiie et a e re e snesre e s 1-2
= Yo O) Y @ 1 T=] TS 1-3
APPLICAtION DEVEIOPETS ...ttt bbb b e 1-3
APPLcation AAMINISIFALOISciiiiriiiiee bbb 1-3
DAtADASE USEIS ...ttt ettt ettt et bbbttt ekttt et bt n e 1-3
NEtWOIK AMINISTFALONSccuiiiiiiiieitiie ettt ettt sbe b e 1-4

Database Administrator Security and Privileges ... 1-4
The Database Administrator’s Operating System ACCOUNTcccocvevvevieieieeieeesiesie e 14
Database AdMmiNiStrator USEINAIMES..........coiiuiiiiciieii sttt 1-4
QLI LCI 27 AN = (o] - 1-6

Database Administrator AUtheNTtICAtIONccooviiiiiiiiee e 1-6
Selecting an Authentication Method ... 1-6
Using Operating System AUthentiCationcccoeoviiiiniinee e 1-7
OSOPER and OSDBA ..ottt sttt st b e b ettt ettt 1-8
Using an Authentication Password File...........cccoiiiiiiiiiii e 1-9

Password File AdmMinNiStration..........cccooeioiiiicises e sre e 1-9

USING ORAPWVD ..ottt ettt 1-10

Setting REMOTE_LOGIN_ PASSWORDFILE..........cccctoiiiiiitiieee et 1-11
Adding Users t0 @ PassWOrd File ... 1-12
Connecting with Administrator Privileges.........cccoceii i 1-14
Maintaining @ PassWord File..........cciiiiii e 1-15
Database AdMiNIStrator ULHHTIES.coiiiiiiiiiiieecsese s 1-17
1@ I I o T- o [T U USSR 1-17
EXPOIT AN TMPOTToiiiiiiieiiee bbbttt bbb 1-17
Priorities of a Database AAMINISIIALOrcoeoiiiiiree e 1-17
Step 1: Install the Oracle SOfIWANE........c.cooiiiiiiie s 1-18
Step 2: Evaluate the Database Server HardwWare............cccoeoiriineiineincieneiseese e 1-18
Step 3: Plan the Databaseccvvieiiiiiiiire et e e ene e 1-19
Step 4: Create and Open the Database. ..o 1-20
Step 5: Implement the Database DeSIgNcccoeiiiiiiieiieeeie e 1-20
Step 6: Back Up the Database.........ccccvvviiiiieieiieeee e 1-20
StEP 7: ENFOIl SYSTEIM USEIS ...ttt bt 1-20
Step 8: Tune Database PerfOrmManCe........occviiiiiiiiiie e 1-21
Identifying Your Oracle Database Software ReI€ase..........ccccccvvivvivivii v 1-21
Release NUMDEE FOIMALc.coiiiiieice e et 1-21
Checking Your Current Release NUMDET ...t 1-22

Creating an Oracle Database

Considerations Before Creating a Databaseccoccoviiiiiiiiiiiiiseeee e 2-2
Planning for Database Creation..........ccccciiieieiesese st 2-2
Creation Prer@QUISITESoiiiiiiieie ittt st bt ettt ae bt e 2-3
Deciding How to Create an Oracle Databasecoccovveineiineiiieiseseese e 2-3

The Oracle Database Configuration Assistant (DBCA)ccocvoverieiineieierceese e 2-4
Advantages 0f USING DBCA ..ottt sttt et aaeeste e e sre s 2-5
DBCA Modes for Database Creation ..o 2-5
Identifying Your Database ENVIFONMENT ... nnens 2-6
Selecting the Database Creation Method ... 2-6

Manually Creating an Oracle Database...........ccoeiiiiiii e 2-9
Steps for Creating an Oracle Databasec.ccceveeieeeiciese e 2-9
Examining a Database Creation SCriPt ... 2-11
Troubleshooting Database Creation ... s 2-16

Dropping @ DAtAD@SEccciiiiiiiiiiie e 2-16

INSTAlAtioON PAramELEISocuiiiiie ittt ettt be e e 2-16
A Sample INItIaliZation File.........cocoiecc e 2-17
Editing the Initialization Parameter File ... 2-19

Considerations After Creating a Database ..o 2-24

Initial TUNING GUIAEIINESocoeiiiiiicce e sre e 2-25
Allocating ROIDACK SEOMENTSccviiiiieicece e 2-25
Choosing the Number of DB_ BLOCK _LRU_LATCHES.......cccooi it 2-26
[Y11 4 T o 10 AT o 74 OSSP 2-26

3 Starting Up and Shutting Down

StaArting UP @ DAtAD@SEc.ccuvcuiiiieiise sttt st e n e e e e anenresnennenes 3-2
Preparing to Start @n INSTANCE..........ooi i 3-2
Options for Starting UpP @ Databasecooeiiiiiiiienee e 3-2
Starting an INStANCE: SCENATIOSciviiveieiiieieese et re e resresresrenes 3-4

Altering Database Availability ... 3-8
Mounting a Database t0 an INSTANCE..........cciiiiiiiiiee s 3-8
Opening a Closed Databaseccceveiieriirieieieseee et srenes 3-8
Opening a Database in Read-Only MOdE ...t 3-9
Restricting Access to an Open DAtabaseccovvieiriiirieee e 3-9

Shutting DOWN @ DAtabasSeccvcviiiiiiiiie e eeneeresresnens 3-10
Shutting Down with the NORMAL OPLIONcccoiiiiiiiiiiiesiee e 3-11
Shutting Down with the IMMEDIATE OPLION ..o 3-12
Shutting Down with the TRANSACTIONAL OPLionccccvvvievivenereseeese s eeeese e 3-12
Shutting Down with the ABORT OPLtiONcviiiiiiiiiiie e 3-13

Suspending and Resuming @ Database...........ccoiiriiiiiiiincee s 3-13

Using Initialization Parameter FIleS ... 3-15
The Sample Initialization Parameter File ... 3-15
The Number of Initialization Parameter Files..........ccccooiiiiiiiiiiinie e 3-16
The Location of the Initialization Parameter File in Distributed Environments............... 3-16

Part Il Oracle Server Configuration

vi

Managing Oracle Processes

SEIVEE PIOCESSES ...ttt ettt b et bbbt bt be e te s bt e s bt e b e e e b e e b e e ebees b e ebeen b e sbeembeebeebeebeeneesneas 4-2
DediCated SEIVEr PIrOCESSEScviveiiiteristesiete ettt sttt st sttt b ettt sttt ettt r et e b 4-2
MUIti-THreaded SEIVEN PIrOCESSEScouiiiieiieiieiieiieies ettt ettt b bbb 4-3

Configuring Oracle for the Multi-Threaded SEIrVer ...t 4-5
Initialization Parameters FOr MTS ..o e 4-5
MTS_DISPATCHERS: Setting the Initial Number of Dispatchersccccoovveiinincnnne. 4-6
MTS_SERVERS: Setting the Initial Number of Shared Servers ..., 4-7
Modifying DispatCher and SErVEr PrOCESSESccvcivivivririeresiesiesiesieseseeseessereeseeessessesseseesees 4-8
Y o] Ty (o] AT e I 1 N TSRS 4-10

Tracking Oracle BackgrouNd PrOCESSESccoviiiiiiieiie ettt 4-11
What are the Oracle BacKkground PrOCESSES.........ccvcviviiieriesiesesesesesesieseesseeeseeneesessessesnens 4-11
Monitoring the Processes of an Oracle INStancCe..........c.cccovveve i 4-14
Trace Files, the Alert Log, and Background PrOCESSES..........couieriieriiirieinieineenieeseeeneens 4-15

Managing Processes for the Parallel Query Option.........ccccooviiiiie i veniese e 4-17
Managing the QUETY SEIVELSccuiieeie ettt ettt e e st te e te e aesteenbeane e 4-17
Variations in the Number of QUErY SErver ProCESSESccovviiriiriineinieineseesieesiens 4-18

Managing Processes for EXternal ProCeAUIES...........ccvvieiiieiiiiiie e snea 4-18
Setting up an Environment for Calling External ROULINEScccooerinininiiciceecee, 4-19
Sample ENtry iN tNSNAIMES.0F8.......ciuiiiiiirieiiieiseist ettt ene e 4-19
Sample ENtry iN HISTENEI.OIAcvce e 4-20

TermMiNALING SESSIONS ...c.viiiiiiiicicie ettt e e et et e e st e sbe e st e saeesesreesaesaeestesneeseenneens 4-20
Identifying Which Session t0 TErMINALEcoeiiiiriinee s 4-21
Terminating an ACLIVE SESSIONccccviiiiieiireee e e e erenre e 4-22
Terminating an INactiVe SESSIONcciiiiiiiice et sre s 4-22

Managing Control Files

WHhat 1S @ CONTIOT FIIE? ... ettt sb e 5-2
GUIdelines TOr CONTIOl FIlESo it 5-2
NAME CONLIOI FIIEScuiiiieiei bbbttt et 5-2
Multiplex Control Files on Different DiSKS..........ccooiiiiiiiiiine s 5-3
Place Control Files APPropriately ... 5-3
Manage the Size 0f CONLIOl FIlESccooiiiiciece e 5-3
Creating CONTIOI FIlESc..o et b e ae e nte e sreanees 5-4
Creating Initial CoONTrol FIlES. ..o s 5-4

Creating Additional Control File Copies, and Renaming and Relocating Control Files... 5-5

NEW CONLIOL FIIES ...ttt bttt ettt st e e s 5-5
Creating NeW CONIOl FIlESccviiiieeeee et sre s 5-6
Troubleshooting After Creating Control FIIES ... 5-8
Checking for Missing Or EXTra FileS ... 5-8
Handling Errors During CREATE CONTROLFILE.........cccviviiiiiiine e 5-9
Dropping CONTIOL FIIES......cc.o ittt s b b 5-9

Managing the Online Redo Log

What IS the ONliNg REAO LOQ?c.ooiicicicet ettt sre s 6-2
[CTo [0 T I a1 (= To £SO USSR 6-2
(O] o] [Tl 2{:To [0} MoTe [@Fo] | (=1 o) £ 6-2
How Oracle Writes to the Onling REAO LOQ.........cccviieiiciiiece e 6-3

Planning the ONIINE REAO LOG.......coiiiiiiiiieiiicite et 6-5
Multiplexing Online Red0 LOgG FileS......ccccoeiiiiiccecr s 6-5
Placing Online Redo Log Members on Different DiSKS..........cccccveviviviiii v, 6-9
Setting the Size of Online Redo LOg MemDBErS.........c.coiiiiiiiiniiceee e 6-9
Choosing the Number of Online Redo LOg FilesS.........cccocvivviriiiiiiiceccee e 6-9

Creating Online Redo Log Groups and MemDbErS ...t 6-11
Creating ONling REA0 LOG GIOUPScciuiuiriiiriiirieisieisieisie ettt 6-11
Creating Online Redo LOg MEMIDETScvoieiiicicesece e 6-11

Renaming and Relocating Online Redo Log MemDbEISccccveieviicieie e 6-12

Dropping Online Redo Log Groups and MEemDbErS ... 6-14
(DI 0] o] o [aTo oo] 001 o 0SSP 6-14
Dropping Online Redo LOg MEMDEIS ..o s 6-15

FOrCING LOG SWITCRESoviiiiiiie ettt ebe e 6-16

Verifying BIOCKS iN REAO LOG FIIESccviiicccccs e 6-17

Clearing an Online ReAO LOG File ...t 6-17
L CEES] € o1 o] LSRR 6-17

Listing Information about the Onling Red0 LOG........cccvviviiiininiivenece e 6-18

Managing Archived Redo Logs

What Is the Archived REAO LOG?cccoeiiicicieeee st nne e 7-2
Choosing Between NOARCHIVELOG and ARCHIVELOG Mode.........cccoovvvievviieicciesnnne, 7-3
Running a Database in NOARCHIVELOG MOdE.........ccccooiiiiiniiniiniec e 7-3

vii

Running a Database in ARCHIVELOG MOUE..........ccccovoiiiiiiieiieie e 7-4

Controlling the Archiving MOGEcoo i 7-6
Setting the Initial Database Archiving MoOdEcccooveiiieiiiiin s 7-6
Changing the Database Archiving MOdE...........ccooviiiiicc e 7-6
Enabling AUtomatiC AFCHIVINGccooiiiiiieiiceeee e 7-7
Disabling Automatic ArChiVING........cccooeiiiieeic e 7-8
Performing Manual ArChiVINGc.ooiiiiii et 7-9

Specifying the Archive DeStiNAtION ..o e 7-10
Specifying Archive DeStiNAtiONSccccviivieieriiiceee e ens 7-10
Understanding Archive Destination Statescccocvvieiiiieiicie s 7-12

Specifying the Mode of LOg TranSMiSSIONc.ccciieirieiineiieisee e 7-14
Normal TransmMisSION MOGE ..o 7-14
Standby TransSmMiSSION IMOUE.cciiiiiiiice et e e e 7-14

Managing Archive Destination FailUre ... 7-16
Specifying the Minimum Number of Successful Destinationscccceecevevcrcieiecinennn, 7-16
Re-Archiving to a Failed Destination.............cccooiiiieiiiie i 7-19

TUNING Archive PerfOrManCEe. ...ttt 7-19
Specifying Multiple ARCN PrOCESSES......ciiiieiiriirieierieeereseseste e stesre e saessesseseesaeseesessessessesses 7-20
Adjusting Archive BUuffer Parameters........ccoveiiieii i 7-21

Displaying Archived Redo Log INfOrmation.............ccoeoiiiniiiiiiicceeceees 7-22
FIXEA VIBWS ...ttt b et ekttt ettt sttt e 7-23
The ARCHIVE LOG LIST SQL StatemMeNnt.......cccociieiiiiiiireiseeseee e 7-24

Controlling Trace Output Generated by the Archivelog Process..........cccocevvviniincincinnnn 7-25

Using LogMiner to Analyze Online and Archived Redo LOgS.......ccocvivvevirereiciicesiese e 7-26
HOW Can YOU USE LOGIMINEI? ..ottt sttt sttt sne e 7-26
R CEES] € o1 (o] LSS 7-27
Creating a DICtioNary Fil........cvoiiiiiie e re e 7-28
Specifying Redo Logs fOr ANAIYSISccoiiiiiiiieee s 7-30
USING LOGIMINET ..ottt b bbb bbb 7-30
USING LOGMINET: SCENAITOS ...vevveviieieieeeeieee et es e ste sttt e s a e e eneeseeneaneesenns 7-32

8 Managing Job Queues

SNP BaCKgrOUNG PrOCESSES......cuvitiiiiiiiieitiiiesieiesteeease s e stesie e sse e saessesse e ssensessesesssesessessessessessessens 8-2
MUITIPIE SINP PrOCESSESeeviititiiie ittt ettt bbb bbb bt s et be ettt besbe e 8-2
SEArtiNG UP SINP PIOCESSESc.vitiieiieeiiiteiisteeet ettt ettt ettt ettt b bbbttt bt n et e 8-3

viii

Managing JOD QUEUEScoiuiiiiie ettt st e et et e et et e e sbesbe et e sbeeaeaneeseennees 8-3

The DBMS_JOB PACKAGE.c.ciiieiiieiiteiiett ettt ettt sne e 8-3
Submitting a Job to the JOD QUEUEcvoieieee s 8-4
HOW JODS EXECULE ...ttt bbb bbb ettt ettt sbe b b e 8-9
Removing a Job from the JOD QUEUE ..ot 8-10
F AN 1 (=1 T - T o o O 8-11
BEOKEN JODIS ...t bbb e bbbt ettt b b b 8-12
FOrCing @ JOD t0 EXECULR......cuiuiiiiiiiit ettt 8-13
Terminating @ JODccooi i 8-14
Viewing Job Queue INFOrMatioN ... 8-14

Part lll Database Storage

9

Managing Tablespaces

Guidelines for Managing TabIeSPaCEScoiiiiiiiic e e 9-2
Use MUILIPIE TaBIESPACES ..o 9-2
Specify Tablespace Storage Parameters ...t 9-3
Assign Tablespace QUOTAS 10 USEISoouiiiiiiiieieeeeiese et 9-3

Creating TabIESPACES ..ot 9-4
Dictionary-Managed TableSPaCESccccvvirieieriiicieece s sre s 9-5
Locally Managed TableSPaces ... 9-6
TeMPOrary TADIESPACEScceiiiiiitiiete ettt b et bttt se et nr bt nn et sb et ene e aneneas 9-8

Managing Tablespace ANOCAtION..........c..ccceieic e 9-10
Storage Parameters in Locally Managed Tablespaces ... 9-11
Storage Parameters for Dictionary-Managed Tablespaces...........ccooeovevniininninneneene 9-11
Coalescing Free Space in Dictionary-Managed TableSPacesccocevvveverieiereeivensiesnanens 9-12

Altering Tablespace AVailability ... e 9-15
Taking Tablespaces OFfliNe ..o e 9-15
Bringing Tablespaces ONIINEcccocviiieieiiceeee s ere s 9-17

Read-OnNly TabIESPACES.......c..oiiiiii bbbt 9-17
Making a Tablespace Read-OnlY ... 9-18
Making a Read-Only Tablespace Writable ..o 9-20
Creating a Read-Only Tablespace on @ WORM DEVICE.........cccooerereiiiineicieeceeisene e 9-21
Delaying the Opening of Datafiles in Read Only Tablespaces.........ccccocevereieieiniencnnnnn. 9-21

(D] o] o] 1o I IF-Uo] [=1S] o - Lot =TS 9-22

10

11

Using the DBMS_SPACE_ADMIN PaCKaQEccciviieiieiesireic e 9-23

R 1or=] o T= U o 1 OSSOSO 9-25
SCENANTO 2 ettt b e bbbt btk ekt ekt e b e R bt bbbt b e bt ne e ae e 9-25
=] o F- 1 o I TSSO P U TP RSO PRPRUPUR 9-25
R 1or=] o T= U o 1 SO SO USRS PRRTR 9-26
(ol o U o 1O OO P T URTUURPPRRIN 9-26
Transporting Tablespaces Between Databases...........c.coociiiiniiii e 9-26
Introduction to Transportable TableSPaces ..ot 9-27
LIMITALIONS ...ttt bbbkttt 9-27
Procedure for Transporting Tablespaces Between Databasesccoccoeveieicininiencninnne, 9-28
ODJECE BENAVIOS ...ttt ettt et sb bbbt eb et r e b b 9-33
Using Transportable TableSPaCeS........ccoceieieieisiesi s ere e 9-35
Viewing Information About TablE@SPACEScccooiiiiiiiiii e 9-39
Managing Datafiles
Guidelines for Managing Datafiles..........cccooveiiiciicc e 10-2
Determine the Number of Datafiles.........ccocoeiiieiiii e 10-2
Set the Size Of DAtafileScoiiiiiicree bbb e 10-4
Place Datafiles APPropriately ... 10-4
Store Datafiles Separate From Redo Log FileS.........coccviiiiiiniiiieiccceese e 10-4
Creating and Adding Datafiles to a Tablespace ..o 10-5
Changing @ Datafile’s SIZE........ccciiiiiiii et sre s 10-5
Enabling and Disabling Automatic Extension for a Datafilec.ccccocooviiniinciicin 10-5
Manually Resizing @ Datafile ..o 10-6
Altering Datafile AvVailability ... 10-7
Bringing Datafiles Online or Taking Offline in ARCHIVELOG Mode.........c.cccovereennn 10-8
Taking Datafiles Offline in NOARCHIVELOG MOAEccccocvvviivinine e 10-8
Renaming and Relocating Datafiles..........ccocooeiiiiciiic e 10-9
Renaming and Relocating Datafiles for a Single Tablespaceccccoviniiniiiciice, 10-9
Renaming and Relocating Datafiles for Multiple Tablespacescc.cccccovvvvrierericiciennn, 10-11
Verifying Data BIOCKS in Datafiles ..o 10-12
Viewing Information About Datafiles ... 10-13
Managing Rollback Segments
Guidelines for Managing Rollback Segments..........cccocoiiiiiiinei e 11-2

Use Multiple ROIIDACK SEOMENTS........cc.oiiiic e 11-2

Choose Between Public and Private Rollback Segments..........c.ccccovineininiinsenseneeee 11-3
Specify Rollback Segments to Acquire Automatically..........ccccoovvviiiiieicicieccee e 11-3
Approximate RoIIback SEGMENT SIZES.......cccoiiiiiiii s 11-4
Create Rollback Segments with Many Equally Sized EXtentsc.ccocvevvinienceneennn, 11-5
Set an Optimal Number of Extents for Each Rollback Segment...........cccocooeieviivciiiinnnnne 11-6
Place Rollback Segments in a Separate TableSpace ... 11-6
Creating ROIIDACK SEOMENTScoiiiiiiiiii e 11-6
The CREATE ROLLBACK SEGMENT Statementcccoceovieriiennenneneenee e 11-7
Bringing New Rollback Segments ONIINE..........cccooviiieieiieeie e 11-7
Setting Storage Parameters When Creating a Rollback Segment...........c.cccooiiiniineenn, 11-7
Altering ROHDACK SEOMENTS........ooiiiiiiie e e re e srenes 11-9
Changing Rollback Segment Storage Parameters..........ccocvevvieeiieiiee s s 11-9
Shrinking a Rollback Segment Manually ... 11-9
Changing the ONLINE/OFFLINE Status of Rollback Segmentsccccoceveveiveiviinnnnnnne 11-9
Explicitly Assigning a Transaction to a Rollback Segment............ccccociiininiiiciiiie, 11-12
Dropping ROHDACK SEGMENTS ..ot 11-12
Monitoring Rollback Segment INformation.............ccccoovviviie s 11-13
Displaying Rollback Segment INformation...........cccooeiiiiiiiiiiii e 11-14
ROIIDACK SEGMENT STALISTICSe.vcviieeiiiteiiteesie ettt 11-14
Displaying All ROIDACK SEGMENTS......cccciiiiiieiirce e ene s 11-15
Displaying Whether a Rollback Segment Has Gone Offline...........cccooiiniiiiiiciiiiies 11-16

Part IV Schema Objects

12

Guidelines for Managing Schema Objects
Managing Space iN Data BIOCKScoooii e 12-2
The PCTFREE ParamEter........ccoiiiiieieeeee sttt st st sttt sne e s 12-2
The PCTUSED Par@mMELEr.......ccceiieieie ettt sttt sttt st 12-4
Selecting Associated PCTUSED and PCTFREE ValUues...........ccccooviieiie v 12-6
Transaction Entry Settings (INITRANS and MAXTRANS) ..o 12-7
Setting StOrage ParameEtersScccv it sttt e e nenrenrennens 12-8
Identifying the Storage Parameters. ... ieeie sttt 12-8
Setting Default Storage Parameters for Segments in a Tablespacecccoceoveineinnnn 12-11
Setting Storage Parameters for Data SEgMENTS.........cccccv v 12-12

Xi

Setting Storage Parameters for INdeX SEgMENTS..........cccccvvvviiviiie e 12-12

Setting Storage Parameters for LOBs, Varrays, and Nested Tables..........ccccooceveiiiinns 12-12
Changing Values for Storage Parametersccccoevveeeieieeeeesesie e e seeseeeeneseaneas 12-12
Understanding Precedence in Storage Parameters.........ccoovveieeeveeiesieene s 12-13
DAlIOCATING SPACE......c. ittt bbbttt sr bbbt b et b et b e e b e b e b 12-14
Viewing the High Water Mark ... 12-15
Issuing Space Deallocation StateMENTS..........ccoiiiiiie s 12-15
Understanding Space Use Of DatatyPesccooueireiriiiriiiniiesieisienee s 12-18

13 Managing Tables

Xii

Guidelines for Managing TabIes ..o e 13-2
Design Tables Before Creating ThEMcccciieicsecese e ene s 13-2
Specify How Data Block Space 1S t0 Be USEd ..o 13-2
Specify Transaction ENTry PArameters...... ...ttt 13-3
Specify the Location of Each Table.........cccccviiiiieieiccc s 13-3
Parallelize Table Creation ... e 13-4
Consider Creating UNRECOVERABLE TabIESccooiiiiireiicriccescee e 13-4
Estimate Table Size and Set Storage Parameters...........ocoovvvvvrevinenie e 13-4
Plan for Large TabIeS........ooi ottt saenraens 13-5
TaADIE RESTIICTIONS ...ttt ettt s s se b be e 13-6

Creating TADIESc.e et e et r e e ne et nre e 13-9

F AN =TT o T I o] 1= SR 13-11
Moving a Table to a New Segment or TableSPace..........cccccvrieriiiiiicneineesees 13-13
Manually Allocating Storage for @ Table.........cccccveeiiicisiese e 13-13
Dropping COIUMINS......c.oiiiii ettt se ettt e e 13-14

Dropping TADIES. ..ot e e 13-15

INAeX-Organized TabIES.........cociicieeeec et e e ereenes 13-17
What are Index-Organized TabIes..........coeiiiiiiicccr e 13-17
Creating Index-Organized TabIes ... 13-19
Maintaining INdex-Organized TabIES.........cccccieieiiiiiier e 13-23
Analyzing Index-0Organized TablesSccvoiiiiiii e 13-24
Using the ORDER BY Clause with Index-Organized Tables ..o, 13-25
Converting Index-Organized Tables to Regular Tables.........c.ccoovvviiivninie s 13-26

14

15

Managing Indexes
Guidelines for Managing INAEXES........ccviiiiiiiiii e 14-2
Create Indexes After Inserting Table Data.........c.cccoviviiiiriniinine e 14-3
Limit the Number of Indexes per Tableoooiii e 14-4
Specify Transaction ENTry PArameters..........ccoieiiiiieniiinsesiees et 14-4
Specify INAeX BIOCK SPACE USEoiviieieeceseee sttt sne s 14-4
Estimate Index Size and Set Storage Parameters..........ccoovveiieiicieii e 14-5
Specify the Tablespace for Each INdeX ... 14-5
Parallelize INdeX Creation ... 14-6
Consider Creating Indexes with NOLOGGING...........cccccoveviiiiieiii e 14-6
Consider Costs and Benefits of Coalescing or Rebuilding INdexesc.ccovenvineenn 14-7
Consider Cost Before Disabling or Dropping CoNnStraintS.........ccccveverererieiisiesinensienennens 14-8
CrEaliNg INOEXESocvii ettt e e e te e e s te e s e s te e st e steesbeassenbeaaeenneaneesreanees 14-8
Creating an INdexX EXPLICITIY ... e 14-9
Creating an Index Associated with a CoNnstraintccoccvevvivievevcnene e 14-9
Creating an INAeX ONIINE ..ottt sre s 14-10
Creating a FUNCLION-BASEd INAEXcciiiiiiiriiiricic s 14-11
Rebuilding an EXIiStING INAEX.......ccciv it enenns 14-14
Creating a Key-CompresSed INAEXcooiiiiiiiiiiinie e 14-14
ATTEITNG INAEXES ...ttt bbb bbbttt b bbb e 14-15
Monitoring SPace USE OF INAEXES........ccieviiieecce et ere e 14-16
DIrOPPING INOEXES ...ttt bbb bbb bbbttt b e beene bt 14-16
Managing Partitioned Tables and Indexes
What Are Partitioned Tables and INAEXES?...........coiiiiiiiiiiii e 15-2
Partitioning MeETNOUS ..o 15-3
Using the Range Partitioning Method...........ccooveiiivciiiiie e 15-3
Using the Hash Partitioning Method............cccccoiiiiiii e 15-5
Using the Composite Partitioning Method..............cccoiiiiiiiini s 15-6
Creating PartitiONS.......covcieeee ettt sttt et et e e e e en e ere e e enenrenreanens 15-7
Creating RANGE PartitiONSccccviiiiiie ettt sneenes 15-8
Creating Hash Partitions ... 15-10
Creating Composite Partitions and SUbPartitions...........ccoccoevvvvivievinicsie e 15-11
MaiNtaiNING PartitiONS.........ccooi ittt e e e s re e e saeennes 15-12
AAAING PAFTITIONS ..o bbb 15-14

xii

16

17

Xiv

LOTo T L= T ol T To [N o= U) 4 (o] o OSSR 15-16

DropPRINg PArtitiONS.........cooiiiiiiiiieiiie ettt 15-16
EXChanging Partitionscccccoiieieiii sttt 15-19
MErgiNg PartitiONS........ccci i be st e s et e st e s re e e aeennes 15-21
Modifying Partition Default ATrDULES. ..o 15-23
Modifying Real Attributes of Partitions..........ccocvevvciiiiiiisice e 15-24
1Y o)V AT o I o= U €1 o] o USRS 15-25
Rebuilding INdexX PArtitions ... 15-27
RENAMING PartitioNSocviiecccee et reene e 15-28
SPHTEING PATITIONS ...t bbb et ene s 15-29
TrUNCALING ParTitIONS.cviiiiiiiieiii et ere e 15-30
Partitioned Tables and INdexes EXamMPIES.........cccoceveieiiii e enen 15-32
Moving the Time Window in a Historical Table.........c.cccooe i, 15-33
Converting a Partition View into a Partitioned Table...............ccooooiiiniiniiie 15-34
Managing Clusters
Guidelines for Managing CIUSTEISccooiiiiiieie e 16-2
Choose Appropriate Tables for the CIUSEEr ..o 16-4
Choose Appropriate Columns for the CIUStEr KeY ..o 16-4
Specify Data BIOCK SPACE USEccciiiiiiiiiiiieisiese ettt 16-5
Specify the Space Required by an Average Cluster Key and Its Associated Rows 16-5
Specify the Location of Each Cluster and Cluster Index ROWS..........c.ccoceveninciiciencenne, 16-6
Estimate Cluster Size and Set Storage Parameters..........ccocovieiieineineneensenee e 16-6
L1 o @ LU 1) (= SRS 16-6
Creating CIUSTEred TabIEScccvciiic et sre s 16-7
Creating CIUSTET INUEXESovcuiiieiirieiiiteist ettt ettt eb et n e ene e 16-8
W L =T o T @ U 1) (=SS 16-9
Altering Cluster Tables and Cluster INAEXES..........cccveviiiiiiiiieieiie e 16-10
DropPPRINg CHUSTEIS ..otttk et se bbbt eb et b et b et b et eb e ebenrene e 16-10
Dropping Clustered TaBIEScociviiie e 16-11
Dropping CIUSTEr INAEXEScc.oiiiiiiiiiiie e et 16-11
Managing Hash Clusters
Should YOU USe Hash CIUSTEIS? ..ottt e 17-2

Advantages Of HaShiNGccooiiiiii e 17-2

18

19

Disadvantages Of HaShing ... 17-3

Creating Hash CIUSTEIS ..ottt bbbttt e 17-4
Creating Single-Table Hash CIUSLEIS.........cccccviieicsece e 17-5
Controlling Space Use Within a Hash CIUSEErccccooiiiiiniiiieeee e 17-5
How to Estimate Size Required by Hash Clusters and Set Storage Parameters............... 17-8

AIEIING HASH CHUSTEIS ...t ne e sre e 17-9

Dropping HASh CHUSTEIS.cc.iiiiiitiee et ettt sbe e be e 17-9

Managing Views, Sequences and Synonyms

AV F= T F= Yo T o AN A T=Y SR R 18-2
CrEALING VIBWS ...ttt bbbt bt bbbttt 18-2
UPAating @ JOIN VIBWociiiiece sttt sttt n e neeneenenne s 18-5
F AN L =TT 1o I AT= T Y SPSPS 18-10
DIOPPING VIBWWS ...ttt bbbt bbb bbbttt bbbt nn e 18-11
REPIACING VIBWS ...ttt sttt a et e e en e e e eneenenrs 18-11

MaANAGING SEOUENCES ..ottt sttt ettt ettt b e sb et b e s b be e e b et e s e e entebeebeeneebennes 18-12
CreatiNng SEOUENCES ..ottt ettt ettt b et b bt bt bbbt bbbttt 18-12
YA | (=] g T IST=To TU =T Lo RSP 18-13
DroPPING SEOUENCESocuiiiiiiieiiitiite ittt sttt ettt bbb bt b et e et e e e e e seebeaneaneas 18-13

MaANAGING SYNONYIMS ..ttt bbb bbb b bbb 18-14
Creating SYNONYIMSoii ettt r et e st sae st e stesaeae e e enseneeseeneanenrennenns 18-14
DropPPiNg SYNONYIMS ..ottt ettt b et st sbesb e b e e b b et e e e seebeeneaneas 18-14

General Management of Schema Objects

Creating Multiple Tables and Views in a Single Operationcc.ccooeveiiieiciiiicenee 19-2

Renaming SChema ODJECTS ..ot 19-3

Analyzing Tables, INndexes, anNd CIUSLEIS ..o 19-3
Using Statistics for Tables, Indexes, and CIUSLErSccccooevieiiiieii s 19-4
Validating Tables, Indexes, and CIUSTEIS.........c.coiiiiiiiiie s 19-9
Listing Chained Rows of Tables and CIUSLEFS.........cccccveviiviierevie e 19-9

Truncating Tables aNd CIUSTEIS........c.cci it st re e e anaen 19-10

Enabling and Disabling TriggerS. ...ttt 19-12
L= Yo T o R I g o o =T £ SRS 19-13
(D TEE: o] [gTo I I g [[0 (=1 SR 19-14

Managing INtegrity CONSIIAINTS.........cciiiiiiiii e 19-14

XV

20

XVi

INtegrity CONSLIAINT STALESoii it ne s 19-15

Setting Integrity Constraints Upon Definition ... 19-17
Modifying Existing Integrity CONSraINtSccccoveiiiiiiici e 19-18
Deferring Constraint CheCKS..........ooiiiiiiccc st 19-19
Managing Constraints That Have Associated INAEXEScccvvviriiriiineineieseiens 19-20
Dropping INtegrity CONSIAINTSccccvieiiriceececes e 19-20
Reporting Constraint EXCEPLIONS.........cccooiiiiiiiiie e 19-21
Managing ObjJect DEPENUENCIES.........civiiiiiiiteiie ettt eb e ene e 19-23
Manually ReCOMPIING VIBWS......cciiiiie ettt st 19-24
Manually Recompiling Procedures and FUNCLIONS...........cocooiiiniiinenene e 19-25
Manually Recompiling PACKAGESccooiiiiiiriiiriiisieset s 19-25
Managing Object Name ReSOIULION ... e 19-25
Changing Storage Parameters for the Data Dictionarycccccocvieviiiieiiececcee e 19-26
Structures in the Data DICLIONAIYcccooeiiiiiieiee e 19-27
Errors that Require Changing Data Dictionary Storagecccccvevvevvivnivvenenereeneeseeenenns 19-28
Displaying Information About Schema ObjJEeCtS ... 19-29
Example 1: Displaying Schema ODjJectS BY TYPEccoovviiirieiieireseeee e 19-30
Example 2: Displaying Column INformation..........ccccccevveiiiiincsin e 19-31
Example 3: Displaying Dependencies of Views and Synonyms..........c.ccoceeeeereienenenenn. 19-31
Example 4: Displaying General Segment INformation............c.ccccoeviininnineineicnee 19-32
Example 5: Displaying General Extent Information...........ccccocvovvivieninivevence e 19-32
Example 6: Displaying the Free Space (Extents) of a Databasec.ccocveeieieiiicinnn 19-32
Example 7: Displaying Segments that Cannot Allocate Additional Extents 19-33
Addressing Data Block Corruption
Options for Repairing Data BIOCK COrTUPTION..........ccooeiiiiieiiieisese e 20-2
About the DBMS_REPAIR PaCKAJEccccviiieiiiiiere ettt 20-2
DBMS_REPAIR PrOCEAUIESocviiiiiiiecie sttt sttt ettt besta e enne e 20-2
Limitations and RESTIICTIONSciuiiiieieieee et ene s 20-3
Using the DBMS_REPAIR PACKAGEccceiuiriiieiiicieeeee s e sttt se s enasne e snenns 20-3
Stage 1: Detect and RePOrt COrTUPLIONScoueiiiiieieieiieerie ettt 20-4
Stage 2: Evaluate the Costs and Benefits of Using DBMS_REPAIRcccccoiiiiiiinnnne 20-5
Stage 3: Make ObjJects USADIE.........cccviiiiiiie e 20-7
Stage 4: Repair Corruptions and Rebuild LOSt Data..........c.cccoviviiineieneneieceeesee 20-7
DBMS_REPAIR EXAMPIEScoiiiiiiiiii ettt 20-8

Using ADMIN_TABLES to Build a Repair Table or Orphan Key Table...........cccccccevene. 20-8

Using the CHECK_OBJECT Procedure to Detect COrruptionc.ccoeervenicrecneennas 20-10
Fixing Corrupt Blocks with the FIX_CORRUPT_BLOCKS Procedure..........cccocevvevernnn. 20-11
Finding Index Entries Pointing into Corrupt Data Blocks: DUMP_ORPHAN_KEYS... 20-12
Rebuilding Free Lists Using the REBUILD_FREELISTS Procedureccoccoevviveiennnne. 20-13
Enabling or Disabling the Skipping of Corrupt Blocks: SKIP_CORRUPT_BLOCKS..... 20-14

PartV Database Security

21

22

Establishing Security Policies
SYSLEM SECUTILY POLICY ...cuiiiiiicicice ettt e e nennennenneas 21-2
Database User ManagEMIENTcccvciuiiieiicie sttt ae st esraesbesneesre e e sreannes 21-2
USer AUTNENTICALION ..ottt e 21-2
Operating SYSEM SECUTILYvivieieieirere e ettt se e ene e e eneenesresneanens 21-3
Data SECUNILY POLICY ..ottt et sttt e st e st e s teenbenreenes 21-3
USEE SECUTTLY POLICY ...ttt ettt ene e 21-4
GENEIFAl USEI SECUTILY ..viviiviieiieiie st see ettt sttt e e e e e e eneeneeneenenrennesrens 21-4
ENA-USEE SECUIILYoiieie ettt et e et e et e eae e beaneenreeneenreaneas 21-6
AdMINISTFALON SECUFTLY ...ttt ettt b et b e eb e n e ene e 21-8
Application DEVEIOPEr SECUTILYcceiveicieieece st ere e 21-9
Application AdMINISIFAtOr SECUTTLYoouiiiiiiiiieeee e 21-11
Password Management POLICY ... e 21-12
Ao olo 18] | A 1o Tod 2 Vo PP 21-12
Password Aging and EXPIrationcccccoeiiieieiiiiieee e 21-13
PaSSWOIA HISTOIY ..ottt b et bbb ene e 21-14
Password Complexity VEerifiCationccccovueveieieiieicese s 21-15
F B Lo [(T oV TN o] o3 Y USRS 21-19
Managing Users and Resources
1ot (o] g K- Ualo I W LS =T o I ot =T o Y] o o [USSR 22-2
Concurrent USage LICENSINGcviiiiiiiieiieies et 22-3
NAMEA USEE LIMILS ..oviiiiiiiiicie ettt sb et abe e 22-5
Viewing Licensing Limits and Current ValUEs............cccovviieieiie v 22-6
USEr AULNENTICALION ...ttt ettt e b e s e enesee b e 22-7

XVii

23

XViii

Database AUTNENTICALIONc..cciiiiiiiiii e e e et e s sbae s s rae e 22-8

External AULNENTICATIONcci i et 22-9
Global Authentication and AUthOFIZAtION ... 22-11
Multi-Tier Authentication and AUthOriZatioN............cccoiiiiiini i 22-13
L@ T To] [T U L= SO SO USSP 22-14
L1 =T: 11 |0 O E7 =T SRS SSSTSSSRPRN 22-15
F AN L (=T] Lo B F=T USSR 22-18
DIOPPING USEES ..ottt b bbb bbbttt bbb 22-20
Managing Resources With Profiles ... 22-21
Enabling and Disabling ReSOUrce LIimMitSccccoviiiiiiiiiin i 22-21
Creating ProfilESoooii e 22-22
ASSIGNING PrOfilES ... nrs 22-23
F AN (=T] Lo T o 1 =TSSR 22-23
USING COMPOSITE LIMITS ..ot 22-24
(DT f0] o] o] [T [N = €0 11 1= PP 22-25
Listing Information About Database Users and Profiles...........cccococviiiiiiiiiieccciecee, 22-25
Listing Information about Users and Profiles: EXamples ..o 22-27
= T 0] 0] =SSR 22-30
Managing User Privileges and Roles
1dentifying USEr PriVIIEOESc.ocieiie sttt ne s 23-2
YA =] 0 T o LV 1 =T oSSBT 23-2
ODJECE PrIVIIEOES. ...ttt ettt ene e 23-4
ManNagING USEI ROIESoviicicece ettt sttt st e ene e e eneenaesesneaneas 23-4
Predefined ROIESooi i e ettt eb e 23-5
Creating @ ROIE ...ttt bbbttt b et re e 23-6
ROIE AULNOFIZALION ..o e 23-8
Dropping ROIES ... bbbttt 23-10
Granting User Privileges and ROIES ... 23-10
Granting System Privileges and ROIES...........ccccvviieiiicicieccc e 23-10
Granting Object Privileges and ROIEScccoviieiiciicicc e 23-11
Granting Privileges 0N COIUMNScociiiiiiiie e 23-12
Revoking User Privileges and ROIES.........ccccoveiiiciccecice e ene s 23-13
Revoking System Privileges and ROIES...........c.cccovi i 23-13
Revoking Object Privileges and ROIES ... 23-14

Effects 0f REVOKING PHIVIIEQESc..ooiiie ettt 23-15

Granting to and Revoking from the User Group PUBLICccccccoiiniiniincnenn, 23-16
When Do Grants and Revokes TakKe EffeCt?........coviiiiiiieeses e 23-17
The SET ROLE STAtEMENT ..ottt ettt 23-17
SPeCifying DEfAUIT ROIES.........cooiiiiiiiii it 23-18
Restricting the Number of Roles that a User Can Enable..........cccccocovvvenevevcciciecceen, 23-18
Granting Roles Using the Operating System or Networkccccooviviniiineicicccee 23-18
Using Operating System Role 1dentifiCationcccoeiiiiniiniiniicese e 23-20
Using Operating System Role Managementccccovviviininnnnsnsn e 23-21
Granting and Revoking Roles When OS_ROLES=TRUEcccccceiviiiievnecene e, 23-21
Enabling and Disabling Roles When OS_ROLES=TRUEccoceoiiiiiininceee 23-21
Using Network Connections with Operating System Role Management 23-22
Listing Privilege and Role INformationcccooi i 23-22
Listing All System Privilege GrantsS..........cccociiiiiiieinese s 23-23
LiSting Al ROIE Grantscocviiiiiiiise ettt st se e enaene e enens 23-24
Listing Object Privileges Granted t0 a USEr..........cccvcieiviiiiii e 23-24
Listing the Current Privilege Domain of YOUr SESSION.........cccoceviiniineieneenee e 23-24
Listing Roles Of the Database............cccoviiiieieicsce e ene s 23-25
Listing Information About the Privilege Domains of Roles...........cccccvieviiiieiiciciecn, 23-26

24 Auditing Database Use

GUIAElINES TOr AUAITINGcoiiiie ettt e b e aaeesae e e sreanees 24-2
Audit via the Database or Operating SYSEMcoovv it 24-2
Keep Audited Information Manageable ... 24-2

Creating and Deleting the Database Audit Trail VIEWS..........ccccccoviiiiieiiecicicce e 24-4
Creating the AUAIt Trail VIBWScooiiiiiiiiieie e 24-4
Deleting the AUdit Trail VIEBWS.......cccooiiiiiie e 24-5

Managing Audit Trail INFOrmation ... 24-5
Events Audited DY DEfaUIL..........coiiiiiiie s 24-7
Setting AUAItiNG OPLIONSoiiiiieiiree e e se e e e e ene s e nresrens 24-7
Enabling and Disabling Database AUdItiNgccccccooeiiiiiiicie e 24-13
Controlling the Growth and Size of the Audit Trail ... 24-14
Protecting the AUt TTail..........cccoviiiiiiiire e ens 24-16

Viewing Database Audit Trail INformation............c.ccoov i 24-17
Listing Active Statement AUdIt OPLIONS........ccociiiiiiiiiie e 24-18

Xix

Listing Active Privilege AUdit OPLiONS........ccoooiiiiiiiiiiee e 24-19

Listing Active Object Audit Options for Specific ObJECtS.........c.cccvvvriiiiinic 24-19
Listing Default Object AUt OPLiONS.......ccccovevieiciceerr e 24-19
(IS o I ANE Lo [= L=Tolo] o 3 USSR 24-20
Listing Audit Records for the AUDIT SESSION OPLtioncccocvrvireineineiieseiens 24-20
Auditing Through Database TrigQersSccivvivieriiiie et eereenes 24-20

Part VI Database Resource Management

25 The Database Resource Manager

What is the Database ReSOUrce Manager?ccoceverveieieeieeiesiese s e e snens 25-2
Administering the Database Resource Managerccccvvvieeieiieeie s 25-3
Creating and Managing RESOUICE PlaNS...........ccoiiiiiniiinii e 25-6
Using the Pending Area for Creating Plan SChemas............ccocvvovvereneienencncseeeeeee s 25-7
Creating RESOUICE PIANSc.oiiiii ettt ettt na e 25-10
Creating ReSoUrce CONSUMET GIOUPSctireirieirieisiereste sttt sre e snese e sne e 25-11
Specifying Resource Plan DIireCtIVES. ... iiriie e s e e s 25-12
Managing Resource CONSUMET GFOUPS.cueiirririerieieieieeeeiesiese st stesieseessesaeseesseseeseeeesessessesns 25-14
Assigning an Initial Resource CONSUMETN GrOUPooviueriiieriniinieienieieneeeseeieseeesieesseesienes 25-14
Changing Resource CONSUMEE GIOUPSciueieiuirieriereeeeieeseasessessessessessessessessessessessesssssssens 25-15
Granting the SWItCh PriVIIEQEcove i 25-16
Enabling the Database ResoUrce MaNAgETc.covriireiriiriieee s 25-18
Putting it All Together: EXaMPIESccoov i ene s 25-18
A MUITHEVEL SCREIMA ...t et 25-18
AN Oracle SUPPIIEA PIANcooiiiicc s 25-20
Database ReSoUrce Manager VIBWSccccviviiriierieieieieeeseses e e ste e saesse e saessensesseseessssessenns 25-21
Index

XX

Send Us Your Comments

Administrator's Guide, Release 2 (8.1.6)
Part No. A76956-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

E-mail - infodev@us.oracle.com

FAX - (650) 506-7228. Attn: Information Development
Postal service:

Oracle Corporation

Information Development Department

500 Oracle Parkway, M/S 40p12

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.

XXi

XXii

Preface

This guide is for people who administer the operation of an Oracle database system.
These people, referred to as "database administrators" (DBAS), are assumed to be
responsible for ensuring the smooth operation of an Oracle database system and for
monitoring its use. The responsibilities of database administrators are described in
Chapter 1.

Note: The Oracle8i Administrator’s Guide contains information
that describes the features and functionality of the Oracle8 and the
Oracle8 Enterprise Edition products. Oracle8 and Oracle8
Enterprise Edition have the same basic features. However, several
advanced features are available only with the Enterprise Edition,
and some of these are optional. For example, to perform automated
tablespace point-in-time recovery (using Recovery Manager), you
must have the Enterprise Edition.

For information about the differences between Oracle8 and the
Oracle8 Enterprise Edition and the features and options that are
available to you, please refer to Getting to Know Oracle8i.

XXili

Audience

Readers of this guide are assumed to be familiar with relational database concepts.
They are also assumed to be familiar with the operating system environment under
which they are running Oracle.

Readers Interested in Installation and Migration Information

Administrators frequently participate in installing the Oracle Server software and
migrating existing Oracle databases to newer formats (for example, Version 7
databases to Oracle8 format). This guide is not an installation or migration manual.

If your primary interest is installation, see your operating system-specific Oracle
documentation.

If your primary interest is database or application migration, see the Oracle8i
Migration manual.

Readers Interested in Application Design Information

In addition to administrators, experienced users of Oracle and advanced database
application designers might also find information in this guide useful.

However, database application developers should also see the Oracle8i Application
Developer’s Guide - Fundamentals and the documentation for the tool or language
product they are using to develop Oracle database applications.

How to Use This Guide

Structure

XXiV

Every reader of this guide should read Chapter 1 of Oracle8i Concepts. This
overview of the concepts and terminology related to Oracle provides a foundation
for the more detailed information in this guide. The rest of Oracle8i Concepts
explains the Oracle architecture and features, and how they operate in more detail.

This guide contains the following parts and chapters.

Part |: Basic Database Administration

Chapter 1, "The Oracle Database This chapter serves as a general introduction

Administrator" to typical tasks performed by database
administrators, such as installing software
and planning a database.

Chapter 2, "Creating an Oracle This chapter describes the most important

Database" considerations when creating a database.
Consult this chapter when in the database
planning stage.

Chapter 3, "Starting Up and Consult this chapter when you wish to start

Shutting Down" up a database, alter its availability, or shut it
down. Parameter files related to starting up
and shutting down are also described here.

Part II: Oracle Server Configuration

Chapter 4, "Managing Oracle This chapter helps you identify different

Processes" Oracle processes, such as dedicated server
processes and multi-threaded server
processes. Consult this chapter when
configuring, modifying, tracking and
managing processes.

Chapter 5, "Managing Control This chapter describes all aspects of

Files" managing control files (such as naming,
creating, troubleshooting, and dropping
control files).

Chapter 6, "Managing the Online This chapter describes all aspects of

Redo Log" managing the online redo log: planning,
creating, renaming, dropping, or clearing
online redo log files.

Chapter 7, "Managing Archived Consult this chapter for information about
Redo Logs" archive modes, tuning archiving, and
viewing.

Chapter 8, "Managing Job Queues" Consult this chapter before working with job
gueues. All aspects of submitting, removing,
altering, and fixing job queues are described.

XXV

XXVi

Part lll: Database Storage

Chapter 9, "Managing Tablespaces"

Chapter 10, "Managing Datafiles"

Chapter 11, "Managing Rollback
Segments”

Part IV: Schema Objects

Chapter 12, "Guidelines for Managing
Schema Objects"

Chapter 13, "Managing Tables"

Chapter 14, "Managing Indexes"

Chapter 15, "Managing Partitioned
Tables and Indexes"

Chapter 16, "Managing Clusters"

This chapter provides guidelines to
follow as you manage tablespaces, and
describes how to create, manage, alter,
drop and move data between tablespaces.

This chapter provides guidelines to
follow as you manage datafiles, and
describes how to create, change, alter,
rename and view information about
datafiles.

Consult this chapter for guidelines to
follow when working with rollback
segments.

Consult this chapter for descriptions of
common tasks, such as setting storage
parameters, deallocating space and
managing space.

Consult this chapter for general table
management guidelines, as well as
information about creating, altering,
maintaining and dropping tables.

Consult this chapter for general
guidelines about indexes, including
creating, altering, monitoring and
dropping indexes.

This chapter describes what a partitioned
table (and index) is and how to create and
manage it.

Consult this chapter for general
guidelines to follow when creating,
altering and dropping clusters.

Chapter 17, "Managing Hash Clusters"

Chapter 18, "Managing Views,
Sequences and Synonyms"

Chapter 19, "General Management of
Schema Objects"

Chapter 20, "Addressing Data Block
Corruption"

Part V: Database Security

Chapter 21, "Establishing Security
Policies"

Chapter 22, "Managing Users and
Resources"

Chapter 23, "Managing User Privileges
and Roles"

Chapter 24, "Auditing Database Use"

Consult this chapter for general
guidelines to follow when altering or
dropping hash clusters.

This chapter describes all aspects of
managing views, sequences and
synonyms.

This chapter covers more specific aspects
of schema management than those
identified in Chapter 12. Consult this
chapter for information about table
analysis, truncation of tables and clusters,
database triggers, integrity constraints,
object dependencies. You will also find a
number of specific examples.

This chapter describes how to use the
procedures in the DBMS_REPAIR
package to detect and correct data block
corruption.

This chapter describes all aspects of
database security, including system, data
and user security policies, as well as
specific tasks associated with password
management.

This chapter describes session and user
licensing, user authentication, and
provides specific examples of tasks
associated with managing users and
resources.

This chapter contains information about
all aspects of managing user privileges
and roles. Consult this chapter to find out
how to grant and revoke privileges and
roles.

This chapter describes how to create,
manage and view audit information.

XXVil

Conventions

XXViii

Part VI: Database Resource Management

Chapter 25, "The Database Resource This chapter describes how to use the
Manager" Database Resource Manager to allocate
resources.

This section explains the conventions used in this manual including the following:
« Text
« Syntax diagrams and notation

« Code examples

Text
This section explains the conventions used within the text.

UPPERCASE Characters

Uppercase text is used to call attention to command keywords, object names,
parameters, filenames, and so on.

For example, "If you create a private rollback segment, the name must be included
in the ROLLBACK_SEGMENTS parameter of the parameter file."

Italicized Characters
Italicized words within text are book titles or emphasized words.

Syntax Diagrams and Notation

The syntax diagrams and notation in this manual show the syntax for SQL
commands, functions, hints, and other elements. This section tells you how to read
syntax diagrams and examples and write SQL statements based on them.

Keywords

Keywords are words that have special meanings in the SQL language. In the syntax
diagrams in this manual, keywords appear in uppercase. You must use keywords
in your SQL statements exactly as they appear in the syntax diagram, except that
they can be either uppercase or lowercase. For example, you must use the CREATE
keyword to begin your CREATE TABLE statements just as it appears in the
CREATE TABLE syntax diagram.

Parameters

Parameters act as place holders in syntax diagrams. They appear in lowercase.
Parameters are usually names of database objects, Oracle datatype names, or
expressions. When you see a parameter in a syntax diagram, substitute an object or
expression of the appropriate type in your SQL statement. For example, to write a
CREATE TABLE statement, use the name of the table you want to create, such as
EMP, in place of the table parameter in the syntax diagram. (Note that parameter
names appear in italics in the text.)

Code Examples

SQL and SQL*Plus commands and statements are separated from the text of
paragraphs in a monospaced font as follows:

INSERT INTO emp (empno, ename) VALUES (1000, JFEE);
ALTER TABLESPACE users ADD DATAFILE 'users2.ora' SIZE 50K;

Example statements can include punctuation, such as commas or quotation marks.
All punctuation in example statements is required. All example statements
terminate with a semicolon (;). Depending on the application, a semicolon or other
terminator may or may not be required to end a statement.

Uppercase words in example statements indicate the keywords within Oracle SQL.
When you issue statements, however, keywords are not case sensitive.

Lowercase words in example statements indicate words supplied only for the
context of the example. For example, lowercase words may indicate the name of a
table, column, or file.

What's New in Release 2 (8.1.6)

The following are new features introduced in this release:

« DB_BLOCK_CHECKING and DB_BLOCK_CHECKSUM are always TRUE in
the system tablespaces.

= You can now control the amount of trace information sent to LOG_ARCHIVE_
TRACE.

« You can now exchange a hash partitioned table with subpartitions of a
composite partitioned table.

« You can issue an ALTER DATABASE SUSPEND or RESUME statement to halt
170 to datafiles and the control files, allowing the database to be backed up
without 170 interference.

XXiX

« The ALTER SYSTEM SHUTDOWN IMMEDIATE statement allows you to shut
down a specific MTS dispatcher process.

« You can create global or schema-independent users, and specify global roles.

« Multi-tier authentication and authorization allows users to be connected
through a middle tier.

Additionally, this book has been reorganized, and many chapters have been
rewritten.

XXX

Part |

Basic Database Administration

Part | provides an overview of the responsibilities of a database administrator, and
describes the creation of a database and how to start up and shut down an instance
of the database. It contains the following chapters:

« Chapter 1, "The Oracle Database Administrator"
« Chapter 2, "Creating an Oracle Database"
« Chapter 3, "Starting Up and Shutting Down"

1

The Oracle Database Administrator

This chapter describes the responsibilities of the person who administers the Oracle
server, the database administrator.

The following topics are included:

« Types of Oracle Users

« Database Administrator Security and Privileges
« Database Administrator Authentication

« Password File Administration

« Database Administrator Utilities

« Priorities of a Database Administrator

« ldentifying Your Oracle Database Software Release

The Oracle Database Administrator 1-1

Types of Oracle Users

Types of Oracle Users

At your site, the types of users and their responsibilities may vary. For example, at a
large site the duties of a database administrator might be divided among several
people.

This section includes the following topics:
« Database Administrators

= Security Officers

« Application Developers

« Application Administrators

« Database Users

= Network Administrators

Database Administrators

Because an Oracle database system can be quite large and have many users,
someone or some group of people must manage this system. The database
administrator (DBA) is this manager. Every database requires at least one person to
perform administrative duties.

A database administrator’s responsibilities can include the following tasks:
« Installing and upgrading the Oracle server and application tools

« Allocating system storage and planning future storage requirements for the
database system

« Creating primary database storage structures (tablespaces) after application
developers have designed an application

« Creating primary objects (tables, views, indexes) once application developers
have designed an application

« Modifying the database structure, as necessary, from information given by
application developers

« Enrolling users and maintaining system security
« Ensuring compliance with your Oracle license agreement
« Controlling and monitoring user access to the database

= Monitoring and optimizing the performance of the database

1-2 Oracle8i Administrator's Guide

Types of Oracle Users

Security Officers

Planning for backup and recovery of database information
Maintaining archived data on tape
Backing up and restoring the database

Contacting Oracle Corporation for technical support

In some cases, a database might also have one or more security officers. A security
officer is primarily concerned with enrolling users, controlling and monitoring user
access to the database, and maintaining system security. You might not be
responsible for these duties if your site has a separate security officer.

Application Developers

An application developer designs and implements database applications An
application developer’s responsibilities include the following tasks:

Designing and developing the database application

Designing the database structure for an application

Estimating storage requirements for an application

Specifying modifications of the database structure for an application
Relaying the above information to a database administrator

Tuning the application during development

Establishing an application’s security measures during development

Application Administrators

An Oracle site might also have one or more application administrators. An
application administrator is responsible for the administration needs of a particular
application.

Database Users

Database users interact with the database via applications or utilities. A typical
user’s responsibilities include the following tasks:

Entering, modifying, and deleting data, where permitted

The Oracle Database Administrator 1-3

Database Administrator Security and Privileges

« Generating reports of data

Network Administrators

At some sites there may be one or more network administrators. Network
administrators may be responsible for administering Oracle networking products,
such as Net8.

See Also: For information on network administration in a
distributed environment, see Oracle8i Distributed Database Systems.

Database Administrator Security and Privileges

To accomplish administrative tasks in Oracle, you need extra privileges both within
the database and possibly in the operating system of the server on which the
database runs. Access to a database administrator’s account should be tightly
controlled.

This section includes the following topics:

« The Database Administrator’s Operating System Account
« Database Administrator Usernames

« The DBA Role

The Database Administrator’s Operating System Account

To perform many of the administrative duties for a database, you must be able to
execute operating system commands. Depending on the operating system that
executes Oracle, you might need an operating system account or ID to gain access
to the operating system. If so, your operating system account might require more
operating system privileges or access rights than many database users require (for
example, to perform Oracle software installation). Although you do not need the
Oracle files to be stored in your account, you should have access to them.

See Also: The method of distinguishing a database
administrator’s account is operating system specific. See your
operating system-specific Oracle documentation for information.

Database Administrator Usernames

Two user accounts are automatically created with the database and granted the
DBA role. These two user accounts are:

1-4 Oracle8i Administrator's Guide

Database Administrator Security and Privileges

« SYS (initial password: CHANGE_ON_INSTALL)
« SYSTEM (initial password: MANAGER)

These two usernames are described in the following sections.

Note: To prevent inappropriate access to the data dictionary
tables, you must change the passwords for the SYS and SYSTEM
usernames immediately after creating an Oracle database.

You will probably want to create at least one additional administrator username to
use when performing daily administrative tasks.

SYS

When any database is created, the user SYS, identified by the password CHANGE_
ON_INSTALL, is automatically created and granted the DBA role.

All of the base tables and views for the database’s data dictionary are stored in the
schema SYS. These base tables and views are critical for the operation of Oracle. To
maintain the integrity of the data dictionary, tables in the SYS schema are
manipulated only by Oracle; they should never be modified by any user or database
administrator, and no one should create any tables in the schema of the user SYS.
(However, you can change the storage parameters of the data dictionary settings if
necessary.)

Most database users should never be able to connect using the SYS account. You
can connect to the database using this account but should do so only when
instructed by Oracle personnel or documentation.

SYSTEM

When a database is created, the user SYSTEM, identified by the password
MANAGER, is also automatically created and granted all system privileges for the
database.

The SYSTEM username creates additional tables and views that display
administrative information, and internal tables and views used by Oracle tools.
Never create in the SYSTEM schema tables of interest to individual users.

The Oracle Database Administrator 1-5

Database Administrator Authentication

The DBA Role

A predefined role, named "DBA", is automatically created with every Oracle
database. This role contains all database system privileges. Therefore, it is very
powerful and should be granted only to fully functional database administrators.

Database Administrator Authentication

Database administrators must often perform special operations such as shutting
down or starting up a database. Because these operations should not be performed
by normal database users, the database administrator usernames need a more
secure authentication scheme.

This section includes the following topics:

« Selecting an Authentication Method

« Using Operating System Authentication
» OSOPER and OSDBA

« Using an Authentication Password File

Selecting an Authentication Method

The following methods for authenticating database administrators replace the
CONNECT INTERNAL syntax provided with earlier versions of Oracle
(CONNECT INTERNAL continues to be supported for backward compatibility

only):
« Operating system authentication
«» Password files

Depending on whether you wish to administer your database locally on the same
machine where the database resides or to administer many different databases from
a single remote client, you can choose between operating system authentication or
password files to authenticate database administrators. Figure 1-1 illustrates the
choices you have for database administrator authentication schemes.

1-6 Oracle8i Administrator's Guide

Database Administrator Authentication

Figure 1-1 Database Administrator Authentication Methods

Remote Database Local Database
Administration Administration

Do you Do you
have a secure want to use OS Use OS
connection? authentication? authentication
Use a

P | password file

On most operating systems, OS authentication for database administrators involves
placing the OS username of the database administrator in a special group (on UNIX
systems, this is the DBA group) or giving that OS username a special process right.

The database uses password files to keep track of database usernames that have
been granted administrator privileges.

See Also: More information on user authentication can be found
in Oracle8i Concepts.

Using Operating System Authentication

If you choose, you can have your operating system authenticate users performing
database administration operations.

1. Set up the user to be authenticated by the operating system.

2. Make sure that the initialization parameter, REMOTE_LOGIN_
PASSWORDFILE, is set to NONE, which is the default value for this parameter.

3. Authenticated users should now be able to connect to a local database, or to
connect to a remote database over a secure connection, by typing one of the
following SQL*Plus commands:

CONNECT/AS SYSOPER
CONNECT/AS SYSDBA

The Oracle Database Administrator 1-7

Database Administrator Authentication

If you successfully connect as INTERNAL using an earlier release of Oracle, you
should be able to continue to connect successfully using the new syntax shown in
Step 3.

Note: To connect as SYSOPER or SYSDBA using OS
authentication you do not need the SYSOPER or SYSDBA system
privileges. Instead, the server verifies that you have been granted
the appropriate OSDBA or OSOPER roles at the operating system
level.

CONNECT is an SQL*Plus command. For information on its usage
and syntax, see SQL*Plus User’s Guide and Reference.

OSOPER and OSDBA

Two special operating system roles control database administrator logins when
using operating system authentication: OSOPER and OSDBA.

OSOPER Permits the user to perform STARTUP, SHUTDOWN,
ALTER DATABASE OPEN/MOUNT, ALTER
DATABASE BACKUP, ARCHIVE LOG, and RECOVER,
and includes the RESTRICTED SESSION privilege.

OSDBA Contains all system privileges with ADMIN OPTION,
and the OSOPER role; permits CREATE DATABASE and
time-based recovery.

OSOPER and OSDBA can have different names and functionality, depending on
your operating system.

The OSOPER and OSDBA roles can only be granted to a user through the operating
system. They cannot be granted through a GRANT statement, nor can they be
revoked or dropped. When a user logs on with administrator privileges and
REMOTE_LOGIN_PASSWORDFILE is set to NONE, Oracle communicates with the
operating system and attempts to enable first OSDBA and then, if unsuccessful,
OSOPER. If both attempts fail, the connection fails. How you grant these privileges
through the operating system is operating system specific.

If you are performing remote database administration, you should consult your
Net8 documentation to determine if you are using a secure connection. Most
popular connection protocols, such as TCP/IP and DECnet, are not secure,
regardless of which version of Net8 you are using.

1-8 Oracle8i Administrator's Guide

Password File Administration

See Also: For information about OS authentication of database
administrators, see your operating system-specific Oracle
documentation.

Using an Authentication Password File

If you have determined that you need to use a password file to authenticate users
performing database administration, you must complete the steps outlined below.
Each of these steps is explained in more detail in the following sections of this
chapter.

1. Create the password file using the ORAPWD utility.
ORAPWD FILE= filename PASSWORDgassword ENTRIES= max_users
2. Setthe REMOTE_LOGIN_PASSWORDFILE initialization parameter to
EXCLUSIVE.

3. Add users to the password file by using SQL to grant the appropriate privileges
to each user who needs to perform database administration, as shown in the
following examples.

GRANT SYSDBA TO scott;
GRANT SYSOPER TO scott,

The privilege SYSDBA permits the user to perform the same operations as
OSDBA. Likewise, the privilege SYSOPER permits the user to perform the same
operations as OSOPER.

4. Privileged users should now be able to connect to the database by using a
command similar to the one shown below.

CONNECT scottfiger@accthg.com AS SYSDBA

Password File Administration

You can create a password file using the password file creation utility, ORAPWD
or, for selected operating systems, you can create this file as part of your standard
installation.

This section includes the following topics:
« Using ORAPWD
« Setting REMOTE_LOGIN_ PASSWORDFILE

The Oracle Database Administrator 1-9

Password File Administration

« Adding Users to a Password File
« Connecting with Administrator Privileges

« Maintaining a Password File

See Also: See your operating system-specific Oracle
documentation for information on using the installer utility to
install the password file.

Using ORAPWD

When you invoke the password file creation utility without supplying any
parameters, you receive a message indicating the proper use of the command as
shown in the following sample output:

orapwd
Usage: orapwd fle=<fname> password=<password> entries=<users>
where

file - name of password file (mand),

password - password for SYS and INTERNAL (mand),
entries - maximum number of distinct DBAs and OPERs (opt),
There are no spaces around the equal-to (=) character.

For example, the following command creates a password file named ACCT.PWD
that allows up to 30 privileged users with different passwords. The file is initially
created with the password SECRET for users connecting as SYSOPER or SYSDBA:

ORAPWD FILE=acctpwd PASSWORD=secret ENTRIES=30

Following are descriptions of the parameters in the ORAPWD utility.

FILE

This parameter sets the name of the password file being created. You must specify
the full pathname for the file. The contents of this file are encrypted, and the file is
not user-readable. This parameter is mandatory.

The types of file names allowed for the password file are operating system specific.
Some platforms require the password file to be a specific format and located in a
specific directory. Other platforms allow the use of environment variables to specify
the name and location of the password file. See your operating system-specific
Oracle documentation for the names and locations allowed on your platform.

If you are running multiple instances of Oracle using the Oracle Parallel Server, the
environment variable for each instance should point to the same password file.

1-10 Oracle8i Administrator's Guide

Password File Administration

WARNING: It is critically important to the security of your
system that you protect your password file and environment
variables that identify the location of the password file. Any user
with access to these could potentially compromise the security of
the connection.

PASSWORD

This parameter sets the password for SYSOPER and SYSDBA. If you issue the
ALTER USER statement to change the password after connecting to the database,
both the password stored in the data dictionary and the password stored in the
password file are updated. The INTERNAL user is supported for backwards
compatibility only. This parameter is mandatory.

ENTRIES

This parameter specifies the number of entries that you would like the password
file to accept. This corresponds to the number of distinct users allowed to connect to
the database as SYSDBA or SYSOPER. The actual number of entries that can be
entered may be somewhat higher, as the ORAPWD utility will continue to assign
password entries until an operating system block is filled. For example, if your
operating system block size is 512 bytes, it will hold 4 password entries and the
number of password entries allocated will always be a multiple of 4.

Entries can be reused as users are added to and removed from the password file. If
you intend to specify REMOTE_LOGON_PASSWORDFILE=EXCLUSIVE, and to
allow the granting of SYSOPER and SYSDBA privileges to users, this parameter is
required.

WARNING: When you exceed this limit, you must create a new
password file. To prevent this from happening, select a number
larger than you think you will ever need.

Setting REMOTE_LOGIN_ PASSWORDFILE

In addition to creating the password file, you must also set the initialization
parameter REMOTE_LOGIN_PASSWORDFILE to the appropriate value. The
values recognized are described below.

The Oracle Database Administrator 1-11

Password File Administration

Note: To start up an instance of a database, you must specify a
database name and a parameter file to initialize the instance
settings. You may specify a fully-qualified remote database name
using Net8. However, the initialization parameter file and any
associated files, such as a configuration file, must exist on the client
machine. That is, the parameter file must be on the machine from
which you are starting the instance.

NONE

Setting this parameter to NONE causes Oracle to behave as if the password file does
not exist. That is, no privileged connections are allowed over non-secure
connections. NONE is the default value for this parameter.

EXCLUSIVE

An EXCLUSIVE password file can be used with only one database. Only an
EXCLUSIVE file can contain the names of users other than SYSOPER and SYSDBA.
Using an EXCLUSIVE password file allows you to grant SYSDBA and SYSOPER
system privileges to individual users and have them connect as themselves.

SHARED

A SHARED password file can be used by multiple databases. However, the only
users recognized by a SHARED password file are SYSDBA and SYSOPER; you
cannot add users to a SHARED password file. All users needing SYSDBA or
SYSOPER system privileges must connect using the same name, SYS, and
password. This option is useful if you have a single DBA administering multiple
databases.

Suggestion: To achieve the greatest level of security, you should
set the REMOTE_LOGIN_PASSWORDFILE file initialization
parameter to EXCLUSIVE immediately after creating the password
file.

Adding Users to a Password File

When you grant SYSDBA or SYSOPER privileges to a user, that user’s name and
privilege information are added to the password file. If the server does not have an
EXCLUSIVE password file, that is, if the initialization parameter REMOTE_
LOGIN_PASSWORDFILE is NONE or SHARED, you receive an error message if
you attempt to grant these privileges.

1-12 Oracle8i Administrator's Guide

Password File Administration

A user’s name only remains in the password file while that user has at least one of
these two privileges. When you revoke the last of these privileges from a user, that
user is removed from the password file.

To Create a Password File and Add New Users to It
1. Follow the instructions for creating a password file.

2. Setthe REMOTE_LOGIN_PASSWORDFILE initialization parameter to
EXCLUSIVE.

3. Connect with SYSDBA privileges as shown in the following example:
CONNECT SYS/change_on_install AS SYSDBA

4. Start up the instance and create the database if necessary, or mount and open an
existing database.

5. Create users as necessary. Grant SYSOPER or SYSDBA privileges to yourself
and other users as appropriate.

6. These users are now added to the password file and can connect to the database
as SYSOPER or SYSDBA with a username and password (instead of using SYS).
The use of a password file does not prevent OS authenticated users from
connecting if they meet the criteria for OS authentication.

Granting and Revoking SYSOPER and SYSDBA Privileges
If your server is using an EXCLUSIVE password file, use the GRANT statement to

grant the SYSDBA or SYSOPER system privilege to a user, as shown in the
following example:

GRANT SYSDBA TO scott;

Use the REVOKE statement to revoke the SYSDBA or SYSOPER system privilege
from a user, as shown in the following example:

REVOKE SYSDBA FROM scott;

Because SYSDBA and SYSOPER are the most powerful database privileges, the
ADMIN OPTION is not used. Only users currently connected as SYSDBA (or
INTERNAL) can grant SYSDBA or SYSOPER system privileges to another user.
This is also true of REVOKE. These privileges cannot be granted to roles, since roles
are only available after database startup. Do not confuse the SYSDBA and SYSOPER
database privileges with operating system roles, which are a completely
independent feature.

The Oracle Database Administrator 1-13

Password File Administration

More information on system privileges is contained in Chapter 23, "Managing User
Privileges and Roles".

Listing Password File Members

Use the V$PWFILE_USERS view to determine which users have been granted
SYSDBA and SYSOPER system privileges for a database. The columns displayed by
this view are as follows:

USERNAME
The name of the user that is recognized by the password file.

SYSDBA
If the value of this column is TRUE, the user can log on with SYSDBA system
privileges.

SYSOPER
If the value of this column is TRUE, the user can log on with SYSOPER system
privileges.

Connecting with Administrator Privileges

When you connect with SYSOPER or SYSDBA privileges using a username and
password, you are connecting with a default schema, not the schema that is
generally associated with your username. For SYSDBA this schema is SYS; for
SYSOPER the schema is PUBLIC.

Connecting with Administrator Privileges: Example
For example, assume user SCOTT has issued the following statements:

CONNECT scottfiger

CREATE TABLE scott._test(name VARCHAR2(20));
Later, when SCOTT issues these statements:
CONNECT scottftiger AS SYSDBA

SELECT * FROM scott_test;

He receives an error that SCOTT_TEST does not exist. That is because SCOTT now
references the SYS schema by default, whereas the table was created in the SCOTT
schema.

1-14 Oracle8i Administrator's Guide

Password File Administration

Non-Secure Remote Connections

To connect to Oracle as a privileged user over a non-secure connection, you must
meet the following conditions:

« The server to which you are connecting must have a password file.

= You must be granted the SYSOPER or SYSDBA system privilege.

« You must connect using a username and password.

Local and Secure Remote Connections

To connect to Oracle as a privileged user over a local or a secure remote connection,
you must meet either of the following sets of conditions:

= You can connect using a password file, provided that you meet the criteria
outlined for non-secure connections in the previous bulleted list.

« If the server is not using a password file, or you have not been granted
SYSOPER or SYSDBA privileges and are therefore not in the password file,
your operating system name must be authenticated for a privileged connection
by the operating system. This form of authentication is operating system
specific.

More information on password file administration is contained in "Password File

Administration” on page 1-9.

See Also: Consult your operating system-specific Oracle
documentation for details on operating system authentication.

Maintaining a Password File

This section describes how to expand the number of password file users if the
password file becomes full and how to remove the password file, as well as how to
avoid changing the state of the password file.

Expanding the Number of Password File Users
If you receive the file full error (ORA-1996) when you try to grant SYSDBA or

SYSOPER system privileges to a user, you must create a larger password file and
re-grant the privileges to the users.
To Replace a Password File

1. Note which users have SYSDBA or SYSOPER privileges by querying the
V$PWFILE_USERS view.

The Oracle Database Administrator 1-15

Password File Administration

2. Shut down the database.
3. Delete the existing password file.

4. Follow the instructions for creating a new password file using the ORAPWD
utility in "Using ORAPWD" on page 1-10. Be sure to set the ENTRIES parameter
to a sufficiently large number.

5. Follow the instructions in "Adding Users to a Password File" on page 1-12.

Removing a Password File

If you determine that you no longer need to use a password file to authenticate
users, you can delete the password file and reset the REMOTE_LOGIN_
PASSWORDFILE initialization parameter to NONE. After removing this file, only
users who can be authenticated by the operating system can perform database
administration operations.

WARNING: Do not remove or modify the password file if you
have a database or instance mounted using REMOTE_LOGIN _
PASSWORDFILE=EXCLUSIVE (or SHARED). If you do, you
will be unable to reconnect remotely using the password file.
Even if you replace it, you cannot use the new password file,
because the timestamps and checksums will be wrong.

Changing the Password File State

The password file state is stored in the password file. When you first create a
password file, its default state is SHARED. You can change the state of the
password file by setting the parameter REMOTE_LOGIN_PASSWORDFILE. When
you start up an instance, Oracle retrieves the value of this parameter from the
initialization parameter file stored on your client machine. When you mount the
database, Oracle compares the value of this parameter to the value stored in the
password file. If these values do not match, the value stored in the file is
overwritten.

1-16 Oracle8i Administrator's Guide

Priorities of a Database Administrator

WARNING: You should use caution to ensure that an
EXCLUSIVE password file is not accidentally changed to
SHARED. If you plan to allow instance start up from multiple
clients, each of those clients must have an initialization
parameter file, and the value of the parameter REMOTE _
LOGIN_PASSWORDFILE must be the same in each of these
files. Otherwise, the state of the password file could change
depending upon where the instance was started.

Database Administrator Utilities

SQL*Loader

Several utilities are available to help you maintain and control the Oracle server.
The following topics are included in this section:
« SQL*Loader

« Exportand Import

See Also: Information about Oracle supplied utilities is contained
in Oracle8i Utilities

SQL*Loader is used by both database administrators and users of Oracle. It loads
data from standard operating system files (files in text or C data format) into Oracle
database tables.

Export and Import

The Export and Import utilities allow you to move existing data in Oracle format to
and from Oracle databases. For example, export files can archive database data, or
move data among different Oracle databases that run on the same or different
operating systems.

Priorities of a Database Administrator

In general, you must perform a series of steps to get the database system up and
running, and then maintain it. The steps are:

Step 1: Install the Oracle Software

The Oracle Database Administrator 1-17

Priorities of a Database Administrator

Step 2: Evaluate the Database Server Hardware
Step 3: Plan the Database

Step 4: Create and Open the Database

Step 5: Implement the Database Design

Step 6: Back Up the Database

Step 7: Enroll System Users

Step 8: Tune Database Performance

The following sections include details about each step.

Note: If migrating to a new release, back up your existing
production database before installation. For more information on
preserving your existing production database, see Oracle8i
Migration.

Step 1: Install the Oracle Software

As the database administrator, you must install the Oracle server software and any
front-end tools and database applications that access the database. In some
distributed processing installations, the database is controlled by a central computer
and the database tools and applications are executed on remote machines; in this
case, you must also install the Oracle Net8 drivers necessary to connect the remote
machines to the computer that executes Oracle.

For more information on what software to install, see "lIdentifying Your Oracle
Database Software Release" on page 1-21.

See Also: For specific requirements and instructions for
installation, see your operating system-specific Oracle
documentation and your installation guides for your front-end
tools and Net8 drivers.

Step 2: Evaluate the Database Server Hardware

After installation, evaluate how Oracle and its applications can best use the
available computer resources. This evaluation should reveal the following
information:

« How many disk drives are available to Oracle and its databases

1-18 Oracle8i Administrator's Guide

Priorities of a Database Administrator

« How many, if any, dedicated tape drives are available to Oracle and its
databases

« How much memory is available to the instances of Oracle you will run (see
your system’s configuration documentation)

Step 3: Plan the Database

As the database administrator, you must plan:
« The database’s logical storage structure

« The overall database design

« A backup strategy for the database

It is important to plan how the logical storage structure of the database will affect
system performance and various database management operations. For example,
before creating any tablespaces for your database, you should know how many
datafiles will make up the tablespace, where the datafiles will be physically stored
(on which disk drives), and what type of information will be stored in each
tablespace. When planning the database’s overall logical storage structure, take into
account the effects that this structure will have when the database is actually
created and running. Such considerations include how the database’s logical
storage structure will affect the following items:

« The performance of the computer executing Oracle
« The performance of the database during data access operations
« The efficiency of backup and recovery procedures for the database

Plan the relational design of the database’s objects and the storage characteristics for
each of these objects. By planning relationships between objects and the physical
storage of each object before creating it, you can directly impact the performance of
the database as a unit. Be sure to plan for the growth of the database.

In distributed database environments, this planning stage is extremely important.
The physical location of frequently accessed data can dramatically affect application
performance.

During the above planning phases, also plan a backup strategy for the database.
After developing this strategy, you might find that you want to alter the database’s
planned logical storage structure or database design to improve backup efficiency.

The Oracle Database Administrator 1-19

Priorities of a Database Administrator

It is beyond the scope of this book to discuss relational and distributed database
design; if you are not familiar with such design issues, refer to accepted
industry-standard books that explain these studies.

Part 111, "Database Storage" and Part IV, "Schema Objects" provide specific
information on creating logical storage structures, objects, and integrity constraints
for your database.

Step 4: Create and Open the Database

Once you have finalized the database design, you can create the database and open
it for normal use. You can create a database at installation time, using Oracle’s
Database Configuration Assistant, or you can supply your own scripts for creating a
database. Either way, refer to Chapter 2, "Creating an Oracle Database", for
information on creating a database and Chapter 3, "Starting Up and Shutting
Down" for guidance in starting up the database.

Step 5: Implement the Database Design

Once you have created and started the database, you can implement the database’s
planned logical structure by creating all necessary rollback segments and
tablespaces. Once this is built, you can create the objects for your database. Part I,
"Database Storage" and Part 1V, "Schema Objects" contain information which can
help you create logical storage structures and objects for your database.

Step 6: Back Up the Database

After you have created the database structure, carry out the planned backup
strategy for your database by creating any additional redo log files, taking the first
full database backup (online or offline), and scheduling future database backups at
regular intervals.

See Also: See the Oracle8i Backup and Recovery Guide or Oracle8i
Recovery Manager User’s Guide and Reference for instructions on
customizing your backup operations and performing recovery
procedures.

Step 7: Enroll System Users

Once you have backed up the database structure, you can begin to enroll the users
of the database in accordance with your Oracle license agreement, create roles for
these users, and grant appropriate roles to them.

1-20 Oracle8i Administrator's Guide

Identifying Your Oracle Database Software Release

The following chapters will help you in this endeavor:
« Chapter 21, "Establishing Security Policies"
« Chapter 22, "Managing Users and Resources"

« Chapter 23, "Managing User Privileges and Roles"

Step 8: Tune Database Performance

Optimizing the database system’s performance is one of your ongoing
responsibilities. Additionally, Oracle provides a database resource management
feature which allows you control how resources are allocated to various user
groups. The database resource manager is described in Chapter 25, "The Database
Resource Manager".

See Also: Oracle8i Designing and Tuning for Performance contains
information about tuning your database and applications.

|dentifying Your Oracle Database Software Release

Because Oracle products continue to evolve or maintenance is required to fix
problems and enhance functionality, new releases of the database server are the
result. It is normal that multiple releases are present at any point in time. To fully
identify a release, as many as five numbers may be required. The significance of
these numbers is discussed below.

Release Number Format

An Oracle database server distribution tape might be labeled "release 8.1.5.1.1". The
following will help you understand the release level nomenclature used by Oracle.

The Oracle Database Administrator 1-21

Identifying Your Oracle Database Software Release

Figure 1-2 Example of an Oracle Release Number

8.1.5.1.2
J L Platform specific

Version

number patch set number
New features Generic patch
release number set number

Maintenance release
number

Version Number

This is the most general identifier. It represents a major new edition (or version) of
the software and contains significant new functionality. Example: version 8 (may
also be identified as release 8.0).

New Features Release Number
This number represents a new features release level. Example: release 8.1.

Maintenance Release Number

This number represents a maintenance release level. A few new features may also
be included. Examples: release 8.0.4, release 8.1.6.

Generic Patch Set Number

This number identifies a generic patch set. The patch set is applicable across all
operating system and hardware platforms. Example: patch set release 8.1.5.2

Platform Specific Patch Set Number

This number represents a patch set that is applicable only to specific operating
system and hardware platforms. Example: patch set release 8.0.4.1.1.

Checking Your Current Release Number

To identify which release of the Oracle database server is currently installed, and to
see the release levels of other Oracle components you are using, query the data
dictionary view PRODUCT_COMPONENT_VERSION. A sample query is shown
below. Note that other product release levels may increment independently of the
database server.

1-22 Oracle8i Administrator's Guide

Identifying Your Oracle Database Software Release

SELECT * FROM product_component_version;

PRODUCT VERSION STATUS
CORE 81500 Production
NLSRTL 34000 Production
Oracle8i Enterprise Ediion 8.1.5.0.0 Production
PL/SQL 8.15.00 Production

TNS for 32-bit Windows: 8.1.5.00 Production
5 rows selected.

The information displayed by this query is important for reporting problems with

your software.

Optionally, you may query the V$VERSION view to see component level

information.

The Oracle Database Administrator

1-23

Identifying Your Oracle Database Software Release

1-24 Oracle8i Administrator's Guide

2

Creating an Oracle Database

This chapter discusses the process of creating an Oracle database, and includes the
following topics:

Considerations Before Creating a Database

The Oracle Database Configuration Assistant (DBCA)
Manually Creating an Oracle Database

Installation Parameters

Considerations After Creating a Database

Initial Tuning Guidelines
See Also: This chapter discussed the creation of a single instance
database. While much of this material is still relevant, for

information specific to an Oracle Parallel Server environment, see
the Oracle8i Parallel Server Setup and Configuration Guide.

Creating an Oracle Database 2-1

Considerations Before Creating a Database

Considerations Before Creating a Database

Database creation prepares several operating system files so they can work together
as an Oracle database. You need only create a database once, regardless of how
many datafiles it has or how many instances access it. Creating a database can also
erase information in an existing database and create a new database with the same
name and physical structure.

The following topics can help prepare you for database creation.

Planning for Database Creation
Creation Prerequisites

Deciding How to Create an Oracle Database

Planning for Database Creation
Consider the following actions as you plan for database creation:

Plan your database tables and indexes, and estimate how much space they will
require. Other chapters in this book contain information about creating various
database schema objects and can help you make these estimates, as can Oracle8i
Concepts.

Become familiar with the various installation parameters which will make up
your initialization parameter file. Information on some parameters is found in
"Installation Parameters" on page 2-16 and elsewhere in this book, but a
complete reference for initialization parameters is found in Oracle8i Reference.

Plan how to protect your new database from failures, including the
configuration of its online and archived redo log (and how much space it will
require), and a backup strategy. Online and archived redo logs are discussed in
Chapter 6, "Managing the Online Redo Log" and Chapter 7, "Managing
Archived Redo Logs". Other information necessary for planning a backup
strategy is contained in Oracle8i Backup and Recovery Guide.

Select the database character set. You must specify the database character set
when you create the database. All character data, including data in the data
dictionary, is stored in the database character set. If users access the database
using a different character set, the database character set should be the same as,
or a superset of, all character sets they use. National language support is the
subject of the Oracle8i National Language Support Guide.

Select your database block size. This is specified as an initialization parameter
and cannot be changed without recreating the database.

2-2 Oracle8i Administrator’'s Guide

Considerations Before Creating a Database

« Select your global database name. This name is specified in the CREATE
DATABASE statement, and is also specified by an initialization parameter.

Additionally, become familiar with the principles and options of starting up and
shutting down an instance and mounting and opening a database. These are the
topics of Chapter 3. Other methods may be discussed in your Oracle operating
system-specific documentation.

Creation Prerequisites
To create a new database, the following prerequisites must be met:

« The desired Oracle software is installed. This includes setting up various
environment variables unique to your operating system and establishing the
directory structure for software and database files.

= You have the operating system privileges associated with a fully operational
database administrator. You must be specially authenticated by your operating
system or through a password file, allowing you to startup and shutdown an
instance before the database is created or opened. This authentication is
discussed in "Database Administrator Authentication" on page 1-6.

« Sufficient memory is available to start the Oracle instance.

« There is sufficient disk storage space for the planned database on the computer
that executes Oracle.

All of these are discussed in the Oracle installation guide specific to your operating
system. Additionally, the Oracle Universal Installer will guide you through your
installation and provide help in setting up environment variables, directory
structure, and authorizations.

Deciding How to Create an Oracle Database
Creating a database includes the following operations:

« Creating information structures, including the data dictionary, that Oracle
requires to access and use the database

« Creating and initializing the control files and redo log files for the database
« Creating new datafiles or erasing data that existed in previous datafiles

You use the CREATE DATABASE statement to perform these operations, but other
actions are necessary before you have an operational database. A few of these
actions are creating user and temporary tablespaces, building views of the data

Creating an Oracle Database 2-3

The Oracle Database Configuration Assistant (DBCA)

dictionary tables, and installing Oracle built-in packages. This is why the database
creation process involves executing a prepared script. But, you do not necessarily
have to prepare this script yourself.

You have the following options for creating your new Oracle database:

Use the Oracle Database Configuration Assistant (DBCA)

DBCA is launched by the Oracle Universal Installer and can automatically
create a starter database for you. You have the option of using DBCA or not,
and you also have the option to create a custom database. Additionally, you can
launch DBCA as a stand-alone tool anytime you want to build a new database.
DBCA provides the simplest means of creating a database. See "The Oracle
Database Configuration Assistant (DBCA)" on page 2-4.

Create the database manually from a script

You might choose to create your database manually if you already have
existing scripts, or have different requirements than can be met by using DBCA.
Oracle provides a sample database creation script and a sample initialization
parameter file with the database software files it distributes, both of which can
be edited to suit your needs. See "Manually Creating an Oracle Database" on
page 2-9.

Migrate or upgrade an existing database

If you are using a previous release of Oracle, database creation is required only
if you want an entirely new database. Otherwise, you can migrate your existing
Oracle database managed by a previous version of Oracle and use it with the
new version of the Oracle software. Database migration is not discussed in this
book. The Oracle8i Migration manual contains information about migrating an
existing database.

The Oracle Database Configuration Assistant (DBCA)

DBCA is a graphical user interface (GUI) tool that interacts with the Oracle
Universal Installer, or can be used stand-alone, to simplify the creation of a
database. It is described in the following sections;

Advantages of Using DBCA
DBCA Modes for Database Creation

2-4 Oracle8i Administrator's Guide

The Oracle Database Configuration Assistant (DBCA)

Advantages of Using DBCA

Here are some of the advantages of using DBCA.

« It uses Optimal Flexible Architecture (OFA), whereby database files and
administrative files, including initialization files, follow standard naming and
placement practices.

« It's fast. A ready made database can be copied into place rather than going
through a lengthy creation process. It can be customized more later, if desired.

« Decisions have already been made for you. You do not need to spend time
deciding how to set parameters.

« It customizes your database for you. Even if you do not choose to copy the
starter database, you can still direct DBCA to generate a script that will create
an OLTP, Warehousing, or Multipurpose environment for your database. You
need answer only a few questions presented to you by DBCA. It will
automatically include MTS if you have over a specified number of users.

Descriptions of the types of databases created by DBCA (OLTP, Warehousing, and
Multipurpose) are presented in "ldentifying Your Database Environment” on
page 2-6.

You can create, delete, or modify databases using DBCA. The modify option is to
allow you to enable options that are not already enabled. Only the create database
option is discussed in this section.

DBCA Modes for Database Creation

When you run DBCA from the Oracle Universal Installer at installation, the
installation type that you select for the Oracle Universal Installer affects the type of
database (OLTP, Warehousing, or Multipurpose) that you can create. Here are the
installation types that the Oracle Universal Installer presents you with.

User Input Required for

Installation Types Database Creation
Minimal Extensive
« Typical X
« Minimal X
« Custom X X

Creating an Oracle Database 2-5

The Oracle Database Configuration Assistant (DBCA)

"Selecting the Database Creation Method" on page 2-6, outlines the type of
databases that can be created based upon your choice of installation type.

|dentifying Your Database Environment

Oracle Universal Installer enables you to create an Oracle8i database that operates
in one of the following environments. Identify the environment appropriate for
your Oracle8i database:

Environment Description
Online Transaction Many concurrent users performing numerous transactions
Processing (OLTP) requiring rapid access to data. Availability, speed,

concurrence, and recoverability are key issues.

Transactions consist of reading (SELECT statements),
writing (INSERT and UPDATE statements), and deleting
(DELETE statements) data in database tables.

Warehousing Users perform numerous, complex queries that process
large volumes of data. Response time, accuracy, and
(or DSS) A)
availability are key issues.

These queries (typically read-only) range from a simple
fetch of a few records to numerous complex queries that
sort thousands of records from many different tables.

Warehousing environments are also known as Decision
Support System [DSS]) environments

Multipurpose Both types of applications can access this database.

Selecting the Database Creation Method

The types of Oracle databases (OLTP, Warehousing, and Multipurpose) created
with the Typical, Minimal, and Custom installation types and the amount of user
input required are described below. Review these selections and identify the
database that best matches your database requirements and database creation
expertise:;

2-6 Oracle8i Administrator's Guide

The Oracle Database Configuration Assistant (DBCA)

If You Perform These Steps...

Then...

1.

Select the Typical installation
type.

Oracle Database Configuration Assistant automatically starts at the end of
installation and creates a preconfigured, ready-to-use Multipurpose starter
database with:

« Default initialization parameters

« Automatic installation and configuration of Oracle options and
interMedia components®

« Advanced replication capabilities

. Database configuration of multi-threaded server mode?
« Archiving mode of NOARCHIVELOG

No user input is required.

Select the Minimal
installation type.

Select Yes when prompted
to create a starter database.

Note: If you select No, all
server components except a
database are installed. You
can create your database
later by manually running
Oracle Database
Configuration Assistant or
with a SQL script. See the
Oracle8i Administrator’s
Guide for Windows NT for
instructions.

Note: A Multipurpose
database is also installable
through the Oracle Internet
Directory installation type.
That database is only for
storing Oracle Internet
Directory information.

Oracle Database Configuration Assistant automatically starts at the end of
installation and creates the same Oracle8i database that you receive with
Typical, with the following exceptions:

« Noinstallation and configuration of Oracle options and interMedia
components is available

« Database configuration of dedicated server mode

Creating an Oracle Database 2-7

The Oracle Database Configuration Assistant (DBCA)

If You Perform These Steps... Then...

1. Select the Custom If You Select the Custom database creation method...

installation type. Oracle Database Configuration Assistant guides you in the creation of a

2. Select Oracle Server and database fully customized to match the environment (OLTP, Warehousing,
additional products inthe or Multipurpose) and database configuration mode (dedicated server or
Auvailable Products window. multi-threaded server) you select. Options and interMedia components (if

installed) and advanced replication (if selected) are also automatically

configured. Select this option only if you are experienced with advanced
database creation procedures, such as customizing:

3. Select Yes when prompted
to create a starter database.

4. Oracle Database
Configuration Assistant
prompts you to select either « Tablespace and extent sizes
of two database creation

. Data, control, and redo log file settings

. Database memory parameters

methods:

= Archiving modes, formats, and destinations
« Custom « Trace file destinations
« Typical « Character set values

If You Select the Typical database creation method...

You have two choices. Oracle Database Configuration Assistant’s role in
database creation depends on your selection:

If you select...

« Copy existing files from CD

Oracle Database Configuration Assistant creates the same Oracle8i
database as described under Typical on the previous page. Options
and interMedia components (if installed) are also automatically

configured. No user input is required.
« Create new database files

Oracle Database Configuration Assistant prompts you to answer
several questions, including selecting a database environment
(OLTP, Warehousing, or Multipurpose) and specifying the number
of concurrent connections. Oracle Database Configuration Assistant
then dynamically creates a database. Options and interMedia
components (if installed) and advanced replication (if selected) are

also automatically configured.®

Oracle Database Configuration Assistant only configures options that were installed through Oracle Universal Installer.

See Chapter 5 of Oracle8i Administrator’s Guide for Windows NT for descriptions of dedicated server mode and multi-threaded
server mode (also known as shared server mode).

If you selected Oracle JServer for installation, the database is created in multi-threaded server mode for [IOP clients.

If you select OLTP as your database environment and enter 20 or more for the number of concurrent database connections,
your database is created in multi-threaded server mode. Otherwise, the server mode is dedicated.

2-8 Oracle8i Administrator’'s Guide

Manually Creating an Oracle Database

Manually Creating an Oracle Database

Manually creating a database can best be illustrated by examining a sample
database creation script. But you should also be aware of the steps to follow in
creating your database, and what to do if things go wrong or you change your
mind.

This section discusses:

Steps for Creating an Oracle Database
Examining a Database Creation Script
Troubleshooting Database Creation

Dropping a Database

Steps for Creating an Oracle Database

These steps, which describe how to create an Oracle database, should be followed in
the order presented. You will previously have created an environment for creating
your Oracle database, including operating-system-dependent environmental
variables, as part of the Oracle software installation process.

To Create a New Database and Make It Available for System Use

1.

Decide on your instance identifier (DB_NAME and SID).

The Oracle instance identifier should match the name of the database (the value
of DB_NAME). This identifier is used to avoid confusion with other Oracle
instances that you may create later and run concurrently on your system.

See your operating system-specific Oracle documentation for more information.
Create the initialization parameter file.

The instance (System Global Area and background processes) for any Oracle
database is started using an initialization parameter file. To create a parameter
file for the database you are about to make, use your operating system to make
a copy of the initialization parameter file that Oracle provides on the
distribution media. Give this copy a new filename. You can then edit and
customize this new file for the new database. See "Installation Parameters" on
page 2-16 for suggestions on which parameters you may want to edit. Also see
"Using Initialization Parameter Files" on page 3-15.

Creating an Oracle Database 2-9

Manually Creating an Oracle Database

Each database on your system should have at least one customized
initialization parameter file that corresponds only to that database. Do not use
the same file for several databases.

Note: In distributed processing environments, Enterprise
Manager is often executed from a client machine of the network. If
a client machine is being used to execute Enterprise Manager and
create a new database, you need to copy the new initialization
parameter file (currently located on the computer executing Oracle)
to your client workstation. This procedure is operating system
dependent. For more information about copying files among the
computers of your network, see your operating system-specific
Oracle documentation.

Enterprise Manager is not discussed in this book. It is described
briefly in "Using Oracle Enterprise Manager" on page 3-4

3. Start SQL*Plus and connect to your Oracle instance as SYSDBA.
This example assumes that you have proper authorization.
$ SQLPLUS /nolog
CONNECTusemame/password ~ AS sysdba

4. Start an instance.

You can start an instance without mounting a database; typically, you do so
only during database creation. Use the STARTUP statement with the
NOMOUNT option. If no PFILE is specified, the initialization parameter file is
read from an operating system specific default location.

STARTUP NOMOUNT;
The STARTUP statement is discussed in Chapter 3, "Starting Up and Shutting
Down".

At this point, there is no database. Only an SGA and background processes are
started in preparation for the creation of a new database.

5. Create the database.

To create the new database, use the SQL CREATE DATABASE statement,
optionally setting parameters within the statement to name the database,

2-10 Oracle8i Administrator's Guide

Manually Creating an Oracle Database

establish maximum numbers of files, name the files and set their sizes, and so
on.

To make the database functional, you will need to create additional files and
tablespaces. This is usually done by running a database creation script. See
"Examining a Database Creation Script” on page 2-11.

6. Run the scripts necessary to build views, synonyms, etc.
The primary scripts that you must run are;

« CATALOG.SQL—-creates the views of data dictionary tables and the
dynamic performance views

« CATPROC.SQL—establishes the usage of PL/SQL functionality and creates
many of the PL/SQL Oracle supplied packages

See your Oracle installation guide for your operating system for the location of
these scripts.

The scripts that you run are determined by the features and options you choose
to use or install. Many of the scripts available to you are described in the
Oracle8i Reference.

7. Back up the database.

You should make a full backup of the database to ensure that you have a
complete set of files from which to recover if a media failure occurs. For
information on backing up a database, see the Oracle8i Backup and Recovery
Guide.

See Also: These steps provide general information about
database creation on all operating systems. See your operating
system-specific Oracle documentation for information about
creating databases on your platform.

Examining a Database Creation Script

This section examines and explains a database creation script, similar to sample
scripts distributed with your operating system.

The Database Creation Script

Here is a sample database creation script which creates database RBDB1. See the
next section, "Interpreting the Script”, for a narrative interpreting the script.

— Create database

Creating an Oracle Database 2-11

Manually Creating an Oracle Database

CREATE DATABASE rbdbl
CONTROLFILE REUSE
LOGFILE ‘fu0l/oracle/rbdbl/redo0l.log' SIZE 1M REUSE,
lu0l/oracle/bdbliredo02.log' SIZE 1M REUSE,
lu0l/oracle/bdbliredo03.log' SIZE 1M REUSE,
lu0L/oracle/bdbliredo04.log' SIZE 1M REUSE
DATAFILE ‘/u0l/oracle/rbdbl/system01.dbf SIZE 10M REUSE
AUTOEXTEND ON
NEXT 10M MAXSIZE 200M
CHARACTER SET WESISO8859P1,

— Create another (temporary) system tablespace
CREATE ROLLBACK SEGMENT bh_temp STORAGE (INITIAL 100 k NEXT 250K);

— Alter temporary system tablespace online before proceding
ALTER ROLLBACK SEGMENT rh_temp ONLINE;

— Create additional tablespaces ...
—RBS: For rollback segments
—USERSs: Create user sets this as the default tablespace
— TEMP: Create user sets this as the temporary tablespace
CREATE TABLESPACE rbs
DATAFILE ‘Ju0L/oracle/rbdblirbs01.dbf SIZE 5SM REUSE AUTOEXTEND ON
NEXT 5M MAXSIZE 150M;
CREATE TABLESPACE users
DATAFILE ‘fu0l/oracle/rbdbl/iusersO1.dbf SIZE 3M REUSE AUTOEXTEND ON
NEXT 5M MAXSIZE 150M;
CREATE TABLESPACE temp
DATAFILE ‘fu0l/oracle/bdbltempOl.dbf SIZE 2M REUSE AUTOEXTEND ON
NEXT 5M MAXSIZE 150M;

— Create rollback segments.

CREATE ROLLBACK SEGMENT b1 STORAGE(INITIAL 50K NEXT 250K)
tablespace 1hbs;

CREATE ROLLBACK SEGMENT b2 STORAGE(INITIAL 50K NEXT 250K)
tablespace 1bs;

CREATE ROLLBACK SEGMENT b3 STORAGE(INITIAL 50K NEXT 250K)
tablespace 1bs;

CREATE ROLLBACK SEGMENT rb4 STORAGE(INITIAL 50K NEXT 250K)
tablespace 1s;

— Bring new rollback segments online and drop the temporary system one
ALTER ROLLBACK SEGMENT b1 ONLINE;
ALTER ROLLBACK SEGMENT b2 ONLINE;
ALTER ROLLBACK SEGMENT rb3 ONLINE;

2-12 Oracle8i Administrator’'s Guide

Manually Creating an Oracle Database

ALTER ROLLBACK SEGMENT 4 ONLINE;

ALTER ROLLBACK SEGMENT r_temp OFFLINE;
DROP ROLLBACK SEGMENT rh_temp;

Interpreting the Script
The above database creation script is interpreted here.

The CREATE DATABASE Statement

CREATE DATABASE rbdbl
CONTROLFILE REUSE
LOGFILE ‘Ju0l/oracle/bdbliredo0l.log' SIZE 1M REUSE,
lu0l/oracle/bdbliredo02.log' SIZE 1M REUSE,
lu0L/oracle/bdbliredo03.log' SIZE 1M REUSE,
lu0l/oracle/bdbliredo04.log' SIZE 1M REUSE
DATAFILE /u0l/oracle/rbdbl/system01.dbf SIZE 10M REUSE
AUTOEXTEND ON
NEXT 10M MAXSIZE 200M
CHARACTER SET WEBISO8859P1;

When you execute a CREATE DATABASE statement, Oracle performs the
following operations:

« Creates the datafiles for the database.

« Creates the control files for the database. See Chapter 5, "Managing Control
Files".

« Creates the redo log files for the database. See Chapter 6, "Managing the Online
Redo Log".

» Creates the SYSTEM tablespace and the SYSTEM rollback segment.
« Creates the data dictionary.

« Creates the users SYS and SYSTEM. See "Database Administrator Usernames"
on page 1-4.

« Specifies the character set that stores data in the database
« Mounts and opens the database for use

The values of the MAXLOGFILES, MAXLOGMEMBERS, MAXDATAFILES,
MAXLOGHISTORY, and MAXINSTANCES options in this example assume the
default values, which are operating system-dependent. The database is mounted in
the default modes NOARCHIVELOG and EXCLUSIVE and then opened.

Creating an Oracle Database 2-13

Manually Creating an Oracle Database

The items and information in the example statement above result in creating a
database with the following characteristics:

« The new database is named RBDBI.

« The SYSTEM tablespace of the new database is comprised of one 10 MB
datafile: /u0l/oraclefbdbl/systemO1.dof

« The new database has four redo log files of 1 MB

« The new database does not overwrite any existing control files specified in the
parameter file.

« The WE8SISO8859P1character set is used.

Note: You can set several limits during database creation. Some of
these limits are also subject to superseding limits of the operating
system and can affect each other. For example, if you set
MAXDATAFILES, Oracle allocates enough space in the control file
to store MAXDATAFILES filenames, even if the database has only
one datafile initially; because the maximum control file size is
limited and operating system dependent, you might not be able to
set all CREATE DATABASE parameters at their theoretical
maximums.

For more information about setting limits during database creation,
see the Oracle8i SQL Reference and your operating system-specific
Oracle documentation.

See Also: For information about the CREATE DATABASE
statement, character sets, and database creation see the Oracle8i
SQL Reference.

Creating Another System Rollback Segment

CREATE ROLLBACK SEGMENT rb_temp STORAGE (INITIAL 100 k NEXT 250 k);
ALTER ROLLBACK SEGMENT rb_temp ONLINE;

These statements create a temporary system rollback segment to use while other
database tablespaces are being created. For a discussion of rollback segments, see
Chapter 11, "Managing Rollback Segments".

Creating a Tablespace for Rollback Segments

2-14 Oracle8i Administrator's Guide

Manually Creating an Oracle Database

CREATE TABLESPACE rbs
DATAFILE ‘fu0l/oracle/rbdbl/irbs01.dbf SIZE 5SM REUSE AUTOEXTEND ON
NEXT 5M MAXSIZE 150M;

This statement creates the tablespace to hold rollback segments. See Chapter 9,
"Managing Tablespaces" and Chapter 11, "Managing Rollback Segments".

Creating a Users Tablespace

CREATE TABLESPACE users
DATAFILE ‘fu0l/oracle/tbdbl/usersO1.dbf SIZE 3M REUSE AUTOEXTEND ON
NEXT 5M MAXSIZE 150M;

This statement creates a tablespace that can be assigned as a default tablespace in
user profiles. See Chapter 9, "Managing Tablespaces" and "Assigning a Default
Tablespace" on page 22-16.

Creating a Temporary Tablespace

CREATE TABLESPACE temp
DATAFILE ‘fu0l/oracle/tbdbltempOl.dbf SIZE 2M REUSE AUTOEXTEND ON
NEXT 5M MAXSIZE 150M;

A temporary tablespace has a special usage for sort operations. A user can be
assigned this temporary tablespace in a user profile. See Chapter 9, "Managing
Tablespaces" and "Assigning a Default Tablespace" on page 22-16.

Creating Rollback Segments

CREATE ROLLBACK SEGMENT b1 STORAGE(INITIAL 50K NEXT 250K)
tablespace 1s;

CREATE ROLLBACK SEGMENT 2 STORAGE(INITIAL 50K NEXT 250K)
tablespace 1hs;

CREATE ROLLBACK SEGMENT b3 STORAGE(INITIAL 50K NEXT 250K)
tablespace 1bs;

CREATE ROLLBACK SEGMENT b4 STORAGE(INITIAL 50K NEXT 250K)
tablespace 1s;

— Bring new rallback segments online and drop the temporary system one
ALTER ROLLBACK SEGMENT b1 ONLINE;
ALTER ROLLBACK SEGMENT b2 ONLINE;
ALTER ROLLBACK SEGMENT 3 ONLINE;
ALTER ROLLBACK SEGMENT b4 ONLINE;

ALTER ROLLBACK SEGMENT r_temp OFFLINE;

Creating an Oracle Database 2-15

Installation Parameters

DROP ROLLBACK SEGMENT rb_temp ;

This series of statements creates the rollback segments to be used for user
transactions. When initially created, they are OFFLINE. They must explicitly be
brought online. Also, the temporary system rollback segment now is taken offline
and then dropped.

For more information, see Chapter 11, "Managing Rollback Segments".

Troubleshooting Database Creation

If for any reason database creation fails, shut down the instance and delete any files
created by the CREATE DATABASE statement before you attempt to create it once
again.

After correcting the error that caused the failure of the database creation, try
running the script again.

Dropping a Database

To drop a database, remove its datafiles, redo log files, and all other associated files
(control files, parameter files, archived log files).

To view the names of the database’s datafiles and redo log files, query the data
dictionary views V$DATAFILE and V$LOGFILE.

See Also: For more information about these views, see the
Oracle8i Reference.

Installation Parameters

As stated in the steps for creating a database, you will want to edit the Oracle
supplied initialization parameter file. Oracles intent is to provide appropriate
values in this starter initialization parameter file; it is suggested that you alter a
minimum of parameters. As you become more familiar with your database and
environment, you can dynamically tune many of these parameters with the ALTER
SYSTEM statement. Any of these altered parameters that you wish to make
permanent, should be updated in the initialization parameter file.

The following topic are discussed in this section:
« A Sample Initialization File

« Editing the Initialization Parameter File

2-16 Oracle8i Administrator's Guide

Installation Parameters

See Also: For more information about initialization parameters
and descriptions of all of the parameters, see the Oracle8i Reference.

A Sample Initialization File

Listed here is a sample of an Oracle supplied initialization parameter file that has
been edited as the parameter file that can be used with the RBDB1 database. You
will note that, within the script, Oracle has provided guidance for the settings of the
initialization parameters.

#Example INIT.ORA file

#

This file is provided by Oracle Corporation to help you customize
#your RDBMS installation for your site. Important system parameters
are discussed, and example settings given.

#

Some parameter settings are generic to any size installation.

For parameters that require different values in different size
#installations, three scenarios have been provided: SMALL, MEDIUM
#and LARGE. Any parameter that needs to be tuned according to
#installation size will have three settings, each one commented

according to installation size.

#

Use the following table to approximate the SGA size needed for the
#three scenarious provided in this file:

#
—lnstallation/Database Size—
SMALL MEDIUM LARGE

Block 2K 4500K 6800K 17000K

Size 4K 5500K 8800K 21000K

#

To set up a database that multiple instances will be using, place

allinstance-specific parameters in one file, and then have all

of these files point to a master file using the IFILE command.

This way, when you change a public

parameter, it will automatically change on all instances. Thisis
#necessary, since all instances must run with the same value for many

parameters. For example, if you choose to use private rollback segments,
#these must be specified in different files, but since all gc_*

parameters must be the same on all instances, they should be in one file.
#

#INSTRUCTIONS: Edit this file and the other INIT files it calls for

#your site, either by using the values provided here or by providing

#your own. Then place an IFILE= line into each instance-specific

Creating an Oracle Database 2-17

Installation Parameters

#INIT file that points at this file.

#

#NOTE: Parameter values suggested in this file are based on conservative

estimates for computer memory availability. You should adjust values upward
#for modem machines.

#

db_name =RBDB1

db_fles=1024 #INITIAL
#db,_fles=80 #SMALL

#db_files =400 #MEDIUM
#db,_files = 1500 #LARGE

control_files = ('/u0L/oracle/bdbl/control0l.ct”,

"lu0L/oracle/bdbl/control02.cti”)
db_file_multiblock_read _count=8 #INITIAL
#db fle_multiblock read count=8 #SMALL
#db_fle mulblock read count=16 #MEDIUM
#db_file_multiblock read count=32 #LARGE
db_block_buffers =8192 #INITIAL
#db_block_buffers =100 #SMALL
#db_block_buffers =550 #MEDIUM
#db_block_buffers =3200 #LARGE
shared_pool_size =15728640 #INITIAL
shared_pool_size = 3500000 #SMALL
shared_pool_size = 5000000 #MEDIUM
shared_pool_size = 9000000 #LARGE

log_checkpoint_interval = 10000
log_checkpoint_timeout = 1800

processes =59 #INITIAL

processes =50 #SMALL

processes = 100 #MEDIUM

processes =200 #LARGE
parallel_max_servers=5 #SMALL

parallel_max_servers =4 x (number of CPUS) #MEDIUM
parallel_max_servers =4 x (number of CPUS) #LARGE

2-18 Oracle8i Administrator’'s Guide

Installation Parameters

log_buffer = 32768 #INITIAL
#log_buffer =32768 #SMALL
#log_buffer =32768 #MEDIUM
#log_buffer = 163840 #LARGE

#audit_trail =true # if you want auditing
#imed_statistics =true # if you want timed statistics
max_dump _file_size = 10240 # limit trace file size to 5M each

Uncommenting the line below will cause automatic archiving if archiving has
been enabled using ALTER DATABASE ARCHIVELOG.
#log_archive_start=true

#log_archive_dest 1 ="location=/u0L/oracle/bdbl/archive"
#log_archive_format = "%0%RBDB1%%T%TS%S.ARC"

If using private rollback segments, place lines of the following
#form in each of your instance-specific initora files:
rollback_segments = (b1, b2, b3, rh4)

If using public rollback segments, define how many

rollback segments each instance will pick up, using the formula

of rollback segments =transactions / transactions_per_rollback_segment
In this example each instance will grab 40/5 =8

#transactions =40

#transactions_per_rollback_segment=5

Global Naming — enforce that a dblink has same name as the db it connects to
global_names=true

Edit and uncomment the following line to provide the suffix that will be

appended to the db_name parameter (separated with a dot) and stored as the
global database name when a database is created. If your site uses

Intemet Domain names for e-mail, then the part of your e-mail address after
#the'@'is a good candidate for this parameter value.

db_domain = us.acme.com

#global database name is db_name.db_domain

compatible =8.1.0

Editing the Initialization Parameter File

To create a new database, these are some of the initialization parameters that you
will want to edit. Depending upon your configuration and options, and how you
want to tune your database, there can be other initialization parameters for you to

Creating an Oracle Database 2-19

Installation Parameters

edit or add. Many of these other initialization parameters are discussed throughout
this book.

You should also add the appropriate license initialization parameter(s).
These parameters are described in the following sections:

« DB_NAME and DB_DOMAIN

« CONTROL_FILES

. DB_BLOCK_SIZE

« DB_BLOCK_BUFFERS

« PROCESSES

« ROLLBACK_SEGMENTS

« License Parameters

DB_NAME and DB_DOMAIN

A database’s global database name (name and location within a network structure) is
created by setting both the DB_NAME and DB_DOMAIN parameters before database
creation. After creation, the database’s name cannot be easily changed, as you must also
recreate the control file. The DB_NAME parameter determines the local name
component of the database’s name, while the DB_ DOMAIN parameter indicates the
domain (logical location) within a network structure. The combination of the settings for
these two parameters should form a database name that is unique within a network. For
example, to create a database with a global database name of TEST.US.ACME.COM, edit
the parameters of the new parameter file as follows:

DB_NAME =TEST
DB_DOMAIN =US ACME.COM

DB_NAME must be set to a text string of no more than eight characters. During
database creation, the name provided for DB_NAME is recorded in the datafiles,
redo log files, and control file of the database. If during database instance startup
the value of the DB_NAME parameter (of the parameter file) and the database
name in the control file are not the same, the database does not start.

DB_DOMAIN is a text string that specifies the network domain where the database
is created; this is typically the name of the organization that owns the database. If
the database you are about to create will ever be part of a distributed database
system, pay special attention to this initialization parameter before database
creation.

2-20 Oracle8i Administrator's Guide

Installation Parameters

See Also: For more information about distributed databases, see
Oracle8i Distributed Database Systems.

CONTROL_FILES

Include the CONTROL_FILES parameter in your new parameter file and set its
value to a list of control filenames to use for the new database. If you want Oracle to
create new operating system files when creating your database’s control files, make
sure that the filenames listed in the CONTROL_FILES parameter do not match any
filenames that currently exist on your system. If you want Oracle to reuse or
overwrite existing files when creating your database’s control files, make sure that
the filenames listed in the CONTROL_FILES parameter match the filenames that
currently exist.

WARNING: Use extreme caution when setting this option. If you
inadvertently specify a file that you did not intend and execute
the CREATE DATABASE statement, the previous contents of that
file will be overwritten.

If no filenames are listed for the CONTROL_FILES parameter, Oracle uses a default
filename.

Oracle Corporation strongly recommends you use at least two control files stored
on separate physical disk drives for each database. Therefore, when specifying the
CONTROL_FILES parameter of the new parameter file, follow these guidelines:

« Listat least two filenames for the CONTROL_FILES parameter.

« Place each control file on a separate physical disk drives by fully specifying
filenames that refer to different disk drives for each filename.

Note: The file specification for control files is operating
system-dependent. Regardless of your operating system, always
fully specify filenames for your control files.

When you execute the CREATE DATABASE statement (in Step 7), the control files
listed in the CONTROL_FILES parameter of the parameter file will be created.

Creating an Oracle Database 2-21

Installation Parameters

See Also: The default filename for the CONTROL_FILES
parameter is operating system-dependent. See your operating
system-specific Oracle documentation for details.

DB_BLOCK_SIZE

The default data block size for every Oracle server is operating system-specific. The
Oracle data block size is typically either 2K or 4K. Generally, the default data block
size is adequate. In some cases, however, a larger data block size provides greater

efficiency in disk and memory 170 (access and storage of data). Such cases include:

« Oracle is on a large computer system with a large amount of memory and fast
disk drives. For example, databases controlled by mainframe computers with
vast hardware resources typically use a data block size of 4K or greater.

« The operating system that runs Oracle uses a small operating system block size.
For example, if the operating system block size is 1K and the data block size
matches this, Oracle may be performing an excessive amount of disk 170
during normal operation. For best performance in this case, a database block
should consist of multiple operating system blocks.

Each database’s block size is set during database creation by the initialization
parameter DB_BLOCK_SIZE. The block size cannot be changed after database creation
except by re-creating the database. If a database’s block size is different from the
operating system block size, make the database block size a multiple of the operating
system’s block size.

For example, if your operating system’s block size is 2K (2048 bytes), the following
setting for the DB_BLOCK_SIZE initialization parameter would be valid:

DB_BLOCK_SIZE=4096

DB _BLOCK_SIZE also determines the size of the database buffers in the buffer
cache of the System Global Area (SGA).

See Also: For details about your default block size, see your
operating system-specific Oracle documentation.

DB_BLOCK_BUFFERS

This parameter determines the number of buffers in the buffer cache in the System
Global Area (SGA). The number of buffers affects the performance of the cache.
Larger cache sizes reduce the number of disk writes of modified data. However, a
large cache may take up too much memory and induce memory paging or
swapping.

2-22 Oracle8i Administrator's Guide

Installation Parameters

Estimate the number of data blocks that your application accesses most frequently,
including tables, indexes, and rollback segments. This estimate is a rough
approximation of the minimum number of buffers the cache should have. Typically,
1000 to 2000 is a practical minimum for the number of buffers.

See Also: For more information about tuning the buffer cache, see
Oracle8i Designing and Tuning for Performance.

PROCESSES

This parameter determines the maximum number of operating system processes
that can be connected to Oracle concurrently. The value of this parameter must
include 5 for the background processes and 1 for each user process. For example, if
you plan to have 50 concurrent users, set this parameter to at least 55.

ROLLBACK_SEGMENTS

This parameter is a list of the rollback segments an Oracle instance acquires at
database startup. List your rollback segments as the value of this parameter.

Note: After installation, you must create at least one rollback
segment in the SYSTEM tablespace in addition to the SYSTEM
rollback segment before you can create any schema objects.

License Parameters

Oracle helps you ensure that your site complies with its Oracle license agreement. If
your site is licensed by concurrent usage, you can track and limit the number of
sessions concurrently connected to an instance. If your site is licensed by named
users, you can limit the number of named users created in a database. To use this
facility, you need to know which type of licensing agreement your site has and
what the maximum number of sessions or named users is. Your site might use
either type of licensing (session licensing or named user licensing), but not both.

For more information about managing licensing, see "Session and User Licensing"
on page 22-2.

LICENSE_MAX_SESSIONS and LICENSE _SESSIONS WARNING You can set a limit on the
number of concurrent sessions that can connect to a database on the specified
computer. To set the maximum number of concurrent sessions for an instance, set
the parameter LICENSE_MAX_SESSIONS in the parameter file that starts the
instance, as shown in the following example:

Creating an Oracle Database 2-23

Considerations After Creating a Database

LICENSE_MAX_SESSIONS =80

In addition to setting a maximum number of sessions, you can set a warning limit
on the number of concurrent sessions. Once this limit is reached, additional users
can continue to connect (up to the maximum limit), but Oracle sends a warning for
each connecting user. To set the warning limit for an instance, set the parameter
LICENSE_SESSIONS_WARNING. Set the warning limit to a value lower than
LICENSE_MAX_SESSIONS.

For instances running with the Parallel Server, each instance can have its own
concurrent usage limit and warning limit. However, the sum of the instances’ limits
must not exceed the site’s session license.

See Also: For more information about setting licensing limits
when using the Parallel Server, see the Oracle8i Parallel Server
Administration, Deployment, and Performance and Oracle8i Parallel
Server Setup and Configuration Guide.

LICENSE_MAX_USERS You can set a limit on the number of users created in the
database. Once this limit is reached, you cannot create more users.

Note: This mechanism assumes that each person accessing the
database has a unique user name and that no people share a user
name. Therefore, so that named user licensing can help you ensure
compliance with your Oracle license agreement, do not allow
multiple users to log in using the same user name.

To limit the number of users created in a database, set the LICENSE_MAX_USERS
parameter in the database’s parameter file, as shown in the following example:

LICENSE_MAX_ USERS =200

For instances running with the Parallel Server, all instances connected to the same
database should have the same named user limit.

Considerations After Creating a Database

After you create a database, the instance is left running, and the database is open
and available for normal database use. If more than one database exists in your
database system, specify the parameter file to use with any subsequent database
startup.

2-24 Oracle8i Administrator's Guide

Initial Tuning Guidelines

If you plan to install other Oracle products to work with this database, see the
installation instructions for those products; some products require you to create
additional data dictionary tables. See your operating system-specific Oracle
documentation for the additional products. Usually, command files are provided to
create and load these tables into the database’s data dictionary.

The Oracle server distribution media can include various SQL files that let you
experiment with the system, learn SQL, or create additional tables, views, or
synonyms.

A newly created database has only two users, SYS and SYSTEM. The passwords for
these two usernames should be changed soon after the database is created. For
more information about the users SYS and SYSTEM see "Database Administrator
Usernames" on page 1-4.

For information about changing a user’s password see "Altering Users" on
page 22-18.

Initial Tuning Guidelines

You can make a few significant tuning alterations to Oracle immediately following
installation. By following these instructions, you can reduce the need to tune Oracle
when it is running. This section gives recommendations for the following
installation issues:

« Allocating Rollback Segments
« Choosing the Number of DB_BLOCK_LRU_LATCHES
« Distributing 170

See Also: For more information on tuning any of these
initialization parameters, see Oracle8i Designing and Tuning for
Performance.

Allocating Rollback Segments

Proper allocation of rollback segments makes for optimal database performance.
The size and number of rollback segments required for optimal performance
depends on your application. Oracle8i Designing and Tuning for Performance contains
some general guidelines for choosing how many rollback segments to allocate based on the
number of concurrent transactions on your Oracle server. These guidelines are appropriate
for most application mixes.

Creating an Oracle Database 2-25

Initial Tuning Guidelines

To create rollback segments, use the CREATE ROLLBACK SEGMENT statement.
The size of your rollback segment can also affect performance. Rollback segment
size is determined by the storage parameters in the CREATE ROLLBACK
SEGMENT statement. Your rollback segments must be large enough to hold the
rollback entries for your transactions.

Choosing the Number of DB_BLOCK_LRU_LATCHES

Distributing 1/0

Contention for the LRU (least recently used) latch can impede performance on
symmetric multiprocessor (SMP) machines with a large number of CPUs. The LRU
latch controls the replacement of buffers in the buffer cache. For SMP systems,
Oracle automatically sets the number of LRU latches to be one half the number of
CPUs on the system. For non-SMP systems, one LRU latch is sufficient.

You can specify the number of LRU latches on your system with the initialization
parameter DB_BLOCK_LRU_LATCHES. This parameter sets the maximum value
for the desired number of LRU latches. Each LRU latch will control a set of buffers and
Oracle balances allocation of replacement buffers among the sets.

Proper distribution of 1/0 can improve database performance dramatically. 1/0
can be distributed during installation of Oracle. Distributing I/0 during installation
can reduce the need to distribute 1/0 later when Oracle is running.

There are several ways to distribute 1/0 when you install Oracle;
« Redo log file placement

« Datafile placement

« Separation of tables and indexes

« Density of data (rows per data block)

2-26 Oracle8i Administrator's Guide

3

Starting Up and Shutting Down

This chapter describes the procedures for starting and stopping an Oracle database,
and includes the following topics:

Starting Up a Database

Altering Database Availability
Shutting Down a Database
Suspending and Resuming a Database

Using Initialization Parameter Files

Starting Up and Shutting Down 3-1

Starting Up a Database

Starting Up a Database

When you start up a database, you create an instance of that database, and you
choose the state in which the database starts. Normally, you would start up an
instance by mounting and opening the database, thus making it available for any
valid user to connect to it and perform typical data access operations. However,
there are other options and these are also discussed in this section.

This section includes the following topics relating to starting up an instance of a
database:

« Preparing to Start an Instance
« Options for Starting Up a Database

« Starting an Instance: Scenarios

Preparing to Start an Instance

You need to perform some preliminary steps before attempting to start an instance
of your database .

1. Start SQL*Plus without connecting to the database by entering:
SQLPLUS

2. Connect to Oracle as SYSDBA:
CONNECTusemame/password AS sysdba

Note that you cannot be connected via a multi-threaded server.
Now you are connected to Oracle and ready to start up an instance of your
database.

See Also: CONNECT, STARTUP, and SHUTDOWN are
SQL*Plus commands. They are described, and their syntax is
presented, in SQL*Plus User’s Guide and Reference.

Options for Starting Up a Database

There are options as to the method you use for starting up (and administering) an
instance of your database. While three methods are mentioned, using SQL*Plus is
the only method that is within the scope of this book.

3-2 Oracle8i Administrator's Guide

Starting Up a Database

Using SQL*Plus

To start up a database use SQL*Plus to connect to Oracle with administrator
privileges (as shown previously) and then issue the STARTUP command. When
you enter a STARTUP command, you can specify the database name and the full
path of the initialization parameter file:

STARTUPdatabase name PFILE= myinitora

If you do not specify database_name, Oracle uses the value specified by the DB_
NAME initialization parameter in the specified PFILE. The manner in which you
specify the path for the initialization parameter file is operating system specific. If
you do not specify the PFILE option, Oracle uses the default parameter file location,
as specified in the Oracle installation guide for your operating system.

You can start an instance and database in a variety of ways:

« Start the instance without mounting a database. This does not allow access to
the database and usually would be done only for database creation or the
recreation of control files.

« Start the instance and mount the database, but leave it closed. This state allows
for certain DBA activities, but does not allow general access to the database.

« Start the instance, and mount and open the database. This can be done in
unrestricted mode, allowing access to all users, or restricted mode that allows
access for database administrators only.

Note: You cannot start a database instance if you are connected to
the database via a multi-threaded server process.

In addition, you can force the instance to start, or start the instance and have
complete media recovery begin immediately. If your operating system supports the
Oracle Parallel Server (OPS), you may start an instance and mount the database in
either exclusive or shared mode.

Using Recovery Manager

You can also use Recovery Manager (RMAN) to execute STARTUP (and
SHUTDOWN) commands. You may prefer to do this if your are within the RMAN
environment and do not wish to bring up SQL*Plus. RMAN is not discussed in this
book, but is the topic of Oracle8i Recovery Manager User’s Guide and Reference.

Starting Up and Shutting Down 3-3

Starting Up a Database

Using Oracle Enterprise Manager

You can choose to use the Oracle Enterprise Manager for administering your
database, including starting up and shutting down. The Oracle Enterprise Manager
is a separate Oracle product, that combines a graphical console, agents, common
services, and tools to provide an integrated and comprehensive systems
management platform for managing Oracle products.It allows you to perform the
functions discussed in this book using a GUI interface, rather than command lines.

See the following books to become familiar with the Oracle Enterprise Manager:
« Oracle Enterprise Manager Concepts Guide

« Oracle Enterprise Manager Administrator’s Guide

Starting an Instance: Scenarios

The following scenarios describe and illustrate the many ways in which you can
start up an instance. For more information about the restrictions that apply when
combining options of the STARTUP command, see the SQL*Plus User’s Guide and
Reference.

Note: You may encounter problems starting up an instance if
control files, database files, or redo log files are not available. If one
or more of the files specified by the CONTROL_FILES initialization
parameter does not exist or cannot be opened when you attempt to
mount a database, Oracle returns a warning message and does not
mount the database. If one or more of the datafiles or redo log files
is not available or cannot be opened when attempting to open a
database, Oracle returns a warning message and does not open the
database.

Starting an Instance Without Mounting a Database

You can start an instance without mounting a database. Typically, you do so only
during database creation. Use the STARTUP command with the NOMOUNT
option:

STARTUP NOMOUNT;

3-4 Oracle8i Administrator's Guide

Starting Up a Database

Starting an Instance and Mounting a Database

You can start an instance and mount a database without opening it, allowing you to
perform specific maintenance operations. For example, the database must be
mounted but not open during the following tasks:

« Renaming datafiles, as described in Chapter 10, "Managing Datafiles".

« Adding, dropping, or renaming redo log files, as described in Chapter 6,
"Managing the Online Redo Log".

« Enabling and disabling redo log archiving options, as described in Chapter 7,
"Managing Archived Redo Logs".

« Performing full database recovery. Database recovery is the topic of Oracle8i
Backup and Recovery Guide and Oracle8i Recovery Manager User’s Guide and
Reference.

Start an instance and mount the database, but leave it closed by using the STARTUP
command with the MOUNT option:

STARTUP MOUNT;

Starting an Instance, and Mounting and Opening a Database

Normal database operation means that an instance is started and the database is
mounted and open; this mode allows any valid user to connect to the database and
perform typical data access operations.

Start an instance and then mount and open the database by using the STARTUP
command by itself (this example uses the database name as specified by the DB_
NAME initialization parameter in the standard PFILE):

STARTUP;

Restricting Access to a Database at Startup

You can start an instance and mount and open a database in restricted mode so that
the database is available only to administrative personnel (not general database
users). Use this mode of database startup when you need to accomplish one of the
following tasks:

« Perform structure maintenance, such as rebuilding indexes
« Perform an export or import of database data
« Perform a data load (with SQL*Loader)

« Temporarily prevent typical users from using data

Starting Up and Shutting Down 3-5

Starting Up a Database

Typically, all users with the CREATE SESSION system privilege can connect to an
open database. Opening a database in restricted mode allows database access only
to users with both the CREATE SESSION and RESTRICTED SESSION system
privilege; only database administrators should have the RESTRICTED SESSION
system privilege.

Start an instance (and, optionally, mount and open the database) in restricted mode
by using the STARTUP command with the RESTRICT option:

STARTUP RESTRICT;

Later, use the ALTER SYSTEM statement to disable the RESTRICTED SESSION
feature. If you open the database in nonrestricted mode and later find you need to
restrict access, you can use the ALTER SYSTEM statement to do so, as described in
"Restricting Access to an Open Database" on page 3-9.

See Also: For more information on the ALTER SYSTEM
statement, see the Oracle8i SQL Reference.

Forcing an Instance to Start

In unusual circumstances, you might experience problems when attempting to start
a database instance. You should not force a database to start unless you are faced
with the following:

=« You cannot shut down the current instance with the SHUTDOWN NORMAL,
SHUTDOWN IMMEDIATE, or SHUTDOWN TRANSACTIONAL commands.

« You experience problems when starting an instance.

If one of these situations arises, you can usually solve the problem by starting a new
instance (and optionally mounting and opening the database) using the STARTUP
command with the FORCE option:

STARTUP FORCE;

If an instance is running, STARTUP FORCE shuts it down with mode ABORT
before restarting it. To understand the side effects of aborting the current instance,
see "Shutting Down with the ABORT Option"” on page 3-13.

Starting an Instance, Mounting a Database, and Starting Complete Media
Recovery

If you know that media recovery is required, you can start an instance, mount a
database to the instance, and have the recovery process automatically start by using
the STARTUP command with the RECOVER option:

3-6 Oracle8i Administrator’'s Guide

Starting Up a Database

STARTUP OPEN RECOVER;

If you attempt to perform recovery when no recovery is required, Oracle issues an
error message.

Starting in Exclusive or Parallel Mode

If your Oracle server allows multiple instances to access a single database
concurrently (Oracle Parallel Server option), choose whether to mount the database
exclusively or in parallel. For example, to open in parallel mode you can issue:

STARTUP OPEN sales PFILE=initsale.ora PARALLEL;

Multiple instances can now access the database.

If you specify EXCLUSIVE (the default), then the database can only be mounted
and opened by the current instance. The following statement starts an instance,
mounts and opens the database named sales in exclusive mode, and restricts
access to administrative personnel.

STARTUP OPEN sales PFILE=initsale.ora EXCLUSIVE RESTRICT;

See Also: For more information about starting up in exclusive or
parallel mode, see the Oracle8i Parallel Server Administration,
Deployment, and Performance manual.

Automatic Database Startup at Operating System Start

Many sites use procedures to enable automatic startup of one or more Oracle
instances and databases immediately following a system start. The procedures for
performing this task are specific to each operating system. For information about
automatic startup procedure topics, see your operating system-specific Oracle
documentation.

Starting Remote Instances

If your local Oracle server is part of a distributed database, you might need to start
a remote instance and database. Procedures for starting and stopping remote
instances vary widely depending on communication protocol and operating
system.

Starting Up and Shutting Down 3-7

Altering Database Availability

Altering Database Availability

You can alter the availability of a database. You may want to do this in order to
restrict access for maintenance reasons or to make the database read only. The
following sections explain how to alter a database’s availability:

« Mounting a Database to an Instance
» Opening a Closed Database
» Opening a Database in Read-Only Mode

« Restricting Access to an Open Database

Mounting a Database to an Instance

When you need to perform specific administrative operations, the database must be
started and mounted to an instance, but closed. You can achieve this scenario by
starting the instance and mounting the database.

When mounting the database, indicate whether to mount the database exclusively
to this instance or concurrently to other instances.

To mount a database to a previously started instance, use the SQL statement
ALTER DATABASE with the MOUNT option. Use the following statement when
you want to mount a database in exclusive mode:

ALTER DATABASE MOUNT;
For a list of operations that require the database to be mounted and closed (and

procedures to start an instance and mount a database in one step), see "Starting an
Instance and Mounting a Database" on page 3-5.

Opening a Closed Database

You can make a mounted but closed database available for general use by opening
the database. To open a mounted database, use the ALTER DATABASE statement
with the OPEN option:

ALTER DATABASE OPEN,;

After executing this statement, any valid Oracle user with the CREATE SESSION
system privilege can connect to the database.

3-8 Oracle8i Administrator's Guide

Altering Database Availability

Opening a Database in Read-Only Mode

Opening a database in read-only mode enables you to query an open database
while eliminating any potential for online data content changes. While opening a
database in read-only mode guarantees that datafile and redo log files are not
written to, it does not restrict database recovery or "state” modifications that don’t
generate redo. For example, you can take datafiles offline or bring them online since
these operations do not effect data content.

Ideally, you open a database read-only when you alternate a standby database
between read-only and recovery mode; note that these are mutually exclusive
modes.

The following statement opens a database in read-only mode:
ALTER DATABASE OPEN READ ONLY;

You can also open a database in read-write mode as follows:
ALTER DATABASE OPEN READ WRITE;

Note: You cannot use the RESETLOGS clause with a READ
ONLY clause.

See Also: For more information about the ALTER DATABASE
statement, see the Oracle8i SQL Reference.

For more conceptual details about opening a database in read-only
mode, see Oracle8i Concepts.

Restricting Access to an Open Database

To place an instance in restricted mode, use the SQL statement ALTER SYSTEM
with the ENABLE RESTRICTED SESSION clause. After placing an instance in
restricted mode, you might want to kill all current user sessions before performing
any administrative tasks. To lift an instance from restricted mode, use ALTER
SYSTEM with the DISABLE RESTRICTED SESSION option.

For reasons why you might want to place an instance in restricted mode, see
"Restricting Access to a Database at Startup™ on page 3-5.

Starting Up and Shutting Down 3-9

Shutting Down a Database

Shutting Down a Database
The following sections describe shutdown procedures:
« Shutting Down with the NORMAL Option
« Shutting Down with the IMMEDIATE Option
« Shutting Down with the TRANSACTIONAL Option
« Shutting Down with the ABORT Option

To initiate database shutdown, use the SQL*Plus SHUTDOWN command. Control
is not returned to the session that initiates a database shutdown until shutdown is
complete. Users who attempt connections while a shutdown is in progress receive a
message like the following:

ORA-01090: shutdown in progress - connection is not permitted

Attention: You cannot shut down a database if you are connected
to the database via a multi-threaded server process.

To shut down a database and instance, first connect as SYSOPER or SYSDBA.
Figure 3-1 shows the sequence of events when the different SHUTDOWN
commands are entered during a transfer of funds from one bank account to another.

3-10 Oracle8i Administrator's Guide

Shutting Down a Database

Figure 3—-1 Sequence of Events During Different Types of SHUTDOWN.

Transfer Shutdown Shutdown Shutdown
of funds Normal Immediate Transactional

Check account

balances Database
down

Insert new

funds

Remove funds

from old
account
Commit
Database
w down
Database
w down
Logout

Shutting Down with the NORMAL Option

Normal database shutdown proceeds with the following conditions:
« No new connections are allowed after the statement is issued.

= Before the database is shut down, Oracle waits for all currently connected users
to disconnect from the database.

« The next startup of the database will not require any instance recovery
procedures.

To shut down a database in normal situations, use the SHUTDOWN command with
the NORMAL option:

Starting Up and Shutting Down 3-11

Shutting Down a Database

SHUTDOWN NORMAL;

Shutting Down with the IMMEDIATE Option

Use immediate database shutdown only in the following situations:

« A power shutdown is going to occur soon.

« The database or one of its applications is functioning irregularly.
Immediate database shutdown proceeds with the following conditions:

« Any uncommitted transactions are rolled back. (If long uncommitted
transactions exist, this method of shutdown might not complete quickly,
despite its name.)

« Oracle does not wait for users currently connected to the database to
disconnect; Oracle implicitly rolls back active transactions and disconnects all
connected users.

« The next startup of the database will not require any instance recovery
procedures.

To shut down a database immediately, use the SHUTDOWN command with the
IMMEDIATE option

SHUTDOWN IMMEDIATE;

Note: The SHUTDOWN IMMEDIATE statement disconnects all
existing idle connections and shuts down the database. If, however,
you have submitted processes (for example, inserts, selects or
updates) that are awaiting results, the SHUTDOWN
TRANSACTIONAL statement allows the process to complete
before disconnecting.

Shutting Down with the TRANSACTIONAL Option

When you wish to perform a planned shutdown of an instance while allowing
active transactions to complete first, use the SHUTDOWN command with the
TRANSACTIONAL option:

SHUTDOWN TRANSACTIONAL,

3-12 Oracle8i Administrator’'s Guide

Suspending and Resuming a Database

After submitting this statement, no client can start a new transaction on this
instance. If clients attempt to start a new transaction, they are disconnected. After
all transactions have completed, any client still connected to the instance is
disconnected. At this point, the instance shuts down just as it would when a
SHUTDOWN IMMEDIATE statement is submitted. The next startup of the
database will not require any instance recovery procedures.

A transactional shutdown prevents clients from losing work, and at the same time,
does not require all users to log off.

Shutting Down with the ABORT Option

You can shut down a database instantaneously by aborting the database’s instance.
If possible, perform this type of shutdown only in the following situations:

« The database or one of its applications is functioning irregularly and neither of
the other types of shutdown works.

« You need to shut down the database instantaneously (for example, if you know
a power shutdown is going to occur in one minute).

= You experience problems when starting a database instance.
Aborting an instance shuts down a database and yields the following results:

« Current client SQL statements being processed by Oracle are immediately
terminated.

« Uncommitted transactions are not rolled back.

« Oracle does not wait for users currently connected to the database to
disconnect; Oracle implicitly disconnects all connected users.

« The next startup of the database will require instance recovery procedures.

If both the normal and immediate shutdown options do not work, abort the current
database instance immediately by issuing the SHUTDOWN command with the
ABORT option:

SHUTDOWN ABORT,

Suspending and Resuming a Database

The ALTER SYSTEM SUSPEND statement suspends a database by halting all 1/0
to datafiles (file header and file data) and control files, thus allowing a database to
be backed up without 1/0 interference. When the database becomes suspended all

Starting Up and Shutting Down 3-13

Suspending and Resuming a Database

preexisting 1/0 operations will complete and any new database accesses will be in a
gueued state.

The suspend command suspends the database, and is not specific to an instance.
Therefore, in an OPS environment, if the suspend command is entered on one
system, then internal locking mechanisms will propagate the halt request across
instances, thereby quiescing all active instances in a given cluster. However, do not
start a new instance while you suspend another instance, since the new instance
will not be suspended.

Use the ALTER SYSTEM RESUME statement to resume normal database
operations. Note that you can specify the SUSPEND and RESUME from different
instances. For example, if instances 1, 2, and 3 are running, and you issue an ALTER
SYSTEM SUSPEND statement from instance 1, then you can issue a RESUME from
instance 1, 2, or 3 with the same effect.

The suspend/resume feature is useful in systems that allow you to mirror a disk or
file and then split the mirror, providing an alternative backup and restore solution.
If you use a system that is unable to split a mirrored disk from an existing database
while writes are occurring, then you can use the suspend/resume feature to
facilitate the split. For details about backing up a database using the database
suspend/resume feature, see Oracle8i Backup and Recovery Guide.

The suspend/resume feature is not a handy substitute for normal shutdown
operations, however, since copies of a suspended database can contain
uncommitted updates.

WARNING: Do not use the ALTER SYSTEM SUSPEND
statement as a substitute for placing a tablespace in hot backup
mode. Precede any database suspend operation by an ALTER
TABLESPACE BEGIN BACKUP statement.

The following statements illustrate ALTER SYSTEM SUSPEND/RESUME usage.
The V$INSTANCE view is queried to confirm database status.

SQL>ALTER SYSTEM SUSPEND;

System altered

SQL> SELECT database_status FROM v&instance;
DATABASE_STATUS

SUSPENDED

SQL>ALTER SYSTEM RESUME;

3-14 Oracle8i Administrator's Guide

Using Initialization Parameter Files

System altered
SQL> SELECT database_status FROM v$instance;
DATABASE _STATUS

ACTIVE

Using Initialization Parameter Files

The following sections include information about how to use initialization
parameter files:

« The Sample Initialization Parameter File
« The Number of Initialization Parameter Files
« The Location of the Initialization Parameter File in Distributed Environments

To start an instance, Oracle must read an initialization parameter file, which is a text file
containing a list of instance configuration parameters. Often, although not always, this file
is named INIT.ORA or INITsid.ORA, where sid is operating system specific.

Note: If you are using Oracle Enterprise Manager, see the Oracle
Enterprise Manager Administrator’s Guide for information about
using stored configurations as an alternative to the initialization
parameter file.

You can edit parameter values in a parameter file with a basic text editor; however,
editing methods are operating system specific. Oracle treats string literals defined
for National Language Support (NLS) parameters in the file as if they are in the
database character set.

See Also: For more information about initialization parameter
files specific to your installation, see your operating system-specific
Oracle documentation.

A description for every initialization parameter is contained in the
Oracle8i Reference.

The Sample Initialization Parameter File

A sample parameter file (INIT.ORA or INITsid.ORA) is included in the Oracle
distribution set. This sample file’s parameters are adequate for initial installations of an

Starting Up and Shutting Down 3-15

Using Initialization Parameter Files

Oracle database. After your system is operating and you have some experience with
Oracle, you will probably want to change some parameter values.

See Also: For more information about optimizing a database’s
performance using the initialization parameter file, see Oracle8i
Designing and Tuning for Performance.

The Number of Initialization Parameter Files

Each Oracle database has at least one initialization parameter file that corresponds
only to that database. This way, database-specific parameters such as DB_NAME
and CONTROL_FILES in a given file always pertain to a particular database. It is
also possible to have several different initialization parameter files for a single
database. For example, you can have several different parameter files for a single
database so you can optimize the database’s performance in different situations.

The Location of the Initialization Parameter File in Distributed Environments

The client you use to access the database must be able to read a database’s
initialization parameter file to start a database’s instance. Therefore, always store a
database’s parameter file on the computer executing the client.

In non-distributed processing installations, the same computer executes Oracle and
the client. This computer already has the parameter file stored on one of its disk
drives. In distributed processing installations, however, local client workstations
can administer a database stored on a remote machine. In this type of configuration,
the local client machines must each store a copy of the parameter file for the
corresponding databases.

See Also: For more information about using administering Oracle

in a distributed environment, see Oracle8i Distributed Database
Systems.

3-16 Oracle8i Administrator’'s Guide

Part ||

Oracle Server Configuration

Part 11 describes Oracle server processes and control files which comprise the
structure of the Oracle database server and support its operation. It includes the
following chapters

Chapter 4, "Managing Oracle Processes"
Chapter 5, "Managing Control Files"
Chapter 6, "Managing the Online Redo Log"
Chapter 7, "Managing Archived Redo Logs"
Chapter 8, "Managing Job Queues"

A

Managing Oracle Processes

This chapter describes how to manage the processes of an Oracle instance, and
includes the following topics:

= Server Processes

« Configuring Oracle for the Multi-Threaded Server
« Tracking Oracle Background Processes

« Managing Processes for the Parallel Query Option
« Managing Processes for External Procedures

« Terminating Sessions

Managing Oracle Processes 4-1

Server Processes

Server Processes

Oracle creates server processes to handle the requests of user processes connected
to an instance. A server process can be either a dedicated server process, where one
server process services only one user process, or it can be a shared server process,
where a server process can service multiple user processes. Shared server processes
are part of Oracle’s multi-threaded server(MTS) architecture.

See Also: For conceptual information about server processes, see
Oracle8i Concepts.

Dedicated Server Processes

Figure 4-1 illustrates how dedicated server processes works.

In general, it is better to be connected through a dispatcher to use a shared server
process; it can be more efficient because it keeps the number of processes required
for the running instance low. In the following situations, however, users and
administrators should explicitly connect to an instance using a dedicated server
process:

« To submit a batch job (for example, when a job can allow little or no idle time
for the server process)

« To use Enterprise Manager to start up, shut down, or perform media recovery
on a database

« To use Recovery Manager to back up, restore or recover a database

To request a dedicated server connection when the server is configured for MTS,
users must connect using a NET8 net service name that is configured to use a
dedicated server. Specifically, the net service name value should include the
SERVER=DEDICATED clause in the connect descriptor.

See Also: For a complete description of the Net8 net service
name, see the Net8 Administrator’s Guide and your operating
system-specific Oracle documentation.

4-2 Oracle8i Administrator's Guide

Server Processes

Figure 4-1 Oracle Dedicated Server Processes

User
Process

Application
Code

Oracle
Server Code

Program
Interface

Dedicated
Server
Process

User
Process

Application
Code

Oracle
Server Code

!

Client Workstation

Database Server

System Global Area

Multi-Threaded Server Processes

Consider an order entry system with dedicated server processes. A customer places
an order as a clerk enters the order into the database. For most of the transaction,
the clerk is on the telephone talking to the customer and the server process
dedicated to the clerk’s user process remains idle. The server process is not needed
during most of the transaction, and the system is slower for other clerks entering
orders because the idle server process is holding system resources.

The multi-threaded server architecture eliminates the need for a dedicated server
process for each connection (see Figure 4-2).

Managing Oracle Processes 4-3

Server Processes

Figure 4-2 Oracle Multi-Threaded Server Processes

User
Process

Application
Code

a Client Workstation
0 Database Server

Dispatcher Processes | <

Shared
Server
Processes
Oracle
Server Code

7 1o\

e v System Global Area e

Response
Queues

Request

Queue

_—

In a multi-threaded server (MTS) configuration, client user processes connect to a
dispatcher. A dispatcher can support multiple client connections concurrently. Each
client connection is bound to a virtual circuit. A virtual circuit is a piece of shared
memory used by the dispatcher for client database connection requests and replies.
The dispatcher places a virtual circuit on a common queue when a request arrives.

4-4 Oracle8i Administrator's Guide

Configuring Oracle for the Multi-Threaded Server

An idle shared server picks up the virtual circuit from the common queue, services
the request, and relinquishes the virtual circuit before attempting to retrieve
another virtual circuit from the common queue. This approach enables a small pool
of server processes to serve a large number of clients. A significant advantage of
MTS architecture over the dedicated server model is the reduction of system
resources, enabling the support of an increased number of users.

The multi-threaded server architecture requires Net8. User processes targeting the
multi-threaded server must connect through Net8, even if they are on the same
machine as the Oracle instance.

There are several things that must be done to configure your system for MTS. These
are discussed in the following section.

See Also: To learn more about MTS, including additional features
such as connection pooling, see the Net8 Administrator’s Guide.

Configuring Oracle for the Multi-Threaded Server

MTS is activated by the setting of database initialization parameters, and requires
that a Net8 listener process be active. This section discusses the setting of
initialization parameters and how to alter them. For specifics relating to Net8, see
the Net8 Administrator’s Guide.

Initialization Parameters for MTS
The initialization parameters controlling MTS are:

Parameter Description
Required
MTS_DISPATCHERS Configures dispatcher processes in the multi-threaded

server architecture.

Optional. If you do not specify the following parameters, Oracle selects appropriate

defaults.

MTS_MAX_DISPATCHERS Specifies the maximum number of dispatcher processes
allowed to be running simultaneously.

MTS_SERVERS Specifies the number of server processes that you want
to create when an instance is started up.

MTS_MAX_SERVERS Specifies the maximum number of shared server

processes allowed to be running simultaneously.

Managing Oracle Processes 4-5

Configuring Oracle for the Multi-Threaded Server

Parameter Description

MTS_CIRCUITS Specifies the total number of virtual circuits that are
available for inbound and outbound network sessions.

MTS_SESSIONS Specifies the total number of MTS user sessions to
allow. Setting this parameter enables you to reserve
user sessions for dedicated servers.

Other initialization parameters affected by MTS that may require adjustment.

LARGE_POOL_SIZE Specifies the size in bytes of the large pool allocation
heap. MTS may force the default value to be set too
high causing performance problems or the database
won’t start. See the Oracle8i Reference for further
details.

SESSIONS Specifies the maximum number of sessions that can be
created in the system. May need to be adjusted for
MTS. See the Oracle8i Reference for further details.

See Also: For detailed descriptions of settings and defaults for
these parameters see the Net8 Administrator’s Guide and Oracle8i
Reference.

MTS_DISPATCHERS: Setting the Initial Number of Dispatchers

The number of dispatcher processes started at instance startup is controlled by the
MTS_DISPATCHERS initialization parameter. At least one dispatcher process is
created for every communication protocol specified in the parameter. You can
specify multiple MTS_DISPATCHERS parameters in the initialization file, but they
must be adjacent to each other. Internally, Oracle will assign an INDEX value to
each MTS_MISPATCHERS parameter, so that you can later specifically refer to that
MTS_DISPATCHERS parameter in an ALTER SYSTEM statement.

The appropriate number of dispatcher processes for each instance depends upon
the performance you want from your database, the host operating system’s limit on
the number of connections per process (which is operating system dependent), and
the number of connections required per network protocol. The instance must be
able to provide as many connections as there are concurrent users on the database
system. After instance startup, you can start more dispatcher processes if needed.
This is discussed in "Adding and Removing Dispatcher Processes" on page 4-8.

A ratio of 1 dispatcher for every 1000 connections works well for typical systems,
but round up to the next integer. For example, if you anticipate 1500 connections at
peak time, then you may want to configure 2 dispatchers. Being too aggressive in

4-6 Oracle8i Administrator's Guide

Configuring Oracle for the Multi-Threaded Server

your estimates is not beneficial, because configuring too many dispatchers can
degrade performance. Use this ratio as your guide, but tune according to your
particular circumstances.

The following are some examples of setting the MTS_DISPATCHERS initialization
parameter.

Example 4-1
To force the IP address used for the dispatchers, enter the following:

MTS_DISPATCHERS="(ADDRESS=(PROTOCOL=TCP)\
(HOST=144.25.16.201))(DISPATCHERS=2)"

This will start two dispatchers that will listen in on the IP address, which must be a
valid IP address for the host that the instance is on, which must be a card that is
accessible to the dispatchers.

Example 4-2
To force the exact location of dispatchers, add the PORT as follows:

MTS_DISPATCHERS="(ADDRESS=(PROTOCOL=TCP)HOST=144.25.16.201)(PORT=5000))"
MTS_DISPATCHERS="(ADDRESS=(PROTOCOL=TCP)HOST=144.25.16.201)(PORT=5001))"

MTS_SERVERS: Setting the Initial Number of Shared Servers

The MTS_SERVERS parameter specifies the number of server processes that you
want to create when an instance is started up. Oracle dynamically adjusts the
number of shared server processes based on the length of the request queue. The
number of shared server processes that can be created ranges between the values of
the initialization parameters MTS_SERVERS and MTS_MAX_SERVERS.

Typical systems seem to stabilize at a ratio of one shared server for every ten
connections. For OLTP applications, the connections-to-servers ratio could be
higher, because the rate of requests could be low, or the ratio of server usage to
request could be low. In applications where the rate of requests is high, or the
server usage-to-request ratio is high, the connections-to-server ratio could be lower.

Set MTS_MAX_SERVERS to a reasonable value based on your application. Oracle
provides good defaults for MTS_SERVERS and MTS_MAX_SERVERS for a typical
configuration, but the optimal values for these settings can be different depending
upon your application.

Managing Oracle Processes 4-7

Configuring Oracle for the Multi-Threaded Server

Note: On Windows NT, take care when setting MTS_MAX_
SERVERS to a high value: each server is a thread in a common
process.

MTS_MAX_SERVERS is a static initialization parameter, so you cannot change it
without shutting down your database. However, MTS_SERVERS is a dynamic
initialization parameter and can be changed using an ALTER SYSTEM statement.

Modifying Dispatcher and Server Processes

You can modify the settings for MTS_DISPATCHERS and MTS_SERVERS
dynamically when an instance is running. If you have the ALTER SYSTEM
privilege, you can use the ALTER SYSTEM statement to make such changes.

See Also: For information about the ALTER SYSTEM statement,
see the Oracle8i SQL Reference.

Changing the Minimum Number of Shared Server Processes

After starting an instance, you can change the minimum number of shared server
processes by using the SQL statement ALTER SYSTEM. Oracle will eventually
terminate servers that are idle when there are more shared servers than the
minimum limit you specify.

If you set MTS_SERVERS to 0, Oracle will terminate all current servers when they
become idle and will not start any new servers until you increase MTS_SERVERS.
Thus, setting MTS_SERVERS to 0 may be used to effectively disable the
multi-threaded server.

The following statement dynamically sets the number of shared server processes to
two:

ALTER SYSTEM SET MTS_SERVERS =2

Adding and Removing Dispatcher Processes

You can control the number of dispatcher processes in the instance. If the
VSQUEUE, V$DISPATCHER and V$DISPATCHER_RATE views indicate that the
load on the dispatcher processes is consistently high, starting additional dispatcher
processes to route user requests may improve performance. In contrast, if the load
on dispatchers is consistently low, reducing the number of dispatchers may
improve performance.

4-8 Oracle8i Administrator's Guide

Configuring Oracle for the Multi-Threaded Server

To change the number of dispatcher processes, use the SQL statement ALTER
SYSTEM.

You can start new dispatcher processes for an existing MTS_DISPATCHERS value,
or you may add new MTS_DISPATCHERS values. You can add dispatchers up to
the limit specified by MTS_ MAX_DISPATCHERS.

If you reduce the number of dispatchers for a particular MTS dispatcher value, the
dispatchers are not immediately removed. Rather, as users disconnect, Oracle is
eventually able to terminate dispatchers down to the limit you specify in MTS_
DISPATCHERS.

The following statement dynamically changes the number of dispatcher processes
for the TCP/IP protocol to 5, and adds dispatcher processes for the SPX protocol.
There was no MTS_DISPATCHES initialization parameter for the SPX protocol (the
only MTS dispatchers parameter was the one for the TCP protocol), so this
statement effectively adds one.

ALTER SYSTEM
SET MTS_DISPATCHERS =

(PROTOCOL=TCP)(DISPATCHERS=5) (INDEX=0),
(PROTOCOL=SPX)(DISPATCHERS=2) (INDEX=1);

If there are currently fewer than 5 dispatcher processes for TCP, Oracle creates new
ones. If there are currently more than 5, Oracle terminates some of them after the
connected users disconnect.

Note: The INDEX keyword can be used to identify which MTS_
DISPATCHERS parameter to modify. The INDEX value can range
from 0 to n, where n is one less than the defined number of MTS_
DISPATCHER parameters. If your ALTER SYSTEM statement
specifies an INDEX value equal to n+1, a new MTS_DISPATCHERS
parameter is added. To identify the index number assigned to an
MTS_DISPATCHERS parameter, query the CONF_INDX value in
the V$DISPATCHER view.

Shutting Down Specific Dispatcher Processes

It is possible to shut down specific dispatcher processes. To identify the name of the
specific dispatcher process to be shut down, use the V$DISPATCHER dynamic
performance view.

SELECT name, network FROM védispatcher;

Managing Oracle Processes 4-9

Configuring Oracle for the Multi-Threaded Server

NAME NETWORK

D000 (ADDRESS=(PROTOCOL=tcp)(HOST=rbaylis-hpc.us.oracle.com)(PORT=3499))
D001 (ADDRESS=(PROTOCOL=tcp)(HOST=rbaylis-hpc.us.oracle.com)(PORT=3531))
D002 (ADDRESS=(PROTOCOL=tcp)(HOST=rbaylis-hpc.us.oracle.com)(PORT=3532))

Each dispatcher is uniquely identified by a name of the form Dnnn.

To shut down dispatcher D002, issue the following statement:

ALTER SYSTEM SHUTDOWN IMMEDIATE 'D002;

The IMMEDIATE keyword stops the dispatcher from accepting new connections
and Oracle immediately terminates all existing connections through that dispatcher.
After all sessions are cleaned up, the dispatcher process shuts down. If

IMMEDIATE were not specified, the dispatcher would wait until all of its users
disconnected and all of its database links terminated before shutting down.

Monitoring MTS

The following are useful views for obtaining information about your MTS
configuration and for monitoring performance.

View Description

V$DISPATCHER Provides information on the dispatcher processes,
including name, network address, status, various
usage statistics, and index number.

V$DISPATCHER_RATE Provides rate statistics for the dispatcher processes.

V$QUEUE Contains information on the multi-thread message
queues.

V$SHARED_SERVER Contains information on the shared server processes.

V$CIRCUIT Contains information about virtual circuits, which are

user connections to the database through dispatchers
and servers.

VEMTS Contains information for tuning MTS.

V$SGA Contains size information about various system global
area (SGA) groups. May be useful when tuning MTS.

V$SGASTAT Detailed statistical information about the SGA, useful
for tuning.

4-10 Oracle8i Administrator's Guide

Tracking Oracle Background Processes

View Description

V$SHARED_POOL_RESERVED | Lists statistics to help tune the reserved pool and space
within the shared pool.

See Also: All of these views are described in detail in the Oracle8i
Reference.

For specific information about monitoring and tuning the
multi-threaded server, see Oracle8i Designing and Tuning for
Performance.

Tracking Oracle Background Processes

An Oracle instance can have many background processes. This section presents
general methods of monitoring and tracking these processes, and includes the
following topics:

« What are the Oracle Background Processes
= Monitoring the Processes of an Oracle Instance
« Trace Files, the Alert Log, and Background Processes

See Also: For a more detailed description of the background
processes, see Oracle8i Concepts.

What are the Oracle Background Processes
Briefly, these are the Oracle background processes.
« Database writer (DBWn)

The Database Writer writes modified blocks from the database buffer cache to
the datafiles. Although one database writer process (DBWO) is sufficient for
most systems, you can configure additional processes (DBW1 through DBW9)
to improve write performance for a system that modifies data heavily. The
initialization parameter DB_WRITER_PROCESSES specifies the number of
DBWn processes.

« Log Writer (LGWR)

The log writer process writes redo log entries to disk. Redo log entries are
generated in the redo log buffer of the system global area (SGA), and LGWR

Managing Oracle Processes 4-11

Tracking Oracle Background Processes

writes the redo log entries sequentially into an online redo log file. If the
database has a multiplexed redo log, LGWR writes the redo log entries to a
group of online redo log files. See Chapter 6, "Managing the Online Redo Log"
for information about the log writer process.

« Checkpoint (CKPT)

At specific times, all modified database buffers in the system global area are
written to the datafiles by DBWhn; this event is called a checkpoint. The
checkpoint process is responsible for signalling DBWn at checkpoints and
updating all the datafiles and control files of the database to indicate the most
recent checkpoint.

« System Monitor (SMON)

The system monitor performs crash recovery when a failed instance starts up
again. In a multiple instance system (one that uses Oracle Parallel Server), the
SMON process of one instance can perform instance recovery for other
instances that have failed. SMON also cleans up temporary segments that are
no longer in use and recovers dead transactions skipped during crash and
instance recovery because of file-read or offline errors. These transactions are
eventually recovered by SMON when the tablespace or file is brought back
online.

SMON also coalesces free extents within the database’s dictionary-managed
tablespaces to make free space contiguous and easier to allocate (see
"Coalescing Free Space in Dictionary-Managed Tablespaces" on page 9-12).

« Process Monitor (PMON)

The process monitor performs process recovery when a user process fails.
PMON is responsible for cleaning up the cache and freeing resources that the
process was using. PMON also checks on dispatcher (see below) and server
processes and restarts them if they have failed. For information about PMON,
see Oracle8i Concepts.

« Archiver (ARCn)

One or more archiver processes copy the online redo log files to archival
storage when they are full or a log switch occurs. Archiver processes are the
subject of Chapter 7, "Managing Archived Redo Logs".

« Recoverer (RECO)

The recoverer process is used to resolve distributed transactions that are
pending due to a network or system failure in a distributed database. At timed
intervals, the local RECO attempts to connect to remote databases and

4-12 Oracle8i Administrator's Guide

Tracking Oracle Background Processes

automatically complete the commit or rollback of the local portion of any
pending distributed transactions. For information about this process and how
to start it, see Oracle8i Distributed Database Systems.

Dispatcher (Dnnn)

Dispatchers are optional background processes, present only when the
multi-threaded server (MTS) configuration is used. MTS was discussed
previously in "Configuring Oracle for the Multi-Threaded Server" on page 4-5.

Lock (LCKO0)

In an Oracle Parallel Server, a lock process provides inter-instance locking. For
information about this background process, see Oracle8i Parallel Server Setup and
Configuration Guide, Oracle8i Parallel Server Administration, Deployment, and
Performance, and Oracle8i Parallel Server Concepts.

Job Queue (SNPn)

In a distributed database configuration, up to 36 job queue processes can
automatically refresh table snapshots. They wake up periodically and refresh
any snapshots that are scheduled to be refreshed. For information about
creating and refreshing snapshots, see Oracle8i Replication, Oracle8i Replication
Management APl Reference, and Getting Started with Replication Manager.

Another function of these processes is to propagate queued messages to queues
on other databases. See Oracle8i Application Developer’s Guide - Advanced
Queuing) for information on propagating queued messages.

These processes also execute job requests created by the DBMS_JOBS package.
This is the subject of Chapter 8, "Managing Job Queues".

Unlike most Oracle background processes, if an SNP process fails, it does not
cause instance failure.

Queue Monitor (QMNN)

The queue monitor process is an optional background process for Oracle
Advanced Queuing. You can configure up to 10 queue monitor processes. Like
the SNPn processes, if these processes fail, they do not cause instance failure.
The AQ_TM_PROCESSES initialization parameter specifies the creation of
gueue monitor processes at instance startup. For information about Advanced
Queuing, see Oracle8i Application Developer’s Guide - Advanced Queuing.

Managing Oracle Processes 4-13

Tracking Oracle Background Processes

Monitoring the Processes of an Oracle Instance

This section lists some of the views which you can use to monitor an Oracle
instance. These views are more general in their scope. There are other views, more
specific to a process, which are discussed in the section of this book where the
process is described. Also presented are views and scripts for monitoring the status

of locks.

See Also: All of these views are described in detail in the Oracle8i

Reference.

Oracle8i Designing and Tuning for Performance provides information
for resolving performance problems and conflicts which may be
revealed through the monitoring of these views.

Process and Session Views
These views provide process and session specific information.

View Description

V$PROCESS Contains information about the currently active processes.
V$SESSION Lists session information for each current session.
V$SESS_IO Contains 1/0 statistics for each user session.

V$SESSION_LONGOPS

This view displays the status of various operations that run for
longer than 6 seconds (in absolute time). These operations
currently include many backup and recovery functions,
statistics gathering, and query execution, and more operations
are added for every Oracle release.

V$SESSION_WAIT

Lists the resources or events for which active sessions are
waiting.

V$SYSSTAT

Contains session statistics.

V$RESOURCE_LIMIT

Provides information about current and maximum global
resource utilization for some system resources.

V$SQLAREA Contains statistics about shared SQL area and contains one row
per SQL string. Also provides statistics about SQL statements
that are in memory, parsed, and ready for execution.

VSLATCH Contains statistics for non-parent latches and summary statistics

for parent latches.

4-14 Oracle8i Administrator's Guide

Tracking Oracle Background Processes

Monitoring Locks

The UTLLOCKT.SQL script displays a simple character lock wait-for graph in
tree-structured fashion. Using an ad hoc query tool, such as SQL*Plus, the script
prints the sessions in the system that are waiting for locks and the corresponding
blocking locks. The location of this script file is operating system dependent; see
your operating system-specific Oracle documentation. A second script,
CATBLOCK.SQL, creates the lock views that UTLLOCKT.SQL needs, so you must
run it before running UTLLOCKT.SQL.

The following view can be used for monitoring locks.

View Description

V$LOCK Lists the locks currently held by the Oracle server and
outstanding requests for a lock or latch.

Trace Files, the Alert Log, and Background Processes

Each server and background process can write to an associated trace file. When an
internal error is detected by a process, it dumps information about the error to its
trace file. Some of the information written to a trace file is intended for the database
administrator, while other information is for Oracle Worldwide Support. Trace file
information is also used to tune applications and instances.

The alert log is a special trace file. The alert log of a database is a chronological log of
messages and errors, which includes the following:

« Allinternal errors (ORA-600), block corruption errors (ORA-1578), and
deadlock errors (ORA-60) that occur

« Administrative operations, such as CREATE/ALTER/DROP
DATABASE/TABLESPACE/ROLLBACK SEGMENT SQL statements and
STARTUP, SHUTDOWN, and ARCHIVE LOG

« Several messages and errors relating to the functions of shared server and
dispatcher processes

« Errors occurring during the automatic refresh of a snapshot

« The values of all initialization parameters at the time the database and instance
start

Oracle uses the alert log to keep a log of these special operations as an alternative to
displaying such information on an operator’s console (although many systems

Managing Oracle Processes 4-15

Tracking Oracle Background Processes

display information on the console). If an operation is successful, a "completed”
message is written in the alert log, along with a timestamp.

Using the Trace Files

You can periodically check the alert log and other trace files of an instance to see if
the background processes have encountered errors. For example, when the Log
Writer process (LGWR) cannot write to a member of a group, an error message
indicating the nature of the problem is written to the LGWR trace file and the
database’s alert log. If you see such error messages, a media or 1/0 problem has
occurred, and should be corrected immediately.

Oracle also writes values of initialization parameters to the alert log, in addition to
other important statistics. For example, when you shut down an instance normally
or immediately (but do not abort), Oracle writes the highest number of sessions
concurrently connected to the instance, since the instance started, to the alert log.
You can use this number to see if you need to upgrade your Oracle session license.

Specifying the Location of Trace Files

All trace files for background processes and the alert log are written to the
destination specified by the initialization parameter BACKGROUND_DUMP_
DEST. All trace files for server processes are written to the destination specified by
the initialization parameter USER_DUMP_DEST. The names of trace files are
operating system specific, but usually include the name of the process writing the
file (such as LGWR and RECO).

Controlling the Size of Trace Files

You can control the maximum size of all trace files (excluding the alert log) using
the initialization parameter MAX_DUMP_FILE_SIZE. This limit is set as a number
of operating system blocks. To control the size of an alert log, you must manually
delete the file when you no longer need it; otherwise Oracle continues to append to
the file. You can safely delete the alert log while the instance is running, although
you might want to make an archived copy of it first.

Controlling When Oracle Writes to Trace Files

Background processes always write to a trace file when appropriate. In the case of
the LGWR background process, it is possible, through an initialization parameter,
to control the amount and type of trace information that is produced. This is
described in"Controlling Trace Output Generated by the Archivelog Process” on
page 7-25. Other background processes do not have this flexibility.

4-16 Oracle8i Administrator's Guide

Managing Processes for the Parallel Query Option

Trace files are written on behalf of server processes (in addition to being written to
during internal errors) only if the initialization parameter SQL_TRACE is set to
TRUE. Regardless of the current value of SQL_TRACE, each session can enable or
disable trace logging on behalf of the associated server process by using the SQL
statement ALTER SESSION with the SET SQL_TRACE parameter.

ALTER SESSION SET SQL_TRACE TRUE;

For the multi-threaded server, each session using a dispatcher is routed to a shared
server process, and trace information is written to the server’s trace file only if the
session has enabled tracing (or if an error is encountered). Therefore, to track
tracing for a specific session that connects using a dispatcher, you might have to
explore several shared server’s trace files. Because the SQL trace facility for server
processes can cause significant system overhead, enable this feature only when
collecting statistics.

See Also: For information about the names of trace files, see your
operating system-specific Oracle documentation.

For information about initialization parameters that control the
writing to trace files, see the Oracle8i Reference.

Managing Processes for the Parallel Query Option

This section describes how, with the parallel query option, Oracle can perform
parallel processing. In this configuration Oracle can divide the work of processing
certain types of SQL statements among multiple query server processes. The
following topics are included:

« Managing the Query Servers

« Variations in the Number of Query Server Processes

See Also: For more information about the parallel query option,
see Oracle8i Designing and Tuning for Performance and Oracle8i
Concepts.

Managing the Query Servers

When you start your instance, the Oracle database server creates a pool of query
server processes available for any query coordinator. Specify the number of query
server processes that Oracle creates at instance startup via the initialization
parameter PARALLEL_MIN_SERVERS.

Managing Oracle Processes 4-17

Managing Processes for External Procedures

Query server processes remain associated with a statement throughout its execution
phase. When the statement is completely processed, its query server processes
become available to process other statements. The query coordinator process
returns any resulting data to the user process issuing the statement.

Variations in the Number of Query Server Processes

If the volume of SQL statements processed concurrently by your instance changes
drastically, the Oracle database server automatically changes the number of query
server processes in the pool to accommodate this volume.

If this volume increases, then Oracle automatically creates additional query server
processes to handle incoming statements. The maximum number of query server
processes for your instance is specified by the initialization parameter PARALLEL _
MAX_SERVERS.

If this volume subsequently decreases, Oracle terminates a query server process if it
has been idle for the period of time specified by the initialization parameter
PARALLEL_SERVER_IDLE_TIME. Oracle does not reduce the size of the pool
below the value of PARALLEL_MIN_SERVERS, no matter how long the query
server processes have been idle.

If all query servers in the pool are occupied and the maximum number of query
servers has been started, a query coordinator processes the statement sequentially.

See Also: For more information about monitoring an instance’s
pool of query servers and determining the appropriate values of
the initialization parameters, see Oracle8i Designing and Tuning for
Performance.

Managing Processes for External Procedures

You may have shared libraries of C functions that you wish to call from an Oracle
database. This section describes how to set up an environment for calling those
external procedures.

Note: Although not required, it is recommended that you perform
these tasks during installation.

4-18 Oracle8i Administrator's Guide

Managing Processes for External Procedures

The database administrator grants execute privileges for appropriate libraries to
application developers, who in turn create external procedures and grant execute
privilege on the specific external procedures to other users.

Setting up an Environment for Calling External Routines
Follow these steps to set up an environment for calling external routines.

1. Editthe tnsnames.ora file by adding an entry that enables you to connect to
the listener process (and subsequently, the EXTPROC process).

2. Edit the listener.ora file by adding an entry for the "external procedure
listener."

3. Start a separate listener process to exclusively handle external procedures.

4. The EXTPROC process spawned by the listener inherits the operating system
privileges of the listener, so Oracle strongly recommends that you restrict the
privileges for the separate listener process. The process should not have
permission to read or write to database files, or the Oracle server address space.

Also, the owner of this separate listener process should not be ORACLE (which
is the default owner of the server executable and database files).

5. If not already installed, place the EXTPROC executable in $ORACLE _
HOME/bin.

Be aware that the external library (DLL file) must be statically linked. In other
words, it must not reference any external symbols from other external libraries
(DLL files). These symbols are not resolved and can cause your external procedure
to fail.

Sample Entry in tnsnames.ora

The following is a sample entry for the external procedure listener in
tnsnames.ora

extproc_connection_data = (DESCRIPTION =
(ADDRESS = (PROTOCOL=IPC)
(KEY=extproc_key)
)
(CONNECT_DATA = (SID = extproc_agent)
)

In this example, and all callouts for external procedures, the entry name EXTPROC _
CONNECTION_DATA cannot be changed; it must be entered exactly as it appears

Managing Oracle Processes 4-19

Terminating Sessions

here. The key you specify, in this case EXTPROC_KEY, must match the KEY you
specify in the listener.ora file. Additionally, the SID name you specify, in this
case EXTPROC_AGENT, must match the SID_NAME entry in the listener.ora
file.

Sample Entry in listener.ora
The following is a sample entry for the external procedure in listener.ora
EXTERNAL_PROCEDURE _LISTENER =

(ADDRESS _LIST =
(ADDRESS = (PROTOCOL=ipc)
(KEY=extproc_key)
)
)

SID_LIST EXTERNAL PROCEDURE_LISTENER =

(SID_LIST=
(SID_DESC =(SID_NAME=extproc_agent)
(ORACLE_HOME=/oracle)
(PROGRAM=extproc)
)
)

In this example, the PROGRAM must be EXTPROC, and cannot be changed; it must
be entered exactly as it appears in this example. The SID_NAME must match the
SID name in the thsnames.ora file. The ORACLE_HOME must be set to the
directory where your Oracle software is installed. The EXTPROC executable must
reside in SORACLE_HOME/bin.

See Also: For more information about external procedures, see
the PL/SQL User’s Guide and Reference.

For more information about the thsnames.ora and
listener.ora files, see the Net8 Administrator’s Guide.

Terminating Sessions

In some situations, you might want to terminate current user sessions. For example,
you might want to perform an administrative operation and need to terminate all
non-administrative sessions.

4-20 Oracle8i Administrator's Guide

Terminating Sessions

This section describes the various aspects of terminating sessions, and includes the
following topics:

« ldentifying Which Session to Terminate
« Terminating an Active Session
« Terminating an Inactive Session

When a session is terminated, the session’s transaction is rolled back and resources
(such as locks and memory areas) held by the session are immediately released and
available to other sessions.

Terminate a current session using the SQL statement ALTER SYSTEM KILL
SESSION.

The following statement terminates the session whose SID is 7 and serial number is
15:

ALTER SYSTEMKILL SESSION 7,15}

Identifying Which Session to Terminate

To identify which session to terminate, specify the session’s index number and
serial number. To identify the index (SID) and serial number of a session, query the
V$SESSION dynamic performance view.

The following query identifies all sessions for the user JWARD:

SELECT sid, serial#
FROM v$session
WHERE usemame ='JWARD

SID SERIAL# STATUS

7 15 ACTIVE
12 63 INACTIVE

A session is ACTIVE when it is making a SQL call to Oracle. A session is INACTIVE
if it is not making a SQL call to Oracle.

See Also: For a description of the status values for a session, see
Oracle8i Reference.

Managing Oracle Processes 4-21

Terminating Sessions

Terminating an Active Session

If a user session is making a SQL call to Oracle (ACTIVE status) when it is
terminated, the transaction is rolled back and the user immediately receives the
following message:

ORA-00028: your session has been killed

If, after receiving the ORA-00028 message, a user submits additional statements
before reconnecting to the database, Oracle returns the following message:

ORA-01012: notlogged on

If an active session cannot be interrupted (it is performing network 170 or rolling
back a transaction), the session cannot be terminated until the operation completes.
In this case, the session holds all resources until it is terminated. Additionally, the
session that issues the ALTER SYSTEM statement to terminate a session waits up to
60 seconds for the session to be terminated; if the operation that cannot be
interrupted continues past one minute, the issuer of the ALTER SYSTEM statement
receives a message indicating that the session has been "marked" to be terminated.
A session marked to be terminated is indicated in V$SESSION with a status of
KILLED and a server that is something other than PSEUDO.

Terminating an Inactive Session

If the session is not making a SQL call to Oracle (is INACTIVE) when it is
terminated, the ORA-00028 message is not returned immediately. The message is
not returned until the user subsequently attempts to use the terminated session.

When an inactive session has been terminated, STATUS in the V$SESSION view is
KILLED. The row for the terminated session is removed from V$SESSION after the
user attempts to use the session again and receives the ORA-00028 message.

In the following example, an inactive session is terminated. First, V$SESSION is
gueried to identify the SID and SERIAL# of the session, then the session is
terminated.

SELECT sid,serialtt,status,server
FROM v$session
WHERE usemame ='JWARD";

SID SERIAL# STATUS SERVER

7 15 INACTIVE DEDICATED
12 63 INACTIVE DEDICATED

4-22 Oracle8i Administrator's Guide

Terminating Sessions

2 rows selected.

ALTER SYSTEMKILL SESSION 7,15,
Statement processed.

SELECT sid, serial#, status, server
FROM vs$session
WHERE usemame ="'JWARD;

SID SERIAL# STATUS SERVER
7 15 KILLED PSEUDO

12 63 INACTIVE DEDICATED
2 rows selected.

Managing Oracle Processes 4-23

Terminating Sessions

4-24 Oracle8i Administrator's Guide

D

Managing Control Files

This chapter explains how to create and maintain the control files for your database
and includes the following topics:

What is a Control File?

Guidelines for Control Files

Creating Control Files

Troubleshooting After Creating Control Files
Dropping Control Files

Managing Control Files 5-1

What is a Control File?

What is a Control File?

Every Oracle database has a control file. A control files records the physical structure
of the database and contains:

« The database name

« Names and locations of associated databases and online redo log files
« The timestamp of the database creation

« The current log sequence number

« Checkpoint information

The control file of an Oracle database is created at the same time as the database. By
default, at least one copy of the control file must be created during database
creation. On some operating systems, Oracle creates multiple copies. You should
create two or more copies of the control file during database creation. You might
also need to create control files later, if you lose control files or want to change
particular settings in the control files.

Guidelines for Control Files

This section describes guidelines you can use to manage the control files for a
database, and includes the following topics:

« Name Control Files
« Multiplex Control Files on Different Disks
« Place Control Files Appropriately

« Manage the Size of Control Files

Name Control Files

Assign control file names via the CONTROL_FILES initialization parameter in the
database’s initialization parameter file. CONTROL_FILES specifies one or more
names of control files separated by commas. The instance startup procedure
recognizes and opens all the listed files. The instance writes to and maintains all
listed control files during database operation.

See Also: For a description of the CONTROL_FILES initialization
parameter, see Oracle8i Reference.

5-2 Oracle8i Administrator's Guide

Guidelines for Control Files

Multiplex Control Files on Different Disks

Every Oracle database should have at least two control files, each stored on a
different disk. If a control file is damaged due to a disk failure, the associated
instance must be shut down. Once the disk drive is repaired, the damaged control
file can be restored using an intact copy of the control file and the instance can be
restarted; no media recovery is required.

The following describes the behavior of multiplexed control files:

« Two or more filenames are listed for the initialization parameter CONTROL _
FILES in the database’s initialization parameter file. Oracle writes to both files

« Thefirst file listed in the CONTROL_FILES parameter is the only file read by
the Oracle Server during database operation.

« If any of the control files become unavailable during database operation, the
instance becomes inoperable and should be aborted.

The only disadvantage of having multiple control files is that all operations that
update the control files (such as adding a datafile or checkpointing the database)
can take slightly longer. However, this difference is usually insignificant (especially
for operating systems that can perform multiple, concurrent writes) and does not
justify using only a single control file.

Attention: Oracle strongly recommends that your database has a
minimum of two control files on different disks.

Place Control Files Appropriately

Each copy of a control file should be stored on a different disk drive. Furthermore, a
control file copy should be stored on every disk drive that stores members of online
redo log groups, if the online redo log is multiplexed. By storing control files in
these locations, you minimize the risk that all control files and all groups of the
online redo log will be lost in a single disk failure.

Manage the Size of Control Files

The main determinants of a control file’s size are the values set for the
MAXDATAFILES, MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY,
and MAXINSTANCES parameters in the CREATE DATABASE statement that
created the associated database. Increasing the values of these parameters increases
the size of a control file of the associated database.

Managing Control Files 5-3

Creating Control Files

See Also: The maximum control file size is operating system
specific. See your operating system-specific Oracle documentation
for more information.

For the syntax of the CREATE DATABASE statement, see the
Oracle8i SQL Reference.

Creating Control Files
This section describes ways to create control files, and includes the following topics:
« Creating Initial Control Files

» Creating Additional Control File Copies, and Renaming and Relocating Control
Files

= New Control Files

» Creating New Control Files

Creating Initial Control Files

You create the initial control files of an Oracle database by specifying one or more
control filenames in the CONTROL_FILES initialization parameter in the
initialization parameter file used during database creation. The filenames specified
in CONTROL_FILES should be fully specified. Filename specification is operating
system-specific.

If files with the specified names currently exist at the time of database creation, you
must specify the CONTROLFILE REUSE parameter in the CREATE DATABASE
statement, or else an error occurs. Also, if the size of the old control file differs from
that of the new one, you cannot use the REUSE option. The size of the control file
changes between some releases of Oracle, as well as when the number of files
specified in the control file changes. Configuration parameters such as
MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES,
and MAXINSTANCES affect control file size.

If you do not specify files for CONTROL_FILES before database creation, Oracle
creates a control file and uses a default filename. The default name is also operating
system-specific.

You can subsequently change the value of the CONTROL_FILES initialization
parameter to add more control files or to change the names or locations of existing
control files.

5-4 Oracle8i Administrator's Guide

Creating Control Files

See Also: For more information about specifying control files, see
your operating system-specific Oracle documentation.

Creating Additional Control File Copies, and Renaming and Relocating Control Files
You add a new control file by copying an existing file to a new location and adding
the file’s name to the list of control files.

Similarly, you rename an existing control file by copying the file to its new name or
location, and changing the file’s name in the control file list.

In both cases, to guarantee that control files do not change during the procedure,
shut down the instance before copying the control file.

To Multiplex or Move Additional Copies of the Current Control Files
1. Shut down the database.

2. Copy an existing control file to a different location, using operating system
commands.

3. Editthe CONTROL_FILES parameter in the database’s initialization parameter
file to add the new control file’s name, or to change the existing control
filename.

4. Restart the database.

New Control Files

You can create a new control file for a database using the CREATE CONTROLFILE
statement. This is necessary in the following situations:

« All control files for the database have been permanently damaged and you do
not have a control file backup.

« You want to change one of the permanent database settings originally specified
in the CREATE DATABASE statement, including the database’s name,
MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES,
and MAXINSTANCES.

For example, you might need to change a database’s name if it conflicts with
another database’s name in a distributed environment. Or, as another example,
you might need to change one of the previously mentioned parameters if the
original setting is too low.

Managing Control Files 5-5

Creating Control Files

The following statement creates a new control file for the PROD database (formerly
a database that used a different database name):

CREATE CONTROLFILE
SET DATABASE prod
LOGFILE GROUP 1 (logfile 1A, ogfie1B) SIZE 50K,
GROUP 2 (logfile2A, logfile2B) SIZE 50K
NORESETLOGS
DATAFILE 'datafilel’ SIZE 3M, datafie2’ SIZE 5M
MAXLOGFILES 50
MAXLOGMEMBERS 3
MAXDATAFILES 200
MAXINSTANCES 6
ARCHIVELOG;

WARNING: The CREATE CONTROLFILE statement can
potentially damage specified datafiles and online redo log files;
omitting a filename can cause loss of the data in that file, or loss
of access to the entire database. Employ caution when using this
statement and be sure to follow the steps in the next section.

See Also: FFor information on changing the global database
name and the DB_DOMAIN initialization parameter, see Oracle8i
Distributed Database Systems.

Creating New Control Files
This section provides step-by-step instructions for creating new control files.

To Create New Control Files
1. Make a list of all datafiles and online redo log files of the database.

If you followed the recommendations for database backups, you should already
have a list of datafiles and online redo log files that reflect the current structure
of the database.

If you have no such lists and your control file has been damaged so that the
database cannot be opened, try to locate all of the datafiles and online redo log
files that constitute the database. Any files not specified in Step 5 are not
recoverable once a new control file has been created. Moreover, if you omit any

5-6 Oracle8i Administrator's Guide

Creating Control Files

of the files that make up the SYSTEM tablespace, you might not be able to
recover the database.

Shut down the database.

If the database is open, shut down the database with normal priority, if
possible. Use the IMMEDIATE or ABORT options only as a last resort.

Back up all datafiles and online redo log files of the database.
Start up an new instance, but do not mount or open the database.

Create a new control file for the database using the CREATE CONTROLFILE
statement.

When creating the new control file, select the RESETLOGS option if you have
lost any online redo log groups in addition to the control files. In this case, you
will need to recover from the loss of the redo logs (Step 8). You must also
specify the RESETLOGS option if you have renamed the database. Otherwise,
select the NORESETLOGS option.

Store a backup of the new control file on an offline storage device.
Edit the initialization parameter file of the database.

Edit the initialization parameter file of the database to indicate all of the control
files created in Step 5 and Step 6 (not including the backup control file) in the
CONTROL_FILES parameter. If you are renaming the database, edit the DB_
NAME parameter to specify the new name.

Recover the database if necessary. If you are not recovering the database, skip
to Step 9.

If you are creating the control file as part of recovery, recover the database. If
the new control file was created using the NORESETLOGS option (Step 5), you
can recover the database with complete, closed database recovery.

If the new control file was created using the RESETLOGS option, you must
specify USING BACKUP CONTROL FILE. If you have lost online or archived
redo logs or datafiles, use the procedures for recovering those files.

Open the database.
Open the database using one of the following methods:
« If you did not perform recovery, open the database normally.

« If you performed complete, closed database recovery in Step 8, start up the
database.

Managing Control Files 5-7

Troubleshooting After Creating Control Files

« If you specified RESETLOGS when creating the control file, use the ALTER
DATABASE statement, indicating RESETLOGS.

The database is now open and available for use.
See Also: See the Oracle8i Backup and Recovery Guide for more
information about:
« Listing database files
« Backing up all datafiles and online redo log files of the database
« Recovering online or archived redo log files

» Closed database recovery

Troubleshooting After Creating Control Files

After issuing the CREATE CONTROLFILE statement, you may encounter some
common errors. This section describes the most common control file usage errors,
and includes the following topics:

« Checking for Missing or Extra Files
« Handling Errors During CREATE CONTROLFILE

Checking for Missing or Extra Files

After creating a new control file and using it to open the database, check the alert
log to see if Oracle has detected inconsistencies between the data dictionary and the
control file, such as a datafile that the data dictionary includes but the control file
does not list.

If a datafile exists in the data dictionary but not in the new control file, Oracle
creates a placeholder entry in the control file under the name MISSINGnnnn (where
nnnn is the file number in decimal). MISSINGnnnn is flagged in the control file as
being offline and requiring media recovery.

In the following two cases only, the actual datafile corresponding to MISSINGnnnn
can be made accessible by renaming MISSINGnnnn to point to it.

Case 1: The new control file was created using the CREATE CONTROLFILE
statement with the NORESETLOGS option, thus allowing the database
to be opened without using the RESETLOGS option. This would be
possible only if all online redo logs are available.

5-8 Oracle8i Administrator's Guide

Dropping Control Files

Case 2: It was necessary to use the RESETLOGS option of the CREATE
CONTROLPFILE statement, thus forcing the database to be opened using
the RESETLOGS option, but the actual datafile corresponding to
MISSINGnnnn was read-only or offline normal.

If, on the other hand, it was necessary to open the database using the RESETLOGS
option, and MISSINGnnnn corresponds to a datafile that was not read-only or
offline normal, then the rename operation cannot be used to make the datafile
accessible (since the datafile requires media recovery that is precluded by the
results of RESETLOGS). In this case, the tablespace containing the datafile must be
dropped.

In contrast, if a datafile indicated in the control file is not present in the data
dictionary, Oracle removes references to it from the new control file. In both cases,
Oracle includes an explanatory message in the alert log to let you know what it
found.

Handling Errors During CREATE CONTROLFILE

If Oracle sends you an error (usually error ORA-01173, ORA-01176, ORA-01177,
ORA-01215, or ORA-01216) when you attempt to mount and open the database
after creating a new control file, the most likely cause is that you omitted a file from
the CREATE CONTROLFILE statement or included one that should not have been
listed. In this case, you should restore the files you backed up in Step 3 and repeat
the procedure from Step 4, using the correct filenames.

Dropping Control Files

You can drop control files from the database. For example, you might want to do so
if the location of a control file is inappropriate. Remember that the database must
have at least two control files at all times.

1. Shut down the database.

2. Edit the CONTROL_FILES parameter in the database’s initialization parameter
file to delete the old control file’s name.

3. Restart the database.

Managing Control Files 5-9

Dropping Control Files

WARNING: This operation does not physically delete the
unwanted control file from the disk. Use operating system
commands to delete the unnecessary file after you have dropped
the control file from the database.

5-10 Oracle8i Administrator's Guide

6

Managing the Online Redo Log

This chapter explains how to manage the online redo log and includes the following
topics:

What Is the Online Redo Log?

Planning the Online Redo Log

Creating Online Redo Log Groups and Members
Renaming and Relocating Online Redo Log Members
Dropping Online Redo Log Groups and Members
Forcing Log Switches

Verifying Blocks in Redo Log Files

Clearing an Online Redo Log File

Listing Information about the Online Redo Log

See Also: For more information about managing the online redo
logs of the instances when using Oracle Parallel Server, see Oracle8i
Parallel Server Administration, Deployment, and Performance.

To learn how checkpoints and the redo log impact instance
recovery, see Oracle8i Designing and Tuning for Performance.

Managing the Online Redo Log 6-1

What Is the Online Redo Log?

What Is the Online Redo Log?

Redo Threads

The most crucial structure for recovery operations is the online redo log, which
consists of two or more pre-allocated files that store all changes made to the
database as they occur. Every instance of an Oracle database has an associated
online redo log to protect the database in case of an instance failure.

Note: Oracle does not recommend backing up the online redo log.

Each database instance has its own online redo log groups. These online redo log
groups, multiplexed or not, are called an instance’s thread of online redo. In typical
configurations, only one database instance accesses an Oracle database, so only one
thread is present. When running the Oracle Parallel Server, however, two or more
instances concurrently access a single database; each instance has its own thread.

This chapter describes how to configure and manage the online redo log when the
Oracle Parallel Server is not used. Hence, the thread number can be assumed to be 1
in all discussions and examples of statements.

Online Redo Log Contents

Online redo log files are filled with redo records. A redo record, also called a redo
entry, is made up of a group of change vectors, each of which is a description of a
change made to a single block in the database. For example, if you change a salary
value in an employee table, you generate a redo record containing change vectors
that describe changes to the data segment block for the table, the rollback segment
data block, and the transaction table of the rollback segments.

Redo entries record data that you can use to reconstruct all changes made to the
database, including the rollback segments. Therefore, the online redo log also
protects rollback data. When you recover the database using redo data, Oracle reads
the change vectors in the redo records and applies the changes to the relevant
blocks.

Redo records are buffered in a circular fashion in the redo log buffer of the SGA and
are written to one of the online redo log files by the Oracle background process Log
Writer (LGWR). Whenever a transaction is committed, LGWR writes the
transaction’s redo records from the redo log buffer of the SGA to an online redo log
file, and a system change number (SCN) is assigned to identify the redo records for
each committed transaction. Only once all redo records associated with a given

6-2 Administrator's Guide

What Is the Online Redo Log?

transaction are safely on disk in the online logs is the user process notified that the
transaction has been committed.

Redo records can also be written to an online redo log file before the corresponding
transaction is committed. If the redo log buffer fills, or another transaction commits,
LGWR flushes all of the redo log entries in the redo log buffer to an online redo log
file, even though some redo records may not be committed. If necessary, Oracle can
roll back these changes.

How Oracle Writes to the Online Redo Log

The online redo log of a database consists of two or more online redo log files.
Oracle requires a minimum of two files to guarantee that one is always available for
writing while the other is being archived (if in ARCHIVELOG mode).

LGWR writes to online redo log files in a circular fashion; when the current online
redo log file fills, LGWR begins writing to the next available online redo log file.
When the last available online redo log file is filled, LGWR returns to the first online
redo log file and writes to it, starting the cycle again. Figure 6-1 illustrates the
circular writing of the online redo log file. The numbers next to each line indicate
the sequence in which LGWR writes to each online redo log file.

Filled online redo log files are available to LGWR for re-use depending on whether
archiving is enabled:

« Ifarchiving is disabled (NOARCHIVELOG mode), a filled online redo log file is
available once the changes recorded in it have been written to the datafiles.

« Ifarchiving is enabled (ARCHIVELOG mode), a filled online redo log file is
available to LGWR once the changes recorded in it have been written to the
datafiles and once the file has been archived.

Managing the Online Redo Log 6-3

What Is the Online Redo Log?

Figure 6-1 Circular Use of Online Redo Log Files by LGWR

Online Redo 1,4,7,...
Log File

#1

LGWR

Online Redo 2,5,8,...
Log File
#2

Online Redo
Log File
#3

3,6,9,...

Active (Current) and Inactive Online Redo Log Files

At any given time, Oracle uses only one of the online redo log files to store redo
records written from the redo log buffer. The online redo log file that LGWR is
actively writing is called the current online redo log file.

Online redo log files that are required for instance recovery are called active online
redo log files. Online redo log files that are not required for instance recovery are
called inactive.

If you have enabled archiving, Oracle cannot re-use or overwrite an active online
log file until ARCn has archived its contents. If archiving is disabled, when the last

online redo log file fills, writing continues by overwriting the first available active
file.

6-4 Administrator's Guide

Planning the Online Redo Log

Log Switches and Log Sequence Numbers

A log switch is the point at which Oracle ends writing to one online redo log file and
begins writing to another. A log switch always occurs when the current online redo
log file is completely filled and writing must continue to the next online redo log
file. You can also force log switches manually.

Oracle assigns each online redo log file a new log sequence number every time that a
log switch occurs and LGWR begins writing to it. If Oracle archives online redo log
files, the archived log retains its log sequence number. The online redo log file that

is cycled back for use is given the next available log sequence number.

Each online or archived redo log file is uniquely identified by its log sequence
number. During crash, instance, or media recovery, Oracle properly applies redo
log files in ascending order by using the log sequence number of necessary archived
and online redo log files.

Planning the Online Redo Log

This section describes guidelines you should consider when configuring a database
instance’s online redo log, and includes the following topics:

« Multiplexing Online Redo Log Files

« Placing Online Redo Log Members on Different Disks
« Setting the Size of Online Redo Log Members

« Choosing the Number of Online Redo Log Files

Multiplexing Online Redo Log Files

Oracle provides the capability to multiplex an instance’s online redo log files to
safeguard against damage to its online redo log files. When multiplexing online
redo log files, LGWR concurrently writes the same redo log information to multiple
identical online redo log files, thereby eliminating a single point of redo log failure.

Note: Oracle recommends that you multiplex your redo log files;
the loss of the log file data can be catastrophic if recovery is
required.

Managing the Online Redo Log 6-5

Planning the Online Redo Log

Figure 6-2 Multiplexed Online Redo Log Files

Disk A Disk B

AN N ‘\ 7 X

S N\ 135

A_LOGL \ / B_LOG1 Group 1
N LGWR ~——

C 7) (~ 7~)

\Q‘/_) / \ \\L/ Group2
A_LOG2 4/ 2,4,6,... \ B_LOG2

The corresponding online redo log files are called groups. Each online redo log file
in a group is called a member. In Figure 6-2, A_LOG1 and B_LOG1 are both
members of Group 1; A_LOG2 and B_LOG2 are both members of Group 2, and so
forth. Each member in a group must be exactly the same size.

Notice that each member of a group is concurrently active, or, concurrently written
to by LGWR, as indicated by the identical log sequence numbers assigned by
LGWR. In Figure 6-2, first LGWR writes to A_LOGL1 in conjunction with B_LOG1,
then A_LOG?2 in conjunction with B_LOG2, etc. LGWR never writes concurrently to
members of different groups (for example, to A_LOG1 and B_LOG2).

Responding to Online Redo Log Failure

Whenever LGWR cannot write to a member of a group, Oracle marks that member
as stale and writes an error message to the LGWR trace file and to the database’s
alert file to indicate the problem with the inaccessible files. LGWR reacts differently
when certain online redo log members are unavailable, depending on the reason for
the unavailability.

6-6 Administrator's Guide

Planning the Online Redo Log

If

Then

LGWR can successfully write to at
least one member in a group

Writing proceeds as normal; LGWR simply writes to
the available members of a group and ignores the
unavailable members.

LGWR cannot access the next
group at a log switch because the
group needs to be archived

Database operation temporarily halts until the group
becomes available, or, until the group is archived.

All members of the next group are
inaccessible to LGWR at a log
switch because of media failure

Oracle returns an error and the database instance
shuts down. In this case, you may need to perform
media recovery on the database from the loss of an
online redo log file.

If the database checkpoint has moved beyond the lost
redo log (which is not the current log in this
example), media recovery is not necessary since
Oracle has saved the data recorded in the redo log to
the datafiles. Simply drop the inaccessible redo log
group. If Oracle did not archive the bad log, use
ALTER DATABASE CLEAR UNARCHIVED LOG to
disable archiving before the log can be dropped.

If all members of a group suddenly
become inaccessible to LGWR
while it is writing to them

Oracle returns an error and the database instance
immediately shuts down. In this case, you may need
to perform media recovery. If the media containing
the log is not actually lost— for example, if the drive
for the log was inadvertently turned off — media
recovery may not be needed. In this case, you only
need to turn the drive back on and let Oracle perform
instance recovery.

Legal and lllegal Configurations

To safeguard against a single point of online redo log failure, a multiplexed online
redo log is ideally symmetrical: all groups of the online redo log have the same
number of members. Nevertheless, Oracle does not require that a multiplexed online
redo log be symmetrical. For example, one group can have only one member, while
other groups have two members. This configuration protects against disk failures
that temporarily affect some online redo log members but leave others intact.

The only requirement for an instance’s online redo log is that it have at least two
groups. Figure 6-3 shows legal and illegal multiplexed online redo log
configurations. The second configuration is illegal because it has only one group.

Managing the Online Redo Log 6-7

Planning the Online Redo Log

Figure 6-3 Legal and Illegal Multiplexed Online Redo Log Configuration

LEGAL

Group 1

Group 2

Group 3

ILLEGAL

Group 1

Group 2

Group 3

6-8 Administrator's Guide

SN

Disk A

N~

SN

Disk B

N~

Planning the Online Redo Log

Placing Online Redo Log Members on Different Disks

When setting up a multiplexed online redo log, place members of a group on
different disks. If a single disk fails, then only one member of a group becomes
unavailable to LGWR and other members remain accessible to LGWR, so the
instance can continue to function.

If you archive the redo log, spread online redo log members across disks to
eliminate contention between the LGWR and ARCn background processes. For
example, if you have two groups of duplexed online redo log members, place each
member on a different disk and set your archiving destination to a fifth disk.
Consequently, there is never contention between LGWR (writing to the members)
and ARCn (reading the members).

Datafiles and online redo log files should also be on different disks to reduce
contention in writing data blocks and redo records.

See Also: For more information about how the online redo log
affects backup and recovery, see Oracle8i Backup and Recovery Guide.

Setting the Size of Online Redo Log Members

When setting the size of online redo log files, consider whether you will be
archiving the redo log. Online redo log files should be sized so that a filled group
can be archived to a single unit of offline storage media (such as a tape or disk),
with the least amount of space on the medium left unused. For example, suppose
only one filled online redo log group can fit on a tape and 49% of the tape’s storage
capacity remains unused. In this case, it is better to decrease the size of the online
redo log files slightly, so that two log groups could be archived per tape.

With multiplexed groups of online redo logs, all members of the same group must
be the same size. Members of different groups can have different sizes; however,
there is no advantage in varying file size between groups. If checkpoints are not set
to occur between log switches, make all groups the same size to guarantee that
checkpoints occur at regular intervals.

See Also: The default size of online redo log files is operating
system-dependent; for more details see your operating
system-specific Oracle documentation.

Choosing the Number of Online Redo Log Files

The best way to determine the appropriate number of online redo log files for a
database instance is to test different configurations. The optimum configuration has

Managing the Online Redo Log 6-9

Planning the Online Redo Log

the fewest groups possible without hampering LGWR’s writing redo log
information.

In some cases, a database instance may require only two groups. In other situations,
a database instance may require additional groups to guarantee that a recycled
group is always available to LGWR. During testing, the easiest way to determine if
the current online redo log configuration is satisfactory is to examine the contents of
the LGWR trace file and the database’s alert log. If messages indicate that LGWR
frequently has to wait for a group because a checkpoint has not completed or a
group has not been archived, add groups.

Consider the parameters that can limit the number of online redo log files before
setting up or altering the configuration of an instance’s online redo log. The
following parameters limit the number of online redo log files that you can add to a
database:

« The MAXLOGFILES parameter used in the CREATE DATABASE statement
determines the maximum number of groups of online redo log files per
database; group values can range from 1 to MAXLOGFILES. The only way to
override this upper limit is to re-create the database or its control file; thus, it is
important to consider this limit before creating a database. If MAXLOGFILES is not
specified for the CREATE DATABASE statement, Oracle uses an operating system
default value.

« The LOG_FILES initialization parameter (in the initialization parameter file) can
temporarily decrease the maximum number of groups of online redo log files
for the duration of the current instance. Nevertheless, LOG_FILES cannot
override MAXLOGFILES to increase the limit. If LOG_FILES is not set in the
database’s parameter file, Oracle uses an operating system-specific default
value.

« The MAXLOGMEMBERS parameter used in the CREATE DATABASE
statement determines the maximum number of members per group. As with
MAXLOGFILES, the only way to override this upper limit is to re-create the
database or control file; thus, it is important to consider this limit before creating
a database. If no MAXLOGMEMBERS parameter is specified for the CREATE
DATABASE statement, Oracle uses an operating system default value.

See Also: For the default and legal values of the MAXLOGFILES
and MAXLOGMEMBERS parameters, and the LOG_FILES
initialization parameter, see your operating system-specific Oracle
documentation.

6-10 Administrator's Guide

Creating Online Redo Log Groups and Members

Creating Online Redo Log Groups and Members

Plan the online redo log of a database and create all required groups and members
of online redo log files during database creation. However, there are situations
where you might want to create additional groups or members of online redo log
files after database creation. For example, adding groups to an online redo log can
correct redo log group availability problems.

To create new online redo log groups and members, you must have the ALTER
DATABASE system privilege. A database can have up to MAXLOGFILES groups.

Creating Online Redo Log Groups

To create a new group of online redo log files, use the SQL statement ALTER
DATABASE with the ADD LOGFILE clause.

The following statement adds a new group of redo logs to the database:

ALTER DATABASE ADD LOGFILE (foracle/dbsfloglc.rdo, foracle/dbslog2c.rdo’) SIZE 500K;

Note: Use fully specify filenames of new log members to indicate
where the operating system file should be created; otherwise, the
files will be created in either the default or current directory of the
database server, depending upon your operating system. To reuse
an existing operating system file, you do not have to indicate the
file size.

You can also specify the number that identifies the group using GROUP option:
ALTER DATABASE ADD LOGFILE GROUP 10 (/oracle/dbsfloglc.rdo’, foracle/dbslog2c.rdo))
SIZE 500K;

Using group numbers can make administering redo log groups easier. However,
the group number must be between 1 and MAXLOGFILES; do not skip redo log file
group numbers (that is, do not number your groups 10, 20, 30, and so on), or you
will consume space in the control files of the database.

Creating Online Redo Log Members

In some cases, it might not be necessary to create a complete group of online redo
log files. A group could already exist, but not be complete because one or more

Managing the Online Redo Log 6-11

Renaming and Relocating Online Redo Log Members

members of the group were dropped (for example, because of a disk failure). In this
case, you can add new members to an existing group.

To create new online redo log members for an existing group, use the SQL
statement ALTER DATABASE with the ADD LOG MEMBER parameter.The
following statement adds a new redo log member to redo log group number 2:

ALTER DATABASE ADD LOGFILE MEMBER /oracle/dbsflog2b.rdo " TOGROUP 2,
Notice that filenames must be specified, but sizes need not be; the size of the new
members is determined from the size of the existing members of the group.

When using the ALTER DATABASE statement, you can alternatively identify the
target group by specifying all of the other members of the group in the TO
parameter, as shown in the following example:

ALTER DATABASE ADD LOGFILE MEMBER /oracle/dbsflog2c.rdo ' TO
(' Joracle/dbsflog2a.rdo ', ' loracle/dbsflog2b.rdo ")

Note: Fully specify the filenames of new log members to indicate
where the operating system files should be created; otherwise, the
files will be created in either the default or current directory of the
database server, depending upon your operating system. You may
also note that the status of the new log member is shown as
INVALID. This is normal and it will change to active (blank) when
itis first used.

Renaming and Relocating Online Redo Log Members

You can rename online redo log members to change their locations. This procedure
is necessary, for example, if the disk currently used for some online redo log files is
going to be removed, or if datafiles and a number of online redo log files are stored
on the same disk and should be separated to reduce contention.

To rename online redo log members, you must have the ALTER DATABASE
system privilege. Additionally, you might also need operating system privileges to
copy files to the desired location and privileges to open and back up the database.

Before renaming any online redo log members, ensure that the new online redo log
files already exist.

6-12 Administrator's Guide

Renaming and Relocating Online Redo Log Members

WARNING: The following steps only modify the internal file
pointers in a database’s control files; they do not physically
rename or create any operating system files. Use your computer’s
operating system to copy the existing online redo log files to the
new location.

To Rename Online Redo Log Members

1.

Back up the database.

Before making any structural changes to a database, such as renaming or
relocating online redo log members, completely back up the database
(including the control file) in case you experience any problems while
performing this operation.

Copy the online redo log files to the new location.

Operating system files, such as online redo log members, must be copied using
the appropriate operating system commands. See your operating
system-specific documentation for more information about copying files.

Note: You can execute an operating system command to copy a
file without exiting SQL*Plus by using the HOST command.

Rename the online redo log members.

Use the ALTER DATABASE statement with the RENAME FILE clause to
rename the database’s online redo log files.

Open the database for normal operation.

The online redo log alterations take effect the next time that the database is
opened. Opening the database may require shutting down the current instance
(if the database was previously opened by the current instance) or just opening
the database using the current instance.

Back up the control file.

As a precaution, after renaming or relocating a set of online redo log files,
immediately back up the database’s control file.

The following example renames the online redo log members. However, first
assume that:

Managing the Online Redo Log 6-13

Dropping Online Redo Log Groups and Members

« The database is currently mounted by, but closed to, the instance.
« The log files are located on two disks: diska and diskb .

« Theonline redo log is duplexed: one group consists of the members
/diska/logs/logla.rdo and /diskb/logs/loglb.rdo , and the second
group consists of the members /diska/logs/log2a.rdo and
/diskb/logs/log2b.rdo

« Theonline redo log files located on diska must be relocated to diskc . The
new filenames will reflect the new location: /diskc/logs/loglc.rdo and
/diskc/logs/log2c.rdo

The files /diska/logs/logla.rdo and /diska/logs/log2a.rdo on diska
must be copied to the new files /diskc/logs/loglc.rdo and
/diskc/logs/log2c.rdo on diskc .

ALTER DATABASE RENAME FILE

ldiska/logs/logla.rdo’, /diska/logs/log2a.rdo’
TO/diskc/logs/loglc.rdo', /diskc/logs/log2c.rdo;

Dropping Online Redo Log Groups and Members

In some cases, you may want to drop an entire group of online redo log members.
For example, you want to reduce the number of groups in an instance’s online redo
log. In a different case, you may want to drop one or more specific online redo log
members. For example, if a disk failure occurs, you may need to drop all the online
redo log files on the failed disk so that Oracle does not try to write to the
inaccessible files. In other situations, particular online redo log files become
unnecessary; for example, a file might be stored in an inappropriate location.

Dropping Log Groups

To drop an online redo log group, you must have the ALTER DATABASE system
privilege. Before dropping an online redo log group, consider the following
restrictions and precautions:

« An instance requires at least two groups of online redo log files, regardless of
the number of members in the groups. (A group is one or more members.)

= You can drop an online redo log group only if it is not the active group. If you
need to drop the active group, first force a log switch to occur; see "Forcing Log
Switches" on page 6-16.

6-14 Administrator's Guide

Dropping Online Redo Log Groups and Members

« Make sure an online redo log group is archived (if archiving is enabled) before
dropping it. To see whether this has happened, use the SQL*Plus ARCHIVE
LOG statement with the LIST parameter.

Drop an online redo log group with the SQL statement ALTER DATABASE with
the DROP LOGFILE clause.

The following statement drops redo log group number 3:
ALTER DATABASE DROP LOGFILE GROUP 3;

When an online redo log group is dropped from the database, the operating system
files are not deleted from disk. Rather, the control files of the associated database
are updated to drop the members of the group from the database structure. After
dropping an online redo log group, make sure that the drop completed
successfully, and then use the appropriate operating system command to delete the
dropped online redo log files.

Dropping Online Redo Log Members

To drop an online redo log member, you must have the ALTER DATABASE system
privilege.

Consider the following restrictions and precautions before dropping individual
online redo log members:

« Itis permissible to drop online redo log files so that a multiplexed online redo
log becomes temporarily asymmetric. For example, if you use duplexed groups
of online redo log files, you can drop one member of one group, even though all
other groups have two members each. However, you should rectify this
situation immediately so that all groups have at least two members, and
thereby eliminate the single point of failure possible for the online redo log.

« An instance always requires at least two valid groups of online redo log files,
regardless of the number of members in the groups. (A group is one or more
members.) If the member you want to drop is the last valid member of the
group, you cannot drop the member until the other members become valid; to
see a redo log file’s status, use the VSLOGFILE view. A redo log file becomes
INVALID if Oracle cannot access it. It becomes STALE if Oracle suspects that it
is not complete or correct; a stale log file becomes valid again the next time its
group is made the active group.

= You can drop an online redo log member only if it is not part of an active group.
If you want to drop a member of an active group, first force a log switch to
occur.

Managing the Online Redo Log 6-15

Forcing Log Switches

« Make sure the group to which an online redo log member belongs is archived
(if archiving is enabled) before dropping the member. To see whether this has
happened, use the SQL*Plus ARCHIVE LOG statement with the LIST
parameter.

To drop specific inactive online redo log members, use the SQL ALTER DATABASE
statement with the DROP LOGFILE MEMBER clause.

The following statement drops the redo log /oracle/dbs/log3c.rdo
ALTER DATABASE DROP LOGFILE MEMBER /oracle/dbsflog3c.rdo ",

When an online redo log member is dropped from the database, the operating
system file is not deleted from disk. Rather, the control files of the associated
database are updated to drop the member from the database structure. After
dropping an online redo log file, make sure that the drop completed successfully,
and then use the appropriate operating system command to delete the dropped
online redo log file.

For information on dropping a member of an active group, see the following
section, "Forcing Log Switches".

See Also: For more information about SQL*Plus command
syntax, see the SQL*Plus User’s Guide and Reference.

Forcing Log Switches

A log switch occurs when LGWR stops writing to one online redo log group and
starts writing to another. By default, a log switch occurs automatically when the
current online redo log file group fills.

You can force a log switch to make the currently active group inactive and available
for online redo log maintenance operations. For example, you want to drop the
currently active group, but are not able to do so until the group is inactive. You may
also wish to force a log switch if the currently active group needs to be archived at a
specific time before the members of the group are completely filled; this option is
useful in configurations with large online redo log files that take a long time to fill.

To force a log switch, you must have the ALTER SYSTEM privilege. To force a log switch,
use either the SQL statement ALTER SYSTEM with the SWITCH LOGFILE option.

The following statement forces a log switch:
ALTER SYSTEM SWITCH LOGFILE;

6-16 Administrator's Guide

Clearing an Online Redo Log File

See Also: For information on forcing log switches with the Oracle
Parallel Server, see Oracle8i Parallel Server Administration,
Deployment, and Performance.

Verifying Blocks in Redo Log Files

You can configure Oracle to use checksums to verify blocks in the redo log files. Set
the initialization parameter LOG_BLOCK_CHECKSUM to TRUE to enable redo log
block checking. The default value of LOG_BLOCK_CHECKSUM is FALSE.

If you enable redo log block checking, Oracle computes a checksum for each redo log
block written to the current log. Oracle writes the checksums in the header of the
block.

Oracle uses the checksum to detect corruption in a redo log block. Oracle tries to
verify the redo log block when it writes the block to an archive log file and when
the block is read from an archived log during recovery.

If Oracle detects a corruption in a redo log block while trying to archive it, the
system tries to read the block from another member in the group. If the block is
corrupted in all members the redo log group, then archiving cannot proceed.

Clearing an Online Redo Log File

Restrictions

If you have enabled redo log block checking, Oracle verifies each block before
archiving it. If a particular redo log block is corrupted in all members of a group,
archiving stops. Eventually all the redo logs become filled and database activity is
halted until archiving can resume.

In this situation, use the SQL statement ALTER DATABASE ... CLEAR LOGFILE to
clear the corrupted redo logs and avoid archiving them. The cleared redo logs are
available for use even though they were not archived.

The following statement clears the log files in redo log group number 3:
ALTER DATABASE CLEAR UNARCHIVED LOGFILE GROUP 3;

You can clear a redo log file whether it is archived or not. When it is not archived,
however, you must include the keyword UNARCHIVED in your ALTER
DATABASE CLEAR LOGFILE statement.

Managing the Online Redo Log 6-17

Listing Information about the Online Redo Log

If you clear a log file that is needed for recovery of a backup, then you can no longer
recover from that backup. Oracle writes a message in the alert log describing the
backups from which you cannot recover.

Note: If you clear an unarchived redo log file, you should make
another backup of the database.

If you want to clear an unarchived redo log that is needed to bring an offline
tablespace online, use the clause UNRECOVERABLE DATAFILE in the ALTER
DATABASE CLEAR LOGFILE statement.

If you clear a redo log needed to bring an offline tablespace online, you will not be
able to bring the tablespace online again. You will have to drop the tablespace or
perform an incomplete recovery. Note that tablespaces taken offline normal do not
require recovery.

See Also: For a complete description of the ALTER DATABASE
statement, see the Oracle8i SQL Reference.

Listing Information about the Online Redo Log

Use the VLOG, VSLOGFILE, and V$THREAD views to see information about the
online redo log of a database; the VSTHREAD view is of particular interest for
Parallel Server administrators.

The following query returns information about the online redo log of a database
used without the Parallel Server:

SELECT group#, bytes, members FROM sys.v$log;

GROUP# BYTES MEMBERS

1 81920 2
2 81920 2

To see the names of all of the member of a group, use a query similar to the
following:
SELECT * FROM sysv$logfile

WHERE group# =2;

GROUP# STATUS MEMBER

6-18 Administrator's Guide

Listing Information about the Online Redo Log

2 LOG2A
2 STALE LOG2B
2 LOG2C

If STATUS is blank for a member, then the file is in use.

Managing the Online Redo Log 6-19

Listing Information about the Online Redo Log

6-20 Administrator's Guide

v

Managing Archived Redo Logs

This chapter describes how to archive redo data. It includes the following topics:

What Is the Archived Redo Log?

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

Controlling the Archiving Mode

Specifying the Archive Destination

Specifying the Mode of Log Transmission

Managing Archive Destination Failure

Tuning Archive Performance

Displaying Archived Redo Log Information

Controlling Trace Output Generated by the Archivelog Process

Using LogMiner to Analyze Online and Archived Redo Logs
See Also: If you are using Oracle with the Parallel Server, see

Oracle8i Parallel Server Administration, Deployment, and Performance
for additional information about archiving in the OPS environment,

Managing Archived Redo Logs

7-1

What Is the Archived Redo Log?

What Is the Archived Redo Log?

Oracle allows you to save filled groups of online redo log files, known as archived
redo logs, to one or more offline destinations. Archiving is the process of turning
online redo logs into archived redo logs. The background process ARCn automates
archiving operations. You can use archived logs to:

« Recover a database.
« Update a standby database.
« Gain information about the history of a database via the LogMiner utility.

An archived redo log file is a copy of one of the identical filled members of an
online redo log group: it includes the redo entries present in the identical members
of a group and also preserves the group’s unique log sequence number. For
example, if you are multiplexing your online redo logs, and if Group 1 contains
member files A_LOG1 and B_LOG1, then ARCn will archive one of these identical
members. Should A_LOG1 become corrupted, then ARCn can still archive the
identical B_LOGL1.

If you enable archiving, LGWR is not allowed to reuse and hence overwrite an
online redo log group until it has been archived. Therefore, the archived redo log
contains a copy of every group created since you enabled archiving. Figure 7-1
shows how ARCn archives redo logs.

WARNING: Oracle recommends that you do not copy a current
online log. If you do, and then restore that copy, the copy will
appear at the end of the redo thread. Since additional redo may
have been generated in the thread, when you attempt to execute
recovery by supplying the redo log copy, recovery will
erroneously detect the end of the redo thread and prematurely
terminate, possibly corrupting the database. The best way to back
up the contents of the current online log is always to archive it,
then back up the archived log.

7-2 Oracle8i Administrator's Guide

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

Figure 7-1 Archival of online redo logs

LGWR

LOG5
(active)

LOG1 LOG2 LOG4

(inactive) (inactive) (inactive)

ARCO ARC2

A

> Desti:ation
_/ e

Y
N~

P> | Destination
y. <+

N

A

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

This section describes the issues you must consider when choosing to run your
database in NOARCHIVELOG or ARCHIVELOG mode, and includes the following
topics:

« Running a Database in NOARCHIVELOG Mode
« Running a Database in ARCHIVELOG Mode

Running a Database in NOARCHIVELOG Mode

When you run your database in NOARCHIVELOG mode, you disable the archiving
of the online redo log. The database’s control file indicates that filled groups are not

Managing Archived Redo Logs 7-3

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

required to be archived. Therefore, when a filled group becomes inactive after a log
switch, the group is available for reuse by LGWR.

The choice of whether to enable the archiving of filled groups of online redo log
files depends on the availability and reliability requirements of the application
running on the database. If you cannot afford to lose any data in your database in
the event of a disk failure, use ARCHIVELOG mode. Note that the archiving of
filled online redo log files can require you to perform extra administrative
operations.

NOARCHIVELOG mode protects a database only from instance failure, but not
from media failure. Only the most recent changes made to the database, which are
stored in the groups of the online redo log, are available for instance recovery. In
other words, if you are using NOARCHIVELOG mode, you can only restore (not
recover) the database to the point of the most recent full database backup. You
cannot recover subsequent transactions.

Also, in NOARCHIVELOG mode you cannot perform online tablespace backups.
Furthermore, you cannot use online tablespace backups previously taken while the
database operated in ARCHIVELOG mode. You can only use whole database
backups taken while the database is closed to restore a database operating in
NOARCHIVELOG mode. Therefore, if you decide to operate a database in
NOARCHIVELOG mode, take whole database backups at regular, frequent
intervals.

Running a Database in ARCHIVELOG Mode

When you run a database in ARCHIVELOG mode, you enable the archiving of the
online redo log. The database control file indicates that a group of filled online redo
log files cannot be used by LGWR until the group is archived. A filled group is
immediately available for archiving after a redo log switch occurs.

The archiving of filled groups has these advantages:

« A database backup, together with online and archived redo log files, guarantees
that you can recover all committed transactions in the event of an operating
system or disk failure.

=« You can use a backup taken while the database is open and in normal system
use if you keep an archived log.

« You can keep a standby database current with its original database by
continually applying the original’s archived redo logs to the standby.

7-4 Oracle8i Administrator's Guide

Choosing Between NOARCHIVELOG and ARCHIVELOG Mode

Decide how you plan to archive filled groups of the online redo log. You can
configure an instance to archive filled online redo log files automatically, or you can
archive manually. For convenience and efficiency, automatic archiving is usually
best. Figure 7-2 illustrate how the process archiving the filled groups (ARCO in this
illustration) generates the database’s online redo log.

Figure 7-2 Online Redo Log File Use in ARCHIVELOG Mode

<
- W Archived
Redo Log
o) e

ARCO ARCO ARCO

LGWR LGWR LGWR

‘.

- - - Online
Log Log Log Lo Redo Log
0001 0002 0003 0004 Files

[TIME >

If all databases in a distributed database operate in ARCHIVELOG mode, you can

perform coordinated distributed database recovery. If any database in a distributed
database uses NOARCHIVELOG mode, however, recovery of a global distributed

database (to make all databases consistent) is limited by the last full backup of any
database operating in NOARCHIVELOG mode.

You can also configure Oracle to verify redo log blocks when they are archived.
This is discussed in "Verifying Blocks in Redo Log Files" on page 6-17.

Managing Archived Redo Logs 7-5

Controlling the Archiving Mode

Controlling the Archiving Mode

This section describes ways of controlling the mode in which archiving is
performed, and includes the following topics:

« Setting the Initial Database Archiving Mode

« Changing the Database Archiving Mode

« Enabling Automatic Archiving

« Disabling Automatic Archiving

» Performing Manual Archiving
See Also: If a database is automatically created during Oracle
installation, the initial archiving mode of the database is operating
system specific. See the Oracle installation documentation specific

to your operating system for additional information on controlling
archiving modes.

Setting the Initial Database Archiving Mode

You set a database’s initial archiving mode as part of database creation in the
CREATE DATABASE statement. Usually, you can use the default of
NOARCHIVELOG mode at database creation because there is no need to archive
the redo information generated then. After creating the database, decide whether to
change from the initial archiving mode.

Changing the Database Archiving Mode

To switch a database’s archiving mode between NOARCHIVELOG and
ARCHIVELOG mode, use the SQL statement ALTER DATABASE with the
ARCHIVELOG or NOARCHIVELOG option. The following statement switches the
database’s archiving mode from NOARCHIVELOG to ARCHIVELOG:

ALTER DATABASE ARCHIVELOG;

Before switching the database’s archiving mode, perform the following operations:
1. Shut down the database instance.

An open database must be closed and dismounted and any associated instances
shut down before you can switch the database’s archiving mode. You cannot
disable archiving if any datafiles need media recovery.

2. Back up the database.

7-6 Oracle8i Administrator’'s Guide

Controlling the Archiving Mode

Before making any major change to a database, always back up the database to
protect against any problems.

3. Start a new instance and mount but do not open the database.

To enable or disable archiving, the database must be mounted but not open.

Note: If you are using the Oracle Parallel Server, you must mount
the database exclusively, using one instance, to switch the
database’s archiving mode. See Oracle8i Parallel Server
Administration, Deployment, and Performance for more information
about switching the archiving mode when using the Oracle Parallel
Server.

4. Switch the database’s archiving mode.

After using the ALTER DATABASE statement to switch a database’s archiving
mode, open the database for normal operation. If you switched to ARCHIVELOG
mode, you must also set additional archiving options specifying whether or not to
enable Oracle to archive groups of online redo log files automatically as they fill.

Enabling Automatic Archiving

If your operating system permits, you can enable automatic archiving of the online
redo log. Under this option, no action is required to copy a group after it fills;
Oracle automatically archives it. For this convenience alone, automatic archiving is
the method of choice for archiving. However, if automatic archiving is enabled, you
can still perform manual archiving as described in "Performing Manual Archiving"
on page 7-9.

You can enable automatic archiving before or after instance startup. To enable

automatic archiving after instance startup, you must be connected to Oracle with
administrator privileges.

Always specify an archived redo log destination and file name format when
enabling automatic archiving, as described in "Specifying Archive Destinations" on
page 7-10.

WARNING: Oracle does not automatically archive log files
unless the database is also in ARCHIVELOG mode.

Managing Archived Redo Logs 7-7

Controlling the Archiving Mode

Enabling Automatic Archiving at Instance Startup

To enable automatic archiving of filled groups each time an instance is started,
include the initialization parameter LOG_ARCHIVE_START in the database’s
initialization parameter file and set it to TRUE:

LOG_ARCHIVE_START=TRUE

The new value takes effect the next time you start the database.

Enabling Automatic Archiving After Instance Startup

To enable automatic archiving of filled online redo log groups without shutting
down the current instance, use the SQL statement ALTER SYSTEM with the
ARCHIVE LOG START parameter; you can optionally include the archiving
destination.

ALTER SYSTEM ARCHIVE LOG START;

If you use the ALTER SYSTEM method, you do not need to shut down the instance
to enable automatic archiving. If an instance is shut down and restarted after
automatic archiving is enabled, however, the instance is reinitialized using the
settings of the initialization parameter file, which may or may not enable automatic
archiving.

Disabling Automatic Archiving

You can disable automatic archiving of the online redo log groups at any time. Once
you disable automatic archiving, however, you must manually archive groups of
online redo log files in a timely fashion. If you run a database in ARCHIVELOG
mode and disable automatic archiving, and if all groups of online redo log files are
filled but not archived, then LGWR cannot reuse any inactive groups of online redo
log groups to continue writing redo log entries. Therefore, database operation is
temporarily suspended until you perform the necessary archiving.

You can disable automatic archiving at or after instance startup. To disable
automatic archiving after instance startup, you must be connected with
administrator privilege and have the ALTER SYSTEM privilege.

Disabling Automatic Archiving at Instance Startup

To disable the automatic archiving of filled online redo log groups each time a
database instance is started, set the LOG_ARCHIVE_START initialization
parameter of a database’s initialization parameter file to FALSE:

7-8 Oracle8i Administrator’'s Guide

Controlling the Archiving Mode

LOG_ARCHIVE_START=FALSE

The new value takes effect the next time the database is started.

Disabling Automatic Archiving after Instance Startup

To disable the automatic archiving of filled online redo log groups without shutting
down the current instance, use the SQL statement ALTER SYSTEM with the
ARCHIVE LOG STOP parameter. The following statement stops archiving:

ALTER SYSTEM ARCHIVE LOG STOP;

If ARCn is archiving a redo log group when you attempt to disable automatic
archiving, ARCn finishes archiving the current group, but does not begin archiving
the next filled online redo log group.

The instance does not have to be shut down to disable automatic archiving. If an
instance is shut down and restarted after automatic archiving is disabled, however,
the instance is reinitialized using the settings of the initialization parameter file,
which may or may not enable automatic archiving.

Performing Manual Archiving

If you operate your database in ARCHIVELOG mode, then you must archive
inactive groups of filled online redo log files. You can manually archive groups of
the online redo log whether or not automatic archiving is enabled:

« If automatic archiving is not enabled, then you must manually archive groups
of filled online redo log files in a timely fashion. If all online redo log groups are
filled but not archived, LGWR cannot reuse any inactive groups of online redo
log members to continue writing redo log entries. Therefore, database operation
is temporarily suspended until the necessary archiving is performed.

« If automatic archiving is enabled, but you want to rearchive an inactive group
of filled online redo log members to another location, you can use manual
archiving. Note that the instance can decide to reuse the redo log group before
you have finished manually archiving, and thereby overwrite the files; if this
happens, Oracle will put an error message in the ALERT file.

To archive a filled online redo log group manually, connect with administrator
privileges. Use the SQL statement ALTER SYSTEM with the ARCHIVE LOG clause
to manually archive filled online redo log files. The following statement archives all
unarchived log files:

ALTER SYSTEM ARCHIVE LOG ALL,;

Managing Archived Redo Logs 7-9

Specifying the Archive Destination

See Also: With both manual or automatic archiving, you specify a
thread only when you are using the Oracle Parallel Server. See
Oracle8i Parallel Server Administration, Deployment, and Performance
for more information.

Specifying the Archive Destination

When archiving redo logs, determine the destination to which you will archive and
familiarize yourself with the various destination states. Develop a practice of using
fixed views, listed in "Displaying Archived Redo Log Information” on page 7-22, to
access archive information.

The following topics are discussed in this section
« Specifying Archive Destinations

« Understanding Archive Destination States

Specifying Archive Destinations

You must decide whether to make a single destination for the logs or multiplex them,
i.e., archive the logs to more than one location. You specify your choice by setting
initialization parameters according to one of the following methods.

Method |Initialization Parameter Host Example

1 LOG_ARCHIVE_DEST_n Local LOG_ARCHIVE_DEST_1 ='LOCATION = /disk1/arc'
(where n is an integer from 1 to 5) ?ermote LOG_ARCHIVE_DEST_2 ='SERVICE = standbyl’

2 LOG_ARCHIVE_DEST and Local LOG_ARCHIVE_DEST = '/diskl/arc'

LOG_ARCHIVE_DUPLEX_DEST |°™Y | LOG_ARCHIVE_DUPLEX_DEST ='/disk2/arc’

Method1: Using the LOG_ARCHIVE_DEST_n Parameter

The first method is to use the LOG_ARCHIVE_DEST_n parameter (where n is an
integer from 1 to 5) to specify from one to five different destinations for archival.
Each numerically-suffixed parameter uniquely identifies an individual destination.

You specify the location for LOG_ARCHIVE_DEST _n using these keywords:

7-10 Oracle8i Administrator's Guide

Specifying the Archive Destination

Keyword Indicates Fxample

LOCATION | A local filesystem LOG_ARCHIVE_DEST_1="LOCATION=/disk1/arc'

location.

SERVICE Remote archival via | LOG_ARCHIVE_DEST_2 = 'SERVICE=standby1’

Net8 service name.

If you use the LOCATION keyword, specify a valid pathname for your operating
system. If you specify SERVICE, Oracle translates the net service name through the
tnsnames.ora file to a connect descriptor. The descriptor contains the information
necessary for connecting to the remote database. Note that the service name must
have an associated database SID, so that Oracle correctly updates the log history of
the control file for the standby database.

Perform the following steps to set the destination for archived redo logs using this
method:

1.

Use SQL*Plus to shut down the database.
SHUTDOWN IMMEDIATE;
Edit the LOG_ARCHIVE_DEST_n parameter to specify from one to five

archiving locations. The LOCATION keyword specifies an O/S-specific
pathname. For example, enter:

LOG_ARCHIVE_DEST 1 ="LOCATION =/diskl/archive '
LOG_ARCHIVE DEST 2 ="LOCATION = /disk2/archive
LOG_ARCHIVE DEST 3="LOCATION = /disk3/archive

If you are archiving to a standby database, use the SERVICE keyword to specify
a valid net service name from the thsnames.ora file. For example, enter:
LOG_ARCHIVE_DEST 4 ="SERVICE =standbyl

Edit the LOG_ARCHIVE_FORMAT initialization parameter, using %sto
include the log sequence number as part of the file name and %t to include the

thread number. Use capital letters (%Sand %T7) to pad the file name to the left
with zeroes. For example, enter:

LOG_ARCHIVE_FORMAT =arch%s.arc

These settings will generate archived logs as follows for log sequence numbers
100, 101, and 102;

[disk1/archive/arch100.arc, /disk1/archive/arch101.arc, /disk1/archive/arch102.arc

Managing Archived Redo Logs 7-11

Specifying the Archive Destination

[disk2/archivelarch100.arc, /disk2/archive/arch101.arc, /disk2/archive/arch102.arc
[disk3/archive/arch100.arc, /disk3/archive/arch101.arc, /disk3/archive/arch102.arc

Method 2: Using LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST

The second method, which allows you to specify a maximum of two locations, is to
use the LOG_ARCHIVE_DEST parameter to specify a primary archive destination
and the LOG_ARCHIVE_DUPLEX_DEST to determine an optional secondary
location. Whenever Oracle archives a redo log, it archives it to every destination
specified by either set of parameters.

Perform the following steps to use method 2.

1.

Use SQL*Plus to shut down the database.
SHUTDOWN IMMEDIATE;

Specify destinations for the LOG_ARCHIVE_DEST and LOG_ARCHIVE_
DUPLEX_DEST parameter (you can also specify LOG_ARCHIVE_DUPLEX _
DEST dynamically using the ALTER SYSTEM statement). For example, enter:

LOG_ARCHIVE._DEST ="/diskL/archive
LOG_ARCHIVE_DUPLEX_DEST /disk2/archive

Edit the LOG_ARCHIVE_FORMAT parameter, using %sto include the log
sequence number as part of the file name and %t to include the thread number.
Use capital letters (%0Sand %7) to pad the file name to the left with zeroes. For
example, enter:

LOG_ARCHIVE_FORMAT =arch_%t %s.arc
For example, the above settings will generate archived logs as follows for log
sequence numbers 100 and 101 in thread 1:

[disk1/archive/arch_1_100.arc, /diskl/archive/arch_1_101.arc
[disk2/archive/arch_1_100.arc, /disk2/archive/arch_1_100.arc

See Also: For information about archiving to standby databases,
see the Oracle8i Backup and Recovery Guide and Oracle8i Standby
Database Concepts and Administration.

Understanding Archive Destination States

The LOG_ARCHIVE_DEST_STATE_n (where n is an integer from 1 to 5)
initialization parameter identifies the status of the specified destination. The

7-12 Oracle8i Administrator’'s Guide

Specifying the Archive Destination

destination parameters can have two values: ENABLE and DEFER. ENABLE
indicates that Oracle can use the destination, whereas DEFER indicates that it
should not.

Each archive destination has three variable characteristics:

« Valid/Invalid, which indicates whether the disk location or service name
information is specified.

« Enabled/Disabled, which indicates whether Oracle should use the destination
information.

« Active/lnactive, which indicates whether there was a problem accessing the
destination.

Several destination states are possible, and are reflected in the status of the
destination. To obtain the current status and other information about each
destination for an instance, query the VSARCHIVE_DEST view. You will access the
most recently entered parameter definition—which does not necessarily contain the
complete archive destination data.

The characteristics determining a locations status that appear in the view are shown
in Table 7-1. Note that for a destination to be used, its characteristics must be valid,
enabled, and active.

Table 7—-1 Destination Status (Page 1 of 2)

Characteristics

STATUS Valid Enabled |Active Meaning

VALID TRUE TRUE TRUE The user has properly initialized the
destination, which is available for
archiving.

INACTIVE FALSE N/A N/A The user has not provided or has
deleted the destination information.

ERROR TRUE TRUE FALSE An error occurred creating or

writing to the destination file; refer
to error data.

DEFERRED TRUE FALSE TRUE The user manually and temporarily
disabled the destination.

DISABLED TRUE FALSE FALSE The user manually and temporarily
disabled the destination following an
error; refer to error data.

Managing Archived Redo Logs 7-13

Specifying the Mode of Log Transmission

Table 7—-1 Destination Status (Page 2 of 2)

Characteristics

STATUS Valid Enabled |Active Meaning

BAD PARAM N/A N/A N/A A parameter error occurred; refer to
error data. Usually this state is only
seen when LOG_ARCHIVE_START
is not set.

See Also: For detailed information about VSARCHIVE_DEST as
well as the archive destination parameters, see the Oracle8i
Reference.

Specifying the Mode of Log Transmission

There are two modes of transmitting archived logs to their destination: normal
archiving transmission and standby transmission mode. Normal transmission involves
transmitting files to a local disk. Standby transmission involves transmitting files
via a network to either a local or remote standby database.

Normal Transmission Mode

In normal transmission mode, the archiving destination is another disk drive of the
database server, since in this configuration archiving does not contend with other
files required by the instance and completes quickly so the group can become
available to LGWR. Specify the destination with either the LOG_ARCHIVE_DEST _
n or LOG_ARCHIVE_DEST parameters.

Ideally, you should permanently move archived redo log files and corresponding
database backups from the local disk to inexpensive offline storage media such as
tape. Because a primary value of archived logs is database recovery, you want to
ensure that these logs are safe should disaster strike your primary database.

Standby Transmission Mode

In standby transmission mode, the archiving destination is either a local or remote
standby database.

7-14 Oracle8i Administrator's Guide

Specifying the Mode of Log Transmission

WARNING: You can maintain a standby database on a local disk,
but Oracle strongly encourages you to maximize disaster
protection by maintaining your standby database at a remote site.

If you are operating your standby database in managed recovery mode, you can keep
your standby database in sync with your source database by automatically
applying transmitted archive logs.

To transmit files successfully to a standby database, either ARCn or a server process
must do the following:

« Recognize a remote location.
« Transmit the archived logs by means of a remote file server (RFS) process.

Each ARCn process creates a corresponding RFS for each standby destination. For
example, if three ARCn processes are archiving to two standby databases, then
Oracle establishes six RFS connections.

You can transmit archived logs through a network to a remote location by using
Net8. Indicate a remote archival by specifying a Net8 service name as an attribute of
the destination. Oracle then translates the service name, which you set by means of
the SERVICE_NAME parameter, through the thsnames.ora file to a connect
descriptor. The descriptor contains the information necessary for connecting to the
remote database. Note that the service name must have an associated database SID,
so that Oracle correctly updates the log history of the control file for the standby
database.

The RFS process, which runs on the destination node, acts as a network server to
the ARCn client. Essentially, ARCn pushes information to RFS, which transmits it to
the standby database.

The RFS process, which is required when archiving to a remote destination, is
responsible for the following tasks:

« Consuming network 1I/0 from the ARCn process.

« Creating file names on the standby database by using the STANDBY _
ARCHIVE_DEST parameter.

« Populating the log files at the remote site.

« Updating the standby database’s control file (which Recovery Manager can
then use for recovery).

Managing Archived Redo Logs 7-15

Managing Archive Destination Failure

Archived redo logs are integral to maintaining a standby database, which is an exact
replica of a database. You can operate your database in standby archiving mode,
which automatically updates a standby database with archived redo logs from the
original database.

See Also: For a detailed description of standby databases, see the
relevant chapter in the Oracle8i Standby Database Concepts and
Administration.

For information about Net8, see the Net8 Administrator’s Guide.

Managing Archive Destination Failure

Sometimes archive destinations can fail, causing problems when you operate in
automatic archiving mode. To minimize the problems associated with destination
failure, Oracle8i provides you with options, as described in the sections below.

« Specifying the Minimum Number of Successful Destinations

« Re-Archiving to a Failed Destination

Specifying the Minimum Number of Successful Destinations

The optional initialization parameter LOG_ARCHIVE_MIN_SUCCEED DEST=n
(where n is an integer from 1 to 5, or 1 to 2 if you choose to use duplexing)
determines the minimum number of destinations to which Oracle must successfully
archive a redo log group before it can reuse online log files. The default value is 1.

Specifying Mandatory and Optional Destinations

Using the LOG_ARCHIVE_DEST_n parameter, you can specify whether a
destination has the attributes OPTIONAL (default) or MANDATORY. The LOG_
ARCHIVE_MIN_SUCCEED_DEST=n parameter uses all MANDATORY
destinations plus some number of OPTIONAL non-standby destinations to
determine whether LGWR can overwrite the online log.

When determining how to set your parameters, note that:

« Not specifying MANDATORY for a destination is the same as specifying
OPTIONAL.

« You must have at least one local destination, which you can declare
OPTIONAL or MANDATORY.

7-16 Oracle8i Administrator’'s Guide

Managing Archive Destination Failure

« When using LOG_ARCHIVE_MIN_SUCCEED_DEST=n at least one local
destination will operationally be treated as MANDATORY, since the minimum
value for LOG_ARCHIVE_MIN_SUCCEED_DEST is 1.

« The failure of any MANDATORY destination, including a MANDATORY
standby destination, makes the LOG_ARCHIVE_MIN_SUCCEED_DEST
parameter irrelevant.

« The LOG_ARCHIVE_MIN_SUCCEED_DEST value cannot be greater than the
number of destinations, nor greater than the number of MANDATORY
destinations plus the number of OPTIONAL local destinations.

« If you DEFER a MANDATORY destination, and Oracle overwrites the online
log without transferring the archived log to the standby site, then you must
transfer the log to the standby manually.

You can also establish which destinations are mandatory or optional by using the
LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST parameters. Note the
following rules:

« Any destination declared via LOG_ARCHIVE_DEST is mandatory.

« Any destination declared via LOG_ARCHIVE_DUPLEX_DEST is optional if
LOG_ARCHIVE_MIN_SUCCEED_DEST =1 and mandatory if LOG_
ARCHIVE_MIN_SUCCEED_DEST = 2.

Sample Scenarios

You can see the relationship between the LOG_ARCHIVE_DEST_n and LOG_
ARCHIVE_MIN_SUCCEED_DEST parameters most easily through sample
scenarios.

Scenario 1 In this scenario, you archive to three local destinations, each of which you
declare as OPTIONAL. Table 7-2 illustrates the possible values for LOG_
ARCHIVE_MIN_SUCCEED_DEST=n in this case.

Table 7-2 LOG_ARCHIVE_MIN_SUCCEED DEST Values for Scenario 1

Value Meaning

1 Oracle can reuse log files only if at least one of the OPTIONAL destinations
succeeds.

2 Oracle can reuse log files only if at least two of the OPTIONAL destinations
succeed.

3 Oracle can reuse log files only if all of the OPTIONAL destinations succeed.

Managing Archived Redo Logs 7-17

Managing Archive Destination Failure

Table 7-2 LOG_ARCHIVE_MIN_SUCCEED DEST Values for Scenario 1

4 ERROR: The value is greater than the number of destinations.

5 ERROR: The value is greater than the number of destinations.

This scenario shows that even though you do not explicitly set any of your
destinations to MANDATORY using the LOG_ARCHIVE_DEST_n parameter,
Oracle must successfully archive to these locations when LOG_ARCHIVE_MIN_
SUCCEED _DEST issetto 1, 2, or 3.

Scenario 2 In this scenario, consider a case in which:

= You specify two MANDATORY destinations.

= You specify two OPTIONAL destinations.

« No destination is a standby database.

Table 7-3 shows the possible values for LOG_ARCHIVE_MIN_SUCCEED_ DEST=n:

Table 7-3 LOG_ARCHIVE_MIN_SUCCEED DEST Values for Example 2

Value Meaning

1 Oracle ignores the value and uses the number of MANDATORY destinations (in
this example, 2).

Oracle can reuse log files even if no OPTIONAL destination succeeds.

Oracle can reuse logs only if at least one OPTIONAL destination succeeds.

Oracle can reuse logs only if both OPTIONAL destinations succeed.

gl BN

ERROR: The value is greater than the number of destinations.

This case shows that Oracle must archive to the destinations you specify as
MANDATORY, regardless of whether you set LOG_ARCHIVE_MIN_SUCCEED _
DEST to archive to a smaller number.

See Also: For additional information about LOG_ARCHIVE_
MIN_SUCCEED_DEST=n or any other initialization parameters
that relate to archiving, see the Oracle8i Reference.

7-18 Oracle8i Administrator’'s Guide

Tuning Archive Performance

Re-Archiving to a Failed Destination

Use the REOPEN attribute of the LOG_ARCHIVE_DEST_n parameter to determine
whether and when ARCn attempts to rearchive to a failed destination following an
error. REOPEN applies to all errors, not just OPEN errors.

REOPEN=n sets the minimum number of seconds before ARCn should try to
reopen a failed destination. The default value for n is 300 seconds. A value of 0 is
the same as turning off the REOPEN option, in other words, ARCn will not attempt
to archive after a failure. If you do not specify the REOPEN keyword, ARCnh will
never reopen a destination following an error.

You cannot use REOPEN to specify a limit on the number of attempts to reconnect
and transfer archived logs. The REOPEN attempt either succeeds or fails, in which
case the REOPEN information is reset.

If you specify REOPEN for an OPTIONAL destination, Oracle can overwrite online
logs if there is an error. If you specify REOPEN for a MANDATORY destination,
Oracle stalls the production database when it cannot successfully archive. This
scenario requires you to:

« Archive manually to the failed destination.

« Change the destination by deferring the destination, specifying the destination
as optional, or changing the service.

« Drop the destination.
When using the REOPEN keyword, note that:

« ARCn reopens a destination only when starting an archive operation from the
beginning of the log file, never during a current operation. ARCn always retries
the log copy from the beginning.

« If aREOPEN time was specified or defaulted, ARCn checks to see whether the
time of the recorded error plus the REOPEN interval is less than the current
time. If it is, ARCn retries the log copy.

« The REOPEN clause successfully affects the ACTIVE=TRUE destination state;
the VALID and ENABLED states are not changed.

Tuning Archive Performance

For most databases, ARCn has no effect on overall system performance. On some
large database sites, however, archiving can have an impact on system
performance. On one hand, if ARCn works very quickly, overall system

Managing Archived Redo Logs 7-19

Tuning Archive Performance

performance can be reduced while ARCn runs, since CPU cycles are being
consumed in archiving. On the other hand, if ARCn runs extremely slowly, it has
little detrimental effect on system performance, but it takes longer to archive redo
log files, and can create a bottleneck if all redo log groups are unavailable because
they are waiting to be archived.

Use the following methods to tune archiving:
« Specifying Multiple ARCn Processes

« Adjusting Archive Buffer Parameters

See Also: For more information about tuning a database, see
Oracle8i Designing and Tuning for Performance.

Specifying Multiple ARC n Processes

Specify up to ten ARCn processes for each database instance. Enable the multiple
processing feature at startup or at runtime by setting the initialization parameter
LOG_ARCHIVE_MAX_PROCESSES=n (where n is any integer from 1 to 10). By
default, the parameter is set to 1.

Because LGWR automatically increases the number of ARCn processes should the
current number be insufficient to handle the current workload, the parameter is
intended to allow you to specify the initial number of ARCn processes or to increase
or decrease the current number. Assuming the initial number of ARCn processes
was set to 4, the following statement will decrease the number of processes to 2.

ALTER SYSTEM SET LOG_ARCHIVE_MAX_PROCESSES=2

When decreasing the number of ARCn processes, it is not determinate exactly
which process will be stopped. Also, you are not allowed to alter the value of the
parameter to 0, so at least one ARCn process will always be active. Query the

V$ARCHIVE_PROCESSES view to see information about the state of each archive
process. Processes that have stopped will show as being in the IDLE state.

Creating multiple processes is especially useful when you:
« Use more than two online redo logs.
« Archive to more than one destination.

Multiple ARCn processing prevents the bottleneck that occurs when LGWR
switches through the multiple online redo logs faster than a single ARCn process
can write inactive logs to multiple destinations. Note that each ARCn process works
on only one inactive log at a time, but must archive to each specified destination.

7-20 Oracle8i Administrator's Guide

Tuning Archive Performance

For example, if you maintain five online redo log files, then you may decide to start
the instance using three ARCn processes. As LGWR actively writes to one of the log
files, the ARCn processes can simultaneously archive up to three of the inactive log
files to various destinations. As Figure 7-3 illustrates, each instance of ARCn
assumes responsibility for a single log file and archives it to all of the defined
destinations.

Figure 7-3 Using Multiple Arch Processes

LGWR
LOG5
(active)

LOG1
(inactive)

LOG3
(inactive)

LOG2
(inactive)

LOG4
(inactive)

ARCO ARC1 ARC2

I

-

Destination
—

A

1
~—
Y
4

——3 | Destination
2

~—

Adjusting Archive Buffer Parameters

This section describes aspects of using the archive buffer initialization parameters
for tuning.

You can tune archiving to cause it to run either as slowly as possible without being
a bottleneck or as quickly as possible without reducing system performance
substantially. To do so, adjust the values of the initialization parameters LOG _
ARCHIVE_BUFFERS (the number of buffers allocated to archiving) and LOG _
ARCHIVE_BUFFER_SIZE (the size of each such buffer).

Managing Archived Redo Logs 7-21

Displaying Archived Redo Log Information

Note: When you change the value of LOG_ARCHIVE_BUFFERS
or LOG_ARCHIVE_BUFFER_SIZE, the new value takes effect the
next time you start the instance.

Minimizing the Impact on System Performance

To make ARCn work as slowly as possible without forcing the system to wait for
redo logs, begin by setting the number of archive buffers (LOG_ARCHIVE_
BUFFERS) to 1 and the size of each buffer (LOG_ARCHIVE_BUFFER_SIZE) to the
maximum possible.

If the performance of the system drops significantly while ARCn is working, make
the value of LOG_ARCHIVE_BUFFER_SIZE lower until system performance is no
longer reduced when ARCnh runs.

Note: If you want to set archiving to be very slow, but find that
Oracle frequently has to wait for redo log files to be archived before
they can be reused, you can create additional redo log file groups.
Adding groups can ensure that a group is always available for
Oracle to use.

Improving Archiving Speed

To improve archiving performance, use multiple archive buffers to force the ARCn
processes to read the archive log at the same time that they write the output log.
You can set LOG_ARCHIVE_BUFFERS to 2, but for a very fast tape drive you may
want to set it to 3 or more. Then, set the size of the archive buffers to a moderate
number, and increase it until archiving is as fast as you want it to be without
impairing system performance.

See Also: For more information about the LOG_ARCHIVE
parameters, see the Oracle8i Reference.

Displaying Archived Redo Log Information
You can display information about the archived redo logs using the following:
« Fixed Views
« The ARCHIVE LOG LIST SQL Statement

7-22 Oracle8i Administrator's Guide

Displaying Archived Redo Log Information

Fixed Views
There are several fixed views that contain useful information about archived redo
logs.
Fixed View Description
V$DATABASE Identifies whether the database is in

ARCHIVELOG or NOARCHIVELOG mode.

V$ARCHIVED_LOG

Displays historical archived log information from
the control file. If you use a recovery catalog, the
RC_ARCHIVED_LOG view contains similar
information.

V$ARCHIVE_DEST

Describes the current instance, all archive
destinations, and the current value, mode, and
status of these destinations.

V$ARCHIVE_PROCESSES

Displays information about the state of the
various archive processes for an instance.

V$BACKUP_REDOLOG

Contains information about any backups of
archived logs. If you use a recovery catalog, the
RC_BACKUP_REDOLOG contains similar
information.

V$LOG

Displays all online redo log groups for the
database and indicates which need to be
archived.

V$LOG_HISTORY

Contains log history information such as which
logs have been archived and the SCN range for
each archived log.

For example, the following query displays which online redo log group requires

archiving:

SELECT group#, archived
FROM sys.v$log;

GROUP# ARC

1 YES
2 NO

To see the current archiving mode, query the V$DATABASE view:

Managing Archived Redo Logs 7-23

Displaying Archived Redo Log Information

SELECT log_mode FROM sys.v$database;

LOG_MODE

NOARCHIVELOG

See Also: For more information on the data dictionary views, see
the Oracle8i Reference.

The ARCHIVE LOG LIST SQL Statement

The SQL statement ARCHIVE LOG LIST also shows archiving information for the
connected instance:

ARCHIVE LOG LIST;

Database log mode ARCHIVELOG

Automatic archival ENABLED

Archive destination destination

Oldest online log sequence 30
Next log sequence to archive 32
Current log sequence number 33

This display tells you all the necessary information regarding the archived redo log
settings for the current instance:

« The database is currently operating in ARCHIVELOG mode.

« Automatic archiving is enabled.

« The destination of the archived redo log (operating system specific).

« The oldest filled online redo log group has a sequence number of 30.

« The next filled online redo log group to archive has a sequence number of 32.
« The current online redo log file has a sequence number of 33.

You must archive all redo log groups with a sequence number equal to or greater
than the Next log sequence to archive, yet less than the Current log sequence number. For
example, the display above indicates that the online redo log group with sequence
number 32 needs to be archived.

See Also: For more information on the ARCHIVE_LOG_LIST
statement, see the Oracle8i SQL Reference.

7-24 Oracle8i Administrator's Guide

Controlling Trace Output Generated by the Archivelog Process

Controlling Trace Output Generated by the Archivelog Process

As discussed in "Trace Files, the Alert Log, and Background Processes” on

page 4-15, background processes always write to a trace file when appropriate. In
the case of the archivelog process, it is possible to control the output that is
generated.

The LOG_ARCHIVE_TRACE initialization parameter can be set to specify a trace
level. The following values can be specified:

Trace Level Meaning

0 Disable archivelog tracing - default setting.

1 Track archival of REDO log file.

2 Track archival status per archivelog destination.

4 Track archival operational phase.

8 Track archivelog destination activity.

16 Track detailed archivelog destination activity.

32 Track archivelog destination parameter modifications.
64 Track ARCn process state activity

You can combine tracing levels by specifying a value equal to the sum of the
individual levels that you would like to trace. For example, setting LOG_
ARCHIVE_TRACE=12, will generate trace level 8 and 4 output. You can set
different values for the primary and any standby database.

The default value for the LOG_ARCHIVE_TRACE parameter is 0, and at this level,
error conditions will still generate the appropriate alert and trace entries.

You may change the value of this parameter dynamically using the ALTER
SYSTEM statement. For example:

ALTER SYSTEM SET ARCHIVE_LOG_TRACE=12

Changes initiated in this manner will take effect at the start of the next archiving
operation.

Managing Archived Redo Logs 7-25

Using LogMiner to Analyze Online and Archived Redo Logs

See Also: The LOG_ARCHIVE_TRACE initialization parameter
is discussed in Oracle8i Reference.

For information about using this parameter with a standby
database, see Oracle8i Standby Database Concepts and Administration.

Using LogMiner to Analyze Online and Archived Redo Logs

The Oracle utility LogMiner allows you to read information contained in online and
archived redo logs based on selection criteria. LogMiner’s fully relational SQL
interface provides direct access to a complete historical view of a database—without
forcing you to restore archived redo log files.

This section contains the following topics:
« How Can You Use LogMiner?
« Restrictions
» Creating a Dictionary File
« Specifying Redo Logs for Analysis
« Using LogMiner
« Using LogMiner: Scenarios
See Also: For detailed information about initialization parameters

and LogMiner views mentioned in this section, see Oracle8i
Reference.

For more information about LogMiner PL/SQL packages, see the
Oracle8i Supplied PL/SQL Packages Reference.

How Can You Use LogMiner?

LogMiner is especially useful for identifying and undoing logical corruption.
LogMiner processes redo log files, translating their contents into SQL statements
that represent the logical operations performed to the database. The VSLOGMNR _
CONTENTS view then lists the reconstructed SQL statements that represent the
original operations (SQL_REDO column) and the corresponding SQL statement to
undo the operations (SQL_UNDO column). Apply the SQL_UNDO statements to
roll back the original changes to the database.

Furthermore, you can use the VSLOGMNR_CONTENTS view to:

7-26 Oracle8i Administrator's Guide

Using LogMiner to Analyze Online and Archived Redo Logs

Restrictions

Determine when a logical corruption to the database may have begun,
pinpointing the time or SCN to which you need to perform incomplete
recovery.

Track changes to a specific table.
Track changes made by a specific user.
Map data access patterns.

Use archived data for tuning and capacity planning.

LogMiner has the following usage and compatibility requirements. LogMiner only:

Runs in Oracle version 8.1 or later.

Analyzes redo log files from any version 8.0 or later database that uses the same
database character set and runs on the same hardware platform as the
analyzing instance.

Note: The block size (DB_BLOCK_SIZE) of the analyzing instance
must be identical to the block size of the log producing instance. If
this is not the case, you will receive an error indicating the archive
log is corrupted (when it is probably not).

Analyzes the contents of the redo log files completely with the aid of a
dictionary created by a PL/SQL package. The dictionary allows LogMiner to
translate internal object identifiers and data types to object name and external
data formats.

Obtains information about DML operations on conventional tables. It does not
support operations on:

« Index-organized tables

= Clustered tables/indexes
« Non-scalar data types

« Chained rows

Also, LogMiner does not handle direct path insert operations, even though such
operations are logged. It does support conventional path insert through
SQL*Loader.

Managing Archived Redo Logs 7-27

Using LogMiner to Analyze Online and Archived Redo Logs

Creating a Dictionary File

LogMiner runs in an Oracle instance with the database either mounted or
unmounted. LogMiner uses a dictionary file, which is a special file that indicates the
database that created it as well as the time the file was created. The dictionary file is
not required, but is recommended.

Without a dictionary file, the equivalent SQL statements will use Oracle internal
object IDs for the object name and present column values as hex data. For example,
instead of the SQL statement:

INSERT INTO emp(name, salary) VALUES (John Doe', 50000);

LogMiner will display:
insertinto Object#2581(col#1, col#2) values (hextoraw(4a6i686e2044665),
hextoraw('c306));"

Create a dictionary file by mounting a database and then extracting dictionary
information into an external file. You must create the dictionary file from the same
database that generated the log files you want to analyze. Once created, you can use
the dictionary file to analyze redo logs.

When creating the dictionary, specify the following:
« DICTIONARY_FILENAME to name the dictionary file.
« DICTIONARY_LOCATION to specify the location of the file.

To Create a Dictionary File on an Oracle8 i Database:

1. Make sure to specify a directory for use by the PL/SQL procedure by setting
the initialization parameter UTL_FILE_DIR. For example, set the following to
use /oracle/logs

UTL_FILE_DIR =/oracleflogs

If you do not reference this parameter, the procedure will fail.

2. Use SQL*Plus to mount and then open the database whose files you want to
analyze. For example, enter:

STARTUP

3. Execute the PL/SQL procedure DBMS_LOGMNR_D.BUILD. Specify both a file
name for the dictionary and a directory pathname for the file. This procedure
creates the dictionary file, which you should use to analyze log files. For

7-28 Oracle8i Administrator's Guide

Using LogMiner to Analyze Online and Archived Redo Logs

example, enter the following to create file dictionary.ora in
/oracle/logs

EXECUTE DBMS_LOGMNR_D.BUILD(-
DICTIONARY_FILENAME =>dictionary.ora, -
DICTIONARY_LOCATION =>Yoracleflogs);

To Create a Dictionary File on an Oracle8 Database:

Although LogMiner only runs on databases of release 8.1 or higher, you can use it
to analyze redo logs from release 8.0 databases.

1.

Use an O/S command to copy the dbmsimd.sql script, which is contained in
the $ORACLE_HOME/rdbms/admin directory on the Oracle8i database, to the
same directory in the Oracle8 database. For example, enter:

% cp /8.1Joraclefrdbms/admin/dbmsimd.sgl /8.0/oracle/rdbms/admin/dbmsimd.sql

Use SQL*Plus to mount and then open the database whose files you want to
analyze. For example, enter:

STARTUP

Execute the copied dbmsimd.sql script on the 8.0 database to create the
DBMS_LOGMNR_D package. For example, enter:

@dbmslmd.sal

Specify a directory for use by the PL/SQL package by setting the initialization
parameter UTL_FILE_DIR. If you do not reference this parameter, the
procedure will fail. For example, set the following to use /8.0/oracle/logs

UTL_FILE_DIR =/80loracleflogs

Execute the PL/SQL procedure DBMS_LOGMNR_D.BUILD. Specify both a file
name for the dictionary and a directory pathname for the file. This procedure
creates the dictionary file, which you should use to analyze log files. For
example, enter the following to create file dictionary.ora in
/8.0/oracle/logs

EXECUTE DBMS_LOGMNR_D.BUILD(
DICTIONARY_FILENAME =>dictionary.ora,
DICTIONARY_LOCATION => '/8.0/oracleflogs);

Managing Archived Redo Logs 7-29

Using LogMiner to Analyze Online and Archived Redo Logs

Specifying Redo Logs for Analysis

Once you have created a dictionary file, you can begin analyzing redo logs. Your
first step is to specify the log files that you want to analyze using the ADD_
LOGFILE procedure. Use the following constants:

NEW to create a new list.
ADDFILE to add redo logs to a list.
REMOVEFILE to remove redo logs from the list.

To Use LogMiner:

1.

Using LogMiner

Use SQL*Plus to start an Oracle instance, with the database either mounted or
unmounted. For example, enter:

STARTUP

Create a list of logs by specifying the NEW option when executing the DBMS_
LOGMNR.ADD_LOGFILE procedure. For example, enter the following to
specify /oracle/logs/log1l.f

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
LOGFILENAME =>foracleflogsflogd.f, -
OPTIONS =>dbms_logmnr.NEW);

If desired, add more logs by specifying the ADDFILE option. For example,
enter the following to add /oracle/logs/log2.f :

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
LOGHFILENAME =>foracleflogsflog2.f, -
OPTIONS =>dbms_logmnr.ADDFILE);

If desired, remove logs by specifying the REMOVEFILE option. For example,
enter the following to remove /oracle/logs/log2.f

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
LOGFILENAME =>foracleflogsflog2.f, -
OPTIONS =>dbms_logmnr.REMOVEFILE);

Once you have created a dictionary file and specified which logs to analyze, you
can start LogMiner and begin your analysis. Use the following options to narrow
the range of your search at start time:

7-30 Oracle8i Administrator’'s Guide

Using LogMiner to Analyze Online and Archived Redo Logs

This option Specifies

STARTSCN The beginning of an SCN range.
ENDSCN The termination of an SCN range.
STARTTIME The beginning of a time interval.
ENDTIME The end of a time interval.

DICTFILENAME

The name of the dictionary file.

Once you have started LogMiner, you can make use of the following data
dictionary views for analysis:

This view

Displays information about

V$LOGMNR_DICTIONARY

The dictionary file in use.

V$LOGMNR_PARAMETERS

Current parameter settings for LogMiner.

V$LOGMNR_LOGS

Which redo log files are being analyzed.

VSLOGMNR_CONTENTS

The contents of the redo log files being analyzed.

To Use LogMiner:

1.

Issue the DBMS_LOGMNR.START_LOGMNR procedure to start LogMiner
utility. For example, to start LogMiner using /oracle/dictionary.ora ,
issue:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
DICTFILENAME =>/oracle/dictionary.ora));

Optionally, set the STARTTIME and ENDTIME parameters to filter data by
time. Note that the procedure expects date values: use the TO_DATE function
to specify date and time, as in this example:

EXECUTE DBMS_LOGMNR.START _LOGMNR(-

DICTFILENAME =>‘foracle/dictionary.ora, -

STARTTIME =>to_date(01-Jan-1998 08:30:00, DD-MON-YYYY HH:MI:SS) -

ENDTIME =>to_date(01-Jan-1998 08:45:00', 'DD-MON-YYYY HH:MI.SS));

Use the STARTSCN and ENDSCN parameters to filter data by SCN, as in this
example:

EXECUTE DBMS_LOGMNR.START LOGMNR(-

Managing Archived Redo Logs 7-31

Using LogMiner to Analyze Online and Archived Redo Logs

DICTFILENAME =>‘foracle/dictionary.ora, -
STARTSCN =>100, -
ENDSCN =>150);

2. View the output via the VSLOGMNR_CONTENTS table. LogMiner returns all
rows in SCN order, which is the same order applied in media recovery. For
example, the following query lists information about operations:

SELECT operation, sgl_redo FROM v$logmnr_contents;
OPERATION SQL_REDO

INTERNAL

INTERNAL

START set transaction read write;

UPDATE update SYS.UNDO$ set NAME ='RS0', USER# = 1, FILE# = 1, BLOCK# = 2450, SCNBAS =
COMMIT commit;

START set transaction read write;

UPDATE update SYS.UNDO$ set NAME ='RS0', USER# = 1, FILE# = 1, BLOCK# = 2450, SCNBAS =
COMMIT commit;

START set transaction read write;

UPDATE update SYS.UNDO$ set NAME ='RS0', USER# = 1, FILE# = 1, BLOCK# = 2450, SCNBAS =
COMMIT commit;

11 rows selected.

Analyzing Archived Redo Log Files from Other Databases You can run LogMiner on an
instance of a database while analyzing redo log files from a different database. To
analyze archived redo log files from other databases, LogMiner must:

« Access a dictionary file that is both created from the same database as the redo
log files and created with the same database character set.

= Runon the same hardware platform that generated the log files, although it
does not need to be on the same system.

« Use redo log files that can be applied for recovery from Oracle version 8.0 and
later.

Using LogMiner: Scenarios
This section contains the following LogMiner scenarios:

« Tracking a User

« Calculating Table Access Statistics

7-32 Oracle8i Administrator's Guide

Using LogMiner to Analyze Online and Archived Redo Logs

Tracking a User

In this example, you are interested in seeing all changes to the database in a specific
time range by one of yours users: JOEDEVO. You perform this operation in the
following steps:

« Step 1: Creating the Dictionary

« Step 2: Adding Logs and Limiting the Search Range

« Step 3: Starting LogMiner and Analyzing the Data

Step 1: Creating the Dictionary ~ To use LogMiner to analyze JOEDEVQ'’s data, you
must create a dictionary file before starting LogMiner.

You decide to do the following:

« Call the dictionary file orcldict.ora.

« Place the dictionary in directory /user/local/dbs

« Set the initialization parameter UTL_FILE_DIR to /user/local/dbs.

Set the initialization parameter UTL_FILE_DIR in the initialization parameter
file
UTL_FILE_DIR =/userfocalidbs

Start SQL*Plus and then connect to the database
CONNECT system/manager

Open the database to create the dictionary file
STARTUP

Create the dictionary file

EXECUTE DBMS_LOGMNR_D.BUILD(-
DICTIONARY_FILENAME =>‘orcldictora, -
DICTIONARY_LOCATION =>fustflocal/dbs);

The dictionary has been created and can be used later
SHUTDOWN,;

Step 2: Adding Logs and Limiting the Search Range Now that the dictionary is created,
you decide to view the changes that happened at a specific time. You do the
following:

« Create a list of log files for use and specify log loglorcl.ora

« Add loglog2orcl.ora to the list.

Managing Archived Redo Logs 7-33

Using LogMiner to Analyze Online and Archived Redo Logs

« Start LogMiner and limit the search to the range between 8:30 a.m. and 8:45
a.m. onJanuary 1, 1998.

Start SQL*Plus, connect as SYSTEM, then start the instance
CONNECT system/manager
STARTUP NOMOUNT

Supply the list of logfles to the reader. The Options flag is set to indicate
#thisis a new list.

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(OPTIONS =>dbms_logmnr.NEW, -
LOGFILENAME =>loglorcl.ora);

Add afile to the existing list. The Options flag is clear to indicate that
#you are adding a file to the existing list

EXECUTE DBMS_LOGMNR.ADD_LOGFILE(OPTIONS =>dbms_logmnr ADDFILE, -
LOGFILENAME => log2orcl.ora);

Step 3: Starting LogMiner and Analyzing the Data At this point the VSLOGMNR _
CONTENTS table is available for queries. You decide to find all changes made by
user JOEDEVO to the salary table. As you discover, JOEDEVO requested two
operations: he deleted his old salary and then inserted a new, higher salary. You
now have the data necessary to undo this operation (and perhaps to justify firing
JOEDEVO!).

Start the LogMiner. Limit the search to the specified time range.

EXECUTE DBMS_LOGMNR.START_LOGMNR(-

DICTFILENAME =>‘orcldict.oral, -

STARTTIME =>to_date(01-Jan-1998 08:30:00, DD-MON-YYYY HH:MI:SS) -
ENDTIME =>to_date(01-Jan-1998 08:45:00', 'DD-MON-YYYY HH:MI.SS));

SELECT sgl_redo, sgl_undo FROM v$logmnr_contents
WHERE usemame ='JOEDEVO' AND tablename ='SALARY",

The following data is displayed (properly formatted)

SQL REDO SQL_UNDO
delete * from SALARY insertinto SALARY(NAME,EMPNO, SAL)
where EMPNO = 12345 values (JOEDEVO), 12345,500)

and ROWID ='AAABOOAABAAEPCABA;

insertinto SALARY(NAME, EMPNO, SAL) ~ delete *from SALARY
values(JOEDEVO'123452500) where EMPNO = 12345

7-34 Oracle8i Administrator's Guide

Using LogMiner to Analyze Online and Archived Redo Logs

and ROWID ='AAABOOAABAAEPCABA
2 rows selected

Calculating Table Access Statistics

The redo logs generated by Oracle RDBMS contain the history of all changes made
to the database. Mining the redo logs can thus generate a wealth of information that
can be used for tuning the database. In this example, you manage a direct
marketing database and want to determine how productive the customer contacts
have been in generating revenue for a two week period in August.

First, you start LogMiner and specify a range of times:

EXECUTE DBMS_LOGMNR.START_LOGMNR(-
STARTTIME =>'07-Aug-98, -

ENDTIME =>"'15-Aug-98, -

DICTFILENAME =>fusrflocal/dict.ora);

Next, you query VSLOGMNR_CONTENTS to determine which tables have been
modified in the time range you specified:

SELECT seg_owner, seg_name, count(*) AS Hits FROM

v$logmnr_contents WHERE seg_name NOT LIKE %$ GROUP BY
Seg_owner, seg_name;

SEG_OWNER SEG_NAME Hits

CusT ACCOUNT 384

SCOTT EMP 12

SYS DONOR 12
UNIV DONOR 234
UNIV EXECDONOR 325
UNIV MEGADONOR 32

Managing Archived Redo Logs 7-35

Using LogMiner to Analyze Online and Archived Redo Logs

7-36 Oracle8i Administrator’'s Guide

8

Managing Job Queues

This chapter describes how to use job queues to schedule the periodic execution of
PL/SQL code, and includes the following topics:

« SNP Background Processes
« Managing Job Queues

« Viewing Job Queue Information

Managing Job Queues 8-1

SNP Background Processes

SNP Background Processes

To maximize performance and accommodate many users, a multi-process Oracle
system uses some additional processes called background processes. Background
processes consolidate functions that would otherwise be handled by multiple
Oracle programs running for each user process. Background processes
asynchronously perform 1/0 and monitor other Oracle processes to provide
increased parallelism for better performance and reliability.

SNP background processes execute job queues. You can schedule routines, which
are any PL/SQL code, to be performed periodically using the job queue. To

schedule a job, you submit it to the job queue and specify the frequency at which
the job is to be run. You can also alter, disable, or delete jobs you have submitted.

You must have at least one SNP process running to execute queued jobs in the
background. SNP processes periodically wake up and execute any queued jobs that
are due to be run. SNP background processes differ from other Oracle background
processes, in that the failure of an SNP process does hot cause the instance to fail. If
an SNP process fails, Oracle restarts it.

SNP background processes will not execute jobs if the system has been started in
restricted mode. However, you can use the ALTER SYSTEM statement to turn this
behavior on and off as follows:

ALTER SYSTEM ENABLE RESTRICTED SESSION;
ALTER SYSTEM DISABLE RESTRICTED SESSION;

When you ENABLE a restricted session, SNP background processes do not execute
jobs; when you DISABLE a restricted session, SNP background processes execute

jobs.
See also: For more information on SNP background processes,
see Oracle8i Concepts.
Multiple SNP processes

An instance can have up to 36 SNP processes, named SNPO to SNP9, and SNPA to

SNPZ. If an instance has multiple SNP processes, the task of executing queued jobs
can be shared across these processes, thus improving performance. Note, however,
that each job is run at any point in time by only one process. A single job cannot be
shared simultaneously by multiple SNP processes.

8-2 Oracle8i Administrator's Guide

Managing Job Queues

Starting up SNP processes

Job queue initialization parameters enable you to control the operation of the SNP
background processes. When you set these parameters in the initialization
parameter file for an instance, they take effect the next time you start the instance.

The JOB_QUEUE_PROCESSES parameter specifies the number of job queue
process per instance. Different instances can have different values. This
initialization parameter can be altered dynamically using the ALTER SYSTEM
statement as shown in the following example.

ALTER SYSTEM SET JOB_QUEUE_PROCESSES =10;

The JOB_QUEUE_INTERVAL parameter specifies the interval between wake ups
for the SNP processes. Different instances can have different values.

See Also: For a description of these initialization parameters, see
the Oracle8i Reference,

Managing Job Queues

This section describes the various aspects of managing job queues and includes the
following topics:

« The DBMS_JOB Package

« Submitting a Job to the Job Queue

= How Jobs Execute

« Removing a Job from the Job Queue
« Altering aJob

= Broken Jobs

« [Forcing a Job to Execute

« Terminating a Job

The DBMS_JOB Package

To schedule and manage jobs in the job queue, use the procedures in the DBMS_
JOB package. There are no database privileges associated with using job queues.
Any user who can execute the job queue procedures can use the job queue.

Managing Job Queues 8-3

Managing Job Queues

The following procedures of the DBMS_JOB package and are included in this

section as noted.

Procedure

Description

SUBMIT

Submits a job to the job queue. See "Submitting a Job to the Job
Queue" on page 8-4.

REMOVE

Removes a specified job from the job queue. See "Removing a
Job from the Job Queue™ on page 8-10

CHANGE

Alters a specified job that has already been submitted to the job
queue. You can alter the job description, the time at which the
job will be run, or the interval between executions of the job. See
"Altering a Job" on page 8-11.

WHAT

Alters the job description for a specified job. See "Altering a Job"
on page 8-11.

NEXT_DATE

Alters the next execution time for a specified job. See "Altering a
Job" on page 8-11.

INTERVAL

Alters the interval between executions for a specified job. See
"Altering a Job" on page 8-11.

BROKEN

Disables job execution. If a job is marked as broken, Oracle does
not attempt to execute it. See "Broken Jobs" on page 8-12.

RUN

Forces a specified job to run. See "Forcing a Job to Execute" on
page 8-13.

See Also:

Syntax information for the DBMS_JOB package can be

found in the Oracle8i Supplied PL/SQL Packages Reference.

For using the DBMS_JOB package in an Oracle Parallel Server
environment, where other options are available, see Oracle8i Parallel
Server Administration, Deployment, and Performance.

Submitting a Job to the Job Queue

To submit a new job to the job queue, use the SUBMIT procedure in the DBMS_JOB
package. You specify the following parameters with the SUBMIT procedure:

Parameter

Description

JOB

8-4 Oracle8i Administrator’'s Guide

An output parameter, this is the identifier assigned to the job
you created. You must use this job number whenever you want
to alter or remove the job. See "Job Numbers" on page 8-7.

Managing Job Queues

Parameter Description

WHAT This is the PL/SQL code you want to have executed. See "Job
Definitions" on page 8-7.

NEXT_DATE This is the next date when the job will be run. The default value
is SYSDATE.

INTERVAL This is the date function that calculates the next time to execute

the job. The default value is NULL. INTERVAL must evaluate to
a future point in time or NULL. See "Job Execution Interval” on
page 8-8.

NO_PARSE This is a flag. If NO_PARSE is set to FALSE (the default), Oracle
parses the procedure associated with the job. If NO_PARSE is
set to TRUE, Oracle parses the procedure associated with the job
the first time that the job is executed. If, for example, you want
to submit a job before you have created the tables associated
with the job, set NO_PARSE to TRUE.

As an example, let' s submit a new job to the job queue. The job calls the procedure
DBMS_DDL.ANALYZE_OBIJECT to generate optimizer statistics for the table
DQUON.ACCOUNTS. The statistics are based on a sample of half the rows of the
ACCOUNTS table. The job is run every 24 hours.

VARIABLE jobno number,
BEGIN
DBMS_JOB.SUBMIT(jobno,
'dbms_ddl.analyze_object('TABLE",
"DQUON", "ACCOUNTS",
"ESTIMATE", NULL, 50);,
SYSDATE, 'SYSDATE +1));
COMMIT;
END;
/
Statement processed.
PRINT jobno
JOBNO

14144

Job Environment

When you submit a job to the job queue or alter a job’s definition, Oracle records the
following environment characteristics:

=« The current user

Managing Job Queues 8-5

Managing Job Queues

« The user submitting or altering a job

« The current schema (may be different from current user of submitting user if
ALTER SESSION SET CURRENT_SCHEMA statement has been issued)

« MAC privileges (if appropriate)

Oracle also records the following NLS parameters:
« NLS_LANGUAGE

« NLS TERRITORY

« NLS_CURRENCY

« NLS_ISO_CURRENCY

« NLS_NUMERIC_CHARACTERS

« NLS DATE_FORMAT

« NLS DATE_LANGUAGE

« NLS _SORT

Oracle restores these environment characteristics every time a job is executed. NLS_
LANGUAGE and NLS_TERRITORY parameters are defaults for unspecified NLS
parameters.

You can change a job’s environment by using the DBMS_SQL package and the
ALTER SESSION statement.

See Also: For more information on the DBMS_SQL package, see
the Oracle8i Supplied PL/SQL Packages Reference.

For use of the ALTER SESSION statement to alter a job’s
environment, see Oracle8i SQL Reference.

Jobs and Import/Export

Jobs can be exported and imported. Thus, if you define a job in one database, you
can transfer it to another database. When exporting and importing jobs, the job’s
number, environment, and definition remain unchanged.

Note: If the job number of a job you want to import matches the
number of a job already existing in the database, you will not be
allowed to import that job. Submit the job as a new job in the
database.

8-6 Oracle8i Administrator's Guide

Managing Job Queues

Job Owners

When you submit a job to the job queue, Oracle identifies you as the owner of the
job. Only a job’s owner can alter the job, force the job to run, or remove the job from
the queue.

Job Numbers
A queued job is identified by its job number. When you submit a job, its job number
is automatically generated from the sequence SYS.JOBSEQ.

Once a job is assigned a job number, that number does not change. Even if the job is
exported and imported, its job number remains the same.

Job Definitions
The job definition is the PL/SQL code specified in the WHAT parameter of the SUBMIT
procedure.

Normally, the job definition is a single call to a procedure. The procedure call can
have any number of parameters.

Note: In the job definition, use two single quotation marks around
strings. Always include a semicolon at the end of the job definition.

There are special parameter values that Oracle recognizes in a job definition. These
are shown below.

Parameter Mode Description

JOB IN The number of the current job.

NEXT_DATE IN/OUT The date of the next execution of the job. The
default value is SYSDATE.

BROKEN IN/OUT Status of job, broken or not broken. The IN value
is FALSE.

The following are examples of valid job definitions:

'myproc("10-JAN-99", next_date, broken);'
'scott.emppackage.give_raise("JFEE', 3000.00);
‘dbms_job.remove(job);'

Managing Job Queues 8-7

Managing Job Queues

Job Execution Interval

The INTERVAL date function is evaluated immediately before a job is executed. If
the job completes successfully, the date calculated from INTERVAL becomes the
new NEXT_DATE. If the INTERVAL date function evaluates to NULL and the job
completes successfully, the job is deleted from the queue.

If a job should be executed periodically at a set interval, use a date expression
similar to 'SYSDATE + 7' in the INTERVAL parameter. For example, if you set
the execution interval to 'SYSDATE + 7' on Monday, but for some reason (such as
a network failure) the job is not executed until Thursday, 'SYSDATE + 7' then
executes every Thursday, not Monday.

If you always want to automatically execute a job at a specific time, regardless of
the last execution (for example, every Monday), the INTERVAL and NEXT_DATE
parameters should specify a date expression similar to 'NEXT _
DAY(TRUNC(SYSDATE), "MONDAY")'

Below are shown some common date expressions used for job execution intervals.

Date Expression Evaluation

'SYSDATE+7' Exactly seven days from the last
execution

'SYSDATE + 1/48 Every half hour

‘NEXT_DAY(TRUNC(SYSDATE), MONDAY") + 15/24' Every Monday at 3PM

'NEXT_DAY(ADD_MONTHS(TRUNC(SYSDATE, 'Q"), 3), First Thursday of each quarter

"THURSDAY")

Note: When specifying NEXT_DATE or INTERVAL, remember
that date literals and strings must be enclosed in single quotation
marks. Also, the value of INTERVAL must be enclosed in single
guotation marks.

Database Links and Jobs

If you submit a job that uses a database link, the link must include a username and
password. Anonymous database links will not succeed.

8-8 Oracle8i Administrator’'s Guide

Managing Job Queues

How Jobs Execute

SNP background processes execute jobs. To execute a job, the process creates a
session to run the job.

When an SNP process runs a job, the job is run in the same environment in which it
was submitted and with the owner’s default privileges.

When you force a job to run using the procedure DBMS_JOB.RUN, the job is run by
your user process. When your user process runs a job, it is run with your default
privileges only. Privileges granted to you through roles are unavailable.

Job Queue Locks

Oracle uses job queue locks to ensure that a job is executed one session at a time.
When a job is being run, its session acquires a job queue (JQ) lock for that job. You
can use the locking views in the data dictionary to examine information about locks
currently held by sessions.

The following query lists the session identifier, lock type, and lock identifiers for all
sessions holding JQ locks:

SELECT sid, type, id1, id2
FROM v&$lock
WHERE type ='JQ}

12JQ 0 14144
1 row selected.

In the query above, the identifier for the session holding the lock is 12. The ID1 lock
identifier is always 0 for JQ locks. The ID2 lock identifier is the job number of the
job the session is running. This view can be joined with the DBA_JOBS_RUNNING
view to obtain more information about the job. See "Viewing Job Queue
Information” on page 8-14 for more information about views.

Job Execution Errors

When a job fails, information about the failure is recorded in a trace file and the
alert log. Oracle writes message number ORA-12012 and includes the job number of
the failed job.

The following can prevent the successful execution of queued jobs:

« Not having any SNP background processes to run the job

Managing Job Queues 8-9

Managing Job Queues

If a job returns an error while Oracle is attempting to execute it, Oracle tries to
execute it again. The first attempt is made after one minute, the second attempt after
two minutes, the third after four minutes, and so on, with the interval doubling

A network or instance failure

An exception when executing the job

between each attempt. When the retry interval exceeds the execution interval,

Oracle continues to retry the job at the normal execution interval. However, if the
job fails 16 times, Oracle automatically marks the job as broken and no longer tries

to execute it.

Thus, if you can correct the problem that is preventing a job from running before

Note: If there is one SNP process, unless the time to execute all
ready jobs exceeds the interval for job J, job J will execute at most
once every JOB_QUEUE_INTERVAL. You will not see the
exponential backoff described above.

For example, if JOB_QUEUE_INTERVAL = 600 (10 minutes), but
the interval for executing the job is specified as 3 minutes, there will
be no exponential backoff observed since the SNP process will not
"wake up" again to retry the job until it reaches its 10 minute
interval. In effect, the job will execute once every 10 minutes, for up
to 16 tries.

Also, because the exponential backoff is limited by the interval for
job J, you will not see any exponential backoff if the interval for job
Jis less than or equal to one minute.

the job has failed sixteen times, Oracle will eventually run that job again.

See Also: For more information about the locking views, see the
Oracle8i Reference.

For more information about locking, see Oracle8i Concepts.

Removing a Job from the Job Queue

To remove a job from the job queue, use the REMOVE procedure in the DBMS_JOB

package.

The following statement removes job number 14144 from the job queue:
DBMS_JOB.REMOVE(14144);

8-10 Oracle8i Administrator's Guide

Managing Job Queues

Altering a Job

Restrictions:

« You can remove currently executing jobs from the job queue. However, the job
will not be interrupted, and the current execution will be completed.

= You can remove only jobs you own. If you try to remove a job that you do not
own, you receive a message that states the job is not in the job queue.

To alter a job that has been submitted to the job queue, use the procedures
CHANGE, WHAT, NEXT_DATE, or INTERVAL in the DBMS_JOB package.

Restriction:

« You can alter only jobs that you own. If you try to alter a job that you do not
own, you receive a message that states the job is not in the job queue.

CHANGE

You can alter any of the user-definable parameters associated with a job by calling
the DBMS_JOB.CHANGE procedure.

In this example, the job identified as 14144 is now executed every three days:
DBMS_JOB.CHANGE(14144, null, null,'SYSDATE + 3);

If you specify NULL for WHAT, NEXT_DATE, or INTERVAL when you call the
procedure CHANGE, the current value remains unchanged.

Note: When you change a job’s definition using the WHAT
parameter in the procedure CHANGE, Oracle records your current
environment. This becomes the new environment for the job.

WHAT
You can alter the definition of a job by calling the DBMS_JOB.WHAT procedure.

The following example changes the definition of the job identified as 14144
DBMS_JOBWHAT(14144, 'scottemppackage.give._raise(RBAYLIS", 6000.00);

Managing Job Queues 8-11

Managing Job Queues

Broken Jobs

Note: When you execute procedure WHAT, Oracle records your
current environment. This becomes the new environment for the
job.

NEXT_DATE

You can alter the next date that Oracle executes a job by calling the DBMS _
JOB.NEXT_DATE procedure, as shown in the following example:

DBMS_JOB.NEXT_DATE(14144, SYSDATE +1;

INTERVAL

The following example illustrates changing the execution interval for a job by
calling the DBMS_JOB.INTERVAL procedure:

DBMS_JOB.INTERVAL (14144, NULL);

In this case, the job will not run again after it successfully executes.

A job is labeled as either broken or not broken. Oracle does not attempt to run
broken jobs. However, you can force a broken job to run by calling the procedure
DBMS_JOB.RUN.

How a Job Becomes Broken
When you submit a job it is considered not broken.

There are two ways a job can break:

« Oracle has failed to successfully execute the job after 16 attempts.

« You have marked the job as broken, using the procedure DBMS_JOB.BROKEN:
DBMS_JOB.BROKEN(14144, TRUE)

Once a job has been marked as broken, Oracle will not attempt to execute the job

until you either mark the job as not broken, or force the job to be executed by calling
the procedure DBMS_JOB.RUN.

The following example marks job 14144 as not broken and sets its next execution
date to the following Monday:

DBMS_JOB.BROKEN(14144, FALSE, NEXT_DAY(SYSDATE, MONDAYY);

8-12 Oracle8i Administrator’'s Guide

Managing Job Queues

Restriction:

« You can mark as broken only jobs that you own. If you try to mark a job you do
not own, you receive a message stating that the job is not in the job queue.

Running Broken Jobs

If a problem has caused a job to fail 16 times, Oracle marks the job as broken. Once
you have fixed this problem, you can run the job by either:

« Forcing the job to run by calling DBMS_JOB.RUN

« Marking the job as not broken by calling DBMS_JOB.BROKEN and waiting for
Oracle to execute the job

If you force the job to run by calling the procedure DBMS_JOB.RUN, Oracle runs
the job immediately. If the job succeeds, then Oracle labels the job as not broken and
resets its count of the number of failed executions for the job.

Once you reset a job’s broken flag (by calling either RUN or BROKEN), job
execution resumes according to the scheduled execution intervals set for the job.

Forcing a Job to Execute

There may be times when you would like to manually execute a job. For example, if
you have fixed a broken job, you may want to test the job immediately by forcing it
to execute. To force a job to be executed immediately, use the procedure RUN in the
DBMS_JOB package.

When you run a job using DBMS_JOB.RUN, Oracle recomputes the next execution
date. For example, if you create a job on a Monday with a NEXT_DATE value of
'SYSDATE' and an INTERVAL value of 'SYSDATE + 7' |, the job is run every 7
days starting on Monday. However, if you execute RUN on Wednesday, the next
execution date will be the next Wednesday.

The following statement runs job 14144 in your session and recomputes the next
execution date:

DBMS_JOB.RUN(14144);

Note: When you force a job to run, the job is executed in your
current session. Running the job reinitializes your session’s
packages.

Managing Job Queues 8-13

Viewing Job Queue Information

Restrictions:

=« You can only run jobs that you own. If you try to run a job that you do not own,
you receive a message that states the job is not in the job queue.

« The procedure RUN contains an implicit commit. Once you execute a job using
RUN, you cannot roll back.

Terminating a Job

You can terminate a running job by marking the job as broken, identifying the
session running the job, and disconnecting that session. You should mark the job as
broken, so that Oracle does not attempt to run the job again.

After you have identified the session running the job (via V$SESSION), you can
disconnect the session using the SQL statement ALTER SYSTEM.

For examples of viewing information about jobs and sessions, see the following
section, "Viewing Job Queue Information".

See Also: For more information on V$SESSION, see the Oracle8i
Reference.

Viewing Job Queue Information

You can view information about jobs in the job queue via the data dictionary views

listed below:

View Description

DBA_JOBS Lists all the jobs in the database.
USER_JOBS Lists all jobs owned by the user.

DBA_JOBS_RUNNING | Lists all jobs in the database that are currently running. This
view can be joined with V$LOCK to identify jobs that have
locks.

For example, you can display information about a job’s status and failed executions.
The following sample query creates a listing of the job number, next execution time,
failures, and broken status for each job you have submitted:

SELECT job, next_date, next_sec, failures, broken
FROM user_jobs;

8-14 Oracle8i Administrator's Guide

Viewing Job Queue Information

JOB NEXT _DATE NEXT_SEC FAILURES B

9125 01-NOV-98 000000 4N

14144 24-0CT99 163535 ON

41762 01-JAN-00 000000 16Y
3 rows selected.

You can also display information about jobs currently running. The following
sample query lists the session identifier, job number, user who submitted the job,

and the start times for all currently running jobs:

SELECT sid, rjob, log_user, rthis_date, rthis_sec
FROMdba_jobs running r,dba_jobsj
WHERE r.job =j.job;

SID JOB LOG USER THIS DATE THIS SEC
12 14144 JFEE 24-0CT-4 17:21:24
25 8536 SCOTT 24-0CT-9%4 16:45:12

2 rows selected.

See Also: For more information on data dictionary views, see the

Oracle8i Reference.

Managing Job Queues 8-15

Viewing Job Queue Information

8-16 Oracle8i Administrator’'s Guide

Part ||

Database Storage

Part 111 describes some of the underlying database structures which support the
creation of database objects and preserve transaction integrity. It includes the
following chapters:

« Chapter 9, "Managing Tablespaces"
« Chapter 10, "Managing Datafiles"
« Chapter 11, "Managing Rollback Segments"

9

Managing Tablespaces

This chapter describes the various aspects of tablespace management, and includes
the following topics:

Guidelines for Managing Tablespaces
Creating Tablespaces

Managing Tablespace Allocation

Altering Tablespace Availability

Read-Only Tablespaces

Dropping Tablespaces

Using the DBMS_SPACE_ADMIN Package
Transporting Tablespaces Between Databases

Viewing Information About Tablespaces

Managing Tablespaces 9-1

Guidelines for Managing Tablespaces

Guidelines for Managing Tablespaces

Before working with tablespaces of an Oracle database, familiarize yourself with the
guidelines provided in the following sections:

Use Multiple Tablespaces
Specify Tablespace Storage Parameters

Assign Tablespace Quotas to Users

See Also: For a complete discussion of database structure, space
management, tablespaces, and datafiles, see Oracle8i Concepts.

Use Multiple Tablespaces

Using multiple tablespaces allows you more flexibility in performing database
operations. For example, when a database has multiple tablespaces, you can
perform the following tasks:

Separate user data from data dictionary data to reduce contention among
dictionary objects and schema objects for the same datafiles.

Separate one application’s data from another’s to prevent multiple applications
from being affected if a tablespace must to be taken offline.

Store different tablespaces’ datafiles on separate disk drives to reduce 170
contention.

Separate rollback segment data from user data, preventing a single disk failure
from causing permanent loss of data.

Take individual tablespaces offline while others remain online, providing better
overall availability.

Reserve a tablespace for a particular type of database use, such as high update
activity, read-only activity, or temporary segment storage; thus allowing you to
optimize usage of the tablespace.

Back up individual tablespaces.

Some operating systems set a limit on the number of files that can be
simultaneously open; these limits can affect the number of tablespaces that can be
simultaneously online. To avoid exceeding your operating system’s limit, plan your
tablespaces efficiently. Create only enough tablespaces to fill your needs, and create
these tablespaces with as few files as possible. If you need to increase the size of a

9-2 Oracle8i Administrator’'s Guide

Guidelines for Managing Tablespaces

tablespace, add one or two large datafiles, or create datafiles with the autoextend
option set on, rather than many small datafiles.

Review your data in light of these factors and decide how many tablespaces you
will need for your database design.

Specify Tablespace Storage Parameters

When you create a new tablespace, you can specify default storage parameters for
objects that will be created in the tablespace. Storage parameters specified when an
object is created override the default storage parameters of the tablespace
containing the object. If you do not specify storage parameters when creating an
object, the object’s segment automatically uses the default storage parameters for
the tablespace.

Set the default storage parameters for a tablespace to account for the size of a
typical object that the tablespace will contain (you estimate this size). You can
specify different storage parameters for an unusual or exceptional object when
creating that object. You can also alter your default storage parameters at a later
time.

Note: If you do not specify the default storage parameters for a
new tablespace, the default storage parameters of Oracle for your
operating system become the tablespace’s default storage
parameters.

Storage parameters are discussed in more detail in "Managing Tablespace
Allocation” on page 9-10.

Assign Tablespace Quotas to Users

Grant to users who will be creating tables, clusters, snapshots, indexes, and other
objects the privilege to create the object and a quota (space allowance or limit) in the
tablespace intended to hold the object’s segment. The security administrator is
responsible for granting the required privileges to create objects to database users
and for assigning tablespace quotas, as necessary, to database users.

To learn more about assigning tablespace quotas to database users, see "Assigning
Tablespace Quotas"” on page 22-17.

Managing Tablespaces 9-3

Creating Tablespaces

Creating Tablespaces

Before you can create a tablespace you must create a database to contain it. The first
tablespace in any database is always the SYSTEM tablespace, and the first datafiles
of any database are automatically allocated in the SYSTEM tablespace during
database creation. Creating a database was discussed in Chapter 2.

The steps for creating tablespaces vary by operating system. In all cases, however,
you should create through your operating system a directory structure in which
your datafiles will be allocated. On most operating systems you indicate the size
and fully specified filenames when creating a new tablespace or altering a
tablespace by adding datafiles. In each situation Oracle automatically allocates and
formats the datafiles as specified. However, on some operating systems, you must
create the datafiles before installation.

Note: No data can be inserted into any tablespace until the
current instance has acquired at least two rollback segments
(including the SYSTEM rollback segment). Rollback segments are
discussed in Chapter 11, "Managing Rollback Segments".

To create a new tablespace, use the SQL statement CREATE TABLESPACE or
CREATE TEMPORARY TABLESPACE. You must have the CREATE TABLESPACE
system privilege to create a tablespace. Later, you can use the ALTER
TABLESPACE or ALTER DATABASE statements to alter the tablespace. You must
have the ALTER TABLESPACE or ALTER DATABASE system privilege.

Prior to Oracle8i, all tablespaces were created as dictionary-managed.
Dictionary-managed tablespaces rely on SQL dictionary tables to track space
utilization. Beginning with Oracle8i, you can now create locally managed tablespaces,
which use bitmaps (instead of SQL dictionary tables) to track used and free space.
For compatibility with earlier releases, dictionary-managed has been preserved as
the default type of tablespace, but Oracle recommends that you now use locally
managed tablespaces.

You can also create temporary tablespaces, which can be either dictionary-managed
or locally managed. Each type of tablespace is discussed separately in the following
sections:

« Dictionary-Managed Tablespaces
« Locally Managed Tablespaces

« Temporary Tablespaces

9-4 Oracle8i Administrator’'s Guide

Creating Tablespaces

See Also: See the Oracle installation documentation for your
operating system for information about tablespaces that are created
at installation.

For more information about the syntax and use of the CREATE
TABLESPACE, CREATE TEMPORARY TABLESPACE, ALTER
TABLESPACE, and ALTER DATABASE statements, see Oracle8i
SQL Reference.

Dictionary-Managed Tablespaces

For backwards compatibility, dictionary-managed remains the default method of
space management in a tablespace. Oracle updates the appropriate tables in the
data dictionary whenever an extent is allocated, or freed for reuse.

Creating a Dictionary-Managed Tablespace
As an example, let’s create the tablespace TBSA, with the following characteristics:

« The data of the new tablespace is contained in a single datafile, 50M in size.

« The default storage parameters for any segments created in this tablespace are
explicitly set.

The following statement creates the tablespace TBSA:

CREATE TABLESPACE thsa
DATAFILE ‘u02/oracle/data/tbsa01.dbf SIZE 50M
DEFAULT STORAGE (
INITIAL 50K
NEXT 50K
MINEXTENTS 2
MAXEXTENTS 50
PCTINCREASE 0);

Note: If you do not fully specify the filename for a datafile, Oracle
creates the datafile in the default database directory or the current
directory, depending upon your operating system. Oracle
recommends you always specify a fully qualified name.

Managing Tablespaces 9-5

Creating Tablespaces

Altering a Dictionary-Managed Tablespace

Reasons for issuing an ALTER TABLESPACE statement include, but are not limited
to:

« Changing default storage parameters. See "Altering Storage Settings for
Tablespaces" on page 9-12.

« Coalescing free space in a tablespace. See "Coalescing Free Space in
Dictionary-Managed Tablespaces" on page 9-12.

« Altering a tablespace’s availability (ONLINE/ZOFFLINE). See "Altering
Tablespace Availability" on page 9-15.

« Making a tablespace read-only or read-write. See "Read-Only Tablespaces" on
page 9-17.

« Adding or renaming a datafile, or enabling/disabling the autoextension of the
size of a datafile in the tablespace. See Chapter 10, "Managing Datafiles".

Still other situations for altering a tablespace may be found elsewhere in this book.

Locally Managed Tablespaces

Locally managed tablespaces track all extent information in the tablespace itself,
using bitmaps, resulting in the following benefits:

« Improved concurrency and speed of space operations, as space allocations and
deallocations predominantly modify locally managed resources (bitmaps stored
in header files) rather than requiring centrally managed resources such as
enqueues.

« Improved performance, because recursive operations that are sometimes
required during dictionary-managed space allocation are eliminated.

» Readable standby databases are allowed, as locally managed temporary
tablespaces (used for sorts, etc.) are locally managed and thus do not generate
any rollback or redo.

« Simplified space allocation—when the AUTOALLOCATE clause is specified,
appropriate extent size is automatically selected.

« Reduced user reliance on the data dictionary because necessary information is
stored in file headers and bitmap blocks.

Additionally, the DBMS_SPACE_ADMIN package, discussed in "Using the DBMS_
SPACE_ADMIN Package" on page 9-23, provides maintenance procedures for
locally managed tablespaces.

9-6 Oracle8i Administrator’'s Guide

Creating Tablespaces

Creating a Locally Managed Tablespace

To create a locally managed tablespace, you specify LOCAL in the extent
management clause of the CREATE TABLESPACE statement. You then have two
options. You can have Oracle manage extents for you automatically with the
AUTOALLOCATE option, or you can specify that the tablespace is managed with
uniform extents of a specific size (UNIFORM SIZE).

If the tablespace is expected to contain objects of varying sizes requiring different
extent sizes and having many extents, then AUTOALLOCATE is the best choice. If
it is not important to you to have a lot of control over space allocation and
deallocation, AUTOALLOCATE presents a simplified way for you to manage a
tablespace. Some space may be wasted but the benefit of having Oracle manage
your space most likely outweighs this.

On the other hand, if you want exact control over unused space, and you can
predict exactly the space to be allocated for an object or objects and the number and
size of extents, then UNIFORM is a good choice. It ensures that you will never have
an unusable amount of space in your tablespace.

The following statement creates a locally managed tablespace named LMTBSB,
where AUTOALLOCATE causes Oracle to automatically manage extent size.

CREATE TABLESPACE Imthsb DATAFILE ‘ju02/oracle/data/imtosbO1.dbf SIZE 50M
EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

Alternatively, this tablespace could be created specifying the UNIFORM clause. In
this example, a 128K extent size is specified. Each 128K extent (which is equivalent
to 64 Oracle blocks) is represented by a bit in the bitmap for this file.

CREATE TABLESPACE Imtsb DATAFILE ‘fu02/oracle/data/mtbsb01.dbf SIZE 50M
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K;

You cannot create a locally managed system tablespace.

Note: When you allocate a datafile for a locally managed
tablespace, you should allow space for metadata used for space
management (the extent bitmap or space header segment) which
are part of user space. For example, if you do not specify the SIZE
parameter in the extent management clause when UNIFORM is
specified, the default extent size is 1IMB. Therefore, in this case, the
size specified for the datafile must be larger (at least one block plus
space for the bitmap) than 1MB.

Managing Tablespaces 9-7

Creating Tablespaces

Altering a Locally Managed Tablespace

You can alter a locally managed tablespace for many of the same reasons as a
dictionary-managed tablespace. However, altering storage parameters is not an
option and coalescing free extents is unnecessary for locally managed tablespaces.
You also cannot alter a locally managed tablespace to a locally managed temporary
tablespace.

Temporary Tablespaces

If you wish to improve the concurrence of multiple sort operations, reduce their
overhead, or avoid Oracle space management operations altogether, you can create
temporary tablespaces.

Within a temporary tablespace, all sort operations for a given instance and
tablespace share a single sort segment. Sort segments exist for every instance that
performs sort operations within a given tablespace. The sort segment is created by
the first statement that uses a temporary tablespace for sorting, after startup, and is
released only at shutdown. An extent cannot be shared by multiple transactions.

You can view the allocation and deallocation of space in a temporary tablespace
sort segment via the V3SORT_SEGMENT view, and the V$SORT_USAGE view
identifies the current sort users in those segments.

You cannot explicitly create objects in a temporary tablespace. Assigning temporary
tablespace to users is discussed in Chapter 22, "Managing Users and Resources".

See Also: For more information about the VSSORT_SEGMENT
and V$SORT_USAGE views, see the Oracle8i Reference.

A discussion on tuning sorts is contained in Oracle8i Designing and
Tuning for Performance.

Creating a Dictionary-Managed Temporary Tablespace

To identify a tablespace as temporary during tablespace creation, specify the
TEMPORARY keyword on the CREATE TABLESPACE statement. The following
statement creates a temporary dictionary-managed tablespace.

CREATE TABLESPACE sort
DATAFILE ‘ju02/oracle/data/sort01.dbf SIZE 50M
DEFAULT STORAGE (
INITIAL 2M
NEXT 2M
MINEXTENTS 1
PCTINCREASE 0)

9-8 Oracle8i Administrator's Guide

Creating Tablespaces

TEMPORARY;

To change an existing permanent dictionary-managed tablespace to a temporary
tablespace, use the ALTER TABLESPACE statement. For example:

ALTER TABLESPACE thsa TEMPORARY;

You may issue the ALTER TABLESPACE statement against a dictionary-managed
temporary tablespace using many of the same keywords and clauses as for a
permanent dictionary-managed tablespace. Any restrictions are noted in the
Oracle8i SQL Reference.

Note: You can take dictionary-managed temporary tablespaces
offline. Returning them online does not affect their temporary
status.

Creating a Locally Managed Temporary Tablespace

Because space management is much simpler and more efficient in locally managed
tablespaces, they are ideally suited for temporary tablespaces. Locally managed
temporary tablespaces use tempfiles, which do not modify data outside of the
temporary tablespace or generate any redo for temporary tablespace data.
Therefore, they can be used in standby or read-only databases.

You also use different views for viewing information about tempfiles than you
would for datafiles. The VSTEMPFILE and DBA_TEMP_FILES views are analogous
to the V$DATAFILE and DBA_DATA_FILES views. See "Viewing Information
About Tablespaces" on page 9-39 for a summary of views relating to tablespaces.

To create a locally managed temporary tablespace, you use the CREATE
TEMPORARY TABLESPACE statement, which requires that you have the CREATE
TABLESPACE system privilege.

The following statement creates a temporary tablespace in which each extent is
16M. Each 16M extent (which is the equivalent of 8000 blocks) is represented by a
bit in the bitmap for the file.

CREATE TEMPORARY TABLESPACE Imtemp TEMPFILE ‘fu02/oracle/data/imtempO1.dbf
SIZE 20M REUSE
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 16M;

Except for adding a tempfile, as illustrated in the following example, you cannot

use the ALTER TABLESPACE statement for a locally managed temporary
tablespace.

Managing Tablespaces 9-9

Managing Tablespace Allocation

ALTER TABLESPACE Imtemp
ADD TEMPFILE 'lu02/oracle/data/imtemp02.dbf SIZE 2M REUSE;

Note: You cannot use the ALTER TABLESPACE statement, with
the TEMPORARY keyword, to change a locally managed
permanent tablespace into a locally managed temporary tablespace.
You must use the CREATE TEMPORARY TABLESPACE statement
to create a locally managed temporary tablespace.

However, the ALTER DATABASE statement can be used to alter tempfiles.
The following statements take offline and bring online temporary files:
ALTER DATABASE TEMPFILE ‘/u02/oracle/data/imterp02.dbf OFFLINE;

ALTER DATABASE TEMPFILE ‘/u02/oracle/dataimtermp02.dbf ONLINE;

The following statement resizes temporary file
u02/oracle/data/Imtemp02.dbf to 4M:

ALTER DATABASE TEMPFILE ‘Ju02/oracle/data/imtemp02.dbf RESIZE 4M;

The following statement drops a temporary file:
ALTER DATABASE TEMPFILE ‘Ju02/oracle/data/imtemp02.dbf DROP;

It is also possible, but not shown, to AUTOEXTEND a tempfile and to rename
(RENAME FILE) a tempfile.

Managing Tablespace Allocation

When you create a tablespace, you determine what physical datafile(s) comprise the
tablespace and, for dictionary-managed tablespaces, what the default storage
characteristics for the tablespace will be. Both of these attributes of the tablespace
can be changed later. The default storage characteristics of a tablespace are
discussed here; managing datafiles is the subject of Chapter 10, "Managing
Datafiles".

Over time, the free space in a dictionary-managed tablespace can become
fragmented, making it difficult to allocate new extents. Ways of defragmenting this
free space are also discussed below.

These sections follow:

9-10 Oracle8i Administrator's Guide

Managing Tablespace Allocation

« Storage Parameters in Locally Managed Tablespaces
« Storage Parameters for Dictionary-Managed Tablespaces

« Coalescing Free Space in Dictionary-Managed Tablespaces

Storage Parameters in Locally Managed Tablespaces

When you allocate a locally managed tablespace, you cannot specify default storage
parameters or minimum extent size. If AUTOALLOCATE is specified, the
tablespace is system managed with the smallest extent size being 64K. If UNIFORM
SIZE is specified, then the tablespace is managed with uniform size extents of the
specified SIZE. The default SIZE is 1M.

When you allocate segments in a locally managed tablespace, the storage clause is
interpreted differently than for dictionary-managed tablespaces. When an object is
created in a locally managed tablespace, Oracle uses its INITIAL, NEXT, and
MINEXTENTS parameters to calculate the initial size of the object’s segment.

Storage Parameters for Dictionary-Managed Tablespaces

Storage parameters affect both how long it takes to access data stored in the
database and how efficiently space in the database is used.

See Also: For a discussion of the effects of these parameters, see
Oracle8i Designing and Tuning for Performance.

For a complete description of storage parameters, see the Oracle8i
SQL Reference.

Specifying Default Storage Parameters

The following parameters influence segment storage allocation in a tablespace.
They are referred to as storage parameters, and are contained in the storage_clause of
the CREATE TABLESPACE statement.

INITIAL Defines the size in bytes (K or M) of the first extent in the
segment.
NEXT Defines the size of the second extent in bytes. (K or M)

PCTINCREASE The percent by which each extent, after the second (NEXT)
extent, grows.

Managing Tablespaces 9-11

Managing Tablespace Allocation

MINEXTENTS The number of extents allocated when a segment is first
created in the tablespace.

MAXEXTENTS Determines the maximum number of extents that a segment
can have. Can also be specified as UNLIMITED.

Another parameter on the CREATE TABLESPACE statement, MIMIMUM EXTENT,
also influences segment allocation. If specified, it ensures that all free and allocated
extents in the tablespace are at least as large as, and a multiple of, a specified
number of bytes (K or M). This provides one means of controlling free space
fragmentation in the tablespace.

Altering Storage Settings for Tablespaces

You can change the default storage parameters of a tablespace to change the default
specifications for future objects created in the tablespace. To change the default
storage parameters for objects subsequently created in the tablespace, use the SQL
statement ALTER TABLESPACE.

ALTER TABLESPACE users
DEFAULT STORAGE (
NEXT 100K
MAXEXTENTS 20
PCTINCREASE 0);

The INITIAL and MINEXTENTS keywords cannot be specified in an ALTER
statement. New values for the default storage parameters of a tablespace affect only
future extents allocated for the segments within the tablespace.

Coalescing Free Space in Dictionary-Managed Tablespaces

A free extent in a tablespace is comprised of a collection of contiguous free blocks.
When allocating new extents to a tablespace segment, the free extent closest in size
to the required extent is used. In some cases, when segments are dropped, their
extents are deallocated and marked as free, but any adjacent free extents are not
immediately recombined into larger free extents. The result is fragmentation that
makes allocation of larger extents more difficult.

This fragmentation is addressed in several ways.

1. When attempting to allocate a new extent for a segment, Oracle will first try to
find a free extent large enough for the new extent. If no large enough free extent
is found, Oracle will then coalesce adjacent free extents in the tablespace and

9-12 Oracle8i Administrator’'s Guide

Managing Tablespace Allocation

look again. This coalescing is always performed by Oracle whenever it cannot
find a free extent into which the new extent will fit.

2. The SMON background process periodically coalesces neighboring free extents.
When the PCTINCREASE value for a tablespace in nonzero. If you set
PCTINCREASE=0, no coalescing of free extents will occur. If you are concerned
about the overhead of SMON'’s ongoing coalescing, an alternative is to set
PCTINCREASE=0, and periodically coalesce free space as noted in (4).

3. When a segment is dropped or truncated, a limited form of coalescing is
performed if the PCTINCREASE value for the segment is not zero. This is done
even if PCTINCREASE=0 for the tablespace containing the segment.

4. You can use the ALTER TABLESPACE...COALESCE statement to manually
coalesce any adjacent free extents.

The process of coalescing free space is illustrated in the following figure.

TABSP_2
- UFUF|FUF|F|FUF
— Output
U ulFrlul F U F U |F

F = free extent
U = used extent

— Input

Coalescing free space is not necessary for locally managed tablespaces.

For detailed information on allocating extents and coalescing free space, see Oracle8i
Concepts.

Manually Coalescing Free Space

If you find that fragmentation of space in a tablespace is high (contiguous space on
your disk appears as non-contiguous), you can coalesce any free space using the
ALTER TABLESPACE...COALESCE statement. You must have the ALTER
TABLESPACE system privilege to coalesce tablespaces.

You might want to use this statement if PCTINCREASE=0, or you can use it to
supplement SMON and extent allocation coalescing. Note that if all extents within
the tablespace are of the same size, coalescing is not necessary. This would be the
case if the default PCTINCREASE value for the tablespace were set to zero, all

Managing Tablespaces 9-13

Managing Tablespace Allocation

segments used the default storage parameters of the tablespace, and
INITIAL=NEXT=MINIMUM EXTENT.

The following statement coalesces free space in the tablespace TABSP_4.
ALTER TABLESPACE tabsp 4 COALESCE;

Like other options of the ALTER TABLESPACE statement, the COALESCE option
is exclusive: when specified, it must be the only option.

This statement does not coalesce free extents that are separated by data extents. If
you observe that there are many free extents located between data extents, you
must reorganize the tablespace (for example, by exporting and importing its data)
to create useful free space extents.

Monitoring Free Space

You can use the DBA_FREE_SPACE and DBA_FREE_SPACE_COALESCED views
to monitor free space and to display statistics for coalescing activity. The following
statement displays the free space in tablespace TABSP_4.

SELECT block id, bytes, blocks

FROM dba _free_space

WHERE tablespace_name =TABSP_4'
ORDER BY block id;

BLOCK ID BYTES BLOCKS
2 16384 2
4 16384 2
6 81920 10
16 16384 2
27 16384 2
29 16384 2
31 16384 2
33 16384 2
35 16334 2
37 16384 2
39 8192 1
40 8192 1
41 196608 24
13 rows selected.

This view shows that there is adjacent free space in TABSP_4 (e.g., blocks starting
with BLOCK_IDs 2, 4, 6, 16) that has not been coalesced. After coalescing the

9-14 Oracle8i Administrator’'s Guide

Altering Tablespace Availability

tablespace using the ALTER TABLE statement shown previously, the results of this
query would read:

BLOCK ID BYTES BLOCKS

2 131072 16
27 311296 38
2 rows selected.

To display statistics about coalescing activity use the DBA_FREE_SPACE _
COALESCED view. It is also useful in determining if you need to coalesce space.
For more information about either view, see Oracle8i Reference.

Altering Tablespace Availability

You can take an online tablespace offline so that this portion of the database is
temporarily unavailable for general use but the rest is open and available.
Conversely, you can bring an offline tablespace online to make the schema objects
within the tablespace available to database users. The database must be open.

To alter the availability of a tablespace, use the SQL statement ALTER
TABLESPACE. You must have the ALTER TABLESPACE or MANAGE
TABLESPACE system privilege to perform this action.

Taking Tablespaces Offline
You may want to take a tablespace offline for any of the following reasons:

« To make a portion of the database unavailable while allowing normal access to
the remainder of the database.

« To perform an offline tablespace backup (even though a tablespace can be
backed up while online and in use).

« To make an application and its group of tables temporarily unavailable while
updating or maintaining the application.

When a tablespace is taken offline, Oracle takes all the associated files offline. The
SYSTEM tablespace may never be taken offline.

You can specify any of the following options when taking a tablespace offline:

Managing Tablespaces 9-15

Altering Tablespace Availability

NORMAL

TEMPORARY

IMMEDIATE

FOR RECOVER

A tablespace can be taken offline normally if no error
conditions exist for any of the datafiles of the tablespace. No
datafile in the tablespace can be currently offline as the result
of a write error. With normal offline priority, Oracle takes a
checkpoint for all datafiles of the tablespace as it takes them
offline.

A tablespace can be taken offline temporarily, even if there are
error conditions for one or more files of the tablespace. With
temporary offline priority, Oracle takes offline the datafiles
that are not already offline, checkpointing them as it does so.

If no files are offline, but you use the temporary option, media
recovery is not required to bring the tablespace back online.
However, if one or more files of the tablespace are offline
because of write errors, and you take the tablespace offline
temporarily, the tablespace requires recovery before you can
bring it back online.

A tablespace can be taken offline immediately, without
Oracle’s taking a checkpoint on any of the datafiles. With
immediate offline priority, media recovery for the tablespace
is required before the tablespace can be brought online. You
cannot take a tablespace offline immediately if the database is
running in NOARCHIVELOG mode.

Takes the production database tablespaces in the recovery set
offline for tablespace point-in-time recovery. For additional
information, see Oracle8i Backup and Recovery Guide.

WARNING:

If you must take a tablespace offline, use the

NORMAL option (the default) if possible; this guarantees that
the tablespace will not require recovery to come back online,
even if you reset the redo log sequence (using an ALTER
DATABASE OPEN RESETLOGS statement after incomplete
media recovery) before bringing the tablespace back online.

Specify TEMPORARY only when you cannot take the tablespace offline normally;
in this case, only the files taken offline because of errors need to be recovered before
the tablespace can be brought online. Specify IMMEDIATE only after trying both
the normal and temporary options.

The following example takes the USERS tablespace offline normally:

9-16 Oracle8i Administrator’'s Guide

Read-Only Tablespaces

ALTER TABLESPACE users OFFLINE NORMAL;

Before taking an online tablespace offline, consider the following:

« Verify that the tablespace contains no active rollback segments. Such a
tablespace may not be taken offline. For more information, see "Taking Rollback
Segments Offline" on page 11-11.

« You may want to alter the tablespace allocation of any users who have been
assigned the tablespace as either a default of temporary tablespace, as they will
not be able to access objects or sort areas in the tablespace while it is offline.

Bringing Tablespaces Online

You can bring any tablespace in an Oracle database online whenever the database is
open. A tablespace is normally online so that the data contained within it is
available to database users.

Note: If a tablespace to be brought online was not taken offline
"cleanly” (that is, using the NORMAL option of the ALTER
TABLESPACE OFFLINE statement), you must first perform media
recovery on the tablespace before bringing it online. Otherwise,
Oracle returns an error and the tablespace remains offline.

The following statement brings the USERS tablespace online:
ALTER TABLESPACE users ONLINE;

Read-Only Tablespaces

Making a tablespace read-only prevents write operations on the datafiles in the
tablespace. The primary purpose of read-only tablespaces is to eliminate the need to
perform backup and recovery of large, static portions of a database, but they also
provide a means of completely protecting historical data so that no one can modify
the data after the fact. Making a tablespace read-only prevents updates on all tables
in the tablespace, regardless of a user’s update privilege level.

Read-only tablespaces can also be transported to other databases. See Transporting
Tablespaces Between Databases on page 9-26 for more information on that
functionality.

Managing Tablespaces 9-17

Read-Only Tablespaces

Note: Making a tablespace read-only cannot in itself be used to
satisfy archiving or data publishing requirements, because the
tablespace can only be brought online in the database in which it
was created. However, you may meet such requirements by using
the transportable tablespace feature.

You can drop items, such as tables or indexes, from a read-only tablespace, but you
cannot create or alter objects in the tablespace. You can execute statements that
update the file description in the data dictionary, such as ALTER TABLE...ADD or
ALTER TABLE...MODIFY, but you will not be able to utilize the new description
until the tablespace is made read-write.

Since read-only tablespaces can never be updated, they can reside on CD-ROM or
WORM (Write Once-Read Many) devices. See "Creating a Read-Only Tablespace on
a WORM Device" on page 9-21.

The following topics are discussed in this section:

« Making a Tablespace Read-Only

« Making a Read-Only Tablespace Writable

« Creating a Read-Only Tablespace on a WORM Device

« Delaying the Opening of Datafiles in Read Only Tablespaces

See Also: For more information about read-only tablespaces, see
Oracle8i Concepts,

Making a Tablespace Read-Only

All tablespaces are initially created as read-write. Use the READ ONLY keywords
in the ALTER TABLESPACE statement to change a tablespace to read-only. You
must have the ALTER TABLESPACE or MANAGE TABLESPACE system privilege.

Before you can make a tablespace read-only, the following conditions must be met.
« The tablespace must be online.

This is necessary to ensure that there is no undo information that needs to be
applied to the tablespace.

» The tablespace must not contain any active rollback segments (this would be
the normal situation, as a data tablespace should not contain rollback
segments).

9-18 Oracle8i Administrator’'s Guide

Read-Only Tablespaces

For this reason, the SYSTEM tablespace can never be made read-only, since it
contains the SYSTEM rollback segment. Additionally, because any rollback
segments of a read-only tablespace would not be accessible, you would have to
drop the rollback segments before you made a tablespace read-only.

« The tablespace must not currently be involved in an online backup, since the
end of a backup updates the header file of all datafiles in the tablespace.

For better performance while accessing data in a read-only tablespace, you might
want to issue a query that accesses all of the blocks of the tables in the tablespace
just before making it read-only. A simple query, such as SELECT COUNT (%),
executed against each table will ensure that the data blocks in the tablespace can be
subsequently accessed most efficiently. This eliminates the need for Oracle to check
the status of the transactions that most recently modified the blocks.

The following statement makes the FLIGHTS tablespace read-only:
ALTER TABLESPACE fights READ ONLY;

You do not have to wait for transactions to complete before issuing the ALTER
TABLESPACE...READ ONLY statement. When the statement is issued, the target
tablespace goes into a transitional read-only mode in which no further DML
statements are allowed, though existing transactions that modified the tablespace
will be allowed to commit or rollback. Once this occurs, the tablespace is quiesced,
with respect to active transactions.

Note: This transitional read-only state only occurs if the value of
the initialization parameter COMPATIBLE is 8.1.0 or greater. For
parameter values less than 8.1.0, the ALTER TABLESPACE...READ
ONLY statement fails if any active transactions exist.

If you find it is taking a long time for the tablespace to quiesce, it is possible to
identify the transactions which are preventing the read-only state from taking
effect. The owners of these transactions can be notified and a decision can be made
to terminate the transactions, if necessary. The following example illustrates how
you might identify the blocking transactions.

« ldentify the transaction entry for the ALTER TABLESPACE...READ ONLY
statement.

SELECT sqj_text, saddr
FROM v$sglarea,v$session
WHERE v$sqlarea.address = v$session.sql_address

Managing Tablespaces 9-19

Read-Only Tablespaces

AND sq_text like ‘alter tablespace?s;;

SQL TEXT SADDR

alter tablespace ths1 read only 80034AF0

« The start SCN of each active transaction is stored in the VS TRANSACTION
view. Displaying this view sorted by ascending start SCN lists the transactions
in execution order. Knowing the transaction entry for the read-only statement,
it can be located in the VETRANSACTION view. All transactions with lesser or
equal start SCN can potentially hold up the quiesce and subsequent read-only
state of the tablespace.

SELECT ses_addr, start_scnb
FROM v@transaction
ORDER BY start_scnb,

SES ADDR START_SCNB

800352A0 3621 —>waiting on this txn

80035A50 3623 —>waiting on this txn

80034AF0 3628 —>thisisthe ALTER TABLESPACE statement
80037910 3629 —>don' care about this txn

After making the tablespace read-only, it is advisable to back it up immediately. As
long as the tablespace remains read-only, no further backups of the tablespace are
necessary since no changes can be made to it.

See Also: For information about recovering a database with
read-only datafiles, see the Oracle8i Backup and Recovery Guide.

Making a Read-Only Tablespace Writable

Use the READ WRITE keywords in the ALTER TABLESPACE SQL statement to
change a tablespace to allow write operations. You must have the ALTER
TABLESPACE or MANAGE TABLESPACE system privilege.

A prerequisite to making the tablespace read-write is that all of the datafiles in the
tablespace, as well as the tablespace itself, must be online. Use the DATAFILE...
ONLINE clause of the ALTER DATABASE statement to bring a datafile online. The
V$DATAFILE view lists the current status of datafiles.

The following statement makes the FLIGHTS tablespace writable

9-20 Oracle8i Administrator’'s Guide

Read-Only Tablespaces

ALTER TABLESPACE flights READ WRITE;

Making a read-only tablespace writable updates the control file entry for the
datafiles, so that you can use the read-only version of the datafiles as a starting
point for recovery.

Creating a Read-Only Tablespace on a WORM Device

Follow these steps to create a read-only tablespace on a CD-ROM or WORM (Write
Once-Read Many) device.

1. Create a writable tablespace on another device. Create the objects that belong in
the tablespace and insert your data.

2. Alter the tablespace to read-only.

3. Copy the datafiles of the tablespace onto the WORM device. Use operating
system commands to copy the files.

4. Take the tablespace offline.

5. Rename the datafiles to coincide with the names of the datafiles you copied
onto your WORM device. Use ALTER TABLESPACE with the RENAME
DATAFILE clause. Renaming the datafiles changes their names in the control
file.

6. Bring the tablespace back online.

Delaying the Opening of Datafiles in Read Only Tablespaces

When substantial portions of a very large database are stored in read-only
tablespaces that are located on slow-access devices or hierarchical storage, you
should consider setting the READ_ONLY_OPEN_DELAYED initialization
parameter to TRUE. This speeds certain operations, primarily opening the database,
by causing datafiles in read-only tablespaces to be accessed for the first time only
when an attempt is made to read data stored within them.

Setting READ_ONLY_OPEN_DELAYED=TRUE has the following side-effects:

« A missing or bad read-only file will not be detected at open time. It will only be
discovered when there is an attempt to access it.

« ALTER DATABASE CHECK DATAFILES will not check read-only files.

Managing Tablespaces 9-21

Dropping Tablespaces

« ALTER TABLESPACE <name> ONLINE and ALTER DATABASE DATAFILE
<name> ONLINE will not check read-only files. They will be checked only
upon the first access.

« VS$RECOVER_FILE, V$BACKUP, and V$DATAFILE_HEADER will not access
read-only files; read-only files will be indicated in the results list with the error
"DELAYED OPEN", with zeroes for the values of other columns.

« VSDATAFILE will not access read-only files; read-only files will have a size of
"0’ listed.

« VSRECOVER_LOG will not access read-only files; logs they may need for
recovery will not be added to the list.

« ALTER DATABASE NOARCHIVELOG will not access read-only files; it will
proceed even if there is a read-only file that needs recovery.

Notes:

« The RECOVER DATABASE and ALTER DATABASE OPEN
RESETLOGS will continue to access all read-only datafiles
regardless of the parameter value. If you want to avoid
accessing read-only files for these operations, those files should
be taken offline.

« If a backup controlfile is used, the read-only status of some files
may be inaccurate. This may cause some of these operations to
return unexpected results. Care should be taken in this
situation.

Dropping Tablespaces

You can drop a tablespace and its contents (the segments contained in the
tablespace) from the database if the tablespace and its contents are no longer
required. Any tablespace in an Oracle database, except the SYSTEM tablespace, can
be dropped. You must have the DROP TABLESPACE system privilege to drop a
tablespace.

9-22 Oracle8i Administrator’'s Guide

Using the DBMS_SPACE_ADMIN Package

WARNING: Once a tablespace has been dropped, the
tablespace’s data is not recoverable. Therefore, make sure that all
data contained in a tablespace to be dropped will not be required
in the future. Also, immediately before and after dropping a
tablespace from a database, back up the database completely.
This is strongly recommended so that you can recover the database if
you mistakenly drop a tablespace, or if the database experiences a
problem in the future after the tablespace has been dropped.

When you drop a tablespace, only the file pointers in the control files of the
associated database are dropped. The datafiles that constituted the dropped
tablespace continue to exist. To free previously used disk space, delete the datafiles
of the dropped tablespace using the appropriate commands of your operating
system after completing this procedure.

You cannot drop a tablespace that contains any active segments. For example, if a
table in the tablespace is currently being used or the tablespace contains an active
rollback segment, you cannot drop the tablespace. For simplicity, take the
tablespace offline before dropping it.

After a tablespace is dropped, the tablespace’s entry remains in the data dictionary
(see the DBA_TABLESPACES view), but the tablespace’s status is changed to
INVALID.

To drop a tablespace, use the SQL statement DROP TABLESPACE. The following
statement drops the USERS tablespace, including the segments in the tablespace:

DROP TABLESPACE users INCLUDING CONTENTS;

If the tablespace is empty (does not contain any tables, views, or other structures),
you do not need to specify the INCLUDING CONTENTS option. Use the
CASCADE CONSTRAINTS option to drop all referential integrity constraints from
tables outside the tablespace that refer to primary and unique keys of tables inside
the tablespace.

Using the DBMS_SPACE_ADMIN Package

The DBMS_SPACE_ADMIN package provides administrators with defect diagnosis
and repair functionality for locally managed tablespaces. The DBMS_SPACE _
ADMIN package contains the following procedures:

Managing Tablespaces 9-23

Using the DBMS_SPACE_ADMIN Package

Procedure Description

SEGMENT_VERIFY Verifies the consistency of the extent map of the segment.

SEGMENT_CORRUPT Marks the segment corrupt or valid so that appropriate
error recovery can be done.

SEGMENT_DROP_CORRUPT Drops a segment currently marked corrupt (without
reclaiming space).

SEGMENT_DUMP Dumps the segment header and extent map(s) of a given
segment.

TABLESPACE_VERIFY Verifies that the bitmaps and extent maps for the segments
in the tablespace are in sync.

TABLESPACE_REBUILD_BITMAPS Rebuilds the appropriate bitmap(s).

TABLESPACE_FIX_BITMAPS Marks the appropriate DBA range (extent) as free or used
in bitmap.

TABLESPACE_REBUILD_QUOTAS Rebuilds quotas for given tablespace.

TABLESPACE_MIGRATE_FROM_LOCAL Migrates a locally managed tablespace to
dictionary-managed tablespace.

TABLESPACE_MIGRATE_TO_LOCAL Migrates a tablespace from dictionary-managed format to
locally managed format.

TABLESPACE_RELOCATE_BITMAPS Relocates the bitmaps to the destination specified.

TABLESPACE_FIX_SEGMENT_STATES Fixes the state of the segments in a tablespace in which

migration was aborted.

The following scenarios describe typical situations in which you can use the DBMS _
SPACE_ADMIN package to diagnose and resolve problems.

Note: Some of these procedures may result in lost and
unrecoverable data if not used properly. You should work with
Oracle Worldwide Support if you have doubts about these
procedures.

See Also: For details about the DBMS_SPACE_ADMIN package
and procedures, see the Oracle8i Supplied PL/SQL Packages Reference.

9-24 Oracle8i Administrator's Guide

Using the DBMS_SPACE_ADMIN Package

Scenario 1

Scenario 2

Scenario 3

The TABLESPACE_VERIFY procedure discovers that a segment has allocated
blocks that are marked "free" in the bitmap and vice versa. It also discovers overlap
between segments.

In this scenario, perform the following tasks:

« Call the SEGMENT_DUMP procedure to dump the ranges that the
administrator allocated to the segment.

« For each range, call the TABLESPACE_FIX_BITMAPS procedure with the
TABLESPACE_EXTENT_MAKE_USED or TABLESPACE_EXTENT_MAKE_
FREE option to mark the space as used or free.

You cannot drop a segment because the bitmap has segment blocks marked "free."

In this scenario, perform the following tasks:

« Call the SEGMENT_VERIFY procedure with the SEGMENT_VERIFY_
EXTENTS_GLOBAL option. If no overlaps are reported, perform the following:

Call the SEGMENT_DUMP procedure with the SEGMENT_DUMP_
EXTENT_MAP option to dump the ranges that the administrator allocated
to the segment.

For each range, call the TABLESPACE_FIX_BITMAPS procedure with the
TABLESPACE_EXTENT_MAKE_FREE option to mark the space as "free."

Call the SEGMENT_CORRUPT procedure with the SEGMENT_MARK _
CORRUPT option to mark the segment as corrupt.

Call the SEGMENT_DROP_CORRUPT procedure to drop the SEG$ entry.

The TABLESPACE_VERIFY procedure has reported some overlapping. Some of the
real data must be sacrificed based on previous internal errors.

After choosing the object to be sacrificed, say table T1, perform the following tasks:

« Make a list of all objects that T1 overlaps.

« Drop table T1. If necessary, follow up by calling the SEGMENT_DROP_
CORRUPT procedure.

Managing Tablespaces 9-25

Transporting Tablespaces Between Databases

« Call the SEGMENT_VERIFY procedure on all objects that T1 overlapped. If
necessary, call the TABLESPACE_FIX_BITMAPS procedure to mark
appropriate bitmaps as used.

« Rerun the TABLESPACE_VERIFY procedure to verify the problem is resolved.

Scenario 4
A set of bitmap blocks has media corruption.
In this scenario, perform the following tasks:
« Call the TABLESPACE_REBUILD_MAPS procedure, either on all bitmap
blocks, or on a single block if only one is corrupt.
« Call the TABLESPACE_VERIFY procedure to verify that the bitmaps are
consistent.
Scenario 5

You migrate a dictionary-managed tablespace to a locally managed tablespace. You
use the TABLESPACE_MIGRATE_TO_LOCAL procedure.

Let us assume that the database block size is 2K, and the existing extent sizes in
tablespace TBS_1 are 10, 50, and 10,000 blocks (used, used, and free). The
MINIMUM EXTENT value is 20K (10 blocks). In this scenario, you allow the bitmap
allocation unit to be chosen by the system, The value of 10 blocks is chosen, because
it is the highest common denominator and does not exceed MINIMUM EXTENT.

The statement to convert TBS_1 to a locally managed tablespace is as follows:
EXEC DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL (tbs_1);

If you choose to specify a allocation unit size, it must be a factor of the unit size
calculated by the system, otherwise an error message is issued.

Transporting Tablespaces Between Databases

This section describes how to transport tablespaces between databases, and
includes the following topics:

« Introduction to Transportable Tablespaces
« Limitations

« Procedure for Transporting Tablespaces Between Databases

9-26 Oracle8i Administrator’'s Guide

Transporting Tablespaces Between Databases

Object Behaviors

Using Transportable Tablespaces

Introduction to Transportable Tablespaces

Limitations

Note: You must have the Oracle8i Enterprise Edition to generate a
transportable tablespace set. However, you can use any edition of
Oracle8i to plug a transportable tablespace set into an Oracle
database.

You can use the transportable tablespaces feature to move a subset of an Oracle
database and "plug" it in to another Oracle database, essentially moving tablespaces
between the databases. Transporting tablespaces is particularly useful for:

Moving data from OLTP systems to data warehouse staging systems
Updating data warehouses and data marts from staging systems
Loading data marts from central data warehouses

Archiving OLTP and data warehouse systems efficiently

Data publishing to internal and external customers

Moving data via transportable tablespaces can be much faster than performing
either an export/Zimport or unload/load of the same data, because transporting a
tablespace only requires the copying of datafiles and integrating the tablespace
structural information. You can also use transportable tablespaces to move index
data, thereby avoiding the index rebuilds you would have to perform when
importing or loading table data.

See Also: For more details about transportable tablespaces and
their use in data marts and data warehousing, see Oracle8i Concepts

For information about using transportable tablespaces to perform
media recovery, see the Oracle8i Backup and Recovery Guide.

For information about transportable tablespace compatibility issues
(between different Oracle releases), see Oracle8i Migration.

Be aware of the following limitations as you plan for transportable tablespace use:

Managing Tablespaces 9-27

Transporting Tablespaces Between Databases

The source and target database must be on the same hardware platform. For
example, you can transport tablespaces between Sun Solaris Oracle databases,
or you can transport tablespaces between NT Oracle databases. However, you
cannot transport a tablespace from a SUN Solaris Oracle database to an NT
Oracle database.

The source and target database must have the same database block size.

The source and target database must use the same character set and national
character set.

You cannot transport a tablespace to a target database in which a tablespace
with the same name already exists.

Transportable tablespaces do not support:

— Snapshot/replication

— Function-based indexes

— Scoped REFs

— Domain indexes (a new type of index provided by extensible indexing)

— 8.0-compatible advanced queues with multiple recipients

Procedure for Transporting Tablespaces Between Databases
To move or copy a set of tablespaces you must perform the following steps:

1.
2.

Pick a self-contained set of tablespaces.
Generate a transportable tablespace set.

A transportable tablespace set consists of datafiles for the set of tablespaces being
transported and a file containing structural information for the set of
tablespaces.

Transport the tablespace set.

Copy the datafiles and the export file to the target database. You can do this
using any facility for copying flat files (for example, an O/S copying utility, ftp,
or publishing on CDs)

Plug in the tablespace.

Invoke Import to plug the set of tablespaces into the target database.

These steps are detailed below.

9-28 Oracle8i Administrator’'s Guide

Transporting Tablespaces Between Databases

Step 1: Pick a Self-Contained Set of Tablespaces

You can only transport a set of tablespaces that is self-contained. In this context
"self-contained" means that there are no references from inside the set of tablespaces
pointing outside of the tablespaces. For example, if there is an index in the set of
tablespaces for a table that is outside of the set of tablespaces, then the set of
tablespaces is not self-contained.

The tablespace set you wish to copy must contain either all partitions of a
partitioned table, or none of the partitions of a partitioned table. If you wish to
transport a subset of a partition table, you must exchange the partitions into tables.

When transporting a set of tablespaces, you can choose to include referential
integrity constraints. However, doing so can affect whether or not a set of
tablespaces is self-contained. If you decide not to transport constraints, then the
constraints are not considered as pointers. Some examples of self contained
tablespace violations follow:

« Anindex inside the set of tablespaces is for a table outside of the set of
tablespaces.

« A partitioned table is partially contained in the set of tablespaces.

« Atable inside the set of tablespaces contains a LOB column that points to LOBs
outside the set of tablespaces.

To determine whether a set of tablespaces is self-contained, you can invoke the
TRANSPORT_SET_CHECK procedure in the Oracle supplied package DBMS_TTS.
You must have been granted the EXECUTE_CATALOG_ROLE role (initially signed
to SYS) to execute this procedure. You specify the list of tablespace names and
indicate whether you wish to transport referential integrity constraints.

For example, suppose you want to determine whether tablespaces SALES_1 and
SALES 2 are self-contained, with referential integrity constraints taken into
consideration (indicated by TRUE). You can issue the following statement:

EXECUTE dbms_tis.transport_set check('sales_1,sales 2, TRUE);

After invoking this PL/SQL routine, you can see all violations by selecting from the
TRANSPORT_SET_VIOLATIONS view. If the set of tablespaces is self-contained,
this view will be empty. The following query shows a case where there are two

violations: a foreign key constraint, DEPT_FK, across the tablespace set boundary;,
and a partitioned table, JIM.SALES, that is partially contained in the tablespace set.

SELECT * FROM transport_set violations;

VIOLATIONS

Managing Tablespaces 9-29

Transporting Tablespaces Between Databases

Constraint DEPT_FK between table JIM.EMP in tablespace SALES 1 and table
JIM.DEPT in tablespace OTHER
Partitioned table JIM.SALES is partially contained in the transportable set

Object references (such as REFs) across the tablespace set are not considered

violations. REFs are not checked by the TRANSPORT_SET_CHECK routine. When
a tablespace containing dangling REFs is plugged into a database, queries following

that dangling REF indicate user error.

See Also: For more information about REFs, see the Oracle8i
Application Developer’s Guide - Fundamentals.

For more information about the DBMS_TTS package, see Oracle8i
Supplied PL/SQL Packages Reference.

Step 2: Generate a Transportable Tablespace Set

After identifying the self-contained set of tablespaces you want to transport,
generate a transportable tablespace set by performing the following tasks:

1.

Make all tablespaces in the set you are copying read-only.
ALTER TABLESPACE sales 1 READ ONLY;

Invoke the Export utility and specify which tablespaces are in the transportable

set, as follows:

EXP TRANSPORT_TABLESPACE=y TABLESPACES=(sales_1,sales 2)
TRIGGERS= yh CONSTRAINTS3/1 GRANTS3/h FILE=expdatdmp

Note: Although the Export utility is used, only data dictionary
structural information is exported. Hence, this operation is even
quicker for a large tablespace.

When prompted, connect as "sys AS sysdba.”

You must always specify TABLESPACES. The FILE parameter specifies the
name of the structural information export file to be created.

If you set TRIGGERS=n, triggers are not exported. If you set TRIGGERS=y,
triggers are exported without a validity check. Invalid triggers cause
compilation errors during the subsequent import.

9-30 Oracle8i Administrator's Guide

Transporting Tablespaces Between Databases

If you set GRANTS=y, all grants on the exported tables are exported too;
otherwise, all GRANTS are ignored.

If you set CONSTRAINTS=y, referential integrity constraints are exported;
otherwise, referential integrity constraints are ignored.

The default setting for all of these options is 'y.’
3. Copy the datafiles to a separate storage space or to the target database.

4. If necessary, put the tablespaces in the copied set back into read-write mode as
follows:

ALTER TABLESPACE sales 1 READ WRITE;

If the tablespace sets being transported are not self-contained, export will fail and
indicate that the transportable set is not self-contained. You must then return to
Step 1 to resolve all violations.

See Also: For information about using the Export utility, refer to
Oracle8i Utilities.

Step 3: Transport the Tablespace Set

Transport both the datafiles and the export file to a place accessible to the target
database. You can use any facility for copying flat files (for example, an O/S
copying utility, ftp, or publishing on CDs).

Step 4: Plug In the Tablespace Set
To plug in a tablespace set, perform the following tasks:

1. Put the copied tablespace set datafiles in a location where the target database
can access them.

2. Plug in the tablespaces and integrate the structural information using the
following import statement:

IMP TRANSPORT_TABLESPACE=y DATAFILES=(/db/sales_jan',/db/sales_feb),...)
TABLESPACES=(sales 1,sales 2) TTS_OWNERS=(dcranneyjfee)
FROMUSER=(dcranney jfee) TOUSER=(smith,wiliams) FILE=expdat.dmp

When prompted, connect as "sys AS sysdba."
Following are two more examples:

IMP TRANSPORT TABLESPACE=y DATAFILES=(/dbistagingL,/db/staging2.f)

Managing Tablespaces 9-31

Transporting Tablespaces Between Databases

IMP TRANSPORT_TABLESPACE=y DATAFILES=/db/staging.f TABLESPACES=jan
OWNERS=smith

You must specify DATAFILES.

TABLESPACES, TTS_OWNERS, FROMUSER and TOUSER are optional. The
FILE parameter specifies the name of the structural information export file.

When you specify TABLESPACES, the supplied tablespace names are
compared to those in the export file. Import returns an error if there is any
mismatch. Otherwise, tablespace names are extracted from the export file.

TTS_OWNERS lists all users who own data in the tablespace set. When you
specify TTS_OWNERS, the user names are compared to those in the export file.
Import returns an error if there is any mismatch. Otherwise, owner names are
extracted from the export file.

If you do not specify FROMUSER and TOUSER, all database objects (such as
tables and indexes) will be created under the same user as in the source
database. Those users must already exist in the target database. If not, import
will return an error indicating that some required users do not exist in the
target database.

You can use FROMUSER and TOUSER to change the owners of objects. For
example, if you specify FROMUSER=(dcranney,jfee) TOUSER=(smith,
williams() objects in the tablespace set owned by DCRANNEY in the source
database will be owned by SMITH in the target database after the tablespace set
is plugged in. Similarly, objects owned by JFEE in the source database will be
owned by WILLIAMS in the target database. In this case, the target database
does not have to have users DCRANNEY and JFEE, but must have users
SMITH and WILLIAMS.

After this statement successfully executes, all tablespaces in the set being copied
remain in read-only mode. You should check the import logs to ensure no error
has occurred. At this point, you can issue the ALTER TABLESPACE...READ
WRITE statement to place the new tablespaces in read-write mode.

When dealing with a large number of datafiles, specifying the list of datafile names
in the statement line can be a laborious process; it may even exceed the statement
line limit. In this situation, you may use an import parameter file. For example, one
of the statements in this step is equivalent to the following:

IMP PARFILE=parf

The file par.f contains the following:

9-32 Oracle8i Administrator's Guide

Transporting Tablespaces Between Databases

TRANSPORT_TABLESPACE=y
DATAFILES=/db/staging f
TABLESPACES=jan
TT_OWNERS=smith

To transport a tablespace between databases, both the source and target database
must be running Oracle8i, with the initialization file compatibility parameter set to
8.1.

See Also: For information about using the Import utility, refer to
Oracle8i Utilities.

Object Behaviors

Most objects, whether data in a tablespace or structural information associated with
the tablespace, behave normally after being transported to a different database.
However, the following objects are exceptions:

« ROWIDs
« REFs
= Privileges

« Partitioned Tables

« Objects

« Advanced Queues
« Indexes

« Triggers

« Snapshots/Replication

ROWIDs

When a database contains tablespaces that have been plugged in (from other
databases), the ROWIDs in that database are no longer unique. A ROWID is
guaranteed unique only within a table.

REFs

REFs are not checked when Oracle determines if a set of tablespaces is
self-contained. As a result, a plugged-in tablespace may contain dangling REFs.
Any query following dangling REFs returns a user error.

Managing Tablespaces 9-33

Transporting Tablespaces Between Databases

Privileges

Privileges are transported if you specify GRANTS=y during export. During import,
some grants may fail. For example, the user being granted a certain right may not
exist, or a role being granted a particular right may not exist.

Partitioned Tables

You cannot move a partitioned table via transportable tablespaces when only a
subset of the partitioned table is contained in the set of tablespaces. You must
ensure that all partitions in a table are in the tablespace set, or exchange the
partitions into tables before copying the tablespace set. However, you should note
that exchanging partitions with tables invalidates the global index of the partitioned
table.

At the target database, you can exchange the tables back into partitions if there is
already a partitioned table that exactly matches the column in the target database. If
all partitions of that table come from the same foreign database, the exchange
operation is guaranteed to succeed. If they do not, in rare cases, the exchange
operation may return an error indicating that there is a data object number conflict.

If you receive a data object number conflict error when exchanging tables back into
partitions, you can move the offending partition using the ALTER TABLE MOVE
PARTITION statement. After doing so, retry the exchange operation.

If you specify the WITHOUT VALIDATION option of the exchange statement, the
statement will return immediately because it only manipulates structural
information. Moving partitions, however, may be slow because the data in the
partition can be copied. See "Transporting and Attaching Partitions for Data
Warehousing" on page 9-35 for an example using partitioned tables.

Objects
A transportable tablespace set can contain:

« Tables

= Indexes

« Bitmap indexes

« Index-organized tables
« LOBs

= Nested tables

« Varrays

9-34 Oracle8i Administrator's Guide

Transporting Tablespaces Between Databases

« Tables with user-defined type columns

If the tablespace set contains a pointer to a BFILE, you must move the BFILE and set
the directory correctly in the target database.

Advanced Queues

You can use transportable tablespaces to move or copy Oracle advanced queues, as
long as these queues are not 8.0-compatible queues with multiple recipients. After a
gueue is transported to a target database, the queue is initially disabled. After
making the transported tablespaces read-write in the target database, you can
enable the queue by starting it up via the built-in PL/SQL routine DBMS_
AQADM.START_QUEUE.

Indexes

You can transport regular indexes and bitmap indexes. When the transportable set
fully contains a partitioned table, you can also transport the global index of the
partitioned table.

Function-based indexes and domain indexes are not supported. If they exist in a
tablespace, you must drop them before you can transport the tablespace.

Triggers

Triggers are exported without a validity check. In other words, Oracle does not
verify that the trigger refers only to objects within the transportable set. Invalid
triggers will cause a compilation error during the subsequent import.

Snapshots/Replication

Transporting snapshot or replication structural information is not supported. If a
table in the tablespace you want to transport is replicated, you must drop the
replication structural information and convert the table into a normal table before
you can transport the tablespace.

Using Transportable Tablespaces
The following are some possible applications for transportable tablespaces.

Transporting and Attaching Partitions for Data Warehousing

Typical enterprise data warehouses contain one or more large fact tables. These fact
tables may be partitioned by date, making the enterprise data warehouse a

Managing Tablespaces 9-35

Transporting Tablespaces Between Databases

historical database. You can build indexes to speed up star queries. In fact, Oracle

recommends that you build local indexes for such historically partitioned tables to
avoid rebuilding global indexes every time you drop the oldest partition from the

historical database.

Suppose every month you would like to load one month’s worth of data into the
data warehouse. There is a large fact table in the data warehouse called SALES,
which has the following columns:

CREATE TABLE sales (invoice_no NUMBER,

sale_year INT NOT NULL,

sale_month INT NOT NULL,

sale_day INTNOTNULL)

PARTITION BY RANGE (sale_year, sale_month, sale_day)
(partiion jan98 VALUES LESS THAN (1998, 2, 1),
partition feb98 VALUES LESS THAN (1998, 3, 1),
partiion mar98 VALUES LESS THAN (1998, 4, 1),
partition apra8 VALUES LESS THAN (1998, 5, 1),
partition may98 VALUES LESS THAN (1998, 6, 1),
partition jun98 VALUES LESS THAN (1998, 7, 1));

You create a local nonprefixed index:
CREATE INDEX sales_index ON sales(invoice_no) LOCAL;

Initially, all partitions are empty, and are in the same default tablespace. Each
month, you wish to create one partition and attach it to the partitioned SALES table.

Suppose it is July 1998, and you would like to load the July sales data into the
partitioned table. In a staging database, you create a new tablespace, TS JUL. You
also create a table, JUL_SALES, in that tablespace with exactly the same column
types as the SALES table. You can create the table JUL_SALES using the CREATE
TABLE...AS SELECT statement. After creating and populating JUL_SALES, you can
also create an index, JUL_SALE_INDEX, for the table, indexing the same column as
the local indexes in the SALES table. After building the index, transport the
tablespace TS _JUL to the data warehouse.

In the data warehouse, add a partition to the SALES table for the July sales data.
This also creates another partition for the local nonprefixed index:

ALTER TABLE sales ADD PARTITION jul98 VALUES LESS THAN (1998, 8, 1);

Attach the transported table JUL_SALES to the table SALES by exchanging it with
the new partition:

ALTER TABLE sales EXCHANGE PARTITION jul98 WITH TABLE jul_sales

9-36 Oracle8i Administrator's Guide

Transporting Tablespaces Between Databases

INCLUDING INDEXES
WITHOUT VALIDATION;

This statement places the July sales data into the new partition JUL98, attaching the
new data to the partitioned table. This statement also converts the index JUL_
SALE_INDEX into a partition of the local index for the SALES table. This statement
should return immediately, because it only operates on the structural information; it
simply switches database pointers. If you know that the data in the new partition
does not overlap with data in previous partitions, you are advised to specify the
WITHOUT VALIDATION option; otherwise the statement will go through all the
new data in the new partition in an attempt to validate the range of that partition.

If all partitions of the SALES table came from the same staging database (the staging
database is never destroyed), the exchange statement will always succeed. In
general, however, if data in a partitioned table comes from different databases, it’s
possible that the exchange operation may fail. For example, if the JUL98 partition of
SALES did not come from the same staging database, the above exchange operation
can fail, returning the following error:

ORA-19728: data object number conflict between table JUL_SALES and partition
JAN98 in table SALES

To resolve this conflict, move the offending partition by issuing the following
statement:

ALTER TABLE sales MOVE PARTITION jan98;

Then retry the exchange operation.

After the exchange succeeds, you can safely drop JUL_SALES and JUL_SALE_
INDEX (both are now empty). Thus you have successfully loaded the July sales data
into your data warehouse.

Publishing Structured Data on CDs

Transportable tablespaces provide a way to publish structured data on CDs. A data
provider may load a tablespace with data to be published, generate the
transportable set, and copy the transportable set to a CD. This CD can then be
distributed.

When customers receive this CD, they can plug it into an existing database without
having to copy the datafiles from the CD to disk storage. For example, suppose on
an NT machine D: drive is the CD drive. You can plug in a transportable set with
datafile catalog.f and export file expdat.dmp as follows:

Managing Tablespaces 9-37

Transporting Tablespaces Between Databases

IMP TRANSPORT_TABLESPACE=y DATAFILES=D:\catalog.f FILE=D:\expdat.dmp'

You can remove the CD while the database is still up. Subsequent queries to the
tablespace will return an error indicating that Oracle cannot open the datafiles on
the CD. However, operations to other parts of the database are not affected. Placing
the CD back into the drive makes the tablespace readable again.

Removing the CD is the same as removing the datafiles of a read-only tablespace. If
you shut down and restart the database, Oracle will indicate that it cannot find the
removed datafile and will not open the database (unless you set the initialization
parameter READ_ONLY_OPEN_DELAYED to true). When READ_ONLY_OPEN _
DELAYED is set to TRUE, Oracle reads the file only when someone queries the
plugged-in tablespace. Thus, when plugging in a tablespace on a CD, you should
always set the READ_ONLY_OPEN_DELAYED initialization parameter to TRUE,
unless the CD is permanently attached to the database.

Mounting the Same Tablespace Read-only on Multiple Databases

You can use transportable tablespaces to mount a tablespace read-only on multiple
databases. In this way, separate databases can share the same data on disk instead
of duplicating data on separate disks. The tablespace datafiles must be accessible by
all databases. To avoid database corruption, the tablespace must remain read-only
in all the databases mounting the tablespace.

You can mount the same tablespace read-only on multiple databases in either of the
following ways:

« Plug the tablespaces into each of the databases you wish to mount the
tablespace. Generate a transportable set in a single database. Put the datafiles in
the transportable set on a disk accessible to all databases. Import the structural
information into each database.

« Generate the transportable set in one of the databases and plug it into other
databases. If you use this approach, it is assumed that the datafiles are already
on the shared disk, and they belong to an existing tablespace in one of the
databases. You can make the tablespace read-only, generate the transportable
set, and then plug the tablespace in to other databases while the datafiles
remain in the same location on the shared disk.

You can make the disk accessible by multiple computers via several ways. You may
use either a clustered file system or raw disk, as that is required by Oracle Parallel
Server. Because Oracle will only read these type of datafiles on shared disk, you can
also use NFS. Be aware, however, that if a user queries the shared tablespace while
NFS is down, the database may hang until the NFS operation times out.

9-38 Oracle8i Administrator's Guide

Viewing Information About Tablespaces

Later, you can drop the read-only tablespace in some of the databases. Doing so will
not modify the datafiles for the tablespace; thus the drop operation will not corrupt
the tablespace. Do not make the tablespace read-write unless only one database is
mounting the tablespace.

Archive Historical Data via Transportable Tablespaces

Since a transportable tablespace set is a self-contained set of files that can be
plugged into any Oracle database, you can archive old/historical data in an
enterprise data warehouse via the transportable tablespace procedures described in
this chapter.

See Also: For more details, see the Oracle8i Backup and Recovery
Guide.

Using Transportable Tablespaces to Perform TSPITR

You can use transportable tablespaces to perform tablespace point-in-time recovery
(TSPITR).

See Also: For information about how to perform TSPITR using
transportable tablespaces, see the Oracle8i Backup and Recovery
Guide.

Viewing Information About Tablespaces

The following data dictionary views provide useful information about the
tablespaces of a database.

View

Description

V$TABLESPACE

Name and number of all tablespaces from the controlfile.

DBA_TABLESPACES, USER TABLESPACES Descriptions of all (or user accessible) tablespaces.

DBA_SEGMENTS, USER_SEGMENTS Information about segments within all (or user accessible)

tablespaces.

DBA_EXTENTS, USER_EXTENTS Information about data extents within all (or user accessible)

tablespaces.

DBA_FREE_SPACE, USER_FREE_SPACE Information about free extents within all (or user accessible)

tablespaces.

V$DATAFILE

Information about all datafiles, including tablespace number
of owning tablespace.

Managing Tablespaces 9-39

Viewing Information About Tablespaces

View

Description

V$TEMPFILE

Information about all tempfiles, including tablespace number
of owning tablespace.

DBA_DATA_FILES

Showvs files (datafiles) belonging to tablespaces.

DBA TEMP_FILES

Shows files (tempfiles) belonging to temporary tablespaces.

V$TEMP_EXTENT_MAP

Information for all extents in all locally managed temporary
tablespaces.

V$TEMP_EXTENT_POOL

For locally managed temporary tablespaces: the state of
temporary space cached and used for by each instance.

V$TEMP_SPACE_HEADER

Shows space used/free for each tempfile.

DBA_USERS

Default and temporary tablespaces for all users.

DBA_TS_QUOTAS

Lists tablespace quotas for all users.

V$SORT SEGMENT

Information about every sort segment in a given instance. The
view is only updated when the tablespace is of the
TEMPORARY type.

V$SORT_USER

Temporary sort space usage by user and
temporary/permanent tablespace.

The following are just a few examples of using some of these views.

See Also:
Oracle8i Reference.

A complete description of these views is contained in

Listing Tablespaces and Default Storage Parameters: Example

To list the names and default storage parameters of all tablespaces in a database,
use the following query on the DBA_TABLESPACES view:

SELECT tablespace_name "TABLESPACE",

iniial_extent "INITIAL_EXT",
next_extent"NEXT_EXT",
min_extents "MIN_EXT",
max_extents "MAX_EXT",
pct_increase

FROM dba_tablespaces;

TABLESPACE INITIAL_ EXT NEXT_EXT MIN_EXT MAX_EXT PCT_INCREASE

RBS 1048576 1048576

9-40 Oracle8i Administrator's Guide

2 40 0

Viewing Information About Tablespaces

SYSTEM 106496 106496 1 99 1
TEMP 106496 106496 1 99 0
TESTTBS 57344 16384 2 10 1
USERS 57344 57344 1 99 1

Listing the Datafiles and Associated Tablespaces of a Database: Example
To list the names, sizes, and associated tablespaces of a database, enter the
following query on the DBA_DATA_FILES view:

SELECT file_name, blocks, tablespace_name
FROMdba_data_fies;

FILE_ NAME BLOCKS TABLESPACE_NAME
JUO2/ORACLE/NDDB3/RBS01.DBF 1536 RBS
JU02/ORACLE/IDDB3/SYSTEMO1.DBF 6586 SYSTEM
JU02/ORACLE/IDDB3/TEMPO1.DBF 6400 TEMP
JUO2/ORACLE/IDDB3/TESTTBS01.DBF 6400 TESTTBS
JU02/ORACLE/IDDB3/USERSO01.DBF 384 USERS

Statistics for Free Space (Extents) of Each Tablespace: Example

To produce statistics about free extents and coalescing activity for each tablespace
in the database, enter the following query:

SELECT tablespace_name "TABLESPACE", file_id,
COUNT(® "PIECES',
MAX(blocks) "MAXIMUM",
MIN(blocks) "MINIMUM",
AVG(blocks) "AVERAGE",
SUM(blocks) "TOTAL"
FROM sys.dba_free_space
WHERE tablespace_name ='SYSTEM'
GROUP BY tablespace_name, file_id;

TABLESPACE FILE_ID PIECES MAXIMUM MINIMUM AVERAGE TOTAL

RBS 2 1 955 955 955 955
SYSTEM 1 1 119 119 119 119
TEMP 4 1 639 6399 6399 6399
TESTTBS 5 5 6364 3 1278 6390
USERS 3 1 363 363 363 363

PIECES shows the number of free space extents in the tablespace file, MAXIMUM
and MINIMUM show the largest and smallest contiguous area of space in database

Managing Tablespaces 9-41

Viewing Information About Tablespaces

blocks, AVERAGE shows the average size in blocks of a free space extent, and
TOTAL shows the amount of free space in each tablespace file in blocks. This query
is useful when you are going to create a new object or you know that a segment is
about to extend, and you want to make sure that there is enough space in the
containing tablespace.

9-42 Oracle8i Administrator’'s Guide

10

Managing Datafiles

This chapter describes the various aspects of datafile management, and includes the
following topics:

Guidelines for Managing Datafiles
Creating and Adding Datafiles to a Tablespace
Changing a Datafile’s Size
Altering Datafile Availability
Renaming and Relocating Datafiles
Verifying Data Blocks in Datafiles
Viewing Information About Datafiles
See Also: Datafiles can also be created as part of database

recovery from a media failure. For more information, see the
Oracle8i Backup and Recovery Guide.

Managing Datafiles 10-1

Guidelines for Managing Datafiles

Guidelines for Managing Datafiles
This section describes aspects of managing datafiles, and includes the following
topics:
« Determine the Number of Datafiles
« Set the Size of Datafiles
« Place Datafiles Appropriately
« Store Datafiles Separate From Redo Log Files

Every datafile has two associated file numbers: an absolute file number and a relative
file number.

An absolute file number uniquely identifies a datafile in the database. In earlier
releases of Oracle, the absolute file number may have been referred to as simply, the
"file number."

A relative file number uniquely identifies a datafile within a tablespace. For small
and medium size databases, relative file numbers usually have the same value as
the absolute file number. However, when the number of datafiles in a database
exceeds a threshold (typically 1023), the relative file number will differ from the
absolute file number. You can locate relative file numbers in many data dictionary
views.

Determine the Number of Datafiles

At least one datafile is required for the SYSTEM tablespace of a database; a small
system might have a single datafile. In general, keeping a few large datafiles is
preferable to many small datafiles, because you can keep fewer files open at the
same time.

You can add datafiles to tablespaces, subject to the following operating
system-specific datafile limits:

« Operating system limit

Each operating system sets a limit on the maximum number of open files per
process. Regardless of all other limits, more datafiles cannot be created when
the operating system limit of open files is reached.

« Oracle system limit

Oracle imposes a maximum limit on the number of datafiles for any Oracle
database opened by any instance. This limit is port-specific.

10-2 Oracle8i Administrator's Guide

Guidelines for Managing Datafiles

« Control file upper bound

When you issue CREATE DATABASE or CREATE CONTROLFILE statements,
the MAXDATAFILES parameter specifies an initial size of the datafile portion
of the control file. Later, if you add a file whose number exceeds
MAXDATAFILES but is less than or equal to the value specified by the DB_
FILES initialization parameter, the control file automatically expands to allow
the datafile portion to accommodate more files.

« Instance or SGA upper bound

When starting an Oracle8 instance, the database’s initialization parameter file
indicates the amount of SGA space to reserve for datafile information; the
maximum number of datafiles is controlled by the DB_FILES initialization
parameter. This limit applies only for the life of the instance.

Note: The default value of DB_FILES is operating system specific.

With the Oracle Parallel Server, all instances must set the instance datafile
upper bound to the same value.

When determining a value for DB_FILES, take the following into consideration:

« If the value of DB_FILES is too low, you will be unable to add datafiles beyond
the DB_FILES limit without first shutting down the database.

« Ifthe value of DB_FILES is too high, memory is unnecessarily consumed.

Theoretically, an Oracle database can have an unlimited number of datafiles.
Nevertheless, you should consider the following when determining the number of
datafiles:

« Performance is better with a small number of datafiles rather than a large
number of small datafiles. A large number of files also increases the granularity
of a recoverable unit.

« Operating systems often impose a limit on the number of files a process can
open simultaneously. Oracle’s DBWn processes can open all online datafiles.
Oracle is also capable of treating open file descriptors as a cache, automatically
closing files when the number of open file descriptors reaches the operating
system-defined limit.

Oracle allows more datafiles in the database than the operating system-defined
limit; this can have a negative performance impact. When possible, adjust the

Managing Datafiles 10-3

Guidelines for Managing Datafiles

operating system limit on open file descriptors so that it is larger than the number
of online datafiles in the database.

The operating system specific limit on the maximum number of datafiles allowed in
a tablespace is typically 1023 files.

See Also: For more information on operating system limits, see
your operating system-specific Oracle documentation.

For information about Parallel Server operating system limits, see
Oracle8i Parallel Server Administration, Deployment, and Performance.

For more information about MAXDATAFILES parameter of the
CREATE DATABASE or CREATE CONTROLFILE statement, see
the Oracle8i SQL Reference.

Set the Size of Datafiles

The first datafile (in the original SYSTEM tablespace) must be at least 7M to contain
the initial data dictionary and rollback segment. If you install other Oracle products,
they may require additional space in the SYSTEM tablespace (for online help, for
example); see the installation instructions for these products.

Place Datafiles Appropriately

Tablespace location is determined by the physical location of the datafiles that
constitute that tablespace. Use the hardware resources of your computer
appropriately.

For example, if several disk drives are available to store the database, it might be
helpful to store table data in a tablespace on one disk drive, and index data in a
tablespace on another disk drive. This way, when users query table information,
both disk drives can work simultaneously, retrieving table and index data at the
same time.

Store Datafiles Separate From Redo Log Files

Datafiles should not be stored on the same disk drive that stores the database’s redo
log files. If the datafiles and redo log files are stored on the same disk drive and that
disk drive fails, the files cannot be used in your database recovery procedures.

If you multiplex your redo log files, then the likelihood of losing all of your redo log
files is low, so you can store datafiles on the same drive as some redo log files.

10-4 Oracle8i Administrator's Guide

Changing a Datafile's Size

Creating and Adding Datafiles to a Tablespace

Ideally, when creating a tablespace, you should estimate the potential size of the
database objects and add sufficient files or devices, so as to ensure that data is
spread evenly across all devices. Later, if needed, you can create and add datafiles
to a tablespace to increase the total amount of disk space allocated for the
tablespace, and consequently the database.

To add datafiles to a tablespace, you use the ALTER TABLESPACE...ADD
DATAFILE statement. You must have the ALTER TABLESPACE system privilege
to add datafiles to a tablespace.

The following statement creates a new datafile for the RB_SEGS tablespace:

ALTER TABLESPACE 1h_segs
ADD DATAFILE fu02/oraclefbdbliy_segs03.dof SIZE 1M;

If you add new datafiles to a tablespace and do not fully specify the filenames,
Oracle creates the datafiles in the default database directory or the current
directory, depending upon your operating system. Oracle recommends you always
specify a fully qualified name for a datafile. Unless you want to reuse existing files,
make sure the new filenames do not conflict with other files. Old files that have
been previously dropped will be overwritten.

Changing a Datafile’s Size

This section describes the various ways to alter the size of a datafile, and includes
the following topics:

« Enabling and Disabling Automatic Extension for a Datafile

« Manually Resizing a Datafile

Enabling and Disabling Automatic Extension for a Datafile

You can create datafiles or alter existing datafiles so that they automatically increase
in size when more space is needed in the database. The files increase in specified
increments up to a specified maximum.

Setting your datafiles to extend automatically results in the following:

« Reduces the need for immediate intervention when a tablespace runs out of
space

« Ensures applications will not halt because of failures to allocate extents

Managing Datafiles 10-5

Changing a Datafile’s Size

To find out if a datafile is auto-extensible, query the DBA_DATA_FILES view and
examine the AUTOEXTENSIBLE column.

You can specify automatic file extension by specifying an AUTOEXTEND ON
clause when you create datafiles using the following SQL statements:

« CREATE DATABASE
« CREATE TABLESPACE
« ALTER TABLESPACE

You can enable or disable automatic file extension for existing datafiles, or
manually resize a datafile using the SQL statement ALTER DATABASE.

The following example enables automatic extension for a datafile added to the
USERS tablespace:

ALTER TABLESPACE users
ADD DATAFILE 'u02/oraclefrbdbl/users03.dbf SIZE 10M
AUTOEXTEND ON
NEXT 512K
MAXSIZE 250M;

The value of NEXT is the minimum size of the increments added to the file when it
extends. The value of MAXSIZE is the maximum size to which the file can
automatically extend.

The next example disables the automatic extension for the datafile.

ALTER DATABASE DATAFILE ‘ju02/oracle/rbdbl/users03.dbf
AUTOEXTEND OFF;

See Also: For more information about the SQL statements for
creating or altering datafiles, see the Oracle8i SQL Reference.

Manually Resizing a Datafile

You can manually increase or decrease the size of a datafile using the ALTER
DATABASE statement.

Because you can change the sizes of datafiles, you can add more space to your
database without adding more datafiles. This is beneficial if you are concerned
about reaching the maximum number of datafiles allowed in your database.

Manually reducing the sizes of datafiles allows you to reclaim unused space in the
database. This is useful for correcting errors in estimates of space requirements.

10-6 Oracle8i Administrator's Guide

Altering Datafile Availability

In the next example, assume that the datafile Ju02/oracle/rbdol/stuffol.dbof has
extended up to 250M. However, because its tablespace now stores smaller objects,
the datafile can be reduced in size.

The following statement decreases the size of datafile
fu02/oraclefrbdbl/stuff0l.dbf

ALTER DATABASE DATAFILE ‘ju02/oracle/rbdbl/stuffOl.dbf
RESIZE 100M,

Note: Itis not always possible to decrease the size of a file to a
specific value.

See Also: For more information about the implications resizing
files has for downgrading, see Oracle8i Migration

Altering Datafile Availability
This section describes ways to alter datafile availability, and includes the following
topics:
« Bringing Datafiles Online or Taking Offline in ARCHIVELOG Mode
« Taking Datafiles Offline in NOARCHIVELOG Mode

In very rare situations, you might need to bring specific datafiles online (make them
available) or take specific files offline (make them unavailable). For example, when
Oracle has problems writing to a datafile, it can automatically take the datafile
offline. You might need to take the damaged datafile offline or bring it online
manually

Note: You can make all datafiles in a tablespace, other than the
files in the SYSTEM tablespace, temporarily unavailable by taking
the tablespace offline. You must leave these files in the tablespace to
bring the tablespace back online.

For more information about taking a tablespace offline, see "Taking
Tablespaces Offline" on page 9-15.

Offline datafiles cannot be accessed. Bringing online a datafile in a read-only
tablespace makes the file readable. No one can write to the file unless its associated

Managing Datafiles 10-7

Altering Datafile Availability

tablespace is returned to the read-write state. The files of a read-only tablespace can
independently be taken online or offline using the DATAFILE option of the ALTER
DATABASE statement.

To bring a datafile online or take it offline, you must have the ALTER DATABASE
system privilege. You can perform these operations only when the database is open
in exclusive mode.

Bringing Datafiles Online or Taking Offline in ARCHIVELOG Mode

To bring an individual datafile online, issue the ALTER DATABASE statement and
include the DATAFILE clause.The following statement brings the specified datafile
online:

ALTER DATABASE DATAFILE ‘/u02/oracle/bdbl/stuff01.dbf ONLINE;

To take the same file offline, issue the following statement:
ALTER DATABASE DATAFILE ‘ju02/oracle/bdb/stuffol.dbf OFFLINE;

Note: To use this option of the ALTER DATABASE statement, the
database must be in ARCHIVELOG mode. This requirement
prevents you from accidentally losing the datafile, since taking the
datafile offline while in NOARCHIVELOG mode is likely to result
in losing the file.

See Also: For more information about bringing datafiles online
during media recovery, see the Oracle8i Backup and Recovery Guide.

Taking Datafiles Offline in NOARCHIVELOG Mode

To take a datafile offline when the database is in NOARCHIVELOG mode, use the
ALTER DATABASE statement with both the DATAFILE and OFFLINE DROP
clauses. This allows you to take the datafile offline and drop it immediately. It is
useful, for example, if the datafile contains only data from temporary segments and
has not been backed up and the database is in NOARCHIVELOG mode.

The following statement takes the specified datafile offline:
ALTER DATABASE DATAFILE ‘/u02/oracle/bdbl/users03.dbf OFFLINE DROP;

10-8 Oracle8i Administrator's Guide

Renaming and Relocating Datafiles

Renaming and Relocating Datafiles

You can rename datafiles to either change their names or relocate them. Some
options, and procedures which you can follow, are described in the following
sections:

« Renaming and Relocating Datafiles for a Single Tablespace

For example, renaming filenamel and filename2 in tablespacel, while the rest of
the database is open.

« Renaming and Relocating Datafiles for Multiple Tablespaces

For example, renaming filenamel in tablespacel and filename2 in tablespace2, while
the database is mounted but closed.

Note: To rename or relocate datafiles of the SYSTEM tablespace,
you must use the second option, because you cannot take the
SYSTEM tablespace offline.

When you rename and relocate datafiles with these procedures, only the pointers to
the datafiles, as recorded in the database’s control file, are changed; they do not
physically rename any operating system files, nor do they copy files at the
operating system level. Therefore, renaming and relocating datafiles involves
several steps. Read the steps and examples carefully before performing these
procedures.

Renaming and Relocating Datafiles for a Single Tablespace

These are some procedures for renaming and relocating datafiles in a single
tablespace. You must have the ALTER TABLESPACE system privilege to rename
datafiles of a single tablespace.

Renaming Datafiles in a Single Tablespace
To rename datafiles from a single tablespace, follow this procedure.

1. Take the non-SYSTEM tablespace that contains the datafiles offline.
2. Rename the datafiles using operating system statements.

3. Make sure that the new, fully specified filenames are different from the old
filenames.

Managing Datafiles 10-9

Renaming and Relocating Datafiles

4. Use the ALTER TABLESPACE statement with the RENAME DATAFILE option
to change the filenames within the database.

For example, the following statement renames the datafiles filenamel and filename2
to filename3 and filename4, respectively:

ALTER TABLESPACE users
RENAME DATAFILE ‘fu02/oraclefodbl/userl.dbf,
'lu02/oracle/frodbl/user2.dbf
TO ‘lu02/oracle/rbdbl/users01.dbf,
'lu02/oracle/rodbl/users02.dbf;

The new files must already exist; this statement does not create the files. Also,
always provide complete filenames (including their paths) to properly identify the
old and new datafiles. In particular, specify the old datafile name exactly as it
appears in the DBA_DATA_FILES view of the data dictionary.

Relocating and Renaming Datafiles in a Single Tablespace
Here is an example that illustrates the steps involved for relocating a datafile.

Assume the following conditions:

« An open database has a tablespace named USERS that is made up of datafiles
located on the same disk of a computer.

« The datafiles of the USERS tablespace are to be relocated to a different disk
drives.

« You are currently connected with administrator privileges to the open database.
These are the steps:
1. ldentify the datafile names of interest.

The following query of the data dictionary view DBA_DATA_FILES lists the
datafile names and respective sizes (in bytes) of the USERS tablespace:

SELECT file_name, bytes FROM sys.dba_data files
WHERE tablespace_name ='USERS;

FILE_NAME BYTES

JU02/ORACLE/RBDBL/USERSO1.DBF 102400000
MU02/ORACLE/RBDBL/USERS02.DBF 102400000

2. Back up the database.

10-10 Oracle8i Administrator’'s Guide

Renaming and Relocating Datafiles

Before making any structural changes to a database, such as renaming and
relocating the datafiles of one or more tablespaces, always completely back up
the database.

3. Take the tablespace containing the datafiles offline, or shut down the database
and restart and mount it, leaving it closed. Either option closes the datafiles of
the tablespace.

4. Copy the datafiles to their new locations and rename them using operating
system commands.

Note: You can execute an operating system command to copy a
file by using the HOST command.

5. Rename the datafiles within Oracle.

The datafile pointers for the files that make up the USERS tablespace, recorded
in the control file of the associated database, must now be changed from the old
names to the new names.

If the tablespace is offline but the database is open, use the ALTER
TABLESPACE...RENAME DATAFILE statement. If the database is mounted
but closed, use the ALTER DATABASE...RENAME FILE statement.

ALTER TABLESPACE users
RENAME DATAFILE ‘fu02/oracle/bdbl/users01.dbf,
'lu02/oraclefodbl/users02.dbf
TO 'lu03/oracle/rbdbl/users0l.dbf,
‘fub4foracle/rbdbl/users02.dbf’;

6. Bring the tablespace online, or shut down and restart the database.

If the USERS tablespace is offline and the database is open, bring the tablespace
back online. If the database is mounted but closed, open the database.

7. Back up the database. After making any structural changes to a database,
always perform an immediate and complete backup.

Renaming and Relocating Datafiles for Multiple Tablespaces

You can rename and relocate datafiles of one or more tablespaces using ALTER
DATABASE statement with the RENAME FILE option. This option is the only
choice if you want to rename or relocate datafiles of several tablespaces in one

Managing Datafiles 10-11

Verifying Data Blocks in Datafiles

operation, or rename or relocate datafiles of the SYSTEM tablespace. If the database
must remain open, consider instead the procedure outlined in the previous section.

To rename datafiles of several tablespaces in one operation or to rename datafiles of
the SYSTEM tablespace, you must have the ALTER DATABASE system privilege.

To rename datafiles in multiple tablespaces, follow these steps.
1. Ensure that the database is mounted but closed.

2. Copy the datafiles to be renamed to their new locations and new names, using
operating system commands.

3. Make sure the new copies of the datafiles have different fully specified
filenames from the datafiles currently in use.

4. Use ALTER DATABASE to rename the file pointers in the database’s control
file.

For example, the following statement renames the datafiles filenamel and filename2
to filename3 and filename4, respectively:

ALTER DATABASE
RENAME FILE ‘/u02/oracle/rodbl/sort01.dbf,
'lu02/oracle/rbdbl/user3.dbf
TO 'lu02/oracle/rbdbl/temp01.dbf,
'lu02/oracle/rdbl/users03.dbf;

The new file must already exist; this statement does not create a file. Also, always
provide complete filenames (including their paths) to properly identify the old and
new datafiles. In particular, specify the old datafile name exactly as it appears in the
DBA_DATA _FILES view of the data dictionary.

Verifying Data Blocks in Datafiles

If you want to configure Oracle to use checksums to verify data blocks, set the
initialization parameter DB_BLOCK_CHECKSUM to TRUE. The value of this
parameter can be changed dynamically, or set in the initialization parameter file.
The default value of DB_ BLOCK_CHECKSUM is FALSE. Regardless of the setting
of this parameter, checksums will always be used to verify data blocks in the system
tablespace.

When you enable block checking, Oracle computes a checksum for each block
written to disk. Checksums are computed for all data blocks, including temporary
blocks.

10-12 Oracle8i Administrator’'s Guide

Viewing Information About Datafiles

The DBWn process calculates the checksum for each block and stores it in the
block’s header. Checksums are also computed by the direct loader.

The next time Oracle reads a data block, it uses the checksum to detect corruption in
the block. If a corruption is detected, Oracle returns message ORA-01578 and writes
information about the corruption to a trace file.

WARNING: Setting DB_BLOCK_CHECKSUM to TRUE can
cause performance overhead. Set this parameter to TRUE only
under the advice of Oracle Support personnel to diagnose data
corruption problems.

Viewing Information About Datafiles

The following data dictionary views provide useful information about the datafiles
of a database:

View Description

DBA_DATA_FILES Provides descriptive information about datafiles, including the
tablespace to which it belong and the file id. The file id can be
used to join with other views for detail information.

USER_EXTENTS, DBA_EXTENTS Lists the extents comprising all segments in the database.
Contains the file id of the datafile containing the extent.

USER_FREE_SPACE, DBA_FREE_SPACE Lists the free extents in all tablespaces. Includes the file id of
the datafile containing the extent.

V$DATAFILE Contains datafile information from the control file.

V$DATAFILE_HEADER Contains information from datafile headers.

This example illustrates the use of one of these views, VSDATAFILE.

Assume you are using a database that contains two tablespaces, SYSTEM and
USERS. USERS is made up of two files, FILE1 (100MB) and FILE2 (200MB); the
tablespace has been taken offline normally. Here, you query VSDATAFILE to view
status information about datafiles of a database:

SELECT name,
filet,
status,
checkpoint_change#t "CHECKPOINT"
FROM v$datafile;

Managing Datafiles 10-13

Viewing Information About Datafiles

NAME FILE# STATUS CHECKPOINT
flenamel 1 SYSTEM 3839
flename2 2 OFFLINE 3782
flename3 3 OFFLINE 3782

FILE# lists the file number of each datafile; the first datafile in the SYSTEM
tablespace created with the database is always file 1. STATUS lists other
information about a datafile. If a datafile is part of the SYSTEM tablespace, its status
is SYSTEM (unless it requires recovery). If a datafile in a non-SYSTEM tablespace is
online, its status is ONLINE. If a datafile in a non-SYSTEM tablespace is offline, its
status can be either OFFLINE or RECOVER. CHECKPOINT lists the final SCN
written for a datafile’s most recent checkpoint.

See Also: For a complete description of these views, see Oracle8i
Reference.

10-14 Oracle8i Administrator’'s Guide

11

Managing Rollback Segments

This chapter describes how to manage rollback segments, and includes the
following topics:

Guidelines for Managing Rollback Segments
Creating Rollback Segments
Altering Rollback Segments

Explicitly Assigning a Transaction to a Rollback Segment

Dropping Rollback Segments

Monitoring Rollback Segment Information

See Also: If you are using Oracle with the Parallel Server option,
see Oracle8i Parallel Server Administration, Deployment, and
Performance for information about creating rollback segments in

that environment.

Managing Rollback Segments 11-1

Guidelines for Managing Rollback Segments

Guidelines for Managing Rollback Segments

This section describes guidelines to consider before creating or managing the
rollback segments of your databases, and includes the following topics:

« Use Multiple Rollback Segments

» Choose Between Public and Private Rollback Segments

« Specify Rollback Segments to Acquire Automatically

« Approximate Rollback Segment Sizes

« Create Rollback Segments with Many Equally Sized Extents

« Setan Optimal Number of Extents for Each Rollback Segment
« Place Rollback Segments in a Separate Tablespace

Every database contains one or more rollback segments, which are portions of the
database that record the actions of transactions in the event that a transaction is
rolled back. You use rollback segments to provide read consistency, roll back
transactions, and recover the database.

See Also: For additional information about rollback segments, see
Oracle8i Concepts.

Use Multiple Rollback Segments

Using multiple rollback segments distributes rollback segment contention across
many segments and improves system performance. Multiple rollback segments are
required in the following situations:

« When a database is created, a single rollback segment named SYSTEM is
created in the SYSTEM tablespace. You can create any objects in non-SYSTEM
tablespaces, but you cannot write to them until you have created and brought
online at least one additional rollback segment in a non-SYSTEM tablespace (for
non-SYSTEM obijects).

« When many transactions are concurrently proceeding, more rollback
information is generated at the same time. You can indicate the number of
concurrent transactions you expect for the instance with the initialization
parameter TRANSACTIONS, and the number of transactions you expect each
rollback segment to have to handle with the initialization parameter
TRANSACTIONS_PER_ROLLBACK_SEGMENT. Then, when an instance
opens a database, it attempts to acquire at least TRANSACTIONS/
TRANSACTIONS_PER_ROLLBACK_SEGMENT rollback segments to handle

11-2 Oracle8i Administrator's Guide

Guidelines for Managing Rollback Segments

the maximum amount of transactions. Therefore, after setting the parameters,
create TRANSACTIONS/TRANSACTIONS_PER_ROLLBACK_SEGMENT
rollback segments.

An instance always acquires the SYSTEM rollback segment in addition to any other
rollback segments it needs. However, if there are multiple rollback segments, Oracle
tries to use the SYSTEM rollback segment only for special system transactions and
distributes user transactions among other rollback segments. If there are too many
transactions for the non-SYSTEM rollback segments, Oracle uses the SYSTEM
segment.

See Also: In order to start instances in an Oracle Parallel Server
environment, you must give each instance access to its own
rollback segment, in addition to the SYSTEM rollback segment. For
additional details, see Oracle8i Parallel Server Administration,
Deployment, and Performance.

For information about the TRANSACTIONS and
TRANSACTIONS_PER_ROLLBACK_SEGMENT initialization
parameters, see the Oracle8i Reference.

Choose Between Public and Private Rollback Segments

A private rollback segment is one that is acquired explicitly by an instance when the
instance opens the database if it is named in the ROLLBACK_SEGMENTS
parameter in the initialization parameter file. A private rollback segment can also be
acquired by specifically bringing it online by manually issuing a statement to do so.
Public rollback segments form a pool of rollback segments that any instance requiring
a rollback segment can use.

A database with the Parallel Server option can have only public segments, as long
as the number of segments is high enough that each instance opening the database
can acquire at least one rollback segment in addition to its SYSTEM rollback
segment. You may also use private rollback segments when using the Oracle
Parallel Server.

If a database does not have the Parallel Server option, public and private rollback
segments are identical.

Specify Rollback Segments to Acquire Automatically

When an instance starts, it acquires by default
TRANSACTIONS/TRANSACTIONS_PER_ROLLBACK_SEGMENT rollback

Managing Rollback Segments 11-3

Guidelines for Managing Rollback Segments

segments. If you want to ensure that the instance acquires particular rollback
segments that have particular sizes or particular tablespaces, specify the rollback
segments by name in the ROLLBACK_SEGMENTS parameter in the instance’s
parameter file.

The instance acquires all the rollback segments listed in this parameter, even if more
than TRANSACTIONS/TRANSACTIONS_PER_ROLLBACK_SEGMENT segments
are specified. The rollback segments can be either private or public.

Approximate Rollback Segment Sizes

Total rollback segment size should be set based on the size of the most common
transactions issued against a database. In general, short transactions experience
better performance when the database has many smaller rollback segments, while
long-running transactions, like batch jobs, perform better with larger rollback
segments. Generally, rollback segments can handle transactions of any size easily;
however, in extreme cases when a transaction is either very short or very long, a
user might want to use an appropriately sized rollback segment.

If a system is running only short transactions, rollback segments should be small so
that they are always cached in main memory. If the rollback segments are small
enough, they are more likely to be cached in the SGA according to the LRU
algorithm, and database performance is improved because less disk 170 is
necessary. The main disadvantage of small rollback segments is the increased
likelihood of the error "snapshot too old" when running a long query involving
records that are frequently updated by other transactions. This error occurs because
the rollback entries needed for read consistency are overwritten as other update
entries wrap around the rollback segment. Consider this issue when designing an
application’s transactions, and make them short atomic units of work so that you
can avoid this problem.

In contrast, long-running transactions work better with larger rollback segments,
because the rollback entries for a long-running transaction can fit in preallocated
extents of a large rollback segment.

When database systems applications concurrently issue a mix of very short and
very long transactions, performance can be optimized if transactions are explicitly
assigned to a rollback segment based on the transaction/rollback segment size. You
can minimize dynamic extent allocation and truncation for rollback segments. This
is not required for most systems and is intended for extremely large or small
transactions.

To optimize performance when issuing a mix of extremely small and large
transactions, make a number of rollback segments of appropriate size for each type

11-4 Oracle8i Administrator's Guide

Guidelines for Managing Rollback Segments

of transaction (such as small, medium, and large). Most rollback segments should
correspond to the typical transactions, with a fewer number of rollback segments
for the atypical transactions. Then set OPTIMAL for each such rollback segment so
that the rollback segment returns to its intended size if it has to grow.

You should tell users about the different sets of rollback segments that correspond
to the different types of transactions. Often, it is not beneficial to assign a transaction
explicitly to a specific rollback segment; however, you can assign an atypical
transaction to an appropriate rollback segment created for such transactions. For
example, you can assign a transaction that contains a large batch job to a large
rollback segment.

When a mix of transactions is not prevalent, each rollback segment should be 10%
of the size of the database’s largest table because most SQL statements affect 10% or
less of a table; therefore, a rollback segment of this size should be sufficient to store
the actions performed by most SQL statements.

Generally speaking, you should set a high MAXEXTENTS for rollback segments;
this allows a rollback segment to allocate subsequent extents as it needs them.

Create Rollback Segments with Many Equally Sized Extents

Each rollback segment’s total allocated space should be divided among many
equally sized extents. In general, optimal rollback 170 performance is observed if
each rollback segment for an instance has 10 to 20 equally sized extents.

After determining the desired total initial size of a rollback segment and the
number of initial extents for the segment, use the following formula to calculate the
size of each extent of the rollback segment:

T/n=s

where:
T = total initial rollback segment size, in bytes
n = number of extents initially allocate
s = calculated size, in bytes, of each extent initially allocated

After s is calculated, create the rollback segment and specify the storage parameters
INITIAL and NEXT as s, and MINEXTENTS to n. PCTINCREASE cannot be
specified for rollback segments and therefore defaults to 0. Also, if the size s of an
extent is not an exact multiple of the data block size, it is rounded up to the next
multiple.

Managing Rollback Segments 11-5

Creating Rollback Segments

Set an Optimal Number of Extents for Each Rollback Segment

You should carefully assess the kind of transactions the system runs when setting
the OPTIMAL parameter for each rollback segment. For a system that executes
long-running transactions frequently, OPTIMAL should be large so that Oracle
does not have to shrink and allocate extents frequently. Also, for a system that
executes long queries on active data, OPTIMAL should be large to avoid "snapshot
too old" errors. OPTIMAL should be smaller for a system that mainly executes short
transactions and queries so that the rollback segments remain small enough to be
cached in memory, thus improving system performance.

The VSROLLNAME and V$ROLLSTAT dynamic performance views can be
monitored to collect statistics useful in determining appropriate settings for
OPTIMAL. See "Rollback Segment Statistics" on page 11-14.

Place Rollback Segments in a Separate Tablespace

If possible, create one tablespace specifically to hold all rollback segments. This
way, all rollback segment data is stored separately from other types of data.
Creating this "rollback segment” tablespace can provide the following benefits:

« Atablespace holding rollback segments can always be kept online, thus
maximizing the combined storage capacity of rollback segments at all times.
Note that if some rollback segments are not available, the overall database
operation can be affected.

« Because tablespaces with active rollback segments cannot be taken offline,
designating a tablespace to hold all rollback segments of a database ensures that
the data stored in other tablespaces can be taken offline without concern for the
database’s rollback segments.

« Atablespace’s free extents are likely to be more fragmented if the tablespace
contains rollback segments that frequently allocate and deallocate extents.

Creating Rollback Segments

To create rollback segments, you must have the CREATE ROLLBACK SEGMENT
system privilege. You use the CREATE ROLLBACK SEGMENT statement. The
tablespace to contain the new rollback segments must be online. Rollback segments
are usually created as part of the database creation script or process, but you may
add more at a later time.

The following topics relating to creating rollback segments are included in this
section:

11-6 Oracle8i Administrator's Guide

Creating Rollback Segments

« The CREATE ROLLBACK SEGMENT Statement
« Bringing New Rollback Segments Online

« Setting Storage Parameters When Creating a Rollback Segment

The CREATE ROLLBACK SEGMENT Statement

The following statement creates a rollback segment named RBS_02 in the
RBSSPACE tablespace, using the default storage parameters of that tablespace.
Since this is not a parallel server environment, it is not necessary to specify
PRIVATE or PUBLIC. The default is PRIVATE.

CREATE ROLLBACK SEGMENT rbs_02 TABLESPACE rbsspace;

See Also: For exact syntax, restrictions, and authorization
requirements for the SQL statements used in managing rollback
segments, see Oracle8i SQL Reference.

Bringing New Rollback Segments Online

New rollback segments are initially offline. You must issue an ALTER ROLLBACK
SEGMENT to bring them online and make it available for use by transactions of an
instance. See "Changing the ONLINE/OFFLINE Status of Rollback Segments" on
page 11-9 for more information.

If you create a private rollback segment, you should add the name of this new
rollback segment to the ROLLBACK_SEGMENTS initialization parameter in the
initialization parameter file for the database. Doing so enables the private rollback
segment to be captured by the instance at instance start up. For example, if two new
private rollback segments are created and named RBS_01 and RBS_02, the
ROLLBACK_SEGMENTS parameter of the parameter file should be similar to the
following:

ROLLBACK_SEGMENTS =(RBS_01, RBS_02)

See Also: For information about the ROLLBACK_SEGMENTS
initialization parameter, see the Oracle8i Reference.

Setting Storage Parameters When Creating a Rollback Segment

Suppose you wanted to create a rollback segment RBS_01 with storage parameters
and optimal size set as follows:

« The rollback segment is allocated an initial extent of 100K.

Managing Rollback Segments 11-7

Creating Rollback Segments

The rollback segment is allocated the second extent of 100K.
The optimal size of the rollback segment is 4M.

The minimum number of extents and the number of extents initially allocated
when the segment is created is 20.

The maximum number of extents that the rollback segment can allocate,
including the initial extent, is 100.

The following statement creates a rollback segment with these characteristics:

CREATE PUBLIC ROLLBACK SEGMENT rbs_01

TABLESPACE rhsspace
STORAGE (

INITIAL 100K

NEXT 100K

OPTIMAL 4M

MINEXTENTS 20

MAXEXTENTS 100);

You cannot set a value for the storage parameter PCTINCREASE. It is always 0 for
rollback segments. The OPTIMAL storage parameter is unique to rollback
segments. For a discussion of storage parameters see "Setting Storage Parameters"
on page 12-8 and the Oracle8i SQL Reference.

Oracle makes the following recommendations:

Set INITIAL and NEXT to the same value to ensure that all extents are the same
size.

Create a large number of initial extents to minimize the possibility of dynamic
extension. MINEXTENTS = 20 is a good value.

Avoid setting MAXEXTENTS = UNLIMITED as this could cause unnecessary
extension of a rollback segment and possibly of data files due to a
programming error. If you do specify UNLIMITED, be aware that extents for
that segment must have a minimum of 4 data blocks. Also, if you later want to
convert a rollback segment whose MAXEXTENTS are limited to UNLIMITED,
that rollback segment cannot be converted if it has less than 4 data blocks in any
extent. If you want to convert from limited to UNLIMITED, and have less than
4 data blocks in an extent, your only choice is to drop and re-create the rollback
segment.

11-8 Oracle8i Administrator's Guide

Altering Rollback Segments

Altering Rollback Segments

This section discusses various actions you can take to maintain your rollback
segments. All of these maintenance activities use the ALTER ROLLBACK
SEGMENT statement. You must have the ALTER ROLLBACK SEGMENT system
privilege to use this statement.

The following topics are presented:

« Changing Rollback Segment Storage Parameters

« Shrinking a Rollback Segment Manually

« Changing the ONLINE/OFFLINE Status of Rollback Segments

Changing Rollback Segment Storage Parameters

You can change some of a rollback segment’s storage parameters after creating it.
You may want to change the values of OPTIMAL or MAXEXTENTS. The following
statement alters the maximum number of extents that the RBS_01 rollback segment
can allocate.

ALTER ROLLBACK SEGMENT rbs_01
STORAGE (MAXEXTENTS 120);

You can alter the settings for the SYSTEM rollback segment, including the
OPTIMAL parameter, just as you can alter those of any rollback segment.

Shrinking a Rollback Segment Manually

You can manually decrease the size of a rollback segment using the ALTER
ROLLBACK SEGMENT statement. The rollback segment you are trying to shrink
must be online.

The following statement shrinks rollback segment RBS1 to 100K:
ALTER ROLLBACK SEGMENT rbs1 SHRINK TO 100K;

This statement attempts to reduce the size of the rollback segment to the specified
size, but will stop short if an extent cannot be deallocated because it is active.

Changing the ONLINE/OFFLINE Status of Rollback Segments

This section describes aspects of bringing rollback segments online and taking them
offline, and includes the following topics:

Managing Rollback Segments 11-9

Altering Rollback Segments

« Bringing Rollback Segments Online
« Taking Rollback Segments Offline

A rollback segment is either online and available to transactions, or offline and
unavailable to transactions. Generally, rollback segments are online and available
for use by transactions.

You may wish to take online rollback segments offline in the following situations:

« When you want to take a tablespace offline, and the tablespace contains
rollback segments. You cannot take a tablespace offline if it contains rollback
segments that transactions are currently using. To prevent associated rollback
segments from being used, you can take them offline before taking the
tablespace offline.

« You want to drop a rollback segment, but cannot because transactions are
currently using it. To prevent the rollback segment from being used, you can
take it offline before dropping it.

Note: You cannot take the SYSTEM rollback segment offline.

You might later want to bring an offline rollback segment back online so that
transactions can use it. When a rollback segment is created, it is initially offline, and
you must explicitly bring a newly created rollback segment online before it can be
used by an instance’s transactions. You can bring an offline rollback segment online
Via any instance accessing the database that contains the rollback segment.

Bringing Rollback Segments Online

You can bring online only a rollback segment whose current status (as shown in the
DBA_ROLLBACK_SEGS data dictionary view) is OFFLINE or PARTLY
AVAILABLE. To bring an offline rollback segment online, use the SQL statement
ALTER ROLLBACK SEGMENT with the ONLINE option.

Bringing a PARTLY AVAILABLE Rollback Segment Online A rollback segment in the
PARTLY AVAILABLE state contains data for an in-doubt or recovered distributed
transaction, and yet to be recovered transactions. You can view its status in the data
dictionary view DBA_ROLLBACK_SEGS as PARTLY AVAILABLE. The rollback
segment usually remains in this state until the transaction is resolved either
automatically by RECO, or manually by a DBA. However, you might find that all
rollback segments are PARTLY AVAILABLE. In this case, you can bring a PARTLY
AVAILABLE segment online, as described above.

11-10 Oracle8i Administrator’'s Guide

Altering Rollback Segments

Some resources used by the rollback segment for the in-doubt transaction remain
inaccessible until the transaction is resolved. As a result, the rollback segment may
have to grow if other transactions assigned to it need additional space.

As an alternative to bringing a PARTLY AVAILABLE segment online, you might
find it easier to create a new rollback segment temporarily, until the in-doubt
transaction is resolved.

Bringing Rollback Segment Online Automatically If you would like a rollback segment to
be automatically brought online whenever you start up the database, add the
segment’s name to the ROLLBACK_SEGMENTS parameter in the database’s
parameter file.

Bringing Rollback Segments Online: Example The following statement brings the
rollback segment USER_RS 2 online;

ALTER ROLLBACK SEGMENT user_rs_2 ONLINE;

After you bring a rollback segment online, its status in the data dictionary view
DBA_ROLLBACK_ SEGS is ONLINE. To see a query for checking rollback segment
state, see "Displaying Rollback Segment Information" on page 11-14.

Taking Rollback Segments Offline

To take an online rollback segment offline, use the ALTER ROLLBACK SEGMENT
statement with the OFFLINE option. The rollback segment’s status in the DBA _
ROLLBACK _SEGS data dictionary view must be ONLINE, and the rollback
segment must be acquired by the current instance.

The following example takes the rollback segment USER_RS 2 offline:
ALTER ROLLBACK SEGMENT user_rs_2 OFFLINE;

If you try to take a rollback segment that does not contain active rollback entries
offline, Oracle immediately takes the segment offline and changes its status to
"OFFLINE".

In contrast, if you try to take a rollback segment that contains rollback data for
active transactions (local, remote, or distributed) offline, Oracle makes the rollback
segment unavailable to future transactions and takes it offline after all the active
transactions using the rollback segment complete. Until the transactions complete,
the rollback segment cannot be brought online by any instance other than the one
that was trying to take it offline. During this period, the rollback segment’s status in
the view DBA_ROLLBACK_SEGS remains PENDING OFFLINE; however, the

Managing Rollback Segments 11-11

Explicitly Assigning a Transaction to a Rollback Segment

rollback segment’s status in the view VSROLLSTAT is PENDING OFFLINE. For
information on viewing rollback segment status, see "Displaying Rollback Segment
Information” on page 11-14.

The instance that tried to take a rollback segment offline and caused it to change to
PENDING OFFLINE can bring it back online at any time; if the rollback segment is
brought back online, it will function normally.

After you take a public or private rollback segment offline, it remains offline until
you explicitly bring it back online or you restart the instance.

Explicitly Assigning a Transaction to a Rollback Segment

A transaction can be explicitly assigned to a specific rollback segment using the SET
TRANSACTION statement with the USE ROLLBACK SEGMENT clause.
Transactions are explicitly assigned to rollback segments for the following reasons:

« The anticipated amount of rollback information generated by a transaction can
fit in the current extents of the assigned rollback segment.

« Additional extents do not have to be dynamically allocated (and subsequently
truncated) for rollback segments, which reduces overall system performance.

To assign a transaction to a rollback segment explicitly, the rollback segment must
be online for the current instance, and the SET TRANSACTION USE ROLLBACK
SEGMENT statement must be the first statement of the transaction. If a specified
rollback segment is not online or a SET TRANSACTION USE ROLLBACK
SEGMENT clause is not the first statement in a transaction, an error is returned.

For example, if you are about to begin a transaction that contains a significant
amount of work (more than most transactions), you can assign the transaction to a
large rollback segment, as follows:

SET TRANSACTION USE ROLLBACK SEGMENT large_rs1;

After the transaction is committed, Oracle will automatically assign the next
transaction to any available rollback segment unless the new transaction is
explicitly assigned to a specific rollback segment by the user.

Dropping Rollback Segments

You can drop rollback segments when the extents of a segment become too
fragmented on disk, or the segment needs to be relocated in a different tablespace.

11-12 Oracle8i Administrator’'s Guide

Monitoring Rollback Segment Information

Before dropping a rollback segment, make sure that status of the rollback segment
is OFFLINE. If the rollback segment that you want to drop is any other status, you
cannot drop it. If the status is INVALID, the segment has already been dropped.

To drop a rollback segment, use the DROP ROLLBACK SEGMENT statement. You
must have the DROP ROLLBACK SEGMENT system privilege. The following
statement drops the RBS1 rollback segment:

DROP ROLLBACK SEGMENT rbsl;

Note: If a rollback segment specified in ROLLBACK_SEGMENTS
is dropped, make sure to edit the parameter files of the database to
remove the name of the dropped rollback segment from the list in
the ROLLBACK_SEGMENTS parameter. If this step is not
performed before the next instance startup, startup fails because it
cannot acquire the dropped rollback segment.

After a rollback segment is dropped, its status changes to INVALID. The next time a
rollback segment is created, it takes the row vacated by a dropped rollback
segment, if one is available, and the dropped rollback segment’s row no longer
appears in the DBA_ROLLBACK_SEGS view.

Monitoring Rollback Segment Information

This section presents views that can be used to obtain and monitor rollback segment
information, and provides information and examples relating to their use.

The following topics are presented:

« Displaying Rollback Segment Information

« Rollback Segment Statistics

« Displaying All Rollback Segments

« Displaying Whether a Rollback Segment Has Gone Offline

See Also: For information about the dictionary and dynamic
views discussed in this chapter, see the Oracle8i Reference.

Managing Rollback Segments 11-13

Monitoring Rollback Segment Information

Displaying Rollback Segment Information

The DBA_ROLLBACK_SEGS data dictionary view stores information about the
rollback segments of a database. For example, the following query lists the name,
associated tablespace, and status of each rollback segment in a database:

SELECT segment_name, tablespace_name, status
FROM sys.dba_rolback_segs;

SEGMENT_NAME TABLESPACE _NAME STATUS

SYSTEM SYSTEM ONLINE
PUBLIC_ RS SYSTEM ONLINE
USERS_RS USERS ONLINE

In addition, the following data dictionary views contain information about the
segments of a database, including rollback segments:

« USER_SEGMENTS

« DBA_SEGMENTS

Rollback Segment Statistics

The V$ROLLSTAT dynamic performance view can be queried to monitor rollback
segment statistics. Refer to the Oracle8i Reference for a complete description of the
columns and statistics contained in this view. It must be joined with the
V$ROLLNAME view to map its segment number to its name.

Some specific columns of interest include:

Name Description

USN Rollback segment number. If this view is joined with the
V$ROLLNAME view, the rollback segment name can be
determined.

WRITES The number of bytes of entries written to the rollback segment.

XACTS The number of active transactions.

GETS The number of rollback segment header requests.

WAITS The number of rollback segment header requests that resulted in
waits.

OPTSIZE The value of the optimal parameter for the rollback segment.

11-14 Oracle8i Administrator’'s Guide

Monitoring Rollback Segment Information

Name

Description

HWMSIZE

SHRINKS

WRAPS

EXTENDS

AVESHRINK
AVEACTIVE

The highest value (high water mark), in bytes, of the rollback
segment size reached during usage.

The number of shrinks that the rollback segment has had to
perform in order to stay at the optimal size.

The number of times a rollback segment entry has wrapped
from one extent to another.

The number of times that the rollback segment had to acquire a
new extent.

The average number of bytes freed during a shrink.

The average number of bytes in active extents in the rollback
segment, measured over time.

These statistics are reset at system startup.

Ad hoc querying of this view can help in determining the most advantageous
setting for the OPTIMAL parameter. Assuming that an instance has equally sized
rollback segments with comparably sized extents, OPTIMAL for a given rollback
segment should be set slightly higher than AVEACTIVE. The following chart
provides additional information on how to interpret the statistics given in this view.

SHRINKS AVESHRINK Analysis and Recommendation

Low Low If AVEACTIVE is close to OPTSIZE, then the
OPTIMAL setting is correct. Otherwise, OPTIMAL is
too large (not many shrinks are being performed.)

Low High Excellent: a good setting for OPTIMAL.

High Low OPTIMAL is too small: too many shrinks are being
performed.

High High Periodic long transactions are probably causing these
statistics. Set the OPTIMAL parameter higher until
SHRINK is low.

Displaying All Rollback Segments

The following query returns the name of each rollback segment, the tablespace that

contains it, and its size:

Managing Rollback Segments 11-15

Monitoring Rollback Segment Information

SELECT segment_name, tablespace_name, bytes, blocks, extents
FROM sys.dba_segments
WHERE segment_type ='ROLLBACK;

SEGMENT_NAME TABLESPACE NAME BYTES BLOCKS EXTENTS

SYSTEM SYSTEM 409600 200 8
RB_TEMP SYSTEM 1126400 550 11

RB1 RBS 614400 300 3
RB2 RBS 614400 300 3
RB3 RBS 614400 300 3
RB4 RBS 614400 300 3
RB5 RBS 614400 300 3
RB6 RBS 614400 300 3
RB7 RBS 614400 300 3
RBS8 RBS 614400 300 3
10 rows selected.

Displaying Whether a Rollback Segment Has Gone Offline

When you take a rollback segment offline, it does not actually go offline until all
active transactions in it have completed. Between the time when you attempt to
take it offline and when it actually is offline, its status in DBA_ROLLBACK_SEGS is
PENDING OFFLINE and it is not used for new transactions. To determine whether
any rollback segments for an instance are in this state, use the following query:

SELECT name, xacts "ACTIVE TRANSACTIONS"
FROM v$roliname, v$rollstat
WHERE status ='PENDING OFFLINE'
AND v$roliname.usn = vrolistat.usn;

NAME ACTIVE TRANSACTIONS

RS2 3
If your instance is part of a Parallel Server configuration, this query displays

information for rollback segments of the current instance only, not those of other
instances.

11-16 Oracle8i Administrator’'s Guide

PartlVV

Schema Objects

Part IV describes the creation and maintenace of schema objects in the Oracle
database. It includes the following chapters:

« Chapter 12, "Guidelines for Managing Schema Objects"

« Chapter 13, "Managing Tables"

« Chapter 14, "Managing Indexes"

« Chapter 15, "Managing Partitioned Tables and Indexes"

« Chapter 16, "Managing Clusters"

« Chapter 17, "Managing Hash Clusters"

« Chapter 18, "Managing Views, Sequences and Synonyms"
« Chapter 19, "General Management of Schema Objects"”

« Chapter 20, "Addressing Data Block Corruption”

12

Guidelines for Managing Schema Objects

This chapter describes guidelines for managing schema objects, and includes the
following topics:

« Managing Space in Data Blocks

« Transaction Entry Settings (INITRANS and MAXTRANS)
« Setting Storage Parameters

« Deallocating Space

« Understanding Space Use of Datatypes

You should familiarize yourself with the concepts in this chapter before attempting
to manage specific schema objects as described in Chapters 13-18.

Guidelines for Managing Schema Objects 12-1

Managing Space in Data Blocks

Managing Space in Data Blocks

This section describes the various aspects of managing space in data blocks. The
PCTFREE and PCTUSED parameters are discussed, which allow you to:

« Increase the performance of writing and retrieving data

« Decrease the amount of unused space in data blocks

« Decrease the amount of row chaining between data blocks
The following topics are included:

« The PCTFREE Parameter

« The PCTUSED Parameter

» Selecting Associated PCTUSED and PCTFREE Values

See Also: For more information on data blocks, see Oracle8i
Concepts.

For syntax and other details of the PCTFREE and PCTUSED
statements, please refer to the Oracle8i SQL Reference.

The PCTFREE Parameter

The PCTFREE parameter is used to set the percentage of a block to be reserved for
possible updates to rows that already are contained in that block. For example,
assume that you specify the following parameter within a CREATE TABLE
statement:

PCTFREE 20
This indicates that 20% of each data block used for this table’s data segment will be

kept free and available for possible updates to the existing rows already within each
block. Figure 12-lillustrates PCTFREE.

12-2 Oracle8i Administrator's Guide

Managing Space in Data Blocks

Figure 12-1 PCTFREE

Database Block
PCTFREE = 20

20% Free Space

Block allows row inserts

until 80% is occupied,
leaving 20% free for updates
to existing rows in the block

Notice that before the block reaches PCTFREE, the free space of the data block is
filled by both the insertion of new rows and by the growth of the data block header.

Specifying PCTFREE
The default for PCTFREE is 10 percent. You can use any integer between 0 and 99,
inclusive, as long as the sum of PCTFREE and PCTUSED does not exceed 100.

A smaller PCTFREE has the following effects:
« Reserves less room for updates to expand existing table rows
« Allows inserts to fill the block more completely

« May save space, because the total data for a table or index is stored in fewer
blocks (more rows or entries per block)

A small PCTFREE might be suitable, for example, for a segment that is rarely
changed.

A larger PCTFREE has the following effects:

« Reserves more room for future updates to existing table rows

Guidelines for Managing Schema Objects 12-3

Managing Space in Data Blocks

« May require more blocks for the same amount of inserted data (inserting fewer
rows per block)

« May improve update performance, because Oracle does not need to chain row
pieces as frequently, if ever

A large PCTFREE is suitable, for example, for segments that are frequently updated.

Ensure that you understand the nature of the table or index data before setting
PCTFREE. Updates can cause rows to grow. New values might not be the same size
as values they replace. If there are many updates in which data values get larger,
PCTFREE should be increased. If updates to rows do not affect the total row width,
PCTFREE can be low. Your goal is to find a satisfactory trade-off between densely
packed data and good update performance.

PCTFREE for Nonclustered Tables If the data in the rows of a nonclustered table is
likely to increase in size over time, reserve some space for these updates. Otherwise,
updated rows are likely to be chained among blocks.

PCTFREE for Clustered Tables The discussion for nonclustered tables also applies
to clustered tables. However, if PCTFREE is reached, new rows from any table
contained in the same cluster key go into a new data block that is chained to the
existing cluster key.

PCTFREE for Indexes You can specify PCTFREE only when initially creating an
index.

The PCTUSED Parameter

After a data block becomes full as determined by PCTFREE, Oracle does not
consider the block for the insertion of new rows until the percentage of the block
being used falls below the parameter PCTUSED. Before this value is achieved,
Oracle uses the free space of the data block only for updates to rows already
contained in the data block. For example, assume that you specify the following
parameter within a CREATE TABLE statement:

PCTUSED 40
In this case, a data block used for this table’s data segment is not considered for the
insertion of any new rows until the amount of used space in the block falls to 39%

or less (assuming that the block’s used space has previously reached PCTFREE).
Figure 12-2 illustrates this.

12-4 Oracle8i Administrator's Guide

Managing Space in Data Blocks

Figure 12-2 PCTUSED

Database Block
PCTUSED =40

m—

1 60% unused
. space

3o

No new rows are
inserted until amount
of used space falls
below 40%

Specifying PCTUSED

The default value for PCTUSED is 40 percent. After the free space in a data block
reaches PCTFREE, no new rows are inserted in that block until the percentage of
space used falls below PCTUSED. The percent value is for the block space available
for data after overhead is subtracted from total space.

You can specify any integer between 0 and 99 (inclusive) for PCTUSED, as long as
the sum of PCTUSED and PCTFREE does not exceed 100.

A smaller PCTUSED has the following effects:

« Reduces processing costs incurred during UPDATE and DELETE statements for
moving a block to the free list when it has fallen below that percentage of usage

« Increases the unused space in a database
A larger PCTUSED has the following effects:
« Improves space efficiency

« Increases processing cost during INSERTs and UPDATES

Guidelines for Managing Schema Objects 12-5

Managing Space in Data Blocks

Selecting Associated PCTUSED and PCTFREE Values
If you decide not to use the default values for PCTFREE or PCTUSED, keep the

following guidelines in mind:

« The sum of PCTFREE and PCTUSED must be equal to or less than 100.

« If the sum equals 100, then Oracle attempts to keep no more than PCTFREE free
space, and processing costs are highest.

« Block overhead is not included in the computation of PCTUSED or PCTFREE.

« The smaller the difference between 100 and the sum of PCTFREE and
PCTUSED (as in PCTUSED of 75, PCTFREE of 20), the more efficient space
usage is, at some performance cost.

Examples of Choosing PCTFREE and PCTUSED Values

The following examples show how and why specific values for PCTFREE and
PCTUSED are specified for tables.

Example 1 Scenario:

Settings:

Example 2 Scenario:

Settings:

Explanation:

Example 3 Scenario:

Settings:

Explanation:

12-6 Oracle8i Administrator's Guide

Common activity includes UPDATE statements
that increase the size of the rows.

PCTFREE =20
PCTUSED =40

Most activity includes INSERT and DELETE
statements, and UPDATE statements that do not
increase the size of affected rows.

PCTFREE =5
PCTUSED = 60

PCTFREE is set to 5 because most
UPDATE statements do not increase row
sizes. PCTUSED is set to 60 so that space
freed by DELETE statements is used soon,
yet processing is minimized.

The table is very large; therefore,
storage is a primary concern. Most activity
includes read-only transactions.

PCTFREE =5
PCTUSED =40

PCTFREE is set to 5 because this is a large table
and you want to completely fill each block.

Transaction Entry Settings (INITRANS and MAXTRANS)

Transaction Entry Settings (INITRANS and MAXTRANS)

The INITRANS and MAXTRANS transaction entry settings for the data blocks
allocated for a table, cluster, or index should be set individually for each object
based on the following criteria:

« The space you would like to reserve for transaction entries compared to the
space you would reserve for database data

« The number of concurrent transactions that are likely to touch the same data
blocks at any given time

For example, if a table is very large and only a small number of users
simultaneously access the table, the chances of multiple concurrent transactions
requiring access to the same data block is low. Therefore, INITRANS can be set low,
especially if space is at a premium in the database.

Alternatively, assume that a table is usually accessed by many users at the same
time. In this case, you might consider preallocating transaction entry space by using
a high INITRANS (to eliminate the overhead of having to allocate transaction entry
space, as required when the object is in use) and allowing a higher MAXTRANS so
that no user has to wait to access necessary data blocks.

See Also: For syntax and specific details of the INITRANS and
MAXTRANS parameters, refer to the Oracle8i SQL Reference.

INITRANS

Specifies the number of DML transaction entries for which space should be initially
reserved in the data block header. Space is reserved in the headers of all data blocks
in the associated data or index segment. The default value is 1 for tables and 2 for
clusters and indexes.

MAXTRANS

As multiple transactions concurrently access the rows of the same data block, space
is allocated for each DML transaction’s entry in the block. Once the space reserved
by INITRANS is depleted, space for additional transaction entries is allocated out of
the free space in a block, if available. Once allocated, this space effectively becomes
a permanent part of the block header. The MAXTRANS parameter limits the
number of transaction entries that can concurrently use data in a data block.
Therefore, you can limit the amount of free space that can be allocated for
transaction entries in a data block using MAXTRANS.

Guidelines for Managing Schema Objects 12-7

Setting Storage Parameters

The default value is an operating system-specific function of block size, not
exceeding 255.

Setting Storage Parameters

This section describes the storage parameters that you can set for various data
structures. These storage parameters apply to the following types of structures and
schema objects:

« Tablespaces (used as storage parameter defaults for all segments)
« Tables, partitions, clusters, snapshots, and snapshot logs (data segments)
« Indexes (index segments)

« Rollback segments

The following topics are discussed:

« ldentifying the Storage Parameters

« Setting Default Storage Parameters for Segments in a Tablespace
« Setting Storage Parameters for Data Segments

« Setting Storage Parameters for Index Segments

« Setting Storage Parameters for LOBs, Varrays, and Nested Tables
« Changing Values for Storage Parameters

« Understanding Precedence in Storage Parameters

|dentifying the Storage Parameters

Every database has default values for storage parameters. But, you can specify new
defaults for a tablespace, which override the system defaults to become the defaults
for objects created in that tablespace only. These default storage values are specified
in the DEFAULT STORAGE clause of a CREATE or ALTER TABLESPACE
statement.

Furthermore, you can specify storage settings for each individual schema object,
which override any default storage settings. To do so, you use the STORAGE clause
of the CREATE or ALTER statement for the individual object.

Storage parameters are specified when you create a schema object, and may later be
altered. Not all storage parameters can be specified for every type of database
object, and not all storage parameters can be specified in both the CREATE and

12-8 Oracle8i Administrator's Guide

Setting Storage Parameters

ALTER statements. To set or change the value of a storage parameter, you must
have the privileges necessary to use the appropriate CREATE or ALTER statement.

The following sections identify the storage parameters that you can specify.

See Also: Detailed information about storage parameters,
including information on how Oracle rounds values and usage
restrictions, is contained in the Oracle8i SQL Reference.

The settings for some storage values are operating system specific.
Refer to your operating system-specific documentation for
information on those values.

INITIAL

The size, in bytes, of the first extent allocated when a segment is created. This
parameter can not be specified on an ALTER statement.

Default: 5 data blocks
Minimum: 2 data blocks (nonbitmapped segments), 3 data blocks
(bitmapped segments)
Maximum: Operating system specific
NEXT

The size, in bytes, of the next incremental extent to be allocated for a segment. The
second extent is equal to the original setting for NEXT. From there forward, NEXT
is set to the previous size of NEXT multiplied by (1 + PCTINCREASE/100).

Default: 5 data blocks

Minimum: 1 data block

Maximum: Operating system specific
PCTINCREASE

The percentage by which each incremental extent grows over the last incremental
extent allocated for a segment. If PCTINCREASE is 0, then all incremental extents
are the same size. If PCTINCREASE is greater than zero, then each time NEXT is
calculated, it grows by PCTINCREASE. PCTINCREASE cannot be negative.

Guidelines for Managing Schema Objects 12-9

Setting Storage Parameters

The new NEXT equals 1 + PCTINCREASE/100, multiplied by the size of the last
incremental extent (the old NEXT) and rounded up to the next multiple of a block

size.

Default: 50 (%)

Minimum: 0 (%)

Maximum: Operating system specific
MINEXTENTS

The total number of extents to be allocated when the segment is created. This allows
for a large allocation of space at creation time, even if contiguous space is not

available.
Default: 1 (extent); 2(extents) for rollback segments
Minimum: 1 (extent); 2 (extents) for rollback segments
Maximum: Operating system specific

MAXEXTENTS

The total number of extents, including the first, that can ever be allocated for the

segment.
Default: Depends on the data block size and operating system
Minimum: 1 (extent); 2(extents) for rollback segments
Maximum: Unlimited

FREELIST GROUPS

The number of groups of free lists for the database object you are creating. Oracle
uses the instance number of Oracle Parallel Server instances to map each instance to

one free list group.

Default: 1
Minimum: 1
Maximum: Depends on number of Oracle Parallel Server instances

12-10 Oracle8i Administrator’'s Guide

Setting Storage Parameters

For information on the use of this parameter, see Oracle8i Parallel Server
Administration, Deployment, and Performance.

FREELISTS

Specifies the number of free lists for each of the free list groups for the schema
object. Not valid for tablespaces.

Default: 1
Minimum: 1
Maximum: Depends on data block size

The use of this parameter is discussed in Oracle8i Designing and Tuning for
Performance.

OPTIMAL

Relevant only to rollback segments. See Chapter 11, "Managing Rollback Segments"
for information on the use of this parameter.

BUFFER_POOL

Defines a default buffer pool (cache) for a schema object. Not valid for tablespaces
or rollback segments. For information on the use of this parameter, see Oracle8i
Designing and Tuning for Performance.

Setting Default Storage Parameters for Segments in a Tablespace

You can set default storage parameters for each tablespace of a database. Any
storage parameter that you do not explicitly set when creating or subsequently
altering a segment in a tablespace automatically is set to the corresponding default
storage parameter for the tablespace in which the segment resides.

When specifying MINEXTENTS at the tablespace level, any extent allocated in the
tablespace is rounded to a multiple of the number of minimum extents. Basically,
the number of extents is a multiple of the number of blocks.

Guidelines for Managing Schema Objects 12-11

Setting Storage Parameters

Setting Storage Parameters for Data Segments

You set the storage parameters for the data segment of a nonclustered table,
snapshot, or snapshot log using the STORAGE clause of the CREATE or ALTER
statement for tables, snapshots, or snapshot logs.

In contrast, you set the storage parameters for the data segments of a cluster using
the STORAGE clause of the CREATE CLUSTER or ALTER CLUSTER statement,
rather than the individual CREATE or ALTER statements that put tables and
snapshots into the cluster. Storage parameters specified when creating or altering a
clustered table or snapshot are ignored. The storage parameters set for the cluster
override the table’s storage parameters.

With partitioned tables, you can set default storage parameters at the table level.
When creating a new partition of the table, the default storage parameters are
inherited from the table level (unless you specify them for the individual partition).
If no storage parameters are specified at the table level, then they are inherited from
the tablespace.

Setting Storage Parameters for Index Segments

Storage parameters for an index segment created for a table index can be set using
the STORAGE clause of the CREATE INDEX or ALTER INDEX statement. Storage
parameters of an index segment created for the index used to enforce a primary key
or unique key constraint can be set in the ENABLE clause of the CREATE TABLE or
ALTER TABLE statements or the STORAGE clause of the ALTER INDEX statement.

Setting Storage Parameters for LOBS, Varrays, and Nested Tables

A table or snapshot may contain LOB, varray, or nested table column types. These
entities can be stored in their own segments. LOBs and varrays are stored in LOB
segments, while a nested table is stored in a storage table. You can specify a
STORAGE clause for these segments that will override storage parameters specified
at the table level.

Information about creating tables containing LOBS, varrays, and nested tables can
be found in Oracle8i Application Developer’s Guide - Large Objects (LOBs), Oracle8i
Application Developer’s Guide - Fundamentals, and the Oracle8i SQL Reference.

Changing Values for Storage Parameters

You can alter default storage parameters for tablespaces and specific storage
parameters for individual segments if you so choose. Default storage parameters

12-12 Oracle8i Administrator’'s Guide

Setting Storage Parameters

can be reset for a tablespace. However, changes affect only new objects created in
the tablespace, or new extents allocated for a segment.

The INITIAL and MINEXTENTS storage parameters cannot be altered for an
existing table, cluster, index, or rollback segment. If only NEXT is altered for a
segment, the next incremental extent is the size of the new NEXT, and subsequent
extents can grow by PCTINCREASE as usual.

If both NEXT and PCTINCREASE are altered for a segment, the next extent is the
new value of NEXT, and from that point forward, NEXT is calculated using
PCTINCREASE as usual.

Understanding Precedence in Storage Parameters

The storage parameters in effect at a given time are determined by the following
types of SQL statements, listed in order of precedence:

1. ALTER TABLE/CLUSTER/SNAPSHOT/SNAPSHOT
LOG/INDEX/ROLLBACK SEGMENT statement

2. CREATE TABLE/CLUSTER/SNAPSHOT/SNAPSHOT LOG/CREATE
INDEX/ROLLBACK SEGMENT statement

3. ALTER TABLESPACE statement
4. CREATE TABLESPACE statement
5. Oracle default values

Any storage parameter specified at the object level overrides the corresponding
option set at the tablespace level. When storage parameters are not explicitly set at
the object level, they default to those at the tablespace level. When storage
parameters are not set at the tablespace level, Oracle system defaults apply. If
storage parameters are altered, the new options apply only to the extents not yet
allocated.

Note: The storage parameters for temporary segments always use
the default storage parameters set for the associated tablespace.

Storage Parameter Example
Assume the following statement has been executed:

CREATE TABLE test_storage
)

Guidelines for Managing Schema Objects 12-13

Deallocating Space

STORAGE (INITIAL 100K NEXT 100K
MINEXTENTS 2 MAXEXTENTS 5
PCTINCREASE 50);

Also assume that the initialization parameter DB_BLOCK_SIZE is set to 2K. The
following table shows how extents are allocated for the TEST_STORAGE table. Also
shown is the value for the incremental extent, as can be seen in the NEXT column of
the USER_SEGMENTS or DBA_SEGMENTS data dictionary views:

Table 12-1 Extent Allocations

Extent# Extent Size Value for NEXT

1 50 blocks or 102400 bytes 50 blocks or 102400 bytes

2 50 blocks or 102400 bytes 75 blocks or153600 bytes

3 75 blocks or 153600 bytes 113 blocks or 231424 bytes

4 115 blocks or 235520 bytes 170 blocks or 348160 bytes

5 170 blocks or 348160 bytes No next value, MAXEXTENTS=5

If you change the NEXT or PCTINCREASE storage parameters with an ALTER
statement (such as ALTER TABLE), the specified value replaces the current value
stored in the data dictionary. For example, the following statement modifies the
NEXT storage parameter of the TEST_STORAGE table before the third extent is
allocated for the table:

ALTER TABLE test_storage STORAGE (NEXT 500K);

As a result, the third extent is 500K when allocated, the fourth is (500K*1.5)=750K,
and so on.

Deallocating Space

It is not uncommon to allocate space to a segment, only to find out later that it is not
being used. For example, you may set PCTINCREASE to a high value, which could
create a large extent that is only partially used. Or you could explicitly overallocate
space by issuing the ALTER TABLE...ALLOCATE EXTENT statement. If you find
that you have unused or overallocated space, you can release it so that the unused
space can be used by other segments.

This section describes aspects of deallocating unused space.

12-14 Oracle8i Administrator’'s Guide

Deallocating Space

Viewing the High Water Mark

Prior to deallocation, you can use the DBMS_SPACE package, which contains a
procedure (UNUSED_SPACE) that returns information about the position of the
high water mark and the amount of unused space in a segment.

Within a segment, the high water mark indicates the amount of used space, or space
that had been formatted to receive data.You cannot release space below the high
water mark (even if there is no data in the space you wish to deallocate). However,
if the segment is completely empty, you can release space using the
TRUNCATE...DROP STORAGE statement.

See Also: The DBMS_SPACE package is described in Oracle8i
Supplied PL/SQL Packages Reference.

Issuing Space Deallocation Statements

The following statements deallocate unused space in a segment (table, index or
cluster). The KEEP clause is optional.

ALTERTABLE table DEALLOCATE UNUSED KEEPInteger ;
ALTERINDEX index DEALLOCATE UNUSED KEEPInteger
ALTER CLUSTER cluster ~ DEALLOCATE UNUSED KEEPInteger ;

When you explicitly identify an amount of unused space to KEEP, this space is
retained while the remaining unused space is deallocated. If the remaining number
of extents becomes smaller than MINEXTENTS, the MINEXTENTS value changes
to reflect the new number. If the initial extent becomes smaller, the INITIAL value
changes to reflect the new size of the initial extent.

If you do not specify the KEEP clause, all unused space (everything above the high
water mark) is deallocated, as long as the size of the initial extent and
MINEXTENTS are preserved. Thus, even if the high water mark occurs within the
MINEXTENTS boundary, MINEXTENTS remains and the initial extent size is not
reduced.

See Also: For details on the syntax and options associated with
deallocating unused space, see the Oracle8i SQL Reference.

You can verify that deallocated space is freed by looking at the
DBA_FREE_SPACE view. For more information on this view, see
the Oracle8i Reference.

Guidelines for Managing Schema Objects 12-15

Deallocating Space

Deallocating Space Examples
This section provides some space deallocation examples.

Example 1:

A table consists of three extents. The first extent is 10K, the second is 20K, and the
third is 30K. The high water mark is in the middle of the second extent, and there is
40K of unused space. Figure 12-3 illustrates the effect of issuing the following
statement:

ALTER TABLE dquon DEALLOCATE UNUSED

All unused space is deallocated, leaving table DQUON with two remaining extents.
The third extent disappears, and the second extent size is 10K.

Figure 12-3 Deallocating All Unused Space

UNUSED SPACE = 40K
\

Table dquon
Extent 1 Extént 2 Extent 3
10K 20K 30K

|
High Water Mark

Before

— ALTER TABLE dquon DEALLOCATE UNUSED;
After

Table dquon

Extent 1 |Extent 2

10K 10K

But, if you had issued the following statement specifying the KEEP keyword, then
10K above the high water mark would be kept, and the rest of the unused space
would be deallocated from DQUON.

ALTER TABLE dguon DEALLOCATE UNUSED KEEP 10K;

12-16 Oracle8i Administrator’'s Guide

Deallocating Space

In effect, the third extent is deallocated and the second extent remains intact.

Figure 12—4 illustrates this situation.

Figure 12-4 Deallocating Unused Space, KEEP 10K

UNUSED SPACE = 40K
|

Table dquon | |
Extent 1 Extelnt 2 Extent 3
10K 20K 30K

High Water Mark

Before
— ALTER TABLE dguon DEALLOCATE UNUSED KEEP 10K;
After
Table dquon
Extent 1 Extént 2
10K 20K

High Water Mark

Further, if you deallocate all unused space from DQUON and keep 20K, as
specified in the following statement, the third extent is cut to 10K, and the size of
the second extent remains the same.

ALTER TABLE dguon DEALLOCATE UNUSED KEEP 20K;

Example 2:

Consider the situation illustrated by Figure 12-3. Extent 3 is completely deallocated,
and the second extent is left with 10K. Further, the size of the next allocated extent
defaults to the size of the last completely deallocated extent, which in this case, is
30K. If this is not what you want, you can explicitly set the size of the next extent

Guidelines for Managing Schema Objects 12-17

Understanding Space Use of Datatypes

using the ALTER TABLE statement, specifying a new value for NEXT in the storage
clause.

The following statement sets the next extent size for table DQUON to 20K.
ALTER TABLE dquon STORAGE (NEXT 20K)

Example 3:
To preserve the MINEXTENTS number of extents, DEALLOCATE can retain

extents that were originally allocated to a segment. This capacity is influenced by
the KEEP parameter and was explained earlier.

If table DQUON has a MINEXTENTS value of 2, the statements illustrated in
Figure 12-3 and Figure 12-4 still yield the same results as shown, and further, the
initial value of MINEXTENTS is preserved.

However, if the MINEXTENTS value is 3, then the statement illustrated in

Figure 12-4 produces the same result as shown (the third extent is removed), but
the value of MINEXTENTS is changed to 2. However, the statement illustrated in
Figure 12-3 will not produce the same result. In this case, the statement has no
effect.

Understanding Space Use of Datatypes

When creating tables and other data structures, you need to know how much space
they will require. Each datatype has different space requirements. The PL/SQL
User’s Guide and Reference and Oracle8i SQL Reference contain extensive descriptions
of datatypes and their space requirements.

12-18 Oracle8i Administrator’'s Guide

13

Managing Tables

This chapter describes the various aspects of managing tables, and includes the
following topics:

« Guidelines for Managing Tables
« Creating Tables

« Altering Tables

« Dropping Tables

« Index-Organized Tables

Before attempting tasks described in this chapter, familiarize yourself with the
concepts in Chapter 12, "Guidelines for Managing Schema Objects".

Managing Tables 13-1

Guidelines for Managing Tables

Guidelines for Managing Tables

This section describes guidelines to follow when managing tables, and includes the
following topics:

Design Tables Before Creating Them

Specify How Data Block Space Is to Be Used
Specify Transaction Entry Parameters

Specify the Location of Each Table

Parallelize Table Creation

Consider Creating UNRECOVERABLE Tables
Estimate Table Size and Set Storage Parameters
Plan for Large Tables

Table Restrictions

Use these guidelines to make managing tables as easy as possible.

Design Tables Before Creating Them

Usually, the application developer is responsible for designing the elements of an
application, including the tables. Database administrators are responsible for setting
storage parameters and defining clusters for tables, based on information from the
application developer about how the application works and the types of data
expected.

Working with your application developer, carefully plan each table so that the
following occurs:

Tables are normalized.
Each column is of the proper datatype.
Columns that allow nulls are defined last, to conserve storage space.

Tables are clustered whenever appropriate, to conserve storage space and
optimize performance of SQL statements.

Specify How Data Block Space Is to Be Used

By specifying the PCTFREE and PCTUSED parameters during the creation of each
table, you can affect the efficiency of space utilization and amount of space reserved

13-2 Oracle8i Administrator's Guide

Guidelines for Managing Tables

for updates to the current data in the data blocks of a table’s data segment. The
PCTFREE and PCTUSED parameters are discussed in "Managing Space in Data
Blocks" on page 12-2.

Specify Transaction Entry Parameters

By specifying the INITRANS and MAXTRANS parameters during the creation of
each table, you can affect how much space is initially and can ever be allocated for
transaction entries in the data blocks of a table’s data segment. For information
about setting the INITRANS and MAXTRANS parameters, see "Setting Storage
Parameters” on page 12-8.

Specify the Location of Each Table

If you have the proper privileges and tablespace quota, you can create a new table
in any tablespace that is currently online. It is advisable to specify the
TABLESPACE clause in a CREATE TABLE statement to identify the tablespace that
will store the new table. If you do not specify a tablespace in a CREATE TABLE
statement, the table is created in your default tablespace.

When specifying the tablespace to contain a new table, make sure that you
understand implications of your selection. By properly specifying a tablespace
during the creation of each table, you can:

« increase the performance of the database system
« decrease the time needed for database administration

The following situations illustrate how specifying incorrect storage locations for
schema objects can affect a database:

« If users’ objects are created in the SYSTEM tablespace, the performance of
Oracle can be reduced, since both data dictionary objects and user objects must
contend for the same datafiles.

« Ifan application’s associated tables are arbitrarily stored in various tablespaces,
the time necessary to complete administrative operations (such as backup and
recovery) for that application’s data can be increased.

Chapter 22, "Managing Users and Resources" contains information about assigning
default tablespaces and tablespace quotas to users.

Managing Tables 13-3

Guidelines for Managing Tables

Parallelize Table Creation

You can parallelize the creation of tables created with a subquery in the CREATE
TABLE statement. Because multiple processes work together to create the table,
performance of the table creation can improve.

See Also: For information about parallel execution, including
parallel table creation, see the following books:

« Oracle8i Designing and Tuning for Performance
« Oracle8i Concepts

Consider Creating UNRECOVERABLE Tables

When you create an unrecoverable table, the table cannot be recovered from
archived logs (because the needed redo log records are not generated for the
unrecoverable table creation). Thus, if you cannot afford to lose the table, you
should take a backup after the table is created. In some situations, such as for tables
that are created for temporary use, this precaution may not be necessary.

You can create an unrecoverable table by specifying UNRECOVERABLE when you
create a table with a subquery in the CREATE TABLE...AS SELECT statement.
However, rows inserted afterwards are recoverable. In fact, after the statement is
completed, all future statements are fully recoverable.

Creating an unrecoverable table has the following benefits:

« Space is saved in the redo log files.

« The time it takes to create the table is decreased.

« Performance improves for parallel creation of large tables.

In general, the relative performance improvement is greater for larger
unrecoverable tables than for smaller tables. Creating small unrecoverable tables
has little effect on the time it takes to create a table. However, for larger tables the
performance improvement can be significant, especially when you are also
parallelizing the table creation.

Estimate Table Size and Set Storage Parameters

Estimating the sizes of tables before creating them is useful for the following
reasons;

=« You can use the combined estimated size of tables, along with estimates for
indexes, rollback segments, and redo log files, to determine the amount of disk

13-4 Oracle8i Administrator's Guide

Guidelines for Managing Tables

space that is required to hold an intended database. From these estimates, you
can make correct hardware purchases and other decisions.

= You can use the estimated size of an individual table to better manage the disk
space that the table will use. When a table is created, you can set appropriate
storage parameters and improve 1/0 performance of applications that use the
table. For example, assume that you estimate the maximum size of a table
before creating it. If you then set the storage parameters when you create the
table, fewer extents will be allocated for the table’s data segment, and all of the
table’s data will be stored in a relatively contiguous section of disk space. This
decreases the time necessary for disk 1/0 operations involving this table.

Whether or not you estimate table size before creation, you can explicitly set storage
parameters when creating each nonclustered table. (Clustered tables automatically
use the storage parameters of the cluster.) Any storage parameter that you do not
explicitly set when creating or subsequently altering a table automatically uses the
corresponding default storage parameter set for the tablespace in which the table
resides. Storage parameters are discussed in "Setting Storage Parameters" on

page 12-8.

If you explicitly set the storage parameters for the extents of a table’s data segment,
try to store the table’s data in a small number of large extents rather than a large
number of small extents.

Plan for Large Tables

There are no limits on the physical size of tables and extents. You can specify the
keyword UNLIMITED for MAXEXTENTS, thereby simplifying your planning for
large objects, reducing wasted space and fragmentation, and improving space
reuse. However, keep in mind that while Oracle allows an unlimited number of
extents, when the number of extents in a table grows very large, you may see an
impact on performance when performing any operation requiring that table.

Note: You cannot alter data dictionary tables to have
MAXEXTENTS greater than the allowed block maximum.

If you have such tables in your database, consider the following recommendations:
« Separate the table from its indexes.

Place indexes in separate tablespaces from other objects, and on separate disks
if possible. If you ever need to drop and re-create an index on a very large table

Managing Tables 13-5

Guidelines for Managing Tables

Table Restrictions

(such as when disabling and enabling a constraint, or re-creating the table),
indexes isolated into separate tablespaces can often find contiguous space more
easily than those in tablespaces that contain other objects.

Allocate sufficient temporary space.

If applications that access the data in a very large table perform large sorts,
ensure that enough space is available for large temporary segments (temporary
segments always use the default STORAGE settings for their tablespaces).

Before creating tables, make sure you are aware of the following restrictions:

Tables containing new object types cannot be imported into a pre-Oracle8
database.

You cannot move types and extent tables to a different schema when the
original data still exists in the database.

You cannot merge an exported table into a preexisting table having the same
name in a different schema.

Oracle has a limit on the total number of columns that a table (or attributes that
an object type) can have. See the description of the ALTER TABLE statement in
Oracle8i SQL Reference for this limit.

Additionally, when you create a table that contains user-defined type data, Oracle
maps columns of user-defined type to relational columns for storing the
user-defined type data. These "hidden" relational columns are not visible in a
DESCRIBE table statement and are not returned by a SELECT * statement.
Therefore, when you create an object table, or a relational table with columns of
REF, varray, nested table, or object type, the total number of columns that Oracle
actually creates for the table may be more than those you specify, because Oracle
creates hidden columns to store the user-defined type data.

The following formulas determine the total number of columns created for a table
with user-defined type data:

Number of columns in an object table:
num_columns(object_table) =

num_columns(object_identifier)
+num_columns(row_type)
+ number of topevel object columns in the object type of table
+num_columns(object_type)

13-6 Oracle8i Administrator's Guide

Guidelines for Managing Tables

Number of columns in a relational table:
num_columns(relational_table) =
number of scalar columns in the table

+ number of object columns in the table

+SUM [num_columns(object_type())] i=1->n

+SUM [num_columns(nested_table())] j=1->m

+SUM [num_columns(varray(K))] k=1->p

+SUM [num_columns(REF())] =1->q

where in the given relational table:

object_type() is the ith object type column and

nis the total number of such object type columns
nested_table()) is the jth nested_table column and

mis the total number of such nested table columns
varray(K) is the kth varray column and

p s the total number of such varray columns,
REF() is the Ith REF column and

g s the total number of such REF columns.

Definitions:
num_columns(object identifier) = 1
num_columns(row_type) =1
num_columns(REF) =1, if REFis unscoped
=1, ifthe REF is scoped
is system generated
referential constraint
=2, ifthe REF is scoped
is system generated
referential constraint
=1+ number of columns in the primary key,
if the object identifier is primary key based
num_columns(nested_table) =2
num_columns(varray) =1

and the objectidentifier
and the REF has no

and the objectidentifier

and the REF hasa

num_columns(object type) =number of scalar attributes in the object type

+ SUM[num_columns(object_type())] =1->n

+ SUMnum_columns(nested_table())] F=1->m

+ SUM[num_columns(varray(K))] k=1->p
+ SUM[num_columns(REF())] =1->q

where in the given object type:

object_type()) is an embedded object type attribute and
nis the total number of such object type atfributes,
nested_table()) is an embedded nested_table attribute and
m s the total number of such nested table attributes,
varray(K) is an embedded varray attribute and

Managing Tables 13-7

Guidelines for Managing Tables

p s the total number of such varray atfributes,
REF() is an embedded REF attribute and
q s the total number of such REF attributes.

The following are some examples of computing the number of columns for an
object table, or a relational table with columns of REF, varray, nested table, or object

type.

Example 1:

CREATE TYPE physical_address type AS OBJECT
(no CHAR(4), street CHAR(31), city CHAR(5), state CHAR(3));
CREATE TYPE phone_type AS VARRAY(5) OF CHAR(15);
CREATE TYPE electronic_address_type AS OBJECT
(phones phone_type, fax CHAR(12), email CHAR(3L));
CREATE TYPE contact_info_type AS OBJECT
(physical_address physical_address type,
electronic_address electronic_address_type);
CREATE TYPE employee_type AS OBJECT
(eno NUMBER, ename CHAR(60),
contact_info contact_info_type);

CREATE TABLE employee_object_table OF employee_type;

To calculate number of columns in employee object table, we first need to calculate
number of columns required for employee_type:

num_columns(physical_address_type) =
number of scalar atfributes = 4
num_columns(phone_type) =
num_columns(varray) = 1
num_columns(electronic_address_type) =
number of scalar attributes
+num_columns(phone_type)
=2+1=3
num_columns(contact info_type) =
num_columns(physical_address _type)
+num_columns(electronic_address_type)
=3+4=7
num_columns(employee_type) =
number of scalar atfributes
+num_columns(contact_info_type)
=2+7=9

Now, use the formula for object tables:

num_columns (employee_object_table) =
num_columns(object_identifier)
+num_columns(row_type)

13-8 Oracle8i Administrator's Guide

Creating Tables

+number of top level object columns in employee_type

+num_columns(employee_type)
=1+1+1+9=12

Example 2:
CREATE TABLE employee_relational_table (einfo employee_type);

num_columns (employee_relational_table) =
number of object columns in table

+num_columns(employee_type)
=1+9=10

Example 3:
CREATE TYPE project_type AS OBJECT (pno NUMBER, pname CHAR(30), budget NUMBERY);

CREATE TYPE project_set type AS TABLE OF project_type;

CREATE TABLE department
(dno NUMBER, dname CHAR(30),
mgr REF employee_type REFERENCES employee_object_table,
project_set project_set type)

NESTED TABLE project_set STORE AS project_set nt;

num_columns(department) =
number of scalar columns
+num_columns(mgr)
+num_columns(project_set)
=2+2+2=6

Creating Tables

To create a new table in your schema, you must have the CREATE TABLE system
privilege. To create a table in another user’s schema, you must have the CREATE
ANY TABLE system privilege. Additionally, the owner of the table must have a
guota for the tablespace that contains the table, or the UNLIMITED TABLESPACE
system privilege.

Create tables using the SQL statement CREATE TABLE. When user SCOTT issues
the following statement, he creates a nonclustered table named EMP in his schema
and stores it in the USERS tablespace:

CREATETABLE emp(
empno NUMBER() PRIMARY KEY,
ename VARCHAR2(15) NOT NULL,
job VARCHAR2(10),

Managing Tables 13-9

Creating Tables

mgr NUMBER(5),
hiredate DATE DEFAULT (sysdate),
sal NUMBER(7,2),
comm NUMBER(7,2),
depno NUMBER(3) NOT NULL
CONSTRAINT dept_fkey REFERENCES dept)
PCTFREE 10
PCTUSED 40
TABLESPACE users
STORAGE (INITIAL 50K
NEXT 50K
MAXEXTENTS 10
PCTINCREASE 25);

In this example, integrity constraints are defined on several columns of the table.
Integrity constraints are discussed in "Managing Integrity Constraints" on

page 19-14. Several segment attributes are also explicitly specified for the table.
These are explained in Chapter 12, "Guidelines for Managing Schema Objects".

It is also possible to create a temporary table. The definition of a temporary table is
visible to all sessions, but the data in a temporary table is visible only to the session
that inserts the data into the table. You use the CREATE GLOBAL TEMPORARY
TABLE statement to create a temporary table. The ON COMMIT keywords indicate
if the data in the table is transaction-specific (the default) or session-specific:

« ON COMMIT DELETE ROWS specifies that the temporary table is transaction
specific and Oracle will truncate the table (delete all rows) after each commit.

« ON COMMIT PRESERVE ROWS specifies that the temporary table is session
specific and Oracle will truncate the table when you terminate the session.

This example creates a temporary table that is transaction specific:

CREATE GLOBAL TEMPORARY TABLE work_area
(Startdate DATE,
enddate DATE,
class CHAR(20))
ON COMMIT DELETE ROWS;

Indexes can be created on temporary tables. They are also temporary and the data
in the index has the same session or transaction scope as the data in the underlying
table.

13-10 Oracle8i Administrator’'s Guide

Altering Tables

Altering Tables

See Also: For exact syntax, authorization, or restrictions
information for CREATE TABLE and other statements discussed in
this chapter, see Oracle8i SQL Reference.

For more information on temporary tables, see Oracle8i Concepts.

To alter a table, the table must be contained in your schema, or you must have
either the ALTER object privilege for the table or the ALTER ANY TABLE system
privilege.

A table in an Oracle database can be altered for the following reasons:

To add or drop columns, or modify an existing column’s definition (datatype,
length, default value, and NOT NULL integrity constraint)

To modify data block space usage parameters (PCTFREE, PCTUSED)
To modify transaction entry settings (INITRANS, MAXTRANS)

To modify storage parameters

To move the table to a new segment or tablespace

To explicitly allocate an extent or deallocate unused space

To modify the logging attributes of the table

To modify the CACHE/NOCACHE attributes

To add, modify or drop integrity constraints associated with the table
To enable or disable integrity constraints or triggers associated with the table
To modify the degree of parallelism for the table

To rename a table

To add or modify index-organized table characteristics

To add of modify LOB columns

To add or modify object type, nested table, or varray columns

You can increase the length of an existing column. However, you cannot decrease it
unless there are no rows in the table. Furthermore, if you are modifying a table to
increase the length of a column of datatype CHAR, realize that this may be a time
consuming operation and may require substantial additional storage, especially if

Managing Tables 13-11

Altering Tables

the table contains many rows. This is because the CHAR value in each row must be
blank-padded to satisfy the new column length.

When altering the data block space usage parameters (PCTFREE and PCTUSED) of
a table, note that new settings apply to all data blocks used by the table, including
blocks already allocated and subsequently allocated for the table. However, the
blocks already allocated for the table are not immediately reorganized when space
usage parameters are altered, but as necessary after the change. The data block
storage parameters are described in "Managing Space in Data Blocks" on page 12-2.

When altering the transaction entry settings (INITRANS, MAXTRANS) of a table,
note that a new setting for INITRANS applies only to data blocks subsequently
allocated for the table, while a new setting for MAXTRANS applies to all blocks
(already and subsequently allocated blocks) of a table. To better understand these
transaction entry setting parameters, see "Transaction Entry Settings (INITRANS
and MAXTRANS)" on page 12-7.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new
settings for the other storage parameters (for example, NEXT, PCTINCREASE)
affect only extents subsequently allocated for the table. The size of the next extent
allocated is determined by the current values of NEXT and PCTINCREASE, and is
not based on previous values of these parameters. Storage parameters are discussed
in "Setting Storage Parameters” on page 12-8.

You alter a table using the ALTER TABLE statement. The following statement alters
the EMP table. It alters the data block storage parameters, and adds a new column
named BONUS.

ALTER TABLE emp
ADD (bonus NUMBER (7,2))
PCTFREE 30
PCTUSED 60,

Some of the other usages of the ALTER TABLE statement are presented in the
following sections:

« Moving a Table to a New Segment or Tablespace
« Manually Allocating Storage for a Table

« Dropping Columns

13-12 Oracle8i Administrator’'s Guide

Altering Tables

WARNING: Before altering a table, familiarize yourself with the
consequences of doing so.

If a new column is added to a table, the column is initially null.
You can add a column with a NOT NULL constraint to a table
only if the table does not contain any rows.

If a view or PL/SQL program unit depends on a base table, the
alteration of the base table may affect the dependent object. See
"Managing Object Dependencies” on page 19-23 for information
about how Oracle manages dependencies.

Moving a Table to a New Segment or Tablespace

The ALTER TABLE...MOVE statement allows you to relocate data of a
nonpartitioned table into a new segment, and optionally into a different tablespace
for which you have quota. This statement also allows you to modify any of the
table’s storage attributes, including those which cannot be modified using ALTER
TABLE.

The following statement moves the EMP table to a new segment specifying new
storage parameters.

ALTER TABLE emp MOVE
STORAGE (INITIAL 20K
NEXT 40K
MINEXTENTS 2
MAXEXTENTS 20
PCTINCREASEO);

If the table includes LOB column(s), this statement can be used to move the table
along with LOB data and LOB index segments (associated with this table) which the
user explicitly specifies. If not specified, the default is to not move the LOB data and
LOB index segments.

Manually Allocating Storage for a Table

Oracle dynamically allocates additional extents for the data segment of a table, as
required. However, you might want to allocate an additional extent for a table
explicitly. For example, when using the Oracle Parallel Server, an extent of a table
can be allocated explicitly for a specific instance.

Managing Tables 13-13

Altering Tables

A new extent can be allocated for a table using the ALTER TABLE statement with
the ALLOCATE EXTENT option.

You can also explicitly deallocate unused space using the DEALLOCATE UNUSED
clause of ALTER TABLE. This is described in "Deallocating Space” on page 12-14.

See Also: For information about using the ALLOCATE EXTENT
option in an OPS environment, see Oracle8i Parallel Server
Administration, Deployment, and Performance.

Dropping Columns

Oracle allows you to drop columns that are no longer needed from a table,
including an index-organized table. This provides a convenient means to free space
in a database, and avoids your having to export/import data then recreate indexes
and constraints. Users require the ALTER privilege on the target table or the ALTER
ANY TABLE system privilege to issue any of the drop column related statements
below.

You cannot drop all columns from a table, nor can you drop columns from a table
owned by SYS. Any attempt to do so will result in an error. For additional
restrictions and options, see Oracle8i SQL Reference.

Removing Columns from Tables

When you issue an ALTER TABLE...DROP COLUMN statement, the column
descriptor and the data associated with the target column are removed from each
row in the table. You can drop multiple columns with one statement. The following
statements are examples of dropping columns from the EMP table.

This statement drops only the SAL column:
ALTER TABLE emp DROP COLUMN sal;

The following statement drops both the SAL and COMM columns:
ALTER TABLE emp DROP (sal, comm);

Marking Columns Unused

If you are concerned about the length of time it could take to drop column data
from all of the rows in a large table, you can use the ALTER TABLE...SET UNUSED
statement. This statement marks one or more columns as unused, but does not
actually remove the target column data or restore the disk space occupied by these
columns. However, a column that is marked as unused will not be displayed in

13-14 Oracle8i Administrator’'s Guide

Dropping Tables

gueries or data dictionary views, and its name is removed so that a new column can
reuse that name. All constraints, indexes, and statistics defined on the column are
also removed.

To mark the SAL and COMM columns as unused, execute the following statement.
ALTER TABLE emp SET UNUSED (sal, comm);

You can later remove columns that are marked as unused by issuing an ALTER
TABLE...DROP UNUSED COLUMNS statement. Unused columns are also removed
from the target table whenever an explicit drop of any particular column or
columns of the table is issued.

The data dictionary views USER_UNUSED_COL_TABS, ALL_UNUSED_COL _
TABS, or DBA_UNUSED_COL_TABS can be used to list all tables containing
unused columns. The COUNT field shows the number of unused columns in the
table.

SELECT *FROM dba_unused col_tabs;

OWNER TABLE_NAME COUNT
SCOTT EMP 1
1 row selected.

Removing Unused Columns

The ALTER TABLE...DROP UNUSED COLUMNS statement is the only action
allowed on unused columns. It physically removes unused columns from the table
and reclaims disk space.

In the example that follows the optional keyword CHECKPOINT is specified. This
option causes a checkpoint to be applied after processing the specified number of
rows, in this case 250. Checkpointing cuts down on the amount of undo logs
accumulated during the drop column operation to avoid a potential exhaustion of
rollback segment space.

ALTER TABLE emp DROP UNUSED COLUMNS CHECKPOINT 250;

Dropping Tables

To drop a table, the table must be contained in your schema or you must have the
DROP ANY TABLE system privilege.

Managing Tables 13-15

Dropping Tables

To drop a table that is no longer needed, use the DROP TABLE statement. The
following statement drops the EMP table:

DROP TABLE emp;
If the table to be dropped contains any primary or unique keys referenced by
foreign keys of other tables and you intend to drop the FOREIGN KEY constraints

of the child tables, include the CASCADE option in the DROP TABLE statement, as
shown below:

DROP TABLE emp CASCADE CONSTRAINTS;

WARNING: Before dropping a table, familiarize yourself with
the consequences of doing so:

« Dropping a table removes the table definition from the data
dictionary. All rows of the table are no longer accessible.

« Allindexes and triggers associated with a table are dropped.

« All views and PL/SQL program units dependent on a
dropped table remain, yet become invalid (not usable). See
"Managing Object Dependencies” on page 19-23 for
information about how Oracle manages dependencies.

« All synonyms for a dropped table remain, but return an error
when used.

« All extents allocated for a nonclustered table that is dropped
are returned to the free space of the tablespace and can be
used by any other object requiring new extents or new
objects. All rows corresponding to a clustered table are
deleted from the blocks of the cluster.

Instead of dropping a table, you might want to truncate it. The TRUNCATE
statement provides a fast, efficient method for deleting all rows from a table, but it
does not affect any structures associated with the table being truncated (column
definitions, constraints, triggers, etc.) or authorizations. The TRUNCATE statement
is discussed in "Truncating Tables and Clusters” on page 19-10.

13-16 Oracle8i Administrator’'s Guide

Index-Organized Tables

Index-Organized Tables

This section describes aspects of managing index-organized tables, and includes the
following topics:

« What are Index-Organized Tables

» Creating Index-Organized Tables

« Maintaining Index-Organized Tables

« Analyzing Index-Organized Tables

« Using the ORDER BY Clause with Index-Organized Tables

« Converting Index-Organized Tables to Regular Tables

What are Index-Organized Tables

Index-organized tables are tables with data rows grouped according to the primary
key. This clustering is achieved using a B*-tree index. B*-tree indexes are special
types of index trees that differ from regular table B-tree indexes in that they store
both the primary key and non-key columns. The attributes of index-organized
tables are stored entirely within the physical data structures for the index.

Why use Index-Organized Tables

Index-organized tables provide fast key-based access to table data for queries
involving exact match and range searches. Changes to the table data (such as
adding new rows, updating rows, or deleting rows) result only in updating the
index structure (because there is no separate table storage area).

Also, storage requirements are reduced because key columns are not duplicated in
the table and index. The remaining non-key columns are stored in the index
structure.

Index-organized tables are particularly useful when you are using applications that
must retrieve data based on a primary key. Index-organized tables are also suitable
for modeling application-specific index structures. For example, content-based
information retrieval applications containing text, image and audio data require
inverted indexes that can be effectively modeled using index-organized tables.

Differences Between Index Organized and Regular Tables

Index-organized tables are like regular tables with a primary key index on one or
more of its columns. However, instead of maintaining two separate storage spaces

Managing Tables 13-17

Index-Organized Tables

for the table and B*tree index, an index-organized table only maintains a single
B*tree index containing the primary key of the table and other column values.

The following figure illustrates the structural difference between regular tables and

index-organized tables.

Figure 13-1 Structure of Regular Table versus Index-Organized Table

Regular Table and Index

Index

FINANCE ROWID
INVEST ROWID \

P FINANCE
PSTOCK

NN

Index

STOCK ROWID
TRADE ROWID

Table

\Finance 5543

Invest 6879
Stock 4254
Trade 3345

Index-Organized Table

Table

Financeir'
> Stock

Index-organized tables are suitable for accessing data by way of primary key or any
key that is a valid prefix of the primary key. There is no duplication of key values
and storage requirements are reduced because a separate index structure containing

Index

P STOCK 6874
TRADE 5543

the key values and ROWID is not created.

See Also:

Oracle8i Concepts.

Index

FINANCE 3345 <
INVEST 4254

Indexed data is
stored in index.

For more details about index-organized tables, see

For details of the syntax involved in creating index-organized
tables, see Oracle8i SQL Reference.

13-18 Oracle8i Administrator’'s Guide

Index-Organized Tables

Creating Index-Organized Tables

You use the CREATE TABLE statement to create index-organized tables, but you
will need to provide the following additional information:

An ORGANIZATION INDEX qualifier, which indicates that this is an
index-organized table.

A primary key, specified through a column constraint clause (for a single
column primary key) or a table constraint clause (for a multiple-column
primary key). A primary key must be specified for index-organized tables.

An optional row overflow specification clause (OVERFLOW), which preserves
dense clustering of the B*tree index by storing the row column values
exceeding a specified threshold in a separate overflow data segment. An
INCLUDING clause can also be specified to specify what (non-key) columns
are to be stored in the overflow data segment.

A PCTTHRESHOLD value which defines the percentage of space reserved in
the index block for an index-organized table. Any portion of the row that
exceeds the specified threshold is stored in the overflow segment. In other
words, the row is broken at a column boundary into two pieces, a head piece
and tail piece. The head piece fits in the specified threshold and is stored along
with the key in the index leaf block. The tail piece is stored in the overflow area
as one or more row pieces. Thus, the index entry contains the key value, the
non-key column values that fit the specified threshold, and a pointer to the rest
of the row.

The following example creates an index-organized table:
CREATE TABLE docindex(

token char(20),

doc_id NUMBER,

token_frequency NUMBER,

token_offsets VARCHAR2(512),

CONSTRAINT pk_docindex PRIMARY KEY (token, doc_id))

ORGANIZATION INDEX TABLESPACE ind_tbs
PCTTHRESHOLD 20
OVERFLOW TABLESPACE oVf_tbs;

The above example shows that the ORGANIZATION INDEX qualifier specifies an
index-organized table, where the key columns and non-key columns reside in an
index defined on columns that designate the primary key (TOKEN, DOC_ID) for
the table.

Managing Tables 13-19

Index-Organized Tables

Index-organized tables can store object types. For example, you can create an
index-organized table containing a column of object type MYTYPE (for the purpose
of this example) as follows:

CREATE TABLE iot (c1 NUMBER primary key, c2 mytype)
ORGANIZATION INDEX;

However, you cannot create an index-organized table of object types. For example,
the following statement would not be valid:

CREATE TABLE iot OF mytype ORGANIZATION INDEX;

Using the AS Subquery

You can create an index-organized table using the AS subquery. Creating an
index-organized table in this manner enables you to load the table in parallel by
using the PARALLEL option.

The following statement creates an index-organized table (in parallel) by selecting
rows from a conventional table, RT:

CREATE TABLE iot(i PRIMARY KEY, j) ORGANIZATION INDEX PARALLEL (DEGREE 2)
AS SELECT *FROM 1t

Using the Overflow Clause

The overflow clause specified in the earlier example indicates that any non-key
columns of rows exceeding 20% of the block size are placed in a data segment
stored in the OVF_TBS tablespace. The key columns should fit the specified
threshold.

If an update of a non-key column causes the row to decrease in size, Oracle
identifies the row piece (head or tail) to which the update is applicable and rewrites
that piece.

If an update of a non-key column causes the row to increase in size, Oracle
identifies the piece (head or tail) to which the update is applicable and rewrites that
row piece. If the update’s target turns out to be the head piece, note that this piece
may again be broken into 2 to keep the row size below the specified threshold.

The non-key columns that fit in the index leaf block are stored as a row head-piece
that contains a ROWID field linking it to the next row piece stored in the overflow
data segment. The only columns that are stored in the overflow area are those that
do not fit.

13-20 Oracle8i Administrator’'s Guide

Index-Organized Tables

Choosing and Monitoring a Threshold Value ~ You should choose a threshold value that
can accommodate your key columns, as well as the first few non-key columns (if
they are frequently accessed).

After choosing a threshold value, you can monitor tables to verify that the value
you specified is appropriate. You can use the ANALYZE TABLE...LIST CHAINED
ROWS statement to determine the number and identity of rows exceeding the
threshold value.

See Also: For details about this use of the ANALYZE statement,
see Oracle8i SQL Reference.

Using the INCLUDING clause In addition to specifying PCTTHRESHOLD, you can use
the INCLUDING <column_name> clause to control which non-key columns are
stored with the key columns. Oracle accommodates all non-key columns up to the
column specified in the INCLUDING clause in the index leaf block, provided it
does not exceed the specified threshold. All non-key columns beyond the column
specified in the INCLUDING clause are stored in the overflow area.

Note: Oracle moves all primary key columns of an
indexed-organized table to the beginning of the table (in their key
order), in order to provide efficient primary key based access. As an
example:

CREATE TABLE io@INT, b INT, c INT, d INT,
primary key(c,))
ORGANIZATION INDEX;
The stored column order is: ¢ b a d (instead of: a b ¢ d). The last
primary key column is b, based on the stored column order. The
INCLUDING column can be the last primary key column (b in this
example), or any non-key column (i.e., any column after b in the
stored column order).

The example presented earlier can be modified to create an index-organized table
where the TOKEN_OFFSETS column value is always stored in the overflow area:

CREATE TABLE docindex(
token CHAR(20),
doc_id NUMBER,
token_frequency NUMBER,
token_offsets VARCHAR2(512),
CONSTRAINT pk_docindex PRIMARY KEY (token, doc_id))

Managing Tables 13-21

Index-Organized Tables

ORGANIZATION INDEX TABLESPACE ind_ths
PCTTHRESHOLD 20
INCLUDING token_frequency
OVERFLOW TABLESPACE ovf tbs;

Here, only non-key columns up to TOKEN_FREQUENCY (in this case a single
column only) are stored with the key column values in the index leaf block.

Using Key Compression
Creating an index-organized table using key compression enables you to eliminate
repeated occurrences of key column prefix values.

Key compression breaks an index key into a prefix and a suffix entry. Compression
is achieved by sharing the prefix entries among all the suffix entries in an index
block. This sharing can lead to huge savings in space, allowing you to store more
keys per index block while improving performance.

You can enable key compression using the COMPRESS clause while:
« Creating an index-organized table
« moving an index-organized table

You can also specify the prefix length (as the number of key columns), which
identifies how the key columns are broken into a prefix and suffix entry.

CREATE TABLE iot(i INT, j INT, K INT, | INT, PRIMARY KEY (i j, K)
ORGANIZATION INDEX COMPRESS;

The preceding statement is equivalent to the following statement:

CREATE TABLE iot(i INT, j INT, K INT, | INT, PRIMARY KEY(, j, k))
ORGANIZATION INDEX COMPRESS 2;

For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4), (1,4,4) the repeated
occurrences of (1,2), (1,3) are compressed away.
You can also override the default prefix length used for compression as follows:

CREATE TABLE iot(i INT, j INT, K INT, | INT, PRIMARY KEY (i j, K)
ORGANIZATION INDEX COMPRESS 1;

For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4), (1,4,4), the repeated
occurrences of 1 are compressed away.

You can disable compression as follows:

13-22 Oracle8i Administrator’'s Guide

Index-Organized Tables

ALTER TABLE AMOVE NOCOMPRESS,;

See Also: For more details about key compression, see Oracle8i
Concepts and the Oracle8i SQL Reference.

Maintaining Index-Organized Tables

Index-organized tables differ from regular tables only in physical organization;
logically, they are manipulated in the same manner. You can use an
index-organized table in place of a regular table in INSERT, SELECT, DELETE, and
UPDATE statements.

Altering Index-Organized Tables

You can use the ALTER TABLE statement to modify physical and storage attributes
for both primary key index and overflow data segments. All the attributes specified
prior to the OVERFLOW keyword are applicable to the primary key index segment.
All attributes specified after the OVERFLOW key word are applicable to the
overflow data segment. For example, you can set the INITRANS of the primary key
index segment to 4 and the overflow of the data segment INITRANS to 6 as follows:

ALTER TABLE docindex INITRANS 4 OVERFLOW INITRANS 6;

You can also alter PCTTHRESHOLD and INCLUDING column values. A new
setting is used to break the row into head and overflow tail pieces during
subsequent operations. For example, the PCTHRESHOLD and INCLUDING
column values can be altered for the DOCINDEX table as follows:

ALTER TABLE docindex PCTTHRESHOLD 15 INCLUDING doc _id;

By setting the INCLUDING column to DOC_ID, all the columns that follow
TOKEN_FREQUENCY and TOKEN_OFFSETS, are stored in the overflow data
segment.

For index-organized tables created without an overflow data segment, you can add
an overflow data segment by using the ADD OVERFLOW clause. For example, if
the DOCINDEX table did not have an overflow segment, then you can add an
overflow segment as follows:

ALTER TABLE docindex ADD OVERFLOW TABLESPACE ovf_tbs;
Moving (Rebuilding) Index-Organized Tables

Because index-organized tables are primarily stored in a B*-tree index, you may
encounter fragmentation as a consequence of incremental updates. However, you

Managing Tables 13-23

Index-Organized Tables

can use the ALTER TABLE...MOVE statement to rebuild the index and reduce this
fragmentation.

The following statement rebuilds the index-organized table DOCINDEX after
setting its INITRANS to 10:

ALTER TABLE docindex MOVE INITRANS 10;
You can move index-organized tables with no overflow data segment online using

the ONLINE option. For example, if the DOCINDEX table does not have an
overflow data segment, then you can perform the move online as follows:

ALTER TABLE docindex MOVE ONLINE INITRANS 10;

The following statement rebuilds the index-organized table DOCINDEX along with
its overflow data segment:

ALTER TABLE docindex MOVE TABLESPACE ix_ths OVERFLOW TABLESPACE ov_tbs;

And in this last statement, index-organized table IOT is moved while the LOB index
and data segment for C2 are rebuilt:

ALTER TABLE iot MOVE LOB (C2) STORE AS (TABLESPACE lob_ts);

Scenario: Updating the Key Column

A key column update is logically equivalent to deleting the row with the old key
value and inserting the row with the new key value at the appropriate place to
maintain the primary key order.

Logically, in the following example, the employee row for dept_id=20 and
e _id=10 are deleted and the employee row for dept_id=23 ande_id=10 are
inserted:

UPDATE employees
SET dept id=23
WHERE dept_id=20 and e_id=10;

Analyzing Index-Organized Tables

Just like conventional tables, index-organized tables are analyzed using the
ANALYZE statement:

ANALYZE TABLE docindex COMPUTE STATISTICS;

13-24 Oracle8i Administrator’'s Guide

Index-Organized Tables

The ANALYZE statement analyzes both the primary key index segment and the
overflow data segment, and computes logical as well as physical statistics for the

table.
« The logical statistics can be queried using USER_TABLES, ALL_TABLES or
DBA_TABLES.

= You can query the physical statistics of the primary key index segment using
USER_INDEXES, ALL_INDEXES or DBA_INDEXES (and using the primary
key index name). For example, you can obtain the primary key index segment’s
physical statistics for the table docindex as follows:

SELECT *FROM DBA_INDEXES WHERE INDEX_NAME="PK_DOCINDEX;

« You can query the physical statistics for the overflow data segment using the
USER_TABLES, ALL_TABLES or DBA_TABLES. You can identify the overflow
entry by searching for IOT_TYPE = 'IOT_OVERFLOWEFor example, you can
obtain overflow data segment physical attributes associated with the
DOCINDEX table as follows:

SELECT *FROM DBA_TABLES WHERE IOT_TYPE=IOT_OVERFLOW
and IOT_NAME="DOCINDEX;

Using the ORDER BY Clause with Index-Organized Tables

If an ORDER BY clause only references the primary key column or a prefix of it,
then the optimizer avoids the sorting overhead as the rows are returned sorted on
the primary key columns.

For example, you create the following table:
CREATE TABLE employees (dept_id INTEGER, e_id INTEGER, e_name
VARCHAR?, PRIMARY KEY (dept_id, e_id)) ORGANIZATION INDEX;
The following queries avoid sorting overhead because the data is already sorted on
the primary key:
SELECT * FROM employees ORDER BY (dept_id, e_id);
SELECT * FROM employees ORDER BY (dept _id);

If, however, you have an ORDER BY clause on a suffix of the primary key column
or non-primary key columns, additional sorting is required (assuming no other
secondary indexes are defined).

SELECT * FROM employees ORDER BY (e_id);
SELECT * FROM employees ORDER BY (e_name);

Managing Tables 13-25

Index-Organized Tables

Converting Index-Organized Tables to Regular Tables

You can convert index-organized tables to regular tables using the Oracle
IMPORT/EXPORT utilities, or the CREATE TABLE...AS SELECT statement.

To convert an index-organized table to a regular table:
« Export the index-organized table data using conventional path
« Create a regular table definition with the same definition

« Import the index-organized table data, making sure IGNORE=y(ensures that
object exists error is ignored)

Note: Before converting an index-organized table to a regular
table, be aware that index-organized tables cannot be exported
using pre-Oracle8 versions of the Export utility.

See Also: For more details about using IMPORT/EXPORT, see
Oracle8i Utilities.

13-26 Oracle8i Administrator’'s Guide

14

Managing Indexes

This chapter describes various aspects of index management, and includes the
following topics:

« Guidelines for Managing Indexes
« Creating Indexes

« Altering Indexes

« Monitoring Space Use of Indexes
« Dropping Indexes

Before attempting tasks described in this chapter, familiarize yourself with the
concepts in Chapter 12, "Guidelines for Managing Schema Objects".

Managing Indexes 14-1

Guidelines for Managing Indexes

Guidelines for Managing Indexes

This section describes guidelines to follow when managing indexes, and includes
the following topics:

« Create Indexes After Inserting Table Data

« Limit the Number of Indexes per Table

« Specify Transaction Entry Parameters

« Specify Index Block Space Use

« Estimate Index Size and Set Storage Parameters

« Specify the Tablespace for Each Index

« Parallelize Index Creation

« Consider Creating Indexes with NOLOGGING

» Consider Costs and Benefits of Coalescing or Rebuilding Indexes
« Consider Cost Before Disabling or Dropping Constraints

An index is an optional structure associated with tables and clusters, which you can
create explicitly to speed SQL statement execution on a table. Just as the index in
this manual helps you locate information faster than if there were no index, an
Oracle index provides a faster access path to table data.

Oracle provides several indexing schemes, which provide complementary
performance functionality: B*-tree indexes (currently the most common), B*-tree
cluster indexes, hash cluster indexes, reverse key indexes, and bitmap indexes.
Oracle also provides support for function-based indexes and domain indexes
specific to an application or cartridge.

The absence or presence of an index does not require a change in the wording of
any SQL statement. An index merely offers a fast access path to the data; it affects
only the speed of execution. Given a data value that has been indexed, the index
points directly to the location of the rows containing that value.

Indexes are logically and physically independent of the data in the associated table.
You can create or drop an index any time without affecting the base tables or other
indexes. If you drop an index, all applications continue to work; however, access to
previously indexed data might be slower. Indexes, being independent structures,
require storage space.

14-2 Oracle8i Administrator's Guide

Guidelines for Managing Indexes

Oracle automatically maintains and uses indexes after they are created. Oracle
automatically reflects changes to data, such as adding new rows, updating rows, or
deleting rows, in all relevant indexes with no additional action by users.

See Also:

« For conceptual information about indexes and indexing,
including descriptions of the various indexing schemes offered
by Oracle, see Oracle8i Concepts.

« For information about performance implications of index
creation, and specific information about using bitmap indexes
(including size estimates), see Oracle8i Designing and Tuning for
Performance.

« For information about defining domain-specific operators and
indexing schemes and integrating them into the Oracle
database server, see the Oracle8i Data Cartridge Developer’s
Guide.

Create Indexes After Inserting Table Data

You should create an index for a table after inserting or loading data (via
SQL*Loader or Import) into the table. It is more efficient to insert rows of data into a
table that has no indexes and then create the indexes for subsequent access. If you
create indexes before table data is loaded, every index must be updated every time
a row is inserted into the table. You must also create the index for a cluster before
inserting any data into the cluster.

When an index is created on a table that already has data, Oracle must use sort
space. Oracle uses the sort space in memory allocated for the creator of the index
(the amount per user is determined by the initialization parameter SORT_AREA _
SIZE), but must also swap sort information to and from temporary segments
allocated on behalf of the index creation.

If the index is extremely large, you may want to perform the following tasks.

To Manage a Large Index:
1. Create a new temporary segment tablespace.
2. Alter the index creator’s temporary segment tablespace.

3. Create the index.

Managing Indexes 14-3

Guidelines for Managing Indexes

4. Remove the temporary segment tablespace and re-specify the creator’s
temporary segment tablespace, if desired.

See Also: Under certain conditions, data can be loaded into a
table with SQL*Loader’s direct path load and an index can be
created as data is loaded; see Oracle8i Utilities for more information.

Limit the Number of Indexes per Table

A table can have any number of indexes. However, the more indexes there are, the
more overhead is incurred as the table is modified. Specifically, when rows are
inserted or deleted, all indexes on the table must be updated as well. Also, when a
column is updated, all indexes that contain the column must be updated.

Thus, there is a trade-off between the speed of retrieving data from a table and the
speed of updating the table. For example, if a table is primarily read-only, having

more indexes can be useful; but if a table is heavily updated, having fewer indexes
may be preferable.

Specify Transaction Entry Parameters

By specifying the INITRANS and MAXTRANS parameters during the creation of
each index, you can affect how much space is initially and can ever be allocated for
transaction entries in the data blocks of an index’s segment. You should also leave

room for updates and later identify long-term (for example, the life of the index)
values for these settings.

See Also: For more information about setting these parameters,

see "Transaction Entry Settings (INITRANS and MAXTRANS)" on
page 12-7.

Specify Index Block Space Use

When an index is created for a table, data blocks of the index are filled with the
existing values in the table up to PCTFREE. The space reserved by PCTFREE for an
index block is only used when a new row is inserted into the table and the
corresponding index entry must be placed in the correct index block (that is,
between preceding and following index entries). If no more space is available in the
appropriate index block, the indexed value is placed where it belongs (based on the
lexical set ordering). Therefore, if you plan on inserting many rows into an indexed
table, PCTFREE should be high to accommodate the new index values. If the table is

14-4 Oracle8i Administrator's Guide

Guidelines for Managing Indexes

relatively static without many inserts, PCTFREE for an associated index can be low
so that fewer blocks are required to hold the index data.

See Also: PCTUSED cannot be specified for indexes. See
"Managing Space in Data Blocks" on page 12-2 for information
about the PCTFREE parameter.

Estimate Index Size and Set Storage Parameters

Estimating the size of an index before creating one is useful for the following
reasons:

You can use the combined estimated size of indexes, along with estimates for
tables, rollback segments, and redo log files, to determine the amount of disk
space that is required to hold an intended database. From these estimates, you
can make correct hardware purchases and other decisions.

You can use the estimated size of an individual index to better manage the disk
space that the index will use. When an index is created, you can set appropriate
storage parameters and improve I/0 performance of applications that use the
index.

For example, assume that you estimate the maximum size of a index before
creating it. If you then set the storage parameters when you create the index,
fewer extents will be allocated for the table’s data segment, and all of the
index’s data will be stored in a relatively contiguous section of disk space. This
decreases the time necessary for disk 1/0 operations involving this index.

The maximum size of a single index entry is approximately one-half the data block
size. As with tables, you can explicitly set storage parameters when creating an
index.

See Also: For specific information about storage parameters, see
"Setting Storage Parameters" on page 12-8.

Specify the Tablespace for Each Index

Indexes can be created in any tablespace. An index can be created in the same or
different tablespace as the table it indexes.

If you use the same tablespace for a table and its index, then database maintenance
may be more convenient (such as tablespace or file backup and application
availability or update) and all the related data will always be online together.

Managing Indexes 14-5

Guidelines for Managing Indexes

Using different tablespaces (on different disks) for a table and its index produces
better performance than storing the table and index in the same tablespace, due to
reduced disk contention.

If you use different tablespaces for a table and its index and one tablespace is offline
(containing either data or index), then the statements referencing that table are not
guaranteed to work.

Parallelize Index Creation

You can parallelize index creation. Because multiple processes work together to
create the index, Oracle can create the index more quickly than if a single server
process created the index sequentially.

When creating an index in parallel, storage parameters are used separately by each
query server process. Therefore, an index created with an INITIAL value of 5M and
a parallel degree of 12 consumes at least 60M of storage during index creation.

See Also: For more information on parallel index creation, see
Oracle8i Designing and Tuning for Performance.

Consider Creating Indexes with NOLOGGING

You can create an index and generate minimal redo log records by specifying
NOLOGGING in the CREATE INDEX statement.

Note: Because indexes created using LOGGING are not archived,
you should perform a backup after you create the index.

Creating an index with NOLOGGING has the following benefits:
= Space is saved in the redo log files.

= The time it takes to create the index is decreased.

« Performance improves for parallel creation of large indexes.

In general, the relative performance improvement is greater for larger indexes
created without LOGGING than for smaller ones. Creating small indexes without
LOGGING has little affect on the time it takes to create an index. However, for
larger indexes the performance improvement can be significant, especially when
you are also parallelizing the index creation.

14-6 Oracle8i Administrator's Guide

Guidelines for Managing Indexes

Consider Costs and Benefits of Coalescing or Rebuilding Indexes

When you encounter index fragmentation (due to improper sizing or increased
growth), you can rebuild or coalesce the index. Before you perform either task,
though, weigh the costs and benefits of each option and choose the one that works
best for your situation. Table 14-1 is a comparison of the costs and benefits
associated with rebuilding and coalescing indexes.

Table 14-1 To Rebuild or Coalesce...That Is the Question

REBUILD COALESCE

Quickly moves index to another Cannot move index to another tablespace.

tablespace.

Higher costs. Requires more disk space. Lower costs. Does not require more disk
space.

Creates new tree, shrinks height if Coalesces leaf blocks within same branch of

applicable. tree.

Enables you to quickly change storage and | Quickly frees up index leaf blocks for use.

tablespace parameters without having to

drop the original index.

In situations where you have B*-tree index leaf blocks that can be freed up for reuse,
you can merge those leaf blocks using the following statement:

ALTER INDEX vmoore COALESCE;

Figure 14-1 illustrates the effect of an ALTER INDEX COALESCE on the index
VMOORE. Before performing the operation, the first two leaf blocks are 50% full,
which means you have an opportunity to reduce fragmentation and completely fill
the first block while freeing up the second (in this example, assume that
PCTFREE=0).

Managing Indexes 14-7

Creating Indexes

Figure 14-1 Coalescing Indexes

B-tree Index B-tree Index

Before ALTER INDEX vmoore COALESCE; After ALTER INDEX vmoore COALESCE;

Consider Cost Before Disabling or Dropping Constraints

Because unique and primary keys have associated indexes, you should factor in the
cost of dropping and creating indexes when considering whether to disable or drop
a UNIQUE or PRIMARY KEY constraint. If the associated index for a UNIQUE key
or PRIMARY KEY constraint is extremely large, you may save time by leaving the
constraint enabled rather than dropping and re-creating the large index.

Creating Indexes

This section describes how to create an index, and includes the following topics:

Creating an Index Explicitly

Creating an Index Associated with a Constraint
Creating an Index Online

Creating a Function-Based Index

Rebuilding an Existing Index

Creating a Key-Compressed Index

To create an index in your own schema, one of the following conditions must be
true:

The table or cluster to be indexed must be in your own schema.

14-8 Oracle8i Administrator's Guide

Creating Indexes

« You must have INDEX privilege on the table to be indexed.
« You must have CREATE ANY INDEX system privilege.

To create an index in another schema, you must have CREATE ANY INDEX
system privilege. Also, the owner of the schema to contain the index must have
either space quota on the tablespaces to contain the index or index partitions, or
UNLIMITED TABLESPACE system privilege.

See Also: For syntax and restrictions on the use of the CREATE
INDEX, ALTER INDEX, and DROP INDEX statements, see the
Oracle8i SQL Reference.

Creating an Index Explicitly

You can create indexes explicitly (outside of integrity constraints) using the SQL
statement CREATE INDEX. The following statement creates an index named EMP_
ENAME for the ENAME column of the EMP table:

CREATE INDEX emp_ename ON emp(ename)
TABLESPACE users
STORAGE (INITIAL 20K
NEXT 20k
PCTINCREASE 75)
PCTFREEQO;

Notice that several storage settings are explicitly specified for the index. If you do
not specify storage options (such as INITIAL and NEXT) for an index, the default
storage options of the host tablespace are automatically used.

LOBS, LONG and LONG RAW columns cannot be indexed.

Creating an Index Associated with a Constraint

Oracle enforces a UNIQUE key or PRIMARY KEY integrity constraint by creating a
unique index on the unique key or primary key. This index is automatically created
by Oracle when the constraint is enabled; no action is required by the issuer of the
CREATE TABLE or ALTER TABLE statement to create the index. This includes
both when a constraint is defined and enabled, and when a defined but disabled
constraint is enabled.

To enable a UNIQUE key or PRIMARY KEY (which creates an associated index),
the owner of the table needs a quota for the tablespace intended to contain the
index, or the UNLIMITED TABLESPACE system privilege.

Managing Indexes 14-9

Creating Indexes

You can set the storage options for the indexes associated with UNIQUE key and
PRIMARY KEY constraints using the ENABLE clause with the USING INDEX
option. The following statement defines a PRIMARY KEY constraint and specifies
the associated index’s storage option:

CREATE TABLE emp (
empno NUMBER(S) PRIMARY KEY, age INTEGER)
ENABLE PRIMARY KEY USING INDEX
TABLESPACE users
PCTFREEO;

Oracle recommends that you do not explicitly define UNIQUE indexes on tables
(CREATE UNIQUE INDEX). In general, it is better to create constraints to enforce
uniqueness than it is to use the CREATE UNIQUE INDEX syntax. A constraint’s
associated index always assumes the name of the constraint; you cannot specify a
specific name for a constraint index.

Creating an Index Online

Previously, when creating an index on a table there has always been a DML S-lock
on that table during the index build operation, which meant you could not perform
DML operations on the base table during the build.

Now, with the ever-increasing size of tables and necessity for continuous
operations, you can create and rebuild indexes online—meaning you can update
base tables at the same time you are building or rebuilding indexes on that table.
Note, though, that there are still DML SS-locks, which means you cannot perform
other DDL operations during an online index build.

The following statements perform online index build operations:
ALTER INDEX emp_name REBUILD ONLINE;

CREATE INDEX emp_name ON emp (mgr, empl, emp2, emp3) ONLINE;

Note: While you can perform DML operations during an online
index build, Oracle recommends that you do not perform
major/large DML operations during this procedure. For example, if
you wish to load rows that total up to 30% of the size of an existing
table, you should perform this load before the online index build.

14-10 Oracle8i Administrator’'s Guide

Creating Indexes

Creating a Function-Based Index

Function-based indexes facilitate queries that qualify a value returned by a function or
expression. The value of the function or expression is pre-computed and stored in
the index. Specific features of function-based indexing include:

« You can create indexes where the search key is an expression.

« They provide an efficient mechanism for evaluating predicates involving
functions.

« They provide support for linguistic sorts based on linguistic sort keys
(collation). The linguistic sort index can be used for efficient linguistic collation
in SQL statements.

=« You can perform case-insensitive sorts.

« You can create true descending order indexes. They are treated as a special case
of function-based indexes.

To illustrate a function based index, lets consider the following statement that
defines a function based index (AREA_INDEX) defined on the function
AREA(GEO):

CREATE INDEX area_index ON rivers (Area(geo));

In the following SQL statement, when AREA(GEO) is referenced in the WHERE
clause, the optimizer considers using the index AREA_INDEX.

SELECT id, geo, Area(geo), desc
FROM riversr
WHERE Area(geo) >5000;

Table owners should have EXECUTE privileges on the functions used in
function-based indexes. Also, because a function-based index depends upon any
function it is using, it can be invalidated when a function changes. You can use an
ALTER INDEX...ENABLE statement to enable a function-based index that has been
disabled if the function is valid. The ALTER INDEX...DISABLE statement allows
you to disable the use of a function-based index. You might want to do this if you
are working on the body of the function.

For the creation of a function-based index in your own schema, you must be
granted the CREATE INDEX and QUERY REWRITE system privileges. To create
the index in another schema or on another schema’s tables, you must have the
CREATE ANY INDEX and GLOBAL QUERY REWRITE privileges.

Managing Indexes 14-11

Creating Indexes

You must have the following initialization parameters defined to create a
function-based index:

« QUERY_REWRITE_INTEGRITY must be set to TRUSTED
« QUERY_REWRITE_ENABLED must be set to TRUE

« COMPATIBLE must set to 8.1.0.0.0 or a greater value
Additionally, to use a function-based index:

« The table must be analyzed after the index is created.

« The query must be guaranteed not to need any NULL values from the indexed
expression, since NULL values are not stored in indexes.

Note: CREATE INDEX stores the timestamp of the most recent
function used in the function-based index. This timestamp is
updated when the index is validated. When performing tablespace
point-in-time recovery of a function-based index, if the timestamp
on the most recent function used in the index is newer than the
timestamp stored in the index, then the index will be marked
invalid. You must use the ANALYZE VALIDATE INDEX
statement to validate this index.

Some examples of using function based indexes follow.
See Also: Other sources of information about function-based
indexes include:
« Oracle8i Concepts
« Oracle8i Data Warehousing Guide

« Oracle8i Application Developer’s Guide - Fundamentals

Example 1

The following statement creates function-based index IDX on table EMP based on
an uppercase evaluation of the ENAME column:

CREATE INDEX idx ON emp (UPPER(emp_name));

Now the SELECT statement uses the function-based index on UPPER(EMP_NAME)
to retrieve all employees with names that start with JOH:

14-12 Oracle8i Administrator’'s Guide

Creating Indexes

SELECT * FROM emp WHERE UPPER(emp_name) LIKE 'JOH%;

This example also illustrates a case-insensitive search.

Example 2
This statement creates a function-based index on an expression:

CREATE INDEX idx ONt(a+b*(c- 1), a,b);
SELECT statements can use either an index range scan (in the following SELECT

statement the expression is a prefix of the index) or index full scan (preferable when
the index specifies a high degree of parallelism).

SELECT aFROMtWHERE a+b*(c- 1) <100;

Example 3

You can also use function-based indexes to support NLS sort index as well.
NLSSORT is a function that returns a sort key that has been given a string. Thus, if
you want to build an index on NAME using NLSSORT, issue the following
statement:

CREATE INDEX nls_index ON t_table (NLSSORT(name, NLS_SORT = German));

This statement creates index NLS_INDEX on table T_TABLE with the collation
sequence German.

Now, to select from T_TABLE using the NLS_SORT index:

SELECT *FROMt table ORDER BY name;

Rows will be ordered using the collation sequence in German.

Example 4
This example combines a case-insensitive sort and a language sort.
CREATE INDEX empi ON emp

UPPER ((ename), NLSSORT(ename));

Here, an NLS_SORT specification does not appear in the NLSSORT argument
because NLSSORT looks at the session setting for the language of the linguistic sort
key. Example 3 illustrated a case where NLS_SORT was specified.

Managing Indexes 14-13

Creating Indexes

Rebuilding an Existing Index

Before rebuilding or re-creating an existing index, compare the costs and benefits
associated with rebuilding to those associated with coalescing indexes as described
in Table 14-1 on page 14-7.

You can create an index using an existing index as the data source. Creating an
index in this manner allows you to change storage characteristics or move to a new
tablespace. Rebuilding an index based on an existing data source also removes
intra-block fragmentation. In fact, compared to dropping the index and using the
CREATE INDEX statement, re-creating an existing index offers better performance.

Issue the following statement to rebuild an existing index:
ALTER INDEX index name REBUILD;

The REBUILD clause must immediately follow the index name, and precede any
other options. Also, the REBUILD clause cannot be used in conjunction with the
DEALLOCATE UNUSED clause.

Creating a Key-Compressed Index

Creating an index using key compression enables you to eliminate repeated
occurrences of key column prefix values.

Key compression breaks an index key into a prefix and a suffix entry. Compression
is achieved by sharing the prefix entries among all the suffix entries in an index
block. This sharing can lead to huge savings in space, allowing you to store more
keys per index block while improving performance.

Key compression can be useful in the following situations:

« You have a non-unique index where ROWID is appended to make the key
unique. If you use key compression here, the duplicate key will be stored as a
prefix entry on the index block without the ROWID. The remaining rows will
be suffix entries consisting of only the ROWID

= You have a unique multi-column index.

You can enable key compression using the COMPRESS clause.You can also specify
the prefix length (as the number of key columns), which identifies how the key
columns are broken into a prefix and suffix entry. For example, the following
statement will compress away duplicate occurrences of a key in the index leaf block.

CREATE INDEX emp_ename (ename)
TABLESPACE users
COMPRESS 1

14-14 Oracle8i Administrator’'s Guide

Altering Indexes

The COMPRESS clause can also be specified during rebuild. For example, during
rebuild you can disable compression as follows:

ALTER INDEX emp_ename REBUILD NOCOMPRESS;

Altering Indexes

To alter an index, your schema must contain the index or you must have the ALTER
ANY INDEX system privilege. You can rebuild or coalesce an index, alter its real
and default storage characteristics and some other physical properties, but you
cannot change its column structure.

Alter the storage parameters of any index, including those created by Oracle to
enforce primary and unique key integrity constraints, using the SQL statement
ALTER INDEX. For example, the following statement alters the EMP_ENAME
index:

ALTER INDEX emp_ename
INITRANS 5
MAXTRANS 10
STORAGE (PCTINCREASE 50);

When you alter the transaction entry settings (INITRANS, MAXTRANS) of an
index, a new setting for INITRANS applies only to data blocks subsequently
allocated, while a new setting for MAXTRANS applies to all blocks (currently and
subsequently allocated blocks) of an index.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new
settings for the other storage parameters affect only extents subsequently allocated
for the index.

For indexes that implement integrity constraints, you can also adjust storage
parameters by issuing an ALTER TABLE statement that includes the ENABLE
clause with the USING INDEX option. For example, the following statement
changes the storage options of the index defined in the previous section:

ALTER TABLE emp
ENABLE PRIMARY KEY USING INDEX
PCTFREES5;

Managing Indexes 14-15

Monitoring Space Use of Indexes

Monitoring Space Use of Indexes

If key values in an index are inserted, updated, and deleted frequently, the index
may or may not use its acquired space efficiently over time. Monitor an index’s
efficiency of space usage at regular intervals by first analyzing the index’s structure
and then querying the INDEX_STATS view:

SELECT pct_used FROM sys.index_stats WHERE name =" indexname

The percentage of an index’s space usage will vary according to how often index
keys are inserted, updated, or deleted. Develop a history of an index’s average
efficiency of space usage by performing the following sequence of operations
several times:

« Analyzing statistics

« Validating the index

« Checking PCT_USED

« Dropping and re-creating (or coalescing) the index

When you find that an index’s space usage drops below its average, you can
condense the index’s space by dropping the index and rebuilding it, or coalescing it.
For information about analyzing an index’s structure, see "Analyzing Tables,
Indexes, and Clusters" on page 19-3.

Dropping Indexes

To drop an index, the index must be contained in your schema, or you must have
the DROP ANY INDEX system privilege.

You might want to drop an index for any of the following reasons:
« Theindex is no longer required.

« Theindex is not providing anticipated performance improvements for queries
issued against the associated table. (For example, the table might be very small,
or there might be many rows in the table but very few index entries.)

« Applications do not use the index to query the data.
« The index has become invalid and must be dropped before being rebuilt.

« The index has become too fragmented and must be dropped before being
rebuilt.

14-16 Oracle8i Administrator’'s Guide

Dropping Indexes

When you drop an index, all extents of the index’s segment are returned to the
containing tablespace and become available for other objects in the tablespace.

How you drop an index depends on whether you created the index explicitly with a
CREATE INDEX statement, or implicitly by defining a key constraint on a table. If
you created the index explicitly with the CREATE INDEX statement, then you can
drop the index with the DROP INDEX statement. The following statement drops
the EMP_ENAME index:

DROP INDEX emp_ename;

You cannot drop only the index associated with an enabled UNIQUE key or
PRIMARY KEY constraint. To drop a constraint’s associated index, you must
disable or drop the constraint itself. For more information about dropping a
constraint’s associated index, see "Managing Integrity Constraints" on page 19-14.

Note: If atable is dropped, all associated indexes are dropped
automatically.

Managing Indexes 14-17

Dropping Indexes

14-18 Oracle8i Administrator’'s Guide

15

Managing Partitioned Tables and Indexes

This chapter describes various aspects of managing partitioned tables and indexes,
and includes the following sections:

« What Are Partitioned Tables and Indexes?
« Partitioning Methods

« Creating Partitions

« Maintaining Partitions

« Partitioned Tables and Indexes Examples

Managing Partitioned Tables and Indexes 15-1

What Are Partitioned Tables and Indexes?

What Are Partitioned Tables and Indexes?

Today’s enterprises frequently run mission critical databases containing upwards of
several hundred gigabytes and, in many cases, several terabytes of data. These
enterprises are challenged by the support and maintenance requirements of very
large databases (VLDB), and must devise methods to meet those challenges.

One way to meet VLDB demands is to create and use partitioned tables and indexes.
Partitioned tables allow your data to be broken down into smaller, more
manageable pieces called partitions, or even subpartitions. Indexes, may be
partitioned in similar fashion. Each partition can be managed individually, and can
operate independently of the other partitions, thus providing a structure that can be
better tuned for availability and performance.

If you are using parallel execution, partitions provide another means of
parallelization. Operations on partitioned tables and indexes are performed in
parallel by assigning different parallel execution servers to different partitions of
the table or index.

Partitions and subpartitions of a table or index all share the same logical attributes.
For example, all partitions (or subpartitions) in a table share the same column and
constraint definitions, and all partitions (or subpartitions) of an index share the
same index options. They can, however, have different physical attributes (such as
TABLESPACE).

Although you are not required to keep each table or index partition (or
subpartition) in a separate tablespace, it is to your advantage to do so. Storing
partitions in separate tablespaces enables you to:

« Reduce the possibility of data corruption in multiple partitions
« Back up and recover each partition independently

« Control the mapping of partitions to disk drives (important for balancing 1/0
load)

« Improve manageability, availability and performance

Partitioning is transparent to existing applications and standard DML statements
run against partitioned tables. However, an application can be programmed to take
advantage of partitioning by using partition-extended table or index names in
DML.

15-2 Oracle8i Administrator's Guide

Partitioning Methods

See Also: Detailed information on the concepts of partitioning is
contained in Oracle8i Concepts. Before attempting to create a
partitioned table or index, or perform maintenance operations on
any partitioned table, it is recommended that you review that
information.

You can find information on parallel execution in Oracle8i Concepts
and Oracle8i Designing and Tuning for Performance.

Partitioning Methods
There are three partitioning methods offered by Oracle:
» Range Partitioning
» Hash Partitioning
« Composite Partitioning

Indexes, as well as tables, can be partitioned. A global index can only be partitioned
by range, but it may be defined on any type of partitioned, or nonpartitioned, table.
It usually requires more maintenance than a local index.

A local index is constructed so that it reflects the structure of the underlying table. It
is equipartitioned with the underlying table, meaning that it is partitioned on the
same columns as the underlying table, creates the same number of partitions or
subpartitions, and gives them the same partition bounds as corresponding
partitions of the underlying table. For local indexes, index partitioning is
maintained automatically when partitions are affected by maintenance activity. This
ensures that the index remains equipartitioned with the underlying table.

Oracle’s partitioning methods are introduced in the following sections:
« Using the Range Partitioning Method

« Using the Hash Partitioning Method

« Using the Composite Partitioning Method

Using the Range Partitioning Method

Use range partitioning to map rows to partitions based on ranges of column values.
This type of partitioning is useful when dealing with data that has logical ranges
into which it can be distributed; for example months of the year. Performance is
best when the data evenly distributes across the range. If partitioning by range

Managing Partitioned Tables and Indexes 15-3

Partitioning Methods

causes partitions to vary dramatically in size because of unequal distribution, you
may want to consider one of the other methods of partitioning.

When creating range partitions, you must specify:

« Partitioning method: range

« Partitioning column(s)

« Partition descriptions identifying partition bounds

The example below creates a table of four partitions, one for each quarter’s sales.
The columns SALE_YEAR, SALE_MONTH, and SALE_DAY are the partitioning
columns, while their values constitute a specific row’s partitioning key. The VALUES
LESS THAN clause determines the partition bound: rows with partitioning key
values that compare less than the ordered list of values specified by the clause will
be stored in the partition. Each partition is given a name (SALES_Q1, SALES g2,...),
and each partition is contained in a separate tablespace (TSA, TSB,...).

CREATE TABLE sales
(invoice_no NUMBER,
sale_year INT NOT NULL,
sale_month INT NOT NULL,
sale_day INTNOT NULL)
PARTITION BY RANGE (sale_year, sale_month, sale_day)
(PARTITION sales_q1 VALUES LESS THAN (1999, 04, 01)
TABLESPACE tsa,
PARTITION sales_o2 VALUES LESS THAN (1999, 07, 01)
TABLESPACE tsb,
PARTITION sales_¢3 VALUES LESS THAN (1999, 10, 01)
TABLESPACE tsc,
PARTITION sales_o4 VALUES LESS THAN (2000, 01, 01)
TABLESPACE tsd);

A row with SALE_YEAR=1999, SALE_MONTH=8, and SALE_DAY=1 has a
partitioning key of (1999, 8, 1) and would be stored in partition SALES_Q3.

Each partition of a range-partitioned table is stored in a separate segment.

More specific information on creating range-partitioned tables is contained in the
section "Creating Range Partitions" on page 15-8.

After you have created a range-partitioned table, you can use the ALTER TABLE
statement to add additional partitions, merge partitions, load data (exchange
partition), or perform other maintenance operations. These maintenance operations
are listed in Table 15-1 on page 15-12. The section "Maintaining Partitions" on

page 15-12 describes and presents examples of these operations.

15-4 Oracle8i Administrator's Guide

Partitioning Methods

You can create nonpartitioned global indexes, range-partitioned global indexes, and
local indexes on range-partitioned tables, and perform maintenance on them as
specified in Table 15-2 on page 15-13. See "Creating Partitions" on page 15-7 and
"Maintaining Partitions" on page 15-12 for specific information on creating and
maintaining partitioned indexes.

Note: If your enterprise has or will have databases using different
character sets, use caution when partitioning on character columns,
because the sort sequence of characters is not identical in all
character sets. For more information, see Oracle8i National Language
Support Guide.

Using the Hash Partitioning Method

Use hash partitioning if your data does not easily lend itself to range partitioning,
but you would like to partition for performance reasons. Hash partitioning provides
a method of evenly distributing data across a specified number of partitions. Rows
are mapped into partitions based on a hash value of the partitioning key. Creating
and using hash partitions gives you a highly tunable method of data placement,
because you can influence availability and performance by spreading these evenly
sized partitions across 1/0 devices (striping).

To create hash partitions you specify the following:

« Partitioning method: hash

« Partitioning columns(s)

« Number of partitions or individual partition descriptions

The following example creates a hash-partitioned table. The partitioning column is
ID, four partitions are created and assigned system generated names, and they are
placed in four named tablespaces (GEARL, GEAR2,...).

CREATE TABLE scubagear
(id NUMBER,
name VARCHAR?2 (60))
PARTITION BY HASH (id)
PARTITIONS 4
STORE IN (gearl, gear2, gear3, geard);

Each partition of a hash-partitioned table is stored in a separate segment.

Managing Partitioned Tables and Indexes 15-5

Partitioning Methods

More detailed information on creating hash-partitioned tables is contained in the
section "Creating Hash Partitions" on page 15-10.

The ALTER TABLE statement can be used to perform maintenance operations on
hash-partitioned tables. Most range partition maintenance operations are supported
for hash partitions, except for the following:

« SPLIT PARTITION
« DROP PARTITION
« MERGE PARTITIONS

Additionally, there are two maintenance operations specifically for partitions
created using the hash partitioning method.

«» COALESCE PARTITION: drops a hash partition by redistributing its contents
into one or more remaining partitions as determined by the hash function. See
"Coalescing Partitions” on page 15-16.

« ADD PARTITION: different syntax than the add range partition clause. See
"Adding a Partition to a Hash-Partitioned Table" on page 15-14.

Maintenance operations for hash-partitioned tables are listed in Table 15-1 on
page 15-12 and discussed in "Maintaining Partitions” on page 15-12.

You can create nonpartitioned global indexes, range-partitioned global indexes, and
local indexes on hash-partitioned tables. For more information about indexing see
"Creating Partitions” on page 15-7 and "Maintaining Partitions" on page 15-12.

Using the Composite Partitioning Method

Composite partitioning partitions data using the range method, and within each
partition, subpartitions it using the hash method. Composite partitions are ideal for
both historical data and striping, and provide improved manageability of range
partitioning and data placement, as well as the parallelism advantages of hash
partitioning.

When creating composite partitions, you specify the following:
« Partitioning method: range

« Partitioning column(s)

« Partition descriptions identifying partition bounds

« Subpartitioning method: hash

« Subpartitioning column(s)

15-6 Oracle8i Administrator's Guide

Creating Partitions

« Number of subpartitions per partition or descriptions of subpartitions

The following statement creates a composite-partitioned table. In this example,
three range partitions are created, each containing 8 subpartitions. The
subpartitions are not named so system generated names are assigned, but the
STORE IN clause distributes them across the 4 specified tablespaces (TS1,...,TS4).

CREATE TABLE scubagear (equipno NUMBER, equipname VARCHAR(32), price NUMBER)
PARTITION BY RANGE (equipno) SUBPARTITION BY HASH(equipname)
SUBPARTITIONS 8 STORE IN (ts1, ts3, ts5, ts7)
(PARTITION p1 VALUES LESS THAN (1000),
PARTITION p2 VALUES LESS THAN (2000),
PARTITION p3 VALUES LESS THAN (MAXVALUE));

Each subpartition of a composite-partitioned table is stored its own segment. The
partitions of a composite-partitioned table are logical structures only as their data is
stored in the segments of their subpartitions. As with partitions, these subpartitions
share the same logical attributes. Unlike range partitions in a range partitioned
table, the subpartitions cannot have different physical attributes from the owning
partition, although they are not required to reside in the same tablespace.

More specific information on creating composite-partitioned tables is contained in
the section "Creating Composite Partitions and Subpartitions" on page 15-11.

The ALTER TABLE statement can be used to perform maintenance operations on
composite-partitioned tables. You can perform all range partition maintenance
operations on a composite partition of a table. You can perform the same
maintenance operations on the hash subpartitions as on the hash partitions of a
hash-partitioned table. Maintenance operations for composite-partitioned tables are
listed in Table 15-1 on page 15-12 and discussed in "Maintaining Partitions" on
page 15-12.

You can create nonpartitioned global indexes, range-partitioned global indexes, and
local indexes on composite-partitioned tables. For more information about indexing
see "Creating Partitions" below and "Maintaining Partitions" on page 15-12.

Creating Partitions

This section presents details and examples of creating partitions for the different
types of partitioned tables and indexes. Creating a partitioned table or index is very
similar to creating a regular table or index, but you include a partitioning clause.
The partitioning clause, and subclauses, that you include depend upon the type of
partitioning you are trying to achieve.

Managing Partitioned Tables and Indexes 15-7

Creating Partitions

When you create (or alter) a partitioned table, a row movement clause, either
ENABLE ROW MOVEMENT or DISABLE ROW MOVEMENT can be specified.
This clause either enables or disables the migration of a row to a new partition if its
key is updated. The default is disable.

See Also: Information on the exact syntax of the partitioning
clauses for creating and altering partitioned tables and indexes, any
restrictions on their use, and specific privileges required for
creating and altering tables is contained in the Oracle8i SQL
Reference.

You can partition tables containing columns with LOBSs, objects,
varrays, and nested tables. For more information about creating
such tables, refer to the following books:

« Oracle8i Application Developer’s Guide - Large Objects (LOBS)

« Oracle8i Application Developer’s Guide - Fundamentals

Creating Range Partitions

The PARTITION BY RANGE clause of the CREATE TABLE statement identifies
that the table is to be range-partitioned. The PARTITION clauses identify the
individual partition ranges, and optional subclauses of a PARTITION clause can
specify physical and other attributes specific to a partition’s segment. If not
overridden at the partition level, partitions will inherit the attributes of their
underlying table.

In this example, the example presented earlier for a range-partitioned table is made
more complex. Storage parameters and a LOGGING attribute are specified at the
table level. These will replace the corresponding defaults inherited from the
tablespace level for the table itself, and will be inherited by the range partitions.
However, since there was little business in the first quarter, the storage attributes
for partition SALES_Q1 are made smaller. The ENABLE ROW MOVEMENT clause
is specified to allow the migration of a row to a new partition if an update to a key
value is made that would place the row in a different partition.

CREATE TABLE sales
(invoice_no NUMBER,
sale_year INT NOT NULL,
sale_month INT NOT NULL,
sale_day INTNOTNULL)
STORAGE (INITIAL 100K NEXT 50K) LOGGING
PARTITION BY RANGE (sale_year, sale_month, sale_day)
(PARTITION sales_q1 VALUES LESS THAN (1999, 04,01)

15-8 Oracle8i Administrator's Guide

Creating Partitions

TABLESPACE tsa STORAGE (INITIAL 20K, NEXT 10K),
PARTITION sales g2 VALUES LESS THAN (1999, 07,01)
TABLESPACE tsb,

PARTITION sales g3 VALUES LESS THAN (1999, 10,01)
TABLESPACE tsc,

PARTITION sales g4 VALUES LESS THAN (2000, 01, 01)
TABLESPACE tsd)

ENABLE ROW MOVEMENT;

The rules for creating range-partitioned global indexes are similar to those for
creating range-partitioned tables. The following is an example of creating a
range-partitioned global index by SALES MONTH on the above table. Each index
partition is named but is stored in the default tablespace for the index.

CREATE INDEX month_ix ON sales(sales_month)
GLOBAL PARTITION BY RANGE(sales_month)
(PARTITION pm1_ix VALUES LESS THAN (2)
PARTITION pm2_ix VALUES LESS THAN (3)
PARTITION pm3_ix VALUES LESS THAN (4)
PARTITION pm4_ix VALUES LESS THAN (5)
PARTITION pm5_ix VALUES LESS THAN (6)
PARTITION pm6_ix VALUES LESS THAN (7)
PARTITION pm7_ix VALUES LESS THAN (8)
PARTITION pm8_ix VALUES LESS THAN (9)
PARTITION pm9_ix VALUES LESS THAN (10)
PARTITION pm10_ix VALUES LESS THAN (11)
PARTITION pm11_ix VALUES LESS THAN (12)
PARTITION pm12_ix VALUES LESS THAN (MAXVALUE));

You can partition index-organized tables, and their secondary indexes, but only by
the range method. In the following example, a range-partitioned index-organized
table SALES is created. The INCLUDING clause specifies all columns after WEEK _
NO are stored in an overflow segment; there is one overflow segment for each
partition, all stored in the same tablespace (OVERFLOW_HERE). Optionally,
OVERFLOW TABLESPACE could be specified at the individual partition level, in
which case some or all of the overflow segments could have separate TABLESPACE
attributes.

CREATE TABLE sales(acct_ no NUMBER(),
acct_name CHAR(30),
amount_of sale NUMBER(6),
week no INTEGER,
sale_details VARCHAR2(1000),
PRIMARY KEY (acct_no, acct_name, week _no))
ORGANIZATION INDEX INCLUDING week _no

Managing Partitioned Tables and Indexes 15-9

Creating Partitions

OVERFLOW TABLESPACE overflow_here

PARTITION BY RANGE (week _no)
(PARTITION VALUES LESS THAN (5) TABLESPACE ts1,
PARTITION VALUES LESS THAN (9) TABLESPACE ts2,

PARTITION VALUES LESS THAN (MAXVALUE) TABLESPACE ts13);

Creating Hash Partitions

The PARTITION BY HASH clause of the CREATE TABLE statement identifies that
the table is to be hash-partitioned. The PARTITIONS clause can then be used to
specify the number of partitions to create, and optionally, the tablespaces to store
them in. Alternatively, you can use PARTITION clauses to name the individual
partitions and their tablespaces.

The only attribute you can specify for hash partitions is TABLESPACE. All of the
hash partitions of a table must share the same segment attributes (except
TABLESPACE), which are inherited from the table level.

The following examples illustrate two methods of creating a hash-partitioned table
named DEPT. In the first example the number of partitions is specified, but system
generated names are assigned to them and they are stored in the default tablespace
of the table.

CREATE TABLE dept (deptno NUMBER, deptname VARCHAR(32))
PARTITION BY HASH(deptno) PARTITIONS 16;

In this second example, names of individual partitions, and tablespaces in which
they will reside, are specified. The initial extent size for each hash partition
(segment) is also explicitly stated at the table level, and all partitions will inherit this
attribute.

CREATE TABLE dept (deptno NUMBER, deptname VARCHAR(32))
STORAGE (INITIAL 10K)
PARTITION BY HASH(deptno)
(PARTITION pl TABLESPACE ts1, PARTITION p2 TABLESPACE ts2,
PARTITION p3 TABLESPACE ts1, PARTITION p4 TABLESPACE ts3);

If you create a local index for the above table, Oracle will construct the index so that
it is equipartitioned with the underlying table and ensure that it is maintained
automatically when maintenance operations are performed on the underlying table.
The following is an example of creating a local index on the table DEPT.

CREATE INDEX locd_dept_ix ON dept(deptno) LOCAL

15-10 Oracle8i Administrator’'s Guide

Creating Partitions

You can optionally name the hash partitions and tablespaces into which the local
index partitions will be stored, but if you do not do so, Oracle will use the name of
the corresponding base partition as the index partition name, and store the index
partition in the same tablespace as the table partition.

Creating Composite Partitions and Subpartitions

To create a composite-partitioned table, you start by using the PARTITION BY
RANGE clause of a CREATE TABLE statement. Next, you specify a
SUBPARTITION BY HASH clause that follows similar syntax and rules as the
PARTITION BY HASH statement. The individual PARTITION and
SUBPARTITION or SUBPARTITIONS clauses follow.

Attributes specified for a (range) partition apply to all subpartitions of that
partition. You can specify different attributes for each (range) partition, and a
STORE IN clause can be specified at the partition level if the list of tablespaces
across which that partition’s subpartitions should be spread is different from those
of other partitions. All of this is illustrated in the following example.

CREATE TABLE emp (depino NUMBER, empname VARCHAR(32), grade NUMBER)
PARTITION BY RANGE(deptno) SUBPARTITION BY HASH(empname)
SUBPARTITIONS 8 STORE IN (ts1, ts3, 15, ts7)
(PARTITION p1 VALUES LESS THAN (1000) PCTFREE 40,
PARTITION p2 VALUES LESS THAN (2000)
STORE N (ts2, 4, ts6, t8),
PARTITION p3 VALUES LESS THAN (MAXVALUE)
(SUBPARTITION p3_s1 TABLESPACE ts4,
SUBPARTITION p3_s2 TABLESPACE tsh));

The following statement creates a local index on the EMP table where the index
segments will be spread across tablespaces TS7, TS8, and TS9.

CREATE INDEX emp_ix ON emp(deptno)
LOCAL STORE N (ts7, 18, ts9);

This local index will be equipartitioned with the base table as follows:
« It will consist of as many partitions as the base table.

« Each index partition will consist of as many subpartitions as the corresponding
base table partition.

« Index entries for rows in a given subpartition of the base table will be stored in
the corresponding subpartition of the index.

Managing Partitioned Tables and Indexes 15-11

Maintaining Partitions

Maintaining Partitions

This section describes how to perform partition and subpartition maintenance
operations for both tables and indexes.

Table Table 15-1 lists the maintenance operations that can be performed on table
partitions (or subpartitions) and, for each type of partitioning, lists the specific

clause of the ALTER TABLE statement that is used to perform that maintenance
operation.

Table 15-1 ALTER TABLE Maintenance Operations for Table Partitions

Maintenance
Operation

Range

Hash

Composite

Adding Partitions

ADD PARTITION

ADD PARTITION

ADD PARTITION
MODIFY PARTITION...ADD SUBPARTITION

Coalescing Partitions | n/a COALESCE MODIFY PARTITION...COALESCE
PARTITION SUBPARTITION

Dropping Partitions | DROP PARTITION n/a DROP PARTITION

Exchanging EXCHANGE EXCHANGE EXCHANGE PARTITION

Partitions PARTITION PARTITION EXCHANGE SUBPARTITION

Merging Partitions MERGE PARTITIONS n/a MERGE PARTITIONS

Modifying Partition | MODIFY DEFAULT MODIFY DEFAULT MODIFY DEFAULT ATTRIBUTES

Default Attributes ATTRIBUTES ATTRIBUTES

MODIFY DEFAULT ATTRIBUTES FOR
PARTITION

Modifying Real
Attributes of
Partitions

MODIFY PARTITION

MODIFY PARTITION

MODIFY PARTITION
MODIFY SUBPARTITION

Moving Partitions

MOVE PARTITION

MOVE PARTITION

MOVE SUBPARTITION

Renaming Partitions

RENAME PARTITION

RENAME PARTITION

RENAME PARTITION
RENAME SUBPARTITION

Splitting Partitions SPLIT PARTITION n/a SPLIT PARTITION
Truncating Partitions | TRUNCATE TRUNCATE TRUNCATE PARTITION
PARTITION PARTITION

TRUNCATE SUBPARTITION

Table 15-2 lists the maintenance operations that can be performed on index
partitions, and indicates on which type of index (global or local) they can be
performed. Global indexes do not reflect the structure of the underlying table, and if
partitioned, they can only be partitioned by range. Range-partitioned indexes share

15-12 Oracle8i Administrator’'s Guide

Maintaining Partitions

some, but not all, of the partition maintenance operations that can be performed on
range-partitioned tables.

Because local index partitioning is maintained automatically when table partitions
and subpartitions are affected by maintenance activity, partition maintenance on

local indexes is less necessary and there are fewer options.

Table 15-2 ALTER INDEX Maintenance Operations for Index Partitions

Type of Index Partitioning

Hash

MODIFY DEFAULT
ATTRIBUTES

MODIFY PARTITION

Type
Maintenance of
Operation Index Range
Dropping Index Global | DROP PARTITION
Partitions

Local n/a
Modifying Default Global | MODIFY DEFAULT
Attributes of Index ATTRIBUTES
Partitions

Local MODIFY DEFAULT

ATTRIBUTES

Modifying Real Global | MODIFY PARTITION
Attributes of Index
Partitions Local | MODIFY PARTITION
Rebuilding Index Global | REBUILD PARTITION
Partitions

Local REBUILD PARTITION
Renaming Index Global | RENAME PARTITION
Partitions

Local RENAME PARTITION
Splitting Index Global | SPLIT PARTITION
Partitions

Local n/a

n/a

Composite

MODIFY DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

MODIFY PARTITION

MODIFY SUBPARTITION

REBUILD PARTITION REBUILD SUBPARTITION

RENAME PARTITION RENAME PARTITION
RENAME SUBPARTITION

n/a

Additionally, you can use the SQL*Loader, IMPORT, and EXPORT Ultilities to load

or unload data stored in partitioned tables. These utilities are all partition and
subpartition aware.

See also:

Managing Partitioned Tables and Indexes 15-13

The SQL*Loader, Import, and Export Utilities are
described in Oracle8i Utilities.

Maintaining Partitions

Adding Partitions

This section describes how to add new partitions to a partitioned table and explains
why partitions cannot be specifically added to global partitioned or local indexes.

Adding a Partition to a Range-Partitioned Table

You can use the ALTER TABLE...ADD PARTITION statement to add a new
partition to the "high" end (the point after the last existing partition). If you want to
add a partition at the beginning or in the middle of a table, use the SPLIT
PARTITION clause.

For example, a DBA has a table, SALES, which contains data for the current month
in addition to the previous 12 months. On January 1, 1999, the DBA adds a partition
for January, which is stored in tablespace TSX.

ALTER TABLE sales
ADD PARTITION jan96 VALUES LESS THAN ('01-FEB-1999')
TABLESPACE tsx;

Adding a Partition to a Hash-Partitioned Table

When you add a partition to a hash-partitioned table, Oracle populates the new
partition with rows rehashed from other partitions of the table as determined by the
hash function.

The following statements show two ways of adding a hash partition to table
SCUBAGEAR. Choosing the first statement would add a new hash partition whose
partition name will be system generated, and it will be placed in the table’s default
tablespace. The second statement also adds a new hash partition, but that partition
is explicitly named P_NAMED, and is created in tablespace GEARS5.

ALTER TABLE scubagear ADD PARTITION,;

ALTER TABLE scubagear
ADD PARTITION p_named TABLESPACE gear5;

If the table has a local index, all local index partitions are marked UNUSABLE and
must be rebuilt. Any global index, or all partitions of a partitioned global index will
also be marked UNUSABLE.

Adding Partitions to a Composite-Partitioned Table

Partitions may be added at both the range partition level and the hash subpartition
level.

15-14 Oracle8i Administrator’'s Guide

Maintaining Partitions

Adding a Partition You add a new range partition in similar fashion as described
previously in "Adding a Partition to a Range-Partitioned Table", but you can specify
a SUBPARTITIONS clause that allows you to add a specified number of
subpartitions, or a SUBPARTITION clause for naming specific subpartitions. If no
SUBPARTITIONS or SUBPARTITION clause is specified, the partition inherits table
level defaults for subpartitions.

This example adds a range partition Q1_2000 to table SALES, which will be
populated with data for the first quarter of the year 2000. There will be eight
subpartitions stored in tablespace TBS5.

ALTER TABLE sales ADD PARTITION gq1_2000
VALUES LESS THAN (2000, 04, 01)
SUBPARTITIONS 8 STORE IN ths5;

Adding a Subpartition You use the MODIFY PARTITION...ADD SUBPARTITION
clause of the ALTER TABLE statement to add a hash subpartition to a
composite-partitioned table. The newly added subpartition is populated with rows
rehashed from other subpartitions of the same partition as determined by the hash
function. Any global index, and local index subpartitions corresponding to the
added and rehashed subpartitions must be rebuilt.

In the following example, a new hash subpartition US_LOCS5, stored in tablespace
US1, is added to range partition LOCATIONS_US in table DIVING.

ALTER TABLE diving MODIFY PARTITION locations_us
ADD SUBPARTITION us_locs5 TABLESPACE usl,;

Adding Index Partitions

You cannot explicitly add a partition to a local index. Instead, a new partition is
added to a local index only when you add a partition to the underlying table.
Specifically, when there is a local index defined on a table and you issue the ALTER
TABLE statement to add a partition, a matching partition is also added to the local
index. Since Oracle assigns names and default physical storage attributes to the new
index partitions, you may want to rename or alter them after the ADD operation is
complete.

You cannot add a partition to a global index because the highest partition always
has a partition bound of MAXVALUE. If you want to add a new highest partition,
use the ALTER INDEX...SPLIT PARTITION statement.

Managing Partitioned Tables and Indexes 15-15

Maintaining Partitions

Coalescing Partitions

Coalescing partitions is a way of reducing the number of partitions in a
hash-partitioned table, or the number of subpartitions in a composite-partitioned
table. When a hash partition is coalesced, its contents are redistributed into one or
more remaining partitions determined by the hash function. The specific partition
that is coalesced is selected by the RDBMS, and is dropped after its contents have
been redistributed.

Any local index partition corresponding to the selected partition is also dropped.
Local index partitions corresponding to the one or more absorbing partitions are
marked UNUSABLE, and must be rebuilt. Any global index is marked unusable.

Coalescing a Partition in a Hash-Partitioned Table

The ALTER TABLE...COALESCE PARTITION statement is used to coalesce a
partition in a hash-partitioned table. The following statement reduces by one the
number of partitions in a table by coalescing a partition.

ALTER TABLE ouul
COALESCE PARTITION,;

Coalescing a Subpartition in @ Composite-Partitioned Table

The following statement distributes the contents of a subpartition of partition US_
LOCATIONS into one or more remaining subpartitions (determined by the hash
function) of the same partition. Basically, this operation is the inverse of the
MODIFY PARTITION...ADD SUBPARTITION clause discussed earlier.

ALTER TABLE diving MODIFY PARTITION us_locations
COALESCE SUBPARTITION,;

Dropping Partitions

You may drop partitions from range or composite-partitioned tables. For
hash-partitioned tables, or hash subpartitions of composite-partitioned tables, you
must perform a coalesce operation instead.

Dropping a Table Partition

You use the ALTER TABLE...DROP PARTITION statement to drop a table partition
from either a range or composite partitioned table. If you want to preserve the data
in the partition, you should merge the data into an adjacent partition instead.

15-16 Oracle8i Administrator’'s Guide

Maintaining Partitions

If there are local indexes defined for the table, this statement also drops the
matching partition or subpartitions from the local index. Any global nonpartitioned
indexes on the table will be marked UNUSABLE, and all partitions of any global
partitioned indexes will be marked UNUSABLE, unless the partition being dropped
or its subpartitions are empty.

Note: You cannot drop the only partition in a table. Instead, you
must drop the table.

The following sections contain some scenarios for dropping table partitions.

Dropping a Partition from a Table Containing Data and Global Indexes If the partition
contains data and one or more global indexes are defined on the table, use either of
the following methods to drop the table partition.

1. Leave the global indexes in place during the ALTER TABLE...DROP
PARTITION statement. Afterward, you must rebuild any global indexes
(whether partitioned or not) because the index (or index partitions) will have
been marked as unusable. The following statements provide and example of
dropping partition DEC98 from the SALES table, then rebuilding its global
nonpartitioned index.

ALTER TABLE sales DROP PARTITION dec98;
ALTER INDEX sales_area_ix REBUILD;

If index SALES_AREA _IX were a range-partitioned global index, then all
partitions of the index would need rebuilding. Further, it is not possible to
rebuild all partitions of an index in one statement; you must write a separate
REBUILD statement for each partition in the index. The following statements
rebuild the index partitions JAN99_IX, FEB99_IX, MAR99_IX, ..., DEC99_IX.

ALTER INDEX sales_area_ix REBUILD PARTITION jan99_ix;
ALTER INDEX sales_area_ix REBUILD PARTITION feb99_ix;
ALTER INDEX sales_area_ix REBUILD PARTITION mar99_ix;

ALTER INDEX sales_area_ix REBUILD PARTITION nov99_ix;

This method is most appropriate for large tables where the partition being
dropped contains a significant percentage of the total data in the table.

2. lIssue the DELETE statement to delete all rows from the partition before you
issue the ALTER TABLE...DROP PARTITION statement. The DELETE

Managing Partitioned Tables and Indexes 15-17

Maintaining Partitions

statement updates the global indexes, and also fires triggers and generates redo
and undo logs.

For example, if you want to drop the first partition, which has a partition bound
of 10000 you can issue the following statements:

DELETE FROM sales WHERE TRANSID < 10000;
ALTER TABLE sales DROP PARTITION dec98;

This method is most appropriate for small tables, or for large tables when the
partition being dropped contains a small percentage of the total data in the
table.

Dropping a Partition Containing Data and Referential Integrity Constraints If a partition
contains data and the table has referential integrity constraints, choose either of the
following methods to drop the table partition. This table has a local index only, so it
is not necessary to rebuild any indexes.

1.

Disable the integrity constraints, issue the ALTER TABLE...DROP PARTITION
statement, then enable the integrity constraints:

ALTER TABLE sales

DISABLE CONSTRAINT dname_salesl;
ALTER TABLE sales DROP PARTITTION decS8;
ALTER TABLE sales

ENABLE CONSTRAINT dname_salesl;

This method is most appropriate for large tables where the partition being
dropped contains a significant percentage of the total data in the table.

Issue the DELETE statement to delete all rows from the partition before you
issue the ALTER TABLE...DROP PARTITION statement. The DELETE
statement enforces referential integrity constraints, and also fires triggers and
generates redo and undo log.

DELETE FROM sales WHERE TRANSID < 10000;
ALTER TABLE sales DROP PARTITION dec94;

This method is most appropriate for small tables or for large tables when the
partition being dropped contains a small percentage of the total data in the
table.

Dropping Index Partitions

You cannot explicitly drop a partition of a local index. Instead, local index partitions
are dropped only when you drop a partition from the underlying table.

15-18 Oracle8i Administrator’'s Guide

Maintaining Partitions

If a global index partition is empty, you can explicitly drop it by issuing the ALTER
INDEX...DROP PARTITION statement. But, if a global index partition contains
data, dropping the partition causes the next highest partition to be marked
UNUSABLE. For example, you would like to drop the index partition P1 and P2 is
the next highest partition. You must issue the following statements:

ALTER INDEX npr DROP PARTITION P1;
ALTER INDEX npr REBUILD PARTITION P2;

Note: You cannot drop the highest partition in a global index.

Exchanging Partitions

You can convert a partition (or subpartition) into a nonpartitioned table, and a
nonpartitioned table into a partition (or subpartition) of a partitioned table by
exchanging their data segments. You can also convert a hash-partitioned table into a
partition of a composite-partitioned table, or convert the partition of the composite
partitioned table into a hash-partitioned table.

Exchanging table partitions is most useful when you have an application using
nonpartitioned tables which you want to convert to partitions of a partitioned table.
For example, you may already have partition views that you want to migrate into
partitioned tables. A scenario for converting a partitioned view is presented in
"Converting a Partition View into a Partitioned Table" on page 15-34.

Exchanging partitions also facilitates high-speed data loading when used with
transportable tablespaces. This topic is discussed in "Using Transportable
Tablespaces" on page 9-35.

When you exchange partitions, logging attributes are preserved, but you can
optionally specify if local indexes are also to be exchanged, and if rows are to be
validated for proper mapping.

Exchanging a Hash or Range Partition

To exchange a partition of a range or hash-partitioned table with a nonpartitioned
table, or the reverse, you use the ALTER TABLE...EXCHANGE PARTITION
statement. An example of converting a partition into a nonpartitioned table follows.
In this example, table STOCKS could be either range or hash partitioned.

ALTER TABLE stocks
EXCHANGE PARTITION p3 WITH stock_table_3;

Managing Partitioned Tables and Indexes 15-19

Maintaining Partitions

Exchanging a Hash-Partitioned Table with a Composite Partition

For this operation, you again use the ALTER TABLE...EXCHANGE PARTITION
statement, but this time you are exchanging a whole hash-partitioned table, with all
of its partitions, with a composite-partitioned table’s range partition and all of its
hash subpartitions. This is illustrated in the following example.

First, create a hash-partitioned table:

CREATE TABLE t1 {NUMBER, j NUMBER)
PARTITION BY HASH()
(PARTITION p1, PARTITION p2);

Populate the table, then create a composite partitioned table as shown:;

CREATE TABLE 12 (NUMBER, j NUMBER)
PARTITION BY RANGE()
SUBPARTITION BY HASH()

(PARTITION p1 VALUES LESS THAN (10)
SUBPARTITION 2 _pis1
SUBPARTITION 2 pis2,

PARTITION p2 VALUES LESS THAN (20)
SUBPARTITION2_p2s1
SUBPARTITION ©2_p2s2));

It is important that the partitioning key in table T1 is the same as the
subpartitioning key in table T2.

To migrate the data in T1 to T2, and validate the rows, use the following statement:

ALTER TABLE t1 EXCHANGE PARTITION p1 WITH TABLE 2
WITH VALIDATION,;

Exchanging a Subpartition of a Composite-Partitioned Table

Use the ALTER TABLE...EXCHANGE SUBPARTITION statement to convert a hash
subpartition of a composite-partitioned table into a nonpartitioned table, or the
reverse. The following example converts the subpartition Q3_1999 S1 of table
SALES into the nonpartitioned table Q3_1999. Local indexes partitions are
exchanged with corresponding indexes on Q3_1999.

ALTER TABLE sales EXCHANGE SUBPARTITIONS g3 1999 sl
WITH TABLE 931999 INCLUDING INDEXES;

15-20 Oracle8i Administrator’'s Guide

Maintaining Partitions

Merging Partitions

You can use the ALTER TABLE...MERGE PARTITIONS statement to merge the
contents of two adjacent range partitions into one partition. The resulting partition
inherits the higher upper bound of the two merged partitions. The two original
partitions are dropped, as are any corresponding local indexes. Any global
nonpartitioned indexes on the table will be marked UNUSABLE, and all partitions
of any global partitioned indexes will be marked UNUSABLE, if the partitions
being merged are not empty. Also, unless the involved partitions or subpartitions
are empty, Oracle marks UNUSABLE all resulting corresponding local index
partitions or subpartitions.

You cannot use this statement for a hash-partitioned table or for hash subpartitions
of a composite-partitioned table.

You might want to merge partitions so as to keep historical data online in larger
partitions. For example, you can have daily partitions, with the oldest partition
rolled up into weekly partitions, which can then be rolled up into monthly
partitions, and so on.

Merging Range Partitions
The following scripts create an example of merging range partitions.

First, create a partitioned table and create local indexes.

— Create a Table with four partitions each on its own tablespace
— Partitioned by range on the data column.
CREATE TABLE four_seasons
(
one DATE,
two VARCHAR2(60),
three NUMBER
)
PARTITION BY RANGE (one)
(
PARTITION quarter_one
VALUES LESS THAN (TO_DATE(01-aug-1998,'dd-mon-yyyy))
TABLESPACE quarter_one,
PARTITION quarter_two
VALUES LESS THAN (TO_DATE(01-sep-1998,dd-mon-yyyy))
TABLESPACE quarter_two,
PARTITION quarter_three
VALUES LESS THAN (TO_DATE(01-0ct-1998, dd-mon-yyyy))
TABLESPACE quarter_three,

Managing Partitioned Tables and Indexes 15-21

Maintaining Partitions

PARTITION quarter_four
VALUES LESS THAN (TO_DATE(01-nov-1998,'dd-mon-yyyy))
TABLESPACE quarter_four

)
/

— Create local PREFIXED index on Four_Seasons
— Prefixed because the leftmost columns of the index match the
— Partition key

CREATE INDEX _four_seasons_| ON four_seasons (one,two)
LOCAL (

PARTITIONi_quarter_one TABLESPACE i _quarter_one,
PARTITIONi_guarter_two TABLESPACE i quarter_two,
PARTITIONi_quarter_three TABLESPACE i_quarter_three,
PARTITION_quarter_four TABLESPACE i_quarter_four

)
/

Next, merge partitions.

— Merge the first two partitions

ALTER TABLE four_seasons
MERGE PARTITIONS quarter_one, quarter_two INTO PARTITION quarter_two
/

Then, rebuild the local index for the affected partition.

— Rebuild index for quarter_two, which has been marked unusable
—because it has not had all of the data from Q1 added to it.
- Rebuilding the index will corect this.

ALTER TABLE four_seasons MODIFY PARTITION
quarter_two REBUILD UNUSABLE LOCAL INDEXES
/

Merging Range Composite Partitions

When you merge range composite partitions, the subpartitions will be rehashed
into either the number of subpartitions specified in a SUBPARTITIONS or
SUBPARTITION clause, or, if no such clause is included, table-level defaults will be
used.

ALTER TABLE all_seasons

15-22 Oracle8i Administrator’'s Guide

Maintaining Partitions

MERGE PARTITIONS quarter_1, quarter_2 INTO PARTITION quarter_2
SUBPARTITIONS §;

Modifying Partition Default Attributes

You can modify the default attributes of a partition or subpartition of a table or
index. When you modify default attributes, the new attributes will affect only
future partitions that are created. The default values can still be specifically
overridden when creating a new partition.

Modifying Default Attributes of Partitions

You modify the default attributes that will be inherited for range or hash partitions
using the MODIFY DEFAULT ATTRIBUTES clause of ALTER TABLE. The
following example changes the default value of PCTFREE in table EMP for any new
partitions that are created.

ALTER TABLE emp
MODIFY DEFAULT ATTRIBUTES PCTFREE 25,

For hash-partitioned tables, only the TABLESPACE attribute can be modified.

Modifying Default Attributes of Subpartitions

To modify the default attributes used for creating the subpartitions of a range
partition in a composite-partitioned table, use the ALTER TABLE...MODIFY
DEFAULT ATTRIBUTES FOR PARTITION. This statement modifies the
TABLESPACE in which future subpartitions of partition P1 in
composite-partitioned table EMP will reside.

ALTER TABLE emp
MODIFY DEFAULT ATTRIBUTES FOR PARTITION p1 TABLESPACE ts1,

Since all subpartitions must share the same attributes, except TABLESPACE, it is
the only attribute that can be changed.

Modifying Default Attributes of Index Partitions

In similar fashion to table partitions, you can alter the default attributes that will be
inherited by partitions of a range-partitioned global index, or local index partitions
for range, hash, or composite-partitioned tables. For this you use the ALTER
INDEX...MODIFY DEFAULT ATTRIBUTES statement. Use the ALTER
INDEX...MODIFY DEFAULT ATTRIBUTES FOR PARTITION statement if you are

Managing Partitioned Tables and Indexes 15-23

Maintaining Partitions

altering default attributes to be inherited by subpartitions of a
composite-partitioned table.

Modifying Real Attributes of Partitions

It is possible to modify attributes of an existing partition of a table or index.

You cannot change the TABLESPACE attribute. Use ALTER TABLESPACE...MOVE
PARTITION/SUBPARTITION to move a partition or subpartition to a new
tablespace.

Modifying Real Attributes for a Range Partition

Use the ALTER TABLE...MODIFY PARTITION statement to modify existing
attributes of a range partition. You can modify segment attributes (except
TABLESPACE), or you can allocate and deallocate extents, mark local index
partitions UNUSABLE, or rebuild local indexes that have been marked
UNUSABLE.

If this is a range partition of a composite-partitioned table, note the following:

« If you allocate or deallocate an extent, this action will be performed for every
subpartition of the specified partition.

« Likewise, changing any other attributes will result in corresponding changes to
those attributes of all the subpartitions for that partition. The partition level
default attributes will be changed as well. To avoid changing attributes of
existing subpartitions, use the FOR PARTITION clause of the MODIFY
DEFAULT ATTRIBUTES statement.

The following are some examples of modifying the real attributes of a partition.

This example modifies the MAXEXTENTS storage attribute for the range partition
SALES_Q1 of table SALES:

ALTER TABLE sales MODIFY PARTITION sales_Q1
STORAGE (MAXEXTENTS 10);

All of the local index subpartitions of partition TS1 in composite-partitioned table
SCUBAGEAR are marked UNUSABLE in this example:

ALTER TABLE scubagear MPDIFY PARTITION ts1 UNUSABLE LOCAL INDEXES;

15-24 Oracle8i Administrator’'s Guide

Maintaining Partitions

Modifying Real Attributes for a Hash Partition

You also use the ALTER TABLE...MODIFY PARTITION statement to modify
attributes of a hash partition. However, since the physical attributes of individual
hash partitions must all be the same (except for TABLESPACE), you are restricted
to:

« Allocating a new extent

« Deallocating an unused extent

« Marking a local index subpartition UNUSABLE

« Rebuilding local index subpartitions that are marked UNUSABLE

The following example rebuilds any unusable local index partitions associated with
hash partition P1 of table DEPT:

ALTER TABLE dept MODIFY PARTITION pl
REBUILD UNUSABLE LOCAL INDEXES;

Modifying Real Attributes of a Subpartition

With the MODIFY SUBPARTITION clause of ALTER TABLE you can perform the
same actions as listed previously for hash partitions, but at the specific
composite-partitioned table subpartition level. For example:

ALTER TABLE emp MODIFY SUBPARTITION p3_s1
REBUILD UNUSABLE LOCAL INDEXES

Modifying Real Attributes of Index Partitions

The MODIFY PARTITION clause of ALTER INDEX allows you to modify the real
attributes of an index partition or its subpartitions. The rules are very similar to
those for table partitions, but unlike the MODIFY PARTITION clause for ALTER
TABLE, there is no subclause to rebuild an unusable index partition, but there is a
subclause to coalesce an index partition or its subpartitions. In this context, coalesce
means to merge index blocks where possible to free them for reuse.

You can also allocate or deallocate storage for a subpartition of a local index, or
mark it UNUSABLE, using the MODIFY SUBPARTITION clause.

Moving Partitions
You can use the MOVE PARTITION clause of the ALTER TABLE statement to:

« re-cluster data and reduce fragmentation

Managing Partitioned Tables and Indexes 15-25

Maintaining Partitions

=« Mmove a partition to another tablespace
« modify create-time attributes

Typically, you can change the physical storage attributes of a partition in a single
step via a ALTER TABLE/INDEX...MODIFY PARTITION statement. However,
there are some physical attributes, such as TABLESPACE, that you cannot modify
via MODIFY PARTITION. In these cases you can use the MOVE PARTITION
clause.

When the partition you are moving contains data, MOVE PARTITION marks the
matching partition in each local index, and all global index partitions as unusable.
You must rebuild these index partitions after issuing MOVE PARTITION. Global
indexes must also be rebuilt.

Moving Table Partitions

Use the MOVE PARTITION clause to move a partition. For example, a DBA wants
to move the most active partition to a tablespace that resides on its own disk (in
order to balance 1/0) and he wishes to LOG the action. The DBA can issue the
following statement:

ALTER TABLE parts MOVE PARTITION depot2
TABLESPACE ts094 NOLOGGING;

This statement always drops the partition’s old segment and creates a new segment,
even if you don’t specify a new tablespace.

Moving Subpartitions
The following statement shows how to move data in a subpartition of a table. In this
example, a PARALLEL clause has also been specified.

ALTER TABLE scuba_gear MOVE SUBPARTITION bed_types
TABLESPACE ths23 PARALLEL (DEGREE 2);

Moving Index Partitions

Some clauses, such as MOVE PARTITION and DROP PARTITION, mark all
partitions of a global index unusable. You can rebuild the entire index by rebuilding
each partition individually using the ALTER INDEX...REBUILD PARTITION
statement. You can perform these rebuilds concurrently.

You can also simply drop the index and re-create it.

15-26 Oracle8i Administrator’'s Guide

Maintaining Partitions

Rebuilding Index Partitions
You might rebuild index partitions for any of the following reasons:
« Torecover space and improve performance
« Torepair a damaged index partition caused by media failure

« Torebuild a local index partition after loading the underlying table partition
with IMPORT or SQL*Loader

« Torebuild index partitions that have been marked UNUSABLE

The following sections discuss your options for rebuilding index partitions and
subpartitions.

Rebuilding Global Index Partitions
You can rebuild global index partitions in two ways:

1. Rebuild each partition by issuing the ALTER INDEX...REBUILD PARTITION
statement (you can run the rebuilds concurrently).

2. Drop the index and re-create it.

Note: This second method is more efficient because the table is
scanned only once.

Rebuilding Local Index Partitions
You can rebuild local indexes using either ALTER INDEX or ALTER TABLE:

« ALTER INDEX...REBUILD PARTITION/SUBPARTITION--this statement
rebuilds an index partition or subpartition unconditionally.

« ALTER TABLE..MODIFY PARTITION/SUBPARTITION...REBUILD
UNUSABLE LOCAL INDEXES--this statement finds all of the unusable indexes
for the given table partition or subpartition and rebuilds them. It only rebuilds
an index partition if it has been marked UNUSABLE.

Using Alter Index to Rebuild a Partition ~ The ALTER INDEX...REBUILD PARTITION
statement rebuilds one partition of an index. It cannot be used on a
composite-partitioned table. At the same time as you recreate the index, you can
move the partition to a new tablespace or change attributes.

For composite-partitioned tables, use ALTER INDEX...REBUILD SUBPARTITION
to rebuild a subpartition of an index. You can move the subpartition to another
tablespace or specify a parallel clause. The following statement rebuilds a

Managing Partitioned Tables and Indexes 15-27

Maintaining Partitions

subpartition of a local index on a table and moves the index subpartition is another
tablespace.

ALTER INDEX scuba
REBUILD SUBPARTITION bed _types
TABLESPACE ths23 PARALLEL (DEGREE 2);

Using Alter Table to Rebuild an Index Partiton =~ The REBUILD UNUSABLE LOCAL
INDEXES clause of the ALTER TABLE...MODIFY PARTITION does not allow you
to specify any new attributes for the rebuilt index partition. The following example
finds and rebuilds any unusable local index partitions for table SCUBAGEAR,
partition P1.

ALTER TABLE scubagear
MODIFY PARTITION p1 REBUILD UNUSABLE LOCAL INDEXES;

There is a corresponding ALTER TABLE...MODIFY SUBPARTITION clause for
rebuilding unusable local index subpartitions.

Renaming Partitions

It is possible to rename partitions and subpartitions of both tables and indexes. One
reason for renaming a partition might be to assign a meaningful name, as opposed
to a default system name that was assigned to the partition in another maintenance
operation.

Renaming a Table Partition
You can rename a range or hash partition, using the ALTER TABLE..RENAME
PARTITION statement. An example is:

ALTER TABLE scubagear RENAME PARTITION sys_p636 TO tanks

Renaming a Table Subpartition

Likewise, you can assign new names to subpartitions of a table. In this case you
would use the ALTER TABLE...RENAME SUBPARTITION syntax.

Renaming Index Partitions

Index partitions and subpartitions can be renamed in similar fashion, but the
ALTER INDEX syntax is used.

Renaming a Index Partition Use the ALTER INDEX...RENAME PARTITION statement
to rename an index partition.

15-28 Oracle8i Administrator’'s Guide

Maintaining Partitions

Renaming an Index Subpartition ~ This next statement simply shows how to rename a
subpartition that has a system generated name that was a consequence of adding a
partition to an underlying table:

ALTER INDEX scuba RENAME SUBPARTITION sys_subp3254 TO bed_types,

Splitting Partitions
The SPLIT PARTITION clause or the ALTER TABLE or ALTER INDEX statement is
used to redistribute the contents of a partition into two new partitions. You may
want to do this when a partition becomes too large and causes backup, recovery, or
maintenance operations to take a long time to complete. You can also use the SPLIT
PARTITION clause to redistribute the 170 load.

If the partition you are splitting contains data, the ALTER TABLE...SPLIT
PARTITION statement marks UNUSABLE the new partitions (there are two) in
each local index, all global index partitions, and any global nonpartitioned index.
You must rebuild such affected indexes or index partitions.

This clause cannot be used for hash partitions or subpartitions.

Splitting a Range Table Partition

You can split a table partition by issuing the ALTER TABLE...SPLIT PARTITION
statement. You may optionally specify new attributes for the two partitions
resulting from the split. If there are local indexes defined on the table, this statement
also splits the matching partition in each local index.

In the following example FEE_KATY is a partition in the table VET_CATS, which
has a local index, JAF1. There is also a global index, VET on the table. VET contains
two partitions, VET_PARTA, and VET_PARTB.

To split the partition FEE_KATY, and rebuild the index partitions, the DBA issues
the following statements:

ALTER TABLE vet_cats SPLIT PARTITION
fee_katy at (100) INTO (PARTITION
fee_katyl .., PARTITION fee_katy?..);
ALTER INDEX JAF1 REBUILD PARTITION fee_Katy1;
ALTER INDEX JAF1 REBUILD PARTITION fee_Katy2;
ALTER INDEX VET REBUILD PARTITION vet_parta;
ALTER INDEX VET REBUILD PARTITION vet_part;

Managing Partitioned Tables and Indexes 15-29

Maintaining Partitions

Note: If you do not specify new partition names, Oracle assigns
names of the form SYS_Pn. You can examine the data dictionary to
locate the names assigned to the new local index partitions. You
may want to rename them. Any attributes you do not specify, are
inherited from the original partition.

Splitting a Range Composite Partition

This is the opposite of merging range composite partitions. When you split range
composite partitions, the new subpartitions will be rehashed into either the number
of subpartitions specified in a SUBPARTITIONS or SUBPARTITION clause, or, if no
such clause is included, table-level defaults will be used.

ALTER TABLE all_seasons SPLIT PARTITION quarter_1
AT (TO_DATE(16-dec-1997'dd-mon-yyyy)
INTO (PARTITION g1_1997 1 SUBPARTITIONS 4 STORE IN (ts1,ts3),
PARTITION gq1_1997_2);

Splitting Index Partitions

You cannot explicitly split a partition in a local index. A local index partition is split
only when you split a partition in the underlying table.

The following statement splits the global index partition, QUON1:

ALTER INDEX quon1 SPLIT
PARTITION canada AT VALUES LESS THAN (100) INTO
PARTITION canadal ..., PARTITION canada2 ...);
ALTER INDEX quon1 REBUILD PARTITION canadal;
ALTER INDEX quon1 REBUILD PARTITION canada2;

The index being split can contain index data, and you only need to rebuild if that
partition was previously marked UNUSABLE.

Truncating Partitions

Use the ALTER TABLE.. TRUNCATE PARTITION statement when you want to
remove all rows from a table partition. Truncating a partition is similar to dropping
a partition, except that the partition is emptied of its data, but not physically
dropped.

You cannot truncate an index partition; however, the ALTER TABLE TRUNCATE
PARTITION statement truncates the matching partition in each local index. If there

15-30 Oracle8i Administrator’'s Guide

Maintaining Partitions

is a global index (partitioned or nonpartitioned) on the table, it is marked
UNUSABLE and must be rebuilt.

Truncating a Table Partition

You can use the ALTER TABLE...TRUNCATE PARTITION statement to remove all
rows from a table partition with or without reclaiming space. If there are local
indexes defined for this table, ALTER TABLE.. TRUNCATE PARTITION also
truncates the matching partition from each local index.

Truncating Table Partitions Containing Data and Global Indexes If the partition contains
data and global indexes, use either of the following methods to truncate the table
partition:

1. Leave the global indexes in place during the ALTER TABLE TRUNCATE
PARTITION statement. In this example, table SALES has a global index SALES _
AREA _IX, which is rebuilt.

ALTER TABLE sales TRUNCATE PARTITION dec94;
ALTER INDEX sales_area_ix REBUILD;

This method is most appropriate for large tables where the partition being
truncated contains a significant percentage of the total data in the table.

2. Issue the DELETE statement to delete all rows from the partition before you
issue the ALTER TABLE... TRUNCATE PARTITION statement. The DELETE
statement updates the global indexes, and also fires triggers and generates redo
and undo log.

This method is most appropriate for small tables, or for large tables when the
partition being truncated contains a small percentage of the total data in the
table.

Truncating a Partition Containing Data and Referential Integrity Constraints If a partition
contains data and has referential integrity constraints, choose either of the following
methods to truncate the table partition:

1. Disable the integrity constraints, issue the ALTER TABLE.. TRUNCATE
PARTITION statement, then re-enable the integrity constraints:

ALTER TABLE sales

DISABLE CONSTRAINT dname_salesl;
ALTER TABLE sales TRUNCATE PARTITTION dec94;
ALTER TABLE sales

ENABLE CONSTRAINT dname_salesl;

Managing Partitioned Tables and Indexes 15-31

Partitioned Tables and Indexes Examples

This method is most appropriate for large tables where the partition being
truncated contains a significant percentage of the total data in the table.

2. Issue the DELETE statement to delete all rows from the partition before you
issue the ALTER TABLE.. TRUNCATE PARTITION statement. The DELETE
statement enforces referential integrity constraints, and also fires triggers and
generates redo and undo log.

Note: You can substantially reduce the amount of logging by
setting the NOLOGGING attribute (using ALTER
TABLE...MODIFY PARTITION...NOLOGGING) for the partition
before deleting all of its rows.

DELETE FROM sales WHERE TRANSID < 10000;
ALTER TABLE sales TRUNCATE PARTITION dec%4;

This method is most appropriate for small tables, or for large tables when the
partition being truncated contains a small percentage of the total data in the
table.

Truncating a Subpartition

You use the ALTER TABLE..TRUNCATE SUBPARTITION statement to remove all
rows from a subpartition of a composite-partitioned table. Corresponding local
index subpartitions are also truncated.

The following statement shows how to truncate data in a subpartition of a table. In
this example, the space occupied by the deleted rows is made available for use by
other schema objects in the tablespace .:

ALTER TABLE diving
TRUNCATE SUBPARTITION us_locations
DROP STORAGE;

Partitioned Tables and Indexes Examples

This section presents some examples for working with partitioned tables and
indexes.

15-32 Oracle8i Administrator’'s Guide

Partitioned Tables and Indexes Examples

Moving the Time Window in a Historical Table

A historical table describes the business transactions of an enterprise over intervals
of time. Historical tables can be base tables, which contain base information; for
example, sales, checks, orders. Historical tables can also be rollup tables, which
contain summary information derived from the base information via operations
such as GROUP BY, AVERAGE, or COUNT.

The time interval in a historical table is often a rolling window; DBAs periodically
delete sets of rows that describe the oldest transaction, and in turn allocate space for
sets of rows that describe the most recent transaction. For example, at the close of
business on April 30, 1995 the DBA deletes the rows (and supporting index entries)
that describe transactions from April 1994, and allocates space for the April 1995
transactions.

Now consider a specific example.

You have a table, ORDER, which contains 13 months of transactions: a year of
historical data in addition to orders for the current month. There is one partition for
each month; the partitions are named ORDER_yymm, as are the tablespaces in
which they reside.

The ORDER table contains two local indexes, ORDER_IX_ONUM, which is a local,
prefixed, unique index on the order number, and ORDER_IX_SUPP, which is a
local, non-prefixed index on the supplier number. The local index partitions are
named with suffixes that match the underlying table. There is also a global unique
index, ORDER_IX_CUST, for the customer name. ORDER_IX_CUST contains three
partitions, one for each third of the alphabet. So on October 31, 1994, change the
time window on ORDER as follows:

1. Back up the data for the oldest time interval.
ALTER TABLESPACE order_9310 BEGIN BACKUP;

ALTER TABLESPACE order_9310 END BACKUP;

2. Drop the partition for the oldest time interval.
ALTER TABLE order DROP PARTITION order_9310;

3. Add the partition to the most recent time interval.
ALTER TABLE order ADD PARTITION order_9411;

4. Recreate the global index partitions.
ALTER INDEX order_ix_cust REBUILD PARTITION order_ix_cust AH;

Managing Partitioned Tables and Indexes 15-33

Partitioned Tables and Indexes Examples

ALTER INDEX order_ix_cust REBUILD PARTITION order_ix_cust IP;
ALTER INDEX order_ix_cust REBUILD PARTITION order ix_cust QZ;

Ordinarily, Oracle acquires sufficient locks to ensure that no operation (DML, DDL,
or utility) interferes with an individual DDL statement, such as ALTER
TABLE...DROP PARTITION. However, if the partition maintenance operation
requires several steps, it is the DBA’s responsibility to ensure that applications (or
other maintenance operations) do not interfere with the multi-step operation in
progress.

A couple of methods for doing this are:
« Bring down all user-level applications during a well-defined batch window.

= You can ensure that no one is able to access table ORDER by revoking access
privileges from a role that is used in all applications.

Converting a Partition View into a Partitioned Table

This scenario describes how to convert a partition view (also called "manual
partition") into a partitioned table. The partition view is defined as follows:

CREATE VIEW accounts
SELECT * FROM accounts_jan98
UNIONALL
SELECT * FROM accounts_feb98
UNION ALL

SELECT * FROM accounts_dec98;

To incrementally migrate the partition view to a partitioned table, follow these
steps:

1. Initially, only the two most recent partitions, ACCOUNTS_NOV98 and
ACCOUNTS_DECS98, will be migrated from the view to the table by creating
the partitioned table. Each partition gets a segment of two blocks (as a
placeholder).

CREATE TABLE accounts_new(...)
TABLESPACE ts_temp STORAGE (INITIAL 2)
PARTITION BY RANGE (opening_date)
(PARTITION jan98 VALUES LESS THAN (01-FEB-1998),

PARTITION dec98 VALUES LESS THAN (01-FEB-1998));

15-34 Oracle8i Administrator’'s Guide

Partitioned Tables and Indexes Examples

Use the EXCHANGE PARTITION statement to migrate the tables to the
corresponding partitions.

ALTER TABLE accounts_new
EXCHANGE PARTITION novo8 WITH TABLE
accounts_nov98 WITH VALIDATION,;

ALTER TABLE accounts_new
EXCHANGE PARTITION dec98 WITH TABLE
accounts_dec98 WITH VALIDATION,;

So now the placeholder data segments associated with the NOV98 and DEC98
partitions have been exchanged with the data segments associated with the
ACCOUNTS_NOV98 and ACCOUNTS_DEC98 tables.

Redefine the ACCOUNTS view.

CREATE OR REPLACE VIEW accounts
SELECT * FROM accounts_jan98
UNION ALL
SELECT * FROM accounts_feb 98
UNION ALL

UNION ALL
SELECT * FROM accounts_new PARTITION (novos)
UNION ALL
SELECT * FROM accounts_new PARTITION (dec98);

Drop the ACCOUNTS_NOV98 and ACCOUNTS_DEC98 tables, which own the
placeholder segments that were originally attached to the NOV98 and DEC98
partitions.

After all the tables in the UNION ALL view are converted into partitions, drop
the view and rename the partitioned to the name of the view being dropped.

DROP VIEW accounts;
RENAME accounts_new TO accounts;

Managing Partitioned Tables and Indexes 15-35

Partitioned Tables and Indexes Examples

15-36 Oracle8i Administrator’'s Guide

16

Managing Clusters

This chapter describes aspects of managing clusters. It includes the following topics
relating to the management of indexed clusters, clustered tables, and cluster
indexes:

« Guidelines for Managing Clusters
« Creating Clusters

« Altering Clusters

« Dropping Clusters

Another type of cluster, a hash cluster, is described in Chapter 17, "Managing Hash
Clusters".

Before attempting tasks described in this chapter, familiarize yourself with the
concepts in Chapter 12, "Guidelines for Managing Schema Objects".

Managing Clusters 16-1

Guidelines for Managing Clusters

Guidelines for Managing Clusters

A cluster provides an optional method of storing table data. A cluster is made up of
a group of tables that share the same data blocks, which are grouped together
because they share common columns and are often used together. For example, the
EMP and DEPT table share the DEPTNO column. When you cluster the EMP and
DEPT tables (see Figure 16-1), Oracle physically stores all rows for each department
from both the EMP and DEPT tables in the same data blocks. You should not use
clusters for tables that are frequently accessed individually.

Because clusters store related rows of different tables together in the same data
blocks, properly used clusters offer two primary benefits:

Disk 1/0 is reduced and access time improves for joins of clustered tables.

The cluster key is the column, or group of columns, that the clustered tables have
in common. You specify the columns of the cluster key when creating the
cluster. You subsequently specify the same columns when creating every table
added to the cluster. Each cluster key value is stored only once each in the
cluster and the cluster index, no matter how many rows of different tables
contain the value.

Therefore, less storage might be required to store related table and index data in
a cluster than is necessary in non-clustered table format. For example, notice
how each cluster key (each DEPTNO) is stored just once for many rows that
contain the same value in both the EMP and DEPT tables.

After creating a cluster, you can create tables in the cluster. However, before any
rows can be inserted into the clustered tables, a cluster index must be created. Using
clusters does not affect the creation of additional indexes on the clustered tables;
they can be created and dropped as usual.

16-2 Oracle8i Administrator's Guide

Guidelines for Managing Clusters

Figure 16-1 Clustered Table Data
Clustered Key EMP TABLE
(DEPTO)
EMPNO | ENAME | DEPTNO
10 DNAME LOC 932 KEHR 20
1000 SMITH 10
SALES BOSTON 1139 WILSON | 20
1277 NORMAN | 20
1321 JONES 10
EMPNO ENAME . 1841 WARD 10
1000 SMITH C
1321 JONES C /—\/\
1841 WARD ‘ .
. DEPT Table
20 DNAME | LOC .
\ DEPTNO | DNAME | Loc
ADMIN NEW YORK .
' 10 SALES BOSTON
\ 20 ADMIN NEW YORK
EMPNO | ENAME C ' /\/\
932 KEHR S \ ' ; S
1139 WILSON C ' \ S ’
1277 NORMAN | . .. !) N J

Clustered Tables

Unclustered Tables
Related data stored
together, more
efficiently

related data stored
apart, taking up
more space

Managing Clusters 16-3

Guidelines for Managing Clusters

The following sections describe guidelines to consider when managing clusters, and
includes the following topics:

« Choose Appropriate Tables for the Cluster

« Choose Appropriate Columns for the Cluster Key

« Specify Data Block Space Use

« Specify the Space Required by an Average Cluster Key and Its Associated Rows
« Specify the Location of Each Cluster and Cluster Index Rows

« Estimate Cluster Size and Set Storage Parameters

See Also: For more information about clusters, see Oracle8i
Concepts.

For guidelines on when you should use clusters, see Oracle8i
Designing and Tuning for Performance.

Choose Appropriate Tables for the Cluster

Use clusters to store one or more tables that are primarily queried (not
predominantly inserted into or updated) and for which the queries often join data
of multiple tables in the cluster or retrieve related data from a single table.

Choose Appropriate Columns for the Cluster Key

Choose cluster key columns carefully. If multiple columns are used in queries that
join the tables, make the cluster key a composite key. In general, the characteristics
that indicate a good cluster index are the same as those for any index. For
information about characteristics of a good index, see "Guidelines for Managing
Indexes" on page 14-2.

A good cluster key has enough unique values so that the group of rows
corresponding to each key value fills approximately one data block. Having too few
rows per cluster key value can waste space and result in negligible performance
gains. Cluster keys that are so specific that only a few rows share a common value
can cause wasted space in blocks, unless a small SIZE was specified at cluster
creation time (see Specify the Space Required by an Average Cluster Key and Its
Associated Rows).

Too many rows per cluster key value can cause extra searching to find rows for that
key. Cluster keys on values that are too general (for example, MALE and FEMALE)

16-4 Oracle8i Administrator's Guide

Guidelines for Managing Clusters

result in excessive searching and can result in worse performance than with no
clustering.

A cluster index cannot be unique or include a column defined as LONG.

Specify Data Block Space Use

By specifying the PCTFREE and PCTUSED parameters during the creation of a
cluster, you can affect the space utilization and amount of space reserved for
updates to the current rows in the data blocks of a cluster’s data segment. Note that
PCTFREE and PCTUSED parameters set for tables created in a cluster are ignored;
clustered tables automatically use the settings set for the cluster. The setting
PCTFREE and PCTUSED, is discussed in "Managing Space in Data Blocks" on

page 12-2.

Specify the Space Required by an Average Cluster Key and Its Associated Rows

The CREATE CLUSTER statement has an optional argument, SIZE, which is the
estimated number of bytes required by an average cluster key and its associated
rows. Oracle uses the SIZE parameter when performing the following tasks:

« Estimating the number of cluster keys (and associated rows) that can fit in a
clustered data block.

« Limiting the number of cluster keys placed in a clustered data block. This
maximizes the storage efficiency of keys within a cluster.

SIZE does not limit the space that can be used by a given cluster key. For example,
if SIZE is set such that two cluster keys can fit in one data block, any amount of the
available data block space can still be used by either of the cluster keys.

By default, Oracle stores only one cluster key and its associated rows in each data
block of the cluster’s data segment. Although block size can vary from one
operating system to the next, the rule of one key per block is maintained as
clustered tables are imported to other databases on other machines.

If all the rows for a given cluster key value cannot fit in one block, the blocks are
chained together to speed access to all the values with the given key. The cluster
index points to the beginning of the chain of blocks, each of which contains the
cluster key value and associated rows. If the cluster SIZE is such that more than one
key fits in a block, blocks can belong to more than one chain.

Managing Clusters 16-5

Creating Clusters

Specify the Location of Each Cluster and Cluster Index Rows

If you have the proper privileges and tablespace quota, you can create a new cluster
and the associated cluster index in any tablespace that is currently online. Always
specify the TABLESPACE option in a CREATE CLUSTER/INDEX statement to
identify the tablespace to store the new cluster or index.

The cluster and its cluster index can be created in different tablespaces. In fact,
creating a cluster and its index in different tablespaces that are stored on different
storage devices allows table data and index data to be retrieved simultaneously
with minimal disk contention.

Estimate Cluster Size and Set Storage Parameters
Following are benefits of estimating a cluster’s size before creating it:

« You can use the combined estimated size of clusters, along with estimates for
indexes, rollback segments, and redo log files, to determine the amount of disk
space that is required to hold an intended database. From these estimates, you
can make correct hardware purchases and other decisions.

« You can use the estimated size of an individual cluster to better manage the
disk space that the cluster will use. When a cluster is created, you can set
appropriate storage parameters and improve 1/0 performance of applications
that use the cluster.

Whether or not you estimate table size before creation, you can explicitly set storage
parameters when creating each non-clustered table. Any storage parameter that you
do not explicitly set when creating or subsequently altering a table automatically
uses the corresponding default storage parameter set for the tablespace in which the
table resides. Clustered tables also automatically use the storage parameters of the
cluster.

Creating Clusters

To create a cluster in your schema, you must have the CREATE CLUSTER system
privilege and a quota for the tablespace intended to contain the cluster or the
UNLIMITED TABLESPACE system privilege.

To create a cluster in another user’s schema, you must have the CREATE ANY
CLUSTER system privilege and the owner must have a quota for the tablespace
intended to contain the cluster or the UNLIMITED TABLESPACE system privilege.
See Chapter 23, "Managing User Privileges and Roles"for more information about

16-6 Oracle8i Administrator's Guide

Creating Clusters

system privileges, and Chapter 22, "Managing Users and Resources"for information
about tablespace quotas.

You create a cluster using the CREATE CLUSTER statement. The following
statement creates a cluster named EMP_DEPT, which stores the EMP and DEPT
tables, clustered by the DEPTNO column;

CREATE CLUSTER emp_dept (deptno NUMBER(3))
PCTUSED 80
PCTFREE5
SIZE 600
TABLESPACE users
STORAGE (INITIAL 200K
NEXT 300K
MINEXTENTS 2
MAXEXTENTS 20
PCTINCREASE 33);

If no INDEX keyword is specified, as is true in this example, an index cluster is
created by default. You can also create a HASH cluster, when hash parameters
(HASHKEYS, HASH IS, or SINGLE TABLE HASHKEYS) are specified. Hash
clusters are described in Chapter 17, "Managing Hash Clusters".

See Also: For a more complete description of syntax, restrictions,
and authorizations required for the SQL statements presented in
this chapter, see Oracle8i SQL Reference.

Creating Clustered Tables

To create a table in a cluster, you must have either the CREATE TABLE or CREATE
ANY TABLE system privilege. You do hot need a tablespace quota or the
UNLIMITED TABLESPACE system privilege to create a table in a cluster.

You create a table in a cluster using the SQL CREATE TABLE statement with the
CLUSTER option. The EMP and DEPT tables can be created in the EMP_DEPT
cluster using the following statements:

CREATE TABLE dept (
deptno NUMBER(3) PRIMARY KEY, ...)
CLUSTER emp_dept (deptno);

CREATE TABLE emp (

empno NUMBER(5) PRIMARY KEY,
ename VARCHAR2(15) NOT NULL,

Managing Clusters 16-7

Creating Clusters

deptno NUMBER(3) REFERENCES dept)
CLUSTER emp_dept (deptno);

Note: You can specify the schema for a clustered table in the
CREATE TABLE statement. A clustered table can be in a different
schema than the schema containing the cluster. Also, the names of
the columns are not required to match, but their structure must
match.

Creating Cluster Indexes
To create a cluster index, one of the following conditions must be true:

« Your schema contains the cluster and you have the CREATE INDEX system
privilege.

« You have the CREATE ANY INDEX system privilege.

In either case, you must also have either a quota for the tablespace intended to
contain the cluster index, or the UNLIMITED TABLESPACE system privilege.

A cluster index must be created before any rows can be inserted into any clustered
table. The following statement creates a cluster index for the EMP_DEPT cluster:

CREATE INDEX emp_dept_index
ON CLUSTER emp_dept
INITRANS 2
MAXTRANS 5
TABLESPACE users
STORAGE (INITIAL 50K

NEXT 50K
MINEXTENTS 2
MAXEXTENTS 10
PCTINCREASE 33)
PCTFREES;

The cluster index clause (ON CLUSTER) identifies the cluster, EMP_DEPT, for
which the cluster index is being created. The statement also explicitly specifies
several storage settings for the cluster and cluster index.

16-8 Oracle8i Administrator's Guide

Altering Clusters

Altering Clusters

To alter a cluster, your schema must contain the cluster or you must have the
ALTER ANY CLUSTER system privilege. You can alter an existing cluster to change
the following settings:

« Physical attributes (PCTFREE, PCTUSED, INITRANS, MAXTRANS, and
storage characteristics)

« The average amount of space required to store all the rows for a cluster key
value (SIZE)

« The default degree of parallelism

Additionally, you can explicitly allocate a new extent for the cluster, or deallocate
any unused extents at the end of the cluster. Oracle dynamically allocates additional
extents for the data segment of a cluster as required. In some circumstances,
however, you might want to explicitly allocate an additional extent for a cluster. For
example, when using the Oracle Parallel Server, you can allocate an extent of a
cluster explicitly for a specific instance. You allocate a new extent for a cluster using
the ALTER CLUSTER statement with the ALLOCATE EXTENT clause.

When you alter data block space usage parameters (PCTFREE and PCTUSED) or
the cluster size parameter (SIZE) of a cluster, the new settings apply to all data
blocks used by the cluster, including blocks already allocated and blocks
subsequently allocated for the cluster. Blocks already allocated for the table are
reorganized when necessary (not immediately).

When you alter the transaction entry settings (INITRANS, MAXTRANS) of a
cluster, a new setting for INITRANS applies only to data blocks subsequently
allocated for the cluster, while a new setting for MAXTRANS applies to all blocks
(already and subsequently allocated blocks) of a cluster.

The storage parameters INITIAL and MINEXTENTS cannot be altered. All new
settings for the other storage parameters affect only extents subsequently allocated
for the cluster.

To alter a cluster, use the ALTER CLUSTER statement. The following statement
alters the EMP_DEPT cluster:

ALTER CLUSTER emp_dept
PCTFREE 30
PCTUSED 60;

Managing Clusters 16-9

Dropping Clusters

See Also: For additional information about the CLUSTER
parameter in the ALTER CLUSTER statement, see Oracle8i Parallel
Server Administration, Deployment, and Performance.

Altering Cluster Tables and Cluster Indexes

You can alter clustered tables using the ALTER TABLE statement. However, any
data block space parameters, transaction entry parameters, or storage parameters
you set in an ALTER TABLE statement for a clustered table generate an error
message (ORA-01771, "illegal option for a clustered table"). Oracle uses the
parameters of the cluster for all clustered tables. Therefore, you can use the ALTER
TABLE statement only to add or modify columns, drop non-cluster key columns, or
add, drop, enable, or disable integrity constraints or triggers for a clustered table.
For information about altering tables, see "Altering Tables" on page 13-11.

You alter cluster indexes exactly as you do other indexes. See "Altering Indexes" on
page 14-15.

Note: When estimating the size of cluster indexes, remember that
the index is on each cluster key, not the actual rows; therefore, each
key will only appear once in the index.

Dropping Clusters

A cluster can be dropped if the tables within the cluster are no longer necessary.
When a cluster is dropped, so are the tables within the cluster and the
corresponding cluster index. All extents belonging to both the cluster’s data
segment and the index segment of the cluster index are returned to the containing
tablespace and become available for other segments within the tablespace.

To drop a cluster that contains no tables, and its cluster index, use the DROP
CLUSTER statement. For example, the following statement drops the empty cluster
named EMP_DEPT:

DROP CLUSTER emp_dept;
If the cluster contains one or more clustered tables and you intend to drop the tables

as well, add the INCLUDING TABLES option of the DROP CLUSTER statement, as
follows:

DROP CLUSTER emp_dept INCLUDING TABLES;

16-10 Oracle8i Administrator’'s Guide

Dropping Clusters

If the INCLUDING TABLES option is not included and the cluster contains tables,
an error is returned.

If one or more tables in a cluster contain primary or unique keys that are referenced
by FOREIGN KEY constraints of tables outside the cluster, the cluster cannot be
dropped unless the dependent FOREIGN KEY constraints are also dropped. This
can be easily done using the CASCADE CONSTRAINTS option of the DROP
CLUSTER statement, as shown in the following example:

DROP CLUSTER emp_dept INCLUDING TABLES CASCADE CONSTRAINTS;

Oracle returns an error if you do not use the CASCADE CONSTRAINTS option and
constraints exist.

Dropping Clustered Tables

To drop a cluster, your schema must contain the cluster or you must have the
DROP ANY CLUSTER system privilege. You do not need additional privileges to
drop a cluster that contains tables, even if the clustered tables are not owned by the
owner of the cluster.

Clustered tables can be dropped individually without affecting the table’s cluster,
other clustered tables, or the cluster index. A clustered table is dropped just as a
non-clustered table is dropped—with the DROP TABLE statement. See "Dropping
Tables" on page 13-15.

Note: When you drop a single table from a cluster, Oracle deletes
each row of the table individually. To maximize efficiency when
you intend to drop an entire cluster, drop the cluster including all
tables by using the DROP CLUSTER statement with the
INCLUDING TABLES option. Drop an individual table from a
cluster (using the DROP TABLE statement) only if you want the
rest of the cluster to remain.

Dropping Cluster Indexes

A cluster index can be dropped without affecting the cluster or its clustered tables.
However, clustered tables cannot be used if there is no cluster index; you must
re-create the cluster index to allow access to the cluster. Cluster indexes are
sometimes dropped as part of the procedure to rebuild a fragmented cluster index.
For information about dropping an index, see "Dropping Indexes" on page 14-16.

Managing Clusters 16-11

Dropping Clusters

16-12 Oracle8i Administrator’'s Guide

17

Managing Hash Clusters

This chapter describes how to manage hash clusters, and includes the following
topics:

Should You Use Hash Clusters?
Creating Hash Clusters
Altering Hash Clusters
Dropping Hash Clusters
See Also: Before attempting tasks described in this chapter,

familiarize yourself with the concepts in Chapter 12, "Guidelines
for Managing Schema Objects".

Managing Hash Clusters 17-1

Should You Use Hash Clusters?

Should You Use Hash Clusters?

Storing a table in a hash cluster is an optional way to improve the performance of
data retrieval. A hash cluster provides an alternative to a non-clustered table with
an index or an index cluster. With an indexed table or index cluster, Oracle locates
the rows in a table using key values that Oracle stores in a separate index. To use
hashing, you create a hash cluster and load tables into it. Oracle physically stores
the rows of a table in a hash cluster and retrieves them according to the results of a
hash function.

Oracle uses a hash function to generate a distribution of numeric values, called hash
values, that are based on specific cluster key values. The key of a hash cluster, like
the key of an index cluster, can be a single column or composite key (multiple
column key). To find or store a row in a hash cluster, Oracle applies the hash
function to the row’s cluster key value; the resulting hash value corresponds to a
data block in the cluster, which Oracle then reads or writes on behalf of the issued
statement.

To find or store a row in an indexed table or cluster, a minimum of two (there are
usually more) 1/0s must be performed:

« One or more I/0s to find or store the key value in the index
« Another I/0 to read or write the row in the table or cluster

In contrast, Oracle uses a hash function to locate a row in a hash cluster; no I/0 is
required. As a result, a minimum of one I/0 operation is necessary to read or write
arow in a hash cluster.

This section presents the advantages and disadvantages of hashing to help you
decide if it is appropriate for your situation.

See Also: For more information about hash clusters, see Oracle8i
Concepts.

Advantages of Hashing

If you opt to use indexing rather than hashing, consider whether to store a table
individually or as part of a cluster.

Hashing is most advantageous when you have the following conditions:
« Most queries are equality queries on the cluster key:
SELECT ... WHERE cluster_key=..,,

17-2 Oracle8i Administrator's Guide

Should You Use Hash Clusters?

In such cases, the cluster key in the equality condition is hashed, and the
corresponding hash key is usually found with a single read. In comparison, for
an indexed table the key value must first be found in the index (usually several
reads), and then the row is read from the table (another read).

The tables in the hash cluster are primarily static in size so that you can
determine the number of rows and amount of space required for the tables in
the cluster. If tables in a hash cluster require more space than the initial
allocation for the cluster, performance degradation can be substantial because
overflow blocks are required.

Disadvantages of Hashing
Hashing is not advantageous in the following situations:

Most queries on the table retrieve rows over a range of cluster key values. For
example, in full table scans or queries like the following, a hash function cannot
be used to determine the location of specific hash keys; instead, the equivalent
of a full table scan must be done to fetch the rows for the query:

SELECT ... WHERE cluster_key<...;

With an index, key values are ordered in the index, so cluster key values that
satisfy the WHERE clause of a query can be found with relatively few 1/0s.

The table is not static and continually growing. If a table grows without limit,
the space required over the life of the table (its cluster) cannot be
predetermined.

Applications frequently perform full-table scans on the table and the table is
sparsely populated. A full-table scan in this situation takes longer under
hashing.

You cannot afford to pre-allocate the space that the hash cluster will eventually
need.

See Also: Even if you decide to use hashing, a table can still have
separate indexes on any columns, including the cluster key. See the
Oracle8i Application Developer’s Guide - Fundamentals for additional
recommendations.

Managing Hash Clusters 17-3

Creating Hash Clusters

Creating Hash Clusters

A hash cluster is created using a CREATE CLUSTER statement, but you specify a
HASHKEYS clause. The following example contains a statement to create a cluster
named TRIAL_CLUSTER that stores the TRIAL table, clustered by the TRIALNO
column (the cluster key); and another statement creating a table in the cluster.

CREATE CLUSTER trial_cluster (tialno NUMBER(5,0))

PCTUSED 80

PCTFREES

TABLESPACE users

STORAGE (INITIAL 250K NEXT 50K
MINEXTENTS1 MAXEXTENTS 3
PCTINCREASE 0)

HASH IS triaino HASHKEY'S 150;

CREATE TABLE trial (
trialno NUMBER(5,0) PRIMARY KEY,

)
CLUSTER trial_cluster (trialno);

As with index clusters, the key of a hash cluster can be a single column or a
composite key (multiple column key). In this example, it is a single column.

The HASHKEYS value, in this case 150, specifies and limits the number of unique
hash values that can be generated by the hash function used by the cluster. Oracle
rounds the number specified to the nearest prime number.

If no HASH IS clause is specified, Oracle uses an internal hash function. If the
cluster key is already a unique identifier that is uniformly distributed over its range,
you can bypass the internal hash function and specify the cluster key as the hash
value, as is the case in the above example. You can also use the HASH IS clause to
specify a user-defined hash function.

You cannot create a cluster index on a hash cluster, and you need not create an
index on a hash cluster key.

For additional information about creating tables in a cluster, guidelines for setting
parameters of the CREATE CLUSTER statement common to index and hash
clusters, and the privileges required to create any cluster, see Chapter 16,
"Managing Clusters". The following sections explain and provide guidelines for
setting the parameters of the CREATE CLUSTER statement specific to hash clusters:

« Creating Single-Table Hash Clusters
« Controlling Space Use Within a Hash Cluster

17-4 Oracle8i Administrator's Guide

Creating Hash Clusters

« How to Estimate Size Required by Hash Clusters and Set Storage Parameters

See Also: For detailed information about hash functions and
specifying user-defined hash functions, see Oracle8i Concepts.

For a more complete description of syntax, restrictions, and
authorizations required for the SQL statements CREATE CLUSTER
and CREATE TABLE, see Oracle8i SQL Reference.

Creating Single-Table Hash Clusters

You can also create a single-table hash cluster, which provides fast access to rows in a
table; however, this table must be the only table in the hash cluster. Essentially,
there must be a one-to-one mapping between hash keys and data rows. The
following statement creates a single-table hash cluster named PEANUT with the
cluster key VARIETY:

CREATE CLUSTER peant (variety NUMBER)
SIZE 512 SINGLE TABLE HASHKEYS 500;

Oracle rounds the HASHKEY value up to the nearest prime number, so this cluster
has a maximum of 503 hash key values, each of size 512 bytes.

Note: The SINGLE TABLE option is valid only for hash clusters.
HASHKEYS must also be specified.

Controlling Space Use Within a Hash Cluster

When creating a hash cluster, it is important to choose the cluster key correctly and
set the HASH IS, SIZE, and HASHKEYS parameters so that performance and space
use are optimal. The following guidelines describe how to set these parameters.

Choosing the Key

Choosing the correct cluster key is dependent on the most common types of queries
issued against the clustered tables. For example, consider the EMP table in a hash
cluster. If queries often select rows by employee number, the EMPNO column
should be the cluster key. If queries often select rows by department number, the
DEPTNO column should be the cluster key. For hash clusters that contain a single
table, the cluster key is typically the entire primary key of the contained table.

Managing Hash Clusters 17-5

Creating Hash Clusters

The key of a hash cluster, like that of an index cluster, can be a single column or a
composite key (multiple column key). A hash cluster with a composite key must
use Oracle’s internal hash function.

Setting HASH IS

Specify the HASH IS parameter only if the cluster key is a single column of the
NUMBER datatype, and contains uniformly distributed integers. If the above
conditions apply, you can distribute rows in the cluster so that each unique cluster
key value hashes, with no collisions, to a unique hash value. If these conditions do
not apply, omit this option so that you use the internal hash function.

Setting SIZE

SIZE should be set to the average amount of space required to hold all rows for any
given hash key. Therefore, to properly determine SIZE, you must be aware of the
characteristics of your data:

« If the hash cluster is to contain only a single table and the hash key values of the
rows in that table are unique (one row per value), SIZE can be set to the average
row size in the cluster.

« If the hash cluster is to contain multiple tables, SIZE can be set to the average
amount of space required to hold all rows associated with a representative hash
value.

« If the hash cluster does not use the internal hash function (if you specified
HASH IS) and you expect little or no collisions, you can set SIZE as estimated,;
no collisions occur and space is used as efficiently as possible.

« If you expect frequent collisions on inserts, the likelihood of overflow blocks
being allocated to store rows is high. To reduce the possibility of overflow
blocks and maximize performance when collisions are frequent, you should
increase SIZE as shown in the following chart.

Available Space per
Block/Calculated SIZE Setting for SIZE

1 Calculated SIZE

2 Calculated SIZE + 15%
3 Calculated SIZE + 12%
4 Calculated SIZE + 8%
>4 Calculated SIZE

17-6 Oracle8i Administrator's Guide

Creating Hash Clusters

Overestimating the value of SIZE increases the amount of unused space in the
cluster. If space efficiency is more important than the performance of data retrieval,
disregard the above adjustments and use the estimated value for SIZE.

Setting HASHKEYS

For maximum distribution of rows in a hash cluster, Oracle rounds the HASHKEYS
value up to the nearest prime number.

Controlling Space in Hash Clusters: Examples

The following examples show how to correctly choose the cluster key and set the
HASH IS, SIZE, and HASHKEYS parameters. For all examples, assume that the
data block size is 2K and that on average, 1950 bytes of each block is available data
space (block size minus overhead).

Example 1 You decide to load the EMP table into a hash cluster. Most queries
retrieve employee records by their employee number. You estimate that the
maximum number of rows in the EMP table at any given time is 10000 and that the
average row size is 55 bytes.

In this case, EMPNO should be the cluster key. Since this column contains integers
that are unique, the internal hash function can be bypassed. SIZE can be set to the
average row size, 55 bytes; note that 34 hash keys are assigned per data block.
HASHKEYS can be set to the number of rows in the table, 10000, rounded up to the
next highest prime number, 10007.

CREATE CLUSTER emp_cluster (empno

NUMBER)

SIZE 55

HASH IS empno HASHKEYS 10007;

Example 2 Conditions similar to the previous example exist. In this case, however,
rows are usually retrieved by department number. At most, there are 1000

departments with an average of 10 employees per department. Note that
department numbers increment by 10 (0, 10, 20, 30, .. .).

In this case, DEPTNO should be the cluster key. Since this column contains integers
that are uniformly distributed, the internal hash function can be bypassed. A
pre-estimated SIZE (the average amount of space required to hold all rows per
department) is 55 bytes * 10, or 550 bytes. Using this value for SIZE, only three hash
keys can be assigned per data block. If you expect some collisions and want
maximum performance of data retrieval, slightly alter your estimated SIZE to

Managing Hash Clusters 17-7

Creating Hash Clusters

prevent collisions from requiring overflow blocks. By adjusting SIZE by 12%, to 620
bytes (see previous section about setting SIZE for clarification), only three hash keys
are assigned per data block, leaving more space for rows from expected collisions.

HASHKEYS can be set to the number of unique department numbers, 1000,
rounded up to the next highest prime number, 1009.

CREATE CLUSTER emp_cluster (deptno NUMBER)

SIZE 620
HASH IS deptno HASHKEY'S 1009;

How to Estimate Size Required by Hash Clusters and Set Storage Parameters

As with index clusters, it is important to estimate the storage required for the data
in a hash cluster.

Oracle guarantees that the initial allocation of space is sufficient to store the hash
table according to the settings SIZE and HASHKEYS. If settings for the storage
parameters INITIAL, NEXT, and MINEXTENTS do not account for the hash table
size, incremental (additional) extents are allocated until at least SIZE*HASHKEYS is
reached. For example, assume that the data block size is 2K, the available data space
per block is approximately 1900 bytes (data block size minus overhead), and that
the STORAGE and HASH parameters are specified in the CREATE CLUSTER
statement as follows:

STORAGE (INITIAL 100K
NEXT 150K
MINEXTENTS 1
PCTINCREASE 0)

SIZE 1500

HASHKEYS 100

In this example, only one hash key can be assigned per data block. Therefore, the
initial space required for the hash cluster is at least 100*2K or 200K. The settings for
the storage parameters do not account for this requirement. Therefore, an initial
extent of 100K and a second extent of 150K are allocated to the hash cluster.

Alternatively, assume the HASH parameters are specified as follows:
SIZE 500 HASHKEYS 100

In this case, three hash keys are assigned to each data block. Therefore, the initial
space required for the hash cluster is at least 34*2K or 68K. The initial settings for

17-8 Oracle8i Administrator's Guide

Dropping Hash Clusters

the storage parameters are sufficient for this requirement (an initial extent of 100K is
allocated to the hash cluster).

Altering Hash Clusters

You can alter a hash cluster with the ALTER CLUSTER statement:

ALTER CLUSTER emp_dept...;

The implications for altering a hash cluster are identical to those for altering an
index cluster. However, note that the SIZE, HASHKEYS, and HASH IS parameters

cannot be specified in an ALTER CLUSTER statement. You must re-create the
cluster to change these parameters and then copy the data from the original cluster.

See Also: For more information about altering an index cluster,
see "Altering Clusters" on page 16-9.

Dropping Hash Clusters
You can drop a hash cluster using the DROP CLUSTER statement:
DROP CLUSTER emp_dept;

A table in a hash cluster is dropped using the DROP TABLE statement. The

implications of dropping hash clusters and tables in hash clusters are the same for
index clusters.

See Also: For more information about dropping clusters, see
"Dropping Clusters" on page 16-10.

Managing Hash Clusters 17-9

Dropping Hash Clusters

17-10 Oracle8i Administrator’'s Guide

13

Managing Views, Sequences and
Synonyms

This chapter describes aspects of view management, and includes the following
topics:

« Managing Views
« Managing Sequences
« Managing Synonyms

Before attempting tasks described in this chapter, familiarize yourself with the
concepts in Chapter 12, "Guidelines for Managing Schema Objects".

Managing Views, Sequences and Synonyms 18-1

Managing Views

Managing Views

A view is a tailored presentation of the data contained in one or more tables (or
other views), and takes the output of a query and treats it as a table. You can think
of a view as a "stored query" or a "virtual table." You can use views in most places
where a table can be used.

This section describes aspects of managing views, and includes the following topics:

Creating Views

Creating Views
Updating a Join View
Altering Views
Dropping Views

Replacing Views

To create a view, you must fulfill the requirements listed below.

To create a view in your schema, you must have the CREATE VIEW privilege;
to create a view in another user’s schema, you must have the CREATE ANY
VIEW system privilege. You may acquire these privileges explicitly or via a
role.

The owner of the view (whether it is you or another user) must have been
explicitly granted privileges to access all objects referenced in the view
definition; the owner cannot have obtained these privileges through roles. Also,
the functionality of the view is dependent on the privileges of the view’s owner.
For example, if the owner of the view has only the INSERT privilege for Scott’s
EMP table, the view can only be used to insert new rows into the EMP table, not
to SELECT, UPDATE, or DELETE rows from it.

If the owner of the view intends to grant access to the view to other users, the
owner must have received the object privileges to the base objects with the
GRANT OPTION or the system privileges with the ADMIN OPTION.

You can create views using the CREATE VIEW statement. Each view is defined by a
query that references tables, snapshots, or other views. As with all subqueries, the
guery that defines a view cannot contain the FOR UPDATE clause.

The following statement creates a view on a subset of data in the EMP table:
CREATE VIEW sales_staff AS

SELECT empno, ename, deptno

18-2 Oracle8i Administrator's Guide

Managing Views

FROMemp
WHERE deptno =10
WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

The query that defines the SALES_STAFF view references only rows in department
10. Furthermore, the CHECK OPTION creates the view with the constraint (named
SALES_STAFF_CNST) that INSERT and UPDATE statements issued against the
view cannot result in rows that the view cannot select. For example, the following
INSERT statement successfully inserts a row into the EMP table by means of the
SALES_STAFF view, which contains all rows with department number 10:

INSERT INTO sales_staff VALUES (7584, 'OSTER, 10);

However, the following INSERT statement is rolled back and returns an error
because it attempts to insert a row for department number 30, which cannot be
selected using the SALES STAFF view:

INSERT INTO sales_staff VALUES (7591, WILLIAMS, 30);

The view could optionally have been constructed specifying the WITH READ
ONLY clause, which prevents any updates, inserts, or deletes from being done to
the base table through the view. If no WITH clause is specified, the view, with some
restrictions, is inherently updatable.

Note: The restrictions for creating views are included in the
description of the CREATE VIEW statement in the Oracle8i SQL
Reference. Please refer to that book for specifics.

See Also: For detailed syntax, restriction, and authorization
information relating to creating or replacing, updating, altering,
and dropping views, see Oracle8i SQL Reference.

Join Views

You can also create views that specify more than one base table or view in the
FROM clause. These are called join views. The following statement creates the
DIVISION1_STAFF view that joins data from the EMP and DEPT tables:

CREATE VIEW divisionl._staff AS
SELECT ename, empno, job, dname
FROM emp, dept
WHERE emp.deptno IN (10, 30)

AND emp.deptno = dept.deptno;

Managing Views, Sequences and Synonyms 18-3

Managing Views

An updatable join view is a join view where UPDATE, INSERT, and DELETE
operations are allowed. See "Updating a Join View" on page 18-5 for further
discussion.

Expansion of Defining Queries at View Creation Time

In accordance with the ANSI/ZISO standard, Oracle expands any wildcard in a
top-level view query into a column list when a view is created and stores the
resulting query in the data dictionary; any subqueries are left intact. The column
names in an expanded column list are enclosed in quote marks to account for the
possibility that the columns of the base object were originally entered with quotes
and require them for the query to be syntactically correct.

As an example, assume that the DEPT view is created as follows:
CREATE VIEW dept AS SELECT * FROM scott.dept;

Oracle stores the defining query of the DEPT view as:
SELECT "DEPTNO", "DNAME", "LOC" FROM scott.dept

Views created with errors do not have wildcards expanded. However, if the view is
eventually compiled without errors, wildcards in the defining query are expanded.

Creating Views with Errors

If there are no syntax errors in a CREATE VIEW statement, Oracle can create the
view even if the defining query of the view cannot be executed; the view is
considered "created with errors." For example, when a view is created that refers to
a nonexistent table or an invalid column of an existing table, or when the view
owner does not have the required privileges, the view can be created anyway and
entered into the data dictionary. However, the view is not yet usable.

To create a view with errors, you must include the FORCE option of the CREATE
VIEW statement.

CREATEFORCEVIEWAS....,;

By default, views with errors are not created as VALID. When you try to create such
a view, Oracle returns a message indicating the view was created with errors. The
status of a view created with errors is INVALID. If conditions later change so that
the query of an invalid view can be executed, the view can be recompiled and be
made valid (usable). For information changing conditions and their impact on
views, see "Managing Object Dependencies” on page 19-23.

18-4 Oracle8i Administrator's Guide

Managing Views

Updating a Join View

An updatable join view (also referred to as a modifiable join view) is a view that

contains more than one table in the top-level FROM clause of the SELECT
statement, and is not restricted by the WITH READ ONLY clause.

Note: There are some restrictions and conditions which may affect
whether a join view is updatable. These are listed in the description
of the CREATE VIEW statement in the Oracle8i SQL Reference.
Please refer to that book for specifics.

Additionally, if a view is a join on other nested views, then the
other nested views must be mergeable into the top level view. For a
discussion of mergeable and unmergeable views, and more
generally, how the optimizer optimizes statements reverencing
views, see Oracle8i Concepts and Oracle8i Designing and Tuning for
Performance.

There are data dictionary views which indicate whether the
columns in a join view are updatable. See Table 18-1,
"UPDATABLE_COLUMNS Views" on page 18-10 for descriptions
of these views.

The rules for updatable join views are as follows:

Rule

Description

General Rule

UPDATE Rule

DELETE Rule

INSERT Rule

Any INSERT, UPDATE, or DELETE operation on a join view can
modify only one underlying base table at a time.

All updatable columns of a join view must map to columns of a
key-preserved table. If the view is defined with the WITH CHECK
OPTION clause, then all join columns and all columns of
repeated tables are non-updatable.

Rows from a join view can be deleted as long as there is exactly
one key-preserved table in the join. If the view is defined with the
WITH CHECK OPTION clause and the key preserved table is
repeated, then the rows cannot be deleted from the view.

An INSERT statement must not explicitly or implicitly refer to
the columns of a non-key preserved table. If the join view is
defined with the WITH CHECK OPTION clause, INSERT
statements are not permitted.

Managing Views, Sequences and Synonyms 18-5

Managing Views

Examples illustrating these rules, and a discussion of key-preserved tables, are
presented in succeeding sections.

The examples given work only if you explicitly define the primary and foreign keys
in the tables, or define unique indexes. Following are the appropriately constrained
table definitions for EMP and DEPT.

CREATE TABLE dept (
depno NUMBER(@) PRIMARY KEY,
dname VARCHAR2(14),
loc VARCHAR2(13));

CREATE TABLE emp (
empno NUMBER(4) PRIMARY KEY,
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(®4),
sal NUMBER(7,2),
comm NUMBER(7,2),
depno NUMBER(2),
FOREIGN KEY (DEPTNO) REFERENCES DEPT(DEPTNO));

You could also omit the primary and foreign key constraints listed above, and
create a UNIQUE INDEX on DEPT (DEPTNO) to make the following examples
work.

The following statement created the EMP_DEPT join view which is referenced in
the examples:

CREATE VIEW emp_deptAS
SELECT emp.empno, emp.ename, emp.deptno, emp.sal, dept.dname, deptloc
FROM emp, dept
WHERE emp.deptno = deptdeptno
AND deptloc IN (DALLAS, NEW YORK', BOSTONY);

Key-Preserved Tables

The concept of a key-preserved table is fundamental to understanding the restrictions
on modifying join views. A table is key preserved if every key of the table can also
be a key of the result of the join. So, a key-preserved table has its keys preserved
through a join.

18-6 Oracle8i Administrator's Guide

Managing Views

Note: It is not necessary that the key or keys of a table be selected
for it to be key preserved. It is sufficient that if the key or keys were
selected, then they would also be key(s) of the result of the join.

The key-preserving property of a table does not depend on the actual data in the
table. It is, rather, a property of its schema. For example, if in the EMP table there
was at most one employee in each department, then DEPTNO would be unique in
the result of a join of EMP and DEPT, but DEPT would still not be a key-preserved
table.

If you SELECT all rows from EMP_DEPT, the results are:
EMPNO ENAME DEPTNO DNAME LOC

7782 CLARK 10 ACCOUNTING NEW YORK
7839 KING 10 ACCOUNTING NEW YORK
7934 MILLER 10 ACCOUNTING NEW YORK
7369 SMITH 20RESEARCH DALLAS
7876 ADAMS 20RESEARCH DALLAS
7902 FORD 20RESEARCH DALLAS
7788 SCOTT 20RESEARCH DALLAS
7566 JONES 20RESEARCH DALLAS

8 rows selected.

In this view, EMP is a key-preserved table, because EMPNO is a key of the EMP
table, and also a key of the result of the join. DEPT is not a key-preserved table,
because although DEPTNO is a key of the DEPT table, it is not a key of the join.

DML Statements and Join Views

The general rule is that any UPDATE, INSERT, or DELETE statement on a join view
can modify only one underlying base table. The following examples will illustrate
rules specific to UPDATE, DELETE, and INSERT statements.

UPDATE Statements The following example shows an UPDATE statement that
successfully modifies the EMP_DEPT view:

UPDATE emp_dept
SET sal=sal*1.10
WHERE deptno = 10;

The following UPDATE statement would be disallowed on the EMP_DEPT view:

Managing Views, Sequences and Synonyms 18-7

Managing Views

UPDATE emp_dept
SET loc ='BOSTON'
WHERE ename ='SMITH,

This statement fails with an ORA-01779 error (’cannot modify a column which
maps to a non key-preserved table”), because it attempts to modify the base DEPT
table, and the DEPT table is not key preserved in the EMP_DEPT view.

In general, all updatable columns of a join view must map to columns of a
key-preserved table. If the view is defined using the WITH CHECK OPTION
clause, then all join columns and all columns of repeated tables are not modifiable.

So, for example, if the EMP_DEPT view were defined using WITH CHECK
OPTION, the following UPDATE statement would fail:

UPDATE emp_dept
SET deptno=10
WHERE ename ='SMITH,

The statement fails because it is trying to update a join column.

DELETE Statements You can delete from a join view provided there is one and only
one key-preserved table in the join.

The following DELETE statement works on the EMP_DEPT view:

DELETE FROM emp_dept
WHERE ename ='SMITH;,

This DELETE statement on the EMP_DEPT view is legal because it can be translated
to a DELETE operation on the base EMP table, and because the EMP table is the
only key-preserved table in the join.

If you were to create the following view, a DELETE operation could not be
performed on the view because both E1 and E2 are key-preserved tables:

CREATE VIEW emp_emp AS
SELECT el.ename, e2.empno, deptno
FROMempel,empe2
WHERE el.empno = e2.empno;

If a view is defined using the WITH CHECK OPTION clause and the key-preserved
table is repeated, then rows cannot be deleted from such a view.

CREATE VIEW emp_mgr AS
SELECT el.ename, e2.ename mname
FROMempel,empe2

18-8 Oracle8i Administrator's Guide

Managing Views

WHERE el.mgr =e2.empno
WITH CHECK OPTION;

No deletion can be performed on this view because the view involves a self-join of
the table that is key preserved.

INSERT Statements The following INSERT statement on the EMP_DEPT view
succeeds:

INSERT INTO emp_dept (ename, empno, deptno)
VALUES (KURODA, 9010, 40);

This statement works because only one key-preserved base table is being modified
(EMP), and 40 is a valid DEPTNO in the DEPT table (thus satisfying the FOREIGN
KEY integrity constraint on the EMP table).

An INSERT statement like the following would fail for the same reason that such an
UPDATE on the base EMP table would fail: the FOREIGN KEY integrity constraint
on the EMP table is violated.

INSERT INTO emp_dept (ename, empno, deptno)
VALUES (KURODA, 9010, 77);
The following INSERT statement would fail with an ORA-01776 error (”cannot
modify more than one base table through a view”).
INSERT INTO emp_dept (empno, ename, loc)
VALUES (9010, KURODA, BOSTON);

An INSERT cannot implicitly or explicitly refer to columns of a non-key-preserved
table. If the join view is defined using the WITH CHECK OPTION clause, then you
cannot perform an INSERT to it.

Using the UPDATABLE_ COLUMNS Views
The views described in Table 18-1 can assist you when modifying join views.

Managing Views, Sequences and Synonyms 18-9

Managing Views

Table 18-1 UPDATABLE_COLUMNS Views

View Name

Description

USER_UPDATABLE_COLUMNS

Shows all columns in all tables and views
in the user’s schema that are modifiable.

DBA_UPDATABLE_COLUMNS

Shows all columns in all tables and views
in the DBA schema that are modifiable.

ALL_UPDATABLE_VIEWS

Shows all columns in all tables and views
that are modifiable.

The updatable columns in view EMP_DEPT are shown below.

SELECT column_name, updatable
FROM user_updatable_columns
WHERE table_name ='EMP_DEPT;

COLUMN_NAME UPD
EMPNO YES
ENAME YES
DEPTNO YES

SAL YES

DNAME NO

LOC NO

6 rows selected.

Altering Views

You use the ALTER VIEW statement only to explicitly recompile a view that is
invalid. If you want to change the definition of a view, see Replacing Views on

page 18-11.

The ALTER VIEW statement allows you to locate recompilation errors before run

time. You may want to explicitly recompile a view after altering one of its base
tables to ensure that the alteration does not affect the view or other objects that

depend on it.

To use the ALTER VIEW statement, the view must be in your schema, or you must

have the ALTER ANY TABLE system privilege.

18-10 Oracle8i Administrator’'s Guide

Managing Views

Dropping Views

You can drop any view contained in your schema. To drop a view in another user’s
schema, you must have the DROP ANY VIEW system privilege. Drop a view using
the DROP VIEW statement. For example, the following statement drops the EMP_
DEPT view:

DROP VIEW emp_dept;

Replacing Views

To replace a view, you must have all the privileges required to drop and create a
view. If the definition of a view must change, the view must be replaced; you
cannot change the definition of a view. You can replace views in the following
ways:

= You can drop and re-create the view.

WARNING: When a view is dropped, all grants of corresponding
object privileges are revoked from roles and users. After the view
is re-created, privileges must be re-granted.

= You can redefine the view with a CREATE VIEW statement that contains the
OR REPLACE option. The OR REPLACE option replaces the current definition
of a view and preserves the current security authorizations. For example,
assume that you created the SALES_STAFF view as shown earlier, and, in
addition, you granted several object privileges to roles and other users.
However, now you need to redefine the SALES_STAFF view to change the
department number specified in the WHERE clause. You can replace the
current version of the SALES_STAFF view with the following statement:

CREATE OR REPLACE VIEW sales_staff AS
SELECT empno, ename, deptno
FROMemp
WHERE deptno =30
WITH CHECK OPTION CONSTRAINT sales_staff cnst;

Before replacing a view, consider the following effects:

« Replacing a view replaces the view’s definition in the data dictionary. All
underlying objects referenced by the view are not affected.

Managing Views, Sequences and Synonyms 18-11

Managing Sequences

« Ifaconstraint in the CHECK OPTION was previously defined but not included
in the new view definition, the constraint is dropped.

« Allviews and PL/SQL program units dependent on a replaced view become
invalid (not usable). See "Managing Object Dependencies” on page 19-23for
more information on how Oracle manages such dependencies.

Managing Sequences

Sequences are database objects from which multiple users may generate unique
integers. You can use sequences to automatically generate primary key values. This
section describes various aspects of managing sequences, and includes the
following topics:

« Creating Sequences
« Altering Sequences

« Dropping Sequences

See Also: For more information about sequences, see Oracle8i
Concepts. For statement syntax, refer to Oracle8i SQL Reference.

Creating Sequences

To create a sequence in your schema, you must have the CREATE SEQUENCE
system privilege; to create a sequence in another user’s schema, you must have the
CREATE ANY SEQUENCE privilege.

Create a sequence using the CREATE SEQUENCE statement. For example, the
following statement creates a sequence used to generate employee numbers for the
EMPNO column of the EMP table:

CREATE SEQUENCE emp_sequence
INCREMENT BY 1
STARTWITH1
NOMAXVALUE
NOCYCLE
CACHE 10;

The CACHE option pre-allocates a set of sequence numbers and keeps them in
memory so that sequence numbers can be accessed faster. When the last of the
sequence numbers in the cache has been used, Oracle reads another set of numbers
into the cache.

18-12 Oracle8i Administrator’'s Guide

Managing Sequences

Oracle might skip sequence numbers if you choose to cache a set of sequence
numbers. For example, when an instance abnormally shuts down (for example,
when an instance failure occurs or a SHUTDOWN ABORT statement is issued),
sequence numbers that have been cached but not used are lost. Also, sequence
numbers that have been used but not saved are lost as well. Oracle might also skip
cached sequence numbers after an export and import; see Oracle8i Utilities for
details.

See Also: For information about how the Oracle Parallel Server
affects cached sequence numbers, see Oracle8i Parallel Server
Administration, Deployment, and Performance.

For performance information on caching sequence numbers, see
Oracle8i Designing and Tuning for Performance.

Altering Sequences

To alter a sequence, your schema must contain the sequence, or you must have the
ALTER ANY SEQUENCE system privilege. You can alter a sequence to change any
of the parameters that define how it generates sequence numbers except the
sequence’s starting number. To change the starting point of a sequence, drop the
sequence and then re-create it. When you perform DDL on sequence humbers you
will lose the cache values.

Alter a sequence using the ALTER SEQUENCE statement. For example, the
following statement alters the EMP_SEQUENCE:

ALTER SEQUENCE emp_sequence
INCREMENT BY 10
MAXVALUE 10000
CYCLE
CACHE 20;

Dropping Sequences

You can drop any sequence in your schema. To drop a sequence in another schema,
you must have the DROP ANY SEQUENCE system privilege. If a sequence is no
longer required, you can drop the sequence using the DROP SEQUENCE statement.
For example, the following statement drops the ORDER_SEQ sequence:

DROP SEQUENCE order_seq;

When a sequence is dropped, its definition is removed from the data dictionary.
Any synonyms for the sequence remain, but return an error when referenced.

Managing Views, Sequences and Synonyms 18-13

Managing Synonyms

Managing Synonyms

A synonym is an alias for a schema object. Synonyms can provide a level of security
by masking the name and owner of an object and by providing location
transparency for remote objects of a distributed database. Also, they are convenient
to use and reduce the complexity of SQL statements for database users.

Synonyms allow underlying objects to be renamed or moved, where only the
synonym needs to be redefined and applications based on the synonym continue to
function without modification.

You can create both public and private synonyms. A public synonym is owned by
the special user group named PUBLIC and is accessible to every user in a database.
A private synonym is contained in the schema of a specific user and available only
to the user and the user’s grantees.

This section includes the following synonym management information:
« Creating Synonyms
« Dropping Synonyms

See Also: For more information about synonyms, see Oracle8i
Concepts. For statement syntax, refer to Oracle8i SQL Reference.

Creating Synonyms

To create a private synonym in your own schema, you must have the CREATE
SYNONYM privilege; to create a private synonym in another user’s schema, you
must have the CREATE ANY SYNONYM privilege. To create a public synonym,
you must have the CREATE PUBLIC SYNONYM system privilege.

Create a synonym using the CREATE SYNONYM statement. The underlying
schema object need not exist. The following statement creates a public synonym
named PUBLIC_EMP on the EMP table contained in the schema of JWARD:

CREATE PUBLIC SYNONYM public_emp FOR jward.emp;

Dropping Synonyms

You can drop any private synonym in your own schema. To drop a private
synonym in another user’s schema, you must have the DROP ANY SYNONYM
system privilege. To drop a public synonym, you must have the DROP PUBLIC
SYNONYM system privilege.

18-14 Oracle8i Administrator’'s Guide

Managing Synonyms

Drop a synonym that is no longer required using DROP SYNONYM statement. To
drop a private synonym, omit the PUBLIC keyword; to drop a public synonym,
include the PUBLIC keyword.

For example, the following statement drops the private synonym named EMP:

DROP SYNONYM emp;

The following statement drops the public synonym named PUBLIC_EMP:

DROP PUBLIC SYNONYM public_emp;

When you drop a synonym, its definition is removed from the data dictionary. All
objects that reference a dropped synonym remain; however, they become invalid

(not usable). For more information about how dropping synonyms can affect other
schema objects, see "Managing Object Dependencies” on page 19-23

Managing Views, Sequences and Synonyms 18-15

Managing Synonyms

18-16 Oracle8i Administrator’'s Guide

19

General Management of Schema Objects

This chapter describes schema object management issues that are common across
multiple types of schema objects. The following topics are presented:

« Creating Multiple Tables and Views in a Single Operation
« Renaming Schema Objects
« Analyzing Tables, Indexes, and Clusters
« Truncating Tables and Clusters
« Enabling and Disabling Triggers
« Managing Integrity Constraints
« Managing Object Dependencies
« Managing Object Name Resolution
« Changing Storage Parameters for the Data Dictionary
« Displaying Information About Schema Objects
See Also: For more information about syntax, authorizations, and

restrictions for the SQL statements discussed in this chapter, see the
Oracle8i SQL Reference.

General Management of Schema Objects 19-1

Creating Multiple Tables and Views in a Single Operation

Creating Multiple Tables and Views in a Single Operation

You can create several tables and views and grant privileges in one operation using
the CREATE SCHEMA statement. The CREATE SCHEMA statement is useful if
you want to guarantee the creation of several tables and views and grants in one
operation. If an individual table, view or grant fails, the entire statement is rolled
back. None of the objects are created, nor are the privileges granted.

Specifically, the CREATE SCHEMA statement can include CREATE TABLE,
CREATE VIEW, and GRANT statements. You must have the privileges necessary to
issue the included statements.

The following statement creates two tables and a view that joins data from the two
tables:

CREATE SCHEMA AUTHORIZATION scott
CREATE TABLE dept (
deptno NUMBER(3,0) PRIMARY KEY,
dname VARCHAR2(15),
loc VARCHAR2(25)
CREATE TABLE emp (
empno NUMBER(5,0) PRIMARY KEY,
ename VARCHAR2(15) NOT NULL,
job VARCHAR2(10),
mgr NUMBER(5,0),
hiredate DATE DEFAULT (sysdate),
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(3,0) NOT NULL
CONSTRAINT dept_fkey REFERENCES dept)
CREATE VIEW sales_staff AS
SELECT empno, ename, sal, comm
FROMemp
WHERE deptno =30
WITH CHECK OPTION CONSTRAINT sales_staff_cnst
GRANT SELECT ON sales_staff TO human_resources;

The CREATE SCHEMA statement does not support Oracle extensions to the ANSI

CREATE TABLE and CREATE VIEW statements; this includes the STORAGE
clause.

19-2 Oracle8i Administrator's Guide

Analyzing Tables, Indexes, and Clusters

Renaming Schema Objects

To rename an object, you must own it. You can rename schema objects in either of
the following ways:

« Drop and re-create the object
« Rename the object using the RENAME statement

If you drop and re-create an object, all privileges granted for that object are lost.
Privileges must be re-granted when the object is re-created.

Alternatively, a table, view, sequence, or a private synonym of a table, view, or
sequence can be renamed using the RENAME statement. When using the RENAME
statement, integrity constraints, indexes, and grants made for the object are carried
forward for the new name. For example, the following statement renames the
SALES_STAFF view:

RENAME sales_staff TO dept_30;

Note: You cannot rename a stored PL/SQL program unit, public
synonym, index, or cluster. To rename such an object, you must
drop and re-create it.

Before renaming a schema object, consider the following effects:

« Allviews and PL/SQL program units dependent on a renamed object become
invalid, and must be recompiled before next use.

« All synonyms for a renamed object return an error when used.

For more information about how Oracle manages object dependencies, see
"Managing Object Dependencies" on page 19-23.

Analyzing Tables, Indexes, and Clusters

You can analyze a table, index, or cluster to gather data about it, or to verify the
validity of its storage format.

These schema objects can also be analyzed to collect or update statistics about
specific objects. When a DML statement is issued, the statistics for the referenced
objects are used to determine the most efficient execution plan for the statement.
This optimization is called "cost-based optimization." The statistics are stored in the
data dictionary.

General Management of Schema Objects 19-3

Analyzing Tables, Indexes, and Clusters

A table, index, or cluster can be analyzed to validate the structure of the object. For
example, in rare cases such as hardware or other system failures, an index can
become corrupted and not perform correctly. When validating the index, you can
confirm that every entry in the index points to the correct row of the associated
table. If a schema object is corrupt, you can drop and re-create it.

A table or cluster can be analyzed to collect information about chained rows of the
table or cluster. These results are useful in determining whether you have enough
room for updates to rows. For example, this information can show whether
PCTFREE is set appropriately for the table or cluster.

To analyze a table, cluster, or index, you must own the table, cluster, or index or
have the ANALYZE ANY system privilege.

The following topics are discussed in this section:

« Using Statistics for Tables, Indexes, and Clusters
« Validating Tables, Indexes, and Clusters

« Listing Chained Rows of Tables and Clusters

For information specific to analyzing index-organized tables, see "Analyzing
Index-Organized Tables" on page 13-24.

See Also: For more information about analyzing tables, indexes,
and clusters for performance statistics and the optimizer, see
Oracle8i Designing and Tuning for Performance.

Using Statistics for Tables, Indexes, and Clusters

Statistics about the physical storage characteristics of a table, index, or cluster can be
gathered and stored in the data dictionary using the ANALYZE statement. Oracle
can use these statistics when cost-based optimization is employed to choose the
most efficient execution plan for SQL statements accessing analyzed objects. You
can also use statistics generated by this statement to write efficient SQL statements
that access analyzed objects.

You can choose either of the following clauses of the ANALYZE statement for
gathering statistics:

« COMPUTE STATISTICS

When computing statistics, an entire object is scanned to gather data about the
object. This data is used by Oracle to compute exact statistics about the object.
Slight variances throughout the object are accounted for in these computed
statistics. Because an entire object is scanned to gather information for

19-4 Oracle8i Administrator's Guide

Analyzing Tables, Indexes, and Clusters

computed statistics, the larger the size of an object, the more work that is
required to gather the necessary information.

=« ESTIMATE STATISTICS

When estimating statistics, Oracle gathers representative information from
portions of an object. This subset of information provides reasonable, estimated
statistics about the object. The accuracy of estimated statistics depends upon
how representative the sampling used by Oracle is. Only parts of an object are
scanned to gather information for estimated statistics, so an object can be
analyzed quickly. You can optionally specify the number or percentage of rows
that Oracle should use in making the estimate.

Note: When calculating statistics for tables or clusters, the amount
of temporary space required to perform the calculation is related to
the number of rows specified. For COMPUTE STATISTICS, enough
temporary space to hold and sort the entire table plus a small
overhead for each row is required. For ESTIMATE STATISTICS,
enough temporary space to hold and sort the requested sample of
rows plus a small overhead for each row is required. For indexes,
no temporary space is required for analyzing.

Computing Statistics Using the ANALYZE Statement
The following statement computes statistics for the EMP table:

ANALYZE TABLE emp COMPUTE STATISTICS;

The following query estimates statistics on the EMP table, using the default
statistical sample of 1064 rows:

ANALYZE TABLE emp ESTIMATE STATISTICS;

To specify the statistical sample that Oracle should use, include the SAMPLE option
with the ESTIMATE STATISTICS option. You can specify an integer that indicates

either a number of rows or index values, or a percentage of the rows or index values
in the table. The following statements show examples of each option:

ANALYZE TABLE emp
ESTIMATE STATISTICS
SAMPLE 2000 ROWS;

ANALYZE TABLE emp
ESTIMATE STATISTICS

General Management of Schema Objects 19-5

Analyzing Tables, Indexes, and Clusters

SAMPLE 33 PERCENT;

In either case, if you specify a percentage greater than 50, or a number of rows or
index values that is greater than 50% of those in the object, Oracle computes the
exact statistics, rather than estimating.

If the data dictionary currently contains statistics for the specified object when an
ANALYZE statement is issued, the new statistics replace the old statistics in the
data dictionary.

What Statistics Are Gathered?
This section lists the statistics that are gathered for tables, indexes, and clusters.

Note: The * symbol indicates that the numbers will always be an
exact value when computing statistics.

Table Statistics

« Number of rows

« Number of blocks that have been used *
« Number of blocks never used

« Average available free space

« Number of chained rows

« Average row length

« Number of distinct values in a column
« Thelow value in a column *

« The high value in a column *

Note: Statistics for all indexes associated with a table are
automatically gathered when the table is analyzed.

Index Statistics
« Index level *

« Number of leaf blocks

19-6 Oracle8i Administrator's Guide

Analyzing Tables, Indexes, and Clusters

« Number of distinct keys

« Average number of leaf blocks/key

« Average number of data blocks/key

« Clustering factor

Note: You will receive an error if you use the ANALYZE
statement on an index that has been marked unusable. When you
analyze a table, Oracle also collect statistics for each of the table’s
indexes, so if any index has been marked unusable, you will receive
an error. You must drop and recreate the index that has been
marked unusable for the ANALYZE statement to succeed, or you
can specify a for clause which causes analyze to skip collection of

index statistics.

Cluster Statistics

The only statistic that can be gathered for a cluster is the average cluster key chain
length; this statistic can be estimated or computed. Statistics for tables in a cluster
and all indexes associated with the cluster’s tables (including the cluster key index)
are automatically gathered when the cluster is analyzed for statistics.

Viewing Object Statistics

Whether statistics for an object are computed or estimated, the statistics are stored
in the data dictionary. The statistics can be queried using the following data

dictionary views:

View Description

USER_INDEXES This view contains descriptions of indexes in the
ALL_INDEXES database, including the index statistics gathered by
DBA INDEXES ANALYZE. The type of view (USER, ALL, DBA)

- determines which index entries are displayed.
USER_TABLES This view contains descriptions of relational tables in
ALL _TABLES the database, including the table statistics gathered by
DBA_TABLES ANALYZE.

USER_TAB_COLUMNS
ALL_TAB_COLUMNS
DBA_TAB_COLUMNS

This view contains descriptions of columns for tables,
views, and clusters in the database, including statistics
gathered by ANALYZE.

General Management of Schema Objects 19-7

Analyzing Tables, Indexes, and Clusters

Note: Rows in these views contain entries in the statistics columns
only for indexes, tables, and clusters for which you have gathered
statistics. The entries are updated for an object each time you
ANALYZE the object.

See Also: For more information about the data dictionary views
containing statistics, see the Oracle8i Reference.

Removing Statistics for a Schema Object

You can remove statistics for a table, index, or cluster from the data dictionary
using the ANALYZE statement with the DELETE STATISTICS option. For example,
you might want to delete statistics for an object if you do not want cost-based
optimization to be used for statements regarding the object. The following
statement deletes statistics for the EMP table from the data dictionary:

ANALYZE TABLE emp DELETE STATISTICS;

Shared SQL and Analyzing Statistics

Analyzing a table, cluster, or index can affect current shared SQL statements, which
are statements currently in the shared pool. Whenever an object is analyzed to
update or delete statistics, all shared SQL statements that reference the analyzed
object are flushed from memory so that the next execution of the statement can take
advantage of the new statistics.

Some Optional Means of Computing Statistics

There are some PL/SQL packages that allow you to effectively execute an
ANALYZE statement. These are briefly discussed here.

DBMS_STATS This is a powerful package that allows both the gathering of statistics,
including utilizing parallel execution, and the external manipulation of statistics.
Statistics can be stored in tables outside of the data dictionary, where they can be
manipulated without affecting the optimizer. Statistics can be copied between
databases or backed up.

For information about using the DBMS_STATS package, see Oracle8i Designing and
Tuning for Performance. For a description of procedures, syntax and exceptions, see
Oracle8i Supplied PL/SQL Packages Reference.

19-8 Oracle8i Administrator's Guide

Analyzing Tables, Indexes, and Clusters

DBMS_UTILITY This package contains the ANALYZE_SCHEMA procedure that takes
two arguments: the name of a schema and an analysis method (COMPUTE’,
'ESTIMATE’, or 'DELETE"). It gathers statistics on all of the objects in the schema.

For information on the DBMS_UTILITY package, see Oracle8i Supplied PL/SQL
Packages Reference.

DBMS DDL This package contains the ANALYZE_OBJECT procedure that takes four
arguments: the type of object CCLUSTER’, "'TABLE’, or 'INDEX"), the schema of the
object, the name of the object, and an analysis method (COMPUTE’, 'ESTIMATE’,
or 'DELETE’). It gathers statistics on the object.

For information on the DBMS_DDL package, see Oracle8i Supplied PL/SQL Packages
Reference.

Validating Tables, Indexes, and Clusters

To verify the integrity of the structure of a table, index, cluster, or snapshot, use the
ANALYZE statement with the VALIDATE STRUCTURE option. If the structure is
valid, no error is returned. However, if the structure is corrupt, you receive an error
message. If a table, index, or cluster is corrupt, you should drop it and re-create it. If
a snapshot is corrupt, perform a complete refresh and ensure that you have
remedied the problem; if not, drop and re-create the snapshot.

The following statement analyzes the EMP table:

ANALYZE TABLE emp VALIDATE STRUCTURE;

You can validate an object and all related objects by including the CASCADE
option. The following statement validates the EMP table and all associated indexes:
ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE;

Listing Chained Rows of Tables and Clusters

You can look at the chained and migrated rows of a table or cluster using the
ANALYZE statement with the LIST CHAINED ROWS option. The results of this
statement are stored in a specified table created explicitly to accept the information
returned by the LIST CHAINED ROWS option.

To create an appropriate table to accept data returned by an ANALYZE...LIST
CHAINED ROWS statement, use the UTLCHAIN.SQL script provided with Oracle.
The UTLCHAIN.SQL script creates a table named CHAINED_ROWS in the schema
of the user submitting the script.

General Management of Schema Objects 19-9

Truncating Tables and Clusters

After a CHAINED_ROWS table is created, you can specify it when using the
ANALYZE statement. For example, the following statement inserts rows containing
information about the chained rows in the EMP_DEPT cluster into the CHAINED _
ROWS table:

ANALYZE CLUSTER emp_dept LIST CHAINED ROWS INTO chained_rows;

See Also: The name and location of the UTLCHAIN.SQL script
are operating system-dependent; see your operating
system-specific Oracle documentation.

For more information about reducing the number of chained and
migrated rows in a table or cluster, see Oracle8i Designing and
Tuning for Performance.

Truncating Tables and Clusters

You can delete all rows of a table or all rows in a group of clustered tables so that
the table (or cluster) still exists, but is completely empty. For example, you may
have a table that contains monthly data, and at the end of each month, you need to
empty it (delete all rows) after archiving its data.

To delete all rows from a table, you have the following three options:

1.

Using the DELETE statement

You can delete the rows of a table using the DELETE statement. For example,
the following statement deletes all rows from the EMP table:

DELETE FROM emp;

Using the DROP and CREATE statements

You can drop a table and then re-create the table. For example, the following
statements drop and then re-create the EMP table:

DROP TABLE emp;
CREATE TABLEemp(...);

Using TRUNCATE

You can delete all rows of the table using the SQL statement TRUNCATE. For
example, the following statement truncates the EMP table:

TRUNCATE TABLE emp;

19-10 Oracle8i Administrator’'s Guide

Truncating Tables and Clusters

Using DELETE

If there are many rows present in a table or cluster when using the DELETE
statement, significant system resources are consumed as the rows are deleted. For
example, CPU time, redo log space, and rollback segment space from the table and
any associated indexes require resources. Also, as each row is deleted, triggers can
be fired. The space previously allocated to the resulting empty table or cluster
remains associated with that object. With DELETE you can choose which rows to
delete, whereas TRUNCATE and DROP wipe out the entire object.

Using DROP and CREATE

When dropping and re-creating a table or cluster, all associated indexes, integrity
constraints, and triggers are also dropped, and all objects that depend on the
dropped table or clustered table are invalidated. Also, all grants for the dropped
table or clustered table are dropped.

Using TRUNCATE

Using the TRUNCATE statement provides a fast, efficient method for deleting all
rows from a table or cluster. A TRUNCATE statement does not generate any
rollback information and it commits immediately; it is a DDL statement and cannot
be rolled back. A TRUNCATE statement does not affect any structures associated
with the table being truncated (constraints and triggers) or authorizations. A
TRUNCATE statement also specifies whether space currently allocated for the table
is returned to the containing tablespace after truncation.

You can truncate any table or cluster in the user’s associated schema. Also, any user
that has the DROP ANY TABLE system privilege can truncate a table or cluster in
any schema.

Before truncating a table or clustered table containing a parent key, all referencing
foreign keys in different tables must be disabled. A self-referential constraint does
not have to be disabled.

As a TRUNCATE statement deletes rows from a table, triggers associated with the
table are not fired. Also, a TRUNCATE statement does not generate any audit
information corresponding to DELETE statements if auditing is enabled. Instead, a
single audit record is generated for the TRUNCATE statement being issued. See
Chapter 24, "Auditing Database Use", for information about auditing.

A hash cluster cannot be truncated. Also, tables within a hash or index cluster
cannot be individually truncated; truncation of an index cluster deletes all rows
from all tables in the cluster. If all the rows must be deleted from an individual
clustered table, use the DELETE statement or drop and re-create the table.

General Management of Schema Objects 19-11

Enabling and Disabling Triggers

The REUSE STORAGE or DROP STORAGE options of the TRUNCATE statement
control whether space currently allocated for a table or cluster is returned to the
containing tablespace after truncation. The default option, DROP STORAGE,
reduces the number of extents allocated to the resulting table to the original setting
for MINEXTENTS. Freed extents are then returned to the system and can be used
by other objects.

Alternatively, the REUSE STORAGE option specifies that all space currently
allocated for the table or cluster remains allocated to it. For example, the following
statement truncates the EMP_DEPT cluster, leaving all extents previously allocated
for the cluster available for subsequent inserts and deletes:

TRUNCATE CLUSTER emp_dept REUSE STORAGE;

The REUSE or DROP STORAGE option also applies to any associated indexes.
When a table or cluster is truncated, all associated indexes are also truncated. Also
note that the storage parameters for a truncated table, cluster, or associated indexes
are not changed as a result of the truncation.

Enabling and Disabling Triggers

Database triggers are procedures that are stored in the database and activated
("fired") when specific conditions occur, such as adding a row to a table. You can
use triggers to supplement the standard capabilities of Oracle to provide a highly
customized database management system. For example, you can create a trigger to
restrict DML operations against a table, allowing only statements issued during
regular business hours.

Database triggers can be associated with a table, schema, or database. They are

implicitly fired when:

« DML statements are executed (INSERT, UPDATE, DELETE) against an
associated table.

« Certain DDL statements are executed (for example, ALTER, CREATE, DROP)
on objects within a database or schema.

« A specified database event occurs (for example, STARTUP, SHUTDOWN,
SERVERERROR).

For a full list of statements and database events that will cause triggers to fire, see
Oracle8i SQL Reference.

Triggers are created with the CREATE TRIGGER statement. They can be defined as
firing BEFORE or AFTER the triggering event, or INSTEAD OF it. The following

19-12 Oracle8i Administrator’'s Guide

Enabling and Disabling Triggers

statement creates a trigger SCOTT.EMP_PERMIT_CHANGES on table
SCOTT.EMP. The trigger will fire, before any of the specified statements are
executed.

CREATE TRIGGER scottemp_permit_changes
BEFORE
DELETE OR INSERT OR UPDATE
ON scottemp

pl/sql block

You can later remove a trigger from the database by issuing the DROP TRIGGER
statement.

Information on creating and using triggers is contained in Oracle8i Application
Developer’s Guide - Fundamentals.

A trigger can be in either of two distinct modes:

Enabled An enabled trigger executes its trigger body if a triggering
statement is issued and the trigger restriction, if any, evaluates
to TRUE. By default, triggers are enabled when first created.

Disabled A disabled trigger does not execute its trigger body, even if a
triggering statement is issued and the trigger restriction (if any)
evaluates to TRUE.

To enable or disable triggers using the ALTER TABLE statement, you must own the
table, have the ALTER object privilege for the table, or have the ALTER ANY
TABLE system privilege. To enable or disable an individual trigger using the
ALTER TRIGGER statement, you must own the trigger or have the ALTER ANY
TRIGGER system privilege.

See Also: For a description of triggers, see Oracle8i Concepts.

For syntax, restrictions, and specific authorization requirements for
the SQL statements used to create and manage triggers, see Oracle8i
SQL Reference.

Enabling Triggers

You enable a disabled trigger using the ALTER TRIGGER statement with the
ENABLE option. To enable the disabled trigger named REORDER on the
INVENTORY table, enter the following statement:

ALTER TRIGGER reorder ENABLE;

General Management of Schema Objects 19-13

Managing Integrity Constraints

To enable all triggers defined for a specific table, use the ALTER TABLE statement
with the ENABLE ALL TRIGGERS option. To enable all triggers defined for the
INVENTORY table, enter the following statement:

ALTER TABLE inventory
ENABLE ALL TRIGGERS;

Disabling Triggers

You may want to temporarily disable a trigger if one of the following conditions is
true:

« An object that the trigger references is not available.

= You have to perform a large data load and want it to proceed quickly without
firing triggers.

= You are loading data into the table to which the trigger applies.

You disable a trigger using the ALTER TRIGGER statement with the DISABLE
option. To disable the trigger REORDER on the INVENTORY table, enter the
following statement:

ALTER TRIGGER reorder DISABLE;
You can disable all triggers associated with a table at the same time using the
ALTER TABLE statement with the DISABLE ALL TRIGGERS option. For example,

to disable all triggers defined for the INVENTORY table, enter the following
statement:

ALTER TABLE inventory
DISABLE ALL TRIGGERS;

Managing Integrity Constraints

Integrity constraints are rules that restrict the values for one or more columns in a
table. Constraint clauses can appear in either CREATE TABLE or ALTER TABLE
statements, and identify the column or columns affected by the constraint and
identify the conditions of the constraint.

This following topics are included in this section:
« Integrity Constraint States
« Setting Integrity Constraints Upon Definition

19-14 Oracle8i Administrator’'s Guide

Managing Integrity Constraints

« Modifying Existing Integrity Constraints

« Deferring Constraint Checks

« Managing Constraints That Have Associated Indexes

« Dropping Integrity Constraints

« Reporting Constraint Exceptions
See Also: This book briefly discusses the concepts of constraints
and identifies the SQL statements used to define and manage
integrity constraints. For a more thorough discussion of integrity
constraints, see Oracle8i Concepts. For detailed information and

examples of using integrity constraints in applications, see Oracle8i
Application Developer’s Guide - Fundamentals.

Integrity Constraint States

You may specify that a constraint is enabled (ENABLE) or disabled (DISABLE). If a
constraint is enabled, data is checked as it is entered or updated in the database,
and data that does not conform to the constraint’s rule is prevented from being
entered. If a constraint is disabled, then data that does not conform can be allowed
to enter the database.

Additionally, you can specify that existing data in the table must conform to the
constraint (VALIDATE). Conversely, if you specify NOVALIDATE, you are not
ensured that existing data conforms.

An integrity constraint defined on a table can be in one of the following states:
« ENABLE, VALIDATE

« ENABLE, NOVALIDATE

« DISABLE, VALIDATE

« DISABLE, NOVALIDATE

For details about the meaning of these states and an understanding of their
consequences, see the Oracle8i SQL Reference. Some of these consequences are
discussed here.

General Management of Schema Objects 19-15

Managing Integrity Constraints

Disabling Constraints

To enforce the rules defined by integrity constraints, the constraints should always
be enabled. However, you may wish to temporarily disable the integrity constraints
of a table for the following performance reasons:

« When loading large amounts of data into a table

« When performing batch operations that make massive changes to a table (for
example, changing every employee’s number by adding 1000 to the existing
number)

=« When importing or exporting one table at a time

In all three cases, temporarily disabling integrity constraints can improve the
performance of the operation, especially in data warehouse configurations.

It is possible to enter data that violates a constraint while that constraint is disabled.
Thus, you should always enable the constraint after completing any of the
operations listed in the bullets above.

Enabling Constraints

While a constraint is enabled, no row violating the constraint can be inserted into
the table. However, while the constraint is disabled such a row can be inserted; this
row is known as an exception to the constraint. If the constraint is in the enable
novalidated state, violations resulting from data entered while the constraint was
disabled remain. The rows that violate the constraint must be either updated or
deleted in order for the constraint to be put in the validated state.

You can identify exceptions to a specific integrity constraint while attempting to
enable the constraint. See "Reporting Constraint Exceptions" on page 19-21. All
rows violating constraints will be put onto an EXCEPTIONS table, which you can
examine.

Enable Novalidate Constraint State

When a constraint is in the enable novalidate state, all subsequent statements are
checked for conformity to the constraint; however, any existing data in the table is
not checked. A table with enable novalidated constraints can contain invalid data,
but it is not possible to add new invalid data to it. Enabling constraints in the
novalidated state is most useful in data warehouse configurations that are
uploading valid OLTP data.

Enabling a constraint does not require validation. Enabling a constraint novalidate
is much faster than enabling and validating a constraint. Also, validating a

19-16 Oracle8i Administrator’'s Guide

Managing Integrity Constraints

constraint that is already enabled does not require any DML locks during validation
(unlike validating a previously disabled constraint). Enforcement guarantees that
no violations are introduced during the validation. Hence, enabling without
validating enables you to reduce the downtime typically associated with enabling a
constraint.

Integrity Constraint States: Procedures and Benefits
Using integrity constraint states in the following order can ensure the best benefits:

1. Disable state

2. Perform the operation (load, export, import)

3. Enable novalidate state

4. Enable state

Some benefits of using constraints in this order are:

« Nolocks are held

« All constraints can go to enable state concurrently
« Constraint enabling is done in parallel

« Concurrent activity on table permitted

Setting Integrity Constraints Upon Definition

When an integrity constraint is defined in a CREATE TABLE or ALTER TABLE
statement, it can be enabled, disabled, or validated or not validated as determined
by your specification of the ENABLE/DISABLE clause. If the ENABLE/DISABLE
clause is not specified in a constraint’s definition, Oracle automatically enables and
validates the constraint.

Disabling Constraints Upon Definition

The following CREATE TABLE and ALTER TABLE statements both define and
disable integrity constraints;

CREATE TABLE emp (
empno NUMBER(S) PRIMARY KEY DISABLE, ...

ALTER TABLE emp
ADD PRIMARY KEY (empno) DISABLE;

General Management of Schema Objects 19-17

Managing Integrity Constraints

An ALTER TABLE statement that defines and disables an integrity constraint never
fails because of rows of the table that violate the integrity constraint. The definition
of the constraint is allowed because its rule is not enforced.

For information about constraint exceptions, see "Reporting Constraint Exceptions”
on page 19-21.

Enabling Constraints Upon Definition
The following CREATE TABLE and ALTER TABLE statements both define and
enable integrity constraints:

CREATE TABLE emp (

empno NUMBER(5) CONSTRAINT emp.pk PRIMARY KEY, ...;
ALTER TABLE emp

ADD CONSTRAINT emp.pk PRIMARY KEY (empno);

An ALTER TABLE statement that defines and attempts to enable an integrity
constraint may fail because rows of the table may violate the integrity constraint. In
this case, the statement is rolled back and the constraint definition is not stored and
not enabled.

To enable a UNIQUE key or PRIMARY KEY, which creates an associated index, the
owner of the table also needs a quota for the tablespace intended to contain the
index, or the UNLIMITED TABLESPACE system privilege.

Modifying Existing Integrity Constraints

You can use the ALTER TABLE statement to enable, disable or modify a constraint.

Disabling Enabled Constraints
The following statements disable integrity constraints:
ALTER TABLE dept

DISABLE CONSTRAINT dname_ukey;

ALTER TABLE dept
DISABLE PRIMARY KEY,
DISABLE UNIQUE (dname, loc);
The following statements enable novalidate disabled integrity constraints:

ALTER TABLE dept
ENABLE NOVALIDATE CONSTRAINT dname_ukey;,

19-18 Oracle8i Administrator’'s Guide

Managing Integrity Constraints

ALTER TABLE dept
ENABLE NOVALIDATE PRIMARY KEY,
ENABLE NOVALIDATE UNIQUE (dname, loc);

The following statements enable or validate disabled integrity constraints:

ALTER TABLE dept

MODIFY CONSTRAINT dname_key VALIDATE;
ALTER TABLE dept

MODIFY PRIMARY KEY ENABLE NOVALIDATE;

The following statements enable disabled integrity constraints:

ALTER TABLE dept

ENABLE CONSTRAINT dname_ukey;
ALTER TABLE dept

ENABLE PRIMARY KEY,

ENABLE UNIQUE (dname, loc);

To disable or drop a UNIQUE key or PRIMARY KEY constraint and all dependent
FOREIGN KEY constraints in a single step, use the CASCADE option of the
DISABLE or DROP clauses. For example, the following statement disables a
PRIMARY KEY constraint and any FOREIGN KEY constraints that depend on it:

ALTER TABLE dept
DISABLE PRIMARY KEY CASCADE;

Deferring Constraint Checks

When Oracle checks a constraint, it signals an error if the constraint is not satisfied.
You can defer checking the validity of constraints until the end of a transaction.

When you issue the SET CONSTRAINTS statement, the SET CONSTRAINTS mode
lasts for the duration of the transaction, or until another SET CONSTRAINTS
statement resets the mode.

Note: You cannot issue a SET CONSTRAINT statement inside a
trigger.

Set All Constraints Deferred

Within the application being used to manipulate the data, you must set all
constraints deferred before you actually begin processing any data. Use the
following DML statement to set all deferrable constraints deferred:

General Management of Schema Objects 19-19

Managing Integrity Constraints

SET CONSTRAINTS ALL DEFERRED;

Note: The SET CONSTRAINTS statement applies only to the
current transaction. The defaults specified when you create a
constraint remain as long as the constraint exists. The ALTER
SESSION SET CONSTRAINTS statement applies for the current
session only.

Check the Commit (Optional)

You can check for constraint violations before committing by issuing the SET
CONSTRAINTS ALL IMMEDIATE statement just before issuing the COMMIT. If
there are any problems with a constraint, this statement will fail and the constraint
causing the error will be identified. If you commit while constraints are violated, the
transaction will be rolled back and you will receive an error message.

Managing Constraints That Have Associated Indexes

When you create a UNIQUE or PRIMARY key, Oracle checks to see if an existing
index can be used to enforce uniqueness for the constraint. If there is no such index,
Oracle creates one.

When Oracle is using a unique index to enforce a constraint, and constraints
associated with the unique index are dropped or disabled, the index is dropped.

While enabled foreign keys reference a PRIMARY or UNIQUE key, you cannot
disable or drop the PRIMARY or UNIQUE key constraint or the index.

Note: Deferrable UNIQUE and PRIMARY keys all must use
non-unique indexes.

Dropping Integrity Constraints

You can drop an integrity constraint if the rule that it enforces is no longer true, or if
the constraint is no longer needed. You can drop the constraint using the ALTER
TABLE statement with the DROP clause. The following two statements drop
integrity constraints:

ALTER TABLE dept
DROP UNIQUE (dname, loc);

ALTER TABLE emp

19-20 Oracle8i Administrator’'s Guide

Managing Integrity Constraints

DROP PRIMARY KEY,
DROP CONSTRAINT dept fkey;

Dropping UNIQUE key and PRIMARY KEY constraints drops the associated
unique indexes. Also, if FOREIGN KEYs reference a UNIQUE or PRIMARY KEY,
you must include the CASCADE CONSTRAINTS clause in the DROP statement, or
you cannot drop the constraint.

Reporting Constraint Exceptions

If exceptions exist when a constraint is validated, an error is returned and the
integrity constraint remains novalidated. When a statement is not successfully
executed because integrity constraint exceptions exist, the statement is rolled back.
If exceptions exist, you cannot validate the constraint until all exceptions to the
constraint are either updated or deleted.

You cannot use the CREATE TABLE statement to determine which rows are in
violation. To determine which rows violate the integrity constraint, issue the
ALTER TABLE statement with the EXCEPTIONS option in the ENABLE clause. The
EXCEPTIONS option places the ROWID, table owner, table name, and constraint
name of all exception rows into a specified table.

Note: You must create an appropriate exceptions report table to
accept information from the EXCEPTIONS option of the ENABLE
clause before enabling the constraint. You can create an exception
table by submitting the script UTLEXCPT.SQL, which creates a
table named EXCEPTIONS. You can create additional exceptions
tables with different names by modifying and resubmitting the
script.

The exact name and location of the UTLEXCPT.SQL script is
operating system specific. For more information, see your operating
system-specific Oracle documentation.

The following statement attempts to validate the PRIMARY KEY of the DEPT table,
and if exceptions exist, information is inserted into a table named EXCEPTIONS:

ALTER TABLE dept ENABLE PRIMARY KEY EXCEPTIONS INTO exceptions;

If duplicate primary key values exist in the DEPT table and the name of the
PRIMARY KEY constraint on DEPT is SYS_C00610, the following rows might be
placed in the table EXCEPTIONS by the previous statement:

General Management of Schema Objects 19-21

Managing Integrity Constraints

SELECT * FROM exceptions;

ROWID OWNER TABLE NAME CONSTRAINT

AAAAZOAABAAABVOAAB SCOTT DEPT SYS_C00610
AAAAZOAABAAABVOAAG SCOTT DEPT SYS _C00610

A more informative query would be to join the rows in an exception report table
and the master table to list the actual rows that violate a specific constraint, as
shown in the following example:

SELECT deptno, dname, loc FROM dept, exceptions
WHERE exceptions.constraint ='SYS_C00610'
AND dept.rowid = exceptions.row_id;

DEPTNO DNAME LOC

10 ACCOUNTING NEWYORK
10 RESEARCH DALLAS

All rows that violate a constraint must be either updated or deleted from the table
containing the constraint. When updating exceptions, you must change the value
violating the constraint to a value consistent with the constraint or a null. After the
row in the master table is updated or deleted, the corresponding rows for the
exception in the exception report table should be deleted to avoid confusion with
later exception reports. The statements that update the master table and the
exception report table should be in the same transaction to ensure transaction
consistency.

To correct the exceptions in the previous examples, you might issue the following
transaction:

UPDATE dept SET deptno = 20 WHERE dname ='RESEARCH;
DELETE FROM exceptions WHERE constraint ='SYS_C00610';
COMMIT;

When managing exceptions, the goal is to eliminate all exceptions in your exception
report table.

Note: While you are correcting current exceptions for a table with
the constraint disabled, other users may issue statements creating
new exceptions. You can avoid this by enable novalidating the
constraint before you start eliminating exceptions.

19-22 Oracle8i Administrator’'s Guide

Managing Object Dependencies

See Also: For details about the EXCEPTIONS table, see Oracle8i
Reference.

Managing Object Dependencies

This section describes the various object dependencies, and includes the following
topics:

« Manually Recompiling Views

» Manually Recompiling Procedures and Functions

« Manually Recompiling Packages

First, review Table 19-1, which shows how objects are affected by changes in other
objects on which they depend.

Table 19-1 Operations that Affect Object Status (Page 1 of 2)

Resulting Status

Resulting Status of Dependent
Operation of Object Objects
CREATE table, sequence, synonym VALID if there are | No change®
no errors
ALTER table (ADD column MODIFY VALID if there no INVALID
column) errors
RENAME table, sequence, synonym,
view
DROP table, sequence, synonym, view, | None; the objectis | INVALID
procedure, function, package dropped
CREATE view, procedure? VALID if there are | No change®
No errors;

INVALID if there
are syntax or
authorization

errors
CREATE OR REPLACE view or VALID if there are | INVALID
procedure? no error; INVALID

if there are syntax
or authorization
errors

General Management of Schema Objects 19-23

Managing Object Dependencies

Table 19-1 Operations that Affect Object Status

(Page 2 of 2)

Resulting Status
Resulting Status of Dependent
Operation of Object Objects
REVOKE object privilege® ON No change All objects of user
objectTO/FROM user that depend on
object are
INVALID?
REVOKE object privilege® ON object No change All objects in the
TO/FROM PUBLIC database that .
depend on object
are INVALID?
REVOKE system privilege* TO/FROM | No change Al objects of user
user are INVALID*
REVOKE system privilege* TO/FROM | No change All objects in the
PUBLIC database are
INVALID*

! May cause dependent objects to be made INVALID, if object did not exist earlier.
2 stand-alone procedures and functions, packages, and triggers.

% Only DML object privileges, including SELECT, INSERT, UPDATE, DELETE, and
EXECUTE; revalidation does not require recompiling.

4 Only DML system privileges, including SELECT, INSERT, UPDATE, DELETE ANY
TABLE, and EXECUTE ANY PROCEDURE; revalidation does not require recompiling.

Oracle automatically recompiles an invalid view or PL/SQL program unit the next
time it is used. In addition, a user can force Oracle to recompile a view or program
unit using the appropriate SQL statement with the COMPILE clause. Forced
compilations are most often used to test for errors when a dependent view or
program unit is invalid, but is not currently being used. In these cases, automatic
recompilation would not otherwise occur until the view or program unit was
executed. To identify invalid dependent objects, query the views USER_/ALL _
/DBA_OBJECTS.

Manually Recompiling Views

To recompile a view manually, you must have the ALTER ANY TABLE system
privilege or the view must be contained in your schema. Use the ALTER VIEW
statement with the COMPILE clause to recompile a view. The following statement
recompiles the view EMP_DEPT contained in your schema:

ALTER VIEW emp_dept COMPILE;

19-24 Oracle8i Administrator’'s Guide

Managing Object Name Resolution

Manually Recompiling Procedures and Functions

To recompile a stand-alone procedure manually, you must have the ALTER ANY
PROCEDURE system privilege or the procedure must be contained in your schema.
Use the ALTER PROCEDURE/FUNCTION statement with the COMPILE clause to
recompile a stand-alone procedure or function. The following statement recompiles
the stored procedure UPDATE_SALARY contained in your schema:

ALTER PROCEDURE update_salary COMPILE;

Manually Recompiling Packages

To recompile a package manually, you must have the ALTER ANY PROCEDURE
system privilege or the package must be contained in your schema. Use the ALTER
PACKAGE statement with the COMPILE clause to recompile either a package body
or both a package specification and body. The following statements recompile just
the body, and the body and specification of the package ACCT_MGMT,
respectively:

ALTER PACKAGE acct mgmt COMPILE BODY;
ALTER PACKAGE acct mgmt COMPILE PACKAGE;

Managing Object Name Resolution
This section describes how Oracle resolves an object name.

1. First, Oracle attempts to qualify the first piece of the name referenced in the
SQL statement. For example, in SCOTT.EMP, SCOTT is the first piece. If there is
only one piece, the one piece is considered the first piece.

a. Inthe current schema, Oracle searches for an object whose nhame matches
the first piece of the object name. If it does not find such an object, it
continues with Step b.

b. If no schema object is found in the current schema, Oracle searches for a
public synonym that matches the first piece of the name. If it does not find
one, it continues with Step c.

c. If no public synonym is found, Oracle searches for a schema whose name
matches the first piece of the object name. If it finds one, it returns to Step b,
now using the second piece of the name as the object to find in the qualified
schema. If the second piece does not correspond to a object in the
previously qualified schema or there is not a second piece, Oracle returns
an error.

General Management of Schema Objects 19-25

Changing Storage Parameters for the Data Dictionary

If no schema is found in Step c, the object cannot be qualified and Oracle
returns an error.

2. A schema object has been qualified. Any remaining pieces of the name must
match a valid part of the found object. For example, if SCOTT.EMP.DEPTNO is
the name, SCOTT is qualified as a schema, EMP is qualified as a table, and
DEPTNO must correspond to a column (because EMP is a table). If EMP is
qualified as a package, DEPTNO must correspond to a public constant,
variable, procedure, or function of that package.

When global object names are used in a distributed database, either explicitly or
indirectly within a synonym, the local Oracle resolves the reference locally. For
example, it resolves a synonym to a remote table’s global object name. The partially
resolved statement is shipped to the remote database, and the remote Oracle
completes the resolution of the object as described here.

Changing Storage Parameters for the Data Dictionary

This section describes aspects of changing data dictionary storage parameters, and
includes the following topics:

« Structures in the Data Dictionary
« Errors that Require Changing Data Dictionary Storage

If your database is very large or contains an unusually large number of objects,
columns in tables, constraint definitions, users, or other definitions, the tables that
make up the data dictionary might at some point be unable to acquire additional
extents. For example, a data dictionary table may need an additional extent, but
there is not enough contiguous space in the SYSTEM tablespace. If this happens,
you cannot create new objects, even though the tablespace intended to hold the
objects seems to have sufficient space. To remedy this situation, you can change the
storage parameters of the underlying data dictionary tables to allow them to be
allocated more extents, in the same way that you can change the storage settings for
user-created segments. For example, you can adjust the values of NEXT or
PCTINCREASE for the data dictionary table.

19-26 Oracle8i Administrator’'s Guide

Changing Storage Parameters for the Data Dictionary

WARNING: Exercise caution when changing the storage settings
for the data dictionary objects. If you choose inappropriate
settings, you could damage the structure of the data dictionary
and be forced to re-create your entire database. For example, if
you set PCTINCREASE for the data dictionary table USER$ to 0
and NEXT to 2K, that table will quickly reach the maximum
number of extents for a segment, and you will not be able to
create any more users or roles without exporting, re-creating, and
importing the entire database.

Structures in the Data Dictionary

The following tables and clusters contain the definitions of all the user-created
objects in the database:

SEG$ Segments defined in the database (including
temporary segments)

OBJ$ User-defined objects in the database (including
clustered tables); indexed by I_OBJ1 and |_OBJ2

UNDO$ Rollback segments defined in the database; indexed
by I_UNDO1

FET$ Available free extents not allocated to any segment

UET$ Extents allocated to segments

TS$ Tablespaces defined in the database

FILES Files that make up the database; indexed by |_FILE1

FILEXT$ Datafiles with the AUTOEXTEND option set on

TAB$ Tables defined in the database (includes clustered
tables); indexed by |_TAB1

CLUS Clusters defined in the database

IND$ Indexes defined in the database; indexed by |_IND1

ICOL$ Columns that have indexes defined on them (includes

individual entries for each column in a composite
index); indexed by 1_ICOL1

COL$ Columns defined in tables in the database; indexed by
| COLland|_COL2

General Management of Schema Objects 19-27

Changing Storage Parameters for the Data Dictionary

CON$ Constraints defined in the database (includes
information on constraint owner); indexed by | _
CON1 and I_CON2

CDEF$ Definitions of constraints in CONS$; indexed by |_
CDEF1, I_CDEF2, and |_CDEF3

CCOL$ Columns that have constraints defined on them
(includes individual entries for each column in a
composite key); indexed by I_CCOL1

USER$ Users and roles defined in the database; indexed by |_
USER1

TSQ$ Tablespace quotas for users (contains one entry for
each tablespace quota defined for each user)

C_OBJM# Cluster containing TAB$, CLU$, ICOL$, INDS$, and
COLS$: indexed by I_OBJ#

C_TS# Cluster containing FET$, TS$, and FILES; indexed by
|_TS#

C_USER# Cluster containing USER and TSQ$$; indexed by |_
USER#

C_COBJ}# Cluster containing CDEF$ and CCOLS$; indexed by 1_
COBJM#

Of all of the data dictionary segments, the following are the most likely to require

change:

C_TS# If the free space in your database is very fragmented

C_OBJ# If you have many indexes or many columns in your
tables

CONS, C_COBJ# If you use integrity constraints heavily

C_USER# If you have a large number of users defined in your
database

For the clustered tables, you must change the storage settings for the cluster, not for
the table.

Errors that Require Changing Data Dictionary Storage

Oracle returns an error if a user tries to create a new object that requires Oracle to
allocate an additional extent to the data dictionary when it is unable to allocate an
extent. The error message ORA-1653, "failed to allocate extent of size num in
tablespace 'name’™ indicates this kind of problem.

19-28 Oracle8i Administrator’'s Guide

Displaying Information About Schema Objects

If you receive this error message and the segment you were trying to change (such
as a table or rollback segment) has not reached the limits specified for it in its
definition, check the storage settings for the object that contains its definition.

For example, if you received an ORA-1547 while trying to define a new PRIMARY
KEY constraint on a table and there is sufficient space for the index that Oracle must
create for the key, check if CON$ or C_COBJ# cannot be allocated another extent; to
do this, query DBA_SEGMENTS and consider changing the storage parameters for
CONS$ or C_COBJ#.

For more information, see "Example 7: Displaying Segments that Cannot Allocate
Additional Extents" on page 19-33.

Displaying Information About Schema Objects

The data dictionary provides many views about the schema objects described in this
book. The following list summarizes the views associated with schema objects:

= ALL_OBIJECTS, USER_OBIJECTS, DBA_OBIJECTS

= ALL_CATALOG, USER_CATALOG, DBA_CATALOG

« ALL_TABLES, USER_TABLES, DBA_TABLES

« ALL_TAB_COLUMNS, USER_TAB_COLUMNS, DBA_TAB_COLUMNS
« ALL_TAB_COMMENTS, USER_TAB_COMMENTS

« ALL_COL_COMMENTS, USER_COL_COMMENTS, DBA_COL_COMMENTS
« ALL_VIEWS, USER_VIEWS, DBA_VIEWS

« ALL_INDEXES, USER_INDEXES, DBA_INDEXES

« ALL_IND_COLUMNS, USER_IND_COLUMNS, DBA_IND_COLUMNS
« USER_CLUSTERS, DBA_CLUSTERS

« USER_CLU_COLUMNS, DBA_CLU_COLUMNS

= ALL_SEQUENCES, USER_SEQUENCES, DBA_SEQUENCES

« ALL_SYNONYMS, USER_SYNONYMS, DBA_SYNONYMS

« ALL_DEPENDENCIES, USER_DEPENDENCIES, DBA_DEPENDENCIES

The following data dictionary views contain information about the segments of a
database:

. USER_SEGMENTS

General Management of Schema Objects 19-29

Displaying Information About Schema Objects

« DBA_SEGMENTS

The following data dictionary views contain information about a database’s extents:
« USER_EXTENTS

« DBA_EXTENTS

« USER_FREE_SPACE

. DBA_FREE_SPACE

Additionally, the following Oracle supplied PL/SQL packages provide information
about space usage and free blocks in objects:

Package and Procedure Description

DBMS_SPACE.UNUSED_SPACE | Returns information about unused space in an object
(table, index, or cluster).

DBMS_SPACE.FREE_BLOCKS Returns information about free blocks in an object
(table, index, or cluster).

The following examples demonstrate ways to display miscellaneous schema obijects.
See Also: For a complete description of data dictionary views, see
Oracle8i Reference.

For a description of PL/SQL packages, see Oracle8i Supplied PL/SQL
Packages Reference.

Example 1: Displaying Schema Objects By Type
The following query lists all of the objects owned by the user issuing the query:

SELECT object_name, object_type
FROM user_objects;

OBJECT_NAME OBJECT_TYPE
EMP_DEPT CLUSTER

EMP TABLE

DEPT TABLE
EMP_DEPT_INDEX INDEX
PUBLIC_EMP SYNONYM
EMP_MGR VIEW

19-30 Oracle8i Administrator’'s Guide

Displaying Information About Schema Objects

Example 2: Displaying Column Information

Column information, such as hame, datatype, length, precision, scale, and default
data values can be listed using one of the views ending with the _COLUMNS suffix.
For example, the following query lists all of the default column values for the EMP
and DEPT tables:

SELECT table_name, column_name, data_default
FROM user_tab_columns
WHERE table_name ='DEPT OR table_name ='EMP;

TABLE_NAME COLUMN_NAME DATA DEFAULT

DEPT DEPTNO
DEPT DNAME
DEPT LOC ‘NEW YORK'

EMP EMPNO

EMP ENAME

EMP JOB

EMP MGR

EMP HIREDATE SYSDATE
EMP SAL

EMP COMM

EMP DEPTNO

Notice that not all columns have user-specified defaults. These columns
automatically have NULL as the default.

Example 3: Displaying Dependencies of Views and Synonyms

When you create a view or a synonym, the view or synonym is based on its
underlying base object. The ALL/USER/DBA_DEPENDENCIES data dictionary
views can be used to reveal the dependencies for a view and the ALL/USER/DBA _
SYNONYMS data dictionary views can be used to list the base object of a synonym.
For example, the following query lists the base objects for the synonyms created by
the user JWARD:

SELECT table_owner, table_name, synonym_name

FROM sys.dba_synonyms
WHERE owner =" JWARD,

TABLE_OWNER TABLE_NAME SYNONYM_NAME

SCOTT DEPT DEPT

General Management of Schema Objects 19-31

Displaying Information About Schema Objects

SCOTT EMP EMP

Example 4: Displaying General Segment Information

The following query returns the name of each rollback segment, the tablespace that
contains each, and the size of each rollback segment:
SELECT segment_name, tablespace _name, bytes, blocks, extents

FROM sys.dba_segments
WHERE segment_type ='ROLLBACK;,

SEGMENT_NAME TABLESPACE NAME BYTES BLOCKS EXTENTS

RS1 SYSTEM 20480 10 2
RS2 TS1 40960 20 3
SYSTEM SYSTEM 184320 90 3

Example 5: Displaying General Extent Information

General information about the currently allocated extents in a database is stored in
the DBA_EXTENTS data dictionary view. For example, the following query
identifies the extents associated with rollback segments and the size of each of those
extents:

SELECT segment_name, bytes, blocks
FROM sys.dba_extents
WHERE segment _type ='ROLLBACK;

SEGMENT_NAME BYTES BLOCKS

RS1 10240 5
RS1 10240 5
SYSTEM 51200 25
SYSTEM 51200 25
SYSTEM 51200 25

Notice that the RS1 rollback segment is comprised of two extents, both 10K, while
the SYSTEM rollback segment is comprised of three equally sized extents of 50K.

Example 6: Displaying the Free Space (Extents) of a Database

Information about the free extents (extents not allocated to any segment) in a
database is stored in the DBA_FREE_SPACE data dictionary view. For example, the

19-32 Oracle8i Administrator’'s Guide

Displaying Information About Schema Objects

following query reveals the amount of free space available via free extents in each
tablespace:

SELECT tablespace_name, file_id, bytes, blocks
FROM sys.dba_free_space;

TABLESPACE_ NAME FILE_ID BYTES BLOCKS

SYSTEM 1 8120320 3965
SYSTEM 1 10240 5
TS1 2 10432512 5094

Example 7: Displaying Segments that Cannot Allocate Additional Extents

You can also use DBA_FREE_SPACE, in combination with the views DBA _
SEGMENTS, DBA_TABLES, DBA_CLUSTERS, DBA_INDEXES, and DBA _
ROLLBACK _SEGS, to determine if any other segment is unable to allocate
additional extents for data dictionary objects only.

A segment may not be allocated to an extent for any of the following reasons:

« The tablespace containing the segment does not have enough room for the next
extent.

« The segment has the maximum number of extents, as recorded in the data
dictionary (in SEG.MAX_EXTENTS).

= The segment has the maximum number of extents allowed by the data block
size, which is operating system specific.

Note: While the STORAGE clause value for MAXEXTENTS can
be UNLIMITED, data dictionary tables cannot have MAXEXTENTS
greater than the allowed block maximum. Thus, data dictionary
tables cannot be converted to unlimited format.

The following query returns the names, owners, and tablespaces of all segments
that fit any of the above criteria:

SELECT seg.owner, seg.segment_name,
seg.segment_type, seg.tablespace_name,

DECODE(seg.segment_type,
TABLE tnext_extent,

'‘CLUSTER, c.next_extent,
INDEX;, i.next_extent,

General Management of Schema Objects 19-33

Displaying Information About Schema Objects

'ROLLBACK, rnext_extent)
FROM sys.dba_segments seg,
sys.dba_tablest,
sys.dba_clustersc,
sys.dba_indexesi,
sys.dba_rollback_segsr
WHERE ((seg.segment _type = TABLE'
AND seg.segment_name =ttable_name
AND seg.owner =towner
AND NOT EXISTS (SELECT tablespace_name
FROM dba_free_space free
WHERE free tablespace_name =ttablespace_name
AND free.bytes >=tnext_extent))
OR (seg.segment _type ='CLUSTER'
AND seg.segment_name = c.cluster_name
AND seg.owner = c.onner
AND NOT EXISTS (SELECT tablespace_name
FROM dba_free_space free
WHERE free.tablespace_name = c.tablespace_name
AND free.bytes >=c.next_extent))
OR (seg.segment _type =INDEX'
AND seg.segment_name =iindex_name
AND seg.owner = i.onner
AND NOT EXISTS (SELECT tablespace_name
FROM dba_free_space free
WHERE free.tablespace_name =itablespace_name
AND free.bytes >=i.next_extent))
OR (seg.segment_type ='ROLLBACK'
AND seg.segment_name =r.segment_name
AND seg.owner =r.owner
AND NOT EXISTS (SELECT tablespace_name
FROM dba_free_space free
WHERE free.tablespace_name =r.tablespace_name
AND free.bytes >=r.next_extent)))
OR seg.extents = seg.max_extents
OR seg.extents = data block size

Note: When you use this query, replace data_block_size with the
data block size for your system.

Once you have identified a segment that cannot allocate additional extents, you can
solve the problem in either of two ways, depending on its cause:

19-34 Oracle8i Administrator’'s Guide

Displaying Information About Schema Objects

If the tablespace is full, add datafiles to the tablespace.

If the segment has too many extents, and you cannot increase MAXEXTENTS
for the segment, perform the following steps: first, export the data in the
segment; second, drop and re-create the segment, giving it a larger INITIAL
setting so that it does not need to allocate so many extents; and third, import the

data back into the segment.

General Management of Schema Objects 19-35

Displaying Information About Schema Objects

19-36 Oracle8i Administrator’'s Guide

20

Addressing Data Block Corruption

This chapter explains using the DBMS_REPAIR PL/SQL package to repair data
block corruption in database schema objects. It includes the following topics:

Options for Repairing Data Block Corruption
About the DBMS_REPAIR Package

Using the DBMS_REPAIR Package
DBMS_REPAIR Examples

Note: If you are not familiar with the DBMS_REPAIR package, it
is recommended that you work with an Oracle Worldwide Support
analyst when performing any of the repair procedures included in
this package.

Addressing Data Block Corruption 20-1

Options for Repairing Data Block Corruption

Options for Repairing Data Block Corruption

Oracle provides different methods for detecting and correcting data block
corruption. One method of correction is to drop and re-create an object after the
corruption is detected; however, this is not always possible or desirable. If data
block corruption is limited to a subset of rows, another option is to rebuild the table
by selecting all data except for the corrupt rows.

Yet another way to manage data block corruption is to use the DBMS_REPAIR
package. You can use DBMS_REPAIR to detect and repair corrupt blocks in tables
and indexes. Using this approach, you can address corruptions where possible, and
also continue to use objects while you attempt to rebuild or repair them.

Note: Any corruption that involves the loss of data requires
analysis and understanding of how that data fits into the overall
database system. Hence, DBMS_REPAIR is not a magic
wand—you must still determine whether the repair approach
provided by this package is the appropriate tool for each specific
corruption problem. Depending on the nature of the repair, you
might lose data and logical inconsistencies can be introduced;
therefore you need to weigh the gains and losses associated with
using DBMS_REPAIR.

About the DBMS_REPAIR Package

This section describes the DBMS_REPAIR procedures contained in the package and
notes some limitations and restrictions on their use.

See Also: For a complete description of the DBMS_REPAIR
Package and its procedures, see the Oracle8i Supplied PL/SQL

Packages Reference.

DBMS_REPAIR Procedures

Below are the procedures that make up the DBMS_REPAIR package.

Procedure Name

Description

CHECK_OBIJECT

Detects and reports corruptions in a table or index.

FIX_CORRUPT BLOCKS

Marks blocks (that were previously identified by the
CHECK_OBJECT procedure) as corrupt.

20-2 Oracle8i Administrator's Guide

Using the DBMS_REPAIR Package

Procedure Name Description

DUMP_ORPHAN_KEYS Reports index entries that point to rows in corrupt data
blocks.

REBUILD_FREELISTS Rebuilds an object’s free lists.

SKIP_CORRUPT_BLOCKS | When used, ignores blocks marked corrupt during table and
index scans. If not used, you get error ORA-1578 when
encountering blocks marked corrupt.

ADMIN_TABLES Provides administrative functions (create, drop, purge) for
DBMS_REPAIR repair and orphan key tables.

Note: These tables are always created in the SYS schema.

These procedures are further described, with examples of their use, in "DBMS_
REPAIR Examples" on page 20-8.

Limitations and Restrictions
DBMS_REPAIR procedures have the following limitations:

Tables with LOBs, nested tables, and varrays are supported, but the out of line
columns are ignored.

Clusters are supported in the SKIP_CORRUPT_BLOCKS and REBUILD _
FREELISTS procedures, but not in the CHECK_OBJECT procedure.

Index-organized tables and LOB indexes are not supported.

The DUMP_ORPHAN_KEYS procedure does not operate on bitmap indexes or
function-based indexes.

The DUMP_ORPHAN_KEYS procedure processes keys that are, at most, 3,950
bytes long.

Using the DBMS_REPAIR Package

The following staged approach is recommended when considering DBMS_REPAIR
for addressing data block corruption:

Stage 1: Detect and Report Corruptions
Stage 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR
Stage 3: Make Objects Usable

Addressing Data Block Corruption 20-3

Using the DBMS_REPAIR Package

Stage 4: Repair Corruptions and Rebuild Lost Data

These stages are discussed in succeeding sections.

Stage 1: Detect and Report Corruptions

Your first task, before using DBMS_REPAIR, should be the detection and reporting
of corruptions. Reporting not only indicates what is wrong with a block, but also
identifies the associated repair directive. You have several options, in addition to
DBMS_REPAIR, for detecting corruptions. Table 20-1 describes the different
detection methodologies.

Table 20-1 Comparison of Corruption Detection Methods

Detection Method Description

DBMS_REPAIR Performs block checking for a specified table, partition or
index. Populates a repair table with results.

DB_VERIFY External command-line utility that performs block checking on
an offline database.

ANALYZE Used with the VALIDATE STRUCTURE option, verifies the

integrity of the structure of an index, table or cluster; checks or
verifies that your tables and indexes are in sync.

DB_BLOCK_CHECKING | Performed when the initialization parameter DB_BLOCK _
CHECKING=TRUE. Identifies corrupt blocks before they
actually are marked corrupt. Checks are performed when
changes are made to a block.

DBMS_REPAIR: Using the CHECK_OBJECT and ADMIN_TABLES Procedures

The CHECK_OBJECT procedure checks and reports block corruptions for a
specified object. Similar to the ANALYZE... VALIDATE STRUCTURE statement for
indexes and tables, block checking is performed for index and data blocks
respectively.

Not only does CHECK_OBJECT report corruptions, but it also identifies any fixes
that would occur if FIX_CORRUPT_BLOCKS is subsequently run on the object.
This information is made available by populating a repair table, which must first be
created by the ADMIN_TABLES procedure.

After you run the CHECK_OBJECT procedure, a simple query on the repair table
shows the corruptions and repair directives for the object. With this information,
you can assess how best to address the problems reported.

20-4 Oracle8i Administrator's Guide

Using the DBMS_REPAIR Package

DB_VERIFY: Performing an Offline Database Check

Typically, you use DB_VERIFY as an offline diagnostic utility when you encounter
data corruption problems.

See Also: For more information about DB_VERIFY, see Oracle8i
Utilities.

ANALYZE: Corruption Reporting

The ANALYZE TABLE...VALIDATE STRUCTURE statement validates the
structure of the analyzed object. If Oracle successfully validates the structure, a
message confirming its validation is returned to you. If Oracle encounters
corruption in the structure of the object, an error message is returned to you. In this
case, you would drop and re-create the object.

See Also: For more information about the ANALYZE statement,
see the Oracle8i SQL Reference.

DB_BLOCK_CHECKING (Block Checking Initialization Parameter)

You can set block checking for instances via the DB_BLOCK_CHECKING
initialization parameter (the default value is FALSE); this checks data and index
blocks whenever they are modified. DB_BLOCK_CHECKING is a dynamic
parameter, modifiable by the ALTER SYSTEM SET statement. Block checking is
always enabled for the system tablespace.

See Also: For more information about the DB_ BLOCK _
CHECKING initialization parameter, see the Oracle8i Reference.

Stage 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR

Before using DBMS_REPAIR you must weigh the benefits of its use in relation to
the liabilities. You should also examine other options available for addressing
corrupt objects.

A first step is to answer the following questions:
1. What is the extent of the corruption?

To determine if there are corruptions and repair actions, execute the CHECK _
OBIJECT procedure, and query the repair table.

2. What other options are available for addressing block corruptions?

Addressing Data Block Corruption 20-5

Using the DBMS_REPAIR Package

Assuming the data is available from another source, drop, re-create and
re-populate the object. Another option is to issue the CREATE TABLE...AS
SELECT statement from the corrupt table to create a new one.

You can ignore the corruption by excluding corrupt rows from select
statements.

You can perform media recovery.

3. What logical corruptions or side effects will be introduced when you use
DBMS_REPAIR to make an object usable? Can these be addressed? What is the
effort required to do so?

You may not have access to rows in blocks marked corrupt. However, a block
may be marked corrupt even though there are still rows that you can validly
access.

Referential integrity constraints may be broken when blocks are marked
corrupt. If this occurs, disable and re-enable the constraint; any inconsistencies
will be reported. After fixing all issues, you should be able to successfully
re-enable the constraint.

Logical corruption may occur when there are triggers defined on the table. For
example, if rows are re-inserted, should insert triggers be fired or not? You can
address these issues only if you understand triggers and their use in your
installation.

Free list blocks may be inaccessible. If a corrupt block is at the head or tail of a
free list, space management reinitializes the free list. There then may be blocks
that should be on a free list, that aren’t. You can address this by running the
REBUILD_FREELISTS procedure.

Indexes and tables may be out of sync. You can address this by first executing
the DUMP_ORPHAN_KEYS procedure (to obtain information from the keys
that might be useful in rebuilding corrupted data). Then issue the ALTER
INDEX REBUILD ONLINE statement to get the table and its indexes back in
sync.

4. If repair involves loss of data, can this data be retrieved?

You can retrieve data from the index when a data block is marked corrupt. The
DUMP_ORPHAN_KEYS procedure can help you retrieve this information. Of
course, retrieving data in this manner depends on the amount of redundancy
between the indexes and the table.

20-6 Oracle8i Administrator's Guide

Using the DBMS_REPAIR Package

Stage 3: Make Objects Usable

In this stage DBMS_REPAIR makes the object usable by ignoring corruptions
during table and index scans.

Corruption Repair: Using the FIX_CORRUPT_BLOCKS and SKIP_CORRUPT _
BLOCKS Procedures

You make a corrupt object usable by establishing an environment that skips
corruptions that remain outside the scope of DBMS_REPAIR’s repair capabilities.

If corruptions involve a loss of data, such as a bad row in a data block, all such
blocks are marked corrupt by the FIX_CORRUPT_BLOCKS procedure. Then, you
can run the SKIP_CORRUPT_BLOCKS procedure, which will skip blocks marked
corrupt for the object. When skip is set, table and index scans skip all blocks
marked corrupt. This applies to both media and software corrupt blocks.

Implications when Skipping Corrupt Blocks

If an index and table are out of sync, then a SET TRANSACTION READ ONLY
transaction may be inconsistent in situations where one query probes only the
index, and then a subsequent query probes both the index and the table. If the table
block is marked corrupt, then the two queries will return different results, thereby
breaking the rules of a read-only transaction. One way to approach this is to not
skip corruptions when in a SET TRANSACTION READ ONLY transaction.

A similar issue occurs when selecting rows that are chained. Essentially, a query of
the same row may or may not access the corruption—thereby giving different
results.

Stage 4: Repair Corruptions and Rebuild Lost Data

After making an object usable, you can perform the following repair activities.

Recover Data Using the DUMP_ORPHAN_KEYS Procedure s

The DUMP_ORPHAN_KEYS procedure reports on index entries that point to rows
in corrupt data blocks. All such index entries are inserted into an orphan key table
that stores the key and rowid of the corruption.

After the index entry information has been retrieved, you can rebuild the index
using the ALTER INDEX REBUILD ONLINE statement.

Addressing Data Block Corruption 20-7

DBMS_REPAIR Examples

Repair Free Lists Using the REBUILD_FREELISTS Procedure

When a block marked "corrupt" is found at the head or tail of a free list, the free list
is reinitialized and an error is returned. Although this takes the offending block off
the free list, it causes you to lose free list access to all blocks that followed the
corrupt block.

You can use the REBUILD_FREELISTS procedure to reinitialize the free lists. The
object is scanned, and if it is appropriate for a block to be on the free list, it is added
to the master free list. Free list groups are handled by meting out the blocks in an
equitable fashion, a block at a time. Any blocks marked "corrupt" in the object are
ignored during the rebuild.

DBMS_REPAIR Examples

In this section, examples are presented reflecting the use of the DBMS_REPAIR
procedures.

« Using ADMIN_TABLES to Build a Repair Table or Orphan Key Table
« Using the CHECK_OBJECT Procedure to Detect Corruption
« Fixing Corrupt Blocks with the FIX_CORRUPT_BLOCKS Procedure

« Finding Index Entries Pointing into Corrupt Data Blocks: DUMP_ORPHAN _
KEYS

« Rebuilding Free Lists Using the REBUILD_FREELISTS Procedure
« Enabling or Disabling the Skipping of Corrupt Blocks: SKIP_CORRUPT _
BLOCKS

See Also: For more information on the syntax, restrictions, and
exceptions for the DBMS_REPAIR procedures, see Oracle8i Supplied
PL/SQL Packages Reference.

Using ADMIN_TABLES to Build a Repair Table or Orphan Key Table

A repair table provides the interface to users as to what corruptions were found by
the CHECK_OBJECT procedure and how these will be addressed if the FIX_
CORRUPT_BLOCKS procedure is run. Further, it is used to drive the execution of
the FIX_CORRUPT_BLOCKS procedure.

An orphan key table is used when the DUMP_ORPHAN_KEYS procedure is
executed and it discovers index entries that point to corrupt rows. The DUMP_

20-8 Oracle8i Administrator's Guide

DBMS_REPAIR Examples

ORPHAN_KEYS procedure populates the orphan key table by logging its activity
and providing the index information in a usable manner.

The ADMIN_TABLE procedure is used to create, purge, or drop a repair table or an
orphan key table.

Creating a Repair Table
The following example creates a repair table.

BEGIN

DBMS_REPAIRADMIN_TABLES (
TABLE_NAME =>'REPAIR_TABLE,
TABLE_TYPE =>dbms_repair.repair_table,
ACTION =>dbms_repair.create_action,
TABLESPACE =>'USERS);

END;

/

For each repair or orphan key table, a view is also created that eliminates any rows
that pertain to objects that no longer exist. The name of the view corresponds to the
name of the repair or orphan key table, but is prefixed by DBA_ (for example DBA_
REPAIR_TABLE or DBA_ORPHAN_KEY_TABLE).

The following query describes the repair table created in the previous example.
SQL>desc repair_table

Name Null? Type

OBJECT_ID NOT NULL NUMBER
TABLESPACE_ID NOT NULL NUMBER
RELATIVE_FILE_ID NOT NULL NUMBER
BLOCK_ID NOT NULL NUMBER
CORRUPT_TYPE NOT NULL NUMBER
SCHEMA_NAME NOT NULL VARCHAR2(30)
OBJECT_NAME NOT NULL VARCHAR2(30)
BASEOBJECT_NAME VARCHAR2(30)
PARTITION_NAME VARCHAR2(30)
CORRUPT_DESCRIPTION VARCHAR2(2000)
REPAIR_DESCRIPTION VARCHAR2(200)
MARKED_CORRUPT NOT NULL VARCHAR2(10)
CHECK_TIMESTAMP NOT NULL DATE
FIX_TIMESTAMP DATE
REFORMAT_TIMESTAMP DATE

Addressing Data Block Corruption 20-9

DBMS_REPAIR Examples

Creating an Orphan Key Table
This example illustrates the creation of an orphan key table.

BEGIN
DBMS_REPAIRADMIN_TABLES (
TABLE_NAME =>'ORPHAN KEY_TABLE,
TABLE _TYPE =>dbms_repair.orphan_table,
ACTION =>dbms_repair.create_action,
TABLESPACE =>'USERS);
END;
/
The orphan key table is described in the following query:

SQL>desc orphan_key_table

Name Null? Type

SCHEMA_NAME NOT NULL VARCHAR2(30)
INDEX_NAME NOT NULL VARCHAR2(30)
IPART_NAME VARCHAR2(30)
INDEX_ID NOT NULL NUMBER
TABLE_NAME NOT NULL VARCHAR2(30)
PART_NAME VARCHAR2(30)
TABLE_ID NOT NULL NUMBER
KEYROWID NOT NULL ROWID

KEY NOT NULL ROWID
DUMP_TIMESTAMP NOT NULL DATE

Using the CHECK_OBJECT Procedure to Detect Corruption

The CHECK_OBIJECT procedure checks the specified objects, and populates the
repair table with information about corruptions and repair directives. You can

optionally specify a range, partition name, or subpartition name when you would
like to check a portion of an object.

Validation consists of checking all blocks in the object that have not previously been
marked corrupt. For each block, the transaction and data layer portions are checked
for self consistency. During CHECK_OBIJECT, if a block is encountered that has a
corrupt buffer cache header, then that block will be skipped.

Here is an example of executing the CHECK_OBJECT procedure.

SET serveroutput on
DECLARE num_corrupt INT;
BEGIN

num_corrupt :=0;

20-10 Oracle8i Administrator’'s Guide

DBMS_REPAIR Examples

DBMS_REPAIR.CHECK_OBJECT (
SCHEMA NAME =>'SCOTT,
OBJECT_NAME =>DEPT,
REPAIR_TABLE_NAME =>'REPAIR_TABLE,
cormupt_count=> num_corrupt);
DBMS_OUTPUT.PUT_LINE(number comupt:' || TO_CHAR (num_cormupt));
END;
/

SQL*PLUS outputs the following line, indicating one corruption:

number comupt: 1

Querying the repair table will produce information describing the corruption and
suggesting a repair action.

SELECT object_name, block _id, corrupt_type, marked_corrupt,
conupt_description, repair_description
FROM repair_table;

OBJECT NAME BLOCK_ID CORRUPT TYPE MARKED COR

CORRUPT_DESCRIPTION

REPAIR_DESCRIPTION

DEPT 3 1FALSE
kdbchk: row locked by non-existent transaction
table=0 slot=0
lockid=32 kibbhitc=1
mark block software conrupt

At this point, the corrupted block has not yet been marked corrupt, so this is the
time to extract any meaningful data. After