developerWorks : Linux : Library - Papers

=i e _ |..;I"" |'?1

Home |News | Products | Services | Solutions | About IBM ShoplBM Suppert Download

Search E

IBM : developerWorks : Linux overview : Library - papers

Bash by example, Part 2
More bash programming fundamentals

Daniel Robbins
President/CEQO, Gentoo Technologies, Inc.

April 2000
In his introductory article on bash, Daniel Robbins walked you through some of the
scripting language's basic elements and reason for using bash. In this, the second Accenting arauments
installment, Daniel picks up where he left off and looks at bash's basic constructs like kting arg)
conditional (if-then) statements, looping, and more. Bash programming constructs

. e . . , Conditional love
Let's start with a brief tip on handling command-line arguments, and then look at bash's basic i ,
constructs. String comparison caveats

Looping constructs

Accepting arguments

In the sample program in the introductory article, we used the environment variable "1", which
referred to the first command-line argument. Similarly, you can use "2", "3", etc. to refer to the Functions and namespaces
second and third arguments passed to your script. Here's an example: Namespace

Case statements

Wrapping it up

Resources
echo name of script is $0
echo first argument is $1 About the author
echo second argument is $2 |
echo seventeenth argunment is $17
echo nunmber of argunents is $#

#! [usr/ bi n/env bash

The example is self explanatory except for two small details. First, "$0" will expand to the name of the script, as called from the
command line, and "$#" will expand to the number of arguments passed to the script. Play around with the above script, passing
different kinds of command-line arguments to get the hang of how it works.

Sometimes, it's helpful to refer to all command-line arguments at once. For this purpose, bash features the "$@" variable, which
expands to all command-line parameters separated by spaces. We'll see an example of its use when we take a look at "for"
loops, a bit later in this article.

Bash programming constructs

If you've programmed in a procedural language like C, Pascal, Python, or Perl, then you're familiar with standard programming
constructs like "if" statements, "for" loops, and the like. Bash has its own versions of most of these standard constructs. In the
next several sections, | will introduce several bash constructs and demonstrate the differences between these constructs and
others you are already familiar with from other programming languages. If you haven't programmed much before, don't worry. |
include enough information and examples so that you can follow the text.

Conditional love

If you've ever programmed any file-related code in C, you know that it requires a significant amount of effort to see if a particular
file is newer than another. That's because two stat() calls and structures are needed before the comparison can be made. It's not
too big a deal, but if you are performing lots of file operations, it doesn't take too long to discover that C isn't particularly
well-suited to scripting file-based operations. One of the great things about bash is that it has standard file comparison operators
built-in, so it's as easy to write an "if* statement that asks "is $myvar greater than 4?" as it is to write one that asks "is /tmp/myfile
readable?".

The table below lists the most frequently used bash comparison operators. The examples in the table show how to use each
option; the example is meant to be placed immediately after the "if", as follows:

http://www-4.ibm.com/software/developer/library/bash2.html (1 of 7) [4/6/2000 1:56:03 PM]

http://www.ibm.com/
http://www.ibm.com/shop/
http://www.ibm.com/support/
http://www.ibm.com/download/
http://www.ibm.com/
http://www.ibm.com/news/
http://www.ibm.com/products/
http://www.ibm.com/services/
http://www.ibm.com/solutions/
http://www.ibm.com/ibm/
http://www.ibm.com/
http://www.ibm.com/developer/
http://www.ibm.com/developer/linux/
http://www2.software.ibm.com/developer/papers.nsf/linux-papers-bytitle
http://www-4.ibm.com/software/developer/library/bash.html

developerWorks : Linux : Library - Papers

if [-z "$nmyvar"]
t hen
echo "nyvar is not defined"

File Comparison Operators

fi

-e filename true if filename exists [-e /var/log/syslog]
-d filename true if filename is a directory [-d /tmp/mydir]

-f filename true if filename is a regular file [-f fusr/bin/grep]
-L filename true if filename is a symbolic link [-L /usr/bin/grep]
-r filename true if filename is readable [-r ivar/log/syslog]
-w filename true if filename is writable [-w /var/mytmp.txt]
-x filename true if filename is executable [-L /usr/bin/grep]

filenamel -nt filename2 true if filenamel is newer than filename2 [/tmp/install/etc/services -nt /etc/services |
filenamel -ot filename2 true if filenamel is older than filename2 [/boot/bzimage -ot arch/i386/boot/bzimage]
String Comparison Operators (notice the use of quotes, a good way to guard against whitespace messing up your code)

-z string true if string has zero length [-z "$myvar"]

-n string true if string has nonzero length [-n "$myvar"]

stringl = string2 true if stringl equals string2 ["$myvar" = "one two three"]
stringl = string2 true if stringl does not equal string2 ["$myvar" I= "one two three"]
numl -eq num2 equals [3-eq $mynum]

numl -ne num2 does not equal [3 -ne $mynum]
num1 -It num2 less than [3 -It $mynum]

numl -le num2 less than or equal [3 -le $mynum]
numl -gt num2 greater than [3 -gt $mynum]
numl -ge num2 greater than or equal [3 -ge $mynum]

An interesting thing about conditional operators is that we can often choose whether we want to perform an arithmetic or string
comparison. For example, the following two snippets of code function identically:

if [$myvar -eq 3]
t hen

echo "nyvar equals 3"
fi

if ["$nmyvar" = "3"]
t hen

echo "nyvar equals 3"
fi

However, their implementation is somewhat different -- the first uses arithmetic comparison operators, and the second uses
string comparison operators. The other difference (besides the -eq and =) are the use of quotes to surround the environment
variable and the 3 in the second example. This tells bash that we are comparing two strings, rather than two numbers.

String comparison caveats

Most of the time, while you can omit the use of double quotes when using string operators, it's not a good idea. Why? Because
your code will work perfectly, unless an environment variable happens to have a space or a tab in it, in which case bash will get
confused. Here's an example:

if [$nyvar = "foo bar oni"]
t hen

echo "yes"
fi

In the above example, if myvar equals "foo", the code will work as expected and not print anything. However, if myvar equals
"foo bar oni", the code will fail with the following error:

http://www-4.ibm.com/software/developer/library/bash2.html (2 of 7) [4/6/2000 1:56:03 PM]

developerWorks : Linux : Library - Papers

[: too many arguments

In this case, the whitespace between the three words confuses bash. It's as if you typed the following condition:

[foo bar oni = "foo bar oni"]

Because the environment variable wasn't placed inside double quotes, bash thinks that you stuffed too many arguments in
between the square brackets. This is very important to understand; if you get into the habit of placing string arguments and
environment variables in double quotes, you'll eliminate a lot of tricky programming errors. Here's how the "foo bar oni"
comparison should have been written:

if ["$nmyvar" = "foo bar oni"]
t hen

echo "yes"
fi

The above code will work as expected and will not create any unpleasant surprises. piore quoting specifics

If you want your environment variables to

Loopin'g constructs N . be expanded, you must enclose them in
OK, we've covered conditionals, now it's time to explore bash looping constructs. double quotes, rather than single quotes.

We'll start with the standard "for" loop. Here's a basic example: Single quotes disable variable (as well as
history) expansion.

#! /usr/ bi n/ env bash

for x in one two three four
do

echo nunber $x
done

out put :

nunber one
nunber two
nunber three
nunber four

What exactly happened? The "for x" part of our "for" loop defined a new environment variable (also called a loop control variable)
called x, which was successively set to the values "one", "two", "three", and "four". After each assignment, the body of the loop
(the code between the "do" ... "done") was executed once. In the body, we referred to the loop control variable x using standard
variable expansion syntax, like any other environment variable. Notice also that "for" loops always accept some kind of word list
after the "in" statement; in this case we specified four English words. In addition, the word list can also refer to file(s) on disk or
even file wildcards. Take a good look at the following example to see how file wildcards can be used:

#! /usr/ bin/ env bash

for nyfile in /etc/r*

do
if [-d"$nyfile"]
t hen
echo "$myfile (dir)"
el se
echo "$nyfile"
fi
done
out put :

/etc/rc.d (dir)

/ etc/resol v. conf
/etc/resol v. conf~
/etc/rpc

The above code looped over each file in /etc that began with an "r". To do this, bash first took our wildcard /etc/r* and expanded
it, replacing it with the string /etc/rc.d /etc/resolv.conf /etc/resolv.conf~ /etc/rpc before executing the loop. Once inside the loop,
the "-d" conditional operator was used to perform two different actions, depending on whether myfile was a directory or not. If it
was, a " (dir)" was appended to the output line.

http://www-4.ibm.com/software/developer/library/bash2.html (3 of 7) [4/6/2000 1:56:03 PM]

developerWorks : Linux : Library - Papers

We can also use multiple wildcards and even environment variables in the word list:

for x in /etc/r??? [var/lo* /home/drobbins/nystuff/* [tnp/${ MYPATH}/*
do

cp $x /mt/nydir
done

Bash will perform wildcard and variable expansion in all the right places, and potentially create a very long word list.

While all of our wildcard expansion examples have used absolute paths, you can also use relative paths, as follows:

for x in ../* nystuff/*
do

echo $x is a silly file
done

In the above example, bash performs wildcard expansion relative to the current working directory, just like when you use relative
paths on the command line. Play around with wildcard expansion a bit. You'll notice that if you use absolute paths in your
wildcard, bash will expand the wildcard to a list of absolute paths. Otherwise, bash will use relative paths in the subsequent word
list. If you simply refer to files in the current working directory (for example, if you type "for x in *"), the resultant list of files will not
be prefixed with any path information. Remember that preceding path information can be stripped using the "basename™
executable, as follows:

for x in /var/log/*
do

echo “basenane $x° is a file living in /var/log
done

Of course, it's often handy to perform loops that operate on a script's command-line arguments. Here's an example of how to use
the "$@" variable, introduced at the beginning of this article:

#! /usr/ bin/ env bash

for thing in "$@
do

echo you typed ${thing}.
done

out put :

$ allargs hello there you silly
you typed hello.

you typed there.

you typed you.

you typed silly.

Case statements
Case statements are another conditional construct that comes in handy. Here's an example snippet:

case "${x##*.}" in

92)
gzunpack ${SROOT}/ ${ x}

bz2)
bz2unpack ${SROOT}/ ${x}

" i
echo "Archive format not recognized."”
exit

esac

Above, bash first expands "${x##*.}". In the code, "$x" is the name of a file, and "${x##.*}" has the effect of stripping all text

http://www-4.ibm.com/software/developer/library/bash2.html (4 of 7) [4/6/2000 1:56:03 PM]

developerWorks : Linux : Library - Papers

except that following the last period in the filename. Then, bash compares the resultant string against the values listed to the left
of the ")"s. In this case, "${x##.*}" gets compared against "gz", then "bz2" and finally "*". If "${x##.*}" matches any of these

strings or patterns, the lines immediately following the ")" are executed, up until the ";;", at which point bash continues executing
lines after the terminating "esac". If no patterns or strings are matched, no lines of code are executed; however, in this particular
code snippet, at least one block of code will execute, because the "*" pattern will catch everything that didn't match "gz" or "bz2".

Functions and namespaces

In bash, you can even define functions, similar to those in other procedural languages like Pascal and C. In bash, functions can
even accept arguments, using a system very similar to the way scripts accept command-line arguments. Let's take a look at a
sample function definition and then proceed from there:

tarview() {
echo -n "Displaying contents of $1 "
if [${1##*.} = tar |

t hen
echo "(unconpressed tar)"
tar tvf $1

elif [${1##*.} = gz]

t hen
echo "(gzi p-conpressed tar)"
tar tzvf $1

elif [${1##*.} = bz2]

t hen

echo "(bzi p2-conpressed tar)"
cat $1 | bzip2 -d | tar tvf -
fi
}

Above, we define a function called "tarview" that accepts one argument, a tarball of
some kind. When the function is executed, it identifies what type of tarball the
argument is (either uncompressed, gzip-compressed, or bzip2-compressed), prints
out a one-line informative message, and then displays the contents of the tarball.

Another case
The above code could have been written
using a "case" statement. Can you figure

?
This is how the above function should be called (whether from a script or from the out how?
command line, after it has been typed in, pasted in, or sourced):
$ tarview shorten.tar. gz
Di spl ayi ng contents of shorten.tar.gz (gzi p-conpressed tar)
drwxr - xr-x aj r/ abbot 0 1999-02-27 16: 17 shorten-2. 3al/
-rwr--r-- ajr/abbot 1143 1997-09-04 04: 06 shorten-2.3al/ Makefile
-rwr--r-- ajr/abbot 1199 1996-02-04 12: 24 shorten-2.3a/l NSTALL

-rwr--r-- ajr/abbot 839 1996-05-29 00: 19 shorten-2. 3a/ LI CENSE

As you can see, arguments can be referenced inside the function definition by
using the same mechanism used to reference command-line arguments. In
addition, the "$#" macro will be expanded to contain the number of arguments. The
only thing that may not work completely as expected is the variable "$0", which will
either expand to the string "bash" (if you run the function from the shell,
interactively) or to the name of the script the function is called from.

Use 'em interactively

Don't forget that functions, like the one
above, can be placed in your ~/.bashrc or
~/.bash_profile so that they are available
for use whenever you are in bash.

Namespace

Often, you'll need to create environment variables inside a function. While possible, there's a technicality you should know about.
In most compiled languages (such as C), when you create a variable inside a function, it's placed in a separate local namespace.
So, if you define a function in C called myfunction, and in it define a variable called "x", any global (outside the function) variable
called "x" will not be affected by it, eliminating side effects.

While true in C, this isn't true in bash. In bash, whenever you create an environment variable inside a function, it's added to the

global namespace. This means that it will overwrite any global variable outside the function, and will continue to exist even after
the function exits:

http://www-4.ibm.com/software/developer/library/bash2.html (5 of 7) [4/6/2000 1:56:03 PM]

developerWorks : Linux : Library - Papers

#! [usr/ bi n/ env bash
nyvar ="hel | 0"

nyfunc() {

myvar="one two three"
for x in $nmyvar

do
echo $x
done
}
nyfunc

echo $myvar $x

When this script is run, it produces the output "one two three three", showing how "$myvar" defined in the function clobbered the
global variable "$myvar", and how the loop control variable "$x" continued to exist even after the function exited (and also would
have clobbered any global "$x", if one were defined).

In this simple example, the bug is easy to spot and to compensate for by using alternate variable names. However, this isn't the
right approach; the best way to solve this problem is to prevent the possibility of clobbering global variables in the first place, by
using the "local" command. When we use "local” to create variables inside a function, they will be kept in the local namespace
and not clobber any global variables. Here's how to implement the above code so that no global variables are overwritten:

#! /[usr/ bi n/ env bash
nyvar ="hel | 0"

myfunc() {
| ocal x

| ocal nmyvar="one two three"
for x in $nyvar

do
echo $x
done
}
nmyf unc

echo $myvar $x

This function will produce the output "hello" -- the global "$myvar" doesn't get overwritten, and "$x" doesn't continue to exist
outside of myfunc. In the first line of the function, we create X, a local variable that is used later, while in the second example
(local myvar="one two three"") we create a local myvar and assign it a value. The first form is handy for keeping loop control
variables local, since we're not allowed to say "for local x in $myvar". This function doesn't clobber any global variables, and you
are encouraged to design all your functions this way. The only time you should not use "local” is when you explicitly want to
modify a global variable.

Wrapping it up

Now that we've covered the most essential bash functionality, it's time to look at how to develop an entire application based in
bash. In my next installment, we'll do just that. See you then!

Resources

« Read the introductory bash article, "Bash by example, Part 1" on developerWorks

« Visit GNU's bash home page

« Check out the bash online reference manual

About the author

Residing in Albuquerque, New Mexico, Daniel Robbins is the Chief Architect of the Gentoo Project, CEO of Gentoo
Technologies, Inc., the mentor for the Linux Advanced Multimedia Project (LAMP), and a contributing author for the Macmillan
books Caldera OpenLinux Unleashed, SUSE Linux Unleashed, and Samba Unleashed. Daniel has been involved with computers
in some fashion since the second grade, when he was first exposed to the Logo programming language as well as a potentially
dangerous dose of Pac Man. This probably explains why he has since served as a Lead Graphic Artist at SONY Electronic
Publishing/Psygnosis. Daniel enjoys spending time with his wife, Mary, who is expecting a child this spring. He can be reached

http://www-4.ibm.com/software/developer/library/bash2.html (6 of 7) [4/6/2000 1:56:03 PM]

http://www-4.ibm.com/software/developer/library/bash.html
http://www.gnu.org/software/bash/bash.html
http://www.gnu.org/manual/bash/index.html

developerWorks : Linux : Library - Papers

at drobbins@gentoo.org.

What do you think of this article?

O Killer! O Good stuff O So0-s0; not bad O Needs work O Lame!

Comments?

| Submit feedback |

Privacy | Legal | Contact

http://www-4.ibm.com/software/developer/library/bash2.html (7 of 7) [4/6/2000 1:56:03 PM]

mailto:drobbins@gentoo.org
http://www.ibm.com/Privacy/
http://www.ibm.com/Legal/
http://www.ibm.com/Contact/

	ibm.com
	developerWorks : Linux : Library - Papers

	OEELHFAEGMHJECANMEIKILMAKMLGBAAG:
	form1:
	x:
	f1: 9
	f2:

	f3:

	form2:
	x:
	f1: Bash by example, Part 2
	f2: Linux
	f3: http://www.ibm.com/developer/beta-feedback-thankyou.html
	f4: Off
	f5:

	f6:

