

Francis Glassborow

You Can Program in C++
A Programmer’s Introduction

You Can Program in C++
A Programmer’s Introduction

Francis Glassborow

You Can Program in C++
A Programmer’s Introduction

Copyright  2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T
4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions
Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used
in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not
associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the
understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Glassborow, Francis.
You can program in C++ : a programmer’s introduction / Francis Glassborow.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-470-01468-4 (pbk. : alk. paper)
ISBN-10: 0-470-01468-7 (pbk. : alk. paper)
1. C++ (Computer program language) I. Title.

QA76.73.C153G59 2006
005.13′3 – dc22

2005026864

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-01468-4 (PB)
ISBN-10: 0-470-01468-7 (PB)

Typeset in 10/11 JoannaMT by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

Dedication
This book is dedicated to the numerous people who have helped me to master the art of writing simple
programs in C++. I appreciate their gentle correction of programming so that it has reached a standard that I
feel able to share with others.

Contents

Preface . xiii

Acknowledgements . xv

Introduction . xvii
Studying C++ . xviii
Using This Book . xix
A Comment on Comments . xx

Overview of C++ . 1
What is in a Name . 1
What is in C++ . 1
Different Backgrounds . 3
Fundamental C++ for C++ Programmers . 3
Fundamental C++ for C Programmers . 4
Fundamental C++ for Java Programmers . 5
Fundamental C++ for C# Programmers . 5
Fundamental C++ for COBOL Programmers . 6
Fundamental C++ for Python Programmers . 6
Fundamental C++ for (Visual) Basic Programmers . 7
Fundamental C++ for Pascal and Delphi Programmers . 7
Fundamental C++ for Functional Programmers . 8
Fundamental C++ for Lisp and Logo Programmers . 8
Fundamental C++ for Object-Oriented Programmers . 9
Fundamental C++ for Every Programmer . 9

1 Getting Started . 11
Creating a ‘Hello World’ Program . 12
What the Code Means . 16
Our Second Program–An Empty Playpen . 17
What the Code Means . 20

viii CONTENTS

Something to Play With . 21
Summary . 21

2 Fundamental Types, Operators, and Simple Variables . 23
A Simple Program . 23
What Is a Type? . 24
What Are Fundamental Types? . 25
Representing Negative Integers . 26
Derivative Types . 27
Declaration and Definition . 28
Names in C++ . 28
Operators . 29
A Simple Program . 30
Exceptions – Handling Bad Input . 31
Writing Correct Code . 32
Getting Output Before Handling an Exception . 33
A Little More About Playpen . 34
Default Playpen Color Names . 36
Characters and Text . 37
Floating-Point Numbers . 39
First Floating-Point Program . 39

3 Looping and Making Decisions . 51
Some Library Types . 51
Making Decisions . 53
Looping . 58
On Magic Numbers . 65

4 Namespaces and the C++ Standard Library . 71
Wide Versus Narrow Character Set Support . 71
Namespaces . 72
Input from std::cin . 76
Output with std::cout . 78
Standard Console Output Objects . 78
Playpen Plotting Modes . 79
Further Practice . 80

5 Writing Functions in C++ . 85
The C++ Function Concept . 85
Sorting in Other Orders . 86
Designing a Function . 87
C++ Procedures . 92
Pure Functions . 92
Overloading Functions . 93
Resetting istream and ostream Objects . 96
Unnamed Parameters . 103
Separate Compilation and Header Files . 104

CONTENTS ix

6 Behavior, Sequence Points, and Order of Evaluation . 109
Types of Behavior . 109
Sequence Points . 113
Order of Evaluation . 115
Guidelines . 116

7 Generic Functions . 119
Which Is Larger . 119
Getting the Largest . 121
Getting the Largest Using a typedef . 121
Getting the Largest Using a Template . 123
Ambiguity . 126
Function Templates Can Be Specialized . 128
Specializing max() . 129
Overloading Function Templates . 130
C++ Iterators . 132
Version of max(std::vector) Using an Iterator . 133
The fgw::read Function Templates . 134

8 User-Defined Types, Part 1: typedef and enum . 143
typedef: New Names for Old . 143
On Reading Declarations . 145
enum . 147
Operator Overloading . 150

9 User-Defined Types, Part 2: Simple classes (value types) . 157
ISBN as a class Type . 158
Testing Code . 162
Overloading Operators . 164
A Value Type for Playing Cards . 165
public Versus private . 166
Special Member Functions: Constructors . 166
Special Member Functions: Destructors . 167
Special Member Functions: Copy assignment, operator= . 167
Ordinary Member Functions . 168
Implementing Constructors . 168
Implementing a Destructor . 169
Implementing Copy Assignment, operator= . 169
Implementing a Member Function . 170
Separate Compilation . 171
Developing the card value Type . 174
Changing the Implementation . 177
Pointers and Arrays . 179
Consolidation – a Point Class . 181
Defining Member Functions in a Class Definition . 184
Constructors and Destructors . 187

10 User-Defined Types, Part 3: Simple classes (homogeneous entity types) 189
Examples of Value and Entity Types . 189

x CONTENTS

A Simple Playing-Card Entity . 190
Another Entity Type: Deck of Cards . 192
Output for deck . 195
Creating a deck Instance From a File . 198

11 Pointers, Smart Pointers, Iterators, and Dynamic Instances . 203
Raw Pointers . 203
A Dangerous Special Case . 205
Arrays . 206
Arrays and Pointers . 208
Dynamic Instances . 209
Smart Pointers . 216
Iterators . 217

12 User-Defined Types, Part 4: Class hierarchies, polymorphism, inheritance, and subtypes 221
An Interface for a Chess Piece . 222
Implementing basic chesspiece . 224
Implementing a Knight . 228
Getting Polymorphic Behavior . 231
Getting the Identity . 232
Removing an Irritant . 233
Moving to an Occupied Square . 234
Another Piece . 234

13 Dynamic Object Creation and Polymorphic Objects . 239
Selecting the Subtype at Runtime . 239
Unnamed Namespaces . 241
A Chess-Piece Type . 244
Implementing chesspiece . 246
Defining and Implementing the Subtypes . 248
Constructing a Specific Chess Piece . 251
The chesspiece Constructor and transform() . 252
Implementing the Rest of chesspiece . 252
Collections of Objects . 255
Design and Implementation of a chessboard Type . 256

14 Streams, Files, and Persistence . 259
The C++ Stream Hierarchy . 259
Appending Data . 262
Consolidation . 263
String Streams . 263
Converting Numerical Values to Strings . 265
Persistence . 266
Converting Text to an Enumerator . 268

15 Exceptions . 273
What Is an Exception? . 273
What Can I throw? . 275

CONTENTS xi

The Exception-Safe Copy-Assignment Idiom . 281
Rethrowing . 282
Exception Specifications: An Idea That Failed . 283
Exceptions and Destructors . 283

16 Overloading Operators and Conversion Operators . 285
Overloading Operators for an Arithmetic Type . 285
Conversion Operators . 289
Function Objects . 291
Conclusion . 294

17 Containers, Iterators, and Algorithms . 297
Working with a Set . 298
Working with Numeric Algorithms . 303
Working with a Multimap . 306
Preloading a Container . 307
Conclusion . 308

18 Something Old, Something New . 313
Code Layout and Consistency . 313
Where to Put const . 314
Function-Style Versus Assignment-Style Initialization . 315
Using using . 318
Switching Off Polymorphism . 319
Alternative Spellings for Operators . 320
Hungarian Notation . 320
Names for Constants . 320
Comments and ‘Need to Know’ . 321
Multiple Exits from Structures . 321
Refactoring and the Power of Objects . 323
Using a Legacy Library . 327
In Conclusion . 329

Appendix A: Those Who Went Before . 331

References . 349

Index . 351

Preface

My previous book, You Can Do It!, was written for the complete newcomer to programming. I made no
assumptions about the reader’s prior knowledge and skills other than that they were capable of using a
Microsoft Windows–based machine at the general level of accessing the Internet. It should not matter to
such people what language is used for their practical experience of programming. I chose C++ because I felt
certain that it was well up to the task, as long as I used a carefully chosen subset and augmented the Standard
Library with a library of my own design that would support writing programs that newcomers would find
interesting. The priority of that book was learning sound programming.

This book is intended for a very different readership: you should already be comfortable with the
basics of programming. Exactly how you have acquired those basics will result in different expectations and
problems with learning C++. One of the delights of C++ is its ability to handle the programming paradigms
of most of the principal language groups. If your first language is Lisp and you are fluent in expressing
problems in that language, then C++ is going to cause you a lot of mental readjustment, but most other
languages will provide a good basis for moving to C++, as long as you have an open mind about how the
solutions to problems should be expressed in source code.

I do not intend to provide comprehensive coverage of the whole of C++: it is far too big a language to
do that. I am not going to attempt to show you all the ways in which C++ can be used: C++ is far too rich
a language to attempt that in a single book. Indeed, I doubt that any single author knows enough to provide
adequate coverage of all the ways C++ can be used.

My aim is to provide my readers with a sound introduction to a reasonably large working subset of
C++. Along the way, I will demonstrate how C++ can be used to handle a variety of programming problems.

You will get as much from this book as you put into reading it, or, more correctly, studying it. I do not
believe in trivial, make-work exercises. You should be able to provide yourself with those without any help
from me. That means that the exercises in this book, along with the experiments and actively trying the code
in the body of the text is part and parcel of reading this book successfully.

If you want to try C++ and have a basic knowledge of programming fundamentals, this book was written
for you. I hope you enjoy the journey and feel motivated at the end to continue onwards, because C++ is the
most challenging programming language available. It does not seek to constrain what you can do or how you
do it. That is one of the ways in which it differs from all the other popular computer-programming languages.

If you can master C++ you will be mistress of programming and able, should the need arise, to adapt
to other languages quickly.

Francis Glassborow
July 29th, 2005

Acknowledgements

Like any book, many people have contributed to this one in addition to the named author. Some, such as the
staff of Wiley & Sons Ltd, do so because it is their job to do so. However I appreciate the extra effort that each
of these people have put in that distinguishes them from the mere time-server or wage slave.

Then there are the countless numbers of people who have added their ideas, sometimes unwittingly,
to mine. These include many members of ACCU as well as all those experts who attend meetings concerned
with Standardizing C++. Bjarne Stroustrup must take pride of place among these because he is not only the
original creator of C++ but has also spent many hours over the last fifteen years patiently helping me to
understand his creation.

However there are three people without whom this book would not be what it is. Garry Lancaster
was the original implementor of the Playpen Library for Windows. Jean-Marc Bouquet adapted Garry’s
implementation for machines that use X11 (initially Linux, but also other Unix and MacOS X machines).
Finally, Mick Brooks who has spent many hours of his valuable time checking that my text worked on a Linux
machine. Each of those people contributed their efforts free, to the benefit of the C++ community.

Elsewhere, I give credit to those responsible for the two IDEs that are shipped on the CD for
this book. However, I hope you will show your appreciation for the work of Parinya Thipchart
(thipchart@gmail.com) who is the designer and implementor of MinGW Developer Studio. jGrasp,
G++ and MinGW are examples of the excellent tools that are made available free by their developers. MinGW
Developer Studio is the work of a single person and is distributed as user-supported software. In simple terms,
it means that Parinya trusts users to make a contribution based on their use of the product and their personal
circumstances.

Introduction

If you are reading this, you are most likely to be trying to decide whether this is the book that will help you
learn C++. To make your choice, you need to know what this book sets out to do and how it is different from
the many other alternatives that litter booksellers’ shelves. I am not going to claim that this book is uniquely
better than all the alternatives, but I do claim that it is distinctly different as well as being technically accurate.

The first question is: ‘‘Can you already program in some computing language?’’ If your answer to that
question is no, then this book is almost certainly not the one for you to start with. You will need some other
book such as my own You Can Do It! [Glassborow 2004]. However, if you already know about such things as
loops, decision statements, and functions, then read on.

I make as few assumptions as I can about what you know about programming. In particular, I do
not assume that you know anything about the C programming language. Indeed, if you already know C,
be prepared to learn to do things differently. Though the name ‘C++’ is supposed to suggest the next step
beyond C, and almost all of C is also C++, good C is often not good C++. The languages share a common
core, but the differences lead to very different programming styles.

I will introduce you to programming in C++ using all the modern idioms and tools that have evolved
over the past two decades. For that reason, this book introduces C++ by using high-level features and only
covers low-level features as and when they become necessary for further progress.

The purpose of this book is to give you a firm grasp of the foundations of Standard C++. To gain
understanding, you need to write programs. So that you can try more adventurous programs, I have
supplemented the Standard C++ library with a library of my own that supplies four basic extras:

• A few simple utility functions to make it easier to write correct programs right from the start. They are
written in pure Standard C++ and so are portable to all Standard C++ implementations.

• A very primitive graphics window that can be managed from a pure console program (a program that runs
as pure text). This works identically on Windows- and Linux-based PCs (and also on OS X versions of the
Apple Mac).

• A one-button mouse (i.e. mouse support that treats all mouse buttons as equivalent). This gives the major
benefits of having a mouse without the complexity of having to deal with multiple buttons, wheels, etc.

• Direct reading of the keyboard, so that your programs can directly observe the keys you press on a keyboard.
That little feature dramatically extends the kinds of program you can write.

Note that I have provided these four elements to make the process of learning C++ a more enjoyable
one, during which you can write a much wider range of programs than you would otherwise have been able
to. (If you want to, you could even write one of the classic console games such as Space Invaders.) I avoid

xviii INTRODUCTION

explicit use of my library throughout most of the book, but you should feel free to use it both to enhance
your solutions to the provided exercises and to add other exercises for yourself.

In addition to my own library of tools, this book comes with a full C++ compiler (MinGW) and a
choice of two IDEs. The first, MinGW Developer Studio, is a user-supported product. If this is a strange term
to you, it means that if you like the product and wish to continue using it, you are invited and encouraged
to make a donation (whatever you think it is worth to you) to the writer of the product. It is not shareware,
because there is no restrictive licence limiting how much use you can legitimately make without paying a
fixed registration fee. Nor is it freeware, in which you are never expected to pay anyone. (MinGW itself is an
example of an outstanding freeware product.) So please show your appreciation of a well-constructed tool by
going to the product’s website and making a contribution.

The second choice of IDE is a more complicated but highly portable one from Auburn University called
JGraspTM. It is written in Java, so you will need to acquire a suitable Java Runtime Environment. This IDE
was written explicitly for the purposes of teaching and learning. It has a number of outstanding features to
help newcomers explore the code they write. It is free to individuals but must not be distributed as part of a
commercial product. The licence under which it has been placed on the CD is one specifically for educational
books. JGrasp accepts many C++ compilers, including MinGW, as plug-ins.

These IDEs run on both Microsoft Windows and Linux systems. Indeed, JGrasp runs on any system that
supports Java, but for the purposes of this book you are limited to systems for which my library has been
implemented. At the time of writing, that includes all versions of Windows post 95 and Linux (and, I am
told, OS X on an Apple Mac).

The main text of this book will assume that you are using MinGW Developer Studio with MinGW as the
compiler. The tools that are available free and supplied on the CD are full-weight professional tools that are
often used by professional programmers. You may wish to use some other toolset, but you will need to check
the book’s website (http://www.spellen.org/youcandoit/) to see whether I have supplied a copy of
my library for that set of tools. Unfortunately, one of the restrictions of C++ is that library distributions are
often specific to compilers and have to be recompiled if used with a different compiler.

This book is also designed for you to use as a reference. For example, when I introduce the built-in types
of C++, the study text will use only a subset of the available types. At the end of that chapter, you will find
a complete summary of all the built-in types and their derivatives. That provides a single point of reference
close to the point where you first learn about the C++ type system. When you first study that chapter, you
will probably want to skip the reference part, but at a later stage you may want to read deeper into a subject,
or look something up easily.

To summarize: this book teaches you to program in Standard C++ using a modern idiomatic style. To
make the process of learning more enjoyable, I have provided some extensions to the C++ library that are, at a
minimum, portable between Microsoft Windows (98 and after) and Linux. The book comes with everything
you need to read and study it apart from a computer and operating system – those you must provide for
yourself. Apart from the extensions (graphics, sound, mouse, and direct keyboard read), everything else in
this book is portable to any computer with a Standard C++ compiler installed.

Studying C++
Sometimes circumstances compel us to acquire a new skill by ourselves. It is often much harder that way and
sometimes blocks our progress. If you want to learn to play a musical instrument, you need to practice by
yourself, but it is also essential to spend time playing with someone else. If you do not, you will acquire
bad habits that will very seriously hinder your future progress towards making music with others. To a lesser
extent, the same applies in learning to program in a computer language. It will be easy to force the idioms of
your first language onto the new one that you are studying (C++). Without the discipline of working with
others, this weakness in your use of C++ can go unchecked. This is particularly true if your first language is
a close relation of C++ (such as C, C#, or Java). It is not enough to learn the syntax of a language: you also
need to learn how that syntax is intended to be used.

INTRODUCTION xix

When I was at school, I learned the Japanese game of Go from a book. I taught a couple of fellow pupils
the rules and played on a homemade board. Many years later, I met someone who had learned to play from an
experienced player. Our first few games were interesting for both of us, because my understanding of tactics
and strategy was so completely haphazard. There were places where my play was relatively sound and others
where I would make a novice mistake. Do not let your C++ become like that.

Ideally, find both a study partner and a mentor. The former will provide an alternative view on the
language; the latter will help you to develop a sound understanding. Make sure that you know how things
work by checking with someone who already knows. Be wary of the self-proclaimed local expert; like my
early Go knowledge, their knowledge may be very patchy. Good places to visit to read and ask questions are:

comp.lang.c++.moderated
alt.comp.lang.learn.c-c++

Those Usenet newsgroups have resident experts who know more about C++ than all but a tiny minority.
There you will find genuine experts. Make use of them.

Learning C++ is an interactive exercise. You cannot learn C++ without actually writing programs. You
already know that from whichever other languages you have learned, but I have repeated it here by way of
emphasis. If you skip the practice work presented in this book, you will be selling yourself short. You may
finish reading the book more quickly, but your C++ will be the poorer for it. This is not a book about learning
C++ in some set period; you will need to take as long as it takes in order to master each bit. Sometimes it
may be worth moving past a sticking point and coming back to it a little later. But if you permanently skip
something because you do not understand it or you think it is not much use, it will come back to haunt you.

Using This Book
Please use this book in conjunction with a computer! Try the code and do the exercises. I hope the exercises
are helpful – I did not provide them to fill an expected slot in a textbook. It is sometimes a temptation to
look at an exercise and decide that you can see how to do it and move on without actually doing the work.
However, practice makes perfect, and it will help your acquisition of fluency with C++. Quite often, doing
an exercise will reveal subtleties that you miss at first glance.

At other times, you might get this great idea either for a new program or for developing one from
the book. In such cases give in to temptation and spend some time following the idea. If you write up the
problem and email it to me (initially via the submissions form on the book’s website), I will post it on the
site to inspire others.

You will find some source code on the CD, both that for my library and code from elsewhere. Some is
good; some is not but is included because I used it as a stepping-stone. For example, the code that supports
the Portable Network Graphics part of my library was written in very old C. Its greatest merit is that it works
and works correctly, but it is far from the kind of clear, maintainable code I would encourage you to write.
Other source code on the CD requires a great deal of knowledge of the specifics of Windows or Linux. It will
be far from clear even to programmers who have a good background in the system concerned. Even my own
code on the CD is a less-than-perfect example of good code. As time goes by and other experts comment, it
improves, but all code is subject to, or at least should be subject to, progressive improvement. One test to
apply to code is whether it is structured so that such progressive improvement is relatively easy.

To understand the code in playpen.cpp, you will need considerable experience of both C++ and
graphical-user-interface code for the OS you are using. That is the file that had to be reworked to provide my
library for Linux and other systems that support the X Window System (not to be confused with Microsoft
Windows, which is something very different).

You can obtain other source code from the site for my books (http://www.spellen.org/
youcandoit/). You should also visit that site for anything else that might have missed this book’s CD. Addi-
tionally, you can contact me through that site, or directly by e-mailing ycpcpp@robinton.demon.co.uk.

xx INTRODUCTION

If you choose to e-mail me directly, please make sure that you include a subject line, because I usually assume
that e-mails without subjects are spam.

This book is not ‘C++ in x time units’. You must set your own pace. If it takes you only six months
to grasp all that I provide, you are doing well. However, long before you finish, you will have enough
knowledge of C++ to do many useful things. On the other hand, even after you have finished, there will be
much more to learn. Every one of the leading C++ experts tells me the same thing: they never stop learning
and discovering new aspects of programming in general and programming with C++ in particular. Perhaps
that continued process of learning and discovery is what has made them into world-class experts.

A Comment on Comments
Some people feel that source code should be extensively commented, and you will find books where the
displayed source code is densely populated with comments. I believe that the best documentation of code is
the code itself. Comments should be used to express those things that cannot be easily expressed in source
code. An introduction to C++ needs to provide a lot of explanation, but comments are not, in my opinion,
the place for that.

There are useful things that are not expressible in source code. For example, every file of source
code should include both the date of its origin and the name of its author. Somewhere there needs to be
documentation that describes what a piece of source code does. However, if there is a comment on every line
of code, that coding style has a serious problem. A few well-placed comments can be very useful. However,
if those comments are surrounded by repetitious ones that add no value, the valuable ones may be missed.

Overview of C++

I very nearly numbered this as chapter -1 on the basis that it precedes your actual learning to use C++.
You can skip this chapter if you are anxious to get on with the process of learning. You can always come
back to it later. However, I think that a quick read through, even the parts that address languages that
you do not know will help you with your study of C++.

What is in a Name
You may already know that C++ (pronounced ‘see plus plus’) is so named because it was designed by Bjarne
Stroustrup as a successor to an earlier (and still widely used) language called C. In C, ++means ‘increment’ and,
in mathematical terms, to increment means to obtain something’s successor. Therefore, you could interpret
the name as meaning ‘the successor of C’. Like the concept of a successor in mathematics, that does not imply
replacement. If you already know C, you need to recognize that C++ is a new and different language, even
though much C source code will compile as C++. Usually the result of a successful compilation of C source
code with a C++ compiler will be a program that behaves exactly like the one produced by a C compiler.
However, that is not always true.

In the early 1980s, Bjarne Stroustrup designed an extension to C that he called ‘C with classes’. If you
are interested in the history of how that personal tool grew up to become the most widely used programming
language in the world and one that has fired the imaginations of many people you will have to look elsewhere.
(A good place to start would be with The Design and Evolution of C++ [Stroustrup 1994].) This book is about
programming in C++ as the ISO/IEC 14882:2003 Standard defines it, that is, Standard C++ as it was specified
in 2003 (which is the first official standard, with various corrections that were made between 1998 and
2003).

What is in C++
C++ is one of the most widely used programming languages in the world. It is also one of the largest
programming languages ever designed. Bjarne Stroustrup specified that one of the design criteria of the
language is that there should be no room for a lower-level language between C++ and native machine code.
Very few programmers ever use C++’s lowest level, and many do not even know that it has an asm keyword,
which allows support for writing code in assembler.

The incorporation of C into C++ was an important design decision. On the positive side, it made it easy
for C programmers to transfer to C++. Having made the transfer they could, at least in theory, incrementally

2 OVERVIEW OF C++

add to their C++ skills and understanding. On the negative side, it has tied C++ to a number of features of C’s
design that experience has shown to be, at best, problematical. It has also caused problems to many who have
moved from C to C++, because they have made the transition from a C to a C++ compiler without actually
making the mental transition from C to C++. They are still C programmers at heart. There is nothing wrong with
that, but it does provide a roadblock to their becoming fluent C++ programmers. If you are a C programmer
you may find studying modern C++ tougher than you would if your first language were something else.

At the high end of C++ we find tools that allow innovators to do metaprogramming, that is, source code
that generates source code. We will not be exploring that in this book, but it is worth noting that in learning C++
you are learning a language that supports the most innovative development of programming currently around.

In between assembler support and support for metaprogramming, C++ provides tools for procedural
programming, object-based programming, object-oriented programming (I will explain the difference later
when you know enough C++ to appreciate the differences), and generic programming. With care, you can
even do some functional programming.

Alongside the raw power of the core of the C++ language, the Standard C++ Library supports a wide
range of things that programmers commonly want to do. We have learnt a great deal over the last few years,
and were we to start writing a library today we might produce a substantially different one. However, what
we have is better than anything provided previously in any widely used programming language. In addition,
much of the library has been designed for extension: it is designed so that new components can easily be added
and work correctly with standard components. On the other hand the Standard Library currently lacks many
of the components that users of more recent languages such as Java, C#, and Python have come to expect.

It is both one of the strengths and one of the weaknesses of C++ that it does not dictate a methodology
or paradigm. When people first learn C++ this can be a problem, because the range of choice requires
understanding of the implications of those choices. If the newcomer already knows another programming
language, they will naturally try to discover how to write their first language in C++ terms. They will think
in their first language and try to translate into C++. Such is the range of C++ that they can often get a close
approximation, but that usually does not lead to good C++.

C++ can be viewed as everyone’s second language. Mastery of C++ requires that you leave behind the
crutch of your first language. That is hard and you will make many mistakes along the way. However, the
result will be that you are a much better programmer both in C++ and in any other programming language
you already know or choose to learn later.

C++ has a wide range of operators. Most of them can be extended to include user-defined types. With
the potential for redefinition comes the responsibility to use such a facility wisely. The intention was that
it should be possible to add types such as complex numbers, matrices, quaternions, etc. and provide the
operators that a domain specialist would expect and find intuitive. Unfortunately, some programmers take
the availability of a mechanism as a challenge to find creative ways of using it. The result is that their code
becomes ever more obscure.

C++ is a living language. By this I mean two things. The first is that the very best users continue to
develop new idioms and other ways to use it. The entire growth of metaprogramming in C++ started one
evening when a group of experts realized that the template technology of C++ (designed to support generic
programming) was a Turing-complete programming language in its own right, one that was implemented
at compile time. C++ was not designed for metaprogramming, so using it is often ugly, but it has enabled
experts to explore the potential of metaprogramming.

The second way in which C++ is a living language is that it is subject to periodic change. Even as
I write, those responsible for the definition of C++ (WG21, an ISO standards committee) are working on
changes that will eventually come into effect at the end of this decade. Some of those changes are to make C++
easier to write and to learn, some are aimed at cleaning up inconsistencies, and some will be aimed at further
extending the power of the language. At the time of writing it is impossible to predict exactly what will be
added and what changes will be introduced. I know that providing better support for metaprogramming is
one of the potential additions to C++.

I am only sharing this with you so that you can see that C++ is alive and well and continuing to develop
in a controlled and measured way. What you learn from the rest of this book will be valid for a number of
years, and even after the next release of the C++ Standard, almost everything you have learned will still be

OVERVIEW OF C++ 3

true, but there may be some easier ways to achieve the same objectives. One of the guidelines for growth and
development of ISO programming languages is that every effort should be made to preserve existing source
code. This is in marked contrast to some non-ISO programming languages that change on much shorter cycles
and often in ways that break existing code.

Different Backgrounds
In the rest of this chapter I am going to attempt to make some helpful comments based on the most likely
languages that you might already have learned. Every language has strengths. Every language has its own
special properties, and those using them will have learned various idioms. Some of those idioms will not
easily transfer to C++.

If your first language uses a syntax that is like that of C++ (for example C, Java, or C#) you are going
to have to overcome the tendency to think that what looks the same behaves the same.

In general you are going to have to fight the natural tendency to think the way that your first language
works is the way that programming languages should work. There are wide differences in languages. Most
computer languages have been designed by highly intelligent people. The differences are not accidental, and
the differences do not make one language better than another. Sometimes we can capitalize on the way one
language works to write a program in another one.

Many years ago the warden of the Oxford Schools Sailing Centre asked me to write a race-analysis
program for him to use on his Acorn BBC Microcomputer (an old British desktop computer built around the
8-bit 6502 processor). The native language for that machine was a version of BASIC. Now in those days my
language of choice for problem solving was Forth (check http://www.forth.org/ if you want to know
more). I spent a Saturday morning at the warden’s house being fed coffee and biscuits while I wrote the
program for him, superficially, in BBC BASIC. When the job was done, he looked at it and said, ‘‘That does
not look anything like BBC BASIC.’’ He was spot on: the program was designed in Forth and implemented
in BBC BASIC. Every program statement was a correct BBC BASIC statement, but no BBC BASIC programmer
would have written that source code. Another Forth programmer would have recognized it despite the use of
a different programming language.

Sometimes, as a once-off task, you can do something like that. The result was neither good Forth nor
good BBC BASIC. It had only one merit: it met the client’s needs and worked correctly. If a student learning
BBC BASIC had produced that program, they would have lost marks from me for inappropriate use of the
language. Mastering a language includes mastering its idioms.

Fundamental C++ for C++ Programmers
No, I have not lost the thread. Quite a few readers may already have done some preliminary programming
with C++. Some of them will have had a good experience and a good introduction, while others will have
had a less sound introduction.

My book You Can Do It! [Glassborow 2004] is specifically a book about programming, and all the focus of
that book was on how to program. It uses C++ as the language for writing programs, but it was not written
as a book about C++ and so left out a great deal of the language. (I estimate that the book covers only about
10% of C++.) While there is some overlap between that book and this one, those who acquired their basic
programming skills through my first book can learn much more about C++ from this one.

There are many other books that introduce C++ as a first language. Some of these do a good job and
some a rather mediocre one. You might also have learned C++ at school or from a web-based tutorial. In any
of those cases, you might reasonably want a more complete introduction to C++ fundamentals. Like all those
who come to this book having gained their programming basics from some other language, you will possibly
need to unlearn some things and change the focus of others. If what you read in the rest of this book seems to
conflict with what you learned previously, you will need to think hard. Perhaps your earlier learning led you

4 OVERVIEW OF C++

to too specific an interpretation of the way something worked. Perhaps the original source was plain wrong.
It is even possible that this text is plain wrong (though I sincerely hope not).

One definite area of potential conflict is that the C++ I am writing about here is very different from
the C++ of the early ’90s, which many other books introduce. The syntax of the language has not changed
(though there have been some additions), but the way that the best modern programmers use that syntax to
express solutions to problems has changed out of all recognition.

Try to use any tension resulting from conflicts between what you have previously learned about C++
and what this book says. In trying to resolve those conflicts, you will come to a much better understanding
of the way C++ works. While I have given a good deal of thought to the way I write and teach C++, that
does not mean that I own ‘the one true way’. There is no such thing. There are many bad ways to write
C++ and several good ways. One hallmark of a good way is consistency. If I choose to express an idea with
a different idiom it is, I hope, because there is a difference. I try not to do something one way on weekdays
and a different way at weekends.

However, there is a caveat. One of the ways that programs differ is in their purpose. For example, much
of the code in this book is designed to help you learn C++. That is quite different from code written as part of
a large application. When you are working as a member of a team, you should conform to the presentational
and coding standards of the team. However, you should also take pride in every line of code you write. I do
not go for the concept of ‘egoless programming’; we should be proud of our contributions, but we should
not seek to make those contributions irritate by being in a different style from that of the rest of the team.

The step from good personal code to industrial-strength code is considerable. When we write code for
ourselves, we can often ignore the fact that what we write will only work on the machine we are using, or
that it depends on the development tools we have. On the other hand, when learning C++ you should have a
clear division between what is Standard C++ and any extras. I think you will find it in this book.

Fundamental C++ for C Programmers
The traditional route to C++ was through learning C. Unfortunately, many excellent aspects of C are no longer
so sound in the context of C++. In C++ we have to consider issues such as exception safety (be patient, we
will get there!), polymorphism, const correctness, and overloading of functions and operators. These issues
lead us to a very different programming style.

One small example is the issue of using pointers. Good C often relies heavily on correct and extensive
use of pointers; good C++ frequently avoids pointers or uses a C++ mechanism for encapsulating pointers
(called smart pointers) to control their potential for damage.

Another example is that in C++ we rarely, if ever, use a dynamic array (the kind of object that a C
programmer creates with malloc() and manages with realloc()). C++ provides a vector container
(std::vector<>) that automates most of the resource handling.

C++ provides real types to handle both strings of char and wide strings of wchar t (which is a full
built-in type in C++ rather than an alias for some integer type as it is in C). It also provides a convenient
mechanism for creating other string types such as those we might want for Japanese.

C++ input and output mechanisms are designed to be type safe, unlike those in C, where it is the
responsibility of the programmer to ensure that the type the programmer says will be provided is the type
actually provided.

A C programmer learning C++ needs to focus on understanding why C++ does some things differently.
Contrary to what you may read elsewhere C++ is not better than C; despite the deliberate compatibility of
syntax, C++ is a distinctly different language. Unless you come to understand that, your C++ will remain C
in disguise. That would be to sell both yourself and C++ short.

There is nothing in C++ that prevents you from using C dynamic arrays, arrays of char and wchar t,
or members of the printf and scanf families of I/O functions. It is just that C++ provides alternative
mechanisms whose use is less demanding of programmer time.

Sometimes I may write that C++ has a better mechanism for doing something than C. Such statements
should be taken in the broader context of programming rather than as an implication that C++ is better than

OVERVIEW OF C++ 5

C. C is fundamentally a language for programming close to the metal. That makes it an excellent language for
writing for small, embedded systems such as the dozens of micro-controllers that permeate modern life. C++
was designed for writing very big suites of code where millions of lines of source code is not unusual.

Fundamental C++ for Java Programmers
One of the problems you are going to have is that much of Java syntax is also valid C++ syntax but it does
something slightly different. The underlying object models of the two languages are subtly (some would say
radically) different.

In some ways, you are going to have more difficulty than anyone else does in learning C++. You are going
to be constantly writing code that you expect to work. It will compile and then do something bizarrely unex-
pected. You will have to resist the natural temptation to think either that your compiler is broken or that C++
must be a broken language. Java has many strengths, and I am certainly not going to denigrate it (I do not do lan-
guage wars). But learning Java as a first language causes considerable problems when you then try to learn C++.

Major issues concern such things as order of evaluation: Java strictly defines this; C++ states that it can
be in any order. Another issue is the concept of references: C++ references simply do not behave the same
way that Java ones do. For example, every C++ reference is required to refer to an actual object and refers to
the same object throughout its lifetime.

You will also find that there are issues with constructors: superficially, C++ and Java constructors seem
to do the same thing, but when we look under the hood, we find that they work differently. At the other end
we have the concept of destructors to end the lifetime of an object, but C++ does not have garbage collection
(though there is nothing in the language to prevent it being added as long as the programmer avoids some
C++ mechanisms). The lack of garbage collection was a deliberate design decision; it can always be added but
it cannot be taken away. Java source code expects a garbage collector and will be badly flawed without one.
C++ written on the assumption that there is no garbage collection will usually work correctly even if there is.

All these issues and many others are going to make things difficult, because you will need to relearn
your code-reading skills.

I am reminded of an episode from my school days, when I was a reasonable chess player. We had the
then (1956) British Chess Champion, C.H.O’D. Alexander, visiting the school to give us some instruction and
to play the school in a simultaneous match. At the end, we were discussing the subject of fairy chess (chess
played with various modified rules). One variation he suggested was to simply swap the values of the pieces
so that, for example, the one that looked like a bishop was actually used as a knight.

If you play chess, try it. I think you will understand the problem of things not being all that they appear
to be. That is the major problem that Java programmers have when learning C++.

Fundamental C++ for C# Programmers
C# is superficially even closer to C++ (the similarity of the sharp sign to overlapping plus signs is not
accidental) and so is going to add to code-reading problems.

Like the Java programmer you are going to have to learn the concept of global functions and data. That
can be a hard step. Unlike the Java programmer your first language does incorporate the ideas of destructors
and user-defined value types. However, the C# concept of a destructor is very different from the C++ one,
so you will have to do some careful thought getting those differences clear in your mind.

C# has garbage collection and is heavily constrained by the requirement that it function under a CLI
(Common Language Infrastructure) based virtual machine such as .NET or Mono. For example, types are
more strictly defined; they have to be because all languages running on a CLI VM have to agree about the size
and layout of the fundamental types.

Again, as for Java, C# references are not exactly the equivalent of C++ references, so be careful when I
write about references–they may not be what the word leads you to expect.

6 OVERVIEW OF C++

In C++, the keywords struct and class, which are used to define a user type, are very close to being
synonymous. So close that the only reason why good C++ programmers ever use struct is to emphasize
that what they are writing is basically a simple C-style aggregate type. This is not the place to explain why
C++ has two words without a substantive difference, though some of us think that this was one place where
Bjarne Stroustrup made a less-than-ideal decision.

In C++, the difference between value types (those that C# defines as structs) and object types (close
to the C# concept of a class type) is entirely in the way the programmer designs the type. There is no
semantic content in the choice of struct or class in C++.

Fundamental C++ for COBOL Programmers
C++ comes as a nasty shock to long-term COBOL programmers. I can remember sitting in the back of an
introductory C++ course (I was assessing the instructor). One of the students had programmed in COBOL
for 25 years. He was finding great difficulty with the concept of a pointer, because he had never needed such
a mechanism in all the years that he had programmed in COBOL. The instructor was having quite a bit of
difficulty in trying to get the student to see that C++ needed something that COBOL did not. At the end of
the week-long course, the student assessed the course as a waste of time. In a sense, it was, for him. As it
happens, I knew his manager, who told me the rest of the story. He had been sent on the course as a last
attempt to break him out of a very narrow and specific view of programming. It had not worked, with the
consequence that his employer could no longer use him as a programmer, and his rigid thinking made him
ill-suited to other work in the company.

I relate this sad tale as a warning to others. A rigid view of how programming works makes professional
development difficult and ultimately impossible. If you come to C++ from a radically different language you
will need to get down to fundamentals such as decisions (if–else), looping (for and do–while), and
functions or procedures. Those basics are shared by all languages, but the exact way they are implemented can
vary considerably. Think of natural languages. English, Chinese, Arabic, and Hindi are all powerful human
languages, but if you think an alphabet is fundamental to writing, you will have a great deal of difficulty with
Chinese.

I was brought up in Sudan, and I can remember my mother’s struggle with teaching one of our servants
to read English (at his request). In Arabic the basic meaning is carried by the consonants, and the difference
between verbs, nouns, adjectives, etc. is largely conveyed by the vowels. Now Abdul knew that English
was different, but knowing and believing are different things. One day he sat there struggling to see the
logic behind ‘hat’, ‘hot’, ‘hate’, ‘heat’, ‘hut’, ‘hit’, and ‘hoot’. From his perspective, there was an obvious
relationship between a hut and a hat, and you wore a hat when it was hot, and ‘hate’ sort of fitted, being a
hot emotion. Just possibly, ‘hit’ could be worked in, because you wore a hat to protect yourself both from
the sun’s heat and from being hit on the head. However, how did ‘hoot’ get into the mix?

Beware of trying to force your view of a topic into some preconceived framework. Just as ‘ht’ does
not label a fundamental concept in English, you must avoid trying to force C++ into the mould of your first
language.

Fundamental C++ for Python Programmers
Python is a very interesting language. However, those that learn programming using Python must be careful
to distinguish programming fundamentals from the way that Python implements them. One of the interesting
features of Python is that the program structure is communicated by the program layout. Levels of indentation
matter in Python, whereas they do not in C++. C++ uses braces, { and }, to block statements together. We
encourage C++ programmers to use indentation to make their code more readable for human beings, but
indentation has no significance to the compiler.

Another important feature of Python is something it shares with a few other languages: names are just
names. A name in Python takes on the characteristics of whatever was last assigned to it. This is an immensely

OVERVIEW OF C++ 7

powerful programming concept, but one that does not work well in the case of a compiled language. C++
source code can be interpreted (I know of one reasonable interpreter for C++) but is generally compiled to
machine code for the platform on which the program will run. That is why a compiled C++ program for a
Linux machine will not run on a Microsoft Windows machine.

Python gets around the problem by supplying a Python program (effectively a virtual machine) that
takes Python source code as data and executes it. In this, it is a little like Java: Java programs only run in the
context of special programs called Java Virtual Machines. However, Python goes further than Java by making
a great deal more use of the immediacy of code.

I am not going to attempt to explain the gains and losses of each mechanism. All I can do is to warn you
that they are very different; each language has its advantages and each has its costs.

Fundamental C++ for (Visual)
Basic Programmers
Many years ago BASIC (computer languages were spelled in all uppercase in those days) was designed as a
language for teaching programming. It has come in for a good deal of criticism from academics over the
years, some of it justified and some of it not. The biggest problem was not in BASIC but in the way that it was
often taught. It trapped many teachers into teaching bad programming.

Visual Basic is a Microsoft proprietary language that is a refinement and extension of the original
BASIC. It is a powerful language that has been damaged by its owner’s propensity for releasing incompatible
dialects. One of the better features of Visual Basic is the provision of visual-programming tools that allow
you to generate code for complicated components from a palette of more basic ones. One surprise to VB
programmers is that Visual C++ (simply Microsoft’s toolkit for C++ programming) does not supply any kind
of visual-programming tools for C++. There are tools around for visual programming with C++ but they are
largely of limited use, because the strengths of C++ are not with visualization but in the exact expression of
computation and in data management.

C++ is much more to do with the underlying programming than it is to do with constructing
applications from available components. This makes it a more powerful tool when you want to do something
different, i.e. something for which there are no pre-designed components.

When you learn C++ you are going to be concerned with expressing solutions to computational
problems rather than being focused on data capture and data display. When you have a firm grasp of the
C++ fundamentals you will be able to use libraries of pre-built components to handle some input and output
problems, but that is not the focus of C++. You may even find one of the visual-programming tools useful
(though they are not cheap).

Fundamental C++ for Pascal
and Delphi Programmers
Pascal was a language that set out with the grandiose intention of providing a computing language that was
hard to abuse. Unfortunately, the consequence was that it created a generation of programmers with one
of two bad mindsets. Highly talented programmers knew that Pascal was getting in the way and preventing
them from doing things that they knew could both be done and be done safely. This led them to that
form of creative programming that used to be called ‘hacking’. In other words, they found ways round the
well-intentioned obstructiveness of the compiler. The rest of those learning Pascal tended to have a view that
if the compiler would compile it, then the code was OK. That created a mindset that what a compiler would
compile was safe.

A Pascal programmer reading this book is unlikely to have such a mindset, but be warned: C++ expects
users to be responsible, to understand what they are doing, and to avoid doing dangerous things. A C++

8 OVERVIEW OF C++

compiler will not try to second-guess you and refuse to compile code simply because the result might be
dangerous.

One of the more famous problems that C++ has inherited from C is the concept of a buffer overrun
(a problem that is by no means exclusive to these languages). C++ expects that when you provide storage
for input you will make sure that you provide sufficient storage or add a mechanism to prevent excessive
input overwriting other data. If you program carelessly you produce programs that are vulnerable to being
overloaded with data. In these days of the Internet, many of us have discovered the bad consequences of
such carelessness. Pascal would probably have died out many years ago were it not for the efforts of a single
company, Borland. Borland created a version of Pascal with a considerable number of extensions. Those
extensions provided a safe and correct way to do many of the things programmers wanted but which were
prevented by Standard Pascal.

More recently Borland further enhanced Pascal with features to support object-oriented programming.
That extended dialect of Pascal is called Delphi. In addition, they then enhanced their C++ development tools to
support mixing of C++ and Delphi. The result is that if you are a Delphi programmer you must be very careful
that you do not fall into the trap of believing that C++ is what you get when you use Borland C++ Builder
(their implementation of C++) in its Delphi compatibility mode (which is very tempting because you then
have the use of an extensive third-party library, written in Delphi but accessible from Borland’s extended C++).

In general, Pascal programmers have to learn to trust themselves to get code correct and not trust the
compiler to reject dangerous constructs.

Fundamental C++ for Functional Programmers
If you come from a background of functional programming (perhaps having learned Haskell, Scheme, or ML)
you will likely be shocked by what C++ so cavalierly calls a function. In C++, not only are functions allowed
to have side effects, but they usually do. Perhaps one day we will have a mechanism to tell a C++ compiler
that something really is a function in the mathematical/functional-programming sense but that day is not
here yet.

By default, C++ variables are indeed variable. Like other programming languages, C++ allows and
even encourages assignment. If you are a functional programmer, you are first going to have to master the
instinctive revulsion you may feel for such an ‘ill-disciplined’ language.

For the purpose of this book, you are going to have to put much that you have learned to one side. But
do not discard it, because when you move on to less fundamental C++ (not in this book but perhaps the
next one) you will find that many of those ideas and idioms that you are familiar with allow you to become a
fluent user of some of the advanced aspects of generic programming and metaprogramming. Indeed the very
best C++ programmers often deliberately choose to learn a language such as Haskell in order to enhance their
C++ skills.

Fundamental C++ for Lisp
and Logo Programmers
It is hard to know where to start if you have mastered Lisp. First, you must have been lucky to have been taught
by someone who understood how Lisp works. I say that because far too much Lisp is taught by instructors
for whom it is a third or fourth language. The problem is that they often do not think in Lisp; they know
its syntax but for them it is like an English speaker writing Japanese by using a dictionary and a grammar to
translate from English.

The same problem applies to those who have truly learnt Logo (usually by trial and error). If your
knowledge of Logo stopped with Turtle Graphics then you may not have too big a struggle with learning C++
but if you went much further then you will need to focus on the fundamental ideas of functions, repetition

OVERVIEW OF C++ 9

and decisions. The semantics of those are common to all computer languages but the syntax is significantly
different.

Just as those that learn Lisp or Logo as a third or fourth language struggle because they keep trying to
impose the structures of procedural languages onto the new language they are learning, those going the other
way will have to abandon the thinking they have developed to handle list processing and imperative languages.
At least you will have to suspend those ways of thought until you have mastered the fundamentals of C++.

Fundamental C++ for Object-Oriented
Programmers
From time to time people describe C++ as an object-oriented programming language (OOPL). It is not; it
is a language in which you can do some forms of object-oriented programming (OOP). If you want to do
pure OOP, try a language such as Smalltalk. However, if you come from such a background be very careful,
because the C++ form of OO is significantly different from what you will have learned. There is enough
similarity to lull you into a sense of security and enough difference to make that a false one.

By default, methods (well, we call them member functions in C++) are statically bound. That is,
implementation code is selected at compile time, not at execution time. C++ provides a mechanism for
delaying binding until execution time (so-called dynamic binding), but the programmer has to make a
positive decision that that is what they want.

In C++, not everything is an object in the sense usually meant by an OOPL. When we talk about objects
in C++, we do not mean exactly what a Smalltalk programmer would mean by an object. The concept is near
but not an exact duplicate.

Fundamental C++ for Every Programmer
There are many other languages that you might have learned. Fortran, Modula 2 or 3, Forth, and Prolog are
just a few that I know to a greater or (usually) lesser extent. If you are old enough you might be fluent in
PL/1, and if you are a mathematician you might use APL (an outstanding interpreted language for those who
think mathematically–and almost impossible for the rest to grasp). You might also have learned Ada. If you
really dig into the odder corners you might have learned SNOBOL. I just throw that last one in because it was
a great language that did not catch on. However, I believe Andy Koenig has a set of libraries and other tools
to enable SNOBOL mechanisms and idioms to be used in C++.

Whatever language or languages you already know, C++ has something to offer you, and your prior
knowledge and skills have something to offer your study of C++. The most important thing is that you do
not try to make C++ just another way to write the language you already know. This is particularly important
if you are learning C++ because you want to broaden your job opportunities. Knowing enough C++ to get
through a job interview will not help you if you then try to write Xlang in C++ clothes.

Good programmers write fluently in many computer languages; bad programmers write the same bad
code in many computer languages. I hope that by the time you finish your study of C++, you are both a
better programmer and a good C++ one.

C H A P T E R 1

Getting Started

This chapter introduces you to the tools that I have provided on the CD for your use as you read this
book. You may prefer to use some that you already have, or you may prefer to use the IDE provided on
the CD. Whatever choice you make, it will be to your advantage to work through this chapter and check
that each step behaves correctly (or that you can achieve the equivalent with the tools of your choice). If
you use MinGW Developer Studio (which I will refer to as MDS), you will be able to check that you are
doing the right thing by comparing what you see on your screen with the screenshots in this chapter. If
you are using JGrasp from the CD, you will be able to check the alternative version of this chapter that
is on the CD. If you are using some other tools, you should still work through this chapter to make sure
that you understand how to use them to produce a simple program. Most importantly, you will need to
check that you can use my library with your choice of tools.

Before you go any further, read the fileRead First.txt in the root directory of the CD. That will tell
you what is on the CD and where to find the instructions for installing the software for the operating system
used by your computer (Microsoft Windows or a UNIX derivative such as Linux or Mac OS X). When
you have done that, or have installed some other development tools of your choice, continue from here.

It may be that you are familiar with the kind of tools used with a compiled language because one of
the languages you already use has similar tools. If so, please excuse me for taking time explaining things
for the benefit of other readers.

In this book, I assume that you are using an Integrated Development Environment (IDE), which
is the programmer’s equivalent of a carpenter’s workbench. Some programmers are used to using the
command line; that is fine if you understand how to write your own makefiles. If you do not (or even
have no idea what those are), you would probably be better off using an IDE that will automate much of
the interaction between the stages of writing, compiling, linking and debugging your code.

I am now going to walk through the process of producing two simple programs from scratch.
The first program is the traditional ‘Hello World’. The second one is to check that everything has been
correctly set up to use my graphics library. These programs are deliberately simple so that we can focus
on the process of creating a program from source code and libraries. As I go, I will add information that
may be new to you if you are used to a language that is substantially different from C++.

12 CHAPTER 1

Creating a ‘Hello World’ Program
The first step is to launch, or start, the IDE. I always have the IDE icon on my desktop. If you accepted that
option when you installed the software from the CD, you will find this icon somewhere on your desktop:

If you chose otherwise, you will have to launch MDS differently. When you have launched MDS, you should
see this window on your screen:

The various panes are adjustable and we will see what each is for as we go. If you are familiar
with using an IDE, you will probably recognize most of what is on the screen. If you start pulling
down menus, you will notice that most of the entries are ‘grayed out’. Most of the icons are grayed out
too, but unless you have disabled the feature, you will get a tool-tip if you let the mouse cursor hover
over an icon. These tips are minimal, but I find the inclusion of the default hotkey in the tip a useful
feature.

Your next step is to go to the Project menu and select New Project (Ctrl+N if you prefer to use
hotkeys).

GETTING STARTED 13

When you do this, you will see a data-capture window that looks like this:

The default project type is a console application, and that is what you will want through most of this
book. You need to tell the IDE the name of the project and the location of your files for this project. You are
less likely to make a mistake if you identify the location first. If you look at the lower text box, you will see a
small gray button on the right. Click on it and then navigate to the appropriate subdirectory. If you installed
MDS, by default that will be C:\tutorial\chapter 1. Now go to the upper box and give your project a
name. Type in hello world (note that MDS does not correctly handle file names that contain spaces) and
click on the OK button.

Next you need to create a file for the source code (the correct term for what we write; the compiler
turns that into object code). Select New from the File menu and you will see:

14 CHAPTER 1

The defaults are correct (or they should be). You are creating a C/C++ source file and adding it to
the project; the location of the file is the same place that you placed the project itself. All you need to do is
give the file a name. Type hellomain into the File name box. After I have opened the FileView tree (in the
left-hand pane), the top left of my work window looks like this:

Type the following into the file pane (the right-hand one, which has a ‘1’ in the dark-gray mar-
gin zone):

// First program written on 21/07/04
#include <iostream>

int main(){
std::cout << "Hello World";

}

Make sure you press Enter after the closing brace, so that the file ends with a newline character.
As you type, MDS tries to give help by its use of color. When you type an unmatched bracket (parenthesis,

brace, or square bracket) it first displays it in red. You can use Ctrl+B to go from one bracket to the matching
one (if there is one). The MDS editor also supports code folding (the ability to hide code leaving only a header
element); try clicking on the minus sign to the left of ‘int main’ and you will see what I mean. It is not

GETTING STARTED 15

very useful here, but can be helpful when you want to hide extraneous details while you focus on some other
section of code.

When you have typed in the code, select Compile from the Build menu. If you have done everything
correctly, you should see

hellomain.o - 0 error(s), 0 warning(s)

in the bottom pane. If you forgot to press Enter after the closing brace of the source code, you will get a
warning. The compiler issues a warning because C++ files can include other files; a missing empty line at
the end of a file could cause a problem because the compiler might append the next line of code to that
line. If you are used to using an interpreted language such as Python, you may be wondering what you have
achieved so far. A tool called a compiler has converted your text (source code) into a form (object code) that
the linker can use to produce an executable program. We will look at the rest of the source code shortly, but
for now I want you to produce an executable program and run it. You can do that step by step, by selecting
Build from the Build menu and then Execute from the same menu; or you can just select Build and execute.
The choice is entirely yours. You can even select Execute directly, and MDS will ask if you want to build the
executable.

However you execute the program, you should finish up with the following console window:

MDS inserts a closing message (after your program has finished) so that the window will stay open
until you are finished looking at the results. ‘Terminated with return code 0’ means that the program finished
satisfactorily.

I want you to try several things before we go on. First, I want you to change the project settings.
Select Settings from the Project menu. Now select the Compile tab and check all the warning boxes except
for the last one (making all warnings into errors is usually overkill). For now, leave everything else
as it is.

The settings can be separately set for a debug version and for a release version. While we are
developing a program, we are usually willing to accept slower performance and a much larger pro-
gram file in exchange for more help if the program encounters some problem while it is running.

16 CHAPTER 1

However, when we are ready to share our work with others, we probably do not want to have
a very big, slow program, so we produce a release version. The release version is normally much
smaller and possibly appreciably faster, because the compiler has worked hard to strip out all unneces-
sary details.

Do not worry about the other tabs in the Project Settings dialog box. We will only be using the Compile
and Link panes.

Next I would like you to take some time experimenting with the source code (try adding extra lines
of output, leaving out a semicolon, and introducing other typos) until you are confident with compiling,
building, and executing it. You are going to spend a lot of time with these tools, so it is worthwhile
spending a little time gaining some fluency with them. That is one reason for starting with such a silly little
program: it allows us to focus on the basics of our tools before we use them to write programs with more
substance.

What the Code Means
Let us look briefly at the six lines that made up the ‘Hello World’ program.

The first line is a comment. Whenever the compiler meets a //, it ignores everything from there to the
end of the line. Comments are for humans and sometimes for special code-analysis tools; they are not for
compilers. In this case, the comment is almost redundant, and I have included it only as an example.

The second line tells the compiler that the following code may use names from the part of the
Standard C++ Library concerned with streaming data in and out through the console. We call the part in
the angle brackets a ‘header’; it tells the compiler to get relevant information from wherever it keeps such
details. Different compilers may obtain the information in different ways. In practice, a header is usually
a text file in one of the compiler’s subdirectories. (If you are interested, you will find the corresponding
iostream file in MinGWStudio\MinGW\include\c++\3.4.2, but I doubt that it will make much sense
to you yet.)

The blank line has no significance and is there purely to separate the introductory part of the source
code from the rest. The next line (int main(){) must exist exactly once in every program. Effectively
it determines where a program starts. There are some variants that allow the provision of data at program
start-up, but that is all.

The fifth line is the substance of the program. std::cout is the name of a console output object.
In other words, it is the name we use to designate an object that represents the console on the computer
where the program will run; the console is usually a window on the monitor screen. The part of
the name before the double colon tells us that we are dealing with a name from the C++ Standard
Library.

Language Note: C programmers will recognize << as being the left-shift operator. In the context of an output object or destination,
C++ reuses that operator as a streaming operator, to insert data into an output stream.

The text in quotation marks tells the compiler that you want this text displayed. We call such quoted
text a string literal. The final element of the statement is the semicolon. That ends the statement and is the
C++ equivalent of a period in English. Try leaving it out and then attempting to compile the code; you will
see the kind of error message that results.

The last line of the program is a simple closing brace to match the opening brace at the end of the
line with main in it. In general, we refer to code between an opening and closing brace as a ‘block’. In

GETTING STARTED 17

this context, the code between the opening brace and the closing brace is the definition of this version of
main and specifies what will happen when the program executes. We call a block that defines a function the
‘function body’. So

{
std::cout << "Hello World";

}

is the body of the function main().

Our Second Program – An Empty Playpen

From time to time, we are going to use a very special graphics window that I designed and several of my
colleagues helped to implement. It is called the Playpen. (As you use it, I think you will come to appreciate
the choice of name.) This is a fixed size (512 by 512) graphics window, with each pixel limited to one of
256 colors. Modern computers are usually capable of displaying many more colors than that, but I wanted
something that was very portable as well as something that would allow you to learn about simple graphics
systems. For now, we are going to use the Playpen with its default palette. (Later we will discover that we can
choose different sets of 256 colors.)

Start up MDS and select New from the Project menu. Make sure that the location is correct (you are
probably going to have to add ‘chapter 1’ to what it offers you – at least that is what I have to do on my
machine). Now enter ‘playpen’ as the project name and press Enter.

Next, using the File menu or Ctrl+N, create a new C/C++ source file called emptyplaypen, and type
in the following short program:

// written on 21/07/04
#include "playpen.h"
#include <iostream>

int main(){
fgw::playpen blank;
std::cout << "Please press the 'ENTER' key";
std::cin.get();

}

Try to compile the source-code file (Ctrl+F7). It will fail with four or more error messages. The only
useful one is the first, where it says it cannot find playpen.h. The reason for that is that we need to tell it
where to look for header files. (Headers are part of the C++ Standard, but header files are a bit different: they
are provided by third-party programmers and relate to third-party code in much the same way that headers
relate to the Standard C++ Library.)

Choose Settings from the Project menu and select the Compile tab. In the box labeled ‘Additional
include directories’, at the bottom of the Compile pane, enter ‘C:\tutorial\fgw headers’ (or a variant
of that if you installed the CD to some other drive or directory). In other words, tell the compiler to
look in a subdirectory called fgw headers that is in the tutorial directory on drive C. While you are
dealing with the location of this header file, check that the same warnings are selected as for the first
project.

18 CHAPTER 1

The data-capture window should look like this when you have finished:

As long as you typed it in correctly, emptyplaypen.cpp should compile without errors or warnings.
Now try to build it (F7). You get link-time error messages referring to things that you have not written.
The problem is that playpen.h made some promises to the compiler about what the linker would be able
to find, but we never told the linker which library files provide the necessary pre-compiled (object) code.
The linker will need two library files: one for the fgw library (my library) and one for the gdi32 library (a
system-dependent library providing some basic graphics facilities used by my library).

Open the Project Settings dialog box again and select the Link tab. If you are working on a Microsoft
Windows machine, enter ‘fgw;gdi32’ in the Libraries box.

GETTING STARTED 19

This is what you should see on the screen:

Return to the project and build it. Everything should work.
If you are using a system that can support graphics using the X Window System (Linux, Mac OS X, etc.)

you will need to insert ‘fgw;X11;pthread’ into the libraries box instead of the ‘fgw;gdi 32’ that you would
use on a Microsoft Windows system. You will also need something like ‘C:/tutorial/fgw headers;/
usr/X11R6/lib’, where those two paths take you to the headers directory for my library and the location of
the X11R6 library directory respectively. You may need help from someone else if you are not familiar with
the location of X11 support files on your computer.

If you are using a different set of development tools, you may need to know the names of the library
files rather than just the names of the libraries. MDS (along with GCC, the GNU Compiler Collection, on
which MDS is based) uses a naming convention that libraries are kept in files prefixed with ‘lib’ and followed

20 CHAPTER 1

by ‘.a.’ Therefore, the library files libfgw.a and libgdi32.a provide the two libraries for Windows, and
linfgw.a, libX11.a, and libpthread.a provide them on systems that use X11 for graphics support.

Finally execute the program and you will see:

On top you will see a square white window with the title ‘Playpen’. We will be using this graphics window
during your study of C++. Immediately underneath it, there is the standard console window (usually black
unless you have changed the default settings of your computer). On some computers, you will also see a
white area at the top left of the screen. Do not worry: some versions of Windows forget to update the screen
when they create the Playpen window. If you move a window over the area and then away again, Windows
will correctly update the screen.

Use the taskbar to select the console window (or just click on a bit that you can see on the screen to
bring it to the top). Follow the displayed instructions.

What the Code Means
The first line after the comment is a different form of #include. The use of quotation marks tells the compiler
that this is a header file (as opposed to a system or language header) and that it should look for it in the places
designated for such files. By default, the compiler looks in the same directory as the current file. As we want
it to look for the header file in another directory, we amend the Project Settings by adding fgw headers to
the include path. Using the wrong syntax for a #include directive is a common error; it matters whether we
use angle brackets (headers and system header files) or double quotes (user and third-party header files).

GETTING STARTED 21

The next three lines are the same as for our first program, with the same significance. The line
fgw::playpen blank; tells the compiler that at this stage in the program you want a Playpen and that you
are naming the object representing it blank. If you are familiar with the concept of declarations and types,
fgw::playpen is a type and the whole statement is a declaration of blank. I will be covering the details of
declarations in the next chapter.

I hope that the meaning of std::cout << "Please press the 'ENTER' key"; is obvious.
The last statement of the program, std::cin.get(); may seem strange to some readers. std::cin is
the standard C++ console input object (the input equivalent of std::cout). We largely use it to obtain
information from the keyboard. The remainder of the statement tells the compiler that you want to get a
single character from the keyboard. C++ only extracts data from the keyboard when signaled that input is
complete (usually by the user of the program pressing the Enter key).

We have to use some way to keep the program running until we have finished with the Playpen, because
the window will close automatically when the program ends. Try removing the std::cin statement (or
commenting it out by inserting // at the beginning of the line) and then running the revised program. The
Playpen just flashes on the screen. The std::cin.get() causes the program to wait until the user provides
some input by pressing Enter.

Something to Play With
Neither of the programs you have tried does anything even vaguely interesting, but if you would like to
try something a little more exciting you can read Chapter 1 of You Can Do It! [Glassborow 2004], which will
provide you with more information about what can be done in a Playpen window.

Summary
MinGW Development Studio supplies various tools for software development with the MinGW suite of
development tools.

When starting a new project you may need to change the Project Settings. In particular, you may need
to tell the compiler where to find some header files, and you may need to tell the linker about any special
libraries your program uses. The mechanism may not be the same for other IDEs but the substance will be.
Any IDE will need to know where to look for header files and which libraries are used. In addition, the
search order of libraries usually matters. In other words, the order of the library list matters. A library name is
specified on the command line with the -l (minus el) prefix. A library is conventionally stored in a file that
prefixes the library name with lib.

Every C++ program includes a function called main(), which is used as the entry point for the
program.

C++ includes a pair of objects, std::cout and std::cin, which represent the console output
device (defaulting to a window on the monitor) and console input device (defaulting to the keyboard). The
iostream header makes these objects available.

We can send (shift out) data to std::cout by using << and we can extract a single character from
std::cin by using the get() function.

C H A P T E R 2
Fundamental Types,
Operators, and Simple
Variables

The main objective of this chapter is to introduce you to some of the most fundamental elements of C++.
You may already have a clear idea about the meaning of the terms ‘type’, ‘operator’, and ‘variable’ or
‘object’ in programming, but even so you should do a quick pass through this chapter to check that your
understanding of these things concurs with the way C++ uses those terms.

I am going to cover some simple theory and terminology to start with. You may find it indigestible
at first, or it may be telling you what you already know. By putting it up front in this chapter, you will be
able to come back to it when you need to, as you work through the rest of the chapter.

If you have a background in a language that provides strict ranges of values for its fundamental
types (such as Java), you will need to pay particular attention to the details of C++’s types: C++ has
more liberal requirements for most of its fundamental types. If you are coming from a non-procedural
language (such as Lisp or Scheme), you may find some aspects of coding in C++ strange. You may even
have a gut reaction that they illustrate bad programming. Mainstream procedural languages such as C++
rely heavily on assignment operators and explicit loops.

A Simple Program
Those without a great deal of experience of programming often find understanding the programming concept
of type difficult to grasp. This will be particularly true for those whose prior experience has been with
languages such as Python, where a great deal of type information is implicit. With that in mind, here is a
simple C++ program. Please create a project (as you did for the ‘Hello World’ program in the last chapter)
and then enter the following source code. When you have done that, compile and link it, and then execute
the result.

1 // written by FGw 06/08/2004
2 #include <iostream>
3
4 int main(){
5 int count(0);
6 double total(0.0);
7 while(true){
8 std::cout << "Next value please: ";
9 double value;

24 CHAPTER 2

10 std::cin >> value;
11 if(value > 9999.0) break;
12 ++count;
13 total += value;
14 }
15 std::cout << "\nYou input " << count << " values. \n";
16 std::cout << "Their total is " << total << ".\n";
17 std::cout << "The arithmetic mean (average) of those values is "
18 << total/count << ".\n";
19 return 0;
20 }

Now I will use this source code in the following discussion of type, operators, and variables.

What Is a Type?
Types are specifications for entities that have specified behavior. As well as behavior, most types also specify
data that can vary from one instance to another. We roughly divide types into two categories: value types
and object types. A value type is one where it makes sense to treat instances with the same data as being
interchangeable. In other words, instances do not have any special significance beyond their data. We can
reasonably ask whether two instances of a value type are equal. An object type is one where the identity of
an instance is significant and it makes sense to ask if two potentially different instances are actually the same
object, rather than just having the same characteristics.

For example, such concepts as integer, word, color, and time are all examples of value types. However,
such things as programmatic representations of cars, pictures, and diaries are examples of objects. A copy of a
picture is distinctly different from the original (try selling a copy as an original masterpiece and see how long
a jail sentence you get).

Another characteristic of value types is that they can exist as pure values (usually described as ‘literals’)
that do not have some explicit place where they are stored. In the above program, 0 (line 5) is an example of
a numeric literal (whose type, we will discover, is int); "Next value please: "(line 8) is an example
of a string literal. String literals actually do need to be stored somewhere, but they do not have a unique
identity. If a program uses an identical string literal in several places, it only needs to store a single copy.

We will be mainly concerned with value types in this chapter. However, we have already made use of
several examples of object types. The fgw::playpen objects we used in the last chapter to handle the Playpen
window do not allow the existence of pure values (i.e. there are no fgw::playpen literals). std::cout
and std::cin are also examples of object types (ones designed to handle output and input). Such objects
have state, which represents their condition, but we cannot isolate that information from an object that stores
the information. For example, an fgw::playpen object remembers what scale it is using for plotting pixels,
and we can even ask an fgw::playpen object what scale it is currently using, but scale is an attribute of an
fgw::playpen object and has no independent existence. If the concept of ‘state’ as opposed to that of ‘value’
is unclear or confusing, put it to one side for now. Eventually, to master use of C++ for object-oriented
programming, you will need to understand the difference, but that requirement is still some time in the
future.

Most programming languages have some form of integer type. Such a type consists of a range of allowed
values together with operations that can be performed on those values. Typical operations for an integer type
are addition, subtraction, multiplication, and division. In C++ (as in C), such behavior is normally provided
by the use of operators. The addition and subtraction operators are those normally used in handwritten
arithmetic (+ and -), but the division operator in C++ is the slash, or solidus (/), which is less frequently
used in elementary arithmetic than ‘÷’. The programming choice was made because ‘÷’ was easily confused
with + when handwritten code was being input by professional key-punch operators in the early days of
computing. The traditional symbols for multiplication (‘×’ and ‘·’ – a vertically centered dot) are too easily

FUNDAMENTAL TYPES, OPERATORS, AND SIMPLE VARIABLES 25

confused with other uses of those symbols, so the programming sign for multiplication in C++ (and many
other computer languages) is *. The juxtaposition of variables to mean implicit multiplication (e.g. xy = x
× y) does not work in programming languages, because xy (for instance) is a legitimate name for a single
variable.

C++ (and C) provide many other arithmetic operators, such as the += (add the value on the right into
the value stored in the object on the left) used in line 13 above. You will find a complete listing of the
operators for integral and floating-point types in the reference section of this chapter.

Language Note: If you come from a background of functional languages such as Haskell, you may be surprised by the extensive use of
assignment in C++. This is one of the major visible differences between functional languages and procedural ones.

An instance of a value type will need some memory in which to store the value. This is even true for
pure values, though we then leave the mechanism entirely up to the compiler. (For those interested in such
things, values are often held in CPU registers or in some other form of scratch memory.) For the purpose of
this book, I am going to use the terms value and object. An object provides storage for a value (as well as storage
for the state of an instance of an object type).

Lines 5 and 6 of the above program are examples of creating objects (of two different types) and
initializing them with values. In line 5 we tell the compiler that we intend to use an object called count. We
tell the compiler that the type of count is int and that we want it to start with the int value 0. Line 6 tells
the compiler that we want another object called total, with type double and initial value 0.0. Note that 0
and 0.0 are literals (pure values) of types int and double respectively.

If we do not provide an initial value, the compiler will create a default object of the specified type. In
the case of types int and double, a default object will have an indeterminate value (i.e. it can be anything,
and it can even change from moment to moment). There are very few ways to use such objects until you have
stored a value in them. Line 9 gives an example of creating a default object, named value, of type double.
At line 10 we extract a value from the console, which is then stored in value. One of the few things that you
can do with an object with an indeterminate value is assign a value to it, after which the value is whatever
was assigned.

Line 11 provides another example of a double value (literal) rather than an object of that type. The
9999.0 is a value of type double. I know that it is a double value because the rules of C++ say that a
numeric literal with a decimal point included has type double (unless explicitly stated to be of some other
type, but we will get to that much later.)

Note that we can have a value without an object if we do not need to store it. Such ‘naked’ values come
in two forms: literals (which are provided within the code) and temporaries (which result from evaluating
expressions). 17 is a literal and value + 2.2 is a temporary. 17 + 21 is strictly a temporary that results from
evaluating that expression (though the compiler usually evaluates simple integer arithmetic on literal values,
rather than leave the task to the program).

In addition to having a range of allowed values, a type also has behavior. Loosely, for value types, that
means ways in which the values can be transformed into other values, accessed by other objects, or used to
create some external (to the program) result. A value of one type can sometimes be transformed into a value
of a different type; that is also part of the behavior of a type. I could replace line 6 of the above program with:

double total(0);

The literal 0 has type int (no decimal point so it isn’t a floating-point value). However, in the context,
the compiler recognizes that a double value is required. It will silently convert the 0 into 0.0. As this is
entirely safe in the context, a compiler would not normally trouble the programmer with any form of warning
message.

What Are Fundamental Types?
C++ provides a number of elementary types that are part of the language. These come in two major flavors,
integral types and floating-point types. All other types are built by using these. At a minimum, we need four

26 CHAPTER 2

types for simple programming. These are bool, char, int and double. The first three are integral types and
the last one is the most frequently used floating-point type. You will find a complete list of all the fundamental
types in the reference section of this chapter, together with some guidance as to their designed usage, but
here are some details of the essential four.

bool is a type that has only two values, true and false. In simple terms, it can represent a single
bit of information – the answer to a question that has only two possible answers, such as a simple ‘yes’ or
‘no’. bool, true and false are all keywords (words with language-defined meanings) of the C++ language.
We cannot use keywords for anything else. In the above code ‘(value > 9999.0)’ is an example of an
expression of type bool. When the program comes to execute the code that the compiler produces for line
11, it generates a temporary bool value that is either true or false depending on whether value is or is
not greater than 9999.0.

char is the type that is intended for values that represent characters. For historical reasons it is an
integral type. C++ requires that it can represent at least 256 distinct values, which can either be -127 to 127
(together with either -128 or -0) inclusive or 0 to 255 inclusive. C++ does not specify that char cannot
represent a wider range, but on most common desktop machines, the range is either -128 to 127 or 0 to 255.

int is an integral type that is required to be able to represent all values in the range -32767 to 32767
(together with either -32768 or -0). The curious alternative of -0 is because C++ allows an implementation
to use any one of three binary representations for negative integers: two’s complement, one’s complement,
or sign and magnitude. Most modern desktop computers use two’s complement. Two’s complement does not
have a negative zero.

Representing Negative Integers
C++, along with many other programming languages, uses a binary representation for natural numbers
(zero upwards). This matches well with all the generally available computing hardware (hardware that uses
non-binary representations is sometimes developed for experimental purposes but cannot be used efficiently
by the majority of programming languages, which assume the hardware will use binary representations).

The problem arises with the representation of negative numbers. There are three different ways to
handle negative integers with an essentially binary representation. There is hardware around that uses each of
the three possibilities, though most hardware uses two’s complement. As a general-purpose language, C++
provides rules for integers that allow the use of any of the three representations. The highest bit determines
the sign in all three representations. A zero for the highest bit designates a positive value that is determined by
the remaining bits. A one as the highest bit signifies that the rest of the bits represent a negative value in some
way or other. At that stage, we need to know which representation is used, because the value represented by
those bits will depend on the choice. The three options are called ‘sign and magnitude’, ‘one’s complement’
and ‘two’s complement’.

Consider the 8-bit pattern 10000111 (I am using just eight bits to keep the arithmetic simple). As
the left-hand (highest) bit is one, the remaining seven bits (0000111) represent a negative value. The value
depends on the representation used for negative values.

Sign and magnitude is the easiest representation for humans to understand, but very few computers
use it. The remaining bits are the magnitude and are a normal binary representation of a value. The value
of the example pattern will be negative 0000111, that is, −(4 + 2 + 1). Therefore, the eight bits 10000111
represent -7 when we use sign and magnitude.

One’s complement treats the remaining bits by inverting them (swapping one for zero and vice versa).
In this case, 10000111 represents negative 1111000, that is, −(64 + 32 + 16 + 8). Therefore, 10000111 in
one’s complement represents -120.

Two’s complement is by far the most common representation used by computing hardware while also
being the hardest for many humans to understand. It is like one’s complement except that we add 1 to
the result of flipping the value bits. Now 10000111 represents negative (1111000 + 1) which evaluates to
-121. The reason is the curious mathematical property of this representation that ensures correct answers to
arithmetic without having to provide any special support for negative numbers. Well that is true as long as all

FUNDAMENTAL TYPES, OPERATORS, AND SIMPLE VARIABLES 27

the values remain within the range provided by the type. If you try adding 10000111 (-121) to 10000001
(-127) you will get the wrong answer, because the result of adding together those two negative numbers
is too large a negative value (-248) to fit into 8 bits. Most systems will produce 8 as the answer (though
according to the strict letter of the C++ Standard such overflow has undefined behavior).

One curiosity of both sign-and-magnitude and one’s complement representations is that they have
representations for both -0 (10000000 in the 8-bit sign-and-magnitude case; 11111111 in the 8-bit one’s
complement case) and 0 (00000000 in both cases). Effectively they have two representations for zero.

Two’s complement has its own curiosity in that the most negative value has no matching positive value.
In the 8-bit representations we have been using, 10000000 represents -128, i.e. −((64 + 32 + 16 + 8 +
4 + 2 + 1) +1). If we try to negate that by flipping all the bits and adding 1 we find ourselves back where
we started. (Actually there is a final carry but that is lost because we have a limited number of bits at our
disposal.) Mathematically that leads to the odd feature that negative 10000000 equals itself.

The above curiosities show that in terms of computer representation of signed integral values all choices
have their surprises. Fortunately, most of the time, we do not need to concern ourselves with the underlying
representation. The exception to this is when we are actually making use of bit patterns rather than the values
they would represent as some kind of integer. For example, the shift-left operation common to most hardware
does not consistently multiply a negative value by 2. On the other hand, shift-right does divide by 2 for
one’s and two’s complement representations, but the treatment of negative odd numbers may not be what
you expect.

Most recent machines provide a far wider range for int (-2147483648 to 2147483647) but you
should not rely on this if you are writing programs that may be used on older or more limited equipment.

Language Note: If you come from languages such as Java or C#, you should take special note that C++ only provides minimum
ranges for its fundamental types. You must not assume that an integral type will have the same range of values
for all compilers. Some compilers even allow the programmer to choose whether an int uses a 16-bit range or a
32-bit range. In addition, some systems use other ranges. The only rules are that the range must be symmetric
(except for the extra negative value) and that it must be at least 16 bits for an int.

Derivative Types
The types I am now going to write about are called derived types by C; however, I want to keep that term for
later use when we start working with user-defined types.

There are various ways that we can create new types from existing types. We can qualify any type as
const and/or volatile. A const-qualified type is the type for an object whose value (state) must not
be changed from within the program. const can be used to limit the kind of access provided to an object.
Accessing an object through a const-qualified reference or pointer (I will be dealing with exactly what those
are later on, but for now it is sufficient to know that they are ways of providing access to an existing object)
prohibits changes to the underlying object. Think of const as a way to specify that a name provides read-only
access to an object. It can also be used to tell a compiler that an object is immutable (think of the difference
between protecting a file from being changed and placing a file in ROM). In C++, a const object cannot be
changed. However, a const reference or pointer to const type cannot be used to change the object referred
or pointed to even if that object is not declared as being const. volatile types are highly specialized; they
are types whose values can be changed by events outside the program. We use C++ objects of volatile
type for things such as memory-mapped ports. This area is too specialized for this book, and little more will
be said about the use of volatile types.

There are two other forms of derivative type, references and pointers. Any type that is not already a
reference type has a corresponding reference type as a derivative. That is the end of the line; you cannot have
a derivative type from a reference type.

Any non-reference type has a corresponding pointer type as a derivative type. This includes pointer types
themselves: we can have pointers to pointers to . . . (Fortunately, we usually manage to avoid these.) const
(and volatile, in theory) can be used to create derivatives from pointer types. Therefore, for example,

28 CHAPTER 2

we can have a const pointer to a volatile pointer to . . . to some type. We will not make much use of
pointers, and we will generally avoid pointers to pointers.

In simple terms, a reference type provides a mechanism for accessing an already existing object, and a
pointer type allows us to use the addresses of existing objects. Pointers are powerful tools but also dangerous
ones, because they allow programmers to deal with very low-level (close to the hardware) details of program
objects.

At this stage that is all we need to know about pointer and reference types. We will go into further
details when we have a context in which they make sense.

Declaration and Definition
The purpose of a declaration in C++ is to introduce a name to the compiler. A definition tells the compiler
how to create an entity to go with a name. Definitions are always declarations but not vice versa. We will
not need pure declarations (ones that are not also definitions) in this chapter, because variables (names for
objects) are usually defined at the same time they are declared. In other words, we usually create an object
and name it at the same time. That will not be true for other program entities such as functions.

Language Note: Unlike languages such as Java and Python, names used for objects in C++ are always bound (initialized) to a
suitable object at the point of definition. Such names are often referred to as variables. The exception to this rule is
that the parameters of a function are bound to their arguments at the point at which the function is called. The
concept of binding a name to an object or program entity is fundamental to programming. The important issue is
that in C++, once a name has been bound to a suitable object, that object stays bound to that name as long as both
exist. C++ does not allow a name to designate different objects during its lifetime.

Names in C++
Names in C++ consist of one or more characters from the set composed of the digits (0 –9), the underscore
() and the 26 letters of the Roman alphabet (in uppercase and lowercase forms: A –Z and a –z). A compiler
is allowed to accept a wider range of letters (for example, accented letters) but is not required to do so.

A name must start with a letter or an underscore. In other words the first symbol of a name must not be
a digit. All the following are legitimate names in C++:

acorn c c_ _c c9x _1 a9bc push_back find total01

The following are not legitimate names (they either include an unsupported symbol or start with
a digit):

@abc 0abc ?first #last $debt £symbol first&last

The use of consecutive underscores is reserved for the implementation and so should never be used by a
programmer (i.e. the compiler can apply a special significance to a double underscore and may create names
that contain double underscores for internal uses). Therefore, the following are valid names but not ones that
the ordinary programmer should declare:

__start First__ not__equal __8 unsigned __int

Using names like those can result in bizarre consequences, because you might, for example, accidentally
declare a name that matched one that was being used for communication between the compiler and the linker.

The use of an initial underscore is also largely limited to implementers, and so other programmers
should avoid using leading underscores. Those implementing Standard Libraries or extended libraries for a
specific compiler may be using names that start with a single underscore, so declaring such names in your
own code risks unnecessary name clashes. For example, 1 is listed as a legal name above but you would be

FUNDAMENTAL TYPES, OPERATORS, AND SIMPLE VARIABLES 29

very unwise to declare it yourself (it is actually used by a specialist library that will probably become part of
the C++ Standard at some time in the future).

C++ places no upper limit on the number of characters used for a name. In general, you should choose
names that are meaningful in context. That means that short names are often satisfactory for local use (for
example as variable names within a function) but longer names may be more helpful in wider scopes. I am
quite happy to use i as the name of a variable to control a loop, but would be unhappy with its use as a
parameter name, and would never consider using it as a function name.

C++ also has the concept of a fully elaborated name, where the name is prefixed with one or more other
names that identify the context (scope) in which the name has been declared – for example, fgw::playpen
(the playpen declared in the context of fgw) and std::cout (the cout declared in the context of std).

Naming styles
This is a religious issue for many programmers. By that, I mean that they advocate a specific style as being the
‘one true way’ and then try to demonstrate that it is superior to all others. There are three commonly used
basic naming styles:

• all lowercase, no word separators (direct concatenation), as in firstvalue, dothis, and getval
• starting each new word with an uppercase letter (‘camel case’), as in firstValue, doThis, and getVal
• separating words with a single underscore, as in first value, do this, and get val

There are numerous added conventions such as starting type names with an uppercase letter. When
using such a convention, Card would be a type name but Card would be an object name.

The most important element for a naming style is consistency. The names in the Standard C++ Library are
an example of the results of the inconsistencies that arise when different programmers work on different parts
of a piece of source code and ignore each other’s naming conventions. The Library uses a direct-concatenation
style in some places. Function names such as getline are an example of this. In other places, it uses the style
that uses the underscore to separate words making up a name. push back is an example of this usage. Both
styles are perfectly readable, but mixing them means that the user has to remember which style applies to the
function they want to use. Experience shows that that is a time-waster.

If you are maintaining someone else’s source code, adopt the naming style the code uses, even if you
hate it. The alternatives either make poor use of your time (renaming everything to match your preferred
style) or generate future problems (by mixing your style with the existing style).

Operators
C++ has inherited a rich range of operators from C and then added a few more of its own. Most operators in
C++ are symbols, though a few are words. In addition, some of the symbols have alternative word forms. An
operator is something that is applied to a value or values in order to produce another value. The + in (3 + 4)
is an operator, as is the - in (5-7). As in many other computing languages, C++ uses * as a multiplication
operator and / for division. Some operators come as a surprise. For example, = is an operator in C++ and
results in a (reference) value. We are usually more interested in the side effect of evaluating the = operator
(i.e. storing a value in an object).

Operators may also be applied to instances of object types. The results depend on how the operator has
been defined for such usage. For example the left-shift operator (<<) in the context of an output stream object
(such as std::cout) sends data to the output object.

We cannot make much progress without at least one comparison operator, that is, an operator that
returns a true or false value depending on the comparison of two values of the same type. One of the
more useful comparison operators is == (two consecutive equality signs), which returns true if and only if
the two values are equivalent. (Exactly what equivalence means depends on the type. In the case of arithmetic
types, equivalence means that the values are the same.) We will also be using <, which results in true if and
only if the left-hand value is strictly less than the right-hand one.

30 CHAPTER 2

The reference section of this chapter includes a complete list of all the arithmetic, comparison, and
logical operators. There are also some other operators that I will introduce when we have a use for them.

A Simple Program
Enough theory. It is time for some practical programming. Create a new project called using int in the
chapter 2 directory. (Do not forget to change the project settings: check all the warning boxes, except
the one that forces warnings to be treated as errors.) Type the following code into a new source-code file
called biggest. Note that the numbers on the left are purely for reference purposes and should not be typed
in. MDS provides line numbers by default, to help you locate errors and warnings. You will also find that
double-clicking on an error or warning message takes you to the relevant line (the line where the compiler
realized that something was wrong – though the actual error may be in an earlier line).

1 // created on 24/07/04
2 #include <iostream>
3
4 int main(){
5 int i(0);
6 int biggest(0);
7 do{
8 std::cout << "Type in a positive number ";
9 std::cout << "(zero or a negative number ends the program): ";

10 std::cin >> i;
11 if(i < 1) break;
12 if(biggest < i) biggest = i;
13 } while(true);
14 std::cout << "The largest number input was " << biggest << '\n';
15 }

Now compile, build, and execute this program (you can do all those with a single press of Ctrl+5).
Correct any typos that you may have made. When the program runs successfully come back here so that we
can have a look at the important aspects of the source code.

W A L K T H R O U G H

Lines 5 and 6 are often called declarations, though in this context they are definitions (which, you will
recall, includes being a declaration). They declare i and biggest to be the names of int objects that
are initially set to the value 0. We usually call such names variables. The syntax for declaring/defining
a variable is to start with the type and then append a comma-separated list of names (variables) and
conclude with a semicolon. I could have combined lines 5 and 6 into a single line:

int i(0), biggest(0);

However, it is considered good programming practice to declare only one variable at a time. I
will follow that practice throughout this book.

The (0) after each of the names is an initializer and sets the initial value stored in the variable
to the value in the parentheses. For compatibility with C, C++ allows an alternative, assignment-like
syntax for initializers; so I could have written lines 5 and 6 as:

int i = 0;

FUNDAMENTAL TYPES, OPERATORS, AND SIMPLE VARIABLES 31

int biggest = 0;

I prefer to keep to the more general function-style initialization syntax except in the few cases
where the C++ language does not currently allow it. However, many programmers and authors of
books on C++ prefer the assignment style for variables of fundamental types.

C++ allows the definition of a simple variable of a fundamental type without an initializer.
But there is a potential problem with that: attempting to use a value from an uninitialized variable
takes you outside the language’s guarantees, and your program can then do wild and sometimes
unpleasant things. (Doing things that take you outside the language’s guarantees is called using
undefined behavior and should be rigorously avoided.) For example, line 12 assumes that biggest
contains a value, i.e. that it will have been initialized before the first time this line is executed. In this
case, it does contain a value, because when I defined biggest I initialized it with 0.

The combination of lines 7 and 13 causes repeated execution of the intervening code (called
looping). Note line 13 in particular: the true in while(true) is an indication that a way out of the
repetition (if there is one) must be provided by some internal test. In this case, line 11 provides the
exit test. That line tests i to see if its current stored value is less than 1 (i.e. 0 or negative). If it is then
it ‘breaks’ out of the repetition and continues from line 14. Otherwise, the program continues with
line 12, which is also a test, this time to see whether we need to update biggest because the new
value of i, obtained from the console at line 10, is larger than the previous largest input value.

Line 14 displays the result. We can chain together quoted text (which we already know will be
displayed on the console) with other output. The << biggest causes the value stored in biggest
to be sent to the output stream. The \n at the end is the way we tell the output system to go to the
start of the next output line.

Language Note: If you have a Java, C#, or C background, you may be surprised by the way << is used here. You are
likely to be familiar with its use as a left-shift operator. It has that meaning in C++ too, but C++
overloads it (provides extra meanings) so that it and the right-shift (>>) ‘shift’ data out to and in from a
stream. If the left-hand operand of the shift operator is a stream object (a source or sink for data), it will
have the relevant alternative meaning. C++ programmers get so used to these operators shifting data in
and out of stream objects that they sometimes forget that they are also bit-shift operators.

Now let us spend a few moments on line 10. This line tells us to try to extract a value for i
from the console input object. The problem here is that the attempt might fail because the next item
(other than whitespace – spaces, tabs, and newline characters) in the input buffer is not part of a valid
integer. The code above assumes that you are your own best user and will only input valid data. Good
programmers want to protect themselves from bad things happening, even if all they can do is force
the program to give up gracefully. So let me show you how to do that.

Exceptions – Handling Bad Input
Eventually we will be looking at exceptions in more detail, but for the first part of this book I am going to use
them as a way to give up when a program goes off track (for example, because of inappropriate input). Add
the highlighted lines to the above program to get:

1 // created on 24/07/04
A #include <exception>
2 #include <iostream>

32 CHAPTER 2

3
4 int main(){
B try {
5 int i(0);
6 int biggest(0);
7 do{
8 std::cout << "Type in a positive integer ";
9 std::cout << "(zero or a negative integer ends the program): ";

10 std::cin >> i;
C if(not std::cin) throw std::exception();

11 if(i < 1) break;
12 if(biggest < i) biggest = i;
13 } while(true);
14 std::cout << "The largest number input was " << biggest << '\n';
D }

E0 catch(...){
E1 std::cerr << "***An exception was thrown.***\n";
E2 }
15 }

Line A tells the compiler what it needs to know to compile line C. Without the #include <exception>
the compiler will not recognize std::exception() as the basic C++ exception object.

Line B warns the compiler that the code between there and the corresponding closing brace (line D)
may fail to complete because an exception occurs during the execution of that code.

Line C tests std::cin, and if it is not working (presumably because of an input failure), it raises an
exception (in this case the most primitive one available in C++, a default std::exception object created
directly at the point where it is needed.)

If the user always types in integer values, the program will run exactly as it did before. However, if the
input is not appropriate it breaks out of the repetition and executes the code starting at line E0. The significance
of the catch(...) is to state to the compiler that this is the code to run for any type of exception that gets
thrown as a result of running the code between the opening and closing brace of the try block (a block is
any code enclosed in braces.)

std::cerr is a second standard output object; conventionally we use it to report errors from a
program. Like std::cout it defaults to the monitor for PCs. Having distinct objects allows us to overrule the
defaults for one or other of the console output objects so that, for example, some output goes to the screen
and some to a file. You do not know how to do this yet. Nonetheless, it is good to develop habits that will
allow benefits later on; so check for problems, do something about them, if only to raise an exception, and
report problems to an object designed for that purpose.

Writing Correct Code
Perhaps you are wondering why I have tackled the problem of bad input at such an early stage. The C++
mechanism for providing minimal handling for this kind of problem is simple. The only excuse for not dealing
with program failures in other languages is that it is too complicated and will get in the way of learning. Lines
A, B, D, E0, E1, and E2 are simple to add and can be used to wrap the code for any C++ program. You will
want finer-tuned exception-handling eventually, but that should not prevent you from developing sensitivity
to where a program can fail and taking emergency action to handle such failure before it can do damage.

For the time being, get into the habit of doing at least the minimum of testing for failures and throwing
an exception if your code detects one that is not immediately correctable.

FUNDAMENTAL TYPES, OPERATORS, AND SIMPLE VARIABLES 33

Getting Output Before Handling an Exception
One small problem with the code above is that if bad input happens you do not get to see the value stored in
biggest. You might think to try adding this line inside the catch block:

std::cout << "The largest value so far was " << biggest << '\n';

That will not work (do not just take my word for it; try it!), because biggest was declared
inside the try block and is not a valid name outside that block (i.e. the name is local to the
block).

That line of source code is certainly a suitable one, but it needs to go into our source code at a point
where biggest is still a valid name. The obvious place is just before we throw the exception. We need
to modify the if statement so that it controls a compound statement (i.e. a block containing one or more
program statements). Here is how we do that. Replace line C with:

if(not std::cin){
std::cout << "The largest value so far was " << biggest << '\n';
throw std::exception();

}

Now if std::cin fails you first get the result so far, and then it throws the std::exception() that
results in the program closing down with a minimal error report.

EXERCISES
Note that there are no absolute solutions to these exercises. The specifications are not tight enough to limit
you to a single solution.

1. Modify the above program so that it outputs the smallest positive integer input to it. You are limited
to the operators I have already introduced, so using > (greater than) is cheating! You will also need
to address a hidden programming problem. Initializing the variable used to hold the interim answer to
zero would not work because zero is smaller than all the positive integers. You will need to tackle this
issue.

2. Modify the program in the text so that it can handle negative values as well as positive ones. You will have
to think about what to use to end input. There are several possible solutions, including designating a specific
value as one that will only occur as the final input.

3. Modify the program in the text so that it outputs both the smallest and the largest value provided by the
input.

4. Modify the program in the text so that it outputs both the largest and the second-largest values input. Note
that this version should also handle the case where two inputs are identical and the case where only one
value is input.

5. Write a program that totals the input values and counts how many there are. The output should include
the total, the number of inputs, and the arithmetic mean (total divided by count). You may notice
that some answers are not strictly correct from a mathematical viewpoint. That is an example of
integer-only calculations. (For example, the arithmetic mean of 1 and 2 is 1.5, but this program will
output 1.)

34 CHAPTER 2

A Little More About Playpen
fgw::playpen is an (object) type from my library. Objects of this type are used to manage the display
provided by the Playpen window. There is only a single Playpen window but many objects can manage it.
For now, we will only have a single fgw::playpen object in our programs. Allowing many objects to share
a single resource may seem unusual but it is actually quite common. For example, all the programs currently
running on your computer are sharing such things as the CPU, the keyboard, the mouse, and the monitor. In
a sense, fgw::playpen objects are less constrained, because there is a single Playpen window per program
rather than per computer.

The following short program will allow me to introduce you to some of the basic behavior associated
with fgw::playpen objects. Please create a new project, adjust the project settings (you will need to add
something such as ‘C:\tutorial\fgw headers’ to the include path for the compiler and ‘fgw;gdi32’ to
the libraries for the linker – see Chapter 1, Our Second Program). Choose suitable names for the project and
the file. Now compile, link, and execute this program.

1 // created on 27/07/04 by FWG
2 #include "playpen.h"
3 #include <exception>
4 #include <iostream>
5
6 int main(){
7 try{
8 fgw::playpen paper;
9 paper.scale(10);

10 paper.origin(50, 50);
11 paper.plot(0, 0, 7);
12 paper.display();
13 std::cout << "Press ENTER to end program.\n";
14 std::cin.get()
15 }
16 catch(...){
17 std::cerr << "***An exception was thrown.***\n";
18 }
19 }

The result of executing this program should be a small, bright blue square in the upper-left quadrant of
the Playpen window.

W A L K T H R O U G H

It may save time if you note that lines 1 to 7 and lines 15 to 19 are pretty much boilerplate code.
Sometimes we will need some extra headers and header files, and line 1 will vary as regards the detail,
but otherwise all your C++ programs will contain code such as this. The program-specific code is
in lines 8 to 14. Even there, lines 13 and 14 (or something equivalent) are going to be present in
any program that uses the Playpen window, to prevent the window closing until we are ready to
finish.

The definition in line 8 creates an fgw::playpen object called paper and initializes it to
the default Playpen window. User-defined types such as fgw::playpen are usually provided with

FUNDAMENTAL TYPES, OPERATORS, AND SIMPLE VARIABLES 35

default initialization, which is used if the programmer does not provide an explicit initialization
with starting values in parentheses (that is, we do not normally leave a user-defined type exposed
to the problems of indeterminate values or states). This is one of the ways in which they differ
from the fundamental types, which nearly always remain in an indeterminate state until they are
explicitly given a state either by initialization at the point of definition or by having a value assigned
to them. We can explicitly initialize fgw::playpen objects with a background color. Try changing
line 8 to:

fgw::playpen paper(224);

You should now see the same blue square but on a bright red background. Please see the section
on Default Playpen Color Names (on page 36) for an explanation of the default palette for the Playpen
window.

We could also write that line as:

fgw::playpen paper(red1 + red2 + red4);

and if you #include "colournames.h" (my library uses British spelling), you could write:

fgw::playpen paper(red7);

As long as you do not change the palette settings (I will deal with how that can be done much
later), the names built into Playpen and those provided by the header file colournames.h give you
a good idea of what to expect. As an experienced programmer, you probably already know that we
try to avoid literal integer values and replace them with names. This is just an example of following
that guideline.

Line 9 is an example of some fgw::playpen behavior. Things called member functions
provide much of the behavior for these user-provided types. For now, all you need to know about
member functions is that you call them by placing a dot after the object whose state is being used
or modified. paper.scale(10) changes the size of the logical pixels used by paper to a 10-by-10
square of screen pixels. You can experiment with changing to other sizes. fgw::playpen is a robust
type and traps any attempts to go outside the Playpen (by replacing any such actions by doing
nothing).

Line 10 is an example of another small piece of behavior for fgw::playpen objects. Human
beings are usually accustomed to using a graphical representation with positions measured from an
origin. We usually treat movement to the right and upwards as positive. The Playpen is just such a
graphical representation, and by default, the origin is the center of the window. However, positions
in a graphical window are usually measured from the top left of the window or screen. Right and
down are positive. paper.origin(50, 50) sets the Playpen origin to the window coordinates. In
other words, it moves the origin of the Playpen to the pixel that is 50 pixels from the left-hand edge
and 50 pixels from the top. Note that these measurements are in screen pixels and are not affected by
the current scale.

Line 11 demonstrates the basic plotting operation of fgw::playpen objects. The first two
values give the graphical coordinates (scaled by the current scale) of the pixel to be plotted, and the
third value gives the color it will be plotted in.

Line 12 may be a surprise, but the program does not update the Playpen until the display
behavior is invoked. paper.display() updates the Playpen to show the results of all the actions
since it was last called.

36 CHAPTER 2

TASK 2.1
Please experiment with this program until you are comfortable with it and
with changing values in it. Then try these exercises. They will require some
programming skill from you. The basic tool for repetition at this stage in your
study of C++ is the do-while(true) loop.

EXERCISES
6. Write a program that will prompt for a scale, a position, and a color. It should then display the resulting pixel

in the Playpen. Remember to trap invalid input and abort the program by throwing a std::exception if
that happens.

7. Write a program that will allow you to explore, to discover the largest scale that fgw::playpen objects
can use. When you use a scale outside the permitted range, the last valid scale will remain in operation. I
suggest that you use an input of zero as a way to stop the program.

8. Write a program that allows you to build up a ‘modern art’ picture from different-sized squares of different
colors. By moving the origin around, you can get squares to overlap in various ways. You have several
choices, which you might explore. For example, you could write a program that prompts the user for scale,
origin, coordinates, and color. Alternatively, you could write a program with all the data included statically
as fixed values in the program.

Default Playpen Color Names
Each pixel of the Playpen has its color encoded in a single 8-bit byte. The value of the byte is used to
index a lookup table of the actual palette of 256 colors selected from all those that your computer can
display. The default lookup table encodes the colors by using the bits of the index byte according to the
following table:

Bit Value Color fgw::hue

0 1 low-intensity cyan fgw::blue1,fgw::green1

1 2 dark blue fgw::blue2

2 4 medium blue fgw::blue4

3 8 dark green fgw::green2

4 16 medium green fgw::green4

5 32 very dark red fgw::red1

6 64 dark red fgw::red2

7 128 medium red fgw::red4

0 black fgw::black

255 white fgw::white

FUNDAMENTAL TYPES, OPERATORS, AND SIMPLE VARIABLES 37

The fourth column gives the names for the values. fgw::hue is a type designed to represent colored light
and has some unusual properties when it comes to addition and subtraction: those work on a bit-by-bit basis.
You can find more details in the appendix on the Playpen.

Because there are three primary colors for light (red, green, and blue) but only 8 bits in a byte, I
had to come to some compromise. The one that worked best for me was to make bit 0 represent a tiny
amount of blue and green. If all three bits representing a primary color are on, the result is the maximum
possible intensity of that color on your monitor. So 7 (fgw::blue1 + fgw::blue2 + fgw::blue4) is
bright blue, 25 (fgw::green1 + fgw::green2 + fgw::green4) is bright green, and 224 (fgw::red1
+ fgw::red2 + fgw::red4) is bright red. The first two contain an unnoticeable amount of either green or
blue respectively. I chose the intensities so that, for example, fgw::red1 + fgw::red2 is less bright than
fgw::red4.

Characters and Text
As we are mainly concerned with the fundamental types in this chapter, I will leave consideration of the
extensive support provided for text objects until a later chapter. However, we do need to look at the
fundamental support provided by C++.

C++ provides two types for storing individual characters or symbols: char and wchar t. (C program-
mers should note that the latter is a full type in C++ despite the name.) At this stage, we do not need
wchar t. The reference section of this chapter gives the basic details.

A single char will hold any value from the basic C++ character set. The range of values is often wider
and can include support for accented letters and graphical symbols, but it is not required to do so. C++
specifies two character sets. The characters that are required for writing source code are provided by the basic
character set. The basic execution character set is a superset of the basic source-code one. You will find listings
of these two character sets in the reference section of this chapter.

A symbol enclosed in single quotes is a literal value of type char. For example, 'A' is the literal value for
an uppercase letter ‘A’, and '\n' is the literal value that represents a newline character. (C programmers should
note that literal character values have type char in C++ rather than the int type they have in C.) Double quotes
are used around zero or more characters to represent a string literal. Such a literal always includes one morechar
than the visible count – the null terminator, i.e. '\0'. So "Francis" is a sequence of eight chars: 'F', 'r',
'a', 'n', 'c', 'i', 's', and a terminating '\0'. The empty string, "", consists of the single char '\0'.

If you place single quotes around more than a single symbol, the result is implementation-defined. (In
other words, you will have to look at the compiler documentation to discover how it will be treated.)

Create a suitable project and enter the following code, then compile, build, and execute it.

1 //Created on 29/07/04 by FWG
2 #include <exception>
3 #include <iostream>
4
5 int main(){
6 try {
7 char c(0);
8 int count(0);
9 std::cout << "Please type in a line of text.\n";

10 do{
11 c = std::cin.get();
12 if(not std::cin) throw std::exception();
13 if(c == '\n') break;
14 ++count;
15 std::cout << c;
16 } while(true);

38 CHAPTER 2

17 std::cout << "You typed in" << count << " characters.\n'
18 }
19 catch(...){
20 std::cerr << "***An exception was thrown.***\n";
21 }
22 }

W A L K T H R O U G H

The framework for this program is much like that for the earlier programs, so I am going to focus on
the critical differences.

Line 7 provides an object called c that will store a single char value. I have initialized it to
zero because I always initialize my objects, and good practice requires me to make the initialization
explicit for fundamental types. Though we think of char as a character, the internal representation
is for a small integer. Line 7 results in the creation of a char object with the value zero stored in it
(equivalent to the null character, '\0').

Did you notice that I moved the prompt for data input outside the processing loop? If my reason
for doing so is unclear, try moving it back inside and see what happens when you try to compile and
execute the program.

Line 11 is important because it handles some special properties of char input. If you replace
that line (but do not do so yet) by

std::cin >> c;

the program will still compile, build, and execute, but you will get one minor problem and one major
one. The minor one is that it will skip over any whitespace in the input. The major problem is that the
newline character that we check for at line 13 will never be found, because newline is a whitespace
character in C++ and so is skipped. std::cin.get() reads the next character regardless and does
not skip anything.

I want you to be able to try both forms of the program, but you will need to know how
to stop a runaway program. Pressing Ctrl+Z on a Windows machine or Ctrl+D on a Linux one
forces console input into an end-of-file condition. Trying to read input when the console is in
that state is an error; doing so will send std::cin into a fail state. Line 12 of the program
will detect that and throw an exception. Your program will now end with an error message
(the one we provide at line 20). Notice how the use of exceptions has allowed us this escape
mechanism.

TASK 2.2
Now try this program with both versions of line 11 and see the
difference.

EXERCISES
9. Write a program that counts the occurrences of the letter ‘a’ in a line of input. Note that it should count

both uppercase and lowercase versions, so given ‘‘A cat eats its supper.’’, it should output 3.

FUNDAMENTAL TYPES, OPERATORS, AND SIMPLE VARIABLES 39

10. Modify the previous program to count the number of letters (not digits, punctuation marks, or other symbols)
in the input line. Writing 52 if statements (one for each of the 26 uppercase and 26 lowercase letters)
cannot be a good solution. For the purposes of this exercise you may assume that the letters 'A' to 'Z' are
consecutive, and likewise for 'a' to 'z'. If you know about some C functions that might help, do not use
them. A correct solution to this exercise relies only on what you have read so far together with the assumption
I have specified. You may use the <= (less than or equal to) and >= (greater than or equal to) operators.

Floating-Point Numbers
We need a floating-point type for many of the things we might want to program. The default C++ floating-
point type is double. That name comes from the old Fortran double-precision floats. C++ requires that an
object of type doublemust be able to represent a floating-point value in the range 1037 to 10−37 to an accuracy
of at least 10 decimal significant figures. That range is more than large enough for most purposes, though
mathematicians, scientists, and sometimes engineers need vastly larger or smaller values. Though the C++
Standard does not require it, most modern C++ implementations use a binary representation (however, binary
representation is required for integral types). This sometimes causes surprises to newcomers, because fractional
values that can be represented exactly in decimal often cannot be represented exactly in binary. For example,
while 1/2 has an exact binary floating-point representation, 1/5 does not (just as 1/3 cannot be represented
exactly using decimals). The problem is aggravated when using binary representations, because small changes
in the way the program obtains or computes a floating-point value can result in differences in the final bits of
the representation. For that reason, we should be careful about comparing floating-point values for equality.

The double type in C++ is widely used, particularly for arithmetic computations. If you look back at
Exercise 5, you should notice that the output answers were integers; however, the mathematically correct
answers would often need a fractional part. For example, the arithmetic mean of 2 and 3 is 2.5, but the
result of (2 + 3)/2 in integer arithmetic is 2 (integer division for positive numbers in C++ always rounds
down, i.e. it discards any fractional part). It could be even worse if you were dealing with negative numbers,
because C++ does not specify whether -5/2 should be -3 or -2. C++ only requires that the documentation
of your compiler must tell you what the compiler will do with negative floating-point values when converted
to integers. Fortunately, this problem does not normally concern us. I only mention it because experienced
programmers often want, and sometimes need, to know about such details.

First Floating-Point Program
Here is the code for a simple program to calculate the arithmetic mean of a set of numbers input from the
keyboard. After you have it working (i.e. you have produced a project, typed in the code, compiled, linked,
and executed it at least once), I will walk you through it, touching on the main points. Before you start, I
should warn you that this code has an error in it. It is a simple one, but I want you to start recognizing some
of the error messages that result from common errors. You should be able to correct it; indeed you might
even notice the error before the compiler does.

1 //Created on 28/07/04 by FWG
2 #include <iostream>
3
4 int main(){
5 try {
6 double total(0.0);
7 double value(0.0);

40 CHAPTER 2

8 int count(0);
9 do{

10 std::cout << "Type in a number. ";
11 std::cout << "(A value greater than 9999 ends the program) ";
12 std::cin >> value;
13 if(not std::cin) throw std::exception();
14 if(9999 < value) break;
15 ++count;
16 total += value;
17 } while(true);
18 std::cout << "The arithmetic mean of the number input is "
19 << total/count << '\n';
20 }
21 catch(...){
22 std::cerr << "***An exception was thrown.***\n";
23 }
24}

W A L K T H R O U G H

Lines 6 to 8 define the variables we will use. As line 18 (after we have exited from the main processing
loop) uses both total and count, we must define them outside the loop. This is because variables
and the objects they refer to only last until the closing brace of the block in which they are declared.
We only use value inside the loop, so we could move its definition to just before its first use at line
12. Many coding guidelines for C++ would advocate such a change to the above code. It is a good
principle to declare variables close to their point of first use.

I have deliberately used both ‘declare’ and ‘define’ in the preceding paragraph. Names are
declared; the objects to which they are attached (often referred to as ‘bound’) are defined. When you
read other texts the terms may be used with a certain lack of precision. However, we can never use
a name until it has been declared, and we can only sometimes use a name before its corresponding
object has been defined. In the case of local variables (ones declared as part of a function), a declaration
is always a definition.

Line 15 gives an example of a common form of usage of the C++ pre-increment operator. For
fundamental types, it does whatever adding one to the variable would do. In this case, the variable
count just tracks the number of values read from std::cin.

Line 16 is an example of a C++ compound assignment operator. This one (+=) adds the value
of the expression on the right to the object referenced by the variable on the left. You will find more
information about the compound assignment operators in the reference section of this chapter. They
are the preferred option in C++ when we want to modify a variable with the result of an expression.
Straight assignment overwrites the previous stored value; compound assignment modifies the stored
value. So total = value would replace the current content of total by that of value. However,
total += value replaces the content of total by total + value, i.e. the sum of the current
contents of total and value.

C++ provides a number of implicit conversions between its fundamental types. At line 14, we
compare an integer literal value (9999) with value, whose type is double. C++ just quietly converts
9999 to 9999.0. Mostly these quiet implicit conversions do the right thing, but we should be aware
that they are happening and intervene if they might do the wrong thing. For example assigning
a double value to an int involves an implicit conversion (from double to int). The potential
problem is that int objects have insufficient range to cover the possible range of values resulting from

FUNDAMENTAL TYPES, OPERATORS, AND SIMPLE VARIABLES 41

simply ignoring the fractional part of a double. Such conversions are called narrowing conversions,
and good compilers warn you when they detect them in your code. Implicitly converting an int to a
double is generally fine, because we are unlikely to lose any information by going in that direction.
Even so, good compilers will issue a warning given sufficiently high settings for diagnostics.

Finally, there is that missing statement. I hope you quickly noticed that I ‘forgot’ to #include
<exception>. The result of that omission is that the compiler complains about line 13. Please note
the form of the complaint. Next time you see a similar one your first check should be that you have
included all the necessary headers and header files.

EXERCISES
11. There is a nasty assumption in the last program. It assumes that the user inputs at least one value less than

9999. If they do not, line 19 will result in a divide-by-zero error. Please modify the program to handle this
possibility.

12. A harmonic mean is the reciprocal of the arithmetic mean of the reciprocals of the values. For example, the
harmonic mean of 2, 4, and 8 is 1/((1/2 + 1/4 + 1/8)/3), which is 1/(7/8/3), i.e. 1/7/24. That evaluates to 24/7, which
is roughly 3.428571.

Write a program that computes the harmonic mean of the values input. You can use my program for
an arithmetic mean as the basis.

13. The root mean square (an important measure in statistics) is the square root of the arithmetic mean of
the squares of a set of values. The Standard C++ Library has a function for computing square roots called
std::sqrt(). To use it you must include the <cmath> header.

Write a program to output the root mean square of a set of values.

STRETCHING EXERCISES
Most of the exercises in this chapter have not been very demanding of programming expertise, so here are a
couple to stretch your programming a bit.

14. Using only what you have learned about C++ from this book, write a program that asks the user for an
upper bound for the numbers they are going to input. The main processing loop then acquires values from
std::cin until an input exceeds the specified upper bound. Then the program asks the user which of
an arithmetic mean, a harmonic mean, or a root mean square they want, and responds by outputting the
requested value.

15. Write a program that prompts for two times (each given as three integer values: hours, minutes, and
seconds) and outputs the difference between them in hours, minutes, and seconds.

(Hint: convert the input values to seconds, and then convert the answer back to hours, minutes, and
seconds. Make sure you take account of the sign of the result.)

42 CHAPTER 2

REFERENCE SECTION
Some of the things referred to in this reference section will not be covered until later chapters. This
will generally be the case for reference sections. My intention is to provide a single, reasonably
comprehensive point of reference for each major topic.

Fundamental Types
C++ provides the following types. I have added a note about the intended usage of each type.
However, as all the types are arithmetic types it is very easy to abuse them. Sometimes the abuse might
even be justified.

Boolean
C++ provides a single Boolean type called bool. Though it has only two values, true and false,
it occupies at least one (8-bit or larger) byte of memory. Sometimes, for compatibility with older C
requirements, implementers use more than the minimum required storage. The Standard C++ Library
provides a mechanism (std::bitset) for packing multiple bool values into memory. If it is used
in a numerical context false is converted to zero and true is converted to one. In addition, zero as
a numerical value is converted to false; all other numerical values are converted to true.

Character
C++ supplies four ‘character’ types. I have placed quotes around the word ‘character’ because
conceptually only two of them are actually for storing characters.

char is a small type that takes the minimum amount of storage available to the implementation
(at least 8 bits – C++ does not allow single objects to occupy less space than 8 bits). It is designed
to store characters from the basic source-code and basic execution character sets. The former consists
of control characters representing horizontal and vertical tab, form feed, and newline, the 10 digits
(0–9), the 26 uppercase letters of the Roman alphabet, the corresponding 26 lowercase letters, and
the following symbols:

_ { } [] # () < > % : ; . ? * + - / ^ & | ~ ! = , \ " '

The basic execution character set adds control characters for alert, backspace, carriage return,
and a null character (with all bits zero).

wchar t is the other conceptual character type. It is a type that is suitable for storing values for
wide characters. The commonest set of wide characters is the Unicode character set. However, C++
does not require that the execution wide character set be Unicode (or ISO/IEC 10646).

C programmers should note that in C++, wchar t is a fundamental type and not an alias for
some other integer type.

signed char is effectively the smallest integer type and should be used for cases where
memory is at a premium and you only need integer values in the range -127 to +127. That range
only uses 255 of the 256 available 8-bit values; the meaning of the 256th value depends on the
implementation. Most commonly, it represents -128, but could represent -0 (for implementations
using either one’s complement or sign and magnitude).

unsigned char is effectively the way to handle raw memory. Its values represent all the
possible bit patterns for a byte. Whenever you want to deal with the underlying state of memory,
unsigned char comes into its own. This includes times when you want to apply bit masks and
other forms of bit manipulation that are common when handling memory used for graphics.

FUNDAMENTAL TYPES, OPERATORS, AND SIMPLE VARIABLES 43

The C++ Standard requires that char, unsigned char and signed char are all the same
size. It also requires that they use the smallest addressable amount of memory being supported.
This must be at least 8 bits but can be more; indeed there are systems (such as some digital signal
processors) that use 32-bit types. As all three types can store the range of values that represent the
source and execution character sets they can all be used to store single characters. Unfortunately,
C++ does not specify whether the format for a char behaves as signed or unsigned and leaves it
to the implementation to specify that. Avoid using char in situations where it matters whether the
numerical value will be treated as signed or unsigned.

The C++ Standard makes no requirement on whether char and wchar t behave as signed
or unsigned integer types. The only restriction is that all members of the basic execution set have a
positive representation. There is also a requirement that the representations of the ten digits be in a
contiguous ascending order. That is, if x represents '0' then x + 1 necessarily represents '1'. There is
a subtle problem that only manifests on some systems: there is no requirement that a value represents
the same letter when used as a wchar t as it does when used as a char. It is possible for char to use
an EBCDIC encoding while wchar t uses Unicode. For example 'A' is 193 in EBCDIC but is 65 in
both ASCII and Unicode.

Use char for simple characters and wchar t for international character sets. Use signed char
as a tiny integer type. Use unsigned char to handle raw bytes of memory.

Special Representations of Characters
Some of the required symbols (#, }, ^, [,], |, {, and ~) were (historically) problematic because they
were not found on some keyboards. C++ has inherited a solution provided by the original C Standard.
The solution involves giving a special meaning to nine three-character sequences called ‘trigraphs’, all
of which start with ??. These need not concern us here except in so far as you need to be wary of
using multiple consecutive question marks anywhere in your source code; the result will not always
be what you expect.

C++ provides an alternative, arguably better, solution called ‘alternative tokens’. For example <%
in source code is treated as equivalent to {. These, in general, should not concern us. The alternative
tokens are less invasive because they do not apply within string literals (where trigraphs can be
significant). I will return to this in the section on operators.

More importantly, we need to be able to represent control characters such as newline (\n, which
we have already used), characters whose interpretation might be ambiguous in context, and characters
where we wish to supply the actual numerical value. The following table lists the representations
(called escape sequences):

Text name Symbolic name Source-code
representation

newline NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f

44 CHAPTER 2

Text name Symbolic name Source-code
representation

alert BEL \a
backslash \ \\
question mark ? \?
single quote ’ \'
double quote ‘‘ \"
octal number ooo \ooo

hex number hhh \xhhh

Note that we need the backslash case because a backslash is being given special significance.
When you want a \ in a string you have to write \\ in your source code. This is a common cause of
errors when giving directory paths in source code. For example, C:\tutorial must be written as
"C:\\tutorial" if it is used in source code.

We need the escape sequence for a question mark because of the special significance given to
?? for trigraphs. If we want to include ‘??=’ in a string literal we have to write \?\?=. Such cases are
rare, and it is probably better to avoid repeated question marks altogether.

Integer types
C++ provides six other integer types in two groups of three, signed and unsigned. Unlike char
and wchar t, which are neither explicitly signed nor unsigned, the other integer types are signed by
default and it is not normal to use the signed keyword in conjunction with them.

Signed
The three signed types are short int, int and long int.

The default integer type for a system is int and it is intended to be the natural integer type
for the underlying hardware. That is, it should be the most efficient type for the machine for which
the code is being compiled. The C++ Standard requires that the range of values for an int is at least
-32767 to 32767. On most modern hardware, it has a much larger range.

Use short int if you need to keep memory usage low. Like int, short int is required to
support a minimum range of -32767 to 32767, but on systems where int supports a wider range,
short int will normally stay with the minimum requirement (but it is not required to).

If you require a larger range of values than that guaranteed for int then use long int, which is
required to support at least all values in the range -2147483647 to 2147483647 (i.e. 32-bit integers).

Unsigned
The three signed integer types have corresponding unsigned types: unsigned short int,
unsigned int and unsigned long int. Each is required to have the same storage require-
ments as the corresponding signed type and must use an identical representation for positive values in
the range of the corresponding signed type. They must also be able to represent all values in the range
0 to 65535 (for unsigned short and unsigned int) and 0 to 4294967295 (for unsigned
long). There is a great deal of argument about the use of these types. However, one major advantage
they have is that the C++ Standard specifies how they behave for values outside the range they can
represent. It specifies that the maximum representable value plus one be repeatedly added or subtracted
from the given value until the result is within the supported range of values. That is, unsigned integer

FUNDAMENTAL TYPES, OPERATORS, AND SIMPLE VARIABLES 45

types in C++ use modular (or remainder) arithmetic for addition, subtraction, and multiplication.
Division is always based on the values without any adjustment.

The important issue is that great care must be taken when comparing integer values: either
compare unsigned ones with unsigned ones or signed ones with signed ones. Do not mix signed and
unsigned.

The unsigned integer types are useful when you are operating at bit level. For example, a 32-bit
unsigned integer type is useful for dealing with graphical material for modern 32-bit color systems.

Floating-point types
C++ provides three floating-point types: float, double, and long double. In general on most
common desktop machines there is little point in using anything other than double. All three types
are required to provide a positive range from 10−37 to 1037 and a corresponding range of negative
values. In practice many support wider, even much wider, ranges for double and long double.

float is often implemented in 32 bits. It is required to provide at least six significant decimal
digits of precision. There are two reasons for using float: when space is at a premium; and in some
circumstances when speed matters. float expressions are not always evaluated faster, but where you
have a math library that includes math functions for float as well as those for double, you can some-
times get significant performance improvement at the cost of a considerable potential loss of precision
by using float instead of double. One problem is that in the kind of computationally intensive pro-
gram where the speed gain is important, the loss of precision is frequently significant. Another is that
given hardware that directly uses double, the cost of conversions to and from float can exceed any
notional gains from using afloat. The upshot these days is that usingfloat is nearly always a mistake.

double is usually a 64-bit type and is required to support at least 10 decimal digits of precision.
It is the default floating-point type for C++. It should always be used for floating-point values unless
there are special reasons to choose one of the others.

long double is no more constrained than double. However, if the hardware can support
higher precision and larger ranges, the implementation can take advantage by supplying a long
double that uses that capacity. Sadly many current commercial C++ implementations for Intel- and
AMD-based hardware use the same 64-bit format for both double and long double, even though
the FPUs can support the IEEE 80-bit format. In order to benefit from using long double you need
a math library that uses long double. Without such a library, there is little benefit in using long
double even where this provides more precision than double.

Derivative Types
Pointers
A pointer type in C++ is a type whose values are the addresses of objects of another type. We create a
pointer type by placing an * (asterisk) to the right of a type. For example int * (or simply int*; the
whitespace is not significant) is a ‘pointer to int’. A variable of type int* can store the address of an
int object. With a single exception that we will come to in a moment, any type can be used as the
base for a pointer type. For example we can write int*** to create a type that will store the address
of an int**, which in turn is a type that represents the addresses of int*. This is a type whose values
are the addresses of int storage.

In practice in C++, it is rare to use more than one level of pointer. C programmers make extensive
use of pointers, but C++ programmers make much less use of them. This is because C++ provides a
range of alternative mechanisms that either obviate the need for using pointers or encapsulate their
use so that the high-level programmer need not bother with them.

Using pointers means that you need to know how to find the address of an object. This happens
in one of two ways. Some mechanisms for creating dynamic objects produce an appropriate pointer

46 CHAPTER 2

value (address). Alternatively, placing & (the address-of operator) before a variable evaluates the
address of the object bound to the variable. For example:

int i(0); // create an int object initialized to zero and bind it to i
int * i_ptr(&i); // create an int* object initialized to the address of i

Note that we can also create pointers to functions. I will go further into that topic at a later stage.

References
One of the ways C uses pointers is to allow functions access to the local objects of other functions.
This will work in C++ as well, but C++ provides a better mechanism, references. A reference type is
created by appending an & (ampersand) to a type name (e.g. double&). Any non-reference type can
be converted to a reference type by adding a terminal & (with optional whitespace before the &).
However, reference types are special in that they are the end of the line. We cannot have a pointer
to a reference or a reference to a reference (contrast that with pointers: we can have a pointer to a
pointer). We can have references to pointers (e.g. int*&), and they are sometimes useful.

The special property of reference types is that there are no objects of reference type. The objects
are always of the type being referenced. The major use of reference types is to provide alternative
(usually local) names for objects that have been created somewhere else. For example:

int i(0); // create an int object initialized to zero and bind it to i
int & i_ref(i); // make i_ref an alternative name for i
int & other_ref(i_ref); // make other_ref another name for i

const and volatile qualification
Appending const to a type creates a new C++ type. This new type has the non-mutating

properties of the original type. In other words, access to a const-qualified object or through a
reference to a const-qualified type allows reading the value of the object but does not allow its
modification. const is used in two main ways in C++. The first is to create constants. These can be
very useful when we want to create named values. For example,

double const pi(3.14159265);

allows us to use pi wherever we want its value. That is both simpler and clearer. We do not have to
comment on the numerical value because the name we have given it is usually documentation enough.

The second main use is to include const as part of a pointer or reference type when we want
to limit access to an existing object just to reading its value. This is particularly useful when we want
to allow a function to access the value of a local variable belonging to another function. Example:

int i(0); // create an int object initialized to zero and bind it to i
int const & i_cref(i); // make i_cref an alternative name for i, but one

// that cannot be used for changing the value
// stored in the object designated by i

One of the major style debates in C++ is over the placement of const in a type name. Unless
it is the first token in a declaration/definition, const qualifies the type designated by the type to its
left. The special case is when it is the first token. In that case it qualifies the type up to the first *
(pointer modifier) or the & (of a reference type) if there is one. Traditionalists prefer placing const
at the beginning if it can be placed there. The modernists prefer a simple universal rule: always place
const after the type being qualified. So int const * is a pointer to a read-only int, while int *

FUNDAMENTAL TYPES, OPERATORS, AND SIMPLE VARIABLES 47

const is an immutable pointer to a mutable int object; int const int * ptr would make ptr
a fixed pointer to a read-only int object.

The volatile keyword is used to warn the compiler that the value of an object may change
through some mechanism external to the program. This may seem bizarre until you realize that there
are things such as memory-mapped input ports where the process of reading a value may consume a
value that will be replaced by the next input value.

The concept of volatile is hardware-dependent. It is useful to low-level programmers but is
of little practical use to application-level programmers. The rules for creating derivative types with
volatile are identical to those for const. I will not be dealing with volatile in this book because
the topic is highly specialized and of little use in general programming.

Operators
The following is not an exhaustive list of C++ operators, but it covers all the ones that have special
significance in the context of the fundamental types. Some operators require an lvalue (i.e. a designator
of an actual object) for one operand, and some work directly on values, which may be provided by an
object or a literal, or as the result of an evaluation. All the assignment operators together with the pre-
and post-increment/decrement operators require the destination operand (i.e. the left-hand operand
of assignments and the only operand of the increment/decrement operators) to be an lvalue. The
address-of operator is the only other operator that requires an lvalue as its operand. In other words, if
you are going to write information you need somewhere to write it, and if you are going to take an
address you need something whose address you are taking.

Standard promotions and conversions
For the purposes of evaluation, ((un)signed) char values and (unsigned) short values are
converted to int values unless int cannot represent all the values of the type, in which case the values
are converted to unsigned int. (For example, on a system where short and int are both 16-bit,
int cannot represent all the values of unsigned short.)

In the case where the operands of an operator are of different types after the above rule has been
applied, the value of the ‘smaller’ type is promoted to that of the other.

If one operand is of a floating-point type and the other is of an integral type, the latter is
converted to the floating-point type.

The full set of rules is more complicated but I will leave that to Standard experts (see Clause 4 of
the C++ Standard for a complete specification).

Arithmetic
The four normal arithmetic operators, +, -, * (for multiplication) and / (for division), can be applied
to any pair of arithmetic values. The standard promotions and conversions must be applied first. Unless
at least one of the operands is of a floating-point type, division will be integer division. For example
5/2 is 2, but 5.0/2 and 5/2.0 are both 2.5.

There is a remainder operator that can be applied between two integer values. The % symbol is
used for this operator. The result is the remainder when the right-hand value divides the left-hand
value. Therefore, 5%3 is 2.

When - is used as a unary operator (i.e. there is only a right-hand value) it negates the value.
Therefore -number is ‘minus the value’ stored in the object referenced by number. There is a
corresponding unary + operator, which is effectively a no-op and is largely included for completeness.
+number means the same as number in any context where a value is required and is an error in any
context where an lvalue (object) is needed.

The ++ symbol is used to designate increment. Its operand must be an lvalue. If placed before the
variable it results in the variable being incremented before its value is used, i.e. ++number evaluates as

48 CHAPTER 2

the incremented value. If placed after the variable it represents post-increment, i.e. the original value
is used and the stored value is incremented. So:

int main(){
int number(0);
std::cout << number++ << '\n'; // outputs 0 but changes number to 1
std::cout << ++number << '\n'; // further increments number to 2 and

// outputs 2
}

The symbol -- is used to represent pre- or post-decrement in the same way as ++ represents
pre- or post-increment.

It is normal in C++ to prefer the use of pre-increment and pre-decrement to the post forms. It
is usual (and safer) to avoid using these operators as part of more extensive expressions.

Logical
C++ provides six comparison operators:

Symbol Alternative Meaning
token

== true if the operands compare equal; otherwise false

!= not eq false if the operands compare equal; otherwise true

< true if the lhs is strictly less than the rhs; otherwise false

<= true if the lhs is not more than the rhs; otherwise false

> true if the lhs is strictly greater than the rhs; otherwise false

>= true if the lhs is not less than the rhs; otherwise false

There are also three Boolean operators whose use forces their operands to be treated as bool
values. (Arithmetic and pointer values convert to bool on the basis that zero is false and all other
values are true.)

Symbol Alternative token Meaning

&& and true if both operands are true; false if either is false

|| or true if either operand is true; false if both are false

! not true if operand is false; false if operand is true

In this book I will use the alternative tokens for the Boolean operators, because I find them
clearer and less subject to confusion with the bitwise operators (see below)

The two binary Boolean operators use lazy evaluation. This means that the left-hand operand
will always be evaluated first and the right-hand one will only be evaluated if necessary.

WARNING!
Lazy evaluation may lead to unexpected behavior. For example, if the left operand of and
evaluates as false, the right operand will not be evaluated (and no side-effects of such
possible evaluation will happen).

FUNDAMENTAL TYPES, OPERATORS, AND SIMPLE VARIABLES 49

Bitwise
C++ provides six bitwise operators, i.e. operators that work on the individual bits of storage:

Operator Alternative Meaning
token

& bitand Sets a bit in the result to 1 if and only if both the corresponding bits
in the operands are 1

| bitor Sets a bit in the result to 1 if and only if one or both of the
corresponding bits in the operands are 1

^ xor Sets a bits in the result to 1 if exactly one of the corresponding bits
in the operands is 1

<< Shifts the bits of the left operand left by the number of places given
by the right operand (as an unsigned integer value)

>> Shifts the bits of the left operand right by the number of places
given by the right operand (as an unsigned integer value)

~ compl Inverts the values of all the bits in the single operand that follows

WARNING!
Bitwise operators can be applied to any integer type, but applying them to signed integer
types is usually a mistake and will frequently result in unexpected behavior. The shift
operators are particularly vulnerable to inappropriate use of signed values for the left
operand.

C++ reuses the shift operators as data-streaming operators when the left operand is some kind
of data stream. That is by far the most common usage for the ‘shift’ operators in C++. Think of it as
shifting data in and out.

The &, | and ^ operators are useful for doing masking operations for such things as graphics
manipulations.

Compound assignment
In addition to the straightforward assignment operator (=) that stores the value of the right-hand
operand in the object designated by the left-hand one, C++ provides ten compound operators. Each
of the bitwise and arithmetic operators that take two operands (&, |, ^, <<, >>, +, -, *, /, and %) can
be combined with an = to create a compound assignment.

The general rule for a compound assignment is that

obj op= expr;

is equivalent in behavior to:

obj = obj op expr;

Three of the compound assignment operators have alternative tokens (&= can be written as
and eq, |= as or eq, and ^= as xor eq)

50 CHAPTER 2

Historically the compound assignment operators allowed programmers to tell primitive compilers
that they wanted to use a hardware facility available on some machines to operate directly on memory.
They are still widely used even though modern compilers do not need that kind of support. They
allow the programmer to emphasize the direct modification of an object as opposed to the overwriting
of one.

More on pointers
C++ not only allows programmers to access the machine addresses of objects (and functions), but
also allows a certain number of operators to work with pointer values.

An integer value can be added to or subtracted from a data pointer. That will adjust the address
by the amount necessary for locating a similar object that number of steps away from the base address.
If ptr contains the address of an int then the value of ptr+2 will be the address of the second int
on. It is up to the programmer to ensure that such an address is a valid address, of an object that
belongs to the program. The increment and decrement operators (both pre- and post-) can be applied
to pointers to adjust the values (addresses) they contain up or down to the next object of the relevant
type.

You can also subtract a pointer from another of the same type. The answer will be the number
of objects of that type from one to the other.

Preceding a variable by the & operator results in the address of the object that the variable refers
to.

Preceding a pointer value by the * operator provides direct access to the object whose address
(pointer value) you have. So if i ptr contains the address of an object referred to by the variable i,
*i ptr is another way to access the i object.

Any two pointers (either object or function pointers) of the same type can be compared for
equality (==) or inequality (!=). Any two pointers whose values are addresses within the same object
(such as an array) can be compared for order with <, <=, > and >=.

Note that idiomatic C++ source code makes much less use of pointer arithmetic than does C.
Pointers are rare in high-level or application-level C++ code. Indeed pointers are never explicitly used
or referred to in my earlier book, You Can Do It!, which demonstrates that much high-level programming
can be done in C++ without them.

More on references
C++ provides a special mechanism for binding new names to existing objects. As names have types in
C++ (unlike names in languages such as Python) and are always bound to a specific object (unlike the
situation in Java, where a name has a type but can be used to refer to several different objects during
the lifetime of the name), we need an extra type for names that do not have their own objects but use
one provided from somewhere else.

Because reference-type names do not have their own objects there is no sense in allowing further
derivation of types from a reference type. There are no objects of a reference type, only names. These
names include an ‘empty’ temporary name used for returning objects from functions (called return by
reference) as opposed to returning copies (called return by value).

Other operators
There are a number of other operators that we will come to later. Some of these are very specialized
(such as sizeof, to determine the amount of memory that an object of a given type will occupy),
and some are only appropriate to user-defined types (such as the dot and arrow operators). Some,
such as the index and function operators, are surprising but have powerful uses in C++.

C H A P T E R 3

Looping and Making
Decisions

Looping (repeating some code several times, usually with some variable changing value) and decision-
making are two of the most fundamental mechanisms of programming. We have used both in the earlier
chapters, but we will look at the details and the alternatives in this chapter. I will also introduce you to
the preferred C++ mechanisms for dealing with (text) strings and with contiguous arrays of objects of
the same type. These mechanisms are different from those used in C and they are different to a greater or
lesser extent from those used in many other popular languages.

A few readers whose previous experience of programming has been with pure functional languages
may find the C++ mechanism for looping strange. They will have been used to using recursion to handle
many of the places where repetition is desirable. Those who come from other procedural languages such
as Visual Basic and Pascal will need to pay careful attention to the syntax used by C++ for both repetition
and decision-making; it will be similar to what they are used to, but there will be important differences
in the detail.

Some Library Types
std::string – a Library Type
In addition to the fundamental types that we looked at in the last chapter, C++ provides a number of types via
the C++ Standard Library. We call these ‘user-defined types’, and I will eventually show you how to design
and implement your own types. The important difference between using a fundamental type and using a
Standard Library type (one of the major categories of user-defined type) is that the latter requires the inclusion
of an appropriate header before we use it in source code.

std::string is one of these types and is the C++ way to handle a string – contiguous sequence – of
characters used to represent some text. The Library (I will use ‘Library’ to mean ‘C++ Standard Library’)
provides a lot of functionality for std::string. One of the most important aspects is that objects of type
std::string adjust the size of the storage they use to meet the requirements of the text they are currently
storing as a sequence of char. The growth (or reduction) in storage accommodates to the size of the text string.

Language Note: Code that uses std::string is more secure than the C use of an array of char, as it is less open to
buffer-overrun exploits. This feature relieves the programmer of much of the work that the more primitive C
mechanism requires. For those who come from other programming backgrounds there may be other surprises. For
example, unlike the string mechanisms found in some other languages, C++ strings are mutable – that is, their
contents can be changed (unless they have been declared as const).

52 CHAPTER 3

For the time being, we are going to limit ourselves to four properties of std::string objects:

1. They can be created in various ways, one of which is from a string literal. So we can write

std::string greeting("Hello World");

to create a std::string object with the value "Hello World" for the variable greeting.
2. We can assign one string to another:

std::string message; // create an empty string
message = greeting;

This results in message now containing its own copy of "Hello World".
3. We can extract a string from an input stream such as std::cin and store it in the object specified by a

suitable variable:

std::cin >> message;

This will result in the object bound to message containing the next sequence of characters extracted
from the console, starting with the first non-whitespace character and ending immediately before the next
instance of whitespace. It leaves the terminal whitespace (remember, that includes newline characters) in
std::cin’s input buffer. We will later see how to extract text that includes whitespace.

4. We can send a string to an output stream such as std::cout:

std::cout << greeting << '\n';

This will result in ‘‘Hello World’’ being displayed on the console (and the output then moving to a new
line).

std::vector<> – a Half Type
C++ has an interesting and very powerful mechanism for creating new types from existing ones: class templates.
Writing useful templates takes a lot of experience, knowledge, and skill; using class templates designed by
experts can make our lives much easier and is relatively trouble-free. std::vector<> is an example of
a class template. It provides a way to create a sequence (or array) of objects. One important feature of
std::vector<> objects is that they adjust to accommodate the number of objects currently contained. It
also provides other useful functionality. C++ provides mechanisms for users to extend that functionality if
they ever decide that there is something else that would be generally helpful.

I have called std::vector a half type because it needs something else before the result is a full C++
type. To create (instantiate) a type from a template we must provide other information such as, in the case of
std::vector<>, the type of object it will contain.

T R Y T H I S
A well-chosen program is worth many pages of explanation; here is a small program for you to
type in and try:

1 // numbers program created on 07/08/04 by FWG
2 #include <algorithm>
3 #include <exception>
4 #include <iostream>
5 #include <vector>
6

LOOPING AND MAKING DECISIONS 53

7 int main(){
8 try{
9 std::vector<int> numbers;

10 do {
11 std::cout << "Next whole number (-999 to stop): ";
12 int next;
13 std::cin >> next;
14 if(next == -999) break;
15 numbers.push_back(next);
16 } while(true);
17 if(numbers.size() == 0){
18 std::cout << "There were no numbers input.\n";
19 return 0; // exit program
20 }
21 std::sort(numbers.begin(), numbers.end());
22 std::cout << "Here are the " << numbers.size()
23 << " numbers you typed in ascending numerical order:\n";
24 for(int i(0); i != numbers.size(); ++i){
25 std::cout << numbers[i] << ", ";
26 }
27 std::cout << '\n';
28 }
29 catch(...){
30 std::cerr << "***An exception was thrown.***\n";
31 }
32 }

I am going to delay the walkthrough of this program until after I have tackled the issues of
looping and decisions in C++. You may feel that there are places where we could improve this
program. For example, the program makes assumptions about the correctness of the input. Please
be alert to such assumptions and get in the habit of dealing with them. I deliberately leave some
of these problems in my code because I want you to check code rather than just taking my word
for it. The above code together with the earlier programs supplies some context for the following.

Making Decisions
C++ provides three primary mechanisms for making decisions: if-else, switch, and a special operator
that is usually referred to as the conditional or ternary operator (because it is the only C++ operator that takes
three operands).

The if-else Statement
Not only do all major computer languages have a construct like this, but they also almost universally use
the same words. However, please read on carefully, because there may be differences between C++ and the
language you currently use.

Language Note: Python programmers need to be especially careful, because C++ does not use indentation as a syntactic element.
Those used to languages such as Pascal will need to note that C++ restricts both if and else to controlling a
single statement. This statement will often be a compound one created by placing one or more simple statements in a
block defined by a matching pair of braces.

54 CHAPTER 3

The form of an if-else statement in C++ is:

if(Boolean-expression) action-one
else action-two

In pseudocode, the if-else statement has this effect:

if Boolean-expression evaluates as true
then action-one
else action-two

The Boolean expression can be anything that evaluates to a value that is implicitly convertible to a bool.
That includes all the fundamental types and all pointer types. The value zero for any fundamental type is
treated as false; all other values are treated as true. In the case of pointers, all values are treated as true
except for a special value called the null pointer (a pointer that does not point to anything), which is treated
as false (more about that when we deal with the details of pointers).

The actions have to be single statements. However, in C++, any group of statements enclosed in a
pair of curly braces is a single compound statement. Simple statements in C++ are terminated with a ;
(semicolon); however, a compound statement is terminated by the closing brace. Be careful that you do
not add a semicolon after the closing brace of a compound statement (sometimes called a block statement),
because that would constitute an empty simple statement, whose presence may be significant; for example,

{
a = 3;
b = 4;
c = 0;

};

comprises two statements at the outer level: a compound one, which itself consists of three statements,
followed by an empty simple statement.

The else clause of if-else is optional (we have not used it in any program so far). However, it must
be the next statement after the one controlled by the if. For example,

if(numbers.size() == 0) std::cout << "There were none.\n";
else std::cout << "There were " << numbers.size() << ".\n";

is fine, as is

if(numbers.size() == 0){
std::cout << "There were none.\n";

}
else std::cout << "There were " << numbers.size() << ".\n";

where I have written the single statement controlled by the if as a compound one. The following if-else
statement is also OK:

if(numbers.size() == 0){
std::cout << "There were none.\n";

}
else {

std::cout << "There were " << numbers.size() << ".\n";
}

However, this one is not (see if you can spot the critical difference):

if(numbers.size() == 0){
std::cout << "There were none.\n";

};
else std::cout << "There were " << numbers.size() << ".\n";

LOOPING AND MAKING DECISIONS 55

In this case the compiler may be able to diagnose the problem (the extra semicolon at the end of the
compound statement), but in more complicated cases where there are ifs nested inside ifs, it may not be
able to do so; instead it will misconstrue your intentions and the else part will not be considered as related
to the immediately preceding if.

T R Y T H I S
Write a simple program that asks for an integer value and then outputs the simple message ‘zero’
if the value given was 0; otherwise it should output ‘not zero’.

The switch Statement
The if-else statement is for making two-way decisions, but sometimes we want to make a multi-way
decision. By that, I mean that there are sometimes logically more than two choices. C++ provides the switch
statement for this case. Here is the form of the switch statement:

switch(controlling-integer-expression){
case integer-value-one: action-one
case integer-value-two: action-two
etc.
default: default-action

}

In pseudocode, the switch statement has this effect:

if controlling-integer-expression evaluates as integer-value-one
then action-one, action-two, . . . , default-action (or until break or return is encountered)
else if controlling-integer-expression evaluates as integer-value-two
then action-two, . . . , default-action (or until break or return is encountered)
else if etc.
else default-action

There are a number of important details that need attention when using a C++ switch statement.
The controlling expression must evaluate either to a value for some integer type or to a value that

is implicitly convertible to such a type. All the fundamental types conform to that requirement. However,
pointers do not, as there is no automatic conversion from any pointer type to an integer type.

The case values must be fixed values known to the compiler. In general, that means that they should
be literals for one of the fundamental integer types. Later we will see that there are a few other options.

The final default clause (actually, if you want to be eccentric, you can put it anywhere in the selection
list) is optional, and if it is missing, the compiler will treat your code as if the default action is to do
nothing.

The program will start executing the code from the corresponding case and continue until it encounters
a return statement, a break statement, or the closing brace of the switch statement. It is important to
understand this, because other languages with similar constructs treat the next case as terminating the
current one.

Language Note: Pascal is an example of a language that uses a different design for its multi-way choice construct. The C++ feature
(shared by other languages in the C family, such as Java) of allowing a case to fall through, i.e. executing the code
for subsequent cases until something explicitly stops the sequential execution, is a cause of bugs in programs, so you
need to be careful when using a switch statement and avoid simply treating it as the C++ equivalent of a
mechanism you already use in some other language.

56 CHAPTER 3

Here is a short code fragment to demonstrate the use of a switch statement:

int i(0);
std::cin >> i;
switch(i) {

case 0:
std::cout << "Cannot divide by zero.\n";
break;

case 1:
std::cout << "Dividing by 1 does not change anything.\n";
break;

default:
std::cout << 100/i << '\n';

}

T R Y T H I S
Write a short program to use the above fragment, and check the consequences of leaving out one
of the break statements. Do not forget to add input validation to your program.

switch Continued
Here is a second code fragment that uses a switch statement:

char c(0);
std::cin >> c;
switch(c) {

case 'a':
case 'e':
case 'i':
case 'o':
case 'u':
std::cout << c << " is a vowel.\n";
break;

case 'y':
std::cout << "'y' is a vowel in some contexts.\n";
break;

default:
std::cout << c << " is not a vowel.\n";

}

Note how the C++ case mechanism allows a piece of code to deal with several cases. Some languages deal
with this in a different way, but C++ uses the C mechanism (so that more C code will compile as C++).

T R Y T H I S
Write a program using the above code. Now improve it to deal with uppercase letters. We need
to do more work to sort out the consonants from the other possible inputs. Accented letters

LOOPING AND MAKING DECISIONS 57

add even more work. If you want to experiment further, the <cctype> header provides a
number of functions from the Standard C Library that allow you to classify chars. These include
std::isdigit(), std::ispunct(), and std::isalpha(). Those functions return true
if the character represents a digit, a punctuation symbol, or a letter respectively. For more details
and for details of locale-dependent alternatives (taking account of national character sets), see a
good library reference such as The C++ Standard Library by Nicolai Josuttis [Josuttis 1999].

The Conditional Operator
C++ provides an operator that allows you to select which of two alternative expressions to evaluate depending
on the Boolean value of a controlling expression. As this is an operator, there will be a resulting value when it
is used. It is the presence of a value that distinguishes the conditional operator from the if-else construct.
Here is the form of the conditional operator:

Boolean-control-expression ? result-expression-one : result-expression-two

The conditional operator is one of several C++ operators that consist of two symbols that are separated
from each other. In this case, the symbols are ? and :. The control expression is evaluated first to determine
which of the two result expressions should then be evaluated. If the control expression evaluates as true, the
value of the overall expression is the result of evaluating the first result expression. If it evaluates as false,
the value of the overall expression is the value of the second result expression. If there are side effects from
the evaluations, only those for evaluating the control expression and the appropriate choice of the result
expressions will occur.

Language Note: C programmers should be particularly careful, because C++ has extended the potential use of this operator, so that,
for example:

i < j ? i = 0 : j = 0;

compiles and works (it sets the smaller of i and j to zero). More controversially, the following compiles in C++:

(i < j ? i : j) = 0;

In other words, where both the alternatives provide objects of the same type (presumably int in this case), a conditional
expression in parentheses can appear on the left of an assignment. It is generally a poor idea to use this facility.

Here is a small snippet of code demonstrating a simple use of the conditional operator (it assumes that
count is a number of oranges):

std::cout << "There " << ((count == 1) ? "is" : "are") << count
<< " orange" << ((count != 1) ? "s" : "") << ".\n";

It deals with providing the correct version for a single object. It even deals with that quirk of English that
treats zero objects as plural. (Note that the operator-precedence rules make the parentheses around count ==
1 and count != 1 redundant. I have used the parentheses to assist your reading of the statements.)

T R Y T H I S
Go back to the numbers program (page 52) and:

1. change the if statement that includes an exit by return 0 to an if-else statement to handle
the two cases as alternatives;

2. change the output statement to deal with the case where the user inputs only one value before
ending with −999.

58 CHAPTER 3

Looping
C++ has three major constructs to deal with repetition. It also has a way to roll your own; however, good
programmers normally avoid that option.

Language Note: Some languages, particularly the functional languages, use recursion as their main tool for repetition. It is possible
to use this mechanism in C++, but the resulting code will generally be inferior to that written using C++’s native
looping mechanisms. C++ compilers are not tuned to produce good object code when recursion is used as a looping
mechanism. The use of recursion for looping will also make your code harder for C++ programmers to understand,
because you will be writing code in a way that is strange to them.

The do-while Loop
We have already been using this in a highly specialized form so that we can repeat some action until an
internal condition results in breaking out. The general form of the do-while loop is:

do{
action-one
action-two
etc.

} while(Boolean-expression)

In pseudocode, the do-while loop has this effect:

A: action-one
action-two
etc.
if Boolean-expression evaluates as true then go to A

This always executes the actions section at least once. Then the program checks to see whether it
should go back and repeat the section. We keep repeating the actions until one of two things happens:
either the Boolean expression in the while clause evaluates as false, or one of the internal actions
forces a breakout. The first option is the usual one, though we have not used that form so far in this
book. For example, the following code fragment displays the numbers from 0 to 9 together with their
squares:

int i(0);
do{

std::cout << i << " " << i*i << '\n';
} while(++i < 10);

T R Y T H I S
Write a short program that incorporates the above code snippet. Compile, link, and execute it
to check that the output is as predicted. Now change the ++i to i++, and compile and execute
the result. Did the different results surprise you? Do you understand the difference? Note that we
sometimes need to be careful about whether we use pre- or post-increment.

LOOPING AND MAKING DECISIONS 59

The while Loop
A straight while loop tests at the start and is probably commoner than do-while. The major difference is
that do-while loops always run at least once, whereas while loops test immediately and the actions section
is only executed if the test evaluates as true. The form of a while loop in C++ is:

while(Boolean-expression){
action-one
action-two
etc.

}

In pseudocode, the while loop has this effect (compare this with the pseudocode for the do-while loop):

go to B
A: action-one
action-two
etc.
B: if Boolean-expression evaluates as true then go to A

I could have used straightforward while(true) loops everywhere that I have so far used do-
while(true) in this book. Indeed, it is probably better to use this form for loops that rely on internal
breakouts because it warns a reader of the code to watch for an internal break statement or return statement.
The reason that I chose otherwise is partly so that I could write this here. There is not a lot between the choices
but giving the marginally better one second may help you to remember that C++ often gives you a choice.

We can write the snippet of code above as:

int i(0);
while(i++ < 10){

std::cout << i << " " << i*i << '\n';
}

However, the results are not exactly the same.

WARNING!
Resist the temptation to write:

int i(0);
while(i < 10) {

std::cout << i++ << " " << i*i << '\n';
}

There is a potential for something very nasty happening if you write code that both
increments a variable and uses that variable a second time all within the same statement. Notice
that I wrote ‘potential’. Such statements have what is called ‘undefined behavior’ (which I will
address directly in Chapter 6). This means that the C++ Standard makes no requirements on such
code. It can do what you expected; or it can do something different, even something disastrous.
I once had a program that reprogrammed the BIOS of an expensive graphics card because of
undefined behavior. What makes it hard to learn about undefined behavior is that the program is
allowed to do what you expected; it just isn’t required to.

60 CHAPTER 3

I will point out other potential for undefined behavior as I go. However, you should note
that this is not unique to C++: all programming languages have cases of undefined behavior; C++
is more up-front about it than some.

Experienced C++ programmers use a simple guideline: ‘‘Do not use increment and
decrement operators in expressions with other variables.’’ This is just a guideline, so there
are places where expert programmers will ignore it. However, you need a good reason for doing
so. The absolute rule is: ‘‘Never use a second instance of a variable that is being incremented
or decremented within the same full expression.’’ For now, you can think of a full expression as
something such as the control expression in a decision or loop, or any expression that ends with
a semicolon.

T R Y T H I S
Modify the previous program by replacing the do-while with a while. Check the results and
decide how to modify the program so that you get the same results as before.

The for Loop
The third and most commonly used loop construct in C++ is the for loop. It is easy to use once you get the
feel of it, but it can be a little strange at first. The form of the for loop is:

for(initialization-expression; Boolean-control-expression; termination-expression) action

In pseudocode, the for loop has this effect:

initialization-expression
go to B
A: action
termination-expression
B: if Boolean-control-expression evaluates as true then go to A

Let me take each of those parts separately.

Initialization
The initialization part is executed exactly once. It states what must be done before entry to the loop for the
first time. It can be empty (i.e. do nothing); it can set a number of variables to initial values before the loop
starts; it can also be used to define one or more variables of a single type. The commonest option in C++ is
the last one, defining a single variable that will control the loop.

Control expression
The control expression is always executed immediately before each execution of the action statement to
determine whether it should be executed again (or the first time, whether it should be executed even once).
The loop ends immediately this expression evaluates as false. This part can also be empty, but if it is, the
loop will have to use an internal breakout – just as we have been using for do-while(true) loops. In other
words, leaving out a control expression is equivalent to writing true at that point.

Termination
The termination part is an optional action that will be executed at the end of every pass through the loop and
immediately before the next test of the control expression. Note that this happens at the end of a pass so is not
executed before the first pass.

LOOPING AND MAKING DECISIONS 61

Recursion
I refer to recursion several times in this chapter.
Some programmers may not be familiar with the
concept, and others may be puzzled as to how it
could be used as a substitute for looping. Here is
a short program to illustrate both recursion and its
use for looping.

#include <iostream>
#include <ostream>

void print_square(int i){
if(i != 10){

std::cout << i << " "
<< i*i << '\n';

return print_square(i+1);
}

}

int main(){
print_square(0);

}

This code works perfectly satisfactorily, and some
compilers may even compile it efficiently, but as
recursion is not normally used this way in C++ we
do not expect a C++ compiler to handle this code
efficiently. As far as the compiler is concerned,
it will need ten instances of print square′s
parameter as opposed to the single control variable
used by our normal C++ versions of the program.
From the functional-programming perspective, the
recursive form is cleaner because it does not use any
variable, just pure values. However, C++ compilers
have not been tuned to handle pure values and
recursion.
If you are still mystified, the term recursion is used
to refer to cases where a function calls itself as
print square does in the above example. Just
like a loop, a recursive function needs some way
to stop. Unlike a loop, when it runs out of control
it can quickly consume all the available resources
on your computer.

Action
The action, or controlled statement, can be a
simple statement but is more often a com-
pound statement (a block of statements con-
tained within braces). It provides the actions
that will be executed during each pass through
the loop. This statement can be a null one
(empty), in which case the only actions taken
will be those provided by the control and ter-
mination expressions. For example, the follow-
ing is valid (though not generally advocated as
good code):

for(int i(0); i < 10;
std::cout << ++i << '\n');

Putting it together
Here is the equivalent to the earlier snippets but
using a for loop instead of a while loop:

for(int i(0); i != 10; ++i)
std::cout << i << " "

<< i*i << '\n';

Defining the control variable of a for loop
in the initialization clause is the normal idiom in
C++. The control expression for a counted case
such as this one is usually expressed using the !=
(not-equals) operator. This may be strange if you
have come from a language such as C that uses a
different idiom (such as the less-than operator),
but comparing for inequality works in C++ even
when the control variable is a user-defined type
that does not support a strict ordering (we will
eventually make extensive use of types called iter-
ators that exhibit this property). The C++ idiom
works just as well when we are using an integer
variable as we are here.

It is also normal to use pre-increment
in C++ when we are dealing with freestand-
ing increment expressions. For integer objects
it makes no difference whether we use pre-
or post-increment, but later on we will be
using other types of iterator (objects that are
used to control repetition and identify members of collections), and for those pre-increment is often
more efficient. Therefore, we adopt a style that works well in all cases. We call such automatic choices
‘idioms’. Knowing the idioms of a language makes it easier both to write your own code and to read other
programmers’ code.

62 CHAPTER 3

Language Note: One of the problems with idioms is that newcomers often try to recycle the idioms of their previous language.
Sometimes these work well; sometimes they seem to work but there are hidden traps; and sometimes they either
work badly in C++ (e.g. using recursion for looping) or do not work at all (e.g. using the Python form of for
loop, which is a very powerful one, but not one that C++ currently provides). Most C idioms will work in C++,
but every one of them needs to be re-examined in the context of C++, because not all of them are the preferred
option in C++.

break, continue, and goto
There are several ways of varying from the normal flow of code in a construct. I am leaving the details of
return until Chapter 5, when I deal with functions. You will also have noted that throwing an exception
exits from the normal flow. I am also leaving details of that for a later chapter.

I have already made extensive use of break without going into much detail as to what it does. break
causes an immediate exit from any of the above loop constructs (for, while, and do-while) as well
as forcing an exit from a switch statement (and an if statement, but you should generally avoid its use
there). The statement immediately after the construct in question will be the next one executed after a break
statement.

It is good practice to avoid using break for exiting loops, though we have seen one of the
exceptions to this in its use for exiting an otherwise infinite loop. It is often possible to change the
source code so that break is unnecessary. The resulting code is often simpler even if it was not so
obvious in the first place. If you find yourself writing more complicated code in order to avoid an early
exit from a loop, you are probably heading in the wrong direction. Often programmers are still using
a mental model that involves early exit while trying to abide by a coding guideline that prohibits the
use of break. Try to design your code so that an early exit from a loop is unnecessary. Then you will
reduce your use of break for all the right reasons, and your code will likely become simpler and more
elegant.

Sometimes we find that we need to abandon the current pass of a loop and go immediately to the next
one. C++ provides a special mechanism for that: the keyword continue. Here is a small code snippet to
demonstrate its use (however, this is only a demonstration of use and not an illustration of good coding
practice):

std::cout << "The following digits are not divisible by 5:\n";
for(int i(1); i != 10; ++i) {

if(i == 5) continue;
std::cout << i << '\n';

}

In this case it would have been easy to eliminate the continue by replacing the above code with:

std::cout << "The following digits are not divisible by 5:\n";
for(int i(1); i != 10; ++i) {

if(i != 5) std::cout << i << '\n';
}

However, I might argue that the first form is clearer because it makes the exceptional case explicit
whereas the second one buries it. In this simple case, I do not think there is much in it, but the
decision whether or not to use continue should be based on which alternative makes the resulting code
clearer.

I am going to say much about goto. I have never found it useful in over a decade of programming in
C++. I have no great philosophical objection to goto; I just find that any code that uses it can be rewritten in
a simpler form without it. Its continued presence in C++ is one of those holdovers from the past when long

LOOPING AND MAKING DECISIONS 63

functions were common. These days we tend to write many shorter functions and rely on good compilers
to reduce the number of actual function calls. goto is not generally useful in modern C++ programming.
You need to know it exists because you might come across it in someone else’s code, but you do not need to
use it.

Language Note: One of the problems for programmers used to languages such as BASIC is that they are accustomed to using goto.
Some of the idioms they are used to use goto and they just import those into C++. The biggest problem with the
use of goto is that it usually results in code that lacks clarity. Such code is hard to maintain and is prone to bugs.

In theory you can roll your own loops by using goto and if (witness the use of these in the pseudocode
above). In practice, no C++ programmer would do that.

W A L K T H R O U G H

The Number-Sorting Program
Here are the important lines of that program again, to save you having to turn back and forth between
the source code (page 52) and my commentary. I have highlighted the lines that I am going to write
about.

7 int main() {
8 try{
9 std::vector<int> numbers;

10 do {
11 std::cout << "Next whole number (-999 to stop): ";
12 int next;
13 std::cin >> next;
14 if(next == -999) break;
15 numbers.push_back(next);
16 } while(true);
17 if(numbers.size() == 0){
18 std::cout << "There were no numbers input.\n";
19 return 0; // exit program
20 }
21 std::sort(numbers.begin(), numbers.end());
22 std::cout << "Here are the " << numbers.size()
23 << " numbers you typed in ascending numerical order:\n";
24 for(int i(0); i != numbers.size(); ++i){
25 std::cout << numbers[i] << ", ";
26 }
27 std::cout << '\n';
28 }
29 catch(...){
30 std::cerr << "***An exception was thrown.***\n";
31 }
32 }

64 CHAPTER 3

Line 9 defines numbers as the name of an object that encapsulates a contiguous sequence of
ints. The use of std::vector specifies that it will be a contiguous sequence. The <int> specifies
that it is a sequence of ints. Because I have provided no extra information in the definition, numbers
will start out as an empty sequence. C++ std::vector sequences have a growth strategy that allows
them to expand as needed in a way that provides optimum general performance. They are the C++
programmer’s first-choice container for sequences of objects of the same type.

Line 12 defines the variable next directly before its point of first use. Strictly speaking, as we
have defined next within a block of source code, the code recreates it every time the block repeats.
However, any respectable compiler will avoid adding extra code. I have not initialized next because
I am going to obtain a value from the std::cin in the next line. This is one of the special cases
where we may reasonably leave out the initialization of a variable of a fundamental type. Nonetheless,
many programmers insist on initialization even in this instance, because they worry about someone
later on separating the point of definition from the point where the variable is first written to,
thereby leaving the gate open for someone else to add code that uses the variable before it has been
written to.

If you thought carefully about line 13 in the context of the comment I made about assumptions,
you will have noted that the code assumes that the user always types in a valid integer. Even such
trivial errors as trying to input a number with a decimal point will send the program into an infinite
loop. We are not yet ready to deal with that issue other than by sending a message to std::cerr and
then giving up by throwing an exception.

T R Y T H I S
If you have not already done so, go back and amend the program so that it tests std::cin
immediately after its use and throws an exception if it has failed.

W A L K T H R O U G H

Continued
Line 14 tests for end of input. If the user has entered the specified value, the program skips forward
to start executing from line 17. Otherwise, it executes line 15. This line uses the mechanism provided
by std::vector for adding a new object to the end of the sequence it is holding. If there is not
enough space for the new object, push back() will trigger the internal behavior that provides a
larger amount of space and, if necessary, copies the existing values into that space so that the objects in
the sequence remain contiguous. In other words, std::vector automatically maintains its contents
as a contiguous sequence.

Lines 17–20 deal with the possibility that no numbers were provided. They make use of the
mechanism provided by std::vector that reports the current number of objects in the sequence.
numbers.size() always evaluates to the number of objects in the sequence that we are calling
numbers. Line 19, return 0 is the mechanism for leaving main (i.e. the program) early. We could
have avoided the need for an early exit by putting the remainder of the normal processing in a block
controlled by else.

LOOPING AND MAKING DECISIONS 65

T R Y T H I S
Modify the program to eliminate the return 0 and make the rest of normal processing a block
controlled by else. When you have done this, consider the two versions and decide which seems
clearer to you. I prefer the early return, but some coding guidelines prohibit use of early returns.
Try to come up with an alternative design that avoids making the normal processing the else part
of an if-else.

W A L K T H R O U G H

Continued
Line 21 uses one of the more powerful features of modern C++, the concept of applying ‘algorithms’ to
sequences. The #include <algorithm> line provides access to the somewhat misnamed ‘algorithm’
part of the Library. std::sort is one of roughly 80 algorithms provided by the Library. The default
version of it requires two arguments. The first argument specifies where the sequence starts, and the
second one specifies how to determine that the sequence has finished. By default std::sort() sorts
a sequence into the natural ascending order for the type of objects in the sequence – it uses the <
(less-than) operator for the type of objects stored in the sequence.

numbers.begin() uses the mechanism of std::vector that supplies the value (called an
iterator) that identifies the start of the sequence. numbers.end() supplies the iterator that signifies
that the sequence has ended (we will discuss the details of iterators another time, but for now just
know that they generally identify the location of objects). Note that end() does not identify the last
object: it is a special iterator that determines whether the sequence has ended (in other words, unlike
most iterators, this one does not identify the location of an object). This representation of the end of
a sequence may seem strange at first, but it has many advantages, and as you get used to it you will
find it strange that you ever expected the end of a sequence to be the last element rather than after the
last one.

Now if you look at line 21 again you will see that it results in the rearranging of the sequence
called numbers into ascending order.

Lines 24–26 output the sorted sequence in numbers as a comma-separated list. The control
expression of the for loop keeps going until it has counted all the elements of numbers. Notice
that along with many other languages, C++ starts counting at zero, with the consequence that
you have finished when the count reaches the number of the elements in the container (given by
numbers.size()).

Line 25 uses the feature of std::vector that allows access to elements by using a subscript
or index. That means that we can treat std::vector objects as if they are arrays, but arrays with
a lot of added functionality. How surprising you find this depends on your prior programming
experience.

On Magic Numbers
Programmers often refer to numerical literals as ‘magic numbers’. Sometimes the significance of a literal
number is obvious from the context in which it is used, as is the case for the factor used for converting hours

66 CHAPTER 3

to minutes in the following code snippet:

int hours;
std::cin >> hours;
int minutes(hours * 60);

I see nothing wrong with using the literal 60 in this context. But there are cases where even though the
context makes the use clear we might still prefer to use a named value. For example:

double radius;
std::cin >> radius;
double circumference(2 * radius * 3.14159625);

You probably recognize the literal as an approximation for the mathematical constant π , but are you
sure I typed the figures correctly? (I did not.) In addition, if π turns up in a program it will probably do so
more than once.

Readability and correctness are just two reasons for replacing the literal with a name. In C++, we do
that by defining a const-qualified name for the literal. The above code now becomes:

double const pi(3.14159265); // corrected
double radius;
std::cin >> radius;
double circumference(2 * pi * radius);

That final statement becomes instantly recognizable by anyone with even the smallest amount of domain
knowledge. The use of a named constant means that we only have to type the value in once – carefully – and
after that, we write readable code. Should I mistype the value of π or want to provide more significant
figures I have a single point at which to make the change.

Where magic numbers become a matter for more concern is where the values are essentially arbitrary.
In the number-sorting program, the choice of −999 to flag end of input is entirely arbitrary. It signifies
termination of input because I decided that that is what it would mean. A stranger looking at the code can
legitimately ask what is special about −999. The answer is that it is a magic number whose property is neither
more nor less than what I choose it to be. We should always replace such numeric literals with named values.
In C++, we do that by providing an appropriate name for a const-qualified object of a suitable type. In the
number-sorting program, I might provide:

int const end_input(-999);

Now I replace line 11 with

std::cout << "Next whole number (" << end_input << " to stop): ";

and line 14 with:

if(next == end_input) break;

I hope you think the result is clearer and easier to maintain. You can easily change the termination value
to something else by changing the definition of end input. In addition, the source code should need less
commentary because the named values communicate my intention.

From now onwards, look at literals with a degree of suspicion, and ask yourself if their use is sensible in
context, or do they have smell of ‘magic’? You will get back the cost of a little extra typing many times over
in reduced maintenance time.

The names fgw::red1 etc. for the bits in the color-coding in the default palette of colors used by
fgw::playpen objects are an example of removing magic numbers. In this case the names stop being useful
(actually, they become positively misleading) when we move away from the default palette. Named values
do not solve all our problems. We have to choose names carefully.

LOOPING AND MAKING DECISIONS 67

EXERCISES
1. Write a program that asks the user how many words they are going to input, and then collects those words

into a std::vector<std::string>. When the input has completed, sort the words alphabetically
and print them out in a column.

2. Write a program that collects words from the keyboard until ‘END’ is typed in. It should then sort the words
and output them in a column. Try to avoid the magic use of ‘END’ by using a suitably named constant object.

3. Write a program that displays a column of 20 black pixels in the Playpen window. Check carefully that it
is a column of 20, not 19 or 21. I suggest that you do not use the default Playpen scale but set the scale
to something larger. You might like to think about a way that will allow you to count the pixels as they are
plotted.

4. Write a program that prompts the user for two whole numbers and then displays a cross in the Playpen
window whose height is the first number and whose width is the second. Modify this program so that the
user can select a color other than black. For example, you might ask the user for the amount of red (0 to
7), the amount of green (0 to 7) and the amount of blue (0 to 7). You know enough C++ and enough about
the default Playpen palette to achieve this, but it will be hard if you are not already a fluent programmer in
some other language.

5. Write a program that covers the Playpen with 256 colored tiles, one of each of the 256 colors in the default
palette. If you use a scale of 32, 16 rows of 16 logical pixels will exactly cover the Playpen. The only hint I
will give you is to consider using nested for loops. You may have to experiment quite a bit. (Don’t forget
that you can change the origin if that helps you.)

6. Write a program that draws the diagonals of the Playpen.

7. The median of a collection of values is the one in the middle when they are arranged in numerical order.
If there are two middle ones (because there are an even number of values in the collection) the median is
the arithmetic mean of the middle pair. Write a program that collects numbers from input and then outputs
their median.

8. An examination is graded on the basis that the top 20% of the candidates get ‘A’, the next 20% get ‘B’,
and so on to the bottom 20%, who get ‘E’. Write a program that collects the marks for 20 candidates
and then outputs the grade boundaries. Note that you do not need to know the maximum possible
mark. For a perfect solution you will need to resolve issues concerning multiple candidates on a grade
boundary.

STRETCHING EXERCISES
These exercises give experienced programmers a greater challenge. If you found the above exercises tough,
leave these ones for now. You can always come back to them later. As always, answers should be limited to
using only C++ that I have introduced so far.

9. The triangular numbers are those resulting from the sum of the first n whole numbers. So the first four are:
1; 3 (= 1 + 2); 6 (= 1 + 2 + 3) and 10 (= 1 + 2 + 3 + 4). Write a program that displays triangular numbers of
pixels as triangles in the Playpen. It should start by displaying a single pixel in a color of your choice and

68 CHAPTER 3

wait till the user presses the Enter key. At that point it should add a row of two pixels with the existing one
above and central. This process should be repeated until the screen displays the tenth triangular number.

10. Write a program that separates the whole numbers from 1 to 100 into two sets so that the sum of the
square roots of the numbers in each set are equal, to six significant figures. Be careful: you are dealing with
floating-point numbers, and the concept of equality will need careful handling. You may use the Library
function std::sqrt. You will need to include the <cmath> header.

11. Write a program that takes a number of words as input and outputs their average (arithmetic mean) length
and the overall ratio of vowels to consonants. You may use the fact that objects of the std::string
type, like those of a std::vector type can report their size (number of characters) by using size().

12. Write a program that will take in pairs of words and then output ‘anagram’ or ‘not anagram’ depending on
whether they are or are not composed of the same letters. std::string objects can be sorted in exactly
the same way that we sorted a std::vector object. You can also compare strings for equality using ==
between them. That should be enough help.

13. Write a program that accepts integer values in the range −100 to 100 and outputs their names in text. So if
the input were 27, the output should be ‘twenty-seven’. If the input were −39 the output would be ‘minus
thirty-nine’ or ‘negative thirty-nine’. If you feel up to it, try converting your program to work with some other
natural language such as French. Even harder, try writing a program where the user types in the text and
the output is the number.

REFERENCE SECTION
Decisions
C++ provides three primary mechanisms for making decisions:
1. if-else, for an essentially two-way decision. The else is optional, but if it is present it must be

the next statement after the one controlled by the if. The controlled statement may be either a
simple statement or a compound one (a block of statements in braces).

2. switch, allowing a multi-way selection controlled by an integer value. The selections are identified
by the case keyword followed by a constant integer value and a colon. Execution of a selection is
terminated by the next break or return statement or by the closing brace of the switch statement.
A switch statement may include a single catch-all option identified by the default keyword.

3. A conditional operator that selects which of two expressions to evaluate depending on a control
expression.
The form is: control-expression ? expression-for-true : expression-for-false.

The difference between mechanisms 1 and 3 is that in the former we have controlled statements,
and in the latter we have controlled expressions. Expressions are evaluated to provide values that may
be used as part of larger expressions within the same statement. Statements are complete and do not
have values. The following code snippets (intended to be part of the exit from a function) demonstrate
the difference in use:

std::string response;
std::cout << "Yes or no? ";
std::cin >> response;
if(response[0] == 'n') return 0;

LOOPING AND MAKING DECISIONS 69

else return 1;

or

std::string response;
std::cout << "Yes or no? ";
std::cin >> response;
return (response[0] == 'n') ? 0 : 1;

The first case uses two return statements selected by the if-else construct; the second case
returns a value selected by a conditional expression.

Looping, Repetition, and Iteration
These are just three terms with very similar meanings. C++ provides three main mechanisms for
looping.
1. while(control-expression) action. The action statement (usually a compound statement enclosed in

braces) is repeated so long as the control expression evaluates as true (or non-zero). The control
expression is evaluated before every repetition including the first. If it evaluates to false (or zero)
the action statement is not executed and processing resumes with the next statement. Note that this
means that the action part of the statement may sometimes not be executed even once.

2. do{actions} while(control-expression); This variant tests for repetition after each execution of the action
block. It is used when the actions must always be executed at least once. Otherwise, it is similar to
the while loop..

3. for(initialization; test; termination) action. This form of looping is largely equivalent to writing:

initialization;
while(test){

action
termination;

}

We never need to use a for statement (or alternatively we can always write a while statement
as a for statement). However, using both constructs allows us to provide idioms that help other
programmers follow our intentions. It is generally idiomatic to use a for statement when the number
of repeats is determined by some value (e.g. when we want to count through a number of cases). We
use a while statement when we expect the end of repetition will result from some other condition
such as reaching the end of a file that we are processing.

The most common use of do-while is for cases where some form of data must be obtained
and processed with an option to get more data depending on the result of the current repetition.

C++ provides several ways to terminate processing of a loop. The continue keyword allows
the program to abort the current iteration and go directly to the test for the next repetition. In the case
of a for loop, continue immediately resumes execution with the termination statement before testing
for another repetition.

The break statement is used to exit the loop altogether. In other words, break forces execution
to resume with the statement immediately after the current loop construct.

There are other statements such as return statements that will result in early termination of a
loop, but those are consequences of their designed behavior rather than behavior designed to get out
of a loop.

70 CHAPTER 3

Standard C++ Library Types
std::string

This type provides text type behavior. It also provides suitable behavior for a sequence of char values.
It includes the functionality we expect for text such as supporting appending text and comparing text
for equality. As a sequence type, it provides the functionality of a C++ sequence. Sequence objects
know their length or size, they know where they start and end, they can usually be indexed and they
can be sorted. We will learn more of the functionality of std::string in later chapters.

std::vector<type>

std::vector is an instance of what C++ calls a class template. It provides the functionality we
expect for a dynamically resizable array of something. Because the functionality of a sequence is
largely independent of the type of object in the sequence, we want a way to specify that functionality
independent of the type of object being stored in the sequence. One of the major uses of a class
template is providing such generic functionality. We can plug in an extensive range of types at the
point of use. Only relatively few types will fail to work correctly with std::vector. The basic
criterion for a type to be usable to instantiate a std::vector is that objects of the type must be
copiable and assignable. In other words, you must be able to pass objects of the type by value, and
you must be able to assign a value of the type to an object of the same type. At this stage in your study
of C++, those restrictions are not likely to mean much, but they will by the time you have finished
using the tutorial part of this book.

C H A P T E R 4

Namespaces and the C++
Standard Library

I will be introducing several services provided by the C++ Standard Library. I will explain namespaces
and how to avoid having to type such things as std:: and fgw:: over and over again.

The Library is a substantial resource for any C++ programmer and one that it pays to know about.
Nicolai Josuttis took almost 800 pages to cover it his excellent tutorial and reference, The C++ Standard
Library [Josuttis 1999] and there will shortly be a volume by Dietmar Küel detailing a substantial set
of recent additions. I will be limiting my coverage to those parts that I use in this book. However,
you should get used to checking whether the Library provides what you need for a program before
spending time writing your own code. The easiest way to check is to ask. Usenet newsgroups such as
comp.lang.c++.moderated and alt.comp.lang.learn.c-c++ are invaluable resources for asking
questions about what C++ provides that might help with solving a problem.

Wide Versus Narrow Character Set Support
C++ provides full support for two kinds of character set: narrow and wide. We can represent characters in the
C++ narrow character sets with 8-bit values. These character sets are fine for Standard English and even have
room for values representing the more common accented letters. However, 8 bits (256 values) are insufficient
for representing the character sets used elsewhere in the world. Even 16 bits (65536 values) are insufficient
for a simple encoding of all the characters used somewhere in the world.

For more than a decade the Unicode Consortium has been working at providing a universal encoding
for all character sets being used anywhere in the world. The latest Unicode Standard (version 4) requires 20
bits for a flat encoding (i.e. one that does not involve special codes to shift from one character set to another).
Unicode is effectively equivalent to the ISO 10646 character-encoding standard.

C++ provides the wchar t type to support extended character encoding, i.e. characters that belong
to some extended character representation. C++ does not require that the values for wchar t represent
Unicode. However, C++ provides a standard representation for Unicode literals.

C++ also provides support for all types and objects based on wchar t that are analogs of the
types and objects based on char. I will confine myself, in this book, to the narrow character set and
its support through char-based objects and types. The current release of the MDS implementation at the
time of writing does not provide full support for the wide-character alternatives of std::string and
the console I/O objects. In the context of learning C++, that is not a serious handicap. When you have
learned to use the narrow versions correctly, you will find it easy to switch to the wide ones when you
need them.

72 CHAPTER 4

Namespaces
In the early ’90s it became clear that C++ programmers would make extensive use of third-party libraries.
In addition, the Standard Library was itself likely to grow. Names in different libraries were likely to clash.
Worse, compilers would not always be able to identify such cases as being errors. As we will see in the
next chapter, it is possible to use a single name with several meanings visible in the same scope (it is called
overloading). Devising a mechanism that would distinguish names from different libraries seemed useful. The
namespace mechanism was designed to deal with these problems.

Definition: A scope, sometimes called a declarative scope, is a region of source code in which declared names retain the meaning given
to them by the declaration. The smallest normal scope is that provided by a matched pair of braces inside a function
definition. A try block is an example of such a scope. The largest scope is that called ‘the global scope’ and includes
all names that are declared outside of any more restrictive scope. The concept of scope is important but one that is best
acquired by giving examples in relevant contexts as and when they occur. Names in inner scopes can hide the same names
in outer ones.

We can provide a scope for a library or part of a library using the following syntax:

namespace X{
declarations-and-definitions

}

The effect of this construct is to prefix all the names declared/defined between the braces with X:: to
provide a fully elaborated name. Within a namespace scope, the names declared in that namespace can be
used without any elaboration, but the default outside the braces requires the full elaboration by prefixing the
namespace name and a double colon. For example:

namespace example{
int i(0);
int j(i); // initialize j from i

}
int k(i); // error, no i in scope
int k(example::i); // OK, use the i found in namespace example

All blocks that are qualified by the same namespace name are part of the same scope. So

namespace example{
int m(i); // initialize a new int, m, with the value of the i

// that was declared in namespace example above
}

extends the namespace example by adding a new name, m, and initializing it with the current value stored
in example::i. Perhaps you wonder about code such as

namespace example{
int i(0);

}
int i(1);
int n(i);

NAMESPACES AND THE C++ STANDARD LIBRARY 73

(in other words, code where a name declared inside a namespace matches one declared outside the namespace).
Declaring the same name in different scopes creates different instances of the name and so they name different
objects: n will be initialized with 1, not 0.

WARNING!
Reusing names in different scopes is a constant cause of confusion and is best avoided.

It is useful to know where a function or other entity has been declared, but that is sometimes information
that we do not need to make explicit. I would never call an object cout because that, to both me and every
other C++ programmer, is the name of the console output object. In just about every context, we expect it
to be synonymous with std::cout. Indeed many older books on C++ just use cout; many of them were
written before namespaces were invented and the full name was adjusted to std::cout.

The designers of C++ did not invent namespaces to force programmers to type more symbols but to
provide a mechanism for disambiguation when two programmers pick on the same name for a non-local
entity such as a function or a user-defined type. How can we regain the simplicity of unelaborated names?

C++ provides two main mechanisms and a way to shorten long namespace names.

using Directives
A using directive is a mechanism to allow a programmer to use all the names from a namespace
without explicitly prefixing them with the namespace name. We should use such a crude tool with care.
Nonetheless, using directives are frequent in books because they save space and reduce the need to write
source-code statements over two or more lines. On the other hand, we normally avoid using directives in
production-quality code.

The form of a using directive is simply:

using namespace X;

From that point, the compiler will check for declarations in visible parts of namespace X when it is searching
for a name’s declaration. The reason that I specified visible parts is that a using directive is not some
magical incantation that allows the compiler to see names declared elsewhere or at some future place such
as in files that have not been included into the present one. A using directive is not an instruction to the
compiler to search for all the places that declare names in that namespace. It simply tells the compiler that
when looking for a name it must look inside any currently visible blocks belonging to that namespace.
Note that source code is not visible until the compiler has passed through it. Declarations are not visible
until after the point of declaration. C++ treats declarations in the strict order in which they appear in a
translation unit (the technical term for a file of source code after all the included files have been processed
into it).

using Declarations
A using declaration is a mechanism that allows the compiler to use simple names (names without namespace
qualification) from any visible declarations of a specific fully elaborated name. This use is ‘as if’ we had
declared the name at the point of the using declaration without the elaboration of the namespace prefix.
Superficially, a using declaration may seem to do the same thing as a using directive, just confined to
a single name. Far from it, it does something quite different: a using declaration brings a name into the
current scope, whereas a using directive tells a compiler another place to look for names that it has not
yet found.

When I write

using std::cout;

74 CHAPTER 4

I tell the compiler to find all the declarations of cout in currently visible blocks for namespace std and treat
those declarations as if they replace the using declaration.

Example
In the next chapter, we will be looking at some aspects of C++ functions. That will include demonstrating
that two functions can share a name (called function overloading) as long as the types of their parameters
allow them to be distinguished. However, I want to clarify the difference between using declarations
and using directives. Please compile and execute the following two programs and note the difference in
output:

Program 1
#include <iostream>

namespace x{
void foo(int){std::cout << "int case";}

}

A using namespace x;

namespace x{
void foo(double){std::cout << "double case";}

}

int main(){
foo(1.3);

}

Program 2
#include <iostream>

namespace x{
void foo(int){std::cout << "int case";}

}

B using x::foo;

namespace x{
void foo(double){std::cout << "double case";}

}

int main(){
foo(1.3);

}

Commentary
In the first case the compiler is told at line A that it can look for names in namespace x if it does not find the
name in the current scope. When it comes to foo(1.3) it does not find a candidate outside namespace x but
finds two candidates inside; it chooses the one that uses a double because that exactly matches the type of
the argument.

NAMESPACES AND THE C++ STANDARD LIBRARY 75

In the second case, line B instructs the compiler that all the declarations of x::foo that it has so far
seen should be treated as if they had been declared at line B (without the elaboration of x::). However,
it has no impact on any subsequent declarations of foo in namespace x. When it comes to foo(1.3) the
only declaration available is void foo(int), so that is the one it uses by implicitly converting 1.3 to
1, which is then ignored because foo does not actually make any further use of the value passed to its
parameter.

Do not worry about how function calls and function overloading work: we will tackle that in the next
chapter. For now, I want you to keep focused on the different behaviors provided by a using declaration
and a using directive as shown by the above code.

Namespace std and Namespace fgw
All those places where you have had to type std:: are examples of the using fully elaborated names from the
Standard Library. There are advantages to using fully elaborated names. In the early chapters of this book it is
always clear which names come from the Standard Library, because they always start with std::. That tells
you where you can look for documentation.

In contrast, I have always prefixed the names from my support library with fgw::, which tells you that
you need to refer to any documentation that I have provided for my library if you want to learn more about
such names.

In this book, I will generally use using declarations for names from the C++ Standard Library.
Otherwise, I will use the fully elaborated names (as I have been doing up to now). I will do much the same
for names from my library except that I will sometimes use a using directive. In particular, I will do this
when using the color names such as fgw::red1. There are a lot of them and it gets tedious to bring them in
with using declarations. Using fully elaborated names can also be tiresome if there is no actual conflict with
another library.

T R Y T H I S
Choose some of the code you typed in for the earlier chapters and modify it so that it no longer uses
fully elaborated names. It is your choice whether you use using directives, using declarations,
or a mixture. Experiment until you feel reasonably confident with both.

Fully Elaborated Global Names
One advantage of namespaces is that we have a mechanism to distinguish identically spelled names from
different namespaces; we can use their fully elaborated names even when the short versions of the names
collide. However, how should we tackle the problem of collisions that involve a global name, i.e. a name that
has been declared outside of any namespace or other limited scope?

The answer is simple once you know it: just prefix the global name with a pair of colons. C++ calls
the double colon the scope operator, though I think it is pushing the concept of an operator by using that
terminology. Here is a silly program that demonstrates the use of a fully elaborated global name:

1 #include <iostream>
2 using namespace std;
3
4 int cout(1);
5
6 int main(){
7 std::cout << ::cout;
8 }

76 CHAPTER 4

T R Y T H I S
Type in and execute that program. It should work and result in outputting 1 to the console
window. Now try replacing either or both of the fully elaborated names in line 7 by the simple
name. When you try to compile, you will receive an ‘ambiguity’ error: the compiler cannot tell
which declaration of cout you meant it to use.

Now go back to the original code and replace line 2 with

using std::cout;

Try to compile the code. You get a quite different error, because the compiler considers that you tried to
declare the same name but with a different type in the same scope. You can have functions sharing a name in
the same scope but that does not extend to variables.

With using directives, there is no collision of declared names because they are each in their own scope,
and we can use full elaboration to resolve any ambiguity; with using declarations, we import declarations
and so get an irresolvable conflict. We have to either remove the using declaration or change the name of
one of the objects.

Namespace Aliases
Both std and fgw are very short names for namespaces. There is a real risk that using short names will result
in a collision of the names of namespaces used by different library writers. The designers of C++ wanted to
encourage the use of long names for namespaces while allowing users to provide shorter alternatives. This led
to the idea of a namespace alias. Here is an example of both the idea and its use:

namespace Company_with_very_long_name{
int data;

}
namespace cwvln = Company_with_very_long_name;

Now

cwvln::data = 1;

means exactly the same as:

Company_with_very_long_name::data = 1;

WARNING!
The idea was fine but there are some unfortunate surprises when it comes to using namespace
aliases that have resulted in them not being widely used. This may change in the future if those
responsible for the design of C++ can remove the causes of the surprises.

Input from std::cin
The Library provides various mechanisms for extracting data from an input object. We are currently limited
to using std::cin for input, and I am going to tackle three ways of extracting data from it.

NAMESPACES AND THE C++ STANDARD LIBRARY 77

The first – using get() – extracts the next character and returns its value as a char. So we can write

char c;
c = std::cin.get();

and c will now contain the value for the next character in the input. If we wanted to, we could extract a
whole line of input with this code fragment:

std::string input_line;
char c(0);
while(true){

c = std::cin.get();
if(c == '\n') break;
input_line += c;

}

T R Y T H I S
Write a short program to use that fragment and write out the result to the console window. Try
to produce an alternative formulation that uses while(c != '\') rather than the conditional
break statement. Your solution should do exactly the same: read input up to the first newline,
saving the input up to the newline but discarding the actual newline character.

Reading an entire line of input is quite a common requirement, so C++ provides a way to do it directly
with a function called getline(). Here is a code snippet that demonstrates using getline() to read a
whole line of input into a std::string object:

std::string input_line;
std::getline(std::cin, input_line);

It does precisely the same as the previous code, but it is shorter, and the use of a suitably named function
documents what we are doing. The resulting code is both shorter and easier to understand.

Perhaps you are puzzled by the different syntax for using get() and getline(). get() is
preceded by the name of the object it is getting data from, while getline() has the source of data
named within the following parentheses. This is not an arbitrary difference but one that represents the
different natures of the two methods. Getting characters from input is part of the basic behavior (called
semantics) of input objects, and so we use the syntax that represents such behavior in C++ – the source
object’s name followed by a dot and the name of the function that provides the desired behavior. However,
reading whole lines into std::string objects requires the cooperation of two objects, so we use a
syntax that reflects the equal status of std::cin and the instance of std::string that we are calling
input line.

T R Y T H I S
Modify your previous program to use std::getline(), and check that it gives the same results.

The third way to extract data from std::cin is by using the streaming or extraction operator, >>.
We have used this operator in earlier programs. The extraction operator works by identifying the type of the

78 CHAPTER 4

receiving object (the variable on the right) and using appropriate behavior for that type of object. By default,
it ignores all leading whitespace characters (spaces, tabs, carriage returns, and newlines) in the source object
(std::cin). It terminates input at the first unsuitable character. By default, C++ deems trailing whitespace
to be unsuitable for all types. This means that when you use std::cin >> x, regardless of the type of x,
all leading whitespace is ignored and input ceases not later than the first trailing whitespace character. Some
data types, such as the numerical types, classify other characters (e.g. punctuation marks) as being unsuitable.
Unlike getline(), which extracts and discards the terminating character (by default the newline character),
the extraction operator leaves the terminating character in the input, ready for the next use of the input object.

Here is a small code snippet using the extraction operator to insert input into a std::string object.

std::string word;
std::cin >> word;

T R Y T H I S
Write a program that uses the above code to extract words from std::cin. Experiment with this
program and the earlier ones until you are sure you understand the different behavior as regards
the significance of spaces in your input.

Output with std::cout
There are two main C++ ways to output data to an output object such as std::cout. The first is by using
the put() function to put a single char value to the output object. For example,

char c('x');
char newline('\n');
std::cout.put(c);
std::cout.put(newline);

would display an ‘x’ in the console window and move to a new line for any subsequent output.

T R Y T H I S
Write a program to use the above code and verify that it works as predicted.

The streaming operator is the commoner mechanism for data output. In this case, we use the left-shift
operator to represent streaming (or shifting) data into the output object. That is, we use << to insert data into
an output stream. We have already made extensive use of this operator to display prompts and results.

Standard Console Output Objects
C++ provides two other standard output objects; std::cerr and std::clog. C++ uses std::cerr for
reporting errors. Those coming from a C background will already be familiar with the concept because
they have a similar idea implemented by C’s stderr object. The default destination for std::cerr is the
monitor. You will eventually learn how to change the connection to a file or to some other sink for data. A

NAMESPACES AND THE C++ STANDARD LIBRARY 79

second default feature of std::cerr is that it is unbuffered. That means that data sent to std::cerr is
immediately processed and not batched up until it becomes necessary or desirable to deal with it.

The intended use of std::clog is for logging events to some suitable data sink. The assumption is that
such events will be a normal part of the program’s execution and so there will be no hurry to complete the
process of dispatching the data to the output object. For that reason, std::clog is normally buffered (as is
std::cin), and completion of processing will be delayed until either it is forced or the buffer is full. Like
std::cerr, std::clog defaults to the monitor.

Even though all three standard console output objects default to the monitor, it is good practice to use
the appropriate one for the purpose at hand. If you want to report an error, use std::cerr, but if you are
logging an event that does not constitute an error (it might be a failure of some process, but not one that the
programmer wishes to treat as an error), use std::clog. Use std::cout for normal program output and
interaction with the user. By always using the appropriate output, you will find it simple to modify programs
to dispatch the different categories of output to different places when you have learned how to do that.

T R Y T H I S
Write a program that collects some words from the keyboard, stores them in a std::vector
<std::string> object (by using push back()), sorts them, and then displays the sorted list
on the monitor. The program should also log the start and end of each phase: data acquisition,
data processing, and data output. Of course, you will also arrange to catch possible exceptions and
send a message to an appropriate output object.

T R Y T H I S
The fgw::playpen type supports four different plotting modes. See the next section for details.
Write a program that will help you explore these different plotting modes. To get best advantage
you will need to be able to change the origin and the scale as well as the plotting mode. Do not
use fully elaborated names. Use using declarations for the C++ Standard Library elements and a
using directive for my library.

Playpen Plotting Modes
fgw::playpen supports four different plotting behaviors. The default one, fgw::direct, simply replaces
the current pixel color with the one designated by the color argument provided by any function used for
modifying the Playpen. For example, paper.plot(3, 4, 23) will change the pixel (3, 4) (at the current
scale and origin) to whatever color 23 maps to in the current palette.

The fgw::additive mode combines the plotting color with the background color by adding the two
on a bitwise basis (i.e. 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 0 – note, no carry in the last case).
Given a current color of 21 (binary 00010101) and a plotting color of 49 (00110001) the resulting color
will be binary 00110101, which is 53. A bit in the result is 1 if the bit in either the current color or the
plotting color is 1; otherwise it is 0. Those familiar with bitwise operations will recognize this as a bitwise
or operation.

The fgw::filter mode results in the pixel taking on the color defined by those color elements
shared by the current color and the plotting color. I called it filter because its behavior is exactly that
of a color filter applied to colored light. Given a current color of 21 (00010101) and a plotting color of
49 (00110001) the result will be 00010001, which is 17. This is equivalent to a bitwise and applied to the
two colors.

80 CHAPTER 4

The fgw::disjoint mode produces a new color from those elements that are only present in
either the current color or the plotting color but not both. So given colors 21 (00010101) and 49
(00110001) the result will be 00100100, which is 36. This is equivalent to a bitwise exclusive or applied to the
two colors.

When plotting pixels with a scale factor greater than 1, the plotting-mode rule is applied at
the level of screen pixels. Therefore, except in the case of fgw::direct, the different constituent
physical pixels making up a logical pixel may result in different colors if they started as differ-
ent ones.

fgw::disjoint has the special property of being reversible. By that, I mean that if you plot the same
pixel twice using the same color the resulting color will be the same as the starting color. That property makes
fgw::disjoint suitable for such purposes as providing a cursor.

The fgw::playpen::setplotmode() function is used to change the plotting mode. For example,
the following code fragment changes the plotting mode to fgw::disjoint:

fgw::playpen paper;
paper.setplotmode(fgw::disjoint);

Like all functions, setplotmode() returns a value. The returned value is the previous plotting mode.

Further Practice
At this point, you may wish to read an alternative description of what we have covered so far. You
may also want some more ideas for practice. I have arranged that the text of You Can Do It! is on
the CD that comes with this book. While that book used somewhat simpler tools and aims at raw
programming novices, the text, ideas, and examples are compatible with this one. Please dip into that
book for programming ideas and examples of simple solutions using a very limited subset of C++.
At this stage in your learning of C++, I recommend that you quickly skim through the first four
chapters of You Can Do It! and try some of the exercises. I do not think your time will have been
wasted.

REFERENCE SECTION
Standard I/O Objects
Narrow-character support

Fully elaborated name Purpose

std::cin Provides a source of data. It is connected to the keyboard by default.

std::cout Provides a sink for normal data produced by the program. By default
it is connected, buffered, to the monitor.

std::cerr Provides a sink for error reporting by the program. By default it is
connected, unbuffered, to the monitor.

std::clog Provides a sink for logging messages produced by the program. By
default it is connected, buffered, to the monitor.

NAMESPACES AND THE C++ STANDARD LIBRARY 81

Wide-character support

Fully elaborated name Purpose

std::wcin Provides a source of data. It is connected to the keyboard by default.

std::wcout Provides a sink for normal data produced by the program.
By default it is connected, buffered, to the monitor.

std::wcerr Provides a sink for error reporting by the program.
By default it is connected, unbuffered, to the monitor.

std::wclog Provides a sink for logging messages produced by the program.
By default it is connected, buffered, to the monitor.

Note that these are not available in the default installation of MDS.

Namespace Support
Namespaces in C++ provide a mechanism for partitioning global declarations and definitions into
distinct, named scopes (declarative regions). The principle objective is to avoid name clashes between
source code (particularly for libraries) provided by different programmers, teams, or companies. We
can further partition namespaces with nested namespaces.

Elaborated names are ones that identify the full context of their declarations by including
the relevant namespace names. The context of a declaration includes both namespaces (maybe
nested) and, possibly, the name of a user-defined type. For example, std::cin is a fully elab-
orated name that refers to an input object that is declared as part of the C++ Standard Library.
fgw::playpen::setplotmode() is the fully elaborated name for the setplotmode() function
that is part of the playpen type that is defined in namespace fgw.

A name is declared in a namespace by placing its declaration in a block that is prefixed with
namespace name. For example,

namespace fgw{
int counter(0);

}

creates an int variable whose fully elaborated name is fgw::counter and initializes it to zero.
C++ allows us to import declarations of names from a namespace with a using declaration. So

using std::cout;

allows us to use the unelaborated name cout from there onwards within the scope where the using
declaration occurs, as if the name had been declared at the point of the using declaration.

C++ allows the programmer to instruct the compiler to look for names in another namespace.
The mechanism is the using directive and takes the form:

using namespace fgw;

This tells the compiler that in the current scope it must also look in any visible namespace fgw blocks
for any names used by the programmer in the subsequent source code.

Finally, C++ provides a mechanism for aliasing for a namespace:

namespace short = long_namespace_name;

Currently this last mechanism is not widely used.

82 CHAPTER 4

The :: symbol is called the scope operator in C++ and separates the context part of a fully
elaborated name from the simple name. We provide the fully elaborated version of a name that is
declared outside any named namespace, function, or part of the definition of a user-defined type by
prefixing the name with ::. That is, the fully elaborated name is the simple name preceded by the
scope operator.

Scope
We introduce names into a program by declarations. A declaration always has a scope, which limits
the region of source code in which that declaration of the name applies. C++ provides the following
categories of scope:

global scope: the scope of names that are declared outside any block or other scope and have not been
restricted to file scope. Global scope is little used in modern C++, though some companies, such as
Microsoft, still make extensive use of global scope in their libraries.

file scope: the scope of declarations that have been restricted to the current file by the use of the keyword
static. This is less used today, because an alternative mechanism using an unnamed namespace
(which will be described later in this book) is usually preferred.

function scope: largely of academic interest, because the only kind of name that can have function scope
is a label used as a destination of a goto statement.

prototype scope: the scope used for names of parameters that are provided in a declaration of a function
that is not also a definition of the function. The only practical significance of this scope is that such
names have no significance anywhere else.

block scope: any region enclosed in a pair of braces that is part of the definition of a function.
namespace scope: the regions enclosed in braces whose opening brace is prefixed with the namespace

keyword, usually followed with a name for the namespace.
class scope: the region from the opening to the closing brace of a class definition together with the scopes

of any definitions of names declared in the definition of a class.

Note that at this stage you probably do not know enough about C++ to appreciate the above
list fully. I have provided the list for your future reference. The most important aspect of scope is the
concept that names have limited regions in which they have any meaning.

Characters and Strings
I have already mentioned that C++ provides types for characters. The char type is designed to handle
the native narrow character type for the platform that your program is being compiled for. It is usually
an 8-bit type but does not have to be. The C++ Standard only requires that it be at least 8 bits wide.

C++ provides the wchar t type for use with wide character sets. The commonest widths for
wchar t are 16 bits and 32 bits, though the only requirement is that wchar t must be able to
represent all the values of the char type on the same platform.

The character types are treated as integer types in C++. The C++ Standard requires implemen-
tations to specify whether the character types will be treated as signed or unsigned types when
used in a numerical context. It is usually better to avoid any need for such knowledge by never using
a character type in a numerical context.

Strings are sequences of characters. In C++, the library provides a general abstraction for the
concept of a string; that abstraction is a template called basic string. We will see more detail of
what that means later on.

NAMESPACES AND THE C++ STANDARD LIBRARY 83

In particular, the C++ Standard Library also provides two specializations of the string abstraction,
called std::string and std::wstring. The former is a string of char and the latter is a string
of wchar t. The string abstraction in C++ has numerous features including the ability to customize
behavior for specific national character sets. Most of the features are beyond the scope of this book.
However, we will be using the following (which we will apply to std::string but which are
available for all specializations of the basic string abstraction).

Two string objects can be compared for order, e.g. str1 < str2 evaluates as true if the
character sequence stored in str1 would come before that in str2 in a dictionary ordering.

A string object is expandable, i.e. we can append characters to it. If there is insufficient free space
adjacent to the memory being used to store the previous values, the string object will acquire sufficient
contiguous memory, copy the old values into it, add the extra values, and release the memory used
for the previous representation. String types include the ability to reserve contiguous memory for later
use. That reduces the amount of copying when we repeatedly append extra characters.

A string object knows its current size, i.e. how many characters currently make up the sequence.
We can sort a string object, i.e. we can reorder the characters in it according to a rule optionally

provided by the programmer. The default for ordering is the numerical order of the codes representing
the characters.

We can copy a string object. That is important because copying values is a requirement for the
use of C++ types in some contexts. For example, when we use a std::vector<std::string> to
provide a sequence of std::string we are implicitly relying on the guarantee that we can copy
std::string objects.

We can read and write std::string values to and from streams that use char data. Likewise
we can read and write std::wstring values directly to and from streams that use wchar t data.

C H A P T E R 5

Writing Functions in C++

So far, we have been using functions from the C++ Standard Library or from my library. The time has
come for us to look at writing functions for ourselves. In this chapter, I will deal with writing what
C++ calls free functions. In a later chapter, I will tackle member functions. Some other programming
languages call the latter methods or messages.

We distinguish member functions from free functions by the syntax we use to call them. A call of a
member function starts with the name of an object followed by a dot (.) operator. Alternatively, it starts
with the address of an object followed by an arrow (->) operator. We have already used the first of these
syntactic forms in numerous places, such as when we used std::cin.get().

Those coming from a functional-programming background (having used such languages as Haskell)
will need to be careful because the function concept in C++ is somewhat wider than that used by functional
languages. If you are used to a language such as Pascal that distinguishes between procedures and functions,
you will need to note that C++ combines the concept of a procedure and a function into a single concept,
which C++ calls a function.

Those coming from strict object-oriented languages may find the concept of a free (i.e. non-
member) function strange to start with because they will be used to functions tied to specific types or
objects.

Those coming from some backgrounds may find the syntax we use to call functions strange,
but the more common problem will be for those who see a familiar syntax and do not notice
the slight differences in semantics (behavior) between C++ and the languages with which they are
familiar.

Let me first try to tie down the C++ function concept.

The C++ Function Concept
The fundamental idea of a function in C++ is that of a set of actions bundled together and given a name.
Sometimes the actions do not require the supply of any data. However, data is usually required. We call the
supplied data the arguments of a function. Parameters are the variables declared to hold the arguments while a
function does its work. For example, we used the following statement in one of our earlier programs:

std::sort(numbers.begin(), numbers.end());

There we were calling the std::sort function and passing it two arguments, which told the function what
it must sort; numbers.begin() and numbers.end() provide the arguments that std::sort needs. We

86 CHAPTER 5

have no need to know how std::sort() does its task nor do we need to know what the parameters that
will hold the arguments are called. Only the provider of the std::sort() function needs those details.

This separation of concerns is a fundamental principle of modern programming languages and their
use for writing programs. We try to limit knowledge on a need-to-know basis. Learning how something
is done can be very educational, but it can often get in the way of our doing something that is useful. In
addition, we should note that a later version of a function might achieve its ends differently. The function
declaration is part of a contract between the implementer of the function (the programmer who writes the
definition) and the user of the function. It tells us what kind of data will be needed and it tells us what
kind of thing will be returned. (In C, the return is always a value or void, but in C++ we can also return
references.)

Part of the value of functions in C++ is that they allow us to focus our attention on one thing at a
time. Indeed, a good function conceptually does exactly one thing, and a good function name completely
describes whatever it is that the function does. std::sort() is an example of a good name. The first part
tells us that it belongs to the C++ Standard Library; the second part tells us that it sorts the data it is given.
There are some other similar functions in the C++ Standard Library, such as std::partial sort() and
std::stable sort(). The first of those is useful, for example, when you just want the top values in the
correct order. In our number-sorting program, if we only wanted the three smallest items to be first, second,
and third in the sequence, we could replace the sort instruction with:

std::partial_sort(numbers.begin(), numbers.begin() + 3, numbers.end());

WARNING!
The choice of required arguments for that function seems somewhat counterintuitive. Intuitively,
we might have expected the second argument to be 3 rather than being the value of the first
argument incremented by 3. It is an example of how a designer’s view can affect the interface
of a function. Unfortunately the C++ Standard Library has quite a few cases of unintuitive names
and unintuitive data requirements. Only experience and good references can reduce mediocre
design choices. We should learn from them that good names and choice of data requirements are
important design issues that are sometimes hard to achieve in practice.

T R Y T H I S
Go back to your source code for getting numbers from the keyboard and then sorting and displaying
the result on the screen. Modify the code to display only the three smallest numbers on the screen.
You will have to handle the special case of the user supplying fewer than three numbers. I leave it
to you to choose how.

Sorting in Other Orders
Unless you are unusual, you will be wondering how you could have got the three largest values
instead of the three smallest. The default action for sorting is always smallest-first (defined by implic-
itly applying the < operator). However, we can provide an extra argument that supplies a differ-
ent rule (often called a ‘policy argument’, because it supplies the policy to be used in executing
a function).

The C++ Standard Library packages up some common policies so that we can use them without
writing them for ourselves. The one that is useful for our current needs is std::greater<type>().
This will provide whatever rule the specified type uses to select the greater of two values of the specified
type.

WRITING FUNCTIONS IN C++ 87

In general, policy arguments are the final arguments in a function call (we will see why a little later in
this chapter). So

std::partial_sort(numbers.begin(), numbers.begin()+3, numbers.end(),
std::greater<int>());

will place the three highest values in the first three places.
If it seems to you that supplying a policy argument for a Library function would make sense, the

chances are very high that the C++ Standard Library functions will allow you to do so. You can sort an entire
sequence of ints in descending order by adding std::greater<int>() as a third argument when you
call std::sort(). For example, using our existing declarations,

std::sort(numbers.begin(), numbers.end(), std::greater<int>());

will sort our sequence of numbers in descending order.

T R Y T H I S
Modify your previous program so that it collects a list of words from std::cin, sorts them in
reverse alphabetical order, and then displays the results as a comma-separated list on the screen.

Designing a Function
Before attempting to design a function, you need a clear idea of what it is that you are trying to do. The
basic guideline is that a function should do one thing and do it well. Let me walk you through the process
of designing and implementing a function for getting an int value from an input source and returning the
value to the caller.

The Interface or Function Declaration
Our function needs a name. get int seems to be a reasonable name, so let us use that for the time being.
We know it will return an int, because that is what it is supposed to do. We also know that we will need to
provide an input source as an argument.

In C++, input sources have a general type of std::istream. We call data sources and sinks ‘streams’
in C++. Those that provide input are objects of type std::istream, and those that provide output are of
type std::ostream. C++ also provides types for objects that can both supply input and accept output.

The rules for a function declaration in C++ are that:

• it starts by nominating the type of the returned data (what you get back when you call, i.e. use, the function
in your program);

• the name of the function follows;
• the declaration ends with a comma-separated list of parameter types in parentheses.

Optionally the parameters in declarations can include a name as well as a type. However, in the context of a
function declaration the parameter names have no significance to the compiler. Any names provided are to
help human readers understand what data is required. A good name for a parameter is much better than a
comment providing the same information.

When I put these three elements together, I arrive at the following declaration for a function designed
to get an int value from a data source:

int get_int(std::istream & data_source);

88 CHAPTER 5

Language Note: You may be puzzled by that use of &, particularly if you are already familiar with C. In C++ the ampersand
is used for three distinct purposes (we say that it is overloaded); they can always be distinguished by the context.
The ampersand is a logical and operator when placed between two values; it is an address-of operator when used
before a variable (so &data would mean ‘use the address of the object that data refers to’); and in the context
of a declaration it converts the preceding type into a reference type. The special quality of C++ reference types is
that the objects they refer to must already exist. In the context of a parameter, this means that the function will
use an object supplied by an argument provided by the function call. All other (non-reference) parameters are value
parameters. That means that the function will use a copy of the supplied argument.

It is not normally possible to copy a stream object. Having more than one object connected to a
specific data source or data sink would normally be a recipe for chaos. We deal with that problem by passing
stream objects around by reference. In this case, the parameter will be a reference to some already existing
std::istream object. Remember that references do not use new objects; they just provide new names to
access already existing objects. When we call get int(), we will need to provide a suitable std::istream
object that get int() can use as a source of data.

The final semicolon limits the above source-code statement to being just a declaration and nothing more.
One of the interesting features of function declarations in C++ is that they provide the compiler with enough
information for using the function in source code even though they do not provide enough information for
the final program. For example, the following code should compile:

1 // written by FGW 25/08/04
2 #include <istream>
3 #include <iostream>
4
5 int get_int(std::istream & data_source);
6
7 int main(){
8 try {
9 int i(0);

10 i = get_int(std::cin);
11 std::cout << "The input was " << i << ".\n";
12 }
13 catch(...){
14 std::cerr << "***An exception was thrown.***\n";
15 }
16 }

When you create a project and try this code, you will find that it compiles. If you try to link it
or execute the program, the linker will complain that it cannot find a definition of get int(). C++
allows us to separate declarations from definitions. It is normal to take advantage of this so that we can
change the definition if we want to without having to recompile an entire program. We might need to
change a definition because we discovered an error in the existing definition. Even if there were no error,
we might want to change the definition because we have discovered a way to improve on our earlier
efforts.

It would be a mistake to consider that the separation of definition and declaration is unimportant.
For example, Java programmers may feel that this C++ mechanism serves little purpose because Java does
not make a clear distinction (though Java interfaces are sometimes used as a substitute). Industrial-quality
programs can be very large and take many hours to compile from scratch. The C++ (and C) mechanism of
separation of declaration and definition allows us to limit recompilation to just those files that have changed.
We leave it to the linker to put all the parts together. As a result, missing parts might not be noticed until
link time.

In this case, the missing part is the code that specifies how get int() carries out its task. We used the
function at line 10, and the compiler was able to code a call to a function using std::cin as the argument

WRITING FUNCTIONS IN C++ 89

for the std::istream parameter. The compiler then inserts a request to the linker to find the definition and
adjust the code to use it. The linker sees the request and looks among the provided object code (compiled
files and libraries). It issues a suitable error message when it does not find a definition for the requested
function.

The separation of compiling and linking is one of the ways that compiled programs differ from
interpreted ones. Generally, an interpreted language – such as many versions of BASIC – only recognizes that
something is missing when the program is running. This may be satisfactory in some cases but it would
be a disaster in others. A program controlling a nuclear power station must know before the event that the
definition of the function providing an emergency close-down exists.

What happens at each stage of the process differs from implementation to implementation. The
latest tools from Microsoft tend to delay much more of the work until link time because that makes
it easier to mix pieces of code written in different languages. There is no clear-cut distinction between
interpreting and compiling. For example, it is usually possible to interpret C++ source code. By that,
I mean, feed your source code in and get immediate action. However, it is not normal to do so,
because we did not design C++ to work efficiently as an interpreted language. It is possible to compile
languages, such as Python and Perl, that are designed to run through an interpreter. However, doing
that may be hard work and not particularly efficient, because those languages are not designed to be
compiled.

Here is a simple definition of get int():

int get_int(std::istream & in){
int value(0);
in >> value;
if(not in) throw std::exception();
return value;

}

There are two ways out of this function. The first is when the code detects that something went wrong
during input. Our current strategy for this is to throw a std::exception object. Later we will provide
refinements that allow us to handle this problem rather more effectively. The second way out is to return the
value from the function. The return statement coupled with the return type provided by the declaration and
repeated in the definition makes this work.

Note that there are two differences between the declaration and definition of get int(). First, the
definition concludes with a block of statements (called the body of the function), while the pure declaration
ends with a semicolon. The second difference is that I changed the name of the parameter. Parameter names
in declarations have no purpose other than to document the parameter for programmers using the function.
Parameter names in definitions provide a name for the variable used in the definition code. The parameters
are initialized with the arguments provided at the point of call. In this case the variable in will become a local
name for the existing std::istream object provided by the caller.

In effect, the declaration of a function provides a name, and specifies what type of data is needed and
what type of data will be given back. The compiler uses the declaration by finding the name and checking
that the arguments provided by the caller can meet the specified requirements. It then assumes that the
result of calling the function will be an object (for a reference return type) or a value of the type specified.
Because the compiler knows both the kind of data being provided (the arguments) and the kind of data
required (the parameter types), it can often convert the argument type to the parameter type even if they
are not the same initially. For example, if the parameter is an int but the argument is a double, the
compiler will insert the code necessary to convert a double to an int. Note that this kind of matching
up may not be possible where the parameters are references, because we cannot normally just convert an
object from one type to another even though we can convert values. A region of memory formatted for
storing a double will probably make no sense as an int. We can easily change a double value to an int
value by ignoring the fractional part but that does not generally work for objects (places where values can
be stored).

90 CHAPTER 5

Sometimes the compiler will have to insert code to convert a return value to the type required by the
caller of a function. So, for example,

double d;
d = get_int(std::cin);

will compile, and the compiler will insert code to convert the int value returned by get int() into a
double value needed for storing in d.

The simplest way to provide a function definition is to add it at the end of the file that uses it. That
has a serious disadvantage because you would need to duplicate the code in every file that uses the function.
There is a second disadvantage in that one of the linker’s jobs is to ensure that programmers do not provide
two definitions for the same thing. We are not quite ready to tackle this issue, so for the time being either
add the definition of get int() to the end of the file with main() in it or replace the declaration with
the definition (single declarations can usually be replaced by the definition because a definition is always a
declaration). So either of these should compile, link, and execute:

Program 1
1 // written by FGW 25/08/04 declaration early definition delayed
2 #include <istream>
3 #include <iostream>
4
5 int get_int(std::istream & data_source);
6
7 int main(){
8 try {
9 int i(0);

10 i = get_int(std::cin);
11 std::cout << "The input was " << i << ".\n";
12 }
13 catch(...){
14 std::cerr << "***An exception was thrown.***\n";
15 }
16 }
17
18 int get_int(std::istream & in){
19 int value(0);
20 in >> value;
21 if(not in) throw std::exception();
22 return value;
23 }

Program 2
1 // written by FGW 25/08/04 declaration is definition
2 #include <istream>
3 #include <iostream>
4

5A int get_int(std::istream & in){
5B int value(0);
5C in >> value;
5D if(not in) throw std::exception();

WRITING FUNCTIONS IN C++ 91

5E return value;
5F }
6
7 int main(){
8 try {
9 int i(0);

10 i = get_int(std::cin);
11 std::cout << "The input was " << i << ".\n";
12 }
13 catch(...){
14 std::cerr << "***An exception was thrown.***\n";
15 }
16 }

There is not much difference between them, but I prefer Program 1 because it will be easier to convert
it to the more conventional form, where we place declarations and definitions into different files.

T R Y T H I S
Write a get double() function that gets a value of type double from an istream object and
returns the value to the caller. Write a program to test your function. Make sure that you use the
resulting executable to test that the program stops with an error message if you input something
that is not a double. Note that it is not an error to type in an integer value when a double
is expected: the program will silently add the missing decimal indicator (decimal point in many
countries, decimal comma elsewhere) as soon as it hits input that is not a digit.

EXERCISES
1. Implement (i.e. provide a definition of) and test a function whose declaration is:

int squared(int);

The function should return the square of an integer provided as an argument.

2. Write and test a function that returns the square root of the largest square less than the integer value
provided as an argument. Note that you must handle the possibility that the argument is out of range;
negative numbers are not suitable input for this function. Handle this case by throwing an exception.

3. Write a function that takes an unsigned integer as an argument and returns half the input value if the value
is even. If the input value is odd, it must return three times the input value plus one. Now test your function
with a program that prompts the user for a positive number and then repeatedly calls your function to
determine the next value. It must output each value until the latest value is 1. For example, given 5 as input
the output should be 16, 8, 4, 2, 1. Given 7 as input the output should be 22, 11, 34, 17, 52, 26, 13, 40, 20,
10, 5, 16, 8, 4, 2, 1.

4. Write a function that has four integer parameters in addition to an fgw::playpen & parameter. The first
two provide the x- and y-coordinates for a Playpen pixel, the third parameter is for the scale to be used,
and the fourth one is to provide the plotting color.

92 CHAPTER 5

5. The function for Exercise 4 can be described as plotting a point of a required size and color at the given
coordinates. From that perspective it does a single thing. However, we need the answers to the questions
‘‘where?’’, ‘‘how big?’’, and ‘‘what color?’’ – from which perspective we have three things. Write functions
that prompt the user for a color and for a scale (one function for each). The function to get the color should
restrict valid responses to the range 0–255; out of range responses should cause the user to be asked to
supply another value. Invalid responses should result in an exception being thrown. The function for scale
should behave similarly but the valid range of scales is 1–64.

6. Write a function to plot a point at the coordinates given by the arguments passed in to the function, but
which calls the functions from Exercise 5 to determine the color and size of the square to be plotted. Note
that, as for all free functions that use the Playpen window, you will need to provide a parameter that is a
reference to an fgw::playpen so that the caller can tell the function which fgw::playpen object is
being used.

7. Write a function that plots a horizontal line of pixels given the starting point, the number of pixels, and the
color as arguments.

8. Write a function that draws a set of parallel horizontal lines given a starting point, a length (number of
pixels), a color, the gap between the parallel lines, and the number of lines.

9. By first writing a similar function to that in Exercise 8 but for vertical lines, write a function that will draw a
square grid of a given mesh, color, and number of squares per row/column. Write a program that tests this
grid function.

C++ Procedures
C++ does not have a separate concept of a procedure – something that acts but has no resulting value. This is
not a major problem – we could solve it the way that the earliest versions of C did: simply ignore the returned
value from a function whose intended purpose was to package an action.

C fixed this problem by creating a special void type that has no values and very little behavior. If we
declare the return type of a function as void, we are, in effect, saying that the function is a procedure. In
other words, it will do something but it will not return any usable value.

For example,

void print(std::ostream &, int i);

declares print() to be a function that does something with an output object and an int value. The name
suggests that what it will do is print the value of i on the output object. However, whatever it does, it does
not return a value. In a computer-science sense, it is a procedure.

Pure Functions
Many languages have the concept of a pure function – a function that has no side effects. A pure function takes
some values, computes a result, and returns the result as a value. Pure functions deal only with values and
do not touch objects. Those familiar with functional programming languages will understand this concept,
will know how useful it is, and will be surprised that C++ does not provide a mechanism by which the
programmer can tell the compiler that something is a pure function.

It is possible that this may change in the future; for now, you can certainly write pure functions, but the
compiler is unlikely to take full advantage of your doing so.

WRITING FUNCTIONS IN C++ 93

Overloading Functions
C++ allows functions to share names if other details allow the compiler to select the intended function
when the programmer uses it. There are two major ways that functions can share their names. First, we can
declare functions with the same name in different scopes. For example, we might reuse a name in different
namespaces:

namespace fgw1{
int foo();

}
namespace fgw2{

int foo();
}

The two declarations of foo() can co-exist because the fully elaborated names are different: fgw1::foo()
and fgw2::foo(). Everything will be fine unless you add using declarations or using directives that
allow use of the simple name foo without explicitly stating the namespace.

While this is a good motive for using namespaces – we do not have to check the use of names by other
programmers – it is uninteresting otherwise. Reused names become interesting when we reuse them in the
same scope. The C++ term ‘function overloading’ refers to this kind of reuse of a name.

The rule for function overloading (in a single scope) is simple: the lists of parameter types must be
different. The difference may be that the overloaded functions have different numbers of parameters; or if
they have the same number of parameters, at least one of them must be a distinguishable type. Here is a
possible set of declarations of an overloaded function:

int foo();
int foo(int);
int foo(int, int);
double foo(double);

The compiler will have no immediate difficulty with those four declarations of functions named foo.
However, if we tried to add

int foo(double);

it would complain. The only difference between that declaration and the fourth one above is that it has a
different return type. A difference in return type is not a sufficient distinction to allow reuse of a function
name in C++. There must be a significant difference in the parameter type lists.

Generally, if at least one parameter type is different then the compiler will be happy at the point of
declaration, though there may be problems later on. However, adding

int foo(int &);

to the above overload set will result in a complaint from the compiler because there is no way to distinguish
a pass by value from a pass by reference for the same underlying type. If the programmer wrote:

int main(){
int i(0);
foo(i);
return 0;

}

the compiler would not know if the programmer intended the version of foo that copies the value stored in
i or the one that uses the i object. The language specifies that an overloaded set of functions must not include
two declarations that are only different in whether a parameter uses a value or a reference.

94 CHAPTER 5

Example of Function Overloading
There are a couple of variants on the concept of get int(). We might want to provide a specific version
that always uses std::cin as the source of data. A second thing would be to provide a version that dealt with
prompting the user for data. For example, given such a function I might rewrite my numbers program as:

1 // created on 27/08/04 by FWG
2 #include <algorithm>
3 #include <exception>
4 #include <iostream>
5 #include <vector>
6
7 int main(){
8 try{
9 std::vector<int> numbers;

10 do{
11 int const next(get_int("Next whole number (-999 to stop): "));
12 if(next == -999) break;
13 numbers.push_back(next);
14 } while(true);

(etc.)
Given a suitable version of get int(), line 11 will prompt the user with the supplied text, and use

the returned value to initialize the immutable int object designated by next. What would be a suitable
declaration?

int get_int(std::string const & prompt);

looks about right. Here is a simple definition that we could use:

int get_int(std::string prompt){
std::cout << prompt;
return get_int(std::cin);

}

Notice that this new version of get int() delegates the actual work to our earlier version. This
is another of the fundamental principles of modern programming: reuse what you already have. If you
come from a language that uses recursion, note that the above definition is not recursive; the call of
get int(std::cin) is to a different function that shares a name.

One of the advantages of delegation is that we only have a single place where we need to make changes
if we decide that there are improvements we can make in the basic mechanism.

Let us add another version of get int(), one that has no parameters because it is implicitly going to
use std::cin as the data source.

int get_int();

Defining that overload is effectively trivial:

int get_int(){
return get_int(std::cin);

}

Note that it delegates everything to our earlier get int(std::istream) version.

WRITING FUNCTIONS IN C++ 95

The inline Keyword
Efficiency-conscious programmers object to such delegation because they are afraid the compiler might add
the overhead for a call. There is no need to worry because C++ provides a solution. You declare the function
inline and provide the definition as part of the declaration:

inline int get_int(){return get_int(std::cin);}

The inline keyword has two effects. The more important one is that it allows the function definition
to exist more than once in the program. We can declare a function many times in a program, but normally
we may only define it once per program; the inline keyword allows multiple definitions. The second effect
of using inline is to request (note: request, not instruct) the compiler to avoid a function call by replacing
the call by the body of the function.

Modern compilers can often do a much better job of optimizing code than programmers can, so do
not use inline qualification of functions unless you are very certain of what you are doing. In many cases
excessive use of inline results in a program that is both larger and slower than would have resulted if the
programmer had never used inline.

Pass by Value or by Reference
Look back at the version of get int() that has a std::string parameter. Notice that this is a value
parameter (there is no & after the std::string). Passing around values that have a complex structure can
be expensive in resources. It is worth considering whether we could use an original object instead. We could
just as easily have written:

int get_int(std::string & prompt);

so that get int() will use an existing std::string object. Unfortunately, that will not work unless
there is an actual existing string object. It may seem odd, but a string literal (text in double quotes) is not a
std::string object in C++. The compiler is quite capable of creating a temporary unnamed std::string
from a string literal. It can then use that temporary as the object used by a reference. However, we come up
against a C++ safety rule: C++ forbids the use of a temporary via an unqualified reference; we must promise
not to change the temporary object by using a reference to const. Extracting values from a temporary object
is fine; trying to modify one is not. For this reason, we have to use:

int get_int(std::string const & prompt);

That extra const qualification assures the compiler that the definition of the function will only use
prompt but not try to modify the object it references. The compiler will be happy to allow you to use
get int(std::string const&) with a string-literal argument. It will create a temporary std::string
object from the literal and use that for the reference-to-const parameter.

Note that a reference to const is colloquially called a const reference by many C++ programmers
though this is not strictly accurate. As C++ does not have any const reference types, there is no danger of
confusion.

T R Y T H I S
Write a program that uses all the varieties of get int(). Provide suitable definitions and test
that the program works as expected. Now test the three alternative versions of get int() that
provide a prompt. Check that both the pass-by-value version and the pass-by-reference-to-const
version compile and work as expected. Also, note that the pass-by-reference without the const
qualification does not compile if called using a string literal, but works if the argument provided
by the call is a std::string. In other words,

96 CHAPTER 5

int const number(get_int("Next number"));

fails to compile if we declare the overload as

int get_int(std::string &);

but

std::string prompt("Next number");
int const number(get_int(prompt));

works fine. However, it is verbose and many programmers do not like excessive use of mutable
strings (ones that have not been declared to be const).

Resetting istream and ostream Objects
C++ stream types include a number of internal flags that allow them to keep track of various events that may
happen during their use. The most important state we need to track is when an I/O operation fails. There is no
point in continuing if we did not get the data we requested, and we need to address an output failure before
the program loses data. It is important to note that I/O objects keep track of what has happened to them but,
in general, they do not attempt to predict what will happen in their future. For example, an object using a file
as a source of data will only set itself into an end-of-file state when it has actually read an end-of-file marker.

When a C++ I/O object fails, it puts itself in a dormant state. std::istream objects ignore all further
attempts at extracting data until the program deals with the problem. std::ostream objects do nothing
with any subsequent data sent to them until the program deals with an output failure.

By design, an I/O object that has failed does nothing more until the program deals with the failure. In
effect, the program skips all attempts to use a stream object that is in a failed state.

T R Y T H I S
Type in, compile, and execute the following short program. After you have checked that it runs
as expected when you correctly respond to the prompt with integer values, try responding with a
floating-point value. You should see the effect of the bad input. Make sure you understand what
happens.

#include <iostream>

using std::cin;
using std::cout;

int main(){
try{

for(int i(0); i != 10; ++i){
int j(0);
cout << "next integer value";
cin >> j;
cout << i << " " << j << '\n';

}

WRITING FUNCTIONS IN C++ 97

}
catch(...){std::cerr << "Caught an exception" << '\n'; }
return 0;

}

Now we understand what happens and why it happens, it is time to see how we can fix it. C++ stream
objects have a member function clear(), which resets the object to a working state (member functions use
the dot syntax to call the function for the object in question). That is all clear() does. It deliberately does
not do anything with the data that is waiting for processing. In other words, it does not attempt to cure the
cause of the problem but simply restores the object to a working condition. However, the program still has
to identify and deal with the cause of the failure.

In this case, we will know that the cause of the failure is inappropriate data blocking the input. We need
to remove it. There are several ways to do this, but here is a simple function that will do for now:

void clear_cin(){
std::cin.clear();
std::string garbage;
std::getline(std::cin, garbage);

}

This procedure (it has a void return type) clears out the current input line from std::cin.

T R Y T H I S
Add the definition of clear cin() to your source code for the previous task (place it before
main() so that the definition will double up as a declaration). Add clear cin(); between the
prompt and the cin >> j; statement. Now test the code and check that it handles incorrect input
satisfactorily.

EXERCISES
In the following exercises, you are expected to write complete test programs even when you have not been
explicitly asked to do so.

10. Adapt the program above so that it only calls clear cin() if std::cin has failed.

11. Rewrite the definition of get int() so that it allows three attempts at correct input before it gives up
and throws an exception.

12. In the case of a general std::istream object a prompt is normally inappropriate, as is ruthlessly dumping
all the rest of a line of input. Write a reset istream(std::istream & data source) function
that resets the stream object and discards only the next character. Why is this function of only marginal
utility?

98 CHAPTER 5

13. Write a definition for:

int get_int(std::istream data_source, int number_of_retries);

14. Write an overloaded set of functions to get a double from a std::istream object, from std::cin both
with and without a prompt, and in each case with and without a specified number of retries. How are these
different from the set of overloaded functions for getting an int value?

Default Arguments
Consider the following function declaration:

void plot_square(fgw::playpen &, int x, int y, int size, fgw::hue);

This function always requires that the caller explicitly provide a color as an argument for the last parameter.
In some circumstances, you might find it reasonable to allow the color to default to black. We can do that
with a forwarding function that overloads the above declaration:

inline void plot_square(fgw::playpen & paper, int x, int y, int size){
return plot_square(paper, x, y, size, fgw::black);

}

Language Note: C does not allow programmers to return a void. C++ specifically allows a return of a void so that programmers
can use a single consistent idiom for forwarding functions such as the above. Without that provision, we would
have to omit the return and just write a call to the function to which we are delegating the work. This might
not seem to be a great burden, but when we cover writing generic functions in a later chapter, we will see that
distinguishing a void return type from all other types is an irritant or worse.

Notice that the forwarding function is provided as a definition. This is the normal way to do that but it
has two costs. First, we probably want to make that definition available to the compiler wherever we call the
function, so that it can replace the call with a call to the function to which we are delegating the work. To
allow such potential multiple definitions we need to qualify the function as inline. The fact that that also
advises the compiler to replace the actual call with a call to the delegated function is not important – good
compilers will do that anyway. What is important is that inline overrides redefinition issues.

The second point is that I have to name all the parameters. In the earlier pure declaration, I could skip
naming the first parameter because there is no documentary advantage (well I do not think there is). I do not
have the same freedom when it comes to a declaration that is also a definition.

One disadvantage of using a forwarding function is that it may not be immediately clear what is being
provided and why. At the very least, the definition should be preceded by a suitable comment that explains the
what and the why. However, C++ provides another option if the default (special-case) value is the argument
for the final parameter. The method is to provide a default argument. Using a default argument we could
rewrite the original declaration of plot square() as:

void plot_square(fgw::playpen &, int x, int y, int size,
fgw::hue = fgw::black);

When we do that, we tell the compiler that if the function is called without an explicitly provided final
argument, it is to use the one provided in the declaration. Default arguments must be provided in declarations:

WRITING FUNCTIONS IN C++ 99

the compiler needs to know what the defaults are so that it can add them to a call when the programmer
omits one or more of them.

We are not limited to using a default for the final argument. However, we cannot use defaults for earlier
arguments unless we also use defaults for all the subsequent ones. Once we start relying on a default argument
for a function call we must use the defaults for all the remaining arguments. For example, we could declare
plot square() as:

void plot_square(fgw::playpen & = paper, int x = 0, int y = 0,
int size = 1, fgw::hue = fgw::black);

(Note that default arguments are always provided by the syntax = default, which comes after the parameter
name if one is provided.)

If I provided this declaration and then wrote the statement

plot_square();

in my source code the compiler would behave as if I had actually written:

plot_square(paper, 0, 0, 1, fgw::black);

In this case providing defaults for all the arguments is unlikely to be useful. As C++ does not allow me to
write

plot_square(, 10, 10, , fgw::black);

as shorthand for:

plot_square(paper, 10, 10, 1, fgw::black);

there is little value in this case to having defaults for all the parameters.
The problem with using default arguments is that once we start using defaults we are stuck with them

for all the remaining parameters. For example, suppose that I want the size of the square to default to the
currently used scale. I could do that by making size default to 0, because the way the scale feature of Playpen
is designed is to ignore out-of-range scales. However, which is more likely? That I want to use black? Or that
I want to use the current scale? The way I have designed the plot square() function, I can only make the
color default to black, or make the size default to the current scale and the color to black. I cannot specify the
color but use the default value for the size.

This is a limitation to default arguments, which makes them less powerful than forwarding functions.
For example, I can write

inline void plot_square(fgw::playpen & paper, int x, int y, fgw::hue
shade = fgw::black){

return plot_square(paper, x, y, 0, shade);
}

to provide a version of plot square that uses the current scale as the size of the plotted square.

Example of an Overloaded Set of Functions
Here I bring together the ideas we have explored in the preceding section so that we can focus on their use
and possible consequences. Consider these three function declarations:

100 CHAPTER 5

void plot_square(fgw::playpen &, int x, int y, int size,
fgw::hue = fgw::black);

inline void plot_square(fgw::playpen & paper, int x, int y,
fgw::hue shade = fgw::black){

return plot_square(paper, x, y, 0, shade);
}

inline void plot_square(fgw::playpen & paper, int size,
fgw::hue shade = fgw::black){

return plot_square(paper, 0, 0, size, shade);
}

The first thing we must do is check that all the combinations of using default arguments and overloaded
alternatives result in distinguishable calls. In other words, the compiler must be able to tell from the call which
of the overloaded functions to use and which default arguments will complete the chosen call. I find that the
most useful way to do this check is to list all the variations of the type lists. Here they are for the above set of
overloaded functions:

• Using the first declaration with all five arguments:

void plot_square(fgw::playpen &, int, int, int, fgw::hue);

• Using the first declaration with the default fgw::hue:

void plot_square(fgw::playpen &, int, int, int);

• Using the second declaration with all four arguments:

void plot_square(fgw::playpen &, int, int, fgw::hue);

• Using the second declaration with the default fgw::hue:

void plot_square(fgw::playpen &, int, int);

• Using the third declaration with all three arguments:

void plot_square(fgw::playpen &, int, fgw::hue);

• Using the third declaration with the default fgw::hue:

void plot_square(fgw::playpen &, int);

Check this list carefully. Every one of the possible sets of explicitly provided argument types is different.
That means the compiler can distinguish the various choices as long as we provide exactly the right types of
arguments.

We are not quite finished. What if we do not provide exactly the correct types? For example, suppose
we write:

plot_square(paper, 1.12, 1.4, 13)

WRITING FUNCTIONS IN C++ 101

Now the compiler will go through a routine looking for a best match. Effectively it creates a list of candidates
such as the one above. It discards any that have the wrong number of parameters. In this case, it is left with
just two possibilities:

void plot_square(fgw::playpen &, int, int, int); // default fgw::hue
void plot_square(fgw::playpen &, int, int, fgw::hue); // first inline

Next, it takes each argument in turn and categorizes it as an exact match, or some level of mismatch
all the way up to ‘‘no implicit conversion makes the argument match the parameter type’’. In this case, the
first argument is an exact match for both candidates. The second and third arguments can be converted to
int by the standard conversion of double to int. That applies for both the candidates. Finally, the last
argument (13) is an exact match for an int but requires a conversion to make it a value for an fgw::hue.
(That is one reason that I made the color codes a user-defined type in my Playpen library instead of lazily
using an int. I wanted to be able to distinguish between colors and ints even though colors were coded
with integer values.)

The first of the two candidates is as good as the second for three of the arguments and better for the
fourth. That allows the compiler to make an unambiguous choice.

Do not worry too much about ‘best match’ problems when using overloaded functions, possibly
combined with default arguments. The compiler will make a choice, tell you that there is no viable choice, or
tell you that there is no single best choice. Later we will see how to resolve the last of these.

However, when overloading functions you should be careful to ensure that all the overloads conceptually
do the same thing. Do not overload a draw() function so that when the argument passed to it is a gun type
the result will be a shooting whilst an argument of a pencil type results in a sketch.

Enough theory. Time for some more practical work. Here is a first (faulty) definition of the general
plot square() function:

void plot_square(fgw::playpen & paper, int x, int y, int size,
fgw::hue shade){

paper.scale(size);
paper.plot(x, y, shade);

}

Note that a definition does not generally include declarations of default arguments unless it is also doubling
up as a function declaration.

Here is a small program to test that function definition:

int main(){
try{

fgw::playpen paper;
plot_square(paper, 5, 5, 16, fgw::red1);
paper.display();
std::cin.get();

}
catch(...){std::cerr << "An exception was thrown.\n";}

}

T R Y T H I S
Create a new project for a Playpen-based program. Create a source-code file. Add a suitable opening
comment. Add the necessary headers. Type in the declaration of the general plot square()
function followed by the inline definitions of the two specialized overloads. Now type in the test
program followed by the definition of the general plot square() function. Compile and run
the result.

102 CHAPTER 5

T R Y T H I S
Go back to the previous task and modify the test program so that it tests all six possible ways of
calling plot square(). Now try changing some of the arguments so that they do not exactly
match the parameter types. Some changes may result in code that will not compile; some may
result in the compiler issuing a warning (it can do what you asked, but it wants to tell you that
what you provided was not exactly what it expected). Try to get a feel for what is happening.

Something Is Not Right
Perhaps you have noticed that calls to plot square() have a side effect. Not only do they plot a square,
but they also change the scale of subsequent uses of the fgw::playpen object. Fortunately, we can fix
this problem, because the fgw::playpen type has a function that tells you what the current scale is. It is
an overload of fgw::playpen’s scale() function. It is also an exception to the guideline that overloads
should conceptually do the same thing. If I write paper.scale() I will get an int value returned that
represents the current scale of paper. In other words, if I do not provide a value for scale(), the call tells
me what the current value is, but if I do provide a value it changes the scale to the value provided.

I can use this to ensure that plot square() does not change the scale of the fgw::playpen object
it is using, or more correctly, that it restores the previous scale before it finishes. Here is the corrected version:

void plot_square(fgw::playpen & paper, int x, int y, int size,
fgw::hue shade){

int const old_scale(paper.scale()); // save prior scale
paper.scale(size);
paper.plot(x, y, shade);
paper.scale(old_scale); // restore to prior scale

}

I only have to make that change in a single place because the overloaded, specialized versions use the
general version to do the real work. It is important to get into the habit of saving any state that you are going
to change temporarily and restoring it at the end.

This example should also have emphasized the value of reusing code by calling a single function that
does the real work from specialized overloads.

T R Y T H I S
Test your code from the previous task to check that it works with the corrected version of
plot square().

EXERCISES
Some of the following will require you to reuse earlier functions such asget int(). In other cases, you should
consider writing auxiliary functions that might be used in future exercises. Many of these functions may be very

WRITING FUNCTIONS IN C++ 103

short. Do not let that deter you from writing them. Well-named short functions can often enhance your code by
making it more readable. Modern compilers will usually produce just as effective a program from such code.

15. Write a program that repetitively prompts the user for the arguments for a call to draw square() and
then uses them to draw a square in the Playpen window. The program should repeat the process until the
user signifies that they want to stop. Part of this exercise is for you to decide how the user will signify the
end of the program.

16. The fgw::playpen function setplotmode() handles the problem of restoring a previous state
differently from the way that the overloaded scale() functions do. setplotmode() returns a value
of type fgw::plotmode, which represents the previous plotting mode. So, for example,

fgw::plotmode old(pad.setplotmode(fgw::disjoint));

simultaneously sets pad’s plotting mode to fgw::disjoin and saves the previous state in old. When
you have finished you can restore the previous plotting mode with:

pad.setplotmode(old);

Write and test a definition for:

void plot_square(fgw::playpen & paper, fgw::plotmode pm, int x, int y,
int size, fgw::hue shade);

If you think carefully about the ideas behind forwarding functions, you should be able to do this with very
little extra code by delegating most of the extra work to the already written general plot square()
function. This is an example of using forwarding functions to extend a generalization.

17. Overload plot square() so that for each of the original ways that we could plot a square there is a
corresponding version to plot a square in a selected plotting mode. Write a program to test all 12 possible
ways of calling plot square().

18. Extend Exercise 15 to include selection of the plotting mode. Note that this is not a trivial extension, because
you are going to have to decide how to obtain the choice of plotting mode from the user of the program.

Unnamed Parameters
There is one final feature of functions in C++, and that is an allowance for parameters to remain unused in a
function’s definition. It may seem odd that we would ever want to write a function that will be provided with
an argument that is not used. You will have to wait some time before I can give you a good example of the utility
of this feature, but this chapter on functions would not be complete if I did not mention unnamed parameters.

Good compilers warn you about variables and parameters that do not seem to have been used in the
source code. For example,

int foo(){
int i(10);
return 1;

}

looks to be deeply suspicious. Did the programmer really intend not to use i? Such warnings are helpful
and we do not want to turn them off, because more often than not, the compiler is correct to be suspicious,
and the warning helps us to debug our code. However, in the case of parameters there are times when we
genuinely do not want to use the argument provided by the function call.

104 CHAPTER 5

Suppose you are writing a function to open a window and you want it to be portable across several
operating systems. That almost certainly means that you will need to provide a different definition of the
function for each of the systems. The declarations will be the same regardless, but we need to provide
definitions tailored to specific systems. Now imagine that one system allows you to place a colored frame
around the window, but another does not. That means that the function declaration must allow for data about
the color of the frame. The system that does not provide colored frames cannot use that information and will
simply have to ignore it.

To avoid the warning for an unused parameter, C++ allows the programmer to omit a name for any
parameter that is unused in the definition. This omission is in the definition of the function (parameter names
may always be omitted in function declarations), and its only effect is to suppress the warnings that most
compilers would otherwise generate.

In high-quality development environments, where code is required to compile warning-free even at the
severest warning level, this is a greatly appreciated feature of C++.

Separate Compilation and Header Files
Until now, I have asked you to place all your source code in a single file. That is not generally good C++
coding practice. We want to be able to reuse code as well as reduce build times.

Programmers coming from such languages as Java find the idea of separate compilation strange, because
they are used to a somewhat different strategy wherein libraries are loaded at execution time. They actually
do have a kind of separate compilation but not the kind that C++ uses.

C++ (like C) packages declarations and other items (such as inline definitions) into special source-code
files called header files. The concept of a header file is to provide the compiler with exactly the information it
needs to use functions, types, and other material whose definitions will be provided either by another file of
source code or by a library. We limit the compiler’s knowledge to what it needs in order to do its job, and
postpone the rest of the process of producing a program to two other tools: a linker and a loader. The job of
the linker is to combine code from different places into a single executable. The job of the loader is to fix up
a specific execution of a program by providing suitable resources and ensuring that the executable knows the
locations of those resources.

All those header files you have been including into your programs are files of declarations and other
material such as some inline definitions that the compiler needs to compile your source code. When you then
build your executable, the linker takes all the compiled code nominated by your project together with the
general C++ libraries, some system libraries, and any special libraries specified in the project (for example,
the gdi32 and fgw libraries you have to add to your project when using fgw::playpen objects).

When you use #include in your source code, you are telling the compiler where to look for
supplementary information it may need. When you add libraries to your project, you are telling the linker
where to find supplementary object code (the result of compiling source code) that will be needed to produce
a complete program.

It is not only library writers who can limit the exposure of their work at compile time; you can as well.
Indeed, you are encouraged to do so.

In order to use separate compilation you need to separate your code into distinct though meaningful
files. One part of this separation is to create pairs of header and implementation files. To see how this works
carry out the following task.

T R Y T H I S
Create a new project in MDS. Now create a header file called plot square.h. Note that creating a
header file is one of the options for creating new files. Now type the following into that header file

WRITING FUNCTIONS IN C++ 105

(mostly you can cut and paste from your earlier use of the overloaded plot square() functions):

#include "playpen.h"

// declarations
void plot_square(fgw::playpen &, int x, int y, int size,

fgw::hue = fgw::black);

// inline forwarding functions
inline void plot_square(fgw::playpen & paper, int x, int y,

fgw::hue shade = fgw::black){
return plot_square(paper, x, y, 0, shade);

}
inline void plot_square(fgw::playpen & paper, int size,

fgw::hue shade = fgw::black){
return plot_square(paper, 0, 0, size, shade);

}

The first line is because the subsequent code needs to know the declarations of such things
as fgw::playpen and fgw::black. Header files, particularly user-written ones such as this one,
often include other header files. Those included header files provide information for the compiler,
but they also provide information for the programmer: the list of inclusions tells the programmer
about the way this header depends on other facilities. In this case, we can see that the rest of the
file only depends on fundamental C++ and facilities provided by playpen.

Now go back to your test program. Remove the above material from it and replace it with
#include "plot square.h". Next cut out the definition of the general plot square()
function and paste it into a new C++ source file called plot square.cpp (note that the IDE adds
the correct extensions for you, as it did for the header file). Add #include "plot square.h"
to the beginning of this file. (This is not strictly necessary in this case – #include "playpen.h"
would have been enough. However, later we will need to include headers into implementation
files, so there is no harm in developing good habits now.)

Finally add this source-code file to the project, along with the modified source-code file
with the version of main() that tests the code. The latter file now contains just the necessary
#includes and the definition of main(). Everything else has been separated out into a header
file, containing the material the compiler needs to compile the file with main() in it, and an
implementation file, which, when compiled, provides the linker with the material it needs in order
to complete the executable.

EXERCISES
19. Rework Exercise 18 so that all your function declarations are in header files and their definitions are in

implementation files. The material for the overloaded plot square() functions should be in one pair
of header file and implementation file. Any other functions that you wrote to assist with the program (and
there should be several) should be in a distinct header/implementation file pair. Learn to keep separate
material in separate files.

20. Extract all the declarations and inline definitions for get int() and get double() into a suitably
named header file. Extract the non-inline definitions into an implementation file. Now create a project and
write a program that tests all the variations of your get int() and get double() overload sets.

106 CHAPTER 5

REFERENCE SECTION
Function Declaration Syntax
All functions are declared (i.e. their names are provided to the compiler) with the following syntax:

return-type function-name(comma-separated-parameter-type-list);
The return type is almost always required (we will find that there are a couple of exceptions for

some special member functions). The use of the special void type signifies that there is no return
value and so the function is effectively a procedure.

The function name has the same restrictions as all other names in C++ and must be present.
The parameter type list is a (possibly empty) list of types. Each of the declared parameters may

be followed be a name. The parameter names in pure declarations (ones that are not also definitions)
have no significance anywhere else; they merely serve to document the purpose of the parameters in
question.

A semicolon terminates a function declaration unless it is also a function definition. In that case
the body of the definition terminates the declaration part of the definition.

namespace my_library {
double sales_tax(double cost, double percentage_sales_tax_rate);

}

Function Definition Syntax
The syntax for a function definition is very similar to that for a function declaration except that:

• The body of the definition, which consists of zero or more statements enclosed in a pair of braces,
replaces the terminal semicolon of the pure declaration. If the function has a return type other than
void those statements must include a return statement providing a suitable value or object that
will be returned to the point where the function is called.

• Each parameter that is used in the definition body must be named (the name is how the object or
value provided by the caller of the function is used in the body of the function).

• One or more namespace or class names followed by scope operators may precede the function name.

double my_library::sales_tax(double c, double rate){
return c * rate / 100;

}

namespace my_library {
double sales_tax(double c, double rate){

return c * rate / 100;
}

}

Function Call Syntax
A free function is called by using the function name (possibly fully elaborated with namespace names)
followed by a comma-separated list of arguments in parentheses. The parameters provided in the
definition are initialized with the arguments provided by the call.

WRITING FUNCTIONS IN C++ 107

A member function (dealt with in Chapter 9) is called using the dot (.) operator, with its
left operand being the name of a class object and its right operand being the function name; a
comma-separated list of arguments in parentheses follows. A member function may also be called by
using a pointer to an object of the class type. In that case the arrow (->) operator takes the pointer as
its left operand and the function name as its right operand; again a comma-separated list of arguments
in parentheses follows.

double tax(0);
tax = my_library::sales_tax(27.50, 6.25);

The above (free) function call might be used to calculate a 6.25% sales tax on an item costing 27.50
monetary units (dollars, pounds, euros, etc.).

fgw::playpen paper;
paper.plot(12, 23, red1);

The above (member) function call plots a dim red pixel at the coordinates (12, 23) in the Playpen
window that is the output device used by the fgw::playpen object named paper.

Function Overloading
Functions declared in the same scope may have the same name as long as they have distinct parameter
type lists. The difference in the parameter types must be sufficient for the compiler to select one solely
based on the types of the arguments provided by a function call using the name. Differences in return
type are not significant for selecting which of an overloaded set of functions is used.

If there is a function whose parameter types exactly match the types of the arguments in the
function call, it will be selected. If there is no such function, the compiler will invoke a number of ‘best
match’ rules. The details of these are complicated. However, in general, if it matters which function
is called then the overload set is poorly designed. The intention of providing overloaded function
names is to allow programmers to achieve essentially the same objective from possibly different types
of data.

One of the more useful forms of function overloading is to deal with the special case where one
of the arguments is implicit. The special case can be defined by forwarding the explicit arguments to
the general version with the implicit argument or arguments added in.

Given a function whose declaration is

void drawline(fgw::playpen &, point start, point end, fgw::hue);

(with point being some type that represents a point on a plane), the following defines an overload
that draws black lines:

void drawline(fgw::playpen & p, point start, point end){
return drawline(p, start, end, fgw::black);

}

This one would draw a line from the origin (assuming that the correct way to create a point
object identifying the origin is point(0, 0)):

void drawline(fgw::playpen & p, point end, fgw::hue shade){
return drawline(p, point(0, 0), end, shade);

}

108 CHAPTER 5

Default Arguments
Instead of using function overloading and delegation (as in the example above) it is sometimes
convenient to provide a default value for the argument of one or more of the right-hand parameters
in a function declaration. Such arguments are provided by appending an equals sign followed by the
desired default to the parameter (after the name if one is provided). Once a parameter is provided
with a default argument, all the subsequent parameters must also have default arguments. Once a
default argument is used by a caller (by omitting an explicit argument in the call) no further explicit
arguments can be provided.

Consider:

void drawline(fgw::playpen &, point start, point end, fgw::hue = black);

This declaration has substantially the same effect as the first of the specialized versions above. Indeed,
they are so similar that the compiler will not allow the two declarations to co-exist.

However, the declaration

void drawline(fgw::playpen &, point start = point(0, 0), point end,
fgw::hue);

is not allowed, because we are not allowed to provide default arguments for parameters unless we
provide defaults for all the subsequent parameters.

Unnamed Parameters
In some cases, a parameter that has been included in a function declaration has no practical use in
the specific definition provided for some special context. C++ specifies that it is not an error for a
parameter to remain unnamed in the definition of a function. In addition, implementers are strongly
encouraged to refrain from issuing any form of diagnostic if a parameter is unnamed in a function
definition.

This feature of C++ is useful because it allows user code to be more portable. Libraries can be
tailored to the needs of specific platforms, and data that has no use on a platform (though provided
by users because it would be useful on other platforms) can be silently ignored.

inline
The superficial use of this keyword in C++ is to encourage the compiler to substitute the function’s
definition for calls to the function. The motive for allowing programmers to make this request is to
stop the performance enthusiasts from fretting about the many small functions that C++ encourages.

In practice, the valuable feature of defining a function with an explicit inline qualification is
that the program is then allowed to contain multiple identical definitions of a function. If the linker
finds that a function is redefined because of its appearance in different source-code files, it is required
to issue a redefinition error. That requirement is switched off if all the definitions are qualified as
inline.

In general, there is a tendency for new programmers to overuse inline. Modern compilers
and linkers can cooperate to do a good job even without programmers hinting that they want the
definition of a function to be used inline.

C H A P T E R 6
Behavior, Sequence
Points, and Order
of Evaluation

This is a short chapter but an important one. It covers a group of related topics that are essential
for correct use of C++ for writing robust and reliable programs. There is no reference section
because the whole chapter acts as both a reference and a tutorial. However, this chapter concludes
with a set of guidelines to help you avoid most of the pitfalls that sequence points and order of
evaluation can cause. The guidelines are sufficient for practical purposes, but the rest of the chapter
gives you the necessary basics if you wish to understand the guidelines, or wish to ignore them at
times.

Those writing C++ for others to use need to be familiar with this material. There are no exercises
because the topics do not readily lend themselves to practice. The ‘Try This’ items are only to help you
check on those aspects that are checkable rather than being unpredictable.

Types of Behavior
C++ classifies the expected behavior for source code into four categories: fully defined, implementation-
defined, undefined, and unspecified.

Fully Defined Behavior
This is behavior that is completely specified by the C++ Standard; a compiler that does not compile source
code with fully defined behavior to do what the C++ Standard says it should do is, at best, buggy. For
example, the C++ Standard requires that the following source code compile and result in a program whose
output is 2:

#include <iostream>
#include <istream>

int main(){
std::cout << 2 * sizeof('a');

}

Note that we need the #include <istream> because the Standard does not specify (though many
experts thinks it should have) that <iostream> provide the full behavior for input and output objects. The

110 CHAPTER 6

Standard simply requires that <iostream> declare the names cout, cerr, clog, cin, wcout, wcerr,
wclog, and wcin in namespace std. Most implementations include <istream> and <ostream> in
<iostream>. Though the Standard allows this, it does not require it.

I chose the above example because the equivalent C program

#include <stdio.h>

int main(){
printf("%d", 2 * sizeof('a'));

}

has an identical requirement if compiled with a C++ compiler, but a different one if compiled by an old C
compiler. The first issue is that C++ specifies the behavior of a program whose main() function lacks a
return statement (as being equivalent to return 0; at the point where there is no more code to execute).
C did not, and so the lack of a return statement would be an error in old C. The most recent version of C
(often called C99 to distinguish it from the still widely used version standardized in 1989/90 and corrected
in 1994) has the same behavior as C++: falling off the end of main is equivalent to return 0;.

The second issue is that in C the type of a literal character is int, not char. The size of an int is
implementation-defined and on most systems is either 2 or 4. However, the following variation of the above
code is required to output 2 regardless of whether you use a C or C++ compiler.

#include <stdio.h>

int main(){
printf("%d", 2 * sizeof(char));
return 0;

}

That is because sizeof char is defined as 1 by both the C and C++ Standards; a char occupies the smallest
amount of memory that either language allows to be directly addressed.

Implementation-Defined Behavior
This is behavior that is allowed to vary from one implementation to another, but the implementer is required
to document the details. We had an example of this above: the ratio of the amount of memory used by an
int object to that used by a char object is implementation-defined. In other words, the output resulting
from

std::cout << sizeof(int);

is implementation-defined.
Another example of implementation-defined behavior is whether a plain char behaves like a small,

signed integer (i.e. signed char) or a small, unsigned integer (unsigned char). Many compilers allow
the programmer to choose which behavior they want for char.

T R Y T H I S
Try the following code with the compiler and IDE you are using to discover which form of char
it is providing in the configuration you are using.

BEHAVIOR, SEQUENCE POINTS, AND ORDER OF EVALUATION 111

#include <iostream>

int main(){
char c(-1);
if(c < 200) std::cout << "signed \n";
else std::cout << "unsigned \n";
return 0;

}

I have not bothered with exception-handling because this is a tiny program to be used once
and thrown away. How we initialize c with -1 depends on whether char is treated as a signed
or unsigned integer type. If char is a signed type then -1 is stored as is (in whatever way the
system represents negative one – exactly how depends on whether signed integers are represented
in two’s complement, one’s complement or sign and magnitude). If char is being treated as an
unsigned type, -1 will wrap around to the largest value available for a char. Note that for any
unsigned representation of char the largest possible value is certainly larger than 200.

Unspecified Behavior
This covers cases where the compiler is free to select any one of a number of reasonable actions, and the
implementer is not required to document which one the compiler will select. This is usually because all the
possible choices will usually have identical results. However, it is often possible to construct code that will
behave differently according to the choice the compiler makes.

An example of unspecified behavior is that C++ (unlike some other languages such as Java) does not
specify the order of evaluation of subexpressions that are parts of a larger expression. Look at the following
source code:

#include <iostream>

int global(0);
int add1_to_global(){

return ++global;
}

int add2_to_global(){
return (global += 2);

}

int main(){
std::cout << add1_to_global() + add2_to_global() << '\n';

}

The C++ Standard requires that the calls of add1 to global() and add2 to global() be done
sequentially (i.e. it cannot send the two calls to different CPUs in parallel), but it does not specify which will
be evaluated first. In this case, the result will depend on which choice the compiler makes. If it makes the two
function calls in a left-to-right order the result will be 4, but if it calls them in reverse order the result will be
5. Whichever order it chooses, the final value stored in global will be 3.

Because the order of evaluation of subexpressions (in this case two function calls) is unspecified by the
C++ Standard, both 4 and 5 are correct output for the above program. In fact, the compiler you are using
(assuming it is the same version that I have) will produce a program whose output is 5. That tells me that the
compiler is creating code that calls add2 to global() before calling add1 to global().

112 CHAPTER 6

WARNING!
If you did not already know that global variables can cause serious problems, this example should
demonstrate one of the reasons good programmers avoid them.

While C++ provides rules for the order in which operators are applied during the evaluation of
an expression, it provides very few requirements for the order in which subexpressions are evaluated: a
subexpression is evaluated before its value is needed by an operator. Many programmers miss the full
implications of this rule. For example, using the above functions,

int main(){
std::cout << add1_to_global() << add2_to_global() << '\n';

}

also has unspecified behavior. The output can be ‘13’ or ‘23’ depending on the order in which the two
functions are called. Furthermore the order in which the subexpressions (function calls in this case) are
evaluated can vary from one place to another.

WARNING!
It is unsafe to assume that subexpressions will be evaluated in any specific order. Running test
code will not tell you anything more than the order in which the subexpressions were evaluated in
the test code. If the order matters you must do something to enforce an order, such as evaluating
the pieces in separate statements. For example,

int main(){
std::cout << add1_to_global();
std::cout << add2_to_global() << '\n';

}

must result in the output of ‘13’, because there is no liberty to reorder entire statements.

Undefined Behavior
This is the big problem and one that lurks in far too much code written by people who think they know what
they are doing. Any time you do something for which the C++ Standard provides no requirements, you are
in the land of undefined behavior. I often see programmers excuse themselves on the basis that they have
tested the code and it does what they expected it to. That is the most vicious aspect of undefined behavior; it
can hide for years because nothing triggers the problem. There are a number of classic examples of undefined
behavior that can cause damage to real systems. For example, I once reprogrammed the EPROM on a very
expensive graphics card with a program that effectively did this:

void NEVER_RUN_THIS(bool q){
char message[] = "No";
if(q) strcpy(message, "yes");

}

I have stripped out all the other code and named the function in a way that I hope will persuade even
the most casual reader never to use it. C programmers will recognize what the code does, and it does the same
in C++. In simple terms, it allocates enough local storage to store the text ‘No’ and then proceeds to try to
write ‘yes’ in the same space. It will not fit so the last character overflows. On many systems, that overflow
might not actually do damage. On the system I was using it wrote data on top of the return address for the

BEHAVIOR, SEQUENCE POINTS, AND ORDER OF EVALUATION 113

function. As a result, the function did not return to the caller but returned somewhere else. It was just my
bad luck that the place it returned to was executable code that did the damage. Of course, modern operating
systems will often spot such wild behavior and simply kick the program off. But:

WARNING!
A programmer must not rely on an operating system to intervene to protect itself and other
programs from abuse caused by code with undefined behavior. A program that includes undefined
behavior is an accident waiting to happen.

Sequence Points
Sequence points are islands of stability in a C++ program where we can be certain that some actions are
completed and that other actions will not have started. All computer languages implicitly have such points,
but in C++ (as in C) they are made explicit by the Standard, and good programming requires either strict
adherence to a set of guidelines or a good deal of understanding of what can happen between sequence points.

Most of a program consists of evaluating expressions. The evaluation of an expression results in a value.
In addition, many expressions also have side effects. The more obvious side effects are such things as opening
and closing files, extracting data from files, inserting data into files, and other forms of input and output.

One of the more insidious side effects is that of changing the state of the program itself. By that, I mean
writing something to the program’s memory. The most obvious example of this is the use of assignment to
store a result. It comes as a surprise to many programmers that this process of storing a result is far from being
a universally good thing. Those whose prior experience of programming has been with functional languages
such as Haskell may even have learned that assignment is a dangerous and highly suspect operation.

A C++ statement such as

i = j * k;

consists of two distinct elements. The first is the evaluation of the expression i = j * k. We almost always
throw away the result, but nonetheless there is a result that can be used in some circumstances. For example,

int foo(int & result, int lhs, int rhs){
return result = lhs * rhs;

}

returns the value of the expression result = lhs * rhs. In general, we are usually more interested in
the fact that evaluating an assignment expression results in storing a value in the object designated by the
left-hand operand of the assignment operator. The function foo() does two things. It returns a value, but
it also has the side effect of storing the result of evaluating lhs * rhs in the object designated by result.
Notice how this is different from:

int bar(int lhs, int rhs){
return lhs * rhs;

}

The function bar() has no side effects; it works out and returns the result of lhs * rhs. In
computer-science terms bar() is a pure function, because calling it has no permanent effects on either external
objects such as printers, or on the program’s internal resources such as memory.

One problem with side effects is deciding when they happen. Storing results in memory is a relatively
slow process on most machines. In addition, some hardware requires a stabilization time after a memory
write before the program accesses that memory again. The solution that C++ uses (one inherited from C) is to

114 CHAPTER 6

specify something called a sequence point, where, if necessary, the program must wait while memory stabilizes.
That is one of the motives for the concept of a sequence point; however, as programmers, we are more
concerned with the practical implications.

Between two sequence points, we are free to read any memory representing objects as often as we like,
providing that we do not write to any of that memory. However, if we write to a piece of memory between
sequence points, we must only write to it once. Furthermore, we must only read that memory as part of the
process of determining what the program will write to it. Breaking either of those rules results in undefined
behavior.

Most programmers are happy with the first part of the rule: only write once to a piece of memory
between sequence points. Many do not understand the second restriction. That restriction ensures that if
memory is both read and written between sequence points then the read will have been completed before the
write starts. In the context of C++’s unspecified order of evaluation of subexpressions, that is the only rule
that could ensure safety.

Now you can see why it is important to know where the sequence points are in your code. Here is a
complete list:

full expression: There is a sequence point at the end of evaluating a full expression. A full expression is one
whose value is not directly used as part of evaluating some other expression. For example, in the function
bar() above, lhs * rhs is a full expression; however, in the function foo(), lhs * rhs is not a full
expression, because the result is used in evaluating the assignment to result.
Note that a single statement can involve more than one full expression. For example, the statement

if(a < b) i++;

contains two full expressions: a < b and i++.
function call: Two sequence points protect a function call. There is a sequence point immediately after the

evaluation of all the arguments, so the body of the function can proceed on the assumption that all the side
effects of initializing the parameters are complete. There is a second sequence point at the point of return,
which ensures that any side effects of providing the return value are complete before the code that called
the function resumes.
Few programmers write code that has a problem with the return sequence point, but the entry one is

sometimes misunderstood. For example,

int bar(int lhs, int rhs);
int main(){

int i(0);
std::cout << bar(i, i++);

}

may seem fine until you examine the call of bar() more carefully. Two expressions, i and i++, have to
be evaluated in order to call bar(). Those expressions are not full expressions, because the results will be
used as arguments to initialize the parameters of bar(). That means that there is no sequence point between
the evaluation of i and i++. However, evaluating the first of those requires that the value stored in the object
designated by i be read, but not for determining what will be written to it as a side effect of incrementing
it during the process of evaluating the second argument. In other words, we have broken the rules about
reading and writing to the same object between sequence points. That means that we are in the realms of
undefined behavior and anything can happen. In practice, the usual manifestation of the problem is that the
two orders of evaluation result in different values for the first argument. That should not lull you into a false
sense of security: this is not unspecified behavior but undefined behavior. Please learn the difference, because
one day it will matter.
comma operator: A comma (,) is, in some contexts, simply punctuation that separates a list of items. In other

contexts, it is the C++ sequence operator. Knowing which is which is largely a matter of experience.

BEHAVIOR, SEQUENCE POINTS, AND ORDER OF EVALUATION 115

Unfortunately, which it is can have a profound effect on your program. When a comma is a sequence
operator it injects a sequence point into the code, which means that the expression to the left of the comma
is fully evaluated and all side effects complete before the expression on the right is touched.
Even worse, C++ allows programmers to redefine the comma operator if at least one of its operands has a

user-defined type. In those circumstances, it is no longer a sequence operator, and the left and right operands
(expressions) can be evaluated in either order. The upshot is that it is probably better to assume that a comma
is not a sequence operator unless you definitely know that it is.
conditional operator: There is a sequence point between the evaluation of the left-hand operand of the conditional

operator and the evaluation of whichever of the other two operands is selected. So

int bar(int value){
value ? value++ : value--;
...

return value;
}

is fine in so far as the first statement is concerned. I cannot imagine why I might write such a statement but
there is no undefined behavior. The first read of value is protected from the later write to the same storage
by a sequence point at the ?.
the || and && operators: There is a sequence point after the evaluation of the left-hand operand (expression) for

the built-in versions of each of these operators. That means that the left-hand operand is fully evaluated
and all consequential side effects completed before the right-hand operand is evaluated. Note that the
right-hand operand is only evaluated if necessary to determine the result. That means that any side effects
of evaluating the right-hand operand are conditional on the value of the left-hand operand.

Multiple Sequence Points
Expressions often contain multiple sequence points, and a programmer must be careful not to assume that
sequence points force an order of evaluation. The sequence (comma) operator, the conditional operator, and
the || and && operators force an order of evaluation on their operands but that is as far as it goes. If you write

i = (expr1 || expr2) + (expr3 && expr4);

any evaluation sequence that fully evaluates (including side effects) expr1 before expr2 and expr3 before expr4 is
within the rules. There is no requirement that, for example, expr1 be evaluated before expr4.

Order of Evaluation
There is not much more to say. Between sequence points, subexpressions can be evaluated in any order that is
consistent with the associativity and precedence of the operators involved. Most importantly, parentheses do
not change order of evaluation, only precedence. For example, the rules for operators require that in

double d;
d = expr1 / expr2 * expr3;

the division must be completed before the multiplication, and both those must be completed before the
assignment to d. However, expr1, expr2, expr3, and the address of the object designated by d can be evaluated
in any order. Adding some parentheses cannot change the latter allowance. So

double d;
d = expr1 / (expr2 * expr3);

forces execution of the multiplication to occur before the division but has no other impact.

116 CHAPTER 6

Guidelines
Note that the following guidelines give you a set of safe programming practices with regard to order of
evaluation and sequence points. Ignoring a guideline is fine as long as you are willing to spend time checking
that you have not introduced undefined behavior into your code. You should also check that any unspecified
behavior would not result in erroneous results. In addition, you should document any implementation-defined
behavior on which you are relying. For example, if your program relies on int using a 32-bit representation,
that should be clearly documented.

Rule 1: Only use increment and decrement operators as full expressions. Do not have more than one assignment or compound
assignment operator in a full expression.

If you follow this rule, you will not fall foul of the rule restricting reading and writing to the same
storage between sequence points.

Rule 2: Avoid writing functions that modify a global object.

There are exceptions to this rule such as using std::cout, which is a global object (in namespace
std), but even here you need some care. For example, consider:

#include <iostream>

int hello(){
std::cout << "Hello ";
return 1;

}
int world(){

std::cout << "World ";
return 2;

}

int main(){
std::cout << hello() + world() << '\n';

}

Try that code. Then try replacing

std::cout << hello() + world() << '\n';

with

std::cout << hello() << world() << '\n';

or:

std::cout << hello(), world() << '\n';

Do not try to explain the results because in the first two cases we have unspecified behavior. There are
other orderings available to the compiler. In the third case the compiler must call hello() first and then
call world() but there is something far stranger happening. The program first executes everything to the
left of the comma. It then executes everything to the right of the comma. The latter only seems to work. Here
is why. The expression world() << '\n' is evaluated as the value returned from world() shifted left by
the number of places that '\n' represents as a number.

BEHAVIOR, SEQUENCE POINTS, AND ORDER OF EVALUATION 117

Try changing the '\n' to "\n". In the first two cases it produces the same result, but in the third case
you get a compile time error because "\n" is a string literal and cannot be converted into an integer value.
Alternatively, try changing the return type of world() to double. Again, the first two examples compile
and execute as before (though that is because the decimal indicator is suppressed for output of double values
that are exact whole numbers). However, you again get a compile time error in the third case because the
left-shift operator cannot be applied to a floating-point type.

Rule 3: Do not pass the same object to two functions by reference unless there is an intervening sequence point or both functions take
the argument by const reference.

Remember that passing a reference (rather than a const reference) allows the function to change the
object being referenced. If at least one of two function calls can change the object, the unspecified order of
evaluation between sequence points means that there may be more than one possible result for your code.
For example, consider:

int foo(int const & i){
return i;

}

int bar(int & i){
return i++;

}

int main(){
int i(0);
std::cout << bar(i) << foo(i) << '\n';

}

If bar() is called first the output will be ‘01’, but if foo() is called first then it will be ‘00’. The
sequence points in the function call and return only remove the potential for undefined behavior; they do not
influence the order of evaluation of the various bits needed to execute the output statement.

Rule 4: Do not call functions with arguments provided by expressions unless you are certain that the order of evaluation of the
arguments will not matter.

Remember that the comma used to separate arguments in a function call is just punctuation and is not a
sequence operator.

C H A P T E R 7

Generic Functions

C++ provides some very useful mechanisms for writing code that is independent of the data
types used. We have already been using them when, for example, we created vectors to contain a
specified type. std::vector<int>, std::vector<long>, std::vector<std::string>, and even
std::vector<std::vector<int>> are all examples of using the general C++ concept of a vector
container as a sequence of objects of a specified type.

The fundamental mechanism is the C++ template. In this chapter, I am going to focus on C++
function templates. We most commonly simply use functions generated from function templates provided
by libraries (either the Standard C++ Library or third-party ones). However, this chapter will also cover
writing simple function templates. The primary intention is to help you understand the template concept.

Some readers may wish to delay learning the details of writing function templates. If you are one
of them, please at least skim this chapter so that you will know what they are and how to use them. You
can come back later to study writing them in more detail.

Language Note: Much of this chapter may seem surprising if your previous programming experience has been with a dynamically
typed language such as Python. C++ is a statically typed language. That means that the types of objects and
expressions must be determined at compile time. We will see later that C++ also supports a limited amount of
dynamic typing, but only for names; objects must have a static type, i.e. a type that the compiler can identify.

Which Is Larger
Choosing the larger of two values is a common problem – so common that you probably want to make it a
function. The following short function returns the larger of two int values supplied to it as arguments:

int max(int first, int second){
return first > second ? first : second;

}

That function is so simple – it is just a wrapper for using the conditional operator – that you may
wonder why we should make it into a function. One reason is that good programming not only avoids
‘magic numbers’ but also avoids ‘magic expressions’; we try to name things to help the human reader follow
what our code is doing. In general, self-expressive code is worth the risk of a possible slight degradation in
performance, because it saves a great deal of maintenance time. C++ also provides tools to tackle the issue of
efficiency when it matters.

120 CHAPTER 7

T R Y T H I S
Here is a small program that uses the above function to select the largest of a set of integer values
input via the console (i.e. keyboard):

1 #include <iostream>
2 #include <vector>
3
4 int max(int first, int second){
5 return first > second ? first : second;
6 }
7
8 int main(){
9 try{

10 std::vector<int> data;
11 std::cout << "Type in some integers. End input with -9999.\n\n";
12 int value(0);
13 do{
14 std::cin >> value;
15 data.push_back(value);
16 } while(value != -9999);
17 int maximum(-9999);
18 for(size_t i(0); i != data.size(); ++i){
19 maximum = max(maximum, data[i]);
20 }
21 std::cout << "The largest input value was " << maximum << ".\n";
22 }
23 catch(...){ std::cerr << "\n***An exception was thrown***\n";}
24 }

Create a project, type in the program, and try it.

W A L K T H R O U G H

Most of the above code should be familiar to you by now. Lines 10 to 16 create a container called
data, which is a sequence of int values, stored in a std::vector<int> object. Data provided by
the keyboard is stored in it. Note that we have to define value outside the data-capture loop because
it is used in the while-clause that checks to see if input has finished. (Try moving the definition
of value inside the do–while loop to see that the compiler then rejects the code.) Storing the
terminating value gives us a small benefit in that it ensures that there will always be at least one value
stored in data.

The design also assumes that only valid data will be supplied – it does not check for input failure.
We will deal with that problem later in this chapter.

Line 18 uses the Standard-defined name, size t, for the unsigned integer type used to measure
the size of objects in C++. Which unsigned integer type is used for size t is implementation-defined
(i.e. the compiler implementer must document which choice was made from the available unsigned
types).

GENERIC FUNCTIONS 121

Line 19 uses the function max() to go through the supplied data to find the largest value. If no
data was provided, apart from the terminating value, the original value of maximum (-9999 in the
above code) will be used.

Getting the Largest
Suppose that we now want to select the largest value from a sequence of values of type double. If you
look at the above code you will realize that very little has to change in main(). We will need to change
all the instances of int in the body of main() to double. We will also need to change the end of data
test – remember that it is unsafe to compare floating-point values for equality. We might change the test to
check that the input value is greater than -9999.0.

T R Y T H I S
Try making those changes. Be careful that you do not change the definition of max(). Also make
sure that you did not change the return type of main(); that must always be int.

When you come to compile the result you will get a number of warnings. Ignore them
for now; build and execute the program. You should notice that the program gets the answers
slightly wrong if the largest value is not an exact integer value. Think about why that should be.

The problem is that the values are being converted (rounded) to int values on the way into max().
To avoid that, we need to add a new version of max(), one that takes two doubles. In the short term we
might just edit our current version of max() by replacing int by double throughout its declaration and
definition, including its return type.

The short-term measure of replacing int max(int, int) with double max(double, double)
only works if we do not want to use both versions within a single program.

Getting the Largest Using a typedef
In practice, there are many different types of values for which we may want to choose the bigger of two (or
the one that comes second when the values are arranged in order). Here is a way that works as long as there
is only a single relevant type in the program. It uses the C++ device (inherited from C) for giving an existing
type a new name. The mechanism is a typedef declaration. This works like any other declaration of a name,
but the name becomes a synonym for a type rather than a variable or function name. The following code
demonstrates its use for providing some support for writing generic (type-independent) code:

1 #include <iostream>
2 #include <vector>
3 typedef int value_t;
4 value_t max(value_t first, value_t second){
5 return first > second ? first : second;
6 }
7

122 CHAPTER 7

8 int main(){
9 try{

10 std::vector<value_t> data;
11 std::cout << "Type in some integers. End input with -9999\n\n";
12 value_t value;
13 do{
14 std::cin >> value;
15 data.push_back(value);
16 } while(value > -9999);
17 value_t maximum(-9999);
18 for(size_t i(0); i != data.size(); ++i){
19 maximum = max(maximum, data[i]);
20 }
21 std::cout << "The largest input value was " << maximum << ".\n";
22 }
23 catch(...){ std::cerr << "\n***An exception was thrown***\n"; }
24 }

Yes, that is the code from the previous program with two changes: line 3 now contains a typedef
declaration that makes value t a synonym for int, and all the relevant uses of int have been changed to
value t. Notice how our code now distinguishes between the uses of int to represent the kind of data we
wish to process and other uses of int such as the return from main(). This is another example of removing
‘magic’ from our code.

Before you try it, it is time to remove those magic uses of -9999. You will appreciate why in a few
moments. Change line 7 to:

value_t const limit(-9999);

Now modify line 11 so that it outputs the message but uses limit instead of -9999. You will have to
reorganize the statement because you cannot use variables, even const qualified ones, inside quotation marks.

Finally replace the other two uses of -9999 with limit.

T R Y T H I S
The resulting program should work exactly as the earlier one did. However, we now have the
ability to reuse main() for other types, by making a couple of simple changes to the source code.

Try changing the typedef so that value t is a synonym for double, and change limit’s
initializer to -9999.0. Now build and execute the program. How well the message at line 11 fits
with the new version depends on how general you managed to make it. You could have pulled
the message into a std::string and placed that out front along with the other pieces that need
changing for different types. However, I am sure you get the idea: write code so that is easily
adjusted from a general case to a specific one.

Now for a final demonstration of the power of writing code this way. Try changing line 3 to

typedef std::string value_t;

and line 7 to:

value_t limit("@");

GENERIC FUNCTIONS 123

You will need to add #include <string> so that the compiler can find the declarations
relating to the std::string type. You will probably also need to tweak the message asking for
data input.

Build and execute the resulting program. Note that ‘largest’ in this context will mean the
word, or string of characters, that would be last when the data is sorted into lexical (alphabetical)
order.

EXERCISES
1. Tidy up the above program by declaring a suitable std::string const prompt and modifying

line 11 to use it. Arrange the code so that the three things that need modifying for different types are
declared/defined as three consecutive statements.

2. Change the output so that it also lists the input values a comma-separated list. The output should be
something like the ‘The largest value in (. . .) was . . .’ with the dots replaced by the correct data.

3. Write a program that outputs the second-largest value from a sequence of values. You must not modify the
order of the sequence, so using std::sort() and then selecting the second from the end is not a valid
solution to this problem.

Getting the Largest Using a Template
Choosing the greater of two values uses exactly the same basic code for any type for which the > operator can
be used. The only thing we need to change is the type of the data. The C++ function-template mechanism is
designed to deal with this. It allows us to create type parameters to which we can pass type arguments. Here
is a function template for creating max() functions:

template <typename value_type>
value_type max(value_type first, value_type second){

return first > second ? first : second;
}

Let us focus on the first line of that code. The template keyword tells the compiler that what
follows is generic code. The code between the angle brackets tells the compiler the generic parameters.
These are provided as a list (comma-separated if there is more than one parameter). There are three kinds
of generic parameter: type, value, and template. For the time being I am going to deal only with type
parameters – the other two are expert territory and best left alone until you have more substantial experience
of writing C++. Type parameters are identified by the keyword typename (class can also be used, but
I prefer to use the more descriptive option), followed by a parameter name. As you can see above, the
parameter name behaves in a similar fashion to a typedef name as far as the function-template code is
concerned.

The big difference is in the way we use a function template. I can explicitly provide the relevant type
argument(s) at the point where I want to call a function generated from the function template. I can rewrite
my example program as:

1 #include <iostream>
2 #include <vector>

124 CHAPTER 7

3 #include <string>
4
5 template <typename value_type>
6 value_type max(value_type first, value_type second){
7 return first > second ? first : second;
8 }
9 typedef int value_t;

10 value_t limit(-9999);
11 std::string type("integers");
12
13 int main(){
14 try{
15 std::vector<value_t> data;
16 std::cout << "Type in some " << type <<
17 ". End input with " << limit << ".\n\n";
18 int value;
19 do{
20 std::cin >> value;
21 data.push_back(value);
22 } while(value > -9999);
23 value_t maximum(-9999);
24 for(size_t i(0); i != data.size(); ++i){
25 maximum = max<value_t>(maximum, data[i]);
26 }
27 std::cout << "The largest input value was " << maximum << ".\n";
28 }
29 catch(...){std::cerr << "\n***An exception was thrown***\n";}
30 }

I have tidied up the code but the critical change is at line 25: max<value t> specifies that the version
of max() generated for the type of value t must be used. value t is the type argument passed to the
function template parameter, value type. Your first reaction may be that we seem to have gained very little
over just using a typedef. If we were only interested in this single program, you would be right. Indeed if
you try this code with value t being some type from the Standard C++ Library such as std::string it
will no longer compile. Put that to one side for now because I will deal with that issue later in this chapter.

The advantage of using a template is a longer-term one: we can use the function template for max()
whenever we want to select the larger of two values. There are two conditions required for using a function
template. The first is that the compiler must see the actual definition of the template function (though a new
mechanism – using the keyword export – for allowing the compiler to go ahead with only a declaration of
the template function is beginning to become available in some compilers). The second condition is that the
generated code must be valid for the template arguments. In this case the type must have a useable > operator
with the correct behavior. We will shortly see that the latter requirement is an important one.

In most cases we can omit the explicit template type arguments (the type or types in the angle brackets
used when the function is called) for a function template, because the compiler will be able to deduce the
relevant type(s) from the argument(s) supplied for the generated function. Here is an example for you to try.

T R Y T H I S

1 #include <iostream>
2 #include <string>

GENERIC FUNCTIONS 125

3
4 template<typename value_type>
5 value_type max(value_type first, value_type second){
6 return first > second ? first : second;
7 }
8
9 int main(){

10 try{
11 std::cout << max(12, 24) << '\n';
12 std::cout << max(12.3, -1.4) << '\n';
13 std::cout << max('a', 'b') << '\n';
14 }
15 catch(...){std::cerr << "\n***An exception was thrown***\n";}
16 }

Create a project and try out that short program. Notice that the results are correct for each of
the three calls of max(). The compiler has worked out that the first one is comparing two ints,
the second compares two doubles and the third compares two chars.

Now change line 13 to

std::cout << max('b', 'a') << '\n';

and check that the result is still ‘b’. Next change that line to:

std::cout << max("b", "a") << '\n';

On my system the result is still ‘b’. However, when you try

std::cout << max("a", "b") << '\n';

you should get a surprise – the result is ‘a’. (Some systems may reverse the last two results.) Something odd
is happening here, and it is an example of the kind of problem you may have to deal with. 'a' and 'b' are
char literals. In other words, they are values of type char. When we ask that they be compared the compiler
generates code that treats them as small integers. The code representing 'a' has a lower value than the code
that represents 'b' (they are actually 97 and 98 respectively if the system is using ASCII).

However, when we use double quotes we create a string literal. The program uses some special storage
it has available to store the codes for the specific string of chars that we have specified. It then adds one more
location in which it stores a zero as an end-of-string marker. The upshot is that "a" and "b" are not any kind
of integer (they are actually arrays of char, but do not worry if your previous programming experience has
not covered this idea). There are no comparison operators between string literals (that may come as a surprise
if you previously used languages that do provide comparisons between string literals), so the compiler looks
for an alternative. What it does is compare the addresses where the string literals are stored. The answers you
get from the last two versions of the program depend on where the string literals are stored, not on what
letters are used. On the compiler I am using it stores earlier string literals at higher (larger) addresses than
later ones.

We fix the problem by telling the compiler what we want to compare by writing:

std::cout << max<std::string>("b", "a") << '\n';

There are other ways to fix it but this works fine so there is no reason to add complications.

126 CHAPTER 7

Ambiguity
Try replacing one of the lines using max() in the program we are currently studying with:

std::cout << max(12.2, 24) << '\n';

In other words, make the first argument have a different type to the second. As human beings, we have no
difficulty in recognizing that we are implicitly dealing with floating-point values even though the second one
is written as an int value. The compiler is more restricted. It tries to deduce the type that must be passed
to the value type template parameter and comes up with two different answers. The C++ rule for type
deduction for template parameters is that only exact matches count, and that all choices for deduction must
result in exactly the same type.

We can easily fix this example in one of two ways. We can change the type of the second parameter by
writing it as 24.0, or we can explicitly provide the template type parameter by writing:

std::cout << max<double>(12.2, 24) << '\n';

Both ways will resolve the ambiguity and direct the compiler to make an appropriate choice. As to which is
the better solution, that depends on the context. It is up to the programmer to choose an appropriate solution
from the available options.

Overloading
A function template can co-exist with a function of the same name. If both the function template and the
plain function can exactly match the types of the arguments in a call using implicit type deduction, the plain
one is preferred. If the function template cannot provide an exact match but the plain one can be called by
converting the type of the arguments then the plain one will be used. Here is some code for you to experiment
with to help understand these rules:

T R Y T H I S

1 #include <iostream>
2 #include <string>
3
4 template<typename value_type>
5 value_type max(value_type first, value_type second){
6 return first > second ? first : second;
7 }
8
9 int max(int first, int second){

10 return first > second ? first : second;
11 }
12
13 int main(){
14 try{
15 std::cout << max(1, 2.5) << '\n';
16 }
17 catch(...){std::cerr << "\n***An exception was thrown***\n";}
18 }

GENERIC FUNCTIONS 127

When you try to compile this, the compiler issues a warning (at least it will if you have
not turned the warning off). Notice the nature of the warning; it is telling you that it has
to narrow a floating-point value to an int. Why is that? At line 15, it looks for a version
of max() that it can use. Because the types of the two arguments are different, it aban-
dons the function template (because that requires that the deduced types for the template
parameter be the same for both the function arguments – they aren’t: the first is an int
and the second is a double). However, I have also provided a plain (non-template) version
of max(). In this case, the arguments still do not exactly match, but the compiler spots
that it can convert the second argument to an int value by rounding it to 2. Therefore, it
chooses that option and warns the programmer that it narrowed a value from a double to
an int.

In this case, we should probably take this warning seriously, because the value we get back
is not actually the maximum of the values we supplied.

Instrumenting Code
Sometimes, when we are testing code, we want some extra information during the execution of a
program that we would not want if we were producing a finished product. We call the process of
adding source code to provide such extra information ‘instrumenting the code’. Suppose we want to check
that the compiler chooses the plain version of max() in preference to generating a function from the
function template if both are exact matches. We could modify the two definitions so that each reports on
its use:

template<typename value_type>
value_type max(value_type first, value_type second){

std::cout << "Template used.\n";
return first > second ? first : second;

}

int max(int first, int second){
std::cout << "Plain function used.\n";
return first > second ? first : second;

}

T R Y T H I S
Use those two definitions with the following version of main():

1 int main(){
2 try{
3 int i(3);
4 int j(5);
5 std::cout << max(i, j);
6 }
7 catch(...){std::cerr << "\n***An exception was thrown***\n";}
8 }

I have added some variables to the program just to make it clear that they are allowed. Indeed
we could call max() with expressions; for example, max(i * 2, j + 6). I hope you noticed
that as long as both the expressions result in int values we get the message ‘Plain function used.’

128 CHAPTER 7

Now try replacing line 5 with:

std::cout << max(i * 1.5, j + 2.3);

Notice that now we get the function-template definition used, because both those expressions are
doubles.

Please experiment with other choices until you are happy you understand how a function
template interacts with a plain function of the same name.

Function Templates Can Be Specialized
Suppose we try the following version of main():

int main(){
try{
std::string s1("help");
std::string s2("me");
std::cout << max(s1, s2);

}
catch(...){ }

}

You may be surprised that it does not compile, because we used something similar earlier on without
any problems when we were writing code with a typedef. However, what may surprise you even more
is the reason the compiler gives for rejecting the code: it complains of ambiguity. Remember that when I
introduced a program that used the template, I warned you to avoid types from the Standard C++ Library.
The compiler has found a second template called max; this one is hidden away in namespace std. Why has
it now found this one and added it to the potential candidates? The first thing to notice is that the compiler
has called an ambiguity error, not a redefinition error. That tells us that it is all right to overload function
templates, but that the problem was that it could not choose one as better than the other. However, how did
it find the second one? The answer lies in something called argument-dependent lookup (ADL). When looking for
a function name, the compiler will also look in the namespaces of the arguments provided in the function
call; we call that ADL. In this case, the argument type is std::string, so it not only searches the obviously
visible declarations and finds ours, but it also searches the parts of std namespace that it can see. There it
finds another declaration of a function template called max. ADL is intended to be helpful, and it usually
is, but sometimes it springs a surprise. This is such a case where a name hidden away in a namespace gets
unexpectedly exposed and causes a conflict.

Fixing ADL Ambiguity
We can easily fix the problem by using the fully qualified name of the function we are using. That disables
ADL and causes the compiler to look only in the namespace specified by the qualification. In this case we need
to replace max with ::max (i.e. explicitly specify the global version we have provided).

The new code compiles and executes fine. But there is more. We might want to compare words but
ignore the case used, so that ‘word’, ‘Word’, and ‘WORD’ will all be treated as equivalent. We need a special
version of max() to do that.

GENERIC FUNCTIONS 129

Specializing max()
We could write a plain function that has two std::string arguments. However, that enables conversions
(i.e. allows use of any type from which a std::string can be implicitly created). If we do not want to
allow conversions, we must stick with a template. The following code is an example of specialization that
specializes our max() function template for std::string.

1 template<>
2 std::string const & max<std::string const &>(std::string const & first,
3 std::string const & second){
4 std::string s1(first);
5 std::string s2(second);
6 std::transform(s1.begin(), s1.end(), s1.begin(), tolower);
7 std::transform(s2.begin(), s2.end(), s2.begin(), tolower);
8 return s1 > s2 ? first : second;
9 }

W A L K T H R O U G H

Line 1 is the way we tell the compiler that the following code is a special case of a template for which
we are providing a new definition. Line 2 declares the original template with the type(s) for the special
case replacing the name(s) given in the original function template. That is, we have to provide the
type’s name (or names if there was more than one template type parameter) as template arguments
(the <std::string> following max).

Lines 4 and 5 simply create copies of the function’s arguments, because we are going to change
them but still want to be able to return a copy of the original.

Lines 6 and 7 use std::transform, one of the Standard C++ Library functions (declared
in <algorithm>, so we will need to include that header when we try to compile this code).
std::transform takes four parameters. The first two give the beginning and end of the sequence
to be transformed (just as std::sort() did for a sequence to be sorted). The third parameter
identifies where the transformed sequence will start – in this case, the transformation is in situ,
i.e. the transformed elements will replace the originals. The fourth parameter names the func-
tion that is applied to each element of the sequence to create the elements of the transformed
sequence.

Line 8 compares the lowercase strings to select which of the originals to return.

T R Y T H I S
Try including the specialization of max() for std::string with the version of main()
that compares two std::string objects. Experiment with different values stored in the
std::string objects until you are happy that the resulting code is making a case-independent
comparison.

130 CHAPTER 7

EXERCISES
4. Write a template for squaring numbers. The important issue here is that the value of the square of a number

should have the same type as that of the value provided. Your function template should work for any type
that supports the multiplication operator.

5. Write a function template that has three parameters of the same type and returns the middle of the three
in order of size.

6. Specialize your function template for middle so that it will select the middle of three words in a case-
independent way.

Overloading Function Templates
The error message earlier when we tried to use max() for a std::string hinted that it might be possible
to overload function templates. Not only is it possible but it can also be useful.

The example I am going to give next lacks full generality because I am going to deal with a single type of
C++ container – std::vector – when there are actually many types of containers in C++ (some of which
we will look at in later chapters). The following code declares and defines a function template that returns the
maximum value found in a std::vector<T> object, where T will be replaced by the exact type when the
function is generated from the template.

1 template<typename T>
2 T max(std::vector<T> & data){
3 if(not data.size()) throw std::range_error("No data");
4 T maximum(data[0]);
5 for(size_t i(1); i != data.size(); ++i){
6 maximum = ::max(maximum, data[i]);
7 }
8 return maximum;
9 }

W A L K T H R O U G H

The source code uses std::vector and std::range error, so the compiler will have had to have
seen the contents of the <vector> and <stdexcept> headers if it is to compile code using this
max() function template.

Line 1 declares that the following is some generic code based on a type called T (it is idiomatic
to name a template type parameter with T, just as mathematicians use x, y, and z for unknowns but a, b,
and c for constants). Line 2 says that this is a function that will be given a reference to std::vector
of T values as an argument and will return a T value.

Notice that the function parameter declared in line 2 is a reference. The reference is important
because we certainly would not normally want to pass containers such as std::vector<T> around
by value (i.e. copying the container). Containers can contain large numbers of elements. In addition,
the elements themselves can be large and expensive to copy.

GENERIC FUNCTIONS 131

Line 3 is an example of something that is easy to miss. It is just possible that a programmer
hands over an empty vector. With the simple design we are using this will be an error that we need
to detect and deal with. In this case, I have borrowed a Standard C++ Library type used to report
problems with ranges. It is an imperfect choice but will do for now. The controlling expression in the
if statement uses the Boolean not operator (if you prefer you can use the symbolic operator !). If
data.size() is zero, not data.size() will be true; otherwise the expression will evaluate to
false.

Line 4 sets the provisional value of maximum to the value of data[0]. At this stage, we know
that data[0] exists because we checked that there was at least one value in data at line 3.

Lines 5–7 loop through all the values in data keeping track of which is the largest so far. Notice
that line 6 uses the other max() function template. This is a common technique and demonstrates
that the compiler can keep track of what version of an overloaded set of function templates it should
use. Also notice that I have used a fully elaborated name to avoid any possible confusion with
std::max(). Even if there were no name collision, it is still good practice to use fully elaborated
names inside template definitions. We cannot know what names may be dragged in by the function
arguments of a specific function generated from a function template by providing the template type
arguments.

T R Y T H I S
Create a project to produce a program from the following version of main(). You will need to
add the definitions of the two function templates for max() as well as including suitable headers.

int main(){
try{

std::vector<int> data;
std::cout << max(data);

}
catch(std::range_error & error){ std::cerr << error.what();}
catch(...){std::cerr << "Caught unknown exception\n";}

}

There are two things to notice about this code. Firstly, it tests the bad case where there
is no data. Secondly, it demonstrates how we can deal with a specific type of exception. When
provided with a list of catch clauses the program will use the first one that fits the exception
thrown. In this case both catch(std::range error & error) and catch(...) could deal
with the exception thrown by our call of max() with an empty vector. If you reverse the order,
the compiler will give you an error, because catch(...) (i.e. catch all exceptions) must be the
last catch clause. Note that catch clauses look a bit like functions with one parameter, and
they behave very similarly. The C++ Standard Library exceptions support a what() member
function that will regurgitate whatever message was provided at the point where the exception
was created.

Now try inserting some values into data with a few lines such as:

data.push_back(5);

132 CHAPTER 7

Also, try modifying the program so that it has values of some other type stored in a suitable
std::vector. Make sure you try it for std::string. You may notice that, unlike our previous
function template for max(), there is no problem with ambiguity for that last case. That is because
the Standard C++ Library does not provide a function template for max() that could be confused
with the one we have written using a std::vector<T> parameter.

C++ Iterators
The C++ iterator is a type whose values locate another object.

Language Note: Most computing languages incorporate some form of implementation of the iterator concept. Some, such as Java, try
to keep to minimalist support because general iterators are sources of confusion for many people. Others, such as C,
provide extensive arithmetic support for manipulating iterators.

C++ has an entire hierarchy of iterator categories built on the simple idea of an object that can store
values that locate other objects. The following is a summary of the most important types of C++ iterator.
Each category includes the functionality of all previously described categories. So, for example, a bidirectional
iterator can be used wherever a forward iterator is required.

trivial iterator: The simplest kind of iterator, a trivial iterator, just provides the location of an object and
nothing more. It is rather like a URL that we use when locating material on the World Wide Web.
Given an iterator, we get the object it locates by preceding it with an * (asterisk). So if location is
an iterator, *location is the object itself. The unary * operator is called the dereference operator, because
in the context of computer science, ‘dereferencing’ means getting whatever is identified by a pointer or
address.

Language Note: A C pointer that points to a single object rather than into an array is an example of a trivial iterator. Function
pointers in most languages that support them will be trivial iterators. Languages such as C allow arrays of function
pointers, but the individual elements of such an array are trivial pointers. We will eventually deal with pointers in
C++ (which are almost identical to pointers in C).

forward iterator: This kind of iterator can use the following operators:

• unary * to obtain the object that the iterator value locates
• -> to access a member of the object located (this will be covered when we deal with the C++ classes)
• ++ for both pre- and post-increment, to change the value stored in an iterator object to locate the next

object of the kind being located by the iterator values

In addition we can compare two iterator values for equality (==) or inequality (!=).
There are two special types of forward iterator – an input iterator and an output iterator. The special

feature of these iterators is that they are essentially for traversing data exactly once. The data may come from
a transient source (such as a keyboard) or go to a transient destination such as a printer.

bidirectional iterator: These are iterators that add the functionality of going backwards through a sequence by
using the pre- and post-decrement operators. So, for example, as long as iter does not locate the start
of a sequence, --iter will locate the previous element of a sequence. There is a requirement that the

GENERIC FUNCTIONS 133

decrement operation undoes an increment one and vice versa so long as the intermediate iterator values
are valid.

random-access iterator: These are bidirectional iterators that also support all the operations that allow going
forwards and backwards by any integral number of elements that does not take the iterator outside the
sequence.

Random-access iterators support addition (+) and subtraction (-) of an integer to/from an iterator
value. They also support += and -= to adjust the stored value. They support [] (the subscript or index
operator), so iter[n] is equivalent to *(iter + n).

Given that iter and jter are iterators into the same sequence, n = iter - jter is required to
make the value of n such that iter == jter + n.

Finally < (less than) is required to be applicable to operands iter and jter that are random-access
iterators into the same sequence. iter < jter returns true if and only if iter locates an object that is
strictly before that located by jter. The other logical operators are defined in terms of <. So, for example:
iter > jter is defined to be equivalent to jter < iter; iter != jter is equivalent to ((iter <
jter) or (jter < iter)); and iter == jter is equivalent to (not(iter != jter)). Note that
the implication of these definitions is that iterators are only required to provide a weak ordering, and that it
is possible that two iterators compare equal even though they do not locate the same object.

Language Note: A C++ (or C) pointer into an array – we will be dealing with these later – is an example of a random access
iterator.

Reference material: Chapter 7 of Generic Programming and the STL [Austern 1999] provides an in-depth study
of C++ iterators.

Version of max(std::vector) Using
an Iterator
Less experienced programmers may wish to skip this section when reading this book for the first time as
it gets into some fairly advanced aspects of C++.

It is more normal in C++ to use iterators rather than values when we are dealing with collections or
sequences. Given an iterator, it is easy to extract the value of the object it locates. However, given an iterator,
we can do much more, such as changing the value of the object the iterator locates. Iterators generally give us
access to objects rather than just values.

Here is a version of max(std::vector<T>) that returns an iterator to the object with the largest
value.

1 template <typename T>
2 typename std::vector<T>::iterator max(std::vector<T> & data){
3 typename std::vector<T>::iterator maximum(data.begin());
4 for(typename std::vector<T>::iterator iter(data.begin());
5 iter != data.end(); ++iter){
6 maximum = (*iter > *maximum ? iter : maximum);
7 }
8 return maximum;
9 }

134 CHAPTER 7

W A L K T H R O U G H

Look carefully at line 2. Now focus on the return type of max() (that is, everything before max).
We want to return an iterator for an object that is an element of a std::vector<T>. The type of an
iterator for a std::vector is provided by the definition of the std::vector class template (do not
worry – we will deal with the details of class templates later, but for now that is just the proper name
for this kind of type). The name of the type for such an iterator is std::vector<T>::iterator
with T replaced by the exact type the vector contains. However, in the context of templates, the
compiler needs to have it confirmed that std::vector<T>::iterator is the name of a type and
not the name of something else such as a variable or function. That is what the typename does here
(and why the keyword was introduced into C++ in the first place).

Line 3 just sets up an iterator to hold the location of the largest element of the vector. You may
wonder why I no longer check that there are any elements. The mechanism for dealing with empty
containers is that the iterator value for their start is the same as that for their end. data.begin()
gives the location of the start of the vector’s data and data.end() will give a special value that marks
that there are no more elements. If the container is empty data.begin() will have that same special
value as data.end(). One advantage of this mechanism is that we can often treat empty containers
the same way as we treat all the others. As long as we do not try to access an object located by the
.end() iterator all will be fine.

Lines 4–7 simply loop through the container from start to finish, updating maximum so that
it points to the element with the largest value so far. The *iter and *maximum are used so that we
compare the values of the objects, not the values of the iterators. That is why we cannot call our other
max function template: it would compare the iterators, not the objects that the iterators locate.

T R Y T H I S
Modify your earlier program so that it uses this function template for max() to find the maximum
value of the values stored in a vector. Make sure you try versions for several different types.

The fgw::read Function Templates
The Standard C++ Library has many examples of function templates. We often use them without even
realizing that that is what we are doing. In many cases, the compiler can deduce the types from the function
arguments used in the call. When I write std::sort(data.begin(), data.end()) the compiler
recognizes that I want a specific instance of the std::sort() function template that uses iterators of the
type of the arguments data.begin() and data.end(). This is a major benefit because it provides a great
deal of versatility coupled with transparency. The programmer does not have to spend time making things
explicit when the compiler can deduce what we mean.

However, there is another powerful use of function templates: we can reuse a function name even when
the parameter list is not sufficiently different for ordinary overloading to work. The classic case is when we
want to carry out essentially the same process, with the same parameters but with different return types.

Consider the problem of getting data from some form of input; if the data provided does not match
the type required the input stream fails. In effect that means that we should always check that data input
succeeded. Such checks are tedious and repetitious because they are effectively the same for all types that can
get values from input by using the >> operator.

Remember the problem of getting an int or a double from std::cin? Now look at the following
function template (if it seems too complicated for you to have written, do not worry as you do not need to
understand exactly how it does its job in order to use it):

GENERIC FUNCTIONS 135

1 template<typename in_type>
2 in_type read(std::string const & prompt, unsigned int max_tries = 3){
3 in_type temp(in_type());
4 unsigned int tries(0);
5 while(tries++ != max_tries){
6 std::cout << prompt;
7 std::cin >> temp;
8 if(not std::cin.eof()) eat_ws_to_eol(std::cin);
9 if(not std::cin.fail() or std::cin.eof()) return temp;

10 std::cin.clear(); // if it has failed, reset it to normal
11 std::cin.ignore(INT_MAX, '\n'); // flush cin
12 std::cout << "\n That input was incorrect, try again: \n";
13 }
14 throw fgw::bad_input("Too many attempts to read data.");
15 }

W A L K T H R O U G H

Lines 1 and 2 tell us that this is a generic function (a function template) called read. The template type
provides the return type. The generated functions have two parameters. The first is a std::string
that provides a prompt, and the second has a default argument that will be used if the caller does
not provide a second argument. As the template type argument is only used for the return type, the
compiler cannot deduce the template type argument from a call. That tells us that we will always have
to provide it explicitly.

Line 3 defines a default-initialized object of the in type, which we call temp. The in type()
used as an initializer in the definition of temp is a special syntax that tells the compiler to do whatever
is appropriate to default-initialize the object. In the case of fundamental types such as int and double,
this results in temp being initialized to zero.

Line 4 defines an object that we will use to track retries. Line 5 effectively says we should keep
trying until either we succeed or we have exceeded the maximum number of tries (3 by default).

Line 6 outputs the provided prompt to the console, and line 7 attempts to extract a suitable value
from the console.

The rest of the function gets complicated and demonstrates the value of a template solution.
One possibility is that input succeeded but was terminated by the user explicitly providing an
end-of-file character (Ctrl+Z on a Microsoft Windows machine and Ctrl+D on a UNIX-based one).
Usually users do not terminate input that way but do so by pressing the Enter key. However, users
sometimes type ahead when they are familiar with a program, or add redundant spaces at the end of
a response. The purpose of line 8 is to call a special function (from my library) that removes such
redundant input.

Line 9 effectively says that as long as the input succeeded, the current value of temp (i.e.
whatever was read at line 7, or possibly if the user hit the end-of-file key immediately, the default
value) is returned to the caller.

We can only get to line 10 if input failed. In this case we first reset std::cin by calling the clear()
function, which clears the failure flags. Next line 11 clears out all the input from the failure (that is what the
call of ignore(INT MAX, '\n') achieves). Line 12 provides a generic message explaining why the input
was rejected. As long as the maximum number of retries has not been exceeded, the code loops back to try
again.

If the maximum number of retries is exceeded, the function exits by throwing an exception of a type
provided by my library.

136 CHAPTER 7

Using read<>
The above source code is a slightly modified version of a function template that is provided in the fgw text.h
header file. This is one of a set of overloaded function templates to provide support in extracting data from
input (the overload set includes provision for extraction from other sources, such as files). The only restriction
on the type for which these function templates can be used is that they must be able to use the >> operator to
extract data from an input source.

Eventually you will be able to write such templates, and probably improve on mine, but the important
point is to be able to use them, and by doing so appreciate how templates can help with your programming.
For example here is a small program to determine the biggest positive value input with std::cin using
fgw::read<> function templates.

1 // created on 15/10/2004
2 #include "fgw_text.h"
3 #include <iostream>
4
5 int main(){
6 try {
7 int biggest(0);
8 std::string const prompt(
9 "Type in an integer (zero or a negative value to end): "));

10 do{
11 int const i(fgw::read<int>(prompt));
12 if(i < 1) break;
13 if(biggest < i) biggest = i;
14 } while(true);
15 std::cout << "The largest number input was " << biggest << '\n';
16 }
17 catch(fgw::bad_input & except){
18 std::cerr << except.report();
19 }
20 catch(...){
21 std::cerr << "***An exception was thrown.***\n";
22 }
23 }

W A L K T H R O U G H

By now, most of the above code should be standard. Lines 8 and 9 just move the prompt used
for input outside the loop. Line 10 is the interesting line because it not only demonstrates the use
of fgw::read<> but shows how it can be used to initialize a const object at run time. Line 16
is another example of catching a specific exception and dealing with it appropriately. Line 19 then
provides for dealing with any other exceptions that happen even though we were not explicitly
expecting them. fgw::bad input objects support a function called report(), which provides
access to the message provided by the creation of the exception object.

GENERIC FUNCTIONS 137

Using read<> With the Default Prompt
If you call fgw::read<>() without supplying any arguments, the compiler will use an overload of the
function template that supplies a default prompt. Here is the definition of that function template:

template<typename in_type>
in_type read(){

return read<in_type>(": ");
}

Notice how easy it is to write such a definition, which simply delegates all the real work to the already-
written general version. Another advantage of this is that function templates such as this one automatically
acquire any improvements, bug fixes, etc. that may be acquired by the general version.

Here is the program from the start of this chapter modified to use fgw::read<> to get the data:

1 #include "fgw_text.h"
2 #include <iostream>
3 #include <vector>
4
5 int max(int first, int second){
6 return first > second ? first : second;
7 }
8
9 int main(){

10 try{
11 std::vector<int> data;
12 int value(0);
13 std::cout << "Type in some integers. End input with -9999\\";
14 do{
15 value = read<int>();
16 data.push_back(value);
17 } while(value != -9999);
18 int maximum(-9999);
19 for(size_t i(0); i != data.size(); ++i){
20 maximum = max(maximum, data[i]);
21 }
22 std::cout << "The largest input value was " << maximum << ".\";
23 }
24 catch(fgw::bad_input & except)std::cerr << except.report();
25 catch(...)std::cerr << "***An exception was thrown***\";
26 }

I have highlighted the added or modified lines. Line 1 provides the compiler with access to the
definitions of the function templates for fgw::read<>. Line 24 explicitly deals with the exception
that might result from the user repeatedly failing to supply appropriate input (perhaps their pet cat
is trying a little computer use). The valuable line is line 15, which now handles invalid input almost
transparently.

138 CHAPTER 7

EXERCISES
7. Modify the above code so that you can output a sorted list of double values that have been supplied by

keyboard input.

8. Write a program that collects a list of words from the keyboard using fgw::read<>() and then outputs
the words in alphabetical order.

9. Modify the previous program to list the words input in reverse alphabetical order.

10. Write a program that prompts the user for two integer values and a basic arithmetical operation (+, -, *, or
/) and outputs the correct answer. You will probably find a switch statement useful for this program as
well as using fgw::read<> for input.

STRETCHING EXERCISES

11. The header file line drawing.h for my library provides various functions for drawing lines in the Playpen
window. One of the provided functions can be used as if we had declared:

void drawline(fgw::playpen & p,
int beginx, int beginy, int endx, int endy);

(There is a defaulted parameter, of which we will learn more much later.) If paper is an fgw::playpen
object, then the statement

fgw::drawline(paper, -10, -5, 20, 30);

will draw a black line from (−10, −5) to (20, 30).
Remembering that the Playpen is only updated when the display function is applied to the fgw::playpen
object, write a program that will prompt you for coordinates (pairs of integer values) and then join
each new pair (after the first one) to the previous one. Choose some suitable way to end the
program.

12. If you want other colors for lines you will need to use the version of fgw::drawline() that can accept
an fgw::hue argument after the coordinates. For example,

fgw::drawline(paper, -30, -12, 50, 13, fgw::red4);

will create a medium red line from (−30, −12) to (50, 13).
Modify your program from Exercise 11 so that the user is prompted for a color value (range 0 to 255)
as well as for the next point. It should then draw the line from the previous point in the specified
color.
Note that you will need to use fgw::read<int> to get the color because fgw::read<fgw::hue>
does not work as you might expect.

GENERIC FUNCTIONS 139

REFERENCE SECTION
Function templates provide a mechanism for providing type-independent solutions to problems. A
function template has two distinct sets of parameters. The first one is a non-empty list of template
parameters. The second is an ordinary, perhaps empty, list of function parameters whose types may
be determined by the arguments supplied to the template parameters. The return type of a function
template may also depend on the template parameters.

A template parameter may be of one of three types:

template type parameter: This is specified by using either typename or class followed by the name that
will be a synonym for the type argument in the remainder of the template declaration.

template value parameter: A limited number of types (mainly integer types) may be used as template value
parameters. I have not covered these in this chapter, but we will see examples of such template
parameters in later chapters.

template template parameter: These are way out of the scope of an introductory C++ book and are only
mentioned here for completeness.

Sometimes a type that depends on a template type will be needed. In such cases the compiler
requires notification by prefixing the relevant use of a type with the typename keyword. We had an
example of this when we used iterators; the iterator type for a vector is a dependent type because it
is a type that is defined as part of the definition of a vector. This concept will become clearer when
we deal with user-defined types (i.e. types that are neither fundamental C++ types nor derivatives of
those types.

The standard form for a function template declaration is:

template<parameter-list>
return-type function-name(parameter-list);

And the form for a function template definition is:

return-type function-name(parameter-list){
body-of-function-template
}

It is usual to provide the function template definition in a header, because the compiler will
need the definition to generate code for the specific template arguments used in the programmer’s
code. There are advanced uses of templates where bare declarations are useful.

Template Type Argument Deduction
It is often possible for the compiler to deduce the template type arguments from the function
arguments when a template is used for a function call. When the compiler is left to deduce the
template arguments the deduction must not be ambiguous. For example, if two function arguments
have the same template type they must have the same exact type in the function call. We had examples
of this restriction in the max() example.

However, if the programmer elects to explicitly specify the template arguments, the normal
process of conversions and promotions will be applied to the function arguments. For this reason,
explicit specification of template type arguments should be done with care: the compiler will try to
comply with the programmer’s choice even if that was unwise.

140 CHAPTER 7

Specialization
Sometimes it is necessary to provide special handling for a type. For example, we might have a
function template that needs to handle the std::string type differently from other types. We had
an example of this when we specialized the max() function template so that we could select the
‘larger’ of two std::string values disregarding the case of the letters.

The syntax for a function-template specialization is:

template<>
return-type function-name<argument-list>(parameter-list){

code-for-this-special-case
}

Note that a specialization is identified by the use of an empty template parameter list and the provision
of an explicit template argument list after the function name.

Overloading
More than one function template can share a name (just as more than one function can share a name)
as long as the template parameter lists are different. If there is more than one function template with
the same name visible to the compiler, it will attempt to determine from the context which one
the programmer intends to use. If the compiler cannot determine a unique choice it will issue an
ambiguity error and pass the problem back to the programmer, who will now have to resolve the
ambiguity. In our example we could resolve the ambiguity by providing a fully elaborated name (i.e.
by saying which namespace we want the compiler to use).

Function templates can also share their name with ordinary functions. In such cases the compiler
will select an ordinary function whose parameter types exactly match the argument types provided by
the call in preference to a function generated from a template.

If the template parameters have been made explicit, then only a function template can be
selected. In the case where two function templates can generate code from the given explicit template
arguments, the compiler will attempt to resolve the conflict by using a set of rules defined by the C++
Standard. These rules are notoriously difficult to understand and so I will not attempt to describe them
here. If such code becomes important to you, you will need to study an advanced text on templates
such as C++ Templates [Vandevoorde & Josuttis 2002].

Templated Return Type
Sometimes we want to overload a function on its return type. In general the language does not support
this, because it is not possible to select from a set of candidate functions based only on a return type.
However, we do sometimes want to use the same name for functions that only differ in their return
type. In such cases we can use a function template coupled with explicit provision of the template
arguments.

The read<> function templates from my library are an example of this kind of use of function
templates.

Function Templates and the Standard C++ Library
Function templates are pervasive in the Standard C++ Library. The extensive use of type deduction and
default arguments makes their use almost transparent to the ordinary programmer. The 80+ items in
the algorithm part of the library depend on function-template technology, but you can write a great
deal of C++ without realizing that it is the magic of templates that is making your code work.

GENERIC FUNCTIONS 141

Language Note: Readers with a background in dynamic and scripting languages may be surprised that I consider templates to
be anything special. Many scripting and dynamically bound languages such as Perl and Python have a good
deal of genericity built in. What C++ offers is the ability to write extensive code in a type-independent
way. C++ was the first mainstream language to offer this facility. It has resulted in a great deal of
innovation. Some of this has stretched the syntax of templates in C++ to breaking point. Even Bjarne
Stroustrup, the original designer of C++, has been surprised by some of the things that templates have
achieved.

C H A P T E R 8

User-Defined Types,
Part 1: typedef and enum

C++ provides a number of mechanisms for declaring and defining new types and new type names.
These range from a simple mechanism (typedef) for declaring a name to be an alternative name for an
existing type to mechanisms for defining entirely new types and the ways that the existing C++ operators
will work with those types. In this and the next couple of chapters, I will be introducing you to these
mechanisms, showing you how you have already been using them and how you can provide your own
type names and types.

typedef: New Names for Old
The typedef keyword allows us to provide a new name for an existing type. That is all it does. The new
name is a pure synonym for the old one. There are three primary reasons for wanting a new name for an
existing type: opaqueness (wanting to hide what type is being used); using a more descriptive name (i.e.
avoiding ‘magic’ types); and simplification (reducing types with several parts to their name to a single name).

I will now deal with each of these three uses of typedef declarations.

Opaque Type Names
Sometimes we want to be able to change the actual type used without having to modify large parts of our
code. We have already had examples of that in the code earlier in this book. The Library makes extensive use
of typedef for this purpose. For example, you will frequently come across size t as the name of a type;
in general, we do not need to know the exact type for which it is a synonym. The C++ Standard requires that
it is one of the unsigned integer types. The exact type must be suitable for representing the count in bytes
(unsigned chars) of any object that the implementation will support. The size of the largest possible object
is implementation-defined. unsigned long is the most common underlying type for size t, though some
systems choose unsigned int. We will not have any problems as long as we use size t in the way that
the designers of C++ (and C) intend. However, we should note that size t is intended for representing the
amount of storage allocated for an object. Nothing in the language will prevent us from using it for other
things, and, as far as the compiler is concerned, it is just another way of writing whatever the typedef
provided by the implementation has declared it to mean.

When the implementer of the Library puts

typedef unsigned int size_t;

144 CHAPTER 8

in a header file, the result is that size t is just another name for unsigned int wherever it is used in code
being compiled by the implementation. If you move your source code to another compiler with

typedef unsigned long size_t;

in the header file, uses of size t in your code will now be treated as meaning unsigned long. It is your
responsibility as a programmer to ensure that your code does not depend on the precise type. As long as you
use size t in the intended way, there will be no problems.

time t and clock t are two other opaque types from the C++ Standard. They are specifically for
dealing with certain aspects of measuring time. They can be any fundamental arithmetic type – integral or
floating point. The wide range of possible types that those type names can alias makes it particularly important
that the programmer only use the names for the exact purpose for which they were intended. Careless or
ignorant usage can result in surprises when porting code between implementations. This is a general problem
with using typedef to create an opaque type name: it places a burden on the programmer to avoid abuse.

In the last chapter, we had another variant of the idea of an opaque type. If you look back, you will
see that I used a typedef to provide a single place where I could change a type used in a program. The
introduction of generic programming tools into C++ has made that use much rarer. We use templates if we
want to reuse the same basic code with only a type change.

Descriptive Type Names
Look at this small program:

#include <iostream>
#include <istream>
#include <ostream>

int main(){
std::cout << "How old are you? ";
int age;
std::cin >> age;
std::cout << "In five years you will be " << age + 5 << " years old.\n";

}

Why is int the type of age? Think about that, because there are quite a few hidden assumptions
floating around. For example, I never said that I wanted the user’s age as an integer value. Yes, most adults
would give their age in years, but children will not always do so.

Just as experienced programmers avoid using magic numbers they also avoid using magic type names.
Their reasons are much the same; they want to write code that is more self-documenting, or they want to
avoid repetitive writing of complicated expressions. We prefer pi to 3.14159265 because the first is simpler
and far less prone to error. We also prefer it because it makes it clear that we are using a specific mathematical
constant rather than some arbitrary decimal value.

We do not gain very much from writing:

typedef int years;
years age;

Indeed, in a program as brief as the one above we gain nothing of value, but there are cases that are
more complicated where there can be some benefit.

USER-DEFINED TYPES, PART 1: typedef AND enum 145

Dealing with Complicated Type Names
The names of many types used in C++ are composed of several tokens. For example, unsigned int
const * is a four-token name for a type. There are several problems with multi-token names: they are
often hard to read; given two instances, it takes time to check that they are the same type; and worst of all,
C++ often allows the tokens to be reordered. In the example I have just given, all six possible orderings of
unsigned, int, and const are allowed and are equivalent. Using a typedef name alleviates most of those
problems.

There are also cases where a type name is just plain complicated. For example, C++ inherits the C
library, and in that there is a function called qsort(). qsort() is intended for sorting arrays. We do not
make much use of qsort() in C++ because, as we have seen, C++ has a more powerful set of generic tools
provided by the Library. However, it can be useful to know about such pure C functions when writing code to
work in a mixed C and C++ context. The problem is that qsort() needs to know what function it can use
to compare members of the array. That information is provided by a function pointer passed as an argument
(we will learn about function pointers in a later chapter after we have spent time on pointers). However, what
is the type of the parameter that will receive that function pointer? If I told you that it was int (*)(void
const *, void const *), I doubt that you would be much the wiser. Such a type name is both hard to
remember and useless for documentation purposes, even if you are fluent with C++ declarations. If I write
the correct typedef, I can replace the declaration of qsort() as

void qsort(void * base, size_t elements, size_t size,
int (*compare)(void const *, void const *));

(which says that qsort needs four arguments: where the array starts, how many elements there are in the
array, how big each element is, and something to compare them with) with:

void qsort(void * base, size_t elements, size_t size,
compare_function_t compare);

The type of the fourth parameter in the first case is pure magic, but the second form is, I believe, much
more helpful to the reader. Of course, if you need to know the details of the type of a comparison function
you will have to look at the typedef, which is:

typedef int (* compare_function_t)(void const *, void const *);

However, you only consider that declaration when you need to, and do not have to unpick the
complicated type name the rest of the time. Unpicking complicated declarations takes time and experience, so
do not worry about how the above works

We will come back to typedefs in a later chapter, but for now you know all you need to know
about them.

On Reading Declarations
C++ shares an overly complicated declaration syntax with C. Bjarne Stroustrup, the original designer of
C++, has described it as an interesting experiment that failed. C++ retained the C declaration syntax for
backward-compatibility with C. The cost of that compatibility is that every C++ programmer has to learn
how to read these declarations, as well as how to write them when the need arises.

The secret to reading a declaration is to determine what name is being declared. This can sometimes be
less than simple. However, the first step is to recognize which statements are declarations. A declaration usually
starts with a type name, a type modifier (const or volatile) or a storage-class specifier (extern, auto,
static, or typedef). C++ also has some special cases such as the declaration of a type name with class,

146 CHAPTER 8

struct, union, or enum. However, those special cases are not generally part of complicated declarations, so
we do not need to consider them here.

Once you have decided that you are looking at a declaration, the next step is to determine what name
is being declared. Look for the first thing that is neither a keyword nor the name of a type. Once you have
found the principal name being declared, look to the right until you find an unmatched closing parenthesis.
Read everything between the name and that parenthesis (we will see how in a moment). Next move to the
left of the name until you find an opening parenthesis and interpret everything between the name and that
parenthesis, reading from right to left. Now repeat that process by first looking to the right of the closing
parenthesis found earlier and then to the left of the opening parenthesis just found. Repeat that process as
often as necessary.

Here are a few examples:

• int const * volatile ivc;
There is nothing to the right of ivc, so traverse the tokens to its left in right-to-left order. That gives us:
‘‘ivc is a volatile pointer to a const int.’’

• double * const data[5];
The name being declared must be data. Immediately to its right is a pair of square brackets. That is read as
‘array of ’. The 5 tells us that the array has five elements. We have run out of items to the right of data, so
we now read from the left of it (in a right-to-left direction) giving const pointers to double. Therefore,
the whole declares that data is an array of five const pointers to doubles.

• double (* const data)[5];
Now I have inserted a pair of parentheses, which will change what we are declaring. There is a closing
parenthesis directly after data, so we must first read what is on its left as far back as the opening parenthesis
before reading the [5] and concluding with the double. That gives us: ‘‘data is a const pointer to an
array of five doubles.’’

If while we are searching to the right we come to an opening parenthesis, that will be the function operator,
and the material from there to the corresponding closing parenthesis will be a parameter list.

• double & (* data)(int, double, void (*)(int));
When we unpick that, we get: ‘‘data is a pointer (that is the (* data) part) to a function with three
parameters: int, double, and a pointer to a function with one parameter of type int that returns a void.
(That last parameter is the void (*)(int).) The function pointed to by data returns a reference to a
double (that is the initial double &).’’

That last example is ugly. We can get even uglier if we want to declare a name for an array of pointers to
functions. Fortunately, we do not need these things for most of our programming. When we do, a judicious
use of typedef to create readable names for bits of the declaration makes it much easier both to write and
to read complicated declarations. For example, if I need to declare an array of 10 pointers to functions taking
an int and returning a double, I start by declaring a type name for the function pointers:

typedef double (* func_ptr)(int);

This declares func ptr to be a pointer to a function that has an int parameter and returns a double. Now
I can use that as a stepping stone for the declaration of the array:

func_ptr data[10];

This declares data to be an array of 10 func ptrs. In other words, data is an array of 10 pointers to
functions that have an int parameter and return a double. It is usually better to break down complicated
declarations by careful uses of typedef.

USER-DEFINED TYPES, PART 1: typedef AND enum 147

enum
C++ has inherited a curious form of user-defined type from C. These types are created by using the keyword
enum. If you are a C programmer, you need to be careful, because C++ has modified the rules. You should
not assume that you know all the details just because you are confident of the use of enum in C.

We use enum to create a user-defined type that is restricted to integral values, and to provide (usually)
one or more named enumerated values. Those named enumerators are part of the definition of an enum
type – we cannot add them later. Any value of any enum type implicitly converts to an integer value. However,
there is no implicit conversion in the other direction.

Suppose that I want to write a program that is concerned with different types of cloth. I might want to
categorize the cloth by the type of yarn used in its manufacture. I could create a type to represent the yarns with:

enum yarn {cotton, linen, silk, nylon, other};

That definition declares yarn as a type name for an integer type with the five named values (or
enumeration constants) cotton, linen, silk, nylon, and other.

I have said that an enum is a type with only integer values, so it makes sense to ask what the values of
the enumeration constants will be. C++ provides some simple rules:

1. The value can be provided by explicitly ‘assigning’ it within the definition.
2. If there is no provided value for the first enumeration constant it takes the default value of zero.
3. Any other enumeration constant that is not explicitly assigned a value implicitly takes the value of the

immediately preceding enumeration constant plus one.
4. Two or more enumeration constants can share a value.

When we apply those rules to the above case, we get that cotton is 0, linen is 1, silk is 2, nylon
is 3, and other is 4. Do not just take my word for it, but try this little program to check that my assertion
is correct (yes, please do so, because we will be adding things to this program over the next few paragraphs).

#include <iostream>
#include <ostream>

enum yarn {cotton, linen, silk, nylon, other};

int main(){
std::cout << "cotton is " << cotton << '\n';
std::cout << "linen is " << linen << '\n';
std::cout << "silk is " << silk << '\n';
std::cout << "nylon is " << nylon << '\n';
std::cout << "other is " << other << '\n';

}

At this stage it might not seem very surprising that the compiler accepts this program. However, we
have just asked std::cout to output five values of a type of which it had no prior knowledge. Behind the
scenes, the compiler hunted for some way to fulfill your request. What it found was that it was allowed to
convert a value of an enum type into the value of an int. It knows how to make std::cout handle int
values, so the compiler went ahead and carried out the implicit conversion from yarn to int.

Now modify the definition of yarn to

enum yarn {cotton = 1, linen, silk, nylon = 3, other};

148 CHAPTER 8

and run the program again. Making silk and nylon have the same value is probably not sensible in practice,
but I have done so here to demonstrate that from the compiler’s point of view it does not constitute a problem.

TASK 8.1
Try adding other enumeration values (e.g. for wool, rayon, satin, etc.).
Experiment with both allowing complete default values (i.e. not specifying
any values in the definition) and choosing values. Make sure that you try
negative integral values as well as positive ones. Continue until you are happy
that you understand how the values of enumeration constants are acquired.

We often find that we want to change the definition of an enum type by adding extra enumeration
constants. When we do this, we generally do not want to disturb the values that have already been provided.
Adding the new enumerators after the existing ones accomplishes that. However, there is often a catchall
enumerator, such as other in the yarn example. Such catchall enumerators usually have either the smallest
or the largest specified value. It is common practice to specify the value of such enumerators and insert new
enumerators just before them in the definition. For example, suppose we define:

enum yarn {cotton, linen, silk, nylon, other = 127};

Now we can add a few enumerators without disturbing any of the existing values:

enum yarn {cotton, linen, silk, nylon, wool, satin, other = 127};

The reason I chose 127 for other is that it gives plenty of room for extra yarns but keeps within the values
that can be provided by an 8-bit signed char. The significance of that design decision is that it allows
the compiler to use that type as the underlying type if it is optimizing for space. (Unlike C, C++ allows the
compiler to choose the underlying type used to store the enum’s values.)

Arithmetic and enum
C++ does not provide arithmetic operators for enum types, though it allows programmers to provide them.
Their absence is often overlooked because the implicit conversion from an enum type to an integer makes it
appear that they exist.

TASK 8.2
Try running this program:

#include <iostream>
#include <ostream>

enum yarn {cotton, linen, silk, nylon, other = 127};

int main(){
std::cout << cotton + linen << '\n';
std::cout << silk * nylon << '\n';
std::cout << other / nylon << '\n';
std::cout << silk * 4 << '\n';

}

Please experiment until you feel confident that C++ will evaluate
expressions involving enumerators (i.e. enumeration constants).

It is not obvious at this stage that the compiler is not doing arithmetic with the enumerators but is
instead converting them to some kind of integer. We need a tool to investigate what is actually happening.
C++ provides such a tool via the keyword typeid. That keyword needs some support from the C++ Standard

USER-DEFINED TYPES, PART 1: typedef AND enum 149

Library, so we need to #include <typeinfo> when we want to use it. Applying typeid to an expression
results in a type info object. The type info type has a member function called name() that provides a
std::string value that indicates the type of the expression. The std::string value provided by calling
name() on a type info object does not necessarily result in the same name that the programmer provided
for the type, but in practice it often does. However, more importantly, it does provide the same result for
expressions of the same type.

TASK 8.3
Try the following program:

#include <iostream>
#include <ostream>
#include <typeinfo>

enum yarn {cotton, linen, silk, nylon, other = 127};

int main(){
std::cout << "The type of 'yarn' is "

<< typeid(yarn).name() << '\n';
std::cout << "The type of 'cotton' is "

<< typeid(cotton).name() << '\n';
std::cout << "The type of 'cotton + linen' is "

<< typeid(cotton + linen).name() << '\n';
std::cout << "The type of 'int' is "

<< typeid(int).name() << '\n';
std::cout << "The type of 'cotton || linen' is "

<< typeid(cotton || linen).name() << '\n';
}

Once again, experiment with other expressions until you feel able
to predict the results. However, note that as soon as you attempt to do
arithmetic with enumerators you get expressions whose type is not that of
the enumerator.

The results of using enumerators for arithmetic are clearly reasonable. Trying to add two yarns together
or multiplying a yarn by an integer makes no immediate sense (as a yarn). In other circumstances, some
arithmetic operations might make sense for an enum type. We will see shortly that there are various ways to
provide arithmetic with enum values.

We already know that enumerators implicitly convert to integer values when we use them in contexts
where the numerical value can help. The following short program demonstrates that C++ does not allow
conversions in the opposite direction.

TASK 8.4
Try to compile the following program:

#include <iostream>
#include <ostream>

enum yarn {cotton, linen, silk, nylon, other = 127};

int main(){
yarn thread1(cotton);

150 CHAPTER 8

thread1 = nylon;
yarn thread2(4);
thread1 = 4;
thread1 = cotton + silk;

}

Notice which lines generate errors and note the exact nature of the error.

The above task demonstrates that we can have variables of type yarn, but we can only initialize those
variables with enumerators. In addition, the only assignments we are allowed are ones where the value being
assigned has the correct type. We cannot assign an int value to a yarn variable.

Sometimes we want to be able to overrule the compiler, perhaps because we know that the numerical
value correctly represents a value of the enum. The programmer can take responsibility for the conversion by
using a cast. C++ has a well-designed hierarchy of casts (explicit conversions), but in the case of converting
integer values to an enum value I find a modification of the C-style cast is sufficiently expressive. Here is the
previous code amended so that it will compile and run:

int main(){
yarn thread1(cotton);
thread1 = nylon;
yarn thread2 = yarn(4);
thread1 = yarn(4);
thread1 = yarn(cotton + silk);

}

The expressions yarn(4) and yarn(cotton + silk) are examples of function-style casts. They
instruct the compiler to treat the value of the expression in the parentheses as a value of the type before
the parentheses. In this case, they tell the compiler to treat 4 and cotton + silk as yarns. That is clear
nonsense, but if the programmer wants to do that, the compiler will allow it, as long as the programmer takes
responsibility by using a cast.

In the example code, the expressions I cast to yarn give values that are one of the enumerators.
However, it is fair to ask what would happen if I wrote something such as:

thread1 = yarn(16);

The answer is that the compiler must accept such a statement as long as the value is within a permitted
range. The rule for determining the permitted range is a little complicated but effectively says that you should
first determine how many bits are needed to express all the enumerated values (in the case of yarn, that is
7, the number of bits needed to express 127). Any value expressible with that number of bits is allowed. The
compiler is not required to diagnose attempts to use values outside the range; if the programmer uses any
such value, the consequences can be anything (i.e. undefined behavior).

Operator Overloading
C++ allows programmers to redefine most operators as long as at least one of the operands is of a user-defined
type. In other words, programmers are not allowed to redefine the meaning of an operator for a fundamental
type. Not all operators can be redefined, and some of those that can have special conditions placed on the

USER-DEFINED TYPES, PART 1: typedef AND enum 151

contexts in which they can be redefined. We will be going into those in more detail in later chapters. However,
I want to introduce you to the general principles of redefining an operator. C++ calls this process operator
overloading, because the redefinition adds new meanings to existing operators.

The rules of C++ allow programmers to do completely silly things when overloading operators.
However, just because you are allowed to do silly things does not mean that you should do so. The
fundamental design guideline for overloading operators is that the new definition should not cause a domain
expert any surprises. For example, if you redefine the + operator for your type the result should recognizably
be some kind of addition.

We overload operators by writing functions with special names. These special names are composed of
two tokens; the first is the keyword operator, and the second is the operator symbol.

Very few operators make any sense in the context of our yarn type. However, we might want to be
able to write something such as

for(yarn i(cotton); i != other; ++i){
// process a type of yarn

}

to deal with all the possible values of yarn apart from the catchall other. If you try to compile code that
includes the above loop, the compiler will indicate an error, because there is no available pre-increment
operator for yarn. This is one of the cases where the implicit conversion of a yarn value to an int value will
not help. The compiler can increment the resulting int value, but cannot write that value back to i because
there is no implicit conversion from int to yarn.

We could rewrite the loop as:

for(yarn i(cotton); i != other; i = yarn(i + 1)){
// process a type of yarn

}

However, that introduces another problem because the loop will iterate over all the values from 0 to 126
inclusive, even though most of those values do not represent actual enumerators of yarn. We need a definition
of pre-increment for yarn. Here is a possible one:

yarn & operator++(yarn & y){
if(y >= nylon) y = other;
else if(y < cotton) y = other;
else y = yarn(y + 1);
return y;

}

Study that definition carefully. The first point to note is that it has a reference parameter: operator++
needs an lvalue for its operand, because it has to modify the stored value. The choice of a reference type for the
return value is not essential but ensures that it works the same way that operator++ works for fundamental
types. Unless there are special reasons to do otherwise, it is good practice to make operator overloads work
like the built-in versions, as far as possible. Inside the body of the definition, we first check that the value
being incremented is neither the value of the largest ordinary enumerator, nor already too big. If it is, we set
the value to our catchall enumerator, other. Then we check to see that we do not have a value that is less than
the smallest provided enumerator. If the provided value is too small, we set the result to the catchall value. In
any other case we increment to the next enumerator. We assume that the enumerators are consecutive and do
not include repeated values.

152 CHAPTER 8

T R Y T H I S
Try the following program that tests out our overloaded operator++ for yarn:

#include <iostream>
#include <ostream>

enum yarn {cotton, linen, silk, nylon, other = 127};

yarn & operator++(yarn & y){
if(y >= nylon) y = other;
else if(y < cotton) y = other;
else y = yarn(y + 1);
return y;

}

int main(){
for(yarn i(cotton); i != other; ++i){

std::cout << i << '\n';
}

}

There are several problems with the above source code. The first is that any time we add a new
enumerator to yarn we have to change the definition of operator++(yarn &). We should try to avoid
this kind of maintenance problem. We can solve that problem by adding an extra enumerator to mark the end
of our meaningful enumerators. For example:

enum yarn {cotton, linen, silk, nylon, end_of_yarns, other = 127};

We insert any extra enumerators directly before end of yarns; that way, end of yarns will always
have a value that is one more than the largest legitimate value.

We next modify the definition of operator++(yarn &) to:

yarn & operator++(yarn & y){
if(y < cotton) y = other;
else if(y < (end_of_yarns - 1)) y = yarn(y + 1);
else y = other;
return y;

}

Please note the changed logic of the definition. Make sure you understand how and why it does what we
want. Also note that end of yarns is treated as a special case and is not treated as a yarn.

TASK 8.5
Verify that the modifications produce the same result as for the definition of
main() used above. Try adding some more yarn enumerators and check
that the program provides the correct output without any changes to the
definition of operator++(yarn &).

USER-DEFINED TYPES, PART 1: typedef AND enum 153

Another Overloaded Operator
Perhaps you are wondering whether we could get the output to provide a name instead of a number. To
do this we need to do two things. First, we need to store the names of the yarns somewhere (the compiler
converts the enumerators into binary for the benefit of the program and thereby discards the names we
provided). Probably the simplest way to do this is by defining an array of strings to hold the names and
initializing it with the names we are using:

char const * yarn_names[] = {"cotton", "linen", "silk", "nylon"};

C programmers will be familiar with how this definition works. For everyone else, the definition
declares yarn names as an array (that is the []) of pointers to const char. The use of empty square
brackets is the way we instruct the compiler to use the number of initializers to determine the size of the
array. The advantage is that the array size will automatically adjust if we add extra names. Currently we have
provided four string literals as initializers (that is the significance of the pair of braces).

The second thing we need to do is to provide a new overload for operator<< which works when
the left operand is a std::ostream (output) object and the right operand is a yarn. Here is a suitable
definition:

std::ostream & operator<< (std::ostream & out, yarn const & y){
if(y < cotton) out << "unknown value";
else if(y < (end_of_yarns)) out << yarn_names[y];
else out << "unknown value";
return out;

}

TASK 8.6
Add the definition of yarn names and the definition of the overload of
operator<< to the source code for the previous task. Compile and run it to
check that the output is now a list of names rather than numbers.

Overloading the Input Operator
This one is rather more difficult because we have to deal with the problems of incorrect input. For example,
what will we do if the user starts an otherwise valid name of a yarn with an uppercase letter? I am going to
provide a bare-minimum implementation that assumes the user always provides valid input. I then invite you
to add code to make the implementation more robust.

std::istream & operator>> (std::istream & in, yarn & y){
std::string input;
in >> input;
for(int i(cotton); i != end_of_yarns; ++i){

if(input == yarn_names[i]){
y=yarn(i);
return in;

}
}
y=other;

}

154 CHAPTER 8

TASK 8.7
Type in the above definition for operator>>. Now use the following definition
of main() to test that the operator works as expected.

int main(){
yarn y;
std::cout << "Please type in a yarn name: ";
std::cin >> y;
std::cout << y;

}

Now use the standard library function std::tolower to process the
input so that the use of uppercase letters will be handled gracefully.

Note that the way I handled erroneous input means that any code that uses the overloaded operator>>
can easily check whether the input was or was not a valid yarn name. In this case, we do not need to throw
an exception to notify the user of invalid input: we can leave it to the user to check whether the variable
being read into now contains the special enumerator value other. This is a perfectly reasonable way to
handle erroneous input in this case. Do not get fixated on using exceptions as the only way to deal with
problems.

EXERCISE
The purpose of the following is to provide you with some practical work that uses the ideas you have
encountered in this chapter. It is important for your later progress that you complete this work because we will
be building on it in future chapters.

Ordinary playing cards have two principle attributes: each one has a denomination and belongs to a suit.
The denomination is one of ace, king, queen, jack, ten, nine, eight, seven, six, five, four, three, and two; the suit
is one of club, diamond, heart, and spade. We could use the numbers from 0 to 51 to identify the 52 cards of a
standard pack. For the time being, ignore the possibility of jokers. Some games use multiple packs. Either we
can allow for repeated numbers in the range 0 to 51, or we can allow the use of higher numbers and reduce
them modulo 52. That is, for a game using four full packs, we could either allow each of the values from 0 to
51 to occur four times, or we could make the range of numbers be 0 to 207. In the latter case, the first step
in identifying a card will be to apply %52 to a card number to get down to the range 0 to 51.

Focusing on a single pack (i.e. with card values limited to 0 to 51), there are two strategies for
determining attributes for a specific card value. We could imagine that the pack has been sorted so that the
first 13 cards are the clubs in sequence, the next 13 are the diamonds, and so on. Now the result of dividing a
card value by 13 will identify a suit and the result of using %13 (modulo 13) on the card value will identify the
denomination.

Alternatively we could imagine sorting a pack so that the four aces are on top (in the order clubs,
diamonds, hearts, spades), followed by the four twos in the same order, and so on. With that organization, we
divide by 4 to determine the denomination and use %4 to determine the suit.

Of course, there are other logical ways to organize the 52 cards, as well as many illogical ones. I am only
giving you some guidance so that you can focus on the main part of this exercise. You might also consider
using a typedef to make card value a type name for some suitable integer type.

USER-DEFINED TYPES, PART 1: typedef AND enum 155

To complete this exercise you need to write code so that the main() below takes a number from 0 to
51 as input and outputs the name of the card that that number represents. For example, assuming you elect to
organize your pack in suits rather than in denominations, 37 would represent the Queen of Hearts (37/13 = 2,
37 modulo 13 = 12), assuming that each suit is sorted as ace, two, three, . . . , jack, queen, king.

To achieve the desired end you will need to define a suitable enum for suits and another for denomina-
tions. You will need to provide a function that given a card value returns a suit value. You will need a second
function that given a card value returns a denomination.

You will also need to overload operator<< for both suit and denomination so that the result of sending
values of those types to an output stream is the desired word.

int main(){
try{

int card(
read<int>("Please input a card value in the range 0 to 51"));

card %= 52; // force into correct range
std::cout << card << " represents the " << get_denomination(card)

<< " of " << get_suit(card) << "s.\n";
}
catch(...){std::cerr << "An exception was thrown.\n"; }

}

You are free to modify this test program, which is only provided to help you focus on the design and
implementation of the two enums.

STRETCHING EXERCISE
If you are an experienced programmer who wants to try something rather more difficult, try to add an
operator>> for each of the two enums you provided for the previous exercise. Once you have done that,
try to write a read card function that will extract a named card from input and convert that to a card value.

REFERENCE SECTION
typedef
The C++ keyword typedef is used to provide a synonym for an existing type. The existing type can
be any fundamental type, derived type or user-defined type (including types derived from user-defined
types). The main uses of typedef are to provide a type name that identifies the way a simple type is
being used and to provide a simple name for a complicated type such as the type of a function.

C++ provides a number of typedef names in the Standard Library. The most common of these
is size t, which is used as the name of whichever unsigned integer type an implementation uses
for values representing the size (in bytes, i.e. unsigned char) of the memory footprint of a type

156 CHAPTER 8

or variable. Other Standard Library typedefs include time t and clock t, which name the types
used for values representing time and clock ticks since program start.

There is a POSIX convention that typedef names end in t. Unfortunately, for reasons that
seemed good to the designers, that convention is not always adhered to in C++. For example,
wchar t is provided by a typedef in C but is a fundamental type in C++. There are also numerous
places where C++ uses typedefs to assist with writing generic code where the names provided do
not end in t.

The most important point to note about typedef is that it does not create a new type, just a
new name for an existing type.

enum
C++ uses the keyword enum to create new integer types with a specified set of enumerated values.
As well as the enumerated values, all values in a range determined by the number of bits needed
to represent the enumerators (in binary) are valid values for the enum. The language provides for
assignment of an enum value to a variable of the same enum type. It also provides an implicit
conversion from an enum value to an int value. It does not supply any other operators for enum
types, nor does it allow implicit conversion from an int value to an enum.

We must provide the enumerators for an enum as part of the definition of the enum. Unless
explicitly stated as part of the definition, the first enumerator in the provided list will have zero as its
value and subsequent enumerators will each have a value of one more than the immediately preceding
one.

For example,

enum x {red, green, blue};

would result in red having a value of 0, green having a value of 1, and blue being 2, whereas

enum color {red = 1, green, blue = 4};

would result in red being 1, green being 2, and blue being 4.
The language allows more than one enumerator to have the same value. For example,

enum color {red = 1, crimson = 1, green, blue = 4, azure = 4};

is all right as far as the C++ language is concerned.
Note that the final semicolon is required to end a definition of a new type. Strictly speaking,

we could declare a variable or function name between the closing brace of the definition and the
semicolon that closes the declaration statement. However, no experienced programmer would use
that facility today, though C programmers often used it in days gone by.

Because enum provides a true type rather than just a type name, C++ allows the programmer
to define meanings for most of the language’s operators when applied in a context with at least one
operand of the enum type. Using the ability to overload operators for enum types is not very common
but, as long as you limit yourself to places where it makes sense, it is a useful tool for writing clearer
source code.

C H A P T E R 9
User-Defined Types,
Part 2: Simple classes
(value types)

The class is a key design and development tool in C++. It comes in several forms and, for historical
reasons, three keywords are used to provide user-defined class types. These are struct (inherited from
C), class (introduced in the early development of ‘C with classes’, which was to become C++), and
union (a restricted form of class used to minimize memory usage on some systems that have very
limited resources). union user-defined types are rare these days; they are not generally used except in
memory-constrained embedded programming and possibly in low-level library design.

The class concept has two major branches: value types and entity types. C++ uses the same
mechanisms for both, which burdens the programmer with understanding the difference. A typical value
type is one where you would naturally use copies for arguments when calling a function or for returning
data from a function. An entity type is one where copying would normally be an error, and the natural
usage would be to use references for both parameters and return from a function. We normally talk
about the ‘state’ of an entity rather than its ‘value’. We reserve the latter term for value types. Another
way of viewing this distinction is that the identity of an instance of an entity type is significant, whereas
only the stored representation is significant for a pure value type. If you find these distinctions hard to
understand, wait till you have more experience and then come back to them.

Some languages force us to treat everything as an entity; some languages try to provide a clear
separation between value types and entity types. In reality, few things are purely values or purely entities;
the context of use needs consideration. The major distinction is in how we choose to use them. Java insists
that all the fundamental types are value types and fails to provide a mechanism for using an instance
of a fundamental type as an entity. Smalltalk insists that everything is an entity, which leaves us with
problems for situations where we clearly want a value. C++ leaves it up to programmers to use things the
way they want to. That places a heavy burden on the programmer to select the right behavior. We will see
in the next chapter that C++ provides a mechanism for switching off copy semantics (behavior), which
results in preventing the resulting type from being a value type – value types are inherently copiable.
However, it is not wrong for an entity type to have copy semantics.

There is very little technical difference between declaring user-defined types with the class
keyword as opposed to struct. We will see later that it is customary to limit the use of struct to
highlight a small subgroup of user-defined types whose data is accessible in the scope of the definition of
the type.

We already know that a type usually consists of two elements: memory, which can store a bit
pattern representing a value or state; and behavior, which specifies how values of the type can be used and
modified. In general, it is only the second element that is of concern to the user of a type. You generally
have no need to know how values are stored; you only need to know what you can do with them.

158 CHAPTER 9

In this chapter, I am going to present the design and implementation of two value types. I am
writing up each separately so that you can study either or both as and when you want to. Either example
provides the basics of designing and implementing a value type. The two types are a representation of
ISBNs (International Standard Book Numbers) and a representation of playing cards. The second of these
highlights the need to understand the context of a design, because a playing card can be either an entity
or a value type depending on the purpose for which you are designing the type.

ISBN as a class Type
I am starting this chapter with example source code before discussing the technical details. If you prefer, you
can study this example in parallel with the technical explanation given in the reference section. This class
provides a suitable type for dealing with the ISBN-10 numbering of books. ISBN-13 is scheduled to replace
this from January 1st, 2007. ISBN-10 is a simple nine-digit code plus a check ‘digit’ (I have placed that in
quotes because ‘X’ is also used as a check digit). We calculate the check value by multiplying each of the first
nine digits by its place in the sequence, adding those results, and calculating the remainder when divided by
11. ‘X’ represents a remainder of 10.

For example, 0-470-86398-6 is the ISBN of You Can Do It! The following computation validates the
number as a valid ISBN:

0 × 1 + 4 × 2 + 7 × 3 + 0 × 4 + 8 × 5 + 6 × 6 + 3 × 7 + 9 × 8 + 8 × 9

= 8 + 21 + 40 + 36 + 21 + 72 + 72 = 270

270 divided by 11 is 24 remainder 6. The remainder agrees with the check digit.
There are elaborate rules for determining where the hyphens go when displaying an ISBN, but I am

going to keep this simple by ignoring the punctuation.

1 #include <iostream>
2 #include <istream>
3 #include <ostream>
4 #include <string>
5
6 class isbn10{
7 public:
8 isbn10();
9 explicit isbn10(std::string const &);

10 ~isbn10();
11 bool is_valid()const;
12 void send_to(std::ostream & = std::cout)const;
13 void get_from(std::istream & = std::cin);
14 bool is_equal(isbn10 const &)const;
15 private:
16 std::string isbn_;
17 };

Lines 1–4 give the headers that the compiler will need in order to accept the rest of the source code.
Line 6 states that the following lines up to the closing semicolon on line 17 are the definition of a type called
isbn10. In the context of declaring type names and defining them (for consistency with C) C++ allows the
use of struct instead of class.

The label public: on line 7 introduces a section of the definition that declares the behavior that is
associated with instances of isbn10. This part is often referred to as the ‘public interface’ of the class because
it specifies how instances of the class interact with code outside the class.

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 159

The label private: on line 15 introduces a section of the definition (the ‘private interface’) that
consists of declarations of names that are inaccessible outside the implementation of the class. The most
common items for the private interface are one or more declarations of data members, i.e. the types of storage
for holding the data for a specific instance.

C++ calls the keywords public and private access specifiers, because they determine who has access to
(can use) the names declared in the relevant section. Names declared as public can be used by anyone, but
names declared as private can only be used in the context of implementing the class. There is one further
access specifier, protected, which we will come to in Chapter 11. There is also a keyword, friend, used
to grant full access to another class or function.

The public interface of isbn10 consists of declarations of member functions, and the private interface
consists of a declaration of a single data member that we will use to store an ISBN. While the interfaces
can include other declarations, it is very rare that a well-designed class has any data members in its public
interface.

W A L K T H R O U G H

The isbn10 Public Interface
Lines 8 and 9 declare two special functions whose purpose is creating isbn10 instances. They are
called constructors, and we identify them by the use of the class name. Constructors do not have
return types, because they are essentially procedures for creating new instances of the class (even
though C++ still calls them member functions). The first one (line 8) is a default constructor – the
term applied to any constructor that can create an instance without any data being provided.

The second constructor, isbn10(std::string const &), will provide the way of creating
an isbn instance from a std::string. We do not want the compiler to hijack this constructor as
an implicit way to convert a std::string into an isbn10. That is the purpose of the explicit
qualifier. It forbids the compiler to use the constructor as an implicit conversion from the type of
the parameter to the class type. Any constructor can be qualified as explicit, but the qualification
is only significant for constructors that can create an instance from a single argument (i.e. where
any parameters after the first have default arguments provided). C++ does not allow explicit
qualification of anything else (such as conversion operators).

Line 10 provides a declaration of the destructor. Like constructors, the destructor is a procedure
(for destroying an instance of the class) and has no return type. We identify the destructor by preceding
the class name with a tilde (~). Unlike constructors, there can be only one destructor, i.e. destructors
cannot be overloaded.

Line 11 provides a mechanism for validating the data stored in an instance as a well-formed
ISBN. We need such functionality unless we are going to forbid an isbn10 instance from holding an
incorrect ISBN.

Lines 12 and 13 declare a pair of functions to deal with output and input of isbn10 values. I
have provided default arguments for convenience.

Finally, we have a function to compare two isbn10 values to see whether they are the same.
You may wonder why the declarations of is equal(), is valid(), and send to() each

end with const. When const is attached at the end of the declaration of a member function, we are
telling the compiler that the function will not change the value stored in an instance that uses it. That
declaration has two effects. The first is that we can call such functions for immutable instances (ones
we have declared as const or references/pointers that have acquired a const qualifier). The second
effect is that the compiler will check the definition of that member function to ensure that it does not
change the value.

160 CHAPTER 9

In summary, the behavior of an isbn10 object is that one can be created either from nothing
or from a std::string (passed as a const reference), we can check that the stored value is a valid
ISBN, we can check that two isbn10 values are the same, we can extract data for an isbn10 from a
std::istream, and we can write it out to a std::ostream object.

The compiler implicitly supplies two other pieces of public behavior if we do not do so explicitly.
These are the copy constructor and the copy-assignment operator. Those two members allow us to
create a new instance as a copy of existing one, and to replace the current value of an instance by the
value found in a second instance. I will provide examples of copying when we come to write code to
test isbn10.

Implementing isbn10
In addition to the lack of a return type, constructors have another piece of special syntax to support the
initialization of an instance at the point of creation. The following implementations for the constructors
illustrate it better than words:

isbn10::isbn10():isbn_("0-00-000000-0"){
std::cout << "Default isbn10 instance constructed.\n";

}

isbn10::isbn10(std::string const & isbn):isbn_(isbn){
std::cout << "isbn10 instance constructed and initialized with "

<< isbn_ << ".\n";
}

Initialization happens before executing the body of a constructor. After the closing parenthesis of the
parameter list there may be a colon followed by a comma-separated list of initializers; this is followed by the
opening brace of the constructor’s body. (In this case, there is only one initializer, so there are no commas.)
Other member data is dealt with in accordance with the rules for implicit initialization, in the context of
where the constructor is used. There need not be any code in the bodies of these constructors. To help you
learn about what is happening, I have provided code that makes uses of constructors visible.

isbn10::~isbn10(){
std::cout << "isbn10 instance with value " << isbn_ << " destroyed.\n";

}

The definition of the destructor is even simpler. Indeed, I would normally leave the compiler to do it
for me. Just as for the two functions that provide for copying, the compiler will generate a destructor if I do
not explicitly declare one. Once again, I am providing some instrumentation so that you can see when the
destructor is used.

1 bool isbn10::is_valid()const{
2 if(isbn_.size() < 10) return false;
3 std::string compressed("");
4 int count(0);
5 for(unsigned int i(0); i != isbn_.size(); ++i){
6 if(std::isdigit(isbn_[i])){
7 compressed += isbn_[i];
8 ++count;

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 161

9 }
10 else if((count == 9) and (isbn_[i] == 'X')){
11 compressed += isbn_[i];
12 ++count;
13 }
14 }
15 if(count != 10) return false;
16 int total(0);
17 for(int i(0); i != 9; ++i){
18 total += (i + 1) * (compressed[i] - '0');
19 }
20 total %= 11;
21 char check('X');
22 if(total < 10) check = '0' + total;
23 return (check == compressed[9]);
24 }

The function that checks an ISBN for validity is by far the most complicated piece of implementation of
isbn10. I have written it so that it makes no assumptions about what we have actually stored as an ISBN.
Line 2 checks that there are at least 10 characters. As there are 10 symbols in an ISBN, ignoring hyphens and
other punctuation, line 2 rejects all cases where there are definitely too few characters.

Lines 3–14 create a new std::string called compressed, which only includes those characters
we use in computing and checking the check digit. Note the special handling (lines 10–13) of the symbol
representing the check digit.

Line 15 rejects any case where compressed is the wrong length. Lines 16–20 compute the check sum
for the first nine digits. Note that line 18 makes use of the requirement in C++ that the char codes for the
digits are consecutive and in ascending order; subtracting the char code for zero from a digit code gives the
numerical value of the digit. Line 20 reduces total to the remainder when divided by 11.

Line 21 creates storage for the checksum and pre-initializes it to the special case of 'X'. Line 22 creates
the correct char value for the check values that are actually digits.

Finally, line 23 returns the result of comparing the actual check digit with the computed one.
This definition is far from being industrial-strength. It assumes that any characters ignored in creating

the compressed version were legitimate characters for an ISBN. It also does not attempt to check that hyphens
have been correctly placed according to the full rules for the ISBN format. Finally, the code uses 10 and 9 as
magic values. I am leaving it as an option for readers to improve the quality of the code.

void isbn10::send_to(std::ostream & out)const{
out << isbn_;

}

void isbn10::get_from(std::istream & in){
in >> isbn_;

}

bool isbn10::is_equal(isbn10 const & rhs)const{
return (isbn_ == rhs.isbn_);

}

The output, input and comparison-for-equality functions simply delegate the processes to the corre-
sponding processes for std::string.

162 CHAPTER 9

T R Y T H I S
First create a new project (call it isbn), and add files isbn test.cpp and isbn10.cpp to it.
In addition, create a header file called isbn10.h and write a suitable header guard to it. Add
the header includes and the definition of isbn10 to isbn10.h. Next, add the implementation
(definitions of member functions) to isbn10.cpp, compile it, and correct any typos or omissions.
You will discover that the compiler insists on knowing the definition of isbn10 before it will
compile the implementation. You provide that definition by adding #include "isbn10.h" to
the beginning of isbn10.cpp.

Now write the following code into isbn test.cpp:

#include "isbn10.h"

int main(){
try{

isbn10 book;
isbn10 book1("0-470-84674-7");
book.send_to();
std::cout << '\n';
book1.send_to(std::cout);
std::cout << '\n';

}
catch(...){std::cerr << "Program terminated with an exception.\n"; }
return 0;

}

Compile this file, then build the program and run the result. Study the output until you
understand how it relates to the code you have written. In particular, note the destructors called
for the two instances of isbn10; destruction happens in reverse order to construction.

Testing Code
Every experienced programmer understands the value of testing code. This is particularly important when
developing user-defined types. We keep the tests and rerun them whenever we make changes to the design or
implementation. One of the major purposes of these tests is to ensure that such changes do not break existing
code.

Now the little test program you have just tried does not test all the public behavior of isbn10. Here are
a few statements that you can add to extend the tests to give better coverage of isbn10 behavior:

1. Add the following:

std::cout << "book instance is " << std::boolalpha
<< book.is_valid() << '\n';

std::boolalpha changes the way bool values are output (and input). By default, bool values are output
as 0 and 1. Sending std::boolalpha to the output stream results in bool values being displayed as text.
The default text versions of the output are ‘false’ and ‘true’, but they can be changed by using the locale

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 163

mechanisms provided to support internationalization. We can force the stream back to numerical output of
bool values by using std::noboolalpha. Entities such as std::boolalpha and std::noboolalpha
are example of iostream manipulators. Manipulators change the behavior of a stream. Note that the
behavior change is specific to the stream. You can test this assertion by following the above line with:

std::cerr << "book instance is " << book.is_valid() << '\n';

Numerical (0 or 1) output results from the second statement, because changing the behavior of std::cout
has no impact on the behavior of std::cerr, even though they both default to outputting to the console
window.

2. Add this:

std::cout << "The assertion that book and book1 are the same is "
<< book.is_equal(book1) << ".\n";

Note that as long as this statement comes after the statement for 1 above, std::cout remembers that it
is to use text for bool values.

3. Precede the statement above with:

book = book1;

Note the change in the output. This statement has used the compiler-generated implementation for
operator=(). I will write more about operators in a moment.

4. Try this statement:

book = "0-304-36686-2";

When you add this statement, the compiler issues a diagnostic because you have not provided an implicit
conversion from a std::string to an isbn10 value. There are three ways to fix this problem:
(a) Remove the explicit qualifier from the second constructor in the definition of isbn10, and change

the right-hand side to std::string("0-304-36686-2");.
(b) Explicitly convert the string literal to an isbn10 by modifying the right-hand side to isbn10("0-

304-36686-2").
(c) Write an overload for the assignment operator that has an isbn10 object on its left and a string literal

on its right.
Try (a) with and without the change to the test statement. My purpose is to demonstrate that without
the explicit qualifier a constructor can convert implicitly from its parameter type to the type it is
constructing. However, such implicit conversions only work through one level of conversion. A string
literal is not a std::string even though it implicitly converts to one. To go direct from a string literal
to an isbn10 would require an intermediate implicit conversion to a std::string and that is not
supported by C++. (Well, it is in some cases for fundamental types, but they represent a special case.) The
compiler is allowed to use only one level of user-defined conversion implicitly.
Option (b) is a much better option: not only tell the compiler explicitly what you want, but also let others
reading our code see what we expect.
We will have a look at option (c) when we look at writing our own overloads of the assignment operator.

5. Insert these two statements:

std::cout << "Please type in an ISBN: ";
book.get_from();

Build the resulting program and execute it.

164 CHAPTER 9

EXERCISE
1. Use the ideas and experience of the above tests of isbn10 to write a program that tests all the current

behavior of isbn10. Make sure that you test all the different results that may occur when using the
member functions. Ideally, we encapsulate each test in a separate function and call these functions from
main().

Overloading Operators

We normally use == when comparing two values for equality. C++ provides a mechanism whereby for many
operators we can define how they behave when one of the operands is a user-defined type (such as an enum
or class type). We first saw that in the last chapter, when we defined the way that a couple of operators
worked for an enum type.

When we deal with a class type, we will normally have the choice of providing the operator overload
either as a member function or as a free function. When we provide an operator overload as a member
function, the first operand (or only operand if the operator takes only one) will implicitly be an instance of the
class type. Some operators (e.g. assignment) can only be overloaded by member functions, and a few cannot
be overloaded at all. Overloading operators is one of the strengths of C++; it allows us to design classes that
use the same mechanisms that a domain expert would expect. Avoid the temptation to overload operators if
doing so does not result in code that is naturally readable by those working in the problem domain.

I generally avoid writing member functions to overload operators unless there is a compelling reason to
do so. My style is to write an ordinary member function that provides the functionality and then write a free
operator overload that delegates the work to the member function. So I would provide the equality operator
by adding the following (inline) definition to isbn10.h:

inline bool operator==(isbn10 const & lhs, isbn10 const & rhs){+
return lhs.is_equal(rhs);

}

I leave it to the reader to add a suitable definition of != for isbn10 values.
In the same way, we can easily add suitable streaming operators for isbn10. However, this time we

do not have an option of providing them as member functions, because the left operand is an instance of a
type from the Standard Library. Remember that operators provided by member functions are limited to cases
where the left-hand (or only) operand is of the correct class type. Here are the overloads for the streaming
operators for isbn10:

inline std::istream & operator>>(std::istream & in, isbn10 const & val){
val.get_from(in);
return in;

}
inline std::ostream & operator<<(std::ostream & out, isbn10 const & val){

val.send_to(out);
return out;

}

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 165

EXERCISES
2. Add the above operator overloads to isbn10.h and then write tests for each of them.

3. Write a short program that uses fgw::read<std::string>() and fgw::read<isbn10>(), and
note the differences between the two when they are executed. (You will need to include fgw text.h and
you will need to tell the compiler where to look for that by adjusting the project settings to add a suitable
include directory into the project. The default location – if you accepted the CD’s installation defaults – is
C:\tutorial\fgw headers.)

4. Find out about ISBN-13, and design, implement, and test a new type called isbn13.

A Value Type for Playing Cards
In the following, I am taking the view of playing cards as values that can be freely copied. This would not
be a suitable view if I were designing, for example, a program to play poker, where a card needs to have a
unique existence. Then I would view a playing card as an entity (which we will do in the next chapter). Here
is my initial definition of card value:

#include <iostream>
#include <ostream>

class card_value{
public:

card_value();
explicit card_value(int);
card_value(card_value const &);
~card_value();
card_value & operator=(card_value const &);
std::ostream & send_to(std::ostream &)const;

private:
int data;

};

int main(){
try{

card_value any;
card_value specific(1);
card_value another(specific);
any.send_to(std::cout);
specific.send_to(std::cout);
another.send_to(std::cout);
any = specific;
any.send_to(std::cout);

}
catch(...){

std::cerr << "An exception was thrown.\n";
}

}

166 CHAPTER 9

When you try to compile this code (yes, please do enter it to your system and try it), it should compile
successfully. However, if you try to link it to produce an executable, you will get a multitude of linker errors.
So far, I have declared some member functions as part of the definition of class card value, but I have not
provided definitions for those member functions.

Before we tackle that, let us look at the source code above. The section that starts with class
card value { and ends with }; is called a class definition. A class definition consists mainly of declarations. We
place these in one of two sections designated by the keywords public and private. These are the public
and private interfaces of the class.

public Versus private
C++ provides a mechanism for distinguishing between the features of a user-defined type that the user of the
type needs to know about and those that only the designer or implementer needs to know about.

Language Note: C programmers should note that the struct in C++ is almost synonymous with the class. Unlike a C
struct, a C++ struct has the same potential for separating features for users from those for designers or
implementers. A C++ struct has the capacity to provide behavior as well as data storage.

The public interface provides those parts that are available to users of the type, and it is introduced by
the keyword public. The private interface consists of the things that are reserved for use by designers and
implementers of the type; it is introduced by the keyword private.

In the above code, the public interface consists of the declaration of several member functions. Those
(member) functions provide the fundamental behavior of instances of the type. The private interface consists
of a single declaration that tells the compiler that instances (objects or values) of type card value will have
a single block of memory in which to store an int value. In the context of a class definition, we declare data
members but that declaration is never a definition. The declaration of data is part of the private interface
and so it is inaccessible to code outside the implementation of card value.

Language Note: C programmers need to note that things declared as part of a private interface cannot be accessed or referred to
outside the class’s scope. Member functions have access to all parts of a class’s private interface, but functions that
are not declared as part of the class will not have access to any part of the private interface. That is one of the
key developments that makes C++ a better language for a great deal of application development. It enables class
designers to change their choices for data storage without affecting client code. (Later we will learn how access can
be granted to external functions, using the friend.)

Special Member Functions: Constructors
As there is no way to access the data storage for a card value instance externally, we need a way to create
card value objects with provision of a value for data (the private member). This is the job of special
member functions called constructors. We identify a constructor function by reusing the class name – in this
case, card value. C++ allows the constructor function to be overloaded, and if you look at the definition
of class card value, you will see that it includes three overloads for the constructor.

The first overload, card value(), is called a default constructor, and will specify how a card value
object will be created if the programmer chooses not to provide any information.

The second overload, explicit card value(int), declares a constructor that requires a single
(value) argument of type int. The significance of the explicit keyword is that it prevents the constructor
from being hijacked by the compiler as a way to convert an int value into a card value value implicitly.
The early design of C++ allowed the use of constructors with single parameters to convert values from the
type of the parameter to the type of the constructor implicitly. By the time that that was recognized as a

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 167

design error it was too late to change the rule. The language designers did the next best thing by providing
a mechanism for turning off the use of a constructor for implicit conversion. When writing class definitions,
you should usually prefix constructors that only require a single argument with the keyword explicit. It
is not an error to prefix other constructors with explicit; the compiler will simply ignore the keyword,
because such constructors cannot be implicit type converters. However, it is often a design error to allow
implicit conversion via a constructor.

The third case, card value(card value const &) is a special constructor; its job is to construct a
new instance by copying an existing one. This is the major case where you should not prefix the constructor
with explicit unless you understand the consequences. I am not going to go into those here, because
making a copy constructor explicit is a highly specialist technique and one over which there is a good deal of
argument among experts. Until you understand the issues, do not provide explicit copy constructors.

Any time that the compiler decides it needs to copy an object or value, it will use the copy constructor.
The commonest cases of this are when you pass an argument by value and when you return a value from
a function.

Copy constructors are so fundamental to most code that the compiler will declare one implicitly if
you do not do so, and it will attempt to generate code for such an implicitly declared copy constructor.
Unfortunately, there are cases where the generated code will be a serious mistake. That is why you need to
know about copy constructors. When you gain more understanding, you may elect to leave the compiler to
its own devices by not declaring a copy constructor when you know that the compiler will do the right thing.
We will also see in the next chapter how we can suppress copy construction in cases where we do not want
to allow copying of instances of a type.

Note that a constructor never has a return type. In the computer-science sense, a constructor is a procedure
for creating an object. The consequence of executing a constructor is an object of the appropriate type.

Special Member Functions: Destructors
Constructors create new instances (we say that they start the lifetime of an object). Sometimes we need to
clean up at the end of an instance’s lifetime. That cleanup process (for example, releasing resources acquired
during the process of construction) is the task of the destructor. Although a class type can have multiple
constructors, it will only have one destructor. However an instance comes into existence, it will be destroyed
in exactly the same way. We identify the destructor by placing a tilde (~) before the name of the type.

The declaration of ~card value() in the definition of the class card value shows how to declare
a destructor. Like the constructors, the destructor cannot have a return type. A destructor is a procedure that
destroys an existing instance of a class type.

Special Member Functions: Copy assignment,
operator=
The last of the special member functions is the one that specifies how a value of the class type can be copied
into an instance of the same type. This is another of the cases where the compiler will provide a declaration
implicitly if you do not. In other words, objects in C++ can be copied unless the programmer takes special
action to stop copying. We will see what that special action is in the next chapter, when we deal with types
where allowing copying would be a mistake.

operator= can only be overloaded in the context of a class (or struct) type. The left-hand operand
of an assignment operation must be an object (lvalue) of the class type. The single parameter specified in the
declaration will be the right-hand operand of the = operator (i.e. the expression that comes after the = sign in
an assignment expression). By convention, we always return a non-const reference to the left-hand operand.

If the parameter in the declaration of operator= is a reference to the class (usually a const reference
because we would not normally expect to change the state/value of an object by copying it), we are declaring

168 CHAPTER 9

a copy assignment operator. That is the way to copy the value/state of one instance to a second instance of
the same type. We can, and often do, provide other overloads for the assignment operator, but they are not
copy assignments.

Ordinary Member Functions
Ordinary member functions provide much of the behavior of a class. By ordinary member functions, I
mean member functions that are not concerned with creating, destroying, or copying class instances or
values.

For now, my class card value has just one ordinary member function, called send to. As the name
might suggest, this member function provides the behavior of sending the value of a card value to an
output stream. During our early development and testing, we will be sending the value of a card value to
std::cout, but I have designed the send to member function to work with any type of output stream
including files.

You are probably curious about the const at the end of the declaration. That declares that the member
function does not alter the instance using it. Without that qualification, you will get an error if you attempt
to output the value of a const instance of card value with send to(). In effect, that terminal const
promises that the function will not alter the object using it. That promise restricts what you can do in the
definition of the function (if you write code that might change the object, the compiler will issue an error
message), and it allows you to use the function on all instances of the class including immutable ones.
Forgetting the const qualification often causes problems long after you thought you had finished designing
a class. The problem only surfaces the first time you try to use the function on a const instance or a
const-qualified reference to an instance of the type.

TASK 9.1
Test my assertion about the significance of the const qualification of a
member function: modify the example code by adding const to the definition
of specific in the code for main() (i.e. make it card value const

specific(1)), and remove the const from the end of the declaration of
send to. You should now get an error message when you try to compile the
code.

Implementing Constructors
There is a special syntax for implementing (defining) a constructor; it includes a facility for initializing the
data members. In general, functions have parameters initialized with the arguments provided at the point of
call. The special property of a constructor is that it has to initialize the data members of the instance it is
creating. We must initialize data members before the process enters the body of the constructor (but after any
parameters have been initialized).

The section of the definition of a constructor that provides explicit initialization of the instance’s data
members is introduced by a colon (:) immediately after the closing parenthesis of the parameter list. Here
are possible definitions of the three constructors for the card value type:

card_value::card_value():data(0){
std::clog << "Default card_value (ace of clubs) constructed.\n";

}

card_value::card_value(int i):data(i){

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 169

std::clog << "card_value constructed from " << i << ".\n";
}

card_value::card_value(card_value const & c):data(c.data){
std::clog << "card_value constructed by copying.\n";

}

Notice the syntax for identifying the member function when referring to it outside the class definition.
The full name of a member function outside the scope of the class definition requires that you prefix the
member function name with the class scope to which it belongs. That is the purpose of the card value::
prefix to the constructor identifier in each of the above definitions.

In the copy constructor, we need to identify the version of data that belongs to the parameter. We do
that using the same dot notation that we used earlier when calling a member function for an object. If you are
familiar with languages such as C and Java, you will already be used to this syntax.

Because we are in a learning situation, I have defined the bodies of the three constructors so that each
reports on its use. You would not normally do that when you write production code. We call such added
code instrumentation.

Notice how we initialize the data member (called data) in each case. Had I left out the :data(0) in
the first case, I would have had an uninitialized int representing the value of any in the code above. We
generally try to avoid writing constructors that result in uninitialized data, because accidentally accessing such
data (in a member function) results in undefined behavior.

The syntax for initializing a data member of a class is to include the name of the data member in a
comma-separated initialization list. This list is placed between a colon following the closing parenthesis of
the parameter list and the opening brace of the body of the constructor definition. We place the initializing
expression in parentheses directly after the name of the data member we wish to initialize. You should
note that data members are always initialized in the order in which we declare them in the class definition,
regardless of the order in which we write the initializer list. A good compiler will warn you if it spots different
ordering of the two (declaration and initializer list).

Implementing a Destructor
This is trivial in this case because there is nothing to clean up. The card value type does not acquire any
extra resources (other than the base memory, and that is released automatically at the end of the object’s
lifetime). However, because we are learning, I have instrumented the destructor to give you an example
of defining one. It will also make its automatic use in your code visible when the program runs. Here is a
definition of an instrumented destructor for card value objects:

card_value::~card_value(card_value const & c) {
std::clog << "card_value " << data << " destroyed.\n";

}

As we are inside a member function, we can access the private members and do so with their simple
names. Therefore, in this case, data is the value held by the instance of card value that we are destroying.
Notice that we have to qualify the destructor identifier with card value:: to tell the compiler the class to
which this member function belongs.

Implementing Copy Assignment, operator=
There are two special features of copy assignment. The first is that C++ requires that all overloads of
operator= are in a class scope. That requirement is a subtle consequence of the second feature: if the

170 CHAPTER 9

programmer does not explicitly declare a copy assignment, the compiler will declare one implicitly. It will then
attempt to generate a definition if such an assignment is required by the source code (i.e. if the programmer
attempts to assign the value/state of one instance to another instance of the same type). Once you declare a
copy-assignment operator, everything else is like any other member function:

card_value & card_value::operator=(card_value const & c){
std::clog << "card_value " << data << " replaced by "

<< c.data << ".\n";
data = c.data;
return *this;

}

Once again, we have to specify the class to which this definition belongs. The return type comes first,
just as it would in the definition of a non-member function. The other point to note is in the return-statement:
*this is a special expression that refers to the object that is invoking a member function. In this case, it will
be the left-hand operand of the assignment. There is little point in debating whether this is the correct thing
to return. The designers of the language say that it is (though the language allows us to have any return type
we want), and the way we return the left operand is with the statement return *this;.

This is not the time to tackle exactly why *this is the object using a member function. For now, just
think of it as the way C++ spells what some languages call ‘self ’, i.e. the object in use.

If I did not want to instrument this function, there would be no point in declaring and defining it,
because the compiler-generated implicit declaration and definition would do the same thing.

Implementing a Member Function

All we need to do now is implement the send to member function. Here is a simple implementation:

std::ostream & card_value::send_to(std::ostream & out)const{
out << data;
return out;

}

There is not much to say about this definition. We are going to modify it later on, but this is enough to get
our example working.

TASK 9.2
Add the above implementation code at the end of the file you prepared with
the original example code. Everything should now work when you try to
compile and link. If it does not, you will need to correct your typos.

Now modify the code so that each of the three card value variables
has a different value when the program ends. That will allow you to see
that the three instances of card value are destroyed in the reverse order
of their construction. You might also tidy up the code by adding a few extra
statements to format the output of send to reasonably. Do not change the
definition of send to in order to achieve that, but add some code to the
definition of main().

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 171

Separate Compilation
Programming languages have different ways of handling large quantities of source code. C++ has inherited
the mechanism that C uses, which is to place declarations and definitions in different files. The exception to
this in C (and therefore in C++) is to treat the definition of a user-defined type, a struct (and therefore a
C++ class), a union or an enum as a declaration. The added complexity in C++ is that the definitions of
struct/class and union types usually include declarations of member functions. The definitions of those
member functions are often referred to as the implementation of the type and are placed in a separate definition
or implementation file.

The declarations and type definitions are placed in files that are called header files, and traditionally use
a .h suffix for the file-name extension. Files of implementation code as well as application and library code
are often loosely referred to as source files (though, strictly speaking, header files are also source files). For
convenience, C++ ‘source’ files use either .cpp or .cxx as the file-name extension, to distinguish them from
pure C source files, which traditionally use a .c extension. None of this will be strange to C programmers,
but those coming from other languages have some learning to do.

The purpose of a header file is to provide the information that is essential for a compiler to compile
user code. The implementation file largely provides the definitions of the declarations in a header file. The
linker will need the compiled result, but the compiler does not need the definition in order to compile code
using it. That means that an implementer can change details or correct bugs without triggering a complete
recompilation of all the source code in a program. Because complete recompilation of a large program can
take a great deal of time, we can save much development time by isolating implementation source code from
user code. The header file makes this isolation possible.

Rather than spend time explaining the details, here is the code we have been working on in this chapter
reorganized to separate the implementation of card value from code that simply uses the card value type.

The Header File
In your IDE, create a new header file called card.h (or anything else you want to call it). Copy and paste the
code from your earlier source file to produce:

#include <ostream>

class card_value{
public:

card_value();
explicit card_value(int);
card_value(card_value const &);
~card_value();
card_value & operator=(card_value const &);
std::ostream & send_to(std::ostream &)const;

private:
int data;

};

Strictly speaking, for the current case that is enough, but multiple inclusions of the same header file
(often indirectly) into a single source code file can result in redefinition errors, so it is normal to provide what
are called header guards. These consist of three lines of code, two at the start of the header file and one at the
end. The idea behind a header guard is to provide a way that the compiler can identify when it has already
read a header file and does not need to read it again. The initial two lines have the form:

#ifndef unique-id
#define unique-id

172 CHAPTER 9

where unique-id is some name that uniquely identifies the header file. For the simple code that we will be using
in this book, it is usually enough to use the name of the header file spelt in uppercase, with the dot separating
the file-name extension replaced with an underscore. Therefore, I would start card.h with these two lines:

#ifndef CARD_H
#define CARD_H

In plain English, those lines say: ‘‘If you have not yet had a definition of CARD H, continue and first
define it (as nothing).’’ The result is that the first time the compiler sees a #include "card.h" it will
continue to read in the file. However, if the code results in a subsequent attempt to include card.h it will
skip the contents of the file until it reaches a line that stops it skipping. The line that stops the ‘skipping’ is:

#endif

That line matches the opening #ifndef and should be the last line of the header file. So
card.h becomes:

#ifndef CARD_H
#define CARD_H
#include <ostream>

class card{
public:

card_value();
explicit card_value(int);
card_value(card_value const &);
~card_value();
card_value & operator=(card_value const &);
std::ostream & send_to(std::ostream &)const;

private:
int data;

};

#endif

Finally notice that card.h does not #include <iostream>. That is because the definition of
card value does not make any use of standard stream objects. Always limit included files and headers to
those needed by the code in the file. Including extra unnecessary headers and files adds clutter and can result
in unnecessary recompilation of source-code files.

The Implementation File
This file contains implementation details for items declared in the corresponding header file. It only needs to
be recompiled if we make changes to the implementation source code. Any project that uses the resulting
compiled code (called object code) will only need it when the linker creates the executable.

Move the definitions of the member functions of card value into a file called card.cpp. (Use the
IDE to create a new C++ source-code file.) The compiler will need to know the definition of the card value
type before it will compile definitions of its member functions. We provide that information by including
card.h at the start of card.cpp. Your implementation file for card value should look like this:

#include "card.h"
#include <iostream> // needed for std::clog

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 173

card_value::card_value():data(0){
std::clog << "Default card_value constructed.\n";

}

card_value::card_value(int i):data(i){
std::clog << "card_value constructed from " << i << ".\n";

}

card_value::card_value(card_value const & c):data(c.data){
std::clog << "card_value constructed by copying.\n";

}

card_value::~card_value(){
std::clog << "card_value with value " << data << " destroyed.\n";

}

card_value & card_value::operator=(card_value const & c){
std::clog << "card value " << data << " replaced by "

<< c.data << ".\n";
data = c.data;
return *this;

}

std::ostream & card_value::send_to(std::ostream & out)const{
out << data;
return out;

}

TASK 9.3
Create a new project and place card.cpp in it. Note that you do not need to
put card.h into the project, as the IDE will find it as a dependency (because
card.cpp includes card.h).

Compile card.cpp. Correct any typos. If you try to build an executable,
the linker will complain that it cannot find main(). Remember that every
program needs a single function called main() that acts as the start point
for the program.

The Application File
In production-level projects there are usually several (even hundreds of) application files that consist of user
code that builds on top of libraries and other lower-level code. Indeed code usually consists of many layers
with a single simple file containing main() sitting on top. That will not normally be the case in this book,
because such code is usually too complicated for learning purposes.

For our current project you need to create a second C++ source-code file (call it testcard.cpp) and
place this source code in it:

#include "card.h"
#include <iostream>

int main() {

174 CHAPTER 9

try{
card_value any;
card_value specific(1);
card_value another(specific);
any.send_to(std::cout);
specific.send_to(std::cout);
another.send_to(std::cout);
any = specific;
any.send_to(std::cout);

}
catch(...){
std::cerr << "An exception was thrown.\n";

}
}

Notice that you now need to include iostream because our definition of main() uses both
std::cout and std::cerr. Yes, I could have included iostream as part of card.h rather than include
it in each of testmain.cpp and card.cpp. However, that would result in the inclusion of iostream
every time you needed a definition of card value. That would not always be necessary. Get in the habit
of limiting visibility by including only essential header files. This is particularly true when you include one
header file in another.

TASK 9.4
Compile testmain.cpp and build the project (create an executable). Run
the resulting program. You will find that the resulting output is rather messy;
a few extra line breaks would help, as would some more text. Please take
time to tidy up the output by enhancing the code in testcard.cpp.

Comment
At first sight, we have gone to a lot of trouble to get back where we started. The benefit is that we have
decoupled the implementation details of card value from users of card value. Many projects can use
the card value type, while the implementers of the type can refine, debug, and improve it. The header
file acts as the mediator that allows both to work separately. It allows there to be many different users of the
card value type; all they need is the header file for card value and the latest compiled form (called an
object file) of the implementation of card value. The users have no need to concern themselves with the
internals of the card value class’s implementation. We often store object code in archives called libraries.
Indeed that is what we normally mean by the term ‘library’ in a programming context.

Developing the card value Type
So far, our card value type is using a non-idiomatic mechanism for output to a stream. In C++, we expect
to provide output by using << (in this context, the insertion operator). We can provide a new overload for
operator<< that will do this, but we cannot do so within the scope of the card value class because
overloading operators in class scope only works if the first (left-hand) operand of the operator is of the
relevant class type. The first operand of operator<< (used as an inserter to a stream) has to be an ostream
object. This means that we have to provide the overload we want outside the class. However, this is very
simple to do because send to() already provides the functionality we need. Just add

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 175

inline std::ostream & operator<<(std::ostream & out, card_value const & c){
return c.send_to(out);

}

after the definition of card value in card.h. The inline keyword asks the compiler to substitute the
body of this definition for any call of the function. Although inline is only a request, a compiler that did
not honor the request in this case would be a very poor one. If you examine the code, you will see that it tells
the compiler that it can send the value of a card value to an output stream by calling send to() on the
card value value (the right operand) and passing in the left operand.

We call functions like this one forwarding or delegating functions. C++ programmers often make extensive
use of such functions, particularly for cases such as this, where they need to reorder the arguments of
a function.

There is a small extra, but essential, feature of using inline: it requires that the compiler cooperate
with the linker, so that it is not an error if the linker finds the definition of the function in more than one file
of object code. Without the inline qualification, we may get redefinition errors if we use the header file in
more than one implementation file in a project. If you get redefinition errors at link time, check that all the
header files have header guards (see above) and that any functions defined in a header file have been qualified
as inline.

TASK 9.5
Add the above definition to your card.h and modify main() so that it uses
operator<< rather than direct calls to send to(). Compile, link, and test
the resulting code. I think you will find that one consequence of providing
support for operator<< for card value is that it is now simpler to provide
tidy output.

Adding get from()
Given that we can write a card value value to an output stream, it seems natural that we should also be able
to get a card value value from an input stream. However, this reverse operation is plagued by the problem
that the source of the input might be a human being (or worse still, a cat walking over a keyboard). Input
will always be from a fallible source; the problems are how to handle erroneous input and whether to prompt
for the input. Input from a console is usually preceded by a prompt; if the input fails validation, we normally
have some mechanism for retrying. Input from a file, serial port, etc. does not normally have a prompt, and
if it fails validation, we have to retreat to an error-recovery mechanism.

When faced with this kind of issue in C++, the mind should turn to function overloading to deal with
the different kinds of behavior. Here is a pair of versions of a member function called get from() to deal
with the problem.

bool get_from(); // deal with input from std::cin
std::istream & get_from(std::istream &); // deal with general input

Add those declarations to the public part of the definition of card value. You will also need to
add #include <istream> as a header in card.h because of the use of std::istream in the second
declaration.

Next, let us look at defining those functions. Let me take the general case first:

std::istream & card_value::get_from(std::istream & in){
in >> data;
if(not in) throw std::exception();
return in;

}

176 CHAPTER 9

When you add this definition to card.cpp you may also need to add #include <exception> to
provide the declaration of std::exception. Eventually we will want to provide our own exception type
tailored to the needs of card value, but for now, I am just using the Standard Library default exception
type.

This version of get from() tries to read a value from the designated input. If it fails to get a value, it
simply gives up and throws an exception. However, it is still not doing full validation, because it assumes that
any valid int will be a valid card value value. There are two ways to deal with this issue. We can accept
any int value and then reduce it to the required range. Alternatively, we can check that the supplied value is
in range and throw an exception if it is not. Here is one way to implement the first option:

std::istream & card_value::get_from(std::istream & in){
unsigned int temp;
in >> temp;
if(not in) throw std::exception();
data = temp % 52;
return in;

}

I could have done one of two things to improve that further. I could have used the read<> function
from my fgwlib library to get automatic validation of the input being appropriate to the unsigned int
type. I could, and normally should, remove that magic 52. The reason that I am being a little lazy is that I
know that I am going to be changing the handling of card value values in a way that makes such changes
unnecessary.

Now let me deal with the special case. Here is one possible implementation:

bool card_value::get_from(){
std::cout << "Please input a value for a card "

<< "(an integer in the range 0-51 inclusive): ";
try{
get_from(std::cin);

}
catch(...){return false;}
return true;

}

I am not claiming this is the only way, or even the best way, to deal with this problem. I have chosen this
particular solution to illustrate a number of implementation mechanisms that are available to you. The bool
return is another way to handle functions that can fail; instead of throwing an exception, we use the return
from the function to report success or failure. This is a good way to deal with problems that we are likely
to handle locally. In this case, we do not care why get from(std::cin) failed: if calling it results in an
exception, then this version of get from() failed. Another implementation point is that we can implement
this version in terms of the general one by first issuing the prompt and then calling the general version. This
is a common way of dealing with special cases.

Another question that arises is this: should I reset the input stream in get from() if it fails, and should
I do so in the get from(std::istream&) version? I think that no is usually the better answer in both
cases. You do not know why it failed and so it is not your responsibility to act, particularly as doing so would
hide the cause (possibly reading the end-of-file marker) from the caller of the function. The caller may want
that information in order to decide how to proceed.

Implementing operator>> for card value
Now that we have the functionality of reading a card value value from an input stream, we can support
operator>> to extract a value from a std::istream. We have to be careful to handle the special case of
extraction from std::cin. Here is a possible implementation:

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 177

inline std::istream & operator>>(std::istream & in, card_value & c){
if(&in == &std::cin) c.get_from();
else c.get_from(in);
return in;

}

In this context the &s in the if statement are the address-of operator. The controlling expression in the
if statement asks whether the left operand of this use of operator>> is std::cin. If it is, use the version
of get from() tailored for std::cin as a source of data; otherwise, use the general form.

Note that when you add the inline definition of operator>> to card.h, you will also need to add
#include <iostream> to provide the declaration of std::cin. Strictly speaking, for portability to other
compilers you also need to add #include <istream>.

Language Note: Unlike C programmers, C++ programmers make relatively little use of the address-of operator. In many of the
places where it would be used in C, we would instead use a reference in C++.

TASK 9.6
Add the declarations of get from() and get from(std::istream) to the
definition of card value in card.h. Add the definitions of those functions
to card.cpp. Add the inline definition of operator>>(std::istream
&, card value &) to card.h.

Now modify cardmain.cpp to test that the input functions work
as designed. Note that you do not need to test the general version of
get from() explicitly, because the special version (for std::cin) tests it
indirectly. Make sure you include use of operator>> for a card value.

Changing the Implementation
We have a working version of card value with support for the simple things we might do with it. There is
more functionality that we could add, such as comparing two card value values to see if they are the same
(operator==) or to see which comes first in some ordering of our choice (operator< and operator>),
but I am going to put those aside for now.

In this section, I am going to focus on changing the implementation so that we deal with the attributes
of a card value rather than the raw value we have used internally. To do this I am going to use the ideas
from the previous chapter and add an enum suit and an enum denomination to the public interface
of card value. I will also need to deal with the string literals that provide names for the values of those
attributes. Only the implementations of the input and output functions need these names; they are data and so
should be part of the private interface of card value. They are very special data because they are a property
of the class as a whole, so I will be showing you how to provide such data in a class context.

Using enums to Represent Attributes
The first step is to add the following two enum definitions to the public interface of card value:

enum suit{club, diamond, heart, spade};
enum denomination {ace, two, three, four, five, six, seven, eight,

nine, ten, jack, queen, king};

Now that we have provided these two enums as local types for a card value, it makes sense to provide
a constructor that will work with them. Note that the definitions of suit and denomination need to
occur before any use of them. It is usually a good idea to place the definitions of such nested types near the
beginning of the class definition. Here is one possible constructor declaration:

178 CHAPTER 9

card_value(denomination, suit);

Here is a possible definition of the extra constructor:

card_value::card_value(denomination d, suit s):data(s*13 + d){
std::clog << "card_value constructed from attributes: "

<< d << " of " << s << "s.\n";
}

One question that class designers need to consider is to what extent they should protect the user from
stupidity. Should we check that the denomination and suit values provided as arguments are valid ones?
I have not done so here, but if you think there should be checks, you need to add checks that s and d are
within the relevant ranges and throw an exception if they are not. Throwing an exception is about the only
way of reporting a problem from within a constructor.

You might be tempted to remove one or more of our earlier constructors from the definition of
card value. In general, you should not remove or modify a declaration in a class definition: doing so would
very likely break existing code that uses the class.

TASK 9.7
Add the enums and the declaration of the new constructor to the definition
of card value in card.h. Add the definition of the new constructor to
card.cpp. Make sure that card.cpp still compiles. Now add this line to the
definition of main in cardmain.cpp:

card_value yac(5, 2);

Try to compile cardmain.cpp. You now get an error because there
are no implicit conversions from the int literals of 5 and 2 to
card value::denomination and card value::suit. (Note that you
have to qualify local types with the enclosing class type when you refer to
them outside class scope. Local types are members and subject to the same
rules as other members.)

Replace 5 and 2 by five and heart respectively. You still get an error,
though a different one. This time the compiler does not recognize five and
heart as enumerators. We are outside the scope of card value, and so we
must qualify the enumerators with the enclosing class name. When we edit
our code so that we have

card_value yac(card_value::five, card_value::heart);

it compiles.

Names for Values
The problem with the output of our program is that it is just a card value value; we really would hope to
be able to get the output to use human readable names. To do this we need to do two things: we need to
provide the names (as we did in the last chapter); and we need to modify our output to use them.

We provide the names by defining static data members. static members of a class are data or
functions that are for the class as a whole rather than for individual instances of a class. Here is how we
provide the literal names for the enumerators. In the private part of the definition of card value, add the
following two declarations:

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 179

static char const * suit_names[4];
static char const * denomination_names[13];

We need to add definitions of those two variables. The place to do that is in the implementation file, so
add the following to card.cpp:

char const * card_value::suit_names[4]
= {"club", "diamond", "heart", "spade"};

char const * card_value::denomination_names[13]
= {"ace", "2", "3", "4", "5", "6", "7", "8",
"9", "10", "jack", "queen", "king"};

Notice that we drop the static but add card value:: when we provide the definitions. The
keyword static has the wrong meaning outside a class definition (the alternative meaning of static
will be explained elsewhere), but the compiler needs to know that what we are defining here belongs to
card value.

Pointers and Arrays
C++ has inherited C’s collection type, which is a linear array of the collected type. C++ also provides a rich
selection of other collection facilities such as the std::vector<> that we have already used. In general, we
prefer to use C++ collections rather than arrays because the former have a much richer structure and range of
facilities. However, there are times when the simplicity of the array is useful.

As a general rule, you might use an array when:

• the size is known and fixed at the time the source code is written;
• suitable initialization can be provided.

One strong motive for using an array is that we know what the stored values should be but there is no
way to compute them. The static data members suit names and denomination names in card value
are excellent examples; we know what they should be because they are a fact rather than something that is
computable.

We declare an array in C++ by specifying the type of the object held in the array and adding a pair of
square brackets after the name being declared. We generally place the size of the array in the square brackets,
but if we leave the brackets empty, the compiler determines the size by counting the provided initializers.

Initializers are provided in the declaration/definition of an array as a comma-separated list enclosed in
curly braces ‘assigned’ to the array.

I do not want to spend much time on C++ pointers at this stage, but you do need a minimal amount of
information in order to make sense of some of the source code in this chapter. We saw earlier that appending
an asterisk to a type name creates a new type that is a pointer to the named type. A pointer value is effectively
the address of the storage for the object. A pointer variable provides storage for a pointer value. Generations of
programmers have been confused by pointers, which is a good reason for keeping their use to the minimum.

In most circumstances when you refer to an array in your source code, the compiler will use the address
of the start of the array, and if you need to store that address you will need storage for a suitable pointer type.

For historical reasons, string literals are implicitly arrays of char, and we pass them around in source
code by using the address of the place where the compiler has placed the actual string. Fortunately, the new
programmer does not need a deep understanding of pointers and plain arrays in C++ in order to use them in
introductory code.

Look at the definition of card value::suit names. The [4] tells us that we are defining an array
of four elements. The char const * tells us that the elements are storage for the addresses of immutable
chars (which includes the start addresses of immutable arrays of char because of the way that C++ uses

180 CHAPTER 9

such addresses when asked to handle an array). The = sign tells the computer that we are about to provide
explicit initialization for the array. The initializer list (provided in the curly braces) consists of four string
literals. As the compiler needs addresses to initialize the elements of card value::suit names, it uses the
addresses of where the string literals are stored (addresses that it provides by the internal mechanism it uses
for string literals).

In any context where an array of char is needed (i.e. when working with simple C-style strings
rather than C++ std::string), card value::suit names[0] will be treated as an array containing the
characters 'c', 'l', 'u', 'b', and a final '\0' to mark the end of the string.

The biggest problem with pointers and arrays is that a pointer used to refer to an array (through its start
address) is indistinguishable from a pointer used to reference a single object.

I will be tackling pointers in more detail in Chapter 11.

Language Note: C programmers are likely to have the biggest problem with learning the C++ idioms for using pointers, because
they will have a good understanding of their idiomatic use in C. However, such idioms are often dangerous in a
C++ context.

Those two definitions use the special syntax for initializing a fixed-size array at the point of definition.
We are also using the special support that C++ has inherited from C to handle string literals as arrays of
char. When the compiler deals with the above code it will provide space to store the actual literals and then
place the address of each into the relevant point of the array. The char const * specifies that we are using
addresses (that is the meaning of the asterisk in this context) of chars that cannot be changed through this
address value. The [4] and [13] specify the number of elements in each of the arrays.

Now we have the names available, we can go back and change the implementation of send to so that
it sends named values of the attributes to the output. Here is one way to do it:

std::ostream & card_value::send_to(std::ostream & out)const{
out << denomination_names[data % 13] << " of " << suit_names[data/13];
return out;

}

TASK 9.8
Add all the above code to the relevant files. Note that you do not need to
touch cardmain.cpp; users should not have to change their code because a
class implementer has changed the implementation. Build the new version
and execute it. Notice that you get the new behavior for output.

Tidying Up
If you look at the output from your last task, you will realize that the instrumentation that we added to the
constructors, destructor, and copy assignment is still outputting numbers. We can clean that up very easily.
Here is the cleaned-up copy assignment as an example:

card_value & card_value::operator=(card_value const & c){
std::clog << "card value " << *this << " replaced by " << c << ".\n";
data = c.data;
return *this;

}

The key is that we can now send a card value value to output, rather than using the internal
representation (the member called data). The other essential is that *this always represents the object using
a function (being created, destroyed, etc.).

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 181

TASK 9.9
Clean up all the instrumentation in our implementation of card value so that
output always refers to a card value value in the form ‘x of y ’ (e.g. ‘three
of spades’). In particular, tidy up the instrumentation in the constructors and
the destructor. Build and execute the resulting code.

T R Y T H I S
Instrumenting code is all very well, but we do not want all those messages when we use our work
to produce a program to play a card game that we intend sharing with our friends. The messages
help us kept track of what is happening but are invasive in the context of a ‘release’ product.

Save a copy of card.cpp but call the copy card1.cpp. Now edit card1.cpp to remove
all the instrumentation. Replace card.cpp in your project with card1.cpp. Rebuild the project.
Voila, uninstrumented code.

This is just one of the payoffs for keeping implementation separate and using a header file to
provide the compiler with what it needs to compile user code. In fact, all you need to do is link
your application with the appropriate object file for the implementation you wish to use.

Add comparison operators for card value as members of the class. For example, you can
declare and implement operator== for card value with

bool operator==(card_value const &)const;

added to the public interface of card value, and define it in the implementation as:

bool operator==(card_value const & c)const{
return data == c.data;

}

Add that along with declarations and definitions of operator< and operator> for
card value. Note that in all cases the parameter should be a const reference (or value), and the
member function should be qualified as const (that const just after the closing parenthesis of
the parameter list). Comparing instances should not change them.

You should find those additions straightforward. The next task is a bit more demanding:
you need to update the get from(std::istream &) function so that it reads the output of
send to() correctly. The reason is that send to() may be used to store data in a file, and you
want to be able to read that data back from the file by using get from(std::istream &).

As a hint, you can input a single word into a temporary variable of type std::string.
The c str() member of std::string allows you to view a std::string object as an array
of char. The strcmp() library function (inherited from C) takes two null-terminated arrays of
char (C-style strings) and returns zero if they are identical.

For example, strcmp(temp.c str, card value::suit names[club]) returns zero
if and only if the string stored in temp is "club".

At this point, you may want to reimplement the special version of get from() that uses
std::cin so that the user is prompted for each of the attributes of a card value. Note that this
change means that you can no longer forward to the general function.

If you are hopelessly stuck when trying this, check the answer I give at the end of this book.

Consolidation – a Point Class
Read chapters 5 and 6 of You Can Do It! from the CD to get an alternative presentation of designing a class (a
2D point class for use with my Playpen library). Then try one or more of the following exercises.

182 CHAPTER 9

EXERCISES
I have worked through the development of the card value class. At this point, you need to stop and work
on a couple of classes for yourself. Here are some possibilities for you to work on. Please note that these
classes are far from trivial, and so you should expect to take some time to provide complete implementations
of the definitions provided. You should also plan to work incrementally rather than trying to do the whole job
at once.

5. Here is the start of a class for calendar dates within a single year. You will find that it uses most of the
things we have covered in designing and developing card value. You may modify the private interface
if you think you have a better way to structure the data.

class date{
public:

date();
explicit date(int day_number, bool leap_year = false);
date(std::string month, int day, bool leap_year = false);
date(date const &);
~date();
date & operator=(date const &);
ostream & send_to(ostream &)const;
istream & get_from(); // uses std::cin
istream & get_from(std::istream &);
bool leap_year();

private:
bool leap;
unsigned int day; // counted from January 1st as 0
static signed char const

days_in_month[12]; // uses signed char as a small int
static char const * month_names[12];

};

Create a suitable header file and place the date definition in it. Create a suitable implementation file and
implement the date class. Now create an application file that consists of a definition of main() that
tests all the functionality of date. You might find it easier to implement the class without managing the
differences required for a leap year, then go back to add the modifications necessary to handle leap years.
The provision of default arguments in the constructors should make that easier. You will also find it easier
to implement date bit by bit; do not try to do it all at once but tackle it by incremental refinement and
improvement (as I did for card value).

Note that I have only declared the first constructor as explicit. Because we can call that
constructor with a single argument by using the default argument for leap year, we need to protect
against accidental use of the constructor by the compiler as a conversion operator between an int and
a date. The second constructor does not suffer from this problem, because it always needs at least two
arguments.

Several functions will need to validate the data provided, to ensure that they are legitimate dates (e.g.
there is no January 32nd). You will need to decide what to do with an invalid date. For example, an invalid
date passed as an argument to a constructor will probably need to be handled by throwing an exception.

When you have the specified interface implemented and working correctly, spend some time on
enhancements such as providing streaming operators, and increment and decrement operators (add the
declarations date operator++(); and date operator--(); to the class definition).

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 183

Note that it makes no sense to add two dates together, but you can subtract one date from another
to find the interval between them. So add int operator-(date const&)const; to the definition
of date and provide an implementation. It also makes sense to add an integer value to a date. Add date
operator+(int); to the definition of date and implement it.

There is a great deal more you could add to this class if you wanted to flesh it out to be a robust
general-purpose type for use in your code. Remember that you can always add to a class and modify its
implementation and private interface. However, you should not change the public interface in any way that
might break existing code, e.g. by removing a public declaration or by changing the return type or the type
of a parameter. You can add extra overloads of a function to handle alternative parameter types.

6. Use the date class from Exercise 5 as a basis for designing and implementing a more general date class
that deals with dates across a range of years. One interesting function to include in this is one to output the
day of the week of the currently stored date value.

7. Here is a skeleton definition for a class to represent color values with the primary colors (red, green, and
blue – for light) treated as attributes.

class rgbcolor{
public:

rgbcolor();
rgbcolor(int red, int green, int blue);
rgbcolor(rgbcolor const &);
~rgbcolor();
rgbcolor & operator=(rgbcolor const &);
ostream & send_to(ostream &);
istream & get_from(); // use std::cin as source
istream & get_from(istream &);
int red(); // returns current value of red component
int blue(); // returns current value of blue component
int green(); // returns current value of green component
void red(int newval);
void blue(int newval);
void green(int newval);

private:
int red_;
int blue_;
int green_;

};

Create a header file for the class definition and the declaration of support functions. Create files for the
implementation and test source code. Note the overloading of the red(), blue(), and green()
functions: the versions with an empty parameter list return the current value of the relevant attribute;
the versions with an int parameter change the stored value of the parameter. It happens that the three
attributes are stored separately, but there is no reason for a user to assume that, and if the class designer
decides to store the information in some other way, they are free to do so as long as they maintain the
public interface.

Though this class could form the basis for redefining the palette for Playpen, actually making the
change will require more knowledge of the playpen interface than you currently have.

You can expand the functionality of rgbcolor in many ways. Please take the time to add at least
one extra feature to rgbcolor.

184 CHAPTER 9

Defining Member Functions in a Class
Definition
You may wonder about the efficiency of many of the simple member functions that either return or modify an
attribute, for example, the red(), blue(), and green() functions in the rgbcolor type in Exercise 7.

You can define a member function in the class definition. Doing so makes the definition implicitly
inline. Most experts advise that defining member functions in a class definition is generally a poor idea.
However, where no computation is involved it is more acceptable. So we could replace

int red(); // returns current value of red component

and

void red(int newval);

with

int red(){return red_;}

and

void red(int newval){red_ = newval;}

respectively.
However, if I change the way that the data is stored so that computation is required to extract or modify

the red attribute, such definitions of members functions inside a class definition would become more suspect.
Making a function inline is an optimization, and you should generally avoid hand-optimization unless the
code has inadequate performance. Modern compilers are generally good (and are getting better with each
release) at inlining small functions at link time even when the programmer has not suggested it.

I will generally avoid in-class definitions in the code I provide in this book, but you need to know it is
possible and understand its significance when you see it in other code.

REFERENCE SECTION
The class is an important mechanism for adding user-defined types in C++. We use the keywords
class and struct to declare and define class types. With a single difference, described later, the two
keywords are interchangeable. We use a third keyword, union, to declare and define a very restricted
user-defined type that is used to allow sharing of raw memory for different types of objects during its
existence.

Declaration of a Class Name
We can declare the name of a class with one of the following forms:

class name;
struct name;

There should be no difference between those two declarations, and they do not commit the programmer
to using the same keyword in the corresponding definition. I say ‘‘should be no difference’’ because

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 185

some compilers (e.g. some versions of Visual C++) do treat them differently, so it is probably wise to
be consistent even though C++ does not require you to be.

Once a declaration of a class type is visible to the compiler, you may use references and pointers
to the type declared. So given the declaration

class foo;

the definition

foo * ptr_foo(0);

is fine and defines ptr foo as a pointer, initialized as a null pointer, to a foo. However, because
references need to be initialized at the point of definition, you can only use a reference in the context
of a declaration that is not a definition. The main cases covered by this are parameter and return types
of functions (including member functions) and the declaration of reference members of a class type.

Many people call the declaration of a class name a ‘forward declaration’ to emphasize that it is
only a declaration.

Definition of a Class
The definition of a class type (with either keyword) consists of declarations of data members and
member functions. It can also include the definitions of nested user-defined types (including enum
and union types) and the declaration of new type names using typedef. Finally, a class definition
can include declarations of external types and functions as friends of the class. We write the definition
of a class in the form:

class name {
// declarations of class members

};

We can replace class with struct. Note that the final semicolon is essential and must not be
omitted.

The declarations in a class definition belong to one of three interfaces: public, private, and
protected. Each declaration or definition of a nested type is assigned to one of those three interfaces
depending on which of three access specifiers has been used most recently. If no access specifier has
so far been used in the definition of a class then classes defined with the class keyword default to
private access and those defined using the struct keyword default to public access. That is the only
language difference between using struct and using class to define a class type.

We use the keywords public, private, and protected to identify sections of a class
definition that belong to each of the interfaces. A class definition can have more than one section for a
given interface. In other words, we can use any of these keywords more than once in a class definition.

The public interface consists of those members of a class that can be used outside the scope of the
class. It usually consists of the declarations of member functions that provide the public behavior for
instances of the class. It sometimes includes the definitions of nested types and the use of typedef to
provide local names for types. It is normally poor practice to place data members in a public interface.

The private interface contains declarations and definitions of those things that the class designer
wishes to control. Generally, the private interface contains the declarations of all the data members, as
well as any utility functions that the class implementer wants to use but which do not constitute part
of the published behavior of the class.

The protected interface is a specialist interface to support certain needs of class designers who
intend that the class will be used as the basis for other class designs. You will learn more about this

186 CHAPTER 9

in Chapter 12. In general, the protected interface should not include declarations of data members.
However, many people ignore that design guideline.

In addition to providing the behavior and state/value of instances of a class, it is sometimes
desirable to provide some behavior and state/value for the class as a whole. Such features of a class
definition are identified by the use of the keyword static. This is quite different from uses of that
keyword in other places in C++.

Ordinary member functions must have an instance as part of their use. Inside an ordinary
member function the instance that invoked it is called *this. The reason for the asterisk is that, for
historical reasons, this is a pointer value not an object. Prefixing a pointer with an asterisk refers to
the object whose address is provided by the pointer.

It is usual to consider *this (or this) as an extra parameter that every ordinary member
function has. The argument that provides the initialization for this implicit parameter is the instance
that precedes the dot in the syntax for using member functions. When a member function is called
from within the implementation of another member function for the class, there is an implicit *this.
prefixing the member-function call. For example, given the class definition

struct example(){
void foo();
void bar();

// other members
};

the code

void example::foo(){
bar();

}

is equivalent to:

void example::foo(){
*this.bar();

}

static Members
Class member functions (identified by using static in their declaration) do not have access to an
implicit *this parameter. They cannot make use of instance data or ordinary member functions.
Suppose we wanted to keep track of how many card value instances a process is using. We can do
that by adding

static int count;

to the private interface of card value. We can then modify all the constructors so that they increment
count (using ++count;). We also need to modify the destructor by including the statement --
count;. Now every time a new card value instance is created, count goes up by one, and every
time an instance is destroyed, it goes down by one. Remember that we only declare data in a class
definition – it still has to be defined and initialized somewhere. The place to do that, in this case, is in
card value’s implementation file, by adding the line:

int card_value::count(0);

That statement will create a single int object for use by the card value type and set it to zero.

USER-DEFINED TYPES, PART 2: SIMPLE CLASSES (VALUE TYPES) 187

We now need a way to ask what the current count is. To do this we provide a public static
member function:

static int get_count();

The static tells the compiler that this member function has no hidden *this parameter and so is
restricted to other static members of the class. Its implementation is:

int card_value::get_count(){return count;}

If we want to call that function in our code, we use its full name, card value::count().
The language also allows us to use an instance and dot notation, so

int main(){
card_value any;
std::cout << any.get_count();

}

will work, but it is generally better style to emphasize that we are using a static member function
with:

int main(){
card_value any;
std::cout << card_value::get_count();

}

If you do not have an instance of card value to use, that is your only option.
There is a special case where static members can be initialized in the class definition. This

is the case where the static member is a const-qualified instance of some integer type. All three
properties must be true: it must be a static member; it must be an integer member; and it must be
const-qualified. The purpose of this special license is to allow the removal of magic integer values
from class definitions by allowing integer literal values to be named in the class definition. We will
see examples later in this book.

Constructors and Destructors
The job of a constructor function is to create a new instance of a class type by acquiring the necessary
resources (including the base memory for the data) and initializing data members. In general, a
well-designed constructor will place an instance into a safe state for use in a program. An instance of
a class starts its lifetime when its constructor has finished running. We identify a constructor by using
the class name. A class can have (and usually does have) multiple constructors to allow instances to be
created from different initial data.

Every class has a single destructor, whose task is to release the resources used by an instance
when its lifetime ends. The lifetime of an instance of a class ends when its destructor is called (not
completed, just called). Generally, a destructor is called implicitly when a variable goes out of scope.
Explicitly calling a destructor is uncommon. We identify a destructor by prefixing the class name with
a tilde (~).

Neither constructors nor destructors can have a return type. It is normal to report a failure to
construct an instance by throwing an exception. It is usually a serious design fault if a destructor can
fail. Throwing an exception from a destructor is never the right answer to a destruction failure, though
the language allows you to do so.

188 CHAPTER 9

Initializer Lists
C++ has a special syntax to provide for initializing data members. When defining a constructor, a
colon after the closing parenthesis of the parameter list for a constructor introduces a list of initializers.
This list ends at the opening brace of the body of the definition. We place the individual members that
are to be initialized explicitly in a comma-separated list; each data member name is followed by the
initializing expression in parentheses.

Members are always initialized in their order of declaration in the class; there is no significance
to changing the order of the initializer list.

Some data members must be initialized (reference members, const members, and members
that do not have a default initializer); these must be explicitly provided for in an initializer list. In a
few cases, members cannot be fully initialized, and the final values must be assigned from within the
body of the constructor. The main example of this is where a data member is a raw C-style array.

Unless you know that the member in question has a default initializer that will do a correct job,
it is good practice to initialize data (where possible) in an initializer list.

Special Members
The C++ standard specifies four special member functions that will be implicitly declared unless some
action of the programmer inhibits this behavior. These are:

default constructor: the function that specifies how to create a new instance without any provided data.
The explicit declaration of any constructor in a class definition suppresses implicit declaration of a
default constructor.

copy constructor: the function that specifies how to create a new instance of a class as a copy of an existing
instance. The compiler implicitly declares a copy constructor unless the programmer explicitly
declares a copy constructor in the class definition.

destructor: The compiler will implicitly declare a destructor unless the programmer explicitly declares
one in the class definition.

copy-assignment operator: This is an overload of operator= that specifies how the state/value of an
instance of the class appearing as the right-hand operand of an = is used to replace the state/value
of the left-hand operand of the same type. The compiler will implicitly declare a copy assignment
operator unless the programmer explicitly declares one. Note that declaring some other overload of
operator= does not suppress implicit declaration and compiler generation of a copy-assignment
version.

Implementation
We call the choice of data members and the definitions of the member functions the implementation of a
class. Wherever possible, we place the implementation of a class in a separate file of source code. As
the compiler needs to know about memory requirements for class instances, the data members have to
be visible to the compiler when dealing with application-level source code, and so the declarations of
data members are part of the class definition. Though the data members are visible, we usually make
them inaccessible by placing the relevant declarations in the private interface of the class.

Elaborated Versus Simple Names
When you are inside the scope of a class, either because you are in the definition of the class itself
or because you are defining a class member, the simple name as declared in the class definition is
enough. However, outside the scope of a class, you need to identify what class is using the name.
When defining member functions or static class data, that requires that you prefix the simple name
with the class name and scope operator (::).

C H A P T E R 10
User-Defined Types,
Part 3: Simple classes
(homogeneous entity types)

In the last chapter, we focused on using a class to provide a new user-defined value type. That is a type
whose instances we would freely copy, for example, to provide arguments for function calls and returns
from functions. In this chapter, we are going to look at using classes to provide types where we would
want to use the same instance in most of our code – a copy will not do.

Another way of looking at the difference between a value type and an entity type is by considering
what we mean when we ask whether two instances are the same. When we are thinking in terms of
values, we can fairly say that two distinct instances (in the programming sense that they occupy different
memory or have different addresses) are the same if they can be used interchangeably without affecting
a program. When we are thinking in terms of entities, we only regard two ‘instances’ as the same if they
actually occupy the same memory (i.e. have the same address).

Many people refer to ‘entity’ types as ‘object’ types. This leads to confusion in the context of C++,
where the term ‘object’ is much closer in meaning to ‘instance’. When I use the term ‘object’ in this book,
I am referring to a specific instance of a type, regardless of whether it is semantically a value, an entity,
or something else.

Examples of Value and Entity Types
Many people have difficulty with the dichotomy between value and entity types. In the last chapter, the
isbn10 type was a clear example of a value type. So too the title of a book, the publisher’s name, and the
copyright date would be represented by value types. An actual book would normally be an entity. Contrast
telling a friend the ISBN, title, authorship, and publisher of a book with lending them a book. I also wrote
about playing cards, and developed a card value type to handle the values of playing cards. You would be
surprised if you were dealt two aces of spades when playing poker (the cards are entities), but there is no
problem in several people recording a hand of cards (they are only interested in the values, not the actual
cards).

Here are a few other examples of value–entity pairs:

• A credit card number versus a credit card. The credit card number is one of several attributes of a credit
card, one that is often copied for use when purchasing items by mail order. However, copying credit cards
themselves is normally a criminal activity.

• A car number versus a car number plate. A car number is something that we can, for example, note down
when we witness an accident. A car number plate is something that is normally one of a pair, and further
copying would be suspect.

190 CHAPTER 10

• An address versus a house. Houses have addresses (some other things do as well). We can easily pass copies
of an address around, but copying a house is hard.

One of the properties of an entity is that it is something that has some form of existence. That existence
has some significance that makes copies distinct from the original. On the other hand, a value is something
where any copy is as good as (and indistinguishable from) any other.

A Simple Playing-Card Entity
This example uses the card value type from the last chapter to provide a card type that represents playing
cards as entities. Here is my definition for card:

class card{
public:

explicit card(card_value);
explicit card(std::istream &);
~card();
void send_to(std::ostream &)const;
bool is_same(card const &)const;
card_value get_value()const;

private:
card(card const &); // disable copy constructor
void operator=(card const &); // disable assignment
card_value const value_;

};

I have not provided a default constructor (i.e. one that does not need arguments). The compiler
will not generate one for me because I have declared at least one other constructor (in fact I have
declared three). Compiler-generation of the default constructor only happens if no constructors are declared
explicitly.

I have provided two public ways to create a card instance. The first is to create a card with a specific
value, which means that there are no ‘blank’ cards. The second one allows us to create a card from data
provided by an input stream. As I am not allowing a card to change its value magically, I need to provide a
way to create a card from data provided externally.

This type does not need an explicit destructor, but I am providing one for the time being. This will
allow me to instrument it so that its use is visible during the execution of programs.

The next three member functions provide for sending a card’s data to an output stream, checking to
see whether two names refer to the same card instance, and extracting the value of a card. The last of those
will allow us to check whether two cards have the same value as distinct from checking whether two names
refer to the same card.

There are various alternative declarations that would provide us with the same abilities; however, we
should try to keep class interfaces lean.

The first two declarations in the private interface are the idiomatic way to suppress copy semantics. We
declare the two relevant special member functions (the copy constructor and the copy-assignment function)
as private members. Consequently, these members are inaccessible to code outside the implementation. We
usually do not provide definitions for these members; that protects us against accidental usage within the class
implementation.

I have chosen to declare value as const because I consider a playing card to have an immutable
value. Some compilers may be able to make use of this design choice to produce better-optimized code.
However, that is not in itself a reason for making the value immutable, and we will see that such a design

USER-DEFINED TYPES, PART 3: SIMPLE CLASSES (HOMOGENEOUS ENTITY TYPES) 191

choice can have unforeseen consequences (which is a reason for doing it here: you will have a chance to see
the consequences).

Implementation of card
Most of the implementation is trivial. When you come to try code, place the class definition in the same
header file as card value (but after it) and the implementation in the implementation file for card value.

card::card(card_value cv):value_(cv){
std::clog << "Card instance created from " << cv << ".\n";

}
card::~card(){

std::clog << "The " << value_ << " card destroyed.\n";
}
void card::send_to(std::ostream & out)const{

out << value_;
}
bool card::is_same(card const & c)const{

return this == &c;
}
card_value card::get_value()const{

return value_;
}

One of the constructors is problematical, because const data members must be initialized in the
initializer list. We need to deal with the problem of getting a card value from an input stream. The normal
process of using a streaming operator will not work here. We need some help. One of the benefits of the
fgw::read<> function template from my library is that it supports initialization. You will need to add
#include "fgw text.h" to the implementation file and tell the compiler where it can find that header by
using the Project Settings dialog box to add the fgw headers subdirectory to the includes path. Here is an
implementation of card(std::istream &) that uses fgw::read<>:

card::card(std::istream & in):value_(fgw::read<card_value>(in)){
std::clog << "Card instance created from " << value_

<< " supplied from input.\n";
}

If you did not have access to fgw text.h, you could achieve a similar result by adding a helper
function in the implementation file. For example, you could add:

card_value get_it(std::istream & in){
card_value temp;
in >> temp;
return temp;

}

That implementation requires extra work to make it robust. The helper function allows us to define
card(std::istream &) as:

card::card(std::istream & in):value_(get_it(in)){
std::clog << "Card instance created from " << value_

<< " supplied from input.\n";
}

192 CHAPTER 10

T R Y T H I S
Add the above code to the appropriate files, and then compile and execute a program with:

int main(){
card c(card_value(12));

}

Make sure you are using instrumented versions of both card value and card. Study the
resulting output; it will give you some idea as to how much can sometimes be hidden under
the hood. Programmers from other languages are sometimes concerned that even a simple C++
program may generate a lot of code. In fact, the code is necessary to achieve our objectives, and all
that C++ has done is allow us to reduce the amount of code we write at the application level.

EXERCISES
1. Write a complete test program for card.

2. Add an inline overload of operator<<() to output a card to an output stream.

3. Comment on why the current design does not support an operator>>().

4. Add a constructor to card that constructs a card directly from a card value::denomination and a
card value::suit.

5. When you checked the output from your test code, you may have noticed that it reported calls of the
copy constructor and destructor for card value when we constructed a card from a card value.
Consider how you might remove that copy. Consider whether this removal would be helpful in the case of
uninstrumented code. Hint: card value instances consist of a simple int value internally and so should
be no more expensive to copy than copying an int would be.

Another Entity Type: Deck of Cards
My second example of an entity type is rather different, and we will see that it has some impact on our design
for card value and card. One of the problems we will need to address is whether we should handle
the individual cards in a deck of cards as values (card value instances) or entities (card instances). I am
going to do my initial design using card value instances and then revisit the design from the more natural
perspective where they are card instances.

class deck{
public:

deck();
~deck();
void shuffle();
card_value next();
void top();
void copy_from(deck const &);

USER-DEFINED TYPES, PART 3: SIMPLE CLASSES (HOMOGENEOUS ENTITY TYPES) 193

private:
deck(deck const &);
deck & operator=(deck const &);
static int const cards = 52;
int position;
card_value pack[cards];

};

Later we will find that there are several flaws in this definition.
Let us look at the members to see how we could implement them. I will start with the data members.

The declaration of cards introduces a special syntax that C++ allows for a member that is static (i.e.
belonging to the class as a whole), of an integer type (int in this case), and const (fixed in value). This
special syntax allows provision of the value as part of the declaration. Note that using that provision does not
make the declaration into a definition. The definition still has to be provided exactly once in the program. In
this case, we need to add the statement

int const deck::cards;

to the implementation file for deck (usually we would name that file deck.cpp). Three things to note: there
is no static in the definition; we have to write deck::cards; and we must not provide the value again
(if you use the facility for providing the value in the class definition, it must not be provided in the member
definition). The purpose of the declaration is to name 52 as the number of cards in a pack.

We are going to use the instance variable position to keep track of where we are in the deck for
such purposes as dealing cards. The last piece of data tells the compiler that a deck consists of an array of
card value called pack. One of the requirements for a dimension of an array is that it must be an integer
value known to the compiler. One of the principle motives for the special syntax for providing a value in the
declaration of a static const integer member was to support declarations of array members with a named
value as the dimension.

As we are looking at the private interface of deck, I might as well explain those two function declarations.
You may recognize them from the previous chapter as being the copy constructor and copy-assignment
operator for deck. If we did not declare them, the compiler would declare them implicitly as members of the
public interface. I want to remove copy semantics from deck, because it would almost certainly be an error
to pass or return a deck by value. The idiomatic way to do that is to declare the two special functions dealing
with copying as members of the private interface. That means that if a programmer accidentally tries to copy
an instance of deck the compiler will report an error (an access violation for attempting to use a private
member of a class). As we do not want to use copy semantics, we do not provide a definition for these two
functions in the implementation file. That adds an extra safeguard in case we forget and try to copy a deck in
a member function. In that case, the linker will give us a missing-definition error message.

Having just gone to a lot of trouble to remove accidental copying, you may be surprised by the
copy from() public member function. While we do not want a deck passed or returned by value, nor do
we want one changed by a copy assignment: we might still want to produce a duplicate explicitly. That is the
purpose of copy from(). Here is a suitable implementation of copy from():

void deck::copy_from(deck const & source){
for(int i(0); i != cards; ++i){

pack[i] = source.pack[i];
position = source.position;

}
}

Now let us look at the constructor. Here we have to deal with the rule that we must use a default
constructor to create the elements of an array – we have no option. That means that we will have to establish
the correct cards inside the body of the constructor for deck. I am going to opt for a simple implementation

194 CHAPTER 10

even though expert programmers would (legitimately) criticize it as coupling the card value and deck
implementations. However, it is worth noting that the coupling is real because a deck is a collection of cards.

deck::deck():position(0){
for(int i(0); i != cards; ++i) pack[i] = card_value(i);

}

This definition uses the card value(int) constructor of card value and the copy-assignment
operator for card value to replace the default created card value so that our pack has one copy of each
possible card.

The destructor for deck has nothing to do (unless you want to instrument it). The array is destroyed
automatically after the body of the destructor has run. The process of destruction will destroy each of the
elements of the array by calling the card value destructor for it. The elements of an array are destroyed
in the reverse order of their construction. Note that you can (and should) check that assertion by using the
instrumented implementation of card value. When you do so, you will see that quite a lot of construction
and destruction happens in the background.

I will come back to shuffle() in a moment, but first I will deal with the two other member functions.
The purpose of next() is to return the value of the card value currently identified by position, and
increment position by one. Here is a simple implementation:

card_value deck::next(){
card_value value(pack[position]);
++position;
if(position == cards) position = 0;
return value;

}

We deal with going off the end of the pack with the simple solution of returning to the top.
The intention of the top() function is to reset position to the top. That makes it simple to define it as:

void deck::top(){position = 0;}

Finally, we need to implement a function that will shuffle the deck. Most of the work for such a function
can be done by using the Standard C++ Library function random shuffle() (declared in the algorithm
header). We can call that function for any sequence of entities if we supply an iterator to the start and an
iterator to one past the end as the two arguments. Iterators are generalized location indicators; in the case of
arrays they are simple pointers to the elements of the array. We get the start of an array by using the array
name, and we get one past the end by adding on the number of elements in the array. Put that all together
and we get:

void deck::shuffle(){
std::random_shuffle(pack, pack + cards);

}

TASK 10.1
Create a new project (in the chapter 10 directory). Copy card.h and
card.cpp from the chapter 9 directory. (You will be changing some of the
source code, so we want new copies, and it might be wise to rename them
so that you do not confuse different versions.) Now create a deck.h file and
insert a suitable header guard and the definition of the deck class. In addition
to the code above, you will need to include card.h, so that the compiler can
see the definition of card value when we use it in the definition of deck.

USER-DEFINED TYPES, PART 3: SIMPLE CLASSES (HOMOGENEOUS ENTITY TYPES) 195

Create a file named deck.cpp, and copy the implementation of the
deck member functions and the static data member into it. You will need to
include some headers and header files (I am leaving you to determine which).
It is usually good practice to have a way to determine the order in which you
write the #includes. My rule is to deal with the header files first and the C++
headers second. Within each group, I include them in alphabetical order.

Finally create a file named testdeck.cpp and add necessary headers
and header files (in future, I will just use the term ‘header’ to include both
Standard headers and user-written/third-party library header files). Add the
following minimal version of main():

int main(){
try{
deck d;

}
catch(...){std::cerr

<< "An exception was caught in main\n";}
}

Your project will need to include card.cpp, deck.cpp, and test-

deck.cpp. When all those files compile successfully, build and execute the
program. You will be flooded with messages produced by the instrumentation
of the card value class. Modify the implementation of card value by
removing the instrumentation and try again. This is now so simple that you
will get no output. Add some instrumentation to the constructor and destructor
for deck and try again.

It makes sense to keep the instrumented and uninstrumented implementations alongside each other in
similarly (but not identically) named files. That way you can select which you use by editing the project to
include the version you require. Another option would be to have two subdirectories, one for instrumented
code and one for release versions. This option depends on your IDE allowing you to use .cpp files from
different directories.

Output for deck
Before we test the other public member functions of deck, we need a way to examine the deck by printing
out the cards. The following function does the job but reveals a design flaw in deck. In a moment, we will
look at the flaw in the context of this draft definition:

std::ostream & operator<<(std::ostream & out, deck const & d){
d.top();
for(int i(0); i != 52; ++i) out << d.next() << '\n';
return out;

}

I have chosen to use operator<< for output because C++ programmers expect that operator to do
output. We would also expect that output of an object’s state would not alter the state, which is why the
second parameter is a const reference rather than a simple reference. At this point, we hit the first problem.

196 CHAPTER 10

If we want to output the entire deck we must make sure we start at the beginning. The only member
function we have for getting card value values is next(). That is not a const member function, because
it changes the value stored in our position variable. That means that we cannot use next() on a const
reference to a deck. In addition, we do not know what value is currently stored in position. The only way
we can access that is by using top() to reset position to 0. The consequence is that our deck type does
not have the functionality that we need, even though it looked OK to start with. Yes, we could remove that
const qualification from the second parameter of the operator<< overload for deck. However, that only
hides the problem: as currently designed, outputting a deck to a stream changes its internals.

There are several ways to fix this problem but let us stick with a simple one. What we need is a way
to find which card value value is at a specified point in the deck. We can achieve this using a member
function with the following declaration:

card_value get_card(int pos)const;

The definition seems simple:

card_value deck::get_card(int pos)const{
return deck[pos];

}

However, do you see the problem? Yes, it is not robust: a user could ask for a card at a position
that is not valid for a standard deck (outside the range 0 to 51). Again, let us stick with a simple solution
even though it is not up to production quality. Check and throw an exception if the value of pos is out
of range. (You will need to include the stdexcept header so that the compiler can see a declaration of
std::range error.)

card_value deck::get_card(int pos)const{
if(pos < 0 or pos > (cards - 1))

throw std::range_error("No such position in deck");
return pack[pos];

}

Using that in the definition of operator<< we get:

std::ostream & operator<<(std::ostream & out, deck const & d){
for(int i(0); i != 52; ++i) out << d.get_card(i) << '\n';
return out;

}

Even this code has a problem – the use of a magic 52. This highlights that the number of cards in a deck
is not a private property but a public one. We could just add a static member function that returns the
value. However, that seems somewhat excessive for such a case, and I would be happy to make the declaration
of cards part of the public interface of deck. I want to keep cards within the scope of deck because it is
specifically a property of deck rather than being some global value. We should always declare variables and
constants in the smallest scope that supports their use. Once we have moved the declaration of cards to the
public interface we can write:

std::ostream & operator<<(std::ostream & out, deck const & d){
for(int i(0); i != deck::cards; ++i) out << d.get_card(i) << '\n';
return out;

}

USER-DEFINED TYPES, PART 3: SIMPLE CLASSES (HOMOGENEOUS ENTITY TYPES) 197

All the changes I have been suggesting have stuck with the design rule that we should avoid invalidating
earlier code. Moving something from the private interface to the public interface is fine: old code will continue
to work. Similarly, adding a new member function is usually acceptable, though we sometimes need to think
before adding a new overload to an existing function. By the way, adding a const qualification is usually
acceptable, but removing one almost always has the potential for breaking existing code.

TASK 10.2
Modify deck.h and deck.cpp so that the last version of std::ostream &

operator<<(std::ostream & out, deck const & d) compiles sa-
tisfactorily. Now modify testdeck.cpp to define main() as:

int main(){
try{
deck d;
d.shuffle();
std::cout << d;

}
catch(...){std::cerr

<< "An exception was caught in main.\n";}
}

Build the project and run it a couple of times. Do you notice a problem?
Each run of the program produces an identical shuffle. That may be fine
when we are testing code, but it is not much use if we want to shuffle the
deck differently each time. The C++ Standard is silent on this issue of how
we can randomize the pseudo-random number generator used by the default
version of random shuffle (perhaps because there is an alternative form
of random shuffle() that uses a user-written pseudo-random number
generator). In the case of the version of the Library that ships with this
book, using std::srand() (declared in the cstdlib header) to seed the
generator used by std::rand() works fine. (Do not worry too much about
these little details; I am only including them to prevent false expectations if
you later use a different C++ implementation.) Therefore, modify main() to:

int main(){
try{
std::srand(1);
deck d;
d.shuffle();
std::cout << d;

}
catch(...){std::cerr

<< "An exception was caught in main.\n";}
}

However, that is no immediate improvement, because we have hard-
wired the seed used by std::srand(). If we really want different results
each time we run the program, we need to remove that hard-coded argument

198 CHAPTER 10

passed to std::srand(). Here is a way that we can hand the responsibility
to the user:

int main(){
try{

std::srand(fgw::read<int>(
"Input a seed for the random number generator: "));

deck d;
d.shuffle();
std::cout << d;

}
catch(...){std::cerr

<< "An exception was caught in main.\n";}
}

You will need to include the fgw text.h header file in order to use my
read<> function. You may also need to amend the project settings to tell the
compiler where to look for that header file by adding to the includes path.

As an alternative to seeding the random number generator with a user-
provided value, you can seed it with a value dependent on the system’s best
approximation to calendar time by using:

std::srand(time(0));

That statement is equivalent to std::srand(-1) if your system does
not have a suitable internal clock. However, the kind of computer you are
using for this book should not have that problem.

If you want to learn more about pseudo-random number generators,
please read Chapter 10 of You Can Do It! (electronic copy on this book’s CD).

Creating a deck Instance From a File
We have provided a mechanism for writing out the current order of a deck (of cards). It would make sense to
provide a mechanism for creating a deck instance with that order used for initialization. The terms ‘creating’
and ‘initialization’ should suggest using a constructor. Here is a way to do that.

Add the declaration deck(std::istream &); to the definition of deck. Now add this definition to
deck.cpp:

deck::deck(std::istream & in):position(0){
for(int i(0); i != cards; ++i) in >> pack[i];

}

Note that this definition delegates all the input validation to the operator>> provided for card value. It
also assumes that the input operator for card value matches the output operator. We should have ensured
that that is the case, because programmers reasonably expect that what is written to a stream can be read back
from a stream.

One other implicit assumption in the above constructor is that the source of data will be sufficient and
correct for a deck. It would be a useful exercise to refine the above definition to perform some validation.

USER-DEFINED TYPES, PART 3: SIMPLE CLASSES (HOMOGENEOUS ENTITY TYPES) 199

The first step might be to recognize that because card value supports the streaming operators (<< and
>>), we can use fgw::read<card value>(in) to extract card values from input. That will ensure that
we only use legitimate card values. Incidentally, that will cater for a source that has too few values, because
it will fail by throwing an exception when we ask for more values than it has to give. If we want to do
a better job, we will also check that all the card value values are different. I will leave it to you to
choose a way to do that. (Creating a copy of the deck and sorting it might be a good way to start such
a check.)

EXERCISES
6. Design a class hand to represent a hand of cards. Because we do not know the number of cards in a hand

at design time (indeed, the number of cards might vary during the execution of a program concerned with
hands of cards), we need a container that can take a variable number of elements. std::vector is such
a container. We will also need a variable to track the current number of cards in a hand.

Here is something to get you started:

class hand{
public:

hand(); // create an empty hand
void add(card_value); // add a card
void sort(); // sort hand by suit and denomination
card_value card_at(int i); // return card at specified position
int size(); // return number of cards in the hand

private:
std::vector<card_value> hand_of_cards;
int number_of_cards;

}

This is just to get you started. You will need to add more member functions (note that a hand
is an entity, so you should deal with the problem of copying) and some non-member ones as well.
Your test program should allow you to shuffle a deck and deal a specified number of cards from
the top of the deck into a hand, display the hand, then sort the hand and display it again. You
might like to experiment with std::reverse(), which is a standard algorithm that reverses the
elements of a sequence, so that the cards are sorted in the order spades, hearts, diamonds, clubs.
(std::reverse(hand of cards.begin(), hand of cards.end()) will reverse the cur-
rent order.)

7. Design a function to value a bridge hand. Contract bridge players initially value a hand with something they
call ‘honor card points’ (HCPs). They value every ace as 4, every king as 3, every queen as 2 and every jack
(knave) as 1. Write a function that creates a hand of 13 cards by taking the next 13 cards from a deck (the
deck::next() function will help with that). The declaration of this function will be:

void bridge_hand(hand &, deck &);

When you define this function, you will need to deal with the possibility that the first parameter is not
an empty hand object.

Now define (implement) a function that returns the number of HCPs in the hand passed in by
reference. Note that valuing a hand does not change it, hence the const reference parameter.

int hand_value(hand const &);

200 CHAPTER 10

Write a program to deal out four hands from a shuffled deck of cards and output the hands with each
suit on a new line (in the order spades, hearts, diamonds, clubs), following each hand with its HCP value.
There should be a complete blank line between consecutive hands. So typical output might be:

Hand 1:: S 5
H AJ962
D A7
C A10976
HCPs: 13

Hand 2:: S 92
H Q853
D 962
C QJ83
HCPs: 5

Hand 3:: S AKQJ1073
H 4
D J54
C K4
HCPs: 14

Hand 4: S 864
H K107
D KQ1083
C 52
HCPs: 8

While the above is close to an ideal output, it needs quite a bit of extra work to suppress the suit part
of a card’s name, given the way that the card output currently works. Do not feel you have to achieve the
above layout, especially as doing so will most likely require augmenting the card type with functions that
simply report the value of the card rather than its name.

8. Read Chapter 6 of You Can Do It! (on CD) and use the ideas in that chapter to create a polygon entity
type. Note that if you suppress the copy semantics (by making the copy constructor and copy-assignment
operator private) you will need to provide a mechanism for copying polygons, such as a copy from()
member function.

A polygon type is a classic example of a type that can reasonably be viewed as either a value type or
an entity type, depending on the context in which you intend to use it.

STRETCHING EXERCISES
You will have noticed that I have kept to using card value instances throughout this chapter, even though a
pack of cards would more normally be considered as a collection of cards. If you are feeling in an experimental
mood, try replacing card value with card throughout the code I have provided in this chapter. However,
you will find that it does not work and the fix is not obvious; indeed, it deserves a chapter all to itself. A solution
is in the next chapter.

USER-DEFINED TYPES, PART 3: SIMPLE CLASSES (HOMOGENEOUS ENTITY TYPES) 201

REFERENCE SECTION
Entity Types
Entity types are ones where the identity of an instance of the type is significant. If I lend you $50, I do
not care how you repay the loan as long as you do so. If I lend you an original Rembrandt painting, I
care very much that you return the original – a copy just will not do. Money is a value type; original
paintings are very definitely entities.

Suppressing Copy Semantics
One distinguishing feature of a value type is that it can be, and often is, passed and returned by
value. We are rarely concerned with the identity of an instance of a value type – only with the value
it contains. That means that copies are as good as the originals. If we do nothing, a C++ compiler
will treat any type we define as a value type by generating a copy constructor and a copy assignment.
If you are curious about why that is the case, it is because the ancestor language, C, is a value-based
language in which everything is passed and returned by value.

We need to know how to turn off copy semantics when we wish to design a pure entity class
(one whose instances cannot be freely copied). The standard way to do that is to add the following
declarations to the private interface of the class:

class-name(class-name const &);
class-name & operator=(class-name const &) ;

The consequence of those additions is that any attempt to copy instances of class-name outside the scope
of class class-name will trigger an access-violation error at compile time.

We do not define those member functions, unless we have a reason to want to allow copying
within the class implementation. The lack of a definition means that any accidental attempt to copy
from within the class scope will trigger a missing-definition error at link time.

C H A P T E R 11
Pointers, Smart Pointers,
Iterators, and Dynamic
Instances

I have been using pointers in the early part of this book without spending much time explaining them.
I have also used iterators. The time has come for us to look at these mechanisms in some detail. While
doing so we will also look at the way C++ allows us to extend the pointer concept and how C++ allows
us to create objects during the running of a program. We call the latter dynamic objects.

We will also see how a combination of pointers and dynamic objects helps to solve the problem of
creating and managing a deck of cards, with the cards treated as entities rather than values.

Quite a lot of this chapter is difficult to understand at first reading. Fortunately, we can do a great
deal of programming in C++ without ever using pointers. For example, I never mention pointers in my
book for newcomers to programming (You Can Do It!). Pointers are probably the single most difficult
aspect of programming, and C++ stretches their use in low-level programming. That means that C++
programmers must eventually master them if they are to graduate to become experts.

Even more than elsewhere in this book, this chapter relies on your trying many small programs and
experimenting until you are confident that you understand them. However, you can continue with an
incomplete understanding, and come back to consolidate it later on.

Raw Pointers

C++ inherited the syntax and semantics of raw pointers from C. However, the way we use pointers in C++
is a little different because we have other tools that take over some of the uses of pointers. For that reason, I
am going to give a very brief overview of pointers and then limit myself to their idiomatic use in C++.

In essence, a pointer value is the address of something, and a pointer instance is a place to store such an
address. We can take the addresses of objects (data), and we can take the addresses of free functions and static
member functions. The addresses of non-static member functions are handled differently and I will not be
dealing with them in this book.

C++ obtains addresses in the same way that C does. It has an explicit address-of operator, which is an
& (ampersand) preceding an object or function name. The name of a function without a parenthetical list of
arguments resolves to the address of the function (given that foo is the name of a function, both foo and
&foo evaluate to the address of the function). The name of an array usually evaluates as the address of the
first element of the array. There are a few exceptions to this even in C, and a few more in C++.

Pointer objects provide storage for addresses of the same type. The type of a pointer is given by
appending an * (asterisk) to a type name. So:

204 CHAPTER 11

• An int* is a pointer to an int and can store the address of an int object.
• A float* is a pointer to a float and can store the address of a float object.
• If mytype is a user-defined type (e.g. a class or enum type), a mytype* is a pointer to a mytype and

can store the address of a mytype object.
• A type const* is a pointer to a type object that can only be used to access the value or state of the object

addressed. It can store the addresses of both const and non-const type objects. This pointer type can also
be written as const type*.

• A type* const is a const pointer to a type object. This should not be confused with type const*. We
need to distinguish between const pointers, where it is the address that is const, and pointers to const,
where it is the object addressed that is const.

There is a subtle difference between a const qualifier that is not the last part of a pointer type’s
name and one that is. We refer to the latter as a top-level const, and it results in a type whose instances
are immutable. Just like const-qualified non-pointer types, instances of a type that is top-level const are
immutable. A pointer to a const-qualified type merely limits access to the addressed object to reading. It
does not imply that the object is immutable, only that we cannot make use of the address stored in the pointer
to write to the object.

Here is a simple program that we can use to explore pointers in practice (note that space before and
after * is optional):

int main(){
int i(0);
int * i_ptr(&i);
std::cout << "The address of i is " << i_ptr

<< " and the value of the addressed instance is "
<< *i_ptr << ".\n";

}

Note the uses of i ptr. When I declared it, I initialized it by explicitly taking the address of i. I then
output the value stored by streaming i ptr to std::cout. However, when I want the value stored in the
object addressed by i ptr (in this case the value stored in i) I have to use the dereference operator (which
is also an asterisk) and stream *i ptr to std::cout. Try to get a clear mental distinction between the value
stored in a pointer (an address) and the value of the object addressed.

C++ allows us to declare uninitialized pointers, but doing so is usually an error, because the only safe
thing we can do with such a pointer is to assign a legal address to it.

TASK 11.1
Please try making the following edits to the above program and note the
results:

1. Change the declaration of i to int const i(0). Note that the program
no longer compiles. Make sure you understand why this is the case.
Now change the declaration ofi ptr to int const * i ptr(&i). The
program now compiles. Finally, remove the const qualifier from the dec-
laration of i. Note that the program still compiles and runs satisfactorily.

2. Edit the original program to:

int main(){
int i(0);
int j(1);

POINTERS, SMART POINTERS, ITERATORS, AND DYNAMIC INSTANCES 205

int * i_ptr(&i);
std::cout << "The address of i is " << i_ptr

<< " and the value of the addressed instance is "
<< *i_ptr << ".\n";

i_ptr = &j;
std::cout << "The address of j is " << i_ptr

<< " and the value of the addressed instance is "
<< *i_ptr << ".\n";

}

Compile and run the resulting program. Now change the declaration of
i ptr to int * const i ptr(&). Note that the resulting code will not
compile. Make sure you understand the difference between placing const
after the asterisk and before it. (Try int const * i ptr(&i), and note
that the program again compiles and runs successfully.)

3. Edit the original program to:

int main(){
int i(0);
int * i_ptr(&i);
std::cout << "The address of i is " << i_ptr

<< " and the value of the addressed instance is "
<< *i_ptr << ".\n";

*i_ptr = 2;
std::cout << "The value of i is now " << i << ".\n";

}

Compile and run the resulting program. Now change the declaration of
i ptr to int * const i ptr(&), and note the reason the program
now fails to compile. However, if you now change the assignment to i =

2, all is OK again. There is nothing wrong with assigning to i, just that
we cannot use a const int* to do so. Finally change the declaration
of i ptr to int * const i ptr(&), and restore the assignment to
*i ptr = 2.

A Dangerous Special Case
We could replace the int in the above code with just about any type and it would exhibit similar behavior,
as long as we provided suitable initializers for the variables. However, there is a special case for char* (a
pointer to char) and the streaming operators (<< and >>). C hijacked char* to provide a string type. We
will see more details later when we take a brief look at C-style arrays. However, the important feature to note
is that the above code becomes dangerous if you replace int by char. The streaming operators do not treat
a char* as a simple pointer to a char. If we want the address of a char, we must tell the compiler to treat
the pointer as a generic data pointer.

C++ (like C) provides a special type to handle generic data pointers. It is called void*, and the only
thing we can do with a void* is store the address of raw memory in it.

206 CHAPTER 11

int main(){
char i('A');
char * i_ptr(&i);
std::cout << "The address of i is " << static_cast<void*>(i_ptr)

<< " and the value of the addressed instance is "
<< *i_ptr << ".\n";

}

Please try that code, but under no circumstances try it without the static cast<void*> unless you are
willing to accept the consequences (actually most systems may not show any problems, but that should not
lull you into a false sense of security). The static cast<void*> instructs the compiler to handle the
address stored in i ptr as a raw memory address and not as a char*.

Arrays
We have already used simple arrays in this book, but I have deliberately avoided going into much detail. We
declare arrays in C++ the same way that we declare them in C. The syntax is:

type array-name[number-of-elements];
The elements are numbered from zero, so given

int array[10];

array[0] is the first element and array[9] is the last one.
Simple declarations of arrays result in default initialization. If it is an array of a class type, the elements

are created with the type’s default constructor. In general, you cannot create an array of a class type if the type
lacks a default constructor. However, C++ has inherited a special case from C called direct initialization. The
syntax for this is:

type array-name[number-of-elements+] = {initializer-list};
The initializer list is a comma-separated list of initializers used to initialize the elements of the array. If

there are fewer initializers than elements, the remaining elements are initialized by default. At this point, the
rules become extremely complicated (to the extent that most experts will make mistakes). Fortunately, that
complexity need not worry us, because experienced C++ programmers limit their use of arrays and avoid
getting into the more problematic areas. If you limit yourself to arrays of built-in types and possibly arrays of
pointers, you will avoid problems. C++ has alternative mechanisms to handle collections of objects that are
not available to the C programmer.

The final piece of syntax for declaring arrays is:
type array-name[] = {initializer-list};

If we omit the number of elements, the compiler will deduce the number from the number of initializers.

TASK 11.2
1. Create a project and type in the following short program, then compile

and execute it:

int main(){
const int array_size(5);
int array[array_size] = {, 2};
for(int i(0); i != array_size; ++i){

std::cout << "Element " << i << " is "
<< array[i] << ".\n";

}
}

POINTERS, SMART POINTERS, ITERATORS, AND DYNAMIC INSTANCES 207

Note that the output shows that the final three elements of array are set to
zero. That is important: once you start initializing an array in its definition,
all its elements are initialized. If you want to create an array of a built-in
type with all elements zeroed, just provide an empty initialization list.
The results of

int array[array_size] = { };

and

int array[array_size];

are not the same. The default for creating an int object is to leave it
uninitialized. We get undefined behavior (i.e. absolutely anything can
happen as a result) if we trying to read an uninitialized object. In other
words, replacing the declaration of array in the above program with int
array[array size] = {}; is fine, but leaving out the = {} results in
undefined behavior when we try to output the undefined values.
The above program is simple enough that there is very little risk that
the undefined behavior will be harmful (and it is small enough that I just
tried it after I had saved all my work), but the results may be instructive
(they could still be all zeros, as some systems zero the stack before the
first use).

2. Now consider this version of our program:

int main(){
int array[] = {1, 2};
for(int i(0); i != something; ++i){

std::cout << "Element " << i << " is "
<< array[i] << ".\n";

}
}

What should replace the something? Leaving the compiler to work out the
number of elements is fine – till we want to do something that requires
that we know how many there are. There is a simple C idiom that solves
this problem: we divide the amount of storage allocated to the array by
the amount required for a single element. Here is how we could write it:

int const array_size(sizeof(array) / sizeof(int));

Note that we have to insert that statement after we have declared the
array, so our program now becomes:

208 CHAPTER 11

int main(){
int array[] = {1, 3};
int const array_size(sizeof(array) / sizeof(int));
for(int i(0); i != array_size; ++i){
std::cout << "Element " << i << " is "

<< array[i] << ".\n";
}

}

3. Try arrays of some other types and experiment until you are reasonably
happy you understand the results.

Arrays and Pointers
One of the design decisions for C++ was to make an effort to keep it compatible with C. Arrays cannot be
passed around (or returned) by value in C; nor can they be in C++. C++ has an option to pass an array by
reference, but that is limited to cases where the exact size of the array is known at the time we declare the
function. For example:

void foo(int(& a_ref)[2]){
std::cout << sizeof(a_ref)/sizeof(int) << '\n';

}

This declares the parameter a ref as a reference to an array of two ints. We can call foo() with an
argument that is an array of two ints, but not any other size of array of int.

This is a big limitation of using arrays. We do not want to have to provide a new version of a function
for each possible size of array. C fixed the problem by using pointers. We can, for example, declare:

void send_out(std::ostream &, int * a, int array_size);

The definition might be:

void send_out(std::ostream & out, int * a, int array_size){
for(int i(0); i != array_size; ++i){
out << "The value of element " << i << " is " << a[i] << ".\n";

}
}

Here is a simple program that uses that function:

int main(){
int array[] = {1, 3};
int const array_size(sizeof(array) / sizeof(int));
send_out(std::cout, array, array_size);

}

We have to pass the size of the array as an explicit argument because the function cannot deduce the size
of the array. When we use the name of the array without subscripting, we get the address of the first element.
C++ allows us to subscript a pointer; in other words, we can use a pointer object as if it is the name of an
array. However, that places a great burden on the programmer, who must ensure that the subscript refers to
an actual member of the array. This burden is yet another reason that experienced C++ programmers avoid
using arrays when they can use an alternative C++ mechanism (the commonest being a std::vector).

POINTERS, SMART POINTERS, ITERATORS, AND DYNAMIC INSTANCES 209

When a pointer points to an element of an array, we can increment and decrement the pointer
(and add and subtract integer values from it) to move through the elements of the array. However, we
must be careful about stepping off the ends. Even loading an invalid pointer value (such as attempting to
print it out) is undefined behavior in C++. C++ provides two special cases to assist with working with
pointers.

One Beyond the End
The address of storage one beyond the end of an object or array is always a valid address, in the sense
that you are allowed to use the address. However, you must not attempt to access any object through such
an address (pointer value) because there will not normally be a suitable object located at that address. For
example:

int main(){
int array[] = {1, 3};
int const array_size(sizeof(array) / sizeof(int));
std::cout << "The address beyond the start of array is "

<< array << ".\n";
std::cout << "The address beyond the end of array is "

<< array + array_size << ".\n";
}

However, you must not replace array + array size with &array[array size]. The first
expression stays strictly within the limits of pointers and makes use of the special case that the address
just beyond the end of an object is a valid address. The second version asks for the address of the object
array[array size]; there is no such object, and consequently the code has undefined behavior.

Null Pointers
Because uninitialized pointers are generally accidents waiting to happen, C++ provides a special value that
we can use when we do not have any other valid address to store in a pointer object. The actual value is up to
the implementation, but whenever we set a pointer to zero (or use NULL from the <cstdlib> header), the
compiler will substitute that special address. I like to think of that address as being equivalent to a safe landing
zone on a hard drive; nothing is there, and so landing there does not cause any damage.

C++ adds some extra support to these null pointers by providing that they convert to false when our
code requires a bool value. All other pointer values (addresses) convert to true.

Dynamic Instances
If it were not for the need to deal with dynamically created objects (ones explicitly created while the program
is running), we could probably have avoided studying pointers in this book and have left them as a topic for
an advanced book.

Languages that support object-orientation have more need than most to support objects created in
response to runtime decisions. We will see in the next chapter that we sometimes need the ability to
select the exact type of an object during the execution of a program. In addition, we may need to control
the lifetime of an object rather than leaving such issues to be dealt with because a variable has gone out
of scope.

Languages such as C allow the programmer to acquire a block of raw memory from an area called
‘the heap’ (using the 34malloc() family of library functions) and then ‘manually’ convert that memory
into the object they wish to create. Other languages, such as Python, do all the work behind the scenes

210 CHAPTER 11

and leave the programmer little control. C++ provides a mechanism for creating new instances of a type in
memory that has been provided from somewhere. The default mechanism for providing memory is from
the heap.

That may sound complicated but it is actually easy in practice. All we need to do is write something
such as:

mytype * mt_ptr(new mytype);

The important part above is new mytype, which results in two distinct things happening. First, the
compiler arranges to get a suitable size and aligned block of memory for an instance of mytype. Just to be
thoroughly confusing, C++ names this mechanism operator new and proceeds to provide ways in which
the user can replace and/or overload that operator. We will not go there in this book; just note that it is
possible, and that it is what programmers mean when they talk about ‘overloading new’. The second thing
that happens is that an instance of mytype is then constructed in the provided memory, and a pointer to the
object is returned by the new expression. In the above definition, mt ptr captures and stores the returned
pointer. Another way of expressing that is to say that *mt ptr is the newly created instance of mytype.

The object we just created will continue to exist until we explicitly destroy it. We usually accomplish
this by using the delete expression, whose action is the reverse of new. delete first calls the destructor for
the object pointed to, and then uses operator delete (again, it can be replaced or overloaded) to return
the raw memory to its source (usually the heap).

Playing Cards Revisited
Remember that in the last chapter we had a problem because card is an entity type without a default
constructor. That meant that we could not have an array of card, because arrays require a default constructor
(unless we can use direct initialization, as shown in the early part of this chapter). The following short program
shows you how we can combine pointers and dynamic objects to work our way around this problem:

1 int main(){
2 try{
3 int const cards(5);
4 card * d[cards] = { };
5 for(int i(0); i != cards; ++i){
6 d[i] = new card(card_value(i));
7 }
8 std::random_shuffle(d, d + cards);
9 for(int i(0); i != cards; ++i){

10 d[i]->send_to(std::cout);
11 std::cout << '\n';
12 }
13 for(int i(0); i != cards; ++i){
14 delete d[i];
15 }
16 }
17 catch(...){
18 std::cerr << "An exception occurred.\n";
19 }
20 }

POINTERS, SMART POINTERS, ITERATORS, AND DYNAMIC INSTANCES 211

W A L K T H R O U G H

Line 3 allows us to use a small number of cards for our initial development and then replace it with a
full pack later on if we want to. Line 4 defines an array of pointers to card called d and makes it safe
by initializing them to null pointers (that is the effect of the = when applied to an array of pointers).

Lines 5–7 loop through the array, on each pass creating a dynamic card, whose address is
stored. Note that we can choose which constructor we use with new.

Line 8 uses the library function random shuffle() (declared in the <algorithm> header)
to shuffle the elements of d. The arguments passed to random shuffle() provide a pointer to the
first element of the array and a pointer to the one beyond the end of the array. The whole of the
design for handling collections of objects (in this case an array of pointers) is based on being able to
provide an iterator (a pointer in the case of an array) to the first element and an iterator to one beyond
the end. Without the guarantee that the address one beyond the end of an array is valid, we would
not have been able to apply the standard algorithms to simple arrays.

Lines 9–12 output the shuff led cards in order of their positions. Line 10 demonstrates how we
can use a pointer to access a member function.

We call -> the arrow operator, and we read it as ‘points to’. If you prefer, you could
write (*d[i]).send to(std::cout) (that is, get the instance pointed to by d[i] and apply
send to(std::cout) to it). However, the arrow operator makes the code clearer and so we would
normally prefer it in cases like this one.

Lines 13–15 loop through d, destroying each of the card instances. If we did not do this,
the destructors for the instances would not be called. An important guideline when dealing with
dynamic objects is that every time you use the new expression you must also use the delete
expression. You should also avoid creating dynamic arrays with new, as that is a significantly different
operation, involving multiple calls of the constructor. C++ provides a distinct mechanism for handling
dynamic arrays, which is largely defunct in high-level code. These days we use std::vector<>
when we want a dynamic array, and all the fiddly details are handled for us. (Only people such as the
implementers of std::vector<> need to spend time understanding the subtleties of dynamic arrays
in C++.)

Exception Safety
When we create dynamic objects, we face a problem with their destruction if an exception occurs. How do
we ensure that the dynamic objects will be destroyed? There are several solutions to this. Before going on to a
more general solution, here is one that works in simple cases where we have complete control. Note that it
relies on the guarantee that an attempt to delete a null pointer will result in nothing happening.

We need to ensure that if an exception occurs, the catch clause releases any dynamically allocated
resources (usually memory, but there are other resources we may need to release). As a rule, we use destructors
for releasing resources, but sometimes we can avoid that. Here is our program rearranged to handle the
dynamically created instances of card even if an exception happens:

1 int main(){
2 int const cards(5);
3 card * d[cards] = { };
4 try{
5 for(int i(0); i != cards; ++i){
6 d[i] = new card(card_value(i));

212 CHAPTER 11

7 }
8 std::random_shuffle(d, d + cards);
9 for(int i(0); i != cards; ++i){

10 d[i]->send_to(std::cout);
11 std::cout << '\n';
12 }
13 }
14 catch(...){
15 std::cerr << "An exception occurred.\n";
16 }
17 for(int i(0); i != cards; ++i){
18 delete d[i];
19 }
20 }

This is exactly the same code that we had before except that I have moved some statements outside the
try block. Lines 2 and 3 consist of exception-safe definitions: they will not cause an exception. However, we
need the declaration of d to be outside the try block, because d must remain in scope after the end of that
block. I have moved the loop that deletes the dynamic instances of card to the end of the program (after the
catch(...) clause) so that this cleanup code will run even if an exception fires.

TASK 11.3
1. Create a project. Enter, compile, and run the above program. Note that its

output is indistinguishable from the previous version.

2. Insert the line

throw std::exception();

between lines 7 and 8. Test the program and note that the cleanup happens
immediately after we finish constructing the dynamic instances of card.

3. Move the insertion of throw std::exception(); back to between
lines 4 and 5. Test the resulting program. Note that the destructor for
card is never called – which is what we would hope for, because we
threw an exception before any instances of card were constructed.

4. Insert the line

if(i == 2) throw std::exception;

between lines 6 and 7 in the version of the program from step 1. Test
the resulting program and note that there is a destructor called for every
constructed card.

Redesigning deck
I am going to call the redesigned class pack to avoid confusion, because I am going to change the public
interface in ways that are incompatible with my previous design:

POINTERS, SMART POINTERS, ITERATORS, AND DYNAMIC INSTANCES 213

class pack{
public:

static int const cards = 52;
pack();
pack(std::istream &);
~pack();
void shuffle();
card & next();
void top();
void copy_from(pack const &);
card & get_card(int pos)const;

private:
pack(pack const &);
pack & operator=(pack const &);
int position;
card * pack_[cards];

};

Remember that one of the identifying properties of an entity is its identity. That is why next() and
get card() return a card&. Otherwise, the public interface of pack is much the same as that for deck.

Implementing pack
There are a few trivial bits that we might as well get out of the way before we look at the more complicated
pieces:

int const pack::cards; // define the static member
void pack::top(){

position = 0; // reset to top of pack
}
void pack::shuffle(){

std::random_shuffle(pack_, pack_ + cards); // wrapper for
random_shuffle
}

Next, we have the two constructors. We have to cater for exceptions happening during construction, and
C++ does not, at the time of writing, provide a mechanism for initializing an array of pointers to null pointers
as part of a constructor. The method we used in ordinary code is not available for constructor initializer lists.
However, we need our pointers to be safe to delete even if the process of creating instances of card fails.
The first line of the body of each constructor sets all the pointers in the array to null. We then enter a loop to
create the cards we need. If that process fails for any reason, we destroy any already-constructed instances of
card before rethrowing the exception (that is what the throw by itself means). If no exception interferes,
the constructor completes (and because we are instrumenting our code, the final line of each constructor
body reports successful completion).

pack::pack():position(0), pack_(){
try{

for(int i(0); i != cards; ++i){
pack_[i] = new card(card_value(i));

}
}
catch(...){

214 CHAPTER 11

std::cerr << "An exception occurred.\n";
for(int i(0); i != cards; ++i) delete pack_[i];
throw;

}
std::clog << "Pack of cards created.\n";

}

The pack () in the constructor initializer list initializes the array to null pointers. It is a special syntax
introduced late in the standardization of C++ to provide explicit zero-initialization of an entity.

pack::pack(std::istream & in):position(0), pack_(){
try{
for(int i(0); i != cards; ++i){

card_value const val(fgw::read<card_value>(in));
pack_[i] = new card(val);

}
}
catch(...){
std::cerr << "An exception occurred.\n";
for(int i(0); i != cards; ++i) delete pack_[i];
throw;

}
std::clog << "Pack of cards created from input.\n";

}

fgw::read<> relies on an overload of operator>>() for the type we are reading.
The destructor is straightforward. However, it is no longer a trivial destructor; it has real work to do

before reporting that it has run. This is a typical example of using a destructor to release resources acquired
during construction:

pack::~pack(){
for(int i(0); i != cards; ++i) delete pack_[i];
std::clog << "Pack of cards destroyed.\n";

}

Experienced programmers may recognize that the semantics of the copy from() function below is
copy assignment. I do not want to allow assignment because it is too easy to make a mistake and copy
unintentionally. However, we have to consider all the problems of copying. Look at the for loop. First, I
create a dynamic copy of the next card and hang on to it with a temp. That action might fail with an
exception. However, if it does, the two instances of pack are in stable conditions. The destination one may
now be an incomplete copy, but it is in a destructible state. Once I have created my copy of the next card,
I can safely destroy the one it is replacing and transfer the pointer held in temp to the now vacated position
in the array pack . This is a short function, but work through it carefully, making sure you understand how
it works.

void pack::copy_from(pack const & source){
for(int i(0); i != cards; ++i){
card * temp(new card(source.pack_[i]->get_value()));
delete pack_[i]; // remove current item
pack_[i] = temp;

}
position = source.position;

}

POINTERS, SMART POINTERS, ITERATORS, AND DYNAMIC INSTANCES 215

When I came to implement pack::next() I had to first store a reference to the next card before
updating the pointer. Notice how I have dereferenced the pointer to get the card instance. I chose to do this
at the first opportunity because the compiler may be able to do a better job if it can see what I want as early
as possible.

card & pack::next(){
card & next_card(*pack_[position]);
++position;
if(position == cards) position = 0;
return next_card;

}
card & pack::get_card(int pos)const{

if(pos < 0 or pos > (cards - 1))
throw std::range_error("No such position in pack");

return *pack_[pos];
}

Finally, I am providing an overload for operator<< for pack (the corresponding input is by using
the second constructor). There is rather more detail to this function, so I would not define it inline. You will
need to provide a suitable declaration in card.h and add this definition to card.cpp.

std::ostream & operator<<(std::ostream & out, pack const & d){
for(int i(0); i != pack::cards; ++i){

out << d.get_card(i) << '\n';
}
return out;

}

TASK 11.4
1. Add the definition of pack to card.h and the implementation to card.cpp.

(You may find it helpful to declare a smaller value for pack::cards

while you are trying the code out; I used 5 instead of 52). Make sure that
card.cpp compiles. Now try this simple test program:

int main(){
try{

pack p;
pack p1;
p1.shuffle();
p1.copy_from(p);
p.shuffle();

}
catch(...){

std::cerr << "An exception occurred\n";
}

}

Experiment with this code until you are sure you know how it works.

2. Modify the above program to test input from an input stream. As std::cin
is the only input stream you have available, you will definitely need to
reduce pack::cards to less than the 52 cards in a complete pack.

216 CHAPTER 11

Smart Pointers
We often wish that a pointer would do more for us. For example, when a pointer is holding the address of a
dynamically created object, it would be nice if the object were automatically destroyed when the pointer goes
out of scope.

C++ provides us with the basics to create user-defined types (classes) whose instances have pointer-like
semantics. At a minimum, such classes provide an overload for operator-> (the points-to operator) and
operator* (the dereference operator, not the multiplication operator). In addition, we can provide overloads
for operator++ (the increment operator) and operator-- (the decrement operator). We can also support
addition and subtraction of integer values.

In general, a smart pointer is any user-defined type that provides overloads for operator-> and
operator*. Such types are almost invariably written as class templates, so that they can be used to manage
the addresses of a wide variety of types. They are notoriously difficult to write correctly (and so I will not
be tackling that issue in this book). The difficulty is exemplified by std::auto ptr<>, which is the only
freestanding smart pointer in the current Standard Library; std::auto ptr<> achieves rather less than it was
originally designed to do, and the flaws were discovered too late in the standardization process for correction.

std::auto ptr<> was designed to manage the lifetimes of single dynamic objects (std::vector<>
largely replaces any requirement for dynamic arrays). However, it was also intended for use in collections, to
handle dynamic instances (e.g. pack’s array of card*), so that we would not need to handle destruction of
the dynamic instances explicitly. Unfortunately, there is an issue with the semantics of std::auto ptr<>
that makes it unsafe to use such ‘algorithms’ as sort() and random shuffle() on a collection of them.

There are other widely available smart pointers, such as shared nptr from Boost (see http://www.
boost.org/libs/smart ptr/smart ptr.htm). Some of these will be added to the Standard Library at
its next release (circa 2009). Many of these, such as counted ptr<> and shared ptr<>, will work safely
in a standard container.

Here is a simple program to demonstrate the use of std::auto ptr<>:

int main(){
std::auto_ptr<card> ex(new card(card_value(3)));
std::clog << "Example of using the overloaded ->: ";
ex->send_to(std::clog);
std::clog << '\n';
std::cout << "Example of dereferencing: " << *ex << '\n';

}

std::auto ptr<> is declared in the <memory> header; this may have been included indirectly with
one of the other headers you need for this program, but that will not always be the case.

Note that this program behaves almost the same as one with the first statement replaced by:

card * ex(new card(card_value(3)));

However, if you look carefully, you will see that the raw-pointer version never destroys the card object.

Guidelines for Using std::auto ptr<>
std::auto ptr<> has non-standard copy semantics: it passes the address it holds to the copy. That means
that any copying of a std::auto ptr<> (by using its copy constructor or its copy-assignment operator)
changes the copied object. The intention was to provide a smart pointer type that would relay responsibility
for an object so that only one instance would be responsible for the life of an object at any moment in a
program. This seductive idea has unintentional side effects. The following three guidelines will keep you away
from them:

POINTERS, SMART POINTERS, ITERATORS, AND DYNAMIC INSTANCES 217

• Do not pass it by value. In other words do not write functions that take a std::auto ptr<> by value;
always use a reference parameter.

• Be careful about returning a std::auto ptr<>. Return it by reference if it was provided as a reference
parameter (ensuring that the original retains responsibility for the address); return it by value if it is a local
variable in the current function (transferring the address it contains to the caller).

• Do not use collections (arrays, std::vector<>, etc.) of std::auto ptr<>. The algorithms that
manipulate collections are designed to work with standard copy semantics (where copying does not change
the original).

Iterators
Like so many other terms, the term ‘iterator’ in C++ has a different meaning from that used in computer
science. An iterator in C++ is an object or value that locates another object. Raw pointers and most
smart-pointer types are examples of C++ iterators.

C++ has a hierarchy of iterator concepts. All iterators support operator-> and operator*; in other
words, an iterator is always a smart pointer (unless it is a raw pointer).

In addition, a forward iterator supports operator++ (to move from one instance to the next one).
Forward iterators can be useful for input and output where we can only move forward through a sequence.

A bidirectional iterator is a forward iterator that also supports operator-- (to move to the previous
instance). The iterators for std::list<> (which is a doubly linked list template type) are examples of
bidirectional iterators, because they allow stepwise traversal of a list in either direction. However, a singly
linked list type would normally only provide forward iterators.

Random-access iterators are bidirectional iterators that also support operator+(int) and operator-
(int). A raw pointer is a random-access iterator.

In general, it is the responsibility of the programmer to ensure that invalid iterators are not used. This
includes knowing such things as the possible consequences of appending new elements to a std::vector<>.
The designers of std::vector<> stipulated that the elements must be held in contiguous storage. The
consequence of this requirement is that adding new elements can result in relocating the storage used for the
existing elements. Here is a code snippet to demonstrate the problem:

1 std::vector<int> v(1);
2 v[0] = 1000;
3 std::vector<int>::iterator iter(v.begin());
4 std::cout << *iter << '\n';
5 for(int i(0); i != 100; ++i) v.push_back(i);
6 // at this point iter is no longer valid and must not be dereferenced

Line 1 declares v to be a vector of int with a single element. Line 2 initializes this single element to
1000. Line 3 declares iter as an iterator for a vector of int and initializes it to hold the location of the first
(and only) element of v. Line 5 loops 100 times to add another 100 elements to the end of v. That process
will almost certainly result in moving the location v is using to store its elements. As a result, iter will no
longer hold the location of the first element of v.

If you want to turn the above code into a program and are willing to accept all responsibility for the
consequences, you can replace line 6 with a repeat of line 4. However, if the result is reformatting your hard
drive, do not say I did not warn you. As we are dealing with ints the result of this ‘dangerous’ program is
relatively risk-free (I saved all my work and tried it myself). However, doing the same with a user-defined
type could have bad consequences, so learn not to do it.

This particular kind of invalidation of operators is specific to std::vector<> (and std::string).
The other standard containers, such as std::deque<>, do not have the problem of moving their elements
to new locations. Nonetheless, it is usually a poor idea to hang on to an iterator value for any length of time.
Refresh the values immediately before use.

218 CHAPTER 11

REFERENCE SECTION
Pointers
These are derivative types whose values are the addresses of instances of a type. We obtain the name
of a pointer type by appending an * (asterisk) to the name of the type whose instances we wish to
address. So int* is the pointer type for storing addresses of ints, and card* is the pointer type for
holding addresses of card objects.

If we want to use the object addressed by a pointer, we obtain it by prefixing the pointer with an
asterisk. Therefore, if i ptr is an int* containing the address of an int, *i ptr will be an alias for
the int. If mt ptr is a mytype* holding the address of an instance of mytype, mt ptr->member is
equivalent to (*mt ptr).member. However, we can overload both operator* and operator->
for user-defined types, so that equivalence could be broken if the programmer providing the overloads
does so inconsistently.

Like all other non-reference data types, you can append const to a pointer type to mark the
variable being declared as immutable. So

int i(0);
int* const ic_ptr(&i);

makes ic ptr an immutable pointer to i. In other words, we cannot assign the address of another
int to ic ptr.

We can also const-qualify the type being pointed to. That prevents the program from using
the address stored in the pointer to change the addressed object. For example,

int i(0);
int const * ci_ptr(&i);

restricts uses of *ci ptr (dereferencing ci ptr to get the object whose address is stored in it) to
reading the value of the object addressed. Even though i is mutable (and so we could write i = 0;),
we cannot write *ci ptr = 1;.

The following is equivalent to the above definition of ci ptr:

const int * ci_ptr(&i);

However, for consistency, I prefer to place the const qualifier directly to the right of the type being
qualified.

A pointer to an element of an array (strictly speaking, C++ mostly treats single objects as arrays
of one element) can be incremented (++) or decremented (--) to locate an immediately succeeding
or preceding element of the same type. You may also add or subtract an integer value to move forward
or backward that number of elements. It is the responsibility of the programmer to ensure that such
an element exists and is part of the same array. Stepping off either end of an array results in undefined
behavior. There is one exception to this rule: C++ allows a pointer to hold the address of just beyond
an array or object, but any attempt to dereference such a pointer results in undefined behavior.

There is a second special case: assigning (or initializing) 0 (often provided as a manifest constant
called NULL) to a pointer results in placing the pointer in a safe state (but one that must not be
dereferenced). We call a pointer that results from this a null pointer. A null pointer has the bool value
false; all other pointers are treated as true.

C++ provides a special pointer type, void*, which can store the address of any instance of a
data type. However, the only thing we can do with such a pointer is convert it back to a correctly
typed pointer for the address stored.

C++ also supports pointers to functions.

POINTERS, SMART POINTERS, ITERATORS, AND DYNAMIC INSTANCES 219

Arrays
C++ has a primitive (one-dimensional) array mechanism inherited from C. Arrays are always based
on zero; in other words, the first element of an array x is x[0]. There are three variants for declaring
an array:

• type array-name[number-of-elements];
Given that number-of-elements is a compile-time constant, this declares an array array-name of number-of-
elements instances of type.

• type array-name[number-of-elements] = {initializer-list};
The array array-name is said to be directly initialized. If there are fewer initializers than number-of-elements,
the remaining elements are default-initialized (to zero for fundamental types and pointers).

• type array-name[] = {initializer-list};
The number of elements in the array array-name is implicitly determined from the number of
initializers that have been provided.

Using the name of an array in a context where we need a pointer results in the first element of
the array being addressed.

We cannot pass or return arrays by value; instead, we use the address of the array (often
implicitly).

If we need multi-dimensional arrays we have to create arrays of arrays (of arrays . . .). For
example, a ten-by-eight array of int is declared as:

int twoD[10][8];

An initialized two-dimensional array of double might be declared as

double array2d[3][5] = {{0, 1, 2, 3, 4}, {2,4,7}};

which would create an array of the following form:

0.0 1.0 2.0 3.0 4.0
2.0 4.0 7.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

Note that once you start initializing, any elements without explicit initializers are set to 0.
Only the first dimension can have an implicit size. Therefore:

int array[][3] = {{2, 3, 4}, {3}};

defines an array of two arrays of three ints. However,

int array[4][] = {{2, 3, 4}, {3}};

is an error.

Smart Pointers
The term ‘smart pointer’ refers to a user-defined type that, at a minimum, provides overloads for
operator-> (the arrow operator, which is applied to a pointer or smart pointer to access a member
of the instance whose location is provided by the (smart) pointer) and operator* (which converts
a (smart) pointer into the object it locates, the operation called dereferencing).

220 CHAPTER 11

Smart pointers allow us to add extra behavior to the pointer concept. We often use a smart-
pointer type to manage the lifetime of a dynamic object. Such management is important in contexts
where exceptions may have to be dealt with; we need to deal with the release of resources.

std::auto ptr<> is the only smart pointer provided by the Standard Library. It is of limited
usefulness because of its quirky copy semantics. Other smart-pointer types are available from Boost
(http://www.boost.org/), which is the official site for a group of highly skilled library developers
testing items that might be added to the next full release of C++ (circa 2009), and some of them are
in the recently published Library Technical Report.

Iterators
A C++ iterator does not match the computer-science concept of an iterator. In C++, an iterator is any
type (or value of such a type) that locates an object (i.e. it is a raw pointer or smart pointer). The
various Standard Library collection types such as std::vector<>, std::map<>, etc. provide nested
iterator types to support access to the contained elements.

Generic Programming and the STL [Austern 1999] gives a detailed description of the design and
implementation of iterators.

C H A P T E R 12
User-Defined Types, Part 4:
Class hierarchies,
polymorphism, inheritance,
and subtypes

C++ provides a mechanism for deriving a new user-defined class type from an existing one. In the early
days of C++, this mechanism was widely used by programmers who wanted to add to or modify the
functionality of an existing class. These days, that is less common, because programmers have become
more sophisticated in the use of their tools.

C++ provides three ways to use an existing class as the base for a new one: public, protected, and
private inheritance. In this book, I will focus on public inheritance, because the correct use of the other
two forms is highly specialized. I am also going to stick strictly to the use of inheritance for providing a
class hierarchy where different subclasses may have different implementations of the same interface.

The concept of a planar shape is a common example. Every shape should have a function that
displays (draws) it on the screen. However, the way we draw a circle is quite different from the way
we draw a regular pentagon. If we had a collection of shapes created at run time according to a user’s
choices, one piece of functionality for the program would be to refresh the display on the monitor. We
would want to iterate through the collection, asking each shape to display itself.

This process of providing different implementations for different cases is an example of something
that computer science calls polymorphism (literally, ‘many behaviors’). C++ supports several types of
polymorphism – both overloading and templates are, in some uses, examples of static (compile-time)
polymorphism. We are going to use inheritance to provide runtime, or dynamic, polymorphism. In other
words, the compiler delays the decision as to which detailed behavior is appropriate until execution time.

For the purposes of introducing you to the concept and implementation of polymorphism, I am
going to develop some code to deal with chess pieces. Every chess piece can move, but the details of the
move depend on which piece it is. I will deal with the advanced issue where we need an object (chess
piece) to be able to change its behavior (the promotion of a pawn to another piece) in a later chapter.
In computer-science terminology, a specific chess piece (such as a knight or a bishop) is a subtype of the
concept of a chess piece.

We use the term ‘subtyping’ to refer to cases where objects of a derived type are strictly usable
wherever we require an object of the base type. An object of a subtype may have extra behavior, but it
has all the behavior of the base type even if the implementation details may be different. We often call
this relationship between base and derived type the Liskov Substitution Principle (after Barbara Liskov,
who first stated it).

Some readers may not be familiar with the basic moves of chess pieces. I did a quick search of the
Internet when I started to write this chapter, using the keywords ‘chess’, ‘tutorial’, and ‘beginners’. I
got over a quarter of a million hits. Fortunately, several early hits met my need. At the time of writing,
http://www.intuitor.com/chess/ provides exactly what we need. It might not still be there when
you look, which is why I am telling you how I found it.

222 CHAPTER 12

An Interface for a Chess Piece

Our first step is to decide what the common properties and types of behavior for a chess piece are. Every
chess piece has a color (black or white) and a location (its position on the chessboard – or off the chessboard
because it has been captured). Every chess piece has the ability to move, but exactly what moves are legal
depends on which piece it is, and in the case of rooks (castles) and kings we have to track past behavior (to
allow for the combined move of ‘castling’). That last piece of behavior is difficult, because it is not a property
of an individual piece.

Here is a possible design for a class to represent a general chess piece:

class basic_chesspiece{
public:

struct position{
unsigned char file; // location across the board
unsigned char rank; // location towards the opponent

};
static position const off_board;
virtual bool move(position const &);
position where()const;
bool is_white()const;
explicit basic_chesspiece(bool white = true, bool castle = false);
explicit basic_chesspiece(position const &, bool white = true,

bool castle = false);
virtual ~basic_chesspiece();

private:
bool const white_; // a chess piece is white or not-white
position location_;
bool can_castle_;

// disable copying
basic_chesspiece(basic_chesspiece const &);
basic_chesspiece & operator=(basic_chesspiece const &);

};

W A L K T H R O U G H

There are several new things in the above definition. The first, though not entirely new (I have
mentioned it before), is the nested struct definition. Let me answer the simple question first: why
did I define it as a struct rather than as a class? You already know that the two keywords are, apart
from one small detail, synonymous. The small detail is that a struct has public access by default. I
want to emphasize that the position type that is a member of basic chesspiece gives public
access to its data. Whether or not that is a good design is a different issue, one that we could debate
over a beer sometime.

The second question is: why do I have a nested type at all? The location of a chess piece on a
chessboard is made up of the rank (or row) and file (or column) of the square that it is on. Those two
values are intimately related and I want to encapsulate that relationship into a type. I do not want to
provide any special behavior for this type – well, not at the moment, though I might change my mind

CLASS HIERARCHIES, POLYMORPHISM, INHERITANCE, AND SUBTYPES 223

later on. C++ (like C and many other languages, but unlike Python, for example) restricts returns
from functions to a single value or object. The position type allows me to package the two values
locating a chess piece into a single object or value.

The next thing you will notice is the appearance of a new keyword, virtual. The effect of
this keyword is to warn the compiler that we are declaring a member function that may have more
than one implementation. Yes, read that again. This is not overloading but something else: a single
declaration with context-dependent implementations. Please do not panic – you will shortly see how
this can work, and how the context for the decision can be delayed until execution time. The technical
term for such delayed selection of implementation code is ‘dynamic binding.’

Now have a quick look at the end of the definition before we look at the rest of the public
interface. The last two declarations are the idiomatic way that C++ programmers use to switch off
the copy semantics that class types have by default. Because we have declared them, the compiler is
relieved of the responsibility for them. Because they are private, nothing outside the class can call
them; any attempt to do so will result in the compiler diagnosing an access violation. Moreover, when
we come to write the implementation, we will not define those two functions; that way, an accidental
attempt to use one while implementing the class will cause a link-time error (‘undefined function’ or
something equivalent).

Back to the public interface. The member functions move() and where() are to allow us to
instruct a chess piece to move somewhere else, and to ask a chess piece where it is currently (either
on a particular square or off the board). The implementation of move() will depend on which chess
piece we are using, so we declare it as virtual. In other words, we do not know what constitutes
a legitimate move until we know which piece we are moving. We cannot know that at compile time
(statically) and so must delay the choice of implementation until run time (dynamic binding).

It is probably not clear why I have declared the destructor as virtual. For the time being, take
it as a coding guideline that any class with a virtual member function and a public destructor (yes,
there are special class designs which incorporate non-public destructors) must declare a virtual
public destructor.

All we have left of the public interface are the two constructors and a static data member.
I have declared both constructors as explicit because we could use either of them with a single
argument, and I do not want that possibility to allow the compiler to use a constructor as an implicit
conversion operator (in the first case from bool to basic chesspiece, and in the second case from
basic chesspiece::position to basic chesspiece).

The static data member off board avoids having some sort of magic value for the position of
a chess piece that is off the board. How we represent the ‘off board’ location is unimportant (to the
user), but it will help in reading code if we provide a name for that special value for position. In
addition, it is a value that users of the class may need to refer to.

Testing the Interface
As soon as we have defined a tentative design for a class, we should create a test program that, at a minimum,
uses each of the public members of the class. Here is an example of one for basic chesspiece:

#include "chess.h"
#include <iostream>
#include <ostream>

int main(){
try{

224 CHAPTER 12

basic_chesspiece bc;
basic_chesspiece::position pos;
pos = bc.where();
std::cout << "The piece is on rank " << pos.rank

<< ", file " << pos.file << ".\n";
bc.move(pos);
std::cout << "The piece is ";
if(bc.is_white()) std::cout << "white";
else std::cout << "black";
std::cout << ".\n";

}
catch(...){
std::cerr << "Caught an exception.\n";

}
}

T R Y T H I S
Create a new project. Create three files in that project called test chess.cpp, chess.h and
chess.cpp.

Type the above code into test chess.cpp and the class definition into chess.h.
Remember to add a suitable header guard. For the moment, leave chess.cpp empty.

As long as you have typed the source code correctly, you should be able to compile
test chess.cpp. However, if you try to build the project you will get a whole bundle of
‘undefined reference to’ errors. It is time we tackled that.

Implementing basic chesspiece
The implementation of this class is straightforward, but to keep us all on track here is mine:

#include "chess.h"

bool basic_chesspiece::move(position const & loc){
location_ = loc;
return true;

}
basic_chesspiece::position basic_chesspiece::where()const{

return location_;
}
bool basic_chesspiece::is_white()const{return white_;}
basic_chesspiece::basic_chesspiece(bool white, bool castle)

:white_(white), can_castle_(castle){ }
basic_chesspiece::basic_chesspiece(position const & location, bool white,

bool castle):white_(white), location_(location), can_castle_(castle){ }
basic_chesspiece::~basic_chesspiece(){ }
basic_chesspiece::position const basic_chesspiece::off_board = {9, 9};

Please note that this is very much a bare-bones implementation and we will need to make it robust and
reliable. However, there are a couple of things to notice straight away. The first is that we drop the keywords

CLASS HIERARCHIES, POLYMORPHISM, INHERITANCE, AND SUBTYPES 225

virtual and explicit from definitions. They tell the compiler things it needs to know when using the
declarations, but those things have no impact on the definitions. In much the same way, default arguments
belong in declarations and not in definitions.

The final source-code issue concerns how we write the return type for where(). While parameter
types are treated as being in the scope of the class that we are implementing, return types are not. This is
because C++ treats source code on a strictly sequential basis. When the compiler sees the return type, it has
not yet seen the function name, or any qualification applied to that name. Consequently we have to give
position its fully elaborated name of basic chesspiece::position when we use it as the return type
for where().

T R Y T H I S
Copy the above source code into chess.cpp and compile it. When you have it compiling without
errors, build the project (which should now build without linker errors) and execute the result.
Look carefully at the output. Unless you are unlucky, the output will display a couple of strange
symbols in the console window. There are two reasons for this.

The first reason is that the rank and file members of position are unsigned chars.
When we send such data to an output stream (std::cout in this case), they are interpreted as
characters, not numbers. We probably want numbers. (Chess buffs might want to represent files
in standard chess notation, but let us keep it simple for now.) We need to tell the compiler that
we want the values treated as integers. We need to use a cast to communicate that instruction to
the compiler. In this case, the most appropriate cast is static cast<int>, which instructs the
compiler to treat the following value as an int value. Edit the source code of test chess.cpp
so that the output line is:

std::cout << "The piece is on rank " << static_cast<int>(pos.rank)
<< ", file " << static_cast<int>(pos.file)<< ".\n";

Now build and run the program again. You will see two nonsense values for the rank and
file. We never set those values in the constructor, and the rule for fundamental types is that
if the programmer does not give them a value they remain uninitialized. In most cases we get
undefined behavior (remember, that is not good) if we try to read an uninitialized value. There is
an exception to this rule for unsigned char: you can read the value safely but it will be random
junk (whatever happens to be currently in that byte of memory). That is not normally acceptable,
so we need to address the issue in the constructor.

The easiest way to handle this is to instruct the compiler that you want to zero-initialize
location . C++ has a little technique to force initialization of objects that lack an explicit
constructor. It is easier to show you the technique by example than to try to describe it in words.
Here is the amended first constructor:

basic_chesspiece::basic_chesspiece(bool white, bool castle)
:white_(white), location_(off_board), can_castle_(castle){ }

That makes the position default to off the board.
Try the amended code and you should now get 9 for both rank and file.

Improving the Implementation
The code we have written so far assumes that code using the basic chesspiece type will only use correct
locations. We need to decide how we deal with attempts to move a piece to a non-existent square. Quite

226 CHAPTER 12

separately, and only in the context of a game, we will need to decide how to deal with occupied squares. If
you have not already realized, one of the secrets of good programming is to deal with things one problem at
a time.

There are two places where a piece’s position can be provided from outside. That means that there are
two places where a caller can provide invalid position data. Following the principle of avoiding doing things
twice, I am going to provide a single function to validate a position. Furthermore, validation of position data is
not a concern of the user and so should be done by a private member function (we keep pure implementation
details private). The last thing we need to do before completing the validation routine is to decide what we
will do with invalid data. When you write production code this becomes a serious design decision. However,
if wrong position data is ever supplied, the program is probably in trouble. That leads me to decide that
invalid data will result in an exception.

T R Y T H I S
Add this declaration to the private interface of the basic chesspiece class:

position const & is_valid_position(position);

Now add this to the implementation file:

basic_chesspiece::position const &
basic_chesspiece::is_valid_position(position location){

if((location.rank == off_board.rank) and
(location.file == off_board.file))

return location;
if(location.file > 7) throw std::out_of_range("Invalid file");
if(location.rank > 7) throw std::out_of_range("Invalid rank");
return location;

}

You will have to #include <stdexcept> in chess.cpp to get that definition to compile.
We do not need to check that position::rank and position::file are not less than zero
(the first rank and file) because we are using unsigned char for those members of position.
Note that the code first checks for the off-board position.

When that compiles correctly, it will be time to use it in move() and in the constructor that
has a position parameter. When you look at my code using this validation function you may
see why I chose that slightly unexpected return. I looked ahead and realized that I would want to
validate a position in the context of an initializer list. However, initializers have to be expressions
that provide the initialization value. The two altered functions should be:

bool basic_chesspiece::move(position const & loc){
location_ = is_valid_position(loc);
return true;

}
basic_chesspiece::basic_chesspiece(position const & location,

bool white, bool castle):white_(white),
location_(is_valid_position(location)), can_castle_(castle){

}

You should get the same output when you recompile and run the test program. Now modify
the test program to test that the implementation correctly handles invalid positions. Make sure that
the off board position is treated as valid.

CLASS HIERARCHIES, POLYMORPHISM, INHERITANCE, AND SUBTYPES 227

Adding Polish
Strictly speaking, a valid location is nothing directly to do with a basic chesspiece but is a property
of where a piece can be, i.e. a property of a basic chesspiece::position. Furthermore, it is quite
reasonable for a user of our code to want to validate a position. That suggests that the validation function
should be a member of the position type. Because structs are just classes in C++ (with public access by
default), we are free to add member functions to them. Add the following declaration to the definition of
position:

position const & is_valid()const;

I have simplified the name because the scope of the declaration provides context. I have made it a const
member function because we should be able to validate a const position. There are some design issues
here, and at some stage you may want to come back to this design and rework it. For example, you might
decide that position should have a constructor that validates its arguments.

Add the following definition to the implementation file (chess.cpp):

basic_chesspiece::position const &
basic_chesspiece::position::is_valid()const{

if((rank == off_board.rank) and (file == off_board.file)) return *this;
if(rank > 7) throw std::out_of_range("Invalid rank");
if(file > 7) throw std::out_of_range("Invalid file");
return *this;

}

Alternatively, simply use your text editor to edit the code you put in earlier for basic chesspiece::
is valid position(). Now we have to decide what to do about the is valid position() member
of basic chesspiece. In this case, it is easy just to remove it and edit the definitions of the member
function and constructor that used it so that they use the is valid() member function of position
instead. However, we often do not want to make that kind of change when it means touching lots of tested
and working code. All we essentially need to do is make the new function do the work wherever we called
the old one.

The quickest way to do that is to change is valid position() into an in-class forwarding function:

basic_chesspiece::position
basic_chesspiece::is_valid_position(position const & location){

return location.is_valid();
}

Note that there are some changes. The function now returns a position by value. Actually, it should have
done previously because my original code had a subtle error in it: it returned a reference to a value parameter.
The lifetime of a value parameter is the duration of the function. When the function returns, the parameter
dies and we have a hanging reference (one that refers to a no-longer-existent object).

I decided to leave the flaw in my code because I wanted to give you an example of just how easy it
is to mis-manage lifetime issues. Had the parameter been a reference parameter, then we could safely have
returned it by reference, because the argument bound to a reference parameter must have a life that exceeds
that of the function.

Why did I notice the error now when I was writing the forwarding version of is valid position()?
Well, position::is valid() returns a const reference, and I suddenly realized that I had a prob-
lem, because my earlier version of is valid position() returned a plain reference. C++ does
not allow us to pass a const reference to a plain reference. When I started to think about how I
should deal with this, I realized that the original code was broken. I hope this is a useful lesson for
all of us.

228 CHAPTER 12

Before I go on, there is an even subtler problem with const reference parameters; unlike the plain
version, these can take a temporary instance as an argument. The problem with a temporary is that it goes
away at the end of the expression that created it. There is a real risk that that happens before you finish
using the returned reference. Add ‘‘Do not return a const reference parameter by const reference unless
you are sure you understand the consequences’’ to your collection of guidelines. const references are like
values in this context; it is unsafe to return them by reference, even const reference. It is fine to return a
const reference parameter by value (as I have done in the above code). If copying is either impossible or too
expensive, there are other, more complicated, ways of dealing with returns, but they rely on more advanced
design methods. Such methods matter when working on a large-scale application, but this is not the place to
tackle such design problems.

If you have not already done so, remove the definition of is valid position() from the
implementation file. If you do not, the in-class definition will cause a conflict and the compiler will issue an
error.

T R Y T H I S
If you have not already done so, make all the above changes to chess.h and chess.cpp. Rebuild
the project, and check that the program still runs as it did before.

T R Y T H I S
Add extra statements to main() in test chess.cpp to test all the public members of
basic chesspiece. Note that we should include tests of any public members of position.
Testing the public interface will indirectly test most private member functions. However, you
should still test that the private declarations intended to lock out copy semantics are working as
expected. You may have to comment out some of the tests when producing an executable, but that
is not a justification for not including them in the first place.

You may find it helpful to instrument the constructors and destructor for the purposes of
initial tests.

Note that every time you change an implementation of a class, you should run a battery of
tests to ensure that you have not inadvertently changed the behavior of existing code.

Implementing a Knight
We now have a working abstraction for a chess piece. It is time to learn how we refine such an abstraction to
deal with specific pieces. The knight is the simplest piece for our purpose. It has no special moves, and we do
not need to consider how we might deal with the positions of other pieces blocking a move. However, notice
that we should not be concerning ourselves with blocking pieces, because that is not a consideration until we
try to program a game.

C++ uses a mechanism called public inheritance for specializing an abstraction. Note that inheritance
can be used for other purposes, some of which I will deal with in later chapters.

Here is the definition for a new class to represent a chess knight:

class knight: public basic_chesspiece{
public:

virtual bool move(position const &);
explicit knight(bool white = true);

CLASS HIERARCHIES, POLYMORPHISM, INHERITANCE, AND SUBTYPES 229

explicit knight(position const &, bool white = true);
virtual ~basic_chesspiece();

private:
};

The first line of the definition states that knight is a public example of a basic chesspiece. One
of the commonest errors is leaving out the public qualifier of the base class (the type named after the
colon). Unfortunately, inheritance defaults to private; private inheritance is a special technique that we use
infrequently and you will not need for this book.

The knight type inherits all the behavior of basic chesspiece. However, it does not have any
access rights to the private interface of basic chesspiece.

A derived type (the term used to refer to classes based on some other class) does not inherit the constructors
and destructor from its base. That makes sense because these are special functions designed to deal with the
specifics of a type. That is not the whole story; a derived type is constructed on top of an instance of its base
type. A constructor for a derived type first ‘calls’ a constructor for its base type. Either it implicitly uses the
base type’s default constructor, or the programmer provides an explicit call in the initializer list.

Note that the constructors for knight do not need a parameter for castling, because knights cannot
castle. Also, we do not need to suppress copy semantics for knight, because it effectively inherits that
property from basic chesspiece.

Destruction is always carried out in reverse order to construction. Therefore, when we come to destroy
a knight, its destructor is called first and the base destructor is called afterwards.

It is easier to grasp these technicalities if we instrument our code to report construction and destruction.
In addition, while we are learning, we should add instrumentation to other functions, so that we can observe
their use in our programs.

Constructors and Destructor for knight
Here are suitable implementations of these three functions:

knight::knight(bool white):basic_chesspiece(white){
std::cout << "knight constructor 1 called.\n";

}
knight::knight(position const & pos, bool white):basic_chesspiece(pos, white){

std::cout << "knight constructor 2 called.\n";
}
knight::~knight(){

std::cout << "knight destructor called.\n";
}

Notice how we call a base constructor explicitly in the initializer section of the constructor definitions.
The base constructors and base destructor do all the real work. We do not need to provide an argument for
the castle parameters in the constructors for basic chesspiece, because those constructors default to
the appropriate value.

Implementation of move() for knight
Remember that we declared the move() function as virtual in basic chesspiece(); that has warned
the compiler that the derived types may provide their own implementation. Here is a suitable implementation
of move() for a knight:

1 bool knight::move(position const & destination){
2 destination.is_valid();

230 CHAPTER 12

3 position const current(where());
4 int const rank_dif(std::abs(current.rank - destination.rank));
5 if(rank_dif > 2 or rank_dif < 1) return false;
6 int const file_dif(std::abs(current.file - destination.file));
7 if(file_dif > 2 or file_dif < 1) return false;
8 if(rank_dif + file_dif != 3) return false;
9 return basic_chesspiece::move(destination);

10 }

W A L K T H R O U G H

Line 2 validates the supplied destination as being a possible one, either a square on the chessboard
or our representation for ‘off the board.’ If destination is invalid, is valid() throws an
exception, and the rest of this implementation will be abandoned.

Line 3 uses where() to get hold of the current position of the knight in question. We have to
do it this way because a derived class does not have direct access to the base class’s private interface.
We do not have to use fully elaborated names for base-class members when in the scope of a derived
class; in the scope of knight, position is fine.

Lines 4–8 check that the new position is a correct knight’s move from the current one. There
are many ways to do this check, but it is important to do it. My style is to eliminate the impossible
ones progressively. Finally, line 9 delegates the work of updating the position to the base-class
version of move(). Note the syntax for calling a base class implementation of a virtual function;
using the fully elaborated name turns off the dynamic behavior and leaves us with the specified
behavior.

std::abs() is a function that C++ inherited from C. Its declaration is in <cstdlib>.
It converts a negative int value into the matching positive one. It returns non-negative values
unchanged.

Notice that I always declare and initialize variables as const if they will not change during
their lifetime. It is a small point, but it avoids accidental abuse and gives the compiler a little extra
information that it may be able to use to provide code that is more efficient.

T R Y T H I S
Update chess.h and chess.cpp to include the definition and implementation for knight.
Make sure that chess.cpp compiles (do not forget to #include any necessary headers). While
you are at it, ensure that you have instrumented the basic chesspiece constructors and
destructor.

Now create a new test file called test knight.cpp. Add it to the project, and remove
test chess.cpp from the project. Add the following code to test knight.cpp:

#include "chess.h"
#include <iostream>
#include <ostream>

int main(){
try{

knight k1;

CLASS HIERARCHIES, POLYMORPHISM, INHERITANCE, AND SUBTYPES 231

basic_chesspiece::position pos = {1, 2};
if(k1.move(pos)) std::cout << "OK.";
else std::cout << "Cannot make that move.";
std::cout << '\n';

}
catch(...){ std::cerr << "Caught an exception.\n";}

}

Now compile, link, and execute the resulting program. Look carefully at the output. Do you
notice anything odd? You should – and it was a genuine error of mine that I only picked up when
testing: I forgot to deal with a piece that is off the board.

Note that we are going to have the same check for moves for all types of chess piece. That
suggests to me that we should amend basic::chesspiece::move() to check for attempts to
move an off-board piece.

There is more than one way to handle this. Should we treat a move of a piece that is off the
board as representing placing it on the board, or should we treat it as an illegal move? Moreover,
what about removing a piece from the board? I think that I would opt for adding two member
functions to basic chesspiece: remove(), to place a piece in the off-board position; and
put at(position), to place a piece on the board. The first of those is the same for all pieces and
so does not need to be virtual, but the second has to deal with the fact that you cannot put pawns
on the eighth rank. That means it will have to be virtual, though all other pieces can share the
same implementation.

Experiment by changing the details of the code in test knight.cpp until you are sure
you understand what is happening.

Getting Polymorphic Behavior
So far, the code we have been using does not leave the decision about the implementation detail until the
program runs. Before we go on to deal with other chess pieces, we need something that will exhibit this
behavior. Add this global inline function to chess.h:

inline bool make_move(basic_chesspiece & bc_ref,
basic_chesspiece::position destination){

return bc_ref.move(destination);
}

I used an inline function because make move() delegates all its behavior to the virtual function declared in
basic chesspiece.

This function demonstrates the case where (at the point of definition) the compiler has no knowledge
of whether the reference parameter of make move() will refer to a basic chesspiece or to a subtype.

You are about to find two interesting properties of inheritance and references. The first is that a
reference can bind to a derived type rather than just the type that it references explicitly. The second is that
the subsequent code will work correctly with the real (so-called dynamic) type of the object bound to the
reference.

T R Y T H I S
Now that you have added make move(), test it from the main() used to test knight (in
test knight.cpp), with the following added code:

232 CHAPTER 12

basic_chesspiece bc(pos);
basic_chesspiece::position pos1 = {3, 4};
if(make_move(bc, pos1)) std::cout << "OK.";
else std::cout << "Cannot make that move.";
std::cout << '\n';

Moving a piece from (1, 2) to (3, 4) is perfectly OK for the abstraction we are calling
basic chesspiece. If you try the code you will find that this part of main() generates ‘OK’
as output. Now change the definition of bc to:

knight bc(pos); // bc is now a deceptive name

Build and execute the resulting program. make move() now executes the code for moving a
knight object, and that code spots that the move from (1, 2) to (3, 4) is not allowed for a knight
in chess. In other words, make move() executes the correct code for the exact type of chess piece
it is passed by reference.

Finally, change the declaration of make move() so that its first parameter gets a basic
chesspiece by value (i.e. edit out the &), and note the different behavior of the program. This
is the result of what C++ calls slicing: passing a derived type by value to a base type. When you do
that, only the base part of the derived type is copied, and we lose the specialized dynamic behavior.
In general, using a value parameter for a polymorphic type is a design error.

Getting the Identity

Polymorphic behavior can be quite difficult to grasp, so I am adding another virtual function to
basic chesspiece and providing different implementations for that class and for knight. The new
function reports the type of the piece. Here is the declaration to go in the public interface of both
basic chesspiece and knight:

virtual void what(std::ostream & = std::cout)const;

C++ does not require that the declarations in derived classes be explicitly qualified with virtual: once a
function is virtual it will be virtual in all derived classes. Now add these two implementations:

void basic_chesspiece::what(std::ostream & out)const{
out << "Abstract chess piece\n";

}
void knight::what(std::ostream & out)const{

out << "Knight\n";
}

As always, we need something to test our new functionality. Add the following global inline function
declaration to chess.h:

inline void what_are_you(basic_chesspiece const & bc_ref){
bc_ref.what();

}

CLASS HIERARCHIES, POLYMORPHISM, INHERITANCE, AND SUBTYPES 233

T R Y T H I S
Add a suitable statement to test knight; compile, link, and execute the resulting code. Make
sure you test both the case when you call what are you() with a basic chesspiece and the
case when you call it with a knight.

(When I first tried this, I forgot to add #include <iostream> and #include <ostream>
to chess.h so that the compiler would recognize my use of std::ostream and std::cout. I
spent a very uncomfortable few minutes trying to understand the very unhelpful error messages
that resulted from this error. I am mentioning this to illustrate that when things go wrong, a
compiler may not diagnose the problem correctly. Whenever you get an error message that makes
no sense, check that you have included all the required headers.)

Removing an Irritant
As I have been working on the test code for this chapter, I have become increasingly irritated by the need
to create explicit instances of basic chesspiece::position. I would like to be able to write something
such as:

knight k(basic_chesspiece::position(2, 3));

However, that will not work because such syntax requires a constructor. That is easily fixed by adding
one to the definition of position. Here are the declaration for chess.h and the definition for chess.cpp:

explicit position(unsigned char rank = 0, unsigned char file = 0);
basic_chesspiece::position::position(unsigned char r, unsigned char c)

: rank(r), file(c){ }

The default arguments ensure that our earlier usage of position() will continue to work as it did before.
The constructor is very simple: it just initializes the two data members of position. Many programmers use
in-class definitions for such simple cases. If you want to try that, replace the declaration of the constructor for
position with:

explicit position(unsigned char r, unsigned char c): rank(r), file(c){ }

Do not forget to remove the definition of the constructor from chess.cpp.
However, when you come to run either of our test programs, you will discover that we have broken

our earlier code, because (at the time of writing, though this may changed in the next version of the C++
Standard, due in 2009) once a class type has a user-provided constructor, it loses the facility of initializing
instances (called direct initialization) with the = { . . . } syntax. We must fix the broken statements by replacing,
for example,

basic_chesspiece::position pos = {1, 2};

with:

basic_chesspiece::position pos(1, 2);

This is not a big change to make early in the use of a class, but it becomes increasingly annoying when we
have more code written using the previous version. In general, adding member functions has no effect on
existing code, but adding a user-written constructor to a class without one can and does break existing code.

234 CHAPTER 12

Moving to an Occupied Square
One problem with our design is that it is very easy to confuse responsibilities. The potential move of a chess
piece has nothing to do with what may be at the other end. That is an issue to do with a game of chess;
collaboration between a chessboard object and a game object should handle such problems. We simply do
not have to consider them at this stage, where we are dealing with the moves of a single piece.

In a similar way, when we move on to other pieces we will not consider blocking pieces, but leave such
consideration to the design and implementation of a game.

Another Piece
Before asking you to deal with the rest of the chess pieces, here is my implementation of a king. First, the
definition for chess.h:

class king: public basic_chesspiece{
public:

virtual void what(std::ostream & = std::cout)const;
virtual bool move(position const &);
explicit king(bool white = true);
explicit king(position const &, bool white = true);
virtual ~king();

private: // not strictly needed but makes code ready for later additions
};

Yes, that is the same as the definition of knight but with ‘king’ replacing ‘knight’. In fact, all the
definitions for the different chess pieces will follow an identical design. This is not an accident. Every chess
piece has the same fundamental behavior and only varies in the detail. However, that detail is exactly what we
provide via the implementation.

Here is an implementation of king:

void king::what(std::ostream & out)const{
out << "King\n";

}
king::king(bool white):basic_chesspiece(white, true){

std::cout << "king constructor 1 called.\n";
}
king::king(position const & pos, bool white)

:basic_chesspiece(pos, white, true){
std::cout << "king constructor 2 called.\n";

}
king::~king(){

std::cout << "king destructor called.\n";
}
bool king::move(position const & destination){

destination.is_valid();
position const current(where());
int const rank_dif(std::abs(current.rank - destination.rank));
if(rank_dif > 1) return false;
int const file_dif(std::abs(current.file - destination.file));
if(file_dif > 1) return false;
return basic_chesspiece::move(destination);

}

CLASS HIERARCHIES, POLYMORPHISM, INHERITANCE, AND SUBTYPES 235

Now look carefully at that implementation of king::move(). It does not consider the king’s special
castling move. There are two points to deal with. First, once a king makes a move, it loses its ability to castle.
Second, we need a way to deal with actual castling.

We would like to be able to add

can_castle_ = false;

somewhere in the implementation of move(). If we try doing this by adding that line into the definition
of king::move() (yes, do so), we get an access-violation error: a derived type does not have access
to the private interface of its base type. We do not want to fix that problem by allowing public writing
to can castle ; that would be a breach of the concept of data hiding (one of the basic concepts for
object-oriented programming).

This is where the protected interface comes into play. If we want to make some behavior of a class
available to objects of classes derived from it but not to anything else, we declare it as protected, using the
protected keyword. We use that keyword in the same way that we use private and public in a class
definition. Go to the definition of basic chesspiece and add this section:

protected:
bool can_castle();
void disable_castle();

The implementations are straightforward:

bool basic_chesspiece::can_castle(){
return can_castle_;

}
void basic_chesspiece::disable_castle(){

can_castle_ = false;
}

disable castle() is a bit unusual because it is a one-way switch, but that matches the way the
property works in the game of chess. Both these functions are so simple that there would be no harm in
moving their definitions into the class definition and thereby making them implicitly inline.

Once we have enhanced the basic chesspiece class definition with these two protected member
functions, we can correct our king::move() implementation by adding the lines shown in bold in the
following:

bool king::move(position const & destination){
destination.is_valid();
position const current(where());
int const rank_dif(std::abs(current.rank - destination.rank));
if(rank_dif > 1) return false;
int const file_dif(std::abs(current.file - destination.file));
if(rank_dif == 0 and file_dif == 2)

return castle(destination); // delegate to special function
if(file_dif > 1) return false;
disable_castle(); // lose ability to castle
return basic_chesspiece::move(destination);

}
The first pair of added lines involves calling a special function to handle castling (which we infer from

an attempt to move a king two places left or right). We call such functions ‘helper functions’, and generally,
they belong to the private interface of a class. Add the following declaration in the private section of the
definition of king:

bool castle(position const & destination);

236 CHAPTER 12

Add the following (stub) definition in chess.cpp:

bool king::castle(position const & destination){
std::cout << "Castling has not been implemented.\n";
return false;

}

EXERCISES
1. Write a program to test all the behavior of a king. Make sure that you include tests for bad moves and for

castling.

2. Write a definition for a rook, implement it, and test it. Note that although a rook is involved in castling, it is
not the primary participant, and so we do not have to provide special code to handle castling. However, we
do have to turn off castling potential when a rook moves.

3. Add definitions and implementations for the bishop and queen. Write code that tests each.

4. Write a definition and implementation for a pawn. This is by far the hardest piece to deal with, because it
has three special moves, in addition to capturing with a different move from its non-capture move. For the
time being, deal with each of the cases the same way that I dealt with castling, i.e. provide a private helper
function that we can flesh out later. The three special circumstances are:
(a) the pawn’s initial double move;

(b) the pawn’s capture move including its en passant capture;

(c) promotion on reaching the far side of the board.

STRETCHING EXERCISES
5. Write a program that prints out eight lines of symbols to represent a chessboard. For example, your output

might be:

& @ & @ & @ & @
@ & @ & @ & @ &
& @ & @ & @ & @
@ & @ & @ & @ &
& @ & @ & @ & @
@ & @ & @ & @ &
& @ & @ & @ & @
@ & @ & @ & @ &

If you want something that looks more elegant, you can use my Playpen graphics library to produce a
chequered Playpen window. You can even add a border to the board.

6. Write a program that will take the current position of a knight and mark all the squares that it is ‘attacking’
(i.e. the squares to which it can move directly). For example, given a knight at rank 4, file 1, the output
might be:

CLASS HIERARCHIES, POLYMORPHISM, INHERITANCE, AND SUBTYPES 237

& @ & @ & @ & @
& # & @ & @ &
& @ & # & @ & @
@ N @ & @ & @ &
& @ & # & @ & @
& # & @ & @ &
& @ & @ & @ & @
@ & @ & @ & @ &

Note that we are counting files and ranks from zero. You might want to modify your program so that the
external data is provided in the range 1 to 8 and converted into the internal representation of 0 to 7. If you
produced a chessboard in Playpen, use it as the basis for this program.

7. Write programs to produce diagrams for the other pieces.

8. Write a program that will take input and use it to set up a position on a board.

9. Modify your solutions to Exercise 8 so that it takes into account pieces that ‘block’ a move.

REFERENCE SECTION
C++ provides a mechanism by which we can use an existing class as the basis for a new class. The
simplest form of this mechanism is to use an existing class as a public base for a new one. C++ allows
use of existing classes as protected or private bases, but this book does not deal with the details of such
usage.

The syntax for deriving a class from another class is:

class derived-type: access-specifier base-type {
...
};

Here derived-type and base-type are the names of the type being defined and the type being used as a base;
access-specifier is one of public, protected, and private. If the access specifier is omitted, it defaults
to private if the definition is introduced with the class keyword. If the struct keyword is used
then the default access specifier is public. One of the commonest errors in writing a derived-class
definition is to forget to specify that the base class is a public base.

Sometimes programmers use inheritance to change the behavior of an existing type in such a
way that objects of the derived type cannot (correctly) be substituted for objects of the base type.
In other words, a function that expects an argument of the base type will not work as designed if it
receives an argument of a derived type. Although C++ does not forbid programmers to write such
definitions, they are generally frowned on by experienced programmers because they are sources of
numerous errors. If you need to write such code, you should learn to use private inheritance.

If a class has been designed as a base class, either it should have a non-public destructor (a
very specialized technique), or its destructor should be qualified as virtual. In a later chapter, we
will see how such qualification of a destructor changes the behavior of the destruction to make it safe
when we are dealing with polymorphism.

We can attach the virtual qualifier to the declaration of any normal member function (but not
to constructors) of a base class. Any function declared as virtual in a base class can be reimplemented

238 CHAPTER 12

in a derived class. We notify the compiler of our intent to provide a new implementation (function
definition) by redeclaring the function in the derived class. Note that while it is customary to qualify
the redeclaration as virtual, it is not necessary to do so: once we have declared a function as
virtual, all redeclarations in derived classes are automatically virtual.

When code calls a virtual function, the compiler must delay the choice of the implementation
until it knows the exact type using the function. In the case of references (and pointers), the exact
type is usually not known until run time. C++ does not specify how implementers should provide
this delayed decision, but interested readers can find more information by using their favorite Internet
search engine to search for ‘virtual function pointer table’.

Any function in a base class that is not redeclared in a derived class will use the base-class
implementation. However, it is unwise to redeclare a non-virtual function; doing so can result in
subtle program bugs. Apparently, redeclaring a non-virtual function actually declares a new unrelated
function that will result in replacement of the base-class function in some circumstances but not in
others. When using references or pointers, the compiler will determine which version to use based
on the type of the reference or pointer. That contrasts with virtual functions, where the determination
is done at execution time, depending on the type of the object referred to or pointed to.

You also need to be careful of declaring an overload for a function declared in a base class,
because it will not always overload the way you expect. The solution is to include a class-scope using
declaration. See Chapter 18 for more details.

C H A P T E R 13

Dynamic Object Creation
and Polymorphic Objects

Once we have a polymorphic type, we need to be able to create instances of its subtypes. Sometimes we
know exactly what we want at the time we write the source code, but more often we will not know until
the program is executing. I am starting this chapter by showing you a way to deal with this problem in C++.

A second issue concerns a special category of polymorphic types, whose instances must be able to
replace themselves with a different subtype. The pawn in chess is an example. When it reaches the eighth
rank on the board, it must metamorphose into a queen, rook, bishop, or knight. The player usually
chooses to convert it into a queen, but it is the player’s choice, and we have to deal with that problem
when we design our chess type.

Selecting the Subtype at Runtime
Suppose that I want to write a program that will set up a chess problem from user input. I will need a function
to create each piece in response to data provided by the program user. Here is a first draft of such a function:

basic_chesspiece * make_piece(){
std::cout << "Is it white? (y/n): ";
char response;
std::cin >> response;
bool white(std::toupper(response) == 'Y');
std::cout << "Which file is it on? (0-7): ";
int file;
std::cin >> file;
std::cout << "Which rank is it on? (0-7): ";
int rank;
std::cin >> rank;
basic_chesspiece::position p(file, rank);
display_menu();
char choice(select_from_menu());
basic_chesspiece * piece_ptr(0);
switch(choice){

case 'N':
piece_ptr = new knight(p, white);

240 CHAPTER 13

break;
case 'B':

piece_ptr = new bishop(p, white);
break;

case 'R':
piece_ptr = new rook(p, white);
break;

case 'Q':
piece_ptr = new queen(p, white);
break;

case 'K':
piece_ptr = new king(p, white);
break;

default:
piece_ptr = new pawn(p, white);
break;

}
return piece_ptr;

}

The above is not a robust implementation because it assumes that the user will respond with appropriate
data. For example, the code assumes that the response to ‘‘Is it white?’’ will be a single letter that is either ‘y’
or ‘n’. The std::toupper() function (declared in the <cstdlib> header) just ensures that the input is
treated as uppercase.

The code calls two other functions, display menu() and select from menu(). As these are of
no direct concern to the programmer using our chess-piece code, we place their definitions in chess.cpp
but do not declare them in chess.h. Here are my initial definitions of those two functions:

namespace{
void display_menu(){
std::cout << "Which chess piece?\n\n";
std::cout << " K King\n";
std::cout << " Q Queen\n";
std::cout << " N kNight\n";
std::cout << " B Bishop\n";
std::cout << " R Rook\n";
std::cout << " P Pawn\n";
std::cout << "\nPress the chosen key and then Enter.\n";

}

char select_from_menu(){
char key;
std::cin >> key;
key = std::toupper(key);
return key;

}
}

I have wrapped the definitions in a block labelled with the keyword namespace but without providing
a name for the namespace. We can encapsulate any block of global declarations and definitions into a named
namespace and they will acquire an elaborated name (like the std:: elaboration we have been using for
members of the Standard Library). We can also encapsulate declarations and definitions into an unnamed
namespace. That has a special significance: the consequence is that we can use those entities in the file in

DYNAMIC OBJECT CREATION AND POLYMORPHIC OBJECTS 241

which they are declared but nowhere else. Effectively, the unnamed namespace hides the names declared in
it from anything outside the file. This is stronger than placing something in the private part of a class; we do
not know the fully elaborated name of something declared in an unnamed namespace and so we cannot refer
to it outside the current file.

Unnamed Namespaces
We covered the original design of namespaces in Chapter 4. The idea for unnamed namespaces came in
very soon after the introduction of named ones. Unnamed namespaces were introduced to provide a general
mechanism for constraining names to the current file. C’s mechanism of qualifying declarations as static
does not meet all the needs of C++. C++ needs a way to prevent leakage of the names of user-defined types.

Rather more subtly, static declarations cannot meet all the requirements for some templates.
The C use of file-scope static makes the name invisible outside the file. Unfortunately, that also makes

it impossible to use in some template cases, because they require visibility (so called extern linkage). The
unnamed namespace tackles the problem differently by making the full name secret and unique. When the
compiler comes across an unnamed namespace for the first time in a file, it invents a name. In inventing
the name, it invents one in such a way that it will be unique. How implementers achieve this magic is outside
the scope of this book.

As the programmer does not know the name of the namespace (and it will almost certainly change
every time the file is recompiled), they cannot refer to it in some other file of source code. We have replaced
the external invisibility provided by static qualification with giving an entity a fully qualified name that
we do not know and so cannot use. At the same time, C++ makes the unqualified names from an unnamed
namespace usable within the file where they are declared.

It is usually good practice to place all type definitions and global declarations (i.e. ones outside functions
and class definitions) in an unnamed namespace until you know that you want to use the entities named in
other files.

C++ programs often become very large, involving a million or more lines of code. That means that good
control of names is vital. We need to keep the scope of a declaration under control. An unnamed namespace
is just one more tool for providing that control.

T R Y T H I S

Experiment 1
Add a declaration of make piece() to chess.h, and add its definition to chess.cpp. Add
the two helper functions to chess.cpp. Make sure that you have provided a definition and
implementation for all the chess pieces (king, queen, rook, bishop, knight, and pawn). If you
do not want to spend time providing full implementations for all the member functions, at least
provide stubs for them. For example:

bool bishop::move(position const & destination){
std::cout << "Not implemented.\n";
return true;

}

If you try to compile chess.cpp without definitions for all six types of chess piece, you
will get error messages. In addition, you must provide a definition for every virtual function

242 CHAPTER 13

declared in a subtype. For example, what() is qualified as virtual in basic chesspiece,
with the result that there must be an implementation of what() in any class derived from
basic chesspiece that includes an explicit declaration of what(). C++ deems that we must
provide an implementation of all declared virtual functions. Later we will see that there is a
mechanism in C++ to state explicitly that there is no implementation of a virtual function. We call
such cases ‘pure virtual functions’, and they have an impact on the class that declares them. If a
derived class does not explicitly redeclare a virtual function from a base class, it uses the base class
implementation. For example, the code

class rook: public basic_chesspiece{
public:

// virtual void what(std::ostream & = std::cout)const;
// virtual bool move(position const &);
explicit rook(bool white = true);
explicit rook(position const &, bool white = true);
virtual ~rook();

private:
};

– where I have commented out the declarations of what() and move() – will just reuse the
implementations from basic chesspiece. Please experiment until you are confident that you
understand what is needed to get make piece() to compile. Some of the error messages are
unhelpful: please note them so that they will make more sense next time you see them.

Experiment 2
Write a program to test make piece(). For example, this minimal version will do for a
start – once you add the necessary #include of headers:

int main(){
basic_chesspiece * bc(make_piece());

}

Please study the output carefully and notice that the destructors for the pieces you construct
are not called before the program ends. In Chapter 11 we looked at dynamic instances and learned
that the programmer is responsible for destroying them. However, there is very little in the
top-level code to suggest that we need to use delete. In addition, explicitly deleting dynamic
instances is tedious (and error prone). This is where a suitable smart pointer can be brought in, to
automate the process of destruction and management of the lifetime of a dynamic object.

Experiment 3
Change the above program to:

int main(){
std::auto_ptr<basic_chesspiece> bc(make_piece());

}

Build and execute this new version, and note that the destructors are now correctly called.
You may need to include the <memory> header. This is an example of what std::auto ptr()
was designed for; when bc goes out of scope at exit from main(), delete is called on the
pointer that has been encapsulated into the auto ptr variable bc.

DYNAMIC OBJECT CREATION AND POLYMORPHIC OBJECTS 243

Experiment 4
There is a problem with this solution: we want a dynamic object protected from birth (construction)
until death (destruction). The chess piece is created dynamically inside make piece(), so that is
where we should first deal with the problem. Here is replacement code that does that:

std::auto_ptr<basic_chesspiece> make_piece(){
std::cout << "Is it white? (y/n): ";
char response;
std::cin >> response;
bool white(std::toupper(response) == 'Y');
std::cout << "Which file is it on? (0-7): ";
int file;
std::cin >> file;
std::cout << "Which rank is it on? (0-7): ";
int rank;
std::cin >> rank;
basic_chesspiece::position p(file, rank);
display_menu();
char choice(select_from_menu());
std::auto_ptr<basic_chesspiece> piece_ptr(0);
switch(choice){

case 'N':
piece_ptr =

std::auto_ptr<basic_chesspiece>(new knight(p, white));
break;

case 'B':
piece_ptr =

std::auto_ptr<basic_chesspiece>(new bishop(p, white));
break;

case 'R':
piece_ptr = std::auto_ptr<basic_chesspiece>(new rook(p, white));
break;

case 'Q':
piece_ptr = std::auto_ptr<basic_chesspiece>(new queen(p, white));
break;

case 'K':
piece_ptr = std::auto_ptr<basic_chesspiece>(new king(p, white));
break;

default:
piece_ptr = std::auto_ptr<basic_chesspiece>(new pawn(p, white));
break;

}
return piece_ptr;

}

You will need to edit the declaration in chess.h because we have changed the return
type of make piece. This code relies on the designed behavior of std::auto ptr<>, where
assignment and return by value transfer responsibility for the encapsulated pointer. This is why
std::auto ptr<> has non-standard copy semantics: the instance being copied must be altered
so that it relinquishes responsibility for the pointer. For uses such as the above, it works fine,
because I have carefully relayed the pointer (to the dynamically created chess piece) from the place
where it was created out to wherever make piece() was called.

244 CHAPTER 13

A Chess-Piece Type
The following section is important because it shows how many of the ideas and techniques we have seen so
far can be used to provide a powerful abstraction of the concept of a chess piece in a way limits the exposure
of implementation details to the user of the type. It also shows you a way that you can provide a type that can
actively change its behavior from one ‘subtype’ to another. I have used quotation marks because the user of
the type will be completely unaware that subtypes are involved.

This ability to change behavior under cover is important in some problem domains. One reason that I
chose to use chess pieces as an example of a polymorphic type is exactly that a complete implementation of a
pawn requires this kind of change (so that it can be promoted when it reaches the eighth rank).

Please work through the following with me. I will highlight the important ideas as I go.
Open a new project. I called mine chess2, but then I am not very imaginative when it comes to names!

Make sure you set it up the same way as we have set up our earlier projects, and then create a file called
chessmain.cpp with the following short program in it:

#include "chess2.h"
#include <iostream>
#include <ostream>

int main(){
chesspiece p(chesspiece::pawn, chesspiece::position(2, 3));
std::cout << "The piece is a " << p.what()

<< ", located on file " << (int)p.where().file
<< " at rank " << (int)p.where().rank << ".\n";

p.transform(chesspiece::bishop);
std::cout << "The piece is now a " << p.what()

<< ", located on file " << (int)p.where().file
<< " at rank " << (int)p.where().rank << ".\n";

}

Our primary task is first to add code that will allow this program to compile, and then to provide an
implementation of that code so that it will link and run. The first step is providing a suitable definition of
chesspiece in the header file chess2.h. Here is that header file with the lines numbered so I can walk you
through it.

1 #ifndef CHESS2_H
2 #define CHESS2_H
3
4 #include <memory>
5 #include <string>
6
7 class basic_chesspiece;
8
9 class chesspiece{

10 public:
11 enum piece{indeterminate, bishop, king, knight, pawn, queen, rook};
12 struct position{
13 unsigned char file; // location towards the opponent
14 unsigned char rank; // location across the board
15 position const & is_valid()const;
16 explicit position(unsigned char f = 0, unsigned char r = 0)
17 :file(f), rank(r){ }

DYNAMIC OBJECT CREATION AND POLYMORPHIC OBJECTS 245

18 };
19 static position const off_board;
20 bool move(position const &);
21 position where()const;
22 bool is_white()const;
23 void transform(piece);
24 std::string what()const;
25 bool can_castle() const; // query ability
26 void can_castle(bool); // set ability
27 explicit chesspiece(piece = indeterminate, position = off_board,
28 bool white = true, bool castle = false);
29 ~chesspiece();
30 private:
31 std::auto_ptr<basic_chesspiece> piece_ptr;
32 // disable copying
33 chesspiece(chesspiece const &);
34 chesspiece & operator=(chesspiece const &);
35 };
36
37 #endif

Much of this code will look familiar, because most of the public interface of chesspiece closely
follows that of basic chesspiece. However, you will have noticed that there is no protected interface and
there are no virtual functions. Those absences are significant because they warn the knowledgeable reader that
the design of this class makes it unsuitable for use as a base class. In other words, users should not be tempted
to derive from it.

W A L K T H R O U G H

Lines 1, 2, and 37 are just standard boilerplate for a header file. The #includes (lines 4 and 5)
provide declarations of various pieces of the Standard Library that appear in the declarations in the
definition of chesspiece. Line 7 demonstrates how to declare the name of a class type (including a
struct, but not an enum) when we do not want to provide a complete definition. Once the compiler
has seen a declaration of a class name, there are several ways we can use the name. In addition to
using pointers and references to the type, we can use the type name in declarations such as that in line
31.

Line 31 is the key to the whole process; we could use a plain pointer or some other kind
of smart pointer, but the key is that extra level of indirection provided by using a pointer. This
allows us to hide all the details from the user. This is a variant of a C++ idiom called ‘the compiler
firewall’.

Line 11 defines an enum that I use for identifying the subtypes of chess pieces, including the
generic case of a piece that we have not identified. Because I have provided it as a member of
chesspiece, we will need to use the elaborated names (such as chesspiece::pawn) for the
enumerators when we use them outside the scope of chesspiece.

Lines 12–18 define the type that I am using to package up the position of a chess piece on a
chessboard. It is the same as the type that I provided in basic chesspiece.

Line 19 provides a named value of chesspiece::position to use as a representation of
being off the board. The implementation file will provide the actual representation.

246 CHAPTER 13

Line 23 declares transform(), the only genuinely new member function. Its job is to
provide a method to change a chess piece into a different one. It has two main uses: the first
is to allow a pawn to be promoted to some other piece, and the second is to allow us to
take a generic piece (of indeterminate type) and specify what its type is. It will be up to the
implementer to decide what, if any, safeguards will be supplied to prevent arbitrary metamorpho-
sis.

Several other functions have changed. what() now returns the name of the piece as a
std::string rather than sending it to an output stream. If you feel happier, you can have the new
version live alongside the old one, but you will not be able to default the output stream to std::cout.
That is because overloaded functions must be distinct from each other even when default arguments
are invoked.

Lines 25 and 26 allow us to get and set the castling attribute. By making it public, I allow
programmers to set that attribute even for pieces that cannot castle. However, there is no real danger
here, because any functions providing castling moves will check the correct subtype before checking
that the king and rook retain the capacity to castle.

T R Y T H I S
Before going on, make sure that you have the correct code and that chessmain.cpp will compile.
When you are satisfied, it will be time to move on to the implementation.

Implementing chesspiece
Much of the implementation (in chess2.cpp) will be in an unnamed namespace. However, those things
declared in chess2.h, including basic chesspiece, will have to be in the open at file scope. You will be
able to copy and paste from earlier projects for most of the code in chess2.cpp. Here are the first few lines:

#include "chess2.h"
#include <iostream>
#include <ostream>
#include <stdexcept>

typedef chesspiece::position position;
position const chesspiece::off_board(9, 9);
bool instrument(true); // switch instrumentation on by default

namespace{
// provide a short local name
position const & off_board(chesspiece::off_board);

}

The typedef provides a shortened version of chesspiece::position. It is typical of the way we
use the tools of C++ to keep local code simple and easy to read. In this file, we know we are dealing with
the implementation of chesspiece, so we do not need to use it relentlessly. The following line provides
the necessary definition of chesspiece::off board. I would like to use a short name instead. We can
use typedef to alias a type’s name, but when we want to provide an alias for a variable, we have to use a

DYNAMIC OBJECT CREATION AND POLYMORPHIC OBJECTS 247

reference. I make sure that the alias does not leak out of the file by encapsulating the declaration of off board
(as a reference to chesspiece::off board) in the unnamed namespace.

Finally, I make use of a relatively crude mechanism for switching instrumentation on and off. I would
not do it this way in production code. I can turn off the display of instrumentation messages by setting
instrument to false.

I cannot restrict basic chesspiece to the current file, because I declared its name in chess2.h.
However, nothing outside the implementation of chesspiece needs to know any of the details, so both the
definition and implementation of basic chesspiece can reside here. I have modified the definition a little
from our earlier version. Here is the new one:

class basic_chesspiece{
public:

virtual bool move(position const &) = 0;
position where()const{return location_;}
bool is_white()const{return white_;}
virtual std::string what()const = 0;
explicit basic_chesspiece(bool white = true, bool castle = false);
explicit basic_chesspiece(position const &,

bool white = true, bool castle = false);
virtual ~basic_chesspiece();
bool can_castle()const{return can_castle_;}
void can_castle(bool cc){can_castle_ = cc;}

protected:

private:
bool const white_; // chess pieces are white or not-white
position location_;
bool can_castle_;

// disable copying
basic_chesspiece(basic_chesspiece const &);
basic_chesspiece & operator=(basic_chesspiece const &);

};

Notice that I have removed position as a nested class. However, the typedef I gave above allows me to
use positionwithout qualification, even though it is a member of another class. I have changed the functions
dealing with ability to castle by making can castle() public and replacing disable castle() with a
more general public function can castle(bool), which allows change of the castling status either way.

move() and what() have become pure virtual functions. A pure virtual function is one that must be
implemented in a derived class. We declare that a function is pure by appending = 0 to its declaration. That
is the exceptional case with regard to implementing virtual functions. However, it has a serious impact on
your code: there are no complete instances of a class that contains a pure virtual function. In other words, we
are no longer allowed to have an instance whose type is basic chesspiece. This constraint is inherited by
any subtype that has not provided implementations for all the pure virtual functions. Classes with pure virtual
members are called abstract base classes (ABCs for short), and their primary purpose is to provide an interface
for a polymorphic type. Usually we resort to pure virtual functions when there is no reasonable complete
implementation of the function.

However, we are allowed to provide an implementation of a pure virtual function for the class where it
is declared as pure; doing so does not remove the constraint that there will be no instances of the type.

You might think that a class that cannot have instances would be useless, but that is not the case, because
we can use pointers and references to such types. You may recall that polymorphic behavior is provided by
using references or pointers. Therefore, a pointer or reference to an ABC provides exactly the mechanism to
manage a hierarchy of subtypes.

248 CHAPTER 13

Strictly speaking, I had no need to make move() a pure virtual function because there is perfectly
reasonable behavior for the abstract piece – behavior that every actual piece will have. I made move() a pure
virtual so that I could demonstrate the provision of an implementation for such a function and show how it is
used by the subtypes. I will say more about that when we deal with the subtype implementations of move().

I have used what() as an example of the commoner form of pure virtual, which is not implemented in
the base class. I have also changed what() to match the form I am using in chesspiece, one that returns
the name of the piece in a string.

The rest of basic chesspiece is much the same as the earlier version. Here is its implementation,
which can be added immediately after the definition:

basic_chesspiece::basic_chesspiece(bool white, bool castle)
:white_(white), location_(off_board), can_castle_(castle){

if(instrument)
std::clog << "basic_chesspiece constructor 1 (off-board) called.\n";

}

basic_chesspiece::basic_chesspiece(position const & location,
bool white, bool castle)
:white_(white), location_(location.is_valid()), can_castle_(castle){

if(instrument)
std::clog << "basic_chesspiece constructor 2 (with location) called.\n";

}

basic_chesspiece::~basic_chesspiece(){
if(instrument) std::clog << "basic chesspiece destructor called.\n";

}

bool basic_chesspiece::move(position const & loc){
location_ = loc.is_valid();
return true;

}

I have modified the instrumentation so that it sends messages to std::clog rather than std::cout.
That is the kind of thing std::clog was designed for.

Defining and Implementing the Subtypes
The first thing to note is that nothing needs access to the individual subtypes (pawn, bishop, etc.) other
than the implementation of chesspiece. That is a broad design hint that we should tuck them away in
the unnamed namespace for chess2.cpp. I am not going to waste space giving you the definitions and
implementations of all the subtypes. But here are three examples:

namespace{
class knight: public basic_chesspiece{
public:
virtual std::string what()const;
virtual bool move(position const &);
explicit knight(bool white = true);
explicit knight(position const &, bool white = true);
virtual ~knight();

private:

DYNAMIC OBJECT CREATION AND POLYMORPHIC OBJECTS 249

};

class pawn: public basic_chesspiece{
public:

virtual std::string what()const;
virtual bool move(position const &);
explicit pawn(bool white = true);
explicit pawn(position const &, bool white = true);
virtual ~pawn();

private:
};

class king: public basic_chesspiece{
public:

virtual std::string what()const;
virtual bool move(position const &);
explicit king(bool white = true);
explicit king(position const &, bool can_castle = true,

bool white = true);
virtual ~king();

private:
bool castle(position const & destination);

};

// other effectively identical definitions omitted
}

Notice that the second constructor for a king is different from the other two. The subtypes provide their
own constructors and destructor, and the two virtual functions. We saw earlier that the king needs an extra
helper function to deal with its castling move. You may also have provided extra functionality to cater for the
special moves available to a pawn.

Here is an implementation for those subtypes. I have relied largely on stub functions because my emphasis
is on the C++ technology, not the fine detail of writing code to provide correct behavior for chess pieces.

namespace{
// implementation of knight subtype

knight::knight(bool white):basic_chesspiece(white){
if(instrument) std::clog << "knight constructor 1 called.\n";

}
knight::knight(position const & pos, bool white)

:basic_chesspiece(pos, white){
if(instrument) std::clog << "knight constructor 2 called.\n";

}
knight::~knight(){

if(instrument) std::clog << "knight destructor called.\n";
}

bool knight::move(position const & destination){
destination.is_valid();
position const current(where());
int const rank_dif(std::abs(current.rank - destination.rank));
if(rank_dif > 2 or rank_dif < 1) return false;

250 CHAPTER 13

int const file_dif(std::abs(current.file - destination.file));
if(file_dif > 2 or file_dif < 1) return false;
if(rank_dif + file_dif != 3) return false;
return basic_chesspiece::move(destination);

}

std::string knight::what()const{
return "knight";

}

// implementation of pawn subtype

pawn::pawn(bool white):basic_chesspiece(white, true){
if(instrument) std::clog << "pawn constructor 1 called.\n";

}
pawn::pawn(position const & pos, bool white)

:basic_chesspiece(pos, white, true){
if(instrument) std::clog << "pawn constructor 2 called.\n";

}
pawn::~pawn(){
if(instrument) std::clog << "pawn destructor called.\n";

}

bool pawn::move(position const & destination){
std::cout << "Not implemented.\n";
return true;

}

std::string pawn::what()const{
return "pawn";

}

// implementation of king subtype

king::king(bool white):basic_chesspiece(white, true){
if(instrument) std::clog << "king constructor 1 called.\n";

}
king::king(position const & pos, bool cc, bool white)

:basic_chesspiece(pos, white, cc){
if(instrument) std::clog << "king constructor 2 called.\n";

}
king::~king(){
if(instrument) std::clog << "king destructor called.\n";

}

bool king::move(position const & destination){
destination.is_valid();
position const current(where());
int const rank_dif(std::abs(current.rank - destination.rank));
if(rank_dif > 1) return false;
int const file_dif(std::abs(current.file - destination.file));
if(rank_dif == 0 and file_dif == 2){

DYNAMIC OBJECT CREATION AND POLYMORPHIC OBJECTS 251

return castle(destination); // delegate to special function
}
if(file_dif > 1) return false;
can_castle(false); // lose ability to castle
return basic_chesspiece::move(destination);

}

std::string king::what()const{
return "king";

}

bool king::castle(position const & destination){
std::cout << "Castling has not been implemented.\n";
return false;

}

// plus similar code for the other chess pieces
}

Constructing a Specific Chess Piece
The following is a helper function (based on the one we wrote in the last chapter) to construct the right chess
piece on demand:

namespace{
// helper function for chesspiece constructor and for transform
std::auto_ptr<basic_chesspiece> make(chesspiece::piece p,

chesspiece::position pos1, bool white, bool can_castle = false){
position pos(pos1.file, pos1.rank);
std::auto_ptr<basic_chesspiece> piece_ptr(0);
switch(p){

case chesspiece::knight:
piece_ptr = std::auto_ptr<basic_chesspiece>(new knight(pos, white));
break;

case chesspiece::bishop:
piece_ptr = std::auto_ptr<basic_chesspiece>(new bishop(pos, white));
break;

case chesspiece::rook:
piece_ptr =

std::auto_ptr<basic_chesspiece>(new rook(pos, can_castle, white));
break;

case chesspiece::queen:
piece_ptr = std::auto_ptr<basic_chesspiece>(new queen(pos, white));
break;

case chesspiece::king:
piece_ptr =

std::auto_ptr<basic_chesspiece>(new king(pos, can_castle, white));
break;

case chesspiece::pawn:
piece_ptr = std::auto_ptr<basic_chesspiece>(new pawn(pos, white));
break;

252 CHAPTER 13

default:
piece_ptr =

std::auto_ptr<basic_chesspiece>(new indeterminate(pos, white));
}
return piece_ptr;

}
}

Note how the std::auto ptr<> instances relay the ownership of the dynamic instance back to the
caller by returning by value. The local piece ptr goes out of scope and is destroyed, but it has already
passed responsibility for the lifetime of the freshly created piece to the return value.

The chesspiece Constructor and
transform()
The chesspiece constructor knows which piece it needs, and calls make() to get the one it needs before
storing the address of the new piece safely in its piece ptr data member. This magic of looking after the
lifetime of a dynamic object, even one of a polymorphic type, is precisely the job for which std::auto ptr
was designed. Here is the implementation of chesspiece’s constructor:

chesspiece::chesspiece(piece p, position pos, bool white, bool castle)
:piece_ptr(make(p, pos, white)){

if(instrument) std::clog << "Chesspiece constructed.\n";
}

Simple when you know how. One point to notice is that helper functions like make() are particularly
useful for ensuring that we do all we can within the constructor initializer list. But it has a second use; here is
the implementation of transform():

void chesspiece::transform(piece p){
piece_ptr = make(p, where(), is_white(), piece_ptr -> can_castle());

}

This function relies on the special characteristic of the assignment operator for std::auto ptr<>:
when you assign a std::auto ptr<> to another one, the left-hand one first ends the lifetime of the object
it is currently responsible for before taking on the responsibility for the one it is acquiring. Of, course the
right-hand std::auto ptr<> has to release its responsibility. Now you know why std::auto ptr<> has
a non-standard copy-assignment operator: it needs it to do the job it is designed to do.

Implementing the Rest of chesspiece
There is not much more to do, because chesspiece just delegates the work to basic chesspiece, which
in turn delegates much of the work to the implementations of the subtypes (the individual types of chess piece).

First, the non-virtual member functions:

position chesspiece::where()const{return piece_ptr -> where();}
bool chesspiece::is_white()const{return piece_ptr -> is_white();}
bool chesspiece::can_castle()const{return piece_ptr -> can_castle();}
void chesspiece::can_castle(bool cc){piece_ptr -> can_castle(cc);}

DYNAMIC OBJECT CREATION AND POLYMORPHIC OBJECTS 253

Next, the member functions that forward to virtual versions:

std::string chesspiece::what()const{return piece_ptr -> what();}
bool chesspiece::move(position const & p){return piece_ptr -> move(p);}

Finally, we have the destructor:

chesspiece::~chesspiece(){
if(instrument) std::clog << "Chesspiece destroyed.\n";

}

Before we forget, there is still a member function from chesspiece::position to deal with:

position const & chesspiece::position::is_valid()const{
if((file == off_board.file) and (rank == off_board.rank)) return *this;
if(rank > 7) throw std::out_of_range("Invalid rank");
if(file > 7) throw std::out_of_range("Invalid file");
return *this;

}

T R Y T H I S
When you have added the above code to chess2.cpp, you will find that our program from ‘A
Chess-Piece Type’ (page 244) will build and run. Try it with the instrumentation on so that you
can see all the work that goes on under the hood. When you have done that, add code to the
program to test the rest of the public interface of chesspiece.

T R Y T H I S

Experiment 5
Switch the instrumentation on (by setting the value of instrument in chess2.cpp to true),
and build and execute this short program:

int main(){
chesspiece cp;

}

Now go to chess2.cpp and remove the virtual qualifier from the declaration of the
destructor for basic chesspiece. Build and execute the program again. Notice that the compiler
issues a warning about a class with virtual functions and a non-virtual destructor (well, it does
with the compiler shipped with this book when the warning level is set high enough); while C++
allows this, it is usually a design error.

Study the output and you should notice that the destructor for indeterminate has not
been called. That failure is harmless for this particular polymorphic hierarchy because the subtype
destructors do not actually do anything. However, the omission is generally dangerous (C++
categorizes calling a base destructor without first calling the derived destructor as undefined
behavior – anything may happen). Just as for any other member function accessed through a
pointer or reference, non-virtual destructors will be those for the type of the pointer or reference
rather than for the real type of the instance referenced. Please do not forget this; it is an error to
destroy an instance without calling the destructor for the exact type.

254 CHAPTER 13

Experiment 6
Modify the above program to:

int main(){
chesspiece cp[2];
std::sort(cp, cp + 2);

}

Now try to compile it. You will get a veritable cascade of errors (143 when I tried it).
If you comment out the attempt to sort the array, the errors disappear, from which we can
deduce that the problem is not with creating the array but with attempting to sort it. Quite
right too – chesspiece is an entity type with copy semantics suppressed. We can confirm
that by temporarily commenting out the private declarations of the copy constructor and copy-
assignment operator in the definition of chesspiece. Try it. However, do not try to execute
the resulting program, because the compiler-generated copy constructor interacts badly with
std::auto ptr<>. Remember that copying a std::auto ptr<> transfers ownership. If we
want ‘safe’ copy semantics for a type like chesspiece, we must decide what we mean by copying
one. Either we must share ownership of the underlying object, or we must be willing to clone
it (i.e. create a new, distinct object with identical value). We get the former by using a different
smart pointer such as Boost’s shared ptr<> (see http://www.boost.org/). If we want the
latter, we have to write our own copy functions to provide ‘deep copying’. That term refers to
copying that includes duplicating the underlying objects that are owned through some kind of
pointer.

Experiment 7
Modify the above program to:

int main(){
chesspiece * cp[2];
cp[0] = new chesspiece(chesspiece::rook);
cp[1] = new chesspiece(chesspiece::pawn);
std::sort(cp, cp + 2);

}

Ignore, for now, that we have not destroyed the dynamic instances of chesspiece; instead,
focus on what std::sort is doing. It is just sorting the addresses of those dynamic instances.
That is not likely to be what we intended. We have to provide a function that will provide some
ordering for the instances rather than for their addresses. Here is one (which sorts chesspieces
alphabetically):

bool chesspiece_order(chesspiece const * const lhs,
chesspiece const * const rhs){

return lhs->what() < rhs->what();
}

Now expand the test program to:

int main(){
chesspiece * cp[2];
cp[0] = new chesspiece(chesspiece::rook);
cp[1] = new chesspiece(chesspiece::pawn);

DYNAMIC OBJECT CREATION AND POLYMORPHIC OBJECTS 255

std::sort(cp, cp + 2, chesspiece_order);
delete cp[0];
delete cp[1];

}

Note that it uses the alternative form of std::sort(), where you provide a predicate (a function
returning a bool) to define the order. Build and execute that program, and note the order in
which the destructors are called (you will need the instrumentation on for this). Now repeat the
exercise with the sort commented out, so that you can check that the sort changes the order.

EXERCISES
1. Write a replacement for the chesspiece order() function, to order the pieces according to their

position. For example, order by rank and then by file.

2. Write a program that displays a collection of chesspieces on a chessboard. Note that your solution to
Exercise 1 will help with this task. Identify the different chess pieces by a suitable letter, uppercase for
white and lowercase for black.

STRETCHING EXERCISES
3. Write a complete hierarchy for checkers (draughts) pieces. This is easier than for chess because there are

only two types of piece (plain and kings), but it still has the characteristic that plain pieces can be promoted
to kings.

4. Add a board type that tracks where the pieces are. Note that you will need to provide a facility for querying
a square to find out whether it is occupied and, if so, by what color of piece.

5. Extend your solution to Exercise 3 so that a piece can determine whether it can make a capture move. It
will need to query the board object. If you work systematically, this exercise is not as difficult as it might
seem.

Collections of Objects
Experiment 3 above demonstrates one of the major problems with collections of entities. If they can-
not be copied, we have a problem with using the Standard Library algorithms for them, because
those algorithms largely expect that they can copy the objects they are working with. We have two
main choices: we can use containers of a suitable type of smart pointer (one that supports stan-
dard copy semantics, such as Boost’s shared ptr<>); or we can encapsulate the collection into a
class that will look after the lifetime of the entities it holds. The design will largely depend on our
intentions.

In this section, I am going to show how we can implement the concept of a collection of chess pieces
on a chessboard.

256 CHAPTER 13

Design and Implementation
of a chessboard Type
Here is a suitable class definition:

class chessboard{
public:

chessboard();
~chessboard();
void remove_piece(chesspiece::position);
void chessboard::insert_piece(chesspiece::piece, chesspiece::position,

bool white = true, bool can_castle = false)
void move_piece(chesspiece::position destination,

chesspiece::position source);
chesspiece const * contains_piece(chesspiece::position)const;

private:
chesspiece * board[64];
// disable copying
chessboard(chesspiece const &);
chessboard & operator=(chessboard const &);

};

There is very little to the basic design of a chessboard type. We need to be able to construct and
destroy one. We need to be able to add pieces to the board and remove them from the board. We need
to be able to move a piece. Finally, we need to be able to ask what is on a specific square. Notice that
contains piece() returns a chesspiece const *. You might be tempted to return a chesspiece
const & instead, but that does not work, because it will not allow us to handle empty squares.

Here is an implementation:

chessboard::chessboard():board(){
if(instrument) std::clog << "Chess board constructed.\n";

}
chessboard::~chessboard(){

if(instrument) std::clog << "Destroying pieces.\n";
for(int i(0); i != 64; ++i){
if(instrument and board[i])

std::clog << board[i]->what()
<< " at " << i % 8 << ", " << i / 8 << ".\n";

delete board[i];
}
if(instrument) std::clog << "Chess board emptied and destroyed.\n";

}
void chessboard::remove_piece(chesspiece::position p){

delete board[p.rank * 8 + p.file];
board[p.rank * 8 + p.file] = 0;

}
void chessboard::insert_piece(chesspiece::piece pc, chesspiece::position p,

bool white, bool can_castle){
board[p.rank * 8 + p.file] = new chesspiece(pc, p, white, can_castle);

}
void chessboard::move_piece(chesspiece::position destination,

DYNAMIC OBJECT CREATION AND POLYMORPHIC OBJECTS 257

chesspiece::position source){
board[destination.rank * 8 + destination.file]

= board[source.rank * 8 + source.file];
board[source.rank * 8 + source.file] = 0;

}
chesspiece const * chessboard::contains_piece(chesspiece::position p)const{

return board[p.rank * 8 + p.file];
}

As you see, most of the implementation is straightforward. The destructor is the only slightly complicated
function. Even there, the complexity is more apparent than real, because most of the code is instrumentation.

T R Y T H I S
Add the definition of chessboard to chess2.h, and then add the implementation to chess2.cpp.
When chess2.cpp compiles (i.e. you have dealt with any typos), use the following for testing:

int main(){
chessboard b;
b.insert_piece(chesspiece::pawn, chesspiece::position(2, 3));
b.insert_piece(chesspiece::king, chesspiece::position(4, 3), false);
b.insert_piece(chesspiece::rook, chesspiece::position(0, 0),

true, true);
b.move_piece(chesspiece::position(3, 3), chesspiece::position(2, 3));
chesspiece const * p(0);
p = b.contains_piece(chesspiece::position(4, 3));
if(p) std::cout << "That square contains a " << p->what() << ".\n";
else std::cout << "That square is empty.\n";
b.remove_piece(chesspiece::position(4, 3));
p = b.contains_piece(chesspiece::position(4, 3));
if(p) std::cout << "That square contains a " << p->what() << ".\n";
else std::cout << "That square is empty.\n";

}

STRETCHING EXERCISES
6. Add a display function to chessboard that shows the current board, using suitable upper- and lowercase

letters for the black and white pieces.

7. My implementation for chessboard assumes that the user always supplies legal values for chess-
piece::position data. Add suitable validation code to trap cases where the provided values do not
resolve to a square on the board. As you will need this code several times, it is probably best provided as a
helper function in the unnamed namespace for chess2.cpp.

8. Write a set of functions that iterates over all the squares of the board and computes how many white pieces
currently attack (i.e. can move directly to) each one. Initially, you can ignore pieces blocking the moves of
other pieces. However, a complete solution will take that into account. Your code should be able to display
the result as an eight-by-eight grid of integer values.

258 CHAPTER 13

REFERENCE SECTION
Every compilable unit of C++ source code (a .cpp file) implicitly has an unnamed namespace.
We place source code in it by placing it in a block introduced by the keyword namespace, but
without providing a name. We can reopen an unnamed namespace within the file. However, unnamed
namespaces in different files are always distinct.

In addition, a named namespace can contain an unnamed namespace. Once again, unnamed
namespaces in different files are distinct, even if they are contained within the same named namespace.

Names declared in an unnamed namespace are only usable in the immediately containing scope
and other scopes nested within that scope. For example, suppose example.cpp is:

namespace{
int i(0);

}
namespace x{

namespace{
int i(1);

}
namespace y{

foo(){
std::cout << i; // outputs 1, i.e. x::i
std::cout << ::i; // outputs 0

}
}

}
int foo(){

std::cout << i; // outputs 0
}

The second i (in the unnamed namespace within namespace x) does not conflict with the first. It can
be used as x::i throughout the file, and as i within namespace x. Within namespace x, the first i
has to be referred to as ::i, because the second i takes precedence.

The main value of unnamed namespaces is in their use at file scope, where they ensure that
internal names do not collide with identical names in other translation units. The compiler gives each
unnamed namespace a unique name, which ensures that the linker will be able to keep otherwise
identical names distinct. Unnamed namespaces nested in named namespaces are uncommon.

C H A P T E R 14

Streams, Files, and
Persistence

We will now look at the general problem of handling input and output. This important area in
programming does not fall naturally into any particular place. We could have dealt with it much earlier,
but somehow I never got around to it.

The term ‘persistence’, when applied to data, refers to storage of data so that it is available in other
programs or in later invocations of the same program. It is what we do every time we save our work to a
file. Without such a facility, we would have to re-enter everything from the keyboard.

In the interests of brevity, in this chapter I have not encapsulated the active body of main() in a
try block. By now you should be used to ensuring that exceptions are caught in main(), so it serves no
good purpose to add that code to every small example program.

The C++ Stream Hierarchy
C++ bases its provision of input and output facilities on the concept of a stream. There are two important
parts to this concept: handling the data format and handling the transmission of data. Suppose I want to output
the value ten in a human readable form. In other words, I do not want to output the byte whose bit pattern is
00001010, but rather the characters ‘1’ and ‘0’. This is exactly the problem solved (for standard output) by:

std::cout << 10;

The format part of the process converts the internal representation of the value ten (as an int) into the
external representation, ‘10’. After that, the program dispatches the external representation to the designated
sink (by default for std::cout, the screen).

Look at the following short program:

int main(){
int i(65);
char c(65);
std::cout << "Sixty-five as an integer is " << i << ".\n";
std::cout << "Sixty-five as a character is " << c << ".\n";

}

Look at the output when you build and run that program. The format section of ostream instances
treats char and int values differently. It makes no difference where we intend sending the output – the

260 CHAPTER 14

formatting should be the same. Streams delegate the work of actual input and output to instances of the
stream buffer classes. I am going to stick with what the Standard Library provides, but if you later want to
learn more, you will find all the gory details in Standard C++ IOStreams and Locales [Langer & Kreft 2000].

Now suppose we want to send our output to a file. First, we have to create a suitable output stream
(an ofstream object), and then we have to connect that object to an open file. We often do the two actions
together. Here is a short program to demonstrate that:

#include <fstream>
#include <iostream>
#include <ostream>

int main(){
std::ofstream outfile("testfile.txt");
outfile << "Hello World!\n";
outfile << "Three times four is " << 3 * 4 << ".\n";

}

When you build and run this program, you will then be able to examine the result by opening
testfile.txt (you can do that directly from your IDE). Running the program multiple times will not
change the contents of testfile.txt, because the default behavior of a std::ofstream object is to
truncate a file before writing to it.

Unfortunately, the current specifications for the file-stream types do not support using std::string
instances for file names. For example,

int main(){
std::string filename;
std::cout << "What file do you wish to create? ";
std::cin >> filename;
std::ofstream outfile(filename);
outfile << "Hello World!\n";
outfile << "Three times four is " << 3 * 4 << ".\n";

}

will not compile. You have to extract an array of char from filename by using the c str() member
function of std::string for the constructor of outfile:

std::ofstream outfile(filename.c_str());

We should also check that the constructor successfully connected a file to the outfile object. For
example, the construction would fail if the chosen file had been marked as ‘read only’. The file-stream
constructors do not throw exceptions when they fail to open the designated file; instead they place the stream
object into a fail state. Our program with checking becomes:

int main(){
std::string filename;
std::cout << "What file do you wish to create? ";
std::cin >> filename;
std::ofstream outfile(filename.c_str());
if(outfile){ // outfile evaluates as false if it failed to connect

// to the designated file
outfile << "Hello World!\n";
outfile << "Three times four is " << 3 * 4 << ".\n";

}
else std::cout << "Failed to open " << filename << ".\n";

}

STREAMS, FILES, AND PERSISTENCE 261

T R Y T H I S
Run the above program once to create a file called a.txt. Now find this file by using ‘My
Computer’; right-click on it, select Properties, and make it read-only (those are instructions for
Windows users). Run the program again and try to create a.txt. Note the result.

Instead of opening the file in the constructor, you can use the open() member function of
the file-stream types. For example, you can replace

std::ofstream outfile(filename.c_str());

in the above code by:

std::ofstream outfile;
outfile.open(filename.c_str());

You can explicitly close the file attached to a file-stream object by calling close() rather
than waiting until the destructor for the file stream closes it automatically. Here is an example that
first writes a file and then reads it back:

int main(){
std::ofstream outfile("data.txt");
if(outfile){

std::cout << "Writing out to data.txt.\n";
outfile << "Hello World!\n";
outfile << "Three times four is " << 3 * 4 << ".\n";
outfile.close();

}
else std::cout << "Failed to open data.txt for writing.\n";
std::ifstream infile("data.txt");
if(infile){

std::cout << "Reading in from data.txt.\n";
std::string line;
std::getline(infile, line);
std::cout << line << '\n';
std::getline(infile, line);
std::cout << line << '\n';

}
else std::cout << "Failed to open data.txt for reading.\n";

}

I have used std::getline() to extract input from the file because it reads whole lines from the
input source.

As you are already fluent in using the standard console I/O objects, you only need to acquire
skill in using the explicit file-handling properties of the file streams. We have already seen how to
open and close a file. You need to know the default behavior for those processes. When we create
a std::ifstream object and open a file (either by using a constructor, or by calling open()),
the file will be opened in text mode. Sometimes we want to open a file to read its contents in
binary mode (raw mode). The simple way to achieve this is by setting the binary flag in the
object. Here is an example of doing so:

1 int main(){
2 std::ifstream infile("data.txt", std::ios::binary);

262 CHAPTER 14

3 if(infile){
4 while(not infile.eof()){
5 std::cout << std::hex << infile.get() << ' ';
6 }
7 }
8 else std::cout << "Failed to open data.txt for reading.\n";
9 }

This program opens the file data.txt that we prepared earlier in binary mode; that is the
significance of the std::ios::binary used in the constructor for ifstream in line 2. Line
3 checks that the program has successfully opened the file and made it available to the infile
object. Line 4 starts a loop that repeats until infile is in an end-of-file state; infile will reach
that state when the program reads the end-of-file marker. In some cases, we need to detect that
immediately and avoid trying to process the value representing an end of file. It is all right in this
program because we do not mind displaying the value of the end-of-file marker on the screen.

I have added a manipulator (the technical name for an object that changes the behavior of
a stream object) in the output statement at line 5: std::hex forces numerical output into
hexadecimal format. (The manipulators std::oct and std::dec force numerical output into
octal and decimal format respectively.) infile.get() extracts the next character from infile
as an int value. The reason I chose that function to extract data from input is that it preserves
the value for the end-of-file marker. That value in C++ is -1, regardless of how the OS may
represent it.

Try the above program.

EXERCISES
1. Enhance the above program so that the output is in 16 columns. The simplest way to place output in

columns is to use the std::setw(n) manipulator (where n is the width of the column). You will need to
#include <iomanip> to get full access to the manipulators.

2. Modify your program for Exercise 1 so that it displays each value in hexadecimal followed by the decimal
equivalent in parentheses. Place eight values per output line. You will probably find it difficult to get neat
columns. Do not spend much time trying to achieve that, as we will shortly see a simple way to do it.

Appending Data
C++ provides many tools for handling input and output. If you want to know about them, you need a good
reference such as The C++ Standard Library [Josuttis 1999]. However, one very common need is to be able to
add data to the end of an existing file. To do this, we need to change the default behavior for opening a file
for writing. The default behavior, as we found earlier, is to truncate the file if it already exists. In other words,
opening an existing file for writing erases all its contents. If we want to add data at the end we must use the
append flag, std::ios::app. Build and run the following program:

int main(){
std::ofstream outfile("data.txt", std::ios::app);
if(outfile){

STREAMS, FILES, AND PERSISTENCE 263

std::cout << "Appending data to data.txt.\n";
outfile << "This is some more data.\n";
outfile << "Goodbye sad universe.\n ";
outfile.close();

}
}

Examine the result in your text editor (i.e. the one provided by MDS).

Consolidation
If you feel you would like to spend some more time on various aspects of using files, you may find it useful
to study the material in Chapters 9 and 10 of You Can Do It! Some parts of those chapters rely on a degree of
fluency with using my Playpen library. However, many people find that fun as well as instructive. I should
also mention that in addition to ifstream and ofstream, there is an fstream type. This provides both
read and write facilities. I generally avoid using it because I find mixing reading and writing to the same file
far too big a source of confusion and error. In general, I either read everything first and then do some writing,
or write everything first and then read it back. Either task is, in my experience, better handled by closing the
file after the first stage and reopening it for the second.

String Streams
There are times when it is useful to have an internal source and sink for data. C++ originally provided a way
by which an array of char could be used for that. The design allowed the array to change its size as long as
the address of the array was not made visible outside the stream object. As this mechanism was in wide use
long before the publication of the C++ Standard, it is still supported, but it should not be used in new code.

The old streams based on arrays of char are made available by including the <strstream> header.
There are three classes: istrstream for input (using the object as a source of data), ostrtream for output
(using the object as a sink for data), and strstream (for both reading and writing). The time to study the
details of these streams is when you have to maintain old code that uses them.

By the mid ’90s, C++ had a robust std::string. It is much more versatile than the old C-style
array-of-char strings. It was obvious to the designers of C++ that it was the logical source and sink for
character data. std::string does not need any magic to allow expansion to accommodate added data
because that is already part of its design. We can extract the data as an array of char if and when we need to
by using its c str() member function.

With this in mind, three new classes were added to C++: istringstream, ostringstream,
and stringstream. They are made available by including the <sstream> header. Unless there are
very special reasons to do otherwise, you should choose these in preference to the corresponding
(i/o)strstream streams.

Here is a small example of using a stringstream, which I will walk you through in a moment:

int main(){
std::stringstream sink; // you need the <sstream> header for this
sink << "This is an example.\n";
sink << "Five times three is " << 5 * 3 << ".\n";
std::cout << "There are " << sink.str().length()

<< " characters in the data sink.";
std::cout << "\nand the contents are:\n\n" << sink.str();

}

264 CHAPTER 14

Note that you will have to include the necessary headers to compile this program successfully.
The program first creates an (empty) std::stringstream object called sink. It then uses the

insertion operator (<<) to send some data to it. Note that because this is a stream, the data will be formatted.
I then use the member function str() to access the std::string in which a stringstream stores the
data.

I can use a std::stringstream constructor that takes a std::string by value (i.e. the
std::string will be copied) to preload the stream object with data. Here is a short program to
illustrate that usage:

int main(){
std::string s("1 2 3");
std::stringstream source(s);
int val(0);
for(int i(0); i != 3; ++i){
source >> val;
std::cout << val << ", ";

}
std::cout << '\n';

}

We can modify that program to use the default constructor by replacing the definition of source with:

std::stringstream source;
source.str(s);

In other words, the str()member function is overloaded both to provide access to the currentstd::string
being used and to assign a new value to it. The usage in the first program above accesses the current value,
and the second one copies s into the std::string used by source.

The string streams are useful for several things. The first is that they allow us to get a line of input
from a file or from the console (by using getline()) and then parse that line without the problems
incurred by sending our source stream into a fail state (because some input data does not match the program’s
requirements). Here is an example:

int main(){
while(true){
std::string data;
std::cout << "Type in three numbers separated by spaces: ";
getline(std::cin, data);
if(data == "END") break;
std::stringstream s(data);
int i, j, k;
s >> i >> j >> k;
std::cout << i << ", " << j << ", " << k << '\n';

}
}

That code is not robust because we should check that the input has not failed before we try to output the
values of i, j and k. However, because the declarations are inside the while loop, we recreate the objects
for each pass through the loop and avoid the problem of pushing std::cin into a fail state. The program
just illustrates a small idea that you can extend to solve some kinds of input problem.

STREAMS, FILES, AND PERSISTENCE 265

Converting Numerical Values to Strings
One of the commonest requests from new C++ programmers is how to convert a numerical value such
as an int or double into a string. Despite its very extensive interface, std::string does not have
a conversion from any of the numerical types. The instinctive reaction form programmers coming from
languages where such conversions exist is that this is a defect in the std::string specification. However,
the (o)stringstream types solve the problem very simply. Here is an example of using ostringstream
to handle the problem of placing the output for Exercise 2 above into neat columns:

int main(){
std::ifstream infile("data.txt", std::ios::binary);
if(infile){

std::cout << "Reading in from data.txt.\n";
int count(0);
while(not infile.eof()){

int const val(infile.get());
std::ostringstream item;
item << std::hex << val << '(' << std::dec << val << ')';
std::cout << std::setw(10) << item.str();
if(++count == 8){

std::cout << '\n';
count = 0;

}
}

}
else std::cout << "Failed to open data.txt for reading.\n";

}

When you try that program, you may dislike the output format because each item is right-justified in a
field of ten characters. C++ output streams provide two manipulators that we can use to determine whether
to left- or right-justify an output field, they are std::left and std::right. Replace the statement that
sends an item to std::cout with:

std::cout << std::setw(10) << std::left << item.str();

Now the program generates neatly tabulated results. Well, almost. Unfortunately, it spoils it by
attempting to display the end-of-file value; we cannot represent that value by two hex characters. The problem
is that we test for end-of-file too late. Here is an alternative formulation of the while loop that avoids that
problem:

while(true){
int const val(infile.get());
if(infile.eof()) break;
std::ostringstream item;
item << std::hex << val << '(' << std::dec << val << ')';
std::cout << std::left << std::setw(10) << item.str();
if(++count == 8){

std::cout << '\n';
count = 0;

}
}

266 CHAPTER 14

The critical changes are changing the test condition of the while loop so as to make it into a forever
loop, and then providing a test and break internally. There are other ways to achieve the same objective, and
this one is just my style. Not everyone agrees, but I am happy to use break from within a loop so long as it
is the only exit from the loop.

EXERCISE
3. Adapt the above program so that it prints out the single-character hexadecimal values as two characters,

by inserting a leading zero.

STRETCHING EXERCISE
4. Write a program that outputs the contents of a file as a block with 16 values per line without spaces, with an

adjacent block with the values displayed as characters if they are printable and as a dot if not. You may find
the std::isprint() function useful: it returns true if a character is printable and false otherwise.

Persistence
This term is used to describe a mechanism by which we can store data and recover it for later use during
another execution of the program or by another program. For example, we might want to write a program
that will store the position reached in a chess game and recover it the following day so that you can continue.

Storing data for non-polymorphic types is relatively simple, because you just need to overload the
insertion (<<) and extraction (>>) operators so that whatever you send to a file can be read back. Many
application programs such as word-processors are examples of this kind of persistence. There is no great
problem that needs solving.

The process gets more difficult when the output is encoded in some way, for example, text that is stored
in a compressed form that must be uncompressed on recovery. This is still not much of a challenge.

The final stage is when we need to store and recover polymorphic data. For example, when dealing with
a chess piece, we need to store its type, color, and location. When we recover the information, we need to use
the type information to create the correct piece. This may not seem to be a serious problem until we decide to
make the file human readable. Typically, we might want to create a file whose contents look something like:

white pawn at (1, 2)
black knight at (5, 6)
etc.
Given such a file, we want to be able to read it line by line and create a matching instance dynamically.

Here is some pseudocode to illustrate what we want to achieve:

• Create a suitable object encapsulating a container such as the chessboard class from the last chapter.
• Recover one line of data from the file.
• Determine the color, type, file, and rank of the piece.
• Insert the piece onto the chessboard.

STREAMS, FILES, AND PERSISTENCE 267

We can recover a line of data (the data for a single piece) from storage by using std::getline. We
then want to be able to parse the input line to extract the relevant arguments. Something like:

void create_piece(std::stringstream & data, chessboard & board){
bool const color(get_color(data));
chesspiece::piece const piece(get_piece_type(data));
chesspiece::position const position(get_position(data));
bool can_castle(false);
if(piece == chesspiece::king or piece == chesspiece::rook)

can_castle == get_can_castle(data);
board.insert_piece(piece, position, color, can_castle);

}

Now let us look at the four functions that extract the data from the std::stringstream object. Here
are the declarations:

bool get_color(std::stringstream &);
chesspiece::piece get_piece_type(std::stringstream &);
chesspiece::position get_position(std::stringstream &);
bool get_can_castle(std::stringstream &);

Each of these functions converts some information that had been stored as text into an appropriate
internal representation. Here are definitions of the first, third, and fourth functions (I am delaying the second
for a moment because that is the interesting one that will illustrate a useful technique):

bool get_color(std::stringstream & data){
std::string color;
data >> color;
return color == "white";

}
chesspiece::position get_position(std::stringstream & data){

int rank, file;
int digit;
while(true){ // search for next char

digit = data.get();
if(std::isdigit(digit)) break; // isdigit is declared in <cctype>

}
// using guarantee that digits have consecutive representations:
file = digit - '0';
while(true){ // search for next char

digit = data.get();
if(std::isdigit(digit)) break;

}
rank = digit - '0';
data.get(); // extract the closing parenthesis
return chesspiece::position(file, rank);

}
bool get_can_castle(std::stringstream & data){

std::string castle;
data >> castle;
return castle == "yes";

}

268 CHAPTER 14

The above definitions are not robust, production-quality ones. For example, if there are not two digits
in data giving the position of the piece, get position() will fail, possibly catastrophically. I am leaving
it as an exercise for the reader to provide data validation coupled with appropriate action (such as throwing
an exception for a corrupt input file).

Language Note: C programmers should note that the Standard C headers from the C90 standard are valid in C++. However, the
preferred option in C++ is to use headers without the .h extension but prefixing the C header name with the letter
c. Therefore, for example, the C header <string.h> becomes <cstring> in C++. That particular header
is subject to confusion in C++ because <string> is the C++ header in which std::string is declared,
while <cstring> provides the declarations of C’s <string.h> (but encapsulated in namespace std).

Converting Text to an Enumerator
Our major problem with get piece() is that we store the data in a human-readable form, where the name
of a piece is saved as text. However, we are representing pieces by enumerators of the chesspiece::piece
enum type. The problem is how to convert from the external textual representation to the internal enumerator.
We could write something such as:

chesspiece::piece get_enumumerator(std::string const & textname){
if(textname == "pawn") return chesspiece::pawn;
if(textname == "rook") return chesspiece::rook;
// and so on

}

That is a perfectly valid option. However, it lacks elegance, and such a method can cause problems with
maintenance. Ideally, we would like to be able to look up the name in a suitable table and get the enumerator
straight back. The C++ std::map container (declared in <map>) provides a suitable data structure for this
purpose. A map consists of a set of key–value pairs. Like all the Standard Library containers, std::map is
a template that can be used for any suitable combination of types for the key and value. In this case, we
define:

std::map<std::string, chesspiece::piece> text_to_enum;

We need a function to initialize the table. We also need to decide where we are going to declare the
table. As this is to do with our chess-piece concept, I think that both text to enum and the function that
initializes the table should be static members of chesspiece.

Here is a suitable initialization function:

void chesspiece::init_text_to_enum(){
text_to_enum["bishop"] = chesspiece::bishop;
text_to_enum["king"] = chesspiece::king;
text_to_enum["knight"] = chesspiece::knight;
text_to_enum["pawn"] = chesspiece::pawn;
text_to_enum["queen"] = chesspiece::queen;
text_to_enum["indeterminate"] = chesspiece::indeterminate;

}

That may look strange to you unless you have come across such containers before. We can access
a std::map object by using a key as a subscript. If the key is already in the map, the corresponding
value will be used exactly as if it were a variable. If the key is not found, it will be automatically
added to the map. chesspiece::init text to enum() effectively inserts six text keys as instances of
std::string and pairs them with the corresponding chesspiece::piece enumerators. That function
must be executed at least once (executing it more than once has no effect other than taking time) before
statements such as

STREAMS, FILES, AND PERSISTENCE 269

std::cout << text_to_enum["knight"] << " is the code for a knight.\n";

can be executed correctly. Otherwise, the program will compile and execute, but give incorrect output.

T R Y T H I S
Add declarations of text to enum and init text to enum() as static members of
chesspiece. Add the definitions to the implementation file for chesspiece (remember that
you have to provide the definitions for static data members). Now build and execute the following:

int main(){
chesspiece::init_text_to_enum();
std::cout << "The internal representation of a knight is "

<< chesspiece::text_to_enum["knight"] << ".\n";
}

Now we are ready to provide a definition of the function to extract the type of chess piece from our
std::stringstream object holding the specification of a piece:

chesspiece::piece get_piece_type(std::stringstream & data){
std::string pce;
data >> pce;
return chesspiece::text_to_enum[pce];

}

This is not a robust definition but one that assumes that the data includes the correctly spelled name of a chess
piece.

EXERCISES
5. Create a project, and add the declarations of all the functions necessary for implementingcreate piece()

to a header file. Put the corresponding definitions in an implementation file. The following small program
will act as an initial test:

int main(){
std::stringstream source;
source << "white pawn at (1, 2)";
chessboard board;
create_piece(source, board);

}

6. Design and implement a function that saves the specification of a piece to a file. Test it, and try using the
file as a source of data for Exercise 5.

270 CHAPTER 14

7. Reorganize your code base so that create piece() and the matching save piece() become
implementation details of chessboard. Note that the reorganization should include moving as much
of the implementation as possible into the appropriate implementation file, and into that file’s unnamed
namespace.

8. Add save board() and get board() as members of chessboard, so that you can save a board
position to a file and then recover it from that file.

9. Add a constructor to chessboard that loads a position from a stream. Change its destructor so that it
offers to save the position before destroying the board.

STRETCHING EXERCISE
10. Enhance the deck class so that you can write the cards out to storage and then recover them. The storage

should be in human-readable text.

REFERENCE SECTION
Streams
C++ provides several major categories of stream class. Each of them provides facilities for formatting
data as well as sending character data to a sink or extracting it from a source. Most of these facilities are
provided through templates so that the user can select the character type (by default, either char or
wchar t). Streams default to handling data as text, though they can be constructed to handle binary
data (no conversion to and from text).

Streams are based on stream-buffer classes (which handle the actual input and output operations).
This book does not go into the details of those classes.

The high-level programmer is concerned with three types of stream: the standard console
streams, the file streams, and the string streams. Each of these has versions based on char and
wchar t, as well as facilities for extending them to other kinds of character. There is a fourth, legacy
stream type that uses an array of char as its input/output buffer. This should not normally be used
in new code, and I am not providing details of it in this book.

In general, whenever a stream operation fails, the instance is set into some kind of dormant
state where all subsequent attempts to use it do nothing until the program resets the stream object by
applying the clear() member function. A stream in any form of dormant state evaluates as false
in any context where a bool value is expected.

A stream can be in one of four states:

fail: Some operation since the last time it was set to a good state has failed. This condition can be
detected by applying the fail() member function to the stream object. That returns true if the
object is in a fail state. For example, an attempt to extract an int value from std::cin when the
next item of data does not represent such a value places std::cin into a fail state. All subsequent

STREAMS, FILES, AND PERSISTENCE 271

attempts to extract data from std::cin will be ignored (i.e. do nothing) until the stream is reset
with std::cin.clear().

bad: Some operation has failed in a way that may involve the loss of data or the corruption of the
stream. This is a more severe situation than those flagged by the fail state. Writing data to a full disk
might cause a file stream to enter such a state. The bad() member function returns true if the
object is in a bad state.

eof: An end-of-file marker has been read. (This includes input of an end-of-file marker from the
keyboard, though what constitutes such a marker depends on the operating system. Ctrl+Z is
an EOF for Windows systems; Ctrl+D is an EOF for UNIX-based systems.) The eof() member
function returns true if an end-of-file marker has been read.

good: A stream that is in none of the above states is in a good state, and the member function good()
returns true for an object in this state. Note that good() simply reports the current state of an
object and has nothing to say about whether the next operation will succeed.

Console Streams
These (at least the narrow versions using char) are declared in <iostream>. Strictly speaking,
the Standard only requires that header to declare the eight standard console stream objects, and the
declarations of the functionality are provided by the <istream> and <ostream> headers. In practice,
most implementations include those headers nested in <iostream>.

File Streams
The <fstream> header provides the necessary declarations for the three subtypes ifstream (input
only), ofstream (output only), and fstream (bidirectional). The file-stream subtypes provide all the
functionality of the corresponding basic stream types (input stream, output stream, and bidirectional
stream) plus facilities for opening and closing files. The destructor of a file-stream object always closes
any associated file.

String Streams
The <sstream> header provides the necessary declarations for the three subtypes istringstream
(input only), ostringstream (output only), and stringstream (bidirectional). Those types use
a std::string as a source/sink for data. There are also a matching set of (i/o)wstringstream
types that use a std::wstring as a source/sink for data. More advanced facilities are available for
the expert specializing in I/O problems.

The special feature of the string-stream types is the provision of an overloaded str() member
function. When called without arguments, it returns the buffer as a string (useful when using a
stringstream to convert data to a std::string before using it elsewhere in a program). The
version of str() that takes a std::string as an argument replaces the internal buffer with a copy
of the argument.

char* Streams
The <strstream> header provides the necessary declarations for the three subtypes istrstream
(input only), ostrstream (output only), and strstream (bidirectional). These use an array of
char as a buffer. The Standard provides them simply as support for pre-standard code. They are
officially deprecated, which means that the Standards Committee reserves the right to remove them
from future releases of the C++ Standard.

272 CHAPTER 14

Manipulators
The C++ Standard provides a number of special objects that change the state of a stream. These are
called manipulators. They are used by applying the appropriate insertion/extraction operator. For
example,

int main(){
std::cin >> std::hex;
int i;
std::cin >> i;
std::cout << "\n\n" << i;

}

outputs ‘16’ if you type in ‘10’, i.e. it treats ‘10’ as a hexadecimal value.
The commonest manipulators are:

std::endl: adds a newline character to output and flushes the output buffer.
std::setw(n): sets the width of the field for the next output to n.
std::right and std::left: set the justification for the next output in the output field.
std::dec, std::oct, and std::hex: set the base for subsequent use of the stream.

There are a number of others, as well as facilities for writing your own. For further details, refer
to a good reference such as The C++ Standard Library.

C H A P T E R 15

Exceptions

We have been making use of exceptions from very early in this book but I have said very little about
them. It is time that I remedied this, because exceptions have a fundamental impact on C++, way beyond
their use for handling errors. The existence of exceptions changes the way we should write code. We
cannot simply bolt exceptions on as an afterthought.

Though this is one of the shorter chapters, its contents are very important to your development as a
competent C++ practitioner.

What Is an Exception?

Different programmers will give you different answers to this question. The differences between experts are
very much a matter of emphasis. Here is my answer.

An exception is a situation that you can anticipate, where continuation of the normal code will fail,
possibly catastrophically. For example, a program reading data from a file in which the data does not match
the program’s requirements clearly cannot continue with anything that depends on the data. We do not expect
corrupt files or files in the wrong format, but we do know that such things happen.

Most cases where an expectation has not been met require an alternative execution path. Sometimes
that alternative may be to abandon the program, but at other times we may be able to recover and continue
with the program’s work. Even if we have to abandon the program, we may still want to clean up first. The
traditional styles of programming interleave error-handling code (i.e. code to deal with broken expectations)
with normal code. This leads to fragile code that is often a nightmare to maintain and modify. Consider the
following:

int main(){
std::ifstream infile("data.txt");
if(not infile){

std::cerr << "Problem with opening data.txt.\n";
return EXIT_FAILURE; // declared in cstdlib

}
// process the file
return EXIT_SUCCESS;

}

274 CHAPTER 15

The error-handling code is intrusive, but in this context we can live with it. However, what if that
were not main() but some other function? Should we abandon program execution by calling abort()?
Should we report the error to the calling function? If the latter, how should we report the failure? The
traditional solution is to provide some kind of error return code. However, that preempts at least one return
value, and places a requirement on the calling function to check for the error return. What makes this
worse is that often the calling function can only relay the failure report to the function that called it. Error
return codes are fine when there is a reasonable expectation that the calling function will both check for
an error and handle it locally. Once we go much beyond that, using an error return ceases to be a good
solution.

Let me rewrite the above program using exceptions, and then consider how the new form works even
when the function is not main():

int main(){
try{

std::ifstream infile("data.txt");
if(not infile) throw "Problem with opening data.txt.\n";
// process the file

}
catch(char const * message){

std::cerr << message;
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

You may think that I should reorganize the above code to:

int main(){
std::ifstream infile("data.txt");
if(infile){
// process the file
return EXIT_SUCCESS;

}
else{
std::cerr << "Problem with opening data.txt.\n";
return EXIT_FAILURE;

}
}

Yes, I could, but that code relies on the code handling the problem locally. Now let me move the file use out
of main():

void process(std::string const & filename){
std::ifstream infile(filename.c_str());
if(not infile) throw "Problem with opening data file in process().";
// process the file

}
void process_file(){

std::string filename;
std::cout << "Which file contains the data? ";
std::cin >> filename;
process(filename);

}

EXCEPTIONS 275

int main(){
try{

process_file();
}
catch(char const * message){

std::cerr << message;
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

Do you see how throwing an exception disconnects detection of the problem (failure to open a file)
from handling it (in this case, just reporting the problem and ending the program)? However, we gain
even more, because there might be other problems incurred during the processing of a successfully opened
file. Notice that the intermediate function, process file(), has no need to provide any mechanism for
reporting errors that may result from its call of process(). The C++ exception mechanism provides this
separation and thereby provides us with a way to write simpler code. With a little care, we can write code
that retries when something fails. Here is a modified version of main():

int main(){
try{
bool another(true);
while(another){

try{
process_file();

}
catch(char const * message){

std::cerr << message << '\n';
}
std::cout << "Do you want to process another file? ";
std::cin >> another;

}
catch(...){

std::cerr << "Unknown exception caught.\n";
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

The inner catch handles the ‘expected’ exception and allows the program to continue with trying
another file. The outer catch will catch all other types of exceptions and terminate the program.

What Can I throw?
C++ places very few restrictions on what we can use as an exception object. As long as the object can
be copied (and that is an absolute requirement, because the exception mechanism may need to move the
exception object to a safe location while doing the stack cleanup), you can use it as an exception object.
However, it is generally good practice to throw objects of types designed to provide exception objects.
My use of a string literal in the example code above is poor coding practice. I used string literals because
I did not want to get into the design of exception types until I had shown how exceptions simplify
code.

276 CHAPTER 15

The C++ Library provides a hierarchy (based on class exception) of exception types for use within
the Standard Library. We can use some of these in our own code (as I have in earlier chapters), but it is
normally better to design exception types for our own use. Most of these can be very simple. Indeed, we can
often use stateless classes (ones with no data members) as exception types. We can use the Standard Library
types as bases for our own types when that seems suitable.

We normally nest exception types in the class that will use them. For example, our chessboard type
has a number of ways in which it can fail. This is particularly true of the constructor that tries to create a
chessboard object from data provided by a stream. Unlike other functions, constructors can only reliably
report failure by throwing an exception. By using the exception mechanism to deal with failed construction
(for example, because it has been impossible to place the object into a destructible state), we can assume that
defined objects in our code exist in a stable state that meets the class invariants (those properties that class
objects are required to have).

class chessboard{
public:

chessboard();
chessboard(std::istream &);
~chessboard();
struct exception{ };
struct bad_data: exception{ };
struct invalid_piece: bad_data{ };
struct invalid_position: bad_data{ };
struct corrupt_stream: exception{ };
// rest elided

private:
// details elided

};

I have added an entire exception hierarchy into chessboard. Each of the exception types in that
hierarchy is a stateless class. It does not have to be; for example, I could add a (virtual) member function that
reports the type of the exception:

class chessboard{
public:

chessboard();
chessboard(std::istream &);
~chessboard();
struct exception{
virtual char const * report()const{

return "Generic chessboard exception.";
}

};
struct bad_data: exception{
virtual char const * report()const{

return "Bad data chessboard exception.";
}

};
struct invalid_piece: bad_data{
virtual char const * report()const{

return "Invalid piece chessboard exception.";
}

EXCEPTIONS 277

};
struct invalid_position: bad_data{

virtual char const * report()const{
return "Invalid position chessboard exception.";

}
};
struct corrupt_stream: exception{

virtual char const * report()const{
return "Corrupt stream chessboard exception.";

}
};
// rest elided

private:
// details elided

};

Now you can write:

int main(){
try{

std::ifstream data("Chessposition.txt");
if(not data) throw "No such file.";
chessboard board(data);

}
catch(char const * message){

std::cerr << message << '\n';
return EXIT_FAILURE;

}
catch(chessboard::exception const & error){

std::cerr << error.report() << '\n';
return EXIT_FAILURE;

}
catch(...){

std::cerr << "Unknown exception caught.\n";
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

Note that the above code catches the possible chessboard exceptions with a const reference
to chessboard::exception. In general, we should catch exceptions by reference, so that we pre-
serve any polymorphic behavior provided by possible subtypes. It is also common to catch by const
reference, because we would not normally want to change the data encapsulated in an exception
object.

When there is a list of catch clauses, the program executes the first one that matches
the actual exception (even if that involves a type conversion). Note that this is different
from function overloading, where the compiler attempts to determine a unique best match.
For example, adding a catch(chessboard::corrupt stream const & cs) handler after the
catch(chessboard::exception const & error) handler will do nothing, because the latter will
grab the exception and process it. More specialized exceptions (i.e. ones that are derived from a base) must
be placed earlier in the list of catch clauses.

278 CHAPTER 15

T R Y T H I S
Here is some code that we are going to use to explore exceptions:

void bar(){
chessboard::chessboard b(std::cin);

}

void foo(){
chessboard board;
std::stringstream source;
source << "white king at (1, 2)";
create_piece(source, board);
// bar();

}

int main(){
try{

chesspiece::init_text_to_enum();
foo();

}
catch(chessboard::exception const & except){

std::cerr << except.report() << '\n';
}

}

First, implement the constructor for a chessboard object from an input stream as:

chessboard::chessboard(std::istream &):board(){
throw chessboard::corrupt_stream();

}

That stub function throws an exception so that we have an exception to use for test purposes.
If you already have a definition for this constructor, you can add the throw statement at the
beginning of your existing code until you are ready to incorporate data validation into your
code.

Experiment 1
Create a suitable project, and copy the header and implementation files for chesspiece and chess-
board across, so that we can modify them without changing the originals. (It would probably be wise
to give the copies distinct names, to avoid confusion with the originals.) Edit the implementation of the
chessboard::chessboard(std::istream &) constructor to the above version. Now build and exe-
cute the project, and look carefully at the output to note the calls of the documented constructors and
destructors.

Experiment 2
Remove the comment in the definition of foo(), to activate the call to bar(). Build and execute the new
version. Check that all the constructors and destructors are called as before, followed by the message generated
by the catch clause.

EXCEPTIONS 279

Experiment 3
Replace main() with:

int main(){
try{

chesspiece::init_text_to_enum();
chessboard * pointer = new chessboard;
delete pointer;

}
catch(chessboard::exception const & except){

std::cerr << except.report() << '\n';
}

}

Build and execute this program, and note the results.

Experiment 4
Add a call to bar() immediately before the delete pointer, so that the new version is:

int main(){
try{

chesspiece::init_text_to_enum();
chessboard * pointer = new chessboard;
bar();
delete pointer;

}
catch(chessboard::exception const & except){

std::cerr << except.report() << '\n';
}

}

Build and execute this program. Note that the program no longer executes the chessboard destructor.
This is an important feature of exceptions: the program does not execute code subsequent to the exception if
an exception occurs. However, handling an exception includes executing all the destructors for stack-based
objects created between the catch point and the throw point. We call that process stack-unwinding, and it is
executed in reverse order, starting at the object most recently constructed before the exception is thrown. We
have to ensure the release of all dynamically allocated resources. Destructors are best for that process, because
the exception mechanism executes them as control passes to the selected exception handler.

Experiment 5
Try this last version, where we replace the raw pointer by a std::auto ptr<>:

int main(){
try{

chesspiece::init_text_to_enum();
std::auto_ptr<chessboard> pointer(new chessboard);
bar();

}
catch(chessboard::exception const & except){

std::cerr << except.report() << '\n';
}

}

280 CHAPTER 15

Conclusion
The important point to note is that catching an exception results in a cleanup of the function-call stack
between the point of the throw and the point where the exception is caught. Another point we should note
is that an exception will drill straight through code, cleaning up on the way, even though there maybe no
local indication that this might happen. Therefore, we have to develop sensitivity to where exceptions might
interfere, and ensure correct cleanup of all the objects. In programming terminology, we must respect class
invariants and maintain them wherever an exception may pass through.

This necessary extra care, coupled with ensuring the release of dynamically executed resources by
destructors, has a serious impact on our coding style. We call such a style exception-safe programming. The most
fundamental element of exception-safe programming is that we only allocate a resource dynamically if there
is a destructor that releases the resource. Experiment 4 above demonstrates code that is not exception safe.
Experiment 5 demonstrates how to rewrite the code to make it exception safe.

Here is an example to show another aspect of exception-safe programming. Here is a minimalist start for
a string class. It uses C-style strings, and functions that handle those. In particular it uses std::strcpy()
and std::strlen(). The header <cstring> provides all the necessary declarations. I am not going into
a great deal of detail, because most readers do not need to know the grisly details of working with C-style
strings when std::string is so much more robust.

class mystr{
public:

mystr(char const *);
mystr(mystr const &); // copy constructor
~mystr();
mystr const & operator=(mystr const &); // copy assignment
// rest of public interface

private:
char * data_ptr;

};

Here is an implementation:

mystr::mystr(char const * d_ptr):data_ptr(new char[strlen(d_ptr) + 1]){
std::strcpy(data_ptr, d_ptr); // copy the array
data_ptr[strlen(d_ptr)] = 0; // add null terminator

}

This constructor assumes that it receives a pointer to a C-style string (a null-terminated array of char). It
then obtains enough dynamic storage to hold a copy of the string including the null terminator, and stores
the address of that storage in data ptr.

The destructor releases the memory:

mystr::~mystr(){delete[] data_ptr;}

This uses the correct version of delete for arrays (I have not gone into detail about creating and destroying
dynamic arrays because we usually use std::vector<> to handle any requirement for a dynamic array). At
first sight, everything is fine. Look again and you might realize that the default copy semantics will copy the
pointer rather than the object it points to. Each mystr object will need its own copy of the string. We need
to deal with the copy semantics of this class.

First the copy constructor:

mystr::mystr(mystr const & original)
:data_ptr(new char[strlen(original.data_ptr) + 1]){

EXCEPTIONS 281

std::strcpy(data_ptr, original.data_ptr); // copy the array
data_ptr[strlen(original.data_ptr)] = 0; // add null terminator

}

We call this process deep copying: we have not copied data ptr; instead we have copied the data it points to.
There are no exception problems yet. However, look carefully at this naı̈ve implementation of the assignment
operator:

mystr const & mystr::operator=(mystr const & rhs){
// careful not to do anything if the lhs and rhs are the same object:
if(this != &rhs){

delete [] data_ptr; // get rid of the current array for the lhs
// get storage for the copy of the rhs:
data_ptr = new char[std::strlen(rhs.data_ptr) + 1];
std::strcpy(data_ptr, rhs.data_ptr);
data_ptr[std::strlen(rhs.data_ptr)] = 0; // null-terminate the copy

}
return *this;

}

This is the classic form for a user-written copy-assignment operator, and you will find it in numerous
books. In the days before exceptions, it was acceptable. However, with the introduction of exceptions, it is
completely unacceptable. The problem is that we have deleted the memory attached to data ptr before we
have something to replace it. You may wonder why that matters. The problem is that something may go
wrong with the attempt to get a new block of memory and initialize it with the copied data. If that should
happen (yes, I know it is not likely for this simple case), the object you are assigning to is in an unstable state
(the result of a delete operation is to place the pointer in a state where it must be written to before any
further attempts to read it happen). As long as our use of new works, we will not have a problem, but if it
fails, we have left an object in a state where we cannot safely destroy it. (You must not apply delete twice
to the same pointer without an intervening call of new or some other action that provides a valid deletable
pointer value. One such value is the null-pointer constant. Nothing happens if you try to delete a null pointer;
the C++ language guarantees that.

The Exception-Safe Copy-Assignment Idiom
Here is mystr::operator=(), rewritten so that it is exception safe:

mystr const & mystr::operator=(mystr const & rhs){
// get the new block of memory:
char * temp_ptr = new char[strlen(rhs.data_ptr) + 1];
std::strcpy(temp_ptr, rhs.data_ptr); // copy the rhs data
temp_ptr[strlen(rhs.data_ptr)] = 0; // null-terminate the copy
delete [] data_ptr; // get rid of the current array for the lhs
data_ptr = temp_ptr; // transfer the ownership of the copy
return *this;

}

We no longer have to check that the left- and right-hand operands of the assignment are different; if
they are the same, we will only have wasted a little time with an unnecessary copy, but we get that back by
avoiding the time taken for checking in the normal case where the copy assignment has work to do.

Note how the idiom works: first copy; then delete; and then assign the pointer to the copy. Pointer
assignment cannot throw an exception. We first do all the work where an exception might occur; then we

282 CHAPTER 15

finish the task. The consequence is that if there is a failure, the left-hand operand (the object we are assigning
to) retains its old value.

Attention to exception safety usually results in simpler code because we remove the error-handling
from the main flow of the code. However, we do need to be conscious of exceptions, and write code that
functions correctly in their presence. Although the design idea in old C++ books may still be useful, the code
implementing them is probably flawed and vulnerable to exceptions.

Rethrowing
Sometimes we want to partially process an exception and then relay it on to another handler to complete the
task. Here is a rewrite of my earlier foo() function to demonstrate how this is done:

void foo(){
try{
chessboard board;
std::stringstream source;
source << "white king at (1, 2)";
create_piece(source, board);
bar();

}
catch(chessboard::exception const & except){
std::cerr << "Exception caught in foo() and rethrown.\n";
// you can place any special processing here
throw;

}
}

The statement consisting of the simple use of throw results in the rethrowing of the caught exception
for further processing by another handler. Note that you are always allowed to terminate a catch clause by
throwing an entirely different and possibly unrelated exception. Indeed, there is nothing special about the
body of a catch clause; the code in it is just C++ code. The single difference is that a bare throw can be
used only within the body of a catch clause.

T R Y T H I S

Experiment 6
Edit your code appropriately so that you can try this revised version of foo(). Note the resulting
final message that identifies the type of the actual exception object caught in main().

Experiment 7
Edit your code for Experiment 6 by changing the catch clause in foo() to

catch(chessboard::exception except){

so that the exception object is caught by value. Build and execute the resulting program. Note the
change in the final message. This is an example of a process called slicing. Any time that you pass,
return, or catch a reference or pointer by value, you lose the dynamic type information.

EXCEPTIONS 283

Exception Specifications: An Idea That Failed
It seems reasonable to provide a mechanism for declaring the exceptions that can propagate from a function.
Indeed, it is so reasonable that C++ provides such a mechanism via exception specifications. C++ is not alone
in this: several other languages, including Java, provide a similar mechanism. However, experience has shown
that it is a poor idea, leading to numerous problems.

The idea is that the declaration of a function includes a specification of the exceptions that may propagate
from it. The default specification is that any exception can propagate from the function. So when you see

void foo();

you know that code that calls foo() must be prepared for any exception. At the other extreme, we have

void bar() throw();

which specifies that no exceptions can propagate from bar(). Those two extremes are both clear and possibly
useful. There is still some argument as to whether the ‘throws nothing’ specification of bar() is useful in
optimizing, but it certainly seems to be, at worst, harmless. The problems arise from everything in between,
i.e. where there is a list of types in the parentheses following the throw. Such a list is supposed to specify the
types of exception that may propagate from the function. The original idea was that this should be statically
checkable and so enforceable at compile time. Unfortunately, though this was recognized as impossible from
very early on, those responsible for the C++ Standard decided to persevere with runtime enforcement of
exception specifications. Most experts these days believe that was a mistake.

You need to know what those mysterious throw() clauses are in function declarations because you
may come across them, but that is about as far as you need to go with them. If you want to use the empty
throw() specification, please do so. Personally, I do so when writing my own code.

Exceptions and Destructors
There is a small body of experienced programmers who argue that it is OK for an exception to propagate
from a destructor. However, the very large majority maintain that a destructor should never propagate an
exception.

There are several arguments, but one of the most persuasive is that an object has ceased to exist when
its destructor is entered. So what do you have if the destructor does not complete because it throws an
exception? Think carefully about that. In essence, whatever you can do should be done before returning from
the destructor; return from a destructor should always be a simple return statement (possibly implicit).

If you use throw specifications, always add throw() to any destructor that you declare. If the compiler
complains about the implementation, have a look and see what the problem is.

REFERENCE SECTION
Exceptions
C++ exceptions are based on three keywords: try, throw, and catch. The try keyword is used to
warn the compiler (and, more to the point, tell human readers of the code) that the following block
of code is followed by one or more exception handlers.

284 CHAPTER 15

We use the catch keyword to introduce an exception handler. A single ‘parameter’ in
parentheses follows the catch, and that is followed by the body of the handler as a block of code (i.e.
enclosed in braces).

If an exception propagates into the try block, the program searches for an appropriate handler
from those offered immediately after the close of the try block. The program executes the first
handler whose parameter can accept the type of the exception object. If none of the available
handlers can accept the exception object, the program will propagate the exception object to the
next-most-recent try block and try again. If the program cannot find an acceptable handler, it calls
std::terminate(). The exact behavior of std::terminate() is implementation-defined, but
all you need to know here is that it ends the program. C++ provides a mechanism for modifying the
behavior of std::terminate().

There is a special-case catch clause designed to catch all exceptions. This is introduced by
catch(...) and can only be used to carry out processing that is independent of the type of the
exception object. However, it can use throw to rethrow the exception it caught.

Exceptions are raised by using a throw statement at the point where the code detects a problem
that needs handling elsewhere. A throw statement can throw an object of any copiable type. When
an exception is raised in a program, normal processing is suspended, and the program uses some
implementation-provided mechanism to find the most recent handler for the exception object. When
such a handler has been found, the program unwinds the stack back to the location of the handler.
The process of stack-unwinding involves calling the destructors for all stack-based objects between
the point where the exception is raised and the point where it is handled. If no handler is found,
it is implementation-defined whether the stack is completely unwound or left completely alone. An
implementation is not allowed to partially unwind the stack and then terminate the program.

Exception Specifications
C++ provides a mechanism for decorating function declarations with a list of the types of exception
that may propagate from a call to it. The syntax is simple: add throw immediately after the parenthesis
that closes the parameter list, and follow it with a list of types in parentheses. For example,

void foo() throw(std::exception);

specifies that only objects whose type is, or is derived from, std::exception may propagate from
foo(). Such a specification is checked dynamically (i.e. at execution time) in the event of an exception
propagating from foo(). If it does not meet the provided specification, std::unexpected() is
called. The default action is to call std::terminate(). C++ provides a mechanism for changing
this default behavior. However, making such a change requires advanced understanding of C++.

Experience has led most experts to recommend that programmers do not use exception
specifications. The special case of an empty specification (no exception can propagate from the
function) is generally considered the only exception specification worth providing.

C H A P T E R 16
Overloading Operators
and Conversion
Operators

C++ inherited a large number of operators from C, and then proceeded to identify several other things as
operators. For example, C++ treats () as a function operator and [] as a subscript operator. C++ allows
overloading of most of its operators; whether doing so is useful depends on the context. The overloading
of some operators is restricted to class scope, but most of them can be overloaded at global or namespace
scope. The single absolute requirement for overloading an operator is that at least one operand must be
of a user-defined type.

We have had examples of operator overloading elsewhere, but this chapter provides more examples
and more depth. Even so, this will be far from comprehensive, because overloading operators in C++ is
rich with potential. For example, C++ allows us to overload operator new (the mechanism that new
uses to acquire memory in which to construct a dynamic object) and operator delete (which releases
memory after a dynamic object is destroyed). It also provides for overloading the operators used by the
array versions of new and delete (operator new[] and operator delete[]). I am leaving such
topics for another book.

Overloading Operators for an Arithmetic Type
(Please treat the whole of this section as an extended experiment; in other words, I expect you to work
through this with your compiler. Feel free to experiment further until you understand what is happening. If
you want to instrument the constructors, you will need to declare a destructor and a copy constructor, so that
you can complete the instrumentation in their definitions.)

Suppose that we want to provide a rational-number type (for non-mathematicians, rational numbers
are ones that can be written as the ratio of two whole numbers). We would want to provide all the normal
arithmetic operations. We would also probably want to provide some form of conversion to a floating-point
type. Providing a complete definition and implementation for such a type would be lengthy and of little
general interest; however, there is much we can learn from a partial implementation. Here is a starter definition
that you can copy into a suitable header file (rational.h). Do not forget to add a header guard.

class rational{
public:

rational();
rational(long numerator, long denominator = 1);
// compiler-generated copy constructor, copy assignment and destructor OK
long numerator()const;

286 CHAPTER 16

long denominator()const;
// other functions to be added
struct exception{ };
struct divide_by_zero: exception{ };

private:
long d;
long n;

};

I have not qualified the rational constructors as explicit. That is intentional: implicitly converting
a long int to a rational with a denominator of 1 is reasonable, and most domain experts would expect it.

Here is a simple initial implementation that you can place in rational.cpp:

#include "rational.h"

rational::rational():n(0), d(1){ }
rational::rational(long numer, long denom):n(numer), d(denom){ }
long rational::denominator()const{return d;}
long rational::numerator()const{return n;}

When I first wrote the implementation, I was plagued by an error message when I tried to compile
it. If you want to see it, replace the parameter names in the second constructor with numerator and
denominator. It seems that (at least for this compiler) the member-function names are hiding the parameter
names when it comes to the initializers. I mention this because one day you may be baffled by a similar case.

Test Code
Here is a short test program for testrational.cpp (or whatever you choose to call it):

int main(){
try{
rational r;
std::cout << r.numerator() << "/" << r.denominator() << '\n';
r = 2;
std::cout << r.numerator() << "/" << r.denominator() << '\n';

}
catch(rational::exception const & r){
std::cerr << "Exception from rational caught.\n";

}
}

Note that the assignment works because the compiler is doing two things under the covers. First, it
generates a copy-assignment operator that copies the data from a right-hand operand of type rational
to a left-hand operand of that type. Next, it looks to see whether it can convert 2 into a rational. Our
second constructor does that by allowing a call of rational(2, 1), using the provided default value for
denominator. Therefore, the compiler creates a temporary rational from 2, and then copies it to the
left operand of the assignment. We do not need to provide member functions to write the numerator and
denominator values to a rational. If we want to change the denominator of a rational without changing
the numerator, we write something like:

r = rational(r.numerator(), new_denom);

You can add member functions to modify the numerator and denominator some time later if you
discover that you need the more direct method for efficiency. Changing a rational that way is unusual, so it is
unlikely that such member functions will ever be critical to the overall performance of the rational type.

OVERLOADING OPERATORS AND CONVERSION OPERATORS 287

Providing a Streaming Operator for Output
The two output lines in the test code suggest a suitable format for an operator<<, but we cannot provide
that as a class member because the first operand of such an operator is of the wrong type (an ostream &).
So add

std::ostream & send_to(std::ostream &)const;

to the class definition, and add this to the class implementation:

std::ostream & rational::send_to(std::ostream & out)const{
out << n << "/" << d;
return out;

}

Now you can add

inline std::ostream & operator<<(std::ostream & out, rational const & r){
return r.send_to(out);

}

to rational.h and amend the test program to see that it works.

EXERCISE
1. Before reading the next part, please try to declare and implement a corresponding input operator (>>) that

will read data in the same format that we have used for output. (A programmer would expect the provision
of either both or neither of a pair of operators such as those for input and output. We call this ‘the principle
of minimal surprise’.)

Providing a Streaming Operator for Input
Add a declaration of get from(istream &) to the definition of rational (note that you will need to
include <istream> for the declaration of std::istream):

std::istream & get_from(std::istream &);

Add the following definition to the implementation of rational:

std::istream & rational::get_from(std::istream & in){
in >> n;
if(in.get() != '/') throw rational::bad_data();
in >> d;
if(not in) throw rational::bad_data();
return in;

}

If you have been following the ideas of using exceptions, you will realize that we need to add

288 CHAPTER 16

struct bad_data: exception{ };

to the definition of rational.
You may want to add polish to the implementation of get from(); at the very least, it is reasonable

to ensure that we do not change the stored value in a rational object until we know we have successfully
acquired the complete replacement value. Here is a modified version that provides that guarantee:

std::istream & rational::get_from(std::istream & in){
int n1, d1;
in >> n1;
if(in.get() != '/') throw rational::bad_data();
in >> d1;
if(not in) throw rational::bad_data();
n = n1; d = d1;
return in;

}

Now we can provide operator>> to extract a rational value from an input source. Add this definition
to rational.h:

inline std::istream & operator>>(std::istream & in, rational & r){
return r.get_from(in);

}

Providing Multiplication for rational
We would normally expect to be able to multiply a rational number by an integer as well as by another
rational number. We would also expect to be able to multiply an integer by a rational number. For example,
we would expect the following code to compile and execute:

void test(rational & r, int i){
rational r1(2, 3);
std::cout << r << " times " << r1 << " is " << r * r1 << '\n';
std::cout << r << " times " << i << " is " << r * i << '\n';
std::cout << i << " times " << r << " is " << i * r << '\n';

}

Overloading operator* with a member function would deal with the first two cases. However, in the
third case the left operand of * is not a rational (though it can be converted to one), and so the compiler
will not be able to use a member function (the left operand of an operator determines which scope the
compiler searches for an overload). This gives us the clue that we have another case where we should provide
a global or namespace overload for the operator.

You might choose to use exactly the same mechanism as we did for the streaming operators: provide
the functionality through a member function, and then delegate to that when providing the global operator
overload. However, there is another option for arithmetic operators: provide an overload for the corresponding
compound assignment operator as a class member. There is a sense in which the compound assignment
operators are more primitive than the apparently simpler standard ones. Here is how to do it (the same basic
design works for all arithmetic operators, for all user-defined arithmetic types).

Add this declaration to the definition of rational:

rational & operator*=(rational const &);

Now add this inline definition to the header file:

OVERLOADING OPERATORS AND CONVERSION OPERATORS 289

inline rational operator*(rational lhs, rational const & rhs){
return lhs *= rhs;

}

Note that the declaration of operator*=() returns by reference, but the definition of operator*()
returns by value. Also, note that, because we do not want to alter the value of the left operand of
operator*(), we have to pass it by value.

Finally, add the implementation of *= to rational.cpp:

rational & rational::operator*=(rational const & r){
n *= r.n;
d *= r.d;
return *this;

}

EXERCISES
2. Write a program that uses test() to test that the multiplication works correctly.

3. Implement and test division (operator/()) for rational. (If you have forgotten your high-school
math, we divide rationals by inverting the numerator and denominator of the right-hand operand and then
multiplying.) At this point, you do not need to trap division by zero.

4. Implement and test addition and subtraction for rational. (If two rational numbers are represented by
n1/d1 and n2/d2, their sum has numerator n1 * d2 + n2 * d1 and denominator d1 * d2.)

Conversion Operators
C++ overloads the operator keyword to support outward conversion operators that support implicit
conversion from the class type to another type (single-argument constructors that have not been qualified
as explicit provide inward conversions). These can be useful in some cases but must be treated with
great care, because conversion operators (all kinds: built-in ones, single-argument constructors and outward
conversion operators) often have surprising and unwanted consequences. For example, it seems reasonable
to provide an implicit conversion from rational to one or more floating-point types. However, doing so is
far from cost free.

Converting to double
Here is a declaration of an operator to provide an implicit conversion from a rational value to a double:

operator double();

Add this definition to the implementation:

rational::operator double(){
return double(n)/d;

}

290 CHAPTER 16

T R Y T H I S
Try the above conversion operator with the code we used earlier for testing multiplication.

If you have it right, the code now fails to compile with an ambiguity error for r * i (i.e.
multiplying a rational by an int).

What is the problem? Once we provide a user-defined conversion from rational to
double, the compiler has two choices for r * i. It can use the converting constructor to convert
i to a rational (which is what it was doing before), and then use the operator*() we
provided for rational. Alternatively, it can convert the rational into a double by using the
conversion operator we have just provided, and then use the built-in multiplication for double.
As far as the compiler is concerned, both of those conversions are of equal weight, and so it cannot
choose between them. We have to resolve that ambiguity by removing one of the causes. We can
remove one of the conversions, or explicitly tell the compiler which operand we wish to convert
by using a cast. See also ‘Another Way to Deal With Ambiguity’ below.

As the conversion operator causes problems, we should consider other options. The simplest one is to
provide an explicit conversion function such as

double to_double();

implemented by:

double rational::to_double(){
return double(n)/d

}

EXERCISE
5. Write a program that tests the use of to double() to convert from rational to double.

Another Way to Deal With Ambiguity
Another option for removing ambiguity is to provide several overloads for the operator in question. This
often requires the addition of more overloads than at first seem necessary. For example, we could replace the
single overload for rational operator*(rational lhs, rational const & rhs) with:

inline rational operator*(rational lhs, rational const & rhs){
return lhs *= rhs;

}
inline double operator*(double lhs, rational const & rhs){

return lhs * to_double(rhs);
}
inline double operator*(rational lhs, double rhs);

return rhs * to_double(lhs);
}
inline rational operator*(long lhs, rational const & rhs)

OVERLOADING OPERATORS AND CONVERSION OPERATORS 291

return rational(lhs) * rhs;
}
inline rational operator*(rational lhs, long rhs)

return lhs * rational(rhs);
}

The last two of those ensure that multiplication of a rational by an integer value will result in a
rational value, rather than a double.

The moral of all this is that conversion operators are deceptive and often add complexity rather than
removing it.

Tidying Up
There is a good deal more to do if we are to provide a robust, industrial-strength implementation of
rational. For example, we should do something about trapping overflow of the values stored for the
numerator and denominator. We should consider how to deal with attempts at constructing a rational
from a floating-point type such as double. We should also consider providing a function to simplify rational
values by eliminating common factors from the numerator and denominator. That last function might be a
reasonable place to check for a zero denominator.

I am leaving you to deal with these issues because they do not directly concern the subject of this
chapter. However, here is an example of how to block the construction of a rational from a double
(assuming you want to block it rather than provide a way to do it); add this declaration to the private interface
of rational:

rational(double);

It follows the same idea as we used earlier for blocking copy semantics; if you do not want something,
declare it as private.

Function Objects
If you have never come across the idea before, you will probably find the idea that () is an operator a
little strange. If you then discover that C++ allows you to overload the () operator, you will probably
have a number of reactions – including doubting that it could be useful. While I understand such reactions,
overloading operator() is one of the most powerful tools in C++. It is used extensively in that part of
the Standard Library that is often referred to as the STL (Standard Template Library), which provides a rich
collection of container types and functions to operate on them. We will be looking at some of these in the next
chapter. It is also the basis for providing manipulators with arguments for iostream objects. (For example,
std::setw(), which sets the field width for input/output, uses overloading of operator() to achieve
its objective.)

I am going to use a simple mathematical example to demonstrate how we can overload the function
operator in a way that will make domain-specific code more approachable to the domain expert. Back in your
school days, you would have drawn the graph of a mathematical function f(x). One way of doing this is to
plot the points (x, f(x)) for a sample of values of x in the range required. We can express that in programming
terms as:

void draw_graph(double lower, double upper, double interval,
math_function & f){

double x(lower);
do{

292 CHAPTER 16

plot(x, f(x));
} while((x += interval) < upper);

}

Would it not be nice if we could write exactly that? Here is a simple example of how to do that for a
quadratic function. First, the class definition to go in quadratic.h (do not forget the header guards):

class quadratic{
public:

quadratic(int a, int b, int c);
double operator()const(double x);

private:
int a_, b_, c_;

};

And next the implementation (in quadratic.cpp):

quadratic::quadratic(int a, int b, int c):a_(a), b_(b), c_(c){ }
double quadratic::operator()const(double x){

return ((a_*x + b_)*x + c_);
}

We are almost done. Add the declaration

void draw_graph(double lower, double upper, double interval,
quadratic const & f);

to quadratic.h, and add this implementation to quadratic.cpp:

void draw_graph(double lower, double upper, double interval,
quadratic const & f){

double x(lower);
do{
plot(x, f(x));

} while((x += interval) < upper);
}

Finally, we have to declare and implement plot(). If you have acquired some fluency with my Playpen
library, you might want to exercise it by using the fgw::plot() function provided in that library as a
basis for plotting curves. If you do not want to do that, we can provide a version of plot() that writes out
the coordinates to the console. As this is an implementation detail, it belongs in the unnamed namespace of
quadratic.cpp. Here is the code:

namespace{
void plot(double x, double y){
std::cout << "(" << x << ", " << y << ")\n";

}
}

Now that we have all that done and compiled, here is a short test program:

#include "quadratic.h"

int main(){
draw_graph(-4, 4, .2, quadratic(1, 3, 2));

}

OVERLOADING OPERATORS AND CONVERSION OPERATORS 293

If you are still a little puzzled, quadratic(1, 3, 2) constructs a temporary quadratic object and
passes it to the last parameter of draw graph(). Because that parameter takes a const reference, it can
bind to a temporary.

EXERCISES
6. Enhance the above program so that the arguments for the call of draw graph() are provided at run

time.

7. Modify draw graph() so that you can specify the output stream. Then test it with the following program:

#include "quadratic.h"
#include <exception>
#include <fstream>

int main(){
try{

ofstream outfile("graph.data");
if(not outfile) throw "Cannot open graph.data for writing";
draw_graph(-4, 4, .2, quadratic(1, 3, 2), outfile);

}
catch(...){

std::cerr << "Something went wrong.\n";
}

}

Generalizing
You may feel that this is all very well, but it only works for quadratic functions; what about all the other
mathematical functions that you might want to plot? Notice that the draw graph() implementation does
not care what the function is. However, we have tied it to quadratic functions by declaring the type of the last
parameter as quadratic. We can do with some polymorphic behavior that will fit the computation to the
type of the function.

You may be surprised by how little change we need to provide. Add the following abstract base class to
quadratic.h (perhaps not that good a name for the header file – change it if you want to)

struct math_function{
virtual double operator()(double)const = 0; // pure virtual

};

Modify the definition of quadratic so that it inherits (publicly) from math function. Finally,
change the type of the last parameter of draw graph() to math function &:

class quadratic: public math_function{
public:

quadratic(int a, int b, int c);
double operator()const(double x);

294 CHAPTER 16

private:
int a_, b_, c_;

};
void draw_graph(double lower, double upper, double interval,

math_function & f){
double x(lower);
do{
plot(x, f(x));

} while((x += interval) < upper);
}

That is it. The program you wrote for Exercise 6 should still work and produce the same results. Now you
can add in other functions by deriving suitable classes from math function. Notice that draw graph()
is now exactly what we started this section with.

STRETCHING EXERCISE
8. Review the way we encapsulated the idea of a general chess piece into a chesspiece type. Now design,

implement, and test a function type that encapsulates a selection of mathematical functions. If you are
already familiar with the concept of patterns and understand the factory pattern, try to produce a function
factory. (Note that the latter is really too advanced for this book, but it is such an obvious development of
the theme that I felt it worth mentioning.)

Conclusion
This chapter has only briefly touched on operator overloading, and there are many more aspects of it. The
whole of the smart-pointer technology is built on the foundation of overloading operator* (the dereference
operator, not the multiplication operator) and operator->. A great deal of the convenience of the STL
containers depends on overloading operator[] (the subscript operator). Many of the algorithms provided
for manipulation of containers depend on the ability to overload operator() (the function operator).

One of the biggest problems you will have with operator overloading is recognizing when it provides
a good solution. It is also necessary to learn how to defuse the potential dangers of overloading operators.
For example, it is relatively easy to provide a naı̈ve overload of the subscript operator. However, such
implementations nearly always break encapsulation or behave in unexpected ways. Getting it right is not that
hard, but you are unlikely to do so without guidance or many hours of debugging.

REFERENCE SECTION
Almost all the C++ operators can be overloaded. Some of them, such as assignment (=), subscript
([]), and function (()) can only be overloaded in the context of a class. All of them require that at
least one operand is of a user-defined type. When overloading an operator in class scope, the left-hand
operand will be of that class type.

OVERLOADING OPERATORS AND CONVERSION OPERATORS 295

When the left-hand operand of an operator will be of a user-defined type whose definition
cannot be changed, you have to overload the operator at global or namespace scope. It is usual to
overload an operator whose operands are symmetrical (such as operator+ and operator==) at
global or namespace scope.

Generally, the functionality for global/namespace overloads can be provided by a named
function at class scope. The only time you should consider using the friend mechanism to provide
access to a class’s private data when overloading an operator is if the operator needs access to the
private members of two classes for its left and right operands.

You should be careful to restrict overloading of operators to places where you get real benefits.
You need a clear understanding of why you are overloading an operator before doing it. Some
operators, such as the sequence (comma) operator and the logic operators, where the built-in versions
use lazy evaluation, are probably poor candidates for overloading, even though the language allows
you to do so.

C H A P T E R 17

Containers, Iterators,
and Algorithms

One of the great strengths of C++ is the way that the Standard Library has used template technology
to provide generic implementations of some of the basic building blocks of modern programming.
Because of its historical origins, many people call the part of the Standard Library that provides these the
Standard Template Library (usually just STL). Alex Stepanov and Dave Musser developed the basic ideas
and implementation. Once they had proved the concept, they offered their work to the committees who
were drafting the C++ Standard. The STL was clearly a great collection of components, and few people
had any hesitation about adopting it into the Standard Library and then refining it.

Put simply, the STL has four elements, including: a set of containers (data structures); suitable
iterators for those containers; and a set of functions that provide most of the common algorithms that
programmers want to apply to containers. The important fourth element is that the C++ Standard
specifies how a programmer can add a data structure that will work with the STL algorithms, and how to
add algorithms to work with the STL containers. In other words, the STL is designed to be extensible.

The purpose of this chapter is to introduce you to some of the power of the STL, and encourage
you to explore it further. The STL has one serious weakness for the newcomer: the names of the various
components are sometimes less than intuitive, and the behavior of some components is not what their
names imply. In other words, the names sometimes suggest different behavior, and sometimes the
behavior you want will be provided by a name you would not guess. This means that a comprehensive
reference plus access to experienced users is just about essential if you are to get maximum benefit. The
best references are The Standard C++ Library [Josuttis 1999] and Generic Programming and the STL [Austern
1999]. The former is appropriate if you want to focus on using what is provided by the Standard Library,
and the latter if you want to understand the STL well enough to add your own extensions to it.

The Standard provides std::vector<> (giving the functionality of a dynamic array), std::
deque<> (a double-ended queue – another random-access data structure), std::list<> (a doubly
linked list, a useful data structure for when frequent changes are made by adding or removing
elements internally), and std::basic string<> (a sequence of a character type; std::string and
std::wstring are specializations for char and wchar t).

In addition, the Standard provides four associative containers: std::map<>, std::multimap<>,
std::set<>, and std::multiset<>.

Finally, the Standard provides std::stack<> and std::priority queue<> as adaptors of other
containers to provide those data structures.

Many other data structures are available through third parties (such as Boost) and, recently, via a
Technical Report that provides a number of extensions to the Standard Library. Many of the items in the
Technical Report are likely to be added to the C++ Standard in its next full release (circa 2009).

298 CHAPTER 17

Suitable iterators are associated with each container type. Container types usually provide
iterator types as nested types. In general, each container type has four iterator types: iterator,
reverse iterator (allowing iteration from back to front), const iterator (providing read-
only access to the elements of a container), and const reverse iterator (read-only access in
reverse order).

The Standard Library has over 80 function templates, which provide the most common forms
of manipulation of the elements of a container. They include sorting for sequences (std::sort,
std::stable sort, and std::partial sort), copying, and searching, as well as functions to add all
the elements of a container (std::accumulate). If you want to process the elements of a container,
always check whether what you want has already been provided as part of the ‘algorithm’ section of the
Standard Library.

I do not have room to cover everything provided by the STL, so I am going to use three small
demonstration problems to give you a feel for what you can do with the Standard library.

Working with a Set
Problem 1
Read in a text file and print out a list of the words contained in it.

Here is my solution:

1 #include <set>
2 #include <iostream>
3 #include <istream>
4 #include <ostream>
5 #include <fstream>
6
7 int main(){
8 std::ifstream wordfile("main.cpp");
9 std::set<std::string> words;

10 std::string word;
11 while(true){
12 wordfile >> word;
13 if(wordfile.eof()) break;
14 words.insert(word);
15 }
16 std::ofstream wordlist("words.txt");
17 wordlist << "main.cpp contains each of the following at least once:\n";
18 for(std::set<std::string>::iterator i(words.begin());
19 i != words.end(); ++i){
20 wordlist << *i << '\n';
21 }
22 }

I have omitted the exception handling and checking that file streams connect to the specified files, because I
want to focus on the essentials of this program.

Lines 1–5 include all the necessary headers. In practice, several of them will be redundant, because
most implementations include <istream> and <ostream> automatically with either <iostream> or
<fstream>. <set> provides all the declarations we need if we want to use the std::set<> container.

Lines 8–10 provide the variables we need. In particular, line 9 provides words as a std::set of
std::strings. I initialized wordfile to use main.cpp, because that is what I called the file in which I
saved this program. This is a lazy trick that avoids my taking time to create a specific text file. It will also allow
me to highlight a couple of problems with the program as it stands.

CONTAINERS, ITERATORS, AND ALGORITHMS 299

Lines 11–15 constitute a standard ‘forever’ loop with an internal break to terminate it. It simply reads
in the source file until the end-of-file marker is read.

Line 16 opens a file into which we can write our results. The code in lines 18–21 sends the contents
of words to the stream wordlist, which results in the data being stored in words.txt. There are several
points worth noting. The first is the usage of words.begin() and words.end(). Every standard container
type provides a pair of member functions called begin() and end(). The former returns an iterator to the
first element of the container and the latter a special value of the iterator type that designates ‘beyond the
end of the container’. In the special case that the container is empty, begin() and end() return the same
iterator value.

Look carefully at line 18. I have defined i to be an object of type std::set<std::string>::
iterator and initialized it to locate the first element in the container I have called words. Next, i is checked
against the special termination value (so if words is empty, the loop terminates immediately). Then the
dereferenced value of i (i.e. *i) is sent to the wordlist stream. i is incremented and the process repeated
until we reach the end of words.

Here is the result (if you use whitespace differently when you type the code in, your results may be
slightly different):

main.cpp contains each of the following at least once:
!=
#include
'\n'
*i
++i){
<<
<fstream>
<iostream>
...
wordfile
wordfile("main.cpp");
wordlist
wordlist("words.txt");
words.end();
words.insert(word);
words;
}

What do you notice? Well, the first thing is that the program’s concept of a word is not ours. If you
check the code, you will see that we applied >> (the extraction operator) to get a std::string value. By
default, the extraction operator uses whitespace as a delimiter. Let me modify my program to use something
more akin to my notion of a word. I need a function to extract the next word from input – something like this:

std::string get_word(std::istream & in){
std::string word;
while(true){

char const letter(in.get());
if(in.eof()) return word;
if(std::isalpha(letter)){ // note this needs <cctype> included

word += letter;
break;

}
}
while(true){

char const letter(in.get());

300 CHAPTER 17

if(in.eof()) break;
if(not std::isalpha(letter)) break;
word += letter;

}
return word;

}

If you study this code, you will see that it basically skips over the contents of the input stream until it
gets a letter (std::isalpha() returns true only if its argument is a letter). It then adds that letter to the
previously created empty std::string called word, and then enters a second loop to add letters until it
gets a non-letter from the input stream. The code also handles the special case of reaching the end of the file,
either by returning an empty word or by returning the last word.

After a little reorganization, our previous program becomes

int main(){
std::ifstream wordfile("main.cpp");
std::set<std::string> words;
while(true){
std::string const word(get_word(wordfile));
words.insert(word);
if(wordfile.eof()) break;

}
std::ofstream wordlist("words.txt");
wordlist << "main.cpp contains each of the following at least once:\n";
for(std::set<std::string>::iterator i(words.begin());

i != words.end(); ++i){
wordlist << *i << '\n';

}
}

and we can build the second version of our solution program. This time the output file is:

main.cpp contains each of the following at least once:

at
begin
break
cctype
char
const
contains
cpp
...
this
true
txt
while
word
wordfile
wordlist
words

Now you can see the other characteristics of a std::set<>: the elements are stored in order (alphabetical
order by default for std::string objects), and no element repeats. We could have provided a predicate
function to give an ordering rule, but the default is to use the < (less-than) operator for the element type.

CONTAINERS, ITERATORS, AND ALGORITHMS 301

Problem 1a
List all the unique words in a file as a list in reverse alphabetical order.

We only need to change a single line of our previous program, but we need to do so carefully because we
can no longer use the values provided by begin() and end(). Starting with end() is no use, because that
does not locate the last element but the actual end of the container. We need to use the reverse iterator
and the two member functions that provide the values needed to walk the container backwards, which are
called rbegin() (effectively the last element in the container) and rend() (a special value to mark that we
are off the start of the container).

Replace

for(std::set<std::string>::iterator i(words.begin());
i != words.end(); ++i){

with:

for(std::set<std::string>::reverse_iterator i(words.rbegin());
i != words.rend(); ++i){

Build and execute the program.

Problem 1b
List all the words in a text file with multiple copies (so each word occurs as many times as it is used).

This is even simpler once we understand the properties of the containers in the STL. Go back to the final
program for Problem 1, and declare words as a std::multiset<std::string>. Build and execute the
program.

Problem 1c
List all the words in a text file, with each word followed by the number of times it occurs.

We have to make a rather greater change to our program to achieve the desired result. However, once
again, by choosing an appropriate container we get most of the work done without having to write explicit
code. This time we need a std::map<> (declared in <map>), using words as keys and counts as values for
the (key, value) pairs.

1 int main(){
2 std::ifstream wordfile("main.cpp");
3 std::map<std::string, int> words;
4 while(true){
5 std::string const word(get_word(wordfile));
6 ++words[word];
7 if(wordfile.eof()) break;
8 }
9 std::ofstream wordlist("words.txt");

10 wordlist << "main.cpp contains each of the following words:\n";
11 for(std::map<std::string, int>::iterator i(words.begin());
12 i != words.end(); ++i){
13 wordlist << i->first << ", " << i->second << '\n';
14 }
15 }

302 CHAPTER 17

We create a suitable container at line 3 – one that maps std::string values to numbers. Line 6 uses
a special property of std::map<> that allows us to access the value of a key by using the subscript operator
(note that operator[] is overloaded for std::map<> to allow access by using a key value). In addition, if
the index value is not already in the container, it is automatically added as a key and mapped to the default
for the value (which is 0 in the case of an int). The first time we find a word in the text file, we add it to the
container, the count is set to zero, and that is immediately incremented. Subsequent uses of the same word
increment the count.

I have edited line 11 so that we will iterate over the std::map. Line 13 is a good example of the
sometimes counterintuitive naming in parts of the Standard Library. We might expect to find key() and
value() member functions to handle the two parts of a mapped element. However, the elements of a map
are actually appropriate instances of std::pair<>. That template type from the Standard Library is simply a
way of associating a pair of values. In that context, it makes sense to refer to first and second. Remember
that iterators are effectively smart pointers and so support operator->.

Problem 1d
List all the words in a text file together with the number of times they occur. The list should be in descending
order of frequency, with words having the same frequency listed in alphabetical order.

We can achieve our objective if we can sort the (std::string, int) pairs in descending order of the
second value without disturbing the existing ordering for words with the same frequency. We need to apply
std::stable sort() (declared in <algorithm>) to a suitable container. The problem is that associative
containers cannot be sorted, because the elements are always ordered by their keys. We would prefer to keep
using a std::map<> to collect the data, but need some form of sequence container to handle the sorting
problem.

The Standard Library containers have constructors that support construction of a container from the
elements of another. I am going to use a std::vector<> to handle the reorganization problem. I have
already mentioned that a std::map contains elements of a std::pair<> type. Putting this together, we get
the following definition for moving our collected data into a sequence container:

std::vector<std::pair<std::string, int> >
seq_of_words(words.begin(), words.end());

The space between the two > signs used to end template arguments is currently required by the language, to
avoid confusion with operator>>.

That statement copies our data from words to seq of words. Next, we want to apply
std::stable sort() to seq of words. Like most of the algorithms, std::stable sort() is
provided with default behavior if you do not specify the criterion for sorting. That will not do, so we need
a small function to provide this criterion (STL experts often manage to find ways of defining such behavior
on the fly, but I am going to keep it simple). The requirement for an ordering function is that it takes two
instances of the type concerned and returns a bool value (functions that return bool are called predicates).
Here is the one we want:

inline bool compare(std::pair<std::string, int> const & lhs,
std::pair<std::string, int> const & rhs){

return lhs.second > rhs.second;
}

We can use that function to sort seq of words with:

std::stable_sort(seq_of_words.begin(), seq_of_words.end(), compare);

Notice that we just use the name of the comparison function as the third argument to std::stable sort().

CONTAINERS, ITERATORS, AND ALGORITHMS 303

Putting all this together, our main() becomes:

int main(){
std::ifstream wordfile("main.cpp");
std::map<std::string, int> words;
while(true){

std::string const word(get_word(wordfile));
++words[word];
if(wordfile.eof()) break;

}
std::vector<std::pair<std::string, int> >

seq_of_words(words.begin(), words.end());
std::stable_sort(seq_of_words.begin(), seq_of_words.end(), compare);
std::ofstream wordlist("words.txt");
wordlist << "main.cpp contains each of the following at least once:\n";
for(std::vector<std::pair<std::string, int> >::iterator

i(seq_of_words.begin()); i != seq_of_words.end(); ++i){
wordlist << i->first << ", " << i->second << '\n';

}
}

Build and execute the resulting program, and check the output file. Now try changing from
std::stable sort() to std::sort() (just edit out the stable). Build and execute the result.
When you examine the output file, you will see that words with the same frequency are no longer in
alphabetical order.

Working with Numeric Algorithms
Problem 2
Given a data file consisting of names and salaries with one name and one salary per line, separated by a colon,
compute the average (arithmetic mean) salary, the average for the top 25%, and the average for the bottom 25%.

You will need to create a short text file containing suitable test data (call it salary data.txt) and
save it in the chapter 17 folder. Here is the bare bones of a program that solves the problem. You will need
to include various headers. As well as the ones we have seen before, you will need <numeric> to provide a
declaration for std::accumulate<> (used in lines 13, 18, and 22) and <functional> for the declaration
of std::greater<> (used in line 12).

1 int main(){
2 std::ifstream input("salary_data");
3 std::vector<double> salaries;
4 double salary;
5 std::string name;
6 while(true){
7 getline(input, name, ':');
8 input >> salary;
9 if(input.eof()) break;

10 salaries.push_back(salary);
11 }
12 std::sort(salaries.begin(), salaries.end(), std::greater<double>());
13 double const total(std::accumulate(salaries.begin(),
14 salaries.end(), 0.0));

304 CHAPTER 17

15 std::cout << "\nTotal payroll: " << total;
16 std::cout << "\nThe mean salary is: " << total / salaries.size();
17 int const quartile(salaries.size() / 4);
18 double const top(std::accumulate(salaries.begin(),
19 salaries.begin() + quartile, 0.0));
20 std::cout << "\nThe mean salary of the top 25% is: "
21 << top / quartile;
22 double const bottom(std::accumulate(salaries.end() - quartile,
23 salaries.end(), 0.0));
24 std::cout << "\nThe mean salary of the top 25% is: "
25 << bottom / quartile << '\n';
26 }

I have used the three-argument form of std::getline() in line 7 to extract the name part of the
data (and effectively discard it). This version of std::getline() is often useful when extracting data that
has delimiters in it. Line 8 extracts the salary value that follows each name. At line 9, we check that we
have not hit the end of the data file, and until we have, line 10 copies the last-read salary to the back of
salaries.

Line 12 uses the three-parameter form of std::sort() to sort salaries in descending order.
Note that when we use such tools as std::greater<>, we have to add a pair of parentheses. Such tools
are objects created by using an overloaded operator(), and so we need to construct a suitable object.
std::greater<double>() is a constructor for a temporary used to supply the criterion for sorting.

Every Standard Library container type includes a size() member function, which reports the number
of elements.

The std::accumulate<>() numerical algorithm steps through the range of elements provided
by the first two arguments and ‘accumulates’ their values into the value provided by the third argu-
ment. It returns the value of the third argument at the end. I have placed ‘accumulates’ in quotation
marks because it has an optional fourth parameter that can replace the default of addition by some
other operation. For example, std::accumulate(salaries.begin(), salaries.end(), 0.0,
std::multiplies<double>()) computes and returns the product of all the salaries. So, by replacing
lines 13–16 in the above definition of main() with

double const total(std::accumulate(salaries.begin(), salaries.end(),
1.0, std::multiplies<double>()));

std::cout << "\nThe geometric mean salary is "
<< std::pow(total, 1.0 / salaries.size());

we could compute the geometric mean of the company payroll.
Note that the above code assumes that there are at least four entries; otherwise, the value of quartile

would be zero and we would get divide-by-zero errors. As a further exercise in writing C++, please edit the
code to include suitable checks to ensure that there is enough data for the program to work.

Problem 2a
In the previous version, we ignored the employee’s name by just reading it and discarding it. Use the same
data, but output the names of the top 25% and bottom 25% earners.

There are many ways to tackle this problem, but here is a simple solution that builds on what we have
covered earlier. First, we define a suitable type to hold the data:

class pay_data{
public:

pay_data(std::istream & in){

CONTAINERS, ITERATORS, AND ALGORITHMS 305

std::getline(in, name_, ':');
in >> salary_;
in.ignore(std::numeric_limits<int>::max(), '\n');

}
operator double()const{return salary_;}
bool operator<(pay_data const & rhs)const{

return salary_ < rhs.salary_ ;
}
std::string name()const{return name_;}
double salary()const{return salary_;}

private:
std::string name_;
double salary_;

};

Most of that class definition (with everything implemented in the definition to keep this code simple)
is straightforward. There is one interesting thing in the pay data constructor, which arose when I was
testing the code. The line that starts in.ignore is there because otherwise std::getline() picks up the
terminating newline character from the previous data item in the file. That line is the idiomatic way to ignore
everything left on a line of input. You can ignore everything to the delimiter of your choice, but '\n' is by
far the most common.

The definition of a conversion operator is a rather lazy way to make pay data behave like a
double (useful for using std::accumulate). Defining operator< for pay data ensures that the sorting
algorithms can be called without the need to add an argument specifying how the data is ordered. The sorting
algorithms in the Standard Library default to using operator< for the type. If the type does not provide that
operator and you do not specify an ordering function, you get a compilation error.

Here is a short program that uses this class definition to solve the problem.

int main(){
std::ifstream input("salary_data");
std::vector<pay_data> salaries;
while(true){

pay_data salary(input);
if(input.eof()) break;
salaries.push_back(salary); // uses compiler-generated copy constructor

}
std::sort(salaries.begin(), salaries.end());
int const quartile(salaries.size() / 4);
std::cout << "\nThe following " << quartile

<< " employees earned in the bottom 25\%:\n";
for(int i(0); i != quartile; ++i){

std::cout << salaries[i].name() << " earned "
<< salaries[i].salary() << '\n';

}
std::reverse(salaries.begin(), salaries.end());
std::cout << "\nThe following " << quartile

<< " employees earned in the top 25\%:\n";
for(int i(0); i != quartile; ++i){

std::cout << salaries[i].name() << " earned "
<< salaries[i].salary() << '\n';

}

306 CHAPTER 17

Note the use of std::reverse() to re-sort salaries in descending order. I did not have to do it
that way, but it saved me from having to work out exactly where to start the output of the high-salary earners.
It also places the higher earners in descending order of salary.

Working with a Multimap
Problem 3
Create a dictionary of anagrams so that we can look up all the words spelled with a given selection of letters.
The solution should allow the dictionary to be sent to an output stream (such as the console or a file), and
provide for lookup of a word (or collection of letters) with output of a list of all the words that are spelled
by rearranging the letters.

I have been rather lazy in my earlier problem solutions, because I have packed rather more code into
main() than I would consider good design. Let me make amends with this problem and provide a reasonably
well designed solution (though many readers may consider they can do better).

First, I am going to provide a couple of typedefs to avoid repeated use of long type names:

typedef std::multimap<std::string, std::string> dictionary;
typedef std::multimap<std::string, std::string>::const_iterator iter;

As you see, I am using a std::multimap<>. I intend that a key will be a string of letters in alphabetical
order. Each corresponding value (the second element of a pair) will be a word that can be spelled with those
letters. I have chosen to use const iterator because I do not intend to allow changes to entries in the
dictionary.

Now let me deal with the three things the problem requires us to do: create a dictionary of anagrams,
send it to an output stream, and look up a string of letters.

void make_anagram_dictionary(dictionary & anagrams, std::istream & source){
while(true){
std::string word;
source >> word;
if(source.eof()) return;
if(not std::isalpha(word[0]) return;
std::string letters(word);
std::sort(letters.begin(), letters.end());
anagrams.insert(std::make_pair(letters, word));

}
}

We pass a dictionary by reference (note that the dictionary might already have words in it) and a source
of words into this function. It repeatedly extracts the next ‘word’ from source. Before continuing, it checks
that it was not at the end of the file and that it did not read a string that began with a non-alphabetic symbol. In
either of those cases, it returns to the calling function. As long as it has a legitimate word, it creates a working
copy, to which it applies std::sort() to arrange the letters in ascending alphabetical order. Finally, it uses
std::make pair() to compose a single entity of the ordered letters and the original word, which it inserts
into the dictionary.

The following function is the simplest solution to the problem of sending the dictionary to an output
stream. It prints each entry on a single line – first the sorted letters, then the word they make:

void print_anagram_dictionary(dictionary const & anagrams,
std::ostream & out){

for(iter i(anagrams.begin()); i != anagrams.end(); ++i){
out << i->first << ", " << i->second << '\n';

}
}

CONTAINERS, ITERATORS, AND ALGORITHMS 307

Here is our lookup function:

void find_anagram(dictionary const & anagrams, std::string const & word,
std::ostream & out = std::cout){

// note default argument allowed if definition doubles as a declaration
std::string letters(word);
std::sort(letters.begin(), letters.end());
iter lower(anagrams.lower_bound(letters));
iter upper(anagrams.upper_bound(letters));
if(lower == upper){

std::cout << "No word using the letters of " << word
<< " found in the anagram dictionary.\n";

return;
}
std::cout << "The following anagrams of " << word

<< " were found in the anagram dictionary:\n";
for(iter i(lower); i != upper; ++i){

std::cout << i -> second << ", ";
}
std::cout << '\n';
return;

}

By now, most of the definition of this function should be clear. lower bound() and upper bound()
are member functions of each of the standard associative containers (std::map, std::multimap,
std::set, and std::multiset). lower bound() returns an iterator value (or const iterator
value if the container is const-qualified) to the first element that matches its argument. upper bound()
returns an iterator value (or const iterator value if the container is const qualified) to the first element
after the last element that matches its argument. Both return the value of end() if the element is not found.
In addition, upper bound() returns the value of end() if the found element is the last in the container.

Finally, here is a short test program that uses a file provided on the CD called words data as a source
to test the functions above:

int main(){
try{

std::multimap<std::string, std::string> anagrams;
std::ifstream input("word_data");
make_anagram_dictionary(anagrams, input);
print_anagram_dictionary(anagrams, std::cout);
find_anagram(anagrams, "vile");
find_anagram(anagrams, "level");

}
catch(...){

std::cerr << "An exception was thrown.\n";
}

}

Preloading a Container
Sometime we want to create a container with a certain number of values loaded into it at the start. The problem
we face is how we can do that. If we use an array as a container, we can often write something such as:

int primes[] = {2, 3, 5, 7, 11};

308 CHAPTER 17

However, we would want to be able to extend a container of primes by adding new ones to it. That
suggests that we would like to be able to write:

std::vector<int> vec_of_primes(5) = {2, 3, 5, 7, 11};

The language does not support such syntax, or anything close to it. All is not lost, because we can use
the facility for constructing a container to contain copies of the elements of a different container. It does
require an extra line of code, but normally we can live with that. Here is how:

int const prime_values[] = {2, 3, 5, 7, 11};
// compute the number of elements:
int const provided_values(sizeof(prime_values) / sizeof(int));
std::vector<int>

vec_of_primes(prime_values, prime_values + provided_values};

The line that defines provided values is the idiomatic way of making code robust against changes
in the number of elements used in initializing an array. I have const-qualified prime values to give a hint
to the compiler that it may, if it can, optimize away the storage for prime values, because I am only going
to use the values, not change them.

Future versions of C++ may make this mechanism unnecessary.

EXERCISES
1. The above definition of find anagram() ends its output with a comma. Improve the output so that

this is not the case. (There are several ways to do this, but you might find using a std::stringstream
useful as a way to prepare output.)

2. Change the definition of print anagram dictionary() so that it prints each letter selection
followed by a colon and then a comma-separated list of the words formed from that selection.

3. While the sorted letters in the anagram dictionary are held in alphabetical order, the words that can be
made from a specific selection are not ordered. Modify your solution to Exercise 2 so that the words are
listed in alphabetical order.

4. Combine the solutions of Problems 1 and 3 of this chapter to be able to use an ordinary file of text as the
source of words for the anagram dictionary. Warning: you will need to be careful that you do not add the
same word more than once to the dictionary. It is worth considering a multi-stage solution where you first
extract the words from the current anagram dictionary into a set, then add the new words to this set, and
finally create a new version of the anagram dictionary. This is only one of several good ways to solve this
problem.

Conclusion
I have only given you the briefest of introductions to the STL and similar components. Undoubtedly, template
technology is one of the most powerful features of C++. Writing good templates is time-consuming and
makes considerable demands on the programmer’s C++ skills. However, using well-designed templates such
as those in the Standard Library will save a good deal of your programming time.

CONTAINERS, ITERATORS, AND ALGORITHMS 309

Other sources of template components include the library extensions provided by the first Standard C++
Library Technical Report. While the Standard C++ Library is nowhere near as extensive as that provided by
Java, those components that are in it have been carefully designed and expertly implemented.

REFERENCE SECTION
Containers
There are two major categories of container: sequence containers and associative containers. A sequence
container is one where notionally the elements of the container can be arranged in some arbitrary
order. An associative container is one in which there is some rule that predetermines the way that the
elements will be organized. Rather than try to pin down the differences in words, it is probably easier
to describe the principal STL containers.

Each of the Standard Library containers has one or more constructors for construction from
another container or sequence (these constructors take two iterator arguments). Although it is not
possible to construct a raw array from a Library container (because arrays do not have constructors),
it is possible to construct a Library container from an array by using a pointer to the start and one
beyond the end of the array.

Note that all the standard containers are value-based and require that the type of the contained
elements supports standard copy semantics (i.e. has both a public copy constructor and a copy-
assignment operator, each of whose arguments is a const reference). The reason that you cannot
have a container of std::auto ptr<> is that it does not have standard copy semantics – it changes
the instance being copied, to transfer ownership of the object it points to.

Sequence containers
The raw (built-in) array is the simplest sequence container. Unlike the other C++ sequence containers,
it has a fixed number of elements. The reason that you need to know that it meets the STL requirements
for a sequence container is that we can apply any algorithm to an array as long as it does not attempt
to change the number of elements.

The STL provides three other sequence containers: std::vector, std::deque, and
std::list.

std::vector<> provides all the functionality of a dynamically sized array; the elements are
held in a contiguous array. This container type is designed for efficient growth and access. One
consequence of supporting growth in a data structure that holds its data in contiguous storage is
that the data may be relocated when the amount of it changes, thereby invalidating any iterators or
pointers into the prior version. That means that you should be wary of holding on to iterators into a
std::vector<>, because they may be made invalid by actions that change the size of the container.

Because of the possibility of relocation, which will invalidate iterators, it is usually better to use
subscripting to access the elements of a std::vector<>. As long as a std::vector<> named vec
has at least n + 1 elements, vec[n] will be valid (and refer to the last element of vec).

std::deque<> (stands for double-ended queue) uses a different internal structure, which
allows growth at both ends and guarantees that the elements are not moved during the lifetime of an
instance of a std::deque<>. Meeting that design objective requires an extra level of indirection, so
access to individual elements is marginally slower, but the benefit is that iterators into a std::deque<>
are more stable and we can efficiently add new elements at the beginning as well as at the end.

std::basic string<> is also designed as a sequence container, but one for character-like ele-
ments. std::string, which we have used extensively, is a specialization of std::basic string<>
for a char.

310 CHAPTER 17

The above sequence containers are all random-access containers. That means that we can apply
operator[] to any of them to reference a given element. For example, if cont is a random-access
sequence container with at least six elements, then cont[5] would be the sixth element (remember
that we always count from 0, so the first element would be cont[0]).

std::list<> is a doubly linked list (there are STL-conforming singly linked lists available
from such groups as Boost). List data structures have many advantages, but their main drawback is
that they are not random-access containers. You have to traverse the list either forwards or backwards,
element by element.

Associative Containers
std::set<> is a container that holds its elements in an order that is determined by an ordering
function provided to its constructors. By default, it uses operator< for the type of the elements it
contains. An attempt to add an instance that is identical to an existing element (i.e. compares equal to)
is ignored. In other words, every element of a std::set<> is unique in that set.

std::multiset<> is also a container that holds its elements in an order that is determined by
an ordering function provided to its constructors. By default, it too uses operator< for the type of
the elements it contains. However, unlike std::set<>, std::multiset<> allows multiple copies
of its elements.

std::map<> is a collection of pairs of objects, each pair containing a key and a value. With respect
to keys, it is like std::set<>, in that every key is unique, and the elements are held in order of the
keys (the order being determined by an ordering function, which defaults to operator< for the type
of the key). operator[] (the subscript operator) is overloaded for std::map<>, so that a map can
be indexed with a key to obtain a reference to the corresponding value. Indexing a map container on
a non-existent key automatically adds that key to the map with the default for the value type.

std::multimap<> is also a collection of pairs of objects, each pair containing a key and a value.
With respect to keys, it is like std::multiset<>, in that the elements are held in order of the
keys (not necessarily unique; the order being determined by an ordering function, which defaults to
operator< for the type of the key).

Iterators
Each of the standard containers supplies four iterator types as nested types (iterator, reverse
iterator, const iterator, and const reverse iterator). The two const versions pro-
vide access to elements of a const-qualified container. The two reverse versions are to allow
traversal of a container from back to front. The iterators are smart pointers, and so support derefer-
encing (operator* and operator->) and pre-/post-increment and -decrement (operator++ and
operator--).

Those containers that support random access (std::vector<>, std::deque<>, and std::
basic string) have random-access iterators, i.e. ones that provide overloads for operator(int)=
and operator-(int).

The built-in array types use raw pointers as iterators.
Each of the Standard Library containers provides member functions that locate the beginning

and end of the container for forward and reverse iteration. These are called begin(), rbegin(),
end(), and rend(). Each is overloaded for use with const-qualified containers.

Algorithms
The Standard C++ Library provides a large number of function templates that allow management
of containers. The STL decouples these generic functions from the container types. The types of
the iterators used in conjunction with them determine any special handling that may be necessary.

CONTAINERS, ITERATORS, AND ALGORITHMS 311

Several headers (most importantly <numeric>, <functional>, and <algorithm>) provide these
templates.

Further Reference
Both the description and the use of the STL are substantial. The C++ Standard Library [Josuttis 1999] is
widely acknowledged as the best available tutorial and reference. It is one of the ‘must have’ books for
any serious C++ programmer.

C H A P T E R 18

Something Old,
Something New

C++ is probably the largest and most complex computer-programming language in general use. It
supports many programming paradigms and styles. That means that it is impossible to write a book of a
reasonable size that covers the whole language. It is even less possible (!) to write a book that covers the
many ways we can use C++. Indeed, I doubt that there is any single programmer who understands all the
ways C++ is being used. Several years ago, during a refreshments break at a meeting of those responsible
for the C++ Standard, we were discussing how many people it would take to ensure that we covered all
of C++. Eventually we decided that we might manage it with three people if we chose carefully. I think
we were being optimistic.

Professor Bjarne Stroustrup, the original designer of C++, has described it as the equivalent of
English, a language in wide use, often as a second language. He added that it is a language that many people
use successfully even though they only know a (small) part of it. Dennis Ritchie, the original designer of
C, was once asked how much of C he used in an average program. His response was 90%. When Bjarne
Stroustrup was asked the same question about C++ he is reputed to have answered: 10% to 20%.

In this book, I have tried to introduce you to a good foundation for programming in C++, but there
is a great deal more that you can learn. C++ is a living language, and quite apart from the work going on
to extend it, there is an amazing amount of development in using what we already have. This means that
C++ programmers soon find that they are dealing with code written in an earlier style. Unfortunately,
maintaining old (legacy) code is one of the commonest tasks assigned to newcomers. The purpose of this
chapter is to try to give you some help when faced with old code that you did not write. There are issues
of style, issues of exception safety, and issues of changing idioms.

My coding style is distinct and individualistic. I will try to highlight some of the main issues in
this chapter.

Code Layout and Consistency
Programmers spend a horrifying amount of time in arguments about how we should present code. These are
very largely ‘religious’ issues, in that programmers try to defend their choices with ‘rational’ arguments that,
when looked at closely, are nothing more than subjective likes and dislikes.

One of the biggest time wasters is the use of whitespace and newlines to make code more readable. For
example, which of the following is best?

int * i_ptr;
int* j_ptr;
int *k_ptr;

314 CHAPTER 18

The answer is that it does not matter, but it helps to be consistent and use the style of your colleagues.
What does matter is that we initialize pointers in their definitions. Without further context, you do not know
whether the above statements are just declarations (as they would be in the scope of a class definition) or
definitions (as they would be at block scope).

When you write code for yourself, choose any layout conventions that you are happy with; when you
write code in a team, use that which the team uses. However, in both cases be consistent. If you write things
differently, it should be because you are trying to highlight a difference.

For example, we can use either struct or class in defining a class type. In the modern style for C++,
the public interface is listed first (i.e. we write things in a need-to-know order), and it makes no difference to
the rest of your code whether you write

struct example{
public:

// interface
private:

// interface
};

or:

class example{
public:

// interface
private:

// interface
};

However, we could leave out the use of the public access specifier in the first case. No competent C++
programmer that I know would justify using struct rather than class so that they could save typing
public:. It is idiomatic in C++ that using the struct keyword highlights the fact that we are including
public data members.

A slightly less strong idiom concerns the choice of class or typename for declaring template type
parameters. Either pick one and stick with it, or join the growing band that uses typename when the
parameter can be any type, and class when the parameter is essentially restricted to user-defined types.

Where to Put const
The const keyword was introduced to C (borrowed from C++ during the 1980s) well after the language
was in extensive use. There was no great reason to choose where the keyword went as a qualifier. As a result, C
programmers got into the habit of putting it first whenever that was possible. Generally, the only time it was
not possible was when qualifying a pointer as const rather than qualifying what a pointer was pointing to.
C++ is different in that there are more uses of const. One of those uses is in qualifying member functions
as ones that do not mutate the object data. That meant that there were now two places where const had to
be to the right of what it qualified.

Then, in the 1990s, Dan Saks noticed that the increasing use of typedef applied to pointers was
causing another misunderstanding among many programmers (not the expert ones, but many others). Here
is a short code snippet that illustrates the problem:

typedef int * int_ptr;
int i;
const int_ptr i_ptr(&i);

SOMETHING OLD, SOMETHING NEW 315

Many programmers think of typedef as some form of macro. They think of it as just an alternative to:

#define INT_PTR int *

So they mistakenly interpret the definition of i ptr above as:

const int * i_ptr(&i);

In other words, they read it as: i ptr is a pointer granting read-only access to i. That is not how typedef
works. The const qualifies the type, and so the definition above is equivalent to:

int_ptr const i_ptr(&i);

That is equivalent to:

int * const i_ptr(&i);

In other words, i ptr contains the address of i throughout the lifetime of i ptr.
So we now had two places where const had to be on the right, and one place where putting it on

the left caused confusion in the minds of some programmers. That led Dan to start a movement to make it
idiomatic to place const to the right of the type being qualified. Changing habits takes a great deal of time,
and many programmers are repeatedly exposed to the older ‘idiom’. In a way, it does not matter where you
place const in the cases where you have a choice. However, I favor consistency, and so I always place it to
the right of what I am qualifying. If you sometimes see it on the left, you will have to think carefully about
exactly what is being qualified as const.

If you have a choice, I suggest that consistency should win the day, but it is not something worth
fighting over.

Function-Style Versus Assignment-Style
Initialization
C programmers had no choice: initialization of variables in their definitions was always done by using an
equality sign. For example:

struct ex{
int y;
int z;

};
int i = 0;
ex x = {1, 0};

C++ inherited that mechanism and maintains it to this day, in order to maximize compatibility between
C and C++ source code. However, C++ introduced this situation:

class mytype{
public:

mytype(double x, double y):x_(x), y_(y){ }
private:

double x_;
double y_;

};

316 CHAPTER 18

Now C++ needed syntax for calling the constructor. The chosen syntax was to ‘call’ the constructor with a
function-like initializer:

mytype mt(3.0, 2.1);

So far, so good. However, it then seemed to make sense to allow initialization of fundamental types
with a similar syntax. So int i(0); became a valid alternative to int i = 0;. Unfortunately, this was not
pursued to the logical conclusion. For example, we cannot write ex x(1, 0); as an alternative to ex x =
{1, 0};. It got worse. Add the default constructor

mytype():x_(0.0), y_(0.0){ }

and, surprisingly to most newcomers,

mytype mt();

does not define mt to be a default instance of mytype. What it does is to declare mt to be a function with
no parameter that returns an instance of mytype by value. You may soon get used to recognizing the empty
brackets as the cause of a problem in your code, and quickly learn to write:

mytype mt;

However, there are other subtler cases where the compiler manages to parse what the programmer intends to
be a definition of a variable as a declaration of a function.

Consider the development of this tiny program:

Version 1
#include <iostream>
#include <ostream>

int main(){
double d(3.3);
int i(d);
std::cout << i;

}

The program compiles and, when built, outputs 3, just as you expect.
Now your teacher comes along and points out that the compiler is giving you a warning for converting

a double into an int (quite sensibly, because such a conversion can lose some data, and, more to the point,
not all double values can be expressed as int values, even approximately.) You try to fix it with a simple
function-style cast:

Version 2
#include <iostream>
#include <ostream>

int main(){
double d(3.3);
int i(int(d));
std::cout << i;

}

SOMETHING OLD, SOMETHING NEW 317

Now the compiler gives you this warning:

warning: the address of 'int i(int)' will always evaluate as 'true'

What is it on about? It is complaining about your output line, but that is not where the problem is. It has
parsed the previous line as a declaration of a function i() with an int parameter and an int return. Your
first instinct may be to think that the compiler is wrong, but you are mistaken. You have fallen foul of the
redundant-parentheses rule, inherited from C. int i(int(d)) is the same as int i(int d) as far as the
compiler is concerned. In turn, that is just the same as int i(int), because parameter names have no
significance in the context of a function declaration.

Yes, we should fix code that compiles with warnings, because the warnings are sometimes more serious
than we think. Note that the warning for Version 1 is not that serious in context, but the warning for Version 2
tells us that the compiler is not seeing what we intended to write.

There are many ways to correct Version 2. My preference is to use the new-style C++ casts – a
static cast<int> in this case:

Version 3a
int main(){

double d(3.3);
int i(static_cast<int>(d));
std::cout << i;

}

However, you can also get around the problem by adding another pair of parentheses around the whole
argument:

Version 3b
int main(){

double d(3);
int i((int(d)));
std::cout << i;

}

That form may be more useful if this problem hits you when initializing an object by calling a constructor
that has more than one parameter. Try this code to see that problem manifest:

#include <iostream>
#include <ostream>

struct ex{
ex(int i, int j):i_(i), j_(j){ }
int i_;
int j_;

};

int main(){
double d(3.3);
ex i(int(d), int(d));
std::cout << i.i_;

}

318 CHAPTER 18

This time we get an error for the output statement. Once again, the compiler thinks we are declaring a
function called i returning an ex by value. We can fix the problem by preventing the compiler from being
able to parse your intended definition as a declaration. Add parentheses around the first argument to the
constructor for ex:

int main(){
double d(3);
ex i((int(d)), int(d));
std::cout << i.i_;

}

There are numerous other ways to deal with the problem of C++’s most vexing parse. However, the
biggest problem is identifying that that is the problem that you have. It is a case where the error message
never identifies the actual problem.

Why Use Function-Style Initialization?
I prefer it because it is more consistent. I say ‘more’ consistent, because there are places where you cannot
initialize that way, but they are comparatively rare. On the other hand, there are places where this form is the
only one that is valid, even when there is only a single argument. For example, the initializers in a constructor
initializer list must use function-style syntax.

Using using
I have generally avoided using declarations and using directives when preparing code examples for this
book. In most cases, the little extra typing involved in using fully qualified names (and having a hotkey to
insert std:: can reduce that) avoids some of the issues that can come up when using simple names via a
using declaration or using directive.

It may not have been apparent that compilers make use of their knowledge of the scope in which the
types of the arguments of a function are declared in order to extend the place where they look for overloads
of the function name. We used to call the process ‘Koenig lookup’, because Andy Koenig (at that time the
editor of the document that was to become the C++ Standard) proposed the idea. Experience has shown
that there are some subtle and sometimes serious problems with the idea, which is why we now refer to
it as ADL (argument-dependent lookup). For now, all you need to know is that there are some problem
areas here, and you should be prepared to investigate further if they bite you. (As it took several years
for the experts to identify the problems, they will probably not bite you soon unless you use cutting-edge
libraries.)

Mostly, using declarations and directives are purely for convenience; they save us typing some
code. using declarations can be useful when you want to compose an overload set from declarations
in two or more namespaces, but that is usually not that good an idea. The technique needs to be used
with understanding. However, there is one special case: a using declaration at class scope. Consider the
following:

class base{
public:

virtual void foo(int);
virtual void foo(double);
virtual void foo(base &);
// other details

};

SOMETHING OLD, SOMETHING NEW 319

class derived: public base{
public:

void foo(int);
// other details

};

In other words, we want to provide a specific implementation of foo(int) for derived. Now
consider this code:

int main(){
derived d;
base & b_ref(d); // provide access via a base-class reference
d.foo(3.2); // what do you think this calls?
b_ref.foo(3.2); // and this one?

}

The surprise is that d.foo(3.2) calls the foo(int) provided in derived, because in that scope our
declaration of foo(int) hides all declarations of foo() in base, with the result that the compiler converts
3.2 to an int with value 3. b ref(3.2) does what you should expect and calls the foo(double) declared
in base. It is extremely unlikely that we want different overload resolution for the two cases, so we need to
know how to inject all the declarations of the name in a base class into a derived class. This is how:

class derived: public base{
public:

using base::foo; // inject all declarations of foo found in base
void foo(int);
// other details

};

You cannot do that if any of the declarations of the name (foo in this case) in the base class are private.
In addition, the access in the derived class will be the access level of the using declaration.

These rules apply regardless of whether the functions are virtual; it is just that you are most likely to
come across the problem when writing implementations of polymorphic functions in derived classes.

Switching Off Polymorphism
If you need to overrule polymorphic behavior for some reason, so that the function implementation is that of
the static (compile-time) type of a pointer or reference, you do so by qualifying the function name with the
class name.

For example:

class base{
public:

virtual void foo(int);
// other details

};
class derived: public base{
public:

void foo(int);
// other details

};

320 CHAPTER 18

int main(){
derived d;
base & b_ref(d); // provide access via a base-class reference
b_ref.foo(3); // calls the implementation for derived
b_ref.base::foo(3); // calls the implementation for base

}

Alternative Spellings for Operators
A number of operators have alternative spelled-out tokens. These exist for historical reasons, largely to do
with keyboards for Scandinavian character sets. Several of the operators and other symbols used by C are not
found on keyboards that conform to an old ISO Standard and that are used in several Scandinavian countries.
After several years of argument, C and C++ agreed to alternative spellings for a number of operators. Most of
these are just a mild curiosity, but one particular operator repeatedly gets missed, even by fairly experienced
programmers; that is the logical not operator symbol (!). In addition, the logical and (&&) and or (||) are
often confused with the bitwise and (&) and or (|) operators. For that reason I choose to use the spelled-out
versions (not, and, and or) of those three operators.

Again, it is not a big issue, but you might like to consider whether those spelled-out versions make code
more readable or not. As always, when we are dealing with this kind of issue, consistency within a team is
far more important than being quirkily individualistic. Given a free hand, I choose the spelled-out versions,
but I am not going to fight hard for the choice. However, you should know that you have a choice.

Hungarian Notation
If you are unfamiliar with the term, it refers to the custom that propagated from Microsoft of adding a
combination of letters to the start of a variable name to identify the type of the variable. There was some sense
to the idea when it was first developed for coding in C, though I think that the beginning of the identifier is
the wrong place for such secondary information. However, it makes much less sense in C++, with its vast
collection of user-defined types and considerably better type safety.

Programmers still like to add some secondary information to identifiers, and many of them just use a
modified version of Hungarian Notation. I am not going to argue against decorating names with extras to
identify something of their nature or scope. I generally think it is unnecessary, but if it is helpful, I am happy
to do it. However, I am very certain that the right place for such extras is at the end of the identifier. You
will have noticed me using identifiers such as something ptr and somethingelse ref where I want
to emphasize that a variable is either a pointer or a reference. I also often append an underscore () to the
name of a data member of a class. The names of data members are (or should be) entirely the concern of the
implementer of a class. My mechanism ensures that the names of my private data members do not clash with
other names elsewhere.

Names for Constants
The preprocessor #define directive was the only consistently available way for providing named constants
in C. The preprocessor is a blunt instrument with no respect for scope. Because of that, experienced C
programmers chose preprocessor names without any lowercase letters and ensured that there was at least one
lowercase letter in all other identifiers. That idiom minimized clashes and unwanted damage done to code
by preprocessing. However, many programmers simply learned the rule by rote without understanding. As a
result, a school of C++ programming grew up where the rule had mutated into: ‘‘The names of constants
should be in uppercase.’’

SOMETHING OLD, SOMETHING NEW 321

There are two things wrong with this rule. First, it exposes code to interference by the preprocessor
when you include header files. Second, and perhaps just a matter of aesthetics, we have the names of constants
‘shouted’. We can become accustomed to almost anything, but I have a strong personal dislike of unnecessary
use of uppercase. I continue to advocate strict adherence to the original C guideline (even when I mostly write
C++) that identifiers without lowercase letters are for the preprocessor.

I would fight this issue a bit harder than the earlier ones because I think that there is a minor safety
issue.

Comments and ‘Need to Know’
I am a strong believer that code should be readable and rely as little as possible on comments. Whenever I find
it necessary to write a comment, I look at the code to decide whether there is some good way to reorganize the
code so that it is comprehensible without the comment. That does not mean that my code is comment-free,
but it does mean that my comments are important and should not be ignored.

It is useful to place a comment identifying the author and the last revision date at the start of a
file; I do not find it useful to place the entire revision history, design description, and documentation
there. People most often look at a file of source code because they want to review the source code. In
my opinion, documentation belongs at the end of the file; readers can find it there if they need it. I
look at comments as being similar to footnotes and endnotes. You do not expect to find such notes at
the start of a chapter; they come either at the end of a page or at the end of the chapter. Sometimes we
add parenthetical notes when writing text; those are equivalent to the comments at the end of a line of
source code.

I hardly ever use /* */ comments in the body of my source code, but use the // form instead. That
allows me to use the former when I want to comment out a substantial block of code for some reason. While
some compilers do handle nested comments using nested /* */, most do not.

Multiple Exits from Structures
A substantial school of exponents of structured programming uses a very strong guideline (for some it is
absolute) that every structure should have a single entry point and a single exit point (SESE). Now, I freely
admit to being less than a devotee of SESE. However, I do have certain personal guidelines:

• Loops have one exit point. This may be internal, in which case the loop is written as while(true){ . . . }.
• A loop iteration may terminate early (continue), but with only one use of continue per loop. However,

I very rarely use continue.
• All exits from a switch must be to the same place (either all breaks or all returns), and if they are
returns, there must be a default that returns as well.

• If a function contains more than a single return statement, re-examine its structure to see if you can write
it more cleanly with only one.

• Be wary of negative tests: human beings do not handle these well.
• You can often replace nested structures (if-else, switch, loops, etc.) with function calls (and I make a

great deal of use of the unnamed namespace for such functions).

I find that application of these guidelines leads to most of my code being single-exit, but that is a
consequence, not a target.

If you work in an environment where SESE is rigidly enforced, there are a couple of techniques that
may help you to write good code despite the SESE requirement. However, first let us get to grips with the
problem. Here is a short function (artificial, just to demonstrate) written in my style:

322 CHAPTER 18

double do_something(double total, int count){
if(count < 0) return negative_count(total, count);
if(count == 0) return zero_count(total);
if(count == 1) return unit_count(total);
return normal_count(total, count);

}

This function handles three special cases before dealing with whatever the programmer considers normal.
The first thing to note is that I would almost invariably use a named function to handle the computation in
each case. That keeps the function simple and easy to understand. The second point is that a maintenance
programmer wanting to add special handling for some other case will have no difficulty in doing so.

The naı̈ve programmer when faced with a demand that the function has only a single return statement
writes something like:

double do_something(double total, int count){
double value;
if(count < 0){
value = negative_count(total, count);

}
else if(count == 0){
value = zero_count(total);

}
else if(count == 1){
value = unit_count(total);

}
else value = normal_count(total, count);
return value;

}

It obeys the rule, but at the cost of added complexity. If you doubt that claim, suppose that you have to
add some code for all non-negative values of count. You could encapsulate that code into a function called
do non negative count(double,int). See how easy it is to add it to my version:

double do_something(double total, int count){
if(count < 0) return negative_count(total, count);
do_non_negative_count(total, count);
if(count == 0) return zero_count(total);
if(count == 1) return unit_count(total);
return normal_count(total, count);

}

Note how careful you have to be in modifying the SESE version. So does C++ provide anything better?
Some exponents of SESE advocate the use of the conditional operator (?:) to deal with functions like the one
above. They write:

double do_something(double total, int count){
return (count < 0) ? negative_count(total, count)

: (count == 0) ? zero_count(total)
: (count == 1) ? unit_count(total)
: normal_count(total, count);

}

How do you modify that code to include the call to do non negative count(double, int) ? Use
the C++ sequence operator (the comma operator):

SOMETHING OLD, SOMETHING NEW 323

double do_something(double total, int count){
return (count < 0) ? negative_count(total, count)

: (do_non_negative_count(total, count), count == 0) ? zero_count(total)
: (count == 1) ? unit_count(total)
: normal_count(total, count);

}

With experience, code such as the above is easy to read, but almost certainly because you have disciplined
your mind to read it in the earlier form. However, it does solve the problem of a rigidly enforced SESE
guideline, and so it is worth having in your toolbox ready for the day when you need it.

Programmers often focus on the use of multiple return statements when they debate SESE versus
SEME. However, in C++ we should remember that the existence of exceptions adds extra, invisible control
paths. If the programmer is unaware of these, their code may seem to be robust and written to good
standards for producing structured code, while being fragile or positively dangerous in the presence of
exceptions.

Refactoring and the Power of Objects
Most programmers have a habit of letting functions grow. Large functions suffer from several problems. First,
they are harder to maintain, because the more code you need to read to understand how a function works,
the more likely you are to miss something. Second, large functions usually try to do several things rather than
focusing on doing one thing well.

In the earlier days of programming, programmers were reluctant to write many small functions rather
than a single large one, because they were concerned about the space and time overheads that resulted from
such a coding style. These days, good compilers optimize away those overheads. Indeed the latest version of one
well-known and widely used compiler delays code generation until link time. That allows both development
in multiple languages and whole-program optimization. These days, programmers should generally focus on
readability and maintainability rather than the size and speed of the executable. Optimization should not be a
concern of the programmer unless they have measured the performance, found it inadequate, and located the
bottleneck.

In general, refactoring of code is to improve readability and make it easier to maintain. We should aim
to write functions that have a single conceptual purpose. Multiple structures (loops, switches, decisions, etc.)
and nested structures are often a sign that the function is trying to do too much. In addition, the presence
of a function with many parameters, or several functions with the same arguments, suggests that there is
some object trying to make itself visible, and we should consider whether creating a suitable class type might
simplify our code. (If you look at the next section, you will see an instance of this. The PortAudio sound
library written in C has many functions that have a dozen or more parameters. My audio data class packages
much of this into a single coherent whole.)

The unnamed namespace is one of the major tools for refactoring C++ code. Couple that with packaging
related data into a suitable class and we can greatly simplify much of our code. Sometimes we may find
ourselves writing a bit more, but we get back the time spent in reduced maintenance costs: there will be
fewer bugs, and those that there are will be easier to fix.

Here is a small example program that outputs the roots of a quadratic equation, given the coefficients of
the three terms as input. This first solution is typical of one produced by a bright but inexperienced student
programmer.

int main(){
double a, b, c;
std::cout << "Please enter the coefficients of the quadratic, linear, and "

<< "constant terms of a quadratic equation in standard form.\n";
std::cin >> a >> b >> c;

324 CHAPTER 18

double temp = b * b - 4 * a * c;
if(temp < 0){
std::cout << "There are no real roots for that set of coefficients.\n";
return EXIT_FAILURE;

}
temp = std::sqrt(temp) / (2 * a);
if(temp == 0){
std::cout << "The equation has a pair of identical roots: "

<< -b / (2 * a) << ".\n";
return EXIT_SUCCESS;

}
std::cout<< temp << "The equation has distinct real roots: "

<< -b / (2 * a) + temp << " and "
<< -b / (2 * a) - temp << ".\n";

}

Like most simple programs, it can be broken up into three parts: get the data; compute the results;
output the results. When you look at the code, you will see that the programmer has interwoven the last two
parts. Here is my first refinement of the program:

int main(){
try{
double a, b, c;
get_coefficients(a, b, c);
std::pair<double, double> roots (compute_roots(a, b, c));
print_roots(roots);

}
catch(not_real){
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

Note that code results in a, b, and c being passed to two separate functions. That is a clue that
they are parts of a greater whole. That suggests to me that I need a type to handle them. Here is my
third shot:

int main(){
try{
quadratic_equation qe;
qe.get_coefficients();
qe.compute_roots();
qe.print_roots();

}
catch(quadratic_equation::not_real){
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

Now I have to do the real work by designing and implementing quadratic equation. Nonetheless,
I have already gained better control of my program and improved its readability.

SOMETHING OLD, SOMETHING NEW 325

Here is a simple definition of quadratic equation:

class quadratic_equation{
public:

void get_coefficients();
void compute_roots();
void print_roots()const;
struct not_real{ }; // used as an exception type

private:
double a, b, c;
double discriminant;
double x1, x2;

};

Here is an implementation:

void quadratic_equation::get_coefficients(){
std::cout << "What is the coefficient of the quadratic term? ";
std::cin >> a;
std::cout << "What is the coefficient of the linear term? ";
std::cin >> b;
std::cout << "What is the constant term? ";
std::cin >> c;

}

void quadratic_equation::compute_roots(){
discriminant = b * b - 4 * a * c;
if(discriminant == 0){

x1 = x2 = -b / (2 * a);
}
if(discriminant > 0){

double temp(std::sqrt(discriminant));
x1 = (-b + temp) / (2 * a);
x2 = (-b - temp) / (2 * a);

}
if(discriminant < 0){

std::cout << "This program does not handle complex roots.\n";
throw not_real();

}
}

void quadratic_equation::print_roots()const{
if(discriminant == 0){

std::cout << "The roots are equal with a value of " << x1 << ".\n";
}
else{

std::cout << "The roots are " << x1 << " and " << x2 << ".\n";
}

}

You may well want to improve the implementation so that, for example, it validates the data on input.
However, let me deal with a couple of other issues. Suppose the instructor now demands that the program

326 CHAPTER 18

send the roots to a file as comma-separated pairs, one set of results per line. First, we need to change the
print roots() member function so that it takes a std::ostream & argument. We want to do that
without breaking our existing program. We simply add an overload to print roots() by adding

void print::roots(std::ostream & out)const;

to the definition of quadratic equation and implementing it with:

void quadratic_equation::print_roots(std::ostream & out)const{
out << x1 << ", " << x2 << '\n';

}

Now we can replace the output line in main() with:

std::ofstream outfile("answers");
qe.print_roots(outfile);

If we want to append new answers to an existing file, we can change the way we open answers by
writing:

std::ofstream outfile("answers", std::ios::app);

which results in the file being opened in append mode.
Next, the instructor comes along and requires us to write a program that will read the coefficients from

a file that provides the data as sets of values separated by white space. Again, this is a small problem to fix. Add

void get_coefficients(std::istream &);

to the definition of quadratic equation, and provide this implementation (or improve it so that it
validates the data and handles incorrect data appropriately):

void quadratic_equation::get_coefficients(std::istream & in){
in >> a >> b >> c;

}

Here is our new program that does more than the instructor asked; it loops so that it extracts multiple
sets of data from the file until the file is exhausted.

int main(){
try{
std::ifstream infile("problem_data");
while(true){

quadratic_equation qe;
qe.get_coefficients(infile);
if(not infile) break;
qe.compute_roots();
std::ofstream outfile("answers");
qe.print_roots(outfile);

}
}
catch(...){
std::cerr << "An unknown exception terminated the program.\n";
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

SOMETHING OLD, SOMETHING NEW 327

Finally, the instructor asks us to rewrite our programs (all of them) so they can handle quadratic
equations with complex roots. Because of the way we have used a class to do the work, we hardly
have to change our original programs (actually, if we do not mind having an unused exception han-
dler, we do not need to do anything to the programs). We need to change the implementation of
the class, including changing the definition so that the roots are of type std::complex<double>
(we will need to include <complex>). The implementation of compute roots() is all that has
to change:

void quadratic_equation::compute_roots(){
discriminant = b * b - 4 * a * c;
std::complex<double> temp(std::sqrt(std::complex<double>(discriminant)));
x1 = (-b - temp) / (2 * a);
x2 = (-b + temp) / (2 * a);

}

If you want to, you can refine the two print roots() member functions so that they only use the
format for complex numbers when the imaginary part is non-zero.

Our final benefit from taking this approach to the problem is that we finish with a data type
(quadratic equation) that we can use in other circumstances where we need to extract the roots of a
quadratic equation.

Using a Legacy Library
We all want to avoid having to reinvent wheels when good ones already exist. Not least of the problems of
reinvention is that of having to learn details of both a problem domain and multiple hardware platforms. We
want to use what already exists, but we also want to use good C++ code to do so. We want to separate the
interface provided by a library from the details of the implementation.

Some time ago, I wanted to add a sound facility to my graphics library. This is hard in many ways. I
did not want to be able to play sound files, which can be done using the std::system() function from
the Standard Library. For example, this short program demonstrates the use of std::system() to use
RealPlayer to play an MP3 clip from a game I currently have on my machine. Note that I have to double up
the backslash characters used in providing a path to the MP3 file.

int main(){
std::system("start realplay.exe E:\\BlueByte\\The Settlers IV\\Snd"

"\\dark_tribe_01.mp3");
std::cin.get();

}

I wanted to create something similar to my graphics library, with which the newcomer can build up
pictures by using a number of simple primitives, such as the ability to set a specific pixel to a chosen color. I
wanted to be able to play a specified note for a given duration. If possible, I also wanted to be able to provide
tools for combining harmonics to produce more than a simple sine wave. However, I did not want to spend
months teaching myself enough about sound systems on personal computers so that I could write the code
primitives myself.

I poked around on the Internet and eventually found a portable sound library called PortAudio. It was
written in C (and some old C at that) and was messy, at least from my perspective. I was faced with the
typical task of using a C library in a C++ environment. First, I tried the code out in an attempt to get some
understanding of how it worked and what the various functions did.

Next, I tried to define what I wanted to do. This task came down to writing a suitable interface. Here is
my first simple attempt:

328 CHAPTER 18

// declarations of functions to play pure notes
void left_note(audio_data & data,

double frequency, int duration, double volume);
void right_note(audio_data & data,

double frequency, int duration, double volume);
void stereo_note(audio_data & data,

double left_frequency, double right_frequency,
int duration, double left_volume, double right_volume);

Put simply, I wanted to be able to play a pure sine wave of a given frequency, duration, and volume on
one or both of a pair of stereo speakers. Everything else was implementation. We need an object to manage
the audio data. Here is the class definition:

class audio_data{
public:

// WARNING: public data
float *out; // definitely easier to keep this public,

// as the callbacks have to manage it
bool (*callback)(audio_data & data);
// end of public data
audio_data();
// init from stream:
audio_data(std::istream & in, int size = samples::default_size);
void new_samples(std::istream & in, int size = samples::default_size);
float const * get_samples(){return data_table.asarray();}
int const get_sample_count(){return data_table.size();}
void duration(int d){duration_ = d;}
int duration(){return duration_;}

// similar pairs of functions to handle the other attributes of audio data
// omitted because they add nothing of importance here

private:
samples data_table; // default-initialized to a sine table
double left_phase_;
double right_phase_;
int duration_;
int length_;
int tempo_;
double left_frequency_;
double right_frequency_;
double left_volume_;
double right_volume_;
unsigned long frames_in_buffer_;
bool busy_;
bool reset_callback_;

};

I am not going to bore you with the details because the purpose of this section is simply to outline how
we can implement a high-level interface for an existing legacy library.

The user of the sound library wants to write some simple instructions that will allow them to produce
some simple music. They do not want to have to bother with a large amount of complicated low-level code.
The task of the library designer is to provide a number of layers so that the user can enter at the level with
which they are comfortable. All they need at the top level is to know what note, duration, and loudness
they want. They also need an object (an output stream for sound) to which they can send that data. The

SOMETHING OLD, SOMETHING NEW 329

audio data class handles that. The high-level user will need to construct an audio data object. However,
they initially need to know nothing about the details of that type, because we hide the details within the
implementation of the constructors. The default audio data constructor initializes a lookup table of sound
samples using pure sine waves. A second constructor uses a suitable file as a source of sample data.

When the user wants to dive deeper into the details, they can do so. Several other classes handle various
aspects of the system. Users never have to concern themselves with the low-level C code. On the other hand,
those that want to can. Note that if I wanted to build my library on top of a different low-level library, I could
do so without touching the high-level interface.

My coding for my draft for a library for music code is currently very rough, and, perhaps, one day I
will have the time to return to it and improve it. The important feature is that it is usable now, and because
of the layers of encapsulation, I can work on it bit by bit, progressively improving the code while testing that
it still outwardly behaves as it did before.

In Conclusion
Books have to stop somewhere. I could easily write another 600 pages and still not cover everything that
makes C++ into the vibrant language that it is today. Inevitably, you will come across many things that have
not been covered in these pages. You may want to learn how to design and implement template classes, what
mutable is for, what use is private inheritance, what protected is all about, how we overload or even
replace operator new, and so on.

Some of these things are best covered by selecting good books that specialize in some of the more
advanced aspects of C++; some of them are small things that can be learned by making good use of
newsgroups such as alt.comp.lang.learn.c-c++ and comp.lang.c++.moderated.

If you have diligently studied the material in this book and done the exercises and experimented with
the code, you have a solid basic knowledge of C++ and a sound understanding of how it can be used. I have
tried to show you how to build bigger programs by focusing on getting the parts right and avoiding trying to
do everything at once.

You certainly still have much to learn, but you also have more than enough C++ to write excellent
readable and maintainable code. If our paths cross at some time, please do introduce yourself. Tell me what
you liked (that will make me feel good), but tell me what you did not like too, because that will help me the
next time I sit down to write a book.

A P P E N D I X A

Those Who Went Before

When I started writing this book, I thought it would be interesting to discover what responses contributors
to the comp.lang.c++.moderated newsgroup would give to the following request:

I am in the process of writing a book introducing C++ as a second language (i.e. I assume the
reader is able to do simple programming in at least one other language). Yes, I do know that
there are other books that do this.

In the introductory chapter, I attempt to cover some of the ways that C++ differs from a
wide range of other languages that the reader might already know. I would be interested in
contributions from people who have learned C++ as a second language. If you have the time
and inclination, could you tell us (I think it might be of general interest to the readership here)
what significant differences you found in C++, particularly those that caused you difficulty in
understanding C++.

Here are the answers I received. I have edited the spelling and I have corrected the English (several
contributors are not native English speakers). I have not suppressed anything nor modified them in any
other way.

I thank all those who took the time to share their thoughts and experiences with both the newsgroup
and the readers of this book. Remember that each of these contributions is just an individual’s response to my
request. They might write something different today.

From Victor Bazarov
C++ was my first OO language. When I learned C++, I knew Fortran, C, assembly for a couple of
processors, PL/I, BASIC, a bit of Prolog. The main ‘shock’ was to basically undergo that ‘paradigm
shift’ known to accompany switching between a procedural approach and an OO approach. I do not
remember actually reading something like ‘From now on you will think differently’ but that is what
C++ did for me. Essentially, I discovered OO through learning the syntax of C++ and reading the
examples given.

I cannot say I remember any difficulties. Perhaps it’s because too much time has passed since
my first foray into C++, perhaps because there were very few of them. I was a C programmer.
Going to C++ was quite natural then (not that it has to be for every C programmer; do not get
me wrong).

332 APPENDIX A

Another reason why there probably were very few difficulties is that I did not attempt to grasp
the entire language at once. In fact, if I recall correctly, the first programs I wrote did not have much
of OO. C++ was just a ‘better C’ to me then. Well, I might have written a class or two, but that was
the extent of it. Overloading operators, and templates, came later and were more like an evolution of
my knowledge of C++ (however small it was) rather than a dramatic change. I had the luxury to ‘take
it slow’.

Best of luck with your book!
Victor

Matthew Collett adds
Likewise. I knew Fortran, various dialects of BASIC, some Pascal, even a little assembly. Then I read TC++PL
(2nd ed.). It was a mind-expanding experience. (In fact, I found it one of the most conceptually difficult texts
I have ever read – which, given that I am by profession a theoretical quantum physicist, is I think a fairly
strong statement.;-))

Best wishes,
Matthew Collett

From Ali Cehreli
My first language was C, but I think I was at most an intermediate-level programmer in C when I started
learning C++.

RAII (resource allocation is initialization, an abbreviation for the idiom of the language
where dynamically allocated resources are encapsulated into an object whose
destructor releases them) and exception safety:
For me, the single biggest item in switching to thinking in C++ was realizing that RAII is not just a good
thing, but also a must in C++. For some reason, years of following the newsgroups were not enough for me
to realize the importance of that idiom.

I woke up from my ignorance after reading the exception-safety section in Exceptional C++ by Herb
Sutter.

Of course RAII (and probably even following the guidelines for exception safety) is not very difficult to
grasp, but is very important for the learner to understand early on.

Reading:
I am not sure how C++ is different from other languages in this, but it’s not a language to master on one’s
own. The learner is on a long journey full of reading articles, books, and newsgroups. I do not think the
reading has an end.

No assumptions please:
C++ is probably more different from C than one might think. Related to the item above, the learner must
not make assumptions but read. For example, one of the fundamental expressions in C++ is not known by
far too many programmers because they assume that if malloc may return null, new might too.

(Before anyone objects, I know that the behavior of new was different in the past, but I have seen this
mistake in fresh C++ code written by new C++ programmers. Moreover, I am not talking about new alone
here, but ‘writing under assumptions’ in general.)

Ali

THOSE WHO WENT BEFORE 333

From Peter Koch Larsen
My background is roughly Algol → Pascal → C → C++ (Algol only ‘academic’), so I doubt I will be very
representative here. I have had very good mentors so I have not had any serious difficulty understanding the
language per se, but I remember in particular my initial reluctance to place variables where they are used
instead of at the beginning of a function. My biggest revelation was RAII (resource allocation is initialization),
which (with templates) is the most important feature of C++.

Peter

From Maciej Sobczak
I’ve learned C++ as my nth language (having some previous BASIC, C, and Pascal experience). One of the
things that I appreciate most is the ability to (ab)use operator overloading and templates in order to ‘bend’
the language to the extent that it becomes a separate dialect for performing specific tasks – in other words,
the ability to create domain-specific sublanguages. It caused me some difficulty in the sense that it was not
visible at the beginning, when I was learning the language. Let me explain this issue. The obligatory line

cout << "Hello, World!" << endl;

was taken (at the beginning) as a way of doing I/O in C++. OK, I knew how to print things in other
languages; this one looks different, but still easy enough to remember. Beginners would even use this ‘look
and feel’ to distinguish one language from another. You look at the code, and you immediately know what
language it is. It took me some time of active language use to discover that the above code is not the ‘C++
way’; it is a dialect, one of many possible ones, and, incidentally, the most popular. I realized then that in the
languages that I already knew, all programs are similar. There may be different libraries that provide similar
functionality, but the way of doing things is always the same: you call functions in C (and no matter who
wrote a library, you can only call its functions); you use classes and call their methods in Java (and no matter
who wrote a library, you only call methods of some classes); you call procedures in Pascal (and no matter
who wrote the library . . .); and so on. The thing that is different with C++ is that the way to do things highly
depends (thanks to operator overloading and templates) on the creativity of the library designer. As a result,
two C++ programs can be much more different (in ‘look and feel’) than in other languages. Moreover, I
would risk claiming that two C++ ‘dialects’ can have more perceptual differences than there are between
whole languages (say, Java and C#).

One of the flagship examples (and my favorite in any debate including proponents of other mainstream
languages) is the Boost Spirit library. It is syntax-oriented to the extent that it becomes a separate C++ dialect.
In other languages, a library for making parsers would have the same ‘look and feel’ as the library for I/O, or
whatever else. Just functions all over the place, or just classes and methods all over the place. In C++, the way
of using a library is part of its design, which therefore extends far beyond picking function or class names.

To summarize, C++ is different, because it can be customized.
Of course, the above may be taken as a disadvantage, especially from the point of view of the beginner.

In the long run, however, I find it to be one of the most powerful features that puts C++ high above others.
(Slightly off-topic: as a scripting language, I appreciate Tcl for the same reason – it allows me to redefine

its commands or define new ones to the extent that it is possible to provide complete paradigms, not only
dialects. The example is the library providing generic object-oriented features.)

Maciej

Frank Birbacher adds
I like this too. However, apart from introducing new dialects, it can be used to make things work differently
behind the facade of the regular syntax. It might just change the semantics of regular constructs. For example,

334 APPENDIX A

std::auto ptr<>. Objects of this class can almost be used like regular pointers with the same ‘look and
feel’, but the semantics are different: the pointed-to object gets deleted automatically.

Proxies are another example. Iterators provide the same look and feel as pointers, but actually they call
regular functions on containers or whatever. In my opinion, this is a big advantage of C++.

C++ is a complex language. One has to do a lot of learning for C++. I started learning BASIC first. When
I started with C++ in 1998 (I think) I had most difficulties with its syntax. As time went on, I learned the
syntax and then structs/classes. I did not have much experience in OO at all, so I did not see how the classes
would help me. But when I learned about the separation of concerns, I started using OO. RAII and exception
safety followed. At last, I learned about templates. But after doing OO programs, I stopped using BASIC.

I learned the language slowly by asking questions on borland.public.cppbuilder.language
and .students. I did not encounter major jumps during learning, but now I cannot live without classes,
operator overloading, and templates. I wonder how I did before. :) This is the most surprising fact to me.

Frank

From Andy Little
I moved onto MSVC1.0 from QuickC – both Microsoft. I remember the weirdest thing was the :: operator.
It appeared all over the place, and this was before namespaces. I didn’t understand what it did at all for a long
time. There wasn’t (and still isn’t) anything like it in C.

Regards
Andy Little

From John Hickin
Best of luck for your new book!

Unlike most of the popular computer languages that I have needed to use previously, C++ has managed
to keep up with the times, through the introduction of new features (templates are especially useful because
of the unification engine that the compiler must have in order to support them). I think, therefore, that this
best describes why C++ is different.

My first computer language was Fortran; this was in the days when a big machine had 16 MB of main
memory; core really was magnetic cores in those days. It was mostly very useful to me, but I remember
spending a lot of time as a student implementing dynamic memory allocation and recursion using a common
block and ‘hand-crafted stack frames’. Not fun.

I graduated to PL/I when I became gainfully employed. This was wonderful compared to Fortran, but
again my language ran out of gas. This time it was inheritance and run-time type identification that we needed
(but we used the term ‘generics’ to describe these concepts and the PL/I pre-processor to implement them).

I was converted to C++ in just 30 minutes when a colleague introduced me to it. I vividly remember
his description of constructors, destructors, and virtual functions, knowing that these concepts would provide
everything that I had lacked in PL/I. This was in spite of the fact that the syntax looked suspiciously like that
of a language that I had rejected as having a syntax that was too ugly to bear and too difficult to figure out. :-)

Regards,
John.

From Thomas Hansen
Probably, many readers of your book will come from either the Java camp, the VB6.0 camp or the. NET camp.
Therefore, I think that what you should stress as one of the biggest differences is that you have to take care of
memory yourself, and therefore maybe you should stress the RAII parts of the language.

THOSE WHO WENT BEFORE 335

But I think that C++’s biggest difference is that it supports so many different paradigms and ways
to solve the same problem. Write out a ‘teaser’ containing 15 different ways of solving the ‘Hello World’
application (to demonstrate how rich C++ is). One with a stream taking a string, another with a stream taking
an object with an implicit conversion to a std::string, another taking an object with a friend global
stream operator, etc.

And maybe take in this one (which is really weird for all non-C++ coders since it turns the inheritance
tree upside down and gives possibilities not even thought of by even most C++ coders):

class X { };

template<class T>
class Y : public T { };

int main()
{

Y<X> myY;
}

I think the main difference between C++ and (most) other languages is not one single feature but rather
the richness of the language and the many different ways you have of expressing yourself in C++.

‘Balog Pal’ adds
Hmm, I would guess 11 of those solutions would intimidate . . . a big part of the audience. Moreover, the
part impressed will be the ones already experts in C++ and peeking into the book just for fun.

Thus, I would rather use examples fit to the paradigm under consideration, and not playing mind
tricks – also avoiding pure showing off. However, it may worth having a pointer to the 99 bottles of beer
website.

I strongly agree with the main point. The main strength of C++ is its multi-paradigm nature and the
ability to use so many different styles to solve the problem at hand.

After one has learned to use them it can give wings and avoid the mind-shrinking effect that working
with single-paradigm languages (or working long on a small set of problems) so often brings.

This same thing causes difficulty to newcomers to the field. As learning the part of the rules that can be
used and is worth learning is relatively easy. But when you’re given real-world code to work with, knowledge
of styles and idioms will be needed, those of today and those of the past – possibly the whole history of two
decades. Without those, you just keep wondering why on earth some code looks like this in one file and that
in another.

Paul

From Glen Low
My history is BASIC → Pascal → C → C++. Java, C#, and Objective-C have been my post-C++ languages.

Thinking back on the difficulties in transitioning to C++, in no particular order:

1. The exact syntax of declaring member functions outside of the class declaration. Especially when interacting
with templates.

336 APPENDIX A

2. Subtleties with the Big 3: copy constructor, destructor, and assignment operator. When and why they
get automatically defined. When and why they get invoked, e.g. copy constructor in function return,
difference between X x = 1; and X x; x = 1; . . .

3. From a Pascal background, the inverted way you declare C or C++ variables, e.g. X ^CHAR; vs. char*
X;, especially with the convolutions you can get with object-oriented C++ (think pointer-to-member).
Lack of sets.

4. Why arrays are treated like pointers and structs are not, i.e. why you don’t have a pointer to an array like a
pointer to a struct.

Cheers,
Glen Low, Pixelglow Software

From Jean-Marc Bourguet
Well, C++ is not my second programming language. I was already more or less familiar with several variants
of BASIC, several variants of Pascal (one of which was OO), several assembly languages, Algol68, Ada83,
Fortran, Lisp, C, Prolog, and SmallTalk. This meant that I already had been introduced to all the concepts
(often in two incarnations) supported by C++ and I already knew most of the ‘C traps and pitfalls’.

Obviously, if you start C++ without that knowledge, the major challenges are the concepts you are not
familiar with. I’ll not write about that. I’ll try to list what surprises I remember (some of them from learning
C: 1–6):

1. char and bool are integral types.
2. Some surprising automatic conversions (mainly integral and pointer types → bool;enum → int).
3. Surprising relations between arrays and pointers.
4. typedef does not introduce a new type but synonyms.
5. No separate compilation, but linking of independently compiled units relying on the programmer’s

discipline and/or other tools to ensure coherence.
6. Use of the macro-processor (the main use being to achieve coherence above, but then there are some

others). Most of the other languages do not have macros, and those that have have them more integrated
(see Lisp, PL/1, or Forth immediate words).

7. Declarations everywhere in a block.
8. It is the class which handles visibility rules (in Ada, Modula3, and some variants of Pascal, it is the module

or equivalent).
9. Constructors and especially the implicitly called destructor (there is some kind of equivalent in Ada95

but I don’t remember one in another language), leading to RAII idiom and the possibility of writing
exception-safe code without explicit handling of exceptions.

10. Templates need to be ‘macro-expanded’. Most other languages mandate a shared implementation (Eiffel,
Modula-3; I think the proposal for Java does as well); Ada83 has both kinds of implementation, and it
was a goal of Ada95 to allow the two (I think all the implementations are ‘macro-expanded’). This choice
along with the possibility to do (partial) explicit specialization makes C++ templates the most powerful
genericity mechanism I know.
Jean-Marc

From Chris Young
I came to C++ primarily from C. One of the biggest things to have bitten me in the early days was
the use of const/volatile qualifiers. (The C compiler I used only warned about const violations,
whereas the C++ compiler is a lot stricter. Therefore getting const/volatile qualifiers placed correctly

THOSE WHO WENT BEFORE 337

became very important.) http://www.xs4all.nl/∼carlo17/c++/const.qualifier.html was of
great help here.

Using certain bits of the Standard Library caused indecipherable error messages in the early days (before
I heard of STLfilt). This is, of course, an implementation issue more than anything else, but can still be a
major put-off for a learner, apt to make mistakes, who has been taught to use the standard containers for
general work.

The exception-handling mechanism was difficult to get my head around, about when and how the
exception object is copied. For the application that an acquaintance and I were discussing years ago, this was
a big deal (we needed to be sure we were not left with a dangling reference when we threw a dynamically
allocated exception object):

std::auto_ptr<std::exception> except;
// ...
if (something_wrong())

except.reset(new some_exception);
else if (something_else_wrong())

except.reset(new other_exception);
// ...
if (except.get())

throw *except;

Actually, the above would not work – not because of dangling references, but because the exception
object is going to be sliced [clause 15, paragraphs 1–3 of the C++ Standard]. But it was an interesting thought
experiment at the time, and just showed (to me, at least) the unintuitive way exceptions are handled. This
will be a surprise to, say, Java programmers; they can most certainly throw exceptions of a derived type and
expect it not to be sliced:

Exception except = null;
// ...
if (something_wrong())

except = new SomeException();
else if (something_else_wrong())

except = new OtherException();
// ...
if (except != null)

throw except;

The unintuitive operation of operator bool will cane many newcomers, I think, when all they want
is to be able to test an object in a Boolean context. Certainly took me a long time to appreciate why the
Standard Library has, say, operator void* instead. [It is because bool has undesired implicit conversions
to the fundamental arithmetic types. – Francis]

While we are on bools, there is also std::vector <bool>. This will cane C coders who have
been advised to ‘use a std::vector like an array’. [I have not mentioned this issue in this book, but
std::vector <bool> has some quirky behavior that you should ask about before using it. – Francis]

That is all I’ve come up with so far. I’ll try to think up more.

Cheers,
Chris K.

From Robert Kindred
One of the biggest differences of C++ from other languages is the ability to use the ‘Curiously Recurring
Template Pattern’. This is not possible in any other language. I have heard of a language called Leda that can
do this, but then I heard that it was compiled by C++.

338 APPENDIX A

The biggest selling point to cause me to switch from C was constructors and destructors, and the fact
that they are invoked automatically. Almost all main() functions in C can be written as:

int main(int argc, char* argv[]) {
init();
run();
shutdown();

}

With constructors and destructors, two-thirds of this can be hidden to allow focus to be placed on the real
task, namely what is in run().

From Stefan Heinzmann
Before getting into C++, I had experience with a number of procedural languages, mainly Pascal, but also some
BASIC, C and Fortran. I also had some experience in various assembler languages and in Forth. Before getting
to use C++ in earnest, I had exposure to the concept of object-oriented programming, and did some reading
on this subject, which brought me into contact with other languages for OOP, such as some OO-extensions
to Pascal (Modula family of languages and Eiffel), without having written anything substantial in them. So
you may say that the OO paradigm had started to influence my programming style before I got into C++.

I was well aware at that time that the language you use has an influence on the way you think about
the problem, and this has been a motivation to look at different languages in order to find new ways of
thinking about problems. I remember having been particularly fascinated by the example of the streams
library, where operator overloading was used for something that looked like a language extension, but was
implemented as a library. I think to this day that this is the most fascinating aspect of C++: that it offers
enough flexibility to the library programmer to tailor the language, in other words to invent your own
domain-specific language and implement it as a library, rather than building a new compiler or preprocessor.
Library design is language design, indeed!

I think that examples where this is used to good effect are those where C++ shines most. Besides the
streams library, you could mention things like the Spirit parser library, or some numeric libraries (for
matrix math).

On the other hand, it seems that in this very area the shortcomings of C++ are also felt. It makes
me wish there were a language that was simplified as much as possible without giving up the possibility
of implementing domain-specific languages as a library. It is this old elusive goal of making it as simple as
possible, but no simpler.

C++’s ongoing development has continued to influence my programming style. The C++ I wrote at the
beginning is quite different from the style I use now. This reflects the development of the C++ community
as a whole – let me just mention templates and exceptions, which have required a long time to mature.

So this may be the other thing that sets C++ apart from many other languages: the development that
has taken place within the language. I could say that the development of C++ over the years has allowed me
to develop my skills without switching to other languages; C++ has grown with me and I grew with it, lately
even to include a good deal of functional thinking. C++ has taken a tour starting at procedural programming
and went through OO towards functional programming, as exemplified in the STL, and it has taken me with it.

Of course, for someone learning C++ now, it cannot be the same anymore, and maybe it should not
be either. You still need to consider the history, however, in order to understand how and why things ended
up the way they are now.

I hope that C++ is not going to freeze any time soon, as there remains a lot of scope for improvement,
both for me and for the language.

Cheers
Stefan

THOSE WHO WENT BEFORE 339

Chris Marshall adds
In my case, I had programmed in Pascal, C, early C++ (1989–1991), and then Java – where I learned Java’s
take on OOP and programming in general (namespaces and exceptions) and fell in love with it.

When I first learned Java (in 1997), my feeling was that it fixed the many ways in which C++ had been
broken when I tried to make my peace with it and failed.

Shortly thereafter (1999) I had read some article Stroustrup had written on the popularity of Java and
how it was being viewed as a panacea for programming ills. Stroustrup demonstrated some of what was
possible in C++ then and pointed out that for its problem domain, Java was an OK language, but it had
serious shortcomings outside that domain and C++ was more generally useful there. I bought Stroustrup’s
book and tried to read it for a few months then gave up in disgust.

It wasn’t until late 2003, on my third or fourth attempt at the language and Stroustrup’s book, that I felt
like I had broken through the barriers of understanding that had been blocking me from learning C++.

Stefan: I was well aware at that time that the language you use has an influence . . . Library design is
language design, indeed!

I also felt that the design of the << and > > streams operators was brilliant.
Being able to overload those operators allowed you to extend the library without having to define

subclasses – a beautiful design.
Stefan: I think that examples where this is used to good effect are those where . . . elusive goal of making

it as simple as possible, but no simpler.
My personal feeling is that the biggest shortcoming of C++ is that certain books need to be written that

teach you how to make the transition from other languages quickly by exploring how to write programs in
various subsets of the language. I am particularly struck by the Java → C++ transition myself, of course.

Each language feature by itself in C++ is very complex when you consider all of its implications, and
too many books try to cover each language feature in isolation from the rest of the language before teaching
you how to write any significant programs at all. To my mind, it would require the patience of Job to read
such a 1000-page monster.

We need more books written in the style of The C Programming Language. Yes, I realize C++ is a vastly more
complicated language than C. I am just saying that you do not have to understand anywhere close to the
majority of the language or the Standard C++ Library in order to learn enough to write significant and useful
programs in C++ in various programming styles. You could have much smaller books that showed you what
you needed to know quickly.

Stefan: C++’s ongoing development has continued to influence my programming . . . the development
that has taken place within the language.

It has been amazing to watch C++ evolve over the years. I think it is a testament to how unique some of
C++’s early, and enduring, language features were. It provides a view of programming that is unique among
languages, and it has taken much longer for the consequences of its view to be worked out.

I think one of the most fascinating aspects of the language is how it makes it possible to treat class types
similarly to intrinsic types (like int and float), at a time when many other OOP languages were trying
to do away with intrinsic types (having an Integer type derived from Object). It was much harder and took
much longer to work out the details of how everything should work the way C++ went, and I think C++ was
vindicated in the end. The implications of intrinsic-like class objects are much more interesting and generally
useful than the implications of attempting to do away with intrinsic types.

Stefan: I could say that the development of C++ over the years has allowed me to . . . exemplified in the
STL, and it has taken me with it.

In my case, I am grateful for my time with Java, since it allowed me to learn a certain style of OOP
that I kept retreating to when I would get confused in C++. Despite its many virtues, C++ has to be one
of the worst teaching languages ever conceived. For people with my mindset, learning C by itself, then
learning Java, and then learning C++ is a sane path, and I have trouble imagining any other path to learning
C++. [My response is that many people have had a happy introduction to programming using my first
book. – Francis]

340 APPENDIX A

Stefan: Of course, for someone learning C++ now, it cannot be the same anymore, and maybe it should
not be either. . . . I hope that C++ isn’t going to freeze any time soon, as there remains a lot of scope for
improvement, both for me and for the language.
I could not agree more. I cannot wait to see where C++ takes us next.

Chris Marshall

From Marcelo Pinto
My path in learning to program was BASIC → Pascal → C → C++. When I went from BASIC to Pascal I
enjoyed the compilation process that made my programs run much faster, but I had a big headache with
dynamic structures. Then I heard about C and was caught by the array/dynamic-array similarity in indexing
and accessing elements. This was the reason I left Pascal behind. When I started using C++ (not long after C),
I was amazed by the operator mechanism and the simplicity it allowed in my programs (I was doing numeric
simulations in fluid dynamics). And after that I read Barton and Nackman’s book and learned about templates
and it amazed me more.

So, I believe that operator overloading and template programming were the two features that caught
me.

Good luck.

From Mike Capp
At the point I started learning C++, I knew various dialects of BASIC, 68000 assembler, C, and (parts of) Ada.
So I was familiar with structs and function pointers and so on, but hadn’t been exposed to OO before. At the
time I was that dangerous and perpetually annoying thing, a talented hobbyist with little CS education and
zero experience of real life in the coding trenches.

The things I remember being particularly puzzled by were inheritance/vtables and exceptions – not so
much how they worked, which was pretty easy to understand, but why you’d want to use them. I’d hear
some language mechanism described and think, ‘Yes, but you could do that with an array of function pointers
and . . . ’, completely missing the point. It didn’t really sink in until I came to write a decent-size project
(about seventeen thousand lines of code if I recall correctly) and found to my amazement that the bigger
the code-base got, the easier it became to modify and extend, just because there was more supporting code
around that didn’t keep breaking. That was quite a revelation.

Similar thing with exceptions – I could see the ‘what’ and the ‘how’ but not the ‘why’. (Hey, just found
the incriminating evidence – search with Google using ‘Mike Capp Exceptions’ – ah, callow days.) Similarly,
I think it was having to maintain a 0.5 mloc Pascal return-code nightmare that convinced me there had to be
a better way.

In short, my experience was that understanding the rationale for the language was harder than
understanding the language itself, and I think that only real-world experience on large projects will change that.
Also, C++ ‘knowledge’ is more about idioms than rules, and idioms (for me at least) took a lot longer to learn.

Oh, actually, one mechanical confusion does spring to mind – the inclusion model for template
implementation code. It just felt wrong. (Still does, for that matter, but you get used to it.) [That is for another
book. – Francis]

Cheers,
Mike

From ‘Spuds’
I have programmed in Fortran, COBOL, BASIC, assembler, and C before moving to C++. I consider myself a
fairly accomplished C programmer and have had formal training in C. I remember buying a copy of Computer

THOSE WHO WENT BEFORE 341

Language Magazine in 1987 because of an article on C++. Knowing that C was a powerful language, I wanted to
discover what C++ had to offer. From reading the article, I understood the basic concept of object-oriented
programming and got a taste of the power of encapsulation. At the time I remember thinking that C++ will
add about twice the power and twice the complexity of C. Looking back on it now, it seems humorous
because I have come to realize that C++ is more of an exponential evolution, probably more on the order of
10 times more powerful and 10 times more complex than C. C++ has been a long road for me because no
formal courses were offered back then. I am self-taught. I bought a book on C++ and read it from cover to
cover without the benefit of a compiler because the large commercial vendors had not yet come out with a
version of C++. I remember there were compilers from smaller vendors that were out of reach for the average
hobbyist programmer.

I had to unlearn the mindset of procedural programming and learn to design software using the
object-oriented features with which C++ empowered me. Coming from C I struggled with references and
preferred pointers to references for the longest time. One of the biggest experiences I remember was when
I finally understood what polymorphism was about. I was writing a GUI with different types of components
displayed on the screen, such as edit boxes, combo boxes, radio buttons, etc., all derived from the same base
class called ViewComponent. I loaded up an array with the pointers to the base classes in order from left to
right, top to bottom, as they would appear on the screen. Then I called the draw function for each component
through the base-class pointer and watched each component morph itself on the screen. This seemed to be a
more practical example than the shape/circle or point/line examples you see in textbooks.

Over the years, I have acquired a library of books devoted to C++. After 17 years studying the language
in my spare time and watching it evolve from a language without templates and exceptions, I have come to a
point where I feel comfortable that I am at least able to research a practical programming problem and come
up with a reasonable solution using the language. During this past year, I feel like I have switched gears and
am thinking on a completely new level in terms of idioms and patterns in order to come up with solutions
to interesting and practical problems. The language is so vast that occasionally I have come up with solutions
that I have never seen published anywhere, which may be undiscovered territory in C++. At any rate, it has
been a long journey, with many rewards along the way. C++ makes you work hard, but from my experience
it pays you back handsomely. I made up my mind a long time ago that C++ was a necessary language for
the serious programmer. I have never wavered from this opinion over the years and feel even more strongly
about it today. For anyone that is considering learning C++, my advice would be: ‘do it’. I did it and I will
never look back.

From Emily Winch
Unusually, I came to C++ from Java. From that perspective, the major difference was almost a cultural
issue – C++ programmers routinely considered the lifetimes of all kinds of resources, whereas in Java one
tended to just ‘new and forget’.

I was not impressed by the overloading of the meaning of * and &, and found them confusing to
remember. In addition, people used a lot more C-ish idioms such as

*a++ = *b++;

that I had never encountered in a Java program. And the idea that ‘pointer to char’ generally means ‘string’
was very strange – or that a pointer might really be an array.

In addition, I kept accidentally passing things by value when I meant to pass by reference (Java passes by
reference automatically for non-built-in types). Finally, in C++ you lose my favorite Java feature – anonymous
classes:

frame.addWindowListener(
new WindowAdapter() {

public void windowClosed(WindowEvent e) {

342 APPENDIX A

// whatever
// access local variables from the surrounding function if necessary

}
}

);

I was constantly wanting to write code like that and not knowing how to. In fact, there still is not a
really neat way to do that.

Emily.

From Burc Arpat
My background is Basic → Pascal → Delphi (object Pascal) → Java and Perl (at the same time) → C++ (for
the last 5 years or so). I do not claim to know C as well as I do C++ (mainly because I rarely use C-only
stuff such as printf family or raw pointers, or dynamic arrays for that matter). I have used Delphi, Java, and
Perl pretty much for everything from multimedia apps to database apps, from scientific apps to internet apps.
C++ I have used mainly for scientific coding, as that’s what I do nowadays. I am a member of ACCU – a big
fan of Francis’s ‘Scribbles’ column in C Vu. I am a daily follower of the Boost list. My total coding experience
is more than 10 years.

Weird stuff about C++:
The first problem I had, coming from a long Pascal history, was the lack of the with keyword. I think the
question I posted about that can still be found using Google. The with problem frustrated me big time and
led me to believe that C++ does not want to make life easier for the programmer. I hated being forced to
declare a temporary reference to bind the contained object as a ‘shortcut’ rather than simply writing with.
Later, I realized C++ was actually trying to make life safer.

The second thing was, naturally, the whole template stuff. It took me at least a month or so (and several
books) to understand and appreciate why on earth we do not use virtual member functions and instead use
templates to achieve all this generic wizardry. Today, I think STL and generic programming should not be
shown as ‘advanced’ techniques and should be introduced pretty much at the same time as OO stuff. I started
to adjust to template code only after two years with C++, because of my OO background, and I have seen
several people who refuse to understand the logic of generic programming even after several months of using
template code, just because they are comfortable with OO. (A Java programmer of 5 years called the template
stuff ‘stupid’, ‘syntax garbage’, and ‘completely unnecessary’ right in front of me when we asked him to start
contributing to the C++ portion of the code.)

Another template revelation came to me when I understood the computational power of templates
(thanks to Andrei [Alexandrescu]’s book, Modern C++ Design). Even if the STL is explained in a book, the
metaprogramming aspect is typically completely skipped. You would not believe the number of experienced
C++ programmers I have seen who had no idea about the whole metaprogramming deal. One such
programmer even said he prefers to use macros because they are equivalent to, quote, ‘fancy template stuff’.
In an introductory book, it is normal not to talk about metaprogramming, but I think it would be cool to give
at least one simple example just to show what can be done and then refer to an advanced template book. [I
resisted the temptation and you will have to wait for the next book or read someone else’s. – Francis]

Argument-dependent Lookup (ADL, a problematic C++ mechanism that extends the search area for
looking up unqualified names to the scopes of the types of the provided arguments) stuff and the whole
namespace issue: hordes of C++ programmers have never heard of it, even as Koenig lookup, and thus they
have no idea how it might affect them. I remember the first time I saw this code:

using std::swap;
swap(lhs, rhs);

THOSE WHO WENT BEFORE 343

I remember the hour-long Googling session I had to do immediately after seeing that to understand why on
earth the dude who wrote that piece of code did not simply say std::swap(lhs,~rhs);.

The whole automatic conversions deal. What can I say? They are confusing.
Finally, operator overloading. It is actually not that big a deal if you think about it, but for some reason

my brain was fine with function overloading but not with operator overloading when I started learning C++.
I have seen other people suffering from the same problem. I guess one reason is, books typically give lots of
function overloading examples but not enough operator overloading examples. [Perhaps this book is guilty
of giving you too few examples of both. Operator overloading is nice if you want to allow domain experts to
use the symbols with which they are familiar. In that sense, operator overloading is very much more useful
than function overloading. – Francis]

Hope this helps . . .
Burch

From Greg Schmidt
Many books teach you how to write C++ programs. Many books teach you how to avoid common C++
pitfalls. There are many books that teach you how to transition from the toy programs and object hierarchies
you see in other texts to writing code that solves real-world problems in the best possible way (where ‘best’
depends on the technology or paradigm the book is pushing).

What I haven’t seen are any books (not that I’ve looked too hard, mind you) that teach the other critical
parts of C++ programming, which include things like making sense of compiler and linker error messages,
recognizing the effects of various types of undefined behavior, and how to effectively use a debugger. I
firmly believe that much of my success as a C++ programmer has come not from my ability to design
effective hierarchies or write efficient code, but from my ability to quickly diagnose and correct bugs that
arise during all phases of testing. In other words, I am an average programmer, but an exceptional debugger.
Unfortunately, I am a lousy teacher, so I cannot write the book that fills this niche.

Like many people posting here, I got to C++ after much experience with BASIC, Pascal, and C (and less
experience with a variety of others). I will try not to repeat any of the good points made previously in the thread.

I think that the difficulties encountered in learning C++ will vary greatly depending on what language
you are coming to it from.

As a C programmer, I found the usefulness of the many new uses of const to be elusive, although now
I cannot live without them. (Their omission is my biggest problem with Java; how can you create a language
where every object is passed by reference, but have no way to disallow changes to the object?)

If I had come to C++ from BASIC or Pascal or Java, then I imagine (based on my experiences learning
C) that the biggest difficulty would be the myriad ways in which you can invoke undefined behavior. Other
languages do not allow you to do things so stupid as reading past the end of an array, or pretending that
a memory location that holds a float actually holds an int, but C++ knows that sometimes (rarely, but
sometimes) you really do need to do it, and it lets you. Of course, C++ gives you ways (vector, string, etc.) to
eliminate most such problems, but they are not mandatory, and they are at best ‘one-size-fits-most’ solutions,
so any serious C++ developer will eventually have to write some potentially dangerous code.

The other big difficulty for me, as others have mentioned, was learning to think in the OO way. Of
course, I was learning C++ and MFC at the same time, so it was not just OO but event-driven OO, and that is
very different from procedural programming.

Templates did not phase me much, although I use them infrequently enough that I still (after maybe 8
years) have to look up how to do certain things with them.

I immediately fell in love with references, default parameters, function and operator overloading, and
the basics of the STL (cout, string, vector). I could feel my mind expanding just reading about them.
Things that seemed to me just different (not better) ways of doing the same thing (exceptions, C++-style
casts, the STL algorithms) took longer for me to realize the usefulness of.

Hmm, I am starting to ramble now, must be late.

Greg Schmidt

344 APPENDIX A

From llewelly
Before I learned C++, I had brief encounters with a variety of BASICs and Pascals (I had used both Borland
and Apple), Z80 and 68 k assembler, and the HyperCard scripting language. But C++ was the first language I
learned well, in part because I was able to find more books, discussion, and documentation about C++. I had
read only one or two books for each of the previous languages I learned before C++ (and also for most of
the languages I’ve learned since then), whereas for C++, I found and read many, many books. The first five
or six were truly awful, but as soon as I found The C++ Programming Language 2nd ed. by Bjarne Stroustrup, I
started finding other good ones, like the Annotated C++ Reference Manual (I wish there were a 2nd edition as it’s
now obsolete), books by Coplien, etc.

I think the differences which confused me most were not differences between C++ and other languages,
but differences between vintages of C++. Most of these I can no longer describe – suffice it to say I did a
lot (relatively) of programming with templates, starting almost as soon as I began to use C++. This should
be normal now, but I learned way back in 1994–5, when the Standard Library (and much of the semantics
of templates themselves) were inaccessible figments of WG21 discussions. It seemed every compiler – even
different versions of the same compiler – had wildly different notions of what template semantics were. (The
concretely described differences, like for-loop scoping, never caught me off guard, that I recall.)

I realize this is not what you asked for, but I do not recall any confusion that arose from expectations
based on previous languages.

From Anthony Williams
I first tried to learn C++ in 1992, knowing only Pascal (of the Borland variety), BASIC, and various assembly
languages. It was hard going. I thought I understood it, but I did not. I also had a poor understanding of the
available libraries – I did not even have a good grasp of the Standard C Library.

At the time, I remember thinking that templates looked really nifty, as did operator overloading, but
I did not really understand either well enough to make proper use of them. I did not have a compiler that
could handle templates in anything like a sensible manner either.

Over the next few years, I developed various horrendous OO designs in C++, and learned C properly,
along with a smattering of Perl and UNIX shell scripting. I still felt that C++ was fundamentally just C with
OO extensions, much like Borland Pascal is standard Pascal plus OO extensions.

Around 1998 I suddenly managed to grok templates, and came across the STL and the rest of the newly
standardized C++ Library. It now pained me that the compiler I had to use did not support the STL, and I
wrote some simple templates such as a generic list. When g++ 2.95 came out I convinced the company I was
working for to switch over to it, and I have never looked back.

I learned Java after I finally grokked C++, and it seems incredibly simple in comparison, and consequently
very restrictive. When I write code in Java, I keep trying to do things ‘the C++ way’, as it is shorter and more
direct, and it then pains me to have to write things out longhand (e.g. having to use try/finally to get
resources cleaned up properly).

So, the features that I really like about C++ are:

• Templates
• The Standard Library
• Deterministic destruction
• Operator overloading

Templates were hard to learn, but maybe because there were not any good examples around. The STL
really helps, because it is standard, and because it makes good use of templates.

A key feature I had to learn is that C++ is not just C with OO; it is much, much more powerful than that.

Anthony

THOSE WHO WENT BEFORE 345

From James Kanze
I am not too sure how relevant it is, but I came to C++ from C, and I found it incredibly simpler and easier.
Of course, the C++ I first learned (in 1987–88) was a bit simpler than that of today. However, I had been
using C for some time, and my standard procedure in C was to define a struct and a number of functions to
manipulate the struct, and then to cross my fingers that no one touched it other than through my functions.
The moment I encountered private, I knew that given a choice, I would always choose C++ over C. (In
fact, I did not have access to a C++ implementation until a year or so later, when I purchased the Zortech
compiler for my PC. And I did not get a chance to use it professionally until 1992. However, I knew that
given the chance, it would be C++ rather than C.)

David Bradley adds
Interesting – I followed much the same path. I was creating structs of function pointers. I was attempting
to create an interface in C. It worked well for the task of talking to various database APIs. When I came
across C++, it was a natural move. I also dabbled in Borland’s Object Pascal, as I had used Pascal in the past
as well.

When I jumped into the language I quickly realized there was more I needed to know than just the
syntax. Fortunately, I was able to get formal training and read decent books.

The complaints of manual memory management and erroneous memory access are from people who
haven’t used the newer facilities in the Standard Library; nor have they sought out third-party libraries for
smart pointers and the like. I rarely have these problems in my applications. However, I understand some of
the frustration. It is a difficult language. It reminds me a little of English. A very expressive language, but very
difficult to learn as a second language.

Therefore, while I enjoy the language, I think there is a fair cost to becoming proficient in the
language. In addition, people believe they can jump into something like Java and do things quicker without
the risks. However, even as safe as something like Java is, projects still die from the standard classic
mistakes.

David Bradley

James Kanze adds
Not necessarily. If you come from C, of course, memory management in C++ seems easy. If you are
coming from a higher-level language, however, it probably seems like there is still too much burden on the
programmer.

I cannot say that I had memory management problems in C either. However, ensuring that I did not
meant extra work. It is less work in C++ than in C, but it is even less work in Java or C++ with garbage
collection.

From Brooks Moses
I came to C++ from Fortran, and . . . well, for a long time, I had been avoiding it, because I looked at the
built-into-the-language ways of dealing with multidimensional arrays, and they seemed sorely lacking. (I do
numerical analysis work; if I write something more complicated than ‘hello world’, it has a multidimensional
array in it.) In addition, beyond that, it seemed that many other things such as the string implementation
were much lower-level than I wanted to deal with.

346 APPENDIX A

The crucial realization that I had when I actually started working with C++ was recognizing the
paradigm that a lot of the fundamental functionality is in libraries, rather than in the core language spec. In
particular, while the standard libraries do not have multidimensional arrays, they do have rather decent string
implementations, and it was a matter of a few hours of work to knock together a basic multidimensional array
that does everything I need.

I think that is a difference that is well worth spending some time on. The idea of operator overloading
should be introduced into this very early on, too, as it is important in making library-defined functionality as
easy to program with as the core-language parts are.

Brooks

Beliavsky adds
If one is using the multidimensional arrays in Fortran 90/95, where one

1. has access to intrinsic array functions like SUM and MAXVAL,
2. can broadcast ELEMENTAL functions like SIN to all array elements, and define your own ELEMENTAL

functions,
3. can refer to array sections like x(1:2,:,2:10:2), and
4. can use arrays of dimensions up to at least 7 (required by the standard),

implementing all this in C++, efficiently, could take months or years. Now that I am used to such
functionality, I ‘need’ it, and moving to C++ would seem like a big step backwards.

From Phil A
The main problem I found when moving to C++ was not with learning the language but more in the way
some people (still) use it. Looking at a modern C++ text from Koenig, Meyers, or Alexandrescu, you learn the
best techniques for programming with the language as it currently stands. However, in real-world projects, I
have not seen much use of the Standard Library, exceptions, or namespaces, but I do see reams of arrays and
pages of preprocessor macros.

With a language this flexible, the hardest step for me was the leap from modern textbook purity to your
next job maintaining an old server application written in ’80s style C++!

From Paul Evans
As with many other posters, I came to C++ circa 1992 from an assembler, BASIC, Pascal, and C background,
and had a similar revelation regarding RAII, exceptions, and templates. One thing I have not seen mentioned is
an early conceptual problem I had. I could imagine classes, types, inheritance, polymorphisms, OO mappings
from application domain to design plus implementation, etc., and all of that was a very exciting way to start
thinking about program development (I could only imagine, as I was reading TC++PLed2 and had no access
to a compiler). However, perhaps I let my imagination go too far, because I envisioned each object as having
its own ‘life’ or thread. It took a few weeks to realize, in the general sense, they were dormant C structs (state)
with associated member functions (behavior) that simply had an ‘under-the-hood’ ‘this’ pointer (identity)
passed in to hook the state. Now with distributed and multi-threaded programming I do indeed have ‘live’
objects, but I had to work up to that from the ‘dormant’ object idea. Maybe I am just a geek with an over-active
imagination, or maybe this is a more common obstacle for newbies.

In any case: many thanks to Bjarne Stroustrup for ‘making programming more fun’!

Paul

THOSE WHO WENT BEFORE 347

Finally from me
A big thank you to all those who contributed to this appendix. I hope that you enjoyed reading it and that
these words from those who are ahead of you on the road to mastery of C++ will inspire you to continue.
One of the interesting qualities of many C++ programmers is that however much they like C++ they are
not language bigots; they enjoy good tools for expressing solutions to problems as computer programs. They
share my belief that C++ belongs in every programmer’s toolkit alongside other tools and languages.

References

Alexandrescu, A. (2001) Modern C++ Design. Boston, MA, USA: Addison-Wesley Professional.
Austern, M. (1998) Generic Programming and the STL. Boston, MA, USA: Addison-Wesley Professional.
Glassborow, F. (2003) You Can Do It! Chichester, UK: John Wiley & Sons.
Josuttis, N. (1999) The C++ Standard Library. Boston, MA, USA: Addison-Wesley Professional.
Langer, A., and Kreft, K. (2000) Standard C++ IOStreams and Locales. Boston, MA, USA: Addison-Wesley
Professional.
Stroustrup, B. (1994) The Design and Evolution of C++. Boston, MA, USA: Addison-Wesley Professional.
Vandevoorde, D., and Josuttis, N. (2002) C++ Templates. Boston, MA, USA: Addison-Wesley Professional.

Index

#define 162–4, 234–5, 307, 312–13
#endif 162–4, 235
#ifndef 162–4, 234–5
#include 4, 6–7, 10–11, 13–14, 21–31, 94–5,

106, 139–40, 148–55, 165–7, 213–14,
220–1, 252, 278, 290–1, 308

&& (and boolean operator) 38, 78, 105, 312
& 39, 77–8, 85–93, 312
&= (and eq compound assignment operator) 39,

78
& (address-of/reference operator) 35–6, 40, 78,

85–93, 167, 193–210, 312, 333
* (multiplication operator) 14–15, 19–21, 37–8,

280–1
++ (increment operator) 14, 37–8, 48–53, 122
+= (assignment operator) 14–31
+ (addition operator) 14, 19–21, 37–8, 123
: (conditional operator) 47, 105
; (statement terminator) 4, 6–7, 20–2, 44, 78
== (equal comparison operator) 19–21, 38, 40,

154–5, 171–2, 287
= (assignment operator) 39–40, 307–11
>= (greater-than-or-equal-to comparison operator)

38
<= (less-than-or-equal-to comparison operator)

38
!= (not equal comparison operator) 38, 40, 51–6,

120–2
= operator 19–21
, (comma operator) 104–5, 107, 159, 196–9
: (constructor initialization) 158–9
. (dot operator) 75, 97, 185–6
> (greater-than comparison operator) 38
<> (header) 4, 6, 7, 10–11

>> (input operator) 14, 39, 143–4, 153–5,
164–7, 252–61

<< (left-shift bitwise operator) 39
< (less-than comparison operator) 20–1, 38, 47
! (not boolean operator) 38, 121, 312
<< (output operator) 4, 6, 7, 11, 19–22, 39,

144–5, 154–5, 164–7, 185–91, 251–61
-1 prefix (minus el) 11
>> (right-shift bitwise operator) 39
:: (scope operator) 4, 6–7, 65–6, 178, 326
"" (string literal) 4, 6, 10–11, 14–15

(underscores) 18–19
-> (arrow operator) 75, 97, 122, 206, 209–10
? (conditional operator) 47, 105
- (subtraction operator) 14, 19–21, 37–8, 123
- (unary operator) 37–8, 122
-- (decrement operator) 38, 50
/ (division operator) 14, 19–21, 37–8
// (comments) 4, 6, 7, 11, 13–14, 313
a, file extension 9–10
A, Phil 338
abort 266
abs 220–1
abstraction, public inheritance 218–19, 234
access specifiers
see also private. . .; public. . .
concepts 149

accumulate 290–303
Ada xxi, 328, 332
addition operator, (+) 14, 19–21, 37–8, 123
address-of operator (&) 35–6, 40, 78, 85–93, 167,

193–210, 312, 333
see also pointers

ADL see argument-dependent lookup

352 INDEX

Alexander, C.H.O’D. xvii
Algol 325, 328
algorithm 42–3, 55–6, 84–6, 119–20, 184,

302–3
aliases, namespaces 66–7
alternative spellings, operators 312
alternative tokens, concepts 33–4, 38–40
ambiguity, function templates 116, 118–19
and (&&) boolean operator 38, 78, 105, 312
and eq (&=) compound assignment operator 39,

78
anonymous classes, Java 333–4
APL xxi
appendices 323–39
appending data, file access 254–5
Apple Mac, OS X xxiii, 1, 9
application files, concepts 163–4
argument-dependent lookup (ADL) 118–19
arguments

default arguments 88–91, 98
functions 75–98, 113–14, 116–17, 130–1
fundamentals 75
parameter conversions 79–80, 281–3

arithmetic operators 14–15, 19–21, 29, 37–8,
138–40, 277–81
see also entries at start of index
conversions 37–8
enum 138–40
overloading operators 277–81

Arpat, Burc 334–5
array 196–9
arrays xvi, 41–2, 136–7, 169–72, 178, 193–4,

196–9, 208–10, 244–5, 255–6, 272, 301–2,
337–8
addresses 193–4
buffer-overruns 41, 199
built-in types 196–9
concepts 41–2, 169–72, 178, 193–4, 196–9,

208–10, 244–5, 255–6, 301–2
dangers 41–2, 196–9
dynamic arrays xvi
example code 196–9, 244–5
fundamentals 41–2, 169, 196–9, 208–10
initialization 196, 199
multidimensional arrays 337–8
pointers 198–200, 208–9, 244–5, 301–2
uses 169, 196–9, 255–6, 272, 301–2

ASCII 33
asm xiii
assembler xiii–xiv, 323–4, 328, 330, 332–3,

338
see also low-level languages

assignment
compound assignments 39–40
concepts xx, 13–15, 20–2, 31, 37–40

assignment operator (+=) 14–31, 307–11
assignment operator (=) 39–40, 307–11
assignment-style/function-style contrasts,

initialization 307–11
associative containers
see also containers
concepts 301, 302

audio data 315, 319–21
author’s comments xi, 339
author’s library xxiii, xxv, 8–9, 10–11, 24–7,

166–7
auto 135–6, 206–7
auto ptr<> 206–7, 210, 232–3, 241–7, 271–2,

301–2, 326, 329

bad data, exceptions 21–9, 86–93, 265–76
‘Balog Pal’ 327
bar 103–5, 107, 270–2, 275
BASIC xv, xix, 41, 53, 79, 323–8, 330, 332–6, 338

C++ contrasts xix, 41, 53, 79
goto usage 53

basic chesspiece 212–28, 229–47
basic string 73, 289–303
Bazarov, Victor 323–4
BBC BASIC xv
behaviors

concepts 50, 99–107, 147–50
fully defined behavior 99–103
implementation-defined behavior 100–1
polymorphism xvi, 211–28, 333, 338
types 15, 25, 99–107, 147–50
undefined behavior 50, 101–2, 197–9
unspecified behavior 101–2

Beliavsky 338
bidirectional iterators
see also iterators
concepts 122–3

binary representation, natural numbers 16–17
Birbacher, Frank 325–6
bishop 238–47
bit patterns 16–17
bit-shift operators 21, 39
bitand bitwise operator 39, 312
bitor bitwise operator 39
bitset 32
bitwise operators, concepts 21, 38–9, 312
block braces (curly brackets) 4, 6–7, 22, 44,

48–60, 230–1
board 246–7

INDEX 353

boilerplate code 24, 235
bool type, concepts 13–14, 16, 19–20, 32–3, 38,

212–13, 328–9
boolalpha 152–5
boolean expressions, concepts 44–60
boolean operators, concepts 38
Boost Spirit Library 289, 325
Borland xx
bound objects 35, 40
Bourget, Jean-Marc 328
Bradley, David 337
break 14, 20–2, 30–1, 43, 45–7, 52–3, 58–9,

67, 230, 241–2, 290–1, 313
see also switch. . .

buffer-overruns xx, 41, 199
arrays 41, 199

build (F7 key) 8
built-in types

arrays 196–9
concepts xxiv, 196–9

C# xiv, xv, xvii–xviii, xxiv, 17, 21
C++
see also functions; source code; Standard

Library
BASIC contrasts xix, 41, 53, 79
C contrasts xiii–xiv, xv, xvi–xvii, xx, xxiii, 6, 21,

35, 40, 122, 135–6, 156, 169, 191, 193–4,
199–200, 277, 305–21

changes xiii, xiv–xv, xvi, 305–21, 330, 333
COBOL contrasts xviii
complexity 135–6, 161, 193, 222–3, 305
concepts xi, xiii–xxi, 6–11, 13–40, 75, 109,

131, 135–6, 140–1, 147–8, 191, 211, 275,
277, 283–4, 289–90, 305–21, 323–39

containers xvi, 42–3, 53–6, 58–9, 60, 69–71,
73, 84–6, 109–31, 245–6, 289–303, 329,
335

critique xi, xiii–xxi, 13–40, 109, 131, 135–6,
140–1, 147–8, 191, 193–4, 211, 275, 277,
283–4, 289–90, 305–21, 323–39

declaration complexities 135–6, 161, 305
evolutionary developments xiii, xiv–xv, xvi, 131,

135–6, 147, 305, 330, 333
exceptions xvi, 21–9, 42–3, 80–1, 84–93,

110–31, 165–7, 201–2, 251, 265–76
features xiii–xiv, xxi, 13–40, 109, 131, 147–8,

211, 275, 277, 283–4, 289–90, 323–39
historical background xiii, 147, 305–21
idioms 51–2, 120–1, 164–5, 193–4, 273–4
inheritance 211–28, 321, 327, 338
ISO standards xiii, xiv–xv, 32

iterators 51, 122–31, 193, 289–303
Java contrasts xvii, 13, 17, 18, 21, 45, 78–9,

122, 147, 275
learning xiii–xxi, xxiii–xxvi, 1, 76, 305–21,

323–39
legacy code 305–21
loops 13, 19, 20–2, 26–9, 30, 41–2, 48–60,

141–2
names 3–4, 7, 9–10, 18–19, 56, 61–73, 76,

83–6, 120, 133–46, 312–13
namespaces 61–73, 83–6, 96–7, 178, 229–48
OOP xxi
overloading operators xvi, 21, 62, 78, 83–6,

88–93, 140–6, 153–5, 164–7, 204–6,
209–10, 258, 277–87, 321, 324–5, 330,
332, 335–6, 338

overview xiii–xxi, xxiii–xxvi, 1, 321
Pascal contrasts xix–xx, 41, 43, 45, 75
pointers xvi, xviii, 17–18, 35, 40, 97, 136–7,

149–50, 169–74, 193–210
polymorphism xvi, 211–28, 229–48, 310–11,

333, 338
procedures 82
program samples 1–11, 13–14, 20–2, 24–31,

42–60, 80–1, 84–6, 110–31, 161–78
programmer backgrounds xiv–xxi, 323–39
streams 251–64, 279–81, 290–303
structured programming 313–15
templates xiv, 42–3, 60, 73, 109–31, 289–303,

326–8, 329–30, 332, 334, 336–9
user-defined types 17, 25, 40, 41–3, 60,

133–46, 147–91, 211–28
uses xvii, xxi, 40

The C++ Programming Language (Stroustrup)
331, 336

C xiii–xiv, xv, xvi–xvii, xx, xxiii, xxiv, 6, 21, 35,
40, 122, 135–6, 156, 169, 191, 193–4,
199–200, 277, 305–21, 323–5, 327–9, 330,
331–3, 335, 337, 338
C++ xiii–xiv, xv, xvi–xvii, xx, xxiii, 6, 21, 35,

40, 122, 135–6, 156, 169, 191, 193–4,
199–200, 277, 305–21

ideal uses xvi–xvii
value-based language 191

‘C with classes’ 147
c file extension 161
C90 library 260
Capp, Mike 332
car numbers 179
card 180–91, 200–6
card.cpp 152–5, 162–4, 167, 184–91, 205–6
card.h 162–4, 184–91, 205–6

354 INDEX

cardmain.cpp 170–2
card value 155–91
case 45–7, 58–9, 229–30, 233–4, 241–3
see also switch. . .

case, naming styles 19, 312–13
castle 225–6, 237–47
casts 309
catch 22–7, 28–9, 30–1, 78, 80–1, 110–31,

152, 155–6, 164–7, 187–91, 200–6, 221,
266–76, 278–81, 285, 316–19
see also exceptions
fundamentals 22–7, 266–76

CD xxv, 1, 172
Cehreli, Ali 324
cerr 22–7, 30–1, 43, 53, 69–72, 86–93, 100,

110–31, 145, 153–6, 164, 187–91, 200–6,
221, 265–79

changes, C++ xiii, xiv–xv, xvi, 305–21, 330, 333
char type xvi, 16, 27–9, 32–3, 37–8, 41–3, 61,

67, 73, 99–101, 115–16, 133–4, 138, 151–5,
169–70, 195–6, 255–6, 262, 289–303, 328,
333
concepts 16, 27–9, 32–3, 37–8, 41–3, 61, 67,

73, 99–101, 133–4, 169–70, 255–6, 262
range 16, 32–3, 73
usage 32–3, 61, 67, 73, 255–6, 262

characters
concepts xvi, 16, 27–9, 32–4, 37–8, 41, 61,

73, 328, 333
escape sequences 33–4
special representations 33–4
wide/narrow character sets 61, 71, 73

chess-piece type example 234–47
chess-pieces examples 211–28, 229–47, 258–61,

268–72
chess2 234–47
chess2.cpp 238–43, 247
chess2.h 247
chessboard 246–7, 258–61, 268–72
chess.cpp 214–28, 230–2
chess.h 213–28, 230
chesspiece 234–47, 259–61, 286
class xviii, 113, 129, 135–6, 147–78, 180–91,

194, 212–28, 229–47, 306
see also templates
concepts 147–78, 194, 212–28, 229–47
uses 148–55, 174–5, 212–28

class concepts xviii, 113, 129, 135–6, 147–78,
194, 211–28, 229–47, 306
see also struct; union
chess-pieces examples 211–28, 229–47,

258–61

deck-of-cards example 182–91, 193–210
design considerations 148–78, 246–8
entity types 147–8, 155, 179–91, 193–210,

245–7
example code 148–78
hierarchies 211–28
ISBNs example 148–55, 179–80
member-function definitions 174–8
playing-cards example 148, 155–91, 200–6
simple classes 147–78, 179–91
testing 152–4
types 147–8, 174–5
value types 147–78, 179–80, 301–2

clear 87–93, 126, 262
clock t 134, 146
clog 69–72, 181–91, 204–6, 238–47
close 253–61
cmath 31, 58
COBOL xviii, 332–3
code xvi, xix–xxi, xxiv, 1, 3–11, 13–40, 305–21,

335
see also object. . .; source. . .
folding 4–5
legacy code 305–21
pseudocode 44–60

Collett, Matthew 324
colors, graphics 7, 25–7, 56, 65, 70–2, 81–2,

88–98, 172–4
comma operator, sequence points 104–5, 107
comments (//), source code xxvi, 4, 6, 7, 11,

13–14, 313
comparison operators 19–21, 38
compiling xix–xxi, xxiv, 1, 3, 5–11, 63–7,

78–83, 94–5, 161–4, 248, 335
see also MinGW
behaviors 99–102
compiled/interpreted source code xix, xxi, 5, 79
concepts xix–xxi, xxiv, 1, 3, 5–11, 63–7,

78–83, 94–5, 161–4, 248, 335
error messages 5, 6, 7–8, 335
linking 6, 8–9, 11, 78–9
separate compilation 94–5, 161–4
source code xix–xxi, xxiv, 1, 5–11, 63–7,

94–5, 99–102, 161–4, 248, 335
compl bitwise operator 39
complexity, C++ 135–6, 161, 193, 222–3, 305
compound assignments, concepts 39–40
compound statements, concepts 43–4
compressed 151–5
conditional operator
see also decisions
concepts 43, 47, 58–9, 105

INDEX 355

example code 47, 105
form 47
sequence points 105

console application, project types 3–4
console objects, concepts 4–7, 10–11, 13–14,

21–2, 67–71
const type xvi, 17–18, 36–7, 41, 56, 85–6, 107,

113, 135–6, 148–78, 180–1, 183–91, 194,
212–13, 216–21, 224–5, 240–7, 277–81,
297–303, 301, 306–7, 328–9, 335
see also derivative. . .
concepts 17–18, 36–7, 41, 56, 85–6, 107,

135–6, 148–78, 158, 180–1, 194, 212–13,
216–21, 224–5, 301, 306–7

placement issues 306–7
const iterator 290–303
const reverse iterator 290–303
constructors xvii, 148–78, 156–67, 176–8,

188–91, 223–8, 241–3, 252–61, 272–3,
328–9, 335
see also member functions
concepts 156–69, 176–8, 188–91, 223–4,

241–3, 272–3
files 252–61
implementation 158–60, 167–9, 203–6, 219,

223–4, 241–3
types 156–7

containers xvi, 42–3, 53–9, 60, 69–71, 73, 84–6,
109–31, 245–6, 289–303, 329, 335
see also std::vector
categories 301–2
concepts 42–3, 53–9, 289–303
preloading 299–303

continue 52–3, 59, 313
control expression, for loop 50–3
control flow xviii, 20–2, 26–9, 30, 41–60,

313–15, 329
see also decisions; loops

conversions 79–80, 116–17, 257–61, 281–7,
308–9
arguments/parameters 79–80, 281–3
double type 79–80, 116–17, 257–61, 281–3,

308
int type 79–80, 116–17, 257–61, 281–3, 308
numerical/string conversions 257–61
operators 37–8, 281–7

copy constructors
see also constructors; operator=. . .
concepts 157–67, 170–1, 178, 191, 272–4,

301–2
implementation 159–60

copy from 183–4, 190–1, 204–6

correct code, writing 22–3
cout 4–5, 6–7, 13–14, 19–29, 38, 42, 43,

51–9, 63–4, 66, 68–70, 71–2, 78, 81, 86–93,
99–100, 106, 110–31, 126–7, 134, 137–9,
150–5, 164, 194–210, 214–19, 224, 229–47,
251–61, 278–81, 296–303, 309–10, 325, 335

cpp file extension 161
CPU 24
see also memory

create piece 259–60
credit cards 179
cstdlib 220, 230, 265–6
Ctrl+5 keys 20
Ctrl+D keys 125
Ctrl+F7 keys (compile) 7–8
Ctrl+N keys (New Project) 2, 7
Ctrl+Z keys 125
cxx file extension 161

data structures, STL 289–90
debuggers 1, 5–6, 335
decisions xviii, xx–xxi, 41–7, 58–9, 313–15,

329
see also conditional operator; if. . .; switch
concepts 41–7, 58–9, 313–15
structured programming 313–15

deck 182–91, 202–6, 262
deck-of-cards example, entity types 182–91,

193–210
deck.cpp 185–91
deck.h 184–91
declaration statements 18–19, 20–2, 78–81,

111–12, 135–40, 161–4, 175–8, 230–1,
310–11

declarations 11, 18–19, 20–2, 62–7, 69–72,
77–81, 85–6, 96–7, 111–12, 135–40, 157–8,
161–4, 175–8, 230–1, 310–11
complexities 135–6, 161
functions 77–81, 85–6, 96–7
inline function declarations 85–6, 88–9, 95,

98, 154–5, 165–7, 279–83
namespaces 63–7, 69–72, 96–7, 230–1

decrement operator (--) 38, 50
default 45–7, 58–9, 230, 233–4, 242
see also switch. . .

default arguments, concepts 88–91, 98
default constructors 156–7, 178
see also constructors

default initialization 25, 196–9
default objects, creation 14–15
default prompt, read usage 127–8
#define 162–4, 234–5, 307, 312–13

356 INDEX

definition statements 18–19, 20–2, 78–81, 94,
96–7, 161–4, 175–8, 230–2

delete 200–6, 232–3, 246–7, 271–3, 277
Delphi xix–xx, 334
see also Pascal

denomination 167–8
denominator 277–81
deque 207, 289–303
dereferencing 209–10, 286
derivative types
see also pointers
concepts 17–18, 35–7, 193–210, 306–7

derived 311
descriptive type names, typedef 134–5
design considerations

class concepts 172, 246–8
functions 76, 77–82, 313–19

destructors xvii, 150–5, 157–67, 177–8, 201–2,
219, 224–5, 243–4, 275, 324, 328, 336
see also member functions
concepts 157–67, 177–8, 219, 243–4, 275
exceptions 275
identification 157, 177
implementation 159–60, 219, 224–5

deterministic destruction 336
direct reading, keyboard xxiii
directives, namespaces 63–7, 69–72, 310–11
disable castle 237–47
display menu 230
division operator (/) 14, 19–21, 37–8
‘dormant’ object idea 338–9
dot and arrow operators 40, 75, 97, 122, 206,

209–10
double type
see also floating-point. . .
concepts 13–16, 29–31, 36–7, 56, 79, 81,

95–6, 111–17, 125, 136–7, 257–61,
281–3, 308–9

conversions 79–80, 116–17, 257–61, 281–3,
308

range 29
string conversions 257–61

do–while loop xviii, 20–2, 26–9, 30, 43,
48–60, 84–6, 110–12, 126–7
concepts 48–60, 110–12
example code 48–9, 84–6, 110–12,

126–7
form 48

draw 333
draw graph 283–4
drawline 128–9
draw square 93

dynamic objects xvi, xxi, 193, 199–210, 229–48
concepts 199–210, 229–48
destruction 201–2, 232–3
example code 199–206, 229–48
pointers 200–10

dynamically typed languages 109, 131, 193

EBCDIC 33
egos, programmers xvi
else statement xviii, 43–7, 53–6, 58–9, 329

concepts 43–7, 58–9
example code 44–5, 53–6
form 44–5

Empty Playpen program, program samples 7–11,
24–7, 56, 70–2, 81–98, 172–4

emptyplaypen.cpp 8–11
encapsulation xvi, 54, 230–1, 251, 260, 324, 333
end-of-file 257–8, 291–6
#endif 162–4, 235
endl 264
entity types

class concepts 147–8, 155, 179–91, 193–210,
245–7

deck-of-cards example 182–91, 193–210
example code 180–91
implementation 181–2
playing-cards example 179–91, 200–6

enum
see also user-defined types
arithmetic operators 138–40
attribute uses 167–8
concepts 136, 137–46, 154, 161, 167–9,

175–8, 194, 234–47, 260–1
dangers 137
text conversions 260–1

EPROM 102
error/warning messages 5, 6–8, 22–7, 30–1, 43,

53, 69–72, 86–93, 100, 110–31, 145, 153–6,
164, 187–91, 200–6, 221, 265–76, 335
see also exception. . .
mouse 20
std::cerr 22–7, 30–1, 43, 53, 69–72,

86–93, 100, 110–31, 145, 153–6, 164,
187–91, 200–6, 221, 265–79

escape sequences, characters 33–4
Evans, Paul 338–9
exact chess piece, construction 241–3
exception 21–7, 42–3, 80–1, 84–6, 165–7,

268–76, 285
exceptions xvi, 21–9, 42–3, 80–1, 84–93,

110–31, 165–7, 201–2, 251, 265–76, 316–19
destructors 275

INDEX 357

example code 21–9, 265–76
exception-safe copy-assignment idiom 273–4
file access 252, 266–76
fundamentals 21–9, 265–76
rethrowing benefits 274
specifications 275, 276

exercises xxv, 23, 28–31, 57–8, 81–2, 87–8,
92–3, 95, 113, 120, 128, 144–5, 154–5,
172–4, 182, 189–90, 226–7, 245–7, 254,
258, 261–2, 279, 281–2, 285–6, 300
objectives xxv
stretching exercises 31, 57–8, 128–9, 145,

190–1, 226–7, 245–7, 258, 262, 286
exit 43
EXIT FAILURE 265–72, 316–19
EXIT SUCCESS 265–72, 316–19
explicit 148–78, 180–91, 212–28, 234–47,

278, 281–7
export 114
extern 135–6, 231

F7 key (build) 7–8
false value, bool types 16, 19–20, 32–3
fgw

concepts 7–9, 10–11, 65–6
namespaces 65, 66

fgw::additive 70–2
fgw::bad input 127–31
fgw::direct 70–2
fgw::disjoint 70–2
fgw::drawline 128–9
fgw::filter 70–2
fgw headers directory 7–9, 9–11
fgw::hue 26–7, 88–95
fgw::playpen 70–2, 81–98, 128–9
fgw::read 124–31, 181–2, 204–6
fgw text.h 126, 181–2
file 212–28, 229–47
file access

appending data 254–5
concepts 251–61, 266–76
end-of-file 257–8, 291–6
exceptions 252, 266–76
read-only files 252–3

file extensions
a 9–10
c 161
cpp 161
cxx 161
h 161, 260

file names 3–4, 7, 9–10
file prefixes 9–11

first language xiii–xv, xxiv–xxv, 323–4
float, concepts 35, 194, 331, 335
floating-point types
see also double type
comparison dangers 111
concepts 15–16, 29–31, 35, 37–8, 86–7, 111,

194
range 29

for loop xviii, 50–6, 59, 196–9, 200–1, 293–4,
336
concepts 50–3, 59, 196–9
example code 51–6
form 50–1

Forth xv, xxi, 330
Fortran xxi, 29, 323–4, 326, 328, 330, 337–8
forward iterators
see also iterators
concepts 122–3

free functions
see also functions
concepts 75–98, 193

freeware xxiv
friend 149, 156, 287
fstream 252–61, 263, 285, 290–303
full expression, sequence points 104
fully defined behavior, concepts 99–103
fully elaborated names, concepts 19, 62–3, 65–7,

178, 230–1
func ptr 136–7
function objects, operator 283–7
function templates

ADL 118–19
ambiguity 116, 118–19
concepts 109–31, 290–303
example code 113–29
fgw::read 124–31
form 113–14
getting-the-largest function template 109–16
instrumenting code 117–18, 159, 170–2,

236–7
libraries 109, 124–31, 290–303
overloading functions 116–17, 120–2
parameters 113–31
specialization 118–20, 130
Standard Library 109, 124–31, 290–303
writing 109–31

function-style/assignment-style contrasts,
initialization 307–11

functional 295
functional programming xiv, xx, 15, 41, 48, 75
functions
see also member functions

358 INDEX

functions (continued)
arguments 75–98, 113–14, 116–17, 130–1
benefits 75–6
call syntax 78–81, 97, 104–5
concepts xx–xxi, 25–7, 75–98, 283–7, 315–19
declarations 77–81, 85–6, 96–7
default arguments 88–91, 98
definition 78–81, 96–7
design considerations 76, 77–82, 313–19
example code 77–98
form 76–82, 96–7
fundamentals 75
inline function declarations 85–6, 88–9, 95,

98, 154–5, 165–7, 279–83
interface declaration 77–81, 86–93
large functions 315–19
names 76, 77–8, 83–6, 94, 96–7
overloading functions 78, 83–6, 97–8, 116–17,

120–2, 127–31, 156–67
pass-by-reference 40, 85–6, 198–9
pass-by-value 40, 85–6, 191
policy arguments 76–7
procedures 82
pure functions 82, 103–4
types 75
unnamed parameters 93–4, 98
writing 75–98

fundamental types
see also floating-point. . .; integer. . .; types
concepts 13–40, 41–2, 140–1
Java 13, 147
user-defined types 41, 140–1

garbage collection xvii–xviii
GCC 9
gdi32 library 8, 24
generic functions see function templates
generic programming xiv, xx, 109–31
get 6–7, 11, 28–9, 67–8, 75, 78
get card 186–91, 203–6
get color 259–60
get double 95–6
get from 165–7, 171–2
get int 77–81, 84–6, 92–6
getline 67–8, 253–4, 256–7
get piece 259–61
get piece type 261
get position 260
getting-the-largest function template 109–16
global variables, dangers 101–2
GNU Compiler Collection 9
Go game xxv

goto, critique 52–3
graphics 1, 7–11, 25–7, 56, 65, 70–2, 81–2,

88–98, 172–4
colors 7, 25–7, 56, 65, 70–2, 81–2, 88–98,

172–4
concepts 7–11

graphs, mathematical functions 283–6
‘grayed out’ menu options, IDEs 2
greater 76–7, 295–6
greater-than comparison operator (>) 38
greater-than-or-equal-to comparison operator (>=)

38
h file extension 161, 260
see also header files

half type, std::vector 42
hand 189–90
Hansen, Thomas 326–7
harmonic mean 31
Haskell xx, 15, 75
header files

concepts 7–11, 94–5, 161–4, 185–91, 247
purposes 161

header guard 161–4
headers

concepts 6, 7, 10–11, 161–4, 185–91
user-defined types 41–2

the heap 199–200
Heinzmann, Stefan 330
‘Hello World’ program, program samples 1–7, 13,

106
hex 264
Hickin, John 326
historical background, C++ xiii, 147, 305–21
homogenous entity types, class concepts 147–8,

155, 179–91, 245–7
houses 180
hue 26–7, 88–95
Hungarian notation 312

IDEs see integrated development environments
idioms, C++ 51–2, 120–1, 164–5, 193–4,

273–4
if statement xviii, 20–2, 43–7, 53–6, 58–9,

142–3, 238, 313, 329
see also decisions
concepts 43–7, 53, 58–9, 142–3, 313
dangers 44–5
example code 44–5, 53–6, 142–3, 238
form 44–5
nesting 44–5

#ifndef 162–4, 234–5

INDEX 359

ifstream 253–61, 263, 292–303
implementation

constructors 158–60, 167–9, 203–6, 219,
223–4, 241–3

copy constructors 159–60
destructors 159–60, 219, 224–5
entity types 181–2
member functions 160, 167–9
value types 148–78

implementation files, separate compilation 94–5,
161–4

implementation-defined behavior, concepts
100–1

#include 4, 6–7, 10–11, 13–14, 21–31, 94–5,
106, 139–40, 148–55, 165–7, 213–14,
220–1, 252, 278, 290–1, 308

increment operator (++) 14, 37–8, 48–53,
122

indentation levels xviii–xix, 43–4
indeterminate 243–7
index and function operators 40
industrial-strength code xvi
inheritance 211–28, 321, 327,

338
see also polymorphism
concepts 211, 218–28, 321
fundamentals 211, 218–28
uses 218–19

initialization
arrays 196, 199
concepts 13–15, 18, 20–2, 25, 53–4, 178, 196,

199, 260–1, 307–11
constructor lists 178
default initialization 25, 196–9
for loop 50–3
function-style/assignment-style contrasts

307–11
inline function declarations, concepts 85–6,

88–9, 95, 98, 154–5, 165–7, 279–83
input/output mechanisms xix, xx, 4, 6, 7, 11, 14,

19–22, 39, 67–70, 86–93, 143–4, 153–5,
164–7, 185–91, 251–61, 296–303
fundamentals 251–61
overloading operator 143–4, 153–5, 164–7,

185–91, 204–6, 258
type safety xvi

instances see objects
instrumenting code, concepts 117–18, 159,

170–2, 236–7
int main 4, 6, 7, 10–11, 13–14, 20–2, 24–31,

43, 163–4, 185–91, 213–18, 221–3, 252,
290–303

int type 4, 6, 7, 10–11, 13–17, 20–2, 34–5, 79,
116–17, 125, 136–7, 194–6, 257–61, 281–3,
308–9
concepts 14–17, 20–2, 34–5, 79, 136–7, 194,

257–61, 281–3
conversions 79–80, 116–17, 257–61, 281–3,

308
range 16–17, 34–5
string conversions 257–61

integer types
concepts 15–17, 20–3, 34–5, 37–8, 73, 136,

137–46, 257–61
enum 136, 137–46, 154, 161, 167–9, 175–8,

194, 234–47, 260–1
integrated development environments (IDEs) xxiv,

1–7, 161
JGrasp xxiv
launching 2–7
MinGW Developer Studio xxiv, 1

interface declaration, functions 77–81, 86–93
interpreted source code xix, xxi, 5, 79
iostream 4–5, 6, 7, 10–11, 13–14, 20–31,

42–3, 64–6, 78, 84–93, 99–102, 106,
110–31, 134, 137–9, 142–5, 148, 155–6,
164, 213–14, 220–1, 252–61, 263, 283–4,
290–303, 308–9

isbn10 148–55, 179–80
isbn10.cpp 152–5
ISBNs example, class concepts 148–55,

179–80
isbn test.cpp 152–5
ISO standards xiii, xiv–xv, 32
istream 77–81, 86–93, 99–102, 134, 154–5,

181–2, 204–6, 270–2, 279–81, 290–303
iter 122–3
iterator 290–303
iterators 51, 122–31, 193, 207–10, 289–303
see also location; raw pointers; smart

pointers
concepts 122–31, 193, 207–10, 289–303
fundamentals 122–3, 193, 207, 289–303
max 123–4

Java xiv, xv, xvii, xix, xxiv, 13, 17, 18, 21, 45,
78–9, 122, 147, 275, 325, 326, 327, 331,
333–4, 336–7
anonymous classes 333–4
C++ contrasts xvii, 13, 17, 18, 21, 45, 78–9,

122, 147, 275
exception specifications 275
fundamental types 13, 147

JGrasp xxiv

360 INDEX

Josuttis, Nicolai 61
jter 123

Kanze, James 337
keyboard xxiii, 11, 24–7
see also Ctrl. . .
direct reading xxiii

keywords, concepts 16
Kindred, Robert 329–30
king 224–8, 239–47
knight 218–28, 238–47
Koenig, Andy xxi
Küel, Dietmar 61

largest of several values 109–10
Larsen, Peter Koch 325
launching, IDEs 2–7
layout and consistency, source code 305–21
learning

C++ xiii–xxi, xxiii–xxvi, 1, 76, 305–21,
323–39

need-to-know basis 76, 313
left 257–8, 264
left justification, output fields 257–8, 264
left-shift bitwise operator (<<) 39
legacy code

libraries 319–21
problems 305–21

less-than comparison operator (<) 20–1, 38, 47
less-than-or-equal-to comparison operator (<=) 38
lib file prefixes 9–11
libraries xi, xiv, xxiii, 1, 6–7, 10–11, 18–19,

41–3, 109, 319–21, 330–1, 336, 338
see also std. . .
author’s library xxiii, xxv, 8–9, 10–11, 24–7,

166–7
function templates 109, 124–31, 290–303
graphics library 1
legacy libraries 319–21
names 18–19
search order 11
Standard Library xi, xiv, xxiii, 6–7, 10–11,

18–19, 41–3, 60, 61–73, 75–6, 109,
124–31, 138–9, 210, 230–1, 245–6, 260,
289–303, 336–7, 338

third-party libraries 62
types 41–3, 327

Link pane, Project Settings 6, 8–9, 11
linking, compiling 6, 8–9, 11, 78–9
Linux xix, xxiii, xxiv, xxv, 1, 9
Liskov Substitution Principle 211
Lisp xi, xx–xxi, 13, 328

list 207, 289–303
literals, concepts 4, 6, 10–11, 14–15, 27–9,

55–6, 115–16
Little, Andy 326
llewelly 336
location 122–3, 217–18, 238–9
see also iterators

logged messages 69–72
Logo xx–xxi
long double type, concepts 35
long int, concepts 34–5
loops
see also control flow; do–while. . .; for. . .;
while. . .

concepts 13, 19, 20–2, 26–9, 30, 41–2,
48–60, 141–2, 290–1, 313–15

names 19
structured programming 313–15
undefined behavior 50, 197–8

Low, Glen 327–8
low-level languages xiii–xiv
see also assembler

macros 307, 328
‘magic numbers’, numeric literals 55–6, 151
main 4, 6, 7, 10–11, 13–14, 20–2, 24–31, 43,

163–4, 185–91, 213–18, 221–3, 252,
290–303

make move 221–8
make pair 298–9
make piece 231–47
malloc xvi, 199–200, 324
manipulators 264
map 260–1, 289–303
Marshall, Chris 331–2
masking operations 39
mathematical functions, graphs 283–6
math function 286
max 110–31

iterators 123–4
specialization 119–20, 130

MDS see MinGW Developer Studio
member functions
see also constructors; destructors; functions
class definitions 174–8
concepts 25–7, 75, 97, 154, 156–69, 174–8,

185–91
implementation 160, 167–9
special member functions 157–67, 178
types 156–8, 178

memory 24, 103–5, 147–8, 199–210, 232–3,
234–47, 326–7, 337

INDEX 361

dynamic instances 199–210
sequence points 104–5

messages see member functions
metaprogramming xiv, xx
methods see member functions
Microsoft Windows xix, xxiii, xxiv, xxv, 1, 8, 125
MinGW xxiv

Developer Studio (MDS) xxiv, 1–11, 61
minimally-thorough testing 22–3, 213–14
Modula xxi, 328
Moses, Brooks 337–8
mouse

error/warning messages 20
one-button mouse xxiii
tool-tips 2

move 213–28, 235–47
MP3 319–20
multidimensional arrays 337–8
multimap 289–303
multiple sequence points 105
multiplication operator (*) 14–15, 19–21, 37–8,

280–1
multiset 289–303
Musser, Dave 289
mutable 321

names
alternative spellings 312
C++ 3–4, 7, 9–10, 18–19, 56, 61–73, 76,

83–6, 120, 133–46, 289, 312–13
case styles 19, 312–13
file names 3–4, 7, 9–10
fully elaborated names 19, 62–3, 65–7, 178,

230–1
functions 76, 77–8, 83–6, 94, 96–7
Hungarian notation 312
special names 141–6
STL weaknesses 289
styles 19, 56, 76, 312–13
template type parameters 120
unnamed parameters 93–4, 98
user-defined types 17, 25, 40, 41–3, 60,

133–46
valid names 18–19

namespace 62–73
namespaces

aliases 66–7
concepts 61–73, 83–6, 96–7, 178, 229–48
declarations 63–7, 69–72, 96–7, 230–1
directives 63–7, 69–72, 310–11
example code 62–3, 64–7, 96–7, 230–48
fgw 65, 66

form 62–3
scope concepts 62–73, 83–4, 178, 230–48, 277
std 65, 66
unnamed namespaces 229–48
using 63–7, 69–70, 71–2, 228, 310–11,

334–5
narrow character sets, concepts 61, 71, 73
natural numbers, binary representation 16–17
need-to-know basis, learning 76, 313
negative integers, concepts 16–17
nesting, if statement 44–5
new 200–6, 277, 321, 324
New Project 2–3, 7–8, 24, 91–2, 152, 163,

184–5, 214, 234
newline character (n) 21, 27, 33–4, 43, 106–7
newsgroups 321
next 186–91, 203–6
not (!) boolean operator 38, 121, 312
not eq (!=) comparison operator 38, 40, 51–6,

120–2, 312
NULL 199, 208
null pointers 199
see also pointers

Number-Sorting program, program samples 53–6
numerator 277–81
numeric 295
numeric literals, ‘magic numbers’ 55–6, 151
numerical values, string conversions 257–61

object code 3–5, 8
see also compiling; source code

object term 15
object types
see also entity types; types
concepts 14–15, 179–91

object-based programming, concepts xiv
object-oriented programming (OOP) xiv, xx, 199,

323–39
concepts xxi, 199

objects 4–7, 10–11, 13–40, 67–71, 75, 101–2,
148–78, 179, 315–19, 338–9
console objects 4–7, 10–11, 13–14, 67–71
creation 15, 148–50
‘dormant’ object idea 338–9
global variables 101–2
member functions 75, 156–69

off board 236–47
ofstream 252–61, 263, 285, 318–20
old code see legacy code
one-button mouse, benefits xxiii
one’s complement 16–17
OOP see object-oriented programming

362 INDEX

opaque type names, typedef 133–4
open 253–61
operating systems xix, xxiii, xxiv, xxv, 1
operator++ 141–6, 206–7
operator+ 287
operator<< 141–6, 164–8, 182, 187–91,

279–81
operator 141–6, 157–78, 185–91, 204–6,

209–10, 277–87, 293–303, 321
operator>> 166–7, 182, 185–91, 204–6
operator() 283–7
operator[] 277, 286, 293–4, 302
operator= 157–67, 191, 235, 286–7
operator== 171–2, 287
operator new 200–6, 277, 321, 324
operator overloading see overloading operators
operator-> 206–7, 209–10, 286–7
operator-- 206–7
operators
see also entries at start of index; overloading. . .
alternative spellings 312
concepts xiv, xvi, 13–14, 19–40, 277–87, 312
conversions 37–8, 281–7
streaming operators 4, 6, 39, 77–8, 195–6,

251–61, 279–81
wide range xiv, 19–21, 37–40, 277

or boolean operator 38, 105, 312
order of evaluation

concepts 101–2, 105–7
guidelines 106–7

or eq compound assignment operator 39
OS X, Apple Mac xxiii, 1, 9
ostream 77–81, 86–93, 100, 134, 137–9,

142–6, 148–50, 154–64, 185–91, 213–14,
220–1, 224–5, 251–61, 279–81, 290–303,
308–9, 318

ostringstream 257–8
output mechanisms xix, xx, 4, 6, 7, 11, 14, 19–22,

39, 67–70, 86–93, 143–4, 153–5, 164–7,
185–91, 251–61, 296–303
fundamentals 251–61

overloading functions
concepts 78, 83–6, 88–93, 97–8, 116–17,

120–2, 127–31, 156–67
example code 83–6, 97–8, 116–17, 120–2,

127–8
function templates 116–17, 120–2, 127–31
parameters 83–4

overloading operators
arithmetic types 277–81
concepts xvi, 21, 62, 78, 83–6, 88–93, 140–6,

153–5, 164–7, 204–6, 209–10, 258,

277–87, 293–303, 321, 324–5, 330, 332,
335–6, 338

example code 141–3, 153–5, 277–87
fundamentals 78, 83–6, 140–6, 277–87
input operator 143–4, 153–5, 164–7
operator() 283–7
problems 140–1, 286–7
special names 141–6
user-defined types 140–6, 153–5

overview, C++ xiii–xxi, xxiii–xxvi, 1, 321

pack 183–4, 203–6
parameters 75–98, 113–31, 333–4

argument conversions 79–80, 281–3
function templates 113–31
functions 75–98
fundamentals 75
overloading functions 83–4
unnamed parameters 93–4, 98

partial sort 290–303
Pascal xix–xx, 41, 43, 45, 75, 324–5, 327–8, 330,

331–2, 334–6, 338
see also Delphi
C++ contrasts xix–xx, 41, 43, 45, 75
critique xix–xx, 41, 43, 45

pass-by-reference, functions 40, 85–6, 198–9
pass-by-value, functions 40, 85–6, 191
pawn 238–47
Perl 131, 334, 336
persistence, concepts 251, 258–61
piece 234–47
piece ptr 241–7
Pinto, Marcelo 332
PL/1 xxi, 323–4, 326
playing-cards example

class concepts 148, 155–91, 200–6
entity types 179–91, 200–6

Playpen program
color names 26–7, 56, 70–2, 81–98
plotting modes 70–2, 81, 88–95
program samples 7–11, 24–7, 56, 70–2,

81–98, 172–4
playpen.cpp xxv
playpen.h 8–11, 24–7
plot 284–5
plot square 88–95
plotting modes, Playpen program 70–2, 81, 88–95
pointers xvi, xviii, 17–18, 35, 40, 97, 136–7,

149–50, 169–74, 193–210, 232–3, 241–7,
277–87
see also & (address-of operator); derivative

types

INDEX 363

arrays 198–200, 208–9, 244–5, 301–2
complexity 193
concepts 17–18, 35, 40, 169–74, 193–210,

277–87
dangers 195–6
dynamic instances 200–10
example code 194–210
fundamentals 169–70, 193–210
null pointers 199
smart pointers xvi, 206–10, 232–3, 277–87

policy arguments, functions 76–7
polymorphism xvi, 211–28, 229–48, 311–12,

333, 338
see also inheritance
complexity 222–3
concepts 211–28, 229–48, 311–12
fundamentals 211, 221–8, 311–12
switching off 311–12

Portable Network Graphics xxv
position 183–91, 203–6, 212–28, 229–47
preloading, containers 299–303
printf xvi, 100, 334
priority queue 289–303
private: 148–64, 175–6, 180–91, 203–6,

212–28, 232–47, 268–72, 278–87, 296–7,
306–11, 317–21, 337

problem-solving, language selection 330
procedural approaches xiv, xxi, 13, 41, 75, 82,

323, 330, 333
procedures
see also void
C++ 82

programmers xi, xiv–xxi, 305–21, 323–39
see also source code
C++ experiences xiv, 323–39
different backgrounds xiv–xxi, 323–39
egos xvi
industrial-strength code xvi
learning xiii–xxi, xxiii–xxvi, 1, 76, 305–21,

323–39
legacy code 305–21
qualities xiv, xxi, 339
structured programming 313–15
teamwork xvi
third-party programmers 7–11, 62

programs
see also projects
chess-piece type example 234–47
chess-pieces examples 211–28, 229–47,

258–61, 268–72
deck-of-cards example 182–91, 193–210
‘Hello World’ program 1–7, 13, 106

ISBNs example 148–55, 179–80
legacy code 305–21
minimally-thorough testing 22–3, 213–14
Number-Sorting program 53–6
playing-cards example 148, 155–91, 200–6
Playpen program 7–11, 24–7, 56, 70–2,

81–98, 172–4
release versions 5–6
samples 1–11, 13–14, 20–2, 24–31, 42–60,

80–1, 84–6, 110–31, 161–78
using int project 20–2

projects
see also programs
New Project 2–3, 7–8, 24, 91–2, 152, 163,

184–5, 214, 234
program samples 1–11, 13–14, 20–2, 24–31
release versions 5–6
settings 5–6, 7–9, 10–11, 24

Prolog xxi, 323, 328
protected 149, 175–6, 321
pseudocode 44–60
public: 148–64, 175–6, 180–91, 203–6,

212–28, 232–47, 268–72, 278–87, 296–7,
306–11, 317–20

pure functions, concepts 82, 103–4
put 68–70
Python xiv, xviii–xix, 5, 13, 18, 40, 43, 52, 109,

131, 199–200

qsort 135
quadratic 284–5, 315–16
queen 241–7

RAII 324–8, 338
random-access iterators
see also iterators
concepts 123, 289

random shuffle 184, 200–6
range error 186–91, 205–6
rank 212–28, 229–47
rational 277–83
rational.h 277–81
raw pointers
see also pointers
concepts 193–6, 207

read 124–31, 181–2, 204–6
read-only files 252–3
see also file access

Read First.txt 1
realloc xvi
RealPlayer 319–20
recursion uses 41, 48, 51

364 INDEX

redundant-parentheses rule 309
refactoring benefits, source code 315–19
reference operator (&) 36, 40, 78, 85–93, 333
reference parameters 333
reference sections 32–40, 58–60, 71–3, 96–8,

129–31, 145–6, 174–8, 191, 208–10, 227–8,
248, 262–4, 275–6

reference type 17–18
references xvii–xviii, 17–18, 36–40, 78, 85–6,

149–50, 157–8, 167, 333
concepts 17–18, 36–40, 78, 85, 157–8, 167

release versions, projects 5–6
remainder operator 37–8
repetitions xx–xxi
report 127
resetting, istream/ostream objects 86–93
rethrowing benefits 274
return 14, 45–7, 53–6, 58–9, 79–81, 84–6,

88–9, 96–8, 100–3, 109–10, 116–31, 150–5,
160, 165–7, 181–2, 186–91, 205–6, 217–28,
230, 240–7, 259–60, 275, 292–303, 313–19

return by reference/by value 40
reverse 189–90, 290–303
reverse iterator 290–303
right 257–8, 264
right justification, output fields 257–8, 264
right-shift bitwise operator (>>) 39
Ritchie, Dennis 305
rook 232–47
root mean square 31
run 330

scale 92–3
scanf xvi
Scheme xx, 13
Schmidt, Greg 335
scope

categories 72, 277
concepts 62–73, 83–4, 178, 230–48, 277
operator (::) 4, 6–7, 65–6, 178, 326

search order, libraries 11
second languages xiii–xv, xxiv–xxv, 323–4
select from menu 230
semicolon usage, concepts 4, 6–7, 20–2, 44, 78
send to member function 155–67, 181–91,

198–9, 200–6
separate compilation, source code 94–5, 161–4
sequence containers 301–2
see also containers

sequence points
comma operator 104–5, 107
concepts 103–7

conditional operator 105
full expression 104
function call 104
guidelines 106–7
multiple sequence points 105

SESE see single-entry-and-a-single-exit-point
structures

set 289–303
setplotmode 70–2, 93
settings, projects 5–6, 7–9, 10–11, 24
setw 264, 283
shared resources, concepts 24
shared nptr 206
shift-left/right operations 17, 19–21, 39
short int, concepts 34–5, 37–8
sign-and-magnitude 16–17
signed char, concepts 32–3, 37, 73, 100–1,

138
signed integer values, binary representation 17,

32–3, 34–5, 39
simple classes
see also class concepts
concepts 147–78, 179–91

simple statements, concepts 43–4
single-entry-and-a-single-exit-point structures

(SESE) 313–15
sink 255–6
sizeof 40, 99–101, 300
size t 111, 133–4, 145–6
SmallTalk xxi, 147, 328
smart pointers xvi, 206–10, 232–3, 277–87
see also pointers
concepts 206–10, 232–3, 277–87

SNOBOL xxi
Sobczak, Maciej 325
sort 53–6, 75–6, 113, 119–20, 124–5, 206,

290–303
sorting 53–6, 75–7, 113, 119–20, 124–5, 135,

206, 290–303
source code
see also entries at start of index; programmers
behaviors 99–102
boilerplate code 24, 235
code folding 4–5
comments (//) xxvi, 6, 13–14, 313
compiling xix–xxi, xxiv, 1, 5–11, 63–7, 94–5,

99–102, 161–4, 248, 335
concepts xxv, xxvi, 3–11, 13–40, 94–5,

99–102, 305–21
correct code 22–3, 305–21
file creation 3–11
indentation levels xviii–xix, 43–4

INDEX 365

industrial-strength code xvi
interpreted source code xix, xxi, 5, 79
layout and consistency 305–21
legacy code 305–21
minimally-thorough testing 22–3, 213–14
names 3–4, 7, 9–10, 18–19, 56, 312–13
order of evaluation 101–2, 105–7
program samples 1–11, 13–14, 20–2, 24–31,

42–60, 80–1, 84–6, 110–31, 161–78
refactoring benefits 315–19
separate compilation 94–5, 161–4
sequence points 103–7
sources xxv, 94–5, 305–21
structured programming 313–15
syntax 6–11, 13–14, 20–3, 43–60, 62–3,

76–82, 96–8, 148–78, 194–210, 305–21
whitespace 305–6

source files, concepts 161
sources, source code xxv, 94–5, 305–21
special member functions
see also member functions
concepts 157–67, 178

special names, operator overloading 141–6
special representations, characters 33–4
specialization

function templates 118–20, 130
max 119–20, 130

specifications, exceptions 275, 276
‘Spuds’ 332–3
square root 31
srand 187–91
sstream 255–61, 263
stable sort 290–303
stack 289–303
Standard Library xi, xiv, xxiii, 6–7, 10–11, 18–19,

41–3, 60, 61–73, 75–6, 109, 124–31, 138–9,
210, 230–1, 245–6, 260, 289–303, 336–7,
338
see also libraries; std. . .
benefits 61, 289–303
concepts xiv, xxiii, 6–7, 10–11, 18–19, 41–3,

60, 61–73, 75–6, 109, 124–5, 138–9, 210,
230–1, 260, 289–303

function templates 109, 124–31, 290–303
functions 75–6, 109, 124–31
user-defined types 41–3, 60

Standard Template Library (STL)
see also std. . .
concepts 289–303
data structures 289–90
demonstration problems 290–9
function templates 290

names 289
weaknesses 289

state concepts 14
statement terminator (;) 4, 6–7
static 72, 135–6, 168–9, 176–8, 183–91,

215–16, 231, 235
static binding xxi
statically typed languages 109, 193
std, namespaces 65, 66
std::abs 220–1
std::accumulate 290–303
std::auto ptr<> 206–7, 210, 232–3, 241–7,

271–2, 301–2, 326, 329
std::basic string 73, 289–303
std::bitset 32
std::boolalpha 152–5
std::cerr 22–7, 30–1, 43, 53, 69–72, 86–93,

100, 110–31, 145, 153–6, 164, 187–91,
200–6, 221, 265–79

std::cin 6–7, 11, 14, 27–30, 42–3, 46, 53–6,
58–9, 67–8, 71–2, 75–81, 86–93, 110–31,
134, 166–7, 171–2, 252–61
concepts 67–8, 71–2, 75–81, 86–93, 125,

166–7, 252–61
example code 67–8, 125, 252–61

std::clog 69–72, 181–91, 204–6, 238–47
std::cout 4–5, 6–7, 11, 13–14, 19–29, 38,

42, 43, 51–9, 63–4, 66, 68–70, 71–2, 78, 81,
86–93, 99–100, 106, 110–31, 126–7, 134,
137–9, 150–5, 164, 194–210, 214–19, 224,
229–47, 251–61, 278–81, 296–303, 309–10
concepts 68–70, 71–2, 78, 86–93, 251–61
example code 68–70, 106, 251–61
put 68–70

std::deque 207, 289–303
std::endl 264
std::exception 22–7, 80–1
std::getline 67–8, 253–4, 256–7
std::greater 76–7, 295–6
std::hex 264
std::ios::app 254–5
std::ios::binary 253–4
std::istream 77–81, 86–93, 99–102, 134,

154–5, 181–2, 204–6, 270–2, 279–81,
290–303

std::left 257–8, 264
stdlib 199
std::list 207, 289–303
std::make pair 298–9
std::map 260–1, 289–303
std::multimap 289–303
std::multiset 289–303

366 INDEX

std::ofstream 252–61, 263, 285, 318–20
std::ostream 77–81, 86–93, 100, 134, 137–9,

142–6, 148–50, 154–64, 185–91, 213–14,
220–1, 224–5, 279–81, 290–303, 308–9,
318

std::partial sort 290–303
std::priority queue 289–303
std::random shuffle 184
std::range error 186–91, 205–6
std::reverse 189–90, 290–303
std::right 257–8, 264
std::set 289–303
std::setw 264, 283
std::sort 53–6, 75–6, 113, 119–20, 124–5,

206, 290–303
std::sqrt 31, 58
std::srand 187–91
std::stable sort 290–303
std::stack 289–303
std::string 41–3, 57, 58, 60, 61, 67–8, 73,

85–6, 112–13, 116–17, 119–20, 125–6, 130,
143–4, 148–55, 207, 236–47, 252, 255–6,
260, 263, 289–303, 327

std::stringstream 255–61
std::swap 334–5
std::system 319
std::terminate 276
std::toupper 229–47
std::transform 119
std::unexpected 276
std::vector xvi, 42–3, 53–6, 58–9, 60,

69–71, 73, 84–6, 109–31, 189, 198–9,
201–7, 289–303, 329
see also templates

std::wcerr 71
std::wcin 71
std::wclog 71–2
std::wcout 71
std::wstring 289–303
Stepanov, Alex 289
STL see Standard Template Library
strcmp 171–2
streaming operators, concepts 4, 6, 39, 77–8,

195–6, 251–61, 279–81
streams 330–1
streams
see also file access; input. . .; output. . .
concepts 251–64, 279–81, 290–303, 330–1
hierarchy 251–4
string streams 255–61

stretching exercises 31, 57–8, 128–9, 145,
190–1, 226–7, 245–7, 258, 262, 286

string 41–3, 57, 58, 60, 61, 67–8, 73, 85–6,
112–13, 116–17, 119–20, 125–6, 130,
143–4, 148–55, 207, 236–47, 252, 255–6,
260, 263, 289–303, 327, 335

string conversions, numerical values 257–61
string literal (""), concepts 4, 6–7, 14–15,

115–16
string streams, concepts 255–61
stringstream 255–61, 263
Stroustrup, Bjarne xiii, xviii, 131, 135, 305, 331,

336, 338
strstream 255–61, 263–4
struct xviii, 136, 147, 148, 156, 174–5,

212–28, 235–47, 306, 309–10, 337
see also class concepts
concepts 147, 148, 156, 174–5, 212–13, 217,

309–10
uses 147, 148, 156, 174–5, 212–13

structured programming 313–15
styles, names 19, 56, 76
subexpressions, order of evaluation 101–2, 105–7
subtraction operator, (-) 14, 19–21, 37–8, 123
subtypes

concepts 211–28, 229–48
fundamentals 211, 229
runtime selection 229–31

suit 167–8
Sutter, Herb 324
swap 334–5
switch statement
see also decisions
concepts 43, 45–7, 52–3, 58–9, 128, 229–30,

233–4, 241–3, 313
example code 46, 229–30, 233–4, 241–3
form 45–7

syntax 6–11, 13–14, 20–3, 43–60, 62–3,
76–82, 96–8, 148–78, 194–210, 305–21
see also entries at start of index

system 319

Tcl 325
teamwork, programmers xvi
Technical Report 289
template 113–31
templates
see also function templates; std::vector
concepts xiv, 42–3, 60, 73, 109–31, 289–303,

326–8, 329–30, 332, 334, 336–9
metaprogramming xiv
STL 289–303
writing 42, 109–31

temporaries 15

INDEX 367

terminate 276
termination expression, for loop 50–3
testcard.cpp 163–4
test chess.cpp 214–28
testing

minimally-thorough testing 22–3, 213–14
user-defined types 152–4, 213–14

testrational.cpp 278
third-party header files 7–11, 62
third-party libraries 62
this 160–1, 170–1, 176
throw 22–9, 79, 165–7, 203–6, 266–76
see also exceptions
fundamentals 22–9, 266–76
rethrowing benefits 274

time t 134, 146
tool-tips, mouse 2
tools xxiv, 1
toupper 229–47
transform 119, 235–47
true value, bool types 13, 16, 19–22, 26, 32–3
try 22–31, 43, 62, 78, 80–1, 84–93, 110–31,

152, 155–6, 164, 187–91, 200–6, 213–14,
266–76, 278–81, 285, 316–19
see also exceptions
fundamentals 21–31, 266–76

tutorial directory 7
two’s complement 16–17
type safety, input/output mechanisms xvi
typedef 111–13, 133–46, 175–6, 236–47,

298–303, 306–7, 328
see also user-defined types
concepts 111–12, 133–46, 175–6, 306–7
uses 111–12, 133–6, 145–6, 175–6, 236–7,

298–303, 306–7
typeid 138–40
typeinfo 139–40
typename 113–31
see also function templates

types
see also fundamental types
behaviors 15, 25, 99–107, 147–50
class concepts 147–8
concepts 11, 13–40, 41–3, 111–13, 133–46,

147–8, 328
derivative types 17–18, 35–7
fundamentals 14–15, 32–40, 147–8
libraries 41–3, 327

unary operator (-) 37–8, 122
undefined behavior

concepts 50, 101–2, 197–9

dangers 103, 199
loops 50, 197–8

underscores () 18–19
unexpected 276
Unicode 32–3, 61
union 136, 147, 161, 174–5
see also class concepts

UNIX 1, 125
unnamed namespaces
see also namespaces
concepts 229–48
example code 231–3, 236–47

unnamed parameters, functions 93–4, 98
unsigned char, concepts 32–3, 37, 73, 100–1,

133–4, 145–6, 212–28, 234–47
unsigned int, concepts 34–5, 73, 125–6,

133–5, 166–7
unsigned long int, concepts 34–5, 133–4
unsigned short int, concepts 34–5, 37–8
unspecified behavior, concepts 101–2
Usenet xxv
user-defined types
see also class concepts; enum; typedef
concepts 17, 25, 40, 41–3, 60, 133–46,

147–91, 211–28
entity types 147–8, 155, 179–91, 193–210,

245–7
fundamental types 41, 140–1
headers 41–2
operator overloading 140–6, 153–5
simple classes 147–78, 179–91
testing 152–4, 213–14
value types 147–78, 179–80

using 63–7, 69–70, 71–2, 228, 310–11,
334–5

using int project 20–2

valid names 18–19
value parameters 333
value term 15
value types
see also types
class concepts 147–78, 179–80, 191, 301–2
concepts 14–15, 147–78, 179–80, 191,

301–2
design and implementation 148–78
example code 148–78
ISBNs example 148–55, 179–80
playing-cards example 148, 155–91
testing 152–4

variables see objects
VB6.0 326

368 INDEX

vector xvi, 42–3, 53–6, 58–9, 60, 69–71, 73,
84–6, 109–31, 189, 198–9, 201–6, 206–7,
289–303, 329, 335

virtual 213–28, 232–47, 268–72, 310–11
virtual machines xix
Visual Basic xix, 41, 326
Visual C++ xix
void 51, 64–5, 76, 82, 87–91, 95, 96–8, 135–7,

151–5, 180–91, 195–6, 203–6, 208–10,
222–3, 232, 246–7, 275, 283–4, 298–9,
310–11, 318–20

volatile types 17–18, 36–7, 135–6, 328–9
see also derivative. . .
concepts 17–18, 36–7, 135–6

wchar t xvi, 27–9, 32–4, 61, 73, 146, 262,
289–303

WG21 xiv
what 121–2, 224–8, 232–47
what are you 222–8
where 213–28
while loop xviii, 13–14, 20–2, 26–9, 30, 43,

48–60, 67, 110–12, 126–7, 256–8, 290–3,
313–15
concepts 48–60, 67, 110–12, 126–7
dangers 49–50

example code 49–50, 110–12, 126–7,
290–3

form 49
whitespace, source code 305–6
wide character sets, concepts 61, 71, 73
Williams, Anthony 336
Winch, Emily 333–4
with 334
wordfile 290–3
words 290–3
writing

file access 251–61
function templates 109–31
functions 75–98
templates 42, 109–31

wstring 289–303

X Window System xxv, 9
X11R6 library 9–10
xor bitwise operator 39
xor eq compound assignment operator 39

yarn 137–46
You Can Do It! (author) xi, xv, xxiii, 11, 40, 70,

172, 190, 193
Young, Chris 328–9

