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Introduction
to Software Patterns

Software patterns are reusable solutions to recurring problems that occur
during software development. For purposes in this book, we refer to soft-
ware patterns simply as patterns.

What makes a bright, experienced programmer so much more produc-
tive than a bright but inexperienced programmer? Experience. Experience
gives programmers wisdom. As programmers gain experience, they recog-
nize the similarity between new problems and those problems that they have
solved before. With even more experience, they recognize that the solutions
for similar problems follow recurring patterns. Experienced programmers
recognize the situations where these patterns apply and quickly draw on
existing solutions without having to stop, analyze the problems, and then
pose possible strategies.

When a programmer discovers a pattern, it’s just an insight. In most
cases, to go from a nonverbalized insight to a well-thought-out idea that
the programmer can clearly articulate is surprisingly difficult. It’s also an
extremely valuable step. When we understand a pattern well enough to put
it into words, we are able to intelligently combine it with other patterns.
More important, once put into words, a pattern can be used in discussions
among programmers who know the pattern. That allows programmers to
more effectively collaborate and combine their wisdom. It can also help to
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avoid the situation where programmers argue over various solutions to a
problem only to find out later that they were really thinking of the same
solution but expressing it in different ways.

Putting a pattern into words has an additional benefit for less experi-
enced programmers who have not yet discovered the pattern. Once a pat-
tern has been put into words, more experienced programmers can teach it
to programmers who are new to the pattern.

This book provides experienced programmers with a common vocab-
ulary to discuss patterns. It also allows programmers who have not yet dis-
covered a pattern to learn about the pattern.

Though this book includes a substantial breadth of patterns, addi-
tional patterns did not make it into this book. You, dear reader, may dis-
cover some of these patterns for yourself. Some patterns you discover may
be highly specialized and of interest to only a small number of people.
Other patterns may be of very broad interest and worthy of inclusion in a
future volume of this book. If you wish to communicate such a pattern to
me, my e-mail is mgrand@mindspring.com.

The patterns cataloged in this book convey constructive ways of orga-
nizing parts of the software development cycle. Other patterns that recur
in programs are not constructive. These types of patterns are called
AntiPatterns. Because AntiPatterns can cancel out the benefits of patterns,
this book does not attempt to catalog them.

Description of Patterns

Patterns are usually described using a format that includes the following
information:

® A description of the problem that includes a concrete example and a
solution specific to the concrete problem

® A summary of the forces that lead to the formulation of a general
solution

® A general solution

® The consequences, good and bad, of using the given solution to solve
a problem

® A list of related patterns

Pattern books differ in how they document patterns. The format used
in this book varies depending on which phase of the software life cycle the
pattern addresses. The patterns in this book are related to a few different
phases of the software life cycle. The pattern descriptions are organized
into the section headings described here. Because the nature of the pat-
terns varies, not every heading is used in every pattern.
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Pattern Name

Synopsis

Context

Forces

The Pattern Name section consists of the name of the pattern and a bibliogra-
phy reference that indicates where the pattern originated. Most patterns don’t
have any additional text under this heading. For those that do, this section
contains information about the derivation or general nature of the pattern.

The bibliography reference indicates where the ideas in the pattern
were first written in the form of a pattern. Because patterns are based on
established practices, in many cases there are other sources of the ideas in
the pattern other than the bibliography reference. Usually, the author of a
pattern is not the first person to discover the ideas that underlie the pat-
tern. In particular, I do not claim to be the first person to discover the
ideas presented in this book. Those patterns with a bibliographic reference
to this book merely indicate that I know of no other place where that par-
ticular set of ideas has been documented as a pattern. The bibliography
entry next to a pattern name is provided to help you trace the development
of the pattern itself, not the underlying ideas.

The Synopsis section provides a brief summary of the pattern—both the
essence of the problem that the pattern aims to solve and the solution pro-
vided by the pattern. The synopsis is primarily directed at experienced pro-
grammers who may recognize the pattern as one they already know, but
may not have had a name for. After recognizing the pattern from its name
and synopsis, it may be sufficient to skim over the rest of the pattern
description.

Don’t be discouraged if you don’t recognize a pattern from its name
and synopsis. Instead, read carefully through the rest of the pattern
description to better understand it.

The Context section describes the problem that the pattern addresses. For
most patterns, the problem is introduced in terms of a concrete example.
After presenting the problem in the example, the Context section suggests
a design solution for that problem.

The Forces section summarizes the considerations that lead to the prob-
lem’s general solution presented in the Solution section. The Forces sec-
tion also summarizes considerations that would lead you to forgo the
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solution. The reasons for not using a solution are as important as the rea-
sons for using a solution. Both are organized as bulleted points as follows:

© Reasons to use a solution are bulleted with a happy face.
® Reasons not to use a solution are bulleted with a sad face.

Solution
The Solution section is the core of the pattern. It describes a general-
purpose solution to the problem that the pattern addresses.
Consequences
The Consequences section explains the implications—good, bad, and neu-
tral—for using the solution. Most consequences are organized into bul-
leted points like this:
@ Good consequences are bulleted with a happy face.
® Neutral consequences are bulleted with a dot.
® Bad consequences are bulleted with a sad face.
Implementation

The Implementation section describes the important considerations to be
aware of when executing the solution. It may also describe some common
variations or simplifications of the solution. Some patterns may not have

an Implementation section because these concerns are not relevant.

Known Uses

The Known Uses section highlights some well-known uses for the pattern.

Code Example

The Code Example section contains a code example showing a sample
implementation for a design that uses the pattern. For some patterns, such
as Graphical User Interface (GUI) design patterns, a code example is not
relevant.

Related Patterns

The Related Patterns section contains a list of patterns that are related to
the pattern described.
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A Very Brief History of Patterns

The idea of software patterns originally came from the field of architec-
ture. An architect named Christopher Alexander wrote some revolutionary
books that describe patterns in building architecture and urban planning:

® A Pattern Language: Towns, Buildings, Construction (Oxford
University Press, 1977)
® The Timeless Way of Building (Oxford University Press, 1979)

The ideas presented in these books are applicable to a number of fields
outside of architecture, including software.

In 1987, Ward Cunningham and Kent Beck used some of Alexander’s
ideas to develop five patterns for user-interface design. They published a
paper on the Ul patterns at OOPSLA-87: Using Pattern Languages for
Object-Oriented Programs.

In the early 1990s, four authors—Erich Gamma, Richard Helm, John
Vlissides, and Ralph Johnson—began work on one of the most influential
computer books of this decade: Design Patterns. Published in 1994, the
book popularized the idea of patterns. Design Patterns is often called the
Gang of Four, or GoF, book.

This book you are reading represents an evolution of patterns and
objects since the GoF book was published. The GoF book used C++ and
SmallTalk for its examples. I use Java and take a rather Java-centric view
of most things. When the GoF book was written, the Unified Modeling
Language (UML) did not exist. It's now widely accepted as the preferred
notation for object-oriented analysis and design. Therefore, that is the
notation I use in this book.

Organization of This Book

This book follows my previous two works on Patterns in Java. The first vol-
ume focused exclusively on general-purpose design patterns. The second
volume moved away from design patterns to include a variety of patterns
used to assign responsibilities to classes, design GUIs, write code, and test
software.

This third volume contains design and architectural patterns for use
in distributed and enterprise applications. The topics include patterns
related to transaction design, distributed computing, concurrency, time,
and using databases with object-oriented programs.

As with my previous books on Java patterns, this one begins with a
brief description of the UML subset used to document the patterns. Chapter
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3, containing an overview of the software life cycle, provides the context in
which the patterns are used. Chapter 3 also offers a case study that includes
examples for using the patterns. The remaining chapters describe different
types of patterns.

The CD-ROM that accompanies this book contains all of the code
examples. In some cases, the examples on the CD-ROM are more complete
than those that appear in this book. The CD-ROM also contains trial ver-
sions of software related to the patterns.

The Java examples that appear in this book are based on JDK 1.3.



Overview of UML

The Unified Modeling Language (UML) is a notation that you can use for
object-oriented analysis and design. This chapter contains a brief introduc-
tion to the UML and to the subset and extensions of the UML that are used
in this book. For a complete description of the UML, see www.omg.org.

Books on UML define the pieces of information stored in instances of
a class as attributes; they define a class’s encapsulations of behavior as oper-
ations. Those terms, like UML, are not specific to any implementation lan-
guage. However, this book is not language neutral. It assumes that you are
using Java as your implementation language. This book also uses mostly
Java-specific terms rather than terms that are language neutral but less
familiar to Java programmers. For example, I use the words attribute and
variable interchangeably, preferring the Java-specific term, variable. T use
the words operation and method interchangeably, preferring the Java-
specific term, method.

UML defines a number of different kinds of diagrams. The rest of this
chapter is organized into sections that describe each of those diagrams and
the elements that appear in them.

If you are experienced with object-oriented design, you will find most
of the concepts that underlie the UML notation to be familiar. If you find
many of the concepts unfamiliar, read only as much of this chapter as you

7
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feel comfortable with. In later chapters, if a UML diagram contains some-
thing you want explained, return to Chapter 2 and find a diagram that con-
tains a similar UML element.

Class Diagram

A class diagram is a diagram that shows classes, interfaces, and their
relationships. The most basic element of a class diagram is a class.
Figure 2.1 shows many of the features that a class can have within a
class diagram.

Classes are drawn as rectangles. The rectangles can be divided into
two or three compartments. The class rectangle shown in Figure 2.1 has
three compartments. The top compartment contains the name of the class.
The middle compartment lists the class’s variables. The bottom compart-
ment lists the class’s methods.

The symbols that precede each variable and method are visibility indi-
cators. The possible visibility indicators and their meanings are as follows:

+ Public
# Protected
— Private

The variables in the middle compartment are shown as follows:
visibilityIndicator name : type

Therefore, the two variables shown in the class in Figure 2.1 are pri-
vate variables. The name of the first variable is instance and its type is
AudioClipManager. The name of the second variable is prevclip and its
type is AudioClip.

AudioClipManager

-instance:AudioClipManager
-prevClip:Audioclip

«constructor»

-AudioClipManager( )

«MmISC»

+getinstance( ):AudioClipManager
+play(:AudioClip)
+loop(:AudioClip)

+stop( )

FIGURE 2.1 Basic class.
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Though not shown in Figure 2.1, an initial value can be indicated for
a variable by following the variable’s type with an equal sign followed by
the value like this:

ShutDown:boolean = false

You will notice that the first variable shown in the class is underlined.
If a variable is underlined, that means it is a static variable. This applies to
methods, too. Underlined methods are static methods.

The methods in the bottom compartment are shown as follows:

visibilityIndicator name ( formalParameters ) : returnType

The getInstance method shown in the class in Figure 2.1 returns an
AudioClipManager object.

The UML indicates a void method by leaving out the ": returnType"
from a method to indicate that it does not return anything. Therefore, the
stop method shown in the class in Figure 2.1 does not return any result.

A method’s formal parameters consists of a name and type like this:

setLength (length:int)
If a method has multiple parameters, commas separate them:
setPosition(x:int, y:int)

Two of the methods in the class shown in Figure 2.1 are preceded by
a word in guillemets:

<<constructor>>

In UML, drawing a word in guillemets is called a stereotype. A stereo-
type is used like an adjective to modify what comes after it. The con-
structor stereotype indicates that the methods that follow it are
constructors. The misc stereotype indicates that the methods that come
after it are regular methods. Additional uses for stereotypes are described
later in this chapter.

One last element that appears in the class shown in Figure 2.1 is an
ellipsis (. . .). If an ellipsis appears in the bottom compartment of a class,
it means that the class has additional methods not shown in the diagram.
If an ellipsis appears in the middle compartment of a class, the class has
additional variables not shown in the diagram.

Often, it is not necessary or helpful to show as many details of a class
as are shown in Figure 2.1. Figure 2.2 shows a class that is drawn with
only two compartments:

When a class is drawn with only two compartments as shown in
Figure 2.2, its top compartment contains its name and its bottom compart-
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AudioClipManager

«constructor»

-AudioClipManager( )

«Misc»

+getinstance( ):AudioClipManager
+play(:AudioClip)
+loop(:AudioClip)

+stop()

FIGURE 2.2 A two-compartment class.

ment shows its methods. If a class is drawn with only two compartments,
it simply means that its variables are not shown. It does not mean that it
has no variables.

The visibility indicators may be omitted from methods and variables.
When a method or variable is shown without a visibility indicator, that
means only that there is no indication of the method’s or variable’s visibil-
ity. It does not imply that the methods or variables are public, protected, or
private.

A method’s parameters may be omitted if their return values are also
omitted. For example, the visibility indicators and method parameters are
omitted from the class shown in Figure 2.3.

The simplest form of a class contains only one compartment with the
class name, as shown in Figure 2.4.

A one-compartment representation of a class merely identifies the class.
It provides no indication about what variables or methods the class has.

Interfaces are drawn in a manner similar to classes. The difference
is that the name in the top compartment is preceded by an interface
stereotype. Figure 2.5 is an example of an interface.

Classes and interfaces are important elements of class diagrams. The
other elements of a class diagram show the relationships between classes
and interfaces. Figure 2.6 is a typical class diagram.

The lines in Figure 2.6 indicate the relationship between the classes
and interface. A solid line with a closed, hollow head such as the one in

AudioClipManager

instance:AudioClipManager
prevClip:Audioclip

«cconstructor>»
AudioClipManager
«misc»>>
getinstance

play

loop

stop

FIGURE 2.3 Simplified class.
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AudioClipManager

FIGURE 2.4 A one-compartment class.

Figure 2.7 indicates the relationship of a subclass that inherits from a
superclass.

The class diagram in Figure 2.6 shows the abstract class Product as
the superclass of the ConcreteProduct class. You can tell that it is abstract
because its name is italicized. You can tell that its methods are abstract
because they are also italicized.

A similar sort of line is used to indicate that a class implements an
interface. It is a dotted or dashed line with a closed head, as shown in
Figure 2.8.

The class diagram in Figure 2.6 shows that the Factory class imple-
ments the FactoryIF interface.

The other lines show the other types of relationships between the
classes and interface. UML calls these other types of relationships associa-
tions. A number of things can appear with associations to provide informa-
tion about the nature of an association. The following items are optional,
but this book consistently uses them wherever it makes sense.

Association name. Somewhere around the middle of an associa-
tion there may be an association name. The name of an associa-
tion is always capitalized. There may be a triangle at one end of
the association name. The triangle indicates the direction in
which you should read the association.

Looking at Figure 2.6, you will see that the association
between the Factory and ConcreteProduct classes has the
name Creates.

Navigation arrows. Arrowheads that may appear at the ends of an
association are called navigation arrows. Navigation arrows indi-
cate the direction in which you may navigate an association.

«interface>»
AddresslF

getAddress1
setAddress1
getAddress2
setAddress2
getCity

setCity
getState
setState
getPostalCode
setPostalCode

FIGURE 25 Interface.
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Product . CreationRequestor
< Uses 1
operation1 newDocument
operation2
requestor

< Requests-Creation

creator \l/ 0.~

«interface»»
FactorylF
ConcreteProduct createProduct
operationi A
operation2
* i
Factory
4 Creates 1 createProduct

FIGURE 26 Class diagram.

Looking at the association named Creates in Figure 2.6,
you will see that it has a navigation arrow pointing from the
Factory class to the ConcreteProduct class. Because of
the nature of creation, it seems clear that this means the
Factory class is responsible for creating instances of the
ConcreteProduct class.

The nature of some associations is less obvious. To make
the nature of such associations clear, it may be necessary to sup-
ply additional information about the association. One common
way to clarify the nature of an association is to name the role
that each class plays in the association.

Role name. To clarify the nature of an association, the name of the
role that each class plays in the association can appear at each
end of an association next to the corresponding class. Role
names are always lowercase. That makes them easier to distin-
guish from association names, which are always capitalized.

In Figure 2.6, the CreationRequestor class and the
FactoryIF interface participate in an association named
Requests-Creation. The CreationRequestor class partici-
pates in that association in a role called requestor. The
FactoryIF interface participates in that association in a role
called creator.

<l FHGURE27 Where a subclass inherits from a superclass.
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B FIGURE 2.8 Implements an interface.

Multiplicity indicator. Another detail of an association that is usu-
ally supplied is how many instances of each class participate in
an occurrence of an association. A multiplicity indicator may
appear at each end of an association to provide that informa-
tion. A multiplicity indicator can be a simple number like 0 or 1.
It can be a range of numbers indicated like this:

0..2

An asterisk as the high value of a range means an unlim-
ited number of occurrences. The multiplicity indicator 1. . *
means at least one instance; 0. . * means any number of
instances. A simple * is equivalent to 0. . *.

Looking at the multiplicity indicators in Figure 2.6, you
will see that each one of the associations in the drawing is a one-
to-many relationship.

Figure 2.9 is a class diagram that shows a class with multi-
ple subclasses.

Although the drawing in Figure 2.9 is perfectly valid, the UML
allows a more aesthetically pleasing way to draw a class with multiple
subclasses. You can combine the arrowheads as shown in Figure 2.10.
The diagram in Figure 2.10 is identical in meaning to the diagram in
Figure 2.9.

Sometimes there is a need to convey more structure than is implied
by a simple one-to-many relationship. The type of one-to-many relation-
ship where one object contains a collection of other objects is called an
aggregation. A hollow diamond at the end of the association indicates
aggregation. The hollow diamond appears at the end of the association
attached to the class that contains instances of the other class. The class
diagram in Figure 2.11 shows an aggregation.

DocumentElement

DocChar CompositeDocument

FIGURE 2.9 Multiple inheritance arrows.
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DocumentElement

DocChar CompositeDocument

FIGURE 2.10 Single inheritance arrow.

The class diagram in Figure 2.11 shows a class named MessageMan-
ager. Each of its instances contains zero or more instances of a class
named MIMEMsg.

UML has another notation to indicate a stronger relationship than
aggregation. That relationship is called composite aggregation. For an
aggregation to be composite, two conditions must be satisfied:

® Aggregated instances must belong to only one composite at a time.

® Some operations must propagate from the composite to its aggre-
gated instances. For example, when a composite object is cloned, its
clone method will typically clone the aggregated instances so that
the cloned composite will own clones of the original aggregated
instances.

Figure 2.12 is a class diagram that contains a composite aggregation.

The class diagram in Figure 2.12 shows a Document class. Document
objects can contain Paragraph objects. Paragraph objects can contain
DocChar objects. Because of the composite aggregation, you know that
Paragraph objects do not share DocChar objects and Document objects do
not share paragraph objects.

Some associations are indirect. Instead of classes directly associ-
ated with each other, they are associated indirectly through a third class.
Consider the class diagram in Figure 2.13. The association in Figure 2.13
shows that instances of the Cache class refer to instances of the object
class through an instance of the 0jbectID class.

There is another use for ellipsis in a class diagram. Some class dia-
grams need to show that a class has a large or open-ended set of subclasses

>
MessageManager Manages 5 MIMEMSsg

FIGURE 2.11 Aggregation.
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Document

¢

0*

Paragraph

¢

0*

DocChar

FIGURE 2.12 Composite aggregation.

while showing only a few subclasses as examples. The class diagram in
Figure 2.14 shows how ellipsis can be used to show just that.

The class diagram in Figure 2.14 shows a class named DataQuery
that has subclasses named JDBCQuery, OracleQuery, SybaseQuery, and
an indefinite number of other classes that are indicated by the ellipsis.

An association between classes or interfaces implies a dependency that
involves an object reference that connects two objects. Other types of depen-
dencies are possible. A dashed line is used to indicate a dependency in the
more general sense. Figure 2.15 shows an example of such a dependency.

The classes in a class diagram can be organized into packages.
Packages are drawn as a large rectangle with a small rectangle above the
large one. The small rectangle contains the name of the package. The
small and large rectangles are arranged to have an overall shape similar
to a manila folder. The class diagram in Figure 2.16 contains a package
named ServicePackage. A visibility indicator can precede the name of
classes and interfaces that appear within a package. Public classes are
accessible to classes outside of the package; private classes are not.

Cache

addObject( Object )
fetchObject( ObjectID )

1

ObjectiD Caches ¥

O*

Object

FIGURE 2.13 Association class.
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DataQuery

JDBCQuery OracleQuery SybaseQuery

FIGURE 2.14 Open-ended subclasses.

There may be aspects of a design you cannot make sufficiently clear
without adding a comment to a diagram. Comments in the UML are
drawn as a rectangle with its upper right corner turned down. Comments
are connected to the diagram element to which they relate by a dashed
line. The class diagram in Figure 2.17 contains a comment.

Figure 2.17 shows the static class Mi lestoneMemento, which is a pri-
vate member of the GameMode1 class. There is no standard way in the UML
to represent a static private member class. The diagram uses a stereotype
as an extension to the UML to indicate that the MilestoneMemento class is
static. It uses an association to indicate that the MilestoneMemento is a
private member of the GameModel class. To make the relationship even
more clear, there is a comment about it in Figure 2.17.

Class diagrams can include objects. Most of the objects in the dia-
grams in this book are drawn as shown in Figure 2.18.

The object shown in Figure 2.18 is an instance of a class named Area.
The underline tells you that it is an object. A name may appear to the left
of the colon (:). The only significance of the name is that if you can use it
to identify the individual object.

Some diagrams indicate an object as just an empty rectangle with
nothing inside it. Obviously, blank objects cannot be used to identify any

BusinessClass1

/N

persists .

«interface»
BusinessClass1PersisterlF
usinessiassTrersister FIGURE 2.15 Dependency.
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ServicePackage |
Uses * «interfaces» .
] +ServicelF -ServiceHelper1
A *
; Uses *
1 1
> ' >
ServiceProxy y Creates , +Service y Uses
*
-ServiceHelper2

FIGURE 2.16 Package.

particular kind of object. However, they can be used in a diagram that
shows a structure in which objects of unspecified type are connected. The
class diagram in Figure 2.19 shows such a structure.

The lines that connect two objects are not associations. The lines
that connect objects are called links. Links are connections between
objects, whereas associations are relationships between classes. A link is

GameModel declaring class

createMemento(description:String):MilestoneMementolF
setMemento(:MilestoneMementolF)

1 1

|
|
|
Notifies of 4 Requests :
Milestones v Milestone :
1 1| Memento Creation : I:rilvsa?e
. ' Member
MilestoneMementoManager v Class of
snapshotMilestone(description:String) - —---- {> «S”:rei:Iiazc:t;e
getMilestoneMementos( ):MilestoneMementolF
restoreFromMemento(:MilestoneMementolF) A
I
|
MilestoneMemento is a :
private static class member |
of the GameModel class‘\ :
N I
~ N )
= . member
«static» class

MilestoneMemento

FIGURE 2.17 Private static classes.
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:Area

FIGURE 2.18 Object.

an occurrence of an association, just as an object is an instance of a class.
Links can have association names, navigation arrows, and most of the
other embellishments that associations can have. However, since a link is
a connection between two objects, links may not have multiplicity indica-
tors or aggregation diamonds.

Some diagrams consist only of objects and links. Such diagrams are
considered a kind of class diagram. However, there is a special name for
that kind of diagram—an object diagram. Figure 2.20 is an example of an
object diagram.

Collaboration Diagram

Class and object diagrams show relationships between classes and objects.
They also provide information about the interactions that occur between
classes. They do not show the sequence in which the interactions occur or
any concurrency that they may have.

Collaboration diagrams show objects, the links that connect them,
and the interactions that occur over each link. They also show the
sequence and concurrency requirements for each interaction. Figure 2.21
is a simple example of a collaboration diagram.

Any number of interactions can be associated with a link. Each inter-
action involves a method call. Next to each interaction or group of interac-
tions is an arrow that points to the object whose method is called by the
interaction. The entire set of objects and interactions shown in a collabo-
ration diagram is collectively called a collaboration.

Facade

FIGURE 2.19 Blank objects.
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:ConcreteComposite1 Contains v
Contains v
Contains v
:ConcreteComponent2 :ConcreteComposite2 :ConcreteComponenti
Contains v | | Contains v
\|/ Contains ¥ \|/
:ConcreteComponent2 :ConcreteComponent2
:ConcreteComponenti

FIGURE 2.20 Object diagram.

Each of the interactions shown in Figure 2.21 begins with a sequence

number and a colon. Sequence numbers indicate

the order in which

method calls occur. An interaction with the number 1 must come before an

interaction with the number 2 and so on.
Multilevel sequence numbers consist of two

or more numbers s€pa-

rated by a period. Notice that most of the sequence numbers in Figure 2.21

-

1.2: send()

outMsg:OutboundMessagelF

- =

1: receive(msg:MIMEMsg)

:MessageManager

-
1.1.2: to(:String)
1.1.3: from(:String)

1.1: outMsg :=parse(msg:MIMEMsg)

1.1.4: plainText(:String)
builder:MAPIBuilder MI

MEParser

1.1.1: builder :=getlnstance(to:String)

MessageBuilder

FIGURE 221 Collaboration diagram.
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> >
0:ObservablelF 1: notify(0) :Multicaster 1.1: notify(0) :ObserverlF

FIGURE 2.22 Multiobject.

are multilevel sequence numbers. Multilevel sequence numbers corre-
spond to multiple levels of method calls. The portion of a multilevel
sequence number to the left of its rightmost period is called its prefix. For
example, the prefix of 1.3.4 is 1.3.

Interactions numbered with a multilevel sequence number occur dur-
ing another interaction’s method call. The other method call is determined
by the interaction’s prefix. The method calls of the interactions numbered
1.1 and 1.2 are made during the method call of interaction 1. Similarly,
interactions numbered 1.1.1, 1.1.2, 1.1.3, . . . occur during the method call
of interaction 1.1.

Among interactions numbered with the same prefix, their methods
are called in the order determined by the last number in their sequence
numbers. Therefore, the methods of interactions numbered 1.1.1, 1.1.2,
1.1.3, ... are called in that order.

As mentioned earlier, links represent a connection between two
objects. Because of that, links may not have any multiplicity indicators.
That works well for links that represent an occurrence of an association
between a definite number of objects. Associations that have a star multi-
plicity indicator on either end involve an indefinite number of objects.
There is no way to draw an indefinite number of links to an indefinite
number of objects. UML provides a symbol that allows us to draw links
that connect an indefinite number of objects. That symbol is called a mul-
tiobject. It represents an indefinite number of objects. It looks like a rect-
angle behind a rectangle. The collaboration diagram in Figure 2.22
contains a multiobject.

The collaboration diagram in Figure 2.22 shows an ObservableIF
object calling a Multicaster object’s notify method. The Multicaster
object’s implementation of the notify method calls notify method of an
indefinite number of ObserverIF objects linked to the Multicaster
object.

Objects created as a result of a collaboration may be marked with the
property {new}. Temporary objects that exist only during a collaboration
may be marked with the property {transient}.* The collaboration dia-
gram in Figure 2.23 shows a collaboration that creates an object.

* The UML and Java use the word transient in very different ways. Java uses transient to
mean that a variable is not part of an object’s persistent state. UML uses it to mean that an
object has a bounded lifetime.
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—_—»
1: receive(msg:MIMEMsg)

:MessageManager

-—
1.2: send()

outMsg:OutboundMessagelF {new}

1.1: outMsg := parse(msg:MIMEMsg)

:MIMEParser

FIGURE 2.23 New object.

Some interactions occur concurrently rather than sequentially. A let-
ter at the end of a sequence number indicates concurrent interactions. For
example, the methods of interactions numbered 2.2a and 2.2b would be
called concurrently and each call would run in a separate thread. Consider
the collaboration diagram in Figure 2.24. The top-level interaction is num-
bered 1. During that interaction, first interaction 1.1 is invoked. Then
interactions 1.2a and 1.2b are simultaneously invoked. After that, interac-
tions 1.3 and 1.4 are invoked, in that order.

An asterisk after a sequence number indicates a repeated interaction.
Consider the collaboration diagram in Figure 2.25.

The collaboration in Figure 2.25 begins by calling the To11Booth
object’s start method. That method repeatedly calls the object’s
collectNextToll method. The collectNextToll method calls the

-—
:EMailSender 1.3: sendMsg(e:encryptedMsg) :KeyManager
—_— —_—
1: encryptMsg(plainText:MimeMsg) 1.2b: getKey(to:String)

:EMailEncrypter

-

1.1: logMessageReceipt(plainText:MimeMsg) 1.2a: vali MIME
1.4: logMessageSent(e:'EncryptedMsg) -2a: validate Structure()

:MimeParser

:Logger

FIGURE 2.24 E-mail encrypter.
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—_—
l 1: start() 1.1™: collectNextToll()

ﬁself»

:TollBooth
-— —
1.1.1: collectToll() 1.1.2: raiseGate()
:TollBasket TollGate

FIGURE 2.25 Tollbooth.

TollBasket object’s collectToll method and the Tol1lGate object’s
raiseGate method.

One other thing to notice about the collaboration diagram in Figure
2.25 is the <<self>> stereotype that appears next to the link for interac-
tion 1.1. It serves to clarify the fact that the link is a self-reference.

Unlike the example in Figure 2.25, most repetitive interactions occur
conditionally. UML allows a condition to be associated with a repetitive
interaction by putting it after the asterisk inside of square brackets. The
collaboration diagram in Figure 2.26 shows an example of a conditional
repetitive interaction.

Figure 2.26 shows an Iterator object being passed to a
DialogMediator object’s refresh method. Its refresh method in turn
calls a widget object’s reset method and then repeatedly calls its addData
method while the Tterator object’s hasNext method returns true.

l

1: refresh(data:lterator)

:DialogMediator

i 1.1: reset() 1.2*[data.hasNext()]: addData(data.getNext()) i

:Widget

FIGURE 2.26 Refresh.
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It is important to note that the UML specification does not define the
meaning of conditions associated with repetitive interactions very pre-
cisely. In particular, the UML spec says that what appears between the
square brackets can “be expressed in pseudocode or an actual program-
ming language.” This book consistently uses Java for that purpose.

When dealing with multiple threads, something that often needs to be
specified about methods is what happens when two threads try to call the
same method at the same time. UML allows that to be specified by placing
one of the following constructs after a method:

{concurrency = sequential}. This means that only one thread at
a time should call a method. No guarantee is made about the
correctness of the method’s behavior if the method is called by
multiple threads at a time.

{concurrency = concurrent}. This means that if multiple
threads call a method at the same time they will all execute it
concurrently and correctly.

{concurrency = guarded}. This means that if multiple threads
call a method at the same time, only one thread at a time will be
allowed to execute the method. While one thread executes the
method, other threads will be forced to wait until it is their turn.
This is similar to the behavior of synchronized Java methods.

The collaboration diagram in Figure 2.27 shows an example of a syn-
chronized method.

There are refinements to thread synchronization used in this book for
which there is no standard representation in UML. This book uses some
extensions to the {concurrency=guarded} construct to represent those
refinements.

Sometimes the object that the threads need to synchronize on is not
the same object whose method is called by an interaction. Consider the
collaboration diagram in Figure 2.28.

:EMailEncrypter

i 1: logMessageReceipt(plainText:MimeMsg) {concurrency=guarded}

:Logger

FIGURE 2.27 Synchronized method call.
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:EMailEncrypter

l 1: logMessageReceipt(plainText:MimeMsg) {concurrency=guarded:out}

N
1.2: getSessionlInfo()

:Logger

1.1: print(:Date)
1.3: print(message:String)

:Logger

out:PrintStream

FIGURE 2.28 Synchronization using a third object.

In Figure 2.28, {concurrency=guarded:out} refers to the object
labeled out. Before the method call can actually take place, the thread that
controls the call must own the lock associated with the out object. This is
identical to Java’s semantics for a synchronized statement.

Sometimes there are preconditions beyond acquiring ownership of a
lock that must be met before a thread may proceed with a method call.
Such preconditions are indicated by a vertical bar followed by the precon-
dition. The collaboration diagram in Figure 2.29 shows such preconditions
following guarded and a vertical bar.

The collaboration diagram in Figure 2.29 shows two asynchronous
interactions. One interaction calls a PrintQueue object’s addPrintJob
method to add a print job to the PrintQueue object. In the other interac-
tion, a PrintDriver object calls the PrintQueue object’s getPrintJob
method to get a print job from the PrintQueue object. Both interactions
have synchronization preconditions. If the print queue is full, then the
interaction that calls the addPrintJob method will wait until the print
queue is not full before proceeding to make the call to the addPrintJob

e

1A: addPrintJob(:PrintJob) {concurrency=guarded|!pq.isFull()}

pg:PrintQueue

T 1B: getPrintJob( ) {concurrency=guardedl!pqg.isEmpty()}

:PrintDriver

FIGURE 2.29 Print queue.
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method. If the print queue is empty, then the interaction that calls the
getPrintJob method will wait until the print queue is not empty before
proceeding to make the call to the getPrintJob method.

A type of precondition that is not usually indicated with an expression
is a requirement that an interaction not start until two or more other inter-
actions finish. All interactions have an implicit precondition that they can-
not start before the directly preceding interaction finishes. An interaction
numbered 1.2.4 cannot start until the interaction numbered 1.2.3 completes.

Some interactions are required to wait for additional interactions to
complete before they can start. Such additional predecessor interactions
are indicated by listing them at the left side of the interaction followed by
a slash (/) and the rest of the interaction. The collaboration diagram in
Figure 2.30 contains an example.

In Figure 2.30, the interaction labeled 2.1a.1 cannot start until inter-
action 1.1.2 finishes. If an interaction must wait for more than one addi-
tional interaction to finish before it starts, they all appear before the slash,
separated by commas.

The mechanisms discussed so far determine when the methods of a
collaboration are called. They do not say anything about when method
calls return. The arrows that point at the objects whose methods are called
provide information about when the methods may return.

Most of the arrows in Figure 2.30 have a closed head, which indicates
that the calls are synchronous. The method calls do not return until the
method has completed doing whatever it does.

An open arrowhead indicates an asynchronous method call. An asyn-
chronous method call returns to its caller immediately, while the method
does its work asynchronously in a separate thread. The collaboration dia-
gram in Figure 2.31 shows an asynchronous method call.

CompositeTransactionLogic

1.1: register(wrap1)
1.2a: startTransaction( )

2.1: commit( ) l

—>
1.1.1: synchronize( )

1.1.2: status1:=getStatus( )
1.1.2/[all status==SUCCESS]2.1a.1: commit( )
[any status==FAILURE]2.1a.2: abort( )
Coordinator wrap1:xWrapper

FIGURE 2.30 Additional predecessor interactions.
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_—
1: write(:String)

:Client :I0OManager

FIGURE 2.31 Asynchronous method call.

The UML defines arrowheads only for synchronous and asyn-
chronous calls. As extensions to the UML, the UML allows other types of
arrows to indicate different types of method calls. To indicate a balking
call, this book uses a bent-back arrow, as shown in Figure 2.32.

When a balking call is made to an object’s method and no other
thread is executing that object’s method, then the method returns when it
is finished doing what it does. However, when a balking call is made and
another thread is currently executing that object’s method, the method
returns immediately without doing anything.

You may have noticed that the object making the top-level call that
initiates a collaboration is not shown in all of the preceding collaboration
diagrams, which means the object that initiates the collaboration is not
considered to be a part of the collaboration.

Up to this point, the objects you have seen how to model in the UML
are passive in nature. They do nothing until one of their methods is called.

Some objects are active. A thread associated with them allows them
to initiate operations asynchronously and independently of whatever else
is going on in a program. Active objects are indicated with a thick border.
Figure 2.33 contains an example of an active object.

Figure 2.33 shows an active Sensor object that calls a Sensor-
Observer object’s method without another object first calling one of its
methods.

Statechart Diagram

Statechart diagrams are used to model a class’s behavior as a state
machine. Figure 2.34 is an example of a simple state diagram.

A statechart diagram shows each state as a rounded rectangle. All of
the states in Figure 2.34 are divided into two compartments. The upper
compartment contains the name of the state. The lower compartment con-
tains a list of events to which the object responds while in that state without

hb)

1: flush()

:ToiletController

FIGURE 2.32 Balk.
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s:Sensor

1
l 1: notify(s)

1

:SensorObserver

FIGURE 2.33 Active sensor.

changing state. Each event in the list is followed by a slash and the action it
performs in response to the event. UML predefines two such events:

® The enter event occurs when an object enters a state.
® The exit event occurs when an object leaves a state.

If there are no events that a state responds to without changing state,
then its rectangle is not divided into two compartments. Such a state is
drawn as a simple rounded rectangle that contains only the state’s name.

.%/ Not Dirty )

Enter / Disable Save, Apply and Revert Dialog Buttons
\ / Save /
saveParam()

Enter / Enable Save and Revert Dialog Buttons;

Dirty ( File Dirty

N

Disable Apply
Dirty Apply /
applyParam()
Both Dirty

N

kEnter/ Enable Apply, Save and Revert Dialog Buttons

Dirty

FIGURE 2.34 Statechart diagram.



28 m CHAPTER TwoO

Server 1 refresh Server 2
refresh T Tk
L” BN "\
«DNS» «application» «DNS» «application»
™ N % -
RN refresh ///
T refresh e

FIGURE 2.35 Deployment diagram.

Every state machine has an initial state that is the state an object is in
before the first transition occurs. The initial state is drawn as a small solid
circle.

Transitions between states are shown in statechart diagrams as lines
between states. Normally, transition lines are required to have a label indi-
cating the event that triggers the transition. The event may be followed by
a slash and the action that occurs when the transition takes place.

If a statechart includes a final state, the final state is drawn as a small
solid circle inside a larger circle.

Deployment Diagram

Deployment diagrams show how software is deployed onto computing ele-
ments. Figure 2.35 is an example of a deployment diagram.

Figure 2.35 shows two computing elements labeled server1 and
Server2. The UML terminology for computing element is node. Because
this book uses node to mean other things, the term computing element is
used instead.

The smaller boxes inside the computing elements are software com-
ponents. A component is a collection of objects that are deployed together.
Each of the computing elements in the diagram contains two components:
a DNS component and an application component.

Communication between components is indicated by dashed lines. The
dashed lines in Figure 2.35 indicate that the application components send
messages to the DNS components. The dashed lines are labeled refresh.



The Software Life Cycle

As stated previously, this book is devoted to patterns used during the
object-oriented design phase of the software life cycle. In order to provide
some perspective on how object-oriented design fits into the process of
building and maintaining software systems, this chapter presents a very
brief overview of the software life cycle.

A variety of activities take place during the lifetime of a piece of
software. Figure 3.1 shows some of the activities that lead to software
deployment.

Figure 3.1 is not intended to show all of the activities that occur
during a software project, merely the more common ones. This is a typical
context for using the patterns discussed in this work. Other books I've
written on Java patterns describe recurring patterns that occur during
the portion of the software life cycle labeled “Build” in Figure 3.1.

Figure 3.1 shows very clear boundaries between each activity. In
practice, the boundaries are not so clear. Sometimes it is difficult to say if
a particular activity belongs in one box or another. The precise boundaries
are not important. What is important is to understand the relationships
between these activities.

Earlier activities, such as defining requirements and object-oriented
analysis, determine the course of activities that follow them, such as de-

29
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Business planning: business case, budget

Define requirements: requirements specification
Deta'l.ed Define high-level essential use cases
planning
Create prototype Define high-level system architecture
Object-oriented analysis: low-level essential use cases, conceptual model,
sequence diagrams
Object-oriented design:
. . class diagrams, . . Write
Build Design user interface collaboration diagrams, Logical database design documentation
state diagrams and help
Usability testing Coding Physical database design
Testing
Deployment

FIGURE 3.1 Activities leading to software deployment.

fining essential use cases or object-oriented design. However, in the course
of those later activities, deficiencies in the products of earlier activities
emerge. For example, in the course of defining a use case, an ambiguous or
conflicting requirement may become apparent. It may be necessary to mod-
ify existing use cases or to write new ones. You must expect such iterations.
As long as the trend is for later iterations to produce fewer changes than
earlier iterations, consider them part of the normal development process.

Following are brief descriptions of some of the activities shown in
Figure 3.1. These descriptions provide only enough information to explain
how the patterns discussed in this work apply to a relevant activity.

Business planning. This typically starts with a proposal to build or
modify a piece of software. The proposal evolves into a business
case. A business case is a document that describes the pros and
cons of the software project and includes estimates of the
resources required to complete the project. If a decision is made
to proceed with the project, then a preliminary schedule and
budget are prepared.

Define requirements. The purpose of this activity is to produce a
requirements specification that says what the software produced
by the project will and will not do. This typically begins with
goals and high-level requirements from the business case. Addi-
tional requirements are obtained from appropriate sources to
produce an initial requirements specification.
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As the requirements specification is used in subsequent ac-
tivities, necessary refinements to the requirements are discovered.
The refinements are incorporated into the requirements specifi-
cation. The products of subsequent activities are then modified
to reflect the changes to the requirements specification.

Define essential use cases. A use case describes the sequence of
events that occurs in a specific circumstance between a system
and other entities. The other entities are called actors. Develop-
ing use cases improves our understanding of the requirements,
analysis, or design on which the use case is based. As we develop
a better understanding of requirements, analysis, and design, we
are able to refine them.

Essential use cases describe events in terms of the problem
domain. Use cases that describe events in terms of the internal
organization of software are called real uses cases.

The use cases most appropriate for refining requirements
are high-level essential use cases. They are high level in that they
explore the implications on which they are based on, but they do
not try to add additional details.

Create prototype. Create a prototype of the proposed software. A
prototype can be used to get reactions to a proposed project. Re-
actions to a prototype can be used to refine requirements and
essential use cases.

Define high-level system architecture. Determine the major com-
ponents of the system that are obvious from the original pro-
posal. Also, determine their relationships.

Object-oriented analysis. The purpose of this activity is to
understand what the software produced by the project will do
and how it will interact with other entities in its environment.
The goal of analysis is to create a model of what the software
is going to do, but not how to do it. The products of object-
oriented analysis model the situation in which the software
will operate from the perspective of an outside observer. The
analysis does not concern itself with what goes on inside
the software.

Object-oriented design. The purpose of this activity is to deter-
mine the internal organization of the software. The products of
the design effort identify the classes that will comprise the inter-
nal logic of the software. They also determine the internal struc-
ture of the classes and their interrelationships.

More decisions are made during object-oriented design
than during any other activity. For that reason, this work
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includes more patterns that apply to object-oriented design than
to any other activity.

Coding. The purpose of this activity is to write the code that will
make the software work.

Testing. The purpose of this phase is to ensure that the software
works as expected.



Transaction Patterns

Acid Transaction (37)
Composite Transaction (55)
Two Phase Commit (65)
Audit Trail (75)

A transaction is a sequence of operations that change the state of an
object or collection of objects in a well-defined way that guarantees a con-
sistent outcome. A transaction is useful because it satisfies constraints
about the state of an object before, during, or after that transaction. For
example, a particular type of transaction may satisfy a constraint that an
object’s attribute must be greater after the transaction than it was before
the transaction. Sometimes, the constraints are unrelated to the objects
that the transactions operate on. For example, a transaction may be
required to take place in less than a certain amount of time.

Transactions play an important part in many different types of appli-
cations. Here are just a few examples:

® Transactions are important for automatic teller machines. They must
never dispense money without deducting it from a customer’s

33
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ACID
Transaction

Two Phase

Composite

. Audit Trail
Transaction

Commit

FIGURE 4.1 Transaction pattern map.

account or, conversely, deduct money from a customer’s account
without dispensing cash.

® A program that assigns network addresses to computers must never
assign the same address to two different computers. A transaction
can be used to ensure this.

® A number of computer manufacturers have programs that allow cus-
tomers to order computers in custom configurations. When process-
ing such an order, the program must generate a transaction that
allocates exactly the right quantity of each part that is needed.

The patterns in this chapter provide guidance in selecting and com-
bining constraints for common types of transactions. Figure 4.1 shows
how the patterns in this chapter build on each other.*

The first and most fundamental pattern to read is the ACID
Transaction pattern. It describes how to design transactions that never
have inconsistent or unexpected outcomes. The Composite Transaction
pattern describes how to compose a complex transaction from simpler
transactions. The Two-Phase Commit pattern describes how to ensure that
a composite transaction is atomic. The Audit Trail pattern describes how
to maintain a historical record of ACID transactions.

In addition to being related to transactions, the patterns in this chap-
ter also share the fact that they are usually implemented using software
that you buy rather than build. For this reason, the focus of these patterns
is the use of the solutions that they describe rather than their implementa-
tion.

You may notice the lack of code examples in this chapter. It is the
author’s opinion that the patterns in this chapter are too high level for con-
crete code examples to be useful. The application of these transaction-

* Figure 4.1 is not a UML diagram.
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related patterns is readily understood at the design level. However, there is
generally no clear relationship between individual pieces of code and the
fact that they are part of a transaction. In many cases, objects are unaware
of the transactions they participate in.

Throughout this chapter, what is done to a partially completed trans-
action that cannot complete is called aborting. Within the context of
databases, it is more common to refer to this as rolling back a transaction.
Because these patterns are presented in a broader context that includes
application-level transactions, the term abort is used instead of roll back.

The topics discussed in this chapter are discussed in more detail in
[Gray-Reuter93] and [Date94].
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SYNOPSIS

Ensure that a transaction will never have an unexpected or inconsistent
outcome. This is accomplished by ensuring that the transaction has the
ACID properties: atomicity, consistency, isolation, and durability.

CONTEXT

Suppose you are developing software for a barter exchange business. It
works as a clearinghouse for an indirect barter. For example, a hotel chain
offers vouchers for a stay in one of its rooms in exchange for new mat-
tresses. The clearinghouse matches the hotel with a mattress manufacturer
that spends a lot of money on business trips. The clearinghouse also facili-
tates the exchange of the vouchers for the mattresses.

Every transaction that the system handles consists of an exchange of
goods or services. Each transaction must correctly update the system’s
model of who is supposed to exchange what goods and services with
whom. The system must not lose any transactions. The system must not
duplicate any transactions. The system must ensure that two different
clients do not make a deal for the same goods or service.

FORCES

© You want the result of a transaction to be well-defined and pre-
dictable. Given only the initial state of the objects in a transaction
and the operations to perform on the objects, you should be able to
determine the final state of the objects. For example, given an
amount of money in a bank account and an amount of money to be
deposited, the outcome of a transaction to deposit the money should
result in the account balance being increased by the amount of the
deposit. Even if the nature of the transaction is nondeterministic
(that is a simulated roll of dice), given the initial state of the object
involved you should be able to enumerate the possible outcomes.

© Once started, a transaction may succeed. It is also possible for a
transaction to fail or abort. There are many possible causes for a
transaction to fail. Many causes may be unanticipated. Even if a
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transaction fails, you don’t want it to leave objects in an unpre-
dictable state that compromises their integrity.

A transaction can fail at any point. If there is a failure at a random
point in the transaction, additional operations may be required to
bring the objects involved into a predictable state. Determining what
operations to perform may be difficult or impossible if a failed trans-
action can put objects in a state that violates their integrity.

You want the outcome of transactions to depend only on two things:
® Initial state of the objects the transaction acts on

® Specific operations in the transaction

You do not want the outcome of a transaction to depend on anything
else. In particular, if transactions are performed concurrently, you do
not want their concurrency to affect the result of the transactions.

If the results of a transaction are stored in volatile (nonpersistent)
memory, then the observed results of the transaction are less pre-
dictable. The contents of volatile memory can change unpredictably.
More generally, the observed results of a transaction are unpre-
dictable if they do not persist as long as objects that are interested in
the results or until another transaction changes the state of the
affected objects.

The requirements for some applications imply that the progress of
some of their transactions can be observed by some other transac-
tions. This is often true for long-lived transactions. For example, an
inventory application for a chain of retail stores may support a trans-
action to order additional merchandise from a warehouse. The appli-
cation may also require that users can query the state of the
transaction:

® Does the warehouse have it in stock?

® [s it in transit?

® When will it be shipped?

® When will it arrive?

e
©

©

©

ey
SB]

Satisfying all of the forces listed in this section may add complexity
and overhead to the implementation of a transaction. The nature of some
transactions ensures a satisfactory outcome without having to address all
of the forces. For example, if there will be no concurrent transactions, then
there is no need to address the possibility that concurrent transactions
could interfere with each other. Also, if the outcome is the same whether a
transaction is performed once or more than once, then recovery from cata-
strophic failure can be simplified.

It is not possible to take such shortcuts in the design of most transac-
tions. If a transaction does not lend itself to the use of shortcuts, then
there is a good justification for the complexity and overhead associated
with satisfying all of the forces listed in this section.
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SOLUTION

You can ensure that a transaction has a predictable result by ensuring that
it has the ACID properties:

Atomic. The changes a transaction makes to the state of objects on
which it operates are atomic. This means that either all of the
changes happen exactly once or none of the changes happen.
These changes include internal state changes, database changes,
transmission of messages, and visible side effects on other pro-
grams.

If a transaction is not atomic, then the transaction’s side
effects could happen more than once. For example, an auto-
matic teller machine (ATM) that does not process transactions
atomically may sometimes process that same withdrawal twice.
It would be possible for you to make a withdrawal, get your
cash, and then a power surge could cause the ATM to process
the withdrawal again after you were no longer there.

Consistent. A transaction is a correct transformation of an
object’s state. At the beginning of a transaction, the objects
on which a transaction operates are consistent with their
integrity constraints. At the end of the transaction, regardless
of whether it succeeds or fails, the objects are again in a state
consistent with their integrity constraints. If all of the transac-
tion’s preconditions are met before the transaction begins, all
of its postconditions are met after the transaction successfully
completes.

Suppose that the software that runs an ATM does not guar-
antee the consistency of its transactions. When you make a
withdrawal, the amount of cash the machine dispenses might
not be the same as the amount deducted from your account.

Isolated. Even though transactions execute concurrently, it appears
to each transaction, T, that other transactions execute either
before T or after T but not both. That means that if an object
that is involved in a transaction fetches an attribute of an object,
it does not matter when it does so. Throughout the lifetime of a
transaction, the objects on which the transaction operates will
not notice any changes in the state of other objects as the result
of concurrent transactions.

If the software that processes transactions from ATMs does
not enforce the isolation property, then two withdrawals from
the same account at about the same time could produce wrong
results. For example, both withdrawal transactions may fetch
the same balance to compute the new account balance. The
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result would be that the account balance would reflect one with-
drawal or the other, but not both.

Durable. Once a transaction completes successfully (commits), the
changes it has made to the state of the object(s) become rela-
tively persistent. They will persist at least as long as any object
can observe the changes.

If transactions from an ATM are not processed in a way
that ensures that they are durable, then it might be possible for
a withdrawal to be forgotten.

Because most database managers ensure that transactions performed
under their control have these properties, many people think of ACID
properties only in connection with database transactions. It is important
to understand that the ACID properties are valuable for all kinds of trans-
actions, including application-level transactions. For example, consider an
application that is responsible for changing the price of gasoline at a gas
station. When the price is changed it must be changed in three places: in
the database that tells the cash registers how much to charge for gas, on
the price displayed on the gas pumps, and on the electronic sign that
advertises the price. If the price-change transaction does not exhibit the
ACID properties, then the price can become inconsistent in all three
places, subjecting the gas station to fines.

The point of this solution is to design transactions so that the trans-
action as a whole has the ACID properties. Use a transaction manager to
manage as much of the transaction as you can. Database engines are the
most common transaction managers in business applications.

Using a transaction manager is not enough if portions of a transac-
tion are not under its control. For example, if an ATM does not function
under the control of a transaction manager, it must be integrated with por-
tions of a transaction that are under the control of a transaction manager
to ensure that the actions of the ATM are atomic.

CONSEQUENCES

@ Use of the ACID transaction pattern makes the outcome of transac-
tions predictable.

Use of the ACID transaction pattern can substantially increase that
amount of storage required by a transaction. The additional storage
requirement arises from a need to store the initial state of every
object involved in a transaction so that if the transaction fails it is
possible to restore the initial state of the objects it acted on.
Maintaining the isolation of a transaction may require the copying of
objects to allow a high level of concurrency. The purpose of the
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copies is to allow the original object to be modified while an
unchanging copy of the original is visible to other transactions.
Without the copies, it would be necessary to prevent transactions that
need to see the original version of a row from running concurrently
with transactions that update the row.

® ACID transactions are often implemented by transaction logic that
manipulates objects indirectly through a mechanism that enforces
ACID properties for transactions, such as a database manager. In
cases where a transaction’s logic is also responsible for maintaining
the transaction’s ACID properties, the complexity of the transaction
logic may be greatly increased. Using a separate mechanism that
enforces the ACID properties makes it much easier to correctly imple-
ment the logic that drives a transaction.

IMPLEMENTATION

The simplest way to ensure the ACID properties of a transaction is for the
transaction logic to manipulate the state of objects through a tool such as
a database manager that automatically enforces the ACID properties. If a
program works with transactions that will not involve persistent data or
objects, the performance penalty introduced by a database manager that
persists data may be undesirable. Such applications may be able to take
advantage of in-memory databases, which do not incur the overhead of
saving data to disk.

Sometimes it is not possible to use any tool to enforce ACID proper-
ties. The common reasons for this are performance requirements and a
need to keep the size of an embedded application small. Adding logic to
an application to enforce the ACID properties for its transaction can
introduce a lot of complexity into a design. When you use a separate tool
to enforce the ACID properties, the complexity of enforcement is handled
by the tool and is not part of the design. Also, tools that enforce ACID
properties usually have had most of the bugs worked out of them. Getting
all the bugs out of your own ACID enforcing code can be a lengthy pro-
cess. It is usually better to buy rather than build ACID support whenever
possible.

Here are strategies for explicitly supporting each of the ACID prop-
erties.

The primary issue to address when providing support for atomic transac-
tions is that there must be a way to restore objects to their initial state if a
transaction ends in failure.
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FIGURE 4.2 Saving state for future recovery.

The simplest way to be able to restore an object’s state after a failed
transaction is to save the object’s initial state in a way that it can easily be
restored. The Snapshot pattern (discussed in Patterns in Java, Volume 1)
provides guidance for this strategy. Figure 4.2 is a class diagram that
shows this general approach.

An object in the role of transaction manager manipulates instances of
other classes that participate in a transaction. Before doing something that
will change the state of an object that it manipulates, the transaction man-
ager will use an instance of another class to save the initial state of the
object. If the transaction manager’s commit method is called to signal the
successful completion of a transaction, then the objects that encapsulate
the saved states are discarded. However, if the transaction manager detects
a transaction failure, either from a call to its abort method or from the
abnormal termination of the transaction logic, then it restores the objects
that participate to their initial state.

If it is not necessary to save an object’s state beyond the end of the cur-
rent program execution, a simple way to save the object’s state is to clone it.
You can make a shallow copy* of an object by calling its c1one method.

* A shallow copy of an object is another object whose instance variables have the same values
as the original object. It refers to the same objects as the original object. The other objects
that it refers to are not copied.
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All classes inherit a c1lone method from the object class. The clone
method returns a shallow copy of an object if its class gives permission for
its instances to be cloned by implementing the Cloneable interface. The
Cloneable interface is a marker interface (see the Marker Interface pat-
tern in Volume 1). It does not declare any methods or variables. Its only
purpose is to indicate that a class’s instances may be cloned.

In order to restore the state of an object from an old copy of itself, the
object must have a method for that purpose. The following listing shows
an example of a class whose instances can be cloned and then restored
from the copy.*

class Line implements Cloneable {
private double startX, starty;
private double endX, endY;
private Color myColor;

public Object clone() { super.clone(); }

public synchronized void restore(Line 1ln) {
startX = ln.startX;
startY = ln.starty;
endX = ln.endX;
endY = ln.endyY;
myColor = ln.myColor;

} // restore(Line)

} // class Line

The class includes a clone method because the clone method that
classes inherit from the Object class is protected. In order to provide pub-
lic access to this method, you must override it with a public clone
method.

If you need to save and restore instances of a class that does not have
a public clone method and it is not possible for you to add a public clone
method to its instances, then you will need an alternative approach. One
such approach is to create a class whose instances are responsible for cap-
turing and restoring the state of the objects lacking a clone method by
using their publicly accessible methods.

For saving the state of an object whose state is needed indefinitely, a
simple technique is to use Java’s serialization facility. A brief explanation
of how to use serialization is shown in the sidebar.

Saving the initial state of the objects a transaction manipulates is not
always the best technique for allowing their initial state to be restored. If

* At the beginning of this chapter, I stated that there would be no code examples. The code
examples that appear here are implementation examples and not examples of the pattern
itself.
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Serialization

Java’s serialization facility can save and restore the entire state of an
object if its class gives permission for its instances to be serialized.
Classes give permission for their instances to be serialized by imple-
menting the interface java.io.Serializable, like this:

Import Java.io.Serializable;

class Foo implements Serializable {

The Serializable interface is a marker interface (see the
Marker Interface pattern in Patterns in Java, Volume 1). It does not de-
clare any variables or methods. Declaring that a class implements the
Serializable interface simply indicates that instances of the class may
be serialized.

To save the state objects by serialization, you need an 0bjectout-
putStream object. You can use an ObjectOutputStream object to write
a stream of bytes that contains an object’s current state to a file or a
byte array.

To create an ObjectOutputStream object that serializes that state
of objects and writes the stream of bytes to a file, you would write code
that looks like this:

FileOutputStream fout = new FileOutputStream("filename.ser");
ObjectOutputStream obOut = new ObjectOutputStream(fout);

The code creates an OutputStream to write a stream of bytes to a
file. It then creates an ObjectoOutputStream that will use the output-
Stream to write a stream of bytes.

Once you have created an outputStream object, you can serialize
objects by passing them to the outputStream object’s writeObject
method, like this:

ObOut .writeObject (£o0) ;

transactions perform multiple operations on objects that contain a lot of
state information, and the transaction modifies only some of the state
information in the objects, saving the object’s entire state information is
wasteful.

In this situation, a more efficient implementation approach is based
on the Decorator pattern described in Volume 1. The technique is to leave
the original object’s state unmodified until the end of the transaction and
use wrapper objects to contain the new values. If the transaction is suc-
cessful, the new values are copied into the original object and the wrapper
objects are then discarded. If the transaction ends in failure, then the
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The writeobject method discovers the instance variables of an
object passed to it and accesses them. It writes the values of instance vari-
ables declared with a primitive type such as int or double directly to the
byte stream. If the value of an instance variable is an object reference, the
writeObject method recursively serializes the referenced object.

Creating an object from the contents of a serialized byte stream is
called deserialization. To deserialize a byte stream, you need an Object-
InputStream object. You can use an ObjectInputStream object to
reconstruct an object or restore an object’s state from the state informa-
tion stored in a serialized byte stream.

To create an ObjectInputStream object, you can write some code
that looks like this:

FileInputStream fin = new FileInputSteam("filename.ser");
ObjectInputStream obIn = new ObjectInputStream(£fin);

This code creates an InputStream to read a stream of bytes from a file.
It then creates an ObjectInputStream object. You can use the Object-
InputStream object to create objects with instance information from
the stream of bytes or restore an existing object to contain the instance
information. You can get an ObjectInputStream object to do these
things by calling its readobject method, like this:

Foo myFoo = (Foo)obIn.readObject();

The readobject method returns a new object whose state comes
from the instance information in the byte stream. That is not quite what
you need when restoring an object to its initial state. What you need is
a way to use the instance information to set the state of an existing vari-
able. You can arrange for that as you would for allowing an object’s
state to be restored from a clone. You ensure that the class of the ob-
jects to be restored has a method that allows instances of the class to
copy their state from another instance of the class.

wrapper objects are simply discarded. The class diagram in Figure 4.3
shows this sort of design.

In this design, the objects that the transaction manipulates need not
contain their own instance data. Nor do they need to implement the Trans-
actionParticipantIF interface. Instead, a separate object contains their
instance data. To ensure strong encapsulation, the class of the objects that
contain instance data should be an inner class of the class of the manipu-
lated objects.

When a transaction manager becomes aware than an object will be
involved in a transaction, it calls the object’s startTransaction method.
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FIGURE 4.3 Atomicity through wrapper objects.

The startTransaction method causes the object to create and use a new
data object. When the manipulated object calls one of the new data object’s
methods to fetch the value of an attribute, if the data object does not yet
have a value for that attribute, it calls the corresponding method of the
original data object to get the value.

If a transaction ends in failure, then the transaction manager object
calls the abort method of each of the manipulated objects. Each object’s
abort method causes it to discard the new data object and any values that
it may contain.

If a transaction ends in success, then the transaction manager object
calls the commit method of each of the manipulated objects. Each object’s
commit method causes the new data object to merge its data values into
the original data object. It then discards the data object.
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This design requires data values to be copied only if they are altered
by a transaction. It may be more efficient than saving an object’s entire
state if the object contains a lot of state information that is not involved in
the transaction. The disadvantage of this design is that it is more complex.

Consistency

Isolation

There are no implementation techniques specifically related to consis-
tency. All implementation techniques that help to ensure the correctness
of programs also help to ensure consistency.

The most important thing that you should do to ensure the consis-
tency of a transaction is testing. The Unit Testing and System Testing
patterns described in Patterns in Java, Volume 2 are useful in designing
appropriate tests. Using the Assertion Testing pattern, also described in
Volume 2, to ensure that a transaction’s postconditions are met can provide
additional assurance of internal consistency.

Isolation is an issue when an object may be involved in concurrent trans-
actions and some of the transactions will change the state of the object.
There are a few different possible implementation techniques for enforcing
isolation. The nature of the transactions determines the most appropriate
implementation technique.

If all of the transactions will modify the state of an object, then you
must ensure that the transactions do not access the object concurrently.
The only way to guarantee isolation is to ensure that they access the ob-
ject’s state one at a time by synchronizing the methods that modify the
object’s state. This technique is described in more detail by the Single
Threaded Execution pattern described in Volume 1.

If some of the concurrent transactions modify an object’s state, and
others use the object but do not modify its state, you can improve on the
performance of single-threaded execution. You can allow transactions that
do not modify the object’s state to access the object concurrently while
allowing transactions that modify the object’s state to access it in only a
single-threaded manner. This technique is described in more detail by the
Read/Write Lock pattern described in Volume 1.

If transactions are relatively long-lived, it may be possible to further
improve the performance of transactions that use but do not modify the
state of the object if it is not necessary for the objects to have a distinct
object identity. You can accomplish this by arranging for transactions that
use an object but do not modify the object’s state to use a copy of the
object. The following patterns can be helpful in doing this:
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Durability

® The Return New Objects from Accessor Method pattern (described in
Volume 2)

The Copy Mutable Parameters pattern (described in Volume 2)

The Copy on Write Proxy pattern, which is used as an example in the
description of the Proxy pattern in Volume 1

Q

ey
SB]

®

In those cases where it is not possible to do these things, a long-lived trans-
action may tie up resources for an unacceptably long time. This may
necessitate using some alternative strategies. One possibility is to break
the long-lived transaction into shorter-lived transactions. Other strategies
involve giving up some of the ACID properties.

For example, you may allow other transactions that need a resource
locked by a long-lived transaction to interrupt the transaction. This is rea-
sonable when combined with another technique called checkpoint/restart.
Checkpoint/restart involves saving that state of transaction object at strate-
gic points when the transaction objects are in a consistent state. When the
transaction is interrupted, the objects it manipulates are restored to their
most recently saved state. Later on, the transaction is restarted from the
point where the states were saved.

Using this combination of techniques solves the problem of a long-
lived transaction locking resources for an unacceptably long time at the
expense of losing the atomicity and isolation properties.

The basic consideration for ensuring the durability of a transaction is that
its results must persist as long as there may be other objects that are con-
cerned with the object’s state. If the results of a transaction are not needed
beyond a single execution of a program, it is usually sufficient to store the
result of the transaction in the same memory as the objects that use those
results.

If other objects may use the results of a transaction indefinitely, then
the results should be stored on a nonvolatile medium such as a magnetic
disk. This can be trickier than it at first seems. The writing of transaction
results to a disk file must appear atomic to other threads and programs.
There are a few issues to deal with in ensuring this:

® A single write operation may be translated into multiple write opera-
tions by the object responsible for the write operation or the underly-
ing operating system. That means that data written using a single
write call may not appear in a file all at once.

® Operating systems may cache write operations for a variety of effi-
ciency reasons. That means data written by multiple write operations
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may appear in a file at the same time or it may be written in a differ-

ent sequence than the original write operations.
® When accessing remote files, additional timing issues arise. When a
program writes information to a local file, the modified portion of the
file may reside in the operating system’s cache for some time before it
is actually written to the disk. If another program tries to read the
modified portion of a file while the modifications are still cached,
most operating systems will be smart enough to create the illusion
that the file has already been modified. If read operations on a file
reflect write operations as soon as they occur, the system is said to
have read/write consistency.

Read/write consistency is more difficult to achieve when access-
ing a remote file. That is partially because there can be unbounded
delays between the time that a program performs a write operation
and the time that the write arrives at the remote disk. If you take no
measures to ensure that access to a remote file has read/write consis-
tency, the following sequence of events is possible:

1. Program X reads the file.

2. Program X performs a write operation.

3. Program Y reads the unmodified but out-of-date file.

4. Program Y performs a write operation.

5. Program Y’s write arrives at the file.

6. Program X’s write arrives at the file.

Read/write consistency can be achieved through the use of locks, but
that can seriously hurt performance.

An object that may read the same data from a file multiple times
will pay a performance penalty if it does not cache the data to avoid
unnecessary read operations. When reading from a remote file,
caching becomes more important because of the greater time
required for read operations. However, caching introduces another
problem.

If the data in a file is modified, then any cache that contains data
read from the file is no longer consistent with the file. This is called
the cache consistency problem.

The following paragraphs contain some suggestions on how to
deal with the problems related to the timing of actual writes to local
files. The Ephemeral Cache Item pattern explains how to handle cache
consistency.

It is not generally possible to control exactly when the data from a
write operation will actually be written to physical file. However, it is possi-
ble to force pending write operations to local file systems to complete.

This guarantees that all pending write operations have completed at a
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known point in time. It is generally good enough for ensuring the durability
of a transaction unless the transaction is subject to real-time constraints.

There are two steps to forcing write operations to local file systems to
complete. The first step is to tell objects your program is using to perform
write operations to flush their internal buffers. For example, all subclasses
of outputStream inherit a method named flush. A call to the flush
method forces the outputstream object to flush any internal buffers that
it might have.

The second step to forcing write operations to local file systems to
complete is to get the FileDescriptor object for the file your are writing.
FileDescriptor objects have a method named sync. A call to a File-
Descriptor object’s sync method tells the operating system to flush any
cached write operations for the associated file.

All ACID Properties

An implementation issue that affects all four ACID properties is how to
handle a commit operation that is unable to successfully complete. In all
cases, the objects manipulated by the transaction must be left in a consis-
tent state that reflects either the success or failure of the transaction.

We are concerned about two failure modes. One is that the commit
operation is unable to commit the changes made during the transaction,
but the objects that are interested in the results of the transaction are alive
and well. The other is a larger-scale failure that causes the commit opera-
tion not to complete and also causes all of the objects that are interested in
the results of the transaction to die.

The problem is simplest when the failure is limited to the commit
operation and the objects interested in the results of the transaction are
still alive and well. In this case, since the commit could not succeed, the
transaction must fail. All that is required is to restore the objects manipu-
lated by the transaction to their state at the beginning of the transaction.

The larger-scale failure presents an additional challenge if the objects
that were interested in the results of the transaction will persist after the
failure. Before processes or threads are started that will allow objects to
see an incomplete transaction, the incomplete transaction must be
detected and its commit must be completed or backed out.

In summary, adding your own logic to an application to enforce ACID
properties for transactions adds considerable complexity to the applica-
tion. When possible, use an available tool that can manage the ACID prop-
erties for you.

If you must create your own support for the ACID properties of trans-
actions, your design for each transaction will include some of the elements
shown in the class diagram in Figure 4.4.
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FIGURE 4.4 Generic transaction classes.

Here are descriptions of the roles classes play in ACID transactions as
indicated in Figure 4.4:

Transaction Logic. Though there are many ways to organize the
logic of a transaction, the most common design is to have one
class that encapsulates the core logic of a transaction. This class
may encapsulate the core logic for multiple related transactions.

TransactionParticipant1, TransactionParticipant2, ... The logic
encapsulated in a TransactionLogic class modifies the state of
instances of these classes.

TransactionManager. This class encapsulates reusable common
logic to support atomicity. For distributed transactions, it may
also encapsulate the logic to support durability.
TransactionLogic objects use an instance of this class to man-
age a transaction.
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TransactionParticipantIF. FEach TransactionParticipant class
implements this interface. The purpose of this interface is to
allow a TransactionManager object to manipulate Trans-
actionParticipant objects without having a dependency on
any specific TransactionParticipant class.

StateSavingClass1, StateSavingClass2, ... Classes in this role are
responsible for saving and restoring the state of Transaction-
Participant objects. These classes are usually specific to a sin-
gle TransactionParticipant class or a small number of
related TransactionParticipant classes.

ReadWriteLock. If concurrent transactions will be accessing
TransactionParticipant objects, with some transactions
modifying an object and other transactions just requiring read
access, an instance of this class is used to coordinate shared
read access and exclusive write access to the object. These
classes are usually reusable.

To conclude this discussion of implementing the ACID properties, if
it is at all possible to use an existing transaction manager, then do so. The
details presented here for doing it yourself are complex and subtle. Using
an existing transaction manager will generally produce better results.

KNOWN USES

Most Internet retail applications (i.e., www.amazon.com, www.walmart
.com) use ACID transactions.

Database management systems guarantee ACID properties for trans-
actions. Some use an implementation of atomicity based on keeping a
copy of the initial state of each item involved in a transaction. For exam-
ple, Interbase keeps the original and the modified version of every record
involved in a transaction until the transaction completes. When the trans-
action completes, it discards one or the other, depending on whether the
transaction succeeds or fails.

Oracle uses an implementation of atomicity that is analogous to the
implementation using wrapper objects.

RELATED PATTERNS

Snapshot. The Snapshot pattern (described in Volume 1) describes
techniques for saving and restoring the state of objects. This is
the better way to recover from a transaction failure when a
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transaction involves a long sequence of operations that modify
the state of a small number of simple objects.

Command. The Command pattern (described in Volume 1)
describes techniques for remembering and undoing a sequence
of operations. This is the better way to recover from a transac-
tion failure when a transaction involves a short sequence of
operations that modify the state of a large number of complex
objects.

Transaction State Stack. The Transaction State Stack pattern may
be used to make a transaction’s changes to multiple objects
atomic.

Audit Trail. Logging a sequence of operations to support the
Command pattern is structurally similar to maintaining an audit
trail.

System Testing. The System Testing pattern (described in Volume
2) should be used to ensure the consistency of transactions.

Unit Testing. The Unit Testing pattern (described in Volume 2) may
also help to ensure the consistency of transactions.

Single Threaded Execution. The Single Threaded Execution pat-
tern (described in Volume 1) can be used to keep transactions
that modify the state of the same object isolated from each
other.

Read/Write Lock. The Read/Write Lock pattern (described in
Volume 1) can be used to keep transactions that use the same
object isolated from each other while allowing transactions that
do not modify the object’s state to execute concurrently.

Read/Write Consistency. If you directly manage the storage of per-
sistent distributed objects, you may need the Read/Write Consis-
tency pattern to ensure that data and objects that are read from
files are consistent with the most recent write operation.

Ephemeral Cache Item. If you directly manage the storage of per-
sistent distributed objects, you may need the Ephemeral Cache
Item pattern to ensure that the result of a locally initiated read
operation matches the current contents of a remote store.






Transaction Patterns m 55

SYNOPSIS

You want to design and implement transactions correctly and with a mini-
mum of effort. Simple transactions are easier to implement and make cor-
rect than complex transactions. You should design and implement
complex transactions from simpler ACID transactions.

CONTEXT

Sometimes, you want to design a complex ACID transaction using existing
ACID transactions as building blocks. Using existing ACID transactions to
build a more complex transaction does not automatically give it the ACID
properties. Consider the following situation.

You work for the IT department of a supermarket chain. In addition
to having a number of stores that sell food, the company has a central
facility that produces bread, cakes, and other baked goods for the stores.
The IT department provides systems to support these activities:

® There is manufacturing software for the bakery. Every evening it is
fed the quantities of each item that each store will need for the fol-
lowing day. It produces reports telling the bakers how much of each
item to produce and what ingredients to order for the following day.

® There is transportation scheduling software. Every evening it is fed the
quantities of each item each store will need for the following day. It
schedules trucks to transport baked goods to the stores. It produces
reports telling the bakers how much of each item to put in each truck.

Currently, the amount of each product each store needs for the next
day must be keyboarded into both software applications. This increases
labor costs. It makes data entry errors more likely, since there are twice as
many opportunities to make mistakes. The costs of data entry errors are
higher because they can lead to baked goods being produced but not
loaded onto a truck or too many trucks being scheduled.

You have the task of creating a mechanism that allows the data to be
entered only once. You think of writing a data entry program that will put
the data in the appropriate database table of each application. Though you
know that you can make it work, you search for another way. Because the
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program would assume the internal structure of other applications, you
are concerned about maintenance problems later on.

Reading each application’s documentation, you find that they both
have an application program interface (API) to programmatically present
data to each application. Transactions initiated by the APIs have the ACID
properties. This gives you a way to build the data entry mechanism using
only supported features of the applications.

The fact that both APIs support the ACID properties greatly simplifies
the task of building a composite data entry transaction with a predictable
outcome. By creating a composite transaction that simply invokes each API,
you get a transaction that is consistent and durable without doing anything
else. However, you must carefully consider how to ensure that the composite
transaction is atomic and isolated. They will generally not be atomic or iso-
lated. You must either take additional steps to make them so or determine
that a less stringent guarantee of their behavior is sufficient. Without proper
attention to these details, transactions can be lost, they can be applied multi-
ple times, or concurrent transactions may corrupt each other.

The composite transaction in the example is not automatically
atomic. That is not a problem, for two reasons.

® Before the transaction runs, the quantity of all baked goods scheduled
to be produced for a store is zero. For that reason, there is no need to
save the old values before the transaction. You can back out the
transaction by setting all of the values to zero.

® Both the component transactions are idempotent. Idempotent means
that a transaction can happen once or more than once and still have
the same outcome. For example setting the price that gas pumps
charge for gas is an idempotent operation.

If all of the component transactions are idempotent, it simplifies
the task of recovery from a crash, because the only information that
needs to be saved is the fact that the transaction was begun. It is not
necessary to be certain that composite transaction has not completed.

The other area you will need to address is isolation. Though each

component transaction has the isolation property, this sequence of events
is possible:

Composite Transaction 1 Composite Transaction 2

Manufacturing Transaction 1

Manufacturing Transaction 2

Transportation Transaction 2

Transportation Transaction 1
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If the composite transaction is isolated from other transactions,
then neither transaction should be able to observe state changes made
by the other. This is not the case in the preceding scenario. In this
sequence of events, the first half of transaction 1 sees things as they
were before transaction 2; the second half of transaction 1 sees things
as they are after transaction 2. If you need only to isolate these trans-
actions from each other, you can solve the crash recovery problem
and the isolation problem the same way: Before the composite trans-
action invokes any of its component transactions, it can store the
transaction data in a file. When the transaction is done, it deletes
the file. If a crash prevents the completion of the transaction, then
when the program restarts it can detect the existence of the file and
restart the transaction.

The existence of the file can also be used to isolate transactions. Us-
ing the Lock File pattern, if the file exists when a composite transaction
starts, it waits until the file no longer exists before it continues.

Figure 4.5 is a class diagram that shows your design.

Figure 4.5 adds a detail not previously discussed. Instead of using
just one transaction file, it uses one transaction file per store. This is
based on an assumption that each store enters data only for itself and
for no other stores. This means concurrent transactions from different
stores are isolated from each other simply because they are from dif-
ferent stores. You need the file only to isolate concurrent transactions
from the same store. Forcing transactions for one store to wait for

Manages
TransactionFile 3 <g 3 LockFileManager
0 *
1
Store  f--eemeemmeieeeeeeees
v enters-data-for
* Contains-
ides- R transaction-details
DataEntryDialog 1 Prowdei data-to a
0.*
1
" CompositeTransaction ”
Uses Uses
v v
1 1
ManufacturingTransaction TransportationTransaction

FIGURE 45 Composite data entry transaction.
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transactions for another store to complete introduces an unnecessary
delay.

In this example, it was possible to find a solution that did not require
that the composite transaction was atomic and isolated. This is the excep-
tion rather than the rule. In most cases, it is necessary to take measures to
ensure that a composite transaction has all of the ACID properties.

FORCES

Building complex transactions with predictable outcomes from sim-
pler transactions is greatly facilitated if the simpler transactions have
the ACID properties.

@ If the ACID properties of a set of transactions are implemented using
a single mechanism that supports nested transactions, then imple-
menting the ACID properties for a composite transaction composed
of those transactions is very easy.

If the ACID properties of a set of component transactions are imple-
mented using a mechanism that does not support nested transac-
tions, then implementing ACID properties for a composite
transaction is more difficult. Implementing a composite transaction
with component transactions whose ACID properties are imple-
mented using incompatible mechanisms that do not work with each
other is also difficult. In some cases, it is impossible.

It is difficult for a maintenance programmer who must maintain a
composite transaction to understand the full inner workings of a
composite transaction, especially if there are multiple levels of com-
position.

©

o8]

o8]

SOLUTION

Design classes that implement complex transactions so that they delegate
as much work as possible to classes that implement simpler transactions.
When selecting classes that implement transactions for incorporation into
more complex transactions, you should use classes that already exist and
are known to be correct, or you should select classes that will have multi-
ple uses.

The simpler transactions should have the ACID properties. That
greatly simplifies the task of ensuring predicable properties for the com-
posite transaction.

Carefully choose the granularity of the simpler transactions. When
designing with existing transactions, you generally have to work with
the transactions as they exist. If you are designing the simpler transactions
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along with the complex, the granularity of the simpler transaction should
be a balance between the need to keep the simpler transactions simple and
the need to keep the more complex transactions understandable.
Sometimes, circumstances make it complicated to ensure the ACID
properties of a composite transaction. Figure 4.6 shows the structure of a

simple composite transaction design when there are no such complicating
circumstances.

ComponentTransaction1

transactionOperation1( )
transactionOperation2( )

for

1

A Manages-
transactions-

ComponentTransactionAdapter1

ComponentTransaction2

transactionOperation1( )
transactionOperation2( )

A Manages-
transactions-
for

1

startTransaction( )

ComponentTransactionAdapter2

startTransaction( )

commit( ) commit( )
abort( ) abort( )
<<|Interfac§»' Uses
TransactionParticipantIF
Uses
startTransaction( ) A
commit( )
abort( )
1
A Manipulates
1 1
1
CompositeTransactionLogic
TransactionManager <
1 Uses 1 | startTransaction( )
commit( )
abort( )
Uses transactionOperation1( )
« 1 transactionOperation2( )

FIGURE 4.6 Composite transaction pattern.
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The classes shown in Figure 4.6 play the following roles in the
Composite Transaction pattern:

CompositeTransactionLogic. Although there are many ways to
organize the logic of a transaction, the most common design is
to have one class that encapsulates the core logic of a transac-
tion. This class can encapsulate the core logic for multiple
related transactions.

ComponentTransactionl, ComponentTransaction2, ... Classes
in this role encapsulate a component transaction that is part of
the composite transaction. CompositeTransactionLogic
classes delegate transaction operations directly to
ComponentTransaction objects. However, transaction manage-
ment operations that begin or end a transaction are delegated
indirectly through a TransactionManager class.

TransactionManager. This class encapsulates reusable common
logic to support atomicity and isolation. For distributed transac-
tions, it may also encapsulate the logic to support durability.
CompositeTransactionLogic objects use an instance of this
class to manage a transaction.

In order to be independent of the classes that it manages
within a transaction, it interacts with these classes through a
TransactionParticipantIF interface.

TransactionParticipantIF. TransactionManager classes interact
with ComponentTransaction classes through an interface in
this role.

ComponentTransactionAdapter. Unless ComponentTransaction
classes are specifically designed to work with the
TransactionManager class being used, they don’t implement
the TransactionParticipantIF interface that the
TransactionManager class requires. Classes in the
ComponentTransactionAdapter role are adapters that imple-
ment the TransactionParticipantIF interface with logic that
delegates to a ComponentTransaction class and supplements
its logic in whatever way is necessary.

There are two areas in which applications of this pattern most often
vary from the organization shown in Figure 4.5. Both areas of variation
usually add complexity.

The first area of variation is that some portions of the composite
transaction’s logic may not already be encapsulated as a self-contained
transaction. In many cases, such logic is too specialized for you to have an
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expectation of reusing it. It may not be possible to justify encapsulating
such specialized logic in this way. In these situations, the design usually
looks like a hybrid of Figures 4.3 and 4.6, with some portions of the logic
encapsulated in self-contained transactions and the unencapsulated por-
tions having the additional details shown in Figure 4.3.

The other area of variation is managing the predictability of the com-
posite transaction’s outcome. The preferred strategy for doing that is to
ensure that the composite transaction has the ACID properties. Extensive
experience has shown this is to be a successful strategy. Though using
component transactions that have the ACID properties may simplify the
task of ensuring that the composite transaction has the ACID properties, it
is not sufficient.

The simplest situation for ensuring the ACID properties of the com-
posite transaction is when there is a single mechanism for ensuring the
ACID properties of all of the component transactions and the mechanism
supports nested transactions. Such a mechanism does not only allow indi-
vidual component transactions to abort themselves, it also allows the com-
posite transaction to abort and restore all objects modified by committed
component transactions to the state they had at the beginning of the com-
posite transaction.

The simplest possibility is that you are using a tool to manage trans-
actions and the tool supports nested transactions. Alternatively, if you con-
trol the implementation of all of the component transaction classes that
you are using, then it is relatively easy to modify the techniques described
by the ACID Transaction pattern to support nested transactions.

If the component transactions are managed by a mechanism that
does not support nested transactions, then you will need a different way to
ensure the predictable outcomes of the composite transactions. If the com-
ponent transactions are managed by different mechanisms, as is the case
in the example under the “Context” heading, it is also necessary to find a
different way to ensure the predictability of the outcome of the composite
transaction.

The Two Phase Commit pattern describes a way to combine com-
ponent transactions that have the ACID properties and are managed by
different mechanisms into one composite transaction that has the ACID
properties. However, you may not be able to use the Two Phase Commit
pattern if all of the classes that encapsulate the component transactions
have not been designed to participate in the Two Phase Commit pat-
tern.

In some cases, it may be impractical or even impossible to ensure the
ACID properties for the composite transaction. You will find descriptions
of common alternatives and how to implement them under the
“Implementation” heading.
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CONSEQUENCES

© Writing classes that perform complex transactions by having them
delegate to classes that perform simpler transactions is a good form
of reuse, especially when the classes that implement the simpler
transactions already exist or will have multiple uses.

© The core logic of a transaction implemented as a composite transac-
tion is less likely to contain bugs than a monolithic implementation
of the same transaction. That is because the component transactions
you build on are usually already debugged. Since implementing
transactions in this way simplifies the core logic of the transaction,
there are fewer opportunities to introduce bugs into it.

® If you are not able to use nested transactions or the Two Phase
Commit pattern to manage the ACID properties of a composite trans-
action, it may be difficult to implement the ACID properties for the
composite transaction. It may even be impossible to implement the
ACID properties for the composite transaction. In such situations,
you are forced to compromise on the guarantees you can make about
the predictability of the transaction’s outcomes.

® If there are no dependencies between component transactions, then it

is possible for them to execute concurrently.

(€

IMPLEMENTATION

There are a number of lesser guarantees that you may try to implement
when it is not possible to enforce the ACID properties for a composite
transaction. Some of the more common ones are discussed in this
section

When it is not possible to ensure that a transaction is atomic, it may
be possible to ensure that it is idempotent. If you rely on idempotence
rather than atomicity, then you must be able to ensure that a transaction
will be completed at least once after it is begun.

In some situations, it is possible to ignore the issue of isolation. If the
nature of the transaction ensures that no concurrent transactions will
modify the same objects, then you do not need to anything to ensure that
the transactions execute in isolation.

KNOWN USES

Sybase RDBMS and SQL Server support nested transactions and facilitate
the construction of composite transactions.
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JAVA API USAGE

The Java Transaction API has facilities to aid in the construction of com-
posite transactions.

RELATED PATTERNS

ACID Transaction. The Composite Transaction pattern is built on
the ACID transaction pattern.

Adapter. The Composite pattern uses the Adapter pattern, which is
described in Volume 1.

Command. The Command Pattern (described in Volume 1) can be
the basis for an undo mechanism used to undo operations and
restore objects to the state they were in at the beginning of a
transaction.

Composed Method. The Composed Method pattern (described in
Volume 2) is a coding pattern that describes a way of composing
methods from other methods and is structurally similar to the
way the Composite Transaction pattern composes transactions.

Lock File. The Lock File pattern can be used to enforce the isola-
tion property for a composite transaction.

Two Phase Commit. The Two Phase Commit pattern can be used
to ensure the ACID properties of a composite transaction com-
posed from simpler ACID transactions.

Mailbox. When there is a need to ensure the reliability a composite
transaction, you will want to take steps to ensure the reliability of
the component transactions that constitute it. If the composite
transaction is distributed, you will also want to ensure the reli-
able transmission of messages between the objects that partici-
pate in the transaction by such means as the Mailbox pattern.
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This pattern is based on material that appears in [Gray-Reuter93].

SYNOPSIS

If a transaction is composed of simpler transactions distributed across
multiple database managers, you want them to either all complete success-
fully or all abort, leaving all objects as they were before the transactions.
You achieve this by making an object responsible for coordinating the
transactions so that they all complete successfully or all abort.

CONTEXT

Suppose that you have developed software for a barter exchange business.
The software is responsible for managing barter exchanges. It records
offers of exchange, acceptances, and the consummation of each exchange.

The business has grown to the point where it has offices in a number
of cities, each office facilitating barter exchanges among people local to its
city. The business’s management has decided that it is time to take the busi-
ness to the next level and allow barter between people in different parts of
the country. They want someone in one city to be able to swap theater tick-
ets for balloon rides near a different city. Currently, that is not possible.

Each office runs its own computer that manages transactions for its
clients. The offices run independently of each other. In order to support
exchanges between clients of different offices, it must be possible to exe-
cute ACID transactions that are distributed between multiple offices.

To make this happen, there must be a mechanism that coordinates the
portion of each transaction that executes in each office. It must be the case
that every portion of each transaction successfully commits or every portion
of each transaction aborts. It must never happen that one office thinks that a
transaction completed successfully and another thinks that it aborted.

FORCES

© Otherwise-independent atomic transactions must participate in a
composite atomic transaction.
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If any one of the component transactions participating in a compos-
ite atomic transaction fails, all must fail. This implies that the compo-
nent transactions are coordinated in some way.

Though it is possible to distribute the responsibility for coordinating
transactions over multiple objects, it is an unusual design decision.
Distributing coordination of self-contained transactions adds com-
plexity. It is an area that is not as well understood as designs that
make a single object responsible for the coordination. Distributed
coordination of transactions remains a valid research topic.

There is extensive industry experience with designs that make a
single object responsible for coordinating transactions. Because of
this experience, designs that make a single object responsible for
coordinating transactions are well understood and widely written
about.

The results of a transaction should persist as long as any objects may
be interested in the results or until another transaction changes the
state of the affected objects. If the transactions being coordinated
have the ACID properties, then their durability attribute implies that
this will be true for the results of each of the coordinated transactions
individually.

The responsibility for coordinating component transactions persists
until the composite transaction has completed. However, the object(s)
responsible for coordinating a transaction may experience a cata-
strophic failure during a transaction.

' The requirements for some applications imply that some composite

transactions should not be atomic. This is often true for long-lived
transactions or application-level transactions. For example, an inven-
tory application for a chain of retail stores may support a transaction
to order additional merchandise from a warehouse. If the warehouse
does not have all of the ordered merchandise, then the warehouse
will need to backorder the merchandise and send the merchandise to
the stores after the merchandise arrives. To allow store managers to
effectively manage the display of their inventory, they will need to be
aware of the status of orders they send to the warehouse. It must be
possible for store managers to know when the merchandise that they
ordered is backordered.

SOLUTION

Make a single object responsible for coordinating otherwise-independent
ACID transactions participating in a composite transaction so that the
composite transaction has the ACID properties. The object responsible for
the coordination is called the coordinator. The coordinator coordinates the
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completion of the composite transaction in two phases. First, it determines
whether each component transaction has completed its work successfully.
If any of the component transactions complete unsuccessfully, then the
coordinator causes all of the component transactions to abort. If all of the
component transactions complete successfully, the coordinator causes all
of the component transactions to commit their results.

The class diagram in Figure 4.7 shows the roles in which objects par-
ticipate in the Two Phase Commit pattern.

Here are descriptions of the roles in which classes participate in the
Two Phase Commit pattern:

CompositeTransactionLogic. A class in this role is responsible for
the top-level logic of a composite transaction.

Coordinator. An instance of a class in this role is responsible for
coordinating the component transactions of a composite trans-
action. It determines whether they are all successful and then
either tells them all to commit or to all abort. Classes in this role
are usually reusable and contain no application specific code.

ComponentTransactionl, ComponentTransaction2, ... Classes
in this role encapsulate the component transactions that com-
prise the composite transaction.

TransactionWrapperl1, TransactionWrapper2, . . .
ComponentTransaction objects can participate directly in the
Two Phase Commit pattern only if they are designed to do so.
That is usually not the case. ComponentTransaction objects
that are not designed to directly participate in the Two Phase
Commit pattern can do so through a wrapper object that pro-
vides the logic necessary to do so. Classes in this role are those
wrapper objects. The details of the logic they need to provide are
discussed later in this section.

TransactionWrapperlIF. Classes in the TransactionWrapper role
must implement this interface, which is required by the
Coordinator class.

The collaboration diagram in Figure 4.8 illustrates the way that these
classes work together.

Here is a step-by-step description of the interactions shown in Fig-
ure 4.8:

1. The composite transaction is started.

1.1, 1.2. The composite transaction registers the objects that wrap
the component transactions with the Coordinator object. This
simplifies the logic of the composite transaction by allowing it to
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2: commit( )
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FIGURE 4.8 Two phase commit collaboration.

commit or abort the transaction with a single call to the
Coordinator object. It also allows the Coordinator object to
provide better handling of component transactions that fail. This
is discussed in more detail under the “Implementation” heading.

These calls are asynchronous. They start another thread to
do their work and then return immediately.

1.1.1, 1.2.1. The Coordinator object calls the synchronize method

of the objects that wrap the component transactions. The pur-
pose of these calls is to enable the Coordinator object to know
when each of the component transactions has completed. Calls
to the synchronize methods do not return until the component
transaction they are associated with completes.
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The call that precedes these calls is asynchronous. These
calls made by the Coordinator object are made in a different
thread than the calls to the Coordinator object. The objects
that call the Coordinator object’s register method are able to
go about their business while the Coordinator object is waiting
for its calls to synchronize methods to return.

1.1.2, 1.2.2. The Coordinator object calls the getstatus method

of the objects that wrap the component transactions. The pur-
pose of these calls is to determine whether each component
transaction succeeded or failed.

If any of the component transactions failed, then instead
of allowing this sequence of interactions to continue, the
Coordinator object causes all of the other component trans-
actions to abort and ends the transaction.

1.3a, 1.3b. The logic of the composite transactions starts each of

the component transactions by calling the startTransaction
method of the wrapper object for each component transaction.
When possible and advantageous, the invocations of the compo-
nent transactions are concurrent. In many cases, that is not pos-
sible. Sequential invocation of component transactions is more
common than concurrent invocation.

1.3a.1, 1.3b.1. The wrapper objects start their corresponding com-

ponent transaction.

2. The CompositeTransactionLogic object’s commit method is

2.1.

2.1a.

2.1a.

2.1a.

called. A call to the commit method requests the object to com-
mit the results of the composite transaction.

The CompositeTransactionLogic object delegates the work of
committing the composite transaction to the Coordinator
object by calling its commit method.

1, 2.1b.1. For each component transaction, the Coordinator
object waits for the transaction to complete. If the status of all
of the component transactions indicate that they completed suc-
cessfully and will be able to commit their results successfully,
then the Coordinator object calls the commit method of each
component transaction’s wrapper object.

1.1, 2.1b.1.1. If their commit method is called, the wrapper ob-
jects for the component transactions commit those transactions.

2, 2.1b.2. If any component transactions did not complete suc-
cessfully or their status indicates that some of them will not be
able to successfully commit their results, then the Coordinator
object calls the abort method of each component transaction’s
wrapper object.
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2.1a.2.1, 2.1b.2.1. If their abort method is called, the wrapper
objects for the component transactions abort those transactions.

Based on this, the additional logic that wrapper objects for compo-
nent transactions may be required to provide are as follows:

® The ability to tell whether a component transaction has completed its
work successfully and will be able to successfully commit its results

® The ability to determine whether a component transaction will be
unable to complete its work

When a Component Transaction Fails

A Coordinator object learns that a component transaction has failed
when its wrapper’s getStatus method returns failure. If any of the compo-
nent transactions fail, the Coordinator object aborts them all.

When a Component Transaction Object Crashes

When a Coordinator object learns that a component transaction object
has crashed, it also aborts all of the component transactions. Coordinator
objects are generally not able to learn directly that a component transac-
tion object has crashed. Instead, they generally learn indirectly of a crash.
A Coordinator object may infer that a component transaction object has
crashed by the amount of time it takes for the call to the component ob-
ject’s getStatus method to return. If the call takes too long to return, the
Coordinator object may consider the call to have timed out and infer that
the call will never return.

If the length of time that a component transaction takes is highly
variable, then the amount of time that must elapse before the
Coordinator object may consider the call to have timed out may be
unreasonably long. In such cases, the Coordinator object can use the
Heartbeat pattern to detect the crash of a Coordinator object.

When the Coordinator Crashes

One other aspect of this pattern to look at more closely is what happens
when the Coordinator object crashes.

When a Coordinator object has a transaction pending, it records in
a file the fact that there is a pending transaction and the identities of the
transaction’s participants. If the Coordinator object crashes, it is auto-
matically restarted.
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After the Coordinator object restarts, it checks the file for pending
transactions. When the Coordinator object finds a transaction in the file,
the transaction will be in one of three states:

The transaction may be open. In this case, the Coordinator object
does not need to take any immediate action.

The transaction may be aborted. This will be the case if the
Coordinator object received a request to abort the transaction,
but had not informed all of the transaction’s participants to
abort before the crash. In this case, the Coordinator object calls
the abort method of all the transaction’s participants.

The transaction may be committed. This will be the case if the
Coordinator object received a request to commit the transaction,
but had not informed all of the participants to commit before
the crash. This is the most interesting of the three cases.

If the Coordinator object had been asked to commit the transaction
before it crashed, it has to find out the status of the participants before it
can proceed. The Coordinator object proceeds by calling the getStatus
method of all the transaction’s participants. Each call to a participant’s
getStatus method tells the Coordinator object one of three things:

® The participant has committed the transaction.
® The participant is ready to commit the transaction.
® The participant is unable to commit the transaction.

Because of the way that Two Phase Commit works, it should never
be the case that some participants have been committed and other partici-
pants are unable to commit. Once the Coordinator object knows the sta-
tus of all the participants, it either asks all of the participants to commit
or all of the participants to abort the transaction.

CONSEQUENCES

The Two Phase Commit pattern ensures that all component transac-
tions in a composite transaction either commit their results or abort.
In most situations, the Two Phase Commit pattern adds only a mod-
est amount of overhead.
% There is a situation in which a transaction implemented using the
Two Phase Commit pattern can take an indefinite amount of time to
complete.

The lifetime of a composite transaction is greater than the life-

©
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time of its component transactions. In a distributed environment, it is
possible for some components of the transaction to have some sort of
catastrophic failure while the others are alive and well. If the object(s)
coordinating a transaction experience a catastrophic failure, the co-
ordinator object can generally detect the failure within a bounded
and predetermined amount of time. In such cases, the Coordinator
object tells the rest of the component transactions to abort.
If the Coordinator object experiences a catastrophic failure,

it is generally not possible to guarantee a maximum amount of time
it will take for it to be restarted and complete the transaction. That
means there is no definite guarantee on how long it can take for coor-
dinated transactions to complete.

® Some transactions cannot participate in the Two Phase Commit pat-
tern because there is no way for a wrapper object to get the informa-
tion it needs about the transaction.

IMPLEMENTATION

It is possible to guarantee an upper bound on the amount of time it takes
for coordinated transactions to complete by forcing them to abort after a
predetermined amount of time has elapsed. This has the unfortunate con-
sequence of creating a period of time in which it is possible for the out-
come of the coordinated transactions to become inconsistent. The problem
arises from the fact that when the object(s) that coordinates a transaction
decides that the coordinated transactions should commit their results, the
message does not reach the objects responsible for each transaction at
the same time. This creates a window of vulnerability between the time
that the message to commit reaches the first transaction and the time it
reaches the last transaction. During that window, some of the transactions
may time out, causing those transactions to abort while those that the
message reaches in time commit their results.

In distributed environments, you should ensure that the Coordina-
tor object becomes aware of the catastrophic failure of a component
transaction within a bounded amount of time. The simplest solution is
available if the component transaction takes about the same amount of
time to complete every time it runs. In this situation, the Coordinator
object can detect a catastrophic failure of a component transaction by
placing a limit on how much time it will wait for it to complete before it
decides that the component transaction has failed.

If the amount of time that a component transaction requires is not
predictable, you can use the Heartbeat pattern to ensure that the Coor-
dinator object detects a catastrophic failure within a set amount of time.
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Another implementation issue for two phase commit is how to ensure
that after a TransactionWrapper object has been asked to commit its
transaction and agrees to commit its transaction that it actually does com-
mit its transaction. This generally involves a flag indicating that a commit
is pending and a commit mechanism that is idempotent (can be invoked
more than once with the same result as invoking it only once). In normal
circumstances, the commits proceeds, and the flag is set to indicate that
no commit is pending. If the TransactionWrapper object is restarted after
a crash, it will notice that there is a commit pending and invoke the com-
mit mechanism. It doesn’t know whether the commit was completed previ-
ously, but because the commit is idempotent, it does not matter whether
the commit is being invoked a second time.

JAVA API USAGE

The Java Transaction API defines interfaces that are suitable for some of
the roles of the Two Phase Commit pattern.

KNOWN USES

The CORBA transaction service supports the Two Phase Commit pattern.
Databases such as Oracle and Sybase that support distributed transactions
use the Two Phase Commit pattern.

RELATED PATTERNS

ACID Transaction. The Two Phase Commit pattern is used to build
composite transactions having the ACID properties from compo-
nent transactions that have the ACID properties.

Composite Transaction. The Two Phase Commit pattern is used
with the Composite Transaction pattern.

Decorator. The Decorator pattern (described in Volume 1) provides
the basis for the organization of the wrapper objects used in the
Two Phase Commit pattern.

Heartbeat. The Heartbeat pattern may be used with the Two Phase
Commit pattern to ensure that the Coordinator object is able to
detect catastrophic failures of component transactions in a
bounded amount of time.

Process Pair. The Process Pair pattern may be used to restart a
Coordinator object after it crashes.
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SYNOPSIS

You need to verify that transactions are being processed correctly and hon-
estly. Maintain a historical record of transactions that have been applied to
an object or a set of objects. The record should contain enough detail to
determine how the objects affected by the transactions reached their cur-
rent state.

CONTEXT

Suppose that you are designing software for a business that will serve as a
clearinghouse for barter exchanges. Each transaction will involve the
exchange of a combination of goods and services.

Each day, the clearinghouse’s clients make deals. At the end of each
day, all clients are expected to consummate their trades through the
exchange of certificates promising the future delivery of goods or services.
The clearinghouse provides its clients with the necessary digital certifi-
cates that it expects them to digitally sign and forward to the indicated
recipient. Because of subsequent trades, the recipient of the certificate
may be a different party than anyone with whom the client made any
direct deal.

Clearinghouse clients must trust the clearinghouse to correctly iden-
tify the recipients of the goods or services that they have traded away. For
this reason, there must be a way to verify the correctness and honesty of
the clearinghouse. One way to do that is to keep an audit trail.

The audit trail will consist of a record of all trades. By reviewing ran-
domly selected sequences of transactions, it is possible for auditors to ver-
ify that the transactions are handled correctly and honestly.

FORCES

@ You need a record of the transactions that have modified the state of
an object or set of objects in order to determine if the current state of
the object(s) is correct.

© You need to account for the actions of an object. The need for
accountability can come from the application domain. For example,
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in accounting and finance applications, real-world financial events
drive the actions of objects. These applications generally have
requirements that it be possible to audit the actions of these objects
so that they can be compared with real-world events. Such audits
provide an opportunity to detect human error and dishonesty in
recording financial events.

The need for object accountability may come from internal design
considerations such as the need to review an object’s actions for secu-
rity or debugging purposes. A record of an object’s actions may help
detect patterns in a hacker’s actions. When debugging a program,
comparing a record of an object’s actions with its expected actions
can help in tracking down bugs.

> Once a record is made of a transaction, it must not be possible to

alter that record. If it is possible to alter it, then you cannot be sure of
what actually happened.

The number of recorded transactions consistently grows, but the
amount of available online storage does not.

The purpose of keeping a historical record of transactions is to enable
auditors or troubleshooters to verify that the transactions in the
record satisfy a set of expectations or requirements. In many cases,
the volume of transactions makes it impractical for people to exam-
ine every individual transaction. In such cases, people will need a way
to examine samples or summaries of the transactions.

SOLUTION

Maintain a historical record of transactions. The record should include all
transactions that affect the state of objects of interest. In order to use the
historical record to determine whether the objects are currently in the cor-
rect state, it is necessary to determine the object’s original state. For this
purpose, you also store the original state of the object. Knowing the origi-
nal state of an object makes it possible to determine whether or not the
transactions applied to an object after it was in that state should have
brought the object to its current state.

The record should also include transactions initiated by objects of

interest. The purpose of such a historical record is to record the behavior
of the object that initiates the transactions. In many cases it is necessary
for the historical record to include information about the object’s state at
the time it initiated a transaction in order to evaluate the object’s behavior.

To facilitate the analysis of transaction records, the transaction

records should be under the control of a mechanism such as a database
manager that allows people to extract samples or summaries of the trans-
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action. For example, consider the situation described under the “Context”
heading. It would be desirable to be able to pick an arbitrary clearinghouse
client and review the sequence of trades that resulted in the client being
told to send his or her trade goods to a particular recipient.

CONSEQUENCES

@ If you use the Audit Trail pattern to keep track of the transactions

that an object is given to process, then you can determine whether

the object is in its correct state by auditing the transactions in the

audit trail.

If you used the Audit Trail pattern to keep track of the transactions

an object initiates, you will have a way to validate its behavior or

debug it.

@ If an audit trail captures a complete transaction history along with

the relevant object’s initial state or historical states, then the audit

trail can be used to reconstruct the relevant objects in the event of a

catastrophic failure.

The Audit Trail pattern adds complexity to designs.

® The storage requirements for maintaining an audit trail can be
very large. As time goes on, an audit trail will continue to grow. If
the audit trail is to be kept online, there is generally a constrained
amount of space available for storing it. For that reason, it is com-
mon to transfer portions of an online audit trail that exceed a par-
ticular age to removable storage such as a tape.

O

o8]

IMPLEMENTATION

When an audit trail is mandated by application requirements, the collec-
tion of historical transactions that constitutes the audit trail is called a
journal. As is the case with all audit trails, the transactions in a journal
never change because they are a true and accurate record of history. If an
application processes a transaction whose purpose is to correct the effects
of a previous erroneous transaction, the transaction that corrects the prob-
lem is called an adjustment transaction.

There are many ways to implement the Audit Trail pattern. Figure 4.9
shows a sample design to implement the Audit Trail pattern.

In the design shown in Figure 4.9, TransactionProcessor objects
process transactions encapsulated in Transaction objects, passing them
to a TransactionRecorder object, which adds the transactions to the col-
lection of Transaction objects it manages. TransactionRecorder objects
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FIGURE 4.9 Audit trail pattern.

are responsible for adding information to the transactions that will be
needed for the historical record. One such commonly needed piece of
information is the time that a transaction was processed.

Figure 4.9 also includes a snapshot object that encapsulates the orig-
inal state of the TransactionProcessor object. The contents of the Snap-
shot object are used when analyzing the historical transaction record.

One other detail in Figure 4.9 is a QueryManager class. It is responsi-
ble for generating subsets and summaries of the historical transaction
record as they are requested by auditors.

The historical record does not need to include failed transactions to
be able to validate an object’s current state from an historical record of
transactions. However, there may be advantages to including failed trans-
actions in the historical record. It can facilitate debugging and detection of
security problems. Because those are not continuing needs, if there is
support for failed transactions in the historical record it should be possible
to turn off the inclusion of failed transactions. If it is possible to include
failed transactions in a historical record some of the time, then all transac-
tions in the record must include an indication of whether or not each
transaction was successful.

The volume of transactions in some applications may make it
impractical to store and manage a complete audit trail. If the number of
transactions an application generates is too large, it becomes physically
impossible for auditors to examine every item in an audit trail. In such
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cases, it may be possible to keep a partial audit trail that still allows valid
audits to be performed.

When moving transactions offline, the object states that they gave
rise to should be determined and stored online. This makes it possible to
analyze the online portion of the historical record without having to access
offline information.

For some applications, it is not possible to sufficiently limit the time
historical transaction records are kept online to keep the online storage
requirement small enough. If the application processes transactions for
many objects, it may be sufficient to keep a historical transaction record
only for randomly selected objects.

KNOWN USES

Accounting applications intended for medium to large applications sup-
port the Audit Trail pattern.

Workflow applications generally provide an audit trail that allows
people to find out who did what with a work item.

Source code management systems such as CVS provide an audit trail de-
scribing what changes have been made to source code and who made them.

RELATED PATTERNS

ACID Transaction. If the transactions in a historical record do not
have the ACID properties, then it may not be possible to unam-
biguously determine the effect of each transaction on an object.

Snapshot. The Snapshot pattern (described in Volume 1) provides
advice on how to capture the state of an object.
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The patterns in this chapter can be used to design the high-level
architecture of distributed designs. Because some of these patterns involve
infrastructure, the patterns can be incorporated into architectural designs
using off-the-shelf reusable components.

There are a few recurring themes in these patterns. The most com-
mon and basic of these themes is multiple clients sharing the same object.
For that reason, the Shared Object pattern is the first pattern in this chap-
ter. It describes a centralized way of sharing objects. The Object
Replication pattern describes a decentralized way of sharing objects.
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Another recurring theme is handling failures. The Object Replication,
Redundant Independent Objects, Prompt Repair, and Process Pair patterns
describe ways to survive failures. The Demilitarized Zone pattern describes
a way to avoid a type of security failure.

Because the patterns in this chapter are at the architectural level,
code examples are of limited value. When reduced to code, the patterns
tend to be diffused throughout the code. Examples tend to be excessively
large and difficult to follow. For this reason, the patterns in this chapter do
not have a “Code Example” section.
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SYNOPSIS

You have some information or a limited quantity of a resource. You share
objects among multiple clients in order to share encapsulated information
or underlying resources. You centrally manage the object sharing with a
separate object, so the sharing does not add to the complexity of the
objects being shared or the objects sharing them.

CONTEXT

Suppose you are designing a point-of-sale system.* You are responsible for
designing the part of the system that will process credit card payments. To
process a credit card payment, the point-of-sale system must contact a
credit card clearinghouse, verify that the credit card number is valid, and
get approval for the transaction.

At the time of this writing, there is more than one way for point-of-
sale systems to communicate with a credit card clearinghouse. The most
common way for a point-of-sale system to connect is via telephone. If a
point-of-sale system includes multiple cash registers but only one phone
line, then sometimes one register must wait for another register to finish
clearing a transaction before it can process its own transaction. To avoid
delays caused by waiting for a telephone line, some multiple-register point-
of-sale systems have multiple telephone lines. This allows them to simulta-
neously process as many credit card charges as there are telephone lines.

You design the point-of-sale system so that there is a TelephoneLine
object responsible for each telephone line. Each TelephoneLine object is
shared by all of the cash registers. Figure 5.1 shows these relationships.

In this design, cash registers work through a single
TelephoneLineManager object to connect to the credit card clearing-
house. A cashRegister object calls the TelephoneLineManager object’s
getPhoneConnection method. If any TelephoneLine objects are not in
use, the TelephoneLineManager object allocates one and returns the con-
nection. Otherwise, the TelephoneLineManager object waits until a
TelephoneLine object is available.

* Point-of-sale system is the high-tech name for a cash register (with high-tech improvements).
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FIGURE 5.1 Shared telephone lines.

After the cashRegister object is finished using a telephone connec-
tion, it calls the TelephoneLineManager object’s releasePhoneConnection
method, which makes the TelephoneLine object available for other
CashRegister objects.

FORCES

@ Multiple client objects require access to an instance of the same class
or an object that implements a particular interface.

© Client objects require access to a resource object that is unique or

available only in limited quantities.

Uncontrolled access by clients to resource objects will cause bad or

unpredictable results. It is necessary to constrain access by client

according to some policy such as exclusive access.

© You want the benefits that come from multiple objects sharing a
resource. However, you don’t want to burden the client objects that
share the resource with the task of managing the resource. If there is
a pool of resources to share, it is an even bigger burden for the client
object to directly manage a pool of resources.

@ It must be possible to administer some resource objects indepen-

dently of their clients. This can involve an object responsible for

administering multiple resource objects, or possibly all of the

resource objects.

Suppose multiple clients that reside on different computing elements

share an object. The more clients the object has, the higher will be

the demand for CPU cycles on the computing element on which the

object resides.

 If a set of resource objects has many clients, you can reduce the likeli-

hood that a client will have to wait for a resource by adding more

G
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resource objects. However, if all clients have to go through the same
object to get a resource object allocated, then the object that allocates
the resource becomes a bottleneck.
® If the clients of a set of resources are in remote locations and

exchange a large volume of data with the resource objects, then hav-
ing a set of resource objects all located in one place is undesirable. It
can result in more communications or networking delay than is neces-
sary. Having multiple sets of resources located in places closer to their
clients can result in less or no communications or networking delay.

SOLUTION

Allow instances of a class to be shared by multiple objects. Put a single
object in charge of allocating instances of the class to client objects. These
relationships are illustrated in Figure 5.2.

Figure 5.2 shows multiple c1ient objects using shared Resource
objects through a Manager object. The Manager object manages a collec-
tion of Resource objects. When a client object needs a Resource object,
the Manager object is responsible for centrally determining which
Resource object a Client object will use. This must be governed by a pol-
icy, such as exclusive access, that ensures the correct use of the Resource
object.

The Manager class must also implement a policy that determines
what happens if no Resource objects are available. The most common pol-
icy is to simply wait until a Resource object becomes available.

CONSEQUENCES

© Sharing objects among multiple clients may be an effective way to
manage limited resources.

Manages-Service object for clients »

. T Resource

Manager

1
Uses
A

1 *

Client

FIGURE 5.2 Shared objects.
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© If other objects share an object, then they indirectly share the
resources used by the object.

® It is difficult to tune the performance of a system of objects in which
the clients of a shared object reside on a different computer than the
shared object and the objects used by the shared object also reside on
different computers.

® If there are many clients, the Manager object can become a perfor-
mance bottleneck. In such situations, if the clients are distributed
over multiple computers, the Object Replication pattern may be a
better way to manage the sharing of objects.

IMPLEMENTATION

If an object is shared by remote clients, they will access it asynchronously
and sometimes concurrently. You need to take steps to ensure that the rele-
vant methods of the shared object’s class and the Manager class are thread
safe in order to ensure their correct operation.

Manager Methods

The sort of methods a Manager class provides to its clients depends on the
nature of the resource being managed. If operations on the resource are
self-contained method calls, then the Manager class will typically be a
proxy for the resource class. For example, consider a telemarketing appli-
cation whose purpose is to call a telephone number, play a recorded mes-
sage, and then hang up.

Suppose that a resource class named Spammer is responsible for this
activity. Also suppose that the Spammer class has a method named spam
that takes a telephone number and an AudioClip object as its parameters.
When called, the spam method dials the telephone number, plays the
AudioClip and then hangs up.

A Manager class for Spammer objects would have a spam method that
would wait for a Spammer object to become available and then call its spam
method.

If the client’s interaction with a resource can involve a sequence of
method calls, the Manager class methods shown in the example under the
“Context” heading are typical. In this circumstance, the Manager class typi-
cally has a method that waits for a resource object to become available and
then returns the resource object. The client then interacts directly with the
resource object. When the client object is finished with the resource
object, it passes the resource object to another of the Manager object’s
methods to make the resource object available to other clients.
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If a Manager class is organized this way, it is possible for a client
object to die before it releases a resource object. A Manager class can use
the Heartbeat pattern to recognize the death or unreachability of a client
object. Once it recognizes the problem, it must ask the resource object to
abort whatever it was doing and make the resource object available for
another client.

The Heartbeat pattern recognizes a high likelihood that an object has
died. However, it cannot determine with certainty that a client has died.
Therefore, the very first thing it must do when recognizing that a client
has probably died is to ensure that if the client is still alive, any further
attempts by it to interact with the resource object will fail. One way to
accomplish this is to pass to clients a decorator object (the Decorator pat-
tern is described in Volume I) that has a method the Manager object can
use to disable it.

The nature of some resources may require a Manager object to ask
each resource object to put itself in a known state before the Manager
object’s method returns the resource object to a client.

Resource Allocation

A good way for the Manager class to allocate resources to clients is to use
the Scheduler pattern, which is described in Volume 1. The Scheduler pat-
tern describes a way to schedule single-threaded access to shared
resources.

Multiple clients can access some resources concurrently if those
clients only query the state of the resource and do nothing to change it. If
changes to the state of a resource must be single-threaded, but queries of
its state may be concurrent, then the Read/Write Lock pattern, also
described in Volume 1, is a better way to implement the Manager class. It
is better because it does not force queries of the state of a resource to wait
for other queries of the resource’s state to finish before they can start.

KNOWN USES

The architecture of many enterprise applications involves sharing objects:

® A long-distance telephone company has an object that resides on a
mainframe that controls the routing of toll-free numbers. Many
instances of a PC-based application share that object for the purpose
of managing the routing of toll-free phone numbers.

® A food retailer uses a single shared data-collecting object to capture
information from cash registers in all of its locations. This data-
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collecting object is also used by a sales forecasting application and an
inventory management application.

Shared objects also turn up in system software:

® Programs on multiple computers can share print queues.
® Multiple computers can share file systems.

RELATED PATTERNS

Static Locking Order. If Client objects work with multiple
Manager objects to concurrently access multiple types of
Resource objects, it is possible for two client objects to dead-
lock while waiting for different resources. Client objects should
use the Static Locking Order pattern to avoid this sort of dead-
lock.

Object Replication. The Object Replication pattern provides a
decentralized way for the clients of an object to share informa-
tion. It also provides a way to use multiple manager objects so
that a single manager object does not become a performance
bottleneck.

Object Request Broker. The Object Request Broker pattern is used
to share objects between remote clients.

Scheduler. The Scheduler pattern (found in Volume 1) describes a
way to schedule access, one client at a time, to shared resources.

Read/Write Lock. The Read/Write Lock pattern (found in Volume
1) is a specialized form of the Scheduler pattern. It allows multi-
ple clients to concurrently have read access to a resource, but
allows exclusive access only for a client that modifies the
resource.

Singleton. The Singleton pattern (found in Volume 1) describes
classes that have a single instance that may or may not be
shared. The Shared Object pattern describes objects that are
shared and may have multiple instances.

Flyweight. If an object has no intrinsic state, then there is generally
no need to impose concurrency restrictions on access to the
object. The Shared Object pattern is inappropriate for sharing
such objects because it adds unnecessary overhead. The
Flyweight pattern (found in Volume 1) describes a way that local
clients can share objects with no intrinsic state without any con-
currency restrictions.
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The Object Request Broker pattern is also known as ORB or Broker. It was
previously published as the Broker pattern in [Buschman96].

This pattern description is intended to explain what object request
brokers are and their use. It is not intended to provide enough detail to
implement an object request broker.

SYNOPSIS

Objects in a distributed environment need to call methods of remote
objects. For remote calls to work, many details must be just right. Provide
an infrastructure that allows objects to make remote calls, with most of the
details of the call hidden and handled automatically by the infrastructure.

CONTEXT

Suppose that you are designing an employee timekeeping system. The pur-
pose of the system is to record when employees are working and when
they are not. Figure 5.3 shows the system architecture.

The architecture consists of multiple timekeeping terminals that
employees use to tell the system when they begin working and when they
stop working. The terminals feed that information to a server. One or more

TimekeepingTerminal

1%

1

TimekeepingServer

1

1.”

TimekeepingAdministrator FIGURE 5.3 Employee timekeeping system archi-
tecture.
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timekeeping administrators perform administrative tasks on the timekeep-
ing data.

The components of this architecture contain objects that must call
methods of objects in other components. You want to design an architec-
ture that allows objects in different components to call each other’s meth-
ods in a manner as simple and as easily maintainable as possible.

FORCES

A call from a method to another method in the same Java Virtual Machine
(VM) is called a local call. A call from a method to a method in a different
Java VM is called a remote call.

© You want to create distributed software in a way that minimizes the
amount of programming time spent on interhost communication.

@ A method should be able to make remote calls without knowing in
which VM the called method resides, or even its physical location.

© When making a remote call, the parameters passed to a method, the

method’s result, or the exception it throws must be passed between

the Java VMs. Neither the calling method nor the called method

should be aware of the mechanism for passing the parameters, the

result, or any exception.

An environment that contains objects whose methods will be called

remotely should be prepared to handle a remote call at any time, even

if there are other active remote calls.

An object that calls the methods of a remote object must have a way

to identify that object.

Mechanisms that hide programming details often add overhead.

Some applications cannot tolerate the additional overhead.

® Many possible variations can occur on the basic semantics of method
calls. They can involve such things as bulk data transfer, asynchronous
method calls, or ensuring that the parameters of a call are transferred
in a secure way. The more variations a mechanism that hides pro-
gramming details can handle, the more difficult it is to learn to use.

€

©

®

SOLUTION

Hide the details of remote method calls by using a layered architecture.
Use tools to automatically generate glue code to connect the methods or
your code with a framework that supports the layered architecture. This
layered architecture is shown in Figure 5.4.

The caller and callee roles constitute an application layer. Aside
from the fact that caller classes call callee classes through an interface,
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FIGURE 5.4 Object request broker pattern.

which is something they might do anyhow, nothing in this layer indicates
that the caller does not call the callee directly.

The stub, CcallDispatcher, and Skeleton roles constitute a mes-
sage layer. stub classes turn a call into a message, which is interpreted by
CallDispatcher and Skeleton classes. Skeleton classes are also respon-
sible for generating response messages containing the outcome of the call.

The Connection role constitutes a transport layer that is responsible
for transporting the messages and responses.

Here is a more detailed description of the roles that the classes and
interfaces shown in Figure 5.4 play in the Object Request Broker pattern:

Caller. Classes in this role call methods of a proxy object* that
implements the RemoteIF interface. Because they call methods

*The Proxy pattern is described in Volume 1.
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through an interface, they need not be aware of the fact that
they are calling the methods of a stub object that is a proxy for
the callee object rather than the callee object itself. The stub
object encapsulates the details of how calls to the callee object
are made and its location (e.g., direct calls to an object or calls
through a remote proxy). These details are transparent to
Caller objects.

RemotelIF. Objects that have methods that may be called by remote

objects implement an interface that is in this role. A method can
be called remotely if and only if it declared by a RemoteIF inter-
face that its class implements.

Stub. Classes in this role implement a RemoteIF interface. Every

RemoteIF interface has a corresponding Stub class. A Stub object
is a remote proxy for an object in the callee role whose methods
can be called remotely. stub classes implement the methods of a
RemoteIF interface by passing on the fact that the method was
called and the values of its parameters to a Connection object.
They assemble information identifying the callee object, the
method being called, and the values of the arguments into a mes-
sage. On the other end of the connection, part of the message is
interpreted by a CallDispatcher object and the rest by a
Skeleton object.

When the remote call returns, the Skeleton object sends a
response back to the stub object that contains the returned
value or the exception thrown. The stub object interprets the
message by returning the value or throwing the exception.

Implementations of object request brokers include a mech-
anism for automatically creating Stub classes.

Connection. Classes in this role are responsible for the transport of

messages between the environment of a remote caller and the
environment of the callee.

CallDispatcher. Instances of classes in this role receive messages

through a Connection object from a remote Stub object. They
pass each message to an instance of an appropriate Skeleton
class. Classes in this role may also be responsible for creating
the instances of Skeleton classes.

CallDispatcher objects are responsible for identifying the
Callee object whose method will be called by the skeleton
object. Typically, two ways of doing this are supported.
® The message identifies the specific callee object whose

method is to be called. In this case, the CallDispatcher
object simply passes a reference to this callee object to the
Skeleton object.
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® If the callDispatcher object does not receive any informa-
tion identifying a specific Callee object, then it can create
one or reuse an existing one. Some object request broker
(ORB) implementations make this configurable and call it an
activation policy.

Skeleton. Classes in this role are responsible for calling the meth-
ods of Callee objects on behalf of remote caller objects. For
every RemoteTF interface there is at least one corresponding
Skeleton class. Each skeleton class is responsible for calling
methods of objects that implement the corresponding RemoteIF
interface.

A callDispatcher object passes the message describing a
method call to a Skeleton object. The Skeleton object extracts
the argument values from the message and then calls the indi-
cated method passing it the given argument values.

If the called method returns a result, then the skeleton
object is responsible for creating a message that contains the
return value and sending it back to the stub object so that the
Stub object can return it.

If the called method throws an exception, the Skeleton
object is responsible for creating an appropriate message. For
object request broker implementations that are specifically
designed for Java, such as RMI or Voyager, the message contains
the actual exception thrown. This makes it possible for the stub
object that receives the message to rethrow the exception.
Object request broker implementations not specifically designed
for Java will generally provide some information about the
exception.

Implementations of the Object Request Broker pattern
include a mechanism for automatically generating Skeleton
classes.

Callee. Classes in this role implement a RemoteIF interface.
Instances of this class can be called locally through the
RemoteIF interface, or remotely through a stub object that also
implements the same RemoteIF interface.
Figure 5.5 shows the interactions that occur when a remote
call is made through an object request broker. Sometime before
these interactions occur, at least two things must have happened.
® A call will have been made to initialize the object request bro-
ker.

® The method making the remote call will have obtained a stub
object to call the remote object. Stub objects are generally
created in the following ways:
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FIGURE5.5 Object request broker Interactions.

® Object request brokers provide a mechanism that takes the
logical name of an object and creates a Stub object in consul-
tation with a mechanism that uses the Registry pattern to
provide the location of the callee object.

® A stub is created from hard-wired information about the loca-
tion and name of the callee object. This is generally to be
avoided.

® A call to a remote method returns a stub object to call
another remote object.

Here are descriptions of the interactions shown in Figure 5.5:

1A. The caller object calls the widgetStub object’s foo method
with the intention of calling the widget object that may or may
not be remote.

1A.1. The widgetStub object asks the callerout object to write a
message that includes the class name widget, the method name
foo, and the arguments that the caller object passed to foo.
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The callerout object passes the message through a network
connection to the calleeIn object.

1B. The callDispatcher object reads the message from the
calleelIn object.

1B.1. The callDpispatcher object extracts the class of the object to
call from the message. It then obtains the actual object whose
method is to be called.

Using a different thread, the Cal1Dispatcher object asyn-
chronously calls the invoke method of a widgetSkeleton
object. It passes the message and the callee object whose
method is to be called to the invoke method.

1B.1.1. The WwidgetSkeleton object extracts the name of the
method to call and the arguments from the message. It then
calls the callee object’s foo method.

1B.1.2. The widgetSkeleton object constructs a message that con-
tains the result produced by the call to the widget object’s foo
method. This can be a returned value or a thrown exception. It
then passes the message to the calleeOut object’s write
method, which passes the message through a network connec-
tion to the callerIn object.

1A.2. The callerIn object’s read method returns the result mes-
sage to the widgetstub object.

1A (continued). The widgetStub object extracts the result from
the message. If the result is a value, it returns it. If the result is
an exception, it throws it.

There is usually a very direct relationship between the code that

implements a stub method and the signature, return type, and declared
exceptions of the corresponding interface method. This makes it possible
to mechanically generate stubs from interfaces. Since hand-coding stub
classes is much more time-consuming and error-prone than automatically
generating stub classes with a program, implementations of the Object
Request Broker pattern include a mechanism for automatically generating
Stub classes from RemoteIF interfaces. For similar reasons, implementa-
tion of the Object Request Broker pattern also includes a mechanism to
automatically generate Skeleton classes.

CONSEQUENCES

© Objects can call methods of other objects without knowing the loca-

tion of the objects, or even whether the objects are remote.
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® If you want the caller of a method to be unaware of whether a
method call is local or remote, the caller will have to treat the call as
if it is remote.

IMPLEMENTATION
Finding Remote Objects

The mechanisms for obtaining a stub for an object that will allow it to call
the methods of a remote object vary with the implementation. However, they
all involve identifying a remote object whose methods are called by the local
object. Most implementations provide at least two modes of identification:

® One mode identifies only the machine on which the remote object
will reside. Most implementations handle this mode of identification
by creating an object on the remote machine. Objects created this
way cannot be shared by remote clients. They exist only for the
remote object for which they were created.

® The other common mode uniquely identifies the remote object. The
Object Identifier pattern describes how to construct unique identi-
fiers. Remote objects that know an object’s unique identifier can
share the object. The Registry pattern describes how objects may be
found using a unique object identifier.

Administration

Implementations of the Object Request Broker pattern use the Strategy pat-
tern (described in Volume 1) to instrument Stub, Connection,
CallDispatcher, and Skeleton objects for such purposes as the following:

® [ogging connections

® Tracing remote calls

® Modifying parameters to remote calls or their results

® Filtering calls to prevent some method calls from reaching their
intended object

Return from a Call

Concurrency often plays a larger role in the design of remote procedure
calls than in local procedure calls. This is because remote procedure calls
always involve multiple processors, whereas most local procedure calls
involve only one processor.

Some Object Request Broker implementations allow remote calls to
be synchronous or asynchronous. Object Request Broker implementations
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that allow asynchronous method calls distinguish between those that
return a result and those that return no result. If an asynchronous call is of
the sort that returns a result, then the object request broker will provide a
way to determine if the result has been returned and get its value.

Propagation of Exceptions

Object request brokers such as CORBA that are not specifically designed to
work with Java do not propagate Java exceptions, although they may pass
back values that indicate a remote exception occurred.

Implementations that are designed to work with Java, such as RMI
and Voyager, pass remote exceptions back transparently if they are thrown
during a synchronous call. If an exception is thrown out of a remote call,
then the exception object is sent back to the caller and rethrown.

Distributed Reference Counting

Garbage collection is the mechanism Java normally uses to determine
when the storage occupied by an object may be reclaimed. Garbage collec-
tion works by assuming an object is alive if and only if other objects that
are alive have a reference to the object. If there are no references to an
object from an alive object, then garbage collection will reclaim the ob-
ject’s storage.

For objects that are used only locally, garbage collection is a very
transparent mechanism for reclaiming storage. Garbage collection does
not work as transparently with objects that are referred to remotely.
Garbage collectors are not aware of remote references to an object. To
compensate for this, as long as there are any alive remote references to
an object, you must ensure that there is a local reference to the object so
that the garbage collector will not reclaim the object. All object request
brokers create such a reference when an object first becomes remotely
accessible.

Object request brokers, such as Voyager and RMI, that are specifi-
cally designed to work with Java implement some form of remote refer-
ence counting that automatically removes the local reference to an object
when it has no remaining remote references. Object Request Broker imple-
mentations, such as CORBA, that are not specifically designed to work
with Java do not automatically do this.

KNOWN USES

At the time of this writing, CORBA is the most widespread and mature
implementation of the Object Request Broker pattern. A noteworthy aspect
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of CORBA is that it works with programs written in different languages. The
fact that a method is written in C will be transparent to a caller written in
COBOL, and vice versa. Because CORBA is language neutral, using it with
some languages is less convenient than using an Object Request Broker
implementation specifically designed to be used with a particular language.
Java programs that use CORBA typically include code to bridge differences
between CORBAs way of doing things and Java’s way of doing things.

Remote Method Invocation (RMI) is a Java-based Object Request
Broker implementation that is part of the core Java API. Because RMI is
Java-based, it is well integrated with the semantics of Java. RMI has the
capability of interoperating with CORBA.

Voyager is another Java-based Object Request Broker implementa-
tion.* It is a fuller featured Object Request Broker implementation that
interoperates with CORBA, RMI, and DCOM.

RELATED PATTERNS

Object Identifier. The Object Identifier pattern provides additional
guidance on uniquely identifying objects.

Proxy. Stub classes use the Proxy pattern, which is described in
Volume 1.

Heartbeat. The Heartbeat pattern provides a general-purpose way
to detect that a call to a remote method will never complete.
Some object request brokers provide support for the Heartbeat
pattern.

Registry. The Registry pattern describes a way for an Object
Request Broker implementation to locate remote objects that
have a known name or unique object identifier.

Thread Pool. cCcallDispatcher objects require a thread for each
remote call they process. An implementation of the Object
Request Broker pattern can use the Thread Pool pattern to recy-
cle threads and avoid the expense of creating new threads.

Connection Multiplexing. Some Object Request Broker imple-
mentations use the Connection Multiplexing pattern to mini-
mize the number of connections they use.

Layered Architecture. The Object Request Broker Architecture is
an application of the Layered Architecture pattern discussed in
[Buschman96].

* The Voyager home page is www.objectspace.com/Products/voyager1.htm.
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The Object Replication pattern is based on [Feegri95].

SYNOPSIS

You need to improve the throughput or availability of a distributed compu-
tation. Distributed computations involve objects residing on multiple com-
puting elements that are able to communicate with each other. In some
circumstances, it is possible to improve the availability and throughput of
a computation by replicating an object onto multiple computing elements
while maintaining the illusion to the object’s clients that there is only a sin-
gle object.

CONTEXT

You are designing a knowledge base for a software vendor. It will be used
by technical support technicians to provide worldwide customer support
for a complex software product. When a customer calls with a problem,
the knowledge base will guide a technician through a series of questions.
The knowledge base will suggest possible resolutions based on the infor-
mation provided by the customer. If the problem is beyond the ability of
the technician or the knowledge base to solve, the problem devolves to an
engineer who can solve the customer’s problem. If appropriate, the engi-
neer will add the problem and its resolution to the knowledge base. This
extends the knowledge base so that the next time a customer calls with a
similar problem, the technician on the case will be able to find its resolu-
tion in the knowledge base.

To provide worldwide, around-the-clock support, the company has
four support centers located in different countries. The simplest way to set
up the knowledge base is to run it in one central location. However, there
are some problems with that. The knowledge base will be a mission-
critical application. It is very important that it is available continuously to
support staff. To avoid losing access to the knowledge base due to a com-
munications or networking failure, your design calls for replicating the
knowledge base in each support center. To ensure that the knowledge base
is never unavailable because of a computer crash, you replicate the knowl-
edge base on multiple computers in each support center.
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You want the replication of the knowledge base to be transparent to

the rest of the software system. That means other objects in the system
must find an instance of the knowledge base without knowing the details
of its replication. It also means that updates to the knowledge base must
propagate from the instance to which they are applied to all other in-
stances. The result should be that all the knowledge bases appear to
contain all of the knowledge.

FORCES

o

)

B

@ Replicating an object onto multiple computing elements can make a

distributed system more fault-tolerant. If an object exists on only one
computing element, the object becomes unavailable when that com-
puting element is unavailable. If you replicate an object onto multiple
computing elements, the object remains available when one of the
computing elements is unavailable.

In many cases, the closer an object is to its accessors, the more
quickly they can access it. An object accessible through the local net-
work can be accessed more quickly than an object in another city.
Objects can access objects in the same computer’s memory faster
than they can access objects in another computer’s memory. An
object that is close to another object in a way that reduces the
amount of time the other object needs to access it is said to have high
locality with respect to the other object. If objects in multiple loca-
tions access the same object, you may be able to reduce their access
time by replicating the object so that each of the object’s replicas is
close to its accessors.

An extreme improvement in accessibility and performance through
object replication occurs when objects reside on a computing element
that is connected to other computing elements only some of the time.
For example, a laptop computer can spend much of its time discon-
nected from any network. During these times, the objects on the lap-
top computer can access only those objects that are already on that
computer.

To promote the illusion that each client of a replicated object is a
client of a single object, its mechanism for maintaining mutual con-
sistency should be as transparent as possible.

To achieve higher availability or increased throughput, replicated
objects require redundant computing elements. The additional pro-
cessors and memory add to the cost of a distributed system.

The replicas of an object should be mutually consistent. They should
all contain the same state information. Writing the code to keep them
mutually consistent is difficult and error-prone.
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® If all replicas of an object are subject to state modification, it may be
necessary for them to pass a large number of messages between
themselves to maintain mutual consistency. In some cases, the size of
this communication requirement can be exponentially proportionate
to the number of replicas. If the update operations must have the
ACID properties in order to make the illusion of a single object per-
fect, the cost of making updates can be extremely expensive. In addi-
tion to the cost of message passing, many locks must be obtained and
freed. The more replicas there are, the more time they spend manag-
ing locks.

SOLUTION

Replicate an object onto multiple computing elements while maintaining
the illusion to the clients of the replicas that there is only a single object.
Locate the replicas in a way that maximizes their locality to their clients.
Figure 5.6 shows the roles that classes and interfaces play in the
Object Replication pattern.
Here are descriptions of the roles shown in Figure 5.6:

ReplicatedObject. Classes in this role are replicated to be close to
their clients.

ReplicationManagerIF. Client objects interact with an interface
in this role to get access to an instance of a class in the
ReplicatedObject role.

ReplicationManager. Classes in this role manage the creation and
location of replicas of a replicated object. The intention is to
provide client objects with a replica of a ReplicatedObject
object that is local or relatively inexpensive for the client to com-

< Gets-replicated-object-instance-for «interface»
1 ReplicationManagerlF

: A

Client

1

ReplicationManager

1

Uses » . . < Manages-replicas-for
o1 ReplicatedObject

FIGURE5.6 Object replication pattern.
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municate with. A ReplicationManager finds the nearest replica
of a replicated object. If the replica is too far away (which may
simply mean that it is not local), then it creates a local replica
and makes it available to the client object. If there is a suffi-
ciently close replica, the ReplicationManager makes it avail-
able to the client object.

Client. Classes in this role use a class in the ReplicatedoObject
role. They gain access to a ReplicatedObject object by a call to
a method of a ReplicationManagerIF object. If a Client
object makes a call to a method of a ReplicatedObject and the
call fails because the Replicatedobiject is no longer available,
then the Client object just asks the ReplicationManagerIF
object for another ReplicatedObject instance.

If the replicas are not immutable, then there must be a mechanism
that propagates changes made to one replica to all other replicas. There is a
discussion of change replication mechanisms under the “Implementation”
heading.

Unless the class of a replicated object defines its equals method to be
based on the information content of the object, it should be based on
equality of the object’s object identifiers. A replicated object’s equals
method should never be based on equality of object references.

CONSEQUENCES

© By having as many replicas of an object as the object has clients, you
can maximize the replicas’ locality to their clients and improve the
performance of a system as a whole.

® Applying the Object Replication pattern results in multiple objects
with an equal claim to the same identity. Replicated objects do not
have a unique identity their clients can directly test with the == oper-
ator. However, one of their attributes may be an object identifier that
is shared by all of the replicas.

@ Enforcing the isolation property for transactions that modify a repli-

cated object is problematic. Such enforcement is time-consuming,

error-prone, and a valid research topic.

Maintaining a consistent state among object replicas can be very

time-consuming. This is especially true if the state of the objects is

determined by remote objects.

® Most problems associated with replicated objects are related to their
mutability. Replication of immutable objects does not have the prob-
lems associated with replicating mutable objects.

o8]
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IMPLEMENTATION

Replication Management

Replication management begins when a client object calls a method of a
ReplicationManager object to request the use of a replicated object. If
there is a local replica, it is used. If there is no local replica, the
ReplicationManager object finds some nearby replicas. If any of them
are near enough, the ReplicationManager object selects one to be used. If
no replicas are near enough, the ReplicationManager object creates a
local replica.

The main variation between different schemes for replication man-
agement is the means by which the replication manager finds existing
replicas. If just a few replicas are on the same local area network, then a
good way to keep track of where they are is to keep their location in a cen-
tral directory. The virtue of this strategy is its simplicity. However, if too
many computers are trying to get the location of replicas simultaneously,
then a central directory becomes a bottleneck. If computers wanting to
find a replica are far away or have a very indirect network connection,
then the network delays may have an unacceptable impact on throughput.

One way of overcoming these difficulties with a directory of replicas
is to replicate the directory in known locations that are expected to be near
the computers that will access them. This works well if you have a good
idea of where the computer will be that will want to find replicas of repli-
cated objects.

If you do not know in advance where replica directories will be
needed, there is strategy you can use to compensate. It involves architect-
ing ReplicationManager objects so that they can find each other over a
network. It comes into play when the nearest replica directory is not in the
same local network as a ReplicationManager object that wants to use it.
Before the ReplicationManager object consults the directory, it sends a
broadcast message through its local network asking any other
ReplicationManager object that receives the message to send it the
object replica it needs.

If all of the replicas are on the same local network and the network is
highly reliable and has spare capacity, you may consider using broadcast
messages to other ReplicationManager objects as the only mechanism
for finding replica objects.

Change Replication

There are a few common types of change replication mechanisms. None is
clearly superior to another; all have drawbacks. Choosing among them
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usually involves a compromise. In the following discussions of change
replication schemes, the descriptions about their properties and imple-
mentation are vague. This is because change replication is an area in
which programming practice is more developed than the computer science
theory that describes it.

NAIVE PESSIMISTIC CONCURRENCY

The easiest change replication mechanism to understand is naive pes-
simistic concurrency. Before a change is accepted by one replica, it locks all
of the other replicas to ensure that they all receive the same change at the
same time without any other changes being made to them at the same
time. The drawbacks to this mechanism include the following:

® It must take the time to lock every replica.

® It must take the time to communicate changes to every replica.

® Changes cannot occur concurrently.

® Simultaneous attempts to modify replicas require conflict resolution
that can take time exponentially proportionate to the number of
replicas to resolve.

® All replicas must be available to each other in order to be locked. If
any of the replicas become unavailable to any other replica, then it is
not possible to lock every replica, which makes it impossible to make
changes to any of the replicas.

Naive pessimistic change replication is generally the least attractive
scheme. It is included here for purposes of comparison. If there will be
more than two replicas, one of the other change replication schemes is a
better choice.

Naive pessimistic change replication is called pessimistic because it is
based on the assumption that there will be concurrent changes. The two
schemes that follow are considered less pessimistic because they assume
only that concurrent changes are likely.

PRIMARY BACKUP

The primary backup approach is a good choice for change replication
when it is not necessary to update all replicas simultaneously. In this
scheme, one replica is chosen to be the primary replica. The other replicas
are considered backups.

When a backup receives a request to change its state, it forwards
the request to the primary. After changes are made to the primary
replica, the primary replica forwards them to the backups. If the primary
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replica becomes unavailable, a backup is selected to be the new primary
replica.

When implementing the primary backup scheme, an important
design decision is how closely the state of backups must follow the pri-
mary. There is a range of possible policies.

At one end of the range is a policy that a call that changes the state of
the primary does not return until it atomically changes the state of all of
the backups to match the primary. Guaranteeing that the state of the back-
ups matches the state of the primary ensures that every backup is ready to
become the primary without requiring additional time to synchronize it
with the state of the former primary.

The drawback to this extreme is that it is similar to the naive pes-
simistic replication. Each call to a replica that changes its state does not
return until it changes the state of every replica.

At the other end of the range is a policy requiring calls that change
the state of a primary to return immediately. After the call returns, the pri-
mary asynchronously updates the backups without any limit on how long
it will take to perform the updates. Without any limit on update time, there
is no limit on how far the state of a backup can get behind the state of the
primary. This is a problem when one of the backups must become the new
primary. Without that limit, there is no limit on how long it can take to put
a backup in the state it must be in to be the new primary.

A potentially more difficult problem to solve occurs when two replicas
are both configured as primary. That situation can occur when a network is
temporarily partitioned into two subnetworks. In this circumstance, the
replicas in the subnetwork that does not have a primary select a replica as
their primary. When the two subnetworks become one again, there are two
primary replicas. When this happens, the state of the two primaries must
somehow be reconciled. There is no general-purpose technique for doing
this. In some cases, it is possible to devise an application-specific way of
reconciling the state of multiple primaries.

MAJORITY VOTING

Majority voting is a change replication scheme that can more easily recover
from a temporarily partitioned network. When one replica is changed, that
change is atomically made to a majority of the replicas.

The majority voting scheme does not scale up very well. If there are
1000 replicas, then each change must atomically modify 501 of them. This
results in a delay, but one that is only half as bad as the naive scheme,
which would need to modify all 1000 replicas before continuing.

There is also a limit to how small the majority voting scheme can be
scaled, with three replicas being the lower limit. There is no majority if
there are only two replicas.
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TIMESTAMPING

A way of propagating changes that scales up well and is simple to imple-
ment is timestamping. In this scheme, attributes of a replicated object have
a timestamp associated with them. Replicas propagate changes to other
replicas in pairs. If one replica has an older timestamp for an attribute
than another, it replaces the older value with the newer value and time-
stamp. If a replica is part of more than one pair, then when it is changed it
propagates the change to all pairs it is part of.

There are two drawbacks to this scheme. One is that the clocks of all
computers involved must be synchronized; otherwise, there is a risk that
attribute values will become inconsistent. If only one source of changes
exists for each attribute, this is not a problem, since all of the changes for
an attribute will be timestamped by the same computer.

The other drawback to this scheme is that there is no limit to the
amount of time it can take to propagate a change to all replicas. If replicas
are hosted on computers that do not always have network connectivity,
this can be a benefit rather than a drawback.

OPTIMISTIC REPLICATION

Optimistic replication gets its name from the assumption that concurrent
changes will not be made to object replicas. Changes are replicated with-
out first locking replicas. After the changes are made, they are checked to
determine whether any concurrent conflicting changes were made. When
there are no conflicting concurrent changes, optimistic replication pro-
ceeds rather quickly, without having to acquire any locks.

When a conflicting change is discovered, the time penalty can be
severe. All of the replicas must be made consistent again. Though the
details vary with the application, this typically involves locking all of the
replicas and backing out all of the conflicting changes. If that happens very
often, optimistic replication loses its speed advantage. Optimistic replica-
tion may be the optimal replication scheme when concurrent changes are
rare and a larger variation in the time it takes to make changes can be tol-
erated.

KNOWN USES

Chat programs and other tools for collaboration among people generally
use some form of object replication. Text and graphics objects that corre-
spond to the work of the collaboration are replicated in each collaborator’s
instance of the software. As each collaborator modifies its local copy of an
object, the changes are replicated in the other copies of the object.
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Distributed file systems such as AFS or Coda replicate files for the
purpose of increasing their locality and availability. Clients of such file sys-
tems simply access files through the most conveniently located server. The
file system transparently finds and accesses the most conveniently located
replica of a file. Such file systems also may create a replica of all or part of
a file in a physical server when the file’s usage justifies it.

Database managers also support replication to improve locality,
throughput, and availability.

RELATED PATTERNS

Redundant Independent Objects. The Redundant Independent
Objects pattern is a more specialized pattern that describes the
use of replication to increase the availability of objects.

Master-Slave. The primary backup scheme for change replication
is based on the Master-Slave pattern. The Master-Slave pattern is
described in [Buschman96].

Optimistic Concurrency. The Optimistic Concurrency pattern
describes how to update data without the use of locks.

Immutable. The Immutable pattern, described in Volume 1,
explains the simplicity and safety that comes from designing
objects to be immutable.

Object Request Broker. The Object Request Broker pattern allows
an object to be used in multiple places at the same time without
it being in multiple places or replicated.
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The Redundant Independent Objects pattern is based on material from
[Gray-Reuter93].

SYNOPSIS

You need to ensure the availability of an object even if it or the platform it
is running on experiences a failure. You accomplish this by providing
redundant objects that do not rely on any single common resource.

CONTEXT

Suppose you work for a company that makes money by buying mortgages
and packaging them as pools of mortgages for which it sells bonds. This
operation is currently automated. However, it averages over seven hours of
downtime a year. Each hour of downtime causes the company to lose mil-
lions of dollars. Therefore, the company has decided to reimplement the
automation as a highly available system with the goal of no more than five
minutes of downtime a year. Achieving that level of availability is expen-
sive, but the cost is only a fraction of the cost of the downtime.

There are a few strategies to follow in achieving this goal. One of the
most basic is to ensure that no single point of failure can take the system
down. There are a number of things to do at the hardware level to ensure
that no single failure can make a system unavailable. Since this is a book
about software design, this pattern ignores the hardware issues. It
describes how to ensure that a single software failure will not make a sys-
tem unavailable.

FORCES

© Two independent components of a system are much less likely to fail
at the same time than they are at different times. For example, sup-
pose that two components have a mean time between failure of 5000
hours (about 208 days). If the failures of the components are statisti-
cally independent events, the mean time between both components
failing at the same time is 5000 x 5000 = 25 million hours (about 28.5
years).
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© If the failures of redundant components are not independent events,
then having a redundant component does not decrease the likelihood
of failure.

© Components are called redundant if they perform the same task and if
other components that depend on the task can function provided at
least one of the components continues to perform the task. If redun-
dant components are performing a task, then the products of that
task are available as long as at least one of the redundant components
continues to perform the task.

@ The greater the expense of downtime, the easier it is to justify the

cost of preventing downtime.

Using redundant components increases the complexity of a system

and the difficulty of designing, integrating, and configuring it.

The use of redundant components increases the expense of building a

system. The use of redundant components requires additional design

time. Redundant software components take more time to code. The

use of redundant hardware components requires the purchase of

more hardware.

® There is no direct correlation between the availability of a system and
its reliability or correctness. Reliability means that a system can be
counted upon to consistently behave in a certain way. Correctness
refers to how closely the actual behavior of a system conforms to its
specification.

B

SOLUTION

Increase the availability of a system by building it with redundant indepen-
dent components. The redundant components must be sufficiently inde-
pendent so that the failure of one component does not increase the
likelihood that another component will fail.

To ensure that multiple software components in the same redundant
set do not fail as the result of a single hardware failure, the software com-
ponents in a redundant set should all run on different hardware compo-
nents. This is the minimum amount of independence needed to make
redundant software components useful.

Running identical software components in a redundant set does not
reduce the likelihood that all of the components will fail at the same time
due to a bug. The components should be independently implemented,
preferably by different teams. It is less likely that two independently imple-
mented software components will share a particular bug. For this reason,
redundant independently implemented software components are less likely
to fail at the same time due to any one particular bug. Simply replicating



Distributed Architecture Patterns m 111

the same implementation of a component makes it likely that both compo-
nents will fail in the same way.

Here is an example of what can happen when the same implementa-
tion of a component is used on otherwise-independent computing ele-
ments: A rocket was launched. One of the processors that controlled the
rocket failed due to a bug in its software causing an overflow error. The
hardware on the rocket detected the failed software and tried to switch
control to a redundant processor. The redundant processor was running
identical software, so it also failed. The hardware was unable to switch
control to the other processor, and it caused the rocket to self-destruct.

CONSEQUENCES

© The use of the Redundant Independent Objects pattern reduces, but
does not eliminate, the likelihood that a system or service will be
unavailable. Even if you consider the risk of unavailability acceptably
low, you should consider developing contingency plans for handling
the loss of availability.

® Accurately predicting the frequency with which a new or newly modi-
fied software component will fail is difficult in the most controlled of
conditions. A record of actual failures should be kept to develop and
fine-tune estimates of failure likelihood.

IMPLEMENTATION

The Redundant Independent Objects pattern is a specialized form of the
Object Replication pattern. It has the same implementation issues as the
Redundant Independent Objects pattern.

KNOWN USES

NASA uses triple redundancy for all onboard mission-critical computing
components on space flights. Software used by stock exchanges to process
stock trades use redundant software components. The software used to
manage telephone networks uses redundant components.

DESIGN EXAMPLE

The deployment diagram in Figure 5.7 illustrates an application of the
Redundant Independent Objects pattern.
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FIGURE 5.7 Highly available application.

Clients (not shown in Figure 5.7) want to use the application that
runs as redundant components on both Serverl and Server2. Clients
identify all instances of the application using a single logical name. To
communicate with an application instance, a client must translate the logi-
cal name to the network address of an available application instance.

The components labeled DNS are redundant name server components.
When a client wants to translate the logical application name to a network
address, it queries the network name resolution mechanism on the com-
puter on which the client is running. This mechanism directly or indirectly
queries one of the bNS components shown in the diagram.* Other name
servers know the address of both DNS components. If one of the bNS com-
ponents does not respond to a request within a reasonable amount of time,
the server will direct the request to the other bNS component. If either DNS
component fails, the service they provide continues to be available.

When both application components are available, both DNS compo-
nents have records that allow them to translate the logical application
name to the network address for either application component. The
records that the DNS components keep of the network addresses that corre-
spond to the application components have an expiration time associated
with them. While an application component is available, it periodically
refreshes the record that each DNS component has for its network address.
Because of the periodic refresh, the bNS components continue to have an
unexpired record of the application component’s network address.

If an application component ceases to be available, it will also cease
to refresh its record in the DNS components. Shortly after that happens, the

* For readers familiar with the details of DNS, the address record for the application compo-
nents is given a low time-to-live to ensure that only minimal caching of the application com-
ponent’s IP addresses takes place.
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record that the DNS components have of the failed application component
expires and clients are once again directed only to available application
components.

RELATED PATTERNS

Prompt Repair. The Prompt Repair pattern is often used with the
Redundant Independent Objects pattern to ensure the continued
availability of a set of redundant independent objects even after
a failure occurs.

Object Replication. The Redundant Independent Objects pattern
is a specialized version of the Object Replication pattern.

Client-Dispatcher-Service. The Client-Dispatcher-Service pattern
is often used with the Redundant Independent Objects pattern.
The Client-Dispatcher-Service pattern is described in
[Buschman96].
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The Prompt Repair pattern is based on material from [Gray-Reuter93].

SYNOPSIS

When one of a set of redundant independent objects fails, one less failure
must occur before the entire set of redundant objects becomes unavailable.
To minimize the likelihood of a catastrophic failure, repair the failed
object as soon as possible.

CONTEXT

Suppose you work for a company that has set the goal of making one of its
critical systems highly available, with no more than five minutes of down-
time a year. You have taken a first step toward that goal by ensuring that
no single failure will make the system unavailable. You now need to ensure
that after a failure occurs, the chance of a subsequent failure making the
system unavailable is minimal.

FORCES

© Two independent components of a system are much less likely to fail
at the same time than they are at different times. Though a system
may be able to continue operating after one of the components has
failed, it is at much greater risk of catastrophic failure caused by the
other component failing.

When some of the redundant components that perform a task have
failed, there is less or no redundancy. The likelihood that the products
of the task will become unavailable increases as redundancy decreases
because fewer components must fail before there are none to perform
the task. The shorter the time between the failure of a component and
its repair, the less likely that task products will become unavailable.
Components should be designed so that it is immediately obvious
when a component fails. The more quickly a component failure can
be detected, the sooner it can be repaired. The longer it takes to rec-
ognize that component has failed, the more time will elapse between
a failure and its repair.

Some systems must be highly available, but for only a limited amount
of time. For example, the guidance system in a missile must be highly

©
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available, but only until the missile reaches its target. In such sys-
tems, a higher level of redundancy may be a better way to ensure
high availability than to plan for the repair of components.

® There is no direct correlation between the effort required to achieve
the high availability of a system and its reliability or correctness.
Reliability means that a system can be counted on to consistently
behave in a certain way. Correctness refers to how closely the actual
behavior of a system conforms to its specification.

SOLUTION

Ensure the continued high availability of redundant components by mak-
ing them failfast and by promptly repairing failed components.

Failfast means that if a component fails, it fails in a way that allows
the failure to be immediately detected by such means as throwing an excep-
tion or returning a special value from a method call. Detecting failures at
the earliest possible time allows the failures to be repaired at the earliest
possible time. Repairing failures at the earliest possible time minimizes the
likelihood that additional components will fail before the repair is made.

In general, it is not possible for a program to fix its own bugs and
continue functioning. Fortunately, that level of repair is not necessary,
since the goal here is availability rather than reliability. The repair for an
unavailable software component is to restart the component. Restart
strategies are discussed later in the “Implementation” section.

CONSEQUENCES

© The use of the Prompt Repair pattern reduces, but does not elimi-
nate, the likelihood that a system or service will be unavailable. Even
if you consider the risk of unavailability acceptably low, you should
also consider developing contingency plans for handling the loss of
availability.

® Accurately predicting the frequency with which a new or newly modi-
fied software component will fail is difficult in the most controlled of
conditions. A record of actual failures should be kept to develop and
fine-tune estimates of failure likelihood.

IMPLEMENTATION

There are two common strategies for restart.

® The simplest restart strategy is cold start, which simply involves
restarting the component so it is in a known initial state.
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® The checkpoint/restart strategy is used to restart a component so that
its state is closer to the state it had at the time of failure than to its ini-
tial state. The checkpoint/restart strategy saves the state of a compo-
nent on persistent storage at strategic points in time. These saved
states are called checkpoints. When the component is restarted, its
state is restored to the most recent checkpoint.

To be confident that a component will always be failfast, you must test
it very extensively. If it is not reasonable to assume that components will
always be failfast, then you have to use additional strategies to detect failures,
such as testing whether a component is performing incorrectly or not at all.

A simple way to detect whether a component has stopped performing
is to set a maximum amount of time that a client will wait for a compo-
nent to do something. After that amount of time has elapsed, the client
considers the component to have tined out and assumes that it is no
longer performing.

The time-out technique works best for components that usually take
about the same amount of time to perform a given task. If the amount of
time it takes a component to perform a task varies greatly, then you will
need to set the time-out period to an unreasonably long amount of time.
The Heartbeat pattern provides a more general way of detecting the failure
of a component.

Voting is a general-purpose way to detect that some components in a
set of redundant components are performing incorrectly. Voting works by
observing the actions and outputs of all the components in a redundant set
of components. Identical actions and outputs from the majority of compo-
nents are considered correct. Actions and outputs that deviate from the
majority are considered incorrect, and the components that produce them
are considered to have failed.

One way to implement voting is to use a reusable voter object to per-
form the observations for a redundant set of components. This approach
raises the problem of ensuring that the voter object is performing cor-
rectly. Because of this difficulty, when designing software components, the
voter responsibility is generally given directly to the clients of a redundant
set of objects.

KNOWN USES

Some Web sites use the Prompt Repair pattern to ensure the continued
availability of a Web server. Solaris and other Unix-like operating systems
can be configured to start a process when the system boots and automati-
cally restart the process when it exits. Applications used by at least one
stock exchange to process trades use the Prompt Repair pattern.
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RELATED PATTERNS

Redundant Independent Objects. The Prompt Repair pattern is
used with the Redundant Independent Object pattern.

Process Pair. The Process Pair pattern is used to ensure that soft-
ware components on the same computing element are restarted
when they fail.

Snapshot. The Snapshot pattern (described in Volume 1) can be
used to implement checkpoint/restart.
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SYNOPSIS

An object needs to access very large volume of remote data. To conserve
network bandwidth, instead of bringing data to an object, move the object
to the data.

CONTEXT

You are developing an application that will allow people to construct cus-
tom mailing lists based on criteria that they specify. For example, someone
may want a list of people whose ages range from 45 to 65, whose income is
over $55,000 a year, who drive minivans, who spend at least $600 per year
on recorded music, and who listen to jazz.

To construct these mailing lists, the application may have to consult
many different databases, such as those from credit card companies, mail-
order companies, motor vehicle bureaus, concert ticket-selling organiza-
tions, and others. To support the application, the company you work for
arranges for the application to be allowed access to the databases of differ-
ent companies.

The arrangements your company makes with database owners pro-
vide for a limited amount of network bandwidth for the application to
communicate with their database. The arrangements also allow your com-
pany to colocate a computer at the same site as each database.

In some cases, the application will need to access a large volume of
data in order to cross-check it against a smaller volume of data. Because the
available bandwidth is limited, you want to use it as efficiently as possible.
The conventional way for an application to use the bandwidth is to down-
load the large volume of data to the customer’s computer on which it is run-
ning. If this data is several times larger than the application and the data it
has already captured combined, then the conventional way uses a lot more
bandwidth than is necessary. It is a more efficient use of the bandwidth to
move the application to the computer that is at the same site as the database
and then move it back when it has finished using the large volume of data.

FORCES

© An object is smaller than the data that it accesses.
© An object accesses data that is in multiple locations.

s
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© An object is launched from a nomadic platform, such as a laptop

computer. You need the object to process data from remote data

sources, even while the platform from which it was launched is dis-

connected from the network.

An object is able to migrate from one computer to another at its own

instigation.

© One computer is overloaded while another has resources to spare.

© In order for an object to migrate to another computer, the other com-

puter must have a suitable environment to which the object can

migrate.

Clients of an object may still need to communicate with the object

after it migrates to another computer.

® The migration of an object to another computer must happen in a
way that limits the consequences of a loss of connectivity during the
migration. If there is a failure, it must be impossible for the outcome
to be that live objects on both computers claim to be the same object.
The failure also must not cause the death of the object. A connectivity
failure should either result in the failure or delay of a migration.

® A program is expected to promptly handle events sent to it from the

computer it is running on. If the program migrates to another com-

puter, then network delays over which it has no control may make its

handling of events less prompt.

(&

&/

)

&

SOLUTION

An agent is a program that makes decisions and performs actions
autonomously of its client in order to provide a service to the client. An
example of an agent is a program that continuously searches the World
Wide Web for pages that fit a description that you provide and alerts you
as it finds them.

A mobile agent has an additional degree of freedom in that it can
migrate from machine to machine in a heterogeneous network under its
own control. Because a great deal of logic is common to all mobile agents,
some of which is rather complex, mobile agents are usually implemented
using a framework or other collection of reusable objects.

Mobile agents are able to initiate their own migration from one com-
puter to another. To proceed with a migration, there must be an environ-
ment in the destination computer that facilitates the entry of the object
into the new environment. The environment minimally must support the
destination’s side of a migration until it has progressed sufficiently for the
mobile agent to take responsibility. Figure 5.8 shows the interactions
involved in the migration of a mobile agent.

After a mobile agent has migrated to another computer, it has a dif-
ferent network address than it had before. The implementation of mobile
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FIGURE 5.8 Mobile agent.

agents must include a mechanism to allow their clients to continue com-
municating with the mobile agent after it has migrated to a different com-
puter. For the migration of mobile agents to happen in a truly autonomous
manner and to minimize the consequences of network problems, this
mechanism must not require mobile agents to register with a directory
server every time it migrates.

CONSEQUENCES

©

@

Mobile agents are able to migrate to the location where they are most
easily able to obtain the resources that they require.

If there is any concern about malicious mobile agents, an environ-
ment that hosts mobile agents should take measures to ensure that
mobile agents that migrate to it belong there. It should also use Java’s
permission mechanism to verify that mobile agents are entitled to
access the resources that they attempt to access.

Centralized management of mobile agents is more complex than
management of stationary objects. In addition to monitoring the state
of the mobile agent itself, its location must be monitored, along with
the state of its current environment.

Maintaining communication with a mobile agent is another challenge
for centralized management of mobile agents. Mobile agents may be
unreachable from a centralized management object for indefinite
periods.
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® Having a globally unique object ID is more important for mobile
agents than for other types of objects. This is because it must be pos-
sible to identify a mobile agent wherever it goes.

® Embedding sensitive data in mobile agents is risky if the mobile
agents will be migrating to any environments that cannot be trusted.

® The use of mobile agents can change the way in which a design uses
the notion of globally unique object IDs. When a mobile agent
migrates, the same object ID will identify both the old and new
instances, although they are physically different objects.

IMPLEMENTATION

The most essential implementation detail is the manner in which mobile
agents are able to migrate from one computer to another. Figure 5.9 shows
the basic interactions involved in the migration of a mobile agent.
Descriptions of the interactions appear in Table 5.1.

m1:MobileAgent m2:MobileAgent

5B: start
T 4A: shutdown | TA:moveMe(m1,env2) l T '

—>
3A: redirect(m1, env2)

env1:AgentEnvironment
<—

1B: accept( )
3B: writeAck
4B: readConfirm

env2:AgentEnvironment

1A.1: create(env2)

2A: readAck l
5A: writeConfirm
l 1A.2: writeObject(m1)
:Connection l 2B: m2:=readObject( )
_» <—
1A.2.1: write 2B.1: read
:ObjectOutputStream :ObjectinputStream

FIGURE 5.9 Migration of a mobile agent.



TABLE 5.1 Description of Interactions in Figure 5.9

Current Environment

New Environment

1A The mobile agent calls one
of its environment’s methods,
requesting its migration to
environment env2.
At this point, this instance of
the mobile agent expects to
shut down soon. It will
continue to be active until
told to shut down. Until
then, the agent may modify
its behavior to accommodate
the circumstance.
1A.1 The current environment 1B The new environment accepts the
creates a network network connection from the
connection with the new current environment.
environment.
1A.2 The current environment uses 2B The new environment calls the
an ObjectOutputStream readObject method of an
to serialize the mobile agent ObjectInputStream, so it can
to a stream of bytes and reconstruct the mobile agent from
send the stream to the new the byte stream.
environment.
1A.2.1 The ObjectOutputStream 2B.1 The ObjectInputStream reads
writes the stream of bytes to the byte stream from the
the network connection with connection with the current
the new environment. environment.
Once the byte stream is available
from the network connection, the
call to the ObjectInputStream
object’s readObject method
returns the new copy of the mobile
agent.
2A The current environment 3B The new environment sends an
receives an acknowledgment acknowledgment to the current
that the new environment environment that it received the
received the mobile agent. mobile agent.
At this point, the new copy of the
mobile agent exists, but it is not
active.
3A The environment arranges for

calls to the mobile agent to be
sent to the new environment.

123
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TABLE 5.1 (Continued)

Current Environment

New Environment

3A
(cont.)

Since the instance of the
mobile agent in the new
environment is not yet active,
the new environment will
accept the calls on behalf of
the new instance and make
them wait until the new
instance is active.

4A

The environment tells the
instance of the mobile agent
to shut down. When this
interaction is done, the
environment should discard
all references it has to the
instance so that it can be
garbage-collected.

5A

The environment sends a 4B
confirmation to the new
environment that the now

old instance has shut down.

The environment receives a
confirmation that the older
instance of the mobile agent is no
longer active.

5B

The environment notifies the new
instance of the mobile agent that it
should now become active. When
this interaction is done, the
environment allows calls to the
mobile agent to proceed.

Some parts of this collaboration are worth examining

in greater detail.

Completion of Pending Calls

It may be possible for the new instance to finish what the old
instance started if everything it needs to finish is copied to
the new environment as part of serialization/deserialization.
Allowing the new instance to finish what the old instance
started can reduce the amount of time it takes for the old
instance to shut down and the migration to be complete.
However, this must be done in a way that ensures that the
old instance does not also attempt to finish the same work.
If the work in question concludes by returning a
result, the fact that the result came from a different place
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than the original call must be transparent to the calling client. This means
the handling of returned results must be based not on the physical origin
of the result, but rather on the object ID of the object from which the
result came.

Calls to a Mobile Agent during Migration

A mobile agent is still active after it has initiated a migration. At this point,
there are two reasonable ways to handle new calls to the mobile agent
from its clients. When it receives a call, it can process it in the old environ-
ment or forward it to the new environment. Processing the calls it receives
after initiating a migration can delay the completion of the migration. Any
calls that it starts processing must be finished before the new instance
becomes active, since the new instance will know nothing about calls
made to the old instance after the new instance was serialized. This may
not be a consideration for mobile agents that expect few calls from clients
and are able to process calls in a short amount of time.

If a mobile agent handles calls made to it in this period by forwarding
them to the environment to which it is migrating, the migration is not
delayed. However, this means it will be possible for the old instance to for-
ward calls to the new environment before the new environment has
received the new instance of the mobile agent. Allowing this can pose a
denial-of-service security risk.

The problem is that this forces us to allow an environment to receive
calls on behalf of mobile agents that it does not yet know are migrating to
it. This leaves open the possibility that the environment will be waiting to
pass calls on to mobile agents that never migrate to it. A malicious or
buggy object that sends mobile agent calls to the wrong environment can
cause it to queue up so many calls that it runs out of memory. To minimize
the risk, you can require that calls to an environment for a mobile agent it
does not yet know it is receiving come from a trusted source.

Calls Made after Migration from Old Environment

Another issue to consider is how future calls from existing clients of a
mobile agent will be transparently directed to its new location. There are
two reasonable ways to do this:

® The mobile agent can inform all of its clients of its new location at
the time of the migration.

® The old environment can tell clients of the mobile agent’s new location
when they try to call the mobile agent at its old location.

At first glance, notifying all the clients at the time of migration may seem
simpler; since all client notifications are done at once. However, it has a
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number of drawbacks that make notifying clients at the time of their next
call the more attractive option. Some potential disadvantages are as follows:

® The mobile agent must be sufficiently aware of its clients to send a
message to each one of them.

® The mobile agent may spend a lot of time trying to send messages to
clients that no longer exist.

® It may also spend time sending messages to clients that will never try
to communicate with the mobile agent again.

Unless, for other reasons, a reliable messaging mechanism is planned that
will address these issues, notifying all of the clients at migration time is
not a good choice.

Notifying clients of a mobile agent’s new location when they attempt
to call it at an old location avoids wasted effort. To implement this, the
environment creates a forwarding object after a mobile agent has
migrated. When the environment receives a message intended for a mobile
agent that has migrated away, it delivers it to the corresponding forward-
ing object. The forwarding object forwards the call to the environment
where the mobile agent migrated. It also sends a message back to the
client, informing it of the mobile agent’s new location. If the client is
accessing the mobile agent through a proxy object, then the proxy object
can encapsulate the mobile agent’s current location and hide the mobility
of the agent from other objects.

The lifetime of the forwarding object is controlled by the same mech-
anism that controlled the original object. This is typically some sort of dis-
tributed reference counting scheme.

Reusing Connections between Environments

Because environments use ObjectOutputStream objects and
ObjectInputStream objects with many connections, they may have
a mechanism that allows them to reuse rather than create object-
OutputStream objects and ObjectInputStream objects. You can use
the Connection Multiplexing pattern for this purpose.

KNOWN USES

Aglets is a framework developed by IBM for building mobile agents.*
Voyager is an ORB that supports mobile agents."

*The Aglets home page is www.trl.ibm.co.jp/aglets/.

"The Voyager home page is www.objectspace.com/Products/voyager.
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A worm is a specialized form of mobile agent that has been around
longer than mobile agents. A worm is a program that moves from com-
puter to computer on a network to perform a lengthy computation (e.g.,
the first few million digits of ). If a worm comes to a computer that is
busy doing something, it moves on immediately. If the worm comes to a
computer that has many spare cycles, the worm stays and uses those com-
puting cycles until they are required for something else. Then the worm
moves on.

At the time of this writing, the Object Management Group (OMG) is
currently working on a specification for an agent framework to support
mobile agents. It will be called Mobile Agent System Interoperability
Facilities Specification (MASIF) and will work on top of the Common
Object Request Broker Architecture (CORBA).

RELATED PATTERNS

Object Request Broker. The Object Request Broker pattern is used
with the Mobile Agent pattern to facilitate communications
between mobile agents and other objects. Mobile agents can be
implemented on top of the Object Request Broker pattern.

Object Replication. One application of the Object Replication pat-
tern is to ensure that an object is near its accessors. The Mobile
Agent pattern provides a way for an object to be near different
accessors at different times.

Layered Agent. The Layered Agent pattern (described in [Kendall-
Malkoun96]) describes agents from a broader perspective.
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This pattern is also known as DMZ.

SYNOPSIS

There is a risk that hackers will compromise the security of a publicly
accessible server. You do not want a consequence of that to be that they
gain access to servers that are not publicly accessible and that contain sen-
sitive information. Put servers that are accessible to the public Internet on
a publicly accessible LAN located between your firewall and the public
Internet.

CONTEXT

Suppose that you are planning the deployment of a system that will allow
people to buy goods from your company through a publicly accessible Web
server. You want to do this with minimal security risks. One of the ways to
minimize security risks is to prevent anyone from outside of your organi-
zation from connecting directly to your inventory, accounting, or other
internal systems.

The standard way to prevent unauthorized outsiders from accessing
the computers on a private network while allowing them legitimate con-
nections with computers on the public Internet is to use a device called a
firewall. The firewall sits between a private network and the public
Internet. It allows traffic from the public Internet to the private network
only if it satisfies the security policies with which it has been configured.
Figure 5.10 depicts this configuration.*

Figure 5.10 shows some servers connected together through an
Ethernet-based local area network. Also shown are the Internet and a
router. A router is a device that allows a local network to be connected to
the Internet. Between the router and the Ethernet is a firewall. The firewall
allows only network traffic that complies with the security policies for
which it is configured to access the Ethernet.

Security policies for firewalls vary. They generally allow inbound traf-
fic for connections that are initiated from the private network. They can

* Note that Figure 5.10 is not in the UML notation. The UML does not include any form of
network diagram.
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FIGURE 5.10 Firewall.

also allow connections from trusted network addresses to specific services
on specific servers.

The system that you want to deploy will involve a publicly accessible
Web server and a mail server. You need to deploy the servers in a manner
that allows them to be accessed publicly without compromising the secu-
rity of other servers that are not supposed to be publicly accessible.

FORCES

© If the security of a server is compromised, you don’t want an intruder
to have an easy time gaining access to other machines, especially
other machines that contain sensitive data.

@ If the security of a publicly accessible server behind the firewall is
compromised, an intruder can gain access to other servers behind the
firewall.

© If the security of a publicly accessible server in front of the firewall is
compromised, an intruder does not gain any easier access to servers
behind the firewall.

@ Publicly accessible servers located in front of the firewall are exposed
to greater security risks than servers located behind the firewall.

SOLUTION

Locate all publicly accessible servers on a network that is behind the
router but in front of the firewall. We refer to this network as a demilita-
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rized zone (DMZ). Only other machines behind the firewall and possibly in
the DMZ know the network addresses of servers behind the firewall.

Machines that connect through the public Internet are able to con-
nect only to servers in the DMZ. Machines coming in through the public
Internet never communicate directly with the servers behind the firewall
because the firewall will not allow it, with the possible exception of com-
munications initiated from behind the firewall.

Servers in the DMZ are allowed to communicate with servers behind
the firewall, but only in those ways that are known to be absolutely neces-

sary.

CONSEQUENCES

© Clients communicating through the public Internet cannot communi-
cate directly with servers behind the firewall, so they are unable to
directly attack the security of servers behind the firewall.
Communicating indirectly with servers behind the firewall increases
the amount of time it takes for the communication to happen.

® For some applications, using the Demilitarized Zone pattern may add
complexity to a server by forcing it to be split into two pieces.

™~

B

IMPLEMENTATION

The correct and secure implementation of the Demilitarized Zone pattern
requires a substantial knowledge of networking in general and the specific
network on which it is deployed in particular. This pattern should be
implemented in consultation with a network administrator familiar with
the network in question and possibly also a security expert.

KNOWN USES

Many diverse organizations have used the Demilitarized Zone pattern to
deploy publicly accessible applications. The author is aware of airlines,
telephone companies, computer manufacturers, transportation companies,
and financial institutions that have used it.

DESIGN EXAMPLE

Figure 5.11 shows an extended version of the network diagram from Figure
5.10 with a publicly accessible Web server and an e-mail server deployed.



132 m CHAPTER FIVE

(1]

E-mail server

| O

Accounting server Inventory server

U

T
Ethernet )

Router Firewall

e
T 0

E-mail server Web server

FIGURE 5.11 Publicly accessible servers.

Figure 5.11 includes two servers that are accessible from the public
Internet. They are in a demilitarized zone on the network. The e-mail
server in the demilitarized zone is the only e-mail server outside of the fire-
wall with which e-mail servers inside the firewall communicate. All e-mail
messages traveling between the Internet and e-mail servers behind the fire-
walls go through the e-mail server in the demilitarized zone.

The Web server accesses the accounting and inventory servers. It is
the only machine outside of the firewall that is able to access them.

RELATED PATTERNS

Protection Proxy. The Protection Proxy pattern at the object level
is structurally similar to the Demilitarized Zone pattern at the
network level.
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SYNOPSIS

To keep a process or software component highly available, you want it to
be automatically restarted if it fails. Organize highly available software
components in pairs, so that if one fails the other restarts it.

CONTEXT

Many years ago, when mainframes were the only type of computer you
would find in a business, a security-conscious company owned a computer
from a vendor whose initials were not IBM. The company’s system pro-
grammers discovered a bug in the operating system that could allow an
application program to execute with the same privileges as the operating
system. The company repeatedly asked the vendor to fix the bug, but the
vendor never got around to it. After making a number of requests, the
company’s system programmers came up with a scheme to get the vendor
to take the bug seriously.

The system programmers wrote a program to demonstrate the bug to
the vendor in a dramatic way. They put it on a tape and sent it to the ven-
dor. After the tape arrived at the vendor, an operator put the tape on one of
their mainframes and ran the program.

After the program finished running, the operator noticed that it left
behind two processes, named Robin Hood and Friar Tuck. The operator
waited a few minutes, but the processes did not go away. The operator tried
to kill the process named Robin Hood. The operator expected the process to
die quietly. Instead, these messages appeared on the operator’s console:

Robin Hood: Friar Tuck help me! I'm under attack.
Friar Tuck: Never fear Robin Hood! I’ll save you!

After reviewing the status of the processes, the operator found that the
Robin Hood process had been restarted. The operator then tried killing the
Friar Tuck process. These messages appeared on the operator’s console:

Friar Tuck: Robin Hood help me! I'm under attack!
Robin Hood: Never fear Friar Tuck! I’1l save you!

After reviewing the processes, the operator found that the Friar Tuck
process had been restarted.
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The operator tried killing these processes a few more times until it
became clear that if he killed one the other would restart it. The only way
the operator had of killing both processes at the same time was to reboot
the computer. After the computer finished rebooting, the processes were
back again. The operator tried another reboot and the same thing hap-
pened. Admitting defeat, the operator called for some programmers to fig-
ure out what was going on.

Eventually they determined that the program on the tape had taken
advantage of the bug in the operating system’s security. It had patched
itself into the image of the operating system on the disk drive. To eradicate
the program, they had to reinstall the operating system. Reinstalling that
operating system took the better part of a day.

The vendor then fixed the bug.

FORCES

If a software component fails, it must be restarted.

> A software component should not be restarted while it is still run-
ning.

It may not always be possible to determine with certainty that a soft-
ware component has stopped running. It may only be possible to
determine that it is likely that a software component has stopped run-
ning.

©

(@

®

SOLUTION

Make two software components responsible for restarting each other if
one of them fails.

Keep each aware that the other is alive by having the components
send each other a periodic notice that it is still alive. If the notice from a
component is too late, the other component assumes that the component
has failed and restarts it.

CONSEQUENCES

© Use of the Process Pair pattern boosts the availability of software
components.

® It may be possible for a software component to be restarted when it
has not actually failed.

® The process pair pattern increases the complexity of software compo-
nents and makes them less cohesive.
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IMPLEMENTATION

The Heartbeat pattern describes the details of one object inferring the fail-
ure of another based on the absence of a periodic signal.

If a software component that is part of a pair is aware of its impend-
ing failure, it should notify the other half of the pair so that it can be
restarted sooner.

KNOWN USES

A number of transaction manager products use the Process Pair pattern,
including Compaq’s NonStop Transaction Manager/MP and BEAs Tuxedo
transaction manager.

A telephone company used the Process Pair pattern on a project that
involved providing a highly available service to the public.

RELATED PATTERNS

Heartbeat. The Process Pair pattern uses the Heartbeat pattern.

Prompt Repair. The Prompt Repair pattern deals with restarting
software components replicated on independent computing ele-
ments.
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Object Identifier (139)
Registry (149)

Protection Proxy (157)
Publish-Subscribe (175)
Retransmission (187)

Mailbox (195)
Heavyweight/Lightweight (203)
Heartbeat (209)

Connection Multiplexing (229)

The patterns in this chapter involve designs for computations that are
performed in multiple computing environments or are structured as if they
were performed in multiple computing environments. In this chapter, the
phrase computing environment is used in a broad sense that includes
databases as kind of computing environment.
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This pattern is also known as Primary Key. It was previously described in
[Brown-Whitenack98].

SYNOPSIS

You need to uniquely identify an object that exists in multiple environ-
ments. Assign a globally unique identifier to the object, allowing it to have
a unique identity when it is shared between programs or databases.

CONTEXT

Suppose you're designing a computer system for a business that operates
a barter clearinghouse for the exchange of goods and services. The same
goods and services may be involved in multiple trades during a business
day. People who have agreed to a trade during the day need to know who
should receive the goods or services that they have traded away. Since the
other party in the trade may have traded the goods or services to others, at
the end of the day the original parties to a trade cannot assume where they
are supposed to send the goods or merchandise.

At the end of each business day, procedures are followed to settle all
trades. These procedures include determining where each item involved in
a trade should be sent.

To ensure that each item involved in a trade is properly tracked,
the computer system assigns it a unique identifier. Assigning each item a
unique identifier prevents it from being confused with similar items. This
is important because similar items may differ in condition or in other
ways. People will expect to receive the specific item they traded for.

The clearinghouse will have locations in different cities. To allow the
computer system to scale up to many locations and clients, you decide to
give it a distributed architecture. Each location will have its own computer
system that works with the computer systems in the other locations.

It is expected that most barter exchanges will be between people who
live in the same geographical area and work with the same clearinghouse
location. However, some trades will involve multiple clearinghouse loca-
tions. To ensure that such trades are tracked properly, the identifier assigned
to each item must be globally unique among all clearinghouse locations.
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FORCES

)

There is a need to determine whether two objects are the same ob-
ject. You must be able to distinguish objects even if their attributes
have identical values. For example, PCs may be identical in model,
amount of memory, CPU type, and all other attributes. However, for
security and accounting reasons it may be important for a company
to keep track of the physical location of each PC and whose desk it is
sitting on.

If an object is common to multiple environments, such as databases
or Java Virtual Machines, then you need a common way to uniquely
identify the object in all of those environments.

Most environments that manage objects use the physical location of
the object as its unique identifier. A physical location is not generally
unique between different environments. Over time, physical locations
are not unique within the same environment. Over time, an environ-
ment may reuse the same location to store different objects.

Some objects spend their entire lifetime in one environment. If such
an object is visible only to other objects in the same environment,
then there is generally no need to provide it with an identifier that
will be unique outside its environment or lifetime.

Associating an identifier with an object by storing it in the object
increases the amount of storage that the object takes up. The larger
the set of objects to be identified and the larger the set of environ-
ments that the object can exist in, the larger an object identifier must
be to be globally unique. The larger an object identifier, the more
storage it will consume.

Some types of objects, such as strings and dates, are considered to be
the same object if they contain the same values. Value objects such as
these have no need for any sort of object identifier.

SOLUTION

If multiple environments share an object, generate a globally unique object
identifier that identifies the object in all environments. To ensure unique-

ness,

the object identifier should combine an identifier unique within its

environment and an identifier that uniquely identifies the environment.
The environment ID should be combined with the object-specific identifier
in a way that ensures that no two environments will generate the same
object ID. The class diagram in Figure 6.1 shows this relationship.

Figure 6.1 shows an object environment containing many objects that

can be shared with other environments. The environment also contains an
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FIGURE 6.1 Object identifier.

unshared object that has the responsibility of generating object IDs for
objects in its environment. Figure 6.1 shows this object as in instance of a
class called 1dGenerator. The object encapsulates a unique number that
identifies the environment. It also encapsulates a counter whose value it
combines with the environment identifier to form globally unique object
identifiers. The environment uses the object identifiers it generates to cre-
ate objects that can be shared with other environments.

Figure 6.1 shows the object identifier as a distinct object in order to
present, as clearly as possible, the relationship between the object identi-
fier and the other participants in the pattern. Some implementations do
not actually realize object identifiers as separate objects.

Because a cost is involved in associating a globally unique object ID
with an object, you should not create globally unique object IDs for objects
that do not need them. If you know that an object will exist in only one
environment and not be visible outside of that environment, then do not
create a globally unique object ID for it.

CONSEQUENCES

@ Each shareable object has a globally unique identifier that can be
used to unambiguously determine the object’s identity.
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© Having a globally unique identifier allows an object to move between
different environments and still retain its unique identity.
© Having a globally unique identifier allows objects in other environ-
ments to refer to that object.
® The Object Identifier pattern increases the time and memory required
to create objects.
» Even if two different environments are designed using the object ID,
they may not be able to share uniquely identified objects if the imple-
mentation details are different.

&

IMPLEMENTATION

Representation of Environment IDs

The representation for environment IDs must allow for a sufficiently large
number of identifiers to allow every environment that needs a unique envi-
ronment to have one. A variable-length representation, such as a string,
has no practical limit to the number of environment IDs it can represent.
However, variable-length representations take more time to compare and
manipulate than fixed-length representations.

The drawback to fixed-length representations is that the total number
of IDs they can represent is determined at design time. It cannot be easily
changed later. An int may be sufficiently large for many applications.
However, if it is possible that there will ever be a need for more environ-
ment IDs than can be represented by an int, you should use a larger rep-
resentation.

Representing the Object-Specific Portion of an ID

The issues regarding the representation of an object ID are similar. The
object-specific portion of an object ID must be able to represent as many
IDs as there will ever be objects created in an environment. Because there
is generally a need to generate the IDs frequently and cheaply, the usual
representation is an integer that can be generated by a counter of the
appropriate number of bits. Both the anticipated rate of object creation
and the lifetime of the environment should be considered when deciding
on the number of bits to represent the object-specific portion of an object
ID. For a distributed game, a counter the size of an int may be sufficient.
For longer-running programs, you may need to use a 1ong. For a database
or other environment where objects may persist indefinitely, you should
use a counter with a representation such a Bigbecimal that allows the size
of the counter values to grow indefinitely.
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Representing a Complete Unique
Object Identifier

The number of bits required for the combined environment and object-
specific portions of an object ID is generally more than can fit in a long.
For that reason, it is common for object IDs to be represented as an array
of bytes or an array of a larger integer type. An advantage of an array over
a representation that defines fields to contain pieces of object IDs is that
it makes increasing the length of object IDs less disruptive. It is a smaller
change to increase the length of an array than to change the definition of
a class. Using an array of short or larger type allows comparisons of

IDs with fewer comparison operations. Using an array of bytes pro-

vides a smaller granularity of storage allocation and allocates fewer
excess bits.

Assigning Unique Identifiers to Environments

Another implementation issue is how to assign identifiers to environ-
ments. If the set of environments will be stable and there will be only a
small number of them, then manual assignment of environment identifiers
is possible and in some cases preferable. For example, consider the case of
a multiplayer game implemented as a distributed program. If there is a
one-to-one correspondence between environments and players, then the
player’s names may be good environment IDs.

Another way to assign environment IDs is to have a server that pro-
vides environment IDs. Such a server can be centralized as the sole source
of environment IDs. A server that is the sole source for environment IDs
can be a performance bottleneck. The risk of server failure may also be of
concern. If performance is a concern, then there should be multiple
servers. There must be a scheme to ensure that the servers issue no dupli-
cate IDs.

Embedding Location in the ID

Some applications have a need to use unique object identifiers to deter-
mine the location of the object so they can communicate with it.
Incorporating a network address into an object identifier and providing a
way to extract it can be a practical solution to the problem. It works well if
network addresses are stable for the lifetime of an object and objects do
not migrate to other environments. If these conditions do not hold, then a
more general solution to the problem is to use proxies that encapsulate the
knowledge of how to communicate with the underlying object and have
the object’s unique object ID as an attribute.
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ID Server

Using a server to assign IDs to individual objects is usually not a practical
implementation option. Most applications create objects too frequently to
justify the expense of getting individual IDs from a server.

In some situations, it is undesirable or impossible to rely on a central
server to provide environment IDs. In such situations, it is often acceptable
for each environment to choose its own ID arbitrarily in a way that makes
it unlikely for two environments to choose the same ID. For example, the
exclusive OR of the current time in milliseconds and the environment’s
network address may be good enough.

KNOWN USES

Many proprietary applications have their own way of implementing the
Object Identifier pattern. Reusable mechanisms that use the Object
Identifier pattern generally do not provide their clients direct access to the
object IDs that they generate and manage. Instead, they encapsulate them
under another mechanism to keep their clients independent of the way
they implement object IDs.

Voyager is an ORB that allows programs running in different Java
VMs to share objects. Voyager's scheme for assigning object IDs does not
involve a centralized name server, but still provides a high degree of confi-
dence that the IDs it generates will be globally unique. Voyager provides
support for a type of object called a mobile agent. Mobile agents are objects
that can migrate from one Java VM to another.

Globally unique object IDs are especially important for mobile
agents. It is important for objects that interact with a mobile agent to iden-
tify the mobile agent without knowing which VM is the mobile agent’s cur-
rent location. It is also important that mobile agents be able to
communicate with objects they are interested in without the mobile agent
having to be concerned with which VM it is currently in. The Mobile Agent
pattern describes mobile agents in greater detail.

Object-oriented databases assign a unique object ID to every object
stored in a database. Even if the database is distributed, objects will gener-
ally be identified by a single ID throughout the database. Most object data-
base vendors have standardized on APIs defined by ODMG* as a means for
clients’ programs to work with their databases. One of the responsibilities
of those APIs is to provide two-way mapping between the object IDs that
the database uses and the object IDs that the client uses.

* The ODMG APIs are described in [ODMG97].
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Because you use the Object Identifier pattern for objects that will be
shared, you will be concerned with interactions between the Object
Identifier pattern and serialization. Serialization is Java’s mechanism for
converting an object to a stream of bytes so that it can be sent through a
network connection. Serialization is described in more detail in the
description of the Snapshot pattern in Volume 1.

Serializing a sharable object and sending it to another environment
through a byte stream has the effect of copying the object. If this happens,
there will be more than one of these sharable objects that claims to be the
same object. If not handled properly, this can be a serious problem. There
are a few reasonable ways to handle the situation:

® You can avoid the situation by leaving the object where it is and using
it remotely via the Object Request Broker pattern.

® You can handle the situation by ensuring that the original object is no
longer used after it is copied to another VM, following the Mobile
Agent pattern.

® You can also handle the situation by ensuring that changes to one
copy of the object are propagated to all other copies of the object
using the Object Replication pattern. This can be complicated and
slow if not designed carefully. If you choose this option, you should
take extra care in reviewing your design.

JAVA API USAGE

RMI includes a mechanism that generates object IDs that are highly likely
to be globally unique. It uses a combination of the time and hash code of
an object to identify an environment.

Java’s core API does not include a provision for assigning true glob-
ally unique IDs to objects. The Java language provides every object with an
object ID that is unique within a Java Virtual Machine at a point in time.
These object IDs are int values. A program can explicitly access an object’s
ID through the API by using the java.lang.System.identityHashCode
method.

Because Java garbage-collects objects that are no longer being used,
object IDs can be recycled. Over time, it is possible for the same object ID
to identify different objects. Garbage collection makes the use of fixed-
length object IDs practical for long-running programs. Without garbage
collection, if a program runs long enough to create enough objects, it will
overflow any fixed-size object identifier. When an object is garbage-
collected, its object ID can be assigned to a new object. With garbage col-
lection, the set of object ID values will not be exhausted unless more
objects are in use at one time than there are possible IDs.
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CODE EXAMPLE

Here is a sample implementation of the classes shown in Figure 6.1. It
begins with an implementation of the 0Object1D class.

public class ObjectID {
private long environmentID;
private long serialNumber;

/**

* Constructor

*/

ObjectID (long environmentID, long serialNumber) {
this.environmentID = environmentID;
this.serialNumber = serialNumber;

} // constructor (long, long)

Notice that the constructor is not public. This is because instances of the
ObjectID class are supposed to be created by the IDGenerator class so
that the details of ID creation can be hidden from other classes.

/**
* Return true if the given object is an ObjectID object
* with the same environmentID and serialNumber as this
* object.
*/
public boolean equals(Object obj) {
if (obj instanceof ObjectID) {
ObjectID that = (ObjectID)obj;
return (this.environmentID == that.environmentID
&& this.serialNumber == that.serialNumber);
} // if instanceof ObjectID
return false;
} // equals(Object)

/**
* Return a hash code for this object.
*/
public int hashCode() {
return (int)environmentID & (int) (environmentID >>> 32)
A (int)serialNumber * (int) (serialNumber >>> 32);
} // hashCode ()

/**

* Return a string representation of this object.

*/
public String toString() {

return getClass() .getName()
+ "[" + environmentID + "," + serialNumber + "1";
} // toString()
} // class ObjectID
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The 0bjectID class overrides the toString, equals, and hashCode
methods it inherits from the object class so they return a result based on
the contents of an 0ObjectID object.

Here is a listing of the IDGenerator class that generates object IDs.
The IDs that its generateID method returns are based on the environment
ID passed to its constructor. Where the environment IDs come from is out-
side the scope of this example.

class IDGenerator ({
private long environmentID;
private long counter=0;

/**
* Constructor
* @param id The id value for this environment
*/
IDGenerator (int id) {
environmentID = id;
} // constructor (int)

/**
* Return a unique object ID represented as an array of short.
*/
public ObjectID generateID() {
counter++;
return new ObjectID(environmentID, counter);
} // generateID()
} // class IdGenerator

Notice that the IDGenerator class is not public. Since it is a detail of
object creation, there is no need to access it outside the package that con-
tains those details.

Here is a skeletal listing of the ObjectEnvironment class. It shows
the support it provides for new objects getting an object ID.

public class ObjectEnvironment {
private static IDGenerator myIDGenerator;

static ObjectID generateID() {
return my IDGenerator.generateID();
} // generateID()

} // class ObjectEnvironment

Finally, here is the implementation of the SharableObject class.
Its constructor gets its object ID. It overrides the toString, equals, and
hashCode methods it inherits from the object class so that those methods
return a result based on the object’s ObjectID.

public class SharableObject {
private ObjectID myObjectID;
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public SharableObject() {
myObjectID = ObjectEnvironment.generatelID();
} // constructor ()

/**
* Produce a string representation of this SharableObject.
*/
public String toString() {
return "SharableObject[" + myObjectID + "]";
} // toString()

/**
* Return true if the given object has the same id as this object.
*/
public boolean equals(Object obj) {
if ( !(obj instanceof SharableObject)) {
return false;
} // if instanceof
SharableObject that = (SharableObject)obj;
return this.myObjectID.equals(that.myObjectID);
} // equals(Object)

/*k*
* Return a hash code based on this sharable object’s id.
*/
public int hashCode() {
return myObjectID.hashCode();
} // hashCode()
} // class SharableObject

RELATED PATTERNS

Most patterns related to distributed computing use the Object Identifier
pattern implicitly or explicitly. Here are some of the more notable related
patterns:

Object Request Broker and Registry. You can use the Object
Request Broker pattern with the Registry pattern to encapsulate
an implementation of the Object Identifier pattern and mini-
mize the number of classes that are dependent on it.

Mobile Agent. The Mobile Agent pattern uses the Object ID pat-
tern.

Object Replication. The Object Replication pattern uses the Object
ID pattern.
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This pattern is also known as Name Service. It was previously described in
[Sommerlad98].

SYNOPSIS

Objects need to contact other objects for which they know only the object’s
name or the name of the service it provides but not how to contact it.
Provide a service that takes the name of an object, service, or role and
returns a remote proxy that encapsulates the knowledge of how to contact
the named object.

CONTEXT

You work for a telephone company that has been growing by acquiring
other telephone companies. After it acquires another company, there is a
corporate policy to make the newly acquired company’s customer service
systems available through your company’s existing user interfaces.

The architecture the company uses for these integration projects is to
create an adapter object for each of the acquired company’s systems. These
objects implement the interfaces with which your company’s customer ser-
vice applications expect to work. It implements the interfaces by interact-
ing with the acquired system in a way that makes the acquired systems
appear to behave in the same manner as your company’s existing customer
service systems.

To make the customer service client applications aware of the new
objects, you add their name to a configuration file. The client applications
need no other modification. What makes this possible is a shared registry
object used by the client applications. The wrapper objects register their
names with the registry object. When the client applications ask the reg-
istry object to look up a name, it returns a proxy object that they can use
to communicate with the named wrapper object.

FORCES

© Instances of a class exist to provide a service to other objects.

© Instances of a service providing class must be shared by other objects
because it is not feasible for there to be more than a very few
instances of the class.

e
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© Other objects cannot use the service-providing object if they do not
know that it exists or do not have a way to refer to the object.

© From time to time, you may need to change the location of shared-
service-providing objects. You do not want such configuration
changes to require changes to the clients of the service-providing
objects. If such a change occurs during the lifetime of an object that
uses a service-providing object, you want it to be able to find the new
service-providing object.

® Some applications involve a very large number of clients. For exam-
ple, consider a Java applet that prepares income taxes and files them
electronically. It may reasonably be expected to have tens of thou-
sands of clients at one time near the filing deadline. At such times,
network bandwidth is in short supply. You do not want the applets
using network bandwidth to consult a server simply to find out which
remote object the applet should contact to get tax instructions or file
a return. You are better off passing that information to the applet as a
parameter.

@ Objects in a real-time application that has rigid timing requirements
may not be able to afford the time it takes to consult an external ser-
vice in order to get a way to refer to another external object.

SOLUTION

Register service-providing objects with a registry object that is widely
known to other objects. The registration associates a name with a remote
proxy that encapsulates the knowledge of how to call the methods of the
names object. When presented with a name, the registry object produces
the proxy. Figure 6.2 shows the organization of this design.

Here are the roles that classes play in the organization shown in
Figure 6.2:

Client. Objects in this role want to use a shared object that is in the
ServiceObject role, but do not have any way to refer to it.
What they do have is a name for the ServiceObject role and a
way of referring to a registry object.

ServiceObject. Client objects share objects in this role for the ser-
vice that they provide. Client objects are able to find the same
ServiceObject by presenting its name to a registry object.

ServicelF. Interfaces in this role are implemented by both
ServiceObject objects and RemoteProxy objects.

RemoteProxy. Instances of classes in this role are a proxy for a
ServiceObject that implements the methods of the serviceIr
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FIGURE 6.2 Registry object.

interface by remotely calling the corresponding method of a
ServiceObject object.

ObjectID. Instances of a class in this role identify a service-
Object. RemoteProxy objects use an ObjectID object to iden-
tify the Serviceobject that they are a proxy for.

Registry. Objects in the ServiceObject role register themselves
with a Registry object. That registration consists of the object
passing its name and a RemoteProxy object to the Registry
object’s bind method. The registration remains in effect until
the name of the object is passed to the Registry object’s unbind
method. While the registration is in effect, the Registry object’s
lookup method returns the proxy when it is passed the object’s
name.
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Binding. Registry objects use Binding objects internally to pair
names with proxies.

Name. Objects in this role are used as a key to look up object IDs in
a registry.

CONSEQUENCES

@ Used in isolation, the Registry pattern simply provides a layer of indi-
rection that determines which service object a client object will use.
@ Client objects are able to access service objects without having any
prior knowledge of where the service objects are. That means it is
possible to change the location of service objects without having to
make any changes to the client classes.
Client and service objects are required to have prior knowledge of
where the Registry object is.

®

IMPLEMENTATION

One of the simplest ways to implement the Registry pattern is to use a
HashTable in the Registry object role. The drawback to this approach is
that it works only for local objects. The Registry pattern is often combined
with the Object Request Broker pattern to facilitate the distributed sharing
of objects.

NAME SHARING

Sometimes multiple shared objects provide the same service or fill the
same role. If an object needs to use one of them, you may want the choice
to reflect a particular policy. An example of such a policy is to evenly bal-
ance the load on all of the service-providing objects.

The Registry pattern can be adapted to implement such policies by
doing two things. The first is to allow Registry objects to associate multi-
ple object IDs with the same name at the same time. The other is to apply
some policy-driven logic when deciding which object ID to return when
presented with a name.

DISTRIBUTED REGISTRY

A common architectural variation on the design discussed under the
“Solution” heading is to make the registry a distributed service. There are
two common ways of doing this, which can be combined.
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One way of providing a distributed registry is to use the Object
Replication pattern. When a registry is replicated in this way, the usual
way to propagate changes between the registry replicas is to use the time-
stamping technique discussed under the “Implementation” heading of the
Object Replication pattern.

The other common way of providing a distributed registry is to orga-
nize Registry objects into a hierarchy. The Registry objects on the bot-
tom of the hierarchy contain bindings for a limited set of objects. If one of
these Registry objects is asked for a binding for a name it knows nothing
about, it forwards the request to a Registry object one level higher in the
hierarchy. Registry objects above the bottom of the hierarchy are able to
tell from a prefix of the given object name whether one of the Registry
objects under them will be the right place to look for a binding.

For example, suppose that a Registry object is asked to provide a
remote proxy for an object named ebox:custService. If the Registry
object does not have a binding for that name, it forwards the request to the
Registry object above it in the hierarchy. That Registry object does not
have a binding for the name, but it knows that one of the Registry objects
under it is responsible for all names that begin with ebox:. It forwards the
request to that Registry object, which finds a binding for the name and
returns the proxy.

CORBA is an ORB that is language neutral. It allows remote objects to
pass data, but not behavior, to each other. In particular, it does not provide
any way to pass proxy objects. The standard CORBA implementation of
the Registry pattern is the CORBA naming service. Instead of binding
names to proxies, it binds them to something called an Interoperable
Object Reference (IOR). An IOR is a string that has, embedded in it, all

of the information needed to contact an object.

Other types of computing environments that are not object-oriented, such
as relational databases, also use a pure value instead of a proxy to imple-
ment the Registry pattern.

KNOWN USES

Voyager has an implementation of the Registry pattern called the
Federated Naming Service. It is also an example of a Registry object that
is distributed using the Object Replication pattern.



154 m CHAPTER SIX

The Registry pattern is used with the Object Request Broker pattern
to allow clients of shared-service-providing objects to find the service-
providing objects without having any foreknowledge of their object IDs.
The CORBA naming service is an example.

The Registry pattern is also used in computer networks. Network
naming services, such as DNS, are applications of the Registry pattern.
DNS is organized into a hierarchy of Registry objects. DNS binds names
to IP addresses rather than to proxies.

JAVAF APl USAGE

RMTI’s rmiregistry program is an application of the Registry pattern.

Instances of the java.util.ResourceBundle class are another appli-
cation of the Registry pattern. It differs from the basic Registry pattern in
that all of the objects registered in a ResourceBundle are registered when
the object is created rather than after its creation.

CODE EXAMPLE

The code example for the Registry pattern appears to be simpler than the
class diagram in Figure 6.2 would suggest. This is because it Registry
class delegates most of what it does to the Hashtable class. The
Hashtable class handles the management of Binding objects.

public class Registry {
private Hashtable hashTable = new Hashtable();

public void bind(String name, Object obj) {
hashTable.put (name, obj);
} // bind(String, Object)

public void unbind(String name) {
hashTable.remove (name) ;
} // unbind(String)

public Object lookup(String name) {
return hashTable.get (name);
} // lookup (String)
} // class Registry
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RELATED PATTERNS

Proxy. The Registry pattern uses the Proxy pattern (described in
Volume 1).

Object Request Broker. The Registry pattern is often used with the
Object Request Broker pattern.

Shared Object. Registry objects are shared objects.
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The Protection Proxy pattern is mentioned in [GoF95].

SYNOPSIS

Malicious objects may attempt to violate the integrity of other objects

by using reflection or other means to access methods or variables they
should not. You can prevent this by requiring other objects to access
sensitive objects through a proxy that limits access based on security con-
siderations. The proxy implements measures to ensure that other objects
do not gain access to features of a sensitive object that they are not
entitled to.

CONTEXT

You are writing software for a new kind of smart food processor that turns
raw ingredients into cooked, ready-to-eat food by slicing, dicing, mixing,
boiling, baking, frying, and/or stirring the ingredients. On a mechanical
level, the new food processor is a very sophisticated piece of equipment.
However, a crucial part of the food processor is a selection of programs to
prepare different kinds of foods. A program that can turn flour, water,
yeast, and other ingredients into different kinds of bread is very different
from a program that can stir-fry shrimp to exactly the right texture. The
food processor will be required to run a great variety of programs that
allow it to produce a great variety of foods. Because of the large variety of
programs that will be required, it is not possible to build all of the neces-
sary programs into the food processor. Instead, the food processor will
load its programs from a CD-ROM or similar media. Because it is not pos-
sible for you to produce all of the many programs that will be needed your-
self, you publish the interfaces for these programs so that others will be
able to produce programs for the food processor.

The food processor uses the Dynamic Linkage pattern (described in
Volume 1) to allow these dynamically loaded programs to work with the
software in the food processor environment. Figure 6.3 shows the basic
organization of this.
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FIGURE 6.3 Basic food processor organization.

The top-level class of the dynamically loaded program is required to
implement the AbstractFoodProcessorProgram interface. This require-
ment ensures that the program has certain methods that the environment
can call to invoke it. When the food processor environment invokes the
program, it passes it a reference to an object that implements the Food-
ProcessorEnvironmentIF interface to allow the program to communicate
with the environment.

Because the food processor is intended for consumers, safeguards
are important to ensure that the device is safe to use. For example, its
chopping and slicing mechanism should not be in motion unless the con-
sumer has pushed the button that is supposed to start the action. For that
reason, you want to ensure that a loaded program does not call any of the
environment’s methods other than those declared by the FoodProcessor-
EnvironmentIF interface. No program is likely to violate the interface’s
encapsulation by mistake. However, you want to ensure that malicious
programs do not cause bad things to happen. Just one such incident could
result in a very expensive lawsuit that ruins your company’s reputation and
finances.

Malicious programs may try to discover and call methods of the envi-
ronment object that are not part of the interface by using Java’s reflection
API. To prevent that and other undesirable actions, you design a security
manager class that prevents a program from successfully calling any
reflection methods and other parts of the Java API that it should not.
However, it is possible for a motivated hacker to circumvent those pre-
cautions with a lower-level hack.

The Java VM does nothing at runtime to prevent any methods from
being called, even if they are declared private. It is possible for a highly
malicious hacker to obtain a food processor and reverse-engineer the
classes of the software in the food processor. Once the hacker has identified
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the classes in the food processor and the methods, that person can create a
program with the ability to call any method of any object to which the pro-
gram can get a reference. Such a program can freely call private methods.
It is also possible for such a program to access the private variables of
objects to which it can get a reference. Clearly, to ensure that a malicious
program cannot corrupt an object, you must prevent it from getting a refer-
ence to the object. At the same time, you must somehow allow legitimate
calls to the object that implements the FoodProcessorEnvironmentIF
interface.

One way to allow an object to call another object’s methods without
having a reference to it is through a proxy. Figure 6.4 shows the addition
of a proxy to the food processor organization.

The class diagram in Figure 6.4 shows a proxy interposed between
the program and the environment. The class labeled FoodProcessorEn-
vironmentProxy implements the FoodProcessorEnvironmentIF inter-
face. When a program is invoked, it is passed a reference to an instance of
the FoodProcessorEnvironmentProxy class. To communicate with the
environment, the program calls methods declared by the FoodProcessor-
EnvironmentIF interface and implemented by the FoodProcessorEnvi-
ronmentProxy class. Those implementations simply call the corresponding
method of a FoodProcessorEnvironment object.

The proxy allows the program to invoke the environment’s methods
without having a reference to the environment. In order for the proxy to
do its job, it must have a reference to the environment. For the proxy to
have any value, it must keep its reference to the environment in a place

«interface» < uses
FoodProcessorEnvironmentlF 1

A

FoodProcessorEnvironmentProxy

«interface»
uses Vv AbstractFoodProcessorProgramIF

1 1 A

‘
‘
uses » ;
‘
‘
‘

FoodProcessorEnvironment

1

ConcreteFoodProcessorProgram

FIGURE 6.4 Food processor with proxy.
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that its clients cannot get to. Clients can potentially take the reference if it
is stored in an instance variable. Clients cannot take it out of a local vari-

able.

A technique for hiding the reference in a local variable is described in

the “Solution” section.

FORCES

G

©

Q)

A set of classes that act as a host environment for other classes may
find itself hosting a malicious class. Examples of such hosting envi-
ronments are servers that host servlets, browsers that host applets,
and environments that host mobile agents.

An object will have trusted and untrusted clients. An untrusted client
should satisfy a security check before the object satisfies a request
from it. The object should not burden trusted clients with the expense
of security checks.

You have a class that is part of a trusted protection domain that gives
it access to highly sensitive services. Before an instance of the class
satisfies a request from one of its clients that will cause it to access
one of those sensitive services, the object requesting the service must
satisfy a security check.

You do not want the code that performs the security check to access
any of the sensitive services, because the sensitive services must not
be accessed until the security check is complete. To avoid any possi-
bility that the code that implements the security check will inadver-
tently call a method that accesses a sensitive service, you do not want
it to be in the trusted protection domain.

You have a class that must remain highly secure from its clients.
Untrusted objects that use the class’s instances must not be able to
get a direct reference to the class’s instances.

Malicious classes can call the private methods of other classes and
access the private variables of other classes. However, malicious
classes cannot access the local variables of other classes.

You need to be able to limit the effectiveness of denial-of-service
attacks. A denial-of-service attack is an attack on the availability of a
service. It works by flooding a server with bogus or unnecessary
requests for service. While the server’s resources are tied up servicing
the bogus requests, it may not have enough resources to properly ser-
vice legitimate service requests.

If an object is accessing another object remotely, it is not possible
for it to bypass the interface of the object it is accessing remotely.
However, it may still be possible for it to mount a denial-of-service
attack.
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SOLUTION

Restrict access to an object by local untrusted clients by forcing them to
access the object through a proxy. The purpose of the proxy is to limit
access to only those methods that are declared in a public interface. The
proxy may further limit the access by determining whether the client
should be allowed to call the method that it is calling.

Make the proxy an active object that handles method calls from
clients by scheduling calls to methods of the object for which it is a proxy
to be made in its own thread, one at a time.

The class diagram in Figure 6.5 shows the roles that classes play in
the Protection Proxy pattern.

Here are descriptions of the roles that classes and interfaces play in
the Protection Proxy pattern.

Client. Instances of classes in this role have a reference to an object
that implements the ServiceIF interface and use its methods.

ServicelF. An interface in this role is a public interface that
declares methods client objects call to access services provided
by the service class. Both the ProtectionProxy class and the
Service class implement this interface. Untrusted Client
objects are allowed to reference instances of ProtectionProxy
class but not instances of the Service class. Trusted Client
objects, if they are believed to be correctly behaved and not
malicious, may be given a direct reference to an instance of the
Service class.

ProtectionProxy. Classes in this role implement the ServiceIF
interface. Their implementations of the interface’s methods work
by calling corresponding methods of the service class. Imple-
mentations of these classes must be able to prevent malicious
client classes from gaining a direct reference to a Service object.
They must also prevent denial-of-service attacks. The details of
how it does these things are presented after this list of roles.

ProtectionProxy classes may be required to determine if
the callers of its methods are allowed to call them. I recommend
that your designs use Java’s permission classes to determine if
an object in a particular context is allowed to do something. For
designs that use permission classes, classes in the Protection-
Proxy role should delegate the determination of whether to
allow a method call to an object that implements the
java.security.Guard interface.

Service. Classes in this role implement the methods that the corre-
sponding ProtectionProxy class covers.
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FIGURE 6.5 Protection proxy pattern.

java.security.Guard. This is not a role. It is an actual interface
defined in the Java APIL. The ProtectionProxy class may have
the responsibility of determining whether a caller of its methods
is allowed to call its methods. If the ProtectionProxy class is
required to make the determination, it delegates the decision to
an object that implements the java.security.Guard interface.
The java.security.Guard interface declares a method called
checkGuard that is passed an object as an argument. The check-
Guard method throws a SecurityException if methods of the
object it is passed may not be called in the current context.

The Permission class implements the java.security

.Guard interface. The Guard object that ServiceProxy objects
use is usually an instance of a subclass of the Permission class.
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ServiceThread. An instance of a class in this role is responsible for
hiding a reference to the Service object that a Protection-
Proxy object will be using. It also limits the effectiveness of
denial-of-service attacks by ensuring that method calls do not
proceed until a minimum amount of time has elapsed since the
previous method call. It inherits the reusable logic for doing
these things from its superclass.

When a client object calls one of the ProtectionProxy
object’s methods, the method puts the values of its arguments in
the object’s instance variables. Putting the values of the argu-
ments in instance variables makes the values visible to another
thread. The method sets the value of another instance variable
to indicate which method is being called. The current thread
is unable to continue with the call any further, so it waits for
the serviceThread to execute the rest of the call. The current
thread is forced to wait for the ServiceThread because neither
it nor the ProtectionProxy object have a reference to the
Service object.

Because its superclass is reusable, a ServiceThread class
does not inherit any logic for supplying the Service object ref-
erence to the ProtectionProxy. When a ProtectionProxy
object needs a Service object reference, its superclass passes
a Service object reference to the abstract method continue-
Call. The serviceThread class provides an implementation
of the continueCall method that passes the Service object
reference to the ProtectionProxy object’s continueCall
method.

Protection Thread. This abstract class contains the reusable
logic used by ServiceThread classes. Its run method keeps a
reference to a Service object in a local variable, where it is
not visible to any other thread. When another thread calls a
ProtectionThread object’s continueUsingTrustedThread
method, the ProtectionThread object’s run method passes
the Service object to the abstract method continuecall.

java.lang.Thread. This is not a role. It is the class in the Java API
responsible for controlling threads of execution. It is also the
superclass of the ProtectionThread class.

To call the methods of a Service object, a Protection-

Proxy object must have a reference to the Sservice class object.
If a ProtectionProxy class is required to protect its associated
Service class from malicious Client objects, Protection-
Proxy objects cannot store their reference to a Service object
in an instance variable. Malicious Client objects can access
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another object’s private instance variables. However, malicious
Client objects cannot access another object’s local variables.

A ProtectionProxy class can keep references to a
Service class in a local variable by having its own thread.
Having its own thread also allows a local variable to be kept
alive indefinitely. By making that thread sleep for a small period
of time after each call, you can ensure that method calls to the
Service object are not made any more frequently than the
period of time the thread sleeps. A common type of denial-of-
service is to call an object’s methods so frequently and concur-
rently that few CPU cycles are left for more legitimate activities.
Enforcing a minimum frequency for method calls and con-
straining them to be one-at-a-time calls can reduce the
effectiveness of a denial-of-service attack.

Figure 6.6 is a collaboration diagram that shows some details of how
the hiding of a reference and postponement of the next method call work.
Here are descriptions of the interactions shown in Figure 6.6:

1. The serviceThread object is created. References to the
ProtectionProxy object and the Service object are passed to
These interactions are
interlocked. See the
descriptions of 2a.1 and 2b.1
M
:Client :
E >
le: dolt() E 2a.1*: continueCall(s)
—>
2b.2: continueUsingTrustedThread()
<—
{concurrency=guarded} 2a:run()
p:ProtectionProxy :ServiceThread :
2a.1.1:continueCall(s)
-+
— 1:ServiceThread(p,s) T
2a.1.1.1:dolt() )
s:Service

2b.1: checkGuard(p) l

;java.security. Guard

FIGURE 6.6 Protection proxy collaboration.
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the serviceThread object’s constructor. The constructor puts
these object references in the constructed object’s instance vari-
ables. Since no other object can have a reference to the new
ServiceThread object until the constructor returns, the refer-
ence in the instance variable is not a problem at this point.

After setting the instance variables, the constructor starts
the thread of execution that the ServiceThread object will con-
trol. The thread copies the Service object reference to a local
variable and sets the instance variable to null.

The constructor then waits for the other thread to set the
instance variable to null. After the instance variable is set to null,
the constructor returns. When the constructor returns, the
instance variable is null and a local variable contains the service
object reference. At this point, the Service object reference is
accessible only within the ServiceThread object’s run method.

The serviceThread object’s thread of execution begins by calling
the object’s run method. The run method begins by copying the
Service object reference to a local variable. Then the run method
sets the instance variable that contained the reference to null. It
then notifies the thread that created the ServiceThread object
that it can stop waiting for the instance variable to be set to null.

The run method then enters an infinite loop. At the begin-
ning of each iteration, the run method waits for another thread
to call the continueUsingTrustedThread method. Calls to the
continueUsingTrustedThread method notify the run method
that the ProtectionProxy object needs to call the service
object. When the run method receives this notification, it stops
waiting and continues the current iteration.

The iteration then calls the continuecall method. The
continueCall method allows the ProtectionProxy object to
securely make a call to the service object.

The iteration concludes by sleeping for a predetermined
amount of time. The purpose of the sleep is to prevent the next
call to a ProtectionProxy object’s methods from calling the
Service object during that time. This guarantees a minimum
amount of time between calls from the ProtectionProxy object
to the service object. It also limits the effectiveness of a denial-
of-service attack.

After the iteration concludes, the run method begins another
iteration by waiting for the continueUsingTrustedThread
method to be called.

The client object calls the doTt method of an object that
implements the ServicerIF interface. In this situation, the
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2b.1.

object that implements the ServiceIF interface is a
ProtectionProxy object. Its methods provide the functionality
of the Service object by indirectly calling its methods.

The ProtectionProxy object calls its Guard object’s
checkGuard method to find out whether the client object is
allowed to call the ProtectionProxy object’s method. If the
Client object is not allowed to make the call, the checkGuard
method throws a SecurityException.

2b.2. At this point, the ProtectionProxy object cannot call the

2a.1.

doIt method of the service object because it does not have a
reference to the Service object. However, the Protection-
Proxy object does have a reference to the ServiceThread
object. It calls the ServiceThread object’s continueUsing-
TrustedThread method.

The purpose of the continueUsingTrustedThread method
is to notify the serviceThread object that it should initiate a call
to the Service object. The continueUsingTrustedThread
method notifies the run method that it should continue with its
current iteration and call the continuecall method. The
continueUsingTrustedThread method then waits to be notified
when the run method’s call to the continueCall method has
returned. After being notified, the continueUsingTrustedThread
method returns.

The ServiceThread object’s run method is notified by the
object’s continueUsingTrustedThread method when the
ProtectionProxy object needs to call one of the Service object’s
methods. When the run method receives the notification, it passes
a reference to the service object to the continueCall method.

The contribution of the serviceThread object’s
continueCall method is that it knows how to pass a reference
to the service object to the ProtectionProxy object.

2a.1.1. The serviceThread object’s continueCall method calls

the ProtectionProxy object’s continueCall method. The pur-
pose of this method is to call the Service object method that
corresponds to the ProtectionProxy method originally called
by the other thread. If any parameters need to be passed to the
Service object’s method, the original method passes them to
the continueCall method through instance variables. If there is
a result to return, this method passes it back to the original
method through instance variables.

2a.1.1.1. The ProtectionProxy object’s continueCall method

calls the service object’s method that corresponds to the origi-
nal ProtectionProxy method.
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CONSEQUENCES

> Like other forms of proxy, use of the Protection Proxy pattern reduces
the number of dependencies between classes and promotes reuse. It
reduces the number of dependencies by hiding the class of the actual
object being called from the calling object and by limiting the methods
by which the client object can call to those declared by the serviceIr
interface. Because there are fewer dependencies between the client and
service-providing class, there are more opportunities to reuse them.
© The Protection Proxy pattern forces even malicious clients of an
object to limit themselves to working with the object through its
declared interface.
© You can use the Protection Proxy pattern to control the priority of the
threads that call an object’s methods.
® Calling a method through a protection proxy takes longer than a
direct call.
® Protection proxies add complexity to a design. It is always simpler,
though less robust, for a client object to directly access the service
object.

§)

G

IMPLEMENTATION

If there is no need to determine whether client objects are permitted to
access a Service object, you can leave the Guard object out of the design.

In some cases, there is a high degree of confidence that client objects
will not be malicious. In such situations, the only motivation for using the
Protection Proxy pattern is to protect Service objects from client objects
that are not well behaved. If there is a belief that client objects will not be
malicious, then the complexity and overhead that the ProtectionThread
class adds may outweigh its benefits. If that is the case, you can simplify
your design by leaving out the ProtectionThread.

If a ProtectionThread object catches an exception thrown from a
call to one of the service object’s methods, it should rethrow the excep-
tions in the original calling thread.

The Protection Proxy pattern is noteworthy for using multiple
threads without being a concurrency pattern. You can use the Thread Pool
pattern with the Protection Proxy pattern to make it concurrent.

KNOWN USES

Some mobile agent frameworks, such as Voyager, use protection proxies to
control access to objects.
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The InfoBus 1.2 specification* defines an architecture that allows
objects conforming to the specification to exchange data without having
direct knowledge of each other. The InfoBus specification accomplishes
this by defining a number of interfaces. Objects that implement the appro-
priate interfaces can participate in an InfoBus by simply attaching them-
selves to the InfoBus.

In the course of interacting with other objects through the InfoBus,
an object will receive references to objects that implement some of the
InfoBus interfaces. Objects are supposed to respect the interfaces and not
try to access object features that are not part of the interface.

Objects attached to the same InfoBus may not have any reason to
trust each other. For that reason, the InfoBus recommends that objects
take precautions against objects that do not respect interfaces. Some of the
interfaces an object passes to an InfoBus are accessible by other partici-
pating objects and others are not. The InfoBus specification recommends
that if an InfoBus will pass an object reference to other participating
objects, the reference be indirect. The recommendation is that the objects
pass a proxy that implements the required interface. To support that rec-
ommendation, the InfoBus software includes a set of proxy classes that
implement the interfaces. The InfoBus specification refers to these classes
as proxy listener classes.

General-purpose operating systems, such as Unix or Linux, generally
use a form of protection proxy to control application calls to sensitive
operating system services.

Most network firewall products include a proxy feature that hides the
network address of hosts on the private side of the firewall. It substitutes
its own address so that hosts on the public side of the firewall see only that
address of the firewall when communicating with hosts on the private side
of the firewall.

JAVA API USAGE

The core Java API does not use the Protection Proxy pattern. However, the
java.security package does provide a policy-based permission architec-
ture. If that architecture is used in a design, it greatly reduces the security
burden on other classes for determining whether a method call should be
allowed to proceed.

All a class need do to determine whether the methods of a particular
object may be called in a particular context is to call the checkGuard

* The InfoBus 1.2 specification can be found at http://java.sun.com/beans/infobus/spec12/
IB12Spec.htm.
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method of an object that implements the Guard interface. Such objects
are typically Permission objects. A call to the checkGuard method of a
Permission object determines whether the current call context has that
permission.

CODE EXAMPLE

Here is a sample implementation of the Protection Proxy pattern.
Any interface that declares at least one method is suitable for the
ServiceIF interface role. The one in this example is as follows:

public interface ServiceIF {
public int getInfo() ;
public void setInfo(int x);
public void doIt();

} // interface ServiceIF

Client objects are probably the least interesting kind of object in the
pattern. Any instance of a class that calls a method through the serviceIF
interface can be a client object.

Any class that implements the given ServicelIF interface can be a
service class. Here is an example:

public class Service implements ServiceIF {

public int getInfo() {
int x = 0;

return x;
} // getInfo()

public void setInfo(int x) {
;';/ setInfo(int)
public void doIt() {
} //.;i(;It()
} // interface ServiceIF

The ProtectionProxy class is more interesting because it encapsu-
lates some logic. It begins by defining constants that it will use to dispatch
calls to the correct Service object method. It also defines variables that it
uses to pass parameter values to Service object methods and to pass
results back to its method’s callers.

class ProtectionProxy implements ServiceIF {
private static final int GET_INFO = 1;
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private static final int SET_INFO = 2;
private static final int DO_IT = 3;

private ServiceThread serviceThread;
private int whichMethod;

private int intResult;

private int intArg;

private Guard myGuard;

ProtectionProxy(Service service) {
serviceThread = new ServiceThread(service, this);

} // constructor (Service)

Implementations of the methods declared by the ServiceIF interface

all follow the same pattern.

® First, they call the guard object’s checkGuard method to ensure that
their caller should be permitted to make the call.

® Then they set the whichMethod variable to a constant that corresponds
to the method. The value of the whichMethod variable is used later to
dispatch a call to the corresponding method in the Service object.

® If the method has any parameters, it copies their values to instance
variables.

® They call the serviceThread object’s continueUsingTrustedThread
method so that the appropriate method of the Service object will be
called in a trusted thread by a method that has a reference to the
Service object in a local variable.

® If the method is supposed to return a result, it will expect that result
to be stored in an instance variable and will return the contents of the
instance variable.

public int getInfo() {
myGuard.checkGuard(this);
whichMethod = GET_INFO;
serviceThread.continueUsingTrustedThread();
return intResult;

} // getInfo()

public void setInfo(int x) {
myGuard.checkGuard(this) ;
intArg = x;
whichMethod = SET INFO;
serviceThread.continueUsingTrustedThread();
return;

} // setInfo(int)

public void doIt() {
myGuard.checkGuard(this);
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whichMethod = DO_IT;
serviceThread.continueUsingTrustedThread();
} // doIt()

The implementations of the serviceIF methods call the service-
Thread object’s continueCall method. That method arranges for another
thread to call the ProtectionProxy object’s continueCall method, pass-
ing it a reference to the Service object.

The purpose of the ProtectionProxy object’s continueCall method
is to call the service object’s method that corresponds to the ServiceIF
implementing method that was originally called. The continuecall
method uses the value of the whichMethod instance variable to determine
which of the Service object’s methods to call. If it has to pass any parame-
ters to a method, it expects instance variables to contain the parameter val-
ues. If it calls a method that returns a result, it will set an instance variable
to the returned value.

void continueCall(Service service) {
switch (whichMethod) {
case GET_INFO:
intResult = service.getInfo();
break;

case SET_INFO:
service.setInfo(intArg);
break;

case DO_IT:
service.doIt();
break;
} // switch
} // continueCall (Service)
} // class ProtectionProxy

The serviceThread class inherits much of its interesting behavior
from the ProtectionThread class

public abstract class ProtectionThread extends Thread {
private static final long MIN_FREQUENCY = 2000;

private Object service;

private boolean pending = false;
private boolean done = false;

private Throwable thrownObject = null;

The ProtectionThread constructor is responsible for securely trans-
ferring the reference to the Service object from its argument to an
instance variable to the new thread’s local variable. It begins by setting the
myService instance variable to refer to the service object. It then starts
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the thread, which copies the Service object reference to a local variable
and then sets the myService instance variable to null.

It must be the case that no other object can have a reference to the
new ProtectionThread object until its constructor returns. For that rea-
son, it is important that the constructor does not return until after ser-
vice has been set to null.

As a practical matter, no other thread will get a reference to a
ProtectionThread object until its constructor returns. The Java language
specification does make it possible for another thread to get a reference to
an object before it is fully constructed unless the constructor is synchro-
nized. For this reason, the constructor is synchronized.

public synchronized ProtectionThread(Object myService) {
service = myService;
Thread t = new Thread(this);

t.start();
try {
while (service!=null) {
wait();
} // while
} catch (InterruptedException e) {
} // try

} // constructor (Service)

When a ProtectionThread object’s start method is called, it begins
a new thread of execution that calls the run method. The run method
begins by copying the reference to the Service object from an instance
variable to a local variable. Then it sets the instance variable to null and
notifies the thread that called the constructor.

After the notification, the run method enters the loop that is central
to the purpose of the ProtectionThread class. The loop waits to be noti-
fied that there is a pending call to the service object that it should com-
plete on behalf of a c1ient object. When it is so notified, it passes the
reference to the Service object to the continueCall method so that it
can complete the call to the service object.

public synchronized void run() {
Object myService = service;
service = null;
notifyall();
try {
while (true) {
while (!pending) {
wait();
} // while !pending
pending = false;
try {
continueCall (myService);
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} catch (ThreadDeath e) {
throw e;
} catch (Throwable e) {
// Arrange for object to be rethrown in
// client thread
thrownObject = copyThrowable(e);
} finally {
done = true;
} // try
notifyall();
sleep (MIN_FREQUENCY) ;
} // while
} catch (InterruptedException e) {
} // try
} // run()

The continuecall method is abstract because the ProtectionThread
class is supposed to be reusable and the details of continuing the call will
depend on the ProtectionProxy class and the service class.

public abstract void continueCall(Object myService) ;

The ProtectionProxy class calls the continueUsingTrustedThread
to indicate that there is a pending call to the Service object.

public synchronized void continueUsingTrustedThread()
throws RuntimeException, Error ({

try {
pending = true;
notifyall();
while(!done) {
wait();
} // while
} catch (InterruptedException e) {
} finally {
done = false;
if (thrownObject != null) {
Throwable temp = thrownObject;
thrownObject = null;
if (temp instanceof RuntimeException)
throw (RuntimeException) temp;
if (temp instanceof Error)
throw (Error) temp;
// this should never happen
Y // if
} // try
} // continueUsingTrustedThread()
} // class ProtectionProxy

Finally, here is the ServiceThread class:
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class ServiceThread extends ProtectionThread {
private ProtectionProxy proxy;

ServiceThread(Service service, ProtectionProxy proxy) {
super (service) ;
this.proxy = proxy;

} // constructor

public void continueCall(Object myService) {
proxy.continueCall ( (Service)myService);

} // continueCall (Object)

} // class ServiceThread

RELATED PATTERNS

Proxy. The Protection Proxy pattern is a specialized version of the
Proxy pattern, which is described in Volume 1.

Template Method. The Protection Proxy pattern uses the Template
Method pattern (described in Volume 1) to abstract out the
reusable portion of the thread management logic.

Thread Pool. You can use the Thread Pool pattern with the
Protection Proxy pattern to create a multithreaded proxy.

Mobile Agent. You can use the Protection Proxy pattern to keep the
mobile agent environment safe from malicious mobile agents.
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The Publish-Subscribe pattern was described in [Buschman96].

SYNOPSIS

You need to provide timely delivery of messages to one or more objects.
Deliver messages to subscribed recipient objects by transmitting each mes-
sage to each recipient. Ensure reliable delivery by repeating the transmis-
sion after an attempt fails until delivery is successful.

CONTEXT

Suppose you are designing a system to distribute the results of sporting
events. The purpose of this system will be to support a business that will
provide this information to subscribers. As soon as the results of an event
are known, they must be sent to customers who subscribe to the service.

There are two common strategies for delivering messages. One strat-
egy is to have potential recipients poll for messages. This strategy has two
significant drawbacks:

® It does not provide immediate delivery. Once the result of a sporting
event becomes available, recipients do not receive the result until the
next time they poll for it.

® Because sporting event results become available on a sporadic basis,
most of the time spent polling by potential recipients will produce no
results. The fruitless polling is a waste of bandwidth. If there are many
potential recipients, it can be a very big waste of bandwidth.

The other strategy is for the system to transmit results to recipients as
the results become available. This strategy is a good fit for the problem.

FORCES

© Messages must be reliably delivered to their recipient(s) as soon as
possible.
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© Messages must be delivered to remote recipients.
© There is no available network infrastructure that allows you to multi-
cast events to all recipients.*
© Messages are sent at sufficiently irregular intervals so that when the
recipients poll for messages, much of the time the polling will find no
messages.
© Communication between remote objects is less reliable than commu-
nication between local objects. There is usually less bandwidth avail-
able for communication between remote objects than between local
objects.
) If multiple message sources send messages to the same recipient at
the same time, the recipient may be overwhelmed and unable to
properly handle the messages.
Bandwidth is more efficiently used to deliver multiple messages to a
recipient as a single batch than to deliver them individually.
The effort required to send a message to multiple recipients may
exceed the resources of the message source.

0B

®

SOLUTION

Objects that want to receive messages register to receive them. Messages
are transmitted as soon as they become available. Figure 6.7 shows the
roles that classes and interface typically play in this.

Here are descriptions of the roles shown in Figure 6.7:

MessageSource. Classes in this role create messages and pass them
to an object that implements the PublisherIF interface. Any
class that contains calls to PublisherIF methods fills this role.

PublisherIF. Classes in the Publisher role implement this interface.

Publisher. subscriber objects register their interest in receiving
messages with Publisher objects. When a Publisher object
receives a message from a MessageSource object, it tries to
deliver it to all of the subscriber objects that have registered
with the Publisher object to receive messages. The delivery
mechanism is implemented in a way that allows messages to be
delivered to remote objects.

Subscriber. Classes in this role are responsible for receiving mes-
sages from Publisher objects on behalf of Receiver objects.

* Multicast is a network protocol that allows a network infrastructure to deliver the same
message to multiple recipients.



MessageSource

0.*

1 *

«interface»
PublisherlF

N

Publisher

Distributed Computing Patterns m 177

v Passes-messages-to

Subscriber
A Delivers-messages-to v
: «interface»
» Delivers-messages-to «interface» RecipientlF
1 * o.* SubscriberlF A
A Requests-message-delivery '
Recipient

FIGURE 6.7 Publish-Subscribe pattern.

Receiver objects tell a Subscriber object that they are
interested in receiving a certain sort of message. The
Subscriber object registers the interest in messages with the
appropriate Publisher object.

Subscriber objects also provide the reusable portion of
the logic needed to receive messages. This may include such
things as listening for network connections or datagrams from
Publisher objects, or filtering messages. When a subscriber
object has a message to pass on to a Recipient object, it does
so through the RecipientIF interface.

SubscriberIF. Classes in the Subscriber role implement this inter-
face. Recipient objects use this interface to register their inter-
est in receiving messages.

Recipient. Classes in this role are responsible for registering to
receive messages and also receiving messages.

Recipient objects communicate their interest in receiving
messages by calling a method declared by the subscriberIF
interface.

RecipientIF. Classes in the Recipient role implement this inter-

face. subscriber objects use this interface to pass messages to
Recipient objects.
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The collaboration between instances of these classes is illustrated
by Figure 6.8. Here are descriptions of the interactions shown in Fig-
ure 6.8:

1. A Recipient object tells a subscriber object that it wants to
receive messages.

1.1. A subscriber object registers with a possibly remote
Publisher object to receive messages.

2A. MessageSource objects send messages to a Publisher object
for delivery to subscriber objects.

2B. In most cases, this will be a remote call.

The Publisher object delivers the messages it receives
from MessageSource objects to Subscriber objects. Failed
delivery attempts are repeated until successful. The Ssubscriber
object performs any processing that is common to receiving all
messages.

2B.1. After it performs common processing for all messages, the
Subscriber object passes the message on to the Recipient
object.

CONSEQUENCES

@ Use of the Publish-Subscribe pattern allows delivery of messages to
recipients at the earliest possible time.

© Making message delivery the responsibility of an object dedicated to
message delivery rather than the responsibility of the message source
provides some important benefits. Even if it takes a long time to suc-
cessfully deliver a message, the program that initiated a message is

r: Recipient :MessageSource J
T 2B.1: deliver(message) 1: subscribe(r) l l 2A*: publish(message)
[ »
1.1: subscribe(s) .
s:Subscriber :Publisher
L 2B*: deliver(message)
-

FIGURE 6.8 Publish-Subscribe collaboration.
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free to terminate before the message is delivered. Also, the efforts to
deliver the message do not take resources away from the program
that was the message source. The message source does not even have
to know the quantity or identity of its message’s recipients.
If the Publisher object receives messages from multiple message
sources for some of the same recipients, it can combine them and
reduce the amount of network traffic. However, most of the time,
messages from different sources do not arrive at a Publisher object
at the same time.
© Changing the actual Publisher and Subscriber classes used to pro-
vide the Publish-Subscribe functionality is transparent to Message-
Source and Recipient objects because of the way the pattern uses
interfaces.

)

</

IMPLEMENTATION

Usually, the Publish-Subscribe pattern is implemented by buying software
for that purpose rather than writing an implementation from scratch. Im-
plementing the pattern with all of the features you want is usually more
expensive to do in-house than it is to buy.

For some applications, it may be desirable for Publisher objects to
maintain a collection of old messages that are delivered to new subscribers
when they subscribe. The purpose in delivering such messages to new sub-
scribers is to help them get caught up.

The order in which messages are delivered is an issue for some im-
plementations. Sometimes it is important to deliver messages in the same
order that they were sent. In some cases, it is important to be able to prior-
itize messages so that higher-priority messages are delivered before lower-
priority messages.

Most implementations of the Publish-Subscribe pattern include the
ability to associate a topic or classification with each message. In such
implementations, when a recipient object asks to receive messages, it
includes a set of topics of interest. That results in messages associated with
only those topics being sent to the recipient object.

KNOWN USES

Sybase’s SQL Anywhere uses publish-subscribe for data replication. The
Voyager ORB provides publish-subscribe distribution of events. IBM’s
MQSeries software includes a module for publish-subscribe distribution
of messages.
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JAVA API USAGE

Java Message Service API supports publish-subscribe based delivery of
messages.

CODE EXAMPLE

The code example for this pattern is a limited and simple implementation
of the Publisher and Subscriber classes. The various simplifications and
limitations are explained along with the interfaces and classes involved.
We begin with the PublisherIF interface.

public interface PublisherIF {
/**
* Deliver the given object associated with the given topic
* to registered subscribers.
*/
public void deliverMessage(Serializable message,
Serializable topic)
throws RemoteException;
} // interface PublisherIF

The PublisherIF interface declares a method for objects to request
delivery of a message to registered and appropriate recipients. In this sam-
ple implementation, messages may be any kind of serializable object.®
Implementations intended to deliver specific kinds of messages will gener-
ally use a more specialized type.

Though it is not a necessary part of the Publish-Subscribe pattern,
this implementation provides a topic parameter to be passed along with
each message. This implementation delivers messages only to recipients
that registered to receive messages associated with the given topic. This is
a very common feature of Publish-Subscribe implementations.

Publish-Subscribe implementations that support topics generally do
so with a more specialized type. They may also recognize a hierarchy of
topics so that a message is delivered to recipients who are registered for a
message’s specific topic or for a more general topic that includes the mes-
sage’s topic.

Here is a Publisher class that implements the PublisherIF interface:

public class Publisher extends UnicastRemoteObject
implements PublisherIF, RemotePublisherIF {

* This sample implementation uses RMI as the basis of communication between Publisher
and Subscriber objects. RMI is able to pass objects as parameters to remote methods only if
their class implements the java.io.Serializable interface.
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The Publisher class extends java.rmi.server.UnicastRemote-
Object. This is necessitated by the fact that this implementation of
Publish-Subscribe uses Java’s RMI to allow the Publisher and
Subscriber classes to communicate. The simplest way to allow RMI
to make a class’s methods remotely callable is to have the class extend
UnicastRemoteObject

The Publisher class also implements two interfaces. One is the
PublisherIF interface that we have already examined. The other inter-
face, RemotePublisherIF, is another artifact of using RMI. It declares all
the methods of the Publisher class that can be called remotely.

Registrations of Ssubscriber objects are organized by topic using a
HashMap. The topic is used as the HashMap key. The values are lists of
Subscriber objects that want to receive messages related to the same topic.

private HashMap subscribers;

public Publisher() throws RemoteException,
MalformedURLException,
UnknownHostException {
Naming.rebind (PUBLISHER_NAME, this);
subscribers = new HashMap () ;
} // Constructor (String)

The constructor’s call to Naming. rebind registers the name of the
Publisher object with the RMI registry. This allows Subscriber objects
to find the Publisher object by looking up their name in an RMI registry.

The name of the Publisher object is hard-coded (PUBLISHER_NAME is
defined in RemotePublisherIF). This means only one Publisher object
can exist on each host machine. A production quality implementation of
the Publish-Subscribe pattern should allow each Publisher object to have
a unique and well-known name.

The Publisher class has a method to allow Subscriber objects to
register to receive messages associated with a given topic from a
Publisher object.

public void addSubscriber (RemoteSubscriberIF subscriber,
Serializable topic) {
ArrayList subscriberList;
subscriberList = (ArrayList)subscribers.get(topic);
if (subscriberList == null) ({
subscriberList = new ArrayList();
subscribers.put (topic, subscriberList);
} // if null
subscriberList.add(subscriber) ;
} // addSubscriber (RemoteSubscriberIF, Serializable)

Multiple calls to this method can associate a Subscriber object with
multiple topics. There is no checking to see if a Subscriber object is already
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subscribed to a given topic. Publisher objects trust Subscriber objects not
to have multiple registrations for the same topic at the same time. You may
want your implementation of the Publisher class to check for this.

Notice that there is no reference to the subscriber class. The
Publisher class references the subscriber class indirectly through the
RemoteSubscriberIF interface, which declares all of the Subscriber
class methods that will be called remotely.

The Publisher class also has a method that a Ssubscriber object can
call to tell a Publisher object to stop sending messages related to a given
topic.

public void removeSubscriber (RemoteSubscriberIF subscriber,
Serializable topic) {
ArrayList subscriberList;
subscriberList = (ArrayList)subscribers.get(topic);
if (subscriberList != null && subscriberList.size()>0) {
int index = subscriberList.indexOf (subscriber);
if (index >= 0) {
subscriberList.remove (index) ;
Y // if
} // if size>0
} // removeSubscriber

Finally, the Publisher class implements the deliverMessage
method declared by the PublisherIF interface. Other objects call a
Publisher object’s deliverMessage method so it will deliver a message
associated with a given topic.

public void deliverMessage(Serializable message,
Serializable topic)
throws RemoteException {
ArrayList subscriberList;
subscriberList = (ArrayList)subscribers.get(topic);
if (subscriberList != null) ({
int subscriberCount = subscriberList.size();
for (int i=0; i<subscriberCount; i++) {
RemoteSubscriberIF subscriber;
subscriber
= (RemoteSubscriberIF)subscriberList.get(i);
subscriber.deliverMessage (message, topic);
} // for
} // if null
} // deliverMessage(Serializable, Serializable)
} // class Publisher

Here is the RemotePublisherIF interface that allows Subscriber
objects to communicate with Publisher objects using RMI.

public interface RemotePublisherIF extends Remote {
// The name of all publishers
public static final String PUBLISHER NAME = "publisher";



Distributed Computing Patterns ®m 183

In this example, both the Publisher class and the Subscriber class
use this constant for the name of all Publisher objects. Most real-world
implementations require a more sophisticated naming scheme.

public void addSubscriber (RemoteSubscriberIF subscriber,
Serializable topic)
throws RemoteException;

public void removeSubscriber (RemoteSubscriberIF subscriber,
Serializable topic)
throws RemoteException;
} // interface RemotePublisherIF

The subscriber counterpart to this interface is the
RemoteSubscriberIF interface. The RemoteSubscriberIF interface
declares all of the methods of the subscriber class that may be called
remotely using RMI.

public interface RemoteSubscriberIF extends Remote {
public void deliverMessage(Serializable message,
Serializable topic)
throws RemoteException;
} // interface RemoteSubscriberIF

The deliverMessage method that the RemoteSubscriberIF inter-
face declares is similar in nature to the Publisher class’s deliverMessage
method. When a message source object calls a Publisher object’s
deliverMessage method, it delivers the given message to Subscriber
objects that have registered for the given topic. Publisher objects deliver
messages to Subscriber objects by calling a Subscriber object’s
deliverMessage method. A Subscriber object’s deliverMessage method
in turn delivers messages to recipient objects that have registered to
receive messages associated with the given topic.

Here is the Subscriber class:

public class Subscriber extends UnicastRemoteObject
implements SubscriberIF,
RemoteSubscriberIF {

This implementation of the Subscriber class is structurally similar to
the preceding implementation of the Publisher class. It keeps track of
objects that will receive messages using the same data structure. It uses a
HashMap with the topic as the key and a list of recipient objects as the value.

private HashMap listeners;

The reason that the name of this HashMap instance variable is
listeners is that Subscriber objects communicate with message re-
cipient objects using Java’s delegation event model. Subscriber objects
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encapsulate message-topic pairs in event objects and deliver the event
objects to the recipient objects. Using Java’s event terminology, the re-
cipient objects receive messages by listening for events.

The advantage to encapsulating messages in events is that it makes it
easier to treat Subscriber objects as JavaBeans and use them with tools
that manipulate beans.

/**
* The publisher object’s proxy.
*/
private RemotePublisherIF publisher;

This implementation of Publish-Subscribe allows each subscriber
object to work with only a single Publisher object. It works with the
Publisher object through a proxy object that implements the
RemotePublisherIF interface. The Subscriber object’s constructor is
responsible for creating the proxy for the Publisher object.

public Subscriber(String publisherHost)
throws RemoteException,

UnknownHostException,
NotBoundException,
MalformedURLException {

listeners = new HashMap();

String urlName = "//" + publisherHost

+ "/" + RemotePublisherIF.PUBLISHER NAME;
publisher = (RemotePublisherIF)Naming.lookup (urlName);
} // constructor()

The constructor identifies the Publisher object that the Ssubscriber
object will work with by combining the name of the host on which the
object resides with the name defined in the RemotePublisherIF interface.
It combines these into a URL string that it passes to java.rmi.Naming
. lookup, which consults the appropriate RMI registry to get the proxy to
the Publisher object.

The event class that Subscriber objects use to encapsulate messages is
called MessageEvent and is shown later in this section. Following the nam-
ing conventions of the event model, the name of the method that a recipient
object calls to register to receive messages is addMessageListener.

synchronized
public void addMessageListener (MessageListener listener,
Serializable topic)
throws RemoteException,
NotBoundException {

ArrayList listenerList;

listenerList = (ArrayList)listeners.get(topic);

if (listenerList == null) {
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listenerList = new ArrayList();
listeners.put (topic, listenerList);
} // if null
if (listenerList.size()==0) {
subscribe (topic);
} // if size==
listenerList.add(listener);
} // addMessageListener (MessageListener, Serializable)

A listener object can make multiple calls to the addMessageListener
method to register itself to receive messages on multiple topics. As imple-
mented, multiple calls with the same listener and topic can result in the
same message being delivered to the listener multiple times. This behavior
can be avoided by adding appropriate checks.

// Add this subscriber and the given topic to the publisher.
private void subscribe(Serializable topic)
throws RemoteException,
NotBoundException {
publisher.addSubscriber (this, topic);
} // subscribe(Serializable)

Here is a method that recipient objects call when they no longer want
to receive messages related to a given topic.

public void removeMessageListener (MessageListener listener,
Serializable topic)
throws RemoteException,
NotBoundException {
ArrayList listenerList;
listenerList = (ArraylList)listeners.get(topic);
if (listenerList != null && listenerList.size()>0) {
int index = listenerList.indexOf (listener);
if (index >= 0) {
listenerList.remove (index) ;
if (listenerList.size() == 0) {
unsubscribe (topic);
} // if size
Y // if
} // if size>0
} // removeMessageListener (MessageListener, Serializable)

// Add this subscriber and the given topic to the publisher.
private void unsubscribe(Serializable topic)
throws RemoteException,
NotBoundException {
publisher.removeSubscriber (this, topic);
} // subscribe(Serializable)

Publisher objects call this method remotely so that a Subscriber
object will deliver a message to its listeners.
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public void deliverMessage(Serializable message,
Serializable topic) {
ArrayList listenerList;
listenerList = (ArrayList)listeners.get(topic);
if (listenerList != null) {
int listenerCount = listenerList.size();
MessageEvent evt;
evt = new MessageEvent (this, message, topic);
for (int i=0; i<listenerCount; i++) {
MessageListener listener;
listener
= (MessageListener)listenerList.get(i);
listener.receiveMessage(evt);
} // for
} // if null
} // deliverMessage(Serializable, Serializable)
} // class Subscriber

This example concludes with the subscriberIF interface that declares
the methods of the subscriber class that a recipient object can call.

public interface SubscriberIF {
public void addMessagelListener (MessageListener listener,
Serializable topic)
throws RemoteException,
NotBoundException;
public void removeMessageListener (MessageListener listener,
Serializable topic)
throws RemoteException,
NotBoundException;
} // SubscriberIF

RELATED PATTERNS

Object Request Broker. The Publish-Subscribe pattern is often
used with the Object Request Broker pattern to deliver messages
to remote objects.

Mailbox. The Mailbox pattern provides an alternative solution for
the delivery of messages.

Registry. The registry pattern provides a way for Subscriber
objects to find Publisher objects.

Retransmission. The Retransmission pattern is often used with the
Publish-Subscribe pattern to ensure reliable delivery of mes-
sages.
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The pattern is based on material that is discussed in [Doeringer90].

SYNOPSIS

You need to ensure that an object can reliably send a message to a remote
object. Following the maxim, “If at first you don’t succeed, try again,” you
design the object to handle a failure to send a message by having it try
again until the send is successful.

CONTEXT

Suppose you are designing a system to reliably transmit events to remote
objects. Sometimes, an attempt to transmit an event to a client will fail.
When it is not possible to deliver results to a subscriber immediately, the
system must deliver the results to the subscriber at the earliest possible
opportunity.

FORCES

© An object is required to reliably deliver a message to another object.

© Attempts to deliver a message sometimes fail.

@ Using a server to ensure reliable delivery by repeating delivery
attempts means that it is possible to deliver a message after the mes-
sage source has stopped running. It also facilitates the gathering of
delivery statistics.

® Some applications require events to be delivered immediately or not
at all.

e

SOLUTION

Make a server object responsible for delivering messages to other objects.
Have the server object handle failed attempts to deliver messages by
repeating the attempt until it succeeds.

Figure 6.9 shows the roles that classes and interfaces play in the
Retransmission pattern. Here are descriptions of the roles shown in
Figure 6.9:
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FIGURE 6.9 Retransmission pattern.

MessageSource. Classes in this role create messages and pass them
to an object that implements the DeliveryAgentIF interface.
Any class that contains calls to DeliveryagentIF methods fills
this role.

DeliveryAgentIF. Classes in the Deliveryagent role implement
this interface.

DeliveryAgent. MessageSource objects pass messages to instances
of classes in this role. When a message is passed to a
DeliveryAgent object, it takes responsibility for delivering the
message to a RecipientIF object. If its first attempt to deliver
the message fails, it keeps repeating the attempt until it suc-
ceeds.

RecipientIF. Classes in the Recipient role implement this inter-
face.

Recipient. Instances of classes in this role receive messages from
DeliveryAgent objects.

CONSEQUENCES

@ Use of the Retransmission pattern allows the reliable delivery of mes-
sages to recipients.

© Making message delivery the responsibility of an object dedicated to
message delivery rather than the responsibility of the message source
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provides some important benefits. Even if it takes a long time to suc-
cessfully deliver a message, the program that initiated a message is
free to terminate before the message is delivered. Also, the efforts to
deliver the message do not take resources away from the program
that was the message source. The message source does not even have
to know the quantity or identity of its message’s recipients.

IMPLEMENTATION

The Deliveryagent object bears the responsibility for ensuring the reli-
able delivery of messages. To be able to deliver a message after a crash,
messages waiting to be delivered must be stored on disk or other non-
volatile medium. Another way of dealing with crashes is to make them
very unlikely by using the High Availability pattern.

An implementation of the Retransmission pattern will be expected to
deliver each message exactly once. One way to be certain that a delivery
attempt succeeded is to have the Recipient object send an acknowledg-
ment back to the DeliveryAgent object when it receives a message. If the
DeliveryAgent object passes messages to the Recipient object with syn-
chronous method calls, then the normal return of the method call serves as
an implicit acknowledgment.

The Retransmission pattern is normally implemented using an ORB.
If you implement the Retransmission pattern with RMI, you will always
have an acknowledgment, since the only kind of call that RMI supports is
a synchronous call. Some ORBs, such as CORBA and Voyager, in addition
to supporting synchronous calls also support a type of asynchronous call
that does not provide any sort of acknowledgment. This type of call is not
usually appropriate for use with the Retransmission pattern.

To ensure that message delivery will continue if there is a crash, there
must be a mechanism to automatically restart the Deliveryagent object.
You can use the Process Pair pattern to restart the DeliveryAgent object.

After a DeliveryAgent object delivers a message, it will typically dis-
card the message or mark it delivered. If the Deliveryagent object
restarts between the time that a message is delivered and the time it dis-
cards or marks the message, then the Deliveryagent object will not know
that it delivered the message. It will try to deliver the message again.

Recipient objects can solve the problem of duplicate messages by
recognizing and discarding them. DeliveryAgent objects can simplify the
task of recognizing duplicate messages by ensuring that if a Recipient
object receives duplicate messages they will be consecutive. This, in com-
bination with assigning sequential message IDs, makes the recognition of
duplicate messages very simple.
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Over time, a DeliveryAgent object may accumulate undeliverable
messages. For that reason, it may be necessary to place a time limit on
how long a DeliveryaAgent object will try to deliver a message before dis-
carding it. Placing such a time limit on the lifetime of a message prevents
the collection of undeliverable messages from growing indefinitely.

After a DeliveryAgent object fails to deliver a message, it attempts
to redeliver the message. The more frequently it attempts redelivery, the
less time is likely to elapse between when it becomes possible to success-
fully deliver the message and when it is actually delivered. However, the
more frequently it attempts redelivery, the more bandwidth is wasted. If
bandwidth is a concern, you must compromise between how quickly a
failed-delivery message is delivered and wasting bandwidth.

This compromise is generally handled in one of two ways. The sim-
pler of the two is to establish a fixed amount of time between delivery
attempts. Another approach is to take advantage of the observation that
the more time that has elapsed since the first attempt to deliver a message
failed, the more time is likely to elapse until a delivery attempt can be suc-
cessful. Based on this, a more sophisticated strategy that wastes less net-
work bandwidth is to gradually increase the time between delivery
attempts until it reaches a maximum.

KNOWN USES

A number of middleware packages use the Retransmission pattern for
reliable distribution of messages. Simple Mail Transport Protocol
(SMTP) servers (Internet mail servers) use the Retransmission pattern
to forward mail to each other. The Transmission Control Protocol/
Internet Protocol (TCP/IP) uses retransmission to ensure reliable
delivery of data.

CODE EXAMPLE

The Retransmission pattern is usually used in combination with another
pattern that involves the delivery of messages. The Retransmission pattern
is commonly used with the Publish-Subscribe pattern. The code example
for the Retransmission pattern is an extension to the Publish-Subscribe
pattern that uses the Retransmission pattern. The example is a subclass of
the Publisher class that overrides the deliverMessage method so that it
will attempt to redeliver a message if the initial delivery attempt fails.

public class ReliablePublisher extends Publisher {
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The following two constants determine the minimum amount of time
that will elapse between redelivery attempts and how much time must
elapse before attempts to redeliver a message are abandoned.

private static final long REDELIVERY_ INTERVAL
= 2*60*1000; // 2 minutes

private static final long EXPIRATION_INTERVAL
=3*24*60*60*1000; // 3 days

The ReliablePublisher class declares a private class named
RedeliveryAgent. The RedeliveryaAgent class is responsible for asyn-
chronously making redelivery attempts for messages whose initial delivery
attempt failed.

private RedeliveryAgent redeliverer = new RedeliveryAgent();

The Deliver method is responsible for the initial attempt to deliver a
message.

public void deliverMessage(Serializable message,
Serializable topic) {
ArrayList subscriberList;
subscriberList = getSubscriberList (topic);
if (subscriberList != null) ({
int subscriberCount = subscriberList.size();
for (int i=0; i<subscriberCount; i++) {
RemoteSubscriberIF subscriber;
subscriber
= (RemoteSubscriberIF)subscriberList.get(i);
try {
subscriber.deliverMessage (message, topic);
} catch (RemoteException e) {
Redelivery r;
r = new Redelivery (subscriber,

message,
topic);
redeliverer.scheduleRedelivery(r);
} // try
} // for
} // if null

} // deliverMessage(Serializable, Serializable)

If an initial delivery attempt to a subscriber fails, the delivery-
Message method calls the redeliverer object’s scheduleRedelivery
method. It schedules asynchronous redelivery attempts.

The Redelivery class is another private class. The Redeliveryagent
class requires that the information for a redelivery is contained in an
instance of the Redelivery class.
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private static class Redelivery {
RemoteSubscriberIF subscriber;
Serializable message;
Serializable topic;
long timeOfOriginalFailure;
Date nextRedeliveryTime;

Redelivery (RemoteSubscriberIF subscriber,
Serializable message,
Serializable topic) {
this.subscriber = subscriber;
this.message = message;
this.topic = topic;
this.timeOfOriginalFailure = System.currentTimeMillis();
this.nextRedeliveryTime = new Date(timeOfOriginalFailure);
} // constructor
} // class Redelivery

Here is the Redeliveryagent class. In order to support asynchro-
nous redelivery attempts, the RedeliveryAgent class implements the
Runnable interface. This allows it to have its own thread.

private static class RedeliveryAgent implements Runnable {
private TreeMap schedule = new TreeMap():

A RedeliveryAgent object uses a TreeMap to maintain a collec-
tion of redelivery objects in the order in which their redelivery is sched-

uled.
The RedeliveryAgent constructor starts the thread that will be
responsible for redelivery attempts.

RedeliveryAgent () {

new Thread(this).start();
} // constructor()

Here is the method that schedules redelivery attempts.

synchronized void scheduleRedelivery(Redelivery r) {
long nextRedeliveryTime
= System.currentTimeMillis()+REDELIVERY INTERVAL;
long elapsedTime
= nextRedeliveryTime-r.timeOfOriginalFailure;
if (elapsedTime>EXPIRATION INTERVAL) {
// Too much time has elapsed; give up.
return;
Y // if
r.nextRedeliveryTime.setTime (nextRedeliveryTime);
schedule.put (r.nextRedeliveryTime, r);
notify();
} // scheduleRedelivery (Redelivery)
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The scheduleRedelivery method always schedules the next redeliv-
ery attempt into the future by a fixed amount of time. Many applications
will run more efficiently with a more sophisticated policy for determining
the time of the next redelivery. Such policies typically involved strategies
such as randomization and using progressively longer intervals between
redelivery attempts.

The run method contains the top-level logic for making redelivery
attempts. It waits for the next scheduled redelivery attempt. When the time
comes, it attempts to deliver the scheduled message. If the attempt fails, it
calls scheduleRedelivery to schedule the next redelivery attempt.

public void run() {
while (!Thread.currentThread().isInterrupted()) {
Redelivery r;
try {
r = waitForNextRedeliveryTime();
} catch (InterruptedException e) {
return;
} // try
try {
r.subscriber.deliverMessage (r.message, r.topic);
} catch (RemoteException e) {
scheduleRedelivery(r);
} // try
} // while
} // run

The last method in this example is called to get the next scheduled
redelivery. If no message is scheduled for redelivery, it waits until there is
one. If a message is scheduled for redelivery and its time for redelivery has
not come yet, it waits. Otherwise, it attempts a redelivery. If the redelivery
is unsuccessful, it schedules the next redelivery for the message. Then it
checks again for the next redelivery.

private synchronized
Redelivery waitForNextRedeliveryTime ()
throws InterruptedException ({
while (true) {
if (schedule.size()==0) {
wait();
} else {
Date when = (Date)schedule.firstKey();
long nextRedeliveryTime = when.getTime();
long now = System.currentTimeMillis();
if (nextRedeliveryTime>now) {
return
(Redelivery) schedule.remove (when) ;
} else {
wait (nextRedeliveryTime-now);
Y // if
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} // if size
} // while
} // waitForNextRedeliveryTime ()
} // class RedeliveryAgent
} // class ReliablePublisher

RELATED PATTERNS

Object Request Broker. The Retransmission pattern is often used
with the Object Request Broker pattern to deliver messages to
remote objects.

Mailbox. The Mailbox pattern provides an alternate solution for the
reliable delivery of messages.

High Availability. You can use the High Availability pattern to min-
imize the likelihood that a Deliveryagent object will crash or
become otherwise unavailable.

Process Pair. The Process Pair pattern describes a way to ensure
that a DeliveryAgent object is automatically restarted after a
crash.

Publish-Subscribe. The Retransmission pattern is often used with
the Publish-Subscribe pattern to ensure reliable delivery of mes-
sages.
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SYNOPSIS

You need to provide reliable delivery of messages to objects. Facilitate the
delivery of messages by storing messages for later retrieval by each re-
cipient.

CONTEXT

Suppose that you work for an advertising agency. One way that the adver-
tising agency makes money is by buying advertising time on TV, radio, and
Web pages on behalf of its customers. The agency’s customers prefer to
buy advertising through the agency rather than directly for two reasons.

® The agency buys advertising time on behalf of many customers.
Because of that, it buys advertising time in greater quantity than any
one customer would. Because of the large volume of advertising time
the agency buys, it is able to negotiate better prices than its cus-
tomers can by negotiating individually.

® The value of advertising time to an advertiser is determined by how
many people are expected to see the advertisement and how many of
these people are the sort whom the advertiser expects to buy its prod-
uct. For example, advertising time on a financial news TV show will
be much more valuable to a manufacturer of luxury cars than to a toy
manufacturer. By being able to accurately predict the quantity and
type of people that will see an ad, the agency is able to get better
results from ads than the advertisers themselves would be.

Advertising agencies use professional negotiators to negotiate the
purchase of advertising time. They often do this working face-to-face with
sellers of advertising. To get the best deal for the advertisers, they use a
computer program running on a portable computer. The program deter-
mines the value of advertising time to each of their advertiser clients.

To make this determination of value, the program requires a great
deal of information. To be as accurate as possible, the information must be
as up-to-date as possible. Because the computer on which it runs is
mobile, the program is not always able to connect to its source of infor-
mation.
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FIGURE 6.10 Reliable delivery of Information.

You must ensure that the program receives all information sent to it,
whether or not the information source is able to connect to the program
when it sends information. The architecture shown in Figure 6.10 is used
to provide reliable delivery of the information to the program.

The way it works is that InformationSource objects send informa-
tion to a DistributionServer object. Instances of the program poll the
DistributionServer object for new information when they are able to
connect to the DistributionServer object.

The negotiation process is specialized by advertising medium.
Negotiations for TV, radio, print media, and Internet are conducted sepa-
rately. For that reason, the set of information needed by each instance of the
program depends on the specialization of the negotiator using it. For that
reason, each piece of information is addressed only to the negotiators who
will need it. When each instance of the program polls for new information, it
receives only information that is addressed to the negotiator using it.

FORCES

> Asynchronous delivery of messages is desirable.

© It is not always possible to establish a connection with the intended
recipient of a message.

@ Tt is acceptable for messages to be delivered an indefinite amount of
time after they are originally sent.

© Messages must be delivered to remote recipients.

© You want to minimize the resources required to send a message to
multiple recipients.

© Messages are sent at sufficiently regular intervals that when the recip-

ients poll for messages, much of the time there will be messages wait-

ing for them.

Communication between remote objects is less reliable than commu-

nication between local objects. There is usually less bandwidth avail-

able for communication between remote objects than between local

€

©
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objects. In the extreme case, remote objects may be able to communi-
cate only a small portion of the time.

© It is more efficient of bandwidth to deliver multiple messages to a
recipient as a single batch than it is to deliver them individually.

@ Ensuring reliable delivery means that it should be possible for a mes-
sage to be delivered after the message source has stopped running.

® If messages are sent at very irregular intervals, most of the time a
potential recipient polls for messages there will be none, which is a
waste of bandwidth.

® If a large number of potential recipients poll for messages at the same
time, the server polled may be overwhelmed.

SOLUTION

Message sources send messages to a mailbox server along with a tag indi-
cating the message’s intended recipient. Potential message recipients poll
the mailbox server for messages. Figure 6.11 shows the roles played by
classes and interfaces in this pattern.

Here are descriptions of the roles in Figure 6.11 that classes and
interfaces play in the Mailbox pattern:

MessageSource. Classes in this role originate messages. They pass
the messages to a possibly remote object that implements the
MailboxIF interface along with a list of the message’s intended
recipients.

MailboxIF. Classes in the MailboxServer role implement this
interface. Such classes are responsible for storing messages until
recipient objects poll for them.

MailboxServer. Classes in this role implement the MailboxIF
interface and are responsible for storing messages until a
Recipient object polls for them.

RecipientID. Objects in this role identify a unique Recipient object.

Mailbox. MailboxServer objects maintain a collection of objects
in this role. Each Mailbox is associated with a different
RecipientID. Each Mailbox collects messages associated with
its RecipientID. Messages associated with more than one
RecipientID are collected in the mailbox associated with each
of the RecipientID objects.

Message. Classes in this role encapsulate messages.

Recipient. Classes in this role are responsible for polling objects
that implement the MailboxIF interface for messages.
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FIGURE 6.11 Mailbox pattern.

RecipientID objects identify instances of these classes. When
Recipient objects poll a MailboxIF object for messages, they
present it with the RecipientID objects that identify them.

CONSEQUENCES

© The Mailbox pattern provides reliable delivery of messages.

© Making message delivery the responsibility of an object dedicated to
message delivery rather than the responsibility of the message source
provides some important benefits. Even if it takes a long time to suc-
cessfully deliver a message, the program that initiated a message is
free to terminate before the message is delivered. Also, the efforts to
deliver the message do not take resources away from the program
that was the message source. The message source does not even have
to know the quantity or identity of its message’s recipients.
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© The use of the Mailbox pattern may consume less network bandwidth
than the Publish-Subscribe pattern. The Publish-Subscribe pattern
uses network bandwidth for delivery attempts that fail. The Mailbox
pattern does not have this overhead.

© When Recipient objects poll for messages, they may receive more

than one message. By making it more likely that Recipient objects

will receive multiple messages using a single connection, the use of

network bandwidth is further reduced.

Changing the actual Mailbox class used is transparent to

MessageSource and Recipient objects because of the way the pat-

tern uses interfaces.

® There is generally a delay between the time a message is sent and the
time it is received. Most of the delay is attributable to the time
between successful polling attempts by the recipient.

e
©

IMPLEMENTATION

Usually, the Mailbox pattern is implemented by buying software for that
purpose rather than writing an implementation from scratch.
Implementing the pattern reliably and with all of the features you want is
usually more expensive to do in-house than it is to buy.

In order to provide reliable delivery of messages, a MailboxServer
must store messages in a reliable way until a Recipient object polls for
them. To do that, messages and Mailbox objects must be stored on non-
volatile storage, such as a disk file.

MailboxServer classes may be implemented to accept only messages
associated with RecipientID objects that it has prior knowledge of.
Alternatively, MailboxServer classes may be implemented to accept mes-
sages associated with any RecipientID object. This is largely a trade-off
between security and the needs of the application.

The security risk is that a MailboxServer object may become flooded
with messages for a nonexistent RecipientID that is never polled for.
There are other reasons messages may arrive at a MailboxServer object
without being polled for. A common strategy to prevent such messages
from becoming a problem is to delete such unpolled-for messages after a
predetermined amount of time has passed.

Another security consideration may be authenticating Recipient
objects. In some environments, there is a risk that malicious Recipient
objects will poll for messages that are not intended for them. In such
environments, you will need a way to verify that a Recipient object is
entitled to receive messages associated with each RecipientID that it
polls for.
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KNOWN USES

E-mail is one of the oldest examples of the Mailbox pattern and also the
source of the name. Most e-mail systems collect messages in mailboxes
until people read them.

Electronic Data Interchange (EDI) messages are often sent using the
Mailbox pattern.

IBM’s MQSeries software supports message distribution using the
Mailbox pattern.

CODE EXAMPLE

Here are some classes that provide a very basic implementation of the
Mailbox pattern. They are designed to communicate with message sources
and recipients using RMI. We begin with the MailboxIF interface:

public interface MailboxIF {
public void sendMessage(Serializable msg, String[] recipients)
throws RemoteException;

public ArrayList receiveMessages(String[] recipients)
throws RemoteException ;
} // interface MailboxIF

This MailboxIF interface has two methods. The sendMessage
method is called by message sources. They pass it a message to send and
an array of recipient IDs identifying the mailboxes to place the messages
in. Recipient objects call the receiveMessages method and pass it an
array of recipient IDs. The recipient IDs identify the mailboxes to poll for
messages.

This implementation of the Mailbox pattern accepts any object as a
message if its class implements the Serializable interface. More sophis-
ticated implementations of the Mailbox pattern impose more structure on
messages. This implementation of the Mailbox pattern uses strings as
recipient IDs.

Here is an implementation of the MailboxServer class:

public class MailboxServer extends UnicastRemoteObject
implements MailboxIF {
private Hashtable mailboxes;

The implementation uses a Hashtable to organize its mailboxes.

/**
* Send a message to the given list of recipients.
*/



Distributed Computing Patterns w 201

public void sendMessage(Serializable msg,
String[] recipients) {
for (int i=0; i<recipients.length; i++) {
Mailbox m = (Mailbox)mailboxes.get(recipients[i]);

if (m!=null) { // if recipient is registered
m.addMessage (msg) ;
Y // if
} // for

} // sendMessage(Serializable, String[])

This implementation ignores requests to send messages to recipients
that do not already have mailboxes set up. Mailboxes are set up by sepa-
rate methods for administering mailboxes.

Here is the method that recipients call to poll for messages.

/*k*
* Receive messages intended for a given set of recipients.
* @return An array of messages.
*/
public ArrayList receiveMessages(String[] recipients)
throws RemoteException {
ArrayList outgoing = null;
for (int i=0; i<recipients.length; i++) {
Mailbox m = (Mailbox)mailboxes.get(recipients[i]);
if (m!=null) {
if (outgoing==null) {
outgoing = m.getMessages();
} else {
outgoing.addall (m.getMessages());
} // if outgoing
} // ifm
} // for
if (outgoing==null) {
return new ArrayList();
} else {
return outgoing;
}y // if
} // receiveMessages (Stringl[])

Here are the administrative methods for adding and removing mail-
boxes. Note that these methods are not part of the MailboxIF interface, so
message sources and recipients cannot call them.

/**
* Register a recipient id so that it has a mailbox.
*/
public void registerRecipient (String recipient) {
mailboxes.put (recipient, new Mailbox()):;
} // registerRecipient (String)

/‘k*

* Unregister a recipient so that it doesn’t have a
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* mailbox.
*/
public void unregisterRecipient (String recipient) {
mailboxes.remove (recipient);
} // unregisterRecipient (String)
} // class MailboxServer

Finally, here is the Mailbox class.

class Mailbox {
private ArrayList messages = new ArrayList();

/**
* Add a message to this mailbox.
*/
synchronized void addMessage(Serializable message) {
messages.add (message) ;
} // addMessage(Serializable)

/**
* Remove all of the messages from the mailbox and return them in an
* array.
*/
synchronized ArrayList getMessages() {
ArrayList temp = (ArrayList)messages.clone();
messages.clear();
return temp;
} // getMessages|()
} // class Mailbox

RELATED PATTERNS

Publish-Subscribe. The Publish-Subscribe pattern provides an
alternative solution for the reliable delivery of messages.

High Availability. The High Availability pattern can be used to
ensure that a MailboxServer is highly available.

Object Request Broker. The Mailbox pattern is often used with the
Object Request Broker pattern to deliver messages to remote
objects.

Process Pair. The Process Pair pattern describes a way to ensure
that a MailboxServer object is automatically restarted after a
crash.

Registry. The registry pattern provides a way for Subscriber
objects to find MailboxServer objects.
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SYNOPSIS

You are designing an application client that should be as small and thin as
possible. The client must access some objects that have many attributes
and/or attributes that are large objects. The client does not always need the
attributes, so you arrange for the client to download the objects without
the attributes and then lazily download the attributes as needed.

CONTEXT

Suppose you work for a company that operates a chain of superstores that
sell building materials, hardware, floor coverings, appliances, and every-
thing else you would need to build and furnish a house. To promote the
sale of kitchen cabinets and appliances, you have been given the task of
designing an application that customers will use to design a kitchen and
then order everything in the design with the push of a button.

The system architecture calls for the client portion of the program to
take the form of an applet. To minimize memory requirements and down-
load times, the applet should be as small and thin as possible.

As the user selects cabinets, counter, appliances, and other things for
the kitchen, the applet will need to display them as they will appear in the
customer’s kitchen. In order to do this in a fast and responsive way, the
applet must download the objects that correspond to these things so that
it has local access to these things.

The need to download these objects is at odds with the goal of keep-
ing the applet as small as possible. All of these objects have another set of
objects associated with them as attribute values. Some objects, especially
appliances, have many attributes associated with them. Even without the
appliances, the shear number of pieces that go into a kitchen can add up
to a large number of attribute objects.

You observe that the applet does not usually use most of the attri-
butes of the objects it downloads. Based on this observation, you decide to
put attributes of objects that clients do not usually use into a separate ob-
ject that is not downloaded unless needed. You organize the classes of
objects the client will be downloading as shown in Figure 6.12.

Figure 6.12 shows how you organize the class for just one kind of
item, a kitchen sink. A similar organization applies to many other kinds of
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FIGURE 6.12 Class organization.

items. It includes a KitchenSink class that contains attributes that are
always needed on both the client and the server.

Kitchen sink attributes that clients need only occasionally are in the
KitchenSinkData class. On the server, instances of the KitchenSink class
always have an associated instance of the KitchenSinkData class. On the
client, instances of the KitchenSink class download an associated in-
stance of the KitchenSinkData class only when they need it.

FORCES

@ You want to keep the memory requirements for the client part of a
program as small as possible.

© You want to minimize delays related to downloading data for the
client part of a program.

© The client shares objects with the server. The client uses the shared
objects occasionally or not at all.

© When the client does use the attributes of shared objects, it uses them
enough so that it is much faster to copy them to the client in bulk
than to access them remotely.

® If an operation initiated on the client requires access to a large
amount of data on the server, it may be faster to perform the opera-
tion on the server than to copy the data to the client.

SOLUTION

Servers often need to share objects with their clients. A server may need to
share an object that has much associated data that its client does not usu-
ally use. To reduce the client’s memory requirements, create a lightweight
version of the object for the client to use.

Figure 6.13 shows the roles that classes and interfaces play in the
Heavyweight/Lightweight pattern.

sharedItem. Classes in this role are shared between a server and
its client. They do not declare instance variables for data they
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FIGURE 6.13 Heavyweight/lightweight pattern.

do not usually use, except for instance variables that refer to
Data objects. When an instance of a SharedItem class is
copied from a server to a client, its associated Data objects are
not copied.

SharedItem classes have a method that returns a reference
to its instance’s associated Data object. The client calls this
when it wants to download the Data object.

Data. Instances of classes in this role contain instance data for a
SharedItem object. A Data object is created for every Shared-
Item object in a server environment. SharedItem objects are
copied to a client environment without Data objects.

Data objects contain only instance data that is not usually used in
the client environment. Instance data usually needed in the client envi-
ronment is contained directly by SharedItem objects.

CONSEQUENCES

@ If objects shared between a client and a server have data associated
with them that is rarely used on the client, the use of a Data class is
beneficial. In such a situation, putting data in a Data object that is
copied from the server only when needed reduces the time spent
downloading data and the amount of memory that data takes up on
the client.

& If the assumption about the data being infrequently used on the

client is wrong, then the use of Data objects will have the opposite

effect. More time will be spent downloading data, and it will consume
more memory on the client.

The Heavyweight/Lightweight pattern increases the complexity of a

design. It can result in your replacing one class with multiple classes.

You may also need to add logic to manage the downloading of Data

objects.
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IMPLEMENTATION

It may be the case that not all of the data in a Data object is needed on the
client at the same time. Because of the way the Heavyweight/Lightweight
pattern works, all of the data in a Data object is downloaded together,
whether or not it is needed at that time. If a large enough set of data at-
tributes are not needed when the rest of the data is needed, then it may be
advantageous to organize them into a second Data object.

An extreme situation is having a data attribute whose value involves
so much data that it is worth managing its download individually. Indi-
vidually managed attributes involve download logic similar to the logic for
Data objects. The difference is that the client object has an instance vari-
able that directly references the data rather than referencing a Data object
that references the data.

A more fundamental issue for implementing the Heavyweight/
Lightweight pattern is how to manage the download of Data objects. If you
implement the pattern as shown under the “Solution” heading, you will be
using a client-specific class to represent the shared object on the client.
Because it is specific to the situation, it is a reasonable design decision for
the class to manage the download of Data objects themselves using the
Lazy Initialization pattern (described in Volume 2). This involves accessing
the Data object through a private method that downloads the Data object if
it has not already been downloaded. You will find an example of this under
the “Code Example” heading later in this pattern description.

One final and essential detail is the way that Data objects are down-
loaded. A sharedItem object on the client downloads the Data object asso-
ciated with the corresponding SharedItem object on the server by calling
its getData method, either directly or indirectly. How the SharedItem
object on the client is able to call the SharedItem object on the server
varies with the structure of the application. The sharedItem object on the
client may call the sharedItem object on the server indirectly through the
same client object that downloaded it. It may make the call directly. There
are many other possibilities.

KNOWN USES

The Heavyweight/Lightweight pattern has been used in independent pro-
prietary projects in four different companies that the author knows of.

CODE EXAMPLE

Data classes usually declare only instance variables. The logic that manip-
ulates their content is in the corresponding SharedItemn class.
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class Data implements Serializable {
int dataAttributel;
String dataAttribute2;

} // class Data

Here is the corresponding SharedItem class. The instance variable it
uses to refer to a data object is declared transient so that when a
SharedItem object is serialized for downloading, the Data object is not
copied with it.

class SharedItem implements Serializable {
private transient Data myData;
private Foo foo;

The foo object referred to is a client object that will know how to
download the Data object.

public SharedItem() {
myData = new Data();
/l...

} // constructor ()

Data getData() {
return myData;
} // getData()

int getDataAttributel() {
checkData();
return myData.dataAttributel;
} // getDataAttributel ()

String getDataAttribute2() {
checkData();
return myData.dataAttribute2;
} // getDataAttribute2 ()

private void checkData() {
if (myData==null) {
myData = foo.getData();
}y // if
} // checkData()
} // class SharedItem

The checkbata method is called before every access to the Data
object to ensure that the Data object has been downloaded. On the server,
the Data object is created by the SharedItem constructor, so checkData
never has anything to do on the server.
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RELATED PATTERNS

Object Request Broker. The Heavyweight/Lightweight pattern is
usually implemented using the Object Request Broker pattern to
facilitate communication between the client and the server.

Lazy Initialization. The Lazy Initialization pattern can be used to
manage the download of Data objects if client objects are
responsible for the download of their own Data object. The Lazy
Initialization pattern is described in Volume 2.

Virtual Proxy. The Virtual Proxy pattern should be used to manage
the download of Data objects if the same class is used to imple-
ment the client and server version of the shared object. The
Virtual Proxy pattern is described in Volume 1.

Object Replication. The Object Replication pattern addresses
issues related to keeping the state of the client and server objects
consistent.

Facade. Like a facade object, a lightweight object hides the details
of accessing objects behind it. The Fagade pattern is described
in Volume 1.
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SYNOPSIS

While a remote object is performing an operation on behalf of a client,
periodically send a message back to the client indicating that the remote
object is still alive.

CONTEXT

Suppose you work for a company that sells enterprise software applica-
tions. You are involved in design of a purchasing application. The com-
pany will sell it to customers who will run the software in their own
computing environments. The details of these environments will vary con-
siderably in such ways as architecture and performance.

The purchasing application will have a multitiered architecture.
Some pieces of software that make up the application are required to
detect the failure of other pieces. For example, the client piece that users
interact with is required to tell users that an operation is unable to com-
plete if the server piece that it works with crashes. That is so the users will
not waste time waiting for something to finish that will never finish.

The simplest way to determine that a remote operation will not com-
plete is to establish a time limit for the operation’s completions. If the
operation does not complete in that amount of time, you assume that it
will not complete. To use this technique successfully, you must be sure that
the operation in question will complete in some particular amount of time.
Since the companies that will be buying the software will have very differ-
ent computing environments, it is not possible to assume how long it will
take the software to perform an operation in a customer environment.

FORCES

@ You need a way to decide that a remote operation will not complete.

© The amount of time that the remote operation takes to complete is
highly variable, or you have no idea how long it will take.

© Even when you do have a reasonable idea of how long a remote oper-
ation should take, you should allow for some variation due to such
factors as high load on the remote host or network congestion.
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® Network bandwidth is limited and you want to minimize network
traffic.

SOLUTION

Have the remote object performing an operation periodically make a call
back to the waiting client. These callbacks are called heartbeat messages.
Receipt of a heartbeat message tells the client that the remote object is still
alive. If too much time elapses between heartbeat messages, the client
assumes that the remote object is dead or inaccessible. Figure 6.14 shows
the roles that classes and interfaces play in the Heartbeat pattern.

Here are descriptions of the roles shown in Figure 6.14:

Client. Instances of classes in this role make remote calls to Server
objects. When making a remote call to a Server object, a Client
object passes information to the Server object that allows it to
call a method of an associated HeartbeatListener object.

Server. Classes in this role respond to remote method calls from
Client objects. While processing calls, they make periodic calls to
a method of an object that implements the HeartbeatListenerIF
interface.

HeartbeatListenerIF. Classes in the HeartbeatListener role imple-
ment this interface. Server objects call a method of a remote
HeartbeatListener object through an interface in this role.

HeartbeatListener. Classes in this role receive heartbeat messages
from a server object on behalf of a Client object while the
Server object is processing a remote call from the client

«interface»
Notifies » HeartbeatListenerlF
Server ] ]
ServerlsAlive( )
' I
Uses A 1
1 :
HeartbeatListener
Client
ServerlsAlive( )
! *
<« Interrupts-client-call-to-server-when-heartbeat-not-received

FIGURE 6.14 Heartbeat pattern.
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object. If a HeartbeatListener object does not receive an
expected heartbeat message within a certain amount of time,
then the HeartbeatListener object is responsible for interrupt-
ing the Client object’s call.

HeartbeatListener objects must be on the same physical
host as their associated client object.

The collaboration between the objects that participate in the
Heartbeat pattern is shown in Figure 6.15.
Here are descriptions of the interactions shown in Figure 6.15:

1. A client object calls its own doTt method. The method’s imple-
mentation involves a call to the Server object’s method doIt
method.

1.1. Call a HeartbeatListener object’s startListening method
to tell it to start expecting to receive heartbeat messages.

1.2. The client object calls the Sserver object’s doIt method.

1.2.1A. The Server object does the things determined by its imple-
mentation of its doIt method.

1.2.1B. Between the time that the Sserver object’s method is called
and the time it returns, the server object periodically sends
heartbeat messages to the HeartBeatListener object so that it
knows the server object is still alive. The Server object sends
these messages at regular and expected intervals.

1.2.1C. The HeartBeatListener object expects to receive heartbeat
messages. It always expects to receive the next heartbeat mes-
sage within a certain amount of time. This amount of time is
called a time-out interval.

— —
1:dolt() 1.2.1A: doltimplementation( )
[\ . [\

Client 1.2: dolt(h) Server
i 1.1: startListening( ) 1.2.1C[heartbeat message is late]: T
1.3: stopListening( ) stop(:Heartbeatlnterrrupt)
-«
1.2.1B*: serverlsAlive( )

h:HeartbeatListener

FIGURE 6.15 Heartbeat collaboration.
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If the HeartBeatListener object does not receive the
next heartbeat message before the time-out interval has
elapsed, it interrupts the Client object’s call to the Server
object by forcing it to throw an exception. Since there may be
some variation in the interval between the heartbeat messages,
the selection of a time-out interval should account for such
variations. It should be long enough to allow a high degree of
certainty that something is wrong. It should be short enough
to avoid wasting time. In many situations, the time-out is set
to two to three times the expected interval between heartbeat
messages.

CONSEQUENCES

©

(=)

Use of the Heartbeat pattern allows client objects to determine that a
remote object performing an operation is dead.

The Heartbeat pattern also detects a loss of network connectivity with
a remote object. However, it does not distinguish loss of network con-
nectivity from the death of the remote object.

The Heartbeat pattern does not detect situations where a remote
object has experienced a failure that prevents it from completing an
operation while still allowing it to send heartbeat messages as
expected.

The Heartbeat pattern also does not function well under heavy loads
that interfere with a server’s ability to send heartbeat messages on a
timely basis. If the interval between heartbeat messages increases
gradually, it may be possible for a clever implementation to notice the
trend and adjust the time-out period. However, if a server or network
is prone to sudden spikes in load, use of the Heartbeat pattern can
result in the crash of a system due to a false alarm.

IMPLEMENTATION

The Heartbeat pattern is usually implemented within the context of the
Object Request Broker pattern. The details of how you implement the
Heartbeat pattern will vary with the ORB that you use. The variable part of
the implementation is that you need to arrange for the server to be able to
perform a callback to the client.

Some ORBs support one-way calls. One-way calls are invoked

remotely and execute asynchronously, but the caller never gets any sort of
notice that the call completed. This is the ideal call semantics for
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Heartbeat calls, because it minimizes network traffic and does not require
the caller to set aside resources to receive a call completion notice it does
not need.

A second-best choice of call semantics is an asynchronous call.

This does not require the server to wait for the heartbeat call to return.
This works best when implemented by the ORB, since an ORB is gener-
ally able to handle asynchronous calls without needing any additional
threads.

The RMI ORB that is used in the code example (as of the time this is
being written) supports only synchronous calls. It does not support one-
way or asynchronous calls.

The rest of the implementation involves arranging for the callbacks at
periodic intervals. This is most straightforward when the ORB supports
one-way or asynchronous call semantics. If the ORB supports one-way
calls, then all that the Heartbeat implementation needs to be responsible
for is making the heartbeat calls at a regular interval.

If the ORB does not support one-way calls but does support asyn-
chronous calls, then before the Heartbeat implementation makes a heart-
beat call, it should relieve the ORB of the results of previous calls. ORBs
that support asynchronous calls cache the results of the calls until the
results are fetched by the application.

ORBs that support only synchronous calls present an additional chal-
lenge. If the ORB supports one-way or asynchronous calls, an obvious and
simple way for a server application to make periodic heartbeat calls is for
it to have a thread dedicated to that purpose. If the ORB supports only
synchronous calls, then it must either wait for each heartbeat call to return
or use additional threads. Waiting for a heartbeat call to return can cause
the next heartbeat call to be made too late. Using additional threads allows
the next heartbeat call to be made before the previous one returns, but this
adds complexity to the design.

KNOWN USES

The Heartbeat pattern is used by a number of independently developed
applications.

CODE EXAMPLE

This section shows two sets of code examples. The first example is a
straightforward implementation of the Heartbeat pattern. One of the
points of the first example is that the implementation of the Heartbeat pat-
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tern can have some subtleties that are not obvious until you reduce it to
code. For reasons that will be explained later, the straightforward imple-
mentation technique does not work with some ORBs.

The second example is a less direct implementation, but will work
with some ORBs that the more direct approach will not. Both examples
are written for RML.

Here is the client class for the first example:

class Client {
private static final int TIMEOUT = 30000;
private ServerIF server;
private HeartbeatListener heartbeatListener;

The client begins operation by getting a remote reference to the
server and creating a HeartbeatListener object. In this case, it does
these things in its constructor.

Client (String serverHost) throws RemoteException,
UnknownHostException,
NotBoundException,
MalformedURLException {
String urlName = "//" + serverHost
+ "/" + ServerIF.SERVER_NAME;
server = (ServerIF)Naming.lookup (urlName);
heartbeatListener = new HeartbeatListener (TIMEOUT);
} // constructor (String)

The following method contains a call to one of the server’s methods.
The call to the server is preceded by a call to the HeartbeatListener to
tell it to start listening for heartbeat messages. The call to the server passes
a stub object to the server that allows the server to call the Heartbeat-
Listener and pass it heartbeat messages.* After the call to the server
returns, the client again calls the HeartbeatListener to tell it to stop lis-
tening for heartbeat messages.

If the HeartbeatListener does not receive any heartbeat messages
within the time-out period specified to it, it throws a HeartbeatException.
The actions discussed so far occur within a try statement that catches the
HeartbeatException and handles the situation.

private void start() {
try {
heartbeatListener.startListening (TIMEOUT) ;
server.doIt ( (HeartbeatListenerIF)heartbeatListener.getStub());
heartbeatListener.stopListening();

* Stub classes are described in the Object Request Broker pattern section.
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} catch (HeartbeatException e) {
} catch (RemoteException e) {

} // try

/...

} // start
} // class Client

The stub object that the client passes to the server implements this
interface.

public interface HeartbeatListenerIF extends Remote {
/**

* Server objects call this method periodically to announce
* that they are still alive.
*/
public void serverIsAlive() throws RemoteException ;
} // interface HeartbeatListenerIF

Here is the server class that goes with the client. It defines the period
between heartbeat messages to be only one-third the time-out period that
the client uses.

class Server extends UnicastRemoteObject implements ServerIF, Runnable {
private HeartbeatListenerIF heartbeatListener = null;
private static final int HEARTBEAT PERIOD = 10000;

The server’s constructor registers the server so that clients can find it
(see the Registry pattern). Then it starts a thread that will be responsible
for sending heartbeat messages at regular intervals while the client is wait-
ing for a remote method call to return.

public Server() throws RemoteException, MalformedURLException {
Naming.rebind (SERVER_NAME, this);
new Thread(this).start();

} // constructor

Clients call the doIt method. While the doTt method is perform-
ing its function, it arranges for the server to send heartbeat messages to
the client. It does this by assigning the stub object that the client passes to
it to an instance variable. The stub is a proxy that allows the server to call
the client’s HeartbeatListener object’s serverIsalive method.

When the stub is accessible through an instance variable, the doIt
method calls the notify method. The call to the notify method causes
the thread responsible for sending the heartbeat messages to wake up and
send a heartbeat message. It continues to do that until the Heartbeat-
Listener instance variable is null.
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public synchronized void doIt(HeartbeatListenerIF stub) ({

try {
heartbeatListener = stub;
notify();

} finally {
heartbeatListener = null;

} // try

} // doIt(HeartbeatListenerIF)

The run method contains the logic for periodically calling the
remoteHeartbeatListener

public synchronized void run() {
while (!Thread.currentThread().isInterrupted()) {

try {
while (heartbeatListener==null) {
wait (HEARTBEAT PERIOD);
} // while heartbeatListener
heartbeatListener.serverIsAlive();
} catch (RemoteException e) {

} catch (InterruptedException e) {
} // try
} // while true
} // run()
} // class Server

The final class we will consider in this first example is the Heart-
beatListener class. Other objects use the HeartbeatListener object
to receive heartbeat messages on their behalf. A HeartbeatListener object
is told to expect heartbeat messages no more than a certain number of mil-
liseconds apart. If it does not receive a heartbeat message within the given
time, it provides notification that the heartbeat message did not arrive.

public class HeartbeatListener extends RemoteObject
implements HeartbeatListenerIF,
TimeOutListener ({
private TimeOutTimer timer;
private int timeOutInterval;
private Thread clientThread;
private RemoteStub stub;

The HeartbeatListener class uses a class named TimeoutTimer
that is not listed here. A TimeoutTimer object can be told to send an event
to an object after a given number of milliseconds have elapsed.

public HeartbeatListener() {
timer = new TimeOutTimer(this, this);
} // constructor ()

After the startListening method is called, this object expects its
serverIsAlive method to be called periodically, with the calls being no
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further apart than the number of milliseconds passed as a parameter. The
way it works is that it asks the TimeoutTimer object to send it an event
after the given amount of time has elapsed. It also saves a reference to the
thread that called it; it may use the thread later to notify its caller if it does
not receive an expected heartbeat message.

public void startListening(int interval) {
timeOutInterval = interval;
timer.start(interval);
clientThread = Thread.currentThread();
} // start(int)

Server objects call the serverIsalive method periodically as a way
of delivering a heartbeat message to announce that they are still alive. The
serverIsAlive method postpones the time that the TimeoutTimer object
will send an event to this HeartbeatListener object.

public void serverIsAlive() {
timer.start (timeOutInterval);
} // serverIsAlive()

After a call to its stopListening method, a HeartbeatListener
object no longer expects its serverIsalive method to be called. The
stopListening method tells the TimeoutTimer object not to send it any
event.

public void stopListening() {
timer.cancel();
} // stopListening()

The final method we will consider is the timeout method that the
TimeOutTimer object will call to pass a TimeOutEvent to a HeartBeat-
Listener. When the method is called, it notifies the client of the time-out
using the thread that last called the HeartBeatListener object’s start-
Listening method. It calls the thread’s stop method. The stop method
causes the thread to throw an exception from whatever code it is execut-
ing. After an exception is passed to its stop method, the next thing the
thread does is to throw the exception.

public void timeOut (TimeOutEvent evt) {
clientThread.stop(new HeartbeatException());
} // timeOut (TimeOutEvent)
} // class HeartbeatListener

This implementation of the pattern follows the UML in a rather
straightforward way. Though the implementation approach shown in this
example will work with some ORB implementations, it will not work with
RMI. The reason for that stems from the fact that RMI uses a dedicated
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socket for each remote call.* Because RMI creates a socket for each call,
when the timeout method calls the thread’s stop method it will most
likely be waiting for a read operation on the socket to return.

The call to the thread’s stop method ensures that the next thing the
thread does is to throw the given exception. However, the stop method
cannot guarantee when the thread will do the next thing it does. In partic-
ular, the stop method cannot make a read operation return any sooner. If
the thread is indeed waiting for a read to return, all that the call to the
stop method accomplishes is to cause the thread to throw the exception if
and when the read operation returns.

The fundamental purpose of the Heartbeat pattern is to determine
within a fixed amount of time that a remote method call will not return.
Because the thread does not throw the exception until the read operation
returns, this purpose of the Heartbeat pattern is unfulfilled.

Though this approach to implementing the Heartbeat pattern does not
work with ORBs that dedicate each connection to a single remote call, it will
generally work with ORBs that use the Connection Multiplexing pattern.
The Connection Multiplexing pattern involves the use of a single connection
for multiple remote calls. When an ORB is implemented in this way, there is
typically one thread responsible for receiving all the results of calls made
over a connection. When this thread receives a response to a remote proce-
dure call, it dispatches it to the thread that initiated the call. When the
response to a remote procedure call arrives, the thread that initiated the
remote call is typically waiting for an object’s wait method to return.

This way of implementing the Heartbeat pattern works because the
thread that initiated the remote call is typically waiting for something that
its stop method can force to return immediately.

The straightforward implementation technique does not work with
RMI because of the way it manages connections. It is possible to make the
Heartbeat pattern work with RMI. To make it work, we will have to imple-
ment it at a lower level so that RMI does not get in the way. RMI has a
mechanism that allows us to do just that.

RMI has a mechanism that allows you to provide objects that create
sockets on behalf of RMI. The purpose of this mechanism is to allow you
to provide instances of subclasses of Socket and ServerSocket that im-
plement a communication protocol at a higher level than TCP/IP but lower
than RMI. For example, you can use this mechanism to have RMI commu-
nicating over SSL."

*Section 3.1 of the RMI specification for Java 1.2 says that the first thing a stub does when its
method is invoked is that it “initiates a connection with the remote VM containing the remote
object.”

fSecure Sockets Layer (SSL) is a protocol that provides secure transmission of data. It is

designed to be transparent to application protocol layers. SSL is defined by RFC 2246, avail-
able at www.alternic.com/rfcs/rfc2200/rfc2246.html.
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We will use this mechanism to implement a protocol that allows a
server to send heartbeat messages in a way that is transparent to RMI. The
way it will work is that every time the server writes some bytes to the
socket, the protocol will precede the bytes written with four bytes (an int)
that is the number of bytes written. Heartbeat messages will be transmit-
ted as zero-length writes.

It is possible to set a parameter that forces a read on a socket to time
out if no bytes arrive to read within a specified amount of time. If no
heartbeat messages or other data arrive within a specified amount of time,
this mechanism will alert us.

Implementing the Heartbeat pattern in this way has the drawback that
the server does not know exactly when a remote method call is in progress.
This can result in the server sending unnecessary heartbeat messages.

We will begin the client2 class, which is the client portion of the
example. The Client2 class is similar to the Client class, so the listing
leaves out some parts that are the same.

class Client2 {
private static final int TIMEOUT INTERVAL = 30000;
private Server2IF server;

private void start() {
try {
server.doIt();
} catch (HeartbeatException e) {

} catch (RemoteException e) {
e.printStackTrace();

} // try
} // start
} // class Client2

The main difference between the Client class and the client2 class
is that the client2 class does not bracket its call to the server’s doIt
method with method calls that announce the beginning and end of the
remote call.

Since this implementation will send and receive heartbeat messages
at the protocol level rather than as remote calls to a HeartbeatListener
object, there is no need for the HeartbeatListenerIF interface that was
used in the first example.

Here is the server2 class that works with the c1ient2 class:

class Server2 extends UnicastRemoteObject implements Server2IF {
private static final int TIME_OUT = 30000;
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The server2 class uses a class named HeartbeatSocketFactory
that appears in a later listing. The purpose of this class is to create
Socket and ServerSocket objects on behalf of RMI that implement the
protocol discussed previously and pass heartbeat messages from server
to client.

The main method creates the HeartbeatSocketFactory object. This
object will be used on both the server and the client. It passes into the con-
structor the maximum number of connections (50) that ServerSocket
objects it creates should ask the operating system to accept and queue up
for the server. It also passes to the constructor the number of milliseconds
that the client should wait for a heartbeat message to arrive before decid-
ing that it will not arrive.

public static void main(String[] argv) {
try {
HeartbeatSocketFactory hsf;
hsf = new HeartbeatSocketFactory (50, TIME_OUT);
new Server2 (hsf);

} catch (RemoteException e) {
e.printStackTrace() ;
e.detail.printStackTrace() ;

} catch (Exception e) {
e.printStackTrace() ;

} // try

} // main(Stringl[])

The constructor for the Server2 class takes a HeartbeatSocket-
Factory argument. It passes the HeartbeatSocketFactory object to its
superclass’s constructor. It passes it twice. This is because RMI allows you
to use a separate object for a Socket factory and a ServerSocket factory.
Since the subclass of socket and ServerSocket that we will be using will
always be used in pairs to support the protocol discussed previously, we
use a single object that does both.

public Server2(HeartbeatSocketFactory hsf)
throws RemoteException,
MalformedURLException,
IOException {
super (0, hsf, hsf);
Naming.rebind (SERVER_NAME, this);
} // constructor

Like the client?2 class’s call to doIt, the Server2 class’s implementa-
tion of doIt is unencumbered with code to indicate when heartbeat mes-
sages should be sent.

public void doIt() {
try {
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} catch (Exception e) {
} // try
} // doIt()
} // class Server2

The classes that we have examined so far in this example have been
simpler than the corresponding classes in the first example. The reason is
that we are moving the complexity to a lower level of the logic. This will
become clear as we examine the HeartbeatSocketFactory class and the
classes that it instantiates.

The purpose of the HeartbeatSocketFactory class is to instantiate
subclasses of socket and ServerSocket that implement the protocol to
transmit and manage heartbeat messages. It implements the Seriali-
zable interface. This is so that RMI can send a copy of a Heartbeat-
SocketFactory object from the server to the client, where it is needed to
create Socket objects.

public class HeartbeatSocketFactory extends RMISocketFactory
implements Serializable {
private int heartbeatTimeout;
private int backlog;
public HeartbeatSocketFactory(int backlog, int timeout) {
this.backlog = backlog;
heartbeatTimeout = timeout;
} // constructor(int)

/**
* Create a client socket connected to the specified host
* and port.
*/
public Socket createSocket(String host, int port)
throws IOException {
return new HeartbeatClientSocket (host,
port,
heartbeatTimeout) ;
} // createSocket (String, int)

/**
* Create a server socket.
*/
public ServerSocket createServerSocket (int port)
throws IOException {
return new HeartbeatServerSocket (port,
backlog,
heartbeatTimeout) ;
} // createServerSocket (int)
} // class HeartbeatSocketFactory
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The HeartbeatServerSocket class extends the ServerSocket class
so that the Socket object it creates when it accepts a connection sends
heartbeat messages to the client.

public class HeartbeatServerSocket extends ServerSocket {
private int heartbeatTimeout;

In addition to the parameters it passes on to its superclass’s construc-
tor, the HeartbeatServerSocket class’s constructor takes a parameter
that is the maximum amount of time, in milliseconds, that the client will
wait between heartbeat messages.

public HeartbeatServerSocket (int port,
int backlog,
int timeout)
throws IOException {
super (port, backlog);
heartbeatTimeout = timeout;
} // constructor(int, int)

The accept method listens for a connection to be made, accepts it,
and returns a Socket object that can be used to communicate with the
connection. The Socket object it returns is actually an instance of
HeartbeatSocket, a subclass of socket that sends heartbeat messages to
the client.

The accept method works by first creating a HeartbeatSocket
object and then passing it to the implaAccept method that the Heartbeat-
Socket class inherits from the Socket class. It is the implAccept method
that actually listens for a connection, accepts it, and associates the
HeartbeatSocket object with the connection.

public Socket accept() throws IOException {
Socket s = new HeartbeatSocket (heartbeatTimeout) ;
implAccept(s);
return s;

} // accept()

The HeartbeatSocket class is private to the HeartbeatServer-
Socket class, since no other class needs to know it exists.

private static class HeartbeatSocket extends Socket {
private int heartbeatTimeout;

HeartbeatSocket (int timeout) {
heartbeatTimeout = timeout;
} // constructor

The implementation of the HeartbeatSocket class is very simple. It
overrides the getOutputStream method so that it returns an instance of a
subclass outputStream that does the real work.
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public OutputStream getOutputStream() throws IOException {
OutputStream out = super.getOutputStream();
return new HeartbeatOutputStream(out);

} // getOutputStream

The HeartbeatOutputStream class is private to the Heartbeat-
Socket class. Instances of HeartbeatOutputStream function as wrappers
for their underlying outputStream that prefix the bytes sent by each write
operation with the number of bytes written by the write operation. Heart-
beatOutputStream objects have a thread associated with them that allows
them to send heartbeat messages asynchronously.

private class HeartbeatOutputStream
extends FilterOutputStream
implements Runnable {
HeartbeatOutputStream(OutputStream out) {
super (out) ;
Thread heartbeatThread = new Thread(this);
heartbeatThread.setDaemon (true) ;
heartbeatThread.start();
} // constructor (OutputStream)

The HeartbeatOutputStream class overrides the write method in the
obvious way to prefix each write with its length.

public synchronized void write(int b)
throws IOException {
writeInt(1l);
out.write(b);
} // write(int)

public synchronized void write(byte bI[],
int off,
int len)
throws IOException {
writeInt(len);
out.write(b, off, len);
} // write(byte[], int, int)

The thread that the HeartbeatOutputStream object’s constructor
starts calls the run method. It is responsible for sending heartbeat mes-
sages. It separates the heartbeat messages by only one-third of the time
that the client will tolerate between messages. The purpose in doing that is
to allow for fluctuations in the speed of the host the server is on and also
in how loaded the network is. This is a somewhat conservative margin of
safety for most environments. For production use, you may want to pro-
vide a mechanism to manually or automatically adjust it.

public synchronized void run() {
Thread myThread = Thread.currentThread() ;
while (!myThread.isInterrupted()) {
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try {
wait (heartbeatTimeout/3);
writeInt(0); // write heartbeat message
} catch (InterruptedException e) {
} catch (IOException e) {
} // try
} // while
} // run()

The implementations of the write method call the writeInt method
to write the number of data bytes that they are about to write.

private void writeInt (int v) throws IOException {
out.write((v >>> 24) & OxFF);
out.write((v >>> 16) & O0xFF);
out.write((v >>> 8) & OxFF);
out.write((v >>> 0) & OxFF);
} // writeInt(int)
} // class HeartbeatOutputStream
} // class HeartbeatSocket
} // class HeartbeatServerSocket

Clients use an instance of the HeartbeatClientSocket class to man-
age their connection with the server. The InputStream object it provides
to the client expects to receive heartbeat messages from the server. While
InputStream object is waiting to receive data from the server, if it does not
receive data or a heartbeat message within the specified time-out period, it
throws a HeartbeatException.

class HeartbeatClientSocket extends Socket {
/**

* The maximum amount of time that should elapse before a

* HeartbeatException should be thrown from a read.

*/

private int heartbeatTimeout;
/ * %

* The last value passed to this object’s setSoTimeout

* method.

*/

private int soTimeout = 0;

Socket objects have an attribute named soTimeout. The default
value for soTimeout is zero. If the value of soTimeout is set to a value
greater than zero and an attempt to read data from the socket takes more
than that many milliseconds, the read throws an InterruptedIo-
Exception. This class implements its behavior of timing out when no
heartbeat message or data arrives by setting the value of its superclass’s
soTimeout attribute.

Even though the HeartbeatClientSocket class uses its superclass’s
soTimeout attribute for its own purpose, it still should behave appropriately
when other objects set its instance’s soTimeout attribute. If the attribute is
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set to a value greater than the value of the heartbeat time-out period, then
no special measures are needed because a HeartbeatException will be
thrown before the InterruptedIOException should be thrown. On the
other hand, if the value of the soTimeout attribute is greater than zero but
less than the value of the heartbeat time-out period, then the Interrupted-
I0Exception will be thrown first. Since the value of the soTimeout
attribute will vary over time, it is necessary to remember both the value of
the heartbeat message time-out and the most recent soTimeout setting.

private HeartbeatInputStream myInputStream;

/**

* Creates a stream socket and connects it to the specified
* port number on the named host.

* @param host the host name.

* @param port the port number.

* @param timeout The amount of time in milliseconds that

* this socket should wait for a read

* operation to be satisfied or to receive a
* heartbeat message before throwing a

* HeartbeatException.

*/

public HeartbeatClientSocket (String host, int port, int timeout)
throws UnknownHostException, IOException {
super (host, port);
heartbeatTimeout = timeout;
super.setSoTimeout (timeout) ;
} // constructor(String, int)

public synchronized void setSoTimeout (int timeout)
throws SocketException {
if (timeout>heartbeatTimeout || timeout==0) {
super.setSoTimeout (heartbeatTimeout) ;
soTimeout = 0;
} else {
super.setSoTimeout (timeout);
soTimeout = timeout;
}y // if
} // setSoTimeout (int)

/**

* Returns setting for SO_TIMEOUT. 0 returns implies that the

* option is disabled.

*/
public synchronized int getSoTimeout ()

throws SocketException {
return soTimeout;
} // getSoTimeout ()

The getInputStream method returns an InputStream object that
can be used to read bytes from the socket’s connection. This InputStream
object is responsible for handling the private protocol that prefixes each
write of bytes to the connection with the number of data bytes written.
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The object that the get InputStream method returns is actually an
instance of a subclass of InputStream named HeartbeatInputStream. In
addition to handling the protocol, HeartbeatInputStream objects also
monitor the arrival of heartbeat messages.

public InputStream getInputStream() throws IOException {
if (myInputStream==null) {
synchronized (this) {
if (myInputStream==null) {
InputStream superIn;
superIn = super.getInputStream();
myInputStream
= new HeartbeatInputStream(superIn);
Y // if
} // synchronized
}y // if
return myInputStream;
} // getInputStream()

The HeartbeatInputStream class is private to the
HeartbeatClientSocket class because no other class has any reason to
be aware of its existence.

A HeartbeatInputStream object’s constructor starts a thread that
the object uses internally to ensure that the socket’s internal buffer does
not become clogged with heartbeat messages. This is explained more fully
later on.

private class HeartbeatInputStream extends FilterInputStream
implements Runnable {
HeartbeatInputStream(InputStream stream) {

super (stream) ;
Thread cleanupThread = new Thread(this);
cleanupThread.setdaemon (true) ;
cleanupThread.start();

} // constructor (InputStream)

The read method is where the Heartbeat InputStream class handles
the private protocol and heartbeat messages. The zero-argument form of
the read method simply delegates its work to the three-argument form
of the read method.

private byte[] byteBuffer = new byte[l];

public int read() throws IOException ({
try {
read (byteBuffer, 0, 1);
} catch (EOFException e) {
return -1;
} // try
return byteBuffer[0];
} // read()
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If a call to this object’s read method leaves some bytes of a server
write operation unread, then the bytesUnread variable contains the num-
ber of bytes from that operation waiting to be read.

int bytesUnread;
* Reads up to len bytes of data from this input stream

* into an array of bytes. This method blocks until some input is
* available.

* @param b the buffer into which the data is read.
* @param off the start offset of the data.
* @param len the maximum number of bytes read.
* @return the total number of bytes read into the
* buffer, or -1 if there is
* no more data because the end of
* the stream has been reached.
*/
public synchronized int read(byte b[],
int off,
int len)

throws IOException {
if (len==0) {
return 0;
Y // if
try {
while (bytesUnread<=0) {
bytesUnread = readlInt();
} // while
int bytesToRead = Math.min(bytesUnread, len);
int bytesRead = in.read(b, off, bytesToRead);
bytesUnread -= bytesRead;
return bytesRead;
} catch (InterruptedIOException e) {
if (soTimeout!=0) {

throw e; // Treat as a regular soTimeout
} else {
throw new HeartbeatException();
Y // if
} // try

} // read(byte[], int, int)

The read method uses the readInt method to read the byte counts
that the server inserts into the data stream.

private final int readInt() throws IOException {
InputStream in = this.in;
int ¢l = in.read();
int ¢2 = in.read();
int ¢3 = in.read();
int c4 = in.read();
if ((cl | ¢2 | e3 | c4) < 0)
throw new EOFException();
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return ((cl << 24) + (c2 << 16) + (c3 << 8) + (cd4 << 0));
} // readInt

Earlier we mentioned a thread that the HeartbeatInputStream
object’s constructor creates and promised to explain it in more detail.

Because the server side of this connection does not know when the
client is waiting to receive bytes, it sends heartbeat messages whether or
not the client is waiting. When the client does not have a read pending, the
underlying socket implementation will buffer the heartbeat messages. If
the client goes too long without reading the heartbeat messages, the
underlying buffer will fill up and the server will find itself waiting for a

write operation to complete.
The purpose of the thread and the run method that it calls is to read
heartbeat messages internally when there are no external read requests.

public void run() {
Thread myThread = Thread.currentThread();
while (!myThread.isInterrupted()) {
try {
myThread.sleep (heartbeatTimeout*20);
// loop while where may be heartbeat
// messages to read and we are not reading
// something else.
while (true) {
synchronized(this) {
if ( bytesUnread>0
|| available()<4) {
break;
Y // if
bytesUnread = readInt();
} // synchronized
} // while true
} catch (InterruptedException e) {
} catch (IOException e) {
} // txy
} // while !isInterrupted
Y // run()
} // class HeartbeatInputStream
} // class HeartbeatClientSocket

RELATED PATTERNS

Object Request Broker. The Heartbeat pattern is used with the
Object Request Broker pattern.

Connection Multiplexing. Whether or not the ORB being used
with the Heartbeat pattern implements the Connection
Multiplexing pattern can determine how you choose to imple-
ment the Heartbeat pattern.
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SYNOPSIS

You are designing a distributed system in which, over time, one object may
establish many connections with another object. To avoid the overhead of
setting up and shutting down many connections between the same two
objects, you arrange for one actual connection to carry the contents of
multiple virtual connections.

CONTEXT

Suppose that you are designing software that backs up the files on a com-
puter to a server over the Internet. The basic loop that it will execute while
backing up files will consist of the following steps:

1. Fill a buffer with bytes from a file.
2. Write the contents of the buffer to the server.

To speed backups, you will want to have at least two threads execut-
ing this loop so that it will be possible for one buffer to be getting filled
while the contents of another buffer are written to the server. Depending
on the speed of the Internet connection relative to the speed of opening
and reading files, you may achieve the best results with a higher number
of threads.

The simplest way to organize such a multithreaded backup is to use
one socket for each thread. Normally, there is one connection for each
socket. However, increasing the number of concurrently open connections
by a factor of two or higher may be a problem for the server. Each connec-
tion consumes memory and operating system resources. It would be ideal
to have multiple sockets that share a single connection.

In the process of writing backup files to the server, you want to com-
press the files to minimize transmission time and the storage requirement
on the server. To accomplish this you use the java.util.zip.GzIPOut-
putStream class. This is convenient, but you do not know how big the
compressed form of the file will be until after it has been written to the
server. Since you cannot tell the server how many bytes to expect before
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they are written, the client must be able to tell the server that it has read
the end of the file. The simplest way to tell the server that it has reached
the end of the file is to use a socket for each file. That way, you can simply
close the socket after the entire file has been written, and when the server
tries to read past that point, it sees the end of file.

The problem with using one socket per file is that normally there is a
connection for each socket. If there are thousands of files to be backed up,
then the time required to set up and shut down thousands of connections
would add a noticeable amount of time to the backup operation. Having a
way to create and close sockets without having to set up and shut down a
connection each time would avoid this problem. Having each socket reuse
the same connection accomplishes this.

FORCES

@ An object wants to send multiple concurrent data flows to another

object. The contents of the data flows are to be processed in like

ways.

An object wants to send multiple discrete data flows to another

object. The simplest way to send multiple discrete data flows between

two objects is to use a different connection for each data flow.

© Using multiple connections between the same two objects adds over-
head. It takes time to set up and shut down each connection. Each
connection takes up memory and uses operating system resources
that may be limited in quantity. As objects share more connections, it
becomes more important to minimize the resources required for each
connection.

® Implementations of TCP/IP and similar protocols provide a buffer
on the receiving end of a connection. The purpose of the buffer is so
that when data is written to a connection, the data can be held in the
buffer if there is no read operation waiting for the data. If the buffer
is full, then the write operation to the connection will not complete
until a read operation has made room for the data. The greater the
volume of data being sent over a connection, the greater the likeli-
hood that write operations will be forced to wait for read operations.

©

SOLUTION

Create subclasses of socket and ServerSocket that support multiple vir-
tual connections over a single actual connection. Figure 6.16 shows the
roles that classes play in this pattern.
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FIGURE 6.16 Connection multiplexing pattern.

Here are descriptions of the roles shown in Figure 6.16:

Socket. Instances of classes in this role are associated with actual
connections. The class usually used in this role is
java.net.Socket.

Multiplexer. This role is a central to the Connection Multiplexing
pattern. The pattern begins with the creation of a Multiplexer
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object on each end of an actual connection. On each end of an
actual connection, the Socket object responsible for that end of
the connection is passed the Multiplexer class’s constructor.
After that, all interaction with the socket objects and the under-
lying connection is through the Multiplexer objects.

Multiplexer objects manage virtual connections. The
Multiplexer object on each side of an actual connection nego-
tiates the creation of virtual connections with the other. To mini-
mize the effort required, this generally involves one
Multiplexer object sending the first piece of data associated
with a virtual connection to the other Multiplexer object. The
other Multiplexer object performs any needed internal book-
keeping, but generally does not need to send any additional mes-
sages because of the new virtual connection.

When bytes are written to a virtual connection, the
Multiplexer object sends a message across the actual connec-
tion that consists of the virtual connection ID, the number of
data bytes in the message, and the data bytes. The Multiplexer
object at the other end of the actual connection reads messages
using its own internal thread. It identifies the thread that is wait-
ing to process a message based on the type of message and/or the
virtual connection ID in the message. It takes appropriate action
to make the message visible to the thread and wakes it up.

A Multiplexer object initiates a new virtual connection by
creating a unique connection ID and simply sending a data mes-
sage with the new connection ID to the other Multiplexer
object. There is no assumption that a call to the remote Multi-
plexer object’s accept method is pending. If there is no call
waiting to accept a new connection, the connection is queued
up to be accepted the next time the method is called.

ConnectionID. A ConnectionID contains a unique sequence of

bytes that identifies a virtual connection to Multiplexer
objects. Multiplexer objects use ConnectionID objects to
associate each MultiplexerSocket object with a virtual con-
nection.

MultiplexerSocket. Instances of a class in this role are used in

place of socket objects. Each MultiplexerSocket object is
associated with one end of a virtual connection.
AMultiplexerSocket object for the server side of a con-
nection is created and returned by a call to a Multiplexer
object’s accept method. A Multiplexer object’s accept method
listens for clients wanting to create a virtual connection. When it
is able to accept a virtual connection, it returns a Multiplexer-
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Socket object that is associated with the server side of the vir-
tual connection.

A MultiplexerSocket object for the client side of a new
virtual connection is created and returned by a call to a
Multiplexer object’s createConnection method.

When a Multiplexer object receives a data message for a
virtual connection, it passes the data in the message to the
MultiplexerSocket object associated with the virtual connec-
tion. The MultiplexerSocket object puts the data in a
ChunkBuf fer object, where it remains until the ChunkBuffer
object is passed to a ChunkedInputStream object.

ChunkedOutputStream. A class in this role is responsible for writ-
ing bytes to a virtual connection. The MultiplexerSocket object
associated with the virtual connection creates a ChunkedOutput-
Stream object. The MultiplexerSocket object’s getOutput-
Stream method returns the ChunkedoutputStream object.

The purpose of a ChunkedOutputStream object is to write
bytes to a virtual connection. It passes the bytes passed to its
write method to the associated Multiplexer object’s write
method. It handles the write of a large number of bytes by mak-
ing writes to the Multiplexer object that are no larger than
some predetermined size, typically a few thousand bytes. This
has the effect of limiting the size of the messages that a Multi-
plexer object sends across an actual connection. The benefits
of this are discussed under the “Consequences” heading.

ChunkBuffer. Instances of classes in this role serve as buffers for
bytes received by a Multiplexer object from a virtual connec-
tion.

When a Multiplexer object receives bytes through a vir-
tual connection, it passes the bytes to the MultiplexerSocket
object associated with the virtual connection. The Multi-
plexerSocket object puts the bytes in a ChunkBuffer object.
If no chunkBuffer object is associated with the Multiplexer-
Socket object, it uses a ChunkBuf ferPool object to allocate
one. It allocates an additional ChunkBuf fer object from the
ChunkBuf ferPool object if there is not enough room in the
ChunkBuf fer object it was using.

ChunkedInputStream. Instances of classes in this role are respon-
sible for reading bytes from ChunkBuf fer objects that they get
from the MultiplexerSocket object they are associated with.

ChunkBufferPool. Instances of classes in this role manage the cre-
ation and reuse of ChunkBuffer objects. When a Chunked-
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—>
1A: create(s1)
2A: ms1:=createSocket( )

InputStream object exhausts the bytes in a ChunkBuf fer object,
it passes the ChunkBuf fer object to a ChunkBufferPool object’s
releaseChunkBuffer method. The releaseChunkBuffer
method adds the ChunkBuffer object to a pool of ChunkBuf fer
objects waiting to be reused. When a MultiplexerSocket object
calls a chunkBufferPool object’s getChunkBuffer method to
allocate a ChunkBuf fer object, it removes a ChunkBuf fer object
from the pool of ChunkBuf fer objects and returns it. If there are
no ChunkBuf fer objects in the pool, the getChunkBuf fer method
creates and returns a ChunkBuf fer object, unless the total num-
ber of chunkBuffer objects it has created is equal to the configu-
ration parameter.

The interactions between these classes are shown in greater detail in
Figures 6.17 and 6.18.

Figure 6.17 shows these interactions related to writing data to a vir-
tual connection:

1A.

2A.

Create a Multiplexer object by passing to its constructor the
Socket object that is associated with the actual connection that
will transport the contents of virtual connections.

Create a MultiplexerSocket object by calling the
Multiplexer object’s createSocket method. The creation of
this object has the side effect of creating a new virtual connec-
tion associated with the MultiplexerSocket object. Because
MultiplexerSocket is a subclass of Socket, the object can be
passed to any method that expects a Socket.

—>
4A.1.1: write( :byte[ ])

os:OutputStream

s1:Socket

m1:Multiplexer

D

T 4A.1: write(connectionID, :byte[ ]) 3A: cos:=getOutputStream( )

—>
4A: write( :byte[ )

ms1:MultiplexerSocket

cos:ChunkedOutputStream

FIGURE 6.17 Connection multiplexing collaboration (writing).
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is:InputStream s2:Socket

4C.2: read(:byte[ ]) —

T 4C.1: read(:byte[ ])
4C.3: read(:byte[ ) 4C*: readMessage( )

4_
1B: create(s2)
2B: ms2:=accept( )

m2:Multiplexer

—>
3B: cis:=getInputStream( )

<_
4C.4: queueBuffer(cb)

ms2:MultiplexerSocket

4C.4.1: setContent(:byte[ ])
—

—>
4B: read(:bytef ]) 4B.1: cb:=read( ) T

[
cb:ChunkBuffer J

—>
4B.2: getContent( :byte[ ])

cis:ChunkedInputStream

FIGURE 6.18 Connection multiplexing collaboration (reading).

3A. Call the MultiplexerSocket object’s getOutputStream
method to get the ChunkedoOutputStream that writes to its asso-
ciated virtual connection. Like any other socket, in order to
write to the connection it encapsulates, you must first call its
getOutputStream method to get the OutputStream that writes
to the connection.

4A. Call the chunkedOutputStream object’s write method to write
bytes to the virtual connection.

4A.1. The ChunkedOutputStream object calls the Multiplexer
object’s write method, passing it the connection ID that identi-
fies the virtual connection it is associated with and the bytes
that were passed to its write method.

If the number of bytes passed to the Chunkedoutput-

Stream object in 4A is greater than a predetermined value, then
this interaction occurs multiple times. Each time, the Chunked-
OutputStream object passes to the Multiplexer object’s write
method a number of bytes no greater than the predetermined
value.
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4A.1.1. The Multiplexer object writes a message to the actual con-

nection that consists of the virtual connection ID, the number of
data bytes being written, and the data bytes.

Figure 6.18 shows the companion interactions for the interactions
shown in Figure 6.17. In particular, it shows the interactions related to
receiving bytes sent through a virtual connection.

Here is a detailed description of the interactions shown in Figure
6.18. The first three interactions are similar to the sending side.

1B.

2B.

3B.

4C.

Create a Multiplexer object by passing to its constructor the
Socket associated with the actual connection that will transport
the contents of virtual connections.

Create a MultiplexerSocket object by calling the Multi-
plexer object’s accept method. This method accepts a waiting
virtual connection or waits until there is a virtual connection to
accept. It returns a MultiplexerSocket object that encapsu-
lates the accepted virtual connection.

Call the MultiplexerSocket object’s get InputStream method
to get the ChunkedInputStream that reads from its associated
virtual connection.

Once the creation interactions are done, the Multiplexer
object starts a thread that repeatedly calls the Multiplexer
object’s readMessage method. The readMessage method repeat-
edly reads a message from the actual connection and dispatches
the data it contains to the appropriate virtual connection.

4C.1. The Multiplexer object reads the connection ID of the vir-

tual connection of the incoming message.

4C.2. The Multiplexer object reads the number of data bytes in

4C.3.

the incoming message.
The Multiplexer object reads the data bytes in the incoming
message into an internal buffer.

4C.4. The Multiplexer object passes its internal buffer to the

queueBuf fer method of the MultiplexerSocket object associ-
ated with the virtual connection. This method copies the data
bytes to a ChunkBuffer object. It places the ChunkBuf fer object
in a queue until it is taken out of it by interaction 4B.1.

The MultiplexerSocket object gets its ChunkBuffer
objects from a ChunkbufferPool object. This interaction is not
shown in the diagram.

If any threads are waiting to read data from the virtual
connection, the thread that reads the message and puts its con-
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tents in the ChunkBuf fer object notifies the waiting threads that
they can stop waiting.

4C.4.1. The Multiplexer object calls the setContent method of
allocated chunkBuf fer objects so that they contain the bytes
from the incoming message. After this, the bytes remain in the
ChunkBuf fer objects until they are read by the ChunkedInput-
Stream object.

4B. While the Mmultiplexer object is reading data bytes and putting
them in ChunkBuf fer objects, other objects not shown in the dia-
gram are calling the ChunkedInputStream object’s read method.

4B.1. The ChunkedInputStream object gets the next queued
ChunkBuf fer object from the MultiplexerSocket object.

4B.2. The ChunkedInputStream object’s read method gets the
bytes it returns from the ChunkBuf fer object. When the
ChunkedInputStream object empties a ChunkBuf fer object of
data bytes, it returns the ChunkBuf fer object to the Chunk-
Buf ferPool object to be recycled.

If the total number of allocated ChunkBuffer objects
reaches a maximum value, the Multiplexer object stops read-
ing messages from the actual connection until some Chunk-
Buf fer objects are released. If this situation occurs, it stalls all
of the virtual connections.

If too many ChunkBuf fer objects are allocated to a single
virtual connection, the Multiplexer object treats it as a poten-
tial problem. It sends a message to the Multiplexer object at
the other end of the actual connection to tell it to stop sending
data to that virtual connection. When the number of Chunk-
Buf fer objects allocated to a virtual connection becomes low
enough, the Multiplexer object considers the problem to be
averted. It sends another message to the Multiplexer object on
the other end of the actual connection telling it to resume send-
ing data to the virtual connection.

CONSEQUENCES

© Multiple virtual connections can share a single actual connection
with minimal impact to the code that uses the connections.

@ If multiple virtual connections share a single actual connection, most
of the overhead associated with creating and destroying connections is
avoided while preserving the reliability of the underlying connection-
oriented protocol.
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By having the Multiplexer object on each side of an actual
connect take responsibility for virtual connection IDs, the two sides
are able to operate more independently and are less sensitive to de-
fects in each other’s operation. It allows for the possibility that two
different versions of the Multiplexer class, which allocate connec-
tion IDs differently, are used on each side of an actual connection.
The implementation section explains why this design decision may be
advantageous when multiple actual connections are involved.

While a large number of data bytes are being written to a virtual con-
nection, all other virtual connections may be prevented from sending
data until the large write is finished. For some applications, this un-
even access to the actual connection underlying the virtual connec-
tions may be a problem.

In some cases you can avoid this problem by ensuring that
classes that use the virtual connection break large writes into reason-
ably sized chunks. Breaking writes of a large number of bytes into
reasonably sized chunks allows virtual connections to share the
actual connection more fairly.

If it is not practical for the objects using a virtual connection
to limit the size of their writes, you can solve the problem by using
the Scheduler pattern (described in Volume 1). The Scheduler pat-
tern describes a way to explicitly enforce a policy that determines
when a thread may have control of a resource, such as an actual
connection. The Scheduler pattern can be implemented in a way
that is transparent to classes that use the Multiplexer class. The
drawback of using the Scheduler pattern is the complexity it adds
to a design.
® The main weakness of this pattern is that it is possible for the mis-

handling of one virtual connection to cause all virtual connections
that share the same actual connection to stall. If enough bytes are
received through a virtual connection and buffered without any read
operations on that end of the virtual connection, the Multiplexer
object will eventually be unable to allocate more ChunkBuffer
objects. At that point, the Multiplexer object cannot read more
data from the actual connection, because it has nowhere to put it.
This condition persists until enough bytes have been read from the
offending virtual connection to release some ChunkBuf fer objects.
A Multiplexer object sends a message asking the other
Multiplexer object to block writes to a virtual connection when
the number of ChunkBuffer objects allocated to the virtual connec-
tion exceeds a predetermined threshold. This does not guarantee
that the Multiplexer object won't run out of ChunkBuf fer objects.
When the Multiplexer object sends the message, it is the begin-

ey
SB]



Distributed Computing Patterns ® 239

ning of a race condition. When it sends the message, more data for
the virtual connection may be on the way. By the time that the mes-
sage gets to the other Multiplexer object, even more data may be
on the way.

It is possible to use a more elaborate protocol to effectively limit
the number of chunkBuffer objects that a virtual connection will
need. However, the overhead of using such a protocol is prohibitively
expensive. It makes using actual connections more efficient than
using virtual connections.

IMPLEMENTATION

For the sake of simplicity, this presentation of the Connection Multiplexing
pattern assumes that there are just two remote objects passing multiple
data streams between each other. Some situations involve objects that pass
multiple data streams with multiple other objects. Though it is possible to
use one Multiplexer object for each actual connection, it is more efficient
to modify the pattern to use one Multiplexer object for multiple actual
connections.

The operation of a Multiplexer object is driven by these parameters:

® The maximum number of bytes a ChunkBuf fer object can contain.

® The maximum number of data bytes a Multiplexer object can send
in a single message. This is generally less than or equal to the number
of bytes that a ChunkBuffer object can contain.

® The maximum number of ChunkBuffer objects a Multiplexer
object can allocate to virtual connections. If a Multiplexer object
has this many ChunkBuf fer objects allocated at one time and it needs
another, it will stop reading messages from the actual connection
until a ChunkedInputStream object’s read operations release a
ChunkBuf fer object.

When the number of chunkBuffer objects allocated to a single
virtual connection reaches a predetermined number, the
Multiplexer object requests that the Multiplexer object on the
other end of the actual connection blocks write operations to that vir-
tual connection. I will refer to this parameter as the high-water mark.

When the number of ChunkBuffer objects allocated to a single
virtual connection drops below the high-water mark, a Multiplexer
object will request that the Multiplexer object on the other end of
the virtual connection stop blocking writes. It is not a good idea for
the Multiplexer object to immediately request this.
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Suppose that a Multiplexer object requested that writes to a
virtual connection become unblocked as soon as the number of
ChunkBuf fer objects allocated to a virtual connection drops below
the high-water mark. There is a good chance that it would immedi-
ately receive the contents of a previously blocked write to the virtual
connection. There is also a good chance that the data it receives from
that write would cause the Multiplexer object to allocate another
ChunkBuf fer object, which would cause it to request that writes to
the virtual connection become blocked again. While a virtual connec-
tion is operating in this mode, every data message sent across the vir-
tual connection results in sending three messages across the actual
connection. Waiting for the number of ChunkBuf fer objects allocated
to a virtual connection to drop further below the high-water mark
may reduce the number of messages that are sent to block and
unblock writes to a virtual connection.

When the number of ChunkBuffer objects allocated to a virtual
connection reaches the high-water mark, it indicates that at least one
of two things has been happening: Writes to the virtual connection
have been very frequent or reads of the virtual connection have been
infrequent. If writes to the virtual connection have been very fre-
quent, then it may have been using more than its fair share of the
actual connection’s capacity. Waiting until the number of Chunk-

Buf fer objects allocated to the virtual connection to reach a lower
value gives other virtual connections greater access to the actual con-
nection for a longer amount of time. If reads from the virtual connec-
tion have been infrequent, then waiting longer to unblock writes may
postpone or prevent the total number of ChunkBuffer objects that
the Multiplexer object has allocated reaching the maximum.

The point of this bullet is that the Multiplexer object needs a
parameter other than the high-water mark to tell it when to request
the unblocking of writes to a virtual connection. I will refer to this
parameter as the low-water mark. When the number of ChunkBuffer
objects allocated to a virtual connection drops to the low-water mark,
the Multiplexer object requests the unblocking of writes to the vir-
tual connection.

Determining a good value for these parameters usually requires some
experimentation. Though it is not generally possible to recommend spe-
cific values, here are some guidelines:

® The number of bytes that a ChunkBuf fer object should be able to
hold should be large enough to hold most of the data bytes in most
data messages.
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® The maximum number of bytes that may be sent in a single message
should be less than or equal to the number of bytes that a
ChunkBuf fer object can hold.

You should consider two factors for a first estimate of the maxi-
mum number of ChunkBuf fer objects that a Multiplexer object
may allocate. The number of virtual connections that can be effec-
tively supported at once is limited by the maximum number of
ChunkBuffer objects that a Multiplexer object may allocate.
Unless you are sure there will never be data to read from all connec-
tions at once, the number of virtual connections to be supported is
an absolute minimum for the number of ChunkBuf fer objects a
Multiplexer object may allocate. However, that is too low for many
applications. One ChunkBuffer object per connection makes the
high- and low-water-mark parameters meaningless. Allowing Multi-
plexer objects to allocate twice as many ChunkBuf fer objects as the
number of virtual connections to support is a practical minimum.

The other factor to consider in arriving at a first estimate for the
number of ChunkBuf fer objects a Multiplexer object may allocate is
how far writes to a virtual connection may get ahead of reads.

® Your first estimate for the high-water mark should be based on how
far writes will get ahead of reads.

® The low-water-mark parameter should be at least two less than the
high-water-mark parameter to avoid frequent messages to block and
unblock write. One is often a good first estimate for this parameter.

KNOWN USES

The Voyager ORB uses the Connection Multiplexing pattern.

A proprietary program that backs up files over the Internet uses the
Connection Multiplexing pattern to concurrently back up multiple files to
a server over a single actual connection.

A number of proprietary CORBA programs use the Connection
Multiplexing program.

CODE EXAMPLE

The code example for this pattern is an implementation of the Con-
nection Multiplexing pattern for use with RMI. The RMI specification
says that the first thing that happens to invoke a remote method when a
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stub’s method is called is that it creates a new connection. This can add
significant overhead to applications that make frequent remote method
calls. It can be a bottleneck that limits the number of clients a server can
handle concurrently. Virtualizing the connections eliminates most of the
overhead.

First we will look at the Multiplexer class.

public class Multiplexer {
private Socket actualSocket; // The actual connection.
private DataOutputStream actualOut; // actual output stream
private DataInputStream actualIn; // actual input stream
private Hashtable socketTable; // key is connection id
private ChunkBufferPool bufferPool;

ChunkBuf ferPool objects keep a collection of ChunkBuf fer objects
that are awaiting reuse. A Multiplexer object asks its ChunkBufferPool
object for a ChunkBuf fer object when it needs one. If the ChunkBufferpool
object has any ChunkBuf fer objects in its collection, it takes one out of the
collection and gives it to the Multiplexer object. If the ChunkBufferPool
object does not have any ChunkBuf fer objects in its collection, then it cre-
ates a new one. When a ChunkBuffer object is no longer needed, it is
returned to the ChunkBuf ferPool object. This is an application of the
Object Pool pattern described in Volume 1.

private Queue connectionQueue = new Queue();

When a Multiplexer object receives data associated with a new vir-
tual connection, it creates a Socket object and places it in a Queue object.
It stays in the Queue until a call to the Multiplexer object’s accept
method takes it out of the Queue object and passes it to its caller.

private ConnectionIDFactory idFactory;

This Multiplexer implementation delegates the creation of
ConnectionID objects to a class called ConnectionIDFactory.

private int connectionIDLength;

Multiplexer objects transmit ConnectionID objects as a sequence
of bytes. The Multiplexer object on one end of an actual connection may
create ConnectionID objects that are represented as a longer sequence of
bytes than the other. This may be due to environmental differences or
because the programs on each end of the actual connection are using dif-
ferent versions of the Multiplexer class.

Multiplexer objects must exchange connection IDs without regard
to which Multiplexer object created the connection ID. To accomplish
this, when two Multiplexer objects begin working with each other, they
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exchange the lengths of the connection IDs that they produce. They set the
value of their connectionIDLength instance variable to the larger of the
two lengths. They then force all of the connection IDs that they create to
be that length. If the natural length of a connection ID is less than this, it is
padded with zeros.

// This array of bytes is used to read bytes directly from
// the actual connection.
private byte[] inputBuffer;

The next three variables contain some of the parameters discussed
under the “Implementation” heading.

private int maxMessageLength; // Maximum number of data

// bytes to put in a message.
private int highWaterMark;
private int lowWaterMark;

Multiplexer objects communicate with each other by sending mes-
sages over the actual connection. Each message begins with an int value
that identifies the type of the message. If the value is a positive number,
the message contains data for a virtual connection and the value is the
number of data bytes in the message. The following negative values are
used to indicate other types of messages.

private static final int CLOSE_CONNECTION = -1;
private static final int BLOCK WRITES = -2;
private static final int UNBLOCK WRITES = -3;

private static final int MESSAGE_HEADER_LENGTH = 6;

The constructor for the Multiplexer class takes two arguments: The
first argument is the socket for the actual connection. The second argu-
ment is an object that encapsulates the parameters discussed in the
“Implementation” section that control the operation of the Multiplexer
object.

public Multiplexer (Socket actualSocket,
MultiplexerParameters parameters)
throws IOException {

this.actualSocket = actualSocket;
maxMessageLength = parameters.maxMessageLength;
highWaterMark = parameters.highWaterMark;
lowWaterMark = parameters.lowWaterMark;
actualSocket.setTcpNoDelay (false) ;

// Create a DataOutputStream to write to the actual
// connection
int myBufferSize

= MESSAGE_HEADER_ LENGTH+maxMessageLength;
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OutputStream out = actualSocket.getOutputStream();
BufferedOutputStream bout;

bout = new BufferedOutputStream(out, myBufferSize);
actualOut = new DataOutputStream(bout);

// Send the buffer size we are using to the Multiplexer
// object on the other side of the connection.
actualOut.writeInt (myBufferSize);

actualout.flush();

// Create a DataInputStream to read from the actual
// connection. Use the buffer size sent by the other
// Multiplexer object.
InputStream in = actualSocket.getInputStream();
int otherBufferSize

= new DataInputStream(in).readInt();
BufferedInputStream bin;
bin = new BufferedInputStream(in);
actualIn = new DataInputStream(bin);

// Create a buffer for reading from the actual
// connection.
inputBuffer = new byte[otherBufferSize];

// Negotiate the length of a connection ID with the

// other Multiplexer object

idFactory = new ConnectionIDFactory(actualSocket);

actualOut.writeShort (idFactory.getByteSize());

actualout.flush();

connectionIDLength = Math.max(idFactory.getByteSize(),
actualIn.readShort());

idFactory.setByteSize (connectionIDLength) ;

// Create a ChunkBufferPool object to
// manage ChunkBuffer objects.
bufferPool
= new ChunkBufferPool (parameters.maxBuffers,
maxMessageLength) ;
} // constructor (Socket)

/**
* Return the address of the remote host that the actual
* connection connects to.
*/
public InetAddress getRemoteAddress() {
return actualSocket.getInetAddress();
} // getRemoteAddress
/**
* Return the local address that the actual connection is
* connected to.
*/
public InetAddress getLocalAddress() {
return actualSocket.getLocalAddress();
} // getLocalAddress ()
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/**
* Create a virtual connection and return a socket object
* that encapsulates it.
*/
public Socket createConnection() throws IOException {
ConnectionID id = idFactory.createConnectionID();
MultiplexerSocket vsocket;
vsocket = new MultiplexerSocket(id, actualSocket,
this, bufferPool,
highwWaterMark,
lowWaterMark) ;
socketTable.put (id, vsocket);
return vsocket;
} // createConnection/()

/**
* Write a byte to the given virtual connection.
* @param connectionID The ConnectionID of the virtual
* connection to write to.
* @param b The byte to write to the virtual connection.
*/
void write(ConnectionID id, int b) throws IOException {
synchronized (actualOut) {
writeMessageHeader(1);
id.write(actualOut);
actualOut.write(b);
} // synchronized
} // write(ConnectionID, int)

/**
* Send a message to the Multiplexer sobject on
* the other end of the given virtual connection telling it
* to stop sending any more data messages.
*/
void startMoratorium(ConnectionID id) throws IOException {
synchronized (actualOut) {
writeMessageHeader (BLOCK _WRITES);
id.write(actualOut);
} // synchronized
} // startMoratorium(ConnectionID)

/**
* Send a message to the Multiplexer object on
* the other end of the given virtual connection telling it
* to resume sending data messages.
*/
void endMoratorium(ConnectionID id) throws IOException ({
synchronized (actualOut) {
writeMessageHeader (UNBLOCK_WRITES) ;
id.write(actualOut);
} // synchronized
} // endMoratorium(ConnectionID)
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/**
* Send a message to the Multiplexer object on
* the other end of the given virtual connection telling it
* that the virtual connection is closed.
*/
void endConnection(ConnectionID id) throws IOException ({
// If this is being called in response to a
// CLOSE_CONNECTION message, the ConnectionID will
// already have been removed from socketTable
if (socketTable.get(id)!=null) {
synchronized (actualOut) ({
socketTable.remove(id);
writeMessageHeader (CLOSE_CONNECTION) ;
id.write(actualOut);
} // synchronized
}y // if
} // endConnection (ConnectionID)

/**
* Close this object and free its resources.
*/
void close() {
// close all of the sockets that depend on this object.
Enumeration ids = socketTable.keys();
while (ids.hasMoreElements()) {
try {
endConnection( (ConnectionID)ids.nextElement());
} catch (Exception e) {
Y // try
} // while

// Close the resources that this object uses.
try {
actualOut.close();
actualIn.close();
actualSocket.close();
} catch (Exception e) {
Y // try
} // close

* Write len bytes from the specified array,
* starting at index ndx to this output stream.
* @param connectionID The connectionID to write to.

* @param b the data.
* @param ndx the start offset in the data.
* @param len the number of bytes to write.
*/
void write(ConnectionID id,
byte b[]l
int ndx,

int len) throws IOException {
synchronized (actualOut) {



Distributed Computing Patterns m 247

writeMessageHeader (len);
id.write(actualOut);
actualOut.write(b, ndx, len):;
} // synchronized
} // write(ConnectionID, byte[], int, int)

/*k*
* Flush output buffers associated with the given
* virtual connection.
*/
void flush(ConnectionID id) throws IOException {
// For now, there are no connectionID specific buffers.
actualOut.£flush();
} // flush(int)
private void writeMessageHeader (int messageHeader)
throws IOException {
actualOut.writeInt (messageHeader);
} // writeMessageHeader (int)

private int readMessageHeader () throws IOException {
return actualIn.readInt();
} // readMessageHeader ()

* Create a socket for a virtual connection created at the
* other end of the actual connection. Put it in a queue

* where it will stay until it is accepted.

* @param id The ConnectionID for the new virtual

* connection.
* @return The queued socket
*/

private

MultiplexerSocket queueNewConnection(ConnectionID id)
throws SocketException {
MultiplexerSocket ms;
ms = new MultiplexerSocket(id, actualSocket,
this, bufferPool,
highWaterMark,
lowWaterMark) ;
socketTable.put(id, ms);
connectionQueue.put (ms);
return ms;
} // queueNewConnection (ConnectionID)

* Accept a virtual connection. If there are no
* connections waiting to be accepted, then this method
* does not return until there is a connection to

* accept.

* @return The socket that encapsulates the accepted
* virtual connection.

*/

public Socket accept() throws InterruptedException {
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return (Socket)connectionQueue.get();
} // accept()

* Accept a virtual connection. If there are no

* connections waiting to be accepted then this method does
* not return until there is a connection to be accepted.

* @param t The number of milliseconds this method should

* wait for virtual connection before throwing an
* InterruptedException

* @return The socket that encapsulates the accepted

* virtual connection.

* @exception InterruptedException If the given number of
* milliseconds elapse without a connection

* being accepted or the current thread is

* interrupted.

*/

public Socket accept(int t) throws InterruptedException ({
return (Socket)connectionQueue.get(t);
} // accept()

An instance of the private class, MessageDispatcher, is responsible
for reading messages from an actual connection and dispatching them to
the thread that will process them.

private class MessageDispatcher implements Runnable {
private Thread dispatcherThread;
private static final String THREAD_NAME
= "MultiplexerDispatcher";

MessageDispatcher() {
dispatcherThread = new Thread(this, THREAD NAME);
dispatcherThread.start();

} // constructor()

/~k~k
* Top-level message dispatching logic.
*/
public void run() {
Thread myThread = Thread.currentThread();
try {
while (!myThread.isInterrupted()) {
int messageHeader = readMessageHeader();
if (messageHeader>0) {
readDataMessage (messageHeader) ;
} else {
switch (messageHeader) {
case CLOSE_CONNECTION:
readCloseConnection();
break;
case BLOCK_WRITES:
readBlock() ;
break;
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case UNBLOCK_WRITES:
readUnblock() ;
break;
} // switch
Y // if
} // while
} catch (IOException e) {
// This Multiplexer object can no longer
// function, so close it.
close();
} // try
} // run()

/**
* Read the body of a data message, put the data in a
* ChunkBuffer object and associate the ChunkBuffer
* object with the virtual connection.
* @param length The number of data bytes that the
* message header says the message
* contains.
*/
private void readDataMessage(int length)
throws IOException {
ConnectionID id;
id = ConnectionID.read(actualln,
connectionIDLength) ;
MultiplexerSocket vsocket;
vsocket = (MultiplexerSocket)socketTable.get (id);
if (vsocket==null) {
vsocket = queueNewConnection(id);
Y // if
int messagelLength = actualIn.readInt();

// The message length should not exceed the
// promised length, but allow for the possibility
// that it may be longer.
while (messageLength>inputBuffer.length) {
actualIn.readFully(inputBuffer, O,
inputBuffer.length);
vsocket .queueBuffer (inputBuffer.length,
inputBuffer);
messagelLength -= inputBuffer.length;
} // while
actualIn.readFully(inputBuffer, 0, messageLength);
vsocket.queueBuffer (messageLength, inputBuffer);
} // readMessageHeader ()

/**
* Read and process a CLOSE_CONNECTION message.
*/
private void readCloseConnection() throws IOException {
ConnectionID id;
id = ConnectionID.read(actualln,
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connectionIDLength) ;
MultiplexerSocket vsocket;
vsocket =(MultiplexerSocket)socketTable.remove(id);
if (wvsocket!=null) {
vsocket.close()
Yy // if
} // readCloseConnection()

/**
* Read and process a BLOCK_WRITES message.
*/
private void readBlock() throws IOException {
ConnectionID id;
id = ConnectionID.read(actualln,
connectionIDLength) ;
MultiplexerSocket vsocket;
vsocket =(MultiplexerSocket)socketTable.get(id);
if (vsocket!=null) {
vsocket .blockWrites();
}y // if
} // readBlock()

/**
* Read and process a UNBLOCK_WRITES message.
*/
private void readUnblock() throws IOException {
ConnectionID id;
id = ConnectionID.read(actualln,
connectionIDLength) ;
MultiplexerSocket vsocket;
vsocket =(MultiplexerSocket)socketTable.get(id);
if (vsocket!=null) {
vsocket .unblockWrites () ;
Y // if
} // readUnblock()
} // class MessageDispatcher

} // class Multiplexer

An instance of the ConnectionIDFactory class is responsible for
creating instances of the ConnectioniD class. The information used to cre-
ate a ConnectionID object depends on the actual connection that the
ConnectionID is used with. A ConnectionIDFactory object encapsulates
that information.

class ConnectionIDFactory {
// Array of information common to all ConnectionID objects
// associated with the same actual connection
private byte[] commonInfo;
private static final int PORT_NUMBER_LENGTH = 2;
static final int SERIAL_NUMBER_LENGTH = 4;

private int counter = 0;
private int byteSize = -1;
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* constructor.
* @param socket The socket that encapsulates the actual

* connection this object will produce
* ConnectionID objects for.
*/

ConnectionIDFactory(Socket socket) {
InetAddress inetAddress = socket.getLocalAddress();
byte[] address = inetAddress.getAddress();

// We include port number to allow for the possibility
// of one Multiplexer object working with multiple

// actual connections from the same host.

int port = socket.getLocalPort();

// Assume only 2 significant bytes in a port number and
// four bytes four bytes for a serial number
commonInfo

= new byte[address.length + PORT NUMBER_LENGTH] ;

System.arraycopy(address, 0, commonInfo, O,
address.length);
int portOffset = address.length;
commonInfo[portOffset] = (byte)port;
commonInfo[portOffset+l] = (byte) (port>>8);
} // constructor (Socket)

/**
* Return the number of bytes that will be used to read or
* write a ConnectionID created by this object.

*/
int getByteSize() {
if (byteSize == -1) {
return commonInfo.length+SERIAL_NUMBER_LENGTH;
}y // if

return byteSize;
} // getByteSize()

/**
* Set the number of bytes that will be used to read or
* write a ConnectionID created by this object.
*/
void setByteSize(int newValue) {
byteSize = newValue;
} // setByteSize(int)

/**
* Create a new ConnectionID object.
*/
ConnectionID createConnectionID() {
synchronized (this) {
counter++;
} // synchronized
return new ConnectionID(commonInfo, counter);
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} // createConnectionID()
} // class ConnectionIDFactory

ConnectionID objects identify virtual connections with information
passed to their constructor by the ConnectionIDFactory object that cre-
ates them. The identifying information is unique for at least the lifetime of
the actual connection.

class ConnectionID {
private byte[] id;

/**

* This constructor is intended to be called by a

* ConnectionIDFactory object that creates

* unique identifying information

* @param myId An array of bytes with content that uniquely

* identifies the local end of the actual

* connection.

* @param serialNum A value that uniquely identifies a

* virtual connection created on this end
* of the actual connection.

*/

ConnectionID(byte[] myId, int serialNum) {
int idLength = myId.length
+ ConnectionIDFactory.SERIAL NUMBER_LENGTH;
id = new byte[idLength];
int serialNumberOffset = myId.length;
System.arraycopy (myId, 0, id, 0, serialNumberOffset);
switch (ConnectionIDFactory.SERIAL NUMBER_LENGTH ) {

case 4:
id[serialNumberOffset+3] = (byte) (serialNum>>24);
case 3:
id[serialNumberOffset+2] = (byte) (serialNum>>16);
case 2:
id[serialNumberOffset+1l] = (byte) (serialNum>>8);
case 1:
id[serialNumberOffset] = (byte)serialNum;
} // switch
} // constructor (byte[], int)

/**

* The constructor is called internally by the

* readConnectionID method to create ConnectionID objects

* from data in an input stream.

* @param myId An array of bytes with content that uniquely

* identifies the local end of the actual

* connection. This array is used directly by
* the new object and is not copied.

*/

private ConnectionID(byte[] myId) {
this.id = myId;
} // constructor (byte[])
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* Read a ConnectionID from the given InputStream.
* @param in The InputStream to read from.
* @param byteSize The number of bytes of id information to

* read. This is needed because each end of
* an actual connection may use a different
* number of bytes.

*/

static ConnectionID read(InputStream in,
int size) throws IOException {
byte[] id = new bytelsize];

if (in.read(id, 0, size) != size) {
throw new IOException();
Yy // if

return new ConnectionID(id);
} // readConnectionID(InputStream)

/**
* Write the bytes of identifying information in this
* ConnectionID to the given OutputStream.
*/
void write(OutputStream out) throws IOException {
out.write(id);
} // writeConnectionId (OutputStream)

The connectionID class overrides the equals and hashCode meth-
ods it inherits from the object class so that the identifying information in
ConnectionID objects can be used as the key in a Hashtable.

/**
* Return true if this method’s argument is a ConnectionID
* that contains the same byte values as this ConnectionID
* object.
*/
public boolean equals(Object obj) {
if (obj instanceof ConnectionID) {
ConnectionID other = (ConnectionID)obj;
if (id.length == other.id.length) {
for (int i=0; i<id.length; i++) {
if (id[i]!=other.id[i]) {
return false;
Y // if
} // for
return true;
} // if length
}y // if
return false;
} // equals(Object)

/**
* Return a hashcode based on the contents of this object.
*/

public int hashCode() {
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long h = 1234;
for (int i = id.length; --i >= 0; )
h 4= id[i] * (i + 1);

return (int)((h >> 32) 4 h);
} // hashCode()

} // class ConnectionID

ChunkBuf fer objects are used to buffer input from a virtual connec-
tion until it is read by a ChunkedInputStream object.

class ChunkBuffer {
private byte[] buffer; // The actual buffer
private int firstFree; // Index of next byte to put
// content in.
private int firstContent; // Index of first byte content.

/**
* constructor
* @param capacity The number of bytes this object should
* be able to hold
*/
ChunkBuffer (int capacity) {
buffer = new bytel[capacity];
} // constructor(int)

/**
* Return the capacity of this object.
*/
int getCapicity() { return buffer.length; }

/**
* Set the contents of this buffer.
* @param bytes Array of bytes to store in this object.
* @param offset The number of bytes before the content.
* @param length The number of content bytes.
* @return The number of bytes copied into this object.
*/
synchronized int setContent (byte[] bytes, int offset, int length) {
int freeByteCount = buffer.length - firstFree;
int copyCount = Math.min(freeByteCount, length);
System.arraycopy(bytes, offset,
buffer, firstFree,
copyCount) ;
firstFree += copyCount;
return copyCount;
} // setContent (byte[], int, int)

/**

* Retrieve some bytes of content from this object.
* @param bytes An array to copy the content into.
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* @param offset The first position to copy content into.
* @param length The number of bytes of content requested.
* @return The actual number of bytes of content retrieved.
*/
synchronized int getContent (byte[] bytes, int offset, int length) {
int availableBytes = firstFree - firstContent;
int copyCount = Math.min(availableBytes, length);
System.arraycopy (buffer, firstContent,
bytes, offset,
copyCount) ;
firstContent += copyCount;
return copyCount;
} // getContent (byte[], int, int)

/**
* Return the number of data bytes available in this
* object.
*/
int available() {
return firstFree - firstContent;
} // available()

* Force this ChunkBuffer object to be empty. This method
* 1s intended to be called for ChunkBuffer objects that were
* associated with a virtual connection that was closed.

* Since this method is intended to be called when no
* threads will be trying to get or set its content, the
* method is not synchronized.
*/
void makeEmpty() {
firstContent = 0;
firstFree = 0;
} // makeEmpty ()
} // class ChunkBuffer

The MultiplexerSocket class is a subclass of Socket. It provides
access to the virtual connection it encapsulates that is transparent to
objects expecting to work with a Socket object. MultiplexerSocket
objects also provide a convenient place to queue ChunkBuffer objects
until their content can be read by a ChunkedInputStream object.

class MultiplexerSocket extends Socket {
private ArrayList chunkBufferQueue = new ArrayList();
private ChunkBufferPool bufferPool;
private int highWaterMark;
private int lowWaterMark;
private boolean moratoriumRequested = false;
private ConnectionID id;
private Multiplexer mux;
private MultiplexerSocketImpl impl;
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/**

*

*

*
*/
Mul

Y/

This constructor is intended to be called only by
Multiplexer objects.

@param id The ConnectionID that identifies the virtual
connection this socket is associated with to the
local Multiplexer object.

@param actual The socket that encapsulates the actual

connection.

@param mux The multiplexer object that owns this

object.

@param bufferPool The ChunkBufferPool that this object

will get ChunkBuffer objects from.

@param highWaterMark If the number of queued ChunkBuffer

objects reaches this value, request
the other end of the virtual
connection to stop sending input.

@param lowWaterMark After the number of queued

ChunkBuffer objects reaches the
highWaterMark value, request that
the other end of the virtual
connection resume sending input.

tiplexerSocket (ConnectionID id,
Socket actual,
Multiplexer mux,
ChunkBufferPool bufferPool,
int highWaterMark,
int lowWaterMark)
throws SocketException {
this(id, mux, bufferPool,
highWaterMark, lowWaterMark,
new MultiplexerSocketImpl(id, actual, mux));
/ constructor

The design of the java.net package calls for the Socket class and its
subclasses to delegate to a subclass of Socket Impl responsibility for inter-
facing with an actual transport mechanism. This MultiplexerSocket
class follows that architecture by delegating responsibility for transport to
the MultiplexerSocketImpl class.

This constructor is intended to be called only by

the non-private constructor.

@param id The ConnectionID that identifies the virtual
connection this socket is associated with to the
local Multiplexer object.

@param mux The multiplexer object that owns this

object.

@param bufferPool The ChunkBufferPool that this object

will get ChunkBuffer objects from.

@param highWaterMark If the number of queued ChunkBuffer
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* objects reaches this value, request
* the other end of the virtual

* connection to stop sending input.

* @param lowWaterMark After the number of queued

* ChunkBuffer objects reaches the

* highWaterMark value, request that

* the other end of the virtual

* connection resume sending input.

* @param impl The implementation object for this socket.
*/
MultiplexerSocket (ConnectionID id,
Multiplexer mux,
ChunkBufferPool bufferPool,
int highWaterMark,
int lowWaterMark,
MultiplexerSocketImpl impl)
throws SocketException {
super (impl) ;
this.id = id;
this.mux = mux;
this.bufferPool = bufferPool;
this.highWaterMark = highWaterMark;
this.lowWaterMark = lowWaterMark;
this.impl = impl;
impl.setMultiplexerSocket (this);
} // constructor (ConnectionID)

/**
* Put some buffered input bytes in a ChunkBuffer.
* @param byteCount The number of input bytes.
* @param buffer A byte array that contains the input
* @exception IOException if there is a problem
*/
synchronized void queueBuffer (int byteCount, byte[] buffer)
throws IOException {
// Before allocating a ChunkBuffer object for the
// input, check for an already queued ChunkBuffer
// object that has enough free space.
int queueSize = chunkBufferQueue.size();
int offset = 0;
if (queueSize>0) {
ChunkBuffer cb
= (ChunkBuffer)chunkBufferQueue.get (queueSize-1);
if (cb.available()>0) {
int size = Math.min(byteCount, cb.available());
cb.setContent (buffer, 0, size);
byteCount -= size;
offset = size;
} // if available
} // if queueSize
if (byteCount>0) {
ChunkBuffer cb = bufferPool.allocateChunkBuffer();
cb.setContent (buffer, offset, byteCount);
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chunkBufferQueue.add(cb);
notify();
if (moratoriumRequested) {
if (chunkBufferQueue.size()<=lowWaterMark) {
mux.endMoratorium(id);
moratoriumRequested = false;
} // if lowWaterMark
} else {
if (chunkBufferQueue.size()>=highWaterMark) {
mux.startMoratorium(id);
moratoriumRequested = true;
} // if highWaterMark
} // if moratoriumRequested
} // if byteCount
} // queueBuffer (int, bytel[])

/**
* Release a ChunkBuffer object to a pool of unallocated
* ChunkBuffer objects.
*/
void releaseChunkBuffer (ChunkBuffer cb) {
bufferPool.releaseChunkBuffer(cb);
} // releaseChunkBuffer (ChunkBuffer)

/**
* Return the next queued ChunkBuffer.
*/
synchronized ChunkBuffer getChunkBuffer()
throws IOException {
return bufferPool.allocateChunkBuffer();
} // getChunkBuffer ()

/**
* block writes to this virtual connection.
*/
void blockWrites() {
impl.blockWrites();
} // blockWrites

/**
* Unblock writes to this virtual connection.
*/
void unblockWrites() {
impl.unblockWrites();
} // unblockWrites ()
} // class MultiplexerSocket

Here is the MultiplexerSocketImpl class to which the Multi-
plexerSocket class delegates the responsibility for transporting data.

public class MultiplexerSocketImpl extends SocketImpl {
// This ConnectionID identifies the virtual connection
// associated with this object.
private ConnectionID id;
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// The Socket that encapsulates the actual connection.
private Socket actual;

// The Multiplexer object this object is working with.
private Multiplexer mux;

// The InputStream that is returned by getInputStream().
private ChunkedInputStream in;

// The OutputStream that is returned by getOutputStream().
private ChunkedOutputStream out;

// This is true after this Socket has been closed.
private boolean closed = false;

// The MultiplexerSocket this object is working for.
private MultiplexerSocket theSocket;

// This is true after a request to block writes has been
// received, until a request to unblock is received.
private boolean outputMoratorium = false;

// Read operations time out after this many milliseconds.
// If zero there is no time out.
private int timeout = 0;

/**
* constructor
* @param id The connection ID that identifies the virtual
* connection this socket is associated with to the
* local Multiplexer object.
* @param actual The socket that encapsulates the actual
* connection.
* @param mux The multiplexer object that owns this
* object.
* @param theSocket The socket that uses this object.
*/
MultiplexerSocketImpl (ConnectionID id,
Socket actual,
Multiplexer mux) {
this.id = id;
this.actual = actual;
} // constructor (ConnectionID, Socket)

/**
* Set the MultiplexerSocket that this object will work
* with.
*/
void setMultiplexerSocket (MultiplexerSocket theSocket) {
this.theSocket = theSocket;
} // setMultiplexerSocket (MultiplexerSocket)

/**

* Returns an input stream for this socket.
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* @return a stream for reading from this socket.
* @exception IOException if an I/0 error occurs.
*/
protected InputStream getInputStream() throws IOException {
checkClosed();

if (in==null || in.isClosed()) {
in = new ChunkedInputStream(theSocket);
}y // if

return in;
} // getInputStream()

/**
* Returns an output stream for this socket.
*/
protected OutputStream getOutputStream()
throws SocketException {
checkClosed();
if (out==null || out.isClosed()) {
out = new ChunkedOutputStream(mux, id);
if (outputMoratorium) {
out.blockWrites();
Y // if
Y // if
return out;
} // getOutputStream()

/*k*
* Close this socket.
*/
protected void close() throws IOException {
if (in!=null) {
in.close();
}y // if
if (out!=null) {
out.close();
}y // if
mux.endConnection(id);
closed = true;
} // close()

/**
* Return the value of this socket’s address field.
*/
protected InetAddress getInetAddress() {
return actual.getInetAddress();
} // getInetAddress

/**
* Return the value of this socket’s port field.
*/
protected int getPort() {
return actual.getPort();
} // getPort()
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/**
* Return the value of this socket’s localport field.
*/
protected int getLocalPort() {
return actual.getLocalPort();
} // getLocalPort ()

* Enable/disable the option specified by optID. If

* the option is to be enabled takes an option-specific
* "yvalue", it is passed in the value parameter.

* The actual type of value is option-specific.

* Tt is an error to pass something that isn’t of the

* expected type.

* If the requested option is binary, it can be set using
* this method by a java.lang.Boolean.

* Any option can be disabled using this method with a
* Boolean(false).

* If an option that requires a particular parameter,
* gsetting its value to anything other than
* Boolean(false) implicitly enables it.
* @param optID identifies the option
* @param value the parameter of the socket option
* @exception SocketException if the option is
*/
public void setOption(int optID, Object value)
throws SocketException {
switch (optID) {
case SO_TIMEOUT:
if (value instanceof Integer) {
timeout = ((Integer)value).intValue();
} else if (value instanceof Boolean) {
if (((Boolean)value).booleanValue()==false) {
timeout = 0;
}y // if
} else {
String msg = value.toString();
throw new IllegalArgumentException(msg);
Yy // if
break;
default:
throw new SocketException();
} // switch
} // setOption(int, Object)

* Fetch the value of an option.

* For options that take a particular type as a parameter,
* getOption(int) will return the parameter’s value, else
* it will return java.lang.Boolean(false).
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* @exception SocketException if the socket is closed
* @exception SocketException if optID is unknown.
*/
public Object getOption(int optID) throws SocketException {
switch (optID) {
case SO_BINDADDR:
return actual.getLocalAddress();
case SO_TIMEOUT:
return new Integer (timeout);
default:
throw new SocketException();
} // switch
} // getOption(int)

/**
* Thrown a SocketException if this socket is closed.
*/
private void checkClosed() throws SocketException {
if (closed) {
throw new SocketException("closed");
}y // if
} // checkClosed()

/**
* block writes to this virtual connection.
*/
void blockWrites() {
outputMoratorium = true;
if (out!=null) {
out.blockWrites();
Y // if
} // blockWrites

/**
* Unblock writes to this virtual connection.
*/
void unblockWrites() {
outputMoratorium = false;
if (out!=null) {
out.unblockWrites();
Yy // if
} // unblockWrites/()
} // class MultiplexerSocketImpl

Here is the InputStream class that reads input by getting Chunk-
Buf fer objects containing input bytes from a MultiplexerSocket
object.

class ChunkedInputStream extends InputStream {
// This is true after this InputStream has been closed.
boolean closed = false;
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// The MultiplexerSocket object this object gets
// ChunkBuffer objects from.
private MultiplexerSocket mSocket;

// The current ChunkBuffer object.
private ChunkBuffer buffer = null;

// Buffer used for a single byte read.
private byte[] byteBuffer = new byte[l];

/*k*
* constructor
* @param mSocket The MultiplexerSocket object this object
* will work with.
*/
ChunkedInputStream(MultiplexerSocket mSocket) {
this.mSocket = mSocket;
} // constructor (Multiplexer)

/**
* Reads the next byte of data from the input stream. The
* value byte is returned as an int in the
* range 0 to 255. If no byte is available because the end
* of the stream has been reached, the value -1 is
* returned. This method blocks until input data is
* available, the end of the stream is detected, or an
* exception is thrown.
* @return the next byte of data, or -1 if the end of the
* stream is reached.
*/
public int read() throws IOException {
checkOpen() ;
if (buffer==null || buffer.available()<1l) {
buffer = mSocket.getChunkBuffer();
if (buffer==null) {
return -1;
Y // if
Yy // if
if (buffer.getContent (byteBuffer, 0, 1) <1) {
return -1;
Yy // if
return byteBuffer[0];
} // read()

/**

* Reads up to len bytes of data from the input stream

* into an array of bytes. An attempt is made to read as
* many as len bytes, but a smaller number may be read,
* possibly zero. The number of bytes actually read is

* returned as an integer.
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* This method blocks until input data is available, end
* of file is detected, or an exception is thrown.

* @param b The buffer into which the data is read.
* @param off The start offset in array b at which the
* data is written.

* @param len the maximum number of bytes to read.

* @return the total number of bytes read into the

* buffer, or -1 if there is no

* more data because the end of the stream has
* been reached.

*/

public int read(byte b[], int off, int len)
throws IOException {
checkOpen();
if (buffer==null || buffer.available()<1) {
buffer = mSocket.getChunkBuffer();
if (buffer==null) {
return -1;
Y // if
}y // if
return buffer.getContent (byteBuffer, 0, 1);
} // read(byte[], int, int)

/**

* Returns the minimum number of bytes that can be read

* (or skipped over) from this input stream without

* blocking by the next caller of a method for this input
* stream. The next caller might be the same thread or

* another thread.

* The available method for class InputStream always
* returns 0.
*/
public int available() throws IOException {
checkOpen() ;
if (buffer==null) {
return 0;
}y // if
return buffer.available();
} // available()

/**
* Closes this input stream and releases any system
* resources associated with the stream.
*/
public void close() {
if (buffer!=null) {
mSocket .releaseChunkBuffer (buffer);
Y // if
closed = true;
} // close()

/**

* Throw an IOException if this InputStream is closed.
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*/
private void checkOpen() throws IOException {
if (closed) {
throw new IOException("closed");
}y // if
} // checkOpen/()

} // class ChunkedInputStream
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Here is the outputStream class that is used to write bytes to virtual

connections.

class ChunkedOutputStream extends OutputStream {

private ConnectionID id;

private Multiplexer multiplexer;

private boolean closed = false; // True after being closed
private boolean outputMoratorium = false;

/**
* constructor
* @param multiplexer The multiplexer object this object

* will write to.

* @param id The ConnectionID of the virtual connection
* this object will write to.

*/

ChunkedOutputStream(Multiplexer multiplexer,
ConnectionID id) {
this.multiplexer = multiplexer;
this.id = id;
} // constructor (Multiplexer, int)

/**
* Writes the given byte to this output stream. The byte
* to write is the eight low-order bits of the argument b.
* The 24 high-order bits of b are ignored.
* @param b The byte to write.
*/
public void write(int b) throws IOException {
checkClosed();
multiplexer.write(id, b);
} // write(int)

/**
* Write len bytes from the specified array
* starting at index ndx to this output stream.

* @param b the data.

* @param ndx the start offset in the data.
* @param len the number of bytes to write.
*/

public void write(byte b[], int ndx, int len)
throws IOException {
checkClosed() ;
multiplexer.write(id, b, ndx, len);
} // write(byte[], int, int)
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/**

* Flushes this output stream, forcing any buffered output
* bytes to be written.
*/
public void flush() throws IOException {
checkClosed() ;
multiplexer.flush(id);
} // flush()

/**

* Closes this output stream and releases any resources

* associated with it.
* <p>
* The close method of OutputStream does nothing.
*/
public void close() throws IOException {
if (!closed) {

flush();
} //if
closed = true;
} // close()

/**
* Throw an IOException if this OutputStream is closed.
*/
private void checkClosed() throws IOException {
if (closed) {
throw new IOException("closed"):;
} // if closed
if (outputMoratorium) {
synchronized (this) {
try {
do {
wait();
} while (outputMoratorium);
} catch (InterruptedException e) {
throw new IOException();
} // try
} // synchronized
if (closed) {
throw new IOException("closed");
} // if closed
} // if outputMoratorium
} // checkClosed()

/**
* Return true if this output stream is closed.
*/
boolean isClosed() {
return closed;
} // isClosed()

/**

* Block writes to this virtual connection.
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*/
synchronized void blockWrites() {
outputMoratorium = true;
} // blockWrites

/**
* Unblock writes to this virtual connection.
*/
synchronized void unblockWrites() {
outputMoratorium = false;
notifyall();
} // unblockWrites()
} // class ChunkedOutputStream

Next, we look at classes that have something to do with RMI. RMI
allows programs to alter the way that it creates Socket and Server-
Socket objects by providing objects to which it can delegate those re-
sponsibilities.

To create ServerSocket objects on behalf of RMI, an object must
implement the RMIServerSocketFactory interface. Here is a class that
creates, on behalf of RMI, serverSocket objects that accept virtual con-
nections from Multiplexer objects.

public class VirtualServerSocketFactory
implements RMIServerSocketFactory {
private Queue acceptQueue;

A virtualServerSocketFactory object accepts connections from
Multiplexer objects that have been registered with it. It works by creat-
ing a thread for each Multiplexer object and having that thread call the
Multiplexer object’s accept method. The thread does not return from the
accept method until there is a new virtual connection for it to accept and
return. When the thread returns, it puts the Socket object that encapsu-
lates the new virtual connection in the acceptQueue queue. It stays there
until a call to the accept method of the ServerSocket object that the
VirtualServerSocketFactory object creates removes it from the queue.

private Hashtable muxTable;

When a Multiplexer object is registered with a VirtualServer-
SocketFactory object, the thread it creates is actually an instance of a
subclass of Thread called connectionAcceptor. When a Multiplexer
object is unregistered, the virtualServerSocketFactory object must
tell the thread to stop accepting connections on its behalf. To do this, it
must keep track of the thread associated with each Multiplexer object.
It keeps track of these associations by storing ConnectionAcceptor
objects in the muxTable Hashtable with the Multiplexer object that
they poll as their key.
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private RMIVirtualServerSocket serverSocketInstance;

A virtualServerSocketFactory object creates just one
ServerSocket object. If asked multiple times to create a ServerSocket
object, it will return the same ServerSocket object each time. The
VirtualServerSocketFactory object uses its ServerSocketInstance
variable to refer to this ServerSocket object.

public VirtualServerSocketFactory() {
muxTable = new Hashtable();
acceptQueue = new Queue();

} // constructor (int)

/**
* Register a Multiplexer object so that this
* object will use it.
* @param mux The Multiplexer object to register.
*/
public void registerMultiplexer (Multiplexer mux) {
muxTable.put (mux, new ConnectionAcceptor (mux));
} // registerMultiplexer (Multiplexer)

/*k*
* Unregister a Multiplexer object so that this
* object will stop using it.
* @param mux The Multiplexer object to unregister.
*/
public void unregisterMultiplexer (Multiplexer mux) {
ConnectionAcceptor acceptor;
acceptor = (ConnectionAcceptor)muxTable.remove (mux);
if (acceptor!=null) {
acceptor.interrupt();
Y // if
} // unregisterMultiplexer (Multiplexer)

The createServerSocket method returns a server socket that
accepts connections at the given port. If the given port number is —1, then
it creates a server socket that accepts virtual connections from registered
Multiplexer objects. Otherwise, it creates a standard ServerSocket
object that accepts actual connections. This use of an otherwise illegal port
number makes it possible for RMI to work with actual and virtual connec-
tions at the same time.

public ServerSocket createServerSocket (int port)
throws IOException {
if (port==-1) {
if (serverSocketInstance==null) {
serverSocketInstance
= new RMIVirtualServerSocket();
Y // if
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return serverSocketInstance;
Yy // if
RMISocketFactory defaultFactory;
defaultFactory
= RMISocketFactory.getDefaultSocketFactory():;
return defaultFactory.createServerSocket (port);
} // createServerSocket (int)

Instances of the private class ConnectionaAcceptor poll the
Multiplexer object passed to their constructor for new connections.

private class ConnectionAcceptor extends Thread {
private Multiplexer mux;

/~k‘k
* Constructor
* @param mux The Multiplexer object this object
* accepts connections from.
*/
private ConnectionAcceptor (Multiplexer mux) {
this.mux = mux;
start();
} // constructor (Multiplexer)

public void run() {
try {
while (!isInterrupted()) {
acceptQueue.put (mux.accept());
} // while
} catch (InterruptedException e) {
Y // try
} // run()
} // class ConnectionAcceptor

The serverSocket object that a VirtualServerSocketFactory cre-
ates is actually an instance of this private subclass of serverSocket.

/**
* This subclass of ServerSocket accepts virtual
* connections through a multiplexer object
*/
private class RMIVirtualServerSocket extends ServerSocket {
private int soTimeout = 0;

/**
* Constructor.
* @param mux The multiplexer object this object will

* work with.
* @exception IOException if an I/0O error occurs
* when opening the socket.

*/
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RMIVirtualServerSocket () throws IOException {

Y/

/**
*
*
*

*

*/

// The superclass has no constructor that does not
// bind a port. So we call the simplest

// constructor and then immediately call the

// superclass’s close.

super(0) ;

super.close();
/ constructor

Returns the local address of this server socket.

@return The address to which this socket is
connected, or null if the socket is not
connected.

public InetAddress getInetAddress() {

Y/

/**

*

*

*/

try {
return InetAddress.getLocalHost();
} catch (UnknownHostException e) {
return null;
} // try
/ getInetAddress()

Returns the port on which this socket is listening.
@return -1

public int getLocalPort() {

Y/

/**
*
*
*

*

*/

return -1;
/ getLocalPort ()

Listen for a new virtual connection and accept it.
If there are no virtual connections waiting to be
accepted, this method does not return until there
is a virtual connection to be accepted.

public Socket accept() throws IOException {

Y/

/**

*

*/

try {
return (Socket)acceptQueue.get (soTimeout);
} catch (InterruptedException e) {
throw new InterruptedIOException();
Y // try
/ accept ()

Closes this socket.

public void close() {

Y/

/~k~k

*

// Nothing to do.
/ close()

Set SO_TIMEOUT to the specified timeout in
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* milliseconds. When this option is non-zero,
* a call to accept() blocks for only this number of
* milliseconds. If the timeout expires, a call to
* accept throws a java.io.InterruptedIOException.
* This must be set prior to a call to accept to have
* an effect. The value must be greater than 0.
* A timeout of zero is treated as an infinite timeout.
*/
public void setSoTimeout (int timeout) throws SocketException {
soTimeout = timeout;
} // setSoTimeout (int)

} // class RMIVirtualServerSocket
} // class VirtualServerSocketFactory

To create Socket objects on behalf of RMI, an object must implement
the RMIClientSocketFactory interface. Here is a class that creates, on
behalf of RMI, socket objects for virtual connections.

public class VirtualClientSocketFactory
implements RMIClientSocketFactory {
private Hashtable muxTable;

/**
* Constructor
*/
public VirtualClientSocketFactory() {
muxTable = new Hashtable();
} // constructor (int)

/**
* Register a Multiplexer object so that this
* object will use it.
*/
public void registerMultiplexer (Multiplexer mux) {
muxTable.put (mux.getRemoteAddress(), mux);
} // registerMultiplexer (Multiplexer)

/**
* Unregister a Multiplexer object so that this
* object will stop using it.
*/
public void unregisterMultiplexer (Multiplexer mux) {
muxTable.remove (mux.getRemoteAddress());
} // unregisterMultiplexer (Multiplexer)

The createSocket method creates a client socket connected to the
specified host and port. If the port number is —1 and the host’s address
matches one of the registered Multiplexer objects, then it ignores the
port number passed to it and uses the Multiplexer object to create a vir-
tual connection. Otherwise, it creates a real connection using RMI’s default
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mechanism. Using an otherwise illegal port number in this way allows
RMI to work with both actual and virtual connections.

public Socket createSocket(String host, int port)
throws IOException {
if (port==-1) {
InetAddress remoteAddress;
remoteAddress = InetAddress.getByName (host);
Multiplexer mux;
mux = (Multiplexer)muxTable.get (remoteAddress);
if (mux !=null) {
return mux.createConnection();
} else {
String msg;
msg = "No Multiplexer registered for " +host;
throw new IOException(msg);
} // if mux
} // if port
RMISocketFactory factory;
factory = RMISocketFactory.getDefaultSocketFactory():;
return factory.createSocket (host, port);
} // createSocket (String, int)
} // class VirtualClientSocketFactory

The final class that we will look at in this example is a convenience
class. To have RMI use VirtualClientSocketFactory and Virtual-
ServerSocketFactory objects by default, you need a class that is a sub-
class of java.rmi.server.RMISocketFactory.RMISocketFactory is an
abstract class that implements both the RMIClientSocketFactory and
the RMIServerSocketFactory interface. The way to set defaults is to pass
an instance of a subclass of RMISocketFactory to the RMISocketFactory
class’s static setSocketFactory method.

The virtualSocketFactory class is a subclass of RMISocket -
Factory that delegates to VirtualClientSocketFactory and Virtual-
ServerSocketFactory.

public class VirtualSocketFactory extends RMISocketFactory {
private VirtualClientSocketFactory clientFactory;
private VirtualServerSocketFactory serverFactory;

/**
* Constructor
*/
public VirtualSocketFactory() {
clientFactory = new VirtualClientSocketFactory();
serverFactory = new VirtualServerSocketFactory();
} // constructor

/‘k*

* Register a Multiplexer that can be used to
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* create Socket objects.
*/
public void registerClientMultiplexer (Multiplexer mux) {
clientFactory.registerMultiplexer (mux);
} // registerMultiplexer (Multiplexer)

/*k*
* Unregister a Multiplexer object so that this
* object will stop using it to create
* Socket objects.
*/
public void unregisterClientMultiplexer (Multiplexer mux) {
clientFactory.unregisterMultiplexer (mux);
} // unregisterMultiplexer (Multiplexer)

/**
* Create a client socket connected to the specified host
* and port.

* If the port number is -1 and host name resolves to a
* network address that matches one of the registered
* Multiplexer object, then this method ignores the
* port number passed to it and uses the
* Multiplexer to create a virtual connection.
* Otherwise it create a real connection using RMI’s
* default mechanism.
*/
public Socket createSocket(String host, int port)
throws IOException {
return clientFactory.createSocket (host, port);
} // createSocket (String, int)

/**
* Register a Multiplexer object so that this
* object will use it to create
* ServerSocket objects.
*/
public void registerServerMultiplexer (Multiplexer mux) ({
serverFactory.registerMultiplexer (mux) ;
} // registerMultiplexer (Multiplexer)

/**
* Unregister a Multiplexer object so that this
* object will stop using it to create
* ServerSocket objects.
*/
public void unregisterServerMultiplexer (Multiplexer mux) {
serverFactory.unregisterMultiplexer (mux) ;
} // unregisterMultiplexer (Multiplexer)

/**
* Create a server socket. If the given port number is -1,
* then it creats a server socket that accepts connections
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* from registered Multiplexer objects.

* Otherwise, it creates a standard
* ServerSocket that accepts actual connections.
*/
public ServerSocket createServerSocket (int port)
throws IOException {
return serverFactory.createServerSocket (port);
} // createServerSocket (int)

/**

* Use the given name to a string of the form
* //host:-1/name
* This string can be used to register an object with a
* name registry.
*/
public String makeRegistryString(String name)
throws UnknownHostException {
return serverFactory.makeRegistryString(name);
} // makeRegistryString (String)
} // class VirtualSocketFactory

RELATED PATTERNS

Object Pool. The Connection Multiplexing pattern uses the Object
Pool pattern (described in Volume 1) to manage data buffers.

Object Identifier. The ConnectionID objects used by the
Connection Multiplexing pattern are an application of the
Object Identifier pattern.

Layered Architecture. The Connection Multiplexing pattern uses
the Layered Architecture pattern described in [Buschman96].

Scheduler. The Scheduler pattern can be used to ensure that all vir-
tual connections get their fair share of the actual connection’s
bandwidth. The Scheduling pattern describes how to enforce a
policy that determines when a thread is scheduled to use a
resource.

Proactor. The Connection Multiplexing pattern uses the Proactor
pattern which is described in [Schmidt97].
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Session Object (277)

Lock File (285)

Static Locking Order (291)
Optimistic Concurrency (297)
Thread Pool (303)
Ephemeral Cache Item (325)
Transaction State Stack (337)
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This pattern was previously described in [ Yoder-Barcalow98].

SYNOPSIS

There is a possibly large number of objects that determine the state of
each session that a server has with its clients. Use a single object to con-
tain all the state information needed during a session by the server. Make
the object accessible to all objects that need state information for the cur-
rent session.

CONTEXT

You are designing a client/server application to allow people to analyze a
company’s sales data. During the course of a session with this application,
the server needs to know who is logged into each client for security rea-
sons. It also needs to keep track of the client’s previous requests to provide
context.

One way to allow the server to keep track of each session’s state is to
create an instance of the entire server for each session. Creating an
instance of most of the classes in the server for each session seems waste-
ful. You look for a better way.

FORCES

© A server needs to be aware of the state of each session.

© A server communicates with its clients through a stateless protocol.
This makes it impossible for the server to manage the state of a ses-
sion without some assistance from the client.

You want to minimize the number of objects it takes for a server to be
aware of each session’s state.

Some sessions are designed so there will always be an event that
clearly signals the end of the session. For example, a session may end
when a server loses its connection with a client or when the client
issues a logout command. Other sessions are designed so there is no
event that signals the end of a session. Without knowing when a ses-

©

©
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sion ends, a server does not know when it can discard the state infor-
mation associated with the session.

@ If a server is required to handle a large number of concurrent ses-
sions, the memory required by the state information may become
problematically large.

SOLUTION

Encapsulate all of the state information associated with a session in a sin-
gle object. Make that object visible to all objects that need access to state
information. Figure 7.1 shows the role that classes play in this solution.

As shown in Figure 7.1, server objects have a collection of Session
objects. Each session object in the collection is identified by its associ-
ated client. The Implementation section describes a few different ways to
organize the collection of Session objects and associate them with Client
objects.

CONSEQUENCES

© The number of objects used to maintain the state of sessions is mini-
mized.

© Session objects provide a common interface for accessing values
shared by different parts of a program.

® Implementations of the Session Object pattern typically involve many
methods that have a reference to a session object in their signature.
They may also involve multiple classes with instance variables that
refer to a session object through a ThreadLocal object (ThreadLocal
objects are described at the end of the “Implementation” section).
Because an implementation of the Session Object involves many
classes and methods, it can be very time consuming to retrofit the use
of session objects to a program that is well along in its development.

p

<
B Server

Session

Client

FIGURE 7.1 Session object.



Concurrency Patterns m 279

IMPLEMENTATION

The first implementation issue we will examine is how to associate session
objects with sessions. There are a few common ways of doing this.

Some application designs call for the client to maintain a network
connection with the server for the entire duration of a session. For such
applications, a session ends when the connection ends. A natural way to
manage session objects in this situation is to associate each session object
with the corresponding connection.

Figure 7.2 shows an organization that associates a connection with a
session object. When a server accepts a connection from a client, it passes
the connection to a session object that processes it in its own thread.

The design of some applications calls for a client and server to carry
on a session without maintaining a connection for the duration of the ses-
sion. In such applications, the server may not always know when a session
is over. For such situations, it is usually best if the client keeps and man-
ages the session objects. This arrangement avoids the difficulty of the
server accumulating session objects for sessions that have ended without
the server being aware of it. This way of managing session objects is espe-
cially good for situations in which sessions are over when a client dies.
Figure 7.3 shows how this scheme works.

In this scheme, the client tells the server it wants to start a new ses-
sion. The server then creates a session object and sends the session object
to the client. Every time a client sends a message to the server, the message
includes the session object. Another aspect of this is that the server does
not use any session specific resources, such as files or locks, unless it is
processing a call from a session’s client. The advantage of this scheme is
that the server has no session specific state. The server does not care what
the lifetime of a session is. This scheme makes the lifetime of a session the
responsibility of the client.

connection:Socket

—>

2: processConnection(connection) )
:Server :Session

1: connection:=accept ( ) l

ss:ServerSocket

FIGURE 7.2 Session associated with a connection.
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—>
1: sn:=startSession ( )
2: foo("xyz", sn)

3: bar(23,45,sn)

. 4: blech(sn)
:Client :Server

1.1:create ( ) l

sn:Session

FIGURE 7.3 Client-managed connection.

If the duration of a session may exceed the lifetime of the client or
the server, then you must use a different scheme for associating session
objects with sessions. One such scheme is a variation of the one illustrated
in Figure 7.3. The idea is to have the client store the session object in a
disk file. This allows future clients to use the same session object. The
drawback to this scheme is that it ties the future use of the session object
to the same computer, or at least a computer that shares the file system
that the session object is stored on. In many cases, the session is associ-
ated with a user rather than a computer or file system. In such cases, it is
usually desirable for users to be able to continue a session with a server
from a different computer than the one they started the session with.

A way to persistently associate a user with a session is to use a data-
base. Even if there are multiple servers, they will be able to fetch the ses-
sion currently associated with a user from the database. If sessions are
persisted in this way, eventually there will be sessions in the database that
are never continued. If you do nothing to handle such session objects, the
number of these abandoned sessions in the database will increase indefi-
nitely. To prevent the number of abandoned sessions in the database from
getting too large, you can delete session objects from the database if their
session has not been continued within a certain amount of time.

Another implementation issue to consider has to do with multi-
threaded servers. Most servers are multithreaded so they can handle multi-
ple sessions concurrently. In a multithreaded server, you can’t use instance
variables to make session object visible to methods. The problem is that
session objects must be visible only to method invocations that are involved
with the corresponding session. A different thread or threads process each
session. Instance variables are shared by all threads. Session objects must
be visible only to the thread that is processing the corresponding session.

One way to make the session object visible to only one thread is to
pass it as a parameter, as illustrated in Figure 7.4.
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In this scheme, most method calls within a server include an argu-
ment to pass a reference to a session object. The disadvantages to this are
that it makes method declarations and calls more verbose. It also adds to
the time that it takes to call methods.

An alternative way to make session objects visible to only one thread
is to use a ThreadLocal object to associate a session object with a thread.
A ThreadLocal object associates a thread with an object. A ThreadLocal
object is typically referenced by an instance variable like this:

ThreadLocal sessionContainer = new ThreadLocal () ;

You can associate an object with a ThreadLocal object like this:
sessionContainer.set (session) ;

You fetch an object from a ThreadLocal object like this:
session = (Session)sessionContainer.get();

What makes it interesting is that when you fetch an object from a
ThreadLocal object, what you get is the last object that was associated
with the ThreadLocal object by the thread that does the fetch. Two
threads may access or modify values in a ThreadLocal object at the same
time without interfering with each other.

KNOWN USES

A company that sells integrated application software sells a purchasing
application with a client server architecture that associates session objects
with connections between client and server.

sn:Session
—> —>
1: dolt(sn) 1.1: foo(83, "sdfe", sn)
A B
1.2:bar(22, 5.6, sn) l 1.1.1: flah("xyz", sn) l

:D

[e)

FIGURE 7.4 Session object visible as a parameter.
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Web-based applications use cookies as a way of getting their clients
(browsers) to store session objects.

There is an application that allows people to apply for life insurance
on-line. People often do not have all of the required information when they
first try to apply for insurance. For this reason, the application allows
users to log off and finish later. The application implements this feature by
saving a session object in a database.

CODE EXAMPLE

The code example is a skeletal implementation of a session class. It
includes two pieces of information that most applications will need to
know about sessions. One of these is the identity of the user. The example
uses a numeric value that internally identifies a user. It is also common to
use a string to identify the user.

The other piece of information is the user’s locale setting. A server
will typically use this information when generating messages for the user.
If the server will use the locale information infrequently, it may make more
sense to leave the locale out of the session class and have it be looked up in
a database as needed.

public class Session implements Serializable {
private long userID;
private Locale locale;

Session(long userID) {
this.userID = userID;
} // constructor

public Locale getLocale() { return locale; }

public void setLocale(Locale newValue) {
locale = newValue;
} // setLocale(Locale)

} // class Session

One other detail to notice about session class is that its constructor is
not public. The reason for this is that servers will construct session objects
but clients will not. This is based on the assumption that clients will
receive session objects through a Java-based mechanism, such as RMI,
that uses Java’s serialization facility to copy the session object from the
server to the client. Serialization does not use constructors.
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RELATED PATTERNS

Singleton. The Singleton pattern (described in Volume 1) uses a
single instance of a class for an entire program. The Session pat-
tern uses a single instance of a class per session.

Thread Pool. You can use the Thread Pool pattern to manage the
association between threads and sessions over time.
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SYNOPSIS

A program will need to have exclusive access to an external resource. You
design the program to check for the existence of a lock file prior to access-
ing the resource. If the lock file exists, the program does not use the
resource. If the lock file does not exist, the program creates the file and
then uses the resource.

CONTEXT

Suppose you are designing a class whose purpose is to manage the con-
tents of a file. To ensure its correct operation, instances of this class must
avoid using a file while another instance of the class is using the same file.
You want the class to use a mechanism that guarantees that a file is used
by only one object at a time. You would like to use a locking mechanism
that allows an object holding the lock to access a file, while preventing
other objects from accessing the file at the same time.

Many operating systems have a file-locking feature that guarantees
exclusive access to a file. Unfortunately, Java does not provide support for
this sort of file locking. You could use the Java native code interface (JNI) to
access an operating system feature. However, there are a number of negative
consequences to using JNI that lead you to look for a different solution.

The solution you settle on is to create a lock file. A lock file is a file
whose existence is a signal to other objects. If it exists, then other objects
will know that the resource the lock file is associated with is in use. They
will be expected to cooperate with the object that created the lock file by
not using the resource while the lock file exists. When an object is finished
using a resource, it deletes the lock file.

FORCES

© No more than one object at a time may access a resource.

@ There is no available locking mechanism that guarantees exclusive
access to a resource.

© An object performing an operation needs exclusive access to a
resource. If it discovers that the resource is being used by another
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object, an acceptable way for the object to handle the situation is to
abort the operation.

© You need a way to coordinate access to a resource that will work the
same way everywhere that Java runs. This is the most common rea-
son for using the Lock File pattern.

@ You are designing a distributed application that must coordinate the
use of resources among multiple computers. The computer that coor-
dinates the use of a particular resource can crash. When it comes
back up, it is important that any locks that objects on other comput-
ers held before the crash are still intact.

® If an object discovers that a resource it needs is being used by
another object, the object must wait until the resource is not being
used by any other object before it uses the object. It is important that
the object start using the resource as soon as it is available.

® Some schemes that arrange for objects to have exclusive access to a
resource are based on cooperation. Such schemes rely on objects’ vol-
untarily coordinating their use of a resource with each other. Such
cooperative schemes do not work if there are any objects that access
the resource without following the scheme and cooperating with
other objects.

SOLUTION

Allow cooperating objects to have exclusive access to a resource by having
each object first test for the existence of a lock file. A lock file is a file that
generally contains either information to identify its creator or no data at
all. Its existence simply indicates that the resource it is associated with is
in use.

Before an object attempts to use a resource it needs, it checks for the
existence of a lock file. If the lock file already exists, the object either
aborts the operation it is performing or waits until the lock file no longer
exists. If the file does not exist, the object creates the lock file. When the
object is finished with the resource, it deletes the lock file. Figure 7.5
shows these interactions.

One important detail not shown in Figure 7.5 is that the test for the
lock file’s existence and the lock file’s creation must be one atomic opera-
tion. If two objects simply test for the existence of a lock file at the same
time and both conclude that they can proceed because no lock file exists,
then they will both be accessing the resource at the same time.

The details of how to ensure that the test for the existence of a lock
file and its creation are a single atomic operation are discussed under the
“Implementation” heading.
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FIGURE 7.5 Lock file interactions.

CONSEQUENCES

o

Objects that use the lock file pattern are able to coordinate the use of
a resource among themselves.
Lock files continue to exist after the computer they are on crashes.
The locks that remote objects hold in the form of lock files are still
intact after the computer they are on restarts.
It is possible that an object will fail to delete a lock file after is it fin-
ished using a resource. This can happen because of a bug in the
object, because the VM that an object is running crashes, or for other
reasons. This situation may be detected by using a time-out strategy.
The object that created a lock file can periodically open the file,
update its contents, and close the file. This forces the timestamp
returned by the lastModified method of the java.io.File class to
be updated. If the modification time is too far in the past, other
objects can assume that the old lock file may be deleted. The main
caution to observe is not to set the time-out period to be too short.
Delays introduced by caching or remote file systems may cause other
objects not to see an updated modification time immediately.

IMPLEMENTATION

The java.io.File class has a method that is specifically intended for
use with the lock file pattern. The createNewFile method atomically
checks for the existence of a file and creates it, if it does not already
exist.
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Lock File Naming

An implementation issue is the name of a lock file. To properly coordinate
with each other, all objects participating in the Lock File pattern must
agree on the name of the lock file. If the name of the lock file is always the
same, then agreement on its name is trivial. However, if there are many
different resources to coordinate access to, then there will be equally many
lock files, each with its own name.

The usual way to manage the names of lock files, when there may be
multiple lock files, is to derive the name of the lock file from the resource.
For example, if the resources to be coordinated are files, then the name of
the lock file corresponding to a file can be the name of the file followed by
. lock. Using this scheme, if an object wants to modify a file named
foo.bar, it will create a lock file named foo.bar.lock.

What to Do When There Is Already a Lock File
for the Desired Resource

If an object wants to access a resource for which a lock file currently
exists, the Lock File pattern calls for it to either wait until the file no
longer exists or to abort whatever operation needs the resource. Waiting
may be impractical if the object currently using the resources may hold it
for a long period of time.

Hybrid policies are sometimes used. You could have an object wait
for up to a predetermined amount of time for a lock file to be deleted. If
the lock file still exists after that amount of time has elapsed, then it
would abort what it is doing. Another way of dealing with the situation is
having the object ask the client it is acting on behalf of how to resolve the
situation.

KNOWN USES

FrameMaker is a program for creating large technical documents. It uses
the Lock File pattern to prevent two people from accidentally editing the
same file at the same time.

There are configuration management systems for source code that
use the Lock File pattern to ensure that only one person is modifying the
state of a source code file at any given time.

There are communication programs that coordinate access to serial
ports using the Lock File pattern.



Concurrency Patterns m 289

CODE EXAMPLE

The code example for this pattern is a subclass of java.io.RandomAccess-
File that ensures exclusive access to files that it opens through the use of

lock files.

public class ExclusiveRandomAccessFile
extends RandomAccessFile {
private static final String LOCK_FILE_SUFFIX = ".lck";
private File lockFile;

This class forms the name of a lock file by appending LOCK_FILE_
SUFFIX to the name of the file to open. After the lock file is created, its name
is kept in a File object that is referenced by the 1ockFile instance variable
until the lock file is deleted.

Because the superclass’s constructor opens the file, this class must
check for the existence of and create the lock file before it calls its super-
class’s constructor. For this purpose, the ExclusiveRandomAccessFile
class provides the static method openExclusive. This method handles the
details of the lock file and then creates an instance of the class that calls its
superclass’s constructor, which opens the file.

* Open the named file using a lock file to ensure
* exclusive access.
* @param fileName The name of the file to open.
* @param mode This should either be "r" for read-only
* access or "rw" for read-write access.
* @exception FileSharingException
* If there is already a lock file for the named
* file.
*/
public static
ExclusiveRandomAccessFile openExclusive(String fileName,
String mode)
throws IOException {
File lockFile = new File(fileName+LOCK_FILE SUFFIX);
if (!lockFile.createNewFile()) {
// lock file already exists
throw new FileSharingException(fileName);
Y // if
return new ExclusiveRandomAccessFile(fileName,
mode,
lockFile);
} // openExclusive (String)

The constructor simply calls the superclass’s constructor and set the
lockFile instance variable.

private ExclusiveRandomAccessFile(String fileName,
String mode,
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File lockFile)
throws IOException {
super (fileName, mode);
this.lockFile = lockFile;
} // constructor (String, String)

If the file is still open, the close method deletes the lock file before it
closes the file.

public synchronized void close() throws IOException {
if (lockFile!=null) { // If file is still open
lockFile.delete();
lockFile = null;
super.close();
Y // if
} // close()

To make this class more robust, it overrides the finalize method to
call its own close method. The finalize method is called by the garbage
collector before it reclaims the storage that an object occupies. So if an
ExclusiveRandomAccessFile object is garbage collected, its underlying
file will be closed and the lock file deleted even if the application did not
explicitly close the file. There is no guarantee that any specific object will
ever be garbage collected, so this merely provides a chance that the file
will be closed.

/**
* Ensure that the underlying file is closed before this
* object is garbage collected.
*/
protected void finalize() throws IOException {
close():;
} // finalize()
} // class ExclusiveRandomAccessFile

RELATED PATTERNS

Static Locking Order. The Static Locking Order pattern is used
with the Lock File pattern when there are multiple resources to
be coordinated, in order to avoid deadlocks.

ACID Transaction. The lock file pattern may be used in the imple-
mentation of the ACID Transaction pattern.
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This pattern was described previously in [Heaney99].

SYNOPSIS

If two objects need exclusive access to the same set of resources, they can

become deadlocked with each holding a lock on one resource and waiting
for the other to release its resource. You avoid such deadlocks by ensuring
that all objects acquire locks on resources in the same order.

CONTEXT

Suppose that you work for a company that provides field service for com-
puters. You have been asked to solve a problem that has recently started
happening.

Two of your company’s applications occasionally hang. The problem
is intermittent and only occurs in the evening. One of the applications is a
program that field technicians use to enter information about what they
did at a particular site, so that the appropriate parties can be billed and
inventory levels adjusted. The other program runs at a scheduled time
every evening. It goes through the inventory transactions of the day and,
when appropriate, sends messages to parts vendors to register warranty
information.

Most of the time, these programs work perfectly. Occasionally, a field
technician working the evening shift will be entering information about a
completed repair and both the warranty registration program and the
technician’s session hang.

Upon investigation, you find that the problem is a deadlock between
the two programs. The program that the technician uses gets a lock on
records in the customer database when the technician indicates which cus-
tomer(s) that last job was for. As the technician enters the parts that were
used in the repair job, the program also locks records in the inventory
database. The warranty registration program obtains lock on records in
the inventory database and then tries to access the customer database to
complete the warranty information for a part. The problem is that occa-
sionally the technician’s program will have a customer record locked and
want access to an inventory record. But the inventory program already has
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a lock on that inventory record and is trying to access the customer record
that the other program already has locked. The two programs wait indefi-
nitely to access the record that the other program has locked.

You solve the problem by modifying the warranty registration pro-
gram so that it locks customer records before it locks the corresponding
inventory record.

FORCES

@ Multiple objects need to access a set of resources. The operations

they perform on these resources require that some or all other objects

be prevented from concurrently accessing the resources.

Dynamically determining at runtime whether granting an object

access to a resource will result in a deadlock can be a very expensive

operation.

Some transaction management mechanisms automatically detect dead-

locks among the transactions that they manage. It will generally take

them a while to detect the deadlock after it occurs. The way that most

of these transaction managers handle a deadlock is to cause some or all

of the transactions involved to fail. From the viewpoint of an applica-

tion, such failures appear to be intermittent failures of the application.

If it is important that the transaction behaves in a reliable and pre-

dictable way, then it is important for it to avoid such deadlocks.

© Objects access a set of resources that either is static or always fills a
static set of roles.

® If resources can fill multiple roles, then it may take a prohibitively
long amount of time to determine, in advance, whether a particular
pattern of accessing resources can result in a deadlock.

©

)

&/

SOLUTION

If objects lock multiple shared resources, then ensure that the resources
are always locked in the same relative order. For example, if there are four
resources, A, B, C, and D, then you could require all objects to lock them
in that order. So one object may lock B, C, and D, in that order. Another
object may lock A and C, in that order. However, no object may lock C and
B, in that order.

The same strategy applies to situations where the specific resources
that objects use vary, but the objects always fill the same roles. In this sort
of situation, you apply the relative ordering to the roles rather than the
resources. In the example under the “Context” heading, the specific data-
base records that the programs use vary with the transaction.
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CONSEQUENCES

© Use of the Static Locking order pattern allows you to ensure that
objects will be able to lock resources without deadlocking.

» Forcing all objects to lock resources in a predetermined order can

sometimes increase the amount of time it takes some objects to per-

form an operation. For an example, consider the case of the warranty

registration program discussed under the “Context” heading.

In its original implementation, it only needed to fetch an inven-
tory record once. Forcing it to lock a customer record before locking
an inventory record requires it to fetch the inventory record twice.
The first time it fetches an inventory record, it may discover that
there is a warranty to register and which customer is involved. It then
locks the appropriate customer record. It must then fetch the inven-
tory record a second time after locking it.

G

o)

[0}

IMPLEMENTATION

There are no special implementation considerations related to the Static
Locking Order pattern.

KNOWN USES

The author has seen the Static locking order pattern used in a number of
proprietary applications.

CODE EXAMPLE

The code example for the static locking pattern is an extension to the
example for the Lock File pattern. It is an additional method whose argu-
ments are an array of file names and an array of file mode strings (“r” or
“rw”). Tt opens the files in sorted order. It returns an array of
ExclusiveRandomAccessFile objects that correspond to the given file
names.

If there is a problem opening any of the files, any files opened up to

that point are closed and an exception is thrown.

public static ExclusiveRandomAccessFile[]
openExclusive (String[] fileNames, String[] modes)
throws IOException {
int[] ndx = new int[fileNames.length];
InsertionSort.sort (fileNames, ndx);
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ExclusiveRandomAccessFile[] opened
= new ExclusiveRandomAccessFile[fileNames.length];
try {
for (int i=0; i<fileNames.length; i++) {
opened[ndx[i]]
= openExclusive(fileNames[ndx[i]],
modes [ndx[i]]);
} // for
} catch (IOException e) {
// close any opened files
for (int i=0; i<opened.length; i++) {
if (opened[i] !=null) {
try {
opened[i] .close();
} catch (IOException ee) {

} // try
Y // if
} // for
throw e;
} // try

return opened;
} // openExclusive (String)

Here is the sort method that the openExclusive method calls:

* Fill the given <code>int</code> array with indices that can
* be used to put the array of <code>Comparable</code> objects in
* gorted order. If the array is
* { "gh", "ab", "zz", "mm" }
* then the <code>indices</code> array will be
* {1, 0, 3, 2}
* @exception IllegalArgumentException
* If the two arrays are not the same length.
*/
public static void sort (Comparable[] a, int[] indices) {
if (a.length!=indices.length) {

String msg = "Different length arrays";
throw new IllegalArgumentException(msg);
Y // if

for (int i=0; i<indices.length; i++) {
indices[i]=i;
} // for
for (int i=1; i<a.length; i++) {
Comparable temp = al[il;
int j = i-1;
while (j>=0 && al[indices[j]].compareTo(temp)>0) {
indices[j+1] = indices[j];
j--;
} // while
indices[j+1] = i;
} // for i
} // sort(Comparablel[])
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RELATED PATTERNS

ACID Transaction. The Static Locking Order pattern can be used
in the design of ACID transactions.

Lock File. The Static Locking Order pattern can be used with the
Lock File pattern to avoid deadlocks.
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SYNOPSIS

Improve throughput of transaction processing by not waiting for locks that
a transaction may need. Instead, be optimistic and perform the transaction
logic on private copies of the records or objects involved. Do insist that the
locks be granted before the updates can be committed, but abort the trans-
action if conflicting updates were made prior to the granting of the locks.

CONTEXT

You are designing a student records system. One characteristic of a stu-
dent records system is that most of the time it has a relatively low number
of transactions to process. However, at certain times, such as the begin-
ning of a semester, there is a very high level of activity. Your design must
accommodate peak levels of activity while keeping the cost of the infra-
structure low.

When there is a need to keep costs down, there are usually compro-
mises to make. After analyzing the requirements, you decide that the most
import guarantee to make is the level of throughput that the system will pro-
vide. It must be able to process a certain number of transactions per hour.
Since the transactions that drive the peak periods will be submitted directly
by students, the throughput requirement translates into a requirement to
guarantee a maximum average response time. It will be acceptable if a small
percentage of the transactions take noticeably longer than the average.

With these goals in mind, you begin examining the problem at hand
to see if it has any attributes that you can exploit. You notice that it will be
very unusual for two concurrent transactions to update information about
the same student. Another thing you notice is that although the database
manager you are using can handle concurrent transactions, its mechanism
for granting locks is single-threaded. This means it is possible for lock
management to become a bottleneck.

You decide that you can lessen the impact of single-threaded lock
management by processing transactions in a way that does not require a
transaction to obtain locks on records until the transaction is ready to com-
mit changes to the records. Delays in granting locks will not have an impact
on the completion of a transaction unless the delays are longer than the
transaction takes to get to the point of committing its results. If the transac-
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tion is delayed in committing its results, the commitment of the results is
all that will be delayed. The rest of the transaction will already be done.

FORCES

©

B

Concurrent attempts to modify the state of an object or record are
very rare. This is often the case when there are few concurrent trans-
actions. It is also often the case when there are a very large number
of records or objects and transactions only modify a small number of
records or objects.

Locks are granted centrally by a single-threaded mechanism and it is
possible to update the contents of objects or records while waiting to
find out if a requested lock will be granted.

The available locking mechanism is coarse-grained. Its locks apply to
an entire file or table or to a large set of objects. Such coarse-grained
locks can cause multiple transactions to wait for a lock when the
changes that they will make will not conflict with each other.
Aborting a transaction because it could not obtain a lock and then
starting the transaction over again can take a significant amount of
time. It may take a lot more time than getting locks beforehand to
ensure that the transaction has exclusive access to the resources that
it will modify.

SOLUTION

Coordinate changes that transactions make to the state of records or objects
by assuming that concurrent updates to the same record or object are very
unlikely. Based on this assumption, proceed optimistically without first
obtaining any locks. Instead, you rely on a field of the records or attribute of
the objects to recognize when a conflicting update has occurred. This field
or attribute will contain a version number or timestamp that contains a dif-
ferent value after each time the record or object is updated.

Organize the transaction processing into three phases:

1. Read/Fetch. Make a private copy of the state of each record or
object that the transaction will update.

2. Perform transaction logic. Have the transaction work with its
private copy of the records or states, using them as its source of
data and updating them.

3. Commit the updates. After obtaining locks on all of the records
or objects that the transaction has updated, verify that no other
transactions have modified them. This is usually done by compar-
ing their version number or timestamp with the private copies.
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If any records or objects have been modified, abort the transaction.
Otherwise, store the values in the private copies into the records or objects.

When implementing this pattern, it is crucial that no updates occur
until after all of the locks that a transaction will need have been obtained.

CONSEQUENCES

© The Optimistic Concurrency pattern allows transactions to be more
effectively multithreaded under heavy loads than more pessimistic
ways of coordinating concurrent updates.

® When there are concurrent transactions that will modify the same
records or objects, there is a bigger performance penalty with opti-
mistic concurrency than with more pessimistic policies. Pessimistic
policies can cause otherwise concurrent transactions to be performed
serially. Optimistic concurrency can result in transactions’ having to
be aborted and restarted. It is possible for a transaction to be aborted
multiple times before it is finally able to finish.

IMPLEMENTATION

Sometimes you may want to use optimistic concurrency with records or
objects that do not have version numbers or timestamps. There are some
strategies to work around this deficiency.

One strategy is to use the timestamp or version number of one record
or object to control updates to another. This requires the cooperation of all
transactions. If the record or object with the version number or timestamp
is not naturally part of a transaction, then including it in a transaction
adds overhead.

Another strategy is to compare the contents of a record or object with
its original contents. This avoids the overhead of adding extraneous records
or objects to a transaction. However, in some cases this can be at the expense
of transactions’ losing their guarantees of consistency and durability.

Consider the following sequence of events:

Transaction 1 reads record X. Transaction 2 reads record X.

Transaction 2 commits changes to record X.

Transaction 3 reads records X and Y.

Transaction 3 commits changes to records
X and Y that cause record X to contain
what it contained before.

Transaction 1 sees that record X
contains the same as it did before, so
it commits its changes to record X.




300 m CHAPTER SEVEN

In this sequence of events, a lengthy transaction begins by reading
record X. While that transaction is processing, another transaction
changes the contents of record X. A third transaction comes along and sets
the contents of record X to what they were when the first transaction
started. Because the lengthy transaction relies on the contents of record X
to determine if another transaction has modified it, it modifies the record
since it cannot tell that there have been intervening transactions.

KNOWN USES

SQL server and Sybase allow optimistic concurrency to be specified as the
means of concurrency control.

Some groupware applications that allow people to collaborate on
tasks use optimistic concurrency. In such applications, response time is
improved by not having to wait for locks. Because these types of applica-
tions have user interfaces that are designed around the principle of direct
manipulation, it is generally obvious to all users when there is a conflict
between what users are doing. This usually causes users to avoid conflict-
ing changes. When conflicts result in pauses in actions and actions’ being
aborted, the results are generally understood and acceptable.

CODE EXAMPLE

The code example updates a row in a database table using optimistic con-
currency.

class Updater {
private boolean gotLock = false;

After this example fetches the row to be updated, it asynchronously
attempts to get a lock on the row. After the thread that gets the lock is fin-
ished, the value of the gotLock variable is true if it was successful in get-
ting a lock on the row.

void update(Connection conn, String id)
throws SQLException {
try {

Here is where this example gets the row to be updated without lock-
ing the row.

Statement myStatement = conn.createStatement();
String query;
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query = "SELECT tot_a, tot_b, version, ROWID"
+ " FROM summary tb"
+ " WHERE unit_id=" + id;
ResultSet result;
result = myStatement.executeQuery(query);
result.next();
BigDecimal totA = result.getBigDecimal(1l);
BigDecimal totB = result.getBigDecmial(2);
long version = result.getLong(3);
String rowID = result.getString(4);
result.close();

At this point, the values from the row in question have been fetched,
including the values for a lengthy computation and the row’s version
number.

The call to getLock returns immediately while it asynchronously gets
a lock on the row in question. While getLock is getting the lock, a call to
the doTt method performs a lengthy computation to produce a value that
will be used to update the row.

Thread locker;

locker = getLock(myStatement, rowID, version);
totB = doIt(totA, totB);

locker.join();

The call to getLock returns the thread that is responsible for asyn-
chronously getting the lock on the row in question. After getLock returns,
a call to doIt computes a value that will be used to update the row in
question. After the value is computed, a call to the thread’s join method
ensures that the update will not proceed until after the attempt to lock the
row is complete.

The value of the gotLock variable will be true if the attempt to lock
the row in question succeeded. If the lock attempt succeeded, the update
proceeds and the transaction is committed.

if (gotLock) {
String update;
update = "UPDATE summary_tb"

+ " SET tot_b='" + totB + "'"

+ " WHERE ROWID='" + rowID + "'";
myStatement .executeUpdate (update) ;
conn.commit () ;

} else {
conn.rollback();
Y // if
myStatement.close();
} catch (InterruptedException e) {
conn.rollback();
return;
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} // try
} // update()

Finally, here is the getLock method that asynchronously gets a lock.

private Thread getLock(final Statement myStatement,
final String rowID,
final long version) {
Thread lockThread = new Thread() {
public void run() {
String query;
query = "SELECT version FROM summary tb"
+ " WHERE ROWID='" + rowID + "'"
+ " FOR UPDDATE";
ResultSet r;
try {
r = myStatement.executeQuery(query);
gotLock = (version==r.getLong(1l)):;
r.close();
} catch (SQLException e) {
gotLock = false;
} // try
} // run()
};
lockThread.start();
return lockThread;
} // getLock(String)

} // class Updater

RELATED PATTERNS

ACID Transaction. The Optimistic Concurrency pattern can be
used in the implementation of the ACID Transaction pattern.

Static Locking Order. The Static Locking Order pattern may be
used with the Optimistic concurrency pattern to avoid dead-
locks.

Object Replication. The Optimistic Concurrency pattern can be
used in the implementation of the Object Replication pattern.
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This pattern is partially based on material that appears at [Lea99], though
not in the form of a pattern.

SYNOPSIS

By nature, many servers are presented with a steady stream of tasks to per-
form that must each be performed in their own thread. Creating a thread
is a relatively expensive operation. Avoid the expense of creating a thread
for each task by reusing threads. Manage the threads in a way that ensures
that the total number of threads never exceeds a predetermined maximum.

CONTEXT

You are designing the server portion of an application for backing up files
over a network. The way the application will work is that each computer
schedules the client portion of the program to run once a day. When the
client portion of the program runs, it sends the contents of files that need
to be backed up to the server.

If the server can only receive one file at a time and more than one
computer is trying to send a file to the server at the same time, then all but
one computer will be waiting for their turn. In most situations, there is a
limited window of time in which all backups must be done. Because the
amount of time for finishing all backups is limited, designing the server to
only receive one backup file at a time may prevent the backups from fin-
ishing in time. You need a design that allows the server to use time more
efficiently.

One way for the server to use time more efficiently is to allow it to
receive more than one backup file at a time. To make that happen, you
design the server to use a different thread for each backup file it is receiv-
ing at the same time.

Once the server program is able to receive multiple files, the next per-
formance improvement you make is to tune the server program to take
advantage of the multiple file systems of the host on which it resides.

You find that you need to make yet another performance improve-
ment. After analyzing the performance of the server software, you decide
that improving the way that it manages threads would result in a signifi-
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cant performance boost. Your analysis indicates that there are two main
problems with the way that threads are currently being used:

® Sometimes, there are more active threads than the environment can
efficiently support.
® A disproportionately large amount of time is spent in creating threads.

You solve both of these problems by using a thread pool. A thread
pool allows threads that have completed a task to be reused for other
tasks. A thread pool can be used to limit the number of threads that are
being used at one time.

FORCES

@ A program, such as a server, is presented with an open-ended set of
concurrent tasks to perform. Each task is independent of the other
tasks. Each task should be performed in its own thread.

© The cost of creating threads is relatively high, both in terms of time
and memory.

© There is an optimal number of threads that a server should be run-
ning at one time. If too many threads are running at the same time,
the overall throughput of a program goes down. If too few threads
are running, resources are underutilized.

® Threads that run tasks that last indefinitely are bad candidates for
reuse, since the tasks that they run may never terminate.

SOLUTION

Keep a pool of idle threads. When a thread finishes a task, add it to the
pool of idle threads. The next time a thread is needed to run a task, if there
are any threads in the pool, use one of those threads instead of creating a
new one. If there are no idle threads in the pool, create a new thread
unless the number of threads managed by the thread pool equals a prede-
termined maximum. If the thread pool has already created its maximum
number of threads, then tasks that need threads to run will wait until an
existing thread managed by the thread pool becomes idle.

Figure 7.6 shows the roles that classes and interfaces play in the
Thread Pool pattern. Here are descriptions of these roles:

Executor. An interface in this role defines a method that can be
passed a Runnable object for the purpose of executing it. The
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FIGURE 7.6 Thread Pool pattern.

Executor interface is implemented by classes that are responsi-
ble for controlling the execution of tasks.

ThreadPool. Classes in this role implement the Executor interface.

They manage a pool of threads used to execute tasks passed to
them.

Runnable. In order for its instances to contain logic that can be

executed in its own task, classes must implement the interface
java.lang.Runnable. Runnable objects are passed to a
ThreadPool object’s execute method which places them in a
queue or similar data structure. Runnable objects stay in the
queue until an idle worker object takes them out of the queue
and executes them.

Worker. wWorker objects have a thread associated with them. Their

purpose is to run the tasks encapsulated by the Runnable
objects passed to the ThreadPool. When a Wworker object is not
running a task, it is waiting to get its next Runnable object from
the ThreadPool.

ThreadPool objects generally limit the number of worker
objects that exist at any one time. By limiting the number of
Worker objects, they limit the number of threads that they use
which keeps the machine that they are running on from being
swamped with too many threads.
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CONSEQUENCES

© Using the Thread Pool pattern may reduce the amount of time a pro-
gram spends creating threads by allowing threads to be reused.

® Some Java virtual machines perform thread pooling behind the
scenes. In such environments, the Thread Pool pattern will not gener-
ally reduce the amount of time a program spends creating threads.
The only notable exception is when a thread pool object implements
an application-specific policy to more intelligently allocate threads to
tasks than the environment’s thread pooling.

© The Thread Pool pattern provides a way of controlling the maximum
number of threads that are running at one time. This can ensure that
the number of concurrently running threads does not exceed the
scheduling or memory resources of the host a program is running on.
If demand exceeds the availability of these resources, throughput
goes way down.

@ If tasks need more threads than the one that performs the top-level
logic of the task, managing the additional threads with the same
thread pool as the top level thread can lead to deadlock. This can
happen when all of a thread pool’s threads are busy and all of the
tasks its threads are running are waiting for the thread pool to allo-
cate another thread to them. In this situation, all tasks are waiting for
the thread pool to allocate a thread to them and the thread pool is
waiting for one of them to finish so it can reuse its thread.

There are measures you can take to handle some of these situa-
tions. You can have the thread pool run a task with the same thread
that requested the task rather than running it in its own thread.
Though this avoids an immediate deadlock, it also avoids the con-
currency of using a separate thread. For many applications, this is
unacceptable.

Another way to avoid deadlock is to allocate all the threads a
task will need at the same time. This is practical only if it is possible
for the thread pool to know in advance how many threads the task
will need.

IMPLEMENTATION

Some JVMs internally pool threads. When a Java program is running on
such a JVM, the Thread Pool pattern may not reduce the amount of time
spent creating threads. Use of the Thread Pool pattern may even increase
the amount of time spent on thread creation by making the JVM’s internal
thread pooling less effective.
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When Tasks Must Wait for a Thread

One reason to use a thread pool is to smooth out the load on a server over
time by limiting the number of threads it uses to perform tasks. This
implies that if tasks arrive when there are no idle threads to run them, they
must wait for an idle thread. Managing tasks waiting for a thread is an
important implementation issue. It can be especially important when tasks
arrive at a consistently faster rate than they are processed.

One way to manage waiting tasks is to put them in a queue. Putting
waiting tasks in a queue ensures that they are run in the order in which
they arrive. You can choose other scheduling policies by choosing another
data structure, such as a priority queue.

If it is possible for tasks to arrive at a faster rate than they are pro-
cessed, it is possible for a queue to grow indefinitely. If a queue gets too
large, then the amount of storage it takes up can be a problem, causing a
shortage of available storage. You can avoid the queue’s getting too long by
placing a limit on the length of the queue.

If there are no idle threads available to process a task and the queue is
at its maximum length, then it will not be possible to process the task in the
normal way. The most reasonable alternatives are to either reject the task or
use the thread that presents the task to the thread pool to perform the task.

Another possibility is to allow the length of the queue to grow beyond
its normal maximum under exceptional circumstances. For a policy like
this to work, you need to present the thread pool with enough information
about each task for it to make this sort of decision.

The Thread Pool pattern assumes that tasks to be run are indepen-
dent of each other, so they can be run in an arbitrary order without any
problems. This can cause tasks that depend on other tasks to fail. It may
be possible to accommodate tasks with dependencies by replacing the
queue with a data structure that reflects the dependencies.

Managing the Number of Threads
in a Thread Pool

To promote reasonable and predictable performance, you use the Thread
Pool pattern to maintain a stable number of threads. However, rigidly
enforcing a strict number of threads at all times can be wasteful. The only
situation in which always maintaining a constant number of threads is the
best policy is one where the tasks arrive at regular intervals and all involve
about the same amount of work. In such situations, providing a fixed level
of resources to service a fixed workload can be a very efficient design.

For most servers, the rate at which tasks arrive varies over time and
the tasks vary in the amount of work they involve. For this reason, it is
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usually best if a thread pool does not create a thread until it is needed.
Once a thread pool has as many threads as it has been configured for, it
normally does not create more threads.

If tasks arrive faster than they can be processed, the thread pool
will queue the tasks. Thread pool implementations may impose a maxi-
mum queue length. When a new task is presented to a thread pool and
the queue is at its maximum length, then a thread pool may create a lim-
ited number of additional threads before resorting to other ways to dis-
pose of the task.

At the other extreme, if there are sometimes big gaps of time between
the arrival of tasks, most or all of the threads controlled by a thread pool
may be idle. If idle threads consume memory or CPU cycles that could be
put to better use, then when idle threads are unlikely to be needed they
should be killed and made eligible for garbage collection. A reasonable
heuristic for predicting if an idle thread will soon be needed is that the
longer the thread has been idle, the longer it is likely to continue being
idle. A simple way to implement this is to establish a maximum idle time.
If a thread in a thread pool is idle longer than the maximum idle time,
then the thread pool kills the thread and allows it to be garbage collected.

Thread Creation

Some applications may require a thread pool to create and use instances
of a specialized subclass of java.lang.Thread. For example, it may need
priorities to be handled specially or it may need threads to work differently
than normal with ThreadLocal objects.

You can use the Factory Method pattern (described in Volume 1) to
design a thread pool implementation that can be easily configured by its
clients to create instances of an arbitrary subclass of Thread. This typically
works by designing the ThreadPool class to have a method that can be
passed a factory object; the ThreadPool object delegates the responsibility
of creating Thread objects to the factory object.

Shutting Down a Thread Pool

There are a few different approaches to consider when organizing the
orderly shutdown of a Thread Pool. The most conservative approach is to
simply not allow the Thread Pool to accept any new tasks. When all of the
previously accepted tasks are finished, the Thread Pool can shut down.
This is a conservative approach. It assumes that the tasks will all eventu-
ally terminate without any intervention. It places no upper bound on how
long it will take to shut a thread pool down.
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A somewhat more aggressive approach is to discard any queued tasks
waiting to be run. There should be a provision for sending notification of
the tasks’ being discarded to any interested objects.

An even more aggressive approach to shutting down a thread pool is
to perform an intervention on the running tasks that hastens their termi-
nation. You may want the thread pool to wait a certain amount of time
before it intervenes, to allow tasks to come to their normal completion.

When the thread pool does intervene, there are two tactics for it to
try. The first is to call the interrupt method of the Thread object that is
running a task that it wants to terminate. If the task is well behaved, it will
detect that its thread has been interrupted and terminate itself in a reason-
able amount of time.

There is no good way to tell how long a reasonable amount of time
should be. Therefore, after an arbitrary amount of time, if a task has not
terminated after its thread has been interrupted, the thread pool should
assume that the task will not terminate itself. In this situation, there are no
good options. The simplest option is to do nothing. If the resources the
task is using need to be recycled, then doing nothing is unsatisfactory.

A thread pool can attempt to force the termination of a task by call-
ing the Thread object’s stop method. The stop method will succeed in ter-
minating a task in many cases, when an interrupt fails. In order for
interrupt to succeed, a task must periodically check to see if its inter-
rupted flag is set and, if it is, take appropriate action. On the other hand,
the stop method requires no cooperation from a task in order to terminate
it. To succeed, the stop method simply requires that a task does not catch
ThreadDeath, Error, or Throwable. Alternatively, if it does catch such
objects, it must rethrow them.

The problem with using the stop method to terminate a task is that it
works by causing a thread to throw an exception from wherever a task is
executing. Unless code is carefully crafted to account for this possibility, it
is possible for an unplanned exception thrown by the stop method to
cause a method to exit in a way that leaves objects in an inconsistent state.

ThreadLocal Objects

The use of java.lang.ThreadLocal objects in an environment that uses
the Thread Pool pattern to manage threads makes possible a rather
difficult-to-diagnose bug. An assumption that underlies the use of
ThreadLocal objects is that a given thread is always associated with the
same task. If the association in a ThreadLocal object between a thread
and a value may persist beyond the life of a task, then the value may be
inappropriately used for the next task that the thread runs.
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KNOWN USES

The Thread Pool pattern is used by a great variety of server programs to
allow their concurrency properties to be tuned to match their environment
and workload. The WebLogic application server uses a thread pool to man-
age the threads it uses to run servlets. The Voyager ORB uses a thread pool
to manage the threads that service remote object calls. Multithreaded data-
base managers such as Oracle use a thread pool internally to manage con-
current database requests.

CODE EXAMPLE

The code example for this pattern is a sample implementation of a thread
pool.

A thread pool should be able to queue tasks. Before looking at the
ThreadPool class, we will first look at a Queue class that it uses.

public class Queue {
private ArrayList data = new ArrayList():
private int maxQueueSize = Integer.MAX VALUE;

This Queue delegates the storage of objects to an ArrayList object. It
also imposes a maximum length on queues. When the length of a queue is
greater than or equal to the maximum length, any attempts to put another
object in the queue will wait until the length of the queue is less than the
maximum value. The default maximum length is the largest value that can
be represented by an int. For practical purposes, this places no real con-
straint on the length of a queue, because Java limits the length of an array
to that value.

The first method listed below puts an object at the end of the queue.
If the size of the queue is equal to or greater than the current value of
maxQueueSize, then this method will wait until the size of the queue
shrinks to less than maxQueueSize.

synchronized public void put (Object obj)
throws InterruptedException {
if (Thread.currentThread().isInterrupted()) {
throw new InterruptedException();
} // if isInterrupted
if (obj==null) {
throw new IllegalArgumentException("null");

} //if null
while (data.size()>=maxQueueSize) {
try {
wait();

} catch (InterruptedException e) {



Concurrency Patterns m 311

return;
} // try
} // while
data.add(obj);
notify();
} // put(Object)

The next put method is similar to the previous one. The difference is
that it takes a second argument, which is the maximum number of milli-
seconds it should wait if the queue is at its maximum size. After waiting
that long, it simply returns without adding the object to the queue. The
method’s caller can tell if the object was added to the queue because it
returns true if is was able to add the object.

Something else both put methods have in common is that if they are
called in a thread that has been interrupted, they both throw an
InterruptedException.

synchronized public boolean put(Object obj, long msecs)
throws InterruptedException {
if (Thread.currentThread().isInterrupted()) {
throw new InterruptedException();
} // if isInterrupted
if (obj==null) {
throw new IllegalArgumentException("null");
} //if null
long startTime = System.currentTimeMillis();
long waitTime = msecs;
while (data.size()>=maxQueueSize) {
waitTime = msecs - (System.currentTimeMillis()
- startTime);
if (waitTime <= 0) {
return false;
} // if waitTime
wait (waitTime);
} // while
data.add(obj);
notify();
return true;
} // put(Object, long)

The next get method removes the object from the front of the queue
and returns it. If the queue is empty, it waits until there is an object in the
queue.

synchronized public Object get()
throws InterruptedException {
while (data.size() == 0){
wait();
} // while
Object obj = data.remove(0);
notify();
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return obj;
Y // get()

The next get method is similar to the previous one. The difference is
that it takes an argument that limits the length of time that the method
will wait when the queue is empty. When the queue is empty and it has
already waited the given number of milliseconds, the method stops waiting
and returns null.

synchronized public Object get(long msecs)
throws InterruptedException {
long startTime = System.currentTimeMillis();
long waitTime = msecs;

if (data.size()>0) {
return data.remove(0);
} // if data.size()
while (true) {
waitTime = msecs - (System.currentTimeMillis()
- startTime);
if (waitTime <= 0) {
return null;
} // if waitTime
wait (waitTime);
if (data.size()>0) {
Object obj = data.remove(0);
notify();
return obj;
} // if data.size()
} // while
} // get(long)

Concluding the Queue class, here is the method for setting the maxi-
mum queue length:

public void setMaxQueueSize(int newValue) {
maxQueueSize = newValue;
} // setMaxQueueSize (int)
} // class Queue

Here is the class that is responsible for managing thread pools:
public class ThreadPool implements Executor {

This constant is the default value for the maximum pool size. For
practical purposes, this value Integer .MAX_VALUE is the same as infinity.

public static final int DEFAULT MAXIMUMPOOLSIZE
= Integer.MAX VALUE;

This constant is the default value for the normal pool size. For most
applications, the normal pool size should be set to a value greater than one.
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public static final int DEFAULT NORMALPOOLSIZE = 1;

This constant is the default maximum time to keep worker threads
alive while waiting for new tasks. Its value is one minute.

public static final long DEFAULT_MAXIDLETIME = 60 * 1000;

The variables that contain the maximum pool size and normal pool
size are declared volatile to avoid having to explicitly make all of the
code that references them synchronized.

protected volatile int maximumPoolSize
= DEFAULT_ MAXIMUMPOOLSIZE;

protected volatile int normalPoolSize
= DEFAULT NORMALPOOLSIZE;

maximumPoolSize is the maximum number of threads that the
thread pool will have in the pool at any one time. The pool does not auto-
matically preallocate threads. Instead, it creates a thread only when a
task is passed to the ThreadPool object’s execute method, a thread is
needed to run it, the task cannot immediately be queued, and there are
fewer threads than the maximum. The default value is very large, so you
should set the maximum pool size with the constructor or the set method
unless you are just using the thread pool to minimize thread construc-
tion overhead.

Handing off tasks to idle threads requires synchronization that in
turn relies on JVM scheduling policies to ensure progress. Because of this,
it is possible that a new thread will be created even though an existing
worker thread has just become idle because it has not progressed to the
point at which it can accept a new task. This phenomenon tends to occur
on some JVMs when bursts of short tasks are executed.

normalPoolSize is the normal number of threads to be in the pool,
when needed. When a new task is received, and fewer than the normal
number of threads are in the pool, then a new thread is always created to
handle the task, even if other threads are idly waiting for work. Otherwise,
a new thread is created only if there are fewer than the maximum and the
task cannot immediately be queued.

protected long maxIdleTime = DEFAULT_ MAXIDLETIME;

If once in a pool a thread stayed in the pool forever, it would impede
garbage collection of otherwise idle threads. This would defeat the
resource-management benefits of pools.

One solution would be to use soft references. However, this would
impose costly and difficult synchronization issues. Instead, threads are
simply allowed to terminate and thus be eligible for garbage collection if
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they have been idle for the maximum idle time. The value of this parame-
ter represents a trade-off between the effectiveness of garbage collection
and the overhead of construction time. In most current Java VMs, thread
construction and cleanup overhead is on the order of milliseconds. The
default maximum idle value is one minute, which means that the time
needed to construct and then garbage collect a thread is expended at most
once per minute.

To establish worker threads permanently, pass a negative argument to
setMaxIdleTime.

While tasks are waiting for a thread to perform them, they are in this
queue:

protected final Queue handOff;
/** Lock object for protecting poolSize and threads map */
protected Object poolLock = new Object();

/**
* Current pool size. Relies on poolLock for all locking.
* But is also volatile to allow simpler checking inside
* worker thread runloop.
*/

protected volatile int poolSize = 0;

/**
* An object to map active worker objects to their active
* thread. This is used by the interruptAll method.
* It may also be useful in subclasses that need to
* perform other thread management chores.
* All operations on the Map should be done holding
* a synchronization lock on poolLock.
*/
protected final Map threads;

/**
* This object delegates the creation of threads to the
* factory object referenced by this variable.
*/
private ThreadFactoryIF threadFactory
= new DefaultThreadFactory():;

/* *
* Construct a new pool with all default settings
*/
public ThreadPool() {
this (new Queue(), DEFAULT MAXIMUMPOOLSIZE);
} // constructor()

/**

* Construct a new pool with all default settings except
* for maximum pool size.
*/
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public ThreadPool (int maxPoolSize) {
this(new Queue(), maxPoolSize);
} // constructor (int)

/**
* Construct a new pool that uses the supplied Queue for
* queuing, and with all default parameter settings.
*/
public ThreadPool (Queue queue) {
this(queue, DEFAULT MAXIMUMPOOLSIZE);
} // constructor (Queue)

/**
* Construct a new pool that uses the supplied Queue for
* queuing, with all default parameter settings except
* for maximum pool size.
*/
public ThreadPool (Queue queue, int maxPoolSize) {
maximumPoolSize = maxPoolSize;
handOff = queue;
runWhenBlocked () ;
threads = new HashMap();
} // constructor (Queue, int)

/**
* Return the maximum number of threads that may
* gimultaneously execute. New tasks are handled
* according to the current blocking policy once this
* limit is exceeded.
*/
public int getMaximumPoolSize() ({
return maximumPoolSize;
} // getMaximumPoolSize

/**

* Set the maximum number of threads that the pool should
* have. Decreasing this value does not immediately kill
* existing threads; they may later die when idle.

* @exception IllegalArgumentException

* if less or equal to zero. (It is not

* considered an error for the maximum pool
* size to be less than the normal pool

* size. However, in this case there are no
* guarantees about behavior.)

*/

public void setMaximumPoolSize(int newMaximum) {
if (newMaximum <= 0) throw new IllegalArgumentException();
maximumPoolSize = newMaximum;

} // setMaximumPoolSize (int)

/**
* Return the normal number of threads to be in the pool.
* (Default value is 1). If pool size is smaller than

m 315
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* this when a new task is received, a new thread is
* started to handle the task.
*/
public int getNormalPoolSize() {
return normalPoolSize;
} // getNormalPoolSize()

/**
* Set the normal number of threads to use.
* @exception IllegalArgumentException if less than zero.

* (It is not considered an error to set the
* normal to be greater than the maximum.

* However, in this case there are no

* guarantees about behavior.)

*/

public void setNormalPoolSize(int newNormal) {
if (newNormal < 0) {
throw new IllegalArgumentException();
Yy // if
normalPoolSize = newNormal;
} // setNormalPoolSize(int)

/**
* Return the current number of threads in the pool.
* This number is just a snapshot, and may change immediately.
*/
public int getPoolSize() {
return poolSize;
} // getPoolSize()

/**
* Set the object that will be used to create threads.
*/
public void setThreadFactory(ThreadFactoryIF newValue) {
threadFactory = newValue;
} // setThreadFactory(ThreadFactoryIF)
/**
* Return the current thread factory object.
*/
protected ThreadFactoryIF getThreadFactory() {
return threadFactory;
} // getThreadFactory()

/**
* Create and start a thread to handle a new task.
* Call only when holding poolLock.
*/
protected void addThread(Runnable task) {
++poolSize;
Worker worker = new Worker (task);
Thread thread = getThreadFactory().createThread(worker);
threads.put (worker, thread);
thread.start();
} // addThread(Runnable)
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A ThreadPool object does not normally create threads until there is a
task that needs it (and not always then). If you know in advance that there
will be a need for a certain number of threads, creating the threads in
advance of their need may result in a more consistent demand for CPU
cycles and better throughput. This will generally be the case if you create
the threads when there would otherwise be a lower demand for CPU cycles.

There is an interaction between creating threads in advance and the
maximum idle time setting. When a thread is created in advance of its need,
it may be idle for some time after it is created. If a thread is created so far in
advance that it is idle for longer than the current setting of maxIdleTime,
then the thread will be removed from the thread pool without ever being
used. This defeats the whole purpose of creating threads in advance.

The createThreads method creates threads and adds them to the
thread pool. Its argument is the number of threads that it is requested to
create. If creating the requested number of threads would cause the size of
the pool to exceed the maximum pool size, then the createThreads
method creates fewer than the requested number of threads. The
createThreads method returns the actual number of threads that it cre-
ated, which may be as few as zero.

public int createThreads(int numberOfThreads) {
int ncreated = 0;
for (int i1 = 0; i < numberOfThreads; ++i) {
synchronized (poolLock) {
if (getPoolSize() < getMaximumPoolSize()) {
++ncreated;
addThread(null) ;
} else {
break;
Y // if
} // synchronized
} // for
return ncreated;
} // createThreads

The next method, interruptall, requests all threads in the pool to
terminate by interrupting them. The worker objects that provide the top-
level logic for threads check for interruption after each task executed by
their thread finishes. They terminate the thread if it has been interrupted.
If the logic of the task checks for its thread’s being interrupted, then the
thread will terminate sooner. When new tasks are presented to the thread
pool, new threads are created to replace the terminated threads, if needed.

Unfinished tasks are never dropped upon interruption. It is simple to
clear interruption between tasks, but implementation characteristics of
interruption-based methods are uncertain enough to warrant this conser-
vative strategy. It is a good idea to be equally conservative in the way you
code the tasks that run within pools.
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public void interruptAll() {
// Synchronized to avoid concurrentModification exceptions
synchronized (poolLock) {
for (Iterator it = threads.values().iterator();
it.hasNext(); ) {
Thread t = (Thread) (it.next());
t.interrupt();
} // for
} // synchronized
} // interruptAll()

Normally, before shutting down a pool by a call to the interruptall
method, you should be sure that all clients of the pool are themselves ter-
minated, in order to avoid hanging or losing commands. Additionally, you
may wish to call the drain method to remove (and return) unprocessed
tasks from the queue after shutting down the pool and its clients. If you
need to be sure these tasks are processed, then you can explicitly call the
run method of each task in the list returned by the drain method.

The drain method removes all unprocessed tasks from pool’s queue,
and returns them in a java.util.List. This should be used only when
the pool has no active clients; otherwise, it is possible that the method will
loop, removing tasks as clients put them in. This method can be useful
after shutting down a threadpool (by a call to interruptall) to deter-
mine if there are any pending tasks waiting to be processed. You can then,
for example, execute all unprocessed tasks via code along the lines of:

List tasks = pool.drain();

for (Iterator it = tasks.iterator(); it.hasNext();) {
( (Runnable) (it.next()) ).run();

} // for

Here is a listing of the drain method:

public List drain() {
boolean wasInterrupted = false;
Vector tasks = new Vector():;
for (;;) {
try {
Object x = handOff.get(0);
if (x == null)
break;
else
tasks.addElement (x);
} catch (InterruptedException ex) {
// postpone re-interrupt until drained
wasInterrupted = true;
} // try
} // for
if (wasInterrupted) Thread.currentThread().interrupt();
return tasks;
} // drain()
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* Return the number of milliseconds to keep threads
* alive waiting for new tasks. A negative value
* means to wait forever. A zero value means not to wait
* at all.
**/
public synchronized long getMaxIdleTime() {
return maxIdleTime;
} // getMaxIdleTime ()

* Set the number of milliseconds to keep threads
* alive waiting for new tasks. A negative value
* means to wait forever. A zero value means not to wait
* at all.
*/
public synchronized void setMaxIdleTime(long msecs) {
maxIdleTime = msecs;
} // setMaxIdleTime (long)
/**
* This method is called when a thread terminates.
*/
protected void workerDone (Worker w) {
synchronized(poolLock) {
--poolSize;
threads.remove (w) ;
} // synchronized
} // sooner

/**
* Get a task from the gqueue
*/
protected Runnable getTask() throws InterruptedException {
long waitTime = getMaxIdleTime();
if (waitTime >= 0) {
return (Runnable) (handOff.get (waitTime));
} else {
return (Runnable) (handOff.get());
}y // if
} // getTask()

/**
* Private class that encapsulates the top-level logic for
* pooled threads that runs tasks.
*/
protected class Worker implements Runnable {
protected Runnable firstTask;

Worker (Runnable firstTask) {
this.firstTask = firstTask;
} // constructor (Runnable)

public void run() {
try {
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Runnable task = firstTask;
firstTask = null;
if (task != null) {
task.run();
} // if
// Continue working until max lowered
while (getPoolSize() <= getMaximumPoolSize()) {
task = getTask();
if (task != null) {
task.run();
} else {
break;
Y // if
} // while
} catch (InterruptedException e) {
// let this just fall through so the thread
// dies a quiet death.
} finally {
workerDone (this) ;
} // try
} // run()
} // class Worker

When a task is passed to a thread pool’s execute method, normally
either it gets a thread to run the task or it is put in the queue of tasks wait-
ing for a thread. However, neither of those actions is possible if the num-
ber of threads in the pool is already the maximum, and the queue of
waiting tasks is at its maximum length.

When it is not possible either to run a task or to queue it, then some
less desirable strategy must be followed. This implementation of the
Thread Pool pattern uses the Strategy pattern to manage and remember
the currently selected strategy. There is a protected interface named
BlockedExecutionStrategy. This interface defines a method called
blockedAction that takes an argument that is a task. There are also pro-
tected classes that implement the BlockedExecutionStrategy interface.
The current strategy for handling tasks that cannot be run or queued is rep-
resented as an instance of a class that implements the BlockedExecution-
Strategy interface. Tasks that cannot be run or queued are passed to the
BlockedExecutionStrategy object’s blockedaction method, which is
expected to take appropriate action.

This ThreadPool class defines three private classes that implement
the BlockedExecutionStrategy interface. You can subclass the
ThreadPool class to add more subclasses, and/or create subclasses of
these strategy classes. If so, you will also want to add or modify the corre-
sponding methods that set the current BlockedExectionStrategy.

protected interface BlockedExecutionStrategy {
/*‘k
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* Return true if successfully handled so, execute
* should terminate; else return false if execute loop
* should be retried.
*/
public boolean blockedAction(Runnable task);
} // class BlockedExecutionStrategy

The next class implements the BlockedExecutionStrategy interface
with logic that uses the thread that calls the ThreadPool object’s execute
method to synchronously run the given task. This is the default strategy for
handling tasks that cannot be run or queued.

protected class RunWhenBlocked
implements BlockedExecutionStrategy {
public boolean blockedAction(Runnable task) {
task.run();
return true;
} // blockedAction (Runnable)
} // class RunWhenBlocked

The next class implements the BlockedExecutionStrategy interface
with logic that causes the thread that calls the ThreadPool object’s
execute method to wait until the given task can be queued.

protected class WaitWhenBlocked
implements BlockedExecutionStrategy {
public boolean blockedAction(Runnable task) {
try {
handOff.put (task);
} catch(InterruptedException ex) {
// Propagate interrupts
Thread.currentThread() .interrupt();
} // try
return true;
} // blockedAction (Runnable)
} // class WaitWhenBlocked

The next class is the last of the BlockedExecutionStrategy classes.
It implements the BlockedExecutionStrategy interface with logic that
quietly discards the given task, so that the task will not be performed.

protected class DiscardWhenBlocked
implements BlockedExecutionStrategy {
public boolean blockedAction(Runnable task) {
return true;
} // blockedAction (Runnable)
} // class DiscardWhenBlocked

The blockedExecutionStrategy instance variable refers to the cur-
rent BlockedExecutionStrategy strategy object.
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protected BlockedExecutionStrategy blockedExecutionStrategy;

/**
* Return the strategy object for blocked execution
*/
protected synchronized
BlockedExecutionStrategy getBlockedExecutionStrategy() {
return blockedExecutionStrategy;
} // getBlockedExecutionStrategy ()

Because the classes that implement the BlockedExecutionStrategy
interface are protected, it does not make any sense to have a set method
for the current strategy. To use such a method, other classes would need
visibility to the BlockedExecutionStrategy interface and the classes that
implement it. Instead, the ThreadpPool class has a public method that cor-
responds to each strategy.

/**

* Set the policy for blocked execution to be that

* the current thread executes the task if

* there are no available threads in the pool.

*/
public synchronized void runWhenBlocked() {

blockedExecutionStrategy = new RunWhenBlocked();

} // runWhenBlocked()

/**
* Set the policy for blocked execution to be to
* wait until a thread is available.
*/
public synchronized void waitWhenBlocked() {
blockedExecutionStrategy = new WaitWhenBlocked();
} // WaitWhenBlocked ()

/**
* Set the policy for blocked execution to be to
* return without executing the request
*/
public synchronized void discardWhenBlocked() {
blockedExecutionStrategy = new DiscardWhenBlocked();
} // discardWhenBlocked()

Finally, here is the execute method that other classes call to have a
ThreadPool object perform a task in a pool-supplied thread. The method
normally returns when the task has been handed off for (possibly later)
execution.

public void execute(Runnable task)
throws InterruptedException {
while (true) {
synchronized(poolLock) {
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// Ensure normal number of threads

if (getPoolSize() < getNormalPoolSize()) {
addThread (task) ;
return;

Y // if

// Try to give to existing thread
if (handOff.put(task, 0)) {
return;
} // if put
// There was no immediately available thread,
// so try to add a new thread to pool.
if (getPoolSize() < getMaximumPoolSize()) {
addThread (task) ;
return;
} // if maximumPoolSize
} // synchronized

// Cannot hand off and cannot create -- ask for help
if
(getBlockedExecutionStrategy() .blockedAction(task)) {
return;
} // if blockedAction
} // while

} // execute(Runnable)
} // class ThreadPool

The ThreadpPool class delegates the creation of new threads to
objects that implement the ThreadFactoryIF interface.

public interface ThreadFactoryIF {
/**
* Return a Thread that runs the given Runnable object.
*/
public Thread createThread(Runnable r);
} // interface ThreadFactoryIF

If no ThreadFactoryIF object is explicitly given to a ThreadpPool
object to use, then by default it uses an instance of the befaultThread-
Factory class to create threads.

public class DefaultThreadFactory implements ThreadFactoryIF {
public Thread createThread(Runnable r) {
return new Thread(r):;
} // createThread (Runnable)
} // class DefaultThreadFactory

Finally, here is the Executor interface:

public interface Executor {
public void execute(Runnable task)
throws InterruptedException ;
} // interface Executor
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RELATED PATTERNS

Object Pool. The Thread Pool pattern is a specialized form of the
Object Pool pattern described in Volume 1.

Factory Method. Implementations of the Thread Pool pattern may
use the Factory Method pattern (described in Volume 1) to allow
greater flexibility in how they create new threads.

Singleton. The Singleton pattern (described in Volume 1) is often
used with the Thread Pool pattern to ensure that all classes that
want to use a ThreadPool object use the same ThreadPool
object.

Guarded Suspension. Implementations of the Thread Pool pattern
directly or indirectly use the Guarded Suspension pattern to
manage the queuing of tasks.
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SYNOPSIS

A cache can be used to keep a local copy of data from a remote data
source. From time to time, the content of the data in the remote data
source may change. You want a local cache to reflect such changes in a
remote data source. Ensure that the data in the local cache matches the
remote data source within a bounded amount of time by considering data
in a cache to have a maximum useful lifetime.

CONTEXT

Suppose you work for a company whose business is to facilitate barter
exchanges. People tell the barter exchange system what they are interested
in offering for trade or trading for. The system matches up people who are
parties to a potential trade. At that point, some negotiation may occur.

To arrive at a successful negotiation, it can be helpful to the parties
involved to have information about recent trades that involved similar
goods or services. To provide this information, the barter exchange system
maintains a database of recent trades. Because people most commonly
trade with others in the same geographical area, the barter exchange sys-
tem is organized as a distributed system with a database and transaction
processing system in each of its geographically distributed offices.
Transaction histories, like the rest of the database, are geographically dis-
tributed.

Though most transactions are between people in the same geographi-
cal area, when people want to look at recent trades to help determine their
negotiating strategy, they tend to be interested in other geographic areas.
However, the time spent gathering transaction histories across geographi-
cal areas noticeably increases the time these queries take. You want to
enhance the software for the barter exchange system to reduce the amount
of time spent gathering remote transaction histories. With this goal in
mind, you analyze usage statistics. You discover that some types of queries
are more popular than others. You also discover that the popularity of
some queries varies with the time of day or with the season. The approach
that you choose to reduce the time spent gathering remote transaction his-
tories is to cache the results of such queries locally, using the Cache
Management pattern described in Volume 1.
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When people ask for transaction histories, they want histories to
include the most recent transactions. One of the drawbacks to using a
cache is that without taking any special measures, the contents of a cache
do not reflect updates to the data source that the contents came from.
Simply caching transaction histories will result in the cache’s accumulat-
ing old histories that are of diminishing interest as they get older. One way
to keep a cache up-to-date would be to have data sources push updates to
all caches as they occur. This makes sense if all or even most of the
changes will be useful in the cache. However, after analyzing usage statis-
tics, you find that the majority of transactions are never queried. Pushing
all updates to every cache would be a big waste of resources.

It may be possible, using statistical techniques, to build a model that
predicts which updates should be sent to the caches. However, the effort
involved in creating and maintaining such a model is significant. It can be
difficult to be certain of the ongoing quality of the result of such a model.
To the extent that the future reflects the past, a statistical model can be very
effective. However, conditions sometimes change, so the model will need to
be reworked whenever its success in predicting which transaction will be
needed by caches goes down. Instead of creating a statistical model, you
decide on another technique that provides a good result with little up-front
effort and negligible maintenance. The technique you select is based on the
observation that the need for transaction histories to be recent is not abso-
lute. It is sufficient that there be a guarantee that transaction histories in
caches are no older that some predetermined amount of time, such as 20
minutes. All that is needed to provide such a guarantee is for transaction
histories older than the guaranteed time to be automatically removed from
the cache. Because of the way it is usually implemented, this guaranteed
maximum age of objects in a cache is called the time-to-live.

FORCES

© A program needs read access to objects that are expensive to access
or fetch. Such objects typically come from an external or remote
source, such as a database.

© To reduce the amount of time it takes to access or fetch the most
commonly accessed or fetched objects, you can place them in a local
cache that takes little time to access.

© You need to ensure that the state of the objects in the cache is rela-
tively current. It is sufficient to guarantee that the state of the objects
in the cache is current within some specified amount of time.

® If there is a need to ensure that the state of the objects in the cache is
absolutely current, then you must send updates from their sources to
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the caches. If objects in the cache are updated more frequently than
they are accessed, then you are better off not having a cache.

SOLUTION

Keep objects that may take a long time to fetch, such as those from remote
or external sources, in a local cache that can be accessed quickly. Ensure
that the states of objects in the cache are relatively current by associating a
predetermined time-to-live with each object in the cache. After an object’s
time-to-live has elapsed, the object is removed from the cache. By assign-
ing and enforcing the time-to-live, you guarantee that the states of the
objects in the cache are current within the predetermined amount of time.
Figure 7.7 shows the roles that classes play in the Ephemeral Cache Item
pattern. Here are descriptions of the roles shown in Figure 7.7:

Client. Instances of classes in this role delegate the responsibility of
obtaining access to specified objects to a CacheManager object.

ObjectKey. Instances of the ObjectKey class identify the object to
be fetched.

CacheManager. Client objects request objects from a Cache-
Manager by calling its fetchObject method. The argument to
the fetchObject method is an ObjectKey that identifies the
object to fetch. The fetchobject method works by first calling
the Cache object’s fetchObject method. If that fails, it calls the
ObjectFetcher object’s fetchObject method and passes the
object to the cache. The next time that the CacheManager is
asked to produce the same object, it may be able to get it back
from the cache. The point of this is that getting the object back
from the Cache object is faster than getting the object from the
ObjectFetcher.

ObjectFetcher. ObjectFetcher objects are responsible for fetching
or creating objects that are not in the cache.

Cache. A cache object is responsible for managing the collection
of cached objects so that, given an 0bjectKey object, it quickly
finds the corresponding object. The CacheManager object
passes an ObjectKey to the Cache object’s fetchObject
method to get an object from the cache. If the CacheManager
object does not get the requested object from the fetchobject
method, then it requests the object from the ObjectFetcher
object. If the ObjectFetcher object returns the requested
object, then it will pass the fetched object to this object’s
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FIGURE 7.7 Ephemeral Cache Item pattern.

addobject method. The addobject method adds the object to
the cache. If the cache is full, the addobject method may
remove an object from the cache to make room for the object
that it is adding to the cache.

ObjectDeletionScheduler. After an object is added to a cache,
it passes that object and its time-to-live to the
ObjectDeletionScheduler object’s scheduleRemoval
method. After the given time-to-live has elapsed, the
ObjectDeletionScheduler object removes the object from
the cache by calling the Cache object’s removeObject method.

CONSEQUENCES

© Removing objects from a cache after their time-to-live has elapsed is
an effective way of limiting the number of objects in a cache. It pre-
vents the cache from becoming excessively large.

® Removing objects from a cache after their time-to-live has elapsed
generally lowers the hit rate for the cache. The shorter the time-to-
live, the lower the hit rate drops.
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IMPLEMENTATION

The most direct measure of a cache’s effectiveness is its it rate. The hit
rate is the percentage of object fetch requests that the cache manager satis-
fies with objects stored in the cache. If every request is satisfied with an
object from the cache, then the hit rate is 100 percent. If no request is sat-
isfied, then the hit rate is 0 percent. Instrumenting the cache to measure
its own hit rate can be helpful in empirically determining a good value for
the cache contents’ time-to-live.

The simplest way to assign a time-to-live value to objects in the cache
is to assign the same value to all objects. If there is some way to predict
how soon individual objects are likely to be updated, then it may be best to
use the prediction to individually determine the time-to-live for each object.
For example, consider the situation described under the “Context” heading.

Each historical transaction placed in the cache comes from a data-
base that is dedicated to a geographical region. Some regions have pre-
dictably high transaction volumes and others have predictably low
transaction volumes. In databases for high-volume regions, transaction
histories are likely to become out-of-date sooner than in databases for low
volume regions. For this reason, making the time-to-live longer for trans-
action histories from low-volume regions than for transaction histories
from high-volume regions will result in a higher hit rate, while minimally
impacting the currency of the cache’s contents.

There are a number of other considerations related to the
performance-tuning of caches in general. These are discussed in the
“Implementation” section of the Cache Management pattern in Volume 1.

KNOWN USES

Most database managers that support distributed databases implement
some form of the Ephemeral Cache Item pattern. For example, Oracle sup-
ports something called a snapshot, which is a local copy of a table that is
updated periodically.

Distributed file systems such as NFS use the Ephemeral Cache Item
pattern.

CODE EXAMPLE

The code example for this pattern is based on the transaction history prob-
lem under the “Context” heading. We will assume the existence of a
TransactionHistory class. Each TransactionHistory object contains a
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historical transaction for a kind of goods or service. We will also assume
that an TtemID object identifies the kind of goods or service. This brings us
to the interesting portion of the example: the classes in the Cache and
ObjectDeletionScheduler roles.

The code listing begins with the TransactionHistoryCache class,
which is responsible for caching TransactionHistory objects. The class
in the ObjectDeletionScheduler role is an inner class in the
TransactionHistoryCache class.

class TransactionHistoryCache {
private static final int TIME_TO_LIVE
= 15*60*1000; // 15 Minutes

TransactionHistory objects are always assigned the same time-to-
live, which is 15 minutes.

/**
* We use a linked list to determine the least recently
* used TransactionHistory. The cache itself is implemented
* by a Hashtable object. The Hashtable values are linked
* list objects that refer to the actual TransactionHistory
* object.
*/

private Hashtable cache = new Hashtable();

/**
* This is the head of the linked list that refers to the
* most recently used TransactionHistory.
*/

LinkedList mru = null;

/**
* This is the tail of the linked list that refers to the
* least recently used TransactionHistory.
*/

LinkedList lru = null;

/*k*
* The maximum number of TransactionHistory objects that
* may be in the cache.
*/

private final int MAX CACHE SIZE = 80;

/**
* The number of TransactionHistory objects currently in
* the cache.
*/

private int currentCacheSize = 0;

This instance variable references the object that schedules and per-
forms the removal of transaction histories from the cache.
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private HistoryDeletionScheduler deletionScheduler
= new HistoryDeletionScheduler();

* Objects are passed to this method for addition to the
* cache. However, this method is not required to
* actually add an object to the cache if the addition is
* contrary to its policy for which objects should be
* added. This method may also remove objects already in
* the cache in order to make room for new objects.
* @param history The TransactionHistory that is being
* proposed as an addition to the cache.
*/
public void addHistory(TransactionHistory history) {
ItemID id = history.getID();
if (cache.get(id) == null) { // if history not in cache
// Add history to cache, making it the most
// recently used.
if (currentCacheSize == 0) {
// treat empty cache as a special case
lru = mru = new LinkedList();
mru.profile = history;
} else { // currentCacheSize > 0
LinkedList newLink;
if (currentCacheSize >= MAX CACHE SIZE) {
// remove least recently used
// TransactionHistory from the cache.
newLink = lru;
lru = newLink.previous;
cache.remove (id);
currentCacheSize--;
lru.next = null;
} else {
newLink = new LinkedList();
} // if >= MAX CACHE_SIZE
newLink.profile = history;
newLink.next = mru;
mru.previous = newLink;
newLink.previous = null;
mru = newlLink;
Y // if 0
// put the now most recently used history in the
// cache.
mru.expirationTime
= System.currentTimeMillis()+TIME_TO_LIVE;
cache.put (id, mru);
currentCacheSize++;
deletionScheduler.scheduleRemoval (mru) ;
} else { // history already in cache
// addEmployee shouldn’t be called when the object
// is already in the cache. Since that has
// happened, do a fetch so that the object becomes
// the most recently used.
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fetchHistory(id);
} // if cache.get(id)
} // addHistory(TransactionHistory)

private void remove(LinkedList node) {
if (mru==node) {
mru = node.next;
} // if mru
if (lru==node) {
lru = node.previous;
Y // if
if (node.next!=null) {
node.next.previous = node.previous;
} // if node.next
if (node.previous!=null) {
node.previous.next = node.next;
} // if node.previous
cache.remove (node.profile.getID());
} // remove(LinkedList)

* Return the TransactionHistory associated with the given
* ItemID in the cache or null if no TransactionHistory is
* associated with the given ItemID.
* @param id the ItemID to retrieve a transaction history
* for.
*/
public TransactionHistory fetchHistory(ItemID id) {
LinkedList foundLink = (LinkedList)cache.get(id);
if (foundLink == null)
return null;
if (mru != foundLink) {
if ( foundLink == lru ) {
1lru = foundLink.previous;
lru.next = null;
} // if lru
if (foundLink.previous != null)
foundLink.previous.next = foundLink.next;
if (foundLink.next != null)
foundLink.next.previous = foundLink.previous;
mru.previous = foundLink;
foundLink.previous = null;
foundLink.next = mru;
mru = foundLink;
} // if currentCacheSize > 1
return foundLink.profile;
} // fetchHistory(ItemID)

/**
* private doublely linked list class for managing list of
* most recently used transaction histories.
*/
private class LinkedList {
TransactionHistory profile;
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LinkedList previous;

LinkedList next;

long expirationTime;
} // class LinkedList

This private class is responsible for removing objects from the cache
when their time comes.

private class HistoryDeletionScheduler extends Thread {
/**
* ArrayList to keep histories in order of expiration
* time.
*/

private ArraylList expirations = new ArrayList(100);

HistoryDeletionScheduler() {
start();
} // constructor ()

/**
* Schedule the removal of a TransactionHistory by
* putting its LinkedList object in an ArrayList that
* is sorted by expiration time.
*/
synchronized void scheduleRemoval (LinkedList node) {
int insertionIndex = findInsertionIndex(node);
expirations.add(insertionIndex, node);
} // scheduleRemoval (LinkedList)

/**
* Determine where in a LinkedList an object belongs
* based on expiration times.
*/
private int findInsertionIndex(LinkedList node) {
long thisExpiration = node.expirationTime;
int upperBound = expirations.size()-1;

// Check common cases first

if (upperBound<0) {
return 0;

}y // if 0O

if (getExpiration(upperBound-1)<=thisExpiration) {
return upperBound;

}y // if

// use binary search to find correct index.
int lowerBound = 0;
while (upperBound>=lowerBound) {
int midpoint
= (upperBound-lowerBound)/2 + lowerBound;
long midpointExpiration;
midpointExpiration = getExpiration(midpoint);
if (midpointExpiration==thisExpiration) {
// For the equals case, midpoint or
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// midpoint+l will do. midpoint+l may be
// faster to insert in an ArrayList.
return midpoint+l;
Y // if
if (midpointExpiration>thisExpiration) {
lowerBound = midpoint+l;
} else { // midpointExpiration<thisExpiration
upperBound = midpoint-1;
Y // if
} // while
return 0;
} // findInsertionIndex (LinkedList)

/*k*
* Return the expiration time of the LinkedList object
* at the nth index in expirations.
*/
private long getExpiration(int n) {
LinkedList node = (LinkedList)expirations.get(n);
return node.expirationTime;
} // getExpiration(int)

/**
* Top level logic for removing histories from the
* cache.
*/
public synchronized void run() {
long now;

try {
while(!isInterrupted()) {
while (expirations.size()==0) {
now = System.currentTimeMillis();
long nextExpiration = getExpiration(0);
if (now < nextExpiration) {
wait (nextExpiration - now);
Y // if
} // while 0
remove ( (LinkedList)expirations.get(0));
expirations.remove(0);
} // while !isInterrupted
} catch (InterruptedException e) {
Y // try
} // run
} // class HistoryDeletionScheduler
} // class TransactionHistoryCache ()

RELATED PATTERNS

Cache Management. The Ephemeral Cache Item pattern is a
refinement of the Cache Management pattern described in
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Volume 1. That discussion includes a much more detailed dis-
cussion of caching.

Scheduler. The Ephemeral Cache Item pattern uses the Scheduler
pattern (described in Volume 1).

Heavyweight/LightWeight. Application clients may use the
Ephemeral Cache Item pattern with the Heavyweight/
Lightweight pattern to manage lightweight objects.
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SYNOPSIS

Implement the ability to restore the original state of objects altered by
nested atomic transactions by saving the original state of an object on a
stack. This technique is most commonly used for transactions that only
alter local objects or objects that are otherwise cheap to access.

CONTEXT

You are part of a team designing a point-of-sale system* for convenience
stores. The system architecture will be based on multiple terminals (cash
registers) connected to a central processor that performs such services as
recording transactions, supplying pricing information to the terminals,
and tracking inventory levels. Because convenience stores vary greatly in
their budget, you have been given some hard constraints on the hardware
resources that can be devoted to the central processor. You find that your
central processor software needs some of the services that a database man-
ager would provide, but you are unable to find an off-the-shelf database
manager that has all of the features you need that will also fit within your
hardware constraints.

You decide to implement your own minimal database manager in
order to satisfy all of your requirements. One of those requirements is to
support nested transactions. To support nested transactions, you must be
able to restore the state of all of the objects that a transaction has modified
if the transaction is aborted.

FORCES

@ You have a requirement to support atomic transactions. This means
that if a transaction is aborted, all of the objects it modified must be
restored to their original state.

© You have a requirement to support nested transactions.

© You may not know all of the objects that a transaction will modify
until the transaction is complete.

* A point-of-sale system is a high-tech cash register.
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® In some environments, it is important to allow multiple transactions
to run concurrently while ensuring that they are isolated from each
other, so that each transaction runs as if it is the only one running at
that time. To make this happen, it is necessary for transactions that
only need read access to an object’s state to see the object’s original
state while there is another uncommitted transaction that has modi-
fied the object. You will want to implement this in a way that mini-
mizes the time penalty for transactions that need to find an older
version of an object’s state.

SOLUTION

Use a stack to organize information for restoring the state of objects modi-
fied by a transaction. When a transaction begins, save the position of the
top of the stack so it can be restored to its previous position at the end of
the transaction. Each time the transaction modifies an object it has not
modified before, capture the object’s current state and push the captured
state onto the stack.

Figure 7.8 shows the roles of classes and interfaces that participate in
the Transaction State Stack pattern. Here are descriptions of the roles that
classes and interfaces play in the transaction state stack:

TransactionManager. Classes in this role provide the top-level logic
for managing transactions.

TransactionParticipantIF. This is an interface that must be imple-
mented by all classes that participate in a transaction. Interfaces
in this role declare methods for such purposes as getting a lock
on an object and saving or restoring its state.

TransationParticipant. Classes in this role implement the
TransactionparticipantIF interface with logic that includes
ways for them to participate in locks and to save and restore the
state of an object. In some cases, the stateful object in question
may directly implement the TransactionparticipantIF inter-
face. In most cases, the logic to implement the Transaction-
participantIF interface comes from a decorator object that
wraps the stateful object being manipulated.

StateSavingClass. Methods of a TransactionparticipantIF inter-
face that save an object’s state return an object that encapsulates
the object’s current state. The role of these state-encapsulating
objects’ class is StateSavingClass.

This role is unusual in that classes can fill this role without
sharing any common superclasses or interfaces. The only
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FIGURE 7.8 Transaction state stack.

requirement for classes that fill the statesavingClass role is
that they declare at least two methods. One method must cap-
ture an object’s state and return the state encapsulated in an
object. The other method must take an argument that is an
object returned by the first method and use the information it
encapsulates to restore the state of the stateful object.

Classes in the StateSavingClass role are usually special-
ized to work with a specific TransactionParticipant class.

Stack. Classes in this role implement a Stack data structure.

The collaboration diagram in Figure 7.9 shows the interactions
between the classes and interfaces that participate in the Transaction State

Stack pattern.
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1.
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This signals the start of a transaction to the
TransactionManager object. This causes some bookkeeping to
happen, including setting the number of objects participating
in this transaction to zero.

Add the object p1 to the transaction as read-only participant.

The TransactionManager object gets a lock on p1 and gets an
object that encapsulates the current state of p1.

The TransactionManager object pushes the current state of p1
on the stack.

Add the object p2 to the transaction as writable participant.

The TransactionManager object gets a lock on p2 and gets an
object that encapsulates the current state of p2.

The TransactionManager object pushes the current state of p2
on the stack.

The transaction is aborted.

Pop the saved state of p2 off the stack.
Restore the state of p2 to its saved state.
Release the lock on p2.

Pop the saved state of p1 off the stack.
Restore the state of p1l to its saved state.
Release the lock on p1.

:Stack
2.2: push(s1) s1:StateSaver1
3.2: push(s2)
—> 4.1:s2 :=pop( )
1: startTransaction( ) 4.4:s1 :=pop( )
2:addObject(p1) s2:StateSaver2
3: addObject(p2)
4: abort( ) .
:Transactionmanager
3.1:s2 :=lock( )
2.1:s1 :=lock( ) 4.2: restoreState(s2)
4.5: restoreState(s1) l 4.3: unlock( )
4.6: unlock( )
p1:TransactionParticipanti p2:TransactionParticipant2

FIGURE 7.9 Transaction state stack interactions.
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CONSEQUENCES

© The Transaction State Stack pattern makes it possible for the objects
modified by a transaction to be restored to the state they were in
when the transaction started, even if the transaction is nested in
another transaction.

® The Transaction State Stack pattern does not directly include a way
to cache the current state of objects modified by a transaction. If it is
expensive to fetch or store the current state of an object, then the pat-
tern can be extended to include a caching mechanism at the expense
of complicating its implementation.

® You can use the Transaction State Stack pattern to ensure that trans-

actions are atomic. However, the Transaction State Stack pattern

does nothing to ensure that transactions have any of the other ACID

properties.

G

IMPLEMENTATION

When it is known that a transaction may modify an object, you must lock
the object so that concurrent transactions will not modify it. Immediately
after the transaction acquires a lock on an object is the earliest time that
you can usefully save the object’s state on a stack.

The simplest way to decide when to save an object’s state is to save it as
soon as a transaction acquires a lock on it. Some transactions acquire locks
on objects that they may modify. If they acquire a lock on an object that they
don’t modify, then saving the object’s state is a waste of time. If such transac-
tions may be common, then it is more efficient to postpone saving an
object’s state until just before the first time it is modified by a transaction.

KNOWN USES

Interpreters for dynamically scoped languages often use the Transaction
State Stack pattern to manage the scope of local variables.

Some proprietary applications that edit complex objects use the
Transaction State Stack pattern to manage an undo facility.

Database managers use the Transaction State Stack pattern to man-
age rollback of transactions.

CODE EXAMPLE

This code example is a general-purpose implementation of Transaction-
ParticipantIF interface and the TransactionManager class. Here is a
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listing of the TransactionParticipantIF interface. All objects that par-
ticipate in a transaction must either directly implement the Transaction-
ParticipantIF interface or be wrapped by an adapter object that
implements the TransactionParticipantIF interface.

public interface TransactionParticipantIF {
/*k*

* This method does not return until it can associate a
* lock on the participating object with the current
* thread.
*/
public void lock() ;

/**
* Return an object that encapsulates the state of the
* participating object.
*/

public SnapshotIF captureState() ;

/**
* Restore the state of the participating object from the
* information encapsulated in the given object. The given
* object must have previously been returned by this
* object’s captureState method.
*/

public void restoreState(SnapshotIF state) ;

/**
* Release a previously obtained lock.
*/

public void unlock() ;

} // interface TransactionParticipantIF

Here is a listing of the TransactionManager class. An interesting
thing about the TransactionManager class is that it delegates most of its
work to a private inner class called Transaction. When a transaction is
started, a TransactionManager object creates and associates a
Transaction object with the current thread. This organization is based on
the assumption that transactions are single-threaded. Every time a
TransactionManager object is asked to do something, it uses the
Transaction object that it previously created for the current thread.

public class TransactionManager {
private ThreadLocal myStack;
private ThreadLocal currentTransaction;

The myStack instance variable associates a Stack object with the cur-
rent thread. The stack is used to save the values of objects when they are
locked.

The currentTransaction instance variable associates the current
transaction a thread is working on with that thread. If the transaction is
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nested in another transaction, its enclosing transaction is saved on the stack.
The TransactionManager class’s constructor initializes these variables.

public TransactionManager() {
myStack = new ThreadLocal();
myStack.set (new Stack());
currentTransaction = new ThreadLocal();
} // TransactionManager ()

/**
* Start a new transaction. If there is a transaction in
* progress, the transactions nest.
*/
public void startTransaction() {
getStack() .push(getCurrentTransaction());
setCurrentTransaction(new Transaction());
} // startTransaction()

A TransactionManager object delegates most of the work of its other
operations to the current thread’s current Transaction object.

/**
* Add an object to the current transaction.
*/
public void enroll(TransactionParticipantIF obj) {
checkCurrentTransaction();
getCurrentTransaction().enroll(obj);
} // enroll(TransactionParticipantIF)

/**
* Commit the current transaction.
*/
public void commit () {
checkCurrentTransaction();
getCurrentTransaction().commit () ;
} // commit ()

/**
* Abort the current transaction.
*/
public void abort() {
checkCurrentTransaction();
getCurrentTransaction() .abort();
} // abort()

Here are helper methods that are used by the preceding public methods.

/*k*
* Throw an <code>IllegalStateException</code> if there is
* no current transaction.
*/
private void checkCurrentTransaction() {
if (getCurrentTransaction()==null) {
throw new IllegalStateException("No transaction");
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} //if
} // checkCurrentTransaction/()

/**
* Return the transaction manager stack associated with the
* current thread.
*/
private Stack getStack() {
return (Stack)myStack.get();
} // getStack()

/**
* Return the current Transaction object.
*/
private Transaction getCurrentTransaction() {
return (Transaction)currentTransaction.get();
} // getCurrentTransaction()

/**
* Set the current Transaction object.
*/
private void setCurrentTransaction(Transaction t) {
currentTransaction.set(t);
} //setCurrentTransaction(Transaction)

Transactions are represented as instances of this private class:

private class Transaction {
// Collection of TransactionParticipantIF objects.
private ArrayList participants = new ArrayList();

/**
* Add the given object to this transaction to be
* modified.
*/
void enroll(TransactionParticipantIF obj) {
obj.lock();
getStack() .push(obj.captureState());
participants.add(obj);
} // enroll(TransactionParticipantIF)

/*k*
* commit this transaction.
*/
void commit () {
int count;
count = participants.size();
for (int i=count-1; i>=0; i--) {
TransactionParticipantIF p;
p = (TransactionParticipantIF)
participants.get(i);
p.unlock();
getStack() .pop();



Concurrency Patterns m 345

} // for
Transaction prevTransaction;
prevTransaction = (Transaction)getStack().pop():;

setCurrentTransaction(prevTransaction);

} // commit ()

/**
* Abort this transaction.
*/
void abort() {
int count;
count = participants.size();
for (int i=count-1; i>=0; i--) {
SnapshotIF state;
state = (SnapshotIF)getStack().pop();
TransactionParticipantIF participant
=(TransactionParticipantIF)participants.get(i);
participant.restoreState(state);
participant.unlock();

} // for
setCurrentTransaction( (Transaction)getStack().pop());:

} // abort()
} // class Transaction
} // class TransactionManager

RELATED PATTERNS

ACID Transaction. The ACID Transaction pattern contains more
information about the atomic and isolated properties of trans-

actions.

Decorator. The logic for a TransactionParticipantIF interface
for a class that participates in a transaction is often imple-

mented using the Decorator pattern (described in Volume 1).

Snapshot. The Transaction State Stack pattern uses the Snapshot
pattern (described in Volume 1) to encapsulate the current state
of an object in a way suitable for being put on a stack and possi-

bly being restored later.
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Time Server (349)
Versioned Object (355)
Temporal Property (373)

The patterns in this chapter describe ways that applications manage
time-related data. There are only a few patterns in this chapter. That
should not be taken to mean that handling time is a simple matter. Issues
related to handling and modeling time can be very complex. The small
number of patterns is a symptom that the state of the art related to time is
less well developed than other areas.

347
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This pattern was previously described in [Lange98].

SYNOPSIS

In order for some distributed applications to function correctly, the clocks
on the computers they run on must be synchronized. Ensure that clocks
on multiple computers are synchronized by synchronizing them with a
common clock.

CONTEXT

You are designing an employee timekeeping system. The system
architecture will include multiple timekeeping terminals. Employees
will use the timekeeping terminals to indicate when they begin working
a shift, are done working, and other timekeeping events. The terminals
report timekeeping events to a server that collects the events in a
database.

Employees may use different timekeeping terminals to indicate the
beginning of a shift and the end of a shift. When a timekeeping terminal
reports a timekeeping event, the time of the event is determined by the
timekeeping terminal’s own clock. If the clocks on the different terminals
are not synchronized, the duration of the employee’s shift will appear to be
longer or shorter than it actually was.

FORCES

' An application is distributed over multiple computers.

A distributed application is required to do things at predetermined
times, to ensure the relative order of its actions. If the clocks on the
computers an application is running on are not synchronized, their
differences can cause the application to perform its actions in the
wrong relative order.

' A distributed application records events it receives on different
computers. It is important to accurately determine the elapsed time

©

©

€
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between events, even if the events are received on different
computers.

© Relying on the continuous availability of a single central clock to
determine the time that an event occurs can reduce the availability of
an application, since the application will be unable to function if the
clock becomes unavailable. Relying on a single central clock can also
limit the performance of a distributed application, since relying on a
central clock or any other central resource can result in that
resource’s becoming a bottleneck.

® Relying on a remote clock can introduce inaccuracies into the deter-
mination of the time if the network delays encountered in communi-
cating with the clock vary in an unpredictable way.

SOLUTION

Have each computer that hosts part of a distributed application periodi-
cally set its own clock from the clock of a remote computer that functions
as a time server.

The frequency with which a host synchronizes its clock with the time
server should be often enough that the clocks do not noticeably diverge.
Typically, this is once every hour or two. Though this is more frequent than
may be required to keep clocks synchronized, it serves to minimize the
consequences of the time server’s being unavailable when another com-
puter wants to synchronize its clock with the time server’s.

Communication between a computer requesting the current time
and a time server takes some amount of time. There is no way to know in
advance exactly how long it will take. After a computer has requested the
current time from a time server and it has received the time, it knows the
total elapsed time that the request took. It does not know how long the
request took to reach the time server and it does not know how long the
response took to get from the server to the requesting computer. The
elapsed time between when a request reaches a server and when the
response leaves the server is usually very small. For practical purposes,
the time that it takes for the response to travel from the server to the
requesting computer is the inaccuracy of the response when it reaches the
requesting computer. A reasonable way to estimate this time is to assume
that the time it takes the request to travel from the requesting computer
to the server is equal to the time it takes the response to travel from the
server to the requesting computer. This makes our estimate of the time it
takes for the response to get to the requesting computer one half of the
elapsed time between when the request was issued and the response was
received.
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When the requesting computer receives the current time from a time
server, it adds one half of the elapsed time to the time it receives and uses
that as the actual current time.

CONSEQUENCES

© Given events recorded by different computers, the Time Server pat-
tern allows the times at which those events occurred to be accurately
compared.

@ If the time server becomes unavailable for a long period of time, a
distributed application that relies on the clocks of multiple comput-
ers being synchronized may fail. This situation can generally be
avoided by using multiple time servers, as is discussed under the fol-
lowing “Implementation” heading.

IMPLEMENTATION

The Time Server pattern is most often implemented at the system level
rather than at the application level. If the computers in question are general-
purpose computers that run multiple applications, then implementing the
Time Server pattern at the system level allows all applications that run on
the computer to share the benefits of a single implementation of the Time
Server pattern.

In some cases, it is not possible for a distributed application to
assume that the time clocks of the computers it runs on are synchronized.
In that case, the application must have an application-level implementa-
tion of the Time Server pattern.

By using multiple time servers, you can minimize the effects of
erratic network speeds and greatly increase the availability of the current
time service. Computing the current time by averaging the adjusted results
from multiple time servers minimizes the effects of erratic network speeds.
Using multiple time servers ensures that the failure of a single time server
does not make the current time unavailable.

If the Time Server pattern is implemented at the application level, it
will generally not be possible for the class that implements the pattern to
set the system clock. Instead, the class can keep track of the difference
between the local system time and the time server’s time. By making the
time client class the source of the current time for the rest of the applica-
tion, the time client class can achieve the same effect by applying the dif-
ference between the local and server time to the system time before
returning it. The shortcoming to this approach is that if the local clock is
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set to another time, the time client class will be applying the wrong differ-
ence to the time until it next consults the server.

KNOWN USES

The author is aware of a proprietary employee timekeeping application
that uses the Time Server pattern to synchronize the time on multiple
timekeeping terminals.

The Time Server pattern is used in some point-of-sale systems to syn-
chronize the time in cash registers.

The Time Server pattern is also used in the HP TraceVue Series 50
product. This is used during the birth of a child to track its vital signs.

CODE EXAMPLE

This code example consists of just a simple time server and time client
class. The server implements this interface:

public interface TimeServerIF extends Remote {
// The name of all time servers
public static final String TIME_SERVER _NAME = "time";

/**
* Return the current time
*/
public Calendar currentTime() throws RemoteException;
} // interface TimeServerIF

Here is the time server class that implements the interface:

public class TimeServer implements TimeServerIF {
/**
* Constructor
*/
public TimeServer() throws RemoteException,
MalformedURLException,
UnknownHostException {
// Note that the name TIME_SERVER_NAME is hard-coded,
// which means that only one TimeServer object can
// exist on each host machine.
Naming.rebind (TIME_SERVER NAME, this);
} // constructor()
/**
* Return the current time
*/
public Calendar currentTime() {
return Calendar.getInstance();
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} // currentTime ()
} // class TimeServer

Finally, here is the class that is the server’s client:

public class TimeClient {
private static final long UPDATE_PERIOD
= 1000*60*60; // 1 hour

// difference between the local and server time
private int timeDifference;

private TimeServerIF theTimeServer;

/**
* constructor
*/
public TimeClient (String timeHost)
throws RemoteException,
UnknownHostException,
NotBoundException,
MalformedURLException {
String urlName = "//" + timeHost
+ "/" + TimeServerIF.TIME_ SERVER NAME;
theTimeServer = (TimeServerIF)Naming.lookup (urlName);
new DifferenceUpdater();
} // constructor()

public Calendar currentTime() {
Calendar now = Calendar.getInstance();
now.add(Calendar .MILLISECOND, -timeDifference);
return now;

} // currentTimeMillis()

private class DifferenceUpdater extends Thread {
public void run() {
try {
while (!isInterrupted()) {
try {
long startTime =
System.currentTimeMillis();
Calendar serverTime =
theTimeServer.currentTime();
long endTime =
System.currentTimeMillis();
long latency = (endTime-startTime)/2;
long adjustedTime
= serverTime.getTime() .getTime()+latency;
timeDifference = (int) (endTime-adjustedTime);
} catch (RemoteException e) {
// Nothing to do but keep trying.
} // try
sleep (UPDATE_PERIOD) ;
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} // while
} catch (InterruptedException e) {
// It's all over
} // try
} // run()
} // class DifferenceUpdater
} // class TimeClient

RELATED PATTERNS

Versioned Object. Distributed applications that use the Versioned
Object pattern are likely to also use the Time Server pattern.
Temporal Property. Distributed applications that use the Temporal

Property pattern are likely to also use the Time Server pattern.
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This pattern was previously described in [Lange98].

SYNOPSIS

You may need to access previous or future states of an object. When an
object gets a new state, keep both its new and its previous states. Identify
the states by a timestamp or a version number. Allow access to a specific
state of an object by identifying its timestamp or version number.

CONTEXT

You are designing an inventory management system. The purpose of this
system is to manage information about items that a business uses and
sells. Over time, the information for a given item may change. For exam-
ple, a business may get an item from a different vendor. When that hap-
pens, some of the item’s attributes may be different. In addition to the
vendor, the dimensions, the exact description, and perhaps the weight of
the item also change

The system you design must be able to use an item’s new and old
information at the same time. It must be able to simultaneously describe
the attributes of an item that a business used last week, a newer version of
the item that is sitting on the warehouse shelves now, and the newest ver-
sion of the item that is on order.

As you design the classes for the inventory management system, you
include an TtemDescription class in the design. The nature of the system
requires that when an Item object’s description or state changes, both the
new and old states are kept. The different states of an Item object are dis-
tinguished by the time interval for which the state is valid. When getting
an item’s weight, textual description, or other information from an Item
object, it is necessary to specify a point in time so that the object can know
which of its states to consult. Figure 8.1 is a class diagram that shows a
design that supports this.

In this design, ItemDescription objects do not contain their own state.
Instead, they keep their states in a collection of ITtembescriptionvVersion
objects that is keyed to the time interval for which each state is valid.
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ItemDescription IltemDescriptionVersion
ltemld
> Contai at description:String
. on a!ns state name:String
l *

getltemld( ):long 1 ; 1.
getDescription(when:Calendar):String 1

setDescription(when:Calendar, :String) !

getName(when:Calendar) : String

setName(when:Calendar, name:String) 1

Timelnterval

FIGURE 8.1 Item class design.

FORCES

© The state of an object may change.

© When the state of an object changes, the change usually involves
more than one of the object’s attributes.

> In addition to accessing the current state of an object, you need to

access other states that it had or will have at given points in time.

Objects are stored in a database that does not incorporate the con-

cept of time-based versioning in its data model.

5 If an existing application was designed to only keep the current state
of an object, retrofitting it to keep the object’s different states over
time may involve a very large effort.

€

G

0B

SOLUTION

When the state of a business object changes, do not discard the previous
state. Instead, keep the new state and the previous state, distinguishing
between them by the time intervals when each state is valid. Every time
the state of a business object is fetched, it must happen in the context of a
point in time. Figure 8.2 shows this design.

In this design, the state of a BusinessObject is extrinsic. Its state does
not reside in the BusinessObject instance itself, but in associated instances
of BusinessObjectState. The only attributes of BusinessObject that are
intrinsic (reside within instances of the class) are those that are immutable.
If the value of an attribute of a BusinessObject instance can change, then it
is part of its state and must be kept in a BusinessObjectState instance.

Instances of BusinessObjectState are associated with instances of
BusinessObject through disjoint time intervals. When the get method
for a BusinessObject attribute is passed a point in time, that point in
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BusinessObjectState

s

newVersion(asOf:Calendar)

getObjectld
getAttribute1(when:Calendar)
setAttribute1(newValue, when:Calendar)
getAttribute2(when:Calendar)
setAttribute2(newValue, when:Calendar)

1

attribute1
attribute2

Timelnterval

FIGURE 8.2 Versioned Object pattern.

time is contained by either zero or one of the time intervals. If it is con-
tained by one of the time intervals, then the get method returns the value
that corresponds to the time interval.

When an instance of BusinessObject is first created, an instance of
BusinessObjectState is also created. This instance of BusinessObject-
State contains the initial state of the BusinessObject instance. The time
interval for which the state in this BusinessObjectState applies to the
BusinessObject instance is the entire time it correctly describes the real-
world entity that the BusinessObject represents. In practice, this is often
not known. In absence of this information, an interval stretching from the
beginning to the end of time is usually a good enough approximation.

When something changes about the real-world entity a Business-
Object represents, the usual consequence is that the BusinessObject needs
to be given a new state. This is a two-part process. First the BusinessObject
instance’s newversion method is called to indicate that a new state is being
created. The newversion method is passed the effective time of the change.
Initially the new state is a copy of the state that preceded it. Then the appro-
priate set methods of the BusinessObjectState instance are called to
change the information in the new state to match the real world.

The time interval for the new state is from the effective time to the
end of the interval of the previously latest state. When a new state is cre-
ated, the end time of the interval associated with the previously latest state
changes. The end of the interval becomes the moment in time just before
the effective time of the new state.

Implementations of the Versioned Object pattern involve another
class that has not been discussed yet. This class implements the data struc-
ture responsible for associating BusinessObjectState instances with an
interval of time and finding the appropriate BusinessObjectState
instance for a given point in time. The details of this class are discussed
under the following “Implementation” heading.
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CONSEQUENCES

© The Versioned Object pattern allows an application to recognize that
real-world entities change over time.

® The Versioned Object pattern requires that all access to an object’s
state be in the context of a point in time. It generally becomes the
responsibility of clients of a versioned object to provide the context.
Some designs avoid burdening client objects in that way by offering
calls that assume either the last context or the context corresponding
to the current time. These assumptions can sometimes be a source of
bugs or confusion.

® The Versioned Object pattern increases the amount of memory needed

to store objects. In particular, even if only one attribute changes, all

of the object’s attributes that are stored in a BusinessObjectState

instance must be copied. It also makes the details of persisting an

object more complicated.

pu

IMPLEMENTATION

Data Structure

To implement the Versioned Object pattern, you must include a data struc-
ture in your design that associates an interval of time with each
BusinessObjectState instance. It must also be able to find and fetch the
BusinessObjectState instance associated with an interval that includes a
given point in time.

A class that implements this data structure must ensure it does not
contain any intervals that overlap. If it is presented with an interval that
overlaps any intervals already in the data structure, the conflict should be
resolved in favor of the new interval.

The choice of data structure should be based on the number of states
that the average object is expected to have. If it is just a few, then a simple
data structure based on an array or linked list is generally best. If the num-
ber of versions is expected to be large, some sort of tree-based structure
may be best. The IntervalMap class shown under the “Code Example”
heading is an example of this sort of data structure. It is based on an array.

Loading from Persistent Storage

Another implementation issue comes up when versioned objects are
fetched from a persistent store. This issue is based on the observation
that usually only one or sometimes two states of a versioned object are
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of interest in one session. Because of this, loading all the states of a
BusinessObject instance is something that you will usually want to
avoid. It wastes the time that it takes to load states that will never be
used. It is also wastes memory.

A way to avoid loading states is to create a virtual proxy for each state
that is not loaded.* When the content of a state is actually needed, the
proxy for a state causes the state to be loaded. If you expect that at least
one state will be used and there is a good and simple heuristic for guessing
which state will be used, then it may be a more efficient use of time to load
that one state along with the BusinessObject instance. Most often, that
heuristic will be to load the current state of the BusinessObjectState
instance or its last state.

Saving to Persistent Storage

A different implementation issue comes up when storing an item to persistent
storage. It is unusual for more than one or two states of a BusinessObject
instance to be new or modified since the BusinessObject instance was
loaded from persistent storage. To avoid the overhead of saving states that do
not need to be saved, it is common for BusinessObjectState classes to have
a method that returns true for a BusinessObject instance that needs to be
saved to persistent storage. This method is often called isDirty.

KNOWN USES

The Versioned Object pattern is used in many applications that have to
model real-world entities.

® It is used in manufacturing software.
® It is used in application frameworks.
® It is used in some database engines.

CODE EXAMPLE

The code example for Versioned Object is a class that describes an item
used by a business. Before we look at that class, we will begin by looking at
some support classes. The first class is a class to represent a time interval.

* The Virtual Proxy pattern is described in Volume 1.
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public class Interval {

// The number of milliseconds difference between daylight
// savings and standard time.
private static final long DAYLIGHT SAVINGS_OFFSET

= 60*60*1000;

/**
* An interval that spans all of time.
*/
public static Interval ETERNITY
= new Interval(Long.MIN VALUE, Long.MAX VALUE);

// The start time of this interval, expressed as the number
// of seconds since midnight, January 1, 1970, UTC
private long start;

// The end time of this interval, expressed as the number
// of seconds since midnight, January 1, 1970, UTC
private long end;

/*k*
* Construct an interval with the given start and end time.
* @param start The start of the interval or null if the

* interval starts at the beginning of time.
* @param end The end of the interval or null if the

* interval ends at the end of time.

*/

public Interval(Calendar start, Calendar end) {
long myStart;
if (start==null) {
myStart = Long.MIN VALUE;
} else {
myStart = start.getTime().getTime();
}y // if
long myEnd;
if (end==null) {
myEnd = Long.MAX VALUE;
} else {
myEnd = end.getTime().getTime();
Yy // if
init (myStart, myEnd);
} // constructor(Calendar, Calendar)

/**
* constructor
* @param start

* The start time of this interval, expressed as the
* number of seconds since midnight,

* January 1, 1970, UTC.

* @param end

* The end time of this interval, expressed as the

* number of seconds since midnight,

* January 1, 1970, UTC.

*/
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Interval (long start, long end) {
init(start, end);
} // constructor(long, long)

/**
* Common initialization logic
*/
private void init(long start, long end) {
if (end<start) {

String msg = "Ends before it starts";
throw new IllegalArgumentException(msg);
Yy // if

this.start = start;
this.end = end;
} // init(long, long)

* Return true if the given time is contained in this
* interval. More precisely, this method returns true if
* the given time is greater than or equal to the start of
* this interval and less than or equal to the end of this
* interval.
*/
public boolean contains(Calendar time) {
long tm = time.getTime().getTime();
return tm>=start && tm<=end;
} // contains(Calendar)

/**
* Return true if the given interval is completely
* contained in this interval.
*/
public boolean contains(Interval that) {
return this.start<=that.start && this.end>=that.end;
} // contains(Interval)

/**
* Return true if this interval and the given interval
* share any points in time.
*/
public boolean overlaps(Interval that) {
return this.start<=that.end && this.end>=that.start;
} // overlaps (Interval)

/**
* Return true if this interval ends after the given
* interval.
*/
public boolean endsAfter(Interval that) {
return this.end > that.end;
} // endsAfter (Interval)

m 361
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/**

* Return the start time of this interval, expressed as the
* number of seconds since midnight, January 1, 1970, UTC.
*/

long getStart() { return start; }

/**

* Return the end time of this interval, expressed as the
* number of seconds since midnight, January 1, 1970, UTC.
*/
long getEnd() { return end; }

/**
* Return true if the given object is an
* Interval object with the same start and end.
*/
public boolean equals(Object obj) {
if (obj instanceof Interval) {
Interval that = (Interval)obj;
return (this.start==that.start
&& this.end==that.end);
} //if
return false;
} // equals(Object)

} // class Interval

The IntervalMap class implements a data structure that associates
an Interval object with another object. It also finds the object associated
with an interval that contains a given point in time.

public class IntervalMap implements Serializable {
private static final int GROWTH=2;

// This implementation is based on two parallel arrays.
// The order of their contents is self-adjusting. This
// structure is optimized for lookup operations, not

// adding.

private Interval[] intervals;

private Object[] values;

private int length;

/**
* Constructor for an interval map with a default initial
* gize for internal data structure.
*/
public IntervalMap() {
this(1);
} // constructor()

/**

* Constructor for interval map with at least the specified
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* internal size for its internal data structure.
*/
public IntervalMap(int capacity) {
capacity += GROWTH; // leave room to grow
intervals = new Interval[capacity];
values = new Object[capacity];
} // constructor (int)

/**
* Convenience method to create an IntervalMap
* that maps all of time to the given object.
*/
public static IntervalMap createEternalMap(Object obj) {
IntervalMap im = new IntervalMap();
im.add(Interval.ETERNITY, obj);
return im;
} // createEternalMap (Object)

/**
* Return the number of intervals in this IntervalMap
* object.
*/
public int size() {
return length;
} // size()

* Add an interval to this map. If the given interval
equals an interval already in this map, the given value
* replaces the old value. If the given interval overlaps
an interval already in the map, then the overlapped
interval is replaced with one or two smaller intervals
with the same value as the original interval.

*
*
*/
public synchronized void add(Interval interval,
Object value) {
long theStart = interval.getStart();
long theEnd = interval.getEnd();
for (int i=0; i<length && intervals[i]!=null; i++) {
if (interval.overlaps(intervals[i])) {
long thisStart = intervals[i].getStart();
long thisEnd = intervals[i].getEnd();
if (thisStart < theStart) {
if (thisEnd > theEnd) {
// divide overlapped interval into 3
intervals[i] = new Interval(theEnd+l,
thisEnd);
add (new Interval(thisStart,
theStart-1),
values[i]);
} else {
intervals[i]
= new Interval(thisStart,
theStart-1);

m 363



364 m CuAPTER EIGHT

Y // if
} else if (thisEnd>theEnd) {
intervals[i] = new Interval (theEnd+l,
thisEnd);
Y // if
} // if overlaps
} // for
ensureCapacity(length+l);
intervals[length] = interval;
values[length] = value;
length++;
} // add(Interval, Object)

/**
* Ensure that the capacity of the data structures is
* at least the given size.
*/
private void ensureCapacity(int capacity) {
if (length < capacity) {
Interval[] newIntervals;
newIntervals = new Interval[capacity+GROWTH];
System.arraycopy (intervals,
0, newIntervals,
0, length);
intervals = newlIntervals;
Object[] newValues = new Object[capacity+GROWTH] ;
System.arraycopy(values, 0, newValues, 0, length);
values = newValues;
}y // if
} // ensureCapacity (int)

/**
* Map the given point in time to an object.
* @Qreturn This map maps the given point in time to an

* object using the Interval objects in this map.

* This method returns the mapped object.

* @exception NotFoundException

* If then given point in time is outside of all
* the intervals in this map.

*/

public synchronized Object get(Calendar when)
throws NotFoundException {
for (int i=0; i<length; i++) {
if (intervals[i].contains(when)) {
Object value = values[i];
adjust(i);
return value;
} // if intervals
} // for
throw new NotFoundException(when.toString());
} // get(Calendar)

/**

* Return the object associated with the given interval.
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* If there is an interval that equals the given interval
* in this map, the corresponding value object is returned.
* If there is no such interval, this method returns null.
*/
public synchronized
Object getMatching(Interval thatInterval) {
for (int i=0; i<length; i++) {
if (intervals[i].equals(thatInterval)) {
return values[i];
} // if intervals
} // for
return null;
} // getMatching(Interval)

/*k*
* Adjust the position of the interval and value at the
* given index one up towards the beginning.
*/
private void adjust(int i) {
if (i>0) {
// Adjust position in array
Interval tmpInterval = intervals[i];
intervals[i] = intervals[i-1];
intervals[i-1] = tmpInterval;
Object tmpValue = values[i];
values[i] = values[i-1];
values[i-1] = tmpValue;
} // if i
} // adjust(int)

/*k*
* Return the object associated with the latest interval.
* @exception NoSuchElementException
* If no intervals are in this IntervalMap.
*/
public synchronized Object getLatestValue() {
return values[getLatestIndex()];
} // getlLatestValue()

/**
* Return an iterator over the Interval
* objects in this IntervalMap.
*/
public Iterator intervals() {
return new Arraylterator(intervals);
} // intervals()

/**
* Return an Iterator over the value object in
* this IntervalMap.
*/
public Iterator values() {
return new Arraylterator(values);
} // values()
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/**
* Return the index of the latest interval.
* @exception NoSuchElementException
* if there are no intervals in this IntervalMap.
*/
private int getLatestIndex() {
if (length==0) {
throw new NoSuchElementException();
}y // if
int latestIndex = 0;
Interval latestInterval = intervals[latestIndex];
for (int i=1; i<length; i++) {
if (intervals[i].endsAfter(latestInterval)) {
latestIndex = i;
latestInterval = intervals[i];
Y // if
} // for
return latestIndex;
} // getLatestIndex(int)
} // class IntervalMap

Here is the class promised at the beginning of this section that is used
to describe items that are used by a business.

public class ItemDescription {
private long id; // a unique id

/‘k*
* This object is used to map this object to its states
* over time.
*/

private IntervalMap versions;

/**
* This is true if the intervals in the versions
* IntervalMap have changed.
*/

private boolean versionsDirty = false;

/**
* Constructor for creating an ItemDescription for an
* existing item.
* @param id A unique identifying number.
* @param im An IntervalMap that contains the
* ItemDescriptionVersion objects for this
* ItemDescription.
*/
public ItemDescription(long id, IntervalMap im) {
this.id = id;
versions = im;
} // constructor (long)

/**

* Create a new version of this item that will be
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* effective as of the given point in time. Changes made
* with an effective date at or after this point in time
* will have no effect on item attributes that were

* effective for previous versions. Similarly, changes to
* previous versions of the item will have no effect on

* other versions.

* The initial values for the attributes of the new
* version will be the same as the attributes that were
* previously effective at the given effective date.
*/
public void addvVersionDate(Calendar effectiveDate) {
ItemDescriptionVersion newVersion;
newVersion = getVersion(effectiveDate);
newVersion
= (ItemDescriptionVersion)newVersion.clone();
versions.add(new Interval (effectiveDate, null),
newVersion) ;
versionsDirty = true;
} // addvVersionDate (Calendar)

/**
* Return the ItemDescriptionVersion effective at the
* given point in time.
*/
private ItemDescriptionVersion getVersion(Calendar when) {
try {
return (ItemDescriptionVersion)versions.get(when);
} catch (NotFoundException e) {
String msg;

msg = "No version of this item found for " + when;
throw new IllegalStateException(msg);
} // try

} // getVersion(Calendar)

/**
* Return the IntervalMapover this object’s
* ItemDescriptionVersion objects. This is intended for
* use by classes responsible for persisting instances of
* this class.
*/
IntervalMap getVersionMap() {
return versions;
} // getVersionMap ()

/**
* Return true if the set of intervals in the version'’s
* IntervalMap may not match what is persisted.
*/
boolean isVersionsDirty() {
return versionsDirty;
} // isVersionsDirty ()
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/**
* Clear the flag that indicates that the intervals in
* the version’s IntervalMap may not match what is
* persisted.
*/
void clearVersionsDirty() {
versionsDirty = false;
} // clearVersionsDirty()

/**
* Set the dirty flags of all of this object’s versions.
*/
void setDirty() {
Iterator iter = versions.values();
while (iter.hasNext()) {
((ItemDescriptionVersion)iter.next()).setDirty();
} // while
} // setDirty()

/**
* Clear the dirty flags of all of this object’s versions.
*/
void clearDirty() {
Iterator iter = versions.values();
while (iter.hasNext()) {
((ItemDescriptionVersion)iter.next()).clearDirty();
} // while
} // clearDirty()

/*k*
* Set the textual description for this item.
* @param textualDescription The new description.

@param when A point in time that the description
applies to. This method only sets this
attribute for the item description version
that is effective at this point in time.

*

*

*

*

*/
public void setTextualDescription(String textualDescription,

Calendar when) {
getVersion(when) .setTextualDescription(textualDescription);

} // setTextualDescription(String)

/**

* Return the textual description for this item.

* @param when A point in time that the description

* applies to. This method only sets this
attribute for the item description version
that is effective at this point in time.

*
*
*/
public String getTextualDescription(Calendar when) {
return getVersion(when).getTextualDescription();
} // getTextualDescription()
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/**
* Return a number that uniquely identifies this item.
*/

public long getId(){ return id; }

/‘k*
* Return the name of this item.
* @param when A point in time that the description

* applies to. This method only gets this

* attribute for the item description version
* that is effective at this point in time.
*/

public String getName(Calendar when) {
return getVersion(when).getName();
} // getName()

/**
* Set the name of this item.
* @param name The new name for this item.
* @param when A point in time that the description
* applies to. This method only sets this
* attribute for the item description version
* that is effective at this point in time.
*/
public void setName(String name, Calendar when) {
getVersion(when) . setName (name) ;
} // setName (String)

} // class ItemDescription

= 369

Finally, here is the class that is responsible for encapsulating states of

ItemDescription objects.

class ItemDescriptionVersion implements Cloneable {
private String textualDescription;
private String name;

/**
* This will be true if the attributes of this object are
* known not to match their persisted values.
*/

private boolean dirty = false;

void setTextualDescription(String textualDescription) {
this.textualDescription = textualDescription;
dirty = true;

} // setTextualDescription(String)

String getTextualDescription() {
return textualDescription;
} // getTextualDescription()



370 m CHAPTER EIGHT

String getName () {
return name;
} // getName()

void setName(String name) {
this.name = name;
dirty = true;

} // setName (String)

/**
* Returns a clone of this object.
*/
public Object clone() {
try {
ItemDescriptionVersion theClone;
theClone = (ItemDescriptionVersion)super.clone();
theClone.dirty = true;
return theClone;
} catch (CloneNotSupportedException e) {
// this shouldn’t happen, since we are Cloneable
throw new InternalError();
} // try
} // clone()

/**
* Return true if this object’s attributes may not match
* their persisted values.
*/

boolean isDirty() { return dirty; }

/**
* Clear the flags the indicate that the attributes of
* this object may not match what is persisted.
*
* This is intended for use only by instances of classes
* the implement ItemDescriptionPersisterIF that are
* responsible for persisting ItemDescription
* objects.
*/
void clearDirty() {
dirty = false;
} // clearDirty()

/**
* Force the dirty flags to indicate that the attributes
* of this object may not match what is persisted.
*/

void setDirty() {

dirty = true;
} // setDirty()
} // class ItemDescriptionVersion
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RELATED PATTERNS

Time Server. The Versioned Object pattern is often used in con-
junction with the Time Server pattern to ensure consistent
timestamping of object versions.

Virtual Proxy. The Virtual Proxy pattern (described in Volume 1) is
sometimes used with the Versioned Object pattern to avoid hav-
ing to load all the states of an object from a persistent store.

Temporal Property. The Temporal Property pattern provides an
alternate way of organizing changes in an object’s state over
time. It is more appropriate for classes whose state changes tend
to involve only one attribute at a time.

Lazy Retrieval. In many applications, past and future versions of
an object’s state are used less often than its present state. To
minimize the amount of time spent retrieving state information
that will not be needed, the Lazy Retrieval pattern is often used
to design classes responsible for retrieving versioned objects.
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The implementation of this pattern is similar to the Versioned Object pat-
tern. It uses the same underlying class to create a different organization.
This pattern was previously described in [CEF98].

SYNOPSIS

The values of an object’s attributes may change over time. They usually
change independently of each other. Keep historical values of attributes in
a way that allows clients to get the effective value of a particular attribute
as of a particular time.

CONTEXT

You are designing a human resource management system. The purpose of
this system is to manage information about a business’s employees. Over
time, the information for a given employee may change. For example, over
time an employee may hold different positions within a business. When an
employee is assigned to a new position, the assignment may not be effective
immediately, but instead be effective a few weeks after the assignment is
made.

The system you are designing must be able to display an employee’s
current information, even if the employee is scheduled to take a new posi-
tion in the near future. It must be able to show the position an employee
holds or held at any point in time. It must also be able to handle changes
that happen to an employee’s other attributes that change independently,
such as marital status, benefit elections, and work phone number.

As you design the classes for the human resources management sys-
tem, you include an Employee class in the design. The nature of the system
requires that when an attribute value of an Employee object changes, both
the new and old values are kept. The different values of an attribute are
distinguished by the time interval for which they are valid. When getting
an employee’s position, marital status, or other information from an
employee object, it is necessary to specify a point in time so that the object
can know which of an attribute’s values to use. Figure 8.3 is a class dia-
gram that shows a design that supports this.

In this design, Employee objects do not contain the values of their
own attributes. Instead, they keep their attributes in a collection of objects
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Employee

employeeld

——<> getEmployeeld K>
getPosition(when:Calendar)

getMaritalStatus(when:Calendar)
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Position MaritalStatus

FIGURE 8.3 Employee class design.

keyed to the time interval for which each value is valid. The exception to
this organization is immutable attributes. The value of attributes whose
values do not change can be stored directly in instance variables

FORCES

© The state of an object may change.

© An object’s state changes usually involve just one of the object’s
attributes.

@ In addition to accessing the current values of an object’s attributes,
you may access other values that it had or will have at given points in
time.

® If an existing application was designed to only keep the current val-
ues of an object’s attributes, retrofitting it to keep the attribute’s dif-
ferent values over time may involve a very large effort.

SOLUTION

When the value of one of an object’s attributes changes, do not discard the
previous value. Instead, keep the new and the previous values, distinguish-
ing between them by the time intervals when each value is valid. Doing
this implies that each time the business object fetches the value of one of
its attributes, it must do so in the context of some point in time. Figure 8.4
shows this design.
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In this design, the values of most attributes of a BusinessObject are
separate objects associated with the BusinessObject through a time
interval. An attribute may have multiple values. However, the time inter-
vals for each value of an attribute are disjoint. This means that when the
get method for an attribute is passed a point in time, that point in time
will be contained in either zero or one of the time intervals. If it is con-
tained in one of the time intervals, then the get method returns the value
that corresponds to the time interval.

The only attributes of BusinessObject contained directly within
instances of the class are those that are immutable. If the value of an
attribute of a BusinessObject instance can change, then it must be asso-
ciated with the BusinessObject through a time interval.

When an instance of BusinessObject is first created, the time inter-
val for which the initial values apply to the BusinessObject instance is
the entire time they correctly describe the real-world entity that the
BusinessObject represents. In practice, this is often not known. In the
absence of this information, an interval stretching from the beginning to
the end of time is usually a good enough approximation.

When something changes about the real-world entity a
BusinessObject object represents, the value of a BusinessObject
object’s corresponding attributes changes. The set methods of the

BusinessObiject

objectld

getObjectld

getAttribute1(when:Calendar) : Class1
setAttribute1(newValue : Class1, whenEffective:Timelnterval)

1| getAttribute2(when:Calendar) : Class2

===

< setAttribute2(newValue : Class2, whenEffective: Timelnterval)

v Contains-value 1 1

"""""""""""" ' v Contains-value v Contains-value
5 1. P

1.% H a ! ! 4%
Class1 Timelnterval Class2 E E
attribute1 attribute2 " "
Timelnterval

FIGURE 8.4 Temporal Attribute pattern.
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BusinessObject classes generally take two arguments. One argument is
the new value for the attribute. The other argument is the time interval
that the value applies to. This is often from the current time through the
end of time.

When a new value is provided for an attribute of a BusinessObject,
the time interval it applies to may overlap the time intervals of previously
provided values. The new value takes precedence and the older values are
no longer associated with the attribute during the interval for the new
value.

Implementations of the Temporal Attribute pattern involve another
class that has not been discussed yet. This class implements the data struc-
ture responsible for associating instances with an interval of time and find-
ing the appropriate value object for a given point in time. The details of
this class are discussed under the “Implementation” heading.

CONSEQUENCES

© The Temporal Attribute pattern allows an application to recognize
that real-world entities change over time in different ways. It grace-
fully handles situations where the different ways an entity changes
happen asynchronously.

The Temporal Attribute pattern requires that all fetches of an object’s
attribute values be in the context of a point in time. It also requires
that, when an object’s attribute value is set, the operation is done in
the context of a time interval. It generally becomes the responsibility
of clients of a versioned object to provide the contexts.

Some designs avoid burdening client objects in this way by offer-
ing calls that assume the context corresponding to the current time.
These assumptions can sometimes be a source of bugs or confusion.
® The Temporal Attribute pattern increases the amount of memory

needed to store objects. The more mutable attributes objects have,
the greater the overhead of the pattern. It also makes the details of
persisting an object more complicated.

o8]

IMPLEMENTATION

Data Structure

To implement the Temporal Attribute pattern, you must include a data
structure in your design that associates an interval of time with each
attribute value. It must also be able to find and fetch the attribute value
that is associated with an interval that includes a given point in time.



Temporal Patterns m 317

An invariant this data structure must implement is that it must not
contain any overlapping intervals. If it is presented with an interval that
overlaps any intervals already in the data structure, the conflict should be
resolved in favor of the new interval.

The choice of data structure should be based on the expected number
of values the average attribute is expected to have over time. If it is just a
few, then a simple data structure based on an array or linked list is gener-
ally best. If the number of versions is expected to be large, some sort of
tree-based structure may be best.

The IntervalMap class shown under the “Code Example” heading is
an example of this sort of data structure. It is based on an array. Note that
this is the same data structure used by the Versioned Object pattern.

Loading from Persistent Storage

Another implementation issue comes up when objects organized using the
Temporal Attribute pattern are fetched from a persistent store. This issue
is based on the observation that usually no more than one or sometimes
two values of an attribute are of interest in a given session. Because of this,
loading all the values of all of a BusinessObject instance’s attributes is
something that you may want to avoid if the values are of a significant
size.

KNOWN USES

The Temporal Attribute pattern is used in many applications that have to
model real-world entities.

® It is used in human resource management software.
® It is used in inventory management software.
® It is used in application frameworks.

CODE EXAMPLE

The code example for the Temporal Property pattern is a class used to
encapsulate information about people.

public class Person {
private String mothersMaidenName;

Because a person’s mother’s maiden name is an attribute that never
changes, this information is stored directly in an instance variable.
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However, a person’s own name or phone number may change. For that
reason, the Person class does not store the values of these attributes in
instance variables. Instead, it uses a class called IntervalMap to organize
the values of these attributes.

Instances of the IntervalMap class encapsulate a data structure that
associates values with the time interval that each value is valid. When
asked for the value that is valid at a given point in time, an IntervalMap
object returns the value associated with the time interval that contains the
given point in time.

private IntervalMap nameIntervalMap;
private IntervalMap phoneIntervalMap;

/**
* Constructor
* @param name A PersonName object that encapsulates this person’s
* name information.
*/
public Person(PersonName nameInfo) {
nameIntervalMap =
IntervalMap.createEternalMap (nameInfo);
phoneIntervalMap = new IntervalMap();
} // constructor (PersonName)

/**
* Return the PersonName object that contains this
* person’s name information that is effective at that
* given point in time.
* @param when The point in time that the returned value
* should be effective.
*/
public PersonName getName(Calendar when) throws
NotFoundException {
return (PersonName)nameIntervalMap.get (when);
} // getName (Calendar)

/**
* Set this person’s name information, effective for the given interval.
* @param nameInfo The name information.
* @param effective The interval for which the name
* information will be effective.
*/
public void setName (PersonName nameInfo, Interval effective) {
nameIntervalMap.add(effective, nameInfo);
} // setName (PersonName, Interval)

/**

* Return this person’s phone number that is effective at
* the given point in time.

* @param when The point in time that the returned value
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* should be effective.

* @exception NotFoundException

* if there is no phone number for the given point in time.
*/

public String getPhoneNumber (Calendar when) throws NotFoundException {
return (String)phoneIntervalMap.get (when);
} // getPhoneNumber (Calendar)

/**
* Set this person’s phone number.
* @param phone The phone number.
* @param effective The interval for which the phone number will
* be effective.
*/
public void setPhoneNumber (String phone, Interval effective) {
phoneIntervalMap.add(effective, phone);
} // setPhoneNumber (String, Interval)

/**
* Return this person’s mother’s maiden name.
*/
public String getMothersMaidenName(){ return mothersMaidenName; }

/*
* Set this person’s mother’s maiden name.
*/
public void setMothersMaidenName (String mothersMaidenName) {
this.mothersMaidenName = mothersMaidenName;
} // setMothersMaidenName (String

} // class Person

The IntervalMap and Interval classes that the Person class uses are
the same as for the Versioned Object pattern. The listing is repeated here
for the benefit of readers who are not reading this book in sequence.

The Interval class is used to represent a time interval.

public class Interval {
// The number of milliseconds difference between daylight
// savings and standard time.
private static final long DAYLIGHT_ SAVINGS_OFFSET
= 60*60*1000;

/**
* An interval that spans all of time.
*/
public static Interval ETERNITY
= new Interval (Long.MIN VALUE, Long.MAX VALUE);

// The start time of this interval, expressed as the number
// of seconds since midnight, January 1, 1970, UTC
private long start;
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// The end time of this interval, expressed as the number
// of seconds since midnight, January 1, 1970, UTC
private long end;

/**
* Construct an interval with the given start and end time.
* @param start The start of the interval or null if the

* interval starts at the beginning of time.
* @param end The end of the interval or null if the

* interval ends at the end of time.

*/

public Interval(Calendar start, Calendar end) {
long myStart;
if (start==null) {
myStart = Long.MIN VALUE;
} else {
myStart = start.getTime().getTime();
Y // if
long myEnd;
if (end==null) {
myEnd = Long.MAX VALUE;
} else {
myEnd = end.getTime().getTime();
Y // if
init (myStart, myEnd);
} // constructor(Calendar, Calendar)

/**
* constructor
* @param start

* The start time of this interval, expressed as the
* number of seconds since midnight,

* January 1, 1970, UTC.

* @param end

* The end time of this interval, expressed as the

* number of seconds since midnight,

* January 1, 1970, UTC.

*/

Interval(long start, long end) {
init (start, end);
} // constructor (long, long)

/**
* Common initialization logic
*/
private void init(long start, long end) {
if (end<start) {

String msg = "Ends before it starts";
throw new IllegalArgumentException(msg);
Y // if

this.start = start;
this.end = end;
} // init(long, long)



Temporal Patterns

* Return true if the given time is contained in this
* interval. More precisely, this method returns true if
* the given time is greater than or equal to the start of
* this interval and less than or equal to the end of this
* interval.
*/
public boolean contains(Calendar time) {
long tm = time.getTime().getTime();
return tm>=start && tm<=end;
} // contains(Calendar)

/**
* Return true if the given interval is completely
* contained in this interval.
*/
public boolean contains(Interval that) {
return this.start<=that.start && this.end>=that.end;
} // contains (Interval)

/**
* Return true if this interval and the given interval
* share any points in time.
*/
public boolean overlaps(Interval that) {
return this.start<=that.end && this.end>=that.start;
} // overlaps (Interval)

/**
* Return true if this interval ends after the given
* interval.
*/
public boolean endsAfter(Interval that) {
return this.end > that.end;
} // endsAfter (Interval)

/**
* Return the start time of this interval, expressed as the
* number of seconds since midnight, January 1, 1970, UTC.
*/

long getStart() { return start; }

/**
* Return the end time of this interval, expressed as the
* number of seconds since midnight, January 1, 1970, UTC.
*/

long getEnd() { return end; }

/**
* Return true if the given object is an
* Interval object with the same start and end.

m 381
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*/
public boolean equals(Object obj) {
if (obj instanceof Interval) {
Interval that = (Interval)obj;
return (this.start==that.start
&& this.end==that.end);
Y //if
return false;
} // equals (Object)

} // class Interval

The IntervalMap class implements a data structure that associates
an Interval object with another object and finds the object associated
with an interval that contains a given point in time.

public class IntervalMap implements Serializable {
private static final int GROWTH=2;

// This implementation is based on two parallel arrays.
// The order of their contents is self-adjusting. This
// structure is optimized for lookup operations, not

// for adding.

private Interval[] intervals;

private Object[] values;

private int length;

/**
* Constructor for an interval map with a default initial
* gsize for internal data structure.
*/
public IntervalMap() {
this(1);
} // constructor ()

/**
* Constructor for interval map with at least the specified
* internal size for its internal data structure.
*/
public IntervalMap(int capacity) {
capacity += GROWTH; // leave room to grow
intervals = new Interval[capacityl];
values = new Object[capacity];
} // constructor (int)

/**
* Convenience method to create an IntervalMap
* that maps all of time to the given object.
*/
public static IntervalMap createEternalMap(Object obj) {
IntervalMap im = new IntervalMap();
im.add(Interval .ETERNITY, obj);
return im;
} // createEternalMap (Object)
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/**
* Return the number of intervals in this IntervalMap
* object.
*/
public int size() {
return length;
} // size()

* Add an interval to this map. If the given interval
* equals an interval already in this map, the given value
* replaces the old value. If the given interval overlaps
* an interval already in the map, then the overlapped
* interval is replaced with one or two smaller intervals
* with the same value as the original interval.
*/
public synchronized void add(Interval interval,
Object value) {
long theStart = interval.getStart();
long theEnd = interval.getEnd():;
for (int i=0; i<length && intervals[i]!=null; i++) {
if (interval.overlaps(intervals[i])) {
long thisStart = intervals[i].getStart();
long thisEnd = intervals[i] .getEnd();
if (thisStart < theStart) {
if (thisEnd > theEnd) {
// divide overlapped interval into 3
intervals[i] = new Interval(theEnd+l,
thisEnd);
add (new Interval(thisStart,
thestart-1),
values[i]);
} else {
intervals[i]
= new Interval(thisStart,
thestart-1);
Y // if
} else if (thisEnd>theEnd) {
intervals[i] = new Interval (theEnd+l,
thisEnd);
Y // if
} // if overlaps
} // for
ensureCapacity(length+l);
intervals[length] = interval;
values[length] = value;
length++;
} // add(Interval, Object)

/**
* Ensure that the capacity of the data structures is
* at least the given size.
*/

private void ensureCapacity(int capacity) {

m 383
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if (length < capacity) {
Interval[] newIntervals;
newIntervals = new Interval[capacity+GROWTH];
System.arraycopy (intervals,
0, newIntervals,
0, length);
intervals = newlIntervals;
Object[] newValues = new Object[capacity+GROWTH] ;
System.arraycopy(values, 0, newValues, 0, length);
values = newValues;
Y // if
} // ensureCapacity(int)

/**

* Map the given point in time to an object.
* @return This map maps the given point in time to an

* object using the Interval objects in this map.

* This method returns the mapped object.

* @exception NotFoundException

* If then given point in time is outside of all
* the intervals in this map.

*/

public synchronized Object get(Calendar when)
throws NotFoundException {
for (int i=0; i<length; i++) {
if (intervals[i].contains(when)) {
Object value = values[i];
adjust(i);
return value;
} // if intervals
} // for
throw new NotFoundException(when.toString());
} // get(Calendar)

* Return the object associated with the given interval.
* If there is an interval that equals the given interval
* in this map, the corresponding value object is returned.
* If there is no such interval, this method returns null.
*/
public synchronized
Object getMatching(Interval thatInterval) {
for (int i=0; i<length; i++) {
if (intervals[i].equals(thatInterval)) {
return values[i];
} // if intervals
} // for
return null;
} // getMatching(Interval)

/**
* Adjust the position of the interval and value at the
* given index one up towards the beginning.
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*/
private void adjust(int i) {
if (i>0) {
// Adjust position in array
Interval tmpInterval = intervals[i];
intervals[i] = intervals[i-1];
intervals[i-1] = tmpInterval;
Object tmpValue = values[i];
values[i] = values[i-1];
values[i-1] = tmpValue;
y // if i
} // adjust(int)

/**
* Return the object associated with the latest interval.
* @exception NoSuchElementException
* If no intervals are in this IntervalMap.
*/
public synchronized Object getLatestValue() {
return values|[getLatestIndex()];
} // getLatestValue()

/**
* Return an iterator over the Interval
* objects in this IntervalMap.
*/
public Iterator intervals() {
return new Arraylterator(intervals);
} // intervals()

/**
* Return an Iterator over the value object in
* this IntervalMap.
*/
public Iterator values() {
return new Arraylterator(values);
} // values()

/**
* Return the index of the latest interval.
* @exception NoSuchElementException
* if there are no intervals in this IntervalMap.
*/
private int getLatestIndex() {
if (length==0) {
throw new NoSuchElementException();
Y // if
int latestIndex = 0;
Interval latestInterval = intervals[latestIndex];
for (int i=1; i<length; i++) {
if (intervals[i].endsAfter(latestInterval)) {
latestIndex = i;
latestInterval = intervals[i];
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Y // if
} // for
return latestIndex;
} // getLatestIndex(int)
} // class IntervalMap

RELATED PATTERNS

Time Server. The Temporal Property pattern is often used in con-
junction with the Time Server pattern to ensure consistent
timestamping of property values.

Versioned Object. The Versioned Object pattern provides an alter-
nate way of organizing changes in an object’s state over time. It
is more appropriate for classes whose state changes tend to
involve changes to multiple attributes.
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Persistence Layer (389)
CRUD (407)

Stale Object (413)

Type Conversion (423)
IsDirty (431)

Lazy Retrieval (439)

The patterns in this chapter describe techniques you can use to
store objects in a database. These patterns can be adapted to work with
objects kept in any kind of persistent storage. However, since a database
is the most common sort of persistent storage used for objects, these pat-
terns are written with the assumption that objects are stored in a data-
base.

The patterns in this chapter are interrelated. Figure 9.1 shows the
patterns in this chapter and their relationships.

The Persistence Layer pattern describes how to keep the classes of
persisted objects and the classes that use persisted objects independent of
the persistence mechanism being used.

387
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Persistence Is-implemented-using Lazy

Layer Retrieval

uses

CRUD
Is-implemented-using — Is-implemented-using

Is-implemented-using

Type
Conversion

Stale Object

isDirty

FIGURE 9.1 Relationships between the database patterns.

The CRUD pattern describes how to design the interface methods of
an implementation of the Persistence Layer pattern.

The Stale Object pattern describes how to make update methods
designed using the CRUD pattern more robust.

The Type Conversion pattern describes how to manage differences in
the way a runtime environment and database represent data.

The Dirty pattern is used in the implementation of the CRUD pattern
to avoid unnecessary updates to persisted objects.

The Lazy Retrieval pattern describes an optimization to the
Persistence Layer pattern that avoids retrieving objects from a database
that are not needed.
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This pattern was previously described in [Yoder98]. It is also the most
complicated pattern in this book. If you do not understand it on the first
reading, try reading the related design patterns and then read this pattern
again.

SYNOPSIS

Keep the details of persisting objects and dependencies on a specific kind
of database out of application-specific classes. Do this by organizing
persistence-related details into classes that make up a persistence layer.
Design application classes to perform all persistence operations through
the persistence layer.

CONTEXT

You are designing a system that allows people to barter goods and services.
It must accommodate different kinds of transactions. The business logic
for each kind of transaction will fetch or store objects from a database.

The system has been specified to work with a relational database.
However, you anticipate that the system will eventually migrate to work
with an object-oriented database.

FORCES

You want to organize business logic into classes that will be reusable
and easily maintained.

Mixing the logic of an application and the logic of object persistence
in the same classes makes maintaining them more difficult.

©> Writing SOL and persistence-related logic requires different skills
than writing good business logic. People with both skills sets are rare.
Creating a common superclass for classes responsible for persisting
specific kinds of objects promotes code reuse.

During the life of an application, the data model it uses and the
mechanism it uses for persistent storage may change.

©
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® Using a single interface to persist each kind of object can lead to
using the lowest-common-denominator actions to manage their per-
sistence. This may result in less than optimal ways of organizing
transactions that involve more than one kind of persistent object.

SOLUTION

Organize an application’s design so there is a set of classes and interfaces
that encapsulate the entire responsibility for persisted form of the applica-
tion’s persistent objects. We call this set of classes and interfaces the appli-
cation’s persistence layer. The rest of the application uses interfaces that the
persistence layer provides to persist objects and access already persisted
objects.

The operations a persistence layer provides for each kind of object
are usually organized using the CRUD pattern. For each kind of persisted
object, there may be operations to create its persisted form, retrieve the
persisted form, update the persisted form, or delete the persisted form.

The persistence layer will need to know how to fetch and store each
kind of persistent or data object that the application uses. An exception to
this involving Java’s serialization mechanism is discussed under the fol-
lowing “Implementation” heading.

There are three common ways to organize a persistence layer.

A tool-based approach. This generally involves the purchase of a
commercial tool that is expensive and may involve a significant
learning curve. However, this approach is generally the most
scalable and involves the least maintenance effort over the life-
time of an application.

An organization based on the application’s object model. In this
organization, there is typically an interface defined for persist-
ing each type of data object that the application uses. If the con-
tents of the persisted form of an object are split over multiple
tables or multiple persistent stores, such details are generally
hidden. The application’s classes can be designed without having
to take into account the organization of the persistent store.

This approach generally has a small impact on the design
of application classes. The impact is usually just a requirement
that the class of each kind of data object to be persisted imple-
ments an interface. The interface is independent of the underly-
ing persistence mechanism. It serves as a way for the persistence
mechanism to access information about objects it is asked to
persist.
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An organization based on the schema for the persistent storage
that the application will use. This approach usually results
in the simplest persistence layer. However, it tends to force the
organization of an application’s classes to resemble the organi-
zation of the persistent store. This results in a class design that
is harder to implement and maintain because part of the com-
plexity of persistence must be in the application’s classes.

When using a tool-based approach, the organization of the persis-
tence layer is determined primarily by the tool and its associated infra-
structure. For this reason, there will be no further discussion of what a
design based on this approach looks like.

The diagrams and examples for the Persistence Layer pattern focus
on the second choice, an organization based on the application’s object
model. The typical roles that classes and interfaces play in such an organi-
zation are shown in Figure 9.2.

Here are descriptions of the roles that the classes and interfaces
shown in Figure 9.2 play in the Persistence Layer pattern.

BusinessClass1, BusinessClass2, ... Instances of classes in this
role are an application’s business objects that are stored in and
fetched from persistent storage by a persistence layer.

BusinessClass1PersisterIF, BusinessClass2PersisterIF, . . .
Interfaces in this role declare methods used to persist instances
of a corresponding business class. The names and signatures of
the methods declared in these interfaces vary, but generally fol-
low the CRUD pattern.

PersistableIF. Classes whose instances are to be persisted by the
persistence layer are generally required to implement an inter-
face that is in this role. This interface may simply be a Marker
Interface* or it may declare methods that allow the persistence
layer to determine things about objects to persist. For example,
an interface in this role may declare a method that returns an
object’s object identifier.

BusinessClass1PersisterImpl, BusinessClass2PersisterImpl, . . .
Classes in this role implement the interfaces for managing persis-
tence. There may be a one-to-one correspondence between the
interfaces and classes in this role. When the code that implements
the persistence logic is manually generated, you will typically see

* A marker interface does not declare any members. It is used to determine a Boolean prop-
erty of the classes that implement it. If a class implements the interface, the property is true.
Marker Interface is described as a pattern in Volume 1.
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this one-to-one relationship. Alternatively, there may be one or a
small number of classes in the role that implement multiple inter-
faces and so are responsible for managing the persistence of
instances of multiple classes. You usually see this organization
when the code that implements the persistence logic is generated
at runtime by a code generator. Using a code generator to gener-
ate the persistence code can be a big savings in programmer time.
However, automatically generated code tends not to be as well
optimized as code written by a skilled programmer.

TransactionManagerIF. Interfaces in this role declare methods
that are used to commit or abort transactions.

TransactionManagerImpl. Classes in this role implement the
TransactionManagerIF interface.

PersistenceManager. Classes in this role define methods that are
responsible for creating and returning objects that implement the
BusinessClasslPersisterImpl, BusinessClass2Persister-
Impl, ..., and TransactionManagerIF interfaces. If more than
one type of persistent storage is supported, then the classes’
methods are also responsible for ensuring that the objects they
return are appropriate for the type of persistent storage being
used.

CONSEQUENCES

©

©

G

B

If the underlying technology used to persist an application changes,
then only the persistence layer needs to change. For example, an
application that is initially developed to use a relational database may
be changed to use an object-oriented database or a data cube.

The underlying persistence schema can be changed without modify-
ing any part of an application outside of its persistence layer.

The logical complexities of working with the underlying database are
hidden by the persistence layer from the rest of the application. For
example, most databases require a different call or command to store
a new object than to update the contents of an existing object.

Some operations that are easy to do in SQL, OQL, or another query
language may be difficult to do through a persistence layer. For exam-
ple, determining the number of customers that live in a particular zip
code may be a simple query in SOL. However, working through a per-
sistence layer that does not have a method specifically for that query
generally involves writing a loop with procedural code to get each
customer’s zip code, and if it matches the zip code in question, incre-
ment a count.
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® If a persistence layer is not carefully tuned for a specific application,
it will generally be difficult or impossible to optimize access to the
application’s persistent store at the application level.

IMPLEMENTATION

Transactions

The Persistence Layer pattern is usually implemented on top of one or
more databases or external persistent storage managers. Each of these
databases will have a unique set of strategies for managing locks on behalf
of transactions. Two transactions may run concurrently on top of one data-
base. The same two transactions may be forced to run serially or even
deadlock when run on top of another database.

For example, suppose that you have two transactions that are run-
ning on top of a relational database manager. One transaction fetches rows
from a table. The other transaction updates individual rows in the same
table. Under one database manager, this works perfectly well, because the
database manager is sophisticated enough to do row-level locking and a
shadow write* to the row being updated.

A less sophisticated database manager sees that the fetch of the rows
will involve most of the rows in the table and so it tries to be efficient by
doing a tablelock instead of a rowlock. The transaction to update a row is
now unable to get its rowlock, because the whole table is locked and the
database manager does not do shadow writes. Because these are being
used in a loop where the fetched rows are being used to drive the updates,
the loop hangs since the first update waits forever to get its lock.

For this reason, to remain as independent of the underlying storage
manager as possible, the application should organize all related actions
into the same transaction. The persistence layer cannot enforce such an
organization, but it can be designed to facilitate it:

® The persistence layer should be designed to allow any sequence of oper-
ations on the persistent store to be included in the same transaction.

® The persistence layer should be designed so that every operation in
the persistent store is part of an explicit transaction. If an operation

* A shadow write is a write that is visible only to the transaction that wrote it and to subse-
quent transactions.

#This actually happened to the author with two different database managers. The names of
the database managers are not stated because this behavior is not unique to these database
managers.
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is not part of an explicit transaction, database managers and the like
will treat it as being part of its own implicit transaction.

® To ensure consistent behavior across different persistent stores, the
persistence layer should either prohibit nested transactions* or simu-
late the feature when it runs over a persistent storage manager that
does not support it.

The first item, allowing any sequence of operations on the persistent
store to be included in the same transaction, is generally just a matter of
avoiding anything in the design that prevents it.

The second item is almost as simple. To ensure that every operation is
part of an explicit transaction simply requires a way of putting operations
in the context of an explicit transaction and the appropriate checks being
made to ensure that each operation is in the context of a transaction.

The third item is complicated. The simplest way to resolve it is to
prohibit nested transactions. The reason to resolve the issue this way is
that some popular database engines, such as Oracle, do not support nested
transactions and simulating nested transactions at the persistence layer is
complicated. However, support for nested transactions has the benefit of
increasing reuse of code, which also results in less maintenance effort. If
nested transactions are supported, method A can call method B without
having to be concerned whether method B will perform its own transac-
tion. If a persistence layer does not support nested transactions, then spe-
cial arrangements will have to be made for method B to be aware of its
caller’s transaction and to use it.

Clearly, support for nested transactions is desirable. The problem is
that some persistent stores do not support nested transactions. In some
cases, it may be possible for a persistence layer to simulate support for
nested transactions. However, with some database managers, it is impossi-
ble to run an application that relies on nested transactions.

Complex Objects

Retrieving a complex object may involve retrieving a number of related
objects. If the related objects are not always used, defer loading them by
using the Lazy Retrieval pattern. This means that the methods of the com-
plex object’s class need to assume that links to the appropriate related

* If transactions are allowed to nest, that means that within the same thread, a shorter trans-
action can begin and end while a longer transaction is pending and the following will be true:
If the shorter transaction is committed, it only commits changes that occur after the shorter
transaction started. If the longer transaction is aborted, the changes made during the shorter
transactions are undone, even if the short transaction was committed.
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Caching

objects may be null and to call the persistence layer to retrieve those
objects if they are needed.

For performance reasons, it is often advantageous for classes in the
BusinessClassPersisterImpl role to cache objects they retrieve from
the database. Using a cache benefits performance in two ways.

® Caching saves time. If a requested object is in the cache, there is no
need to spend the time it takes to retrieve the object from the data-
base.

® Caching may save memory. Some complex objects may share the same
related objects. Using a cache may allow them to share the same copy
of the object by avoiding a situation where a different copy of the
related object is loaded for each complex object that refers to it.

The technique of object caching is discussed in detail in the discus-
sion of the Cache Management pattern in Volume 1.

There are some constraints on the use of caching in a persistence
layer. The problem is that objects in the cache cease to be identical to the
objects in the database if another database client updates those objects.
Many database engines do not have a way for the database engine to notify
its clients in real time when an object is modified. Even if a database
engine does allow real-time notifications, if the database has many clients,
notifying all of them may introduce an unacceptable performance prob-
lem. This difficulty does not prevent the use of caching in all cases. There
are two situations in which caching is a useful optimization.

Caching works well for objects that are not expected to always be up-
to-date. For example, objects that summarize real-time data, such as a
business’s gross sales for the current day, may be satisfactory if they are
guaranteed not to be more than ten minutes behind reality. Some objects
have no specific requirement for being up-to-date. For example, in an air-
line reservation system, there is no expectation that just because a particu-
lar seat appears to be available it will actually be available when someone
tries to assign the seat to a passenger. Management of cached objects that
may not be up-to-date is described in more detail by the Cache Consistency
pattern.

The other situation in which caching is a good optimization is when
you can be sure that the state of a persisted object will never change while
a copy of it is in a cache. There are two common cases of this. One case is
if the object in question will never change. An example of this is an object
that describes an event that happened in the past. The other case is when
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you have a lock on a persisted object. This will generally be the case while
you are updating its contents. To update a persisted object, you will tell a
persistence layer to retrieve the object for update. The persistence layer
should then ensure that you have a lock on the object at least until you
update it or the current transaction ends.

While there is a lock on a persisted object retrieved for update, it is
safe to cache the object. Caching the object in this circumstance is gener-
ally not an effective optimization technique, since applications will gener-
ally not retrieve the object again while they have a lock on it. However, it
does allow the persistence layer to detect a relatively common sort of bug.
Sometimes an application will try to update the contents of an object using
an old version of the object. This can result in some of the object’s contents
unintentionally reverting to old values. This is discussed in more detail in
the Stale Object pattern.

Serialization

If there will be no need to do ad hoc queries on a kind of object, it may be
possible to simplify the details of its persistence by using serialization.

Single Instances

There is generally no need to have more than one instance of the
PersistenceManager class or each BusinessClasslPersisterImpl
class. Having only one instance of each BusinessClasslPersisterImpl
class makes updates easier by simplifying the implementation of the Stale
Object pattern. Managing classes so that they have only one instance is
done using the Singleton pattern, described in Volume 1.

KNOWN USES

The author has seen many applications that are designed with a persis-
tence layer. There are also a number of commercial tools, such as
CoCoBase, to help create one.

In addition, entity beans, a form of Enterprise JavaBean, provide a
limited implementation of the Persistence Layer pattern. The Enterprise
JavaBean specification* allows entity beans to have container managed per-
sistence, which relieves the programmer of the burden of manually gener-
ating persistence code. However, this mechanism only works well for

* At the time of this writing, the current version of the Enterprise JavaBean specification is 1.1.
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mapping rows of a table into an object. It is not very helpful for managing
the persistence of complex objects that may be stored in multiple tables,
such as a customer object that may have multiple addresses, phone num-
bers, purchase history, and demographic information associated with it. It
is particularly inappropriate for complex objects that have a one-to-many
relationship with some of their associated objects.

Object-oriented databases such as GemStone provide a persistence
layer.

DESIGN EXAMPLE

The design example for the Persistence Layer pattern is a persistence
framework that is part of a larger open source framework called
ClickBlocks.* This framework comes with classes that support object per-
sistence in relational databases through the JDBC API. Because this exam-
ple is relatively complex, the class diagrams showing its organization are
split into multiple figures. To help in understanding the persistence frame-
work, Appendix A contains an introduction to the use of the persistence
framework. The source code is on the CD distributed with this book.

Figure 9.3 shows some interfaces that are used by the persistence
framework. The rest the persistence framework is shown in Figure 9.4.
Here are descriptions of the interfaces shown in Figure 9.3:

PersistableIF. Every class whose instances are to be persisted
must implement this interface. The interface is a convenient
way for the persistence package to declare references to

* The current version of the persistence package should be available at www.clickblocks.org
as the package org.clickblocks.persistence.

«interface»
PersistablelF
«interface»
PersistencelF
«interface»
CachablelF

getldObject:Object

FIGURE 9.3 Interfaces.
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objects it persists. The interface also defines a method named
getPersistenceInterface that is useful to development
environments and tools that are aware of the persistence
framework.

The getPersistenceInterface method returns a Class
object that encapsulates an interface. The interface it encapsu-
lates is the interface responsible for managing the persistence of
instances of the class that implements the PersistableIF inter-
face. For example, consider a class named Foo that implements
the PersistableIF interface. If the Foo class’s implementation
of the getPersistenceInterface method returns a Class
object that encapsulates an interface named FooPersisterIF,
then any class responsible for managing the persistence of Foo
objects must implement the FooPersisterIF interface.

CachablelIF. This interface extends the PersistableIF interface.
This interface must be implemented by classes whose instances
the persistence layer will be expected to cache.

The CachableIF interface defines a method named
getIdobject, which is expected to return the object’s unique
object ID encapsulated in an object. The object it returns is used
as a key in a HashMap, so the object’s class must have implementa-
tions of the hashCode and equals methods that reflect the value of
the object ID it encapsulates. The motivations for this are dis-
cussed under the “Implementation” heading of the CRUD pattern.

PersistencelF. Every class that is responsible for persisting objects
must implement this interface.

Figure 9.4 shows the static organization of most of the rest of the per-
sistence package. The complete persistence framework is on the CD that
accompanies this book. Here are descriptions of the classes and interfaces
that appear in Figure 9.4:

PersistenceManagerFactory. Instances of classes in the
PersistenceManager role are responsible for creating objects
responsible for managing the persistence of other objects. In
this example, all such classes must implement the
PersistencemanagerIF interface. Each concrete class that
implements the PersistencemanagerIF interface creates
PersistenceManager objects that manage the persistence of
objects using one particular kind of database.

The PersistenceManagerFactory class allows the
persistence framework to support multiple types of databases.
The PersistenceManagerFactory class is responsible for
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creating instances of a class that implements the
PersistencemanagerIF interface and supports the type of
database being used.

Here are descriptions of the PersistenceManagerFactory
class’s methods:

getInstance. This method is static and returns the single
instance of the PersistenceManagerFactory class.

getPersistenceManager. This method returns the
PersistenceManagerIF object that will be responsible for
creating objects that know how to persist objects to the
desired type of persistent store.

registerInitializer. This persistence package does not contain
any classes that know how to persist a specific business
class. The application that uses this persistence package is
expected to provide those classes. The application is also
expected to register those classes with the persistence
package.

The application arranges to register its classes to per-
sist business objects by passing a PersistenceInitial-
izerIF object to this method before its first call to the
getPersistenceManager method. During the first call to
the getPersistenceManager method, it passes the freshly
created PersistenceManagerIF object to the initialize
method of every PersistenceInitializerIF object that
was passed to this method. Those initialize methods are
expect to register classes to persist business objects at that
time by calling the PersistenceManagerIF object’s
registerInterface method.

PersistenceManagerIF. Classes in the PersistenceManager role
must implement the PersistenceManagerIF interface. The
PersistenceManagerIF interface defines methods to get/create
objects to persist business objects and to support transaction
management. Classes that implement this interface are usually
specific to one kind of database. Here are descriptions of its
methods.

getPersister. This method returns a PersisterIF object that
implements a given subinterface of the PersisterIF inter-
face. The argument should be a Class object that encapsu-
lates the interface responsible for the persistence of a
particular class of object. The object this method returns is
an instance of a class that knows how to persist objects to
the database manager being used.
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For example, suppose there is an interface named
FooPersisterIF and that classes responsible for persisting
instances of a class named Foo must implement the
FooPersisterIF interface. Also, suppose there is a class
that implements the PersistenceManagerIF interface for
persisting objects to a persistence store using the JDBC
APL. If its getPersister method is passed a Class object
that encapsulates the FooPersisterIF interface, the
method will return an object that implements the
FooPersisterIF interface and knows how to persist Foo
objects using the JDBC API.

registerInterface. The getPersister method knows what

class it should return an instance of for a given interface. It
gets this knowledge from a previous call to the Regis-
terInterface method. Applications call the RegisterIn-
terface method to register interfaces for persisting
application-specific objects and the classes that implement
the interfaces.

The arguments to the RegisterInterface method are
two Class objects. The first Class object must encapsulate
an interface that is a subinterface of PersistenceIF. The
second Class object is expected to encapsulate a class that
implements PersistenceIF and has a constructor that
takes a single argument. The class of the constructor’s argu-
ment must be the same as the concrete class that imple-
ments the PersistenceManagerIF interface.

Implementations of the PersistenceManagerIF
interface are expected to be specific to a particular kind of
database. For this reason, calls to an implementation of
this method are allowed to ignore classes that implement
the PersistenceIF interface but are not intended to be
used with a different kind of database than the one the
implementation of the PersistenceManagerIF interface is
intended for.

execute. This method is overloaded. There are two forms of

the method. The simpler version of this method takes one
argument, which is an object that implements the
java.lang.Runnable interface. This method creates a
transaction and calls the Runnable object’s run method.
The transaction provides a context for the operations that
are performed by the run method. When the run method
returns, the execute method commits the transaction. If
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the run method throws an exception, the execute method
aborts the transaction. The transaction this method creates
is independent of any transaction in the current context.
That is to say that it will make no difference to either trans-
action what the outcome of the other is.

Applications usually use the one-argument version of
the execute method to provide a transaction context for
operations. Sometimes, the one-argument version of exe-
cute is not a