“Kabir has done it again! The Apache Server 2 Bible
is an invaluable reference for both beginning

and experienced administrators.”
— Elizabeth Zinkann, Sys Admin Magazine Contributing Editor and Review Columnist

100%

ONE HUNDRED PERCENT

COMPREHENSIVE
AUTHORITATIVE
WHAT YOU NEED

ONE HUNDRED PERCENT

Configure Apache -
Server for a =
Linux/Unix or
Win32 system

Leverage Apache B
using $SI, CGI, PHP, A—
Perl, and Java

serviets

1 e
.J_l_",-r_r.r‘r_ﬁ.r.r,f T l-.::Ef:ﬁ w

Secure your site
using SSL, certificate-
signing services,
and other tools

CD-ROM! ;
A Mohammed J. Kabir

Tomcat, MySQL, and more Author of Red Hat Linux Server

Apache Server 2
Bible

Apache Server 2
Bible

Mohammed J. Kabir

Hungry Minds-
Best-Selling Books e Digital Downloads ¢ e-Books ® Answer Networks e e-Newsletters ¢ Branded Web Sites ¢ e-Learning

New York, NY+4 Cleveland, OH 4 Indianapolis, IN

Apache Server 2 Bible

Published by

Hungry Minds, Inc.

909 Third Avenue

New York, NY 10022

www.hungryminds.com

Copyright © 2002 Hungry Minds, Inc. All rights reserved. No part of this book, including interior design, cover design, and
icons, may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording, or otherwise)
without the prior written permission of the publisher.

Library of Congress Control Number: 2001092889

ISBN: 0-7645-4821-2

Printed in the United States of America

10987654321

1B/RT/QT/QS/IN

Distributed in the United States by Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada; by Transworld Publishers Limited in the United Kingdom; by IDG Norge
Books for Norway; by IDG Sweden Books for Sweden; by IDG Books Australia Publishing Corporation Pty. Ltd. for Australia
and New Zealand; by TransQuest Publishers Pte Ltd. for Singapore, Malaysia, Thailand, Indonesia, and Hong Kong; by
Gotop Information Inc. for Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for South Africa; by Eyrolles for France; by
International Thomson Publishing for Germany, Austria, and Switzerland; by Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile; by Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer Publishing
Corporation, Inc., for the Philippines; by Contemporanea de Ediciones for Venezuela; by Express Computer Distributors for
the Caribbean and West Indies; by Micronesia Media Distributor, Inc. for Micronesia; by Chips Computadoras S.A. de C.V.
for Mexico; by Editorial Norma de Panama S.A. for Panama; by American Bookshops for Finland.

For general information on Hungry Minds’ products and services please contact our Customer Care department within the
U.S. at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and reseller information, including discounts, premium and bulk quantity sales, and foreign-language
translations, please contact our Customer Care department at 800-434-3422, fax 317-572-4002 or write to Hungry Minds,
Inc., Attn: Customer Care Department, 10475 Crosspoint Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic rights, please contact our Sub-Rights Customer Care department at
212-884-5000.

For information on using Hungry Minds’ products and services in the classroom or for ordering examination copies, please
contact our Educational Sales department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other publicity information, please contact our Public Relations department
at 317-572-3168 or fax 317-572-4168.

For authorization to photocopy items for corporate, personal, or educational use, please contact Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST EFFORTS
IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO
WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY
AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT
GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR
SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: Bible and Hungry Minds are trademarks or registered trademarks of Hungry Minds, Inc. All other trademarks
are the property of their respective owners. Hungry Minds, Inc., is not associated with any product or vendor mentioned in
this book.

Hungry Minds" is a trademark of Hungry Minds, Inc.

Credits

Acquisitions Editor
Terri Varveris

Project Editor
James H. Russell

Technical Editor
Gregory W. Stephens

Copy Editor
Richard H. Adin

Editorial Managers
Kyle Looper
Ami Frank Sullivan

Vice President & Executive
Group Publisher
Richard Swadley

Vice President & Group Publisher
Bob Ipsen

Editorial Director
Mary Bednarek

Project Coordinator
Regina Snyder

Graphics and Production Specialists

Beth Brooks
Melanie DesJardins
Joyce Haughey
Betty Schulte
Jeremey Unger

Quality Control Technicians
Laura Albert

John Greenough

Andy Hollandbeck

Angel Perez

Media Development Specialist
Travis Silvers

Illustrator
Kate Shaw

Proofreading and Indexing
TECHBOOKS Production Services

Cover Image
Kate Shaw

About the Author

Mohammed Kabir is the founder and CEO of Evoknow, Inc. His company specializes
in CRM software development. When he is not busy managing software projects or
writing books, he enjoys traveling. Kabir studied computer engineering at California
State University, Sacramento. He can be reached at kabir@evoknow.com.

To the memory of my mother, Nazma Bathen.

Preface

Welcome to Apache Server 2.0. Chances are that you already have heard
about Apache server. In fact, more than 60 percent of all Web administra-

tors use Apache. Apache is the most powerful, open-source, Web-server platform in
the world.

As a practicing Web developer, researcher, and administrator, I find Apache to be
the perfect fit for most Web sites. Apache 2.0 is a major revision of Apache server.
Apache Group originally created a highly configurable Web server in the first ver-
sion, which became popular very fast; in version 2, Apache Group focused on scala-
bility, reliability, and performance. Major code revisions were done to create a very
scalable Apache architecture.

Today, Apache stands tall as the most widely used Web platform. Every day an
increasing number of corporations accept this open-source marvel into their IT
infrastructure. Many large IT companies, such as IBM, have embraced Apache in
their product offerings. The future of Apache looks great. Whether you're new to
Apache or are already a practicing Apache administrator, now is the perfect time to
get started with Apache 2.0. This book will help you do just that.

How This Book Is Organized

The book has six parts. Very short descriptions of each part follow.

Part I: Getting Started

With a brief introduction to the world’s number one Web server, in this part I guide
you through the process of obtaining and compiling Apache. I show you how to get
Apache up and running with minimal changes to the default configuration files so
that you can get Apache up and running on your system as quickly as possible. This
part ends with complete references to the Apache core directives and standard
modules so that you can get ready for serious Apache administration tasks.

X

Apache Server 2 Bible

Part II: Web Site Administration

This part focuses on typical Web administration tasks such as virtual Web-site cre-
ation, user authentication and authorization tasks, monitoring, logging, rewriting
and redirecting URLs, proxy service, and the like. You learn a great deal there is to
know about creating and managing virtual Web sites. You master various methods
of user authentication, authorization, and access control techniques. You learn to
monitor Web servers and to customize log files for analysis.

Part lll: Running Web Applications

This part focuses on the ways in which you can serve dynamic contents using
Apache. It covers Common Gateway Interface (CGI), Server-Side Includes (SSI),
FastCGI, PHP, mod_per], and Java servlets. You quickly learn to use these technolo-
gies with Apache.

Part IV: Securing Your Web Site

Any computer on the Internet is subject to abuse or attempts of misuse. It is always
a good idea to play it safe and to take precautionary measures. In this part, you
learn to make your Web sites more secure and resistant to hacker attacks. You are
also introduced to the potential risks of running SSI and CGI programs and how to
take preventive measures to avoid these risks. You also learn to enable Secure
Socket Layer (SSL) service using Apache modules to enable secure e-commerce.

Part V: Running Apache on Windows

Apache on Windows (Win32) platform has become very popular; more and more
people are trying Apache on Windows platform. With Apache 2.0, the performance
of Apache Web server under this platform has become very promising. In this part,
you learn how to install and configure Apache on Win32 platform.

Part VI: Tuning for Performance and Scalability

In this part, I discuss how you can speed up Apache by tuning your Web server sys-
tem and by optimizing various Apache server configuration. The chapter provides a
great deal of information on how to benefit from high-performance hardware, how
to tune hard disks and file systems under Linux to enhance system performance. It
also covers Web caching and tuning issues related to Perl-based Web applications.

Preface

Conventions Used in This Book

You don’t have to learn any new conventions to read this book. Just remember that
when you are asked to enter a command, you need press the Enter or the Return
key after you type the command at your command prompt. A monospaced font is
used to denote configuration or code segment.

Also, pay attention to these icons:

'Alﬂte The Note icon indicates that something needs a bit more explanation.
e
Tip The Tip icon tells you something that is likely to save you some time and effort.
7
Caution The Caution icon makes you aware of a potential danger.

On the_“\ The On The CD-ROM icon clues you in to files, programs, and other goodies that
| are on the CD-ROM.

¢ Cross- The Cross=Reference icon helps you navigate the book better, pointing you to top-
Reference’\ s that are related to the one you're currently reading about.

Tell Us What You Think of This Book

Both Hungry Minds and I want to know what you think of this book. Please register
this book online at the Hungry Minds Web site (www.hungryminds.com) and give
us your feedback. If you are interested in communicating with me directly, send
e-mail messages to kabir@evoknow.com. [will do my best to respond promptly.

The Book Web Site

This book has a Web site at http://www.evoknow.com/kabir/apache2. You can visit
this Web site for updated contents, errata, and FAQ.

Acknowledgments

Iwould like to thank the Apache Group for creating the most powerful, extensible,
and modular Web server in the world. I give special thanks to Ralf S. Engelschall.
Ralf, the author of the mod_rewrite module, provided a great deal of support in the
development of Chapter 9 on URL rewriting rules. The practical examples in that
chapter are derived from his personal collection, which keeps growing at his Web
site www.engelschall.com/pw/apache/rewriteguide.

I also thank the Hungry Minds team, who made this book a reality. It is impossible
to list everyone involved but I must mention the following kind individuals:

James Russell, the project development editor, kept this project going. [don’t know
how I could have done this book without his generous help and suggestions every
step of the way. Thanks James.

Terri Varveris, the acquisitions editor, provided me with this book opportunity and
made sure | saw it through to the end. Thanks, Terri.

Sheila Kabir, my wife, had to put up with many long work hours during the few
months it took to write this book. Thank you, sweetheart.

Contents at a Glance

Preface. ix
Acknowledgments xiii
Partl: GettingStarted 1
Chapter 1: Apache: The Number One Web Server 3
Chapter 2: Obtaining and Installing Apache 13
Chapter 3: Getting Apache UpandRunning 31
Chapter 4: Configuring Apache with Winnt MPM directives 55
Chapter 5: Apache Modules 105
Part II: Web Site Administration 157
Chapter 6: Hosting Virtual Web Sites 159
Chapter 7: Authenticating and Authorizing Web Site Visitors 181
Chapter 8: Monitoring AccesstoApache 213
Chapter 9: Rewriting Your URLs 239
Chapter 10: Setting up a Proxy Server 265
Chapter 11: Running Perfect Web Sites 293
Part IlIl: Running Web Applications 319
Chapter 12: Running CGI Scripts 321
Chapter 13: Server Side Includes (SSI) 377
Chapter 14: Configuring Apache for FastCGI 399
Chapter 15:PHPand Apache 421
Chapter 16: Using Perl with Apache 455
Chapter 17: Running Java Servlets and JSP Pages with Tomcat 469
Part IV: Securing Your Web Site 493
Chapter 18: Web Security 495

Chapter 19: Securing Apachewith SSL 543

Part V: Running Apache onWindows 567

Chapter 20: Installing and Running Apache for Windows 569
Chapter 21: Configuring Apache for Windows 579
Part VI: Tuning for Performance and Scalability 591
Chapter 22: SpeedingUp Apache 593
Chapter 23: Creating a High-Availability Network 637
Appendix A: HTTP 1.1 StatusCodes, 705
Appendix B: Understanding Regular Expressions 709
Appendix C: Online ApacheResources 713
Appendix D: What’'s onthe CD-ROM? 719
Index. e 723

Contents

Preface. e X
Acknowledgments Xiii
Part I: Getting Started 1
Chapter 1: Apache: The Number One Web Server 3
ApacheRocksOn 4
Apache: TheBeginning 5
The Apache Feature List 5
Understanding Apache 2.0 Architecture 7
Multiprocessingmodules 7
Filtering /O 9
New CGldaemon, 9
Apache Portable Run-Time 10
Understanding the Apache License 10
Chapter 2: Obtaining and Installing Apache 13
The Official Source for Apache 13
System Requirements 14
Requirements for building Apache

from source distribution 14
Requirements for running an Apache Webserver 16
Downloading the Software 18
Installing Apache from SourceCode 19
Configuring Apachesource 19

Advanced configuration options for
high-load Websites 24
Compiling and installing Apache 26
Installing Apache from RPM Binary Packages 30
Keeping Up with Apache Development 30
Chapter 3: Getting Apache UpandRunning 31
Configuring Apache 31
Configuring the global environment for Apache 36
Configuring the mainserver 40
Starting and Stopping Apache 50
Starting Apache 50
Restarting Apache, 52
Stopping Apache 52

Testing Apache 53

XVIII Apache Server 2 Bible

Chapter 4: Configuring Apache with Winnt MPM

Directivest e e 55
Apache Directive Contexts, 56
Server configcontext 56
Containercontext 57
Per-directorycontext 58
General Configuration Directives 59
AccessFileName 59
AddDefaultCharset 60
ContentDigest 60
DefaultType e 61
DocumentRoot 61
ErrorDocument 62
<IfDefine> 63
<IfModule> 64
Include 65
Options e 65
Port e 67
ServerAdmin 68
ServerName 68
ServerRoot 69
ServerSignature 69
ServerTokens 69
SetlnputFilter 70
SetOutputFilter L 70
Performance and Resource
Configuration Directives, 70
Controlling Apache processes 71
Making persistent connections 72
Controlling system resources 74
Using dynamicmodules 75
Standard Container Directives 76
<Directory> 77
<DirectoryMatch> 78
<Files> e 78
<FilesMatch> 79
<Location> 79
<LocationMatch> 80
Virtual Host-Specific Directives 80
NameVirtualHost 80
ServerAlias e 82
ServerPath 82
<VirtualHost>. 82
Logging Directives 83
Loglevel 84
PidFile 85

ScoreBoardFile 85

Contents XiX

Authentication and Security Directives 86
AllowOverride 86
AuthName 87
AuthType e 87
HostNameLookupso, 87
IdentityCheck 88
<Limit> 88
<LimitExcept> 89
LimitRequestBody 89
LimitRequestFields, 89
LimitRequestFieldsize 90
LimitRequestLine, 90
Require 90
Satisfy e 91
ScriptinterpreterSource L oL 92

MPM threaded-Specific Directives 92
CoreDumpDirectory 92
Group o o e e 93
Listen 93
ListenBacklog 94
LockFile e 94
MaxClients e 94
MaxRequestsPerChild 95
MaxSpareThreads 95
MinSpareThreads 95
SendBufferSize 96
StartServers e 96
ThreadsPerChild, 97
User e 97

MPM perchild-Specific Directives 98
AssignUserID 98
ChildPerUserID 98
ConnectionStatus 99
CoreDumpDirectory 99
Group o 99
Listen e 99
ListenBacklog 100
LockFile 100
MaxRequestsPerChild 100
MaxSpareThreads, 100
MaxThreadsPerChild 100
MinSpareThreads 100
NumServers 100
PidFile 101
ScoreBoardFile 101
SendBufferSize o 101
StartThreads 101

User e e 101

XX Apache Server 2 Bible

MPM winnt-Specific Directives 101
CoreDumpDirectory e 102
Listen e 102
ListenBacklog 102
MaxRequestsPerChild 102
PidFile 102
SendBufferSize 102
ThreadsPerChild 102

MPM prefork Specific Directives, 102
CoreDumpDirectory e 103
Group e 103
Listen e 103
ListenBacklog 103
LockFile 103
MaxClients e 103
MaxRequestsPerChild 103
MaxSpareServers 103
MinSpareServers 104
PidFile 104
ScoreBoardFile 104
SendBufferSize 104
StartServers e 104
USser e e e 104

Chapter 5: ApacheModules 105

An Overview of the Modules 105

Environment-Related Modules 106
MOA_ENV e e 106
mod_setenvif 107
mod_unique_id 109

Authentication and Access Control Modules 109
mod_auth_anon 110
mod_auth_dbm 112
mod_auth_db 116

Dynamic Contents Generation Modules 117
mod_actions 118
mod_ext_filter 122

Content-Type Configuration Modules 124
mod_mime e 124
mod_mime_magic 128
mod_negotiation 128

Directory Listing Modules 130
mod_dir 130
mod_autoindex 131

Response Header Modules 137
mod_asis e 138

mod_headers e 138

Contents XX|

MOd_eXPIres o e e e e e e e 139
mod_cern_meta e e 141
Server Information and Logging Modules 143
mod_log_config. 143
mod_status e 143
mod_info 143
mod_usertrack 143
URL Mapping Modules 144
mod_userdir e 144
mod_alias 145
mod_speling 148
mod_vhost_alias 149
Miscellaneous Modules, 151
mod_SO e 151
mod_imap 152

Part II: Web Site Administration

Chapter 6: Hosting Virtual Web Sites 159
Understanding Apache’s Virtual Hosting Capabilities 159
SettingUpaVirtualHost 161

Name-based virtualhosts 161
[P-based virtualhosts 162
Multiple main servers as virtualhosts 163
Configuring DNS fora VirtualHost 166
Setting User and Group per VirtualHost 169
Managing a Large Number of Virtual Hosts 170
Automating Virtual Host Configuration using mod_perl 171
Generating Virtual Host Configuration By Using the makesite Script . . . 175
Managing Virtual Hosts By Using MySQL with mod_v2h Module 178

Chapter 7: Authenticating and Authorizing Web Site Visitors 181
Authentication vs. Authorization 0 0oL 181
Understanding How Authentication Works 182
Authenticating Users Via the mod_auth Module 184

Understanding the mod_auth directives 184
Creating a members-only section in your Web site 186
Creating a members-only section using a .htaccessfile 187
Grouping users for restricted access to different Web sections . . . 188
Authorizing Access via Host Name or IP Addresses 190
allowdirective 190
deny directive e 192
order directive 192

Combining Authentication and Authorization 195

XXii Apache Server 2 Bible

Authenticating with a Relational Database 195
Using MySQL database server for authentication 196
Using other databases for user authentication 202

Managing Users and Groups in AnyRDBM 204

Secure Authenticated Sessions Using Cookies 208

Chapter 8: Monitoring Accessto Apache 213

Monitoring Apache 213
Accessing configuration information with mod_info 214
Enabling status pages with mod_status 216

CreatingLogFiles 221
TransferLog directive 222
LogFormat directive 223
CustomLogdirective 223
CookieLogdirective 224

Customizing Your LogFiles 224

Creating Multiple LogFiles 227

Logging Cookies e 228

Using ErrorLogs 230

Analyzing Your LogFiles, 232

Log Maintenance 234
Usingrotatelog 234
Using logrotate 234
Using logresolve 236

Chapter 9: RewritingYour URLs 239

The URL-Rewriting Engine for Apache 239
RewriteEngine 242
RewriteOptions 243
RewriteRule 243
RewriteCond 245
RewriteMap e 248
RewriteBase 249
RewriteLog 249
RewriteLoglevel 250
RewriteLock 250

URL Layout e 251
Expanding a requested URL to a canonical URL 251
Redirecting a user home directory to a new Web server 252
Searching for a page in multiple directories 253
Setting an environment variable basedonaURL 256
Creating www.username.domain.com sites 257
Redirecting a failing URL to another Web server 259
Creating an access multiplexer 259

Creating time-sensitive URLs 261

Contents

Content Handling 262
Adding backward compatibilityin URLs 262
Creating browser-matched content URLs 262
Creating an HTML to CGI gateway 263
Access Restriction o 263
Blockingrobots 263
Creating an HTTP referer-based URL deflector 264
Chapter 10: SettingupaProxyServer 265
Who Should Use a Proxy Server? 265
Understanding Types of Proxy Servers 266
Forward proxy e 266
Reverse proxy 267
mod_proxy Directives 268
ProxyRequests, 269
ProxyRemote 269
ProxyPass e 270
ProxyBlock 270
NOPYOXY . . o o o o e e e e e e e 271
ProxyDomain, 271
CacheRoot. e 272
CacheSize e 272
CacheGelnterval 273
CacheMaxExpire it 273
CacheLastModifiedFactor 273
CacheDirLength 274
CacheDirLevels e 274
CacheDefaultExpire 274
NoCache e 275
Configuring an Apache Proxy Server 275
Scenario 1: Connecting a private IP network to the Internet 276
Scenario 2: Caching remote Websites 276
Scenario 3: MirroringaWebsite 278
Setting Up Web BrowserstouseaProxy 278
Manual proxy configuration, 278
Automatic proxy configuration 281
Setting return values for FindProxyForURL 282
Using pre-defined functions in FindProxyForURL 283
Chapter 11: Running Perfect Web Sites 293
What is a Web Development Cycle? 294
Putting the Web Cycle into Action 296
Setting up for the Webcycle 297
Implementing the Webcycle 301

Building a Web Site by Using Templates and makepage 304

XXII

XXiV Apache Server 2 Bible

Using HTTP PUT for Intranet Web Publishing 305
Understanding the directives in mod_put module 306
Compiling and installingmod_put 307
Setting up a PUT-enabled Web directory 307
Setting up a virtual host to use mod_put module 309

Maintaining Your Web Site oL 310
Onlinebackup 310
Offlinebackup 311

Standardizing Standardso 312
HTML document development policy 312
Dynamic application development policy 314

Giving Your Web Site a User-Friendly Interface 315
Make your site easy tonavigate 316
Create an appealingdesign 316
Remove cryptic error messages, 317
Testyour Web GUI 317
Promoting Your Web Site 0. 318

Part I1I: Running Web Applications

Chapter 12: Running CGI Scripts 321
WhatIs CGI? e 321
CGlInputand Output e 323

GETrequests e 323
POSTrequests i 326
Comparing GET and POST 327
Decodinginputdata 328
Apache CGI Variables 328
Server variables L 329
Client request variables 330
Configuring Apachefor CGI 335
Aliasing your CGI program directory 335
Choosing specific CGI file extensions 336
Enabling cgi-bin access for yourusers 338
Creating new CGI extensions by using AddType 341
Running CGI Programs 342
Writing CGI ScriptsinPerl. 342
Enabling CGI Debugging Support in Apache 370
ScriptLog 370
ScriptLoglLength 371
ScriptLogBuffer o 371
Debugging Your Perl-Based CGI Scripts 371
Debugging from the command line 371
Debugging by using logging and debug printing 373

Debugging with CGl::Debug 374

Contents

Chapter 13: Server Side Includes (SSI) 377
What Is a Server Side Include? L. 377
Configuring Apachefor SSI 378

Enabling SSI for an entire directory 379
Enabling SSI for a specific filetype 380
Using XBitHack for .htm or .htmlfiles 381
Using SSICommands e 382
config e 382
echo L 385
EXEC o o e e e e e e e e e e 385
fsize . . . 391
flastmod 391
include 392
printenv e e 392
Set . . 393
SSI'Variables 393
Flow Control Commands 394

Chapter 14: Configuring Apache forFastCGI 399

Whatis FastCGI? 399
Achieving high performance by using caching 401
Scalability through distributed applications 402

Understanding How FastCGIWorks 404
Basic architecture of a FastCGI application 406
Different types of FastCGl applications 407

Migrating from CGItoFastCGI 408
Things to keep in mind about migrating 409
Migrating a sample script oL, 410

Setting Up FastCGlfor Apache 413
FastCGI directives for Apache 414
Configuring httpd.conf for FastCGI. 416

Chapter 15: PHPand Apache 421
Understanding HowPHPWorks 421
Bringing PHP to Your Company 422
Prerequisitesfor PHP 423
Compiling and Installing PHP 424

Building PHP as a CGl solution 424
Building PHP as an Apachemodule 425
Configuring ApacheforPHP L. 426
Configuring PHP by Using php.ini. 427
PHP directives in httpd.conf 427

PHP Directives directives in php.ini 428

XXV

XXV| Apache Server 2 Bible

WorkingwithPHP 435
Creating a simple command-line PHP script 435
Creating simple PHP Webpages 436
Using a PHP script as a Server-Side Include 437
Using a PHP page for a directoryindex 438
Usingincludefiles 439
Enhancing error handling withPHP 441
Processing Web forms withPHP 441
Creating sessionswithPHP 444

Using MySQLwithPHP 448
Creating a simple PHP page to access a MySQL database 448
Securing PHP include files 451
Authenticating users with PHPand MySQL 451

Chapter 16: Using Perl with Apache 455

Compiling and Installingmod_perl 455

Running CGI Scripts by Usingmod_perl 456

Don’t Reinvent the Wheel 457

Creating mod_perl Module By Using the Perl APl for Apache 458

Using CGl.pm to Write mod_perl Modules 462

Preloading Perl Modules to Save Memory 464

Keeping Track of mod_perl Modules in Memory 465

Implementing ASP by Using the Apache::ASP Module 466

Chapter 17: Running Java Servlets and JSP Pages with Tomcat . . . 469

Why Use Servlets? 470
Installing Tomcat 471
Installing the latest JDK for Tomcat 471

Installing Tomcat and the mod_jk module 472
Configuring Tomcat 473
Configuring Tomcat for Apache 473
Configuring Tomcat to use the Java Security Manager 477
Configuring Apache for Servletsand JSP 479
Working with Tomecat 483
Disabling Tomcat’s default HTTP service 483

Starting and stopping Tomcat 484

Starting Tomcat with a shell wrapper script 484

Running Javaservlets 485

Part IV: Securing Your Web Site 493
Chapter 18: Web Security 495
Understanding Web Security 495

The Security Checkpoints 496
Checkpoint 1: Your network 497
Checkpoint 2: The operating system 499

Checkpoint 3: Web server software 499

Contents XXV| |

Choosing a Security Configuration 500
Security policy considerations 500

A sensible security configuration for Apache 502

The Sacrificial Lamb Configuration 509

The Paranoid Configuration 510
Protecting Your Web Contents 511
Content-publishing guidelines 511
Protecting your contents from robots and spiders 512
Logging and Security 515
CustomLogand ErrorLog 515
What to do if you see unusual access in your log files 515
Securing Your CGI Implementation 517
Fending off CGI Risks with smart programming 517
Keeping user input secure 527
Wrapping CGI Scripts 531
Hiding clues about your CGI scripts 536
Using CGIScanners 537
Reducing SSIRisks 540
Chapter 19: Securing ApachewithSSL 543
Introducing SSL 543
How SSLWorks 544
Understanding encryption 545
Understanding certificates 547
Setting up SSL for Apache L 551
SSLchoices 551
Settingup OpenSSL 552
Choosing the mod_ssl module for SSL support 554
Choosing Apache-SSL instead of mod_ssl for SSL support 558
Getting a Certificate 562
Getting a server certificate from a commercial CA 562
Generating a privatekey 562
Generating a certificate signingrequest 563
Creating a private certificate authority 564
Accessing SSLpages 565
Part V: Running Apache on Windows 567
Chapter 20: Installing and Running Apache for Windows 569
System Requirements L . 569
Downloading Apache for Windows 570
Installing Apache Binaries 570
Running Apache 574
Running Apache automatically as a Windows service 574
Managing Apache from the Startmenu 577
Managing Apache from the command-line 577

Running multiple Apache services 578

XXVIII Apache Server 2 Bible

Chapter 21: Configuring Apache for Windows 579
Windows httpd.confSyntax 579
Tuning Apache for Performance 580
Testing Apache Configuration 580
Managing Apache with Comanche 581
Configuring Apache for Dynamic Contents 584

Running Perl-based CGIscripts 584

Running mod_perlscripts 585

Running PHP scripts 586

Running ISAPI extensions with mod_isapi 587

UserDirin Windows 588

Part VI: Tuning for Performance and Scalability 591

Chapter 22: Speeding Up Apache 593

Using High-Performance Hardware 593
CPU. . . e 593
RAM . . e 594
Harddrive 595
Ethernetcard 602
Tuning Linux’s ext2 Filesystem 602
Changing the block size of the ext2 filesystem 603
Tuning the ext2 file system with e2fsprogs 603
Tuning Your Operating System 606
Compiling and installing a customkernel 607
Tuning your system for demanding Web applications 607
Making your Apache Server software leanand mean 608
Tuning Your Network 610
Using fastEthernet 610
Understanding and controlling network traffic flow 611
Balancing load using the DNSserver 613
Using load-balancing hardware 614
Tuning the Apache Configuration 614
Minimizing DNSlookups 614
Speeding up static fileserving 615
Tuning your configuration using ApacheBench 618
CachingforSpeed. 620
Caching frequently used files in memory with mod_fcache 620
Getting Slick with the Squid proxy-caching server 621
Using mod_backhand for a Web serverfarm 626
Tuning Web Applications, 627
Speeding up mod_perl scripts Lo 627

Going with FastCGl instead of mod_perl 633

Contents
Chapter 23: Creating a High-Availability Network 637
Features of a High-end
Web Network 637
Enhancing DNS Reliability 638
Load Balancing Your Web Network 639
Distributing HTTP requests with Round-RobinDNS 639
Distributing HTTP requests with
hardware load balancers 640
Managing Web Storage 642
RAID, SAN, or Storage Appliances 642
Tuning your harddrives 643
Tuning ext2 Filesystem 647
Increasing reliability with journaling file systems
forLinux 651
Sharing drive space with NFSserver 656
Replicating contents among Webservers 664
Using rdist to distributefiles 664
Creating a RAM-based filesystem 668
Creating a Reliable Back-end Network 671
Fortifying Your Web Network 673
Using Tripwire to protect your Web contents 674
Securing Apache using the Linux Intrusion
Detection System (LIDS) 687
Appendix A: HTTP 1.1 StatusCodes 705
Appendix B: Understanding Regular Expressions 709
Appendix C: Online Apache Resources 713
Appendix D: What'sonthe CD-ROM? 719
INdexo 723

XXIX

Getting Started

In this part, I show you why Apache is a great Web server;
where to get it from, and how to install and configure it. I
also get you up to speed with the Apache code directives and
the many popular modules that make Apache the most config-
urable Web server on the planet.

YR TR SRS
In This Part

Chapter 1
Apache: The Number
One Web Server

Chapter 2
Obtaining and
Installing Apache

Chapter 3
Getting Apache Up
and Running

Chapter 4
The Core and MPM

Directives

Chapter 5
The Apache Modules

R R

CHAPTER

Apache: The
Number One
Web Server

+ 0+ o+

In This Chapter

Welcome to Apache —the number one Web server in
the world. If you are toying with the idea of running
Apache, you are in the right place! This chapter introduces
the Apache way of running a Web server.

More than 60 percent of the Web servers in the world use
Apache, according to a prominent Web server survey company
called Netcraft (www.netcraft.co.uk/Survey/). Netcraft
publishes the Top Server statistics periodically. Table 1-1
shows the Top Server statistics that was available at the time
of writing this chapter. If you want to put faces to the numbers,
you can visit wew.apache.org/info/

apache_users.html.

Understanding why
Apache rocks

Boning up on
Apache history

Thumbing through
the feature set

Looking through
Apache architecture

Sorting through the
licensing options

+ 0+ o+

4

Part | + Getting Started

Table 1-1
Top Server Statistics by Netcraft
Server Nov 2001 Percent Dec 2001 Percent
Apache 7750275 61.88 8588323 63.34
Microsoft IIS 3307207 26.40 3609428 26.62
iPlanet 431935 3.45 383078 2.83
Zeus 174052 3.45 172352 1.27

Apache Rocks On

What Apache has accomplished is simply amazing! Who knew that an open source
Web server could consistently beat two major commercial competitors, Microsoft
and Netscape as a Web server platform! Everyone has his or her own reason for
why Apache is so popular. Here are mine:

4 Apache is a highly configurable Web Server with a modular design. It is

very easy to extend the capabilities of Apache Web server. Anyone with decent
C or Perl programming expertise can write a module to perform a special
function. This means that there are tons of Apache modules available for use.

4+ Apache is a free, open source technology. Being free is important but not as

important as being open source.

4 Apache works great with Perl, PHP, and other scripting languages. Most

Web applications are still scripts. Perl excels in the script world and Apache
makes using Perl a piece of cake with both CGI support and mod_per1 support.

4 Apache runs on Linux and other Unix systems. Linux used to be an underdog

operating system, which has now found itself in enterprise computing arena.
Linux and Apache go hand-in-hand in the enterprise world today. I believe
Linux’s acceptance in the business world has made Apache’s entry into such
territory easy. However, there are people who would argue that it was
Apache’s fame that made Linux find its way into the business world easier.
Either way, Apache and Linux is a powerful combination. Other Unix systems
such as FreeBSD and Solaris, and the new Mac OS X also play a great role in
expanding Apache’s user base horizon.

4 Apache also runs on Windows. Although Apache will run much better on

Windows platform with version 2.0, Apache was already in Windows market
with Version 1.3.x. We will see a lot of Windows systems switching to Apache
from Microsoft Internet Information Server (IIS) because Apache 2.0 architec-
ture gives it the power it needed to compete natively.

Chapter 1 4 Apache: The Number One Web Server

Apache: The Beginning

Here is a bit of Apache history. In the early days of the Web, the National Center for
Super Computing Applications (NCSA) created a Web server that became the num-
ber one Web server in early 1995. However, the primary developer of the NCSA Web
server left NCSA about the same time, and the server project began to stall. In the
meantime, people who were using the NCSA Web server began to exchange their
own patches for the server and soon realized that a forum to manage the patches
was necessary. The Apache Group was born. The group used the NCSA Web server
code and gave birth to a new Web server called Apache. Originally derived from the
core code of the NCSA Web server and a bunch of patches, the Apache server is
now the talk of the Web server community. In three short years, it acquired the lead
server role in the market.

The very first version (0.6.2) of publicly distributed Apache was released in April
1995. The 1.0 version was released on December 1, 1995. The Apache Group has
expanded and incorporated as a nonprofit group. The group operates entirely via
the Internet. However, the development of the Apache server is not limited in any
way by the group. Anyone who has the know-how to participate in the development
of the server or its component modules is welcome to do so, although the group is
the final authority on what gets included in the standard distribution of what is
known as the Apache Web server. This allows literally thousands of developers
around the world to come up with new features, bug fixes, ports to new platforms,
and more. When new code is submitted to the Apache Group, the group members
investigate the details, perform tests, and do quality control checks. If they are sat-
isfied, the code is integrated into the main Apache distribution.

The Apache Feature List

One of the greatest features that Apache offers is that it runs on virtually all widely
used computer platforms. At the beginning, Apache used to be primarily a Unix-
based Web server, but that is no longer true. Apache not only runs on most (if not
all) flavors of Unix, but it also runs on Windows 2000/NT/9x and many other desk-
top and server-class operating systems such as Amiga OS 3.x and OS/2.

Apache offers many other features including fancy directory indexing; directory
aliasing; content negotiations; configurable HTTP error reporting; SetUID execution
of CGI Programs; resource management for child processes; server-side image
maps; URL rewriting; URL spell checking; and online manuals.

The other major features of Apache are:

4 Support for the latest HTTP 1.1 protocol: Apache is one of the first Web
servers to integrate the HTTP 1.1 protocol. It is fully compliant with the new
HTTP 1.1 standard and at the same time it is backward compatible with HTTP
1.0. Apache is ready for all the great things that the new protocol has to offer.

6

Part | + Getting Started

For example, before HTTP 1.1, a Web browser had to wait for a response from
the Web server before it could issue another request. With the emergence of
HTTP 1.1, this is no longer the case. A Web browser can send requests in
parallel, which saves bandwidth by not transmitting HTTP headers in each
request. This is likely to provide a performance boost at the end-user side
because files requested in parallel will appear faster on the browser.

4 Simple, yet powerful file-based configuration: The Apache server does not
come with a graphical user interface for administrators. It comes with single
primary configuration file called httpd. conf that you can use to configure
Apache to your liking. All you need is your favorite text editor. However, it is
flexible enough to allow you spread out your virtual host configuration in
multiple files so that a single httpd.conf does not become too cumbersome
to manage with many virtual server configurations.

4 Support for CGI (Common Gateway Interface): Apache supports CGI using
the mod_cgi and mod_cgid modules. It is CGI 1.1 compliant and offers
extended features such as custom environment variables and debugging sup-
port that are hard to find in other Web servers. See Chapter 12 for details.

4 Support for FastCGI: Not everyone writes their CGI in Perl, so how can they
make their CGI applications faster? Apache has a solution for that as well. Use
the mod_fcgi module to implement a FastCGI environment within Apache and
make your FastCGI applications blazing fast. See Chapter 14 for details.

4+ Support for virtual hosts: Apache is also one of the first Web servers to sup-
port both IP-based and named virtual hosts. See Chapter 6 for details.

4 Support for HTTP authentication: Web-based basic authentication is sup-
ported in Apache. It is also ready for message-digest-based authentication,
which is something the popular Web browsers have yet to implement. Apache
can implement basic authentication using either standard password files,
DBMs, SQL calls, or calls to external authentication programs. See Chapter 7
for details.

4 Integrated Perl: Perl has become the de facto standard for CGI script pro-
gramming. Apache is surely one of the factors that made Perl such a popular
CGI programming language. Apache is now more Perl-friendly then ever
before. Using its mod_per1 module, you can load a Perl-based CGI script in
memory and reuse it as many times as you want. This process removes the
start-up penalties that are often associated with an interpreted language like
Perl. See Chapter 16 for details.

4 Support for PHP scripting: This scripting language has become very widely
used and Apache provides great support for PHP using the mod_php module.
See Chapter 15 for details.

4+ Java Servlet support: Java servlets and Java Server Pages (JSP) are becoming
very commonplace in dynamic Web sites. You can run Java servlets using the
award-wining Tomcat environment with Apache. See Chapter 17 for details.

Chapter 1 4 Apache: The Number One Web Server

4+ Integrated Proxy server: You can turn Apache into a caching (forward) proxy
server. However, the current implementation of the optional proxy module
does not support reverse proxy or the latest HTTP 1.1 protocol. There are
plans for updating this module soon. See Chapter 10 for details.

4 Server status and customizable logs: Apache gives you a great deal of flexibil-
ity in logging and monitoring the status of the server itself. Server status can
be monitored via a Web browser. You can also customize your log files to your
liking. See Chapter 8 for details.

4 Support for Server-Side Includes (SSI): Apache offers set of server side
includes that add a great deal of flexibility for the Web site developer. See
Chapter 13 for details.

4 Support for Secured Socket Layer (SSL): You can easily create an SSL. Web
site using OpenSSL and the mod_ss1 module for Apache. See Chapter 19 for
details.

Understanding Apache 2.0 Architecture

Apache Server 2.0 makes Apache a more flexible, more portable, and more scalable
Web solution than ever before. The new 2.0 releases offer many improvements; the
major improvements are discussed in the following sections.

Multiprocessing modules

The first major change in Apache 2.0 is the introduction of multiprocessing mod-
ules (MPMs). To understand why MPMs are created, you need to understand how
Apache worked before. Apache Version 1.3 or earlier used a preforking architecture.
In this architecture, an Apache parent process forked a set of child processes,
which serviced the actual requests. The parent process simply monitored the
children and spawned or killed child processes based on the amount of requests
received. Unfortunately, this model didn’t work well under platforms that are not
process-centric such as Windows. So, the Apache Group came up with the MPM-
based solution.

Each MPM is responsible for starting the server processes and for servicing
requests via child processes or threads depending on the MPM implementation.
Several MPMs are available. They are discussed in the following sections.

The prefork MPM

The prefork MPM mimics the Apache 1.3 or earlier architecture, creating a pool
of child processes to service requests. Each child process has a single thread.
For example, if Apache starts 30 child processes, it can service 30 requests
simultaneously.

8 Part| 4 Getting Started

If something goes wrong and the child process dies, only a single request is lost.
The number of child processes is controlled using a minimum and maximum setting.
When the number of requests increases, new child processes are added until the
maximum is reached. Similarly, when the requests fall, any extra child processes
are killed.

The threaded MPM

This MPM enables thread support in Apache 2.0. This is like the prefork MPM, but
instead of each child process having a single thread, each child process is allowed
to have a specified number of threads. Each thread within a child process can ser-
vice a different request. If Apache starts 30 child processes where each child is
allowed to have at maximum 10 threads, than Apache can service 30 x 10 = 300
requests simultaneously.

If something goes wrong with a thread, for example, an experimental module causes
the thread to die, then the entire process dies. This means that all the requests
being serviced by the threads within the child process will be lost. However,
because requests are distributed among threads on separate child processes, it is
likely that a child’s death will take down at maximum of 1/n of all the total connec-
tion, where n presents the number of all simultaneous connections.

A process is added or removed by monitoring its spare-thread count. For example,
if a process has less than the minimum number of spare threads, a new process is
added. Similarly, when a process has a maximum number of idle threads, it killed.

All processes run under the same user and group ID assigned to Apache server.

Because threads are more resource efficient than processes, this MPM is very
scalable.

The perchild MPM

This is also new in Apache 2.0. In this MPM model a set number of child processes
are started with a specified number of threads. As request load increases the pro-
cesses add new threads as needed. When request count reduces, processes shrink
their thread counts using a minimum and maximum thread count setting.

The key difference between this module and the threaded MPM is that the process
count is static and also each process can run using a different user and group ID.
This makes it easy to run different virtual Web sites under different user and group
IDs. See Chapter 6 for details.

The winnt MPM

This is the MPM for the Windows platform, including Windows 2000, Windows NT,
and Window 9x. It is a multithreaded module. Using this module Apache will create
a parent process and a child process. The child process creates all the threads that

Chapter 1 4 Apache: The Number One Web Server

services the request. Also, this module now takes advantage of some Windows-only
native function calls, which allows it to perform better than the earlier versions of
Apache server on Windows platform.

Filtering 1/0

Apache 2.0 now provides architecture for layered I/O. This means that one module’s
output can become another module’s input. This filtering effect is very interesting.
For example, the output produced by CGI scripts, which is processed by the
mod_cgi module, can now be handed to the mod_inc1ude module responsible for
SSIs. In other words, CGI scripts can produce output as SSI tags, which can be pro-
cessed before the final output is sent to the Web browser. Many other applications
of filtering I/O will be available in the future.

New CGI daemon

Because many of the MPM modules use threads, executing CGI scripts become
cumbersome when a thread gets such a request. The mod_cgi module still works,
but not optimally for threaded MPMs, so mod_cgid was added. The mod_cgid
module creates a daemon process, which spawns CGI processes and interacts

with threads more efficiently. Figure 1-1 shows how a CGI request for a script called
myscript.pl is serviced.

1 .
—— > Apache Child
Web Browser 43— Process <«

Apache Child ¢ R CGl Daemon
Process Process

Apache Child ‘
Process 2

I myscript.pl

Figure 1-1: How the CGI daemon works with Apache child processes.

Here is how the CGI scripts are executed:

1. When the CGI request comes to a thread within a child process, it passes the
request to the CGI daemon.

10

Part | + Getting Started

2. The CGI daemon spawns the CGI script and outputs the CGI script-generated
data to the thread in the child process.

3. The thread returns the data to the Web browser.

When the main Apache server starts, it also starts the CGI daemon and establishes
a socket connection. So, when a new child process is created, it inherits the socket
connection and therefore does not have any need to create a connection to the CGI
daemon for each request. The entire process improves CGI execution in the
threaded environment.

Apache Portable Run-Time

In furtherance of the Apache Group’s vision to create the most popular Web server
in the world, it became clear that Apache’s portability needed to be addressed in
Apache 2.0. Prior to the current release, Apache had been dealing with portability
internally, which made the code base less manageable. So, Apache Group intro-
duced the Apache Portable Run-Time (APR). APR’s purpose is to provide a single C
interface to platform-specific functions so that code can be written once.

This enables Apache to run more natively on platforms such as Windows, BeOS,
Amiga, and OS/2. Because of APR, many programs, such as ApacheBench, can run
on these platforms.

Understanding the Apache License

Free software such as Apache, Perl (Practical Extraction and Reporting Language),
and Linux (an x86-based Unix clone operating system) are getting a great deal of
press because of Netscape’s decision to make Netscape Communicator, one of the
most popular Web browsers, available for free with its Mozilla project. Unfortunately,
free software such as Apache, Perl, and Linux do not share the same licensing
agreements, and so the media has created some confusion by associating these
packages in the same licensing category.

All free software is intended to be, well, free for all. However, there are some legal
restrictions that the individual software licenses enforce. For example, Linux, which
is made free by GNU Public License (GPL), requires that any changes to Linux be
made public. Apache, on the other hand, does not require that changes made to
Apache be made public by anyone.

In short, think of Apache as free, copyrighted software published by the Apache
Group. It is neither in the public domain nor is it shareware. Also note that Apache
is not covered by GPL. The Apache Software License document is listed in

Listing 1-1 for your convenience.

/*

ok b b b b ot b b b b b X oF oF b b o b b oF b b b b b b ot b b b b b X oF oF ok R o X X X ok o of

Chapter 1 4 Apache: The Number One Web Server

Listing 1-1: Apache Software License

The Apache Software License, Version 1.1

Copyright (c) 2000-2001 The Apache Software Foundation. A1l rights
reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this Tist of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. The end-user documentation included with the redistribution,
if any, must include the following acknowledgment:
"This product includes software developed by the
Apache Software Foundation (http://www.apache.org/)."
Alternately, this acknowledgment may appear in the software itself,
if and wherever such third-party acknowledgments normally appear.

4. The names "Apache" and "Apache Software Foundation" must
not be used to endorse or promote products derived from this
software without prior written permission. For written
permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache",
nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS"™ AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Continued

11

12 Part| 4 Getting Started

Listing 1-1 (continued)

This software consists of voluntary contributions made by many
individuals on behalf of the Apache Software Foundation. For more
information on the Apache Software Foundation, please see
<http://www.apache.org/>.

Portions of this software are based upon public domain software
originally written at the National Center for Supercomputing Applications,
University of IT1linois, Urbana-Champaign.

X5k oF b b E X ok o of

Obtaining
and Installing
Apache

A Ithough compiling your own Apache binaries may seem
like a bit of work, it’s worth the effort. As you become

more familiar with Apache, you will learn that it is the only
Web server that provides virtually all (if not more) of the func-
tionalities of a full-blown commercial server, while letting you
look at how these functionalities are implemented in the
source. I find this aspect of Apache fascinating.

For people who are not C programmers but who still need a
powerful, free, Web server, however, playing around with a
lot of ANSI C code may not exactly be a favorite pastime.
Fortunately, there’s nothing to worry about — Apache comes
in both source code and in prebuilt binary packages. This
chapter discusses installing Apache from source code and
from prebuilt binaries.

The Official Source for Apache

Whenever you obtain free software (source code or binary
files) from the Internet, make sure you're not getting it from an
unknown Web or FTP site. What I mean by an unknown can be
better understood by use of an example. Say you want to
obtain free Java-based Web browser software developed by
Sun Microsystems. You need to be able to do some sort of
authenticity check, which is often difficult on the Internet;
therefore, you should stick with sites that are widely used.
For example, you don’t want to get it from an FTP site with
hostname such as dialup-666.someforeignisp.net.ch;
you should probably look for it somewhere on the java.
sun.com site instead, because you can’t be sure that 666.
someforeignisp.net.ch has completely checked the soft-
ware for any hidden dangers. You get the idea.

CHAPTER

+ 0+ 0+
In This Chapter

Finding the lafest
Apache source

System requirements
for Apache

Downloading
the software

Compiling the source

Installing binaries
on your system

Keeping up
with Apache

developments

¢+ 4+ o+

14

Part

Alote

| 4+ Getting Started

Lucky for us, Apache developers and supporters made sure an official place was set
up for obtaining Apache software. The official Apache Web site is www.apache.org.
This site contains the latest stable version of Apache, the latest release version of
Apache, patches, contributed Apache modules, and so on. This is where you want
to go for all your Apache needs — although you might be directed to a mirror site
that is geographically near you to help cut down on bandwidth and network con-
gestion. You can also use the Pretty Good Privacy (PGP) signatures offered on the
site to verify the authenticity of the source code. If you do not know how to use
PGP, check out www.pgp.net.

Windows users: Please read Chapter 20 for details on your platform. This chapter
~~ is primary geared towards Unix installation and uses Linux as the sample platform.
Instructions in this chapter apply to most Unix systems.

System Requirements

ﬁ\lote

Apache runs on just about any platform in use today, including Linux; FreeBSD;
OpenBSD; NetBSD; BSDI; Amiga OS 3.x; Mac OS X; SunOS; Solaris; IRIX; HPUX; Digital
Unix; UnixWare; AIX; SCO; ReliantUNIX; DGUX; OpenStep/Mach; DYNIX/ptx; BeOS;
and Windows.

Requirements for building Apache
from source distribution

If you are planning on building Apache from source, which is what [highly recom-
mend since compiling your own will give you a very lean and mean server, then you
need to make sure that your system meets the requirements stated in Table 2-1.

These requirements are for building Apache from the source code only. For run-
~~ ning Apache on your system, browse the requirements in the next section.

Chapter 2 + Obtaining and Installing Apache

Table 2-1
Requirements for Building Apache from Source

Resource

Required?

Requirements

Disk Space

ANSI C Compiler

Perl 5 Interpreter

Mandatory

Mandatory

Recommended

Approximately 12 MB of disk space is needed
to compile and install Apache from source
distribution. However, if you add many
modules that are not part of the standard
source distribution, then your space
requirements will increase.

After it is installed, Apache only needs
approximately 5 MB of disk space. However,

I highly recommend that you maintain the
source code on your hard disk until you finish
reading this book.

ANSI C compiler is required. For most
systems, the GNU C compiler (GCC) from
the Free Software Foundation is highly
recommended. The version you should have
is 2.7.2 or above. GCC can be found at
www.gnu.org. Most Linux systems, such as
Red Hat Linux, comes with the latest stable
version of the GCC compiler.

You do not need Perl for compiling Apache,
but some of the support scripts, such as
apxs,split-lTogfile,
log_server_status,and dbmmanage,
which are found in the support subdirectory
of your source distribution, are Perl scripts.
You need Perl only if you plan to use those
scripts. | highly recommend that you install
Perl on your system. Perl version 5.003 or
above will work fine.

Continued

15

16 Part | + Getting Started

Table 2-1 (continued)

Resource

Required?

Requirements

Dynamic Shared Object
(DSO) support

Optional

Instead of compiling modules in the Apache
binary itself, you can create dynamic modules
called DSO that can be loaded via the
httpd.conf file at startup. DSO modules
enable you to experiment with modules and
configurations more freely than compiling
everything in httpd. Currently, DSO support is
available for Linux, FreeBSD; OpenBSD;
NetBSD; BSDI; SunOS; Solaris; IRIX; HPUX,
Digital Unix, UnixWare, AIX, SCO, ReliantUNIX,
DGUX, Darwin/Mac OS, OpenStep/Mach, and
DYNIX/ptx.

Note that an Apache server using a DSO
module may be approximately 20 percent
slower at startup and approximately 5 percent
slower during run time. On top of that, DSO is
not always available in all platforms.
Therefore, | do not recommend DSO for a
production environment. It is great, however,
for experimenting with modules in a
development or staging environment.

Requirements for running an Apache Web server

Before displaying the Powered by Apache logo on your Web server, you want to
make sure your Web server has enough “power” to run it.

Fortunately, Apache does not require massive computing resources to run. It runs
fine on a Linux system with 5 to 12MB of hard disk space and 8MB of RAM.
However, just being able to run Apache is probably not what you had in mind. Most
likely, you want to run Apache to serve Web pages, launch CGI processes, and take
advantage of all the wonderful stuff that the Web has to offer. In that case, you want
disk space and RAM size figures that reflect your load requirements. You can go
about this in two ways: you can ask someone who runs a similar site with Apache
and find out what type of system resources they’re using; or, you can try to figure
out your realistic needs after you've installed Apache on your system.

In the latter case, you can use system utilities such as ps, top, and so on to display
memory usage by a particular Apache process. You can then determine the total
memory needed by multiplying a single process’s memory usage by the total

Chapter 2 + Obtaining and Installing Apache

number of Apache processes that will be running at peak hours (see the
MaxSpareServers directive in Chapter 4). This should give you a reasonable esti-
mate of your site’s RAM requirements for Apache. If you plan to run several CGI
programs on your Apache server, you have to determine memory usage for these
programs as well, and take this additional need into account. One of the ways you
can determine your CGI program memory requirements is run the CGI program and
use the top utility to watch how much memory it uses and then multiply that
amount of memory by the number of CGI requests you need to be able to fulfill
simultaneously.

The disk requirements for Apache source or binary files shouldn’t be a concern
with most systems because Apache binaries take no more than 1MB of space and
the source file is about 5MB. You should really pay attention, however, to the log
files that Apache creates, because each log entry takes up approximately 80 bytes
of disk space. If you expect to get about 100,000 hits in a day, for example, your
Apache access log file may be 8,000,000 bytes. In Chapter 8, you’ll learn how to
rotate the log files by emptying or archiving the log file and replacing it with a
new one.

Finally, consider whether you have appropriate bandwidth for running a Web
server. Estimating bandwidth requirement is not an easy task but you can come up
with ballpark figures by doing a bit of math. Here is what you will need:

4+ The average Web page size for your Web site: If you don’t know this already,
you can run the following command in your document root directory to find
out the average size of your Web pages:

find path_to_doc_root -type f -name "*.html" -1s | \
awk 'BEGIN{ FILECNT = 0; T_SIZE = 0;} \
{ T_SIZE += $7; FILECNTH++} \
END{print "Total Files:", FILECNT, \
"Total Size:", T_SIZE, \
"Average Size:", T_SIZE / FILECNT;}'
‘\Iote

Don't forget to replace path_to_doc_root with the actual document root direc-
~ tory of your Web site. For example, for a Web site with document root /www/
mysite/htdocs, the above script returns the following output:

Total Files: 332 Total Size: 5409725 Average Size: 16294.4

4+ The number of average size Web pages you can serve (assuming that
Apache has no bottlenecks of its own and totally ignoring the bandwidth
utilized by incoming requests): For example, say you have an ISDN
(128Kbits/sec) connection to the Internet and your average file size is 16K.
Because 128 kilobits per second = 128/8 kilobytes per second = 16 kilobytes
per second, you can send one average size file per second. If you include the
other overhead, such as bandwidth needed for the inbound request traffic,
you probably cannot service a request per second. In this case, network
overhead becomes a big bottleneck if you wanted to allow N (where N > 1)

18

Part | + Getting Started

simultaneous users to connect to your Web site. For example, if you have an
ISDN connection and want to service 12 simultaneous users per second when
the average file size is 16K, you need 12 x ISDN (128 Kbps) connections, which
is a T-1 (1.53 Mbps).

Downloading the Software

Tip

Before you download the Apache software for the first time, you should note a few
things. There’s a good chance that you will find two versions of Apache available:
one is an official release version, and one is a beta release version that has the lat-
est code and features. For example, if you see an Apache version 2.0.2 and a version
called 2.3b3, then the first version is an official release and the second is a beta ver-
sion. A third beta such as 2.3b3 (2.3b1 and 2.3b2 came before it) is likely to be sta-
ble, but using a beta version is not recommended for a production Web server. To
download the version you want, go to www.apache.org/dist/httpd/.

To find the geographically closest Apache mirror server, run the mirror Apache

%

~, finder script at www.apache.org/dyn/closer.cgi.
7

This is the distribution directory of the Apache software. Here, you will find both
the release and the beta versions of the software in multiple compression packages.
For example:

httpd_2.0.4.tar.Z
httpd_2.0.4.tar.gz
httpd_2.0.4.zip

httpd_2.3b3.tar.gz
httpd_2.3b3_win32.exe

These are a few examples of the various types of compression formats that are
used to distribute source code. You need to choose the compression format that
your system can handle (in other words, make sure you have a utility to decom-
press the code). Typically with Linux, all you need are the tar, gnuzip, or gzip
utilities to decompress the files. For example, to decompress the httpd_version.
tar.gz file (where version is whatever version you have downloaded such as 2.0.4)
on a Linux system, you use the tar xvzf httpd_version.tar.gz command. You
could also use the gzip -d httpd_version.tar.gz ; tar xvf httpd_version.
tar command, which will decompress and extract all the files in a subdirectory
while keeping the relative path for each file intact.

Self-extracting compressed files are usually created for the Windows version of
Apache. Any such file can be extracted by simply running the downloaded file. For
Windows-specific installation and configuration details, you should skip the rest of
this chapter and read Chapter 20.

Chapter 2 + Obtaining and Installing Apache

The binaries are usually kept in a different directory where each operating system
has a subdirectory of its own. Note that if your operating system does not appear in
the binaries directory, this does not necessarily mean the operating system is not
supported. All it means is that no one in the Apache development group or contri-
bution groups have compiled a binary file for your system yet. You are likely to find
binaries for the Linux, FreeBSD, Solaris, NetBSD, OS2, AIX, Ultrix, HPUX, and IRIX
systems.

Installing Apache from Source Code

e

Installing Apache by compiling the code from the source distribution is the preferred
installation method because it allows you to configure the server to fit your needs.
Any binary installation that you download will have someone else’s configuration,
which you may not be able to alter to suit your needs.

For example, if you download and install a binary that has CGI support, you may
have to live with the CGI support even if you never run CGI programs. If the CGI
module is configured as a dynamically shared module, then you can disable it very
easily; however, if the support is statically built into a binary, then you’ll just have
to live with CGL. If you compile a lean and mean Apache server from the source
distribution, however, you get the components that you need with no wasted
processes or disk space.

Download the source distribution from the official Apache Web site or from a des-

~— ignated mirror site.

Configuring Apache source

The Apache source distribution comes with a script called configure that allows

you to configure the source tree before you compile and install the binaries. From

the Apache source distribution directory, you can run this script as follows:
./configure --prefix=apache_installation_dir

The --prefix option tells Apache to install the binaries and other necessary
configuration and support files in apache_installation_dir.For example:

./configure --prefix=/usr/local/apache

Here Apache source will be configured so that all the binaries and supporting files
will be installed in the /usr/local/apache directory.

There are many options that you can use with the configure script. Table 2-2
shows all the configuration options available.

19

20 Part | + Getting Started

Table 2-2

The Options for the Configure Script

Option

Meaning

--cache-file=file
--help

--no-create

--quiet or --silent

--version

--prefix=prefix

--exec-prefix=eprefix

--bindir=dir

--sbindir=dir

--libexecdir=dir

--datadir=dir

--sysconfdir=dir

--sharedstatedir=dir

--localstatedir=dir

--libdir=dir
--includedir=dir

--oldincludedir=dir

--infodir=dir
--mandir=dir

--srcdir=dir

--program-prefix=prefix

Cache test results in file

Print this message

Do not create output files

Do not print ‘checking... messages

Print the version of autoconf that created
configure Directory and filenames:

Install architecture-independent files in
prefix [/usr/local/apache?]

Install architecture-dependent files in eprefix
[same as prefix]

User executables in dir [EPREFIX/bin]

System admin executables in dir
[EPREFIX/sbin]

Program executables in dir
Leprefix/libexec]

Read-only architecture-independent data in
dirlprefix/share]

Read-only single-machine data in dir
[prefix/etc]

Modifiable architecture-independent data in
dir [prefix/com]

Modifiable single-machine data in
dirlprefix/var]

Object code libraries in dirleprefix/1ib]
C header filesin dir[prefix/include]

C header files for non-GCC in d7 r
[/usr/include]

Info documentation in dir[prefix/info]
man documentation in dir{prefix/man]

Find the sources in dir[configure dir
or ...]

Prepend prefix to installed program names

Chapter 2 + Obtaining and Installing Apache

Option

Meaning

--program-suffix=suffix

--program-transform-name=program

--build=build
--host=host
--target=target

--disable-feature

--enable- featurel[=arg]
--with-packagel=arg]
--without-package

--x-includes=dir
--x-libraries=dir
--with-optim=flag
--with-port=port
--enable-debug

--enable-maintainer-mode

--enable-layout=Tayout
--enable-modules=module-1ist

--enable-mods-shared=module-list

--disable-access
--disable-auth
--enable-auth-anon
--enable-auth-dbm
--enable-auth-db
--enable-auth-digest

--enable-file-cache

Append suffix to installed program names

Run sed (stream editor) program on installed
program names

Configure for building on build
Configure for host
Configure for TARGET [TARGET=HOST]

Do not include FEATURE (same as —enable-
FEATURE=no)

Include feature [arg=yes]
Use package [arg=yes]

Do not use package (same as —-with-
package=no)

X include files are in dir

X library files are in dir

Obsolete (use OPTIM environment variable)
Port on which to listen (default is 80)

Turn on debugging and compile-time
warnings

Turn on debugging and compile-time
warnings

Enable a directory layout
Enable one or more named modules

Enable one or more named modules as
shared modules

Disable host-based access control
Disable user-based access control
Enable anonymous user access
Enable DBM-based access databases
Enable DB-based access databases
Enable RFC2617 Digest authentication

Enable file cache

Continued

21

22 Part | + Getting Started

Table 2-2 (continued)

Option

Meaning

--enable-dav-fs
--enable-dav

--enable-echo
--enable-charset-Tlite
--enable-cache
--enable-disk-cache
--enable-ext-filter
--enable-case-filter
--enable-generic-hook-export
--enable-generic-hook-import
--enable-optional-fn-import
--enable-optional-fn-export
--disable-include
--disable-http
--disable-mime
--disable-log-config
--enable-vhost-alias
--disable-negotiation
--disable-dir
--disable-imap
--disable-actions
--enable-speling
--disable-userdir
--disable-alias
--enable-rewrite
--disable-so

--enable-so

--disable-env
--enable-mime-magic
--enable-cern-meta

--enable-expires

Enable DAV provider for the filesystem
Enable WebDAV protocol handling
Enable ECHO server

Enable character set translation

Enable dynamic file caching

Enable disk caching module

Enable external filter module

Enable example uppercase conversion filter
Enable example of hook exporter

Enable example of hook importer

Enable example of optional function importer
Enable example of optional function exporter
Disable Server-Side Includes

Disable HTTP protocol handling

Disable mapping of file-extension to MIME
Disable logging configuration

Enable mass -hosting module

Disable content negotiation

Disable directory request handling

Disable internal imagemaps

Disable action triggering on requests
Enable correct common URL misspellings
Disable mapping of user requests

Disable translation of requests

Enable URL rewriting rules

Disable DSO capability

Enable DSO capability

Clearing/setting of ENV vars

Automatically determine MIME type

Enable CERN-type meta files

Enable Expires header control

Chapter 2 + Obtaining and Installing Apache

Option

Meaning

--enable-headers
--enable-usertrack
--enable-unique-id
--disable-setenvif
--enable-tls
--with-ssl
--with-mpm=MPM

--disable-status
--disable-autoindex
--disable-asis
--enable-info
--enable-suexec
--disable-cgid
--enable-cgid
--disable-cgi
--enable-cgid
--enable-shared[=pkgs]
--enable-staticl[=pkgs]
--enable-fast-install[=pkgs]
--with-gnu-1d

--disable-Tibtool-lock
--with-program-name
--with-suexec-caller
--with-suexec-userdir
--with-suexec-docroot
--with-suexec-uidmin
--with-suexec-gidmin
--with-suexec-1logfile
--with-suexec-safepath

--with-suexec-umask

Enable HTTP header control

Enable user-session tracking

Enable per-request unique IDs
Disable base ENV vars on headers
Enable TLS/SSL support

Use a specific SSL library installation

Choose the process model for Apache to
use: MPM={beos threaded prefork spmt_os2
perchild}

Process/thread monitoring

Disable Directory listing

Disable As-is filetypes

Enable Server information

Set UID and GID for spawned processes
Disable CGI daemon support

Enable CGI daemon support

Disable CGI scripts support

Enable CGl scripts support

Build shared libraries [default=no]

Build static libraries [default=yes]
Optimize for fast installation [default=yes]

Assume the C compiler uses GNU ID
[default=no]

Avoid locking (might break parallel builds)
Alternate executable name

User allowed to call SuExec

User subdirectory

SuExec root directory

Minimal allowed UID

Minimal allowed GID

Set the logfile

Set the safepath

Amask for process

25

24

Part | + Getting Started

CILMe

Most of these options are not required for most sites. Typically, all you need is to
specify the - -prefix option and any options to enable or disable one or more
modules. For example, say you do not want to install the CGI module on your
system. You can run the configure script using the --disable-cgi
--disable-cgid options to disable CGI support. Similarly, to disable the
Server-Side Include (SSI) support you can use the --disable-include option.

After you have configured Apache using the configure script, you can use the
config.status script instead of configure for any subsequent configuration
needs. By using the config.status script, you can reuse your previous configura-
tion and add or subtract new options. For example, say you configured Apache with
the following command line:

./configure --prefix=/usr/local/apache --disable-cgi --disable-cgid
and a few days later decided to disable SSI. You can now use:

./config.status --disable-include

When you recompile Apache, the CGI modules will still not be included, because
./config.status stores the options that you specified using the configure script
earlier.

If you wish to start fresh, use configure every time.

Advanced configuration options for
high-load Web sites

If you run Apache on a extremely busy server where hundreds of requests per sec-
ond is a requirement, you might have to change the default hard limits set in the
MPM module of your choice. See chapter 1 for details on various times of MPM
modules. The hard limits that you want to consider changing are the default
HARD_SERVER_LIMIT and HARD_THREAD_LIMIT. The HARD_SERVER_LIMIT sets the
maximum number of child servers Apache can spawn. The HARD_THREAD_LIMIT
sets the total number of threads Apache can create within all of its children.

Table 2-3 shows the default limits and where to find them.

The %APACHE_SOURCE% tag mentioned in the table refers to the Apache source

~ distribution directory. For example, if you have extracted Apache source distribu-

tion in the /usr/local/src/httpd_version directory, then replace
%APACHE_SOURCE% with /usr/local/src/httpd_version to locate the
appropriate C header (include) file.

Chapter 2 + Obtaining and Installing Apache

Table 2-3
Hard Limits for Various Apache MPM Modules
MPM Limit Options Default Notes
Value
threaded HARD_SERVER_LIMIT 8 C header (include) filename:
for threaded mode %APACHE_SOURCE%/server/mpm/

threaded/mpm_default.h

##ifdef NO_THREADS

ftdefine HARD_SERVER_LIMIT 256
ffendif

##ifndef HARD_SERVER_LIMIT
jtdefine HARD_SERVER_LIMIT 8

ffendif
threaded HARD_THREAD_LIMIT 64 C header (include) filename:
for threaded mode SAPACHE_SOURCE%/server/mpm/
threaded/mpm_default.h
prefork HARD_SERVER_LIMIT 256 C header (include) filename:

%APACHE _SOURCE%/server/mpm/
prefork/mpm_default.h

#ifndef HARD_SERVER_LIMIT
{fdefine HARD SERVER LIMIT 256
ffendif

perchild HARD_SERVER_LIMIT 8 C header (include) filename:
SAPACHE_SOURCE%/server/mpm/
perchild/mpm_default.h

Jifndef HARD_SERVER_LIMIT
jidefine HARD_SERVER_LIMIT 8
ffendif

perchild HARD_THREAD LIMIT 64 C header (include) filename:
%APACHE_SOURCE%/server/mpm/
perchild/mpm_default.h

Jifndef HARD SERVER LIMIT
#define HARD_SERVER_LIMIT 8
ffendif

Continued

25

26 Part | + Getting Started

Table 2-3 (continued)

MPM Limit Options Default Notes
Value
winnt HARD_SERVER_LIMIT 1 C header (include) filename:

%APACHE_SOURCE%/server/mpm/
winnt/mpm_default.h

jtdefine HARD_SERVER_LIMIT 1

This setting should not be changed.
Change the hard thread count instead.

winnt HARD_THREAD_LIMIT 4096 C header (include) filename:

APACHE_SOURCE/server/mpm/
winnt/mpm_default.h

##ifndef HARD_THREAD_LIMIT
J#define HARD_THREAD_LIMIT 4096
fendif

Caution

When changing HARD_SERVER_LIMIT or HARD_THREAD_LIMIT to higher than
the default make sure you have the appropriate system resources. For example,
changing the HARD_SERVER_LIMIT to 1024 for the prefork MPM will allow you
to create 1024 Apache child processes by instructing Apache to create that many
children by using the directives StartServers, MinSpareServers, and
MaxSpareServers.

However, if your system does not have enough memory, then changing the hard
limit to a higher value will not do much good. Remember that the higher the lim-
its, the more resources you need. You also need to increase the number of file
descriptors your system allows for a single user. On Linux and Unix systems you
should find out what (and possibly set) the file descriptor limits are by using the
ulimit command.

Also note that the MaxClients directive sets the limit on the number of child
processes that will be created to serve requests. When the server is built without
threading, no more than this number of clients can be served simultaneously. To
configure more than 256 clients, you must edit the HARD_SERVER_LIMIT entry in
mpm_default.h and recompile.

Compiling and installing Apache

After you have configured the Apache source using the configure script you need
to follow these steps to compile and install Apache:

1. Run the make command to compile the source.

Chapter 2 + Obtaining and Installing Apache

2. Run the make install command to install the httpd and support files in the
directory you specified using the - -prefix option.

3. Change to the installation directory and browse the directory. You should see
subdirectories such bin cgi-bin, conf, htdocs, icons, include, 1ib, and
10gs. For example, if you use --prefix=/usr/local/apache with the con-
figure script during source tree configuration, make install will create the
following directory structure:

/usr/local/apache

+---include

+---11b
+---bin
+---conf
+---htdocs
|
+--manual

+--developer

+--howto
+--images
+--misc
+--mod

+--platform
+--programs

+--search
+--vhosts
+---icons
l———sma]]
+---109gs

+---cgi-bin

The following list gives a brief description of each of the directories in the Apache
directory structure:

4 include—Contains all the C header (include) files that are only needed if
you develop Web applications that integrate with Apache or want to use use
third-party software with Apache, which might require the header files. On a
production server you can remove this directory.

4 1ib—Houses the Apache Portable Run-Time (APR) library files, the files that
are required for running Apache, and other support utilities such as ab.

4 bin—Contains the programs shown in Table 2-4.

4+ conf —Houses the configuration files for Apache. It contains the files listed
in Table 2-5.

27

28

Part | + Getting Started

Caution

4 htdocs —This is the default document root directory for the main Apache
server. The httpd.conf file sets the DocumentRoot directive to this directory.
You will learn how to set your own document root directory in Chapter 3. By
default the htdocs directory also has the entire Apache manual installed in a
subdirectory.

4 icons —Used to store various Apache icons that are needed for displaying
dynamically the build directory listing.

4+ 1ogs —Used to store the Apache server logs, the CGI daemon socket
(cgisock), and the PID file (httpd.pid). You will learn to change the log path in
Chapter 3.

4 cgi-bin—The default CGI script directory, which is set by using the
ScriptAlias directive in httpd.conf. By default, Apache comes with two simple
CGl scripts—printenv and test-cgi. Each of these scripts prints out CGI
environment variables when requested via http://server_name/
cgi-bin/script_name URL.These scripts are good for testing whether
CGI configuration is working for you.

It is highly recommend that you remove the printenv and test-cgi scripts
after you have your CGI configuration working. It is not a good idea to have a script
that displays your system environment information to anyone in the world. The
less you tell the world about how your system works or about what is available on
your system, the more secure your system remains.

Table 2-4 provides a listing of the programs that you can find in the bin directory.

Table 2-4
Apache Programs in the bin Directory
Apache Programs Purpose
ab This is the ApacheBench program. It enables you to benchmark
Apache server. See Chapter 22 for more information on this
program.
apachect] This is a handy script that enables you to start, restart, and stop

Apache server. See Chapter 3 for more information on this script.

apxs This is a tool for building and installing extension modules for
Apache. It allows you to build DSO modules that can be used in
Apache by using the mod_so module. For more information on this
program, see http://your_server_name/manual/
programs/apxs.htm.

htdigest This program creates and updates user authentication information
when message digest (MD5) authentication is being used.
For more information on this program, see http://
your_server_name/manual/programs/htdigest.html.

Chapter 2 + Obtaining and Installing Apache

Apache Programs

Purpose

htpasswd

httpd

logresolve

rotatelogs

This program is used to create and update user authentication
information used in basic HTTP authentication. See Chapter 7 for
details.

This is the Apache Web server program.

This program converts (resolves) IP addresses from a log file to
host names. See Chapter 8 for details.

This program rotates Apache logs files when they reach a certain
size. See Chapter 8 for details.

Table 2-5 lists the contents of the config directory.

Table 2-5
Apache config Directory Contents

Configuration File

Purpose

httpd.conf
httpd-std.conf

This is the Apache configuration file.

This is the sample copy of the httpd. conf file, which
is not required by Apache. For new Apache users, this
file can act as a means for recovering the default
httpd.conf.

highperformance.conf This is a sample configuration file that shows some

pointers for configuring Apache for high performance.

highperformance-std.conf Thisis a sample copy of the highperformance.conf

magic

mime.types

file, which is not required by Apache.

This file stores the magic data for mod_mime_magic
Apache module.

This file is used to decide which MIME-type headers are
sent to the Web client for a given file.

For more information about MIME types, please read
RFC 2045, 2046, 2047, 2048, and 2077. The Internet
media-type registry is at ftp://ftp.iana.org/
in-notes/iana/assignments/media-types.

29

30 Part | + Getting Started

Installing Apache from RPM Binary Packages

You can download the Apache binaries appropriate for your system from www .
apache.org/dist/httpd/binaries directory.Download the latest version and
extract the compressed file into a temporary directory. To determine how to install
the binaries in your specific platform, you must read the INSTALL.bind1ist file,
which is included in each binary distribution.

If you wish to install the Apache RPM (Red Hat Package Management) package for
your Linux system, then do the following:

1. Gotothe http://rpmfind.net site and search for the string Apache to
locate the Apache RPM packages. From the search result locate the latest
version of the binary Apache RPM distribution and download it.

2. As root, run rpm -ivh apache_rpm_package.rpm command to install the
package. For example, to install the apache-2.0.4-1386.rpm for a Red Hat
Linux (Intel) system, run the rpm -ivh apache-2.0.4-1386.rpm command.

Keeping Up with Apache Development

Do you ever wonder whether, by the time you get around to installing the down-
loaded Apache source or binaries, a new version is out or perhaps a security patch
is available? Software changes very quickly these days, and there’s always one
update after another — which is good, but not always easy to keep up with if you
have a real job to do. There are two Apache resources that you should take advan-
tage of immediately.

4+ ApacheToday — This is the best Apache news site in the world. You can get
all the Apache news you want at www.apachetoday.com. By using its Your
Apache Today feature, you can filter news contents and get just want interests
you the most. You can also take advantage of triggers that pushes breaking
news that you do not want to miss.

4+ ApacheWeek — Just subscribe (for free) to the great Apache resource
called Apache Week, and all the Apache news will be e-mailed directly to
you. The Apache Week Web site is at www.apacheweek.com. This is a great
information resource for Apache administrators who want to be on top of
Apache development news. You can also read many helpful articles on how
to get the best out of your server. | highly recommend checking out this
Web site.

+ o+

CHAPTER

Getting Apache
Up and Running

+ 0+ o+

In This Chapter

Checking out the
basics of Apache

In the previous chapter, you learn how to compile and install
server configuration

the Apache Web server on your Unix system. Now you are
ready to get it up and running! This chapter covers the basic

configuration details to get your Apache server up and running. Starting, stopping

and restarting
Apache server

Configuring Apache

Testing a running

By default, Apache reads a single configuration file called Apache server
httpd.conf. Every Apache source distribution comes with a
set of sample configuration files. In the standard Apache + + + +

source distribution, you will find a directory called conf,
which contains sample configuration files with the -dist
extension.

The very first step you need to take before you modify this file
is to create a backup copy of the original.

The httpd. conf file has two types of information: comments
and server directives. Lines starting with a leading # charac-
ter are treated as a comment line; these comments have no
purpose for the server software, but they serve as a form of
documentation for the server administrator. You can add as
many comments as you want; the server simply ignores all
comments when it parses the file.

Except for the comments and blank lines, the server treats all
other lines as either complete or partial directives. A directive
is like a command for the server. It tells the server to do a cer-
tain task in a particular fashion. While editing the httpd.conf
file, you need to make certain decisions regarding how you
want the server to behave. In the following sections, you learn
what these directives mean and how you can use them to cus-
tomize your server.

r Cross- You can find an in-depth explanation of all the core direc-
\ Reference) tves in Chapter 4.

32 Part| + Getting Started

Listing 3-1 shows the default httpd.conf created in the conf directory of your
Apache installation. Most of the comments have been removed and code has been
edited slightly for brevity.

Listing 3-1: Default httpd.conf created from httpd.conf-dist

fHHE Section 1: Global Environment
ServerRoot "/usr/local/apache"

PidFile Togs/httpd.pid

<IfModule !perchild.c>
ScoreBoardFile logs/apache_runtime_status
</IfModule>

Timeout 300

KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 15

<IfModule prefork.c>

StartServers 5
MinSpareServers 5
MaxSpareServers 10
MaxClients 20

MaxRequestsPerChild 0
</IfModule>

<{IfModule threaded.c>
StartServers
MaxClients
MinSpareThreads
MaxSpareThreads
ThreadsPerChild
MaxRequestsPerChild

</IfModule>

nNo —
O O1T O 0100 W

<IfModule perchild.c>
NumServers
StartThreads
MinSpareThreads
MaxSpareThreads 1
MaxThreadsPerChild 2
MaxRequestsPerChild

</IfModule>

5
5
5
0
0
0

jHHF Section 2: 'Main' server configuration
Port 80

User nobody

Group -1

Chapter 3 4 Getting Apache Up and Running 33

ServerAdmin you@your.address

Added
ServerName www.domain.com

DocumentRoot "/usr/local/apache/htdocs"

<{Directory />
Options FollowSymLinks
AllowOverride None
<{/Directory>

<Directory "/usr/local/apache/htdocs">
Options Indexes FollowSymlLinks MultiViews
AllowOverride None
Order allow,deny
Allow from all

</Directory>

UserDir pubTic_html
Directorylndex index.html
AccessFileName .htaccess

<Files ~ "~\.ht">
Order allow,deny
Deny from all
</Files>

UseCanonicalName On
TypesConfig conf/mime.types
DefaultType text/plain

<IfModule mod_mime_magic.c>
MIMEMagicFile conf/magic
</IfModule>

HostnamelLookups Off

ErrorLog logs/error_log

LoglLevel warn

LogFormat "%h %1 %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-
Agent}i\"" combined

LogFormat "%h %1 %u %t \"%r\" %>s %b" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

CustomlLog logs/access_log common
ServerSignature On

Alias /icons/ "/usr/local/apache/icons/"

<Directory "/usr/local/apache/icons">
Options Indexes MultiViews
AllowOverride None

Continued

34 Part| 4 Getting Started

Listing 3-1 (continued)

Order allow,deny
Allow from all
</Directory>

ScriptAlias /cgi-bin/ "/usr/local/apache/cgi-bin/"

<Directory "/usr/local/apache/cgi-bin">
AllowOverride None
Options None
Order allow,deny
Allow from all
<{/Directory>

IndexOptions FancyIndexing VersionSort
AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip

AddIconByType (TXT,/icons/text.gif) text/*

Many more AddIconByType directives follow in the
default httpd.conf but removed here to keep

this simple.

AddIcon /icons/binary.gif .bin .exe

Many more AddIcon directives follow in the
default httpd.conf but removed here to keep
this simple.

DefaultlIcon /icons/unknown.gif

ReadmeName README

HeaderName HEADER

IndexIgnore .77* *~ *ff HEADER* README* RCS CVS *,v *,t
AddEncoding x-compress Z

AddEncoding x-gzip gz tgz

AddLanguage da .dk

AddLanguage nl .nl

AddLanguage en .en

Many more AddLanguage directives follow in the
default httpd.conf but removed here to keep

this simple.

LanguagePriority en da nl et fr de el it ja kr no pl pt pt-br
1tz ca es sv tw

AddDefaultCharset 1S0-8859-1

AddCharset 1S0-8859-1 .is08859-1 .latinl
AddCharset 1S0-8859-2 .is508859-2 .latinZ2 .cen
Many more AddCharset directives follow in the
default httpd.conf but removed here to keep

Chapter 3 4 Getting Apache Up and Running 35

this simple.

AddType application/x-tar .tgz

BrowserMatch "Mozilla/2" nokeepalive

BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-
response-1.0

BrowserMatch "RealPlayer 4\.0" force-response-1.0
BrowserMatch "Java/1\.0" force-response-1.0

BrowserMatch "JDK/1\.0" force-response-1.0

fHHE Section 3: Virtual Hosts
No virtual server defined in this chapter.

r Cross- Because the goal of this chapter is to get your server up and running with minimal
Reference \ o nfiguration, the chapter does not provide in-depth details of the configuration
options here. You can learn all the details in the Chapter 4.
The httpd. conf file does not actually have any section delimiter. But it will help
you understand the configuration file better if you think of it as shown in Figure 3-1.

httpd.conf for a site
Lelauiibtplicont with lots of virtual hosts

Global Environment Configuration Global Environment Configuration
Directives Directives
Main Server Main Server
Configuration Directives Configuration Directives
Virtual Host Virtual Host

Configuration Directives Configuration Directives

/ /etc/vhost (directory)

Virtual Host linclude/etc/vhosts
Configuration Directives Virtual Host #1
Configuration Directive File
—— —
Virtual Host | Virtual Host #2

Configuration Directive File

Configuration Directives

Virtual Host #N
Configuration Directive File

Figure 3-1: The httpd.conf configuration segments

36 Part| 4 Getting Started

The left side of the figure shows how the default httpd.conf can be visualized in
your mind. There are configuration directives that create the global server environ-
ment that applies to everything; there are configuration options that apply to the
main (default) Web site Apache servers, and there are configuration directives that
only apply to optional virtual hosts. Because Apache uses a single configuration
file, a site with lots of virtual hosts will have a very large file and management of the
configuration becomes very cumbersome. This is why I also show another way to
break down the httpd. conf file. But I discuss this approach (evident in the right
side of the above figure) in Chapter 6. As I said before, here we are focused on get-
ting up and running.

Alote Whenever | refer to %directive%, | am referring to the value of the directive set

~~ in the configuration file. For example, if a directive called ServerAdmin is set to
kabir@domain.com, then a reference to %ServerAdmin% means "kabir@
domain.com". So, if | tell you to change %ServerAdmin%, | am asking you to
change the e-mail address in question.

Configuring the global environment for Apache

The directives discussed in this section create the global environment for the
Apache Server. The directives are discussed in the same order in which they appear
in the httpd.conf file. The very first directive is ServerRoot, which appears as
follows:

ServerRoot "/usr/local/apache"
This directive specifies the top-level directory of the Web server. The specified
directory is not where you keep your Web contents. It is really a directory, which

normally has these subdirectories:

{ServerRoot Directory}

----bin

----conf

----htdocs

----htdocs/

lf*fmanua1
----developer
----howto
----images
----misc
----mod
----platform
----programs
----search
+----vhosts

----icons

Chapter 3 + Getting Apache Up and Running

+---small

|

|

|

|----Togs
|----cgi-bin
+----include

/usr/local/apache is the parent directory for all server-related files. The default
value for ServerRoot is set to whatever you choose for --prefix option during
source configuration using the configure script. By default, the make install
command executed during server installation copies all the server binaries in
%ServerRoot%/bin, server configuration files in 3ServerRoot%/conf, and so on.

You should only change the value of this directive if you have manually moved the

~~ entire directory from the place on installation to another location. For example, if

you simply runcp -r /usr/local/apache /home/apache and want to con-
figure the Apache server to work from the new location, you will change this direc-
tive to ServerRoot /home/apache. Note that in such a case you will also have
to change other direct references to /usr/1ocal/apache to /home/apache.

Also note that whenever you see a relative directory name in the configuration file,
Apache will prefix 2ServerRoot% to the path to construct the actual path. You will
see an example of this in the directive in the following section.

PidFile

The PidFile directive sets the PID (process ID) file path. By default, it is set to
logs/httpd.pid, which translates to %ServerRoot%/Togs/httpd.pid (that is,
/usr/local/apache/logs/httpd.pid). Whenever you want to find the PID of the
main Apache process that runs as root and spawns child processes, you can run
the cat %ServerRoot/logs/httpd.pid command. Don’t forget to replace
%ServerRoot% with an appropriate value.

Caution If you change the %PidFile% value to point a different location, make sure the

directory in which the httpd.pid file resides is not writable by anyone but the
root user for security reasons

ScoreBoardFile

ScoreBoardFile is encapsulated within an if condition by using the
<IfModule . . .> container as shown below:

<IfModule !perchild.c>
ScoreBoardFile logs/apache_runtime_status
</IfModule>

This tells Apache to set the ScoreBoardFile to %ServerRoot%/1o0gs/
apache_runtime_status file only if you have chosen a multiprocessing module
(MPM) other than perchild. Because the default MPM for most operating systems,

37

38 Part| 4 Getting Started

including Linux, is threaded instead of perchild, the if condition will be true and
Apache will set the ScoreBoardFile directive. This directive is used to point to a
file, which is used to exchange run-time status information between Apache pro-
cesses. If you have a RAM disk, you might consider putting this file in the RAM disk
to increase performance a bit. In most cases, you should leave this directive alone.

Timeout, KeepAlive, MaxKeepAliveRequests, and KeepAliveTimeout
Timeout sets the server timeout in seconds. The default should be left alone. The
next three directives KeepAlive, MaxKeepAliveRequests, and
KeepAliveTimeout are used to control the keep-alive behavior of the server. You
do not need to change them.

IfModule containers

Apache will use one of the next three <IfModule . . .> containers based on
which MPM you chose. For example, if you configured Apache using the default
MPM mode (threaded) on a Linux system, then the following <IfModule . . .>
container will be used:

<IfModule threaded.c>
StartServers 3
MaxClients 8
MinSpareThreads 5
MaxSpareThreads 10
ThreadsPerChild 25
MaxRequestsPerChild 0

</IfModule>

On the other hand, if you chose --with-mpm=prefork during source configuration
by using the configure script, then the following <IfModule . . .> container will
be used:

<IfModule prefork.c>

StartServers 5
MinSpareServers 5
MaxSpareServers 10
MaxClients 20

MaxRequestsPerChild 0
</IfModule>

Similarly, the --with-mpm=perchild option forces Apache to use the last
<IfModule . . .> container.

Directives for threaded (default) MPM behavior

If you followed my advice in the previous chapter, you did not change the default
MPM behavior during source compilation and used the threaded behavior, so the
directives that you need to consider are discussed below.

‘\I ote

‘\I ote

Tip

Chapter 3 + Getting Apache Up and Running

If you did change the default MPM, you can find detailed information on the direc-
~ tives needed by your chosen MPM in Chapter 4.

StartServers

StartServers tells Apache to start three child servers as it starts. You can start
more servers if you want, but Apache is pretty good at increasing number of child
processes as needed based on load. So, changing this directive is not required.

MaxClients

In the default threaded MPM mode, the total number of simultaneous requests that
Apache can process is sMaxClients% x %ThreadsPerChild%. So, because the
default for MaxClients is 8 and the default for ThreadsPerChild is 25, the default
maximum for simultaneous requests is 200 (that is, 8 times 5). If you use the pre-
forking MPM mode, the maximum requests is limited to ZMaxC1ients%. The default
maximum of 200 simultaneous requests should work well for most sites, so leave
the defaults.

MinSpareThreads

The MinSpareThreads directive specifies the minimum number of idle threads.
These spare threads are used to service requests and new spare threads are cre-
ated to maintain the minimum spare thread pool size. You can leave the default
settings alone.

MaxSpareThreads

The MaxSpareThreads directive specifies the maximum number of idle threads;
leave the default as is. In the default threaded mode, Apache kills child processes to
control minimum and maximum thread count.

ThreadsPerChild
This directive defines how many threads are created per child process.

If you are running Apache on a Windoiws system, set ThreadsPerChild to the
-~ maximum number of simultaneous requests that you want to handle, because on
this platform there is only one child process, and it owns all the threads.

MaxRequestPerChild

The final directive for the global environment is MaxRequestPerChild, which sets
the number of requests a child process can serve before getting killed. The default
value of zero makes the child process serve requests forever. I do not like to the
default value because it enables Apache processes to slowly consume large
amounts of memory when a faulty mod_per1 script, or even a faulty third-party
Apache module, leaks memory. Thus, I prefer to set this to 30.

If you do not plan on running any third-party Apache modules or mod_per]
~, scripts, you can keep the defaults or else set it to a reasonable number. A setting
A of 30 ensures that the child process is killed after processing 30 requests. Of
course, a new child process is created as needed.

L\

39

40

Part

A\Iote

| 4+ Getting Started

Configuring the main server

The main server configuration applies to the default Web site Apache serves. This
is the site that will come up when you run Apache and use the server’s IP address
or host name on a Web browser.

Port

The very first directive in this section is the Port directive, which sets the TCP port
that Apache listens to for connections. The default value of 80 is the standard HTTP
port. If you change this to another number, such as 8080, you can only access the
server using a URL such as http://hostname:8080/. You must specify the port
number in the URL if the server runs on a nonstandard port.

There are many reasons for running Apache on nonstandard ports, but the only
good one I can think of is that you do not have permission to run Apache on the
standard HTTP port. As a nonroot user you can only run Apache on ports higher
than 1024.

After you have decided to run Apache by using a port, you need to tell Apache what
its user and group names are.

User and Group directives

The User and Group directives tell Apache the user (UID) and group (GID) names to
use. These two directives are very important for security reasons. When the primary
Web server process launches a child server process to fulfill a request, it changes
the child’s UID and GID according to the values set for these directives. Refer to
Figure 3-1 to see how the primary Web server process that listens for the connection
runs as a root user process, and how the child processes run as different user/group
processes. If the child processes are run as root user processes, a potential security
hole will be opened for attack by hackers. Enabling the capability to interact with a
root user process maximizes a potential breach of security in the system; hence, this
is not recommended. Rather, | highly recommend that you choose to run the child
server processes as a very low-privileged user belonging to a very low-privileged
group. In most Unix systems, the user named nobody (usually UID = -1) and the
group named nogroup (usually GID = -1) are low-privileged. You should consult
your /etc/group and /etc/passwd files to determine these settings.

If you plan to run the primary Web server as a nonroot (regular) user, it will not be
able to change the UID and GID of child processes, because only root user processes
can change the UID or GID of other processes. Therefore, if you run your primary
server as the user named ironsheik, then all child processes will have the same
privileges as ironsheik. Similarly, whatever group ID you have will also be the
group ID for the child processes.

If you plan on using the numeric format for user and/or group ID, you need to
~ insert a # symbol before the numeric value, which can be found in /etc/passwd
and in /etc/group files.

Chapter 3 + Getting Apache Up and Running

ServerAdmin

ServerAdmin defines the e-mail address that is shown when the server generates
an error page. Set this to your e-mail address.ServerName.

Now you need to set the host name for the Server using the ServerName directive.
This directive is commented out by default because Apache install cannot guess
what host name to use for your system. So if the host name is called
www.domain.com, set ServerName directive accordingly.

Be sure, however, that the host name that you enter here has proper domain
~~ name server records that point it to your server machine.

DocumentRoot

Like all other Web servers, Apache needs to know the path of the top-level direc-
tory where Web pages will be kept. This directory is typically called the document
root directory. Apache provides a directive called DocumentRoot, which can be
used to specify the path of the top-level Web directory.

This directive instructs the server to treat the supplied directory as the root direc-
tory for all documents. This is a very important decision for you to make. For exam-
ple, if the directive is set as:

DocumentRoot /

then every file on the system becomes accessible by the Web server. Of course, you
can protect files by providing proper file permission settings, but setting the docu-
ment root to the physical root directory of your system is definitely a major secu-
rity risk. Instead, you should point the document root to a specific subdirectory of
your file system. If you have used the --prefix=/usr/local/apache option in
configuring the Apache source, this directive will be set as:

DocumentRoot "/usr/local/apache/htdocs”

A potentially better option, however, is to create a Web directory structure for your
organization. Figure 3-2 shows the Web directory structure I prefer for a multiuser,
multidomain system.

As the figure shows, I chose to create a partition called /www, and under it there are
subdirectories for each Web site hosted by my system. /www/www.mycompany .com/
has three subdirectories: public, stage, and development. Each of these subdi-
rectories has two subdirectories: htdocs and cgi-bin. The htdocs subdirectory is
the document root directory, and the cgi-bin subdirectory is used for CGI scripts.
So, the DocumentRoot setting for the www.mycompany.com Web site is:

DocumentRoot "/www/www.mycompany.com/public/htdocs”

41

4? Part | + Getting Started

J/WWW
——— WWw.mycompany.com
public
—— htdocs
L cgi-bin
stage
——— htdocs
——— cgi-bin
development

+——— htdocs
—— cgi-bin

L www.client.com

public

+——— htdocs
—— cgi-bin

. stage
' :

' ..
1

Figure 3-2: My preferred Web directory structure.

The advantage of this directory structure is that it keeps all Web documents and
applications under one partition (/www). This enables easy backups, and the parti-
tion can be mounted on different systems via the Network File System (NFS) in case
another machine in the network is given the task to provide Web services.

@j I discuss well-designed Web directory structures in more depth in Chapter 11.
ererence

Note that just because your document root points to a particular directory, this
does not mean the Web server cannot access directories outside your document
tree. You can easily enable it to do so by using symbolic links (with proper file per-
mission) or by using aliases (aliases are discussed in the next chapter).

Caution From an organization and security perspective, | don't recommend using a lot of
symbolic links or aliases to access files and directories outside your document
tree. Nonetheless, it is sometimes necessary to keep a certain type of information
outside the document tree, even if you need to keep the contents of such a direc-
tory accessible to the server on a regular basis. If you have to add symbolic links to
other directory locations outside the document tree, make sure that when you
back up your files, your backup program can back up symbolic links properly.

Chapter 3 + Getting Apache Up and Running

Directory container directives

The next set of directives are enclosed in a <Directory . . .> container as
shown here:

<{Directory />
Options FollowSymLinks
AllowOverride None
<{/Directory>

The scope of the enclosed directives is limited to the named directory (with any
subdirectories); however, you may only use directives that are allowed in a direc-
tory context (you learn about these directives in detail in the next chapter).

Here the Options and the ATTowOverride directives apply to %DocumentRoot?%
that is root (/) or the top-level directory of the main Web site. Because directives
enclosed within a directory container apply to all the subdirectories below the
named directory, the directives apply to all directories within %ZDocumentRoot%.

The Options directive is set to FolTowSymLinks, which tells Apache to allow itself
to traverse any symbolic within ZDocumentRoot%. Because the Options directive is
only set to follow symbolic links, no other options are available to any of the direc-
tories within %2DocumentRoot%. Effectively, the Options directive is:

Options FollowSymlLinks -ExecCGI -Includes -Indexes -MultiViews

The other options are explained in the Options directive section in the next chap-
ter. However, be assured that the big idea here is to create a very closed server.
Because only symbolic link traversal is allowed, you must explicitly enable other
options as needed on a per directory basis. This is very good thing from a security
prospective. The next directory container opens up the 2DocumentRoot% directory
as shown here:

<Directory "/usr/local/apache/htdocs">
Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
Allow from all

</Directory>

If your %DocumentRoot% is different, change the named directory path. Here is what
the above configuration means to Apache:

4 The named directory and its subdirectories can be indexed. If there is an
index file, it will be displayed; in the absence of an index file, the server will
create a dynamic index for the directory. The Options directive specifies this.

4 The named directory and all subdirectories under it can have symbolic links
that the server can follow (that is, use as a path) to access information. The
Options directive also specifies this.

43

44 Part | + Getting Started

4 The named directory and all subdirectories under it can be part of content
negotiations. The MultiViews option for the Options directive sets this. [am
not a fan of this option but do not so dislike it as to remove it. For example,
when the given Options directive is enabled within the ZDocumentRoot?%
directory as shown above, a request for http://www.domain.com/
ratecard.html can answered by a file called ratecard.html.bak, or
ratecard.bak, ratecard.old, and the like if ratecard.html is missing.
This may or may not be desirable.

4+ No options specified here can be overridden by a local access control file
(specified by the AccessFileName directive in httpd.conf; the default is
.htaccess). This is specified using the A11owOverride directive.

4+ The Al1ow directives are evaluated before the Deny directives. Access is
denied by default. Any client that does not match an A11ow directive or that
does match a Deny directive is denied access to the server.

4 Access is permitted for all.
The default setting should be sufficient.

Caution If your server is going to be on the Internet, you may want to remove the
FollowSymLinks option from the Options directive line. Leaving this option
creates a potential security risk. For example, if a directory in your Web site does
not have an index page, the server displays an automated index that shows any
symbolic links you may have in that directory. This could cause sensitive informa-
tion to be displayed, or may even allow anyone to run an executable that resides
in a carelessly linked directory.

UserDir

The UserDir directive tells Apache to consider %UserDir% as document root
(~username/%UserDir%) of each user Web site. This only makes sense if you have
multiple users on the system and want to allow each user to have his or her own
Web directory. The default setting is:

UserDir public_html

which means that if you set up your Web server’s name to be
www.yourcompany.com, and you have two users (joe and jenny), their personal
Web site URLs would be:

http://www.yourcompany.com/~joe Physical directory:
~joe/public_html

http://www.yourcompany.com/~jenny Physical directory:
~jenny/public_html

Note that on Unix systems, ~ (tilde) expands to a user’s home directory. The direc-
tory specified by the UserDir directive resides in each user’s home directory, and

Tip

Chapter 3 + Getting Apache Up and Running

Apache must have read and execute permissions to read files and directories within
the pub1ic_html directory. This can be accomplished using the following commands
on a Unix system:

chown -R <user>.<Apache server's group name>
~<user>/<directory assigned in UserDir>
chmod -R 770 ~<user>/<directory assigned in UserDir>

For example, if the username is joe and Apache’s group is called httpd, and pub-
1ic_html is assigned in the UserDir directive, the preceding commands will look
like this:

chown -R joe.httpd ~joe/public_html
chmod -R 2770 ~joe/public_html

The first command, chown, changes ownership of the ~joe/public_html directory
(and that of all files and subdirectories within it) to joe.httpd. In other words, it
gives the user joe and the group httpd full ownership of all the files and directo-
ries in the pubTic_html directory. The next command, chmod, sets the access
rights to 2770 —in other words, only the user (joe) and the group (httpd) have full
read, write, and execute privileges in pubTic_html and all files and subdirectories
under it. It also ensures that when a new file or subdirectory is created in the pub-
1ic_html directory, the newly created file has the group ID set. This enables the
Web server to access the new file without the user’s intervention.

If you create user accounts on your system using a script (such as /usr/

_» sbin/adduser script on Linux systems), you may want to incorporate the Web

4 site creation process in this script. Just add a mkdir command to create a default
public_html directory (if that's what you assign to the UserDir directive) to
create the Web directory. Add the chmod and chown commands to give the Web
server user permission to read and execute files and directories under this public
directory.

Directorylndex

Next, you need to configure the DirectoryIndex directive, which has the following
syntax:

DirectorylIndex [filenamel, filename?, filename3, ...]

This directive specifies which file the Apache server should consider as the index
for the directory being requested. For example, when a URL such as www.yourcom-
pany.com/ is requested, the Apache server determines that this is a request to
access the / (document root) directory of the Web site. If the DocumentRoot direc-
tive is set as:

DocumentRoot "/www/www.yourcompany.com/public/htdocs”

45

46

Part | + Getting Started

Al ote

then the Apache server looks for a file named /www/www.yourcompany.com/
public/htdocs/index.html;if it finds the file, Apache services the request

by returning the content of the file to the requesting Web browser. If the
DirectorylIndex is assigned welcome.html instead of the default index.html,
however, the Web server will look for /www/www.yourcompany.com/public/
htdocs/welcome.html instead. If the file is absent, Apache returns the directory
listing by creating a dynamic HTML page. Figure 3-3 shows what happens when
index.html is missing in a directory and the server has generated a directory
listing for the requesting browser.

[® Index of /dirl - Hetscape 6

Index of /dirl
Nare Last modified Size Description
H a Il
I Parent Direcrtory 30-Mar-z001 13:13 -
O EE—
W E apache ph.gif 30-Mar-2001 13:13 2k
meetings.doc 30-Mar-2001 13:14 1k
L,
meetings.html 30-Mar-2001 13:16 1k
T —
meetings.pdE 30-Mar-2001 13:16 1k
A
meetings.pl 30-Mar-2001 13:14 1k
d] [
s Document: Done K

Figure 3-3: Dynamic directory listing in the absence of index.htm

You can specify multiple index filenames in the DirectoryIndex directive. For
example:

Directorylndex index.html index.htm welcome.htm

tells the Web server that it should check for the existence of any of the three files,
and if any one file is found, it should be returned to the requesting Web client.

Listing many files as the index may create two problems. First, the server will now

~ have to check for the existence of many files per directory request; this could make

it slower than usual. Second, having multiple files as indexes could make your site
difficult to manage from the organizational point of view. If your Web site content
developers use various systems to create files, however, it might be a practical
solution to keep both index.html and index.htm as index files. For example,
an older Windows machine is unable to create filenames with extensions longer
than three characters, so a user working on such a machine may need to manually
update all of the user's index.htm files on the Web server. Using the recom-
mended index filenames eliminates this hassle.

Chapter 3 + Getting Apache Up and Running

AccessFileName

The AccessFileName directive defines the name of the per-directory access con-
trol configuration file. The default name .htaccess has a leading period to hide the
file from normal directory listing under Unix systems. The only reason to change
the name to something else is to increase security by obscurity, which is not much
of a reason. However, if you do change the filename to something else, make sure
that you change the regular expression "*\.ht" to "*\.whatever" where
.whatever is the first view character of what you set AccessFileName to.

Files container

The following <Files . . .> container tells Apache to disallow access to any file
that starts with a . ht (that is, the .htaccess or .htpasswd). This corresponds to
the default AccessFileName%.

<Files ~ "~\.ht">
Order allow,deny
Deny from all
</Files>

UseCanonicalName

Next directive is UseCanonicalName, which is set to On. It tells Apache to create all
self-referencing URLs using %ServerName%:%Port?% format. Leaving it on is a good
idea.

TypesConfig

The TypesConfig directive points to the mime configuration file mime.types that
resides in the default conf directory. You do not need to change it unless you have
relocated this file.

DefaultType

The DefaultType directive sets the Content-Type header for any file whose MIME
type cannot be determined from the file extension. For example if you have a file
%DocumentRoot%/myfile, then Apache uses the 2DefaultType, which is set to
text/plain, as the content type for the file. This means that when the Web browser
requests and receives such a file in response, it will display the contents in the
same way it will display a plain-text file. Now, if you think most of your unknown file
contents should be treated as HTML, then use text/html in place of text/pTain.

IfModule container

The next <IfModule . . .> container tells Apache to enable the MIME magic
module (mod_mime_magic) if it exists, and to use the MIMEMagicFile?% as the
magic information (bytes patterns) needed to identify MIME-type files. The default
should be left alone unless you want to change the path of the magic file.

47

48

Part | + Getting Started

Tip

<IfModule mod_mime_magic.c>
MIMEMagicFile conf/magic
</IfModule>

HostnameLookups

The Hostnamelookups directive tells Apache to enable DNS lookup per request if it
is set to On. However, the default setting is 0f f and therefore no DNS lookup is per-
formed to process a request, which speeds up response time. Performing a DNS
lookup to resolve an IP address to the host name is a time-consuming step for a
busy server and should only be done using the Togresolve utility as discussed in
Chapter 8. Leave the default as is.

ErrorLog

The ErrorlLog directive is very important. It points to the log file dedicated to
recording server errors. The default value of logs/errors translates to
%ServerRoot%/1ogs/error_1og, which should work for you, unless you want to
write a log in a different place. Generally, it is a good idea to create a log partition
for keeping your logs. It is also preferable that your log partition be on one or more
dedicated log disks. If you have such a hardware configuration, you might want to
change the directive to point to a new log path.

LogLevel

The LoglLevel directive sets the level of logging that will be done. The default value
of warn is sufficient for getting started. The LogFormat directives dictate what is
logged and in what format it is logged. In most cases, you should be able to live
with the defaults, so let’s not make any changes before you read Chapter 8.

CustomLog

The CustomlLog directive sets the path for the access log, which stores you server
hits. By default it uses the common log format (CLF), which is defined in the pre-
ceding LogFormat directive. Consider the advice about keeping logs on their own
disk and partition, and make changes to the path if necessary.

A good bit of advice for all logs, regardless of which directory you keep the logs in,

_», is to make sure that only the primary server process has write access in that direc-

L\

tory. This is a major security issue, because allowing other users or processes to
write to the log directory can potentially mean someone unauthorized might be
able to take over your primary Web server process UID, which is normally the root
account.

ServerSignature

The next directive is ServerSignature, which displays server name and version
number and is a server-generated page such as dynamic directory index pages,
error pages, and the like. If you feel uncomfortable about displaying your server
information so readily to everyone, set it to 0ff. [do.

Chapter 3 + Getting Apache Up and Running

Alias

The Alias directive defines a new directory alias called /icons/ to point to
/usr/local/apache/icons/ (thatis, 3ServerRoot%/icons/). The icon images
stored in this directory are used to display dynamic directory listings when no
%DirectorylIndex%-specified files are found in that directory. You should leave the
alias alone unless you changed the path of the icons directory. The directory con-
tainer that follows the alias definition sets the permission for this icon directory.

[do not like the idea that it enables directory browsing (that is, dynamic directory
indexing) by setting Options to Indexes. You should change Options Indexes to
Options -Indexes and not worry about the MultiViews option.

ScriptAlias

The ScriptAlias directive is used to set a widely used CGI script alias directory
/cgi-bin/ to pointto /usr/local/apache/cgi-bin/ (thatis, %ServerRoot%/
cgi-bin/).If you plan on using CGI scripts from the main server, keep it; other-
wise, remove this directive. Or, if you want to change the CGI script directory
another location, change the physical path given in the directive to match yours.

Caution Never set CGl script path to a directory within in your document root, that is,

%DocumentRoot%/somepath, because keeping CGl scripts in your document
root directory opens it to various security issues. Set your CGl script path and
DocumentRoot at the same level. In other words, if you set DocumentRoot to
/a/b/c/htdocs, then set ScriptAlias to pointto /a/b/c/cgi-bin not to
/a/b/c/htdocs/cgi-binorto /a/b/c/htdocs/d/cgi-bin.

Next, a directory container places restriction on the %2ScriptAlias% directory to
ensure that no directory level options are allowed. Here the Options directive is
set to None, which means that the contents of %2ScriptAlias% is not browsable,
that symbolic links within the %ScriptAlias% directory are not followed.

The rest of the directives

The rest of the directives— Index0Options; AddIconByEncoding; AddIconByType;
AddIcon; DefaultlIcon; ReadmeName; HeaderName; IndexIgnore; AddEncoding;
AddlLanguage; AddCharset; BrowserMatch; and AddType — are not important to
get up and running, so they are ignored for now. You can learn about these direc-
tives in Chapter 4. However, there are two directives that you might want to con-
sider changing if necessary: LanguagePriority and AddDefaultCharset.

LanguagePriority

By default, the LanguagePriority directive sets the default language to be en
(English), which might not work for everyone in the world. So, you might want to
change the default language to your native language, if it is supported.

49

50 Part| 4 Getting Started

AddDefaultCharset

AddDefaultCharset should be set to the character set that best suits your local
needs. If you do not know which character set you should use, you can leave the
default alone, find out which character set you should use, and change the default
later.

Starting and Stopping Apache

After you have customized httpd.conf, you are ready to run the server. For this
section, I assume that you took my advice (that is, setting --prefixto /usr/
local/apache) in the previous chapter. If you did not take my advice, then make
sure that you replace all references to /usr/local/apache to whatever is appro-
priate in the following discussion.

Starting Apache

Run the /usr/Tocal/apache/bin/apachect] start command to start the
Apache Web server. If apachect1 complains about syntax errors, you should fix the
errors in httpd.conf file and retry.

Also check the %ErrorLog% log file (that is, /usr/local/apache/Togs/error_10g)
for error messages (if any). If you see errors in the log file, you need to fix them
first. The most common errors are:

4+ Not running the server as the root user. You must start Apache as the root
user. After Apache is started, it will spawn child processes that will use the
User and Group directives-specified UID and GID. Most people are confused
by this issue and try to start the server using the user account specified in the
User directive.

4 Apache complains about being unable to “bind” to an address. Either
another process is already using the port that you have configured Apache to
use, or you are running httpd as a normal user but trying to use a port below
1024 (such as the default port 80).

4 Missing log file paths. Make sure that both %2ErrorLog% and ZCustomLog?
paths exist and are not writable by anyone but the Apache server.

4+ Configuration typo. Anytime you change the httpd. conf configuration file,
run /usr/local/apache/apachect] configtest to verify that you do not
have a syntax error in the configuration file.
Tip The quickest way to check whether the server is running is to try this command:
& ps auxw | grep httpd

This command uses the ps utility to list all the processes that are in the process
queue, and then pipes this output to the grep program. grep searches the output

Chapter 3 + Getting Apache Up and Running

for lines that match the keyword httpd, and then displays each matching line. If
you see one line with the word root in it, that’s your primary Apache server pro-
cess. Note that when the server starts, it creates a number of child processes to
handle the requests. If you started Apache as the root user, the parent process con-
tinues to run as root, while the children change to the user as instructed in the
httpd.conf file. If you are running Apache on Linux, you can create the script
shown in Listing 3-2 and keep it in /etc/rc.d/init.d/ directory. This script allows you
to automatically start and stop Apache when you reboot the system.

Listing 3-2: The httpd script

#!/bin/sh

#

httpd This shell script starts and stops the Apache server
It takes an argument 'start' or 'stop' to receptively start
and

stop the server process.

1

Notes: You might have to change the path information used

in the script to reflect your system's configuration.

1
APACHECTL=/usr/Tocal/apache/bin/apachect]
[-f $APACHECTL 1 || exit O

See how the script was called.
case "$1" 1in
start)
Start daemons.
echo -n "Starting httpd: "
$APACHECTL start
touch /var/lock/subsys/httpd

echo

stop)
Stop daemons.
echo -n "Shutting down httpd: "
$APACHECTL stop
echo "done"
rm -f /var/lock/subsys/httpd

. HH
echo "Usage: httpd f{start|stop}”
exit 1

esac

exit 0

51

52

Part | + Getting Started

Tip

ﬁ\lote

To start Apache automatically when you boot up your system, simply run this com-

~. mand once:

[\

In -s /etc/rc.d/init.d/httpd /etc/rc.d/rc3.d/S99httpd

This command creates a special link called S99httpd in the /etc/rc.d/rc3.d
(run-level 3) directory that links to /etc/rc.d/init.d/httpd script. When your
system boots up, this script will be executed with the start argument and
Apache will start automatically.

Restarting Apache

To restart the Apache server run /usr/local/apache/bin/apachect]l restart
command.

You can also use the ki11 command as follows:

ki1l -HUP 'cat /usr/Tocal/apache/logs/httpd.pid’
When restarted with apachectl] restart or by using the HUP signal with ki 171, the
parent Apache process (run as root user) kills all its children, reads the configura-

tion file, and restarts a new generation of children as needed.

This type of restart is sudden to the Web clients that were promised service by the

— then-alive child processes. So, you might want to consider using graceful with

apachect] instead of the restart option, and WINCH instead of HUP signal with
the ki11 command. In both cases, the parent Apache process will advise its child
processes to finish the current request and then to terminate so that it can reread
the configuration file and restart a new batch of children. This might take some
time on a busy site.

Stopping Apache

You can automatically stop Apache when the system reboots, or manually stop it at
any time. These two methods of stopping Apache are discussed in the following
sections.

Stopping Apache automatically
To terminate Apache automatically when the system is being rebooted, run this
command once:

In -s /etc/rc.d/init.d/httpd /etc/rc.d/rc3.d/K99httpd

This command ensures that the httpd script is run with the stop argument when
the system shuts down.

Chapter 3 + Getting Apache Up and Running

Stopping Apache server manually

To stop the Apache server, run the /usr/Tocal/apache/bin/apachect]l stop
command.

Apache server also makes it convenient for you to find the PID of the root Web
server process. The PID is written to a file assigned to the PidFi1e directive. This
PID is for the primary httpd process. Do not attempt to kill the child processes
manually one by one because the parent process will recreate them as needed.
Another way to stop the Apache server is to run:

kill -TERM 'cat /usr/local/apache/logs/httpd.pid’

This command runs the ki11 command with -TERM signal (that is, -9) for the
process ID returned by the cat /usr/Tocal/apache/logs/httpd.pid (thatis,
cat 4PidFile%) command.

Testing Apache

After you have started the Apache server, access it via a Web browser using the
appropriate host name. For example, if you are running the Web browser on the
server itself, then use http://Tocalhost/ to access the server. However, if you
want to access the server from a remote host, use the fully qualified host name of
the server. For example, to access a server called apache.pcnltd.com, use
http://apache.pcnltd.com. If you set the Port directive to a nonstandard port
(that is, to a port other than 80), then remember to include the :port in the URL.
For example, http://Tocalhost:8080 will access Apache server on port 8080.

If you have not made any changes to the default htdocs directory, you will see a
page such as the one shown in Figure 3-4. This page is shipped with the Apache dis-
tribution and needs to be replaced with your own content.

Finally, you want to make sure the log files are updated properly. To check your log
files, enter the 109 directory and run the following command:

tail -f path_to_access_log

The tail part of the command is a Unix utility that enables viewing of a growing
file (when the - f option is specified). Make sure that you change the
path_to_access_log to a fully qualified path name for the access log. Now, use a Web
browser to access the site; if you are already at the site, simply reload the page you
currently have on the browser. You should see an entry added to the listing on the
screen. Press the reload button a few more times to ensure that the access file is
updated appropriately. If you see the updated records, your access log file is work-
ing. Press Ctrl+C to exit from the tail command session. If you do not see any new
records in the file, you should check the permission settings for the log files and the
directory in which they are kept.

53

54 Part| 4 Getting Started

[F Test Page for Apache Installation - Netscape 6 [_ D[]

g % http://207.183,233.20/

T

If yvou can see this, it means that the installation of the Apache web server software on this
systemn was successful You may now add content to this directory and replace thus page.

Seeing this instead of the website you expected?

This page is here because the site administrater has changed the configuration of this web

server. Please contact the person responsible for maintaining this server with questions.
M The Apache Software Foundation, which wrote the web server software this site admuustrator
|| is using, has nothing to do with maintaining this site and cannot help resolve configuration issues.
H

The Apache documentation has been included with this distribution

You are free to use the image below on an Apache-powered web server. Thanks for using

Apache!

wered by
A PA T H

I 7 Document: Done Fi

Figure 3-4: Default Apache home page

Another log to check is the error log file. Use:

tail -f path_to_error_log
to view the error log entries as they come in. Simply request nonexistent resources
(such as a file you don’t have) to view on your Web browser, and you will see

entries being added. If you observe entries being added, then the error log file is
properly configured.

If all of these tests were successful, then you have successfully configured your
Apache server. Congratulations!

+ + +

r

|

Configuring
Apache with

Winnt MPM
Directives

A directive is simply a command for Apache to act on.
Apache reads directives from the configuration files

[discussed in Chapter 3. By using directives, an Apache
administrator can control the behavior of the Web server.
Many directives are available for Apache, which makes it a
highly configurable Web server. The directives that are part

of the base Apache installation are called the core directives.

These directives are always available.

Cross- Several other directives are also available from the stan-
Reference’\ jard modules that are part of the standard distribution

of Apache. Those standard module-based directives are
discussed in Chapter 5.

This chapter discusses the standard contexts in which direc-
tives (core and all others) apply, provides in-depth coverage
of the core directives, and also the directives available in vari-
ous Multi-processing Modules (or MPMs) that were introduced

in Apache 2.0. Instead of providing an alphabetical listing of

all the possible core directives, 've grouped them according

to their usage; the categories include general configuration;

performance and resource configuration; standard container;
virtual host specific; logging; and authentication and security.
Each directive description provides the following information:

CHAPTER

+ 0+ 0+
In This Chapter

Understanding the
Apache directive
contexts

Becoming familiar
with core directives

Configuring Apache
with threaded
MPM directives

Configuring Apache
with prefork
MPM directives

Configuring Apache
with perchild
MPM directives

R R

56 Part| 4 Getting Started

Syntax: Shows the name of the directive and all possible arguments or values
it takes.

Default setting: This line shows the default value for a directive. This is only
shown where applicable.

Context: Specifies the context (or scope) at which a directive applies.

AllowOverride: Value needed to enable the directive in per-directory access
configuration file (. htaccess by default). This is only shown where applicable.

First up in this chapter is a look at the contexts in which you can use directives.

/Alote Some directives are listed multiple times; all but one of these listings points to the
~ main discussion of that directive elsewhere in the chapter. This is because some
directives don't fit into just one category, and | want you to be able to see the var-

ious ways you can look at these types of directives.

Apache Directive Contexts

Before you use any of the core directives, it is important that you understand in
which context a directive is usable; in other words, you need to know the context
(or scope) of a directive. After discussing the terminology needed to discuss the
core directives, I describe the core directives themselves.

There are three major contexts for using a directive, including:

4+ Server config context: A directive can appear anywhere in the primary server
configuration files (this is called) outside any containers (which look very
much like HTML tags).

4+ Container context: Directives are contained within containers that look like
the following:

{Container_name>
Directive
</Container_name> .

4+ Per-directory context: Directives are stored in a file (typically .htaccess)
within a directory.

Server config context

Directives may appear anywhere in the primary server configuration files outside
any containers. You can think of this context as the global context or scope; that is,
treat a directive that is not enclosed in a container as a global directive. Directives
that apply in this context affect all other contexts by default. These directives may
be used anywhere in the server configuration files (such as httpd.conf, srm.conf,
and access.conf), but not within any containers or a per-directory configuration
file (.htaccess).

Chapter 4 4+ Configuring Apache with Winnt MPM Directives

Container context

To limit the scope of a directive, you can use containers, which look just like HTML
tag sets. A container tag pair encloses a set of directives, restricting the scope of
the directives within itself. Apache offers these standard containers:

4+ <VirtualHost ...> ... </VirtualHost> is used to apply one or more
directives to the virtual host specified in the opening tag of the container.

4+ <Directory ...> ... </Directory> is used to apply one or more direc-
tives to a certain directory. Note that if you specify one or more directives for
a directory using this container tag, the directives automatically apply to all
the subdirectories as well. If this is not a desirable side effect, however, you
can create a separate directory container for each subdirectory and control
the server’s behavior differently in each sublevel of the directory.

4+ <DirectoryMatch regex> ... <DirectoryMatch > is exactly same as
the <Directory> container; however, it takes a regular expression (regex)
as an argument instead of a regular directory name. For example,
{DirectoryMatch "~/www/mydir[1-31/"> ... </DirectoryMatch>
matches all the directories named /www/mydirl, /www/mydir2, and
/www/mydir3.

characters to create a pattern. This pattern is used to match one or more sub-

@ A regular expression (regex) is typically composed of both normal and special
eierence

ﬁ\lote

strings or an entire string. See Appendix B for more information about regular
expressions.

4 <Files ...> ... </Files>is used to apply one or more directives to a
certain file or group of files.

4+ <FilesMatch regex> ... </FilesMatch> is exactly same as the <Files>
container; however it takes a regular expression (regex) as an argument
instead of one or more filenames. For example, <FilesMatch
"\.(doc|txt)$"> ... </FilesMatch> will apply one or more directives to
all files ending with .doc or . txt extensions.

4 <lLocation ...> ... </Location> is used to apply one or more directives
to a certain URI.

URI (Uniform Resource Identifier) is the generic term for the family of Uniform
Resource Identifiers, of which URL is but one member. The others are Uniform
Resource Names (URN), Uniform Resource Characteristics (URC), and Location-
Independent File Names (LIFN). Only URL is widely used, however.

e

4 <lLocationMatch regex> ... </LocationMatch > is exactly same as the
<Location> container; however, it takes a regular expression (regex) as an
argument instead of a URI.

58 Part

AI ote

| 4+ Getting Started

4 <Limit ...> ... </Limit> is used to apply one or more directives to
control access to certain areas of a Web site or a particular HTTP request
method. This container has the narrowest scope of all containers. Following is
an example of container scope: a segment of an httpd. conf file:

<VirtualHost 206.171.50.50>

ServerName www.nitec.com
DocumentRoot "/www/nitec/public/htdocs”
DirectoryIndex welcome.html

<{Location /secured/>
DirectoryIndex Togin.html
</Location>

</VirtualHost>

In this example, a virtual host called www.nitec.comis defined using the
<VirtualHost> container. The three directives —ServerName,
DocumentRoot, and DirectoryIndex—are in the virtual host context, and
therefore apply to the entire virtual host. The DirectoryIndex directive
specifies that if a request is made to access a directory in this virtual server, a
file named welcome.html should be returned if available. However, the
<Location> container specifies that a different file, 1ogin.htm1, should be
returned when someone tries to access the www.nitec.com/secured/ URL.
Because the <Location> container defined a narrower scope (in the
/secured subdirectory), it overrides the higher scope of the Directorylndex
directive in the <VirtualHost> container.

A container that defines a narrower scope always overrides the container with a
~~ higher scope.

You should keep a few rules in mind when using any of the containers to define a
behavior for a section of your Web space:

4 A<VirtualHost> container cannot be nested within another container of any
kind.
4 There can be no container within the narrowest context container, <Limit>.

4+ A <Files> container can have only the narrowest container, <Limit>, within
itself.

4 The <Location> and <Directory> containers do not mix, so do not use one
inside another.

Per-directory context

You can also include directives in per-directory configuration files. A per-directory
configuration file (default filename for the per-directory configuration is .htaccess)
is a text file containing one or more directives that apply only to the current

Chapter 4 4+ Configuring Apache with Winnt MPM Directives

directory. These directives can also be enclosed in containers such as <Files ...>
or <Limit ...>.Using per-directory configuration files, you can control how
Apache behaves when a request is made for a file in a directory.

Alote The AllowOverride directive allows you to disable all or part of what can be over-
‘ ~— ridden in a per-directory configuration file in the server config or virtual host con-
text. Therefore, all directives in this context may not be processed, depending on
the overrides currently active.

General Configuration Directives

The directives discussed in this section are fundamental in nature and generally
apply to both the primary server (server config context) and the virtual servers
(virtual host context).

AccessFileName

The AccessFileName directive specifies the name of the per-directory access con-
trol file. The default setting (. htaccess) makes Apache look for the .htaccess file
each time an access request is made by a client system.
Syntax: AccessFileName filename [filename ...]
Default setting: AccessFileName .htaccess
Context: Server config, virtual host
For example, say that the DocumentRoot directive of an Apache-powered Web site
called www.mycompany.comis set as DocumentRoot "/www/mycompany/public/
htdocs" and a Web browser requests http://www.mycompany.com/feedback.
htm1. This causes Apache to search for the following access control files:
4+ /.htaccess
4+ /www/.htaccess
4+ /www/mycompany/.htaccess
4+ /www/mycompany/public/.htaccess
4+ /www/mycompany/public/htdocs/.htaccess
Only after Apache has checked for all of these files does it look for the

feedback.html file. If this seems like a lot of disk I/O, it is! You can avoid all that
nonsense by specifying the access filename with this directive.

59

60 Part

Tip

AI ote

| 4+ Getting Started

If you do not make use of the per-directory access control file and would like
» Apache to stop checking for it, simply use the <Directory> directive to disable
privileges to override options as follows:

[\

<{Directory />
AlTowOverride None
</Directory>

See the sections on the <Directory> container and the A11owOverride direc-
tive in this chapter for more details.

AddDefaultCharset

The AddDefaultCharset directive sets the default character set for the Content-
Type header sent to the browser by Apache.
Syntax: AddDefaultCharset On | Off | charset
Default setting: AddDefaultCharset Off
Context: All
When this directive is turned on (using On option), Apache sends is0-8859-1
(Western European) as the default character set unless you specify a character
set as the second option to this directive. For example, AddDefaultCharset 0On
utf-8 will send UTF -8 as the default character set. Commonly used character sets
include:
4 [SO-8859-1 — Western European
4 [SO-8859-15— Western European with Euro currency symbol support
4+ Windows-1252 — Western European
4+ CP850 — Western European
4 UTF-8 — 8-bit Unicode
4 UTF-7— 7-bit Unicode
If your HTML documents set the character set by using <META http-
~~ equiv="Content-Type" content="content_type; charset=charac-

ter_set_name"> tag, the AddDefaultCharset directive enables you to
override it.

ContentDigest

When the ContentDigest directive is set, it generates a message digest (MD5)
header for the entire content of the body, which enables the Web client to verify the
integrity of the page. This is a major performance drag for the Web server because
MD?5 digests need to be computed on each static page served by the Web server.

Chapter 4 4 Configuring Apache with Winnt MPM Directives 61

Note that this digest is not generated for any output generated by any module other
than the core. This means that Common Gateway Interface (CGI) output cannot use
this feature. Because of the performance drain on the server, it is not a recommended
feature unless you know your server has the power to spare.

Syntax: ContentDigest On | Off

Default setting: ContentDigest O0ff

Context: All

DefaultType

The DefaultType directive is used to establish a default content type, so when
Apache receives a request for a document whose file type is unknown (in other
words, it cannot be determined from the MIME-type map available to the server),
it uses the predetermined default type.

Syntax: DefaultType mime-type

Default setting: DefaultType text/htm]

Context: All

Override: Filelnfo
For example, if you have a directory in which you keep a lot of text files with no
extensions, you can use the DefaultType directive inside a <Directory> container
that points to this directory. In this case, setting DefaultType to text/plain

enables the server to tell the other side (the Web browser) that these are plain-text
files. Here’s an example:

<{Directory /www/mycompany/public/htdocs/plaindata>
DefaultType plain/text
</Directory>

Here, all the files in the /www/mycompany/public/htdocs/plaindata/ directory
are treated as plain-text files.

DocumentRoot
The DocumentRoot directory specified by this directive becomes the top-level
directory for all the documents serviced by Apache.

Syntax: DocumentRoot "directory_path"

Default setting: DocumentRoot "/usr/Tocal/apache/htdocs”

Context: Server config, virtual host

62

Part | + Getting Started

C/LMe

Tip

For example, if
DocumentRoot "/www/mycompany/public/htdocs”

is set for the server www.mycompany . com, then an access request for www.mycompany .
com/corporate.html makes the server look for the following file:

/www/mycompany/public/htdocs/corporate.html
If the file is found, it is returned to the client (that is, the Web browser).

A bug in the mod_d1ir module causes a problem when the DocumentRoot has a

~ trailing slash (for example, DocumentRoot /usr/web/), so you should avoid

entering a / character at the end of any path for any directive.

It is possible to have the server look for files in a directory outside the

_» DocumentRoot directory. If you want to access some files outside the

7 DocumentRoot tree, you can use the Al1as directive to create a virtual directory
name that can point to a physical directory anywhere in your server’s file system.
ErrorDocument

When the server encounters a problem, it generates a standard error message with
the error code in it. This is not very user-friendly for most people, however, so a
more customized version of the error message, or possibly a recovery measure, is
more desirable. If you need such customization, use the ErrorDocument directive
to override standard error messages.

Syntax: ErrorDocument error_code [filename | error_message | URL]
Default setting: None
Context: All

Override: Filelnfo

The directive requires two arguments. The first argument is the standard HTTP
error code, which you can find in Appendix A; the second argument is the action
item for the error. Depending on your needs, you can define what action you want
the server to take for a particular error condition.

For example, if you want to provide a custom message for all requests that result in
a standard “file not found” message, all you have to do is find the server status
code for that error condition and use the ErrorDocument directive. Because the
server status code for missing files is 404, the following directive setting enables
Apache to display a custom message:

ErrorDocument 404 "Sorry, this is an invalid request because %s

Chapter 4 4 Configuring Apache with Winnt MPM Directives 63

Notice that the entire message is quoted, and the server replaces %s with whatever
information is available regarding the error. If you find this a bit limiting, however,
you can use a file as your error message response. For example:

ErrorDocument 404 /errors/404.html

Whenever the missing file error occurs, the 404 . htm1 file found in the errors direc-
tory under the DocumentRoot directory is returned to the client (the Web browser).

Tip If you want to do more than just return a static page, you can use a CGl script to
», perform some specific action. In such a case, you replace the filename with a call
to your CGl script:

N

ErrorDocument 404 /cgi-bin/missingurl.cgi

This calls a CGl script called missingurl.cgi every time a 404 error occurs. You
can also redirect the client to another site using a URL instead of a filename:

ErrorDocument 404 http://www.newsite.com/we.moved.htm]

This can be used when a page or an entire site has moved to another location.

ﬁlote You cannot point the client to a remote server if an error 401 (unauthorized)
~ occurs. The value of this directive must be a local file or a message.

<IfDefine>

The IfDefine container directive enables you to create a conditional configura-
tion. The special_command_Tine_param option is specified by using the -D option
with the httpd program.

Syntax: <IfDefine [!Jlspecial_command_line_param> ...</IfDefine>
Default setting: None

Context: All

For example, if you run the Apache server from the bin directory as ./httpd -D
something then you can use:

<IfDefine something>
fdirectives that should be executed only when
-D something is specified

</I1fDefine>

ﬁlote Placing a ! character in front of the special command_line_param tells Apache to
~ process the directives within the IfDefine container only when a -D something was
not found in the command-line. For example:

<IfDefine !something>
directives that should be executed only when
-D something is NOT specified

</IfDefine>

64

Part | + Getting Started

<IfModule>

Use the IfModule container directive if you have directives that are available from
a custom module that may not always be present in your Apache installation.
Syntax: <IfModule [!Imodule_name> ... </IfModule>
Default setting: None
Context: All

For example, if you want to use certain directives only if a module is available, then
you can use the following conditional construct:

<IfModule module_name>
Assign the following directives their respective value
if the module is part of Apache.
Your directives go here.

</IfModule>

where the module_name argument is the filename of the module at the time it was
compiled (for example, mod_rewrite.c).

If you need a conditional statement that is the exact opposite of the above, all you
need to do is insert a ! (bang or exclamation point) before the module name.
<IfModule> sections are nestable; this is a method that can be used to implement
simple multiple-module condition tests. For example:

{IfModule module_A>

Process the directives here if module A is
part of Apache

<IfModule module_B>
Come here only if module A and B both
are part of Apache
<IfModule ! module_C>
Come here only if module A and B exists
but not module C as part of Apache
</IfModule>
</IfModule>

</IfModule>

Chapter 4 4 Configuring Apache with Winnt MPM Directives 65

Include

The Include directive enables you to include an external file as a configuration file.

Syntax: Include filename
Default setting: None
Context: Server config

For example, if you want to load all your virtual host configurations using external
files, you can have the following configuration in httpd.conf:

NameVirtualHost IP_Address
Include virtual_host_1.conf
Include virtual_host_2.conf
Include virtual_host_3.conf

Inc] ude virtual_host_N.conf

Tip In each of these files you can define a <VirtualHost> container specific to the
~, host. This is a good way of organizing the httpd.conf file if you have a lot of virtual
4 hosts.

Options
The Options directive controls which server features are available in a particular
directory.

Syntax: Options [+|-Joption [+|-Joption

Default setting: None

Context: All

Override: Options (see Table 4-1)

‘\lote When this directive is set to None, none of the extra features are enabled for the
~ context in which the directive is used.

All the possible settings for this directive are listed in Table 4-1.

66

Part | + Getting Started

Table 4-1
Options directive settings
Setting What It Means
None No options.
All All options except for MultiViews.
ExecCGl Execution of CGI scripts is permitted.

FollowSymLinks

Includes
IncludesNOEXEC

Indexes

SymLinkslfOwnerMatch

MultiViews

The server follows symbolic links in the directory. However, the
server does not change the pathname used to match against
<Directory> sections.

SSI commands are permitted.

A restricted set of SSI commands can be embedded in the SSI
pages. The SSI commands that are not allowed are #exec and
#include.

If a URL that maps to a directory is requested and there is no
DirectoryIndex (for example, index.htm1) in that directory,
then the server returns a formatted listing of the directory.

The server only follows symbolic links for which the target file or
directory is owned by the same user as the link.

Enables content negotiation based on a document’s language.

Use the + and - signs to enable or disable an option in the Options directive. For
example, the following configuration segment shows two directory containers in a
single configuration file such as access.conf:

<Directory /www/myclient/public/htdocs >
Options Indexes MultiViews

</Directory>

<Directory /www/myclient/public/htdocs>
Options Includes

<{/Directory>

The /www/myclient/public/htdocs will only have the Includes option set.
However, if the second <Directory> section uses the + and - signs as follows:

<Directory /www/myclient/public/htdocs>
Options +Includes -Indexes

</Directory>

then the options MultiViews and Includes are set for the specified directory.
When you apply multiple Options, be aware that the narrowest context always
takes precedence over the broader context. For example:

Chapter 4 4 Configuring Apache with Winnt MPM Directives 67

ServerName www.domain.com
Options ExecCGI Includes
<VirtualHost 11.22.3311.22.33.1>

ServerName www.myclient.com
Options -ExecCGI -Includes

<Directory /www/myclient/public/htdocs/ssi >
Options Includes
<{/Directory>

</VirtualHost>

In this example, the main server enables both CGI execution and SSIs by setting the
Options directive to ExecCGI and Includes. The virtual host www.myclient.com
disables both of these options, however, using the -ExecCGI and -Includes set-
tings in its own Options directive. Finally, the virtual host has another Options
directive for the /www/myclient/public/htdocs/ssi directory, that enables
SSI execution. Note that Includes is the only option that is set for the /www/
myclient/public/htdocs/ssi directory.

As you can see, if the Options directive uses the + or - signs, then the values are
added or subtracted from the current Options list. On the other hand, if the
Options directive does not use the relative + or - signs, then the values for that
container will completely override any previous Options directives.

Port

The Port directive assigns a port number in the range of 0 to 65535 to a host. In the
absence of any Listen or BindAddress directive specifying a port number, the
Port directive sets the network port on which the server listens. If any Listen or
BindAddress directive specifies a port number, then the Port directive has no
effect on which address the server listens at. The Port directive sets the
SERVER_PORT environment variable (for CGI and Server-Side Include (SSI)), and

is used when the server must generate a URL that refers to itself.

Syntax: Port number

Default setting: Port 80

Context: Server config
Although you can specify a port number between 0 and 65535, there is one restric-
tion that you should keep in mind. All the port numbers below 1024 are reserved

for standard services such as TELNET, SMTP, POP3, HTTP, and FTP. You can locate
all the port number assignments to standard services in your /etc/services file.

68 Part| 4 Getting Started

‘\Iote

Or, if you want to be safe, use any port number other than 80 for your Apache
server (use a high address, such as 8000, for example).

If you are a nonroot user and want to run Apache for experimentation or some

— other noble cause, you need to use ports higher than 1024, because only root

users can run services such as Apache on these restricted ports.

The <VirtualHost> container can also be used to set up which port is used for

~, avirtual host.

ServerAdmin

The ServerAdmin directive assigns an e-mail address that appears in conjunction
with many error messages issued by the server. If you host a large number of virtual
Web sites, you may want to use a different e-mail address for each virtual host so
you can immediately determine which server a problem reporter is talking about.

Syntax: ServerAdmin e-mail_address
Default setting: None

Context: Server config, virtual host

To give your virtual sites the professional look and feel they deserve, do not use an
e-mail address that does not include the virtual site as the host part of the address.
For example, if your company is an Internet Service Provider (ISP) named
mycompany.net, and you have a client site called www.myclient.com, then set the
www.myclient.comsite’s ServerAdmintoauser@myclient.comaddress such as
webmaster@myclient.com, instead of webmaster@mycompany.net. This way,
when the server displays an error message to someone visiting www.myclient.
com, the visitor will see an e-mail address that belongs to myclient.com. This is
considered to be more professional.

ServerName

The ServerName directive sets the host name of the server. When this directive is
not used, Apache tries to determine the host name by doing a domain name server
(DNS) request at startup. Depending on your DNS setup, however, this may not be
desirable because the lookup done by Apache may choose an undesirable name for
your server, for example, if you have canonical name records (CNAME) for your
server. Therefore, it is best to just set this to whatever host name you prefer.

Syntax: ServerName fully_qualified_domain_name
Default setting: None

Context: Server config, virtual host

Tip

Chapter 4 4+ Configuring Apache with Winnt MPM Directives

Make sure you enter a fully qualified domain name instead of just a shortcut. For
. example, if you have a host called wormhole.mycompany . com, you should not

4 setthe ServerName to wormhole. The valid choice is:

ServerName wormhole.mycompany.com

ServerRoot

The ServerRoot directive sets the directory in which the server files reside. Do not
confuse this with DocumentRoot directive, which is used for pointing the server to
your Web contents. The ServerRoot directory is used for locating all the server
configuration files and log files. The standard distributions include conf, bin,
htdocs, icons, cgi-bin, and 1ogs directories under the ServerRoot directory.

If you do not specify the ServerRoot directive, however, you can use the -d
command-line option to tell Apache what your ServerRoot directory is.

Syntax: ServerRoot directory
Default setting: ServerRoot /usr/local/apache

Context: Server config

ServerSignature

By using the ServerSignature directive you can create a simple footer for Apache-
generated pages such as error messages and directory listings. This directive is not
recommended unless you use Apache as a proxy server. On the other hand, when a
user receives an error message, it is often difficult to determine which proxy server
caused the error if there is a chain of proxies in the user’s network path. This footer
acts as an identifier in such cases. You can include an e-mail address that will
appear in the footer so that others can e-mail you if there is a problem.

Syntax: ServerSignature On | Off | e-mail

Default setting: ServerSignature 0ff
Context: All

ServerTokens

In response to a request, Apache can send a header that includes an identifier that
tells the client what server you are running. The ServerTokens directive lets you
control that identifier token. When Minimal option is used, Apache sends
"Apache/version"; when ProductOnly option is used, only the string "Apache"
is sent; when 0S is used "Apache/version (0S_Type)" is sent; when FulT is
used, Apache sends "Apache/version (0S_Type) Available_Module_Info".

69

70 Part | + Getting Started

Syntax: ServerTokens Minimal | ProductOnly | 0S | Full
Default setting: ServerTokens Full
Context: Server config
Caution | recommend using only the Minimal option if you want to avoid security issues

from bug-based attacks; you don't want to advertise what type of server you use to
the world.

SetinputFilter
The SetInputFilter directive sets the filters that will be used to process a
request sent to the server. The filters are applied in the order that they appear in
this directive.

Syntax: SetInputFilter filter [filter ...]

Default setting: None

Context: Directory

SetOutputFilter

The SetOutputFilter directive sets the filters that will be used to process a
response before it is sent to the Web client. The filters are applied in the order they
appear in this directive.

Syntax: SetOutputFilter filter [filter]

Default setting: None

Context: Directory

In the following example, all files in the /www/mysite/htdocs/parsed directory
will be processed using the INCLUDES output filter, which is the SSI filter:

<{Directory "/www/mysite/htdocs/parsed">
Options +Includes
SetOutputFilter INCLUDES
</Directory>

Performance and Resource
Configuration Directives

These directives enable you to fine-tune Apache for higher performance and better
control. You can fine-tune the Apache processes in many ways. Note that almost all
of these directives require a clear understanding of how your system works in

Chapter 4 4 Configuring Apache with Winnt MPM Directives 71

terms of the operating system, hardware, and so on; therefore, you should browse
your operating system manuals and/or man pages to learn how your system limits
system resources to processes, how it controls TCP/IP connectivity, and so on. The
directives in this section are further divided into subfunctions.

g See Chapter 22 for more info about how to speed up Apache.
Reference

Controlling Apache processes

The following directives are used to control how Apache executes in your system.
Using these directives enables you to control how Apache uses resources on your
system. For example, you can decide how many child server processes to run on
your system, or how many threads you should allow Apache to use on a Windows
platform. A few things to remember when configuring these directives:

4 The more processes you run, the more load your CPU(s) experiences.
4 The more processes you run, the more RAM you need.
4 The more processes you run, the more operating system resources (such as

file descriptors and shared buffers) are used.

Of course, more processes also could mean more requests serviced, and thus more
hits for your site. So, setting these directives should be based on a combination of
experimentation, requirements, and available resources.

ListenBacklog

See the ListenBacklog directive under the “ MPM threaded-Specific Directives”
section.

MaxClients
See MaxClients directive under the “MPM threaded-Specific Directives” section.

MaxRequestsPerChild

See MaxRequestsPerChild directive under the “MPM threaded-Specific Directives”
section.

MaxSpareServers
See MaxSpareServers directive under the “MPM prefork Specific Directives” section.

MinSpareServers
See MinSpareServers directive under the “MPM prefork Specific Directives” section.

712

Part | + Getting Started

SendBufferSize

See SendBufferSize directive under the “MPM threaded Specific Directives” section.

StartServers
See StartServers directive under the “MPM threaded Specific Directives” section.

TimeOut

Apache server responds to requests. The requests and responses are transmitted
via packets of data. Apache must know how long to wait for a certain packet. The
TimeOut directive enables you to configure the time in seconds. The time you spec-
ify here is the maximum time Apache will wait before it breaks a connection. The
default setting enables Apache to wait for 300 seconds before it disconnects itself
from the client. If you are on a slow network, however, you may want to increase
the time out value to decrease the number of disconnects.

Syntax: TimeOut number
Default setting: TimeOut 300

Context: Server config
Currently, this TimeOut setting applies to:

4 The total amount of time it takes to receive a GET request.
4 The amount of time between receipt of TCP packets on a POST or PUT request.

4 The amount of time between ACKs on transmissions of TCP packets in
responses.

Making persistent connections

By using the KeepAlive directives discussed in this section, you can instruct
Apache to use persistent connections so that a single TCP connection can be used
for multiple transactions. Normally, every HTTP request and response uses a sepa-
rate connection. This means that every time the server gets a request, it opens a
connection to retrieve the request and then closes it. After the server has received
the request, it opens another TCP connection to respond, and finally closes the
connection after completing the service. This method increases the toll on high
performance. Reuse of a single connection for multiple transactions reduces the
overhead needed for setting up and closing a TCP connection repeatedly, and
thereby increases performance.

To establish a persistent connection, however, both the server and the client need
to have the persistent connection facility. Most popular browsers, such as Netscape
Navigator and Microsoft Internet Explorer, have KeepAlive features built in.

‘\I ote

Chapter 4 4 Configuring Apache with Winnt MPM Directives 73

Not all transactions can take advantage of the persistent connections. A require-
ment for a persistent connection is that the resources being transmitted must have
a known size. Because many CGI scripts, SSI commands, and other dynamically gen-
erated contents do not have a known length before transmission, they are unable to
take advantage of this feature.

KeepAlive
The KeepATive directive enables you to activate/deactivate persistent use of TCP
connections in Apache.

Syntax: KeepAlive On | Off

Default setting: KeepAlive On

Context: Server config

Older Apache servers (prior to version 1.2) may require a numeric value instead of

~~ 0On/0ff when using KeepATive This value corresponds to the maximum number

of requests you want Apache to entertain per request. A limit is imposed to pre-
vent a client from taking over all your server resources. To disable KeepAlive in
the older Apache versions, use O (zero) as the value.

KeepAliveTimeout
If you have the KeepATive directive set to on, you can use the KeepATliveTimeout

directive to limit the number of seconds Apache will wait for a subsequent request
before closing a connection. After a request is received, the timeout value specified
by the Timeout directive applies.

Syntax: KeepAliveTimeout seconds

Default setting: KeepAliveTimeout 15

Context: Server config

MaxKeepAliveRequests

The MaxKeepAliveRequests directive limits the number of requests allowed per
connection when KeepAlive is on. If it is set to 0 (zero), unlimited requests will be
allowed. I recommend that this setting be kept to a high value for maximum server
performance.

Syntax: MaxKeepAliveRequests number

Default setting: MaxKeepAliveRequests 100

Context: Server config

74

Part | + Getting Started

Controlling system resources

Apache is quite flexible in enabling you to control the amount of system resources
(such as CPU time and memory) it consumes. These control features are handy for
making your Web server system more reliable and responsive. Many typical hack-
ing attempts try to make a Web server consume all system resources like a hog, and
thus try to make the system nonresponsive and virtually halted. Apache provides a
set of directives to combat such a situation. These directives are discussed in the
following sections.

RLimitCPU
The RLimitCPU directive enables you to control the CPU usage of Apache children-

spawned processes such as CGI scripts. The limit does not apply to Apache children
themselves or to any process created by the parent Apache server.

Syntax: RLimitCPU n | 'max" [n | "max']

Default setting: Not set; uses operating system defaults

Context: Server config, virtual host
The RLimitCPU directive takes the following two parameters: The first parameter
sets a soft resource limit for all processes and the second parameter, which is
optional, sets the maximum resource limit. Note that raising the maximum resource
limit requires that the server be running as root or in the initial startup phase. For
each of these parameters, there are two possible values:

4 n is the number of seconds per process.

4 and max is the maximum resource limit allowed by the operating system.

RLimitMEM
The RLimitMEM directive limits the memory (RAM) usage of Apache children-

spawned processes such as CGI scripts. The limit does not apply to Apache chidren
themselves or to any process created by the parent Apache server.

Syntax: RLImitMEM n | 'max" [n | "max']

Default setting: Not set; uses operating system defaults

Context: Server config, virtual host
The RLimitMEM directive takes two parameters. The first parameter sets a soft
resource limit for all processes, and the second parameter, which is optional, sets
the maximum resource limit. Note that raising the maximum resource limit requires
that the server be started by the root user. For each of these parameters, there are
two possible values:

4 n is the number of bytes per process

4 max is the maximum resource limit allowed by the operating system

ﬁ\lote

Chapter 4 4+ Configuring Apache with Winnt MPM Directives

RLimitNPROC

The RLimitNPROC directive sets the maximum number of simultaneous Apache
children-spawned processes per user ID.

Syntax: RLimitNPROC n | 'max' [n | 'max"']
Default setting: Not set; uses operating system defaults

Context: Server config, virtual host

The RLimitNPROC directive takes two parameters. The first parameter sets the soft
resource limit for all processes, and the second parameter, which is optional, sets
the maximum resource limit. Raising the maximum resource limit requires that the
server be running as root or in the initial startup phase. For each of these parame-
ters, there are two possible values:

4 n is the number of bytes per process

4 max is the maximum resource limit allowed by the operating system

If your CGI processes are run under the same user ID as the server process, use of

~~ RLimitNPROC limits the number of processes the server can launch (or “fork”). If
the limit is too low, you will receive a “Cannot fork process” type of message in the
error log file. In such a case, you should increase the limit or just leave it as the
default.

UseCanonicalName

The UseCanonicalName directive sets how Apache constructs self-referencing
URLS. When set to on, Apache uses ServerName and Port directive settings to cre-
ate the self-referencing URL. If UseCanonicalName is set to of f, then Apache uses
the client-supplied host name and port number from the header information to con-
struct the self-referencing URL. Finally, if UseCanonicalName is set to dns, Apache
will perform a reverse DNS lookup on the server’s IP address to determine the host
name for the self-referencing URL. This option is not recommended because the
reverse DNS lookup will slow down the request processing.

Syntax: UseCanonicalName On | Off | dns
Default setting: UseCanonicalName On

Context: Server config, virtual host, directory

Override: Options

Using dynamic modules

Apache loads all the precompiled modules when it starts up; however, it also pro-
vides a dynamic module loading and unloading feature that may be useful on certain
occasions. When you use the following dynamic module directives, you can change
the list of active modules without recompiling the server.

75

76 Part | + Getting Started

AddModule

The AddModule directive can be used to enable a precompiled module that is
currently not active. The server can have modules compiled that are not actively in
use. This directive can be used to enable these modules. The server comes with a
preloaded list of active modules; this list can be cleared with the ClearModulelist
directive. Then new modules can be added using the AddModule directive.

Syntax: AddModule module module

Default setting: None

Context: Server config

ClearModuleList

You can use the ClearModulelist directive to clear the list of active modules and
to enable the dynamic module-loading feature. Then use the AddModul e directive to
add modules that you want to activate.

Syntax: ClearModulelist
Default setting: None

Context: Server config

Standard Container Directives

This section discusses the standard containers that are part of the base Apache
server. These containers are widely used to apply a group of other directives to
a certain directory, file, or location. You cannot randomly mix and match the
containers.

The general guidelines for working with these directives are:

4 Use the <Directory> or <Files> containers to specify directives for file sys-
tem objects such as files and directories. You cannot use <Directory> inside
an .htaccess file, because an .htaccess file applies only to the directory in
which it is found.

4+ Use the <Location> container for matching URL objects. You cannot use this
directive inside an . htaccess file.

4+ When using the regular expression version of a directive (for example,
<DirectoryMatch>), follow the same guidelines as for the regular version.
Use the regular expression version of the containers only if you are confident
that your regular expressions are tightly expressed.

Chapter 4 4 Configuring Apache with Winnt MPM Directives 77

4 Because of a mistake in the early stages of Apache development, the proxy
control is still done with the <Directory> container, even though the
<Location> container is more appropriate. This may be corrected in a future
version. However, this really doesn’t cause any harm, other than making
things a bit more difficult to conceptualize.

- Cross- The <VirtualHost> container is discussed in a separate section, later in this
Reference chapter.

<Directory>

The <Directory> and </Directory> container tags are used to enclose a group of
directives that apply only to the named directory and its subdirectories. Any direc-
tive that is allowed in a directory context may be used. The argument can be a fully
qualified pathname.

Syntax: <Directory directory> ... </Directory>
Default setting: None

Context: Server config, virtual host

In the following example the directory /www/mycompany/public/htdocs/
downToad is used as a fully qualified pathname. This example enables directory
indexing in this directory.

<Directory /www/mycompany/public/htdocs/download>
Options +Indexes
</Directory>

You can also use wildcard characters in specifying the path. In the following example,
the ? will match any single character:

<Directory /www/mycompany/public/htdocs/downloa?>
Options +Indexes
</Directory>

Therefore, directories such as /www/mycompany/public/htdocs/download and
/www/mycompany/public/htdocs/downloaD will be matched. You can also use *
(asterisk) to match any sequence of characters other than the / (slash) character.
Extended regular expressions can also be used by adding the ~ (tilde) character.
For example:

<Directory ~ "~/www/.*/">

would match any subdirectory under /www/. Note that regular expression-based
<{Directory> containers may not be applied until all normal (that is, without regu-
lar expression) <Directory> containers and .htaccess files have been applied.

78

Part | + Getting Started

Tip

Then, all the regular expressions are tested in the order in which they appeared in
the configuration file.

For a detailed explanation of the regular expressions, see Appendix C.
If you specify more than one <Directory> container for the same directory space,
the <Directory> container with the narrowest scope is applied first. For example:

<Directory /www>
AlTowOverride None
</Directory>

<Directory ~ "/www/mycompany/public/htdocs/*">
AllowQOverride Filelnfo
</Directory>

According to this, when a request for /www/mycompany/public/htdocs/
somefile.cvs arrives, Apache disables the per-directory access control file
(.htaccess) for /www and then enables it for /www/mycompany/public/htdocs.
It also accepts any FilelInfo directive such as DefaultType from within the
/www/mycompany/public/htdocs/.htaccess file.

<DirectoryMatch>

The DirectoryMatch container is nearly identical to the <Directory> container
except that it takes a regular expression as the argument and does not require the ~
(tilde) character. <DirectoryMatch> and </DirectoryMatch> are used to enclose
a group of directives that apply only to the named directory and its subdirectories.

Syntax: <DirectoryMatch regex> ... </DirectoryMatch>

Default setting: None

Context: Server config, virtual host
The following example would match all subdirectories of /www/mycompany/
public/htdocs that have exactly eight uppercase letters as a name; therefore,

/www/mycompany/public/htdocs/AAAABBBB/ would match the preceding regular
expression.

<DirectoryMatch "~/www/mycompany/pubic/htdocs/[A-Z1{8}/*">

- Cross- For more details on regular expressions, see Appendix B.
Reference

<Files>

To control access by filename, you need to use the Files container. <Files> sec-
tions are processed in the order in which they appear in the configuration file, after

Chapter 4 4 Configuring Apache with Winnt MPM Directives 79

the <Directory> sections and .htaccess files are read, but before the
<Location> sections are read.

Syntax: <Files filename> ... </Files>

Default setting: None

Context: Server config, virtual host, per-directory
The f71ename argument should include a filename, or a wildcard string, where ?
matches any single character, and * matches any sequence of characters except

the / character. By using the ~ (tilde) character, you can enable extended regular
expression checking on the argument. For example:

<Files ~ "\.(zip|tar|tgz|arj|zoo)$">

would match any file with the .zip, .tar, .tgz, .arj, or .zoo extension. Unlike
<Directory> and <Location> sections, <Files> sections can be used inside
.htaccess files. When using these from within an .htaccess file, you don’t need
to append the pathname, because an .htaccess file only applies to the directory
where it is found.

<FilesMatch>

The FilesMatch container is exactly the same as the <FiTes> container, except
that it takes a regular expression as its argument.

Syntax: <FilesMatch regex> ... </Files>

Default setting: None

Context: Server config, virtual host, per-directory
For instance, the following example would match any file with the .zip, .tar, .tgz,

.arj,and .zoo extensions. Notice that you do not need the ~ (tilde) character in
this container to use a regular expression:

<FilesMatch "\.(zip|tar|tgz|arj|zoo)$">

<Location>

The <Location> container provides access control by URL. <Location> contain-
ers are processed in the order in which they appear in the configuration file, after
the <Directory> containers and .htaccess files are read.

Syntax: <Location URL> ... </Location>

Default setting: None

Context: Server, virtual host

80

Part | + Getting Started

The URL argument does not need the http://servername. It can use wildcard
characters such as ? (matches any single character) or * (matches any sequence of
characters except for the / character). You can also use an extended regular
expression by using the ~ character before the expression. For example, <Location
~ "/(my|your)/file"> would match URLs such as /my/file or your/file.

<LocationMatch>

The LocationMatch container is identical to the <Location> container, except that
its argument (URL) is a regular expression and it does not require a ~ (tilde) before
the expression. For example, <LocationMatch "/(my|your)/file"> would
match URLs such as /my/file or your/file.

Syntax: <LocationMatch regex> ... </LocationMatch>

Default setting: None

Context: Server config, virtual host

Virtual Host-Specific Directives

These directives are used for creating virtual hosts. By default, Apache services
only the Web site host specified by the ServerName directive. It is possible, how-
ever, to make Apache serve other Web sites using a virtual host container directive.
Note that many of the directives that I discussed earlier in the General Configuration
Directives section are also applicable to virtual hosts.

NameVirtualHost

If you plan to use name-based virtual hosts, you need to use the NameVirtualHost
directive. Although addr can be the host name, I recommend that you always use
an [P address.

Syntax: NameVirtualHost addr[:port]

Default setting: None

Context: Server config

For example, for a virtual host named www.mycompany . com that uses the IP address
192.168.1.200, the directive and virtual host definition would be:

NameVirtualHost 192.168.1.200

<VirtualHost 192.168.1.200>
ServerName www.mycompany.com
Other directives go here
</VirtualHost>

Chapter 4 4 Configuring Apache with Winnt MPM Directives 81

If you have multiple name-based hosts on multiple addresses, repeat the directive

for each address. In Listing 4-1, the first NameVirtualHost directive is used for the
www.mycompany.comand www. friendscomany.com virtual hosts. The second con-
tainer is used for the www.myclient.comand the www.herclient.com virtual hosts.

Listing 4-1: NameVirtualHost directive
NameVirtualHost 192.168.1.200
1

First virtual host that corresponds to the above directive
1
<VirtualHost 192.168.1.200>
ServerName www.mycompany.com
Other directives go here
</VirtualHost>

1
Second virtual host that corresponds to the above directive
#
<VirtualHost 192.168.1.200>
ServerName www.friendscompany.com
Other directives go here
</VirtualHost>

Another NameVirtualHost directive for a new set
of name-based virtual hosts that
use a different IP.

NameVirtualHost 192.168.1.100>

1
First virtual host that corresponds to 192.168.1.100
1
<VirtualHost 192.168.1.100>
ServerName www.myclient.com
Other directives go here
</VirtualHost>

1
Second virtual host that corresponds to 192.168.1.100

i#

<VirtualHost 192.168.1.100>
ServerName www.herclient.com
Other directives go here

</VirtualHost>

82

Part | + Getting Started

Tip

Optionally, you can specify a port number on which the name-based virtual hosts
should be used. For example:

NameVirtualHost 192.168.1.100:8080

ServerAlias
This directive lets you define an alias for your server’s primary hostname. When
you have a name-based virtual host with multiple I[P names (CNAME records in the
DNS database), you can use a single virtual host definition to service all of them.
Syntax: ServerAlias hostl [hostZ ...]
Default setting: None
Context: Virtual host

In the following example, www.sac-state.edu and www.csu.sacramento.edu are
aliases for the www. csus.edu virtual host.

NameVirtualHost 192.168.1.100
<VirtualHost 192.168.1.100>
ServerName www.csus.edu

ServerAlias www.sac-state.edu www.hornet.edu
</VirtualHost>

You can also use wildcard characters such as * in defining aliases.

N

ServerPath

The ServerPath directive sets the legacy URL path name for a host, for use with
name-based virtual hosts. Typically, this is used to support browsers that are not
HTTP 1.1-compliant.

Syntax: ServerPath pathname

Default setting: None

Context: Virtual host

<VirtualHost>

The VirtualHost container directive specifies a virtual host configuration. All
the enclosed directives found within the <VirtualHost> and the closing
</VirtualHost> apply only to the named virtual host. Any directive that is
allowed in a virtual host context may be used. When the server receives a request
for a document on a particular virtual host, it uses the configuration directives
enclosed in the <VirtualHost>.

Chapter 4 4 Configuring Apache with Winnt MPM Directives 83

Syntax: <VirtualHost addrl:port] ...> ... </VirtualHost>
Default setting: None

Context: Server config

To specify which IP address or IP name is to be used for a particular virtual host,
you can use any of the following:

4 An IP address. For example:

<VirtualHost 192.168.1.100>
J# directives go here
</VirtualHost>

4 An IP address with a port number. For example:

<VirtualHost 192.168.1.100:8080>
directive go here
</VirtualHost>

4 Multiple IP addresses. For example:

<VirtualHost 192.168.1.100 192.168.1.105>
directives go here
</VirtualHost>

4 Multiple IP addresses with port numbers. For example:

<VirtualHost 192.168.1.100:8000 192.168.1.105:10000>
J# directives go here
</VirtualHost>

Caution You can replace IP addresses with IP names, but this is not recommended; if the
DNS lookup necessary to determine the address fails for some reason, the server
may get confused and not service the virtual site at all.

The special name_default_ can be used, in which case, this virtual host will
match any IP address that is not explicitly listed in another virtual host. In the
absence of any _default_ virtual host, the primary server configuration, which
consists of all the definitions outside any VirtualHost section, is used when no
match occurs.

If a port is unspecified, then the port number defaults to the same port as the most
recent Port directive of the primary server. You may also specify * to match all
ports on that address.

Logging Directives

Logging server transactions is a must for any system running Apache. Server logs
provide valuable information, such as who accesses your Web site(s), which pages
are accessed, and which errors are generated by the server.

84 Part| 4 Getting Started

LogLevel

The LoglLevel directive sets the verbosity of the log message stored in error log
file. When you specify a log level, all the higher-level messages are written to a log.
So, if you specify the level to be crit, then only emerg, alert, and crit errors are
logged.

Syntax: LoglLevel Tevel

Default setting: LoglLevel error

Context: Server config, virtual host

Table 4-2 shows the available levels (in descending order) with their respective

meanings.
Table 4-2
LogDirective Levels
Level What It Means
Emerg Extreme emergency situation
Alert Immediate action required
Crit Citical errors
Error Error conditions
Warn Warning messages
Notice Notices of various kinds
Info Informational messages
Debug Debugging messages

The ErrorlLog directive specifies the log filename used to log error messages that
the server produces. If the filename does not begin with a slash (/), then it is
assumed to be relative to the ServerRoot.

Syntax: ErrorLog filename
Default setting: ErrorlLog Togs/error_Tog

Context: Server config, virtual host
If you need to disable error logging, you can use the following:

ErrorLog /dev/null

AI ote

Chapter 4 4 Configuring Apache with Winnt MPM Directives 85

It is very important that the permission settings for your server log directory indi-

~~ cate that only the Apache user (specified by the User directive) is allowed

read/write access. Allowing anyone else to write in this directory could potentially
create security holes.

PidFile
By using the PidFi1le directive, you can tell Apache to write the primary server
(that is, the daemon process) process ID (or PID) in a file. If the filename does not

begin with a slash (/), then it is assumed to be relative to the ServerRoot. The
PidFile directive is used only in standalone mode.

Syntax: PidFile filename

Default setting: PidFile logs/httpd.pid

Context: Server config
The PidFile directive’s primary use is to make it convenient for the Apache
administrator to find the primary Apache PID, which is needed to send signals to the
server. For example, if the PID file is kept in the /usr/Tocal/httpd/1ogs directory,

and its name is httpd.pid, an administrator can force Apache server to reread its
configuration by sending a SIGHUP signal from the shell prompt (as root) as follows:

ki1l -HUP 'cat /usr/local/httpd/Togs/httpd.pid’

The same command makes Apache reopen the ErrorlLog and Transferlog.

Caution As with any other log files, make sure the PID file is not writeable or even readable

by anyone other than the server process. For better security, you should make the
log directory read/write-able only by the Apache server user.

ScoreBoardFile

The ScoreBoardFile directive sets the path to the file used for storing internal
process data. If the filename does not begin with a slash (/), then it is assumed to
be relative to the ServerRoot. This file is used by the primary server process to
communicate with the child processes.

Syntax: ScoreBoardFile filename

Default setting: ScoreBoardFile Togs/apache_status

Context: Server config
If you want to find out if your system requires this file, just run the Apache server
and see whether a file is created in the specified location. If your system architec-
ture requires the file, then you must ensure that this file is not used at the same

time by more than one invocation of Apache. Also, make sure that no other user
has read or write access to this file, or even to the directory in which it is kept.

86 Part| 4 Getting Started

,Alote Because the processes have to perform disk 1/0 to communicate, this could
~— potentially cause a performance bottleneck; therefore, you should create a RAM
disk for this file, if possible. Consult your operating system manuals for details.

Authentication and Security Directives

The authentication and security directives discussed in the following sections enable
you to define authentication and access restrictions for your Web server. You can
use username- and password-based authentication to restrict access to certain
parts of your Web site. Also, you can use username-, IP address-, or hostname-
based access control to ensure that only valid users or systems are allowed access
to portions of your Web site.

AllowOverride

The AT1owOverride directive tells the server which directives declared in an
.htaccess file (as specified by AccessFileName) can override earlier directives
found in configuration files. When Override is set to None, the server does not
read the file specified by AccessFiTeName (default . htaccess). This could speed
up the response time of the server, because the server does not have to look for an
AccessFileName specified file for each request (see the AccessFileName section
for details).

Syntax: AllowOverride optionl optionZ ...
Default setting: A1TowOverride All

Context: directory

If you do want to allow AccessFileName-based control, you can specify one or
more of the options. The override options are:

4+ AuthConfig—Enables use of the authorization directives (such as
AuthDBMGroupFile, AuthDBMUserFile, AuthGroupFile, AuthName,
AuthType, AuthUserFile, and Require).

4 Filelnfo—Enables use of the directives controlling document types (such
as AddEncoding, AddLanguage, AddType, DefaultType, ErrorDocument, and
LanguagePriority).

4 Indexes —Enables use of the directives controlling directory indexing (such
as AddDescription, AddIcon, AddIconByEncoding, AddIconByType,
DefaultIcon,DirectorylIndex, FancyIndexing, HeaderName,
IndexIgnore, IndexOptions, and ReadmeName).

4 Limit—Enables use of the directives controlling host access (A11ow, Deny,
and Order).

4+ Options—Enables use of the directives controlling specific directory features
(Options and XBitHack).

Chapter 4 4 Configuring Apache with Winnt MPM Directives 87

AuthName

The AuthName directive sets the authentication realm name for a resource (such as
a directory) that requires authentication. The realm is usually displayed by a Web
browser in a pop-up dialog window when prompting for a user name and password
to access the requested (controlled) resource. There is no default realm name. The
primary purpose of this label is to inform users on the client side about what
resource they are trying to access.

Syntax: AuthName "authentication_realm_name
Default setting: None
Context: directory, .per-directory config

Override: AuthConfig

For example, “AuthName Secured Game Zone" informs users that they are
requesting to enter the Secured Game Zone area of a site. Note that for this direc-
tive to work, it must be accompanied by AuthType, Require, AuthUserFile and
AuthGroupFile directives.

AuthType

The AuthType directive selects the user authentication type for a directory.
Currently, only Basic HTTP authentication or Digest authentication types are
implemented in Apache. The Basic authentication should not be used for serious
needs; the password and username are transmitted in clear (plain) text. The pass-
word and username is retransmitted for each subsequent request that maps in the
same restricted directory or its subdirectories. The Digest authentication is more
secure than the Basic but it is not readily available for all Web browsers. See
Chapter 7 for details. The AuthType directive must be accompanied by AuthName
and requires other directives, such as AuthUserFile and AuthGroupFile, to work.

Syntax: AuthType Basic | Digest
Default setting: None

Context: directory, per-directory config

Override: AuthConfig

HostNameLookups

The HostNamelLookups directive instructs Apache to enable or disable a DNS
lookup for each request. When enabled, Apache stores the host name of the client
in the REMOTE_HOST environment variable of each CGI and SSI process it runs.

88

Part

ﬁ\lote

| 4+ Getting Started

Syntax: HostNameLookups on | off | double
Default setting: HostNamelLookups off

Context: Server, virtual host, directory, per-directory config

The on and of f values do what their names imply. The doub1e value refers to doing
a double-reverse DNS lookup —that is, after a reverse lookup is performed, a for-
ward lookup is then performed on that result. At least one of the IP addresses in the
forward lookup must match the original address. However, the CGI and SSI pro-
cesses do not get the results from the double DNS lookups.

No matter what you set this directive to, when mod_access (see Chapter 7) is
— used to control access by host name, a double-reverse lookup is performed, which
is not fast but necessary for ensuring security

[recommend that you keep the default setting for this directive. This will remove a
lot of unnecessary DNS traffic from the net. If you want to turn it on just so your log
files contain IP names instead of IP addresses, you may want to consider another

option, such as running the 1ogresolve utility to resolve IP addresses to IP names.

IdentityCheck

The IdentityCheck directive tells Apache to log remote usernames by interacting
with the remote user’s identd (identification daemon) process, or an RFC1413-
compliant server. This is rarely a useful directive because it will not work for all
systems. Most systems do not run identd processes to provide user identifications
to remote servers.

Syntax: IdentityCheck On | Off
Default setting: IdentityCheck Off

Context: server config, virtual host, directory, .per-directory config

Caution If you decide to use this directive in your configuration, be aware that the informa-

tion you log is not to be trusted in any way except for usage tracking. This directive
can also cause major performance problems because the server has to perform
checking for each request. Also, when a remote user is either not providing an
identd service or is behind a firewall or proxy, the checking process has to time out.

<Limit>

The <Limit> container directive is used to enclose a group of access control direc-
tives, which will then apply only to the specified HTTP methods. The method
names listed can be one or more of the following: GET, POST, PUT, DELETE, CONNECT,
and OPTIONS. If GET is used, it will also restrict HEAD requests. If you wish to limit
all methods, do not include any method in the <Limit> directive at all. Note that

Chapter 4 4 Configuring Apache with Winnt MPM Directives 89

this container cannot be nested, and neither can a <Directory> container appear
within it. Method names are case-sensitive.

Syntax: <Limit method method ... > ... </Limit>

Default setting: None

Context: All

<LimitExcept>

The <LimitExcept> container directive is used as the complete opposite of
<Limit> directive (<limit> limits named (i.e. arguments) methods and
<LimitExcept> limits everything other than the arguments). All the methods that are
not listed as arguments are limited.
Syntax: <LimitExcept method method ... > ... </LimitExcept>
Default setting: None

Context: All

In the following example, the limit applies to all HTTP methods except GET.

<LimitExcept GET>
directives
</LimitExcept>

LimitRequestBody

The LimitRequestBody directive enables you to set a limit on the size of the HTTP
request that Apache will service. The default limit is 0, which means unlimited. You
can set this limit from 0 to 2147483647 (2GB).

Syntax: LimitRequestBody bytes
Default setting: L imitRequestBody 0
Context: Server config, virtual host, directory, per-directory
Setting a limit is recommended only if you have experienced HTTP-based denial of

service attacks that try to overwhelm the server with large HTTP requests. This is a
useful directive to enhance server security.

LimitRequestFields

The LimitRequestFields directive allows you to limit number of request header
fields allowed in a single HTTP request. This limit can be 0 to 32767 (32K). This
directive can help you implement a security measure against large request based
denial of service attacks.

90

Part | + Getting Started

Syntax: LimitRequestFields number
Default setting: L imitRequestFields 100

Context: Server config

LimitRequestFieldsize

The LimitRequestFieldsize directive enables you to limit the size (in bytes) of a
request header field. The default size of 8190 (8K) is more than enough for most sit-
uations. However, if you experience a large HTTP request-based denial of service
attack, you can change this to a smaller number to deny requests that exceed the
limit. A value of 0 sets the limit to unlimited.

Syntax: LimitRequestFieldsize bytes

Default setting: L imitRequestFieldsize 8190

Context: Server config

LimitRequestLine

The LimitRequestLine directive sets the limit on the size of the request line. This
effectively limits the size of the URL that can be sent to the server. The default limit
should be sufficient for most situations. If you experience a denial of service attack
that uses long URLs designed to waste resources on your server, you can reduce
the limit to reject such requests.

Syntax: LimitRequestlLine bytes

Default setting: L imitRequestLine 8190

Context: Server config

Require
By using the Require directive, Apache determines which users or group can
access a restricted directory. There are three types of entity names available: user,
group, valid-user. For example, require user joe jenny tells Apache to allow
only joe or jenny to enter the area after successful authentication. Only the named
users can access the directory.

Syntax: Require entity_name entity_name. ..

Default setting: None

Context: directory, per-directory config

Override: AuthConfig

Chapter 4 4+ Configuring Apache with Winnt MPM Directives

As an example of a group-based access requirement, only users in the named
groups can access the directory in the following:

Require group my-group your-group his-group her-group
With the following line, all valid users can access the directory.
require valid-user

If the require directive appears in a <Limit> section, then it restricts access to the
named methods; otherwise, it restricts access for all methods. For example:

AuthType Basic

AuthName "Game Zone Drop Box"
AuthUserFile /www/netgames/.users
AuthGroupFile /www/ntgames/.groups

<Limit GET>
require group coders
</Limit>

If the preceding configuration is found in an . htaccess file in a directory, only a
group called coders is allowed access to the directory to retrieve files via the HTTP
GET method. To work correctly, the Requi re directive must be accompanied by
AuthName and AuthType directives, and by directives such as AuthUserFile and
AuthGroupFiTe.

r Cross- See Chapter 7 for details on authentication.
Reference

Satisfy

If you have created a basic HTTP authentication configuration in which both AT11ow
and Require directives are used, you can use the Satisfy directive to tell Apache
what authentication requirements will be sufficient.

Syntax: Satisfy Any | All

Default setting: Satisfy all

Context: directory, per-directory
The value of the Satisfy directive can be either all or any. If the valueis all,

then the authentication succeeds only if both AT11ow and Require succeed. If the
value is any, then the authentication succeeds if either A11ow or Require succeeds.

The Satisfy directive is useful only if access to a particular area is being restricted
by both the username/password and the client host address. In this case, the

91

92

Part

| 4+ Getting Started

default behavior (a11) requires that the client pass the address access restriction
and enter a valid username and password. With the any option, the client is granted
access if the user either passes the host restriction or enters a valid username and
password. This directive can be used to restrict access to an area by using pass-
words, while simultaneously giving access to all clients from a particular IP address
pool (that is, a set of IP addresses) without requiring them to enter passwords.

ScriptinterpreterSource

The ScriptinterpreterSource directive allows you to specify how Windows
finds the interpreter for a script. Normally, the script interpreter is detected using
the #! line found in a script. However, setting this directive to registry will force
Windows to lookup the registry for the script’s extension to find the associated
program (that is, interpreter) for it.

Syntax: ScriptInterpreterSource Registry | Script
Default setting: ScriptinterpreterSource script

Context: directory, .htaccess

MPM threaded-Specific Directives

‘\Iote

This is like prefork MPM but instead of each child process having a single thread,
each child process is allowed to have a specified number of threads. Because
threads are more resource efficient than processes, this MPM is very scalable. Each
thread within a child process can service a different request.

A process is added or removed by monitoring its spare thread count. For example,
if a process has less than the minimum number of spare threads, a new process is
added. Similarly, when a process has a maximum number of idle threads, it is killed.

All processes run under the same user and group ID assigned to Apache server.
-

CoreDumpDirectory
The CoreDumpDirectory directive sets the directory that Apache tries to switch to
before crashing and dumping the core (memory image of the server) file. The
default location is the directory specified by the ServerRoot directive.

Syntax: CoreDumpDirectory directory_path

Default setting: Server’s root directory

Context: Server config

J/LMe

Chapter 4 4 Configuring Apache with Winnt MPM Directives 03

Group

The Group directive should be used in conjunction with the User directive. Group
determines the group under which the standalone server answers requests. To use
this directive, the standalone server must be run initially as root. The Group direc-
tive can be assigned a group number as well. Group looks up group names and their
corresponding numeric values in your /etc/group file.

Syntax: Group Unix-group

Default setting: Group #-1

Context: Server config, virtual host

All the warnings and recommendations | provide for the User directive (later)

~ apply to this directive as well. Make sure that you read the User directive details

later in this chapter.

Listen

By default, Apache responds to requests on all the IP addresses attached to the
server machine, but only to the port address specified by the Port directive. The
Listen directive can be used to make this situation more configurable. You can use
the Listen directive to tell Apache to respond to a certain IP address, an IP
address and port combination, or just a port by itself.

Syntax: Listen [IP address:] port_number
Default setting: None
Context: Server config

Although Listen can be used instead of BindAddress and Port, you may have to
use the Port directive if your Apache server generates URLs that point to itself.

Multiple Listen directives may be used to specify a number of addresses and ports
to listen to. The server will respond to requests from any of the listed addresses
and ports. For example, to make the server accept connections on both port 80 and
port 8080, use:

Listen 80
Listen 8080

The following examples make Apache accept connections on two IP addresses and
port numbers:

Listen 192.168.1.100:80
Listen 192.168.1.101:8080

94 Part| 4 Getting Started

ListenBacklog

The ListenBacklog directive enables you to take defensive action against a known
security attack called Denial of Service (DOS) by enabling you to set the maximum
length of the queue of pending connections. Increase this if you detect that you are
under a TCP SYN flood (DOS) attack; otherwise, you can leave it alone.

Syntax: ListenBacklog backlog

Default setting: ListenBacklog 511

Context: Server config

LockFile

If Apache is compiled with the USE_FCNTL_SERTIALIZED_ACCEPT or
USE_FLOCK_SERTALIZED_ACCEPT options, a lock file is used. You can use the
LockFiTe directive to set the path to the filename of the lock file. Make sure that
only the Apache server has read and write access to the file.

Syntax: LockFile filename

Default setting: LockFile Togs/accept.lock

Context: server config

Aote Storing the lock file on a Network File System (NFS) mounted partition is not a
~— good idea because NFS is known to be problematic when it comes to file locking
and security.
MaxClients

The MaxClients directive limits the number of simultaneous requests that Apache
can service. Because Apache uses one child server for each request, this is also the
effective limit for the number of child servers that can exist at the same time.

Syntax: MaxClients number
Default setting: MaxClients 256

Context: Server config

The default limit is really the hard limit set in the httpd. h file in the Apache source
distribution. This setting should be fine for most typical-to-moderate load sites. The
Apache programmers put the hard limit there for two reasons: they do not want the
server to crash the system by filling out some kernel table, and this maximum limit
keeps the scoreboard file small enough to be easily readable. When the server
reaches the maximum request count, it puts the incoming requests in a wait state
until it is free to service them.

Tip

Chapter 4 4+ Configuring Apache with Winnt MPM Directives

If you have a high-performance server system and have the necessary bandwidth,
~, you can recompile the server with a higher hard limit by modifying appropriate

4 MPM header file (npmdefauls.h). See Table 2-3 in Chapter 2.

MaxRequestsPerChild

Apache launches a child server process to service a request; however, a child
server can process multiple requests. The number of requests a child server can
process is limited by the MaxRequestsPerChild directive.

Syntax: MaxRequestsPerChild number
Default setting: MaxRequestsPerChild 0

Context: Server config

After servicing the maximum number of requests, the child process terminates. If
the MaxRequestsPerChild is 0, then the process will never expire. If you suspect
there are libraries on your operating system (for example, Solaris) that have
memory-leaking code, you may want to set this directive to a nonzero value. This
enables you to define a life cycle for a child process, reducing the chances of a
process consuming leaked memory and slowly eating up all available memory. It
also provides you with a small load-average number for your system, because the
Apache-related load is reduced as your Web server becomes less busy.

MaxSpareThreads

The MaxSpareThreads directive sets the maximum number of idle threads. The
threaded MPM deals with idle threads on a server-wide basis, which means that if
there are too many idle threads in the server, it starts killing child processes until
the number of idle threads is down to the number specified here.

Syntax: MaxSpareThreads number

Default setting: MaxSpareThreads 10 (for Perchild MPM) or 500 (for
threaded MPM)

Context: Server config

The perchild MPM counts idle threads on a per child basis, which means that if
there are too many idle threads in a child the threads are destroyed until thread
count per child is less than the number specified with MaxSpareThreads directive.

MinSpareThreads

The MinSpareThreads directive sets the minimum number of idle threads. The
threaded MPM deals with the idle threads on a server-wide basis, which means
that when there are fewer idle threads than the number specified here Apache cre-
ates new child processes to bring the total thread count to at least this number.

95

96

Part | + Getting Started

Alote

Syntax: MinSpareServers number

Default setting: MaxSpareThreads 5 (for Perchild MPM) or 250 (for
threaded MPM)

Context: Server config
The perchild MPM handles idle thread count on a per child basis; thus, when a

child has less than the number of minimum threads specified here, the server
creates new threads within that child process.

SendBufferSize

The SendBufferSize directive sets the TCP send buffer size to the number of
bytes specified. On a high-performance network, setting the directive to a higher
value than the operating system defaults may increase server performance.
Syntax: SendBufferSize bytes
Default setting: None

Context: Server config

StartServers

The StartServers directive sets the number of child Apache server processes
that are created on startup. The number of Apache child processes needed for a
certain time period is dynamically controlled. The primary Apache server (the dae-
mon process) launches new child processes as it encounters higher request loads.
The actual number of child processes is controlled by the MinSpareServers,
MaxSpareServers, and the MaxC1ients directives. Therefore, you have little to
gain by adjusting this parameter.

Syntax: StartServers number
Default setting: StartServers 5

Context: Server config

The StartServers directive is useful only when the Apache server is running as

~ a standalone server. In other words, you need to have ServeType set to stand-

alone for this directive to be effective.

When running Microsoft Windows, this directive sets the total number of child pro-

~ cesses running. Because the Windows version of Apache is multithreaded, one

process handles all the requests. The rest of the processes are held in reserve until
the primary process dies.

Chapter 4 4 Configuring Apache with Winnt MPM Directives o7

ThreadsPerChild

The Windows version of Apache is a multithreaded server. The ThreadsPerChild
directive tells the server how many threads it should use. It also determines the
maximum number of connections that the server can handle at any given time.
Therefore, this value should be set reasonably high to allow the maximum number
of possible hits.

Syntax: ThreadsPerChild number
Default setting: ThreadsPerChild 50

Context: Server config (Windows)

User

The User directive sets the user ID that is used by the Apache children that ser-
vices HTTP requests. Once the Apache server is started, it launches child pro-
cesses to respond to requests. However, these child processes are not run as root.
The parent Apache process (often called the daemon) changes the child process
user ID to whatever is set in the User directive, as long as it is a valid user ID.

Syntax: User unix-userid
Default setting: User #-1

Context: Server config, virtual host

If you start the server as a nonroot usey, it fails to change to the user ID specified by
the User directive, and instead continues to run as the original user. If you do start
the server as root, then it is normal for the parent Apache process to remain run-
ning as root; however, it runs the child processes as the user specified by the User
directive.

Caution Never set the User (or Group) directive to root unless you know exactly what you
are doing and what the dangers are.

You can also use user ID numbers, which you can usually find in your /etc/
password file. If you plan on using a numeric value instead of the actual username,
the number should be preceded by a # sign.

Many Apache administrators use the default nobody user for their Web sites. This
user is not available on all Unix systems, and is not always desirable. I highly rec-
ommend that you employ a unique user and group ID (see the Group directive) for
your Apache server. Doing so will give you better control of what the server can or
cannot access. The user ID you decide to use for Apache child processes should
have very few access privileges. It should not be able to access files that are not
intended to be visible to the outside world, and similarly, the user should not be
able to execute applications that are not meant for HTTP requests.

98

Part

“\Iote

| 4+ Getting Started

Use of this directive in the <VirtualHost> container requires a properly config-

~— ured suEXEC wrapper. When the wrapper is used inside a <VirtualHost> con-
tainer in this manner, only the user that CGls are run as is affected. Non-CGl
requests are still processed with the user specified in the main User directive. So,
the primary User directive cannot be completely overridden.

MPM perchild-Specific Directives

In this MPM model, a set number of child processes are started with a specified
number of threads. As request load increases the processes add new threads as
needed. When request count reduces, processes shrink their thread counts using
a minimum and maximum thread count setting.

AssignUserlD

The AssignUserID directive assigns a username and group name to a virtual host.

Syntax: AssignUserID username groupname
Default setting: None

Context: Virtual host

For example, in the following, the virtual host called www.afactcat.comis assigned
to user mrbert and the group called wheel. You must use the ChildPerUserID to
specify the number of child processes that can service this virtual host.

<VirtualHost 192.168.1.100>
ServerName www.afatcat.com
AssignUserID mrbert wheel

i

Other directives go here

#
</VirtualHost>

Alote username and groupname must exist in your system. For example, on a Linux

~ system username and groupname must exist in the /etc/passwd and /etc/
group files, respectively.

ChildPerUserlD

The ChildPerUserID directive assigns a number of child processes to a given user-
name and group name for virtual hosts.

ﬁ\lote

Chapter 4 4 Configuring Apache with Winnt MPM Directives 99

Syntax: ChildPerUserID number_of_child username groupname
Default setting: None
Context: Virtual host

For example, in the following, the virtual host www.afatcat.com will be serviced
by 10 Apache children who run under the username mrbert and group wheel:

ChildPerUserID 10 mrbert wheel

<VirtualHost 192.168.1.100>
ServerName www.afatcat.com
AssignUserID mrbert wheel

i

Other directives go here

##
</VirtualHost>

username and groupname must exist in your system for Apache to be able to use
— them. For example, on a Linux system the username and groupname must exist in
the /etc/passwd and /etc/group files, respectively.

ConnectionStatus

The ConnectionStatus directive sets if status information is internally stored or
not. When set to on, modules that use status information will function properly.

Syntax: ConnectionStatus On | Off
Default setting: ConnectionStatus On

Context: Server config

CoreDumpDirectory

See CoreDumpDirectory directive in the “MPM threaded-Specific Directives” section.

Group

See Group directive in the “MPM threaded-Specific Directives” section.

Listen

See Listen directive under the “MPM threaded-Specific Directives” section.

100

Part | + Getting Started

ListenBacklog

See ListenBacklog directive under the “MPM threaded-Specific Directives” section.

LockFile

See LockFile directive under the “MPM threaded-Specific Directives” section.

MaxRequestsPerChild

See MaxRequestsPerChild directive under the “MPM threaded-Specific Directives’
section.

9

MaxSpareThreads

See MaxSpareThreads directive under the “MPM threaded-Specific Directives”
section.

MaxThreadsPerChild

The MaxThreadsPerChild directive sets the maximum number of threads per
child. The default number is a hard limit. If you wish to change this you have to
change the appropriate header file. See Table 2-3 in Chapter 2 for details.
Syntax: MaxThreadsPerChild number
Default setting: MaxThreadsPerChild 64

Context: Server config

MinSpareThreads

See MinSpareThreads directive under the “MPM threaded-Specific Directives”
section.

NumServers
The NumServers directive sets the number of simultaneous child processes that
are created by Apache.

Syntax: NumServers number

Default setting: NumServers 2

Context: Server config

Chapter 4 4 Configuring Apache with Winnt MPM Directives] (]

The per-child MPM uses the value set by this directive to determine the number of
simultaneous children. The default value 2 might not be appropriate for most sys-
tems. You might want to set this to a higher limit such as 15 or 20. A higher number
spawns more Apache processes, which means more simultaneous connections can
be handled.

PidFile

See PidFile directive under the “MPM threaded-Specific Directives” section.

ScoreBoardFile

See ScoreBoardFile directive under the “MPM threaded-Specific Directives” section.

SendBufferSize

See SendBufferSize directive under the “MPM threaded-Specific Directives” section.

StartThreads

The StartThreads directive sets the initial thread count per child. Because thread
counts are dynamically controlled, setting this to a higher number than the default
is not necessary in most cases.

Syntax: StartThreads number

Default setting: StartThreads 5

Context: Server config

User

See User directive under the “MPM threaded-Specific Directives” section.

MPM winnt-Specific Directives

This is the MPM for all versions of the Windows platform, including Windows
NT/2000/XP and Windows 9x/ME. This module is multi-threaded; using this module
Apache will create a parent process and a child process. The child process creates
all the threads that service the request. This module now takes advantage of some
Windows-only native function calls, which allows it to perform better than the ear-
lier versions of Apache server on Windows platform.

102

Part | + Getting Started

CoreDumpDirectory

See CoreDumpDirectory directive under the “MPM threaded-Specific Directives”
section.

Listen

See Listen directive under the “MPM threaded-Specific Directives” section.

ListenBacklog

See ListenBacklog directive under the “MPM threaded-Specific Directives” section.

MaxRequestsPerChild

See MaxRequestsPerChild directive under the “MPM threaded-Specific Directives’
section.

i

PidFile

See PidFile directive under the “MPM threaded-Specific Directives” section.

SendBufferSize

See SendBufferSize directive under the “MPM threaded-Specific Directives” section.

ThreadsPerChild

See ThreadsPerChild directive under the “MPM threaded-Specific Directives”
section.

MPM prefork Specific Directives

The prefork MPM creates a pool of child processes to service requests. Each child
process has a single thread. For example, if Apache starts 30 child processes, it can
service 30 requests simultaneously.

If something goes wrong and the child process dies, only a single request is lost.
The number of child processes is controlled using a minimum and maximum set-
ting. When the number of requests increases, new child processes are added until
the maximum is reached. Similarly, when the requests fall, any extra child pro-
cesses are killed.

Chapter 4 4+ Configuring Apache with Winnt MPM Directives

CoreDumpDirectory

See CoreDumpDirectory directive under the “MPM threaded-Specific Directives”
section.

Group

See Group directive under the “MPM threaded-Specific Directives” section.

Listen

See Listen directive under the “MPM threaded-Specific Directives” section.

ListenBacklog

See ListenBacklog directive under the “MPM threaded-Specific Directives” section.

LockFile

See LockFile directive under the “MPM threaded-Specific Directives” section.

MaxClients

See MaxClients directive under the “MPM threaded-Specific Directives” section.

MaxRequestsPerChild

See MaxRequestsPerChild directive under the “MPM threaded-Specific Directives”
section.

MaxSpareServers
This directive lets you set the number of idle Apache child processes that you want
on your server.

Syntax: MaxSpareServers number

Default setting: MaxSpareServers 10

Context: Server config
If the number of idle Apache child processes exceeds the maximum number speci-
fied by the MaxSpareServers directive, then the parent process Kills off the excess

processes. Tuning of this parameter should only be necessary for very busy sites.
Unless you know what you are doing, do not change the default.

103

104

Part | + Getting Started

MinSpareServers

The MinSpareServers directive sets the desired minimum number of idle child
server processes. An idle process is one that is not handling a request. If there are
fewer idle Apache processes than the number specified by the MinSpareServers
directive, then the parent process creates new children at a maximum rate of 1 per
second. Tuning of this parameter should only be necessary on very busy sites.
Unless you know what you are doing, do not change the default.

Syntax: MinSpareServers number
Default setting: MinSpareServers 5

Context: Server config

PidFile

See PidFile directive under the “MPM threaded-Specific Directives” section.

ScoreBoardFile

See ScoreBoardFile directive under the “MPM threaded-Specific Directives” section.

SendBufferSize

See SendBufferSize directive under the “MPM threaded-Specific Directives” section.

StartServers

See StartServers directive under the “MPM threaded-Specific Directives” section.

User

See User directive under the “MPM threaded-Specific Directives” section.

+ o+ 0+

Apache Modules

In Chapter 4, I discuss core and multiprocessing module
(MPM) directives. Apache offers many more directives,
which are available from the modules distributed in the stan-
dard source distribution. These modules offer a great deal of
functionality via the use of directives. This chapter discusses
these modules and their directives.

An Overview of the Modules

Instead of listing all the modules in alphabetic order, I have
grouped modules based on their similarities in functionality.
The modules are divided into the following categories:

4+ Environment-related: These directives allow you to set
and reset environment variables.

4 Authentication and access control: These directives
allow you to authenticate and authorize user access to
restricted parts of your Web site.

4+ Dynamic contents generation: These directives allow
you to run external programs such as CGI scripts or
Server Side Includes to create dynamic contents.

4+ Content-type configuration: These directives allow you
to control MIME types of files.

4+ Directory listing: These directives allow you to control
how directory listings are formatted.

4 Response header: These directives allow you to control
HTTP response headers.

4 Server information and logging: These directives allow
you to control server logs and status information.

4 URL mapping: These directives allow you to map,
rewrite, and create aliases for a URL.

4 Miscellaneous modules: These directives allow you to
control miscellaneous aspects of Apache such as proxy
service, WEBDEV module, etc.

CHAPTER

+ 0+ o+
In This Chapter

How to use
environment modules

How to use
authentication and
access control
modules

How to use dynamic
contents generation
modules

How to use directory-
listing modules

How to use content
type modules

How to use dynamic
contents generation
modules

How fo use response
header modules

How to use server
information and
logging modules

How fo use URL map
modules

How to use other
miscellaneous

modules

+ ¢+

106 Part | + Getting Started

Environment-Related Modules

The modules listed in Table 5-1 enable you to manipulate the environment that is
available to other modules or to external programs, such as CGI (Common Gateway
Interface) scripts, SSI (Server-Side Include), mod_per1 scripts, PHP scripts, Java
servlets, and the like.

Table 5-1
Environment-Related Modules
Module Purpose
mod_env Passes environments to external programs such as CGI and SSI scripts.
mod_setenvif Sets conditional environment variables using information from the
client side.

mod_unique_id This module generates a unique ID per request. It has no directives.
This module is not compiled by default. You must configure the source
by using --enable-unique-id option with the configure script
and by compiling and installing Apache.

mod_env

mod_env is compiled by default. It enables you to pass environment variables to
external programs such as CGI scripts, SSI, mod_per1 scripts, PHP scripts, and the
like. mod-env has the following directives.

PassEnv

The PassEnv directive tells the module to pass one or more environment variables
from the server’s own environment to the CGI and SSI scripts.

Syntax: PassEnv variable [...]

Context: Server config, virtual host

For example, the following directive passes the HOSTTYPE and PATH environment
variables to programs.

PassEnv HOSTTYPE PATH

Chapter 5 4 The Apache Modules 1 (7

SetEnv

The SetEnv directive sets an environment variable to a given value, which is then
passed on to CGI/SSI scripts. You can only define a single variable and value pair
per SetEnv directive.

Syntax: SetEnv variable value

Context: Server config, virtual host

For example, the following SetEnv directive sets the CURRENT_CITY variable to
SACRAMENTO:

SetEnv CURRENT_CITY SACRAMENTO

UnsetEnv

The UnsetEnv directive removes one or more environment variables from those
that are passed to CGI/SSI scripts. This can be used to ensure that certain environ-
ment variables that are available to the Apache server are not available to your CGI
scripts.

Syntax: UnsetEnv variable [...]
Context: Server config, virtual host

For example, the following UnsetEnv directive removes the CURRENT_STATE
variable from the environment variable list:

UnsetEnv CURRENT_STATE

mod_setenvif

The mod_setenvif module is compiled in Apache by default. It enables you to
create custom environment variables using information from an HTTP request. You
can use such information in rewriting URLs or redirecting users to different pages.

BrowserMatch

The BrowserMatch directive sets and unsets custom environment variables when
the regular expression matches a pattern found in the User-Agent header of a
HTTP request. The User-Agent header is sent by Web clients such as Web
browsers, Web robots, and the like.

Syntax: BrowserMatch regex variablel=value] [...]

Context: Server config

108

Part | + Getting Started

ﬁ\l ote

For example, the following sets a variable called vbscript to the value no if the
User-Agent header field of the HTTP request contains the word Mozi11a, and an
environment variable called javascript is set to 1 because no value was specified
for this variable:

BrowserMatch ~Mozilla vbscript=no javascript
Let’s look at another example:

BrowserMatch IE vbscript !javascript
Here, the variable javascript is removed and the vbscript is set to 1 if the word
IE is found in the User-Agent HTTP request header. The ! character removes the

variable from the environment.

A regular expression match is case sensitive.

-

BrowserMatchNoCase
The BrowserMatchNoCase directive is same as the BrowserMatch directive, except

that it provides case-insensitive matching for regular expressions.
Syntax: BrowserMatchNoCase regex variablel[=value] [...]

Context: Server config
For example, the following directive matches MSTE, msie, Msie, and so on:

BrowserMatchNoCase "MSIE vbscript=yes

SetEnvif

Like the BrowserMatch and BrowserMatchNoCase directives, the SetEnvIf direc-
tive enables you to set and unset custom environment variables. Actually,
BrowserMatch and BrowserMatchNoCase are two special versions of SetEnvIf.
These two directives can only perform the regular expression on the User-Agent
HTTP request header field, whereas SetEnvIf can be used for all request header
fields, as well as other request-related information, such as remote host name
(Remote_Host), remote IP address (Remote_Addr), request method
(Request_Method), requested URI (Request_URI), and referrer (Referer).

Syntax: SetEnvIf attribute regex envar[=valuel] [...]

Context: Server config

For example, the following SetEnvIf directive sets the 1ocal_user variable to
true if the Remote_Host HTTP header is set to yourdomain.com.

SetEnvIf Remote_Host "yourdomain\.com" local_user=true

Chapter 5 4 The Apache Modules 1 (09

SetEnvifNoCase

The SetEnvIfNoCase directive is the same as SetEnvIf, except that it offers case-
insensitive regular expression matches.

Syntax: SetEnvIfNoCase attribute regex variablel[=valuel [...]

Context: Server config

mod_unique_id

The mod_unique_id module provides a magic token for each request that is guar-
anteed to be unique across “all” requests under very specific conditions. The
unique identifier is even unique across multiple machines in a properly configured
cluster of machines. The environment variable UNTQUE_1D is set to the identifier for
each request. There are no directives for this module.

Authentication and Access Control Modules

Apache has a number of modules to perform authentication and authorization
tasks. In most cases, the authentication modules use basic HTTP authentication,
which uses plain text passwords. The authorization module allows you to control
access to a directory of your Web site via a username or IP address. The modules
shown in Table 5-2 enable you to perform authentication and access control tasks.

Table 5-2

Authentication and Access Control Modules
Module Purpose
mod_auth This is the standard authentication module, which implements

Basic HTTP authentication. See Chapter 7 for details.

mod_auth_anon Gives anonymous user access to authenticated areas.
mod_auth_dbm Provides user authentication using DBM files.
mod_auth_db Provides User authentication using Berkeley DB files.

mod_auth_digest This module implements Digest authentication using Message
Digest 5 (MD5).

mod_access This module allows you to authorize access by using host name or
IP address. See Chapter 7 for details.

110

Part | + Getting Started

mod_auth_anon

The mod_auth_anon module enables anonymous access to authenticated areas. If
you are familiar with anonymous FTP servers, this is very similar to such a setup.
All users can use a user ID called “anonymous” and their e-mail addresses as the
password to get access. The e-mail address entered is stored in log files and can be
used to perform user tracking or to create a mailing list of prospective clients.

You have to enable this module by using the --enable-auth-anon option with the
configure script in the source distribution, and by compiling and installing Apache.

Anonymous
By using the Anonymous directive you can specify one or more usernames that can
be used to access the area. It is a good idea to keep the username “anonymous” in
your chosen list, because it is widely associated with anonymous access. If the
username you choose has a space character in it, make sure that the username is
surrounded by quotation marks.

Syntax: Anonymous user user

Context: Directory, per-directory access control file (.htaccess)

Override: AuthConfig

For example, the following directive allows users to enter Unregistered User or
anonymous as the username to enter an anonymous area.

Anonymous "Unregistered User" anonymous

The username strings are not case sensitive.
/

Anonymous_Authoritative
When set to on, the anonymous authentication becomes the authoritative authenti-
cation scheme for a directory. In other words, if you have multiple authentication
requirements for a directory and it also has this directive set, then the other methods
will be ignored.

Syntax: Anonymous_Authoritative On | Off

Default setting: Anonymous_Authoritative Off

Context: Directory, per-directory access control file (.htaccess)

Override: AuthConfig

Chapter 5 + The Apache Modules] 7]

Anonymous_LogEmail
When the Anonymous_LogEmail directive is set to on, whatever is entered in the

password field of the browser’s pop-up authentication window is logged in the
Apache access log file.

Syntax: Anonymous_LogEmail On | Off

Default setting: Anonymous_LogEmail On

Context: Directory, per-directory access control file (.htaccess)

Override: AuthConfig

Anonymous_MustGiveEmail
When set to On, the Anonymous_MustGiveEmail directive enables the module to

reject access requests that do not provide passwords in the form of e-mail addresses.
Syntax: Anonymous_MustGiveEmail On | Off
Default setting: Anonymous_MustGiveEmail On
Context: Directory, per-directory access control file (.htaccess)
Override: AuthConfig

Caution You should not trust the e-mail addresses that people enter when this directive is
set to On, because there is no way of checking who entered whose e-mail address.

Anonymous_NoUserID
If you want the users to leave the username field of the pop-up window empty, set

the Anonymous_NoUserID directive to On; otherwise, a username that matches the
values provided in the Anonymous directive is required.

Syntax: Anonymous_NoUserID On | Off

Default setting: Anonymous_NoUserID Off

Context: Directory, per-directory access control file (.htaccess)

Override: AuthConfig

Anonymous_VerifyEmail

When the Anonymous_VerifyEmail directive is set to on, it requires that the pass-
word be a valid e-mail address. However, the validity check is limited. The module
only checks for an @ symbol and a period (.) in the password field. If the entered
password has both of these symbols in it, it is accepted.

Syntax: Anonymous_VerifyEmail On | Off
Default setting: Anonymous_VerifyEmail Off

112 Part | + Getting Started

ﬁ\lote

e

Context: Directory, per-directory access control file (.htaccess)
Override: AuthConfig

The following configuration shows how the preceding directives can be used to
provide anonymous access to a directory.

Anonymous_NoUserId off

Anonymous_MustGiveEmail on

Anonymous_VerifyEmail on

Anonymous_LogEmail on

Anonymous anonymous guest "I do not know"

AuthName Use '"anonymous' & Email address for guest entry
AuthType basic

require valid-user

mod_auth_dbm

Text file-based authentication (using mod_auth) is inefficient for high-speed
processing and could negatively affect a Web server’s performance when a great
number of users (more than 2000) need authenticated access to restricted Web
sections. The mod_auth_dbm module is a better choice in such a case. The
mod_auth_dbm module uses DBM files instead of text files to store data. A DBM file
is a special type of data file that allows faster random access to stored data.

Actually if you have a great many users, consider mod_auth_mysql-based or
Apache: :AuthDBI-based authentication discussed in Chapter 7. DBM-based
authentication is only recommended if you cannot use a database.

A DBM file stores data records in a key=value pair and keeps a computed index
table for the keys in the file. By using the index table in a DBM file, it is possible to
retrieve the record associated with the key faster than the time needed to parse a
large text file with tens of thousands of records. Many DBMs are available, the most
common being GDBM, NDBM, SDBM, and Berkeley DB (BSD-DB). Table 5-3 shows a
list of features for these DBMs.

Table 5-3
DBM Features
Features NDBM SDBM GDBM BSD-DB
Licensing restrictions Unknown No Yes No
Byte-order independent No No No Yes

Default size limits 4K 1K None None

Chapter 5 4 The Apache Modules |13

Features NDBM SDBM GDBM BSD-DB
Creates FTP-safe files No Yes Yes Yes
Speed Unknown Slow Medium Fast
Database size Unknown Small Large Medium
Code size Unknown Small Large Large
Source comes with Perl No Yes No No

This table is based on the information found in Perl 5 documentation. Before you
can use any DBM with Apache, you have to make sure the DBM you choose is
already installed in your system. Do this by confirming that the DBM library files
are located in your system’s default library directory. You are going to need Perl
with DBM support. Make sure you have the latest version of Perl compiled with the
chosen DBM support.

You can download Perl from www. per1. com. Configuring Perl for DBM support is
quite easy. Just run the configuration script, and it will prompt you for the DBM
support. For example, if you choose NDBM or GDBM as your desired DBM, and if
you have them installed on your system, the Perl configuration script should ask
whether you want to compile Perl with - 1ndbm, -1gdbm, and library flags.

After you have installed the appropriate DBM libraries on your system, you then
need to configure Apache for support of DBM files, because the standard Apache
distribution does not enable DBM support. Configure Apache source by using
--enable-auth-dbm option with configure script, and by compiling and installing
Apache as usual.

If you have trouble compiling Apache, try adding the -1your dbmname to
EXTRA_LIBS in the Configuration file. For example, if you are using GDBM,
you can add -1gdbm so that EXTRA_LIBS=-1gdbm. Make sure you rerun the
configure script and run make again afterwards. In case of problems, it might be
best to try GNU GDBM because it is heavily used by many different systems and
you are likely to get help in USENET newsgroups.

After Apache is properly compiled for DBM files, you can use dbmmanage to create a
DBM user file. Begin by using the dbmmanage Perl script found in the support direc-
tory of the standard Apache distribution (or the source distribution) for creating a
DBM-based user file. The dbmmanage Perl script can create many popular DBM files
such as NDBM, GDBM, and Berkley DB files. This script can be used to create a new
DBM file, to add users and passwords, to change passwords, to delete users, or to
view user information. Before using the script, you should modify the following line
in the script so that the DBM you want to use is listed as the first item in the ISA
array:

BEGIN { @AnyDBM_File::ISA = qw(DB_File, NDBM_File, GDBM_file) }

114

Part | + Getting Started

For example, if you plan to use GDBM files, change the line to:

BEGIN { @AnyDBM_File::ISA = qw(GDBM_file , DB_File, NDBM_File) }

To find out what options the script provides, run it as follows:
./dbmmanage

This shows you a syntax line with all the possible options. To create a new DBM file
called /www/secrets/myuserdbm by adding a user named reader, enter the following
command:

./dbmmanage /www/secrets/myuserdbm adduser reader

The script will ask you to enter (and reenter) a password for the user reader. After
you have done so, it will add the username and encrypted password to the
myuserdbm DBM file. Do not use the add option to add a user because it does not
encrypt the password. To see a list of all users in a DBM file, use the following
script:

./dbmmanage /path/to/your/dbmfile view

After you have recompiled Apache with DBM support, you can use the module
mod_auth_dbm to provide DBM-based Basic HTTP authentication. Note that for
Berkeley DB you have to use mod_auth_db instead of mod_auth_dbm.

The mod_auth_dbm module provides the directives AuthDBMUserFI1e,
AuthDBMGroupFile, and AuthDBMAuthoritative. Let’s take a look at each of these
directives and some examples that use the mod_auth_dbm module.

AuthDBMUserFile

The AuthDBMUserFile directive sets the fully qualified pathname of a DBM file to
be used as the user file for DBM authentication. The file contains a key=value pair
per record, in which the username is the key and the crypt ()-encrypted password
is the value. Note that each field in the record is separated by a colon, and arbitrary
data can be appended after the initial username and password fields.

Syntax: AuthDBMUserFile filename
Context: Directory, per-directory access control file (.htaccess)

Override: AuthConfig

Caution Never store user database files inside your Web document tree because someone

might download the entire user database and abuse it.

AuthDbmGroupFile

The AuthDbmGroupFile directive sets the fully qualified pathname of the group file
that contains the list of user groups. Each record in the file is a key=value pair, in

Tip

Chapter 5 ¢ The Apache Modules

which the key is the username and the value is a comma-separated list of group
names to which the user belongs.
Syntax: AuthDBMGroupFile filename
Context: Directory, per-directory access control file (.htaccess)
Override: AuthConfig

If you prefer not to use a separate group file, you can use a single DBM file to
provide both password and group information. The format of the file is as follows:

DBM_Record_Key{username} = encrypted_password: comma_separated_group_list

Here, the username is the key, and the password and group lists are two fields of
the value. Other data may be left in the DBM file after another colon, if desired;

it is ignored by the authentication module. If you use a single DBM to provide both
group and password information, you have to point both AuthDBMGroup and
AuthDBMUserFiTe directives to the same file.

AuthDBMAuthoritative

When using multiple authentication schemes such as mod_dbm and standard
mod_auth in the same directory, you can use the AuthDbmGroupFi1e directive to
define whether mod_auth_dbm is the authoritative authentication scheme.

Syntax: AuthDBMAuthoritative On | Off

Default setting: AuthDBMAuthoritative On

Context: Directory, per-directory access control file (.htaccess)

Override: AuthConfig
The default value of the directive enables mod_auth_dbm to become the authorita-
tive authentication for the directory. Thus, if the DBM-based authentication fails for
a particular user, the user’s credentials are not passed on to a lower-level authenti-

cation scheme. When set to the of f value, the credentials of a failed authentication
are passed on to the next authentication level.

A common use for this module is in conjunction with one of the basic auth mod-

_», ules, such as mod_auth.c. Whereas this DBM module supplies the bulk of the

N

user credential checking, a few (administrator) related accesses fall through to a
lower level with a well-protected .htpasswd file.

Now lets take a look at an example of how you can use a DBM based username and
password.Assuming you have the user DBM file created, you are now capable of
restricting access to any Web directory you want. In the following example, | assume
that the user DBM file is /www/secrets/myuserdbm. You can add the authentica-
tion scheme to your global or virtual server using a <Directory> container, or you
can use the .htaccess file—there is no difference. The example configuration
looks like this:

115

116

Part | + Getting Started

AuthName "Apache Server Bible Readers Only"
AuthType Basic

AuthUserDBMFile /www/secrets/myuserdbm
require valid-user

Now Apache uses the mod_auth_dbm module for authentication in the directory
where this configuration applies.

Caution Make sure that only Apache and the owner can read the DBM file. No one but the

owner of the DBM file should be able to write to it.

mod_auth _db

If your system is not capable of using DBM, but Berkeley DB file support is available,
you can use mod_auth_db to use DB files instead of the DBM modules for Apache.
This module is not compiled in the standard Apache distribution.

Before configuring Apache with DB file based authentication module, make sure you
know where the DB library files are stored on your system. For example, on a Linux
system, the files are in the standard /usr/11b directory. If your system does not
have the DB libraries, you will have to get the source code and compile DB support
first. You can find DB library information at www.sleepycat.com.

After you have made sure that your system has DB libraries, you can proceed with
reconfiguring and recompiling Apache. Use the - -enable-db option with configure
script to configure the Apache source for Berkeley DB support, and then compile
and install Apache as usual.

At this point, you are ready to use the mod_auth_db module. This mod_auth_db
module provides the AuthDBUserFile, AuthDBGroupFile, and
AuthDBAuthoritative directives.

AuthDBUserfFile
The AuthDBUserFile directive sets the fully qualified pathname of the user DB file

that contains the list of users and encrypted passwords.
Syntax: AuthDBUserFile filename
Context: Directory, per-directory access control file (.htaccess)
Override: AuthConfig

Like its DBM counterpart, the DB user file is also keyed using the username and the
value is the crypt ()-encrypted password.

Caution Always make sure your user files are kept outside the Web document tree and are

only readable by Apache. No one but the owner (Apache) should have write
access to these files.

Chapter 5 + The Apache Modules |77

AuthDBGroupFile

The AuthDBGroupFile directive sets the fully qualified pathname of the group DB
file, which contains the list of user groups for user authentication. Like its DBM
counterpart, the group file uses the username as the key and the comma-separated
group list is treated as the value. There must be no whitespace within the value,
and it must never contain any colons.

Syntax: AuthDBGroupFile filename
Context: Directory, per-directory access control file (.htaccess)

Override: AuthConfig

If you do not prefer to use a separate group file, you can use a single DB file to
provide both password and group information. The format of the file is:

DB_File_Keylusername} = encrypted_password: comma_separated_group_list

where the username is the key, and the password and group lists are two fields of

the value. Other data may be left in the DB file after another colon; it is ignored by
the authentication module. If you use a single DB to provide both group and pass-
word information, you will have to point both AuthDBGroup and AuthDBUserFile
directives to the same file.

AuthDBAuthoritative

When using multiple authentication schemes such as mod_db, mod_dbm, and
standard mod_auth in the same directory, you can use the AuthDBAuthoritative
directive to define whether mod_auth_db is the authoritative authentication
scheme. The default value of the directive enables mod_auth_db to become the
authoritative authentication for the directory. Thus, if the DB-based authentication
fails for a particular user, the user’s credentials are not passed on to a lower-level
authentication scheme. When set to the 0f f value, the credentials of a failed
authentication are passed on to the next authentication level.

Syntax: AuthDBAuthoritative On | Off
Default setting: AuthDBAuthoritative On
Context: Directory, per-directory access control file (.htaccess)

Override: AuthConfig

Dynamic Contents Generation Modules

The modules discussed here enable Apache to run CGI scripts, SSIs, filters, and the
like. Table 5-4 lists these modules.

118

Part | + Getting Started

Table 5-4
Dynamic Contents Generation Module
Module Purpose
mod_cgi Runs CGl scripts. See Chapter 12 for details.
mod_include SSl filter. See Chapter 13 for details.
mod_actions Executing CGl scripts based on media type or request method.
mod_ext_filter Filtering output with external programs.

mod_actions

The mod_actions module is compiled by default. mod_actions enables you to run
a CGI script based on MIME-type or on the HTTP request method. It offers these
directives.

Action

The Action directive enables you to associate an action for a specific MIME type.
The action is usually a CGI script that processes the file being requested. This
allows you to execute a CGI script for a given MIME type.

Syntax: Action MIME_type cgi_script

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Filelnfo

For example, the following directive makes Apache run the specified script when-
ever an HTML file is requested:

Action text/html /cgi-bin/somescript.pl

The script receives the URL and file path of the requested document via the stan-
dard CGI PATH_INFO and PATH_TRANSLATED environment variables. This can be
useful in developing filter scripts. This section discusses one such filter script.

When a text file (. txt) is requested via the Web, it appears on the Web browser

in a less-than-desirable format, because line breaks are not translated by most Web
browsers in any manner. Usually, most text files appear as a large paragraph. By
using the Action directive, you can develop a better solution.

For a more interesting example, let’s say that you now want to develop a solution
that not only displays the text files better on the Web browser, but also inserts a

Chapter 5 4 The Apache Modules

copyright message at the end of each text file. To accomplish this, you need to do
two things. First, add the following directive in httpd.conf file:

Action plain/text /cgi-bin/textfilter.pl
Then, develop the Perl script textfilter which will display the text file the way

you wish. Listing 5-1 shows one such script. You can find this script on the accom-
panying CD-ROM in the Scripts/Chapter 5 directory.

Listing 5-1: textfilter.pl

f#1/usr/bin/per]

1

Script: textfilter.pl

1

Purpose: This filter script converts plain text files
i# into an HTML document but keeps the text Tayout
1 as is.

1

Copyright (c) 2001 by Mohammed J. Kabir

1

License: GPL

i

The copyright message file is always stored in

the server's document root

directory and is called copyright.html.

#

my $copyright_file = $ENV{DOCUMENT_ROOT} . "/copyright.html";
Get the requested document's path

my $path_translated = $ENV{PATH_TRANSLATED};

Other variables needed for storing data
my $line;
my @text;
my @html;

Store the path info and the file name of requested doc in an
array
@filename = split(/\//,$path_translated);

f# Because HTML tags are used to display the text file,
lets print the text/html content header.
print "Content-type: text/html\n\n";

Read the document requested and store the data
in @text array variable

Continued

119

120 Part | + Getting Started

Listing 5-1 (continued)
@text = &readFile($path_translated);

Now print the following HTML document tags.
These tags will be sent before the actual document content
1
print <<HEAD;
<HTML>
<HEAD> <TITLE>$filename[-1] </TITLE> </HEAD>
<BODY BGCOLOR="white">
<BLOCKQUOTE>
<PRE>
HEAD

Now print each line stored in the @text array

(that is, the content of the document requested)
i

foreach $1ine (@text) { print $line; }

Now read the copyright file and store the content
in the @html array variable

@html = &readFile($copyright_file);

Print each line stored in the @html array (that is,
the content of the copyright message file)

i#

foreach $1ine (@html1){ print $line; }

Exit the filter

exit 0;

sub readFile {

Subroutine: readFile
Purpose: Reads a file if it exists or else prints
an error message and exits script

1

Get the name of the passed file name and store
it in variable §$file
my $file = shift;

Local buffer variable
my @buffer;

If the file exists, open it and read all the
1ines into the @buffer array variable
if(-e $file) {

open(FP,$file) || die "Can not open $file.";
whiTe(<FP>){

Chapter 5 4 The Apache Modules]2]

push(@buffer,$_);
}

close(FP);
} else {

push(@buffer,"$file is missing.");
1

Return the content of the buffer.
return (@buffer);

The preceding script reads the requested text file and prints out the content inside
a few HTML tags that enable the content to be displayed as is. This is accomplished
by using the HTML tag <PRE>. After the content is printed, the copyright message
file content is inserted at the end of the output. This enables a copyright message
to be printed with each requested text file. Figure 5-1 shows an example output
where a text file is being displayed on the Web browser.

Copyright © 2001 Mchammed J. Eabir (kabir@meobidac. com)

- """ Document: Done i)

Figure 5-1: Output of textfilter.pl

As you can see, the requested filename appears as the title. The document is block
quoted, and a custom copyright message is printed. The copyright message file is
stored in the document’s root directory. The file used in this example is:

</PRE>

<BLOCKQUOTE>

<CENTER>

<HR>

Copyright (c) 2001 Mohammed J. Kabir (kabir@mobidac.com})
</CENTER>

</BODY>

</HTML>

122

Part | + Getting Started

Script

The Script directive is like the Action directive, but instead of associating an

action with a MIME-type, it associates the action with an HTTP request such as
GET, POST, PUT, or DELETE. The CGI script receives the URL and file path of the

requested document using the standard CGI PATH_INFO and PATH_TRANSLATED
environment variables.

Syntax: Script method cgi-script

Context: Server config, virtual host, directory

This directive defines default action. In other words, if you have defined the
following:

Script POST /cgi-bin/deafult_post.pl

in an Apache configuration file (such as srm. conf), then whenever a request is
made via the HTTP POST method, it will be processed as usual, unless the default
action specified by the directive needs to be used. For example, the following HTML
form does not specify a CGI script as its action:

<FORM METHOD="POST">

Enter Name: <INPUT TYPE=TEXT NAME="name" SIZE=25>
<INPUT TYPE=SUBMIT VALUE="Click Here">

</FORM>

If a name is submitted by a user via this form, there is no specified CGI script to
process the information, in which case, the default POST action /cgi-bin/
default_post.pl script is run. However, if the <FORM . . . > tagis changed to:

<FORM ACTION="/cgi-bin/form_processor.pl" METHOD="POST">

then whenever the form is submitted, the /cgi-bin/form_processor.pl script is
called as usual. What you do in the default action script is up to you. In an Internet
service provider setup, | reccommend making the default script print meaningful
messages, so that the HTML form developer user can get a clue about what he or
she is doing incorrectly.

In case of the GET request, the default action is used only if the request accompa-
nies query data. For example, www.yoursite.com/somefile.html is processed
as usual, but if a request such as http://www.yoursite.com/somefile.
html?some=data is received, the default action for GET will be run.

mod_ext filter

The mod_ext_f1ilter module enables Apache to use an external program as an
input and output filter. Any program that can read input from STDIN and write out-
put to STDOUT can be used. Of course, running an external program to process

Chapter 5 4 The Apache Modules |23

input or output for each request is a time-consuming task and should be avoided in
a production environment. Filters are better developed using Apache API (applica-
tion programming interface) and run within the Apache server process.

ExtFilterDefine

The ExtFilterDefine directive lets you define a filter that can be later used by
the filter name specified in this directive.

Syntax: ExtFilterDefine filter_name [mode=input | output]
[intype=MIME-type] [outtype=MIME-type]
[PreservesContentlLengthl

Context: Server config

In the following example, a filter called gzfilter is defined to be an output filter
(mode=output), which runs the /usr/bin/gzip program when called:

ExtFiTlterDefine gzfilter mode=output cmd=/usr/bin/gzip

Here, mode can only be set to output. The intype and outtype settings are used
to define the MIME type used for input and output. For example, if a filter receives
intype=text/plainand outtype=text/html, then the filter is responsible for
translating the data from plain text to HTML format. The PreservesContentlLength
parameter should be used when the filter does not change the size of the data in
bytes.

Say you have a custom filter program called /usr/local/bin/programand
want to use it as an output filter for all plain-text files in a Web directory called
/www/mysite/htdocs/mytxts. Here is a sample configuration that allows you to
do just that:

ExtFilterDefine my_test_filter \
mode=output cmd=/usr/Tocal/bin/program \
intype=text/plain \
outtype=text/html

{Directory "/www/mysite/htdocs/mytxts">

SetOutputFilter my_test_filter
AddType text/html

</Directory>

Here the ExtFilterDefine defines a filter called my_filter that runs /usr/
local/bin/programwhen called and that takes text/plain data from STDIN and
writes text/html data to STDOUT. Now the <Directory> container sets this filter as
the output filter for this directory and also tells Apache that the output MIME type
is text/html using the AddType directive. If you store text files in this directory and
Web clients request them, the files will be translated into HTML using the /usr/
local/bin/program.

124 Partl + Getting Started

ExtFilterOptions

The ExtFilterOptions directive sets debugging options for the module. When

debugging needs to be set, use DebuglLevel option. Setting this option to 0 disables

debugging, which is the default. Setting it to 1 enables debugging log entries that

show options. Setting it to 9 enables all the gory details of the filter processing.
Syntax: ExtFilterOptions Debuglevel=n LogStderr | NolLogStderr

Context: Server

Content-Type Configuration Modules

The modules in this section, shown in Table 5-5, enable you to configure, detect,
and negotiate content types appropriate for serving requests.

Table 5-5
Content-Type Modules
Module Purpose
mod_mime Enables Apache to determine MIME type by using file extension.

mod_mime_magic Enables Apache to determine MIME type by using magic numbers
(bytes pattern).

mod_negotiation Enables Apache to perform content negotiation to send out the best
type of content that the client can accept.

mod_mime

The mod_mime module is compiled in Apache by default. It provides clients with
meta information about documents. It also enables you to define a handler for a
document to determine how the document is processed by Apache.

AddCharset

The AddCharset directive maps one or more file extensions to a MIME character
set. This allows you to associate a character set to one or more file extensions.
Syntax: AddCharset charset file_extension [file_extension ...]

Context: Server config, virtual host, directory, per-directory configuration
(.htaccess)

Override: Filelnfo

Chapter 5 ¢ The Apache Modules

The following example causes a file called filename.utf8 to be mapped as a char-
acter set called UTF-8.

AddCharset UTF-8 .utf8

AddEncoding

The AddEncoding directive maps one or more file extensions to a MIME-encoding
scheme. In other words, this directive associates an encoding scheme to one or
more file extensions.

Syntax: AddEncoding MIME file_extension [file_extension...]

Context: Server config, virtual host, directory, per-directory configuration
(htaccess)

Override: Filelnfo
For example, the following directives cause a file called backup.gz to be mapped

as an x-gzip-encoded file, and a file called tarball.tar to be mapped as an
x-tar—encoded file.

AddEncoding x-gzip gz
AddEncoding x-tar tar

AddHandler

The AddHandTer directive defines a handler for one or more file extensions.
Whenever Apache encounters a file with a defined handler it allows the handler to
process the file.

Syntax: AddHandler handler-name file-extension [file-
extension ...]
Context: Server config, virtual host, directory, per-directory access control

file (.htaccess)

In the following example: the directive specifies that all . cgi files be processed by a
handler called cgi-script.

AddHandler cgi-script .cgi

AddLanguage

The AddLanguage directive maps a list of file extensions to a MIME language.
When Apache encounters a file with such extension it knows what language the file
supports.

Syntax: AddLanguage MIME Tanguage file_extension
[file_extension] [...]

125

126

Part | + Getting Started

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Filelnfo
The following example maps all files with extensions .en or .english to be

mapped as English-language files. This is useful in content negotiation, where the
server can return a document based on the client’s language preference.

AddLanguage en .en .english

Or, in the following example, if the client prefers an English document, and both
document.fr.html and document.en.html are available, the server should return
document.en.html.

AddLanguage en .en
AddLanguage fr .fr

AddType

The AddType directive maps a list of file extensions to a MIME type so that when
Apache encounters files with such extensions it knows what MIME type to use
for them.

Syntax: AddType MIME file_extension [file_extension ...]

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Filelnfo

For example, the following line associates the MIME type called text/html to htm,
html, HTML, and HTML extensions.

AddType text/html htm html HTM HTML

DefaultLanguage
The DefaultlLanguage directive sets the default language.

Syntax: DefaultlLanguage MIME Tanguage

Context: Server config, virtual host, directory, per-directory configuration
(.htaccess)

Override: Filelnfo

For example, in the following directive all the contents in the
/www/mysite/Japanese directory are mapped to the default language, Japanese:

<{Directory /www/mysite/japanese>
DefaultlLanguage .Jjp
</Directory>

Chapter 5 + The Apache Modules |27

ForceType

The ForceType directive forces a certain MIME type for all files in a directory. The
directory can be specified by a <Directory> or <Location> container.

Syntax: ForceType MIME type

Context: Directory, per-directory access control file (.htaccess)

For example, the following directive forces the text/html MIME-type for all files in
the specified directory, regardless of their extensions:

<Directory /www/nitec/public/htdocs/files/with/no/extensions>
ForceType text/htm]l
</Directory>

SetHandler

The SetHandler directive defines a handler for a directory or a URL location.The
handler is then used to process all files in the directory.

Syntax: SetHandler handler_name

Context: Directory, per-directory access control file (.htaccess)

For example, the following directive forces all files in the /bin location to be treated
as CGl scripts, which are handled by the cgi-bin handler:

<Location /bin>
Options ExecCGI
SetHandler cgi-bin

</Location>

RemoveHandler

The RemoveHandler directive undoes a handler for a directory or a URL location.
It is useful to limit SetHand1er, which normally applies to all the files in a direc-
tory. Using RemoveHandler you can remove handlers for some files or even a
subdirectory.

Syntax: RemoveHandler handler_name

Context: Directory, per-directory access control file (.htaccess)

For example, in the following directive, the handler my-handler is settoan .mjk
extension outside the /www/mysite/htdocs/special directory, so it automati-
cally applies to this directory as well. However, because RemoveHandler is applied
to this directory to undo the my-handler association with .mjk, files with .mjk
extensions in this directory are not handled with my-handler:

128

Part | + Getting Started

SetHandler my-handler .mjk

<Directory /www/mysite/htdocs/special>
RemoveHandler .mjk
<{/Location>

TypesConfig
The TypesConfig directive specifies the default MIME configuration file. The

default value should be fine for most Apache installations. If you want to add your
own MIME types, use the AddType directive instead of modifying this file.

Syntax: TypesConfig filename

Default setting: TypesConfig conf/mime.types

Context: Server config

If you need additional support for handling MIME -types, you may want to look at

~— the mod_mime_magic module in the next section. For most Apache installations

this is not necessary, so it is not discussed in this book.

mod_mime_magic

The mod_mime_magic module enables Apache to determine a file’s MIME type by
comparing a few bytes of the file with a magic value stored in a file. This module is
only needed when mod_mime fails to guess a file’s MIME type. In most cases, you do
not need this module. This module has one directive called MimeMagicFile.

This directive enables the mod_mime_magic module and points to the magic file
needed by the module. The Apache distribution comes with a magic file in the conf
subdirectory, so if you wish to use this module, set this directive to conf/magic.

Syntax: MimeMagicFile magic_file_filename

Context: Server config, virtual host

mod_negotiation

The mod_negotiation module is compiled by default. It provides support for con-
tent negotiations. In a typical content-negotiation scenario, the client provides
information about what type of content it can handle, and the server attempts to
provide the most appropriate content. The server performs this with the help of
type maps and the MultiViews search.

A type map provides a description of documents. Each document description con-
tains one or more headers. It can also contain comment lines that start with a hash
(#H) character. Document descriptions are separated by blank lines. The document
description headers are:

Chapter 5 4 The Apache Modules |29

4+ Content-Encoding — This specifies the encoding type of the file. Only
x-compress and x-gzip encoding are currently allowed.

4+ Content-Language — The language of the document.
4 Content-Length — The length of the file in bytes.

4 Content-Type — The MIME type of the document. Optional key-value parame-
ters are allowed. The allowed parameters are 1evel, which provides the
version number (as an integer) of the MIME type, and qs, which indicates the
quality (as a floating point number) of the document.

4 URI— The path to the document relative to the map file.

AMultiViews search tries to determine the closest match for the missing document
using the information it knows from the client, and returns the match if possible.
When you enable the MultiViews option in the Options directive, the server is
able to perform the MultiViews search when a requested document is not found.
This module provides the following two directives.

CacheNegotiatedDocs

The CacheNegotiatedDocs directive enables content-negotiated documents to be
cached by proxy servers. Note that the new HTTP 1.1 specification provides much
better control for caching negotiated documents, and that CacheNegotiatedDocs
has no effect in response to HTTP 1.1 requests. This directive is likely to disappear
after HTTP 1.1 is widely used. Use of CacheNegotiatedDocs is not recommended.

Syntax: CacheNegotiatedDocs

Context: Server config

LanguagePriority

The LanguagePriority directive specifies what language preference the server
should use in a MultiViews search scenario, when the client does not provide
language preference information.

Syntax: LanguagePriority MIME Tanguage [MIME Tanguage ...]J

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Filelnfo

In the following directive, for example, if the MultiViews option is turned on and
the client does not provide language preference information for a file that is missing,
the server first tries to serve the English version of the closest match, and then the
French version, and so on. Like the CacheNegotiatedDocs directive, this directive
is not effective in the HTTP 1.1 environment.

LanguagePriority en fr de

130

Part | + Getting Started

Directory Listing Modules

If you have a directory within your Web document tree that does not have a direc-
tory index file (set using Directorylndex directive) then Apache will automatically
generate a directory listing if you have not disabled automatic directory listing
using the Options -Indexes directive. Apache allows you to customize automati-
cally generated directory listings. The modules in this section, as shown in Table 5-6,
enable you to configure how directory listings are displayed.

Table 5-6
Directory-Listing Modules
Module Purpose
mod_dir Basic directory handling
mod_autoindex Automatic directory listings
mod_dir

The mod_dir module is compiled in Apache by default. By using this module,
Apache can redirect any request for a directive that does not include a trailing for-
ward slash character. For example, this module can redirect www.yoursite.com/
somedirectory towww.yoursite.com/somedirectory/. It also provides the
DirectorylIndex directive to help with indexing a directory’s content.

The DirectorylIndex directive specifies the name(s) of files that Apache should
look for before creating a dynamic directory index. The files can be anything from
an HTML file to a CGI script. The default setting enables Apache to look for the
index.html file for any request that ends with a directory name.

Syntax: DirectoryIndex Tocal URL [local URL ...]

Default setting: DirectoryIndex index.htm]

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes
For example, www.yoursite.com/some/directory/ causes Apache to look for a
file called /some/directory/index.html. If the file exists, its content is delivered
to the client. In the absence of this file, Apache creates a dynamic directory listing.

You can specify one or more files as the default directory index files. For example,
the following tells Apache to look for all the named files for each directory request:

Directorylndex index.html index.htm welcome.html welcome.htm

Chapter 5 4 The Apache Modules]3]

Note that Apache will look for files in the same order (from left to right) as they
appear in the preceding configuration. In other words, if Apache finds index.htmT,
it will no longer look for index.htm, welcome.html, or welcome.htm. You can
specify a CGI script name as the default index, as well. For example, the following
directive makes Apache run the /cgi-bin/show_index.cgi script every time
Apache gets a directory request:

Directorylndex /cgi-bin/show_index.cgi

mod_autoindex

The mod_autoindex module is compiledin Apache by default. When Apache
receives a request for a directory, it looks for one or more of the directory index
files specified by the DirectoryIndex directive. Typically, this file is index.html or
index.htm. In the absence of such an index file, however, Apache can generate a
dynamic directory listing. This module enables you to control how Apache creates
the dynamic directory listing.

Apache generates two types of dynamic directory indices: simple and fancy. The
fancy index and many other indexing options are available from this module. The
directives for mod_authoindex are as follow.

AddAlt

When FancylIndexing is on, this directive sets the specified text as an alternative
to the icon that is displayed for one or more files or file extensions specified as
arguments. This is done for nongraphical browsers such as Lynx.

Syntax: AddATt "text" filename [filename ...]

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

For example, the following directive enables Apache to display the alternative text
"Pictures" in place of the icon for each type of graphic file specified here. For
graphical browsers such as Netscape Navigator or Internet Explorer, the alternative
text is displayed as help text under popular Windows platforms. In such systems,
users can get a tip or help about the file when they move their mouse cursor on top
of the icon representing one of the file types.:

AddATt "Pictures" gif jpeg jpg bmp

AddAltByEncoding

If you do not like to assign alternative text to filenames or file extensions via the
AddATt directive, you can use the AddATtByEncoding directive to assign such text
for one or more MIME encodings. Like AddA1t, this directive is also only usable
when FancyIndexing is turned on.

132

Part | + Getting Started

Syntax: AddATtByEncoding "text" MIME _encoding [MIME encoding ...]

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

For example, the following directive makes Apache display the “Compressed File”
alternative text for all files of MIME type x-compress.

AddATtByEncoding "Compressed File" x-compress

AddAltByType
Like the AddATtByEncoding directive, the AddA1tByType directive sets alternative

text for a file, instead of an icon for FancyIndexing. However, it uses a MIME type
instead of MIME encoding.
Syntax: AddAT1tByType "text" MIME-type [MIME type ...]

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

For example, the following directive shows the "HTML FILE" text in place of the
icon for nongraphical browsers. In the case of graphical browsers, this text may
appear as a tip or help:

AddATtByType "HTML FILE" text/htm]

AddDescription

The AddDescription directive sets the description text for a filename, for a partial
filename, or for a wild-card filename when FancyIndexing is turned on.

Syntax: AddDescription "text" file [file ...]

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

For example, the following directive displays the description for all GIF, JPEG, JPG,
and BMP files in generated directory listing:

AddDescription "Graphics File" *.gif *.jpeg *.jpg *.bmp

Chapter 5 4 The Apache Modules |33

Addicon

The AddIcon directive enables you to assign icons to files and directory names that
are displayed for FancyIndexing.

Syntax: AddIcon 7con name file [filename ...]

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

For example, the following directive tells Apache to show /icons/picture.gif
next to files that have extensions such as .gif, . jpg, and . bmp:

AddIcon /icons/picture.gif .gif .jpg .bmp

If you also want to provide alternative text for the file extension listed, you can use
a format such as the following, where IMG is the alternative text displayed for non-
graphical browsers:

AddIcon (IMG, /icons/picture.gif) .gif .jpg .bmp
If you want to display an icon for a directory, you can use the directive as follows:
AddIcon /path/to/your/directory/icon AMDIRECTORYAA

Similarly, if you want to display an icon for each blank line displayed by the fancy
indexing scheme, you can use:

AddIcon /path/to/your/blank/Tine/icon AMBLANKICONAA

AddlconByEncoding

The AddIconByEncoding directive lets you assign icons to MIME-encodings. In
other words, you can assign an icon image to a MIME type.

Syntax: AddIconByEncoding icon_file MIME encoding
[MIME encoding...]

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes
For example, the following AddIconByEncoding directive tells Apache to display
/icons/zip.qgif icon for all files that are x-gzip (i.e. . gz extension) MIME type
files.

AddIconByEncoding /icons/zip.gif X-gzip

134

Part | + Getting Started

AddlconByType

The AddIconByType directive also enables you to assign icons to one or more
MIME types.
Syntax: AddIconByType icon_file MIME_type [MIME type...]

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

For example, the following AddIconByType directive tells Apache to display the
/icons/html.gif iconforall text/html files.

AddIconByType (HTML,/icons/html.gif) text/html

Defaulticon
When no AddIcon, AddIconByEncoding, or AddIconByType is matched for a file, a

default icon can be displayed. The DefaultIcon directive enables you to set that
icon.

Syntax: DefaultlIcon URL

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

For example, the following directive shows idontknow. gif whenever a file’s icon
association is unknown:

DefaultIcon /icon/idontknow.gif

Fancylndexing

The FancyIndexing directive lets you enable and disable fancy indexing of directo-
ries. You can achieve the same effect with the Index0Options directive.
Syntax: FancyIndexing On | Off

Context: Server config, virtual host, directory, per-directory configuration
(htaccess)

Override: Indexes

Chapter 5 4 The Apache Modules |35

HeaderName
If you use FancyIndexing, you can insert a file’s content at the top of the index list-

ing. The HeaderName directive lets you specify the name of the file for such an
insertion.
Syntax: HeaderName f7ilename

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes
For example, the following directive tells Apache to look for a file called welcome or

welcome.html in the directory of the listing; if such a file is found, the content is
inserted before the actual listing:

HeaderName welcome

Indexignore
If you need some files or file extensions to be invisible in the directory listing, you

can use the IndexIgnore directive to accomplish this.
Syntax: IndexIgnore file [file...]

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

For example, the following directive ensures that Apache does not list welcome,
welcome.html, or per-directory configuration (.htaccess) files in directory listings:

IndexIgnore welcome welcome.html.htaccess

The . (dot) character is automatically in the IndexIgnore list; thus, files that start
with this character are not listed. However, you may still prefer to add per-directory
configuration (. htaccess) in the list, just so that you feel safer.

IndexOptions
The Index0Options directive specifies the behavior of the automatically generated
directory indexing.

Syntax: IndexOptions option [option] [...]

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

Part | + Getting Started

Table 5-7 shows the options that you can use with IndexOptions.

Table 5-7

Options for IndexOptions

Option

What It Does

FancyIndexing

IconHeight[=pixels]

IconsArelinks

ITconWidth[=pixels]

ScanHTMLTitles

SuppressColumnSorting

SuppressDescription

SuppressHTMLPreamble

SuppresslastModified

SuppressSize

Turns on fancy indexing of directories. Note that the
FancyIndexing and IndexOptions directives will
override each other.

Enables Apache to include the HEIGHT=pi xe1s attribute in
the IMG tag of the icon, which makes the loading of the icon
faster on most browsers. If you do not specify a pixel count,

a standard default is used.

Makes the icons part of the anchor for the filename, for
fancy indexing.

Enables Apache to include the WIDTH=pixels attribute in
the IMG tag of the icon, which makes the loading of the icon
faster on most browsers. If you do not specify a pixel count,
a standard default is used.

If you want Apache to read the title (denoted by the
{TITLE> and </TITLE> tag pair) of an HTML document for
fancy indexing, use this option. If you have already specified
a description using the AddDescription directive, however,
this option is not used. Note that reading each file's content
and searching for title information is a time-consuming task
that may slow down the delivery of directory listings. | do
not recommend this option.

By default, Apache makes clickable column headings for a
fancy directory index, which enables users to sort
information in that column. This option disables this feature.

If you do not want to display file descriptions in the fancy
directory listing, use this option.

If the directory actually contains a file specified by the
HeaderName directive, the module usually includes the
contents of the file after a standard HTML preamble
(<HTML>, <HEAD>, and so on). The
SuppressHTMLPreamb1e option disables this behavior.

Suppresses the display of the last modification date in fancy
indexing listings.

Suppresses the file size in fancy indexing listings.

Chapter 5 4 The Apache Modules |37/

IndexOrderDefault

The IndexOrderDefault directive enables you to change directory listing views
by sorting various fields such as names, date, size, and description in directories
that are displayed using the FancyIndexing feature.

Syntax: IndexOrderDefault Ascending | Descending Name | Date |
Size | Description

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

ReadmeName

If you want to insert a file at the end of the fancy directory listing, use the
ReadmeName directive.

Syntax: ReadmeName f7ilename

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

For example, the following makes Apache look for a file called readme.htm]
(extension is assumed) or readme to insert at the end of the listing:

ReadmeName readme

Response Header Modules

Apache allows you to send customer HTTP response header when sending data.
The modules in this section, as shown in Table 5-8, enable you to configure various
custom response headers.

Table 5-8
Response-Header Modules
Module Purpose
mod_asis Send files that contain their own HTTP headers.
mod_headers Add arbitrary HTTP headers to resources.
mod_expires Apply Expires: headers to resources.

mod_cern_meta Support for HTTP header metafiles.

138

Part | + Getting Started

mod_asis

The mod_asis module is compiled by default. This module enables you to send a
document as-is —in other words, the document is sent to the client without HTTP
headers. This can be useful when redirecting clients without the help of any script-
ing. To send a file as is, you need to make sure that httpd.conf file contains an
entry such as:

AddType httpd/send-as-is asis

This assigns the MIME type httpd/send-as-is to file extension .asis. If you cre-
ate a file called foobar.asis and a client requests it, the file is sent to the client
without any HTTP header. It is your job to include appropriate headers in the file.
For example, if you want to provide a redirect mechanism via the .asis files, you
can create files with headers such as:

Status: 301 Text Message
Location: new-URL
Content-type: text/html

Listing 5-2 shows a file called redirect.asis, which redirects the clients to a new
location.

Listing 5-2: redirect.asis

Status: 301 We have moved.

Location: http://www.our-new-site/

Content-type: text/html

<HI>Notice to Visitors</H1>

Please update your bookmark to point to www.our-new-site/

Thanks.

When a client requests this file, the 301 status message tells the client to use the
location information to redirect the request. You do not have to add the Date: and
Server: headers, because the server automatically adds them. However, the
server does not provide a Last-Modified header.

mod_headers

This module is not compiled by default. mod_headers enables you to manipulate
HTTP response headers, and it offers a single directive called Header, which
enables you to manipulate the HTTP response header.

Chapter 5 4 The Apache Modules |39

Syntax: Header action header value

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Filelnfo

The allowed actions are as follows:

Action What It Does

Set Sets a header. If an old header with the same name existed, its value is
changed to the new value.

Add Adds a header. This can cause multiple headers with the same name when
one or more headers with the same name exist.

Append Appends the value to an existing header value.

Unset Removes a header.

For example, the following directive adds the Author header with the value
"Mohammed J. Kabir":

Header add Author "Mohammed J. Kabir"
And the following line removes the same header:

Header unset Author

mod_expires

The mod_expires module is not compiled in Apache by default. It lets you deter-
mine how Apache deals with Expires HTTP headers in the server’s response to
requests. Expires HTTP headers provide you with means for telling the client about
the time when the requested resource becomes invalid. This is useful when docu-
ments are cached by the client and need to be requested again. Most smart clients
determine the validity of a rerequested document by investigating the cached docu-
ment’s expiration time provided by Expires HTTP headers. This module enables
you to control the settings of the Expires HTTP headers.

ExpiresActive

The ExpiresActive directive enables or disables the generation of the Expires
header. It does not guarantee that an Expires header will be generated. If the criteria
are not met, no header is sent.

14(Q Partl + Getting Started

Syntax: ExpiresActive On | Off

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

ExpiresByType

The ExpiresByType directive specifies the value of the Expires HTTP header for
documents of a specified MIME-type. The expiration time is specified in seconds.
You can define the time in two ways. If you choose to use the Mseconds format to
specify expiration time, then the file’s last modification time is used as the base
time. In other words, M3600 means that you want the file to expire one hour after it
was last modified. On the other hand, if you use the Aseconds format, then client’s
access time is used as the base time. Following are some examples.

Syntax 1: ExpiresByType MIME_type Mseconds | Aseconds

Syntax 2: ExpiresByType MIME-type "base_time [plus]l num
Years [Months [Weeks [Days [Hours [Minutes[Seconds"

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes
The following expires all plain-text files after one hour in the client’s cache:
ExpiresByType text/plain A3600
And the following expires all GIF files after one week from the last modified time:
ExpiresByType image/gif M604800

If you want to use the second syntax for specifying expiration times, you need to
determine the appropriate value of base_time by using the following options:

Value What It Means

Access Time when client accessed the file.

Now Current time. This is the same as the access time.
Modification Time when the file was last changed.

For example, the following directives tell Apache to send headers to tell the
browser that HTML documents should be expired after seven days from the day of
access and that the GIF images should be expired after any changes in file or three
hours and ten minutes later.

Chapter 5 + The Apache Modules 14]

ExpiresByType text/html "access plus 7 days"
ExpiresByType image/gif "modification plus 3 hours 10 minutes"

ExpiresDefault
The ExpiresDefault directive sets the default expiration time for all documents
in the context in which it is specified. For example, if this directive is specified in
the virtual host context, it will only apply to the documents accessible via the vir-
tual host. Similarly, you can specify this directive in a per-directory context, which
allows all documents in that directory to expire at a specified interval. See
ExpiresByType for details on the syntax.

Syntax 1: ExpiresDefault Mseconds | Aseconds

Syntax 2: ExpiresDefault "base_time [plus] num
Years[Months [Weeks[Days [Hours[Minutes|Seconds™

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

Following are two examples:

ExpiresDefault M3600
ExpiresDefault "access plus 2 days"

The first example sets the expiration time to one hour after the last modification
time of the documents. The second one sets the expiration time to two days after
access by the client.

mod_cern_meta

The mod_cern_meta module is not compiled by default. It provides support for
metainformation. This information can either be additional HTTP headers such as:

Expires: Saturday, 19-May-01 12:00:00 GMT

or it can be any other information such as the following, where the meta informa-
tion is stored in a file and appears along with the HTTP response header:

Foo=Bar

MetaFiles

The MetaFiles directive enables or disables metaheader file processing.
Syntax: MetaFiles On | Off
Default setting: MetaFiles Off

Context: Per-directory access control file (.htaccess)

1472 Partl + Getting Started

MetaDir

The MetaDir directive specifies the name of the directory that stores metaheader
files. For example, if you have a directory called /www/mycompany/public/htdocs
and want to store metainformation files for that directory, you need to create a sub-
directory called .web if you use the default value for the MetaDir directive. The
.web directory stores metaheader files.

Syntax: MetaDir directory

Default setting: MetaDir .web

Context: Per-directory access control file (.htaccess)

MetaSuffix

The MetaSuffix directive specifies the filename extension for metainformation
files. For example, if you have an HTML file called mypage.htm1, then you need to
create mypage.html.meta (using the default value of this directive) to store your
metaheaders. The mypage.html.meta file must reside in the directory specified by
the MetaDir directive.

Syntax: MetaSuffix suffix
Default setting: MetaSuffix .meta
Context: Per-directory access control file (. htaccess)

To enable Apache to send out metainformation for a directory called /www/
mycompany/public/htdocs, you need to do the following:

1. Set the MetaFiles directive to on in the per-directory configuration file
(.htaccess) for /www/mycompany/public/htdocs. You can also set the
MetaDir and MetaSuffix directive in this file.

2. Create a subdirectory called .web (assuming you are using the default for
MetaDir directive)

3. Create a text file with extension .meta (assuming you are using the default
value for MetaSuf fix directive).

4. Put all the HTTP headers that you want to supply in this file.
For example, to provide metaheaders for a file named /www/mycompany/public/

htdocs/mypage.html, you need to create a file called /www/mycompany/public/
htdocs/.web/mypage.html.meta. This file could include lines such as:

Expires: Saturday, 19-May-01 12:00:00 GMT
Anything=Whatever

Chapter 5 4 The Apache Modules |43

Server Information and Logging Modules

The modules in this section, as shown in Table 5-9, enable you to log access, report
server status and configuration information, and also to track users who are using
cookies.

Table 5-9
Server Information and Logging Modules

Module Purpose

mod_log config Provides customizable access logging. See Chapter 8 for details.

mod_status Displays status information. See Chapter 8 for details.
mod_info Displays server configuration information. See Chapter 8 for details.
mod_usertrack Provides user tracking by using HTTP Cookies. See Chapter 8 for details.

mod_log config

This module is discussed in detail in Chapter 8. See the “Creating Log Files” section
in this chapter to learn more about this module and its directives.

mod_status

This module is discussed in detail in Chapter 8. See the “Enabling status pages
with mod_status” section in this chapter to learn more about this module and its
directives.

mod info

This module is discussed in detail in Chapter 8. See the “Accessing configuration
information with mod_info” section in this chapter to learn more about this module
and its directives.

mod_usertrack

This module is discussed in detail in Chapter 8. See the “Logging Cookies” section
later in this chapter to learn more about this module and its directives.

144 Part] + Getting Started

URL Mapping Modules

The modules in this section, as shown in Table 5-10, enable you to map various
URLs to specific physical directories, create complex rewriting rules, aliases, and
automate virtual host URLs to physical directory mappings.

Table 5-10
URL Mapping Modules
Module Purpose
mod_userdir Allows you to access personal Web sites stored in user home
directories.
mod_rewrite URL rewriting rules are created using this module. See Chapter 9
for details.
mod_alias To map different parts of the host filesystem in the document
tree and for URL redirection.
mod_speling Automatic correction of minor typos in URLs.
mod_vhost_alias Support for dynamically configured mass virtual hosting.

mod_userdir

The mod_userdir module enables Apache to enable user-specific Web directories
that are accessible via http://your_server_name/~username. If you do not plan
on supporting such Web sites, you do not need this module.

The UserDir directive (the only directive for this module) enables you to set the
directory that Apache should consider as the document root for the user’s Web site.
Syntax: UserDir directory_filename
Default setting: UserDir public_htm]l
Context: Server config, virtual host
For example, if you keep the default value, whenever Apache notices a ~username
path after the server name in the requesting URL, it translates the ~username to

user_home_directory/public_html.If user home directories are stored in
/home, the translated path is /home/username/publich_html.

Caution You should add Userdir disabled root to disable the capability to set this
directive to point to the root directory.

Chapter 5 4 The Apache Modules 145

The directory name that you set with this directive must be accessible by the Web
server. In other words, if /home/username is the home directory and you leave
Userdir setto public_html, then /home/username/public_html must be acces-
sible by the Web server. In fact, Apache will also require read and execute access to
both the /home and the /home/username directories. Some security-conscious sys-
tem administrators do not like the idea of creating a Web directory in a user’s home
directory, so you can set the UserDir to a different path such as:

UserDir /www/users

Now when http://your_server_name/~username is requested, Apache will
translate this request to /www/users/username. This way you can keep a user’s
Web files outside the home directory (/home/username) by creating a new top
directory in which you have to create a directory for each user. Remember to
ensure that Apache has read and execute access to each of these directories.

mod alias

The mod_alias module is compiled by default in Apache. It provides various direc-
tives that can be used to map one part of the server’s file system to another, or
even to perform URL redirection services.

Alias

The Alias directive enables you to map a path to anywhere in your system’s file
system.

Syntax: Alias URL-path path

Context: Server config, virtual host

For example, the following directive maps /data/ to /web/data;therefore, when
arequest such as http://www.yoursite.com/data/:

Alias /data/ "/web/data/"

http://data/datafile.cvs is received, the file called /web/data/datafile.cvs
is returned.

Caution The aliased path does not have to reside inside your document root tree, so be

Al ote

careful when you create aliases —you might accidentally reveal some part of your
file system to the entire world.

If you use a trailing / (slash) in defining an alias, the requests that are capable of
~~ accessing the aliased directory also need to contain a trailing /.

146

Part | + Getting Started

AliasMatch

The AliasMatch directive is similar to the A11as directive, except that it can make
use of regular expressions.

Syntax: AliasMatch regex path

Context: Server config, virtual host

For example, the following directive matches
www.yoursite.com/data/index.html tothe /web/data/index.html file:

AliasMatch ~/data(.*) /web/data$l

Redirect

The Redirect directive redirects a URL request to another URL. If you have moved
a section of your Web site to a new directory or even a new Web site, you can use
this directive to ensure that people who have bookmarked the old site are still able
to find it.

Syntax: Redirect [status_code] old _URL new_URL

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

For example, the following directive redirects all URL requests containing the /data
path to the new URL. Therefore, requests for www.yoursite.com/data/some-
file.txt are redirected to www.your-new-site.com/data/somefile.txt:

Redirect /data www.your-new-site.com/data
The Redirect directive has precedence over the Alias and ScriptAlias direc-

tives. By default, the status code sent to the client is Temp (HTTP status code 302).
If you want to specify a different status code, use the following:

Status Code What It Does

Permanent Tells the client that the redirect is permanent. The HTTP status code 301 is
returned.

Temp Returns a temporary redirect status (302). This is the default.

See other Returns a See Other status (303), indicating that the resource has been
replaced.

Gone Returns a Gone status (410) indicating that the resource has been

permanently removed. When this status is used, the URL argument should
be omitted.

‘\I ote

Chapter 5 + The Apache Modules 147

You can provide valid HTTP status codes in numeric format as well. If the status

~ you provide is between 300 and 399, the new-URL must be present; otherwise, it

must be omitted. You may wonder about the use of different status codes. In the
future, clients may be smart enough to recognize the status codes in a more
meaningful manner. For example, if a proxy server receives a permanent redirect
status code, it can store this information in a cache so that it can directly access the
new resource in a later request.

RedirectMatch

The RedirectMatch directive is similar to the Redirect directive, but it accepts
regular expressions instead of the simple old URL.

Syntax: RedirectMatch [status_code] regex URL

Context: Server config, virtual host

For example, the following directive redirects all requests that end with .htmto an
.htm1 version of the same request:

RedirectMatch (.*)\.htm$ www.yourserver.com$l.html

As an example of how this would work, the following request:
http://www.yoursite.com/some/old/dos/files/index.htm

is redirected to:
http://www.yoursite.com/some/old/dos/files/index.html

See the Redirect directive (last section) for information on status_code.

RedirectTemp

The RedirectTemp directive is similar to the Redirect directive. It lets the client
know that the redirect is only temporary. Note that the Redirect directive also
produces a temporary status by default.

Syntax: RedirectTemp old _URL new_URL

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

RedirectPermanent

The RedirectPermanent directive is similar to the Redirect directive. It lets the
client know that the redirect is permanent. Note that the Redirect directive pro-
duces a temporary status by default, but you can use the status code 301 or the
keyword permanent, as the status does, the same as this directive.

148

Part | + Getting Started

Syntax: RedirectPermanent old_URL new_URL

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

ScriptAlias

The ScriptAlias directive creates an alias for the physical directory path.
Additionally, any filename supplied in the request is treated as a CGI script, and the
server attempts to run the script.

Syntax: ScriptAlias alias "physical_directory_path"

Context: Server config, virtual host

For example, the following directive can be used to process a request such as www.
nitec.com/cgi-bin/somescript.pl. The server tries to run somescript.pl if
proper permission is verified. Note that the ScriptAlias directory is not
browseable:

ScriptAlias /cgi-bin/ "/www/nitec/public/cgi-bin/"

ScriptAliasMatch

The ScriptAliasMatch directive is equivalent to the ScriptAlias directive
except that it uses regular expression, which allows you to define a dynamic alias
rule instead of a fixed alias.

Syntax: ScriptAliasMatch regex directory

Context: Server config, virtual host
For example, the following two directives do exactly the same thing:

ScriptAliasMatch ~/cgi-bin(.*) "/www/nitec/public/cgi-bin$l"
ScriptAlias /cgi-bin/ "/www/nitec/public/cgi-bin/"

mod_speling

The mod_speling module is not compiled in Apache by default. It enables you to
handle misspelled or miscapitalized URL requests. It compares the requested
(misspelled or miscapitalized) document name with all the document names in the
requested directory for one or more close matches.

In the case of a misspelled document request, the module allows a single spelling
error, such as an extra character insertion, a character omission, or a transposition.
In the case of a miscapitalized document request, it performs a case-insensitive file-
name comparison. Either way, if the module locates a single document that closely
resembles the request, it sends a redirect request to the client. If there’s more than
one match, it sends the list to the client for selection. The single directive offered
by this module is called CheckSpelling.

ﬁ\lote

Chapter 5 4 The Apache Modules 149

The CheckSpelling directive enables or disables the mod_speling module. Note
that when the spelling correction is on, the server may experience performance
loss due to extra searches that are needed for serving a misspelled document
request.

Syntax: CheckSpelling On | Off
Default setting: CheckSpelling Off

Context: Server config, virtual host

The mod_speling module only works with file and directory names.

mod _vhost_alias

The mod_vhost_alias module allows you to create dynamically configured virtual
hosts. This module is only appropriate for Apache installations that require many
virtual hosts. For example, an Internet Service Provider (ISP) using Apache can
make use of this module to reduce the configuration work that would otherwise be
needed for each new virtual host customer.

This module enables you to create dynamic virtual host configurations using the IP
address or the hostname of a virtual Web site in creating the physical directory
paths needed to service the site.

VirtualDocumentRoot

The VirtualDocumentRoot directive enables you to set the document root for the
virtual hosts using an interpolated directory path.

Syntax: VirtualDocumentRoot interpolated_directory

Context: Server config, virtual host

In the following directive, for example, when a request for
http://www.domain.com/somepage.html is received by Apache, it translates the
request to /www/www.domain.com/htdocs/somepage.html:

UseCanonicalName Off
VirtualDocumentRoot /www/%0/htdocs

The UseCanonicalName is set to of f so that Apache rely on the Host header for
the hostname, which is supplied by all modern Web clients. The
VirtualDocumentRoot is suitable for name-based virtual hosting scenario in which
you have one IP address responsible for many virtual Web sites.

150 Part

‘\I ote

| 4+ Getting Started

%0 is translated into the entire hostname (that is, www . domain. com). If you wish,

~~ you can use parts of the hostname. The hostname (or the IP address) is divided
into parts separated by the dots. For example, use %1 (first part = www), %2 (sec-
ond part = domain), or %-1 (last part = com) to create appropriate interpolated-
directories for the directives provided by this module. You can also use %N.P
convention where N represents a part (separated by the dot) and P represents a
number of characters of that part. For example %1.2 will give you ww from
www.domain.com.

VirtualDocumentRootIP

The VirtualDocumentRootIP directive enables you to set the document root for
the virtual hosts by using an interpolated directory path that is constructed using
the IP address of the Web site. This method is suitable if you use IP-based virtual
hosting because you have unique IP addresses for each virtual Web site.

Syntax: VirtualDocumentRootIP interpolated_directory
Context: Server config, virtual host
In the following directive, for example, when a request for

http://www.domain.com/somepage.html is received by Apache, it translates the
request to /www/IP_address_of_www.domain.com/htdocs/somepage.htm]

VirtualDocumentRootIP /www/%0/htdocs

VirtualScriptAlias

The VirtualScriptAlias directive enables to define a script alias (as done using
ScriptAlias directive) that uses an interpolated directory path.

Syntax: VirtualScriptAlias alias interpolated_directory

Context: Server config, virtual host

In the following directive, for example, when a request for http://www.domain.
com/cgi-bin/script_name is received by Apache, it translates the request to
/www/www.domain.com/cgi-bin/script_name:

UseCanonicalName Off
VirtualScriptAlias /cgi-bin/ /www/%0/cgi-bin

The UseCanonicalName is set to of f, requiring Apache to rely on the Host header
for the hostname, which header is supplied by all modern Web clients. The
VirtualDocumentRoot is suitable for name-based virtual hosting scenario in which
you have one IP address responsible for many virtual Web sites.

Chapter 5 4 The Apache Modules |51

VirtualScriptAliasIP

The VirtualScriptAliasIP directive enables you to define a script alias (as done
using ScriptAlias directive) that uses an interpolated directory path.

Syntax: VirtualScriptAliasIP alias interpolated_directory

Context: Server config, virtual host

In the following directive, for example, when a request for http://www.domain.
com/cgi-bin/script_name is received by Apache, it translates the request to
/www/IP_address/cgi-bin/script_nameVirtualScriptAliasIP /cgi-bin/
/www/%0/cgi-bin

Miscellaneous Modules

The modules in this section, as shown in Table 5-11, do not fall under any particular

category.
Table 5-11

Miscellaneous Modules
Module Purpose
mod_so Support for loading modules at run-time.
mod_imap The image map file handler.
mod_proxy Turns Apache into a caching proxy server. See Chapter 10 for details.
mod_isapi Windows ISAPI Extension support. See Chapter 21 for details.

mod_file_cache Caches files in memory for faster serving.

mod_dav Provides class 1 and 2 Web-based Distributed Authoring and
Versioning (WebDAV) functionality.

mod_example An example for module developer to learn about how to write an
Apache module. Not useful to anyone but C programmers.

mod_so

The mod_so module enables Apache to load the executable code that is needed by
other modules or to load other modules during Server startup. You can compile all
the modules as DSO (Dynamic Shared Object) modules except this one.

152 Part | + Getting Started

LoadFile
The LoadF1iTe directive loads the named file during startup. Typically, a dynamically

linked library (DLL) file needed by another module is loaded using this directive
(only in Windows).
Syntax: LoadFile filename [filename...]

Context: Server config

LoadModule

The LoadModule directive loads a module that has been compiled as a DSO.

Syntax: LoadModule module_filename

Context: Server config

mod_imap

The mod_imap module is compiled in Apache by default. It provides image map
support, which had been provided by the CGI program imagemap. You can use the
AddHand1er directive to specify the imap-file handler (built into this module) for
any file extension. For example, the following directive makes Apache treat all files
with the . map extension as image maps, and Apache processes the files by using
the mod_imap module:

AddHandler imap-file map

ﬁlote The mod-1imap module still supports the older format:
AddType application/x-httpd-imap map
However, the older format is not recommended because support for it may be
dropped in the future.

The contents of an image map file can have any of the following syntax:

directive value [x,y ...]
directive value "Menu text" [x,y ...]
directive value x,y ... "Menu text"

The allowed directives in a image map file are:

4 base —Relative URLs used in map files are considered relative to the value of
this directive. Note that the Imapbase directive setting is overridden by this
directive when found in a map file. It defaults to http://server_name/.
base_uri, which is synonymous with base.

Chapter 5 4 The Apache Modules |53

4+ default —Specifies the action to take when the coordinates do not fit into
any poly, circle, or rect, and no point directives are given. The default
value for this directive is nocontent, which tells the client to keep the same
page displayed.

4 poly—Defines a polygon using at least 3 points to a maximum of 100 points.
If user-supplied coordinates fall within the polygon, this directive is activated.

4 circle—Defines a circle using the center coordinates and a point on the cir-
cle. If user-supplied coordinates fall within the circle, this directive is activated.

4 rect —Defines a rectangle using two opposing corner coordinates. If user-
supplied coordinates fall within the rectangle, this directive is activated.

4+ point —Defines a single point coordinate. The point directive closest to the
user-supplied coordinate is used when no other directives are satisfied.

The value is an absolute or relative URL, or one of the special values in the following
list. The coordinates (x,y) are separated by whitespace characters. The double-
quoted text (shown in the second syntax) is used as the text of the link if an image
map menu is generated. Any line with a leading # character is considered a com-
ment and is ignored by Apache.

The coordinates are written in x,y format, in which each coordinate is separated by
a whitespace character. The quoted text string is used as the link when a menu is
generated. In the absence of such a string, the URL is the link, as shown in the
following image map file:

Comments go here

Version 1.0.0

base http://www.yoursite.com/some/dir

rect thisfile.html "Customer info" 0,0 100,200

circle http://download.yoursite.com/index.html 295,0 100,22

If this image map file is called imagemap.map, it can be referenced as follows from
another HTML file, such as:

ImapMenu
The ImapMenu directive determines the action for a request for an image map file

without any valid coordinates.
Syntax: ImapMenu {None, Formatted, Semi-formatted, Unformatted}

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

154

Part | + Getting Started

ImapMenu allows the following actions:

Action What It Does
None No menu is generated, and the default action is performed.
Formatted The simplest menu is generated. Comments are ignored. A level one

Semi-formatted

Unformatted

header is printed, and then a horizontal rule, and then the links —each
on a separate line.

In the semi-formatted menu, comments are printed, blank lines are
converted into HTML breaks, and no header or horizontal rule is printed.

In the unformatted menu, comments are printed, and blank lines are
ignored.

ImapDefault

The ImapDefault directive defines the default action for image maps. This default
setting can be overridden in the image map file using the default directive.

Syntax: ImapDefault {Error, Nocontent, Map, Referer, URL}

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

The following table shows the meaning of each of the possible values for
ImapDefault directive.

Value What It Does

URL A relative or absolute URL. Relative URLs resolve relative to the base.

Map Same as the URL of the image map file itself. Unless ImapMenu is set to
none, a menu will be created.

Menu Same as Map.

Referer Same as the URL of the referring document. Defaults to http://
servername/ if no Referer: header is present.

Nocontent A status code of 204 is sent to tell the client to keep the same page

Error

displayed. This is not valid for base.

A status code of 500 is sent to inform the client about a server error.

Chapter 5 4 The Apache Modules 155

ImapBase

The ImapBase directive sets the default base used in the image map files. This base
setting can be overridden by using the base directive within the image map file. If
this directive is not present, the base defaults to http://servername/.

Syntax: ImapBase {Map, Referer, URL}

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Indexes

mod_file cache

The mod_file_cache module enables Apache to cache frequently used static files
that do not change too often. By using this module, you can load a file in memory
or preopen the file and reduce disk I/O for each request. This means that Apache
does not have to read files from disk for each request. This module does not work
on all platforms and should be used only if you are certain that frequently
requested files are not going to change. If a cached file or preopened file changes,
Apache server cannot deal with the change until you restart the server.

MMapFile

The MMapFiTe directive enables you to load a file into memory via mmap () system

calls. After a file is loaded into memory, the server will not detect any changes in

the physical file. So be careful when you use this directive. If you change a file that

has been already loaded into memory, make sure you restart the Apache server.
Syntax: MmapFile filename [filename] [...]

Context: Server config

CacheFile
The CacheFile directive preopens a file and caches the file handle so that when a
request comes, Apache does not have to perform system calls to open and read the
file. After a file has been cached, any changes to the file require a restart of the
Apache server.

Syntax: CacheFile filename [filename] [...]

Context: Server config

mod_dav

The mod_dav module enables you to use WebDAV extensions of the HTTP 1.1 proto-
col. To learn more about these extensions, visit www.webdav.org.

156 Part | + Getting Started

Dav
The Dav directive enables or disables the mod_dav module. It must be set to On if

you wish to use the WebDAV feature within a directory container.
Syntax: Dav On | Off

Context: Directory

DavLockDB
The DavLockDB directive sets the fully qualified pathname of the lock database file.

Syntax: DavLockDB filename

Context: Server config, virtual host

DavMinTimeout
The DavMinTimeout directive sets the minimum resource lock timeout interval in

seconds. The default value ensures that a WebDAV client is not locked out (due to
any timeout) automatically by the server.

Syntax: DavMinTimeout seconds

Default setting: DavMinTimeout 0

Context: Directory

DavDepthinfinity
The DavDepthInfinity directive enables a PROPFIND request with the Depth

header set to infinity. The default is recommended.
Syntax: DavDepthInfinity On | Off
Default setting: DavDepthInfinity Off

Context: Directory

Web Site
Administration

Administering Web sites involves chores such as manag-
ing virtual Web sites, controlling access to your Web
sites, monitoring and analyzing access and error logs, redi-
recting traffic to different URLs when necessary, setting up
proxy service, and generally just doing everything necessary
to run perfect Web sites. This part is dedicated to all of these
tasks.

1]

YR TR SRS
In This Part

Chapter 6
Hosting Virtual
Web Sites

Chapter 7
Authenticating and
Authorizing Web Site
Visitors

Chapter 8
Monitoring Access to
Apache

Chapter 9
Rewriting your URLs

Chapter 10
Setting Up a Proxy
Server

Chapter 11
Running Perfect

Web Sites

¢+ 4+ o+

Hosting Virtual
Web Sites

A pache can serve multiple Web sites from a single
server. For example, a Web hosting company might

have a single Web server machine running Apache, which is
serving hundreds of client Web sites. Such a system has a
primary hostname and many IP aliases or virtual hostnames.
A Web site served via such a virtual host is called a Virtual
Web site. Apache’s support for virtual Web sites (called vir-
tual hosts) is very impressive. This chapter discusses how to
create various types of virtual hosts and how to manage them
using various techniques.

Understanding Apache’s Virtual
Hosting Capabilities

When you set up Apache on an Internet host it can respond
to an HTTP request for that host. For example, if you set up
Apache on a host called serverl.doman.com, Apache will
serve HTTP requests for this host. However, if you set up your
DNS records such that two other hostnames (say www .
mycompany-domain.comand www.friendscompany -
domain.com) point to the same machine, you can have
Apache serve these two domains as virtual Web sites. In such
a case www.mycompany-domain.comis considered the pri-
mary Web hostname (main server) and the rest of them will
be considered as virtual Web site or virtual hosts.

Apache allows virtual hosts to inherit configuration from the
main server, which makes the virtual host configuration quite
manageable in large installations where some contents can be
shared. For example, if you decided only to have a central CGI
repository and to allow virtual hosts to use the scripts stored
there, you do not need to create a ScriptAlias directive in
each virtual host container. Simply use one in the main server
configuration and you're done. Each virtual host can use the
alias as if it was part of its own.

C H AgP T\E R

+ 0+ 0+
In This Chapter

Understanding the
two types of virtual
hosts

Creating IP-based
virtual hosts

Creating name-based
virtual hosts

Configuring DNS
for virtual hosts

Running a virtual
Web site with its
own user and group
privileges

Managing large
numbers of virtual
hosts on a single
Apache server using
mod_perl

Using the makesite
script to simplify the
process of creating
new virtual hosts

Managing virtual
hosts by using

mod_v2h and the
MySQL database

R R

160 Partil 4+ Web Site Administration

Apache’s configuration file httpd.conf separates virtual host configuration from the
main server configuration using the <VirtualHost> container. For example, look at
the httpd.conf file in Listing 6-1.

Listing 6-1: httpd.conf
httpd.conf file

ServerName main.server.com

Port 80

ServerAdmin mainguy@server.com
DocumentRoot "/www/main/htdocs"

ScriptAlias /cgi-bin/ "/www/main/cgi-bin/"
Alias /images/ "/www/main/htdocs/images/"

<VirtualHost 192.168.1.100>
ServerName vhostl.server.com
ServerAdmin vhostl_guy@vhostl.server.com
DocumentRoot "/www/vhostl/htdocs"
ScriptAlias /cgi-bin/ "/www/vhostl/cgi-bin/"
</VirtualHost>

<VirtualHost 192.168.1.110>
ServerName vhostZ.server.com
ServerAdmin vhost2_guy@vhost2.server.com
DocumentRoot "/www/vhost2/htdocs"
ScriptAlias /cgi-bin/ "/www/vhost2/cgi-bin/"
Alias /images/ "/www/vhost2/htdocs/images/"
</VirtualHost>

Listing 6-1 shows two virtual Web sites called vhost1.server.comand vhost2.
server.com, which are defined in their own <VirtualHost> containers. All the
directives included in each of the <VirtualHost> containers apply only to the
virtual host it serves. So, when a Web browser requests http://vhostl.server.
com/index.html, the Apache Web server looks for the index.html page in /www/
vhostl/htdocs directory. Similarly, when a Web browser requests http://vhost2.
server.com/cgi-bin/hello.pl, the script is run from the /www/vhost2/
cgi-bin directory.

However, many directives in the main server configuration (that is, any directive
outside of the <VirtualHost> container) still apply to virtual hosts that do not
override them. For example, the vhostl.server.comin Listing 6-1 does not have
an Alias directive for the /images/ directory alias. So, when a Web browser
requests http://vhostl.server.com/images/pretty_pic.gif file the picture
is served from /www/main/htdocs/images directory. Because the vhost2.
server.comdoes override the /images/ alias with its own, a similar request is
served from /www/vhost2/htdocs/images directory instead.

Chapter 6 4 Hosting Virtual Web Sites 16]

Setting Up a Virtual Host

There are three ways you can create virtual Web sites using Apache, as discussed in
the following list:

4+ Name-based: Name-based virtual Web sites are very common. Such a configu-
ration requires that you have multiple hostnames pointed to a single system.
You can create multiple CNAME or A records in DNS to point to a single host.
Because this method does not use IP addresses in Apache configuration, it is
easy to port if you change your IP addresses for your Web server.

4 IP-based: This method requires IP addersses in Apache configuration and
thus makes it easy to port when IP addresses need to be changed.

4 Multiple main servers: This method involves using multiple primary Web
server configurations. This method is only recommended if you must keep
separate configuration file per virtual hosts. This is the least recommended
method and is hardly used.

Name-based virtual hosts

This method of creating a virtual host is the most recommended. It requires only a
single IP address for hosting hundreds of virtual Web sites.

Aote About the only issue you're likely to come up against with name-based virtual

~ hosting is that this method will not work for Web browsers that do not support
HTTP 1.1 protocol. Only the very early Web browsers, such as Microsoft IE 1.x or
Netscape Navigator 1.x, don't support HTTP 1.1. So, this is really not a big issue any
more. Most people are using 3.x or above versions of the Web browsers, which are
compatible with name-based virtual hosting technique.

For example, say you have IP address 192.168.1.100 and want to host
vhostl.domain.comand vhost2.domain.com on the same server. Here’s how you
can do that:

1. First create the appropriate DNS records on your DNS server to point to
vhostl.domain.comand vhost2.domain.comto 192.168.1.100. See the
“Configuring DNS for a Virtual Host”section for details.

2. Create a configuration segment similar to the following in the httpd. conf file.
NameVirtualHost 192.168.1.100

<VirtualHost 192.168.1.100>
ServerName vhostl.domain.com
ServerAdmin someone@vhostl.domain.com
DocumentRoot "/www/vhostl/htdocs"

1

Any other directives you need can go here

162

Part Il ¢ Web Site Administration

</VirtualHost>

<VirtualHost 192.168.1.100>
ServerName vhost2.domain.com
ServerAdmin someone@vhost?.domain.com
DocumentRoot "/www/vhost2/htdocs"

1

Any other directives you need can go here

</VirtualHost>

Don’t forget to create the document root directories if you don’t have them
already. Also, if you need to add more directives in each of the virtual host
configuration you can do so.

3. Restart Apache using the /usr/Tocal/apache/apachect] restart command
and access each of the virtual hosts using http://vhostl.domain.com and
http://vhost2.domain.com.

As the above example configuration shows, both virtual host containers use the
same IP address (192.168.1.100). So how does Apache know which virtual site is
being requested when a request comes via the 192.168.1.100 IP address?

Well, it turns out that HTTP 1.1 requires that a header called Host be present in
each request that the Web browser makes to a Web server. For example, following
is a header dump of a HTTP request from a Web browser to a server running on
rhat.domain.com.

GET / HTTP/1.1

Host: rhat.domain.com

Accept: text/html, text/plain

Accept: postscript-file, default, text/sgml, */*;q=0.01
Accept-Encoding: gzip, compress

Accept-Language: en

User-Agent: Lynx/3.0.0dev.9 libwww-FM/2.14

When Apache sees the Host: rhat.domain.com header, it can immediately
service the request using the appropriate virtual host that has a matching
ServerName.

IP-based virtual hosts

This method requires that you use IP addresses in creating virtual hosts. The IP
addresses need to be hard-coded in the configuration file in each <VirtualHost>
container tag. This can create maintenance headaches if you change IP addresses

Chapter 6 + Hosting Virtual Web Sites] 63

frequently. There is no benefit in using this method over name-based virtual host-
ing method described earlier. The following example shows three IP-based virtual
hosts.

<VirtualHost 192.168.1.1>
ServerName vhostl.server.com
Other directives go here
</VirtualHost>

<VirtualHost 192.168.1.2>
ServerName vhost2.server.com
Other directives go here
</VirtualHost>

<VirtualHost 192.168.1.3>
ServerName vhost3.server.com
Other directives go here
</VirtualHost>

Each of these IP addresses must be bound to the appropriate Ethernet interface on
the server. For example, the above configuration requires a system hosting the
above sites to have the following DNS records in its DNS server configuration file.

; Address Records

vhostl.server.com. IN A 192.168.
vhost2.server.com. IN A 192.168.
vhost3.server.com. IN A 192.168.

— =
W N

Reverse DNS records
1 IN PTR vhostl.server.com.
2 IN PTR vhost2.server.com.
3 IN PTR vhost3.server.com.

Each of these addresses must be bound to one or more Ethernet interfaces on the
server. On a Linux system, multiple IP addresses usually can be bound by using the
IP aliasing technique. For example:

/sbin/ifconfig ethO 192.168.1.1 up
/sbin/ifconfig eth0:0 192.168.1.2 up
/sbin/ifconfig eth0:1 192.168.1.3 up

In the above, all three IP addresses are bound to Ethernet interface eth0 and it’s
two aliases, eth0:0 and eth0:0. Consequently, the system will respond to each
IP address.

Multiple main servers as virtual hosts

Using multiple main servers as virtual hosts is only recommended when you are
required (typically, for nontechnical reasons) to maintain different httpd.conf
files. For example, say you have 16 IP addresses and want to provide 16 different

164 Partil + Web Site Administration

clients (or departments) with their own httpd. conf file so that each entity can
manage everything on its own and even create virtual hosts using <VirtualHost>
containers within their own httpd.conf.

,.,Alote Before you actually proceed with this method, consider carefully whether you can
~— avoid creating multiple main server instances by using <virtualhost> containers
instead.

Listing 6-2 shows a simplified version of httpd.conf (called httpd-100.conf) that
uses the Listen directive to tell Apache to only service the 192.168.1.100 IP
address associated with the system it is running. This implements a single virtual
host.

Listing 6-2: httpd-100.conf

ServerType standalone

ServerRoot "/usr/local/apache"
PidFile /usr/local/apache/logs/httpd-192.168.1.100.pid
ScoreBoardFile /usr/local/apache/logs/httpd-
192.168.1.100.scoreboard

Timeout 300

KeepAlive On

MaxKeepAliveRequests 100
KeepAliveTimeout 15
MinSpareServers 60
MaxSpareServers 100

StartServers 50

MaxClients 200
MaxRequestsPerChild 0

Port 80

Listen 192.168.1.100:80

User prod

Group prod

ServerName prod.domain.com
ServerAdmin kabir@prod.domain.com
DocumentRoot "/www/prod/htdocs”

Notice that the Listen directive also takes a port number as a parameter. In
Listing 6-2, Apache is told to listen to the given IP address on port 80. The Port
directive is still necessary because its value is used in Apache-generated self-
referencing URLs.

Listing 6-3 shows another simplified httpd. conf file (called httpd-101.conf) that
tells Apache to listen to the 192.168.1.101 address only. This implements another
virtual host using the multiple main server method of creating virtual hosts.

Chapter 6 + Hosting Virtual Web Sites 1 65

Listing 6-3: httpd-101.conf

ServerType standalone

ServerRoot "/usr/local/apache"

PidFile /usr/local/apache/logs/httpd-192.168.1.101.pid
ScoreBoardFile /usr/local/apache/logs/httpd-
192.168.1.101.scoreboard

Timeout 300

KeepAlive On

MaxKeepAliveRequests 100

KeepAliveTimeout 15

MinSpareServers 5

MaxSpareServers 10

StartServers b

MaxClients 10

MaxRequestsPerChild 0

Port 80

Listen 192.168.1.101:80

User stage

Group stage

ServerAdmin Tance@stage.domain.com
DocumentRoot "/www/stage/htdocs”

A system that wants to run two main Apache servers using the configuration files in
Listings 6-2 and 6-3 must have:

4 One or more Ethernet interfaces responding to the named IP addresses. For
example on a Linux system you can bind Ethernet interface eth0 to both
192.168.1.100and 192.168.1.101 using IP aliasing command as shown
here:

/sbin/ifconfig eth0 192.168.1.100 up
/sbin/ifconfig eth0:0 192.168.1.101 up

Of course, if a system has multiple Ethernet interfaces and you wanted to use
a main server for each interface, you do not need to use IP aliases.

4 The IP addresses must have host names associated with them. For the above
configuration files, the 192.168.1.100 is associated with prod.domain.com
and 192.168.101 is associated with stage.domain.com.

A system that has such IP addresses bound to its interface(s) can now run two
main Apache daemons using the following commands:

/usr/local/apache/bin/httpd -f «conf/httpd-100.conf
/usr/local/apache/bin/httpd -f conf/httpd-101.conf

If you run the ps auxww | grep httpd | grep root | grep conf command
you will see two main Apache servers that run as the root user.

166 Partil + Web Site Administration

Configuring DNS for a Virtual Host

In most cases your ISP is responsible for providing DNS service for domains. If that
is the case you can skip this section. However, if you do run BIND, the most widely
used DNS server, on your own on a Linux or other Unix-like systems, I show you
how to configure DNS for your virtual hosts here.

on how to configure your Windows DNS server.

@ Windows users: Please read the Configuring Apache for Win32 chapter for details
eierence

‘\I ote

Comprehending zone files

A zone file is necessary to set up DNS for a virtual host. A zone file is a textual
description of your DNS records. This file is loaded by the DNS server to implement
your DNS service for a single zone, which is often called an Internet domain.

Following is an example of a zone file. In it, | assume that the new virtual host that
you want to setup is called www.newdomain.com, that the DNS server hostnames
are nsl.domain.com (primary) and ns2.domain.com (secondary), and that your
Web server host name is www.domain.com (192.168.1.100). Make sure you
change the host names and IP addresses for your setup accordingly. The zone file
for www.newdomain.comis called /var/named/newdomain.zone and it contains
the following lines:

@ IN SOA newdomain.com. hostmaster.newdomain.com. (

20011201001 ; Serial YYYYMMDDXXX
7200 ; refresh
3600 ; (1 hour) retry
1728000 ; (20 days) expire
3600) ; (1 hr) minimum ttl

Name Servers

IN NS nsl.domain.com.

IN NS ns2.domain.com.

; A Records for IP-based virtual hosting
i www.newdomain.com. IN A 192.168.1.100

; CNAME for name-based virtual hosting
www.newdomain.com. IN CNAME www.domain.com.

The above DNS configuration assumes that you will not be using IP-based virtual

~~ hosting and therefore does not create an A record for www.newdomain.com. The

A record line is commented out. You can uncomment it if you use the IP-based vir-
tual hosting method. Because name-based virtual hosting does not require a
unique IP address, a CNAME record is created to point www.newdomain.com to
www .domain.com (which is the primary Web server).

Chapter 6 4+ Hosting Virtual Web Sites

Here’s what’s going on in the preceding configuration:

4+ The first line starts a DNS record called the Start of Address (S0A), which
specifies the serial number, refresh rate, retry rate, expiration time, and time-
to-live (TTL) values.

4 The serial number is used by DNS servers to determine whether or not they
need to update their cached records. For example, the given example is set to
20011201001, which states that the last update was on 12/01/2001 and it is
the first (001) change in that day. Now if the DNS administrator changed the
DNS configuration on 12/02/2001 the serial number should be changed to
reflect that, so that any remote DNS server that has cached the records can
compare the serial numbers between the cached version and the new version
and decide whether to upload new DNS data.

4 The refresh rate says how often should the records be refreshed by the DNS
server.

4 The retry value states that in case of a failure the remote DNS server querying
this DNS server retry again at the given interval.

4+ The expiration time tells remote DNS servers to forcefully expire any cached
data they have on the given domain after specified number of days.

4+ The final entry in SOA states that records have a specified minimal time-to-live
value. Note that anything following a semi-colon is treated as a comment line
and ignored.

4 The next two noncomment lines state that the DNS servers responsible for the
newdomain.comarensl.domain.comand ns2.domain.com. If you do not
have a second DNS server, you should consider using a third-party secondary
DNS service such as http://www.secondary.com.

Setting up DNS for new virtual hosts
You can set up DNS for each new virtual host on Linux as follows:

1. Create a zone file for the new domain. (See the preceding section for more on
zone files.)

2.Inthe /etc/named. conf file, add the following lines to enable the newdomain
zone.

zone "newdomain.com" IN {
type master;
file "newdomain.zone";
allow-update { none; };
b

This tells the named (DNS daemon) that the zone file for newdomain.comis
/var/named/newdomain.zone and that it is the primary (master) DNS server
for this zone.

167

168 Partil + Web Site Administration

3.Runthe kiTlall -HUP named command to force the name server to reload
the /etc/named. conf and the new zone file.

4. Try to ping www.newdomain.com. If you do not get a response, check the
/var/log/messages file for any typos or other errors that name server
(named_) might have reported in either /etc/named.conf or /var/named/
newdomain.zone files. In such case, correct the typos or errors and restart
the server as discussed in the previous step.

5. Once you can ping the www.newdomain.com, you are ready to create Apache
configuration for this virtual host as described in earlier sections of this
chapter.

Offering virtual mail services

To provide virtual mail service for the new virtual hosts you add, you have to mod-
ify the newdomain. zone file and add one or more appropriate MX record(s). For
example, say that your mail server is mail.domain.com and it is configured to
accept mail for newdomain.com. In such a case, you can modify the /var/named/
newdomain.zone to be as follows:

@ IN SOA newdomain.com. hostmaster.newdomain.com. (
20011201002 ; Serial YYYYMMDDXXX
7200 ; refresh
3600 ; (1 hour) retry
1728000 ; (20 days) expire
3600) ; (1 hr) minimum ttl
; Name Servers
IN NS nsl.domain.com.
IN NS ns2.domain.com.

IN MX 10 mail.domain.com.

CNAME for name-based virtual hosting
www.newdomain.com. IN CNAME www.domain.com.

Note that if you have multiple mail servers you can add them using a simple priority
scheme. For example, say that you want all mail for newdomain.comto gotomail.
domain.com and if this mail server is unavailable, you want to use bkupmail.
domain.com. You can simply add a second MX record as shown here:

IN MX 10 mail.domain.com.
IN MX 20 bkupmail.domain.com.

The lower number in front of mail.domain.com makes it a higher priority mail
server than bkupmail.domain.com. Make sure you have configured your mail
server software to support virtual mail domains.

Chapter 6 + Hosting Virtual Web Sites] 69

Setting User and Group per Virtual Host

If you have compiled Apache using the Perchild MPM module, you can set user and
group per virtual host, which is discussed here. But the biggest benefit of using this
method instead of a multiple httpd. conf-based mail server setup is simplicity of
configuration.

Caution This approach is slower than running multiple main Apache servers with different
IP addresses and different User and Group directives. The speed is lost because
of the increased complexity in internal request processing. The concept behind
this method is as follows: you instruct Apache to run a cluster of child processes
with a given user ID and group ID. When a request for a virtual host comes in and
a child process is given the request, the child process first determines whether it
can handle the request. If the child is not responsible for the requested virtual host
it must pass the request to the appropriate child process via socket calls, which
slows the request processing. Because this is a new concept, the speed issue
might be resolved or reduced in the future versions of Apache.

The material that follows assumes that you want to set up two virtual hosts called
vhostl.domain.comand vhost2.domain.com. Make sure to replace them with
whatever hostnames you need to use. Table 6-1 shows the user IDs and group IDs to
be used for these virtual domains.

Table 6-1
User and Group Ids for the Virtual Hosts
Virtual Host User ID Group ID
vhostl.domain.com vhluser vhlgroup
vhostZ.domain.com vh2user vh2group

Apache can be configured to support different user and group ID per virtual host as
follows:

1. Add the following lines to httpd.conf:

ChildPerUserID 10 vhluser vhlgroup
ChildPerUserID 10 vh2user vh2group

The ChildPerUser directive tells Apache to associate ten child processes
(each being multiple threads that service requests) to user and group ID for
the vhostl.domain.com site. Similarly, the second line associates another
ten child processes to user and group ID for the vhost2.domain.com site.

170

Part Il ¢ Web Site Administration

2. Create a <VirtualHost> container for each site:
NameVirtualHost 192.168.1.100

<VirtualHost 192.168.1.100>
ServerName vhostl.domain.com
AssignUserID vhluser vhlgroup

1
Other directives go here

#
</VirtualHost>

<VirtualHost 192.168.1.100>
ServerName vhost2.domain.com
AssignUserID vh2user vh2group

1
Other directives go here

#
</VirtualHost>

The AssignUserID directive used in each of the virtual host configuration
tells Apache to associate each of the virtual hosts to appropriate user and
group ID. Don’t forget to change the IP address as necessary.

3. Restart the Apache server using the /usr/Tocal/apache/bin/apachect]
restart command and you are done.

Managing a Large Number of Virtual Hosts

If you maintain a lot of virtual hosts, the httpd. conf file could become very long
and cumbersome to manage. An easy solution is to put each virtual host configura-
tion in a file by itself and to include each file by using the Inc1ude directive. For
example, Listing 6-4 shows a httpd. conf file with two virtual host configurations
that are external to main configuration file.

Listing 6-4: httpd.conf with two external virtual host
configurations

ServerType standalone

ServerRoot "/usr/local/apache”

PidFile /usr/local/apache/logs/httpd.pid
ScoreBoardFile /usr/local/apache/logs/httpd.scoreboard
Timeout 300

KeepAlive On

MaxKeepAliveRequests 100

Chapter 6 + Hosting Virtual Web Sites |7/]

KeepAliveTimeout 15
MinSpareServers 5
MaxSpareServers 10

StartServers b

MaxClients 10
MaxRequestsPerChild 0

Port 80

User httpd

Group httpd

ServerName www.domain.com
ServerAdmin webmaster@domain.com
DocumentRoot "/www/mysite/htdocs”

Name Virtual Hosts

NameVirtualHost 192.168.1.100
Include vhostl.domain.com.conf
Include vhost2.domain.com.conf

Notice that the NameVirtualHost directive is followed by the Include directive,
which tells Apache to read the vhostsl.domain.com.conf and vhost2.domain.
com. conf files to load virtual host configuration. These files can simply contain the
<VirtualHost> containers that you would normally put in httpd.conf. The bene-
fit of this approach is that you can create a very elaborate configuration for each
virtual host without cluttering up httpd.conf.

Automating Virtual Host Configuration
using mod_perl

Although using the Include directive (as discussed in the previous section) helps
to make httpd.conf manageable, it is still not good enough solution for sites that
use many Web servers, which, in turn, run many virtual Web sites. Ideally, you want
to write Apache configuration with a program or script, if possible, so that many
common configuration options are automatically created.

If you use the mod_per1 module with Apache (discussed in Chapter 16), you can
write Perl code to generate your Apache configuration. Because mod_per1 compila-
tion and installation is covered in Chapter 16 I will not repeat it here. I discuss how
you can use Perl code to generate Apache configuration next.

¢ Cross- See Chapter 16 if you still need to compile and installed mod _per1 support in
Reference’\ Apache. Just remember when compiling mod_per1 by following the instructions

in Chapter 16 that you have to use either the EVERYTHING=1 option or
PERL_SECTIONS=1 option with the configure script.

172 Partll + Web Site Administration

To use Perl code to generate Apache configuration, you need to use the <Per1>
container in httpd.conf. For example:

<Perl>

1

Your Perl code goes here

1

1;
</Perl>

The above Perl container is the absolute bare minimum you must have in httpd.
conf to be able to use Perl-based configuration. The last line within the container
returns a 1 (true value), which is necessary to satisfy mod_per1. Your code can be
any Perl script. The code in a <Per1> container is compiled in a special package
and mod_per1 communicates the configuration information to the Apache core con-
figuration module. The syntax that describes the configuration is discussed next.

The directives that take a single value are represented as scalar variables (scalar
variables are a Perl concept). For example:

User httpd

This User directive takes a single string value and therefore can be written as:

<Perl>
$User = "httpd";
1.

</Perl>

Here is an example configuration:

<Perl>
$User = "httpd";
$Group = "httpd";
$ServerAdmin abir@mobidac.com';
$MinSpareServers = b;
$MaxSpareServers = 5;
$MaxClients = 40;
1;

</Perl>

The directives that require multiple values can be represented as lists. For example,
PerIModule Apache::TestOne Apache::TestTwo can be represented as:

@Per1Module = gw(Apache::TestOne Apache::TestTwo);
Containers are represented using hash (hash is a computer programming construct

that is very commonly used in Perl and other modern languages such as C), for
example:

Chapter 6 + Hosting Virtual Web Sites |7/ 3

<VirtualHost 206.171.50.50>
ServerName www.nitec.com
ServerAdmin kabir@nitec.com
</VirtualHost>

this can be represented as the following:

$VirtualHost{"206.171.60.60"} = {
ServerName => 'www.nitec.com',
ServerAdmin => 'kabir@nitec.com'

}

A slightly more involved example is:

$Location{"/some_dir_alias/"} = {

AuthUserFile => "/www/nitec/secret/htpasswd',
AuthType => 'Basic',
AuthName => 'Subscribers Only Access',
DirectoryIndex => [gw(welcome.html welcome.htm)],
Limit => {

METHODS => POST GET',

require => 'user reader'

1

In the preceding, the configuration segment is used to create a restricted area using
basic HTTP authentication method for an alias called /some dir alias/. A set of
filenames are also defined as directory indexes for this alias.

You can define other containers such as <Directory>, <Files>, and so on in a sim-
ilar manner. Some example configurations follow.

Assume that you have three Web server systems—host_a, host_b, and host_c—
and that host_a is more powerful than host_b, and host_b is more powerful than
host_c. To define a <Per1> container that enables you to create a single configura-
tion for all three hosts, follow this example of such an httpd.conf file:

<Perl>
Get the host name using the Unix hostname utility and store
it
in the $thisHost variable.
my $thisHost = '/bin/hostname’;
if ($thisHost =~ /host_a/) {
configuration for host_a goes here

$MinSpareServers = 10;
$MaxSpareServers = 20;
$StartServers = 30;

$MaxClients = 256;

}
elsif ($thisHost =~ /host_b/) {
configuration for host_b goes here

174 Partll + Web Site Administration

$MinSpareServers

$MaxSpareServers

$StartServers = 10;

$MaxClients = 50;

1

else {

configuration for host c goes here

$MinSpareServers

$MaxSpareServers

$StartServers

$MaxClients = 30;
}

||U‘I()J

5;

1;
</Perl>

To make this scenario more interesting, assume that you have different virtual
hosts for each of the three hosts and would like to configure them in an elegant
manner. For example:

<Perl>

Get the host name using the UNIX hostname utility
and store it in the $thisHost variable.

my $thisHost = '/bin/hostname’
my $thisDomain = 'mydomain. com
my @vHosts = ();

my $anyHost;

if ($thisHost =~ /(host_a)/) {

configuration for host_a goes here
@vHosts = qw(gaia, athena, romeo, juliet, shazam);

} elsif ($thisHost =~ /host_b/) {

configuration for host_b goes here
@vHosts = gw(catbart, ratbart, dilbert);

} else {

configuration for host_c goes here
@vHosts = gw(lonelyhost);

}

for $anyHost (@vHosts) ({
%{$VirtualHost{"$anyHost.$domainName"}} = {
"ServerName" => "$anyHost.$domainName",
"ServerAdmin" => "webmaster\@$anyHost.$domainName"

Chapter 6 + Hosting Virtual Web Sites] 7/5

}
1;
</Perl>

After you have created a suitable Perl-based configuration for your Apache servers,
you can check your code syntax to make sure that the code is syntactically correct
by running the /usr/Tocal/apache/bin/apachectl configtest command. If
there is a syntax error you will see the error message on screen. Correct the
error(s) and reissue this command to make sure Apache accepts the code.

Generating Virtual Host Configuration
By Using the makesite Script

If adding virtual hosts becomes a daily or weekly matter for you because you work
for an ISP or a large organization that has a marketing department that likes creat-
ing new product Web sites frequently, you need makesite. It is a simple Perl script
that I wrote years ago and that I still use to create new virtual hosts. This script

is provided in the CD-ROM and it can also be downloaded from http://
sourceforge.net/projects/mkweb/.

For example, to create a new virtual host called newsite.com, you can simply run
makesite newsite.comand the script creates and appends the necessary httpd.
conf configuration. It will also create the necessary DNS configuration files by using
two templates. To use makesite, follow these steps.

1. Copy the makesite script, named.template,and httpd.template files to
suitable locations on your server. | usually keep makesite in the /usr/
bin directory so that it is in my normal path. | recommend creating /var/
makesite directory and moving the named. template and httpd.template
files there. In the following steps, [assume that you will do the same.

2. Using your favorite text editor, modify the makesite script. You need to
modify one or more of the following lines:

my $MAKESITE_DIR '/var/makesite';

my $USER = 'httpd';

my $GROUP = 'httpd';

my $PERMISSION = '2770";

my $BASE_DIR = "/www';

my $HTDOCS = 'htdocs';

my $CGIBIN = 'cgi-bin';

my $NAMED_PATH = '/var/named"';
my $NAMED_FILE_EXT = '.zone';

176

Part Il ¢ Web Site Administration

my
my
my
my
my

$NAMED_TEMPLATE
$NAMED_CONF
$HTTPD_CONF
$VHOST_TEMPLATE
$LOG_FILE

"$MAKESITE_DIR/named.template";
"/etc/named.conf’';
"/usr/local/apache/conf/httpd.conf"';
"$MAKESITE_DIR/httpd.template”;
"$BASE_DIR/makesite.log";

You may need to make changes as follows:

e [f you followed my recommendation and created /var/makesite where
you kept named.template and httpd.template files, you do not need
to make any changes to $MAKESITE_DIR.

e [f you run Apache using a different user/group than httpd, then
change the $USER and $GROUP values. If you wish the default Web direc-
tory permissions to be something other than 2770 then change the
$PERMISSION value.

e The $BASE_DIR is set to /www, which is where virtual host site
directory is created. The virtual host site directory will be /www/
virtual_hostname and there will be htdocs (set by $HTDOCS) and
cgi-bin (set by $CGIBIN) subdirectories under it. Change the values
as needed.

e [f you want document root directories to be something other than
htdocs, change $HTDOCS.

e Similarly, if you do not use the traditional /cgi-bin/ alias for
ScriptAlias, change $CGIBIN accordingly.

¢ On Linux systems, the default DNS records directory is /var/named;
if you have changed it to some other path, make sure you change
$NAMED_PATH.

e If you keep the httpd.conf in a different path than
/usr/local/apache, then change $HTTPD_CONF value.

3. Modify the /var/makesite/named.template so that it reflects the name
server, and Web server host names for your system. The default named.
template file assumes that your primary and secondary name servers are
nsl.domain.comand ns2.domain.com; that your mail server ismail.
domain.com; and that your Web server is www.domain.com. Make sure you
change these host names accordingly.

4. Make sure that the /var/makesite/httpd.template has all the directives
that you want to add to each new virtual host you create using this script.

Now you are ready to run the script to create a new virtual host. As a precaution,
back up your /etc/named.conf and /usr/local/apache/httpd.conf files. To
create a new virtual host called vhost1.comrun the makesite vhostl.comcom-
mand. Review the /usr/local/httpd.conf file; you should see:

Tip

Chapter 6 4+ Hosting Virtual Web Sites

1
Domain Configuration for www.vhostl.com

1

<VirtualHost www.vhostl.com>
ServerName www.vhostl.com
ServerAdmin webmaster@vhostl.com

DocumentRoot /tmp/vhostl/htdocs
ScriptAlias /cgi-bin/ /tmp/vhostl/cgi-bin/

ErrorLog logs/www.vhostl.com.error.log
TransferlLog logs/www.vhostl.com.access.1og

</VirtualHost>
i

End of Domain Configuration for www.vhostl.com

#
This is the <VirtualHost> configuration that the makesite script creates.

If you are creating a name-virtual host for the first time, make sure you add

_» NameVirtualHost IP_Address asthe last line in the httpd.conf file before

4 running makesite script for the first time.
Also check the /etc/named.conf file;you should see the following:

// vhostl.com was created on 2001-04-25-17-25
zone "vhostl.com" {

type master;

file "vhostl.zone";
b

As you can see, the script created the appropriate zone configuration information
for the virtual host. You can find the DNS zone information in
/var/named/vhostl.zone file, which shows:

@ IN SOA vhostl.com. hostmaster.vhostl.com. (

20010425000 ; serial YYYYMMDDXXX
7200 ; refresh

3600 ; (1 hour) retry

1728000 ; (20 days) expire

3600) ; (1 hour) minimal TTL

Name Servers
IN NS nsl.domain.com.
IN NS ns2.domain.com.
IN MX 10 mail.domain.com.

CNAME records
www IN CNAME www.domain.com.

177

178

Part Il ¢ Web Site Administration

Look under /www (or whatever $BASE_DIR is pointing to); you should see vhostl
directory with the following files and subdirectories:

./vhostl

./vhostl/htdocs
./vhostl/htdocs/index.html
./vhostl/cgi-bin

Restart the name server by using the ki11all -HUP named command. Also restart
the Apache server by using the /usr/local/apache/bin/apachect]l restart
command. You should be able to access the new virtual Web site by using www .
vhostl.com/. The default index.html page is there to help you identify the
domain via Web.

Managing Virtual Hosts By Using MySQL
with mod_v2h Module

fho

The mod_v2h module is a mass virtual-hosting module with support for performing
URL translation paths from MySQL database. This module can cache URL transla-
tion paths into memory for faster performance. You will need to have MySQL
installed on a server. To learn about MySQL visit www.mysql.com.

With MySQL already installed, follow these steps to compile and install mod_v2h:

1. Download the latest version of mod_v2h from
www.fractal.net/mod_v2h.tm.

2. As root, extract the source distribution using the tar xvzf mod_vZ2h.tar.gz
command in the modules subdirectory of your Apache source tree. For
example, if you keep the Apache source in /usr/Tocal/src/httpd_2 0_16
directory, than extract the mod_vZh.tar.gz file in the /usr/Tocal/src/
httpd_2_0_16/modules directory. A new subdirectory called mod_v2h will
be created.

3. Change your current directory to /usr/local/src/httpd_2_0_16/
modules/v2h and edit the config.m4 file.

You only need to edit this file if you notice that the include and 1ib directory

~ path for MySQL files are incorrect. For example, on my Linux system, the MySQL

include files are installed in /usr/include/mysql directory and the library files
are in /usr/1ib/mysql directory. The default config.m4 points to /usr/
local/include/mysql and /usr/local/lib/mysql for the include and
library files, respectively; thus, | had to correct the path. Simply edit the paths if
needed. | also needed to add -1z in the LDFLAGS line so that it looked like
LDFLAGS="$LDFLAGS -L/usr/1ib/mysqgl -1z -W1,-R,/usr/1ib/mysql".

Chapter 6 + Hosting Virtual Web Sites |1 /9

4. Change directory to /usr/Tocal/src/httpd_2_0_16 and run the autoconf
command to create necessary configuration file.

5. Run ./configure with whatever options you need as shown in Chapter 2 and
then run make && make install commands to compile and install Apache with
mod_vZ2h support. For example, [ran ./configure --prefix=/usr/local/
httpd --disable-module=cgi to configure Apache source and then ran the
make && make install commands to install Apache in /usr/local/httpd
with mod_vZh support and without mod_cgi support. You can use whatever
options you used earlier by not running . /configure and by running
./config.status instead.

After you have compiled Apache with mod_vZh, you need to use the new mod_vZh
directives, which are shown in Table 6-2, in httpd.conf.

Table 6-2
The mod_v2h directives
Directive Purpose
v2h Set to On to turn on this module. Otherwise set it to Off.
v2h_Mysql_Db Set to the name of the MySQL database
v2h_Mysql_Tb1 Set to the name of the MySQL database table
v2h_Mysql_Serv_Fld Set to the table field name where server name (for example,

www.domain.com) is stored

v2h_Mysql_Path_F1d Specifies the physical path the URI which should be translated
to (thatis, /htdocs/www.fractal.net/).

v2h_Mysql_Host Set to the host name of the MySQL server.

v2h_Mysql_Port Set to the MySQL server port number which is used to connect
to it.

v2h_Mysql_Pass Set to the password (if any) for the database access.

v2h_Mysql_User Set to the username (if any) for the database access.

v2h_Mysql_Env_F1d Set to the value of additional database field which is used to
set the an environment variable called VHE_EXTRA.

vZh_PathHead Set to the extra path that can be prefixed to the path pointed
by v2h_Mysql_Path_F1d

v2h_UseImage Set to On or Off to enable or disable caching in memory

v2h_ImagePath Set to the path to store the memory image.

v2h_DeclineURI Set to URI that would be declined.

Authenticating
and Authorizing
Web Site Visitors

SUpport for basic HTTP authentication in Apache has
been around for quite a while. Many modules have been
written to provide basic HTTP authentication in Apache. In
this chapter you will learn about various ways of authenticat-
ing and authorizing access to the Web server, how you can
authenticate users using password files, database servers,
etc., and how to control access by restricting access via

IP address or usernames.

Authentication vs. Authorization

Many people confuse authentication and authorization, and
some even think they are the same thing, which they aren’t.
To understand the differences consider the following example.
When you want to visit a foreign country what do you need?

A passport and a visa. The passport is a document that authen-
ticates you to the foreign country. It tells them that you are
really who you claim to be. So, when you present your pass-
port, you are authenticating yourself to the foreign officials.
Next, you must show proof that you are allowed (that is, autho-
rized) to enter the foreign country. This is the visa document.

Now, in computer terms, the authentication typically involves
submitting a username and password. A successful submission
and acceptance of a username and password states that you
are who you claim to be. In other words, you have authenticated
yourself.

A given resource that you are trying to access may require
authorization in addition to authentication. For example, if
you are accessing a computer at 4 a.m., the computer might
refuse to let you in at that time because the system adminis-
trator has decided that you are not authorized to access it at

CHAPTER

+ + 4+
In This Chapter

Authenticating users
by using usernames
and passwords

Authorizing access
using host name or
IP address

Authenticating
with RDBM

Authenticating using
MySQL Database

Authenticating using
the /etc/passwd
password file

Authenticating
using cookies

I R

182 Partil 4+ Web Site Administration

4 a.m. Similarly, you might be authorized to view a restricted Web site from the
office but not from home because the company policy dictates to the network
administrator that all restricted access be performed on premises.

Understanding How Authentication Works

Basic HTTP authentication is really quite simple. A challenge and response mecha-
nism is used to authenticate users. The steps are shown in Figure 7-1 and discussed
below:

1. Authentication begins when a Web browser requests a URL that is protected
by the HTTP authentication scheme. This is shown as (1) in the figure.

2. The Web server then returns a 401 status header along with a WWW-
Authenticate response header, which implies that authentication is required
to access the URL. The header contains the authentication scheme being used
(currently only basic HTTP authentication is supported) and the realm name.
This is (2) in the figure.

GET /protected/file m

A 4

Web Browser)) Web Server
) Status: 401 "Authorization Required"
3
v
Pop Up Dialog Window)
Username I:I GET /protected/file , Web Server
posord [| | Fess et

Username and
Web Browser uuencoded password

Content of /protected/file (5a)

Performs
Authentication
(5b) Checks

(on success)

Status: 401 "Authorization Required"
(on faliure)

Figure 7-1: The basic HTTP authentication process.

Caution

3.

4.

Chapter 7 4+ Authenticating and Authorizing Web Site Visitors

At this point, a Web browser dialog box appears, asking the user to enter a
username and a password. This is (3) in the figure.

The user enters the required username and password and clicks OK. The
browser then sends the username and password along with the previous URL
request to the server. The server checks whether the username and password
are valid. This is (4) in the figure.

When the password is sent from the client system (the host running the Web
browser), it is neither sent in clear text nor encrypted. Instead, it is uuencoded and
transmitted over the Internet. This is disadvantageous for this method of authenti-
cation, because anyone armed with network traffic sniffer hardware and software
might be able to retrieve the IP packet carrying the uuencoded password. Because
uuencode is a widely used data-encoding scheme, the decoder, uudecode, is also
widely available, thus enabling practically anyone to decode a uuencoded pass-
word and to possibly abuse it. It is true that the packet sniffer has to be able to find
the right packet to be able to do the decoding, but technically it is possible. This is
why you should never use Basic HTTP authentication for any critical application.
Do not, for example, protect your nation’s secrets using this scheme. However, if
you are already allowing Telnet or ftp access to your system, then you are already
using authentication methods (in these services) that are very similar to Basic
HTTP authentication. If you trust your server to be connected to the Internet, open
to attempts to Telnet in by anyone who wants to try, then you have no reason not
to trust this method.

. If the username and password are valid (that is, authentic), the server returns

the requested page. This is (5a) in the figure. If the username and password
are invalid, the server responds with a 401 status and sends the same WWW-
Authenticate response header to the browser. This is (5b) in the figure.

. In each subsequent request during the browser session to the same server,

the browser will send the username and password pair so that the server
does not have to generate a 401 status header for calls that fall in the same
area of the site. For example, if the URL http://apache.nitec.com/
protected/ requires Basic HTTP authentication, subsequent calls to
http://apache.nitec.com/protected/a=page.html and http://
apache.nitec.com/protected/b=page also require the username and
password. This is why the browser sends both before another authentication
challenge —that is, the 401 status header and the WWW-Authenticate
response header —is issued by the server. This is faster and more practical
than generating a challenge for each request and having the user enter the
username and password repeatedly.

183

184

Part Il ¢ Web Site Administration

Authenticating Users Via the
mod_auth Module

The mod_auth module is Apache’s default authentication module. This module
enables you to authenticate users whose credentials are stored in text files.
Typically a text file containing a username and encrypted password is used. You
can also use a text file to create user groups, which can be used to create authoriza-
tion rules (discussed later in this chapter). It is recommended that you use
mod_auth-based authentication for small numbers of users. Often when a text file
reaches even just a few thousand usernames, lookup performance drops dramati-
cally. So, if you have a very large user base, using this module is not recommended.
However, this module is perfect for a few hundred users or so.

You can use /usr/local/apache/bin/httpd -1 to verify whether this module is
already compiled into your Apache binary. If not, you have to use the --enable-
module=auth option with the configure script, and recompile and reinstall your
Apache distribution.

Understanding the mod_auth directives

The mod=auth module offers the Apache directives AuthUserFile, AuthGroupFiTe,
and AuthAuthoritative. Let’s look at these directives and some examples that
use this module.

AuthUserFile directive

This directive sets the name of the text file that contains the usernames and pass-
words used in the basic HTTP authentication. This directive requires that you
provide a fully qualified path to the file to be used.

Syntax: AuthUserFile filename
Context: Directory, per-directory access control file (.htaccess)
Override: AuthConfig

For example, the following directive sets /www/mobidac/secrets/.htpasswd as
the username and password file:

AuthUserFile /www/mobidac/secrets/.htpasswd

The username and password file is usually created using a utility called htpasswd,
which is available as a support program in the standard Apache distribution. The
format of this file is very simple. Each line contains a single username and an
encrypted password. The password is encrypted using the standard crypt ()
function.

Chapter 7 4 Authenticating and Authorizing Web Site Visitors |1 85

Caution It is important that the AuthUserFile-specified file resides outside the docu-
ment tree of the Web site. Putting it inside a Web-accessible directory might
enable someone to download it.

AuthGroupFile directive

This directive specifies a text file to be used as the list of user groups for Basic
HTTP authentication. The filename is the absolute path to the group file. You can
create this file using any text editor.

Syntax: AuthGroupFile filename

Context: Directory, per-directory access control file (.htaccess)

Override: AuthConfig
The format of this file is:
groupname: username username username [...]
For example:
startrek: kirk spock picard data

This creates a group called startrek, which has four users: kirk, spock, picard,
and data. The Caution icon in the previous section also applies to this directive.

AuthAuthoritative directive

If you are using more than one authentication scheme for the same directory,
you can set this directive to off so that when a username/password pair fails
with the first scheme, it is passed on to the next (lower) level.

Syntax: AuthAuthoritative On | Off
Default: AuthAuthoritative On
Context: Directory, per-directory access control file (.htaccess)

Override: AuthConfig

For example, if you are using mod_auth_mysql (discussed later in this chapter) and
the standard mod_auth module to provide authentication services, and a username/
password pair fails for one of them, the next module is used to authenticate the
user, if possible. When a user name/password pair fails all modules, the server
reissues a 401 status header and sends the WWW-Authenticate response header

for reauthentication. However, if a particular module successfully authenticates

a username/password pair, the lower-level modules never receive the username/
password pair.

It is recommended that you leave the default value as-is because you should not
design a trickle-down authentication scheme in which a user may fail one and pass
another.

186

Part Il ¢ Web Site Administration

Creating a members-only section in your Web site

By using the mod_auth directives you can create a members-only section on your
Web site that requires username/password-based authentication. For example,
let’s say that you want to create a members-only section called http://
your_server_name/memberonly. Here is how to do it.

1. Determine which physical directory you want to restrict access to. Most
people use a directory within the DocumentRoot-specified directory but you
can use whatever directory you want as long as the Apache user (set by User
directive) is allowed to read the contents of the directory. Here, [assume that
your DocumentRoot is set to /www/mysite/htdocs and that you want to
restrict access to a directory named /www/mysite/htdocs/memberonly.

2. Modify the httpd.conf file to create a new alias called /memberonly/ as
shown below:

Alias /memberonly/ "/www/mysite/htdocs/memberonly/"

3. Next add the following directives to the httpd. conf file to setup
/memberonly/ as arestricted section that requires user authentication.

<Location /memberonly/>
AuthName "Member-Only Access"
AuthType Basic
AuthUserFile /www/secrets/.members
require valid-user

</Location>

Here the AuthName directive simply creates a label that is displayed by the
Web browsers to the users. This label should be something meaningful so that
the user knows what is being requested. Make sure you use double-quotes as
shown above. The AuthType is always set to Basic because HTTP only sup-
ports Basic authentication by default. The AuthUserFile points to a pass-
word file called .members. The Require directive states that only valid users
are allowed access.

4. Now, use the htpasswd utility to create a password file. Assuming you have
installed Apachein /usr/local/apache, the htpasswd command should be
run as follows only for the first time:

/usr/local/apache/bin/htpasswd -c path_to_password_file
username

The -c option is only needed to create the file and should be used just once.
For example, to create the first user called mrbert for the above /memberonly/
configuration, run:

/usr/Tocal/apache/bin/htpasswd -c /www/secrets/.members mrbert

5. To ensure that the user is created in the password file, view its contents using
a text editor. Also make sure that only the Apache user (set using the User
directive) can access this file. For example, if you run Apache as httpd user,

ﬁ\lote

‘\I ote

Chapter 7 4 Authenticating and Authorizing Web Site Visitors |1 87

you can run chown httpd:httpd /www/secrets/.members && chmod 750
/www/secrets/.members commands to ensure that only httpd user (and
group) can read this file.

6. Restart the Apache server using the /usr/Tocal/apache/bin/apachect]
restart command.

7. Now, use http://your_server_name/memberonly/ to access the member-
only section; you should be prompted for a username and password. You
should see the value of the AuthName ("Member-0nly Access") in the dis-
played dialog box.

8. Enter an invalid username and password and you should see a rejection
message.

9. Finally, try and access the site again and then enter a valid username and
password as created by the htpasswd utility. You should have access to the
restricted section.

If you are using the default common log format to log access, you can see logged-
~~ in usernames in your log files.

Creating a members-only section using
a .htaccess file

For organizations such as Internet Service Providers (ISPs) and large companies
with many departments running virtual Web sites on the same Web server, adding
member-only configuration in httpd. conf (which was discussed in the last sec-
tion) may not be a manageable solution, because you will have to add or remove
configurations as quickly as various users (in case of an ISP setup) request such
changes. By using a . htaccess-based authentication, however, you can allow a
user or department to create as many member-only sections as they want without
your involvement — a blessing for a busy system administrator.

To use .htaccess-based authentication for member-only authentication, follow
these steps.

1. Add the following directive in your httpd. conf file:

AccessFileName .htaccess
If you wish to enable the . htaccess-based authentication only for a virtual host,
~ add this directive within the appropriate <VirtualHost> container.

2. Change the following default configuration:

<{Directory />
Options FollowSymLinks
AllowOverride None
</Directory>

to:

188

Part Il ¢ Web Site Administration

ﬁ\lote

<Directory />
Options FollowSymLinks
AllowOverride AuthConfig
</Directory>

This enables use of the authorization directives (AuthDBMGroupFile,
AuthDBMUserFile, AuthGroupFile, AuthName, AuthType, AuthUserFile,
Require, and soon)in an .htaccess file.

3. Restart the Apache server using /usr/local/apache/bin/apachect]
restart command.

4. Now you can create an .htaccess file in any Web accessible directory and
control access to it. You need to have these directives in the .htaccess file:

AuthName "Enter Appropriate Label Here"
AuthType Basic

AuthUserFile path_to_user_password file
Require valid-user

For example, say you have a directory called /www/mysite/htdocs/asb and
want to restrict access to this directory to users listed in
/www/mysite/secrets/users.pwd. To do so, you would use the following
configuration:

AuthName "ASB Member Only Access"

AuthType Basic

AuthUserFile /www/mysite/secrets/users.pwd
Require valid-user

Make sure that the . htaccess file is readable only by the Apache user (set using

— User directive). For example, if you run Apache as httpd, then you would run

chown httpd:httpd .htaccess && chmod 750 .htaccess commands from
the directory where you keep the file. Also note that creation or modification of an
.htaccess file does not require restarting Apache server, so you can try out the
restricted section of your Web site to determine whether the authentication pro-
cess is working properly.

Grouping users for restricted access to
different Web sections

If you different users need access to different parts of your Web site, you have sev-
eral choices. Instead of just requiring a valid-user configuration, which opens up the
restricted section for all valid users, you can use specific usernames. For example:

<Location /financial>

AuthName "Members Only"

AuthType Basic

AuthUserFile /www/mysite/secrets/.users.pwd
require cgodsave jolson

Chapter 7 4 Authenticating and Authorizing Web Site Visitors] 89

</Location>

<Location /sales>
AuthName "Members Only"
AuthType Basic
AuthUserFile /www/mysite/secrets/.users.pwd
require esmith jkirk
</Location>

Here only cgodsave and jolson have access to the /financial section and esmith
and jkirk have access to /sales section. However, naming all users in the configu-
ration is a cumbersome and often unmanageable undertaking. One approach is to
create either separate password files, which would make the above configuration
segments look as follows:

<Location /financial>
AuthName "Members Only"
AuthType Basic
AuthUserFile /www/mysite/secrets/.financial-team.pwd
require valid-user
<{/Location>

<Location /sales>
AuthName "Members Only"
AuthType Basic
AuthUserFile /www/mysite/secrets/.sales-team.pwd
require valid-user
</Location>

Now, add only the users who should be added to /www/mysite/secrets/
.financial-team.pwd, in this case, cgodsave and jolson, and add only the users
who should be added to /www/mysite/secrets/.sales-team.pwd, in this case,
esmith and jkirk.

However, if maintaining multiple password files is not appealing to you, there is
another approach. For example, take a look at the following configuration segments:

<Location /financial>
AuthName "Members Only"
AuthType Basic
AuthUserFile /www/mysite/secrets/.members.pwd
AuthGroupFile /www/mysite/secrets/.groups
require group financial

</Location>

<lLocation /sales>
AuthName "Members Only"
AuthType Basic
AuthUserFile /www/mysite/secrets/.members.pwd
AuthGroupFile /www/mysite/secrets/.groups
require group sales

</Location>

190

Part Il ¢ Web Site Administration

Here the same password file .members.pwd is used for both locations but each
location uses a different group. The group file is common because a group file can
contain multiple groups. The group file /www/mysite/secrets/.groups is a simple
text file, which for the above example looks like:

financial: cgodsave jolson
sales: esmith jkirk

Now, to add new users to a group does not require changing the httpd. conf file
(or if you are using .htaccess files, the <Location> containers). You can simply
add the user to the appropriate group in the group file after you have created the
user account using htpasswd command.

Authorizing Access via Host Name
or IP Addresses

In this authorization scheme, the host name or the host’s IP address controls
access. When a request is made for a certain resource, the Web server checks
whether the requesting host is allowed access to the resource and takes action
based on its findings.

The standard Apache distribution includes a module called mod=access, which
enables access control based on the Internet host name of a Web client. The host
name can be either a fully qualified domain name (FQDN), such as blackhoTle.
mobidac.com, or an IP address, such as 192.168.1.100. The module provides this
access control support by using these Apache directives: allow, deny, order,
allow from env=variable,and deny from env=variable.

allow directive

This directive enables you to define a list of hosts (containing one or more hosts or
IP addresses) that are allowed access to a certain directory. When more than one
host or IP address is specified, they should be separated with space characters.
Table 7-1 shows the possible values for the directive.

Syntax: Allow from host1 host2 host3 ...

Context: Directory, location, per-directory access control file (. htaccess)

Override: Limit

Chapter 7 4+ Authenticating and Authorizing Web Site Visitors

Table 7-1
Possible Values for the allow Directive
Value Example Description
All allow from all This reserved word allows access for

A FQDN of a host

A partial domain
name of a host

A full IP address
of a host

A partial IP address

allow from wormhole.
mobidac.com

allow from .mainoffice.
mobidac.com

allow from 192.168.1.100

Example 1:
allow from 192.168.1

Example 2:
allow from 130.86

all hosts. The example shows how
to use this option.

Only the host that has the specified
domain name (FQDN) is allowed
access. The al1ow directive in the
example only allows access to
wormhole.mobidac.com. Note
that this compares whole
components; toys.com would not
match etoys.com.

Only the hosts that match the
partial host name are allowed
access. The example permits all the
hosts in .mainoffice.mobidac.
com network to access the site. For
example, developerl.
mainoffice.mobidac.comand
developer2.mainoffice.mobid
ac.com have access to the site.
However, developer3.baoffice.
mobidac.comis not allowed access.

Only the specified IP address is
allowed access. The example shows
the full IP address (all four octets of
IP are present), 192.168.1.100
that is allowed access.

When less than four octets of an IP
address are present in the al1ow
directive, the partial IP address is
matched from left to right, and
hosts that have the matching IP
address pattern (that is, it is part of
the same subnet) are allowed
access. In the first example, all hosts
with IP addresses in the range of
192.168.1.1 to 192.168.1.255 have
access. In the second example, all
hosts from the network are allowed
access.

Continued

191

192 Partil 4+ Web Site Administration

Table 7-1 (continued)

Value Example Description
A network/ allow from 192.168.1.0/ This enables you to specify a range
netmask pair 255,255,255 .0 of IP addresses using the network

and the netmask address. The
example allows only the hosts with
IP addresses in the range of
192.168.1.1 to 192.168.1.255 to
have access.

A network/nnn allow 206.171.50.0/24 Similar to the previous entry, except

CIDR specification that the netmask consists of nnn
high-order 1 bits. The example is
equivalent to allowing access to
hosts with IP addresses from
206.171.50.0/255.255.255.0.

deny directive

This directive is the exact opposite of the al1ow directive. It enables you to define a
list of hosts that are denied access to a specified directory. Like the a11ow directive,
it can accept all the values shown in Table 7-1.

Syntax: deny from hostl hostZ host3 [...]

Context: Directory, location, per-directory access control file (.htaccess)

Override: Limit

order directive

This directive controls how Apache evaluates both allow and deny directives.

Syntax: order deny, allow | allow, deny | mutual-failure
Default: order deny, allow
Context: Directory, location, per-directory access control file
Override: Limit
For example, the following directive denies the host myboss.mycompany.com
access, while allowing all other hosts to access the directory. The value for the

order directive is a comma-separated list, which indicates which directive takes
precedence:

Chapter 7 4 Authenticating and Authorizing Web Site Visitors] 93

<Directory /mysite/myboss/rants>
order deny, allow
deny from myboss.mycompany.com
allow from all

</Directory>

Typically, the one that affects all hosts is given lowest priority. In the preceding
example, because the al1ow directive affects all hosts, it is given the lower priority.

Although allow, deny and deny, allow are the most widely used values for the
order directive, you can use another value, mutual-failure, to indicate that only
those hosts appearing on the al1ow list but not on the deny list are granted access.
In all cases, every allow and deny directive is evaluated.

allow from env=variable directive

This directive, a variation of the a11ow directive, allows access when the named
environment variable is set.

Syntax: allow from env=variable
Context: Directory, location, per-directory access control file (. htaccess)

Override: Limit

This is only useful if you are using other directives such as BrowserMatch to set an
environment variable. For example, say you want to allow Microsoft Internet
Explorer 6, the latest version of Internet Explorer, to access a directory where you
stored some HTML files with embedded VBScript. Because the other leading Web
browser, Netscape Navigator, does not support VBScript directly, you’d rather not
have Navigator users go into the directory. In such a case, you can use the
BrowserMatch directive to set an environment variable when Internet Explorer 5.5
is detected. The directive would be:

BrowserMatch "MSIE 5.5" ms_browser
Now you can use a <Directory> container to specify the allow
directive, as follows:
<{Directory /path/to/Vbscript_directory >
order deny,allow
deny from all
allow from env=ms_browser
</Directory>

Here the Apache server will set the ms=browser environment variable for all
browsers that provide the "MSIE 6" string as part of the user-agent identifier.
The al1ow directive will allow access only to browsers for which the ms_browser
variable is set.

194

Part Il ¢ Web Site Administration

deny from env=variable

This directive, a variation of the deny directive, denies access capability for all
hosts for which the specified environment is set.

Syntax: deny from env=variable
Context: Directory, location, per-directory access control file (.htaccess)

Override: Limit

For example, if you want to deny all hosts using Microsoft Internet Explorer access,
you can use the BrowserMatch directive to set a variable called ms=browser when-
ever a browser identified itself to the server with the string "MSTE".

BrowserMatch "MSIE" ms_browser

Now you can use a <Directory> container to specify the deny directive, as follows:

<{Directory /path/to/vbscript_directory >
order deny,allow
allow from all
deny from env=ms_browser

</Directory>

If you are interested in blocking access to a specific HTTP request method, such as
GET, POST, or PUT, you can use the <Limit> container to do so. For example:

<Location /cgi-bin>
<Limit POST>
order deny,allow
deny from all
allow from yourdomain.com
</Limit>
</Location>

This example allows POST requests to the cgi-bin directory only if hosts in the
yourdomain.com domain make the request. In other words, if this site has some
HTML forms that send user input data via the HTTP POST method, only the users in
yourdomain.com will be able to use these forms effectively. Typically, CGI applica-
tions are stored in the cgi-bin directory, and many sites feature HTML forms that
use the POST method to dump data to CGI applications. Using the preceding host-
based access-control configuration, a site can allow anyone to run a CGI script but
only allow a certain site (in this case, yourdomain.com) to actually post data to
one or more CGI scripts. This gives the CGI access in such a site a bit of read-only
character. Everyone can run applications that generate output without taking any
user input, but only users of a certain domain can provide input.

Chapter 7 4 Authenticating and Authorizing Web Site Visitors] 95

Combining Authentication and Authorization

The basic HTTP user authentication support in mod_auth and access authorization
support in mod_access can be combined to implement practical access control
problems. For example, lets say that you want to allow a group of users access to a
the /aolbuddies/ sections of your Web site only if they are browsing the Web site
via an AOL connection. Here is the configuration that you can add to httpd.conf
after replacing the path and filenames as appropriate:

Alias /aolbuddies/ "/path/to/web/directory/for/aolbuddies/"

<Location /aolbuddies/>
Deny from all
Allow from .aol.com

AuthName "AOL Buddies Only"
AuthType Basic

AuthUserFile /path/to/.myusers.pwd
AuthGroupFile /path/to/.mygroups
require group aolbuddies

Satisfy all
</Location>

The Satisfy all directive tells Apache to only allow access to those who pass
both authentication and authorization tests. When an AOL user connects to
http://your_server/aolbuddies/ via AOL, the user is prompted for a username
and password. If the user enters a username that belongs to the aolbuddies group
and the user’s password is correct, the user will be allowed access.

Aote You must add all your AOL buddies as users in /path/to/.myusers.pwd and
~ also create a group called aolbuddiesin /path/to/.mygroupsmwhich lists all
the AOL buddies (users in /path/to/.aol that you added earlier) in it.

Authenticating with a Relational Database

If you run a relational database server on your network (or even on the Web server)
and have a lot of users (that is, more than 1,000 users) to authenticate via the Web,
you can use the database server to replace the text file-based (mod_auth) authenti-
cation discussed earlier. There are several advantages to using a database server
for large number of users; the primary advantages are:

4 The mod_auth authentication becomes really slow when a large number of
users are stored in a text file.

4 If you allow users to change their passwords via the Web by using a custom
application, text files are not safe because you must ensure that write access

196 Partil + Web Site Administration

to the file is locked and unlocked properly. Storing data in database servers
removes such additional burden from your scripts and provides a much bet-
ter degree of overall data integrity.

4+ In a relational database you can store a great deal of information about a user
that can be used by your Web applications. So, centralizing your user
database using a database server such as MySQL makes good sense for the
long-term.

Aote You can use most modern relational database servers such as MySQL, Postgres,
- DB2, Oracle, and Microsoft SQL as the user database. Installation of any of these
database servers is beyond the scope of this book. | assume that you have

installed one of these database servers on your network or on the Web server.

Tip For a site that has many users, you may want to create a dedicated database server

~, that is accessible on your Web network. Ideally the database server should be
‘ accessible via a back-end network instead of the Internet. Most of the time, it is
better to have a second Ethernet interface on each server system and to create a
LAN that is only accessible to the servers in the LAN. (See Chapter 23 for details on
how to create such network.)

N

Using MySQL database server for authentication

MySQL is the most widely used free database server in the open source community;
it is available under the GNU Public License. It is easy to install and set up your
server as a user-authentication database server. With the Linux platform, you can
simply download and install the server, client, and development RPM packages and
can be ready in a matter of minutes! MySQL server is available for download at
www.mysql.com.

Creating the user-authentication database in MySQL server

To use MySQL server as an authentication database you need to have at least user-
name and password information in a table in a database. If you already have an
existing database table with such information you do not need to follow the steps
given here.

1. Log on to the MySQL server using the mysql -u root -p command. You will
be asked to enter the root password for the database.

Caution The root password for the MySQL server should always be different than the root
password on your Unix system. They serve different purposes and therefore
should be kept apart.

2. After you are logged into MySQL, run the create database auth; command,
which creates a database called auth.

Chapter 7 4 Authenticating and Authorizing Web Site Visitors 197/

3. Change your current database to the newly created auth database using the
following command:

use auth;

4. Now create a table called wwwusers by entering the following lines in the
MySQL command prompt.

create table wwwusers (
username varchar(40) not null primary key,
passwd varchar(20) not null

);

Each row in this table consists of three fields: username, passwd, and groups.
The username field is the primary key, which means that MySQL uses this
field to index the table, making lookups that use the username very fast. This
field is limited to 40 characters. The use of varchar (variable character)
instead of fixed char type saves space if usernames are not always 40 charac-
ters. The username field cannot be null (that is, empty) because it is also the
primary key. The password field is called passwd, which is a maximum of 20
characters long and of the varchar type. It cannot be null.

5. Now enter describe wwwusers; command, which should show the following
output:

mysql> describe wwwusers;

oo e H------ oo R oo +
| Field | Type | Null | Key | Default | Extra |
oo R EEEE e H------ oo R s +
| username | varchar(40) | | PRI | | |
| passwd | varchar(20) | | | | |
oo R R E e H------ +----- e e +

2 rows in set (0.00 sec)
This is a verification of the fact the table wwwusers was created as desired.

6. Now you need to add user(s) to the table. To add users manually, you need to
run the following SQL statement:

insert into wwwusers (username , passwd)
values ('user_name',
'user_password'

)3
For example:

insert into wwwusers (username , passwd)
values ('esmith','sale007"');

Here a user called esmith is added with sale007 as the password in the
sales group. Add as many users as you would like. See “ Managing Users and
Groups in Any RDBM “ for details on how to manage users using utility scripts.

198

Part Il ¢ Web Site Administration

7. If you plan to use user groups for authentication, then create the following

table.

create table wwwgroups (
username varchar(40),
groupname varchar(40)

. Now enter the describe wwwgroups; command, which should show the

following output:

foo - fo - o oo o +
| Field | Type | Null | Key | Default | Extra |
e et o foo---- +----- R oo +
| username | varchar(40) | YES | | NULL | \
| groupname | varchar(40) | YES | | NULL | \
Fo e R foo---- +----- R oo +

2 rows in set (0.00 sec)

This is a verification that the table wwwgroups was created as desired.

. You can add existing users to new groups by using the following SQL statement:

insert into wwwgroups (username , groupname)
values ('user_name',
"name_of_the_group'
)s

For example:

insert into wwwgroups (username , groupname)
values ('kabir',
"www_wheel'
)

adds user Kabir to a new group called www_wheel. Note that you can add the
same user to multiple groups.

Granting Apache server access to the user-authentication database

in MySQL

Like most modern RDBM servers, MySQL uses username- and password-based
authentication itself to allow access to the databases it stores. So, before you can
use Apache with MySQL, you should create a MySQL user called httpd, which
should have access to whichever database you plan on using with Apache. Here is
how to create a MySQL user for Apache:

1. Log on to the MySQL server using the mysql -u root -p command. You will

be asked to enter the root password for the database.

2. After you are logged into MySQL, you can issue a grant statement as follows:

grant all privileges on name_of_database
to username@hostname identified by 'user_password'
with GRANT option;

Caution

Chapter 7 4+ Authenticating and Authorizing Web Site Visitors

For example, to grant a user called httpd (that is, the username specified in
the User directive in httpd. conf file) all privileges to a database called auth
when using the 2manysecrets password from localhost run:

grant all privileges on auth
to httpd@localhost identified by 'Z2manysecrets’
with GRANT option;

This allows the httpd user to access the auth database from localhost. This
assumes that the MySQL server and the Apache server run on the same
machine. If the database is on a different machine, you should use the appro-
priate host name as the replacement of localhost.

If you do not plan to add Web applications that need to write to the user authen-
tication database, then do not grant all privileges to the Web server user. For
example, if you simply want to authenticate the user but never update or remove
the user via the Web server (that is, using a CGI script or other Web application),
then replace al1 privileges with select. This ensures that the Web server
user is only allowed to perform select queries on the database, which is equiva-
lent to read-only access.

. Enter the flush privileges command to instruct the MySQL server to

reload the grant table.

. You should now exit MySQL monitor program by entering exit at the mysql>

prompt.

Now log in to MySQL by entering the mysgl -u httpd -p command and by
supplying the appropriate password (2manysecrets in this case). You should
be able to access the database auth by entering use auth; after you are at
the mysq1> prompt. If you cannot access the database, make sure you are on
the host that you specified in the grant statement issued earlier.

Compiling and installing mod_auth_mysql module

MySQL database server’s favorable status in the open source community has led to
the development of an Apache module called mod_auth_mysql. This module can be
used to interface with a MySQL server for authentication. You can download the
latest version of this module from www.mysql.com/Downloads/Contrib/. Here is
how you can compile and install mod_auth_mysql.

1. As root extract the mod_auth_mysql source distribution in /usr/local/src

directory. A new subdirectory called mod_auth_mysql-version. Change to
this directory and run:

./configure --with-apache=/usr/local/src/apache_version
--with-mysql=/usr

Make sure you change the /usr/Tocal/src/apache_version with the
Apache source distribution path and the /usr with the path where MySQL

199

200

Part Il ¢ Web Site Administration

header files are installed. If you have installed MySQL using the default config-
uration, the headers file are installed in /usr/1ocal/mysql and supplying
--with-mysql=/usr is the right value for such setup because the
mod_auth_mysql script generates /usr/Tocal/mysql by appending
/local/mysql to /usr.

. Run make and then change directory to the apache source distribution and

run either . /config.status --activate-module=src/modules/
auth_mysql/Tibauth_mysql.a (if you have compiled Apache already) or
./configure --activate-module=src/modules/auth_mysql/
Tibauth_mysql.a --prefix=/usr/local/apache (if you are compiling
Apache for the first time).

. Finally, run make && make install to compile and install Apache with

mod_auth_mysql support.

. Now restart the Apache server using the /usr/local/apache/bin/apachect]

restart command.

Authenticating users using mod_auth_mysql module

After you have compiled and installed mod_auth_mysql, created the database con-
taining user and group tables, and also created a database-level user for Apache to
access these tables, you can configure Apache as follows:

1. In httpd.conf add the following lines outside any <VirtualHost> or any

other type of containers such as <Directory>, <Location>, and the like.

Auth_MySQL_Info db_hostname db_username db_password
Auth_MySQL_General_DB database_name

The first directive tells Apache which database server to connect to by using
which database username and password. The database username and pass-
word are created in MySQL. This username-password pair must not match any
interactive user account on your system.

The second directive states which database to connect to. If you use a single
database for all your user authentication needs, you can simply set the
database name here. Doing so will save you from typing in a database name
for each authentication configuration segment.

. To require authentication for a subdirectory under document root called

protected_dir you can either create a <Directory> ora<Location> con-
tainer in httpd.conf, or you can use a . htaccess file (assuming you have
AllowOverride AuthConf setin httpd.conf to the main server or to an
appropriate virtual host) to have the following configuration segment:

AuthName "Members Only"
AuthType Basic
require valid-user

Auth_MYSQL on

Chapter 7 4 Authenticating and Authorizing Web Site Visitors 2 ()]

Auth_MySQL_DB database_name

Auth_MySQL_Password_Table password_table_name
Auth_MySQL_Username_Field username_field_name
Auth_MySQL_Password_Field password_field_name

Auth_MySQL_Group_Table group_table_name
Auth_MySQL_Group_Field group_field_name

Auth_MySQL_Empty_Passwords off
Auth_MySQL_Encrypted_Passwords on
Auth_MySQL_Encryption_Types Crypt_DES
Auth_MySQL_Scrambled_Passwords off
Auth_MySQL_Authoritative on
Auth_MySQL_Non_Persistent off

/ﬂ\lote Don't forget to replace the database_name, password_table_name, user-
1 name_field_name, password_field_name, group_table_name, and
group_field_name with appropriate information.

e The Auth_MYSQL directive turns mod_auth_mysql on or off.

e The Auth_MySQL_DB directive specifies the database name, which holds
the Auth_MySQL_Password_Table-specified password table and the
Auth_MySQL_Group_Table-specified group table.

e The Auth_MySQL_Username_Field and Auth_MySQL_Password_Field
directives specify the field names used to store the username and pass-
word in the password table.

e The Auth_MySQL_Group_Field directive specifies the group name field.

e The Auth_MySQL_Empty_Passwords is set to off because empty pass-
words are not appropriate for most authentication needs.

e Encrypted password support is turned on using
Auth_MySQL_Encrypted_Passwords and encryption type is set to the
traditional Unix style Crypt_DES by using
Auth_MySQL_Encryption_Types.

;‘\Iote

Although you can choose from Plaintext, Crypt_DES, and MySQL encryption types, |
~—— never recommend the plaintext password. Support for Auth_MySQL_
Scrambled_Passwords is turned off because it is inappropriate in most scenarios.

¢ Because it is not a good idea to allow a trickle-down authentication
scheme (that is, if one scheme fails to allow a user access another might
be used to allow access), the Auth_MySQL_Authoritative directive is
turned on. This tells Apache to ignore all other authentication schemes
used for the same directory. If the mod_auth_mysqgl cannot allow a user
to access a restricted directory, Apache will simply reissue request for
authentication.

202

Part Il ¢ Web Site Administration

e The final directive, Auth_MySQL_Non_Persistent, tells Apache to not
disconnect from the database server per authentication request.
Disconnecting per request would mean Apache would have to connect
for every new request for authentication, which is not good for perfor-
mance. So the default value (of) is recommended.

3. If you added the above to a <Directory> or <Location> container in
httpd.conf you need to restart the Apache server using the /usr/local/
apache/bin/apachectl restart command. On the other hand, if you used
the above configuration in a . htaccess file, you can use it without restarting
the server.

Using other databases for user authentication

You use Postgres, IBM DB2, Oracle, or another server as your database instead of
MySQL server for user authentication with Apache. Although you might not find an
Apache module such as mod_auth_mysq]l for your flavor of the RDBM, you can use
Apache: :AuthDBI module for mod_per1 (see Chapter 16, which discusses using
mod_perT, for details on how to install mod_per1) to communicate with your
database server and to perform user authentication. Follow these steps to do so:

1. Make sure that you all the necessary libraries and include files that came with
your database server package are installed. Typically, this means that you
need to install the Software Development Kit (SDK) for your RDBM.

2. Install the latest version of the DBl module using per1 -MCPAN -e 'install
DBI' command.

3. Install the latest version of the appropriate database driver for Perl (DBD)
using perl -MCPAN -e '"install DBD::database' command. For example,
to install the database driver for IBM DB2 you will run per1 -MCPAN -e
"install DBD::db2'.

4. Install the latest version of Apache: : AuthDBI using per1 -MCPAN -e
"install Apache::AuthDBI' command.

5. Create a database user account for Apache to use to connect to the database
server. This is not an account to access your system such as the Linux server
itself. It is an account on the database engine that grants permission to access
the user database and its tables to Apache.

6. Next you need to create the auth database and the wwwuser table discussed
in the “Creating the user-authentication database in mysql server” section
earlier in this chapter. Also, be sure to create one or more test users using the
manage_users.pl script discussed in “Managing users and groups in any
RDBM” section later in this chapter.

7.In httpd.conf add the following line:
Per1Module Apache::AuthenDBI
This tells Apache that you want to use the Apache: :AuthenDBI module.

Chapter 7 4+ Authenticating and Authorizing Web Site Visitors

8. Create an alias called /memberonly/ to point to the directory you want to
restrict access to using the following Alias directive:

Alias /memberonly/ "path_to_restricted_access_directory"”

For example:

Alias /memberonly/ "/usr/local/apache/htdocs/protected/"

Here /memberonly/ alias points to /usr/local/apache/htdocs/
protected/ directory.

9. Now create the following configuration segment in httpd.conf:

<Location /memberonly/>
AuthName "Home"
AuthType Basic
PerlTAuthenHandler Apache::AuthenDBI
Perl1SetVar Auth_DBI_data_source dbi:mysql:database=auth

Perl1SetVar Auth_DBI username httpd
Perl1SetVar Auth_DBI_password Z2manysecrets
Perl1SetVar Auth_DBI_pwd_table WWwusers
Perl1SetVar Auth_DBI_uid_field user
Perl1SetVar Auth_DBI_pwd_field passwd
Perl1SetVar Auth_DBI_encrypted on

require valid-user
</Location>\

The following list gets you up to speed with what’s going on in the above listing:

The above configuration tells Apache to use the Apache: :AuthenDBI as
the handler for the /memberonly/ alias.

The Per1SetVar directives are used to set key=value pairs needed by
this module.

The Auth_DBI_data_source key sets the database DSN that tells the
module which database to connect by using which Perl DBD. Here, the
value is set to connect to a MySQL database called auth. You should set
the driver to whatever RDBM you are using. For example, if you are using
IBM DB2, your database source name (DSN) might say
dbi:db2:database=auth.

The Auth_DBI_username and Auth_DBI_password keys set the
database username and password to be used to connect to the named
user database (that is, auth).

The name of the password table is specified by the Auth_DBI_pwd_table
key; similarly, the username and password fields are specified by
Auth_DBI_uid_field and Auth_DBI_pwd_field keys respectively.

The Auth_DBI_encrypted key is set to on so that passwords stored in
the database are assumed to be encrypted using the traditional Unix
style one-way hash encryption function called crypt.

Finally, the require valid-user directive tells Apache to only allow
access for those users who pass the authentication test.

203

204

Part Il ¢ Web Site Administration

10. You can restart the Apache server by using the /usr/local/apache/

bin/apachectl restart command and can try accessing the http://
your_server_name/memberonly directory to see if you can access the direc-
tory with invalid usernames and passwords. If you enter a valid username and
password, you should be authenticated.

Managing Users and Groups in Any RDBM

Managing users and groups in a database by hand is very cumbersome. Thankfully,
you don’t have to deal with such tasks. You can use a set of Perl scripts to handle
these chores quite efficiently. Here is how.

Tip

N

1. You will need to install the DBI package and the appropriate DBD: :database

modules from the Comprehensive Perl Archive Network (CPAN). For example,
if you installed MySQL database, as the root user you can install the DBI and
DBD modules from the command-line as follows:

perl -MCPAN -e '"install DBI'
perl -MCPAN -e 'install DBD::mysql’

. Check whether you have two CPAN modules called HTTPD: : UserAdmin and

HTTPD: :GroupAdmin in your installed Perl distribution. You can run the
locate UserAdmin.pmand locate GroupAdmin.pm commands to determine
whether you have them. Typically, these two modules are installed as part of
the standard distribution. For example, on my system these modules appear
as follows:

/usr/1ib/per1b/site_per1/5.6.0/HTTPD/UserAdmin.pm
/usr/1ib/per1b5/site_per1/5.6.0/HTTPD/GroupAdmin.pm

If you don’t have one or both of the modules, install them as follows: as root
download the HTTPD: : UserAdmin and HTTPD: : GroupAdmin CPAN modules
from CPAN. On a Linux system you can simply run the following commands to
install them:

perl -MCPAN -e ‘'install HTTPD::UserAdmin'
perl -MCPAN -e "install HTTPD::GroupAdmin'

You might want to install the HTTPD: : Tools package because it includes the
two modules as well as other modules that are useful for Web servers in general.

. Copy the manage=users.pl script from the companion CD-ROM to /usr/bin

directory (see the CD Appendix for information on where to find /usr/bin).
Change the file permission to allow you to run it. Set the permission using
chmod 750 /usr/bin/manage_users.pl command.

. Use your favorite text editor to modify the following lines of the script.

my $DB_HOST = 'localhost';
my $DB_PORT = '";
my $DATABASE = 'auth';

my $DB_DRIVER "mysql’;

my
my
my
my
my
my
my
my
my
my
my

Chapter 7 4 Authenticating and Authorizing Web Site Visitors (05

$DB_USER = 'kabir';
$DB_PASSWORD = $dbpwd;
$ENCRYPTION = 'crypt';
$USER_TABLE = 'wwwusers';
$USERNAME_FTELD = 'username',
$PASSWORD_FIELD = 'passwd',
$GROUP_TABLE = 'wwwgroups';
$GROUP_FIELD = 'groupname';
$MAXSZ_USER = 40;
$MAXSZ_PWD = 20;
$MAXSZ_GRP = 40;

In the above code, you need to set the following variables:

e The $DB_HOST variable should be set to the database server you want
to connect to. If the database server is on the same machine as the Web
server, the default value '1ocalhost' can be left alone.

The $DB_PORT variable should be set to the database server port. By
default, the port is automatically selected unless you have used an
untraditional port on the database server for client connection.

The $DATABASE variable should be set to the database name. The default
database name is 'auth' and will only work if you have followed
instructions in earlier sections.

The $DB_DRIVER variable should be set to the database driver you need
to connect to the database server. For MySQL database server this
driver is called mysql and therefore the default will only work if you are
using a MySQL database.

The $DB_USER variable should be set to the user who has been granted
access to create, modify, or delete records in the $DATABASE-specified
tables. See Granting Apache Server Access to the User-Authentication
Database in MySQL earlier in this chapter, to know about how you can
grant a user access to a MySQL database.

The $DB_PASSWORD is intentionally not stored in the script to enhance
security. You must provide the password needed to access the database
using the command-line option -dbpwd=database_password whenever
you run the manage_users.pl script. You can hard code a password,
but [recommend removing the hard coded password after you are done
with the script.

The $ENCRYPTION variable can be set to none, crypt (default), or MD5.
When set to none, passwords are stored in plain-text; when crypt is
used, passwords are encrypted with the one-way hashing algorithm used
in traditional Unix environment; when MD5 is used, password is stored as
a message digest (MD5) value.

e The $USER_TABLE variable should be set to the user table in your
database. This table must have $USERNAME_FIELD-specified username
field and also the $PASSWORD_FIELD-specified password field.

206

Part Il ¢ Web Site Administration

e The $GROUP_TABLE variable should be set to the group table in your
database. This table must have the $USERNAME_FIELD-specified user
name field and also the $GROUP_FIELD-specified group name field.

¢ The maximum size of the $USERNAME_FIELD is set using $MAXSZ_USER
field, which should correspond to what you have used in the
$USER_TABLE creation process. The $PASSWORD_FIELD size is controlled
in a similar manner by using the $MAXSZ_PWD field. Finally, the
$GROUP_FIELD size is controlled using $MAXSZ_GRP field.

5. Save the changes.

Adding a new user to the user table
To add a new user to the user table run the following command:

manage_user.pl -db=user \
-action=add \
-user=user_name \
-password=user_password \
-dbpwd=database_password

For example, to add a user named kabir with user password go#forward you can
run the following command

manage_user.pl -db=user \
-action=add \
-user=kabir \
-password=goffforward \
-dbpwd=mydbpwd

Note that here the mydbpwd is the database password needed to write to the
database.

Removing an existing user from the user table
To remove a user from the user and group table run the following command:

manage_user.pl -db=user \
-action=del \
-user=user_name \
-dbpwd=database_password \
-auto=on

For example, to delete a user named kabir from the user and group tables using
a database access password mydbpwd you can run the following command:

manage_user.pl -db=user \
-action=del \
-user=kabir \
-dbpwd=mydbpwd \
-auto=on

Tip

Chapter 7 4+ Authenticating and Authorizing Web Site Visitors

Setting the -auto option ensures that user is removed from all the groups in the

» group table.
/

Updating an existing user’s password in the user table
To update a user’s password in the user table, run the following command:

manage_user.pl -db=user \
-action=update \
-user=user_name \
-dbpwd=database_password

For example, to update user kabir’s password to mksecret by using the mydbpwd
database password, run the following command:

manage_user.pl -db=user \
-action=update \
-user=kabir \
-dbpwd=mydbpwd

Adding a user to a group
To add an existing user to a new or existing group, run the following command:

manage_user.pl -db=group \
-action=add \
-user=user_name \
-group=group_name \
-dbpwd=database_password

For example, to add a user named kabir to a group called administrators, run the
following command:

manage_user.pl -db=group \
-action=add \
-user=kabir \
-group=administrators \
-dbpwd=mydbpwd

Here mydbpwd is the database password needed to write to group table.

Deleting a user from a group
To delete a user from a group, run the following command :

manage_user.pl -db=group \
-action=del \
-user=user_name \
-group=group_name \
-dbpwd=database_password

207

208 Partll + Web Site Administration

For example, to delete a user named kabir from a group called administrators, run:

manage_user.pl -db=group \
-action=del \
-user=kabir \
-group=administrators \
-dbpwd=mydbpwd

Here mydbpwd is the database password needed to update the group table.

Secure Authenticated Sessions Using Cookies

As mentioned earlier in the this chapter, Basic HTTP authentication requires that
the Web browser always pass the username and the encoded (not encrypted) pass-
word each time a page under a restricted section is requested. This makes the man-
in-the-middle attack too easy. This attack involves a cracker intercepting packets
between a Web server and a Web browser by using Basic HTTP authentication to
determine passwords.

The solution to the man-in-middle attack is to use a secure socket layer (SSL) con-
nection and a session-based authentication scheme in which the user is authenti-
cated once using the Basic HTTP authentication and all subsequent requests to
the restricted resource are authorized using a secure (encrypted) session cookie
instead of the encoded password.

This section discusses a solution that uses MySQL database (however, you can use
any other RDBM as well) and mod_per1 modules from CPAN. Here is how you can
implement such solution.

1. If they aren’t installed already, install the mod_per1 module as discussed in
Chapter 16.

2. Install two CPAN modules for Apache using the following command as root:

perl -MCPAN -e "install Apache::AuthCookie’
perl -MCPAN -e 'install Apache::AuthTicket'

3. Once you have installed the above modules, you will need to create the auth
database and the wwwuser table discussed in the “Creating the user authenti-
cation database in mysql server” section earlier in this chapter. You will also
need to add the following two tables.

CREATE TABLE tickets (
ticket_hash CHAR(32) NOT NULL,
ts INT NOT NULL,
PRIMARY KEY (ticket_hash)

Chapter 7 4+ Authenticating and Authorizing Web Site Visitors

)

CREATE TABLE ticketsecrets (
sec_version BIGINT,
sec_data TEXT NOT NULL

)

Follow the instructions given in the “Creating the user-authentication database
in mysql server” section earlier in this chapter to add these tables in the auth
database.

. After you have created the above tables, you must add a secret in the
ticketsecrets table. The simplest way to add a secret is to login onto your
database server and connect to the auth database and issue an insert state-
ment as follows:

insert into ticketsecrets (sec_version, sec_data) values
('number', 'random_data');

. Determine which Web directory location you want to restrict access and issue
session cookies for. In this example, I call this location /protected. Add the
following configuration to your httpd.conf file:

Per1Module Apache::AuthTicket

Perl1SetVar ProtectedTicketDB
DBI:mysqgl:database=auth;host=1ocalhost

Perl1SetVar ProtectedTicketDBUser httpd

Per1SetVar ProtectedTicketDBPassword secretl

Perl1SetVar ProtectedTicketTable tickets:ticket_hash:ts
Perl1SetVar ProtectedTicketUserTable wwwusers:username:passwd
Per1SetVar ProtectedTicketSecretTable
ticketsecrets:sec_data:sec_version

Perl1SetVar ProtectedTicketPasswordStyle crypt

The following list tells you what’s going on in the above configuration:

e Here the Per1Module directive tells Apache that you want to use the
Apache: :AuthTicket module.

e The Per1SetVar directives are used to set various key=value pairs that
are needed by that module.

e The ProtectedTicketDB key sets the data source name (DSN) for the
database.

e The sample value DBI :mysql:database=auth;host=1ocalhost tells
the AuthTicket module that we want to use MySQL database driver
(mysql) and connect to database called auth, which resides on the
localhost (same machine as the Web server). Make sure you change this
to appropriate host name if you are not running the MySQL database
server on the same machine as the Apache Web server.

e The ProtectedTicketDBUser and ProtectedTicketDBPassword direc-
tives tell the AuthTicket module which database username and pass-
word are needed to access the database server.

209

210 Partll + Web Site Administration

e The ProtectedTicketTable, ProtectedTicketUserTable, and
ProtectedTicketSecretTable keys tell the module which ticket and
user tables to use in the database and what fields are needed.

e The ProtectedTicketPasswordStyle sets the encryption type. You
have three choices: traditional Unix style one-way hash encryption
(a.k.a crypt), or plaintext (not recommended), or MD5.

6. Next add the following configuration lines:

Perl1SetVar ProtectedTicketExpires 30

Per1SetVar ProtectedTicketlLogoutURI /protected/index.html
Perl1SetVar ProtectedTicketlLoginHandler /protectedlogin
Perl1SetVar ProtectedTicketIdleTimeout 15

Per1SetVar ProtectedPath /

Per1SetVar ProtectedDomain .domain_name

PerlSetVar ProtectedSecure 1

Per1SetVar ProtectedlLoginScript /protectedloginform

The following list tells you what’s happening in the above configuration:

e The ProtectedTicketExpires key sets the session (ticket) expiration
time in minutes.

e The ProtectedTicketLogoutURI key sets the URL that is displayed
after a user logs out.

e The ProtectedTicketLoginHandler sets the path to the login handler,
which must correspond to a <Location> container, as discussed later.

e The ProtectedTicketIdleTimeout sets number of minutes a session is
allowed to be idle.

e The ProtectedPath sets the cookie path. The default value of / ensures
that the cookie is returned with all requests. You can restrict the cookie
to the protected area only by changing / to /protected (or whatever
location you are protecting).

e The ProtectedDomain sets the domain name of the cookie. The leading
dot ensures that the cookie is sent to all Web hosts in the same domain.
For example, setting this to .mobidac.com would allow the cookie to be
seen in webl.Mobidac.comor web2.Mobidac.com. You can also restrict
the cookie to a single host by specifying the fully qualified host name
here.

e The ProtectedSecure setting of 1 ensures that the cookie is secure.

e The ProtectedLoginScript sets the location for the login form, which
is generated by the module.

7. Now you need to create a <L.ocation> container for the /protected directory
as follows:

<Location /protected>
AuthType Apache::AuthTicket
AuthName Protected
PerTAuthenHandler Apache::AuthTicket->authenticate

Chapter 7 4+ Authenticating and Authorizing Web Site Visitors

PerTAuthzHandler Apache::AuthTicket->authorize
require valid-user
</Location>

Here Apache is told to require valid user credentials, which are to be authenti-
cated by the Apache: :AuthTicket module.

8. Now you need to setup the handlers for the login screen, login script, and
logout functions of the module as follows:

<Location /protectedloginform>

AuthType Apache::AuthTicket

AuthName Protected

SetHandler perl-script

Perlhandler Apache::AuthTicket->login_screen
</Location>

{Location /protectedlogin>

AuthType Apache::AuthTicket

AuthName Protected

SetHandler perl-script

PerTHandler Apache::AuthTicket->Togin
</Location>

<Location /protected/logout>

AuthType Apache::AuthTicket

AuthName Protected

SetHandler perl-script

PerlHandler Apache::AuthTicket->logout
<{/Location> </Location>

9. After you have created the above configuration, make sure you have added at
least one user to the wwwusers table. See “Managing users and groups in any
RDBM?” section earlier in this chapter for details on how to manage users in a
database.

10. Restart the Apache Web server by using
/usr/local/apache/bin/apachect] restart command.

11. To make sure that you see the cookie, set your Web browser to prompt for
cookie. For Netscape Navigator, you can check the Warn me before storing a
cookie option using Edit &> Preference > Advanced => Cookies option. For
Microsoft IE, you must use Tools = Internet Options => Security = Custom
Levels => Cookies = Prompt options.

12. Now access the http://your_server_name/protected/ directory and you
should see a Web form requesting your username and password. Enter the a
valid username and an invalid password and the Web form should simply
redisplay itself. Now enter a valid username/password pair and your Web
browser will ask your permission to store a cookie. A sample session (ticket)
cookie is shown below

Cookie Name: Apache::AuthTicket_Protected
Cookie Domain: nitec.com
Path: /

211

212

Part Il ¢ Web Site Administration

13.

14.

15.

Expires: End of session

Secure: Yes

Data:
expires:988390493:version::user:kabir2:hash:bf5ac94173071cde9
4489ef79f24b158:time: 988389593

Allow the Web browser to store the cookie and you should have access to the
restricted Web section.

Next, you should verify that there is a new ticket in the tickets table. You can
log onto your database server and view the contents of the tickets table. For
example, on Linux system running a MySQL server, [can run the select *
from tickets command after I am logged onto MySQL via the mysql -u
httpd -p auth command. A sample output is shown below:

mysql> select * from tickets;

988393278

| 145el2ad47da87791ace99036e35357d
988393401 |

| 6e115d1679b8a78f9b0a6f92898elcd6

2 rows in set (0.00 sec)

Here MySQL reports that there are two sessions currently connected to the
Web server.

You can force Web browsers to log in again by removing the tickets stored in
this table. For example, issuing the delete from tickets command on your
database server removes all records in the tickets table and forces everyone
to login again.

+ o+ 0+

CHAPTER

Monitoring
Access to L
Apache 1 Tis Chaprer

Monitoring Apache

status

H Enabling logging

ave you ever wondered who is accessing your Web

site? Or how your Apache server is performing on your Customizing logging
system? Monitoring, logging, and analyzing Apache server can
provide you with a great deal of information that is vital to Archiving your logs
the smooth system administration of the Web servers, and it
can also help with the marketing aspects of your site. In this Tracking users

chapter, I show you how to monitor and log information on an
Apache server to satisfy your need to know. Analyzing log files
Among other things, in this chapter I show you how to: Maintaining|yeur
. . . log files

4 Quickly access Apache server configurations

4 Monitor the status of a running Apache server + + + +
4 Create log files in both CLF and custom formats

4 Analyze log files using third-party applications

Monitoring Apache

Apache enables you to monitor these two types of very
valuable information via the Web:

4 Server configuration information: This information
is static, but being able to quickly access a running
server’s configuration information can be very useful
when you want to find out what modules are installed
on the server.

4 Server status: This information changes constantly.
Using Apache’s Web-based server-status monitoring
capabilities, you can monitor information such as the
server’s uptime, total requests served, total data transfer,
status of child processes, and system resource usage.

214

Part Il ¢ Web Site Administration

[discuss both types of information in the following sections.

Accessing configuration information with mod_info

System configuration information can be accessed via the mod_info module. This
module provides a comprehensive overview of the server configuration, including
all installed modules and directives in the configuration files. This module is con-
tained in the mod_info. c file. It is not compiled into the server by default. You
have to compile it using the - -enable-info option with the configure script.
For example:

./configure --prefix=/usr/local/apache \
--with-mpm=prefork \
--enable-info

This command configures Apache to be installed on /usr/local/apache direc-
tory, configures the source to run as a preforking server, and enables the mod_info
module. Run make and make install to compile and install the newly built
Apache server.

After you have installed this module in the server, you can view server configuration
information via the Web by adding the following configuration to the httpd. conf file:

<Location /server-info>

SetHandler server-info

Order deny,allow

Deny from all

Allow from 127.0.0.1 .domain.com
<{/Location>

This allows the localhost (127.0.0.1) and every host on your domain to access the
server information. Do not forget to replace the .domain.com with your top-level
domain name. For example, if your Web site is www.nitec.com, you need to add:

Allow from 127.0.0.1 .nitec.com

The dot in front of the domain name enables any host in the domain to access
the server information. However, if you wish to limit this to a single host called
sysadmin.domain.com, then change the Allow from line to:

Allow from 127.0.0.1 sysadmin.domain.com
After the server is configured and restarted, the server information is obtained

from the localhost (that is, running a Web browser such as lynx on the server itself)
by accessing http://Tocalhost/server-info.

Chapter 8 4+ Monitoring Access to Apache

This returns a full configuration page for the server and all modules. If you wish to
access it from a different location, use the fully qualified server name in place of
localhost. For example, if your Web server is called www.nitec.com, you access
the server information by using http://www.nitec.com/server-info.

The mod_info module also provides a directive called AddModuleInfo, which
enables you to add descriptive text in the module listing provided by the mod_info
module. The descriptive text could be anything including HTML text. AddModuleInfo
has this syntax:

AddModuleInfo module_name descriptive_text
For example:

AddModuleInfo mod_info.c 'See man mod_info'

This shows an HTML link next to the listing of mod_info. c, providing a quick way to
get more information on the module from the Apache online manual, as shown below.

Module Name: mod_info.c

Content handlers: (code broken)

Configuration Phase Participation: Create Server Config, Merge Server Configs
Module Directives:

AddModuleInfo - a module name and additional information on that module
Current Configuration:

AddModuleInfo mod_info.c 'man mod_info'

Additional Information:
man mod_info

You can also limit the information displayed on the screen as follows:

4 Server configuration only. Use http://server/server-info?server,
which shows the following information:

Server Version: Apache/2.0.14 (Unix)

Server Built: Mar 14 2001 12:12:28

APT Version: 20010224:1

Hostname/port: rhat.nitec.com:80

Timeouts: connection: 300 keep-alive: 15

MPM Information: Max Daemons: 20 Threaded: no Forked: yes
Server Root: /usr/local/apache

Config File: conf/httpd.conf

4+ Configuration for a single module. Use http://server/server-info?
module_name.c. For example, to view information on only the mod_cgi
module, run http://server/server-info?mod_cgi.c, which shows the
following information:

215

216

Part Il ¢ Web Site Administration

Module Name: mod_cgi.c

Content handlers: (code broken)

Configuration Phase Participation: Create Server Config,
Merge Server Configs

Module Directives:

ScriptlLog - the name of a log for script debugging info
ScriptlLoglength - the maximum length (in bytes) of the script
debug Tog

ScriptLogBuffer - the maximum size (in bytes) to record of a
POST request

Current Configuration:

4+ A list of currently compiled modules. Use http://server/server-info?
11st, which shows the following information:

mod_cgi.c
mod_info.c
mod_asis.c
mod_autoindex.c
mod_status.c
prefork.c
mod_setenvif.c
mod_env.c
mod_alias.c
mod_userdir.c
mod_actions.c
mod_imap.c
mod_dir.c
mod_negotiation.c
mod_Tlog_config.c
mod_mime.c
http_core.c
mod_include.c
mod_auth.c
mod_access.c
core.c

Of course, your listing will vary based on which modules you have enabled during
source configuration. Now, let’s look at how you can monitor the status of a running
Apache server.

Enabling status pages with mod_status

The mod_status module enables Apache administrators to monitor the server via

the Web. An HTML page is created with server statistics. It also produces another

page that is program friendly. The information displayed on both pages includes:
4 The current time on the server system

4 The time when the server was last restarted

ﬁ\lote

Chapter 8 4+ Monitoring Access to Apache

4+ Time elapsed since the server was up and running
4 The total number of accesses served so far

4+ The total bytes transferred so far

4 The number of children serving requests

4 The number of idle children

4+ The status of each child, the number of requests that child has performed,
and the total number of bytes served by the child

4 Averages giving the number of requests per second, the number of bytes
served per second, and the average number of bytes per request

4 The current percentage CPU used by each child and used in total by Apache

4 The current hosts and requests being processed

Some of the above information is only available when you enable displaying of
~ such informatino using the ExtendedStatus directive, which is discussed later in
this section.

Like the mod_info module, this module is also not compiled by default in the stan-
dard Apache distribution, so you need use the --enable-status option with the
configure script and compile and install Apache.

Viewing status pages

After you have the mod_status module compiled and built into your Apache
server, you need to define the URL location that Apache should use to display the
information. In other words, you need to tell Apache which URL will bring up the
server statistics on your Web browser.

Let’s say that your domain name is domain.com, and you want to use the
following URL:

http://www.domain.com/server-status

Using the <Location . . .> container, you can tell the server that you want it to
handle this URL using the server-status handler found in the mod_status module.
The following will do the job:

<Location /server-status>

SetHandler server-status

Order deny,allow

Deny from all

Allow from 127.0.0.1 .domain.com
<{/Location>

217

218

Part Il ¢ Web Site Administration

Tip

Here, the SetHand1er directive sets the handler (server-status) for the previously
mentioned URL. After you have added the configuration in httpd. conf, restart the
server and access the URL from a browser. The <Location . . .> container
enables you to access the status information from any host in your domain, or from
the server itself. Don’t forget to change .domain.com to your real domain name, and
also don’t forget to include the leading dot.

You can also have the status page update itself automatically using the http://
~, server/server-status?refresh=N URL to refresh the page every N seconds.

e

To view extended status information, add the ExtendedStatus On directive in
the server configuration context. For example, your entire server status-related
configuration in httpd.conf could look as follows:

ExtendedStatus On
<{Location /server-status>

SetHandler server-status

Order deny,allow

Deny from all

Allow from 127.0.0.1 .domain.com
<{/Location>

An example of the extended status information is shown here:

Apache Server Status for rhat.nitec.com
Server Version: Apache/2.0.14 (Unix)
Server Built: Mar 14 2001 12:12:28

Current Time: Thursday, 15-Mar-2001 11:05:08 PST
Restart Time: Thursday, 15-Mar-2001 11:02:40 PST
Parent Server Generation: 0

Server uptime: 2 minutes 28 seconds

Total accesses: 17807 - Total Traffic: 529 kB

CPU Usage: ul73.4 s.03 cu0 csO - 117% CPU Toad

120 requests/sec - 3660 B/second - 30 B/request

4 requests currently being processed, 8 idle servers

Scoreboard Key:

"_" Waiting for Connection, "S" Starting up, "R" Reading Request,

"W" Sending Reply, "K" Keepalive (read), "D" DNS Lookup,

"L" Logging, "G" Gracefully finishing, "." Open slot with no current process

Chapter 8 4+ Monitoring Access to Apache

PID Acc M CPU SS Req Conn Child Slot Client VHost Request

0/87/87 _ 0.07 1726072572 0 0.0 0.10 0.10 (unavailable)
105/105/105 W 0.00 1726072572 0 50.5 0.05 0.05 (unavailable)
166/166/166 K 0.02 1726072572 0 233.5 0.23 0.23 (unavailable)
49/49/49 K 0.01 1726072572 0 25.2 0.02 0.02 (unavailable)
77/77/77 K 0.08 1726072572 0 116.6 0.11 0.11 (unavailable)
0/0/17323 _ 173.25 1726072572 0 0.0 0.00 0.00 (unavailable)

OO OO oo

Srv Child Server number - generation

PID OS process 1D

Acc Number of accesses this connection / this child / this slot
M Mode of operation

CPU CPU usage, number of seconds

SS Seconds since beginning of most recent request

Req Milliseconds required to process most recent request

Conn Kilobytes transferred this connection

Child Megabytes transferred this child

STot Total megabytes transferred this slot

Apache/2.0.14 Server at rhat.nitec.com Port 80

Simplifying the status display

The status page displayed by the mod_status module provides extra information
that makes it unsuitable for using as a data file for any data analysis program. For
example, if you want to create a graph from your server status data using a spread-
sheet program, you need to clean up the data manually. However, the module pro-
vides a way for you to create machine-readable output from the same URL by
modifying it using ?auto asin http://server/server-status?auto. An example
status output is shown here:

Total Accesses: 17855
Total kBytes: 687
CPULoad: 14.1982
Uptime: 1221
ReqPerSec: 14.6233
BytesPerSec: 576.157
BytesPerReq: 39.4001
BusyServers: 8
IdleServers: 8
Scoreboard:

KK KKK KK s e e e e e e e e e e e e e e e

219

220

Part Il ¢ Web Site Administration

Storing server status information

Apache comes with a Perl script (found in the support directory of the source dis-
tribution) called 10og_server_status that can be used to periodically store server
status information (using the auto option) in a plain-text file.

You can run this script as a cron job to grab the status information on a desired
time frequency. Before you can use the script, however, you may have to edit the
script source to modify the value of the $wherelog, $port, $server, and $request
variables. The default values are:

$wherelog = "/var/log/graph/"; # Logs will be 1ike "/var/log/graph/19960312"

$server = "localhost"; # Name of server, could be "www.foo.com"
$port = "80"; # Port on server
$request = "/status/?auto"; # Request to send

For most sites the following should work:

$wherelog = "/var/log/apache";
$server = "localhost";

$port = "80";

$request = "/server-status?auto"

You might need to make the following changes:

4 Change the value of $wherelog to the path where you would like to store the
file created by the script. Make sure the path already exists or else create it
using mkdir -p pathname.For example, mkdir -p /var/log/apache will
make sure all the directories (/var, /var/1og, /var/log/apache) are created
as needed.

4 The $port variable value should be the port number of the server that you
want to monitor. The default value of 80 is fine if your server is running on a
standard HTTP port.

4 The $server variable should be assigned the host name of your server. The
default value Tocalhost is fine if the script and the server run on the same
system. If the server is on another machine, however, specify the fully qualified
host name (for example, www.mydomain.com) as the value.

4 The $request variable should be set to whatever you used in the <Location
.> directive plus the ?auto query string.

If you do not like the record format the script uses, you can modify the following
line to fit your needs:

print QUT "$time:$requests:$idle:$number:$cpuln”;

The script uses a socket connection to the Apache server to send the URL request;
therefore, you need to make sure that you have socket support for Perl. For example,
on a Linux system the Perl socket code is found in socket.ph. You can use the
locate socket.ph to determine whether this file exists in your system.

Chapter 8 + Monitoring Access to Apache 0]

Creating Log Files

Knowing the status and the configuration information of your server is helpful in
managing the server, but knowing who or what is accessing your Web site(s) is also
very important, as well as exciting. You can learn this information by using the log-
ging features of Apache server. The following sections discuss how logging works
and how to get the best out of Apache logging modules.

As Web-server software started appearing in the market, many Web server log-
analysis programs started appearing as well. These programs became part of the
everyday work life of many Web administrators. Along with all these came the era
of log file incompatibilities, which made log analysis difficult and cumbersome; a
single analysis program didn’t work on all log files. Then came the Common Log
Format (CLF) specification. This enabled all Web servers to write logs in a reason-
ably similar manner, making log analysis easier from one server to another.

By default, the standard Apache distribution includes a module called mod_1og_
config, which is responsible for the basic logging, and it writes CLF log files by
default. You can alter this behavior using the LogFormat directive. However, CLF
covers logging requirements in most environments. The contents of each line in a
CLF log file are explained in the paragraphs that follow.

The CLF log file contains a separate line for each request. A line is composed of sev-
eral tokens separated by spaces:

host ident authuser date request status bytes

If a token does not have a value, then it is represented by a hyphen (-). Tokens have
these meanings:

4+ authuser: If the requested URL required a successful Basic HTTP authentica-
tion, then the user name is the value of this token.

4 bytes: The number of bytes in the object returned to the client, excluding all
HTTP headers.

4 date: The date and time of the request.
4 host: The fully qualified domain name of the client, or its IP address.

4 ident:If the IdentityCheck directive is enabled and the client machine runs
identd, then this is the identity information reported by the client.

4+ request: The request line from the client, enclosed in double quotes (“).

4 status: The three-digit HTTP status code returned to the client.

@ See Appendix A for a list of all HTTP/1.1 status codes.
Reference

227 Partll + Web Site Administration

The date field can have this format:
date = [day/month/year:hour:minute:second zone]

The date field sizes are given in Table 8-1.

Table 8-1
Date Field Sizes
Fields Value
Day 2 digits
Month 3 letters
Year 4 digits
Hour 2 digits
Minute 2 digits
Second 2 digits
Zone (+"|) 4*digit

The following sections give you a look at the directives that can be used with
mod_Tlog_config. There are four directives available in this module.

TransferLog directive

Transferlog sets the name of the log file or program where the log information is
to be sent. By default, the log information is in the CLF format. This format can be
customized using the LogFormat directive. Note that when the TransferlLog direc-
tive is found within a virtual host container, the log information is formatted using
the last LogFormat directive found within the context. If a LogFormat directive is
not found in the same context, however, the server’s log format is used.

Syntax: TransferlLog filename | "| path_to_external/program"

Default setting: none

Context: server config, virtual host
The Transferlog directive takes either a log file path or a pipe to an external pro-
gram as the argument. The log filename is assumed to be relative to the ServerRoot
setting if no leading / character is found. For example, if the ServerRoot is set to

/etc/httpd, then the following tells Apache to send log information to the /etc/
httpd/logs/access.log file:

TransferlLog logs/access.log

Chapter 8 + Monitoring Access to Apache 03

When the argument is a pipe to an external program, the log information is sent to
the external program’s standard input (STDIN).

‘\lote A new program is not started for a VirtualHost if it inherits the TransferlLog from
~ the main server. If a program is used, then it is run under the user who started
httpd. This will be the root if the server was started by the root. Be sure that the

program is secure.

LogFormat directive

LogFormat sets the format of the default log file named by the TransferlLog direc-
tive. If you include a nickname for the format on the directive line, you can use it in
other LogFormat and CustomlLog directives rather than repeating the entire format
string. A LogFormat directive that defines a nickname does nothing else; that is, it
only defines the nickname, and it doesn’t actually apply the format.

Syntax: LogFormat format [nickname]
Default setting: LogFormat “%h %1 %u %t \”%r\” %>s %b”
Context: Server config, virtual host

See the “Customizing Your Log Files” section later in this chapter for details on the
formatting options available.

CustomLog directive

Like the TransferlLog directive, this directive enables you to send logging informa-
tion to a log file or to an external program. Unlike the TransferlLog directive, how-
ever, it enables you to use a custom log format that can be specified as an argument.

Syntax: CustomLog file | pipe [format | nicknamel [env=[!lenvi-
ronment_variable]

Default setting: None

Context: Server config, virtual host

For example, in the following, each line in the access.log file will be written using the
given format specifiers. The format specifies a format for each line of the log file:

CustomlLog logs/access.log "%h %1 %u %t \"%r\" %>s %b"

The options available for the format are exactly the same as for the argument of the
LogFormat directive. If the format includes any spaces (which it will in almost all
cases), it should be enclosed in double quotes. Instead of an actual format string,
you can use a format nickname defined with the LogFormat directive. For example:

LogFormat "%h %t \"%r\" %>s" myrecfmt
CustomlLog logs/access.log myrecfmt

224 Partll ¢ Web Site Administration

Here the access. 10g will have lines in the myrecfmt format.

‘r,‘\lote The TransferlLog and CustomlLog directives can be used multiple times in each
~ server to cause each request to be logged to multiple files. For example:

Customlog Togs/accessl.log common
CustomlLog logs/access2.1log common

Here the server will create two log entries per request and store each entry in
accessl.logandaccess?.10g.This is really not useful unless you use different
format per log and need each format for a different reason.

Finally, if you use the mod_setenvif (installed by default) or the URL rewrite
module (mod_rewrite, which is not installed by default) to set environment vari-
ables based on a requesting URL, you can create conditional logging using the
env=[!Jenvironment_variable option with the CustomLog directive. For exam-
ple, say that you allow people to download a PDF white paper and want to log all
downloads in a log file called whitepaper.10g in your usual log directory. Here is
the necessary configuration:

SetEnvIf Request_URI \.pdf$ whitepaper
CustomlLog logs/whitepaper.log common env=whitepaper
Customlog Togs/access.log common env=!whitepaper

The first line sets the environment variable whitepaper whenever a requesting
URL ends in the . pdf extension. Then when the entry is to be logged, Apache uses
the env=whitepaper settings for the first CommonLog directive to determine
whether it is set. [f it is set, a log entry using the common format is made to the
logs/whitepaper.log file. When the whitepaper environment variable is not
set, the log entry is made to the 1ogs/access. 10g file as usual.

CookieLog directive

Cookielog enables you to log cookie information in a file relative to the path
pointed to by the ServerRoot directive. This directive is not recommended,
because it’s not likely to be supported in Apache for long. To log cookie data, use
the user-tracking module (mod_usertrack) instead. The user-tracking module is
discussed later in this chapter.

Syntax: Cookielog filename

Default setting: None

Context: Server config, virtual host

Customizing Your Log Files

Although the default CLF format meets most log requirements, sometimes it is useful
to be able to customize logging data. For example, you may want to log the type of

Chapter 8 4+ Monitoring Access to Apache

browsers that are accessing your site, so your Web design team can determine
which type of browser-specific HTML to avoid or use. Or, perhaps you want to know
which Web sites are sending (that is, referring) visitors to your sites. All this is
accomplished quite easily in Apache. The default logging module, mod_1Tog_config,
supports custom logging.

Custom formats are set with the LogFormat and CustomlLog directives of the module.
A string is the format argument to LogFormat and CustomLog. This format string can
have both literal characters and special % format specifiers. When literal values are
used in this string, they are copied into the log file for each request. The % specifiers,
however, are replaced with corresponding values. The special % specifiers are shown
in Table 8-2.

Table 8-2

Special % Specifiers for Log Entries
% Specifier Description
%a Client IP address
%A Server IP address
%B Bytes sent, excluding HTTP headers; 0 for no byte sent
%b Bytes sent, excluding HTTP headers; — for no byte sent
%%c Connection status when response is done. The “X” character is

written if connection was aborted by the client before response
could be completed. If client uses keep-alive protocol, a “+" is
written to show that connection was kept alive after the response
until timeout. A “~" is written to signify that connection was
closed after the response

%({mycookie}C The contents of a cookie called mycookie

%D The amount of time (in microseconds) taken to complete
the response

%({myenv}e The contents of an environment variable called myenv

%f The filename of the request

%h The remote host that made the request

%H The request protocol (for example, HTTP 1/1)

%f{ IncomingHeader }i The contents of IncomingHeader; that is, the header line(s) in

the request sent to the server. The i character at the end denotes
that this is a client (incoming) header

%l If the IdentityCheck directive is enabled and the client
machine runs identd, then this is the identity information
reported by the client

Continued

225

226

Part Il ¢ Web Site Administration

Table 8-2 (continued)

% Specifier Description
%m The request method (GET, POST, PUT, and so on)
%({ ModuleNote }n The contents of the note ModuleNote from another module

%f{ OutgoingHeader }o The contents of OutgoingHeader; that is, the header line(s) in
the reply. The o character at the end denotes that this is a server
(outgoing) header

%p The port to which the request was served

%P The process ID of the child that serviced the request

%q The query string

Y%or The first line of the request

%s Status returned by the server in response to the request. Note

that when the request gets redirected, the value of this format
specifier is still the original request status. If you want to store
the redirected request status, use %>s instead

%t Time of the request. The format of time is the same as in
CLF format

%f{format}t The time, in the form given by format. (You can also look at the
man page of strftime on Unix systems.)

%T The time taken to serve the request, in seconds

%u If the requested URL required a successful Basic HTTP

authentication, then the username is the value of this format
specifier. The value may be bogus if the server returned a 401
status (Authentication Required) after the authentication attempt

%U The URL path requested

O%v The name of the server or the virtual host to which the
request came

%V The server name per the UseCanonicalName directive

It is possible to include conditional information in each of the preceding specifiers.
The conditions can be presence (or absence) of certain HTTP status code(s). For
example, let’s say you want to log all referring URLs that pointed a user to a nonex-
istent page. In such a case, the server produces a 404 status (Not Found) header.
So, to log the referring URLs you can use the format specifier:

'%404{Referer}i’

Chapter 8 + Monitoring Access to Apache)7/

Similarly, to log referring URLs that resulted in an unusual status, you can use:
'%1200,304,302{Referer}i"’
Notice the use of the ! character to denote the absence of the server status list.

Similarly, to include additional information at the end of the CLF format specifier,
you can extend the CLF format, which is defined by the format string:

"Bh BT %u Bt \"%r\" %s %b"

For example:

"Bh %1 %u %t \"%r\" %s %b \"%{Referer}i\" \"%{User-agent}i\"".

This format specification logs CLF format data and adds the Referer and User-agent
information found in client-provided headers in each log entry.

You learned about adding custom fields to the log file, but what if you need to store
this data in more than one log file? The next section discusses how to use multiple
log files.

Creating Multiple Log Files

Sometimes, it is necessary to create multiple log files. For example, if you are using
a log analysis program that cannot handle non-CLF data, you may want to write the
non-CLF data to a different file. You can create multiple log files very easily using
the TransferLog and/or the CustomlLog directive of the mod_Tog_config module.
Simply repeat these directives to create more than one log file.

If, for example, you want to create a standard CLF access log and a custom log of all
referring URLs, then you can use something similar to this:

TransferlLog logs/access_log
Customlog logs/referrer_log "%{Referer}i"

When you have either TransferlLog or CustomlLog defined in the primary server
configuration, and you have a virtual host defined, the virtual host-related logging
is also performed in those logs. For example:

TransferlLog logs/access_log
Customlog logs/agents_Tlog "%{User-agent}i"

<Virtual Host 206.171.50.51>

228 Partll + Web Site Administration

ServerName reboot.nitec.com
DocumentRoot "/www/reboot/public/htdocs”
ScriptAlias /cgi-bin/ "/www/reboot/public/cgi-bin/"

</VirtualHost>

Here, the virtual host reboot.nitec.com does not havea TransferlLog or
Customlog directive defined within the virtual host container tags. All logging
information will be stored in the Togs/access_1log and the Togs/agents_Tog.
Now, if the following line is added inside the virtual host container:

TransferlLog vhost_logs/reboot_access_log

then all logging for the virtual host reboot.nitec.comis done in the
vhost_logs/reboot_access_Tog file. None of the 1ogs/access_log and
logs/agents_Tog files will be used for the virtual host called reboot.nitec.com.

Logging Cookies

So far, the discussed logging options do not enable you to uniquely identify visitors.
Uniquely identifying visitors is important, because if you know which requests
which visitor makes, you will have a better idea of how your content is being used.
For example, say that you have a really cool page on your Web site somewhere, and
you have a way to identify the visitors in your logs. If you look at your log and see
that many visitors have to go from one page to another to find the cool page at the
end, you might reconsider your site design and make that cool page available
sooner in the click stream. Apache has a module called mod_usertrack that
enables you to track your Web site visitor by logging HTTP cookies.

HTTP Cookies . . . minus chocolate chips

An HTTP cookie is not made with cookie dough. It is simply a piece of information that the
server gives to the Web browser. This information is usually stored in a key=value pair and
can be associated with an entire Web site or with a particular URL on a Web site. After a
cookie is issued by the server and accepted by the Web browser, the cookie resides in the
Web browser system. Each time the Web browser requests the same URL, or any URL that
falls under the realm of the cookie URL, the cookie information is returned to the server.
When setting the cookie, the server can tell the Web browser to expire the cookie after a
certain time. The time can be specified so that the cookie is never used in a later session, or
it can be used for a long period of time.

There has been much controversy over the use of cookies. Many consider cookies as an
intrusion of privacy. Using cookies to track user behavior is very popular. In fact, several
advertisement companies on the Internet make heavy use of cookies to track users. It
should be stressed that cookies themselves cannot cause any harm.

Chapter 8 4+ Monitoring Access to Apache

Cookie data is usually written in a text file in a directory of your browser software.
For example, using the Customlog directive in the standard logging module, you
can store the cookies in a separate file:

CustomlLog Togs/clickstream "%{cookie}C %r %t"
Now, let’s take a look at the new mod_usertrack module.

Remember that mod_usertrack does not save a log of cookies; it just generates
unique cookies for each visitor. You can use CustomlLog (as discussed earlier) to
store these cookies in a log file for analysis.

The mod_usertrack directive is not compiled into the standard distribution
version of Apache, so you need to compile it using the --enable-usertrack
option before you can use it. The module provides the directives discussed in
the following sections.

CookieExpires directive

This directive is used to set the expiration period of the cookies that are generated
by the module. The expiration period can be defined in terms of number of seconds,
or in a format such as “1 month 2 days 3 hours.”

Syntax: CookieExpires expiry-period

Context: Server config, virtual host

In the following example, the first directive defines the expiration period in seconds,
and the second directive defines the expiration period using the special format. Note
that when the expiration period is not defined in a numeric form, the special form is
assumed. However, the special format requires that you put double quotes around
the format string. If this directive is not used, cookies last only for the current
browser session.

CookieExpires 3600
CookieExpires "2 days 3 hours"

CookieTracking directive

This directive enables or disables the generation of automatic cookies. When it is set
to on, Apache starts sending a user-tracking cookie for all new requests. This directive
can be used to turn this behavior on or off on a per-server or per-directory basis. By
default, compiling mod_usertrack does not activate cookies.

Syntax: CookieTracking On | Off

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Filelnfo

229

230

Part Il ¢ Web Site Administration

Using Error Logs

This chapter has discussed several ways of logging various interesting data from the
request and response phases of each Web transaction. The more data you collect
about your visitors, the happier your marketing department will be. As a system
administrator, however, you are happy if everything is going smooth. Apache lets you
know what’s broken by writing error logs. Without logging errors, you are unable to
determine what’s wrong and where the error occurs. It is no surprise that error log-
ging is supported in the core Apache and not in a module such as mod_1Tog_config.

The ErrorlLog directive enables you to log all of the errors that Apache encounters.
This section explores how you can incorporate your Apache error logs into the
widely used sys1og facility found on almost all Unix platforms.

SysTlog is the traditional way of logging messages sent out by daemon (server)
processes. You may ask, “Apache is a daemon, so why can’t it write to syslog?” It
can, actually. All you need to do is replace your existing ErrorlLog directive in the
configuration file with:

ErrorLog syslog

and then restart Apache. Using a Web browser, access a nonexistent page on your
Web server and watch the sys1og log file to see if it shows an httpd entry. You
should take a look at your /etc/syslog.conf file for clues about where the httpd
messages will appear.

For example, Listing 8-1 shows /etc/syslog.conf for a Linux system.

Listing 8-1: /etc/syslog.conf

Log all kernel messages to the console.
Logging much else clutters up the screen.
ffkern.* /dev/console

Log anything (except mail) of level info or higher.
Don't log private authentication messages!
*.info;mail.none;authpriv.none /var/log/messages

The authpriv file has restricted access.
authpriv.* /var/log/secure

Log all the mail messages in one place.
mail.* /var/log/maillog

Everybody gets emergency messages, plus log
them on another machine.
*.emerg *

Chapter 8 4+ Monitoring Access to Apache

Save mail and news errors of level err and higher in a
special file.
uucp,news.crit /var/log/spooler

Save boot messages also to boot.log
local7.~* /var/log/boot.1og

There are two important lines (as far as Apache is concerned) in this listing, which
I've set off in bold above.

The first line (which starts with *.info;mail.none;) tells syslog to write all
messages of the info type (except for mail and private authentication) to the
/var/log/messages file, and the second line (which starts with *.emerg) states
that all emergency messages should be written to all log files. Using the LoglLevel
directive, you can specify what type of messages Apache should send to sys1og.
For example:

ErrorLog syslog
LoglLevel debug

Here, Apache is instructed to send debug messages to sys1og. If you want to
store debug messages in a different file via sys1og, then you need to modify
/etc/syslog.conf. For example:

*.debug /var/log/debug

Adding this line in /etc/syslog.conf and restarting syslogd (kill -HUP
syslogd_PID) and Apache will enable you to store all Apache debug messages
tothe /var/log/debug file. There are several log-level settings:

4 Alert: Alert messages

4 Crit: Critical messages

4+ Debug: Messages logged at debug level will also include the source file and
line number where the message is generated, to help debugging and code
development

4+ Emerg: Emergency messages
4 Error: Error messages

4 Info: Information messages

4 Notice: Notification messages

4 Warn: Warnings

231

2372 Partll + Web Site Administration

Tip If you want to see updates to your sys1og or any other log files as they happen,
_» youcanuse the tail utility found on most Unix systems. For example, if you want
4 to see updates for a log called /var/1og/messages as they occur, use:

tail -f /var/log/messages

Analyzing Your Log Files

So far, you have learned to create standard CLF-based logs and custom logs. Now,
you need a way to analyze these logs to make use of the recorded data. Your log
analysis needs may vary. Sometimes you may need to produce extensive reports, or
maybe you just want to do a simple checking on the logs. For simple tasks, it is best
to use whatever is available at hand. Most Unix systems have enough utilities and
scripting tools available to do the job.

Using Unix utilities, you can quickly grab needed information; however, this method
requires some Unix know-how, and is not always convenient because your boss
may want a “pretty” report instead of some dry textual listing. In such a case, you
can either develop your own analysis programs or use third-party analysis tools.

Let’s use a Unix utility to get a list of all the hosts. If you use the default logging
facility or a custom log with CLF support, you can find a list of all the hosts quite
easily. For example:

cat /path/to/httpd/access_log | awk '{print $1}'

prints out all the host IP addresses (if you have DNS [domain name server] lookup
enabled, then host aliases are shown). The cat utility lists the access_Tog file, and
the resulting output is piped to the awk interpreter, which prints out only the first
field in each line using the print statement. This prints all the hosts; but what if
you wanted to exclude the hosts on your network? In that case, you would use:

cat /path/to/httpd/access_log | awk '"{print $1}' | egrep -v '(7206.171.50)"

where 206.171.50 should be replaced with your network address. Here [am
assuming that you have a class C network. If you have a class B network, you only
need to use the first two octets of your IP address. This version enables you to
exclude your own hosts using the egrep utility, which is told to display (via -v) only
the hosts that do not start with the 206.171.50 network address. This still may not
be satisfactory, however, because there are likely to be repeats. Therefore, the final
version is:

cat /path/to/httpd/access_log | awk '{print $1}' | uniqg | egrep -v
'(7206.171.50)"

Chapter 8 4+ Monitoring Access to Apache

Here, the uniq utility filters out repeats and shows you only one listing per host. Of
course, if you want to see the total number of unique hosts that have accessed your
Web site, you can pipe the final result to the wc utility with a -1 option as follows:

cat /path/to/httpd/access_log | awk '{print $1}' | \
uniq | egrep -v '(7206.171.50)" | wc -1

This gives you the total line count (that is, the number of unique host accesses).
Many third-party Web server log-analysis tools are available. Most of these tools

expect the log files to be in CLF format, so make sure you have CLF formatting in
your logs. Table 8-3 lists some of these tools and where to find them.

Table 8-3

Third-Party Log Analysis Tools
Product Name Product URL
WebTrends www.webtrends.com/
Wusage www.boutell.com/wusage/
wwwstat www.ics.uci.edu/pub/websoft/wwwstat/
Analog www.statslab.cam.ac.uk/~sretl/analog/
http-analyze www.netstore.de/Supply/http-analyze/
Pwebstats www.unimelb.edu.au/pwebstats.html
WebStat Explorer www.webstat.com/
AccessWatch http://netpressence.com/accesswatch/

The best way to learn which tool will work for you is to try all the tools, or at least
visit their Web sites so that you can compare their features. Two utilities that I find
very useful are Wusage and wwwstat.

Wusage is my favorite commercial log-analysis application. It is highly configurable
and produces great graphical reports using the company’s well-known GD graphics
library. Wusage is distributed in a binary format. Evaluation copies of wusage are
provided free for many Unix and Windows platforms.

wwwstat is one of the freeware analysis programs that [prefer. It is written in Perl,
so you need to have Perl installed on the system on which you want to run this
application. wwwstat output summaries can be read by gwstat to produce fancy
graphs of the summarized statistics.

233

234

Part Il ¢ Web Site Administration

Creating logs in Apache is easy and useful. Creating logs enables you to learn more
about what’s going on with your Apache server. Logs can help you detect and iden-
tify your site’s problems, find out about your site’s best features, and much more.
Can something so beneficial come without a catch? If you said no, you guessed right.
Log files take up a lot of valuable disk space, so they must be maintained regularly.

Log Maintenance

By enabling logging, you may be able to save a lot of work, but the logs themselves
do add some extra work for you: they need to be maintained. On Apache sites with
high hit rates or many virtual domains, the log files can become huge in a very short
time, which could easily cause a disk crisis. When log files become very large, you
should rotate them.

You have two options for rotating your logs: you can use a utility that comes with
Apache called rotatelog, or you can use 1ogrotate, a facility that is available on
most Linux systems.

Using rotatelog

Apache comes with a support utility called rotatelog. You can use this program
as follows:

TransferLog "| /path/to/rotatelogs Togfile rotation_time_in_seconds>"

For example, if you want to rotate the access log every 86,400 seconds (that is, 24
hours), use the following line:

TransferLog "| /path/to/rotatelogs /var/logs/httpd 86400"

Each day’s access log information will be stored in a file called
/var/logs/httpd.nnnn, where nnnn represents a long number.

Using logrotate

The Togrotate utility rotates, compresses, and mails log files. It is designed to ease
the system administration of log files. It enables the automatic rotation, compression,
removal, and mailing of log files on a daily, weekly, or monthly, or size basis. Normally,
logrotate is run as a daily cron job. Read the man pages for 1ogrotate to learn
more about it.

If your system supports the Togrotate facility, you should create a script called
/etc/logrotate.d/apache as shown in Listing 8-2.

Chapter 8 + Monitoring Access to Apache Q35

Listing 8-2: /etc/logrotate.d/apache

Note that this script assumes the following:

#

a. You have installed Apache in /usr/local/apache

b. Your log path is /usr/local/apache/logs

c. Your access log is called access_log (default in Apache)
d. Your error log is called error_log (default in Apache)

e. The PID file, httpd.pid, for Apache is stored in the log
i# directory (default in Apache)

#

If any of the above assumptions are wrong, please change

the path or filename accordingly.

#

/usr/local/apache/Togs/access_log {
missingok
compress
rotate 5

mail webmaster@yourdomain.com
errors webmaster@yourdomain.com
size=10240K

postrotate
/bin/kill -HUP “cat /usr/local/apache/logs/httpd.pid 2>/dev/null™ 2>
/dev/null || true
endscript
}

/usr/local/apache/logs/error_log {
missingok

compress
rotate 5

mail webmaster@yourdomain.com
errors webmaster@yourdomain.com
size=10240K

postrotate
/bin/kill -HUP “cat /usr/local/apache/logs/httpd.pid 2>/dev/null” 2>
/dev/null || true
endscript
}

This configuration specifies that the both Apache access and error log files be
rotated whenever each grows over 10MB (10,240K) in size, and that the old log files

2356

Part Il ¢ Web Site Administration

be compressed and mailed to webmaster@yourdomain. com after going through
five rotations, rather than being removed. Any errors that occur during processing
of the log file are mailed to root@yourdomain.com.

Using logresolve

For performance reasons you should have disabled hostname lookups using the
HostNamelLookups directive set to of f. This means that your log entries shows IP
addresses instead of hostnames for remote clients. When analyzing the logs, it
helps to have the hostnames so that you can determine who came where easily.
For example, here are a few sample log entries from my
/usr/local/apache/logs/access_1og file.

207.183.233.19 - - [15/Mar/2001:13:05:01 -0800] "GET /book/images/back.gif
HTTP/1.1" 304 0

207.183.233.20 - - [15/Mar/2001:14:45:02 -0800] "GET /book/images/forward.gif
HTTP/1.1" 304 0

207.183.233.21 - - [15/Mar/2001:15:30:03 -0800] "GET /book/images/top.gif

HTTP/1.1" 304 0

If you had HostNameLookups turned on, Apache will resolve the client IP addresses
207.183.233.19,207.183.233.20,and 207.183.233.21 into appropriate host-
names; and if you left the default LogFormat as shown below:

LogFormat "%h %1 %u %t \"%r\" %>s %b" common

and used the common format in logging using CustomLog 1ogs/access_log
common, these the sample log entries will look as follows:

nano.nitec.com - - [15/Mar/2001:13:05:01 -0800] "GET /book/images/back.gif
HTTP/1.1" 304 0

rhat.nitec.com - - [15/Mar/2001:14:45:02 -0800] "GET /book/images/forward.gif
HTTP/1.1" 304 0

red2.nitec.com - - [15/Mar/2001:15:30:03 -0800] "GET /book/images/top.gif

HTTP/1.1" 304 0

Because turning on DNS lookups causes Apache server to take more time to complete
aresponse, it is widely recommended that hostname lookups be done separately by
using the 1ogresolve utility, which can be found in your Apache bin directory
(/usr/local/apache/bin). The 1og_resolver.sh script shown in Listing 8-3

can run this utility.

Listing 8-3: log_resolver.sh
#1/bin/sh
1

Make sure you change the pathnames according to

Chapter 8 4+ Monitoring Access to Apache

your Apache installation
1

Fully qualified path name (FQPN) of the
log-resolver utility
LOGRESOLVER=/usr/local/apache/bin/Togresolve

Statistic file generated by the utility
STATFILE=/tmp/log_stats.txt

Your Apache Log file
LOGFILE=/usr/Tocal/apache/logs/access_1log

New log file that has IP addressed resolved
OUTFILE=/usr/local/apache/logs/access_log.resolved

Run the command
$LOGRESOLVER -s $STATFILE < $LOGFILE > $OUTFILE

exit 0;

When this script is run from the command line or as a cron job, it creates a file
called /usr/local/apache/logs/access_log.resolved, which has all the [P
addresses resolved to their respective hostnames. Also, the script generates a
statistics file called /tmp/1og_stats.txt that shows your cache usage informa-
tion, total resolved IP addresses, and other information that resolver utility reports.
An example of such a statistics file is shown here:

logresolve Statistics:
Entries: 3
With name
Resolves
Cache hits
Cache size :
Cache buckets : IP number * hostname
130 207.183.233.19 - nano.nitec.com
131 207.183.233.20 - rhat.nitec.com
132 207.183.233.21 - r2d2.nitec.com

0
: 3
: 0

3

Notice that the utility could not utilize the cache because all three IP addresses that
it resolved (for the sample log entries shown above) are unique. However, if your
log file has IP addresses from the same host, the cache will be used to resolve them
instead of blindly making DNS requests.

If you think you can use this script, | recommend that you run it as a cron job. For
example, on my Apache Web server running on Linux, | simply add the script to
/etc/cron.daily to create a resolved version of the log every day.

+ o+

237

Rewriting
Your URLS

U RLs bring visitors to your Web site. As an Apache
administrator, you need to ensure that all possible URLs
to your Web site are functional. How do you do that? You keep
monitoring the server error logs for broken URL requests. If
you see requests that are being returned with a 404 Not Found
status code, it is time to investigate these URLs. Often, when
HTML document authors upgrade a Web site, they forget that
renaming an existing directory could cause a lot of visitors’
bookmarked URLs to break.

As an administrator, how do you solve such a problem? The
good news is that there is a module called mod_rewrite that
enables you to solve these problems and also lets you create
very interesting solutions using URL rewrite rules. This chap-
ter discusses this module and provides practical examples of
URL rewriting.

The URL-Rewriting
Engine for Apache

When Apache receives a URL request, it processes the request
by serving the file to the client (the Web browser). What if you
wanted to intervene in this process to map the URL to a differ-
ent file or even to a different URL? That’s where mod_rewrite
shows its value. It provides you with a flexible mechanism for
rewriting the requested URL to a new one using custom URL
rewrite rules. A URL rewrite rule has the form:

regex_pattern_to_be_matched
regex_substitution_pattern

CHAPTER

+ + + +
In This Chapter
Working with the URL
rewriting engine for

Apache

Understanding URL
layout

Handling content
Restricting access

¢+ + o+

240 Partll + Web Site Administration

However, it is also possible to add conditions (such as more regex_patterns_to_be_
matched) to a rule such that the substitution is only applied if the conditions are
met. Apache can handle the substituted URL as an internal subrequest, or it can be
sent back to the Web browser as an external redirect. Figure 9-1 shows an example
request and the result of a mod_rewrite rule.

Figure 9-1: Example of a rule-
http://blackhole.nitec.com/ ~kabir based rewrite URL operation

v

Apache Server
mod_rewrite

Rule:

RewriteRule ~/~([*/]+)/?(¥*) /users/$1/$2 [R]

v

HTTP/1.1 302 Moved Temporarily

Date: Fri, 14 Sep 2001 04:42:58 GMT

Server: Apache/1.3b3

Location: http://blackhole.nitec.com/users/kabir/
Connection: close

Content-Type: text/html

The figure shows a request for http://blackhole.nitec.com/~kabir being
made to the Apache server. The server receives the request and passes it to the
mod_rewrite module at the URL translation stage of the processing of the request.
The mod_rewrite module applies the rewrite rule defined by a directive called
RewriteRule. In this particular example, the rule states that if a pattern such as
/~([~/]+)/2(.*) is found, it should be replaced with /users/$1/$2. Because
there is a redirect [R] flag in the rule, an external URL redirect response should
also be sent back to the Web browser. The output shows the redirect location to
be http://blackhole.nitec.com/users/kabir/.

As you can see, this sort of redirect can come in handy in many situations. Let’s
take a look at the directives that give you the power to rewrite URLs. You should
also familiarize yourself with the server variables shown in Table 9-1, which can
be used in many rewrite rules and conditions.

Chapter 9 4+ Rewriting Your URLs

Table 9-1

Server Variables Available for URL Rewrite Rules

Server Variable

Explanation

SERVER_NAME
SERVER_ADMIN
SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTWARE
SERVER_VERSION
DOCUMENT_ROOT
HTTP_ACCEPT
HTTP_COOKIE
HTTP_FORWARDED
HTTP_HOST

HTTP_PROXY_CONNECTION

HTTP_REFERER
HTTP_USER_AGENT
REMOTE_ADDR
REMOTE_HOST
REMOTE_USER
REMOTE_IDENT
REQUEST_METHOD
SCRIPT_FILENAME
PATH_INFO
QUERY_STRING
AUTH_TYPE
REQUEST_URI
REQUEST_FILENAME
THE_REQUEST
TIME_YEAR
TIME_MON
TIME_DAY

Host name of the Web server

Web server administrator’s e-mail address

Port address of the Web server

Version of HTTP protocol being used by the Web server
Name of the Web server vendor

Version of the Web server software

Top-level document directory of the Web site
MIME types that are acceptable by the Web client
Cookie received from the Web client

Forwarding URL

Web server's host name

The HTTP proxy connection information

The URL that referred to the current URL
Information about the Web client

IP address of the Web client

Host name of the Web client

Username of the authenticated user

Information about remote user’s identification
HTTP request method used to request the current URL
Physical path of the requested script file

Path of the requested URL

Query data sent along with the requested URL
Type of authentication used

Requested URI

Same as SCRIPT_FILENAME

Requested URL

Current year

Current month

Current day

Continued

241

242 Part 1| 4+ Web Site Administration

Table 9-1: (continued)

Server Variable Explanation

TIME_HOUR Current hour

TIME_MIN Current minute

TIME_SEC Current second

TIME_WDAY Current weekday

TIME Current time

API_VERSION Version of APl used

IS_SUBREQ Set if request is a subrequest
RewriteEngine

This directive provides you with the on/off switch for the URL rewrite engine in
the mod_rewrite module. By default, all rewriting is turned off. To use the rewrite
engine, you must turn the engine on by setting this directive to on.

Syntax: RewriteEngine On | Off
Default: RewriteEngine Off
Context: Server config, virtual host, per-directory access control

file (.htaccess)

When enabling URL rewriting per-directory configuration (. htaccess) files, you
must enable (that is, set to On) this directive inside the per-directory configuration
file and make sure that you have enabled the following directive in the appropriate
context for the directory:

Options FollowSymLinks
In other words, if the directory belongs to a virtual host site, make sure that this
option is enabled inside the appropriate virtual host container. Similarly, if the
directory in question is part of the main server’s Web document space, make sure

that this option is enabled in the main server configuration.

Enabling rewrite rules in per-directory configurations could degrade the perfor-

~~ mance of your Apache server. This is because mod_rewrite employs a trick to

support per-directory rewrite rules, and this trick involves increasing the server's
processing load. Therefore, you should avoid using rewrite rules in per-directory
configuration files whenever possible.

Chapter 9 4 Rewriting Your URLs 243

RewriteOptions

This directive enables you to specify options to change the rewrite engine’s behav-
ior. Currently, the only available option is inherit. By setting this directive to the
inherit option, you can force a higher-level configuration to be inherited by a
lower-level configuration.

Syntax: RewriteOptions optionl option2 [...]
Default: None

Context: Server config, virtual host, per-directory access control
file (.htaccess)

For example, if you set this directive in your main server configuration area, a virtual
host defined in the configuration file will inherit all the rewrite configurations, such
as the rewrite rules, conditions, maps, and so on.

Similarly, when this directive is set in a per-directory configuration file (. htaccess),
it will inherit the parent directory’s rewrite rules, conditions, and maps. By default,
the rewrite engine does not permit inheritance of rewrite configuration, but this
directive permits you to alter the default.

RewriteRule

This directive enables you to define a rewrite rule. The rule must have two arguments.
The first argument is the search pattern that must be met to apply the substitution
string. The search pattern is written using regular expression (see Appendix B for
basics of regular expression). The substitution string can be constructed with plain
text, back-references to substrings in the search pattern, values from server variables,
or even map functions. The flag list can contain one or more flag strings, separated by
commas, to inform the rewrite engine about what to do next with the substitution.

Syntax: RewriteRule search_pattern substitution_string
[flag list]

Default: None

Context: Server config, virtual host, per-directory access control
file (.htaccess)

Let’s take a look at an example:
RewriteRule /~([*/1+)/?2(.*) Jusers/$1/$2 [R]

Here, the search patternis /~([~/]+)/7?(.*) and the substitution string is
/users/$1/%$2. Notice the use of back-references in the substitution string. The

244 Partll ¢ Web Site Administration

first back-reference string $1 corresponds to the string found in the first set of
parentheses (from the left). So $1 is set to whatever is matched in ([*/]+) and $2
is set to the next string found in (.*). When a URL request is as follows:

http://blackhole.evoknow.com/~kabir/welcome.html

The value of $1 is kabir, and $2 is welcome.html; so the substitution string
looks like:

/users/kabir/welcome.html

When you have more than one RewriteRule specified, the first RewriteRule oper-
ates on the original URL and if a match occurs, the second rule no longer operates
on the original URL. Instead, it gets the URL substituted by first rule as the URL on
which to apply rules. In a scenario in which a match occurs at every step, a set of
three rewrite rules will function as follows:

RewriteRule search-pattern-for-original-URL substitutionl
[flags]

RewriteRule search-pattern-for-substitutionl substitution2
[flags]

RewriteRule search-pattern-for-substitution? substitution3
[flags]

It is possible to apply more than one rule to the original URL by using the C flag to
instruct the rewrite engine to chain multiple rules. In such a case, you may not want
to substitute until all rules are matched so that you can use a special substitution
string to disable a substitution in a rule.

Table 9-2 lists the details of the possible flags.

Table 9-2
RewriteRule Flags
Flag Meaning
C | chain This flag specifies that the current rule be chained with the next

rule. When chained by a C flag, a rule is looked at if and only if
the previous rule in the chain results in a match. Each rule in the
chain must contain the flag, and if the first rule does not match,
the entire chain of rules is ignored.

E=var:value | You can set an environment variable using this directive. The
env=var:value variable is accessible from rewrite conditions, Server Side Includes,
CGl scripts, and so on.

F | forbidden When a rule using this flag is matched, an HTTP response header
called FORBIDDEN (status code 403) is sent back to the browser.
This effectively disallows the requested URL.

—

Chapter 9 4+ Rewriting Your URLs

Flag Meaning

G | gone When a rule using this flag is matched, an HTTP response header
called GONE (status code 410) is sent back to the browser. This
informs the browser that the requested URL is no longer
available on this server.

L | last This tells the rewrite engine to end rule processing immediately
so that no other rules are applied to the last substituted URL.

N | next This tells the rewrite engine to restart from the first rule. However,

NC | nocase
NS | nosubreq

P | proxy

QSA | gsappend

R [= HTTP codel] |
redirect

S=n | skip=n

T=MIME-type |
file type=MIME-type

the first rule no longer tries to match the original URL, because it
now operates on the last substituted URL. This effectively creates
a loop. You must have terminating conditions in the loop to avoid
an infinite loop.

This tells the rewrite engine to become case insensitive for the
pattern match

Use this flag to avoid applying a rule on an internally generated
URL request.

Using this flag will convert a URL request to a proxy request
internally. This will only work if you have compiled Apache with
the mod_proxy module and configured it to use the proxy
module.

This flag allows you to append data (such as key=value pairs) to
the query string part of the substituted URL.

Forces external redirects to client while prefixing the substitution
with http://server[:port]/.If no HTTP response code

is given, the default redirect response code 302 (MOVED
TEMPORARILY) is used. This rule should be used with the L or
last flag.

Skips next n rules.

Forces the specified MIME-type to be the MIME-type of the target
of the request.

You can add conditions to your rules by preceding them with one or more

RewriteCond

RewriteCond directives, which are discussed in the following section.

The RewriteCond directive is useful when you want to add an extra condition
for a rewrite rule specified by the RewriteRule directive. You can have several
RewriteCond directives per RewriteRule. All rewrite conditions must be defined

before the rule itself.

245

246

Part Il ¢ Web Site Administration

Syntax: RewriteCond test_string condition_pattern [flag_Tlist]

Default: None

Context: Server config, virtual host, perl-directory config (.htaccess)

The test string may be constructed with plain text, server variables, or back-
references from both the current rewrite rule and the last rewrite condition.

To access the nth back-reference from the last RewriteRule directive, use $n; to
access the nth back-reference from the last RewriteCond directive, use %n.

To access a server variable, use the %Z{variable name} format. For example, to
access the REMOTE_USER variable, specify % { REMOTE_USER} in the test string.

Table 9-3 lists several special data access formats.

Table 9-3

Data Access Formats for RewriteCond Directive

Format Specifier

Meaning

%{ENV:variable}

%{HTTP:header}
%{LA-U:variable}

%{LA-F:variable}

Use this to access any environment variable that is available to
the Apache process.

Use this to access the HTTP header used in the request.

Use this to access the value of a variable that is not available in
the current stage of processing. For example, if you need to
make use of the REMOTE_USER server variable in a rewrite
condition stored in the server's configuration file (hnttpd.conf),
you cannot use % {REMOTE_USER} because this variable is only
defined after the server has performed the authentication phase,
which comes after mod_rewrite’s URL processing phase.

To look ahead at what the username of the successfully
authenticated user is, you can use % { LA-U:REMOTE_USER}
instead. However, if you are accessing the REMOTE_USER data
from a RewriteCond in a per-directory configuration file, you
can use % { REMOTE_USER} because the authorization phase has
already finished and the server variable has become available as
usual. The lookup is performed by generating a URL-based
internal subrequest.

Same as the % {LA-U:variable} in most cases, but lookup is
performed using a filename-based internal subrequest.

Chapter 9 4+ Rewriting Your URLs

The condition pattern can also use some special notations in addition to being a

regular expression. For example, you can perform lexical comparisons between the
test string and the condition pattern by prefixing the condition pattern with a <, >,

or = character. In such a case, the condition pattern is compared with the test
string as a plain-text string.

There may be times when you want to check whether the test-string is a file, directory,
or symbolic link. In such a case, you can replace the condition pattern with the special

strings shown in Table 9-4.

Table 9-4

Conditional Options for Test-String in RewriteCond Directive

Conditional Options

Meaning

-d
-f

Tests whether the test-string specified directory exists
Tests whether the test-string specified file exists
Tests whether the test-string—specified nonzero-size file exists

Tests whether the test-string—specified symbolic link exists

Tests the existence and accessibility of the test-string—specified file

Tests the validity and accessibility of the test-string—specified URL

You can use ! in front of the above conditions to negate their meanings. The optional

flag list can consist of one or more comma-separated strings as shown in Table 9-5.

Table 9-5

Flag Options for RewriteCond Directive

Flag

Meaning

NC | nocase

OR | ornext

Performs a case-insensitive condition test.

Normally, when you have more than one RewriteCond for a
RewriteRule directive, these conditions are ANDed together for
the final substitution to occur. However, if you need to create an OR
relationship between two conditions, use this flag.

247

248

Part Il ¢ Web Site Administration

RewriteMap

The RewriteMap directive facilitates a key-to-value lookup through the use of a map.
Think of a map as a table of data in which each row has a key and a value. Typically,
amap is stored in a file. However, the map can be a text file, a DBM file, an internal
Apache function, or an external program. The type of the map corresponds to the
source of the map. Table 9-6 lists the applicable map types.

Syntax: RewriteMap name_of_map type_of_map:source_of_map

Default: None

Context: Server config, virtual host

Table 9-6
Flag Options for RewriteMap Directive

Map Type

Description

txt

rnd

Int

Plain text file that has key value lines such that each key and value pair are

on a single line and are separated by at least one whitespace character. The
file can contain comment lines starting with # characters or can have blank
lines. Both comments and blank lines are ignored. For example:

Keyl valuel
Key2 value2

defines two key value pairs. Note that text file-based maps are read during
Apache startup and only reread if the file has been updated after the server
is already up and running. The files are also reread during server restarts.

A special plain-text file, which has all the restrictions of txt type but allows
flexibility in defining the value. The value for each key can be defined as a
set of ORed values using the | (vertical bar) character. For example:

Key1l first_value_for_key1 | second_value_for_key1
Key2 first_value_for_key2 | second_value_for_key2

this defines two key value pairs where each key has multiple values. The
value selected is decided randomly.

The internal Apache functions toupper (key) or tolower (key) can be
used as a map source. The first function converts the key into all uppercase
characters, and the second function converts the key to all lowercase
characters.

Chapter 9 4+ Rewriting Your URLs

Map Type Description

dbm A DBM file can be used as a map source. This can be very useful and fast
(compared to text files) when you have a large number of key-value pairs.
Note that DBM-file—based maps are read during Apache startup and only
reread if the file has been updated after the server is already up and
running. The files are also reread during server restarts.

prg An external program can generate the value. When a program is used, it is
started at the Apache startup and data (key, value) is transferred between
Apache and the program via standard input (stdin) and standard output
(stdout). Make sure you use the Rewritelock directive to define a lock
file when using an external program. When constructing such a program,
also make sure that you read the input from the stdin and write it on
stdout in a nonbuffered 1/0 mode.

RewriteBase

This directive is only useful if you are using rewrite rules in per-directory configura-
tion files. It is also only required for URL paths that do not map to the physical direc-
tory of the target file. Set this directive to whatever alias you used for the directory.
This will ensure that mod_rewrite will use the alias instead of the physical path in
the final (substituted) URL.

Syntax: RewriteBase base URL

Default: Current directory path of per-directory config (.htaccess)

Context: Per-directory access control file (.htaccess)
For example, when an alias is set as follows:
Alias /icons/ "/www/nitec/htdocs/icons/"

and rewrite rules are enabled in the /www/nitec/htdocs/icons/.htaccess file,
the RewriteBase directive should be set as follows:

RewriteBase /icons/

RewriteLog

If you want to log the applications of your rewrite rules, use this directive to set a
log filename. Like all other log directives, it assumes that a path without a leading
slash (/) means that you want to write the log file in the server’s root directory.

249

250 Partll + Web Site Administration

‘\I ote

Syntax: Rewritelog path_to_Togfile
Default: None
Context: Server config, virtual host

For example, the following directive writes a log file in the logs subdirectory under
your server’s root directory:

Rewritelog logs/rewrite.log

As mentioned earlier, a log written by server should be only writable by the
Server user.

RewriteLogLevel

This directive enables you to specify what gets logged in the log file. A default value
of 0 means that nothing will be logged. In fact, a log level of 0 means no log-related
processing is done inside the module. Therefore, if you wanted to disable logging,
keep it set to 0.

Syntax: Rewriteloglevel Tevel

Default setting: Rewriteloglevel 0

Context: Server config, virtual host

If you set the Rewritelog directiveto /dev/null and the Rewriteloglevel to

~~ anonzero value, the internal log-related processing will still be done, but no log will

be produced. This is a waste of your system’s computing resources, so if you don't
want logging, keep this directive set to its default value. You have a choice of 10 log
levels, ranging from O to 9. The higher the level, the more logging data is written.

RewriteLock

RewriteLock directive allows you to specify an external mapping program for
creating rewrite maps. You need to specify a filename when using the Rewritelock
directive. This file is used as a lock file for synchronizing communication with
external mapping programs.

Syntax: Rewritelock filename

Default: None

Context: Server config, virtual host

Chapter 9 4 Rewriting Your URLs 251

URL Layout

This section provides examples of URL rewrites that deal with the layout of URLs.
Often, you will need to redirect or expand a URL request to another URL. The follow-
ing examples show you how mod_rewrite can help in such cases.

Expanding a requested URL to a canonical URL

Web sites that offer user home pages usually support a URL scheme such as:

http://hostname/~username

This is a shortcut URL and needs to be mapped to a canonical URL. You may also
have other shortcuts or internal URLs that need to be expended to their canonical
URLs. This example shows you how ~username is translated to /u/username.
Figure 9-2 illustrates what needs to happen.

Apache Server

$1 $2
0]

http://hostname/~username — 3. | e o o ~(username)/()

Redirect
_sanaaos i Ju/81/$2

v - ¥

/u/username

| mod_rewrite

® v

Location: http://hostname/u/username

®

N
>

Figure 9-2: Expanding a requested URL to a canonical URL

When a request for http://hostname/~username is received in (1), the rewrite
rule will translate that into /u/username and redirect the new URL to the browser
(2). The browser then rerequests the http://hostname/u/username URL in

(3) and the usual Apache request processing completes the request.

2572 Partll + Web Site Administration

The external HTTP redirect is necessary because any subsequent requests must
also use the translated canonical URL instead of ~username. The rule needed to do
this is:

RewriteRule N~/ TH) /2 00%) Ju/$1/$2 [R, L]

‘\lote Note that the R flag is used to redirect and the L flag is used to indicate that no
~ other rewrite rule can be applied to the substituted URL.

Many ISP sites with thousands of users use a structured home directory layout; that
is, each home directory is in a subdirectory that begins, for instance, with the first
character of the username. So, /~foo/anypathis /home/f/foo/www/anypath, while
/~bar/anypathis /home/b/bar/www/anypath. To implement a translation scheme
from shortcut URLs to canonical URLs in this case, the following rule can be used:

RewriteRule ~/~(([a-z])[a-z0?9]+)(.*) /home/$2/$1/www$3 [R,L]

Redirecting a user home directory
to a new Web server

If you have a lot of user home pages on a Web server and needed to move them to
a new machine for some reason, you need to have a redirect rule similar to that
shown in Figure 9-3.

mod_rewrite

@ $1

http://hostname/ ~username/anypath — 3 | e e ~ (username/anypath)

Redirect http://newhost/~$1

http://newhost/ ~ username/anypath

@ |

@ ' Location: http://newhost/ ~ username/anypath

v Apache Server

Internet

enewhost

Figure 9-3: Redirecting user home directories to a new Web server

Chapter 9 4 Rewriting Your URLs 2573

The solution is simple with mod_rewrite. When the browser requests http://
hostname/~username/anypath as shown in (1) in the figure, the Web server trans-
latesitto http://newhost/~username/anypath as shown in (2) and redirects the
browser to this new location. On the old Web server (i.e. the one redirected the
URL) just redirect all /~user/anypath URLs to http://new~host/~user/anypath
as follows:

RewriteRule ~/~(.+) http://newhost/~$1 [R,L]

Searching for a page in multiple directories

Sometimes it is necessary to let the Web server search for pages in more than one
directory. Here, MultiViews or other techniques cannot help. For example, say
that you want to handle a request for http://hostname/filename.html so that if
filename.html is not present in the dir1 directory of your Web server, the server
tries a subdirectory called dir?2. Figure 94 illustrates what needs to happen.

Request
I http://hostname/filename.html
$1
I (filename.html)

v

Rule#1 l /your/docroot/dir1/$1

Yo
Ll Does /your/docroot/dir1/filename.html exist?
¢ No

Rule#2 I /your/docroot/dir2/$1

v

l Does /your/docroot/dir2/filename.html exist? ~ —

¢No

I No substitutions done Yes
S l Internal sub-request —
\ 4
l Output of the request

Figure 9-4: Searching for a page in multiple directories

Part Il ¢ Web Site Administration

The rules needed to implement this are:

RewriteCond /your/docroot/dirl%{REQUEST_FILENAME} -f
RewriteRule ~(.+) /your/docroot/dirl$l [L]

RewriteCond /your/docroot/dir2%{REQUEST_FILENAME} -f
RewriteRule ~(.+) /your/docroot/dir2$1 [L]

RewriteRule ~(.+) - [PT]

The first rule substitutes the requested URL with /your/docroot/dirl/$1

(where $1 is the target file in the request) only if the requested file exists in
your/docroot/dirl/ subdirectory. If the condition is met, this is the last rule
applied to this URL. However, if no match is found, then the next rule applies. This
rule does the same thing as the first one but this time subdirectory dir? is used
for the path. This rule is also final if a match is found. In the event that none of the
rules match, the request is not substituted and is passed on for regular processing.

To verify the rule using the log, first, turn on rewrite logging by adding the following
directives before the above rules.

Rewritelog Togs/rewrite.log
Rewriteloglevel 5

The rewrite log rewrite.10g will be written in the 10gs subdirectory under the
ServerRoot directory. The level of logging is set to 5 to include a fair amount of
information. Assuming that your DocumentRoot directive is set to /usr/local/
apache/htdocs and that ServerRoot is set to /usr/local/apache, you will need
to use the following rewrite-rule-specific directives in your httpd.conf.

Rewritelog logs/rewrite.log
Rewriteloglevel 5

RewriteCond
/usr/local/apache/htdocs/dirl%{REQUEST_FILENAME} -f
RewriteRule ~(.+) /usr/local/apache/htdocs/dirl$l [L]

RewriteCond
/usr/local/apache/htdocs/dir2%{REQUEST_FILENAME} -f
RewriteRule ~(.+) /usr/local/apache/htdocs/dir2$l [L]

RewriteRule ~(.+) - [PT]
After you have restarted Apache, do the following:

1. Asroot, run tail -f /usr/local/apache/logs/rewrite.log. This com-
mand enables you to see log entries as there are added to the rewrite.10og file.

2. Run mkdir -p /usr/local/apache/htdocs/dirl and chmod -R httpd:
httpd /usr/Tocal/apache/htdocs/dirl to create the dirl directory under

A ote

Chapter 9 4 Rewriting Your URLs 255

your document and to change its ownership to httpd user and group. Here |
also assume that you are running Apache as the httpd user. Do the same
for dir2.

. Run the Tynx -dump -head http://localhost/kabir.html command.

This launches the Lynx Web browser and tells it to show only the response
headers returned by the Web server. Now, assuming that you do not have

a file named Kabir.html inthe /usr/Tocal/apache/dirl, or the /usr/
local/apache/dir2, orthe /usr/local/apache directory, you should see
a response similar to the following:

HTTP/1.1 404 Not Found

Date: Fri, 16 Mar 2001 06:06:51 GMT
Server: Apache/2.0.14 (Unix)

Connection: close

Content-Type: text/html; charset=is0-8859-1

. Now look at the rewrite.1og entries as shown below. | have removed the IP

address, timestamp, and a few other fields for brevity.

(2) init rewrite engine with requested uri /kabir.html

(3) applying pattern "~(.+)"' to uri '/kabir.html’

(4) RewriteCond:
input="/usr/local/apache/htdocs/dirl/kabir.html' pattern="'-f'
=> not-matched

(3) applying pattern "~(.+)' to uri '/kabir.html'

(4) RewriteCond:
input="/usr/local/apache/htdocs/dir2/kabir.html"' pattern="'-f'
=> not-matched

(3) applying pattern "~(.+)' to uri '/kabir.html'

(2) forcing '/kabir.html' to get passed through to next API
URI-to-filename handler

Notice how mod_rewrite attempted to locate the kabir.html filein dirl and
dir2 and then gave up, which resulted in Apache lookup for the same file in the
document root because the request was http://lTocalhost/kabir.html.

. Now create this test file, kabir.html, in either the dirl or the dir?2 subdirec-

tory, and change the ownership of the file so that Apache (httpd user) can read
it. Then run the same Tynx -dump -head http://Tocalhost/kabir.htm]
command again and look at the contents of the rewrite.10g. You will see

that one of the rules has succeeded based on where (dirl or dir?2) you place
the file.

. If you have the test file in all three directories— /usr/local/apache/

htdocs/dirl, /usr/local/apache/htdocs/dir2,and /usr/local/
apache/htdocs —the rewrite rule chooses the file in the dirl subdirectory
because the first matching condition wins as a consequence of the [L]
(last) flag.

256

Part Il ¢ Web Site Administration

Setting an environment variable based on a URL

You may want to keep status information between requests and use the URL to
encode it. But you may not want to use a CGI wrapper script for all pages just to
strip out this information. You can use a rewrite rule to strip out the status informa-
tion and store it via an environment variable that can be later dereferenced from
within XSSI or CGI. This way a URL /foo/S=java/bar/ is translated to /foo/bar/
and the environment variable named STATUS is set to the value java. Figure 9-5
illustrates what happens.

http://hostname/foo/s=Java/bar/

:

$1 $2 $3
l (/foo)/s=(Java)/(bar/)

\

l $1/33[E=STATUS:$2]

v

Substituted URL:
/foo/bar/

mod_rewrite

v

Environment variables

STATUS=Java

A 4

Internal sub-request
processing

Apache Server

A 4

l Output of Request

Figure 9-5: Setting an environment variable from a URL.

When request for http://hostname/foo/s=java/bar/ is detected the Apache
server assigns $1 to foo, $2 to java, and $3 to bar as shown in the Figure 9-5. The
value for $2 is used to set environment variable STATUS and the Web server performs
an internal redirect to the /foo/bar location. The URL rewriting steps shown in
Figure 9-5 can be implemented using this rewrite rule:

Chapter 9 4 Rewriting Your URLs 257

RewriteRule — ~(.*)/S=(["/1+)/(.*) $1/$3 [E=STATUS:$2]

Here the value of $2 is stored in the environment variable called STATUS using the £
flag. When this rule is in place and a request such as Tynx -dump -head http://
localhost/dirl/S=value/kabir.html is made, the rewrite log (if enabled)

will show:

(2) init rewrite engine with requested uri /dirl/S=value/kabir.htm]l

(3) applying pattern "~(.*)/S=([~/]+)/(.*)" to uri '/dirl/S=value/kabir.html"'
(2) rewrite /dirl/S=value/kabir.html -> /dirl/kabir.html

(5) setting env variable 'STATUS' to 'value'

(2) Tocal path result: /dirl/kabir.html

(2) prefixed with document_root to /usr/local/apache/htdocs/dirl/kabir.html
(1) go-ahead with /usr/local/apache/htdocs/dirl/kabir.html [0K]

[have shortened the rewrite log output for brevity. Notice that mod_rewrite has set
the STATUS variable to 'value', so now if a Perl-based CGI script wanted to access
the value of the STATUS environment variable, it can use $ENV{STATUS}. Similarly, a
Server-Side Include (SSI) directive can also access this environment variable.

Creating www.username.domain.com sites

Let’s say that you have a few friends who want Web sites on your server. Instead of
giving them the http://www.domain.com/~username-type site, you decide to create
http://www.username.domain.comtype sites for each of them. Naturally, you add
each username-based host name (for example, www . kabir.domain.com) in your DNS
using a simple CNAME record that points to your Web server. For example, in your
DNS you might have:

www.domain.com. IN A 192.168.1.100.

To create Web site for two friends named Joe and Jennifer you need the following
DNS records for domain.com:

www.domain.com. IN A 192.168.1.100.
www.joe.domain.com. IN CNAME www.domain.com.
www.jennifer.domain.com. IN CNAME www.domain.com.

After the DNS is ready and tested, you want to configure Apache to service these
sites using /home/username/www directories, where each username is the user
account name of your friend.

The following rewrite rule set can be used to rewrite
http://www.username.domain.com/anypath internally to /home/
username/www/anypath:

RewriteCond %{HTTP_HOST} Mwww\ L[~ J+\ .domain\.com$
RewriteRule ML) %{HTTP_HOST}$1 [C]
RewriteRule Mwww\.([*.]+)\.domain\.com(.*) /home/$1/www/$2

258 Partll + Web Site Administration

Figure 9-6 illustrates how this works.

Request
http://www.username.host.com/anypath

!

$1 mod_rewrite
l (/anypath)

\

Does HTTP_HOST environment variable have a value that
matches pattern such as www.username.host.com?

v

Substitute original URL as
%{HTTP_HOST}/anypath

\

$1 $2
www.(username).host.com(/anypath)

v

Substitute current URL as
/home/$1$2
/home/username/anypath
|

Internal sub-request processing
| Apache Server

v

Output of the request

Figure 9-6: Virtual hosts for each username

This is an example of a chained-rule set. The first rule has a condition that
checks whether the environment variable HTTP_HOST matches a pattern such

as www.username.domain.com. If it does, the rule is applied. In other words,
www.username.domain.com/anypath is substituted for a request such as
http://www.username.domain.com/anypath. This could be a bit confusing
because the substitution is not quite obvious. This substitution is needed so that
the username can be extracted using the second rule. The second rule extracts
the username part from the substituted request and creates a new URL /home/
username/www/anypath for an internal subrequest.

Chapter 9 4 Rewriting Your URLs 259

Redirecting a failing URL to another Web server

If you have a multiserver Web network and often move contents from one server to
another, you may face the problem of needing to redirect failing URL requests from
Web server A to Web server B. There are many ways to do this: you can use the
ErrorDocument directive, write a CGI script, or use mod_rewri te to rewrite the fail-
ing URLs to the other server. Using the mod_rewrite-based solution is less prefer-
able than using an ErrorDocument directive or a CGI script. The mod_rewrite
solution has the best performance, but is less flexible and less error-safe:

RewriteCond /your/docroot/%{REQUEST_FILENAME} !-f
RewriteRule ~(.+) http://Web serverB.dom/$1

The problem is that this solution will only work for pages inside the DocumentRoot
directive. Although you can add more conditions (to handle home directories, for
example), there is a better variant:

RewriteCond %Z{REQUEST_URI} !-U
RewriteRule MooF) http://Web serverB.dom/$1

This variant uses the URL look-ahead feature of mod_rewrite, and will work for all
types of URLs. This does have a performance impact on the Web server, however,
because for every request made there is an additional internal subrequest. If your
Web server runs on a powerful CPU, use this solution; if it is a slow machine, use
the first approach, or, better yet, an ErrorDocument directive or a CGI script.

Creating an access multiplexer

This example shows you how to create a rule set to redirect requests based on
a domain type, such as .com, .net, .edu, .org, .uk, .de, and so on. The idea is
to redirect the visitor to the geographically nearest Web site. This technique is
employed by many large corporations to redirect international customers to an
appropriate Web site or FTP server.

The first step in creating such a solution is to create a map file. For example, the
following shows a text-based map file called site-redirect.map:

com http://www.mydomain.com/download/
net http://www.mydomain.com/download/
edu http://www.mydomain.com/download/
org http://www.mydomain.com/download/
uk http://www.mydomain.uk/download/
de http://www.mydomain.de/download/

ch http://www.mydomain.ch/download/

260

Part Il ¢ Web Site Administration

When a request is received for http://www.mydomain.com/downlod/anypath
from a host called dialup001.demon. uk, the request needs to be redirected to the
Web site www.mydomain.uk/download/; similarly, any requests from hosts that
belong to the top-level domains .com, .net, .edu, and .org are routed to the
www.mycompany.com/download/ site.

Here are the rules that are needed for the above setup:
RewriteMap sitemap txt:/path/to/site-redirect.map
RewriteRule ~/download/(.*) %{REMOTE_HOST}::$1 [C]

RewriteRule ~.+\.([a-zA-Z]+)::(.*)$ %{sitemap:$1|www.mydomain.com/download/}$2
[R,L]

Figure 9-7 illustrates the use of this rule.

host: dialup 001.demon.uk $1 mod_rewrite
@ l /download/(index.html)
http://www.mydomain.com/download/index.html ——3p|¢ ¢ o ¢
N I dialupo01.demon.uk::index.html

E v s1 %

2 l dialup0o1.demon. (uk)::(index.html)

38

v

= l %{sitemap:$1|www.mydomain.com/download}$2

ﬂE? I http://www.mydomain.uk/download/index.html

E v

i @

Location: http://www.mydomain.uk/download/index.html

Apache Server

L]
www.mydomain.uk

Figure 9-7: A URL-based access multiplexer

As Figure 9-7 shows, when a host such as dialup001.demon.uk requests the
www.mydomain.com/download/index.html page (1), the first rule rewrites the
request by using the hostname of the requesting host as follows:

dialup001.demon.uk::index.html

Then the next rule in the chain is applied. This rule gets applied when the search
pattern matches and the substitution URL is created by looking up the map file for
the top-level domain. If no matches are found, the default www.mydomain.comis

Chapter 9 4+ Rewriting Your URLs

used. This is done by the | (or) operator in the substitution URL string. Perhaps it
is easier to understand the second rule using the algorithm shown in Listing 9-1.

Listing 9-1: Algorithm for the second rewrite rule

if(current URL matches a fully-qualified-hostname::anything)
then

substitute the current URL using the domain type information
stored in $1 perform a lookup in the map file.

If (map file has a key that matches the domain type) then
ffuse the key's value as follows:

Substituted URL = value-of-the-key$2
ffwhere $2 is anything after
#fully-qualified-hostname:: pattern

Else
Use default value www.mydomain.com/download/$2

Substituted URL = www.mydomain.com/download/$2
endif

Endif

The R flag makes this an external URL redirect and the L flag makes this the last rule
for the substituted URL. The new location created by rule #2 is sent to the Web
browser in (2) and the browser gets the page in (3) as shown in Figure 9-7.

Creating time-sensitive URLs

Ever wonder whether it would be possible to have a URL that would point to differ-
ent files based on time? Well, mod_rewrite makes it easy to create such a URL.
There are a lot of variables named TIME_xxx for rewrite conditions. Using the spe-
cial lexicographic comparison patterns <STRING, >STRING, and =STRING you can
do time-dependent redirects, for example:

RewriteCond %{TIME_HOUR}%{TIME_MIN} >0700
RewriteCond %{TIME_HOUR}%{TIME_MIN} <1900
RewriteRule ~foo\.html$ foo.day.htm]l
RewriteRule Afool.html$ foo.night.html

This provides the content of foo.day.html under the URL foo.html from 07:00 to
19:00, and the remaining time provides the contents of foo.night.html.

261

262

Part Il ¢ Web Site Administration

Content Handling

The examples in this section deal with content-specific rewriting rules. [show you
how to create backward-compatible URLs, browser-based content rewriting, end-
user transparent HTML to CGI redirects, and more.

Adding backward compatibility in URLs

Say that you have recently renamed the page bar.html to foo.htm] and now you
want to provide the old URL for backward compatibility. Additionally, you do not
want the users of the old URL to recognize that the page was renamed. How can
this be done? Here is how:

RewriteRule ~fool.html$ Dbar.html

If you want to let the browser know about the change, you can do an external
rewrite so that the browser will display the new URL. All you need to do is add
the R flag as follows:

RewriteRule Afoo\.html$ bar.html [R]

Creating browser-matched content URLs

You can use rewrite rules to dish out different contents (using internal subrequests)
to different browsers. You cannot use content negotiation for this because browsers
do not provide their types in that form. Instead, you have to act on the HTTP header
User-Agent. For example, if a browser’s User-Agent header matched Mozilla/5 then
you can send out a Netscape Navigator 5 (or above) features-friendly page, or you
can send out a different page if the browser is either an older version of Navigator
or another type of browser.

If the HTTP header User-Agent begins with Mozilla/5, the page foo.html is
rewritten to foo.NS.html and the rewriting stops. If the browser is Lynx or
Mozilla versions 1 to 4, the URL becomes foo.dull.html. All other browsers
receive the page foo.cool.html. This is done by the following rules:

RewriteCond %{HTTP_USER_AGENT} ~Mozilla/5.*
RewriteRule ~foo\.html$ foo.cool.html [L]

RewriteCond %{HTTP_USER_AGENT} ~Lynx/.* [OR]
RewriteCond %{HTTP_USER_AGENT} ~Mozilla/[1234].*
RewriteRule ~foo\.html$ foo.dull.html [L]

When a request for an URL such as http://hostname/foo.html is received, the
first condition tests whether the environment variable HTTP_USER_AGENT has a
value that contains the string Mozil1a/5. or not. If it does contain the string, then
the first rule is applied. This rule substitutes foo.cool.html for the original URL

Chapter 9 4 Rewriting Your URLs 263

and all rewriting is complete; however, when the first rule is not applied, the second
rule is invoked. There are two OR conditions. In other words, one of these condi-
tions must match before this rule can be applied.

The first condition tests the same environment variable for the substring Lynx/,
and the second condition tests the same environment variable for the substring
Mozilla/1 through Mozi11a/4.If any of these conditions are met, the rule is
applied. The rule substitutes foo.dul1.html, the original URL. The substituted
URL is turned into a subrequest and is processed by Apache as usual.

Creating an HTML to CGI gateway

If you want to seamlessly transform a static page foo.html into a dynamic variant
foo.cgi—that is, without informing the browser or user —here’s how:

RewriteRule ~fool.html$ foo.cgi [T=application/x-httpd-cgi]

The rule rewrites a request for foo.html to a request for foo.cgi. It also forces
the correct MIME-type, so that it is run as a CGI script. A request such as http://
hostname/foo.html is internally translated into a request for the CGI script. The
browser does not know that its request was redirected.

Access Restriction

These examples deal with access control issues. In this section I show you how to
control access to certain areas of your Web site using the URL rewrite module.

Blocking robots

It’s easy to block an annoying Web spider program (also called robots) from retrieving
pages of a specific Web site. You might try a /robots. txt file containing entries of
the Robot Exclusion Protocol, but that is typically not enough to get rid of such a
robot. A sample solution is:

RewriteCond %{HTTP_USER_AGENT} "NameOfBadRobot.*
RewriteCond %{REMOTE_ADDR} A123\.45\.67\.[8791%
RewriteRule ~/not/to/be/indexed/by/robots/.+ - [F]

This rule has two conditions:

If (HTTP_USER_AGENT of the robot matches a pattern "NameOfBadRobot") and
(REMOTE_ADDR of the requesting host is 123.45.67.8 to 123.45.67.9) then
No substitution but send a HTTP "Forbidden" header (status code 403)
endif

264

Part Il ¢ Web Site Administration

As you can see, the robot’s User-Agent header is matched, along with the IP address of
the host it uses. The above conditions allow for multiple IP addresses (123.45.67.8
and 123.45.67.9) to be checked.

Creating an HTTP referer-based URL deflector

You can program a flexible URL deflector that acts on the Referer HTTP header and
configure it with as many referring pages as you like. Here’s how:

RewriteMap deflector txt:/path/to/deflector.map
RewriteRule ~/(.*)
${deflector:%{HTTP_REFERER}|/$1}

RewriteRule ~/DEFLECTED %{HTTP_REFERER} [R,L]
RewriteRule .* - [PT]

This is used in conjunction with a corresponding rewrite map such as the following:

http://www.badguys.com/bad/index.htm]l DEFLECTED
http://www.badguys.com/bad/index2.html DEFLECTED
http://www.badguys.com/bad/index3.html http://somewhere.com/

This automatically redirects the request back to the referring page if the URL
matches the DEFLECTED value in the map file. In all other cases, the requests
are redirected to specified URLs.

+ o+ 0+

Setting up a
Proxy Server

+ 0+ o+

In This Chapter

Understanding types

Aproxy server is a system that sits between the client of proxy servers

hosts and the servers that they need access to. When
a client host requests a certain remote resource using a
URL, the proxy server receives this request and fetches the
resource to fulfill the client’s request. In a general sense, a
proxy server acts like a server to the client hosts and a
client to the remote servers.

Configuring Apache
as a proxy server

Setting up Web

browsers for proxy

In typical proxy scenarios, this process enables the proxy

server to store the requested content in a cache. Any new + + + +
request that asks for information already in the cache no

longer needs to be serviced by fetching it from the remote

server. Instead, the new request is serviced from the cached

data. This allows proxy servers to ease network bottlenecks.

However, this is not all that a proxy server does.

This chapter teaches you to turn Apache into a proxy server
that can perform a multitude of services. You learn how to
turn Apache into a caching (forward) proxy server. Deploying
such a server at the network bottleneck can reduce delays in
response times, conserve bandwidth, and help reduce your
overall communications expense. Because proxy is usually
used for networks with large user communities, I also cover
various aspects of client configuration including automatic
proxy configuration.

Who Should Use a Proxy Server?

The purpose of this proxy server is to fetch the requested
resource from the remote server, return it to the requesting
user, and cache it in local drives. Proxy service is ideal for
scenarios in which more than one user is accessing the net-
work. Many organizations have several host computers that
access the Internet via a single Internet connection such as an
ISDN router or other dedicated or on-demand connection. A
proxy can be very helpful in such a network.

266 Partll + Web Site Administration

You can gain the following benefits by using a proxy for both Internet and
intranet resources:

4 Proxying: If the internal network uses nonroutable IP addresses for either
security or cost reasons, you can use a proxy server to provide Internet
resources to hosts that normally cannot access the Internet. This chapter
teaches you how to do this.

4 Caching: Using a caching proxy such as Apache (with mod_perl), you can
provide seemingly faster access to Internet resources to the local users. This
will not only enhance the user’s perception of network performance but also
cut down on bandwidth usage costs.

4+ Logging and Access Control: By using a proxy server, you can monitor
Internet (or even intranet) usage by employees or students. You can block
access to certain Web sites to protect your company from potential lawsuits,
and you can stop abuse of company time. By analyzing your proxy server’s
access and error logs, you can identify usage patterns and make better net-
work usage policy in future.

Understanding Types of Proxy Servers

Before talking about using Apache as a proxy server, let’s discuss the types of proxy
servers and how they work. There are two types of proxy servers:

4+ Forward proxy server: When this type of proxy server is used, users pass
their requests to the proxy server and the proxy server gets the intended
response from the target host of the request. Forward proxies are typically
explicitly defined in user’s programs (such as the Web browser).

4+ Reverse proxy server: When this type of proxy server is used, users are usu-
ally unaware of them because they think they are accessing the intended
resource. All requests made by the users are sent to the reverse proxy, which
serves the response from its cache or by requesting information from another
host.

Forward proxy

A forward proxy server usually sits between the user hosts and the remote
resources that they want to access. A resource can be an Internet resource, as
shown in Figure 10-1, or it can be an intranet resource. The next request for the
same resource will be serviced from the cached data if the data has not expired.

Chapter 10 4+ Setting up a Proxy Server

I

Forward
Router |[€«—>| Proxy [<«—>| LAN HUB Hm
on) | host |

I

Figure 10-1: A forward proxy server

The user hosts know that they are using a proxy server because each host must be
configured to use the proxy server. For example, you must tell a Web browser to use
a proxy server before the browser can use it. All remote requests are channeled via
the forward proxy server as shown in Figure 10-1, providing a manageable and cost-
effective solution for reducing bandwidth usage and implementing user access policy.

This type of proxy server is also referred to as a caching proxy server. The reverse
proxy server also caches data but it acts in the reverse of the forward proxy server.

Reverse proxy

A reverse proxy server sits in front of an Internet resource, as shown in Figure 10-2,
or in front of an intranet resource. In such a setup the reverse proxy retrieves the
requested resource from the original server and returns it to the user host.

The user hosts that connect to the proxy server are unaware that they are connecting
to a proxy server instead of directly to the resource’s server, unlike when a forward
proxy server is used. As far as the end user is concerned, the requested resource is
being accessed directly.

Figure 10-2 shows that users from Internet cannot connect to the Web server with-
out going through the reverse proxy. Because this is a reverse proxy, the users are
unaware of it and they think they are connecting to the Web server instead. The
LAN users can directly connect to the Web server from the internal network, as
shown in the figure.

267

268

Part Il ¢ Web Site Administration

/‘\lote

-

Reserve

Router |€«—>| Proxy [€—> LLED

Server Server LAN HUB -m

|

Figure 10-2: A reverse proxy server.

For example, if a reverse proxy server is used for a Web site called www.csus . edu,
then all a CSUS (California State University, Sacramento) student has to do is point
his or her browser to www.csus.edu and not tell the browser anything about any
proxy configuration. The browser places a request to the server known as www .
csus.edu. Little does the browser know that the www. csus.edu server is really a
reverse proxy server that internally translates the request to a Web server called
internal-www.csus.edu to get the content for the request. What does such a
setup gain? Because the data is cached from each request, the proxy server can
provide some load-balancing support for the real servers behind the scene.

Apache currently does not support reverse proxy service; however, this will be
implemented in the next version of the mod_proxy module.

mod_proxy Directives

The proxy support in Apache comes from the mod_proxy module. This module is
not compiled by default. You have to reconfigure Apache using . /config.status
--enable-module=proxy from the Apache source distribution directory and run
make && make install torecompile and reinstall updated Apache server.
Currently, it only implements a caching proxy server in Apache. It is capable of sup-
porting HTTP 1.1, HTTPS (via CONNECT for SSL), and FTP protocols. The module
can also be configured to connect to other proxy modules for these and other pro-
tocols. It provides the directives discussed in the following sections.

Chapter 10 4+ Setting up a Proxy Server

ProxyRequests
ProxyRequests allows you to enable or disable the caching proxy service.
However, it does not affect the functionality of the ProxyPass directive.
Syntax: ProxyRequests On | Off
Default setting: ProxyRequests 0ff

Context: Server config, virtual host

ProxyRemote

ProxyRemote enables you to interface your proxy server with another proxy server.

Syntax: ProxyRemote match remote_proxy_server_URL
Default setting: None

Context: Server config, virtual host
The value of match can be one of the following:

4 The name of an URL scheme that the remote server supports

4 A partial URL for which the remote server should be used

4+ To indicate the server should be contacted for all requests
The remote_proxy_server_URL can be specified as http://hostname-:port.
Note that, currently, only the HTTP protocol is supported. In other words, you can
only specify a proxy server that deals with the HTTP protocol; however, you can

forward FTP requests from your proxy server to one that supports both HTTP and
FTP protocols as follows:

ProxyRemote ftp http://ftp.proxy.evoknow.com:8000
This sends all FTP requests that come to the local proxy server to ftp://ftp.
proxy.evoknow.com. The requests are sent via HTTP, so the actual FTP transaction

occurs at the remote proxy server.

If you just want to forward all proxy requests for a certain Web site to its proxy
server directly, you can do that with this directive. For example:

ProxyRemote http://www.bigisp.com/ http://web-proxy.bigisp.com:8000

269

270

Part Il ¢ Web Site Administration

This sends all requests that match www.bigisp.comtoweb-proxy.bigisp.com.If
you want to forward all of your proxy requests to another proxy, however, you can
use the asterisk as the match phrase. For example:

ProxyRemote * http://proxy.domain.com

sends all local proxy requests to the proxy server at proxy.domain.com.

ProxyPass

ProxyPass enables you to map a Web server’s document tree onto your proxy
server’s document space.

Syntax: ProxyPass relative_URL destination_URL
Context: Server config, virtual host
For example:
ProxyPass /internet/microsoft www.microsoft.com/
If ProxyPass is found in the httpd. conf file of a proxy server called proxy .
evoknow, it will permit users of the proxy server to access the Microsoft Web site
by using the URL:
http://proxy.evoknow.com/internet/microsoft
This acts like a mirror of the remote Web site. Any request that uses the <rela-
tive-URL> will be converted internally into a proxy request for the <destina-

tion-URL>.

If the remote site includes absolute references, images may not appear and links
may not work. Also you cannot use this directive with SSL destination servers.

ProxyBlock

The ProxyBTock directive enables you block access to a named host or domain.

Syntax: ProxyBlock partial_or_full_hostname [. . .]

Context: Server config, virtual host
For example:
ProxyBlock gates
blocks access to any host that has the word gates in its name. This way, access to

http://gates.ms.comor http://gates.friendsofbill.comis blocked. You
can also specify multiple hosts. For example:

Chapter 10 4+ Setting up a Proxy Server

ProxyBlock apple orange.com bannana.com

blocks all access to any host that matches any of the above words or domain
names. The mod_proxy module attempts to determine the IP addresses for these
hosts during server start-up, and caches them for matching later.

To block access to all hosts, use:
ProxyBlock *

This effectively disables your proxy server.

NoProxy
NoProxy gives you some control over the ProxyRemote directive in an intranet
environment.
Syntax: NoProxy Domain_name| Subnet | IP_Address | Hostname
Default setting: None
Context: Server config, virtual host

You can specify a domain name, or a subnet, or an IP address, or a host name not to
be served by the proxy server specified in the ProxyRemote directive. For example:

ProxyRemote * http://firewall.yourcompany.com:8080
NoProxy .yourcompany.com

Here all requests for <anything>.yourcompany.com (such as www.yourcompany .
com) are served by the local proxy server and everything else goes to the firewall.
yourcompany .COm proxy server.

ProxyDomain

ProxyDomain specifies the default domain name for the proxy server.

Syntax: ProxyDomain Domain
Default setting: None
Context: Server config, virtual host
When this directive is set to the local domain name on an intranet, any request

that does not include a domain name will have this domain name appended to it;
for example:

ProxyDomain .evoknow.com

271

2772 Partll ¢ Web Site Administration

When a user of the evoknow. com domain sends a request for an URL such as
http://marketing/us.html, the request is regenerated as the following URL:

http://marketing.evoknow.com/us.htm]l

Note that the domain name you specify in the ProxyDomain directive must have a
leading period.

CacheRoot

CacheRoot allows you to enable disk caching. You can specify a directory name
where the proxy server can write cached files.

Syntax: CacheRoot directory

Default setting: None

Context: Server config, virtual host

The Apache server running the proxy module must have write permission for the
directory, for example:

CacheRoot /www/proxy/cache

This tells Apache to write proxy cache data to the /www/proxy/cache directory.
Note that you will need to specify the size of the cache using the CacheSize direc-
tory before the proxy server can start using this directory for caching. You may also
need to use other cache directives (discussed later) to create a usable disk-caching
proxy solution.

CacheSize

CacheSize specifies the amount of disk space (in kilobytes) that should be used
for disk caching. The cached files are written in the directory specified by the
CacheRoot directive.

Syntax: CacheSize kilobytes
Default setting: CacheSize 5
Context: Server config, virtual host
‘\Iote Although it is possible for the proxy server to write more data than the specified
limit, the proxy server's garbage collection scheme will delete files until the usage

is at or below this setting. The default setting (5K) is unrealistic; | recommend any-
where from 10MB to 1GB depending on your user load.

Chapter 10 4+ Setting up a Proxy Server

CacheGclInterval

CacheGcInterval specifies the time (in hours) when Apache should check the
cache directories for deleting expired files. This is also when Apache will enforce
the disk space usage limit specified by the CacheSize directive.

Syntax: CacheGcInterval hours

Default setting: None

Context: Server config, virtual host

CacheMaxExpire

CacheMaxExpire specifies the time (in hours) when all cached documents expire.
This directive overrides any expiration date specified in the document itself; so, if a
document has an expiration date that is later than the maximum specified by this
directive, the document is still removed.

Syntax: CacheMaxExpire hours

Default setting: CacheMaxExpire 24

Context: Server config, virtual host

The default value allows the cached documents to expire in 24 hours. If you wish to
expire the documents later change this value.

CachelastModifiedFactor

CachelastModifiedFactor specifies a factor used to calculate expiration time
when the original Web server does not supply an expiration date for a document.
Syntax: CachelastModifiedFactor floating _point_number
Default setting: CachelastModifiedFactor 0.1

Context: Server config, virtual host
The calculation is done using this formula:

expiry-period = (last modification time for the document) *
(floating point number)

So, if a document was last modified 24 hours ago, then the default factor of 0.1
makes Apache calculate the expiration time for this document to be 2.4 hours. If
the calculated expiration period is longer than that set by CacheMaxExpire, the
expiration period CacheMaxExpire takes precedence.

273

274

Part Il ¢ Web Site Administration

CacheDirLength

When disk caching is on, Apache creates subdirectories in the directory specified by
the CacheRoot directive. This directive specifies the number of characters used in
creating the subdirectory names. You really do not need to change the default for
this directive. For curious users who want to know how or why these subdirectories
are created, a simplified answer follows.

Syntax: CacheDirlLength Tength

Default setting: CacheDirlLength 1

Context: Server config, virtual host
Apache uses a hashing scheme when creating the path and filename for a URL’s
data to be cached. For example, when you have caching turned on and access a
URL (such as www.microsoft.com) via your proxy Apache server, the server
hashes this URL so that it can later retrieve the data quickly. This hash could
look like 1YSRxSmB20Q_HkgkTuXeqvw. If the defaults are used for both the

CacheDirLength and CacheDirlLevels directives, Apache stores the data
found on www.microsoft.comin a file called:

%CacheRoot%/1/Y/S/RRxSmB20Q_HkgkTuXeqvw

Here %CacheRoot% is the directory specified by the CacheRoot directive. The
1/Y/S directories are created because of the default value of the CacheDirlLevels
directive. When this document is requested again using the same URL, Apache need
only recalculate the hash to retrieve the page from the specified path.

CacheDirLevels
CacheDirlLevels specifies the number of subdirectories that Apache will create to
store cache data files. See the previous section for related information.

Syntax: CacheDirlLevels Tevels

Default setting: CacheDirlLevels 3

Context: Server config, virtual host

CacheDefaultExpire

CacheDefaultExpire provides a default time (in hours) that is used to expire a
cached file when the last modification time of the file is unknown. CacheMaxExpire
does not override this setting.

Syntax: CacheDefaultExpire hours

Default setting: CacheDefaultExpire 1

Context: Server config, virtual host

Chapter 10 + Setting up a Proxy Server /5

NoCache

Syntax: NoCache Domain_name | Subnet | IP_Address
Hostname . . .]

Default setting: None

Context: Server config, virtual host

The NoCache directive specifies a list of hosts, domain names, and IP addresses,
separated by spaces, for which no caching is performed. This directive should be
used to disable caching of local Web servers on an intranet. Note that the proxy
server also matches partial names of a host. If you want to disable caching alto-
gether, use the following:

NoCache *

Configuring an Apache Proxy Server

In this section I show you how you can configure Apache (with mod_proxy) as a for-
ward proxy server. After you have the mod_proxy module compiled into Apache (as
discussed earlier), setting up a proxy server is quiet easy.

To enable the proxy server, you need to set the ProxyRequests to Oninan httpd.
conf file. Any additional configuration depends on what you want to do with your
proxy server. Regardless of what you decide to do with the proxy server, any direc-
tives that you want to use to control the proxy server’s behavior should go inside
aspecial <Directory . . .> container that looks like the following:

<Directory proxy:*>
%/[')h'“ectorw

The asterisk is a wild card for the requested URL. In other words, when a request
for www.evoknow.com is processed by the Apache server, it looks like:

<Directory proxy:http://www.evoknow.com/>
%/[.)1' r.‘ector*y>

You can also use the <Directory ~ /RE/> container, which uses regular expressions
that allows you greater flexibility in defining the proxy configuration. For example:

{Directory ~ proxy:http://[*:/1+/.*>
%/I'Jir;ectory>

Now let’s look at a few commonly used proxy configurations.

276

Part Il ¢ Web Site Administration

Scenario 1: Connecting a private IP network
to the Internet

In this scenario, only one computer on this network has an Internet-routable IP
address assigned to it, as shown in Figure 10-3. This computer runs the Apache proxy
server with the ProxyRequest set to On, and no additional proxy configuration is
needed. The proxy server services all requests.

192.168.1.3

I

— | Py e 5| iANHUB <—>

Server

206.171.50.254 192.168.1.254

192.168.1.1

192.168.1.2

Figure 10-3: Proxy for private IP network to Internet.

In such a configuration, the proxy server needs to be multihomed; in other words, it
needs to have access to both the nonroutable private network (192.168.1.0) and
the routable IP network (206.171.50.0). In a way, this proxy acts as a firewall for
the private network although the chosen nonroutable IP pool does that already. The
proxy permits the hosts to get access to Internet services, such as the Web, FTP,
and so on.

Scenario 2: Caching remote Web sites

Because a great deal of Web content on both the Internet and intranets is likely to be
static, caching them on a local proxy server could save valuable network bandwidth.
A cache-enabled proxy server fetches requested documents only when the cache
contains an expired document or when the requested document is not present in
the cache. To enable caching on your proxy server, you need to specify caching
directives inside the special directory container. For example:

<Directory proxy:*>
CacheRoot /www/cache
CacheSize 1024
CacheMaxExpire 24

</Directory>

Chapter 10 4 Setting up a Proxy Server 777/

This configuration defines a caching proxy server that writes cache files to the
/www/cache directory. It is permitted to write 1024K of data (1MB) and the cache
must expire after each day (24 hours).

If you do not want to permit outsiders to abuse your proxy server, you can restrict
proxy server access either by host or by username/password authentication.

To control which hosts have access to the proxy server, you can create a configura-
tion, such as the following:

<Directory proxy:*>
AuthType Basic
AuthName Proxy
order deny,allow
deny from all
allow from myhost.evoknow.com

</Directory>

This configuration denies access to all but myhost.evoknow.com. If you want to use
username/password authentication, you can use something similar to the following:

<Directory proxy:*>
AuthType Basic
AuthName Proxy
AuthUserFile /path/to/proxy/.htpasswd
AuthName Proxy

require valid-user
</Directory>

@ If you are not sure how to create the necessary password files, see Chapter 7.
eierence

It is also possible to restrict access for a protocol. For example:

<Directory proxy:http:*>

%/[')1' t'“ectory>
enables you to control how HTTP requests are processed by your proxy server.
Similarly, you can use the following to control how the proxy server handles each
protocol:

<Directory proxy:ftp:*>

%/I.)i t;ectory>

or

278

Part Il ¢ Web Site Administration

<Directory proxy:https:*>
%/[')h'“ectorw

You can also create a virtual host exclusively for proxy server. In that case, the
directives should go inside the proxy host’s <VirtualHost> container:

<VirtualHost proxy.host.com:*>

%/\.lit;tua1Host>

Scenario 3: Mirroring a Web site

A mirror Web site is a local copy of a remote Web site. For example, if you wanted
to mirror the www.apache.org Web site so that your users can connect to your
mirror site for quick access to Apache information, you can use the proxy server
to create such a mirror, as follows:

ProxyPass / www.apache.org/
CacheRoot /www/cache
CacheDefaultExpire 24

This makes a proxy server a mirror of the www.apache.org Web site. For example,
this configuration turns my proxy server blackhole.evoknow.cominto an Apache
mirror. When a user enters http://blackhole.evoknow.com as the URL, the user
receives the Apache mirror’s index page as if she had gone to www.apache.org.

Before you mirror someone else’s Web site, it is important that you get permission,
as there may be copyright issues involved.

Setting Up Web Browsers to use a Proxy

After your proxy server is configured, you are ready to set up Web browsers on your
client hosts. The popular Web browsers make it quite easy to use proxy servers. In
the following sections, I show you how to configure Netscape Navigator 6 and
Microsoft Internet Explorer (IE) 5.5 for proxy. There are two ways to set up a

proxy server for these browsers: manual or automatic proxy configuration.

Manually configuring Web browsers for proxy is not difficult. However, if you have a
lot of user computers that need to be configured, this could become a big hassle
every time you needed to change your proxy configuration. This is where automatic
proxy configuration for browsers comes in handy.

Manual proxy configuration

You want to do manual proxy configuration in situations in which you have only a
few client machines and your proxy configurations do not change often. If your

needs are different, i.e. you have a hundreds of client machines, you should skip to

Chapter 10 4+ Setting up a Proxy Server

the section on “Automatic Proxy Configuration.”

Configuring Netscape manually

The following steps guide you through the manual proxy configuration of Netscape:

1. Choose Edit o> Preferences from Navigator’s menu bar. You should see a dialog

window as shown in Figure 10-4.

Preferences

Fonts
Colors
Thernes
= Navigator
History
Languages
Helper Applications
Smart Browsing
Internet Search
[* Composer
[Mail and Mewsgroups
D Instant Messenger
= Advanced
Cookies
Images
Forms
Passwords
Cache

Software Installation
Mouse Wheel
Desktop Integration

| Proxies J
[Configure Proxies to Access the Internet
A network proxy provides additional security between your
computer and the Internet. Proxies can also increase performance
between multiple netwaorks, by using caches to reduce traffic,
(O Direct connection to the Internet
@ Manual proxy configuration
ETF Proxy: | hitp: fpraoxy nitec.com Paort: |s080
HTTP Proxet hip: ¢/proxy.nitec.com Part: 8080
S5L Proxy: | Port: |0
SOCKS Host: | Port: |0
Mo Proxy far: |
Example: .yourcompany.com, .yourcompany.c...
O Autarnatic proxy configuration URL:

Figure 10-4: The Netscape Navigator proxy setup window.

2. Click on the Advanced category.

3. Click on the Proxies category.

4. Click on the Manual proxy configuration option.

5. Enter the proxy server URLs for the HTTP, FTP, and Security (HTTPS) data
entry fields, along with the port information. Because | am using a single proxy
server for all of these protocols, the URL (http://proxy.evoknow.com /)
and the port (8080) are all same. If you have different proxy servers for each of

these services, you should specify them accordingly.

6. After you have entered the information, make a request for a remote docu-
ment to determine whether your proxy is working as it should. A good way to
determine what’s going on is to monitor the proxy server’s access and error
logs. On most Unix systems you can use a command such as the following to

view log entries as they get written to the file:
tail -f /path/to/access/log

279

280 Partll + Web Site Administration

Configuring Internet Explorer manually

Now let’s configure Microsoft Internet Explorer for the Windows platform. To manu-
ally configure Internet Explorer for proxy, follow these steps:

1. Choose Tools &> Internet Options. This brings up the dialog window shown in
Figure 10-5.

Local Area Network (LAN) Settings [7]x]

—#Aukomatic configuration

Automatic configuration may override manual settings. To ensure the
use of manual settings, disable autamatic configuration,

¥ automatically detect settings

™ Use autamatic configuration script

Address I

~Prozy server

¥ Usea Proxy server

Address: |http:,|’,|’proxy.nite Part: |8080| Advanced. .. |

™ Bypass proxy server For local addresses

Figure 10-5: Microsoft Internet Explorer
manual proxy setup window

2. Click on the Connection tab and then click the LAN Settings button. [assume
that you are using a LAN gateway/router connection to the Internet.

3. Select the Use a proxy server option.
4. Enter the proxy server URL and port number in the fields provided.
5. Click OK to complete configuration.

Tip If you want to specify different proxy server information for different protocols, then
., you can use the Advanced button to bring up the window shown in Figure 10-6.
’

Local Area Netwark (LAN) Settings Figure 10-6: The Internet Explorer advanced
—Automatic configuration proxy Setup WindOW.

Automatic configuration may override manual settings. Ta ensure the
use of manual settings, disable automatic configuration,

[¥ automatically detect settings

[Use automatic configuration script

Aadiess I

Prozy server

¥ Use a Prony Server

Address: |1?2‘20‘254.50 Port: | 8050 Advanced, ., I

I™ Bypass prowy server For local addresses

Ok Cancel

‘\I ote

‘\Iote

Chapter 10 4+ Setting up a Proxy Server

Here, as in Netscape Navigator, you can specify different proxy server settings.
After you click OK and click the Apply button to apply the new settings, your
browser is configured to use the proxy server.

Automatic proxy configuration

The good folks at Netscape Communications thought about the problems involved
with manually configuring proxy for several client computers and came up with a way
to get around this hassle. When the Web browser starts, it loads the function from the
JavaScript file (how the file is made available to the Web browser is discussed later)
and calls FindProxyForURL for each URL request. The browser supplies the host

and URL arguments to the function so that it can return the most appropriate

proxy configuration.

Microsoft has also caught up with autoconfiguring options for Internet Explorer.

~~ Unfortunately, Microsoft has made autoconfiguring a bit harder to incorporate into

the browser. You must obtain the Internet Explorer Administrator Kit (IEAK) to cre-
ate autoconfiguration files. Because getting IEAK requires a licensing agreement
that asks each IEAK licensee to report quarterly to Microsoft regarding IEAK-related
use, this author didn't get one. However, | have confirmation from a good source
that the IEAK documentation discusses a Netscape-like automatic proxy configura-
tion scenario and can even use the same scripts. This section applies to both IE
and Navigator. The only difference is that if you want this to work with IE, you must
figure out how to create the appropriate files by using IEAK.

The proxy autoconfiguration is done using a special JavaScript. This is true for both
Netscape Navigator and IE. The special JavaScript has these requirements:

The proxy autoconfiguration JavaScript must implement a function called
FindProxyForURL. This function has the following skeleton:

function FindProxyForURL(url, host) {
// Jjava script code goes here
return "proxy to use for servicing the URL";

}

The arguments that this function receives are ur1 and host. The ur1 is the full URL
being requested and the host is the host name extracted from the URL. For example,
when a request for a Web page is detected by the Web browser, it calls the function:

ret = FindProxyForURL(",)

The host argument in the function call is really the substring between the ://
~ and the first : or /. The port number is not included in this parameter.

281

282 Partll + Web Site Administration

The function must return a string containing the necessary proxy configuration
for a particular URL request. The acceptable string values that represent a proxy
configuration are shown in Table 10-1.

Table 10-1
Acceptable String Values for Proxy Configuration
String Meaning
NULL When a NULL value (not the string NULL) is returned, it tells
the browser not to use any proxy for this request.
DIRECT Connections should be made directly, without any proxies.
PROXY host:port; The specified proxy should be used.
SOCKS host:port; The specified SOCKS server should be used.

Setting return values for FindProxyForURL

As discussed in the Table 10-1, there are four potential return values. Obviously, the
real interesting return values are DIRECT and PROXY. When you have multiple proxy
or SOCKS servers, you can return a list instead of a single host : port pair. For
example, the following proxy configuration:

PROXY best-proxy.evoknow.com:8080; PROXY good-proxy.evoknow.com:8081; PROXY
S0S0-proxy.evoknow.com:8082

tells the browser to try best-proxy.evoknow. com first, and if it fails, to then try the
next one (good-proxy.evoknow.com), and so on. Note that each host : port pair is
separated by a semicolon and the keyword PROXY is repeated for each pair. If all the
proxy servers fail, the user will be asked before attempting a direct connection.

When all proxies fail and there is no DIRECT option specified, the browser
asks the user whether the proxies should be temporarily ignored and direct
connections attempted.

To avoid user interaction, the configuration can be replaced with the following:

PROXY best-proxy.evoknow.com:8080; PROXY good-proxy.evoknow.com:8081; PROXY
S0s0-proxy.evoknow.com:8082; DIRECT

Because direct connection is already specified as the last resort, the user will not
be asked before making such a connection in case of total proxy failure. You can
also mix PROXY and SOCKS. For example:

PROXY best-proxy.evoknow.com:8080; SOCKS socks4.evoknow.com:1080; DIRECT

Chapter 10 4+ Setting up a Proxy Server

Here the SOCKS-based proxy will be used when the primary proxy server best-
proxy.evoknow.com fails to respond.

When a proxy fails to respond, Web browser retries the proxy after 30 minutes.
Each subsequent time it fails, the interval is lengthened by another 30 minutes.

Using pre-defined functions in FindProxyForURL

To help Web administrators (who must also know JavaScript programming), a set of
predefined functions are available. These functions and their descriptions are listed

in Table 10-2.

Table 10-2

Predefined Functions for Programming Automatic Proxy
Configuration Script

Function Name

Explanation

Examples

isPlainHostName
(host)

DnsDomainIs
(host, domain)

localHostOrDomainIs
(host, fgdnhost)

Returns true if there is no
dot in host. In other words,
if the domain name is not
included.

Returns true if host belongs
to the domain. Note that the
domain name must contain
a leading period.

Returns true if host part of
fqgdnhost (fully qualified
host name) matches

with host.

isPlainHostName
("bTackhole") returns true.

isPlainHostName
("blackhole.evoknow.com")
returns false.evoknow.com

dnsDomainls("www.
evoknow.com", ".evoknow.
com") returns true.

dnsDomainls("www.apache.
org", ".evoknow.com")
returns false.evoknow.com

localHostOrDomainIs
("a.b.com", "a.b.com")
returns true.

localHostOrDomainIs
("a.b", "a.b.com")
returns true.

localHostOrDomainIs

("a.b.org", "a.c.com")
returns false.

Continued

283

284

Part Il ¢ Web Site Administration

Table 10-2 (continued)

Function Name

Explanation

Examples

isResolvable(host)

isInNet(host, IP
address pattern,
netmask)

dnsResolve(host)

my IpAddress()

dnsDomainLevels
(host)

If DNS server can resolve the
host name to an IP, returns
true; otherwise, it returns
false. Use of this function
can slow down browsers
because a DNS query is
required to perform the test.

Returns true if the IP address
of the host matches the
pattern specified in the
second argument. The match
is done using the netmask

as follows: if one of the
octets of the mask is a 255,
the same octet of the IP
address of the host must
match. If an octet of the mask
is 0, the same octet of the IP
address of the host is ignored.

Use of this function can slow
down browsers because a
DNS query will be required
to perform the test.

Returns the IP address of

the host if successful.Note
that use of this function can
slow down browsers because
a DNS query will be required
to perform the test.

Returns the IP address of
the host the Web browser
is running.

Use of this function can slow
down e browsers because a
DNS query will be required
to perform the test.

Returns number of domain
levels in the host name.

isResolvable
("{hyperlink}") returns true
(because {hyperlink} has

DNS records).

If the host has an IP address of
206.171.50.51, isInNet
(host, "206.171.50.50",
"255.255.255.0") returns
true because, according to the
netmask, only the first three
octets must match and the last
one should be ignored.

dnsResolve("proxy.
evoknow.com") returns
“206.171.50.50".

var hostIP = myIpAddress
() returns the IP of the Web
browser host and stores it in
avariable called hostIP.

dnsDomainLevels("www.
nitec. com") returns 2.

Chapter 10 4+ Setting up a Proxy Server

Function Name

Explanation

Examples

shExpMatch(string,
shellExpression)

WeekdayRange
(weekdayl,
weekday?2, gmt)

Returns true if string matches
the shell expression.

Only the first argument
weekdayl is required.
Returns true if the day this
function is executed is equal
to weekday1 or in the range
of weekdayl to weekday?.
If the third parameter, gmt,
is GMT then GMT time is used
instead of local time.
Acceptable weekday values
for weekdayl or weekday?
are SUN, MON, TUE, WED,
THU, FRI, or SAT.

dateRange(day) Returns true if current day,
montbh, year, or all three are

dateRange(dayl, in the range. The value of

day?2) day can be 1-31; month can
be JAN, FEB, MAR, APR, MAY,

dateRange(month) JUN, JUL, AUG, SEP, OCT,
NOV, or DEC; year is a four-

dateRange(monthl, digit number; gmt is “GMT"

month?2) or nothing (local time).

dateRange(year)

dateRange(yearl,

year?2)

dateRange(dayl,

monthl, day2, month?2)

dateRange(monthl,
yearl, month?2,
year?2)
dateRange(dayl,
monthl, yearl,

day?2, month2, year?2)

dateRange(dayl,
monthl,yearl, dayZ2,
month?2, year2, gmt)

shExpMatch("path/to/
dir","*/to/*") returns true.

shExpMatch("abcdef",
"123") returns false.

weekdayRange("FRI")
returns true if day is Friday in
local time.

weekdayRange("MON",
"FRI", "GMT") returns true if
day is in the Monday-Friday
range in GMT time.

dateRange(31) returns true if
current day is the 31st.

dateRange("JAN", "APR")
returns true if current month is

in the January to April range.

dateRange(1995) returns true
if current year is 1995.

Continued

285

286 Partll + Web Site Administration

Table 10-2 (continued)

Function Name Explanation Examples
timeRange(hour) Returns true if the hour, min, timeRange(9, 17) returns
or sec specified is current. If true if current hour is between
timeRange(hourl, a range is specified, then 9 a.m. and 5 p.m.
hour?2) returns true when the current
corresponding unit of time is
timeRange(hourl, in the range specified. The

minl, hour2, min2) value of hour can be 0-23;

min can be 0-59; second
timeRange(hourl, can be 0?59; and gmt is
minl, secl, hour2, “GMT" or nothing (local time).
min2, sec?2)

timeRange(hourl,
minl, secl, hour2,
min2, sec2, gmt)

With the help of the predefined functions and your custom functions, you can write
FindProxyForURL so that it returns an appropriate proxy configuration string for
each request.

Following are some example scenarios in which the FindProxyForURL function can
be written in different ways.

Scenario 1: Using proxy only for remote URL requests

In this scenario, the idea is to tell the Web browser that proxy should be only for
remote URL requests, as shown in Figure 10-7. Here a request for http://www.
microsoft.com, from host A, is evaluated by the FindProxyForURL() method,
which returns proxy.nitec.com:8080 as the proxy server and then also instructs
it to try direct access if proxy is down. Similarly, a Web browser on host B uses
FindProxyForURL() method to evaluate how to access http://www.nitec.com.
The figure shows that the FindProxyForURL() method instructs the browser to
directly access the site.

Listing 10-1 is a simple example of such a FindProxyForURL function.

Chapter 10 + Setting up a Proxy Server 287

Request: e

Qttp://www.microsoft.com

J

FindProxyForURL()

N
(" N

Proxy Configuration:

Try proxy.nitec.com: 8080
then try DIRECT access

<«—>| ProxyServer | <«—

Proxy.nitec.com

L5 | Router

Request: et

U http://www.nitec.com D

FindProxyForURL() <«—>| WebServer | <«—
A

Proxy Configuration: R www.nitec.com
DIRECT access

Figure 10-7: Using proxy only for remote URL requests

Listing 10-1: Using proxy only for remote URL requests
function FindProxyForURL(Curl, host) f{

// Check whether the host is a local host.

// If it is a local

// host specify DIRECT connection (that is, no proxy)

// or else use the proxy.
if (isPlainHostName(host) || dnsDomainIs(host, ".nitec.com"))

return "DIRECT";

else

return "PROXY proxy.nitec.com:8081; DIRECT";

288

Part Il ¢ Web Site Administration

When a request for a URL http://www.domain.comis made by the Web browser
user, the browser calls FindProxyForURL with the url argument set to http://www.
domain.com and the host set to www.domain.com. The function first calls the
isPlainHostName function to see whether or not the request is for a plain

host (just www). Because it is not, isPTainHostName returns false. Now the
dnsDomainls function is called to test whether is in the .nitec.com domain. This
also returns false. Because both of these tests return false, the else part of the
conditional statement is executed. In other words, the URL request for http://
www.domain.comreturns the following proxy configuration to the Web browser:

PROXY proxy.nitec.com:8081; DIRECT

This tells the Web browser to use proxy server named proxy.nitec.comon port
8081 if it is not down. If it is down, the request should be serviced by a direct HTTP
request to http://www.domain.com. For most proxy server installations, this
configuration is sufficient. Let’s take a look at more complex scenario.

Scenario 2: Using multiple proxy severs

In this scenario, there are multiple proxy servers. Figure 10-8 illustrates a network
where there are three proxy servers: http-proxy.nitec.comis used for all remote
HTTP URL requests; ftp-proxy.nitec.comis used for all remote FTP URL requests;
and ss1-proxy.nitec.comis used for all remote HTTPS URL requests. All other
remote URL requests that use other protocols such as GOPHER, NEWS, and so on,
are directly connected. All types of local requests are serviced directly as well.

To implement this configuration, FindProxyForURL becomes a bit complex and
looks similar to Listing 10-2.

This function first checks whether the URL request is a local one. If it is local,

then it is serviced directly. If the request is for a remote server, the URL protocol

is matched to locate the appropriate proxy server. However, only HTTP, FTP, and
HTTPS protocols are recognized and URLs that request remote resources by using
such protocols are directed to proxy servers. When a remote URL request does not
match any of the stated protocols, it is connected directly.

Scenario 3: Dynamically generating FindProxyForURL using CGI script
It is also possible to customize your proxy server configuration based on the host
that is accessing the proxy server. This can be done using a CGI script that outputs
the FindProxyForURL differently depending on the REMOTE_HOST (the browser
host). Listing 10-3 shows one such script, proxy.p1, written in Perl.

Requests

http://www.yahoo.com

ftp://ftp.microsoft.com/

https://www.amazon.com/

http://www.nitec.com

https://secured.nitec.com

ftp://ftp.nitec.com

<«

Chapter 10 +

Servers

Proxy Server
http-proxy.nitec.com

Proxy Server
ftp-proxy.nitec.com

Proxy Server
ssl-proxy.nitec.com

WwWw.nitec.com

secured.nitec.com

ftp.nitec.com

Figure 10-8: Using multiple proxy servers

Setting up a Proxy Server

<«——»| Router

Listing 10-2: FindProxyForURL for multiproxy server

configuration

function FindProxyForURL(Curl, host) {

//

// Is the URL local? If it is,

// DIRECT connection

//

if (isPlainHostName(host) ||
dnsDomainIs(host,

return "DIRECT";

".nitec.com")) {

then use a

289

290 Partll + Web Site Administration

} else {

// 0K, the URL is remote so check which
// proxy to use.

if (url.substring(0, 5) == "http:") {
return "PROXY http-proxy.nitec.com:8080";
} else if (url.substring(0, 4) == "ftp:") {
return "PROXY ftp-proxy.nitec.com:8080";
} else if (url.substring(0, 6) == "https:") {
return "PROXY ssl-proxy.nitec.com:8080";
} elsed

return "DIRECT";

Listing 10-3: proxy.pl
#!/usr/bin/perl

A Perl script that outputs proxy server configuration.
$Authors

$Revision$

$1d$

Get the remote host IP from the CGl environment variable
REMOTE_HOST
my $client = $ENV{REMOTE_HOST};

Print out the necessary content-type to let the browser
know that this is a proxy configuration.
print "Content-type: application/x-ns-proxy-autoconfig\n\n";

If the request came from a host with IP address
206.171.50.51 then output proxy configuration
from subroutine &specialClient

1
if ($client =~ /206\.171\.50\.51/){

&specialClient;

Chapter 10 4+ Setting up a Proxy Server

} else {

If the request came from any other clients, then
send proxy configuration for all other clients

&otherClients;
}

exit 0;

sub specialClient{

1

This subroutine outputs a proxy server configuration

#
print <<KFUNC;

function FindProxyForURL(url, host)
{
if (isPlainHostName(host) ||
dnsDomainIs(host, ".nitec.com"))
return "DIRECT";
else if (shExpMatch(host, "*.com"))
return "PROXY com-proxy.nitec.com:8080; "
else if (shExpMatch(host, "*.edu"))
return "PROXY edu-proxy.nitec.com:8080;

else
return "DIRECT";

FUNC

}
sub otherClients{
s
This subroutine outputs a proxy server configuration
1

print <<FUNC;

function FindProxyForURL(url, host)
{

}

return "DIRECT";

FUNC

291

292

Part Il ¢ Web Site Administration

This script outputs a special proxy server configuration for a host with the IP address
206.171.50.51; all other hosts get a different configuration. To access this proxy
configuration, I can set up the Netscape Navigator or IE to point to this script at
http://www.nitec.com/cgi-bin/proxy.pl.For example, in IE you can specify

a URL such as the above as the automatic proxy configuration script address in

Tools = Internet Options => Connections &> LAN Settings = Use automatic configuration
script option, except that you are asking the browser to request a CGI script instead
of a . pac file. But because the script sends out the content-type of a . pac file, the
browser has no quarrel about why it got the proxy configuration from a CGI script
and not a . pac file. Although the example script does not do much, you can use
similar scripts for complex proxy configurations.

+ o+ 4

Running Perfect
Web Sites

By now, you probably have one or more Web sites up and
running on your new Apache Web server. Everyone in
your organization is crediting you for a wonderful job. You are
in Web heaven, right? Wrong! Pretty soon many of your fellow
colleagues may ask you how to update their pages on the Web
site. For example, the marketing department may call and ask
how to update the pricing information, or the legal depart-
ment may ask how they can add more legal content in one

of the Web sites.

This is what happens to Web administrators of medium-to-
large organizations. Such administrators soon find themselves
in the midst of a mass of update requests and wish lists. So,
how do you manage your Web now? In this chapter, you learn
how to create a professional Web management environment
that will keep you and your Web developers sane and in sync
with the Web.

This chapter deals with various issues relating to develop-
ing a perfect Web site. A perfect Web site exhibits these
characteristics:

4+ High-quality content — Of course! If you do not have use-
ful or entertaining content why should people visit your
Web site? However, what content works for you depends
on the purpose of the Web site.

4+ A consistent look and feel — Web sites that have a con-
sistent theme throughout all the pages are more appeal-
ing and often indicate a thought process. Creating a
consistent look and feel requires tools and a systematic
process. This chapter introduces you to a process called
the Web cycle, which requires that you use three phases
(development, staging, and production) to manage your
Web sites.

CHAPTER

+ 0+ o+
In This Chapter

Creating a Web
cycle for your
organization

Generating template-
based Web sites by

using makepage
Publishing on an

intranet by using the
HTTP PUT method

Standardizing your
standards

Making your Web

userfriendly

Promoting your Web
site on the Internet

I R

294 Partll + Web Site Administration

4 Automated publishing— My experience is that constantly developing new
and exiting contents is a big challenge itself. If you add manual content-
presentation tasks to the process, things soon get out of control. For example,
if you have three content authors writing actual HTML pages for a site, you
might start with an understanding of common look and feel, but drift away
from it as time passes. To enforce strict presentation rules, you must use
HTML templates and integrate contents using an automated process. A few
such processes are discussed in this chapter.

4 Aderence to standard practices — To keep the Web site user-friendly there are
many guidelines that need to be followed. I discuss some of the more impor-
tant ones in this chapter.

What Is a Web Development Cycle?

Unfortunately, typical Web development projects do not start with the design of a
manageable Web. In most projects, much of the time is spent getting the servers
running and the content developed; it is rarely spent worrying about the long-term
management aspects of the Web. Ironically, as soon as everything seems to be
working, things start falling apart because of the lack of a clear, maintainable cycle.
In this section, you learn about the Web cycle, which enables you to create a highly
manageable Web solution.

A Web cycle consists of three phases: development, staging, and production. By

implementing each of these phases, you can create a maintainable, manageable
Web. Figure 11-1 shows a high-level diagram of a Web cycle.

(start)

Test-cycle
Development Staging Production
. Phase) Phase i Phase

1

Figure 11-1: A high-level diagram of a Web cycle.

Development restart-cycle

Chapter 11 4+ Running Perfect Web Sites

As this figure shows, a Web cycle starts at the development phase, continues to the
staging phase, and ends in the production phase. When the cycle restarts, however,
it starts from the production phase and repeats the previous cycle path. The
phases in the cycle are:

4+ Development phase —In this phase, you start developing your Web content.
The content, be it HTML documents or CGI scripts or something else, is com-
pletely developed and tested in this phase. After the developers are absolutely
sure that their work is ready for integration with the Web site(s), the newly
developed content moves to the next phase.

4 Staging phase — The staging phase enables integration of the newly developed
content with the existing content, and enables performance of testing cycles.
Once in the staging phase, developers no longer participate in the staging pro-
cess. In this process, you introduce testers who are not developers, in order to
remove developer bias —in other words, developers might not test the content
completely because of overconfidence that the content is correctly written. At
this point, you either see problems or you end up with a successful set of tests.
In the latter case, you are ready to move the newly developed, staged, and
tested content to the production phase. If problems are created by the new con-
tent, you will need to restart from the development phase after the developers
have fixed the problem in the development area. Do not allow the developer(s)
to fix problems in the staging area.

4 Production phase — This phase consists of content backup and content
deployment tasks. First, you back up your existing (functional) content,
and then you move the staging content to your production Web space. The
switchover has to happen as quickly as possible so as to reduce disconnects
from visitors and to prevent loss of Web-collected data.

When you are ready to begin another development cycle (to restart the entire
process), copy the content from the production phase and make it available in the
development phase, so that developers can work on it. The cycle continues in the
same manner whenever needed.

What does all this buy you? It buys you reliability and management options. For
example, if you are currently developing content and dumping it directly on your
production system before a full suite of tests, you are living dangerously. In most
cases, content developers claim to have tested their new content in their local
environment, and are quick to apply the seal of completion. Because a developer’s
local environment typically lacks the integration of current content with the new
content, the tests are not always realistic. Only by integrating existing and new
content together can you detect possible incompatibilities. For example, without
the staging phase, a direct dump on the production system from the development
phase is can cause any of these errors:

295

296 Partll + Web Site Administration

4 Files in the production system could be overridden by the new contents. This
typically happens with image files, because of the lack of a standard file nam-
ing convention or because of the use of common directories for image files.

4 Data files on the live (production) system could be overridden, because the
CGI developers used old data files when developing the content.

4 When multiple developers are involved, some old files may reappear on the
production server, because each developer may have started working with a
copy at a different time. One developer dumps his copy, and then another
developer dumps hers, and the result is a mess.

Many other problems can appear if several developers are involved and their
projects are interconnected. If you cannot risk having such problems on your
production server, you need the staging phase. Apache can help you implement
these phases.

After you get used to the cycle, you'll find that it makes it easy to track develop-
ment and integration problems, and it also ensures that all your production sites
are functional at all times.

Putting the Web Cycle into Action

You are ready to put your Web cycle into action. Ideally, you do not want to perform
any development work on the production server system. If your budget does not
permit deployment of multiple machines for your Web, however, you should use
your lone server to implement the cycle.

First, you need to set up your server(s) for the Web cycle. Although there are
many ways to do this, [discuss only three. A brief description of each of the three
methods follows.

4 A single computer with two virtual hosts for development and staging. The
production server is the main Apache server. Be careful when modifying any
Apache configuration in this setup, because changes could affect how your
production server behaves.

4 A single computer with three main Apache servers for development, staging,
and production. With this method, you create separate configurations for each
(main) Apache server so that you can experiment with Apache configurations
in the development site without disturbing the production configuration.

4 At least three different computers as development, staging, and production
Apache servers. All three computers run Apache servers on port 80.

Chapter 11 + Running Perfect Web Sites 297/

Setting up for the Web cycle

You can set up for the Web cycle in two ways: you can either use two new virtual
hosts to implement the development and staging sites on your production server,
or you can create three separate Apache configurations for the production server,
the development server, and the staging server.

If your development work includes tweaking Apache configuration files or testing a
newly released Apache server, you should use separate configuration files for the
production Apache server and the other two Apache servers. If your normal Web
development does not include Apache-related changes, however, you can use the
virtual host approach.

A good Web cycle requires a well-planned Web directory structure. Figure 11-2
shows one such directory structure for a Web cycle.

Q /www
—@) my company
———————————@ public
htdocs
cgi-bin
———————————@ staging
htdocs
cgi-bin
————@Q developer
— htdocs
cgi-bin

Figure 11-2: The directory structure used for public,
staging, and developer sites for “my company”

This figure shows a good example of a directory structure because it enables you to
keep the public, staging, and developer sites for each Web site under a single top-
level directory (in this case, mycompany). Adding a new Web site means creating a
similar directory structure for it.

298

Part Il ¢ Web Site Administration

In the example configurations discussed in the following sections, I assume that you
have the preceding directory structure in place. I also assume that your Web server
host is called www.mycompany . com, and that it has the IP address 206.171.50.50.
Make sure you replace these values with whatever is appropriate for your own
configuration.

Creating a virtual host for each phase

If you plan to modify Apache configuration files as part of your development process,
do not use this scheme; you only need one set of Apache configuration files in this
setup, and changing the files for experimentation can affect your production server.
In such a case, you can still use a single machine, but you need to run multiple
Apache (main) servers. This approach is described in the next section.

If you decide that you do not need to make Apache-related changes to your con-
figuration files, you can use this scheme to create a virtual host for each phase.
To do so, you should create two virtual hosts that have the same ServerName but
run on different port addresses. Table 11-1 shows a sample port assignment for
such a setup.

Table 11-1
Port Assignments for Apache Servers for the Web Cycle
Port Server Type
80 Production server (main server)
1080 Staging server (virtual host)
8080 Development server (virtual host)

You can choose any other port assignments that you wish, as long as you don’t use
a port address that is already being used or that is greater than 65535. The produc-
tion server port should not be changed from 80, because default HTTP requests are
sent to this port address.

To create these virtual hosts per the port assignment shown in Table 11-1, you need
to edit the Apache server’s httpd. conf file as follows.

1. To make the Apache server listen to these ports, use the Listen directive:

Listen 80
Listen 1080
Listen 8080

2. Create two virtual hosts as follows:

AI ote

Chapter 11 + Running Perfect Web Sites 2990

Do not forget to change the IP address, ServerName,
DocumentRoot, ScriptAlias,
TransferlLog, and ErrorLog directive values with whatever is
appropriate for your
actual configuration setup.
1
<VirtualHost 206.171.50.50:1080>
ServerName www.mycompany.com
DocumentRoot "/www/mycompany/staging/htdocs”
ScriptAlias /cgi-bin/ "/www/mycompany/staging/cgi-bin/"
TransferlLog Tlogs/staging-server.access.log
ErrorlLog logs/staging-server.error.log
</VirtualHost>

<VirtualHost 206.171.50.50:8080>
ServerName www.mycompany.com
DocumentRoot "/www/mycompany/developer/htdocs"
ScriptAlias /cgi-bin/ "/www/mycompany/developer/cgi-

bin/"
Transferlog logs/developer-server.access.log
ErrorlLog logs/developer-server.error.1og

</VirtualHost>

In the preceding example, the same IP address is used in both virtual hosts, but

— different ports are specified in the <VirtualHost . . .> container. The IP

address is the same as the main server, www.mycompany.com. The ServerName
directive is set to the main server name as well. Your main server configuration will
be as usual.

The http://www.mycompany.com:1080 URL can be used to access the staging
site; to access the developer site, this URL can be used: http://www.mycompany .
com:8080.

Using multiple Apache (main) server processes

You should use more than one (main) server process if you plan to experiment with
Apache itself as part of your Web development phase. Create three sets of configura-
tion files, with each set pointing to a different DocumentRoot and ScriptAlias. After
you have done that, you can start up the three Apache (main) server processes as fol-
lows from the main directory where you installed Apache (e.g. /usr/local/apache):

httpd -f conf/httpd.conf
httpd -f conf/staging/httpd.conf
httpd -f conf/developer/httpd.conf

When you decide to compile a new version of Apache and run it under the developer
server, you can simply feed it the configuration file for the developer server. For exam-
ple, if you've decided to add a new module and want to see the effect of the module on

300

Part

‘\I ote

Il ¢ Web Site Administration

your content, you can simply run the developer and staging servers using that exe-
cutable instead of your production server executable (httpd). After compiling a new
executable, you may want to rename it to something like httpd-xx80 to ensure that
you do not accidentally overwrite the production server executable with it.

To implement the cycle, follow these instructions.

1. Create two subdirectories in your Apache configuration directory called
staging and developer, as follows:

mkdir /path/to/Apache/server/root/conf/staging
mkdir /path/to/Apache/server/root/conf/developer

Don't forget to replace /path/to/Apache/server/root/conf with the actual
~ path of your server configuration directory.
2. Copy all *. conf files to both the staging and developer subdirectories,
as follows:

cp /path/to/Apache/server/root/conf/*.conf
/path/to/Apache/server/root/conf/staging/*
cp /path/to/Apache/server/root/conf/*.conf
/path/to/Apache/server/root/conf/developer/*

3. Modify the httpd. conf file in the staging subdirectory to listen to port 1080
instead of the default 80. You can either use the Port or the Listen directive
to do this. Similarly, you need to modify the httpd.conf in the developer
subdirectory so that the Port or the Listen directive is set to 8080.

4. Modify the srm.conf (or httpd.conf) files in the staging and developer
subdirectories so that they point their DocumentRoot and ScriptAlias
directives to the appropriate path. For example, the changes needed here
for the directory structure shown in Figure 11-2 is:

DocumentRoot "/www/mycompany/staging/htdocs”
ScriptAlias /cgi-bin/ "/www/mycompany/staging /cgi-bin/"

for the staging site configuration. For the developer site configuration file,
it is:

DocumentRoot "/www/mycompany/developer/htdocs"
ScriptAlias /cgi-bin/ "/www/mycompany/developer/cgi-bin/"

If you use a special configuration for your production server that uses absolute

~ path information, you may have to edit the new configuration files further, for the

staging and developer subdirectories.

Using multiple Apache server computers for the Web cycle

If you can afford to have multiple Apache server computers (that is, one for devel-
opment, one for staging, and one for production) to create the Web cycle environ-
ment, you don’t need to create special Apache configurations. You can simply
install Apache on all your involved hosts, and treat one host as the developer site
host, a second host as the staging site host, and the third host as the production
site. Because you now have Apache servers running on three different hosts, you

Chapter 11 + Running Perfect Web Sites 3]

can also run each server on port 80. That’s all you need to do for a multihost Web-
cycle environment.

Implementing the Web cycle

To initiate your Web cycle, copy your production content from the production
server’s document root directory to your development site. For example, if your
configuration is one of the first two in the above list, you can easily copy your
entire Web content to the development site using the following Unix commands:

cd /path/to/production/docroot/dir
tar cvf - . | (cd /path/to/development/site/docroot/dir
tar xvf -)

This copies all the files and directories in your production server to the develop-
ment site’s document root. Just make sure you change the path information to
whatever is appropriate on your system.

For a multicomputer Web-cycle environment, you can create a tar archive of your
production server and copy it to your development site via FTP.

Set the file permissions so that Apache can read all files and execute the CGI scripts.
If you have directories in which Apache should have write access (for CGI scripts
that write data), you should also set those permissions. After you are done, start or
restart Apache to service the development site.

Now, make sure the development site appears (via the Web browser) exactly the
same as the production site. Perform some manual comparisons and spot checks.
Make sure the scripts are also working.

If any of your CGI scripts produce hard-coded URLs for your production server,
they will keep doing the same for your development site. You can either ignore
these URLs or get them fixed so they use the SERVER_NAME environment variable
and SERVER_PORT port address.

Testing the Web cycle

When everything is working as it should, you have successfully created a Web-cycle
environment. Now you can ask your developers to put new content and scripts in
the development site and test them. Whenever a new content development is com-
pleted, you should first test it in the development area. The testing should focus on
these issues:

4+ Does it serve its purpose? In other words, does the functionality provided by
the new content meet your specification?

4+ Does the new content have any side effects? For example, if the new content is
really a new CGI script, you should use Apache’s script debugging support to
monitor how the script works.

302

Part Il ¢ Web Site Administration

Moving the new site to the production server

After you are satisfied with the test results, avoid having to perform another set of
functionality tests by ceasing any further development on the new content. When
it’s time for a production site update, make a copy of your production site and
place it on your staging site. Here’s some tips for doing so:

4+ Make sure the staging site is exactly the same as the production site. After

you’ve done some manual checking to ensure that everything looks and feels
the same, you can move new contents and scripts to the staging site and
integrate them.

4 Move one project at a time so that you can find and resolve problems in

stages. For example, if you added three new CGI scripts to your development
system, move one script at a time to the staging area. Perform both functional
and site-integration testing. If the script passes the tests, move the next new
script to the staging area. After you have moved over all the new content, you
can perform site-level integration tests. Monitor your staging site logs care-
fully. Do you notice anything odd in the error logs? If not, then you are ready
to perform an update to your production site. You have to be very careful in
doing so, however. For example, if you have any CGI scripts on the production
server that create data files in the production area, you do not want to over-
ride any of these data files with what you have in the staging area.

4 The best time to update your production site is when you expect the produc-

tion server to be the least busy. At this time, you can grab the data files from
your production server and apply them to the appropriate directories in the
staging version of the site. This gets your staging site in sync with the produc-
tion site. At this point, you have to quickly dump your staging site into the
production area. This could be very tricky because the production site is live,
and you never know when a visitor may be accessing a page or using a CGI
script that needs to read or write data files.

To minimize the switchover time (at least on a single-server setup) you can create a
shell script that does the following:

1.
2.

Copies all live data files to appropriate areas of your staging site.

Renames your top-level production directory (such as the public directory in
Figure 11-2) to something like pubTlic.old.

. Renames your top-level staging directory (such as the staging directory in

Figure 11-2) to what you used to call your top-level production directory — for
example, pubTic.

. Renames the old production directory (such as public.old) to what you used

to call your staging top-level directory — for example, staging.

This way, the staging site becomes the production site in only a few steps, without
a great number of file copy operations. A sample of such a script that corresponds
to the environment shown in Figure 11-2 is provided in Listing 11-1.

Chapter 11 + Running Perfect Web Sites 3 (03

Listing 11-1: stage2production.sh script

#!/bin/sh

F Purpose: a simple shell script to copy live data files

to staging area and to rename the staging area into a live
production site. It also renames the old production

area into a staging area.

Copyright (c) 2001 Mohammed J. Kabir
License: GNU Public License

You will need to change these variables to use this script.
DATA_FILES="/www/mycompany/public/htdocs/cgi-data/*.dat";
TEMP_DIR="/www/mycompany/public.old";
PRODUCTION_DIR="/www/mycompany/public";
STAGE_DIR="/www/mycompany/staging";

Copy the Tlive data to the staging directory.
/bin/cp $DATA_FILES $STAGE_DIR

Temporarily rename current production directory to TEMP_DIR
/bin/mv PRODUCTION_DIR TEMP_DIR

Rename the current staging site to
production directory
/bin/mv STAGE_DIR PRODUCTION_DIR

Rename the temporary (old) production directory
to staging directory
/bin/mv TEMP_DIR STAGE_SITE

To be safe, change the current production directory's
permission setting so that the Apache user (httpd)

and Apache group (httpd) can read all files.

If you use some other user and group for Apache, you
have to modify this command according to

your setup.

/bin/chown -R httpd.httpd $PRODUCTION_DIR

Change the file permission so that the owner

(httpd in this case) has read, write, and

executepermission, the group (httpd in this case)
has read and execute permission, and everyone no
one else has permission to see the production

directory files

/bin/chmod - R 750 $PRODUCTION_DIR

304

Part Il ¢ Web Site Administration

After running this script, you should perform a quick check to make sure everything
is as it should be. In case of a problem, you can rename the current production
directory to something else, and change the staging directory name back to your
production directory name to restore your last production site.

Building a Web Site by Using Templates
and makepage

Maintaining a strict Web cycle provides you with a repeatable process for publish-
ing great Web sites. However, you still need a content presentation process that is
highly automated and requires very little human interaction.

Many expensive software programs claim to help in the process. Some people use
Microsoft Front Page to manage content development; some use Dreamweaver; some
use other products. Some people use more robust methods from Web development
companies that cost hundreds of thousands of dollars. What follows is a solution that
works for me (and has for years) in maintaining Web sites ranging from a few pages to
few hundred pages in size. The requirements for this solution are:

4 Create a simple mechanism for content authors to publish Web pages with
consistent look and feel.

4 Require the least amount of work on the content author’s part so that most of
the work is automated.

4 Assume that the content developer knows very little HTML and prefers to
submit contents in text format.

To implement such a solution, | wrote makepage, a script that is included on this
book’s CD-ROM. This script uses a set of HTML templates and a body text (contents)
page to build each page on the Web site. When I started this project, [wanted to gen-
erate each page on-the-fly by using CGI or mod_perl, but I later decided to generate
the contents once a day because my sites were being updated only once or twice a
day. However, it is extremely easy to increase the frequency of the update, as you
learn in this section. The makepage script assumes that each page consists of:

4+ A left navigation bar

4 A right navigation bar

4 A bottom navigation menu

4 A body area that houses the contents of a page
Whenever the makepage script is run on a given directory, it looks for all the files
ending with . txt extension and creates corresponding . html pages. For example, if

you run the makepage script in a directory with a text file called index. txt, the
script will run and produce output similar to this:

Chapter 11 + Running Perfect Web Sites 3 (05

Processing ./index.txt
RSB template ./.-rsb.html chosen: /home/mjkabir/www/default-
rsb.html
LSB template ./.-1sb.html chosen: /home/mjkabir/www/default-
I1sb.html
Backed up ./index.html as ./index.html.bak
Template: /home/mjkabir/www/default-tmpl.html
BODY file: ./index.txt
LSB file: /home/mjkabir/www/default-Tsb.html
RSB file: /home/mjkabir/www/default-rsb.html
Bottom Nav file: /home/mjkabir/www/default-bottom.html
Top Nav file: /home/mjkabir/www/default-top.html
HTML file: ./index.html

The script’s output shows that it is processing the index. txt file in the current
directory (denoted by the dot character). It then shows which RSB (Right Side
Navigation Bar) template file it is using for the index.html. The script looks for the
RSB template file called index-rsb.html first and if it cannot find a RSB file spe-
cific to the text file, it uses the default RSB file for the entire directory, which hap-
pens to be default-rsb.html. It repeats the same process for selecting the LSB
(Left Side Navigation Bar) template. Then it backs up the current index.htm]l
(the output of last run) to index.html.bak and uses the default body template
default-tmpl.html for creating the index.html page. If it finds a body template
called index-tmpl.html, it uses that template instead of the directory’s default
body template. This gives you flexibility in designing each Web page. You can sim-
ply create a directory-wide template set and have all the pages in the directory look
the same. Or you can customize a single page in the directory with its own RSB,
LSB, and BODY templates.

If you run the script in your document root directory by using the command
makepage path_to_document_root, the script automatically creates pages in

all the subdirectories in the document root. Thus, you can set up this script as a
cron job to be run every hour, or day, or week, or even minute as your update
needs require. The content authors simply drop their text files and pages get
created automatically. When a new text file is dropped and you do not supply the
page-specific RSB, LSB, or BODY template, the page is created with the directory’s
default template, which makes it extremely easy to add a new page. Simply type
up a page in your favorite text editor and FTP the file to the correct directory at
your Web site and it should get published in the next makepage run via cron.

The makepage package supplied on the companion CD-ROM includes default
templates that you can study to build your own.

Using HTTP PUT for Intranet Web Publishing

Apache supports the PUT method, which enables you to publish a Web page. However,
this feature has major security risks associated with if it is not implemented carefully.

306 Partll + Web Site Administration

After all you do not want to allow just anyone to change your Web site. [only recom-
mend using this feature for intranets which are not accessible from the Internet.

You need the mod_put module, which implements the PUT and DELETE methods
found in HTTP 1.1. The PUT method allows you to upload contents to the server
and the DELETE method allows you to delete resources from the server. You can
download this module from http://hpwww.ec-
lyon.fr/~vincent/apache/mod_put.html.

Understanding the directives in mod_put module

The mod_put module provides the three directives to control PUT- and DELETE-
based publishing.

EnablePut
EnablePut enables or disables the PUT method. To use the PUT method, you must

enable it by setting this directive to On.
Syntax: EnablePut On|Off
Default setting: EnablePut Off

Context: Directory, location

EnableDelete
EnableDelete On | Off enables or disables the DELETE method, which allows

you to delete a Web page via HTTP. To use the DELETE method, you must enable it
by setting this directive to On.

Syntax: EnableDelete On | Off

Default value: EnableDelete Off

Context: Directory, location

umask
umask octal_ sets the default permission mask (that is, umask) for a directory.
The default value of 007 ensures that each file within a directory is created with
770 permission, which only permits the file owner and group to read, write, and
execute the file.

Syntax: umask octal_value

Default value: umask octal_007

Context: Directory, location

Chapter 11 + Running Perfect Web Sites 37/

Compiling and installing mod_put

After you have downloaded mod_put, you need to perform these steps to compile
and install it:

1. Extract the mod_put.tar.gz source and move the directory it creates to
within the modules subdirectory of your Apache source distribution.

2. Add the mod_put module to Apache using the configure script (or config.
status if you have already compiled Apache before). Run either script with
add --enable-module=put option.

3. Compile and install Apache by using the make && make install command.

4. Restart Apache by using the /usr/local/apache/bin/apachect]
restart command.

Setting up a PUT-enabled Web directory

Web clients such as Netscape, AOLPress, and Amaya, can publish Web pages via
the PUT method. This section teaches you how to set up httpd.conf to enable PUT-
based publishing for a single Web directory under your document root tree.

Caution Be very careful with the PUT method if you plan to use it beyond your intranet.
Using PUT in a world-accessible Web site on the Internet might increase your
security risks greatly because someone can deface your Web site if the Web-based
authentication process that is described here is compromised. | only recommend
the PUT method for internal use.

1. Create the following configuration in httpd.conf:

Alias location_alias
"physical_directory_under_document_root"

<Location Jocation_alias>
EnablePut On
AuthType Basic
AuthName "Name_of_the_Web_section"
AuthUserFile path_to_user_password _file

<Limit PUT>
require valid-user
</Limit>

<{/Location>

Here’s what’s going on in the above code (to learn more about these authenti-
cation-related directives, read Chapter 7):

308

Part Il ¢ Web Site Administration

e An alias called 7oc_alias is associated with a physical path called
physical_directory_under_document_root.

e The <Location> directory sets directives for this alias.
e The EnablePut directive enables the mod_put module.

e The AuthType directive sets the authentication type to Basic HTTP
authentication.

e The AuthName directive sets a label for the section. This label is dis-
played on the authentication dialog box shown to the user by Web
browsers, so be sure that this label is meaningful.

e The AuthUserFile specifies the user password file that is used to
authenticate the user.

e The <Limit> container sets limits for the PUT method. It tells Apache
to require valid users when a PUT request is submitted by a Web client.

Here is an example of the above configuation:
Alias /publish/ "/www/mysite/htdocs/publish/"

<Location /publish>
EnablePut On
AuthType Basic
AuthName "Web Publishing Section"
AuthUserFile /www/mysite/secrets/.users

<Limit PUT>
require valid-user
<Limitd

<{/Location>

In the preceding example, the physical directory /www/mysite/htdocs/
publish has PUT method enabled for all the users in /www/mysite/
secrets/.users file.

. Restart Apache server by using the /usr/local/apache/bin/apachect]

restart command and use your Web browser with PUT support to publish a
document in the http://your_web_server/loc_alias directory. For the
sample configuration, this URL is http://server/publish.

When a file is published by using the PUT method, it will have the permission
setting that has been set using the umask directive for the mod_put module.
The file will be owned by the user under which Apache is running. For exam-
ple, if you set the User and the Group directives in httpd.conf to be httpd,
then the file is owned by the user httpd, and the group ownership is also
owned by httpd.

Chapter 11 4+ Running Perfect Web Sites

Setting up a virtual host to use mod_put module

The user set in the User directive in httpd.conf owns files created by mod_put.
This is a problem for a site with many different users because now everyone can
override everyone else’s file by using the PUT method. You can easily solve this
problem by using a separate virtual host for each user, as shown below.

1. Add the following lines to httpd.conf:
ChildPerUserID number_of_chid_servers usernamel groupnamel

Where the usernamel groupnamel pair is the user and group to be used for a
virtual host. Change these names to the actual user and group name you use.
Create as many ChildPerUserID lines as you need. The num_of_chid_
servers is a number that Apache uses to launch child processes associated
with this virtual host. For example, if you have two users called carol and
john and want to allocate 10 Apache children per virtual host, then add the
following lines in httpd.conf:

ChildPerUserID 10 carol carol_group
ChiTldPerUserID 10 john john_group

Make sure that the users and the groups actually exist in /etc/passwd and
/etc/group, respectively.

2. Create a VirtualHost for each user that requires PUT publishing as follows:
NameVirtualHost IP_Address

<VirtualHost IP_Address>

ServerName vhost_domain_name
AssignUserID user_name group_name

Alias location_alias
"physical_directory_under_document_root"

<{Location Tocation_alias>
EnablePut On
AuthType Basic
AuthName "Name_of_the_Web_section"
AuthUserFile path_to_user_password_file

<Limit PUT>
require username
</Limit>

</Location>

309

310

Part Il ¢ Web Site Administration

Other directives that you need for the site

</VirtualHost>
Example:
NameVirtualHost 192.168.1.100

<VirtualHost 192.168.1.100>
ServerName carol.domain.com
AssignUserID carol carol_group
DocumentRoot /www/intranet/htdocs/carol

Alias /publish/ "/www/intranet/htdocs/carol/publish/"

<Location /publish>
EnablePut On
AuthType Basic
AuthName "Carol's Publishing Site"
AuthUserFile /www/intranet/secrets/.users

<Limit PUT>
require carol
</Limit>

<{/Location>

</VirutalHost>

User carol can publish in the http://carol.domain.com/publish directory
by using her own user account. The files created by the Web server are also
accessible to her via FTP, as well as by other means, because the files are
owned by user carol.

3. After you create a virtual host for each user, restart the Apache server by
using the /usr/Tocal/apache/bin/apachect] restart command and test
each user’s setup by publishing a test page using the appropriate URL.

Maintaining Your Web Site

After you've implemented the Web cycle and have a content-generation process in
place, it is important to maintain your Web. Typical Web maintenance tasks include
server monitoring, logging, and data backup. The server monitoring and logging
aspects of Web site maintenance are discussed in Chapter 8. This section discusses
data backup. You should have two types of backup, if possible —online and

offline —which I describe in the following sections.

Online backup

Online backup is useful in the event of an emergency. You can access the backup
data fairly quickly and, in most cases, perform necessary restoration tasks in a few
minutes. To obtain an online backup solution, you can either look for a commercial

Chapter 11 4+ Running Perfect Web Sites

online backup vendor or talk to your ISP. If you are hosting your Web server(s) on
your own network, however, you can keep backups on another host on your net-
work. On most Unix systems, you can run a program called rdist to create mirror
directories of your Web sites on other Unix hosts (Chapter 23 has an example of an
rdist-based site-mirroring application).

It may even be a good idea to keep a compressed version of the Web data on the Web
server itself. On Unix systems, you can set up a cron job to create a compressed tar
file of the Web data on a desired frequency. For example:

for system V-ish Unix, weekday range is 0-6 where 0=Sunday
For BSD-ish system use weekday range 1-7 where 1=Monday

This example is for a Linux system (System V-ish cornd)
302 ** 0,1, 3, 5, root /bin/tar czf /backup/M-W-F-Sun.tgz
/www/*

302 *x*2,4,6 root /bin/tar czf /backup/T-TH-Sat.tgz
/www/*

If these two cron entries are kept in /etc/crontab, then two files will be created.
Every Monday, Wednesday, Friday, and Sunday, the first cron job will run at 2:30
a.m. to create a backup of everything in /www, and it will store the compressed
backup file in the /backup/M-W-F-Sun. tgz file. Similarly, on Tuesday, Thursday,
and Saturday mornings (at 2:30 a.m.), the second cron entry will create a file called
T-TH-Sat.tgz in the same backup directory for the same data. Having two back-
ups ensures that you have at least last two days’ backup in two compressed files.

Offline backup

You should also perform backups on removable media and keep them in safe loca-
tions. Restoring from this type of backup is usually a time-consuming operation.
You can use tape drives, removable hard drives (such as Jaz disks) to perform this
backup. I prefer an 8mm tape-based backup because it provides 8GB of data stor-
age capacity; also, 8-mm tape drives have been on the market much longer than the
new compact removable media.

As your Web sites grow richer in content, the available Web space is rapidly filling.
This is often a consequence of files that are unused but that are never removed for
fear that something (such as a link) will break somewhere. If you think this is true
for your Web site, and you are on a Unix platform, you may want to consider run-
ning the find utility to locate files that have not been accessed for a long time.
For example:

find /www -name "*.bak" -type f -atime +10 -exec 1s -1 {} \;
This lists all files in /www directories that end with the .bak extension and have not
been accessed for the last 10 days. If you want to remove these files, you can replace

the 1s -1 command and do a find such as:

find /www -name "*.bak" -type f -atime +10 -exec rm -f {} \;

311

312 Partll + Web Site Administration

If this helps, perhaps you can create a cron entry that runs this command on a
regular schedule.

Standardizing Standards

With a Web cycle in place, you have an environment that can accommodate many
developers; however, just creating the Web cycle does not ensure high-quality Web
production. A high-quality Web requires high-quality content, and there are guide-
lines that you should follow regarding content development. The theme here is to
standardize your standards.

Each Web site should offer unique content to make it attractive to potential visitors.
All types of Web content can be categorized as either static or dynamic. Static content
is typically created with HTML files, and dynamic content is usually the output of CGI
or other server-side or client-side applications. Most sites use a mix of both static
and dynamic content to publish their information; therefore, standards are needed
for both static and dynamic content development.

HTML document development policy

Although you can provide static content in a number of ways, such as a plain-text
or PDF file, most Web sites use HTML documents as the primary information reposi-
tory. To help guide your HTML authors, you should create an HTML development
policy. Following are some guidelines that you can adapt for your organization.

Always use standard HTML tags

HTML developers should always use the latest standard HTML. Use of browser-
dependent HTML may make a page look great on one type of browser, but terrible
on another.

For example, the following shows a skeleton HTML document that meets the
minimal HTML document standard.

<HTML>
<HEAD>XTITLE> Document title goes here </TITLE> </HEAD>
<BODY>
Document body goes here
</BODY>
</HTML>

Each of your documents should contain at least these HTML tags.

Keep in-line images along with the documents

The in-line images of a document should reside in a subdirectory of the docu-
ment’s directory. The source references to these images should be relative, so if

AI ote

Chapter 11 4+ Running Perfect Web Sites

the document is moved from one location to another along with the image
directory, the image is still rendered exactly the same way it was before.

There is one exception to this rule: If some of your images are reusable, you
should consider putting them in a central image directory. An example of such a
case is a standard navigation bar implemented using image files. The navigation
bar can be reused in multiple documents, so you may want to store these images
in a central directory instead of keeping them with each document. This provides
better control and saves disk space.

e

The following example shows you how to create a portable HTML document that
has multiple graphic files linked to it. Say you want to publish two HTML documents
(mydocl.html and mydoc2.html) that contain three images (imagel.gif, imageZ.
gif, and image3.qif). You can first create a meaningful subdirectory under your
document root directory or under any other appropriate subdirectory. Let’s assume
that you create this directory under the server’s document root directory (/www/
mycompany/htdocs) and you called it mydir.

Now, create a subdirectory called images under the mydir directory and store your
three images in this directory. Edit your HTML documents so that all links to the
images use the SRC attribute as follows:

SRC="1images/imagel.gif"
SRC="1images/image2.gif"
SRC="1images/image3d.gif"

An example of an in-line image link for image3 might look like this:

<IMG SRC="images/images3.gif" HEIGHT="20" WIDTH="30" ALT="Image
3 Description">

The SRC attributes in the preceding lines do not contain any absolute path infor-
mation. If the documents were to be moved from mydir to otherdir along with
the images subdirectory, there would be no broken images. However, if the links
contained path information such as:

<IMG SRC="mydir/images/images3.gif" HEIGHT="20" WIDTH="30"
ALT="Image 3 Description">

or

<IMG SRC="/mydir/images/images3.gif" HEIGHT="20" WIDTH="30"
ALT="Image 3 Description">

then these documents would need to be fixed after the move. Many sites keep their
images in a central image directory (such as images) under document root and link
documents by using IMG tags such as:

<IMG SRC="/images/images3.gif" HEIGHT="20" WIDTH="30"
ALT="Image 3 Description">

313

314

Part Il ¢ Web Site Administration

This is fine, but when you want to delete the HTML document, you need to make
sure you also delete the appropriate image in the central image directory. If you fail
to do this, eventually a lot of disk space will disappear in your image pit. Therefore,
it is not a good idea to keep images in a central directory. You should keep images
in a subdirectory with their links.

Display clear copyright messages on each document

Each document should contain an embedded (commented) copyright message that
clearly names the owner of the document and all its images. A similar copyright
message should also appear on each page. To make it easy to update the copyright
message, you may want to consider using an SSI directive as follows:

{!'—finclude file=/copyright.html" -->

Now, all you need to do is to create an HTML page called copyright.html, and
place it under your server’s document root directory. Because the content of this
HTML page is inserted in the SSI-enabled document that makes this call, you
should not use the <HTML>, <HEAD>, <TITLE>, or <BODY> tags in this document.
Using this SST call will make your life easier when you need to update the year

in the copyright message, or need to make another change.

Dynamic application development policy

Dynamic content is usually produced by CGI scripts or other applications that
implement CGI or some server-side interface. A vast majority of dynamic content
is produced using Perl-based CGI scripts. Because CGI scripts and applications
usually have a very short life span, many CGI developers do not devote the time
to producing a high-quality application.

If you plan to use FastCGI or mod_perl-based scripts and applications, it is impor-
tant that they be developed in a proper manner. You should consider the following
policies when implementing scripts and applications for your dynamic content.

Always use version control

CGI developers must use version control, which enables you to go back to an older
version of an application in case the newly developed and deployed version contains
a bug. On most Unix systems, you can use the Concurrent Versions System (CVS)
software to implement a version-controlled environment. You can find the latest
version of the CVS software at ftp://prep.ai.mit.edu.

Do not use absolute pathnames in CGI scripts or applications

No absolute pathnames should be used in CGI scripts. This ensures that the scripts
can be used on multiple Web sites without modification. If absolute pathnames are
required for a special purpose, a configuration file should be supplied for the script;
this way, the paths can be updated by modifying the textual configuration file.

Chapter 11 + Running Perfect Web Sites 315

Provide both user- and code-level documentation

Source code needs to be well-documented so future developers can update the
scripts without spending a lot of time trying to figure out how it works.

Avoid embedding HTML tags in scripts or applications

The output of CGI scripts should be template-driven. In other words, a CGI script
reads an output page template and replaces dynamic data fields (which can be
represented using custom tags). This makes output page updating easy for HTML
developers, because the HTML is not within the CGI script. In fact, CGI scripts
should contain as little HTML as possible.

Do not trust user input data

To reduce security risks, make sure that user input data is checked before it is used.
You can learn more about checking user input in Chapter 18, which discusses input-
related security risks and solutions in detail.

Avoid global variables in Perl-based CGl scripts

When developing CGI scripts in Perl, you should avoid global variables. Limiting the
scope of a variable is one way to eliminate unpredictable script behavior. Perl pro-
grammers should use the following for variable declarations:

my $variable;
instead of :

local $variable;
because the former creates a variable that is only available in the scope it is created.
The latter definition simply creates a local instance of a global variable, which creates

a great deal of confusion. Perl 6 will most likely rename the keyword ‘local’ to ‘temp’
to make this concept clearer for programmers.

Giving Your Web Site a User-Friendly
Interface

Using standard HTML and well-written CGI scripts/applications can certainly make
your Web site better than many of the sites that exist out there. However, there’s
another aspect of Web site design that you need to consider —the user interface.

Think of a Web site as an interactive application with a Graphical User Interface
(GUI) that is visible in a Web browser. The GUI needs to be user-friendly for people
to have a pleasant Web experience while they are visiting your Web site.

316

Part Il ¢ Web Site Administration

The key issues in developing a user-friendly GUI are discussed in this section.
Along with making your GUI user-friendly, you need to watch out for broken links
or requests for deleted files. Use your server error logs to detect these kinds of
problems. You should also have a way for visitors to give you feedback. Most sites
use a simple HTML form-based feedback CGI script. You can develop one that suits
your needs. Gathering feedback is a good way to learn what your visitors think
about your Web site.

Make your site easy to navigate

Users must be able to go from one page to another without pulling their hair out.
They should be able to locate buttons or menu bars that enable them to move back
and forth or jump to related information.

Many Web page designers argue that popular Web browsers already include a Back
and Next button, so having a Back or Next button on a page is redundant. Wrong!
Imagine that a user lands on one of your pages (other than the home page) from a
search engine’s output. The user simply searched for one or more keywords, and
the search engine provided a URL to a page on your site. The user is very interested
in knowing more about the topic on your site, so the user wants to start from the
beginning of the document — but there’s no way the user can do that, because the
browser’s Back button returns the user to the search engine output page!

Alas, if only this page had a link (or a button) to a previous page, the user could
have gone back to the last page easily. The Web page designers who don’t like the
extra buttons insist that the user should have simply manipulated the URL a bit to
go back to the home page and start from there. Well, this assumes that there is a
clear link to this page (that matched the search keyword) from the home page,
which is not always true.

It’s a good idea to implement a menu bar that enables the user to go back and forth,
and that also enables the user to jump to a related location, or even to a home page.

Create an appealing design

Think of Web sites as colorful and interactive presentations that are active 24 hours

a day. If the look and feel of this presentation is not just right, your visitors will click
away from your site(s). Consider the following guidelines for developing an appealing
site design.

Appropriate foreground and background colors

Make sure you don’t go overboard with your color choices. Use of extreme colors
makes your Web site appear unprofessional and dull. Be color-conscious and use an
appropriate coloring scheme. For example, if your Web site is about kids’ toys, it
should probably be a very colorful site. If your site is about Digital Signal Processor
benchmarks, however, you probably don’t need many bright colors or flashy
backgrounds.

Chapter 11 + Running Perfect Web Sites 3] 7/

Appropriate text size

Try to make your primary content appear in normal font. Use of a special font
through may make the page look good on
your Web browser (because you happen to have the font), but on someone else’s
browser, the page may look completely different and may be difficult to read. Also,
be careful with the size of the text; do not make it too large or too small. Remember
that if your visitors can’t read what you have to say on your Web page, they won’t
be able to like what you have to say.

Less use of images and animations

Beware unnecessary images. Images make your Web pages download more slowly.
Remember that not everyone is connecting to your site via an ADSL or ISDN line;
most people still use 56K or 28.8K modems for their Internet connection. A slow
page download could make a potential client click away from your pages.

Also, be cautious about using animations. Even the cutest animations become
boring after the first few visits, so make sure you are not overcrowding your pages
with them.

Remove cryptic error messages

Configure Apache with the ErrorDocument directive, so that users do not receive
server error messages that are difficult to understand (at least to the average user).
For example, when a requested URL is not found on the server, the server may dis-
play a cryptic error message. To make this error message friendlier, you can add an
ErrorDocument directive such as:

ErrorDocument 404 /sorry.html

in the httpd.conf file, so that the error message is easily understood by average
Web visitors.

Test your Web GUI

One of the best ways to test your Web interface is to use a system that resembles the
average Internet user’s computer, or perhaps your potential client’s computer. If you
think your clients will all have high-performance computers with fast connections,
you may not need to worry about using fewer graphics or client-side applications
such as Java applets and Shockwave animations.

In most cases, you do not know the potential client’s computer and network specifi-
cations, so you should go with the average user’s setup. Use a low-end Pentium
computer with 16MB of RAM and a 28.8K modem connection to test your Web site
from an ISP account. Try low monitor resolutions such as 640x480 or 800x600 pix-
els; if your target visitors use Web-TV systems, try a resolution of 550x400 pixels.

318 Partll + Web Site Administration

Tip

If you enjoyed looking through your Web site, others will probably enjoy it, too. On
the other hand, if you didn’t like what you saw, others probably won't like it either!

If you prefer, you can have a third party test your Web site. For example,

7 Netscape.com provides a Web-based, free tune-up service at http://

N

websitegarage.netscape.com. Netscape's back-end application can examine
any Web site for page download time, quality of the HTML, dead links, spelling
errors, HTML design quality, and link popularity. To try it out, just go to the preced-
ing Web site and enter your own Web site address and e-mail address and wait a
few seconds to a few minutes. You will get a free diagnosis of your Web site.

Promoting Your Web Site

What good is a perfect Web site if nobody knows about it? You should think about
promoting your Web site on the Web. You can hire advertising agencies to help you
in this regard, although advertising on the Web can be expensive. If your budget
gets in the way, you can do some promoting yourself. The following list gives you
some pointers to properly promote your site.

4+ Search engines: Before you do anything to promote your Web site, ask your-
self, “How do I find information on the Web?” The answer is: through search
engines. Is your company listed in the search engines? If not, this is the first
step in promoting your site.

Almost all search engines enable you to submit your URL to their search
robot’s database so that it can traverse your Web in the future. You should
make a list of search engines that you consider important, and submit your
Web site’s URL to these engines. This process can take days or weeks.

4 META tags: You can add META information in your content to help your URL
appear in a decent position when a potential customer does a search. For
example, you can add META information such as:

<META NAME="KEYWORD" CONTENT="keywordl keyword2 keyword3
"D

<META NAME="DESCRIPTION" CONTENT="Description of your
company">

4+ Link exchanges: To increase traffic, you can also participate in link exchanges
such as www. Tinkexchange. com. Link exchanges require that you put a special
set of HTML tags in your Web pages; these tags pull advertisement graphic
(banner ad) files into your pages. In return, your banner advertisement graph-
ics are also displayed in Web sites operated by others who agreed to show
someone else’s banner on their pages. This type of advertisement sharing is
quite popular among personal and small business sites.

Whether you buy advertisement space on high-profile Web sites such as
Yahoo, AltaVista, or Netscape, or you use the link exchange method, you
should periodically check your site’s standing in the search engines output by
generating search queries yourself.

+ + +

Running Web
Applications

The practice of serving static HTML pages is almost a
thing of the past. These days, most popular Web sites
have a great deal of dynamic content. People do not visit Web
sites that do not change frequently. Therefore, it is important
to know how to enable dynamic contents using CGI scripts,
Server Side Includes, FastCGI applications, PHP, mod_per]
scripts, and Java servlets. This part shows you how to use

all of these technologies with Apache.

11

YR TR SRS
In This Part

Chapter 12
Running CGlI Scripts

Chapter 13
Server Side Includes

(SSI)

Chapter 14
Configuring Apache
for FastCGl

Chapter 15
PHP and Apache

Chapter 16
Using Perl with
Apache

Chapter 17
Running Java Servlets
and JSP Pages with
Tomcat

¢+ 4+ o+

CHAPTER

Running
CGlI Scripts

¢+ 4+ o+

Dynamic contents drive the Web. Without dynamic,
personalizable contents the Web would be a “been
there, done that” type of place. After all, why would people
come again and again to see and experience the same old
contents over and over? The dynamic contents moved from
concept to reality with a lot of help from a specification called
the Common Gateway Interface (CGI). The CGI specification
tells a Web server how to interact with external application.
A Web server that runs CGI applications practically enables
anyone to run a selected list of programs on the server on
demand. This chapter discusses the basics of CGI to give you
a clear understanding of it, and the details of setting up
Apache to support CGI executions.

What Is CGI?

To provide dynamic, interactive contents on the Web, a lot
of popular Web sites use CGI applications. Chances are that
you have already used one or more CGI applications on the
Web. For example, when you fill out a Web form it is likely to
be processed by a CGI script written in Perl or some other
language.

Of course, as more and more Web technologies emerge,
new means of delivering dynamic contents over the Web
are becoming available. Most of these solutions are either
language specific, or operating system or commercial
software dependent. CGI, on the other hand, is a language-
independent gateway interface specification that can be
implemented using virtually any widely popular application
development language, including C, C++, Perl, shell scripting
languages, and Java.

This section gives you a look at how a CGI program works
(see Figure 12-1). The basic idea is that the Web server gets a
certain URL that magically — at least for now —tells the Web
server that it must run an external application called

In This Chapter

Understanding the
basics of the
Common Gateway
Interface

Configuring Apache
for CGlI

Providing cgi-bin
access for individual
users

Running commonly
used CGlI

applications

Configuring Apache
to debug CGlI
applications

I R

3272 Partlil + Running Web Applications

Internet >

GET /cgi-bin/helloworld.pl R
m I Apache Server <«

(2)

I helloworld.pi %)
(5)

HTTP Header (3)
N A 4

éontent—type: text/html

Content-type: text/html

Hello World Hello World

Figure 12-1: How a CGI program works.

helloworld.cgi. The Web server launches the application, waits for it to
complete, and returns output. Then, it transmits the application’s output to
the Web client on the other side.

What happens when you want the client to be capable of interacting with the
application? Well, input data from the client must be supplied to the application.
Similarly, when an application produces output, how does the server or client know
what type of output to return? A program can produce a text message, an HTML
form for further inputs, an image, and so on. As you can see, the output can vary a
lot from application to application, so there must be a way for applications to
inform the Web server and the client about the output type.

CGI defines a set of standard means for the server to pass client input to the
external applications, and it also defines how an external application can return
output. Any application that adheres to these defined standards can be labeled as a
CGI application/program/script. For simplicity, | use the term CGI program to mean
anything (such as a Perl script or a C program) that is CGl-specification compliant.
In the following section, I discuss how the CGI input/output process works.

CGI Input and Output

There are many ways a Web server can receive information from a client (such

as a Web browser). The HTTP protocol defines the way in which a Web server

and a client can exchange information. The most common methods of transmitting
request data to a Web server are GET requests and POST requests, which I describe
in the following sections.

Chapter 12 + Running CGI Scripts 33

GET requests

The GET request is the simplest method for sending HTTP request. Whenever you
enter a Web site address in your Web browser, it generates a GET request and sends
it to the intended Web server. For example, if you enter http: //www.hungryminds.
com in your Web browser, it sends an HTTP request such as the following:

GET /

to the www.hungryminds.com Web server. This GET request asks the Hungry Minds
Web server to return the top-level document of the Web document tree. This
document is often called the home page, and usually refers to the index.htm]

page in the top-level Web directory. Furthermore, HTTP enables you to encode
additional information in a GET request. For example:

http://www.mycompany.com/cgi-bin/search.cgi?books=cgi&author=kabir
Here, the GET request is:
GET www.mycompany.com/cgi-bin/search.cgi?books=cgi&author=kabir

This tells the server to execute the /cgi-bin/search.cgi CGI program and pass
to it the books=cgi and author=kabir input data.

When a CGl-compliant Web server such as Apache receives this type of request, it
follows the CGI specifications and passes the input data to the application (in this
case, the search.cgi in the cgi-bin directory). When a CGI resource is requested
via an HTTP GET request method, Apache:

1. Sets the environment variables for the CGI program, which includes storing
the HTTP request method name in an environment variable called
REQUEST_METHOD, and the data received from the client in an environment
variable called QUERY_STRING.

2. Executes the requested CGI program.
3. Waits for the program to complete and return output.

4. Parses the output of the CGI program if it is not a nonparsed header program.
(A nonparsed header CGI program creates its own HTTP headers so that the
server does not need to parse the headers.)

5. Creates necessary HTTP header(s).
6. Sends the headers and the output of the program to the requesting client.
Figure 12-2 illustrates this process.

Now let’s look at what a CGI program has to do to retrieve the input to use it for its
internal purposes.

324

Part Il 4 Running Web Applications

A GET R

/cgi-bin/search.cgi?book=cgi&author=kabir ~

Apache Server

Setup CGI Environment Variables

\

Execute CGI Program
/cgi-bin/search.cgi

\

CGI Program Complete?

\

Parse Output
(if not non-parsed CGl)

\

Create HTTP Header

\

Return Header & CGI Content

Figure 12-2: CGl server processing.

As Figure 12-3 shows, a CGI program

1. Reads the REQUEST_METHOD environment variable.

2. Determines whether the GET method is used or not by using the value stored

in the REQUEST_METHOD variable.

3. Retrieves the data stored in the QUERY_STRING environment variable, if the

GET method is used.
4. Decodes the data.

5. Processes the decoded data as it pleases.

6. Writes the Content-Type of the output to its standard output device (STDOUT)

after processing is complete.

7. Writes the output data to the STDOUT and exits.

The Web server reads the STDOUT of the application and parses it to locate the
Content-Type of the output. It then transmits appropriate HTTP headers and the
Content-Type before transmitting the output to the client. The CGI program is

exited and the entire CGI transaction is completed.

Chapter 12 + Running CGI Scripts 35

Figure 12-3: CGI program processing.
START g program p &
v

Read Environment Variable
REQUEST_METHOD

is
GET method

used?
Yes

Read Environment Variable
QUERY_STRING

v

Decode Data

v

Process

v

Output Content Type
to STDOUT

v

Output Contents
to STDOUT

v

Alote If a CGI program is to provide all of the necessary HTTP headers and Content-Type

~ information itself, its name has to be prefixed by nph (which stands for nonparsed
header). An nph CGI program’s output is not parsed by the server and transmitted
to the client directly; most CGI programs let the server write the HTTP header and
are, therefore, parsed header programs.

Using the GET request method to pass input data to a CGI program is limiting in
many ways, including these ways:

4 The total size of data that can be transmitted as part of a URL is limited by the
client’s URL-length limit. Many popular Web browsers have hard limits for the
length of a URL, and therefore, the total data that can be sent via an encoded
URL is quite limited. However, on occasion it might be a good idea to pass
data to CGI programs via a URL. For example, if you have an HTML form that
uses the GET method to send data to a CGI program, the submitted URL can
be bookmarked for later use without going through the data-entry form again.
This can be a user-friendly feature for database-query applications.

326

Part Il 4 Running Web Applications

4+ The length of the value of a single environment variable (QUERY_STRING) is
limiting. Many, if not all, operating systems have limits on the number of bytes
that an environment variable’s value can contain. This effectively limits the
total bytes that can be stored as input data.

These limits are probably not of concern for CGI programs that require little or no
user input. For programs that require a large amount of user input data, however,
another HTTP request method — POST —is more applicable. The POST request
method is discussed in the following section.

POST requests

The HTTP POST request method is widely used for passing data to CGI programs.
Typical use of this method can be found in the many HTML forms you fill out on the
Web. For example, Listing 12-1 shows one such form.

Listing 12-1: An HTML Form Using HTTP

POST Request Method
<HTML>
<HEAD>
KTITLE> Apache Server 2.0 - Chapter 12 Listing 12-1
</TITLE>
</HEAD>
<BODY>

<HI>Listing 12-1</HI>

<HZ2>An Example HTML Form Using the HTTP POST Request
Method</H2>

<HR>

<FORM ACTION="/cgi-bin/search.cgi" METHOD="POST">

<PRE>

Type of Book <INPUT TYPE="TEXT" NAME="book" SIZE="10"
MAXSIZE="20">

Author's Name <INPUT TYPE="TEXT" NAME="author" SIZE="10"
MAXSIZE="20">

</PRE>

<INPUT TYPE=SUBMIT VALUE="Search Now">

</FORM>

</BODY>
</HTML>

Notice that there is a <FORM> </FORM> section in the listing. An HTML form usually
has a starting <FORM> tag that defines the ACTION and the request METHOD for the

Chapter 12 4+ Running CGI Scripts 37/

form. In the example above, the action is the /cgi-bin/search.cgi CGI program
and the method is POST.

Following the starting <FORM> tag, there is usually one or more INPUT entity; INPUT
entities might include text input boxes, drop-down menus, and lists. In our example,
there are three input entities. The first one enables the user to enter a value for the
book variable. The next one is similar, enabling the user to enter a value for the
author variable. The third one is a bit special; it enables the user to submit the
form. When the user submits the form, the client software transmits a POST request
to the server for the ACTION (thatis, /c/s.d11/search.cgi) resource, and also
transmits the book=<user entered value> and author=<user entered value>
in an encoded format.

Comparing GET and POST

What is the difference between the GET and the POST requests? The P0STed
data does not get stored in the QUERY_STRING environment variable of a CGI
program. Instead, it is stored in the standard input (STDIN) of the CGI program.
The REQUEST_METHOD variable is set to POST, while the encoded data is stored
in the STDIN of the CGI program, and a new environment variable called
CONTENT_LENGTH is set to the number of bytes stored in the STDIN.

The CGI program must now check the value of the REQUEST_METHOD environment
variable. If it is set to POST for HTTP POST requests, the program should first deter-
mine the size of input data from the value of the CONTENT_LENGTH environment
variable and then read the data from the STDIN. Note that the Web server is not
responsible for inserting an End-of-File (EOF) marker in the STDIN, which is why the
CONTENT_LENGTH variable is set to the length of data, in bytes, making it easier for
the CGI program to determine the data’s total byte count.

It is possible to use GET and POST at the same time. Here is a sample HTML form
that officially uses the POST method, but also sneaks in a query string,
username=joe, as part of the CGI ACTION.

<FORM ACTION="/cgi-bin/edit.cgi?username=joe" METHOD=POST>
<INPUT TYPE=TEXT NAME="PhoneNumber">
</FORM>

In this sample, the username=joe query would be part of the URL, but the other
field (PhoneNumber) would be part of the POST data. The effect: The end-user can
bookmark the URL and always run the edit.cgi script as joe without setting
values for any of the other fields. This is great for online database applications and
search engines.

Whether you use GET, or POST, or both, the data is encoded and it is up to the CGI
program to decode it. The following section discusses what is involved in decoding
the encoded data.

328

Part

Il + Running Web Applications

Decoding input data

The original HTTP protocol designers planned for easy implementation of the
protocol on any system. In addition, they made the data-encoding scheme simple.

The scheme defines certain characters as special characters. For example, the equals
sign (=) facilitates the making of key=value pairs; the plus sign (+) replaces the space
character, and the ampersand character (&) separates two key=value pairs.

If the data itself contains characters with special meaning, you might wonder what
is transmitted. In this case, a three-character encoding scheme is used, which can
encode any character. A percent sign (%) indicates the beginning of an encoded
character sequence that consists of two hex digits.

Hex is a base 16 number system in which 0 to 9 represents the same value as the
decimal 0 to 9, but it also has an extra set of digits. Those are A (=10), B (=11), C
(=12), D (=14), and F (=15). For example, 20 in hex is equal to 32 in a decimal
system. The conversion scheme is:

20 = 2 x (1671) + 0 x (1670)

These two hex digits consist of the value that can be mapped into the ASCII (for
English language) table to get the character. For example, %20 (hex) is 32 (decimal)
and maps to the space character in the ASCII table.

Apache CGl Variables

Alote

There are two ways in which Apache can implement support for CGI. The standard
Apache distribution includes a CGI module that implements the traditional CGI
support; however, there is a new module (FastCGI) that implements support for
high-performance CGI applications. This section discusses the standard CGI
support issues.

In the previous sections, you learned that a CGl-compliant Web server uses
environment variables, standard input (STDIN) and standard output (STDOUT) to
transfer information to and from CGI programs. Apache provides a flexible set of
environment variables for the CGI program developers. Using these environment
variables, a CGI program not only retrieves input data, but also recognizes the type
of client and server it is dealing with.

In the following sections, I discuss the environment variables that are available
from the standard CGI module compiled into Apache.

The source distribution Apache 2.x.x version support --enable-cgid option for the

~ configure script. This option forces Apache to use a script server (called the CGI
daemon) to manage CGl script processes, which enhances Apache’s overall
performance.

Chapter 12 4+ Running CGI Scripts 309

Server variables

These variables are set by Apache to inform the CGI program about Apache. Using
server variables, a CGI program can determine various server-specific information,
such as a version of the Apache software, an administrator’s e-mail address, and
SO on.

SERVER_SOFTWARE
SERVER_SOFTWARE is set by Apache, and the value is usually in the following form:

Apache/Version (0S Info)

Here, Apache is the name of the server software running the CGI program, and the
version is the version number of the Apache. A sample value is:

Apache/2.0.14 (Unix)

This is useful when a CGI program is to take advantage of a new feature found in a
newer version of Apache, and still be capable of performing in older versions.

GATEWAY_INTERFACE tells the CGI program what version of CGI specification the
server currently supports. A sample value is:

CGI/1.1

A CGI program can determine the value of this variable and conditionally make use
of different features available in different versions of CGI specifications. For example,
if the value is CGI/1.0, the program may not use any CGI/1.1 features, or vice versa.

The first integer before the decimal point is called the major number, and the
integer after the decimal point is called the minor number. Because these two
integers are treated as separate numbers, CGl/2.2 is an older version than CGI/2.15.

SERVER_ADMIN

If you use the ServerAdmin directive in the httpd. conf file to set the e-mail
address of the site administrator, this variable will be set up to reflect that. Also,
note that if you have a ServerAdmin directive in a virtual host configuration
container, the SERVER_ADMIN variable is set to that address if the CGI program
being accessed is part of the virtual host.

DOCUMENT_ROOT

This variable is set to the value of the DocumentRoot directive of the Web site being
accessed.

330

Part Il 4 Running Web Applications

Client request variables

Apache creates a set of environment variables from the HTTP request header it
receives from a client requesting a CGI program. It provides this information to the
CGI program by creating the following set of environment variables.

SERVER_NAME

This variable tells a CGI program which host is being accessed. The value is either
an IP address or a fully qualified host name, as follows:

SERVER_NAME
SERVER_NAME

192.168.1.100
www.domain.com

HTTP_HOST
See SERVER_NAME variable.

HTTP_ACCEPT

This variable is set to the list of MIME types that the client is capable of accepting,
including these:

HTTP_ACCEPT = image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*

Here, the client claims to be capable of handling GIF, JPEG, PNG, and other images.
This enables the CGI program to determine what output will be ideal for the client.
For example, a CGI program could produce either GIF or JPEG and receive an
HTTP_ACCEPT as follows:

HTTP_ACCEPT = image/gif, */*
Then, it can send GIF output instead of JPEG because the client does not prefer it.
HTTP_ACCEPT_CHARSET
This variable specifies which character set is acceptable to the client, for example:
HTTP_ACCEPT_CHARSET = is0-8859-1,*,utf-8

HTTP_ACCEPT_ENCODING

This variable specifies which encoding schemas are acceptable to the client,
for example:

HTTP_ACCEPT_ENCOMDING = gzip

In this case, the client accepts gzip (compressed) files. Thus, a CGI script can
compress a large page by using gzip compression and send it, and the Web client
will be able to decompress it.

Chapter 12 4+ Running CGI Scripts 33]

HTTP_ACCEPT_LANGUAGE

This variable specifies which language is acceptable to the client, for example:
HTTP_ACCEPT_LANGUAGE = en

In this case, the client accepts en (English) language contents.

HTTP_USER_AGENT

This variable specifies what client software the requesting system is running and
what operating system it is running on, for example:

HTTP_USER_AGENT = Mozilla/4.04 [en] (WinNT; 1)
The preceding is equivalent to the following:

Client Software = Netscape Navigator ()
Client Software Version = 4.04 (English version)
Operating System = Windows NT (Intel)

Notice that Mozilla is a keyword used by Netscape for the Navigator code base.
Although exclusively only Netscape browsers used the word Mozilla, many other
vendors have started using Mozilla as part of the HTTP header. For example,
Microsoft Internet Explorer (IE) 5.5 produces the following HTTP_USER_AGENT data
when run from the same machine:

HTTP_USER_AGENT = Mozilla/5.5 (compatible; MSIE 5.5; Windows NT)

This user agent information is used heavily by many Web sites. A site that is
optimized for Netscape Navigator (that is, it uses a feature of HTML, or JavaScript,
or a plug-in, that works well in Netscape Navigator) might use the HTTP_USER_AGENT
information to return a different page for users surfing to the site with IE, or any of
the other less popular browsers. However, | recommend that you stick to standard
HTML (HTML specification for the current standard is available at www.w3.0rg),
and that you not implement browser-specific features at all. Although optimizing
your pages for a single browser might make them look cool on that browser, not
everybody is using that particular browser. This means that your browser-specific
HTML tags or plug-ins may make it harder for others (who do not use your preferred
browser) to visit your Web site.

HTTP_REFERER

This variable is set to the Uniform Resource Identifier (URI) that forwarded

the request to the CGI program being called. By using this variable, you can tell
whether a request is coming from a link on one of your Web pages or from a remote
URI Note that the misspelling of the variable name is unfortunate and often
confuses CGI developers who spell it correctly in their applications and scripts
just to discover that they do not work. So, if you plan to use this variable, spell it
as it is stated here.

332

Part Il 4 Running Web Applications

HTTP_CONNECTION

The HTTP_CONNECTION variable is set to the type of connection being used by the
client and the server. For example:

HTTP_CONNECTION = Keep-Alive

This states that the client is capable of handling persistent connections using
Keep-Alive and currently using it.

SERVER_PORT

The value of the SERVER_PORT variable tells a CGI program which server port is
currently being used to access the program. A sample of this is:

SERVER_PORT = 80

If a CGI program creates URLs that point back to the server, it might be useful to
include the port address, which is found as the value of this variable in the URL.

REMOTE_HOST

The REMOTE_HOST variable tells a CGI program about the IP address or IP name of
the client, as follows:

REMOTE_HOST = ds1-666.1isp24by7.net

Note that if the Apache server is compiled with the MINIMAL_DNS option, this vari-
able is not set.

REMOTE_PORT

This port number is used in the client-side of the socket connection:
REMOTE_PORT = 1163

[have not yet seen any use for this variable.

REMOTE_ADDR

The REMOTE_ADDR variable is the IP address of the client system:

REMOTE_ADDR = 192.168.1.100

Note that if the client is behind a firewall or a proxy server, the IP address stored in
this variable may not be the IP address of the client system.

REMOTE_USER

The REMOTE_USER variable will be set only when access to the CGI program requires
HTTP basic authentication. The username used in the basic authentication is stored

Chapter 12 + Running CGI Scripts 3373

in this variable for the CGI program. The CGI program, however, will have no way

of identifying the password used to access it. If this variable is set to a username,
the CGI program can safely assume that the user supplied the appropriate password
to access it.

SERVER_PROTOCOL

SERVER_PROTOCOL is the protocol and version number the client used to send the
request for the CGI program:

SERVER_PROTOCOL = HTTP/1.1

REQUEST_METHOD

The REQUEST_METHOD variable is set to the HTTP request method used by the client
to request the CGI program. The typical values are: GET, POST, and HEAD.

REQUEST_METHOD=GET

The input is stored in the QUERY_STRING variable when the request method is GET.
When the method is POST, the input is stored in the STDIN of the CGI program.

REQUEST_URI
The REQUEST_URT variable is set to the URI of the request.

REQUEST_URI = /cgi-bin/printenv?2

REMOTE_IDENT

REMOTE_IDENT will only be set if the IdentityCheck directive is set. This

variable stores the user identification information returned by the remote identd
(identification daemon).Because many systems do not run this type of daemon
process, REMOTE_IDENT should not be considered a reliable means for identifying
users. | recommend using this variable in an intranet or an extranet environment in
which you or your organization is running an identd server.

AUTH_TYPE

If a CGI program is stored in a section of the Web site where authentication is
required to gain access, this variable is set to specify the authentication method
used.

CONTENT_TYPE

This variable specifies the MIME type of any data attached to the request header.
For example:

CONTENT_TYPE = application/x-www-form-urlencoded

334

Part Il 4 Running Web Applications

When using HTML form and the POST request method, you can specify the content
type in the HTML form using the TYPE attribute of the <FORM> tag, as follows:

<FORM ACTION="/cgi-bin/search.cgi"
METHOD="POST"
TYPE= "application/x-www-form-urlencoded">

CONTENT_LENGTH

When HTTP POST request method is used, Apache stores input data (attached to
the request) in the STDIN of the CGI program. The server does not, however, insert
an End-of-File (EOF) marker in the STDIN. Instead, it sets the total byte count as the
value of this variable. For example, if

CONTENT_LENGTH = 21
then the CGI program in question should read 21 bytes of data from its STDIN.
SCRIPT_NAME
SCRIPT_NAME is the URI of the requested CGI program:

SCRIPT_NAME = /cgi-bin/search.cgi

SCRIPT_FILENAME

SCRIPT_FILENAME is the physical, fully qualified pathname of the requested CGI
program:

SCRIPT_FILENAME = /www/kabir/public/cgi-bin/search.cgi

QUERY_STRING

If a Web client such as a Web browser uses the HTTP GET request method and
provides input data after a question mark (?), the data is stored as the value of this
variable. For example, a request for the following CGI program:

http://apache.domain.com/cgi-bin/search.cgi?keyl=valuel&key?=value?2
will make Apache set:

QUERY_STRING = keyl=valuel&key2=value2

which the CGI program /cgi-bin/search.cgi can read and decode before use.

PATH_INFO

If input data for a CGI program is part of the URI, the extra path (which is really
some data for the program being called) is stored as the value of the variable.
For example:

//Note

Chapter 12 + Running CGl Scripts 335

http://apache.domain.com/cgi-bin/search.cgi/argumentl/argument?
will have Apache set:
PATH_INFO = /argumentl/argument?

PATH_INFO will not have anything that is part of the query string. In other words,
~ if the URl includes a query string after a ?, this part of the data will be stored in the
QUERY_STRING variable. For example:

http://apache.domain.com/cgi-
bin/search.cgi/CA/95825%book=apache&author=kabir

will have Apache set the following variables:

PATH_INFO = /CA/95825
QUERY_STRING= book=apache&author=kabir

PATH_TRANSLATED

This is the absolute path of the requested file. For example, when a Web client such
as a Web browser requests http://server/cgi-bin/script.cgi the actual path
of the script can be path_to_cgi_alias/script.cgi.

Configuring Apache for CGI

This section discusses how to configure Apache to process CGI requests. The
configuration process includes telling Apache where you store your CGI programs,
setting up CGI handlers for specific file extensions, and indicating which file
extensions should be considered CGI programs. It is a good idea to keep your CGI
programs in one central directory. This permits better control of your CGI programs.
Keeping CGI programs scattered all over the Web space might make such a Web site
unmanageable, and it could also create security holes that would be hard to track.

Aliasing your CGI program directory

Making a central CGI program directory is the first step in setting up a secured CGI
environment. It is best to keep this central CGI program directory outside of your
DocumentRoot directory so that CGI programs cannot be accessed directly by a
Web client such as a Web browser. Why? Well, when it comes to CGI programs, you
want to provide as little information as possible to the outside world. This will
ensure better security for your site(s). The less a hacker knows about where your
CGI programs are physically located, the less harm that person can do.

First you need to create a directory outside of your DocumentRoot directory. For
example, if /www/mycompany/public/htdocs is the DocumentRoot directory of a
Web site, then /www/mycompany/public/cgi-binis a good candidate for the CGI
program directory. To create the alias for your CGI program directory, you can use
the ScriptAlias directive.

3356

Part Il 4 Running Web Applications

If you are setting up CGI support for the primary Web server, edit the httpd.conf
file and insert a ScriptAlias line with the following syntax:

ScriptAlias /alias/ "/fully/qualified/path/to/cgi/scripts/dir/"
For example:
ScriptAlias /cgi-bin/ "/www/mycompany/public/cgi-bin/"

If you are setting up CGI support for a virtual site, add a ScriptATias line in the
<VirtualHost . . . > container that defines the virtual host. For example:

NameVirtualHost 192.168.1.100
<VirtualHost 192.168.1.100>

ServerName blackhole.domain.com
DocumentRoot "/www/blackhole/public/htdocs"”
ScriptAlias /apps/ "/www/blackhole/public/cgi-bin/"

</VirtualHost>

Here the /apps/ alias is used to create a CGI program directory alias. If there is a
CGI program called feedback.cgi in the /www/blackhole/public/cgi-bin
directory, it can only be accessed via the following URL:

http://blackhole.domain.com/apps/feedback.cgi

After you set up the ScriptAlias directive, make sure that the directory permission
permits Apache to read and execute files found in the directory.

The directory pointed to by ScriptAlias should have very strict permission
settings. No one but the CGI program developer or the server administrator should
have full (read, write, and execute) permission for the directory. You can define
multiple CGI program directory aliases so that the ScriptAlias specified directory
is not browseable (by default) for security reasons.

When requested, Apache will attempt to run any executable (file permission-wise)
file found in the ScriptAliased directory. For example:

http://blackhole.domain.com/apps/foo.cgi
http://blackhole.domain.com/apps/foo.pl

http://blackhole.domain.com/apps/foo.bak
http://blackhole.domain.com/apps/foo.dat

All of the above URL requests will prompt Apache to attempt running the various
foo files.

Chapter 12 4+ Running CGI Scripts 337/

Choosing specific CGl file extensions

[am not particularly fond of the idea that any file in the ScriptATlias-specified
directory can be run as a CGI program. I prefer a solution that enables me to
restrict the CGI program names such that only files with certain extensions are
treated like CGI programs. The following section discusses how you can implement
this using an Apache Handler found in mod_cgi module and contains a sample
configuration where [enable a select set of file extensions to be treated as CGI
programs by using the AddHand1er handler.

For this example, assume that the Apache server name is www.domain.com, and
that it’s DocumentRoot directory is set to /www/mysite/public/htdocs; the CGI
program directory is /www/nitec/public/cgi-bin. Notice that the CGI program
directory is kept outside of the DocumentRoot-specified directory intentionally.
This ensures that the directory cannot be browsed by anyone, as Apache can only
see it via the alias.

Follow these steps to set up Apache to run CGI scripts with given extension(s) to
run from a directory:

1. Disable any existing ScriptAlias directive by either removing it completely
from the httpd.conf, or turning it into a comment line by inserting a number
sign (#) as the first character in that line.

2. Create an alias for CGI program directory. There is no way to access the CGI
program directory without an alias (or a symbolic link), as it resides outside
the document tree. You can define an alias using the A1ias directive, which
has the following syntax:

Alias /alias/ "/path/to/cgi/dir/outside/doc/root/"
Following this syntax, the needed Alias directive looks like the following:
Alias /cgi-bin/ "/www/mysite/public/cgi-bin/"

3. Instruct Apache to execute CGI programs from this directory by defining a
<{Directory > container for this special directory. The directory container
definition that is needed to make it all happen (that is, to turn the directory
into a CGI program directory) is:

<{Directory "/path/to/cgi/dir/outside/doc/root">
Options ExecCGI -Indexes
AddHandler cgi-script extension-list
<{/Directory>

The Options directive sets two options for the /path/to/cgi/dir/outside/
doc/root directory. First, the ExecCGI option is set, which tells Apache to
permit CGI program execution from within this directory. Second, the - Indexes
option tells Apache to disallow directory listing since because it is not a good
idea to allow visitors to see the contents of your CGI script directory. Next the
AddHand1er directive sets the cgi-script handler for a list of file extensions
found in this directory. Any file with the named extensions in the list is treated

338 Partlil + Running Web Applications

as a CGI program. When a Web client makes a request for such a file, the
program is run and output is returned to the Web client. The actual directives
for our current example look as follows:

<Directory "/www/mysite/public/cgi-bin">
Options ExecCGI -Indexes
AddHandler cgi-script .cgi .pl
<{/Directory>

Here, you have enabled .cgi and .pl as CGI program extensions and,
therefore, when requests, such as these

http://www.domain.com/cgi-bin/anything.cgi
http://www.domain.com/cgi-bin/anything.p]l

are made, Apache will attempt to execute these files as CGI programs. Of
course, if these files are not really executables or non-existent, Apache will
display and log error messages.

The CGI program directory permission settings mentioned earlier still apply to this
configuration. The same configuration also applies to virtual host sites. For example,
in the following example the /cgi-bin/ alias for www.client01l.com is set up to
execute CGI programs in /www/cTient01/public/cgi-bin directory:

<VirtualHost 192.168.2.100>

ServerName www.clientOl.com
DocumentRoot "/www/clientOl/public/htdocs”

CustomlLog logs/www.clientOl.com.access.log
ErrorLog Tlogs/www.clientOl.com.errors.log

Alias /cgi-bin/ "/www/client0l/public/cgi-bin/"
<Directory "/www/clientOl/public/cgi-bin">
Options ExecCGI -Indexes
AddHandler cgi-script .cgi .pl
</Directory>

</VirtualHost>

Here the /cgi-bin/ alias for www.clientOl.comis set up to execute CGI
programs in /www/client01/public/cgi-bin directory.

Enabling cgi-bin access for your users

Many Internet Service Providers (ISP) offer Web site space with user accounts.
These Web sites usually have URLs, such as:

http://www.isp.net/~username

Chapter 12 4+ Running CGI Scripts 339

These sites often get requests for cgi-bin access from the users via their clients
(browsers). The term cgi-bin access is a general one that is used to indicate CGI
facility on a Web server. Traditionally, the CGI program directory has been aliased
as /cgi-bin/, hence, this term was created. The other common term that became
very popular is home page, which refers to the top-level index page of a Web
directory of a user.

The following sections discuss two ways to providing cgi-bin access for users on
an Apache Web server. You only need to implement any one of these methods.

Directory or DirectoryMatch containers

When the UserDir directive is set to a directory name, Apache considers it as the
top-level directory for a user Web site, for example:

ServerName www.domain.com
UserDir public_html

Now when a request for http://www.domain.com/~username comes, Apache
locates the named user’s home directory (usually by checking the /etc/passwd file
on Unix systems), and then appends the UserDir-specified directory to create the
pathname for the top-level user Web directory. For example, the URL

http://www.domain.com/~joe

makes Apache look for /home/joe/public_html (assuming /home/ joe is joe’s
home directory). If the directory exists, the index page for that directory will be
sent to the requesting client.

One way to add CGI support for each user is to add the following configuration in
the httpd. conf file:

<Directory ~ "/home/[a-z]+/public_html/cgi-bin">
Options ExecCGI
AddHandler cgi-script .cgi .pl

</Directory>

Or you can use this configuration:

<DirectoryMatch "/home/[a-z]+/public_html/cgi-bin">
Options ExecCGI
AddHandler cgi-script .cgi .pl

</DirectoryMatch>

In both methods, Apache translates
http://www.yourcompany.com/~username/cgi-bin/ requests to /home/
username/public_html/cgi-bin/ and permits any CGI program with the proper
extension (.cgi or .pl) to execute.

340

Part

v/LMe

Il + Running Web Applications

All usernames must be comprised of all lowercase characters for this to work. If

— you have usernames that are alphanumeric, you have to use a different regular
expression. For example, if you have user names such as steveO1 or steve02, you
need to change the [a-z]+ character set to include numbers using [a-z0-9]+,
or if you also allow upper case user names, than you use [a-zA-70-9]+ as the
regular expression.

ScriptAliasMatch

By using ScriptAliasMatch directive, you can support CGI program directories
for each user. For example:

ScriptAliasMatch *~([a-z]+)/cgi-bin/(.*)
/home/$1/public_html/cgi-bin/$2

matches username to back reference variable $1, where $1 is equal to ~username
and where username is a lower case string, such as joe or steven, and then
Apache matches everything followed by /cgi-bin/ to back reference variable $2.
Then, Apache uses $1 and $2 variables to create the actual CGI program path. For
example:

http://www.domain.com/~joe/cgi-bin/search.cgi?author=kabir

Here ([a-z]+) will map one or more lowercase characters following the tilde mark
(~) to $1. In other words, this regular expression enables us to capture everything
between the tilde (~) and the trailing forward slash (/) after the username. So, $1 is
set to joe for the above example. Note that the * ensures that the directive is only
applied to URLSs that starts with ~, as shown in the above example.

The next regular expression in the directive is (. *), which maps everything following
the /cgi-bin/ to $2.So, $2 is set to search.cgi?author=kabir.

Now Apache can create the physical path of the CGI program directory by using:
/home/$1/public_html/cgi-bin/$2

This regular expression results in the following path for the previous example:
/home/joe/public_html/cgi-bin/search.cgi?author=kabir

Because this is where the CGI program search.cgi is kept, it executes and returns
output to the Web client.

If you are not fond of having the CGI program directory under public_html (that
is, the UserDir-specified directory), you can keep it outside of that directory by
removing the public_html part of the expression as follows:

ScriptAliasMatch *~([a-z]+)/cgi-bin/(.*) /home/$1/cgi-bin/$2

Chapter 12 4+ Running CGI Scripts 34]

This will map the following example URL request:
http://www.domain.com/~joe/cgi-bin/search.cgi?author=kabir

to the following physical file:
/home/joe/cgi-bin/search.cgi?author=kabir

Of course, if you are not fond of keeping a user subdirectory world-readable (that
is, public_html), you can remedy this by creating a Web partition (or a directory)
for your users and giving them individual directories to host their home pages.
Here is an example:

ScriptAliasMatch ~~([a-z]+)/cgi-bin/(.*) /www/$1/cgi-bin/$2

This matches requests to /www/username/cgi-bin/scriptname and since
because this directory is not in the user’s home directory (/home/username),
you might be able to exercise better control over it as a system administrator.

Creating new CGI extensions by using AddType

If you want to create new CGI program extensions in a particular directory, you can
also use the .htaccess (or the file specified by the AccessFileName directive).

Before you can add new extensions using the per-directory access control file
(.htaccess), you have to create a <Directory> container as follows:

<Directory "/path/to/your/directory">
Options ExecCGI -Indexes
AllowQOverride Filelnfo
</Directory>

The first directive inside the directory container tells Apache that you want to
enable CGI program execution in this directory and disables the directory-listing
feature for security. The second directive tells Apache to enable the Filelnfo
feature in the per-directory access control file (. htaccess). This feature enables
you to use the AddType directive in the per-directory access control file.

To add a new CGI program extension (.wizard), all you need to do is create an
.htaccess (or whatever you specified in AccessFileName directive) file in the
directory with the following:

AddType application/x-httpd-cgi .wizard

Then, rename an existing CGI program in that directory to have the .wizard
extension, and request it via your browser. Make sure all of the file permission
settings for the directory and the CGI programs are set to read and execute
by Apache.

342

Part Il 4 Running Web Applications

Running CGI Programs

Chances are that if you are an Apache administrator, you will have to set up CGI
programs, or you may even know how to write them. In this section, I discuss
the basics for creating very simple CGI programs. Because this is a not a CGI
programming book, I do not provide in-depth coverage of CGI programming.
My focus is on revealing things about CGI programs that will help an Apache
administrator manage his or her CGl-capable Web sites better.

Many of the examples in this section use Perl. If you do not have Perl on your
system, you can obtain the source, or possibly the binaries, from www.perl.com.
Whenever possible, it is good to compile binaries for a system rather than trusting
binaries that have been created by someone else.

Writing CGI Scripts in Perl

CGI scripting is synonymous to Perl scripting; in my humble opinion, Perl is the king
of all scripting languages, and it was Perl that popularized CGI scripting became
widely popular due to Perl. As a yet another Perl hacker, | have written Perl-based
CGI scripts since 1995, and I still continue to use Perl for small- to mid -range Web
solutions. Because this is a not a Perl programming book, I do not cover how to
write Perl scripts in general. Instead, [will discuss how you can write CGI scripts in
Perl. If you are not familiar with Perl, I recommend that you read a Perl programming
book as soon as possible.

When writing CGI scripts in Perl, the following set of guidelines or programming
style should be followed. They are as follows:

4 Separate contents and logic — keep contents out of scripts. Use HTML or
XML templates to ensure that the interface aspect of your CGI script is not in
the scripts themselves. This will make ensure that a nonprogrammer user,
such as a graphics or HTML expert, can change the interface easily.

4 Use configuration files—never hardcode customizable information in a
script. Use a configuration file to read in the information. This will allow your
scripts to be more flexible.

4+ Normalize user data— when collecting data from users for future use, make
sure you normalize the data before storing in files or database. For exam-
ple, if you collect e-mail addresses from your visitors, it would be a good idea
to normalize each e-mail address in a preferred case (upper or lower) and fix
user omissions and data entry errors. [have seen make instances of where
AOL users writing their e-mail addresses in Web forms without the .com or
putting extra spaces between the @ and the name or the host name. I have
also seen thousands of instances where users enter their name in either upper
case or lower case. Just think of the impression it will leave on them when you
customize a newsletter using an un-normalized name (which the user himself

Tip

Alote

Tip

Chapter 12 4+ Running CGI Scripts

entered in your Web form) or how many bounces you will get when your mail-
ing list system finds thousands of “@AOL” or “user @ aol” type of data errors.

4 Sanity check user data— CGI scripts are often the target of many security
attacks. If your CGI script accepts user input make sure you validate user data
before making use of it.

Before you start reinventing the wheel, check the Comprehensive Perl Archive
~,_ Network (CPAN) site at http://cpan.perl.com for existing Perl modules that
A you can use to solve your current problem or to reduce your development efforts
by reusing existing CPAN modules. In this section, | use many CPAN modules for
building CGI scripts. Whenever you see a module listed in any of the scripts
discussed here, you can add the module to your system using the CPAN module
that is shipped with standard Perl.

[\

Apache for Windows users should consult Perl documentation for how to use
~~ CPAN modules because it differs from the standard approach discussed here. See
also the Windows-specific section of this book for details.

For example, say that you see a script list a module called HTML: : Template and
would like to install this module so that you can run the script that uses it. To install
the CPAN module, run per1 -MCPAN -e shell from the command prompt as root.

If you are running the per1 -MCPAN -e shell command for the first time you will

~ be asked to configure the current CPAN.pm module, which is used to install other
CPAN modules. Simply follow the instructions and prompts to configure the
CPAN.pm module and then proceed to the discussion below.

After you are at the CPAN prompt, run the install HTML::Template command to
install the module. The CPAN module will install this module for you. If it complains
about a dependency, you might have to install some other modules before you can

install a module that depends on other CPAN modules. After you're done, run quit

from the CPAN prompt to return to shell.

If you do not want to run the interactive CPAN shell using per1 -MCPAN -e shell
~, toinstall a module, you can run perl -MCPAN -e 'CPAN::Shell->install
A (modulename)' instead. For example, perl -MCPAN -e shell 'CPAN::
Shell->install(HTML::Template) " will install the HTML::Template module.
You can also run this command from a shell script.

N

Analyzing a simple CGI script

CGI scripts are typically used to take user input and perform one or more operations
based on the input and return results in a HTML page. In this section I show you how
to create a simple script to get started and to understand CGI scripting concepts.
The script that we will develop here will perform a single task: it will take a user’s full
name, format it properly, and return a personalized greeting message. Listing 12-2
shows greetings.pl script that does exactly that.

343

344 Partlll + Running Web Applications

Listing 12-2: greetings.pl

#!/usr/bin/perl

i

it

i Name: greetings.pl
i

Purpose:

it

Show a greeting message

1
B 5 8 5 B S S S S S S S S 5 5 5

use strict;
use CGI;

1

Get user data

1

my $query = new CGI;

my $name = $query->param('name');

i#

J# Process data

#

$name = Tc($name);
my @strArray = ();

foreach my $str (split(/ /,$name)) {
push(@strArray, ucfirst($str));
1

my $formattedName = join(' ', @strArray);

1

Display results

i

print $query->header;

print $query->start_html('Greetings');

print $query->p('Hello ' . $formattedName . ',');
print $query->p('Thanks for coming to our Web site.');
print $query->end_html;

1

Terminate

1

exit 0;

Chapter 12 4+ Running CGI Scripts

Now, lets take a close look at this script. The very first line is a special line:
#1/usr/bin/per]

This line tells the system to run Perl whenever executing this script. If you have
installed Perl in a non-standard directory, then you must modify this line accordingly.
For example, if you installed Perl in /usr/1ocal/bin/per]l, then you must change
this line to reflect that. All the lines (other than the very first one) that start with a ‘#
sign are a commented out and ignored by Perl.

The next code segment is:

use strict;
use CGI;

The use strict is a Perl pragma (think of pragma as a directive), which tells Perl
to evaluate the script for unsafe programming habits. The next line tells Perl to load
a popular module that is now part of the standard Perl distribution, module called
CGI.pm, which makes writing CGI programs very easy. This modules handles all the
underlying details of getting input data that are passed onto the script via STDIN
by the Apache server, parsing and decoding input fields, providing methods for
displaying content headers, creating HTML contents, and so on. It is simply the
super -CGI module available to you. No one should write CGI scripts in Perl without
the CGI.pm module. The only exception to that rule is if you have a resource
constraint and don’t want to load a large module each time a script is called. But in
most cases, this is not an issue, especially since because I do not recommend CGI
solutions for high -volume Web sites.

The next code segment is:

my $query = new CGI;
my $name = $query->param('name');

Here a new CGI object called $query is created and the param() method of the
$query CGI object is called to get the value for the user input 'name'. The value for
this input is stored in $name variable. For example, if the greetings.pl script is
called as follows:

http://www.domain.com/cgi-bin/greetings.pl?name=kabir

Then the CGI object will receive the name=kabir as a user input from the Apache
server and the script will be able to access the value ('kabir") via $query->
param('name') method call, as it does in this script.

The next code segment is the meat of the script; it is the processing block as shown
below:

Tc($name);
()

$name
my @strArray

foreach my $str (split(/ /,$name)) {

345

346

Part Il 4 Running Web Applications

push(@strArray, ucfirst($str));
}

my $formattedName = join(' ', @strArray);

Here the $name variable is processed. The first line uses Perl’s built-in 1c () function,
which lowercases a given string. Because 1c () is given the $name string as the
parameter, it returns a lowercase value of the name, which we store back in the
name variable $name. We lowercase the name so that we can uppercase only the
first letter of each name. Now a user named Carol Godsave might enter many
different combinations of her name. For example:

Carol Godsave
CAROL GODSAVE
carol godsave
carol GODSAVE
cAROL godSave
carol GoDsAVE

As you can see the user can enter one of these or many other combinations of
letters to represent her name. However, we would want to display “Carol Godsave”
since because that’s the proper formatting for her name. So our processing code
block uses the following algorithm:

1. Lower case the name. This effectively turns whatever Carol entered for her
name into 'carol godsave'.

2. Split each word separated by a space character. This gives us are 'carol’
and 'godsave'.

3. Uppercase only the first letter of each part. This gives us 'Carol' and
'Godsave'.

4. Put together the parts by separating them with a space character. This
returns 'Carol Godsave', which is exactly what we want.

In this code segment we use an array called @strArray, which we initialize to
empty the list. Then a foreach loop is used to cycle through the each part of the
name that is split using the sp1it () function found in Perl. The sp1it() is called
with two parameters: separator, which in this case is a white space character
written in regular expression format / /, and the string that needs to be separated,
which in this case is $name. The sp1it() function returns the separated parts in an
array. So, effectively, in Carol’s case the foreach loop looks like:

foreach my $str ('carol' 'godsave') ({
push(@strArray, ucfirst($str));
}

The loop cycles through each part and uppercases only the first character of each
part using the built-in ucfirst() function call. When ucfirst() is given a string
parameter, it uppercases only the first character and returns the modified string. For
example ucfirst('carol") willreturn 'Carol'; similarly, ucfirst('godsave"')

Chapter 12 4+ Running CGI Scripts

returns 'Godsave'. Each of the modified name parts is stored in an array called
@strArray. For example, after processing Carol’s name, the @strArrayisarray =
('Carol', 'Godsave').Finally, we join each part of the name in a new variable
called $formattedName to form the complete name. The built-in join () function is
used to join each element of the @strArray by a white space character in the
join(' ', @strArray) call. Now we have a formatted name in $ formattedName
variable and simply need to display it.

The display code segment is:

print $query->header;

print $query->start_html('Greetings');

print $query->p('Hello ' . $formattedName . ',');
print $query->p('Thanks for coming to our Web site.');
print $query->end_html;

The very first line in this segment sets the content header. A Content-Type header
is required. To determine how to display the contents sent by the server, the client
uses this header. Because a CGI script generates the contents, it must tell the
server what type of contents it is passing to the server for delivery to the client.
The CGI module provides a method called header (), which creates the appropriate
Content-Type header. For example, $query->header; returns Content-Type:
text/html; charset=1S0-8859-1. When the header () is called without a
specific type parameter, it defaults to text/htm] Content-Type. However, if your
script needed to output a different type, say text/plain, you can use the
header(-type => 'text/plain') parameter instead. For example:

#1/usr/bin/per]

use CGI;

my $query = new CGI;

print $query->header(-type=>'image/gif');
open(GIF, "/tmp/weather.gif");

while(<GIF>){ print; }
close(GIF);

This little script displays a GIF file called /tmp/weather.gif using the Content-
Type: image/gif header. Now back to the greetings.p]l script. After displaying
the default content header, the script users CGI module’s HTML methods, such as
start_html (), p(),and end_html (), to create the HTML content. For example,
say that Carol enters the following URL:

http://server/cgi-bin/greetings.pl?name=carol godsave

Her Web browser will automatically encode the space between carol and godsave
into %20 (a hex number 20, which is equivalent to decimal 32, which is the ASCII

347

348 Partlil + Running Web Applications

space character). A good thing about a CGI module is that it takes cares of decoding
this and gives the script 'carol godsave' as the name. The script displays a page
as shown in Figure 12-4.

Hello Carcl Godsave,

Thanks for coming to our Web site.

Figure 12-4: Output of greetings.pl script.

The p () method creates an HTML paragraph tag pair, which is used to sandwich
the parameter it receives. For example, the first p() call:

print $query->p('Hello . $formattedName . ',');

translates into:
<p>Hello Carol Godsave,</p>
The entire output document that is sent to the Web browser looks like this:

<?xml version="1.0" encoding="utf-8"7>

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
"http://www.w3.0rg/TR/xhtml-basic/xhtml-basicl0.dtd">

<html xmins="http://www.w3.0rg/1999/xhtml"
lang="en-US">

<head>
<title>Greetings</title>

<{/head>

<body>

<p>Hello Carol Godsave,</p>
<p>Thanks for coming to our Web site.</p>

</body></htm1>
The start_html () method produces the following contents:

<?xml version="1.0" encoding="utf-8"7>

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
"http://www.w3.0rg/TR/xhtml-basic/xhtml-basicl0.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtm1"
lang="en-US">

<head>

Chapter 12 4+ Running CGI Scripts 349

<title>Greetings</title>
</head>
<body>

Notice the title 'Greetings' that was passed onto the method. The two p ()
methods produces the following:

<p>Hello Carol Godsave,</p>
<p>Thanks for coming to our Web site.</p>

And finally, the end_htm1 () method produces the following:
</body></htm1>
which ends the HTML document.

Careful readers will notice that we have violated the first CGI programming style
guide, which states that we should separate contents and logic. This little script
has HTML inside the script, which makes it harder to modify for a non-programmer.
But this script was meant as a mere exercise. In the following section, I look at a
useful, production-grade script that conforms to the style guidelines.

Creating a basic Web form processor

Most common CGI scripts are used as the back-end of a Web form. Virtually, every
Web site has a Web form that takes user input and stores it in a file or database. In
the following section, I present a very customizable CGI script that can work with
virtually any single-page Web form.

Features of a basic Web form processing CGI script

Say that your Web site will have one or more Web forms that need to collect data
from Web visitors to store in files or databases. One CGI script-based solution,
which has the following features:

4 Supports multiple Web forms: A single script will work for multiple, single -
page Web forms. A single -page Web form asks all its questions in a page.
There are times when you will be asked to build a multi-page Web form,
which falls into the category of custom form -processing applications.

Such form-processing applications usually use custom business logic to
display multiple forms and are beyond the scope of this book. My personal
recommendation, based on years of Web development, is to avoid multipage
Web forms because people often become discouraged when asked to answer
a long series of questions. Also, when designing a single-page Web form, do
not ask too many questions. Keeping the data collection to a minimum is good
practice when generating new leads. Experience tells me that new prospects
and leads are turned off by a huge form or by a multi-page form session, and
often decide to forget about doing business with the site all together.

350

Part Il 4 Running Web Applications

4 Centralized configuration for all Web forms: The script uses a configuration
file, which supports multiple Web forms. Each Web form configuration can be
separately stored in this standard configuration file, which means you can
centralize your form configuration information — a very good thing for a busy
system administrator.

4+ Comma Separated Value (CSV) files for data storage: The script allows you
to save data in CSV files. Each form can have its own CSV file. You can also
specify the order of fields and which fields you want to store.

To make learning about this CGI script simpler and more realistic, [will assume
that you have a User Registration Web form called register.html as shown in
Listing 12-3.

Listing 12-3: register.html

<html>
<body bgcolor="white">
User Registration Form

<p>
<form action="/cgi-bin/formwizard.pl" method="POST">

<table border=0
cellpadding=3
cellspacing=0
bgcolor="4000000">

<tr>

<td>

<table border=0
cellpadding=5
cellspacing=5
bgcolor="4#abcdef">

<tr>

<td> Name </td>

<td> <input name="name" type=text size=30 maxsize=50> </td>
</tr>

<trd>

<td> Email </td>

<td> <input name="email" type=text size=30 maxsize=50> </td>
</Er>

<trd>
<td> Zipcode</td>
<td> <input name="zipcode" type=text size=30 maxsize=50> </td>

Chapter 12 4+ Running CGI Scripts

</t

<tr>

<td> Can we send you junk mail?</td>

<td>

<input type=radio name="opt-in" value="yes">Yes, Please!
<input type=radio name="opt-in" value="no">No, Never!
</td>

</tr>

<tr>

<td align=center> <input type=submit value="Register Me"</td>
<td align=center> <input type=reset> </td>

<Jtr>

</table>
</td>
</t
</table>
</form>
<p>

</html1>

This Web form looks as shown in Figure 12-5.

User Registration Form

Marme Imuhammed kabir
Email |mrkablr@hotmall.com
Ziprode |95833

Can we send you junk mail? " Yes, Please! & No, Mever!

Register Me Reset |

Figure 12-5: The register.html form in
a Web browser.

This example Web form has four data fields: name, email, zipcode and an opt-in

question. This is a typical user registration form except that most sites will not ask
the opt-in question as (honestly) posed in this form. When a user fills out this form,
the data has to be stored in a file, and the user is displayed a thank you message or

taken to a new page. For example, when the above form is filled out, it can show a
thank you message as shown in Figure 12-6.

351

357 Partlil + Running Web Applications

User Registration Complete

Iohammed Eabir,

Thank you for taking the time to register. We will send you information
wia mrkabir@hotmail com
Feturn |

Figure 12-6: Thank you message for filling out register.html.

Developing a Web form processor CGI script in Perl

Now let’s develop a CGI script in Perl that enables you to create a Web form-
processing solution as shown in the example in the last section. Figure 12-7
shows the flow diagram of such a CGI solution.

When this script is called as the form action in register.html, as shown here:
<form action="/cgi-bin/formwizard.pl" method="POST">
This script performs the following tasks:

1. Loads all external standard (i.e. part of standard Perl distribution) and other
CPAN modules

2. Loads the central configuration file, which should have a configuration
specific to the Web form that posted data to it.

3. Creates a CGI object that enables it to retrieve posted data and to access
other information supplied by the Web server.

4. Determines if the Web form that activated the script has a configuration in
the central configuration file. If it does not, then it simply displays an error
message stating that this form cannot be processed by this script. If it does
have a configuration, it starts form processing.

5. As the first processing step, the script validates the user data. This step
involves checking data validity based on the requirements stated in the
configuration file and performing sanity checks on data fields supplied by
the user.

6. If the validation step returns no errors, the data is stored in a data file. On the
other hand, if the data validation step fails because of user error(s), then an
error message specific to the type of error(s) is displayed and processing is
aborted.

7. If the previous step is successful, the script displays a thank you message or
redirects the user to another URL and terminates.

On the_h‘\ The formwizard.pl script is included in the CDROM.

Load all external standard
and CPAN modules

v

Load configuration for the
Web form

v

Create a CGl object

v

Web form No
configuration ——— > Show error message
found?
Yes
Invalid data

Validate user data

v

Store data

v

Show
Thank You

page?

Disk

LI Redirect to another URL

Yes

Display Thank You
message

Figure 12-7: CGl Web form-processing diagram.

Looking at formwizard.pl

Chapter 12 4+ Running CGI Scripts

The formwizard.pl script implements this flow diagram. In the formwizard.ini
configuration file, the register.html fields have these restrictions:

4 The name field is required and set to be from 3 to 50 characters in length.
The field value must be composed of characters ranging from a- to z and the

period. If the field value passes the length

and pattern tests, it is stored as a

string in which each word starts with a capital letter.

4 The ema il field is also required and it must be between 6 and 100 characters.
Acceptable characters for an e-mail address are ato z, 0 to 9, dash (-),
underscore (), period. and the AT (@) symbol. The email pattern test is
applied to the value of this field and if all (length, character set, and pattern)
tests are passed by the value, it is stored in lowercase format.

353

354 Partlil + Running Web Applications

4+ The zipcode field is treated as an optional number field, which must pass the
us_zipcode pattern test if the user enters a value. The us_zipcode pattern
test simply checks whether the entered number is either a five-digit number
or a five-digit number with a four-digit number to form zip codes such as
95825-1234. The only characters allowed are 0 to 9 and the dash.

4 Finally, the opt-in field is considered a required text field that can only have
avalueof 'yes' or 'no’'.

Listing 12-4: formwizard.ini Configuration File

1

Web Form Configuration for *** register.html *** form

i
o

[register.html]
template_dir = /www/asb2/chl2/forms/register

fbom
After the form is processed, the script must acknowledge to

the user that the system received the data. This is done

using a "Thank You" (called thankyou hereafter)

message.

i

Set the name of the thank you template here

b oo
thankyou_template = thanks.htm]l

b
If you wish to redirect the user to another URL,

set the URL here. Do not set this to any URL

if you wish to show the thankyou message instead

i

If the URL is set, it is always used instead of

showing the thankyou message.

thankyou_redirect_url = /asb2/chl2/forms/feedback.html

e TR TR
The script will either show the thankyou message or

redirect the user to another URL.

If you wish to send data to the redirect URL via GET method

set this to 'yes'; otherwise, set it to 'no'.

L SR R R T LR R LR

send_data_on_redirect = no

b oo
Having a specific 1ist of form fields
ensures that we only use what we need.
We will ignore any additional field(s)

Chapter 12 + Running CGl Scripts 355

a bad guy might submit.

form_field_info=<<{FORM_FIELDS
name,text,required,max_chars=50,min_chars=3,case=ucfirst,exclude_regex=["a-z
.1,pattern=none
email,text,required,max=100,min=6,case=Towerall,exclude_regex=["a-z0-9-
_.\@],pattern=email
zipcode,number,optional,pattern=us_zipcode,exclude_regex=["0-9-]
opt-in,text,required,case=Tower,pattern=none,valid_data=yes|no

FORM_FIELDS

b
When data entry error(s) occur, a pop-up message is displayed.
The message lists the field(s) that are missing or invalid.

1

You can personalize the ACTION of the message. In other words,
enter text tells the user to

make corrections and resubmit.
b
data_error_msg = Please enter missing data and resubmit.

1

Specify the

data_directory=/tmp
data_filename=registration.csv
data_field_separator=,
data_field_order=email,name,zipcode,opt-in

Analyzing formwizard.ini

Now, let’s look more closely at this script so that you can configure it for your
specific needs.

The very first line is a special line:
#1/usr/bin/per]

This line tells the system to run Perl whenever the system executes this script.
If you have installed Perl in a nonstandard directory, then you must change this
accordingly. For example, if you installed Perl in /usr/Tocal/bin/perT, then
change this line to reflect that.

The next block of code segment is:

use strict;

use Config::IniFiles;

use File::Basename;

use HTML::Template;

use Fcntl qw(:DEFAULT :flock);
use CGI;

356

Part Il 4 Running Web Applications

This loads all the necessary standard and CPAN modules. The CPAN modules used
by this script are Config::IniFiles, HTML: :Template, and CGI. The CGI module
is actually now shipped as a standard Perl module, but you must install the other
two using the CPAN module. Here are two quick commands that will install these
modules for you from a root shell:

perl -MCPAN -e 'CPAN::Shell->install('Config::IniFiles")
perl -MCPAN -e 'CPAN::Shell->install('HTML::Template")

You can also run
perl -MCPAN -e 'CPAN::Shell->install('CGI")
to make sure your CGI.pm module is the latest version from the CPAN network.
The next code segment is
my $cfg

my $query
my $formName

new Config::IniFiles -file => "formwizard.ini";
new CGI;
get_form_name($ENV{HTTP_REFERER});

This segment creates a configuration object called $cfg, which loads the
formwizard.ini file. The formwizard.ini file is the central configuration file for
this script and it must reside in the same directory as the CGI script, formwizard.pT,
does. If you wish to keep it in a different directory than the CGI script itself, you need
to change the path. For example, to store the configuration file in a directory called
/www/myscripts/conf, modify the script as follows:

my $cfg = new Config::IniFiles
-file => "/www/myscripts/conf/formwizard.ini";

Ensure that Apache user (that is, the user used for the User directive in the
httpd.conf file) can read the configuration file. The CGI object the script creates
is called $query. Next, the script calls a subroutine called get_form_name() to get
the name of the Web form that called it. The subroutine is:

sub get_form_name {
my $referrer = shift;

If the HTTP referrer has a query string in it
return only the non-query string part of it
#1'#1“ ($referrer =~ /\?/) |

($referrer, undef) = split(/\?/,$referrer);
}

return basename($referrer);

Chapter 12 4+ Running CGI Scripts 357

This subroutine is passed from the CGI environment variable HTTP_REFERER when
called. This variable is set to the URL, which called the script. For example, if the
register.html] form can is accessed from an URL such as http://rhat.nitec.
com/asb2/chl2/forms/register.html, then when it is submitted to the
/c/s.d11/formwizard.pl script, the CGI object $query sets up HTTP_REFERER
tobe http://rhat.nitec.com/asb2/chl2/forms/register.html. The
get_form_name() code returns the 'register.html' portion of the URL.

The script then stores the Web form name in a global variable called $ formName.

The next code segment is:

my $templateDir = $cfg->val($formName, '"template_dir');
my @fieldInfo = $cfg->val($formName, 'form_field_info');

This segment passes the Web form name to the configuration object as a section
name and retrieves configuration information for the current Web form’s template
directory and form field information. The information is stored in $templateDir and
@fieldInfo arrays, respectively. The configuration file example, formwizard.ini, is
shown in Listing 12-4, which shows a sample configuration for a Web form called
register.html. The configuration file format is quite simple:

[sectionl]

keyl value
key?2 value
key3 value

keyd = <KMULTIPLE_VALUES
valuel
value?
value3

QéiueN
MULTIPLE_VALUES

l.<é>./N = value
[section?]

This type of configuration file is common in the Windows world and is typically
referred as the “ini” file. Hence, the module we used here is called Config:IniFiles.
In our example formwizard.ini file, the section name is really the name of the Web
form register.html. The $templateDir variable and the @f ieTdInfo array are set
from these configuration lines:

[register.html]
template_dir = /www/asb2/chl2/forms/register
form_field_info=<<FORM_FIELDS

name,text,required,max_chars=50,min_chars=3,case=ucfirst,exclude_
regex=["a-z .],pattern=none

358

Part Il 4 Running Web Applications

email,text,required,max=100,min=6,case=lowerall,exclude_regex=
[*a-z0-9-_.\@],pattern=email
zipcode,number,optional,pattern=us_zipcode,exclude_regex=["0-9-]
opt-in,text,required,case=lower,pattern=none,valid_data=yes|no
FORM_FIELDS

The template_dir line in the configuration file is set to a directory in which the
HTML template(s) for this Web form (register.html) are kept. In the current
version of the script, the only template we use is the HTML template for the thank
you page, so it is kept in this directory.

The form_field_info configuration is an extended version of the key=value pair
concept. Here a single key, form_field_info, has many values. The values are the
lines between the FORM_FIELDS strings. Each value line has multiple fields. For
example:

name,text,required,max_chars=50,min_chars=3,case=ucfirst,exclude_regex=["a-z .],
pattern=none

Here the form field name is found in register.html as shown here:
<input name="name" type=text size=30 maxsize=50>

To control user input, the script uses a set of parameters per input field. The
parameters are discussed in Table 12-1. Each parameter is separated with comma
and stored in the configuration file as follows:

form_field_info=<<FORM_FIELDS

fieldnamel,parameterl,parameter2,parameter3, ..., parameterN
fieldname2,parameterl,parameter2,parameter3, ..., parameterN
fieldname3,parameterl,parameter?2,parameter3d,..., parameterN
f1 é] dnameN,parameterl,parameter?2,parameter3, ..., parameterN

FORM_FIELDS

Table 12-1
User Input Control Parameters in Configuration Files
Parameter Example Explanation
Text, name,text This parameter states that the named

field is a string of character.

Number zipcode,number This parameter states that the named
field is a number.

required, name, required This parameter states that the named field
is a required input field. If this field is
missing a value, or if the value is invalid,
an error message needs to be displayed
and form processing must abort.

Chapter 12 4+ Running CGI Scripts

Parameter

Example

Explanation

Optional

Max_chars=n

Min_chars=n,

case=ucfirst |
upper | Tower |
lTcfirst

exclude_regex=
[character set]

zipcode,optional

name,max_chars=50

name,min_chars=3,

name,case=ucfirst

name,exclude_
regex=["a-z .]

The name field value
must be composed of
the characters a to z or
the period. No other
characters are allowed.

This parameter states that the named
field is an optional input field. If this field
is missing, form processing still continues.

Maximum number of characters allowed
for the named input field. If the user
enters more than the specified number of
characters, an error message is displayed.

Minimum number of characters allowed
for the named input field. If the user
enters less than the specified number of
characters, an error message is displayed.

Before storing the named input field the
script formats the field using the specified
function. For example:

ucfirst: Formats the value of the form
field to have only the first character in
upper case. This is useful when storing
name.

upper: Formats the value of the form
field to be all upper case.

Tower: Formats the value of the form
field to be all lower case.

1cfirst: Formats the value of the form
field to have only the first character in
lowercase.

The only characters that are allowed to
be the value of the named form field.
Everything else is excluded.

An error message is generated when
the value contains excluded characters.

Continued

359

360

Part Il 4 Running Web Applications

Table 12-1 (Continued)

Parameter Example Explanation
pattern=none email,pattern= The pattern parameter specifies a
email special pattern to be considered for the
named form field. If the field value does
The e-mail pattern not correspond to the specified pattern,
specifies that the value it is rejected and an error message is
of the named field generated.
(email) is checked
for a valid e-mail Supported patterns are: none, email,
address. us_zipcode,and Targe_plain_
text.

You can add a new pattern-

checking subroutine called sub
check_newpattern { # your
checking code } to the script to
support new patterns for other types of

form fields.
valid_data= opt-in,valid_ This parameter is used for text fields
valuel|value2 data=yes|no that can only have one of the

specified values, which are separated
Here the opt-1n field by a | character.
can only have a value
of 'yes' or 'no"'.

After the form field information is loaded in @f ieldInfo array, the next code segment,
as shown below, checks whether the configuration file has a template directory (that
is, value for $templateDir variable), or whether the @f ieTdInfo array is empty.

if ($templateDir eq "' || $#fieldInfo < 1) {

print $query->header;

print alert("Sorry, $formName is not managed by this script.");
exit 0;

}

These tests are done to determine whether the current form is configured in the
formwizard.ini file. If it is not configured, the script returns an error message
stating that the named form is not managed by the script and terminates the
program. If the Web form is configured properly in formwizard.ini file, then
the script continues to the next code segment:

my @errors = validate_data(\@fieldInfo);
if ($#errors >= 0) {
print $query->header;
print alert(join('\\n',@errors) . "\\n\\n'

Chapter 12 4+ Running CGI Scripts 36 |

$cfg->val($formName, 'data_error_msg'));
exit 0;
}

Here the script calls the validate_data() subroutine, which is passed the
@fieldInfo array reference to verify that the entered user data has no errors. This
subroutine does the following:

1. It loops through each form field specific information found in the @fieldInfo
array (which is passed to the subroutine as a reference) and retrieves the field
name, field type, field requirements, and so on.

2. For each form field it retrieves the value from the $query object using the
$query->param($fieldname) method. The value is stored in $value variable.

3. If the field is required and the value is empty, an error message is stored in the
@errors array, and the loop continues with the next field. If the field is optional
and the user has entered no value, the loop continues to the next field.

4. When there is a value (for a required or an optional field), the
check_data_field() subroutine is called to verify that the value meets the
field requirements stated in the configuration file.

5. If the field value passes the validation checks performed by the check _data_
field() subroutine, the case of the value is changed per configuration
requirements. In other words, the value is either uppercased, lowercased, or
mixed case and stored in the CGI object using the $query->param() method.
The check_data_field() routine returns a list of errors (if any).

6. If errors are returned by the check_data_field() subroutine, the script
displays an error message using the alert () subroutine and aborts. On the
other hand, if there is no error to report, the script continues to write data to
disk using the write_data() subroutine. The write_data() uses the data
filename from the configuration file. The fully qualified data file path is based
on the configuration parameters data_directory and data_filename.

This routine writes user-entered, case-modified data in the order given in the
data_field_order configuration parameter using the field separator named
indata_field separator parameter. Note that the data file is opened for
append mode only and that it is exclusively locked during the write operation
so that no other copies of formwizard.pl have access to it during this
critical period.

7. Then the script uses the thankyou_redirect_url configuration option found
in formwizard.ini to determine whether the user should be redirected to
another URL or a thank you message should be displayed to the user. If the
thankyou_redirect_url is not empty in the configuration file, the script uses
the redirect_data() subroutine to redirect the user to the named URL. The
redirect_data() subroutine packs all the form fields as key=value pairs in
the URL and redirects the user’s Web browser to the URL. For example, if the
register.html is filled out with name=mohammed kabir, zipcode=95833,
email=MRKABIR@hotmail.com,and opt-in=yes, and if the thankyou_
redirect_urlissettohttp://www.domain.com/friends.pl, then the
redirect_data() subroutine redirects the Web browser to:

362

Part Il 4 Running Web Applications

http://www.domain.com/friends.pl?name=Mohammed%20Kabir&zipcode=
95833&email=mrkabir@hotmail.com&opt-in=yes

This allows the remote site to receive the cleaned-up user data via the HTTP
GET method. Note that if you simply want to redirect the user to another page
and not submit the data via GET, set the send_data_on_redirect parameter
in the configuration file to no.

. If the thankyou_redirect_url is not set, the script loads the thank you

template filename from the configuration file using the thankyou_template
configuration parameter. This template is assumed to be in the template
directory pointed to by the template_dir configuration parameter. The
script uses the show_thanks () subroutine to display the thank you page.
The show_thanks () subroutine personalizes the thank you by replacing
special tags with user-entered (yet cleaned-up) data field values. This is done
by creating an instance of the HTML: : Template object, which is initialized
with the template page pointed to by the thankyou_template parameter.
The HTML: : Template object called $template usesits $template->param()
method to replace special tags with a $query->Vars () method created hash.

Finally, the output of the script is displayed and script terminates.

The thank you template used in this example is shown in Listing 12-5.

Listing 12-5: thankyou.html Page

<htm1>

<body bgcolor="white">

{font face="Arial" size=+1>User Registration Complete

<p>

<form action="<TMPL_VAR name=REFERRER>" method="GET">

<table border=0

<tr>
<td>

cellpadding=3
cellspacing=0
bgcolor="#000000">

<table border=0

<tr>
<td>

cellpadding=5
cellspacing=5
bgcolor="#abcdef">

<TMPL_VAR NAME=name>, <p>

Chapter 12 4+ Running CGI Scripts

Thank you for taking the time to register. We will send you information via
<TMPL_VAR NAME=email>.

</td>

<Jtr>

<tr>
<td align=center> <input type=submit value="Return"</td>
</tr>

</table>

<Jtd>
</t
<{/table>
</form>
<p>

</html>

Notice the <TMPL_VAR NAME=name> and the <TMPL_VAR NAME=email> tags in this
HTML template. These two tags are replaced with the user-entered name and ema il
field values. Remember that during the data validation, the script updates the case
for the user-entered fields so that the actual value displayed is well formatted,
which is great when displaying information back to the user. Thus, the user can
enter carol godsave in the name field but the thank you page will show Carol
Godsave, which should make the user happier than if it were to show data as is.
Here is an example data file after four register.html form submissions.

kabir@domain.com,Mohammed J. Kabir,12345,n0
carol@domain.com,Carol Godsave,95833,yes
joegunchy007@aol.com,Joe Gunchy,07024,yes
jennygunchy007@aol.com,Jennifer Gunchy,07024,n0

Managing a Web form with formwizard.ini

As you can see in the previous section, the formwizard.pl script, which uses

the formwizard.ini configuration file, is very configurable and enables you to
manage many single-page Web forms by using a single script and a single central
configuration file. To manage new Web forms, simply copy the configuration file
for register.html and create a new section in the formwizard.ini file. Here are
the steps you need to take to manage a Web form called feedback.html by using
this script.

1. Create a new section called [feedback.html] in the formwizard.ini file
as follows:

[register.html]
template_dir = /path/to/feedback/template/dir

363

364

Part Il 4 Running Web Applications

Tip

thanks.html
no

thankyou_template
send_data_on_redirect

form_field_info=<<FORM_FIELDS
i

insert field info here

#
FORM_FIELDS

data_error_msg = Please enter missing data and resubmit.

data_directory=/feedback/data/directory
data_filename=feedback.csv

data_field_separator=,

data_field_order=comma separated field 1ist goes here

Make necessary changes by looking at the [register.html] section.

2. Change the feedback form’s action line to

<form action="/c/s.d11/formwizard.pl" method="POST">

3. Create the thanks.html template in the directory specified by
template_dir parameter in the [feedback.html] section. This template file
should use <TMPL_VAR name=fieldname> tags to personalize the thank you
message.

That’s all there is to managing a new Web form with formwizard.pl. Web

form management is a big part of the CGI workload for most Web sites, and the
formwizard.pl script helps you to centralize the Web form management, making
it easy for you to support the forms.

While | was developing the script, | gave it to many people to try. They constantly

», found new features and cool tweaks for this script. | have created a SourceForge

L\

project site for all the CGl scripts that | have released under GNU Public License
(GPL), so you should be able to obtain the latest version of this script at any time
at https://sourceforge.net/projects/mkweb/.[MJIKI]

Creating a send-page-by-e-mail script

Many popular Web sites have a feature that enables a visitor to send the Web

page to a friend or colleague via e-mail. This type of feature allows the Web site to
increase traffic to the site and is often labeled as a great viral marketing tool by the
marketing department. In this section, [show you how you can add a CGI script

to your Web site that will enable your visitors to send any of your Web pages to
someone else via e-mail. First, let’s look at how this works.

A user can enter a friend or colleague’s e-mail address and click on the send button
to send this Web page to someone who might be interested in looking at it. The
actual HTML contents of the page are unimportant; what is important is the little
embedded HTML form shown here:

Chapter 12 + Running CGI Scripts 365

<form action="/cgi-bin/mime-mail.pl" method="P0OST">

<input type=text name="name" value="your-name" size=12
maxsize=50>

<input type=text name="email" value="friend-email" size=12
maxsize=100>

<input type=submit value="Send">

</form>

When the user enters his or her name and a friend or colleague’s e-mail address
and clicks Send, the /c/s.d11/mime-mail.p]l script is called, which is shown in
Listing 12-6.

Listing 12-6: /cgi-bin/mime-mail.pl

#!/usr/bin/perl -w

Name: mime-mail.p]
Purpose:
Sends the referrer page via email

1
5 S S S S S S S S 5 5

use strict;

use CGI;

use MIME::Lite;

use MIME::Lite::HTML;
use Config::IniFiles;
use File::Basename;

i

Create a CGI object
it

my $query = new CGI;
it

Create a configuration object by loading the mime-mail.ini
file from the physical directory pointed by /cgi-bin/

it

my $cfg = new Config::IniFiles -file => "mime-mail.ini";
i

Get the referrer URL

it

Continued

366 Partlll + Running Web Applications

Listing 12-6 (Continued)
my $referrerURL = $ENV{HTTP_REFERER};
1

Get the referrer page name from the referrer
information
my $pageName = get_form_name($referrerURL);

1

Print content type header to be text/html
i

print $query->header;

i

1f the referrer page does not have a [section] in

the mime-mail.ini file, then use default section

$pageName = 'defaults' if ($cfg->val($pageName, 'from') eq '');

i

Get the e-mail address. If no e-mail address is supplied,

show error message

1

my $to = ($query->param('email’) eq
! check_email($query->param('email'), 'email')) ?
abort('Email address is missing.') : $query->param('email');

my $senderName = ($query->param('name') eq "') ?
abort('Your name is missing.') : $query->param('name’);

$senderName = format_name($senderName);

i

Create a MIME::Lite::HTML object and initialize
it with referrer, an

my $mailHTML = new MIME::Lite::HTML

From => $senderName . '<' .
$cfg->val($pageName, 'from') . '>',
To => $to,

Subject => $cfg->val($pageName, 'subject');

1

Parse the referrer URL and create a MIME mail object

#
my $MIMEmail = $mailHTML->parse($referrerURL);

i
Send the MIME mail

it
$MIMEmail->send;

Chapter 12 4+ Running CGI Scripts

1
Check error string for errors

1

my @errors = $mailHTML->errstr;

1
If no error found, tell the user that page was
sent to her friend; otherwise, show error message

1
if ($fferrors > -1) {
print abort('Error(s) found: ' . join('\\n', @errors));
} else {
print abort("Page sent to $to.\\nThank you.");
}

1

Terminate

exit 0;

sub abort {

Print javascript abort message

print sprintf("<script>alert('%s"');history.go(-1);
{/script>",shift);

exit 0;
}

sub get_form_name {
my $referrer = shift;

If the HTTP referrer has a query string in it
return only the nonquery string part of it
?f ($referrer =~ /\?/) {

($referrer, undef) = split(/\?/,$referrer);
}

return basename($referrer);

}
sub format_name {
my @str = ();

foreach my $part (split(/\s/,shift)) {
push(@str, ucfirst(lc($part)));
}

Continued

367

368 Partlil + Running Web Applications

Listing 12-6 (Continued)

return join(' ',@str);
}

sub check_email {
my $email = shift;
my $fieldName = shift;

Special note

This e-mail checker routine might return false (0)

for some rarely used RFC-compliant e-mail addresses

that are not common. For example, bob&sandra@domain.com
will fail. If you wish to allow such "technically" valid
e-mails, you must modify the regular expressions used

in this routine.

Untaint e-mail address
$email =~ /(\SH)\@([\w.-1+)/;
$email = $1 . '@ . $2;

Store untainted value in query object
$query->param($fieldName, $email);

Split the user@host e-mail into user and host
my ($user, $host) = split(/@/, $email);

Return false if host part does not have
hostname.domain.tld or domain.tld format

3
return ($host !~ /(~[a-z0-9._-1+\.[a-z]{2,3})%/i) 2 0 : 1;

Here’s what’s going on in this script:

4 The script creates a CGI object called $query and loads the mime-mail.ini
configuration file in another object called $cfg. It then stores the HTTP
referrer information in a variable called $referrerURL and uses the
get_form_name() subroutine to determine the name of the page that called
this script. The name of the page is stored in $pageName variable.

4 The default content header (text/html) is printed using the $query->header
method. It then checks whether there is a configuration section for the named
page. It uses $cfg->val($pageName, 'from') method to locate a parameter
called 'from' inthemime-mail.ini configuration file. This parameter must
be set in the appropriate section for the page. Following is a sample
mime-mail.ini configuration file.

Chapter 12 4+ Running CGI Scripts 369

[default]
subject = A Web page forwarded by a friend
from = webmaster@domain.com

[mybooks.html]
subject = Check out Kabir's Tinux books!
From = webmaster@domain.com

For example, if the CGI script was called from a URL such as http://www.
domain.com/mybooks.html, then the script will set the $pageName to
'mybooks.html" and look for the ' from' parameter in the [mybooks.htm1]
section using the $cfg->val($pageName, 'from') method call. If the
parameter is missing because it is not set or because the section is missing,
than it sets the $pageName to 'default', which allows it to use the parame-
ters from the [default] section. Thus, having a [default] section is a good
idea if you do not wish to define a separate section for each page on which
you show the send-page-by-e-mail form.

4 Next the script determines whether the user has entered an e-mail address,
and if the user has, whether the e-mail address is in the user@host format.
If the e-mail is missing or invalid, an error message is displayed and the script
terminates using the abort () subroutine. If the e-mail address is accepted, it
checks whether the user has entered his or her name in the name field of the
Web form. If the name is missing, it aborts.

4 If both e-mail address and name are accepted, the script formats the user’s
name using the format_name () subroutine and creates the MIME: : Lite::
HTML object. This object is initialized with From, To, and Subject information.
The From address is composed of the user’s name and an e-mail address read
from the configuration file. For example, if a user named John Olson fills out
the send-page-by-e-mail form on the http://www.domain.com/mybooks.htm]l
page, the script will create the From header as John 0lson <webmaster@
domain.com>. The user’s e-mail address is used in the name to tell the friend
or colleague who is receiving the e-mail about the person who initiated the
e-mail. Had we collected the user’s e-mail address as well, we could have used
it to set the From header. But collecting both the user’s e-mail and the friend’s
e-mail address in two small text boxes might become too confusing without
appropriate labels, which would take away from your page’s real estate; thus,
such a scheme is avoided.

4 The $maiTHTML object is then used to parse the referrer URL. At this stage,
the CGI script actually acts an embedded Web client and retrieves the
referrer Web page and creates the necessary MIME contents needed to send
the e-mail. The $mailHTML->send method is used to send the e-mail. The
$mailHTML->errstr method is used to detect errors and to store them in
@errors. If there are no errors, the script displays a page sent message and
terminates; if there are errors, it shows an error message and terminates.

370 Partlll + Running Web Applications

Enabling CGI Debugging Support in Apache

To help CGI developers, Apache has logs for CGI output. For each CGI program
error, the log file contains a few lines of log entries. The first two lines contain the
time of the request, the request URI, the HTTP status, the CGI program name, and
so on. If the CGI program cannot be run, two additional lines contain information
about the error. Alternatively, if the error is the result of the script returning
incorrect header information, the information is logged in as: all HTTP request
headers, all headers outputted by CGI program, and STDOUT and STDIN of the CGI
program. If the script failed to output anything, the STDOUT will not be included.

To log CGI output in Apache, use the directives described in the following sections in
the mod_cgi module, which is part of standard distribution. With these directives
you can set up the logging of CGI programs that you are developing or attempting to
install on your system.

ScriptLog

The ScriptlLog directive sets the log filename for CGI program errors. If the log
filename is relative (that is, it does not start with a leading /), it is taken to be
relative to the server root directory set by ServerRoot directive.

Syntax: Scriptlog filename
Context: Resource config

Caution When you use this directive, make sure that the log directory is writeable by the
user specified by UserD1i r directive. Using this directive on a daily basis might not

be a good idea as far as efficiency or performance goes. | recommend using it
when needed and turning it off when the debugging is completed.

ScriptLogLength

The ScriptlLoglength directive limits the size of the log file specified by the
Scriptlog directive. The script log file can log a lot of information per CGI error
and, therefore, can grow rapidly. By using this directive, you can limit the log size
so that when the file is at the maximum length, no more information will be logged.

Syntax: ScriptlLoglength size
Default: ScriptlLoglength 10385760

Context: Resource config

Chapter 12 4+ Running CGI Scripts 37/ |

ScriptLogBuffer

The ScriptLogBuffer directive limits the size of POST or PUT data that is logged.

Syntax: ScriptlLogBuffer size
Default: ScriptLogBuffer size 1024

Context: Resource config

Debugging Your Perl-Based CGI Scripts

If you use Perl-based CGI scripts, as discussed earlier in this chapter, you have lot
more help in troubleshooting your CGI scripts than just what Apache offers as CGI
logs. You can debug a Perl-based CGI script from the command line by using the
famous CGI.pm module. Or, you can write debug messages to the standard error log
(STDERR) file, which Apache automatically redirects to the Apache error log. I will
discuss these techniques in the following sections.

Debugging from the command line

If you use the famous CGI module, as I did in all of the practical CGI scripts discussed
in this chapter, you are in luck. The CGI module enables you to troubleshoot your CGI
script from the command line, which makes it really convenient to debug a script.
Let’s look at an example CGI script called badcalc.pl, which is shown Listing 12-7.

Listing 12-7: badcalc.pl
#!/usr/bin/perl -w

use CGI;

my $query = new CGI;

my $numl
my $num?2

$query->param('numl');
$query->param('num2');

my $sum = $numl + num2;
#fprint $query->header;
print "$numl + $num2 = $sum";

exit 0;

372

Part Il 4 Running Web Applications

When this script is accessed via a URL such as http://www.domain.com/cgi-bin/
notready.pl, it returns an internal server error message and logs an error message
in the server’s error log file. You want to know why this small script does not work.
Here is a typical debugging session.

1. Enable command-line debugging for the CGI module by changing the use CGI
line to:

Use CGI qw(-debug);
This enables the command-line debugging for the module.

2. As root, su to the Apache user (that is, the user you set the User directive
to) and run the script from the command line. You will see this message:

(offline mode: enter name=value pairs on standard input)
and the script will wait for your input.

3. In command-line mode, enter key=value pairs in each line to simulate input
from the Web. For example, to feed the above script, an example command-line
session would look similar to this:

(offline mode: enter name=value pairs on standard input)
numl=100
num2=200

The preceding sets the numl input field to 100 and the num?Z input field to
200. Each field is set to a value in its own line.

4. When you are done entering all input, press Ctrl+D to terminate the input part
of the debugging and watch what the script does. The complete debugging
session for the above input is shown here:

(offline mode: enter name=value pairs on standard input)
numl=100

num2=200

[control+d]

100 + 200 = 100

As you can see, the script added the two numbers and printed the data as
expected. So why did this script bomb when run from the Web? Well, do you
see any Content-Type header before the output? No. If you look at the script
you will notice that the print $query->header; line is commented out. If you
remove the comment and rerun the script in command-line mode, you will see
the following:

(offline mode: enter name=value pairs on standard input)
numl=100

num2=200

Content-Type: text/html; charset=IS0-8859-1

100 + 200 = 100

Chapter 12 4+ Running CGI Scripts

373

Debugging by using logging and debug printing
This type of command-line debugging is very useful for small, less-complex scripts,
but if you have a fairly large script, such as the formwizard.pl, command-line

debugging is too cumbersome. In such a case, you need to use a combination of
logging and debug printing. Here is an example script, called calc.pl, that uses

logging and debug printing:
!/usr/bin/perl -w
use CGI qw(-debug);

use constant DEBUG => 1;

my $query = new CGI;
my $numl = $query->param('numl');
my $num2 = $query->param('num2');

print $query->header;
if ($numl == $num2)

do something useful
DEBUG and print STDERR

} elsif ($numl > $num2) {

do something useful
DEBUG and print STDERR

}oelsif ($numl < $num2) |

do something useful
DEBUG and print STDERR

}

print
print
print
print
print

$query->p("Number 1:
$query->p("Number 2:
$query->end_html;

exit 0;

"numl and num?2 are same.\n";
",

"numl is greater than num2.\n

"numl is less than num2\n";

$query->start_html('Calculator');
$query->h1("Calculator");

$numl");
$num2") ;

When this script is called from a URL such as http://www.domain.com/cgi-bin/
calc.pl?numl=100&num2=300, it prints information in the standard error log for
that site. For the above-mentioned URL, the entry in the error log will similar to this:

[Tue Mar 20 20:04:26 20017 [error] [client 207.183.233.19] numl is less than

num2

374

Part Il 4 Running Web Applications

The following statement prints this error message:
DEBUG and print STDERR "numl is less than num2\n";

The interesting thing about this line is that it uses a constant called DEBUG, which is
set in the beginning of the script with this line:

use constant DEBUG => 1;
The logic in the DEBUG and print statement follows:

4+ When DEBUG is set to 1 or to any nonzero number it is the equivalent of the
"true' value obtained when DEBUG is used in a logical operation.

4 The built-in print function always returns a nonzero value when it is successful
in printing.

4 So, when Perl evaluates DEBUG and print, it executes the print statement.

4 When DEBUG is set to 0, the DEBUG and print statement does not execute.

This enables you to insert print statements that can be part of your code but that
can be turned off when you are done debugging. Notice that the print statement
writes to STDERR, which always writes the data to the error logs for the Web site.

To turn off these statements, you simply set the DEBUG constant to 0. Now, some
might argue that you should completely remove these statements from your script
when you are ready to hand the script to production. The reasoning behind such an
argument is that Perl still evaluates these DEBUG statements even though they do
not print anything, thereby slowing down the script. The truth is that in a CGI
solution, the speed difference might not matter because CGI scripts already have

a heavier overhead than does a mod_per1 or other persistent solution. But if you
are concerned, then remove the DEBUG statements before sending the script to
production.

Debugging with CGl::Debug

Now let’s take a look at another debugging solution. You can get a great deal of
help in debugging your CGI script using the CGI: : Debug module. Simply add this
module right after the use CGI; statement in your script, and you will be able to
catch all types of errors. For example:

V/usr/bin/perl -w
use CGI;
use CGI::Debug;

my $query = new CGI;

Chapter 12 + Running CGl Scripts 37/ 5

my $numl = $query->param('numl');
my $num2 = $query->param('num2');

f#fprint $query->header;

print $query->start_html('Calculator');
print $query->hl1("Calculator");

print $query->p("Number 1: $numl");
print $query->p("Number 2: $num2");
print $query->end_html;

exit 0;

[intentionally commented out the $query->header line, which would normally
generate an internal server error message on the Web browser. But because |
added the use CGI::Debug; statement in this script, the script will show the
following when it is accessed as http://www.domain.com/c/s.d11/cgidebug.
pl?2numl=1&num2=200:

/cgi-bin/cgidebug.pl
Malformed header!

--- Program output below -----------------------
<?xml version="1.0" encoding="utf-8"7?>
<IDOCTYPE html

PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"

"http://www.w3.0rg/TR/xhtml-basic/xhtml-basicl0.dtd">

<html xmins="http://www.w3.0rg/1999/xhtml" Tang="en-
US"><head><title>Calculator</title>
</head><body><h1>Calculator</h1><p>Number 1: 1</p><p>Number 2:
200</p></body></html1>

This program finished in 0.078 seconds.

Parameters

S S
< <
3 3
N —
o
w
—
N
O
o

[

DOCUMENT_ROOT = 15[/home/kabir/www]

376

Part Il 4 Running Web Applications

GATEWAY_INTERFACE
HTTP_ACCEPT
applical...
HTTP_ACCEPT_ENCODING
HTTP_ACCEPT_LANGUAGE
HTTP_CONNECTION
HTTP_HOST
HTTP_USER_AGENT

PATH

60[/usr/bin:/bin:/usr

QUERY_STRING
REMOTE_ADDR
REMOTE_PORT
REQUEST_METHOD
REQUEST_URI
SCRIPT_FILENAME
SCRIPT_NAME
SERVER_ADDR
SERVER_ADMIN
SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL
SERVER_SIGNATURE
80</ADD]. ..
SERVER_SOFTWARE

<EOF>

7[CGI/1.1]
133[image/gif, image/x-xbitmap, image/jpeg, image/pjpegq,

13[gzip, deflatel]

5len-us]

10[Keep-Alive]

14[rhat.nitec.com]

50[Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)]

/sbin:/sbin:/usr/X11R6/bin:/home/kabir/bin]

15[numl=1&num2=2001]

14[207.183.233.19]

4[2841]

3[GET]
36[/cgi-bin/cgidebug.pl?numl=1&num2=200]
37[/home/kabir/www/asb2/chl2/cgidebug.pl]
20[/cgi-bin/cgidebug.pl]
14[207.183.233.20]

16[you@your.address]

14[rhat.nitec.com]

2[801]

8[HTTP/1.1]

66 <ADDRESS>Apache/2.0.14 Server at rhat.nitec.com Port

20[Apache/2.0.14 (Unix)]

As you can see, there is a ton of information that will help you to troubleshoot the
problem and to fix the script quickly. For example, one line in the preceding program
output states that the header is malformed.

+ o+ 4

CHAPTER

Server Side
Includes (SSI)

+ 0+ o+

In This Chapter

In Chapter 12, I discuss how dynamic Web content can be lSJir:icielr:LT:gézg SEET

created using CGI programs; however, there are tasks that
might not call for the development of full-blown CGI programs

but that still require some dynamic intervention. Sefting up Apache

for Server Side

For example, say you want to add a standard copyright Includes

message to all your HTML pages; how would you implement

this? Well, you have two solutions: Applying Server Side

Includes in Web

4 Add the content of the copyright message to each pages
HTML page.
+ + + +
4 Write a CGI program that adds the message to each
HTML page.

Neither of these options is elegant. The first option requires
that anytime that you make a change to the copyright message,
you manually update all your files. The second option requires
that you have some way to get your CGI program running be-
fore each page is sent to the Web browser. This also means that
every link on each page has to call this CGI program so that it
can append the message to the next page. Situations like these
demand a simpler solution. Server Side Include (SSI), the topic
of this chapter, is that simpler solution.

What Is a Server Side Include?

Typically, an SSI page is an HTML page with embedded
command(s) for the Apache Web server. Web servers normally
do not parse HTML pages before delivery to the Web browser
(or to any other Web client). However, before delivery the Web
server always parses an SSl-enabled HTML page, and if any
special SSI command is found in the page, it is executed.

Figure 13-1 shows the simplified delivery cycle of an HTML
page and an SSl-enabled HTML (SHTML) page from a

Web server.

378 Partlil + Running Web Applications

Simplified HTML Delivery Cycle

Web Server

Web Client | < GET /index htm| > l Retrieve /index.html

A 4

l Output content of /index.html

Simplified SHTML Delivery Cycle

. Web Server
Web Client | < GET /index.shtml R

A

l Retrieve /index.shtml

l

I Parse & process SSI commands

|

I Output new content

Figure 13-1: A simplified delivery cycle diagram for an HTML page and an SHTML page

As you can see, the SSI version of the HTML page is first parsed for SSI commands.
These commands are executed, and the new output is delivered to the Web
browser (that is, the Web client.)

Apache implements SSI as an INCLUDES filter. Before you can configure Apache for
SSI, you need to check your current Apache executable (httpd) to ensure that the
mod_include module is included in it. | show you how in the next section.

Configuring Apache for SSI

Before you use SSI with Apache, you need to make sure SSI support is enabled. To
find out if you have mod_incTude built into your current Apache binary, run the
httpd -1 | grep include command from the /usr/local/apache/bin directory
or from wherever you have installed the Apache binaries. This enables you to see the

Chapter 13 4 Server Side Includes (SSI)

list of all modules used in building your Apache executable. By default, you should
have this module compiled; if not, you need to configure Apache source using the
--enable-include option and then recompile and reinstall Apache.

Although the mod_incTlude module is compiled by default in the standard Apache
distribution, the parsing of HTML pages is not enabled by default. You can enable
SSI for an entire directory or a single file type as discussed in the next section.

Enabling SSI for an entire directory

To enable SSI for a directory called /www/mysite/htdocs/parsed add the following
configuration to httpd.conf:

<Directory "/www/mysite/htdocs/parsed">
Options +Includes
SetOutputFilter INCLUDES
</Directory>

Here the Options directive is set to +Includes, which enables SSI parsing in this
directory. The SetOutputFilter directive tells Apache to parse all pages from
this directory for SSI commands. This means that files with any extension in this
directory will be server-parsed.

For example, say that you have the following virtual host configuration:

<VirtualHost 192.168.1.100>

ServerName vhl.domain.com
DocumentRoot "/www/mysite/htdocs"”
ScriptAlias /cgi-bin/ "/www/mysite/htdocs/cgi-bin/"

<Directory "/www/mysite/htdocs/parsed">
Options +Includes
SetQutputFilter INCLUDES
</Directory>

</VirtualHost>

Now, if the /www/mysite/htdocs/parsed directory has any any.txt, any.html,
or any.shtml files in it, these URL requests will be parsed:

http://vhl.domain.com/parsed/any.txt
http://vhl.domain.com/parsed/any.html
http://vhl.domain.com/parsed/any.shtml

In most cases, parsing a text file (. txt) or an html file (. htm1) is not needed because
these files are not typically used for SSI commands. So, the above configuration will
make Apache do extra work unless you intentionally want the parsing of all types of
files. Now let’s see how you can limit SSI parsing to a specific file type.

379

380

Part Il 4 Running Web Applications

Enabling SSI for a specific file type

To limit the scope of the SSI parsing in a directory, simply use AddType directive to
set the desired Content-Type header for the SSI-enabled file type and then wrap the
INCLUDES filter in a FiTesMatch container. For example:

Options +Include
AddType text/html .shtml

{FilesMatch "\.shtml1[.$]1">
SetOutputFilter INCLUDES
</FilesMatch>

Here the Options directive is set to +Includes, which enables SSI parsing. The
AddType directive is used to set Content-Type header for a file type called . shtm]
to text/html. Then the SetOutputFilter directive is set to INCLUDES for .shtm]
files using the FilesMatch directive and a regular expression "\.shtml1[.$]1".

Now look again at the virtual host example from the previous section. This time
let’s add the FilesMatch container as shown here:

<VirtualHost 192.168.1.100>

ServerName vhl.domain.com
DocumentRoot "/www/mysite/htdocs"”
ScriptAlias /cgi-bin/ "/www/mysite/htdocs/cgi-bin/"

<{Directory "/www/mysite/htdocs/parsed">
Options +Includes

AddType text/html .shtml
<{FilesMatch "\.shtml1[.$1">

SetOutputFilter INCLUDES
<{/FilesMatch>

</Directory>

</VirtualHost>

Now, if there are any . txt, any.html, or any.shtml files in the parsed subdirectory,
only the following URL request will tell Apache to parse the output of the . shtml file.

http://vhl.domain.com/parsed/any.shtml

The server will not parse the other two URLS, http://vhl.domain.com/parsed/
any.txt and http://vhl.domain.com/parsed/any.html, for SSI commands.
This is the preferred configuration for most sites because you want to limit server
parsing to a specific type of file for both performance and site organizational
purposes.

Chapter 13 4 Server Side Includes (SSI)

Caution If you plan to disable execution of external programs via SSI commands, you can

‘\Iote

AI ote

use the IncludesNOEXEC option with the Options directive. This disables execu-
tion of external programs. However, it also disables loading of external files via the
SSI command Include.

Using XBitHack for .htm or .html files

As mentioned before, enabling SSI parsing for the entire directory degrades server
performance. You should try hard to avoid using the .htm1 or . htm extensions for
SSI; if you must use them, then use the XbitHack directive found in the mod_include
module. The XBitHack directive controls server parsing of files associated with the
MIME-type text/html:

Syntax: XBitHack On | Off | Full
Default: XBitHack Off

Context: Server config, virtual host, directory, per-directory access control
file (.htaccess)

Override: Options

Typically, only .html and . htm files are associated with text/html. The default
value off tells the server not to parse these files. When this is set to on, any HTML
file that has execute permission for the file owner is considered an SSI file and is
parsed. When the directive is set to ful 1, it makes the server check the owner and
the group executable bits of the file permission settings. If the group executable bit
is set, then Apache sets the last-modified date of the returned file to be the last
modified time of the file. If it is not set, then no last-modified date is sent. Setting
this bit enables clients and proxies to cache the result of the request. Use of the
value full is not advisable for SSI pages that produce a different output when
parsed and processed.

You will still have to use Options +Includes when using the XBitHack
~ directive to enable SSI support.

If you use per-directory access control file (.htaccess) to enable SSI support,
make sure that the A1TowOverride directive for the site owning that directory
allows such an operation. The A11owOverride directive for such a site must allow
the Includes option to be overridden. For example, if the A11owOverride is set to
None for a site, no SSI parsing will occur.

If you do not use the + sign in the Options line in the preceding example, all the
~— options except Includes are disabled.

Now that you know how to enable SSI support in Apache, the next section discusses
the SSI commands in detail.

381

382

Part Il 4 Running Web Applications

Using SSI Commands

SSI commands are embedded in HTML pages in the form of comments. The base
command structure looks like this:

<!--ffcommand argumentl=value argument2=value argument3=value -->

The value is often enclosed in double quotes; many commands only allow a single
attribute-value pair. Note that the comment terminator - -> should be preceded by
white space to ensure that it isn’t considered part of the SSI command.

The following sections examine all the available SSI commands.

config

The config command enables you to configure the parse error message that
appear, as well as the formatting that is used for displaying time and file size
information. This is accomplished with the following lines of code:

config errmsg="error message"
config sizefmt=["bytes" | "abbrev"]

config timefmt=format string

config errmsg="error message" shows you how to create a custom error
message, which is displayed when a parsing error occurs. For example, Listing 13-1
shows a file called config_errmsg.shtml.

Listing 13-1: config_errmsg.shtml

<HTML>
<BODY>

KTITLE> Apache Server 2 - Chapter 13 </TITLE>
</HEAD>

<BODY BGCOLOR="white">

 Simple SSI Example #1
<HR SIZE=1>

<P> Example of the SSI config errmsg command:
</P>
<P> Embedded commands:

<CODE>

&1t;!-ffconfig errmsg="SSI error! Please notify the
webmaster." ->

&1t;!-ffconfig badcommand="whatever" ->

Chapter 13 4 Server Side Includes (SSI)

</CODE>

</ P>

<P> Result:

{!--ffconfig errmsg="SSI error! Please notify the Web master." -
;E%R>

{!--ffconfig badcommand="whatever" -->

</ P>

</BODY>
</HTML>

In this example file, there are two SSI commands:

{!--ffconfig errmsg="SSI error! Please notify the webmaster." -->
and
{!--ffconfig badcommand="whatever" -->

The first is a valid SSI config errmsg command that sets the error message to the
string "SSI error! Please notify the Web master.". The second command
is an invalid SSI command, which I intentionally entered into this file so that you
would see what happens when Apache parses it. Figure 13-2 shows what is returned
to the browser when this page is parsed by the server.

Simple S8I Example #1

Example of the 331 config errmsg commarnd:
Embedded cormmands:

<!-foonfig errmsg="33I error! FPlease notify the webmaster.'" ->
<l-ffeonfig badeomrand="whatever™ —>

Eesult:

331 error! Please notify the webmaster,

Figure 13-2: Example of the config errmsg command

As you can see from the figure, the second command caused a parse error, and the
error message is displayed as a result. The message appears where the command is
found.

383

384

Part

Alote

Il + Running Web Applications

You can enter HTML tags or even to insert client-side script in the string of the error
~~ message. For example, the following displays a pop-up JavaScript alert window
with an error message:

<!-ffconfig errmsg="<SCRIPT LANGUAGE=JavaScript>
alert('An error occurred. \n Please report to
webmaster@domain.com');</SCRIPT>" -->
config sizefmt=["bytes" | "abbrev"] enables you to choose the output
format for the file size. Acceptable format specifiers are "bytes" or "abbrev".
For example:
{!-ffconfig sizefmt="bytes" -->
shows file sizes in bytes. To show files in kilobytes or megabytes, use:
{!-ffconfig sizefmt="abbrev" -->
config timefmt=format string lets you to choose the display format for time:

config timefmt=format string

The commonly used value of the format string can consist of the identifiers shown
in Table 13-1.

Table 13-1
Format Identifiers for config timefmt

Identifier = Meaning

%a The abbreviated weekday name according to the current locale

%A The full weekday name according to the current locale

%b The abbreviated month name according to the current locale

%B The full month name according to the current locale

%e The preferred date and time representation for the current locale

%d The day of the month as a decimal number (range 01 to 31)

%H The hour as a decimal number using a 24-hour clock (range 00 to 23)
%1 The hour as a decimal number using a 12-hour clock (range 01 to 12)
%J The day of the year as a decimal number (range 001 to 366)

%m The month as a decimal number (range 01 to 12)

M The minute as a decimal number

%D Either a.m. or p.m., according to the given time value or locale

%S The second as a decimal number

Chapter 13 4 Server Side Includes (SSI)

Identifier =~ Meaning

W The day of the week as a decimal, Sunday being 0

%X The preferred date representation for the current locale without the time
%X The preferred time representation for the current locale without the date
by The year as a decimal number without a century (range 00 to 99)

%Y The year as a decimal number including the century

A The time zone name or abbreviation

%% A literal % character

For example, the following sets the time format such that time is displayed in the
format such as Sat Mar 17 00:31:58 2001:

{!--ffconfig timefmt="%c" -->

And the following sets the time format such that time that is shown in a format
such as 03/17/2001:

{l--ffconfig timefmt="%m/%d/%Y" -->

echo

The echo command prints one of the Include variables (defined later) or any of
the CGI environment variables. The syntax is:

echo var="variable_name"

If the value of the variable is not available, it prints (none) as the value. Any dates
printed are subject to the currently configured timefmt. For example:

<l--ffconfig timefmt="%m/%d/%Y" -->
{!--ffecho var="DATE_LOCAL" -->

which prints a date such as 03/17/2001, in conformity with the specified
timefmt string.

exec

The exec command enables you to execute an external program. The external
program can be a CGI program or any other type of executable such as shell scripts
or native binary files. The syntax for CGI programs is:

exec cgi="path_to_cgi_program"

385

386 Partlil + Running Web Applications

The syntax for other programs is:
exec cmd="path_to_other_programs"

ﬁlote If you used the IncludesNOEXEC value for the Options directive, this command
~ is disabled.

Let’s look at how to use each of these options.

cgl

The cgi value specifies a (%-encoded) URL relative path to the CGI script. If the path
does not begin with a slash (/),it is taken to be relative to the current document.

The document referenced by this path is invoked as a CGI script, even if the server
would not normally recognize it as such. However, the directory containing the
script must be enabled for CGI scripts (with ScriptAlias or the ExecCGI Option).

The CGI script is given the PATH_INFO and query string (QUERY_STRING) of the
original request from the client; these cannot be specified in the URL path. The
Include variables are available to the script, in addition to the standard CGI
environment.

Listing 13-2 shows a simple CGI script called colors.pl, which displays a list of
common colors in an HTML table.

Listing 13-2: colors.pl
#!1/usr/bin/perl -w
use strict;

my @COLOR_LIST = gw(red blue brown yellow green gray white
black);

print "Content-type: text/html\n\n";
print '<table border=1 cellpadding=3 cellspacing=0>";
foreach my $color (sort @COLOR_LIST) {

print <KTABLE_ROW;

<tr><td>$color</td>
<td bgcolor="$color"> </td>

Chapter 13 4 Server Side Includes (SSI)

</tr>
TABLE_ROW
}
print '</table>';

exit 0;

Now notice how this script is being called from the exec_cgil.shtm]1 file, which is
shown in Listing 13-3.

Listing 13-3: exec_cgil.shtml

<HTML>
<HEAD> <TITLE> Apache Server 2 - Chapter 13 </TITLE></HEAD>

<BODY BGCOLOR="white">
SSI Example #2
<HR SIZE=1>

<P> Example of the SSI exec cgi command: </P>
<P> Embedded commands:

<CODE> &1t;!-ffexec cgi="/cgi-bin/colors.pl" ->
 </CODE>
</P>
(P> Result:
 <!--ffexec cgi="/cgi-bin/colors.pl" --> </P>

</BODY>
</HTML>

By using the <! --ffexec cgi="/cgi-bin/colors.pl" -->command,
exec_cgil.shtml produces the output shown in Figure 13-3.

The beauty of embedding a CGI script using a SSI call such as the above is that from
the client prospective there is no way to tell that a page was assembled using both
static and dynamic (that is, CGI script contents) data.

387

388

Part Il 4 Running Web Applications

S8l Example #2

Ezample of the 231 exec cgi command:
Embedded commands:
< l-ffexec cgi="/ocgi-binfcolors.pl™ —->

Eesult:
black

blue

brown

vk [
L
.
atay -
.
o

green

red
white

yellow

Figure 13-3: Output of the exec_cgil.shtml file

Note that if a CGI script returns a Location header instead of output, the header is
translated into an HTML anchor. For example, the Listing 13-4 shows a simple Perl
CGl script called reTocate.pl that prints out a Location: header as the output.

Listing 13-4: relocate.pl
#1/usr/bin/perl -w

print 'Location: http://apache.nitec.com' . "\n\n";

exit 0;

When a Web browser requests the exec_cgi2.shtml file, shown in Listing 13-5, the
server turns the Location: header into an HTML anchor instead of redirecting the
browser to the http://apache.nitec.com site.

Listing 13-5: exec_cgi2.shtml

<HTML>
<HEAD> <TITLE> Apache Server 2 - Chapter 13 </TITLE></HEAD>

<BODY BGCOLOR="white">
SSI Example #3

Chapter 13 4 Server Side Includes (SSI)

<HR SIZE=1>

<P> Example of the SSI exec cgi command: </P>
<P> Embedded commands:

<CODE> &1t;!-ffexec cgi="/cgi-bin/relocate.pl" ->

</CODE>

<P

<{P> Result:
 <!--ffexec cgi="/cgi-bin/relocate.pl" --> </P>

</BODY>
</HTML>

In the listing, the only SSI call in the file is:
{!--ffexec cgi="/cgi-bin/relocate.pl" ->

The output of this is an HTML anchor, as shown in Figure 13-4.

SSI Example #3

Ezxample of the 321 exec cgi command:
Embedded commands:
<!-fexec cgi="/ocgi-binfrelocate.pl” ->

Eesult:
httpffapache nitec.com

Figure 13-4: Output of the exec_cgi2.shtml file

cmd

When calling a program other than a CGI program, you can use the cmd version of
the exec call. The server executes the given string using the sh shell (/bin/sh) on
most Unix systems. The Include variables are available to this command. For
example, Listing 13-6 shows a file called exec_cmd.shtm]l.

Listing 13-6: exec_cmd.shtml

<HTML>
<HEAD> <TITLE> Apache Server 2 - Chapter 13 </TITLE></HEAD>
<BODY BGCOLOR="white">

389

390 Partlil + Running Web Applications

 Simple SSI Example #4
<HR SIZE=1>

<P> Example of the SSI exec cmd command: </P>
<P> Embedded commands:

<CODE>

&1t;!-ffexec cmd="/bin/date +%m/%d/%y" ->

&1t;!-ffexec cmd="/bin/1s -1 ./" ->

</CODE>

<P
<P> Result:

{I--ffexec cmd="/bin/date +%m/%d/%y" -->

<PRE>

{I--ffexec cmd="/bin/1s -1 ./*.html1" -->

</PRE>

</ P>

</BODY>
</HTML>

This file has two cmd calls:

{I--ffexec cmd="/bin/date +%m/%d/%y" -->
(I--ffexec cmd="/bin/1s -1 ./*.html" -->

The first calls the Unix /bin/date utility with the argument +%m/%d/%y; the second
calls the Unix 1s utility with . /*.htm1 as the argument. The output of this file is
shown in Figure 13-5.

Simple SSI Example #4

Ezample of the 251 exec emd command:
Embedded commands:

<!-fiexec cwd="/bin/date +3m/3disy" —->»
<!-fexec cmd="/binfls -1 ./" —>

Eesult:
03/17/01

Figure 13-5: Output of the exec_cmd.shtm] file

Chapter 13 4 Server Side Includes (SSI)

Notice that the Ts output is nicely formatted using the <PRE> and </PRE> pair.
If you want to output something that uses new lines, you may have to use <PRE>
tags to keep the output readable, as shown in Figure 13-5.

fsize

This command prints the size of the specified file. The syntax you use for this
command depends on whether the path to the directory is relative or virtual:

fsize file="path"
fsize virtual="URL"

When the first syntax is used, the path is assumed to be relative to the directory
containing the current SSI document being parsed. You cannot use . ./ in the path,
nor can absolute paths be used. You cannot access a CGI script in this fashion. You
can, however, access another parsed document. For example:

{l--fffsize file="download.zip" -->

If the second syntax is used, the virtual path is assumed to be a (%-encoded) URL
path. If the path does not begin with a slash (/), then it is taken to be relative to the
current document. You must access a normal file this way, but you cannot access a
CGlI script in this fashion. Again, however, you can access another parsed document.
For example:

{l--ffsize virtual="/download/free_software.zip" -->

The output format is subject to the sizefmt format specification. See the config
command for details.

flastmod

The fTastmod command prints the last modification date of the specified file.
Again, there are two syntax options, depending on the path to the directory:

flastmod file="path"
flastmod virtual="URL"

The output is subject to the timefmt format specification. For example:

<I--ffflastmod file="free_software.zip" -->
{I--ffflastmod virtual="/download/free_software.zip" -->

If you are unclear about the syntax difference, see the fsize command as an
example. To control how the modification date is printed, see the config
command.

391

392

Part Il 4 Running Web Applications

include
The include directive inserts the text of a document into the SSI document being
processed. The syntax depends on the path to the directory:

Syntax 1: include file="path"

Syntax 2: include virtual="URL"

See the fsize command a couple sections back for the difference between file and
virtual mode.

Any included file is subject to the usual access control. If the directory containing the
parsed file has the Option IncludesNOEXEC set, and including the document would
cause a program to be executed, then it is not included. This prevents the execution
of CGI scripts. Otherwise, CGI scripts are invoked as they normally are, using the
complete URL given in the command, including any query string. For example:

{!--ffinclude file="copyrights.html" -->

includes the copyrights.html file in the current document. This command is
useful for adding repeatable HTML code in files. Many sites use a standard menu
bar on each page; if this menu bar is put in an HTML file called menu.html, it can
be called from all SSI pages using a similar include file call, as in the preceding
example. In the future, when changes need to be made to the menu, the site
administrator only needs to update the menu.html page. This will save a lot of
work if there are many files in the site.

Recursive inclusions are detected and an error message is generated after the first
pass. For example, if a.shtm] has an SSI call such as:

<l--ffinclude file="b.shtml" -->
and b.shtml has a call such as:
{l--ffinclude file="a.shtml" -->

then Apache logs and displays an error stating that a recursive include has been
detected.

printenv

The printenv command prints a listing of all existing variables and their values.
The syntax is:

printenv

For example:

Chapter 13 4 Server Side Includes (SSI) 393

I -~ffprintenv -->

prints all the Include and CGI environment variables available. To make the output
more readable, use of the <PRE> tag pair is recommended.

set

The set command sets the value of a user-defined variable. The syntax is:
set var="variable name" value="value of the variable"
For example:

{l--ffset var="home" value="index.shtml" -->

SSI Variables

The SSI module makes a set of variables, in addition to the CGI environment variables
(see Chapter 12), available to all SSI files. These variables are called the include
variables. These can be used by SSI commands (echo, if, elif, and so on) and by
any program invoked by an SSL. command. The include variables are listed in

Table 13-2.
Table 13-2
Include Variables
Variable Meaning
DATE_GMT The current date in Greenwich Mean Time.
DATE_LOCAL The current date in the local time zone.
DOCUMENT_NAME The current SSI filename.
DOCUMENT_URI The (%-decoded) URL path of the document.
LAST_MODIFIED The last modification date of the current file. The date is subject to

the config command’s timefmt format.

The include variables and the CGI variables are preset and available for use.
Any of the variables that are preset can be used as arguments for other commands.
The syntax for using defined variables is:

(! --ffcommand argumentl="$variablel" argumentlZ="$variablel?" ...-->

394

Part Il 4 Running Web Applications

As you can see, the variable name is prefixed by a $ sign. Here’s another example:

{!--ffconfig errmsg="An error occurred in $DOCUMENT_NAME
page." -->

When using variables in a var="variable" field, the $ sign is not necessary.
For example:

{!--ffecho var="DOCUMENT_NAME" -->

,Alote If you need to insert a literal dollar sign into the value of a variable, you can insert
~ the dollar sign using backslash quoting. For example:
{l--ffset var="password" value="\$cheese" -->
{!--ffecho var="password" -->

This prints $cheese as the value of the variable "password".

Also, if you need to reference a variable name in the middle of a character sequence
that might otherwise be considered a valid identifier on its own, use a pair of
braces around the variable name. For example:

{lI--ffset var="uniqueid" value="${DATE_LOCAL}_${REMOTE_HOST}" -->

This sets uniqueid to something similar to Saturday, 17-Mar-2001 13:02:47
PST_207.183.233.19, depending on the timefmt setting and the IP address of the
Web client.

Flow Control Commands

Like many programming languages, program flow control is also available in the SSI
module. By using flow control commands, you can conditionally create different
output. The simplest flow control (that is, conditional) statement is:

{I--ffif expr="test_expression" -->
< --ffendif -->

Here, the "test_expression" is evaluated, and if the result is true, then all the text
up to the endif command is included in the output. The "test_expression" can
be a string, which is true if the string is not empty, or an expression comparing
values of two strings.

The comparison operators allowed are =, ! =, <, >, <=, or >=. A generic form of such
an SSI statement looks as follows:

{l--4if expr="stringl operator string2" -->
--ffendif -->

Chapter 13 4 Server Side Includes (SSI)

Note that string2 can be a regular expression in the /regular expression
patterns/ form. See Appendix B for details on regular expressions.

Let’s look at an example of a string by itself:

<I--fif expr="foobar" -->
This test is always successful.
<I--fendif -->

This syntax always prints This test is successful. because the expression is
true when the test_expression is not an empty string. If expr="foobar" is
changed to expr=""or to expr="""", however, then the text within the i f-endif
block will never be part of the output.

Now let’s look at an example of a string equality test:
{l--fset var="quicksearch" value="yes" -->
- f expr="$quicksearch = yes" -->

Quick search is requested.

L-~ffendif -->

Here, the variable called quicksearch is being set with the value yes, and is later
being compared with yes. Because the set value and the comparison value are
equal, the Quick search is requested line will be the output.

Using logical operators such as !, &&, and | |, you can create more complex
test_expressions. For example:

-4 f expr="${REMOTE_ADDR} = /207\.183\.233/
&& ${DOCUMENT_NAME} = /timesheet/" -->

<I--ffinclude virtual="/cgi-bin/timecard.pl">

< --ffendif -->

Here, the test_expression is composed of two smaller expressions. The first
subexpression, $ {(REMOTE_ADDR} = /207\.183\.233/, is evaluated to determine
whether the server-defined variable REMOTE_ADDR matches the 207.183.233
network address. Note that the address is written using the simple regular
expression /207\.183\.233/, where each . (period) is escaped using a \
(backslash) character. This was necessary to undo the . character’s special
meaning in regular expressions. See Appendix C for more details on regular
expressions.

The second subexpression, $ {DOCUMENT_NAME} = /timesheet/, is evaluated
to determine whether the current SSI file being processed has a name that

395

396

Part Il 4 Running Web Applications

matches the string timesheet. And, finally, the && (logical AND) requires that both
subexpressions be true for the entire expression to be true. If the final expression is
true, then the /cgi-bin/timecard.pl scriptis run using the include virtual
command.

Other logical operations that you can perform on the test_expression are:
<I--fif expr="1! test_expression" -->
This is printed only when the test_expression is false.
< --ffendif -->
and
<I--4Hif expr="test_expressionl || test_expression2" -->
This is printed when at least one of the test_expressions is
true.
I -~ffendif -->

The = (equal) and != (not equal) operators have higher precedence than the &&
(and) and the | | (or) operator