I e HALL

FUNDAMENTALS

i THIRD EDITION

» The hands-on SQL guide for every
business and IT professional... &
no SQL experience needed

» Master SQL for the world's #1
enterprise and desktop databases:
Oracle® and Microsoft® Access’

» Write accurate, efficient queries
that easy to verify, modify,
and .

san:f)la datai:es anli code
JOHN/J*PATRICK

SGOIL

FUNDAMENTALS
Third Edition

This page intentionally left blank

SGOIL

FUNDAMENTALS
Third Edition

John J. Patrick

L &
e
L X

PRENTICE
HALL
Upper Saddle River, NJ « Boston « Indianapolis « San Francisco
New York « Toronto « Montreal « London « Munich « Paris « Madrid
Capetown « Sydney « Tokyo » Singapore « Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph
Library of Congress Cataloging-in-Publication Data

Patrick, John J.

SQL fundamentals / John J. Patrick. — 3rd ed.

p. cm.

Includes indexes.

ISBN 978-0-13-712602-6 (pbk. : alk. paper) 1. SQL (Computer program
language) 2. Oracle. 3. Microsoft Access.
I. Title.

QAT76.73.567P38 2008

005.75'65—dc22

2008024745

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax: (617) 671-3447

ISBN-13: 978-0-13-712602-6

ISBN-10: 0-13-712602-6

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, August 2008

Dedicated to four wonderful teachers

Seymour Hayden, who taught me mathematics
Stanley Sultan, who taught me Irish literature
Jim Seibolt, who taught me computers

Scot Stoney, who taught me databases

and to all my students.

This page intentionally left blank

CONTENTS AT A GLANCE

Preface XXV
1 Storing InformationinTables 1
2 Getting Information fromaTable 31
3 Compound Conditions in the Where Clause. 83
4 SavingYourResults 133
5 The Data Dictionary and Other Oracle Topics 171
6 CreatingYour OwnTables. 209
7 Formats, Sequences, and Indexes 245
8 Datalntegrity 281
9 RowFunctions. 321

10 UsingRow Functions 361

11 Summarizing Data 399

12 Controlling the Level of Summarization 435

13 InnerlJoins 473

T4 OuterJoins. . ..o 517

15 UnionandUnion All 555

16 Cross Joins, Self Joins, and CrossTab Queries 597

17 Combining Tables in a Production Database 653

18 If-Then-Else, Parameter Queries, and Subqueries. 673

19 The Multiuser Environment o 721

20 TheDesign of SQL. i 739
A Oracle Is Free: How to Get Your Copy . ..o oo 751
B Quick StartwithOracle 765
C QuickStartwith Access i 771
D Diagram of the Lunches Database. 783

Index. 787

vii

This page intentionally left blank

CONTENTS

PREFACE XXV
How the Topics Are Presented xxvi
The Companion Web Site xxvii
Acknowledgments xxvii

Chapter 1
STORING INFORMATION IN TABLES . . .+« 4 v v vttt e i e e e e a s 1
Introduction 3
1-1 Whatis SQL2 3
1-2 What is a relational database and why would you use one? 4
1-3 Why learn SQL2 6
1-4 What is in this book? 8
The Parts of a Table 9
1-5 Data is stored in tables 10
1-6 A row represents an object and the information aboutit 11
1-7 A column represents one type of information 12
1-8 A cell is the smallest part of a table 14
1-9 Each cell should express just one thing 15
1-10 Primary key columns identify each row 16
1-11 Most tables are tall and thin 18

ix

x CONTENTS

Examples of Tables 19
1-12 An example of a table in Oracle and Access 19
1-13 Some design decisions in the 1_employees table 22
1-14 The Lunches database 23

Key Points 30

Chapter 2
GETTING INFORMATION FROM A TABLE .« v v v v v v v e e e e e e 31
The Select Statement 33
2-1 The goal: Get a few columns and rows from a table 33
2-2 Overview of the select statement 34
The Select Clause 37
2-3 Overview of the select clause 37
2-4 Use a select clause to get a list of some of the columns 38
2-5 Use a select clause to get a list of all of the columns 41
2-6 Use a select clause to get the distinct values in one column 44
2-7 Use a select clause to get the distinct values in two columns 48
The Where Clause 50
2-8 Overview of the where clause 50
2-9 Using an Equal condition in the where clause 52
2-10 Using a Less Than condition in the where clause 56
2-11 Using a Not Equal condition in the where clause 58
2-12 Using the in condition in the where clause 61
2-13 Using the between condition in the where clause 63
2-14 Using the 1ike condition in the where clause 66
2-15 Using the is nu1l condition in the where clause 69
The Order By Clause 71
2-16 Overview of the order by clause 71
2-17 Sorting the rows by one column in ascending order 73
2-18 Sorting the rows by several columns in ascending order 75
2-19 Sorting the rows by several columns in various orders 77
2-20 The whole process so far 79
Key Points 80

CONTENTS

Chapter 3

CoMPOUND CONDITIONS IN THE WHERE CLAUSE

Compound Conditions in the Where Clause 85
3-1 Using a compound condition in the where clause 85
3-2 Using not with in, between, like, and is null 88
3-3 The standard form of a complex condition in the where clause
3-4 A common mistake 92
Constant Valves 95
3-5 Using a constant value in the select clause 96
3-6 Using a table of constants 98
Punctuation Matters 102
3-7 Punctuation you need to know right now 102
3-8 Punctuation reference section 106
Case Sensitivity 113
3-9 Case sensitivity in Oracle 113
3-10 The debate about case sensitivity in SQL 117
3-11 You have a choice 117

3-12 You can turn off case sensitivity in the Oracle SQL
Command Line environment 117

3-13 Case sensitivity in Access 118
Three-Valued Logic 120

3-14 SQL uses three-valued logic 120
Error Messages 122

3-15 Error messages are often wrong 122
Some Exercises Solved for You 124

3-16 Exercise 1 124

3-17 Exercise 2 127

3-18 Exercise 3 129
Key Points 131

Chapter 4

SAVING YOUR RESULTS. . & & v v v v v e e e e e e e e e e e e e e e

Saving Your Results in a New Table or View 135

4-1 Create a new table from the result of a select statement 135
139

4-2 Creating a new view from the results of a select statement

xi

90

xii CONTENTS

4-3 Similarities between tables and views 142
4-4 Differences between tables and views 142
4-5 Deleting a table 143
4-6 Deleting a view 145
4-7 One view can be built on top of another view 146
4-8 Preventative delete 149
Modifying the Data in a Table with SQL 151
49 Adding one new row to a table 151
4-10 Adding many new rows to a table 154
4-11 Changing data in the rows already in a table 157
4-12 Deleting rows from a table 159
Modifying the Data in a Table with the GUI 161
4-13 Using the Oracle GUI to change data in a table 161
4-14 Using the Access GUI to change the data in a table 164
Restrictions on Modifying the Data in a Table 167
4-15 Constraints with insert, update, and delete 167
4-16 Security restrictions 169
Key Points 170

Chapter 5
THE DATA DICTIONARY AND OTHER ORACLE TOPICS 171
Commit, Rollback, and Transactions 173
5-1 The commit and rollback commands 173
52 The Autocommit option 174
5-3 Transactions 175
Modifying Data through a View 179
5-4 Changing data through a view 180
5-5 Example of changing data through a view 181
5-6 Views using With Check Option 189
The SQL Commands Page in Oracle 192
5-7 Overview of the SQL Commands page 192
5-8 The Autocommit option 194
59 The Explain option 194
Using the Oracle Data Dictionary — Part 1 195
5-10 Overview of the Data Dictionary 195

CONTENTS xiii
5-11 How to find the names of all the tables 197
5-12 How to find the names of all the views 199
5-13 How to find the select statement that defines a view 200
5-14 How to find the names of the columns in a table or view 201
5-15 How to find the primary key of a table 203
Key Points 207

Chapter 6
CREATING YOUR OWN TABLES . . v v v v v v v v v e e e e e e e s 209
Creating Tables 211
6-1 The create table command 211
6-2 Datatypes in Oracle and Access 212
6-3 Text datatypes 217
6-4 Numeric datatypes 222
6-5 Date/time datatypes 222
6-6 Other datatypes 222
6-7 Putting data into a new table 223
6-8 Creating the 1_employees table in Oracle 224
Changing Tables 226
6-9 Adding a primary key to a table 226
6-10 Changing the primary key of a table 228
6-11 Adding a new column to a table 229
6-12 Expanding the length of a column 231
6-13 Deleting a column from a table 232
6-14 Making other changes to tables 234
Tables with Duplicate Rows 236
6-15 The problem with duplicate rows 237
6-16 How to eliminate duplicate rows 239
6-17 How to distinguish between duplicate rows 240
Key Points 243

Chapter 7
FORMATS, SEQUENCES, AND INDEXES . . « « « v « v v v v v v v .. 245
Formats 247
7-1 Formats of dates 247

o
Xiv

Chapter 8

DATA INTEGRITY

7-2 Displaying formatted dates 249
7-3 Entering formatted dates 252
7-4 Other formats in Oracle 254
7-5 Formats in Access 254
Sequences 257
7-6 Creating a sequence in Oracle 257
7-7 Using sequences in Oracle 258
7-8 Sequences in Access 260
Indexes 262
79 Creating an index 263
7-10 The Optimizer 264
7-11 An example of how an index works 264
Using the Oracle Data Dictionary — Part2 266
7-12 How to find information about the datatype of a column
7-13 How to find information about sequences 269
7-14 How to find information about indexes 271
7-15 How to find information about all your database objects
7-16 How to use the index of Data Dictionary tables 276

7-17 How to use the index of Data Dictionary columns 277

An Exercise Solved for You 278
7-18 Create a table of the days you want to celebrate 278
Key Points 280

Constraints on One Table 283

8-1 A constraint keeps the data consistent 283

8-2 check constraints 283

8-3 unique constraints 285

8-4 not null constraints 287

8-5 primary key constraints 288

8-6 Restrictions on the datatype and length of fields 289
Referential Integrity 289

8-7 The concept of RI 290

8-8 An example of RI 291

CONTENTS

266

274

CONTENTS

8-9 Inserts and updates to the data table prevented by RI 293
8-10 Inserts and updates to the data table allowed by RI 294
8-11 Updates and deletes to the lookup table prevented by RI
8-12 How to delete a code from the lookup table 296
8-13 How to change a code in the lookup table 298
8-14 Rl as a relationship between the tables 299
8-15 Setting up Rl in the Access GUI 300

The Delete Options and Update Options of RI 303

8-16 The three options for deletes and updates to the lookup table

8-17 The delete rule: set nu11 304
8-18 The delete rule: cascade 306
8-19 The update rule: cascade 308
Variations of Referential Integrity 311
8-20 The two meanings of primary key ~ 311
8-21 Using two or more columns for the primary key 313
8-22 The lookup and data tables can be the same table 315
How to Code Constraints in a Create Table Statement 316
8-23 Constraints are often coded in the create table statement

Key Points 319

Chapter 9

ROW FUNGTIONSt ottt ottt s e e e e e e e e e e a e

Introduction to Row Functions 323
9-1 Getting data directly from the beginning table 323
9-2 What is a row function? 324
9-3 An example of a row function in the select clause 327

9-4 An example of a row function used in
all the clauses of a select statement 329

9-5 Defining a row function as the first step 331
Numeric Functions 334

9-6 Functions on numbers 334

9-7 How to test a row function 336

9-8 Another way to test a numeric row function 337
Text Functions 340

9-9 Functions on text 340

XV

295

303

316

Xvi CONTENTS

9-10 Combining the first and last names 344
9-11 Separating the first and last names 346
9-12 Formatting phone numbers 348
Date Functions 350
9-13 Functions on dates 350
9-14 An example of a date function 354
9-15 Removing the time from a date 356
Key Points 359

Chapter 10
USING ROW FUNCTIONS . .« v v v v vt it e e e e e e e e e e e e e 361
Specialized Row Functions 363
10-1 Other row functions 363
10-2 Using a function to identify the user and the date 365
10-3 Using a function to change nulls to other values 366
10-4 Using a function to change the datatype 369
Using the Documentation of Row Functions 372
10-5 Using Oracle documentation 373
10-6 Using Access documentation 374
10-7 Using the Access Expression Builder to find row functions 375
Creating Patterns of Numbers and Dates 376
10-8 Create a simple pattern of numbers 377
10-9 Create a complex pattern of numbers 379
10-10 List all the days of one week 381
10-11 Create a calendar of workdays 383
10-12 How to find out how many days old you are 388
10-13 How to find the date when you will be 10,000 days old 389
10-14 Numbering the lines of a report in Oracle and Access 390

10-15 Optional: An easy way to solve an algebraic equation 393
Key Points 397

Chapter 11
SUMMARIZING DATA

Introduction to the Column Functions 401

11-1 Summarizing all the data in a column 401

CONTENTS xvii
11-2 A list of the column functions 402
Maximum and Minimum 404
11-3 Finding the maximum and minimum values 404
11-4 Using a where clause with a column function 407
11-5 Finding the rows that have the maximum or minimum value 409
Count 411
11-6 Counting rows and counting data 411
11-7 Counting to zero, part 1 413
11-8 Counting the number of distinct values in a column 415
11-9 Counting the number of distinct values in two or more columns 417
Sum and Average 420
11-10 The sum and average functions 420
11-11 The problem with nulls in addition and how to solve it 422
Other Topics 428
11-12 Nulls are not always changed to zero 428
11-13 Counting the number of nulls in a column 430
11-14 Counting distinct dates 431
Key Points 434

Chapter 12
CONTROLLING THE LEVEL OF SUMMARIZATION 435
Dividing a Table into Groups of Rows 437
12-1 Summary of groups of data within a column 437
12-2 The group by clause 438
12-3 Groups formed on two or more columns 441
12-4 Null groups when there are two or more grouping columns 444

12-5 Summarized data cannot be mixed with
nonsummarized data in the same select statement 447

12-6 Solution 1: Add more columns to the group by clause 451
12-7 Solution 2: Divide the query info two separate select statements 452
12-8 How to create a report with subtotals and a grand total 455
12-9 Counting fo zero, part2 455
12-10 Counting fo zero, part 3 457
Eliminating Some of the Summarized Data 459
12-11 The having clause 460

xviii CONTENTS

12-12 The having clause contrasted with the where clause 462
12-13 The whole process of the select statement on a single table 463

12-14 The naving clause does not add any
more power to the select statement 463

12-15 Use a where clause to eliminate raw data 466

12-16 How to apply one column function to another
column function and get around other restrictions 467

Key Points 471

Chapter 13
INNER JOINS . . . 0 o ot e e e e e e e e s s s s e e e e 473

Introduction to Joins 475

13-1 A query can use data from several tables 475

13-2 The best approach is to join two tables at a time 477
Inner Joins of Two Tables 479

13-3 A one-to-one relationship 479

13-4 A many-to-one relationship 483

13-5 A oneto-many relationship 485

13-6 A many-to-many relationship 487

13-7 Unmatched rows are dropped 489

13-8 Rows with a null in the matching column are dropped 491

13-9 Five ways to write the SQL for an inner join 493
Variations of the Join Condition 495

13-10 A join using two or more matching columns 495

13-11 A join using between to match on a range of values 497

13-12 A join using the Greater Than condition 499

13-13 A join using a row function 501

13-14 Writing the join condition in the from clause 502
Applications of Joins 504

13-15 Lookup tables 504

13-16 Combining a join and selection of data 507

13-17 Using a join with summarization 510

13-18 How to find the primary key in the Oracle Data Dictionary 512

13-19 Combining three or more tables with inner joins 513

Key Points 515

CONTENTS xix

Chapter 14
OUTER JOINS « &t ottt e 517
Introduction to Outer Joins 519
14-1 Outer joins are derived from inner joins 519
14-2 The three types of outer joins 520
14-3 The left outer join 522
14-4 The right outer join 524
14-5 The full outer join 526
14-6 An introduction fo the union 529
14-7 An example of a union of two tables with matching columns 531
Applications of Outer Joins 534
14-8 Counting to zero, part 4 534
14-9 Combining an outer join with a selection of the data 536
14-10 A full outer join in sorted order 539
14-11 Finding the defects in a pattern 542
14-12 Comparing tables using two or more columns 544
14-13 Comparing two different full outer joins 546
14-14 Problem: Left and right outer joins can be difficult to handle 549
Key Points 553

Chapter 15
UNION AND UNION ALL « & o v v v v e e e e e e e e e e e e e e e e e 555
Union Basics 557
15-1 The difference between a union and a join 557
15-2 The difference between a union and @ union a11 559
15-3 The select statements within a union 561
15-4 The order by clause in a union 563
15-5 Creating a table or view that includes a union 567
15-6 Automatic datatype conversion in a union 570
Unconventional Unions 573
15-7 A union of tables with different datatypes 574
15-8 A union of two tables with different numbers of columns 576
Applications of a Union 577
159 Determining if two tables are identical 578
15-10 Using a literal in a union to identify the source of the data 581

XX CONTENTS

15-11 Attaching messages to flag exceptions, warnings, and errors 583
15-12 Dividing data from one column into two different columns 585
15-13 Applying two functions to different parts of the data 587
15-14 A union of three or more tables 588

Set Intersection and Set Difference in Oracle 590
15-15 Set infersection 590
15-16 Set difference 592

Key Points 595

Chapter 16
CROSS JOINS, SELF JOINS, AND CROSSTAB QUERIES 597

Cross Joins 599
16-1 Definition of a cross join 599
16-2 Why are cross joins important2 601
16-3 An inner join is derived from a cross join 601
16-4 The properties of an inner join 604
16-5 An error in the join condition can appear to be a cross join 605
16-6 Using a cross join fo list all the possible combinations 608
16-7 Other layouts when there are three or more dimensions 611
16-8 Avoid a cross join of large tables 612

Self Joins 613
16-9 Why would you ever join a table with itselfe 613
16-10 An example of a self join 616
16-11 Handling a sequence of events 618
16-12 Generating the numbers from 0 to 999 621

CrossTab Queries in Access 624
16-13 CrossTab queries when there are two dimensions 624
16-14 CrossTab queries with up to four dimensions 631
16-15 CrossTab queries with more dimensions 633
16-16 CrossTab to show who is attending each lunch 638
16-17 CrossTab to show the foods for each lunch 641

CrossTab Queries in Oracle 645
16-18 CrossTab queries in Oracle — Part 1 645
16-19 CrossTab queries in Oracle — Part 2 647

Key Points 650

CONTENTS xxi

Chapter 17
COMBINING TABLES IN A PRODUCTION DATABASE. 653
Methods of Joining Three or More Tables 655
17-1 Joining several tables in a series of steps 655
17-2 Joining several tables at once in the where clause 658
17-3 Joining several tables at once in the from clause 658
Losing Information 660
17-4 Be careful with an inner join 660
17-5 Be careful with a left and right outer join 660
17-6 A full outer join preserves all the information 661
17-7 A full outer join of several tables 661
Caring about the Efficiency of Your Computer 663
17-8 Monitor your queries 663
17-9 Use the indexes 664
17-10 Select the data you want early in the process 664
17-11 Use a table to save summarized data 665
17-12 Try several ways of writing the SQL 665
Standardizing the Way That Tables Are Joined 666
17-13 The joins are part of the database design 666
17-14 A view can standardize the way tables are joined 666
17-15 Ad hoc reporting 670
Key Points 671

Chapter 18
IF-THEN-ELSE, PARAMETER QUERIES, AND SUBRUERIES ... 673

If-Then-Else Logic 675

18-1 The case and decode functions in Oracle 675

18-2 The Immediate If (iif) function in Access 680

18-3 Attaching messages to rows 683

18-4 Dividing data from one column into two different columns 685

18-5 Applying two functions to different parts of the data 687
Parameter Queries 689

18-6 A parameter query in Oracle 690

18-7 Using a parameter more than once in Oracle 693

18-8 More ways fo define parameters in Oracle 695

xxii CONTENTS

18-9 A parameter query in Access 698
18-10 A query in Access with two parameters 699
18-11 Limitations on parameters in Access 700
Subqueries 700
18-12 Introduction to subqueries 701
18-13 Subqueries that result in a list of values 703
18-14 Subqueries that result in a single value 706
18-15 Avoid using not in with nulls 708
Applications of Subqueries 710
18-16 Subqueries used in an update command 710
18-17 Finding the difference between two tables 712
18-18 Using the most currentdata 714
Older Features of Subqueries 714
18-19 Correlated subqueries 714
18-20 Subqueries using exists 716
1821 Using a subquery to write an outer join 717
18-22 Nested subqueries 718
18-23 Subqueries can be used in limited locations 719
18-24 Many subqueries can also be written as a join 719

Key Points 719

Chapter 19
THE MULTIUSER ENVIRONMENT .+t v v v vt vt e et e e e e e e e 721

Database Configurations 723
19-1 The single-user environment 723
19-2 The multiuser environment 724
19-3 The distributed environment 725
19-4 Connecting via the Internet 726
Operating in a Multiuser Environment 727
19-5 How to use a table you do notown 727
19-6 Synonyms 728
19-7 Snapshots 730
Security and Privileges 732
19-8 Identifying the user 732
19-9 Privileges 732

CONTENTS xxiii

19-10 Roles 734
19-11 Several people can use the same table at the same time 736
The Oracle Data Dictionary and the Multiuser Environment 736
19-12 ALL versus UsEr 736
19-13 How to find the tables youwant in the Data Dictionary 737
19-14 How to find the meaning of the columns 737
Key Points 738

Chapter 20
THE DESIGN OF SOIL. 0 o o ot i e e s s s e e e e e e e e e e s 739

Original SQL Design Objectives 741
20-1 Do one thing and do it well 741
20-2 Focus on information 741
20-3 Keep it simple 742
20-4 Coordinate people to work together 743

Newer Interfaces 743
20-5 Forms 744
20-6 Reports 744
20-7 Web tools 745

Typical Applications 748
20-8 Smaller databases 748
209 OLTP 748
20-10 Data warehouses 748

Key Points 749

Appendix A
ORACLE IS FREE: HOW TO GET YOUR COPY« o v v v« .. 751

Getting Current Information 752
Which Version of Oracle Should You Get? 752
System Requirements 753
Downloading Oracle from the Internet 753
Installing Oracle 754
Setup to Run the Examples in This Book 754
A-1 Create a new database user 755
A-2 Download the files to build the Oracle tables 758

xxiv CONTENTS

A-3 Build the Oracle tables by running an SQL script 758
A-4 Disaster recovery if you need it 763

How to Stop Running Oracle 763

What to Do if Oracle Slows Down Your Computer 763
A-5 The official Oracle solution 763
A6 My own solution 764

Appendix B
QUICK START WITH ORAGLE « « « « « v v v e e e et e e e e e e e 765
Log in to Your Computer 766
Go to the Database Home Page 766
Log in to the Oracle Database 768
Go to the SQL Commands Page 768
Enter and Run an SQL Query 769
Optional: Print Your Query and the Results 770
Appendix C
QUICK START WITH ACCESS. « « « v v v vt vt et et e e e e e e e e 771
You May Use Access 2007, 2003, 2002, or 2000 772
How to Start Access 772
Entering an SQL Query 774
Dealing with Errors in Access 776
Printing from Access 777
Using the Access Trust Center 778
Appendix D
DIAGRAM OF THE LUNCHES DATABASE « « « « « 4+« v v v v v .. 783

Join Conditions 784
Data Validation Rules 785

INDEX 787

PREFACE

SQL is one of the most important computer languages. It is the language
of databases. Whenever you search for the information you need in a
large library of information, the code that performs the search is likely to
be using SQL. Many applications in which you share information to
coordinate with other people also use SQL.

It is used in more than 100 software products, and new ones are being
added all the time. This book shows you how to get the most out of the
databases you use. It explains how to use SQL to solve practical prob-
lems, using the most widely used SQL products, Oracle and Microsoft
Access. Oracle and Access are both widely used, easily available, and run
on personal computers. By learning these two products in detail, you
will have all the basic skills to use any of the many products based on
SQL.

XXV

xxvi PREFACE

How the Topics Are Presented

This book uses an informal conversational style to take you on a tour of
SQL topics. Oracle and Access are placed side by side doing the same
tasks, so you can see their similarities and differences. Most topics are
illustrated with an example of SQL code. | have intentionally kept the
tables small in these examples, which makes them easy to check and
understand.

Each example of SQL code begins by setting a task. Then the SQL code
is given that performs that task. Whenever possible, I wrote the SQL
code so that it works in both Oracle and Access. However, sometimes |
could not do that, so I wrote one version of SQL code for Oracle and a
different version for Access.

To make this book easier to read, each example of SQL shows the begin-
ning and ending data table(s). This allows you to check that you under-
stand what the SQL is doing. I have tried to make these examples small
so they are easy to check.

Each example is often followed by notes to explain any subtle points
about the SQL code or the data tables.

Finally, I give you a problem to solve to check your understanding of the
topic. You can decide if you want to do these problems or not. Usually
they are fairly easy and require only a small modification of the SQL
code in the example. If you decide to do a problem, the Web site will
allow you to determine if your solution is correct.

Each example of SQL code in this book is designed to be independent
and stand on its own, without needing any changes performed in previ-
ous sections. This allows you to skip around in the book and read the
sections in any order you want. Some people may want to read the book
from beginning to end, but it is not necessary to do this.

Be sure to look at the appendices for practical tips on how to run Oracle
and Access. The database files and the code for all the examples are
available from the Web site. In several places throughout this book, I
have expressed opinions about computer technology, something that
many other technical books avoid doing. These opinions are my own and
[take full responsibility for them. [also reserve the right to change my
mind. If I do so, I will put my revised opinion, and the reasons that have
caused me to change my thinking, on the Web site for this book.

PREFACE Xxvii

The Companion Web Site

The companion Web site for this book is a Google group called “sqglfun.”
The group Web address is:

http://groups.google.com/group/sqlfun
You can also send e-mail to me at:
sqlfun@gmail.com

This Web site contains:

m Oracle SQL code to build all the data tables used in this book.

m Access databases with all the data tables used in this book. Data-
bases are available for several versions of Access.

m Ways to check your answers to problems in the book.
m A list of corrections, if there are any.
m An open area for discussions, your comments, and questions you

want me to answer.

[invite you to come visit the Web site!

Acknowledgments

Many people contributed greatly to this book. [would like to thank them
for all the support they have given me during the time [was writing it.
Their ideas and feedback have improved the quality of the material and
the way I present it. In particular, I want to thank the following people for
their suggestions and help with this third edition:

m Dejang Liu

m Alma Lynn Bane
People who helped with the previous editions include:

m Anila Manning, for much help in writing the second edition.

m Paul Reavis, who taught this course with me at UC Berkeley Extension.

http://groups.google.com/group/sqlfun

XXV

PREFACE

m Todd Matson, who reviewed the Access material.
m Faysal Shaarani and Bill Allaway, who reviewed the Oracle material.

m Spencer Brucker and the UC Berkeley Extension, who have supported
me in teaching the SQL Fundamentals course and developing the
material in this book.

m All the folks at Prentice Hall, especially Bernard Goodwin, editor;
Vanessa Moore, Moore Media, Inc., production editor; Michael
Meehan and Jeffery Pepper, the original editors for this book; and the
many other people with whom I never worked directly.

m Thanks especially to my mom, Jean Praninskas, and to my son, Rich-
ard Watts, who also reviewed this book.

Thanks also to Brian Akitoye, Mehran Ansari, Asa Ashraf, Anne Bester,
Sandra Bush, Connie Chong, Patricia Cleveland, Robert D’Antony, Gan
Davnarrain, Bruce Douglass, James Drummond, Ron Duckworth, Dean
Evans, Steve Fajardo, Earl Gardner, Wolday Gebremichael, Neelam
Hasni, Reda Ismail, Marques Junior, John Karsnak, Allyson Kinney, Gla-
dys Lattier, Brian Lester, Mahen Luximan, Alex McDougall, E. Muljadi,
Satyendra Narayan, Bade Oyebamiji, Stefan Pantazi, Todd Perchert,
Oxana Rakova, Jacob Relles, Ricardo Ribeiro, Cindy Roberts, John
Rusk, Ty Seward, Gary Shapiro, David Smith, Kenneth Smith, Joan
Spasyk, Patricia Warfel, and William White.

STORING
INFORMATION
IN TABLES

In relational databases, all the data is stored in tables and all
the results are expressed in tables. In this chapter, we examine
tables in detail.

Introduction

1-1 Whatis SQL? 3
1-2 What is a relational database and why would youuseone? 4
1-3 Why learn SQL? 6
1-4 What isinthisbook? 8
ThePartsofaTable........ ... 9
1-5 Dataisstoredintables 10
1-6 A row represents an object and the information aboutit 11
1-7 A column represents one type of information. 12
1-8 Acell isthe smallest partofatable....... 14
1-9 Each cell should express justonething 15
1-10 Primary key columns identify eachrow 16
1-11 Mosttablesaretallandthin. 18
Examplesof Tables oo 19
1-12 An example of a table in Oracle and Access 19
1-13 Some design decisions in the 1_employeestable 22
1-14 The Lunches database 23

Key Points. ... 30

Introduction

1-1 What is SQL?

The name SQL stands for Structured Query Language. It is pronounced
“S-Q-L” and can also be pronounced “sequel.”

SQL is a computer language designed to get information from data that is
stored in a relational database. In a moment, I discuss what a relational
database is. For now, you can think of it as one method of organizing a
large amount of data on a computer. SQL allows you to find the informa-
tion you want from a vast collection of data. The purpose of this book is to
show you how to get the information you want from a database.

SQL is different from most other computer languages. With SQL, you
describe the type of information you want. The computer then determines
the best procedure to use to obtain it and runs that procedure. This is
called a declarative computer language because the focus is on the result:
You specify what the result should look like. The computer is allowed to
use any method of processing as long as it obtains the correct result.

Most other computer languages are procedural. These are languages like C,
Cobol, Java, Assembler, Fortran, Visual Basic, and others. In these lan-
guages, you describe the procedure that will be applied to the data; you do
not describe the result. The result is whatever emerges from applying the
procedure to the data.

Let me use an analogy to compare these two approaches. Suppose I goto a
coffee shop in the morning. With the declarative approach, used by SQL, I
can say what I want: “I would like a cup of coffee and a donut.” With the pro-
cedural approach, I cannot say that. [have to say hiew the result can be
obtained and give a specific procedure for it. That is, I have to say how to
make a cup of coffee and how to make a donut. So, for the coffee, I have to
say, “Grind up some roasted coffee beans, add boiling water to them, allow
the coffee to brew, pour it into a cup, and give it to me.” For the donut, I will
have to read from a cookbook. Clearly, the declarative approach is much
closer to the way we usually speak and it is much easier for most people to
use.

The fact that SQL is easy to use, relative to most other computer lan-
guages, is the main reason it is so popular and important. The claim is
often made that anyone can learn SQL in a day or two. I think that claim is
more a wish than a reality. After all, SQL is a computer language, and com-
puters are not as easy to use as telephones — at least not yet.

CHAPTER I STORING INFORMATION IN TABLES

Nonetheless, SQL is easy to use. With one day of training, most people can
learn to obtain much useful information. That includes people who are not
programmers. People throughout an organization, from secretaries to vice
presidents, can use SQL to obtain the information they need to make busi-
ness decisions. That is the hope and, to a large extent, it has been proven
true.

Information is not powerful by itself. It only becomes powerful when it is
available to people throughout an organization when they need to use it.
SQL is a tool for delivering that information.

Notes about SQL

m SQL is the designated language for getting information from a
relational database.

m SQL says what information to get, rather than fhew to get it.

m Basic SQL is easy to learn.

m SQL empowers people by giving them control over information.
m SQL allows people to handle information in new ways.

m SQL makes information powerful by bringing it to people when they
need it.

1-2 What is a relational database
and why would you use one?

A relational database is one way to organize data in a computer. There are
other ways to organize it, but in this book, we do not discuss these other
ways, except to say that each method has some strengths and some draw-
backs. For now, we look only at the advantages a relational database has to
offer.

SQL is one of the main reasons to organize data into a relational database.
Using SQL, information can be obtained from the data fairly easily by peo-
ple throughout the organization. That is very important.

Another reason is that data in a relational database can be used by many
people at the same time. Sometimes hundreds or thousands of people can
all share the data in a database. All the people can see the data and change
the data (if they have the authority to do so). From a business perspective,
this provides a way to coordinate all the employees and have everybody
working from the same body of information.

INTRODUCTION

A third reason is that a relational database is designed with the expecta-
tion that your information requirements may change over time. You might
need to reorganize the information you have or add new pieces of informa-
tion to it. Relational databases are designed to make this type of change
easy. Most other computer systems are difficult to change. They assume
that you know what all the requirements will be before you start to con-
struct them. My experience is that people are not very good at predicting
the future, even when they say they can, but here I am showing my own bias
toward relational databases.

From the perspective of a computer programmer, the flexibility of a rela-
tional database and the availability of SQL make it possible to develop new
computer applications much more rapidly than with traditional tech-
niques. Some organizations take advantage of this; others do not.

The idea of a relational database was first developed in the early 1970s to
handle very large amounts of data — millions of records. At first, the rela-
tional database was thought of as a back-end processor that would provide
information to a computer application written in a procedural language
such as C or Cobol. Even now, relational databases bear some of the traits
of that heritage.

Today, however, the ideas have been so successful that entire information
systems are often constructed as relational databases, without much need
for procedural code (except to support input forms). That is, the ideas that
were originally developed to play a supporting role for procedural code
have now taken center stage. Much of the procedural code is no longer
needed.

In relational databases, all the data is kept in tables, which are
two-dimensional structures with columns and rows. [describe tables in
detail later in this chapter. After you work with them for a while, you will
find that tables provide a very useful structure for handling data. They
adapt easily to changes, they share data with all users at the same time,
and SQL can be run on the data in a table. Many people start thinking of
their data in terms of tables. Tables have become the metaphor of choice
when working with data.

Today, people use small personal databases to keep their address books,
catalog their music, organize their libraries, or track their finances. Busi-
ness applications are also built as relational databases. Many people pre-
fer to have their data in a database, even if it has only a few records in it.

CHAPTER I STORING INFORMATION IN TABLES

The beginning of relational databases

Relational databases were originally developed in the 1970s to organize
large amounts of information in a consistent and coherent manner.

They allowed thousands of people to work with the same information
at the same time.

They kept the information current and consistent at all times.

They made information easily available to people at all levels of an
organization, from secretaries to vice presidents. They used SQL,
forms, standardized reports, and ad-hoc reports to deliver informa-
tion to people in a timely manner.

They were designed to work as an information server back end. This
means that most people would not work directly with the database;
instead, they would work with another layer of software. This other
software would get the information from the database and then adapt
it to the needs of each person.

They empowered people by making current information available to
them when they needed to use it.

Today — How relational databases have changed

In addition to the large databases described already, now there are
also many smaller databases that handle much smaller amounts of
information. These databases can be used by a single person or
shared by a few people.

Databases have been so successful and are so easy to use that they
are now employed for a wider range of applications than they were
originally designed for.

Many people now work directly with a database instead of through
another layer of software.

Many people prefer to keep their data in databases. They feel that
relational databases provide a useful and efficient framework for han-
dling all types of data.

1-3 Why learn SQL?

SQL is used in more than 100 software products. Once you learn SQL, you
will be able to use all of these products. Of course, each one will require a
little study of its special features, but you will soon feel at home with it and
know how to use it. You can use this one set of skills over and over again.

INTRODUCTION

Other SQL Products
Maijor SQL Products (and Products Based on SQL)

Oracle 4th Dimension

Microsoft SQL Server SQLBase

Microsoft Access CsQL

MySQL FileMaker PRO

DB2 (IBM Data Server) Helix Database

Informix ODBC

PostgreSQL Ingres

Sybase MonetDB

Microsoft Visual FoxPro H2

NonStop SQL MaxDB

Dataphor VMDS

Teradata TimesTen
Openbase
eXtremeDB
Interbase
OpenEdge ABL
SmallSQL
Linter SQL DMBS
Derby
Adabas D
Greenplum Database
HSQLDB
Alpha_Five
OneSDB
ScimoreDB
Pervasive PSQL
Gladius DB
Daffodil database
solidDB
(and many more)

CHAPTER I STORING INFORMATION IN TABLES

There are reasons SQL is used so much. One reason is that it is easy to
learn, relative to many other computer languages. Another reason is that it
opens the door to relational databases and the many advantages they offer.
Some people say that SQL is the best feature of relational databases and it
is what makes them successful. Other people say that relational databases
make SQL successful. Most people agree that together they are a winning
team.

SQL is the most successful declarative computer language — a language
with which you say what you want rather than how to get it. There are some
other declarative languages and report-generation tools, but most of them
are much more limited in what they can do. SQL is more powerful and can
be applied in more situations.

SQL can help you get information from a database that may not be avail-
able to people who do not know SQL. It can help you learn and understand
the many products that are based on it.

Finally (don’t tell your boss), learning SQL can be enjoyable and fun. It can
stretch your mind and give you new tools with which to think. You might
start to view some things from a new perspective.

1-4 What is in this book?

The subject of this book

This book shows you how to use SQL to get information from a relational
database. It begins with simple queries that retrieve selected data from a
single table. It progresses step by step to advanced queries that summarize
the data, combine it with data from other tables, or display the data in spe-
cialized ways. It goes beyond the basics and shows you how to get the
information you need from the databases you have.

Who should read this book?

Anyone with an interest in getting information from a database can read
this book. It can be a first book about databases for people who are new to
the subject. You do not need to be a computer programmer. The discussion
begins at the beginning and it does not assume any prior knowledge about
databases. The only thing you need is the persistence to work through the
examples and a little prior experience working with your own computer.

THE PARTS OF A TABLE 9

Professional programmers can also use this book. The techniques shown
here can help them find solutions to many problems. Whether you are a
novice or a professional, an end user or a manager, the SQL skills you learn
will be useful to you over and over again.

Organization of this book

This book discusses the practical realities of getting information from a
database. A series of specific tasks are accomplished and discussed. Each
concept is presented with an example.

The tasks are designed and arranged to show the most important aspects of
the subject. Each topic is discussed thoroughly and in an organized manner.
All the major features and surprising aspects of each topic are shown.

Why compare two different implementations
of SQL — Oracle and Access?

If a book discusses only the theory of SQL, and no particular product that
implements it, the reader will be left with no practical skills. He or she will
be able to think about the concepts, but might have difficulty writing code
that works.

If a book discusses only one implementation of SQL, it is easy to get dis-
tracted by the quirks and special features it has. You also lose sight of the
fact that SQL is used in many products, although in slightly different ways.

This book compares Oracle and Access because they are two of the most
widely used SQL products and because they both run on a PC. They are
somewhat different. You will see them side by side. Oracle is used mostly
for larger business applications. Access is used mostly for personal data-
base applications and smaller business applications.

The Parts of a Table

SQL always deals with data that is in tables. You probably understand
tables already on an informal level. The tables used in a relational data-
base have a few unusual features. Because computers need precise defini-
tions, the description of a table must be formalized. In this section, I define
what a table is and what its parts are.

CHAPTER I STORING INFORMATION IN TABLES

1-5 Data is stored in tables

In a relational database, all the data is stored in tables. A table is a
two-dimensional structure that has columns and rows. Using more tradi-
tional computer terminology, the columns are called fields and the rows are
called records. You can use either terminology.

Most people are familiar with seeing information in tables. Bus schedules
are usually presented in tables. Newspapers use tables to list stock values.
We all know how to use these tables. They are a good way to present a lot of
information in a very condensed format. The tables in a relational database
are very similar to these tables, which we all understand and use every day.

All the information in a relational database is kept in tables. There is no
other type of container to keep it in — there are no other data structures.
Even the most complex information is stored in tables. Someone once said
that there are three types of data structures in a relational database: tables,
tables, and tables. In a relational database, we have nothing but tables;
there are no numbers, no words, no letters, and no dates unless they are
stored in a table.

You might think that this restricts what a relational database can do and
the data it can represent. Is it a limitation? The answer is no. All data is
capable of being represented in this format. Sometimes you have to do
some work to put it in this format. It doesn’t always just fall into this format
by itself. But you can always succeed at putting data into tables, no matter
how complex the data is. This has been proven in mathematics. The proof
is long and complex and I do not show it to you here, but you can have con-
fidence that tables are versatile enough to handle all types of data.

The following two depictions show a basic table structure and how a table
might store information.

A conceptual diagram of a table.

THE PARTS OF A TABLE

First Name Last Name Age Gender Favorite Game
Nancy Jones 1 F Peek-a-boo
Paula Jacobs 5 F Acting
Deborah Kahn 4 F Dolls

Howard Green 7 M Baseball

Jack Lee 5 M Trucks

Cathy Rider 6 F Monsters

An example of a table that stores information about children.

Each row contains information about one child. Each column contains one
type of information for all the children. As always, this table contains only a
limited amount of information about each child. It does not say, for
instance, how much each child weighs.

Notes

m [n a relational database, all the data is stored in tables.
m A table has two dimensions called columns and rows.
m Tables can hold even the most complex information.

m All operations begin with tables and end with tables. All the data is
represented in tables.

1-6 A row represents an object
and the information about it

Each row of a table represents one object, event, or relationship. I call
them all objects for now, so I do not have to keep repeating the phrase
“object, event, or relationship.”

All the rows within a table represent the same type of object. If you have 100
doctors in a hospital, you might keep all the information about them in a
single table. If you also want to keep information about 1,000 patients who
are in the hospital, you would use a separate table for that information.

12

CHAPTER I STORING INFORMATION IN TABLES

The tables in a relational database may contain hundreds or thousands of
rows. Some tables even contain many millions of rows. In theory, there is
no limit to the number of rows a table can have. In practice, your computer
will limit the number of rows you can have. Today, business databases run-
ning on large computers sometimes reach billions of rows.

There are also some tables with only one row of data. You can even have an
empty table with no rows of data in it. This is something like an empty box.
Usually, a table is only empty when you first build it. After it is created, you
start to put rows of data into it.

In a relational database, the rows of a table are considered to be in no par-
ticular order so they are an unordered set. This is different from the tables
most people are familiar with. In a bus schedule, the rows are in a definite
and logical order. They are not scrambled in a random order.

Database administrators (DBAs) are allowed to change the order of the
rows in a table to make the computer more efficient. In some products,
such as Access, this can be done automatically by the computer. As a
result, you, the end user seeking information, cannot count on the rows
being in a particular order.

A conceptual diagram of a row.

Notes

m A row contains data for one object, event, or relationship.

m All the rows in a table contain data for similar objects, events, or
relationships.

m A table may contain hundreds or thousands of rows.

m The rows of a table are not in a predictable order.

1-7 A column represents one type of information

A column contains one particular type of information that is kept about all
the rows in the table. A column cannot, or should not, contain one type of
information for one row and another type for another row. Each column
usually contains a separate type of information.

THE PARTS OF A TABLE 13

Each column has a name, for instance “favorite game,” and a datatype. We
discuss datatypes in chapter 6, but for now let’s keep it simple. There are
three main datatypes: text, numbers, and dates. This means that there are
three types of columns: columns containing text, columns containing num-
bers, and columns containing dates.

Some columns allow nulls, which are unknown values. Other columns do
not allow them. If a column does not allow nulls, then data is required in
the column for every row of the table. This means it is a required field.
When a column does allow nulls, the field is optional.

Most tables contain 5 to 40 columns. A table can contain more columns,
250 or more, depending on the relational database product you are using,
but this is unusual.

Each column has a position within the table. That is, the columns are an
ordered set. This contrasts with the rows, which have no fixed order.

Information about the columns — their names, datatypes, positions, and
whether they accept nulls — is all considered to be part of the definition of
the table itself. In contrast, information about the rows is considered to be
part of the data and not part of the definition of the table.

A conceptual diagram of a column.

Notes

m A column contains one type of data about each row of the table.
m Each column has a name.
m Each column has a datatype. The most important datatypes are:
e Text
e Numbers

e Dates with times

CHAPTER I STORING INFORMATION IN TABLES

m Some columns accept nulls, and others do not. A null is an unknown
value.

m Each column has a position within the table. In contrast to rows, the
columns of a table form an ordered set. There is a first column and a
last column.

m Most tables have 40 columns or fewer.

1-8 A cell is the smallest part of a table

A cell occurs where one row meets with one column. It is the smallest part
of a table and it cannot be broken down into smaller parts.

A cell contains one single piece of data, a single unit of information. At
least that is the way it is in theory, and this is how you should begin to
think about it. In practice, sometimes a cell can contain several pieces of
information. In some applications a cell can contain an entire sentence, a
paragraph, or an entire document with hundreds of pages. For now we will
consider that a cell can contain one of the following:

m One word

One letter

m One number
m One date, which includes the time

m A null, which indicates that there is no data in the cell

For the first few chapters of this book, we consider the information in a cell
to be atomic, which means that it is a single indivisible unit of information.
We gather and arrange information from a table by manipulating its cells.
We either use all the information within a cell or we do not use that cell at
all. Later, when we discuss row functions, you will see how to use only part
of the data from a cell.

A column is a collection of cells. These cells have the same datatype and rep-
resent the same type of information. A row is a collection of cells. Together,
they represent information about the same object, event, or relationship.

A conceptual diagram of a cell.

THE PARTS OF A TABLE 15

Notes

m A cell contains a single piece of data, a single unit of information.
m Usually a cell contains one of the following types of data:

e Text, sometimes one word, or sometimes a one-letter code, such as
M for male or F for female

e A number
e Adate and time

e A null, which is an unknown value (some people call this an empty
cell, or missing data)

m All the cells in a column contain the same type of information.

m All the cells in a row contain data about the same object, event, or
relationship.

1-9 Each cell should express just one thing

Each cell expresses just one thing — one piece of information. That is the
intent of the theory of relational databases. In practice, it is not always
clear what this means. The problem, partly, is that English and other spo-
ken languages do not always express information clearly. Another part of
the problem is that information does not always come in separate units.

Let's examine one case in detail. A person in America usually has two
names — a first name and a last name. Now that is a bit of a problem to me
when [want to put information in the computer. There is one person, but
there are two names. How should I identify the person? Should I put both
names together in one cell? Should I put the names into two separate
cells? The answer is not clear.

Both methods are valid. The designers of the database usually decide
questions like this. If the database designers think that both names will
always be used together, they will usually put both names in a single cell.
But if they think that the names will be used separately, they will put each
name in a separate cell.

The problem with this is that the way a database is used may change over
time, so even if a decision is correct when it is made, it might become
incorrect later on.

CHAPTER I STORING INFORMATION IN TABLES

Full Name First Name Last Name

Susan Riley Susan Riley

(A) (B)

Two ways to show the name of a person in a table. (A) One column for the
name. Both the first and last names are put in a single cell. (B) Two separate
columns: one for the first name and another for the last name. Each cell
contains a single word.

Notes

m Both methods are equally valid.

m The first method emphasizes that Susan Riley is one person, even
though the English language uses two separate words to express her
name. It implies that we will usually call her “Susan Riley,” using both
her names together as a single unit.

m The second method emphasizes the English words. It implies that we
will want to use several different variations of her name, calling her
“Susan” or “Susan Riley” or “Miss Riley.” The words “Susan” or “Riley”
can come from the table in the database. Any other words must be
supplied by some other means.

m The database design intends each cell to be used in whole or not
used at all. In theory, you should not need to subdivide the data in a
cell. However, in practice that is sometimes required.

1-10 Primary key columns identify each row

Most tables contain a primary key that identifies each row in the table and
gives it a name. Each row must have its own identity, so no two rows are
allowed to have the same primary key.

The primary key consists of several columns of the table. By convention,
these are usually the first few columns. The primary key may be one column
or more than one. We say that there is only one primary key, even when it
consists of several columns, so it is the collection of these columns, taken
as a single unit, that is the primary key and serves to identify each row.

THE PARTS OF A TABLE 17

The primary key is like a noun because it names the object of each row. The
other columns are like adjectives because they give additional information
about the object.

A table can only contain a single primary key, even if it consists of several
columns. This makes sense because there is no point in identifying a row
twice — those identities could conflict with each other. Suppose, for exam-
ple, that we have a table of employees. Each employee can be identified by
an employee number or a Social Security number. The database designers
would need to choose which column to make the primary key of the table.
They could choose either one to be the primary key of the table, or they
could choose to use both together to make a primary key. However, they are
not allowed to say that each column by itself is a primary key.

The name of a column is considered to be part of the definition of the
table. In contrast, the name of a row, which is the primary key of the row, is
considered to be part of the data in the table.

There are two rules that regulate the columns of the primary key of a table:

1. None of the columns of the primary key can contain a null. This
makes sense because a null is an unknown value. Therefore, a null in
any part of the primary key would mean we do not know the identity
of the object or the row. In databases, we do not want to enter infor-
mation about unidentified rows.

2. Each row must have an identity that is different from every other row
in the table. That is, no two rows can have the same identity — the
same values in all the columns of the primary key. For any two rows
of the table, there must be at least one column of the primary key
where the values are different.

Primary Key

| 0O| W :t>|

The first column is usually the primary key of the table.

CHAPTER I STORING INFORMATION IN TABLES

Primary Key
|
A 1
A 2
B 1
B 2

Sometimes the primary key is the first several columns of the table.

Notes

m Most tables have primary keys.

m Usually, the primary key consists of the first column or the first several
columns of the table.

m The primary key names the object, event, or relationship the row rep-
resents. In grammatical terms, it is a noun because it is the subject of
all the information in the row.

m The other columns of the table make statements about the primary
key. In grammatical terms, they are adjectives or adverbs that describe
the object named by the primary key and give additional information
about it.

1-11 Most tables are tall and thin

Many books on SQL give the impression that tables are usually square —
that they have about the same number of rows as they have columns. This
false impression is left because the tables in most SQL books are approxi-
mately square. In any book, the tables must be kept small. In a book, when
you run SQL code you must be able to examine the results in full detail.

However, the tables that are used in real production systems usually have a
different shape. They are tall and thin. They may have 30 columns, but
1,000,000 rows.

Not all tables have this shape, but most do. Some tables have only one
TOW.

I tell you this because I like to visualize the data and the tables I am work-
ing with. If you like to visualize them, too, then at least | have provided you

EXAMPLES OF TABLES 19

with the correct picture. If you are not inclined to visualize these things, do
not worry about it. Just go on to the next page.

Most tables have many more rows than columns.

Examples of Tables

Up to now, we have discussed the theory of tables, but you have not seen
any real ones. In the following sections you will see some actual tables. We
look at a table to see how it looks in both Oracle and Access. We discuss
some of the design decisions that are used in constructing many tables. We
also examine the tables of the Lunches database, which is used in many of
the examples throughout this book.

1-12 An example of a table in Oracle and Access

This section shows the same table in both Oracle and Access. This is our
first opportunity to examine how Oracle and Access compare.

You will have to decide for yourself how similar they are and how different
they are. To me, this example shows that they are about 90 percent similar
and about 10 percent different. Of course, this is just one example. You
might ask yourself which percentages you would use to describe this.

20

CHAPTER I STORING INFORMATION IN TABLES

Oracle tables can be shown in two formats that are very similar, but have a
few slight differences. To keep things simple here, I am only showing you
one of those formats. The following Oracle table was obtained using the
“SQL Command Line” environment. The other Oracle format occurs in the
“Database Home Page” environment. [will discuss it briefly in the notes at
the end of this section.

1_employees table: Oracle format

EMPLOYEE
ID

DEPT CREDIT PHONE MANAGER
FIRST_NAME LAST_ NAME CODE HIRE_DATE LIMIT NUMBER ID
SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
JIM KERN SAL 16-AUG-1999 $25.00 8722 201
MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
CAROL ROSE ACT (null) (null) (null) (null)
DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

1_employees table: Access format

{ 21 L_EMPLOYEES

EMPLOYEE ID - FIRST NAME - | LAST NAME - DEPT CODE - HIRE DATE -| CREDIT LIMIT - PHONE NUMBER - | MANAGER ID - |Add New Field

201 Susan Brown Exe 01-lun-1998 $30.00 3484

202 Jim Kern Sal 16-Aug-1999 $25.00 8722 201
203 Martha Woods Shp 02-Feb-2009 $25.00 7591 201
204 Ellen QOwens Sal 01-Jul-2008 $15.00 6830 202
205 Henry Perkins Sal 01-Mar-2006 $25.00 5286 202
206 Carol Rose Act

207 Dan Smith Shp 01-Dec-2008 $25.00 2259 203
208 Fred Campbell Shp 01-Apr-2008 $25.00 1752 203
209 Paula Jacobs Mkt 17-Mar-1999 $15.00 3357 201
210 Nancy Hoffman Sal 16-Feb-2007 $25.00 2974 203

Similarities between Oracle and Access

m Column names are printed at the top of the column. The column
names are part of the structure of the table, not part of the data in the
table.

m Sometimes the column names shown in the column headings are
truncated. This is a slight problem. You are given tools to deal with it.

m Columns containing text data are justified to the left.

m Columns containing numbers are justified to the right.

EXAMPLES OF TABLES 21

m Columns containing dates often display only the date. The format for
displaying the date is not part of the data. The value of the date is
stored in the table, but the format of the date is specified separately.
The date actually contains both a date and a time, but the time is
often not displayed.

m Columns displaying currency amounts are actually stored as num-
bers, and use a format to put in the dollar signs and decimal points.

Differences between Oracle and Access

m Display framework: Oracle displays lines of character data. Access
uses graphical techniques to display the data in a grid and color the
borders of the grid.

m Case: The Oracle table is shown all in uppercase. The Access table
uses uppercase only for the first letter. It is a common convention to
set the databases up this way. Mixed-case data can be put into an
Oracle table, but this makes the data more difficult to handle, so Ora-
cle data is usually either all uppercase or all lowercase. Access data is
handled as if it were all uppercase, although it is displayed in mixed
case. This makes it look nicer, but sometimes it can also be deceiving.
In Access, the data appears to be mixed case, but the data behaves as
if it were in uppercase. For instance, John and john appear different
in Access, but they are handled as if they are the same.

m Column headings: Oracle can use several lines for a column heading.
Access displays the heading on a single line.

m Date formats: The dates above show Oracle and Access using the
same date format. [made that happen here because I wanted Oracle
and Access to look similar. However, on your computer the dates will
probably use different formats.

Oracle and Access can both display dates in a variety of formats. Each
has a default format to use for dates when no other format is speci-
fied. However, Oracle uses one method to specify this default format
for dates and Access uses a different method.

m Date alignment: Oracle aligns dates to the left, whereas Access
aligns them to the right.

m Nulls: In this book, I have set up Oracle to always display nulls as
(null) in all the columns of every table. This cannot easily be done
in Access.

22

CHAPTER I STORING INFORMATION IN TABLES

m Position pointer: The Access table contains a record selector and a
pointer to a particular field within that record, which allows you to
modify the data. The Oracle table does not contain these.

m Ability to add data: In Access, a blank row at the bottom of a table indi-
cates that new rows of data can be entered into the table. Also an extra
column is displayed called “Add New Field”. This is not done in Oracle.

Notes

The other Oracle format is used in the “Database Home Page” environment.
It has several technical differences, but none that will challenge your under-
standing of what is going on. Here are a few of these differences:

Tables are displayed on pages in your Web browser.
Column headings are never truncated.

All fields are justified to the left.

Nulls are shown with dashes

Dollar amounts are not automatically formatted.

1-13 Some design decisions in the 1_employees table

The 1_employees table contains some design decisions that I want to

po
tio

int out to you because they reflect some common practices within rela-
nal databases. Like all design decisions, they could have been made in

other ways. This is not the only way to design the table. It might not even

be

the best way. But you may often encounter these design decisions and

you need to be aware of them.

1_employees table

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST _NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EXAMPLES OF TABLES 23

Design decisions to be aware of

The phone_number column contains text data, not numbers.
Although the data look like numbers, and the column name says
number, it actually has a text datatype. You can tell this by its align-
ment, which is to the left. The reason the table is set up this way is
that the phone number data will never be used for arithmetic. You
never add two phone numbers together or multiply them. You only
use them the way they are, as a text field. So this table stores them as
text.

The employee_id column contains numbers. You can tell this by its
alignment, which is to the right. Now, we do not do arithmetic with
employee IDs, we never add them together, so why isn't this a text
field, too? The answer is that numbers are often used for primary key
columns even when no arithmetic will be performed on them. This
can allow the computer to handle the table more quickly.

The manager_id column contains numbers, but it is not a primary
key column. So why doesn’t it contain text? This column is intended
to match with the employee_id column, so it has been given the
same datatype as that column. This improves the speed of matching
the two columns.

The name of the table, 1_employees, might seem strange. The 1 indi-
cates that this table is part of a group of tables. The names of all the
tables in the group start with the same letter(s). In this case it shows
that the table is part of the Lunches database. (Here I use the term
database to mean a collection of related tables.)

The people who design databases put a considerable amount of work
into the consistent naming of objects, using standard prefixes, suf-
fixes, abbreviations, and column names. This makes the whole model
easier to understand and more usable for the code that is developed
for each database.

1-14 The Lunches database

Most of the examples of SQL code in this book are based on the Lunches
database. You can get a complete listing of this database from the Web
site. To read this book, you will need to understand the story and the data,
so here is the basic story.

24

CHAPTER I STORING INFORMATION IN TABLES

There is a small company with ten employees. This company will serve
lunch to its employees on three occasions. Each employee can attend as
many of these lunches as his or her schedule permits. When employees
register to attend a lunch, they get to pick what they want to eat. They
may choose from among the ten foods available to them. They can decide
to have a single portion or a double portion of any of these foods. The
Lunches database keeps track of all this information.

That is the story. Now let’s look at the data. When I call this a database, I
mean that it is a collection of related tables. The set of tables, taken
together, tell the story. There are seven tables in this database:

m Employees (1_employees)

m Departments (1_departments)

m Constants (1_constants)

m Lunches (1_lunches)

m Foods (1_foods)

m Suppliers (1_suppliers)

m Lunch Items (1_lunch_items)

To show that these tables are all related to each other and to distinguish
them from other tables we may use, the names of these tables are all pre-
fixed with the letter 1. When there are multiple words, such as
lunch_items, the spaces are replaced with underscore characters. This
helps the computer understand that the two words together are a single
name.

1_employees table

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

EXAMPLES OF TABLES 25

The 1_employees table lists all the employees. Each employee can be
identified by an employee ID, which is a number assigned to him or her.
This allows the company to hire two people with the same name. The pri-
mary key is the employee_id column.

Each employee has a manager, who is also an employee of the company.
The manager is identified by his or her employee ID. For instance, the
manager_id column shows that Jim Kern is managed by employee 201.
Employee 201 is Susan Brown.

Susan Brown and Carol Rose are the only employees without a manager.
You can tell this because there is a null in the manager_id columns. How-
ever, these nulls mean different things.

Susan Brown is the head of the company. The null in this case does not
mean that we do not know who her manager is. Rather, it means that she
does not have a manager.

Carol Rose is a new hire. The null in her manager_id column could mean
that she has not yet been assigned to a manager or it could mean that the
information has not yet been entered into the database.

1 departments table

DEPT
CODE

DEPARTMENT_NAME
ACCOUNTING
EXECUTIVE
MARKETING
PERSONNEL

SALES

SHIPPING

Each employee works for one department. The department code is shown
in the 1_employees table. The full name of each department is shown in
the 1_departments table. The primary key of this table is dept_code.

These tables can be linked together by matching the dept_code columns.
For example, the 1_employees table shows us that employee 202, Jim
Kern, has a department code of saL. The 1_departments table says that
the sales department uses the department code saL. This tells us that Jim
Kern works in the sales department.

26

CHAPTER I STORING INFORMATION IN TABLES

1 constants table

BUSINESS_NAME

CITYWIDE UNIFORMS

BUSINESS
START_DATE LUNCH_BUDGET OWNER_NAME

01-JUN-1998 $200.00 SUSAN BROWN

The 1_constants table contains some constant values and has only one
row. We use these values with the other tables of the database. These val-
ues are expected to change infrequently, if at all. Storing them in a sepa-
rate table keeps the SQL code flexible by providing an alternative to
hard-coding these values into SQL. Because the table of constants has
only one row, it does not need a primary key.

1 lunches table

LUNCH_ID LUNCH_DATE EMPLOYEE_ID DATE_ENTERE

16-NOV-2011 201 13-0CT-2011
16-NOV-2011 207 13-0CT-2011
16-NOV-2011 203 13-0CT-2011
16-NOV-2011 204 13-0CT-2011
16-NOV-2011 202 13-0CT-2011
16-NOV-2011 210 13-0CT-2011
25-NOV-2011 201 14-0CT-2011
25-NOV-2011 208 14-0CT-2011
25-NOV-2011 204 14-0CT-2011
25-NOV-2011 207 18-0CT-2011
25-NOV-2011 205 21-0CT-2011
05-DEC-2011 201 21-0CT-2011
05-DEC-2011 210 21-0CT-2011
05-DEC-2011 205 24-0CT-2011
05-DEC-2011 203 24-0CT-2011
05-DEC-2011 208 24-0CT-2011

The 1_lunches table registers an employee to attend a lunch. It assigns a
lunch ID to each lunch that will be served. For example, employee 207, Dan
Smith, will attend a lunch on November 16, 2011. His lunch is identified as
lunch_id=2.

The 1unch_id column is the primary key of this table. This is an example of
a surrogate key, which is also called a meaningless primary key. Each row is
assigned a unique number, but there is no intrinsic meaning to that num-
ber. It is just a convenient name to use for the row, or the object that the
row represents — in this case, a lunch.

EXAMPLES OF TABLES 27

1_foods table

The 1_lunches table shows the most common way to use a surrogate key.
Usually a single column is the primary key. That column has a different
value in every row.

Some database designers like to use surrogate keys because they can
improve the efficiency of queries within the database. Surrogate keys are
used especially to replace a primary key that would have many columns,
and when a table is often joined to many other tables.

Other designers do not like surrogate keys because they prefer to have each
column contain meaningful data. This is an area of debate among database
designers, with many pros and cons on each side. People who use data-
bases need only be aware that these columns are meaningless numbers
used to join one table to another.

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)

ASP SwW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SwW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)

JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

The 1_foods table lists the foods an employee can choose for his or her
lunch. Each food is identified by a supplier ID and a product code.
Together, these two columns form the primary key. The product codes
belong to the suppliers. It is possible for two suppliers to use the same
product code for different foods. In fact, the product code As has two differ-
ent meanings. Supplier]BR uses this product code for soda, but supplier
VSB uses it for dessert.

The price increases are proposed, but are not yet in effect. The nulls in the
price_increase column mean that there will not be a price increase for
those food items.

28 CHAPTER I STORING INFORMATION IN TABLES

1 suppliers table

SUPPLIER

ID SUPPLIER_NAME

ARR ALICE & RAY'S RESTAURANT
ASP A SOUP PLACE

CBC CERTIFIED BEEF COMPANY
FRV FRANK REED'S VEGETABLES
FSN FRANK & SONS

JBR JUST BEVERAGES

JPS JIM PARKER'S SHOP

VSB VIRGINIA STREET BAKERY

The 1_suppliers table shows the full names for the suppliers of the
foods. For example, the 1_foods table shows that french fries will be
obtained from supplier ID FRV. The 1_suppliers table shows that Frank
Reed’s Vegetables is the full name of this supplier. The primary key of these
tables is the supplier ID.

1 lunch_items table

SUPPLIER PRODUCT

LUNCH_ID ITEM_ NUMBER ID CODE QUANTITY
1 1 ASP FS 1
1 2 ASP SW 2
1 3 JBR VR 2
2 1 ASP SW 2
2 2 FRV FF 1
2 3 JBR VR 2
2 4 VSB AS 1
3 1 ASP FS 1
3 2 CBC GS 1
3 3 FRV FF 1
3 4 JBR VR 1
3 5 JBR AS 1

(and many more rows)

When you look at the 1_lunch_items table you need to be aware that the
data in the item_number column is aligned to the right because it is a col-
umn of numbers. The data in the supplier_id column is aligned to the
left because it is a column of text. So when you look at the first row, 1 aAsp
is not a single piece of data. Instead, the item_number value is 1 and the
supplier_id value is ASP.

EXAMPLES OF TABLES 29

The 1_lunch_items table shows which foods each employee has chosen
for his or her lunch. It also shows whether they want a single or a double
portion. For example, look at 1unch_id 2, which we already know to be
Dan Smith’s lunch on November 16. It consists of four items. The first item
is identified as asp-sw. Here I am putting the supplier_id and the
product_code column data together separated by a hyphen. Looking in
the 1_foods table, we find this is a sandwich. The 1_lunch items table
says he wants two of them, which is shown in the quantity column. See if
you can figure out all the foods he wants for his lunch.

The correct answer is:
2 sandwiches
1 order of french fries
2 cups of coffee
1 dessert

The primary key of this table consists of the first two columns of the table,
lunch_id and item_number. The item_number column is a tie-breaker
column, which is another type of meaningless primary key. In this design, |
wanted to use the lunch ID to identify each food within a lunch. However,
most lunches have several foods. So I cannot use the lunch ID by itself as a
primary key, because that would create several rows in the table with the
same value in the primary key, which is not allowed. I needed a way for each
row to have a different value in the primary key. That is what a tie-breaker
column does. The item_number column numbers the items within each
lunch. Therefore, the combination of lunch ID and item number provides a
unique identity for each row of the table and can serve as the primary key. A
primary key of this sort, containing more than one column, is sometimes
called a composite key.

Challenging features of the Lunches database

Most SQL books have you work with a database that is tame and contains
no challenges. This book is different. I have intentionally put some features
in the Lunches database that could cause you to get the wrong result if you
do not handle them properly. I show you how to become aware of these sit-
uations and how to deal with them. Many real business databases contain
similar challenges. Here are a few of them:

m Two employees are not attending any of the lunches — employee 209,
Paula Jacobs, and employee 206, Carol Rose.

30

Key Points

CHAPTER I STORING INFORMATION IN TABLES

One food has not been ordered in any of the lunches — broccoli.

One of the departments is not yet staffed with any employees — the
personnel department.

In this book we assume that the database has already been built and
you just need to learn how to use it. By analogy, this book shows you
how to drive a car without trying to show you how to build one.

Databases are used in many businesses and SQL is used in many
software products, so the skills you learn will help you in many differ-
ent situations.

Tables are the main construct of a database. All data is kept in tables.
Also any data that is given to you will be given in the form of a table.
Tables have columns and rows. Usually there are many more rows
than columns.

Most tables have a primary key. This gives a name to each row of
the table and prevents the table from having any two rows that are
identical.

There are a few differences between Oracle and Access, but there are
many more similarities.

Oracle is mostly used in businesses with large databases. Hundreds
of people may be using the database at the same time. The database
can help coordinate all the people in a business and keep them work-
ing together.

Access is mostly used by individuals with small personal databases.
Usually only one person is using the database at any given time.
Access is also used in some business situations.

GETTING
INFORMATION
FROM A TABLE

This chapter explains the basic technique for getting the infor-
mation you want from a table when you do not want to make
any changes to the data and when all the information is in one
table. The table might be very large and you might only want a
small amount of data from it.

31

The Select Statementt 33

2-1 The goal: Get a few columns and rows fromatable. 33
2-2 Qverview of the select statement. 34
The Select Clauseoee e 37
2-3 Overview of the selectclause. 37
2-4 Use a select clause to get a list of some of the columns. 38
2-5 Use a select clause to get a list of all of the columns 41
2-6 Use a select clause to get the distinct values in one column 44
2-7 Use a select clause to get the distinct values in two columns 48
TheWhere Clausecooiiiee e 50
2-8 Overview of the whereclause 50
2-9 Using an Equal condition in the whereclause 52
2-10 Using a Less Than condition in the where clause. 56
2-11 Using a Not Equal condition in the where clause. 58
2-12 Using the in condition in the whereclause 61
2-13 Using the between condition in the whereclause 63
2-14 Using the 1ike condition in the whereclause. 66
2-15 Using the is null condition in the whereclause.. 69
The Order By Clause.coooieee e 71
2-16 Overview of the order by clause 71
2-17 Sorting the rows by one column in ascendingorder 73
2-18 Sorting the rows by several columns in ascending order. 75
2-19 Sorting the rows by several columns in various orders 77
2-20 The whole processsofar. 79

Key Points. e 80

The Select Statement

In SQL, the select statement is used to get information from a table. Much
of this book is concerned with the select statement. This chapter explains
its four basic clauses and the options available for three of these clauses.

2-1 The goal: Get a few columns
and rows from a table

Our goal is to get the data we want from a table. The table may be large and
contain a lot of data. We only want a small part of it and we do not want to
change the data in any way. The select statement allows us to retrieve a
few columns and a few rows of data from the table.

Let’s put some numbers on this. The particular numbers are not important,
but they draw the picture more clearly. Suppose that printing all the data in
the table would take 1,000 pages, and suppose we want only two pages of
data from it. The select statement allows us to get just the two pages of
data we want.

It is as if we want to read an article on redwood trees from an encyclopedia.
We only want to see that one article. We do not want to read the entire
encyclopedia from beginning to end. The select statement allows us to
find the particular article we want to read.

The following diagram shows a large table of data. A small amount of that
data is being retrieved into the result of the select statement. In this dia-
gram, the data we want is scattered throughout the table in various col-
umns and rows. It is collected together by the select statement.

A|B|C|D|E

Beginning table. Result table.

33

34

CHAPTER 2 GETTING INFORMATION FROM A TABLE

Handling small tables of data

If a table of data is small, there might not be much reason to write a
select statement. For instance, if we can print the entire table on two
pages, then why not print it completely and let people work to find the
information they want? In many situations, this approach makes the
most sense.

In this book, we use small tables as learning tools. With tables this size,
there is not much reason to use select statements. However, these tables
are being used as examples to show how the select statement works
when it is used with larger tables.

2-2 Overview of the select statement

The select statement is used to get some of the data from a table. It has
six clauses:

select Which columns of data to get

from Which table has the data

where Which rows of data to get

group by (Described in chapter 12)

having (Described in chapter 12)

order by Which columns are used to sort the result

They must be written in this order. Group by and having are used in sum-
marizing data, and we examine them later.

This chapter discusses the options available for the select, where, and
order by clauses. For now, the from clause will always list only one table.

A select statement is often called a query. These two terms are used
interchangeably. The term “select statement” emphasizes the syntax of
the SQL command. The term “query” emphasizes the purpose of the
command.

THE SELECT STATEMENT 35

Task

Show an example of a select statement that uses all of the clauses just
listed. Show the employee_id, last_name, and credit_limit columns
from the 1_employees table of the Lunches database. Show only the
employees who have a credit limit greater than $20.00. Sort the rows of the
result by the last name of the employee.

Oracle & Access SOL

select employee_id, ©
last_name,
credit_limit

from 1_employees ®

where credit_limit > 20.00 ©

order by last_name; O

Beginning table (1_employees table)

EMPLOYEE
ID

DEPT CREDIT PHONE MANAGER
FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
JIM KERN SAL 16-AUG-1999 $25.00 8722 201
MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
CAROL ROSE ACT (null) (null) (null) (null)
DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Result table ©

EMPLOYEE
ID

CREDIT
LAST_NAME LIMIT
BROWN $30.00
CAMPBELL $25.00
HOFFMAN $25.00
KERN $25.00
PERKINS $25.00
SMITH $25.00
WOODS $25.00

CHAPTER 2 GETTING INFORMATION FROM A TABLE

Notes

©® The select clause lists the columns you want to show in the result
table. They can be listed in any order. Their order in the select clause
determines their order within the result table. When the computer sees a
column name that is not followed by a comma it expects to see the next
clause, the from clause.

Also, note that the names of these columns do not contain spaces.
Access allows this, but I do not recommend it because a space is usually
used as a delimiter. The underscore character (_) is usually used instead
of a space to separate the words in the name of each column. By typing
last_name with an underscore, you are telling the computer that this is
the name of a single column. If you typed last name with a space, the
computer would try to find a column named 1ast and it would not find
any column with that name. This would cause an error and the computer
would not process the select statement. Chapter 3 discusses the issue
of using spaces in column names in more detail.

® The from clause names the table that the data comes from — the
1_employees table of the Lunches database. In the naming scheme
used here, the prefix “1_" indicates that the employees table is part of
the Lunches database. This table is shown as the beginning table.

©® The where clause indicates which rows to show in the result table. The
condition where credit_limit > 20.00 eliminates the rows for
employees 204 and 209 because they have a $15.00 credit limit, and
employee 206, which has a null value.

Note that the dollar amount is written without the dollar sign. It must
also be written without any commas. The decimal point is acceptable,
but not required. The condition could also be written as follows: where
credit_limit > 20. In this SQL code here, I put two zeros after the dec-
imal point to make it look more like a currency value. This has no effect
on the result of the query.

O The order by clause specifies that the rows of the result table should be
sorted in alphabetical order by the last_name column. A semicolon
marks the end of the SQL statement. In Oracle, this statement will not
run without the semicolon. In Access, it is optional. In Oracle, you could
put a slash (/) on the next line as an alternative to the semicolon.
Because using a semicolon is valid within both products, in this book I
use a semicolon at the end of every SQL statement.

® Some people would call this a query result listing. This name has some
merit, because it is not a table. It is the result of running a query or a
select statement. In Oracle, these results are shown on the screen as a
Web page within your browser. In Access, they are shown on the screen
as if they are in a table, with some interactive elements, in datasheet
view. In other books you may find the terms derived table and virtual
table.

THE SELECT CLAUSE 37

I call this a result table because according to relational database theory,
tables are the only database structure. The input to a query is a table,
and the output of a query is a table. This result table appears only on the
screen. It is not stored on the disk.

The Select Clause

The select clause is the first part of a query. The select clause says which
columns of information you want, what order you want them in, and what
you want them to be called. Do not confuse the select clause with the
select statement.

2-3 Overview of the select clause

There are three forms of the select clause. The following pages show an
example of each of these.

select a list of columns m Get only the columns listed.
Put them in the order they are listed.
m You can rename them.

select * m Get all the columns of the table.
or select table_name.* m Put them in the same order they are in the table.

m You cannot rename them in SQL. (Within some
products, you can rename them in other ways.)

m When any additional columns are listed, besides
those of one table, the table name is required
before the asterisk. A period is placed between
the table name and the asterisk, so the com-
mand reads as follows: select table_name.*

m Get only the columns listed.
m Put them in the order they are listed.

m You can rename them.

m Eliminate duplicate rows from the result.

select distinct a list of columns

38

CHAPTER 2 GETTING INFORMATION FROM A TABLE

The first form, select a list of columns, gets only the columns that are
listed. It can rename these columns, giving them a column alias. 1t also
specifies the order in which the columns are to be listed.

The second form, select *, gets all the columns of a table. This does not
list the columns individually, so it cannot give the columns an alias or
specify an order for the columns. The columns are listed in the order in
which they appear in the table.

The third form, select distinct a list of columns, is similar to the first
form, but it includes the word distinct. This eliminates all the duplicate
rows from the result table. Two rows are duplicates if they have identical
values in every column of the result table. If even one column is different,
they do not match and they are not duplicates.

The only required clauses are the select clause and the from clause. You
can write a select statement with only these two clauses. The following
query lists all the columns and all the rows of the 1_employees table.

select *
from 1_employees;

2-4 Use a select clause to get
a list of some of the columns

This section shows an example of a select clause that is used to get a list
of columns. Only the columns listed in the select clause appear in the
result table. The other columns of the beginning table are omitted.

The order of the columns within the select clause determines their order
within the result table. This can be different from their order within the
beginning table.

It is possible for the same column to be listed two or more times. This is
sometimes useful when different formatting or functions are applied to
the column. Chapter 7 discusses formatting. Functions are covered in
chapters 9 and 10.

A literal value can be included in the select clause. That value will then
appear in every row of the result table. If the literal value is text, it must be
enclosed in single quotes. If it is a number, no quotes are used. In the
example for this section, the text literal “excellent worker” is enclosed in
single quotes, but there are no quotes around the numeric literal 10.

THE SELECT CLAUSE 39

A column can be renamed by giving it a column alias. This changes the
heading that appears in the result table. It does not have any permanent
effect on the table or the database. To assign a column alias, use this syntax:

column_name AS alias_name

The word “as” is optional in Oracle and required in Access. I recommend
that you use it because it makes the select statement easier to read and
understand. Usually you should avoid using spaces within the name of the
column alias. A common convention is to replace the spaces with under-
score characters. In the example for this section, four columns are given
new names.

In the result table you might sometimes see the column heading truncated.
This is done to save space and make the result table fit better on the page.
Instead of showing the full column name or column alias, only the beginning
part is shown. This is done in both Access and the older interface of Oracle
that uses the SQL command line. The newer interface of Oracle, the Data-
base Home Page environment, does not have this problem.

In Access, if you want to see the full column heading, use the mouse to
make the column wider. This can be done after SQL has been run.

Task

Get the following three columns from the 1_employees table:

employee_id
phone_number
last_name

Display them in that order. Change the name of the employee_id column to
employee_number and the name of the phone_number column to exten-
sion. Also create two new columns: evaluation and rating. Give every
employee an evaluation of “excellent worker” and a rating of 10.

Oracle & Access SOL

select employee_id as employee_number, O
phone_number as extension,
last_name,

'EXCELLENT WORKER' as evaluation, ®
10 as rating ©
from 1_employees;

40 CHAPTER 2 GETTING INFORMATION FROM A TABLE

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE DATE LIMIT NUMBER D
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP O01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table
EMPLOYEE_NUMBER EXTENSION LAST NAME EVALUATION RATING
201 3484 BROWN EXCELLENT WORKER 10
202 8722 KERN EXCELLENT WORKER 10
203 7591 WOODS EXCELLENT WORKER 10
204 6830 OWENS EXCELLENT WORKER 10
205 5286 PERKINS EXCELLENT WORKER 10
206 (null) ROSE EXCELLENT WORKER 10
207 2259 SMITH EXCELLENT WORKER 10
208 1752 CAMPBELL EXCELLENT WORKER 10
209 3357 JACOBS EXCELLENT WORKER 10
210 2974 HOFFMAN EXCELLENT WORKER 10
Notes

® The employee_id column is being renamed employee_number. This
new name, the column alias, is the column heading in the result table.
An underscore character is used to join the words “employee” and “num-
ber.” This makes the column alias a single word, as it contains no spaces.
My reason for doing this is that Oracle and Access SQL are the same as
long as the column alias does not contain spaces.

Both Oracle and Access allow spaces in the column alias. However, the
code is written with a slight difference. In Oracle, double quotes must be
used around a column alias that contains a space, whereas in Access,
square brackets are used:

Oracle: select employee_id as "employee number"
Access: select employee_id as [employee number]

THE SELECT CLAUSE a1

® The text 'EXCELLENT WORKER' is added to every row of the result table
in a column called evaluation. This is an example of placing a literal
value in a select statement. Here, the literal value is text, so it is
enclosed in single quotes.

I used uppercase letters within the single quotes because I wanted to
have uppercase letters in the result table. If I had used lowercase let-
ters in the select statement, the result table would show this text in
lowercase letters.

® Here the literal value is a number, so it is not enclosed in quotes.

Check your understanding

List the description and price of all the foods. Change the name of the
description column to food_item and the name of the price column to
cost.

2-5 Use a select clause to
get a list of all of the columns

Here is an example of a select clause that gets all the columns of a table
and lists them in the same order in which they occur within the beginning
table. In this example, there is no where clause, so the result table con-
tains all the columns and all the rows of the beginning table. This means
that the beginning table and the result table are identical.

This is the simplest select statement that you can write. The select
clause and the from clause are required in any select statement. All other
clauses are optional.

This method of showing the contents of a table gives you a good guess
about the following:

m The number of columns in the table

m The number of rows in the table, unless there are too many rows to
list conveniently

m The names of the columns

However this information is not always accurate. Sometimes a table has
been set up so that certain columns or rows are hidden from you. Some-
times the column names shown here can be different from the column
names used in the actual table.

42 CHAPTER 2 GETTING INFORMATION FROM A TABLE

Task

Get the entire 1_employees table, all the columns and all the rows. Display
all the columns in the same order as they are defined in the table.

Oracle & Access SOL

select *
from 1_employees;

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST _NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Result table @

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST _NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL, 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL, 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201

210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

THE SELECT CLAUSE 43

Notes

© The result table is identical to the beginning table, except possibly for
the order of the rows. In the listings here, the rows are in exactly the
same order. I did this to make the example easy to understand. In theory,
however, the rows of both tables are unordered sets, so the rows in the
result table could appear in a different order.

Oracle & Access SQL: Variation 1 — Adding a0 where clause

If a where clause is added to the select statement, the result table can con-
tain only some of the rows of the beginning table. For example:

select *
from 1_employees
where manager_ id is null;

This lists the two rows for employees 201 and 206.

Result table: Variation 1

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
206 CAROL ROSE ACT (null) (null) (null) (null)

Oracle & Access SOL: Variation 2 — Adding an order by dause

If an order by clause is added to the select statement, the rows of the
result table may be sorted in a different order. For example, you could sort
them by hire_date. When there is no order by clause, the computer is
allowed to list the rows of the result table in any order. To control the order
and ensure that the rows are sorted by the value in the employee_id col-
umn, it is necessary to write:

select *
from 1_employees
order by last_name;

44

CHAPTER 2 GETTING INFORMATION FROM A TABLE

Result table: Variation 2

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201

Displaying the data in any table

If you know the name of any table, you can display all the data in it with the
select statement:

select *
from table_name;

You replace table_name with the name of your table.

Check your understanding

List all the columns and all the rows of the foods table. How many columns
are in this table? How many rows? What are the names of the columns?

2-6 Use a select clause to get the
distinct values in one column

This section shows an example of using select distinct on one column
to find all of its values and list each of them only once. This is particularly
useful when you are working with a column that contains codes, such as
the dept_code column. In this example, we apply select distinct to the
manager_id column. In the result table, manager ID 201 is displayed only
once, even though there are three rows of the beginning table with this
value. The duplicate values are removed.

Notice that the null value does appear in the result table. Here we see that
select distinct treats nulls as it treats any other data in the table. If

THE SELECT CLAUSE

45

there were several nulls in the manager_id column of the beginning table,
the result table would still contain only a single null.

In Access, to use select distinct you need to write the SQL yourself.
The tools to help you write a query in Access will not write a select
distinct query for you.

Task

Get a list of all the different values in the manager_id column of the
1_employees table.

Oracle & Access SOL

select distinct manager_id

from 1 _employees;

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table
MANAGER
ID
201
202
203

46

CHAPTER 2 GETTING INFORMATION FROM A TABLE

Where nulls are placed in the sort order —
A difference between Oracle and Access

In Oracle, nulls are placed at the bottom of the sort order. In Access they
are placed at the top. This is not a big difference. It causes a slight differ-
ence in the appearance of the result, although the rows in the result are the
same in both cases.

Everyone agrees on the sort order for the numbers 0 to 9 and for the letters
A to Z. However, there is no such agreement about how nulls fit into the
sort order. In the absence of a common agreement, the developers of Ora-
cle decided to resolve the issue one way and the developers of Access
decided to resolve it another way.

The result table shown next shows the null at the bottom. This is the Oracle
method. People using Access will find the null at the top. In Access, the
null appears as a blank.

In this example, one could argue that because the select statement con-
tains no order by clause, the rows of the result table are allowed to be in
any order. In theory, the null can appear in any position within the result
table. In practice, when select distinct is used, a sort is performed as
part of the process of eliminating duplicates. Therefore, the rows of the
result table are presented in sorted order, even though no order by clause
is used. In this case, the sort is performed on the manager_id column.

Oracle & Access SOL:
Variation 1 — Adding a0 where clause t0 select distinct

Select distinct may be used with a where clause to limit the number of
rows in the result table. The where clause is processed first, which removes
some rows from the beginning table. Then the select distinct clause is
processed. Here is an example:

select distinct manager_id
from 1_employees
where employee_id in (201, 208, 210);

Result table: Variation 1

THE SELECT CLAUSE a7

Oracle & Access SOL:
Variation 2 — Adding an order by dause to select distinct

Select distinct may be used with an order by clause to sort the rows of
the result table in either an ascending or a descending order.

select distinct manager_ id
from 1_employees
order by manager_id desc;

Result table: Variation 2

Oracle & Access SQL:
Variation 3 — What happens if you eliminate the word distinct?

If the word distinct is removed from the select statement, the result
table will be the same as the manager_id column of the beginning table.
The value 201 will appear three times. No duplicate values will be removed,
nor will any sort occur. The rows might appear in the same order as in the
beginning table, or they could appear in some completely different order.
Here is an example:

select manager_ id
from 1_employees;

Result table: Variation 3

48

CHAPTER 2 GETTING INFORMATION FROM A TABLE

Check your understanding

List all the different supplier_id values from the 1_foods table.

2-7 Use a select clause to get the
distinct values in two columns

This section shows an example of using select distinct with two
columns. The same technique can be used when there are three or more
columns. We want to get a list of the distinct values when all these col-
umns are combined together as a single unit.

The SQL code is similar to the code in the previous section. Here a second
column, the credit_1limit column, is added to the select distinct
clause. The result table shows all the different combinations of values in
the two columns, manager_id and credit_limit.

When select distinct is used with several columns, the result table
shows a single instance of each valid combination of the columns. In other
words, no two rows of the result table are the same. Any two rows must dif-
fer in the values of one or more columns.

You should pay attention to the way that nulls are handled by select
distinct. SQL makes a point in saying in most circumstances that a null
is an unknown value. Therefore we are not allowed to say that that one null
is equal to another null. We have to assume that they might have different
values.

However, there are some exceptions to this rule and select distinct is
one of them. Here all the nulls within a single column are treated as if they
have the same value, the value of “missing data.”

When data is being summarized, as it is here, it is common for nulls to be
handled this way.

Task

Get a list of all the different values in the manager_id and credit_limit
columns of the 1_employees table.

THE SELECT CLAUSE 49

Oracle & Access SOL

select distinct manager_id,
credit_limit
from 1_employees;

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table
MANAGER CREDIT
ID LIMIT
201 $15.00
201 $25.00
202 $15.00
202 $25.00
203 $25.00
(null) $30.00
(null) (null)

What it means to eliminate duplicate rows from the result

The result table here contains two rows with a manager ID of 201. In section
2-6, there was only one such row. What is the difference?

There is another column in the result, the credit_limit column. The two
rows in which manager ID equals 201 have different values in the
credit_limit column, $15.00 and $25.00. Two rews of the result are dis-
tinct as long as there is at least one column in which they differ. In section
2-6, the credit limit was not part of the result, so the difference between
these rows is not in the result. That is why these two occurrences of 201 are
condensed into a single row.

50 CHAPTER 2 GETTING INFORMATION FROM A TABLE

The beginning table contains three rows with a manager ID of 201. Two
rows have a $25.00 credit limit and one has a $15.00 credit limit. The result
table shows only one row for each of these combinations.

In the result table, each row is distinct. You can think of this as a three-step
process. First, all the columns in each row of the result table are concate-
nated together into a single unit of data, then these units are sorted. Last,
all the duplicate units are removed.

Check your understanding

List all the different values in columns A and B of the sec0207 table.

The Where Clause

The where clause is used to choose which rows of data you want to
retrieve. Because a table can have thousands of rows, this clause must be
flexible enough to specify many different conditions. This makes it more
complex than the other clauses we examine in this chapter.

2-8 Overview of the where clause

The where clause specifies a condition that is true for all the rows you want
in the result table. For all other rows the condition is false or unknown. The
following table summarizes the conditions you can use. All of these condi-
tions can be used with any of the main types of data — text, numbers, and
dates.

Each condition has both a positive form and a negative form. The negative
form is always the exact opposite of the positive form. For example, the is
not null condition is true for every row for which the is null condition is
false. The not between condition is true for every row where the between
condition is false.

THE WHERE CLAUSE 51
Comparison conditions that can be used in the where clause.
Condition Meaning Examples
EQUAL — and other comparison tests
= equal with numbers: credit_limit = 25.00
with text: first_name = 'SUE'
with dates:
Oracle: hire_date = '01-JUN-2010"
Access: hire_date = #01-JUN-2010#
< less than credit_limit < 25.00
<= less than or equal first name <= 'M'
> greater than Oracle: hire_date > '01-JUN-2010"
Access: hire_date > #01-JUN-2010#
>= greater than or equal credit_limit >= 30.00
<> and not equal first_name <> 'ALICE'
others
SET INCLUSION TEST — a list of specific values
in in a set credit_limit in (15.00, 25.00)
not in not in a set dept_code not in ('EXE', 'MKT', 'ACT')

RANGE TEST — anywhere between two values

between

in a range

credit_limit between 21.00 and 27.00

not between

not within a range

dept_code not between 'ACT' and 'SAL'

PATTERN MATCHING TEST — using wildcard characters

like

matches a pattern

phone_number like '%48%'

not like

does not match a pattern

dept_code not like '%A%'

NULL TEST — find nulls

is null

is a null value

manager_id is null

is not null

is not a null value

manager_id is not null

BOOLEAN CONNECTORS — joining simple conditions together

and both of the conditions are (credit_limit = 25.00)
true and (first_name = 'SUE')
or one of the conditions is true | (credit_limit = 25.00)
or (first_name = 'SUE')
not the condition is false not (credit_limit = 25.00)

52

CHAPTER 2 GETTING INFORMATION FROM A TABLE

2-9 Using an Equal condition
in the where clause

This section shows a query in which the where clause uses an Equal (=)
condition. I will show you four examples of this.

In the first example, the Equal condition is used with a number. No quotes
are used around the number. All the rows from the beginning table that
have manager_id values equal to 203 are shown in the result table.

Note that the employees who have a null value in the manager_id column
are not shown. This affects employees 201 and 206. The null value means
that the value is missing in the database. The value could be equal to 203,
but we do not know this, so the row for the employee is not shown in the
result table.

In the second example, the Equal condition is used with text. The text must
be enclosed in single quotes.

Task for example 1

For all employees who report to employee 203, Martha Woods, list the
following:

employee_id
first_name
last_name
manager_id
hire_date

Oracle & Access SOL

select employee_id, O
first_name,
last_name,
manager id,
hire date

from 1 _employees

where manager id = 203; @

THE WHERE CLAUSE

Beginning table (1_employees table)

53

EMPLOYEE
ID

DEPT CREDIT PHONE MANAGER
FIRST_NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
JIM KERN SAL 16-AUG-1999 $25.00 8722 201
MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
CAROL ROSE ACT (null) (null) (null) (null)
DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Result table: Example 1

EMPLOYEE
ID

207

208

210

MANAGER
FIRST_NAME LAST_NAME ID HIRE_DATE
DAN SMITH 203 01-DEC-2008
FRED CAMPBELL 203 01-APR-2008
NANCY HOFFMAN 203 16-FEB-2007

Notes

O The select clause lists five columns, and the result table shows these

five columns in the order in which they are listed.
® The where clause contains only one condition:

manager_id = 203

Three rows of the beginning table satisfy this condition, and the result

table shows all these rows.

Task for example 2

For all the employees whose first name is Henry, list the same columns as

before.

54 CHAPTER 2 GETTING INFORMATION FROM A TABLE

Oracle & Access SOL

select employee_id,
first_ name,
last_name,
manager_ id,
hire date
from 1_employees
where first_name = 'HENRY'; ©

Result table: Example 2

EMPLOYEE MANAGER
ID FIRST NAME LAST NAME ID HIRE_DATE
205 HENRY PERKINS 202 01-MAR-2006
Notes

©® A text value must be enclosed in single quotes. It must be in uppercase
to match the data in the table.

Task for example 3

For all the employees who were hired on July 1, 2008, list the same columns
as before.

Oracle SOL

select employee_id,
first_name,
last_name,
manager_ id,
hire date
from 1_employees
where hire_date = '01-JUL-2008'; ©

THE WHERE CLAUSE 55

Access SOL

select employee_id,
first_name,
last_name,
manager_ id,
hire_ date
from 1 _employees
where hire_date = #01-JUL-2008#; ©

Result table: Example 3

EMPLOYEE MANAGER
ID FIRST_NAME LAST_ NAME ID HIRE_DATE
204 ELLEN OWENS 202 01-JUL-2008
Notes

0 In Oracle, date values must be enclosed in single quotes.

@ In Access, date values must be enclosed in pound signs.

Task for example 4

For all the employees whose first name is Paula, list the same columns as
before. Change the name of the first_name column to given_name.

Oracle & Access SOL

select employee_id,
first_name as given name,
last_name,
manager_ id,
hire_ date
from 1 _employees
where first_name = 'PAULA'; O

Result table: Example 4

EMPLOYEE MANAGER
ID GIVEN_NAME LAST_ NAME ID HIRE_DATE

209 PAULA JACOBS 201 17-MAR-1999

56

CHAPTER 2 GETTING INFORMATION FROM A TABLE

Notes

® In the where clause you must use the original name of the column,
first_name, even though the first_name column has been renamed
to given_name in the select clause.

Check your understanding

List the first name and last name of the employees with the first name of
Nancy.

2-10 Using a Less Than condition in the where clause

This section shows an example of a query that uses a Less Than (<) condi-
tion in the where clause. If there were rows with a null value in the
credit_limit column, they would not be included in the result table.

In place of the < sign, in this example you could write any of these:

<= (less than or equal to)
> (greater than)
>= (greater than or equal to)

Task for example 1

List all employees who have a credit limit less than S17.50. Show the
columns:

employee_id
first_name
last_name
credit_limit

Oracle & Access SOL

select employee_id,
first_name,
last_name,
credit_limit

from 1_employees

where credit_limit < 17.50; ©

THE WHERE CLAUSE

Beginning table (1_employees table)

57

EMPLOYEE
ID

PHONE MANAGER
NUMBER

5286

(null)

2259
1752
3357
2974

DEPT CREDIT
FIRST_NAME LAST NAME CODE HIRE_DATE LIMIT
SUSAN BROWN EXE 01-JUN-1998 $30.00
JIM KERN SAL 16-AUG-1999 $25.00
MARTHA WOODS SHP 02-FEB-2009 $25.00
ELLEN OWENS SAL 01-JUL-2008 $15.00
HENRY PERKINS SAL 01-MAR-2006 $25.00
CAROL ROSE ACT (null) (null)
DAN SMITH SHP (01-DEC-2008 $25.00
FRED CAMPBELL SHP O01-APR-2008 $25.00
PAULA JACOBS MKT 17-MAR-1999 $15.00
NANCY HOFFMAN SAL 16-FEB-2007 $25.00

(null)

ID

202

203
203
201
203

Result table: Example 1

EMPLOYEE
ID

204

209

CREDIT
FIRST_NAME LAST_NAME LIMIT
ELLEN OWENS $15.00
PAULA JACOBS $15.00

Notes

0 The where clause contains only one condition:

where credit_1limit < 17.50

This condition uses the less than (<) sign. The numeric value in the SQL
code, 17.50, cannot contain a dollar sign or a comma. This can be con-
fusing because often dollar signs and commas are displayed when you
see the data in a table. The beginning table has two rows that satisfy this

condition. The result table shows those two rows.

Task for example 2

Show another way to write this query, using the greater than or equal to (>=)

sign and negating the condition with a Boolean not.

58

CHAPTER 2 GETTING INFORMATION FROM A TABLE

Oracle & Access SOL

select employee_id,
first_ name,
last_name,
credit_limit
from 1_employees
where not (credit_limit >= 17.50); ©

Result table: Example 2 — Same as previous result table

Notes

® This is another way to write the Less Than condition.

Check your understanding

List the first name and last name of the employees with employee_id
greater than or equal to 205.

2-11 Using a Not Equal condition
in the where clause

This section shows an example of a query that uses a Not Equal condition
in its where clause.

Most SQL products support several ways to write the Not Equal condition.
Unfortunately, some of the ways that work in one product may not work in
another product. I prefer the method shown here because it works in all
products and it is easy for both people and computers to understand.

When possible, it is best to avoid using a Not Equal condition because it is
much less efficient for the computer to process than conditions such as
Equal (=) or between.

THE WHERE CLAUSE

59

Task

List all employees who do not report to employee 203, Martha Woods.
Show the following columns:

employee_id
first_name
last_name
manager_id

Oracle & Access SOL

select employee_id,

first_name,
last_name,
manager_id

from 1 _employees
where not (manager id = 203); O

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP O01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table
EMPLOYEE MANAGER
ID FIRST NAME LAST NAME ID
202 JIM KERN 201
203 MARTHA WOODS 201
204 ELLEN OWENS 202
205 HENRY PERKINS 202
209 PAULA JACOBS 201

60

CHAPTER 2 GETTING INFORMATION FROM A TABLE

Notes

©® The Boolean not reverses the meaning of the condition that follows it. It
only applies to that one condition. Here it changes the Equal condition
into the Not Equal condition.

Variations

Some other ways to write the Not Equal condition are as follows:
where manager_ id <> 203

where not manager id = 203

where manager_id != 203

where manager_ id A= 203

You might find these variations in code you inherit, or you might prefer to
use some of them yourself.

SQL uses three-valued logic

The result table in this section does not show the rows that have a null
value in the manager_id column. To show all the rows from the beginning
table, we need to consider three different conditions:

where manager_id = 203
where not (manager id = 203)
where manager id is null

This is an example of what we mean when we say that SQL uses
three-valued logic. Chapter 3 discusses this in more detail.

Check your understanding

List the first name and last name of the employees with employee id not
equal to 205. Write this in three different ways that all work in the version of
SQL you are currently using,

THE WHERE CLAUSE 61

2-12 Using the in condition in the where clause

This section shows an example of a query that uses an in condition in its
where clause. The in condition is used to show membership in a set. It is
used when there is a list of discrete values that satisfy the condition. The
set of all these valid values is placed in parentheses as a comma-delimited
list.

All the values must have the same datatype — numbers, text, or dates. All
the values can be numbers, or they can all be text, or they can all be dates.
It does not make sense to mix these categories. More specifically, the val-
ues must have the same datatype as the column being tested.

[t would not make sense to include null in the list of valid values because
the in condition is never satisfied by a null in the data.

Sometimes in production code an in condition checks for 10 to 50 different
values. In this situation it is much more efficient to write the code using an
in condition rather than many Equal conditions. The examples in this book
do not show this efficiency because they check for only two or three values.

Task for example 1

List all employees who report to employees 202 or 203, Jim Kern or Martha
Woods. Show the following columns:

employee_id
first_name
last_name
manager_id

Oracle & Access SOL

select employee_id,
first_name,
last_name,
manager_id
from 1 _employees
where manager_ id in (202, 203); ©

62 CHAPTER 2 GETTING INFORMATION FROM A TABLE

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Result table: Example 1

EMPLOYEE MANAGER
ID FIRST NAME LAST NAME ID

204 ELLEN OWENS 202

205 HENRY PERKINS 202

207 DAN SMITH 203

208 FRED CAMPBELL 203

210 NANCY HOFFMAN 203

Notes

©® This condition means that the manager_id column is equal to either
202 or 203.

Task for example 2

Show another way to write the same query. Use two Equal conditions com-
bined together with a Boolean or.

Oracle & Access SQL variation: Using Equal conditions

select employee_id,
first_name,
last_name,
manager_id

from 1 _employees

where manager id = 202
or manager_id = 203; ©

THE WHERE CLAUSE 63

Notes

® You must repeat the column name, manager_id, within each Equal
condition.

Result table: Example 2 — Same as previous result table

Check your understanding

List the first name, last name, and department code of the employees that
have department codes sal, shp, and act. Do this using an in condition.

2-13 Using the between condition in the where clause

This section shows an example of a query that uses the between condition
in its where clause. Note that the endpoints, August 16, 1999, and July 1,
2003, are both included in the result table. Some people prefer not to use
the between condition with dates because a date can also contain a time,
which can create some confusion.

The between condition can be applied to numbers, text, and dates. In this
example, it is applied to dates. In Oracle, dates must be enclosed in single
quotes (' '). In Access, they must be enclosed in pound signs (##). That is the
only difference between the Oracle SQL and the Access SQL in this example.

Task for example 1

List all employees hired between August 16, 1999, and July 1, 2008. Show the
following columns:

employee_id
first_name
last_name
hire_date

Oracle SOL

select employee_id,
first_name,
last_name,
hire_date
from 1_employees
where hire_date between '16-AUG-1999"
and '01-JUL-2008"

~e

64

CHAPTER 2 GETTING INFORMATION FROM A TABLE

Access SOL

select employee_id,
first_ name,
last_name,
hire_date
from 1_employees
where hire_date between #16-AUG-1999#
and #01-JUL-2008#;

Beginning table (1_employees table)

EMPLOYEE
ID

DEPT CREDIT PHONE MANAGER
FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
JIM KERN SAL 16-AUG-1999 $25.00 8722 201
MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
CAROL ROSE ACT (null) (null) (null) (null)
DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Result table: Example 1

EMPLOYEE
ID

FIRST_NAME LAST_NAME HIRE_DATE

JIM KERN 16-AUG-1999
ELLEN OWENS 01-JUL-2008
HENRY PERKINS 01-MAR-2006
FRED CAMPBELL 01-APR-2008
NANCY HOFFMAN 16-FEB-2007

Task for example 2

Write the same query as in the preceding task with an in condition. This
requires you to write about 3,300 dates and demonstrates the usefulness of
the between condition. Even when the code can be written in another way,
the code is more compact and less prone to errors when the between condi-
tion is used.

THE WHERE CLAUSE 65

Oracle SOL variation: Using an in condition

select employee_id,
first_name,
last_name,
hire_ date
from 1 employees
where hire date in ('l6-aug-1999°',
'17-aug-1999',
'18-aug-1999',
(about 3,300 more dates)
'29-jun-2008"',
'30-jun-2008"',
'01-JUL-2008");

Access SQL variation: Using an in condition

select employee_id,
first_name,
last_name,
hire date
from 1 _employees
where hire date in (#16-aug-1999#,
#17-aug-1999#,
#18-aug-1999#,
(about 3,300 more dates)
#29-jun-2008#,
#30-jun-2008#,
#01-JUL-2008#%) ;

Result table: Example 2 — Same as previous result table

Notes on the dates in this variation

Actually, these two methods of writing the code are not quite equivalent. A
date in SQL always includes a time, although often the time is not shown
when the data is displayed. With the SQL code using the between condi-
tion, all the times of all the dates are included. But with the code using the
in condition, the time must be midnight on the dates listed. Between
always specifies a range and in always specifies a series of points.

Check your understanding

List the employee ID, first name, and last name of the employees that have
an employee ID between 201 and 205.

66

CHAPTER 2 GETTING INFORMATION FROM A TABLE

2-14 Using the like condition in the where clause

This section shows an example of a query that uses the 1ike condition in
its where clause. The 1like condition is used for finding patterns in the
data. Patterns are specified using wildcard characters, which are used only
with the 1ike condition. When the same characters are used with another
condition, such as the between condition, they are no longer wildcards. A
column of any of the major datatypes — text, number, or date — can be
searched with a pattern. Case sensitivity is often an issue, but here I have
turned it off. For details, see sections 3-9 to 3-13.

In both Oracle and Access SQL, the pattern specification should be
enclosed in single quotes. Patterns are specified differently in Oracle than
they are in Access. Access allows a greater variety of patterns than Oracle.
The wildcard characters are different. These wildcard characters are shown
in the following table.

Wildcard characters and their meanings.

Oracle Access Meaning

% (percent sign) * (asterisk) A string of characters of any length,
or possibly no characters at all (a zero-
length string).

_ (underscore) ? (question mark) One character.

(not available)

(pound sign)

One digit (numeric character).

(not available) @

[c-m] (square brackets

Range of characters.

with a dash) (The characters must be in ascending
order. [a-z] iS correct; [z-a] is not.)
(not available) @ [!c-m] Qutside a range of characters.

\% Or _
(backslash) ®

[*]1 OF [2] OF [#]
(square brackets)

In Access, putting a character in square
brackets means to take it literally, rather
than using it as a wildcard character.

THE WHERE CLAUSE 67

The following table shows some examples of patterns.

Examples of wildcard patterns.

Pattern Oracle Access Examples
Text string beginning with an n 'N% N 'NONE'
'N123"
'NO CREDIT'
N
Four characters ending with an e __ _E '?22?E' ' NONE'
"123E"
‘1 3E!
Starting with a letter between a (not available) | '[A-Gl##! ‘4T
and g, followed by two digits 'B82"
Notes

0 Sometimes this code can be used: 'e' <= value and 'm' > value
® Sometimes this code can be used: 'e' > value or 'm' <= value

® In Oracle, you can set up the backslash to be an Escape character. Any
character placed after it is treated as a literal value rather than given a
special meaning. To activate the backslash as an Escape character, use
the SQL*Plus command:

set escape \;

Task

List all employees who have the letter n in their last name. Show the fol-
lowing columns:

employee_id
first_name
last_name

Oracle SOL

select employee_id,
first_name,
last_name

from 1 _employees

where last_name like '%N% ';

68 CHAPTER 2 GETTING INFORMATION FROM A TABLE

Access SOL

select employee_id,
first_ name,
last_name

from 1_employees

where last_name like '*N* ';

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID

201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Result table

EMPLOYEE

ID FIRST_NAME LAST_ NAME

201 SUSAN BROWN
202 JIM KERN
204 ELLEN OWENS
205 HENRY PERKINS
210 NANCY HOFFMAN

Check your understanding

List the employee ID, first name, and last name of the employees that have
an employee ID that contains a number 1.

THE WHERE CLAUSE 69

2-15 Using the is null condition
in the where clause

This section shows an example of a query that uses an is null condition
in its where clause. A null means the data value is missing from the data-
base. This can happen under several different conditions:

m When the data value is unknown
m When it would never make sense to put data in that field

m When someone knows the data value, but it has not yet been entered
into the database

Note that you must write this condition “is null,” rather than “= null.”
This is to remind you that a null is missing data and it is not like any other
value in the table, because it does not have a particular value.

Nulls receive special treatment in several situations within a database.
Throughout this book I point out when they are treated differently from
other data.

Task

List all employees who have a null in the manager_id column. Show the
following columns:

employee_id
first_name
last_name
manager_id

Oracle & Access SOL

select employee_id,
first_name,
last_name,
manager_id

from 1 _employees

where manager_id is null;

70

CHAPTER 2 GETTING INFORMATION FROM A TABLE

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP O01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table
EMPLOYEE MANAGER
ID FIRST NAME LAST NAME ID
201 SUSAN BROWN (null)
206 CAROL ROSE (null)

Why databases use nulls

Before nulls were invented, computer systems often used spaces or special
values, such as 99, to designate that data was missing. This caused two
problems.

One problem was a lack of uniformity. Each computer system used differ-
ent values to designate missing data. Often a single application used three
of these special values: one for numbers, one for text, and one for date
fields.

The special values for numbers were often all 9s, but one application might
use 999, whereas another used 999999. Sometimes the various fields within
a single application would use different numbers of digits.

The special values for text were often spaces. However, some applications
used a single space. Others would fill the field with spaces. The computer
would not always consider these to be equal. Some applications even used
a zero-length string, which just confused things even more.

For date fields, January 1, 1900 often designated missing data, but some
applications used other dates.

THE ORDER By CLAUSE 71

The second problem was that these special data values were sometimes
processed as if they were actual data. This could lead to errors that were
difficult to detect, particularly if some calculation was done that changed
the values of these fields.

To solve these problems, nulls were created to designate missing data. A
rigid distinction is made between nulls and other types of data. Nulls do
not have datatypes, meaning there is no distinction between a null in a
numeric column and one in a text or date column.

Check your understanding

List all the columns of the employee table for rows that contain a null in the
manager_ID column.

The Order By Clause

The order by clause determines how the rows of the result table are sorted
when they are printed or displayed on the screen. If you leave out the
order by clause, you are saying that you do not care about this order and
you are giving the computer permission to display the rows of the result in
any order.

2-16 Overview of the order by clause

In working with most of the tables in this book, you can get acceptable
results even if you do not write an order by clause because most of the
tables are small. They contain only a few rows. However, when you work
with larger tables, it is essential to use an order by clause.

This section shows the syntax of the order by clause and a few examples of
it. The clause contains a list of columns and a specification for each of
these columns to sort them in either ascending or descending order.

The first column listed in the order by clause is the primary sort order. The
columns that are listed after the first one are used only when two rows have
identical values in the first column. This rule applies to all the columns. For
example, the third column is only used to sort the rows that have identical
values in the first two columns of the order by clause.

Ascending order is the default. It is usually not specified. To sort on a col-
umn in descending order, desc must always be specified.

72

CHAPTER 2 GETTING INFORMATION FROM A TABLE

Columns are usually specified by their names. Another method is to specify
a number — this is the position of the column within the select clause.
This is an older method that is being phased out. Some brands of SQL
allow you to use a column alias in an order by clause. Oracle allows this,
but Access does not.

A column can sometimes be listed in the order by clause without listing it
in the select clause. However, it is good programming practice to list in
the select clause all the columns used in the order by clause.

In Oracle, nulls are sorted at the bottom. In Access, they are sorted at the
top. Other slight differences in the sort order can occur depending on a
variety of factors, such as:

Which SQL product you are using
Whether you are using a small computer or a large computer
Whether you are using a special alphabet

Options set by your DBA

Syntax of the order by clause

order by a list of column names You may specify a sort order for each
column (see below).

order by a list of numbers You may specify a sort order for each
column (see below).

Sort order options for each column

asc Means ascending order (default).

desc Means descending order.

Examples of an order by clause
order by employee_id
order by last_name, first_name

order by hire_date desc,
last_name,
first_name

THE ORDER By CLAUSE 73

2-17 Sorting the rows by one
column in ascending order

This section shows a query with one column in its order by clause. The
rows of the result table are sorted by the values in that column. The default
order is ascending order. There are two methods to write this:

m The first method uses the name of the column within the data table.
This method is usually best because it is easiest for people to read
and understand. If this column has been renamed, you must still use
the old name within the order by clause.

m The second method uses a number instead of a column name. This
number is the position of the column within the select clause.

Task

List the last name and first name of all the employees in the 1_employees
table. Rename the last_name column to family name. Sort the rows by
the last_name column in ascending order. Show how to do this using the
two methods of specifying the column to sort on.

Oracle & Access SQL: Use the column name to specify the sort order

select last_name as family name,
first_name

from 1_employees

order by last_name; ©

Oracle & Access SQL: Use the column number to specify the sort order

select last_name as family name,
first_name

from 1_employees

order by 1; ©

74 CHAPTER 2 GETTING INFORMATION FROM A TABLE

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table

FAMILY NAME FIRST_NAME

BROWN SUSAN
CAMPBELL FRED
HOFFMAN NANCY
JACOBS PAULA
KERN JIM
OWENS ELLEN
PERKINS HENRY
ROSE CAROL
SMITH DAN
WOODS MARTHA
Notes

©® The last_name column has been renamed to family_ name in the
select clause. However, in the order by clause, you must still use its
original name from the beginning table, which is 1ast_name.

® The number | here means that the rows of the result table will be sorted
by the first column in the select clause, which is also the first column
of the result table.

Check your understanding

List the department name column from the departments table. Give this col-
umn a new name of dept. Put the rows in ascending order. Write this SQL in
two different ways.

THE ORDER By CLAUSE 75

2-18 Sorting the rows by several
columns in ascending order

This section shows a query with two columns in its order by clause, both
of which are sorted in ascending order.

Task

List the department codes and last names of all the employees, except for
employee 209. Sort the rows of the result table on both columns in ascend-
ing order.

Oracle & Access SOL

select dept_code,
last_name
from 1_employees
where not (employee_id = 209)
order by dept_code, ©
last_name; &

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201

210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

76 CHAPTER 2 GETTING INFORMATION FROM A TABLE

Result table

DEPT

CODE LAST_NAME

ACT ROSE

EXE BROWN

SAL HOFFMAN

SAL KERN

SAL OWENS

SAL PERKINS

SHP CAMPBELL ©

SHP SMITH ©

SHP WOODS ©
Notes

©® The rows of the result table are sorted first and primarily on the
dept_code column. For instance, all four rows with a dept_code of SAL
are sorted before the three rows with sHP.

® The rows with identical values in the dept_code column are then sorted
on the last_name column. Within the saL department code, the last
names are put in ascending alphabetical order. Within the sup depart-
ment code, the names are put in a separate ascending alphabetical
order.

©® Note the order of these rows in the result table. Here, for the employees
within any particular department, the last names are in ascending order.
In the next section, we change the order and place the last names in
descending order.

Check your understanding

The table sec0218 has two columns named A and B. Each column contains
the numbers 1, 2, and 3. The table has nine rows showing all the combina-
tions of values.

List all the columns of this table. Sort the rows in two ways:

1. First by column A, then by column B.
2. First by column B, then by column A.

Observe the difference in the result.

THE ORDER By CLAUSE 77

2-19 Sorting the rows by several
columns in various orders

This shows the same query as in the previous section, except that the sort
on the last_name column is in descending order. The contrast with the
result table in the previous section shows the difference.

Task

List the department codes and last names of all the employees, except for
employee 209. Sort the rows of the result table in ascending order on the
dept_code column and in descending order on the 1last_name column.

Oracle & Access SOL

select dept_code,
last_name
from 1_employees
where not (employee_id = 209)
order by dept_code, ©
last_name desc; @

Beginning table (1_employees table)

EMPLOYEE
ID

DEPT CREDIT PHONE MANAGER
FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
JIM KERN SAL 16-AUG-1999 $25.00 8722 201
MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
CAROL ROSE ACT (null) (null) (null) (null)
DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
FRED CAMPBELL SHP O01-APR-2008 $25.00 1752 203
PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

78 CHAPTER 2 GETTING INFORMATION FROM A TABLE
Result table

DEPT

CODE LAST_NAME
ACT ROSE

EXE BROWN

SAL PERKINS
SAL OWENS

SAL KERN

SAL, HOFFMAN
SHP WOODS ©
SHP SMITH ©
SHP CAMPBELL ©

Notes

©® The rows of the result table are sorted first and primarily on the
dept_code column.

0 All the rows with the same value in the dept_code column are sorted on
the last_name column in descending order. This is applied twice, once
with the saL department codes and again with the suP ones.

® Note the order of these rows. Compare the order here with the order
shown in the previous result table.

Check your understanding

The table sec0219 has three columns named A, B, and C. Each column con-
tains the numbers 1, 2, and 3. There are 27 rows, one for each combination of
values.

List all the columns of this table. Sort the rows first by column A, second by
column B in reverse order, and third by column C in reverse order.

THE ORDER By CLAUSE 79

2-20 The whole process so far

Here is a quick summary of the process a select statement describes.
Note that clauses of the select statement are processed in a different
order than they are written.

A[B[C[D[E]| Step1: A[B[C[D[E| Step2:
The from clause The where clause chooses
chooses the beginning which rows of data you
table. want from the table in
step 1.
o
B|D[E| Step3: B|D[E| Step4:
The select clause The order by clause
chooses which columns of chooses which columns are
data you want from the table used to sort the rows from
in step 2. the table in step 3.

Key Points

CHAPTER 2 GETTING INFORMATION FROM A TABLE

m A select statement allows you to get the data you want from a table.

Usually you will only want a few columns and rows from a large table.
The basic select statement has four clauses:

e The select clause says which columns you want.

¢ The from clause says what table you are getting the data from.
¢ The where clause says which rows you want.

e The order by clause says how to sort the final result.

There are two more clauses used to summarize data. You will learn
about them in chapters 11 and 12.

In the select clause you can choose the columns you want, specify
the order in which you want them, and give them new names. Option-
ally you can tell SQL to eliminate any duplicate rows from the result.
Another variation of the select clause gives you all the rows of the
table.

In the from clause you name the table that contains the data. For sev-
eral chapters you will get all the data from a single table. In chapters
13 and 14 you will learn how to get data from several tables.

In the where clause you can choose the rows you want. Often there
are many rows to choose from, so you need to be sure to specify just
the ones you want. Some of the relations you can use in the where
clause are:

e Equal

e Less Than

e Greater Than
e Not Equal

e In

e Between

o Like

e Isnull

You can also combine these together with And, Or, and Not. Chapter 3
shows you how to do this.

KEY POINTS 81

m In the order by clause you can specify the order in which you want
the rows of the result table to be sorted. If you do not include an
order by clause, the rows of the result table could be in a random
order, so it is a good practice to always write an order by clause in
your select statement.

m A null represents data that is missing from the database table. It
could be missing permanently because no data would make sense
there, or it could be missing temporarily because the data is not
known or it has not been entered into the table yet.

m Most of the time, the same SQL code that works in Oracle also works
in Access.

This page intentionally left blank

CoMPOUND
CONDITIONS IN
THE WHERE
CLAUSE

In chapter 2, we used fairly simple conditions in the where
clause. In this chapter, we discuss how to combine several of
these simple conditions into a compound condition. This is
particularly important when we are handling tables with many
rows. It allows us to specify the particular set of rows we want.

This chapter also discusses several other important topics. You
should read this chapter quickly and make sure you do not get
bogged down in any part of it. The topics themselves are not
really part of SQL. Rather, these are general programming top-
ics that could trip you up along the way if you are not aware of
them.

If your main goal is to learn SQL, | recommend that you read the
chapter once and then move quickly onto the next chapter. This
chapter is not meant to be studied. You can come back to it later
if you find you need fo.

83

Compound Conditions in the Where Clause oL, 85

3-1 Using a compound condition in the where clause 85
3-2 Using not with in, between, 1ike,andisnull 88
3-3 The standard form of a complex condition in the where clause 90
3-4 Acommon mistake 92
Constant Values 95
3-5 Using a constant value in the select clause 96
3-6 Usingatableof constants. 98
Punctuation Matters. 102
3-7 Punctuation you need to know rightnow 102
3-8 Punctuation reference section 106
Case Sensitivityoite e 113
3-9 Case sensitivity in Oracle 113
3-10 The debate about case sensitivity in SQL 117
3-11 You have achoice 117
3-12 You can turn off case sensitivity in the
Oracle SQL Command Line environment 117
3-13 Case sensitivity in ACCESS 118
Three-Valued Logic. oo 120
3-14 SQL uses three-valued logic., 120
Error Messagesoontt e e 122
3~15 Error messages are often Wrong. 122
Some Exercises Solved for Youoooo i 124
3-16 Exercise | 124
3-17 EXErCiSe 2 127
3-18 EXErCiSe 3 129

Key Points. 131

Compound Conditions in the Where Clause

This group of sections deals with the Boolean connectors and, or, and not.
It shows how to place complex conditions in the where clause into stan-
dard form. Along the way, it shows you the rules you need to know to work
with these Boolean connectors.

If you handle large tables, with a million or more rows, you may need to use
very complex conditions in the where clause to specify the set of rows you
want in the result. To keep this complexity to a reasonable level, these condi-
tions are often put into standard form.

The standard form is discussed in section 3-3. You should read this sec-
tions over once, but do not worry if you have difficulty with it. This material
is not needed in the rest of the book, but the details are here if you need
them later when you are working with very large tables.

3-1 Using a compound condition in the where clause

Compound conditions can be formed using the three Boolean connectors:
and, or, and not. and and or combine two conditions to form a single
compound condition. They can be applied repeatedly, thus combining
many conditions into a single compound condition. Not is applied to a sin-
gle condition and reverses its meaning.

Definition of and

The statement “A and B” is true only when both A and B are true.

Definition of or

The statement “A or B” is true when either A or B is true.

Definition of not

The statement “not A” is true when A is false.

In the preceding definitions, A and B stand for any statement, such as
employee_id < 500 or first_name = 'Mary'.

The way the words and, or, and not are used in computer languages is not
quite the same as the way they are used in spoken and written English.
They are sometimes used in a loose and casual way in English, but they are
always used in a precise way in computer languages.

85

86

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

In English the word “not” is often misplaced and misused. Here is an
example:

“All that glitters is not gold.”
— Shakespeare

[think Shakespeare is completely wrong in this statement. I think he meant
to say “Not all that glitters is gold” or perhaps “Some things that glitter are
not gold.” The point is that the word NOT is often misused in English.

In English the words “and” and “or” are sometimes used in a way that
makes them interchangeable. They are never interchangeable in computer
languages. Here is an example:

“Please make the seats near each doorway available to seniors or
disabled persons.”
— a sign in the San Francisco BART subway system

Would it make any difference if the word “or” was changed to “and”? Would
the meaning change or would it stay the same?

Within a complex condition, when several Boolean connectors are being
used, parentheses should be used liberally. Even if you think they are not
needed by the computer, they are needed to make the statement easy for
people to read and understand. If you leave out some of the parentheses,
the computer may understand the statement one way, but many people
might interpret it in another way.

The example in this section shows a query that has a where clause that
uses a compound condition. It shows how to include the null values when
using a Not Equal condition. You must explicitly ask for the nulls if you
want them to appear in the result table.

Task

List all employees who do not report to employee 203, Martha Woods.
Include rows with a null value in the manager_id column. Show the follow-
ing columns: employee_id, first_name, last_name, and manager_id

Oracle & Access SOL

select employee_id,
first_name,
last_name,
manager_id
from 1 _employees
where not (manager id = 203) ©
or manager_id is null; @

COMPOUND CONDITIONS IN THE WHERE CLAUSE

Beginning table (1_employees table)

87

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table
EMPLOYEE MANAGER
ID FIRST NAME LAST NAME ID
201 SUSAN BROWN (null)
202 JIM KERN 201
203 MARTHA WOODS 201
204 ELLEN OWENS 202
205 HENRY PERKINS 202
206 CAROL ROSE (null)
209 PAULA JACOBS 201
Notes

0 Not is used to reverse the meaning of “manager_id = 203" to create the
meaning “manager_id is not equal to 203.” The parentheses are
optional. I used them here to make the meaning clearer to people who

read the SQL code.

® Or is used to combine the two conditions:

not (manager id = 203) and manager id is null

This forms a single compound condition:

not (manager id = 203) or manager id is null

Check your understanding

List all the rows of the 1_foods table that have a price less than $1.00 or

greater than $5.00.

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

3-2 Using not with in, between, 1like, and is null

This section shows the word not can be used in two different ways with the
following conditions: in, between, 1ike, and is null. The meanings are
exactly the same.

Version 1 will show the word not used as part of the condition test. There is
one condition test called in and there is another condition test called not
in. The same applies to all these conditions:

in not in
between not between
like not like

is null is not null

Version 2 will show the word not used as a Boolean connector modifying
an entire condition. In the first line of the where clause, not is applied to
the condition:

dept_code in ('act', 'mkt')

This condition is then written with an additional set of parentheses:

not (dept_code in ('act', 'mkt'))

The computer also understands this without the additional set of parentheses:
not dept_code in ('act', 'mkt')

However, this can be more confusing to most people, so I do not recom-
mend it.

In the following code, you will notice that the patterns used with the 1ike
condition differ in Oracle and in Access. We discussed this in section 2-14.

Task

Show the employee_id, first_name, last_name, and manager_id of the
employees having all of the following conditions:

B dept_code is not act or mkt
m last_name does not begin with any letter from | to M
m last_name does not end with S

m manager_id is not a null value

COMPOUND CONDITIONS IN THE WHERE

CLAUSE

89

Oracle & Access SQL: Version 1 — Using not within the condition

select employee_id,
first_name,
last_name,
manager_id
from 1_employees
where dept_code
and last_name
and last_name not
and last_name not
and manager_id is

not
not

in ('ACT', 'MKT')
between 'J' and 'M'

like '%S' (Oracle)
like '*S' (Access)

not null;

Oracle & Access SQL: Version 2 — Using a Boolean not

select employee_id,
first_name,
last_name,
manager_id

from 1 employees

where not (dept_code in ('ACT', 'MKT'))
and not (last_name between 'J' and 'M')
and not (last_name like '%S') (Oracle)
and not (last_name like '*S') (Access)
and not (manager_id is null):;
Beginning table (1_employees table)
EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table
EMPLOYEE MANAGER
ID FIRST_NAME LAST_ NAME ID
207 DAN SMITH 203
208 FRED CAMPBELL 203
210 NANCY HOFFMAN 203

90

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Check your understanding

List all the foods from the 1_foods table that do not have a null in the
price_increase column.

3-3 The standard form of a complex
condition in the where clause

This section shows an example of a query with a very complex condition in
its where clause. You might need to use a condition of this sort when you
are dealing with a large table that has many millions of rows. As a general
rule, as a table gets larger the where clause gets more complex. Additional
conditions are required to select the rows you want. Also, sometimes the
logic within a query needs to be quite complex.

The purpose of this example is to show a condition in the where clause
that is organized in the standard form of a Boolean expression. With a little
effort, any complex condition can be written in this form. Writing a condi-
tion in this way can make it easy for people to read, understand, and work
with. Complex conditions that are not in standard form are prone to errors.
So, part of the debugging effort of a select statement can be working with
the condition in the where clause to put it into standard form. Here I am
using the term standard form to mean that the expression is placed in a
standardized format.

The example in this section is a bit contrived. You really do not need com-
plexity on this scale when you are dealing with tables as small and simple
as the ones in this book. However, [want to show you the principle.

Definition of standard form in the where clause

The three Boolean connectors and, or, and not are strictly controlled:

e Not is applied only to simple conditions. It is not applied to com-
pound conditions that include an and or an or.

e and is used to combine simple conditions and conditions involving
not. None of these conditions are allowed to contain an or. Many con-
ditions can be combined together with and. If there is more than one
and, the conditions can be combined in any order and no parentheses
are required. Each of these compound conditions is usually enclosed
in parentheses.

e Or is the top-level connector. It combines all the compound conditions
using and and not. If there is more than one or, the compound condi-

tions can be combined in any order and no parentheses are required.

COMPOUND CONDITIONS IN THE WHERE CLAUSE 91

Task

Show an example of a select statement that has a where clause in stan-
dard form. The following example shows the format. It does run, but it is not
intended to make much sense.

Oracle & Access SOL

select employee_id,
first_name,
last_name

from 1 _employees

where (manager id is null ©

and first_name = 'SUSAN'
and credit_limit = 30.00)
or @

(not (hire_date is null) ©
and credit_limit between 10.00 and 50.00 ©
and last_name in ('SMITH', 'JACOBS', 'PATRICK')
and not (dept_code = 'SHP'))
or
(credit_limit > 22.00
and hire_date is null)
or
(employee_id > 700
and dept_code in ('SAL', 'MKT')
and manager_id = 400);

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Result table ©

EMPLOYEE
ID FIRST_NAME LAST_NAME
201 SUSAN BROWN
209 PAULA JACOBS

92

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Notes

©® This line and the next two lines are a compound condition joined
together with and. The parentheses enclosing these three lines are
optional, but make the condition easier to read.

® This is an or joining together the compound conditions formed with
and.

©® This shows a Boolean not applied to a simple condition that does not
contain any and or or.

O The and on this line is part of the between condition. It is not a Boolean
and connector.

® The result table shows that this code actually runs. In this example, it is
not important to follow the precise logic.

Check your understanding

Put the following where clause into standard form:

select *

from 1 _employees

where not ((first_name = 'JIM' or first name = 'DAN')
and (last_name = 'BROWN' or last_name = 'SMITH'))

3-4 A common mistake

This section shows a common mistake that people make when they write a
complex condition in the where clause and they do not specify enough
parentheses. In this example, most people understand that the first three
conditions of the where clause are related because they all involve the
same column, employee_id. Placing a pair of parentheses around the first
three conditions can represent the understanding that most people have.

To a computer, however, or is always a higher level connector than and
when parentheses do not say otherwise. So the computer understands the
statement differently. To the computer, there are three clusters joined
together by or.

COMPOUND CONDITIONS IN THE WHERE CLAUSE 93

Task

Of the employees whose employee IDs are 203, 204, or 205, list only the ones

in the sales department.

Beginning table (1_employees table)

EMPLOYEE
ID

DEPT
FIRST_NAME LAST NAME CODE
SUSAN BROWN EXE
JIM KERN SAL
MARTHA WOODS SHP
ELLEN OWENS SAL
HENRY PERKINS SAL
CAROL ROSE ACT
DAN SMITH SHP
FRED CAMPBELL SHP
PAULA JACOBS MKT
NANCY HOFFMAN SAL

CREDIT PHONE MANAGER
HIRE_DATE LIMIT NUMBER ID

01-JUN-1998 $30.00 3484 (null)

16-AUG-1999 $25.00 8722 201
02-FEB-2009 $25.00 7591 201
01-JUL-2008 $15.00 6830 202
01-MAR-2006 $25.00 5286 202
(null) (null) (null) (null)

01-DEC-2008 $25.00 2259 203
01-APR-2008 $25.00 1752 203
17-MAR-1999 $15.00 3357 201
16-FEB-2007 $25.00 2974 203

Oracle & Access SOL: Parentheses are missing — A common mistake

select *

from 1 _employees

where employee_ id 203
or employee_id 204
or employee_id = 205
and dept_code = 'SAL'

-
I

Notes

0 This where clause does not contain enough parentheses to control the
way that the individual conditions are combined. Most people will
understand it to mean one thing, but the computer will understand it to

mean something else.

Oracle & Access SOL: How

people often misunderstand this code

select *
from 1_employees
where (employee_id
or employee_id =
or employee_id =
and dept_code = 'SAL'

203 8
204
205)

-
I

924 CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Result table that people often expect from this code

EMPLOYEE DEPT CREDIT PHONE MANAGER

ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID

204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202

205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
Notes

® The pair of parentheses here shows how most people understand the
code in @.

Oracle & Access SQL: How a computer understands this code

select *
from 1_employees
where (employee_id = 203) ©
or
(employee_id = 204)
or

(employee_id = 205
and dept_code = 'SAL');

Result table that the computer produces 0

EMPLOYEE DEPT CREDIT PHONE MANAGER

ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID

203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201

204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202

205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
Notes

©® The pairs of parentheses here show the way that the computer under-
stands the code in ®@. The computer combines phrases with and before
combining phrases with or.

O This table contains the row from employee_id 203, Martha Woods, who
is in the shipping department. This occurred because a mistake was
made when writing the code in @. The mistake was in leaving out a pair
of parentheses. If you don’t want this row in your result table, you must
write the code in @.

CONSTANT VALUES 95

Check your understanding

Add parentheses to the following select statement to prevent it from
making a common mistake.

select *

from 1 foods

where description = 'FRESH SALAD'
or description = 'SANDWICH'
or description = 'DESSERT'

and price <= 2.50
and price_increase <= 0.25;

Constant Values

On the level of data in a table, a constant value is a column that contains
the same value in every row. Usually there is no reason to place a column
like this in a table. Two other techniques can be used instead. One tech-
nique places a literal value into the select clause as a hard-coded value.
This works well when you have only a few select statements. However,
when you have a large number of select statements, this technique can
make the code inflexible. This means that the code cannot easily be
changed to adapt to changing requirements.

The other technique places the constant values in a separate table, which I
call a table of constants. This is defined as a table that has only one row. It
has a separate column for each distinct constant value. The names of these
columns are usually designed so they are unique and are not identical to
the column names in any other table. After this table has been created, it
can be used in coding select statements with any other table.

This technique is used primarily when you have 20 or more select state-
ments that all use the same set of constants. For instance, I once became
responsible for a set of quarterly reports someone else had written. The
beginning date and ending date of the quarter was hard-coded into each
select statement. Each time [wanted to run these reports [had to change
the beginning date and ending date in all of the code. This took most of a
day, and there would always be some errors to find and correct, so the
whole process took about two days. After doing this a few times, I got tired
of it and I changed the code to get the dates from a table of constants. It
would then take me only a few minutes to run all the reports.

926

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

3-5 Using a constant value in the select clause

This section shows constant values hard-coded within a select clause.
This example shows all the different types of data that can be coded as con-
stant values — text, numbers, and nulls. The column that appears to be a
date is actually a text field, where the text represents a date.

You will understand this comment about dates better when we discuss the
Date datatype and the formatting of dates in chapters 6 and 7. Data with a
Date datatype can be stored in a table, but cannot be printed directly.
Dates must be printed as text. So when a date appears in a select clause,
it must appear as text.

Beginning table Literals in select clause

New columns coded as
constant values in the
select statement

Step 1:
Combine the beginning table
and the constant values to
form a single table.

Result table
Step 2:
Select the data you want A
from the single table. A
A
| A

> >| > >| »| > »| »| »| > > >
R RV R R OISR B8 R R &R

CONSTANT VALUES 97

The preceding diagram shows what happens on a conceptual level when a
constant value is used within a select clause. It is as if a new column was
added to the beginning table. This new column contains the same value in
every row and it can be given a column alias, a temporary name, just like
any other column. The syntax is the same here as it is for a column. The
syntax is:

constant_value AS column_alias
This is parallel to:

column name AS column_alias

Task

Show a query that contains hard-coded values in the select clause. Show a
text value, a numeric value, a date value, and a null value.

Oracle & Access SOL

select employee_id,
last_name,
'"EXCELLENT WORKER' as evaluation, ©
10 as rating, ©
'01-JAN-2011' as eval_date, ©
null as next_eval O
from 1_employees
order by employee_ id;

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201

210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

98 CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Result table

EMPLOYEE NEXT

ID LAST_NAME EVALUATION RATING EVAL_DATE EVAL

201 BROWN EXCELLENT WORKER 10 01-JAN-2011 (null)
202 KERN EXCELLENT WORKER 10 01-JAN-2011 (null)
203 WOODS EXCELLENT WORKER 10 01-JAN-2011 (null)
204 OWENS EXCELLENT WORKER 10 01-JAN-2011 (null)
205 PERKINS EXCELLENT WORKER 10 01-JAN-2011 (null)
206 ROSE EXCELLENT WORKER 10 01-JAN-2011 (null)
207 SMITH EXCELLENT WORKER 10 01-JAN-2011 (null)
208 CAMPBELL EXCELLENT WORKER 10 01-JAN-2011 (null)
209 JACOBS EXCELLENT WORKER 10 01-JAN-2011 (null)
210 HOFFMAN EXCELLENT WORKER 10 01-JAN-2011 (null)

Notes

©® This constant value is a text field. Although it is a hard-coded literal
within the select clause, it behaves as if it had created a new column
within the beginning table.

® This constant value is a numeric field.

®

This constant value is a text field that represents a date.

© This constant value is a null. You must not put quotes around the word
null.

3-6 Using a table of constants

Here are some of the benefits of using a table of constants:

m It adds flexibility to your SQL code. Your select statements can
change easily if the value of any of these constants ever changes.

m [t guarantees consistency. You are sure that all the select state-
ments are using the same values for these constants.

This section shows an example of a select statement that uses a table of
constants. To do this, the from clause needs to list two tables: the table of
constants and another table of data. All the other clauses of the select
statement can refer to the columns of either table. No relationship
between the two tables is required. The fact that a table of constants has
only one row ensures that all the constant values will be copied into every
row of the other table.

CONSTANT VALUES 99

For this technique to work, the names of the columns in the table of con-
stants must all be different from any column name in the other table. When
this is not true, you need to use other techniques discussed in chapter 13.

The following diagram shows what happens on a conceptual level when a
table of constants is used with another table in a select statement. It is as
if new columns have been added to the other table. These new columns
contain the same value in every row.

Beginning table Table of constants

(A]B]

Step 1:

Combine the beginning table
and the constant values to
form a single table.

Result table
Step 2:
Select the data you want A
from the single table. A
A
- A

> > > 2| > > > 2| > > > >
o1 TR TSI TR TRl Tl T)

100 CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Task

Code the select statement from the previous section using a table of con-
stants instead of hard-coded literals.

Oracle & Access SOL

select employee_id,
last_name,
evaluation, O
rating, O
eval_date, ©
next_eval O

from 1_employees,

sec0306_constants
order by employee_id;

Beginning table 1 (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Beginning table 2 (sec0306_constants table)

NEXT
EVALUATION RATING EVAL_DATE EVAL

EXCELLENT WORKER 10 01-JAN-2011 (null)

CONSTANT VALUES

Result table
EMPLOYEE LAST NEXT
ID NAME EVALUATION RATING EVAL_DATE EVAL
201 BROWN EXCELLENT WORKER 10 01-JAN-2011 (null)
202 KERN EXCELLENT WORKER 10 01-JAN-2011 (null)
203 WOODS EXCELLENT WORKER 10 01-JAN-2011 (null)
204 OWENS EXCELLENT WORKER 10 01-JAN-2011 (null)
205 PERKINS EXCELLENT WORKER 10 01-JAN-2011 (null)
206 ROSE EXCELLENT WORKER 10 01-JAN-2011 (null)
207 SMITH EXCELLENT WORKER 10 01-JAN-2011 (null)
208 CAMPBELL EXCELLENT WORKER 10 01-JAN-2011 (null)
209 JACOBS EXCELLENT WORKER 10 01-JAN-2011 (null)
210 HOFFMAN EXCELLENT WORKER 10 01-JAN-2011 (null)
Notes

©® This column now comes from the table of constants instead of being
hard-coded as a literal into the select clause.

Check your understanding

Modify the following select statement to remove the hard-coded values

$1.00 and $2.00 from the code and place them in a table of constants.

The table sec0306_price_constants is already set up for you. The
min_price field = 1.00 and the max_price field = 2.00.

When I make a change like this, in addition to replacing the hard-coded val-
ues, | often put those values in the select clause so | can see exactly what
the values are whenever I run the SQL code.

select description
from 1_foods

where price between 1.00 and 2.00

order by description;

102 CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Punctuation Matters

It is almost embarrassing to talk in detail about punctuation . Small prob-
lems, like the one in the previous sentence, are often ignored. (Did you
notice that there is a space before the period?) People usually focus on the
words first and then expect the punctuation to be easy. However, comput-
ers focus on the punctuation first and then look at the words. Any mistake
in punctuation can completely confuse the computer. More than half the
errors most people make while learning SQL are errors in punctuation.

This is made more difficult because punctuation has additional meanings
in SQL that it does not have in English or any other spoken language. Also,
Oracle and Access use punctuation somewhat differently.

Section 3-7 contains the minimum you need to know about punctuation.
Section 3-8 contains a more detailed discussion of punctuation. You might
want to skim this section for now and refer to it later.

3-7 Punctuation you need to know right now

This section contains short explanations about punctuation. I only tell you
enough here to keep you out of trouble and tell you about the best prac-
tices. More detailed explanations are presented in the next section.

Spaces in names — Avoid them when you can

It is best to avoid using a space in any name — table names, column
names, and the names of any other database objects. Use an underscore
character instead of a space. For example, do not name a column hire
date, which has a space between the e of hire and the d of date. Name it
hire_date

Commas

Commas separate the items of a list. A list cannot end with a comma. If the
last item of a list is removed, the comma preceding it must also be
removed. The following example shows a common error:

select first_name,
last_name,
from 1_employees;

Do not use commas or dollar sighs when entering numbers. Decimal points
are the only punctuation allowed within numbers.

PUNCTUATION MATTERS 103

Single quotes

If you are going to use single quotes, make sure you are using a text editor,
such as Notepad, that will use “straight quotes.” Some word processing
programs substitute “curly quotes” for straight quotes. Usually curly quotes
are not acceptable in SQL code.

In Oracle, you should use only single quotes to surround text strings and
dates. Do not use quotes around numbers. See the following examples:

select *

from 1_employees

where dept_code in ('SAL', 'SHP')
or hire date > '01-JAN-2003"'
or employee_id = 201;

In Access, like in Oracle, text strings must be enclosed in quotes and num-
bers must not be enclosed in them. However, dates are punctuated differ-
ently in Access than they are in Oracle. In Access, dates are enclosed in
pound signs, not in quotes:

select *

from 1 _employees

where dept_code in ('SAL', 'SHP')
or hire date > #01-JAN-2003#
or employee_id = 201;

Double quotes

If you are going to use double quotes, make sure you are using a text editor,
such as Notepad, that will use “straight quotes.” Some word processing
programs substitute “curly quotes” for straight quotes. Usually curly quotes
are not acceptable in SQL code.

In Oracle, single quotes and double quotes have different meanings. You
should almost always use single quotes, except in two special situations,
which are explained in the next section.

In Access, single quotes and double quotes have the same meaning, so you
can use double quotes anywhere you can use single quotes. In this book I
mostly use single quotes because I want the same code to work in both
Oracle and Access.

Pound signs

Access uses pound signs to enclose dates. See the previous example.

104

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Semicolons

A semicolon marks the end of an SQL statement.

Reserved words — Avoid them

SQL uses some reserved words. In general, you should avoid using any
word you think might be reserved. For example, do not try to name a col-
umn from or date. Few reserved words contain an underscore, so adding
an underscore is a way to avoid using a reserved word. In the example, it
would be acceptable to name a column from_ or date_.

Task

List the names of all the suppliers that have an apostrophe or an ampersand
in their names. Use the 1_suppliers table.

Oracle SQL

select supplier name

from 1_suppliers

where supplier name like
or supplier_name like '

order by supplier_name;

& o°
o°
.

Access SOL

select supplier_ name

from 1_suppliers

where supplier name like "*'*" @
or supplier name like "*&*"

order by supplier_name;

or

select supplier_ name

from 1_suppliers

where supplier name like '*''*' @
or supplier name like '*&*'

order by supplier_name;

PUNCTUATION MATTERS

Beginning table (1_suppliers table)

105

SUPPLIER

ID SUPPLIER_NAME

ARR ALICE & RAY'S RESTAURANT
ASP A SOUP PLACE

CBC CERTIFIED BEEF COMPANY
FRV FRANK REED'S VEGETABLES
FSN FRANK & SONS

JBR JUST BEVERAGES

JPS JIM PARKER'S SHOP

VSB VIRGINIA STREET BAKERY
Result table

SUPPLIER_NAME

ALICE & RAY'S RESTAURANT
FRANK & SONS

FRANK REED'S VEGETABLES
JIM PARKER'S SHOP

Notes

© Use two single quotes in succession to express a single apostrophe

when it occurs within single quotes.

® Use only one single quote to express a single apostrophe when it occurs

within double quotes.

Check your understanding

Find and correct the error in the following:

select *
from 1 suppliers
where supplier name =

'frank reed's vegetables';

106

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

3-8 Punctuation reference section

This is a reference for the most common types of punctuation required by
Oracle and Access. It includes the previous section. This section covers
punctuation you can learn later. You do not need to read it now.

How to avoid having spaces in names

It is best to avoid using spaces in the names of database objects or column
names. Traditionally with computers, spaces have been used as a separator
character and you are simply asking for trouble if you start to use a space in
any other way.

There are two methods that are often used to eliminate spaces. One
method replaces the spaces with underscore characters. The other method
uses mostly lowercase letters, except each word begins with one uppercase
letter. The spaces are removed. Here is an example of both methods:

Name with spaces: hire date
Method 1: hire_date
Method 2: HireDate

In this book I use the first method. To me, this makes the code easier to
read, but this is a matter of taste, so you can use the other method if you
prefer it.

How to handle spaces in names

Sometimes you cannot avoid having spaces in names, usually because the
system is already set up before you arrive. Then you just have to deal with
them. Both Oracle and Access provide a way to handle this situation. In
Oracle, you enclose the name in double quotes. In Access, you enclose the
name in square brackets. For example:

Name with spaces: hire date

Oracle method: "hire date"
Access method: [hire date]
Commas

Commas separate the items of a list. A list cannot end with a comma. If the
last item of a list is removed, the comma preceding it must also be removed.

This example shows a common error:

select first_name,
last_name,
from 1_employees;

PUNCTUATION MATTERS 107

Do not use commas or dollar signs when entering numbers. Decimal points
are the only punctuation allowed within numbers.

Single quotes

In Oracle, character strings and dates must be enclosed in single quotes.
The terms character string and text string mean the same thing. In Access,
they can be enclosed in either single quotes or double quotes.

Two single quotes next to each other can be used to code an apostrophe.
For details, see the discussion of apostrophes.

Double quotes

In Access, double quotes and single quotes mean the same thing, so text
strings can be enclosed in either single quotes or double quotes.

In Oracle, double quotes are used around any column alias. In particular,
they are needed around a column alias that contains a special character or
a space. After the column alias is created in the select clause, it can be
used in the order by clause, but it must still be in double quotes. For
example:

select first_name as "FIRST NAME"
from 1 _employees
order by "FIRST NAME";

In Oracle, double quotes are also used to put text into date formats. We
discuss date formats in chapter 7. Here is an example:

select employee_id,
to_char(hire_date, '"HIRED IN THE YEAR " yyvy')
from 1_employees;

Apostrophes

An apostrophe can be written as two single quotes next to each other. To
find the names of all the suppliers with an apostrophe in their names, you
can write as follows.

Oracle SOL

select *
from 1 suppliers
where supplier name like '%''%';

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Access SQL method 1

select *
from 1_suppliers
where supplier_name like '*''*';

Access SQL method 2

An easier method to write an apostrophe in Access encloses a single quote
in a pair of double quotes:

select *
from 1_suppliers
where supplier_name like "*'*";

Pound signs
Access uses the pound sign to enclose dates:

select *
from 1_employees
where hire_date = #16-FEB-2007#;

Oracle encloses dates in single quotes:

where hire_date = '16-FEB-2007"';

SQL can be written in free format

Most of the SQL in this book is written in a highly structured way. I recom-
mend using this format. However, this formatting is not required. The code
can all be written on one line, or you can get creative and write it in some
fancy shape.

The clauses of the select statement must always be written in a specified
order. However, you can run the lines together in any way you wish. You can
write as follows:

select *
from 1_employees;

or
select * from 1_employees;
or

select
* from
1l_employees

~e

PUNCTUATION MATTERS 109

There are two exceptions to this. A bug in Oracle at one time did not allow any
completely blank lines in the middle of an SQL statement. This issue has
mostly been fixed now. However, when you run the Oracle SQL Command Line
environment, you may have to use an SQL*Plus command to allow them.

Access allows blank lines, but it does not allow any characters after the
semicolon that marks the end of the SQL statement.
Double dashes (comment line)

In Oracle and most other SQL products, any text written after two dashes is
a comment. The dashes can be written at the beginning of the line or in the

middle:

-- This is a comment line

or

select first_name, last_name -- this is a comment

Access does not allow comments in the SQL window. So, when you write
SQL for both Oracle and Access, you cannot put comments into it.

Periods and exclamation marks

In both Oracle and Access, a period is often used between a table name
and a column name to indicate that the column is part of that particular
table:

select 1 _employees.first_name
from 1 employees;

In Access, an exclamation mark can sometimes be used to mean the same:

select 1_employees! first_name
from 1_employees;

Oracle can use a period in a column alias. Access cannot. The following
SQL works in Oracle, but not in Access:

select first_name as "AND SO MUCH MORE ..."
from 1 _employees;

Ampersands

In Oracle, when you use the SQL Command Line environment, the amper-
sand is often used to indicate a variable. For instance, &fox could be a vari-
able. A slightly different type of variable is &&fox. You will be asked to
supply a value for &fox each time it occurs in an Oracle script file. With
s&&fox you will only be asked to supply a value the first time it occurs.

110

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

If you want to use an ampersand as an ordinary character, you should turn
this feature off. To do this, run the following command:

set define off

This is an SQL*Plus command, not an SQL command. It sets the environ-
ment in which SQL runs in Oracle.

In Access, an ampersand is used for concatenation. For example:

"sweet" & "heart" = "sweetheart"

Vertical bars

The vertical bar or double bar is the uppercase symbol above the back-
slash. The key usually shows two short lines, one above the other. However,
many printers display it as a single line.

Oracle, in the SQL Command Line environment, uses a vertical bar to
divide a column heading into two or more lines. This is done within the
column command. For example:

column first_ name heading 'FIRST | NAME '

Oracle also uses two consecutive double bars for the concatenation func-
tion. For example:

'SUN' || 'SHINE' = 'SUNSHINE'

Semicolons

A semicolon marks the end of an SQL statement. This tells the computer
that the statement is complete and may now be processed. Oracle requires
a semicolon to end a statement. Oracle also accepts a forward slash as
another method of statement termination. In Access, the semicolon is
optional.

Colons

Oracle, in the Database Home Page environment, uses a colon as the first
character of a variable name. An example is : fox. The user will be asked for
the value of this variable at the time that the select statement is run.

Numbers — Commas, decimal points, and dollar signs

When you are using a number within SQL code, do not use commas or dol-
lar signs. Decimal points may be used.

PUNCTUATION MATTERS 111

Square brackets
In Access, square brackets are used to enclose names that contain spaces:

select [employee ID],
[Eirst name],
[last name]
from [employees table of the lunches database];

Asterisks

In both Oracle and Access, select * means “select all the columns.”
Count (*) means “count all the rows.” An asterisk is also used as a sign for
multiplication. In Access patterns, it is a wildcard character meaning “any
number of characters, or possibly no characters at all.”

Forward slashes

In Oracle, a forward slash can be used to terminate an SQL statement.
More precisely it means “run the SQL code that is now in the buffer.”

A different meaning in both Oracle and Access uses a forward slash for divi-
sion of numbers.

Multiline comments

In Oracle, you can enter a multiline comment by beginning it with /* and
putting */ at the end. For example:

/*

this is the beginning of the comment,

then you add as many lines as you want ...

and keep on adding more lines

You end the comment this way
*/

Not Equal conditions

The Not Equal condition can be shown in several ways. To exclude an
employee_id of 201, you may write any of the following:

where employee id != 201 Oracle only
where employee_id *= 201 Oracle only
where employee_id <> 201 Oracle & Access
where not employee_id = 201 Oracle & Access

where not (employee id = 201) Oracle & Access

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Wildcards

Wildcards are used in a where clause with a 1ike condition.

In Oracle
% (percent) Used to mean any number of characters,
or possibly no characters at all.
_ (underscore) Used to mean exactly one unknown
character.
In Access
* (asterisk) Used to mean any number of characters
or possibly no characters at all.
? (question mark) Used to mean exactly one unknown
character.
(pound sign) Used to mean exactly one digit, 0 to 9.
[a-d] (square brackets) Used to mean a range of characters, in

this case from a to d.

[*] (square brackets around Means the character itself, without its
a wildcard character) wildcard properties.

Regular expressions

Oracle can now use regular expressions. They are a more powerful alterna-
tive to using wildcard expressions. I am not going to try to explain them in
this book. They come from the Perl language. Here is an example of a regu-
lar expression:

select regexp_replace(number with format_1,
'([[:digit:11{3})\.([[:digit:]1]1{5})\.
([[:digit:11{4})\.([[:digit:11{7})",
'+\1-\3-\3-\4"') as number with_format_2
from my table;

Note how complex this is and how much punctuation there is in it. Also
note that three different types of parentheses are used, each with its own
special meaning. In this code, lines 2 and 3 must be put on a single line,
otherwise the code runs but gives the wrong results.

If you want to know more about the use of regular expressions in Oracle,
see chapter 3 of the Two Day Developer Guide in the Oracle documentation.

CASE SENSITIVITY 113

Case Sensitivity

3-9 Case sensitivity in Oracle

Many Oracle databases are case sensitive. That means that the data held in
the tables distinguishes between uppercase letters, such as “A”, and lower-
case letters, such as “a”. Some fields may be in mixed case. The data often
looks better that way.

Unfortunately, it can also mean that sometimes you need to remember for
each column in which case the data is coded. For instance “JOHN", “john”,
and “John” are all different. If you look for data but you use the wrong case,
you will not find it. There are two ways to deal with this.

First, the only parts of SQL code that are case sensitive are the parts
between quotation marks, so that is the only part where you need to be
concerned about uppercase versus lowercase. Now let us assume for this

discussion that the data in the first_name column is actually “John”,
where the first letter is uppercase and the remaining letters are lowercase.

One strategy is to actually remember which case the data is written in. If
you remember this you can use your knowledge when you write the literal
values (the part between quotation marks) in your SQL code. Here is an
example:

select *
from employees
where first _name = 'John’';

The other strategy is to use a row function to convert the first_name col-
umn in the where clause to be in a particular case. There are two row func-
tions you can use to do this: upper and lower. They can convert the
first_name column to uppercase letters or lowercase letters, respectively.
Using this strategy, you can write the SQL code:

select *
from employees
where upper (first_name) = 'JOHN';

A common compromise in an Oracle database is to put most of the data in
uppercase and have only a few fields that are exceptions to this. Then peo-
ple simply remember that most text between quotes should be in upper-
case. [am using that compromise in this book.

114

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Task for example 1

Show that the demonstration database distributed with Oracle XE is a
case-sensitive database.

Procedure

1.

Start Oracle by going to the Database Home Page.

Start > All Programs > Oracle Database 10g Express Edition
> Go To Database Home Page

Log on as userID hr. The password is hr if you followed the direc-
tions in the “Getting Started Guide” for Oracle Database Express
Edition; otherwise the password is whatever you set it to when you
unlocked this account.

Click the SQL icon, then the SOL Commands icon.
Change Display to 200.

In the top part of the screen enter:

select * from employees;

and click the Run button.

Note that the data in the first_name and last_name columns is
mixed case, but the data in the email and job_id columns is in
uppercase. This shows you that this is a case-sensitive database.

Oracle result table 1 (first few rows, shows this table uses mixed case)

EMPLOYEE_ID
100
101
102
103
104
105

FIRST_NAME LAST_NAME EMAIL PHONE_NUMBER HIRE_DATE JOB_ID SALARY

Steven
Neena
Lex
Alexander
Bruce

David

King SKING 515.123 4567 17-JUN-87 AD_PRES 24000
Kochhar NKOCHHAR 5151234568 21-SEP-89 AD_VP 17000
DeHaan LDEHAAN 515.123.4569 13-JAN-93 AD_VP 17000
Hunold AHUNOLD 590.423 4567 03-JAN-90 IT_PROG 9000
Ernst BERNST 590423 4568 21-MAY-91 IT_PROG 6000

Austin DAUSTIN 590.423 4569 25-JUN-97 IT_PROG 4800

CASE SENSITIVITY 115

Task for example 2

Show the problem in dealing with a case-sensitive database.

Oracle SQL: This does not work

Enter this code in the top part of the screen and click the Run button:

select *
from employees
where first_name = 'john';

Oracle result for example 2: a message
no data found

Task for example 3

Show one method to deal with case sensitivity.

Oracle SOL: Using the case that matches the data

select *
from employees
where first_name = 'John';

Oracle result table 3

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL PHONE_NUMBER HIRE_DATE JOB_ID SALARY

110 John Chen JCHEN 515.124 4269 28-SEP-97 FI_ACCOUNT 8200
139 John Seo JSEO 650.121.2019 12-FEB-98 ST_CLERK 2700
145 John Russell JRUSSEL 011.44.1344.429268 01-OCT-96 SA_MAN 14000
3 rows returned in 0.17 seconds CSV Export
Warning

If you use this method, you could often get the wrong results. There are two
reasons for this:

m You might not know exactly what case is used in the data.

m The data in the table may be entered in an inconsistent way.

116 CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Task for example 4

Show the other method to deal with case sensitivity.

Oracle SOL: Using a row function

select *
from employees
where lower (first_ name) = 'john';

Oracle result table 4
Same as result 3

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL PHONE_NUMBER HIRE_DATE JOB_ID SALARY

110 John Chen JCHEN 515.124.4269 28-SEP-97 FILACCOUNT 8200

139 John Seo JSEO 650.121.2019 12-FEB-98 ST_CLERK 2700

145 John Russell JRUSSEL 011.44.1344.429268 01-0CT-96 SA_MAN 14000
3 rows returned in 0.17 seconds C8V Export

Task for example 5

Show SQL code that uses the common compromise to put all literals in
uppercase.

Oracle SQL: A common compromise, using uppercase for most fields

select *
from employees
where email = 'SKING';

Oracle result table 5

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL PHONE_NUMBER HIRE_DATE JOB_ID SALARY
100 Steven King SKING 515.123.4567 17-JUN-87 AD_PRES 24000

o

1 rows returned in 0.17 seconds CSV Export

Check your understanding

Add the word “upper” to the following code to make it work regardless of how
the name is capitalized in the data.

select *
from employees
where last_name = 'de haan';

CASE SENSITIVITY 117

3-10 The debate about case sensitivity in SQL

Actually, there is not much of a debate about case sensitivity in SQL.
Rather there are two camps of people. Each camp believes that it is entirely
right and everyone else is entirely wrong, so this is more like a religion than
a debate. I find I can get along with either group as long as I pretend that I
believe the same way they do.

The issue is whether a database should be case sensitive or not. Some peo-
ple believe that making it non-case-sensitive makes it easier to use and
therefore a more useful and reliable tool. Other people believe that case
sensitivity is just a fact of life; it is not such a big deal, and everyone should
be able to handle it.

The original designers of the SQL language believed that non-case-sensi-
tivity is best. You can still see traces of this in the SQL language itself. For
instance, table names and column names are not allowed to be case sensi-
tive. If you already have a table named “employees”, you are not allowed to
create a new table named “EMPLOYEES”, because each table is required to
have its own name and these two names are considered to be the same.

3-11 You have a choice

When you use Oracle, you can choose whether you prefer to work with a
case-sensitive or a non-case-sensitive database. If you start Oracle by
going to the Database Home Page, then you will be operating in a
case-sensitive environment.

However, if you prefer to use a non-case-sensitive environment, that is also
available to you. Just start Oracle by going to the SQL Command Line.

The next section explains how to turn off case sensitivity in the SQL Com-
mand Line environment.

3-12 You can turn off case sensitivity in the
Oracle SQL Command Line environment

Some people prefer to use a non-case-sensitive database. This allows them
to focus on learning SQL without having an additional nagging concern
about uppercase versus lowercase.

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Two steps are required to do this. First, the data must be stored in the Ora-
cle database using uppercase letters. In the Oracle database for this book I
have already done this. There are no mixed case fields or lowercase fields
outside of this chapter. By contrast, the Access data is usually in mixed
case.

Second, you can use the SQL*Plus command:
set sqglcase upper:;

SQL*Plus is the environment in which Oracle SQL is run when you start
Oracle with the “Run SQL command line” interface. This command causes
SQL*Plus to translate every SQL command into uppercase letters. For
example, when you enter

select * from employees where first_name = 'john';
the SQL*Plus environment changes this to
SELECT * FROM EMPLOYEES WHERE FIRST NAME = 'JOHN';

before the command is run.

3-13 Case sensitivity in Access

Access deals with the case sensitivity issue in an entirely different way.
Access stores data in the database in exactly the way you enter it, using
uppercase and lowercase letters. Oracle does this, too. But when Access
compares two values to see if they are the same, Access uses a non-case
sensitive method of comparing them.

This means that every Access database is non-case-sensitive. When you
write SQL code for an Access database, you do not have to worry whether
the literal values need to be uppercase or lowercase letters. The case in the
literal value does not need to match the case of the data in the database.

Usually in this book I try to show you that Oracle SQL and Access SQL are
similar. In this section I am going to do something different because I want
to show you that they handle the case sensitivity issue in different ways. I
am going to write one SQL statement that does not even involve literals of
any sort. You will see that I get one result when I run it in Oracle and a dif-
ferent result when I run it in Access.

CASE SENSITIVITY 119

Task

Show that Oracle and Access handle case sensitivity in different ways and
that this can affect the result of running an SQL statement.

Oracle & Access SOL

select *

from sec0313_case_sensitivity
where namel = name2

order by row id;

Beginning table (sec0313_case_sensitivity table)

ROW_ID NAME1 NAME2
1 john john
2 John John
3 JOHN JOHN
4 john JOHN

Oracle result table

ROW_ID NAME1l NAME2
1 john john
2 John John
3 JOHN JOHN

Access result table

[5 quent
Row_ID ~ Namel * Name2 °
1ljohn john
2 John John
3JOHN JOHN
4 john JOHN
* (New)

Notes

Note that these tables are different. The result in Oracle has three rows and
the Access result has four rows.

120 CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Three-Valued Logic

3-14 SQL uses three-valued logic

Many people know the statement that SQL uses three-valued logic, but
some people are not sure what it means. The meaning is very simple. Take
any logical statement that you could put in a where clause, let’'s call it A. It

could be

first_name = 'JOHN'

or

supplier id = 'FV' and product_code = 'AS'
or

many other logical conditions.

The point is we can think that our logical condition is either true or not true
for each row of any table.

Actually, that way of thinking is incorrect. That would be correct if there
were two alternatives: Either the statement is true or it is false. However,
there is a third possibility. It could be unknown, which means that we do
not know if it is correct or not. There could be a null in one of the columns
we are testing. The term three-valued logic refers to this third possibility. It
is another way to say that there could be some nulls in the data.

There is also another way to think of this. If you take any table, you can sep-
arate its rows into three separate groups. One group will be all the rows
where condition A is true. One group will be all the rows where condition A
is false. The third group will be all the rows where we do not know whether
condition A is true or not.

Task

Show that the logical condition

"the price increase is greater than 20 cents"
divides rows of the 1_foods table into three separate parts:
m The rows where it is a true statement
m The rows where it is a false statement

m The rows where where we do not yet know if the statement is true or
false

THREE-VALUED LOGIC

121

Oracle & Access SOL

1.

Show the rows where the statement is true.

select *

from 1_foods

where price_increase > 0.20
order by menu item;

Show the rows where the statement is false.

select *

from 1_foods

where not (price_increase > 0.20)
order by menu_item;

Show the rows where the truth of the statement is unknown.

select *

from 1_foods

where price_increase is null
order by menu_item;

Beginning table (1_foods table)

ID

SUPPLIER PRODUCT
CODE

MENU PRICE
ITEM DESCRIPTION PRICE INCREASE
1 FRESH SALAD $2.00 $0.25
2 SOUP OF THE DAY $1.50 (null)
3 SANDWICH $3.50 $0.40
4 GRILLED STEAK $6.00 $0.70
5 HAMBURGER $2.50 $0.30
6 BROCCOLI $1.00 $0.05
7 FRENCH FRIES $1.50 (null)
8 SODA $1.25 $0.25
9 COFFEE $0.85 $0.15
10 DESSERT $3.00 $0.50

Result table 1 (The rows where the statement is true)

ID

SUPPLIER PRODUCT

CODE

MENU PRI
ITEM DESCRIPTION PRICE INCREA
1 FRESH SALAD $2.00 $0.
3 SANDWICH $3.50 SO.
4 GRILLED STEAK $6.00 $0.
5 HAMBURGER $2.50 $0.
8 SODA $1.25 $0.
10 DESSERT $3.00 $0.

CE
SE

122 CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Result table 2 (The rows where the statement is false)

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
FRV BR 6 BROCCOLI $1.00 $0.05
JBR VR 9 COFFEE $0.85 $0.15

Result table 3 (The rows where the truth of the statement is unknown)

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
ASP SP 2 SOUP OF THE DAY $1.50 (null)
FRV FF 7 FRENCH FRIES $1.50 (null)

Error Messages

3-15 Error messages are often wrong

One of the major challenges in dealing with computer software of any type
is that the error messages are often wrong. This can drive you crazy at
times. The message is usually correct in saying there is an error. There usu-
ally is an error of some kind. However, identifying the error and telling you
how you can correct it is the part that is often wrong. Many people want to
know why.

The short answer is that when the computer encounters an error, it can
become genuinely confused. It doesn’t have anything to fall back on. It
doesn’t understand your thinking, motivation, or intent. It does not have an
overall understanding of what you are trying to accomplish. It does not
even have another level of code to give it some guidance. In short, it was
totally dependent on your code and your code did not work.

The best that many error messages can do is point out the location of the
error. That can help you guess what might be wrong, but sometimes the
error actually occurs before the place that the message indicates. If the
error points to the end of your code, then it is not telling you much. As you
get more experience with computers, you become better at guessing what
the problems could be.

ERROR MESSAGES 123

Because [know of this problem with error messages, I am not a big fan of
computer systems that try to give you several error messages at a time. I
think that if a computer encounters an error it should show you one error
message, indicate the location as best it can, and then stop. Most com-
puter software does this today.

I remember the first COBOL program I wrote. COBOL is not used much
today, but there are still some programs written in it. In theory, this lan-
guage would tell you all your errors in one compile. It would not just stop
at the first error.

My program was about 20 pages long. The output of my first compile was
50 pages of error messages. That was very shocking and discouraging. How-
ever, | sat down determined to go through every one of those messages. |
knew that they were all supposed to be valuable information.

When I finished the process of going through all the error messages, I had
found one word that was spelled incorrectly and one period that was miss-
ing. These problems were indicated in the first two messages. All the other
messages were total rubbish because the computer was completely con-
fused before it got to that point

Task

Show the error messages produced by the code:

select first_name,
last_name,
from 1_employees;

The problem with this code is that there is a comma after last_name.

Oracle error messuge

ORA-00936 missing expression

Access error messuge

Microsoft Office Access

The SELECT statement includes a reserved word or an argument narme that is
. misspelled or missing, or the punckuation is incorrect,

ok | | Hel

124 CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Check your understanding

Start with any select statement that works. On purpose, change it so that it
does not work anymore. See how well the error messages can tell you what

the problem is.

Some Exercises Solved for You

Here are some exercises | have solved for you. The problems might look
simple, but they are actually a bit tricky. I chose to solve these exercises
because they illustrate many of the fine points in the topics we have

already discussed.

3-16 Exercise 1

Task

List the employees who have last names starting with H through P,

Orade & Access SOL: First attempt — INCORRECT

select employee_id,

first_name,
last_name
from 1_employees

where last_name between 'H' and 'P'
order by employee_id;
Beginning table (1_employees table)
EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

SOME EXERCISES SOLVED FOR YOU 125

Result table @

EMPLOYEE
ID FIRST_NAME LAST NAME
202 JIM KERN
204 ELLEN OWENS
209 PAULA JACOBS
210 NANCY HOFFMAN
Notes
©® Henry Perkins is not listed in the result table. The problem is that P
means “P followed by a space” in this context, and PE comes after P fol-
lowed by a space.
Oracle SQL: Second attempt — INCORRECT
select employee_id,
first_name,
last_ name
from 1 _employees
where last_name between 'H' and 'P%' @
order by employvee_id;
Access SQL: Second attempt — INCORRECT
select employee_id,
first_name,
last_name
from 1_employees
where last_name between 'H' and 'P*' @
order by employee_ id;
Result table
EMPLOYEE
ID FIRST_NAME LAST NAME
202 JIM KERN
204 ELLEN OWENS
209 PAULA JACOBS
210 NANCY HOFFMAN

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

126
Notes
® Here we are trying to use a wildcard character after the P to mean “P fol-
lowed by any other character.” The code runs, but Henry Perkins is still
missing from the result.
Only the 1ike condition supports wildcard characters. When these char-
acters are used with the between condition, they are considered to be
regular characters instead of wildcard characters. So here the percent
sign and the asterisk are regular characters. PE comes after P% and P*,
so Perkins is not included in the result.
Orade & Access SOL: Third attempt — CORRECT
select employee_id,
first_name,
last_name
from 1_employees
where last_ name between 'H' and 'PZZ' ©
order by employee_id;
Result table
EMPLOYEE

ID FIRST _NAME LAST_ NAME

202 JIM KERN
204 ELLEN OWENS
205 HENRY PERKINS
209 PAULA JACOBS
210 NANCY HOFFMAN
Notes
® This stretches the between condition to the end of the Ps. Of course, it

assumes there will not be any data between PZZ and Q.

Oradle & Access SQL: Fourth attempt — CORRECT

se

fr
wh
or

lect employee_ id,
first_name,
last_ name
om l1_employees
ere last_name between 'H' and 'Q' O
der by employee_ id;

SOME EXERCISES SOLVED FOR YOU 127

Notes

O This is another way to stretch the range of the between condition to
include all words beginning with P. Of course, if someone has Q as their
last name, then that row would also be included in the result table.
(There is a jazz musician whose last name is Q.)

Access SOL: Fifth attempt — CORRECT

select employee_id,
first_name,
last_name
from 1_employees
where last_name like '[H-P]*' ©
order by employee_id;

Notes

@ In this solution we are using the 1ike condition instead of the between
condition. We can do this in Access, but not in Oracle, because Access
supports a greater variety of patterns than Oracle does.

Orace & Access SQL: Sixth attempt — CORRECT (the best solution)

select employee_id,
first_name,
last_name
from 1 _employees
where last_name >= 'H'
and last_name < 'Q'
order by employee_ id;

3-17 Exercise 2

In the 1_suppliers table, list the row for Alice & Ray's Restaurant.

Oracle & Access SQL: First attempt — INCORRECT

select *
from 1_suppliers
where supplier name = 'ALICE & RAY'S RESTAURANT'; O

Result — An error message

128 CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

Oracle & Access SQL: Second attempt — CORRECT

select *
from 1_suppliers
where supplier name = 'ALICE & RAY''S RESTAURANT'; ©

Access SQL: Third attempt — CORRECT

select *
from 1_suppliers
where supplier name = "ALICE & RAY'S RESTAURANT"; ©

Part of the beginning table (1_suppliers table)

SUPPLIER
ID SUPPLIER NAME

ARR ALICE & RAY'S RESTAURANT
ASP A SOUP PLACE

Result table

SUPPLIER

ID SUPPLIER NAME

ARR ALICE & RAY'S RESTAURANT

Notes

©® The supplier name contains an apostrophe, which confuses the
computer.

® Use two consecutive single quotes to code an apostrophe in a text string
that is enclosed in single quotes.

® In Access, we can enclose a text string in double quotes. When we do
this, the apostrophe in the name does not cause a problem.

SOME EXERCISES SOLVED FOR YOU 129

3-18 Exercise 3

List the employee_id, first_name, last_name, and hire_date of all the
employees hired in the year 2008.

Oracle & Access SQL: First attempt — INCORRECT

select employee_id,
first_name,
last_name,
hire_date
from 1_employees
where hire _date = '2008'; (Oracle) ©

where hire_ date #2008#; (Access)

Result — An error message

Oracle & Access SQL: Second attempt — CORRECT

select employee_id,
first_name,
last_name,
hire_date

from 1_employees

where hire date between '01-JAN-2008' (Oracle) ®
and '31-DEC-2008'; (Oracle)

where hire_date between #01-JAN-2008# (Access)
and #31-DEC-2008#; (Access)

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201

210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

130

Result table

CHAPTER 3 COMPOUND CONDITIONS IN THE WHERE CLAUSE

EMPLOYEE

ID FIRST _NAME LAST NAME HIRE_DATE

204 ELLEN OWENS 01-JUL-2008

207 DAN SMITH 01-DEC-2008

208 FRED CAMPBELL 01-APR-2008
Notes

©® When we specify a date, we cannot only give the year.

® To specify a year, we must say that the date is between January 1 and
December 31 of that year.

Oracle SOL: Another solution, using features we have not covered yet

select employee_id,
first_ name,
last_name,
hire_date
from 1_employees
where to_char (hire_date, 'yyyy') = '2008'; ©

Access SQL: Another solution, using features we have not covered yet

select employee_id,
first_name,
last_name,
hire_date
from 1_employees
where year (hire_date) = 2008; O

Notes

® In Oracle, the to_char function can specify the format of a date. For
more details, see section 7-2.

O In Access, the year function shows only the year part of a date, and it
shows this as an integer. Here the hire_date is 2008, which is an inte-
ger and not a date so it is not enclosed within pound signs.

KEY POINTS

Key Points

131

Computers use the words and, or, and not in a precise way that is a
little different that the way they are sometimes used in English.

When you write a select statement, you may sometimes want to
hardcode some values into the statement you are writing. You can
make your code more flexible by using a table of constants instead.

Punctuation is very important in all computer languages, including
SQL.

Some databases are case sensitive and others are not. You need to
know if the database you are using is case sensitive or not.

SQL uses three-valued logic. This is another way to say that there can
be nulls in the data.

Error messages are not always completely correct. This applies to all
computer software.

This page intentionally left blank

chapter 4

SAVING YOUR
RESULTS

The result table of a query has columns and rows. It is a table
and it can be handled like any other table. This chapter shows

you how to save the results of a query in a new table and make
modifications to the data.

133

Saving Your Results ina New Table or View.l 135

4-1 Create a new table from the result of a select statement 135
4-2 Creating a new view from the results of a select statement 139
4-3 Similarities between tablesand views. 142
4-4 Differences between tablesandviews L. 142
4-5 Deletingatable 143
4-6 Deletingaview. 145
4-7 One view can be built on top of anotherview. 146
4-8 Preventative delete 149
Modifying the Datain aTable with SQL., 151
4-9 Addingonenewrowtoatable. L. 151
4-10 Adding many new rowstoatable 154
4-11 Changing data in the rows already inatable 157
4-12 Deletingrows fromatable 159
Modifying the Datain a Table with the GUI. 161
4-13 Using the Oracle GUI to change datainatable 161
4-14 Using the Access GUI to change the datainatable. 164
Restrictions on Modifying the DatainaTablel 167
4-15 Constraints with insert, update, anddelete. 167
4-16 Security restrictions. 169

Key Points. 170

Saving Your Results in a New Table or View

All the queries you have written so far display their results on the screen.
After the computer is turned off, the results are gone. This chapter shows
how to save the results in a table. Alternatively, they can be saved in a view,
which is similar to a table.

To see the data in your table or view, you must use:

select * from new table or view;

4-1 Create a new table from the
result of a select statement

This section shows how to create a new table from the results of a select
statement. Both Oracle and Access can perform this operation, but they
specify it with different syntax. Oracle follows the SQL standard, but Access
has created its own nonstandard expression.

You are the owner of the new table and have complete control over it. The
new table is private and can only be seen and used by you unless you decide
to share it with other people. You can modify the data in this table by adding
new rows, changing rows, or deleting rows.

There are two tasks in this section. In the first task we create a new table
from a select statement. In the second task you create your own copy of
an existing table so you can modify it and change its data without affecting
the original table.

Description of the process

Begin with any select statement. In Oracle, one new line is added before
the select clause. This line says create table, and then gives the name
of the new table, followed by the word as.

In Access, a new clause is added right after the select clause. This clause
says into followed by the name of the new table. Except for this one
change, the original select statement does not need to be changed. How-
ever, there are some special considerations about the order by clause.

In old versions of SQL, you could not include an order by clause. If the
original select statement included this clause, you had to delete it. The
reasoning was that the rows of a table are, in theory, an unordered set, so
when you created a new table, you were not allowed to specify an order for
its rows.

135

136

CHAPTER 4 SAVING YOUR RESULTS

Now this has changed. The newer versions of Oracle and Access do allow
you to use an order by clause in a create table statement. However, in
theory, the rows of the table are still an unordered set, which means that
the order by clause is being ignored. For that reason I do not usually use it
in this book.

In both Oracle and Access, | recommend that the name of the new table be
a name that is not already used by any other object in the database. Both
Oracle and Access allow some exceptions to this rule, but you are inviting
confusion and trouble if you have two objects with the same name. Each
table must have a unique name. If a name is already being used, you will
receive an error message and your SQL statement will not be processed.

In Access, when you create a new table from a select statement, you must
click the Run button on the Ribbon in the upper left corner of the screen.
This might be a little different from your usual procedure to run a query. I
often run a query by clicking the View Datasheet button in the bottom right
corner of the screen. However, if you click that button the select state-
ment will run and you will see the results, but the results will not be saved
in a new table.

The Run button you need to click is not always available to you on the Rib-
bon; that is, it is context sensitive. To see it you need to create a query. To
do this you can:

1. Click the Create tab.

2. Click Query Design in the Other group.

3. Close the Show Table window.

4. Click SQL View.

5. Enter a select statement SQL query or create it.

The Run button appears within the Results group of the Design tab within
the Query Tools context.

/ --\ [¥ Query Tools 5
-:3
Home Create External Data Database Tools Design
u
e et Y A oK) o
Ne @ Pass-Through
\Ilew u Select | Make Append Update Crosstab Delete o
Table [{,Data Definition

Results Query Type

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 137

Task: Create a new table from a se1ect statement

Save the result table of the following select statement. Create a new per-
manent table. Show how to change a select statement so that the result is
saved in a new table, instead of being displayed on the screen. Name the
new table sec0401_sales_staff.

select employee_id, ©
first_name,
last_name,

dept_code
from 1_employees
where dept_code = 'SAL'

order by employee_id; ©

Oracle SOL: Modified se1ect statement — Save results in a table

create table sec0401_sales_staff as ©
select employee_id,

first_name,

last_name,

dept_code
from 1_employees
where dept_code = 'SAL';

Access SOL: Modified se1ect statement — Save results in a table

select employee_id,
first_name,
last_name,
dept_code

into sec0401_sales_staff O

from 1 _employees

where dept_code = 'SAL';

Orade & Access SQL: Show the table you created o

select *
from sec0401_sales_staff O
order by employee_id; ©

138

CHAPTER 4 SAVING YOUR RESULTS

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

New table (sec0401_sales_staff table)

EMPLOYEE

DEPT

ID FIRST NAME LAST NAME CODE

202 JIM KERN SAL

204 ELLEN OWENS SAL

205 HENRY PERKINS SAL

210 NANCY HOFFMAN SAL
Notes

©® You can begin with any select statement.

® Removing the order by clause is optional. You are allowed to use it

when you create a table. However, this is just allowed for convenience in
writing the SQL statement. The rows of the table will still be an unor-
dered set. The meaning of the order by clause will be ignored.

® In Oracle, you add a create table clause before the select clause.

O In Access, you add an into clause after the end of the select clause

and before the from clause.

@ After you create a new table, you can write any select statement using

the data from the new table. To see the data in the new table you cre-
ated, you need to use the following:

select * from sec0401_sales_staff;

® The from clause here names the new table.

© The order by clause here does put the rows of the result table in a spe-

cific order.

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 139

Check your understanding

Create a copy of the 1_employees table. Name it sec0401_employees.

Here is the reason you might want to do this. Later in this chapter you will
learn how to change the data in a table. However, you should not make any
changes to the data in the 1_employees table because many of the exam-
ples in this book are based on it. If you make a change to the data in this
table, the examples in the book might not work correctly.

Instead, you can make a new copy of the table and then you can change the
data in the new copy. This allows you to practice changing the data and still
keep the 1_employees table unchanged so it works in all the examples
from the book.

4-2 Creating a new view from
the results of a select statement

This section shows another way to save the results of a query. Here the
results are saved in a view rather than a table. A view is very much like a
table. The next two sections discuss the similarities and differences
between a view and a table, but for now, you can think of a view as a special
type of table.

Access uses the term saved query instead of the term view. However, they
both mean the same thing. Standard SQL calls it a view.

After the new view is created, it can be used like a table. It can be used in
the from clause of any select statement. You are the owner of this view
and have complete control over it. You are the only person who can use it,
unless you decide to share it with other people.

In the previous section I showed you how to create your own personal copy
of a table, so in this section you might expect me to show you how to cre-
ate your own personal copy of a view. However, that is usually not neces-
sary. Just use your own initials at the beginning of the name of the view.
That usually gives you all the ownership you need.

Description of the process

Begin with any select statement. In Oracle, one new line is added before
the select clause. This line says create view, and then gives the name of
the new view, followed by the word as.

In Access you use a graphical user interface (GUI) method to create a saved
query. After you enter the query, press CTRL + S or click the Save icon near

140

CHAPTER 4 SAVING YOUR RESULTS

the Microsoft Office button. Then enter the query name in the Save as win-
dow.The name of the view, just like the name of a table, must be unique.

In older versions of SQL, the order by clause had to be dropped when you
created a view. However, the current versions of both Oracle and Access
allow you to keep the order by clause in the select statement that
defines the view.

Task

Save the result table of the following select statement. Here we are getting
a few rows and a few columns from a table. Create a new view from this
select statement and name it sec0402_sales_staff view.

select employee_id, O
first_name,
last_name,

dept_code
from 1_employees
where dept_code = 'SAL'

order by employee_ id; ©®

Oracle SQL:
Modified se1ect statement — Save the results in a view

create view sec0402_sales_staff view as ©
select employee_id,

first_name,

last_name,

dept_code
from 1_employees
where dept_code = 'SAL'

order by employee_ id;
After you create this view, you can look at it with:
select * from sec0402_sales_staff view; O

This is not available in Access as an SQL command that runs within the SQL
view.

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 141

Access GUI method: Save the results in a saved query o

Step 1: Enter the select statement in the SQL window:

select employee_id,
first_name,
last_name,

dept_code
from 1 _employees
where dept_code = 'SAL'

order by employee_ id;

Step 2: Run the query by clicking the Run button on the Ribbon or the View
Datasheet button. You do this to make sure that the query runs.

Step 3: Save the select statement. One way to do this is with CTRL + S.

Step 4: Enter a name for the query in the Save As window, as shown here.

| Query1

select employee_id,
first_name, Save As
last_name,
dept_code Query Mame:

from |_employees
where dept_code = "SAL SEC0402_SALES_STAFF_VIEW] |

order by employee_id;

[0K][Cancel]

Beginning table and result table — Same as in the previous section

Notes

©® Begin with any select statement.

® The order by clause is allowed in Oracle and Access.

® In Oracle, you add a create view clause before the select clause.

O You can always use a select * query to see the view you have created.

@ Access does not have an SOL command to create a view, at least not on the
SQL window level. Instead, it uses a GUI method to create a saved query.

Check your understanding

Create a view of the 1_employees table. Name it sec0402_employees_view.

142

CHAPTER 4 SAVING YOUR RESULTS

4-3 Similarities between tables and views

Tables and views are very similar. They look alike. They both are two-dimen-
sional structures that can contain the same types of data. They both have
columns, rows, and cells. They can both be used as a source of data in the
from clause of a select statement.

Most of the time there is no need to distinguish between them. Often when
[use the word table | mean a view or a table. When I want to differentiate a
table from a view, | usually call the table a base table or a data table.

Check your understanding

Show that you can use the table and view created in the previous sections as
a source of data for a query. Run these select statements:

select *
from sec0401_employees;

select *
from sec0402_employees_view;

4-4 Differences between tables and views

A table stores data directly on the disk. A view stores a select statement
on the disk, but does not store any data. When SQL uses a view in the from
clause of a query, it runs the select statement that defines the view. The
result table of this select statement is the data of the view. On a basic
level, tables store the data that is in a database. A view displays a presenta-
tion of the data that is already in the tables.

A table always requires much more disk space than a view. A table can con-
tain thousands or even millions of rows, which can require a substantial
amount of disk space. A view needs very little disk space because it is only
storing a select statement.

A table is static, but a view is dynamic. If you want stability to be sure the
data will not change unless you explicitly make changes to it, you should
store your data in a table. On the other hand, if you want the latest infor-
mation that shows all the recent changes to the data in the database, you
should use a view.

Whenever you use a view, SQL runs the select statement that defines the
view. The data is drawn from the underlying tables at that time, so the data
in a view can change although no commands have been issued to explicitly
change it.

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 143

The differences between a table and a view.

Table

View

Stores the data in the database on the | Stores the select statement that defines the

disk drive. view. It has no data of its own.

Uses a lot of disk space for a large Uses very little disk space.

table.

The data belongs to the table. The data does not belong to the view. It

belongs to the tables used in the select
statement that defines the view.

The data in a table is stable and does The data in a view is dynamic and changes
not change by itself. when the data in the underlying tables is

changed.

Should you use a table or a view?

Use a table when you want to store data that does not exist anywhere else
in the database. Use a view when you want to present the data in a new
way. The underlying data must already be present in the tables of the data-
base. Also use a view if you want the data to change dynamically as other
people make changes to the tables in the database.

4-5 Deleting a table

Now that you know how to create new tables, you also need to know how to
delete them. Otherwise, you will eventually have more of them than you
want.

In both Oracle and Access, you can delete a table with the SQL command
drop table, followed by the name of the table. This gets rid of the table
entirely. It deletes the data in the table, the table structure, and the defini-
tions of the columns. The name of the table is no longer reserved.

144 CHAPTER 4 SAVING YOUR RESULTS

Task

Delete the table named sec0405_sales_staff.

Oracle & Access SOL

drop table sec0405_sales_staff;

Access GUI method alternative

In Access, you can also use a GUI method to delete a table.
Step 1: Click the Tables tab.
Step 2: Highlight the name of the table, as shown here.

All Access Objects Al

SECO306_PRICE_COMSTANTS
SEC0313_CASE_SENSITIVITY
SEC0405_SALES_STAFF
SECO405_TABLE_TO_DELETE

SECO409_EMPLOYEES

(O i i O i

SECO409_FOODS

Step 3: Press the Delete key.

Beginning table (sec0405_sales_staff table)

EMPLOYEE DEPT
ID FIRST_NAME LAST_NAME CODE

202 JIM KERN SAL
204 ELLEN OWENS SAL
205 HENRY PERKINS SAL
210 NANCY HOFFMAN SAL

Result — No table

Check your understanding

Delete the table sec0405_table_to_delete.

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 145

4-6 Deleting a view

In Oracle, there is an SQL command to delete a view. In Access, you must
use a GUI method. Except for this difference, deleting a view is like deleting
a table.

Task

Delete the view named sec0406_sales_staff_view.

Oracle SOL

drop view sec0406_sales_staff view;

Access GUI method
Step 1: Highlight the name of the saved query, as shown here.

Queries E
FH MUMBERS_0_TO 92

FH MUMBERS_0_TO_99993

FH MUMBERS_1_TO_1000

T3 SECD406_SALES_STAFF VIEW

F5 SECD406_VIEW_TO_DELETE %

Step 2: Press the Delete key.

Beginning view (sec0406_sales_staff_view)

EMPLOYEE

ID FIRST _NAME LAST NAME CODE

202 JIM KERN SAL
204 ELLEN OWENS SAL
205 HENRY PERKINS SAL
210 NANCY HOFFMAN SAL

DEPT

Result — No view

Check your understanding

Delete the view sec0406_view_to_delete.

146

CHAPTER 4 SAVING YOUR RESULTS

4-7 One view can be built on top of another view

A view can be defined from another view. This is similar to defining a view
from a base table. In the select statement that defines a view, the from
clause can name either a base table or another view.

Why would you want to do this? Why not just define each view directly from
base tables? There are two reasons. One reason is to control complexity. A
very complex query can often be replaced by a series of simple queries built
on top of each other. This produces code that is easier for people to under-
stand. The code can be verified and debugged more easily, and it is more
likely to be correct.

The other reason is to coordinate two parts of a computer application. This
can tie the parts together, so that if one part is changed, the other part is
changed automatically to maintain a specific relationship with the first
part.

An important feature of views is that they run automatically. If a higher
level view is used in the from clause of a select statement, then all the
views it depends on are also run. This can be quite a lot of processing. The
important point is that you do not need to run the lower level views your-
self. SQL takes care of this for you.

There are layers of views

Circular definitions are not allowed in views. When one view is built from
another view, care must be taken to ensure that there are no circles in the
definition. A circle would occur if view_1 is defined, directly or indirectly,
from view_2 and view_2 is defined, directly or indirectly, from view_1.
The computer must always be able to find the base tables for every view. It
could not do this if circles were allowed in the definitions.

Because of this, the views can be thought of as being organized into layers.
Views built directly from base tables are the first layer, views built from
these are the second layer, and so on.

What happens when an underlying
base table or view is deleted?

In some SQL products, if you delete a base table or a view, all the other
views that are built on top of that table or view are also deleted. This is a
cascaded delete. Dropping any base table or view can automatically trigger
the dropping of many other views. In this situation, you must be very cau-
tious before you drop any base table or view.

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 147

In other SQL products, including Oracle and Access, the higher level views
are inactivated, but they are not entirely deleted. This means that the defi-
nition of the higher level view is retained even though it does not work cur-
rently. If, at a later time, the base table or lower level view is restored, the
higher level view will work again.

An example of building one view on top of another view

In this section I build two views. The first view, sec0407_sales_staff_viewl,
is built directly on the 1_employees table. The second view,
sec0407_sales_staff_view?2, is built on top of the first view. | want to
keep this example clear and simple, so I am trying to avoid any unneces-
sary complexity. That is why this example does not show the level of com-
plexity being reduced.

In this example, the sec0407_sales_staff_view2 view could have been
defined directly from the 1_employees table. This view is so simple that
there is no particular reason to define it in two steps, except to show the
technique of building one view from another view.

Now let’s return to the discussion of the effects of deleting one of these
objects. If the 1_employees table is deleted, both of the views would be
disabled until a new table or view named 1_employees is built again. If
sec0407_sales_staff_viewl is deleted, only sec0407_sales_staff_
view2 would be disabled. If sec0407_sales_staff_view2 is deleted,
this would have no effect on either the table or the other view.

Task

Create a view, named sec0407_sales_staff_viewl, that lists the employ-
ees in the sales department. Show the following columns: employee_id,
first name, last_name, and dept_code.

Then create another view, named sec0407_sales_staff_view2, from the
first view. Use all the rows from the sec0407_sales_staff_viewl, except
the ones with employee_id greater than 208. Use all the columns from the
sec0407_sales_staff_viewl except dept_code.

148

CHAPTER 4 SAVING YOUR RESULTS

Oracle SQL: Step 1 — Create the first view from a base table o

create view sec0407_sales_staff viewl as
select employee_id,

first_name,

last_name,

dept_code
from 1_employees
where dept_code = 'SAL';

Access GUI method: Step 1 — Create the first view from a base table o

Step 1, Part 1: Enter this query in the SQL window:

select employee_id,
first_name,
last_name,

dept_code
from 1 _employees
where dept_code = 'sal';

Step 1, Part 2: Save the query. Name it sec0407_sales_staff_viewl.

Result of Step 1 — sec0407_sales_staff viewl

EMPLOYEE

ID FIRST _NAME LAST NAME CODE

202 JIM KERN SAL
204 ELLEN OWENS SAL
205 HENRY PERKINS SAL
210 NANCY HOFFMAN SAL

DEPT

Oracle SQL: Step 2 — Create a second view from the first one

create view sec0407_sales_staff view2 as
select employee_id,
first_name,
last_name
from sec0407_sales_staff viewl ©
where employee_id <= 208;

SAVING YOUR RESULTS IN A NEW TABLE OR VIEW 149

Access GUI method: Step 2 — Create a second view from the first one o

Step 2, Part 1: Enter this query in the SQL window:

select employee_id,

first_name,

last_ name
from sec0407_sales_staff viewl ©
where employee_id <= 208;

Step 2, Part 2: Save the query. Name it sec0407_sales_staff_view2.

Result of Step 2 — sec0407_sales_staff_ view2

EMPLOYEE

ID FIRST _NAME LAST_ NAME

202 JIM KERN

204 ELLEN OWENS

205 HENRY PERKINS
Notes

©® This shows how the view sec0407_sales_staff viewl is created. In
the select statement that defines this view, the from clause refers to a
base table, 1_employees.

® This shows how the view sec0407_sales_staff view2 is created. It
is built on top of the view sec0407_sales_staff_viewl.

® The from clause refers to the first view, sec0407_sales_staff viewl,
rather than to a base table.

4-8 Preventative delete

A preventative delete drops the previous version of a table or view before it
creates the new version. This ensures that the name will be available within
the database for the new table or view you want to create. People use this
coding technique when they are in the process of developing new code,
and they need to try several versions before they get it correct. Preventative
deletes are also used to ensure that the following create table or create
view statement will run without the error of the name being unavailable.

It is called a preventative delete because it prevents an error from occur-
ring. Often, we do not expect that anything will actually be deleted. There
may be no such object to delete. The delete is done to prevent a possible
problem.

150

CHAPTER 4 SAVING YOUR RESULTS

A preventative delete can be used in Oracle. In Access you could follow the
same procedure, but you would have to do it manually as a two-step pro-
cess. This would not save you any work, so usually it is not done.

Coding a preventative delete

For tables, a preventative delete can be coded by putting a drop table
statement before a create table statement. In Oracle this is usually done
within a script file, where several commands are run as a single unit. If the
object does not currently exist, the drop command will fail and issue an
error message. However, the Oracle script will continue to run.

For views, Oracle has a special option to support preventative deletes. You
can say create or replace view, instead of create view. This is not part
of standard SQL. It is an extension to the standard that is special to Oracle.
Oracle does not have a similar feature for tables. This is probably because
it would be too “dangerous” to encourage the use of preventative deletes
with tables.

In Access, you get a warning message if the table or view already exists. You
are given the option to replace the previous object. This makes preventa-
tive deletes less important in Access than they are in Oracle

Task

Show how to code a preventative delete. List all the columns of the
1_employees table.

Oracle SQL: A preventative delete for a table

drop table sec0408 sales_staff; ©O
create table sec0408_sales_staff as
select *

from 1_employees

where dept_code = 'SAL';

Access issues a warning message if you try to use the same name twice in
the database.

Oracle SQL: Method 1 — A preventative delete for a view

drop view sec0408_sales_staff view; @
create view sec0408_sales_staff view as
select *

from 1 _employees

where dept_code = 'SAL';

MODIFYING THE DATA IN A TABLE WITH SQL 151

Oracle SQL: Method 2 — A preventative delete for a view

create or replace view sec0408_ sales staff view as ©
select *

from 1 employees

where dept_code = 'SAL';

This feature is not available in Access.

Notes

© This drop table statement is a preventative delete. It is placed directly
before the table is created.

® This drop view statement is a preventative delete.

® Create or replace view is a special feature available in Oracle.

Modifying the Data in a Table with SQL

After you have created a new table, you may want to put some rows of data
in it. For tables that already contain data, you may want to add new rows,
change the data in a few columns of an existing row, or delete some rows
entirely. This section shows you how to do these things.

4-9 Adding one new row to a table

This section shows how to add a single new row to a table. There are two
methods to do this. Both are versions of the insert statement, and begin
with insert into followed by the name of the table. They both have the
word values followed by a list of values in parentheses. The value put into
any column must always match the datatype of that column: text, number,
or date.

Method 1 specifies a value for each column of the table. The list of values
must contain an entry for every column of the table and be listed in the
same order as the columns of the table. The columns of a table always have
a specific order. The information in the table is not affected by the order of
the columns. However, the order of the columns does affect the syntax of
some SQL statements, such as this one.

If you want to put a null in a column using this method, you must code the
value null without quotes. SQL does not allow you to code two commas in
a row to produce a null.

152

CHAPTER 4 SAVING YOUR RESULTS

Method 2 puts values in only some of the columns of the table. These col-
umns are listed after the name of the table in the SQL command. Nulls are
placed in all the columns that are not listed. The list of values must contain
an entry for each column in the list. The values must be listed in the same
order as the columns.

When you use this method, you must include every column of the primary
key in the list of columns. Otherwise, nulls would be entered in the col-
umns of the primary key, which is not allowed. You receive an error mes-
sage if you forget to list any of the columns of the primary key.

Method 2 is the standard in many shops. It is more specific even if it is a lit-
tle more trouble to write. If a new column is added to a table, code written
using the first method will no longer work, but code written using the sec-
ond method will run.

Task

Add two new rows to the sec0409_foods table. Show the two methods of
adding a single row.

Oracle & Access SQOL:
Method 1 — Pulting data in all the columns

insert into sec0409_ foods ©
values ('ARR', 'AP', 11, 'APPLE PIE', 1.50, null); ©

Oracle & Access SQL:
Method 2 — Putting data in only some columns

insert into sec0409_foods
(product_code, description, supplier id, price) ©
values ('BP', 'BLUEBERRY PIE', 'ARR', 1.60); O

MODIFYING THE DATA IN A TABLE WITH SQL 153

Table before the changes (sec0409_foods table)

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)

ASP SwW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SwW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)

JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

Table after the changes

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50
ARR AP 11 APPLE PIE $1.50 (null) (5]
ARR BP (null) BLUEBERRY PIE $1.60 (null) (6]
Notes

© There is no list of columns following the table name. This means that
values will be entered in all the columns of the table.

® Avalue is given for every column of the table. The last column contains a
null, and this must be coded as nul1 without quotes.

® The four columns listed after the table name are the only columns in
which data can be entered. All other columns will be null.

0 The values must be listed in the same order as the columns are listed
in ®. If any of these columns is null, the word null, without quotes,
must be coded in the list of values.

154

CHAPTER 4 SAVING YOUR RESULTS

@ The first insert statement, using method 1, added this row.

® The second insert statement, using method 2, added this row.

Warning: Text fields may be silently truncated

Text is sometimes truncated by the insert statement. For example, if you try
to put a 20-character text string into a 5-character field, only the first 5 char-
acters are kept. The remaining 15 characters are thrown away.

Worse, when this happens, there is no warning message to tell you it hap-
pened. There is no message at all! So you might only find out when you see
that some of your data is missing.

Each text field is limited to some maximum length. This limitation may not
be obvious to you, but it is always present behind the scenes.

Check your understanding

Add a new row to the sec0409_employees table. Use the data:

employee_id = 301
first_name = Ellen
last_name = Perkins
dept_code = IT

hire_date = March 9, 2009
credit_limit = $20.00
phone_number = null
manager_id = 201

4-10 Adding many new rows to a table

This section shows you how to add several new rows to a table using a
select statement. This can only be done when the data is already in the
database in some form. You cannot enter data that is completely new using
this method.

This is another variation on the command to enter a single row of data. The
format of the SQL statement is as follows:

Method 1

INSERT INTO table_name
select_statement;
Method 2

INSERT INTO table_name (list_of_columns)
select_statement;

MODIFYING THE DATA IN A TABLE WITH SQL 155

[t is best to write the select statement that creates the new rows without
an order by clause. If it does contain an order by clause, the statement
will still run, but the ordering will be ignored.

The result table from the select statement must have the correct number
of columns, in the correct order, and those columns must have the correct
datatypes. It is as if each row of the result table provides a list of values to
be inserted into the table (see section 4-9).

Task

In the sec0410_foods table, duplicate all the rows from supplier ASP and
change the supplier to ARR. Put nulls in the price and price_increase
columns of the new rows.

You might do this if you are unhappy with supplier ASP and you are now
going to get all those products from supplier ARR. This task would be the
first step. The next step would be to delete all the rows for supplier ASP.

So that you can run both versions of this code, method 1 and method 2 use
two different copies of the 1_foods table.

Oracle SQL: Method 1 — Putting data in all the columns

insert into sec0410_ foods ©

select 'ARR', ©®
product_code,
menu_item,

description,
null,
null
from sec0410_foods ©
where supplier id = 'ASP'; O ©

Access does not support this syntax. Use method 2 instead.

Oracle & Access SQL: Method 2 — Putting data in only some columns

insert into sec0410a_foods
(supplier id, product_code, menu_item, description) 0O
select 'ARR', O
product_code,
menu_item,
description
from sec0410_foods
where supplier id = 'ASP';

156

CHAPTER 4 SAVING YOUR RESULTS

Table sec0410_foods and sec0410a_foods after the changes

SUPPLIER PRODUCT MENU PRICE

ID CODE ITEM DESCRIPTION PRICE INCREASE

ASP FS 1 FRESH SALAD $2.00 $0.25

ASP SP 2 SOUP OF THE DAY $1.50 (null)

ASP SW 3 SANDWICH $3.50 $0.40

CBC GS 4 GRILLED STEAK $6.00 $0.70

CBC HB 5 HAMBURGER $2.50 $0.30

FRV BR 6 BROCCOLI $1.00 $0.05

FRV FF 7 FRENCH FRIES $1.50 (null)

JBR AS 8 SODA $1.25 $0.25

JBR VR 9 COFFEE $0.85 $0.15

VSB AS 10 DESSERT $3.00 $0.50

ARR FS 1 FRESH SALAD (null) (null) (8]
ARR SP 2 SOUP OF THE DAY (null) (null) (8]
ARR SW 3 SANDWICH (null) (null) (&)

Notes

O The sec0410_foods table will receive the new rows of data. Because no

columns are listed after the table name, the select statement must cre-
ate a value for every column of the table.

® There are six columns in the table receiving the data, so there must be

six columns listed in the select clause. Note that the last two columns
are explicitly coded as the word nul1, without quotes. The 'ARR" is a lit-
eral that is hard-coded into this select statement. Here it sets the
supplier_id column to the value ARR in all the new rows of the result
table.

® The data will be retrieved from the sec0410_foods table. This is the

same table that is receiving the new rows of data. This is an unusual sit-
uation, but it works without any problems.

0 The where clause limits the data that is taken from the table named in

the from clause in .

® The select statement does not contain an order by clause.

0@ A list of columns follows the name of the table receiving the data. Only

these columns can receive data. All the other columns will be null.

@ Four columns are listed after the table name in ®, so the select clause

must contain four columns in the same order.

© These three rows have been added to the table by a single insert state-

ment. Either the method 1 or the method 2 SQL statement can add all
three of these rows.

MODIFYING THE DATA IN A TABLE WITH SQL 157

Check your understanding

Tables sec0410_data2 and sec0410_datal have the same record struc-
ture. Each row has three columns: a number column, a text column, and a
date column. Write an insert statement that puts all the rows of table
sec0410_data2 into table sec0410_datal.

4-11 Changing data in the rows already in a table

This section shows you how to change data in rows that are already in the
table. You can modify the values in one column or several columns. Usu-
ally, the data in only a few columns is modified at a time. If you want to
modify the data in all the columns, it might be easier to add a new row to
the table and delete the old row.

The format of the SQL statement is as follows:

UPDATE table_name

SET column_ 1 = value_1,
column 2 = value_ 2

WHERE condition;

The values of any number of columns can be changed in one statement.

The syntax here is easier to read and work with than in the insert com-
mand. The name of the column is aligned with its value. You do not need to
correlate two separate lists. However, this comes at a price. The names of
the columns must be explicitly stated in each update statement.

The value can be a fixed value, a function, an expression, or even a sub-
query. In later chapters we discuss row functions and subqueries in detail.

Some people would call the functions in this example expressions because
of the form in which they are written, with the plus sign in the middle, like
“price + .10”. They would call it a function if the plus sign were written first,
like “+(price, .10)". I do not find this distinction to be very significant and I
call them both functions.

The where clause is critical, because it indicates which rows of the table
should be changed. Without it, all the rows of the table are changed. Data
is changed only in the rows that satisfy the where condition. Other rows
remain unchanged.

If you want to change the data in a single row, it is best to specify the values
of the primary key columns in the where clause.

158 CHAPTER 4 SAVING YOUR RESULTS

Task

In the sec0411_foods table, add 10 cents to both the price and the price
increases for all the foods supplied by JBR and FRV.

Oracle & Access SOL

update sec0411 foods ©
set price = price + 0.10, ®

price_increase = price_increase + 0.10 ©
where supplier_id in ('JBR', 'FRV'); O

Table before the changes (sec0411_£foods table)

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
ASP F'S 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)

ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)

JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

Table sec0411_foods after the changes

SUPPLIER PRODUCT MENU PRICE

ID CODE ITEM DESCRIPTION PRICE INCREASE
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)

ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.10 $0.15 O
FRV FF 7 FRENCH FRIES $1.60 (null) (4 X5
JBR AS 8 SODA $1.35 $0.35 O
JBR VR 9 COFFEE $0.95 $0.25 O
VSB AS 10 DESSERT $3.00 $0.50

MODIFYING THE DATA IN A TABLE WITH SQL 159

Notes
©® The data will be changed in the sec0411_foods table.

® Ten cents is added to the price column, then the result is placed back
in the price column. The comma at the end of the line shows that there
is another column with a value that will be changed.

® Ten cents is added to the price_increase column, then the result is
placed in the price_increase column. Because there is no comma at
the end of this line, there are no more columns being changed. Also
note that there is no from clause.

O The where clause limits the rows that are changed. There are only four
rows that satisfy the following condition:

supplier_ id in ('JBR', 'FRV')
These are the only rows that are changed.

@ The price increase value is null in the result table because it is null in the
beginning table.

Check your understanding

In the sec0411_employees table, change the credit limit to $27.00 for all
the employees who currently have a credit limit of $15.00 and also for any
employee who has a null in the credit limit field.

4-12 Deleting rows from a table

This section shows how to delete rows from a table. You can delete one row
or several rows. The SQL statement format is as follows:

DELETE FROM table_name
WHERE condition;

The where condition is critical here, as in the update statement. Without
it, all the rows of the table are deleted. The table structure remains and the
table itself still exists, but it has no data in it.

The where clause controls which rows are deleted. It sets a condition that
can be like any of the ones we used in the where clause of a select state-
ment. All the rows for which the condition is true are deleted.

Task

Delete all the rows with supplier_id values of cbc and jbr from the
sec0412_ foods table.

160 CHAPTER 4 SAVING YOUR RESULTS

Oracle & Access SOL

delete from sec0412_foods ©
where supplier id in ('CBC', 'JBR'); ©

Table before the changes (sec0412_foods table)

SUPPLIER PRODUCT MENU PRICE

ID CODE ITEM DESCRIPTION PRICE INCREASE
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)

ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70 ©
CBC SW 5 HAMBURGER $2.50 $0.30 ©
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)

JBR AS 8 SODA $1.25 $0.25 ©
JBR VR 9 COFFEE $0.85 $0.15 ©
VSB AS 10 DESSERT $3.00 $0.50

Table after the changes

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP SW 3 SANDWICH $3.50 $0.40
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
VSB AS 10 DESSERT $3.00 $0.50
Notes

©® Rows of data will be deleted from the sec0412_foods table.
0 Delete all the rows where the supplier_id value is cbe or jbr.

® These rows will be deleted.

Check your understanding

In the sec0412_employees table, delete the rows with employee_id
between 202 and 205.

MODIFYING THE DATA IN A TABLE WITH THE GUI 161

Modifying the Data in a Table with the GUI

Both Oracle and Access allow you to use the GUI to change the data in a
table. This is often more convenient than using SQL commands. It can feel
more immediate and more direct, as if there is less of a barrier between you
and the data.

However, this convenience comes at a price. It works best when you are the
only person using the database and you do not need an audit trail for the
changes you are making to the data. Probably you are in that situation right
now, while you are reading this book.

Part of the price is that the Oracle GUI is different than the Access GUI, so
that the skills you develop in one product do not immediately carry over to
working with the other product. Also some SQL products do not offer this
function through a GUI at all.

Another problem occurs when you are sharing the database with many
other people. The GUI might not handle potential conflicts as well as the
SQL commands would handle them. These conflicts could occur if you are
trying to change a row at the same time that another person is changing it.

You cannot use the GUI if you are using another programming language,
such as Java, to access the database. Program interfaces to the database
generally use the SQL commands: insert, update, and delete.

Also the GUI will not give you an audit trail of your changes. If you need an
audit trail, one of the best methods is to create a file of your changes using
an editor such as Notepad. That file can then be used to make the actual
changes to the database and if you save the file, it can act as your audit trail.

To sum up, you should use SQL commands, not the GUI, to make changes
to the data in the following circumstances:

m Many people are using the database at the same time.
m You are using a program interface to access the database.

m You need an audit trail of your changes.

4-13 Using the Oracle GUI to change data in a table

In the Oracle GUI you can use the Object Browser to change the data in a
table. Click the arrow on the right side of the Object Browser icon, then select:

Browse > Tables

162 CHAPTER 4 SAVING YOUR RESULTS

ORACLE’ Database Express Edition

User: JPATRICK

Home

—

» -
Administration Object Browser L Utilities Application Builder
Create »
Browse L Browse
Tables
I
. A
Views
Indexes
Then select the table and click Data.
ORACLE' Database Express Edition
User JPATRICK
Home> Object Browser
| Tables T | SEC0413_SUPPLIERS
‘ }:' |% Table Data Indexes Model Constraints Grants Statistics UlDefaults Triggers Dep
SECTE R ENE OYEES e Query | CountRows | |Insert Row
SEC0412_FOODS
SEC0413_FOODS EDIT SUPPLIER_ID SUPPLIER_NAME
SECOM S SUBRLERS % ARR ALICE & RAY'S RESTAURANT
SEC0414_FOODS 7
SEC0414_SUPPLIERS % ASP A SOUPPLACE
SEC0415_DEPARTMENTS P
SEC0415_EMPLOYEES % CBC CERTIFIED BEEF COMPANY
SEC0502_DEPARTMENTS
= a FRV FRANK REED'S VEGETABLES
SEC0503_CHECKING_ACCOUNTS
SEC0503_SAVINGS_ACCOUNTS % FeN FRANK & SONS
4
SEC05058_EMPLOYEES =
SEC0505 EMPLOYEES % JBR JUSTBEVERAGES
SEC0505_FOODS
a JPS JIM PARKER'S SHOP
SEC0506_EMPLOYEES
sEetan Feolle & VSB VIRGINIA STREET BAKERY
SEC0607_FOODS
SEC0609_EMPLOYEES row(s) 1- 8 of 8
SEC0609_FOODS Download

MODIFYING THE DATA IN A TABLE WITH THE GUI 163

Task

Use the sec0413_suppliers table to show how the Oracle GUI can:

m Add a new row to the table.
m Change the data in some fields within a row already in the table.

m Delete a row from the table.

Adding a new row

To add a new row to the table, click the Insert Row button. You will get a
new screen that shows you all the fields of the row and gives you a space to
enter the new data.

SEC0413_SUPPLIERS

Create Row | Cancel I Create [Create and Create Another]

Table: SEC0413_SUPPLIERS

Supplierld NEW

Supplier Name NEW SUPPLIER]

Table Information

To add this one row, click the Create button. To add additional rows after
this one, click the Create and Create Another button.

Changing the data in a row already in the table

To change the value of a field within a row already in the table, click the
Edit icon on the left of the row you want to change. This opens a new
screen that shows you all the fields of that row. Then you can enter new val-
ues in any of the fields you want to change.

SEC0413_SUPPLIERS
Table Data Indexes Model Constraints Grants Statistics UlDefaults Triggers Dependen
Edit Row

Table: SEC0413_SUPPLIERS
Supplier Id: CBC

Supplier Name: CHANGED NAME'

Table Information

164

CHAPTER 4 SAVING YOUR RESULTS

When you have entered all your changes, press the Apply Changes button
to change the data in the row.
Deleting a row

To delete a row of data, click the Edit icon on the left of the row you want to
delete. This opens a new screen that shows you all the fields of that row.
Then click the Delete button.

SEC0413_SUPPLIERS

Table Data Indexes Model Constraints Grants Statistics UlDefaults Triggers Dependencies SQL

Edit Row

Table: SEC0413_SUPPLIERS

Supplier Id- JBR

Cancel Delete Apply Changes

Supplier Name:|JUST BEVERAGES

Table Information

Check your understanding

Use the Oracle GUI to change the following data in the sec0413_foods
table:

m Add a new row to the table for “Irish stew” or one of your favorite
foods.

m Change “broccoli” to “peas”.

m Delete the row for the food you like the least.

4-14 Using the Access GUI to
change the data in a table

In the Access GUI you essentially type your changes into the table as if it
were a Word document. This gives a very direct experience of being in con-
trol of the data, without any extra buttons to push or other complexities of
the interface.

To select a table to change, double-click the name of the table in the Navi-
gation Bar.

MODIFYING THE DATA IN A TABLE WITH THE GUI 165

Task

Use the sec0414_suppliers table to show how the Access GUI can:

m Add a new row to the table.
m Change the data in some fields within a row already in the table.

m Delete a row from the table.

Beginning table (sec0414_suppliers table)

[7] SEC0414 SUPPLIERS

SUPPLIER_ID - SUPPLIER_NAME "|Add New Field
Arr Alice & Ray's Restaurant

Asp A Soup Place

Chc Certified Beef Company

Frv Frank Reed's Vegetables

Fsn Frank & Sons

Jbr Just Beverages

Ips Jim Parker's Shop

Vsh Virginia Street Bakery

°l
Adding a new row

To add a new row to the table, type the data into the blank row at the bot-
tom of the table — the one with the asterisk beside it. As soon as you start
to enter data in the new row, the icon of the row you are entering changes
to a pencil to show that this is the row that is being written at this moment.

As soon as you start to enter data into one new row, another new row is
added to the bottom of the table with an asterisk for an icon. This gives you
a place to add another row if you wish to do so.

=] SEC0414_SUPPLIERS
SUPPLIER_ID ~ SUPPLIER_NAME " Add New Field
Arr Alice & Ray's Restaurant
Asp A Soup Place
Chc Certified Beef Company
Frv Frank Reed's Vegetables
Fsn Frank & Sons
Jbr Just Beverages
Jps Jim Parker's Shop
Vsb Virginia Street Bakery

" NEW NEW SUPPLIER]

*

166

CHAPTER 4 SAVING YOUR RESULTS

Changing the data in a row already in the table

To change data in rows already in the table, type over the value that is
there.

I 7] SEC0414 SUPPLIERS

SUPPLIER_ID - SUPPLIER_NAME " Add New Field
Arr Alice & Ray's Restaurant
Asp A Soup Place
? Cbc CHANGED NAME
Frv Frank Reed's Vegetables
Fsn Frank & Sons
Jbr Just Beverages
Ips Jim Parker's Shop
Vsh Virginia Street Bakery

*

Deleting a row

To delete a row of data, highlight the row by clicking on the left margin,
then press the Delete key.

7] SEC0414_SUPPLIERS
SUPPLIER_ID - SUPPLIER_NAME " Add New Field
Arr Alice & Ray's Restaurant
Asp A Soup Place
Chc Certified Beef Company
Frv Frank Reed's Vegetables
Fsn Frank & Sons

= Jbr Just Beverages
Jps Jim Parker's Shop
Vsb Virginia Street Bakery

*

Check your understanding

Use the Access GUI to change the following data in the sec0414_foods
table:

m Add a new row to the table for “Irish stew” or one of your favorite
foods.

m Change “broccoli” to “peas”.

m Delete the row for the food you like the least.

RESTRICTIONS ON MODIFYING THE DATA IN A TABLE 167

Restrictions on Modifying the Data in a Table

4-15 Constraints with insert, update, and delete

Sometimes you can enter a perfectly correct insert, update, or delete
statement and it will not work. Instead, you will get an error message. Many
tables have restrictions on what data can be put into them. These restric-
tions are called constraints. We discuss them further in chapter 8.

If you try to modify the data in a table in a way that the constraints do not
allow, you will get an error message but the data will not be changed.

For instance, suppose you want to change the data in a table that has a
primary key. The primary key is a type of constraint. It does not allow nulls
in any of the columns that are part of the primary key. Also, no two rows
can have the same values in all the columns of the primary key. You will
receive an error message if you try to put data in the table that violates
these constraints.

Task

Show an update statement that is valid when it is applied to one table, but
gives an error when it is applied to another similar table because of a con-
straint on the second table.

The 1_employees table has a constraint that each person must have a differ-
ent phone number. If you try to change a phone number in some row and
that number is already being used by another person, you will not be allowed
to make the change.

The sec0415_employees table is similar to the 1_employees table. It has
all the same columns, all the same rows, and all the same data, but it does
not have any constraint on the phone number column.

Show an update statement that changes the phone number for Jim Kern to
be the same as the phone number for Susan Brown. Show that this update
statement works when it is applied to the sec0415_employees table. Show
that this same update statement gives an error when it is applied to the
1_employees table.

168 CHAPTER 4 SAVING YOUR RESULTS

Oracle & Access SQL: This works

update sec0415 employees
set phone_number = '3484'
where employee_id = 202;

Oracle & Access SOL: This gives an error because it violates a constraint

update 1_employees
set phone_number = '3484'
where employee_id = 202;

Beginning table (sec0415_employees table and 1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Result after the update statement is applied to the sec0415_employees table

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST _NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 3484 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201

210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

RESTRICTIONS ON MODIFYING THE DATA IN A TABLE 169

Result after the update statement is applied to the 1_employees table —
Oracle error message (Access shows a different error message)

ORA-00001:unique constraint (JPATRICK.UNIQUE_ EMP PHONE_ NUM) violated ©

Notes

0 The word “constraint” in this error message tells us there is a rule
restricting the data that can be placed in this table. In this case the rule
says that no two employees can have the same phone number. That rule
caused this update statement to be rejected.

Check your understanding

Write SQL to delete the Sales Department (SAL) from the
sec0415_departments table. This should work. Then apply the same
SQL statement to the 1_departments table. This time you will get an
error message.

4-16 Security restrictions

In addition to constraints, there may also be security restrictions that limit
the modifications you can make to the data in a table. Constraints are like
business rules that are enforced on the data by the database. You can usu-
ally find a way to satisfy a constraint.

Security restrictions are meant to keep you out of private areas or impose
limitations on what you can do. They are the guard rails that keep everyone
safe and keep the database operating smoothly. Usually you will encounter
security restrictions only when you are sharing a large database with many
other people.

Relational databases have a large variety of security restrictions that can be
imposed. Some tables may contain private or confidential information and
you may not be able to see those tables at all. Other tables might have
restrictions on which rows and which columns you can see. Sometimes you
are allowed to see data, but you are not allowed to change it.

When you bump up against a security restriction, you might want to ask
your DBA about it, just to be sure you understand what is going on. Then it
is usually best to just accept the restriction and find another way to accom-
plish whatever you are trying to do.

170

Key Points

CHAPTER 4 SAVING YOUR RESULTS

You can save the result of any select statement in a table or view. A
table saves the actual data as it is at one particular moment in time. A
view saves the select statement and runs it again whenever you use
the view.

A table contains fixed data, unless you change it.
A view contains data that is constantly updated.

One view can be built from another view. Both views will run automat-
ically each time you use them.

You can delete a table or view.

Insert adds one new row to a table. When insert is used with a
select statement, it can add many new rows to a table.

Update makes changes to rows that are already in the table.
Delete removes rows from the table.

You can change the data in a table using the GUI. The effect is the
same as using the SQL commands: insert, update, and delete.

Sometimes you are not allowed to make certain changes to the data
in a table because of constraints or security restrictions.

THE DATA
DICTIONARY
AND OTHER

OrRACLE TOPICS

This chapter expands on the topics we discussed in chapter 4.
In this chapter, we discuss transactions and modifying data
through a view. We also discuss the SQL Commands page,
which Oracle uses to run an SQL command. You learn how to
find information about the tables and views we have created
and the ones that have already been created for us.

171

Commit, Rollback, and Transactionscooiiiiiii 173

5-1 The commit and rollback commands 173
5-2 The Autocommit option 174
5-3 Transactions 175
Modifying Data througha View 179
5-4 Changing data throughaview 180
5-5 Example of changing data throughaview. 181
5-6 Views using With Check Option 189
The SQL Commands Pagein Oracle., 192
5-7 Overview of the SOL Commands page. 192
5-8 The Autocommit option 194
5-9 The Explain option. 194
Using the Oracle Data Dictionary — Part 1, 195
5-10 Overview of the Data Dictionary. 195
5-11 How to find the names of all thetables. 197
5-12 How to find the names of all theviews 199
5-13 How to find the select statement that definesaview 200
5-14 How to find the names of the columns in a table orview 201
5-15 How to find the primary key ofatable. 203

Key Points. e 207

Commit, Rollback, and Transactions

5-1 The commit and rollback commands

When you make a change to the data in a table, at first the change is made
in a temporary way. Later, you can make the change permanent or reverse
it. commit makes the change permanent. It is a save command on the SQL
level. Rollback throws out the changes. It is an undo command on the
SQL level. Rollback goes back to the last commit point.

As an analogy, when you make changes to a word processing document, at
first your changes are only temporary; they are held in memory. To make
them permanent you must save them. That is like doing a commit. To throw
out your changes, you close the document without saving the changes.
That is like doing a rollback.

commit also has another effect: It makes your changes public. When you
first enter your changes, they are private and only you can see them. If
other people are using the database table you are changing, they will not
see your changes until you commit them.

Oracle supports commit and rollback, as they are actual commands
within Oracle. Most other SQL products also support them. However,
Access does not support them. Access uses a different mechanism to pro-
vide the same ability — the UseTransaction property. Because this property
is used primarily on the Visual Basic level within Access, [do not discuss it
further. To keep this book to a reasonable size, I am not discussing the
Visual Basic level of Access.

Oracle SQL: To save your changes permanently and make them public

Issue one or more commands to change the data — insert, update,
delete.

commit;

Oracle SQL: To undo your changes

Issue one or more commands to change the data — insert, update,
delete.

rollback;

Access does not support commit and rollback on the level of the SQL
window.

173

174

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

5-2 The Autocommit option

In chapter 4 you used the insert, update, and delete commands. The
changes you made to the data were permanent even though you did not
commit them. How did that happen?

Actually, your changes were committed automatically by the database. That
is why you did not have to issue the commit command yourself.

Most SQL products have an option that allows the database engine to
issue a commit command right after every insert, update, and delete
command. This option is often called Autocommit.

In the Oracle Database Home Page environment, on the SQL Commands
screen, there is a checkbox that allows you to turn Autocommit on or off:

ORALCLE Database Express Edition

User: SQLFUN

Home > SQL > QL Commands

[¥] Autocommit Display | 10 w

When the checkbox is selected, the results of the insert, update, and
delete commands are saved automatically and immediately by Oracle
with a commit command. This is often convenient, but it prevents you from
performing transactions.

When the checkbox is cleared, you are able to perform transactions. How-
ever, you must issue the commit and rollback commands yourself.

In Access, the Autocommit option is always on by default when you enter
code through the SQL view. If you use Macros or Visual Basic modules then
there are ways you can turn it off and create transactions.

Check your understanding

1. Turn off the Autocommit option:

m If you are using the Home Page environment, clear the Autocom-
mit checkbox.

m If you are using the SQL Command Line environment, issue the
SQL*Plus command:

set autocommit off;

COMMIT, ROLLBACK, AND TRANSACTIONS 175

2. Add a new row to a copy of the departments table:

insert into sec0502_departments
values('IT', 'INFORMATION TECHNOLOGY'):;

3. Save this change by issuing a commit command:
commit;
4. Add another new row to the copy of the departments table:

insert into sec0502_departments
values('LAW', 'LEGAL DEPARTMENT'):;

5. Undo this change by issuing a rollback command:
rollback;

6. List all the rows in the copy of the departments table:

select *
from sec0502_departments;

7. Confirm that the table has the row for the IT department and that it
does not have the row for the Law department.

5-3 Transactions

A transaction can only occur when the autocommit option is turned off. A
transaction allows you to bundle several changes together. These changes
can affect several different tables and they can be a mixture of insert,
update, and delete commands.

The most important thing about a transaction is that all the changes will go
into the database together. There are two options:

m All of the updates are successful and they will all go into the database
together at the same time with a single commit command.

m If any one of the updates fails for any reason, then none of the
changes will be made to the database. All of the changes will be
rolled back.

Often transactions are programmed and controlled by another level of soft-
ware that is issuing SQL commands to the database. But you can use trans-
actions yourself by issuing your own commit and rollback commands.

A transaction occurs between two commit points. You can begin a transac-
tion by issuing a commit or rollback command. This finalizes any
changes to the database that are already pending and establishes the
point you will return to if you issue a rollback command. Sometimes you
do not need to issue this initial commit or rollback command because
the computer automatically does it for you.

176

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

The transaction consists of all the insert, update, and delete state-
ments done after one commit or rollback and before the next one.

A transaction is used to ensure that the data in the database stays con-
sistent. Sometimes the data in several tables needs to be changed in a
coordinated way. By placing all these changes within a transaction, you
can be sure that the tables will not become corrupted if some of the
changes succeed and others fail.

Here is an example that uses a transaction. Suppose you have been saving
to buy a new car. You have been putting money in your savings account and
now you have $5,000 to use for a down payment on the car you want. You
need to transfer the money from your savings account to your checking
account so you can write a check to the car dealer.

The bank keeps information about its savings accounts in one table and
information about its checking accounts in another table. Both of these
tables need to be changed in a coordinated way. You want to take $5,000
out of your savings account and put $5,000 into your checking account.
These two changes should be put into a transaction so they both succeed
or they both fail. The code to do this follows.

Task

Take $5,000 from the savings account of Amy Johnson and put $5,000 into her
checking account. Wrap these two changes in a single transaction.

Oracle SOL

commit; ©

update sec0503_savings_accounts ©®
set balance = balance - 5000
where customer = 'AMY JOHNSON';

If you get an error message, do a rol1lback and stop entering this transaction.

update sec0503_checking accounts ©
set balance = balance + 5000
where customer = 'AMY JOHNSON';

If you get an error message, do a rollback and stop entering this transaction.
If both update statements succeed, commit the changes.

commit; @

COMMIT, ROLLBACK, AND TRANSACTIONS 177

Table before changes 1 (sec0503_savings_accounts table)

S_ACCOUNT_ID CUSTOMER BALANCE
5926 FRED BOYD 15642.33
6197 AMY JOHNSON 5280.25
5926 VALERIE SHAW 35159.64

Table before changes 2 (sec0503_checking_ accounts table)

C_ACCOUNT_ID CUSTOMER BALANCE
2741 BOB WILKINS 1567.35
3852 AMY JOHNSON 357.26
8954 JUDY SPENCER 6296 .54

Commit is performed . . .

Table after changes 1 (sec0503_saving_accounts table)

S_ACCOUNT_ID CUSTOMER BALANCE
5926 FRED BOYD 15642.33
6197 AMY JOHNSON 280.25
5926 VALERIE SHAW 35159.64

Table after changes 2 (sec0503_checking_ accounts table)

C_ACCOUNT_ID CUSTOMER BALANCE
2741 BOB WILKINS 1567.35
3852 AMY JOHNSON 5357.26
8954 JUDY SPENCER 6296.54
Notes

© The first commit makes sure that there are no unsaved changes already
present. It guarentees that we are starting off with a clean slate. If later
you decide to do a rollback, this is the point to which you will return.

@ The first statement to modify the data begins the transaction.

® All subsequent changes that modify the data are part of the transaction
that is already started.

0 The final commit statement ends the transaction and makes the changes
permanent.

178 CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

Transactions are important

Transactions are a powerful and important feature of SQL. However, they
are usually used in a more complex setting than the database we are using
in this book. For that reason, I do not discuss them any further.

Check your understanding 1

Use the tables for checking accounts and savings accounts in this section.
Use a transaction to delete the checking account for Bob Wilkins and transfer

all his money to a new savings account. The ID of the new savings account is
5678.

To do this you can follow these steps:
Turn off the autocommit option.
Delete the checking account.
Create the savings account.

Verify that your changes are okay.

M

Commit your changes.

Check your understanding 2

Again, use the tables for this section. Use a transaction to transfer $20,000
for Fred Boyd from his savings account to his checking account.

To do this you can follow these steps:
1. Update the amount of money in his savings account.
2. Update the amount of money in his checking account.

3. Verify that your changes are okay. In particular, verify the amount of
money left in his savings account. If this is a negative number, then
the change is not okay.

4. Roll back the changes.

MODIFYING DATA THROUGH A VIEW 179

Modifying Data through a View

Up to now, when we used an insert, update, or delete statement, that
statement always named the table in which the data would be changed. For
example, the word insert is followed by the name of the table that will
receive the new row.

It is also possible to follow the word insert with the name of a view,
instead of a table. You might wonder what this means because a view is
only a select statement and it does not contain any data. It means to add
a new row to the underlying table on which the view is based.

Here is an analogy: Picture yourself standing outside a house in the garden.
Inside the house there is a large table with many things on it. You can reach
through an open window to manipulate some of the things on the table.
Other things on the table are beyond your reach. In this analogy, the view is
the open window. You can manipulate the data in the table by reaching
through the view.

If you are the only person using a database, you will probably change the
data directly in a table, rather than using a view. It is simpler to do it that
way. However, it is a common practice to change the data through a view
when you are working with a large database that many people are using at
the same time.

This is partly a matter of how large databases are managed and adminis-
tered. Usually, only the DBAs are allowed to work directly with the tables.
Everyone else who changes the data must use a view. The purpose of this
rule is to allow the DBAs to make changes to the tables, such as adding a
new column, at the same time that other people are modifying the data.
DBAs and the other users are separated so they have a minimal impact on
each other. Each can work separately without concern about what the other
person is doing.

A view can also be used for security. It can limit the data a user can change,
allowing changes to only certain columns and rows.

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

5-4 Changing data through a view

When you change data through a view, only some of the data in the table
can be changed. In general, you can only change the data that can be seen
through the view. Here are two exceptions to this rule:

1. You can only delete rows that can be seen through the view. When
you delete a row, you delete the entire row, which includes all the
columns, even those that cannot be seen through the view.

2. You can insert a new row even if it cannot be seen through the view.
If the view is defined With Check Option, then you can only insert
rows that can be seen through the view. See section 5-6 for details.

The following table summarizes these exceptions.

Exceptions to insert, update, and delete.

Rows restricted to Columns restricted to
the ones in the view the ones in the view
Insert No Yes
Update Yes Yes
Delete Yes No

Only certain views can be used for changing data. These are called update-
able views. A view is updateable when the following apply:

1. It only contains data from one table.
2. It contains some or all of the columns and rows from the table.

3. It does not summarize the data or condense it by using select
distinct. The data in each cell of the view comes from the data in
only one cell of the table.

Both Oracle and Access allow a few more views to be updateable. However,
this is the usual set of updateable views within most SQL products. In
Access, it is easy to tell whether a view is updateable. If it is, a blank row is
shown at the bottom of the view where you can enter new rows of data.

The following diagram shows a conceptual picture of a view and its under-
lying table.

MODIFYING DATA THROUGH A VIEW 181

View based on
the table. The
data in the
underlying
table can be
changed by
“reaching
through” this
view.

Conceptual diagram of a view and its underlying table.

5-5 Example of changing data through a view

This section shows how to change the data in a table, using a process that
changes it through a view. Part 1 shows all the components of this process.
Parts 2 and 3 show data actually being changed.

This looks more complicated than changing the data directly in the
table. However, from the user’s perspective, the difference is very small.
The user issues the same insert, update, and delete commands. The
only difference is that these commands name a view instead of naming
a base table.

182

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

2
— > Beginning
1 view
Beginning
table

5 v

Ending
table 4
- Ending
view

Conceptual diagram of changing data through a view.

The components of the process in the conceptual diagram

1.

The first component is the beginning table. This is where the data is
actually stored.

The second component is the beginning view. This is derived from
the beginning table by applying the select statement that defines
the view. The view definition is not shown separately in this diagram.

The data is changed through the view using an insert, update, or
delete command. An update command can only work on the data
that appears in the beginning view. It cannot change the data in any
column or row that does not appear in the beginning view.

The insert command can add rows to the table that do not appear
in the view, but it can only place data in the columns that appear in
the view. All other columns are set to null.

The delete command can only delete rows from the table if they
appear in the view. However, it deletes entire rows from the table,
including columns that do not appear in the view.

MODIFYING DATA THROUGH A VIEW 183

4. The fourth component is the ending view. The illustration shows this
from the user’s perspective. From the computer's perspective, the
changes are made directly to the ending table. The ending view is
then derived from the ending table.

5. The last component is the ending table. This shows all the changes
made to the data, regardless of whether they appear in the ending
view.

In Access, if you are changing the data using the GUI environment, the end-
ing view does not appear immediately. Access provides a stable working
environment for making the changes. It shows you the beginning view and
your changes as a working document called a datasheet. To see the ending
view, you must close the view and then open it again.

This section shows two examples of changing data through a view. Here is
the definition of that view.

Oracle SQL: shipping dept_view

create or replace view sec0505_shipping dept_view as
select employee_id,
first_name,
last_name,
dept_code,
credit_limit
from sec0505_employees
where dept_code = 'SHP';

Access SOL: shipping dept view

Step 1: Delete the saved query shipping_dept_view if it already exists.
Step 2: Enter this query in the SQL window:

select employee_id,
first_name,
last_name,
dept_code,
credit_limit

from sec0505_employees

where dept_code = 'SHP';

Step 3: Save the query. Name it sec0505_shipping_dept_view.

184

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

Beginning table (sec0505_employees table)

EMPLOYEE
ID

DEPT CREDIT PHONE MANAGER
FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
JIM KERN SAL 16-AUG-1999 $25.00 8722 201 —
MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
CAROL ROSE ACT (null) (null) (null) (null)
DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Task for example 1

Add a new employee, John Patrick, with a credit limit of $25.00, to the
shipping department. Increase Martha Woods’ credit limit to $35.00 and
delete the row for Fred Campbell. Make these changes through the
sec0505_shipping_dept_view.

Notes

©® You can make changes to any of the data that appears in the columns
and rows of this view.

® Make all command changes through the sec0505_shipping_dept_view.
® All the changes are reflected in the ending view.

o All the changes are reflected in the ending table.

Ending table (sec0505_employees table) ©

EMPLOYEE
ID

DEPT CREDIT PHONE MANAGER
FIRST _NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
JIM KERN SAL 16-AUG-1999 $25.00 8722 201
MARTHA WOODS SHP 02-FEB-2009 $35.00 7591 201
ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
CAROL ROSE ACT (null) (null) (null) (null)
DAN SMITH SHP 01-DEC-2008 $25.00 2259 203 .
PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
JOHN PATRICK SHP (null) $25.00 (null) (null)

MODIFYING DATA THROUGH A VIEW 185

Beginning view

(sec0505_shipping dept_ view) O

EMPLOYEE DEPT CREDIT
ID FIRST_NAME LAST_NAME CODE LIMIT
203 MARTHA WOODS SHP $25.00
207 DAN SMITH SHP $25.00
208 FRED CAMPBELL SHP $25.00

Oracle & Access SOL: Chunge the data through the view o

These changes can be seen in the ending view, so this code runs whether or
not the view is defined With Check Option.

insert into sec0505_shipping dept_ view
values (212, 'JOHN', 'PATRICK', 'SHP', 25.00);

update sec0505_shipping dept_view
set credit_limit = 35.00
where employee_id = 203;

delete from sec0505_shipping dept_view
where employee_id = 208;

Ending view (sec0505_shipping dept_view) ®

EMPLOYEE

203 MARTHA WOODS SHP $35.00
207 DAN SMITH SHP $25.00
212 JOHN PATRICK SHP $25.00

DEPT CREDIT

ID FIRST _NAME LAST NAME CODE LIMIT

186

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

Beginning table (sec0505b_employees table) @

EMPLOYEE
ID

DEPT CREDIT PHONE MANAGER
FIRST _NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
JIM KERN SAL 16-AUG-1999 $25.00 8722 201
MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
CAROL ROSE ACT (null) (null) (null) (null)
DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Task for example 2

From the sec0505b_employees table, transfer Dan Smith from shipping to
marketing and add Susan Manning as a new executive.

Notes

©® The beginning table shows Dan Smith in the shipping department, and
there is no row for Susan Manning.

® Make the sec0505b_shipping dept_view from the sec0505b_employees
table.

® The update and insert statements make changes through the
sec0505b_shipping_dept_view.

©® You cannot verify that the changes were made correctly. The ending view
does not contain a record for either Dan Smith or Susan Manning.

® Only in the ending table, the sec0505b_employees table, can you verify
that Dan Smith is now in the marketing department and Susan Manning
is now an executive.

Ending table (sec0505b_employees table) ®

EMPLOYEE
ID

DEPT CREDIT PHONE MANAGER
FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
JIM KERN SAL 16-AUG-1999 $25.00 8722 201
MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
CAROL ROSE ACT (null) (null) (null) (null)
DAN SMITH MKT 01-DEC-2008 $25.00 2259 203
FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

SUSAN MANNING EXE (null) $50.00 (null) (null)

. 203 MARTHA WOODS SHP $25.00
207 DAN SMITH SHP $25.00
208 FRED CAMPBELL SHP $25.00

MODIFYING DATA THROUGH A VIEW 187

Beginning view (sec0505b_shipping_ dept_view) @

EMPLOYEE DEPT CREDIT
ID FIRST_NAME LAST_NAME CODE LIMIT

\

Oracle & Access SOL: Chunge the data through the view o

These changes can only be seen in the ending table, not in the ending view,
so this code runs only if the view is not defined With Check Option.

update sec0505b_shipping dept_view
set dept_code = 'MKT'
where employee_id = 207;

insert into sec0505b_shipping dept_view
values (211, 'SUSAN', 'MANNING', 'EXE', 50.00);

\

Ending view (sec0505b_shipping dept_view) O

EMPLOYEE DEPT CREDIT
ID FIRST_NAME LAST_NAME CODE LIMIT

203 MARTHA WOODS SHP $25.00

208 FRED CAMPBELL SHP $25.00

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

Check your understanding

Change the following SQL code to create your own example that shows you
can modify the data in a table by making changes to a view based on that

table.

In this example, the view you create will include all the columns and all the
rows of the underlying table. This is the easiest and most straightforward
case. It is also the way that this feature is used most often.

1.

List all the columns and rows of the foods table. This shows what
data is in the table before you make any changes to it.
select *

from sec0505_foods;

Create a view of the foods table. Include all the columns and rows
in the view.

create or replace view sec0505_ foods_view as
select *
from sec0505_foods;

Show that you can use an insert statement with this view.

insert into sec0505_foods_view
values ('ABC', 'DEF', 51, 'BLUEBERRY PIE', 2.99, null);

Show that you can use an update statement with this view.

update sec0505_foods_view

set menu_item = 20,
description = 'CARROTS'

where description = 'BROCCOLI';

Show that you can use a delete statement with this view.

delete from sec0505_ foods_ view
where description = 'DESSERT';

List all the columns and rows of the underlying table. Show that all
the changes you made to the view actually affected the data in the
underlying table.

select *
from sec0505_foods;

MODIFYING DATA THROUGH A VIEW 189

5-6 Views using With Check Option

In the previous section we saw that a change can be made to the data
through a view, even if the new or modified row does not appear in the end-
ing view. In particular, an insert command can insert a new row even if
that row does not appear in the ending view. Also, an update command
can make a change to a row so that it does not appear in the ending view.

Sometimes we do not want to allow such changes. We can prevent them by
defining the view With Check Option. This can be done in Oracle and most
other types of SQL. However, Access does not support this option.

When the view is defined With Check Option, you are only permitted to use
insert or update when the resulting row will appear in the ending view.
You can still delete any row that appears in the beginning view. In effect,
this says that you can only make changes when you can see the result of
those changes and verify that they are correct. You are not allowed to make
changes you cannot see.

In the example of the previous section, we would not be allowed to change
the department for Dan Smith. We would also not be allowed to add Susan
Manning, because she will not work in the shipping department.

Task

Create the sec0506a_shipping_dept_view without using With Check
Option. Then show how to modify this code to create the
sec0506b_shipping_dept_view that uses With Check Option

Oracle SQL: Create the sec0506a_shipping dept view
without using With Check Option

create or replace view sec0506a_shipping dept_view as
select employee_id,
first_name,
last_name,
dept_code,
credit_limit
from sec0506_employees
where dept_code = 'SHP';

190

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

Oracle SOL: Create the sec0506b_shipping dept view
using With Check Option

create or replace view sec0506b_shipping dept_view as
select employee_id,
first_name,
last_name,
dept_code,
credit_limit
from sec0506_employees
where dept_code = 'SHP'
with check option; ©

Access does not support With Check Option.

Notes

® To code with check option, place it at the end of the select state-
ment that defines the view.

Check your understanding

Change the following SQL code to create your own example that shows the
effect of using With Check Option when you define a view.

In this example, the view you create will include all the columns of the
underlying table, but only some of its rows. A few rows cannot be seen
through this view.

1. List all the columns and rows of the foods table. This shows what
data is in the table before you make any changes to it.

select *
from sec0506_foods;

2. Create a view of the copy of the foods table. Include all the columns
and most of the rows in the view. Use With Check Option when you
define the view.

create or replace view sec0506_ foods_ view as
select *

from sec0506_foods

where price <= 2.00

with check option;

MODIFYING DATA THROUGH A VIEW 191

10.

Show that you can use an insert statement to add a new row that
will appear in this view.

insert into sec0506_foods_view
values('ABC', 'DEF', 61, 'CHICKEN SOUP', 1.99, null);

Show that you cannot use an insert statement to add a new row
that will not appear in this view.

insert into sec0506_foods_view
values('ABC', 'DEF', 61, 'BEEF SOUP', 2.01, null):;

Show that you can use an update statement to change a row that
appears in this view, if the changed row will also appear in the view.

update sec0506_foods_view
set price = 1.50
where description = 'SODA';

Show that you cannot use an update statement to change a row that
appears in this view, if the changed row will not appear in the view.

update sec0506_foods_view
set price = 3.00
where description = 'COFFEE';

Show that you cannot use an update statement to change a row that
does not appear in this view, even if the changed row would appear
in the view.

update sec0506_foods_view
set price = 1.50
where description = 'GRILLED STEAK';

Show that you can use a delete statement to delete a row that
appears in this view.

delete from sec0506_foods_view
where description = 'FRENCH FRIES';

Show that you cannot use a delete statement to delete a row that
does not appear in this view.

delete from sec0506_foods_view
where description = 'DESSERT';

List all the columns and rows of the underlying table. Verify that the
data has changed in the way you expected.

select *
from sec0506_foods;

192 CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

The SQL Commands Page in Oracle

When you run a single SQL command in the Oracle Home Page environ-
ment, you use the SQL Commands page. Appendix B shows you the basic
technique of using this page. Here we examine in greater detail all the vari-
ous features and options that are available on this page.

5-7 Overview of the SQL Commands page

Here is what the SQL Commands page looks like before any SQL command
is entered into it:

ORACLE' Database Express Edition G o ?7 2

User: JEATRICK

Home = SQL > SQL Commands

[“] Autocommit Display | 10 4
|

Results Explain Describe Saved SQL History

Enter SQAL statement or PL/SAL command and click Run to see the results.

Application Express 2.1.0.00.28
Language: en-us Copyright @ 1888, 2008, Oracle. All rights reserved.

The features available on this page are:
m Home link — Use this to go back to your home page.
m Logout link — Use this to log out of the database.
m Help link — Use this to get help with the SQL Commands page.

THE SQL COMMANDS PAGE IN ORACLE 193

m User Identification — This shows the userID that is currently logged
on.

m Home > SQL > SQL Commands — This shows you where you are in
relationship to your home page. For example, here we are currently on
the SQL Commands page. We got here from our home page via the
SQL page. If you click on “Home” or “SQL,” you will go back to those
pages.

m Autocommit checkbox — See section 5-8.

m Display drop-down list — The maximum number of rows to display of
the result table.

m Save button — Click this button to save an SQL command that you
will want to run many times in the future. When you save an SQL
command this way, you will be able to give it a name and enter a
description of what it does.

m Run button — Click this button to run an SQL command.

m Area to enter an SQL command — Usually you enter one SQL com-
mand here. You can also enter several SQL commands, then select
and highlight the one you want to run.

m Results option — Select this option to run an SQL command and see
the result table.

m CSV Export — This option appears at the bottom of the result table
when you run an SQL query. It exports the result table in CSV format,
which is Comma-Separated Values format.

m Explain option — See section 5-9.

m Describe option — “Describe” is an Oracle command that shows you
the definitions of the columns of any table or view. This shows you the
datatype, length, and other information about each column.

m Saved SQL option — This shows you a list of all the SQL commands
you saved by clicking the Save button. Each of these SQL commands
is identified with a name and a description.

m History option — This shows you a list of all the SQL commands you
have ever run. You can click on an SQL command to copy it back to
the command area and you can modify it there. A Find box is avail-
able to help you search for the particular SQL command you want.

m Results area — This is the area that shows the results.

194 CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

5-8 The Autocommit option

When the Autocommit checkbox is checked, here is what that means:

m An SQL commit command runs automatically after each change to
the data in a table or view. That is, it runs after any insert, update,
or delete command. This commit command causes the change to
become permanent immediately.

m The commit and rollback SQL commands are disabled and have no
effect.

m All other people who are using the database will immediately see any
changes you make to the data in the tables or view of the database.

When the Autocommit checkbox is unchecked, here is what that means:

m An SQL commit command is not run automatically after each change
to the data in a table or view. This causes all your changes to the data
to be in a temporary status until you issue a commit or a rollback
command.

m You can make changes to the data in several tables and they will all
be temporary changes until you issue a commit or rollback com-
mand. This allows you to batch several changes together in a “trans-
action.” Then you can either accept the batch and make all those
changes permanent or you can reject the batch and reject all of those
changes.

m The commit SQL command makes permanent all your temporary
changes to the data. After your changes have become permanent all
other people who are using the database will immediately see your
changes.

m The rollback SQL command rejects and discards all the temporary
changes you have made.

5-9 The Explain option

The Explain option is used to estimate how long a query will take to pro-
cess. This is an advanced option that is used mostly when there is a lot of
data in the database and when the queries are quite complex.

If you have an advanced query and you want to estimate whether it will take
one hour to run or ten hours, then you might run the Explain option.

USING THE ORACLE DATA DICTIONARY — PART 1 195

If you have SQL code that will run many times, maybe once a week or more,
then you might want to write several versions of the SQL code to try to find
the one that is most efficient. You might use the Explain option to compare
these different versions of the SQL query.

A DBA might use the Explain option with an SQL query that is run many
times to determine which indexes are being used to process the query.
This might lead the DBA to conclude that some new indexes need to be
built to make the database process more efficiently.

Using the Oracle Data Dictionary — Part 1

This section describes how to find information about the tables and views
in a database. The database needs to keep track of all the tables and views
for its own processing. This information is available to everyone who uses
the database.

5-10 Overview of the Data Dictionary

The Data Dictionary is a set of tables that contains all the information
about the structure of the database. It contains the names of all the
tables, their columns, their primary keys, the names of the views, the
select statements that define the views, and much more. The Data Dic-
tionary is sometimes called the System Catalog. Most SQL products have a
Data Dictionary.

These tables are created and maintained by the database system itself.
They contain all the information the database system needs to support its
own processing, its self-knowledge. Because this information is stored in
tables, you can use select statements to get information from it. These
tables are like any other tables. This may seem natural, but it is actually a
big step forward. Often in software, the “inner knowledge” is in a com-
pletely different format than the “outer knowledge.”

The details of the Data Dictionary differ for each SQL product. They even
differ slightly from one version of a product to the next. The differences are
in the names of the Data Dictionary tables, what columns they contain, and
what codes are used.

These details are tied very closely to the inner workings of the database
engine itself, the Database Management System (DBMS). When new capa-
bilities are added to the DBMS, new information is often added to the Data

196

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

Dictionary. Much of this information is meant only for the DBAs and can be
ignored by other people. However, you can use a lot of the information that
can be found there. Almost anything you might want to know about the
database is contained in the Data Dictionary.

Oracle Data Dictionary

Oracle has a Data Dictionary. This set of tables contains complete informa-
tion about all the database tables, views, and other objects. For now, I
focus on obtaining information from it about the database objects we have
discussed so far: tables, views, and primary keys.

The Oracle Data Dictionary: Information about tables and views.

Information to Get Data Dictionary Table Data Dictionary Columns
Table names user_tables table_name

or

all_tables
View names user_views view_name

or

all_views

View definition user_views text

or

all_views

Columns of tables and user_tab_columns column_name

views

or
all_tab_columns

Primary keys of tables user_constraints and (see section 5-15)

user_cons_columns
or
all_constraints and

all_cons_columns

Note that user_tables are limited to information about the database
objects that you own; all_tables may also include information about
database objects that are owned by other people, but only if they have
decided to share them with you.

USING THE ORACLE DATA DICTIONARY — PART 1 197

Access uses the GUI to show this information

Access does not have a Data Dictionary. This is unusual for an SQL prod-
uct. Instead, it can show you information about your table, views, and pri-
mary key by using the GUI.

Having this information available via the GUI is not always as good as hav-
ing it in tables. If you simply want to look up the information by hand, the
GUI method is fine, but if you want to write select statements that make
use of this information, it is much better to have the information available
in tables.

5-11 How to find the names of all the tables

When [start to work with any database, the first thing [want to know is the
names of the tables. All the data is contained in tables. They are the basic
building blocks for everything else in the database. Once I know the name
of a table, I can examine its data by using the following command:

SELECT *
FROM table_name;

In the Oracle Data Dictionary, the table named user_tables contains the
names of all the tables you own. It has many columns and most of them will
not interest you — they are for the DBAs. The column called table_name
contains the name of every table.

The table named all_tables contains the names of all the tables you are
allowed to access. This includes tables owned by other groups or people in
addition to the tables you own.

In Oracle, the table names and the view names are contained in different
Data Dictionary tables. In some other SQL products, the information about
the tables and views is kept together in a single table.

Task for example 1

Find the names of all the tables you own.

Orace SQL — List all the tables you own

select table_name
from user_tables;

198 CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

Oracle result table

TABLE_NAME
L_CONSTANTS
L_DEPARTMENTS
L_EMPLOYEES
L_FOODS
L_LUNCHES
L_LUNCH_ITEMS
L_SUPPLIERS
NUMBERS_0_TO_9
(and many others)

Task for example 2

Find the names of all the tables you are permitted to use.

Oracle SQL — List all the tables you are permitted to use

select table_ name
from all_tables;

The result is the same as before because I am the only user of my database.

Access GUI method: Find the names of all the tables and views

In Access, all the tables and views (queries) are shown in the navigation pane.

Oia T S R SQLFUM2007 : Database (Access 2007) - Microsoft Access - =2 X
bV
| Home { Create External Data Database Tools @
; = T B JA
v B & 1l . £l
V; | 2 el ”a_') st ‘ﬁl L
rew aste i ecords iter
7 35 i ‘ 25 V'
| Views | Clipboard gl RichText _ Sort & Filter

AI! Access Objects
Tables
ALPHABET

DUAL
JP_COMNSTANTS
JP_DEPARTMENTS
JP_EMPLOYEES
JP_FOODS
JP_LUNCH_ITEMS.
JP_LUNCHES
JP_SUPPLIERS
L_CONSTANTS
L_DEPARTMENTS
L_EMPLOYEES
L_FOODS
L_LUNCH_ITEMS.

O i i

L_LUNCHES

USING THE ORACLE DATA DICTIONARY — PART 1 199

Check your understanding

List the names of all the tables you own.

5-12 How to find the names of all the views

This section shows how to find the names of all your views, which are
another important part of a database. In the Oracle Data Dictionary, the
table named user_views contains information about all the views owned
by your userID. The view_name column is the only one you need right now.

Task

Find the names of all the views you own.

Oracle SOL

select view name
from user_views;

Oracle result table @

VIEW_NAME
ALL_LUNCHES
NUMBERS_0_TO_99
SALES_STAFF_1
SALES_STAFF_2
SHIPPING_DEPT

(and many more)

Notes

© Your results may be different if you have not run all the Oracle SQL in
the book so far.

Check your understanding

List the names of all the views you own.

200 CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

5-13 How to find the select
statement that defines a view

This section shows how to find the select statement that defines a partic-
ular view. You get the text column from the user_views table. You can
use the where clause to specify which view definition you want.

Oracle retains the format of the select statement the way you enter it, but
Access does not. Access uses its own formatting. Sometimes it rewrites the
select statement entirely. In this example, the Access format is easy to
read, but sometimes the format is difficult because it is written to be read
by computers, not people.

Task

Find the select statement that defines the sec0513_shipping_dept_view

Oracle SQL

select view_name,
text
from user_views
where view name = 'SEC0513_SHIPPING DEPT VIEW'; O

Oracle result table

VIEW_NAME TEXT

SEC0513_SHIPPING_DEPT_VIEW SELECT EMPLOYEE_ID,
FIRST_NAME,
LAST_NAME,
DEPT_CODE,

CREDIT LIMIT
FROM L_EMPLOYEES
WHERE DEPT_CODE = 'SHP'
WITH CHECK OPTION

Notes

©® The where clause limits the information to a single view.

USING THE ORACLE DATA DICTIONARY — PART 1 201

Access GUI method: Find the definition of a view

Step 1: Find the view in the Navigation Pane and right-click on it.

Step 2: Choose Design View.

-3 SEC0513_SHIPPING_DEPT VIEW

SELECT employee_id, first_name, last_name, dept_code, credit_limit
FROM I_employees
'WHERE dept_code = "SHP";

Check your understanding

Find the select statement that defines the numbers_0_to_99 view.

5-14 How to find the names of the
columns in a table or view

This section shows you how to get the names of the columns to use in cod-
ing a select statement. When you look at a table, the column names seem
to be displayed above each column. These names are meant to help a per-
son read and understand the table, but they are not always the actual
names you need to use to write a select statement. They can be truncated
or they can be changed entirely by the SQL select statement.

Oracle has two different methods to obtain this information. One method
uses the describe command followed by the name of the table. This is a
command that only works in Oracle.

The other method uses the Oracle Data Dictionary. A select statement
gets the column_name column from the user_tab_columns table. This
table contains information about the columns of both tables and views.
The name of this table should be pronounced “User Table Columns,” but in
the spelling, the word “Table” is truncated.

A where clause is needed to limit the result to the columns of a single
table or view. If you do not use a where clause you will get the names of all
the columns of all your tables and views, which might be an overwhelming
amount of information. In this where clause, table_name is set equal to
the name of either a table or a view. The order of the columns within the
table is contained in the column_id column.

202 CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

Task

Find the full names of all the columns of the 1_employees table. List these
columns in their order within the table.

Describe command in Oracle

describe 1_employees;

Oracle response from the SOL Commands page of the Database Home Page environ-
ment. (This does not work in an SQL Script file.)

Table Column Data Type Length Precizsion Scale Primary Key HNullable Default Comment
L EMPLOYEES EMPLOYEE 1D Number - 3 0 1 = = -
FIRST NAME archar2 10 - - = v - -
LAST NAME Warchar2 20 - - = v - -
DEPT CODE \archar2 3 = = = v - -
HIRE DATE Date 7 - = = v - -
CREDT LIMT Number - 4 2 - v o -
PHONE NUMBER Varchar2 4 - - = v - -
iF: ER ID Number - 5 0 = v - -

Oracle SQL: Column names of tables and views

select table_name,
column_name,
column_id
from user_tab_columns
where table name = 'L_EMPLOYEES'
order by column_ id;

Result table
TABLE_NAME COLUMN_NAME COLUMN_ID
L_EMPLOYEES EMPLOYEE_ID 1
L_EMPLOYEES FIRST NAME 2
L_EMPLOYEES LAST NAME 3
L_EMPLOYEES DEPT_CODE 4
L_EMPLOYEES HIRE DATE 5
L_EMPLOYEES CREDIT_LIMIT 6
L_EMPLOYEES PHONE_NUMBER 7
L_EMPLOYEES MANAGER_ID 8

USING THE ORACLE DATA DICTIONARY — PART 1 203

Access GUI method: Column names for tables, but not for views
Step 1: Find the table in the Navigation Pane and right-click on it.

Step 2: Choose Design View.

~| L_EMPLOYEES X
Field Name Data Type Description -

#¥ EMPLOYEE_ID Number =

FIRST_MNAME Text

LAST _MAME Text

DEPT_CODE Text

HIRE_DATE Date/Time

CREDIT_LIMIT Currency

PHOMNE_NUMBER Text

MAMNAGER_ID MNumber

Field Properties

General |Lookup

Field Size Decimal

Format

Precision 3

Scale a

Decimal Places Auta

Input Mask A field name can be up to 64 characters long,
Caption including spaces. Press F1 for help on field
Default Value names.

WValidation Rule
WValidation Text

Required Ma

Indexed Yes (Mo Duplicates)
Smart Tags

Text Align General

Check your understanding

Use the Data Dictionary to find the names of all the columns of the
1_employees table.

5-15 How to find the primary key of a table

This section shows how to find the primary key of a table. The primary key
can consist of several columns, but is considered to be a single unit. A view
does not have a primary key.

To find information about primary keys in the Oracle Data Dictionary, you
need to know that a primary key is one type of constraint. A constraint is
any rule that restricts the data that can be entered into a column. We dis-
cuss constraints in more detail in chapter 8. A primary key is a constraint

204

CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

because the data that can be entered into its columns is restricted by the
following rules:

1. Nulls are not allowed in primary key columns.

2. No two rows can have the same value in all the primary key columns.

For now, you must use a two-step process to find this information in the
Oracle Data Dictionary. In section 13-18 I will show you how to combine
these steps and get this information with a single select statement.

The goal of the first step is to find the exact name of the constraint from the
user_constraints table. In the following example, the select statement
lists all the constraints on the 1_foods table. There are three of them. The
primary key constraint is the one with a value of P in the constraint_type
column, so the name of this constraint is pk_1_foods. If you have put pk_
in the names of all the primary key constraints, this first step may not be
necessary.

The second step finds all the columns involved with the constraint. It uses
the user_cons_columns table. The name of this table is pronounced
“User Constraint Columns,” but in the spelling, the word “Constraint” is
truncated. In the example, the pk_1_foods constraint is listed with two
columns: supplier_id and product_code. You already know that this is
the correct answer from the design of the Lunches database.

Task

Find all the columns in the primary key of the 1_foods table.

Oracle SQL: Step 1

select table_name,
constraint_type,
constraint_name

from user constraints

where table _name = 'L_FOODS'; ©

Result table: Step 1 @

TABLE_NAME

L_FOODS
L_FOODS
L_FOODS

C CONSTRAINT_NAME

P PK_L_FOODS
R FK_FOODS_SUPPLIER_ID
C FOODS_MAX_PRICE

USING THE ORACLE DATA DICTIONARY — PART 1 205
Oracle SQL: Step 2
select *
from user_cons_colu.mns
where table_name = 'L_FOODS'; O
Result table: Step 2
OWNER CONSTRAINT_NAME TABLE_NAME COLUMN_NAME POSITION
SQLFUN FK_FOODS_SUPPLIER_ID L_FOODS SUPPLIER_ID 1
SQLFUN FOODS_MAX_PRICE L_FOODS PRICE (null)
SQLFUN PK_L_FOODS L_FOODS SUPPLIER_ID 1 ©
SQLFUN PK_L_FOODS L_FOODS PRODUCT_CODE 2 ©
Notes

O This where clause limits the result to the constraints on one table. This
is what you want. Otherwise the result can become confusing to read.

® The constraint_type column contains the following codes:

P — Primary key

R — Referential Integrity, foreign key

¢ — Check constraint
U — Uniqueness constraint

Constraints are discussed in chapter 8.

® The constraint_name, pk_1_foods, shows you which rows you want
from this table. The position says that supplier_id is the first col-
umn in the primary key, and product_code is the second column.

Access GUI method: Find the primary key of a table o

Step 1: Find the table in the Navigation Pane and right-click it.

206 CHAPTER 5 THE DATA DICTIONARY AND OTHER ORACLE TOPICS

Step 2: Choose Design View.

Serees

Field Name Data Type Description -~
#» SUPPLIER_ID Text =
¥ |PRODUCT_CODE Text
MENU_ITEM Mumber
DESCRIPTION Text
PRICE Currency
PRICE_INCREASE Currency
B

Field Properties

General Lookup|

Field Size 3
Format

Input Mask

Caption

Default Value

Validation Rule A field name can be up to 64 characters long,
Validation Text including spaces. Press F1 for help on field
Required Mo ELE

Allow Zero Length Ma
Indexed Ma
Unicode Compression Ma

IME Mode Mao Caontrol
IME Sentence Mode MNone
Smart Tags

[

|

Notes

O In Access, the columns of the primary key are shown with the key symbol
to the left of the column names.

Check your understanding

Use the Data Dictionary to find the primary key of the 1_employees table.

KEY POINTS 207

Key Points

Transactions:

m A transaction is an SQL structure that allows you to group several
database changes together so either they will all succeed or they will
all fail.

m The commit command ends a transaction by saving all the changes.

m The rollback command ends a transaction by deleting all the
changes. It restores the tables to the way they were when the last
commit occurred.

m The autocommit option automatically performs a commit after every
insert, update, and delete statement.

Modifying data through a view:

m When many people are using a database at the same time, you might
be required to make changes to the data in a table by modifying the
data through a view. This is also sometimes required when additional
layers of software are involved.

m Some views are updateable and others are not.

m When you modify data through a view, you are really changing the
data in the table that the view is based on.

Oracle SQL Commands page:

m The SQL Commands page contains features to save your SQL queries,
control the maximum number of rows of the output, export the result
table, and control whether autocommit is on or off.

Oracle Data Dictionary:

m The Data Dictionary is a set of tables that contain all the information
about objects in the database. These tables are used by the RDBMS
(Relational DataBase Management System) itself to control the data-
base. You can also use them, like any other tables, to find informa-
tion about the database.

This page intentionally left blank

chapter 6

CREATING YOUR
OWN TABLES

In this chapter, you learn how to create your own tables in a
way that provides maximum control over every aspect of the
tables. In chapter 4, you created new tables from other tables.
Here, you create tables from the beginning, without relying on
other tables.

209

CreatingTableso 211

6-1 The create tablecommand 211
6-2 Datatypesin Oracle and AcCess 212
6-3 Textdatatypes 217
6-4 Numericdatatypes. 222
6-5 Date/time datatypes 222
6-6 Otherdatatypes 222
6-7 Puttingdataintoanewtable 223
6-8 Creatingthe 1_employeestableinOQracle, 224
Changing Tables.o oo 226
6-9 Adding a primary keytoatable 226
6-10 Changing the primary keyofatable 228
6-11 Addinganew columntoatable.......... 229
6-12 Expanding the length ofacolumn. 231
6-13 Deleting a column fromatable 232
6-14 Making other changestotables. 234
Tables with Duplicate Rows. i 236
6-15 The problem with duplicaterows. 237
6-16 How to eliminate duplicaterows 239
6-17 How to distinguish between duplicaterows. 240

Key Points. e 243

Creating Tables

A table can be created with an SQL command, giving you precise control
over every part of the table.

6-1 The create table command

The create table statement creates a new table. When it is first created,
this table will not have any rows of data in it. This command has the follow-
ing format:

CREATE TABLE table_name
(column_name_1 data_type_1,
column_name_2 data_type_ 2,

cee);

This is the simplest form of the command. Many other options can be spec-
ified in this command or added later. All the columns of the table must be
listed.

This method of creating a table allows the greatest control over all its ele-
ments. A table consists of the following:

m A table name

m Names of the columns

m Datatypes of the columns

m A sequence to the columns
People sometimes think of a table as consisting of data, but this is incor-
rect. The table is a container, like a box. The data are held in a table.

The list of datatypes in Oracle is a little different from the one for Access.
Each SQL product supports datatypes that differ slightly from other SQL
products. Because the datatypes are named in this command, the SQL
statement for Oracle is different from the one for Access.

Primary keys and many other options can be specified when the table is
first created or they can be specified after it is already built. They can even
be specified after the table has data in it. The alter table statement is
used to add a primary key to a table after it has been created. We discuss
this in section 6-9.

In the following example, the create table statements are the same for
Oracle and Access, except for the names of the datatypes.

21

212

CHAPTER 6 CREATING YOUR OWN TABLES

Task

Create a new table similar to the 1_foods table by defining its columns with
a create table statement. Move the position of the menu_item column to
make it the first column.

Oracle SOL
create table sec0601_foods
(menu_item number (2),
supplier_ id varchar2(3),
product_code varchar2(2),
description varchar2(20),
price number (4, 2),

price_increase number(4,2));

Access SQL
create table sec0601_foods
(menu_item byte,
supplier_id varchar(3),
product_code varchar(2),
description varchar(20),
price money,

price_increase money);

Result — An empty table with no data in it

When a table is created, at first it does not contain any data, so you cannot see it with a
select statement. In Oracle you can see this table in Object Builder or by looking in the
Data Dictionary. In Access, you can see the table in the Navigation Pane.

6-2 Datatypes in Oracle and Access

What is a datatype? Data is represented inside the computer as a pattern of
Is and 0s. Only certain patterns are meaningful — all others are nonsense.
These meaningful patterns are called datatypes.

Oracle uses a different set of meaningful patterns than Access does. For
instance, each use a different pattern of 1s and Os to represent the date Jan-
uary 1, 2010. The meaning of the data is the same, but the binary represen-
tation of it is different. In short, they use different datatypes. Each SQL
product has its own set of datatypes. Each one assigns slightly different
meanings to patterns of binary digits.

CREATING TABLES 213

For the most part, the meanings are the same, even though they are repre-
sented differently on a binary level. The differences show up mostly at the
extremes. Consider dates. Both Oracle and Access can handle dates
between 100 AD and 9999 AD. That is a greater range of dates than | have
ever needed to use.

However, Oracle dates and Access dates do have some differences because
of the different patterns of 1s and Os that represent them. In particular, Ora-
cle can handle dates between 4712 BC and 100 AD, but Access cannot.

The main point here is that the datatypes for Oracle and Access are very
similar, but they differ in the small details. Also, the names of these
datatypes are different, so the create table statements are different.

The following table shows the similarities and differences between the
datatypes used in Oracle and Access. The datatypes for text, date/time, and
storage are very similar. Access has a one-bit datatype for Yes/No and
True/False, which Oracle does not have. Oracle might use an entire byte of
data to represent this. Usually, that is acceptable.

Another difference is the numbers. Access uses many datatypes for num-
bers. This is the traditional approach and most computer products follow
it. Oracle combines decimal numbers and floating-point numbers together
in a single datatype.

The datatypes for storage are used for binary data such as pictures, sound
clips, video clips, and compiled programs. These are not active elements
within the database — you cannot search, sort, index, or apply functions to
them.

The use of storage datatypes in databases is currently in the process of
change. It is changing in two opposite directions at the same time. From
one perspective, their use is being phased out in favor of storing files
within the operating system, rather than in a database, and only placing a
pointer to them in the database itself. From another perspective, their use
is increasing to support object-oriented concepts.

The names of the datatypes given here are the internal names for the ele-
ments of the database engines. For Access they are the names used by the
JET engine. The GUI graphical presentation layer of Access sometimes uses
slightly different names.

Many of these datatypes also have synonyms or external names. These are
intended to make one SQL product compatible with another. This is an
attempt to map the datatypes of one product to the datatypes of another.

214

Main Oracle and Access datatypes.

CHAPTER 6 CREATING YOUR OWN TABLES

Oracle

Access

Comments

CHARACTER DATATYPES

varchar2 (Size)
(when size is 1
to 255)

varchar (Size)
or
text (Size)

Variable-length character string.

Size is the maximum length of the column.

Size can be from 1 to 255.

In Oracle, the size can be larger but columns more
than 255 bytes long are long strings. They have
restricted capabilities and behave differently.

char (Size)

char (Size)

Fixed-length character strings.
Size is the maximum length of the column.
Size can be from 1 to 255.

DATE/TIME DATATYPES

date

datetime

A date and time.
Oracle: from 4712 BC to 9999 AD.
Access: from 100 AD to 9999 AD.

NUMERIC DATATYPES

number (P, S)

Number: Either integers, decimals, or scientific
notation (floating-point) numbers.
p: Precision, is the total number of digits other
than zeros. From 1 to 38.
s: Scale, is the number of digits to the right of the
decimal point. From 0 to 130.
Examples:
1234.56 has type number (6, 2)
0.0000123 has type number (3,7)
1230000. has type number (7,0)
Valid numbers:
From
.00...01 (129 zeros after the decimal point),
which has type number (1,130)
To
99...9900...00 (38 nines followed by 88 zeros),
which has type number (38, 0)

CREATING TABLES

215

Main Oracle and Access datatypes. (continued)

Oracle

Access

Comments

NUMERIC DATATY

PES (continued)

byte Integer, from 0 to 255.
smallint Integer, from about —32,000 to 32,000.
integer Integer, from about —2,000,000,000 to

OrI number

2,000,000,000.

money Integer and four decimal places.

or Plus or minus about 900,000,000,000,000

currency Automatically formatted as currency.

real Floating-point number (positive or negative).
From about 1.4E-45 to 3.4E38.

float Floating-point number (positive or negative).

From about 4.9E-324 to 1.8E308.

Additional Oracle and Access datatypes.

Oracle

Access

Comments

STORAGE DATATY

PES (You cannot sort, search, or index them)

clob memo Character data.
CLOB is a Character Large OBject.
Maximum length is 2 GB or more.
varchar2 (Size) Character data.
(when size is 256
to 4,000)
raw(Size) binary Binary data: pictures, sound.
Oracle: up to 2,000 bytes long
Access: up to 255 bytes long.
blob image Binary data: pictures, video, sound, compiled
or programs, multimedia.
OLE object

BLOB is a Binary Large OBject.
Maximum length is 2 GB or more.

216

CHAPTER 6 CREATING YOUR OWN TABLES

Additional Oracle and Access datatypes. (continued)

Oracle Access Comments

BIT DATATYPES
bit Any binary choice.
or For instance: yes or no, true or false.
yesno

PSEUDO DATATYPES

counter Automatically numbers the rows in a table.
Access GUI calls this autonumber.
rowid Address of a row within its table.
Each row has a different address.
rownum Sequential number assigned to each row.
bfile OLE object Locator for a large binary file stored outside the

database. This is a type of pointer. It points to a
file, which is stored by the operating system.

SPECIALIZED TIME/DATE DATATYPES

timestamp (P)

Point of time.

Used to show the sequence of events within the
computer.

Year, month, day, hour, minute, second, and frac-
tion of a second.

p: Precision, is the number of digits in the frac-
tional part of a second. From 0 to 9.

interval

year (P) tO month

Period of time in years and months.
p: Precision, is the number of digits in the year.

interval day (D)
tO second (S)

Period of time in days, hours, minutes, and
seconds.

p: Number of digits in the day.

s: Number of digits in the fractional part of a
second.

CREATING TABLES 217

6-3 Text datatypes

The most important datatypes for storing text are:
m Variable length strings
m Fixed length strings
m Long strings

Here the word “string” is short for the phrase “string of characters.” Those
characters can be letters of the alphabet, numerals, punctuation marks, or
spaces, which are all 8-bit characters.

There are also strings for 16-bit unicode characters that are used for
Chinese and other languages, but that is another topic, which I do not
discuss now.

Variable length strings

Variable length strings are the most frequently used datatype for text. They
are used for short text, up to about 250 characters long. If you want to store
entire documents of text, usually you would use a different datatype.

In a column of variable length strings, each string can have a different
length. There is a maximum limit to what that length can be.

Strings up to that maximum length are accepted. Strings that are longer
than the maximum length are sometimes truncated to the maximum
length and sometimes cause the row to be rejected entirely.

Strings that are shorter than the maximum length are stored completely,
except for any spaces on the end of the string. Let me go over that again. If
there are spaces at the beginning or middle of the string, they are stored in
the field. Only spaces at the end of the string are truncated. This is done to
save storage space on the disk drive.

Often, each variable length string begins with a hidden field that states its
actual length. However, the particular method of storing variable length
strings can vary from one SQL product to another.

Here is an example. Suppose I try to store * good dog " in avariable length
string with a maximum length greater than 10. The characters I enter are:

space - space-g-0-0-d-space-d-o-g-space
What is actually stored in the string is:
10 - space - space-g-0-0-d-space-d-o-g

In this example, 10 is the hidden length indicator.

218

CHAPTER 6 CREATING YOUR OWN TABLES

Fixed length strings

Fixed length strings are mostly used for high-performance databases. Fixed
length strings can process more quickly than variable length strings.

In a column of fixed length strings, all the strings are the same length.
Shorter strings entered into the field are padded with spaces on the end.
Longer strings are truncated or rejected entirely.

Continuing the earlier example, suppose I store * good dog " in a fixed
length string of length 13.

What is actually stored in the string is:

space - space -g-0-0-d - space -d -0 -g - space - space - space

Long strings

Long strings are used to store large amounts of text data, such as entire
books or other documents. Sometimes they are considered to be a storage
datatype, rather than a text datatype.

It used to be that any string longer than 255 characters was considered to
be a long string. Long strings had reduced functionality within SQL. For
instance, you could not search for a long string or use a long string in a
where clause.

Now, however, many of these restrictions have been reduced. Some SQL
products, including Oracle, allow you to use much longer strings with full
SQL functionality.

In Oracle, long strings are an older feature of databases and they are not
used much anymore. They have been mostly replaced by newer features
that are sometimes called LOBs (for Large OBjects) for binary data, or
CLOBs for character data.

In Access, the Memo datatype is used for long strings. A memo field can
hold up to two gigabytes of data and allows rich text formatting.

Task

Create a table with columns that show all the text datatypes. Put some data
in it and test it.

CREATING TABLES 219

Oracle SOL o

create table sec0603_text_datatypes

(row_id varchar2(3),
variable_length_string varchar2(3),
fixed_ length_ string char(3),

long string varchar2(1000));

-- These insert statements will work correctly
insert into sec0603_text_ datatypes
values ('A', '1', '1', '1');

insert into sec0603_text_datatypes
values ('B', '22', '22', rpad('2', 1000, '2'));

insert into sec0603_text_datatypes
values ('C', '333', '333', rpad('3', 1000, '3'));

-- The next insert statements reject with an error message
-- Because the data in one of the fields is too long

-- The error message says that the data in the second field
-- is too long.

-- The variable-length-string field has a maximum length

-- of 3 characters.

-- But the data in the insert statement is 4 characters.

-- This causes the insert statement to reject.

insert into sec0603_text_datatypes

values ('D', '4444', '22', rpad('2', 1000, '2'));

-- The error message says that the data in the third field
-- is too long.

-- The fixed-length-string field has a maximum length

-- of 3 characters.

-- But the data in the insert statement is 4 characters.
-- This causes the insert statement to reject.

insert into sec0603_text_datatypes

values ('E', '22', '4444', rpad('2', 1000, '2'));

-- The error message says that the data in the fourth field
-- is too long.

-- The long-string field has a maximum length

-- of 1000 characters.

-- But the data in the insert statement is 1001 characters.
-- This causes the insert statement to reject.

insert into sec0603_text_ datatypes

values ('F', '22', '22', rpad('4' ,1001, '4'));

220 CHAPTER 6 CREATING YOUR OWN TABLES

-- Show the result

select row id,
length(variable_ length_string) as length_of vl _string,
length(fixed length string) as length of f1l string,
length(long string) as length of long string

from sec0603_text_datatypes;

Oracle result table

ROW_ID LENGTH_OF_VL_STRING LENGTH_OF_FL_STRING LENGTH_OF_LONG_STRING

A 1 3 1
B 2 3 1000
C 3 3 1000

Access SQL o

create table sec0603_text_datatypes

(row_id varchar(3),

variable_length_string varchar(3),
fixed_length_string char(3),
long string memo);

-- These insert statements will work correctly
insert into sec0603_text_datatypes
values ('A', '1', '1', '1');

insert into sec0603_text_datatypes
values ('B', '22', '22', string(1000, '2'));

insert into sec0603_text_datatypes
values ('C', '333', '333', string(1000, '3')):

-- The next two insert statements actually run

-- But they run incorrectly and silently change the data.
-- The data is truncated to the maximum length of the field
-- But there is no error message or warning message.

-=- YOU DO NOT WANT THIS TO OCCUR

-- THIS IS A BAD FEATURE

-- In this insert statement, the second field is too long.
-- The data in the variable length string is changed

-- silently to '444'.

insert into sec0603_text_datatypes

values ('D', '4444', '22', string(1000, '2'));

CREATING TABLES 221

-- In this insert statement, the third field is too long.
-- The data in the fixed length string is changed

-- silently to '444°'.

insert into sec0603_text_datatypes

values ('E', '22', '4444', string(1000, '2'));

-- In this insert statement, there is a problem with

-- the fourth field.

-- The fourth field has a memo datatype.

-- This datatype can hold up to 2 gigabytes of characters.
-- However, you may hit many limitations before you can
-- create a string of that size.

-- In this example, I hit the limitation of the amount
-- of memory installed in my computer.

-- This causes the String function to fail.

-- The error message I get is: system resources exceeded
-- Then the failure of the String function causes the

-- Insert statement to also fail.

-- That is what you want to happen.

insert into sec0603_text_datatypes

values ('F', '22', '22', string(1000000, '2'));

-- Show the result

select row_id,
len(variable length string) as length of vl string,
len(fixed_length_string) as length of fl string,
len(long string) as length of long string

from sec0603_text_datatypes;

Access result table

) Queny1 '
row_id " length_of vl_string ~ length_of_fl_string " length_of long_string ~
A 1 3 1
B 2 3 1000
C 3 3 1000
D ©) 3 1000
E 2 ©) 1000

*

Notes

O | know that this code contains row functions that we haven't discussed
yet, but just let me do the work here so you can observe the text
datatypes. These row functions are discussed in chapter 9.

222

CHAPTER 6 CREATING YOUR OWN TABLES

6-4 Numeric datatypes

Access has many different types of numbers. It makes a distinction
between precise numbers and floating-point (approximate) numbers. It
also has different categories of numbers according to the number of bits
they can use.

Oracle has integrated all these different types of numbers into one
datatype, so you do not need to wonder which type of number to use in
Oracle because there is only one possibility.

6-5 Date/time datatypes

A field with a date/time datatype always contains both a date and a time.
If you enter only the time, usually the date will be set to today’s date. If
you enter only the date, usually the time is automatically set to midnight.
In most SQL products, the date/time data is kept to an accuracy of one
second.

When greater accuracy is needed, the timestamp datatype is used. This is
used mostly for timing and sequencing events within the computer itself.
Oracle supports this datatype, but Access does not.

Oracle also has a datatype, called interval, to express lengths of time rather
than specific points of time. For example “26 minutes” is a length of time,
but “January 1, 2000 at 12:01” is a point of time.

In Access, lengths of time are expressed as numbers with an implied unit.
In the preceding example, Access would just store the number 26 in the
data. The unit of “minutes” would be implied.

6-6 Other datatypes

Most of the other datatypes are used for specialized purposes such as:
m Storage
m HTML data (Web pages)
m XML data
m Spatial data

Several datatypes are available for storage. The types of data that can be
stored includes pictures, spreadsheets, compiled programs, and the entire
text of books.

CREATING TABLES 223

Sometimes a database will store a set of objects, such as a set of pictures,
in a table as a way of organizing them. Then additional columns are added
to the table to describe each object. SQL does not do much with the
objects themselves, but SQL can be useful in manipulating the table using
the descriptive columns.

HTML and XML data are important for Web applications. In the past few
years there has been a lot of growth in the uses of XML.

Some SQL products have special datatypes to handle spatial data. This
functionality is used in medical imaging, engineering, city planning, and
architecture.

6-7 Putting data into a new table

When we first create a table by defining its columns, the table itself is just
an empty structure. There is no data in it.

In section 6-1 we created a new version of the 1_foods table with the col-
umns rearranged to make the menu_item column be the first column. Here
we continue that example. The new table has already been built. Now we
want to put data in it.

We have discussed two ways to put data in a table. One way uses an
insert statement with literal values and adds one row at a time (see sec-
tion 4-9). The other way uses an insert statement with a select state-
ment and can add many rows at once (see section 4-10).

In this example we use an insert with a select statement because all of
the data is already in the original version of the table and it just needs to
be copied into the new table.

Task

Copy all the data from the 1_foods table to the sec0607_foods table.

Oracle & Access SOL

insert into sec0607_foods
select menu_item,
supplier_ id,
product_code,
description,
price,
price_increase
from 1_foods;

224 CHAPTER 6 CREATING YOUR OWN TABLES

The sec0607_foods table with data loaded into it

MENU SUPPLIER PRODUCT PRICE
ITEM ID CODE DESCRIPTION PRICE INCREASE
1 ASP FS FRESH SALAD $2.00 $0.25
2 ASP SP SOUP OF THE DAY $1.50 (null)
3 ASP SW SANDWICH $3.50 $0.40
4 CBC GS GRILLED STEAK $6.00 $0.70
5 CBC SW HAMBURGER $2.50 $0.30
6 FRV BR BROCCOLI $1.00 $0.05
7 FRV FF FRENCH FRIES $1.50 (null)
8 JBR AS SODA $1.25 $0.25
9 JBR VR COFFEE $0.85 $0.15
10 VSB AS DESSERT $3.00 $0.50

Check your understanding

Use a create table statement to create a new copy of the 1_employees
table, with a new name of course. Then use an insert statement with a
select clause to copy all the data from the 1_employees table to your new
copy of the table.

6-8 Creating the 1_employees table in Oracle

It is time for you to look at some real code instead of simplified examples.
In this section I want to show you the Oracle code I wrote to create the
1_employees table of the Lunches database. The notes explain what the
code is doing. You might understand most of this already, but there are a
few parts of the code that we haven't covered yet.

This code is from the SQLFUN_BUILD_ORACLE_TABLES.TXT script you ran
to create the tables for this book. After you read this section, you might want
to try to read the rest of this script to see how the other tables are built.

The type of punctuation used in this example is what | consider to be the
most “natural” type of punctuation. Sometimes you might see SQL code
like this written with a very stylized method of punctuation, such as:

CREATE TABLE L_EMPLOYEES

(EMPLOYEE_ID NUMBER (3)

, FIRST NAME VARCHAR2 (10)
, LAST_NAME VARCHAR2 (20)
)i

CREATING TABLES 225

Task

Show the Oracle code that creates the 1_employees table.

Oracle SOL

-- CREATE THE L_EMPLOYEES TABLE O
CREATE TABLE L_EMPLOYEES ©
(EMPLOYEE_ID NUMBER(3) ,

FIRST NAME VARCHAR2 (10),
LAST NAME VARCHAR2 (20),
DEPT_CODE VARCHAR2(3),
HIRE DATE DATE,

CREDIT LIMIT NUMBER (4,2),
PHONE_NUMBER VARCHAR2 (4),
MANAGER_ID NUMBER(3)) ;

ALTER TABLE L_EMPLOYEES ©
ADD CONSTRAINT PK L_EMPLOYEES
PRIMARY KEY (EMPLOYEE_ID);

INSERT INTO L_EMPLOYEES VALUES O
(201, 'SUSAN', 'BROWN', 'EXE', '01-JUN-1998', 30, '3484',
NULL);

INSERT INTO L_EMPLOYEES VALUES
(202, 'JIM', 'KERN', 'SAL', '16-AUG-1999', 25, '8722',
201);

INSERT INTO L EMPLOYEES VALUES
(203, 'MARTHA', 'WOODS', 'SHP', '02-FEB-2009', 25,
'7591', 201);

INSERT INTO L_EMPLOYEES VALUES
(204, 'ELLEN', 'OWENS', 'SAL', '01-JUL-2008', 15, '6830',
202);

INSERT INTO L EMPLOYEES VALUES
(205, 'HENRY', 'PERKINS', 'SAL', '01-MAR-2006', 25,
'5286', 202);

INSERT INTO L_EMPLOYEES VALUES
(206, 'CAROL', 'ROSE', 'ACT', NULL, NULL, NULL, NULL):;

INSERT INTO L_EMPLOYEES VALUES
(207, 'DAN', 'SMITH', 'SHP', '01-DEC-2008', 25, '2259°',
203);

INSERT INTO L_EMPLOYEES VALUES
(208, 'FRED', 'CAMPBELL', 'SHP', '01-APR-2008', 25,
'1752', 203);

INSERT INTO L_EMPLOYEES VALUES
(209, 'PAULA', 'JACOBS', 'MKT', '17-MAR-1999', 15,
'3357', 201);

226

CHAPTER 6 CREATING YOUR OWN TABLES

INSERT INTO L_EMPLOYEES VALUES

(210, 'NANCY', 'HOFFMAN', 'SAL', 'l6-FEB-2007', 25,
'2974', 203);

COMMIT;

ANALYZE TABLE L_EMPLOYEES COMPUTE STATISTICS; ©

CREATE SEQUENCE SEQ EMPLOYEE_ID O
START WITH 211
INCREMENT BY 1;

Notes

(1]

(~)

This code begins with a brief comment that says what the code does. In
Oracle and most other SQL products, a comment line begins with two
dashes usually followed by a space.

Set up the structure of the table. Define the names of the columns, their
datatypes, and their sequence.

This alter table command makes the employee_id column the pri-
mary key of the table.

These insert statements put the data into the table.

You should run the analyze table command after you create a new
table and load data into it. You should also run this command after you
add a substantial amount of data to any table. The command puts infor-
mation about the table, such as its size and other characteristics, into
the Data Dictionary.

This create sequence command sets up a sequence that can be used
to automatically set the next value for the employee_id column.

Changing Tables

The structure of a table is not cast in concrete and fixed forever. A table can
be changed in many ways, even after it contains data. The alter table
statement is especially designed to make changes to tables. It can make
several types of changes. A few examples of this command are given in
these sections.

6-9 Adding a primary key to a table

This section shows how to add a primary key to a table, even after the table
contains many rows of data. The syntax is:

CHANGING TABLES 227

ALTER TABLE table_name
ADD CONSTRAINT name_of_the constraint
PRIMARY KEY (list_of_columns_in the_ primary key);

A primary key is one type of constraint, which is a rule that restricts the
data that can be entered into the table. This is discussed in section 5-15.
The preceding command adds a constraint to a table and the type of con-
straint it adds is a primary key constraint.

When you create a new table by saving the results of a select statement, as
we did in chapter 4, the new table is created without a primary key. If you want
to have a primary key on one of these tables, you must create it yourself.

If the table already contains data, that data must conform to the restric-
tions of a primary key. Otherwise, this command will fail and you will get an
error message. A primary key cannot be put on a table if the data in the
table does not support it. The data must not have two rows with the same
values in all of the primary key columns, or nulls in any of the columns of
the primary key.

A table is only allowed to have one primary key, although this key may con-
sist of a combination of several columns.

It is not necessary to issue a commit command after an alter table com-
mand. Changes made by the alter table command are immediately
made in a permanent way. Actually, a commit is never needed after a Data
Definition Language (DDL) command, which creates a database object or
changes the structure of an object. commit is only needed after the Data
Modification Language (DML) commands, such as insert, update, and
delete, which change the data in a table.

Task

Add a primary key to the sec0609_foods table. The primary key of this table
will consist of the two columns, supplier_id and product_code.

Orade & Access SQL: Add a primary key to a table

alter table sec0609_foods ©
add constraint pk_sec0609_ foods @
primary key (supplier id, product_code); ©

228

CHAPTER 6 CREATING YOUR OWN TABLES

Notes
©® The table sec0609_foods will be changed by this command.

® This gives a name to the constraint. In this case, the name is
pk_sec0609_foods. It combines pk_, meaning primary key, with the
name of the table. This is my own naming convention. You can name it
something else.

The name of the constraint is used mostly in error messages and in a few
operations such as deleting the constraint or temporarily disabling it. It
is not referred to directly in any select statement. The name should
suggest the purpose of the constraint.

® The words primary key specify that this is a primary key constraint. The
list of columns that follows includes the columns that will form the pri-
mary key. This list can contain any number of columns, even all the col-
umns in the table, but it is usually limited to one or two.

Check your understanding

Add a primary key to a copy of the employees table, sec0609_employees.

6-10 Changing the primary key of a table

This section shows you how to change the primary key of a table. A table
can have only one primary key, so you must delete the old primary key
before you can create a new one. Often when you do this, the new primary
key adds more columns to the old one.

Task

Change the primary key of the sec0610_foods table. Make the menu_item
column the new primary key of this table. Show two ways to drop the primary
key of a table.

Oracle & Access SOL:
Method 1 — Using the name of the constraint to drop it

alter table sec0610_foods
drop constraint pk_sec0610_foods; ©

alter table sec0610_foods
add constraint pk sec0610_foods
primary key (menu_item);

CHANGING TABLES 229

Oracle SQL:
Method 2 — Not using the name of the constraint to drop it

alter table sec0610b_foods
drop primary key; 6

alter table sec0610b_foods
add constraint pk_sec0610b_foods
primary key (menu_item);

Access does not support this syntax.

Notes

©® On this line, pk_sec0610_foods is the name of the constraint. The
name of a constraint is easy to forget. You might need to find the name
of the constraint in the Data Dictionary to delete the primary key.

® Using this format for the alter table statement, you do not need to
know the name of the constraint to delete the primary key.

6-11 Adding a new column to a table

This section shows you how to add a new column to a table. The table may
already have many rows of data in it. The new column is always positioned
at the end of the table. Initially it contains only nulls. Later you will have
the task of putting data into it.

The SQL code to add a new column is different in Oracle than it is in
Access. This is partly because they must use their own datatypes in this
command. Another reason is that Access uses the words add column
where Oracle only uses add.

In Access, the GUI always shows a table with “Add New Field” positioned at
the end of the table. This is done to remind you that you can always add a
new column to a table.

Task

Add a new column to the sec0613_foods table. Name the new column
date_introduced and give it a datatype of date

230 CHAPTER 6 CREATING YOUR OWN TABLES

Oracle SOL

alter table sec0611_ foods
add date_introduced date; O

Access SOL

alter table sec0611_ foods
add column date_introduced datetime; @

Beginning table (sec0611_foods table)

MENU SUPPLIER PRODUCT PRICE
ITEM ID CODE DESCRIPTION PRICE INCREASE
1 ASP FS FRESH SALAD $2.00 $0.25
2 ASP SP SOUP OF THE DAY $1.50 (null)
3 ASP SW SANDWICH $3.50 $0.40
4 CBC GS GRILLED STEAK $6.00 $0.70
5 CBC SW HAMBURGER $2.50 $0.30
6 FRV BR BROCCOLT $1.00 $0.05
7 FRV FF FRENCH FRIES $1.50 (null)
8 JBR AS SODA $1.25 $0.25
9 JBR VR COFFEE $0.85 $0.15
10 VSB AS DESSERT $3.00 $0.50

Ending table ©

MENU SUPPLIER PRODUCT PRICE

ITEM ID CODE DESCRIPTION PRICE INCREASE DATE_INTR
1 ASP FS FRESH SALAD $2.00 $0.25 (null)
2 ASP SP SOUP OF THE DAY $1.50 (null) (null)
3 ASP SW SANDWICH $3.50 $0.40 (null)
4 CBC GS GRILLED STEAK $6.00 $0.70 (null)
5 CBC SW HAMBURGER $2.50 $0.30 (null)
6 FRV BR BROCCOLT $1.00 $0.05 (null)
7 FRV FF FRENCH FRIES $1.50 (null) (null)
8 JBR AS SODA $1.25 $0.25 (null)
9 JBR VR COFFEE $0.85 $0.15 (null)
10 VSB AS DESSERT $3.00 $0.50 (null)

CHANGING TABLES 231

Notes

© In Oracle, the date_introduced column is given the Oracle datatype
date. Notice that the word add is followed by the column name. The
implication is that a new column is being added.

® In Access, the date_introduced column is given the Access datatype
datetime. Notice that the word add is followed by the word column.

® Initially, the new column contains nulls. After you define this column,
you need to put data into it. The new column is always the last column
in the table. Within most SQL products, you have no control over the
placement of the column.

Check your understanding

Add two new columns to a copy of the departments table,
sec0611_departments. One new column, a text column, will be for the
name of the manager of the department. The other new column, a numeric
column, is for the annual budget of the department.

6-12 Expanding the length of a column

This section shows you how to expand the length of a column in Oracle by
changing its datatype. A text column must remain a text column, but you
can change its maximum length and switch between a fixed length charac-
ter string and a variable length character string.

A numeric column must remain a numeric column, but you can change the
maximum number of digits it can contain or the number of digits after the
decimal point. These changes are useful when you receive data that is too
big to put into the columns you have defined.

All dates have the same datatype, so it does not make sense to change the
datatype of a date column.

Task

Change the datatype of the description column of the sec0612_foods
table. It is currently defined as a variable length character string with a maxi-
mum length of 20 characters. Change it to a character string with a length of
25 characters.

232 CHAPTER 6 CREATING YOUR OWN TABLES

In Oracle, change the price column of this table. It is currently defined as
a number with a maximum of four digits, two of which come after the deci-
mal point. Change it to have a maximum of seven digits total — five before
the decimal and two after. In Access, this change is not needed because the
price column already has a datatype of currency, so it can already han-
dle large numbers.

Oracle SQL

alter table sec0612_foods
modify description varchar2(25);

alter table sec0612_foods
modify price number(7,2):;

Access SOL o

alter table sec0612_foods
alter column description varchar(25);

Result table — The table does not show any difference

Notes

©® In Access you can make similar changes on the GUI level using the
Design view of the table.

Check your understanding

Expand the length of the 1ast_name column of a copy of the employees
table, sec0612_employees. Expand it to a length of 50 letters so people
with hyphenated last names can be hired by the company.

6-13 Deleting a column from a table

This section shows you how to delete a column from a table. The early ver-
sions of Oracle did not support this option, but now it does. It was added
to Oracle version 8. New options continue to be added to the alter table
command.

CHANGING TABLES 233

Task

Delete the price_increase column from the new version of the
sec0613_foods table.

Oracle & Access SOL

alter table sec0613_foods
drop column price_increase;

Beginning table (sec0613_foods table)

MENU SUPPLIER PRODUCT PRICE
ITEM ID CODE DESCRIPTION PRICE INCREASE DATE_INTR
1 ASP FS FRESH SALAD $2.00 $0.25 (null)
2 ASP SP SOUP OF THE DAY $1.50 (null) (null)
3 ASP Sw SANDWICH $3.50 $0.40 (null)
4 CBC GS GRILLED STEAK $6.00 $0.70 (null)
5 CBC SW HAMBURGER $2.50 $0.30 (null)
6 FRV BR BROCCOLI $1.00 $0.05 (null)
7 FRV FF FRENCH FRIES $1.50 (null) (null)
8 JBR AS SODA $1.25 $0.25 (null)
9 JBR VR COFFEE $0.85 $0.15 (null)
10 VSB AS DESSERT $3.00 $0.50 (null)
Ending table
MENU SUPPLIER PRODUCT
ITEM ID CODE DESCRIPTION PRICE DATE_INTR
1 ASP FS FRESH SALAD $2.00 (null)
2 ASP SP SOUP OF THE DAY $1.50 (null)
3 ASP SW SANDWICH $3.50 (null)
4 CBC GS GRILLED STEAK $6.00 (null)
5 CBC SW HAMBURGER $2.50 (null)
6 FRV BR BROCCOLI $1.00 (null)
7 FRV FF FRENCH FRIES $1.50 (null)
8 JBR AS SODA $1.25 (null)
9 JBR VR COFFEE $0.85 (null)
10 VSB AS DESSERT $3.00 (null)

Check your understanding

Delete the phone_number column from a copy of the employees table,
sec0613_employees.

234

CHAPTER 6 CREATING YOUR OWN TABLES

6-14 Making other changes to tables

This section shows a method of making changes to a table that does not
use the alter table command. You already know this method, but I want
to remind you of it here, in the context of the present discussion. This
method can make almost any change you can think of. It is very flexible, but
it is less efficient than the alter table command. Efficiency is usually
important only when you are working with very large tables.

Here are some of the changes you can make to any table:

m Add new columns.

m Delete columns.

m Delete rows.

m Rename columns.

m Change the data in columns.

m Change the datatype of columns.

m Reorder columns.

m Delete a primary key.
This gives you nearly total control over every aspect of a table. Adding a pri-
mary key is the only change that requires the alter table command.

This technique uses a create table statement with a select statement,
which we used in section 4-1.

Task

Create the sec0614_phone_list table from the 1_employees table.
Include the columns last_name, first_name, and phone_number.

m Rename the phone_number column to ext.

m Change the order of the first_name and last_name columns.
m Delete many columns from the beginning table.

m Add a new column for notes and leave it blank.

m Change the phone number for Woods to 9408.

CHANGING TABLES

235

Oracle SOL o

create table sec0614_phone_list as
select last_name,

first_name,

phone_ number as ext,

' ' as notes ©
from 1 _employees
where employee_id between 203 and 206;

update sec0614_phone_list
set ext = '9408' ©
where last_name = 'WOODS';

Access SOL o

select last_name,
first_name,
phone_number as ext,
' ' as notes ©
into sec0614_phone_list
from 1 employees
where employee_id between 203 and 206;

update sec0614_phone_list
set ext = '9408"'
where last_name = 'WOODS';

Beginning table (1_employees table)

EMPLOYEE
ID

NANCY HOFFMAN SAL 16-FEB-2007 $25

FIRST LAST DEPT CREDIT
NAME NAME CODE HIRE_DATE LIMIT
SUSAN BROWN EXE 01-JUN-1998 $30.00
JIM KERN SAL 16-AUG-1999 $25.00
MARTHA WOODS SHP 02-FEB-2009 $25.00
ELLEN OWENS SAL 01-JUL-2008 $15.00
HENRY PERKINS SAL 01-MAR-2006 $25.00
CAROL ROSE ACT (null) (null)

DAN SMITH SHP 01-DEC-2008 $25.00
FRED CAMPBELL SHP 01-APR-2008 $25.00
PAULA JACOBS MKT 17-MAR-1999 $15.00

PHONE MANAGER

NUMBER

(null)
2259
1752
3357
2974

ID

(null)
203
203
201
203

236

CHAPTER 6 CREATING YOUR OWN TABLES

New table created in this section (sec0614 phone_ 1list table)

LAST_ NAME FIRST_NAME EXT NOTES

WOODS MARTHA 9408

OWENS ELLEN 6830

PERKINS HENRY 5286

ROSE CAROL (null)
Notes

® [n Oracle, the create table command and the update command can

be put into a single script and run as a single unit.

® In Access, the create table command must be run first. Then the

update command can be run. The SQL window in Access only allows us
to run one command at a time.

® This adds a new column to the table and names it notes. There are 13

spaces between the beginning quote and the ending quote. In Oracle
this makes the column a fixed length character string with a length of 13
characters. In Access the 13 spaces are not needed, and you can use two
quotes with one space between them. Spaces, not nulls, are put in this
field.

O In the update statement, the phone_number must be referred to by its

new name, ext.

® Here is the procedure you would follow if you wanted to name this new

table 1_employees, so that it would replace the beginning table. Do not
do this now.

drop table 1_employees;
create table 1_employees as
select * from sec0614_phone_list;

Tables with Duplicate Rows

In a relational database you are allowed to create tables with duplicate
rows. That is, you can have two or more rows that have the same values in
every column. Usually you want to avoid duplicate rows in your tables.
When a table has a primary key, no duplicate rows are allowed. That is one
of the purposes of a primary key.

TABLES WITH DUPLICATE ROWS 237

6-15 The problem with duplicate rows

This section discusses when you may want to avoid duplicate rows and
when you may want to allow them.

When to avoid duplicate rows

If you are going to share a table with someone else, or give it to them, the
table should have a primary key, which will ensure that it does not have any
duplicate rows. Such rows are avoided because it is usually unclear what
they mean. Two different interpretations are possible:

1. Each row represents a separate object.

2. These rows are redundant representations of the same object.

To prevent confusion, you should not allow duplicate rows in tables that
are made public.

When to allow duplicate rows

If you are the only person using a table, you might want to allow duplicate
rows. You may allow them especially if the table is part of an intermediate
step of some process, rather than a final result. The idea is that you will
know what the duplicate rows mean in your own tables, even if nobody else
knows.

Why duplicate rows are allowed in tables

Duplicate rows are allowed in tables for convenience. It is always better not
to have duplicate rows in your tables, but it often requires extra effort to
avoid them. You do not always have to make that effort.

For example, when you use a select statement to get a result table, two of
the rows of the result table may be identical. That might or might not be a
problem. It is a problem if you are showing the results to others and they do
not know the meaning of these duplicate rows. It is not a problem if you are
the only person seeing these results and you do know their meaning.

Example of duplicate rows that represent separate objects

In this example, the duplicate rows in a table represent distinct objects,
events, or relationships. You are using a database to track your expenses.
To keep things simple, you have decided to keep two pieces of data: the
object you bought and the price. On Monday, you buy a hamburger for
$2.00 and eat it. On Tuesday, you buy another hamburger for $2.00 and eat

238

CHAPTER 6 CREATING YOUR OWN TABLES

it. In your table of expenses these are duplicate rows. The duplicate row
means that there is really another object. Together, the two rows mean that
you bought two hamburgers and spent $4.00.

This example may seem artificial because if you also entered the date of
the purchase, the rows would not be duplicates. They are only duplicates
because you have not recorded all the data. However, we are always in this
situation, whether we are aware of it or not. Our tables contain what we
consider to be the most significant pieces of information, but there is
always some information that is left out.

The two duplicate rows are two different pieces of information (sec0615a table)

OBJECT_BOUGHT PRICE
NEWSPAPER $0.75
COFFEE $1.55
HAMBURGER $2.00 ©
FLOWERS $15.38
HAMBURGER $2.00 ©
BOOK $24.89
MOVIE TICKETS $22.00

Example of duplicate rows that represent the same object

In this example, the duplicate rows in a table are redundant representa-
tions of a single object, event, or relationship. You are running an advertis-
ing campaign. You buy copies of several mailing lists and combine them
into a single list. The duplicate rows have the same name and address.
These duplicate rows are multiple representations of the same informa-
tion. Here the duplicate row does not mean that there is another object. It
only means that the same object is shown twice.

The two duplicate rows are a single piece of information (sec0615b table)

FIRST_NAME LAST_NAME ADDRESS

SUSAN BROWN 512 ELM STREET O

JIM KERN 837-9TH AVENUE

MARTHA WOODS 169 PARK AVENUE

SUSAN BROWN 512 ELM STREET 1]

ELLEN OWENS 418 HENRY STREET
Notes

©® These rows are duplicates.

TABLES WITH DUPLICATE ROWS 239

6-16 How to eliminate duplicate rows

There are two ways to get rid of the duplicate rows in your tables. The
method you use depends on the meaning you are giving to the duplicate
rows. This section shows how to eliminate the duplicates if you consider
them to be multiple representations of the same object. The next section
shows how to add a new column that distinguishes between the duplicate
rows. You use this method when you consider them to be representations
of different objects.

If you want to keep only one row of each set of duplicate rows, you can cre-
ate a new table using select distinct.

Task

Eliminate the duplicate rows from the sec0615b table. Keep only one copy
of each row that has a duplicate.

Oracle SOL

create table sec0616_no_duplicate_rows as
select distinct *
from sec0615b;

Access SOL

select distinct *
into sec0616_no_duplicate_rows
from sec0615b;

Beginning table (sec0615b table)

FIRST_NAME LAST_NAME ADDRESS

BROWN 512 ELM STREET @
KERN 837-9TH AVENUE
WOODS 169 PARK AVENUE
BROWN 512 ELM STREET O

OWENS 418 HENRY STREET

240

CHAPTER 6

Result table (sec0616 no_duplicate_ rows table)

CREATING YOUR OWN TABLES

FIRST_NAME LAST_NAME

ADDRESS

ELLEN OWENS 418 HENRY STREET

JIM KERN 837-9TH AVENUE

MARTHA WOODS 169 PARK AVENUE

SUSAN BROWN 512 ELM STREET (1]
Notes

® The beginning table has two rows that are duplicates. Every field in them
has exactly the same value. The result table has just one of these rows.

Check your understanding

Eliminate the duplicate rows from the sec0616_duplicate_rows table.

6-17 How to distinguish between duplicate rows

Suppose you have a table containing duplicate rows and you consider each
of these rows to represent a separate object. You can change this table to
distinguish between the duplicate rows by adding a new column of mean-
ingful data to the table. For example, you could add a date_purchased
column to the first table in section 6-12. This would show that the two
hamburgers were purchased on different dates. The two rows for hamburg-
ers would thus no longer be duplicates.

There are no duplicate rows in this table (sec0617a table)

OBJECT_BOUGHT

NEWSPAPER $0
COFFEE s1.
HAMBURGER $2.
FLOWERS $15.
HAMBURGER $2.
BOOK $24.
MOVIE TICKETS $22.

PRICE DATE_PURCHASED

14-JUN-2010
14-JUN-2010
14-JUN-2010
14-JUN-2010
15-JUN-2010
15-JUN-2010
15-JUN-2010

Although it is best to add a new column of meaningful data, this may
require a lot of work. Another method is commonly used, which adds a col-
umn of numbers to the table. Each row is given a distinct number, ensuring

TABLES WITH DUPLICATE ROWS

241

that there will no longer be any duplicate rows in the table. This method is

shown next.

Why would you want to distinguish between duplicate rows? For example,
you might have four rows that are identical, but you only want to have three

of them.

Task

Distinguish between the duplicate rows of the sec0612a table by adding a

column of numbers to the table. Make this the first column of the table.

Oracle SOL

create table sec0617_with line numbers as ©

select rovnum as row_id, @
object_bought,
price

from sec0615a;

Access SOL

select *
into sec0617c ©
from sec0615a;

alter table sec0617c
add column row_id counter; O

select row_id, ©
object_bought,
price
into sec0617_with line numbers
from sec0617c;

Beginning table (sec0615a table)

OBJECT_BOUGHT PRICE
NEWSPAPER $0.75
COFFEE $1.55
HAMBURGER $2.00
FLOWERS $15.38
HAMBURGER $2.00
BOOK $24.89

MOVIE TICKETS $22.00

242

CHAPTER 6 CREATING YOUR OWN TABLES

Ending table (sec0617_with_line_numbers table)

OBJECT_BOUGHT PRICE
NEWSPAPER $0.75
COFFEE $1.55
HAMBURGER $2.00
FLOWERS $15.38
HAMBURGER $2.00
BOOK $24.89
MOVIE TICKETS $22.00

Notes

® In Oracle, when you add a column of numbers to a table, you can create
either a new table or a new view.

® In Oracle, rownum generates the row numbers. It is a 0-parameter func-
tion that can be used within a select statement.

® In Access, when you add a column of numbers to a table, you must cre-
ate a new table. You cannot create a new view because the alter table
statement only works with tables.

O In Access, counter generates the row numbers. It is a sequence genera-
tor that is handled as a datatype. To add it to a table you must use an
alter table statement, which will place the row_id column at the end
of this table.

©® This places the row_id column as the first column of the table, which is
one of the requirements of this task.

Check your understanding

Assign a number to each row of the sec0617_duplicate_rows table.

KEY POINTS

Key Points

243

You can create a new table with a create table statement. This
allows you to see exactly what a table is and control every aspect of it.

A table has a name and it has a sequence of columns in a specific
order. Each column has a name and a datatype. That is what a table
is. A table is a structure that can hold data, but it does not consist of
the data it holds.

When a table is first created, it contains no data. After a table is cre-
ated rows of data can be put into it.

The basic datatypes for columns are text, number, and date. Some
SQL products have other datatypes for special kinds of data.

You can make changes to a table after it has been created and even
after data has been put into the table. You can add or change its pri-
mary key, add or delete columns, expand the size of a column, or
make other changes.

Duplicate rows in a table can cause confusion. Occasionally this can-
not be avoided, However, you should almost always put a primary key
on your data tables. This will prevent duplicate rows.

This page intentionally left blank

chapter 7

FORMATS,
SEQUENCES,
AND INDEXES

You now know how to build your own tables and put data in
them. This chapter discusses some other features you may want
to add to your tables.

Formats affect the appearance of the data without changing its
value. In Access, formats can be part of the definition of a table.
In Oracle, they are used mostly within SQL statements to format
dates.

Sequences provide a way to automatically number the rows of
a table.

Indexes are used mostly to speed up the processing of select
statements within large databases.

This chapter also discusses the Data Dictionary, which shows
you how to find information about the tables you create.

245

1711111 Y 247

7-1 Formatsof dates. 247
7-2 Displaying formatted dates. 249
7-3 Entering formatted dates 252
7-4 OtherformatsinOracle., 254
7-5 Formats in ACCESS 254
Y 1114 S 257
7-6 Creating a sequenceinOracle, 257
7-7 Using sequencesinOracle 258
7-8 Sequences iNACCESS 260
INEXES.t 262
7-9 Creatingan index. 263
7-10 The Optimizer. 264
7-11 An example of how anindexworks 264
Using the Oracle Data Dictionary — Part2 coiiiiiiiii . 266
7-12 How to find information about the datatype of a column.............. 266
7-13 How to find information about sequences 269
7-14 How to find information about indexes. 271
7-15 How to find information about all your database objects. 274
7-16 How to use the index of Data Dictionary tables 276
7-17 How to use the index of Data Dictionary columns 277
An Exercise Solved for Youooo oo 278
7-18 Create a table of the days you want to celebrate 278

Key Points. 280

Formats

People often confuse formats with functions. A format refers to the way a
value is presented. For instance, “01-jan-10" and “January 1, 2010” are two
formats for the same date. A function makes a change to the value. For
instance, “01-jan-10 + 1" is “January 2, 2010".

7-1 Formats of dates

In both Oracle and Access, dates and times are stored together within a
single datatype. Whenever you see a date, there is always a time stored
with it. Whenever you see a time, there is always a date stored with it.

Inside the database a date is stored in a very compressed manner. If you
saw one directly, you would not know what it was. When a date is displayed
in a result table, it is always translated into a character string, such as “Jan
1, 2010”, so that you can understand it. Several different translations are
available to give different formats of the same date. Another format is
“2010-01-01". The date format you specify tells the database how you want
the dates to be displayed. If you do not specify a date format, the default
date format is used.

In this section we discuss how to specify a format that is different than the
default date format. In the following two sections, you will see how these
formats can be applied to display dates in particular ways and how to enter
times with dates.

The following table shows some of the most useful date formats. These can
be combined together in any way you wish. These are used both for dis-
playing dates and entering dates into tables.

In Oracle, there is one default format for dates. It is usually set to
dd-mon-yy, which shows dates in the format 20-JAN-10 with a two-digit year.
In the SQL Command Line environment, you can change this default format
to dd-mon-yyyy with a four-digit year. To do this you can use the command:

alter session set nls_date_format = 'DD-MON-YYYY';
Whatever the default format is, if you want to display or enter dates in any

other format, you must explicitly state what format you are using. In Oracle,
dates and times are enclosed in single quotes. This is similar to text strings.

In Access, when you enter a date, you enclose it in pound signs (##) to set
it apart from a text string. Access knows it is a date by the pound signs, and
will attempt to automatically determine what format this date is in. Access
can accept a date in many formats.

In Access, the default format for displaying a date is set by the Windows
operating system, using the Regional Settings in the Windows Control Panel.

247

248

Oracle and Access date formats.

CHAPTER 7

FORMATS, SEQUENCES, AND INDEXES

Oracle Format | Access Format | Example Comment
YEAR
YYVy YYVy 1998 Four-digit year
Yy Yy 98 Two-digit year
MONTH
month mmmm October Full name of the month
mon mmm Oct Abbreviated name of the month
mm mm 10 Number of the month, 01 to 12
DAY
ad ad 18 Date of the month, 01 to 31
day dddd Friday Full name of the day
dy dad Fri Abbreviated name of the day
d w 6 Numeric day of the week:

1 is Sunday, 2 is Monday, 7 is Saturday
TIME
hh24 hh 14 24-hour time, 00 to 23
hh12 hh am/pm 02 12-hour time, 00 to 11
hh hh am/pm 02 12-hour time, 00 to 11
mi nn 30 Minute after the hour, 00 to 59
ss ss 59 Second, 00 to 59
am am/pm AM or PM, whichever applies
pm am/pm AM or PM, whichever applies
OTHER
q q 4 Quarter of the year, 1 to 4
ww wWw 45 Week of the year, 1 to 54
JULIAN
dad y 350 Number of days since January 1

Number of days since Dec. 31, 4713 BC

SSSSS

Number of seconds since midnight;
used to calculate with times

FORMATS

Some combinations of date formats.

249

mm-dd-yyyy hh:mi:ss am

mm-dd-yyyy hh:nn:ss am/pm

10-18-1998 05:36:45 PM

mm-dd-yyyy hh:mi am

mm-dd-yyyy hh:nn am/pm

10-18-1998 05:36 PM

day, month dd, yyyy dddd, mmmm dd, yyyy Sunday, October 18, 1998
dd-mon-yy dd-mmm-yy 18-Oct-98

mm-dd-yyyy mm-dd-yyyy 10-18-1998

hh:mi:ss am hh:nn:ss am/pm 05:36:45 PM

hh:mi am hh:nn am/pm 05:36 PM

hh24 :mi hh:nn 17:36

7-2 Displaying formatted dates

In Oracle, the to_char function specifies the format to use when display-
ing a date. To_char means that we are converting a date datatype into a
character datatype so it can be displayed. In Access, the format function is
used the same way.

These functions have two parameters. The first is the name of the column
containing the dates. The second is the format to be used in displaying the
date. The format specification must be enclosed in single quotes. It is pos-
sible to add text to the format, such as "In the year of ". This text must be
enclosed in double quotes.

250

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

Task

From the 1_employees table, list the employee_id, first_name, and
hire_date of all the employees. Add another column showing the hire date
formatted in the form mm-dd-vyyyy followed by the time. Sort the rows of the
result by the employee_id

Oracle SQL

select employee_id,
first_name,
hire_date,
to_char(hire_date, 'MM-DD-YYYY HH:MI AM') ©
as formatted_date ©

from 1_employees
order by employee_ id;

Access SOL

select employee_id,
first name,
hire_date,
format (hire_date, 'MM-DD-YYYY HH:NN AM/PM') ©
as formatted date ©

from 1_employees
order by employee_id;

Beginning table (1_employees table)

EMPLOYEE
ID

DEPT CREDIT PHONE MANAGER
FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
JIM KERN SAL 16-AUG-1999 $25.00 8722 201
MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
CAROL ROSE ACT (null) (null) (null) (null)
DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

FORMATS

Result table ©

251

EMPLOYEE

ID FIRST_NAME

HIRE_DATE

FORMATTED_DATE

201 SUSAN 01-JUN-1998 06-01-1998 12:00
202 JIM 16-AUG-1999 08-16-1999 12:00
203 MARTHA 02-FEB-2009 02-02-2004 12:00
204 ELLEN 01-JUL-2008 07-01-2003 12:00
205 HENRY 01-MAR-2006 03-01-2000 12:00
206 CAROL (null) (null)

207 DAN 01-DEC-2008 12-01-2004 12:00
208 FRED 01-APR-2008 04-01-2003 12:00
209 PAULA 17-MAR-1999 03-17-1999 12:00
210 NANCY 16-FEB-2007 02-16-2004 12:00

Notes

© In Oracle, the to_char function is used to control the format in which a

date is displayed. The second parameter is the Oracle date format you
want to use. It is enclosed in single quotes.

The to_char function is used, not the to_date function. When a date is
stored in the database, it has a date datatype. You want to change the
format to a text datatype, so that it can be displayed.

@ In Access, the format function is used to control the format in which a

date will be displayed. The second parameter is the Access date format
you want to use. It is enclosed in single quotes.

® as formatted_date creates a column alias for the previous line. |

would write it as part of that line if I had room to do so. I created the col-
umn alias on the next line and indented it to the far right to show that it
is a continuation of the preceding line.

O The data in the table show that all the formatted dates have 12:00 AM

(midnight) as their time. This is the default time that is set in Oracle and
Access when no specific time is entered.

Check your understanding

Modify the select statement in this section to display the hire_date col-

u

mn in the format: January 10, 2012.

252

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

7-3 Entering formatted dates

This section shows you how to enter a time when you enter a date. All
dates in SQL include a time, but the time is automatically set to midnight
unless you enter a different time.

In Oracle, the DBAs have selected one default date format, which usually
does not show the time. If you want to enter a time with a date, you must
use the to_date function. It changes the text you enter for the date into a
date datatype that can be stored in the database. This function has two
parameters enclosed in single quotes. The first parameter is a character
string, which expresses the date and the time. The second parameter tells
Oracle how to format the first string into a date datatype. It gives the date
format of the first parameter. The to_date function changes the character
string you entered into a date with a time.

In Access the process is much simpler. You just enclose the date and time
in pound signs, showing that what you enter is a date. Access will deter-
mine the format automatically.

Task

Insert a new row into the sec0703_1lunches table. Use the following data:

lunch_id =25

lunch_date = December 5, 2011 at 11:30 a.m.
employee_id = 202

date_entered = (use the current date and time)

Use a date format, if needed, to enter the date.

Oracle SQL

insert into sec0703_lunches

values (25,

to_date('12-05-2011 11:30 AM', 'MM-DD-YYYY HH:MI AM'), O
202, sysdate); ©

Access SOL

insert into sec0703_lunches
values (25, #DEC 5 2011 11:30 AM#, ©
202, now()); O

FORMATS

Beginning table (sec0703_lunches table)

253

LUNCH EMPLOYEE

LUNCH_ID DATE ID DATE_ENTERE
1 16-NOV-2011 201 13-0CT-2011

2 16-NOV-2011 207 13-0CT-2011

3 16-NOV-2011 203 13-0CT-2011

4 16-NOV-2011 204 13-0CT-2011

6 16-NOV-2011 202 13-0CT-2011

7 16-NOV-2011 210 13-0CT-2011

8 25-NOV-2011 201 14-0CT-2011

9 25-NOV-2011 208 14-0CT-2011

12 25-NOV-2011 204 14-0CT-2011

13 25-NOV-2011 207 18-0CT-2011

15 25-NOV-2011 205 21-0CT-2011

16 05-DEC-2011 201 21-0CT-2011

17 05-DEC-2011 210 21-0CT-2011

20 05-DEC-2011 205 24-0CT-2011

21 05-DEC-2011 203 24-0CT-2011

22 05-DEC-2011 208 24-0CT-2011

New row ©

25 05-DEC-2011 202 17-JUN-2011

Notes

© In Oracle, we use the to_date function to enter dates into tables. The

date you write in an SQL statement is text because it is enclosed in sin-
gle quotes. You need to change the text string into a date datatype to
store it in the table. The to_date function does this.

Dates can be entered in any format, but the specific format of the text
data must be explicitly specified. A time can be entered along with a
date if the format includes a time.

If a time is entered, it is permanently stored in the table. However, it will
only be displayed when it is explicitly requested. Dates containing times
can cause errors if the users are not aware that the times are contained
in the data.

® In Oracle, sysdate gives you the current date and time.

® In Access, a date is surrounded by pound signs (##), indicating that you

want to enter a date. Most date formats are recognized automatically by
Access. Their format does not need to be explicitly declared.

254

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

It is best to avoid ambiguous date formats. For example, does #7/4/994
mean April 7 or July 4? The meaning in America is different from the
meaning in Europe.

O In Access, now () gives you the current date and time.

® Thetime, 11:30 AM, is present in the data, even though it is not displayed.

Check your understanding

Add a new row to a copy of the employees table, sec0703_employees. Set
the hire date to show that the person was hired at 10:00 AM.

7-4 Other formats in Oracle

In Oracle, within the SQL Command Line environment, there are also for-
mats for text and number fields. These are not set on the SQL level itself,
rather they are set on the SQL*Plus level. For more information about this
refer to the Oracle documentation about SQL*Plus.

7-5 Formats in Access

In Access, the format of a column is often specified in the field properties
of the table design. It can also be specified within a select query using the
format function. In addition to date formats, there are also formats for
numbers, text, and yes/no datatypes.

Access offers a great variety of formats. There are two types of formats:
predefined formats, which are ready-made for you and have names, and
custom formats, which you specify yourself. A reference to all these formats
is available in the Format Property Help.

In the following example, | create a custom format for the phone_number
column, which has a text datatype. The format is:

"(415) 643-"@eee

The characters within double quotes will be added as a literal value to each
phone number. The @ represents a single character from the data in the
phone_number column.

Oracle can also display the phone numbers this way, but it uses a different
method. In Oracle, we could code a literal into the select statement and
concatenate it to the phone number. For more details see section 9-12.

FORMATS

255

Task

Format the phone_number column entries of the sec0705_employees
table. Give each phone number the area code (415) and the prefix 643-. Show
two methods of doing this in Access: a GUI method and an SQL method. In
the SQL method, show the employee_id, first_name, last_name, and
the formatted phone_number columns.

Access GUI: Set field properties in the table design o

7 SEC0705_EMPLOYEES | >
Field Name Data Type Description
7 | EMPLOYEE_ID Number [
FIRST_NAME Text
LAST_NAME Text
DEPT_CODE Text
HIRE_DATE Date/Time
CREDIT_LIMIT Currency
PHONE_MUMBER Text
MANAGER_ID Number

Field Properties

General |Lookup
||Field Size

Farmat =
| Input Mask
| Caption
| Default Value
| Validation Rule
| alidation Text

| Required

| Allow Zero Length

| Indexed

| Unicode Compression
IME Mode

IME Sentence Mode
‘_SmartTags

4 A |
‘415 643-@@ @@ =
1
The label for the field when used on a form. If
you don't enter a caption, the field name is
used as the label. Press F1 for help on
No captions.
Yes
Yes (Mo Duplicates)
No
No Control
None
w

Access SOL: Use the format function

select employee_id,
first_name,
last_name,
format (a.phone_number, '"(415) 643-"Gee@') O
as phone_number ©

from sec0705_employees a; O

256

Result table

= Quemy1

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

employee_id ~ first_name °| last_name | phone_number ~

201 Susan Brown (415) 643-3484
202 Jim Kern (415) 643-8722
203 Martha Woods (415) 643-7591
204 Ellen Owens (415) 643-6830
205 Henry Perkins (415) 643-5286
206 Carol Rose

207 Dan Smith (415) 643-2259
208 Fred Campbell (415) 643-1752
209 Paula Jacobs (415) 643-3357
210 Nancy Hoffman (415) 643-2974

Notes

® This screen is the Design view of the sec0705_employees table. First

select the phone_number field, which will be highlighted. Then set the
field properties in the bottom half on the screen.

® In Access SQL, the same format is used as in the Access GUI. The differ-

ence is that it is placed as the second parameter within the format func-
tion and enclosed in single quotes. See notes ® and @ for an
explanation of the “a” before the phone_number.

® When the format function is applied to the phone_number column, the

result is an expression and is no longer named phone_number. To name
the formatted expression phone_number it is necessary to give it a col-
umn alias. In Access, to give this expression the alias phone_number,
[had to put an “a” before the column name phone_number. This is a
table reference, and specifies that this is a column of the
sec0705_employees table. In Oracle, this trick is not needed. The col-
umn alias can be phone_number without putting an “a” and a dot before
the column name.

O This line assigns table alias “a” to the sec0705_employees table.

SEQUENCES 257

Sequences

A sequence is used to generate numbers sequentially. After the numbers are
generated, their value is fixed and they are only numbers — there is no
dynamic quality to them at all. If a row is deleted, the sequence numbers in
the remaining rows do not change. The column with data generated by a
sequence must have a numeric datatype.

The idea is that each row will be given a different number. Sequences are
used in several ways: They can be used to put the rows in a specific order or
to make sure that no two rows are identical. Sometimes a sequence is used
as a “meaningless” primary key for a table. When several people are enter-
ing data into a table at the same time, a sequence may be used to show
which record was entered first. It is up to the application to determine the
meaning of the numbers generated by the sequence.

In the Lunches database, a sequence is used as the primary key of the
1_lunches table. In this case, each time a person signs up to attend a
lunch, that lunch is assigned the next number. So far, the numbers 1
through 22 have been used. A few numbers are missing, just like they
would be in real life. These numbers were actually generated in sequence,
but their rows have been deleted. The next row in this table will be
assigned the number 23.

Both Oracle and Access offer sequences, but they implement them in dif-
ferent ways. In Oracle, a sequence is a database object, similar to a table.
Oracle also has the rownum function to generate sequences. In Access, a
sequence is implemented as a datatype.

7-6 Creating a sequence in Oracle

In Oracle, a sequence is a type of object in the database. This means that it
exists within the database in the same way that a table or view exists. It can
be created with the words create sequence, followed by the name of the
new sequence. The starting number and the increment can be set in this
command. I like to begin the names of all my sequences with seq_ fol-
lowed by an identification of the column it is used with.

A particular sequence is usually used to generate numbers for just one col-
umn, so if several columns in your tables use sequences, a separate
sequence is set up for each one.

To delete a sequence enter drop sequence, followed by the name of the
sequence.

258

Result

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

Task

Create a sequence to use with the 1unch_id column.

Oracle SQL: Create and drop a sequence

-- Delete command for a sequence ©

-- This is a preventative delete for the sequence we
-- are about to create.

drop sequence sec0706_seq lunch id; ©®

-- Create a new sequence

create sequence sec0706_seq lunch id ©
start with 23
increment by 1;

After you create a sequence you can use it. See the next section.

Notes

©® In Oracle and most other SQL products, a line that begins with two
dashes is a comment line. In my opinion, all code should begin with at
least one or two comment lines. In this book I usually do not include
comment lines in the code because Access does not allow them and I
am trying to write code that works in both Oracle and Access.

® This deletes the sequence, if it already exists. A preventative delete
ensures that the name of the sequence is available for the create
sequence command to use.

® This command creates the sequence.

Check your understanding

Create a new sequence named seq0706_my_stuff. Set the beginning value
to 100.

7-7 Using sequences in Oracle

A sequence can do just two things: It can give you its current value or its
next value. To get either of these you begin with the name of the sequence,
followed by a period. Immediately after the period use currval to get the
current value or nextval to get the next value. These can be used in a
select statement, an insert statement, or any other SQL statement.

SEQUENCES 259

Task for example 1

Insert two rows into the sec0707_lunches table using the
sec0707_seq lunch_id sequence to assign the values in the lunch_id

column.

Oracle SQL: Get the next value of a sequence

insert into sec0707_lunches
values (sec0707_seq lunch_id.nextval, ©
'07-DEC-2011', 202, sysdate); ©

insert into sec0707_lunches
values (sec0707_seq lunch_id.nextval, ©
'07-DEC-2011', 204, sysdate);

select * from sec0707_lunches;

Result table: Example 1 — The new rows

LUNCH EMPLOYEE
LUNCH_ID DATE ID DATE_ENTERE
23 07-DEC-2011 202 17-JUN-2011
24 07-DEC-2011 204 17-JUN-2011

Task for example 2

Determine the most recent value that has been assigned by the
seq_lunch_id sequence.

Oracle SQL: Get the current value of a sequence

select sec0707_seq lunch id.currval O
from dual; ©

Result table: Example 2

CURRVAL

260

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

Notes

©® This gets the next value from the sequence. We told it to start with 23
and that is the first value we get.

® In Oracle, sysdate supplies the current date and time.

® This gets the next value from the sequence. This time it gets the value
24.

O This gets the current value of the sequence.

® The dual table in Oracle is a dummy table used to print out values. For
more details see section 9-7.

Check your understanding

Determine the current value of the sequence seq _sec0707. Then use its
next three values to add new rows to the sec0707_sequence table. This
table has only one column. It holds the value of the sequence number.

7-8 Sequences in Access

The Access way of generating sequences is called autonumber on the GUI
level and counter on the JET engine level, and is treated as a datatype. It
automatically assigns sequential numbers to new rows. If a new column is
added to a table and that column is given the counter datatype, then all
the rows currently in the table are assigned sequential numbers.

The JET engine level of Access is the level that processes the SQL. Access is
a complex product with many levels. We are dealing with it on one particu-
lar level in this book — the level of the SQL view in the query mode.

Task

Add a new column to the sec0708_suppliers table that numbers all the
rows sequentially. Show two methods to accomplish this, one using Access
SQL and the other using Access GUI.

Access SOL

alter table sec0708_ suppliers
add column new num counter; ©

SEQUENCES 261

Beginning table (sec0708_suppliers table)

7] SECD708_SUPPLIERS

SUPPLIER_ID ~ SUPPLIER_NAME .

_Arr Alice & Ray'S Restaurant
~Asp A Soup Place
|Chc Certified Beef Company
|Frv Frank Reed'S Vegetables
~Fsn Frank & Sons
~ Jbr Just Beverages
~ps Jim Parker'S Shop
|Vsb Virginia Street Bakery
*
Ending table
S

SUPPLIER_ID - SUPPLIER_NAME " new_num
- Arr Alice & Ray'S Restaurant 1
. Asp A Soup Place 2
. |Cbc Certified Beef Company 3
. |Frv Frank Reed'S Vegetables 4
~ [Fsn Frank & Sons 5
. Jbr Just Beverages 6
- ps Jim Parker'S Shop 7
. |Vsb Virginia Street Bakery 8
* | (New)

Access GUI method ©

[E SEC0708 SUPPLIERS
Field Name Data Type Description :

SUPPLIER_ID Text
SUPPLIER_NAME Text

| new_num AutoNumber

4

General Lgokupl

Field Properties

Field Size Loang Integer

Mew Values Increment

Farmat

Caption

Indexed Mo

Smart Tags A field name can be up to 64 characters long,

Text Align General including spaces. Press F1 for help on field
names,

262

Indexes

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

Notes

©® On the SQL level, Access uses counter as the name of the special
datatype of a sequence.

® On the GUI level, Access uses autonumber as the name of the special
datatype of a sequence. Note that the field size is shown as long inte-
ger, which is the actual datatype of the column.

Check your understanding

Add a new column to the sec0708_departments table that numbers all the
rows sequentially.

Indexes are mysterious in SQL. They lurk behind the scenes, and you rarely
work with them directly. An index is used to make SQL process more effi-
ciently. It can make a select statement run much faster. Indexes are usu-
ally created by the DBA, so I do not discuss them in detail here.
Application programmers and end users only need to have a slight aware-
ness of indexes. The most important things to know are that indexes exist
and you can talk to your DBA about them.

An index is always formed on certain columns of a particular table. It is
something like a table, but it has an additional layer of organization that
enables it to find information quickly by finding the correct rows of the
table to use. It contains pointers that go directly into the table. It is a data-
base object, it contains data drawn from the table, and it requires disk
space. An index for a large table may require a considerable amount of disk
space. All the indexes on a set of tables may require as much disk space as
the tables themselves, which can be a large amount.

An index is a double-edged sword. Although it will speed up your select
statements, it may also slow down changes that are being made to the data.
The reason is that indexes in SQL are updated dynamically at runtime.
Whenever the data in a table is changed, all the indexes on that table also
must be changed. If this causes an index to be reorganized, a delay can
occur while the reorganization takes place.

One way of “tuning” a database is to add an index to it. When an index is
added to a database, certain select statements will run much faster, but
others will not run faster at all. When a database is fairly young and does

INDEXES

263

not contain much data, all queries run quickly and the database has a lot of
flexibility. However, when the database ages and contains much more data,
indexes must be built to keep it performing well. Because of these indexes
some specific queries will still run quickly, but all other queries will run
slowly, perhaps taking an hour or more. Then we say that the database has
lost much of its flexibility.

You have already created some indexes, although you might not have
known it. When you add a primary key to a table, an index is automatically
built on the primary key columns. This all happens behind the scenes, with-
out any messages to you. That is how elusive indexes can be.

7-9 Creating an index

It is very simple to create an index. The trick is to know which ones have
more benefit than cost. Your DBA can help you determine this. In fact, your
DBA may want to be the person responsible for building all of the indexes.

The command to create an index is:

CREATE INDEX name_of the new index
ON table_name (ordered list_of_ columns_in the_index)

[like to name indexes “ix” followed by the name of the table and then some
indicator of the columns in the index. An index can be created even if there
are several rows with the same values in the index columns. In the follow-
ing example, it would be acceptable if there were several employees with
the same first and last names.

Another kind of index, called a unique index, prevents such duplicate val-
ues. We discuss unique indexes in chapter 8. To delete an index, use the
command drop index followed by the name of the index.

Task

Create an index on the names of the employees in the 1_employees table.
Include both the last_name and the first_name values in the index, in
that order.

Oracle & Access SOL

create index ix_sec0709_employees_name
on sec0709_employees (last_name, first_ name);

264

Result

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

An index is built, but you cannot see it. You can find entries for it in the Data Dictionary.

Check your understanding

Build an index on a copy of the departments table, sec0709_departments.
Index the department_name field.

7-10 The Optimizer

You never use an index when you code a select statement. Instead, the
Optimizer figures out the best way to process your select statement and it
will make the best possible use of the indexes that have been built. The
Optimizer is a very important component of database software.

Here is what goes on behind the scenes when you submit a select state-
ment for a DBMS to run. First the statement is parsed. It is broken apart
grammatically, so the computer understands what you want done. The next
question is how to do it. This is where the Optimizer comes in.

The Optimizer makes a list of many different ways the select statement
could be processed. It considers using many different indexes, searching
and sorting the records in various ways. Then for each possible process it
estimates how long it would take and how much computing power would be
required. Then it decides which process is best, giving the fastest response
and using the least amount of the computer’s resources. This is the process
the computer uses to create an answer to your select statement.

7-11 An example of how an index works

Here is an example of how an index works. This example is simplified to
show the basic principle. Many complexities have been removed. First you
need some background about the way computers work. Here I am speaking
about one computer that is not networked with other computers.

The slowest operation in a computer is its input and output (I/O), which is
reading and writing to the disk drive. It is approximately 1,000 times slower
than any operation in the computer’s central processing unit (CPU), which
handles all the complex logic. You can have a good idea of how long a pro-
cess will take if you can estimate how much I/O it requires; that is, how
many times it will need to read and write to the disk.

INDEXES

265

One way to measure the size of a table is by the number of 1/O operations it
takes to read the entire table. Each read from the disk may get 100 rows,
depending on the size of the rows in the table and many other factors. If a
table contains 1,000,000 rows, it might require 10,000 reads to get the
entire table. This might take 10 or 20 minutes or even longer, depending on
the speed of the computer and how many other people are using the table.

As an example, suppose that this table is the 1_employees table and it
contains 1,000,000 rows. We are going to write a query to find all the people
who were hired from 2009 to the end of 2010. First we examine how the
query is processed if no indexes have been built on this table, or at least no
indexes involving the hire_date column. Then we examine how it could
be processed if an index has been created on that column. Here is the
query:

select employee_id,
last_name,
first_name,
hire_date
from 1_employees
where hire date >= '01-JAN-2009'
and hire_date <= '31-DEC-2010"'
order by last_name,
hire_date,
employee_id;

Before this query can be run, the Optimizer must determine how to process
it. The primary factors are the from clause and the where clause, which
indicate what table or tables the data will come from and which rows of
those tables to use. This is what affects the amount of I/O. In this example,
all the data comes from the 1_employees table and only the hire_date
column is used in the where clause.

If no indexes have been built on the 1_employees table, the only way the
computer can process this query is to read the whole table and test each
row to see if the condition in the where clause is satisfied. Testing
1,000,000 rows may seem like a lot of work to you, but to the computer that
is the easy part — reading all the rows of the table from the disk is the hard
part. This process may take 20 minutes or more, as discussed earlier.

The processing of this select statement will be very different if an index
has already been built on the hire_date column of the 1_employees
table. The Optimizer will use this index to determine which rows of the
table are needed. This can greatly reduce the number of rows that need to
be read from the disk. Instead of 10,000 I/O operations, perhaps only 100
are needed for the data of the result table. Using the index might require 10

266 CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

1/0 operations. Therefore, the total might be 110 I/O instead of 10,000. This
would produce the result table 100 times quicker and use less of the com-
puter’s resources.

Using the Oracle Data Dictionary — Part 2

In chapter 5 you learned to use the Oracle Data Dictionary. You found infor-
mation in it about all the database elements studied up to that point. Since
then you have learned about datatypes, sequences, and indexes. We now
want to see how to find information about these things in the Data Dictio-
nary. I also show you how to use the two indexes for the Dictionary.

7-12 How to find information
about the datatype of a column

This section shows you how to find detailed information about the
datatypes of the columns in a table or view. We will use the table in the
Oracle Data Dictionary called User Table Columns, which is spelled:

user_tab_ columns

Note that this table contains information about the columns of both tables
and views, even though its name mentions only tables. This table contains
many columns of information, but we are only interested in a few of them. |
have picked out the columns [want you to understand now. The following
table provides a quick summary of what these columns mean.

Column Meaning

column_id Shows the order of the columns within the table or
view — which column is first, second, etc.

column_name Shows the name of the column.

data_type Shows the datatype of the column. Of course, these
are all Oracle datatypes.

data_length For fixed length datatypes, such as numbers and
dates, this shows the number of bytes of disk space
required to store one cell of the column.

For variable length datatypes, such as variable length
character strings (varchar2), this shows the maximum
length of the column.

USING THE ORACLE DATA DICTIONARY — PART 2 267

Column Meaning

data_precision | Used only with number columns. This is the maxi-
mum number of digits allowed for the number —
both the digits before the decimal point and those
after it.

data_scale Used only with number columns. This is the number
of digits after the decimal point.

nullable Shows Y if a null can be entered into the column.
Shows N if a null cannot be entered into the column.

[want to point out some things from the result table in the following exam-
ple. The first line in the result table shows the first column of the
1_employees table, which is the employee_id column. Its datatype is
number and it allows a maximum of three digits with no digits after the
decimal point. Nulls are not allowed in this column. You can guess that the
reason nulls are not allowed in this column is because it is the primary key,
although its status as the primary key is not shown here. Within each row,
this column requires 22 bytes of disk space even though this number can
only contain three digits.

The second row of the result table shows a text column, the first_name
column. It is the second column within the 1_employees table. Its
datatype is varchar2, which is a variable length character string and it has
a maximum length of ten characters. Nulls are allowed in this column.

The fifth row of the result table shows a date column, the hire_date col-
umn. Nulls are allowed in this column. Within each row, this column
requires 7 bytes of disk space.

The sixth row of the result table shows a number with some digits after the
decimal point. This is the credit_1limit column. It can contain only num-
bers with a maximum of four digits, two before the decimal and two after.

In Access, much of this information is available on the GUI level from the
Design view of the table. When you select a column, the field properties in
the bottom part of the screen show details about the exact definition of the
column.

268 CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

Task

Find information about the datatypes of all the columns of the 1_employees
table.

Oracle SOL

-- Find information about the datatypes of columns ©
select column_id,
column_name,

data_type,
data_length,
data_precision,
data_scale,
nullable
from user_tab_columns
where table name = 'L_EMPLOYEES' ©®
order by column_id; ©
Result table
COLUMN_ID COLUMN_NAME DATA TYPE DATA_LENGTH DATA_PRECISION DATA_SCALE N
1 EMPLOYEE_ID NUMBER 22 3 0N
2 FIRST_NAME VARCHAR2 10 (null) (null) Y
3 LAST NAME VARCHAR2 10 (null) (null) Y
4 DEPT_CODE VARCHAR2 3 (null) (null) Y
5 HIRE_DATE DATE 7 (null) (null) Y
6 CREDIT LIMIT NUMBER 22 4 2y
7 PHONE_NUMBER VARCHAR2 4 (null) (null) Y
8 MANAGER_ID NUMBER 22 3 0Y
Notes

©® This is a comment line. It may be omitted. Comment lines begin with two
dashes.

® This where clause limits the result to showing the columns of a single
table, the 1_employees table.

® This order by clause sorts the columns into the same order they have
within the 1_employees table.

USING THE ORACLE DATA DICTIONARY — PART 2

269

Access GUI
] L_EMPLOYEES ",
Field Name Data Type Description

% | EMPLOYEE_ID Number
FIRST_MNAME Text
LAST_MNAME Text
DEPT_CODE Text
HIRE_DATE Date/Time
CREDIT_LIMIT Currency
PHONE_NUMBER Text
MAMAGER_ID Number

Field Properties

General |Lookup

Field Size 10
Farmat

Input Mask

Caption

Default Value

Validation Rule

Validation Text

Required Mao

Allow Zera Length Yes
Indexed Mo
Unicode Compression Mao

IME Maode Mo Control
IME Sentence Made Maone
Smart Tags

A field name can be up to 64 characters long,
including spaces. Press F1 for help on field
names,

Check your understanding

Find information about the datatypes of all the columns of the 1_foods

table.

7-13 How to find information about sequences

In Oracle, we said that a sequence is a database object, so you should
expect to find information about sequences in the Oracle Data Dictionary.
The dictionary table to use is called user_sequences. By examining the
columns in this table, you can learn exactly what an Oracle sequence is
composed of. You can also make an educated guess about the options that
are available when you create a sequence. The columns of this table are as

follows:

270

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

Column

Meaning

sequence_name

Sequence name.

min_ value

Minimum value of the sequence.

max_value

Maximum value of the sequence.

increment_by

Value by which sequence is incremented.

cycle_flag

Does sequence wrap around on reaching limit?

order_flag

Are sequence numbers generated in order?

cache_size

Number of sequence numbers to cache (hold in memory).

last_number

Last sequence number written to disk.

Result table

In Access, sequences are handled as if they were datatypes, so information
about them is available on the GUI level from the Design view of the table.
When you select a column with the autonumber datatype, the field proper-
ties in the bottom part of the screen show details about the sequence.

Task

Find all the information about your sequences in Oracle.

Oracle SQL

select *
from user_sequences;

SEQ_EMPLOYEE_ID 1 1.000E+27 1NN 20 211
SEQ_LUNCH_ID
SEQ_MENU_ITEM 1 1.000E+27 1NN 20 11

SEQUENCE_NAME MIN_VAL MAX_ VALUE INCREMENT BY C O CACHE_SIZE LAST_NUMBER

1 1.000E+27 1NN 20 43

USING THE ORACLE DATA DICTIONARY — PART 2

271

Access GUI
—1 L_FOODS ',
Field Name Data Type Description

% | SUPPLIER_ID Text
% | PRODUCT CODE Text

MENU_ITEM AutoNumber

DESCRIPTION Text

PRICE Currency

PRICE_INCREASE Currency

Field Properties

General |Loakup

Field Size Long Integer
Mew Values Increment
Format

Caption

Indexed MNa

Smart Tags

Text Align General

A field name can be up to 64 characters long,
including spaces. Press F1 for help on field
names.

7-14 How to find information about indexes

In Oracle, you need to look at two tables in the Data Dictionary to find
information about the indexes that have been built. This is similar to the
way you found information about primary keys in section 5-15. An index,
like a primary key, is a single database structure that may involve many col-
umns in a particular order. All the columns must come from a single table.
The two dictionary tables with information about indexes are as follows:

user_ indexes
user_ind_columns

The user_indexes table contains one row for each index, even if several
columns are involved in the index. This table has many columns, but we are
only interested in a few of them. These columns are as follows:

272

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

Column

Meaning

index_name

Name of the index

table_name

Name of the table on which the index is formed

uniqueness

Whether two rows are allowed to have the same values in all of
the columns of the index

tablespace_name Name of the tablespace containing the index

status

Whether the index is valid or not

In the following example, you can see that there are two indexes on the
1_employees table. They both are in the indx tablespace, which is where
they should be. They are both valid, unique indexes.

The user_ind_columns table contains a row for every column involved
with every index. This tells you all the columns involved with each index.
We do not use the last two columns of this table, so you do not have to
worry about what they mean. The columns of this table are as follows:

Column

Meaning

index_name

Name of the index

table_name

Name of the table on which the index is formed

column_name

Name of a column in the index

column_position Position of the column within the index
column_length Length of the column within the index
descend Sort order — whether the index is in ascending or descending

order

In Access, you can see the indexes on a table by opening the table in
Design view. Then click Indexes in the Ribbon, which is within the Design
tab. In the following example, you can see that there are two indexes on the
1_employees table. Sometimes indexes are created automatically within
Access as part of its “self-tuning” abilities.

USING THE ORACLE DATA DICTIONARY — PART 2 273

Task

Find all the indexes on the 1_employees table and which columns they
contain.

Oracle SQL: Step 1

select index_name,
table_name,

uniqueness,
tablespace_name,
status
from user_ indexes
where table_name = 'L_EMPLOYEES';
Result table
INDEX_NAME TABLE_NAME UNIQUENES TABLESPACE_NAME STATUS
PK_L_EMPLOYEES L__EMPLOYEES UNIQUE INDX VALID
UNIQUE_EMP_PHONE_NUM L_EMPLOYEES UNIQUE INDX VALID
Orace SQL: Step 2
select *
from user_ ind_columns
where table_name = 'L_EMPLOYEES';
Result table
COLUMN COLUMN
INDEX_NAME TABLE_NAME COLUMN_NAME POSITION LENGTH DESC
PK_IL_EMPLOYEES L. EMPLOYEES EMPLOYEE_ID 1 22 ASC
UNIQUE_PHONE_NUM L__EMPLOYEES PHONE_NUMBER 1 4 ASC

274 CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES
Access GUI
£% Indexes: L EMPLOYEES X
Index Mame Field Name Sort Order -
P PrimaryKey EMPLOYEE_ID Ascending @
UNIQUE_PHONE_NUMBER PHONE_NUMBER Ascending
Index Properties

Primary Yes

Unigue Yes The name for this index. Each index can use up

Ignore Mulls Mo to 10 fields.

Check your understanding
Find out what indexes there are on the 1_departments table.
7-15 How to find information about

all your database obijects
Most of the tables of the Oracle Data Dictionary are concerned with only a
single type of database object, but there is one table that lists all of the
objects you own regardless of what type of object they are. In addition to
listing all of your objects, it also tells you when each object was created
and the last time each object was changed. Sometimes this is very handy
information to know. The name of this table is User Objects. Its most inter-
esting columns are as follows:
Column Meaning

object_name

The name of the object

object_type

The type of database object (table, view, sequence, index, etc.)

created

The date and time that the object was created

last_DDL_time

The last date and time that the object was changed

status

Valid or invalid

USING THE ORACLE DATA DICTIONARY — PART 2

275

Task

List all the database objects you own in Oracle, the date each was created,
and the most recent date each was changed.

Oracle SOL

select object_name,

object_type,
created,

last_ddl_time,

status

from user_ objects;

Result table

OBJECT_NAME

L_CONSTANTS
L_DEPARTMENTS
L_EMPLOYEES
L_FOODS
L_LUNCHES
L_LUNCH_ITEMS
L_SUPPLIERS
NUMBERS_0_TO_9
NUMBERS_0_TO_99
PK_L_DEPARTMENTS
PK_L_EMPLOYEES
PK_L_FOODS
PK_L_LUNCHES
PK_L_LUNCH_ITEMS
PK_L_SUPPLIERS
SEQ_EMPLOYEE_ID
SEQ_LUNCH_ID
SEQ_MENU_ITEM
UNIQUE_PHONE_NUM

(and many more)

OBJECT_TYPE CREATED

INDEX
SEQUENCE
SEQUENCE
SEQUENCE
INDEX

06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
19-JUN-2007
17-JUN-2007
19-JUN-2007
20-JUN-2007

LAST_DDL_TI
06-JUN-2007
06-JUN-2007
20-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
06-JUN-2007
19-JUN-2007
17-JUN-2007
19-JUN-2007
20-JUN-2007

STATUS

276

Result table

CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

7-16 How to use the index of
Data Dictionary tables

The Oracle Data Dictionary contains more than 200 tables. It can be diffi-
cult to determine which table contains the information you are looking for.
The Dictionary table solves this problem because it contains an entry for
each of these tables, so it functions as an index to all the other tables. It
contains two columns: column_name and comments. You can use like to
search for patterns of letters in either of these columns.

Task

Find all the tables in the Oracle Data Dictionary that contain information
about sequences. To do this, find the names of all the tables with the letters
“SEQ” in them. Also list the comments about these tables.

Oracle SQL

select *
from dictionary
where table name like '%SEQ%';

TABLE_NAME

SEQ

ALL_SEQUENCES Description of SEQUENCEs accessible to

USER_SEQUENCES Description of the user's own SEQUENCEs

COMMENT'S

the user

Synonym for USER_SEQUENCES

Check your understanding

Find all the tables in the Oracle Data Dictionary about views.

USING THE ORACLE DATA DICTIONARY — PART 2 277

7-17 How to use the index of
Data Dictionary columns

After you know the name of the dictionary table you want to look at, often the
next problem is to learn the meanings of its columns. The Dictionary Col-
umns table can give you this information, as the following example shows.
This table contains three columns: table name, column name, and com-
ments. Of course, these columns can also be used with 1ike to search for
patterns of letters.

Task

Find the meaning of all the columns of the al11_sequences table.

Oracle SQL
select *
from dict_columns
where table_name = 'ALL_SEQUENCES';
Result table
TABLE_NAME COLUMN_NAME COMMENTS

ALL_SEQUENCES SEQUENCE_OWNER Name of the owner of the sequence
ALL_SEQUENCES SEQUENCE_NAME SEQUENCE name

ALL_SEQUENCES MIN_VALUE Minimum value of the sequence
ALL_SEQUENCES MAX VALUE Maximum value of the sequence
ALL_SEQUENCES INCREMENT_BY Value by which sequence is incremented
ALL_SEQUENCES CYCLE_FLAG Does sequence wrap around on reaching
limit?
ALL_SEQUENCES ORDER_FLAG Are sequence numbers generated in order?
ALL_SEQUENCES CACHE_SIZE Number of sequence numbers to cache
ALL_SEQUENCES LAST NUMBER Last sequence number written to disk

Check your understanding

Find the meanings of all the columns of the user_tables table.

278 CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

An Exercise Solved for You

7-18 Create a table of the
days you want to celebrate

This section integrates the various topics discussed in this chapter. We cre-
ate a table, put some data in it, and display it using a date format. | encour-
age you to make your own modifications to the following code and
experiment with any variations that occur to you.

Task

Create a new table to keep track of events in your life you want to celebrate.
Put three columns in the table: a sequence, a text column, and a date col-
umn. Put a primary key on the table using the sequence as a primary key. Put
a few rows of data into the table and list them out, formatting the dates to
show the day of the week, the full name of the month, and a four-digit year.

Oracle SOL

create table sec0718_my days
(my_seq_id number,

my event varchar2(25),

my date date);

alter table sec0718_my days
add constraint pk sec0818 my days
primary key (my seq id);

create sequence seq sec0718_my days
start with 1
increment by 1;

insert into sec0718_my days
values (seq_sec0718_my days.nextval,
'BIRTH DATE', '16-JAN-1971');

insert into sec0718_my days
values (seq_sec0718 my days.nextval,
'"COLLEGE GRADUATION', '24-JUN-1993');

AN EXERCISE SOLVED FOR YOU 279

Result table

insert into sec0718_my days
values (seq sec0718_my days.nextval,
'"WEDDING', 'l4-FEB-1994');

commit;

select my seq id,

my event,

to_char(my date, 'DAY MONTH DD, YYYY') as my date
from sec0718_my days

order by my seq id;

Access SOL

create table sec0718_my days
(my_seq id counter,
my event text(25),
my date datetime);

alter table sec0718_my days
add constraint pk_sec0718_my days
primary key (my seq id);

insert into sec0718_my days (my_event, my date)
values ('Birth Date', #16-jan-1971#);

insert into sec0718_my days (my event, my date)
values ('College Graduation', #24-jun-1993#);

insert into sec0718_my days (my_event, my date)
values ('Wedding', #14-feb-1994#);

select my seq id,

my event,

format (my date, 'DDDD MMMM DD, YYYY') as my date2
from sec0718_my days

order by my seq id;

MY_SEQ_TID MY_EVENT MY_DATE

1 BIRTH DATE SATURDAY JANUARY 16, 1971
2 COLLEGE GRADUATION THURSDAY JUNE 24, 1993
3 WEDDING MONDAY FEBRUARY 14, 1994

280 CHAPTER 7 FORMATS, SEQUENCES, AND INDEXES

Key Points

m A format can change the appearance of a field, but cannot change its
value. For example, “October 15, 2010” and “2010-10-15" are two for-
mats for the same date. By specifying the date format you can control
how your dates are displayed.

m A sequence is usually used to assign sequential numbers to the rows
of a table. This can be used to create the primary key of a table.

m An index operates behind the scenes to make the database more effi-
cient. Often indexes are created by DBAs, who are responsible for
keeping the database healthy. However, when you create a table with
a primary key, that primary key is implemented by creating an index.

chapter 8

DATA INTEGRITY

This chapter discusses the ways data can be validated before it
is entered into the database. Validation is particularly important
when many people are entering data and sharing the same
database. Validation also ensures that the data meets a certain
level of consistency.

In a relational database, referential integrity is one of the main
techniques of data validation. It protects columns that contain
codes. For example, a column for gender can only contain the
codes M and F. Referential integrity can enforce that rule.

A check constraint is another type of validation. It can check
that some statement is true; for example, “Price is less than
$100.00.” There is always validation on the primary key of a
table to preserve its properties. A not null constraint is a way
to say that the field is required. A unigue constraint ensures
that no two rows contain the same value.

The topics in this chapter are not needed to read the rest of this
book. Readers may skip ahead to the next chapter and come
back to this material later.

281

Constraintson One Tableo o et 283

8-1 A constraint keeps the data consistent 283
8-2 checkconstraints. 283
8-3 uniqgue constraints. 285
8-4 not null constraints. 287
8-5 primary key constraints 288
8-6 Restrictions on the datatype and length of fields. 289
Referential Infegrity.oieiii 289
8-7 The concept of RI 290
8-8 Anexample of RI 291
8-9 Inserts and updates to the data table prevented by RI 293
8-10 Inserts and updates to the data table allowed by RI 294
8-11 Updates and deletes to the lookup table prevented by RI. 295
8-12 How to delete a code from the lookup table. 296
8-13 How to change a code in the lookuptable 298
8-14 RI as a relationship between thetables. 299
8-15 Setting up RIinthe Access GUI 300
The Delete Options and Update Opfions of RI i, 303
8-16 The three options for deletes and updates to the lookup table 303
8-17 The deleterule: setnull 304
8-18 The deleterule: cascade. 306
8-19 The update rule: cascade. 308
Variations of Referential Integrity. 311
8-20 The two meanings of primary key. 311
8-21 Using two or more columns for the primary key. 313
8-22 The lookup and data tables can be the sametable 315
How to Code Constraints in a Create Table Statement. 316
8-23 Constraints are often coded in the create table statement 316

Key Points. 319

Constraints on One Table

8-1 A constraint keeps the data consistent

A constraint is a rule that ensures the data in the database meets a certain
level of consistency. This consistency ensures that the data is meaningful
and makes sense to all the people who use the database. The term “con-
straint” is a shortened form of the phrase “data integrity constraint.”

A constraint works by allowing certain changes to the data in the database
and not allowing other changes. The changes that are rejected would vio-
late the rule that the constraint is trying to enforce.

A constraint can work when you use any of the SQL commands to change
the data; that is, the insert, update, or delete command. First, the SQL
command is checked to make sure it makes sense. Then the constraints are
checked to make sure that the proposed changes do not violate any of the
constraint rules. The data in the database is changed only after it has been
shown that all the constraint rules are satisfied.

If you are only getting information from a database that has constraints
and you are not changing any of that information, then you should be able
to rely on the fact that the data is consistent and it obeys all the rules of
the constraints.

There are many types of constraints, but the most important one is referen-
tial integrity (RI). It deals with the relationship between two different
tables. It is one of the more complex constraints. That is why most of this
chapter deals with RI.

Before we get into the details of RI, let’s look at some of the simpler types
of constraints that involve only one single table.

8-2 check constraints

A check constraint ensures that some statement about the data is true for
every row of a table. Oracle supports check constraints, but Access does
not. Access has validation rules, which are somewhat similar. They both val-
idate data when it is being entered or updated. The change to the data is
rejected when it does not pass the test.

A constraint always checks all the old data, so we know that all the data in
the table passes the test. If the old data does not pass the test, the con-
straint is rejected. However, a validation rule does not check the old data
unless we ask it to, so there may be old data in the table that would not
pass the test. That is the main difference.

283

284

CHAPTER 8 DATA INTEGRITY

Another difference is that a check constraint in Oracle is part of Oracle
SQL. It is a command that is issued like any other SQL. A validation rule in
Access is a property and cannot be set through SQL. It can be set in the
GUI, in a macro, or in a module, but not through the SQL window.

Task

In Oracle, set a constraint to check that all the prices in the sec0802_foods
table are less than $10.00. In Access, set a validation rule to do this. (This
constraint has already been set for the 1_foods table.)

Oracle SQL

alter table sec0802_foods
add constraint sec0802_foods_max price
check (price < 10.00);

Access GUI

Open the sec0802_foods table in besign view and highlight the price col-
umn. Within the General properties set the Validation Rule to be “<10”, with-
out the quotes, and set the Validation Text to be “Price exceeds $10.00”. The
Validation Text line is the error message to be displayed if the rule is not met.

] SECD802_FOODS ', X

Field Name Data Type Description -~
¥ |SUPPLIER_ID Text
¥ | PRODUCT_CODE Text
MENU_ITEM AutoNumber
DESCRIPTION Text
PRICE_INCREASE Currency

Field Properties

General |Lookup

Format Currency

Decimal Places Auto

Input Mask

Caption

Default V.

idation Rule <10 A field name can be up to 64 characters long,

[« lidation Text Price exceeds 510.0 including spaces. Press F1 for help on field

RequUIT names,

Indexed Mo

Smart Tags

Text Align General

CONSTRAINTS ON ONE TABLE 285

Check your understanding

Create a check constraint on the hire date column of the
sec0802_employees table. Check that the hire_date comes after 1995.

8-3 unique constraints

A uniqueness constraint on a table column ensures that every row of that
table contains a different value. In other words, no two rows have the same
value in that column. A null is always allowed in the column. Many rows of
the table can have a null in the column, but all non-null values in the col-
umn can occur only once. A uniquess constraint is sometimes called a
unique constraint. It can be created with an alter table statement.

A unique index is closely related to a uniqueness constraint and does almost
the same thing. However, it is classified as a type of index rather than as a
constraint. Like any other index, it can make some of the processing in the
database more efficient. It can be created with a create index statement.

A uniqueness constraint or a unique index can be placed on a combination
of several columns. Then each column itself could have duplicate values,
but the combination of columns would be required to have a different
value for every row of the table.

For example, if we put a uniqueness constraint on the first_name and
last_name columns of the 1_employees table, we could have several
employees with the same first name or last name, but we could not have
any two employees with both the same first name and also with the same
last name.

Task

Place a uniqueness constraint on the phone_number column of the
sec0803_employees table. This will ensure that each employee has his or
her own phone number. Show two ways to do this. Use different tables so
both SQL statements can be run.

Oracle SOL: Method 1 — Define a constraint

alter table sec0803_employees
add constraint unique_sec0803_emp_ phone_ num
unique (phone_number);

286

CHAPTER 8

DATA INTEGRITY

Oracle SQL: Method 2 — Define a unique index

create unique index uix sec0803b_emp phone
on sec0803b_employees (phone_number);

Access GUI method o

Open the sec0803_employees table in Design view, highlight the line for
the phone_number column and set the Indexed line to the option that says
“Yes (No Duplicates)”, as in the screen shown here.

|' = SEC0803_EMPLOYEES |,

x
Field Name Data Type Description -~
¥ | EMPLOYEE_ID Number E
FIRST_NAME Text
LAST_NAME Text
DEPT_CODE Text
HIRE_DATE Date/Time
CREDIT_LIMIT Currency
HONE_NUMBER Text -]
MAMNAGER_ID Number
b
Field Properties
General |Lookup
Field Size 4
Format
Input Mask
Caption
Default Value
Validation Rule A field name can be up to 64 characters long,
validation Text including spaces. Press F1 for help on field
Required MNa RS
Allow Zeral i 3
Indexed Yes (No @
Unicode comper 12
IME Mode Mo Contral
IME Sentence Mode Mone
Smart Tags
Notes

® The method shown can be used to put a uniqueness constraint in one
field. To put a uniqueness constraint in a combination of fields, use:

Table design view =» design tab -» Indexes

Check your understanding

Put a uniqueness constraint on the department_name field of the

sec0803_departments table.

CONSTRAINTS ON ONE TABLE

8-4 not null constraints

287

A not null constraint on a column ensures that there are no nulls in that
column. This is another way to say that data is required in that column. A
not null constraint can only be placed on a single column. In Oracle this
can be coded as a check constraint.

Task

Create a not null constraint for the employee_id column of the
sec0804_1lunches table.

Oracle SOL

alter table sec0804_1lunches
add constraint nn_sec0804_lunches_employee_id
check (employee_id is not null);

Access GUI

Open the sec0804_lunches table

employee_id column, and set the Required line to Yes.

|' | SEM_LUNCHES;‘\\
Field Nam
% |LUNCH_ID
LUNCH_DA
EMPLOYEE_ID
DATE ENTERED

e

Data Type Description

Field Properties

g

General |Lookup

Field Size
Format
Precision

Scale

Decimal Places
Input Mask
Caption
Default Value
Validation Rule
Valjdaties

Smart Tags

Decimal

s (Luplicates OK)

A field name can be up to 64 characters long,
including spaces. Press F1 for help on field
names,

in Design view, highlight the

Check your understanding

Make the last_name column a required field in the sec0804_employees

table.

288 CHAPTER 8 DATA INTEGRITY

8-5 primary key constraints

A primary key constraint is a combination of both a unique constraint
and a not null constraint. A table is only allowed to have one primary
key constraint. However it may have several unique constraints or not
null constraints.

Task

Place a primary key constraint on the employee id column of the
sec0805_employees table.

Oracle & Access SOL

alter table sec0805_employees
add constraint pk_sec0805_employees
primary key (employee_id);

Access GUI

Open the sec0805_employees table in Design view and highlight the
employee_id column. Click the button on the toolbar that shows a key, as
shown on the following screen.

able Toals QLFUMNZ007 : Database (Access 2007) - M. - & X
Design ',_0)

Create External Data Database Tools

oy ZeaInsert Rows K 2 Z
i — = Delete Rows d
View Primary|Egilder Test Validation Property Indexes
- Key Rules @Lookup Column Sheset
Views Toaols Show/Hide
All Access Objects - « || =3 SEmnns_EMPLO‘I’EES\ X
L SELOTUT_LUNCHES = Field Name Data Type Description =
E SEC0708_DEPARTMENTS P ZMPLOYEE_IDI Number B
5 SECO708_SUPPLIERS IRST_NAME Text
LAST _NAME Text
EH SECO709_DEPARTMENTS I -
DEPT_CODE Text
E sEcosoz EMPLOVEES HIRE DATE R 1
B3 secosoz_FooDS El Field Properties
[SEC0803_DEPARTMENTS General |Lookup)|
FA SEC0303_EMPLOVEES bielc S [Lecimal
Format
[sEcoaos_EMPLOYEES Precision 3
j Scale 1]
=] SEC0804_LUNCHES Decimal Places Auto
EH sEC0B05_DEPARTMENTS Input Mask Afield name can be up to 64 characters long,
Caption including spaces. Press or help on fie
p Jud Press F1 for help on field
T SEC0805_EMPLOYEES Default Value names.
Validation Rule
7] SEC0B0&_CLIENTS
j - Validation Text
EH sECOB08_DEPARTMENTS Required Mo
j Indexed Yes (Mo Duplicates)
7] SEC0808_EMPLOYEES Smart Tags
T sEC0808_STATES o || [[Text Align General

REFERENTIAL INTEGRITY 289

Check your understanding

Put a primary key constraint on the sec0805_departments table. Define
the primary key to be the dept_code field.

8-6 Restrictions on the datatype
and length of fields

The datatype definition for each column of a table functions as a con-
straint. That is, it limits the data that can be entered into that column. It
limits the datatype of the data and also the length of the data. For example:
1. The value Jane cannot be entered into a numeric column.
2. The value 123456789 cannot be entered into a numeric column if

the column is restricted to two-digit numbers.

These are restrictions on the data, and therefore they are constraints. How-
ever, most discussions of SQL do not list them as constraints.

Referential Integrity

RI is the main type of data validation within relational databases. It
ensures that certain relationships are maintained between the data in one
table and the data in another table. An RI constraint usually involves two
different tables.

Usually this validation is done when the data is being changed; that is, dur-
ing the processing of insert, update, and delete statements. These
statements will fail if they would change the data in a way that does not
conform to the requirements of RI.

During massive loads of thousands of rows of data, this validation is usu-
ally turned off temporarily. After the load is finished, the validation is
turned on again. So what happens if faulty data is entered during these
loads? We will not be able to turn on the validation until the data has been
fixed. So whenever Rl is active, we are assured that one table has a certain
relationship to another table.

290

Lookup table
also called
reference table
or parent table

CHAPTER 8 DATA INTEGRITY

8-7 The concept of RI

The following illustration shows the concept of RI.

ﬁ Referential integrity ﬂ

A B Data table
also called
B C child table
C A
C
Primary key
this is the list of A
all valid values
null
C
B
Foreign key

the values in this
column are checked
for validity

RI is a relationship between the data in two columns. These columns are
usually in different tables. One column, called the primary key, contains a
list of all the valid values for some field. The other column, the foreign key,
contains data that is validated against this list. The table containing the list
of valid values is called a lookup table. It is also called a reference table or
the parent table. The other table is sometimes called the data table or the
child table.

The valid values are often a set of codes containing two or three characters.
The lookup table contains a list of these codes and their meanings. Some-
times it also contains additional data about them.

The data in both columns is allowed to change. However the rule must be
maintained that the foreign key can only contain values that are also in the
primary key column. The foreign key can also contain nulls.

The relationship between the data in these two columns has consequences
for the way in which the data is allowed to change. In the lookup table, a
new value can always be inserted into the primary key, but an update or
delete statement is restricted if it would remove a value that is used in the
foreign key.

REFERENTIAL INTEGRITY 291

In the data table, a value can always be deleted or set to null, but any new
value introduced with an insert or update must pass validation, otherwise
it is rejected.

The two columns often have the same or similar names. The database
designers do this to suggest that the columns are related to each other. An
index is usually built on each of the columns to keep the database running
efficiently.

Before the RI relationship can be set up, you must create a primary key, or
at least a unique index, in the lookup table. Access strictly enforces this
rule, but Oracle allows some exceptions.

8-8 An example of RI

In this section we set up a relationship of RI between two tables. The
states table is the lookup table and the clients table is the data table.
More specifically, we create RI between the state_code columns of these
tables.

The states table and the clients table are part of an application for a
salesman. His sales region consists of three states: California, Oregon, and
Washington. He is only allowed to have clients in those states.

In the following example, RI is set up using an alter table statement. The
first line says alter table, and then gives the name of the data table,
which is the table containing the column with data that will be validated.

The second line says add constraint, followed by the name of the con-
straint. The naming convention used here begins all foreign key constraints
with the letters fk_, followed by the names of the table and column that
will be validated. This is one of several popular naming conventions.

The third line specifies that this is a foreign key constraint. This is followed
by the name of the column to be validated, enclosed in parentheses.

The last line specifies the list of all the valid values. The word references
is followed by the name of the lookup table. This implies that the primary
key of the lookup table contains the list of all the valid values.

If the list of valid values is in a column that is different than the primary key
of the lookup table, then the name of that column must be given, enclosed
in parentheses.

292

CHAPTER 8 DATA INTEGRITY

Task

Show how to set up RI. Validate the state_code column of the clients table.

Oracle & Access SOL: Set up Rl o

alter table sec0808_clients
add constraint fk_sec0808_clients_state_code
foreign key (state_code)

references sec0808_states (state_code); ©

Lookup table (sec0808_states table)

STATE

CODE STATE_NAME STATE_CAPITAL
CA CALIFORNIA SACRAMENTO

OR OREGON SALEM

WA WASHINGTON OLYMPIA

Data table (sec0808_clients table)

STATE
CLIENT_ID CLIENT_NAME CODE
100 LARRY COHEN CA
200 ALICE WILLIAMS CA
300 ROGER WOLF OR
400 NANCY KERN OR
500 CATHY LEE WA
600 STEVEN LAKE WA

Notes

® The state_code column is already the primary key of the lookup table,
the sec0808_states table. This must be done before the RI relation-
ship is created.

® Specifying the column with (state_code) is optional here because it is
the primary key of the lookup table. I write the column name even when
it is not required because I feel it makes the code easier for people to
understand.

Check your understanding

Set up RI between the sec0808_departments table and the
sec0808_employees table. The sec0808_depatrments table contains a
list of all the valid values of the dept_code field.

REFERENTIAL INTEGRITY 293

8-9 Inserts and updates to the
data table prevented by RI

This section shows that RI provides data validation within a foreign key col-
umn of the data table. It prevents a value from being entered into that col-
umn if it is not one of the valid values contained in the lookup table.

The SQL in the following example tries to put New York and Massachusetts
into the state_code column of the clients table. These states are not
part of the sales region, so they are not included in the states table. RI
rejects these insert and update statements.

Task

On the clients table, write an insert and an update statement that will
be rejected by RI.

Oracle & Access SOL

insert into sec0809_clients
values (700, 'GAIL HAUSER', 'NY');

update sec0809 clients
set state_code = 'MA'
where client_id = 200;

Result — An error message ©

Notes

© Access will notify you that an error has occurred and ask you if you want
to run the query anyway. Even if you choose Yes, no change is made to
the tables.

Check your understanding

There is already an RI relation between the sec0809_departments table
and the sec0809_employees table. Write an SQL insert statement and an
update statement on the sec0809_employees table that will be rejected
because of RI. Hint: Use a value of the dept_code field that is not one of the
valid codes listed in the sec0809_departments table.

294

CHAPTER 8 DATA INTEGRITY

8-10 Inserts and updates to the
data table allowed by RI

This section shows that RI allows an insert or update statement to occur
in the foreign key column of the data table as long as it follows the rules. A
value can be entered into that column if it is one of the valid values con-
tained in the lookup table.

In the following example, the first two SQL commands are the same as in
the previous section, except that the state codes are valid. These states are
part of the sales region and they are included in the states table. Rl allows
these insert and update statements.

In the last insert statement, the state_code is null. This shows that we
can enter a null in a foreign key column, even though there is no null in the
list of valid values.

Task

On the clients table, write an insert and an update statement that will
be allowed by RI.

Oracle & Access SOL

insert into sec0810_clients
values (700, 'GAIL HAUSER', 'OR'):;

update sec0810_clients
set state_code = 'WA'
where client_id = 200;

insert into sec0810_clients
values (800, 'CARL LOGAN', null);

Beginning table (sec0810_clients table)

STATE
CLIENT_ID CLIENT_NAME CODE
100 LARRY COHEN CA
200 ALICE WILLIAMS CA
300 ROGER WOLF OR
400 NANCY KERN OR
500 CATHY LEE WA
600 STEVEN LAKE WA

REFERENTIAL INTEGRITY 295

Ending table
STATE

CLIENT_ID CLIENT_ NAME CODE
100 LARRY COHEN cA
200 ALICE WILLIAMS WA
300 ROGER WOLF OR
400 NANCY KERN OR
500 CATHY LEE WA
600 STEVEN LAKE WA
700 GAIL HAUSER OR
800 CARL LOGAN (null)

Check your understanding

There is already an RI relation between the sec0810_departments table
and the sec0810_employees table. Write an SQL insert statement and an
update statement on the sec0810_employees table that will be accepted
by RI.

8-11 Updates and deletes to the
lookup table prevented by RI

This section shows that RI prevents codes from being changed or deleted in
the lookup table while those codes are being used in the foreign key col-
umn of the data table.

The SQL in the following example tries to change Oregon to Massachusetts
and tries to delete California from the states table. These states are cur-
rently being referred to by rows in the clients table, so RI rejects these
update and delete statements.

Here we are using RI with the restrict option, which is the default and
most commonly used option. Later we look at some other ways to set up
RI.

Task

On the states table, write an update and a delete statement that will be
rejected by RI.

296

CHAPTER 8 DATA INTEGRITY

Oracle & Access SOL

update sec081l1l_ states
set state_code = '"MA'
where state_code = 'OR';

delete from sec081l1_states
where state_code = 'CA';

Result — An error message

Check your understanding

There is already an RI relation between the sec0811_departments table
and the sec0811_employees table. Write an SQL update statement and a
delete statement on the sec0811_departments table that will be rejected
because of RI.

8-12 How to delete a code from the lookup table

To delete a value from the primary key of a lookup table, we must first
ensure that the value is not being used in the foreign key column by any
row of the data table.

In the following example, we want to remove California from the states
table. Before we can do this, we must remove it from every row of the
clients table. Instead of deleting these clients, we set their state_code
values to null.

Task

Delete California from the states table.

Oracle & Access SOL

update sec0812_clients
set state_code = null
where state _code = 'CA’';

delete from sec081l2_states
where state_code = 'CA';

REFERENTIAL INTEGRITY 297

Beginning table 1 (sec0812_states table)

STATE

CODE STATE_NAME STATE_CAPITAL
CA CALIFORNIA SACRAMENTO

OR OREGON SALEM

WA WASHINGTON OLYMPTIA

Beginning table 2 (sec0812_clients table)

STATE
CLIENT_ ID CLIENT NAME CODE
100 LARRY COHEN ca
200 ALICE WILLIAMS ca
300 ROGER WOLF OR
400 NANCY KERN OR
500 CATHY LEE WA
600 STEVEN LAKE WA
Ending table 1 (sec0812_states table)
STATE
CODE STATE_NAME STATE_CAPITAL
OR OREGON SALEM
WA WASHINGTON OLYMPIA
Ending table 2 (sec0812_clients table)
STATE
CLIENT ID CLIENT NAME CODE
100 LARRY COHEN (null)
200 ALICE WILLIAMS (null)
300 ROGER WOLF OR
400 NANCY KERN OR
500 CATHY LEE WA
600 STEVEN LAKE WA

Check your understanding

There is already an RI relation between the sec0812_departments table
and the sec0812_employees table. Delete the shipping department from
the sec0812_departments table. Hint: First you must change some data in
the sec0812_employees table.

298 CHAPTER 8 DATA INTEGRITY

8-13 How to change a code in the lookup table

To change a value in the primary key of a lookup table, we use a three-step
process. First, we enter the new code into the lookup table. Second, we
change all the data in the data table from the old code to the new code.
Third, we delete the old code from the lookup table.

In the following example, we want to change the code for California from ca
to zz. The reason for doing this is to show the process of accomplishing it.

Task

Change the state_code for California to zz in both the states table and
the clients table.

Oracle & Access SOL

insert into sec0813_ states
values ('ZZ', 'CALIFORNIA', 'SACRAMENTO'):;

update sec0813 clients
set state_code = 'ZZ'
where state_code = 'CA';

delete from sec0813_states
where state_code = 'CA';

Beginning table 1 (sec0813_states table)

STATE

CODE STATE_NAME STATE_CAPITAL
CA CALIFORNIA SACRAMENTO
OR OREGON SALEM

WA WASHINGTON OLYMPIA

Beginning table 2 (sec0813_clients table)

STATE
CLIENT_ID CLIENT_NAME CODE
100 LARRY COHEN CA
200 ALICE WILLIAMS CA
300 ROGER WOLF OR
400 NANCY KERN OR
500 CATHY LEE WA

600 STEVEN LAKE WA

REFERENTIAL INTEGRITY

Ending table 1 (sec0813_states table)

299

STATE
CODE STATE_NAME

STATE_CAPITAL

OR OREGON SALEM
WA WASHINGTON OLYMPIA
Z7 CALIFORNIA SACRAMENTO
Ending table 2 (sec0813_clients table)
STATE

CLIENT_ID CLIENT NAME CODE

100 LARRY COHEN 77

200 ALICE WILLIAMS 77

300 ROGER WOLF OR

400 NANCY KERN OR

500 CATHY LEE WA

600 STEVEN LAKE WA

Check your understanding

There is already an RI relation between the sec0813_departments table
and the sec0813_employees table. Write SQL to change the code of the
shipping department from SHP to ABC.

8-14 RI as a relationship between the tables

| said before that Rl is a relationship between the data in two columns, but
that is not quite the whole story. It is also a relationship between two

tables: the lookup table and the data table. There are two parts to this:

1. We must insert rows into the lookup table before we can insert any

rows into the data table.

2. We cannot drop either table until we drop the RI relationship.

These are the rules in general, but there are ways to get around them,

which we discuss later.

300

CHAPTER 8 DATA INTEGRITY

8-15 Setting up Rl in the Access GUI

This section shows how to set up Rl in Access using GUI methods instead
of SQL. The tables used here are called sec0815_ states and
sec0815_clients. These are separate copies of the states and clients
tables.

Task

Set up RI between the state_code columns of the sec0815_states table
and the sec0815_clients table. Use the Access GUI to do this.

Access GUI method

Step 1: Click the Database Tools tab on the Ribbon. Then click Relationships
in the Show/Hide group. Then click Show Table in the Relationships group.
Then scroll down the Show Table window until you find the
SEC0815_CLIENTS table. Click on it to select it:

Database Tools > Relationships > Show Table > select Tables tab >

select SEC0815_CLIENTS > Add
Relationship Tao
Design
=a Hide Table

23 Direct Relationships
23 All Relationships

I.fc!? H) Cu 5
v

Home Create External Data Database Tools

E/ X Clear Layout
%4

=5j Relationship Report

Edit
Relationships

Close

Tools Relationships
All Access Objects = Rebaﬁomtﬁps\
SELUAY _LUNLAES N
SECO708_DEPARTMENTS il
SECO708_SUPPLIERS Queries Both
SECOT09_DEPARTMENTS SECO0813_DEPARTMENTS -

SEC0813_EMPLOYEES 0
SEC0302_EMPLOYEES X

SEC0802_FOODS E|

i i O i O o

SECOB03_DEPARTMENTS
SEC0803_EMPLOYEES
SEC0804_EMPLOYEES
SECO804_LUNCHES
SEC0805_DEPARTMENTS
SECO805_EMPLOYEES
SECO808_CLIENTS
SEC0808 DEPARTMENTS

SECO815_STATES
SECD&817_CLIENTS

SECD817_EMPLOYEES
SEC0317_STATES
SEC0318_CLIENTS

SEC0318_EMPLOYEES
SECD818_STATES

SEC0317_DEPARTMENTS

SEC0318_DEPARTMENTS

Add

Close

REFERENTIAL INTEGRITY 301

Step 2: Choose the tables you want and click Add for each of them. For this
example, choose the sEC0815_sTATES table and click Add. Then choose the
SEC0815_CLIENTS table and click Add again. Then close the Show Table
window. These tables will be shown in the Relationships window.

You can drag the tables by their title bars. Here I have rearranged the Rela-
tionships window so only these two tables are shown.

&7 Relationships

SECO815_STATES

SECO815_CLIENTS

'? STATE_CODE ¥ CLENTID
STATE_MAME CLIENT_MAME
STATE_CAPITAL STATE_CAPITAL

Step 3: Select the primary key. In this example, choose the STATE_CODE col-
umn of the sSEC0815_STATES table. Hold the mouse down and drag from the
primary key to the foreign key, then release the mouse button. In this exam-
ple, drag from the STATE_CODE column of the SEC0815_STATES table to the
STATE_CODE column of the sEC0815_CLIENTS table. The Edit Relation-
ships window will open. Select the Enforce Referential Integrity checkbox.

Edit Relationships

Table/Query: Related Table/Query: Create

Cancel

STATE_CODE v STATE_CODE o
Join Type..

Create MNew..
Enforce Referential Inteqrity reate TN

[] cascade Update Related Fields
[] cascade Delete Related Records

Relationship Type: One-To-Many

302 CHAPTER 8 DATA INTEGRITY

Step 4: Click the Create button. Now RI has been set up and you are done
The line between the two tables shows the RI relationship.

y

y

SECO815 STATES
% STATE_CODE
STATE_MAME

STATE_CAFITAL

1

e

SECO815 _CLIEMTS
% CUENT ID
CLIENT_MAME
STATE_CODE

If, at a later time, you want to delete or change the relationship, right-click
the line between the two tables.

y

y

SECO815 STATES
% STATE_CODE
STATE_MAME

STATE_CAFITAL

SECO815 _CLIEMTS
% CUENT ID
CLIENT_MAME

=4 Edit Relationship...
'X Delete

Check your understanding

Use the Access GUI to set up RI between the sec0815_departments table

and the sec0815_employees table.

THE DELETE OPTIONS AND UPDATE OPTIONS OF RI 303

The Delete Options and Update Options of Ri

The previous sections showed you that a delete or an update to the lookup
table can be disallowed by RI. This is the most common way Rl is set up,
but some other options are explained here.

8-16 The three options for deletes
and updates to the lookup table

By default, we are not allowed to change or delete values in the primary key
of the lookup table, when those values occur in the foreign key of the data
table. Having RI operate this way is called the restrict option, because
we are restricted from making these changes to the lookup table.

When we set up RI, we can choose one of three options for handling
deletes from the lookup table. In Access, we can also choose one of three
options for handling updates to the lookup table. This gives us nine ways
to set up RI. The three options are:

m restrict (the default if we do not choose the other options)
B set null

B cascade

In describing RI up to now, I have been describing it with the restrict
option, because this is the most common form. For some special purposes,
we use the set null and cascade options, but they should always be used
carefully.

The set null and cascade options for deletes say that we can always delete a
value from the lookup table. These options for updates say that we can always
change a value in the lookup table. Here are the effects of these options on the
matching values within the foreign key column of the data table:

set null All the matching values in the foreign key column
are automatically changed to null. The rest of the
data in the row is unchanged.

cascade deletes The entire row is deleted from the data table when
there is a matching value in the foreign key column.

cascade Updates All the matching values in the foreign key column are
automatically changed to the new value. The rest of the
data in the row is unchanged.

304

CHAPTER 8 DATA INTEGRITY

Delete options

Oracle supports all three delete options. From an SQL command, Access
supports only the restrict deletes option. The cascade deletes option is
available, but it must be set in the GUI.

Update options

Both Oracle and Access support the restrict updates option, which is
the default. Access also supports the cascade updates option, which must
be set in the GUI.

8-17 The delete rule: set null

In the next example, the first task sets up RI between the sec0817_states
table and the sec0817_clients table using the set null option. The sec-
ond task deletes California from the lookup table. In the foreign key all the
references to California are automatically changed to null.

Task for example 1: Set up Rl with set null for deletes

Set up RI between the sec0817_states table and the sec0817_clients
table. Use the set null option for deletes.

Oracle SQL

alter table sec0817_clients
add constraint fk_sec0817_clients_state_code
foreign key (state_code)

references sec081l7_states (state_code)

on delete set null; ©

Access does not support this option.

Task for example 2: Show how RI works with set null for deletes

Delete California from the sec0817_states table. Do this when RI has been
set up using the set null option.

Oracde SOL
delete from sec081l7_states
where state_code = 'CA';

Access does not support the delete rule set null.

THE DELETE OPTIONS AND UPDATE OPTIONS OF RI 305

Beginning table 1 (sec0817_states table)

STATE

CODE STATE_NAME STATE_CAPITAL
CA CALIFORNIA SACRAMENTO

OR OREGON SALEM

WA WASHINGTON OLYMPTIA

Beginning table 2 (sec0817_clients table)

STATE

CLIENT_ID CLIENT NAME CODE

100 LARRY COHEN ca

200 ALICE WILLIAMS ca

300 ROGER WOLF OR

400 NANCY KERN OR

500 CATHY LEE WA

600 STEVEN LAKE WA
Ending table 1 (sec0817_states table)
STATE
CODE STATE_NAME STATE_CAPITAL
OR OREGON SALEM
WA WASHINGTON OLYMPIA
Ending table 2 (sec0817_clients table)

STATE

CLIENT_ID CLIENT NAME CODE

100 LARRY COHEN (null) @

200 ALICE WILLIAMS (null) @

300 ROGER WOLF OR

400 NANCY KERN OR

500 CATHY LEE WA

600 STEVEN LAKE WA

Notes

O This line creates the set null option.

® The state codes for California are automatically changed to nulls in the
foreign key column.

306

CHAPTER 8 DATA INTEGRITY

Check your understanding

Set up RI between the sec0817_departments table and the
sec0817_employees table. Handle deletes using the set null rule. Then
show the effect of this rule by deleting the shipping department from the
sec0817_departments table.

8-18 The delete rule: cascade

In the following example, the first task sets up RI between the
sec0818_states table and the sec0818_clients table using the
cascade option for deletes. The second task deletes California from the
lookup table. In the data table all the rows that had ca in the foreign key
column are deleted.

For emphasis, [want to say this again: It is not the values in the foreign key
column that are deleted. It is the entire row of information that gets
deleted automatically, so consider the consequences carefully before you
set up this option.

Task for example 1: Set up Rl with cascade for deletes

Set up RI between the sec0818_states table and the sec0818_clients
table. Use the option to have cascading deletes.

Oracle SOL

alter table sec0818_ clients
add constraint fk_sec0818 clients_state_code
foreign key (state_code)

references sec0818_states (state_code)

on delete cascade; O

Access GUI method

Follow the directions in section 8-15 to set up RI with the Access GUI. In the
Edit Relationships dialog box, select two checkboxes:

m Enforce Referential Integrity

m Cascade Delete Related Records

THE DELETE OPTIONS AND UPDATE OPTIONS OF RI

Edit Relationships

Table/Query: Related Table/Query: QK

|SECDBIB_5T.-5.TES ~ | SEC0818_CLIENTS v|

state_code + state_code

Enforce Referential Inteqrity
[] cascade Update Related Fields

de Delete Related@

Relationship Type: One-To-Many

A
— Join Type..
w

Create MNew..

307

Task for example 2: Show how RI works with cascade for deletes

Delete California from the sec0818_states table. Do this when RI has been
set up using the cascade deletes option.

Oracle & Access SOL

delete from sec0818_states

where state_code = 'CA';

Beginning table 1 (sec0818_states table)

STATE
CODE STATE_NAME

CA CALIFORNIA
OR OREGON
WA WASHINGTON

STATE_CAPITAL
SACRAMENTO
SALEM
OLYMPIA

Beginning table 2 (sec0818_clients table)

CLIENT_ID CLIENT_ NAME

100 LARRY COHEN
200 ALICE WILLIAMS
300 ROGER WOLF

400 NANCY KERN

500 CATHY LEE

600 STEVEN LAKE

308

CHAPTER 8 DATA INTEGRITY

Ending table 1 (sec0818_states table)

STATE

CODE STATE_NAME STATE_CAPITAL
OR OREGON SALEM

WA WASHINGTON OLYMPIA

Ending table 2 (sec0818_clients table) ®

CLIENT_ID

STATE
CLIENT_NAME CODE
ROGER WOLF OR
NANCY KERN OR
CATHY LEE WA
STEVEN LAKE WA

Notes

©® This line creates the cascade option.

® All the rows where the state codes were for California are automatically
deleted.

Check your understanding

Set up RI between the sec0818_departments table and the
sec0818_employees table. Handle deletes using the cascade rule. Then
show the effect of this rule by deleting the shipping department from the
sec0818_departments table.

8-19 The update rule: cascade

Access has the ability to cascade updates to the parent table and apply
those updates to the child table.

In the following example, the first task sets up RI between the
sec0819_state table and the sec0819_clients table using the cascade
option for updates. The second task changes the abbreviation for California
from ca to zz within the lookup table. In the data table, all the rows that
had ca in the foreign key column now have the new value zz. This shows
the process of changing codes, even if this example is a bit stretched.

THE DELETE OPTIONS AND UPDATE OPTIONS OF RI 309

Task for example 1: Set up RI with cascade for updates

Set up RI between the sec0819_states table and the sec0819_clients
table. Use the option to have cascading deletes.

Access GUI method

Follow the directions in section 8-15 to set up RI with the Access GUI. In the
Edit Relationships dialog box, select two checkboxes:

m Enforce Referential Integrity
m Cascade Update Related Fields

Edit Relationships

Table/Query: Related Table/Query:
|SECEIB 15 STATES |+ SECO818_CLIENTS v|
state_code + state_code ~
— Join Type..
"
Create MNew..
Enforce Referential Inteqrity

(¥| Cascade Update Related Fields
[] cascade Delete Related Records

Relationship Type: One-To-Many

Task for example 2: Show how RI works with cascade for updates

Delete California from the sec0819_states table. Do this when RI has been
set up using the cascade updates option.

Access SQL

update sec0819_states
set state_code = 'zz'

where state_code = 'CA';

Oracle does not support cascaded updates.

310 CHAPTER 8 DATA INTEGRITY

Beginning table 1 (sec0819_states table)

Ca California Sacramento
or Oregon Salem
Wa Washington Olympia

Beginning table 2 (sec0819_clients table)
7] SEC0819_CLIENTS
CLIENT_ID ~ CLIENT_NAME °| STATE_CODE ~ Add New Field
100 Larry Cohen Ca
200 Alice Williams Ca
300 Roger Wolf Or
400 Nancy Kern Or
500 Cathy Lee Wa
600 Steven Lake Wa

Ending table 1 (sec0819_states table)

*|

7] SEC0819 STATES

STATE_CODE ~ STATE_NAME " |STATE_CAPITAL" Add New Field
or Oregon Salem
Wa Washington Olympia

California Sacramento
*

Ending table 2 (sec0819_clients table) ®

CLIENT_ID ~ CLIENT_NAME | STATE_CODE " Add New Field
100 Larry Cohen
200 Alice Williams
300 Roger Wolf Or
400 Nancy Kern Or
500 Cathy Lee Wa
600 Steven Lake Wa

*

Notes

0 All the rows in the data table where the state codes were ca are auto-
matically changed to zz.

VARIATIONS OF REFERENTIAL INTEGRITY 311

Check your understanding

Set up RI between the sec0819_departments table and the
sec0819_employees table. Handle updates using the cascade rule. Then
show the effect of this rule by changing the shipping department code in the
sec0819_departments table from SHP to ABC.

Variations of Referential Integrity

So far when I have described RI to you, the primary key was always a single
column and the foreign key was always in a table that was different from the
primary key. Some other options are presented in the following sections.

8-20 The two meanings of primary key

The term primary key is used with two different meanings. When we are
talking about tables in general, we speak about the primary key as the
unique identifier of each row. It is the noun or the subject of each row. A
table is only allowed to have one primary key, although that key can consist
of several columns.

When we are talking about RI, we speak about the primary key as the list of
valid values, which is contained in the lookup table. A few years ago these
were the same. That is, the list of valid values was always the primary key of
the lookup table.

In the last few years a new option has become available that makes these
two meanings different. The new option is that the list of valid values can
be from a column that is different from the primary key of the lookup table.
An example of this is shown later.

We cannot use just any column of the lookup table. The column must have
a different value in every row and there must be a unique index defined on
the column.

This feature is interesting and it is occasionally useful. But most of the time
a lookup table is designed so that its primary key is its list of valid values.
So we seldom need to distinguish between the two meanings of primary
key.

The following example shows a case where the primary key of the table
for the sec0820_states table is different from the primary key for RI,
the list of valid values. We have two tables, sec0820_states and

312

CHAPTER 8 DATA INTEGRITY

sec0820_clients, with Rl between them. The state_capital column of
the sec0820_clients table is validated from the column of the same
name within the sec0820_states table.

Here we see that the state_code column is the primary key of the
sec0820_states table. However, the state_capital column of the
sec0820_states table provides the list of valid values for the RI.

Task

Set up RI between the sec0820_states table and the sec0820_clients
table.

Oradle & Access SQL: Step 1, create a uniqueness constraint o

alter table sec0820_states
add constraint unique_sec0820_states_s_capital
unique (state_capital);

Oracle & Access SQL: Step 2, create Rl ©

alter table sec0820_clients
add constraint fk_sec0820_clients_state_capital
foreign key (state_capital)

references sec0820_states (state_capital);

Lookup table (sec0820_states table)

STATE

CODE STATE_NAME STATE_CAPITAL
CA CALIFORNIA SACRAMENTO
OR OREGON SALEM

WA WASHINGTON OLYMPTIA

Data table (sec0820_clients table)

CLIENT_ID CLIENT_NAME STATE_CAPITAL
100 LARRY COHEN SACRAMENTO
200 ALICE WILLIAMS SACRAMENTO
300 ROGER WOLF SALEM
400 NANCY KERN SALEM
500 CATHY LEE OLYMPIA

600 STEVEN LAKE OLYMPIA

VARIATIONS OF REFERENTIAL INTEGRITY 313

Notes

© A uniqueness constraint must be put on the state_capital column of
the sec0820_states table, which is the lookup table. This creates the
restriction that each row of the table must have a different value in this
column. This uniqueness constraint is required before the RI constraint
can be created.

It is also possible to make the state_capital column the primary key
of the sec0820_states table. This is another way to create the restric-
tion that each row of the table must have a different value in this column
and it allows the RI constraint to be created. However, in this example,
this is not possible because the state_code column is already defined
to be the primary key of the sec0820_states table.

This restriction is necessary so that when a specific value is “looked up”
in the sec0820_states table, only a single row of that table can have a
matching value.

® This alter table statement creates the RI constraint on the
state_capital column. Now we might say that the state_capital
column of the sec0820_states table is the “primary key of the RI rela-
tionship” even though it is not the primary key of the table.

8-21 Using two or more columns
for the primary key

All of our examples so far have had a single column as the primary key. This
is by far the most common situation when we are using a lookup table and
RI. However it is also possible to have several columns in the primary key
of the lookup table and within the data table to validate the combination of
several columns together.

In fact, this is done in the Lunches database. We have Rl between the
1_foods table and the 1_lunch_items table. The combination of the
supplier_id and product_code columns is validated for every row of the
1_lunch_ items table.

Task

Show how RI is set up between the 1_foods table and the 1_lunch_items
table. So this code will run, I use copies of these tables here.

314 CHAPTER 8 DATA INTEGRITY

Oracle & Access SOL

alter table sec0821 lunch_items
add constraint fk_sec0821 lunch_items_foods
foreign key (supplier id, product_code) O
references sec0821 foods (supplier id, product_code); ©®

Lookup table (sec0821_foods table)

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)

ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)

JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

Data table (sec0821_lunch_ items table)

SUPPLIER PRODUCT

LUNCH_ID ITEM_NUMBER ID CODE QUANTITY
1 1 ASP FS 1
1 2 ASP SW 2
1 3 JBR VR 2
2 1 ASP SwW 2

(and many more)

Notes

©® The foreign key consists of two columns, supplier_id and
product_code, of the sec0821_lunch_items table. These two col-
umns are in a specific order and are taken together to form a single unit,
which is the foreign key, whose value needs to be verified. This is the
same idea that allows the primary key of a table to consist of several col-
umns, even though the primary key is considered to be a single entity.

® The list of all the valid values for the foreign key resides in the rows of
the sec0821_foods table. Specifically, in the supplier_id column and
product_code column of that table. Again, these two columns form a
single unit, an ordered pair, in which the columns have a specific order.

VARIATIONS OF REFERENTIAL INTEGRITY 315

8-22 The lookup and data tables
can be the same table

It is possible for the lookup table and the data table to be the same table.
That is, one column of a table is validated against another column from the
same table. In fact this occurs within the Lunches database. The
1_employees table has an employee_id column and a manager_id col-

umn. Each manager_id is required to be a valid employee_id.

Task

Show how RI is set up between the employee_id column and the
manager_id column of the 1_employees table.

Oracle & Access SOL

alter table sec0822_employees O
add constraint fk_sec0822_emp_manager_ id
foreign key (manager_ id)

references sec0822_employees (employee_id); ©

The lookup table and the data table are the same table(sec0822_employees table)

EMPLOYEE FIRST LAST DEPT CREDIT PHONE MANAGER
ID® NAME NAME CODE HIRE_DATE LIMIT NUMBER I1D®
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Notes

©® The same table, the sec0822_employees table, is named in both the
alter table clause and the references clause. This creates the condi-
tion that the data table and the lookup table are both the same table.

® The employee_id column is the primary key of the table, so each row of
the table must have a different value in this column. This column is also
the primary key of the RI relationship. It is the list of all the valid values
that may be entered into the manager_id column.

316

CHAPTER 8 DATA INTEGRITY

©® Each time a new row is inserted into the table or a row within the table is
changed, the value in the manager_id column is checked to verify that
the value is valid. To be valid, that same value must be present in the
employee_id column of some row already in the table. If the value in
the manager_id column is not valid, then the new row or the changed
row is not accepted into the table.

How to Code Constraints in a
Create Table Statement

This section shows some examples of how to code constraints in the
create table statement. You will often see this done in production code.
The advantage to doing this is that it puts all the code in one place. It com-
pacts the code into a single unt. This is great after the code has been fully
developed and debugged.

However, when you first develop some new code, I suggest that you do not
use this method of coding. Instead, write each constraint separately as |
have done in this chapter up to now. This spreads the code out in small
pieces so that errors are easier to isolate and fix.

8-23 Constraints are often coded
in the create table statement

When you code a constraint within a create table statement, if the con-
straint affects only one column of this table, you can define the constraint at
the same time that you define the column. You can often define them both
on the same line of code. This is sometimes called a column constraint.

However, if the constraint involves more than one column of this table, you
are only allowed to code it after you have defined all the columns of the
table. It goes in a separate section of the create table statement. This is
sometimes called a table constraint.

There are two variations of this coding. In the easiest method, you allow
the database to assign all the names of the constraints. With a little more
effort you can name the constraints yourself.

Constraint names are not used much, so many people feel that it is not
important what the names are. However, they do appear in error messages.
If you want the people using the database to understand the error mes-
sages when they occur, then it is best to assign names to the constraints
that can be easily recognized.

How 1O CODE CONSTRAINTS IN A CREATE TABLE STATEMENT 317

Task

Show how to code the constraints on the 1_employees table within the
create table statement for that table.

Oracle SQL: Method 1 — Without naming the constraints

create table sec0823a_employees

(employee_id number(3)

first_name varchar2(10)
last_name varchar2 (20)
dept_code varchar2(3)
hire_date date,

credit_limit number(4,2)

phone number varchar2(4)
manager_ id number (3)

primary key, O

not null,

not null,

references

sec0823a_departments (dept_code),

check

(credit_1limit < 50),

unique,

references

sec0823a_employees (employee_id),

unique (first_name, last_name)); ©

Access SQL: Method 1 — Without numing the constraints

create table sec0823a_employees

(employee_id integer

first_name varchar (10)
last_name varchar (20)
dept_code varchar (3)
hire_date datetime,

credit_limit money
phone_number varchar(4)
manager_id integer

primary key, O

not null,

not null,

references

sec0823a_departments (dept_code),

check(credit_limit < 50),
unique,

references

sec0823a_employees (employee_id),

unique (first_name, last_name)); @

Oracle SQL: Method 2 — Giving your own names to the constraints

create table sec0823b_employees

(employee_id number(3)

first_name varchar2(10)
last_name varchar2(20)
dept_code varchar2(3)

constraint pk employee id O
primary key,

constraint nn_first_ name

check (first_name is not null),
constraint nn_last_name

check (last_name is not null),
constraint fk dept_code
references

sec0823b_departments (dept_code),

318

CHAPTER 8 DATA INTEGRITY

hire date date,

credit_limit number(4,2) constraint max_credit_limit
check (credit_1limit < 50),

phone_number varchar2(4) constraint unique_phone_num

unique,
manager_id number (3) constraint fk_manager id
references
sec0823b_employees (employee_id),
constraint unique_full_name

unique (first_name, last_name)); ©

Access SQL: Method 2 — Giving names to the constraints

create table sec0823b_employees

(employee_id integer constraint pk_employees ©
primary key,
first_name varchar(10) constraint nn first name
not null,
last_name varchar(20) constraint nn last_ name
not null,
dept_code varchar(3) constraint fk_dept_code
references
sec0823b_departments (dept_code),
hire_ date datetime,
credit_limit money constraint max credit_limit
check (credit_limit < 50),
phone_number <varchar(4) constraint unique_phone_num
unique,
manager_id integer constraint fk_manager
references
sec0823b_employees (employee_id),
constraint unigque_full name

unique (first_name, last_name)); ©

Notes

® The column constraints begin with the employee_id column and end
with the manager_id column. Some columns of the table might not
have a column constraint defined on them. In this example, the
hire_date column does not have a column constraint.

® The table constraints begin here. A table constraint can involve more
that one column. There can be many table constraints, although this
example has only one. Note that there is a comma at the end of the def-
inition of the last column of the table (the manager_id column) when
table constraints are being defined.

KEY POINTS

Key Points

319

The purpose of data integrity is to keep all the data in the database
consistent so everyone can use it.

The mechanism of data integrity is to define constraints, which are
rules that sometimes do not allow you to add, change, or delete data.
In a well designed database, the message is always clear about why
this action is not allowed and what you can do to correct it. Unfortu-
nately, many databases have messages that are somewhat confusing.

An RI constraint restricts the values that can be entered into a specific
column. The list of valid values is in the primary key column of
another table. This ensures that the second table is a valid lookup
table for the column. That is, for any value that is in the column, the
lookup table has a match and can provide additional information,
such as the meaning of a coded field.

Rl is a complex topic and there are several variations of it. The main
issue is how you can change the list of valid values.

A check constraint establishes a rule that the data must pass, for
example, that a number must be between 10 and 50.

A unique constraint says that every value in the column must be dif-
ferent. Any two rows must have different values.

A not null constraint says that nulls are not allowed in the column;
that is, the data value is required.

A primary key constraint is a combination of a unique constraint
and a not null constraint.

The datatype of a column can restrict the size of a number that can be
put into the column or the length of test that can be put into the col-
umn. In this way it is also a type of constraint.

This page intentionally left blank

chapter 9

Row
FUNCTIONS

In all the select statements we have written so far, the data in
the result was an exact copy of the data in some cell of the
beginning table. In this chapter, we remove that limitation. Row
functions can create new values that do not exist in the original
table.

321

9-3 An example of a row function in the select clause.............. 327
9-4 An example of a row function used in all the clauses of a

select statement 329

9-5 Defining a row function as the firststep 331
Numeric Functions 334
9-6 Functions onnumbers. 334
9-7 How to test arow function 336
9-8 Another way to test a numeric row function 337
TextFunchions 340
9-9 Functionsontext........... 340
9-10 Combining the first and lastnames. 344
9-11 Separating the firstand lastnames 346
9-12 Formatting phone numbers 348
Date FUnctions. 350
9-13 Functionsondates 350
9-14 An example of a date function 354
9-15 Removing the time fromadate 356

Key Points. 359

Introduction to Row Functions

Row functions calculate a new value based on the data in a single row of
the table. The value can be based on the data in one column or several dif-
ferent columns. Some row functions operate on numbers, and others oper-
ate on text or on dates.

9-1 Getting data directly from the beginning table

In all the SQL we have done so far, the data in the result table came directly
from the data in the original table. More specifically, the value in each cell
of the result table was copied from some cell of the original table. No
change at all was made to the value in the cell.

The following conceptual diagram shows this process. Data from a few rows
and columns of the beginning table are gathered together to form the
result table. All the other data in the beginning table is ignored.

Beginning table

Result table

—>

The value in
every cell
comes from the
beginning
table.

323

324

CHAPTER 9 ROW FUNCTIONS

9-2 What is a row function?

Row functions calculate or construct a new value that is not in the begin-
ning table. This new value is constructed from the values in one or more
cells of the original table. All these cells must be part of a single row within
the table.

The following conceptual diagram shows a row function as seen from a
point of view that considers one row of the beginning table. A single new
value is constructed by the function from the values in one or more cells of
the row.

Beginning table

New value
Created by a row
function from the
values in one or
more columns of
a single row.

The next conceptual diagram shows a row function as seen from the point
of view that considers all the rows of the beginning table. A new value is
created for each row. In effect, this adds a new column of data to the begin-
ning table. Then the techniques you have already learned are applied to
this enhanced table to create a final report from some of the rows and
some of the columns.

The new values may appear in the result table, they may be used to pick
rows from the beginning table, or they may be used to sort the rows of the
result table. That is, the row function may be used in the select clause,
the where clause, or the order by clause of a select statement.

The new column of information is not stored on the disk with the other
data of the table. It does not become a permanent part of the table itself.
Rather, it is held in memory while the select statement is being pro-
cessed. The memory is released after the select statement has finished
processing, so the new column of data exists only while one select state-
ment is being processed.

INTRODUCTION TO ROW FUNCTIONS 325

Beginning table

Result table
—_— b
Step 1: Step 2:
Create a new Select the data
column by you want.
applying the
row function to
every row.

More precisely, the processing of the select statement occurs as if the
new values were all stored in memory. Actually, the computer is allowed to
take shortcuts as long as it obtains the correct result. The new values may
be calculated for only a few of the rows, if that is sufficient to obtain the
result table.

Of course, you can create a new table that stores the new column as data
on the disk by using the create table statement you learned in section
4-1. An example of this is shown next.

Task

Create a new table that adds a new column to the 1_foods table. Create the
new column by using a row function that adds together the price and the
price_increase columns. Name this column new_price.

Oracle SOL

create table sec0902_foods as
select 1_foods.*, ©

price + price_increase as new price
from 1_foods;

326 CHAPTER 9 ROW FUNCTIONS

Access SOL

select 1 foods.*, ©

price + price_increase as new_price
into sec0902_foods
from 1_foods;

Beginning table (1_foods table)

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)

ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)

JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

New table with a column created by a row function (seec0902_£foods table)

SUPPLIER PRODUCT MENU PRICE NEW
ID CODE ITEM DESCRIPTION PRICE INCREASE PRICE
ASP F'S 1 FRESH SALAD $2.00 $0.25 $2.25
ASP SP 2 SOUP OF THE DAY $1.50 (null) (null) O
ASP SW 3 SANDWICH $3.50 $0.40 $3.90
CBC GS 4 GRILLED STEAK $6.00 $0.70 $6.70
CBC SW 5 HAMBURGER $2.50 $0.30 $2.80
FRV BR 6 BROCCOLI $1.00 $0.05 $1.05
FRV FF 7 FRENCH FRIES $1.50 (null) (null) @
JBR AS 8 SODA $1.25 $0.25 $1.50
JBR VR 9 COFFEE $0.85 $0.15 $1.00
VSB AS 10 DESSERT $3.00 $0.50 $3.50

INTRODUCTION TO ROW FUNCTIONS 327

Notes

© In both Oracle and Access, when we follow select * with additional col-
umns, we need to add the table name and a period before the asterisk.

® The new_price is null when the price_increase is null because a null
is an unknown value. In general, when a null is added to another value
the result is a null.

Check your understanding

Create a new table, named sec0902_employees, that adds two new
columns to the 1_employees table. Create the new columns by using
the following row functions:

Column Name: full_name
Oracle: first_name || ' ' || last_name

Access: first_name & ' ' & last_name

Column Name: new_credit_limit
Oracle & Access: credit_limit + 10.00

9-3 An example of a row function
in the select clause

In the previous section I used a row function to create a new column in the
table. This is step 1 in the diagram on page 325. In that example I did not
go on to step 2, which would select some data from the new table I created.
In this section I combine both steps in a single select statement. | use a
row function, which defines a new column, and I also select data to display
in the final report.

In this example the price increase is added to the price, which creates a
new price. This is a function because a new value is obtained. This function
uses two columns from the beginning table: price and price_increase.
Other row functions can use a single column or multiple columns.

328 CHAPTER 9 ROW FUNCTIONS

Task

From the 1_foods table list the menu_item, description, and
new_price. Calculate the new_price by adding together price and
price_increase.

Oracle & Access SOL

select menu_item,
description,
price + price_increase as new price O
from 1_foods
where menu_item < 15
order by menu item;

Beginning table (1_foods table)

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
ASP FS 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)
ASP Sw 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC Sw 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)
JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50
Result table
MENU NEW
ITEM DESCRIPTION PRICE

1 FRESH SALAD $2.25

2 SOUP OF THE DAY (null)

3 SANDWICH $3.90

4 GRILLED STEAK $6.70

5 HAMBURGER $2.80

6 BROCCOLTI $1.05

7 FRENCH FRIES (null)

8 SODA $1.50

9 COFFEE $1.00

10 DESSERT $3.50

INTRODUCTION TO ROW FUNCTIONS 329

Notes

© This is the row function.

Check your understanding

The following select statement lists all the employees hired before Jan-
uary 1, 2000 and shows their credit limits. Modify this statement to add
$10.00 to their credit limits.

This change in the amount of the credit limits shows up in this one result
table, but does not affect the data in the underlying table.

select employee_id,
first_name,
last_name,
credit_limit

from 1_employees

order by employee_id;

9-4 An example of a row function used in
all the clauses of a select statement

This section shows an example of a row function used in several clauses of
a select statement. In this example it is used in the select clause, where
clause, and order by clause. Each time it is used we must write out the
entire function. This is not ideal, and the next section shows you how to
avoid writing out the function many times.

In this example, the function is fairly simple and writing it several times is
not much of a problem. However, when a function is longer and more com-
plex, having several copies of it can create a problem. When small changes
are made to one instance of the function and not the others, it can be very
difficult to debug.

In the following code, parentheses are put around the function when it is
written in the where clause and the order by clause. These are optional,
but I use them because I think it makes the code easier to read.

330 CHAPTER 9 ROW FUNCTIONS

Task

From the 1_foods table list the menu_item, description, and
new_price. Calculate the new_price by adding together the price and the
price_increase. List only the foods where the new price is greater than
$2.00. Sort the rows of the result table on the new_price column.

Oracle & Access SOL

select menu_item,

description,

price + price_increase as new price O
from 1_foods
where (price + price_increase) > 2.00 ©®
order by (price + price_increase); ©

Beginning table (1_foods table)

SUPPLIER PRODUCT MENU PRICE
1D CODE ITEM DESCRIPTION PRICE INCREASE
ASP F'S 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)

ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)

JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

Result table ©

MENU NEW
ITEM DESCRIPTION PRICE
1 FRESH SALAD $2.25
5 HAMBURGER $2.80
10 DESSERT $3.50
3 SANDWICH $3.90

4 GRILLED STEAK $6.70

INTRODUCTION TO ROW FUNCTIONS 331

Notes

0 In the select clause the function is written for the first time.
® In the where clause the entire function must be written out again.
® In the order by clause the entire function must be written out again.

0 Rows having a null in the new_price column do not satisfy the condi-
tion in the where clause, so they do not appear in the result table.

Check your understanding

From the 1_employees table list the employee ID, first name, last name,
and new credit limit (which is credit_limit + 10.00) for all employees
whose new credit limit is above $20.00. Sort the rows by the new credit limit.

9-5 Defining a row function as the first step

This section shows you a technique that can be used when the same row
function is used in several different clauses of a select statement. When
this was done in the previous section, the function was written several
times. We had no guarantee that the function was exactly the same each
time it was used. A typing error could make one instance slightly different
from another.

This technique prevents such differences from occurring. It also makes the
code easier to write and understand. If the row function is complex, it
ensures that all references to the function are defined in exactly the same
way. | recommend using this technique in most situations.

The first step of this technique creates a table or view that defines the new
column using the row function. The next step is able to use the name of the
new column in several places without rewriting the entire definition of the
row function.

Task

The task is the same as in the previous section.

332 CHAPTER 9 ROW FUNCTIONS

Oracle SQL: Step 1 — Create a view o

create or replace view sec0905_stepl view as
select menu_item,

description,

price + price_increase as new _price &
from 1_foods;

Access SQL: Step 1 — Create a view o

Part 1: Enter this in the SQL window:

select menu_item,

description,

price + price_increase as new _price
from 1_foods;

Part 2: Save the query. Name it sec0905_stepl_view.

Oradle & Access SQL: Step 2 — Use the new view o

select menu_item,
description,
new _price ©
from sec0905_stepl_ view
where new_price > 2.00 O
order by new price; ©

Beginning table (1_foods table)

SUPPLIER PRODUCT MENU PRICE
ID CODE ITEM DESCRIPTION PRICE INCREASE
ASP F'S 1 FRESH SALAD $2.00 $0.25
ASP SP 2 SOUP OF THE DAY $1.50 (null)

ASP SW 3 SANDWICH $3.50 $0.40
CBC GS 4 GRILLED STEAK $6.00 $0.70
CBC SW 5 HAMBURGER $2.50 $0.30
FRV BR 6 BROCCOLI $1.00 $0.05
FRV FF 7 FRENCH FRIES $1.50 (null)

JBR AS 8 SODA $1.25 $0.25
JBR VR 9 COFFEE $0.85 $0.15
VSB AS 10 DESSERT $3.00 $0.50

INTRODUCTION TO ROW FUNCTIONS 333

Result table produced by step 1

MENU NEW

ITEM DESCRIPTION PRICE
1 FRESH SALAD $2.25
2 SOUP OF THE DAY (null) O
3 SANDWICH $3.90
4 GRILLED STEAK $6.70
5 HAMBURGER $2.80
6 BROCCOLI $1.05
7 FRENCH FRIES (null)
8 SODA $1.50
9 COFFEE $1.00
10 DESSERT $3.50

Result table produced by step 2

MENU NEW
ITEM DESCRIPTION PRICE
1 FRESH SALAD $2.25
5 HAMBURGER $2.80
10 DESSERT $3.50
3 SANDWICH $3.90
4 GRILLED STEAK $6.70
Notes

© The first step of this technique creates a view that defines the row func-
tion and gives a name to the column it creates. Step 1 could have cre-
ated a table instead of a view, but using a view is usually more efficient.

Note that the row function is written only once with the new technique.
However, with the previous technique, it had to be written several times.

® The second step is almost the same as the select statement in section
9-4. One difference is that the view created in step 1 is used in the from
clause. Another difference is that the name of the new column is used
in all the clauses instead of writing out the explicit definition of the
function.

® Here, the new_price column is used in the select clause.

(]

Here, the new_price column is used in the where clause.

@ Here, the new_price column is used in the order by clause.

334

CHAPTER 9 ROW FUNCTIONS

® A null is an unknown number, so a null added to any other number is a
null; at least this is the case for row functions. To prevent a null from
occurring here, you can use the nv1 function in Oracle or the nz function
in Access. These functions can change the nulls in the price_increase
column into zeros. Then the addition will work. I show you how to do
this in chapter 10.

Check your understanding

Repeat the exercise in the previous section, but this time do it in two steps.
In step 1, define a view that includes all the fields you need and defines the
new credit limit field. In step 2 write a select statement based on that view.

Numeric Functions

Some row functions perform arithmetic on numbers. Others round or trun-
cate numbers.

9-6 Functions on numbers

The row functions for arithmetic do exactly what you expect them to do. An
asterisk is used for the multiplication sign, as it is in most computer lan-
guages. Null does not mean zero. It means an unknown value. So any row
function that operates on a null produces a null as the result.

The following table shows some of the most frequently used functions on
numbers. [omitted from this list the trigonometry functions and loga-
rithms. Both Oracle and Access have them. Other, more specialized func-
tions can be found in the technical reference.

Frequently used numerical functions.

Oracle Access Description Examples
ARITHMETIC
+ + Addition Oracle & Access: 3 + 2 = 5

Oracle & Access: 3 + null = null

- Subtraction Oracle & Access: 3 - 2 = 1
Oracle & Access: 3 - null = null

* Multiplication Oracle & Access: 3 * 2 = 6
Oracle & Access: 3 * null = null

NUMERIC FUNCTIONS

335
Frequently used numerical functions. (continued)
Oracle Access Description Examples
ARITHMETIC (continued)
/ / Division Oracle & Access: 10 / 3 = 3.3333
Oracle & Access: 10 / null = null
power ~ Value raised to an Oracle: power (5, 2) = 25
exponent Access: 572 = 25
sgrt sqr Square root Oracle: sqrt (25) = 5
Access: sqr(25) = 5
(can be \ Integer division Access: 20 \ 3 = 6
made) Access: 20 \ null = null
Oracle equivalent: floor (20 / 3) = 6
mod mod Remainder after Oracle: mod (10, 3) = 1
division Access: 10 mod 3 = 1
SIGN, ROUNDING, AND TRUNCATION
sign sgn Sign indicator Oracle: sign(-8) = -1
(1 if positive, Access: sgn(-8) = -1
-1 if negative,
0 if zero)
abs abs Absolute value Oracle & Access: abs (-8) = 8
ceil (can be Smallest integer Oracle: ceil(3.5) = 4
made) larger than or equal | Access equivalent: int (3.5 + 0.9) = 4
to a value
floor int Largest integer less Oracle: floor(3.5) = 3
than or equal to a Access: int(3.5) = 3
value
round (can be Round to a specified | Oracle: round(3.4567, 2) = 3.46
made) precision Access equivalent:
int (3.4567 *(1072)+0.5)/(1072)= 3.46
trunc (can be Truncate to a Oracle: trunc(3.4567, 2) = 3.45
made) specified precision Access equivalent:

int (3.4567 *(1072))/(1072)= 3.45

336 CHAPTER 9 ROW FUNCTIONS

9-7 How to test a row function

This section shows you one technique for testing a row function. This is a
way to discover what a row function does by using it to calculate a value.

The problem with doing calculations in SQL is that everything in SQL must
be done in terms of tables. You must begin with a table and end with a
table. So how can you multiply two numbers?

You have to start with a table — any table. It does not matter what data is
in the table. Oracle provides a special table set up for this purpose. It is
called the dual table. 1t has only one row and one column. In Access, | have
created this table for you. In other Access databases you may have to cre-
ate this table yourself. When you do this, be sure to put some data in the
table. It does not matter what the values are, but they should not be a null.
Actually, any table with only one row will work, so we could use the
1_constants table here instead of the dual table.

This technique does not use the data in the beginning table. It only uses
the table as a framework to get the select statement to process.

What I have just described is the traditional way that SQL worked — a table
of some sort was always required in any SQL statement. However Access
has created a new way to work around this problem. In Access you can write
only the select clause and omit any reference to a table.

Task

Show how to test a row function. As an example, show 3 *4=12.

Oracle & Access SOL o

select 3 * 4
from dual;

Access SOL o

select 3 * 4;

Beginning table (dual table with dummy data)

NUMERIC FUNCTIONS 337

Result table

Notes

© The dual table is used here as an empty vessel. It provides the structure
of a table, but no content. It provides a framework to carry other content.

® No table name is required.

9-8 Another way to test a numeric row function

This section shows you another way to test a function on numbers. In the
previous technique, we saw only one specific calculation. One of the signif-
icant features of numbers is that they form patterns. Using the previous
technique, you could not see the pattern, but with this technique, you can.

This technique uses a table I set up for you containing all the numbers from
—10 to +10. The numeric function is calculated on each of these numbers.
The advantage is that you get to see how the function behaves over a range
of values and the pattern that is created. If you want to see a larger range,
you can use another table I set up for you called Numbers_0_to_99.

Task

Test the function MOD(x, 3) where x goes from —10 to +10.

Oracle SOL

select n,

mod(n, 3)
from sec0908_test_numbers
order by n;

Access SOL

select n,

n mod 3
from sec0908_test_numbers
order by n;

338

Beginning table (sec0908_test_numbers table)

CHAPTER 9 ROW FUNCTIONS

O WO JoUlixWNE

[any

Result table @

O WVWoWJoUlxWNR

=

N MOD(N,3)
-10 -1
-9 0
-8 -2
=7 -1
-6 0
-5 -2
-4 -1
-3 0
-2 -2
-1 -1

0 0

RPONREFPFONMREONLE

NUMERIC FUNCTIONS

339

Notes

© The last column shows the pattern created by MOD 3. This pattern is 0,
1,2, 0 ... on the positive numbers and it is 0, —=1,=2, 0 ... on the negative

numbers.

Check your understanding

Test the following numeric row functions over a range of values from —10 to

+10, using the table sec0908_test_numbers.

Purpose Oracle Access
Multiplication 5 *n 5 *n
Division of n n / 10 n / 10
Division by n @ 10 / n 10 / n
Division by n @ 10 / n 10 / n
Exponents power (2, n) 2"n
Square root @ sqgrt (n) sqr (n)
Square root @ sqrt (n) sqr (n)
Integer part of division floor (n/3) n\3
Remainder after division mod (n, 3) n mod 3

Notes for “Check your understanding”

® Oracle handles this differently than Access. Oracle returns an error mes-
sage and no result table. It refuses to process the query at all. Access
produces a result table and calculates a result for all the values of n
except when n = 0. It says “#Error” for the value of 10/n when n = 0.

® Add the condition: WHERE NOT (n = 0)

0 Oracle handles this differently than Access. Oracle returns an error mes-
sage and no result table. It refuses to process the query at all. Access
produces a result table and calculates a result for all the values of n
except when n < 0. It says “#Error” for the value of the square root when

n<o0.

0 Add the condition: WHERE n >=0

340

CHAPTER 9 ROW FUNCTIONS

Text Functions

Some row functions operate on text. Most of them produce text as output,
but a few of them produce numbers. Text functions are also sometimes
called character functions or string functions.

9-9 Functions on text

The table that follows shows the row functions on text that are used most
often. Other ones can be found in the technical manuals. These row func-
tions operate on both fixed length and variable length strings of characters.

The names of some of the Access functions here contain both uppercase
and lowercase letters. This is done for readability, not because the names
of these functions are case sensitive. It is a convention in Access that if the
name is formed from two or more words, the first letter of each word is cap-
italized. For instance, the name of the function strconv is a shortened
form of String Conversion. The functions still work if you write them in all
lowercase letters, but they are not as easy for people to understand.

Frequently used textual row functions.

Oracle | Access Description Examples

FUNCTIONS THAT RESULT IN TEXT

concat
or ||

&

or
+

Concatenation | Oracle:
concat('sun', 'flower') = 'sunflower'
Oracle:
'sun' || 'flower' = 'sunflower'
Access:
'sun' & 'flower' = 'sunflower'
Access:
'sun' + 'flower' = 'sunflower'
Parameters:
first part = 'sun'
second part = 'flower'
Notes: In Access, + and & are different in
how they handle nulls.
'sun' + null = null
'sun' & null = 'sun'

TEXT FUNCTIONS

341

Frequently used textual row functions. (continued)

Oracle

Access

| Description

| Examples

FUNCTIONS THAT RESULT IN TEXT (continued)

substr

Mid

Substring

Oracle:

substr ('sunflower', 4, 3) = 'flo'
Access:

mid('sunflower', 4, 3) = 'flo’
Parameters:

beginning string = 'sunflower'
starting position = 4

length = 3

replace

Replace

Replace string

Oracle & Access:

replace ('ABCABC', 'AB', '1234') =
'1234C1234C!

Parameters:

beginning string = 'ABCABC'

substring to be replaced = 'AB'

string used for replacement = '1234'

rpad

(not
available)

Right Pad

Oracle:

rpad('DOG', 10, '*-') = 'DOG*-*-*_*"
Parameters:

beginning string = 'DOG'

ending length = 10

padding string = '*-'

1lpad

(not
available)

Left Pad

Oracle:

1pad('DOG', 10, '*-') = '*-*-_*_*DOG'
Parameters:

beginning string = 'DOG'

ending length = 10

padding string = '*-'

(can be
made)

String

Create a string
of specified
length

Access: string(5,'A') = 'AAAAA'
Parameters:

ending length = 5

character to repeat = 'A'

Oracle equivalent: rpad('a', 5, 'A')

soundex

(not
available)

Find names
that sound
similar but
might be
spelled
differently

Oracle example:
select name

from names_table

where soundex (name)=soundex('John')

342

CHAPTER 9

Frequently used textual row functions. (continued)

Row FUNCTIONS

Oracle

Access

Description

Examples

FUNCTIONS THAT CONTROL CAPITALIZATION

upper UCase Uppercase Oracle:
or or upper ('sunflower') = 'SUNFLOWER'
StrConv(,1) string conversion Access:
ucase('sunflower') = 'SUNFLOWER'
Access:
StrConv ('sunflower',1) = 'SUNFLOWER'
lower LCase Lowercase Oracle:
or or lower ('SUNFLOWER') = 'sunflower'
StrConv(,2) string conversion Access:
lcase('SUNFLOWER') = 'sunflower'
Access:
StrConv (' SUNFLOWER',2) = 'sunflower'
initcap |[StrConv(,3) |Initial capital |Oracle:
for each word initcap ('sun flower') = 'Sun Flower'
Access:

StrConv ('sun flower', 3)=

'Sun Flower'

FUNCTIONS THAT CONTROL BLANK SPACES

ltrim LTrim Left trim: Oracle & Access:
remove spaces ltrim("' hello world ') =
on left 'hello world '

rtrim RTrim Right trim: Oracle & Access:
remove spaces rtrim (' hello world ') =
on right ' hello world'

trim Trim Trim on both Oracle & Access:
the left and trim(’ hello world Ny =
right 'hello world'

(can be Space Create a string | Access:

made) of spaces of space (5) =" '
specified Parameters:
length ending length = 5

Oracle equivalent: rpad ('

', 5, ' n)

TEXT FUNCTIONS

343

Frequently used textual row functions. (continued)

FUNCTIONS THAT RESULT IN NUMBERS

length Len Number of Oracle: length ('sunflower') = 9
charactersina |Access: len('sunflower') = 9
text string
instr InStr Starting Oracle & Access:
position of instr ('sunflower', 'low') = 5
one string Oracle & Access:
occurring in instr ('sunflower', 'zzz') =0
another Parameters:
base string = 'sunflower'
string to find = 'low'
Note: Zero means that the second string
does not occur in the first string.
Check your understanding
Test the following row functions using the dual table technique. (See section
9-7.) If you are using Access, you do not need to use the dual table.
Purpose Oracle Access
Concatenation "first' || 'second' "first' & 'second’

Substring

substr ('abcdefghij', 3,4)

Mid('abcdefghij',3,4)

Length of text

length ('abcdefg')

Len ('abcdefg')

Starting position, when the
second string is part of the first
string

instr ('abcdefg', cd')

InStr ('abcdefg', 'cd")

Starting position, when the
second string is not part of the
first string

instr ('abcdefg', 'zz"')

InStr ('abcdefg', 'zz")

Uppercase

upper ('dog"')

UCase('dog"')

Lowercase

lower ('CAT')

LCase('CAT")

Trim spaces trim("

bird ") trim("' bird ")

344

CHAPTER 9 ROW FUNCTIONS

9-10 Combining the first and last names

This section shows you an example that uses text functions. We combine
the first name and the last name in a single column, placing one space
between the two names.

A single space is then concatenated to the right of the first name. To code
that single space, enclose one space within single quotes. Then the last
name is concatenated to the end.

Oracle and Access use different signs for concatenation, but they mean the
same thing. Access uses the ampersand (&). Oracle uses two double bars
(]]). On most keyboards the double bar is Shift + Backslash.

Variations of this technique can be used to put the name in other formats
such as:

Susan W. Brown
Ms. Brown
Brown, Susan W.

Task

List the employee_id and the full name of each employee. Create the full
name by combining the first and last names separated by a single space.

Oracle SOL

select employee_id,
first_ name || ' ' || last_name as full_name @
from 1 _employees;

Access SOL

select employee_id,
first_ name & ' ' & last_name as full name ©®
from 1_employees;

TEXT FUNCTIONS

Beginning table (1_employees table)

345

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table
EMPLOYEE
ID FULL_NAME
201 SUSAN BROWN
202 JIM KERN
203 MARTHA WOODS
204 ELLEN OWENS
205 HENRY PERKINS
206 CAROL ROSE
207 DAN SMITH
208 FRED CAMPBELL
209 PAULA JACOBS
210 NANCY HOFFMAN

Notes

© In Oracle, the concatenation operator is ll, where | is the uppercase sym-
bol on the Backslash key. I always put a space on both sides of the con-
catenation sign. In the middle of the concatenation, the single space
between the names is formed by:

single quote — space — single quote

® In Access, the concatenation operator is &.

Check your understanding

List the employee ID and the names of all the employees. Write the names
like “Brown, S.” with the last name capitalized, then a comma and a space,
then the first initial capitalized followed by a period.

346

CHAPTER 9 ROW FUNCTIONS

9-11 Separating the first and last names

In the previous section we discussed how to combine the first_name and
last_name to create the full_name. In this section we go in the opposite
direction. We begin with the full_name and divide it into two parts: the
first_name and the last_name

Finding the position of the space that separates the first_name from the
last_name is the central point of this technique. This is the first step and it
can be done with the instr function. In the next step the full_name
column can be divided into two parts: the part before the space and the
part after the space, which become the first_name and the last_name
columns, respectively.

In specifying the 1ast_name, only two parameters are used: the beginning
string and the starting position. The third parameter, which is the length, is
not specified. When this is done the substring extends all the way to the
end of the beginning string.

Task

The sec0911_full_name table contains one column, which contains the
full name, both the first name and last name separated by a single space.
From this table list the full name, the position of the space, the first name,
and the last name.

Oracle SOL

create or replace view sec0911l stepl view as ©
select full_name,

instr(full name, ' ') as position of_ space ©
from sec0911_ full_ name;

select full_name,
position_ of_ space,
substr (full _name, 1, position_of space - 1)
as first_name, ©
substr (full_name, position of_ space + 1)
as last_name O
from sec0911_ stepl view;

TEXT FUNCTIONS

347

Access SOL

Step 1: Enter the following query in the SQL window:

select full name, O
instr(full name,
from sec0911 full name;

Save the query. Name it sec0911_stepl_view.

Step 2:

select full_ name,

position_of_ space,
mid(full_name,

') as position_of space ©®

1, position of_space - 1)

as first_name,

mid(full name, position_ of space + 1)

from sec091l1 stepl_ view;

Beginning table (sec0911 table)

as last_name O

FULL_NAME

SUSAN BROWN
JIM KERN
MARTHA WOODS
ELLEN OWENS
HENRY PERKINS
CAROL ROSE
DAN SMITH
FRED CAMPBELL
PAULA JACOBS
NANCY HOFFMAN

Result table

POSITION
FULL_NAME OF SPACE FIRST NAME LAST_NAME
SUSAN BROWN 6 SUSAN BROWN
JIM KERN 4 JIM KERN
MARTHA WOODS 7 MARTHA WOODS
ELLEN OWENS 6 ELLEN OWENS
HENRY PERKINS 6 HENRY PERKINS
CAROL ROSE 6 CAROL ROSE
DAN SMITH 4 DAN SMITH
FRED CAMPBELL 5 FRED CAMPBELL
PAULA JACOBS 6 PAULA JACOBS
NANCY HOFFMAN 6 NANCY HOFFMAN

348

CHAPTER 9 ROW FUNCTIONS

Notes

©® In Oracle, the first step creates a view that defines the position of the
space. Here | use the Oracle command create or replace view, which
is one way to do a preventative delete.

o

This is the definition of the position of the space.

® The first_name begins at the first character of the full_name. It
extends until the character before the space.

O® The last_name begins at the character after the space. It extends until
the end of the full_name.

® In Access, | chose to have the first step create a new table, rather than a
view. This does not create a problem because the amount of data is small.

Check your understanding

Table sec0911_names contains names of people in the format “Brown,
Susan V.” Create a new view in which you have separated the first name, mid-
dle initial, and last name into separate columns. Hint: This might be easier if
you do it in a series of steps.

9-12 Formatting phone numbers

In section 7-5 we formatted the phone_number column of the 1_employees
table in Access. In the format we added an area code and the first three digits
of the phone number. We could not use the same technique in Oracle because
Oracle formats apply only to columns with a date or number datatype.

Now we are ready to format the phone numbers in Oracle by concatenating
the phone_number with a literal. The same technique also works in Access.

When we use this technique we need to decide how we want to handle
nulls in the data. There is one phone number that contains a null. To
exclude it from the result table, we want to add a where clause to the code:

where phone_ number is not null;

However if we do this, there is a price to pay — the entire row for Carol Rose
disappears from the result table, so the listing of the employees is incomplete.
We will be able to fix this problem when we discuss unions in chapter 15.

Task

List the employee ID, employee name, and the phone number of all the
employees. Format the phone_number values to include the area code and
the first three digits of the phone number.

TEXT FUNCTIONS

349

Oracle SOL

select

from 1

employee_id,
first_name,
last_name,

' (415) 643-' || phone number as phone_ number2

employees;

Access SQL

select

from 1_.

employee_id,
first_name,
last_name,

'(415) 643-' & phone_number as phone_number2

employees;

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table
EMPLOYEE PHONE
ID FIRST_NAME LAST_NAME NUMBER
201 SUSAN BROWN (415) 643-3484
202 JIM KERN (415) 643-8722
203 MARTHA WOODS (415) 643-7591
204 ELLEN OWENS (415) 643-6830
205 HENRY PERKINS (415) 643-5286
206 CAROL ROSE (415) 643- (1]
207 DAN SMITH (415) 643-2259
208 FRED CAMPBELL (415) 643-1752
209 PAULA JACOBS (415) 643-3357
210 NANCY HOFFMAN (415) 643-2974

350

CHAPTER 9 ROW FUNCTIONS

Notes

©® This incomplete phone number results from the null in the
phone_number column of the beginning table.

Check your understanding

Table sec0912_phone_numbers contains phone numbers in the format
“(415) 627-1445" These numbers do not all begin in the first column. Create a
new view with two columns in which you have separated the area code from
the rest of the phone number.

Date Functions

Some row functions operate on dates. Functions on dates are different
from the date formats you learned in chapter 7. Date formats change the
appearance of the date without changing its value. Date functions change
the value of the data to another date.

9-13 Functions on dates

This section shows you the date functions that are used most often. Date
calculations are usually made in terms of the number of days, rather than
months or years, because the number of days in a month or year can vary.

Both Oracle and Access can add a number of days to a date; subtract a
number of days from a date; and find the number of days between two
dates. These are the most important date functions.

Using the table of numbers from 0 to 99, you can add these numbers to any
date and create a calendar that is 100 days long. Although you can subtract
one date from another date, you cannot add one date to another date.

When you are working with dates, be sure to remember that each date also
has a time, even if the time is not being displayed. A fraction can be added
to a date to change the time.

In the table that follows, the Oracle dates are assumed to already be in
date format. This assumption works when they are in a column that has a
date datatype. If you are writing these dates directly into a select state-
ment, the to_date function must be used to convert the text string within
quotes to a date datatype. For example, the first line in the table shows:

'20-jan-2015"'" + 3 = '23-jan-2015"

DATE FUNCTIONS 351

To use this function on a column of dates named date_col, we would
write:

select date_col + 3

To use this function with the dual table and enter the date directly into the
select clause, we would write:

select to_date('20-jan-2015') + 3
from dual;

Frequently used date functions.

Oracle Access Description and Examples
date + number | date + number Add a number of days to a date.
or Oracle:
DateAdd('d',) '20-JAN-2015' + 3 = '23-JAN-2015"
Access:
#20-JAN-2015#% + 3 = #23-JAN-2015#
Access:
DateAdd('d',3,#01-20-2015#) = #01-23-2015#
date —number | date — number Subtract a number of days from a date.
or Oracle:
Dateadd('d',) '20-JAN-2015' - 3 = '17-JAN-2015"
Access:
#20-JAN-2015#% - 3 = #17-JAN-2015#
Access:
DateAdd('d',-3,#01-20-2015%) = #01-17-2015#
date — date date — date The number of days between two dates.
or Oracle:
DateDiff('d',) | '23-JAN-2015' - '20-JAN-2015' = 3
Access:
#23-JAN-2015# - #20-JAN-2015# = 3
Access:
DateDiff ('d',#01-20-20154#,#01-23-20154#) = 3
extract (day) Day Gets the day of the month from a date.
Oracle:
extract (day from '20-JAN-2015') = 20
Access:

Day (#20-JAN-2015) = 20

352

CHAPTER 9 ROW FUNCTIONS

Frequently used date functions. (continued)

Oracle Access Description and Examples
extract (month) |Month Gets the number of the month from a date.
Oracle:
extract (month from '20-JAN-2015') = 1
Access:
Month (#20-JAN-2015) = 1
extract (year) |Year Gets the year from a date.
Oracle:
extract (year from '20-JAN-2015') = 2015
Access:
Year (#20-JAN-2015) = 2015
(can be made) Weekday Gets the day of the week from a date.
Access:
Weekday (#20-JAN-2015) = 3
Notes:
1 = Sunday
2 = Monday
3 = Tuesday
4 = Wednesday
5 = Thursday
6 = Friday
7 = Saturday
Oracle equivalent:
to_char ('20-JAN-2015"', 'DAY') = 'TUESDAY"'
to_date DateSerial Creates a date.
Oracle:
to_date('20-JAN-2015') = '20-JAN-2015"
Access:
DateSerial (2015, 1, 20) = #20-JAN-2015#
trunc DateValue Sets the date/time to midnight, the beginning of

the day. Optionally, may set the date/time to a dif-
ferent starting point such as the beginning of the
hour, week, or century.
Oracle:
trunc('20-JAN-2015 5:00 pm') =
'20-JAN-2015 12:00 am'
Access:
DateValue (#20-JAN-2015 5:00 pm#) =
#20-JAN-2015#

DATE FUNCTIONS

353

Frequently used date functions. (continued)

Oracle Access Description and Examples
round (can be made) Rounds the date/time to midnight, the beginning of
the day or optionally to another starting point.
Oracle:
round ('20-JAN-2015 5:00 pm') = '21-JAN-2015"
Access equivalent:
DateValue (#20-JAN-2015 5:00 pm# + .5) =
#21-JAN-2015#
next_day (can be made) Date of the next specified weekday.
Oracle:
next_day ('20-JAN-2015', 'MON') =
'26-JAN-2015"
Access equivalent:
#20-JAN-2015#% - Weekday (#20-JAN-2015#) +
iif (2 > Weekday (#20-JAN-20154), 0, 7) + 2 =
#26-JAN-2015#
Notes: 2 = Monday
last_day (can be made) Date of the last day of the month.
Oracle:
last_day('20-FEB-2016') = '29-FEB-2016"
Oracle:
last_day('20-FEB-2015') = '28-FEB-2015"
Access equivalent:
DateSerial (Year (#20-FEB-2015#,
Month (#20-FEB-2015#% + 1, 1) - 1
add_months DateAdd('m',) Add a number of months to a date.

Oracle:

add_months ('21-JAN-2025"', 3) = '21l-apr-2025")

Access:

DateAdd('m', 3, #21-JAN-2025#) =
#21-APR-2025%)

months_between

DateDiff ('m',

)

Number of months between two dates.

Oracle:

months_between ('21-APR-2025"', '21-JAN-2025")

=3

Access:

DateDiff ('m', #21-APR-2025#, #21-JAN-2025#)
=3

354 CHAPTER 9 ROW FUNCTIONS

Check your understanding

Test the following row functions using the dual table technique. (See section
9-7.) In Access, you do not need to use the dual table.

1. Add a number of days to a date.
Oracle: to_date('07-mar-2011') + 2
Access: #07-mar-2011# + 2

2. Subtract a number of days to a date.
Oracle: to_date('07-mar-2011') - 2
Access: #07-mar-2011# - 2

3. Add a number of months to a date.
Oracle: add_months (to_date('07-mar-2011"'),2)
Access: DateAdd('m',2,#07-mar-2011#)

4. Add a number of years to a date (or 12 months for each year).
Oracle: add_months (to_date('07-mar-2011"'),24)
Access: DateAdd('y',2,#07-mar-2011#)

5. Find the number of days between two dates.
Oracle: to_date('27-mar-2011"')-to_date('07-mar-2011")
Access: #27-mar-2011# - #07-mar-2011#

9-14 An example of a date function

This section shows you an example of a date function. This function calcu-
lates the number of months each employee has worked for the company as
of January 1, 2011. A month is not counted until a full month has been
worked.

To count the months in an even way, | have decided to write the code as if
all months are 30 days long. First I find the number of days between the
person’s hire date and January 1, 2011. Then I divide the number of days by
30 and throw away the fraction. This gives me the number of months.

When you are calculating with dates, it is usually best to do your calcula-
tion first in terms of the number of days and then, if you desire, convert the
answer into weeks, months, or years. This strategy gives you the most con-
trol and the most accurate answers.

You might think this would be easier to do using the months_between
function. However, this function often does not produce precise results.
One reason is that the lengths of the months vary. When [tried using it in
this example | found that Oracle and Access behave differently, and neither
of them was as reliable as working directly with the number of days.

DATE FUNCTIONS 355

Here is an example of one of the problems with the months_between func-
tion. Using this function on the computer I found that between February 28
and March 28 there is one month, but between February 28 and March 29
there is less than one month.

Task

List all the employees, their hire dates, and the number of months each per-
son will have worked for the company as of January 1, 2011.

Oracle SOL

select first_name, last_name, hire_date,
floor((to_date('01-JAN-2011') - hire_date)/30) O
as months_with_the_company

from 1_employees;

Access SOL

select first_name, last_name, hire_date,
int ((#01-JAN-2011# - hire_date)/30)
as months_with_the_company

from 1_employees;

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP O01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201

210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

356 CHAPTER 9 ROW FUNCTIONS
Result table
FIRST_NAME LAST NAME HIRE_DATE MONTHS_WITH_THE_COMPANY
SUSAN BROWN 01-JUN-1998 153
JIM KERN 16-AUG-1999 138
MARTHA WOODS 02-FEB-2009 23
ELLEN OWENS 01-JUL-2008 30
HENRY PERKINS 01-MAR-2006 58
CAROL ROSE (null) (null)
DAN SMITH 01-DEC-2008 25
FRED CAMPBELL 01-APR-2008 33
PAULA JACOBS 17-MAR-1999 143
NANCY HOFFMAN 16-FEB-2007 47
Notes

® The to_date function is used to convert the character string
01-jan-2011 into a date. Subtracting the hire_date from this date
gives the number of days the employee has worked for the company.
Dividing this number by 30 gives the number of months. The floor
function rounds down to get rid of the fraction.

9-15 Removing the time from a date

Every date in SQL includes a time, even though we do not always see it.
Sometimes this can be a problem for us, depending on what we are doing.
Sometimes we want to be able to use the date without the time.

This section shows you one way to remove the time from the date. Or
rather, it sets all the times to midnight, so all the times have the same
value. This technique is presented here because we will need to use it in
chapter 11.

Task

List the 1_lunches table. First, show the times that are in the beginning
table. Then show how to remove these times.

DATE FUNCTIONS 357

Oracle SOL: Show the dates and times in the 1_1unches table

select lunch_id, lunch_date,
employee_id,
to_char (date_entered,
'DD-MON-YYYY HH:MI AM') as date_entered
from 1 lunches;

Access SQL: Show the dates and times in the 1_1unches table

select lunch_id, lunch_date,
employee_id,
format (date_entered,
'DD-MMM-YYYY HH:NN AM/PM') as date_entered2
from 1_lunches;

Oracle SOL: The trunc function removes the time

select lunch_id, lunch_date,
employee_id,
to_char (trunc(date_entered),
'DD-MON-YYYY HH:MI AM') as date_entered
from 1 lunches;

Access SQL: The datevalue function removes the time

select lunch_id, lunch_date,
employee_id,
format (datevalue (date_entered),
'DD-MMM-YYYY HH:NN AM/PM') as date_entered2
from 1_lunches;

358

Beginning table (1_lunches table)

CHAPTER 9 ROW FUNCTIONS

LUNCH EMPLOYEE
LUNCH_ID DATE ID DATE_ENTERED
1 16-NOV-2011 201 13-0CT-2011 10:35 AM
2 16-NOV-2011 207 13-0CT-2011 10:35 AM
3 16-NOV-2011 203 13-0CT-2011 10:35 AM
4 16-NOV-2011 204 13-0CT-2011 10:35 AM
6 16-NOV-2011 202 13-0CT-2011 10:36 AM
7 16-NOV-2011 210 13-0CT-2011 10:38 AM
8 25-NOV-2011 201 14-0CT-2011 11:15 AM
9 25-NOV-2011 208 14-0CT-2011 02:23 PM
12 25-NOV-2011 204 14-0CT-2011 03:02 PM
13 25-NOV-2011 207 18-0CT-2011 08:42 AM
15 25-NOV-2011 205 21-0CT-2011 04:23 PM
16 05-DEC-2011 201 21-0CT-2011 04:23 PM
17 05-DEC-2011 210 21-0CT-2011 04:35 PM
20 05-DEC-2011 205 24-0CT-2011 09:55 AM
21 05-DEC-2011 203 24-0CT-2011 11:43 AM
22 05-DEC-2011 208 24-0CT-2011 02:37 PM
Result table
LUNCH EMPLOYEE
LUNCH_ID DATE ID DATE_ENTERED
1 16-NOV-2011 201 13-0CT-2011 12:00 AM
2 16-NOV-2011 207 13-0CT-2011 12:00 AM
3 16-NOV-2011 203 13-0CT-2011 12:00 AM
4 16-NOV-2011 204 13-0CT-2011 12:00 AM
6 16-NOV-2011 202 13-0CT-2011 12:00 AM
7 16-NOV-2011 210 13-0CT-2011 12:00 AM
8 25-NOV-2011 201 14-0CT-2011 12:00 AM
9 25-NOV-2011 208 14-0CT-2011 12:00 AM
12 25-NOV-2011 204 14-0CT-2011 12:00 AM
13 25-NOV-2011 207 18-0CT-2011 12:00 AM
15 25-NOV-2011 205 21-0CT-2011 12:00 AM
16 05-DEC-2011 201 21-0CT-2011 12:00 AM
17 05-DEC-2011 210 21-0CT-2011 12:00 AM
20 05-DEC-2011 205 24-0CT-2011 12:00 AM
21 05-DEC-2011 203 24-0CT-2011 12:00 AM
22 05-DEC-2011 208 24-0CT-2011 12:00 AM

KEY POINTS

Key Points

359

A row function produces a single value based on the values in one or
more columns of a single row. This is done for every row of the table.
When a row function is used, you can think that a new column was
added to the beginning table.

There are many row functions. To learn about them you need to be
able to use the reference material for the SQL product you are using.
Each product is a little different. The next chapter shows you how to
do this.

There are row functions on text, number, and date columns. Some-
times there are also row functions on columns with other specialized
datatypes.

A column is often given a particular datatype so it is ready to handle
certain row functions. For instance, a column may be given a numeric
datatype if you intend to do arithmetic on it.

Some of the row functions on numbers are addition, subtraction, mul-
tiplication, and division.

Some of the row functions on text are concatenation, substring, and
length.

Some of the row functions on dates are adding or subtracting a given
number of days to a date, calculating the number of days between two
dates, and setting the time associated with a date to midnight.

This page intentionally left blank

chapter 10

UsSING RoOw
FUNCTIONS

In the last chapter, we discussed many of the most commonly
used row functions. In this chapter, we discuss a few more row
functions that are used for special purposes. We also discuss
the documentation of row functions and show some of their
applications.

361

Specialized Row Functions, 363

10-1 Otherrow functions. 363
10-2 Using a function to identify the userand thedate. 365
10-3 Using a function to change nulls to othervalues. 366
10-4 Using a function to change the datatype. 369
Using the Documentation of Row Functions.oooiiiil... 37
10-5 Using Oracle documentation 373
10-6 Using Access documentation, 374
10-7 Using the Access Expression Builder to find row functions 375
(reating Patterns of Numbersand Dates., 376
10-8 Create a simple pattern of numbers 377
10-9 Create a complex pattern of numbers 379
10-10 Listall thedaysofoneweek. 381
10-11 Create a calendar of workdays 383
10-12 How to find out how many daysoldyouare. 388
10-13 How to find the date when you will be 10,000 daysold............... 389
10-14 Numbering the lines of a report in Oracle and Access 390
10-15 Optional: An easy way to solve an algebraic equation 393

Key Points. e 397

Specialized Row Functions

A few other row functions also have special purposes.

10-1 Other row functions

Here is an overview of four other types of row functions. We discuss them

in more detail in the following sections.

Other row functions.

Oracle

Access

Description and Examples

FUNCTIONS TO IDENTIFY THE USER AND THE DATE

user CurrentUser () | Name of the userID for the current session.
Oracle: user = 'SQLFUN'
Access: currentUser () = 'Admin'
sysdate Now () The current date and time.
Date () Oracle: sysdate = '20-DEC-2015'
Time () ACCeSss: Now() = '20-DEC-2015 10:30:25 AM'
Access: Date() = '20-DEC-2015"
Access: Time () = '10:30:25 AM'
systimestamp (not The current date and time to a fraction of a second.
available) Also the time zone.

Oracle: systimestamp =

'20-DEC-2015 10.42.15.692000 AM -08:00'
The meaning of this result is that for this computer
the time is accurate to one-thousandth of a second.
The time zone is 8 hours less than GMT, Greenwich
Mean Time.

FUNCTIONS TO CHANGE NULLS TO OTHER VALUES

nvl nz Converts nulls to another value.
Oracle:
nvl(col_1, 0) = col_1 if col_1 is not null
=0 if col_1 is null
Access:
nz(col_1, 0) = 'col_1' 1if col_1 is not null

= '0"' if col_1 is null

363

364

Other row functions. (continued)

CHAPTER 10 USING ROW FUNCTIONS

Oracle Access

Description and Examples

FUNCTIONS TO CHANGE NULLS TO OTHER VALUES (continued)

nv12 (can be made)

Converts nulls to another value.
Oracle:
nvl2 (col, wvall, val2)
vall if col is not null
= val2 if col is null
Access equivalent:
iif(col is not null, vall, val2)
= vall if col is not null
val2 if col is null

FUNCTIONS TO CHANGE THE DATATYPE

to_char Cstr Converts a number or date to a character string (text).
Also used to control the formats of dates in Oracle.
Oracle: to_char(7) = '7°
Access: cstr(7) = 7"
to_date Chate Converts a number or character string to a date.
Also used to control the input of dates with a
specified format in Oracle.
The first date Oracle and Access can handle:
Oracle: to_date(1, 'j') = '01-jan-4712 BC
Access: Chate (1) = #12/31/1899%
A date closer to the present:
Oracle: to_date('03/10', 'mm/yy') = '0l-mar-2010"
Access: CDate ('Jan 18, 2010') = #1/18/2010#
to_number CInt Converts a character string to a number.
CDbl CﬂaCle:to_number('8‘) = 8
(others) Access: CInt ('8') = 8

FUNCTIONS TO PICK ONE VALUE

greatest (not available) | Chooses the greatest member of a list.
Applies to numbers, text, and dates.
Orade:greatest(l, 9, 2, 3) =9
least (not available) | Chooses the least member of a list.

Applies to numbers, text, and dates.
Oracle: 1east (1, 9, 2, 3) = 1

SPECIALIZED ROW FUNCTIONS 365

10-2 Using a function to identify
the user and the date

This section shows you how to use functions to identify the user, the date,
and the time. The technique is similar in Oracle and Access, although the
details are quite different.

In Oracle, the name of the userID is obtained from the User function. This is
the name you use when you log on to Oracle. In Access, it is obtained from
the currentUser () function. Unless you have set up special security for
Access, the value of this function is set to Admin. The opening parenthesis,
followed immediately by a closing parenthesis, might seem peculiar. This is
an example of a O-parameter function. The pair of parentheses is retained to
show that it is a function, but it does not require any input parameters. In
effect, a O-parameter function is a name for a constant value. Some people
call this a system variable. Here that constant value depends on the userlD
you are logged on to.

In Oracle, the date and time are obtained from the sysdate function. In
Access, they are obtained from the Now (), Date (), or Time () functions. In
Oracle, if we want to see the time in addition to the date, we need to format
sysdate with the to_char function. In Access, the time shows up auto-
matically from the default formatting, so we do not need to use the format
function. We discussed date formats in section 7-1.

Do not confuse the Oracle function sysdate with the Access function
Date (). They both may show only the date and not the time. However,
sysdate actually contains the time although it is not always shown.
Date () does not include the time.

In Oracle, the following code uses the dual table in the from clause. In Ora-
cle, this table is already built for us. In Access, we could build a dual table,
but this is not required. This was discussed in section 9-7.

Task

Show how to identify the user, the date, and the time.

366 CHAPTER 10 USING ROW FUNCTIONS

Oracle SOL

select user,
to_char(sysdate, 'DAY MONTH DD, YYYY HH:MI AM')
as date_time

from dual;

Oracle result table

USER DATE_TIME

JPATRICK WEDNESDAY DECEMBER 26,2007 02:13 PM

Access SOL

select CurrentUser() as user,
format (Now(), 'DDDD MMMM DD, YYYY HH:NN AM/PM')
as date_time;

Access result table

H Quemyt
user ~ date_time
Admin Monday June 23, 2008 01:10 PM

10-3 Using a function to change
nulls to other values

The nv1 (null value) function in Oracle and the nz (non-zero) function in
Access change the nulls in some columns to another value, such as zero.
When the original value in the column is not null, no change is made and
the value stays the same. The original column can have any datatype —
number, text, or date.

In Oracle, the nv1 function does not change the datatype of the column, so
the datatype of the replacement value must be the same as the one the col-
umn originally has. This restriction means that nulls in a numeric column
can be changed to zero or some other number, but not to text or a date. The
nulls in a text column must be replaced with text, or possibly with a string
of blanks. The nulls in a date column can only be changed to a date.

In Access, the nz function always changes the column to a text datatype.
Any data, including numbers and dates, can always be represented as text.
The replacement value, which is substituted for nulls, can be any datatype.
However, it is changed to text when it is output from the nz function.

SPECIALIZED ROW FUNCTIONS 367

Task

Show how to replace nulls with other values. Do this with a number column,
a text column, and a date column.

Demonstrate two methods of doing this. In one method, the null is
replaced with a value that has the same datatype as the column. In the
other method, the null is replaced with text.

Oracle SQL: Oracle style —
Replacement value has the same datatype as the column o

select pkey,

nvl(num col,0) as num col2,

nvl (text_col, 'ZILCH') as text_col2,

nvl (date_col, '01-JAN-1900') as date_col2
from secl003;

Access SQL: Orade style —
Replacement value has the same datatype as the column e

select pkey,

nz(num_col,0) as num col2,

nz(text_col, 'ZILCH') as text_col2,

nz (date_col, #01-JAN-1900#) as date_col2
from secl003;

Beginning table (sec1003 table)

PKEY NUM_COL TEXT_COL DATE_COL

M (null)
(null) 20-JAN-2013
N 21-JAN-2013

1M 01-JAN-1900
2 ZILCH 20-JAN-2013
0N 21-JAN-2013

368

CHAPTER 10 USING ROW FUNCTIONS

Oracle SQL:
Access style — Replacement value is text o

select pkey,

nvl (to_char(num col), 'NO NUMBER') as num col2,
nvl (text_col, 'NO TEXT') as text_col2,
nvl (to_char(date_col), 'NO DATE') as date_col2

from secl003;

Access SQL:
Access style — Replacement value is text o

select pkey,

nz (num_col, 'NO NUMBER') as num col2,
nz(text_col, 'NO TEXT') as text_col2,
nz (date_col, 'NO DATE') as date_col2

from secl003;

Result table: Method 2

PKEY NUM_COL2 TEXT_COL DATE_COL2

A M NO DATE

B NO TEXT 20-JAN-2013

C NO NUMBER N 21-JAN-2013
Notes

©® In Oracle, we use the nv1 function to replace the null values. This exam-

ple uses zero to replace the nulls in a column of numbers. It uses “zilch,”
a text string, to replace the nulls in a column of text. It uses January 1,
1900, a date, to replace the nulls in a column of dates. The datatype of
the original column is not changed.

® In Access, we use the nz function to replace the null values. The same

replacement values are used as in the Oracle example. The differences
are that the name of the function is nz, and pound signs are used to
enclose the date. In Access, the nz function converts all the columns to
text, whereas in Oracle, the nv1 function leaves the datatype of the col-
umn unchanged.

® In Oracle, if we want to replace the nulls with text, we must first convert

the entire column to text using the to_char function. This is an unusual
way to write the code in Oracle, but I am doing it here to show that it can
be done.

O© In Access, when you begin with a column of any datatype, you can

change the nulls into text strings with the nz function.

SPECIALIZED ROW FUNCTIONS 369

10-4 Using a function to change the datatype

Functions that change datatypes keep the outer meaning of the data the
same while changing the inner representation — the datatype — of the
data. For instance, “8” as a character string differs from “8” as a number.
They both mean 8 but if you could see the patterns of Is and 0Os inside the
computer, you would see one binary pattern for the number and a different
binary pattern for the character string.

Why do we care about this difference? One reason is that each row function
works only with data that have a particular datatype. For example, consider
addition. Addition is defined on numbers, but not on character strings.
When 8 and 4 are numbers, then “8 + 4" makes sense, and is equal to the
number 12. However, when 8 and 4 are character strings, “8 + 4” does not
make sense. It is not equal to anything, and will give us an error message if
we use it, or at least so says the theory. Things work a bit differently in prac-
tice, as we will see.

Oracle, Access, and most other SQL products do a certain amount of auto-
matic datatype conversion. Some SQL products do more of this than other
products. The idea is to make things easier for the user. A novice user might
become confused and enraged if the database refuses to add 8 and 4 when
they are text. An error message about the datatype might not calm the user.
To make things work more smoothly, the 8 and 4 are automatically converted
into numbers and then added together. This happens silently, behind the
scenes. There is no message to indicate this is occurring.

The following example shows that automatic datatype conversion is used
by both Oracle and Access to perform arithmetic on text strings. In this
case, Oracle performs all the operations correctly. Access performs subtrac-
tion, multiplication, and division correctly, but it has a flaw when it per-
forms addition. Access says that “8 + 4” = 84. Clearly, it is doing
concatenation instead of addition. To obtain the correct result, we need to
do the datatype conversion ourselves instead of relying on the automatic
conversion. To do this we change the text datatype to an integer datatype,
using the cint (convert to integer) function. This is one example of a time
when the conversion must be done using the conversion functions.

Often when I first write some code, I assume that most of the datatype con-
versions will be done for me automatically. This works 99 percent of the
time. If the results seem strange in some way, | have to debug and fix the
code. It is during this process of debugging and fixing that I most often
decide to control the datatype conversion myself using a datatype conver-
sion function.

370 CHAPTER 10 USING ROW FUNCTIONS

Task

Show the effects of automatic datatype conversion. Perform arithmetic on
numbers that are in columns with a text datatype.

Oracle & Access SQL: This shows the problem in Access

select pkey, O
text_1,
text_2,
text_1 + text_2 as text_add, @
text_1 - text_2 as text_subtract,
text_1 * text_2 as text_multiply,
text_1 / text_2 as text_divide
from secl004;

Beginning table (sec1004 table)

PKEY TEXT_1 TEXT_2

Oracle result table — Correct

PKEY TEXT_1 TEXT_2 TEXT_ADD TEXT_SUBTRACT TEXT_MULTIPLY TEXT_ DIVIDE

Access result table — Addition is incorrect

{@ Queryl
pkey ~ text_1 " text_2 ° text_add text_subtract " text_multiply *| text_divide ~
A 8 4 84 4 32 2
B 33 11 3311 22 363 3

*

SPECIALIZED ROW FUNCTIONS 371

Access SQL: Correction

select pkey,

text_1,

text_ 2,

cint (text_1) + cint(text 2) as text_add, ©
text_1 - text_2 as text_subtract,

text_1 * text_2 as text_multiply,

text_1 / text_2 as text_divide

from secl004;

Access result table — Correct

5 Quey1
pkey ° text 1 ~ text 2 " text_add " text_subtract " text_multiply "| text_divide ~
A 8 4 12 4 32 2
B 33 11 44 22 363 3
*
Notes

© This prints out the primary key and the two text items, so you can show

them in the result table. Why is there a primary key? It does not do any-
thing in this example. However, every table should have a primary key
and most listings should display it.

® The next lines add, subtract, multiply, and divide the two text items. For

these operations to make sense, the text must be automatically con-
verted to numbers before the arithmetic can be done.

® The cint (convert to integer) function is used to convert the text to inte-

gers. Then Access can add them, giving 8 + 4 = 12.

There is a reason why Access says 8 + 4 = 84. In many of the early PC
computer languages, the plus sign is used with text strings to mean con-
catenation. For example:

sun + flower = sunflower

Access has decided to preserve this legacy. Some computer code might
need to be rewritten if they were to correct this mistake, so there is a rea-
son for it, but I think that it is a bad reason!

372

CHAPTER 10 USING ROW FUNCTIONS

Check your understanding

The following select statements show all the numbers from 0 to 99. One of
the statements sorts these numbers in numeric order, the others sort the
numbers in alphabetic order. Run these queries. Can you see the difference
in the order of the numbers?

Oracle & Access:

select n as numeric_order
from numbers_0_to_99
order by n;

Oracle only:

select to_char(n) as alphabetic_order
from numbers_0_to_99
order by to_char(n);

Access only:

select cstr(n) as alphabetic_order
from numbers_0_to_99
order by cstr(n);

Using the Documentation of Row Functions

I have shown you the row functions I use the most. However, there are
many more row functions available. Some SQL products have a few special
row functions that other products do not have, so it is important to be able
to find the list of row functions in the documentation.

Oracle and Access both have extensive online documentation that is easy
to use. Google and other search engines are another good source of infor-
mation. There are also blogs and online discussion groups available.

This documentation is not limited to row functions. All aspects of the prod-
ucts are included in this documentation. I do have to admit, however, that
sometimes this documentation is difficult to read and to use. It is not
always written at a level that matches your understanding. Sometimes it
seems to give too much detail, and sometimes it seems not to give
enough.

USING THE DOCUMENTATION OF ROW FUNCTIONS 373

10-5 Using Oracle documentation

In Oracle, go to the home page and click Documentation. This opens the
Oracle Database Documentation Library. From there you can use Search to
find a term or use the Master Index.

& http://www.oracle.com/ - Oracle Database Express Edition Online Documentation 10g Release 2 (10 - Windows Internet Explorer

Onacle Database o 5 2
Documentation Library 4 E) 1) &)
Oracle Database Express Edition 10g Release 2 (10.2) Home Customize Help ConfactUs

Welcome Search

Oracle Database 10g Express Edition (Oracle Database XE) is a free version of the Enter a word o phrase:

world's most capable relational database. Oracle Database XE is easy to install,
easy to manage, and easy to develop with. Show advanced options

Tip: Not sure how fo spell it? Use the master index instead of searching
With Oracle Database XE, you use an intuifive, browser-based interface, fo:

« Administer the database Developing Applications

» Create fables, views, and other database objects 2 Day Developer Guide HTML PDFE
« Import, export, and view table data 2 Day Plus Application Express Developer's Guide HTML PDF
. g“” queries and SQL scripts 2 Day Plus Java Developer Guide HTML PDF
+ Generate reports
2 Day Plus NET Developer Guide HTML PDE
Installing the Database and Getting Started i 33 E:iz IE,::?ELE:ZEES;LEZGE ﬁ E
Installation Guide for Linux HTML PDF Application Express User's Guide HTML PDE
Installation Guide for Microsoft Windows HTML PDE Licensing Information
Getting Started Guide HTML PDF
Certification Notes for Microsoft Windows Vista HIML PDE Licensing Information HTML PDF
Upgrade Guide HTML PDF Master Lists
Administering the Database Use the Master Index to see all of the index entries for the library.
2 Day DBA HTML PDFE Related Information
2 Day Developer Guide HTML PDF

e b You can find more information by visiting the Database Express Edition Forums or
the Product page.

ORACLE

Caopyright © 2008, Oracle. All rights reserved.

The Oracle Database Documentation Library.

Check your understanding

Find and read the documentation for the replace function. First use the
Master Index in the Oracle documentation, as that will probably give you the
best result. Then try using the Search facility.

374 CHAPTER 10 USING ROW FUNCTIONS

10-6 Using Access documentation

In Access, all you need to do is press the F1 key to launch the online help.

) Access Help =i

O REOM BN i
~ P Search -

:.

Browse Access Help

Activating Access Data collection

What's new Getting started

Glossary Accessibility

Getting help Access projects

Data pages Attachments

Macros and programmability Application deployment

Access Developer Extensions Conversion

Customizing Database design

Expressions External data

Fitering and sorting Forms and reports

Queries Saving and printing

Securtty and privacy Tables

Work with SharePoint sites Adding charts, diagrams, or tables
File and data management Working in a different language
Training Access Demos

Introducing the new Access 2007 file
format

| Get an overview of the new Access 2007 file format, such
as the new data types, file extensions, colaboration
features, and more.

= Guide to the Navigation Pane
= Import or link to data in a text file
= Which file format should I use in Access 20077

More on Office Online
Downloads | Training | Templates

b
ot] lloconpectetin os Ontoe s

Press the F1 key to launch Access online help.

Check your understanding

Find and read the documentation for the string function.

USING THE DOCUMENTATION OF ROW FUNCTIONS 375

10-7 Using the Access Expression
Builder to find row functions

In Access, I use the Expression Builder as a reference document to tell me
what row functions are available. This is not the only thing that Expression
Builder is designed to do, but it is the way that [use it.

To start the Expression Builder and see the functions, follow these steps:

o
.

Click the Create tab on the Ribbon.
Click Query Design on the Ribbon.
Close the Show Table window.
Right-click a Field cell or a Criteria cell.
Click Build.

Double-click Functions.

Click Built-in Functions.

Select the type of function you want from the second column.

¥ ® N oM AW N

The third column shows you a list of the functions that are available.

Field: [
TElE ¥ Totals

Sort: -
Show: = Table Mames 0
Criteria:
ar:

[Paste
SN Build.. %
1 Zoom..

1 @ fr Properties...

Using the preceding steps to get to Expression Builder.

376 CHAPTER 10 USING ROW FUNCTIONS

Expression Builder

Mid (estringexprs, «starts, «dength:=) OK
Cancel
Unda
= =| =|ﬁ=><<>| And Or Mot Like|ﬂ Paste[\g Help |
2
1 Query1 <All> InStrRev ~
(¥ Tables g”ﬂ‘fs _ Iigase 3
- onversion ase$
% Queries Database Left
Forms Date,Time Lefts
£ Reports Domain Aggregate Len
(=] Functions Error Handling LTrim
FSRBLilt-In Functions 22222?' kd-li—;'ms
(3 sQLFUN2007 Inspection Mids =
[Constants Math PlainText
2 Operators Messages Rgplace
(3 Common Expressions Program Flow Right
SQL Agaregate Rights
Text RTrim w
P T i —

Mid(stringexpr, start, length)

The Expression Builder opening screen.

Check your understanding

Find the list of all the text functions. See if you can understand most of them.

Creating Patterns of Numbers and Dates

Row functions can be used to create patterns of numbers or dates. These
are useful in creating a variety of reports. When you create these pat-
terns, the beginning table is usually a table of numbers. In this book, I
have provided you with two tables of numbers: numbers_0_to_9 and
numbers_0_to_99.

The technique shown here uses SQL to generate these patterns. SQL is
able to do this, but other computer languages are designed to generate
patterns and can do so more efficiently. Using another technique, we could
generate the pattern of numbers in some other language, create a file, and
then load that file into a database table.

Why would you want to create a pattern and put it in a database table? This
can be useful in several ways. A pattern of dates can serve as a calendar. Often
a pattern is the beginning point for adding other types of data. For instance, we
might begin with a calendar and then add to it our plans for each day.

CREATING PATTERNS OF NUMBERS AND DATES 377

In another application a pattern can help us find flaws or imperfections in
some other data. We might have some data that nearly fits into a pattern,
but not quite. We might want to show explicitly where the data does not fit
the pattern. One way to do this is to generate a perfect pattern and then
compare it with the data we have.

10-8 Create a simple pattern of numbers

This section shows you how to create a simple pattern of numbers. The
next section shows you how to create a complex pattern of numbers. The
idea I want you to take away from these two sections is that we can create
almost any pattern of numbers.

The example in this section shows how to list all the multiples of three
between 50 and 250. The purpose of this is to show you how to create pat-
terns of numbers. The particular patterns you need may vary. There is no
particular significance to this pattern, except that it is easy to create.

The beginning table is the table numbers_0_to_99. | have created this
table for you already. In chapter 16, we will discuss how to generate a table
like this with as many numbers as you want. For now, 100 numbers are
enough to handle.

To get the multiples of three, you multiply all the numbers in the table by
three. To create other patterns, you could multiply the numbers in the
beginning table by any number, M. Then you could add another number, A.
If the numbers in the table are called T, this creates a table of numbers of
the form (T * M) + A. You can also take any section from this table by set-
ting a starting point and an ending point. Of course, any series of numbers
you can list, you can also save in a new table or view.

Task

List all the numbers that are multiples of three between 50 and 250. To do
this, begin with the table numbers_0_to_99.

Oracle SQL: Step 1

create or replace view secl008_view as
select n,

3 * n as multiple of 3 ©
from numbers_0_to_99; @

378 CHAPTER 10 USING ROW FUNCTIONS

Access SQL: Step 1
Step 1, Part 1: Enter this in the SQL window:

select n,
3 * n as multiple of 3 ©
from numbers_0_to_99; @

Step 1, Part 2: Save the query and name it sec1008_view.

Orade & Access SQL: Step 2

select multiple_ _of_ 3

from secl008_view

where multiple_of_3 between 50 and 250
order by multiple_ of_ 3;

Beginning table (numbers_0_to_99 table) ©

(and many more)

97
98
99

Result table

MULTIPLE_OF_3

(and many more)

243
246
249

CREATING PATTERNS OF NUMBERS AND DATES 379

Notes

O This creates a new column called multiple_of_ 3.

® The beginning table contains all the numbers from 0 to 99. I have already
created this table for you.

® The rows of this table are shown in their logical order so that this exam-
ple is easy to understand. However, the rows in any table are in no par-
ticular order. If you display this table without an order by clause, the
rows may be in a different order. To see them in this order you must
include order by n.

Check your understanding

Create a view of the multiples of 7 between 700 and 900.

10-9 Create a complex pattern of numbers

In the previous section we created a simple pattern of numbers. Now I want
to show you that you can create a very complex pattern of numbers. The
prime numbers are one of the most complex sequences, so we'll use them
as an example.

This section shows how to list the prime numbers between 10 and 99. We
need to find the numbers that cannot be evenly divided by 2, 3, 5, or 7. This
is done in the where clause. The mod function shows the remainder after
division. If we enter

mod(x, y) =0

this means that Y divides evenly into X. We want the opposite of that, so we
want

not (mod(n, 2) = 0)

This gives us the numbers that are not divisible by 2. Similar logic is used
with 3,5, and 7.

In Access, this condition is written as follows:

not ((n mod 2) = 0)

Task

List all the prime numbers that are greater than 10 and less than 100.

380 CHAPTER 10 USING ROW FUNCTIONS

Oracle SOL

select n as prime_number
from numbers_0_to_99
where n > 10
and not (mod(n, 2) 0)
and not (mod(n, 3) = 0)
and not (mod(n, 5) = 0)
and not (mod(n, 7) 0)
order by n;

Access SOL

select n as prime_number
from numbers_0_to_99
where n > 10
and not ((n mod 2) 0)
and not ((n mod 3) = 0)
and not ((n mod 5) = 0)
and not ((n mod 7) 0)
order by n;

Beginning table (numbers_0_to_99 table)

(and many more)
98
99

Result table

PRIME_NUMBER

CREATING PATTERNS OF NUMBERS AND DATES 381

10-10 List all the days of one week

This section shows you how to list all seven consecutive days of the week.
The purpose is to show that we can create a pattern of dates, just like we
can create a pattern of numbers. In fact, any pattern of numbers can also be
made into a pattern of dates.

We do this in three steps. The first step creates what I call a table of con-
stants, which is a table with only one row. It contains one column: the date
on which we want the week to begin. There are several ways to create this
table, but I use the method that gives me the most control over the pro-
cess.

The second step creates a view containing seven consecutive days. We get
the beginning date from the table of constants and then add the numbers 0
to 6 to it.

The third step formats these dates in three different ways. The date is actu-
ally presented three times with a different format each time.

Task

List all the days for one week beginning with February 24, 2010. For each
date, also list the day of the week in both abbreviated form and fully spelled
out.

Oracle SQL: Step 1 — Create a table of constants

create table secl010_constants
(begin_date date) ;

insert into secl010_constants
values ('24-FEB-2010');

Access SQL: Step 1 — Create a table of constants

Remember, in Access, you can only run one statement at a time.

create table secl010_constants
(begin_date datetime);

insert into secl010_constants
values (#24-FEB-2010#);

382

CHAPTER 10 USING ROW FUNCTIONS

Result table: Step 1 (date_constants table)

BEGIN_DATE

24-FEB-2010

Oracle SQL: Step 2 — Create a view containing seven dates

create or replace view secl01l0_view as
select begin date + digit as days
from numbers_0_to_9,
secl010_constants
where digit < 7;

Access SQL: Step 2 — Create a view containing seven dates

Step 2, Part 1: Enter the following query in the SQL window:

select cdate(begin date + digit) as days ©
from numbers_0_to_9,

secl010_constants
where digit < 7;

Step 2, Part 2: Save the query and name it sec1010_view.

Result table: Step 2 (sec1010_view)

24-FEB-2010
25-FEB-2010
26-FEB-2010
27-FEB-2010
28-FEB-2010
01-MAR-2010
02-MAR-2010

Oracle SQL: Step 3 — List the days formatted in three ways

select days,
to_char(days, 'DY') as abbreviated_day,
to_char(days, 'DAY') as full day

from secl010_view

order by days:;

CREATING PATTERNS OF NUMBERS AND DATES 383

Access SQL: Step 3 — List the days formatted in three ways

select days,
format (days, 'DDD') as abbreviated_ day,
format (days, 'DDDD') as full_ day

from secl010_view

order by days;

Result table: Step 3

DAYS ABBREVIATED_DAY FULL_DAY
24-FEB-2010 WED WEDNESDAY
25-FEB-2010 THU THURSDAY
26-FEB-2010 FRI FRIDAY
27-FEB-2010 SAT SATURDAY
28-FEB-2010 SUN SUNDAY
01-MAR-2010 MON MONDAY
02-MAR-2010 TUE TUESDAY
Notes

© In Access, you need to use the cbate function to get dates in the result
table. Otherwise, you will only get numbers.

Check your understanding

Create a calendar showing all the days of the current month.

10-11 Create a calendar of workdays

In this section we create a more complex pattern of dates. In the previous
section we listed several consecutive days. In this section, we only list the
days that are between Monday and Friday. We will also use a trick to put
one blank line between the weeks.

We use four steps to create this calendar. The first two steps are similar to the
technique we used in the previous section. This creates a table containing all
the days between a beginning date and an end date. This table also contains
a column, n, of whole numbers, which we use later. We create a table, rather
than a view, because we want to modify some of these dates in step 3. We
would be unable to make these modifications to a view.

384

CHAPTER 10 USING ROW FUNCTIONS

In step 3, we delete all the dates on Sundays and we turn all the Saturday
dates into nulls. These nulls become the blank lines separating one week
from another.

In step 4, we list the dates in two different formats. The trick to positioning
the blank lines is order by n. Think of N as another column in the result
table, but it is hidden. It provides the framework that organizes the rows of
the result table. An additional result table in step 4 shows the column that
is hidden in the first result table.

Task

Create a calendar showing the workdays, Monday through Friday, for March,
April, and May 2015. List the day of the week in one column and the date in
the format MM/DD/YYYY in the next column. Leave one blank line between
the weeks.

Oracle SQL: Step 1 — Create a table of constants

create table secl0ll boundaries
(start_date date,
end_date date) ;

insert into secl0ll_boundaries
values ('01-MAR-2015', '01-JUN-2015');

Access SQL: Step 1 — Create a table of constants

create table secl0l1l_boundaries
(start_date datetime,
end_date datetime);

insert into secl0l1ll boundaries
values (#01-MAR-2015#, #01-JUN-2015#);

Result table: Step 1

START_DATE

01-MAR-2015

END_DATE

01-JUN-2015

CREATING PATTERNS OF NUMBERS AND DATES 385

Result table:

Oracle SQL: Step 2 — Create a table containing all the consecutive days

create table secl0l1ll_calendar as
select n, O
start_date + n as date_1 @
from numbers 0_to_ 99,
secl01ll_boundaries
where start_date + n < end_date;

Access SQL: Step 2 — Create a table containing all the consecutive days

select n, O
cdate(start_date + n) as date_ 1 ©® ©
into secl0ll_calendar
from numbers_0_to_99,
secl011l_boundaries
where start_date + n < end_date;

Step 2

~N o0k WP o

(and many

90
91

01-MAR-2015
02-MAR-2015
03-MAR-2015
04-MAR-2015
05-MAR-2015
06-MAR-2015
07-MAR-2015
08-MAR-2015

more)

30-MAY-2015
31-MAY-2015

Notes

0 We include the column, n, to use as a framework in step 4.

® We name this column date_1 instead of date to avoid the possibility of
using a reserved word.

©® In Access the cdate function is necessary to format this column as dates.
Otherwise it appears only as numbers.

386

CHAPTER 10 USING ROW FUNCTIONS

Oracle SQL: Step 3 —
Delete Sundays and change Saturdays to nulls to create a blank line

delete from secl0ll_calendar
where to_char(date_1, 'DY') = 'SUN';

update secl01ll_calendar
set date_1 = null
where to_char(date_1, 'DY') = 'SAT';

Access SOL: Step 3 —
Delete Sundays and change Saturdays to nulls to create a blank line

delete from secl0ll_calendar
where format(date_1, 'DDD') = 'SUN'; O

update secl0l1ll_calendar
set date_1 = null
where format(date_1, 'DDD') = 'SAT'; O

Result table: Step 3

02-MAR-2015
03-MAR-2015
04-MAR-2015
05-MAR-2015
06-MAR-2015
(null)

09-MAR-2015

(and many more)
88 28-MAY-2015

89 29-MAY-2015
90

(null)

Notes

© Another way to write this condition in Access is:

where weekday(date_1) = 'SUN';

CREATING PATTERNS OF NUMBERS AND DATES

387

Oracle SQL: Step 4 — Display the report

select to_char(date_1l, 'DAY') as day of_ the_week,
to_char(date_1, 'MM/DD/YYYY') as work_day

from secl0l1ll_calendar

order by n;

Access SQL: Step 4 — Display the report

select format (date_1, 'DDDD') as day of the_ week,
format (date_1, 'MM/DD/YYYY') as work day

from secl0l1ll_calendar

order by n;

Result table: Step 4

MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY

MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY

MONDAY

FRIDAY

MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY

DAY_OF_THE_WEEK WORK_DAY

03/02/2015
03/03/2015
03/04/2015
03/05/2015
03/06/2015

03/09/2015
03/10/2015
03/11/2015
03/12/2015
03/13/2015

03/16/2015

(and many more)

05/22/2015

05/25/2015
05/26/2015
05/27/2015
05/28/2015
05/29/2015

388

CHAPTER 10 USING ROW FUNCTIONS

Result table: Step 4 — Showing the hidden column, N

(and

82
83
85
86
87
88
89
90

DAY_OF_THE_WEEK WORK_DAY

MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY

MONDAY
many more)
FRIDAY
MONDAY
TUESDAY
WEDNESDAY

THURSDAY
FRIDAY

03/02/2015
03/03/2015
03/04/2015
03/05/2015
03/06/2015

03/09/2015

05/22/2015

05/25/2015
05/26/2015
05/27/2015
05/28/2015
05/29/2015

10-12 How to find out how many days old you are

Do you know how old you are? How many days old? The date functions can
tell you very easily. Just enter your birth date in the following code. The
integer part of the answer is your age in days.

What does the decimal part of the answer mean? Two meanings are possi-
ble. If you enter the time you were born into the code, the decimal part
shows you the fraction of the next day that has already gone by.

If you do not enter a time, the computer sees your birth date with the
default time of midnight. It measures this against the current date and the
current time, so the decimal represents the current time as of when you are
running this code.

Task

Find out how many days old you are.

CREATING PATTERNS OF NUMBERS AND DATES 389

Result table @

Oracle SOL

select sysdate - to_date('21-MAR-1978') as days_old O ©
from dual;

Access SQL

select now() - #21-MAR-1978# as days_old; O ©

DAYS_OLD

8509.3539

Notes

© Use your own birth date.

® In Oracle, we must use the to_date function to turn the text string
'21-MAR-1978" into a date. We can subtract one date from another, but
we cannot subtract a text string from a date.

® In Access, enclosing #21-MAR-1978# in pound signs makes it a date.

0 Obviously, this number changes every day, so your result will be different
from the one shown here.

Check your understanding

Create a table showing several significant dates in your life. Have a date field
and a text field that says what happened on that date. Then write a select
statement that shows how many days have passed since that time.

10-13 How to find the date when
you will be 10,000 days old

Do you know on what date you will be 10,000 days old? Again, the date
functions can easily tell you. Mark this date on your calendar so you can
celebrate!

CHAPTER 10 USING ROW FUNCTIONS

390
Task
Find the date when you will be (or were) 10,000 days old. Use your birth date
in the following code.
Oracle SOL
select to_date('21-MAR-1978') + 10000
as celebration_ day
from dual;
Access SOL
select #21-MAR-1978# + 10000 as celebration_ day;
Result table
CELEBRATION

06-AUG-2011

Check your understanding

Find the date when the United States will be 100,000 days old.

10-14 Numbering the lines of a
report in Oracle and Access

Sometimes you have a report in which the lines are sorted in a particular
order. You may want to number these lines in the order in which they appear.
To do this, you can create a new column that contains the line numbers.

Both Oracle and Access have special features to help you do this, but these
features work differently.

The Oracle method

1. Create a new view from the beginning select statement. Oracle
allows us to keep the order by clause in a view.

2. Use rownum to add a column of line numbers.

CREATING PATTERNS OF NUMBERS AND DATES

The Access method

391

1. Create a new table from the beginning select statement. Access

allows us to keep the order by clause.

2. Add a new column with the alter table command. Give the new
column the datatype counter. This assigns the numbers auto-

matically.

Task

The following select statement creates a report. All the lines of the report
are sorted in a particular order. We want to number the lines of this report

sequentially, beginning with 1.

select price,
description
from 1_foods
where price > 1.75
order by price,
description;

Beginning report

DESCRIPTION

FRESH SALAD
HAMBURGER
DESSERT
SANDWICH
GRILLED STEAK

Oracle SQL:
Step 1 — Create a view that includes an order by dause

create or replace view secl01l4_view as
select price,
description
from 1_foods
where price > 1.75
order by price,
description;

392

Result table

CHAPTER 10 USING ROW FUNCTIONS

Oracle SQL:
Step 2 — Use rownum to create the line numbers

select rownum as line_ number,
a.*

from secl01l4_view a

order by rownum;

Access SOL:
Step 1 — Create a table that indudes an order by clause

select price,
description
into secl01l4_table
from 1_foods
where price > 1.75
order by price,
description;

Access SOL:
Step 2 — Add a column of line numbers o

alter table secl014_table
add column line number counter;

LINE_NUMBER

PRICE DESCRIPTION
$2.00 FRESH SALAD
$2.50 HAMBURGER
$3.00 DESSERT

$3.50 SANDWICH
$6.00 GRILLED STEAK

Notes

® In Access, this code will make the line numbers the last column. One
more step is required if you want the line numbers in the first column:
Just define another view and place the columns in the order you want.

CREATING PATTERNS OF NUMBERS AND DATES 393

10-15 Optional: An easy way to
solve an algebraic equation

In this section I show you an easy way to solve an algebraic equation. I can
hear the groans already. | know, you never wanted to do this again in your
life. Well, give me a couple of minutes to show you that there is a much
easier way than you learned in school. I'll do all the work. You can watch.

I use three steps to find the solution of the equation in the following task.
The first step calculates the value of the function on the left side of the
equation for every whole number between 0 and 99. Then I look at these
values and I observe the following:

1. The value of the function at 0 is a negative value.

2. The value of the function at 99 is a positive value.

3. The value of the function changes from negative to positive only
once.

4. This change occurs between 90 and 91.

So | have found that this function equals zero somewhere between 90 and
91. Next, [want to refine this solution and make it accurate to two decimal
places.

Step 2 generates all the numbers with two decimal places between 90.00
and 90.99. Step 3 calculates the value of the function for each of these
numbers. I look at these values and I observe that they change from nega-
tive to positive between 90.33 and 90.34, so this is the solution to the
equation.

I could repeat this process more times to get additional accuracy.

Task

Find a solution to the following equation:
x*—91x% + 66x* —451x - 5913 =0

Find a solution between 0 and 99, if there is one. Make the solution accurate
to two decimal places.

394 CHAPTER 10 USING ROW FUNCTIONS

Oracle & Access SQL:
Step 1 — Calculate the value of the function between 0 and 99

select n,
((n *n*n*n) - 91 * (n *n *n) +66 * (n * n)
-451 * n -5913) as value_of_function

from numbers_0_to_99

order by n;

Beginning table (numbers_0_to_99 table)

(and many more)

98
99

Result table: Step 1

N VALUE_OF_FUNCTION

(all negative values)

89 -933204
90 -240903
91 499592
92 1289907
93 2131692

(all positive values)

98 7172097
99 8358696

CREATING PATTERNS OF NUMBERS AND DATES 395

Step 1 — Conclusion

There is a solution to the equation between 90 and 91.

Oracle SQL: Step 2 — Generate the numbers between 90.00 and 90.99

create or replace view secl01l5_view as
select n,
90 + (n/100) as m
from numbers_ 0_to_99
order by n;

Access SQL: Step 2 — Generate the numbers between 90.00 and 90.99
Step 2, Part 1: Enter this query in the SQL window:

select n,

90 + (n/100) as m
from numbers_0_to_99
order by n;

Step 2, Part 2: Save this query and name it sec1015_view.

Result table: Step 2

N M
0 90
1 90.01
2 90.02
(and many more)
98 90.98
99 90.99
Oracle & Access SQL:

Step 3 — Calculate the value of the function between 90.00 and 90.99

select m,
((m *m *m *m) -91 * (m *m * m) +66 * (m * m)
-451 * m -5913) as value_of_ function

from secl015_view

order by (m * 100); ©

396 CHAPTER 10 USING ROW FUNCTIONS

Beginning table (sec1015 view)

N M
0 90
1 90.01
2 90.02

(and many more)

97 90.97
98 90.98
99 90.99

Result table: Step 3

M VALUE_OF_FUNCTION

90 -240903
90.01 -233739.3
90.02 -226570.8

(all negative values)

90.32 -9265.465
90.33 -1946.697
90.34 5376.9437
90.35 12705.458

(all positive values)

90.98 484299 .32
90.99 491943.17

Step 3 — Conclusion

There is a solution to the equation between 90.33 and 90.34.

Notes

©® Why do [multiply M by 100 in the order by clause? I can write order by
m, in Oracle, which is a more logical way to write the code. However, this
does not work in Access. A bug in Access puts the rows in the wrong
order. To work around this problem, I multiply M by 100.

KEY POINTS 397

Key Points

m This chapter shows you some specialized row functions and gives a
few examples.

m The online documentation for Oracle and Access is easy to use.
m You can change nulls to other values with a row function.

m You can identify the user with a row function.

m You can get the current date and time with a row function.

m You can change the datatype of a column to another datatype with
row functions.

m You can number the rows of a result table with a row function.

This page intentionally left blank

SUMMARIZING
DATA

In the previous chapters, the data in the result table came
directly from the beginning table or was a function of a single
row of that table. In this chapter, the data in the result table can
summarize the data in an entire column of the beginning table.
This is done using a column function. The seven types of column
functions provide different ways to summarize the data in a
column.

In the next chapter, you will see how to control the level of sum-
marization. In this chapter, the summarization always produces
a single row in the result table.

399

Introduction to the Column Functions

The data in a table is summarized using column functions, which examine
all the data in a column. Column functions are also called aggregate
functions.

Every row of the table is involved. Within this chapter, we consider the case
when this summarization produces a single row in the result table. In the
next chapter I will show you how to get several rows of summarization. The
following sections provide an overview of the column functions.

11-1 Summarizing all the data in a column

The conceptual diagram that follows shows the way a column function
works when it is applied to the whole table. All the data in a single column
is summarized and produces one result. For example, the result might be
the sum of all the numbers in the column.

The column can be a row function as well as a column of data stored on the
disk. Any of the row functions you studied in chapter 9 can create a new
column. A column function can then operate on it.

Several different column functions exist, and each one summarizes the data
in a different way. One gets the maximum value, one gets the average, one
gets the minimum, and there are several others, all listed in section 11-2.

Beginning table

Result table
|:| Summary of all the rows in the beginning table.
There is only one row in the result table.

401

402

CHAPTER 11 SUMMARIZING DATA

11-2 A list of the column functions

This section is an overview of the column functions. Each one produces a
different type of summarization. They are explained in detail on the next
few pages. Column functions are also called aggregate functions or group
functions.

Compared with the row functions, only a few column functions exist —
seven main ones, to be exact. Of course, some SQL products extend the list
and define other column functions for special purposes. For instance, both
Oracle and Access have defined Standard Deviation and Variance. These
are not usually considered parts of standard SQL.

Nulls are ignored by all the column functions except one

The column functions ignore nulls in the data. Nulls are treated as if they
did not exist. The one exception is the count (*) function, which does
count nulls and treats them like any other type of data.

Nulls are treated this way because this is how summarization usually deals
with unknown values. For example, suppose you have data for 1,000 peo-
ple, such as which political candidates they like. There are two people who
are supposed to be in this sample, but you do not have any data for them
yet. Now you are asked to summarize the data. Would you reply that you
cannot summarize the data, because you do not have all the data yet? Or
would you summarize the data you have for 1,000 people and ignore the
two people for whom you do not have any data?

Most people would do the latter: They would summarize the 1,000 pieces of
data they have and ignore the two pieces of data they do not have. This
process of ignoring the unknown data is exactly what SQL does. When SQL
summarizes data, it completely ignores the nulls and treats them as if they
were not even there. SQL has not created any new rules here. It has only
followed the standard method of summarization.

INTRODUCTION TO THE COLUMN FUNCTIONS

Overview of the column functions.

403

Oracle SQL

Access SQL

Meaning

Column functions for text,

number, and date columns

max max Maximum value in the column.
min min Minimum value in the column.
count (*) count (*) Total number of rows in the table.

count (column)

count (column)

Number of rows in the column
that are not null.

count (distinct column)

Not available as a column
function, but the same
result can be achieved by
a workaround.

Number of distinct values in the
column where column is the name
of a column in the table.

Column functions for numeric columns only

sum

sum

Sum of all values in a column.

avg

avg

Average of all values in a column.

stddev (two Ds)

stdev (one D)

Standard deviation.

variance

var

Variance.

Examples of column functions.

Column Function Text Column Number Column | Date Column
Apple 1 25-jan-2055
Banana 2 null

(Data) Cherry null 21-jan-2033
null 2 17-jan-1999
Peach 3 19-jan-2015

max Peach 3 25-jan-2055

min Apple 1 17-jan-1999

sum n/a 8 n/a

avg n/a 8/4 =2 n/a

count (*) 5 5 5

count (column) 4 4 4

count (distinct column) 4 3 4

404

CHAPTER 11 SUMMARIZING DATA

Maximum and Minimum

11-3 Finding the maximum and minimum values

This section shows you how to use a column function. It uses the minimum
(min) and maximum (max) column functions, and shows them applied to
three columns with the datatypes of text, number, and date.

The datatype of a column determines the sort order that is applied to its
data: Text columns are sorted in alphabetic order, number columns are
sorted in numeric order, and date columns are sorted in date order. This
can affect which values are chosen to be the minimum and maximum
values.

When the query does not contain a where clause, the column function
applies to all the rows in the table. The next section shows the effect of a
where clause.

The result of a column function is always a single value. In the next chapter,
[introduce the group by clause. Then the column function will result in
more than one value. When you don’t have a group by clause, the entire
table is one group, and therefore you have only one row in the result.

Note that the result table in this example contains only a single row. This
single value summarizes all the values in the entire column within all the
rows of the table.

Each column of the result table is calculated separately and the row in the
result table contains columns that may not be closely related to each other.
In the following example, there is no employee named “Susan Woods,” but
that name appears in the result table. “Susan” is the maximum value in the
first_name column. “Woods” is maximum value in the last_name col-
umn. However, “Susan” and “Woods” are not related to each other.

Nulls and column functions

Column functions ignore nulls, so where they are placed in the sort order
doesn’t matter — whether they come first, as in Access, or last, as in Ora-
cle. The maximum or minimum value is not affected by any nulls the col-
umn may contain. The maximum and minimum are never a null, unless the
entire column is null.

MAXIMUM AND MINIMUM 405

A few people get upset about this. They argue that if a column contains
even one null, which is an unknown value, then the maximum or minimum
is unknown, so it should be a null. For these people, I make the following
points:

1.

Summarization always deals with the known data and ignores the
unknown data. This approach is part of the process of summariza-
tion. It is not a feature that is unique to SQL.

If summarization handled nulls in the way these people suggest,
then almost all summarized values would be nulls. A single null
would be more important than thousands of known values, making
summarization itself ineffective. So the process of summarization
cannot treat nulls in the way these people suggest. A person can
object to all summarization, but that is another matter.

The result of every SQL query is based on the data we have right
now. We can never obtain some “ultimately perfect” database. We
almost never can know every detail we would like to know about any
topic.

Task

Find the following:

m The minimum credit limit given to any employee

m The maximum credit limit given to any employee

m The first name of an employee that comes last alphabetically

m The last name of an employee that comes last alphabetically

m The latest date when any of the employees was hired

Oracle & Access SOL

select min(credit_limit), O

max(credit_limit),
max(first_name),
max(last_name), @
max (hire_date) ©

from 1_employees;

406

CHAPTER 11 SUMMARIZING DATA

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST _NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP (01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Result table @

MIN(CREDIT_LIMIT) MAX(CREDIT_LIMIT) MAX(FIRST_MAX(LAST_N MAX(HIRE_DA

$15.00 $30.00 SUSAN WOODS 01-DEC-2008

Notes

©® The min function is applied to the credit_limit column, a numeric
column. The numeric order is used to decide the minimum value.

® The max function is applied to the last_name column, a text column.
The alphabetic order is used to decide the maximum value.

® The max function is applied to the hire_date column, a date column.
The date order is used to decide the maximum value.

O The result table contains only one row. Note that in Oracle the column
headings for the text and date columns are truncated.

Check your understanding

Table sec1103 contains two columns, row_ID and num_1. (It also contains a
column named num_2, but we are not going to use that column now.) Find
the minimum and maximum values of the num_1 column. Name these val-
ues "minimum" and "maximum.”

MAXIMUM AND MINIMUM 407

11-4 Using a where clause with a column function

When a where clause is used in a query that contains a column func-
tion, the where clause is applied first. The column function is then
applied only to the rows that satisfy the where condition, not to all
the rows of the table.

This section shows the same query we used in the previous section with the
addition of a where clause. This changes some of the values in the result
table.

Task

Perform the same task as in the previous section, but only for some of the
rows of the table. For employees 202 to 206, find the following:

m The minimum credit limit given to any employee
m The maximum credit limit given to any employee

m The first name of an employee that comes last alphabetically

The last name of an employee that comes last alphabetically

m The latest date when any of the employees was hired

Oracle & Access SOL

select min(credit_limit),
max(credit_limit),
max(first_ name),
max(last_name),
max (hire_date)
from 1_employees
where employee_id between 202 and 206; ©

408

Beginning table (1_employees table)

CHAPTER 11

SUMMARIZING DATA

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
First, the where clause is applied to the beginning table @
EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL, 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)

Then the column functions are calculated to create the result table

MIN (CREDIT_LIMIT)

MAX (CREDIT_LIMIT)

$15.00 $25.00 MARTHA

MAX (FIRST_ MAX(LAST_N MAX (HIRE_DA

WOODS

02-FEB-2009

Notes

® The where clause limits the scope of the column functions to consider
only employees 202 to 206.

® The where clause is applied first. In effect, this reduces the number of
rows in the beginning table.

Check your understanding

Repeat the exercise in the previous section, except this time add a where
clause that limits the row_ID column to values less than 8. Is there any
change in the minimum and maximum values?

MAXIMUM AND MINIMUM 409

11-5 Finding the rows that have
the maximum or minimum value

Often, finding the maximum or minimum value in a column is not enough.
You want to find more information about the row or rows where the maxi-
mum or minimum value occurs.

Several rows may have the minimum or maximum value. Asking, “Which
row has the maximum value?” is okay, but two rows have the minimum
value. So, the question, “Which row has the minimum value?” contains an
incorrect assumption that only one such row exists.

Incidentally, you can see that no column function is able to display this
additional information. The result table of a column function is always one
single row, but the result table in the following example contains three
rows.

You can write SQL in two ways to accomplish this goal. These two methods
are very similar. In the first method, you run two separate queries. The first
select statement finds the correct value of the maximum or minimum. In
this example, you want to find the minimum credit limit, which is $15.00.
You enter this value into the where clause of the second query. This
method relies on you to transfer the information from the result table of
the first query to the SQL code of the second query.

The second method uses a subquery to get the minimum value. A subquery
is a select statement embedded within another select statement. In this
case, the inner select statement is evaluated first. It obtains the mini-
mum value for credit_1limit, which is $15.00. The computer substitutes
this result in the outer select statement, replacing the inner select
statement. Then the outer query is evaluated, giving the result table. The
benefit of this method is that it uses only one query. It does not rely on the
person running the query to transfer information, so it provides a more
packaged solution.

Task

Find all the employees who have the minimum credit limit.

Oracle & Access SQL: Method 1, Step 1 ©

select min(credit_limit)
from 1_employees;

410

CHAPTER 11

SUMMARIZING DATA

Oracle & Access SQL: Method 1, Step 2 @

select employee_id,

first name,
last_name,
credit_limit

from 1 _employees

where credit_limit =

15.00 ©

order by employee_id;

Oracle & Access SOL: Method 2 o

select employee_id,

first name,
last_name,
credit_limit

from 1 _employees

where credit_limit =

(select min(credit_limit)

from 1 _employees)

order by employee_id;

Beginning table (1_employees table)

(4

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table
EMPLOYEE CREDIT
ID FIRST NAME LAST NAME LIMIT
204 ELLEN OWENS $15.00
209 PAULA JACOBS $15.00

COUNT

Count

411

Notes

© This finds the smallest credit limit of any of the employees, $15.00.

® A second query gets additional information about the employees who
have the minimum credit limit.

® The value “15.00” is obtained from the result of the first query. The dollar
sign is dropped. Numbers within SQL code cannot contain dollar signs
or commas. The decimal point and two zeros are optional. They are writ-
ten here to show that this is a currency value. It could also be written as
“15” without the decimal point and zeros.

0 This is the subquery.

Check your understanding

Repeat the exercise in section 11-3. Then find the row_1Ds for the minimum
and maximum values.

11-6 Counting rows and counting data

SQL has two different methods of counting the data in a column. These
methods differ in how they count nulls. Later we discuss a third method of
counting that counts the number of different values in the column.

This section shows two varieties of the count column function. The
count (*) function counts the number of rows in the table. The
count (column) function counts the amount of data in a specific column,
ignoring all the nulls.

Counting all the rows in a table

The count (*) function counts all the rows in the table. The result is the
same as if all the values in any column were counted, including the nulls.
This is the only column function that treats nulls the same way it treats
other values.

You can think of this function in two ways. If you think of it as counting all the
rows in a table, then any nulls in the table do not get involved in this. If you
think of it as counting all the values in a column, then all the nulls are
included in the count. No matter which column is counted, the result is the
same for every column. You are free to think about the function in either way.

412 CHAPTER 11 SUMMARIZING DATA

Counting all the values in a column, excluding nulls

The count (column) function counts all the values in the specified column
that are not nulls. It tells you how much data is entered in the column.
Clearly, each column can have a different count because each column can
contain a different number of nulls. The column can have any datatype —
text, number, or date.

Task

Count the number of rows in the 1_employees table. Also, count the num-
ber of non-null values in these three columns:

last_name
hire_date

manager_id

Oracle & Access SOL

select count(*), O
count (last_name), &
count (hire_date), ©
count (manager_id) O
from 1_employees;

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP (01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Result table ©

COUNT (*) COUNT (LAST_NAME) COUNT (HIRE_DATE) COUNT (MANAGER_ID)

COUNT 413

Notes

©® Ccount (*) finds the number of rows in the table.

® This applies the count (column) function to a text column — the
last_name column. The result is 10 because there are no nulls in this
column.

® This applies the count (column) function to a date column — the
hire_date column. The result is 9 because there is one null in this col-
umn.

0 This applies the count (column) function to a column of numbers — the
manager_id column. The result is 8 because there are two nulls in this
column.

@ The result table contains only one row.

Check your understanding

In table sec1106, find the following information:
m The number of rows in the table
m The number of rows that have a non-null value in the Num_1 column

m The number of rows that have a null value in the Num_1 column

11-7 Counting to zero, part 1

Sometimes you want zeros to appear in your result. When you want this,
the way to get it is to apply the count (column) function to a column of
nulls. The count (distinct column) function can also create a zero.

No other column function can do this. When any other column function is
applied to a column of nulls, the result is a null. The one exception is the
count (*) function. It counts the number of rows in the table, so it never
results in a zero.

Now you are probably thinking that it is unusual for a table to have a col-
umn that contains only nulls. That is true. However, in the next chapter we
won't be summarizing an entire column at once. Instead, we will divide the
rows into several groups and separately summarize each group. A column
often contains only nulls for a group of rows.

We use this later, but right now I am trying to show you how each column
function works.

414 CHAPTER 11 SUMMARIZING DATA

Task for example 1

In Oracle and Access, apply all the column functions to the column that con-
tains only nulls. Show that the count (column) function results in a zero,
but the max, min, sum, and avg functions result in a null.

Oracle & Access SOL

select count(col_2) as count_col,
count (*) as count_rows,
max(col_2) as max,
min(col_2) as min,
sum(col_2) as sum,
avg(col_2) as avg

from secll07;

Beginning table (sec1107 table)

PK_1 COL_2

A (null)

B (null)

C (null)

D (null)

E (null)

Result table

COUNT_COL COUNT_ROWS MAX MIN SUM AVG

0 5 (null) (null) (null) (null)

Task for example 2

In Oracle, apply count (distinct column) to the column of nulls. Show
that this also results in a zero.

Oracle SQL

select count(distinct col_2) as count_distinct
from secll07;

Access does not support count (distinct column).

COUNT

Result table

415

COUNT_DISTINCT

Check your understanding

Repeat the exercise in the previous section, except add a where clause that
limits the row_id to the value 1. Note the zero in the result.

11-8 Counting the number of
distinct values in a column

This section shows you how to count the number of different values in a
column. Nulls are not counted as values. If the column contains codes,
such as the dept_code column, you can use this technique to find out how
many different codes are used within that column. Oracle and Access use
different methods for this.

In Oracle, the column function count (distinct column) produces this
result. In Access, this column function does not exist. You can get around
this problem by using two steps.

The first step uses select distinct to create a table or a view that con-
tains all the distinct values within the column. If there is a null in the col-
umn, it is included in the result table produced by select distinct. The
second step counts the values in this table without counting the null. This
gives the correct result.

Task

Find the number of different values in the manager id column of the
1_employees table.

Oracle SOL o

select count(distinct manager id)
from 1_employees;

416

Beginning table (1_employees table)

CHAPTER 11

SUMMARIZING DATA

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table

COUNT (DISTINCTMANAGER_ID)

Access SQL (workaround): Step 1 o

select distinct manager_id ©
into secl108_stepl
from 1_employees;

Access table: Step 1
7] sec1108 stepl

manager_id ~

201
202
203

Access SQL (workaround): Step 2 &

select count (manager id) ©
from secll08_stepl;

Access result table

51 Query1 ||
Expr1000 ~

3

COUNT

417

Notes

© In Oracle, you can use the count (distinct column) function.

® In Access, you must write two separate queries and run each query
separately.

® In Access, the first query creates a table containing all the different val-
ues, including the null. If there are several nulls in the manager_id col-
umn of the beginning table, there is still only one null in the stepl
table. That is, select distinct treats all nulls as though they have the
same value, even though they are all unknown values.

® In Access, the second query uses the function count (column).

Check your understanding

In table sec1103, find the number of distinct values in the num_1 column.

11-9 Counting the number of distinct
values in two or more columns

This section shows you how to use count distinct to find the number of
different values of two or more columns. Here | mean that the columns are
taken in combination with each other, so a new combination occurs when-
ever any one of the columns has a new value.

This combination of the columns into a single unit of data is similar to
the way that select distinct works with rows. With select distinct,
two rows are considered identical only when all the columns have the
same values.

There is a technical difference between count distinct and select
distinct. Count distinct is a column function. Here, distinct elimi-
nates duplicate values of a single column. Select distinct is an entire
select statement. Here distinct eliminates duplicate rows of the result
table.

To get these two structures to work the same way, you need to use a trick:
Concatenate all the columns together into a single column before applying
count distinct to them. The one column that count distinct applies
to then actually contains the values of all the columns.

A second trick should also be used. A separator should be placed between
the columns of the concatenation. The separator is usually a one-character
literal. It is often a punctuation character or special character that you know

418

CHAPTER 11 SUMMARIZING DATA

does not appear in the data. If the data might contain any character, you may
need to use a separator containing a string of two or three characters. In the
following SQL code, an asterisk is used for the separation character.

By using a separator, we prevent the possibility that different values in two
columns will produce the same value when they are concatenated. For
example:

Concatenation Concatenation
Column 1 Column 2 without a Separator | with a Separator
A BCD ABCD A*BCD
AB CD ABCD AB*CD
ABC D ABCD ABC*D

Nulls are counted when the count distinct function is applied to two or
more columns and a separator is used. Even if there are nulls in all the col-
umns that are concatenated together, it is still counted. The separators are
not nulls, so the concatenation is not a null and it is counted.

Concatenation Concatenation
Column 1 Column 2 without a Separator | with a Separator
null null null *

In Access, we need to use the same workaround to get count distinct
that we used in the previous section.

Task

Count the number of distinct combinations of manager_id and
credit_limit.

Oracle SQL

select count(distinct (manager_id || '*' || credit_limit))
from 1_employees;

COUNT

Beginning table (1_employees table)

419

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table

COUNT (DISTINCT (MANAGER_ID| | '*'||CREDIT_LIMIT))

Access SQL (workaround): Step 1 o

select distinct manager_ id,

credit_limit
into secll09_manager credit
from 1_employees;

Access temporary table: Step 1

T settos manager st
manager_id ~ credit_limit ~
|

$30.00
201 $15.00
201 $25.00
202 $15.00
202 $25.00

203 $25.00

420

CHAPTER 11 SUMMARIZING DATA

Access SQL (workaround): Step 2

select count(*) ©
from secll09_manager credit;

Access result table: Step 2

Expri1000 -
7

Notes

® This two-step method also works in Oracle, and it avoids the trick of
using a separator character.

® When you are counting more than one column, use count (*) instead of
count (column) as you did in section 11-8. The row with the null in
both columns is counted.

Check your understanding

In table sec1103, find the number of distinct values in the num_1 and num_2
columns, taken together.

Sum and Average

11-10 The sum and average functions

This section shows an example using the sum (sum) and average (avg) col-
umn functions. These functions can be applied only to a column of num-
bers. Text and date columns cannot be used with these functions.

Nulls are ignored by both of these functions. The next section shows how
this can sometimes cause a problem for the sum function. For the avg func-
tion, nulls are ignored both in adding up the column and in counting the
number of items to set the divisor.

SUM AND AVERAGE

421

Task

Find the sum and average of all the credit limits in the 1_employees table.

Oracle & Access SOL

select sum(credit_1limit), ©
avg(credit_limit) @
from 1_employees;

Beginning table (1_employees table)

EMPLOYEE DEPT
ID FIRST NAME LAST NAME CODE HIRE_DATE

201 SUSAN BROWN EXE 01-JUN-1998
202 JIM KERN SAL 16-AUG-1999
203 MARTHA WOODS SHP 02-FEB-2009
204 ELLEN OWENS SAL 01-JUL-2008
205 HENRY PERKINS SAL 01-MAR-2006
206 CAROL ROSE ACT (null)

207 DAN SMITH SHP 01-DEC-2008
208 FRED CAMPBELL SHP O01-APR-2008
209 PAULA JACOBS MKT 17-MAR-1999
210 NANCY HOFFMAN SAL 16-FEB-2007

CREDIT
LIMIT

PHONE MANAGER
NUMBER ID

8722 201
7591 201
6830 202
5286 202
(null) (null)

2259 203
1752 203
3357 201
2974 203

Result table ©

SUM (CREDIT_LIMIT) AVG(CREDIT_LIMIT)

210 23.333333

Notes

© This is an example of the sum(column) function. The result, 210, is the
sum of the nine values in the credit_limit column.

® This is an example of the avg (column) function. It finds the average of
the numbers. The result is 210 / 9 = 23.33, where 210 is the sum of the
values in the credit_limit column and 9 is the number of values in

that column, excluding nulls.

® The result table contains only one row.

Check your understanding

In table sec1103, find the sum and average of the num_1 column.

422

CHAPTER 11 SUMMARIZING DATA

11-11 The problem with nulls in
addition and how to solve it

SQL sometimes has a problem with addition when both of the following
conditions exist:

1. Two or more columns are added together.

2. There are nulls in some of those columns.

One of the basic properties of addition is that the order in which you add the
numbers does not matter. The sum is always the same. Sometimes addition
in SQL violates this property, as the example in this section shows.

The problem is that SQL has two kinds of addition, row addition and col-
umn addition, which have different ways of handling nulls. Row addition
adds numbers within one row. It is a row function. Row addition handles a
null as an unknown value. So, for example:

3 + null = null

Column addition adds numbers within one column. It is one of the func-
tions used for summarization. All summarization functions ignore nulls.
So, for example:

3
+ null

To solve this problem, you need to replace all the nulls with zeros. You can
do this by using the row functions nv1 in Oracle and nz in Access. Another
method uses the update statement to make the change. This method
changes the data in the beginning table. If you do not want to change the
data permanently, you can do a rollback after you perform the calculation.

The following example shows two columns of numbers, and these columns
contain some nulls. When all the numbers are added together, you get one
result if you add the columns first and you get a different result if you add
the rows first.

When the columns are added first, using column addition, you get the
result that the sums of the columns are 6 and 15. Adding these together
with row addition, you get the following:

6 + 15 = 21

SUM AND AVERAGE 423

When the rows are added first, using row addition, you get the result that
the sums of the rows are 5, null, 8, and null. Adding these together with col-
umn addition, you get the following:

5
+ null

The solution

Several solutions are available. The easiest is to always add the columns
first. This works, but it is sometimes tricky to implement. You need to be
aware of columns that are defined as row functions of other columns and
that information may get hidden.

A better solution is to stay aware of numeric columns in your database that
allow nulls. Whenever you use one of these columns, use it with the nv1 or
nz function.

Task

Add all the numbers in columns 2 and 3 of the following beginning table.
Show that in SQL we get two different answers, depending on the order in
which we add the numbers. If we add each of the columns first, the resulting
sum is 21. If we add across the rows first, the resulting sum is 13.

Then show that when the nulls are changed to zeros, the problem with
addition is solved: The result is the same whether the columns or the rows
are added first.

Oracle & Access SQL: An example of the problem with addition

select sum(col_2)+sum(col_3) as columns_added_first, ©
sum(col_2 + col_3) as rows_added first @
from secllll;

424

Beginning table (sec1111 table)

CHAPTER 11

SUMMARIZING DATA

PK COL_2 COL_3
A 1 4
B (null) 5
C 2 6
D 3 (null)

Result table — Without changing the nulls to zeros ©

COLUMNS_ADDED_FIRST ROWS_ADDED_FIRST

Notes

® This line adds the columns first.

® This line adds the rows first.

® This shows that the sums are different.

Explanation

Add columns first:

Col 2 Col 3

1 4

null 5

2 6

3 null
Sum | 6 15

Then 6 + 15 = 21.

SUM AND AVERAGE

Add rows first:

Col_2 Col_3 Sum

1 4 =5

null 5 =null

2 6 =8

3 null =null
Then 5+ 8 =13.

425

Oracle SQL: Method 1 — Using a row function CORRECT

select sum(nvl(col 2, 0)) + sum(nvl(col 3, 0)) ® O

as columns_added_first,
sum(nvl(col 2, 0) + nvl(col 3, 0)) O
as rows_added_first
from secllll;

Access SOL: Method 1 — Using a row function CORRECT

select sum(nz(col 2, 0)) + sum(nz(col 3, 0)) @ O
as columns_added_first,
sum(nz(col_2, 0) + nz(col 3, 0)) O
as rows_added_first
from secllll;

Result table — With the nulls changed to zeros @

COLUMNS_ADDED_FIRST ROWS_ADDED_FIRST

Notes

0 In Oracle, the nv1 function is applied to both columns to change the

nulls into zeros.

® In Access, the nz function is applied to both columns to change the

nulls into zeros.

426 CHAPTER 11 SUMMARIZING DATA

0@ If you remember to always add the columns first, you do not need to use
the nv1 or nz functions. This makes the code:

select sum(col_2) + sum(col_3)

In a way, this is the easiest solution. However, sometimes it can leave a
trap in your code that someone else may fall into. The next programmer
who works on the code might write:

sum(col_2 + col_3)
This would give the wrong answer.

@ This shows that the sums are the same.

Explanation

Add columns first:

Col_2 Col_3

1 4

0 5

2 6

3 0
Sum 6 15

Then 6 + 15 = 21.

Add rows first:

Col_2 Col_3 Sum
1 4 =5
0 5 =5
2 6 =38
3 0 =3

Then5+ 5+ 8 +3 =21.

SUM AND AVERAGE 427

Oracle SQL: Method 2 — Changing the data temporarily CORRECT

Step 1: In the Home Page interface, clear the Autocommit checkbox. In the
SQL Command Line interface, set Autocommit off.

Step 2: Change the nulls to zeros in any columns used in the calculation.

update secllll
set col_ 2 =0
where col_2 is null;

update secllll
set col_3 =0
where col_3 is null;

Step 3: Run your report.

select sum(col_2)+sum(col_3) as columns_added_first,
sum(col_2 + col_3) as rows_added_ first
from secllll;

Step 4: Undo the temporary changes to the data.
rollback;

In Access, we could use a similar process, but Access does not have a rol1-
back statement, so the changes to the data would be permanent.

One last Ihought

As long as you are comfortable interpreting all the nulls in your numeric col-
umns as zeros, all you need to do is add up the columns first. This works
because column addition ignores the nulls, which is similar to treating them
as zeros.

Check your understanding

In table sec1103, show the problem with nulls in addition and how to solve
it.

1. Add columns num_1 and num_2, adding each row first.
2. Add columns num_1 and num_2, adding each column first.

3. Add columns num_1 and num_2, changing all the nulls to zeros first.

428 CHAPTER 11 SUMMARIZING DATA

Other Topics

The next three sections discuss some details that are important in many
applications that use summarization.

11-12 Nulls are not always changed to zero

In the previous section, all the nulls were changed to zeros, which is the
usual procedure. Ninety percent of the time the nulls in numeric columns
are changed to zeros, if their value is changed at all. Sometimes, however,
you might want to change the nulls to some other value, perhaps an esti-
mate of what the value will eventually be. This section gives an example.

In this example, a store receives orders for merchandise that it will ship to
customers. At the end of each day, the store wants to know the total value
of all the invoices. Each invoice is calculated with the formula:

(Price * Quantity) + Tax + Shipping = Invoice

The problem is that sometimes the tax or shipping columns contain
nulls, meaning that it is an unknown amount. In this situation, you need to
carefully control how the calculation is performed and how the rows that
contain nulls are counted.

There are three choices:

1. Bill all the amounts you know and estimate an amount for the nulls.
2. Bill all the amounts you know and nothing for the nulls.

3. Ignore any invoice with incomplete data.

This section shows the SQL code for the first choice, which is the best one.

Task

Find the total for all the invoices in the table. Calculate an invoice as:

(Price * Quantity) + Tax + Shipping = Invoice

Estimate values for the nulls that occur in the tax and shipping columns
by applying these rules:

1. Replace a null in the tax column with:
0.07 * price * quantity
2. Replace a null in the shipping column with:

0.12* price * quantity

OTHER TOPICS 429

Oracle SOL

select sum((price * quantity)
+ nvl(tax, 0.07 * price * quantity) ©
+ nvl(shipping, 0.12 * price * quantity)) @
as total invoices

from seclll2_ shipping;

Access SQL

select sum((price * quantity)
+ nz(tax, 0.07 * price * quantity) O
+ nz(shipping, 0.12 * price * quantity)) ©®
as total_invoices

from seclll2_shipping;

Beginning table (sec1112_shipping table)

PK_1 PRICE QUANTITY TAX SHIPPING
A 3 $48.00 $63.00
B $138.00 7 (null) $72.00
C 1 $51.00 $76.00
D 2 $54.00 (null)

Result table

TOTAL_INVOICES

$3,359.58

Notes

@ Change the null in the tax column to an estimate of the tax.

® Change the null in the shipping column to an estimate of the shipping
charge.

430

CHAPTER 11 SUMMARIZING DATA

11-13 Counting the number of nulls in a column

How can you count the number of nulls in a column? This goal may seem
to be a problem because all the column functions ignore nulls. This section
shows the technique. The where clause limits the rows to the ones we want
to count. Then the count (*) function counts them.

Often we are most interested in knowing if a column contains any nulls at
all and less interested in getting the exact count.

Task

Find the number of nulls in the manager_id column of the 1_employees
table.

Oracle & Access SOL

select count(*) as number_of_nulls
from 1_employees
where manager_id is null;

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST _NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
Result table

NUMBER_OF_NULLS

OTHER TOPICS

431

11-14 Counting distinct dates

When you use count distinct on a date column, you may not get the
result you expect. This happens because the data in a date column may
contain a time, which is often not shown. Thus two rows that appear to
have the same date may in fact be different because the times are different.

Task

Count the number of different dates in the date_entered column of the
1 lunches table.

Oracle SQL: The problem

select count(distinct date_entered) O

from 1_lunches;

Beginning table (1_lunches table) ®

LUNCH EMPLOYEE

LUNCH_ID DATE ID DATE_ENTERE
1 16-NOV-2011 201 13-0CT-2011
2 16-NOV-2011 207 13-0CT-2011
3 16-NOV-2011 203 13-0CT-2011
4 16-NOV-2011 204 13-0CT-2011
6 16-NOV-2011 202 13-0CT-2011
7 16-NOV-2011 210 13-0CT-2011
8 25-NOV-2011 201 14-0CT-2011
9 25-NOV-2011 208 14-0CT-2011
12 25-NOV-2011 204 14-0CT-2011
13 25-NOV-2011 207 18-0CT-2011
15 25-NOV-2011 205 21-0CT-2011
16 05-DEC-2011 201 21-0CT-2011
17 05-DEC-2011 210 21-0CT-2011
20 05-DEC-2011 205 24-0CT-2011
21 05-DEC-2011 203 24-0CT-2011
22 05-DEC-2011 208 24-0CT-2011

Result table — The problem ©

COUNT (DISTINCTDATE_ENTERED)

432

Result table — The solution @

CHAPTER 11

SUMMARIZING DATA

Oracle SQL: The solution

select count (distinct trunc(date_entered)) O

from 1_lunches;

COUNT (DISTINCTTRUNC (DATE_ENTERED))

Access SQL: The solution o

Step 1:

select distinct format (date_entered,

into temp_date
from 1_lunches;

Step 2:

'YYYY-MM-DD') @

as date_entered2

select count (date_entered2)

from temp_date;

Beginning table (1_lunches table as shown in Access) ©

= L,Lum:ufs\
LUNCH

=

W 0N Ok W

N NN R R R R R
N P, O N U WN

16-Nov-2011
16-Nov-2011
16-Nov-2011
16-Nov-2011
16-Nov-2011
16-Nov-2011
25-Nov-2011
25-Nov-2011
25-Nov-2011
25-Nov-2011
25-Nov-2011
05-Dec-2011
05-Dec-2011
05-Dec-2011
05-Dec-2011
05-Dec-2011

" LUNCH_DATE ° EMPLOYEE_ID ~

201
207
203
204
202
210
201
208
204
207
205
201
210
205
203
208

DATE_ENTERED
13-Oct-2011 10:35:24 AM
13-Oct-2011 10:35:39 AM
13-Oct-2011 10:35:45 AM
13-Oct-2011 10:35:58 AM
13-Oct-2011 10:36:41 AM
13-Oct-2011 10:38:52 AM
14-Oct-2011 11:15:37 AM

14-Oct-2011 2:23:36 PM
14-Oct-2011 3:02:53 PM
18-Oct-2011 8:42:11 AM
21-Oct-2011 4:23:50 PM
21-Oct-2011 4:23:59 PM
21-Oct-2011 4:35:26 PM
24-Oct-2011 9:55:27 AM
24-Oct-2011 11:43:13 AM
24-Oct-2011 2:37:32 PM

" |Add New Field

OTHER TOPICS

433

Access result table: Step 1

2011-10-13
2011-10-14
2011-10-18
2011-10-21
2011-10-24

date_entered”

Access result table: Step 2

= queryt |

Expri000 -
5

Notes

0 You need to be careful when you use count distinct with a date field.

You need to remember that a date always includes a time.

® Only the dates are shown in this listing of the 1_lunches table. The

times are not shown, even though they are actually in the data.

The result shows there are 16 different values in this column. The date in
each row is different because the times are different.

The solution is to apply the trunc function to the date column. This
truncates the time and leaves only the date.

Now we get the answer we expected.

Because Access does not support count distinct, you must use the
workaround given in section 11-9.

Here the format function is used to remove the time from the data in the
date_entered column. There are other ways to achieve the same thing.
In Oracle you can use the trunc function and in Access you can use the
Datevalue function.

® In Access the default date format does show the time, so the problem

described in this section is less likely to happen.

434

Key Points

CHAPTER 11 SUMMARIZING DATA

Column functions summarize all the data in a single column of a
table. This can be either the data table or a result table. In this chap-
ter, the summarization extends over all the rows of the table and it
produces a single number, text string, or date. In the next chapter, you
will see how to modify this summarization process to produce several
numbers, text strings, or dates.

There are only seven column functions and two more that are fairly
new. They are: maximum, minimum, sum, average, and three types of
counting. Recently, many SQL products have added variance and
standard deviation to deal with statistical data.

All of the column functions, except count (*), completely ignore any
nulls that are in the summarized column.

Max and min return the values you expect. To find the rows that
have these values, it is best to use a separate select statement.

sum and avg can apply only to columns of numbers. Often, you will
want to use a row function to change the nulls in the column to zeros
before you apply the sum or avg column functions.

Count (column_name) counts the number of rows in the table that
have a non-null value in the column.

Count (distinct column_name) counts the number of different val-
ues that are in the column. To find the number of different values in
two or more columns, first combine those columns into a single col-
umn, then apply the count (distinct) column function to that com-
bined column.

Count (*) counts the number of rows in the table. It is not bound to
one specific column.

CONTROLLING
THE LEVEL OF
SUMMARIZATION

In chapter 11, we summarized all the data in a column of a
table. The result was a single value. In this chapter, we divide
the rows of the table into groups, which are nonoverlapping sets
of rows. Each group is summarized separately, resulting in a
summary value for each of the groups.

At our discretion, we can either summarize a column into a
single value or divide it into 100 pieces and summarize each
piece. This gives us control over the level of detail we want to
see.

435

Dividing a Table into Groups of Rows, 437

12-1 Summary of groups of data withina column 437
12-2 The group by clause 438
12-3 Groups formed on two or more columns 441
12-4 Null groups when there are two or more grouping columns. 444
12-5 Summarized data cannot be mixed with nonsummarized
data in the same select statement. 447
12-6 Solution 1: Add more columns to the group by clause. 451
12-7 Solution 2: Divide the query into two separate select statements. .. .452
12-8 How to create a report with subtotals and a grand total. 455
12-9 Countingtozero, part2 455
12-10 Countingtozero, part3 457
Eliminating Some of the Summarized Data.l 459
12-11 The havingclause. 460
12-12 The having clause contrasted with the whereclause 462
12-13 The whole process of the select statement on a single table. 463
12-14 The having clause does not add any more
power to the select statement. 463
12-15 Use a where clause instead of a having clause
toeliminaterawdata 466
12-16 How to apply one column function to another
column function and get around other restrictions 467

Key Points. e 471

Dividing a Table into Groups of Rows

You can divide the rows of a table into separate groups. The group by
clause in a select statement can do this. Then each group of rows is sum-
marized into one line (row) of the summary.

The column functions summarize each group of rows. This allows you to
control the level of summarization and detail.

12-1 Summary of groups of data within a column

This section shows a conceptual diagram of the way a column function
works when it is applied to groups of rows within a table. Each row of the
table is assigned to a group. Each row can be part of only a single group.

The column function produces a summary of each group of rows, which is a
single value for each group. The result of the column function has one row
for every group of rows in the beginning table.

The number of groups that the beginning table is divided into determines
how detailed and fine-grained the summarization is. At one extreme, each
row of the beginning table can be a separate group. Then no summariza-
tion occurs at all. At the other extreme, all the rows of the beginning table
can be put into a single group. This was the case when we summarized the
entire table in the previous chapter. Then all the data within the column is
condensed down to a single value — a single number, text item, or date.

A Beginning table
The rows are formed into groups.
A
A \ A Result table
B Each row of the result table comes from
» | B one group of rows in the beginning table.
B
C
C
Group Summarized
C identity data for each group
C
Grouping Summarized
column column

Grouping the rows of a table, then summarizing each group.

437

438

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

12-2 The group by clause

The example in this section shows how you can control the level of summa-
rization using a group by clause. In this example a single column is used in
the group by clause. This is the simplest case.

Each group is formed from all the rows of the table that have the same
value in the grouping column. This means that each row of the table is
placed in a group along with all the other rows that have the same value in
that column. No row is placed in more than one group.

The columns are then summarized separately for each group. The result
table contains one row for each group along with the summarized data for
that group.

All the rows with a null in the grouping column are placed within a single
group called the null group. The null group is similar to the Other category
that is often used when data is summarized. This may seem a little unusual
because nulls are unknown values and normally we do not consider one
null to be equal to another. But what would the alternative be?

It would not work well if SQL formed a separate group from each null value.
Each of these groups would contain only one row. There would be too
many groups with only a single row and the summarization would not work
well. Therefore the only effective solution is to form a single group from all
the rows with a null in the grouping column.

We often say that every table should have a primary key, although we allow
some exceptions. However, in this example you could not put a primary key
on the manager_id column. Because of the null group, there is a null value
in this column and a primary key column must not contain a null. You often
cannot put a primary key on the result table of a grouped query.

Task

For each manager_id, list the number of employees each one manages.
Also list the range of their employees’ credit limits by showing the minimum
and maximum. Omit employee 202.

DIVIDING A TABLE INTO GROUPS OF ROWS

439

Oracle & Access SOL

select manager_id, ©
count (employee_id) as number_ of employees,

from 1 _employees

min(credit_limit) as minimum credit,

max(credit_limit) as maximum credit

where not (employee_id = 202) O
group by manager_id @
order by manager_id;
Beginning table (1_employees table)
EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST_ _NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

First the where clause is applied and the row for employee_id =

202 is removed O

EMPLOYEE
ID

DEPT
FIRST _NAME LAST_ NAME CODE
SUSAN BROWN EXE
MARTHA WOODS SHP
ELLEN OWENS SAL
HENRY PERKINS SAL
CAROL ROSE ACT
DAN SMITH SHP
FRED CAMPBELL SHP
PAULA JACOBS MKT
NANCY HOFFMAN SAL

HIRE_DATE

01-JUN-1998
02-FEB-2009
01-JUL-2008
01-MAR-2006
(null)

01-DEC-2008
01-APR-2008
17-MAR-1999
16-FEB-2007

CREDIT
LIMIT

PHONE MANAGER
NUMBER ID

7591 201
6830 202
5286 202
(null) (null)

2259 203
1752 203
3357 201
2974 203

440

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

Then the rows of the table are divided into groups that have the same value in the
manager id column @

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST_NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
207 DAN SMITH SHP (01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
206 CAROL ROSE ACT (null) (null) (null) (null)

Result table 6

MANAGER

ID NUMBER_OF_EMPLOYEES MINIMUM_CREDIT MAXIMUM_CREDIT

2 $15.00 $25.00
2 $15.00 $25.00
3 $25.00 $25.00
2 $30.00 $30.00

Notes

00

26

00

First, the where clause is applied to the rows of the beginning table. It
eliminates some of the rows. In this example, employee 202 is deleted
from further consideration.

Second, the remaining rows of the table are divided into groups by
their value in the manager_id column. This creates four groups:

e The two rows with a manager_id of 201

¢ The two rows with a manager_id of 202

e The three rows with a manager_id of 203

e The two rows with a null value in the manager_id column

Third, the column functions summarize the data in each of the
groups. They produce one row in the result table for each of the
groups.

DIVIDING A TABLE INTO GROUPS OF ROWS 441

The result table is usually structured to identify each group and then
give summary information about that group. It does not need to be
structured this way, but that is usually the most logical way to present
the data. To achieve this, the select clause lists the grouping col-
umn(s) first, followed by column functions. The select clause here is
organized that way.

Last, the order by clause sorts the rows of the result table into a log-
ical order. Usually the order by clause contains the same columns as
the group by clause.

Check your understanding

Table sec1202 has four columns: row_id, col_1, col_2, and col_3. Write
a select statement that groups the rows by the value in col_1 and for each
group determines the sum of the values in col_3.

12-3 Groups formed on two or more columns

This section shows a group by clause that uses two grouping columns.
Each group is formed from all the rows that have identical values in both of
these columns. If two rows have different values in either of these columns,
they belong to different groups. The groups are the same regardless of the
order in which the columns are listed in the group by clause.

A group by clause can list any number of columns. When a new column is
added to the group by clause, each prior group may split into two or more
new groups.

Drill down is a term that is used to describe the process of beginning with a
high level of summarization and progressing to finer levels of detail. You
can compare the result table of this section with the one from the previous
section to see an example of a drill down.

The usual SQL technique behind a drill down is to add another column to
the group by clause. This further divides each of the groups of rows. The
same column is also added to the select clause and the order by clause.
In the following example, the dept_code column is added to these
clauses. I highlighted this change in the code.

442 CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

Task

From the code in section 12-2, drill down by adding the department code.
Omit employee 202.

Oracle & Access SOL

select manager_ id, ©
dept_code,
count (employee_id) as number of employees,
min(credit_limit) as minimum credit,
max(credit_limit) as maximum_ credit

from 1_employees

where not (employee_id = 202) O
group by manager_id, ©
dept_code
order by manager id, O
dept_code;
Beginning table (1_employees table)
EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

First the where clause is applied and the row for employee_id = 202 is removed ©

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

DIVIDING A TABLE INTO GROUPS OF ROWS 443

Then the rows of the table are divided into groups that have the same values in both
the manager id and dept_code columns @

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST_NAME CODE HIRE_DATE LIMIT NUMBER ID
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203
201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
206 CAROL ROSE ACT (null) (null) (null) (null)
Result table
MANAGER DEPT
ID CODE NUMBER_OF_EMPLOYEES MINIMUM_CREDIT MAXIMUM_ CREDIT
201 MKT 1 $15.00 $15.00
201 SHP 1 $25.00 $25.00
202 SAL 2 $15.00 $25.00
203 SAL 1 $25.00 $25.00
203 SHP 2 $25.00 $25.00
(null) ACT 1 (null) (null)
(null) EXE 1 $30.00 $30.00

Notes

06

206

The where clause is applied first. In this example it eliminates the row
for employee 202 from further consideration.

Groups of rows are formed that have identical values in both the
manager_id and dept_code columns.

Then the column functions in the select clause are evaluated sepa-
rately for each group. The result table contains one row for each
group. The department code is added to the select clause to fully
identify each group in the listing of the result table.

As a last step, the rows of the result table are sorted on the two col-
umns used to create the groups. Although the order of these columns
does not matter in the group by clause, it does matter in the order
by clause. Because the manager_ id is listed first in the order by
clause, the primary sort is done on that column.

444

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

12-4 Null groups when there are
two or more grouping columns

This section shows what happens when the rows of a table are grouped on
two or more columns and several of those columns contain nulls. In this
situation, the nulls are handled as if “null” was a specific value, like any
other value. That is, if two nulls occur within a single grouping column,
they are handled as if they have the same value and they are placed within
the same group. If they occur in different grouping columns, they are han-
dled separately, as any other values would be. Actually, this occurred in the
previous section, but this section emphasizes the point.

In effect, this can create several Other categories within the summarization,
but all the nulls are not placed into a single Other category. That is how the
process is sometimes described, and that description is wrong. It is correct
only when there is a single grouping column.

If you are grouping by more than one column and you truly want an Other
category, you will need to create it yourself as a separate step. SQL will not
create it for you. Usually you will not need to do this. However, you should
pay careful attention to the sort order of the rows if they have any nulls in
the grouping columns.

A null in the data is handled in two different ways within a grouped sum-
marization. A null in a grouping column is handled as if it is a specific value
and it is placed in a null group. However, a null in a column that is being
summarized is ignored by the column functions that do the summarization.

In the following example, the groups are formed on col_2 and col_3.
Both of these columns contain nulls. There are five separate groups that
contain a null group in one of the two grouping columns. In the result
table, each of these groups creates a separate row. In effect, this gives five
Other categories.

Then the data in col_4 and col_5 are summarized for each of the groups.
When the data is summarized with the count (*) function, we could think
that the nulls are being counted, although it is really the rows that are
being counted for each group. When the data are summarized with the
count (column) function, the nulls are completely ignored.

Within this example we can see that nulls in grouping columns are handled
differently from nulls in summarized columns.

DIVIDING A TABLE INTO GROUPS OF ROWS

Beginning table (sec1204 table) divided into groups

445

Task

Group the following table on the two columns, col_2 and col_3. For each

group of rows, calculate
m The number of rows in the group
m The number of rows that have data in column col_4

m The number of rows that have data in column col_5

Oracle & Access SOL

select col_2, O
col 3, ©
count(¥*),
count (col_4),

count (col_5)
from secl204

group by col_2,
col 3 @
order by col_2,
col_3;

PK_1 COL_2 COL_3 C(COL_4 COL_5
1 A Y M (null)
2 A Y (null) (null)
3 A Z M (null)
4 A Z (null) (null)
5 A (null) M (null)
6 A (null) (null) (null)
7 B Y M (null)
8 B Y (null) (null)
9 B Z M (null)

10 B Z (null) (null)
11 B (null) M (null)
12 B (null) (null) (null)
13 (null) Y M (null)
14 (null) Y (null) (null)
15 (null) Z M (null)
16 (null) Z (null) (null)
17 (null) (null) M (null)
18 (null) (null) (null) (null)

446 CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

Result table

COL_2 COL_3 COUNT (*) COUNT (COL_4) COUNT (COL_5)

DD NN NN
PR RRPRRPRR R R
OO0 o0ooooooo

This is what does not happen when the beginning table (sec1204 table) is divided
into groups. Here all the rows with a null in either grouping column form a single
group. If SOL worked this way, there would be only one Other category.

PK_1 COL_2 COL_3 COL_4 COL_5

1A Y M (null)
2 A Y (null) (null)
3 A Z M (null)
4 A Z (null) (null)
7 B Y M (null)
8 B Y (null) (null)
9 B Z M (null)
10 B Z (null) (null)
5 A (null) M (null)®
6 A (null) (null) (null)
11 B (null) M (null)
12 B (null) (null) (null)
13 (null) Y M (null)
14 (null) Y (null) (null)
15 (null) Z M (null)
16 (null) Z (null) (null)
17 (null) (null) M (null)
18 (null) (null) (null) (null)

DIVIDING A TABLE INTO GROUPS OF ROWS 447

Notes

©® col_2 and col_3 are used to group the data from the beginning table.
They are listed in the select clause so that the result table makes
sense.

® The group by clause lists both col_2 and col_3.

® The highlighted rows in the result table show the five separate null
groups. In more general terms, these are five separate Other categories.

0 This is what does not happen. SQL does not form a single group out of
all the rows that have a null in one of the grouping columns.

Check your understanding

Use table sec1202. Write a select statement that groups the rows by the
value in col_1 and col_2. For each group determine the sum of the values
in col_3.

12-5 Summarized data cannot be
mixed with nonsummarized data
in the same select statement

A select statement cannot list both summarized data and detail data
because the output of a select statement must be like a table. I have been
calling this the result table. It must have columns and rows. In particular,
each of the columns must have the same number of rows.

The example in this section shows a select statement that does not work
and produces an error message because this select statement is mixing
summarized data with detail data.

The second and third columns of the select clause are detail data. They are
first_name and last_name. No column functions are applied to these col-
umns and they are not listed in the group by clause. That is why they yield
detail data. If the select clause listed only these columns, the result table
would have 10 rows. Each row of the result table would come from a single
row in the beginning table. The result table would be similar to the following:

FIRST_NAME LAST_NAME

(10 rows of detail data)

448

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

The first and fourth columns of the select clause are summarized data.
The first column is manager_id. This column is also listed in the group by
clause, so it is a grouping column, which is summarized data. The fourth
column uses the max column function, so it is also summarized data. If the
select clause listed only these columns, the result table would have four
rows. Each of these rows would summarize all the rows with a particular
manager_id. There are four different values in the manager_id column, so
the result table would be similar to the following:

MANAGER_ID MAX (CREDIT_LIMIT)

(4 rows of summarized data)

These two tables cannot be combined to form a single table because the
columns contain different numbers of rows. For this reason, you are not
allowed to mix summarized data and detail data in the same select
statement.

Error messages

This section also shows that the error messages produced by Oracle and
Access do not always tell you specifically what the error is or how to fix it.
This is a problem with almost all computer software, not just Oracle and
Access. It is very difficult for any type of computer software to tell you what
the problems are in your code. Often when the computer detects a prob-
lem, it is genuinely confused, so it gives you a confused error message. It
may point to the wrong location of the error — often the error actually
occurs on the line above or below where the error message says it occurs.
The error message may say that one thing is wrong, when the problem is
something else entirely. The one thing you can count on is that when an
error message appears, there is actually an error of some sort somewhere
in your code. This is one of the basic problems you must learn to deal with
in any type of computer programming.

The error messages shown in this section illustrate another difficulty. These
error messages are specific to the problem and they do indicate accurately
where the error first occurs. However, they are worded in a manner that is
difficult to understand.

DIVIDING A TABLE INTO GROUPS OF ROWS

How to solve the problem

449

At times, you will attempt to mix summarized data with detail data. It hap-
pens to everyone. You will receive the error messages shown here. The
question is, how do you move on and deal with the problem?

On a technical level, there are two main techniques you can use. The one
you choose depends on what you are trying to do. The next two sections
show these techniques with the SQL code used in this section. The tech-

niques are as follows:

1. Add more columns to the group by clause. Add all the columns that
contain detail data.

2. Separate your query into two separate select statements, one for
summarized data and the other for detail data.

Task

Show the error that occurs when a summarized column and a nonsumma-
rized column both occur within the same select statement.

Oracle & Access SQL: This contains an error

select manager_id,
first_name,
last_name,

(1
(2
(2

max(credit_limit) ©

from 1_employees

group by manager_ id
order by manager_id;

Beginning table (1_employees table)

EMPLOYEE
ID

FIRST_NAME LAST_NAME
SUSAN BROWN
JIM KERN
MARTHA WOODS
ELLEN OWENS
HENRY PERKINS
CAROL ROSE

DAN SMITH
FRED CAMPBELL
PAULA JACOBS
NANCY HOFFMAN

DEPT
CODE

HIRE_DATE

01-JUN-1998
16-AUG-1999
02-FEB-2009
01-JUL-2008
01-MAR-2006
(null)

01-DEC-2008
01-APR-2008
17-MAR-1999
16-FEB-2007

CREDIT
LIMIT

PHONE MANAGER
NUMBER ID
3484 (null)

8722 201
7591 201
6830 202
5286 202
(null) (null)

2259 203
1752 203
3357 201
2974 203

450

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

Oracle error messuge o

FIRST_ NAME,
*

ERROR at line 2:
ORA-00979: not a GROUP BY expression

Access error messuge (5]

Microsoft Office Access

' You tried to execute a query that does not indude the specified expression
. ‘first_name' as part of an aggregate function.

ok | | Hep |

Notes

2}

The manager_id column is a grouping column because it is listed in the
group by clause.

The first_name and last_name columns are detail data. They are not
summarized.

The maximum_credit_limit column is summarized data because it
applies a column function.

In Oracle the asterisk under first_name indicates that this is the loca-
tion of the first error. The message, “not a GROUP BY expression,” is
meant to suggest that you should put first_name in the group by
clause.

Sometimes Oracle displays a more cryptic message, “not a single-group
group function,” to indicate that you are trying to mix summarized data
with detail data.

In Access, the error message can also be confusing.

DIVIDING A TABLE INTO GROUPS OF ROWS 451

12-6 Solution 1: Add more columns
to the group by clause

This section shows one technique for dealing with the error that occurred
in the SQL code of section 12-5. In this technique, all the columns of the
select clause that are not column functions are placed in the group by
clause.

This technique works, in the sense that it produces SQL code that runs.
However, it might or might not produce the result you want. It can add
many more groups to your result, which can affect the level of summariza-
tion.

In this example several new groups have been formed by adding the
first_name and last_name columns to the group by clause. In fact a
separate group has been created for each employee, because there are no
two employees with the same name. Each of these groups has only one
row, so the column function max(credit_limit) produces the same
result as simply listing the credit_limit column. It is up to you to decide
if this is the result you want.

Task

Show one technique to deal with the error in the SQL code of section 12-5.
This technique adds more columns to the group by clause. (I highlighted the
changes to the code))

Oracle & Access SOL

select manager_id,
first _name, O
last_name, O
max (credit_limit)
from 1_employees
group by manager_id,
first_name, @
last name ©
order by manager_id;

452 CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID

201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP O01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Result table

MANAGER

ID FIRST _NAME LAST_NAME MAX(CREDIT_LIMIT)

201 JIM KERN 25
201 MARTHA WOODS 25
201 PAULA JACOBS 15
202 ELLEN OWENS 15
202 HENRY PERKINS 25
203 DAN SMITH 25
203 FRED CAMPBELL 25
203 NANCY HOFFMAN 25

(null) CAROL ROSE (null)

(null) SUSAN BROWN 30

Notes

® First_name and last_name were detail data in the select statement
in the previous section. Here they are summarized data because they
appear in the group by clause.

® First_name and last_name are added to the group by clause.

12-7 Solution 2: Divide the query into
two separate select statements

This section shows another technique for dealing with the error that
occurred in the SQL code of section 12-5. In this technique, the query is
divided into two separate select statements, one statement for summa-
rized data and one for detail data.

DIVIDING A TABLE INTO GROUPS OF ROWS 453

In the statement for summarized data all the columns of detail data are
removed from the select clause. No other clause needs to be changed. In
the statement for the detail data all the column functions are removed and
the group by clause is removed. This gets both of the select statements
to run and produce results. Then it is up to you to decide how to put those
results together to express your meaning.

Task

Show another technique to deal with the error in the SQL code of section
12-5. This technique divides the select statement into two separate select
statements — one for summarized data and one for detail data.

Oracle & Access SQL: Statement 1 — For summarized data

select manager_id,
max(credit_limit)

from 1 _employees

group by manager_id

order by manager_ id;

Beginning table (1_employees table)

EMPLOYEE DEPT CREDIT PHONE MANAGER
ID FIRST NAME LAST NAME CODE HIRE_DATE LIMIT NUMBER ID

201 SUSAN BROWN EXE 01-JUN-1998 $30.00 3484 (null)
202 JIM KERN SAL 16-AUG-1999 $25.00 8722 201
203 MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
204 ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
205 HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
206 CAROL ROSE ACT (null) (null) (null) (null)
207 DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
208 FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
209 PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
210 NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Result table

MANAGER

ID MAX(CREDIT_LIMIT)

201 25
202 25
203 25

454 CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION
Oracle & Access SOL: Statement 2 — For detail data
select manager_id,
first_ name,
last_name
from 1_employees
order by manager id;
Result table
MANAGER
ID FIRST_NAME LAST NAME
201 JIM KERN
201 MARTHA WOODS
201 PAULA JACOBS
202 ELLEN OWENS
202 HENRY PERKINS
203 DAN SMITH
203 FRED CAMPBELL
203 NANCY HOFFMAN
(null) SUSAN BROWN
(null) CAROL ROSE

Check your understanding

Suppose you wanted to show all the data in table sec1202 and you also
wanted to show the total for col_3. Could you do this with SQL?

The answer is no. The best you can do is to run two queries. One would
show the data with:

select *
from secl202;

The other would show the total with:

select sum(col_3) as grand_ total
from secl202;

Then, if you were desperate, you could paste the two pieces of paper
together. Or you could do the same thing in SQL using a union.

Fortunately, most SQL products give you a better way. There is usually
some sort of report level to the software that will do totals and subtotals
for you.

DIVIDING A TABLE INTO GROUPS OF ROWS 455

12-8 How to create a report with
subtotals and a grand total

A common type of report shows details and also has subtotals and a grand
total. How can SQL produce a report like this? The previous sections have
stated that you cannot get both detail data and summarized data from a
single select statement, so it will take more than a single select state-
ment to produce such a report.

The usual way to produce a report like this is to have SQL work together
with another layer of reporting software. SQL supplies the detail data
sorted in the correct order. The other layer of software takes care of the con-
trol breaks (where the subtotals are placed), the subtotals, and the grand
total.

This arrangement, having SQL work together with another layer of software,
goes back to the idea of using SQL as part of a back-end data server. The
plan is for SQL to deal with the information level while the other layer of
software deals with the presentation level.

What can you use for this other layer of software? There are many options.
Oracle SQL*Plus, which is used in the SQL Command Line environment,
can create a report with totals and subtotals. Access can also, using its
reports. Another option is a software package called Crystal Reports.

Oracle has some special features for totals and subtotals

Oracle has developed two special functions for doing totals and subtotals
on the SQL level. They are called rollup and cube. I do not explain them
here because they are not part of standard SQL. If you want to find out
about them you can find information in the documentation or on the Web.

12-9 Counting to zero, part 2

This is part two of a series. We want to count the number of lunches each
employee will attend and list all the employees, even the two who are not
attending any lunches. For those two, we want to put a zero in the
number_of_lunches column. We will achieve this goal in chapter 14.
Right now we are building up to it.

Section 11-7 is part one of this series. There we showed that the
count (column) function is capable of counting to zero. In this part we use
the 1_lunches table and that column function to count the number of

456 CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

lunches for each employee who is listed in that table. This is a good first try
that gets most of the answer.

When we examine the result table we see some success and also that some
improvement is needed. The success is that it counts the number of
lunches for the employees who are attending at least one lunch. The
changes we want to make are to list the two employees who are not attend-
ing any lunches and to list the names of all the employees.

Task

From the 1_1lunches table, count the number of lunches each employee will
attend.

Oracle & Access SOL

select employee_id,
count (lunch_id) as number of_ lunches
from 1_lunches
group by employee_id
order by employee_ id;

Beginning table (1_lunches table)

LUNCH EMPLOYEE

LUNCH_ID DATE ID DATE_ENTERE
1 16-NOV-2011 201 13-0CT-2011
2 16-NOV-2011 207 13-0CT-2011
3 16-NOV-2011 203 13-0CT-2011
4 16-NOV-2011 204 13-0CT-2011
6 16-NOV-2011 202 13-0CT-2011
7 16-NOV-2011 210 13-0CT-2011
8 25-NOV-2011 201 14-0CT-2011
9 25-NOV-2011 208 14-0CT-2011
12 25-NOV-2011 204 14-0CT-2011
13 25-NOV-2011 207 18-0CT-2011
15 25-NOV-2011 205 21-0CT-2011
16 05-DEC-2011 201 21-0CT-2011
17 05-DEC-2011 210 21-0CT-2011
20 05-DEC-2011 205 24-0CT-2011
21 05-DEC-2011 203 24-0CT-2011
22 05-DEC-2011 208 24-0CT-2011

DIVIDING A TABLE INTO GROUPS OF ROWS 457

Result table @

EMPLOYEE

ID NUMBER_OF_LUNCHES

DD NDNNDNDDNDRE W

Notes

O There are no rows for employees 206 or 209.

12-10 Counting to zero, part 3

To get to the final result of this “Counting to zero” series, you need to use two
techniques: summarization and outer join. Because we have talked about
summarization in this chapter, I want you to see the summarization part of
the solution, so for now I am giving you the outer join part. In chapter 14, |
show you how to create it yourself. This outer join adds two rows to the
1_1lunches table, one for employee 206 and one for employee 209. These
rows have a null in the 1unch_id and lunch_date columns.

The one thing that is a bit tricky is the group by clause. You might think it
is enough to have just the employee_id column in this clause because
that is what really forms the groups. However, then we would be mixing
summarized data (employee_id and number_of_lunches) with detail
data (first_name and last_name), which we are not allowed to do.

You might say that we know that there is only one first name and one last
name for each employee ID because employee_id is the primary key of the
1_employees table. There is some validity to that point, but that level of
intelligence is not built into SQL.

The computer does not know that there is only one first name and one last
name for each employee ID, or at least it is not thinking about that fact
when it processes this select statement. SQL requires you to put
first_name and last_name into the group by clause. Then all the col-
umns in the select clause are summarized data.

458 CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

Task

Count the number of lunches each employee will attend. List the employee
IDs and names of all the employees.

Oracle & Access SOL

select employee_id,
first_name, O
last_name, O
count (lunch_id) as number_of_lunches
from secl210
group by employee_id,
first_name,
last_name
order by employee_id;

Beginning table (sec1210)

EMPLOYEE LUNCH
ID FIRST_NAME LAST_ NAME LUNCH_ID DATE

201 SUSAN BROWN 1 16-NOV-2011
201 SUSAN BROWN 8 25-NOV-2011
201 SUSAN BROWN 16 05-DEC-2011
202 JIM KERN 6 16-NOV-2011
203 MARTHA WOODS 3 16-NOV-2011
203 MARTHA WOODS 21 05-DEC-2011
204 ELLEN OWENS 12 25-NOV-2011
205 HENRY PERKINS 15 25-NOV-2011
205 HENRY PERKINS 20 05-DEC-2011
206 CAROL ROSE (null) (null) (2]
207 DAN SMITH 2 16-NOV-2011
207 DAN SMITH 4 16-NOV-2011
207 DAN SMITH 13 25-NOV-2011
208 FRED CAMPBELL 9 25-NOV-2011
208 FRED CAMPBELL 22 05-DEC-2011
209 PAULA JACOBS (null) (null) (2]
210 NANCY HOFFMAN 7 16-NOV-2011

210 NANCY HOFFMAN 17 05-DEC-2011

ELIMINATING SOME OF THE SUMMARIZED DATA 459

Result table
EMPLOYEE FIRST LAST

ID NAME NAME NUMBER_OF LUNCHES
201 SUSAN BROWN 3
202 JIM KERN 1
203 MARTHA WOODS 2
204 ELLEN OWENS 2
205 HENRY PERKINS 2
206 CAROL ROSE 0 ®
207 DAN SMITH 2
208 FRED CAMPBELL 2
209 PAULA JACOBS 0 ©®
210 NANCY HOFFMAN 2

Notes

©® We must add the first_name and last_name to the group by clause.
® These new rows are created by an outer join.

® All the employees are shown. A zero is created for the two people who
are not attending any lunches.

Eliminating Some of the Summarized Data

After data have been summarized, it is possible to eliminate some of the
rows of the result. This is done with the having clause of a select state-
ment. We might do this if we only want to see the largest categories or the
most relevant portion of the data.

Often by the time data are grouped and summarized, the result table is
only a few pages long and we do not object to looking at the whole thing. In
that case, we do not need a having clause.

When there are many groups in the summarization, the having clause can
be a convenient way to focus on the ones in which we are most interested.

460

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

12-11 The having clause

There is one more clause in the select statement that we have not yet dis-
cussed: the having clause. When the result table contains data that are
grouped and summarized, the having clause can eliminate some of the
groups from the result table. The groups are still formed and all the calcu-
lations and summarizations are done, but they are deleted at the end of the
process.

The example in this section shows a query with a having clause that elimi-
nates the foods for which fewer than 10 servings have been ordered.

For the data shown here, only a few rows are eliminated from the result
table. The having clause is usually used with a larger amount of data. For
instance, out of 100 employees, most of them would only attend one lunch.
The having clause can help you find the few people who are attending two
or more lunches. This clause is often used to find exceptions in the data.

The having clause is always used with a group by clause, but a group by
clause is often used alone. As the following code shows, the having clause
is written directly after the group by clause and before the order by
clause.

Task

From the 1_lunch_items table, list the supplier ID and product code (these
identify a food) of all the foods for which 10 servings or more have been
ordered.

Oracle & Access SOL

select supplier_id,
product_code,
sum(quantity) as total_servings
from 1 _lunch items
group by supplier id,
product_code
having sum(quantity) >= 10 ©
order by supplier_id,
product_code;

ELIMINATING SOME OF THE SUMMARIZED DATA 461

Beginning table (1_lunch_items table) ®

SUPPLIER PRODUCT

LUNCH_ID ITEM_NUMBER ID CODE QUANTITY
1 1 ASP FS 1
1 2 ASP SwW 2
1 3 JBR VR 2
2 1 ASP SwW 2
2 2 FRV FF 1
2 3 JBR VR 2
2 4 VSB AS 1
3 1 ASP FS 1
3 2 CBC GS 1
3 3 FRV FF 1
3 4 JBR VR 1
3 5 JBR AS 1

(and many more rows)

Result table before the having clause is applied

SUPPLIER PRODUCT

ID CODE TOTAL_SERVINGS
ASP FS 9
ASP SP 11
ASP SwW 7
CBC GS 10
CBC SW 5
FRV FF 10
JBR AS 11
JBR VR 17
VSB AS 6

Result table after the having clause is applied ©

SUPPLIER PRODUCT

ID CODE TOTAL_SERVINGS
ASP SP 11
CBC GS 10
FRV FF 10
JBR AS 11

462

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

Notes

© This is the having clause. You often write a column function within this
clause.

® The rows of the beginning table are grouped and processed in the same
way, as if the having clause were not present.

® The having clause eliminates rows from the result table.

Check your understanding

Table sec1211 has three columns: row_id, col_1, and col_2. Group on
col_1 and get the sum of col_2. Add a having clause to show only the
rows of the result table where the sum is greater than 20.

12-12 The having clause contrasted
with the where clause

The having clause is similar to the where clause in the following ways:

They both eliminate data from the result table.

2. They both set conditions that some data will pass and other data
will not pass.

3. A null in the data can never satisfy a condition in either a having
clause or a where clause. The only exception occurs with the is
null condition.

The having clause is different from the where clause in the following ways:

1. The where clause can only eliminate rows from the beginning table,
the raw data, before any other processing occurs.

2. The having clause can eliminate data that have been grouped and
summarized, after most of the processing has already taken place.

3. The where clause cannot use column functions in the conditions it
sets.

4. The having clause can use column functions in its conditions.

ELIMINATING SOME OF THE SUMMARIZED DATA 463

12-13 The whole process of the
select statement on a single table

Here is a summary of the entire process that a select statement describes
when it operates on a single table. All six clauses of the select statement
are shown here. This is an idealized model of the processing. The computer
is allowed to use shortcuts in its processing as long as it gets the same
result that this idealized model would produce.

Step 1: The from clause chooses the beginning table.

Step 2: The row functions are calculated. In effect, this adds new columns
to the beginning table.

Step 3: The where clause chooses which rows of data to process from the
table. Any rows that do not satisfy its condition are eliminated.

Step 4: The select clause chooses which columns of data to process and
list in the result table. The process also includes other columns used in the
group by, having, and order by clauses. Any other columns are eliminated.

Step 5: The group by clause separates the rows into different groups.
Step 6: The column functions summarize the data in each group.

Step 7: The having clause chooses which rows of summarized data to put
in the result table.

Step 8: The order by clause chooses which columns are used to sort the
rows of the result table for its presentation.

12-14 The having clause does not add any more
power to the select statement

The having clause is sometimes convenient to use, but it is never
required. At best it can save us one step, one SQL statement. To eliminate
a having clause use the following procedure:

Step 1: Create a view or a table from all the data after they are grouped
and summarized. Do not include the having clause.

Step 2: Write a select statement from that view. In this select statement
a where clause can be used to do the same work that the having clause
did before.

464 CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

Task

Show an example of replacing a having clause with a two-step process.
Rewrite the SQL code of section 12-11 and eliminate the having clause.

Oracle SQL:
Step 1 — Create a view from the grouped and summarized data

create or replace view secl2l4_view as
select supplier_id,
product_code,
sum(quantity) as total_servings
from 1_lunch items
group by supplier id,
product_code;

Access SOL:
Step 1 — Create a view from the grouped and summarized data

Step 1, Part 1: Enter this select statement in the SQL window:

select supplier_id,
product_code,
sum(quantity) as total_servings
from 1_lunch items
group by supplier id,
product_code;

Step 1, Part 2: Save this query. Name it sec1214_view.

Beginning table (1_lunch_items table)

SUPPLIER PRODUCT

LUNCH_ID ITEM_NUMBER ID CODE QUANTITY
1 1 ASP FS 1
1 2 ASP SwW 2
1 3 JBR VR 2
2 1 ASP SwW 2
2 2 FRV FF 1
2 3 JBR VR 2
2 4 VSB AS 1
3 1 ASP FS 1
3 2 CBC GS 1
3 3 FRV FF 1
3 4 JBR VR 1
3 5 JBR AS 1

(and many more rows)

ELIMINATING SOME OF THE SUMMARIZED DATA 465

View created by step 1

SUPPLIER PRODUCT

ID CODE TOTAL_SERVINGS
ASP FS 9
ASP SP 11
ASP SW 7
CBC GS 10
CBC Sw 5
FRV FF 10
JBR AS 11
JBR VR 17
VSB AS 6

Orade & Access SQL: Step 2

select *

from secl2l4_view

where total_servings >= 10 ©

order by supplier id,
product_code;

Result table from step 2

SUPPLIER PRODUCT

ID CODE TOTAL_SERVINGS
ASP SP 11
CBC GS 10
FRV FF 10
JBR AS 11
JBR VR 17

Notes

© This where clause does the same work that the having clause is doing
in section 12-11

466

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

12-15 Use a where clause to eliminate raw data

Sometimes you can use either a where clause or a having clause to elimi-
nate the data you do not want to see. When you have a choice like this, it is
always better to use a where clause. This will let your query process more
efficiently because the data are eliminated earlier in the process.

You should only use a having clause to eliminate data that are summa-
rized, not raw data from the beginning table.

In theory, it should not make a difference whether we code a condition in
the where clause or in the having clause. People should specify only the
result. The optimizer is responsible for determining the most efficient way
to obtain the result. However, optimizers are not always perfect and most
do not even attempt to make a change of this type.

The code in this section shows an example of a having clause that can be
replaced by a where clause.

Task

For each manager_id between 201 and 203, show the number of employees
the manager supervises.

Oracle & Access SQOL: Using a having clause

select manager id,
count (*)
from 1_employees
group by manager id
having manager_id between 201 and 203; ©

Orade & Access SOL:
Gets the sume result more efficiently by using a where clause

select manager_id,
count (*)
from 1 _employees
where manager_id between 201 and 203 @
group by manager id;

ELIMINATING SOME OF THE SUMMARIZED DATA

Beginning table (1_employees)

467

EMPLOYEE
ID

PHONE MANAGER
NUMBER ID

DEPT CREDIT
FIRST_NAME LAST NAME CODE HIRE_DATE LIMIT
SUSAN BROWN EXE 01-JUN-1998 $30.00
JIM KERN SAL 16-AUG-1999 $25.00 8722 201
MARTHA WOODS SHP 02-FEB-2009 $25.00 7591 201
ELLEN OWENS SAL 01-JUL-2008 $15.00 6830 202
HENRY PERKINS SAL 01-MAR-2006 $25.00 5286 202
CAROL ROSE ACT (null) (null) (null) (null)
DAN SMITH SHP 01-DEC-2008 $25.00 2259 203
FRED CAMPBELL SHP 01-APR-2008 $25.00 1752 203
PAULA JACOBS MKT 17-MAR-1999 $15.00 3357 201
NANCY HOFFMAN SAL 16-FEB-2007 $25.00 2974 203

Result table — Both select statements give the same result

MANAGER
ID COUNT(*)
201 3
202 2
203 3
Notes

© This shows a condition limiting the data written in the having clause.

® This shows the same condition written in the where clause.

12-16 How to apply one column function to
another column function and get around

other restrictions

Some people say you cannot apply one column function to another column
function. I say you can do it, but it requires a series of steps. In most SQL
products it cannot be done in a single select statement.

The problem SQL in the following example does not run in either Oracle or
Access. What I am trying to do in this code is to find the most popular food,
the one that been ordered the most. The problem seems to be that I cannot
apply the max column function to the sum column function.

468

CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

To get around this restriction [will solve the problem in three steps. First, I
will create a view showing the total quantity of each food item that has
been ordered for the lunches. The sum column function will be used in cre-
ating this view.

In step 2, I find the maximum value in that sum column. In step 3 I find all
the rows of the view | created in step 1| that have the maximum value. In
this example there is only one row that has the maximum value, but in
other examples there could be several rows that all have the same maximal
value.

How to work around other restrictions on column functions

You might encounter other “restrictions” on what you can do with column
functions. In my experience, | have been able to get around all the restric-
tions by just dividing the problem into two or more steps.

Task

Show how to divide the following problem SQL into a series of steps that will
run. The problem area is highlighted.

Problem SOL

select supplier_id,
product_code,
max (sum(quantity))
from 1_lunch items
group by supplier_id,
product_code,
sum(quantity);

Oracle SQL: Step 1 — Create a view using one column function

create or replace view secl216_view as
select supplier_id,
product_code,
sum(quantity) as total_quantity
from 1_lunch items
group by supplier id,
product_code;

ELIMINATING SOME OF THE SUMMARIZED DATA 469

Access SQL: Step 1 — Create a view using one column function
Step 1, Part I: Enter this in the SQL window:

select supplier_id,
product_code,
sum(gquantity) as total_quantity
from 1 lunch_items
group by supplier_ id,
product_code;

Step 1, Part 2: Save the query. Name it sec1216_view.

Beginning table (1_lunch_items table)

SUPPLIER PRODUCT

LUNCH_ID ITEM_NUMBER ID CODE QUANTITY
1 1 ASP FS 1
1 2 ASP SwW 2
1 3 JBR VR 2
2 1 ASP Sw 2
2 2 FRV FF 1
2 3 JBR VR 2
2 4 VSB AS 1
3 1 ASP FS 1
3 2 CBC GS 1
3 3 FRV FF 1
3 4 JBR VR 1
3 5 JBR AS 1

(and many more rows)

View created in step 1 (sec1216_view)

SUPPLIER PRODUCT

ID CODE TOTAL_QUANTITY
ASP FS 9
ASP SP 11
ASP Sw 7
CBC GS 10
CBC SwW 5
FRV FF 10
JBR AS 11
JBR VR 17

470 CHAPTER 12 CONTROLLING THE LEVEL OF SUMMARIZATION

Oracle & Access SQL: Step 2 —
Apply the other column function to the view created in step 1

select max(total quantity)
from secl216_view;

Result table of step 2

MAX (TOTAL_QUANTITY)

Oracle & Access SQL: Step 3 — Finish the report

select supplier_id,
product_code,
total_quantity

from secl216_view

where total_quantity = 17;

Result table of step 3

SUPPLIER PRODUCT
ID CODE TOTAL_QUANTITY

KEY POINTS

Key Points

471

You can divide the rows of a table into several separate groups, then
summarize the rows in each group. The result table will have one row
for each group that is summarized.

The table can be either a data table or a view. Each row of the table
can belong to only one group.

If a single column of the table is used to group the rows, all the nulls
in that column are put into a single group. That is, all the nulls in that
column are handled as if they all had the same value. This one group
for all the unknown values is a true Other group.

If two or more columns are used to group the rows, all the nulls in a
single grouping column are put into a single group and handled as if
they were the same, but the nulls in different columns are kept sepa-
rate. This creates several different groups for the unknown values.

A result table that contains summarized data will contain only sum-
marized data. It cannot also contain raw data that are not summa-
rized. However, many SQL products have reports that can do this and
Oracle has the functions rollup and cube to do totals and subtotals.

Some rows can be dropped from a result table containing summa-
rized data. To do this you use the having clause of the select state-
ment. This clause can be a convenience, but it does not add any more
power to the select statement.

This page intentionally left blank

INNER JOINS

So far, we have obtained data from one table or view, some-
times adding a table of constants. In the next four chapters,
we discuss seven different ways to combine two tables. On a
conceptual level, the tables are combined first, which creates a
single table. Then the techniques we have discussed so far are
applied to get a final report from that table.

This chapter discusses inner joins, the most common way to
combine two tables.

473

Introduction 10 JOINS oottt 475

13-1 A query can use data from several tables 475
13-2 The best approach is to join two tablesatatime. 477
Inner Joinsof Two Tablesooo oo 479
13-3 Aone-to-onerelationship. 479
13-4 A many-to-one relationship 483
13-5 A one-to-many relationship 485
13-6 A many-to-many relationship. 487
13-7 Unmatched rows aredropped 489
13-8 Rows with a null in the matching column are dropped 491
13-9 Five ways to write the SQL for an innerjoin 493
Variations of the Join Condifion 495
13-10 A join using two or more matching columns 495
13-11 Ajoin using between to match on arange ofvalues. 497
13-12 A join using the Greater Than condition............... 499
13-13 Ajoin using arow function. 501
13-14 Writing the join condition in the fromclause 502
Applications of Joins. o 504
13-15 Lookuptables 504
13-16 Combining a join and selectionofdata 507
13-17 Using a join with summarization 510
13-18 How to find the primary key in the Oracle Data Dictionary. 512
13-19 Combining three or more tables with innerjoins 513

Key Points. e 515

Introduction to Joins

An inner join combines the data from two or more tables. The result of this
is a single table that is often quite large. The techniques you have learned
in previous chapters are then used to extract a small amount of data from
this large table.

An inner join used to just be called a join and many people still speak this
way, but now the terminology is changing. Outer joins have become an
official part of SQL. To distinguish what we used to call a join from an
outer join, we now use the term inner join. We discuss outer joins in the
next chapter.

13-1 A query can use data from several tables

Often, several different tables are used together in a select statement.
This is necessary when the data you need do not all exist in one table or
view. On a conceptual level, this process has two steps: First, the separate
tables are combined into a single table. Then the select statement oper-
ates on this table using any of the techniques we have discussed so far.

The following diagram shows these two steps. In the first step, four sepa-
rate tables of data are combined to form a single table that can be very
large. It may contain several copies of the four beginning tables in different
permutations and combinations. One row of any of the beginning tables
can be matched with many combinations of rows from the other tables.

In the second step, a report is extracted from the single table. It gathers a
few of the rows and a few of the columns of the table, applies row functions
and column functions to them, and sorts the result.

The single table that combines all the data might exist only in theory. It
might never be formed physically within the computer, either in memory or
on the disk. It might be too large for the computer to handle. However, the
final report that is produced must be the same as if this table were formed.
The computer is allowed to take shortcuts in the process, as long as they
do not affect the result.

The two steps shown here may be coded in SQL as a single select state-
ment, or each step can be a separate select statement. There are many
different ways to write the SQL statements, but the process is always fun-
damentally the same as the one shown in the following diagram.

475

476 CHAPTER 13 INNER JOINS

l l Step 1
\/ y

Result table

ABCD

Step 2

A query can use data from several tables.

In this model, in step 1 all the tables are joined at once into a single large
table. Then, in step 2, we extract a small amount of information from this
large table using the techniques described in the previous chapters.

INTRODUCTION TO JOINS 477

13-2 The best approach is to
join two tables at a time

You can combine several tables at one time, as shown in the previous sec-
tion. However, this process often becomes difficult to control and it is
prone to errors.

Often, the best technique is to combine the beginning tables two at a time.
The first step of this process combines two of the tables and each step after
that adds one additional table.

The following diagram shows this process with four beginning tables. This
shows the way the SQL code can be written. Each step in the diagram is a
separate SQL statement and the process is written as a series of three SQL
statements, each of which creates a table or view. Creating views is usually
more efficient.

Step la combines tables A and B. This can be coded as one select state-
ment and saved as a view.

Step 1b combines the result of step 1 with table C. This can also be coded
as a select statement and saved as a view.

Step 1c combines the result of step 2 with table D. The view this creates
combines the data from all four of the beginning tables. Together, the
three steps of this process are equivalent to the first step of the diagram in
the previous section.

Step 2 extracts a small amount of data using all the techniques we have
discussed so far.

You can understand a join of several tables as a series of steps that each
join two tables at a time. The presentation in the next few chapters is
focused on the process of combining just two tables.

A query can use data from several tables. In this model, in step 1 the tables
are joined two at a time to form a single large table. Then, in step 2, we
extract a small amount of information from this large table.

478

AB

Step 1b /

ABC

CHAPTER 13 INNER JOINS

Step 1c /

ABCD

Combining tables two at a time.

Step 2

Result table

INNER JOINS OF TWO TABLES 479

Inner Joins of Two Tables

The most common way to combine two tables is with an inner join. An
inner join strictly enforces the join condition. Any row without a matching
row in the other table is dropped from the result. Because of this, an inner
join may lose information.

13-3 A one-to-one relationship

This section shows a model case of combining two tables with an inner
join. This shows the technique that is always used, but avoids the complex-
ities, which we discuss later. For now, just focus on this simple example.

Rows from one table are matched with rows from the other table. There are
no hidden links between the two tables. The data in the tables determine
how to combine the rows. One column is chosen from each table. When
these columns have the same value, the rows are combined.

The Data

In the example that follows, the fruit number column (f_num) is chosen
from the fruits table and the c